Supporting Information

Evaluation of SHOX defects in the era of next-generation sequencing

Mariana F.A. Funari¹, Juliana S. de Barros², Lucas S. Santana³, Antonio M. Lerario^{1,3,4}, Bruna L. Freire¹, Thais K. Homma^{1,3}, Gabriela A. Vasques^{1,3}, Berenice B. Mendonca¹, Mirian Y. Nishi¹, Alexander A.L. Jorge^{1,3}

¹Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil

²Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil

³Unidade de Endocrinologia Genética/LIM25, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil

⁴Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, USA

Table of Content

Appendix S1

Targeted panel sequencing and data analysis

Genomic DNA of the patients was isolated from peripheral blood leukocytes using standard procedures. DNAs were analyzed by a customized panel of targeted sequencing based on the Agilent SureSelect XT (Agilent Technologies, Santa Clara, CA, USA) capture system with genes associated with growth and short stature) that included 97 genes with a target region of approximately 489kb. In this panel, we included the entire genomic region of the *SHOX* gene and some regions with regulatory functions located around it (up- and downstream enhancer regions)¹ (Supporting Information, Table S1). DNA libraries were sequenced in paired-end mode in pools of 96 samples using the Illumina NextSeq 500 platform with NextSeq V2 2x150 kits or pools of 32 samples using the Illumina MiSeq platform with MiSeq V3 2x300 kits (Illumina, Inc., San Diego, CA, USA).

The raw data were aligned to the reference genome (GRCh37/hg19) with BWA tools². The version of the hg19 assembly used is adapted to handle with the pseudoautosomal regions of the sex chromosomes. Accordingly, the corresponding regions on the Y chromosome (Y:10,001-2,649,520 for PAR1 and Y:59,034,050-59,373,566) are "hard-masked" with NNNs. In addition, we analyze XX and XY patients separately. Variant calling for point mutation analysis was performed with Freebayes and annotated with ANNOVAR. The variants were filtered according to frequency (MAF <0.1%) in public (gnomAD, http://gnomad.broadinstitute.org/ and ABraOM http://abraom.ib.usp.br/)^{3,4} and in-house databases (739 samples), location (exons and splice site consensus) and consequences to the protein predicted by *in silico* analyses.

CNV analyses were performed using two software packages: COpy Number Targeted Resequencing Analysis (CONTRA)⁵ and Nexus Copy Number (BioDiscovery, Inc., El Segundo, CA, USA)⁶. Both software programs are able to call copy number gains and losses for each target region based on the normalized depth of coverage. We considered log ratios of 0.7 or -0.7 and adjusted p values below 0.05 for the detection of heterozygous duplications or deletions, respectively. Regarding Nexus analysis, we applied the SNP-FASST2 algorithm, and a segment was considered duplicated or deleted when the log2 ratio of the test/reference fluorescence intensities of a given region encompassing at least three probes was above 0.3 or below -0.3, respectively⁷. We also visually inspected *SHOX* coverage using Integrative Genomics Viewer (IGV) software⁸.

All identified CNVs were confirmed by MLPA or direct sequencing of the breakpoints. MLPA analysis was carried out using the commercial kit P018-*SHOX*-G1 (MRC Holland, Amsterdam, Netherlands). Sanger sequencing products were bidirectionally sequenced on an ABI PRISM 3130xl automatic sequencer (Applied Biosystems, Foster City, CA, USA).

References

- 1. Marchini A, Ogata T, Rappold GA. A Track Record on SHOX: From Basic Research to Complex Models and Therapy. *Endocr Rev.* 2016;37(4):417-448.
- 2. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics.* 2009;25(14):1754-1760.
- 3. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. *Nature.* 2016;536(7616):285-291.
- 4. Naslavsky MS, Yamamoto GL, de Almeida TF, et al. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. *Hum Mutat.* 2017;38(7):751-763.
- 5. Li J, Lupat R, Amarasinghe KC, et al. CONTRA: copy number analysis for targeted resequencing. *Bioinformatics*. 2012;28(10):1307-1313.
- 6. Darvishi K. Application of Nexus copy number software for CNV detection and analysis. *Curr Protoc Hum Genet.* 2010;Chapter 4:Unit 4.14.11-28.
- Villela D, Costa SS, Vianna-Morgante AM, Krepischi ACV, Rosenberg C. Efficient detection of chromosome imbalances and single nucleotide variants using targeted sequencing in the clinical setting. *Eur J Med Genet.* 2017;60(12):667-674.
- 8. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. *Nat Biotechnol.* 2011;29(1):24-26.

