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Running Title: Computational model of experimental variability in iPSC-CMs 

Key Points: 

 Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-

specific genotype-phenotype relationships, as well as cell-to-cell variability of cardiac 

electrical activity 

 Computational modeling and simulation provide a high throughput approach to reconcile 

multiple datasets describing physiological variability, and identify vulnerable parameter 

regimes 

 We have developed a whole-cell model of iPSC-CMs composed of single exponential 

voltage-dependent gating variable rate constants, parameterized to fit experimental 

iPSC-CM outputs 

 We have utilized experimental data across multiple laboratories to model experimental 

variability and investigate subcellular phenotypic mechanisms in iPSC-CMs 

 This framework links molecular mechanisms to cellular-level outputs by revealing unique 

subsets of model parameters linked to known iPSC-CM phenotypes 

 

 

 

ABSTRACT: 

There is a profound need to develop a strategy to predict patient-to-patient vulnerability in 

the emergence of cardiac arrhythmia. A promising in vitro method to address patient-specific 

proclivity to cardiac disease utilizes induced pluripotent stem cell-derived cardiomyocytes 

(iPSC-CMs). A major strength of this approach is that iPSC-CMs contain donor genetic 

information and therefore capture patient-specific genotype-phenotype relationships. A cited 

detriment of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We 

postulated, however, that cell-to-cell variability may constitute a strength when appropriately 
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utilized in a computational framework to build cell populations that can be employed to 

identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have 

exploited variation in experimental data across multiple laboratories to develop a 

computational framework to investigate subcellular phenotypic mechanisms. We have 

developed a whole-cell model of iPSC-CMs composed of simple model components 

comprising ion channel models with single exponential voltage-dependent gating variable 

rate constants, parameterized to fit experimental iPSC-CM data for all major ionic currents. 

By optimizing ionic current model parameters to multiple experimental datasets, we 

incorporate experimentally-observed variability in the ionic currents. The resulting population 

of cellular models predicts robust inter-subject variability in iPSC-CMs. This approach links 

molecular mechanisms to known cellular-level iPSC-CM phenotypes, as we show by 

comparing immature and mature subpopulations of models to analyze contributing factors 

underlying each phenotype. In the future, the models presented can be readily expanded to 

include genetic mutations and pharmacological interventions to study the mechanisms of 

rare events, such as arrhythmia triggers. 

 

INTRODUCTION: 

Patient variability is one of the most daunting aspects of forecasting arrhythmia vulnerability 

in response to inherited disease or drug application. Considerable differences in drug 

impacts are routinely observed from patient to patient, with significant overlap between 

normal and pathological variants (Leopold & Loscalzo, 2018). However, genotype, and even 

sex, have not been sufficiently considered as a biological variable when developing 

pharmacotherapy regimes (Schwartz et al., 1995; Schwartz et al., 2001; Shah & Carter, 

2008; Jamshidi et al., 2012; Kaab et al., 2012; Behr & Roden, 2013).  There is a profound 

need to develop a strategy to predict the diverse mechanisms of arrhythmia vulnerability 

across patient populations.  

 

A promising emerging experimental method utilizes induced pluripotent stem cell-derived 

cardiomyocytes (iPSC-CMs). iPSC-CMs are an increasingly utilized patient-specific cardiac 

cell model because they recapitulate cellular electrical properties of normal and diseased 

phenotypes, preserve patient-specific genotype, and demonstrate expected pharmacological 

responses of adult cardiomyocytes (Moretti et al., 2010; Itzhaki et al., 2011; Terrenoire et al., 

2013; Sallam et al., 2015). iPSC-CMs derive from adult somatic cells reprogrammed to the 

embryonic-like state and then differentiated to cardiomyocytes (Takahashi & Yamanaka, 

2006). Cell-based models for multiple cardiac diseases have been developed using iPSC-

CMs and show preservation of patient-specific disease markers carried from the source 
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patient to the patient-derived iPSC-CMs (Moretti et al., 2010; Itzhaki et al., 2011; Lan et al., 

2013; Garg et al., 2018). The retention of patient-specific disease markers makes iPSC-CMs 

an ideal tool for investigating patient-specific disease and response. Indeed, iPSC-CMs are 

currently being utilized in preclinical drug testing and prediction of genotype-phenotype 

relationships (Sun et al., 2012; Lan et al., 2013; Liang et al., 2013; Navarrete et al., 2013; 

Burridge et al., 2016). 

 

One of the limitations of iPSC-CMs as a model of adult cardiac behavior is their immature 

phenotype, which more closely resembles fetal cardiomyocytes. The immature iPSC-CM 

phenotype is characterized by spontaneous beating, significant differences in potassium 

currents compared to adult cardiac cells, and the presence of early-developmental currents 

(Bett et al., 2013; Karakikes et al., 2014). Additionally, iPSC-CMs have immature calcium 

handling due to their lack of T-tubules and differences in sarcoplasmic reticulum (SR) 

calcium handling (Yang et al., 2014). Recent experimental developments have enhanced the 

maturation of iPSC-CMs by mimicking the natural environment which allows for staged 

transitions of cardiomyocytes from the embryonic to adult phenotype (Kamakura et al., 2013; 

Nunes et al., 2013; Herron et al., 2016; Tiburcy et al., 2017). 

Another persistent concern with iPSC-CM technology has been the vast diversity of 

phenotypes observed in vitro. One reason for the variability between iPSC-CMs undoubtedly 

arises from the differences in genetic information of donors (DeBoever et al., 2017). 

Variation due to genetic differences is a critical attribute of iPSC-CMs, as it allows for the 

observation of a variety of naturally occurring phenotypes and reflects patient-specific 

vulnerability to rare events, such as arrhythmia. However, even iPSC-CMs derived from the 

same donor with identical genetic information may display persistently variable phenotypes 

due to unknown sources of variation.  There are a number of potential sources of variability, 

not least of all the complex process of generating and culturing iPSC-CMs and the influence 

of precise maturation phases (Narsinh et al., 2011). Action potential (AP) morphologies and 

calcium transients (CaTs) have been shown to vary both within independent laboratories 

(Doss et al., 2012; Du et al., 2015), and across laboratories (Hwang et al., 2015).   

While the iPSC-CMs that are utilized in vitro allow for observation of a variety of responses 

to drugs and other perturbations, a major drawback in the experimental setting is the lack of 

a high throughput method to link underlying genomic, proteomic, or ionic mechanisms to the 

observed whole-cell behaviors. Population-based computational modeling provides a 

powerful tool in closing this gap through in silico analysis of variability in cardiac 
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electrophysiology (Muszkiewicz et al., 2016; Yang et al., 2016; Passini et al., 2017; Ni et al., 

2018).  Implementation of these approaches in the modeling and simulation of iPSC-CMs 

has the potential to reconcile multiple datasets, define physiological ranges of variability, and 

identify vulnerable parameter regimes (Sarkar & Sobie, 2010; Yang & Clancy, 2012; Britton 

et al., 2013; Yang et al., 2015; Morotti & Grandi, 2017). In using iPSC-CMs for cardiotoxicity 

testing of pharmacological interventions, the U.S. Food and Drug Administration (FDA) has 

outlined the Comprehensive In Vitro Proarrhythmia Assay (CiPA) protocol to combine 

cellular iPSC-CM outputs with computational approaches (Fermini et al., 2015). These 

efforts will be further strengthened by a high throughput computational approach to study the 

mechanisms underlying phenotypic variability in iPSC-CMs. 

 

While prior studies have addressed computational modeling of iPSC-CMs (Paci et al., 2013; 

Koivumaki et al., 2018), there is a need for a computational model which incorporates the 

wide-range of experimental measurements from iPSC-CMs. Paci et al. have developed a 

computational model of the iPSC-CM which is based on a single iPSC-CM experimental 

electrophysiology study. Due to the lack of experimental data available at the time, the 

model is largely based on I-V curves measured in iPSC-CMs by Ma et al. (2011). Model 

kinetics were largely retained from the ten Tusscher et al. adult ventricular model, with any 

additional changes based on experimental data from animal or adult human cells (ten 

Tusscher et al., 2004; Paci et al., 2012). Although this model captures the spontaneously 

beating iPSC-CM action potential phenotype, it is based on a limited description of iPSC-CM 

behavior. Later iterations of iPSC-CM models by Paci et al. (2018) and Koivumaki et al. 

(2018) incorporated modifications to improve calcium handling, however these adaptations 

were made with limited experimental data to define the range of calcium transient behavior 

during the AP. The model presented in this study is constrained by several calcium handling 

datasets which have not been utilized in parameterizing prior models, including 

concentration measurements of the iPSC-CM calcium transient during the AP.  

 

Other computational studies have adapted the Paci et al. framework to model specific 

phenotypes and populations of iPSC-CMs (Lei et al., 2017; Paci et al., 2017; Koivumaki et 

al., 2018; Paci et al., 2018; Tveito et al., 2018), however none of these efforts have utilized in 

vitro kinetics data to implement experimentally informed variation of iPSC-CMs. There is a 

wide range iPSC-CM phenotypes which are not captured by previous approaches to 

modeling iPSC-CMs. As there is a wide range of “normal” iPSC-CM behaviors characterized 

by distinct experimental laboratories, we present a comprehensive computational model that 

captures this experimental variability.  
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The goal of our study is to extend the iPSC-CM technology by developing an in silico 

complement: a high throughput method for analyzing phenotypic mechanisms of emergent 

behaviors in normal control iPSC-CMs. This is achieved by computationally modeling 

phenotypic variability in control iPSC-CMs through simple models based on source data 

from multiple labs.  The use of simplified models to describe ionic gating kinetics allows us to 

fully parameterize a model to fit multiple individual experimental datasets. This approach 

allowed for rapid construction of model populations from multiple data sets, while setting the 

stage for future expansion into patient specific electrophysiology models by allowing 

reparameterization from data collected from donor cells. 

 

Additionally, this allows us to ask if kinetic variability can explain whole-cell variation 

observed in iPSC-CMs experimentally. Here we show that predicted experimental variability 

at the subcellular level can recapitulate the full range of in vitro whole-cell iPSC-CM behavior 

in an in silico cellular population. The population can further be used to identify 

subpopulations of interest, including immature and mature phenotypes, and elucidate 

underlying processes that characterize the phenotypes. In the future, our approach can also 

be used to examine mechanism of disease and drug effects. The computational models of 

iPSC-CMs will allow for identification of parameter regimes with increased proclivity to 

arrhythmia in the presence of genetic mutation or pharmacological intervention. The tools 

may be applied for in silico screening and prediction of drug effects on varied genetic 

backgrounds to predict patient pharmacological responses. 

 

METHODS: 

All source code and instructions are freely available on the GitHub: 

https://github.com/ClancyLabUCD/IPSC-model 

  

Model Construction 

As in prior cardiomyocytes models (Rudy & Silva, 2006), the iPSC-CM can be described by 

the differential equation:  

 
  

  
  

            
  

 (1) 

Where V is voltage, t is time, Cm is membrane capacitance, Iion is the sum of transmembrane 

currents, and Istim is the stimulus current (Istim = 0 in spontaneously beating cells). The iPSC-

https://github.com/ClancyLabUCD/IPSC-model
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CM model (schematic representation in Fig. 1, left) includes 13 transmembrane currents, 

such that: 

 
                                                           

      
(2) 

A schematic of the model cell containing all the ionic processes and compartments in the 

model is shown in Fig. 1. Seven key transmembrane currents (INa, ICaL, IKr, IKs, IK1, Ito, and If, 

indicated by red stars in Fig. 1), were reformulated using Hodgkin-Huxley-type gating 

formulations (Hodgkin & Huxley, 1952). For each of these currents, single exponential rate-

constants (right panel, Fig. 1) were optimized to iPSC-CM experimental data (Fig. 2, step 

1a). The remaining currents shown in Fig. 1 were modeled using formulations from 

previously published cardiac models (Shannon et al., 2004; ten Tusscher et al., 2004; 

Maltsev & Lakatta, 2009), and tuned to recapitulate experimental data for whole-cell outputs 

of iPSC-CMs. Details describing the experimental data used and resulting model 

formulations are in the results. 

