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Abstract 
 

 

 Rolling ball machine components like ball bearings and ball screws are used in a wide 

range of machineries for load bearing and motion transmission. Ball bearings and ball screws are 

also the two key mechanical components in rack-type electric power assisted steering (rack 

EPAS) gears in motor vehicles. They are subjected to large multi-directional loads and 

manufacturing errors in rack EPAS, making it hard to accurately calculate load distribution (i.e., 

the load borne by individual balls) for the purpose of sizing. Rack EPAS gear also suffers from 

“stick-slip” (i.e., sticky feel sensed by the driver) mainly due to the friction variation of ball 

bearings and ball screws, which adversely affects driving experience. Motivated by the industrial 

application, the objective of this doctoral thesis is to develop low order load distribution and 

friction models for ball bearings and ball screws to aid analysis, optimal design and 

manufacturing tolerance specification of rolling ball machine components (used in EPAS). 

 A low order static load distribution model for ball screw is first proposed incorporating 

geometric errors and elastic deformation effects. A new way of describing the ball screw groove 

surfaces with geometric errors using multivariate functions is proposed. A ball-to-groove contact 

model based on Hertzian Contact Theory including geometric error effects is developed. The 

proposed load distribution model is validated against high order Finite Element Analysis (FEA) 

models created in ANSYS and is shown to be accurate but computationally much faster. It is 

thus applicable to ball screws with multi-directional loading and geometric errors, like those in 

EPAS.  

 Two sources of contact-induced friction variation in ball bearings and ball screws are 

investigated and modeled. Based on a sensitivity analysis of ball-to-groove contact friction due 

to rolling, sliding and spin motions, the transition between four-point contact operation and two-

point contact operation is shown to give rise to significant friction variation in a four-point 

contact ball bearing. Another source of friction variation is ball-to-ball contact. In this work, low 

order numerical models for ball-to-ball contact friction in linear ball bearings and ball screws are 



 xiii 

proposed, both of which are validated favorably against ANSYS FEA models while being 

computationally much faster. Based on friction analysis and simplifying approximations, an 

analytical model for ball-to-ball contact friction in four-point contact linear ball bearings is 

derived. The insights gained from the analytical model are leveraged to mitigate ball-to-ball 

contact and thus significantly reduce friction variation. 

 The developed load distribution and friction models are applied to rack EPAS gear in a 

few realistic scenarios and proven to be useful for industrial applications. Important insights are 

derived for ball bearing and ball screw design, inspection and manufacturing tolerance 

specification based on the developed models. 
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Chapter 1 Introduction and Literature Review 
 

1.1 Background and Motivation 

1.1.1 Rolling Ball Machine Elements 

 Rolling ball machine elements are widely used in machineries to carry load and transmit 

motion with low friction [1]. Figure 1.1 shows the common examples of rolling ball machine 

elements: (rotary) ball bearing, linear ball guide, linear ball bearing (or linear guideway) and ball 

screw. 

 

Figure 1.1: Examples of rolling ball machine elements  

Applications of rolling ball machine elements can be found in all kinds of industries such 

as manufacturing, energy, aerospace and automotive, to mention a few. For example, in machine 

tools used extensively for manufacturing, rotary ball bearings are commonly used in high-speed 

spindles for metal cutting [2,3]; ball screws are the key components of some machine tool feed 

drives that deliver the cutting tool and workpiece to the desired location [4]; linear ball bearings 

are indispensable components in some machine tool guides [4]. In wind turbines, ball bearings 

are critical parts supporting the main shaft which transmits energy from the blades and rotor to 

the gearbox and generator [5,6]; they are also used for pitch and yaw control of blades and 

nacelle (i.e., housing) to fully exploit wind resources [7]. In aircrafts, ball screws are key 

components of electromechanical actuators used in secondary flight controls (e.g., flaps, slats 

and trim horizontal stabilizers) and landing gears [8,9]. In vehicles, ball bearings are used 

extensively in moving parts such as wheel hubs and transmissions [10]; ball screws are the key 
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mechanical components in electromechanical actuators which are gaining popularity in electric 

power assisted steering systems, brake boosters and clutch release systems [11]. 

Since the main functions of rolling ball machine elements are load carrying and motion 

transmission, load capacity and friction behavior of rolling ball machine elements are very 

important to their functionality. Load distribution characterizes the load carried by each ball in 

the ball track, thus it predominantly determines the load capacity and service life of rolling ball 

machine elements [1]. In machine tools, ball bearings in the spindles are the most susceptible to 

damages by overload and they must be operated under the maximum allowable load [12]. In 

wind turbines, bearings are the predominant cause of failure due to excessive loads [6], thus their 

load distribution is critical and must be determined early in the design stage of wind turbines [7]. 

In aircrafts, the load distribution in the ball screw affects the life span of electromechanical 

actuators [8]. On the other hand, friction of rolling ball machine elements affects the accuracy, 

efficiency and motion smoothness of the machineries. In machine tools, excessive friction-

induced heat in spindle bearings result in degradation in accuracy of machined parts [12]. In 

wind turbines, rolling bearing friction accounts for about 30% of total power loss of wind 

turbines, thus rolling bearing friction must be understood and compensated to reduce the overall 

power loss [13]. In aircrafts, the possibility of jamming in mechanical transmission components 

(mainly from ball screw) hinders the use of electromechanical actuators in safety-critical 

applications such as primary flight control [9]. 

1.1.2 Ball Bearings and Ball Screws in Rack Electric Power Assisted Steering (EPAS) 

System 

 Power assisted steering systems are used in the vast majority of modern vehicles to 

reduce driver’s steering effort [14]. There are two primary types of power assisted steering 

systems, namely, hydraulic power assisted steering (HPAS) and electric power assisted steering 

(EPAS). Figure 1.2 depicts the typical HPAS and EPAS systems for passenger vehicles. Both 

steering systems typically have a rack and pinion mechanism that helps convert the driver’s input 

at the steering wheel to the translational motion of the rack thus turning the road wheels. In 

HPAS system, the fluid pressure on either side of the hydraulic piston is differentiated by a 

rotary valve to provide assist force to the rack, as shown in Figure 1.2 (a). In EPAS system, 

however, the assist is provided by an electric motor. As depicted in Figure 1.2 (b), a torque 

sensor signals the electronic control unit (ECU) on when to provide assistance according to the 
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driver’s input from the steering wheel and vehicle speed. The assist torque from the electric 

motor is then transmitted to assist force on the rack through the ball bearing and ball screw via 

timing belt. EPAS system has many advantages over HPAS system with regard to fuel efficiency, 

control flexibility and environmental compatibility, etc. [14,15]. Recent trends towards vehicle 

electrification, advanced driver-assistance system (ADAS), steer-by-wire (SbW) and 

autonomous driving have also facilitated the rapid adoption of EPAS compared to HPAS [14,15], 

mainly due to the low latency and control flexibility of electronics compared to hydraulics. In the 

EPAS system shown in Figure 1.2 (b), the motor sits parallel to the rack and the assist force is 

provided at the rack, thus it is called rack EPAS. Depending on the location of the assist motor, 

there are column EPAS and pinion EPAS as well. Rack EPAS systems provide the most assist 

force among the three types of EPAS, thus they are usually used in bigger cars [16]. They 

motivate the key issues studied in this dissertation and are the primary focus of its application.   

 

 Figure 1.2: Schematics of: (a) hydraulic power assisted steering (HPAS) system; (b) electric 

power assisted steering (EPAS) system in passenger vehicles 

 Ball bearings and ball screws are key mechanical components in rack EPAS system as 

shown in Figure 1.3. Since steering system is safety critical [17], the rack EPAS gear must 

function under the high external loads to which it is subjected; it must meet certain specifications 

on “friction roughness” (i.e., friction variation) for smooth and safe operation. Therefore, load 

distribution and friction behavior of ball bearing and ball screw are important to the safety and 

performance of rack EPAS gear, much like they are to the afore-mentioned applications of 

rolling ball machine elements. The harsh operating conditions of EPAS gear in vehicles pose 

unique challenges: the rack (i.e., ball screw shaft) of the rack EPAS gear experiences very large 

multi-directional (i.e., axial and lateral) load due to large tire forces at various tie rod angles. At 

the same time, ball bearing and ball screw in rack EPAS gear inevitably have manufacturing 

errors. The manufacturing errors in EPAS gear are more pronounced than many other 
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applications due to the cost constraints of automotive industry. These two features of rack EPAS: 

large multi-directional loading and relatively large manufacturing errors, make it hard to 

accurately calculate the load distribution in the ball bearing and ball screw for the purpose of 

sizing. These two features also make the friction behavior of rack EPAS gear complicated: the 

rack EPAS gear is well known to suffer from “stick-slip” phenomenon (i.e., sticky feel sensed by 

the driver), which largely affects the user experience. “Stick-slip” is an extreme case of friction 

variation, mainly introduced by the ball bearing and ball screw. 

 

Figure 1.3: (a) Rack EPAS system [photo courtesy of Porsche]; (b) key mechanical components: 

ball bearing and ball screw [photo courtesy of Bosch] 

 Modeling load distribution and friction behavior of ball bearing and ball screw plays an 

important role in the design stage of rack EPAS gear by reducing the testing cost and time. It 

facilitates analytical design verification (or virtual experiments) of rack EPAS gear for better 

design, faster troubleshooting and more cost reduction. While it is true that tighter manufacturing 

tolerances improve the performance of ball bearing and ball screw, it comes at a cost. Therefore, 

it is very important, especially in the cost-sensitive automotive industry, to identify the key 

contributing factors in design and manufacturing tolerances for ball bearings and ball screws to 

ensure their load capacity and friction variation but at the same time keep the cost low. However, 

there is a lack of appropriate load distribution and friction models for ball bearings and ball 

screws, especially under the effect of manufacturing errors and multi-directional load. 

