Title: Serious Illness and End-of-Life Treatments for Nurses Compared to the General Population *Running Title:* Nurses' Healthcare with Serious Illness and EOL

Authors:

Julie Bynum MD MPH^{1, 2}, Honor Passow PhD³, Andrea Austin PhD³, Donald Carmichael MDiv³, Francine Grodstein PhD^{4, 5}

Affiliations:

¹ Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI

² Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI

³ Dartmouth Institute for Health Policy and Clinical Practice at the Geisel School of Medicine at Dartmouth, Hanover, NH

⁴ Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA

⁵ Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA

Corresponding Author:

Julie Bynum MD MPH 300 North Ingalls, Rm 933 Ann Arbor, MI 48109-2007 bynumju@med.umich.edu

Manuscript Word Count: 3046 ; Abstract Word Count: 294; Table Count: 4; Figure Count: 1 Keywords: Nurses, end of life, Medicare, Alzheimer's Disease, Congestive Heart Failure

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jgs.16044

This article is protected by copyright. All rights reserved.

Abstract

Objectives: As key team members caring for people with advanced illness, nurses teach patients and families about managing their illnesses and help them to understand their options. Our objective was to determine if nurses' personal healthcare experience with serious illness and end-of-life care differs from the general population as has been shown for physicians.

Design: Observational propensity-matched cohort study

Setting: Fee-for-service Medicare

Participants: Nurses' Health Study (NHS) and a random 20% national sample of Medicare beneficiaries aged 66 or older with Alzheimer's disease and related dementias (ADRD) or congestive heart failure diagnosed in hospital (CHF).

Measurements: Characteristics of care during the first year after diagnosis and the last six months of life (EOL).

Results: Among 57,660 NHS participants, 7,380 had ADRD and 5,375 had CHF; 3,227 ADRD patients and 2,899 CHF patients subsequently died. Care patterns in the first year were similar for NHS participants and the matched national sample: hospitalization rates, emergency visits and preventable hospitalizations were no different in either disease. Ambulatory visits were slightly higher for NHS participants than the national sample with ADRD (13.1 vs 12.5 visits, p<.01) and with CHF (13.7 vs 12.5, p<.001). Decedents in the NHS and national sample had

similar acute care use (hospitalization and emergency visits) in both diseases, but those with ADRD were less likely to use life-prolonging treatments such as mechanical ventilation (10.9% vs 13.5%, p=.001), less likely to die in a hospital with an ICU stay (10.4% vs 12.1%, p=.03), and more likely to use hospice (58.9% vs 54.8%, p<.001). CHF at the EOL results were similar.

Conclusions: Nurses with newly identified serious illness experience similar care to the general Medicare population. However, at the EOL, nurses are more likely to choose less aggressive treatments than the patients for whom they care.

INTRODUCTION

People diagnosed with a serious illness face challenging decisions about achieving their personal healthcare goals, including how to manage their disease and what care they prefer as end of life (EOL) nears. Healthcare professionals have a critical role in helping their patients make these decisions. Initiatives, such as the Serious Illness Conversation Guide¹, have focused efforts on improving clinicians' ability to engage with patients and their families on this topic. Part of that engagement is acknowledging how their own attitudes, experience, and preferences may influence what they recommend for others. Therefore, an important aspect of improving decisions regarding serious illness is understanding the experience and preferences of clinicians regarding their own serious illness.

Several studies indicate that physicians often prefer care that differs from both what they recommend or provide for patients and from what they receive at the end of their own lives.²⁻⁹ Yet, little attention has focused on nurses, despite their large role in healthcare. Nurses often take on the role of educator and spend more time one-on-one with patients and their families than other team members, especially in the hospital setting. Nurses have important influence on patients' knowledge about managing their serious illness and understanding their options, which is likely informed by their training and their personal attitudes regarding health care and EOL. In this study, we compare the type of care received by nurses who participated in the Nurses' Health Study (NHS)¹⁰ to the type of care received by similar women in the general Medicare population for diseases that have high mortality and may be amenable to chronic disease management and advance care planning. We focused on two serious conditions: Alzheimer's Disease and related dementias (ADRD) and congestive heart failure (CHF) serious enough to require hospitalization. We compared the type of services used during two distinct stages of disease: in the first year after illness identification and in the six months prior to death. We hypothesized that due to their clinical training and professional exposure to serious illness, nurses would experience better quality care (fewer urgent or potentially preventable admissions) and less intensive EOL services. As a secondary analysis, we compare the NHS nurses to a general population of men.

