# Supplementary for "Global modelling of secondary organic aerosol (SOA) with organic nucleation"

Jialei Zhu<sup>1</sup> and Joyce E. Penner<sup>1</sup>

1 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

### **Contents of this file**

Text S1

Figures S1 to S15

Tables S1 to S4

## Introduction

This file provides the supporting figures and tables for the main text. The result of sensitivity experiment for the formation of SOA from IEPOX is shown in this file.

#### **Supplemental section**

#### Text S1. Sensitivity to the formation of SOA from IEPOX

The IEPOX form low-volatility products when it is kinetically uptake by sulfate with the rate that is proportional to the available surface area of these aerosols. However, Gaston et al. (2014) indicated the IEPOX reaction probability may be in proportion to the total particle volume. This sensitivity experiment case was designed to examine the influence of volume-controlled process for IEPOX on the SOA simulation, comparing with the surface-area-controlled process. The number concentration and burden of SOA in this case is shown in following Table S5. Compared with the result shown in Table 4 in the main text, the number concentrations of newSOA in three modes are close to those in the BASE case with change less than 6%. The number concentration of newSOA in nucleation mode decreases by  $95 \times 10^{10}$  m<sup>-2</sup> in global annual average, while the number concentration of newSOA in Aitken and accumulation mode increase by  $251 \times 10^{10}$  and  $0.9 \times 10^{10}$ m<sup>-2</sup>. The controlled process for IEPOX have neglectable influence on burden of total burden of SOA as well newSOA with the change of less than 1% from the BASE case. The most significant influence is the distribution of SOA on sulfate, because the low volatility products form from IEPOX are internally mixed with sulfate in the BASE and this sensitivity case. As a result, there are more IEPOX uptake by sulfate in large size with the volume-controlled process than that with surface-areacontrolled process. The burden of SOA internally mixed with sulfate in nucleation and Aitken mode decrease by 64.8% and 38.0% in this sensitivity case compared to the BASE case, while the burden of SOA internally mixed with sulfate in accumulation mode increases by 9.8%. However, the total burden of SOA internally mixed with sulfate is changed by 0.5% in the global annual average.

Gaston, C. J., T. P. Riedel, Z. F. Zhang, A. Gold, J. D. Surratt, and J. A. Thornton (2014), Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles, *Environ. Sci. Technol.*, 48(19), 11178-11186, doi:10.1021/es5034266.

Figures





Figure S1. The monthly variation of simulated concentration for the BASE case of total organic carbon (SIM\_TOC, blue solid line), secondary organic carbon (SIM\_SOC, green dashed line) and primary organic carbon (SIM\_POC, black dashed line) as well as the observations (OBS, red solid line) in regions of the IMPROVE network.





Figure S2. The monthly variation of simulated concentration for the BASE case of total organic carbon (SIM\_TOC, blue solid line), secondary organic carbon (SIM\_SOC, green dashed line) and primary organic carbon (SIM\_POC, black dashed line) as well as the observations (OBS, red solid line) at the EMEP network sites.





Figure S3. The monthly variation of simulated number concentration for the BASE case of total aerosol (SIM, blue solid line), newSOA (SIM\_SOA, green dashed line) and new sulfate particles (SIM\_SO4, black dashed line) as well as the observations (OBS, red solid line) for the sites in the EMEP data base (http://ebas.nilu.no).



Figure S4. The annual average vertically integrated organic nucleation rate (a) and sulfuric acid nucleation rate (b) for the BASE case.



Figure S5. The annual average convective precipitation rate (mm year<sup>-1</sup>) for the BASE case.



Figure S6. The average mass burden of newSOA in nucleation mode (a, d, g, j), Aitken mode (b, e, h, k) and accumulation mode (c, f, i, l) in the boreal spring (a, b, c), summer (d, e, f), fall (g, h, i) and winter (j, k, l) for BASE case





Figure S7 The monthly variation of simulated total aerosol number concentration in the scheme of BASE (SIM\_BASE, blue solid line), EX1 (SIM\_EX1, green dashed line), EX2 (SIM\_EX2, black dashed line) and EX3 (SIM\_EX3, yellow dashed line) as well as the observations (OBS, red solid line) at all available sites.



