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Abstract

The complexity in biological data reflects the heterogeneous nature of biological processes. Com-

putational methods need to preserve as much information regarding the biological process of

interest as possible. In this work, we explore three specific tasks about resolving biological het-

erogeneity.

The first task is to infer heterogeneous phylogenetic relationship using molecular data. The

common likelihood models for phylogenetic inference often makes strong assumptions about the

evolution process across different lineages and different mutation sites. We use convolutional

neural network to infer phylogenies instead, allowing the model to describe more heterogeneous

evolution process. The model outperformes commonly used algorithms on diverse simulation

datasets.

The second task is to infer the clonal composition and phylogeny from bulk DNA sequencing

data of tumour samples. Estimating clonal information from bulk data often involves resolving

mixture models. Unfortunately, simpler models are often unable to capture complex genetic

alteration events in tumour cells, while more sophisticated models incur heavy computational

burdens and are hard to converge. We solve the challenge through density-hinted optimization

with post hoc adjustment. The model makes conservative predications but yields better accuracy

in assessing co-clustering relationship among the somatic mutations.

The third task is to estimate the abundance of splicing transcripts from full-length single-cell

RNA sequencing data. Transcript inference from RNA sequencing data needs a plethora of reads

xi



for accurate abundance estimation. Yet single-cell sequencing yields much fewer reads than bulk

sequencing. To recover transcripts from full-length single-cell RNA sequencing data, we pool

reads from similar cells to help assign transcripts without disrupting the cluster structures.

These methods describe complex biological processes with minimal runtime overhead. Taking

these methods as examples, we will briefly discuss the rationale and some general principals in

designing these methods.
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Chapter 1

General introduction

The heterogeneous nature of various biological processes is often portrayed through the com-

plexity in various biological data [1]. The complexity may manifest in different forms. Studies

on evolution processes of cells and species often encounter scenarios where the ever-changing

environment leads to changes in selective pressure and thus in genotypes descendant cells or

organisms, the complexity of which yields the heterogeneity of the observed population [2, 3].

Single-cell studies presents the complicated changes and regulations among different cell types,

the complexity of which provides insights to heterogeneous behaviour of cells in multicellular

tissue development [4, 5]. Multi-omics studies show drastic difference in the abundance of differ-

ent gene products, the complexity of which reflects the heterogeneity in the molecular machinary

[6–8]. The wide spectra of temperal, spatial, taxonomical, and individual differences in biolog-

ical phenomena depicts the complexity of biological processes. These factors are not exclusive

against each other. Therefore, fully understanding these processes would require accurate char-

1



acterization of biological heterogeneity.

Unfortunately, currently available experiment techniques rarely allow direct and complete de-

termination of the complexity of these biological processes. Existing experiment protocols can

measure just a limited portion of the molecular products that are present in the cells, track limited

number of cells for various profiling, or observe only the final outcomes of a long-term ever-

changing process [9–11]. Yet these observations capture important information useful for infer-

erence of missing elements that are not directly observable. The observed molecular sequences

resulted from a long term evolution process provide information regarding distances between the

species, which are helpful in phylogeny reconstruction [12]. Molecular products captured from

a cell can be used to infer their relative abundance [13, 14]. Adequately sampled cells allow

estimation of cell-type composition in a tissue and reveal the transitions between different cell

states [15–17]. In ideal cases where no confounding factors are involved, the observation should

provide enough information to recover the biological processes accurately.

However, biological signals are hidden inside a mixture of real signals, batch effects, techni-

cal biases, and random errors, more often than otherwise [18]. These factors contribute to the

variation in the observation. If not handled correctly, such variation may drive the inference to

generate artifacts or even completely wrong conclusions [19, 20]. To resolve the biological het-

erogeneity correctly, computational models need to discriminate the unwanted factors against the

real signals [21–23]. The noise and biases in the observation add another layer of complication

and hinder accurate determination of the original biological processes.

Therefore, good computational methods obviously need to achieve two goals: on one hand,

2



it should recover as much information as possible regarding the biological process of interest;

on the other hand, from limited observed samples, the model needs to rule out confounding fac-

tors. These goals are challenging due to the “bias–variance tradeoff”, a well-known dilemma in

statistical learning that renders balancing these two targets difficult [24]. Thanks to the “no free

lunch theorum” in statistical learning, the specific methods to optimise models vary for different

data and tasks [25]. In this work, we will examine three specific challenging questions regarding

biological heterogeneity in molecular evolution of species, tumour development, and multicel-

lular tissue development. Here, we will review the biological background of these tasks in the

following sections.

1.1 Heterogeneity in protein evolution

The sole illustrative figure in Charles Darwin’sOn theOrigin of Species demonstrates the author’s

idea of the origin and evolutionary relationship of all species [26]. The tree diagram present in

the figure, known as the (hypothetical) tree of life, depicts the scenario where all species share

a common ancestor, i.e. the “Origin of Species”, and species diverge from their ancestors to

form new species and genera along time. The very idea of the tree of life, now reverred as the

inception of evolutionary biology, is a dream of generations of biologists [27]. Reliable phylo-

genies that describes the evolutionary relationship of all living species provide a grand panorama

of evolutionary histories and mechanisms, which is in turn the key to understanding virtually all

biological phenomena.
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In early years of evolutionary biology, the work of phylogeny reconstruction heavily relies

on organismic and mechanistic approaches, as well as subjective judgement [28]. The situation

lasted until last century, when advances in protein chemistry and molecular genetics changed

the face of evolutionary biology [29]. Since then, protein and DNA sequencing techniques have

revolutionised comparative biology [30]. Earliest compilation of partial protein and nucleotide

sequences led by Margaret O. Dayhoff and her colleagues initiated the subsequent nonstoppable

accumulation of sequence data for comparative studies [31–35]. These data provides an oppor-

tunity to establish an objective method for classification and phylogenetic analysis of different

species [36]. Nowadays, DNA and protein sequences are the primary data used for phyloge-

netic inference in modern molecular evolution studies [37]. In this work, we will be focusing on

phylogenetic reconstruction using protein sequences, but the principle can be easily extended to

nucleic acid sequences with minimal changes.

Molecular evolution refers to the change in the sequences of biological molecules such as nu-

cleic acids or proteins over time [38]. In the context of phylogeny analysis of protein sequences,

we will discuss specifically missense point mutations. The molecular clock hypothesis suggests

mutations occur at an steady rate [39–41] Since proteins are marginally stable, replacing amino

acids with ones of different charges, side-chain sizes, hydrophobicity, or other biophysical prop-

erties can disrupt the structure and function of the protein [42]. These mutations are then fixed

by random drift, purifying selection, or positive selection. The neutral theory of molecular evo-

lution, which is now widely accepted, states that majority of mutations affect little on species’

survivability and reproductivity, and that the random drift is the main reason behind the variations
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between species at the molecular level [43]. Over time, new species emerge from accumulation

of mutations.

Yet the above description oversimplifies the real scenario [44]. While numerous studies re-

ported the overall mutation rates measured across species seem similar, the measurements dis-

agree across different panels of species [45]. When exposed to different environments, different

branches of the phylogeny may face different selection pressure and thus follow different mu-

tation patterns [46]. Also, the functions of the same genes may be of different importance for

different species, and thus they face different selection pressure [47]. Within a gene, the mu-

tation rates of different mutation sites vary [48]. Different sites may also specify amino acid

composition, which may also vary across branches [49, 50]. Furthermore, different sites may

not evolve independently [51]. The branch-level and site-level variability intermingle and lead

to heterogeneity in protein evolution.

Phylogeny reconstruction is to infer the phylogenetic relationship among species [52]. Nowa-

days, inference algorithms rely on the accumulation of mutation data to estimate the original

evolutionary process. Inference rely on pre-defined models [3]. These methods often formulate

molecular evolution as a continuous time Markov process, at each step of which a substitution

model determines the probability of amino acid or nucleotide substitution [12]. Commonly used

substitution models for protein sequence modelling specify transition matrices that are compiled

statistically from aligned orthologous protein sequences, such as the Dayhoff matrix [53], the

JTT matirx [54], and the LG matrix [55]. These matrices can be expressed as the product of the

amino acid exchangability and the equilibrium frequencies of amino acids [12]. Methods like
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maximum parsimony and neighbour joining calculate distances between species based on the

substitution models and construct phylogenetic trees based on the distance matrices [31, 56]. On

top of that, recent statistical inference model incorporates multiple parameters to address more

heterogeneous scenarios [57–60]. Later in this work, we will explore further extension of phylo-

genetic inference modelling to handle more heterogeneous scenarios in protein evolution.

1.2 Clonal heterogeneity in tumours

Cancers are the second leading cause of death worldwide right after cadiovascular diseases [61].

Since the first case report of cancer in 1507, our understanding of cancers has expanded vastly

[62]. Cancers results from uncontrolled proliferation of cells in the body [63]. Traditional classi-

fication of cancers is often based on the origin organs and tissues [64]. Whether cancer develop-

ment starts from a single cell-of-origin or multiclonal tumour origin is still under debate [65, 66].

Yet both hypotheses admit that the development of cancers at the cellular level occurs in multiple

steps involving somatic mutations and selections [67]. Tumour growth is also associated with

changes in the microenvironment of the cells [68]. Newly grown vascular network allows the

tumour cells to pick up glucose, amino acids and other nutrient molecules more rapidly [69, 70].

The tumour cells can also penetrate blood vessels and spread to other organs [71]. The migrated

tumour cells can proliferate at different sites, leading to life-threatening metastatic spread of can-

cer tissue [72]. The complicated multi-stage process of cancer development involves multiple

biological processes, and their underlying mechanisms are not fully understood.
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Rapid advances in DNA/RNA sequencing techniques have enabled in-depth research of the

molecular mechanisms of cancers. The view that cancers emerge from a series of mutations in

genes and other variations eventually leading to changes in cell function is now widely accepted

[73]. These mutations and variations may be germline that predispose individuals to higher risks

[74], or somatic ones that eventually lead to abnormalities in cell functions [67]. Some can-

cer cells greatly rely on activation of a single oncogene to grow and survive [75], while others

might have more complicated genetic mechanisms [76]. The accumulation of mutations and the

selection of advantageous ones go together with the development of the tumour tissues [77]. In-

terestingly, the process resembles the evolution processes of asexually reproducing species [78].

As the principles of molecular evolution suggest and published studies show, cancer evolution

processes also show branched clonal evolution, neutral evolution associated with non-adaptive

mutations, and punctuated evolution associated with adaptive mutations [79]. Therefore, char-

acterizing the mutations and variations involved in cancer evolution lies at the core of molecular

pathology of cancers.

However, characterization of mutations and variations in tumour tissues is difficult due to their

heterogeneous nature [80]. The heterogeneity occurs at different levels. First, the accumulation

and selection of these variations within a single tumour tissue render its development a rapid evo-

lutionary process [79]. Like any evolutionary process, tumour evolution also involves branching

and clonal expansion [81]. This leads to genetic heterogeneity within tumour tissues. Second,

tumour cells also live in a microenvironment that allows these cells to proliferate [82]. The sup-

porting cells in the environment also undergo drastic changes, such as angiogenesis [69, 71] This
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gives birth to a mixture of tumour cells whose expansion is uncontrolled and recruited surround-

ing cells that support the tumour development. Third, tumour cells can penetrate the vessels and

migrate to other tissues or organs [83]. The migration, called metastasis, leads to another level

of complexity. The migrated tumour cells adapt to the new environment and face different se-

lection pressure [84]. These cells carry genetic features of their primary tumours of origin, but

also acquires new ones that allow them to grow in the new site [82]. Also, the supporting cells

in its new environment would be different from those at the original site [85]. The metastatic

tumour tissues eventually become different from the primary tumours [86]. Fourth, different tu-

mour types carry different genetic variations. Tumours of different tissue or organ origins carry

distinct sets of genetic markers [87]. Even tumours emerged from the same organs may be dif-

ferent in their genetic features and thus can be further classified into subtyped [88]. Finally, the

genetic difference among individuals, as well as the stochastic nature of somatic mutations and

variations, determines the differences among different patients [89]. Adhering to conventions,

we refer to the first two levels of the heterogeneity as “intratumour heterogeneity” and the re-

mainders “intertumour heterogeneity” [90]. These levels of complexity underscore the challenge

in characterizing cancers at the molecular level.