METHODS

We conducted an observational cohort study in which women participating in the NHS cohort who were aged 66 years or older were linked to their Medicare fee-for-service claims data; we compared the care of women diagnosed with ADRD and CHF to propensity matched cohorts of women drawn from a 20% national sample of fee-for-service Medicare beneficiaries. All methods described were repeated for comparison to a similar sample of men. Data Sources

Nurses' Health Study (NHS). The NHS is based at Brigham and Women's Hospital in Boston, MA. The initial cohort was identified in 1976, when 121,700 female, registered nurses, aged 30-55 years living in one of 11 states, returned a mailed questionnaire. Women have been

This article is protected by copyright. All rights reserved.

followed for the last 42 years with 90% follow-up. The nurses have since migrated to all 50 states and aged into Medicare.

Medicare linkage. In August 2013, NHS participants were notified of the planned Medicare linkage and were given the option to "opt-out" of this research; 390 (0.4%) women of the 97,729 active NHS participants alive and 65 years or older did so. Participants included in this study had to reside in US hospital referral regions (HRRs),¹¹ and be enrolled in fee-forservice (FFS) Medicare Parts A or B for the relevant observation periods as described below.

Medicare 20% random sample. The comparator Medicare cohort of women was derived from a random 20% sample of all Medicare beneficiaries in the U.S., restricted to residents of HRRs where NHS participants reside and to beneficiaries with Parts A and B fee-for-service coverage for each period of observation. NHS participants were excluded from the national sample.

Cohort Creation

For each study sample (NHS participants, 20% national sample of women), we created four disease cohorts. The disease cohorts for each sample were identified using only information from 2006-2012 Medicare administrative data. First, we identified people newly diagnosed with ADRD or with CHF severe enough to require hospitalization. For ADRD, we found the first inpatient or outpatient claim with a diagnostic code included in the Chronic Condition Warehouse (CCW) definition and kept cases when no similar claim was found in the

prior year. For CHF, we used the CCW diagnostic codes found as the primary diagnosis on a hospital claim. The reason for requiring hospitalization to enter the cohort was to account for the low specificity of CHF diagnoses in claims¹²⁻¹⁴ and the desire to capture disease cohorts with similar risk of death over the observation period. Second, we selected people among the newly identified cases who died within our observation period. Once cases were selected, we excluded patients for whom we would not be able to observe utilization in the time windows of interest (1 year before and after cohort entry and 6 months prior to death) because of changing enrollment in Medicare parts A or B, or entry into managed care.

Outcome Measures

For the year after a new diagnosis of ADRD or the first hospitalization for CHF, we measured use of the hospital, potentially preventable hospitalization, and emergency department visits. Additionally, we assessed the volume of ambulatory visits and type of specialties visited to assess whether nurses were more likely to access care or specialists. For decedents, we measured the place of death, use of hospice, use of life-prolonging treatments (including mechanical ventilation, dialysis, and feeding tubes) as well as use of the hospital and other types of services in the last 6 months of life.

Covariates

Variables used to perform matching were obtained from Medicare administrative data including demographics, date of birth and death, race, ZIP code of residence, and health status.

This article is protected by copyright. All rights reserved.

ZIP codes were used to identify 2010 US Census Tract median household income and hospital referral region (HRR). We measured the number and type of comorbid conditions in the year prior to cohort entry by presence of either one inpatient or two outpatient claims seven days apart for conditions included in the Elixhauser comorbidity score.^{15,16}

A covariate not used in matching was nursing home residence. We linked to the Minimum Dataset, which includes all nursing home stays, to identify people who -- prior to cohort entry -- were long-term nursing home residents based on having spent at least 100 days in a nursing home.

Statistical analysis

Descriptive analyses of differences between NHS and the 20% Medicare sample of women were compared using either two-sided t-tests (for continuous variables) or chi-squared tests (for categorical variables). Given expected and observed imbalances in factors such as socioeconomics and demographics between the NHS participants and the general population, propensity score matching was used to balance observable factors between the study samples. Scores were estimated using logistic regression to determine the likelihood that a woman would have participated in the NHS, based upon the covariates listed above.

Propensity score matching was performed using a nearest-neighbor matching algorithm to obtain a 1:1 match without replacement between NHS participants and the 20% Medicare sample of women. An optimal caliper equal to 0.2 times the standard deviation of the logit of

This article is protected by copyright. All rights reserved.

the propensity scores was used to match the logit of the propensity scores, and a 100% match was obtained. Finally, the balance in the observable confounders between the NHS participants and the matched cohort from the 20% sample was verified using a standardized difference of means greater than 0.10 as the minimum threshold for cohorts to be deemed unbalanced for that factor.¹⁷

After propensity score matching was complete, outcomes of interest for the NHS and the 20% Medicare sample were compared using either two-sided t-tests or chi-squared tests as appropriate. All analyses were repeated for comparison to a similarly matched sample of men. Analyses were conducted using Stata v14.1 (College Station, TX) and SAS v9.4 (Cary, NC). This study was approved by institutional review boards at Brigham and Women's Hospital and Dartmouth College.