Figure S8 The annual average column number concentration (a,c,e) and zonal average number concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) for EX1 case.



Figure S9 The annual average burden (a,c,e) and zonal average mass concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) for EX1 case.



Figure S10. The annual average column number concentration (a,c,e) and zonal averagenumber concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) for EX2 case.



Figure S11 The annual average burden (a,c,e) and zonal average mass concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) for EX2 case.



Figure S12 The annual average percentage difference in column number concentration (a,c,e) and zonal average number concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) between EX2 and BASE.



Figure S13. The annual average column number concentration (a,c,e) and zonal average number concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) for EX3 case.



Figure S14. The annual average burden (a,c,e) and zonal average mass concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) for EX3 case.



Figure S15 The annual average percentage difference in column number concentration (a,c,e) and zonal average number concentration (b,d,f) of newSOA in the nucleation mode (a,b), Aitken mode (b,d) and accumulation mode (e,f) between EX3 and BASE.

# Table

| Table S1. The comparison of OC concentration in observati | ions and the BASE case |
|-----------------------------------------------------------|------------------------|
| simulation in the regions of the IMPROVE network          |                        |

| NO. | Region                | Observation<br>(µg C/m3) | Simulation<br>(µg C/m3) | NMB  | R     |
|-----|-----------------------|--------------------------|-------------------------|------|-------|
| 1   | Alaska                | 0.364                    | 0.090                   | -75% | 0.900 |
| 2   | Appalachia            | 1.569                    | 1.910                   | 22%  | 0.798 |
| 3   | Boundary Waters       | 0.907                    | 0.582                   | -36% | 0.913 |
| 4   | California Coast      | 0.869                    | 0.833                   | -4%  | 0.776 |
| 5   | Central Great Plains  | 1.171                    | 0.762                   | -35% | 0.775 |
| 6   | Central Rockies       | 0.532                    | 0.347                   | -35% | 0.879 |
| 7   | Colorado Plateau      | 0.611                    | 0.375                   | -39% | 0.767 |
| 8   | Columbia River Gorge  | 1.269                    | 0.503                   | -60% | 0.452 |
| 9   | Death Valley          | 0.715                    | 0.415                   | -42% | 0.866 |
| 10  | East Coast            | 1.345                    | 1.019                   | -24% | 0.650 |
| 11  | Great Basin           | 0.645                    | 0.297                   | -54% | 0.878 |
| 12  | Hawaii                | 0.145                    | 0.154                   | 6%   | 0.186 |
| 13  | Hells Canyon          | 1.232                    | 0.343                   | -72% | 0.884 |
| 14  | Mid South             | 1.475                    | 1.013                   | -31% | 0.800 |
| 15  | Mogollon Plateau      | 0.807                    | 0.484                   | -40% | 0.730 |
| 16  | Northeast             | 1.049                    | 1.231                   | 17%  | 0.754 |
| 17  | Northern Great Plains | 0.816                    | 0.306                   | -62% | 0.956 |
| 18  | Northern Rockies      | 1.115                    | 0.345                   | -69% | 0.977 |
| 19  | Northwest             | 0.741                    | 0.522                   | -30% | 0.721 |
| 20  | Ohio River Valley     | 1.689                    | 1.610                   | -5%  | 0.797 |
| 21  | Oregon/N.California   | 1.118                    | 0.596                   | -47% | 0.835 |
| 22  | Sierra Nevada         | 1.278                    | 0.834                   | -35% | 0.751 |
| 23  | Southeast             | 1.785                    | 0.890                   | -50% | 0.598 |
| 24  | S. Arizona            | 0.703                    | 0.567                   | -19% | 0.154 |
| 25  | S. California         | 0.939                    | 1.139                   | 21%  | 0.778 |
| 26  | Virgin Islands        | 0.123                    | 0.059                   | -53% | 0.573 |
| 27  | West Texas            | 0.687                    | 0.462                   | -33% | 0.647 |
| 28  | Ontario               | 1.119                    | 1.396                   | 25%  | 0.721 |