Both intertumour and intratumour heterogeneity cause phenotypic diversity and hinder accu-

rate characterization and effective treatment of the disease [90]. Especially, intratumour genetic

heterogeneity has been found in various tumour types, affecting response to therapy and relapse

risks [91, 92]. The same tumour tissue may present different transcriptomic subtypes together

[93], and possible codependencies of different subclones further obstruct the design of effec-
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tive therapy [92]. Different treatment agents also select pre-existing drug-resistant clones in the

tumour, eventually leading to polyclonal multi-drug resistant and therapy failure [94]. Decipher-

ing tumour heterogeneity would be a paramount task in future development and improvement of

minimally invasive therapeutic strategies.

Next-generation sequencing studies have driven themost recent research in tumour heterogene-

ity, especially intratumour heterogeneity, and revealed patterns of evolution that are clinically

relevant [90]. Whole-genome sequencing of bulk tumour tissues reveals common genetic alter-

ations such as single-nucleotide variants (SNVs), copy number aberrations (CNAs), and struc-

tural variations [95]. Single-nucleotide polymorphism arrays provide a more economic method

to collect allelic frequencies over predefined loci and copy number profiles [96, 97]. In recent

years, single-cell sequencing methods have become an exciting alternative approach to the bulk

sequencing [98, 99]. These experiment methods collect genetic alterations that are informative of

the cancer evolution process and allow computational algorithms to infer the cancer evolutionary

processes. Later in this work, we will focus on inference using bulk sequencing data.

1.3 Transcriptomic heterogeneity at the molecular level

The central dogma of molecular biology, proposed by Crick in 1958, states that the genetic infor-

mation encoded in the DNAs is transcribed into RNAs, and RNAs are then translated into pro-

teins to carry out biological functions [100]. Since then, many discoveries about the molecular

mechanisms in living cells have shown that the real biological process is far more complicated
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and more finely regulated [101]. Among these discoveries, alternative splicing is among the

most unexpected findings in molecular biology [102]. While splicing events happen in prokary-

otic organisms like bacteria and archaea, eukaryotic splicing is far more frequent [103]. The

mechanism behind the splicing events, the spliceosomal pathway, is ubiquitous in (examined)

eukaryotes [104]. The discovery of alternative splicing also changed the general view of the eu-

karyotic gene model. Unlike single-exon protein-coding genes in many prokaryotes, eukaryotic

genes are almost always discontinuous and consist of multiple protein-coding exonic segments

and noncoding intronic segments [102]. Alternative splicing serves as a major mechanism to al-

low eukaryotic genes to generate diverse transcriptomic and protein products from much smaller

number of genes [105]. Take human as example. While the human genome contains about 20,000

protein-coding genes, human produces over 90,000 different types of proteins [106]. The mech-

anisms allows more fine-grained regulation of products of gene expression, adding complexity

to already intricate eukaryotic gene expression system [107].

Recent advances of the next-generation sequencing techniques revolutionised our way to study

genetics [108]. Succeeding microarray as the major techniques in transcriptomics in the past

decade, RNA sequencing (RNA-seq) has become a powerful tool to study gene expression, splic-

ing, allelic-specific expression, and RNA editing [109]. A RNA-seq experiment, based on Illu-

mina sequencing technology, starts with preparing reverse-transcribed full-length cDNAs from

RNA molecules in the cells [110–112]. The cDNAs are then amplified, fragmented, and se-

quenced. In the end, RNA-seq yields paired sequences of both ends of short fragments of the

transcript molecules. The sequences are then mapped against a reference genome or transcrip-
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tome to assign their identities [113]. The alignment, and sometimes unaligned reads, are then

used in subsequent computational analysis.

Specifically for splicing isoform analysis, a common task is to estimate the abundance of differ-

ent transcripts, especially splicing isoforms [114]. Amajor challenge in transcrpt quantification is

that the paired sequences of a short fragment from RNA-seq hardly allow unambiguous identifi-

cation of the source transcript of the fragment [115]. Sequences of isoforms from the same gene

are highly similar, and the sequence around the splicing sites are the only clue to differentiate

different isoforms. Also, many isoforms share some splicing patterns. For these isoforms, only

simultaneous capture of sequences around multiple splicing sites allows assigning read uniquely

to their source isoforms. These requirements are almost impossible for short-read sequencing

platforms like Illumina, as intervals between splicing sites often stretch much longer than frag-

ments in illumina sequencing. Therefore, it is impossible to solve transcript quantification by

unique transcript mapping.

Current algorithms for isoform quantification take a different approach. Programs like Cuf-

flinks and RSEM infer the abundance of transcripts by optimizing a mixture model [114, 116,

117]. The optimised models proportionally assign reads to transcripts to their abundance and

the transcript sequence lengths. Accurate inference requires adequate reads from RNA-seq. The

inference is considered to be accurate enough for transcripts of intermediate and high expres-

sion levels [118]. Alternative methods like PacBio Iso-seq provides full-length sequencing of

isoforms [119]. However, the transcripts detected from Iso-seq often conflicts with RNA-seq

results and the performance is not well calibrated [120]. The experiment is more expensive than

11



RNA-seq [121]. Therefore, RNA-seq and computational abundance inference become the most

popular approach to estimate the transcript abundance.

In the past few years, single-cell sequencing became an exciting technique to further improve

the resolution of transcriptomic studies [5]. These methods aim at detecting the difference of

transcripts within individual cells and are useful in studying transcriptomic heterogeneity among

cells. Most single-cell sequencing techniques are also based on Illumina sequencing platform

[122]. Methods like Drop-seq and 10x barcode the origin transcript molecules, and amplify the

barcoded terminal of the molecules [123, 124]. The sequences are aligned and deduplicated

based on the barcode sequences. Because the sequences are highly biased towards to the barcode

terminal of the original molecule, these methods are used for gene-level single-cell transcriptomic

analysis instead of isoform-level [5]. Other methods like Fluidigm Polaris and Smart-seq are

much closer to traditional bulk RNA-seq [125, 126]. They generate full-length coverage over the

original transcript molecules. Ideally, they can be combined with aforementioned quantification

algorithms to study single-cell splicing events. Yet almost all single-cell sequencing methods

nowaday generate much less reads per cell than the total reads in a bulk RNA-seq experiment

[127]. Current available single-cell isoform pipelines often group transcripts in such analysis

[128, 129]. Later in this work, we will discuss how to infer single-cell transcript abundance from

limited number of reads.
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1.4 Preview

We have introduced the biological background of the three tasks in solving heterogeneity in bi-

ological data. In all three cases, the observations result from random sampling. (The observed

sequences of species are selected from successive random mutations. The detected allelic fre-

quencies in tumours and The RNA sequencing reads for transcript quantification are sampled

from amplified nucleic acid molecules.) The observations are all ambiguous and can be attributes

to multiple possible events. (There can be multiple possible evolution paths leading to the same

genomic sequences, each associated with different selection pressure. The allelic frequencies can

be classified into different subclones with different likelihood, and the phylogenetic relationship

among subclones is often ambiguous. The short read sequencing of transcriptomic can bemapped

to different transcript splicing isoforms.) The observations are potentially associated with con-

founding factors that may mislead inference. (There may be unseen species that are informative

of extra speciation events. The low allelic frequenciesmay be caused by biases of mutation callers

or other technical factors. The single-cell RNA-seq reads are subject to amplification biases and

potential drop-out events.) These tasks are computationally challenging.

Other than these three scenarios, there aremany other types of heterogeneity that maymanifests

in biological data analysis. Each may presents a different kind of challenge to mathematical mod-

elling and biological interpretation. In this following chapters, we will focus on the aforemen-

tioned three scenarios, discuss the merits and disadvantages of existing solutions, and proposes

improved computational methods to address the issues. In the end, without losing generality, we

will discuss some principles in algorithm designs for solving such challenges.

13



Chapter 2 focuses on the heterogeneity in the evolution process and presents a deep neural

network model that estimates the phylogeny relationship among four species. The model ad-

dresses branch-level and site-level heterogeneity that existing solutions have not covered. It also

improves the computational efficiency. The model is evaluated on various simulated models that

are previously published and accepted.

Chapter 3 focuses on the tumour heterogeneity inference and presents a density-hinted mixture

model that estimates the subclones inside a tumour sample. The model targets at recovering the

co-occurrence relationship among mutations. To evaluate the performance of such model, the

chapter discusses the pros and cons of different evaluation metrics and their impact on biological

interpretation.

Chapter 4 focuses on the transcriptomic heterogeneity at the cellular level and presents a read-

pooling method to recover the transcriptomic profiles from single-cell sequencing data. The

method works at both gene and transcript levels and infer the abundance of the transcripts based

on reads from cells that have similar gene expression levels. An important aspect of this study is

to examine the contribution of biological and technical factors to the observed variations among

the cells.

Chapter 5 summarises the methods above. While each previous chapter explains the biologi-

cal merits of the individual model, this chapter briefly discusses the rationales and principles of

algorithms for real-world biological questions.
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Chapter 2

Inferring quartet phylogeny using a

convolutional neural network

2.1 Introduction

Vastly increasing genomic sequences of growing numbers of species allow the development of

more advanced and realistic models for phylogenetic inference. While phylogenetic inference

algorithms have evolved in the past decades and been successfully applied in many studies,

they have been challenged by more complicated cases that demands more sophisticated inference

strategies as well [1, 2]. Many recent statistical inference methods rely on likelihood optimization

through heuristic search or Markov chain Monte Carlo sampling [3, 4]. The search algorithms,

heuristics or statistical samplers, that scan over the parameter space, do not have the gaurantee

to find the optimal solution in finite runtime, but work decently well for most real-world cases
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[5–7]. The target likelihood models have incorporate many parameters, allowing more flexible

and realistics modelling of the molecular evolution process [8–10]. Yet numerous cases of failed

phylogenetic inference indicated that the current models may be inprecises and inadequate to

model the molecular evolution [11, 12].

Expanding the likelihood model to infer more heterogeneous evolutionary process can be quite

challenging. The current commonly used methods either assume these parameters are homoge-

neous across all branches, or require manual specification [13]. However, parameters such as

amino acid compositions and other lineage-specific parameters vary across different species [14,

15]. Parameters may also show dependency among different mutation sites [16]. Modelling a

panel of such species would require further extending the current statistical models. Several ex-

tensions are available for hard cases such as lineage-specific compositional heterogeneity [17,

18]. However, To infer the heterogeneity across the branch alongside tree searching can make

the already computationally expensive inference process even less impractical [13, 19, 20].