 Since the study is motivated by the application of ball bearings and ball screws in rack 

EPAS, which is low speed application, only static and quasi-static behaviors are studied. 

However, dynamic behavior in high speed application can be incorporated to the developed 
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models if necessary. Besides, the effect of manufacturing errors and multi-directional load on 

load distribution and friction variation is the main focus, thus the effect of other factors, such as 

lubricants, thermal effect are out of the scope of this dissertation. 

 In the next section, the literature on the load distribution and friction modeling of ball 

bearings and ball screws are reviewed. Based on the deficiencies identified in the literature 

review, the contributions of this dissertation are summarized at the end of this Chapter.  

1.2 Literature Review on Load Distribution and Friction Modeling of Ball 

Bearings and Ball Screws 

1.2.1 Load Distribution Modeling  

 Load distribution characterizes the load carried by each ball in rolling ball machine 

elements. It is essential for the load capacity and service life of machine elements [8,18,19]. 

Therefore, an accurate characterization of load distribution is very important for the rolling ball 

machine element design and sizing.  

 It is very difficult to measure the load distribution experimentally in rolling ball machine 

elements due to sensing difficulties. Biehl, et al. [20] deposited thin film sensors on the groove of 

a ball bearing to conduct direct contact load measurement. Even though the thickness of thin-

film sensors can be made down to a few μm [20–22], it still changes the ball-to-groove 

interaction which is also μm-level and therefore affects load distribution. Besides, thin film 

sensors show temperature dependence and do not have good wear resistance; complicated 

process of depositing multiple layers of material on the substrate (i.e., bearing grooves) also 

prevents their prevailing use. Biehl, et al. [21], in another work, placed steel pins coated with 

thin film sensor in drilled holes inside the ball nut to measure the preload in double-nut ball 

screw. But unlike direct deposition on groove [20], the thin film sensor did not measure the load 

distribution on each ball. Apart from the attempt to directly measure load distribution, another 

approach is to conduct indirect (non-contact) measurement. Papadopoulos [23] presented using 

photoelastic experiments to study the load distribution in roller bearing specimens. 

Photoelasticity is the phenomenon when the material shows different fringe patterns under stress. 

It is based on the optical properties of transparent material, and can be utilized to determine load 

distribution. However, it cannot be applied to real rolling ball machine elements which are 

usually made of steel. Besides, it cannot be used for specimens with complex geometries such as 
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ball screws with helical grooves. Bertolaso, et al. [8], with the aim to measure load distribution in 

ball screw, had to use photoelastic experiments to measure the load distribution in a simplified 

2D slice of ball screw made of PMMA (transparent plastic material), because of the pre-

described limitations of photoelasticity. Such simplified set-ups grossly misrepresent the three-

dimensional force–displacement interactions that take place in the actual ball screw.          

 Given the difficulties in experimentally measuring load distribution in rolling ball 

machine elements, most researchers have resorted to models to predict load distribution. Such 

models could take the form of empirical models. However, empirical models are only available 

for few simple load cases such as pure axial loading [24]. The empirical models are not accurate 

either under multi-directional loading condition or when manufacturing errors are present. A 

more versatile approach is to use high-order 3D finite element (FE) models, often generated 

using commercial Finite Element Analysis (FEA) software like ANSYS® and Abaqus. Since the 

scale of contact deformation is μm-level while the dimension of machine elements are mm-level, 

mesh refinement must be made near the contact region to attain reasonable accuracy and 

resolution [18,19,25]. As a result, high-order 3D FEA models often have to be very large, 

consisting of hundreds of thousands of elements and degrees-of-freedom (DOFs) [25]. They 

consume a lot of computational resources and time to generate [18,19,26–28], and are difficult to 

use, e.g., for iterative design optimization and parametric studies [26]. For example, the full FEA 

model of linear ball bearing was too computationally expensive, thus only a slice of it under 

external force is modeled to study its load distribution and stiffness [28]. Only a fraction (i.e., 

3/100 to 1/10 sector) of slewing bearings (i.e., ball bearings with large diameter) was modeled in 

ANSYS to reduce the computational load when studying their load distribution [19]. To address 

the computational problem, the mesh-intensive ball-to-groove contact was modeled by super-

element [25] or nonlinear traction spring [18,26] in “hybrid FEA models”. The special treatment 

of ball-to-groove contact using super-element decreased number of elements and was shown to 

reduce computational time significantly [18,26]. But it comes with more pre-processing in the 

setup process (e.g., predefining elements in FEA software) and is not very flexible to changes in 

geometry [18,26], e.g., manufacturing errors.  

 An alternative or complement to using full or hybrid FE models is to employ low order 

FE models, often consisting of one-dimensional (1D) FEs (e.g., bar and beam elements) with 

much fewer DOFs than full 3D FE models. Low order FE models have the advantages of lower 
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complexity, faster computational time and more flexibility compared to full or hybrid FE 

models. As a result, low order models have been developed and employed in studying various 

aspects of ball bearing and ball screw behavior, including load distribution.  

 Low order load distribution models for rotary ball bearings are popular in the literature 

[24,29–36]. The first comprehensive modeling work of load distribution dates back to the 1960s 

[24,29], where Jones modeled the load distribution of ball bearings for the purpose of calculating 

bearing fatigue life. The most critical part of the model was to capture ball-to-groove contact. 

Jones proposed a geometry-based model where the contact load is determined by the relative 

distance of the groove curvature centers pertaining to each contacting groove. Static equilibrium 

of contact forces (and friction [29]) are established to solve for the contact status and load 

distribution iteratively. The model was able to incorporate changing contact angles under load. 

Most of the subsequent low order models for ball bearings followed Jones’ geometry-based 

model in establishing the ball-to-groove contact  for load distribution and stiffness [30–37]. A lot 

of low order load distribution models have been proposed for ball screws as well. The most 

rudimentary low order models assume uniform load distribution for all balls in ball screw and/or 

ignore interactions between Hertzian contact forces and elastic deformations of the screw/nut by 

prespecifying the elastic deformations of the screw/nut (e.g., see Refs. [38–40]). However, it is 

well understood that elastic deformations of the screw interact closely with Hertzian contact 

forces and thus affect static load distribution. Therefore, more advanced low order models 

consider interactions between Hertzian contact forces and axial deformation of the screw and nut 

(e.g., see Refs. [8,41–45]). The implicit assumption in these models is that ball screws are 

predominantly subjected to axial/torsional loads, which give rise to only axial/torsional 

deformations. While it is true that ball screws typically bear axial/torsional loads, Slocum [46] 

and Okwudire and Altintas [47–49] have shown that purely axial/torsional loads give rise to 

appreciable lateral (bending) deformation in ball screws due to the helical raceway. These 

induced lateral deformations could significantly influence static load distribution leading to 

inaccurate predictions by such models. Moreover, there are some applications (e.g., EPAS in 

automobiles [11,50]) where ball screws are subjected to significant lateral loads. Axial/torsional-

deformation-only models are incapable of accurately characterizing static load distribution in 

such applications.  
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 Another very important factor in accurately predicting load distribution of ball bearing 

and ball screws is the effect of geometric/manufacturing errors. Geometric errors together with 

eccentricity in external load cause non-uniform load distribution among balls, resulting in higher 

load on certain balls and reducing the fatigue life of rolling races [19]. The study of geometric 

errors are necessary for manufacturing tolerance specification, as too stringent requirements 

demand sophisticated facilities and hence the manufacturing cost is high, whereas liberal 

tolerances mean compromise of the performance and life of the rolling ball machine elements 

[19]. Geometric errors are considered in some low order distribution models for ball bearings. 

Potočnik, et al. [27] described irregular bearing geometry at raceway centers and studied its 

effect on load distribution based on a contact model similar to Jones’. In their work, only 

geometric errors at raceways centers were considered, whereas the geometric errors at the 

raceways were not incorporated. Aithal, et al. [19] presented various types of geometric errors 

including surface waviness, and modeled their effects on load distribution in ANSYS FEA. 

However, all the geometric errors were simplified as offset in the contact surfaces (i.e., 

equivalent error on ball radius/diameter) in ANSYS. Majda [51] mapped the straightness error of 

the linear bearing rail as oversize/undersize in the diameter of balls in studying its effect on the 

accuracy of machine tools. Geometric errors are ignored in most of the existing low order models 

for ball screws, e.g., see Refs. [8,41–45]. Mei et al. [43] developed a low order model for 

predicting static load distribution that addresses this issue by assuming that the elongation of the 

screw/nut, under axial loads, should compensate for the Hertzian contact deformations and 

geometric errors of the balls and raceways in the axial direction. Xu et al. [44] slightly improved 

on model of Mei et al. by incorporating effects of contact angle variation due to elastic 

deformations in the axial direction. However, because both these models [43,44] ignore lateral 

deformation, their handling of geometric errors is deficient. For instance, they treat geometric 

errors of groove profile and balls combined as a prespecified axial error term, which does not 

adequately capture the multi-directional interactions between groove profile errors, contact 

forces and elastic deformations.  

 As a result of literature review, the main deficiencies of the existing low order load 

distribution models for ball bearings and ball screws are identified as: (I) existing low order load 

distribution models for ball screw do not include lateral deformation which is significant 

especially under lateral load; (II) there is no comprehensive model to describe the geometric 
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errors and incorporate them into load distribution calculation for both ball bearing and ball 

screw. 