	Gene and chromosomal coordinates	Captured regions
1	ACAN	Coding region
2	ADAMTS10	Coding region
3	ADAMTS17	Coding region
4	ARNT2	Coding region
5	BMP2	Coding region
6	BMPR1B	Coding region
7	BRAF	Coding region
8	CBL	Coding region
9	CCDC53	Coding region
10	CCDC8	Coding region
11	CDH2	Coding region
12	CDON	Coding region
13	COL2A1	Coding region
14	COMP	Coding region
15	CREBBP	Coding region
16	CUL7	Coding region
17	DGCR8	Coding region
18	DMXL2	Coding region
19	EP300	Coding region
20	FBN1	Exons 42 and 43
21	FGF8	Coding region
22	FGFR1	Coding region
23	FGFR3	Coding region
24	GDF5	Coding region
25	GH1	Genomic region
26	GHR	Coding region and UTRs
27	GHRH	Coding region and UTRs
28	GHRHR	Coding region and UTRs
29	GHSR	Coding region and UTRs
30	GLI2	Coding region and UTRs
31	GNAS	Coding region
32	GPR161	Coding region
33	HDAC6	Coding region
34	HESX1	
35	HHIP	Coding region
36	HMGA2	Coding region
37	НОХА9	Coding region

Table S1: Genes and chromosomal regions included in the customized targeted panel

(to be continued)

	Gene and chromosomal coordinates	Captured regions
38	HRAS	Coding region
39	IGF1	Coding region and UTRs
40	IGF1R	Coding region and UTRs
41	IGF2BP2	Codina region
42	IGFALS	Coding region
43	IGSF1	Coding region
44	IGSF10	Coding region
45	IHH	Coding region and UTRs
46	KAL1	Coding region
47	KRAS	Coding region
48	LHX3	Coding region
49	LHX4	Coding region
50	LZTR1	Coding region
51	MAP2K1	Coding region
52	MAP2K2	Coding region
53	MEF2C	Coding region
54	MLL2	Coding region
55	NF1	Coding region
56	NPPB	Coding region
57	NPPC	Coding region and UTRs
58	NPR2	Coding region and UTRs
59	NRAS	Coding region
60	NSUN2	Coding region
61	OBSL1	Coding region
62	OTX2	Coding region
63	PAPPA2	Coding region
64	PITX2	Coding region
65	PNPLA6	Coding region
66	POU1F1	Coding region and UTRs
67	PRKG2	Coding region
68	PROKR2	Coding region
69	PROP1	Coding region and UTRs
70	PTCH1	Coding region
71	PTPN11	Coding region
72	RAB3IP	Coding region
73	RAF1	Coding region
74	RASA2	Coding region

Table S1: Genes and chromosomal regions included in the customized targeted panel (cont)

(to be continued)

	Gene and chromosomal coordinates	Captured regions
75	RIT1	Coding region
76	RNPC3	Coding region
77	ROR2	Coding region
78	RUNX2	Coding region
79	SHH	Coding region and UTRs
80	SHOC2	Coding region
81	SHOX	Genomic region
82	SHOX2	Coding region
83	SIX3	Coding region
84	SMO	Coding region
85	SOS1	Coding region
86	SOS2	Coding region
87	SOX2	Coding region
88	SOX3	Coding region
89	SOX5	Coding region
90	SOX6	Coding region
91	SOX9	Coding region
92	SRCAP	Coding region
93	STAT5B	Coding region and UTRs
94	TCF7L1	Coding region
95	TGIF1	Coding region
96	WNT5A	Coding region
97	ZIC2	Coding region
98	chrX:398,100-399,050; chrY:348,100-349,050	SHOX enhancer region
99	chrX:460,100-460,900; chrY:410,100-410,900	SHOX enhancer region
100	chrX:516,400-517,400; chrY:466,400-467,400	SHOX enhancer region
101	chrX:713,900-714,900; chrY:663,900-664,900	SHOX enhancer region
102	chrX:750,700-752,000; chrY:700,700-702,000	SHOX enhancer region
103	chrX:763,900-764,900; chrY:713,900-714,900	SHOX enhancer region
104	chrX:780,400-781,400; chrY:730,400-731,400	SHOX enhancer region
105	chrX:800,700-802,000; chrY:750,700-752,000	SHOX enhancer region
106	chrX:809,000-809,500; chrY:759,000-759,500	SHOX enhancer region
107	chrX:817,500-818,000; chrY:767,500-768,000	SHOX enhancer region
108	chrX:834,500-835,700; chrY:784,500-785,700	SHOX enhancer region
109	chrX:884,500-885,700; chrY:834,500-835,700	SHOX enhancer region

Table S1: Genes and chromosomal regions included in the customized targeted panel (cont.)

