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Running @litle: Computational model of experimental variability in iPSC-CMs

Key Points;

° InducaDpotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-

specif] pe-phenotype relationships, as well as cell-to-cell variability of cardiac

Yy

electric

e Comp modeling and simulation provide a high throughput approach to reconcile

U

multipl ets describing physiological variability, and identify vulnerable parameter

regim

N

e Weh loped a whole-cell model of iPSC-CMs composed of single exponential

cl

voltag
iP

dent gating variable rate constants, parameterized to fit experimental

uts

A

o We have utilized experimental data across multiple laboratories to model experimental

variability and investigate subcellular phenotypic mechanisms in iPSC-CMs

_~
e This framework links molecular mechanisms to cellular-level outputs by revealing unique

subsets of model parameters linked to known iPSC-CM phenotypes

O

ABSTRA!T:

There is :nd need to develop a strategy to predict patient-to-patient vulnerability in
the emerge cardiac arrhythmia. A promising in vitro method to address patient-specific
proclivi@ac disease utilizes induced pluripotent stem cell-derived cardiomyocytes
(iPSC-CMs). ajor strength of this approach is that iPSC-CMs contain donor genetic
information and therefore capture patient-specific genotype-phenotype relationships. A cited

detriment of IPSC-CMs is the cell-to-cell variability observed in electrical activity. We

postulated, however, that cell-to-cell variability may constitute a strength when appropriately
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utilized in a computational framework to build cell populations that can be employed to
identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have
exploited Faria;"n in experimental data across multiple laboratories to develop a
computatiog amework to investigate subcellular phenotypic mechanisms. We have
developecell model of iPSC-CMs composed of simple model components
compris-ing ion channel models with single exponential voltage-dependent gating variable
rate cons!nts, parameterized to fit experimental iPSC-CM data for all major ionic currents.

By optimizing Jonic current model parameters to multiple experimental datasets, we

incorporatg expefimentally-observed variability in the ionic currents. The resulting population

of cellular models predicts robust inter-subject variability in iPSC-CMs. This approach links

molecula hanisms to known cellular-level iPSC-CM phenotypes, as we show by
comparin re and mature subpopulations of models to analyze contributing factors

underlying each phenotype. In the future, the models presented can be readily expanded to

u

include genetic mutations and pharmacological interventions to study the mechanisms of

rare eventg, such as arrhythmia triggers.

A

INTRODUET

a

is one of the most daunting aspects of forecasting arrhythmia vulnerability

in respons inherited disease or drug application. Considerable differences in drug
routinely observed from patient to patient, with significant overlap between
normal and pathological variants (Leopold & Loscalzo, 2018). However, genotype, and even
sex, havew not been sufficiently considered as a biological variable when developing
pharmac regimes (Schwartz et al., 1995; Schwartz et al., 2001; Shah & Carter,
2008; Ja @ al., 2012; Kaab et al., 2012; Behr & Roden, 2013). There is a profound

need to de€ 9 a strategy to predict the diverse mechanisms of arrhythmia vulnerability

Or:

across pa ulations.

th

A promisilg emerging experimental method utilizes induced pluripotent stem cell-derived

cardiomyocytes iIPSC-CMs). iPSC-CMs are an increasingly utilized patient-specific cardiac

Gk

cell mode e they recapitulate cellular electrical properties of normal and diseased
phenot eserve patient-specific genotype, and demonstrate expected pharmacological

response It cardiomyocytes (Moretti et al., 2010; Itzhaki et al., 2011; Terrenoire et al.,

A

2013; Sallam et al., 2015). iPSC-CMs derive from adult somatic cells reprogrammed to the
embryonic-like state and then differentiated to cardiomyocytes (Takahashi & Yamanaka,
2006). Cell-based models for multiple cardiac diseases have been developed using iPSC-

CMs and show preservation of patient-specific disease markers carried from the source
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patient to the patient-derived iPSC-CMs (Moretti et al., 2010; Itzhaki et al., 2011; Lan et al.,
2013; Garg et al., 2018). The retention of patient-specific disease markers makes iPSC-CMs
an ideal tfl for ' vestigating patient-specific disease and response. Indeed, iPSC-CMs are
currently beiags utilized in preclinical drug testing and prediction of genotype-phenotype
relationsh@et al., 2012; Lan et al., 2013; Liang et al., 2013; Navarrete et al., 2013;
Burridgg et al.I 2016).

ons of iPSC-CMs as a model of adult cardiac behavior is their immature

phenotype, which more closely resembles fetal cardiomyocytes. The immature iPSC-CM

currents to adult cardiac cells, and the presence of early-developmental currents
(Bett et al., 20133 Karakikes et al., 2014). Additionally, iPSC-CMs have immature calcium
handling due to their lack of T-tubules and differences in sarcoplasmic reticulum (SR)
calcium hgdling (Yang et al., 2014). Recent experimental developments have enhanced the
maturation of IPSC-CMs by mimicking the natural environment which allows for staged

transitionomyocytes from the embryonic to adult phenotype (Kamakura et al., 2013;
; Herron et al., 2016; Tiburcy et al., 2017).

Another persi t concern with iPSC-CM technology has been the vast diversity of
phenot ed in vitro. One reason for the variability between iPSC-CMs undoubtedly
arises from the differences in genetic information of donors (DeBoever et al., 2017).

Variation sie to genetic differences is a critical attribute of iPSC-CMs, as it allows for the

observation 0

Nunes et afl?,

a variety of naturally occurring phenotypes and reflects patient-specific

e events, such as arrhythmia. However, even iPSC-CMs derived from the

same donor With identical genetic information may display persistently variable phenotypes

due to mources of variation. There are a number of potential sources of variability,
not lea complex process of generating and culturing iPSC-CMs and the influence
of preci tion phases (Narsinh et al., 2011). Action potential (AP) morphologies and
calcium tﬁ (CaTs) have been shown to vary both within independent laboratories

(Doss et ; Du et al., 2015), and across laboratories (Hwang et al., 2015).

While t <-€I£ -CMs that are utilized in vitro allow for observation of a variety of responses
to drugs and 0 perturbations, a major drawback in the experimental setting is the lack of
a high throughput method to link underlying genomic, proteomic, or ionic mechanisms to the
observed whole-cell behaviors. Population-based computational modeling provides a

powerful tool in closing this gap through in silico analysis of variability in cardiac

This article is protected by copyright. All rights reserved.



electrophysiology (Muszkiewicz et al., 2016; Yang et al., 2016; Passini et al., 2017; Ni et al.,

2018). Implementation of these approaches in the modeling and simulation of iPSC-CMs

has the R*entiawo reconcile multiple datasets, define physiological ranges of variability, and
ulne

identify v ble parameter regimes (Sarkar & Sobie, 2010; Yang & Clancy, 2012; Britton
et al., 201 m et al., 2015; Morotti & Grandi, 2017). In using iPSC-CMs for cardiotoxicity

testing-of Eharmacological interventions, the U.S. Food and Drug Administration (FDA) has

outlined tfle Comprehensive In Vitro Proarrhythmia Assay (CiPA) protocol to combine

cellular i CIV
efforts wil & er strengthened by a high throughput computational approach to study the

mechanisms uﬁerlying phenotypic variability in iPSC-CMs.

While prior studi; have addressed computational modeling of iPSC-CMs (Paci et al., 2013;

outputs with computational approaches (Fermini et al., 2015). These

Koivumaki et al., 2018), there is a need for a computational model which incorporates the
wide-rangg@ of experimental measurements from iPSC-CMs. Paci et al. have developed a
computational model of the iIPSC-CM which is based on a single iPSC-CM experimental

electrophstudy. Due to the lack of experimental data available at the time, the

model is large’based on |-V curves measured in iPSC-CMs by Ma et al. (2011). Model

kinetic argely retained from the ten Tusscher et al. adult ventricular model, with any
additional s based on experimental data from animal or adult human cells (ten
Tussc ME2004; Paci et al., 2012). Although this model captures the spontaneously

beating iPSC-CM action potential phenotype, it is based on a limited description of iPSC-CM
behavior. Wrations of iPSC-CM models by Paci et al. (2018) and Koivumaki et al.

(2018) incg ated modifications to improve calcium handling, however these adaptations
were maited experimental data to define the range of calcium transient behavior
during the model presented in this study is constrained by several calcium handling
datasets ﬁhich have not been utilized in parameterizing prior models, including
concentration mgasurements of the iPSC-CM calcium transient during the AP.

Other co@ral studies have adapted the Paci et al. framework to model specific
phenotyp opulations of iPSC-CMs (Lei et al., 2017; Paci et al., 2017; Koivumaki et
al., 2018; et al., 2018; Tveito et al., 2018), however none of these efforts have utilized in
vitro kine a to implement experimentally informed variation of iPSC-CMs. There is a
wide range iPSC-CM phenotypes which are not captured by previous approaches to
modeling iPSC-CMs. As there is a wide range of “normal” iPSC-CM behaviors characterized

by distinct experimental laboratories, we present a comprehensive computational model that

captures this experimental variability.
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The goal of our study is to extend the iPSC-CM technology by developing an in silico
complemant: a high throughput method for analyzing phenotypic mechanisms of emergent
behaviors ingiormal control iPSC-CMs. This is achieved by computationally modeling
phenotypi in control iPSC-CMs through simple models based on source data
from mgltigle labs. The use of simplified models to describe ionic gating kinetics allows us to
fully parafieterize a model to fit multiple individual experimental datasets. This approach
allowed for rapid construction of model populations from multiple data sets, while setting the

stage forflfuture§expansion into patient specific electrophysiology models by allowing

reparameterization from data collected from donor cells.

Additional allows us to ask if kinetic variability can explain whole-cell variation
observed in iPSG4CMs experimentally. Here we show that predicted experimental variability
at the subcellular level can recapitulate the full range of in vitro whole-cell iPSC-CM behavior

in an in{silico cellular population. The population can further be used to identify

I

subpopul interest, including immature and mature phenotypes, and elucidate

underlyin es that characterize the phenotypes. In the future, our approach can also

Al

be used to ne mechanism of disease and drug effects. The computational models of
iPSC-

arrhythmia i presence of genetic mutation or pharmacological intervention. The tools

low for identification of parameter regimes with increased proclivity to

\%

may b or in silico screening and prediction of drug effects on varied genetic

backgrounds to predict patient pharmacological responses.

METHOD

or

All sourc nd instructions are freely available on the GitHub:
https://gi ClancyLabUCD/IPSC-model

th

Model Construction

Ul

As in prior cardiggnyocytes models (Rudy & Silva, 2006), the iPSC-CM can be described by
the diff equation:

A

d_V _ _Iion + Istim
dt Cm
Where V is voltage, t is time, C,, is membrane capacitance, l,, is the sum of transmembrane

(1)

currents, and lgim is the stimulus current (lsim = O in spontaneously beating cells). The iPSC-
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CM model (schematic representation in Fig. 1, left) includes 13 transmembrane currents,

such that:

IWICaL + Igr + Igs + Igq + Ieo + I tlcar + Incx + Ippca + Inak + Inca
+ IbNa

(2)

A schema @ e model cell containing all the ionic processes and compartments in the
model ﬁ W Fig. 1. Seven key transmembrane currents (Ina, lcat, Ikr ks, Ik1, o, @nd I,

indicated red stars in Fig. 1), were reformulated using Hodgkin-Huxley-type gating

formulationg, (Hedgkin & Huxley, 1952). For each of these currents, single exponential rate-
constants\{right panel, Fig. 1) were optimized to iPSC-CM experimental data (Fig. 2, step

previousl|

1a). The ining currents shown in Fig. 1 were modeled using formulations from
med cardiac models (Shannon et al., 2004; ten Tusscher et al., 2004

Maltsev & , 2009), and tuned to recapitulate experimental data for whole-cell outputs
of iPSC-CMs. Betails describing the experimental data used and resulting model

formulatio¢ the results.
The iPSC- ion dynamics were formulated as has been done previously (DiFrancesco &

Noble, 1N & Rudy, 1994; ten Tusscher et al., 2004), assuming rapid equilibrium
n

approxima calcium buffers in various compartments:
i Icar,ca + Icar + Ipmca + Inca — 2Incx
EBuﬂc [_ s . ZVCF ! +]Rel _]up +]leak (3)
dCagp Ve
! dt = CaBuf,SR * E (_]Rel +]Up _]leak) (4)
Cag e Bufxl*KBqu , for X=Cytoplasm (C), Sarcoplasmic Reticulum (SR) (5)

(ICalx+Kpy £ x)?