We propose to use deep neural network to infer phylogeny for such case. Deep neural network

is a machine learning method that allows fitting against almost arbitrary nonlinear functions. For

our initial attempts, we focus on inference of quartet phylogeny, the evolutionary relationship of

four species. Quartet phylogeny is the smallest possible question of phylogenetic inference in

terms of the number of species. There can be three topologies for unrooted phylogenetic trees

of four species. The problem can be formulated as a three-way classification problem, a well

studied case in deep neural network. In this work, we will show the design of the neural network

structures and benchmark the performance of the method on simulated datasets.
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2.2 Methods

2.2.1 Deep neural network

The neural network structure is largely based on the design of the residual network. The input

of the network is a matrix of encoded protein sequences of the target four species for prediction.

The input sequences should be aligned, trimmed to the same length, and one-hot encoded. If the

sequences are not aligned, gap positions are discarded. The size of the matrix would be 80 × 𝐿,

where 𝐿 is the length of the aligned sequences, i.e. the number of mutation sites of interest. The

first dimension of 80 elements correspond to 20 amino acids for 4 species. For each site of the

species, the amino acid sequence is one-hot encoded. The element in the tensor that corresponds

to the amino acid at the site for the species will be labelled as 1, and the others 0. Therefore, for

80 elements in the matrix that correspond to a mutation site, there can be at most 4 ones (which

label 4 amino acids for 4 species). The remaining elements are zeros.

The first layer of the network is a grouped convolutional layer that accepts 80 channels. The

80 channels correspond to the first dimension of the input matrix. The grouped convolutional

layer splits the 80 channels into 20 groups, each group corresponds to one amino acid across four

species. The layer convolves across four taxa for each amino acid at each site, with a kernel size

of one. The output of the layer is a 80 × 𝐿 matrix, later batch normalized and then activated by a

ReLU operator. The matrix is then send to a convolutional layer with a kernel size of one, batch

normalization, and a ReLU activator. The output of the second convolutional layer has only 32

channels. The size of the output matrix becomes 32 × 𝐿. The matrix is then fed into an average
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pooling layer to reduce the length of the sequences by half. The pooling layer average every

two elements along the second dimension, keeping the first dimension intact. The output of the

matrix is then 32 × 𝐿
2 .

After the first two convolution layers and average-pooling layer, the resulting matrix is then

fed into a series of four residual convolutional modules. Each module contains two groups of

convolutional layers and one average pooling layer. Each group of convolutional layers have one

convolutional layer with a kernel size of three and a padding size of one, one batch normalization

layer, and a ReLU operator. All convolutional layers output 32 channels. Each residual module

has a skip connection, adding the input matrix on top of the output of the last convolutional layer

in the module. The summed output matrix has the same dimension of the input matrix and is then

fed into the average pooling layer to reduce its second dimension size. The average pooling layer

in the first three residual modules reduce the second dimension size of the matrix by half. The

average pooling layer in the last residual module calculates the mean values across all elements

along the second dimension, effectively reducing the size of the second dimension down to one.

The output of all four rounds of residual convolutional operations is a vector of 32 elements.

The vector is then fed into a fully connected layer which gives three output values, activated by

a softmax operator. The final output is three values, corresponding to the probabilities of three

different topologies of unrooted quartet phylogenetic trees.
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2.2.2 Simulated phylogenetic datasets

The training and validation data are simulated using a likelihood model. The simulation first

populates a large tree consists of 5 to 50 leaf taxa. For the root node of the tree, the simulator

samples an initial amino acid equilibrium frequency profile. The profile is sampled, at each site,

from known amino acid frequencies compiled from proteins found in 16 genes from thousands of

species. Among all 16 protein groups, 13 are encoded in mitochondrial genomes, one is encoded

in chloroplast genomes, and the remaining two are encoded in nuclear genomes. The simula-

tor then sample the sequences at the root node of the tree following a multinomial distribution.

Then the simulator iterates through all the branches of the tree. For each branch, the simulator

first samples a branch length from a gamma distribution and mutation rates across all mutation

sites from a gamma distribution as well. The branch length becomes the pseudo evolution time.

Then the simulator decides whether a change in the mutation rate or the equilibrium frequency

profile would occur. The probabilities of the changes are sampled from beta distributions. In

case a change of mutation rates occur, the simulator swaps the mutation rates between randomly

selected sites. In case a change of the equilibrium frequency profile occurs, the simulator swaps

equilibrium frequencies of two randomly chosen amino acids. These two changes simulate the

branch-wise heterogeneity and site-wise compositional heterogeneity. After that, the simulator

mutates the sequence from the parent node of the branch following a continuous-time Markov

process. The simulator samples a mutation time from an exponential distribution determined by

the mutation rate for each site. If the mutation time at the site is longer than the remaining pseudo

evolution time, the amino acid residue at the site is fixed. Otherwise, a new amino acid is sam-
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pled based on a randomly chosen substition model. After sequences for all the nodes in the tree

are available, the simulator randomly chooses four species from the tree and prune the tree to a

quartet tree.

We added a LBA contaminated training set in ths study as well. In this dataset, the full tree

simulation remains the same. Yet at the prune step, the four species are not randomly chosen.

For a predifined ratio of the samples in the dataset, the simulator will try to find a LBA quartet

tree. In this case, all quartet trees are enumerated and their LBA score is calculated. The score 𝑠

is defined as

𝑠 = 𝑑internal + 𝑑short
𝑑long

(2.1)

where 𝑑internal is the internal branch length, 𝑑short is the length of the third longest leaf branch,

and 𝑑long is the length of the second longest leaf branch. The quartet tree with the smallest score

is chosen.

2.2.3 Training and evaluation

The training of the deep neural network model uses cross-entropy as the final loss function and

AdaBound as the optimizer. Each epoch of training involes 2000 simulated quartet trees, mutation

sites of which are bootstrapped. The order of the four species are shuffled 24 times to enumerate

all possible permutations. At the end of each training epoch, themodel’s performance is evaluated

over an independent validation dataset simulated under the same parameter settings as the training

dataset. The validation performance, in terms of cross-entropy as well, is used to select the best
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epoch along the training process.

The evaluation is done over a series of simulated datasets using different simulation parameters.

The performance is assessed in terms of the number of correctly predictedtrees. The performance

is compared against MEGA X maximum parsimony, MEGA X neighbour joining, RAxML and

Mr. Bayes. The evaluation used multiple simulated datasets with different parameters. The first

is a simple quartet tree set with no heterogeneity introduced. The second is a general quartet

tree set with all above mentioned heterogeneity activated. The third is a LBA set with all above

mentioned heterogeneity activated and only trees with LBA.

2.3 Results

We formulated the inference of a quartet phylogeny into a three-way classification problem (Fig-

ure 2.1). The algorithm we use is a residual convolutional neural network. To brief the algorithm,

the input of the algorithm is encoded protein sequences of the target four species for prediction.

The encoded sequences is grouped by 20 amino acids at each mutation site and convolved across

4 species first. The resulting matrix goes through a series of convolutional operation and aver-

age pooling, reducing to a 32-element vector. The vector is then fed into a fully connected layer

and a softmax operator. The final output of the network is three values, corresponding to the

probabilities of three topologies of quartet phylogenetic trees.

The model is then evaluated over simulated dataset. The simulator uses a likelihood model

to generate a phylogenetic tree of more than 4 species. The sequences are simulated following
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a continuous-time Markov process. There are two aspects in the simuator that reflects the het-

erogeneity in evolution pressure. First of all, the simulator occasionally swap the mutation rates

among random selected sites. This simulates the changing selection pressure over different sites

in different lineage. Secondly, the simulators occasionally swap the equilibrium frequency pro-

files among random selected sites. This simulates the compositional heterogeneity in different

lineage. The model is then trained and validated over datasets that are simulated in this way.

We first tested the model on a non-heterogeneous dataset, where the simulator does not in-

clude branch-wise or compositional heterogeneity. Out of 1000 test trees, the deep neural network

model correctly predicted 992 trees. In comparison, MEGAmaximum parsimony, MEGA neigh-

bour joining, and RAxML correctly predicted 996, 994, and 992 trees, respectively. It is obvious

that there is little difference betweem the performance of these tools over the non-heterogeneous

dataset. While trained on amuchmore complicated dataset, the deep neural networkmodelmakes

sane prediction for easy samples.

We then tested the model on heterogeneous datasets, where the heterogeneity parameters are

the same as the training dataset. Figure 2.2 showed the performance of the deep neural network

model over the two heterogeneous datasets and their comparison against other tools. Over a

heterogeneous dataset with random sampled tree branches of 5000 quartet trees, the deep neural

network model correctly predicted 4843 trees. In comparison, MEGA neighbour joining and

PhyML also predicted correctly 4801 and 4791 trees, respectively. The difference among their

performance is marginal. However, over a LBA heterogeneous tree sets, the difference became

obvious. The LBA cases are often inferred wrongly due to their short internal branch length
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(Figure 2.3). Methods such as MEGA maximum parsimony correctly inferred 2669 samples.

Neighbour joining correctly predicted 3517 samples. The statistical models performed much

better. The best is RAxML, which correctly recovered 3955 trees. Yet the fully trained deep

neural network model performed even better. Epoch 900 predicted 4098 trees. Comparing the

performance curve over the random sampled and LBA datasets, we noticed that the model very

quickly learned to predict non-LBA samples, and its performance over non-LBA samples stays

the same along the training process. The model gradually improves its performance over LBA

samples along the training process.

2.4 Discussion

Current algorithms for phylogenetic inference make assumptions about the evolutionary pro-

cess [12]. Maximum parsimony, a nonparametric model, assumes the observed difference in

sequences results from minimal numbers of mutations. Distance-based methods such as neigh-

bour joining not only specifies a model for the genetic distance between two species, also assumes

that the final phylogenetic tree should be the balanced minimal spanning tree. Most likelihood

models specifies the statistical model of various parameters that describe the evolutionary process

[21]. When exposed to different environments, different branches of the phylogeny may face dif-

ferent selection pressure and thus follow different mutation patterns [22]. Also, the functions of

the same genes may be of different importance for different species, and thus they face different

selection pressure [23]. Within a gene, the mutation rates of different mutation sites vary [24].

36



Different sites may also specify amino acid composition, which may also vary across branches

[25, 26]. Furthermore, different sites may not evolve independently [27]. The branch-level and

site-level variability intermingle and lead to heterogeneity in protein evolution.

In the past decade, likelihood models have evolved to incorporate a lot more variables and

became more realistic. Yet the branch-wise and site-wise heterogeneity in real-world evolu-

tion process dwarves our models. Most likelihood methods either ask the researchers to specify

branch-wise substitution models or use the same substitution model for full tree inference [13].

The dynamics of the mutation rates is also often ignored in many current models [28]. Compo-

sitional heterogeneity also causes troubles for such analysis [18, 25]. With growing numbers of

parameters in the models, the inference and optimization process becomes much more time con-

suming. Our work attempts to solve the problem by using an powerful approximator function to

describe the process. The training process exposes the function to large number of tree samples,

allowing it to approximate the heterogeneity without explicit specification of the parameters. The

inference process, which involves simple calculation of feed-forward neural network, becomes

much faster. The computational burden is shifted to the training process. The resulting model

can be much more flexible to handle the heterogeneity in molecular evolution.

The current model demonstrated its power in capturing some of the hard cases in resolving

heterogeneous phylogeny. Yet the limitation of the model is also obvious. The current structure

of the deep neural network has a specified input dimension, which accepts only four species.