Table S2: Depth of coverage of *SHOX* genomic and up- and downstream regulatory regions included in the panel

ChrX positions	ChrY positions	Region	Enhancer	Size (pb)	Region with >10x depth of coverage (%)*
chrX:398,100-399,050	chrY:348,100-349,050	Upstream	CNE-5	950	97.7
chrX:460,100-460,900	chrY:410,100-410,900	Upstream	CNE-3	800	99.4
chrX:516,400-517,400	chrY:466,400-467,400	Upstream	CNE-2	1000	100.0
chrX:585,079-607,558	chrY:535,079-557,558	SHOX genomic**	-	22,480	81.0
chrX:713,900-714,900	chrY:663,900-664,900	Downstream	CNE4	1000	98.4
chrX:750,700-752,000	chrY:700,700-702,000	Downstream	CNE5	1300	100.0
chrX:780,400-781,400	chrY:730,400-731,400	Downstream	CNE7	1000	100.0
chrX:809,000-809,500	chrY:759,000-759,500	Downstream	CNE8	500	100.0
chrX:817,500-818,000	chrY:767,500-768,000	Downstream	CNE8/9	500	100.0
chrX:834,500-835,700	chrY:784,500-785,700	Downstream	CNE9	1200	93.4

The chromosomal coordinates are according to GRCh37/hg19. These coordinates include the major regulatory regions of the SHOX already described¹⁻⁴.

* This column corresponds to the size of target region (in percentage) with at least 10x depth of coverage.

** Genomic region of SHOX's main transcript NM_000451.

Chr: chromosome; bp: basepair; CNE: conserved non-coding DNA element.

- 1. Fukami M, Kato F, Tajima T, Yokoya S, Ogata T. Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3' region: implication for the downstream enhancer. *Am J Hum Genet.* 2006;78(1):167-170.
- 2. Sabherwal N, Bangs F, Röth R, et al. Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. *Hum Mol Genet.* 2007;16(2):210-222.
- 3. Durand C, Bangs F, Signolet J, Decker E, Tickle C, Rappold G. Enhancer elements upstream of the SHOX gene are active in the developing limb. *Eur J Hum Genet.* 2010;18(5):527-532.
- 4. Benito-Sanz S, Royo JL, Barroso E, et al. Identification of the first recurrent PAR1 deletion in Léri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer. *J Med Genet.* 2012;49(7):442-450.

Table S3: Depth of coverage of SHOX coding regions included in the panel

ChrX positions	ChrY positions	Region	Mean coverage (x)	Maximum coverage (x)	Minimum Coverage (x)
chrX:591,633-591,909	chrY:541,633-541,909	Exon 2	480	913	241
chrX:595,353-595,561	chrY:545,353-545,561	Exon 3	394	805	160
chrX:601,556-601,613	chrY:551,556-551,613	Exon 4	407	843	217
chrX:601,734-601,822	chrY:551,734-551,822	Exon 5	465	905	234
chrX:605,126-605,368	chrY:555,126-555,368	Exon 6	218	686	44

The coding regions correspond to the SHOX's main transcript NM_000451. All SHOX coding region of our cohort of patients was sequenced at least 44x. The chromosomal coordinates are according to GRCh37/hg19. Chr: chromosome; x: number of times that the region was sequenced.

Figure S1: Schematic representation of the pseudoautosomal region 1 (PAR1) and multiplex ligation-dependent probe amplification (MLPA) probes (kit P018) with the deletion or duplication map of patients with copy number variants in *SHOX* gene and/or regulatory regions. The numbers indicated in the upper part of the figure correspond to the identification of MLPA probes. The dark gray squares indicate regions deleted in the heterozygous state; the black squares indicate regions deleted in the homozygous state; the light gray squares indicate a duplication; and the white squares indicate retained regions. Minimum and maximum approximated deletion interval, determined by MLPA data, is indicated adjacent to each deletion. Cases 3 to 15 correspond to individuals with previously known *SHOX* defects; Cases 16 and 17 correspond to individuals with deletions initially detected by the NGS panel in the prospective evaluation. The deletion identified in Case 17 is not indicated in the figure, because it was not detected by MLPA. The Case 5 has two deletions: the smallest deletion (in black) is similar to the deletion detected in Case 15 who is her mother. CNE: conserved noncoding element; ECR: evolutionarily conserved region; ECS: evolutionarily conserved sequence.