:dNai _INa + If,Na + ICaL,Na + IbNa + 3INCX + 3INaK

dt V.F (6)
i - _
t

:K Igr + Igs + Iy + Lo + Ir g + lcark — 2Inak T Lstim
VF

Whereﬂraday constant, V¢ is the cytoplasmic volume, Vsr is the sarcoplasmic

reticulum volume, Bufy is the total buffer concentration in a given compartment, and Kgys x is

the half-saturation constant of the buffer in a given compartment. Total volume and

cytoplasmic buffering constants in the IPSC-CM model were set to experimental
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measurements in iPSC-CMs from (Viota= Ve +Vsr =3960um3, Bufc=0.06mM, and Kgyic
=0.0006mM) (Hwang et al., 2015). Remaining SR buffering parameters (Bufsg, Ksyrsr) were
optimithole-cell optimization (Step 2). Relative proportions of volumes (Vc:Vsr),
were retaingdsififom the adult human ventricular model by ten Tusscher et al. (ten Tusscher
et al., 20 to as the ten Tusscher 2004 model. Capacitance of the cell was set to
60pF, l@swe experimentally observed range in iPSC-CMs (18-89 pF) (Ma et al., 2011;

Hwang et!/., 2015; Li et al., 2017).

The mod@ implemented in MATLAB version R2017a by The MathWorks Inc. and

solved usim&.

Action P jal (AP) Morphology:
Action potentials JAPs) in the baseline model and populations were evaluated by computing

a series of AP _morphology markers. Maximum diastolic potential (MDP) was the most
negative Joltage during the AP. Maximal upstroke velocity (dV/dt.x) was the maximal slope
between two points in the computed AP upstroke. AP amplitude (Amp) was calculated as the

differencme between MDP and the peak voltage during the AP. AP duration (APD,)
was the ti een dV/dt.x and X% AP repolarization from the peak voltage (ex. For

APDQO,Ede/dtmaX to V,y =Peak - 0.9*Amp).
Param ization of reformulated ionic channel models (Fig. 2, Step 1b):

For each of the reformulated currents, model parameters were optimized to multiple
experimewsets, resulting in dataset-specific parameterization instances of the model.
For each d -specific model, external ion concentrations and voltage protocols were set
to reflect responding experimental conditions. Experimental conditions for each
dataset ar ibed in Table 1. All experimental data used to optimize the models was
collected I iCell iPSC-CMs at physiological temperature (37°C), unless otherwise specified
(in which gases, glata were temperature-corrected with appropriate Qo values, as specified
in the rwon for the corresponding ionic current). This process was used to generate

dataset-specific flnodels. As an example, consider three separate experimental iPSC-CM
datasets f iven current: datasets A, B, and C. In the case of the sodium current (Fig. 3),
this wo%(A) Ma et al., (B) Jalife Immature, (C) Jalife Immature.

Considering gating variable x in Fig. 1, parameters x,5 were optimized to recapitulate the
experimental kinetics for gate x. In Fig. 2, this is shown as Step 1b in the upper highlighted

box indicating the optimization routine. Parameter optimization minimized the error between

the model and experimental voltage-dependence of the steady-state and time constants of a
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given gate. The error function was the sum of the log squared difference between the data
and model fit, normalized to the size of the dataset. The ‘fminsearch’ function was used in
MATLAB jto_implement Nelder-Mead minimization of the error function. Random small
perturbationsats10%) were applied to resulting local minima, to improve data fit. The
paramete minimal error function value after 100 perturbations was used as the
optimal-model fit to the data. This is a relatively simple approach which only requires

standard MIATLAB functions, allowing for additional datasets-specific models to be easily

obtained an orporated into the model in the future. Additionally, this approach has been

previouslyllutilized for optimization of more complex ionic current models and datasets

(Moreno et al.,_2016). The ionic current models in this study were chosen to minimize the
number off optimized parameters, thus this approach was sufficient to successfully fit the

models toﬁsets presented.
These simplified models also allow for a more physiological understanding of model

parametegations. The ionic current model parameters can be combined such that:

a1 1 1 ®)
T ay+ By Bx xseV/Xs V/x
m s 1+“x 1+xie"/x2 e
Where: E
X3 1
Y= YT T 1. (9)
B it~

[

With this

of steady-sia

@ ation, we can understand the parameter effect on the voltage dependence
e behavior. The Xx. function has a sigmoidal voltage-dependence which is
characteriged by the slope and V4, where X.(Viq) = 0.5. Using the parameter combinations
shown . 8, Xs and x; are proportional to V,5r and slope, respectively.

Construcm average parameter set for reformulated currents (Fig. 2, Step 1c):
Consider ter x4 in any gating variable. The value of x; is determined through
paramete ization to an experimental dataset. If three experimental datasets (datasets
A B, a re used, then each dataset corresponds to a unique parameter value of x;
(x1a, X18, X1¢) in €ach dataset-specific model. The baseline model is composed of average

parameters values for x4, such that:
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X14 T X1 + X1¢

X1avg = e (10)
This is repeated for each parameter in the ionic current model. These averaged parameters
(X1-5,avg, Ox¥vg prise an average model for each current. The baseline model for each
current wds Structed using the average model gating kinetics. The baseline model is the
starting points@Rmplement variability.
H
Construc parameter distributions for reformulated currents (Fig. 2, Step 1d):

To creatmulation of models that capture variability between the dataset-specific
models, ed a distribution for each parameter in the reformulated currents. This
distributioglts ered at the baseline ionic current model value. Similar to our approach in
selecting ization method (Fig. 2, Step 1b), the sampling method was chosen for
simplicity Eallow for variation in a large number of parameters. While the range of
variability

model, thﬂl insufficient data to accurately determine to distribution of data between

termined by the range of the experimental datasets used to in form the

these dat

than the ets per ionic current used in this study). For simplicity we used a normal

nstructing the distribution of experimental data would require more data

distributio ameters, and randomly selected the parameter values in building the

populaii els.

For ex for each cell in the population of models the value of x; is randomly chosen
from a normal distribution around X, .,q. The normal distribution is created using X1 a4 and the

standard deviation of x4a, X1g, and xyc, as described above. This same process is used to

create a on for each parameter (xi.5) in each model gating variable, and for the
maximal g @ nce (gy).

Optimiza he baseline whole-cell model (Fig. 2, Step 2):

The p whole cell model is composed of average parameter sets for the
reformants combined with non-reformulated currents from existing models in the
whole-cell structure and geometry as described above. To tune parameters in non-
reformula nts, as well as calcium handling parameters which were not directly

defined by ents, we implemented an optimization of the whole-cell model. This is
shown , Step 2, the second highlighted optimization routine in the flowchart.
To optimize the whole-cell model, ‘fminsearchbnd’ function was used in MATLAB to

implement Nelder-Mead minimization of the error function. This “bound” version of the

Nelder-Mead algorithm was used to maintain the reformulated maximal conductances within
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a +20% range of gy a,q from the pre-optimized baseline model. The maximal conductance of
the reformulated currents, maximal conductances and fluxes of the remaining currents, SR
bufferinms, calcium-dependent inactivation in Ic,, RYR rate constants, and NCX
kinetic parameters were optimized to fit whole-cell behavior within the experimentally
observed SC-CMS. As in the optimization of the ionic currents, the error function
was deﬁnMe sum of the log squared difference between the experimental data and
whole-cell model output. The targets for the optimization function considered the
experimehserved range of AP morphology (MDP, APDg,, AP amplitude, maximal
upstroke \<Iocity’ CaT morphology (time constant of decay, time to peak, ratio of tau decay

and time to peak, CaT amplitude, and diastolic [Ca®*]), calcium handling response to caffeine

(peak cal@ugy afd decay, not shown) (Hwang et al., 2015), and contribution of SERCA,

NCX, andﬁo calcium efflux from the cytosol.

The ionic current models shown as black lines in Fig. 3-9 are the final version of each
current m@del, including all tuning of maximal conductance in the whole-cell optimization.
The baseline model resulting from this optimization was used as the starting point for all
subsequeft populations. All parameters which were not randomized in the model

populations¥(réMaining currents, cell geometry, etc.) were kept at the baseline model values.

SensitEsis
To furt the baseline models (Fig. 11E, 15C), parameter sensitivity was conducted

using multivariable linear regression (Sobie, 2009). Sensitivity analysis was conducted
based oan of the maximal conductance and maximal ion transport rates of the
transmembg urrents (Ina, lcacs lcat, lkrs lkss Ik1y lios 15y Incxs INaks IPmca, lbnas @Nd lpca) and SR
fluxes (Ju @ d Jieak)- Remaining parameters, including all parameters describing model
kinetics, w&j at the baseline model values. Random scaling factors and were chosen
from a lo@normal distribution with a median value of 1, standard deviation of 0.1. 5000
randomly gparamgterized models were run for each sensitivity analysis shown. For the

baseline ulation (Fig, 11E, immature 15C) only spontaneously beating, AP generating,

models were analyzed. This resulted in 89.3% model retention rate. For the mature

population, only stimulated beating, AP generating, models were analyzed. This resulted in
67.2% retention rate. For each analysis shown, 50 randomly determined
subpopu f 1000 models was analyzed, resulting in a standard deviation of less than
0.025 for all regression bars shown. Each cell simulation was run until there was a <1%
change in minimum ion concentration (for Ca;, Casg, Na;, and K;) between the first and last
beat during a 50 second simulation run. Once the steady-state criteria were met (ranging

from 60-600s), the final AP was saved for regression analysis.
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Development of population-based models based on experimental variability (Fig. 2,
Step 3):

To create ulation of models (as shown in Fig 12, 13, and 16), the parameters of the
varied cu re randomly determined using the parameter distributions created from
the dat%set-sgecmc models. Each parameter was chosen from a distribution centered at the

baseline rfiodel value. For example, for each cell in the population of models the value of x;

is randomly, chosen from a normal distribution around Xia,g4. The normal distribution is

created using X &, and the standard deviation of x4a, X1g, @and Xyc, as described above (Fig.
same process is used to create a distribution for each parameter (x4.s) in
atiflg variable, and for the maximal conductance (gx). The populations are
construct ndomly selecting each parameter from these distributions. In the single-
current variatiorly populations, all parameters for the chosen current are randomly
determined, and the remaining model currents retain the baseline model formulation. In the

final poptﬁtion, parameters for all 5 varied currents (Ina, lca, Ik lk1, @and ) are randomly
selected fi constructed distributions.