RESULTS

From the NHS study eligible participants (N=57,660), we identified 7,380 women with newly identified ADRD and 5,375 with CHF. Among them, 3,227 with ADRD and 2,899 with CHF died by the end of our observation period. Before propensity matching, we compared the NHS participants to the national sample of women; NHS participants were more likely to be white, less likely to be dually eligible for Medicaid, and lived in higher income ZIP codes (shown in Supplementary Table S1 and Supplementary Table S2). There were small differences in age and comorbidity count between nurses and the national sample across diagnosis (ADRD or CHF) and

This article is protected by copyright. All rights reserved.

r Manuscrip Autho

stage of disease (newly identified or EOL) cohorts. Once propensity matched, all four cohorts were well balanced as shown in Tables 1 and 2.

Table 3 compares utilization in nurses newly identified with a serious illness compared to the matched 20% national sample of similar women in Medicare. In general, acute care use was similar with small statistical differences in ambulatory visit rates. In newly identified ADRD, hospitalization rates, potentially preventable hospitalizations, and emergency department visits were no different between NHS and the national sample. There were no meaningful differences when comparing NHS and national sample CHF cohorts (Note: the difference in preventable hospitalization rates, .50 vs .54 (p=.02), was statistically significant but unlikely to be clinically meaningful). Ambulatory visit rates in both the ADRD and CHF cohorts were approximately 0.5-1 visit per person higher in nurses compared to the national sample with the difference arising from use of specialists, with nurses having more visits to cardiologists and neurologists.

Acute care use during the last 6 months of life in both the ADRD and CHF cohorts was also similar. Hospitalization rates, while statistically different, are clinically close in nurses compared to the national sample (1.0 vs. 1.1 per person with ADRD, p=.007 and 1.6 vs 1.7 with CHF, p=.04) and had overlapping confidence intervals. Other service use including post-acute skilled nursing facility (SNF) stays, emergency visits and ambulatory care visits were no different between nurses and the national sample, while home health use in CHF was slightly higher in nurses.

We found differences in treatments used at the end of life and place of death (Table 4 and Figure 1). In ADRD, nurses were less likely to use life prolonging treatments, including ventilator support, dialysis or feeding tubes, compared to the national sample during the last 6 months of life (10.9% (95% CI 9.82-12.0) vs. 13.5% (95% CI 12.38-14.77), p=.001), less likely to have a terminal hospitalization that included an ICU stay (10.4% (95% CI 9.32-11.45) vs. 12.1% (95% CI 11.0-13.2), p=.03), and more like to participate in hospice (58.2% (95% CI 56.47-59.91) vs. 54.2% (95% CI 52.49-55.96), p=.001). They were also less likely to die in a hospital (16.9% (95% CI 15.57-18.15) vs. 19.2% (95% CI 17.85-20.57), p=.014) with a slightly higher proportion dying in the community (50.0% (95% CI 48.21-51.69) vs. 47.5% (95% CI 45.77-49.25) p=.05). These findings were present in the CHF cohorts with smaller magnitude of difference, with the exception that there was no difference between nurses and the general Medicare population of women for dying in a hospital with or without an ICU stay.

While all of the NHS participants were women, we tested whether there may be utilization differences between nurses and a matched sample of men (match results in Supplementary Table S3 and Supplementary Table S4) and found the same patterns for newly identified cases (Supplementary Table S5). At the EOL, nurses had lower hospitalization and intensive EOL treatments than men, similar to the comparison to women (Supplementary Table S6). Community as a place of death was the same, but men were more likely to die in hospital

This article is protected by copyright. All rights reserved.

while nurses more likely to die in the nursing home, a difference not observed when comparing the nurses to a sample of matched women.

DISCUSSION

Nurses are critical team members as primary points of access, educators, and often care coordinators for patients with serious illness, a population in particular need of end of life care planning. Nurses, like physicians, engage with patients and their families who are making important decisions about serious illness. There is a growing literature on the treatment physicians receive at the end of their own lives. In this study we focus on nurses as the other care team member important for patient and family education. Our main findings are that nurses' utilization is largely similar to the general population except for nurses' lower use of the most intensive services at the EOL and higher use of hospice, particularly for ADRD, which is a long, progressive illness.

Nurses' education and experience managing people who are ill may lead to personal treatment decisions, such as what type of doctor to see or the nature of treatments near the end of life, that differ from the general population. In the case of physicians, several survey studies indicate that physicians prefer less aggressive care at the end of life and support use of advanced directives.^{3-5,7,8} No similar survey data on nurses' preferences is currently available although we can examine healthcare received at the EOL. Studies of EOL treatments doctors receive have shown they use the hospital similarly to the general population, with perhaps

more ICU use, but also more hospice⁶ and their care is comparable to that of lawyers⁹ and a diverse set of clinicians.² Our examination of the care nurses receive demonstrates differences in specific end of life treatments that are larger and more consistent than those found for doctors, including more use of hospice, less use of the ICU during terminal hospitalizations and less use of life-prolonging treatments (ventilators, dialysis, or feeding tubes).

