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Abstract 
 

Background: Childhood obesity is a nutrition-related disease with multiple underlying etiologies. While 

genetic factors contribute to obesity, the gut microbiome is also implicated through fermentation of non-

digestible polysaccharides to short chain fatty acids (SCFA), which provide some energy to the host and 

are postulated to act as signaling molecules to affect expression of gut hormones. 

Objective: To study the cumulative association of causal, regulatory, and tagged single nucleotide 

polymorphisms (SNP) within genes involved in SCFA recognition and metabolism with obesity. 

Design: Study participants were non-Hispanic White (NHW, n = 270) and non-Hispanic Black (NHB, n = 

113) children (2-5 years) from the STRONG Kids 1 Study. SNP variables were assigned values according 

to the additive, dominant, or recessive inheritance models. Weighted genetic risk scores (GRS) were 

constructed by multiplying the reassigned values by independently generated β-coefficients or by 

summing the β-coefficients. Ethnicity-specific SNPs were selected for inclusion in GRS by cohort. 

Results: GRS were directly associated with BMI Z-score. The models explained 3.75%, 12.9%, and 

26.7% of the variance for NHW/NHB, NHW, and NHB (β = 0.89 (CI: 0.43-1.35), P = 0.0002; β = 0.78 

(CI: 0.54-1.03), P < 0.0001; β = 0.74 (CI: 0.51-0.97), P < 0.0001). 

Conclusion: This analysis supports the cumulative association of several candidate genetic variants 

selected for their role in SCFA signaling, transport, and metabolism with early-onset obesity. These data 

strengthen the concept that microbiome influences obesity development through host genes interacting 

with SCFA. 
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Introduction 

Childhood obesity is a nutrition-related disease with multiple underlying etiologies. Genetics play 

a significant role in the development of obesity, and twin studies indicate that the heritability of obesity 

ranges from 40 to 70%.1  Meta-regression analyses have provided evidence that genetic influences on 

obesity are greater during childhood than in adulthood.2 Genome-wide association studies (GWAS) have 

have revealed several hundred loci within the human genome associated with obesity in adults, though 

only 8 independent loci have been identified in children.3,4 Building upon GWAS findings, the genetic 

risk score (GRS) approach has been employed to address concerns in statistical analyses over multiple 

testing and to account for the missing heritability of obesity.5 GRS constructed from GWAS-identified 

SNPs and tested across prospective and retrospective cohorts support the notion that the genetic effect on 

obesity-related phenotypes is age-dependent with increasing influence peaking near the age of 20 (see 

Supplement for additional references).6-10 Cross-sectional studies in children also demonstrate a 

relationship between GRS and measures of obesity (see Supplement for additional references).11,12 

However, the percent of variance of BMI and other obesity-related phenotypes explained by the GRS in 

studies in children remains small ranging from 1.0 to 3.4%. In fact, Le Chatelier suggested that the 

current obesity susceptibility genetic variants identified from GWAS are less informative in 

distinguishing between individuals who are lean and those who have obesity than their microbiome 

within the gastrointestinal tract.13 

One possible explanation of how the gut microbiome contributes to obesity development includes 

the interaction between host genetics and short chain fatty acids (SCFA), the products of bacterial 

fermentation of non-digestible polysaccharides.14 In particular, butyrate promotes overall gut health while 

acetate and propionate may increase host capacity for energy harvest and storage through lipogenesis and 
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gluconeogenesis.15,16 Through a review of the literature, we identified key genes involved in the transport 

and signaling of SCFAs. From these genes, four main pathways were established: 1) SCFA transport 

across the gut epithelium via monocarboxylate transporter 1 (SLC16A1) and sodium coupled 

monocarboxylate transporter 1 (SLC5A8) (apical membrane) and via monocarboxylate transporters 4 and 

5 (SLC16A3 and SLC16A4) (basolateral membrane.17,18 2) SCFA signaling through free fatty acid 

receptors 2 and 3 (FFAR2 and 3) bind SCFAs and effect downstream regulation of appetite through 

downstream effectors including peptide YY (PYY) and glucagon-like peptide 1 (GCG) in enteroendocrine 

L cells, and leptin (LEP) in adipocytes.19,20 3) Alterations in adipose storage through angiopoietin-like 4 

(ANGPTL4), an inhibitor of lipoprotein lipase (LPL).21 Both ANGPTL4 and LPL are under the 

transcriptional regulation of peroxisome proliferator-activated receptor gamma (PPARG). 4) 

Immunological response to lipopolysaccharide (LPS) via toll-like receptor 4 (TLR4) and the inflammatory 

response by the expression of nuclear factor kappa beta (NFKB) leading to the release of cytokines 

interleukin 6 (IL6) and tumor necrosis factor alpha (TNFA).22 

SCFA receptors and transporters and other host responders to gut microbiome have been 

described, but the collective impact of common functional and regulatory variants in these genes on 

obesity-related phenotypes has not been studied in humans. The current study assessed the cumulative 

association of causal, regulatory, and tagged SNP variants within genes involved in gut microbiome 

and/or SCFA recognition and metabolism on obesity-related phenotypes in preschool-age children. SNP-

SNP interactions within pathways were also examined. We hypothesized that genetic variation in SCFA 

recognition pathways would be positively associated with obesity-related phenotypes. GRS were 

constructed using both traditional (additive model) and non-traditional (non-additive models) methods 
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taking into consideration the magnitude and directionality of the effect size of each SNP on the phenotype 

by weighting the score. 