Experimemcium Imaging (Wu Lab):

iPSC- isassociated by Accutase and seeded in Matrigel-coated (BD bioscience)
coverslips nsity of 20,000 cells per well. After recovery, cells were loaded with 5uM
Fura-2 de’s solution (140mM NacCl, 5.4 mM KCI, 1 mM MgCI2, 10 mM glucose,

1.8 mM CaCl2, and 10 mM HEPES pH = 7.4 with NaOH at RT) for 10 minutes in incubator,
and were Mwith pre-warmed Tyrode’s solution for 3 times afterward. Cells were paced
at 0.5 HZ igg recording. For Fura-2 AM imaging, calcium signals were sampled by
custom-mn Eclipse Ti-E inverted microscope with a 40x oil immersion objective (NA
0.95) and a DG-4 ultra-high speed wavelength switching light source (Sutter
Instrumeng). Signals were collected with iXon Ultra 897 EMCCD (Andor) as high-frame-rate
video (512X512, &0 fps). Custom-made IDL (interactive digital language) script was used for
data analysis. Calcium signal intensity was expressed F340/380 in Fura-2 AM recording. For
each cell I@'ecorded at least 30 cells from 2 batches of differentiation.

Experiﬂctrophysiology Recordings (Kurokawa Lab):

Methods for Ik1, Ina, @nd s experimental data used to optimize the model is as described
previously in Li et al. Methodology for Ic.t recordings are described here.
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Cell culture (Kurokawa Lab): We used commercially available human iPS cell (hiPSC)-
derived cardiomyocytes, iCell-cardiomyocytes (Cellular Dynamics International Japan; CDIJ,
Tokyo, _Japan). BPre-cultured iCell-cardiomyocytes obtained according to the company
manual wergmdissociated enzymatically and were cultured onto laminin/poly-D/L-lysine-
coated gm dishes. These re-plated cells started to beat within 48 hours.
Electroah)‘sioIOQical experiments were performed within 2 weeks after thawing, as the
distributin!company (CDIJ) warrants preservation of a high purity in the user’s guide.

e patch-clamp technique using an Axopatch 200B amplifier (Molecular

Electrophysi y (Kurokawa Lab): Membrane currents were recorded with the perforated
configura f

Devices, ). Signals were low-pass filtered at 5 kHz, and sampled at 2-5 kHz. No

correction for thellliquid junction potential was made. The pCLAMP software (version 9.2 or

H:

10.02) was used to generate voltage-pulse protocols, and for acquisition and analysis of

data.

al

Cultured cells Were placed on the stage of the inverted microscope (IX-71, Olympus), and

the cul edium was replaced by a Tyrode’s solution (135 mM NaCl/ 0.33 mM NaH,PO,/
5.4 mM K M CaCly/ 0.53 mM MgCl,/ 5.5 mM glucose/ 5 mM HEPES, pH 7.4). After
the gi | formation, the Tyrode’s solution was replaced to the external recording

solution for each membrane current by using a rapid perfusion system (time constant; >20
ms) (Kurom al., 2001). Each patch-clamp data was obtained from an individual culture

dish. Expe'Owere performed at 36+1 °C.

During regrdin;s of Ica1, €xternal Na* ions and all K" ions were replaced by tetraethyl
ammonium (TEA)" and Cs” ions in order to suppress both Na® currents and K* currents.

ntained (130 mM CsCl/ 20 mM TEACI/ 2 mM MgCly/ 5 mM ATP-2Na/ 10

nternal solution containing amphotericin B. Adequate series resistances (less
than 5-tim

gigaohm seal formation. Each current component was determined in each single cell by

he pipette resistances) were usually attained within 10 min after the

subtracting the traces after application of channel blocker. Our rapid perfusion system
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enables us to exchange the bath solution almost immediately, that minimize the risk for

contamination of time-dependent leak currents.

{

After the @ ent of membrane perforation, the Tyrode’s solution was replaced by a
Na*-fres Wolution (135 mM TEACI/ 5.4 mM CsCl/ 2 mM CaCl,/ 0.53 mM MgCl,/ 11
mM glucog, 5 mM HEPES, pH 7.4). TTX at 10 uM was added to the solution in order to
abolish co ipation with low-threshold activating TTX-sensitive Ca®* currents (Vassort et

al., 2006) ¥According to a comparison of current-voltage (I-V) relationships from -100 mV and

The obtai
representiﬁ of the Ic, 1 component. Two representative data points were referred to for
n of t

50 mV, lcag © nts were elicited by 150-ms test pulses to -30 mV (V4 of -100 mV, 0.1 Hz).
Wrd currents were completely blocked with 0.5 mM NiCl, (data not shown),

optimizatio model.

C

RESULT

We set out develop a computational model that can recapitulate the varied
electro i ical responses of induced pluripotent stem cell-derived cardiomyocytes
(iPSC-C schematic of the model cell containing all the ionic processes and
compa he model is shown in Fig. 1. All major ionic currents (indicated by red stars

in Fig. 1) were formulated and parameterized to fit iPSC-CM experimental kinetic data.

-

Sodium (Ina):

The sodi:@nt model contains three Hodgkin-Huxley type gating variables: activation
(m), fast-i ivation (h), and slow-inactivation (j), as described previously (Beeler & Reuter,
1977). Thgodel formulation for the sodium current is shown as the example current in Fig.
1. For ea* gati’; variable, experimental data from iPSC-CMs was used to optimize model
parameter Three distinct dataset-specific models of the sodium current were
optimized, based)on three independent experimental datasets. One sodium dataset was
from Ma et al. (Ma et al., 2011), and two independent datasets were from the Jalife Lab
(Herro 2016). The immature dataset from the Jalife Lab was collected in iPSC-CMs
plated on verslips (conventional cell preparation). The mature dataset from the Jalife
Lab was collected in iPSC-CMs plated on PDMS (polydimethylsiloxane) coverslips, which

were shown to promote mature electrophysiological function in iPSC-CMs (Herron et al.,

2016). The Jalife Lab data was collected at room temperature. Before optimizing the model
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parameters, the Jalife Lab experimental data was converted to physiological temperature
using Q40=2.79 for time constants (ten Tusscher et al., 2004) and Q;,=1.5 for conductance
(Correa eﬁl.I 1;1). Experimental data shown in Fig. 3C-D is adjusted data to physiological
temperature perimental iPSC-CM voltage dependence of steady-state inactivation and
activation used to optimized parameters for h.*j. and m.>, respectively. The
experirraental data used for parameterization, and the resulting models, are shown in Fig. 3A.

entally published datasets from iPSC-CMs do not contain explicit

activation inactivation at each voltage step. These extracted time constant values

were used to optlinize model parameters. In the sodium current, this technique was used to

extract activation and fast-inactivation time constants from sodium current recordings in Ma

et al. andl Herron et al. The resulting time constant values (corrected to physiological

?lm

temperature), respective model fits are shown in Fig. 3C-D. All three dataset-specific

models 2ral optimized to data from the Kurokawa Lab for time constants of slow-

al

inactivatiornyYaS®hown in Fig. 3E. The maximal conductance for each model was tuned to fit
the |-V
kinetics in t eline iPSC-CM model are shown in black (Fig. 3).

for the corresponding dataset, as shown in Fig. 3B. The sodium current

Vi

L-type Calcium Current (Ic,.):

E

The mod - calcium current contains voltage-dependent activation and inactivation
gating var (Xact, Xinact)- Both gates were modeled using the formulation shown for

example @a Fig. 1. The model also includes a calcium-dependent inactivation gate

(Xinact.ca) fro ten Tusccher 2004 model. The model L-type calcium current is described
by:

N

5 VF2 [Y]ieZyVF/RT _ [Y]o
PcaLy * Xact * Xinact * Xinact,ca * Zy * RT Yy zyVF/RT _ 1

(11)

t

e

L

Where y i PNa*, or K. PcaLy indicates the permeability to ion y, R is the gas constant,
z, is the of ion y, and v, is to activity coefficient for ion y as in the Shannon-Bers

model. | current is the sum of the Ca?*, Na*, and K* currents.

A

leqr = ICaL,Ca + ICaL,Na + ICaL,K (12)
Parameters for the voltage-dependent inactivation and activation gates (Xjnact and Xaet) were
optimized to iPSC-CM experimental steady-state inactivation and activation curves, as well

as voltage-dependent time constants of inactivation and activation. The four dataset-specific
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models were optimized to experimental data from Ma et al., Es-Salah-Lamoureux et al., and
two independent datasets from Veerman et al. (Ma et al., 2011; Es-Salah-Lamoureux et al.,

2016; Vearman gt al., 2016). Es-Salah-Lamoureux et al. and Veerman et al. used an in-

temper%ture usin9 Qq0=2.1 for time constants (ten Tusscher et al., 2004), and Q,=2.3 for

conductar!e (Kiyosue et al., 1993).

Steady-state inagiivation and activation iPSC-CM experimental data, and optimized dataset-

SC

specific models _for each dataset, are shown in Fig. 4A. Due to a lack of explicitly reported
experimental -CM data for the time constants of voltage-dependent L-type calcium
gating, ti ants were extracted from Ma et al. current recordings (as described above

for the sodium cuirent). The Ma et al. time constants, corrected to physiological temperature,

ALk

were used to optimize all models. The experimental conditions for calcium buffering during
the Ma etfal. Ic,. current recordings (5 mM EGTA), may result in some calcium-dependent
inactivatio bution to the time constants of inactivation derived from these current

recording this calcium-dependent inactivation contribution was not quantified

a

experimentdlly®he time constants of inactivation derived from the current recordings were

assum tirely voltage-dependent inactivation for model parameterization. The time

constant da for model optimization, and the resulting models, are shown in Fig. 4C-D.

)

The calcium-dependent inactivation gate (Xinactca) formulation in the ten Tusscher 2004

]

model wa d in this model, due to lack of experimental data characterizing calcium-
dependent 4 jvation in iPSC-CMs. A single scaling factor for [Ca]; in  Xjnacecq0 WS

optimized inal whole-cell parameter optimization to recapitulate iPSC-CM calcium

Q

handling. j s required to accommodate the lower [Ca]; throughout the iPSC-CM AP,

as compafted to the adult ventricular cell modeled in ten Tusscher 2004. Fig. 4 shows all g,

Y

models with the fijal optimized calcium-dependent inactivation gate.

t

Values for yca, YN& Yk, and the relative proportions of pcarca: PcaLna:PcaLk Were retained from

U

the Shannon-Bers model (Shannon et al., 2004). The total permeability (Pca. = PcaLcat
PcaL Na of each dataset-specific model was tuned using the experimental |-V curves,

A

and the re -V relationships are shown in Fig. 4B. The baseline model for Ic,_is shown
in black in Fig. 4.

T-type Calcium Current (Ic.7)
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The T-type calcium current was introduced to the iPSC-CM model, as it is experimentally
found in iPSC-CMs. T-type calcium is typically found in embryonic hearts, and its expression
is depend'nt on '1e developmental stage of the heart (Ono & lijima, 2010). T-type calcium is
also found experimentally in iPSC-CMs (lvashchenko et al., 2013; Karakikes et al., 2015), as
is expecte iPSC-CMs immature cardiac phenotype. The T-type calcium current
was modeled as in the previously published Maltsev-Lakatta sinoatrial node model (Maltsev
N
& Lakatta@2009). Peak I, was tuned to the IV curves for Ic.r provided by the Kurokawa

Lab, as shown ig. 4E.

Rapid Delayed Rectifier Potassium Current (Ix,)

The rapid (@el@yed rectifier potassium current was modeled as:

’Ko
i Igr = Gir * 5_4 * Xqct * Xinact * (Vm — Ek) (13)

The voltamdent activation and inactivation gating variables (Xact, Xinact) Were modeled
i

using the ion shown as for the exemplar gate x in Fig. 1. The K, dependence of the

current (,/m and the voltage-dependent inactivation gate was retained from the ten

Tusscher mulation of I,. To utilize the simplified gating model formulation for the Ik,
inactivati Xinact), the single-exponential voltage-dependent rate constant model (Fig.
1, right) wa imized to fit the voltage-dependence of Ik, inactivation in the ten Tusscher
2004 . 1 he resulting model of inactivation gating is shown in Fig. 5A,D.

