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16 Abstract:

17 Should we build our own phylogenetic trees based on gene sequence data, or can we simply use 

18 available synthesis phylogenies? This is a fundamental question that any study involving a 

19 phylogenetic framework must face at the beginning of the project. Building a phylogeny from 

20 gene sequence data (purpose-built phylogeny) requires more effort, expertise, and cost than 

21 subsetting an already available phylogeny (synthesis-based phylogeny). However, we still lack a 

22 comparison of how these two approaches to building phylogenetic trees influence common 

23 community phylogenetic analyses such as comparing community phylogenetic diversity and 
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24 estimating trait phylogenetic signal. Here, we generated three purpose-built phylogenies and 

25 their corresponding synthesis-based trees (two from Phylomatic and one from the Open Tree of 

26 Life [OTL]). We simulated 1,000 communities and 12,000 continuous traits along each purpose-

27 built phylogeny. We then compared the effects of different trees on estimates of phylogenetic 

28 diversity (alpha and beta) and phylogenetic signal (Pagel’s λ and Blomberg’s K). Synthesis-

29 based phylogenies generally yielded higher estimates of phylogenetic diversity when compared 

30 to purpose-built phylogenies. However, resulting measures of phylogenetic diversity from both 

31 types of phylogenies were highly correlated (Spearman’s  > 0.8 in most cases). Mean pairwise 𝜌

32 distance (both alpha and beta) is the index that is most robust to the differences in tree 

33 construction that we tested. Measures of phylogenetic diversity based on the OTL showed the 

34 highest correlation with measures based on the purpose-built phylogenies. Trait phylogenetic 

35 signal estimated with synthesis-based phylogenies, especially from the OTL, were also highly 

36 correlated with estimates of Blomberg’s K or close to Pagel’s λ from purpose-built phylogenies 

37 when traits were simulated under Brownian Motion. For commonly employed community 

38 phylogenetic analyses, our results justify taking advantage of recently developed and 

39 continuously improving synthesis trees, especially the Open Tree of Life.

40 Key words: alpha diversity, beta diversity, community phylogenetic structure, open tree of life, 

41 phylogenetic diversity, phylogenetic signal, trait.

42 Introduction

43 Phylogenies describe the evolutionary history of species and provide important tools to study 

44 ecological and evolutionary questions (Baum and Smith 2012). Recently, phylogenies have been 

45 used to better understand patterns of community assembly. The phylogenetic structure of 

46 ecological communities can lend insight into the processes by which local communities assemble 

47 from regional species pools (Webb et al. 2002). For example, if closely related species are more 

48 likely to co-occur in the same habitats, we might suspect that these species share traits that allow 

49 them to have a positive growth rate under the environmental conditions in these habitats. To test 

50 whether closely related species are more or less likely to co-occur, one common approach is to 

51 calculate the phylogenetic diversity of communities and then compare the observed phylogenetic 

52 diversity with those expected by chance through different null models. There is a growing body 
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53 of literature using this community phylogenetic approach, documenting the phylogenetic 

54 structure of ecological communities across taxa and scales (Webb et al. 2002, Cavender-Bares et 

55 al. 2006, Helmus et al. 2007, Vamosi et al. 2009, Cardillo 2011, Smith et al. 2014, Li et al. 2017, 

56 Marx et al. 2017). Complementing analyses of phylogenetic community structure, phylogenetic 

57 signal of ecologically important traits may also be tested (e.g., Cavender-Bares and Reich 2012, 

58 Li et al. 2017); traits that have strong phylogenetic signal (i.e., closely related species have more 

59 similar trait values than expected by chance) can then provide insights into potential causes of 

60 the observed phylogenetic community structure (Webb et al. 2002, Cavender-Bares et al. 2009, 

61 Vamosi et al. 2009). Therefore, comparing community phylogenetic diversity and estimating 

62 trait phylogenetic signal are two key components of community phylogenetic analyses.

63 As an important facet of biodiversity, phylogenetic diversity (Faith 1992) also plays a crucial 

64 role in conservation biology by complementing more traditional taxonomic measures of 

65 biodiversity (e.g., species richness). For example, two communities can have the same number of 

66 species but differ drastically in their phylogenetic diversity depending on relatedness of the 

67 constituent species. The community with higher phylogenetic diversity, representing taxa more 

68 distantly related to each other, is expected to be more stable and productive given its greater 

69 evolutionary potential to adapt to changing environmental conditions (Forest et al. 2007, 

70 Maherali and Klironomos 2007, Lavergne et al. 2010). Therefore, all else being equal, a 

71 community with higher phylogenetic diversity should have higher conservation priority.

72 The information gained from community phylogenetic analyses is only as good as the species 

73 composition data and the phylogenies from which they are generated. In this manuscript, we 

74 explore how methods of tree generation affect phylogenetic diversity metrics and phylogenetic 

75 signal tests. Generally, ecologists and evolutionary biologists use two common approaches to 

76 build phylogenies for community phylogenetic analyses. The first approach is for a researcher to 

77 generate his/her own phylogenies for a set of target species based on gene sequence data. We 

78 refer to such phylogenies as purpose-built phylogenies. The second approach is to derive 

79 phylogenies based on available synthesis trees, such as the Open Tree of Life1, or classifications, 

80 such as the Angiosperm Phylogeny Group (APG IV et al. 2016), by pruning or sampling, 

1 https://tree.opentreeoflife.org/opentree

https://tree.opentreeoflife.org/opentree
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81 respectively, from the resource so that the phylogeny contains only the target species. We refer 

82 to such phylogenies as synthesis-based phylogenies. To a certain extent, one can argue that a 

83 synthesis tree could be a purpose-built tree for a larger set of species, but the sources for deriving 

84 the synthesis-based trees vary in scope, methodology, assumptions, and content (see Materials 

85 and Methods for further description of source trees for synthesis-based phylogenies). From a 

86 researcher’s perspective, a purpose-built phylogeny is a major undertaking but offers potential to 

87 utilize taxonomic and phylogenetic expertise often needed in order to successfully construct 

88 trees. Synthesis trees, as compilations of peer-reviewed phylogenetic hypotheses, offer an 

89 immediately available, but typically less customizable output to researchers. We thus use these 

90 two terms (purpose-built and synthesis-based) to categorize the underlying methods and 

91 researcher cost-benefits to obtain phylogenies.