 

Methods 

Study participants and anthropometric measurements 

Participants for this study were preschool age children (2-5 years) combined from the Synergistic 

Theory and Research on Obesity and Nutrition Group (STRONG) Kids 1 Study (n = 475) cohorts from 

the University of Illinois (Urbana, IL; n = 265) and the University of Michigan (Ann Arbor, MI; n = 

210).23 The study protocol received approval from the Institutional Review Boards at both recruitment 

sites. Data regarding age, sex and ethnicity were collected from a large panel survey completed by study 

participant parents. Height and weight were measured to calculate BMI and related measures using a 

stadiometer (Peslter, USA) and electronic remote display scale (Jarden Consumer Solutions, USA) with a 

precision level of 0.1 cm and 0.1 kg respectively. BMI, BMI percentile (BMIPCT), BMI z-score for age 

(BMIZ), weight for age z-score (WAZ), and height for age z-score (HAZ) were calculated using the 

standard SAS program from the Center for Disease Control and Prevention (CDC). Z-scores express the 

standard deviation from the mean to indicate a child’s weight, height, and BMI status according to the sex 

and age-specific CDC growth charts from 2000.24 Children with or without overweight were defined as 

having a BMIPCT ≥85th percentile or BMIPCT <85th percentile, respectively. Children with BMIZ above 

or below 4 standard deviations and those with known metabolic disorders were excluded (n = 5). Only 

non-Hispanic White (NHW) and non-Hispanic Black (NHB) study participants were included in the 

following groups: NHW and NHB combined (NHW/NHB, n = 383), NHW (n = 270), and NHB (n = 

113).   
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Candidate gene and SNP selection 

Candidate genes were identified after examination of the published literature regarding each 

gene’s known associations with gut microbiome-related molecules including SCFAs and LPS (FFAR2, 

FFAR3, ANGPTL4, CD36, SLC16A1, SLC16A3, SLC16A4, SLC5A8, and TLR4). Many of these genes 

have been described to be important in the recognition of gut microbiome and SCFAs.14,25 Downstream 

effector genes were also included to identify potential gene-gene interactions and to test the cumulative 

association of carrying risk alleles in the development of obesity (LPL, PYY, GCG, LEP, LEPR, NPY, 

NPY2R, PPARG, NFKB, IL6, and TNFA).20,22,26-33 

Single nucleotide polymorphism (SNP) selection was performed using a systematic approach. 

SNPs within or near the genes of interest were selected for inclusion primarily for their functional or 

regulatory potential. The Single Nucleotide Polymorphism Database (dbSNP) and Ensembl databases 

were searched for SNPs located in high priority regions including the 5’ and 3’ untranslated regions 

(UTR), exons (synonymous and non-synonymous variants), and the 10 base pair (bp) region within exon-

intron boundaries.34 Several in silico tools were utilized to further assess the likelihood that the SNP 

would impact protein function or gene regulation. Less common variants (MAF <10%) and in particular, 

non-synonymous SNPs, were included with consideration of their Sorting Tolerant from Intolerant (SIFT) 

and PolyPhen scores.35,36 RegulomeDB and miRdSNP were used to identify SNPs likely to affect 

transcription factor and microRNA binding respectively.37,38 In the SNP selection process, tag SNPs for 

the genes of interest were also identified using Haploview version 4.2 (Cambridge, MA) when functional 

or regulatory SNPs were not available.39 Table S1 provides a summary of the 52 candidate SNPs. 
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DNA extraction and genotyping 

Genomic DNA (gDNA) was extracted and purified following the Oragene-DNA protocol for the 

manual purification of DNA from saliva (average yield = 9.8 µg, average OD 260/280 ratio = 1.9). 

Selected markers (52 total SNPs) were genotyped using either the Fluidigm® SNP genotyping platform 

or TaqMan genotyping assays. For the Fluidigm® protocol, the assay design was constructed on the 

Fluidigm® D3™ website. The Functional Genomic Unit of the W.M. Keck Center at the University of 

Illinois performed pre-amplification and genotyping using 250 ng of gDNA. Genotypes were called using 

Fluidigm® Genotyping Analysis version 4.1.2 (San Francisco, CA, USA) at a minimum of 85% 

reliability. The TaqMan procedure was performed in the 7900 Real-Time machine using assays 

predesigned for FFAR1-rs10423648 and FFAR1-rs10422744 and a custom assay for FFAR3-rs424241. 

Fluorescent signals were detected for VIC and FAM after PCR, and genotypes were assigned using the 

allelic discrimination program in the sequence detection systems (SDS) 2.4 software (Applied 

Biosystems, Carlsbad, CA, USA).   

 

Statistical analysis 

Minor allele frequencies (MAF), linkage disequilibrium (LD), and Hardy-Weinberg Equilibrium 

(HWE) were calculated using the SNP & Variation Suite (SVS) software version 8 (Golden Helix, 

Bozeman, MT). MAFs were calculated for NHW/NHB, NHW, and NHB. D’ and r2 statistics were 

computed for SNPs located within the same chromosome for the NHW and NHB cohorts respectively 

using the composite haplotype method (CHM) in SVS. For genomic regions with multiple SNPs of 

interest in LD, the SNP with the strongest association with the phenotype was kept for GRS construction. 