Also, for more than four species, the phylogeny inference cannot be formulated as a classification

problem with a definite number of classes. Therefore, the model does not capture more than
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four species. Yet through large number of species subsampling, the model can generate multiple

quartet trees and can be merged to infer phylogenies for more than four species. The current

model does not fully utilise its convolution layers as no site-wise dependency is present in the

training data. The data augmentation even relies on this feature to bootstrap sites. To include a

proper model for site-wise dependency would allow the model to be more realistic and useful for

exploring more interesting cases such as epistasis.

2.5 Conclusion

This work presents a deep neural network approach to predict quartet phylogeny. This approach

relies on an approximate function to describe the evolutionary process, with no explicit param-

eters to specify during the inference process. The model uses simulated data for training. The

simulation model can be extended without incurring major computational overhead. The model

gives a flexible framework for phylogenetic researchers to study the lineage-wise and composi-

tional heterogeneity in molecular evolution.

38



2.6 Figures and Tables

Figure 2.1: The prediction model for quartet phylogeny inference.
The neural network structure is largely based on the design of the residual network. The input of the
network is a matrix of encoded protein sequences of the target four species for prediction. The first layer
of the network is a grouped convolutional layer (with batch normalization and ReLU activation), followed
by another convolution layer (with batch normalization and ReLU activation). Following these layers are
eight residual modules, each has two convolutional layers. Finally the model uses a fully connected layer
with softmax activation to predict the probabilities of three topologies of quartet trees. The model outputs
the topology with the highest probabilities, highlighted in red.
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Figure 2.2: The validation performance of the deep neural network model along the training
process.

The blue curve is the performance of the model over non-LBA trees, while the read are that over LBA
trees. The performance is compared against MEGA maximal parsimony (MEGAMP), MEGA neighbour
joining (MEGA NJ), RAxML, MrBayes, and PhyML.
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Figure 2.3: The schematic of the LBA problem.
The left unrooted tree shows a phylogeny with a short internal branch and unbalanced leaf branches. The
evolution along the longer branches may introduce convergence in the molecular sequences. Misled by
these wrong signals, the phylogeny inference methods might predict the topology of the right unrooted
tree, which is wrong. This is the LBA.
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Chapter 3

Resolving tumour heterogeneity through

density-hinted optimization of mixture

models

3.1 Introduction

Tumour development is a rapid and heterogeneous evolutionary process [1]. Resolving tumour

heterogeneity is helpful to therapeutic purposes yet challenging. Tumours are results of abnormal

proliferation of cells [2, 3]. Along its development, cells accumulate mutations that eventually

change the functions of the cells [4]. The development shows traits of linear evolution, branching

The chapter is adapted from the manuscript “FastClone infers subclonal composition and phylogeny: a DREAM
Challenge benchmark study” by Hongjiu Zhang, Peter Ulintz, and Yuanfang Guan (in preparation). I co-designed
and co-implemented the algorithm and conducted the benchmark evaluation.
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evolution, neutral evolution, and puctuated evolution [5]. The result of the evolution process is

heterogeneous tumour cells that are adapted to the local environment, rapidly proliferated, and

resistant to immune responses and external treatments [6, 7]. Also, the tumour tissues recruit sup-

porting cells from the host tissues and develop their microenvironment to facilitate their growth

and metastatic migration to other tissues [8]. Tumour evolution presents a challenge to cancer

treatment. Tumour cells that survived treatment and developed drug resistance would cause re-

lapse and therapy failure [9]. Therefore, resolving tumour evolution is important to effective

cancer treatment.

DNA sequencing techniques have empowered modern studies in tumour heterogeneity [10].

Deep whole-genome sequencing of bulk tumours provide a plethora of genetic alteration data to

track tumour development [11]. Existing bioinformatics methods often use SNVs and CNAs to

estimate the prevalence, the genetic alterations, and the phylogeny of the subclones in the tumour

tissues [12–17]. While bulk sequencing data only provide averaged metrics of genetic alterations

over multiple subclones, algorithms can statistically infer the subclones [18]. The algorithms at-

tempt to find the most likely evolution process resulting sublones from which match the observed

the genetic alteration data the best. Algorithms can even combine multiple, sometimes longitu-

dinal, data of the same tumour tissues to further refine their inference [19]. However, there is not

a consensus regarding the specific statistic models for such inference. Parsimony models can be

computationally efficient, but more sophisticated models realistically describe complex genetic

alteration events [20]. The challenge to infer heterogeneous tumour samples with low runtime

overhead remains unsolved.
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Here we present FastClone, a density-hinted mixture model to infer the heterogeneity of tu-

mour tissues. FastClone describes the genetic alteration data of a tumour sample using a mixture

model. Each component of the mixture model describes the likelihood of all SNVs belonging to

a subclone. The model corrects the frequencies of the SNVs using CNAs information. FastClone

takes the density of the allelic frequencies of somatic mutations as a hint to optimize a mixture

model. The inference process takes only seconds for even tens of thousands of mutations. It

reconstruct the phylogeny of the subclones through a post-hoc assignment. The algorithm won

first place in DREAM Somatic Mutation Calling–Heterogeneity Challenge (DREAM SMC-Het

Challenge) [21].

3.2 Methods

3.2.1 FastClone algorithm

FastClone takes both a copy number profile and somatic mutation frequencies as input. It starts

by inferring the proportion of tumour cells in the sample. For each segment reported in the copy

number profile, FastClone performs an initial estimation of the proportation of the tumour cells

𝜌. The estimation is based on B-allele frequencies (𝑏) and the major and minor copy numbers

of CNA (𝑁major and 𝑁minor respectively). The major copy is the alleles that have a higher copy

number, while the minor copy is the one with a lower copy number. Take CNA data from the au-

tosomes and female X chromosomes first. If a segment has no CNA, or its major copy and minor

copy in cancer cells are the same, the segment is not used in estimating cellularity. Otherwise,
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the cellularity 𝜌 can be inferred with

𝑏 =
𝑁major𝜌

(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)
; (3.1)

or if there is a 2-state CNA occur in the segment, which means that not all tumour cells carry the

same CNA,

𝑏 =
𝑁′

major𝜌𝑓 + 𝑁major𝜌 (1 − 𝑓) + (1 − 𝜌)

(𝑁′
major + 𝑁′

minor) 𝑓𝜌 + (𝑁major + 𝑁minor) (1 − 𝑓) 𝜌 + 2 (1 − 𝜌)
(3.2)

where a proportion 𝑓 of the tumour cells have different major and minor copy numbers of 𝑁′
major

and 𝑁minor, respectively. FastClone then estimates the proportion of tumour cells in the sample

by averaging estimates over all segments without weighting.

After the initial purity estimation, FastClone clusters the mutations to identify subclones. Fast-

Clone first tries to calculate the prevalence of cells carrying individual SNVs based on allelic fre-

quencies. If there aremore than 50 SNVswithin regionswithout CNAs, FastClone only calculates

the prevalence for these SNVs. Given an autosomal SNV (or one on female X chromosomes)

with an allelic frequency 𝑥, its prevalance 𝑝 can be calculated from

𝑝 = 2𝑥 (3.3)
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For a SNV on male sex chromosomes, it is

𝑝 = 𝑥 (3.4)

If there are less than 50 SNVs within regions without CNAs, FastClone will also calculate the

prevalence for those SNVs in regions of 1-state CNAs. Given an autosomal SNV (or one on

female X chromosomes) with an allelic frequency 𝑥, its prevalance 𝑝 can one out of three values.

If the mutation occurs on the major copy before the CNA event,

𝑝 = 𝑥
𝑁major

[(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)] ; (3.5)

if the mutation occurs on the minor copy before the CNA event,

𝑝 = 𝑥
𝑁minor

[(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)] ; (3.6)

if the mutation occurs on either copy after the CNA event,

𝑝 = 𝑥 [(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)] . (3.7)

For a SNV on male sex chromosomes (therefore 𝑁minor = 0), then its prevalence 𝑝 is

𝑝 = 𝑥
𝑁major

[𝑁major𝜌 + 2 (1 − 𝜌)] (3.8)
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if it occurs before the CNA event, or

𝑝 = 𝑥 [𝑁major𝜌 + 2 (1 − 𝜌)] (3.9)

if it occurs after the CNA event. FastClone then calculates the kernel density estimation function

of the SNV prevalence. The density function ̂𝑓 (𝑥) is expressed as

̂𝑓 (𝑥) = 1
𝑛𝑍

𝑛

∑
𝑗=1

e(
𝑥−𝑥𝑗

ℎ )
2

(3.10)

where 𝑛 is the total number of SNV, 𝑥𝑗 is the allelic frequency of 𝑖-th SNV,𝑍 is the normalization

constant to ensure ∫+∞
−∞

̂𝑓 (𝑥) d𝑥 = 1, and ℎ is the bandwidth. We use Scott method to estimate

the bandwidth ℎ, that is

ℎ = 𝑛− 1
𝑑+4 (3.11)

for 𝑑-dimensional data (𝑑 samples). FastClone then enumerates all local maxima of the density

function ̂𝑓 . It creates a grid over the real space with a resolution of 0.001, picks up any local

maxima, and further optimises the values through gradient descent. FastClone uses these local

maxima to specify clusters.

Then FastClone optimizes the mixture model

𝜆 =
𝐶

∑
𝑗=1

ln
𝑛

∑
𝑘=1

𝑤𝑗𝐿𝑗𝑘 (3.12)

where 𝐶 is the total number of maxima or clusters, 𝑤𝑗 is the prevalence of the 𝑗-th cluster, and
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𝐿𝑗𝑘 is the probability of 𝑘-th mutation associated with the 𝑗-th subclone. For each mutation, its

probability of being associated with a subclone is modelled as several modified binomial distri-

butions

𝐿𝑗𝑘 = Binom (𝑥𝑘, 𝑟𝑘; �̂�𝑗𝑘) (3.13)

where 𝐿𝑗𝑘 is the probability of 𝑘-th mutation associated with the 𝑗-th subclone, 𝑥𝑘 is the observed

allelic frequency of the 𝑘-th mutation, �̂�𝑗𝑘 is the expected allelic frequency of the 𝑘-th mutation

if associated with the 𝑗-th subclone, and 𝑟𝑘 is the total number of reads that cover the locus of

the 𝑘-th mutations and passed the quality filter. Given the prevalence 𝑝𝑗 of the 𝑗-th subclone, the

expected allelic frequency of a mutation can be from following cases:

1. If the SNV is located in an autosomal or female X-chromosome region, there are three

cases. If the mutation occurs on the major copy before the CNA event,

𝑝𝑗 =
�̂�𝑗𝑘,major
𝑁major

[(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)] ; (3.14)

if the mutation occurs on the minor copy before the CNA event,

𝑝𝑗 =
�̂�𝑗𝑘,minor
𝑁minor

[(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)] ; (3.15)

if the mutation occurs on either copy after the CNA event,

𝑝𝑗 = �̂�𝑗𝑘,after [(𝑁major + 𝑁minor) 𝜌 + 2 (1 − 𝜌)] . (3.16)
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Then, �̂�𝑗𝑘 will be the most likely value among these three, that is

�̂�𝑗𝑘 = arg max
�̂�∈{�̂�𝑗𝑘,major,�̂�𝑗𝑘,minor,�̂�𝑗𝑘,after}

Binom (𝑥𝑘, 𝑟𝑘; �̂�) . (3.17)

2. If the SNV is located in a male sex chromosome region, there are two cases. Similar to

the calculation listed above but with 𝑁minor = 0. There is no case for mutation occurs on

the minor copy, so �̂�𝑗𝑘 will be the most likely value between the major-copy case and the

after-copy case.