92 Generating a purpose-built tree requires more effort, expertise, and cost than subsetting a well-

93 developed phylogeny or sampling from a classification. Generally, purpose-built trees are 

94 constructed by using newly generated sequence data and then combining those data with data 

95 already available on GenBank, although in many cases the researcher may simply use what is in 

96 GenBank. The first step requires gathering tissue for taxa of interest either from field or museum 

97 collections, extracting DNA from these tissue samples, and then identifying, amplifying, and 

98 sequencing appropriate loci. The gene regions selected are typically based on the taxa of interest 

99 and discipline-accepted standards. Resulting sequences are aligned in programs such as 

100 MUSCLE (Edgar 2004). Sequences are also commonly sourced entirely or as an addition to 

101 sequence data already in databases like GenBank with the help of computational pipelines such 

102 as PHLAWD (Smith et al. 2009). Appropriate models of evolution for phylogenetic estimation 

103 are determined using programs like PartitionFinder (Lanfear et al. 2012) such that each gene 

104 region in a set of concatenated sequences can be treated separately. The most appropriate models 

105 of nucleotide evolution are used to estimate phylogenies in Maximum Likelihood (ML) and/or 

106 Bayesian Inference (BI) frameworks in programs like RAxML (Stamatakis 2014), MrBayes 

107 (Ronquist and Huelsenbeck 2003), and BEAST (Drummond and Rambaut 2007). Depending on 

108 the desired application, it may be necessary to impose topological constraints to ease 

109 phylogenetic inference or fossil constraints to scale branch lengths to time. Statistics for clade 

110 support are calculated using bootstrap or jack-knifing techniques in an ML framework, and 

111 posterior probabilities in BI. Despite the fact that multiple software programs are available to 
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112 help automate these processes (e.g., phyloGenerator (Pearse and Purvis 2013), SUPERSMART 

113 (Antonelli et al. 2017)), many decisions at different steps must be made based on expert 

114 knowledge (e.g., Which genes to select? How to select models? Which software program to use? 

115 How to estimate divergence time?).

116 Because of the effort, expertise, and cost required to generate purpose-built phylogenies, many 

117 community phylogenetic studies use a second approach: deriving phylogenies from available 

118 synthesis trees. Over the past few decades, tremendous advances in computational tools and 

119 increasingly available genetic sequence data have led to vastly improved phylogenies for plants 

120 (Zanne et al. 2014), birds (Jetz et al. 2012), fishes (Rabosky et al. 2013), and mammals (Bininda-

121 Emonds et al. 2007, Fritz et al. 2009). Such advances in phylogenetics have facilitated the 

122 synthesis of all available information to make a comprehensive tree of life on Earth (Hinchliff et 

123 al. 2015). With these available synthesis trees and software programs such as Phylomatic (Webb 

124 and Donoghue 2005), ecologists can derive phylogenies for the species or communities they are 

125 interested in with less effort and limited cost. When different studies use the same synthesis tree 

126 to derive their phylogenies, their phylogenetic diversity results are comparable. Importantly, this 

127 may not be the case if they use purpose-built phylogenies. In addition, these approaches may 

128 avoid some issues when generating phylogenies from sequence data such as taxon sampling 

129 effects (Park et al. 2018). However, the tractability of phylogenies based on synthesis trees often 

130 comes with the cost of decreased resolution (e.g., increase in polytomies) of the resulting 

131 phylogenies compared with purpose-built ones; such trees also have taxonomic gaps, which are 

132 often filled using existing classifications to become comprehensive.

133 Previous studies have demonstrated that most phylogenetic diversity (Swenson 2009, Patrick and 

134 Stevens 2014, Boyle and Adamowicz 2015) and phylogenetic signal (Molina-Venegas and 

135 Rodriguez 2017) metrics are robust to terminal polytomies. These studies, however, used 

136 simulated phylogenies or compared different posterior purpose-built phylogenies. Therefore, 

137 they provided little practical advice about selecting between purpose-built and synthesis-based 

138 phylogenies for ecological studies. In this study, we compared phylogenetic diversity and 

139 phylogenetic signal metrics calculated from purpose-built phylogenies and corresponding 

140 phylogenies derived from three commonly used sources. It is important to note that we do not 

141 treat the purpose-built phylogenies as a gold standard, and we recognize that sampling bias of 
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142 both taxa and genes, combined with variation introduced through the tree-building process (e.g., 

143 tree reconstruction methods, assessment of support, etc.), can compromise the accuracy of 

144 purpose-built phylogenies. However, these issues – and others – apply also to the source trees 

145 used for synthesis-based phylogenies, although perhaps at different scales. Our aim here is to 

146 quantify the influence of the two tree construction techniques on measures of phylogenetic 

147 diversity and phylogenetic signal that are commonly employed in the rapidly growing field of 

148 community phylogenetics.

149 Materials and Methods

150 Purpose-built phylogenies

151 We collected three “purpose-built” phylogenies from published sources. The first purpose-built 

152 phylogeny is for 540 plant taxa in the globally critically imperiled pine rockland ecosystem in 

153 South Florida, USA (Trotta et al. 2018). The second phylogeny consists of 1,064 alpine plant 

154 taxa in France (Marx et al. 2017). The third purpose-built phylogeny has 1,548 plant species with 

155 distributions in Florida, USA (Allen et al. 2019). All three phylogenies were estimated from 

156 sequence data and were time-calibrated (i.e., chronograms). When using time-calibrated 

157 phylogenies, phylogenetic diversity measures the amount of evolution in time-units, and this is 

158 the measure we focus on here. For details regarding the phylogenetic tree building processes 

159 employed, see Appendix S1: Section S1.