χ2 tests were used in the NHW and NHB cohorts to identify significant departures from HWE. SNPs were 
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excluded from the analyses if the genotype call rate was <95%, HWE P-value was <0.05, or the MAF 

was <0.05. The total number of SNPs analyzed for each cohort were as follows: 15 SNPs in NHW/NHB, 

47 SNPs in NHW, and 38 SNPs in NHB. SNPs were further selected for the GRS based on a P-value <0.3 

for the association with BMIZ using the general linear model select (GLMSELECT) procedure. Although 

less conservative, this threshold allows for the potential for SNP combinations to have synergistic effects 

within the GRS. Eight total models were used where SNPs were grouped by pathway, and dominant and 

recessive models were tested. GRS were constructed for the NHW/NHB, NHW, and NHB using 

ethnicity-specific SNPs for the outcome, BMIZ, with 5, 10, and 9 SNPs selected for each cohort 

respectively. SNPs included for GRS in NHW/NHB cohort had similar MAF (Table S1). 

A total of five GRS were constructed for each cohort: additive non-weighted (GRS-add-NW), 

non-traditional non-weighted (GRS-non-NW), additive weighted (GRS-add-W), non-traditional weighted 

(GRS-non-W), and genotypic weighted (GRS-gen-W). To construct the GRS-add-NW, each genotype 

group for the selected SNPs was assigned the value 0, 1, or 2 according to the additive model of risk and 

the values were summed. Construction of the GRS-non-NW was performed by reassigning the genotype 

groups as 0 or 1 according to the dominant or recessive models of risk and then summing the values. β-

coefficients for each SNP were estimated in the general linear model (GLM) and were used to obtain the 

three weighted risk scores. Assigned values for the GRS-add-NW were multiplied by their β-coefficients 

and summed to generate the GRS-add-W. For the GRS-non-W, assigned values from the GRS-non-NW 

were multiplied by their β-coefficients and summed. The GRS-gen-W was constructed without 

assumption of genetic model; β-coefficients were summed without multiplication of an assigned value 

(the referent genotype group assigned a value of “0”). The Cochran-Armitage exact test was conducted to 

predict the goodness of fit to the additive model of inheritance. The β-coefficients used for the weighted 
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scores and the P-values for the Cochran-Armitage exact test are shown in Table S2. Normality for the 

GRS variables was assessed by examining skewness and kurtosis. The skewness values were >-1 and the 

kurtosis values were <1 for all constructed GRS. 

The associations between the BMIZ outcome and each of the five types of GRS were assessed 

using linear regression. Logistic regression was used to generate receiver operating characteristic (ROC) 

curves to assess the specificity and sensitivity of each GRS to examine accuracy of each type of GRS in 

discriminating children with or without overweight within each cohort. Each GRS developed for BMIZ 

was applied to WAZ and HAZ. Gene-gene interactions were evaluated in each pathway by using SNP-

SNP interaction terms in the GLM. All statistical analyses were performed with age and sex as covariates 

using SAS 9.4 (SAS Institute Inc., Cary, NC). An additional covariate for age (age2) was added to the 

models when age was independently associated with the phenotype. P-values were considered significant 

after modification according to Bonferroni correction by dividing 0.05 by the number of pathways tested 

(4), the number of SNPs included in each respective cohort’s GRS (5, 10, and 9), and the number of GRS 

(5) (NHW/NHB P < 0.0005, NHW P < 0.00025, NHB P < 0.00028). Bonferroni correction was also used 

for SNP-SNP interaction analyses, and those P-values are provided in Figure S2. Bootstrapping analyses 

were conducted at 10, 100, 500 and 1,000 replications to reevaluate the observed associations between the 

constructed GRS and BMIZ. 

Ancestry informative markers (AIMs, n = 64) were obtained from a previous report and used to 

generate continuous admixture scores to account for ethnicity within the combined NHW/NHB cohort 

(Table S3).40 Admixture scores were generated using principal component analysis in SVS with the first 

three principal component scores for the 64 AIMs included as covariates. Eigenvalues for the principal 

components generated were 60.2, 10.4, and 10.1. 
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Results 
 

Participant demographics and descriptive data for genetic markers 

 Descriptive data of the STRONG Kids 1 study is presented in Table 1. The prevalence of 

children with normal weight, overweight or obesity in the NHW/NHB cohort was 78.9%, 14.6%, and 

6.5%, respectively. No significant differences in age, height, BMI, or Z-scores were found between boys 

and girls. There were no differences in any of the anthropometric measurements or rates of overweight 

and obesity amongst the NHW and NHB cohorts. MAFs and HWE values for each SNP and LD tables by 

cohort for the genes of interest are summarized in Tables S1 and S4 respectively.  