 

The iPSC-CM ion dynamics were formulated as has been done previously (DiFrancesco & 

Noble, 1985; Luo & Rudy, 1994; ten Tusscher et al., 2004), assuming rapid equilibrium 

approximation for calcium buffers in various compartments:  
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(7) 

 

 

Where F is the Faraday constant, VC is the cytoplasmic volume, VSR is the sarcoplasmic 

reticulum volume, BufX is the total buffer concentration in a given compartment, and KBuf,X is 

the half-saturation constant of the buffer in a given compartment. Total volume and 

cytoplasmic buffering constants in the iPSC-CM model were set to experimental 
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measurements in iPSC-CMs from (Vtotal= VC +VSR =3960m3, BufC=0.06mM, and KBuf,C 

=0.0006mM) (Hwang et al., 2015). Remaining SR buffering parameters (BufSR, KBuf,SR )  were 

optimized in the whole-cell optimization (Step 2). Relative proportions of volumes (VC:VSR),  

were retained from the adult human ventricular model by  ten Tusscher et al. (ten Tusscher 

et al., 2004), referred to as the ten Tusscher 2004 model.  Capacitance of the cell was set to 

60pF, based on the experimentally observed range in iPSC-CMs (18-89 pF) (Ma et al., 2011; 

Hwang et al., 2015; Li et al., 2017).  

 

The models were implemented in MATLAB version R2017a by The MathWorks Inc. and 

solved using ode15s.  

 

Action Potential (AP) Morphology: 

Action potentials (APs) in the baseline model and populations were evaluated by computing 

a series of AP morphology markers. Maximum diastolic potential (MDP) was the most 

negative voltage during the AP. Maximal upstroke velocity (dV/dtmax) was the maximal slope 

between two points in the computed AP upstroke. AP amplitude (Amp) was calculated as the 

difference in voltage between MDP and the peak voltage during the AP. AP duration (APDx) 

was the time between dV/dtmax and X% AP repolarization from the peak voltage (ex. For 

APD90, time from dV/dtmax to Vm =Peak - 0.9*Amp). 

 

Parameter optimization of reformulated ionic channel models (Fig. 2, Step 1b): 

For each of the reformulated currents, model parameters were optimized to multiple 

experimental datasets, resulting in dataset-specific parameterization instances of the model. 

For each dataset-specific model, external ion concentrations and voltage protocols were set 

to reflect the corresponding experimental conditions. Experimental conditions for each 

dataset are described in Table 1. All experimental data used to optimize the models was 

collected in iCell iPSC-CMs at physiological temperature (37oC), unless otherwise specified 

(in which cases, data were temperature-corrected with appropriate Q10 values, as specified 

in the results section for the corresponding ionic current). This process was used to generate 

dataset-specific models. As an example, consider three separate experimental iPSC-CM 

datasets for a given current: datasets A, B, and C. In the case of the sodium current (Fig. 3), 

this would refer to (A) Ma et al., (B) Jalife Immature, (C) Jalife Immature. 

 

Considering gating variable x in Fig. 1, parameters x1-5 were optimized to recapitulate the 

experimental kinetics for gate x. In Fig. 2, this is shown as Step 1b in the upper highlighted 

box indicating the optimization routine. Parameter optimization minimized the error between 

the model and experimental voltage-dependence of the steady-state and time constants of a 
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given gate. The error function was the sum of the log squared difference between the data 

and model fit, normalized to the size of the dataset. The „fminsearch‟ function was used in 

MATLAB to implement Nelder-Mead minimization of the error function. Random small 

perturbations (<10%) were applied to resulting local minima, to improve data fit. The 

parameter fit with the minimal error function value after 100 perturbations was used as the 

optimal model fit to the data.   This is a relatively simple approach which only requires 

standard MATLAB functions, allowing for additional datasets-specific models to be easily 

obtained and incorporated into the model in the future. Additionally, this approach has been 

previously utilized for optimization of more complex ionic current models and datasets 

(Moreno et al., 2016). The ionic current models in this study were chosen to minimize the 

number of optimized parameters, thus this approach was sufficient to successfully fit the 

models to the datasets presented.   

 

These simplified models also allow for a more physiological understanding of model 

parameterizations. The ionic current model parameters can be combined such that: 
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Where:  

   
  

  
        

 

 
 
  

 
 
  

  
 

(9) 

 

With this simplification, we can understand the parameter effect on the voltage dependence 

of steady-state behavior. The x∞ function has a sigmoidal voltage-dependence which is 

characterized by the slope and Vhalf, where x∞(Vhalf) = 0.5. Using the parameter combinations 

shown in Eqn. 8, x6 and x7 are proportional to Vhalf and slope, respectively.  

 

Constructing the average parameter set for reformulated currents (Fig. 2, Step 1c): 

Consider parameter x1 in any gating variable. The value of x1 is determined through 

parameter optimization to an experimental dataset. If three experimental datasets (datasets 

A, B, and C) are used, then each dataset corresponds to a unique parameter value of x1 

(x1A, x1B, x1C) in each dataset-specific model. The baseline model is composed of average 

parameters values for x1, such that:   
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  (10) 

This is repeated for each parameter in the ionic current model. These averaged parameters 

(x1-5,avg, gx,avg) comprise an average model for each current. The baseline model for each 

current was constructed using the average model gating kinetics. The baseline model is the 

starting point to implement variability.   

 

Constructing the parameter distributions for reformulated currents (Fig. 2, Step 1d): 

To create a population of models that capture variability between the dataset-specific 

models, we created a distribution for each parameter in the reformulated currents. This 

distribution is centered at the baseline ionic current model value. Similar to our approach in 

selecting an optimization method (Fig. 2, Step 1b), the sampling method was chosen for 

simplicity and to allow for variation in a large number of parameters. While the range of 

variability was determined by the range of the experimental datasets used to in form the 

model, there is still insufficient data to accurately determine to distribution of data between 

these datasets (constructing the distribution of experimental data would require more data 

than the 2-5 datasets per ionic current used in this study). For simplicity we used a normal 

distribution of parameters, and randomly selected the parameter values in building the 

population of models. 

 

For example, for each cell in the population of models the value of x1 is randomly chosen 

from a normal distribution around x1,avg. The normal distribution is created using x1,avg and the 

standard deviation of x1A, x1B, and x1C, as described above. This same process is used to 

create a distribution for each parameter (x1-5) in each model gating variable, and for the 

maximal conductance (gx). 

 

Optimization of the baseline whole-cell model (Fig. 2, Step 2): 

The pre-optimized whole cell model is composed of average parameter sets for the 

reformulated currents combined with non-reformulated currents from existing models in the 

whole-cell model structure and geometry as described above. To tune parameters in non-

reformulated currents, as well as calcium handling parameters which were not directly 

defined by experiments, we implemented an optimization of the whole-cell model. This is 

shown in Fig. 2, Step 2, the second highlighted optimization routine in the flowchart. 

 

To optimize the whole-cell model, „fminsearchbnd‟ function was used in MATLAB to 

implement Nelder-Mead minimization of the error function. This “bound” version of the 

Nelder-Mead algorithm was used to maintain the reformulated maximal conductances within 
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a 20% range of gx,avg from the pre-optimized baseline model. The maximal conductance of 

the reformulated currents, maximal conductances and fluxes of the remaining currents, SR 

buffering constants, calcium-dependent inactivation in ICaL, RYR rate constants, and NCX 

kinetic parameters were optimized to fit whole-cell behavior within the experimentally 

observed range for iPSC-CMs.  As in the optimization of the ionic currents, the error function 

was defined as the sum of the log squared difference between the experimental data and 

whole-cell model output. The targets for the optimization function considered the 

experimentally observed range of AP morphology (MDP, APD90, AP amplitude, maximal 

upstroke velocity), CaT morphology (time constant  of decay, time to peak, ratio of tau decay 

and time to peak, CaT amplitude, and diastolic [Ca2+]), calcium handling response to caffeine 

(peak calcium and decay, not shown) (Hwang et al., 2015), and contribution of SERCA, 

NCX, and PMCA to calcium efflux from the cytosol.   

 

The ionic current models shown as black lines in Fig. 3-9 are the final version of each 

current model, including all tuning of maximal conductance in the whole-cell optimization. 

The baseline model resulting from this optimization was used as the starting point for all 

subsequent populations. All parameters which were not randomized in the model 

populations (remaining currents, cell geometry, etc.) were kept at the baseline model values.  

 

Sensitivity Analysis 

To further analyze the baseline models (Fig. 11E, 15C), parameter sensitivity was conducted 

using multivariable linear regression (Sobie, 2009).  Sensitivity analysis was conducted 

based on variation of the maximal conductance and maximal ion transport rates of the 

transmembrane currents (INa, ICaL, ICaT, IKr, IKs, IK1, Ito, If, INCX, INaK, IPMCA, IbNa, and IbCa) and SR 

fluxes (JUp, JRel, and Jleak). Remaining parameters, including all parameters describing model 

kinetics, were held at the baseline model values. Random scaling factors and were chosen 

from a log-normal distribution with a median value of 1, standard deviation of 0.1. 5000 

randomly parameterized models were run for each sensitivity analysis shown. For the 

baseline population (Fig, 11E, immature 15C) only spontaneously beating, AP generating, 

models were analyzed. This resulted in 89.3% model retention rate. For the mature 

population, only stimulated beating, AP generating, models were analyzed. This resulted in 

67.2% model retention rate.  For each analysis shown, 50 randomly determined 

subpopulations of 1000 models was analyzed, resulting in a standard deviation of less than 

0.025 for all regression bars shown. Each cell simulation was run until there was a <1% 

change in minimum ion concentration (for Cai, CaSR, Nai, and Ki) between the first and last 

beat during a 50 second simulation run. Once the steady-state criteria were met (ranging 

from 60-600s), the final AP was saved for regression analysis.  
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Development of population-based models based on experimental variability (Fig. 2, 

Step 3): 

To create a population of models (as shown in Fig 12, 13, and 16), the parameters of the 

varied currents were randomly determined using the parameter distributions created from 

the dataset-specific models. Each parameter was chosen from a distribution centered at the 

baseline model value. For example, for each cell in the population of models the value of x1 

is randomly chosen from a normal distribution around x1,avg. The normal distribution is 

created using x1,avg and the standard deviation of x1A, x1B, and x1C, as described above (Fig. 

2, Step 1c). This same process is used to create a distribution for each parameter (x1-5) in 

each model gating variable, and for the maximal conductance (gx). The populations are 

constructed by randomly selecting each parameter from these distributions. In the single-

current variation populations, all parameters for the chosen current are randomly 

determined, and the remaining model currents retain the baseline model formulation. In the 

final population, parameters for all 5 varied currents (INa, ICaL, IKr, IK1, and If) are randomly 

selected from the constructed distributions.  

  

Experimental Calcium Imaging (Wu Lab): 

iPSC-CMs were disassociated by Accutase and seeded in Matrigel-coated (BD bioscience) 

coverslips at a density of 20,000 cells per well. After recovery, cells were loaded with 5M 

Fura-2 AM in Tyrode‟s solution (140mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 10 mM glucose, 

1.8 mM CaCl2, and 10 mM HEPES pH = 7.4 with NaOH at RT) for 10 minutes in incubator, 

and were washed with pre-warmed Tyrode‟s solution for 3 times afterward. Cells were paced 

at 0.5 HZ during recording. For Fura-2 AM imaging, calcium signals were sampled by 

custom-made Nikon Eclipse Ti-E inverted microscope with a 40× oil immersion objective (NA 

0.95) and Lambda DG-4 ultra-high speed wavelength switching light source (Sutter 

Instrument). Signals were collected with iXon Ultra 897 EMCCD (Andor) as high-frame-rate 

video (512X512, 50 fps). Custom-made IDL (interactive digital language) script was used for 

data analysis. Calcium signal intensity was expressed F340/380 in Fura-2 AM recording. For 

each cell line, we recorded at least 30 cells from 2 batches of differentiation. 