160 Commonly available phylogenies

161 For each of the three purpose-built phylogenies, we generated four phylogenies based on 

162 different sources. The first two were generated using Phylomatic v4.2 (Webb and Donoghue 

163 2005) using two different backbone trees: R20120829 (APG III 2009) and zanne2014 (Zanne et 

164 al. 2014). We call the first phylogeny tree_apg and the second one tree_zanne. The phylogeny 

165 tree_zanne has branch lengths because the backbone tree zanne2014 was inferred from seven 

166 gene regions for >32k plant species and was time-calibrated using ‘congruification’ (Eastman et 

167 al. 2013). In contrast, the phylogeny tree_apg has no branch lengths and is based, not on the 

168 result of a phylogenetic analysis per se, but on a series of phylogenetic analyses as summarized 

169 by the Angiosperm Phylogeny Group III (2009). The APG classification is now updated as APG 
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170 IV (2016), but Phylomatic uses APG III (and the differences between APG III and APG IV are 

171 small). To add branch lengths, we used the bladj algorithm in Phylocom (Webb et al. 2008) to 

172 convert the tree to a chronogram using a set of the minimum node ages given by Wikström et al. 

173 (2001).

174 The third phylogeny was derived from the Open Tree of Life (Hinchliff et al. 2015), a recent 

175 comprehensive phylogeny for ~ 2.3 million named species of life, including all eukaryotes, 

176 Archaea, and Bacteria. This phylogeny, which we call tree_otl, is a supertree constructed from 

177 available source trees, with missing species added based on taxonomy; this resulting tree 

178 therefore contains many polytomies and does not include branch lengths. To calculate branch 

179 lengths, we first identified descendants for each of the internal nodes in tree_otl and then 

180 searched for their divergence time in the TimeTree of Life database (Kumar et al. 2017). The 

181 TimeTree database was compiled based on 3,163 studies and 97,085 species (as of October 10, 

182 2017). For a pair of species included in this database, we extracted their average divergence time 

183 from all previous studies. Using the divergence date of internal nodes from the TimeTree 

184 database, we then determined branch lengths of tree_otl using Phylocom (Webb et al. 2008) and 

185 its bladj function. Recently, an updated phylogeny with branch lengths for seed plants based on 

186 the Open Tree of Life was published (Smith and Brown 2018); however, we did not use this seed 

187 plant phylogeny as a source because it contains only seed plants, and our purpose-built 

188 phylogenies also contain other clades of vascular plants.

189 The fourth phylogeny was a random coalescent phylogeny generated using the rcoal function 

190 from the R package ape (Paradis et al. 2004). The random tree was then scaled to have a root age 

191 that was the average root age of tree_apg, tree_zanne, and tree_otl. Results based on the random 

192 phylogeny should not correlate with those based on other phylogenies.

193 Not every species from the purpose-built phylogenies was found in all of the synthesis 

194 phylogenies. For the pine rockland phylogeny, 514 out of 540 species (95.2%) were found in all 

195 phylogenies. For the alpine plant phylogeny, 994 out of 1064 species (93.4%) were found in all 

196 phylogenies. For the Florida flora phylogeny, 1472 out of 1548 species (95.1%) were found in all 

197 phylogenies. Therefore, we pruned the purpose-built phylogenies to have the same species as 

198 their corresponding synthesis tree. In practice, one could insert species that were missing from 
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199 the derived phylogeny as polytomies in the same genus, so that all species could be included in 

200 the analysis.

201 Generation of community assemblages

202 For each purpose-built phylogeny, we simulated 1,000 presence/absence site-by-species 

203 matrices. Each matrix has 30 sites, with species within each site randomly selected from the 

204 phylogeny tips representing the species pool. We fixed species richness of each site to be 50 to 

205 remove any effects of species richness on the phylogenetic diversity measures. Without setting 

206 all sites to have the same number of species, results based on different phylogenies will correlate 

207 with each other. For example, it is likely that results from tree_random will be highly correlated 

208 with results from other phylogenies (Appendix S1: Fig. S1). This is because most phylogenetic 

209 diversity metrics correlate with species richness, which, in turn, will lead to correlations among 

210 them and confound the comparisons of effects of phylogeny per se on the measurement of 

211 phylogenetic diversity. Removing the constraint of using the same species richness does not 

212 affect our results and conclusions (Appendix S1: Figs. S1, S2). In our current setting, the 

213 maximum total number of species across 30 sites is 30  50 = 1500, which is similar to the ×

214 number of tips in the largest purpose-built phylogeny in our study. We selected species from the 

215 species pool randomly because previous studies demonstrated that different approaches to 

216 species selection give similar results (Swenson 2009).

217 Phylogenetic diversity measurements

218 For each site-by-species matrix, we calculated alpha and beta phylogenetic diversity for each of 

219 the phylogenies using indices that are commonly used in community phylogenetic studies. For 

220 phylogenetic alpha diversity, we used Faith’s PD (PD), mean pairwise distance (MPD), and 

221 mean pairwise distance between the closest relatives (MNTD). PD calculates the sum of the 

222 branch lengths of all species present in an assemblage (Faith 1992). We did not include the root 

223 of the phylogeny when calculating PD. MPD calculates the average pairwise distance between 

224 all species, and MNTD calculates the average pairwise distance between the closest relatives in 

225 an assemblage (Webb et al. 2002). We selected these three metrics for phylogenetic alpha 

226 diversity among the myriad of metrics available because they are most commonly used and 
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227 represent different but complementary information about phylogenetic structure of communities 

228 (Miller et al. 2017, Tucker et al. 2017).

229 For phylogenetic beta diversity, we applied UniFrac (Unif), inter-assemblage MPD (MPD_beta), 

230 inter-assemblage MNTD (MNTD_beta), and phylogenetic community dissimilarity (PCD) to all 

231 possible unique combinations of assemblage pairs. Unif is derived from the Jaccard dissimilarity 

232 index and calculates the total branch length unique to each assemblage relative to the total 

233 branch length of all species in a pair of assemblages (Lozupone and Knight 2005). Therefore, it 

234 measures the fraction of evolutionary history unique to each assemblage. MPD_beta and 

235 MNTD_beta were derived from MPD and MNTD, respectively, but instead of comparing species 

236 within the same assemblage, they compare species from two different assemblages (Webb et al. 