Whereas studies of health utilization among physicians with serious illness have only examined the last phase of life, we expanded on this approach, examining health utilization by nurses in the year following diagnosis, and at the end of life. We found that nurses do not receive better quality of care as measured by preventable hospitalizations and emergency visits but are slightly more likely to access specialty care and have more ambulatory visits. It is possible that the earlier engagement of disease experts and more ambulatory care could contribute to the differences we find at the EOL, which are particularly large in the context of ADRD. The differences for CHF are similar to the ADRD results with the exception that nurses do not differ from the national sample in use of the ICU during a terminal hospitalization. The similarity of nurses to the general population in terminal hospital stay with ICU use may reflect the greater likelihood of an acute cardiac event leading to a coronary care unit stay in CHF compared to ADRD or from less recognition of CHF as a life-limiting disease in way ADRD is recognized.

Less aggressive EOL treatments for nurses compared to the general population raises the critical question of *why* the differences occur. A potential explanation is that the work experience as nurses informs their personal choices or their advanced care planning. We have recently shown that a high proportion (84%) of nurses have advance care planning documentation which may empower proxy decisions-makers, as is often necessary with ADRD, to direct care toward the nurses' pre-specified wishes.¹⁸ Future studies on how nurses navigate the health system when they have serious illness may allow us to leverage those experiences and inform development of the nurse educator role to improve advance care planning. While nurses may be able to advise during advanced care planning, the current literature suggests that this role has been broached only for nurse practitioners, who can practice independently of physicians in many states, and for critical care nurses.¹⁹⁻²² Izumi suggests that by not accessing the wider nurse workforce we are missing an opportunity to improve advanced care planning.²³ Yet nurses faces multiple barriers to fulfill this role, including inadequate training, lack of role clarity, and the need to work within team hierarchies.²³

This study highlights another important avenue for future research. A potential use of the NHS survey data collected over 40 years linked to Medicare data is to study early and midlife predictors of health outcomes of women in late life. Our finding that healthcare is similar for nurses and the general population except very near death reduces concerns about generalizability of these future studies. This application of the NHS data has begun in studies of

cancer, preventive care, and cognitive impairment.²⁴⁻²⁶ Concerns about generalizability also motivated comparing to men, in which we found no difference in early disease but larger differences at the EOL. EOL care differences between the nurses and men may be driven by gender as well as professional healthcare experience.

This study has important limitations. First, a specific concern is that nurses may be diagnosed earlier which could allow more time for advance care planning but we cannot detect disease stage using administrative data. This concern, in part, motivated our examination of newly identified cases and end-of-life care. The proportion of nurses who die within a year of diagnosis in both ADRD and CHF was slightly lower (1.5-2%) than the general population which suggests the nurses may be diagnosed earlier or are healthier, however, these differences were not large enough to unbalance the samples. In addition, the NHS and general population cohorts were close in age and other illness variables before and after matching, which lowers the likelihood that our results are substantively influenced by this potential bias. Second, matching was possible only for factors that were measurable in the administrative data; therefore, confounding by other unmeasured factors, such as education, could exist. Third, although propensity matching makes an internally valid comparison, generalizability to nurses and Medicare beneficiaries not represented in this study (such as those enrolled in managed care) is potentially limited. Similarly, representation of minorities is low in the parent NHS which limits generalizability to minority populations.

This article is protected by copyright. All rights reserved.

SUMMARY

As frontline clinicians, nurses both deliver care and observe firsthand the promises, limitations and burdens of medical care. In a national sample of nurses living with serious illness, we find that nurses experience similar care to non-nurses in the year following diagnosis, but tend to receive less aggressive treatments at the end of life. Incorporating nurses into studies of what drives care decisions and how to best support patient decision-making is an important, under-tapped opportunity.

ACKNOWLEDGMENTS

Conflict of interests: The authors have no conflicts of interest.

Author Contributions: Multiple authors were involved in each stage of the study including study concept and design (Bynum, Grodstein), acquisition of subjects and/or data (Bynum, Grodstein), analysis and interpretation of data (Bynum, Grodstein, Austin, Passow, Carmichael), and preparation and approval of manuscript (Bynum, Grodstein, Austin, Passow, Carmichael). Sponsor's Role: This research is funded by grants from the National Institute of Aging (R21 AG045618 and P01 AG019783). The sponsor had no role in the design and conduct of this study; preparation, review, or approval of the manuscript.

