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Abstract 

China’s rapid economic growth has tremendously accelerated its energy use, demanding for a 

more sustainable supply of scarce and non-renewable energy. Using a firm-level dataset of 30 

major Chinese electricity utilities from 2010 to 2014, this paper applies a stochastic frontier 

analysis (SFA) to determine the utilities’ technical efficiency, incorporating their operational 

environments related to a recent policy reform to encourage sustainable development. Our 

main findings are: (1) asset related subsidy increases efficiency while income related subsidy 
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lowers efficiency; (2) state ownership, consumer density, and a Chief Executive Officer with 

science and engineering background are factors that can improve technical efficiency; and (3) 

the five largest regional electricity generation firms exhibit above-average efficiency levels. 

These results provide evidence that supports the recent Chinese policy reform. The findings 

also suggest that electricity generation efficiency, which is essential to sustainable economic 

development, can be improved through performance-based regulation and incentives. 
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1. Introduction 

The world has witnessed China’s rapid economic growth in the past decades and its 

continued growth in recent years. According to the National Bureau of Statistics of China, 

China’s gross domestic product (GDP) has increased from 41,303.03 billion RMB in 2010 to 

64,397.40 billion RMB in 2014. This economic growth has tremendously accelerated its 

energy demand, calling for a more effective and sustainable use of scarce and non-renewable 

energy (Lin & Jiang, 2011). In 2014, China’s total consumption of standard coal topped the 

world at 4.26 billion tons. China burns more coal (accounting for more than 50% of global 

consumption) and emits more carbon and sulfur dioxide due to electricity generation than any 

other country (Boden et al., 2010; Smith et al., 2011; BP, 2013). 

Meanwhile, China is facing substantial risk of a shortage in electricity supply that may 

lead to considerable economic cost and hinder sustainable economic growth (Ou et al., 2016). 

Policymakers are urged to take serious actions to ensure electricity supply. Improving 

efficiency on the supply side is an essential step toward sustainable economic development 

(Ma et al., 2016). Thus, along with encouraging the development of renewable energy sources, 

the Chinese government has been working to introduce competition on the supply side, 

encourage energy savings on the demand side, and incentivizing electricity utilities to 

advance their technologies (Ma & Zhao, 2015). With the goal to encourage utilities to invest 

in research and development as well as equipment upgrades, the recent policy reform in China 

has two distinct features. First, rather than assisting in the development of all electricity 

generation utilities, the Chinese government places emphasis on large utilities. Second, the 

government specifically defined two types of subsidies based on where the subsidy will be 

used: asset investment or income compensation (Wang & Lin, 2017).   

In this paper, we apply a Stochastic Frontier Analysis (SFA) to examine the performance 

of the Chinese electricity generation utilities, controlling for the operational environments that 
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reflect the current policy. The SFA model allows us to examine a firm’s efficiency by 

including a noise (𝑣𝑣𝑖𝑖𝑖𝑖) and production inefficiency (𝑢𝑢𝑖𝑖𝑖𝑖) as error terms. Efficiency is defined 

as the firm’s actual output relative to the output that could have been produced with the same 

input vector had the firm been fully efficient. Operational environments related to the current 

policy are incorporated to explore the effect of the policy reform on electricity generation.  

Government subsidies crucially affect the performance of public utility sectors such as 

electricity, natural gas, and water. Firms can use the subsidies to replace aging equipment which 

will improve the firms’ production efficiency. Firms can also use the subsidies to compensate 

for heavy labor and production costs which will necessarily reduce both their budget and 

incentives to improve efficiency. Previous research has focused on examining the overall 

impact of government subsidies on firms’ production efficiency. Due to the contradicting effects 

of the two subsidies, the impacts of the subsidies may offset each other, leading to an 

underestimation of the influence of each individual subsidy. Even though the literature has 

recognized the existence of heterogeneity in subsidies and their corresponding opposing impact, 

to our best knowledge, there has yet to be any empirical work that explicitly investigates the 

differential effects of government subsidies on firms’ performance. 

The recent Chinese policy reform on government subsidies provide us an opportunity to 

directly analyse the two contradicting effects of government subsidies. The current Chinese 

policy reform makes a clear distinction between asset related subsidy and income related 

subsidy: the former can only be spent on equipment, plant, and property while the latter can be 

spent on anything other than long-term assets. The government can easily monitor and track the 

use of asset related subsidies but may not be able to do so for income related subsidies. Under 

strict supervision, electricity utilities must spend the asset related subsidies on plants, equipment, 

and network upgrades, which will lead to better operational performance and will improve the 

firm’s technical efficiency. Without serious monitoring, electricity utilities may use the income 
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related subsidies to compensate for their loss, which will reduce their incentives to lower costs 

and improve production efficiency. 

Using this unique feature in the reform policy, we find that while asset related subsidy 

improves efficiency, income related subsidy may pose an adverse effect on efficiency. By 

distinguishing the impacts from the two different government subsidies, our paper contributes to 

the literature by providing sound empirical evidence that confirm the underlying mechanism of 

government subsidies predicted in the theory. Our findings also draw important implications to 

the optimal subsidy design. Simply distributing subsidies to electricity utilities is unlikely to 

achieve a long-term goal of technology advancement. Instead, the government and regulators 

may consider issuing specific guidelines on how the subsidies will be used. Additionally, certain 

policies may be necessary to enhance the transparency in the use of subsidy by the utilities. 