1.2.2 Friction Modeling 

 Friction behavior is very important to the functionality of rolling ball machine elements, 

e.g., accuracy, motion smoothness and service life [1,52], hence it has been studied extensively 

in the literature.  

There are many experimental studies on the friction behavior of ball bearings and ball 

screws. While experiments are very useful in characterizing the friction behavior in specific 

operating conditions, they often do not have the breadth of scope and depth of insight provided 

by physics-based models; they can also be expensive and time consuming to carry out, often 

requiring specialized jigs [52]. Modeling the friction behavior of ball bearings and ball screws 

thus plays an important role by reducing the testing cost and time, and yielding more 

generalizable understandings [1]. There are many contributing factors to friction: ball-to-groove 

contact, ball-to-ball contact, lubrication, cages, etc. This work is mainly focused on contact-

induced friction.  

 The pioneering work of ball bearing modeling was done by Jones in 1959 [29]. In his 

model, the relative velocity field between each ball-groove contact is first derived; frictional 

force and moment are then obtained by integrating infinitesimal frictional stress over the contact 

area; by establishing the quasi-static equilibrium of frictional force and moment, ball motion and 

friction are solved iteratively. Building on Jones’ work, several physics-based friction models for 

ball bearings have been proposed [52–56]. Harris and Kotzalas [54] gave a comprehensive 

summary of various aspect of friction modeling of ball bearings. Recently, Leblanc and Nelias 

[55] extended Jones’ model from two-point contact to three- and four-point contact ball bearings. 

Joshi [56] simplified the friction model developed by Leblanc and Nelias [55] for high-load low-

speed ball bearings with both two-point contact and four-point contact, and validated the 

simplified model against a specially designed friction torque rig. Halpin and Tran [52] used 

minimum energy criteria to solve the friction dynamics of four-point contact ball bearings. For 

ball screws, a different kinematic pattern from ball bearings was found due to helical ball track 

[57]. Correspondingly, friction models for ball screws were proposed following the similar 

process predescribed for ball bearings [40,45,58]. The beauty of the described models is that they 

are low order (from a numerical standpoint) compared to the alternative which is to utilize high-
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order finite element analysis (FEA) models that incur much larger computational costs [59]. 

Moreover, low order models can sometimes be further simplified to yield elegant analytical 

formulations that provide explicit relationships between friction behavior and system parameters 

[60,61].   

It is well known that generally four-point contact ball bearing has higher friction than 

two-point contact ones [52,59]. There is a general understanding that four-point contact ball 

bearing mainly has spin and sliding motion in the contact area and two-point contact ones mainly 

has rolling [52,59], while spin and sliding have higher friction than rolling due to larger relative 

velocity at the contact area as illustrated in Figure 1.4. However, there is no dedicated study of 

friction due to rolling, sliding and spin motions in the literature, which is important for the four-

point contact ball bearing used in rack EPAS as the balls experience transition between these 

motions under different loading conditions.  

 

Figure 1.4: Illustration of (a) rolling; (b) sliding and (c) spin and their typical relative velocity 

field in the contact area 

 Another problem of the existing models is they focus on modeling ball-to-groove contact 

friction behavior without considering another important source of friction, i.e., ball-to-ball 

contact friction. Shimoda and Izawa [62] found, via experiments, that friction torque in 

oscillatory ball screws can be more than twice larger than usual, due to ball-to-ball contact. Ohta, 

et al, by observing loaded balls in the ball track of a linear guideway type ball bearing with a 

camera, proved that significant frictional force occurs due to ball-to-ball contact [63]. When ball-

to-ball contact happens, the velocities of the two balls at the ball-to-ball contact interface are 

usually of the opposite direction (i.e., sliding) as shown in Figure 1.5. Sliding friction is typical 
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102-103 times larger than that of rolling according to experimental studies [64–66], making ball-

to-ball contact to have significant friction increase. 

 

Figure 1.5: Illustration of sliding at the ball-to-ball contact interface 

 One way to mitigate the friction rising from ball-to-ball contact is to use spacer balls (i.e., 

smaller-size balls) between adjacent load-carrying balls [62,63]. The spacer balls translate 

sliding friction between balls into rolling friction thus mitigating ball-to-ball contact friction. 

However, the adoption of spacer balls has an obvious drawback, i.e., with the same number of 

balls, load capacity is reduced by half [67]. Therefore, to maintain the same load capacity, the 

number of balls needs to be doubled – which increases the size and cost of the machine elements. 

Another way to mitigate ball-to-ball contact is to use cages (or retainers) [68]. While caged balls 

are commonly adopted in rotary ball bearings, they are not commonly used with linear ball 

bearings and ball screws mainly because of the complexity related to recirculation and the 

potential reliability issues they pose [68]. Ohta, et al, continuing their work in [63], showed by 

using a more deformable (i.e., thinner) carriage, sticking due to ball-to-ball contact is less likely 

to occur [67]. Given the significance of ball-to-ball contact friction in machine elements like 

linear ball bearings and ball screws, there is a need for low order numerical or analytical models 

that consider ball-to-ball contact friction; however, no such works have been found in the 

literature.  

 As a result of literature review, it is found out that (I) there is no dedicated study of 

friction due to rolling, sliding and spin motions in four-point contact ball bearings; (II) ball-to-

ball contact gives rise to significant friction increase and friction variation in linear ball bearings 

and ball screws where cages are not desirable, but there is no model which illustrates the 

contributing factor and the effect of ball-to-ball contact in the literature.  
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1.3 Dissertation Contributions and Outline  

 To address the deficiencies identified in the literature on low order load distribution and 

friction modeling of ball bearings and ball screws, the following contributions are made in this 

dissertation:  

1) A low order load distribution model for ball screws is proposed which considers the effects 

of, and the interactions between: (i) Hertzian contact deformations; (ii) axial, torsional and 

lateral deformations, and (iii) geometric errors of the balls, screw and nut in ball screws. A 

new and comprehensive way of describing the screw and nut groove surfaces with 

geometric errors using multivariate functions is proposed. A ball-to-groove contact model 

based on Hertzian Contact Theory which includes geometric errors is developed. 

2) A dedicated study of rolling, sliding and spin motions in four-point contact ball bearing is 

conducted to illustrate their effect on ball-to-groove contact friction.  

3) Low order numerical models for ball-to-ball contact friction in linear ball bearings and ball 

screws are proposed and validated favorably against FEA models. An analytical model for 

ball-to-ball contact friction in four-point contact linear ball bearings is proposed, based on 

friction analysis and simplifying approximations. The use of insights gained from the 

analytical model for mitigation of ball-to-ball contact is demonstrated. 

4) The developed load distribution and ball-to-ball contact friction models are applied to 

several case studies relevant to rack EPAS. Important insights for inspection, optimal design 

and manufacturing tolerance specification of ball bearings and ball screws in rack EPAS are 

derived.  

 The proposed low order load distribution model for ball screws have been published in 

[69,70]. The proposed ball-to-ball contact friction models have been published in [71–73]. The 

applications of the developed load distribution and friction models to rack EPAS gear are 

presented in [74].  

The thesis is organized in the following order: the proposed low order load distribution 

model for ball screws with ANSYS FEA validation is presented in Chapter 2. In Chapter 3, 

sensitivity analysis of ball-to-groove friction to rolling, sliding and spin motions in four-point 

contact rotary ball bearings is first presented. Analytical and low order ball-to-ball contact 

friction models for linear ball bearings and ball screws with ANSYS FEA validation are then 

introduced. Chapter 4 presents the applications of the developed load distribution model and 
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friction model to rack EPAS gear. Conclusions and future work are discussed in Chapter 5. 

Necessary supplementary material is given in the Appendices.  
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Chapter 2 Static Load Distribution Modeling of Ball Screws  
 

2.1 Overview 

The handling of lateral deformation and geometric errors of ball screw is identified as the 

main deficiencies of the existing static load distribution models in the literature and is shown to 

be critical for the application of ball screw in rack EPAS in Chapter 1. This chapter focuses on 

proposing a low order static load distribution model for ball screw considering the effect of 

lateral deformation and geometric errors. The model is developed by first describing the groove 

and ball surfaces mathematically as multivariate functions to allow versatility in describing 

geometric errors. A contact model based on Hertzian Contact Theory is then introduced to 

describe the ball-to-groove contact interactions including geometric error effects. The elastic 

deformation of the ball screw is incorporated into the contact model by low order Finite Element 

Method (FEM). The resulting linear and nonlinear equations, which take into account Hertzian 

contact deformations, elastic deformations and geometric errors of the balls, screw and nut, are 

solved using the Newton-Raphson method to determine the load borne by each ball under static 

equilibrium. The developed low order load distribution model is benchmarked against high-order 

Finite Element (FE) model developed in ANSYS in simulation-based case studies, and is shown 

to be accurate and computationally much more efficient. 

Before presenting the developed model, a few assumptions need to be clarified:  

(1) There are many configurations of ball screws; however, without loss of generality, a single-

start, right-handed, Gothic-arch-groove-type ball screw with a single ball nut is considered in 

this work. The typical ball screw consisting of a screw, a nut and balls in a helical groove is 

shown in Figure 2.1. 
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Figure 2.1: Components of a typical ball screw [75] 

(2) Contact loads carried by balls in the helical groove of ball screws are the main focus of this 

work. Hence extraneous features, such as ball recirculation system, end seals, etc., which do 

not affect the loaded balls are ignored.  

(3) The material properties of the screw, nut and balls are assumed to be homogeneous, isotropic 

and in conformance with Hooke’s law (i.e., no plastic deformation) [75]. 

(4) Since friction coefficients of ball screws are usually small (<5%) [4], frictional forces are 

neglected because they do not affect contact load distribution significantly. Effects of ball-to-

ball contact forces are also neglected by assuming that each ball maintains a gap relative to 

adjacent balls. Friction and ball-to-ball contact will be discussed in the next chapter.   