237 2008). PCD measures pairwise phylogenetic dissimilarity between assemblages by asking how 

238 much of the variance of values of a hypothetical trait among species in one assemblage can be 

239 predicted by the values of species from another. PCD is independent of species richness of the 

240 pair of assemblages and has relatively higher statistical power than other common metrics (Ives 

241 and Helmus 2010).

242 As PD and MNTD are both correlated with species richness (Miller et al. 2017), null models that 

243 retain species composition while randomly shuffling tips of the phylogeny are commonly used to 

244 standardize phylogenetic diversity results. Despite the fact that MPD is independent of species 

245 richness, its variance changes relative to species richness (Miller et al. 2017). Therefore, null 

246 models are also frequently applied to MPD. Using the null model, standardized effect size (SES) 

247 for each metric can be calculated as , where  is the observed value, and 𝑆𝐸𝑆 =
𝑋𝑜𝑏𝑠 ― 𝑚𝑒𝑎𝑛(𝑋𝑛𝑢𝑙𝑙)

𝑠𝑑(𝑋𝑛𝑢𝑙𝑙) 𝑋𝑜𝑏𝑠

248  are the n values calculated based on null models. Recently, analytic solutions for the SES of 𝑋𝑛𝑢𝑙𝑙

249 phylogenetic alpha diversity metrics were developed (Tsirogiannis and Sandel 2016). The 

250 analytic solutions eliminate the need for computationally expensive simulations used to calculate 

251 SES values, especially for studies in high-diversity systems. In our simulations, because all sites 

252 have the same species richness, we expected that the SES values based on the analytic solutions 

253 would have the identical results as the observed phylogenetic diversity values for the statistical 

254 analyses we conducted (correlation and linear mixed models, see the Statistical analyses section 

255 below). Our simulations confirmed this expectation (Appendix S1: Fig. S3-S6). No analytic 

256 solutions for the SES of Unif, MNTD_beta, and PCD are available. However, the pairwise beta 
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257 diversity metrics share the same core formula with their corresponding alpha diversity metrics. 

258 We thus expect that the results based on SES of these beta diversity metrics will be the same as 

259 those based on the observed diversity values in our simulations. Given the similarity in results 

260 between raw and standardized phylogenetic alpha diversity measures and the large 

261 computational burden of calculating SES for phylogenetic beta diversity metrics, we did not 

262 include the results for SES in this study.

263 Traits simulation and phylogenetic signal

264 For each purpose-built phylogeny, we simulated continuous traits with two common models of 

265 evolution: Brownian Motion (BM) and Ornstein-Uhlenbeck (OU). For both evolution models, 

266 we set the rate of trait divergence (sigma, , a scaling term) to one of three values: 0.2, 0.75, 𝜎2

267 and 1.5. For the OU model, we further varied the strength of selection (alpha, ) to be one of 𝛼

268 three values: 0.05, 0.5, and 1. Note that if alpha = 0, the OU model becomes the BM model. We 

269 simulated 12 (3  × 4  levels) continuous traits for each purpose-built phylogeny. For each 𝜎2 𝛼

270 simulated trait, we then estimated its phylogenetic signal with all 5 phylogenies using Pagel’s 

271 lambda (λ) (Pagel 1999) and Blomberg’s K (Blomberg et al. 2003), two methods that are most 

272 widely used in ecology. Both λ and K have expected values of 1 if a trait evolved along the 

273 phylogeny under a BM evolution model. We repeated this process 1,000 times, resulting in 

274 180,000 estimates of phylogenetic signal (3 datasets × 3 sigma × 4 alpha × 5 phylogenies × 1,000 

275 replicates). For traits that were simulated under the BM model (i.e., alpha = 0), we expected that 

276 the average values of both estimated λ and K to be 1 when tested with the purpose-built 

277 phylogenies. For traits that were simulated under strong OU models (alpha = 0.5 and 1 here), we 

278 expected the average values of both estimated λ and K to approach zero (i.e., weak signal), 

279 regardless of which phylogeny we used. Note that K can approach, but will never be, zero by 

280 definition. In addition, we examined the type I error rates (i.e., false positive) in estimating λ and 

281 K for all phylogenies by randomly reshuffling trait values that were simulated under the BM 

282 model with  = 0.2, resulting in another 15,000 estimates of phylogenetic signal (3 datasets × 5 𝜎2

283 phylogenies × 1,000 replicates).
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284 Statistical analyses

285 We have three primary goals. First, we want to test the correlation between phylogenetic 

286 diversity values calculated from purpose-built phylogenies and those calculated from synthesis-

287 based phylogenies. For this goal, we calculated the average Spearman’s rank-based measure of 

288 the correlation between phylogenetic diversity values from all phylogenies across the 1,000 

289 simulations. We used rank-based correlation because we are interested in relative, rather than 

290 absolute, phylogenetic diversity.

291 Second, we want to investigate whether phylogenetic diversity calculated from synthesis-based 

292 phylogenies over- or under-estimates phylogenetic diversity when compared to purpose-built 

293 phylogenies. For this goal, we used Linear Mixed Models (LMMs) with phylogenetic diversity 

294 values from the purpose-built phylogeny as the response variable, the phylogenetic diversity 

295 values from one of the synthesis-based phylogenies as the predictor, and the simulation dataset 

296 as the random term. We scaled the diversity values to have mean zero and standard deviation one 

297 before fitting the models. We also forced the regression line through the origin. If the slope of 

298 the regression line is significantly different from zero, then phylogenetic diversity based on 

299 purpose-built phylogenies and synthesis-based phylogenies is significantly correlated. 