 

Experimental Electrophysiology Recordings (Kurokawa Lab): 

Methods for IK1, INa, and If experimental data used to optimize the model is as described 

previously in Li et al. Methodology for ICaT recordings are described here.  
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Cell culture (Kurokawa Lab): We used commercially available human iPS cell (hiPSC)-

derived cardiomyocytes, iCell-cardiomyocytes (Cellular Dynamics International Japan; CDIJ, 

Tokyo, Japan). Pre-cultured iCell-cardiomyocytes obtained according to the company 

manual were dissociated enzymatically and were cultured onto laminin/poly-D/L-lysine-

coated glass bottom dishes. These re-plated cells started to beat within 48 hours. 

Electrophysiological experiments were performed within 2 weeks after thawing, as the 

distributing company (CDIJ) warrants preservation of a high purity in the user‟s guide. 

 

Electrophysiology (Kurokawa Lab): Membrane currents were recorded with the perforated 

configuration of the patch-clamp technique using an Axopatch 200B amplifier (Molecular 

Devices, CA, USA). Signals were low-pass filtered at 5 kHz, and sampled at 2–5 kHz. No 

correction for the liquid junction potential was made. The pCLAMP software (version 9.2 or 

10.02) was used to generate voltage-pulse protocols, and for acquisition and analysis of 

data.  

 

Cultured cells were placed on the stage of the inverted microscope (IX-71, Olympus), and 

the culture medium was replaced by a Tyrode‟s solution (135 mM NaCl/ 0.33 mM NaH2PO4/ 

5.4 mM KCl/ 1.8 mM CaCl2/ 0.53 mM MgCl2/ 5.5 mM glucose/ 5 mM HEPES, pH 7.4). After 

the giga-ohm seal formation, the Tyrode‟s solution was replaced to the external recording 

solution for each membrane current by using a rapid perfusion system (time constant; >20 

ms) (Kurokawa et al., 2001). Each patch-clamp data was obtained from an individual culture 

dish. Experiments were performed at 36±1 oC.   

 

During recordings of ICa,T, external Na+ ions and all K+ ions were replaced by tetraethyl 

ammonium (TEA)+ and Cs+ ions in order to suppress both Na+ currents and K+ currents. 

Pipette solution contained (130 mM CsCl/ 20 mM TEACl/ 2 mM MgCl2/ 5 mM ATP-2Na/ 10 

mM HEPES/ 10 mM EGTA, pH 7.25), supplemented with amphotericin B. To achieve patch 

perforation, we front-filled patch pipettes by dipping them into the internal solution, and back-

filled with the internal solution containing amphotericin B. Adequate series resistances (less 

than 5-times of the pipette resistances) were usually attained within 10 min after the 

gigaohm seal formation. Each current component was determined in each single cell by 

subtracting the traces after application of channel blocker. Our rapid perfusion system 
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enables us to exchange the bath solution almost immediately, that minimize the risk for 

contamination of time-dependent leak currents. 

 

After the achievement of membrane perforation, the Tyrode‟s solution was replaced by a 

Na+-free K+-free solution (135 mM TEACl/ 5.4 mM CsCl/ 2 mM CaCl2/ 0.53 mM MgCl2/ 11 

mM glucose, 5 mM HEPES, pH 7.4). TTX at 10 M was added to the solution in order to 

abolish contamination with low-threshold activating TTX-sensitive Ca2+ currents (Vassort et 

al., 2006). According to a comparison of current-voltage (I-V) relationships from -100 mV and 

-50 mV, ICa,T currents were elicited by 150-ms test pulses to -30 mV (VH of -100 mV, 0.1 Hz). 

The obtained inward currents were completely blocked with 0.5 mM NiCl2 (data not shown), 

representing most of the ICa,T component. Two representative data points were referred to for 

optimization of the model.  

 

 

RESULTS: 

We set out to develop a computational model that can recapitulate the varied 

electrophysiological responses of induced pluripotent stem cell-derived cardiomyocytes 

(iPSC-CMs). A schematic of the model cell containing all the ionic processes and 

compartments in the model is shown in Fig. 1. All major ionic currents (indicated by red stars 

in Fig. 1) were formulated and parameterized to fit iPSC-CM experimental kinetic data.  

 

Sodium Current (INa): 

The sodium current model contains three Hodgkin-Huxley type gating variables: activation 

(m), fast-inactivation (h), and slow-inactivation (j), as described previously (Beeler & Reuter, 

1977). The model formulation for the sodium current is shown as the example current in Fig. 

1. For each gating variable, experimental data from iPSC-CMs was used to optimize model 

parameters (x1-5). Three distinct dataset-specific models of the sodium current were 

optimized, based on three independent experimental datasets. One sodium dataset was 

from Ma et al. (Ma et al., 2011), and two independent datasets were from the Jalife Lab 

(Herron et al., 2016). The immature dataset from the Jalife Lab was collected in iPSC-CMs 

plated on glass coverslips (conventional cell preparation). The mature dataset from the Jalife 

Lab was collected in iPSC-CMs plated on PDMS (polydimethylsiloxane) coverslips, which 

were shown to promote mature electrophysiological function in iPSC-CMs (Herron et al., 

2016). The Jalife Lab data was collected at room temperature. Before optimizing the model 
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parameters, the Jalife Lab experimental data was converted to physiological temperature 

using Q10=2.79 for time constants (ten Tusscher et al., 2004) and Q10=1.5 for conductance 

(Correa et al., 1991). Experimental data shown in Fig. 3C-D is adjusted data to physiological 

temperature.  Experimental iPSC-CM voltage dependence of steady-state inactivation and 

activation data were used to optimized parameters for h∞*j∞ and m∞
3, respectively. The 

experimental data used for parameterization, and the resulting models, are shown in Fig. 3A.  

 

Several experimentally published datasets from iPSC-CMs do not contain explicit 

information for the time constants of gating processes. However, current recording traces 

were published. To extract time constants of gating kinetics, normalized current recordings 

from published data were fit to single-exponential functions (e-t/τ; t=time, τ =time constant) for 

activation and/or inactivation at each voltage step. These extracted time constant values 

were used to optimize model parameters. In the sodium current, this technique was used to 

extract activation and fast-inactivation time constants from sodium current recordings in Ma 

et al. and Herron et al. The resulting time constant values (corrected to physiological 

temperature), and respective model fits are shown in Fig. 3C-D. All three dataset-specific 

models were optimized to data from the Kurokawa Lab for time constants of slow-

inactivation, as shown in Fig. 3E. The maximal conductance for each model was tuned to fit 

the I-V relationship for the corresponding dataset, as shown in Fig. 3B. The sodium current 

kinetics in the baseline iPSC-CM model are shown in black (Fig. 3).  

 

L-type Calcium Current (ICaL): 

The model L-type calcium current contains voltage-dependent activation and inactivation 

gating variables (xact, xinact). Both gates were modeled using the formulation shown for 

example gate x in Fig. 1. The model also includes a calcium-dependent inactivation gate 

(xinact,Ca) from the ten Tusccher 2004 model. The model L-type calcium current is described 

by: 

                                       
  

   

  
  

     
            

          
 (11) 

   

Where y is Ca2+, Na+, or K+. pCaL,y indicates the permeability to ion y, R is the gas constant, 

zy is the valence of ion y, and y is to activity coefficient for ion y as in the Shannon-Bers 

model. The total current is the sum of the Ca2+, Na+, and K+ currents.  

                                (12) 

Parameters for the voltage-dependent inactivation and activation gates (xinact and xact) were 

optimized to iPSC-CM experimental steady-state inactivation and activation curves, as well 

as voltage-dependent time constants of inactivation and activation. The four dataset-specific 
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models were optimized to experimental data from Ma et al., Es-Salah-Lamoureux et al., and 

two independent datasets from Veerman et al. (Ma et al., 2011; Es-Salah-Lamoureux et al., 

2016; Veerman et al., 2016). Es-Salah-Lamoureux et al. and Veerman et al. used an in-

house iPSC-CM line for experimental results shown. Ma et al. and Es-Salah-Lamoureux et 

al. ICaL recordings were conducted at room temperature and converted to physiological 

temperature using Q10=2.1 for time constants (ten Tusscher et al., 2004), and Q10=2.3 for 

conductance (Kiyosue et al., 1993).  

 

Steady-state inactivation and activation iPSC-CM experimental data, and optimized dataset-

specific models for each dataset, are shown in Fig. 4A. Due to a lack of explicitly reported 

experimental iPSC-CM data for the time constants of voltage-dependent L-type calcium 

gating, time constants were extracted from Ma et al. current recordings (as described above 

for the sodium current). The Ma et al. time constants, corrected to physiological temperature, 

were used to optimize all models.  The experimental conditions for calcium buffering during 

the Ma et al. ICaL current recordings (5 mM EGTA), may result in some calcium-dependent 

inactivation contribution to the time constants of inactivation derived from these current 

recordings. As this calcium-dependent inactivation contribution was not quantified 

experimentally, the time constants of inactivation derived from the current recordings were 

assumed to be entirely voltage-dependent inactivation for model parameterization. The time 

constant data used for model optimization, and the resulting models, are shown in Fig. 4C-D.    

 

The calcium-dependent inactivation gate (xinact,Ca) formulation in the ten Tusscher 2004 

model was retained in this model, due to lack of experimental data characterizing calcium-

dependent inactivation in iPSC-CMs. A single scaling factor for [Ca]i in              was 

optimized in the final whole-cell parameter optimization to recapitulate iPSC-CM calcium 

handling.  This was required to accommodate the lower [Ca]i throughout the iPSC-CM AP, 

as compared to the adult ventricular cell modeled in ten Tusscher 2004. Fig. 4 shows all ICaL 

models with the final optimized calcium-dependent inactivation gate.  

 

Values for Ca, Na, K, and the relative proportions of pCaL,Ca: pCaL,Na:pCaL,K were retained from 

the Shannon-Bers model (Shannon et al., 2004). The total permeability (pCaL = pCaL,Ca+ 

pCaL,Na + pCaL,K ) of each dataset-specific model was tuned using the experimental I-V curves, 

and the resulting I-V relationships are shown in Fig. 4B. The baseline model for ICaL is shown 

in black in Fig. 4.  

 

T-type Calcium Current (ICaT) 
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The T-type calcium current was introduced to the iPSC-CM model, as it is experimentally 

found in iPSC-CMs. T-type calcium is typically found in embryonic hearts, and its expression 

is dependent on the developmental stage of the heart (Ono & Iijima, 2010). T-type calcium is 

also found experimentally in iPSC-CMs (Ivashchenko et al., 2013; Karakikes et al., 2015), as 

is expected due to the iPSC-CMs immature cardiac phenotype. The T-type calcium current 

was modeled as in the previously published Maltsev-Lakatta sinoatrial node model (Maltsev 

& Lakatta, 2009). Peak ICaT was tuned to the IV curves for ICaT provided by the Kurokawa 

Lab, as shown in Fig. 4E. 

 

Rapid Delayed Rectifier Potassium Current (IKr) 

The rapid delayed rectifier potassium current was modeled as: 

         √
  

   
                     (13) 

The voltage-dependent activation and inactivation gating variables (xact, xinact) were modeled 

using the formulation shown as for the exemplar gate x in Fig. 1. The Ko dependence of the 

current (√     ⁄ ) and the voltage-dependent inactivation gate was retained from the ten 

Tusscher 2004 formulation of IKr. To utilize the simplified gating model formulation for the IKr 

inactivation gate (xinact), the single-exponential voltage-dependent rate constant model (Fig. 