The probability is not related to the variables 𝑤𝑗 . Therefore, the model can be optimized through

usual expectation-maximization. In each iteration,

�̂�𝑗 = 1
𝑛

𝑛

∑
𝑘=1

𝑤𝑗𝐿𝑗𝑘
∑𝑛

𝑘=1 𝑤𝑗𝐿𝑗𝑘
(3.18)

where �̂�𝑗 is the new value for the next round of the iteration. The weights are initialized with 1

at the beginning. With 𝑤𝑗 and 𝑝𝑗 fixed, all mutations can be assigned to a subclone with which

the mutation has the maximum likelihood.

The phylogeny construction is done by iterating all possible tree structures and calculating the

likelihood of the tree. There are two rules in iterating the tree structures:

1. A subclone with a smaller prevalence cannot be the parent of a subclone with a larger

prevalance, the tree is not valid.

2. If the prevalence of a subclone is smaller than another in one sample but larger in another
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sample, then these two subclones cannot be the parent of each other.

For the remaining trees, a likelihood is calculated by assuming that the prevalence ratios of the

parents and the children follow a beta distribution. This assumption is consistent with the tree-

structured stick-breaking process with the component distribution parameters fixed. The tree

structure with the highest likelihood becomes the final result.

3.2.2 Benchmark

The benchmark evaluation is performed using data from the DREAM SMC-Het Challenge. The

challenge organizers specified several tree structures and their subclonal compositions manually.

To simulate real-world scenario, the challenge organizers used real-world sequencing data as the

basis for the read generation. The reads were first aligned using BWA [22]. They were then

analyzed using Battenberg to extract the copy number profile [12]. The challenge organizers

specified a panel of mutations for each simulated dataset and inserted them into the sequencing

reads using BAMSurgeon [23]. The modified reads were then processed using MuTect to call

somatic mutations [15]. Participants of the challenge receive MuTect reports and copy number

profiles and predict the subclonal structures.

The predictions are evaluated using multiple metrics. The number of subclones is evaluated

based on relative error 𝑠 as

𝑠 = 1 − |𝑛truth − 𝑛prediction|
𝑛truth

(3.19)

where 𝑛truth and 𝑛prediction are the simulated and predicted number of subclones, respectively. The
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mutation assignment is evaluated based on the correlation of the co-clustering matrices. The false

positive mutations called by MuTect are excluded from the assessment. The co-clustering matrix

𝑆 of the remaining mutations are calculated as

𝑆 = 𝑃 𝑃 𝑇 (3.20)

where 𝑃 is the probability matrix of each mutation associated with each subclone (𝑛 × 𝐶). The

correlation between 𝑆prediction and 𝑆truth is the score. The subclonal composition is evaluated

based on the correlation of the predicted and simulated prevalences of cells carrying each muta-

tions. The phylogeny is evaluated based on the correlation of the ancestor matrices. Again, the

false positive mutations called byMuTect are excluded from the assessment. The ancestry matrix

𝑀 of the remaining mutations are calculated as

𝑀 = 𝑃 𝐴𝑃 𝑇 (3.21)

where 𝐴 is the asymmetric ancetor matrix of subclones (𝐶 × 𝐶).

3.3 Results

FastClone applies several strategies to simplify the subclonal inference. FastClone takes both

a copy number profile and somatic mutation frequencies as input. To find the subclones, Fast-

Clone first tries to identify subclones through kernel density estimation (Figure 3.1). FastClone
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converts the allelic frequencies somatic mutation to the prevalences of the cells carrying these

mutations. For mutations that are located in the regions of CNAs, FastClone simply iterate all

possible solutions for cases in which the mutations occur on the major copy before CNAs oc-

cur, on the minor copy before CNA occur, or on either copy after CNAs occur. In the kernel

density estimation, mutations with multiple possible solutions are weighted down equally. Fast-

Clone then calls all local maxima in the estimated distribution and uses them as the prevalences

of sublcones. With the prevalences of subclones fixed, FastClone calculates the probabilities

of all mutations associated with all subclones. It then infers the subclone composition using a

mixture model. With the probabilities calculated, the mixture model can be optimised through

expectation-maximization. FastClone then infer the phylogeny based on either the shallowest

tree or the tree-structured stick-breaking process. Since the subclonal composition is solved, in-

ference of tree-structured stick-breaking process becomes finding the solution with the highest

likelihood of a beta distribution, which is much less time-consuming.

The model is then submitted to DREAM SMC-Het Challenge for independent evaluation.

DREAM SMC-Het Challenge uses simulated data for assessment. To brief the simulation pro-

cess, the assessment team specify several tree structures and their subclonal compositions. They

also take real-world sequencing data as the basis of the simulation. Mutations are then inserted

into the sequencing reads using BAMSurgeon [23]. The reads are then processed through BWA,

Battenberg and MuTect to call somatic mutations [12, 15, 22]. Participants of the challenge re-

ceive MuTect reports and copy number profiles and predict the subclonal structures. Here the

assessment focuses on two aspects: the subclonal composition and phylogeny and the assign-
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ment of mutations to the subclones. We stick with the metrics used in the DREAM SMC-Het

Challenge.

The challenge first evaluated the predicted cellularity and number of subclones of the tumour

tissue. Since the monoclonal origin assumption of the simulation, the cellularity of the tumour

tissue equals to the cellularity of the biggest subclone. Among all samples tested in the DREAM

SMC-Het Challenge leaderboard, FastClone achieved a median relative error of 0.99 in cellular-

ity estimation. It achieved an median absolute error of 1 in subclone number estimation. Peak

identification approach tend to underestimate the number of subclones, as subclones with fewer

mutations may not manifest as a subclone.

The challenge then evaluated the accuracy of assigning mutations to the subclones. The accu-

racy was measured in terms of the correlation of predicted and simulation co-clustering matrices.

FastClone achieved the median correlation coefficient of 0.47. Major misassignment occurred

due to missing subclones in the peak identification stage. To see whether this can be avoided, we

conducted an additional test by enforcing the correct numbers and cellularity values of subclones

and let FastClone assign the mutations to subclones using the same likelihood models. We do

not see improvement in assignment. Figure 3.2 shows the two cases on one of the leaderboard

sample. The nature of the likelihood model determines that the mutations that have the closest

prevalence to the cellularity of the subclone are assigned together. This is not true in the sim-

ulation data and very unlikely in the real-world data. With one-dimensional data, the statistical

models are unable to handle the dispersion of binomially distributed allelic frequencies.

Finally the challenge evaluated the accuracy of phylogeny inference, which is scored based on
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the correlation of the predicted and simulated ancestry matrices. Because there are many possible

phylogenies that yields the same subclonal composition, FastClone chooses a beta distribution

model to estimate the tree structure. The model achieved a median correlation score of 0.69.

3.4 Discussion

Fast evolution of cancer cells is a great threat to cancer treatment [24]. Tumour cells that carry

drug-resistant mutations may evade treatment and cause relapse [25]. Deep bulk DNA sequenc-

ing is a common solution to study tumour heterogeneity [26]. Through profiling CNAs and SNVs,

researchers can infer the subpopulations present in the tumour sample and their genetypic infor-

mation. There have been more than dozens of algorithms developed for tumour heterogeneity

inference [16, 17, 27–42]. Many combines CNAs and SNVs data together to get more accu-

rate results. The performance of these tools varies under different benchmark tests and different

metrics. DREAM SMC-Het Challenge provides a great third-party independent assessment of

different algorithms [21].

FastClone uses density-hinted optimization of mixture models to solve the subclonal decompo-

sition problem. Without CNA, subclonal decomposition can be modelled as a binomial mixture,

each component of which is a subclone. With a Dirichlet prior, such model can be easily opti-

mized using variational inference. With CNA, the probability of SNVs vary and the distribution

of a mutation belonging to a subclone no longer belongs to the exponential family. The opti-

mization of such a model often involves Gibbs sampling, which is time consuming and hard to
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converge on large dataset [43]. In our test, we show that almost no sampling-based software can

handle more than thousands of mutations within reasonable runtime. Using density to specify

the subclones greatly accelerates the inference. This approach does not gaurantee the mathemat-

ical optimal solution to the likelihood model, but works well on both simulated and real-world

datasets. Also, sampling-based optimization over large dataset is hard to converge [43]. While

theoretically these models eventually converge to the best solution in probability, it is quite time

consuming in the real world. In the end, the extra computational burden does not pay off, and

these methods may not perform well on simulated data from even the same models.

Evaluation of tumour heterogeneity inference needs well designed metrics. And in this chal-

lenge, we see a difficult case where different metrics drastically contradict with each other in

some test samples. FastClone shows a tendency of under-clustering. In terms of the number

of subclones, FastClone’s prediction is biased. However, this is justified in our co-clustering

analysis. Given the highly variable distribution of allelic frequencies, subclones with small num-

bers of mutations are much harder to detect. Forcefully calling these mutations leads to wrong

assignment of mutations and can be quite misleading.

It is extremely hard to recover ancestry relationship from mutations, more so from a single

sample. Many algorithms for heterogeneity inference chose to build the shallowest tree possible

[44]. Recent statistical models rely on tree-structured stick-breaking process [16]. Neither as-

sumption is supported by the statistical description of the evolution process. Yet, in real-world

analysis, these methods work well for different cases. The performance of either methods is

greatly affected by the depth and complexity of the tumour phylogeny. However, mutations and
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copy number profiles are not enough to fully determine the evolution process of the tumour [35].

FastClone provides efficient inference of the subclonal composition and phylogeny from tu-

mour sequencing data. There are multiple aspects of the tool can be further explored or improved.

The current implementation handles multiple samples independently and merges the cluster from

different samples to form concensus clustering. An alternative approach is to look for max-

ima from joint distribution of the recovered prevalences of mutations. Which performs better

needs further tests. The algorithm currently accepts MuTect format only as its mutation data in-

put. Considering Strelka is another popular somatic mutation calling tool, future development of

FastClone will include an additional input wrapper for other file formats.

3.5 Conclusion

This work presents FastClone, an ultra-fast algorithm to infer subclonal composition and phy-

logeny from tumour DNA sequencing data. The density-hinted optimization of themixturemodel

greatly accelerates the inference process. The method avoids overspecifies the subclones and

preserves the co-clustering relationship among mutations. It performed well on both simulated

datsets and the real-world tumour data. In sum, FastClone empowers researchers to explore the

heterogeneity of tumour tissues with minimal computational overhead.
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3.6 Figures and Tables

Figure 3.1: An example of the density-hinted inference.
FastClone first recover the prevalence for the mutations (left). It constructs a density function for the
recovered prevalence (right). By identifying the localmaxima, or peaks, in the density functions, FastClone
determines the number of subclones for the following inference
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Figure 3.2: Conservative estimation of subclones yields better results.
The area of the red region is proportional to the number of misclassified mutations in each case. Taking a
test sample from the DREAM SMC-Het Challenge as an example. On the left side, FastClone by default
identifies two subclones from the two peaks from the density, though the simulation truth specified three
samples. The cluster with fewer mutations cannot be inferred from the density. Yet enforcing the existence
of the mutation, as shown on the right side, does not give a better prediction.
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Chapter 4

Recovering single-cell transcriptomic

expression profiles through weighted

pooling

4.1 Introduction

Alternative splicing, as the key mechanisms for diverse transcript and protein production in eu-

karyotic organisms, plays an important role in regulating cell proliferation, differentiation, and

development [1]. Current sequencing techniques allows accurate transcript-level profiling at the

bulk tissue level, but not yet at the cellular level [2]. Most widely used single-cell transcriptome

The chapter is adapted from the manuscript “Seekmer imputes transcript abundance from single-cell RNA se-
quencing data” by Hongjiu Zhang, Yifan Wang, Ebrahim Azizi, Gilbert S. Omenn, Ryan E. Mills, and Yuan-
fang Guan (in preparation). I designed and implemented the algorithm and co-conducted the benchmark evalu-
ation.
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sequencing methods are based on short-read sequencing platforms [3]. These platforms do not

yield the full transcript sequences in single reads, but produce many fragments that cover differ-

ent segments of the transcripts [4]. To estimate the transcript abundance, computational methods

needs adequate fragment sampling to infer the relative abundance between different isoforms

from the same genes [5]. Unfortunately, while the current single-cell sequencing methods yield

decent amount of fragments per cell for gene-level expression analysis, accurate transcript-level

profiling demands much more [6]. Before engineering solution is available, current bulk RNA-

seq quantification algorithms might not be suitable for isoform quantification from single-cell

RNA sequencing (scRNA-seq) data.