300 Furthermore, if the slope is higher/lower than one, then the phylogenetic diversity values based 

301 on the synthesis-based phylogenies are lower/higher than those based on the purpose-built 

302 phylogeny. For pairwise beta diversity, because one site can be compared with all other sites, the 

303 beta diversity values are not independent. To account for this, we included datasets, site1 within 

304 each dataset (the first site in the site pair), and site2 within each site (the other site in the site 

305 pair) as random terms in the LMMs (cf. Li and Waller 2017).

306 Third, we want to determine which synthesis-based phylogeny estimated phylogenetic signal 

307 values that are the closest to those estimated with the purpose-built phylogeny. For this question, 

308 we mostly relied on data visualization instead of statistical tests because of the large sample size 

309 (n = 1,000). Furthermore, Pagel’s λ had very small variances when estimating with the purpose-

310 built phylogenies (<  for all simulations under BM); such small variances led all estimated 10 ―7

311 correlation coefficients to be around zero. Thus, we only focus on the absolute differences in the 

312 estimated λ values between the purpose-built phylogeny and the synthesis-based phylogenies. 

313 For Blomberg’s K, we compared estimated values of tree_purpose with those from other 
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314 synthesis-based phylogenies using Spearman’s rank correlations. We used non-parametric tests 

315 for Blomberg’s K because it has a highly skewed distribution. The workflow of this study is 

316 outlined in Fig. 1. All analyses were conducted with R v3.4.3 (R Core Team 2017).

317 Results

318 Alpha diversity

319 Phylogenetic alpha diversity (PD, MPD, and MNTD) values calculated with different 

320 phylogenies (tree_purpose, tree_apg, tree_zanne, and tree_otl) were highly correlated. The 

321 median Spearman’s correlation of the 1,000 simulations was larger than 0.63 across all 

322 comparisons (p < 0.05 for all simulations and comparisons; Fig. 2). In most cases, the median 

323 Spearman’s correlation was larger than 0.85, especially for PD and MPD. Therefore, PD and 

324 MPD were more robust to varying the source of the phylogeny than MNTD. Across all 

325 comparisons, diversity values based on tree_otl showed the highest correlations with those based 

326 on tree_purpose, with an average correlation across all comparisons of 0.902. As expected, 

327 diversity values based on the random phylogeny tree_random were not correlated with diversity 

328 values based on other phylogenies, with median Spearman’s correlations close to zero (Fig. 2).

329 The slopes of linear mixed models (LMM) were all less than one (Table 1), suggesting that 

330 diversity values based on synthesis-based phylogenies generally were higher than the diversity 

331 values based on the purpose-built phylogenies. The PD metrics based on the Open Tree of Life 

332 phylogeny (tree_otl) had estimates closest to those calculated from the purpose-built phylogenies 

333 (Table 1).

334 Beta diversity

335 The phylogenetic beta diversity results (Unfi, MPD_beta, MNTD_beta, and PCD) show a similar 

336 pattern to the alpha diversity results. Beta diversity of community pairs based on different 

337 phylogenies was also highly correlated, with the median Spearman’s correlation from the 1,000 

338 simulations greater than 0.69 across all comparisons (Fig. 3). Overall, phylogenetic beta diversity 

339 is more sensitive to the source of the phylogeny than alpha diversity. MPD_beta is the most 

340 robust beta diversity metric to the source of the phylogeny, followed by MNTD_beta, Unif, and 

341 PCD. Again, PD metrics based on tree_otl showed the highest correlation with metrics based on 
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342 the purpose-built tree, followed by tree_zanne and tree_apg. Beta diversity values based on 

343 tree_random did not correlate with values based on any other phylogeny.

344 The slopes of LMMs were generally less than one (Table 2), suggesting that beta diversity values 

345 based on synthesis-based phylogenies also were higher than the diversity values based on the 

346 purpose-built phylogenies. However, slopes for MPD_beta values based on tree_otl were all 

347 greater than one, suggesting that beta PD metrics were lower than those calculated from the 

348 purpose-built trees. Metrics based on tree_zanne for the flora of Florida dataset were also lower 

349 than those calculated from the purpose-built tree (Table 2). For the other beta diversity metrics 

350 (i.e., Unif, MNTD_beta, and PCD), tree_otl generally gave results closer to those based on the 

351 purpose-built trees than did the other synthesis-based phylogenies.

352 Phylogenetic signal

353 For all simulated traits, estimated phylogenetic signal (both Pagel’s λ and Blomberg’s K) of 

354 tree_random were all around 0 as expected (Appendix S1: Fig. S7). Therefore, we excluded 

355 those values from the comparisons. The divergence rate ( ) did not affect the results (Appendix 𝜎2

356 S1: Figs. S8, S9). Therefore, we only focus here on  = 0.2.𝜎2

357 Estimated Pagel’s λ values of tree_otl were the closest to those of tree_purpose among all three 

358 synthesis-based phylogenies for both the pine rockland and alpine datasets (Fig. 4) when traits 

359 were simulated under BM and weak OU (alpha = 0.05). For the Florida dataset, this is not the 

360 case when traits were simulated under BM. Here, average estimated Pagel’s λ values of tree_apg 

361 were slightly closer to the expected value than tree_otl. However, tree_apg had much larger 

362 variance (Fig. 4) and lower log likelihood (Appendix S1: Fig. S10) compared with tree_otl. 