NMB: normalized mean bias

R: temporal correlation coefficient between the OC concentration in the simulation and observation

| NO. | Region        | Observation<br>(µg C/m <sup>3</sup> ) | Simulation NMB (µg C/m <sup>3</sup> ) |      | R      |
|-----|---------------|---------------------------------------|---------------------------------------|------|--------|
| 1   | Illmitz       | 4.690                                 | 2.460                                 | -48% | -0.461 |
| 2   | Payerne       | 2.318                                 | 1.201                                 | -48% | -0.389 |
| 3   | Rigi          | 0.997                                 | 0.781                                 | -22% | 0.690  |
| 4   | Kosetice      | 3.563                                 | 1.313                                 | -63% | -0.696 |
| 5   | Waldhof       | 4.342                                 | 1.105                                 | -75% | -0.197 |
| 6   | Melpitz       | 2.902                                 | 1.200                                 | -59% | -0.340 |
| 7   | Campisabalos  | 2.147                                 | 0.552                                 | -74% | 0.901  |
| 8   | Montseny      | 2.030                                 | 0.732                                 | -64% | 0.601  |
| 9   | Virolahti II  | 2.116                                 | 1.594                                 | -25% | 0.445  |
| 10  | Puy de Dome   | 0.965                                 | 0.518                                 | -46% | 0.092  |
| 11  | Harwell       | 1.938                                 | 0.678                                 | -65% | -0.120 |
| 12  | Edingburgh    | 1.510                                 | 0.363                                 | -76% | -0.101 |
| 13  | Mace Head     | 1.310                                 | 0.161                                 | -88% | -0.268 |
| 14  | Ispra         | 9.033                                 | 1.201                                 | -87% | -0.691 |
| 15  | Belogna       | 6.031                                 | 1.064                                 | -82% | -0.418 |
| 16  | Kollumerwaard | 2.440                                 | 0.685                                 | -72% | -0.066 |
| 17  | Birkennes     | 0.957                                 | 0.369                                 | -61% | 0.686  |
| 18  | Birkenne II   | 0.898                                 | 0.369                                 | -59% | 0.221  |
| 19  | Diabla Gora   | 1.641                                 | 1.880                                 | 15%  | 0.012  |
| 20  | Braganca      | 4.087                                 | 0.615                                 | -85% | -0.459 |
| 21  | Vavihill      | 1.617                                 | 0.911                                 | -44% | -0.310 |
| 22  | Aspvreten     | 1.849                                 | 1.191                                 | -36% | 0.344  |
| 23  | Iskrba        | 3.379                                 | 1.747                                 | -48% | -0.267 |
| 24  | Stará Lesná   | 4.389                                 | 1.221                                 | -72% | 0.508  |

Table S2. The comparison of OC concentration in observations and the BASE case simulation at the sites of the EMEP network

NMB: normalized mean bias

R: temporal correlation coefficient between the OC concentration in the simulation and observation

