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Abstract 

Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential 

morphogen signaling molecule and major regulator of embryonic development. 

The dysregulation of RA levels during embryogenesis has been associated with 

numerous congenital anomalies, including craniofacial, auditory, and ocular 

defects. These anomalies result from disruptions in the cranial neural crest, a 

vertebrate-specific transient population of stem cells that contribute to the 

formation of diverse cell lineages and embryonic structures during development. 

In this review, we summarize our current knowledge of the RA-mediated 

regulation of cranial neural crest induction at the edge of the neural tube and the 

migration of these cells into the craniofacial region. Further, we discuss the role 

of RA in the regulation of cranial neural crest cells found within the frontonasal 

process, periocular mesenchyme, and pharyngeal arches, which eventually form 

the bones and connective tissues of the head and neck and contribute to 

structures in the anterior segment of the eye. We then review our understanding 

of the mechanisms underlying congenital craniofacial and ocular diseases 

caused by either the genetic or toxic disruption of RA signaling. Finally, we 

discuss the role of RA in maintaining neural crest-derived structures in post-

embryonic tissues and the implications of these studies in creating new 

treatments for degenerative craniofacial and ocular diseases. 
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Introduction 

Retinoic acid (RA) is derived from the liposoluble essential dietary nutrient 

vitamin A (retinol) (Cunningham & Duester, 2015; de la Cruz, Sun, 

Vangvanichyakorn, & Desposito, 1984; Deltour, Ang, & Duester, 1996; Rosa, 

Wilk, & Felsey, 1986). Many functions have been assigned to this vitamin, and 

studies in avian, rodent, frog, and fish models have established that the tight 

control of RA levels is essential for normal embryonic development, as both 

vitamin A deficiency and toxic exposure to retinoids lead to a complex spectrum 

of abnormalities (Cunningham & Duester, 2015; Das et al., 2014; de la Cruz et 

al., 1984; Deltour et al., 1996; Rosa et al., 1986; Vieux-Rochas et al., 2010). At 

the tissue level RA gradients are mediated through the differential and dynamic 

expression patterns of specific synthesizing (i.e., Raldh2, Raldh3, and Raldh4) 

and metabolizing enzymes (Cyp26a1, Cyp26b1, and Cyp26c1) (Hernandez, 

Putzke, Myers, Margaretha, & Moens, 2007; McCaffery, Wagner, O'Neil, 

Petkovich, & Drager, 1999; Molotkov, Molotkova, & Duester, 2006; Suzuki et al., 

2000). RA primarily acts as a ligand for switching the transcription factors of the 

nuclear retinoid acid receptor (RARα/β/γ) and retinoic X receptor (RXRα/β/γ) 

superfamily from potential repressors to transcriptional activators (Hale et al., 

2006; Linville, Radtke, Waxman, Yelon, & Schilling, 2009; Nicholas Matt et al., 

2005; Nicholas Matt, Ghyselinck, Pellerin, & Dupe, 2008; N. Matt, Ghyselinck, 
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Wendling, Chambon, & Mark, 2003; Rauch et al., 2003). Vertebrate models, from 

zebrafish to mouse, and experimental tools, such as reporter transgenes, 

inhibitors of RA synthesis, and selective antagonists for RARs, have been 

successfully used to decipher retinoid functions during development at the 

cellular and molecular levels.  

 Numerous examples from animal models and human diseases highlight 

the importance of RA in regulating neural crest contributions to craniofacial and 

ocular structures. The neural crest is a set of transient embryonic stem cells 

unique to vertebrates that originate at the border of the neural plate spanning the 

embryo from the diencephalon to the lumbosacral spinal cord. Neural crest cells 

undergo extensive and coordinated movements away from folds of the neural 

ectoderm to different regions of the embryo to give rise to a broad range of 

tissues, including myofibroblasts, melanocytes, endocrine cells, neurons, glial 

cells, cartilage and bone (Barembaum & Bronner-Fraser, 2005; Gammill & 

Bronner-Fraser, 2003; Knecht & Bronner-Fraser, 2002; Minoux & Rijli, 2010; 

Morales, Barbas, & Nieto, 2005). Cranial neural crest cells that originate from the 

diencephalon and anterior mesencephalon form the frontal bone, connective 

tissue of the orbit, and tendons of the extraocular muscles (Figure 1A, B, and C). 

Further, a subset of these neural crest cells contribute to the sclera, iris, cornea, 

ciliary body, and aqueous humor outflow pathways of the eye (Bohnsack & 
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Kahana, 2013; Chawla, Schley, Williams, & Bohnsack, 2016; Gong, 2014; Paul 

A. Trainor, 2005; P. A. Trainor & Tam, 1995). Cranial neural crest cells that 

delaminate from the posterior mesencephalon and rhombencephalon give rise to 

the cartilage and bones of the midface, middle ear, jaw and neck (Figure 1A, B, 

and D). Cells from the posterior mesencephalon enter into the 1st pharyngeal 

arch and eventually form the maxillary and zygomatic bones of the midface. 