363 Therefore, tree_otl had the best fit among all three synthesis-based phylogenies. The absolute 

364 differences of average estimated Pagel’s λ values between tree_purpose and tree_otl were small 

365 when traits were simulated under BM (< 0.022 in all datasets) or weak OU (< 0.13 in all 

366 datasets). Furthermore, estimated Pagel’s λ values of tree_otl were all significantly different 

367 from 0 when traits were simulated under BM and weak OU (high statistical power, Appendix S1: 

368 Table S1). Together, these results suggest that tree_otl can provide relatively close estimates of 

369 Pagel’s λ values, has high statistical power, and controls type I error well (Appendix S1: Table 

370 S1).
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371 For traits simulated under BM, the average values (not the median by definition) of estimated 

372 Blomberg’s K of tree_purpose were all about 1 as expected (Fig. 5). However, the estimated 

373 values had large variance (standard deviation > 0.7) and were skewed (Fig. 5). The high variance 

374 allowed us to compare estimated K values between tree_purpose and the three synthesis-based 

375 phylogenies statistically. When traits were simulated under BM, estimated K values of synthesis-

376 based phylogenies were all significantly different from those estimated with tree_purpose 

377 (except tree_apg for the alpine dataset, paired Wilcoxon tests). However, their values were 

378 highly correlated with those estimated with tree_purpose (all Spearman’s  > 0.9, p << 0.001, 𝜌

379 Fig. 6). When traits were simulated under weak OU (alpha = 0.05), estimated K values of 

380 tree_otl have the highest Spearman’s  (all > 0.7) with those of tree_purpose and the highest 𝜌

381 statistical power compared to other synthesis-based phylogenies (Appendix S1: Table S1). 

382 Compared to Pagel’s λ, Blomberg’s K has higher statistical power when traits were simulated 

383 under OU (Appendix S1: Table S1). All phylogenies had good type I error controls when 

384 estimating phylogenetic signal with Blomberg’s K (Appendix S1: Table S1). Together, these 

385 results suggest that tree_apg can provide relatively close estimates of Blomberg’s K values when 

386 the number of species is small. When the number of species is large (e.g., > 1,500), both tree_otl 

387 and tree_apg work well.

388 Discussion

389 We examined how different phylogenies, purpose-built and synthesis-based, influenced 

390 phylogenetic diversity measures (alpha and beta) and trait phylogenetic signal commonly used in 

391 community phylogenetic analyses. We found three main results. First, the synthesis-based 

392 phylogenies generally yield higher estimates of phylogenetic diversity compared with purpose-

393 built phylogenies. This is not surprising because synthesis-based phylogenies generally have 

394 higher proportions of polytomies than purpose-built ones, which, in turn, leads to larger distances 

395 between species within these polytomies. This result agrees with Boyle and Adamowicz (2015) 

396 and Qian and Zhang (2016) but contradicts Swenson (2009), who found that phylogenies with 

397 more polytomies under-estimated phylogenetic diversity. Second, phylogenetic diversity values 

398 calculated from synthesis trees were highly correlated with those based on purpose-built 

399 phylogenies, even if the former were higher. These results hold for both alpha and beta diversity 

400 and for phylogenies with different numbers of tips. Third, estimated Pagel’s λ values of tree_otl 
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401 were very close to expected values when traits were simulated under BM or weak OU. Estimated 

402 Blomberg’s K values of tree_otl had high correlation (Spearman’s  > 0.9) with expected values 𝜌

403 when traits were simulated under BM. While our study focuses on plants, we expect that our 

404 results will generalize to any taxonomic group. Therefore, phylogenies derived from synthesis 

405 trees, especially from the Open Tree of Life, can provide similar results to purpose-built 

406 phylogenies while saving effort, time, and cost when quantifying and comparing phylogenetic 

407 diversity of communities and the phylogenetic signal of traits.

408 As ecologists and conservation biologists, we mostly care about the relative diversity among 

409 communities instead of their absolute diversity. For example, for a set of communities within one 

410 region, we may be interested in which communities have the highest/lowest phylogenetic 

411 diversity. The absolute phylogenetic diversity of each community does not mean much without 

412 comparing it to other communities. Because phylogenetic diversity values based on different 

413 phylogenies are highly correlated with each other, the information available for community 

414 phylogenetic questions does not differ much between approaches. Even though such synthesis-

415 based phylogenies may yield higher absolute phylogenetic diversity for communities, the relative 

416 phylogenetic diversity among communities will be similar to those calculated from typically 

417 better resolved but more difficult to obtain purpose-built phylogenies. Based on the information 

418 provided by relative values of phylogenetic diversity, the potential improved resolution of 

419 purpose-built trees for calculating the absolute PD may not be worth the effort for community 

420 phylogenetic questions.

421 Our finding that phylogenetic diversity metrics are relatively insensitive to the phylogenies from 

422 which they are derived has been supported by other recent studies. For example, using simulated 

423 fully bifurcating and gradually unresolved phylogenies, Swenson (2009) found that phylogenetic 

424 diversity measures are generally robust to the uncertainty of the phylogenies, especially if the 

425 uncertainty is concentrated in recent nodes of the phylogeny. Using multiple posterior 

426 phylogenies of bats, Patrick and Stevens (2014) rearranged branches across these phylogenies 

427 and also found that phylogenetic diversity measures are robust to the phylogenies from which 

428 they are calculated. More recently, Cadotte (2015) transformed a phylogeny with different 

429 evolution models and found that phylogenetic diversity measures are insensitive to the branch 

430 lengths of the phylogeny; getting the topology right is more important when calculating 
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431 phylogenetic diversity. Qian and Zhang (2016) found similar phylogenetic diversity values of the 

432 angiosperm tree flora of North America based on phylogenies derived from Zanne et al. (2014) 

433 and Phylomatic (Webb and Donoghue 2005). These studies, however, only focused on alpha 

434 diversity. Our study extends the literature by also examining the effects of phylogenies on beta 

435 diversity. We found the same pattern for beta diversity and alpha diversity. Taken together, a 

436 general pattern emerges: community phylogenetic alpha and beta diversity metrics are robust to 

437 reasonably good modern phylogenies.

438 Why are phylogenetic diversity values from purpose-built and synthesis-based phylogenies 

439 highly correlated? There are two possible reasons. First, both purpose-built and synthesis 

440 phylogenies likely share a similar systematic backbone and empirical resources such as genes, 

441 taxonomies, and expert knowledge. This guarantees that phylogenetic diversity based on these 

442 phylogenies will not be dramatically different. Second, phylogenetic diversity metrics aggregate 

443 (by summing or averaging) all information into one value for each site, which could help buffer 

444 most uncertainty and further mask most of the differences between different phylogenies.