Dataset—sscific models of steady-state activation were fit to four independent iPSC-CM
experime sets from the Wu Lab, Ma et al., Es-Salah-Lamoureux et al., and Bellin et
al. (Ma et®1; Bellin et al., 2013; Es-Salah-Lamoureux et al., 2016; Garg et al., 2018).

Es-Salah-L eux et al. data was collected from an in-house iPSC-CM line, and Bellin et
al. dataﬂfted from a patient-specific cell line. Voltage-dependent time constants of

activati tracted from current recordings published in Ma et al. The Ma et al. time
constarHtion were used to optimize parameters in the Ma et al., Wu Lab, and Es-
Salah-La et al. optimized models. Experimental time constants of activation were
published j et al. and used in the corresponding model, as shown in green in Fig. 5C.
Finally, the al conductance (gk;) of each dataset-specific model was tuned to |-V

ta for each dataset, shown in Fig. 5B. Bellin et al. published a single data

point for the eXperimental |-V relationship (at V,=60mV, not shown), which was used to

optimize the maximal conductance of the corresponding model.

Transient outward potassium current (I,,)
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The transient outward potassium current was modeled as:

lto = Gto * Xact * Xinact * Vm — Ex) (14)
The vol‘ﬁ*-gﬁgrdent activation and inactivation gating variables (Xact, Xinact) Were modeled
using the fogmsllation of example gate x in Fig. 1. iPSC-CM experimental data from Ma et.
al., Cordend Veerman et al. was used to optimize dataset-specific models (Ma et
al., 201-1; Cordeiro et al., 2013; Veerman et al., 2016). Experimental results in Veerman et

al. were ({ecorded in an in-house iIPSC-CM cell-line. Steady-state activation and time

constants of inactivation were extrapolated from |, current recordings published in Ma et al.

Time con§tants @f inactivation from Ma et al. were used to optimize the inactivation time

constant parameters of the Veerman et al. model. Steady-state activation data from Ma et al.
c‘toip,ﬁ

was use ize the Cordeiro et al. model, and steady-state inactivation data from

Cordeiro s used to optimize the Ma et al. model, as neither dataset included both
steady-state actigtion and inactivation data.
Time conﬁr activation of |, were not available in iPSC-CMs, thus model parameters
were optimized 10 retain the ten Tusscher 2004 voltage-dependence for time constants of
activationmsulting model for time constants of |, activation are shown in Fig. 6C.
Finally, ma onductance (gy,) was tuned to experimental iPSC-CM I-V relationships for
each Ehown in Fig. 6B.
Slow ctifier Potassium Current (Ixs)
The slow delayed rectifier potassium current was modeled as:

G lis = s * Xhee * U — ) (15)
The voltagg endent activation gating variable (x,{) was modeled using the formulation of
example @ @ Fig. 1. Dataset-specific models were optimized to experimental data from
Ma et al. (End two independent datasets from Ma, Wei et al. (2015), shown in Fig. 7A
(Ma et alf2011; Ma et al., 2015). Ma, Wei et al., recorded one Ixs dataset in a patient-
specific iiC-Cw cell-line, and another dataset in iCell iPSC-CMs. Parameters for x3.; o

were optimiz o0 steady-state activation data, as shown in Fig. 7A. Due to a lack of

available experinlental data for the time constants of Ik activation, time constants extracted

from current recgrdings published in Ma et al. were used to optimize parameters in all
model wn in Fig. 7B. Finally, the maximal conductance (gks) was tuned to |-V data,
as shown | C. For both models built on Ma, Wei et al. datasets (Fig. 6: patient-specific
in orange, iCell in purple), the maximal conductance was tuned to the Ma, Wei et al. (2015)

IV relationship in iCells, as shown by purple points in Fig. 7C.
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Pacemaker/Funny Current (Iy)
The pacemaker current was incorporated into the iPSC-CM model, as it is experimentally

found in iIRSC-CMs (Karakikes et al., 2015; Kim et al., 2015). The current was formulated as:

If ng*xact*(Vm_Ef) (16)
E; and gflated as a balance of the sodium and potassium Nernst potentials

(Verkeﬁ W 2013), such that :

s .gf(Vm - Ef) = 9grnaVim — Ena) + g5 x(Vin — Ex) (17)
Where thegratigpof gina:gik = 0.491, based on prior models of I; in rabbit sinoatrial node
(Verkerk @s 2013). The activation gate (x) is modeled using the same formulation
as examp x in Fig. 1. Experimental data in iPSC-CMs from Ma et al. and the
Kurokaw a et al, 2011; Li et al., 2017) was used to optimize dataset-specific

models. Nﬂ’ameters for the activation gate (x..t) were optimized to experimental data
state

for steady- tivation and time constants of activation, as shown in Fig. 8A-B. Maximal
conductan for each dataset-specific model were fit to |-V relationships of the
corresponding experimental dataset. The experimental data and resulting models are shown

in Fig. 8C.

Inward Rectifier Potassium Current (Ix4)

The slo ed rectifier potassium current was modeled as:

’K
Iy = 9k 5_.1*xact,oo*(vm_EK) (18)

The K, endence of the current (\/K,/5.4) is retained from the ten Tusscher 2004
o

formulation . To recapitulate the behavior of Ik, the activation gate was formulated as:
a, = xle(V“'xs)/xz (19)
By = e (V+x5)/X4 (20)

Dataset-specific models were created by optimizing parameters x;5 and ggs to the |-V
relationships recgrded in iPSC-CMs from Ma et al., Kurokawa Lab, and Jalife Lab (Ma et al.,
2011; Hefron et al., 2016; Li et al., 2017). Experimental data from the Jalife Lab was

collected at room temperature. The Jalife Lab |-V curves were corrected to physiological

temperat Q10=1.5 (Kiyosue et al., 1993). The experimental data used to optimize
the mo@e resulting models, are shown in Fig. 9.

Pump and Exchanger Currents (Iycx, Inak, lpvca):
To model the remaining membrane currents which are not characterized in iPSC-CMs, we
utilized previous models. The sodium-calcium exchanger (Incx), sodium potassium pump

(Inak), @and sarcolemma pump (lemca) currents were modeled using formulations from prior
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ventricular cell models (Luo & Rudy, 1994; ten Tusscher et al., 2004). Kinetics of these
currents were retained from existing ventricular cell models, as these currents have not been

characteriged e erlmentally in iIPSC-CMs. Maximal values of all three currents were

mcluded whole-cell optimization routine (Fig. 2, Step 2), and the final
paramete Z are detailed in Table 3.
3 (y— 1)VF
m mmmmm  (e"VF/RT « [Na];® « [Cal,) — ( * [Na],> * [Ca]; * a)
Inc= knex * G —DVF 21)
St el (et [0l (14 ks ve 7 )
Pyak * [K], * [Na];
Inak = —0.1xVF —VF (22)
Kmk) * ([Nal; + Kmna) * (1 +0.1245%e RT 4 0.0353 * ¢ RT )
: [Cal;
Ji = * 23
PMCA = YpMmca ([Cal; + Kpaca) (23)
Sarcoplagic Reticulum (SR) Currents (Jrei, Jups Jiear):
The calciu Ilng in iPSC-CMs has not been fully characterized experimentally. Thus,
the caIC|u ing in the present model is based on prior formulations of SR currents.

Parameters for the RYR (J,q) were adapted from the Shannon-Bers model to maintain
physiolo function during the beating cycle. The Shannon-Bers RYR formulation is

depend e high calcium concentration in the cleft compartment described in the

iISZI

Shannon-Bers cellular geometry. However, the geometry used in the present model does
not mclud this cleft compartment (as shown in Fig. 1 schematic). Given these differences
in cellula try, the original Shannon-Bers Jgo parameters do not produced a SR
release d AP in the simplified cellular geometry used in this model. To implement
the Shan
above, R ition rates were determined by our whole-cell optimization routine (Fig. 2,

Step 2

RYR Markov model formulation within the cellular geometry described

ar

values of J,, and Jieax Were also included in the whole-cell optimization.

fi

Final thlons of all SR currents are detailed in Table 3.
Sy = Vmax,up
up = 2
K
: (1 + £ 2) (24)
[Cal;
< Jieak = Vieax * ([Calsg — [Caly) (25)

For Closed (C), Open (O), Inactivated (), Closed- inactivated (Cl) states of Jre:
Cl=1-C-0-1 (26)
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dc

E = (kim * Cl — kiSRCa * [Ca]i * C) - (koSRCa * [Ca]i2 *C — kom * 0) (27)
do )
ﬂRCa * [Ca]i *C — kom * 0) - (kiSRCa * [Ca]i *0 — kim * I) (28)
dl
d¥ @ RCa * [Ca]i *0 — kim * I) - (kom * I — koSRCa * [Ca]iz * CI) (29)
V.
m omm— gz = ks 0% ([Calsg — [Caly) x—= (30)

L ¢

Model de@nt: Intracellular Ca** dynamics
Fig. 10A the baseline model (red) calcium transient compared to experimental

calcium tr nt§ (CaTs) from the Wu Lab (grey). Experimental CaTs shown are reported
as a floresCence€ ratio (Fai0), as plotted in Fig. 10A on the right y-axis. The average peak
F o Value o dataset shown (Peak F 4, = 4.25), corresponds to the independently
measured M average peak CaT concentration (Fig. 10B) on the left y-axis. Similarly,
the diastoﬂvalue (Diastolic Fa, = 0) also corresponds to the independently measured

iPSC-CM diastolic CaT concentration (Fig. 10B).

To reprod CaT data described above, SR currents (Jyp, Jrei, and Jieak) and calcium-
depen embrane currents which were not previously parameterized to fit iPSC-CM
data (Incx, lpm ere optimized to recapitulate the experimentally observed iPSC-CM CaT
morph in Fig. 10B. The baseline model parameters were optimized to produce

CaT outputs within one standard deviation of the experimental Ca?* transient markers
shown. Additionally, the optimization considered the ratio of time to peak and tau decay of
the CaT. The baseline model has a faster spontaneous beating rate (62.0 bpm) than the
ous beating rate in the CaT dataset from the Wu Lab (30.2 £ 13.2 bpm).

e experimental data and account for this difference in pacing rate, we

included tfie ratio of the CaT time to peak and CaT tau decay as a target in our optimization
error f . ratio of the time to peak and tau decay of the experimental CaT was 0.83,
and thew)aseline model CaT ratio is 0.77. Thus, the model recapitulates the relative

portion a T cycle spent at each phase of the CaT.

The mode

so tuned to recapitulate the relative contribution of three fluxes (Incx, Jups
and Ip the calcium removal pathways (Fig. 10C and D) (Hwang et al, 2015).
Experimentally, the contribution of NCX (Incx), SERCA (Jyp), and the sarcolemma pump
(Ipmca) is calculated using the time constant of the CaT during a normal AP, the caffeine-
induced CaT, and the caffeine-induced CaT in a sodium and calcium-free solution (Bers,

2000). Hwang et al. provided a comparison of the relative contributions Incx, Jup, and lpyca to
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the calcium flux balance from 6 independent iPSC- CM datasets across 3 labs (Hwang et al.,
2015). Maximal Incx, Jup, @nd lpmca in the baseline model were optimized to fit the relative
contributi?s of ’ch current. The relative contribution to the calcium flux in the model was
calculated based on the integral of each current during a single CaT. This integral,
normalizealcium contribution from all three sources, is shown in Fig. 10C for a
single beat in the baseline model, obtained after achieving steady-state. The resulting

N
relative tributions to calcium flux pathways in the model are comparable to the

experimentally gbserved ranges (Fig. 10D).
Model Prediction: Whole Cell Simulations
The base el that was developed via the steps described above recapitulates the

phenotyp ical iPSC-CMs (Fig.11A). The AP and CaT outputs fall within the
experimental rage of behaviors (Fig. 10-11). Experimental details of the action potential
datasets used are described in Table 2. The baseline model was optimized to reproduce
these keylfeatures of the immature iIPSC-CM phenotype, including spontaneous beating
(Fig. 11A&C), educed AP amplitude (Fig. 11B), a low maximal upstroke velocity (Fig.