Neural crest cells from the rhombencephalon, which are organized into seven 

separate rhombomeres, migrate into the corresponding 1st through 4th 

pharyngeal arches and ultimately develop into the mandible, teeth, middle ear, 

and hyoid (Barembaum & Bronner-Fraser, 2005; Gong, 2014; Hong & Saint-

Jeannet, 2005; Minoux & Rijli, 2010; Steventon, Carona-Fontaine, & Mayor, 

2005; Paul A. Trainor, 2005; Williams & Bohnsack, 2015). Multiple complex 

pathways and factors, including RA, regulate neural crest induction, migration, 

survival and differentiation (Barembaum & Bronner-Fraser, 2005; Gammill & 

Bronner-Fraser, 2003; Gong, 2014; Hong & Saint-Jeannet, 2005; Minoux & Rijli, 

2010; Morales et al., 2005; Steventon et al., 2005; Paul A. Trainor, 2005). Here, 

we review the main functions of retinoid signaling in regulating the neural crest in 

the context of craniofacial and ocular development. 

 

RA and Cranial Neural Crest Induction 
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 Neural crest cell specification occurs between the neural plate border and 

the non-neural ectoderm during and immediately after gastrulation. As the neural 

folds come together at the dorsal midline, the neural crest cells that now lie 

between the overlying epidermis and the neural tube, undergo an epithelial to 

mesenchymal transition and delaminate from the neuroepithelium (Barembaum & 

Bronner-Fraser, 2005; Grenier, Teillet, Grifone, Kelly, & Duprez, 2009; Knecht & 

Bronner-Fraser, 2002). Studies in rodents, birds, frogs, and zebrafish have 

shown that the neural plate border is primed by BMP signaling gradients, but a 

second signal, including RA and certain members of the FGF or Wnt family 

proteins, are required for the induction of Gbx2, one of the earliest neural crest 

markers (Barembaum & Bronner-Fraser, 2005; Knecht & Bronner-Fraser, 2002; 

LaBonne & Bronner-Fraser, 1998; Li, Lao, & Joyner, 2005; Mayor, Morgan, & 

Sargent, 1995; Streit & D., 1999; von Bubnoff, Schmidt, & Kimelman, 1996; 

Wawersik, Evola, & Whitman, 2005). 

Specifically, RA is important in the anteroposterior patterning of the neural 

tube and the demarcation of the anterior and posterior neural plates (Papalopulu 

& Kitner, 1996; Villanueva, Glavic, Ruiz, & Mayor, 2002; Wu, Yang, & Klein, 

2005). In frogs, RA suppresses the expression of ag1 at the anterior border and 

induces the expression of snai2, an important regulator of the epithelial-

mesenchymal transition in premigratory neural crest cells at the posterior border 
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(Villanueva et al., 2002). To define the telencephalon, which does not give rise to 

neural crest cells, endogenous RA levels are tightly regulated by the localized 

expression of Cyp26a1 and Cyp26c1 (Alexandre et al., 1996; Dubey, Rose, 

Jones, & Saint-Jeannet, 208; Yu et al., 2016). At the posterior neural plate, 

Cyp26a1 expression is inhibited in a RA-dependent fashion via FGF and Wnt 

signaling resulting in increased RA levels (Kudoh, Wilson, & Dawid, 2002). 

Exogenous treatment with RA in zebrafish, frogs, and rats during and 

immediately after gastrulation disrupts the anteroposterior patterning and alters 

cranial neural crest induction from the diencephalon, mesencephalon, and 

rhombencephalon (Alexandre et al., 1996; Chawla et al., 2016; Gitton et al., 

2010; Y. M. Lee et al., 1995). In addition, in double Cyp26a1 -/- and Cyp26c1 -/- 

knockout mice, the posteriorization of the anterior neural tube results in the 

absence of neural crest cells from the diencephalon and mesenecephalon 

(Uehara et al., 2007). In these animal studies, increased RA leads to indistinct 

populations of cranial neural crest cells that are unable to migrate properly from 

the edge of the neural tube. Therefore, the tight control of RA levels within the 

developing brain is critical for neural crest induction and the initiation of cell 

migration into the craniofacial region.  
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RA Regulation of Cranial Neural Crest Cells in the Periocular Mesenchyme 

and Frontonasal Process 

 Following induction, cranial neural crest cells undergo epithelial-

mesenchymal transition and migrate along defined pathways from the neural 

tube into the craniofacial region and pharyngeal arches (Paul A. Trainor, 2005). 

In zebrafish, time-lapse imaging demonstrated that cranial neural crest cells from 

the diencephalon follow a migratory stream dorsal to the developing eye while 

cells originating from the anterior mesencephalon track ventral to the eye; these 

cells populate the periocular mesenchyme and then converge in the frontonasal 

process, which is ventral to the prosencephalon (Figure 1A) (Bohnsack & 

Kahana, 2013; Bohnsack, Kasprick, Kish, Goldman, & Kahana, 2012; Chawla et 

al., 2016).  

