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Summary

� BIR1 is a receptor-like kinase that functions as a negative regulator of basal immunity and

cell death in Arabidopsis.
� Using Arabidopsis thaliana and Tobacco rattle virus (TRV), we investigate the antiviral role

of BIR1, the molecular mechanisms of BIR1 gene expression regulation during viral infections,

and the effects of BIR1 overexpression on plant immunity and development.
� We found that SA acts as a signal molecule for BIR1 activation during infection. Inactivating

mutations of BIR1 in the bir1-1 mutant cause strong antiviral resistance independently of con-

stitutive cell death or SA defense priming. BIR1 overexpression leads to severe developmental

defects, cell death and premature death, which correlate with the constitutive activation of

plant immune responses.
� Our findings suggest that BIR1 acts as a negative regulator of antiviral defense in plants,

and indicate that RNA silencing contributes, alone or in conjunction with other regulatory

mechanisms, to define a threshold expression for proper BIR1 function beyond which an

autoimmune response may occur. This work provides novel mechanistic insights into the reg-

ulation of BIR1 homeostasis that may be common for other plant immune components.

Introduction

To defend themselves against invaders, plants have evolved
potent inducible immune responses (Dangl & Jones, 2001). The
frontline of active defense relies on the recognition of conserved
microbial components named pathogen-associated molecular
patterns (PAMPs) by membrane-localized receptor-like kinases
(RLKs) and receptor-like proteins (RLPs) to induce PAMP-trig-
gered immunity (PTI) (Boller & Felix, 2009; Tena et al., 2011).
PTI prevents colonization by pathogens such as bacteria, fungi
and oomycetes and includes activation of mitogen-activated pro-
tein kinases (MAPKs), production of reactive oxygen species
(ROS), generation of the signal molecule salicylic acid (SA), dif-
ferential expression of genes, callose deposition and stomatal clo-
sure (Dodds & Rathjen, 2010). Pathogens hit back by producing
effectors that suppress different steps of PTI, resulting in effector-
triggered susceptibility (ETS) (Jones & Dangl, 2006). As a coun-
ter-counter defense strategy, plants possess a repertoire of poly-
morphic disease resistance (R) proteins containing nucleotide-
binding (NB) and leucine-rich repeat (LRR) domains (Martin
et al., 2003; Meyers et al., 2003). These R immune receptors can

sense effectors directly or indirectly and establish Effector-Trig-
gered-Immunity (ETI). ETI responses significantly overlap with
PTI signaling cascades, albeit with a stronger amplitude, and
often result in a form of programmed cell death at the infection
sites that restricts pathogen progression (Coll et al., 2011).

Recent studies show that RNA silencing is a key regulatory
checkpoint modulating both PTI and ETI responses in plants
(Zvereva & Pooggin, 2012; Boccara et al., 2014). There is growing
evidence of the role of PAMP-responsive microRNAs (miRNAs)
and small interfering RNAs (siRNAs) in plant innate immunity
against microbial pathogens (Katiyar-Agarwal et al., 2006, 2007;
Navarro et al., 2006, 2008; Li et al., 2010, 2014; Zhang et al.,
2011; Campo et al., 2013; Boccara et al., 2014; Ouyang et al.,
2014), and it is well documented how small RNA (sRNA) regula-
tory networks exert extensive post-transcriptional control of disease
resistance genes to prevent undesirable R-mediated autoimmunity
in unchallenged plants (Yi & Richards, 2007; Zhai et al., 2011;
Boccara et al., 2014). Furthermore, RNA-directed DNA methyla-
tion (RdDM) provides epigenetic control of plant defenses by tar-
geting transposable elements and their adjacent defense genes
(Dowen et al., 2012; Yu et al., 2013; Lopez Sanchez et al., 2016).
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Immune responses against viruses are thought to rely mostly on
ETI upon recognition of virus-specific effectors by intracellular
immune-R receptors (Zvereva & Pooggin, 2012). In this line,
interesting connections between RNA silencing-mediated regula-
tion of R genes and viral infections have been made. For instance,
Brassica miR1885 is induced specifically by Turnip mosaic virus
(TuMV) infection, and targets NB-LRR class disease-resistant
transcripts for cleavage (He et al., 2008). Also, members of the
miR482/2118 superfamily mediate silencing of multiple NB-
LRR disease resistance genes in tomato, which includes produc-
tion of RNA-dependent RNA polymerase 6 (RDR6)-dependent
secondary siRNAs (Shivaprasad et al., 2012). Interestingly, the
miR482-mediated silencing cascade is suppressed in plants
infected with viruses or bacteria allowing pathogen-inducible
expression of NB-LRR targets (Shivaprasad et al., 2012). In
another study, two miRNAs (miR6019 and miR6020) guide
cleavage and production of functional secondary siRNAs from
transcripts of the NB-LRR immune receptor N from tobacco that
confers resistance to Tobacco mosaic virus (TMV) (Li et al., 2012).
Overexpression of both miRNAs attenuates N-mediated resistance
to TMV, demonstrating that miRNAs and secondary siRNAs
have a functional role in regulating resistance to TMV.

Although in plants, there are apparently no equivalent PAMPs
derived from viruses, several studies have suggested a role of PTI
in antiviral defense (Korner et al., 2013; Gouveia et al., 2016;
Nicaise & Candresse, 2017). For instance, a recent report shows
that Arabidopsis mutants deficient in the PTI master regulator
BRASSINOSTEROID INSENSITIVE1 (BRI1)-ASSOCIATED
RECEPTOR KINASE1 (BAK1) exhibit increased susceptibility to
different RNA viruses (Korner et al., 2013). BAK1 interacts
in vivo with the RLK BAK1-INTERACTING RECEPTOR-
LIKE KINASE 1 (BIR1), a negative regulator of PTI responses
and cell death pathways in Arabidopsis (Gao et al., 2009). It has
been suggested that BIR1 sequesters BAK1 to prevent unwanted
interactions with ligand-binding receptors in the absence of
pathogens (Gao et al., 2009; Ma et al., 2017). Here, we study the
role of BIR1 during viral infections and the molecular mecha-
nisms whereby BIR1 is regulated. We further show that BIR1 reg-
ulation is critical to avoid constitutive activation of plant defense
responses, which drastically impairs plant fitness and growth.

Materials and Methods

Plant material

Nicotiana benthamiana and Arabidopsis thaliana plants were grown
in controlled environmental chambers under long-day conditions
(16 h : 8 h, light : dark) at 25°C and 22°C, respectively. Arabidop-
sis lines used in this study were derived from the Columbia-0
(Col-0) ecotype. Mutants for bir1-1 and sobir1-12 and bir1-1/
BIR1 lines were donated by Yuelin Zhang (University of British
Columbia, Canada). The Arabidopsis ago1-27, ago1-25, ago2-1
and mutant combinations involving the alleles rdr1-1, rdr2-1,
rdr6-15, dcl2-1, dcl3-1 and dcl4-2 were donated by James C. Car-
rington (The Donald Danforth Plant Center, Creve Coeur, MO,
USA). Arabidopsis mutant cmt3 and ddc were supplied by Steve

Jacobsen (UCLA-HHMI, Los Angeles, CA, USA). The Arabidop-
sis nrpe1 (nrpd1b-11) was donated by Craig Pikaard (Indiana
University, IN, USA). The Arabidopsis mutant drm2-2 was sup-
plied by Eric Richards (Boyce Thompson Institute, Cornell
University, NY, USA). The Arabidopsis npr1-1 and NPR1ox seeds
were supplied by Xinniang Dong (Duke University, NC, USA).