110), anlarized maximum diastolic potential (MDP, Fig. 11D). See methods for

precise defihiti@AS of AP morphology markers. The baseline model also spontaneously beats
N

during 2 and I; block, showing that the mechanism of automaticity in the baseline
model is co t with the experimentally observed mechanism (Guo et al., 2011; ltzhaki et
al., 20 t al., 2012; Kim et al., 2015). Sensitivity analysis on the baseline model
was conducted using a multivariable regression model (Fig. 11E) (Sobie, 2009). The
sensitivityWs shows several expected results for cardiac cells such as increased
upstroke velgeiti, with increased sodium current, APD shortening with increased lk;, and APD

lengthening increased Ic,. Additionally, increased lx; is experimentally shown to

hyperpr-CM maximum diastolic potential (Bett et al., 2013; Vaidyanathan et al.,

2016), which is consistent with the results of this sensitivity analysis (Fig. 11E) showing

increased‘m hywrpolarizes the cells (indicated by a positive regression coefficient for Ik
related to the absolute value of MDP).

While Figg shows that the baseline model falls within the experimental range, the
compilati experimental data sources also serves to illustrate the vast range of AP
behavior mal” iPSC-CMs. This range of experimentally observed behaviors reveals
that a single “average” iPSC-CM model is insufficient to describe the behavior of iPSC-CMs,
and that variability may be the defining characteristic.

Model Prediction: Inter-subject Variability
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To model heterogeneity in kinetic behavior in healthy iPSC-CMs, a population-based
approach was utilized. The goal of this approach was to harness the range of experimentally
observed kineticglin each ionic current and create an in silico population of model cells which
range of iPSC-CM kinetic behavior.

A popu-lation of models was developed to incorporate experimentally measured kinetic

variability @in five of the reformulated ionic currents that were identified in the multivariable

fl

regression sengitivity analysis as most important to AP behavior (Fig. 11E). The 5 currents

currents showh il Fig. 11E. Iy was identified by the sensitivity analysis, but due to the lack
of experi iPSC-CM data characterizing the range of kinetic behavior in Iy, it was not

included in the p@pulation-based variability.

Gk

A total of 8ix populations were developed. In five of those populations, model parameters for

fl

a single ¢ ere varied, and all other currents were kept at the baseline values. The

populations €apture inter-subject variability observed in the measured electrophysiology

a

data. In the' fif@ population, the parameters were simultaneously varied for all five of the
identifi

M

To sim | cell variability, ionic current models were randomly parameterized within

the experimentally observed ranges from multiple data sets for steady-state gating, time

1

constants g, and |V relationships. Using the mean and standard deviation of each
parameter yalwe across the independent dataset-specific models, a normal distribution was

created fo parameter value, as described in further details in the methods and Fig. 2.

©

For each cell within the population, parameters were randomly chosen from this

distributioR, Thus, every model cell in the population has a unique parameter-set chosen

g

from the normal djstribution of underlying parameters composing a single current. The range

t

of kinetic Behaviors are shown for populations with single current variation in Iy, (Fig. 12A),
lcaL (Fig. 12B), Ikd(Fig. 12C), I¢ (Fig. 12D), and I (Fig. 12E). Steady-state and time constant

values fu shown in Fig. 12 are the results of random variation in the parameter values

E

of each selected five currents. These randomly determined kinetics result in the

whole-ce ior shown in Fig. 13.

A

A final population was built using the same methodology, but by varying the kinetics of the
five specified currents simultaneously (shown as effects on the AP in blue in Fig. 13). The

outputs of the spontaneously beating AP models from the single-current variation
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populations are shown in Fig. 13A, and the spontaneously beating AP generating models
from the five-current simultaneously varied population is shown in Fig. 13B. Each cell in the
resultians can be categorized into one of three groups: spontaneously beating
cells, stimulaied beating cells, or cells excluded from analysis. “Spontaneously beating cells”
maintain with a viable AP and are most representative of the experimentally
observeﬁd iPSC-CMs. The baseline model would be categorized in the spontaneous beating
subpopuldtion. “Stimulated beating cells” are model cells that result in a viable AP with the
application stimulus current but are non-spontaneously beating (not shown). Cells were
not analyged if they did not fully repolarize (MDP>-40 mV, AP amplitude < 70 mV) or
exhibited non-control/non-healthy AP morphology (e.g. alternans). Additionally, cells with
non-physi@logicall calcium handling (determined as CaT amplitude greater than three

standard s of the experimental average in Fig 10B) were excluded from analysis

For the cell population subject to single-current variation, only the Ix; variation population
produceds stimulated beating subpopulation that required an external stimulus. A random

selection s from the spontaneously beating AP generating populations are shown in
Fig. 13Cfto trate the range of beating rates and AP morphologies observed. All
subseque ses were conducted in the subpopulation generating spontaneously
beatin . tion in AP morphology markers within each population of models is shown
in Fig. 13D- ividual colored points in Fig. 13D-F represent a single model in the given
popula nally, these outputs are compared to experimentally measured iPSC-CM

outputs shown as black dots and lines (Ma et al., 2011; Doss et al., 2012; Cordeiro et al.,
2013; MaWOw; Es-Salah-Lamoureux et al., 2016; Herron et al., 2016), as was done

for the basglimegnodel in Fig. 11. It should be noted that the plots show standard error for the
experime, meaning the full range of experimental behavior is larger than
represente e black points. The range of individual models in the single-current
variation épulations can serve as a form of sensitivity analysis: for a given morphology
marker, the widest spread of models is indicative of increased sensitivity to the varied
current. FOr example, the maximal upstroke velocity is sensitive to In,, and thus the models

from the Iy, varigd population show the largest range of upstroke velocity values (Fig. 13F,

distributio en points along y-axis). Finally, the population with simultaneous variation
of five iopi rents shows the largest range of variability in all AP morphology markers and
is the po most representative of the full experimentally observed space. This serves
as a first step in modeling known variability of iPSC-CMs at the ionic level, resulting in the
recapitulation of observed variability in iPSC-CMs at the whole-cell level.

Model Prediction: lonic Current Block
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To further validate the model population, we predicted the effect of ionic current blockers on
the model population. We simulated the effect of drugs which have been experimentally
studied_ingiPSC-@Ms: Tetrodotoxin (TTX, Iy, block), E-4031 (lk block), and Nifedipine (lca
block). For gagh drug we simulated a concentration which had been studied across several
experime @ sets. We modeled drug effects as a simple pore block. IC50 values for
each cell in the population were randomly selected within the range of experimentally
B
observed C50 values in stem cell-derived cardiomyocytes (Peng et al., 2010; Ma et al.,

2011; Harrig et al.,, 2013; Gibson et al., 2014; Moreau et al., 2017). The ranges of 1C50

values, afild corfesponding percent ionic current block, are described in Table 4. For

example, when_modeling 10uyM TTX, each model cell had a randomly determined 1C50
within thefexperimental range, resulting in 88% - 94% Iy, block. Beginning at the previously
determine | steady-state initial conditions, each simulation was run for 200s with drug
applied, and thelifinal action potential was analyzed. All simulated results shown are in

spontaneously beating model cells. The percent change in the AP parameter associated with

repolarizafio er drug application were analyzed. Additionally, TTX response was only

analyzed i subpopulation of model cells with more than -10 pA/pF peak Iy, during the
control - AP. The size and results of the analyzed model subpopulations are
reported in . It should be noted that the baseline model has a peak Iy, of -29.2 pA/pF
during dels without substantial Iy, during the AP are unaffected by TTX, and were

omitted for clarity. Highly variable iPSC-CM response to TTX and other sodium channel
blockers Mbeen observed experimentally (Sheng et al., 2012).

The drugchanges to AP morphology predicted by our model population falls within
the experiiﬁ observed range, as characterized in Table 4 (Peng et al., 2010; Ma et al.,
2011; Jon8son et al., 2012; Gibson et al., 2014; Scheel et al., 2014; Hortigon-Vinagre et al.,
2016). It should noted that there is a large range of experimentally observed variation in
the eﬁeH of these drugs. Experimental data shown in Table 4 includes data from
paced an@eously beating cells, which may contribute to this variability. However, for
TTX, Jon al. shows a similar range of change in upstroke velocity in paced and
spontan eating cells treated with TTX. Additionally, Hortigon-Vinagre et al. show that
cell line ces have an impact on the observed response to Nifedpine and E-4031 in
spontaneously beating APs. Hortigon-Vinargre et al. and Jonsson et al. reported AP outputs
in spontaneously beating cells, while the other studies reported AP outputs at 1Hz pacing.

Qualitatively, experimental results across these experimental protocols show a similar

response to each ionic channel blocking drug. Our comparison of model outputs with the
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experimental range reported in Table 4 serves to show that our model population can

replicate this qualitative response to simple pore block.

Table 4 shqy e range of the mean behavior amongst the datasets cited, but the full range
of behav ” dividual cells between these datasets is even larger. As discussed
prewougly in characterizing the baseline AP morphology, it is impossible to pinpoint “normal

iPSC-CM
CM APs, a

sponse. There is a wide range of variability in the ionic currents regulating iPSC-

S is reflected in the range of responses to a particular drug.
Immature and Mature Phenotypes
We next representative immature and mature model phenotypes. The previously
described ine model was used as the representative immature model. The
representative mature model was created using the baseline model with a 100% increase in
maximal conductance of lx; and a 45% increase in maximal conductance of ly,. These

changes [epresent the relative increase in lx; and Iy, from the immature to mature

phenotype, racterized experimentally by the Jalife Lab (Fig. 3B & 9). These increases
in lxs and I roportional to the increase in lx; and Iy, peak current between iPSC-CMs
cultured on¥g (immature) and PDMS (mature) shown in Herron et al. (Herron et al.,
2016). or of the immature and mature models is compared in Fig. 15. The APs of
the immatur: mature models are shown in Fig. 15A, and the AP morphology markers for
each mpared to experimentally measured APs from the Jalife Lab in Fig. 15B.

Cell outputs (experimental and computational) were normalized to the average value of the
experimeMC-CMs cultured on PDMS (black, Fig. 15B). Finally a multivariable
regression jedel, created using the same methodology as described for the baseline model

(Sobie, 200 shown in Fig. 11E, was used to conduct sensitivity analysis on both the

maturefne/immature models, and a comparison of the results is shown in Fig.15C.