Only when the subsidy is spent on replace aging equipment, research and development, and 

other forms of technology advancement will there be long term improvement in production 

efficiency.  

The rest of the paper is organized as follows. Section 2 reviews the market structure of 

the electricity generation sector in China and summarizes the recent policy reform of 

sustainable development in the Chinese electricity sector. Section 3 provides a review of the 

literature on the efficiency of electricity generation. Section 4 introduces the SFA model and 

Section 5 presents the estimation results. Section 6 concludes the paper and draws policy 

implications on efficiency improvement and sustainable development. 

 

2. Electricity Generation Reform in China 

In China, the National Energy Administration (NEA) founded in 2013 oversees the 
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development and reforms of the entire energy sector.1 The Chinese electricity generation 

sector faces increasing problems of aging facilities, limited capacity, and low skill level of 

labor due to lack of education and professional training. Consequently, to ensure long-term 

electricity supply, there is a strong and urgent need for technology advancement in the energy 

generation sector.  

The State Power Corporation (SPC) held monopoly power in both electricity generation 

and electricity distribution sectors in China prior to 2002, at which time the State Council 

launched a restructuring program to dismantle the SPC into a number of regional electricity 

utilities (Lam & Shiu, 2004; Zeng et al., 2016). This decentralization aimed to introduce 

competition in the electricity sector. The restructuring program, however, did not result in 

perfect competition. Since then, five regional electricity generation companies (Huaneng, 

Datang, Huadian, Guodian, and State Power Investment Corporation) grew and began to 

dominate the electricity generation market. Meanwhile, two power grid operators, the State 

Grid Corporation of China and the China Southern Power Grid, gradually became the 

dominant firms in the electricity distribution sector. Currently, there are six regional grids in 

China, of which five are managed by the State Grid Corporation of China (north, north-east, 

east, central, and north-west) and an independent grid (south) is managed by the China 

Southern Power Grid.  

Ongoing reforms intend to improve efficiency by separating power plants from 

power-supply grids and privatizing a significant number of state-owned properties. Most 

recently, during China’s 11th Five-Year-Plan between 2006 and 2010, the government 

launched a new policy: Promote Large and Close Small (Zhang et al., 2014). This policy aims 

to shut down all the remaining small regional electricity utilities and encourage the 

                                                 
 
1 A detailed description of the functions of the NEA is available on the National Development and Reform 
Commission (NDRC)’s website at ndrc.gov.cn. 
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development of the five largest electricity generation firms. It is believed that economies of 

scale can improve generation efficiency while strengthening competition among the five 

utilities. 

Although competition was introduced to the electricity generation sector, the Chinese 

government maintains some control. Government intervention and price regulation suppress 

the price of electricity to below the cost of operation. To maintain the operation of the utility 

plants and ensure electricity supply, the Chinese government must provide large subsidies to 

the electricity generation utilities. On February 15th, 2006, the Ministry of Finance issued the 

No.16 Accounting Standards for Enterprises which became effective on January 1st, 2007. 

This document defines two types of government subsidies: assets related subsidy and income 

related subsidy. The former can be used by a qualified electricity utility to purchase, acquire, 

or construct long-term assets, such as equipment and plants; the latter can be used for almost 

any other expense. Both types of subsidies must be published in the recipient’s financial 

report. With this new standard, the Chinese government not only determines the amount of 

subsidy distributed to the electricity utilities, it also imposes restrictions on how the subsidy 

can be used.  

 

3. Literature review 

There has been extensive research on electricity utility efficiency. Recent studies have 

highlighted the importance of incorporating operational environments that may affect utilities’ 

performance (Yang & Pollitt, 2009, 2010; Sueyoshi et al., 2010; Sueyoshi & Goto, 2011).  

Most of these studies employ either a Data Envelopment Analysis (DEA) or a Stochastic 

Frontier Analysis (SFA). DEA, a non-parametric method, applies linear programming to 

determine the efficiency of firms without assuming a functional form of the production 

function. The standard DEA does not consider operational or environmental factors when 
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determining efficiency. Though other advanced methods can be added to a standard DEA to 

incorporate these factors, it may also introduce noise to the model. SFA, a parametric method, 

applies statistical analysis to examine efficiency while controlling for environmental factors. 

However, SFA assumes functional forms for the production function and the cost function. 