This chapter is organized as follows: the contact model including geometric error effects 

is presented in Section 2.2. The incorporation of elastic deformation using low order FEM is 

shown in Section 2.3. Section 2.4 presented simulation-based case studies and FEA validation 

against ANSYS, followed by a summary of the chapter in Section 2.5. 

2.2 Contact Model Including Geometric Error Effects 

To model the contact interactions of balls with screw and nut in a ball screw, the 

geometry of the balls and groove surfaces needs to be accurately described. The geometric errors 

were predefined to the raceways’ centers in some ball bearings studies [19,27]; while in the ball 

screw literature, geometric errors were only modeled by pre-specifying them as equivalent errors 

in ball diameters [43,44]. These approaches do not adequately capture the multi-directional 

interaction between groove profile errors, contact forces and elastic deformations. In this chapter, 

groove surfaces are described as multivariate functions to incorporate geometric errors. 
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2.2.1 Description of Groove and Ball Surfaces Including Geometric Errors  

To describe the groove surfaces, a starting point is to define the nominal ball center 

pathway of the screw, as shown by the helix in Figure 2.2 (a). It represents the path traced by the 

center of a ball as it travels along the groove of a ball screw in the absence of geometric errors in 

the ball or groove. Defining a global coordinate system (CS={x, y, z}), fixed to the screw as 

shown in Figure 2.1 (a), the locus of points lying on the ball center pathway, relative to the origin 

of CS, is given by 
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where φ is the angular distance traversed along the nominal ball center pathway starting from the 

x-axis to the location of interest on the screw (for the sake of simplicity, φ is referred to as 

azimuth angle in this work), Rഥp is the nominal pitch circle radius and r̅g is the nominal gear ratio 

of the ball screw, given by 
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p
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with pത representing the nominal pitch of the ball screw.  

 

Figure 2.2: (a) Nominal ball center pathway (helix) and coordinate systems of screw; (b) cross-

sectional profile of screw’s groove in x3-z3 plane, highlighting screw left (SL) portion; (c) 

transformation between the three coordinate systems attached to screw 

A moving coordinate system CS3={x3, y3, z3}, with its origin on the nominal ball center 

pathway, is established such that its y3-axis is tangent to the helical path and its x3-axis points 
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along the radial line from screw axis to nominal ball center (as shown in Figure 2.2 (a)). Figure 

2.2 (b) shows the cross-sectional profile of screw’s groove in the x3-z3 plane. Ideally, the groove 

profile should be a Gothic arch formed by the intersection of two circular arcs – one to the left 

and the other to the right of the origin of CS3, as shown with the dashed lines. Focusing on the 

SL (screw left) portion of the groove, due to geometric errors, the actual cross-sectional profile 

of the groove (shown by the solid curve) will deviate from the nominal one in Figure 2.2 (b). The 

actual cross section of the groove’s SL portion can be described in x3 -z3  plane of CS3  as a 

function, ASL(φ, γ), of φ and a new cross-sectional angular variable γ (see Figure 2.2 (b)), given 

by 
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Here oSL(φ) is the center point of the SL groove cross section (i.e., Gothic arch) measured from 

the origin of x3 -z3  plane, while rSL (φ,γ) is the instantaneous groove radius of the actual SL 

groove cross section. Note that ASL(φ,γ) is assumed to be a C2 continuous function of both φ and 

γ, to provide flexibility in describing geometric errors within a given cross section of the groove, 

as well as from cross section to cross section along the ball pathway; C2 continuity is needed to 

allow calculation of gradients which help determine contact angles and contact radii in the 

presence of geometric errors. In practice, ASL(φ,γ) can be generated by fitting C2 continuous 

functions of φ and γ to point cloud data obtained through experimental measurements of a 

screw’s groove surface,  as demonstrated in Ref. [76]. Note that for ball screw without geometric 

errors, the groove radius is constant (i.e., rSL(φ,γ) = r̅G), and the center point oSL(φ) is at a fixed 

position (oതSL) relative to CS3, given by 
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where r̅B is the nominal ball radius and βത is the nominal contact angle between ball and groove 

surface. 

To describe the cross-sectional profile of the groove (expressed by Eq. (2.3)) with respect 

to CS, a two-step transformation is carried out. Intermediate coordinate systems CS1 and CS2 are 

set up at the same origin as CS3 (i.e., on the helix); CS1 shares exactly the same orientation as 

CS; CS2 involves a current-frame rotation of CS1 about its z-axis by amount φ; and CS3 involves 
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a current-frame rotation of CS2  about its x-axis by amount αത. Angle αത represents the nominal 

pitch angle of the ball screw given by 
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Accordingly, the cross-sectional profile of the groove’s SL portion is described in CS by the 

function 
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helps transform the groove profile in x3-z3 plane to CS3 and rot (∙) represents a current frame 

rotation operation about the axis specified by its subscript, as further described in Appendix A. 

The same process of generating SSL(φ,γ) can be applied to the SR (screw right) surface of the 

groove to get SSR(φ,γ). 

 In the preceding discussion, geometric errors of the screw’s groove have been described 

by incorporating them into groove surface functions SSL(φ,γ) and SSR(φ,γ). However, in practice, 

geometric errors are sometimes represented by the actual ball center pathway (i.e., the path 

traced by the center of a ball of nominal diameter as it travels along the groove of a ball screw 

having geometric errors) [27]. The locus of points lying on the actual ball center pathway is 

given by the function 
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where Rp and rg are the actual pitch circle radius and gear ratio of the screw (which may be 

different from those of the nut and may vary as functions of φ). Notice that Eq. (2.8) converges 

to Eq. (2.1) in the absence of geometric errors. The expression for qB(φ) given in Eq. (2.8) can 

be deduced from SSL(φ,γ) and SSR(φ,γ) by using basic geometry to determine the locus of the 

center point of a ball of nominal diameter in contact with SSL(φ,γ) and SSR(φ,γ). Note that the 
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two ways of groove surface description are in essence equivalent. The approach presented here is 

chosen to keep accordance with practice [76].  

Similar to CS applied to the screw, a body-fixed coordinate system, CSN={xN, yN, zN} is 

established for the nut as shown in Figure 2.3. The same procedure used for describing ASL(φ,γ) 

for the screw in Eq. (2.3) is then used to describe the NL (nut left) groove profile as ANL(φN,γ), 

in the nut’s equivalent of CS3. Note that φN is the angular distance traversed along the nominal 

ball pathway starting from xN-axis to the location of interest on the nut. 

 

Figure 2.3: Groove profile of the nut 

Assuming there is no misalignment between screw and nut and let ψN  be used to 

represent the orientation of CSN relative to CS, such that, at any given point on the nominal ball 

center pathway, φ=φN+ψN. Accordingly, the NL groove surface can be described with respect to 

CS as 

NL N N N 3 2 NL N B N N( , ) rot ( ) rot ( ) ( , ) ( )z x             S T A q  (2.9) 

The same process can be applied to the NR (nut right) groove surface to get SNR(φ, γ).  

 Let NB represent the number of balls within the screw/nut grooves and let the position of 

the ith ball (i = 1, 2, …, NB) relative to CS be defined by φBi, which is the azimuth angle of the ith 

ball. Each ball i is assumed to have a perfectly spherical surface; but its radius, rBi, may differ 

from the nominal ball radius, r̅B, due to geometric errors. 

2.2.2 Ball-to-groove Contact Conditions 

Using the mathematical description of the contacting surfaces of screw, nut and balls 

presented in the preceding section, the focus of this section is on describing Hertzian contact 

conditions for a single ball with grooves, excluding the effects of bulk elastic deformations of 
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screw and nut. The derived contact model is then used in Section 2.3 to model contact forces for 

all balls under static equilibrium, including the geometric error effects and bulk elastic 

deformations of screw and nut. 

Within a Gothic-arch-groove-type ball screw, each ball i is typically assumed to contact 

the SL, SR, NL and NR surfaces of the nut’s and screw’s grooves at a maximum of one point per 

surface, resulting in at most four-point contact [4], as shown in Figure 2.4. This assumption is 

valid if the mathematical description of the surfaces does not include very small features (i.e., 

features with radius of curvature smaller than the smallest ball radius). Note that this assumption 

can be relaxed by adopting contact theory for wavy surfaces [77]. For each ball i, ball-to-groove 

contact is assumed to occur at the cross section of groove (i.e., x3-z3 plane of CS3) with azimuth 

angle φBi. Let us denote the x3 and z3 coordinates of the four contact points as p3SLi, p3SRi, p3NLi, 

p3NRi , respectively, and the coordinates of ball center as p3Bi , where p3Bi ={ x3Bi , z3Bi }T. 