During neural crest cell migration, RA activity is highest within the 

prosencephalon and developing eye (Chawla et al., 2016; Niederreither, Vermot, 

Fraulob, Chambon, & Dolle, 2002). In zebrafish, the cranial neural crest cells via 

RARα  RARγmigra te toward the frontonasal process and developing eye, 

areas of high RA activity, but circumvent areas of low RA activity. Exogenous RA 

or treatment with a RARα or RARγa gonis ts  a t the  initia l s ta ge  of ce ll migra tion 

decreases survival and inhibits the migration of the remaining neural crest into 

the periocular mesenchyme and frontonasal process. This inhibition results in 
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underdeveloped corneas and irides and abnormal midline facial structures. This 

effect of exogenous RA is in part due to the RARα-mediated downregulation of 

the homeobox transcription factor, pitx2 in neural crest cells migrating from the 

anterior mesencephalon. In zebrafish, knockdown of pitx2 inhibits the ventral but 

not the dorsal stream of cranial neural crest cells (Chawla et al., 2016). As a 

result, there are fewer neural crest cells in the periocular mesenchyme and 

frontonasal process in pitx2 knockdown fish. This finding gives insight into the 

midface hypoplasia and anterior segment dysgenesis observed in humans with 

Axenfeld-Rieger syndrome (OMIM:180500) due to PITX2 mutations (Dressler et 

al., 2010; Hjalt & Semina, 2005; Idrees et al., 2006; Tumer & Bach-Holm, 2009). 

The frontonasal process gives rise to midline facial structures, including 

part of the maxillary bone (philtrum region), the frontal bone and the avian beak. 

Through RARαa nd RARγ, RA regulates the frontonasal skeleton. In mice, the 

combined knockout of RARαa nd RARγ causes midfacial clefts (absence of and 

incomplete midline fusion of portions of the frontal, maxillary, and sphenoid 

bones) due to the mislocalization of apoptosis in midline neural crest cells (Dupe 

& Pellerin, 2009). Further, RA is required for osteoblast differentiation from neural 

crest cells in the presumptive frontal bone. However, exogenous RA alters the 

balance between osteoblast and osteoclast activity in bone remodeling resulting 

in a thickened calvarium (Ferguson, Devarajan, & Atit, 2018). In chick, RA is 
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concentrated in the frontonasal process and induces FGF and SHH signaling in 

the surrounding ectoderm to initiate beak formation (Schneider & Helms, 2003; 

Schneider, Hu, Rubenstein, Maden, & Helms, 2001). Again, the tight control of 

RA levels is critical, as increased RA in the frontonasal process leads to the 

doubling of midline structures, including the beak (S. H. Lee, Fu, Hui, & Richman, 

2001).  

 Few studies have investigated the molecular regulation of neural crest 

migration and the differentiation of these cells into structures in the anterior 

segment of the eye. In zebrafish, neural crest cells migrate in two pathways: 1) 

between the optic cup and surface ectoderm and 2) through the ocular fissure. 

These neural crest cells coalesce around the lens and give rise to the corneal 

stroma, the iris stroma, and the aqueous outflow channels (Eason, Williams, 

Chawla, Apsey, & Bohnsack, 2017). In humans there are 3 separate migratory 

waves of neural crest cells that sequentially contribute first to the cornea, then to 

the iris, and finally to the aqueous outflow tract. However, in the chick, there are 

2 waves of migrating cells, and in zebrafish and mice, there is 1 continuous influx 

of neural crest cells into the developing eye. Despite these species differences, 

the general sequence of anterior segment formation remains consistent (Eason 

et al., 2017; Gage, Rhoades, Prucka, & Hjalt, 2005; E. Hay, 1979; E. D. Hay & 

Revel, 1969; Pei & Rhodin, 1970). 
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In humans, birds, mice, and zebrafish, the genetic or pharmacologic 

disruption of RA signaling causes corneal, iris and aqueous outflow tract defects 

which can lead to blindness (Aldahmesh, Khan, Hijazi, & Alkuraya, 2013; 

Bohnsack et al., 2012; Casey et al., 2011; Fares-Taie et al., 2013; Golzio et al., 

2007; Pasutto et al., 2007; Roos et al., 2014; Srour et al., 2013). The local source 

of RA is the eye itself, as RA-synthesizing enzymes are expressed in the dorsal 

and ventral retina and are separated by cranial and caudal Cyp26c1 expression 

(Bohnsack et al., 2012; Cvekl & Wang, 2009; Gregg Duester, 2009; Molotkov et 

al., 2006; Williams & Bohnsack, 2015). This specific spatial gene expression 

pattern creates dorsal and ventral RA gradients centered in and around the eye 

that through RARβa nd RARγ, directly target the periocular mesenchyme but not 

the optic cup (Figure 1A0 (Nicholas Matt et al., 2005; Nicholas Matt et al., 2008; 

N. Matt et al., 2003; Williams & Bohnsack, 2015). In mice and zebrafish, RA 

increases Pitx2 expression within the periocular mesenchyme, unlike in the early 

ventral neural crest. This increased Pitx2 expression in turn regulates the 

migration and differentiation of ocular neural crest cells through several 

downstream pathways, including dlx2 and the canonical Wnt signaling system 

(Bohnsack et al., 2012; Gage, Qian, Wu, & Rosenberg, 2008; Kumar & Duester, 

2010; Zacharias & Gage, 2010). 
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Taken together, the cranial neural crest that originates from the 

diencephalon and anterior mesencephalon requires RA at numerous steps 

during the migration and differentiation of these cells into structures in the midline 

of the face and anterior segment of the eye. Alteration in RA levels, either 

increased or decreased, results in congenital malformations such as cleft lip, cleft 

palate, and anterior segment dysgenesis of the eye.  