REFERENCES

- Ariadne Labs. Serious Illness Care. 2018; <u>https://www.ariadnelabs.org/areas-of-</u> work/serious-illness-care/. Accessed November 30, 2018.
- Blecker S, Johnson NJ, Altekruse S, Horwitz LI. Association of Occupation as a Physician With Likelihood of Dying in a Hospital. *JAMA*. 2016;315(3):301-303.
- Chinn GM, Liu PH, Klabunde CN, Kahn KL, Keating NL. Physicians' preferences for hospice if they were terminally ill and the timing of hospice discussions with their patients.
 JAMA Intern Med. 2014;174(3):466-468.
- 4. Gallo JJ, Straton JB, Klag MJ, et al. Life-sustaining treatments: what do physicians want and do they express their wishes to others? *J Am Geriatr Soc.* 2003;51(7):961-969.
- 5. Gramelspacher GP, Zhou XH, Hanna MP, Tierney WM. Preferences of physicians and their patients for end-of-life care. *J Gen Intern Med.* 1997;12(6):346-351.
- Matlock DD, Yamashita TE, Min SJ, Smith AK, Kelley AS, S MF. How U.S. Doctors Die: A Cohort Study of Healthcare Use at the End of Life. *J Am Geriatr Soc.* 2016;64(5):1061-1067.
- Periyakoil VS, Neri E, Fong A, Kraemer H. Do unto others: doctors' personal end-of-life resuscitation preferences and their attitudes toward advance directives. *PLoS One*. 2014;9(5):e98246.

- 8. Ubel PA, Angott AM, Zikmund-Fisher BJ. Physicians recommend different treatments for patients than they would choose for themselves. *Arch Intern Med.* 2011;171(7):630-634.
- Weissman JS, Cooper Z, Hyder JA, et al. End-of-Life Care Intensity for Physicians, Lawyers, and the General Population. *JAMA*. 2016;315(3):303-305.
- 10. Colditz G, Manson J, Hankinson S. The Nurses' Health Study: 20-year contribution to the understanding of health among women. *J Womens Health (Larchmt)*. 1997;6(1):49-62.
- 11. Wennberg JE, Fisher E, Goodman D, Skinner J. *Tracking the Care of Patients with Severe Chronic Illness.* Hanover: The Trustees of Dartmouth College; 2008.
- 12. Goff DC, Jr., Pandey DK, Chan FA, Ortiz C, Nichaman MZ. Congestive heart failure in the United States: is there more than meets the I(CD code)? The Corpus Christi Heart Project. *Arch Intern Med.* 2000;160(2):197-202.
- Li Q, Glynn RJ, Dreyer NA, Liu J, Mogun H, Setoguchi S. Validity of claims-based definitions of left ventricular systolic dysfunction in Medicare patients.
 Pharmacoepidemiol Drug Saf. 2011;20(7):700-708.
- 14. Rector TS, Wickstrom SL, Shah M, et al. Specificity and sensitivity of claims-based algorithms for identifying members of Medicare+Choice health plans that have chronic medical conditions. *Health Serv Res.* 2004;39(6 Pt 1):1839-1857.

- Author Manuscript
- 15. Li B, Evans D, Faris P, Dean S, Quan H. Risk adjustment performance of Charlson and Elixhauser comorbidities in ICD-9 and ICD-10 administrative databases. *BMC Health Serv Res.* 2008;8:12.
- 16. Sharabiani MT, Aylin P, Bottle A. Systematic review of comorbidity indices for administrative data. *Med Care.* 2012;50(12):1109-1118.
- Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. *Stat Med.* 2009;28(25):3083-3107.
- Kang JE, Grodstein F, Bynum J, D. S. Predictors of advance care planning in older women: the Nurses' Health Study. *JAGS*. 2018. DOI: 10.1111/jgs.15656.
- Arbour RB, Wiegand DL. Self-described nursing roles experienced during care of dying patients and their families: a phenomenological study. *Intensive Crit Care Nurs*. 2014;30(4):211-218.
- 20. Bradley EH, Cherlin E, McCorkle R, et al. Nurses' use of palliative care practices in the acute care setting. *J Prof Nurs.* 2001;17(1):14-22.
- 21. Ke LS, Huang X, O'Connor M, Lee S. Nurses' views regarding implementing advance care planning for older people: a systematic review and synthesis of qualitative studies. *J Clin Nurs.* 2015;24(15-16):2057-2073.