Considering for example the contact point p3SLi  between ith ball and SL portion of groove 

surface, with corresponding angles γSLi in the cross section, the following conditions must be 

satisfied: 

(I) The contact point must lie on the groove profile, i.e.,  

3SL SL B SL SL( , )i i i i p A A  (2.10) 

(II) The contact normal must be tangent to the groove profile at the contact point, i.e.,  

SL SLˆ i i n t 0  (2.11) 

where nොSLi denotes the ball surface contact normal unit vector, pointing from the contact point to 

the ball center, i.e.,  
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while tSLi represents the tangent vector of the groove profile at the cross section. Since the 

groove profile is parameterized as a multivariate function of real-valued angles, φ and γ, its 

tangential unit vector at the cross section can be expressed as  
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Figure 2.4: A ball in four-point contact with Gothic arch grooves of ball screw 

(III) The contact force lies along the contact normal, nොSLi , and is of magnitude FSLi , 

determined by Hertzian Contact Theory as [77] 
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where 

SL 3B 3SL 3B SLi i i i ir    p p p A  (2.15) 

and δSLi is the Hertzian contact (elastic) deformation of the ball surface relative to the groove 

surface. Note that because δSLi represents localized relative deformation between ball and groove, 

it can be applied to either ball or groove surface. Therefore it is chosen to apply δSLi exclusively 

to the ball surface, thus allowing the assumption that the groove surface is intact (used in 

establishing Conditions (I) and (II) above). Notice also that conditions for loss of contact are 

incorporated into the Hertzian force-deformation relationship of Eq. (2.14). The Hertzian 

constant, CSLi , occurring in Eq. (2.14), is given by the general expression in [77] which is 

detailed in Appendix B. To reduce the computational load, the Hertzian constant can be 

approximated based on the nominal geometry of ball screw with minimal error as shown in 

Appendix B. In this case, CSLi=CSRi=CS and CNLi=CNRi=CN.   
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2.3 Incorporation of Elastic Deformations into Contact Model Using Low 

Order FEM 

In the preceding section, only Hertzian contact elastic deformations were considered; 

bulk elastic deformations of the screw and nut were ignored in establishing contact conditions. 

However, in reality, the contact forces from each ball, when applied to the screw and nut, induce 

bulk elastic deformations which in turn change the shape of the groove profile thus affecting 

contact conditions for other balls. Again, focusing detailed discussions on the SL section of the 

groove surfaces, the function describing the elastically deformed cross-sectional groove surface, 

A෩SL(φ, γ), is given by 

     SL SL SL, , ,      A A d  (2.16) 

where dSL  is the elastic deformation of any given point on the cross section of SL groove 

measured in the x3-z3 plane of CS3. It is related to uSL, the elastic deformations of any given 

point on the SL groove surface measured in CS as 

  1T
SL 3 2 SL( , ) rot ( ) rot ( ) ( , )z x    

   d T u  (2.17) 

While elastic deformations of the screw/nut can be determined by using elaborate 3-D 

finite element analysis (FEA), it is often preferable to calculate them using low order FEMs 

[8,41,42,44,47–49,78]. In low order FEMs, the nut is typically treated as a rigid body while the 

screw is modeled using 1-D FEs like bar or beam elements [47–49,79]. This is because the bulk 

elastic deformations of the nut are typically negligible compared to those of the screw [47–

49,79]. Modeling a screw using 1-D FEs is a very straightforward process which can be found in 

standard FEM textbooks and several references, e.g., [8,41,42,44,47–49,78,80]. 

2.3.1 Modeling Elastic Deformation with Low Order FEM 

For the purposes of low order FE modeling, the elastic deformation of the screw at the 

contact point must be transformed to FE nodes of the screw shaft. This involves a coordinate 

transformation process, much of which has been detailed in prior work [47–49,69]. To avoid 

unnecessary repetition, the transformation process is briefly summarized.  

As discussed previously, the screw is modeled as Timoshenko beam FEs capable of axial, 

torsional and lateral elastic deformations. Let us for the sake of simplicity focus on the section of 

the screw within the nut, as shown in Figure 2.5. Without loss of generality, assume that finite 
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element j is of length LElmj, having nodes j and j+1 to its left and right, respectively. Each node j 

has 6 DOFs, i.e., three translational displacements uSj={uSxj, uSyj, uSzj}
T and three small-angle 

rotational displacements θSj={θSxj, θSyj, θSzj}
T – such that the generalized displacement vector of 

the node is given by USj={uSj
T , θSj

T }T.  

 

Figure 2.5: Finite element partition of screw and the nodal displacements 

Assume that the ith ball is in contact with the SL groove surface within element j at point 

SSLi =SSL (φBi ,  γSLi ), as depicted in Figure 2.5. Let uSLi ={uSLxi , uSLyi ,  uSLzi }
T represent the 

displacements of the groove surface at the contact point, due to elastic deformation. The 

transformation seeks to relate uSLi  to the generalized nodal displacements USj  and US(j+1) . 

Let pξSLi represents the projection of SSLi onto the axis of the screw as shown in Figure 2.5, with 

ξSLi∈ [0, 1]  denoting the non-dimensional distance measured from node j to  pξSLi . If the 

generalized displacement vector of point pξSLi is given by UξSLi={uξSLi
T , θξSLi

T }T, one can relate 

uSLi and UξSLi through a transformation matrix, Tξ, by assuming that each cross section of the 

screw is rigid [48]; i.e., 
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(2.18) 

where rξSLi = SSLi− pξSLi is the radial component of SSLi, I is the identity matrix and D(r) is the 

tensorial representation of a vector r={rx, ry, rz}
T such that 
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Moreover, UξSLi is related to the generalized displacements of the adjacent nodes (USj and US(j+1)) 

as 

 S

S SL SL
S( 1)
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i i
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 
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 (2.20) 

where TS-ξ is the shape function matrix of the beam FE [48] detailed in Appendix C. Combining 

Eqs. (2.18) and (2.20), the overall transformation matrix TS between uSLi and the generalized 

nodal displacements of the jth element of the screw is 

   

 

ST
SL SL S SL

S( 1)

S SL SL,

j

i i i
j

i i

  










 
  

 

U
u T r T

U
T r


 

(2.21) 

Accordingly, the contact force FSLi acting on the groove, opposite to the contact normal direction, 

can be transformed to equivalent forces acting on the nodes as 

   SL T
S SL SL 3 2 SL SL

SL( 1)

ˆ,j

i i i i
j

F  


 
    

 

F
T r T n

F
 (2.22) 

The similar transformation process can be conducted to SR contact surface to get the 

equivalent forces of FSRi acting on the nodes. Together with the external forces/moments applied 

to the screw, the generalized force vector acting on the nodes of the screw can be formed as FS. 

If the screw is partitioned to finite elements with NS nodes, then FS is a vector of size (6×NS)×1, 

the same as US.  

The nodal displacements of the screw US, under contact forces and external force, is of 

interest, as it is related to the groove surface displacement in Eq. (2.21). The nodal displacements 

must satisfy the static equilibrium as 

S S S K U F 0  (2.23) 

where KS represents a nominally statically constrained stiffness matrix of the screw, comprising 

beam FE stiffness matrices KElmj of the screw using standard finite element procedures [47–49]. 

The details of KElmj  are given in Appendix D. Boundary condition can be incorporated 

accordingly in the finite element procedure as well.  
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The nut is treated as a rigid body except for the Hertzian contact deformation at the 

contact region in this work. Thus the bulk elastic deformation of the nut is always zero.   

2.3.2 Iterative Solution Process for Contact Forces 

Including effects of elastic deformation, all balls must satisfy contact conditions (I), (II) 

and (III) in Section 2.2.2, with the description of undeformed surface ASL(φ, γ) replaced by that 

of deformed surface A෩SL(φ, γ). Besides the contact conditions, the net forces on each ball must be 

zero; i.e., 

SL SR NL NRi i i i   F F F F 0  (2.24) 

where FSLi=FSLi∙nොSLi, FSRi=FSRi∙nොSRi, etc. The screw must be in static equilibrium under contact 

forces and external force as shown in Eq. (2.23).  

As a result, a state vector, x = {…,p3Bi
T , γSLi,γSRi,γNLi,γNRi,…,US

T}(6×NB+6×NS)×1
T  is defined 

together with a function Φ(x) containing equations for contact conditions, static equilibrium for 

all balls and screw shaft are formed as 
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The state vector x that makes Φ(x) = 0 can be solved for iteratively via the Newton-Raphson 

method according to the expression 

1 1( ) ( )q q q q  x x J x x   (2.26) 

where the superscript q represents the solution at the qth iteration and JΦ is the Jacobian matrix of 

Φ with respect to x. In actual implementation, explicit Jacobian JΦ is supplied to speed up the 

computation. The details of explicit Jacobians are presented in Appendix E. As an alternative, 

fsolve function in MATLAB® can also be utilized to solve the problem. Once the state vector that 

yield static equilibrium is determined, contact forces can be calculated from Eq. (2.14). A 

summary of the solution process is given in Figure 2.6. 
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Figure 2.6: Flowchart summarizing the iterative solution process for contact loads under static 

equilibrium using the proposed low order model 

Notice the modeling process described above updates the Journal of Mechanical Design 

(JMD) paper [70], on which much of this chapter is based, in the following aspects: 

(1) The updated model described herein assumes that the azimuth angles of a ball’s four contact 

points are the associated ball’s azimuth angle. Thus, in the updated model, the ball center 

location and contact points are located in one plane, as opposed to the JMD paper where they 

are in different planes (i.e., in 3D). This update is mainly to keep in accordance with friction 

modeling in the next chapter. Moreover, the planar model also has better numerical stability 

and reduced computational time (due to fewer variables) than the 3D model.  
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(2) Condition (I) for the contact model in Section 2.2.2 is a constraint that always needs to be 

satisfied. Thus, in the updated model, the variable for contact point location p3SLi is replaced 

with A෩SLi in establishing contact conditions instead of assuming it as a variable as in the 

JMD paper. This update leads to the reduction of variables hence computational time.   

(3) The elastic deformation of screw, US, is solved together with other variables in Eq. (2.25) 

instead of separately as in the JMD paper.  

(4) The indentation of the groove on the screw shaft are factored in calculating the cross 

sectional area and the second moment of area of screw in low order finite element method 

(FEM) as detailed in Appendix C. 

(5) Explicit Jacobian is implemented to significantly reduce the computational time. 