 

Genetic Risk Scores 

 The SNPs selected for the construction of the GRS for each cohort and the rationale for their 

inclusion are in Table 2. As described earlier, all SNPs included in the GRS demonstrated a direct 

relationship with BMIZ according to the genetic modes of inheritance listed. Apart from the GRS-add-W 

in NHW/NHB, all GRS were associated with BMIZ. R2 values and percent of BMIZ variance explained 

(BMIZ%) increased as the GRS progressed from additive to non-additive and from non-weighted to 

weighted approaches in all three cohorts. GRS-non-W and GRS-gen-W explained the largest BMIZ% and 

had the highest R2 values across and within the cohorts. GRS-gen-W explained 3.8%, 12.9%, and 26.7% 

of the variance in BMIZ in the NHW/NHB, NHW, and NHB cohorts respectively. A summary of the five 

GRS constructed is provided in Table 3 including β-coefficients and 95% CIs, and comparisons of the 

non-weighted and weighted scores for NHW and NHB are shown in Figures 1 and 2. Bootstrapping at 

10, 100, and 1,000 replications of the dataset confirmed the associations between the GRS and BMIZ 
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(Table 4). All significant GRS remained significant after Bonferroni correction except GRS-add-NW in 

NHH/NHB. 

 In general, analysis using logistic regression demonstrated similar results as observed when using 

linear regression. However, only the area under the curve (AUC) values for NHW improved when 

progressing from additive to non-additive and from non-weighted to weighted approaches (AUC range: 

0.57-0.64). The AUC values for the GRS in NHW/NHB and NHB remained relatively the same across 

GRS regardless of risk score construction method (Table 3 and Figure S1). While the AUC values in the 

NHB GRS were the highest (AUC range: 0.72-0.78), the NHW/NHB GRS performed the poorest in 

predicting children with overweight (AUC range 0.55-0.57). The NHW/NHB GRS had the lowest 

BMIZ% and further analysis into the strength of association of the GRS within NHW and NHB 

separately revealed a differential relationship. Whereas the GRS for NHW/NHB was associated with 

BMIZ in NHW, these GRS were not associated with BMIZ in NHB (data not shown). 

 We next sought to determine if specific pathways were contributing more to the GRS than others 

by constructing scores by pathway within the NHW and NHB cohorts. In the NHW GRS-gen-W, we 

observed that SNPs representing genes in the adipose storage pathway (ANGPTL4-rs1044250, LPL-

rs13702, and PPARG-rs12639162) contributed to nearly half of the BMIZ% (R2 = 0.07, 6.44%). For 

NHB, both the transport and signaling pathways contributed approximately equal amounts to the GRS-

gen-W (R2 = 0.1050, 12.21% and R2 = 0.0982, 11.27% respectively). Although the majority of the SNPs 

in the GRS for NHW and NHB were different, each shared IL6-rs1554606 and many of the same genes 

(PYY, SLC5A8, and NPY2R). GRS-non-W and GRS-gen-W for BMIZ were also applied to WAZ and 

HAZ in all three cohorts (Table S5). Though the percent of variance explained was reduced, the GRS for 

BMIZ were associated with WAZ. The GRS for BMIZ, however; were not associated with HAZ.  
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Gene-gene interactions 

 The SNP-SNP model and interaction term P-values for BMIZ by pathway and by cohort (NHW 

and NHB separately) are shown in Figure S2. Two interactions were initially observed in NHW: 

ANGPTL4-rs1044250 and LPL-rs13702 (P = 0.0032) and ANGPTL3-rs10889337 and PPARG-

rs12639162 (P = 0.0222). SNPs representing FFAR1-3 appeared to interact with several SNPs for PYY, 

GHRL, LEP, NPY2R, and NPY in pathway 2 (SCFA signaling through free fatty acid receptors) for both 

the NHW and NHB cohorts, though the model P-values did not reach statistical significance initially. In 

NHB, an interaction between FFAR3-rs424241 and NPY2R-rs1047214 was observed (P = 0.0014). None 

of the interactions observed remained significant after multiple testing correction. There were no other 

appreciable differences when comparing the SNP-SNP interactions between the NHW and NHB cohorts.  

 

Discussion 

 The current study sought to describe the cumulative relationship between several SCFAs and LPS 

associated genes and obesity phenotypes in children. These results provide an example of the potential 

benefits of an integrative approach. Rather than selecting SNPs from GWAS, we utilized traditional and 

non-traditional methods of genetic analyses with a selection procedure of genetic variants rooted in the 

biological mechanisms underlying obesity. Specifically, we constructed genetic scores consisting of 

functional, regulatory, and tag SNPs in genes with known and proposed interactions with the gut 

microbiome. The GRS consisting of variants with putative roles in SCFA recognition and transport 

demonstrated significant relationships with BMIZ and WAZ in NHW and NHB children when analyzed 

both separately and together. This approach not only provides an avenue to better understand the 
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mechanisms driving obesity development early in life, but also may identify potential targets for 

intervention strategies in the future.  