- 22. Schulman-Green D, McCorkle R, Cherlin E, Johnson-Hurzeler R, Bradley EH. Nurses' communication of prognosis and implications for hospice referral: a study of nurses caring for terminally ill hospitalized patients. *Am J Crit Care*. 2005;14(1):64-70.
- 23. Izumi S. Advance Care Planning: The Nurse's Role. *Am J Nurs.* 2017;117(6):56-61.
- 24. Bender AC, Austin AM, Grodstein F, Bynum JPW. Executive function, episodic memory, and Medicare expenditures. *Alzheimers Dement*. 2017;13(7):792-800.
- Bronson MR, Kapadia NS, Austin AM, et al. Leveraging Linkage of Cohort Studies With Administrative Claims Data to Identify Individuals With Cancer. *Med Care*.
 2018;56(12):e83-e89.
- 26. Kapadia NS, Austin AM, Carmichael DQ, et al. Medicare Utilization and Spending Among Nurses Compared with the General United States Population. *J Womens Health (Larchmt).* 2018.

LEGENDS

Figure 1: End of Life Treatments and Place of Death Among NHS and 20% National Sample Decedents with ADRD or CHF Footnote: * p<.05, ** p<.001, NS non-significant

fı **Newly identified Dementia Newly identified CHF**

Table 1: Characteristics of NHS Participants and Propensity Matched Wome	en
from national sample newly identified with ADRD or CHF	

	NHS participants	Matched	Std diff	NHS participants	Matched	Std diff
Eligible ⁺ beneficiaries	57,660	3,610,529		57,660	3,610,529	
Eligible beneficiaries with	7,380	568,644		5,375	461,632	
Selected beneficiaries	7,380 (100)	7,380 (100)		5,375 (100)	5,375 (100)	
Demographics		N (%) unle	ess oth	erwise indicted	ł	
Age at diagnosis, mean(sd)	80.68 (5.5)	80.75 (6.7)	0.01	80.18 (5.8)	80.23 (7.2)	0.00
Race						
White	7,123 (96.5)	7,139 (96.7)	0.01	5,207 (96.9)	5,198 (96.7)	0.01
Black	126 (1.7)	120 (1.6)	0.01	93 (1.7)	108 (2)	0.02
Hispanic	50 (0.7)	59 (0.8)	0.02	34 (0.6)	28 (0.5)	0.01
Other	81 (1.1)	62 (0.8)	0.02	41 (0.8)	41 (0.8)	0.01
Dual eligible for Medicaid	477 (6.5)	444 (6)	0.02	279 (5.2)	275 (5.1)	0.00
Median Household Income, mean	66,374	66,276	0.01	64,801	64,663	0.01
Nursing home resident	659 (8.9)	562 (7.6)	0.07	387 (7.2)	282 (5.2)	0.10
During 90 days before diagnosis						
Any Nursing home stay	1,111 (15.1)	1,039 (14.1)	0.04	582 (10.8)	522 (9.7)	0.06
Any Home health services	1,056 (14.3)	1,169 (15.8)	0.05	850 (15.8)	942 (17.5)	0.05
Any Hospice services	80 (1.1)	79 (1.1)	0.01	24 (0.4)	22 (0.4)	0.01
During year before diagnosis						
Hospitalizations, mean (sd)	0.92 (1.5)	0.95 (1.5)	0.01	1.65 (1.4)	1.68 (1.5)	0.01
Ambulatory visits, mean (sd)	24.73 (34.1)	23.75 (32.9)	0.02	26.81 (34.5)	25.42 (34.9)	0.02
Comorbid conditions						
Comorbidity count, mean (sd)	2.41 (2.3)	2.38 (2.3)	0.00	3.13 (2.4)	3.15 (2.4)	0.00
Hypertension	4498 (60.9)	4484 (60.8)	0.01	3657 (68)	3720 (69.2)	0.02
Diabetes	1258 (17)	1257 (17)	0.00	1321 (24.6)	1339 (24.9)	0.01
Deficiency Anemias	1026 (13.9)	1023 (13.9)	0.00	1078 (20.1)	1110 (20.7)	0.02
Fluid electrolyte disorders	1046 (14.2)	1020 (13.8)	0.01	936 (17.4)	978 (18.2)	0.02
Hypothyroidism	1398 (18.9)	1407 (19.1)	0.00	985 (18.3)	960 (17.9)	0.01
Chronic obstructive lung disease	1074 (14.6)	1053 (14.3)	0.01	1290 (24)	1319 (24.5)	0.01
Congestive heart failure	773 (10.5)	748 (10.1)	0.02	1316 (24.5)	1311 (24.4)	0.01
Other neurological disorders	1223 (16.6)	1211 (16.4)	0.00	612 (11.4)	599 (11.1)	0.03
Depression	761 (10.3)	793 (10.7)	0.01	442 (8.2)	426 (7.9)	0.02
Renal failure	483 (6.5)	466 (6.3)	0.01	705 (13.1)	702 (13.1)	0.01
Psychoses	569 (7.7)	576 (7.8)	0.01	272 (5.1)	286 (5.3)	0.00
,	ζ,	· · · ·		()	()	