 

RA and Pharyngeal Arch Development  

 The pharyngeal arches are a set of six outpouchings that develop on both 

sides of the pharynx and give rise to numerous head and neck structures 

including the maxilla, mandible, teeth, middle ear bones, striated facial muscles 

and mucous membranes lining the pharynx (Graham, 2003; Graham & Smith, 

2001; Mark, Ghyselinck, & Chambon, 2004). Each arch comprises a mesodermal 

core surrounded by endoderm on the pharynx side and epithelium on the 

outside. Then, neural crest cells from the posterior mesencephalon and 

consecutive rhombomeres of the rhombencephalon migrate into the specific 

arches and interact with the three surrounding germ layers (Figure 2) (Graham, 

2003; Graham & Smith, 2001; Mark et al., 2004). 

The neural crest cells within the first pharyngeal arch give rise to the 

maxillary and mandibular bones of the face. In mice and zebrafish, maxillary 

This article is protected by copyright. All rights reserved.



bone formation is dependent on the epithelial-expressed FGF8-mediated 

induction of Dlx1 and Dlx2 expression in the neural crest (Chai & Maxson, 2006; 

Minoux & Rijli, 2010; Park et al., 2004; Shigetani et al., 2002). In contrast, the 

mandible is regulated by the endothelin-1 (Et1)-induced expression of Dlx5 and 

Dlx6 (Charite et al., 2001; Ozeki, Kurihara, Tonami, Watatani, & Kurihara, 2004; 

Ruest, Xiang, Lim, Levi, & Clouthier, 2004). In zebrafish, exogenous treatment 

with RA after neural crest induction and delamination suppresses mandible 

formation and, to a lesser extent, maxilla development. Further, in mice, a pulse 

of RA during somitogenesis altered the mandible into a maxilla-like structure. In 

these studies, RA decreased both Fgf8 and Et1 expression within their restricted 

domains in the pharyngeal arch. However, RA had a greater effect on 

suppressing the expression of Dlx5 and Dlx6 compared to that of Dlx1 and Dlx2, 

which may account for the alteration in neural crest cell fate (Abe, Maeda, & 

Wakisaka, 2008; Ellies, Langille, Martin, Akimenko, & Ekker, 1997; Vieux-Rochas 

et al., 2007)  

The patterning of the neural crest cells within the second through the 

fourth pharyngeal arches is determined by the expression of Hox (homeobox) 

transcription factors from premigratory cells in the rhombomeres (Figure 2) (Hunt, 

Gulisano, et al., 1991; Hunt, Whiting, et al., 1991; Lumsden & Krumlauf, 1996; P. 

A. Trainor & Krumlauf, 2000). For example, across mice, frogs, and fish, Hoxa2 
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is expressed up to the border of the first and second rhombomeres and is critical 

in conferring the identity of the second pharyngeal arch. The knockout or 

downregulation of Hoxa2 results in the transformation of the second arch into a 

first arch, leading to the loss of the hyoid bone and the redundancy of the first 

arch-derived maxillary and mandibular structures (Baltzinger, Ori, Pasqualetti, 

Nardi, & Rijli, 2005; Gendon-Maguire, Mallo, Zhang, & Gridley, 1993; Hunter & 

Prince, 2002; Rijli et al., 1993). Similarly, Hoxa3 and Hoxa4 (and their paralogs) 

are important in conferring the identity of the third and fourth pharyngeal arches 

(Chisaka & Capecchi, 1991; Condie & Capecchi, 1994; Manley & Capecchi, 

1995, 1997). However, in the more posterior arches, it is the specific combination 

of Hox genes that ultimately directs the development of the neural crest from 

each pharyngeal arch into their respective skeletal structures (Minoux, 

Antonarakis, Kmita, Duboule, & Rijli, 2009). 

RA is a key regulator of Hox genes within the rhombomeres. The 

expression of Cyp26a1, Cyp26b1, and Cyp26c1 spatially and temporally patterns 

the rhombencephalon to create a RA gradient with the lowest levels expressed 

anteriorly and the highest levels expressed posteriorly (Figures 2) (Dubey et al., 

208; Mark et al., 2004). In frogs, the differential sensitivity of the various Hox-2 

family genes to RA establishes the anterior to posterior identity of the neural 

crest cells and directs their migration from the rhombomeres into the 
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corresponding pharyngeal arches (Dekker et al., 1992). Further, in zebrafish, 

chick and mice, exogenous retinoic acid treatment during gastrulation and early 

somitogenesis alters the Hox code, transforming rhombomeres 2 and 3 into a 

more posterior identity. This transformation results in the enlargement of the 

neural crest-derived hyoid cartilage in zebrafish and the conversion of the 

trigeminal nerve into a facial nerve in mice (Alexandre et al., 1996; Mark et al., 

1995; Marshall et al., 1992; Plant, MacDonald, Grad, Ritchie, & Richman, 2000).  