Another advantage of the pathway-based approach is the ability to investigate gene-gene 

interactions. Most notably, we showed a potential interaction between ANGPTL4-rs1044250 and LPL-

rs13702 in NHW, which is consistent with the known role of ANGPTL4 as an inhibitor of LPL activity.21 

Although the interactions did not survive rigorous multiple testing correction, Figure S2 illustrates 

potential SNP-SNP relationships that could be further explored provided an adequate sample size to 

conduct multiple testing. The SNP-SNP interactions examined in the present study were limited to the 

four selected pathways. Future studies should continue to search for functional variants and to test for 

genetic interactions as more evidence of these relationships becomes available. Regarding the genetic 

architecture of complex diseases such as obesity, additive contributions of genetic variants that are 

independent of each other have traditionally been assumed. However, Zuk et al. suggested that this 

approach may generate phantom heritability as gene-gene and gene-environment interactions are not 

taken into consideration and estimated heritability of a phenotype may be inflated.41 In fact, new 

approaches include statistical models that attempt to account for the impact of gene-environment 

interactions.42 

The variance of the phenotype explained in genetic studies has been limited. Two statistical 

approaches in the current study strengthen the ability to describe the variance in the phenotype attributed 

to the GRS. First, application of β-coefficients to estimate the effect size of each SNPs’ contribution to 

the phenotype improved the percent of variance explained by the GRS, which was anticipated based on 

simulation data.43 Past studies have favored the use of weighted values obtained from previously analyzed 

GWAS datasets to remove bias within the sample set of interest.9,44-46 We recognize that our use of 

This article is protected by copyright. All rights reserved.



16 
 

weighted values derived from our own cohort could contribute to model over-fitting, however, the use of 

weighted values from adult datasets may not be appropriate for child cohorts as genetic contributions to 

obesity are known to be age-dependent.2,47 Longitudinal assessments of the GRS are particularly needed 

at critical phases of development, including infant peak, adiposity rebound and puberty. Second, 

comparison of the GRS-add-W to the GRS-gen-W suggests that a hypothesis-free approach to the genetic 

mode of inheritance is more representative of the genotype-phenotype relationship than assuming the 

inheritance model. Traditional methods of constructing GRS apply the additive mode of inheritance with 

the advantage being an improvement in the power of the analysis.48 However, the genetic model is seldom 

known a priori and conforming SNPs to these models in our dataset presented concerns in calculating the 

GRS. New statistical methods including the MAX and MERT methods have been developed to better 

predict the mode of inheritance from the empirical data and could be used in follow-up analyses of the 

GRS herein.49 

 Data using the GRS approach in a multiethnic cohort of children are limited. The Klimentidis 

study was the first to show that the mean GRS value for GWAS obesity variants was different amongst 

African American, Hispanic, European American, and biracial groups.50 Similarly, we found that the 

NHW/NHB GRS was associated with BMIZ in NHW (n = 270), but not in NHB (n = 113). There is a 

possibility that certain pathways may be contributing more to the GRS than other pathways within the 

NHW and NHB cohorts. While SNPs in the adipose storage pathway were well represented in the NHW 

GRS, the NHB GRS appeared to be represented equally by both transport and signaling pathway SNPs. 

The underlying mechanisms driving excess adipose accumulation may be different amongst NHW and 

NHB children. Our data further demonstrated that similar genes were associated with obesity-related 

phenotypes in the NHW and NHB cohorts, but the SNPs carrying those signals often differed between the 
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groups. This presents a challenge for researchers to find and establish shared genetic variants that can be 

used for association studies in multiethnic cohorts. We conducted PCA of AIMs to account for population 

stratification by ethnicity.51,52 The primary advantage of this method was the creation of several 

continuous variables that could more accurately characterize differences amongst and within ethnic 

groups than a single categorical variable. Use of this technique could be valuable in future work in the 

field of genetic epidemiology as admixed populations increase the likelihood of false positive discovery if 

population stratification is not taken into consideration.53,54 

We recognize several limitations to the findings presented in this report. Because the sample size 

was limited, our results need to be replicated and the statistical methods employed should be cross-

validated in an independent dataset. Several of the genes selected for this study including SLC16A1 and 

FFAR3 have expression in tissue beyond the gastrointestinal tract.55-57 While the premise of this work was 

based on the transport and signaling pathways of SCFAs produced by gut microbes in the distal intestinal 

tract, the relationship between the GRS described here and obesity-related phenotypes may not be 

exclusively through the proposed pathways. The exact effect of host genetic variation in SCFA-associated 

genes coding for the solute carriers and free fatty acid receptors on SCFA uptake and recognition also has 

not been fully elucidated. Nevertheless, the stage has been set to further elucidate the underlying genetic 

and microbial mechanisms of obesity development in children. In fact, our approach is complementary to 

a recent review published by Dong and colleagues, which investigated the functional consequences of 

obesity-susceptibly loci and SNPs’ identified by GWAS.58   

 In summary, the analytical methodology introduced in this study contributes to establishing a 

novel way by which basic research in molecular and genetic mechanisms of obesity can be utilized in 

population-level genetic analyses. Past works have shown relationships between many of the same genes 
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and other disease-related phenotypes including biomarkers of cardiovascular and metabolic disease, but 

this is the first report to our knowledge that combined their effects into an obesity risk score in children 

(see Supplement for references). While the pathway-based approach provided a biological basis for SNP 

selection, the statistical methods used here improved our ability to describe the genotype-phenotype 

relationship. Some GRS studies in infants and children have utilized the weighted score approach, but the 

hypothesis-free approach to the mode of inheritance for each SNP represents a departure from the 

traditional methods of producing GRS.  
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Table 1. Descriptive characteristics of children in the STRONG Kids cohort stratified by sex and 
ethnicity 

Variable NHW/NHB 

n=384 

Male 

n=188 

Female 

n=196 

P-value NHW only 

n=270 

NHB only 

n=114 

P-value 

Age (months) 47.8 ± 10.6 47.0 ± 10.2  48.6 ± 10.9 0.13 47.8 ± 10.7 47.9 ± 10.2 0.93 