	EOL Dementia			EOL CHF		
	NHS	Matched	Std	NHS	Matched	Std
	participants		diff	participants		diff
Eligible ⁺ beneficiaries	57,660	3,610,529		57,660	3,610,529	
Eligible beneficiaries with diagnosis	7,380	568,644		5,375	461,632	
Beneficiaries who died	3,227	3,227		2,899	2,899	
Died within 1 year of cohort entry	1213 (37.6)	1316 (40.8)	0.06	1532 (52.8)	1576 (54.4)	0.03
Demographics		N (%) ui	nless oth	erwise indicted	l	
Age at death, mean(sd)	82.98(5.0)	83.11(6.5)	0.02	81.91(5.4)	81.99(7.0)	0.01
Race						
White	3124 (96.8)	3135 (97.1)	0.01	2803 (96.7)	2803 (96.7)	0.01
Black	48 (1.5)	41 (1.3)	0.02	49 (1.7)	48 (1.7)	0.00
Hispanic	24 (0.7)	22 (0.7)	0.00	15 (0.5)	15 (0.5)	0.01
Other	31 (1)	29 (0.9)	0.00	32 (1.1)	33 (1.1)	0.02
Dual eligible for Medicaid	301 (9.3)	300 (9.3)	0.00	195 (6.7)	177 (6.1)	0.03
Median Household Income, mean	65564	65001	0.01	64364	65120	0.01
(sd)	(28098)	(30053)		(27917)	(30430)	
Nursing home resident	429 (13.3)	326 (10.1)	0.11	288 (9.9)	199 (6.9)	0.13
During 90 days before diagnosis						
Any Nursing home stay	701 (21.7)	590 (18.3)	0.09	426 (14.7)	365 (12.6)	0.08
Any Home health services	636 (19.7)	644 (20)	0.01	576 (19.9)	639 (22)	0.05
Any Hospice services	70 (2.2)	62 (1.9)	0.02	22 (0.8)	29 (1)	0.03
During 365 days before diagnosis						
Hospitalizations, mean (sd)	1.3 (1.8)	1.3 (1.8)	0.01	1.8 (1.6)	1.8 (1.6)	0.00
Ambulatory visits, mean (sd)	24.6 (35.6)	23.4 (34.8)	0.02	26.2 (34.8)	22.6 (31.9)	0.06
Comorbid Condition count, mean (sd)	2.8 (2.6)	2.7 (2.6)	0.01	3.4 (2.6)	3.4 (2.7)	0.01

Table 2: Characteristics of NHS Participants and Propensity Matched Women from national sample who died with ADRD or CHF

Table 3: Utilization in year after NHS Participants and Propensity Matched Women from national sample were newly identified with ADRD or CHF

	Dementia			CHF		
	NHS Participants	Matched Sample		NHS Participants	Matched Sample	
Beneficiaries with diagnosis, n	7,380	7,380		5,375	5,375	
First year utilization, rate per person	Mean (95	5% conf int)	p-value	Mean (95% co	onf int)	p-value
Hospitalizations	1.1 (1.07-1.15)	1.16 (1.12-1.2)	0.055	2.26 (2.21-2.31)	2.32 (2.27-2.38)	0.077
Hospital days	17.3 (16.29-18.32)	18.6 (17.53-19.67)	0.084	24.51 (23.51-25.52)	25.12 (24.08-26.16)	0.41
Potential Preventable Hospitalization	0.14 (0.13-0.15)	0.15 (0.14-0.17)	0.060	0.5 (0.48-0.53)	0.54 (0.52-0.56)	0.018
Emergency department visits	0.3 (0.29-0.32)	0.3 (0.29-0.31)	0.86	0.29 (0.28-0.32)	0.3 (0.28-0.32)	0.90
Ambulatory E&M visits	11.35 (11.11-11.6)	10.74 (10.5-12.01)	<.001	12.76 (12.42-13.11)	11.85 (11.53-12.18)	<0.001
Primary care visits	6.73 (6.56-6.91)	6.59 (6.43-6.76)	0.25	6.3 (6.09-6.50)	6.25 (6.06-6.46)	0.78
All Specialty care Visits	4.62 (4.48-4.76)	4.14 (4-4.29)	<.001	6.46 (6.24-6.69)	5.59 (5.38-5.81)	<.001
Cardiology visits	0.65 (0.6-0.7)	0.57 (0.53-0.62)	0.019	2.02 (1.92-2.12)	1.79 (1.69-1.89)	0.001
Psychiatry visits	0.18 (0.15-0.21)	0.17 (0.15-0.2)	0.80	0.06 (0.04-0.09)	0.04 (0.03-0.06)	0.11
Neurology visits	0.67 (0.63-0.71)	0.57 (0.54-0.6)	<.001	0.2 (0.18-0.23)	0.13 (0.12-0.16)	<.001

.