Construction of a recombinant TRV-BIR1 vector and viral
inoculation

Tobacco rattle virus (TRV) derivatives were created from an infec-
tious TRV clone (Liu et al., 2002). TRV-GFP contained the HA-
tagged soluble modified green fluorescence protein (GFP) under
the promoter region of the Pea early browning virus (PEBV) repli-
case (Fernandez-Calvino et al., 2016a). TRV-BIR1 contained the
Arabidopsis BIR1 coding region under the PEBV promoter.
Briefly, the BIR1 cDNA containing its 50 UTR was amplified by
reverse transcription polymerase chain reaction (RT-PCR), cloned
into the Gateway pDONR207 vector, and shuffled into the binary
destination vector pGWB14. The human influenza hemagglu-
tinin (HA)-tagged BIR1 sequence was then PCR-amplified, and
cloned into pTRV2. The recombinant clones were screened by
restriction enzyme digestion and sequencing. TuMV-GFP was
derived from an infectious clone of the TuMV strain UK1 (Lellis
et al., 2002). All primers used in this study are listed in Supporting
Information Table S1.

Nicotiana benthamiana plants were inoculated at c. 21 d after
germination by infiltration of agrocultures containing TRV or
TuMV (Johansen & Carrington, 2001; Liu et al., 2002). Three-
week-old Arabidopsis plants were inoculated using sap extracts
from virus-infected N. benthamiana leaves as previously described
(Fernandez-Calvino et al., 2014). Arabidopsis plants inoculated
with sap from noninfiltrated N. benthamiana were used as con-
trols (mock). Additionally, experiments were paralleled using
na€ıve Arabidopsis plants to discard potential side-effects as a
result of wounding caused by abrasion used during mechanical
inoculation of sap extracts.

Construction of BIR1 transgenic plants

Arabidopsis Col-0 transgenic plants expressing the GFP:GUS
dual reporter gene under the BIR1 promoter were generated using
the Gateway-compatible pBGWFS7 binary vector. A genomic
DNA fragment of 3297 bp containing the BIR1 promoter was
cloned upstream to the fusion reporter gene as previously
described (Xiao et al., 2010). Arabidopsis Col-0 transgenic plants
expressing BIR1 were obtained using a glucocorticoid (dexam-
ethasone (DEX))-inducible gene expression system (Marques-
Bueno et al., 2016). Briefly, the GVG::ter::6xUAS/pDONR221
contained the GVG cassette cloned into pDONR221. mCherry
was added to this vector to generate GVG::ter::6xUAS::mCherry/
pDONR221. pDONR221-BIR1 contained the full-length BIR1
protein coding gene as described earlier. Final destination vectors
were obtained by three-fragment recombination using the
pH7m34GW destination vector. All the constructs were trans-
formed into wild-type Col-0 plants according to standard floral
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dipping (Clough & Bent, 1998). Independent homozygous lines
harboring a single transgene insertion were selected in T4 and
used for subsequent experiments.

Methylation analyses

Chop-qPCR was carried out as previously described (Bohmdor-
fer et al., 2014) using genomic DNA (100 ng) from 3-wk-old
Arabidopsis rosette leaves and the methylation-sensitive restric-
tion enzymes DdeI and NlaIII. Chop quantitative PCR (Chop-
qPCR) was done using Maxima Hot Start Taq DNA Polymerase
(Thermo Scientific, Waltham, MA, USA) and 259 SYBR Green
(Invitrogen) diluted at 1 : 400.

Bisulfite sequencing was done as previously described (He
et al., 2009). Briefly, genomic DNA from 3-wk-old rosette leaves
was extracted using DNeasy Plant Mini Kit (Qiagen). Bisulfite
conversion was done using the EZ DNA Methylation Startup kit
(Zymo Research, Irvine, CA, USA). PCR was done using Max-
ima Hot Start Taq DNA Polymerase (Thermo Scientific), and
amplification products were cloned into TOPO TA plasmids
(Invitrogen). At least 30 clones per sample were sequenced. A
nonmethylated region at coordinates 19 573 407–19 573 671 in
chromosome 4 was included as bisulfite conversion control.
Primers for bisulfite were designed as previously described (Pat-
terson et al., 2011) and listed in Table S1.

RNA analysis

Total RNA was extracted with TRIzol reagen (Invitrogen). One-
step quantitative RT-PCR (qRT-PCR) was carried out using
Brilliant III Ultra-Fast SYBR Green QRT-PCR Master Mix
(Agilent Technologies, Cedar Creek, TX, USA) in a Rotor-Gene
6000/Rotor-Gene Q real-time PCR machine (Corbett/Qiagen,
Sydney, Australia) (Fernandez-Calvino et al., 2016a). Relative
gene expression was determined using the Delta-delta cycle
threshold method and Rotor-Gene 6000 Series Software (Cor-
bett). Constitutively expressed CBP20 (At5g44200) or Actin2
(At3g18780) transcripts were used for normalization because of
its similar level of expression in mock-inoculated and virus-in-
fected leaves. A standard curve of known concentration of
in vitro synthesized TRV transcripts was used to determine the
TRV concentration as the number of viral copies per nanogram
of total RNA (Fernandez-Calvino et al., 2016a). Significant dif-
ferences between two or among several samples were compared
by Student’s t-test or one-way ANOVA followed by Duncan’s
test, respectively, using STATGRAPHICS PLUS v.5.1 (Statistical
Graphics Corp., The Plains, VA, USA). Unless otherwise indi-
cated, each Arabidopsis sample used for qRT-PCR analysis con-
sisted of RNA extracted from a pool of rosette leaves from five
plants (three leaves per plant, all leaves at identical positions).

Protein analysis

Protein extracts were prepared and analyzed by immunoblot
assay after sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (Fernandez-Calvino et al., 2016b). Blotted proteins

were detected using commercial horseradish peroxide-conjugated
secondary antibodies and a chemiluminescent substrate
(LiteAblot Plus, Pero, Milano, Italy). Relative protein accumula-
tion was measured by densitometry of protein blots exposed to
autoradiographic films using the IMAGEJ software.

Small RNA sequencing, construction of degradome libraries
and 50-rapid amplification of cDNA ends (50-RACE)

Young rosette leaves from virus-infected plants and the corre-
sponding mock-inoculated plants were pooled (10–12 plants) at
8 d postinoculation (dpi) (TRV) or 14 dpi (TuMV), and used for
degradome or sRNA sequencing. Systemically infected inflores-
cences from TRV-infected or mock-inoculated Arabidopsis were
pooled (10–15 plants) at 16 dpi, and used for degradome sequenc-
ing. Total RNA was extracted using TRIzol reagen (Invitrogen) or
Plant RNeasy Kit (Qiagen) and tested through the Agilent 2100
bioanalyzer system to guarantee RNA quality. sRNA libraries were
prepared and sequenced on an Illumina Genome Analyzer
(HiSeq2000, 19 50 bp, single-end run) by Ascidea Computa-
tional Biology Solutions (Barcelona, Spain, www.ascidea.com).

Parallel analysis of RNA ends degradome libraries were done as
previously described (German et al., 2009) and sequenced on an
Illumina Genome Analyzer (HiSeq2000, 19 50 bp, single-end
run) by Fasteris (Geneva, Switzerland; www.fasteris.com) and
IGA Technology Services (Udine, Itlay, www.igatechnology.c
om). Sequencing data were then analyzed using CLEAVELAND4
(Addo-Quaye et al., 2009). Briefly, all degradome sequence reads
with exact matches to structural RNA were removed and the fil-
tered dataset was mapped against the Arabidopsis cDNA sequence
transcriptome (TAIR10) using BOWTIE. For each exact match,
13-nt-long sequences upstream and downstream of the location
of the 50-end of the matching degradome sequence were extracted
to create a 26-nt-long ‘query’ mRNA subsequence. Query
sequences were then aligned to each sRNA sequence in our sRNA
datasets or to miRNA reported in miRBase using GSTAR

(CLEAVELAND4 pipeline) (Addo-Quaye et al., 2009). A modified
50-RACE was used for mapping internal cleavage sites as previ-
ously described (Donaire et al., 2011).