There are advantages and disadvantages for both DEA and SFA and neither method is strictly 

preferred over the other.2  

Table 1 presents a summary of the studies on energy generation efficiency in China. The 

amount of electric power generated is generally used as the output variable while capital, 

labor, and fuel consumption are used as input variables (Lam & Shiu, 2001, 2004; Yang & 

Pollitt, 2009, 2010; Fallahi et al., 2011; Zhou et al., 2013; Zhang & Choi, 2013; Zhao & Ma, 

2013; Bi et al., 2014; Zhang et al., 2014; Ma & Zhao, 2015). Some studies also include the 

utility’s installed capacity as an input (Bi el al., 2014; Fallahi et al., 2011; Ma & Zhao, 2015; 

Yang & Pollitt, 2009, 2010). Additionally, some papers use undesirable output, such as the 

emissions of SO2, NOX and CO2, as output variables to address the issue of pollution (Bi et al., 

2014; Yang & Pollitt, 2009, 2010; Zhang & Choi, 2013; Zhou et al., 2013).   

Most studies conduct a standard DEA to analyze firms’ efficiency without incorporating 

environmental factors (Bi et al., 2014; Fallahi et al., 2011; Zhang, 2014; Zhang & Choi, 2013). 

Some works apply more advanced regression methods to a standard DEA to account for 

environmental factors (Lam & Shiu, 2001, 2004; Zhao & Ma, 2013; Zhou et al., 2013). There 

are also studies that apply an SFA to incorporate operational environments such as innovation 

capability, ownership, plant size, location, and foreign direct investment to estimate efficiency 

(Chen et al., 2015; Ma & Zhao, 2015). Since the focus of our paper is to examine the impact 

of the recent policy reform on the efficiency of electricity generation in China which is 

                                                 
 
2 See Coelli et al. (2005) for a detailed comparison of DEA and SFA. 
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reflected in the environmental factors, we believe that SFA is the most appropriate method to 

evaluate firms’ performance due to its ability to take into account environmental factors.  

Existing research has explored the overall impact of government subsidies on electricity 

production using aggregate measures of government subsidies. They have found mixed results. 

Some studies find a positive impact of government subsidy on electricity production as the 

subsidy provides financial support to the firms (Alavi, 1994; China Electricity Council, 2016; 

Nicolini & Tavoni, 2017; Jin et al., 2018). Some studies find that government subsidy may 

decrease production efficiency since firms can use the subsidies to pay for the high cost of 

production rather than invest in research and development (Rezitis et al., 2003; Phillips, 2013; 

Dhital et al., 2016). There are also studies that find a more complicated relationship between 

government subsidy and utilities’ technical efficiency. Marques et al. (2014) finds that the 

impact of government subsidy on the efficiency of water utilities in Japan depends on the 

ratio between subsidy and total operating expense. Yu et al. (2016) also suggest that the 

influence of government subsidy on the R&D incentives in the Chinese renewable energy 

sector may change as the size of the subsidy changes.   

Government subsidy to public utilities may be spent in different ways. Where and how 

the money is spent may affect the utilities’ long-term production efficiency. In the existing 

literature, to the best of our knowledge, only two papers, Andor & Voss (2016) and 

Reichenbach & Requate (2012), recognize the potentially different effects of government 

subsidies and discuss the implications of distinguishing subsidies. They examine theoretically 

the impact of capacity subsidy and generation subsidy on the externalities in the electricity 

markets. We have yet to find any studies that analyze the impact of government subsidies on 

utilities’ production efficiency by distinguishing the subsidies by their types or usages. The 

current Chinese policy explicitly defines subsidy by its usage which allows us to empirically 
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explore he underlying relationship between the two types of government subsidies (asset 

related subsidy and income related subsidy) and firms’ technical efficiency.   

Moreover, due to data limitation, there are very few studies on the efficiency of electricity 

generation in China using firm-level data. Wind, a financial information service company, 

collects firm-level operation and financial data of 21 major industries in China from the 

National Bureau of Statistics, the National Development and Reform Commission, the 

Ministry of Commerce, the General Administration of Customs, and other industry 

associations. Its economic database contains recent financial and market information on 

China’s capital market. With firm-level data, rather than city-level or province-level data that 

are commonly used in existing studies, this paper contributes to the literature by providing 

more accurate estimates of the role of the different government subsidies on technical 

efficiency.     

 

4. Model 

4.1.  Data Description 

The main source of data is the annual financial reports of individual electricity utilities 

available at the Wind-Economics Database. We use a pooled unbalanced panel sample 

consisting of 30 major electricity generation utilities (105 observations) between 2009 and 

2013.3 

4.2.  Production Function Model Description 

Our study applies a stochastic frontier analysis (SFA) to estimate the production 

efficiency of electricity utilities in China, incorporating operational and regulatory factors. 

The SFA incorporates both random noises (𝑣𝑣𝑖𝑖𝑖𝑖) and the differences in systematic inefficiency 

                                                 
 
3 Our sample is an unbalanced panel due to the lack of information on some years. 
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(𝑢𝑢𝑖𝑖𝑖𝑖) between samples which allows a comparison of the performances of the electricity 

utilities.  