445 Our results for trait phylogenetic signal suggest that synthesis-based phylogenies can be used as 

446 reasonable proxies for purpose-built phylogenies in estimating phylogenetic signal. In our 

447 simulations, synthesis-based phylogenies can either slightly overestimate (tree_otl), 

448 underestimate (tree_zanne), or produce largely unbiased estimates (tree_apg) of trait 

449 phylogenetic signal when the phylogeny is small (< 1,000 species). However, estimated values 

450 based on synthesis-based phylogenies were either highly correlated with (Blomberg’s K) or close 

451 to (Pagel’s λ) those estimated from the “true” phylogeny (tree_purpose) under the BM trait 

452 evolution model. A recent study that suggested Pagel’s λ is more robust to polytomies and 

453 suboptimal branch-length information in the phylogeny than Blomberg’s K (Molina-Venegas 

454 and Rodriguez 2017). Furthermore, another previous study found that Blomberg’s K 

455 overestimated phylogenetic signal if a phylogeny has a large proportion of polytomies (Davies et 

456 al. 2012). Traits in these studies, however, were simulated only under the BM model of 

457 evolution. Our simulations of traits under the OU model of evolution suggested that, compared to 

458 Pagel’s λ, Blomberg’s K is more sensitive (more changes in estimated values when alpha 

459 changed from 0 to 0.05) and has higher statistical power in identifying less-than-BM 

460 phylogenetic signal, making it a more sensitive tool to detect departures from the BM model 
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461 (Münkemüller et al. 2012). This might be because Blomberg’s K is more sensitive to the pattern 

462 of covariances generated by the OU model of evolution than is Pagel’s λ. Therefore, our results 

463 suggest that both Pagel’s λ and Blomberg’s K should be used in identifying phylogenetic signal 

464 given their own strength and weakness.

465 Our results should encourage ecologists to increasingly include phylogenetic analyses in 

466 community ecology studies, given the growing accessibility of synthesis-based phylogenies and 

467 the robustness of phylogenetic diversity and phylogenetic signal measures based on them. 

468 Compared with purpose-built phylogenies, synthesis-based phylogenies generally have broader 

469 taxon sampling coverage, use more fossil calibration points, and reflect up-to-date taxon 

470 classifications. Therefore, we expect synthesis-based phylogenies to be more accurate in terms of 

471 topology and node ages, which some have argued are more important than branch lengths for 

472 phylogenetic diversity estimation (Cadotte 2015). However, our results should not discourage the 

473 construction of purpose-built phylogenies, which are clearly valuable for many ecological and 

474 evolutionary questions. This is especially the case for purpose-built trees constructed from local 

475 DNA samples. The sequencing of species in a given community can yield data for species that 

476 have never been sequenced before. These new sequences can then be incorporated into synthesis 

477 trees, improving their resolution for future research. Direct sequencing of samples collected for a 

478 community is also important when the community contains undescribed (Pons et al. 2006) or 

479 cryptic species (Hebert et al. 2004). Furthermore, for many taxonomic groups, synthesis trees are 

480 not available or are far too poorly sampled, and constructing purpose-built trees is the only 

481 approach possible for community phylogenetic analyses.

482 Conclusion

483 Community phylogenetics is rapidly becoming an important component of community ecology, 

484 macroecology, and biodiversity conservation (Webb et al. 2002, Vamosi et al. 2009). For 

485 calculations and comparisons of community phylogenetic diversity and trait phylogenetic signal, 

486 an important question arises: can we derive phylogenies from already-available synthesis trees, 

487 or should we generate our own purpose-built phylogenies? Our results suggest that phylogenies 

488 derived from common synthesis trees yield higher estimates of phylogenetic diversity metrics 

489 when compared to purpose-built trees, but values of phylogenetic diversity are highly correlated 
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490 with those of purpose-built trees. Furthermore, estimated trait phylogenetic signal using 

491 synthesis-based phylogenies was reasonably close to (Pagel’s λ) and had high correlations with 

492 (Blomberg’s K) expected values based on the purpose-built phylogenies. Particularly, the Open 

493 Tree of Life, which includes all major phylogenetic groups (e.g. plants, birds, fishes, mammals, 

494 insects, fungi, Archaea, Bacteria), produced the most similar values of community phylogenetic 

495 diversity and trait phylogenetic signal when compared to metrics derived from purpose-built 

496 trees. Furthermore, a recently updated Open Tree of Life phylogeny for seed plants has branch 

497 lengths calculated based on molecular data (Smith and Brown 2018). With new data and studies 

498 continuously being integrated into synthesis trees such as the Open Tree of Life, these resources 

499 are poised to continue to improve rapidly. As a result, for common community phylogenetic 

500 analyses such as comparing phylogenetic diversity among communities and estimating trait 

501 phylogenetic signal, we recommend taking advantage of recent well-developed products such as 

502 the Open Tree of Life.
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659

660 Tables

661 Table 1 Slopes based on linear mixed models (LMMs). Within the model, the response variable 

662 is the phylogenetic alpha diversity values based on the purpose-built phylogeny; the predictor is 

663 the phylogenetic alpha diversity values based on one of the synthesis-based phylogenies 

664 (tree_apg, tree_zanne, tree_otl, and tree_random). Therefore, slopes less than one indicate that 

665 diversity values based on synthesis-based phylogenies were higher than those based on the 

666 purpose-built phylogenies. Numbers within parentheses are the 95% confidence intervals for the 

667 slopes.