SA application and determination of SA content

Three-week-old plants grown on soil were sprayed with SA
(1 mM) as previously described (Takahashi et al., 2007). To test
the effect of SA on TRV accumulation, plants were TRV- or
mock-inoculated 24 h after the first SA application and then
treated for 8 d consecutively by spraying the solution once at
intervals of 24 h (Expt 1) or 48 h (Expt 2). To assess SA content
in the plant tissue, rosette leaves were harvested at the same leaf
position in order to minimize variations in the hormone content
throughout the plant. SA was extracted and derivatized as previ-
ously described (Vallarino & Osorio, 2016). The samples were
analyzed using GC coupled to time-of-flight MS (GC-TOF-MS)
(Pegasus III, Leco, M€onchengladbach, Germany), and quantified
using an internal standard ([2H4]-SA; OlChemIm Ltd, Olo-
mouc, Czech Republic).
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Accession numbers

DNA methylation data (GSE39901) were used from Stroud et al.
(2013). Degradome sequencing data from na€ıve Col-0

inflorescences (GSM280226) were reported previously (German
et al., 2008). Sequence data from this article can be found in the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession nos. GSM3019138,
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GSM3019139, GSM3019140 (deep sequencing of degradome
tags), and GSM2808011, GSM2808012, GSM3019141,
GSM3019142 (deep sequencing of sRNAs).

Results

Inactivating mutations in the immune repressor BIR1
triggers resistance to TRV

To gain an insight into the role of Arabidopsis BIR1 (At5g48380)
in the infectious process, we monitored BIR1 expression during
infection with TRV in a time-course experiment. We found that
BIR1 transcripts were significantly induced in leaves of TRV-in-
fected plants at 5 and 8 dpi compared with mock-inoculated con-
trols (Fig. 1a). BIR1 was also upregulated in response to the
unrelated TuMV (Fig. S1a). Using an Arabidopsis bir1-1
mutant, we found that depletion of BIR1 led to strong antiviral
resistance against TRV (Fig. 1b). However, TRV levels reverted
back to those of wild-type plants, or even higher, in bir1-1-com-
plemented lines (bir1-1/BIR1-HA) expressing an HA-tagged
wild-type BIR1 coding gene (Fig. 1b). This result confirmed that
the resistance phenotype observed in bir1-1 was caused by muta-
tion in BIR1. Western blot assay using anti-HA antibody also
revealed a significant induction of BIR1 protein in bir1-1/BIR1-
HA lines after TRV infection, indicating that elevated BIR1 tran-
script abundance reflected protein abundance in systemically
infected leaves (Fig. 1c). The bir1-1 mutant is known to constitu-
tively activate cell death and defense responses that are partially
dependent on the SA-dependent resistance pathway (Gao et al.,
2009; Liu et al., 2016). Accordingly, we found that transcription
of the defense marker genes PR1, PR4, PAD3 and WRKY29
remained similarly reactivated in TRV-infected bir1-1 mutants,
indicating that virus infection does not impair the activation of
defense when BIR1 is genetically suppressed (Figs 1d, S1b). The
autoimmune phenotypes in bir1-1 mutants are partially depen-
dent on SUPPRESSOR OF BIR1-1 1 (SOBIR1), which promotes
cell death and defense in conjunction with BAK1 (Chinchilla
et al., 2007; Gao et al., 2009; Liu et al., 2016). Interestingly, we
found a significant induction of SOBIR1 transcripts in Arabidop-
sis leaves at early time points of TRV or TuMV infection com-
pared with mock-inoculated plants (Figs 1e, S1a,c). By contrast,

BAK1 transcripts decreased significantly after infection with TRV
or TuMV (Figs 1f, S1a,c). In our assay, the bak1-5 mutant,
which is strongly impaired in PTI signaling (Schwessinger et al.,
2011), was more susceptible to TRV accumulation (Fig. 1g),
whereas TRV levels were moderately diminished in sobir1-12
mutants (Fig. 1h). Importantly, TRV RNA levels were also dras-
tically reduced in a sobir1-1 bir1-1 double mutant, in which cell
death and SA-dependent defense responses are significantly
reduced by the sobir1-1 mutation (Gao et al., 2009). This result
suggested that TRV resistance associated with loss of BIR1 func-
tion in the bir1-1 mutant was unrelated to constitutive cell death
or SA defense priming (Fig. 1i). Consistent with this notion, we
showed that exogenous application of SA triggered accumulation
of PR1 transcripts in the plant tissue but was not sufficient to
prime plant defense against TRV (Fig. 1i). Collectively, our
results indicated that TRV triggers an immune response in which
BIR1 probably functions as a negative regulator of antiviral
defenses.

RdDM imparts transcriptional control of BIR1

Inspection of Arabidopsis sRNA sequencing datasets generated in
our laboratory revealed the profuse accumulation of siRNAs
upstream of the BIR1 transcription start site, the vast majority of
which corresponded to the 24 nt class (Figs 2a, S1d). As 24 nt
siRNAs guide methylation in the canonical RdDM pathway (Xie
& Yu, 2015), we investigated if siRNA-dependent RdDM con-
trols BIR1 expression. First, BIR1 transcripts were significantly
more abundant in the RdDM mutants drm2, drm1 drm2 cmt3
(herein ddc), nrpe1 and ago4 mutants compared with wild-type
plants (Fig. 2b). BIR1 levels were unaffected in the single cmt3
mutant, probably as a result of redundancy between methyltrans-
ferases DRM2 and CMT3 in maintaining nonCG DNA methy-
lation (Fig. 2b) (Cao & Jacobsen, 2002). We then used qRT-
PCR to detect RNA products at the intergenic region containing
the predicted BIR1 promoter. Interestingly, transcripts were
amplified in wild-type Col-0 plants but not in nrpe1 mutants,
indicating that Pol V was required for their production (Fig. 2c).
The accumulation of Pol V-dependent transcripts derived from
INTERGENIC LOCUS 22 (IGN22) was used as a positive con-
trol (Rowley et al., 2011) (Fig. S2a).