We use a one-step stochastic frontier analysis model to measure inefficiency as proposed 

by Battese and Coelli (1995). The model was estimated using Frontier 4.1, a program written 

by Professor Tim Coelli. The Cobb-Douglas stochastic frontier production function is 

specified as  

𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 𝑙𝑙𝑙𝑙(𝐿𝐿𝑖𝑖𝑖𝑖) + 𝛽𝛽2 𝑙𝑙𝑙𝑙(𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖) + 𝛽𝛽3 𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖) + 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖       (1) 

where each firm is indexed with a subscript 𝑖𝑖 (𝑖𝑖 = 1, … , 𝐼𝐼) and each year is indexed with a 

subscript 𝑡𝑡 (𝑡𝑡 = 1, … , 𝑇𝑇). 𝑌𝑌𝑖𝑖𝑖𝑖 is the total amount of electric power generated by firm 𝑖𝑖 in 

year 𝑡𝑡 in million kwh. 𝐿𝐿𝑖𝑖𝑖𝑖 denotes the number of staff and 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is the total fixed asset 

reported in the annual balance sheet in million RMB. 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 denotes the installed capacity 

which is defined as the maximum rated output of a generator, prime mover, or other electric 

power production equipment under specific conditions designated by the manufacturer in 

10,000 kw. 𝑣𝑣𝑖𝑖𝑖𝑖  is an error term which is assumed to be independently and identically 

distributed with normal distribution 𝑁𝑁 (0, 𝜎𝜎2) . The technical inefficiency term 𝑢𝑢𝑖𝑖𝑖𝑖 , 

consisting of non-negative random variables, is subtracted since inefficiency lowers output. 

𝑢𝑢𝑖𝑖𝑖𝑖 is assumed to be independent of 𝑣𝑣𝑖𝑖𝑖𝑖 and truncated at zero with normal distribution 

𝑁𝑁(𝑍𝑍𝑖𝑖𝑖𝑖, 𝜎𝜎2), where 𝑍𝑍𝑖𝑖𝑖𝑖  is a vector of independent variables associated with production 

inefficiency of the electricity utilities over time. The list of independent variables and their 

descriptions are available in Table 2.  

The relationship between 𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑍𝑍𝑖𝑖𝑖𝑖 is defined by the following technical inefficiency 

effects specification: 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝐹𝐹(𝑍𝑍𝑖𝑖𝑖𝑖 ) =

𝛿𝛿0 + 𝛿𝛿1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) + 𝛿𝛿2(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝛿𝛿3(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖) + 𝛿𝛿4(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) + 𝛿𝛿5(𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) + 𝑤𝑤𝑖𝑖𝑖𝑖                                                                      

(2)                                                     

This article is protected by copyright. All rights reserved.



12 
 

 

where 𝑤𝑤𝑖𝑖𝑖𝑖 is an independently and identically distributed random variable that follows a 

truncated normal distribution, 𝑁𝑁 (0, 𝜎𝜎2) (Coelli, 1996; Battese & Coelli, 1995). Among the 

environmental variables 𝑍𝑍𝑖𝑖𝑖𝑖 , the main explanatory variables are the percentage of asset 

related subsidy (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) and the percentage of income related subsidy (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). The control 

variables include the percentage of state-owned stock (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖), consumer concentration

（𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖）, and the education background of the Chief Executive Officers of the utility 

(𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝐶𝐶𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖). Table 3 presents the summary statistics of the variables included in equations (1) 

and (2). 

This study applies the maximum likelihood estimation to estimate the parameters in the 

production function (Equation 1) and technical inefficiency effect (Equation 2) 

simultaneously.  

Following Coelli et al. (2005), technical efficiency of production for a utility 𝑖𝑖 in year 𝑡𝑡 

is defined as  

                         𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑒𝑒−𝑢𝑢𝑖𝑖𝑖𝑖.                         (3) 

That is, technical efficiency is defined as the utility’s maximum production given a fixed level 

of inputs. This efficiency score is measured on a scale between 0 and 1. A score closer to 1 is 

considered more efficient. 

 

5. Estimation Results 

5.1. Ordinary Least Squares (OLS) Estimation 

In a stochastic frontier model, the error is given by 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖. If technical inefficiency 

𝑢𝑢𝑖𝑖𝑖𝑖 is not a part of the error term, OLS will be sufficient to produce consistent estimates. An 

OLS estimation is performed as the benchmark analysis and the results are presented in Table 

4.  

The OLS benchmark analysis suggests that labor, fixed assets, and installed capacity are 
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all positive factors that lead to higher production. Battese and Coelli (1995) proposed a 

gamma value γ = 𝜎𝑢2

𝜎2
 to test the consistency of OLS estimates. The null hypothesis is that 

γ = 0, i.e., technical inefficiency is not present in the error term. Our estimated γ is 0.44 and 

it is statistically different from zero with a t-statistics of 1.75; thus, at least some variation of 

the error term is due to inefficiency. Since OLS will not produce consistent estimates, we turn 

our attention to SFA estimation.  

 

5.2. SFA Estimation 

The main estimation results using an SFA are shown in Table 5. The estimated 

coefficients of the control variables have the expected positive signs and are statistically 

significant at conventional levels. For instance, a 1% increase in the number of staff leads to 

about 0.22% increase in the electricity output while a 1% increase in installed capacity 

increases the total electricity output by about 0.23%. Moreover, state ownership, consumer 

concentration, and the CEO’s engineering education all reduce technical inefficiency and 

increase technical efficiency.  