1, right) was optimized to fit the voltage-dependence of IKr inactivation in the ten Tusscher 

2004 model. The resulting model of inactivation gating is shown in Fig. 5A,D. 

 

Dataset-specific models of steady-state activation were fit to four independent iPSC-CM 

experimental datasets from the Wu Lab, Ma et al., Es-Salah-Lamoureux et al., and Bellin et 

al. (Ma et al., 2011; Bellin et al., 2013; Es-Salah-Lamoureux et al., 2016; Garg et al., 2018). 

Es-Salah-Lamoureux et al. data was collected from an in-house iPSC-CM line, and Bellin et 

al. data was collected from a patient-specific cell line. Voltage-dependent time constants of 

activation were extracted from current recordings published in Ma et al. The Ma et al. time 

constants of activation were used to optimize parameters in the Ma et al., Wu Lab, and Es-

Salah-Lamoureux et al. optimized models. Experimental time constants of activation were 

published in Bellin et al. and used in the corresponding model, as shown in green in Fig. 5C. 

Finally, the maximal conductance (gKr) of each dataset-specific model was tuned to I-V 

relationship data for each dataset, shown in Fig. 5B. Bellin et al. published a single data 

point for the experimental I-V relationship (at Vm=60mV, not shown), which was used to 

optimize the maximal conductance of the corresponding model. 

 

Transient outward potassium current (Ito) 
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The transient outward potassium current was modeled as: 

                             (14) 

The voltage-dependent activation and inactivation gating variables (xact, xinact) were modeled 

using the formulation of example gate x in Fig. 1. iPSC-CM experimental data from Ma et. 

al., Cordeiro et al., and Veerman et al. was used to optimize dataset-specific models (Ma et 

al., 2011; Cordeiro et al., 2013; Veerman et al., 2016). Experimental results in Veerman et 

al. were recorded in an in-house iPSC-CM cell-line. Steady-state activation and time 

constants of inactivation were extrapolated from Ito current recordings published in Ma et al. 

Time constants of inactivation from Ma et al. were used to optimize the inactivation time 

constant parameters of the Veerman et al. model. Steady-state activation data from Ma et al. 

was used to optimize the Cordeiro et al. model, and steady-state inactivation data from 

Cordeiro et al. was used to optimize the Ma et al. model, as neither dataset included both 

steady-state activation and inactivation data. 

 

Time constants for activation of Ito were not available in iPSC-CMs, thus model parameters 

were optimized to retain the ten Tusscher 2004 voltage-dependence for time constants of 

activation. The resulting model for time constants of Ito activation are shown in Fig. 6C. 

Finally, maximal conductance (gto) was tuned to experimental iPSC-CM I-V relationships for 

each dataset, as shown in Fig. 6B.  

 

Slow Delayed Rectifier Potassium Current (IKs) 

The slow delayed rectifier potassium current was modeled as: 

             
          (15) 

The voltage-dependent activation gating variable (xact) was modeled using the formulation of 

example gate x in Fig. 1. Dataset-specific models were optimized to experimental data from 

Ma et al. (2011) and two independent datasets from Ma, Wei et al. (2015), shown in Fig. 7A 

(Ma et al., 2011; Ma et al., 2015). Ma, Wei et al., recorded one IKs dataset in a patient-

specific iPSC-CM cell-line, and another dataset in iCell iPSC-CMs.  Parameters for       
  

were optimized to steady-state activation data, as shown in Fig. 7A. Due to a lack of 

available experimental data for the time constants of IKs activation, time constants extracted 

from current recordings published in Ma et al. were used to optimize parameters in all 

models, as shown in Fig. 7B. Finally, the maximal conductance (gKs) was tuned to I-V data, 

as shown in Fig. 7C. For both models built on Ma, Wei et al. datasets (Fig. 6: patient-specific 

in orange, iCell in purple), the maximal conductance was tuned to the Ma, Wei et al. (2015) 

IV relationship in iCells, as shown by purple points in Fig. 7C.  
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Pacemaker/Funny Current (If) 

The pacemaker current was incorporated into the iPSC-CM model, as it is experimentally 

found in iPSC-CMs (Karakikes et al., 2015; Kim et al., 2015). The current was formulated as: 

                    (16) 

Ef and gf are calculated as a balance of the sodium and potassium Nernst potentials 

(Verkerk & Wilders, 2013), such that : 

   (     )                            (17) 

Where the ratio of gf,Na:gf,K = 0.491, based on prior models of If in rabbit sinoatrial node 

(Verkerk & Wilders, 2013). The activation gate (xact) is modeled using the same formulation 

as example gate x in Fig. 1. Experimental data in iPSC-CMs from Ma et al. and the 

Kurokawa Lab (Ma et al., 2011; Li et al., 2017) was used to optimize dataset-specific 

models. Model parameters for the activation gate (xact) were optimized to experimental data 

for steady-state activation and time constants of activation, as shown in Fig. 8A-B. Maximal 

conductances (gf) for each dataset-specific model were fit to I-V relationships of the 

corresponding experimental dataset. The experimental data and resulting models are shown 

in Fig. 8C.   

 

Inward Rectifier Potassium Current (IK1) 

The slow delayed rectifier potassium current was modeled as: 

        √
  

   
                (18) 

The Ko dependence of the current (√     ⁄ ) is retained from the ten Tusscher 2004 

formulation of IK1. To recapitulate the behavior of IK1 the activation gate was formulated as: 

       
          (19) 

               (20) 

Dataset-specific models were created by optimizing parameters x1-5 and gK1 to the I-V 

relationships recorded in iPSC-CMs from Ma et al., Kurokawa Lab, and Jalife Lab (Ma et al., 

2011; Herron et al., 2016; Li et al., 2017). Experimental data from the Jalife Lab was 

collected at room temperature. The Jalife Lab I-V curves were corrected to physiological 

temperature using Q10=1.5 (Kiyosue et al., 1993). The experimental data used to optimize 

the models, and the resulting models, are shown in Fig. 9. 

 

Pump and Exchanger Currents (INCX, INaK, IPMCA): 

To model the remaining membrane currents which are not characterized in iPSC-CMs, we 

utilized previous models. The sodium-calcium exchanger (INCX), sodium potassium pump 

(INaK), and sarcolemma pump (IPMCA) currents were modeled using formulations from prior 
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ventricular cell models (Luo & Rudy, 1994; ten Tusscher et al., 2004). Kinetics of these 

currents were retained from existing ventricular cell models, as these currents have not been 

characterized experimentally in iPSC-CMs. Maximal values of all three currents were 

included in the whole-cell optimization routine (Fig. 2, Step 2), and the final 

parameterizations are detailed in Table 3.  
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Sarcoplasmic Reticulum (SR) Currents (JRel, Jup, Jleak): 

The calcium handling in iPSC-CMs has not been fully characterized experimentally. Thus, 

the calcium handling in the present model is based on prior formulations of SR currents. 

Parameters for the RYR (Jrel) were adapted from the Shannon-Bers model to maintain 

physiological SR function during the beating cycle. The Shannon-Bers RYR formulation is 

dependent on the high calcium concentration in the cleft compartment described in the 

Shannon-Bers cellular geometry. However, the geometry used in the present model does 

not include this cleft compartment (as shown in Fig. 1 schematic).  Given these differences 

in cellular geometry, the original Shannon-Bers JRel parameters do not produced a SR 

release during the AP in the simplified cellular geometry used in this model.  To implement 

the Shannon-Bers RYR Markov model formulation within the cellular geometry described 

above, RYR transition rates were determined by our whole-cell optimization routine (Fig. 2, 

Step 2). Maximal values of Jup and Jleak were also included in the whole-cell optimization. 

Final parameterizations of all SR currents are detailed in Table 3. 
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For Closed (C), Open (O), Inactivated (I), Closed- inactivated (CI) states of JRel: 

           (26) 
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Model development: Intracellular Ca2+ dynamics 

Fig. 10A shows the baseline model (red) calcium transient compared to experimental 

calcium transients (CaTs) from the Wu Lab (grey). Experimental CaTs shown are reported 

as a florescence ratio (Fratio), as plotted in Fig. 10A on the right y-axis.  The average peak 

Fratio value of the dataset shown (Peak Fratio = 4.25), corresponds to the independently 

measured iPSC-CM average peak CaT concentration (Fig. 10B) on the left y-axis. Similarly, 

the diastolic Fratio value (Diastolic Fratio = 0) also corresponds to the independently measured 

iPSC-CM average diastolic CaT concentration (Fig. 10B).  

 

To reproduce the CaT data described above, SR currents (JUp, JRel, and Jleak) and calcium-

dependent transmembrane currents which were not previously parameterized to fit iPSC-CM 

data (INCX, IPMCA) were optimized to recapitulate the experimentally observed iPSC-CM CaT 

morphology shown in Fig. 10B. The baseline model parameters were optimized to produce 

CaT outputs within one standard deviation of the experimental Ca2+ transient markers 

shown. Additionally, the optimization considered the ratio of time to peak and tau decay of 

the CaT. The baseline model has a faster spontaneous beating rate (62.0 bpm) than the 

average spontaneous beating rate in the CaT dataset from the Wu Lab (30.2 ± 13.2 bpm). 

To normalize the experimental data and account for this difference in pacing rate, we 

included the ratio of the CaT time to peak and CaT tau decay as a target in our optimization 

error function. The ratio of the time to peak and tau decay of the experimental CaT was 0.83, 

and the resulting baseline model CaT ratio is 0.77. Thus, the model recapitulates the relative 

portion a single AP cycle spent at each phase of the CaT.  

 

The model was also tuned to recapitulate the relative contribution of three fluxes (INCX, JUp, 

and IPMCA) to the calcium removal pathways (Fig. 10C and D) (Hwang et al., 2015). 

Experimentally, the contribution of NCX (INCX), SERCA (JUp), and the sarcolemma pump 

(IPMCA) is calculated using the time constant of the CaT during a normal AP, the caffeine-

induced CaT, and the caffeine-induced CaT in a sodium and calcium-free solution (Bers, 

2000). Hwang et al. provided a comparison of the relative contributions INCX, JUp, and IPMCA to 
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the calcium flux balance from 6 independent iPSC- CM datasets across 3 labs (Hwang et al., 

2015). Maximal INCX, JUp, and IPMCA in the baseline model were optimized to fit the relative 

contributions of each current. The relative contribution to the calcium flux in the model was 

calculated based on the integral of each current during a single CaT. This integral, 

normalized to total calcium contribution from all three sources, is shown in Fig. 10C for a 

single beat in the baseline model, obtained after achieving steady-state. The resulting 

relative contributions to calcium flux pathways in the model are comparable to the 

experimentally observed ranges (Fig. 10D). 

 

Model Prediction:  Whole Cell Simulations 

The baseline model that was developed via the steps described above recapitulates the 

phenotype of typical iPSC-CMs (Fig.11A). The AP and CaT outputs fall within the 

experimental range of behaviors (Fig. 10-11). Experimental details of the action potential 

datasets used are described in Table 2. The baseline model was optimized to reproduce 

these key features of the immature iPSC-CM phenotype, including spontaneous beating 

(Fig. 11A&C), a reduced AP amplitude (Fig. 11B), a low maximal upstroke velocity (Fig. 