Fig. 1 Expression of BIR1, SOBIR1 and BAK1 during Tobacco rattle virus (TRV) infection in Arabidopsis and effect of their loss-of-function mutations on
TRV accumulation. (a) Time-course accumulation of BIR1 transcripts in mock-inoculated and TRV-infected leaves. (b) Accumulation of TRV genomic RNA
in TRV-infected rosette leaves of Arabidopsis wild-type (Col-0), bir1-1mutants (lelf) and two bir1-1/BIR1-HA complemented lines (L17 and L49) (right) at
8 d postinoculation (dpi). Mock-inoculated controls were included in the left panel to discriminate background amplification. The phenotype of wild-type
and bir1-1 plants grown on MS medium at 21°C is shown. (c) Western blot analysis of BIR1 proteins in extracts from leaves of mock-inoculated (�) or
TRV-infected (+) bir1-1/BIR1-HA complemented lines (L17 and L49) at 8 dpi. Ponceau staining was used as a protein loading control. (d) Accumulation of
defense-related PR1, PR4, andWRKY29 transcripts in mock-inoculated or TRV-infected leaves of Arabidopsis wild-type and bir1-1mutants at 8 dpi. (e)
Time-course accumulation of SOBIR1 transcripts in mock-inoculated and TRV-infected leaves. (f) Time-course accumulation of BAK1 transcripts in TRV-
infected and mock-inoculated leaves. (g) Accumulation of TRV genomic RNA in rosette leaves of wild-type and bak1-5mutants at 8 dpi. (h) Accumulation
of TRV genomic RNA in rosette leaves of wild-type, sobir1-12 and sobir1 bir1mutants at 8 dpi. (i) Accumulation of PR1 transcripts (left) and TRV genomic
RNA (right) in rosette leaves of wild-type plants treated with or without (mock) salicylic acid (SA). Expts 1 and 2 are described in the Materials and
Methods section. Relative expression levels were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and normalized to
the CBP20 internal control. Error bars represent SD from three independent PCR measurements. Values in (a), (e) and (f) are related to the mock-
inoculated sample at 3 dpi that was arbitrarily assigned to 1. Asterisks (Student’s t-test) or different letters (one-way ANOVA) were used to indicate
significant differences (P < 0.001). The experiments were repeated at least three times with similar results and one representative biological replicate is
shown.
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If BIR1 were an RdDM target, DNA methylation at this locus
should be reduced in RdDM mutants. To test this idea, we per-
formed methylation-specific Chop-qPCR to examine DNA
methylation at the BIR1 promoter region in wild-type and several
DNA methylation mutants. Genomic DNA was digested with
the CHH methylation-sensitive restriction endonucleases DdeI
and NlaIII before PCR amplification using flanking primers
(Bohmdorfer et al., 2014). We found amplification products in
DNA samples treated with either DdeI or NlaIII in the wild-type
background, indicative of active cytosine methylation (Fig. S2b).
By contrast, low levels of amplification were reported in the
RdDM mutants nrpe1, drm2 or ago4 (Fig. S2b). Similar results

were obtained for At1g49490 and IGN36, used as positive
RdDM controls for DdeI and NlaIII digestions, respectively
(Bohmdorfer et al., 2014) (Fig. S2b). Parallel amplification of
DNA sequences without restriction sites (At1g55535 and
At2g36490) from the same digested DNA samples, used as inter-
nal digestion controls, produced amplification bands in all
genetic backgrounds (Fig. S2b). Quantification of the difference
in DNA methylation by Chop-qPCR indicated that CHH
methylation at both the BIR1 promoter and the At1g49490 and
IGN36 positive controls, but not the negative control, was
reduced to a similar extent in all mutants tested (Figs 2d, S2c).
Finally, whole-genome bisulfite sequencing (WGBS) reported by
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Fig. 2 RNA-directed DNA methylation (RdDM)-mediated transcriptional regulation of BIR1. (a) Distribution of BIR1-derived small interfering RNAs
(siRNAs) in rosette leaves of mock-inoculated Arabidopsis plants (upper diagram). Sense (black dots) and antisense (red dots) siRNA species are
represented as positive and negative values on the y-axis, respectively. The triangle graph represents the genomic distribution (percentage) of sRNAs in the
sequenced set. N denotes the total number of filtered sequenced reads. The circle graph represents the size distribution of BIR1-derived siRNAs. The
genome browser screenshot of CHH methylation and Pol V transcripts at the BIR1 promoter in wild-type (Col-0) and nrpe1mutants using whole-genome
bisulfite sequencing (WGBS) and Pol V (NRPE1) RIP-seq datasets is shown (Wierzbicki et al., 2012; Bohmdorfer et al., 2016) (lower diagram). (b)
Accumulation of BIR1 transcripts in rosette leaves of wild-type and RdDMmutants (cmt3, drm2, ddc, nrpe1 and ago4). (c) Accumulation of Pol V-
dependent BIR1 promoter transcripts in rosette leaves of wild-type and nrpe1mutants. (d) Extent of asymmetric (CHH) cytosine methylation at the BIR1
promoter determined by Chop-qPCR in rosette leaves of wild-type and RdDMmutants (nrpe1, drm2 and ago4). PCR-amplified regions contain
recognition sites of the methylation-sensitive DdeI and NlaIII endonucleases. Relative expression levels were determined by quantitative reverse
transcription polymerase chain reaction (qRT-PCR) and normalized to the CBP20 or Actin2 internal control as indicated. Error bars represent SD from three
independent PCR measurements. Asterisks (Student’s t-test) or different letters (one-way ANOVA) were used to indicate significant differences
(P < 0.001). The experiments were repeated at least three times with similar results and one representative biological replicate is shown.
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Wierzbicki et al. (2012) revealed extensive symmetrical and asym-
metrical DNA methylation in the BIR1 promoter, whereas
methylation was drastically diminished in nrpe1 compared with
wild-type plants (Figs 2a, S3). Furthermore, published Pol V
RIP-seq data (Bohmdorfer et al., 2016) revealed that Pol V-asso-
ciated RNA accumulated in the Col-0 wild-type, but not in
nrpe1 mutants, confirming that RNA reads originated at the
BIR1 promoter were associated with Pol V (Fig. 2a). Collectively,
our data demonstrated that BIR1 was an RdDM target under
normal growing conditions.

SA mediates transcriptional activation of BIR1 during TRV
infection

We wondered whether higher accumulation of BIR1 transcripts
in infected tissues could reflect the transcriptional activation of
the BIR1 locus in response to the virus. To test this idea, Ara-
bidopsis plants expressing a GFP:GUS fusion protein under the
control of the BIR1 promoter were challenged with TRV. GUS
activity was strongly and consistently induced in rosette leaves
and aerial tissues of TRV-infected transgenic plants when com-
pared with the mock-inoculated ones (Fig. 3a). The spatial pat-
tern of GUS induction suggested that BIR1 responded
ubiquitously to TRV infection. Furthermore, Northern blot
revealed higher abundance of GFP:GUS fusion transcripts in the
presence of TRV, confirming that TRV triggered transcriptional
activation of BIR1 (Fig. 3a).

Inspection of transcriptomic data revealed that two key SA
biosynthetic genes, ICS1 and PAD4 (Chen et al., 2009), were sig-
nificantly upregulated in leaves of TRV-infected plants (Fig. 3b)
(Fernandez-Calvino et al., 2014). We thus wondered if SA con-
centrations influence BIR1 expression in the infected tissue. To
test this possibility, we first determined the concentrations of SA
in the leaves of soil-grown plants using GC-TOF-MS. SA con-
centrations gradually increased from 5 to 14 dpi in TRV-infected
plants, whereas they remained constant in both uninoculated and
mock-inoculated plants (Fig. 3c). We found that BIR1 transcripts
were markedly enhanced in wild-type Arabidopsis at 6 h after SA
application compared with mock-treated controls (Fig. 3d). Fur-
thermore, we observed increasing abundance of GFP:GUS tran-
scripts in Arabidopsis plants expressing a GFP:GUS reporter
under the BIR1 promoter at 6, 12 and 24 h after SA treatment,
indicating that SA efficiently promotes transcriptional activation
of BIR1 (Fig. 3e). Importantly, SA activation of BIR1 during
TRV infection was largely inhibited in the Arabidopsis sid2-2
mutant, which has disrupted the pathogen-inducible ICS1 gene
and reduced SA accumulation (Wildermuth et al., 2001)
(Fig. 3f). We also found that induction of BIR1 in virus-infected
plants was compromised in npr1-1 Arabidopsis mutants, which
lack NPR1 receptor-dependent SA signaling (Cao et al., 1997;
Wu et al., 2012), compared with wild-type or npr1-comple-
mented transgenic lines (OxNPR1) (Fig. 3g). These findings
indicated that SA acts as a signal molecule for BIR1 activation
during TRV infection, and that TRV promotes BIR1 expression
by increasing the concentrations of SA in infected cells. Interest-
ingly, TRV levels in the SA-deficient sid2-2 mutants were lower

than those in wild-type plants, whereas plants with the npr1-1
mutation display enhanced susceptibility to TRV (Fig. 3h). Our
results support the idea that SA lacks direct antiviral functions
against TRV and suggest an SA-independent role for NPR1 in
the control of TRV infection.