| NO  | Cite nome             | w/o organic nucleation |        | w/ organic nucleation |        |        |
|-----|-----------------------|------------------------|--------|-----------------------|--------|--------|
| NO. | Site name             | NMB                    | R      | NMB                   | R      | R_SOA  |
| 1   | Whistler Mountain     | 12%                    | 0.717  | 56%                   | 0.941  | 0.826  |
| 2   | Alert                 | -73%                   | -0.150 | -65%                  | 0.025  | 0.209  |
| 3   | Jungfraujoch          | 18%                    | 0.248  | 129%                  | 0.315  | 0.637  |
| 4   | Hohenpeissenberg      | -1%                    | -0.047 | 2%                    | 0.087  | 0.050  |
| 5   | Neumayer              | -90%                   | 0.870  | -85%                  | 0.943  | 0.756  |
| 6   | Izana                 | -82%                   | 0.410  | -47%                  | -0.546 | 0.527  |
| 7   | Varrio                | -44%                   | -0.669 | -39%                  | -0.510 | -0.345 |
| 8   | Hyytiala              | -16%                   | -0.936 | -14%                  | -0.805 | 0.013  |
| 9   | Pallas                | -48%                   | -0.705 | -35%                  | -0.129 | -0.531 |
| 10  | Puy de Dome           | -55%                   | 0.786  | -43%                  | 0.590  | 0.554  |
| 11  | Harwell               | 68%                    | -0.138 | 72%                   | -0.037 | -0.119 |
| 12  | Mace Head             | -63%                   | -0.169 | -57%                  | 0.213  | 0.026  |
| 13  | Mt Cimone             | -7%                    | 0.706  | 13%                   | 0.854  | -0.240 |
| 14  | Preila                | -2%                    | -0.135 | -4%                   | -0.112 | 0.040  |
| 15  | Zeppelin mountain     | -78%                   | -0.592 | -48%                  | 0.291  | 0.628  |
| 16  | Cape San Juan         | -31%                   | 0.091  | 10%                   | 0.094  | 0.614  |
| 17  | Lulin                 | -69%                   | 0.280  | 9%                    | -0.102 | -0.061 |
| 18  | Barrow                | 149%                   | -0.510 | 150%                  | -0.183 | -0.226 |
| 19  | Bondville             | 171%                   | -0.620 | 167%                  | -0.669 | -0.128 |
| 20  | Mauna Loa             | -63%                   | -0.325 | 5%                    | 0.316  | -0.007 |
| 21  | Boone                 | 21%                    | 0.414  | 37%                   | 0.359  | -0.210 |
| 22  | Matatula              | -74%                   | 0.346  | 170%                  | 0.342  | 0.722  |
| 23  | Southern Great Plains | -10%                   | 0.153  | -3%                   | 0.033  | -0.320 |
| 24  | South Pole            | 65%                    | 0.835  | 151%                  | 0.913  | 0.748  |
| 25  | Trinidad Head         | 25%                    | 0.064  | 50%                   | 0.544  | -0.175 |
| 26  | Steamboat Spring      | -38%                   | 0.628  | -17%                  | 0.466  | -0.527 |
| 27  | Cape Point            | -73%                   | 0.126  | -43%                  | 0.073  | -0.145 |

Table S3. The bias and temporal correlation coefficient between the aerosol number concentration in the BASE case simulation and observations at all available sites over the world

NMB: normalized mean bias

R: temporal correlation coefficient between the total aerosol number concentration in the simulation and observation

R\_SOA: temporal correlation coefficient between the newSOA number concentration in the simulation and the total aerosol number concentration in the observation

Table S4. The bias and temporal correlation coefficient between the aerosol number concentration in different sensitivity experiments and observations at all available sites over the world