 Following neural crest migration from the rhombencephalon into the 

pharyngeal arches, RA primarily targets the endoderm and ectoderm and, 

through interactions with the adjacent neural crest, has subsequent effects on 

these cells (Mark et al., 2004; N. Matt et al., 2003; Muller et al., 1996; Veitch, 

Begbie, Schilling, Smith, & Graham, 1999; Wending, Dennefeld, Chambon, & 

Mark, 2000). The RA gradient established within the rhombencephalon is 

maintained within the pharyngeal arches, with the lowest concentrations of RA 

found more anteriorly. Thus, the second pharyngeal arch is only mildly sensitive 

to RA deficiency, as this structure is absent in Raldh2 knockout mice, but not in 

raldh2 null zebrafish or in RARαRARγnull mice (Begemann, Schilling, Rauch, 

Geisler, & Ingham, 2001; Niederreither, Subbarayan, Dolle, & Chambon, 1999; 

Wendling, Ghyselinck, Chambon, & Mark, 2001). On the other hand, exposure to 

isotretinoin in humans or exogenous RA in mice during gastrulation results in the 
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fusion and hypoplasia of the first and second arches, which is mediated by 

RARβRXR he te rodime rs (Lammer et al., 1985; N. Matt et al., 2003). The third 

through the sixth pharyngeal arches are highly sensitive to RA deficiency in 

humans, rodents, birds, frogs, and zebrafish. Vitamin A deficiency in chick or the 

genetic knockout of RARαRARβ RARα RARγor Raldh2 in mice and 

zebrafish causes hypoplasia of the four posterior pharyngeal arches (Begemann 

et al., 2001; Dupe, Ghyselinck, Wendling, Chambon, & Mark, 1999; Maden, 

Gale, Kostetskii, & Zile, 1996; Mendelsohn et al., 1994; Niederreither et al., 1999; 

Niederreither et al., 2003; Vermot, Niederreither, Garnier, Chambon, & Dolle, 

2003; Wendling et al., 2001; White, Highland, Kaiser, & Clagett-Dame, 2000). In 

humans, the effects of vitamin A deficiency on the posterior pharyngeal arches 

most commonly manifest as cardiac anomalies, such as aortic arch, 

aorticopulmonary septal and ventricular septal defects (Mark et al., 2004). 

RA deficiency in humans and animals is also associated with congenital 

hearing loss due to malformations of the bones of the middle ear (Emmett & 

West, 2014; Romand, 2003). In rodents, birds, frogs, and fish, abnormal 

rhombencephalon patterning due to alterations in RA signaling also affects the 

malleus and incus, which originate from the mandibular portion of the 1st arch, 

and the stapes, which arises from the 2nd arch (Kil et al., 2005; Maden et al., 

1996; Niederreither et al., 1999; Pittlik, Domingues, Meyer, & Begemann, 2008; 
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White et al., 2000). However, in mice RA-induced transformation of the 2nd arch 

identity did not cause duplication of the malleus and incus and loss of the stapes. 

Instead, exogenous RA treatment during early somitogenesis resulted in 

absence of the malleus and incus and malformation of the stapes. These studies 

showed that independent of Hox gene-induction, RA directly regulates migration 

of neural crest cells destined for the middle ear (Mallo, 1997). 

Taken together, RA is critical for pharyngeal arch development and 

subsequent formation of the head and neck. RA is required at multiple steps 

within the rhombomeres of the brain and within the individual pharyngeal arches. 

Disruption of RA in humans and animal models can result in craniofacial 

malformations and hearing loss.  

Congenital Craniofacial and Ocular Diseases Resulting from the Disruption 

of RA Signaling 

Similar to animal studies, both decreases and increases in RA signaling 

are associated with congenital craniofacial, ear, and ocular anomalies in humans 

(Gitton et al., 2010; Lampert et al., 2003; Sandell et al., 2007). (Akhtar et al., 

2013; Jans et al., 2015; West, 2003; Zile, 1998). The embryo is dependent on 

maternal sources of vitamin A, which are in the form of retinol, retinyl esters and 

β-carotene (Spiegler, Youn-Kyung, Wassef, Shete, & Quadro, 2012). Although 

uncommon in developed countries, fetal vitamin A deficiency is typically 
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associated with cleft lip, cleft palate and microphthalmia (small disorganized 

eye). As detailed throughout this review, animal models including rodents, birds, 

frogs, and zebrafish have yielded important insight into the pathogenesis of these 

findings. For example, RAR knockout mice demonstrate that decreased RA 

signaling impairs midline fusion of facial bones arising from the frontonasal 

process and the 1st pharyngeal arch resulting in cleft lip and palate (Begemann et 

al., 2001; Bohnsack et al., 2012; Bohnsack, Lai, Dolle, & Hischi, 2004; Lohnes et 

al., 1994; Maden et al., 1996; N. Matt et al., 2003; Mendelsohn et al., 1994; 