We find that asset-related subsidy lowers technical inefficiency (i.e., improves efficiency) 

but income-related subsidy increases technical inefficiency (i.e., decreases efficiency). while 

income related subsidies can be used to compensate for the utilities’ loss and can be deducted 

from their expense reports. Our estimated results provide empirical evidence that support the 

theoretical predictions. Since asset-related subsidies can only be used to acquire or construct 

long-term assets and especially under government supervision and monitoring, the electricity 

utilities would have to spend this money on plants, equipment, and network upgrades. Their 

operational performance, therefore, will improve4. On the other hand, there is no strict 

                                                 
 
4 Larger plants and newer equipment have been found to improve production efficiency. For example, Zhang et al. 
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restriction on where the income-related subsidy can be spent. Utilities can therefore use this 

money to compensate for their loss and deduct them from their expense reports. This not only 

takes away the financial opportunity for the utilities to advance technology, but also reduces 

their incentive to do so.  

Moreover, the estimated coefficient on the percentage of state-owned share (statown) is 

negative and statistically significant at the 1% level, implying that electricity generation 

utilities with a higher percentage of state-owned capital perform more efficiently. This result 

contradicts with Sarica and Or (2007). They find that the performance efficiency of the 

state-owned thermal plants is significantly lower than their private counterparts in the Turkish 

power generation industry due to the higher operational costs of the state-owned plants. In 

China, however, due to the extremely large demand for electricity, electricity utilities rely 

heavily on investment on fixed assets, network maintenance, and management training. With 

government funding on professional staff, advanced administration, and more advanced 

techniques, firms with a larger state share will have an operational advantage. In fact, the top 

five power generation firms, Huaneng, Datang, Huadian, Guodian, and State Power 

Investment Corporation, are almost entirely state owned. Their operation performances are 

better than those that are mainly owned by private parties. The estimated coefficient on 

consumer concentration is negative and statistically significant. The electricity utilities with 

higher consumer density have a lower inefficiency level. This finding is consistent with Farsi 

and Filippini (2009), which suggest that higher consumer density can lower production costs. 

We also test the importance of the education background of a firm’s CEO. In the Chinese 

electricity sector, most CEOs have either a science, engineering, economics, or political 

science degree. Our result suggests that a CEO with a science or engineering background can 

                                                                                                                                            
 
(2014) find that larger plant size leads to higher fossil fuel generation efficiency.  
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improve the utility’s technical efficiency. This is likely because those with a background in 

science or engineering pay more attention to research and development, reconstruction of 

plants, and replacement of aging equipment while those with social science backgrounds may 

focus on business strategies and administration. While traditionally those with business or 

social science backgrounds are better suited for the role of CEOs, in the current structure of 

the electricity sector in China that relies heavily on technological advancement, scientists and 

engineers may be better leaders for the electricity utilities.  

This study further explores the distribution of the estimated efficiency scores of the 

electricity utilities and calculates the percentage of total electric power generated based on the 

utility’s efficiency score. Figure 1 includes both the frequency of utilities with different 

ranges of efficiency scores as well as the percentage of electricity generated by utilities with 

the associated efficiency scores. Our estimated efficiency score ranges from 0.08 (least 

efficient) to 0.98 (most efficient), suggesting a large gap in the production efficiency among 

the electricity utilities. Additionally, the least efficient utility could reduce input usage by an 

astonishing 92%. The efficiency score is averaged at 0.70 which means that about 30% of the 

costs can be reduced without decreasing output should the utility achieve perfect efficiency. 

About 61% of the utilities have an efficiency score above 0.70, generating 77.23% of the total 

electric power. Thus, most electricity in China is generated by utilities with an above-average 

efficiency level.  

Table 6 summarizes the output and estimated efficiency score by year and Table 7 

presents the summary statistics of firm-level installed capacity. The highest average output 

appears in 2012 at 60.91 billion kwh. This is likely due to the change in installed capacity 

(See Table 7). Except from 2010 to 2011, the growth of installed capacity affects the growth 

of predicted output positively which is consistent with the finding in the Chinese Electricity 
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Sector Report from the China Electricity Council (2016). They show a strong correlation 

between installed capacity and the output level of electricity generation.   

In Table 8, we compare the input factors, output factor, and efficiency scores between 

the top five electricity generation utilities and the rest of the utilities. The top five utilities are 

better equipped with labor, fixed assets, and installed capacity. Though the mean efficiency 

score of the top five utilities is statistically significantly higher than that of the rest utilities 

with a t-statistics of 1.69, the size of this difference is not substantial. While this finding does 

confirm that the Chinese government is providing more political and financial support to large 

utilities, it also suggests that more incentives need to be provided for the top five utilities to 

further improve their production efficiency.  

 

5.3. Robustness Check: Alternative SFA Estimations 

Technical efficiency levels may change systematically over time. Given that we 

have panel data, we can incorporate this potential dynamic feature of efficiency. In 

this subsection, we consider two alternative models that incorporate a time effect.   