The limited number of reads in scRNA-seq is troublesome not only to isoform quantification,

but also to many other analysis in scRNA-seq data analysis. Due to limited sampling of the tran-

script molecules, many cells often have only a few thousands of genes being sampled [7]. The

lowly expressed genes are often missed in such sampling process, more often than what is spec-

ified in a naïve multinomial model, which is called dropout effect [8]. Due to this, scRNA-seq

data are often inflated with zeros for genes that are expected to be found. For gene-level analysis,

many imputation algorithms have been proposed to deal with such issues [9]. While the detailed

algorithms differ, the basic idea is to borrow information from similar cells to help impute the

missing values in the target cells [10–12]. Because such algorithms are often designed to deal

with read count matrices, which are integer matrices, and not raw read data, they cannot deal

with transcript imputation. Combining the likelihood models to model reads and the imputa-

tion approach to borrow information from similar cells might be key to estimate transcript-level
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abundance from scRNA-seq data.

In this work, we present Seekmer, an algorithm to impute transcript abundance from full-length

scRNA-seq data. The algorithm finds similar cells based on their gene expression profiles and

pools reads from similar cells to facilitate the transcript abundance estimation. We applied the

algorithm to a series of simulated data to test its robustness against various technical factors such

as read counts and number of cells of same cell types. We found that Seekmer performs well over

a wide range of read depths and cell cluster sizes. We further validated the algorithm on real-

world spike-in data and cell line data. The imputation results preserved the clustering patterns

in the original datasets while differentiates different splicing isoforms as well. The source code

of Seekmer is hosted at https://github.com/guanlab/seekmer, and the software is

available through Anaconda.

4.2 Methods

4.2.1 Seekmer algorithm

Seekmer consists of two part, an alignment-freemapper and an abundance estimator. The alignment-

free mapper is similar to existing alignment-free transcript quantification tools such as Kallisto.

The mapper needs to generate an index of reference transcriptomic sequences first. To build an

index, Seekmer first collects all possible K-mers from reference transcriptomic sequences. Each

K-mer is associated with a set of transcripts to which the K-mer can be mapped. Due to the

high similarities between sequences of splicing isoforms from same genes, many K-mers can be
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mapped to more than one transcripts. Seekmer groups together K-mers that are contiguous on the

transcript sequences and share same sets of mappable transcripts. These grouped K-mers form

contigs, as they occupy continuous segment of transcript sequences. Each contig has two termi-

nal K-mers (and their reverse complements). These grouped K-mers, together with their sets of

mappable transcripts, are the index for later mapping process.

When mapping a read, the mapper looks for a K-mer in the read that is also present in the

Seekmer index. if a read has no such K-mer, the read is discarded. Starting from the matched

K-mer, the mapper keep extending the match by iteratively jumping over the terminal K-mers of

the contigs and mapping K-mers. By jumping over the contig, the mapper skips over K-mers that

have the same mappable target transcripts, both speeding up the process and avoiding potential

sequencing errors or mutations in the middle of the contig. The output of the mapper for each

cell is a long list of transcript sets and how many reads can be mapped to these sets. These data

are the input for the abundance estimator.

The abundance estimator of Seekmer takes the read mapping data and performs an initial esti-

matation the abundance of genes. The initial estimation optimizes a uniform mixture model, the

log-likelihood function is expressed as:

log 𝐿 =
𝑁read

∑
𝑖=1

log
𝑁transcript

∑
𝑗=1

𝛼𝑗
𝑙𝑗

(4.1)

where 𝑙𝑗 is the effective length of the 𝑗-th transcript, and 𝛼𝑗
𝑙𝑗
is the (length-normalized) abundance

of the 𝑗-th transcript. The estimator estimates the gene abundance of each cell by adding the
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abundance of all transcripts from same genes. Based on the initial estimation, the abundance

estimator then calculates the Pearson correlation coefficients of gene expression for all pairs of

cells as

̄𝑔𝑖 = 1
𝑁gene

𝑁gene

∑
𝑘=1

𝑔𝑖𝑘 (4.2)

𝑟𝑖𝑗 =
∑𝑁gene

𝑘=1 (𝑔𝑖𝑘 − ̂𝑔𝑖) (𝑔𝑗𝑘 − ̂𝑔𝑗)

√∑𝑁gene
𝑘=1 (𝑔𝑖𝑘 − ̂𝑔𝑖)2√∑𝑁gene

𝑘=1 (𝑔𝑗𝑘 − ̂𝑔𝑗)2
(4.3)

where 𝑔𝑖𝑘 is the expression level of 𝑘-th gene in 𝑖-th cell, and 𝑟𝑖𝑗 is the Pearson correlation coef-

ficient between the gene expression profile of 𝑖-th cell and 𝑗-th cell. The estimator then applies

K-mean clustering (𝐾 = 2) on the coefficients in the matrix and zeros out. The cluster of the

lower coefficients in the correlation matrix are zero out. Seekmer then raise all elements in the

processed correlation matrix to higher power to get the weight matrix 𝑊 for all cells, that is

𝑤𝑖𝑗 = 𝑟𝑝
𝑖𝑗 (4.4)

for unfiltered cell pairs, where 𝑤𝑖𝑗 is the contributing weight between 𝑖-th and 𝑗-th cells, and

𝑝 is the power parameter. Given a target cell to impute, Seekmer build a model similarly to the

uniform expression cells to the same number of the target cell. Then the read counts are multiplied

by the precalculated weights. The new model for the estimation can be expressed as

log 𝐿 =
𝑁read

∑
𝑖=1

log
𝑁transcript

∑
𝑗=1

𝛼𝑗
𝑙𝑗

(4.5)
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By optimizing the new scoring function, Seekmer estimates the transcript-level abundance of the

cells.

4.2.2 Real-world sequencing data

Public available real sequencing data in this work includes Universal Human Reference RNA

(UHRR), Human Brain Reference RNA (HBRR), and SMRT-seq sequencing of mouse embry-

onic cells with ERCC and SIRV spike-ins (Sample accession ID: SRR950078–SRR950087, E-

MTAB-5481). The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) as-

say results for UHRR and HBRR were generated from SEQC project as a ‘gold standard’ for

RNA-seq quantification (GEO Accession: GSM1361812, GSM1361813). The SIRV spike-in

reference sequences and annotations are available athttps://www.lexogen.com/sirvs/

downloads/https://www.lexogen.com/sirvs/downloads/.

The case study in this work uses a single-cell sequencing dataset on K562 and SUM149 cell

lines. Breast cancer SUM149 and erythroleukemia K562 control cell lines were cultured in F12

and RPMI media, respectively. At about 80% confluency, cells were harvested from the culture

flasks and diluted to about 300 cells/ul in PBS. Cell suspensions of SUM149 and K562 were

separately processed using the Polaris instrument (Fluidigm, USA), 48-well full-length RNA-

seq chip and reagents (Clontech and Fluidigm, USA). Captured single cells (48 breast cancer

cells and 48 leukemia cells) were separately lysed to release total RNA and converted to cDNA

libraries followed by pre-amplification of cDNAs all on the chip according to the manufacturer’s

protocol. The product of every single cell was then transferred to a well of a 96-well plate for
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barcoding using the Nextera XT DNA library prep kit (Illumina, USA). Single cell barcoded

products were pooled together in one lane for sequencing on HiSeq 2500. Raw sequencing data

were processed through the following pipeline to determine gene expression patterns of every

single cell of SUM149 and K562 cell lines.

4.2.3 Simulated sequencing data

All simulated sequencing data in this work were generated using RSEM (coupled with STAR

aligner) [13, 14]. STAR and RSEM aligned and estimated the transcript abundance of a UHRR

sample (SRR950078) and a HBRR sample (SRR950079) against ENSEMBL 90 human reference

cDNA sequences. RSEM simulator then took the quantification results and generated 48 samples

based on the UHRR sample and 48 based on the HBRR sample.

4.2.4 Benchmarks

The UHRR, HBRR, simulated, and Fluidigm Polaris samples were mapped against ENSEMBL

90 human reference cDNA sequences [15]. The mouse embryonic stem cells with spike-ins

were mapped against ENSEMBL 90 mouse reference cDNA sequences. The quantification and

imputation results of simulated 96-cell dataset, the mouse embryonic stem cell dataset, and the

Fluidigm Polaris dataset were also analyzed using Seurat [16].
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4.3 Results

Isoform quantification methods are able to quantify transcripts accurately with abundant reads

from bulk RNA sequencing. When compared against qRT-PCR assays, (logarithm-transformed)

estimated transcript abundance from methods such as STAR-RSEM can achieve correlation co-

efficients as high as 0.7 (Figure 4.1). Yet their performance on single cell data, each cell of which

has much fewer reads, is not well studied. We performed a simulation experiment to benchmark

their performance on samples with much fewer reads. Literature reports the numbers of reads per

cell generated by commonly used single-cell sequence techniques range from a few tens of thou-

sands to a few million. Therefore, we used RSEM to simulate samples with 10,000 to 1,000,000

reads based on UHRR and HBRR samples. As shown in the downsampling simulation experi-

ment (Figure 4.2), the performance of these methods decreased to 0.2~0.5 when the number of

reads dropped below a million reads. In the experiment, the simulator takes the estimated ex-

pression profile and generates reads accordingly. While the source expression profile of such

simulation remains the same, the estimated transcript abundance can be drastically different, and

they are also different from the source profile as well. The experiment on simulated samples with

different number of reads shows that the fewer reads are present in the sample, the less accurate

these methods estimate (Figure 4.1).

To improve the estimation accuracy for samples with limited number reads, quantification

methods need more reads. Fortunately, in single cell sequencing, cells of same types often have

similar gene-level expression profile and form clusters. Assuming cells with similar gene-level

expression have similar transcript-level expression, reads from cells with similar gene expression
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profiles may benefit transcript abundance estimation.

The algorithm design of Seekmer is based on the above read pooling idea. Seekmer consists

of two part. The first part is an alignment-free mapper that resembles transcript quantification

tools like Kallisto (Figure 4.3) [17]. To brief the algorithm, the mapper first collects all possible

K-mers from reference transcriptomic sequences. Each K-mer is associated with a distinct set of

transcripts to which the K-mer can be mapped. To facilitate the mapping process, the algorithm

groups together K-mers that are next to each other on transcript sequences and share same sets of

transcripts together. By convention, these groups formed by contiguous K-mers are called con-

tigs. When mapping a read, the mapper searches for a K-mer that can be mapped to transcripts.