റെ

5

lere	PPP2R3B gene	SHOX area - 18889 – CNE-5	SHOX area - 18885 – CNE-3	SHOX area - 18891 – CNE-2	SHOX region	exon 1	exon 2	exon 3	exon 4	exon 5	exon 6a	intron 6	exon 6b	SHOX area - 5642	SHOX area - 13821 – CNE3	SHOX area - 18886 – CNE4	SHOX area - 13296 – CNE5	SHOX area - 18893 – ECR1/CN	SHOX area - 5645	SHOX area - 5646	SHOX area - 13297	SHOX area - 6291 – ECS4/CNE	SHOX area - 6293 – ECS4/CNE	Xp22 - 5648	l Xp22 - 5649	l Xp22 - 9335	l Xp22 - 14697	CRLF2 gene	CSF2RA gene	I IL3RA gene	ASMT gene	ZBED1 gene	33 ARSF gene	33 PRKX gene	31 NL GN4X gene	31 HDHD1A gene	31 STS gene	31 KAL1 gene		
elorr	AR 1	AR 1	AR 1	AR 1	AR 1	Ŕ	Ю́Ч	Ŕ	Ŕ	Ю́Н	Ŕ	Ŕ	Ŕ	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	AR 1	p22.	p22.	p22.	p22.	p22.	p22.	Deletion	size range
μ	2	2	2	6	6	S	S	S	S	S	S	S	S	<u> </u>	9	4	9	2	6	2	9	6	2	6	6	9	6	9	2	9	9	6	×	×	×	×	×	×	Minimum	Maximum
Case 3																																							6.9 Mb	8.2 Mb**
Case 4																																							1.5 Mb	2.8 Mb**
Case 5																																							1.5 Mb	5.9 Mb**
Case 6																																							1.2 Mb	1.5 Mb**
Case 7																																							1.2 Mb	1.5 Mb**
Case 8																																							652.0 Kb	1.1 Mb**
Case 9																																							243.4 Kb	265.4 Kb
Case 10																																							444.2 Kb	501.8 Kb**
Case 11																																							3.8 Kb	16.3 Kb
Case 12																																							15.0 Kb	294.1 Kb
Case 13																																							36.6 Kb	76.8 Kb
Case 14																																							36.6 Kb	76.8 Kb
Case 15																																							113.2 Kb	194.4 Kb
Case 16																																							64 bp	11.3 Kb
Case 17																																							-	-

Figure S2: Depth of coverage of *SHOX* gene. This IGV image shows the real coverage of the *SHOX* sequencing in our panel. The chart at the top of the figure indicates the depth of coverage. On the bottom, inside the boxes, we can see the exons of the main transcript of *SHOX* (1 to 6). The gray bars, located above the exons, correspond to the sequencing reads. The regions without reads are the regions with no coverage in the sequencing. From this image we can see a good coverage of the coding region of the gene. The uncovered regions are all intronic regions.

Figure S3: CONTRA and Nexus analyses of Cases 5 and 15 (index case and her mother). CONTRA (A) and Nexus (B) plots of Case 5, who has two deletions: a large deletion in the paternal allele and a second deletion located downstream of *SHOX* in the maternal allele. Thus, she has a homozygous deletion exactly in this downstream region. In the CONTRA plot of the index case (A) the heterozygous deletion is indicated by the upper arrow. The log ratios of those dots in the *SHOX* region were around -1.0. The homozygous deletion is indicated by the bottom arrow. The X (in the lower part of the plot) indicates a homozygous deletion between ChrX: 884,500-885,700 (GRCh37/hg19). In the CONTRA plot of her mother (C) we can see dots in this same region with log ratios near -1.0, indicating a heterozygous deletion. In the Nexus plot of the index case (B) the large heterozygous deletion is indicated by dots with log ratios near -1.0 from the beginning until ~835,000, including the *SHOX* gene. In the Nexus plot of her mother (D) the dots in this same region have log ratios near zero, indicating normal copy number. Nexus did not detect the downstream deletion, probably located between 835,000 and 885,000 (GRCh37/hg19) (indicated by the rectangle), in homozygous state in Case 5, and in heterozygous in Case 15. We can see one single dot with log ratios below -2.0, in Case 5 (B), and other single dot with log ratios below -0.5, in Case 15 (D). Probably those dots are located in the deleted region, but they are not sufficient for the software to call a deletion, so we can say that the Nexus was not able identify this downstream deletion.