TRV activates BIR1 without affecting its methylation status

We next asked if BIR1 induction in infected plants was a result of
changes in the methylation status of its promoter. We found that
siRNAs of 24 nts produced upstream of the BIR1 transcription
start were as abundant in TRV-infected plants as in mock-inocu-
lated controls, suggesting that epigenetic silencing of BIR1 was
not compromised by TRV (Fig. 4a). Chop-qPCR experiments
revealed comparable levels of CHH methylation at the BIR1 pro-
moter in mock-inoculated and TRV-infected samples after diges-
tion with NlaIII, whereas the relative levels of amplified DNA
were slightly reduced in infected samples digested with DdeI, pos-
sibly as a result of star activity of the enzyme (Fig. 4b). No signifi-
cant changes in the CHH methylation of the RdDM targets At1
g49490 and IGN36, used as methylation controls, were observed
in plants exposed to TRV infection relative to the mock-inocu-
lated ones (Fig. S2d). BIR1 was induced by TRV to a similar
extent in all RdDM mutants (except drm2), suggesting that TRV
supported BIR1 transcription regardless of its methylation status
(Fig. 4c). Importantly, BIR1 transcripts were elevated in TRV-in-
fected ddc, nrpe1 or ago4 mutants compared with wild-type
plants, indicating that RdDM was important to contain BIR1
expression during infection (Fig. 4c). Finally, similar patterns of
methylation at the BIR1 promoter were observed in healthy,
mock-inoculated and virus-infected plants when methylation was
analyzed using locus-specific bisulfite sequencing (Figs 4d, S4).

We next investigated whether SA altered the DNA methylation
pattern of the BIR1 promoter. We found low levels of DNA
amplification diagnostic of loss of asymmetric methylation in
nrpe1, drm2 or ago4 mutants compared with wild-type Col-0
plants after 6 or 12 h of SA treatment (Fig. S5a,b). DNAmethyla-
tion at the At1g49490 and IGN36 controls diminished in RdDM
mutants regardless of SA treatments (Fig. S5a). BIR1 transcripts
increased after SA treatment in wild-type plants and in nrpe1,
drm2 or ago4 mutants, indicating that loss of DNA methylation
did not compromise SA-mediated induction of BIR1 (Fig. S5c).
Finally, transcription at the BIR1 promoter was strongly reduced
in the Pol V-defective npre1 mutants in leaves of both mock-
treated and SA-sprayed plants (Fig. S5d). Collectively, our data
proved that SA activates transcription of BIR1 during virus infec-
tions without interfering with its epigenetic regulation.

BIR1 is regulated by post-transcriptional RNA silencing

The analysis of our sRNA sequences revealed that siRNAs match-
ing the BIR1 protein-coding region were abundant in plants sys-
temically infected with TRV or TuMV, but not in mock-
inoculated ones, suggesting that BIR1 is a target of post-transcrip-
tional silencing during infections (Figs 2a, 4a,e, S1d,f). To test
this possibility, we first monitored BIR1 transcripts in
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noninfected Arabidopsis silencing mutants. Although data
between independent repeats showed slight variations, a subtle
increment of BIR1 transcripts in some mutants involving dys-
functional DCL2, DCL3 or DCL4 as well as in mutants with
genetic defects in RDR1, RDR2 or RDR6 suggested that BIR1

may undergo conditional post-transcriptional silencing under
nonchallenging conditions (Figs 5a, S6a).

When BIR1 transcripts were measured in TRV-infected plants,
we found that BIR1 was induced in the double dcl2 dcl3mutants as
much as the wild-type (Fig. 5a). By contrast, BIR1 transcripts were
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significantly more abundant in dcl2 dcl4, dcl3 dcl4 or dcl2 dcl3 dcl4
mutants compared with control plants, indicating that DCL4 was
important to prevent excessive BIR1 accumulation in the infected
tissue (Fig. 5a). Similarly, BIR1 transcripts were, in general, far
more abundant in rdr2 rdr6 and, to a lower extent, in rdr1 rdr6
and rdr1 rdr2 rdr6 defective mutants than in wild-type infected
plants (Fig. 5a). Finally, BIR1 transcripts were similar in mock-
inoculated wild-type and ago1 mutants, whereas BIR1 transcripts
were more abundant in ago1 when they were infected (Fig. 5a).
Similar results were observed in plants systemically infected with
TuMV, suggesting that post-transcriptional RNA silencing was
accentuated in response to viral infections (Fig. S1e).

To support our findings, we examined BIR1 mRNA degrada-
tion via degradome sequencing. By plotting the abundance of 50

signatures matching the BIR1 transcript, we found that TRV infec-
tion was correlated with the massive accumulation of degradome 50

signatures at nucleotide positions 156, 2219 and 2247 (Fig. 5b).
These cleavage site sequences were clearly discerned from a back-
ground of low abundant, nonspecific degradation products at other
positions (Fig. 5b). Cleavage at position 156 was reproducibly
found with high abundance in all degradome libraries prepared
from leaves or inflorescences of TRV-infected plants. Although this
precise 50 signature was not found in mock-inoculated controls,
degradome tags diagnostic of sequential cleavage were identified at
nearby nucleotide positions in all samples tested, suggesting that
this region was particularly prone to RNA degradation (Figs 5b,
S6b). When we applied the CLEAVELAND4 computational pipeline
to match BIR1-derived degradome 50 signatures against the
miRBase, we were unable to identify validated miRNAs as poten-
tially responsible for cleavage at these positions, suggesting that
BIR1-derived siRNAs could guide cis-cleavage events. Collectively,
our data proved that BIR1 transcripts were exposed to selective
post-transcriptional degradation in response to infection.

BIR1 overexpression causes extreme morphological defects
and upregulation of plant defense in TRV-infected Ara-
bidopsis

To further explore the relevance of BIR1 regulation in infected
plants, we investigated the consequences of BIR1 overexpression

during TRV infection in Arabidopsis. To do this, we used TRV
as a viral expression vector to overproduce BIR1 in infected
plants. We cloned an HA-tagged version of the Arabidopsis BIR1
into pTRV2 and introduced it along with pTRV1 in
N. benthamiana by Agrobacterium-mediated infiltration (Fig. 6a).
Western blot assay using anti-HA antibody detected BIR1 pro-
tein in systemically infected leaves (Fig. 6a). Interestingly, TRV-
BIR1 RNA accumulated in upper noninfiltrated leaves to the
same degree as the TRV-GFP control, suggesting that overexpres-
sion of BIR1 had negligible effects on TRV accumulation in
N. benthamiana cells (Figs 6a, S6c).

Inoculation of 3-wk-old Arabidopsis plants with TRV-BIR1
revealed the appearance of a range of morphological defects at c.
14 dpi, affecting > 80% of the inoculated plants (Fig. 6b).
Symptoms were more severe at later stages postinfection and
included stunted morphology, abnormal leaf shape, extensive
leaf necrosis, loss of apical dominance during bolting (bushy
phenotype) and premature death (Fig. 6b). By contrast, plants
infected with TRV-GFP, used as control, developed normally,
like uninoculated or mock-inoculated plants (Fig. 6b). Interest-
ingly, morphological phenotypes of TRV-BIR1-infected indi-
vidual plants coincided with extremely high abundance of BIR1
transcripts (Fig. 6c). Conversely, TRV-BIR1-infected plants that
developed free of symptoms accumulated lower amounts of
BIR1 transcripts, similar to the TRV-GFP-infected control
plants (Fig. 6c).