We first consider a time-varying inefficiency SFA proposed by Battese & Coelli 

(1992). The technical inefficiency term 𝑢𝑢𝑖𝑖𝑖𝑖′  is assumed to be  

                        𝑢𝑢𝑖𝑖𝑖𝑖′ = 𝑢𝑢𝑖𝑖𝑡𝑡η(𝑖𝑖−𝑇),                       (4) 

where 𝑢𝑢𝑖𝑖  are random variables which have truncated normal distribution, 𝑡𝑡 indicates 

the current year of observation and 𝑇𝑇 is the entire sample period, η is a time-related 

parameter. 

In this specification, the null hypothesis is that η = 0, i.e, technical inefficiency is 

independent of time after controlling. Thus, the estimated value of η is used to 

determine whether we should apply a time-invariant or a time-varying efficiency model.  

We estimate this time-varying efficiency model using the same independent 
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variables in Equations (1) and (2). The estimated results are presented in Table 9. The 

estimated value of η is -0.0033 and it is not statistically different from zero with a 

t-statistics equal to -0.2948. Therefore, we fail to reject the null hypothesis that 

technical inefficiency is independent of time. In other words, we don’t have sound 

evidence that the technical efficiency of the utilities is changing over time.  

We further consider adding year dummies to Equation (2) to control for 

unobserved time effect. Table 10 presents the estimation results with year dummies. 

None of the estimated coefficients on the year dummies is statistically significant. The 

coefficients on the input variables and the environmental variables remain similar to 

those in Table 5.  

The two exercises presented above suggest that the technical efficiency of the 

utilities is not systematically changing over time. They also confirm the robustness of 

our main results. 

6. Conclusion 

Sustainable electricity generation is a cornerstone for economic development in China. 

Electricity generation can only be sustained if efficiency is improved. In this study, using a 

unique firm-level dataset from 2010 to 2014, we examine the electricity utilities’ production 

efficiency accounting for their operational environment under the recent policy reform. Our 

results suggest that there is a large disparity among the Chinese electricity utilities in 

production efficiency, ranging from an efficiency score of 0.08 to an efficiency score of 0.98. 

Efficiency can be substantially improved to ensure sustainable development if an appropriate 

regulatory framework that incorporates performance benchmarking into incentives is 

provided. 

Our results confirm that more staffing, larger fixed assets, and increased installed 

capacity can all raise output levels. Therefore, better institutional control in the form of 
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increasing installed capacities as well as the number of staffs and fixed assets should be 

imposed. In addition, we find that environmental factors, including the percentage of 

state-owned assets, consumer density, and a science and engineering education of a firm’s 

CEO are crucial factors that can lead to higher technical efficiency. More importantly, our 

results suggest that government subsidy can improve efficiency only if the subsidy is used to 

replace aging equipment to advance technology. Subsidy may indeed reduce efficiency if it 

increases the utility’s dependence on government’s financial support. 

The Chinese government promotes larger utilities and plans to shut down smaller ones. 

We show that the largest five regional power generation companies, Huaneng, Datang, 

Huadian, Guodian, and State Power Investment Corporation, do exhibit a higher level of 

technical efficiency. Unfortunately, compared to their significant advantage in labor, fixed 

asset, and installed capacity, their lead in efficiency appears to be negligible. Other than input 

investment, technical efficiency advancement is more urgent as it leads to improvement in the 

performance in operation and administration of utilities.  

China has achieved great success in economic development, however, the increasing risks 

in the scarcity in electricity could hinder sustainable development. The issue of electricity 

supply has led to several recent policy reforms and is expected to continue to be the center of 

policy considerations. From a research perspective, this study explores China’s electricity 

generation sector by depicting a clear, albeit preliminary, picture of the performance of 

electricity utilities and provides important policy implications. This study aims to raisej the 

policymakers’ awareness of possible changes in operational and institutional environments 

that can eventually lead to greater efficiency and more sustainable supply. A more 

comprehensive dataset with performance-based incentives could help identify other areas of 

improvement.    
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Table 1. Summary of Empirical Literature on Chinese Electricity Generation Efficiency 

Paper Data Inputs Outputs Environmental Variables Models  

Lam and Shiu 

(2001) 

Thermal power 

plants (1995–1996) 

Generating 

capacity, fuel, and 

labor 

Electricity 

generation 

Capacity, fossil, size, age, 

SPC control, and foreign 

investment 

DEA and Tobit 

Lam and Shiu 

(2004) 

Thermal power 

plants (1995–2000) 

Capital, fuel, and 

labor 

Electricity 

generation 

Capacity utilization rate, 

fuel efficiency, and SPC 

control 

DEA, TFP (MI), and 

Tobit 

Yang and 

Pollitt (2009) 

Coal-fired power 

plants (2002) 

Installed capacity, 

fuel, and labor 

Annual 

electricity 

generation and 

SO2 emissions 

Vintage of generating 

units, calorific value of 

coal, unit scale, and 

combined heat and power 

DEA 

Yang and 

Pollitt (2010) 

Coal-fired power 

plants (2002) 

Installed capacity, 

fuel, and labor 

Annual 

electricity 

generation and 

SO2, NOx, CO2 

emissions 

  DEA  

Fallahi et al. 