11C), and a depolarized maximum diastolic potential (MDP, Fig. 11D). See methods for 

precise definitions of AP morphology markers. The baseline model also spontaneously beats 

during total INa and If block, showing that the mechanism of automaticity in the baseline 

model is consistent with the experimentally observed mechanism (Guo et al., 2011; Itzhaki et 

al., 2011; Sheng et al., 2012; Kim et al., 2015). Sensitivity analysis on the baseline model 

was conducted using a multivariable regression model (Fig. 11E) (Sobie, 2009). The 

sensitivity analysis shows several expected results for cardiac cells such as increased 

upstroke velocity with increased sodium current, APD shortening with increased IKr, and APD 

lengthening with increased ICaL. Additionally, increased IK1 is experimentally shown to 

hyperpolarize iPSC-CM maximum diastolic potential (Bett et al., 2013; Vaidyanathan et al., 

2016), which is consistent with the results of this sensitivity analysis (Fig. 11E) showing 

increased IK1 hyperpolarizes the cells (indicated by a positive regression coefficient for IK1 

related to the absolute value of MDP).  

 

While Fig. 11B-D shows that the baseline model falls within the experimental range, the 

compilation of experimental data sources also serves to illustrate the vast range of AP 

behavior in “normal” iPSC-CMs. This range of experimentally observed behaviors reveals 

that a single “average” iPSC-CM model is insufficient to describe the behavior of iPSC-CMs, 

and that variability may be the defining characteristic.  

 

Model Prediction: Inter-subject Variability 
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To model heterogeneity in kinetic behavior in healthy iPSC-CMs, a population-based 

approach was utilized. The goal of this approach was to harness the range of experimentally 

observed kinetics in each ionic current and create an in silico population of model cells which 

captured the full range of iPSC-CM kinetic behavior.  

 

A population of models was developed to incorporate experimentally measured kinetic 

variability in five of the reformulated ionic currents that were identified in the multivariable 

regression sensitivity analysis as most important to AP behavior (Fig. 11E).  The 5 currents 

were INa, ICaL, IKr, If, and IK1. The regression coefficients for If were below the threshold for 

Fig. 11E, but If did impact MDP and BPM in the model, though at a lower level than the other 

currents shown in Fig. 11E. INaK was identified by the sensitivity analysis, but due to the lack 

of experimental iPSC-CM data characterizing the range of kinetic behavior in INaK, it was not 

included in the population-based variability.  

 

A total of six populations were developed. In five of those populations, model parameters for 

a single current were varied, and all other currents were kept at the baseline values. The 

populations capture inter-subject variability observed in the measured electrophysiology 

data. In the final population, the parameters were simultaneously varied for all five of the 

identified currents. 

 

To simulate model cell variability, ionic current models were randomly parameterized within 

the experimentally observed ranges from multiple data sets for steady-state gating, time 

constants of gating, and IV relationships. Using the mean and standard deviation of each 

parameter value across the independent dataset-specific models, a normal distribution was 

created for each parameter value, as described in further details in the methods and Fig. 2. 

For each model cell within the population, parameters were randomly chosen from this 

distribution. Thus, every model cell in the population has a unique parameter-set chosen 

from the normal distribution of underlying parameters composing a single current. The range 

of kinetic behaviors are shown for populations with single current variation in INa (Fig. 12A), 

ICaL (Fig. 12B), IKr (Fig. 12C), If (Fig. 12D), and IK1 (Fig. 12E). Steady-state and time constant 

values functions shown in Fig. 12 are the results of random variation in the parameter values 

of each of the selected five currents. These randomly determined kinetics result in the 

whole-cell behavior shown in Fig. 13. 

 

A final population was built using the same methodology, but by varying the kinetics of the 

five specified currents simultaneously (shown as effects on the AP in blue in Fig. 13). The 

outputs of the spontaneously beating AP models from the single-current variation 
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populations are shown in Fig. 13A, and the spontaneously beating AP generating models 

from the five-current simultaneously varied population is shown in Fig. 13B. Each cell in the 

resulting populations can be categorized into one of three groups: spontaneously beating 

cells, stimulated beating cells, or cells excluded from analysis. “Spontaneously beating cells” 

maintain automaticity with a viable AP and are most representative of the experimentally 

observed iPSC-CMs. The baseline model would be categorized in the spontaneous beating 

subpopulation. “Stimulated beating cells” are model cells that result in a viable AP with the 

application of a stimulus current but are non-spontaneously beating (not shown). Cells were 

not analyzed if they did not fully repolarize (MDP>-40 mV, AP amplitude < 70 mV) or 

exhibited non-control/non-healthy AP morphology (e.g. alternans). Additionally, cells with 

non-physiological calcium handling (determined as CaT amplitude greater than three 

standard deviations of the experimental average in Fig 10B) were excluded from analysis  

 

For the cell population subject to single-current variation, only the IK1 variation population 

produced a stimulated beating subpopulation that required an external stimulus. A random 

selection of models from the spontaneously beating AP generating populations are shown in 

Fig. 13C, to illustrate the range of beating rates and AP morphologies observed. All 

subsequent analyses were conducted in the subpopulation generating spontaneously 

beating APs. Variation in AP morphology markers within each population of models is shown 

in Fig. 13D-G. Individual colored points in Fig. 13D-F represent a single model in the given 

population. Additionally, these outputs are compared to experimentally measured iPSC-CM 

outputs shown as black dots and lines (Ma et al., 2011; Doss et al., 2012; Cordeiro et al., 

2013; Ma et al., 2015; Es-Salah-Lamoureux et al., 2016; Herron et al., 2016), as was done 

for the baseline model in Fig. 11. It should be noted that the plots show standard error for the 

experimental data, meaning the full range of experimental behavior is larger than 

represented by the black points. The range of individual models in the single-current 

variation populations can serve as a form of sensitivity analysis: for a given morphology 

marker, the widest spread of models is indicative of increased sensitivity to the varied 

current. For example, the maximal upstroke velocity is sensitive to INa, and thus the models 

from the INa varied population show the largest range of upstroke velocity values (Fig. 13F, 

distribution of green points along y-axis). Finally, the population with simultaneous variation 

of five ionic currents shows the largest range of variability in all AP morphology markers and 

is the population most representative of the full experimentally observed space. This serves 

as a first step in modeling known variability of iPSC-CMs at the ionic level, resulting in the 

recapitulation of observed variability in iPSC-CMs at the whole-cell level. 

 

Model Prediction: Ionic Current Block 
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To further validate the model population, we predicted the effect of ionic current blockers on 

the model population. We simulated the effect of drugs which have been experimentally 

studied in iPSC-CMs: Tetrodotoxin (TTX, INa block), E-4031 (IKr block), and Nifedipine (ICaL 

block). For each drug we simulated a concentration which had been studied across several 

experimental datasets. We modeled drug effects as a simple pore block. IC50 values for 

each cell in the population were randomly selected within the range of experimentally 

observed IC50 values in stem cell-derived cardiomyocytes (Peng et al., 2010; Ma et al., 

2011; Harris et al., 2013; Gibson et al., 2014; Moreau et al., 2017). The ranges of IC50 

values, and corresponding percent ionic current block, are described in Table 4. For 

example, when modeling 10µM TTX, each model cell had a randomly determined IC50 

within the experimental range, resulting in 88% - 94% INa block. Beginning at the previously 

determined control steady-state initial conditions, each simulation was run for 200s with drug 

applied, and the final action potential was analyzed. All simulated results shown are in 

spontaneously beating model cells. The percent change in the AP parameter associated with 

the blocked current is described in Table 4, and sample APs for each drug are shown in Fig. 

14. Only the subpopulations of models that resulted in spontaneous beating and normal 

repolarization after drug application were analyzed. Additionally, TTX response was only 

analyzed in the subpopulation of model cells with more than -10 pA/pF peak INa during the 

control (non-drug) AP. The size and results of the analyzed model subpopulations are 

reported in Table 4. It should be noted that the baseline model has a peak INa of -29.2 pA/pF 

during the AP. Models without substantial INa during the AP are unaffected by TTX, and were 

omitted for clarity. Highly variable iPSC-CM response to TTX and other sodium channel 

blockers has also been observed experimentally (Sheng et al., 2012).  

 

The drug-induced changes to AP morphology predicted by our model population falls within 

the experimentally observed range, as characterized in Table 4 (Peng et al., 2010; Ma et al., 

2011; Jonsson et al., 2012; Gibson et al., 2014; Scheel et al., 2014; Hortigon-Vinagre et al., 

2016). It should be noted that there is a large range of experimentally observed variation in 

the effects of each of these drugs. Experimental data shown in Table 4 includes data from 

paced and spontaneously beating cells, which may contribute to this variability. However, for 

TTX, Jonsson et al. shows a similar range of change in upstroke velocity in paced and 

spontaneously beating cells treated with TTX. Additionally, Hortigon-Vinagre et al. show that 

cell line differences have an impact on the observed response to Nifedpine and E-4031 in 

spontaneously beating APs. Hortigon-Vinargre et al. and Jonsson et al. reported AP outputs 

in spontaneously beating cells, while the other studies reported AP outputs at 1Hz pacing. 

Qualitatively, experimental results across these experimental protocols show a similar 

response to each ionic channel blocking drug. Our comparison of model outputs with the 
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experimental range reported in Table 4 serves to show that our model population can 

replicate this qualitative response to simple pore block.  

 

Table 4 shows the range of the mean behavior amongst the datasets cited, but the full range 

of behavior in individual cells between these datasets is even larger. As discussed 

previously in characterizing the baseline AP morphology, it is impossible to pinpoint “normal” 

iPSC-CM response. There is a wide range of variability in the ionic currents regulating iPSC-

CM APs, and this is reflected in the range of responses to a particular drug.   

 

Immature and Mature Phenotypes 

We next compared representative immature and mature model phenotypes. The previously 

described baseline model was used as the representative immature model. The 

representative mature model was created using the baseline model with a 100% increase in 

maximal conductance of IK1 and a 45% increase in maximal conductance of INa. These 

changes represent the relative increase in IK1 and INa from the immature to mature 

phenotype, as characterized experimentally by the Jalife Lab (Fig. 3B & 9). These increases 

in IK1 and INa are proportional to the increase in IK1 and INa peak current between iPSC-CMs 

cultured on glass (immature) and PDMS (mature) shown in Herron et al. (Herron et al., 

2016). The behavior of the immature and mature models is compared in Fig. 15. The APs of 

the immature and mature models are shown in Fig. 15A, and the AP morphology markers for 

each model are compared to experimentally measured APs from the Jalife Lab in Fig. 15B. 

Cell outputs (experimental and computational) were normalized to the average value of the 

experimental iPSC-CMs cultured on PDMS (black, Fig. 15B). Finally a multivariable 

regression model, created using the same methodology as described for the baseline model 

(Sobie, 2009) and shown in Fig. 11E, was used to conduct sensitivity analysis on both the 

mature and baseline/immature models, and a comparison of the results is shown in Fig.15C.  

 

For all four AP morphology markers (MDP, AP amplitude, APD90, and maximal upstroke 

velocity), the mature model (shown as red dots, Fig. 15B) is within the experimental range 

for mature cells (shown as black points in Fig. 15B). The experimental AP data, which was 

not utilized in fitting the mature model, serves to validate that the mature model is 

representative of the experimentally matured iPSC-CMs.  The resulting mature model 

diastolic membrane potential (MDPMature, Model = -77.4 mV) is representative of the average 

experimentally matured cells (MDPMature, Exp = -77.5 mV), and has a more hyperpolarized 

diastolic membrane potential than the immature model (MDPImmature, Model = -75.6 mV). The 

AP amplitude of the mature model population is larger than the immature model population 

(AmpMature,Model = 108  6 mV, AmpImmature,Model = 90  9 mV ), which is consistent with the 
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experimentally observed trend of a larger AP amplitude in mature cells (AmpMature,Exp = 117 

6 mV, AmpImmature,Exp = 105  16 mV). Similarly, the APD in the mature population is slightly 

longer than the immature population (APD90,Mature,Model = 347  77 ms, APD90,Immature,Model = 340 

 74 ms), which is consistent with the experimental results (APD90,Mature,Exp = 453  113 ms, 

APD90,Immature,Exp = 437  173 ms). Finally, for maximal upstroke velocity (dV/dt) the mature 

model value (dV/dtMature,Model = 199 mV/ms) is within the experimentally measured range 

(dV/dtMature,Exp = 147  87 mV/ms), and has a much higher upstroke velocity than the 

immature model value (dV/dtImmature,Model = 33 mV/ms), as would be expected in a more 

mature cell.  