| NO. | Site name             | EX1  |        | EX   | 2      | EX3  |        |
|-----|-----------------------|------|--------|------|--------|------|--------|
|     |                       | NMB  | R      | NMB  | R      | NMB  | R      |
| 1   | Whistler Mountain     | 123% | 0.957  | 10%  | 0.893  | 47%  | 0.970  |
| 2   | Alert                 | -66% | 0.065  | -73% | -0.097 | -67% | 0.044  |
| 3   | Jungfraujoch          | 245% | 0.723  | 51%  | 0.326  | 126% | 0.371  |
| 4   | Hohenpeissenberg      | 15%  | 0.116  | 0%   | -0.303 | 2%   | -0.222 |
| 5   | Neumayer              | -85% | 0.960  | -86% | 0.953  | -84% | 0.953  |
| 6   | Izana                 | -11% | -0.316 | -73% | -0.139 | -46% | -0.527 |
| 7   | Varrio                | -26% | 0.451  | -44% | -0.522 | -41% | -0.350 |
| 8   | Hyytiala              | 1%   | -0.430 | -14% | -0.788 | -12% | -0.800 |
| 9   | Pallas                | -12% | 0.637  | -45% | -0.557 | -35% | -0.122 |
| 10  | Puy de Dome           | -18% | 0.489  | -53% | 0.672  | -45% | 0.610  |
| 11  | Harwell               | 63%  | -0.012 | 59%  | -0.039 | 60%  | -0.030 |
| 12  | Mace Head             | -57% | 0.439  | -65% | 0.357  | -61% | 0.406  |
| 13  | Mt Cimone             | 68%  | 0.802  | -4%  | 0.895  | 11%  | 0.883  |
| 14  | Preila                | 9%   | 0.770  | -6%  | 0.363  | -3%  | 0.544  |
| 15  | Zeppelin mountain     | -42% | 0.597  | -73% | 0.000  | -49% | 0.619  |
| 16  | Cape San Juan         | 25%  | 0.555  | -24% | 0.363  | 11%  | 0.368  |
| 17  | Lulin                 | 114% | 0.202  | -40% | 0.195  | 13%  | -0.075 |
| 18  | Barrow                | 169% | -0.115 | 148% | -0.261 | 161% | -0.160 |
| 19  | Bondville             | 195% | -0.318 | 158% | -0.652 | 161% | -0.652 |
| 20  | Mauna Loa             | 49%  | 0.466  | -43% | 0.031  | 6%   | 0.287  |
| 21  | Boone                 | 126% | -0.629 | 26%  | 0.462  | 38%  | 0.329  |
| 22  | Matatula              | 291% | 0.087  | 13%  | 0.196  | 191% | 0.169  |
| 23  | Southern Great Plains | 19%  | -0.165 | -7%  | 0.065  | -4%  | 0.062  |
| 24  | South Pole            | 153% | 0.952  | 120% | 0.970  | 163% | 0.954  |
| 25  | Trinidad Head         | 82%  | -0.346 | 29%  | -0.113 | 44%  | -0.118 |
| 26  | Steamboat Spring      | 52%  | 0.289  | -34% | 0.681  | -17% | 0.561  |
| 27  | Cape Point            | -35% | 0.205  | -64% | 0.083  | -44% | 0.173  |

NMB: normalized mean bias

R: temporal correlation coefficient between the total aerosol number concentration in the simulation and observation

|                                                          |                                    | Spring | Summer | Fall  | Winter | Annual |
|----------------------------------------------------------|------------------------------------|--------|--------|-------|--------|--------|
|                                                          | newSOA (nucleation)                | 21958  | 13182  | 20197 | 22038  | 19343  |
| Aerosol<br>Number<br>(10 <sup>10</sup> m <sup>-2</sup> ) | newSOA (Aitken)                    | 5122   | 4219   | 5153  | 5770   | 5066   |
|                                                          | newSOA (accumulation)              | 27.5   | 30.3   | 27.4  | 27.4   | 28.2   |
|                                                          | newSOA (nucleation)                | 0.017  | 0.007  | 0.013 | 0.018  | 0.014  |
|                                                          | newSOA (Aitken)                    | 0.217  | 0.094  | 0.141 | 0.227  | 0.170  |
|                                                          | newSOA (accumulation)              | 0.186  | 0.087  | 0.104 | 0.173  | 0.137  |
| Aerosol                                                  | mixSOA with sulfate                | 0.955  | 1.196  | 1.073 | 0.833  | 1.014  |
| Burden $(mg m^{-2})$                                     | mixSOA with soot (fossil/bio-fuel) | 0.287  | 0.340  | 0.316 | 0.220  | 0.291  |
|                                                          | mixSOA with soot (biomass burning) | 0.159  | 0.333  | 0.405 | 0.181  | 0.269  |
|                                                          | mixSOA with sea salt and dust      | 0.007  | 0.004  | 0.003 | 0.004  | 0.005  |
|                                                          | Total SOA                          | 1.83   | 2.06   | 2.06  | 1.66   | 1.90   |

Table S5. Summary of the boreal seasonal and annual global average SOA number and burden in the sensitivity to the formation of SOA from IEPOX