(2011) 

Electric generation 

management 

companies (2005–

2009) 

Installed capacity, 

fuel, labor, 

electricity used, 

and average 

operational time 

Net electricity 

generation 

  DEA and TFP (MI) 

Du et al. 

(2013) 

Fossil-fired 

generation plants 

(1995–2004) 

Capital stock, 

labor, and fuel 

expense 

Product value  Age of the plant, scale of 

the plant, and location 

Difference-in-differences, 

PFP, and TFP 

Zhou et al. 

(2013) 

Power industry in 30 

provincial 

administrative 

regions during 2005–

2010 

Energy 

consumption, 

labor and fixed 

assets investment 

Annual net 

electricity 

production and 

SO2, NOx and 

CO2 emissions 

Electricity structure, 

innovation capability, 

capacity, fees on wastes 

discharge, and investment 

on treating industrial 

pollution 

Non-radial DEA and 

SBM mode  

Zhang and 

Choi (2013) 

Fuel power plants 

(2005–2010) 

Capital, labor, and 

fossil fuel 

Electricity 

generation and 

CO2 emissions 

  Metafrontier non-radial 

MI 
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Zhao and Ma 

(2013) 

Power plants (1997–

2010) 

Generation 

capacity, labor 

and fuel 

consumption 

Electricity 

generation 

Utilization, age, unit size, 

decommission, 

commission and FGD 

DEA and double 

bootstrap truncated 

regression  

Bi et al. (2014) Thermal power 

generation system 

(2007–2009) 

Installed capacity, 

labor, coal, and 

gas 

Electricity 

generation and 

SO2, NOx and 

soot emissions 

  Slacks-based DEA 

Zhang et al. 

(2014) 

Fossil fuel power 

plants (2010) 

Capital, labor, and 

fossil fuel 

Electricity 

generation and 

CO2 emissions 

  Two non-radial 

directional distance 

functions 

Chen et al. 

(2015) 

Fossil-fuel electricity 

generation 

companies (1999–

2011) 

Production, 

capacity, net 

profit, labor, and 

capital  

Total cost   Bayesian stochastic 

frontier model  

Ma and Zhao 

(2015) 

Power plants (1997–

2010) 

Installed capacity 

and fuel  

Net electricity 

generation 

Unbundling reform, SPC 

ownership, utilization, 

vintage, unit size, 

decommissioned capacity, 

commissioned capacity, 

FGD, foreign direct 

investment, and generation 

technology 

DEA and SFA  

Notes: DEA=data envelopment analysis; TFP=total factor productivity; MI=Malmquist index; PFP= partial factor productivity; SFA= 

Stochastic Frontier analysis; SPC= State Power Corporation; IPP= independent power producers 
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Table 2. Environmental Variables 𝒁𝒁𝒊𝒊𝒊𝒊 

Variable  Description Definition 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  Percentage of asset related 
subsidy 

Sum of asset related subsidies divided by the 
total revenue of the utility (%) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Percentage of income related 
subsidy 

Sum of income related subsidies divided by the 
total revenue of the utility (%) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  Percentage of state-owned 
stock 

Ratio of state-owned stock to the total stock (%) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  Consumer concentration Percentage of the total sales revenue from the 
utility’s five largest consumers (%) 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝐶𝐶𝐶𝐶𝐶𝐶  Education background of the 
Chief Executive Officer 
(CEO) of the utility 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝐶𝐶𝐶𝐶𝐶𝐶 = 1 if the CEO majored in science or 
engineering; 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝐶𝐶𝐶𝐶𝐶𝐶 = 0 otherwise 

 

 

 

 

 

Table 3. Summary Statistics 

Variable Mean 
Standard 
Deviation 

Min Max 

Production Function 
Electric Power (𝑌𝑌) 564.85 703.43 4.24 3174.81 
Number of Staff (𝐿𝐿) 8340.14 9065.31 491.00 37737.00 
Fixed Asset (𝐹𝐹𝐹𝐹) 50552.95 64644.33 1011.83 249607.84 
Installed Capacity (𝐼𝐼𝐼𝐼) 1231.45 1500.14 11.00 7048.00 

Technical Inefficiency Effect 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0.07 0.10 0.00 0.55 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  0.95 1.85 0.00 8.80 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  57.51 16.10 14.43 92.19 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  75.05 24.09 12.61 100.00 
𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝐶𝐶𝐶𝐶𝐶𝐶  0.72 0.45 0 1 
Observations 105 
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Table 4. OLS Estimation Results of Production Function 

Variable Estimated Coefficient 
Intercept (𝛽𝛽0) -2.34*** 

 
(-4.99) 

Log (Number of Staff) 0.04 

 
(0.68) 

Log (Fixed Assets) 0.22** 

 
(2.31) 

Log (Installed Capacity) 0.83*** 

 
(10.38) 

R2 0.18 

Observations 105 

Notes: t-statistics are provided in parentheses. *, **, and *** denote statistical 

significance at the 10%, 5%, and 1% levels, respectively. 
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Table 5. SFA Estimation Results of Production Function and Technical 
Inefficiency 
Variable Estimated Coefficient 