For all four AP morphology markers (MDP, AP amplitude, APDg,, and maximal upstroke
velocity),eHl]re model (shown as red dots, Fig. 15B) is within the experimental range
for maturﬂhown as black points in Fig. 15B). The experimental AP data, which was
not utiliz itting the mature model, serves to validate that the mature model is
represe of the experimentally matured iPSC-CMs. The resulting mature model
diastolic ane potential (MDPyawre, model = -77.4 mV) is representative of the average
experimentally matured cells (MDPyature, exp = -77.5 mV), and has a more hyperpolarized
diastolic membrane potential than the immature model (MDP qmature, Model = -75.6 mV). The
AP amplitude of the mature model population is larger than the immature model population

(AMPupature Model = 108 £ 6 MV, AMPimmature Modet = 90 £ 9 mV ), which is consistent with the
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experimentally observed trend of a larger AP amplitude in mature cells (AMpPwature.exp = 117%
6 mV, AMPimmature.exp = 105 £ 16 mV). Similarly, the APD in the mature population is slightly
longer Wmature population (APDgg mature Model = 347 £ 77 ms, APDgg immature Model = 340

+ 74 ms), is consistent with the experimental results (APDgo vature exp = 453 £ 113 ms,
APDQO,Imm

model maluem(@ddty.wre moder = 199 MV/ms) is within the experimentally measured range
(dV/dtMaturH47 + 87 mV/ms), and has a much higher upstroke velocity than the

immature d8hvalue (dV/dtmmaturemodel = 33 MV/ms), as would be expected in a more
mature ce

Maturatiomdation-based Insights

Notably, mntally recorded mature iPSC-CMs retained spontaneous beating while our
m

7 + 173 ms). Finally, for maximal upstroke velocity (dV/dt) the mature

mature Is required stimulation to beat. This indicates that there was either an
excess of Jmi r representative mature model, or that other currents compensate for the
increased ing the mature experimental cells to retain spontaneous beating at more
negative imkn diastolic potentials. This led us to analyze our population of spontaneous
beating cé@lls explore a computational subpopulation of cells that exhibited a mature
phenot ile_retaining spontaneous beating. One of the advantages of a population-
based mo approach is the ability to utilize a component dissection approach to identify

plausibleg mechanisms of known phenotypes. As a test case, we examined the
immature and mature phenotypes in our model iPSC-CM population. We formed two
subpopulatjons of cells from the five-current variation population (Fig. 13B), based on

phenotyp on the experimental data from the Jalife Lab, we determined ranges of
cellular Maximal upstroke velocity outputs which defined our immature and mature
model subpggui@tions. The cut-off regions for MDP and upstroke velocity were determined
based merimental outputs for matured cells (black points, Fig. 16A) compared to

control h exhibit a more immature phenotype (open circles, Fig. 16A). We
categoWe cells as those with hyperpolarized diastolic potentials and high upstroke
velocity ( 5 mV, dv/dt,.x > 85 mV/ms, red in Fig. 16A), and immature cells as those

with depolarizeddiastolic potentials and low upstroke velocity (MDP > -75 mV, dv/dt.x < 85
mV/ms, blue inglig. 16A). A third group of cellular models which did not meet either the
immat ture phenotype criteria (grey in Fig. 16A), were not analyzed.

To compare mature and immature populations, we looked at the underlying model
parameters which had the largest difference between the two populations. To normalize

parameter values, the population analysis was conducted using percent change in
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parameter value from the baseline model parameter value, shown in Fig. 16B. The three
currents identified in this analysis were Ixs, Ina, and l. Maximal conductance parameters for
all three clrrent’/vere identified, with lower maximal conductance of Ixs and Iy, found in the
immature cg hich is consistent with the findings in Herron et al. (Herron et al., 2016) .
Both currrectly related to the defining characteristics of mature and immature
subpop-ulations as increased lx; hyperpolarized the MDP and increased Iy, increases the

maximal upstroke velocity. In addition to gk and gna, the immature population also exhibited

increased
al., 2015; Kim et gl., 2015).

, WhICh is consistent with an immature cardiomyocyte phenotype (Karakikes et

In additional ximal conductances, xg in the formulation of Iy, inactivation gate was also
identified. rease in the xg parameter impacts the shift in the Iy, inactivation (h and j)
steady-state curyes, as described in the methods section (Eqn. 8-9). A decrease in X in the
mature models corresponds to increased Iy, in the physiological voltage range by shifting the
steady-stale inactivation curve toward the physiological range, as shown for the model

populatio . 16C (individual models in light colors, population averages in dark colors).
Similarly, mthe negatively sloped portion of the tau decay curve, causing an increased
t

time const activation in the relevant range for the upstroke of the AP (-70 to -50mV).
An inc e constant slows the inactivation of Iy,. Collectively, this change in xg
results in . during the upstroke of the AP, having a combined impact with the
increa mature cells, which all contribute to the increased maximal upstroke

velocity. Additionally, Fig 16C shows that there are immature cells (blue, Fig. 16C) with

1

steady-st
mature cellsmfpink, Fig. 16C) with V,4<-85 mV. This suggests that to reach a maximal
upstroke bove 85 mV/ms, our cutoff for mature cells, the cellular |y, model needs to
fall within ifer range of steady-state inactivation behaviors. This positive shift in the
inactivatio@ curve, and a corresponding increase in gna (Fig. 16B), allows for a large influx of
Ina duringgthe AR upstroke, resulting in a more mature phenotype with a high upstroke
velocityﬁatur; cells with low maximal upstroke velocity have a much wider range of

steady-state inaSivation curves which are compensated by a wide range of maximal Iy,

conducta
noted t aseline model can maintain spontaneous beating with complete Iy, block, as
has bee experimentally in iPSC-CMs (Guo et al., 2011; Sheng et al., 2012). Thus,

some cells in immature population may have Iy, parameterizations which result in miniscule

ivation curves resulting in Vy4¢ in the mature range (-85 to -50 mV), but no

es to keep the upstroke velocity within the immature range. It should be

Ina during spontaneous beating.
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The population-based approach identified three currents (Ina, Ik, and ) which are
appreciably different between the immature and mature subpopulations (Fig. 16B). Two of
these cur'nts h'/e been experimentally validated by the Jalife Lab, as shown in Fig. 16D.
Experimentalgmeasurements in matured iPSC-CMs show enhanced Iy, and Iy compared to
the contr experimental and in silico results are shown in Fig. 16D for the mature
cells. Tne mature cellular outputs were normalized to the respective average experimental or

in silico ifflimature outputs. In the model subpopulations, the peak current from the IV curve

conductance of I and ly,, respectively, this methodology also identified g: and kinetics of Iy,

which contribute to the mature phenotype. In the future, this approach can also be expanded

to identif echanisms of disease states. The data used to construct this model was from

presumed iPSC-CMs, but a similar approach could be used to identify molecular
mechanisfns reased proclivity to arrhythmia or susceptibility to proarrhythmic drugs in a
diseased p on model.

DISCUSSIOE‘
In this resent a modeling approach for in silico representation of iPSC-CMs. We

used a “bottom-up” approach by developing models of subcellular components, namely
individuaerrents and Ca?* handling proteins. This study was in collaboration with a
number of gxperimental laboratories who generously provided data recorded from iPSC-
CMs in thctive laboratories. These data allowed us to consider measured variability
in ionic cif and their underlying processes. To minimize the number of model
parametefg, and to prevent overfitting, we utilized a simple formulation of the ionic currents
with fewergparameters than other commonly used cardiomyocyte or ionic current models (ten
Tusscher €t al., 2004; Moreno et al., 2011; O'Hara et al., 2011).

To gain mete picture of the behavior of iPSC-CMs, a single average behavior is
insuffici ere is no experimental consensus on which iPSC-CM recording might
represen e or representative behavior. We sought to determine if variability at the
subcellular level was sufficient to replicate this wide range of whole-cell iPSC-CM

phenotypes. Fig. 13D-F shows that our in silico population, informed purely by the

distribution of experimentally observed kinetic behavior, reproduces the range of whole-cell
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behaviors observed experimentally. Within this population, each individual model, including

the baseline model, is presumed to be an equally valid representation of an iPSC-CM.

In developingga.collection of in silico iIPSC-CMs that reflect phenotypic cellular variability, we

explored with single current variation, as well as simultaneous variation in five

key currents. While the five-current variation population provides the most complete
H

coverageSf the experimentally observed parameter space, comparing the different

populations oped can provide additional insight (Fig. 13). For each of the single-current

ns, there is a relatively narrow range of variability in whole-cell AP
itionally, nearly all models created through single current variation resulted
ontaneously beating cellular model. However, when variation in multiple
uded in the cell representation, there was a much larger range of AP
morphologies indluding “non-viable” in silico iIPSC-CMs that were not possible to excite or

did not repolarize.

The resulgbed above are not surprising and may stem from physiologically relevant
Y

regulato ena that require correlation and coordination of ionic currents within
individual CélIS®Por example, to have sufficient net repolarizing current during the AP, there
must Enism of coregulation for repolarizing currents (Xiao et al., 2008; Varro &
Baczko, 20 iPSC-CMs, and other fetal-like cell types, there is a particularly low density
of k4, d to adult cardiomyocytes (Bett et al., 2013; Meijer van Putten et al., 2015;

Vaidyanathan et al., 2016). While our cellular populations include a large range of variation
in lgq, theWh lower lk4 density throughout these populations than there would be in an

adult ventrig ardiomyocyte (Karakikes et al., 2015). In particular, the lack of Ix; plays a
key role i pontaneously beating phenotype, which is characteristic of these cells (Kim

et al., 201 s, there is a balance of repolarizing currents in iPSC-CMs that allow for
spontanedus beating, while maintaining the cells ability to fully repolarize. As every cell in
our a p*ulatiois maintains spontaneous beating (Fig. 13), every cell also requires

coregulation of ionic current density which maintains a unique balance of repolarizing

currents to accommodate the relatively low Ik, .

Coregulati as been shown experimentally in numerous studies of cardiac cells
(Desche I., 2008; Xiao et al., 2008; Milstein et al., 2012). For example, Liu et al.
showed that there is cotranslation of protein subunits, leading to functional regulation of
cellular ionic currents within a single cell (Liu et al., 2016). Cotranslation may also serve as a
mechanism to maintain the balance of ionic currents within a single cell. Banyaz et al.

showed that there is a mechanism by which individual cells regulate net ionic current,
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despite a wide range of variability in density of individual currents (Banyasz et al., 2011).
Specifically, there was a linear relationship between the inward and outward currents
measured?ia Ai dissection, indicating a mechanism of cellular coordination between key
inward an ard currents. The results of our population-based studies suggest a similar
coordinati&onic currents of iPSC-CMs, allowing for a wide range of variation in
subcellglar mechanisms while maintaining functional AP dynamics. Intriguingly, a recent
combinedfgomputational and experimental study revealed that variable inward calcium and
outward pofassium currents in mouse ventricular myocytes compensate each other to
generate {Bormalcalcium transients and contractile responses (Rees et al., 2018). This

suggests a feedback mechanism sensing global cytosolic calcium levels might be sufficient

to regulat

ic eonductances. Clinically, genetic modifiers have been seen to modify the
severity o QT Syndrome type 2. Patients with the same hERG mutations have
differential severily in QT prolongation, depending on the presence of other mutations which
coregulate cellular repolarization (Chai et al., 2018). Our study provides a framework which
can be em to elucidate these types of feedback and coregulation mechanisms in
iPSC-CMs, directly relate to mechanisms of adult human cardiomyocyte behavior.

Sources mr variation are often unclear, but experimental manipulation allows us to
directl nown sources of variation. Using data from experimentally manipulated
cells, we we e to validate our framework for determining sources of variation leading to

known

. Using data from maturation promoted iPSC-CMs allowed us to conduct
a two-pronged analysis of cell maturation. Beginning with a bottom-up approach, we showed
that a sinw’nodel can accurately predict a more mature phenotype based on known

sources on, as shown in Fig. 15. Additionally, we used a top-down approach to test

if the pa @yspace used to randomly generate our model populations covered the

subcellular f maturation behavior. As hypothesized, the whole-cell behavior within the
populatiogredicts a range of maturation, as shown in Fig. 16A. Additionally, our population-
based apgroachddentified the same changes in key currents (Ino and Ixq, Fig 16D) when

stratifying 'Subpopulations of mature and immature cellular models.