Growth arrest and cell death are reminiscent of plants that
show constitutive activation of defense responses (Lorrain
et al., 2003). To gain an insight into the effects of BIR1 over-
expression in TRV-infected tissues, we measured relative tran-
script abundance of defense genes PR1 and PR4. Despite
BIR1 being a repressor of plant immunity, the expression of
PR1 and PR4 was markedly upregulated in the infected plants
that produced high amounts of BIR1 transcripts (Fig. 6d). By
contrast, PR1 and PR4 accumulated to normal levels in symp-
tomless plants that produced low amounts of BIR1 transcripts
(Fig. 6d). PR1 and PR4 were poorly induced in plants
infected with TRV-GFP, confirming that defense activation
was linked to BIR1 overexpression rather than virus infection
(Fig. 6d). These experiments suggested that BIR1

Fig. 3 Salicylic acid (SA)-mediated transcriptional activation of BIR1 during viral infection. (a) Histochemical localization of b-glucuronidase (GUS)
expression in mock-inoculated and Tobacco rattle virus (TRV)-infected transgenic Arabidopsis plants expressing a GFP:GUS fusion protein under the
control of the BIR1 promoter (left panel). Northern blot analysis was used to monitor the expression of GFP:GUS mRNA using a green fluorescent protein
(GFP)-specific radiolabeled probe (right panel). Ethidium bromide-stained RNA (before transfer) is shown as loading control. (b) Differential expression of
SA biosynthetic genes ICS1 and PAD4. Fold-change (log2) in TRV-infected plants relative to mock-inoculated ones detected using a complete arabidopsis
transcript microarray (CATMA) (GSE15557) (Fernandez-Calvino et al., 2014). (c) Time-course accumulation of SA determined by GC-time-of-flight-MS in
leaves of uninoculated, mock-inoculated and TRV-infected Arabidopsis. Error bars represent SD from five independent biological replicates. (d)
Accumulation of BIR1 transcripts in rosette leaves of wild-type (Col-0) plants treated with (+) or without (�) SA as indicated. (e) Northern blot analysis of
GFP:GUS mRNA in extracts from transgenic leaves treated with (+) or without (�) SA as indicated. Samples were collected at 0, 6, 12 and 24 h post-
treatment and blots were hybridized with a GFP-specific DNA-radiolabeled probe. Ethidium bromide-stained RNA (before transfer) is shown as loading
control. The relative accumulation (RA) level for each sample is indicated (in mock-treated plants at 0 h this was arbitrarily set at 1.0). (f) Accumulation of
BIR1 transcripts in mock-inoculated and TRV-infected rosette leaves of wild-type and sid2-2mutants at 8 d postinoculation (dpi). (g) Accumulation of
BIR1 transcripts in mock-inoculated and TRV-infected rosette leaves of wild-type, NPR1 overexpressor and nrp1-1mutants at 8 dpi. (h) Accumulation of
TRV genomic RNA in rosette leaves of wild-type, npr1-1 and sid2-2mutants at 8 dpi. Relative expression levels were determined by quantitative reverse
transcription polymerase chain reaction and normalized to the CBP20 internal control. Unless otherwise indicated, error bars represent SD from three
independent PCR measurements. Asterisks (Student’s t-test) or different letters (one-way ANOVA) were used to indicate significant differences
(P < 0.001). The experiments were repeated at least twice with similar results, and one representative biological replicate is shown.
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overexpression induces constitutive immunity in Arabidopsis.
Interestingly, TRV levels in TRV-BIR1-infected plants exhib-
ited a marked variability between individuals and experimental
replicates (Fig. 6e), and no correlation between BIR1

transcript abundance and viral accumulation was found (bilat-
eral Spearman correlation, q = 0.48, P = 0.84). We concluded
that BIR1 overdosage had no direct effects on viral suscepti-
bility in Arabidopsis.
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Fig. 4 BIR1methylation status in Tobacco rattle virus (TRV)-infected Arabidopsis. (a) Distribution of BIR1-derived small interfering RNAs (siRNAs) in
rosette leaves of TRV-infected Arabidopsis plants. Sense (black dots) and antisense (red dots) siRNA species are represented as positive and negative values
on the y-axis, respectively. The triangle graph represents the genomic distribution (percentage) of sRNAs in the sequenced set. N denotes the total number
of filtered sequenced reads. The circle graph represents the size distribution of BIR1-derived siRNAs in TRV-infected plants. (b) Extent of asymmetric
cytosine methylation at the BIR1 promoter determined by Chop-qPCR in rosette leaves of mock-inoculated and TRV-infected plants at 8 d post-
inoculation (dpi). The genomic DNA was digested with methylation-sensitive enzymes DdeI and NlaIII and qPCR-amplified. Nondigested (ND) plants were
used as controls. Values were normalized to the Actin2 internal control. Error bars represent SD from three independent biological replicates. (c)
Accumulation of BIR1 transcripts in rosette leaves of mock-inoculated and TRV-infected plants of wild-type (Col-0) and RNA-directed DNA methylation
(RdDM) mutants (cmt3, drm2, ddc, nrpe1 and ago4) at 8 dpi. Relative values were determined by quantitative reverse transcription polymerase chain
reaction and normalized to the CBP20 internal control. Error bars represent SD from three independent PCR measurements. (d) Percentage of total
cytosine methylation (left) and nonCG DNA methylation, CHG and CHH methylation (right) determined by in-house bisulfite sequencing at the BIR1
promoter in healthy (uninoculated), mock-inoculated and TRV-infected Arabidopsis at 8 dpi. H represents A, T or C. Asterisks (Student’s t-test) or different
letters (one-way ANOVA) were used to indicate significant differences (P < 0.001). The experiments were repeated at least three times with similar results,
and one representative biological replicate is shown.
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Inducible BIR1 overexpression in transgenic Arabidopsis
causes phenotypic defects and triggers the activation of
plant defense

It is possible that the morphological phenotypes associated with
high BIR1 doses in TRV-BIR1-infected cells were a result of the

combined effect of BIR1 overexpression and viral infection. To
further investigate this possibility, we employed a DEX-inducible
system to generate independent Arabidopsis homozygous lines
that overexpress mCherry-tagged BIR1 proteins (Fig. S7a,b,c,d).
DEX treatment had no apparent effects on wild-type Col-0
seedlings, and BIR1 transgenics treated with water exhibited
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Fig. 5 BIR1mRNA accumulation in RNA-silencing mutants and parallel analysis of RNA ends-based identification of preferential cleavage sites within the
BIR1mRNA. (a) Accumulation of BIR1 transcripts in mock-inoculated and Tobacco rattle virus (TRV)-infected Arabidopsis rosette leaves of wild-type (Col-
0) and mutants impaired in small interfering RNA (siRNA) biogenesis (dcl2 dcl3 (dcl2/3), dcl2 dcl4 (dcl2/4), dcl3 dcl4 (dcl3/4) or dcl2 dcl3 dcl4 (dcl2/3/
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Relative expression levels were determined at 8 d post-inoculation (dpi) by quantitative reverse transcription polymerase chain reaction and normalized to
the CBP20 internal control. Error bars represent SD from three independent PCR measurements. Different letters indicate significant differences according
to one-way ANOVA and Duncan test (P < 0.001). The experiments were repeated at least three times with similar results and one representative biological
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normal phenotypes (Figs 7a, S8a,b). Conversely, > 80% of DEX-
treated BIR1 transgenics displayed stunting, abnormal leaf shape,
leaf necrosis, bushy phenotype and cell death that resembled the
morphological phenotypes observed in plants infected with
TRV-BIR1 (Figs 7a, S8a,b). As predicted, DEX-treated plants

showing strong phenotypes accumulated over two orders of mag-
nitude more BIR1 transcripts than control plants (Fig. 7b).
Water-treated transgenic lines, wild-type (nontransgenic) plants
treated with DEX, and DEX-treated transgenics that exhibited
normal growing phenotypes produced equivalent low amounts of

(b) (a) 

(c) 
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BIR1 transcripts (Fig. 7b). Similarly, BIR1-mCherry fusion pro-
teins were detected at much higher intensities in plants with mor-
phological defects than in the controls (Fig. 7c).