668

index dataset tree_apg tree_zanne tree_otl tree_random

PD Pine (540 sp) 0.843 (0.837, 0.849) 0.917 (0.913, 0.922) 0.971 (0.969, 0.974) -0.001 (-0.013, 0.01)

PD Alpine (1064 sp) 0.854 (0.848, 0.86) 0.915 (0.91, 0.919) 0.937 (0.933, 0.941) -0.022 (-0.034, -0.01)

PD FL (1548 sp) 0.92 (0.916, 0.924) 0.891 (0.886, 0.896) 0.871 (0.865, 0.876) 0.006 (-0.005, 0.018)

doi:10.5281/zenodo.3235679
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index dataset tree_apg tree_zanne tree_otl tree_random

MPD Pine (540 sp) 0.891 (0.885, 0.896) 0.972 (0.969, 0.974) 0.996 (0.995, 0.997) 0.047 (0.036, 0.059)

MPD Alpine (1064 sp) 0.957 (0.954, 0.96) 0.997 (0.997, 0.998) 0.941 (0.937, 0.945) 0.004 (-0.008, 0.015)

MPD FL (1548 sp) 0.962 (0.958, 0.965) 0.95 (0.946, 0.953) 0.895 (0.889, 0.9) -0.002 (-0.014, 0.009)

MNTD Pine (540 sp) 0.78 (0.773, 0.788) 0.787 (0.78, 0.794) 0.897 (0.892, 0.902) 0.006 (-0.006, 0.017)

MNTD Alpine (1064 sp) 0.713 (0.705, 0.721) 0.794 (0.787, 0.801) 0.874 (0.869, 0.88) -0.016 (-0.028, -0.004)

MNTD FL (1548 sp) 0.856 (0.85, 0.862) 0.797 (0.79, 0.804) 0.831 (0.824, 0.837) 0.03 (0.018, 0.041)

669

670 Table 2 Slopes based on linear mixed models (LMMs). Within the model, the response variable 

671 is the phylogenetic beta diversity values based on the purpose-built phylogeny; the predictor is 

672 the phylogenetic beta diversity values based on one of the synthesis phylogenies (tree_apg, 

673 tree_zanne, tree_otl, and tree_random). Therefore, slopes less than one indicate that diversity 

674 values based on synthesis-based phylogenies were higher than those based on the purpose-built 

675 phylogenies. Numbers within parentheses are the 95% confidence intervals for the slopes.

676

index dataset tree_apg tree_zanne tree_otl tree_random

Unif Pine (540 sp) 0.824 (0.822, 0.826) 0.791 (0.789, 0.793) 0.87 (0.869, 0.872) 0.063 (0.058, 0.067)

Unif Alpine (1064 sp) 0.811 (0.808, 0.813) 0.871 (0.869, 0.873) 0.896 (0.894, 0.897) 0.056 (0.053, 0.06)

Unif FL (1548 sp) 0.871 (0.869, 0.873) 0.791 (0.788, 0.793) 0.814 (0.812, 0.816) 0.071 (0.066, 0.075)

MPD_beta Pine (540 sp) 0.34 (0.337, 0.342) 0.972 (0.969, 0.975) 1.23 (1.225, 1.234) 0.009 (0.007, 0.011)

MPD_beta Alpine (1064 sp) 0.797 (0.794, 0.799) 0.976 (0.976, 0.977) 1.122 (1.117, 1.127) 0.002 (0.001, 0.004)

MPD_beta FL (1548 sp) 0.778 (0.776, 0.781) 1.343 (1.339, 1.347) 1.805 (1.797, 1.813) 0.001 (-0.001, 0.002)

MNTD_beta Pine (540 sp) 0.856 (0.853, 0.859) 0.857 (0.854, 0.86) 0.928 (0.926, 0.93) 0.054 (0.05, 0.058)

MNTD_beta Alpine (1064 sp) 0.896 (0.894, 0.899) 0.952 (0.95, 0.954) 0.942 (0.94, 0.943) 0.046 (0.043, 0.05)

MNTD_beta FL (1548 sp) 0.787 (0.785, 0.789) 0.762 (0.76, 0.764) 0.75 (0.748, 0.752) 0.039 (0.036, 0.043)

PCD Pine (540 sp) 0.857 (0.854, 0.86) 0.828 (0.825, 0.831) 0.872 (0.87, 0.875) 0.089 (0.085, 0.093)

PCD Alpine (1064 sp) 0.827 (0.825, 0.83) 0.912 (0.909, 0.915) 0.907 (0.905, 0.909) 0.059 (0.055, 0.063)

PCD FL (1548 sp) 0.802 (0.799, 0.804) 0.744 (0.741, 0.746) 0.719 (0.716, 0.722) 0.054 (0.05, 0.059)

677

678 Figures

679 Figure 1: Workflow to assess effects of commonly used synthesis phylogenies on community 

680 phylogenetic diversity and trait phylogenetic signal estimations. Boxes with light yellow 

681 background are related to community phylogenetic diversity; boxes with light blue background 
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682 are related to trait phylogenetic signal. Abbreviations: APG, Angiosperm Phylogeny Group; 

683 OTL, Open Tree of Life; PD, Faith’s Phylogenetic diversity; MPD, Mean pairwise distance; 

684 MNTD, Mean nearest taxon distance; Unif, Unifraction; PCD, Phylogenetic community 

685 dissimilarity; λ, Pagel’s lambda; K, Blomberg’s K.

686 Figure 2: Median correlations of phylogenetic alpha diversity values based on different 

687 phylogenies.

688 Figure 3: Median correlations of phylogenetic beta diversity values based on different 

689 phylogenies.

690 Figure 4: Estimated Pagel’s λ for traits simulated with divergence rate  of 0.2. When traits 𝜎2

691 were simulated under BM and weak OU models, estimated Pagel’s λ values based on tree_otl 

692 were the closest to those estimated based on tree_purpose in most cases and had smaller 

693 variances than other synthesis-based phylogenies. Note that we allow λ to be larger than 1 in all 

694 estimates.

695 Figure 5: Estimated Blomberg’s K for traits simulated with divergence rate  of 0.2. Because 𝜎2

696 for Blomberg’s K, it is the mean, not the median, value that has the expected value of 1, we did 

697 not use boxplots as in Fig. 4. Instead, we added the average values (red points) on top of jittered 

698 raw estimated values.

699 Figure 6: Spearman’s rank correlations of estimated Blomberg’s K values between tree_purpose 

700 and the three synthesis-based phylogenies. 
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