2.4 Simulation-based Case Studies 

To validate the proposed low order load distribution model against standard high order 

FEA models, ANSYS® Workbench is chosen as benchmark because of its reputation in static 

and dynamic structural analysis. 

Simulation-based case studies are presented in this section to validate the proposed low 

order static load distribution model against ANSYS FEA results, and demonstrate its benefits 

with regard to computational efficiency, ease-of-use and versatility. The simulation-based case 

studies are carried out using the parameters of an off-the-shelf NSK ball screw (part number 

BSS3220-5E) [81] with Gothic-arch groove; its key parameters are summarized in Table 2.1. In 

all cases studied, the nut is positioned at the middle of the screw and fixed on its left end (see 

Figure 2.7) to constrain its six rigid body motions, and the screw is fixed at its left end to only 

allow its axial (i.e., z-directional) translational displacement; the right end of the screw is either 

free (Case Study 1, 2) or constrained (indicated by dashed line for Case Study 3). An axial force 

Fax=5000 N is applied to the left end of the screw. The 32 load-bearing balls of the ball screw are 

assumed to be uniformly distributed along the helical groove within the nut. 

 

Figure 2.7: Boundary and loading conditions of ball screw used for simulation-based case studies 
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Table 2.1: Nominal parameters for the ball screw in simulation-based case studies 

Parameter (Symbol) Value [Unit] 

Length of screw 800 [mm] 

Nominal pitch circle radius (Rഥp) 16.5 [mm] 

Nominal pitch (pത) 20 [mm] 

Nominal contact angle (βത) 45 [°] 

Nominal ball radius (r̅B) 2.778 [mm] 

Number of loaded balls (NB) 32 

Nominal radius of curvature of groove (r̅G) 3.254 [mm] 

Outer diameter of nut 48 [mm] 

Length of nut 54 [mm] 

Young’s modulus (ES=EN=EB) 210 [N/mm2] 

Poisson’s ratio (νS=νN=νB) 0.28 

2.4.1 Comparative Case Studies against ANSYS FEA 

The accuracy and computational efficiency of the proposed low order static load 

distribution model is compared against: (1) A low order model proposed by Mei et al. [78] which 

considers only axial geometric errors and deformations (using bar FEs); and (2) A high order 3-

D FE model created using ANSYS Workbench 16.2. In the proposed model, the screw is 

modeled using Timoshenko beam FEs [47–49]. Within the nut, each beam element is of length 

15 mm; outside the nut, beam elements are of length close to the pitch circle diameter. For the 

bar elements in Mei et al.’s model [78], the element is of length 1.25 mm within the nut, equal to 

the distance between the centers of any two consecutive balls; element of length close to the 

pitch circle diameter outside the nut is adopted. Based on the guidelines provided by ANSYS 

[82], the ball surface is set as contact surface while the groove surface is set as target surface. All 

the ball-to-groove contact interfaces are set as frictional contact with 0.01 friction coefficient to 

stabilize the solution. Augmented Lagrange contact formulations are used for the contact 

interfaces as recommended by ANSYS because of its robustness and flexibility [82]. The 3-D FE 

model is meshed with first-order tetrahedral elements, each having 4 nodes and 4 faces. It is 

common practice to make mesh refinements around the contact region while using coarser mesh 

elsewhere on the ball screw in order to reduce the number of elements in 3-D FE models. Here, a 
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mesh refinement technique in ANSYS Workbench, called Body of Influence [83], is used (see 

Figure 2.8 for example). The fine mesh is roughly of size 0.08 mm while the coarse mesh, 

applied outside contact regions of the ball screw, is roughly of size 5 mm. The other settings in 

the finite element model are left at their default values. Upon solution, steady-state ball-to-

groove contact forces are extracted from the FEA result using Reaction Force Probe. 

 

Figure 2.8: (a) 3D mesh of the ball screw and (b) mesh refinement around the contact region 

2.4.1.1 Case Study 1: Nominal Case 

The goal of the first case study is to exemplify the effect of lateral deformation on the 

accuracy of the two low order models benchmarked against the high order ANSYS model. 

Accordingly, the ball screw is assumed to have no geometric errors and no oversized ball 

preload, contact loads are determined under the influence of the 5000 N axial load. Figure 2.9 

shows the load distribution predicted by the three models. Note that, because the balls are not 

preloaded, each ball only contacts the raceway of the screw and nut at two points instead of four; 

the contact forces on SR and NL sides of the groove are zero. The load distribution predicted by 

the 3-D ANSYS model for the SL and NR contact points is in good agreement with that 

predicted by the proposed model: the maximum error is 5.38% and RMS error is 2.30%. Possible 

reasons for the discrepancies are: (1) the low order model is able to capture the key features of 
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ball screw but not all the details; (2) ANSYS FEA results depend on mesh size and can be further 

improved, at the expense of longer computational time. Both models predict a non-uniform 

contact load distribution where the maximum load is about 1.34 times the minimum load. 

However, Mei’s model, which only considers the axial deformation, predicts uniformly 

decreasing contact loads, which is grossly erroneous when benchmarked against the 3-D ANSYS 

model. 

 

Figure 2.9: Load distribution at four contact points predicted by the three models under study 

 The prediction error of Mei et al.’s model can be explained by realizing that in ball screw 

there is coupling between axial, torsional and lateral deformations, such that the purely axial load 

applied to ball screw leads to non-axial deformation [46–49]. Figure 2.10 compares the screw 

centerline displacements in the lateral (x and y) directions as predicted by the three models under 

study. The proposed and ANSYS models again show good agreement in predicting the presence 

of lateral deformation due to the applied axial load; Mei et al.’s model cannot capture this 

coupling, hence its prediction of contact loads is erroneous. 
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Figure 2.10: Axial-force-induced lateral deformation of ball screw shaft centerline as predicted 

by the three models under study 

2.4.1.2 Case Study 2: Geometric Error 

The goal of this case study is to evaluate the accuracy of the proposed model relative to 

the ANSYS model in predicting effects of geometric errors on load distribution; because of its 

inaccuracy in errorless case, Mei et al.’s model is not considered further. Keeping the exact same 

setup as in Case Study 1, in this case study, the 17th ball is assumed to have +1 μm radius error 

(i.e., it is oversized). The resultant load distribution is shown in Figure 2.11. Both models predict 

an abrupt increase in the contact load for the 17th ball, with minimal effects on the contact loads 

of adjacent balls. Similar to Case Study 1, the maximum and RMS prediction errors of the 

proposed model relative to the ANSYS model are 4.85% and 2.60%, respectively, again 

confirming the accuracy of the proposed model. 
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Figure 2.11: Axial-force-induced load distribution with +1 μm ball radius error in 17th ball 

2.4.1.3 Case Study 3: Lateral Deformation 

This case study aims to show the capability of the proposed model in handling 

misalignment (which introduces lateral load) and oversized ball preload. The simulation setup is 

similar to that of Case Study 1 and 2, except (1) all balls have 7 μm oversize in the radius to 

simulate preload; (2) the right end of the screw shaft is offset by 300 μm in the x-direction as 

shown in Figure 2.7, which simulates the mounting error in practice. In the proposed low order 

model, a +300 µm constraint is set to the x-displacement of the last node of the screw shaft in the 

finite element process.  

The resultant load distribution under Fax = 5000 N with and without offset is shown in 

Figure 2.12. There are contact loads in all four contact points because of the oversized ball 

preload. Compared to the no offset case, the offset in x-direction changes contact load 

distribution significantly. The most noticeable change is the increase of contact loads in the SR 

and NL contact pair for the last few balls because these balls are squeezed due to the bending of 

the screw shaft. The load distribution predicted by the 3-D ANSYS model is again in good 

agreement with that predicted by the proposed model, confirming the accuracy of the proposed 

model. 
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Figure 2.12: Load distribution with and without offset 

2.4.1.4 Comparison of Computational Cost  

Given the accuracy of the proposed model compared to the ANSYS model, it is of 

interest to compare the two models with regard to model size and computational cost. As shown 

in Table 2.2, compared to the ANSYS model which has nearly a million elements, the proposed 

model has only 27 elements. As a result it takes about 4 seconds to compute the desired load 

distribution in Case Studies 1, 2 and 3; i.e., over 6800 times faster than the ANSYS model. The 

proposed low order model is therefore simpler and computationally less expensive than the 

ANSYS model, thus is much more desirable, e.g., for use in parametric studies and optimal 

design of ball screws. 

Table 2.2: Comparison of number of element and computational time based on the proposed 

models and ANSYS FEA for ball screw 

Model 
No. of 

Elements 

Computational Time* 

Case Study 1 Case Study 2 Case Study 3 

Proposed Model 27 3.87 seconds 3.97 seconds 3.93 seconds 

ANSYS FEA Model 961,196 7.35 hours 7.61 hours 7.91 hours 

* Both models are run on Intel(R) Core(TM) i7-3770 CPU @3.40GHz with 16 GB RAM. 

 



 34

2.4.2 Demonstration of Versatility and Ease-of-Use 

Case 2, above, validated the proposed model against the ANSYS model using a simple 

case of radius error in a single ball. However, by describing groove surface using a multivariate 

function (as explained in Section 2.2.1), the proposed model is able to represent a variety of 

geometric errors that may occur in ball screw. Consider a situation where a ball screw has the 

following geometric errors: 

(1) Groove Profile Errors: Due to uneven tool wear during manufacturing of the ball screw, 

the nominal radius, r̅G, of the SL groove surface is offset inward by amount ΔrSL(γ) = 3 – γ 

μm, γ ∈ [0.033π, 0.417π] (see Figure 2.13 (a)); similarly, the SR, NL and NR surfaces are 

offset by ΔrSR(γ) = 3 – γ/2 μm, ΔrNL(γ) = 2 – γ μm and ΔrNR(γ) = 2 – γ/4 μm, respectively. 