Niederreither et al., 2002; Niederreither et al., 2003; See & Clagett-Dame, 2009; 

Wai-Man See & Clagett-Dame, 2009; White et al., 2000) 

Decreased RA signaling is also hypothesized to contribute to the 

craniofacial and ocular defects caused by prenatal alcohol exposure. The most 

severe form, fetal alcohol syndrome, is characterized by a thin vermillion (thin 

upper lip), shortened palpebral fissures (decreased eyelid opening), smooth 

philtrum (no groove between the nose and upper lid), low nasal bridge, 

micrognathia (small jaw), microphthalmia, and in severe cases, cleft lip and cleft 

palate (Foroud et al., 2012; Hoyme et al., 2005; Klingenberg et al., 2010; Popova 

et al., 2016; Riley, Infante, & Warren, 2011). The variability of phenotype in this 

congenital disease is due to differences in the timing and amount of alcohol 

exposure during embryogenesis. Bird, rodent, frog, and zebrafish models of fetal 
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alcohol syndrome utilize different exposure times and at various stages to 

understand the mechanisms underlying tissue damage (Joya, Garcia-Algar, Vall, 

& Pujades, 2014; Kiecker, 2016; Petrelli, Bendelac, Hicks, & Fainsod, 2019; Riley 

et al., 2011; Sulik, Johnson, & Webb, 1981; Sulik, Lauder, & Dehart, 1984; Zhang 

et al., 2014). The original hypothesis proposed that ethanol is a competitive 

inhibitor of the aldehyde dehydrogenase enzymes that are also important in the 

conversion of retinol to RA (Deltour et al., 1996; G. Duester, 1991). Consistent 

with this idea, exogenous RA partially rescues the effects of alcohol in zebrafish 

embryos (Marrs et al., 2010; Muralidharan, Sarmah, & Marrs, 2015). In addition, 

similar to the disruption of RA signaling, ethanol exposure in chick decreases 

neural crest cell migration from the rhombencephalon into the pharyngeal arches, 

resulting in mandibular and maxillary defects (Kiecker, 2016). However, 

differences in molecular pathways and phenotypes suggest that ethanol may 

increase or decrease RA in a tissue-specific manner (Reijntijes, Blentic, Gale, & 

Maden, 2005). In addition, ethanol has been shown to have a number of RA-

independent effects, including interfering with SHH, Wnt, and FGF signaling 

pathways and increasing oxidative stress which may account for the differences 

in phenotypes between vitamin A deficiency and fetal alcohol syndrome (Ahlgren, 

Thakur, & Bronner-Fraser, 2002; Aoto, Shikata, Higashiyama, Shiota, & 

Motoyama, 2008; Ashwell & Zhang, 1996; S. Y. Chen & Sulik, 1996; Chrisman et 
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al., 2004; Chu, Tong, & de la Monte, 2007; Garic, Flentke, Amberger, 

Hernandez, & Smith, 2011; Heaton, Paiva, Mayer, & Miller, 2002; Henderson, 

Devi, Perez, & Schenker, 1995; Koch, Galeotti, Bartoli, & Boveris, 1991; Ornoy & 

Ergaz, 2010; Videla, Fraga, Koch, & Boveris, 1983; Yelin, Kot, Yelin, & Fainsod, 

2007). 

Excess maternal vitamin A intake or, more commonly, exposure to RA 

analogs, such as isotretinoin, cause craniofacial anomalies, including microtia 

(small ears), hypertelorism (wide spaced eyes), cleft palate, cleft lip, 

micrognathia (small jaw), and midface hypoplasia (Maden, 2001; Rosa et al., 

1986; See & Clagett-Dame, 2009; Zile, 1998). Animal models of RA 

embryopathy, as described throughout this review, have pinpointed specific time 

frames in rodents, birds, frogs, and zebrafish, during which different cranial 

neural crest populations are sensitive to increased RA exposure. For example, 

increased RA during gastrulation and early somitogenesis decreases neural crest 

cell migration from the diencephalon and mesencephalon. Consequently, the 

decrease in neural crest cells in the frontonasal process and 1st pharyngeal arch 

accounts for the midface hypoplasia and micrognathia. (Alexandre et al., 1996; 

Chawla et al., 2016; Gitton et al., 2010; Y. M. Lee et al., 1995; Uehara et al., 

2007).  Taken together, these studies demonstrate that short pulses of RA 

throughout gastrulation and somitogenesis have deleterious effects on the 
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pharyngeal arches and frontonasal process, resulting in irreversible jaw, middle 

ear, and midface abnormalities that recapitulate the human findings (Abe et al., 

2008; Alexandre et al., 1996; Chawla et al., 2016; Dekker et al., 1992; Ellies et 

al., 1997; Gitton et al., 2010; Hart, McCue, Ragland, Winn, & Unger, 1990; S. H. 

Lee et al., 2001; Y. M. Lee et al., 1995; Mallo, 1997; Mark et al., 1995; Marshall 

et al., 1992; Plant et al., 2000; Vieux-Rochas et al., 2007). 