When the accumulation of defense gene markers was tested,
high amounts of PR1, PR4, PAD3 or WRKY29 transcripts accu-
mulated in plants overexpressing BIR1 as opposed to wild-type
or nonexpressing transgenic plants (Figs 7d, S8c). As predicted,
none of these markers was upregulated in asymptomatic BIR1
transgenics (Figs 7d, S8c). We further demonstrated that overex-
pression of BIR1 triggered localized cell death in DEX-treated
transgenic leaves, as deduced by trypan blue staining (Fig. 7e).
These observations indicated that DEX-induced overexpression
of BIR1 stimulated an autoimmune response in an infection-free
cell environment.

Discussion

BIR1 is a negative regulator of several resistance pathways in
which BAK1 and SOBIR1 have concerted roles (Gao et al., 2009;
Dominguez-Ferreras et al., 2015; Liu et al., 2016). Here we
provide compelling evidence that BIR1 transcription is positively
regulated by SA and propose that TRV triggers NPR1-dependent
expression of BIR1 during the infection by increasing SA concen-
trations in the infected tissue. We show that loss of BIR1 func-
tion in the bir1-1 mutant severely compromises TRV
accumulation, probably as a result of constitutive activation of
plant defenses in this mutant. A previous study reported that the
bir1-1 mutation leads to extensive cell death, elevated concentra-
tions of SA and SA-dependent gene expression (Gao et al., 2009).
Based on this observation, it is possible that the SA defense path-
way could prime an immune response against TRV in bir1-1
mutants. In some compatible plant–virus interactions, SA treat-
ment or overexpression of SA biosynthetic genes can potentiate
antiviral responses by affecting virus replication, coat protein
accumulation and systemic virus movement (Chivasa et al., 1997;
Mayers et al., 2005; Ishihara et al., 2008; Qi et al., 2018). How-
ever, we found that exogenous application of SA activated the SA
defense pathway but was unable to antagonize the virus. Further-
more, a phenotype of strong resistance against TRV was also
observed in the double bir1-1 sobir1-1 mutant, in which cell
death and constitutive expression of SA-dependent defense genes
are strongly reduced by the sobir1-1 mutation (Gao et al., 2009).

These findings prove that enhanced TRV resistance in bir1-1
plants was not a result of constitutive SA defense priming (Gao
et al., 2009). On the contrary, we observed that loss of ICS1
function in the sid2-2 mutants was correlated with reduced TRV
proliferation, suggesting that SA may be important to support
TRV infection. Importantly, altered susceptibility was not
observed in plants expressing high levels of BIR1, even though
cell death and SA-mediated defense signaling pathway were sub-
stantially enhanced in BIR1 overexpressor plants. These results
suggest that defense responses that were concomitant to both low
and high expression of BIR1may have a minor role in controlling
viral proliferation in Arabidopsis. BAK1 is also required for acti-
vation of cell death and defense responses in the bir1-1 mutant
(Liu et al., 2016). We show that BAK1 transcripts were dimin-
ished in infected plants, and that bak1-5 mutants, which are
impaired in PTI but not in BR signaling (Chinchilla et al., 2007;
Heese et al., 2007; Schwessinger et al., 2011), were more suscepti-
ble to infection with TRV and other viruses (Korner et al., 2013).
These findings suggest that BAK1, and probably SOBIR1, con-
tribute to modulate viral proliferation, but their relationships
with BIR1 and their potential interdependence during the antivi-
ral response remain to be investigated. Furthermore, the role of
NDR1-, PAD4- and EDS1-resistance pathways that are triggered
in the bir1-1 mutant needs to be investigated to elucidate their
contribution to antiviral resistance (Gao et al., 2009).

In our study, we prove that both transcriptional and post-tran-
scriptional RNA silencing contribute, at least partly, to BIR1
homeostasis. We found that RdDM constitutively regulates
BIR1. Under nonchallenging conditions, our results suggest that
post-transcriptional silencing may be mobilized to perform con-
ditional fine-tuned regulation of BIR1 expression. However, dur-
ing viral infection, post-transcriptional silencing strongly
reinforces the action of epigenetic silencing by removing the
excess of BIR1 transcripts produced upon BIR1 transcriptional
activation. This idea also emerges from our analysis of degradome
according to which BIR1 gives rise to high amounts of discrete
cleaved 30 mRNA products in infected plants compared with
mock-inoculated plants. The genetic requirement for RNA
silencing components in the control of BIR1 is consistent with
the widespread accumulation of BIR1-derived siRNAs of sense
and antisense polarities in infected plants, but not in mock-inoc-
ulated ones. BIR1 siRNAs resemble viral-associated siRNAs

Fig. 6 Phenotypes of Tobacco rattle virus (TRV)-BIR1-infected Arabidopsis. (a) TRV-derived constructs for HA-tagged expression of BIR1. The 50 UTR-
containing BIR1 coding sequence was inserted adjacent to the Pea early browning virus (PEBV) replicase promoter in pTRV2. pTRV1 and pTRV2-BIR1
constructs were agroinjected in Nicotiana benthamiana. Accumulation of TRV genomic RNA in upper leaves of TRV-BIR1-infected plants at 5 d
postinoculation (dpi) is shown (left). Western blot analysis of HA-tagged BIR1 proteins in extracts from leaves infiltrated with TRV-BIR1 is shown (right).
TRV-green fluorescent protein (TRV-GFP) and 35S-BIR1-HA were used as controls. Ponceau staining was used as a protein loading control. (b)
Morphological phenotypes of mock-inoculated plants, those systemically infected with TRV-GFP or infected with TRV-BIR1 wild-type (WT, referred to as
#1 to #6). Plants were grown on soil and photographed at 14 dpi. The percentage of plants displaying normal vs morphological phenotypes after
inoculation with TRV derivatives is indicated. Uninoculated (healthy) and mock-inoculated plants were used as controls. TRV-GFP was used as a control.
(c) Accumulation of BIR1 transcripts in TRV-BIR1-infected individual plants shown in (b). Samples from uninoculated (healthy), mock-inoculated or TRV-
GFP-infected plants were included as controls. (d) Accumulation of defense-related PR1 and PR4 transcripts in TRV-BIR1-infected individual plants shown
in (b). TRV-GFP was used as a control. (e) Accumulation of TRV genomic RNA in TRV-BIR1-infected individual plants shown in (b). Relative expression
levels were determined by quantitative reverse transcription polymerase chain reaction and normalized to the CBP20 internal control. Error bars represent
SD from three independent PCR measurements. Asterisks (Student’s t-test) or different letters (one-way ANOVA) were used to indicate significant
differences (P < 0.001). The experiments were repeated at least three times with similar results, and one representative biological replicate is shown.