This sam = n approach can be used to compare other subpopulations. We also used
this ap 0 compare atrial and ventricular-like subpopulations. To define atrial and
ventricu ubpopulations we used a metric used experimentally to classify iPSC-CMs:
APD; = (APD4y — APD3, )/( APDgy — APD7, )(Ma et al., 2011). Ventricular-like cells are
defined as APD, > 1.5, and atrial-like cells are APD, < 1.5. Using the atrial and ventricular-

like subpopulations, we conducted the same analysis shown in Fig.16B. Our analysis on the

atrial and ventricular-like populations identified the maximal conductance parameters for Iy,
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and ¢, as having the largest differences between the two subpopulations. This is consistent
with experimental works by Lieu et al. in embryonic stem cell-derived cardiomyocytes (ESC-

CMs), whieh idemtified the increased Ik, and I, in ventricular-like ESC-CMs, compared to

ventricu-lar-like subpopulations in order to be consistent with the experimental methodology,
and showSur model captures these experimental results. However, there is debate over the
precision of_thig definition of atrial vs. ventricular cells (Du et al., 2015; Giles & Noble, 2016).

This criterfon con8iders only the AP morphology in determining the chamber specificity of the

cells, which |g?fres many other key physiological differences between the two cell types.

The large f experimentally observed variability in iPSC-CMs, which is recapitulated
within the popuitions of models presented in this study, allows us to examine the
mechanistic origin of phenotypic differences (Sarkar & Sobie, 2011; Yang et al., 2015;
Morotti & Grandi, 2017; Passini et al., 2017). Properly utilized, the phenotypic variation in

iPSC-CM

strength of this experimental approach, allowing us to better understand

the mechani derpinnings of phenotypic diversity which is, of course, also observed in
patients. | s in conjunction with computational approaches provide a unique
opport duct high throughput component dissection of phenotypes of interest,
which can ulti ly be linked to patient-specific phenotypes.

Our study can also serve as a basis to “translate” the patient-specific iPSC-CM behaviors
from the Mre fetal-like phenotype, to a predictive model of adult cardiomyocyte
behavior. Asglas been noted experimentally, our model population reflects the differences in
AP morpetween iPSC-CMs and adult ventricular cells. On average, our model

population more positive resting membrane potential, slower AP upstroke velocity,

slower Cal time to peak, and reduced CaT amplitude comparted to adult ventricular cell
Tusscher et al., 2004; O'Hara et al., 2011). Understanding the mechanisms of
these difféerences is the first step to translating between iPSC-CM and adult cardiac
response.mdifferences between ionic currents in adult and iPSC-CM have been noted

in compu and experimental studies (Karakikes et al., 2015; Paci et al., 2015).
Translatj ween iPSC-CM and adult phenotypes will be critical in the use of iPSC-CMs
for drug nd discovery in the human population. Gong and Sobie have developed a

cross-cell type regression model that translates response to ionic current perturbations in an
iPSC-CM model to the predicted the response in an adult ventricular cardiomyocyte model
(Gong & Sobie, 2018). Additionally, Tvieto et al. have developed a method of utilizing

optically obtained experimental whole-cell drug-response data from immature iPSC-CMs to
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computationally predict the effect in a mature iPSC-CM phenotype, which serves as a more
representative model of adult cardiomyocytes (Tveito et al., 2018). In the future, these

computati|nal trrslation approaches can be coupled with our utilization of experimental
data from muliple sources to further reconcile the phenotypic variability observed across
iPSC-CM @ 5 with patient-specific adult cardiac phenotypes.

I

LIMITATIgS:

In part, tiie g of this modeling approach was to fully parameterize a model from

experime with the fewest parameters possible, and still recapitulate complex
behavior whti s been characterized in iPSC-CMs. However, it should be noted that there
is no com perimental characterization of calcium handling, sodium handling, or E-C

coupling i Ms. This a critical point of concern with the adaptation of iPSC-CMs in the
study of 3
experime racterization in iPSC-CMs. We have modeled the iPSC-CM calcium
handling E

disease mechanisms. Furthermore, pumps and exchangers also lack

all available experimental data, resulting in more experimentally-based

iPSC-CM gy handling than prior modeling efforts. Our model captures the physiological
reality for ium release dependence on cytosolic concentration, faithfully reproduces
the expesi measured contribution of various calcium removal processes, and utilizes
experimen ed calcium buffering parameters. Moreover, we are confident in the
validity opting earlier model formulations of pumps and exchangers as these

mechanisms maintain intrinsic transport stoichiometry and kinetics across various cells.
Nonetheljs, the implementation of phenomena which are not fully experimentally

characteri SC-CMs remains a limitation of our model.

O

Additionall ssential gap in knowledge remains related to the source of observed
experimental variation. As some of this variation may come from the cell-culture process or
the cell-type, in f@ture work it would be beneficial to collect a full kinetic characterization of
individuﬁnecessary next step is to fully parameterize a cellular model based on the
kinetics of individlal cells. This future goal will be required to utilize iPSC-CMs for the pursuit

of patient- iC,models.

com@

We have utilized multiple iPSC-CM ion channel data sources to construct a range of ion
channel models for key iPSC-CM currents. We then utilized random selection of parameters
from within the model ranges to inform development of a population of cellular level iPSC-

CM models. Several conclusions can be drawn: 1) Variation in the underlying model
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parameters within the experimentally measured ranges were sufficient to encapsulate the
complete diverse range of whole-cell iPSC-CM phenotypes that are observed
experime'allx. ') This method to derive a population of model cells obviated the need for
“calibration’ @i selecting models that exhibit physiologically relevant electrical behavior,
beyond en-excitable or non-repolarizing cells. 3) Mature and immature iPSC-CM
phenot‘oes naturally emerge as subsets of the population.

understan@ing cdrdiac disease and drug testing. In conjunction with the existing CiPA

The cons:ric!lfi presented here has many potential future applications which can aid in

protocol (Cavero & Holzgrefe, 2014), the iPSC-CM computational model here can be applied
to providwr understanding of parameter combinations which lead to proarrhythmic
behaviors is_in silico population-based framework for analyzing iPSC-CM phenotype has
the added advantage of being a high throughput analysis tool. Additionally, the models that
we present can be readily expanded to include genetic mutations, pharmacological

interventiﬁs sex-based differences, and a variety of perturbations. Future studies could

utilize co eets of in silico tissue to test higher dimension arrhythmia proclivity and
sustainabm
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N4
Translatim'spective:

Induced pIuripot§t stem cell-derived cardiomyocytes (iPSC-CMs) have been developed as
a promising In vitro method to address patient-specific proclivity to cardiac disease and drug
responsemown limitation of iIPSC-CMs is the cell-to-cell variability observed in
electrical . We hypothesize that when captured in a computational framework, cell-to-
cell varia constitute a useful systems property that can allow for identification of a

variety of pfie pic mechanisms and underlying causal components. We have developed a

whole- f iPSC-CMs composed of simple model components built on experimental
data from multipl® laboratories. By including a wide range of input data into the model, we
built a i f cellular models that predict robust inter-subject variability in iPSC-CMs.

This approach allows for link between molecular mechanisms and emergent cellular-level
iPSC-CM Rhenotypes to be revealed. The mechanisms underlying immature and mature

subpopule predicted and consistent with experimental data. In the future, the

models p may prove essential to integrate experimental and clinical data from a

variety of sour scales, and modalities to allow high throughput prediction of the link

ic backgrounds to predict patient pharmacological responses and even to guide

therapy for specs; patient therapy.
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P

Extracellular (mM)

Intracellular (mM)

*IHC = in-house control cell-line
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T — K K
R! .| Tem | _ | ceiine|N2C [KC|CaCl | NMD (KC| ;o As 'ar NaC | CaCl | Na2-
"l op = 1] 2 G |1 |°" Pari | 2 | aTP
a b o n.
Ma etal. (2011) | .~ 5 iCell | 50 1.8 10 | 2
Herron et al. 21- .
a | (PDMS/ glass) | 22 19/12| iCell | 20 1.8 5
Kurokawa Lab
) 5
(Lietal) 25 5 iCell | 30 2
Es-Salah-
Lamoureux et |room|15-17| IHC 5 5 2
ICaL al
Veermanetal.| 36 21 IHC 1.8
Ma et al. (2011) [room| 5 iCell 5 5 2
ICaT|Kurokawa Lab | 36 2 iCell 5 5
Bellin et al. 37 | 14 HC |140| 5 | 1.8 20| 125
Es-Salah-
Lamoureuxet | 35 | 21 HC |140]| 4 1 20| 125
Ikr al 35-
Ma et al. (2011) | 8 iCell |150|5 | 1.8 # 5 2
Wulab (Garg | 36- | , | o |450|5 | 18 1
etal.) 37
Veermanetal. | 36 | 13 HC |140| 5 | 1.8 20| 105 5
lto | Cordeiroetal.| 36 14 iCell |126| 5 2 10 125 10 5
Maetal. (2011)| °> | 8 | icel 5 160 150 5
Ma, Wei et al.
’ 37 | 7/8 |HC/icell 140 | 5 | 1.7 50 80
ks (2015)
Maetal (2011)| 5> | 5 | icel |150| 5 | 1.8 20 125
Kurokawalab| .| o | oor | 135 54| 18 30 1
If (Lietal.)
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(Lietal.)




T

Reference: Cell-Line n= Cell-type
Wu Lab (A) IHC 14
Ventricular-like
Wu Lab (B) IHC 12
Herron et al. (PDMS- Mature) iCell 24
Mixed Morphologies
Herron et al. (Glass- Immature) iCell 37
Ma et al. (2011) iCell 32 Ventricular-like
Doss et al. (Group A) iCell 63
Ventricular-like
Doss et al. (Group B) iCell 23
Cordeiro et al. iCell 149 Mixed Morphologies
Es-Salah-Lamoureux et al. IHC 9 Ventricular-like
Ma, Wei et al. (2015) IHC 17 Ventricular-like

*IHC = iﬁtrol cell-line
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Table 3:

Units Definition

pA/pF Maximal Iycx

- Voltage-dependence parameter (Incx)

mM Ca; half-saturation parameter (Incx)

mM Na; half-saturation parameter (Incx)

- Saturation Factor (Incx)

- Outward enhancing factor (Incx)

pA/pF Maximal Inak

mM K, half-saturation parameter (Inak)

mM Na; half-saturation parameter (Iyax)

nS/pF Maximal Ipyca Conductance

mM Ca; half-saturation parameter (lppca)

ms™” SR release rate constant (Ire)

mM?ms”’ Non-SR-dependent transition rate constant (Jge)

ms™’ Jre Rate Constant

mM'ms’’ Non-SR-dependent transition rate constant (Jge)
056 ms™” Jre Rate Constant

i Parameters for [Ca]sg-dependent activation of SR

release (Jre)

(Maxsg — Mingg)

AXsr 2.5
Kcasr 1+ (%) [Ca]sk- dependent RyR activation coefficient (Jre)
SR
koCa
koSRCa kCaSR JReI Rate Constant
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Kisrca ‘ kica * Kcasr Jrel Rate Constant

1.105e-4 mM/ms Maximal J,
5e-4 mM Half-saturation constant
ms™” Maximal Jjeax
TTX Nifedipine E-4031
Concentration 10 uM 30nM 10nM

lonic Current Blocked INa lcaL Ikr
Range of IC50s (nM) 640-1355"* 30-39"%4 7-17°4°
% Current Block 88-94% 72-77% 47-59%

Max Upstroke

Output Measured Velocity APDg APDg,
Experimental Output w/ Drug
16.7-60%"°7 67.7-88.9%"%*8 113-160%">*8
(range of dataset means)
Output w/ Drug in
48.6 £ 27.5% 89.8+51% 121.8 £ 10.4%
Model Subpopulation
Model Subpopulation n= 1057 11894 8398
(1) Ma et m, 2) Moreau et al., 2017 (3) Peng et al., 2010 (4) Gibson et al., 2014 (5) Harris et al., 2013
(6) Scheel 4 (7) Jonsson et al., 2012 (8) Hortigon-Vinagre et al., 2016
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FIGURE LEGENDS:

Figure 1: A schematic of the computational iPSC-CM model. Red stars indicate individual
currents gliil I'L, Ik, ks, Ik1, lo, @nd If), formulated using single-exponential voltage-
n

depende e _constants. Parameters were optimized to experimental iPSC-CM Kkinetic

data. The @ atical formulation for an example current, ly,, is shown in the right panel.