(2) Pitch Errors: Due to tool positioning precision issues during manufacturing of the ball 

screw, there is an error in the nominal groove center position for the SL groove surface 

given by eSL(φ) = [0 3sinφ]T μm (see Figure 2.13 (b)); similarly the SR, NL and NR 

surfaces tool center positions have errors eSR(φ) = eSL(φ); eNL(φ) = [0  –2sin(φ/2)]T μm and 

eNR(φ) = eNL(φ), respectively. 

(3) Ball Radius Errors: Balls have radial errors with normal (Gaussian) distribution N(0, σ2), 

where standard deviation σ = 1 μm. 

Note that geometric error categories (1) and (2) above can be applied to the proposed model 

simply by modifying Eq. (2.3) to 
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Figure 2.13: Illustration of (a) groove profile error; and (b) pitch error 

Figure 2.14 shows the contact force distribution on four contact points as each geometric 

error category is applied separately to the setup of Case Study 1. The effect of groove profile 

errors is shown in Figure 2.14 (a); they do not change the load distribution significantly relative 

to the no-error case. The reason is that the defined groove profile errors are the same for all balls 

(i.e., it is independent of φ) and all balls are identical (without radial errors). Sinusoidal pitch 

errors however change the overall load distribution significantly (see Figure 2.14 (a)) because, 

unlike the defined groove profile errors, pitch errors depend on φ thus affecting the load 

distribution in a periodic manner, even with errorless balls. The load distribution under normally 

distributed ball radius errors is shown in Figure 2.14 (a); it causes significant differences in load 

distribution compared to the errorless case. Notice that with the introduction of each type of 

geometric error separately, all balls still maintain two-point contact with groove, as in the 

errorless case. Figure 15(b) shows the load distribution resulting from a combination of all three 

error types; the contact loads on the SL and NR surfaces are modified to some extent and some 

balls develop contact forces on their SR and NL surfaces.  
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Figure 2.14: The effect of: (a) groove profile errors, sinusoidal pitch errors, normally distributed 

ball radius errors, each acting separately; (b) all three error types combined on load distribution 

This case study shows the relative ease of describing and analyzing various kinds of 

geometric errors using the proposed low order model, as is possible using parametric 3-D FE 

models (but with much more tedious modeling effort and computational time). 

2.5 Summary 

This chapter has presented a low order static load distribution model for ball screw 

considering the effect of elastic deformations and geometric errors. Groove surfaces of ball 

screw are described mathematically using multivariate functions, thus providing versatility in 
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characterizing geometric errors, while balls are assumed to be spherical but capable of ball radius 

error. A contact model based on Hertzian Contact Theory is used to establish ball-to-groove 

contact including geometric errors for ball screw. Effects of axial, torsional and lateral elastic 

deformations are incorporated into the contact model by representing the nut as a rigid body and 

the screw as beam finite elements.  

Benchmarked against an elaborate 3-D finite element (FE) model created in ANSYS 

Workbench 16.2, the proposed model is shown in case studies to be accurate in predicting load 

distribution in a ball screw with and without geometric error. However, an existing low order 

model, which considers axial deformation but not lateral deformation effects, exhibits significant 

errors in predicting load distribution, even when only axial loads are applied to the ball screw. 

Moreover, compared to the ANSYS model, the proposed model is shown to be much less 

complex and computationally expensive, while providing the kind of versatility in describing and 

analyzing different types of geometric errors tenable in 3-D FE models. It is therefore more 

convenient for use in parametric studies and design optimization of ball screws. 

The developed static load distribution model for ball screw can be applied to ball 

bearings as well. Ball bearings can be treated as a special ball screw with zero pitch in the groove 

surface description process. Ball bearing does not have the slender screw shaft, thus the inner 

ring of it can be treated as a rigid body.  

The proposed static load distribution model serves as the starting point for friction 

dynamics modeling of ball screw in next chapter. Static load distribution predicted by the 

proposed model is also useful for sizing and optimal design of ball screw, considering effects of 

various types of manufacturing errors and elastic deformations. The developed load distribution 

model is applied to ball screw used in EPAS gear in Chapter 4.  
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Chapter 3 Friction Modeling of Ball Bearings and Ball Screws 
 

3.1 Overview 

This chapter focuses on modeling contact-related friction behavior of ball bearings and 

ball screws. Two sources of friction variation are examined.  

The first is ball-to-groove contact friction. A sensitivity analysis of friction to the rolling, 

sliding and spin motions in four-point contact ball bearing is presented. To do this, a well-

established friction modeling process in the literature is followed but a simplifying assumption of 

planar contact area is applied which leads to elegant analytical formulations. In a case study, 

sliding and spin in four-point contact operation is shown to result in much higher ball-to-groove 

friction than two-point contact operation which mainly has rolling. 

The second source of friction variation is from ball-to-ball contact typically happening in 

linear ball bearings and ball screws, which usually do not have cages. A low order velocity 

difference driven ball-to-ball contact model for linear ball bearings at steady state is first 

proposed. Based on friction analysis and relevant approximations, an analytical model for 

velocity deviation and ball-to-ball contact force and friction is derived for four-point contact 

linear ball bearings. The insight gained from the model is used in a case study to mitigate ball-to-

ball contact. The proposed ball-to-ball contact models are also validated against ANSYS FEA 

results. A similar velocity difference driven ball-to-ball contact model is then derived for ball 

screws with ANSYS validation. Significant friction increase and variation due to ball-to-ball 

contact are demonstrated in a case study of ball screw, highlighting the importance of modeling 

ball-to-ball contact.   

The chapter is organized as follows: sensitivity analysis of ball-to-groove friction to 

rolling, sliding and spin in a ball from four-point contact ball bearing is presented in Section 3.2. 

Ball-to-ball contact modeling for linear ball bearings is then discussed in Section 3.3, followed 

by ball-to-ball contact modeling for ball screws in Section 3.4. Finally, Section 3.5 provides a 

summary of the chapter. 
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3.2 Sensitivity Analysis of Rolling, Sliding and Spin in Four-point Contact 

Ball Bearing 

 The three kinds of motion a ball can have at the contact interface with groove - rolling, 

sliding and spin have drastically different friction behavior. In this subsection, a sensitivity 

analysis of ball-to-groove contact friction to rolling, sliding and spin is conducted with a ball 

from four-point contact ball bearing. The sensitivity analysis has very important implications for 

the application of four-point contact ball bearing as presented in Section 4.3.1.  

3.2.1 Ball Motion and Friction Modeling in Four-point Contact Ball Bearing   

There are many friction models in the literature developed for rotary ball bearings 

[29,52–55]. Here, a brief summary of the modeling process is given with simplifying assumption 

of planar contact area. Without loss of generality, ball motion and friction modeling are 

presented using a basic module of a four-point-contact rotary ball bearing as shown in Figure 

3.1. The global coordinate system (CS={x, y, z}) is established at the center of the ball bearing 

with its x-axis pointing along the ball bearing axis as shown in Figure 3.1. Relative to CS, the 

outer ring is fixed and the inner ring is moving at a constant angular velocity of magnitude ωI 

about the x-axis (i.e., ΩI={ωI, 0, 0}T in vector form).   

 

Figure 3.1: Basic module of a ball in a four-point-contact rotary ball bearing 

The locus of points lying on the nominal ball center pathway relative to the origin of CS 

is expressed as 
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where φ is the angular distance traversed along the nominal ball center pathway starting from the 

y-axis to the ball location of interest (φ is usually referred to as the azimuth angle); RഥP is the 

nominal pitch circle radius of the ball bearing. Ignoring effects of elastic deformations and 

geometric errors on the grooves, the ball center velocity in the global coordinate system CS is 

expressed as 
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v  (3.2) 

where ωB is the orbiting angular velocity of the ball about the ball bearing axis. 

A moving coordinate system CS1={x1, y1, z1}, with its origin on the nominal ball center 

pathway, is established such that its z1-axis is tangent to the ball center pathway and its y1-axis 

points along the radial line from ball bearing axis to nominal ball center as shown in Figure 3.1. 

Figure 3.2 depicts the cross section of a single ball in the x1-y1 plane. The ball, with radius RB, is 

in four-point contact with the IL, IR, OR and OL (representing Inner/Outer ring and Left/Right) 

grooves of the raceway. Contact angles βIL, βIR, βOR and βOL are measured from ±y1-axis to the 

corresponding contact normal in the cross section (see Figure 3.2). Local coordinate systems 

CSIL, CSIR, CSOR and CSOL are established at the corresponding contact centers such that local 

z-axes are parallel to the z1-axis and local y-axes lie along the corresponding contact normal, as 

shown for CSIL in Figure 3.2. The contact area is spread over each of the ball-groove contact 

interface. Since the contact area is relatively small compared to the ball radius, it is assumed to 

be in the local x-z plane in this work, as shown in Figure 3.2 for xIL-zIL. 
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Figure 3.2: Geometry and coordinate systems for a four-point contact rotary ball bearing 

(highlighting the IL contact area) 

 The movement of the inner ring at ωI not only makes the ball to orbit around the ball 

bearing axis at ωB, but also makes the ball to rotate about its own axis. Assume, at quasi-static 

state, that the ball rotates with ω (={ωx, ωy, ωz}
T) about an axis passing through the ball center, 

measured in CS1. Velocities of any point in the contact area on both ball side and groove side 

can be expressed based on rigid body kinematics. Focusing on the IL contact area, qIL is defined 

as the vector from the ball center to the IL contact center and is given in CS1 as 
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For any point with local coordinates (xIL, zIL)T in the contact area, its position in CS1 is 

 
IL

T

IL,B IL CS-CS IL IL, 0,x z q q T  (3.4) 

where TCS-CSIL is the transformation matrix from CSIL to CS given by 
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The linear velocity at the IL contact area on the ball side in CS can be expressed as 

 
1 1IL,B CS-CS IL,B CS-CS IL,B B   v T q T q v  (3.6) 

TCS-CS1 is the transformation matrix between the global coordinate system CS and the local 

coordinate system CS1 given as 

1CS-CS rot ( )z T  (3.7) 
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where rot(·) represents a current frame rotation operation about the axis specified by its 

subscript, as further described in Appendix A. 