Table 4: End of Life Utilization and Treatments among NHS Participants and Propensity Matched Women from National Samplewith ADRD or CHF

	Dementia			CHF			
	NHS Participants	Matched Sample		NHS Participants	Matched Sample		
Beneficiaries who died, n	3227	3227		2899	2899		
Utilization during 6 months of life, rate per person	Mean or % (95% conf int)		p- value	Mean or % (95% conf int)		p- value	
Hospitalizations	1.02 (0.98-1.07)	1.1 (1.06-1.15)	0.007	1.6 (1.54-1.65)	1.67 (1.61-1.72)	0.039	
Hospital days	6.54 (6.21-6.88)	7.24 (6.86-7.63)	0.007	11.7 (11.21-12.2)	12.22 (11.71-12.74)	0.15	
Emergency department visits	0.34 (0.31-0.36)	0.35 (0.33-0.38)	0.35	0.3 (0.3-0.36)	0.34 (0.32-0.37)	0.42	
Skilled nursing facility discharges	0.48 (0.45-0.52)	0.49 (0.46-0.52)	0.81	0.5 (0.51-0.58)	0.57 (0.54-0.61)	0.29	
Skilled nursing facility days	11.96 (11.12-12.81)	12.57 (11.7-53.3)	0.32	11.7 (10.82-12.51)	12.28 (11.4-13.16)	0.32	
Any nursing home stay (skilled or long term) (%)	54.6 (52.86-56.33)	53.3 (55.03-69.32)	0.29	48.4 (46.53-50.2)	46.53 (44.7-48.37)	0.16	
Nursing home days	53.48 (51.05-55.92)	51.39 (49-53.79)	0.23	35.3 (33.23-37.42)	32.67 (30.64-34.7)	0.073	
Any home health service use (%)	33.37 (31.75-35.03)	33.99 (35.66-51.56)	0.60	41 (39.22-42.83)	44.64 (42.82-46.47)	0.005	
Ambulatory E&M visits	7.52 (7.22-7.82)	8.23 (6.91-7.48)	0.12	8.4 (8.13-8.76)	7.82 (7.53-8.13)	0.005	
Location on date of death							
Hospital (%)	16.86 (15.57-18.15)	19.21 (17.85-20.57)	0.014	32.32 (30.62-34.02)	34.18 (32.46-35.91)	0.13	
Skilled nursing facility (%)	8.4 (7.46-9.41)	9.23 (8.26-10.29)	0.24	8.1 (7.17-9.2)	9.52 (8.48-10.65)	0.064	
Long term nursing home (%)	24.05 (22.58-25.56)	23.4 (21.94-24.9)	0.54	13.6 (12.4-14.93)	12.59 (11.4-13.85)	0.24	
Community (%)	49.95 (48.21-51.69)	47.51 (45.77-49.25)	0.049	44.4 (42.61-46.26)	41.77 (39.97-43.59)	0.041	
EOL Treatments							
Any life prolonging treatments* (%)	10.88 (9.82-12)	13.54 (12.38-14.77)	0.001	21.6 (20.14-23.17)	24.15 (22.6-25.75)	0.023	
Terminal Hospitalization with ICU stay (%)	10.35 (9.32-11.45)	12.05 (10.95-13.23)	0.03	22.6 (21.05-24.13)	22.97 (21.45-24.55)	0.71	
Hospice Enrolled in last 30 days of life (%)	58.2 (56.47-59.91)	54.23 (52.49-55.96)	0.001	47.4 (45.56-49.23)	44.46 (42.64-46.29)	0.025	

*Life prolonging treatments = ventilator, dialysis, feeding tube

Supplemental Materials

Supplementary Table S1. Characteristics of NHS Participants and 20% Random National Sample of Women newly identified with ADRD or CHF

Supplementary Table S2. Characteristics of NHS Participants and 20% Random National Sample and Propensity Matched Sample of Women who Died with ADRD or CHF

Supplementary Table S3. Characteristics of NHS Participants and 20% Random National Sample and Propensity Matched Sample of Men newly identified with ADRD or CHF

Supplementary Table S4. Characteristics of NHS Participants and 20% Random National Sample and Propensity Matched Sample of Men who Died with ADRD or CHF

Supplementary Table S5. Utilization in year after NHS Participants and Propensity Matched Men from national sample were newly identified with ADRD or CHF

A. End of Life Treatments

....

With the brokenging

On Hospice last 30 days of life

A. End of Life Treatments

This article is protected by copyright. All rights reserved.

Community