In addition to the pharmacologic manipulation of RA levels, genetic 

alterations in RA signaling are important causes of congenital craniofacial and 

ocular defects (Adams & J., 1995; de la Cruz et al., 1984; Lammer et al., 1985; 

Maden, 2001; Rosa et al., 1986). Mutations in genes that are important for 

regulating RA synthesis (ALDH1A3, OMIM:600463; CHD7, OMIM:608892), 

degradation (CYP26B1, OMIM:605207), transport (STRA6; OMIM:610745), and 

signaling (RARβ) have all been identified in congenital 

diseases (Aldahmesh et al., 2013; Casey et al., 2011; Chassaing et al., 2013; 

Fares-Taie et al., 2013; Golzio et al., 2007; Laue et al., 2011; Micucci et al., 

2014; Pagon, Graham Jr., Zonana, & Young, 1981; Pasutto et al., 2007; Roos et 

al., 2014; Srour et al., 2013; Yahyavi et al., 2013; Yao et al., 2018) Further, 

known downstream targets of RA within neural crest cells, including RAI1 

(OMIM:607642), FGFR1 (OMIM:136350), COL2A1 (OMIM:120140), TBX1 

(OMIM:602054), and PITX2 (OMIM:601542), have also been associated with 
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craniofacial and ocular anomalies (Bellus et al., 1996; Bohnsack et al., 2012; L. 

Chen et al., 2016; Dressler et al., 2010; Gage et al., 2008; Goodship, Cross, 

LiLing, & Wren, 1998; Greenberg et al., 1996; Harris et al., 2004; Hjalt & Semina, 

2005; Janesick, Shiotsugu, Taketani, & Blumberg, 2012; Kumar & Duester, 2010; 

Y.-W. Lee et al., 2012; Okubo et al., 2011; Patil & Bartley, 1984; Smith et al., 

1986; Stickler, Hughes, & Houchin, 2001; Zacharias & Gage, 2010). This list will 

no doubt continue to expand as additional genetic testing associates other genes 

important in the RA signaling pathway with rare congenital craniofacial and 

ocular diseases.  

 

RA in Maintaining Neural Crest-Derived Structures in the Adult 

 Studying the molecular mechanisms that underlie development is not only 

important for understanding the basis of congenital anomalies but also gives 

insight into the pathogenesis of the degenerative diseases that affect these 

tissues. Notably, RA is paramount in postnatal tissues. Vitamin A deficiency, 

reflecting poor diet, malabsorption, or liver disease, is characterized by impaired 

immunity and hematopoiesis and causes skin rashes and ocular problems, e.g., 

nyctalopia (night blindness), xerophthalmia (decreased tear production), and 

keratomalacia (corneal thinning and opacification) (Cañete, Cano, Muñoz-

Chápuli, & Carmona, 2017; Lai, Ng, & Srinivasan, 2014; Parafita-Fernández et 
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al., 2015). In bone, RA maintains mineral density, as both increased and 

decreased levels are associated with increased risk of fractures in elderly 

individuals (Maggio et al., 2006; Melhus et al., 1998; Opotowsky, Bilezikian, & 

NIf-u, 2004; Promislow, Goodman-Gruen, Slymen, & Barrett-Connor, 2002). RA 

regulates the balance between osteoblast and osteoclast differentiation and 

activity; however, the specific effect is dependent on the bone type and 

location(Lind et al., 2017).  

In a recent study, we showed that in neural crest-derived craniofacial and 

ocular tissues, there is a continued need for RA in maintaining the function and 

integrity of these structures (Chawla, Swain, Williams, & Bohnsack, 2018). In 

adult zebrafish, the neural crest-derived craniofacial bones, including the jaw and 

frontal bone, are highly sensitive to exogenous RA and the inhibition of 

endogenous RA synthesis. Within 5 days of altering RA levels, morphogenic 

changes due to bone remodeling and apoptosis in the jaw and frontal bone were 

observed. As expected, RA deficiency caused blindness due to the deprivation of 

substrate for phototransduction in the adult zebrafish retina. However, both 

increased and decreased RA had additional effects on neural crest-derived 

anterior segment structures, including the cornea and iridocorneal angle, which 

resulted in decreased aqueous outflow from the eyes (Chawla et al., 2018). This 

study represents the first evidence for the tight control of RA levels to maintain 
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the normal structure and function of the anterior segment of the adult eye. 

Additional studies are required to determine whether RA plays a role in 

degenerative diseases affecting the anterior segment of the eye, such as primary 

open angle glaucoma or keratoconus. Moreover, it would also be interesting to 

determine whether these effects are also observed in mammals. Nevertheless, 

RA plays a continued role in maintaining neural crest-derived structures in post-

embryonic tissues. Further, the deleterious effects of alterations in RA levels 

have implications in the therapeutic use of retinoids in humans and the 

environmental toxic exposures to animals.  