Height (cm) 102.5 ± 7.6 102.5 ± 7.3 102.5 ± 8.0 0.99 102.2 ± 7.7 103.1 ± 7.4 0.27 

Weight (kg) 17.0 ± 3.0 17.1 ± 2.5 17.0 ± 3.3 0.66 17.0 ± 2.9 17.2 ± 3.1 0.54 

BMI (kg/m2) 16.1 ± 1.4 16.2 ± 1.2 16.0 ± 1.6 0.21 16.2 ± 1.4 16.1 ± 1.6 0.56 

BMIPCT (%) 59.4 ± 27.1 59.7 ± 26.5 59.0 ± 27.7 0.80 60.6 ± 27.9 56.5 ± 27.5 0.19 

BMIZ 0.30 ± 0.95  0.32 ± 0.89 0.29 ± 1.00 0.75 0.34 ± 0.93 0.22 ± 0.97 0.27 

HAZ 0.28 ± 1.04 0.25 ± 1.10 0.30 ± 0.98 0.66 0.22 ± 0.93 0.41 ± 1.26 0.14 

WAZ 0.33 ± 0.99 0.38 ± 1.02 0.28 ± 0.95 0.34 0.32 ± 0.90 0.37 ± 1.16 0.65 

Overweight (%) 14.6 17.0 12.2 0.30 22.2 18.4 0.41 

Obese (%) 6.5 4.8 8.2 0.19 6.1 6.7 0.81 

 

N=384, 188 males (49%), 196 females. Data are presented as means ± (SD). P-values for continuous 

variables were generated using Student’s T-test for continuous variables and Chi-square for categorical 

variables. 

Abbreviations: BMIPCT: BMI percentile, BMIZ: BMI Z-score, HAZ: Height-for-age Z-score, Non-

Hispanic Black: NHB, Non-Hispanic White: NHW, WAZ: Weight-for-age Z-score. 
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Table 2. SNP inclusion in GRS for BMIZ by cohort 

Gene SNP Risk 

allele 

Mode of 

inheritance 

P-value Function 

NHW/NHB      

PPARG rs12639162 A Dominant 0.0554 Intron variant, tagged SNP 

ANGPTL4 rs1044250 C Recessive 0.1859 Missense variant 

IL6 rs1554606 T Dominant 0.0139 Intron variant, tagged SNP 

SLC16A3 rs3176827 T Dominant 0.0723 Intron variant, possible splice variant 

PYY rs2070592 G Recessive 0.2038 5’ UTR variant, possible splice variant 

NHW only      

PPARG rs12639162 A Dominant 0.0103 Intron variant, tagged SNP 

ANGPTL4 rs1044250 C Recessive   0.2030 Missense variant 

ANGPTL3 rs10889337 G Dominant 0.0459 Intron variant 

LPL rs13702 A Recessive 0.0031 3’ UTR variant 

PYY rs2014257 A Dominant 0.1013 TF binding motif 

NPY2R rs1047214 C Recessive 0.2346 Synonymous variant 

SLC5A8 rs7309172 G Dominant 0.0916 3’ UTR variant 

SLC16A3 rs3176827 T Dominant 0.1303 Intron variant, possible splice variant 
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SLC16A1 rs9429505 G Dominant 0.0691 3’ UTR variant, tagged SNP 

IL6 rs1554606 T Dominant 0.1087 Intron variant, tagged SNP 

NHB only      

CD36 rs3173798 C Dominant 0.0676 Possible splice variant 

PYY rs2070592 G Recessive 0.0909 5’ UTR variant, possible splice variant 

NPY2R rs2880415 A Dominant 0.0181 Synonymous variant 

LEP rs11761556 C Dominant 0.2450 Upstream variant, TF binding motif 

SLC16A4 rs12062656 G Dominant 0.0436 Intron variant, tagged SNP 

SLC16A3 rs4789698 G Recessive 0.0328 Downstream variant, tagged SNP 

SLC5A8 rs1709189 C Dominant 0.0898 Missense variant 

TLR4 rs4986790 A Dominant 0.1146 Missense variant 

IL6 rs1554606 T Dominant 0.0275 Intron variant, tagged SNP 

Determination of SNPs to be included in GRS for NHW/NHB was based on strength of association with 

BMIZ using GLM. SNP inclusion for NHW and NHB GRS were based on GLMSELECT procedure of 

SNPs by pathway using both the dominant and recessive modes of inheritance (8 total models). Set limit 

entry (SLE) and set limit stay (SLS) were set to 0.3. A total of 5, 10, and 9 SNPs were selected for the 

NHW/NHB, NHW, and NHB cohorts respectively. 
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Abbreviations: BMIZ: BMI Z-score, GLM: general linear model, GRS: Genetic risk score, NHB: Non-

Hispanic Black, NHW: Non-Hispanic White, TF: Transcription factor, SNP: Single nucleotide 

polymorphism, UTR: Untranslated region. 
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Table 3. Comparison of GRS by cohort for BMIZ using linear and logistic** regression 