 

Maturation: Population-based Insights 

Notably, experimentally recorded mature iPSC-CMs retained spontaneous beating while our 

mature model cells required stimulation to beat. This indicates that there was either an 

excess of IK1 in our representative mature model, or that other currents compensate for the 

increased IK1 allowing the mature experimental cells to retain spontaneous beating at more 

negative maximum diastolic potentials. This led us to analyze our population of spontaneous 

beating cells, to explore a computational subpopulation of cells that exhibited a mature 

phenotype, while retaining spontaneous beating. One of the advantages of a population-

based modeling approach is the ability to utilize a component dissection approach to identify 

plausible ionic mechanisms of known phenotypes.  As a test case, we examined the 

immature and mature phenotypes in our model iPSC-CM population. We formed two 

subpopulations of cells from the five-current variation population (Fig. 13B), based on 

phenotype. Based on the experimental data from the Jalife Lab, we determined ranges of 

cellular MDP and maximal upstroke velocity outputs which defined our immature and mature 

model subpopulations. The cut-off regions for MDP and upstroke velocity were determined 

based on the experimental outputs for matured cells (black points, Fig. 16A) compared to 

control cells which exhibit a more immature phenotype (open circles, Fig. 16A). We 

categorized mature cells as those with hyperpolarized diastolic potentials and high upstroke 

velocity (MDP < -75 mV, dv/dtmax > 85 mV/ms, red in Fig. 16A), and immature cells as those 

with depolarized diastolic potentials and low upstroke velocity (MDP > -75 mV, dv/dtmax < 85 

mV/ms, blue in Fig. 16A). A third group of cellular models which did not meet either the 

immature or mature phenotype criteria (grey in Fig. 16A), were not analyzed.  

 

To compare mature and immature populations, we looked at the underlying model 

parameters which had the largest difference between the two populations. To normalize 

parameter values, the population analysis was conducted using percent change in 
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parameter value from the baseline model parameter value, shown in Fig. 16B. The three 

currents identified in this analysis were IK1, INa, and If. Maximal conductance parameters for 

all three currents were identified, with lower maximal conductance of IK1 and INa found in the 

immature cells, which is consistent with the findings in Herron et al. (Herron et al., 2016) . 

Both currents are directly related to the defining characteristics of mature and immature 

subpopulations, as increased IK1 hyperpolarized the MDP and increased INa increases the 

maximal upstroke velocity. In addition to gK1 and gNa, the immature population also exhibited 

increased gf, which is consistent with an immature cardiomyocyte phenotype (Karakikes et 

al., 2015; Kim et al., 2015). 

 

In additional to maximal conductances, x6 in the formulation of INa inactivation gate was also 

identified. The decrease in the x6 parameter impacts the shift in the INa inactivation (h and j) 

steady-state curves, as described in the methods section (Eqn. 8-9). A decrease in x6 in the 

mature models corresponds to increased INa in the physiological voltage range by shifting the 

steady-state inactivation curve toward the physiological range, as shown for the model 

populations in Fig. 16C (individual models in light colors, population averages in dark colors). 

Similarly, x6 shifts the negatively sloped portion of the tau decay curve, causing an increased 

time constant of inactivation in the relevant range for the upstroke of the AP (-70 to -50mV). 

An increase in time constant slows the inactivation of INa. Collectively, this change in x6 

results in more INa during the upstroke of the AP, having a combined impact with the 

increase in gNa in mature cells, which all contribute to the increased maximal upstroke 

velocity. Additionally, Fig 16C shows that there are immature cells (blue, Fig. 16C) with 

steady-state inactivation curves resulting in Vhalf in the mature range (-85 to -50 mV), but no 

mature cells (pink, Fig. 16C) with Vhalf<-85 mV. This suggests that to reach a maximal 

upstroke velocity above 85 mV/ms, our cutoff for mature cells, the cellular INa model needs to 

fall within a smaller range of steady-state inactivation behaviors. This positive shift in the 

inactivation curve, and a corresponding increase in gNa (Fig. 16B), allows for a large influx of 

INa during the AP upstroke, resulting in a more mature phenotype with a high upstroke 

velocity. Immature cells with low maximal upstroke velocity have a much wider range of 

steady-state inactivation curves which are compensated by a wide range of maximal INa 

conductance values to keep the upstroke velocity within the immature range. It should be 

noted that the baseline model can maintain spontaneous beating with complete INa block, as 

has been shown experimentally in iPSC-CMs (Guo et al., 2011; Sheng et al., 2012). Thus, 

some cells in immature population may have INa parameterizations which result in miniscule 

INa during spontaneous beating.  
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The population-based approach identified three currents (INa, IK1, and If) which are 

appreciably different between the immature and mature subpopulations (Fig. 16B). Two of 

these currents have been experimentally validated by the Jalife Lab, as shown in Fig. 16D. 

Experimental measurements in matured iPSC-CMs show enhanced INa and IK1 compared to 

the control cells. The experimental and in silico results are shown in Fig. 16D for the mature 

cells. The mature cellular outputs were normalized to the respective average experimental or 

in silico immature outputs. In the model subpopulations, the peak current from the IV curve 

for each cell in the mature population was normalized to the mean value of the peak current 

in the immature population. For IK1 we analyzed the outward portion IK1, which occurs in the 

physiological voltage range (Vm>85 mV) for iPSC-CMs. 

 

While the MDP and upstroke velocity are known to be directly linked to the maximal 

conductance of IK1 and INa, respectively, this methodology also identified gf and kinetics of INa 

which contribute to the mature phenotype. In the future, this approach can also be expanded 

to identify mechanisms of disease states. The data used to construct this model was from 

presumed healthy iPSC-CMs, but a similar approach could be used to identify molecular 

mechanisms of increased proclivity to arrhythmia or susceptibility to proarrhythmic drugs in a 

diseased population model.  

 

DISCUSSION:  

In this study, we present a modeling approach for in silico representation of iPSC-CMs. We 

used a “bottom-up” approach by developing models of subcellular components, namely 

individual ionic currents and Ca2+ handling proteins. This study was in collaboration with a 

number of experimental laboratories who generously provided data recorded from iPSC-

CMs in their respective laboratories. These data allowed us to consider measured variability 

in ionic currents and their underlying processes. To minimize the number of model 

parameters, and to prevent overfitting, we utilized a simple formulation of the ionic currents 

with fewer parameters than other commonly used cardiomyocyte or ionic current models (ten 

Tusscher et al., 2004; Moreno et al., 2011; O'Hara et al., 2011).   

 

To gain a complete picture of the behavior of iPSC-CMs, a single average behavior is 

insufficient. There is no experimental consensus on which iPSC-CM recording might 

represent average or representative behavior. We sought to determine if variability at the 

subcellular level was sufficient to replicate this wide range of whole-cell iPSC-CM 

phenotypes. Fig. 13D-F shows that our in silico population, informed purely by the 

distribution of experimentally observed kinetic behavior, reproduces the range of whole-cell 
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behaviors observed experimentally. Within this population, each individual model, including 

the baseline model, is presumed to be an equally valid representation of an iPSC-CM.  

 

In developing a collection of in silico iPSC-CMs that reflect phenotypic cellular variability, we 

explored populations with single current variation, as well as simultaneous variation in five 

key currents. While the five-current variation population provides the most complete 

coverage of the experimentally observed parameter space, comparing the different 

populations developed can provide additional insight (Fig. 13). For each of the single-current 

variation populations, there is a relatively narrow range of variability in whole-cell AP 

morphology. Additionally, nearly all models created through single current variation resulted 

in a viable and spontaneously beating cellular model. However, when variation in multiple 

currents was included in the cell representation, there was a much larger range of AP 

morphologies including “non-viable” in silico iPSC-CMs that were not possible to excite or 

did not repolarize.   

 

The results described above are not surprising and may stem from physiologically relevant 

regulatory phenomena that require correlation and coordination of ionic currents within 

individual cells. For example, to have sufficient net repolarizing current during the AP, there 

must be a mechanism of coregulation for repolarizing currents (Xiao et al., 2008; Varro & 

Baczko, 2011). In iPSC-CMs, and other fetal-like cell types, there is a particularly low density 

of IK1, as compared to adult cardiomyocytes (Bett et al., 2013; Meijer van Putten et al., 2015; 

Vaidyanathan et al., 2016). While our cellular populations include a large range of variation 

in IK1, there is much lower IK1 density throughout these populations than there would be in an 

adult ventricular cardiomyocyte (Karakikes et al., 2015). In particular, the lack of IK1 plays a 

key role in the spontaneously beating phenotype, which is characteristic of these cells (Kim 

et al., 2015). Thus, there is a balance of repolarizing currents in iPSC-CMs that allow for 

spontaneous beating, while maintaining the cells ability to fully repolarize. As every cell in 

our a populations maintains spontaneous beating (Fig. 13), every cell also requires 

coregulation of ionic current density which maintains a unique balance of repolarizing 

currents to accommodate the relatively low IK1.. 

 

Coregulation has been shown experimentally in numerous studies of cardiac cells 

(Deschenes et al., 2008; Xiao et al., 2008; Milstein et al., 2012). For example, Liu et al. 

showed that there is cotranslation of protein subunits, leading to functional regulation of 

cellular ionic currents within a single cell (Liu et al., 2016). Cotranslation may also serve as a 

mechanism to maintain the balance of ionic currents within a single cell. Banyaz et al. 

showed that there is a mechanism by which individual cells regulate net ionic current, 
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despite a wide range of variability in density of individual currents (Banyasz et al., 2011). 

Specifically, there was a linear relationship between the inward and outward currents 

measured via AP dissection, indicating a mechanism of cellular coordination between key 

inward and outward currents. The results of our population-based studies suggest a similar 

coordination in the ionic currents of iPSC-CMs, allowing for a wide range of variation in 

subcellular mechanisms while maintaining functional AP dynamics. Intriguingly, a recent 

combined computational and experimental study revealed that variable inward calcium and 

outward potassium currents in mouse ventricular myocytes compensate each other to 

generate normal calcium transients and contractile responses (Rees et al., 2018). This 

suggests a feedback mechanism sensing global cytosolic calcium levels might be sufficient 

to regulate ionic conductances. Clinically, genetic modifiers have been seen to modify the 

severity of Long QT Syndrome type 2. Patients with the same hERG mutations have 

differential severity in QT prolongation, depending on the presence of other mutations which 

coregulate cellular repolarization (Chai et al., 2018). Our study provides a framework which 

can be expanded to elucidate these types of feedback and coregulation mechanisms in 

iPSC-CMs, which directly relate to mechanisms of adult human cardiomyocyte behavior.  

 

Sources of cellular variation are often unclear, but experimental manipulation allows us to 

directly compare known sources of variation. Using data from experimentally manipulated 

cells, we were able to validate our framework for determining sources of variation leading to 

known phenotypes. Using data from maturation promoted iPSC-CMs allowed us to conduct 

a two-pronged analysis of cell maturation. Beginning with a bottom-up approach, we showed 

that a single cell model can accurately predict a more mature phenotype based on known 

sources of variation, as shown in Fig. 15. Additionally, we used a top-down approach to test 

if the parameter space used to randomly generate our model populations covered the 

subcellular range of maturation behavior. As hypothesized, the whole-cell behavior within the 

population predicts a range of maturation, as shown in Fig. 16A. Additionally, our population-

based approach identified the same changes in key currents (INa and IK1, Fig 16D) when 

stratifying subpopulations of mature and immature cellular models.  