All gating variables in the starred currents were modeled using the example formula for
[

gating variable x. Additional calcium-dependent currents (Incx, lpmca, lcat, @nd SR currents:

Isercas IryRs cak) Were modeled using previously published model formulations, optimized

Example: Sodium Current

For gate x, where x=m, h, or | in
0,
C=0
_—

Vi o Viny
ffy = xye 2 = xze 0
ity 1
Xow = X v = 4oy
dy+fy h oty
il =
ar Ix
_ EX r
I:‘a a = e 'rt.l'{l’sr: 'L:‘a :rj

C: Closed Stafe, O: Open Siale
Vi Membrane Vollage
Oua: Maximal e Conductance
X1.5: Parameters Optimized
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Figure 2: A flow chart showing the methodology for building the iPSC-CM model

populations.
Figure 2
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!

STEP 2:
Optimization of whole-cell model
Parameters optimized: maximal conductances and
rates, Bufzr, Kausr, RYR rate constants, NCX and lca
calcium-gdependent inactivation parameters.
Optimization targets: AP and Calcium Transient
morphology markers, caffeine response, and
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Figure 3: Sodium current (Iy,) model optimization. (A) Steady state inactivation and
activation curves. Dataset-specific model fits (lines) optimized to experimental data (points).
The sodqu curr"nt model used in the baseline whole-cell model is shown in black. Colors
represent distiact experimental iPSC-CM data from Ma et al. (Ma et al., 2011), and from
immature w ure cell preparations from the Jalife lab (published in Herron et al. (Herron
et al, 3016“. ‘B) I-V curves for ly,. Dataset-specific models were simulated using the

experimerftal conditions of the corresponding experimental data. (C) Iy, activation (m-gate)

time constants._(D) I, fast-inactivation (h-gate) time constants. (E) Ina slow-inactivation (j-

ts. J-gate time constant parameters for all Iy, models were optimized to
C-CM data from the Kurokawa lab.

gate) timealconst

experimental’|
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Figure 4: Calcium current model optimization. (A) L-type calcium current (Ic,.) steady state
inactivation and activation curves with dataset-specific model fits (lines) optimized to

experimental data (points). The L-type calcium model used in the baseline cellular model is

olored symboils represent experimental iPSC-CM data from Ma et al.(Ma et

an et al. (Veerman et al., 2016), and Es-Salah-Lamoureux et al. (Es-Salah-

shown in bl3

Lamour-eux et al.I 2016). (B) I-V curves for Ic,. . Calcium-dependent gating model formulation
retained f@m ten Tusscher 2004 adult cardiomyocyte model with parameter optimization to

fit whole ce -CM outputs. (C) Time constants of lc,. activation gate. Time constant
paramete Ica. models were optimized to experimental iPSC-CM data from Ma et al.
(Maetal., 2 . (D) Time constants of I, inactivation gate. (E) Optimization of peak T-type

calcium rrent Mlc.t) to experimental iPSC-CM data from the Kurokawa lab. Model

formulatioE f !f:i was retained from the Maltsev and Lakatta sinoatrial node model.
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Figure 5: Rapid delayed rectifier potassium current (Ix;) model optimization. (A) Steady state
activation with dataset-specific model fits (lines) optimized to experimental data (points). The
I model msed ingthe baseline cellular model is shown in black. Colored symbols represent
experimentalgiRSC-CM data from Ma et al. (Ma et al., 2011), the Wu lab, Es-Salah-
@ (Es-Salah-Lamoureux et al., 2016) ,and Bellin et al. (Bellin et al., 2013).
For Ik inactivation gating, existing ten Tusscher 2004 model components were reformulated
I
to single gponential forms. (B) I-V curves for lk. (C) Time constants of Ik, activation gate.

Activation 1i

Lamoure

e constants for the Ma et al., Wu lab, and Es-Salah-Lamoureux et al. models

were optiflized 1@ experimental iPSC-CM data from Ma et al. (Ma et al., 2011). (D) Time
constants o i"':nactivation gate using the ten Tusscher 2004 model reformulated to single

exponentidl fofm

I
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Figure 6: Transient outward potassium current (l,,) model optimization. (A) Steady state
activation and inactivation curves with dataset-specific model fits (lines) optimized to
experimeqal da' (points). The I, model used in the baseline cellular model is shown in
black. Colgged. symbols represent experimental iPSC-CM data from Veerman et al.
(Veerman6), Ma et al. (Ma et al., 2011), and Cordeiro et al. (Cordeiro et al., 2013).
(B) I-V Eurves for li,. (C) Time constants of |, activation gate. For activation time constants in
all I, mod@ls, the ten Tusscher 2004 |, activation time constants were reformulated to single
exponenti*rs. (D) Time constants of |, inactivation gate. Veerman et al. model time
constant @rs were optimized to iPSC-CM experimental data from Ma et al. (Ma et al.,

2011).
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Figure 7: Slow delayed rectifier potassium current (lxs) model optimization. (A) Steady state
activation with dataset-specific model fits (lines) optimized to experimental data (points). The
ks model msed i
experimentalgiRSC-CM data from Ma et al. (Ma et al., 2011), and two separate iPSC-CM
cell-line da @ Ma, Wei et al. (Ma et al., 2015). (B) Time constants of Ixs activation gate.
Time cgnstants for all Ixs models were optimized to experimental iPSC-CM data from Ma et

al. (Ma et@l., 2011). (C) I-V curves for Is.

the baseline cellular model is shown in black. Colored symbols represent

s N\
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iPSC- the Kurokawa lab and Ma et al. (Ma et al., 2011). (B) Time constants of

ls inactivation gate. (C) I-V curves for I;.
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Figure 9: Inward rectifier potassium current (lxs) model optimization. I-V curves for I, with
dataset-specific model fits (lines) optimized to experimental data (points). The lx; model

used in_baselinegeellular model is shown in black. Colored symbols represent experimental

iPSC-CM da om Ma et al. (Ma et al., 2011), the Kurokawa lab, and immature and mature

cell prepa @ om the Jalife lab (published in Herron et al. (Herron et al., 2016)).
H
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Figure 10: Optimization of calcium handling in the iPSC-CM baseline model. (A)
Experimental iPSC-CM calcium transient (CaT) traces from the Wu lab (grey) with baseline
model Cal ‘red' Experimental data was reported as normalized Ca®* florescence (Fratio)-
Separately, amerage iPSC-CM peak and diastolic Ca?* concentrations were measured by the
Wu lab. xes are plotted so the average F,.i, peak and diastolic values of the
experirraental dataset shown correspond to the average experimental concentration of peak
and diastdlic Ca®* (in panel B). The baseline model CaT output is in nM. (B) Comparison of
baseline mgodel CaT morphology markers to experimental iPSC-CM data from the Wu lab.
(C) Relativie contlibution of calcium from lsgrca, Incx, @nd lpmca to the CaT during a single AP
in the baseline_model. (D) Comparison of experimental (black and white) and baseline model
(colored) [elativelcontribution of calcium flux from lsgrca, Incx, @nd lpyca during the CaT.
Experimerw from Hwang et al. (Hwang et al., 2015).
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Figure 11: Characterization of the baseline model action potential (AP). (A) Time course of
the spontaneously beating APs in the baseline model. (B-D) Comparison of AP morphology
in the baslline wdel (red) and experimental iPSC-CM data (black). Experimental data from
the Wu Labgthe Jalife Lab, Ma et al. (Ma et al., 2011), Doss et al. (Doss et al., 2012),
Cordeiro eiro et al., 2013), Es-Salah-Lamoureux et al. (Es-Salah-Lamoureux et
al., 201.6) and Ma et al. (Ma et al,, 2015). (E) Sensitivity analysis using multivariable

—
regressiorflin the baseline model. Only parameters with regression coefficients > 0.3 shown.
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Figure 12: Kinetic variability generated by varying individual current model parameters.

Steady-state and time constant curves for each gate in (A) Ina, (B) lcaL, (C) Ik, and (D) I. (E)

IV curvesyfor | Il panels include: dataset-specific model fits (black lines, also shown in
Fig. 3-10), mly-parameterized models resulting in spontaneous AP generation in the
cell mod ored lines), and randomly-parameterized models resulting in non-

spontan.eous or non-AP generating model cells (grey lines).
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Figure 13: (A) APs of spontaneously beating cells (n=25434) generated by varying one
current at a time (Ina, lcaLs Ik Ir, @nd lkq). (B) APs of spontaneously beating cells (n=17139)
generateabx v’/ing the same five currents simultaneously. (C) Representative AP time
courses of speataneously beating cells at various pacing frequencies. (D-F) Comparison of
AP morp @ the populations of models (color) and experimental iPSC-CM data (black).
Each cglored Roint represents a spontaneously beating cell created by varying a single
current (a§f shown in A), or by varying all five currents simultaneously (as shown in B). (G)
Mean and
to the bas

rd deviations of AP morphology measures for each population, normalized

Fy .\
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Figure 14: Sample APs showing the effect of ion channel blockers within the model
population. Each panel shows the same cellular models in the control (solid lines) and
drugged ‘Iashe’ines) conditions. Three cells are shown for each drug, representing a cell

with a changesin the given AP parameter near the population mean (cell 2), and +/- one

standard @ . The mean and standard deviations for the full population are described
in Table. 4. Drug effects are shown for (A) Tetrodotoxin (TTX) (B) Nifedipine (C) E-4031.
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Figure 15: Comparison of immature and mature cellular models. (A) AP for the immature
(baseline) cellular model, compared to AP for a representative mature cellular model.
Immaturand gture cellular models determined by scaling Gg; and Gy, based on peak
currents repeited in iIPSC-CMs with control (immature) and maturation-promoting cell
preparati et al.). (B) Comparison of models and experimental AP morphology for
mature-and immature cell-types. Experimental data shown from the Jalife Lab, as published
in Herron @t al. (Herron et al., 2016). All model and experimental data was normalized to the
Jalife Lab

immature fland

ature experimental dataset average. (C) Comparison of sensitivity analysis
ature models using multivariable regression. Only parameters with

regression coeflicients > 0.3 shown.
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Figure 16: Comparison of mature and immature iPSC-CM model subpopulations. (A)
Division of model population into mature and immature phenotypes (using five-current
variation populafibn with simultaneous variation in Iys, lca, Ik Ir, and lx; parameters).
Experimentalmdata shown from the Jalife Lab, as published in Herron et al. Model
subpopul in red (n=325) represents mature phenotypes with MDP below -75mV
and meﬁximal ugstroke velocity greater than 85 V/s. Model subpopulation shown in blue
(n=13759)represents immature phenotypes with MDP above -75mV and maximal upstroke
velocity below V/s. Model subpopulation shown in grey was not analyzed in this
comparisa@h. (B)Arhe four model parameters with the largest difference between the mature
and immature_model subpopulations. For each subpopulation, parameter averages and
standard devjations are shown as percent change from the baseline model parameter value.
(C) Stea

Individual cells (

inactivation for Iy, in the mature and immature model subpopulations.

ht colors) and subpopulation average parameter values (darker colored
lines) are shown. (D) Peak lx; and Iy, for the |-V relationship of each cell in the model

subpopulations was compared to data reported in Herron et al. (Herron et al., 2016). Model

and expe values are shown as the percent change from the immature to mature
phenotyp
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