 GRS-add-NW GRS-add-W GRS-non-NW GRS-non-W GRS-gen-W 

NHW/NHB      

Adj R2 0.0265 0.0179 0.0388 0.0397 0.0404 

% BMIZ 
variance 
explained 

2.38 1.54 3.59 3.68 3.75 

Model P-value 0.0183 0.0578 0.0030 0.0026 0.0024 

GRS P-value 0.0027 0.0160 0.0002 0.0002 0.0002 

β-coefficient 
(95% CI) 

0.10 
(0.04-0.17) 

0.51 
(0.10-0.92) 

0.19 
(0.090-0.29) 

0.92 
(0.44-1.41) 

0.89 
(0.43-1.35) 

 
AUC (CI)** 0.57 (0.50-0.64) 0.55 (0.48-0.62) 0.57 (0.51-0.64) 0.57 (0.50-0.65) 0.57 (0.50-0.65) 

OR (CI)** 1.24 (1.03-1.48) 1.99 (0.67-5.87) 1.41 (1.07-1.85) 4.93 (1.30-18.67) 4.36 (1.24-15.39) 

NHW only      

Adj R2 0.0220 0.0657 0.0983 0.1242 0.1277 

% BMIZ 
variance 
explained 

2.45 6.77 10.00 12.55 12.90 

Model P-value 0.0319 <0.0001 <0.0001 <0.0001 <0.0001 

GRS P-value 0.0106 <0.0001 <0.0001 <0.0001 <0.0001 

β-coefficient 
(95% CI) 

0.07 
(0.02-0.12) 

0.32 
(0.18-0.47) 

0.20 
(0.13-0.27) 

0.84 
(0.57-1.10) 

0.78 
(0.54-1.03) 

 
AUC (CI)** 0.57 (0.49-0.65) 0.60 (0.53-0.68) 0.63 (0.56-0.70) 0.64 (0.56-0.72) 0.64 (0.56-0.72) 
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OR (CI)** 1.16 (1.00-1.35) 1.74 (1.12-2.69) 1.40 (1.12-1.74) 3.95 (1.62-9.61) 3.69 (1.62-8.42) 

NHB only      

Adj R2 0.0987 0.1532 0.2278 0.2322 0.2567 

% BMIZ 
variance 
explained 

11.32 16.47 23.90 24.33 26.69 

Model P-value 0.0025 <0.0001 <0.0001 <0.0001 <0.0001 

GRS P-value 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 

β-coefficient 
(95% CI) 

0.18 
(0.09-0.28) 

0.44 
(0.25-0.63) 

0.29 
(0.19-0.38) 

0.76 
(0.50-1.01) 

0.74 
(0.51-0.97) 

 
AUC (CI)** 0.77 (0.64-0.90) 0.72 (0.62-0.82) 0.76 (0.64-0.88) 0.74 (0.62-0.87) 0.78 (0.68-0.88) 

OR (CI)** 1.87 (1.32-2.65) 2.78 (1.40-5.55) 2.11 (1.43-3.12) 5.90 (2.21-15.70) 5.76 (2.23-14.87) 

The five GRS constructed for each cohort were compared. Adj R2, % BMIZ variance explained, β-

coefficients with 95% CI, Model P-value, and GRS P-value were obtained using linear regression. AUC 

and ORs were obtained using logistic regression to compare children with or without overweight. Age 

and sex were included in the statistical models as covariates. Three principal component scores derived 

from principal component analysis of 64 ancestry informative markers were included as covariates for the 

NHW/NHB cohort. All GRS were associated with BMIZ (P-value <0.05) with the exception of GRS-add-

W in NHW/NHB (P = 0.0578). Adj R2, BMIZ%, and GRS P-value improved from GRS-add-NW to 

GRS-gen-W across all cohorts. The BMIZ% was highest for GRS-gen-W (3.8%, 12.9%, and 26.7%) for 

the NHW/NHB, NHW, and NHB cohorts respectively. 

Abbreviations: Adj R2: Adjusted R-squared, BMIZ: BMI Z-score, BMIZ%: Percent of BMIZ variance 

explained, AUC: Area under curve, OR: Odds ratio, CI: Confidence interval, GRS: Genetic risk score, 
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GRS-add-NW: Additive non-weighted, GRS-non-NW: Non-traditional non-weighted, GRS-add-W: 

Additive weighted, GRS-non-W: Non-traditional weighted, GRS-gen-W: Genotypic weighted, NHB: 

Non-Hispanic Black, NHW: Non-Hispanic White. 

 

 

 

 

 

Table 4. Comparison of GRS after bootstrapping with 10, 100, and 1000 replications 

 10 replications 100 replications 1000 replications 

 GRS-non-W GRS-gen-W GRS-non-W GRS-gen-W GRS-non-W GRS-gen-W 

NHW/NHB       

Adjusted R2 0.0589 0.0564 0.0572 0.0573 0.0577 0.0582 

% BMIZ 
variance 
explained 

4.15 3.90 3.59 3.60 3.72 3.77 

Model P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

GRS P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β-coefficient 
(95% CI) 

0.977 
(0.827-1.259) 

0.900 
(0.758-1.042) 

0.917 
(0.869-0.964) 

0.875 
(0.829-0.920) 

0.932 
(0.917-0.947) 

0.893 
(0.879-0.910) 

 
NHW only       
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Adjusted R2 0.1437 0.1462 0.1341 0.1362 0.1334 0.1376 

% BMIZ 
variance 
explained 

13.40 13.65 12.69 12.90 12.52 12.94 

Model P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

GRS P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β-coefficient 
(95% CI) 