� 2019 Consejo Superior de Investigaciones Cientificas (CSIC) Spain

New Phytologist � 2019 New Phytologist Trust
New Phytologist (2019) 224: 421–438

www.newphytologist.com

New
Phytologist Research 433



(vasiRNAs) that are produced from multiple host genes during
activation of antiviral silencing (Cao et al., 2014). vasiRNAs are
competent in directing silencing of the host target genes in line
with the idea that BIR1 siRNAs may guide autosilencing of BIR1

transcripts. The requirement for BIR1 siRNA biogenesis and
function seems to differ, however, from the predicted genetic
pathway of vasiRNAs, which are mostly dependent on DCL4,
RDR1 and AGO2 (Cao et al., 2014). From our data, it is
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possible that several complementary pathways that include
RDR6 and AGO1 also contribute to vasiRNA biogenesis and
function during viral infections.

We found that the strong overexpression of BIR1 triggers
autoimmune phenotypes similar to those observed in bir1-1
mutants (Gao et al., 2009), indicating that a well-calibrated regu-
lation of BIR1 guarantees a proper control of immune signaling
pathways. Given that BIR1 is an active RLKs, overexpression of
BIR1 may interfere with other closely related RLKs causing mis-
coordination of cellular signaling pathways, including plant
defense or development. In line with this scenario, overproduc-
tion of BIR1 may either affect BIR1-dependent negative regula-
tion of (co)receptor partners or, alternatively, promote
inappropriate interactions with other immune (co)receptor pro-
teins that result in the activation of resistance (Prelich, 2012;
Rodriguez et al., 2016). For instance, high levels of BIR1 may
hinder BAK1-mediated regulation of SOBIR1-independent cell
death (Liu et al., 2016).

We saw that Arabidopsis mutants with defects in RdDM or
siRNA biogenesis/function produce BIR1 at levels that barely
compromise normal plant development. This finding has two
important implications. First, one could argue that RNA silenc-
ing plays a secondary role in controlling BIR1 expression and that
other yet unknown mechanisms provide additional layers of regu-
lation that ultimately confine BIR1 below detrimental levels for
plant fitness. This is a reasonable possibility, but loss of function
of one or several silencing genes does not necessarily imply a
complete inhibition of the pathway (Bouche et al., 2006). And
importantly, mutants tested in this study were affected either in
the RdDM pathway or in the post-transcriptional silencing path-
way, but not both. As a result, it is likely that residual RNA-si-
lencing activities in these mutants could yet exert effective BIR1
control, preventing BIR1 from reaching deleterious expression
levels upon virus or pathogen (SA-mediated) induction. The sec-
ond implication is that phenotypes associated with BIR1 induc-
tion are probably dose-dependent. In our experiments, plants
infected with TRV-BIR1 or DEX-treated transgenic plants show-
ing developmental defects produced BIR1 transcripts that were
more than two orders of magnitude higher than those in control
plants. Conversely, we observed that seedlings of the same trans-
genic lines developed normally when they were grown on MS-
DEX plates (Fig. S9a). In these experimental conditions, trans-
genic plants accumulated only 10–20 times more BIR1

transcripts than the wild-type plants (Fig. S9b). This represented
an expression level at least an order of magnitude lower than that
observed in DEX-treated, soil-grown plants. Furthermore, accu-
mulation of defense genes was not substantially altered in trans-
genic seedlings (lines 5 and 6) grown on plates (Fig. S9c). Only,
transgenic line 9 produced BIR1 transcripts at levels that trig-
gered a modest induction of PR1, PR4 and PAD3, but they were
insufficient to perturb normal development (Fig. S9c). A dose-
dependent mechanism would explain why silencing mutants, in
which increments in BIR1 expression were only mild, display
normal phenotypes. Interestingly, ddc mutants show a suite of
developmental abnormalities (Chan et al., 2006) and activation
of defense genes (Fig. S9d) (Dowen et al., 2012), but morpholog-
ical phenotypes in these plants are probably a result of a broad
misregulation of developmental genes that are normally con-
trolled by nonCG methylation (Chan et al., 2006). BIR1 belongs
to the BIR family, with four members, including BIR2 and BIR3,
that also function as negative regulators of BAK1-mediated
immunity (Halter et al., 2014; Imkampe et al., 2017). Transgenic
overexpression of BIR3 in Arabidopsis also leads to dwarf pheno-
types that were dosage-dependent (Imkampe et al., 2017). From
our experiments, we conclude that regulation of BIR1 is critical
for plant viability, and propose that proper BIR1 functioning
requires a threshold expression, and once BIR1 exceeds or falls
behind such a threshold, misregulation of plant immunity takes
place. Interestingly, in a previous study, BIR1 transgenic Ara-
bidopsis under a 35S promoter exhibited wild-type morphology,
and PTI responses were apparently unaffected in these plants,
suggesting that the BIR1 transgene was expressed at nondetri-
mental levels in their experimental conditions (Liu et al., 2016).

In conclusion, our results demonstrate that plant viruses initiate
a basal immune response that involves SA-dependent activation of
the immune repressor BIR1. We propose that BIR1 acts as a nega-
tive regulator of antiviral defense in Arabidopsis. Regulation of
BIR1 gene expression is important to avoid constitutive defense
responses that negatively impact plant development and fitness.
In this scenario, RNA silencing provides two complementary lay-
ers of transcriptional and post-transcriptional regulation that pre-
vent, alone or in conjunction with other regulatory mechanisms,
BIR1 from reaching deleterious expression levels when BIR1 is
transcriptionally activated (Fig. S10a,b). Our work provides novel
mechanistic insights into the regulation of BIR1 homeostasis that
may be common for other plant immune components.

Fig. 7 Phenotypes of BIR1-overexpressing transgenic Arabidopsis. (a) Morphological phenotypes of BIR1 transgenic plants after dexamethasone (DEX)
treatment. Arabidopsis plants from transgenic line 6 (BIR1 wild-type (WT) L6) were grown for 3 wk on soil and treated with 30 lMDEX or mock-treated
for 6 d consecutively by spraying the solution (1ml per plant) once at 24 h intervals. DEX-treated wild-type (Col-0) plants are shown as controls. Plants
were photographed at 7 d after the first DEX application. Morphological phenotypes of plants from transgenic line 9 (L9) are shown in Supporting
Information Fig. S8(a). (b) Accumulation of BIR1 transcripts in plants from BIR1 overexpressor lines L6 and L9. WT plants are shown as controls. Plants
were sprayed with DEX (+) or water (�). Plants showingWT (–) or aberrant (+) phenotypes were analyzed. (c) Western blot analysis of BIR1 proteins in
extracts from leaves of lines L6 and L9. Plants were sprayed with DEX (+) or water (�). Plants showingWT (�) or aberrant (+) phenotypes were analyzed.
Ponceau staining was used as a protein loading control. (d) Accumulation of defense-related PR1, PR4, and PAD3 transcripts in plants from lines L6 and L9.
(e) Trypan blue staining of leaves of WT and BIR1 overpression lines (L6 and L9). Leaves from DEX-treated and mock-treated plants grown on soil were
stained with lactophenol trypan blue as previously described (Diaz-Tielas et al., 2012). Relative expression levels were determined by quantitative reverse
transcription polymerase chain reaction and normalized to the CBP20 internal control. Error bars represent SD from three independent PCR measurements.
Different letters indicate significant differences according to one-way ANOVA and Duncan test (P < 0.001). The experiments were repeated at least three
times with similar results, and one representative biological replicate is shown.
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