Starting from the first matched K-mer, the mapper keep extending the match by iteratively jump-

ing over the terminal K-mers of the contigs and mapping K-mers. The mapper then assigns the

read to the intersection of transcript sets associated with all mapped contigs. Reads with no map-

pable K-mers are discarded. After mapping all the reads in each cell, the mapper gathers a long

list of transcript sets and how many reads can be mapped to these sets. These mapping data are

then used in the later imputation algorithm to guild cell pooling. In sum, this part is similar to

common transcript quantification algorithms but calculates mappable read counts instead of the

abundance.

The second part of Seekmer is the read pooling estimator (Figure 4.4). Seekmer takes the read

mapping data and calculates the number of reads that can be uniquely mapped to each gene. En-

tries of different isoforms from same genes are merged, and ambiguous reads are discarded. The

gene read counting results is similar to those from HTseq annotation. Seekmer then calculates
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the Pearson correlation coefficients of gene read counts for all pairs of cells, which gives a corre-

lation matrix. Seekmer also applies K-mean clustering (𝐾 = 2) on the coefficients in the matrix.

The clustering differentiates the higher coefficients among cells with similar expression profiles

against those lower ones among cells with different profiles. The lower coefficients in the cor-

relation matrix are zero out. Seekmer then raise all elements in the processed correlation matrix

to higher power to get the weight matrix for all cells. The weight matrix reduces the contribution

of cells with less similar profiles, so the final abundance inference for a cell will be driven by the

reads from the cell itself and those cells with almost identical expression profiles. After getting

the weight matrix, Seekmer imputes the abundance of transcripts by pooling reads from other

cells. The statistical model for the imputation is a similar model to traditional transcript quantifi-

cation tools like Cufflinks, RSEM, and Kallisto, but with reads from other cells. Given a target

cell to impute, Seekmer first normalizes read counts from other cells to the same number of the

target cell. Then the read counts are multiplied by the precalculated weights. By optimizing the

scoring function of the model, Seekmer estimates the transcript-level abundance of the cells.

We first tested Seekmer on a dataset simulated by RSEM. Given the expression profiles of the

UHRR and HBRR samples, the RSEM simulator generated 48 samples similar to UHRR and 48

to HBRR. Each of these samples have varying number of reads from 10,000 to 1,000,000, the

amount of which is similar to the numbers of reads per cell obtained from commonly used single-

cell sequencing techniques. Therefore, the simulated dataset resembles a testing 96-cell sequenc-

ing data from Fluidigm full-length sequencing platform on two cell types. Figure 4.5 shows the

performance of Seekmer on this simulated single-cell dataset. The imputation improved the cor-
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relation of the transcript abundance against the qRT-PCR results from 0.54 to 0.72, much closer

to the bulk results of 0.8. The performance is not sensitive to the change of the power parameter

(Figure 4.6). The improvement signifcantly reduces the variation caused by the downsampling

(Figure 4.7). Yet the difference between the clusters is preserved (Figure 4.8). Imputation also

alleviated the artifact in the clusters introduced by imbalanced read counts (Figure 4.9).

One concern against such weight pooling approach is that the model may mistakenly pool in

cells that are actually dissimilar. This may happen in cases for cells with number of reads that

are too low. The resulting gene count data of these cells can be moderately similar to arbitrary

cells in the sample. The situation might get worse when these poorly sequenced cells belong to a

small cluster in comparison to other clusters present in the dataset. Yet as shown in Figures 4.10

and 4.11, Seekmer performed well in imputing undersampled cells with low read counts. In this

test, the numbers of cells in each cell type vary from 6 to 48. While the performance of Seekmer

indeed dropped slightly when the number of cells decreased (from 0.7 to 0.62), the resulting

performance is still much better than quantification on individual cells (0.3). Specifically on

those poorly sequenced cells whose numbers of reads are lower than 100,000, Seekmer was able

to achieve correlation coefficients as high as 0.6 as well (Figure 4.12 and 4.13).

To further assess how well Seekmer differentiate different isoforms from same genes, we fur-

ther tested Seekmer on real-world SMRT-seq data of mouse embryonic stem cells with spike-ins.

The dataset contains SIRV spike-ins, sequences of which resembles alternative splicing isoforms

from eukaryotic organisms. The SIRV spike-in data can be used to evaluate the isoform-level

imputation results. An interesting point of the SIRV spike-ins is that the reference annotations

78



contain entries that are not present in the spike-in sample. This resembles the real-world transcript

quantification scenarios. Eukaryotic genes may generate tens of different splicing isoforms, but

they may not be present in a single cell at the same time. These decoy entries allow testing of

whether Seekmer’s imputation can reduce the false positives.

Figure 4.14 shows that Seekmer performed well on this real-world benchmark dataset. Seek-

mer uniformly improved the quantification by read-pooling imputation. The average performance

was improved to 0.6. Unlike above simulated cases, Seekmer did not collapse the clusters into

almost a single dot in the PCA plot but preserved the intra-cluster variation (Figure 4.15). Yet

the cluster are well separated in this case. The similar pattern can be seen in the t-distributed

stochastic neighbour embedding (t-SNE) analysis as well (Figure 4.16). The cluster pattern is

quite similar to what is observed in direct quantification results, but the separation is much more

obvious. The clustering is free of the artifact from read counts (Figure 4.17).

In addition to the spike-in validation, we also applied Seekmer to a FluidigmPolaris sequencing

data on two cell lines. One is the leukemia cell lineK562, and the other is the triple-negative breast

cancer cell line SUM149. Both cell lines are well studied and have many splicing isoforms have

been characterized. Again, Seekmer imputation results show similar clustering patterns to that

of the direct quantification profiles (Figure 4.18). In this case, a group of poorly sequenced cells

forms a small cluster, mixing both types of cells (Figure 4.19). The similar cluster pattern is

also preserved in the t-SNE analysis as well (Figure 4.20). Other than the poorly sequenced

cell cluster, the other clusters well separated the cells of two cell lines. Both clusters of cell

lines are well characterized by marker genes. For example, both GYPA and GYPB genes are
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highly expressed in K562 cells (Figure 4.21) And EGFR is highly expressed in SUM149 cells

(Figure 4.22). Another interesting example is CD44, which is known to have alternative splicing

in SUM149 cells. Figure 4.23 shows that not only the canonical transcript of CD44 is expressed

in the SUM149 cells, the v6 transcript (CD44-206) is also detected.

4.4 Discussion

Seekmer aims at providing transcript-level abundance information for single-cell studies. Most

single-cell studies focus on gene-level transcriptomic characterization, but not much at the tran-

script level [2]. This is mainly due to the limitation of the current single-cell sequencing tech-

niques. Commonly used single-cell sequencing methods need to deal with the trade-off between

covering large number of cells and sampling more transcripts in each cell [18]. Yet even methods

optimized for in-depth analysis for each cell yield much less reads than bulk RNA sequencing [6].

Methods like SMART-seq 2 generate a few million reads per cell [19]. Without enough reads, the

performance of transcript inference drop significantly, both reported and shown in our simulation

test [20–22]. On top of that, the most commonly used single-cell sequencing platforms such as

Drop-seq and 10x sequencing rely on barcodes to track the identity of the transcript molecules

[23, 24]. These barcodes are often attached at the terminal of the transcript molecules and oc-

cupy one end of the pair-ended sequencing. This results in single-end sequencing of the actual

transcript sequences and heavily terminal-biased sequencing [25]. These are not desirable in

splicing isoform inference. Because short-read sequencing cannot capture all splicing junctions
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in one single-reads, isoform inference algorithms needs reads of (ideally) even coverage over the

transcript molecules. This is critical for the statistical model in isoform inference algorithms.

Unfortunately, due to the aforementioned reasons, it is difficult to obtain transcript-level infor-

mation from single-cell RNA-seq data [26]. In sum, even coverage and adequate reads per cell

are the two major challenges of inferring single-cell transcript abundance.

While single-cell sequencing platforms such as SMRT-seq provides less biased coverage, the

requirement on the numbers of reads per cell is difficult to accomodated through engineering

methods at the moment. From the algorithm aspect, inference algorithms can be much more ac-

curate if they can borrow reads from cells with similar expression profiles [9]. This is the key

to imputation. However, calculating the similarities among the transcriptomic profiles of cells

needs the profiles themselves, thus forming a dilemma. To break the cycle, Seekmer uses the

gene-level expression profiles to calculate the similarities. It assumes that similar gene-level ex-

pression implies similar isoforms-level expression. The assumption seems quite strict, yet justifi-

able. Popular single-cell sequencing analysis still rely on clustering of cells over their gene-level

expression profiles to determine the expression profiles of the cell types [16, 27, 28]. We also

show that the observed variations within the cell clusters are partially attributed to the poorly

sampled sequences. In our simulation test, such pooling approach not only recovered the expres-

sion profiles of individual cells, also resisted the effect of dissimilar cells even when imputing

cells from a much smaller cluster. The precedent algorithms and our experiments well justified

the algorithm choice.

There are a few limitations in Seekmer right now. One limitation is that Seekmer calculates
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the similarity between cells based on read counts of all genes. Considering most platforms can

detect about a few thousands genes in each cell, more than half of the elements in gene expression

vectors of cells are zeros. Also, for studies involving cells from same tissues or organs, theymight

have many genes with similar expression levels. This may lead to high correlations between cells

and cause Seekmer to be insensitive to minor differences between cells. This issue is not present

in the experiments shown in this paper. A potential reason for the absence might be that the 2-

way clustering and raising the correlation coefficients to higher power alleviate the issue. In case

the issue occurs, one solution is to use most variable genes instead of all genes to calculate the

correlation matrix. By excluding genes that have low variation in their expression levels across

all cells, the algorithm will be more sensitive to the differences between cells and thus more

selective in pooling reads. Another limitation is that the current implementation of Seekmer is

not scalable to handle cases like multiple thousand cells. Inference for more than a few thousands

of cells might take days. This is currently acceptable as major full-length single-cell sequencing

platforms accept at most a few hundred cells per batch. At the same time, this can be easily

improved in algorithm implementation and future hardware upgrade. For now, we do not apply

pre-mature optimizaiton.

4.5 Conclusion

Thiswork presents Seekmer, an imputationmethod that estimates single-cell transcript abundance

through read pooling. The weighted pooling approach enables estimating the abundance of the
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transcripts per cell much more accurately. The algorithm is able to differentiate splicing isoforms

from same genes in the imputation process and performs well even for limited numbers of cells.