0.833 
(0.825-0.841) 

0.785 
(0.777-0.793) 

0.834 
(0.826-0.842) 

0.785 
(0.778-0.793) 

0.834 
(0.825-0.842) 

0.785 
(0.778-0.793) 

 
NHB only       

Adjusted R2 0.2372 0.2748 0.2392 0.2686 0.2543 0.2772 

% BMIZ 
variance 
explained 

21.55 25.28 23.18 26.11 24.43 26.72 

Model P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

GRS P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β-coefficient 
(95% CI) 

0.696 
(0.619-0.772) 

0.714 
(0.643-0.784) 

0.742 
(0.717-0.767) 

0.731 
(0.708-0.753) 

0.756 
(0.749-0.764) 

0.738 
(0.730-0.744) 

Adj R2, % BMIZ variance explained, β-coefficients with 95% CI, Model P-value, and GRS P-value were 

obtained using linear regression at 10, 100, and 1000 replications of the data set. 

Abbreviations: Adj R2: Adjusted R-squared, BMIZ: BMI Z-score, BMIZ%: Percent of BMIZ variance 

explained, GRS: Genetic risk score, GRS-non-W: Non-traditional weighted, GRS-gen-W: Genotypic 

weighted, NHB: Non-Hispanic Black, NHW: Non-Hispanic White. 
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Figure 1 Legend:  

Histograms (panels A-D) in Figure 1 represent the distribution of risk alleles for the GRS-add-NW and 

GRS-non-NW in the NHW (n = 270) and NHB (n = 113) cohorts. 10 SNPs for the NHW GRS and 9 

SNPs for the NHB GRS were selected based on their independent association with BMIZ using the GLM 

select procedure. To construct the GRS-add-NW, genotype groups for the selected SNPs were assigned 0, 

1, or 2 according to the additive model of risk and the values were summed. To construct the GRS-non-

NW, genotype groups were re-assigned 0 or 1 according to the dominant or recessive models of risk and 

the values were summed. GRS for NHW are shown in panels A and B while GRS for NHB are shown in 

panels C and D. All X-axes represent risk allele group categories for the GRS-add-NW (panels A and C) 

and GRS-non-NW (panels B and D). The left Y-axes represent the BMIPCT, and the right Y-axes 

represent the number of individuals in each risk allele group. Data points on the line plots imposed over 

the histograms represent the mean BMIPCT for individuals in each risk allele group. The dashed lines are 

linear regression curves. Low, medium and high genetic risk categories were assigned for each GRS. 

NHW children in the low-risk category (n = 40, ≤7 risk alleles) for GRS-add-NW had lower BMIZ than 

those in the high-risk category (n = 42, ≥14 risk alleles (0.10 ± 0.14 vs. 0.54 ± 0.14, P = 0.0256) (panel 

A). NHW children in the medium-risk category (n = 183, 10-13 risk alleles) did not differ in BMIZ from 

either the low or high-risk groups. NHB children in the low-risk category (n = 15, ≤7 risk alleles) and 

medium-risk category (n = 74, 8-10 risk alleles) for GRS-add-NW had lower BMIZ than those in the 

high-risk category (n = 24, ≥11 risk alleles) (-0.31 ± 0.23 and 0.08 ± 0.10 vs. 0.95 ± 0.18, P < 0.0001) 

(panel C). 
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Abbreviations: BMIPCT: BMI percentile; BMIZ: BMI z-score; GLM: general linear model; GRS: genetic 

risk score; GRS-add-NW: additive non-weighted GRS; and GRS-non-NW: non-traditional non-weighted 

GRS; NHB: non-Hispanic Black; NHW: non-Hispanic White. 
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Figure 2 Legend: 

Linear regression curves for the GRS-add-W, GRS-non-W, and GRS-gen-W are displayed in panels A-F 

of Figure 2 for the NHW (n = 270) and NHB (n = 113) cohorts. 10 SNPs for the NHW GRS and 9 SNPs 

for the NHB GRS were selected based on their independent association with BMIZ using the GLM select 

procedure. To construct the GRS-add-W, genotype groups for the selected SNPs were assigned 0, 1, or 2 

according to the additive model of risk, multiplied by their respective β-coefficient, and the values were 

summed. To construct the GRS-non-W, genotype groups were re-assigned 0 or 1 according to the 

dominant or recessive models of risk, multiplied by their respective β-coefficients, and the values were 

summed. To construct the GRS-gen-W, β-coefficients were summed for each selected SNP. GRS for 

NHW are shown in panels A-C while GRS for NHB are shown in panels D-F. All X-axes represent the 

composite GRS, while all Y-axes represent BMIZ. Adj-R2 and percent of variance explained for BMIZ 

increases across panels A-C for NHW and across panels D-F for NHB. GRS-gen-W had the highest 

percent of variance explained for BMIZ for both NHW and NHB cohorts. 

Abbreviations: Adj-R2: adjusted R2; BMIPCT: BMI percentile; BMIZ: BMI z-score; GRS: genetic risk 

score; GRS-add-W: additive weighted GRS; GRS-non-W: non-traditional weighted GRS; GRS-gen-W: 

genotypic GRS; NHB: non-Hispanic Black; NHW: non-Hispanic White. 
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