 

This same top-down approach can be used to compare other subpopulations. We also used 

this approach to compare atrial and ventricular-like subpopulations. To define atrial and 

ventricular-like subpopulations we used a metric used experimentally to classify iPSC-CMs: 

APDr = (APD40 – APD30 )/( APD80 – APD70 )(Ma et al., 2011). Ventricular-like cells are 

defined as APDr > 1.5, and atrial-like cells are APDr < 1.5. Using the atrial and ventricular-

like subpopulations, we conducted the same analysis shown in Fig.16B. Our analysis on the 

atrial and ventricular-like populations identified the maximal conductance parameters for IKr 
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and ICaL as having the largest differences between the two subpopulations. This is consistent 

with experimental works by Lieu et al. in embryonic stem cell-derived cardiomyocytes (ESC-

CMs), which identified the increased IKr and ICaL in ventricular-like ESC-CMs, compared to 

atrial-like (Lieu et al., 2013). They additionally showed decreased If in atrial-like ESC-CMs, 

which our analysis did not identify. The APDr criterion was used to define the atrial and 

ventricular-like subpopulations in order to be consistent with the experimental methodology, 

and show our model captures these experimental results. However, there is debate over the 

precision of this definition of atrial vs. ventricular cells (Du et al., 2015; Giles & Noble, 2016). 

This criterion considers only the AP morphology in determining the chamber specificity of the 

cells, which ignores many other key physiological differences between the two cell types. 

 

The large range of experimentally observed variability in iPSC-CMs, which is recapitulated 

within the populations of models presented in this study, allows us to examine the 

mechanistic origin of phenotypic differences (Sarkar & Sobie, 2011; Yang et al., 2015; 

Morotti & Grandi, 2017; Passini et al., 2017). Properly utilized, the phenotypic variation in 

iPSC-CMs can be strength of this experimental approach, allowing us to better understand 

the mechanistic underpinnings of phenotypic diversity which is, of course, also observed in 

patients. iPSC-CMs in conjunction with computational approaches provide a unique 

opportunity to conduct high throughput component dissection of phenotypes of interest, 

which can ultimately be linked to patient-specific phenotypes.  

 

Our study can also serve as a basis to “translate” the patient-specific iPSC-CM behaviors 

from the immature fetal-like phenotype, to a predictive model of adult cardiomyocyte 

behavior. As has been noted experimentally, our model population reflects the differences in 

AP morphology between iPSC-CMs and adult ventricular cells. On average, our model 

population has a more positive resting membrane potential, slower AP upstroke velocity, 

slower CaT time to peak, and reduced CaT amplitude comparted to adult ventricular cell 

models (ten Tusscher et al., 2004; O'Hara et al., 2011). Understanding the mechanisms of 

these differences is the first step to translating between iPSC-CM and adult cardiac 

response. Critical differences between ionic currents in adult and iPSC-CM have been noted 

in computational and experimental studies (Karakikes et al., 2015; Paci et al., 2015). 

Translation between iPSC-CM and adult phenotypes will be critical in the use of iPSC-CMs 

for drug safety and discovery in the human population. Gong and Sobie have developed a 

cross-cell type regression model that translates response to ionic current perturbations in an 

iPSC-CM model to the predicted the response in an adult ventricular cardiomyocyte model 

(Gong & Sobie, 2018). Additionally, Tvieto et al. have developed a method of utilizing 

optically obtained experimental whole-cell drug-response data from immature iPSC-CMs to 
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computationally predict the effect in a mature iPSC-CM phenotype, which serves as a more 

representative model of adult cardiomyocytes (Tveito et al., 2018). In the future, these 

computational translation approaches can be coupled with our utilization of experimental 

data from multiple sources to further reconcile the phenotypic variability observed across 

iPSC-CM datasets with patient-specific adult cardiac phenotypes.  

 

LIMITATIONS: 

In part, the goal of this modeling approach was to fully parameterize a model from 

experimental data with the fewest parameters possible, and still recapitulate complex 

behavior which has been characterized in iPSC-CMs. However, it should be noted that there 

is no complete experimental characterization of calcium handling, sodium handling, or E-C 

coupling in iPSC-CMs. This a critical point of concern with the adaptation of iPSC-CMs in the 

study of drug and disease mechanisms. Furthermore, pumps and exchangers also lack 

experimental characterization in iPSC-CMs.  We have modeled the iPSC-CM calcium 

handling based on all available experimental data, resulting in more experimentally-based 

iPSC-CM calcium handling than prior modeling efforts. Our model captures the physiological 

reality for SR-calcium release dependence on cytosolic concentration, faithfully reproduces 

the experimentally measured contribution of various calcium removal processes, and utilizes 

experimentally-based calcium buffering parameters. Moreover, we are confident in the 

validity of adopting earlier model formulations of pumps and exchangers as these 

mechanisms maintain intrinsic transport stoichiometry and kinetics across various cells. 

Nonetheless, the implementation of phenomena which are not fully experimentally 

characterized in iPSC-CMs remains a limitation of our model.  

 

Additionally, an essential gap in knowledge remains related to the source of observed 

experimental variation. As some of this variation may come from the cell-culture process or 

the cell-type, in future work it would be beneficial to collect a full kinetic characterization of 

individual cells. A necessary next step is to fully parameterize a cellular model based on the 

kinetics of individual cells. This future goal will be required to utilize iPSC-CMs for the pursuit 

of patient-specific models.  

 

CONCLUSIONS: 

We have utilized multiple iPSC-CM ion channel data sources to construct a range of ion 

channel models for key iPSC-CM currents.  We then utilized random selection of parameters 

from within the model ranges to inform development of a population of cellular level iPSC-

CM models.  Several conclusions can be drawn: 1) Variation in the underlying model 
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parameters within the experimentally measured ranges were sufficient to encapsulate the 

complete diverse range of whole-cell iPSC-CM phenotypes that are observed 

experimentally.  2) This method to derive a population of model cells obviated the need for 

“calibration” or selecting models that exhibit physiologically relevant electrical behavior, 

beyond excluding non-excitable or non-repolarizing cells. 3) Mature and immature iPSC-CM 

phenotypes naturally emerge as subsets of the population.  

 

The construction presented here has many potential future applications which can aid in 

understanding cardiac disease and drug testing. In conjunction with the existing CiPA 

protocol (Cavero & Holzgrefe, 2014), the iPSC-CM computational model here can be applied 

to provide a better understanding of parameter combinations which lead to proarrhythmic 

behaviors. This in silico population-based framework for analyzing iPSC-CM phenotype has 

the added advantage of being a high throughput analysis tool. Additionally, the models that 

we present can be readily expanded to include genetic mutations, pharmacological 

interventions, sex-based differences, and a variety of perturbations. Future studies could 

utilize coupled sheets of in silico tissue to test higher dimension arrhythmia proclivity and 

sustainability. 
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Translational Perspective: 

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have been developed as 

a promising in vitro method to address patient-specific proclivity to cardiac disease and drug 

response. A well-known limitation of iPSC-CMs is the cell-to-cell variability observed in 

electrical activity. We hypothesize that when captured in a computational framework, cell-to-

cell variability may constitute a useful systems property that can allow for identification of a 

variety of phenotypic mechanisms and underlying causal components. We have developed a 

whole-cell model of iPSC-CMs composed of simple model components built on experimental 

data from multiple laboratories.  By including a wide range of input data into the model, we 

built a population of cellular models that predict robust inter-subject variability in iPSC-CMs. 

This approach allows for link between molecular mechanisms and emergent cellular-level 

iPSC-CM phenotypes to be revealed. The mechanisms underlying immature and mature 

subpopulations are predicted and consistent with experimental data. In the future, the 

models presented may prove essential to integrate experimental and clinical data from a 

variety of sources, scales, and modalities to allow high throughput prediction of the link 

between patient phenotype and patient specific electrophysiology. Tools presented here can 

be readily expanded and applied for in silico screening and prediction of drug effects on 

varied genetic backgrounds to predict patient pharmacological responses and even to guide 

therapy for specific patient therapy.  
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36 9 iCell 135 5.4 1.8 30 1

Ma et al. (2011) 35-37 17 iCell 135 5.4 1.8 150 5 2

Ma et al. (2011) 35-37 4 iCell 5.4 160 150

Herron et al. 

(PDMS/ glass)
21-22 5/7 iCell 148 5.4 1.8 148

Kurokawa Lab 

(Li et al.)
36 7 iCell 135 5.4 1.8 20 1

Intracellular (mM)

IK1

ICaL

Ikr

Ito

Iks

If

Ina

Extracellular (mM)

 

 *IHC = in-house control cell-line 
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Table 2: 

Reference: Cell-Line n = Cell-type  

Wu Lab (A) IHC 14 
Ventricular-like 

Wu Lab (B) IHC 12 

Herron et al. (PDMS- Mature) iCell 24 
Mixed Morphologies 

Herron et al. (Glass- Immature) iCell 37 

Ma et al. (2011) iCell 32 Ventricular-like 

Doss et al. (Group A) iCell 63 
Ventricular-like 

Doss et al. (Group B) iCell 23 

Cordeiro et al.  iCell 149 Mixed Morphologies 

Es-Salah-Lamoureux et al. IHC 9 Ventricular-like 

Ma, Wei et al. (2015) IHC 17 Ventricular-like 

*IHC = in-house control cell-line 
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Table 3: 

Parameter Value Units Definition 

kNCX 1100 pA/pF Maximal INCX 

 0.7 - Voltage-dependence parameter (INCX) 

KmCa 1.38 mM Cai half-saturation parameter (INCX) 

KmNa 87.5 mM Nai half-saturation parameter (INCX) 

ksat 0.1 - Saturation Factor (INCX) 

 2.75 - Outward enhancing factor (INCX) 

PNaK 2.48 pA/pF Maximal INaK 

KmK 1.0 mM Ko half-saturation parameter (INaK) 

KmNa 40.0 mM Nai half-saturation parameter (INaK) 

gPMCA 0.2625 nS/pF Maximal IPMCA Conductance 

KPMCA 0.0005 mM Cai half-saturation parameter (IPMCA) 

ks 12.5 ms-1 SR release rate constant (IRel) 

koCa 643750 mM-2ms-1 Non-SR-dependent transition rate constant (JRel) 

kom 0.2143 ms-1 JRel Rate Constant 

kiCa 18.495 mM-1ms-1 Non-SR-dependent transition rate constant (JRel) 

kim 0.00056 ms-1 JRel Rate Constant 

EC50-SR 0.45 - 
Parameters for [Ca]SR-dependent activation of SR 

release (JRel) 

MaxSR 15 -  

MinSR 1 -  

kCaSR 

      
             

  (
       

      
)
    

 

[Ca]SR- dependent RyR activation coefficient (JRel) 

koSRCa 

    

     
 

 

JRel Rate Constant 
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kiSRCa            JRel Rate Constant 

Vmax,up 1.105e-4 mM/ms Maximal Jup 

Kup 1.755e-4 mM Half-saturation constant 

Vleak 1.6e-6 ms-1 Maximal Jleak 

 

Table 4: 

  TTX Nifedipine E-4031 

Concentration 10 µM 30nM 10nM 

Ionic Current Blocked INa ICaL IKr 

Range of IC50s (nM) 640-13551,2 30-391,3,4 7-173,4,5 

% Current Block  88-94% 72-77% 47-59% 

Output Measured 
Max Upstroke 

Velocity  
APD90 APD90 

Experimental Output w/ Drug 

 (range of dataset means) 
16.7-60%1,6,7  67.7-88.9%1,3,4,8 113-160%1,3,4,8 

Output w/ Drug in  

Model Subpopulation 
 48.6 ± 27.5%  89.8 ± 5.1% 121.8 ± 10.4% 

Model Subpopulation n= 1057 11894 8398 

(1) Ma et al., 2011 (2) Moreau et al., 2017 (3) Peng et al., 2010 (4) Gibson et al., 2014 (5) Harris et al., 2013 

(6) Scheel et al., 2014 (7) Jonsson et al., 2012 (8) Hortigon-Vinagre et al., 2016 
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FIGURE LEGENDS: 

Figure 1: A schematic of the computational iPSC-CM model. Red stars indicate individual 

currents (*INa, ICaL, IKr, IKs, IK1, Ito, and If), formulated using single-exponential voltage-

dependent rate constants. Parameters were optimized to experimental iPSC-CM kinetic 

data. The mathematical formulation for an example current, INa, is shown in the right panel. 