 

Future Directions and Challenges 

RA is critical for craniofacial and ocular development. As a nutrient-based 

signaling factor, RA levels can be increased or decreased which can 

unfortunately result in severe birth defects. Vitamin A deficiency continues to be 

a serious global health issue, especially in regions with limited access to fresh 

fruits and vegetables and supplemental vitamins. Further, the therapeutic use of 

retinoids and excess vitamin A is also a public health concern. Numerous studies 

have worked to characterize both the essential and detrimental roles of RA 

during embryogenesis. Within craniofacial and ocular development, RA regulates 

almost all steps of neural crest induction, migration, proliferation, survival and 
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differentiation. Thus, pharmacologic or genetic alterations in RA signaling cause 

congenital craniofacial, ear, or eye defects that result in disfiguration, deafness, 

and blindness. Improving our understanding of the mechanisms that underlie the 

RA-mediated regulation of neural crest development will lead to increased 

knowledge of the pathogenesis of these birth defects and provide breakthroughs 

in treatments for affected individuals. 

In addition, studying the signaling pathways important for the migration 

and differentiation of embryonic neural crest cells may lead to new treatments for 

degenerative diseases that affect craniofacial and ocular neural crest-derived 

structures. The signals that are important during embryogenesis, such as RA, 

have recently been shown to play roles in adult tissues. Modifying or enhancing 

these pathways may yield new therapeutic targets for adult diseases. In addition, 

one of the greatest therapeutic challenges within the anterior segment of the eye 

is the lack of a known neural crest-derived stem cell population that can 

regenerate cells for cornea, iris, or aqueous outflow tracts. Determining 

embryonic markers and signaling pathways within embryonic ocular neural crest 

cells will lead to the identification of an adult neural crest stem cell population that 

could potentially restore vision.   
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Figure Legends 

 

Figure 1. Neural crest derivatives in the craniofacial region. A) The neural 

crest is a transient population of embryonic stem cells that delaminate from the 

edge of the neural tube spanning from the diencephalon (Di) to the lumbosacral 

spinal cord (SpC). Neural crest cells that originate from the diencephalon and 

anterior mesencephalon (AM) migrate dorsal and ventral to the eye to populate 

the periocular mesenchyme (POM) and frontonasal process (FNP). These cells 

migrate toward regions of high RA levels within the telencephalon (Te), 

periocular mesenchyme and frontonasal process. Neural crest cells from the 

posterior mesencephalon (PM) migrate into the 1st pharyngeal arch. Neural crest 

cells from the rhombencephalon, which are patterned by a RA gradient, migrate 

into the 1st through 4th pharyngeal arches in an anterior (AR) to posterior (PR) 

pattern. B) The cranial neural crest is important in the development of the 

craniofacial skeleton. Neural crest cells in the frontonasal process give rise to the 

frontal bone (Fr), nasal bone (Na), and philtrum (Ph) in the midline of the face. 

The anterior portion of the 1st pharyngeal arch forms the maxillary (Mx) and 

zygomatic (Zy) bones while the posterior aspect gives rise to the mandible (Mn), 

The 3rd and 4th pharyngeal arches both contribute to the hyoid (Ny) bone in the 

neck. C) Neural crest cells, which are derived from the anterior mesenchyme and 
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diencephalon, populate the periocular mesenchyme and migrate into the anterior 

segment of the eye. Ocular structures derived from the neural crest include the 

corneal stroma (CS), corneal endothelium (CEn), trabecular meshwork (TM), 

sclera (Scl), iris stroma (IS), uveal melanocytes (Me), ciliary body muscle (CBM), 

and the tendons of the extraocular muscles (Tn). The corneal epithelium (CEp) 

and lens are derived from surface ectoderm while the ciliary body epithelium 

(CBE), retina (Ret), and retinal pigmented epithelium (RPE) arise from 

neuroepithelium. Schlemm’s canal (SC) and extraocular muscles (EOM) 

originate from mesoderm. D) Neural crest cells are also important in middle ear 

development. Vibrations are transmitted from the external ear, which consists of 

the pinna, auditory canal, and the tympanic membrane (Tym). The tympanic 

membrane is attached to the malleus in the middle ear. Both the malleus and the 

incus originate from the 1st pharyngeal arch. The vibration is then transmitted to 

the stapes, which arises form the 2nd pharyngeal arch. The eustachian tube (Eus) 

connects the middle ear to the nasopharynx.  

 

Figure 2. RA signaling and pharyngeal arch formation. A) Expression of RA 

synthesis (Raldh2) and degradation (Cyp26) enzymes within the 

rhombencephalon creates a gradient in which RA levels are lowest anteriorly and 
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highest posteriorly. The maxillary versus mandibular fate of neural crest cells 

within the 1st pharyngeal arch is dictated by Dlx1/2 and Dlx5/6, respectively. 

The RA gradient along with spatial expression of RARs regulates the Hox genes 

within the 2nd through 7th rhombomeres (R2-R7). The specific combination of Hox 

gene expression patterns the premigratory neural crest cells with the 

rhombencephalon and confers the identity of the 2nd through 4th pharyngeal 

arches that is necessary for subsequent differentiation into their respective 

skeletal, cartilaginous, and nerve elements.  
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