Production Function 
Intercept (𝛽𝛽0) -2.86*** 

 
(-6.14) 

Log (Number of Staff) 0.22*** 

 
(4.22) 

Log (Fixed Assets) 0.55*** 

 
(5.14) 

Log (Installed Capacity) 0.23* 

 
(1.91) 

Technical Inefficiency  
Intercept (𝛿𝛿0) 3.83*** 

 
(8.57) 

𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎  -2.54*** 

 
(-3.53) 

𝑖𝑖𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎  0.16*** 

 
(3.89) 

𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠𝑙𝑙  -0.03*** 
 (-4.66) 
𝑐𝑐𝑢𝑢𝑎𝑎𝑐𝑐𝑠𝑠𝑙𝑙  -0.03*** 

 
(-6.59) 

𝑡𝑡𝑡𝑡𝑐𝑐ℎ𝐼𝐼𝐶𝐶𝐶𝐶  -0.27* 

 
(-1.70) 

This article is protected by copyright. All rights reserved.



29 
 

 

Observations 105 
Notes:1. t-statistics are provided in parentheses, *, **, and *** denote significance at the 10%, 

5%, and 1% level, respectively. 

     2. Cross section=30. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6. Predicted Output and Efficiency Scores 
Variable Mean Standard deviation Min Max 

2010 
Output 504.34 552.37 32.05 1784.78 
Efficiency Score 0.76 0.17 0.38 0.97 

2011 
Output 514.12 592.32 9.29 2037.16 
Efficiency Score 0.74 0.21 0.19 0.96 

2012 
Output 609.13 788.06 5.14 3024.33 
Efficiency Score 0.7 0.27 0.08 0.96 

2013 
Output 576.69 758.51 4.24 3174.81 
Efficiency Score 0.69 0.28 0.08 0.97 

2014 
Output 589.76 776.69 4.37 2943.88 
Efficiency Score 0.66 0.27 0.15 0.98 

2010-2014 
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Output 564.85 703.43 4.24 3174.81 
Efficiency Score 0.7 0.25 0.08 0.98 

 

 

 

 

 

 

Table 7. Output and Installed Capacity 
Year Output Installed Capacity 
  Total Growth Rate Total Growth Rate 
2010 504.3 - 1113.64 - 
2011 514.1 1.94% 1066.09 -4.27% 
2012 609.1 18.48% 1295.84 21.55% 
2013 576.7 -5.33% 1259.43 -2.81% 
2014 589.8 2.27% 1342.39 6.59% 

 

 

 

Table 8. Comparison between Top Five and the Other Utilities 

 
Top Five Utilities Other Utilities 

Inputs 
Labor 14404.23 4134.40 
Fixed Asset 76852.62 32312.85 
Installed Capacity 1934.09 744.14 

Output 
Electricity Generation 908.12 326.77 
Efficiency Score 0.75 0.67 
Note: This table reports the means of the variables. 
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Table 9. SFA Estimation Results of Production Function with Time-varying Efficiency  
Variable Estimated Coefficient 

Production Function 
Intercept (𝛽𝛽0) -0.85 

 
(-1.30) 

Log (Number of Staff) 0.00 

 
(0.05) 

Log (Fixed Assets) 0.37*** 

 
(4.31) 

Log (Installed Capacity) 0.58*** 

 
(5.79) 

Testing Time-varying Efficiency 
eta (𝜂) -0.00 

 
(-0.29) 

Observations 105 
Notes:1. t-statistics are provided in parentheses, *, **, and *** denote significance at the 10%, 5%, and 1% level, 

respectively. 

     3. Cross section=30. 
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Table 10. SFA Estimation Results of Production Function and 
Technical Inefficiency with Year Dummies 
Variable Estimated Coefficient 

Production Function 
Intercept (𝛽𝛽0) -2.76*** 

 
(-5.66) 

Log (Number of Staff) 0.20*** 

 
(3.46) 

Log (Fixed Assets) 0.55*** 

 
(5.19) 

Log (Installed Capacity) 0.24** 

 
(1.99) 

Technical Inefficiency  
Intercept (𝛿𝛿0) 3.80*** 

 
(7.31) 

𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎  -2.69*** 

 
(-3.31) 

𝑖𝑖𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎  0.16*** 

 
(3.53) 

𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠𝑙𝑙  -0.03*** 
 (-4.31) 
𝑐𝑐𝑢𝑢𝑎𝑎𝑐𝑐𝑠𝑠𝑙𝑙  -0.03*** 

 
(-5.96) 

𝑡𝑡𝑡𝑡𝑐𝑐ℎ𝐼𝐼𝐶𝐶𝐶𝐶  -0.29* 

 
(-1.78) 

Year=2009 0.21 
 (0.84) 
Year=2010 0.16 
 (0.77) 
Year=2011 -0.01 
 (-0.05) 
Year=2012 0.02 
 (0.09) 
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Observations 105 
Notes:1. t-statistics are provided in parentheses, *, **, and *** denote significance at 

the 10%, 5%, and 1% level, respectively. 

     2. Cross section=30. 
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Figure 1. Distribution of Efficiency Scores and Outputs 
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