All gating variables in the starred currents were modeled using the example formula for 

gating variable x. Additional calcium-dependent currents (INCX, IPMCA, ICaT, and SR currents: 

ISERCA, IRyR, and Ileak) were modeled using previously published model formulations, optimized 

to calcium transient data from iPSC-CMs. Remaining currents (INaK, IbCa, IbNa) were modeled 

using ten Tusscher 2004 formulations optimized to recapitulate iPSC-CM AP data.  
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Figure 2:  A flow chart showing the methodology for building the iPSC-CM model 

populations.  
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Figure 3: Sodium current (INa) model optimization. (A) Steady state inactivation and 

activation curves. Dataset-specific model fits (lines) optimized to experimental data (points). 

The sodium current model used in the baseline whole-cell model is shown in black. Colors 

represent distinct experimental iPSC-CM data from Ma et al. (Ma et al., 2011), and from 

immature and mature cell preparations from the Jalife lab (published in Herron et al. (Herron 

et al., 2016)). (B) I-V curves for INa. Dataset-specific models were simulated using the 

experimental conditions of the corresponding experimental data. (C) INa activation (m-gate) 

time constants. (D) INa fast-inactivation (h-gate) time constants. (E) INa slow-inactivation (j-

gate) time constants. J-gate time constant parameters for all INa models were optimized to 

experimental iPSC-CM data from the Kurokawa lab. 
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Figure 4: Calcium current model optimization. (A) L-type calcium current (ICaL) steady state 

inactivation and activation curves with dataset-specific model fits (lines) optimized to 

experimental data (points). The L-type calcium model used in the baseline cellular model is 

shown in black. Colored symbols represent experimental iPSC-CM data from Ma et al.(Ma et 

al., 2011), Veerman et al. (Veerman et al., 2016), and Es-Salah-Lamoureux et al. (Es-Salah-

Lamoureux et al., 2016). (B) I-V curves for ICaL. Calcium-dependent gating model formulation 

retained from ten Tusscher 2004 adult cardiomyocyte model with parameter optimization to 

fit whole cell iPSC-CM outputs. (C) Time constants of ICaL activation gate. Time constant 

parameters for all ICaL models were optimized to experimental iPSC-CM data from Ma et al. 

(Ma et al., 2011). (D) Time constants of ICaL inactivation gate. (E) Optimization of peak T-type 

calcium current (ICaT) to experimental iPSC-CM data from the Kurokawa lab. Model 

formulation of ICaT was retained from the Maltsev and Lakatta sinoatrial node model.  
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Figure 5: Rapid delayed rectifier potassium current (IKr) model optimization. (A) Steady state 

activation with dataset-specific model fits (lines) optimized to experimental data (points). The 

IKr model used in the baseline cellular model is shown in black. Colored symbols represent 

experimental iPSC-CM data from Ma et al. (Ma et al., 2011), the Wu lab, Es-Salah-

Lamoureux et al. (Es-Salah-Lamoureux et al., 2016) ,and Bellin et al. (Bellin et al., 2013). 

For IKr inactivation gating, existing ten Tusscher 2004 model components were reformulated 

to single exponential forms. (B) I-V curves for IKr. (C) Time constants of IKr activation gate. 

Activation time constants for the Ma et al., Wu lab, and Es-Salah-Lamoureux et al. models 

were optimized to experimental iPSC-CM data from Ma et al. (Ma et al., 2011). (D) Time 

constants of IKr inactivation gate using the ten Tusscher 2004 model reformulated to single 

exponential forms.  
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Figure 6: Transient outward potassium current (Ito) model optimization. (A) Steady state 

activation and inactivation curves with dataset-specific model fits (lines) optimized to 

experimental data (points). The Ito model used in the baseline cellular model is shown in 

black. Colored symbols represent experimental iPSC-CM data from Veerman et al. 

(Veerman et al., 2016), Ma et al. (Ma et al., 2011), and Cordeiro et al. (Cordeiro et al., 2013). 

(B) I-V curves for Ito. (C) Time constants of Ito activation gate. For activation time constants in 

all Ito models, the ten Tusscher 2004 Ito activation time constants were reformulated to single 

exponential forms. (D) Time constants of Ito inactivation gate. Veerman et al. model time 

constant parameters were optimized to iPSC-CM experimental data from Ma et al. (Ma et al., 

2011). 
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Figure 7: Slow delayed rectifier potassium current (IKs) model optimization. (A) Steady state 

activation with dataset-specific model fits (lines) optimized to experimental data (points). The 

IKs model used in the baseline cellular model is shown in black.  Colored symbols represent 

experimental iPSC-CM data from Ma et al. (Ma et al., 2011), and two separate iPSC-CM 

cell-line datasets in Ma, Wei et al. (Ma et al., 2015). (B) Time constants of IKs activation gate. 

Time constants for all IKs models were optimized to experimental iPSC-CM data from Ma et 

al. (Ma et al., 2011). (C) I-V curves for IKs. 

 

 

 

Figure 8: Pacemaker/funny current (If) model optimization. (A) Steady state activation with 

dataset-specific model fits (lines) optimized to experimental data (points). The If model used 

in the baseline cellular model is shown in black. Colored symbols represent experimental 

iPSC-CM data from the Kurokawa lab and Ma et al. (Ma et al., 2011). (B) Time constants of 

If inactivation gate. (C) I-V curves for If. 
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Figure 9: Inward rectifier potassium current (IK1) model optimization. I-V curves for IK1 with 

dataset-specific model fits (lines) optimized to experimental data (points). The IK1 model 

used in baseline cellular model is shown in black. Colored symbols represent experimental 

iPSC-CM data from Ma et al. (Ma et al., 2011), the Kurokawa lab, and immature and mature 

cell preparations from the Jalife lab (published in Herron et al. (Herron et al., 2016)). 
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Figure 10: Optimization of calcium handling in the iPSC-CM baseline model. (A) 

Experimental iPSC-CM calcium transient (CaT) traces from the Wu lab (grey) with baseline 

model CaT (red). Experimental data was reported as normalized Ca2+ florescence (Fratio). 

Separately, average iPSC-CM peak and diastolic Ca2+ concentrations were measured by the 

Wu lab. The two y-axes are plotted so the average Fratio peak and diastolic values of the 

experimental dataset shown correspond to the average experimental concentration of peak 

and diastolic Ca2+ (in panel B). The baseline model CaT output is in nM. (B) Comparison of 

baseline model CaT morphology markers to experimental iPSC-CM data from the Wu lab. 

(C) Relative contribution of calcium from ISERCA, INCX, and IPMCA to the CaT during a single AP 

in the baseline model. (D) Comparison of experimental (black and white) and baseline model 

(colored) relative contribution of calcium flux from ISERCA, INCX, and IPMCA during the CaT. 

Experimental data from Hwang et al. (Hwang et al., 2015). 

 

 

  



 

This article is protected by copyright. All rights reserved. 

Figure 11: Characterization of the baseline model action potential (AP). (A) Time course of 

the spontaneously beating APs in the baseline model. (B-D) Comparison of AP morphology 

in the baseline model (red) and experimental iPSC-CM data (black). Experimental data from 

the Wu Lab, the Jalife Lab, Ma et al. (Ma et al., 2011), Doss et al. (Doss et al., 2012), 

Cordeiro et al. (Cordeiro et al., 2013), Es-Salah-Lamoureux et al. (Es-Salah-Lamoureux et 

al., 2016), and Ma et al. (Ma et al., 2015). (E) Sensitivity analysis using multivariable 

regression in the baseline model. Only parameters with regression coefficients > 0.3 shown.  
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Figure 12: Kinetic variability generated by varying individual current model parameters. 

Steady-state and time constant curves for each gate in (A) INa, (B) ICaL, (C) IKr, and (D) IF. (E) 

IV curves for IK1. All panels include: dataset-specific model fits (black lines, also shown in 

Fig. 3-10), randomly-parameterized models resulting in spontaneous AP generation in the 

cell models (colored lines), and randomly-parameterized models resulting in non-

spontaneous or non-AP generating model cells (grey lines).  

 



 

This article is protected by copyright. All rights reserved. 

Figure 13: (A) APs of spontaneously beating cells (n=25434) generated by varying one 

current at a time (INa, ICaL, IKr, IF, and IK1). (B) APs of spontaneously beating cells (n=17139) 

generated by varying the same five currents simultaneously. (C) Representative AP time 

courses of spontaneously beating cells at various pacing frequencies. (D-F) Comparison of 

AP morphology in the populations of models (color) and experimental iPSC-CM data (black). 

Each colored point represents a spontaneously beating cell created by varying a single 

current (as shown in A), or by varying all five currents simultaneously (as shown in B). (G) 

Mean and standard deviations of AP morphology measures for each population, normalized 

to the baseline model AP. 
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Figure 14: Sample APs showing the effect of ion channel blockers within the model 

population. Each panel shows the same cellular models in the control (solid lines) and 

drugged (dashed lines) conditions. Three cells are shown for each drug, representing a cell 

with a change in the given AP parameter near the population mean (cell 2), and +/- one 

standard deviation. The mean and standard deviations for the full population are described 

in Table 4. Drug effects are shown for (A) Tetrodotoxin (TTX) (B) Nifedipine (C) E-4031. 
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Figure 15: Comparison of immature and mature cellular models. (A) AP for the immature 

(baseline) cellular model, compared to AP for a representative mature cellular model. 

Immature and mature cellular models determined by scaling GK1 and GNa based on peak 

currents reported in iPSC-CMs with control (immature) and maturation-promoting cell 

preparations (Herron et al.). (B) Comparison of models and experimental AP morphology for 

mature and immature cell-types. Experimental data shown from the Jalife Lab, as published 

in Herron et al. (Herron et al., 2016). All model and experimental data was normalized to the 

Jalife Lab mature experimental dataset average. (C) Comparison of sensitivity analysis 

immature and mature models using multivariable regression. Only parameters with 

regression coefficients > 0.3 shown.  
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Figure 16:  Comparison of mature and immature iPSC-CM model subpopulations. (A) 

Division of model population into mature and immature phenotypes (using five-current 

variation population with simultaneous variation in INa, ICaL, IKr, IF, and IK1 parameters). 

Experimental data shown from the Jalife Lab, as published in Herron et al. Model 

subpopulation shown in red (n=325) represents mature phenotypes with MDP below -75mV 

and maximal upstroke velocity greater than 85 V/s. Model subpopulation shown in blue 

(n=13759) represents immature phenotypes with MDP above -75mV and maximal upstroke 

velocity below 85 V/s. Model subpopulation shown in grey was not analyzed in this 

comparison.  (B) The four model parameters with the largest difference between the mature 

and immature model subpopulations. For each subpopulation, parameter averages and 

standard deviations are shown as percent change from the baseline model parameter value. 

(C) Steady-state inactivation for INa in the mature and immature model subpopulations. 

Individual cells (light colors) and subpopulation average parameter values (darker colored 

lines) are shown. (D) Peak IK1 and INa for the I-V relationship of each cell in the model 

subpopulations was compared to data reported in Herron et al. (Herron et al., 2016). Model 

and experimental values are shown as the percent change from the immature to mature 

phenotype.  

 

 