In sum, Seekmer provides more accurate transcript profiling analysis and empowers researchers

in single-cell splicing studies.
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4.6 Figures and Tables

Figure 4.1: Low read counts compromises the accuracy of transcript abundance estimation.
A series of downsampling experiments based on the expression profiles of UHRR and HBRR reveals that
the accuracy of the transcript abundance estimation drastically decreases when the numbers of reads drop
below one million.
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Figure 4.2: Low read counts hurts the estimation of transcripts of intermediate expression.
Comparison of estimated abundance of transcripts from RNA sequencing against the qRT-PCR results on
two cells of different read counts shows the inaccurate estimation of transcripts of intermediate expression
levels. With less than 10 million reads, transcripts with expression levels less than 10 TPM are either not
observed or wrongly quantified.
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Figure 4.3: Seekmer transcript quantification approach.
Seekmer first collects all possible K-mers from the reference transcriptome sequences and associates them
to their target transcripts. It connects adjacent K-mers together to form de Bruijn graph and dissects the
graph into contigs of K-mers that share same sets of target transcripts. The contigs of K-mers with their
targets are used as the index of the transcriptomic sequences. Given RNA sequencing reads, Seekmer looks
for a K-mer that matches the index. Seekmer then extends along the reference contig from the K-mer and
maps as many contigs as possible. If there is no exact match when extending K-mer search, Seekmer
performs a heuristic local alignment based on SIFT4 algorithm to correct potential sequencing errors or
SNPs. Seekmer then assign the reads to the intersection of all transcript sets obtained frommapped contigs.
Finally, Seekmer performs an expectation-maximization to quantify the expression of transcripts based on
all mapped reads.
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Figure 4.4: Seekmer read pooling approach.
Seekmer calculates an initial gene expression profile by direct mapping and quantification over sequencing
data from individual cells. Then for all pairs of cells, Seekmer calculates the correlation of their gene
expression levels. By clustering the correlation scores, Seekmer identifies cells that are highly correlated.
Then Seekmer pools reads from correlated cells with weights that are simply powered correlation scores.
From pooled reads, Seekmer re-estimates the transcript expression levels.
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Figure 4.5: Seekmer performs well on simulated single cell RNA sequencing data.
Seekmer boosted the accuracy of transcript abundance inference by read-pooling imputation over a se-
ries of simulated single-cell RNA sequencing data. The performance is evaluated against the gene (left)
and transcript (middle) expression levels used in the simulation and the qRT-PCR quantification results
(right). The direct quantification and imputation results are evaluated in terms of Log-Pearson correlation
coefficient (in the upper panel) and Spearman correlation coefficient (in the lower panel).
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Figure 4.6: Seekmer is not sensitive to the weighting power parameter.
Seekmer’s imputation accuracy is not very sensitive to the weighting power parameter. The default power
of 16 gives the best performance among all tested parameter values in terms of Log-Pearson correlation
coefficient (in the upper panel) and Spearman correlation coefficient (in the lower panel). The difference,
however, is marginal.
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Figure 4.7: Seekmer greatly reduces the expression variation due to down sampling.
Seurat clustering of the simulated single-cell data shows a clear clustering of two types of cells, each
simulated from a bulk RNA sequencing sample. The principal component analysis over the most variable
genes shows clear clustering of cells using the direct abundance estimation. The same analysis using the
imputed expression levels shows much tighter clustering.
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Figure 4.8: Seekmer preserves the cluster structure in the simulated data.
Seurat clustering of the simulated single-cell data shows a clear clustering of two types of cells, each
simulated from a bulk RNA sequencing sample. The t-SNE analysis over the most variable genes shows
clear clustering of cells using both the direct abundance estimation and the imputed expression levels, with
similar cluster shapes.
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Figure 4.9: Seekmer removes biases of read counts from clustering.
Seurat clustering over the direct abundance estimation shows a strong artifact introduced by read count
imbalance. Poorly sequenced cells often occupy the boundaries of the clusters. Such an effect is absent in
the clustering over the imputed expression levels.
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Figure 4.10: Seekmer is not sensitive to cell counts (Log-Pearson scores).
The accuracy of Seekmer’s imputation does not fluctuate over varying numbers of cells in the clusters. The
performance is evaluated against the gene (top) and transcript (middle) expression levels used in the sim-
ulation and the qRT-PCR quantification results (bottom) in terms of Log-Pearson correlation coefficient.
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Figure 4.11: Seekmer is not sensitive to cell counts (Spearman scores).
The accuracy of Seekmer’s imputation does not fluctuate over varying numbers of cells in the clusters.
The performance is evaluated against the gene (top) and transcript (middle) expression levels used in the
simulation and the qRT-PCR quantification results (bottom) in terms of Spearman correlation coefficient.

94



Log-pearson

Spearman

Figure 4.12: Seekmer can impute small cell clusters accurately (UHRR cells).
The X-axis is the number of cells in all groups. Even for cell clusters as small as 6 cells, Seekmer can still
achieve Log-pearson correlation coefficients as high as 0.5.
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Figure 4.13: Seekmer can impute small cell clusters accurately (HBRR cells).
The X-axis is the number of cells in all groups. Even for cell clusters as small as 6 cells, Seekmer can still
achieve Log-pearson correlation coefficients as high as 0.4.
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Figure 4.14: Seekmer imputation improves the quantification of SIRV spike-in sequences.
The performance is measured in terms of Log-Pearson (left) and Spearman (right) correlation coefficients.
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Figure 4.15: Seekmer preserved intra-cluster variation.
Seekmer still preserved the intra-cluster variation in the real-world spike-in data, unlike what was seen in
simulated data.
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Figure 4.16: Seekmer preserved cluster structure.
Seekmer still preserved the cluster structure seen in the direct quantification data (left). The t-SNE of the
imputed data (right) does show larger separation between the cluster.
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Figure 4.17: Seekmer clustering is not affect by imbalanced read counts.
The t-SNE clustering of Seekmer imputation data over the spike-in cells does not show artifacts caused by
imbalanced read counts.
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Figure 4.18: Clusters of Fluidigm Polaris data in both raw quantification (left) and imputed results
(right) are similar.

Similar to the spike-in data, Seekmer preserved the clustering patterns in its imputation results.

101



Figure 4.19: Pooly sequenced cells in Fluidigm Polaris data forms a separate cluster.
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Figure 4.20: The t-SNE analysis of the Seekmer imputation over the Fluidigm Polaris dataset.
Similar to the spike-in data, Seekmer preserved the clustering patterns in its imputation results. The left
panel shows the direct quantification data, while the right shows the imputed results.
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Figure 4.21: GYPA and GYPB genes are well expressed in K562 cells.
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Figure 4.22: The SUM149 cells express the canonical transcript of EGFR (EGFR-201).
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Figure 4.23: The SUM149 cells express both the canonical transcript of CD44 and the transcript
with v6 exon.

The left is CD44-201, and the right is CD44-206.
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Chapter 5

Conclusion

The advances of experimental techniques have exposed us to more diverse and heterogeneous bi-

ological phenomena. To understand the mechanisms, researchers have deployed numerous com-

putational techniques, from parsimony to likelihood models, from statistical learning methods to

deep neural networks, to summarize the phenomena of interest. Each time a category of wrongly

predicted phenomena is determined, a more complex model is proposed to replace its predeces-

sor. However, while the capability of the models to capture more intricate relationships increases,

the interpretability of the models often declines. Having powerful computational models to help

study the mechanisms behind the biological heterogeneity is an everlasting challenge.

In this work, we present the development of three computational models to study biological

heterogeneity of different scales. Each of the model well demonstrated their capability in captur-

ing important factors that are often missed in the traditional analysis.

Chapter 2 described a deep neural network approach to model heterogeneity in molecular evo-
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lution. The purpose of using a deep neural network model is to allow incorporation of more terms

for branch-wise and site-wise heterogeneity without incurring computational burden. The model

provides a powerful fitting function that approximates the conditional probability distribution of

the quartet tree topologies given the observed sequences. We showed that the model has a great

performance in some of the tough cases such as long-branch attractions.

The model, however, is not easily extensible to model more than four species. The formulation

of this network has a fixed dimension for the input data. This limitation is shared by many early

deep neural network [1]. In our model, the dimension restriction over the sequence length is

alleviated by the adaptive average pooling design. Yet the number of species is still limited.

There is no meaningful ordering of the species in the model for more than four input species. The

output of the model is not extensible as well. The number of possible topologies of phylogenetic

trees grows super-exponentially over the number of leaf taxons. The current output layer does

not work.

The same requirement over the variable input data dimension is also seen in tasks such as

protein contact prediction [2]. In such tasks, the feature dimention of individual amino acids

becomes the channel. The other dimension becomes variable. Such design can be borrowed

similarly to the phylogenetic inference. At the same time, traditional formulation of structured

prediction is often described as a classification problem, in which the predictor discriminate the

prediction value associated with the correct structure against that of the highest-scored wrong

structure [3]. In this case, the tree can be expressed as a distance matrix which can be reliably

converted to a unrooted tree topology. The classification problem can then be formulated to
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discriminate the matrices.

The training data simulator determines what goes into the deep neural network model. With

much less computational restriction of the inference process, there are many new parameters can

be further incorporated into the model. Since it is easy to express gaps and insertions in the

input encoded sequences, it is now possible to incorporate models for insertions and deletions [4,

5]. Since the convolutional layers can examine neighbouring sites simultaneously, incorporating

site-dependencies may also improve the power of the model [6]. Incorporating terms to more

realistically describe the evolution process and choosing proper parameter values in the simulator

would allow the model to infer real-world phylogeny more accurately.

Chapter 3 described a heuristic inference methods for resolving tumour heterogeneity. The

hinting strategy of the model allows fast clustering of the mutations without sacrificing accuracy.

In contrast to methods that over-specify the clusters, the conservative inference strategy allows

more accurate clustering of the mutations. Specifically, FastClone preserves the co-clustering

relationship of the mutations. The program won the DREAM SMC-Het Challenge.

However, there is a limit for heterogeneous inference with only somatic mutations and copy

number profiles. The mutation calling is prone to error [7]. The issues with mutation calling

programs may even affect the clinical interpretation of the subclonal inference [8]. Also, due to

the nature of the clustering, low-frequency somatic mutations might always clustered together.

These somatic mutations have been repeatedly reported to be clinically relavent, especially in

their contributions to prognosis [9, 10]. Placing these mutations into the right place would be dif-

ficult. To further improve the subclonal inference, integration of data from orthogonal techniques
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might be necessary.

Chapter 4 described an imputation method for estimating single-cell transcript abundance. The

read-pooling approach to impute the single-cell transcripts not only recovers the expression levels

of genes and transcripts that are not sampled, but also helps further refine the transcript decon-

volution results. The model preserves the clustering structures of the samples and reduces the

variation introduced by the sampling process. The simulation test and the real-world data analy-

sis have demonstrated the accuracy of the imputation results.

The imputation results, however, lacks statistical meaning in certain downstream analysis.

Common analysis in single-cell transcriptomic studies involves differential expression analy-

sis and marker identification [11, 12]. These analysis tools often share similar traits with their

bulk analysis counterparts, such as read count modelling [13–15]. They are not designed to work

with imputed data directly, because the imputed read counts and expression levels do not carry

the same statistical meaning as the direct observed one. They should not be used in such anal-

ysis. Differential expression analysis over imputed expression data at the transcript level needs

additional modifications to the existing models.

All three tasks involves resolving biological signals from a noisy data which can be attributed

to both biological and irrelavent factors. All three methods involve elements that are not sta-

tistically sound, such as the deep neural network itself, the density-hinted optimization, and the

weighting strategy in single-cell imputation. It is a well known problem in the field of optimiza-

tion algorithms that rarely conditions for theoretical guarantees are met in real-world problems

[16]. Even so, some methods are way too time-consuming to achieve the marginal benefit of
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the optimal solution [17]. Also, the gaps between the real biological scenario and the statistical

models often render the mathematical optimal solutions suboptimal or even undesirable for bi-

ological interpretaion of the real-world data [18, 19]. Therefore, from the aspect of algorithm

design, choosing effective approximation or heuristics with proper designed validation is more

pragmatic and relavent in biological data mining.

The advances of biological assays have provided voluminous data for more complicated com-

putational modelling techniques. Methods such as deep neural network can accurately approxi-

mate the nonlinear impact of factors on the phenomena of interest. Yet the current approach to

interpret the mechanisms through direct examination of the model formulation have become less

relavant in the era of the new modelling regime. Therefore, improvements in both interpretation

and interpretable modelling are emergent.
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