 The linear velocity at the IL contact area on the groove side in CS is expressed as 

 
1IL,G CS-CS IL,B B  v T q q  (3.8) 

Thus the relative velocity at any point in the IL contact area is  

IL,B IL,B IL,G  v v v  (3.9) 

The relative velocity expressed in the contact plane (i.e., xIL-zIL  plane) can be calculated by 

coordinate transformation as  
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The relative velocity field in Eq. (3.10) is rewritten as  
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Following the same procedure, the relative velocity fields in the corresponding contact planes for 

other contact area can also be derived as  
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(3.13) 

 It is observed that the relative velocity field in the elliptical contact area (with semi-major 

axis ai and semi-minor axis bi) is a circular contour centered at (ci, di) as shown in Figure 3.3 (a), 

with i∈{IL,IR,OR,OL} representing different contact area. Notice that the center of the contour 

represents the zero-velocity point. Another observation about the velocity field in Eqs. (3.10) and 

(3.13) is that the offset in the xi-component (local x-component) are all RBωz, which is induced 

by the rotation of the ball around the z1-axis. It can be proven that the same offset gives rise to 

frictional forces in all positive or all negative local x-direction for all four contact points if ωz≠0. 

In that case, frictional moment about the z1-axis is non-zero, which is not feasible for the quasi-

static state. In order for the quasi-static state to hold, ωz=0 has to be enforced. Thus di=0 as 

shown in Figure 3.3 (b) is the case for all four contact points in rotary ball bearings. 
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Figure 3.3: Contact area and velocity field: (a) ωz≠0; (b) ωz=0 is enforced (rotary ball bearing)  

From now on, the discussion for rotary ball bearing will be only focused on the case di=0, 

where velocity center is always on the semi-major axis of the elliptical contact area. The velocity 

field for the four contact areas in Eqs. (3.10) and (3.13) are represented by a common formula as  
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It is worth noting that the derivation of velocity field in the contact area for ball bearing has been 

noted in many comprehensive friction models in the literature [29,52–55]. However, with the 

planar contact area approximation made in this work, an elegant expression of velocity field is 

obtained as circular contours, which is very helpful for the analysis of friction. 

Given the relative velocity field over the assumed planar contact area, friction is 

calculated by double integrating the infinitesimal frictional stress with normal contact stress 

distribution. It is a standard process that many friction models have adopted [29,52–55]. But with 

the planar contact area approximation and the velocity field derived in Eq. (3.14), friction can be 

analyzed explicitly [72]. The normal contact stress field indicated by the color map in Figure 3.3 

is described by Hertzian Contact Theory as 
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 (3.15) 

where ai and bi are determined given the contact surface geometry and normal contact force Fi 

for each contact area, the details of their calculation are shown for ball screws in Appendix B, 

but the same process can be applied to ball bearings. In Eq. (3.15), σi,0 is the maximum contact 

pressure. Given the symmetry of the contact stress field and velocity field about the xi-axis in 

Figure 3.3 (b), the frictional force along xi -axis is zero. Frictional force fi,z  along zi -axis, 
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frictional moment Mi,O  about contact center and frictional loss Pfi  measured in power are 

calculated by double integrating the frictional stress over the contact area as 
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Since the frictional forces are in the zi-direction and the frictional moments are about yi-axes, 

friction is decoupled from normal contact forces which lie in the x1-y1 plane. Thus the friction 

can be calculated independently after load distribution is calculated as shown in Chapter 2. It is 

found that centrifugal and gyroscopic effect is negligible in low speed application (like EPAS) 

[52,56]. Ignoring centrifugal and gyroscopic effect, the ball needs to be in quasi-static 

equilibrium under frictional forces and moments as 
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 (3.19) 

where the first equation represents equilibrium of frictional forces in the z1-direction. The second 

and third equations represent equilibrium of frictional moment about the x1 - and y1 -axis 

respectively, which are normalized by ball radius RB to be equivalent force equations. It is worth 

noticing that there is minus sign before Mi,O in Eq. (3.19), because Mi,O is measured about the 

corresponding −yi-axis as shown in Figure 3.3 (b). It is also worth noticing that sticking of the 

two mating surfaces happens when the relative velocity between them is small [52]. Here 

sticking is modeled by using a modified logistic Sigmoid function formulated as 
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 (3.20) 

where Δω=ΔωBr=ωIsinβത is the approximated relative spin velocity in the same diagonal contact 

pair (i.e., |ωIL−ωOR| or |ωIR−ωOL|); kS is a scaling factor. The modified logistic Sigmoid function 

with different kS is plotted in Figure 3.4, it takes a value very close to 1 except when the spin 

velocity ωi is close to zero. In near zero spin velocity, the frictional force, moment and loss are 

discounted to represent the stick phenomenon. Different values of kS  indicates different 

sensitivity level of the stick region to the relative spin velocity. The larger the kS is, the closer the 

friction behavior is to Coulomb friction. However, the kinematic problem is also harder to solve 

because it is closer to a step function. In this work, kS=100 is selected to facilitate stability of the 

numerical solver.  
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Figure 3.4: Modified logistic Sigmoid function with different scaling factors 

 With the three equations in Eq. (3.19), the three kinematic variables ωB, ωx and ωy are 

solved in an iterative process using the fsolve function in MATLAB®. Maps of frictional 

force/moment/loss are built beforehand as functions of ci/ai according to equations presented in 

Eqs. (3.16)-(3.18). In the solution process, linear interpolation is used to retrieve the values to 

speed up the calculation instead of performing numerical integration. In summary, the process 

can be described by the flowchart as shown in Figure 3.5.  

 

Figure 3.5: Flowchart for the solution process of ball motion and friction in rotary ball bearing 
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Upon the solution of the kinematic variables, frictional force/moment and loss in each 

contact area are determined according to Eqs. (3.16)-(3.18). The torque applied at the ball 

bearing axis to counter the friction (i.e., friction torque) is calculated as 
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 (3.21) 

3.2.2 Sensitivity Analysis of Friction to Rolling, Sliding and Spin Motions 

Now that the friction model is established for rotary ball bearing in the preceding 

subsection, a case study is conducted to show the sensitivity of ball-to-groove contact friction to 

rolling, sliding and spin motions. The loading and boundary conditions of the basic four-point 

contact module for the case study are shown in Figure 3.6: the inner ring is subjected to a 

constant lateral force Fx ; at the same time it is offset by a displacement uy  in the vertical 

direction. The ball starts with two-point (2P) contact (i.e., in IL and OR contact points); as the 

vertical displacement uy  increases, four-point (4P) contact takes place. Since load distribution 

and friction are decoupled in rotary ball bearing, a two-step approach is taken to determine 

friction. Contact forces are calculated as a first step by adopting a load distribution model, 

similar to the one for ball screw presented in Chapter 2. Once the contact forces and contact 

angles are obtained, the kinematic states and friction are calculated in the second step following 

the procedure presented in Section 3.2.1.   

 

Figure 3.6: Loading and boundary conditions for rotary ball bearing case study 

Parameters of the rotary ball beaaring for the case study are shown in Table 3.1, which 

are based on an actual ball bearing. 
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Table 3.1: Parameters for the rotary ball bearing case study 

Parameter (Symbol) Value [Unit] 

Ball radius (RB) 6.25 [mm] 

Conformity ratio of groove (conf.= RG/2RB) 0.54 

Pitch circle radius of ball bearing (RP) 35 [mm] 

Nominal contact angle (β) 45 [°] 

Lateral force (Fx) 100 [N] 

Angular velocity of the inner ring (ωI) 10 [rps] 

Friction coefficient (μ) 0.1 

Young’s modulus 2.1×1011 [N/m2] 

Poisson’s ratio 0.28 

 The sum of contact forces as a function of the vertical displacement uy of the inner ring is 

shown in Figure 3.7 (a) while the friction torque is shown in Figure 3.7 (b). It is observed in 

Figure 3.7 (a) that the sum of contact force remains nearly constant in the beginning because 

there is two-point contact and gradually builds up as four-point takes place. However, friction 

increases significantly as four-point contact happens. Figure 3.8 illustrates the relative velocity at 

the contact areas for three scenarios (i.e., case (I), (II) and (III) in Figure 3.7). Table 3.2 

summarizes the contact forces, friction loss, friction torque and ball motion for the three 

scenarios. Compared to case (I), the sum of contact forces increases 5.48% in case (II) but the 

friction torque increases 4.22 times. In case (II), the transition from two-point contact to four-

point contact happens, and sliding motion in IR and OL contact areas with higher relative 

velocity takes place as shown in Figure 3.8 (b). The sum of contact forces increases 67.58% but 

the friction torque increases 12.68 times in case (III) compared to case (I), due to the spin motion 

in all the four contact areas as shown in Figure 3.8 (c). As sliding turns into spin between case 

(II) and (III), the friction torque curve changes slope in Figure 3.7 (b). Based on the sensitivity 

analysis, friction torque increases significantly during the transition of two-point contact to four-

point contact as sliding and spin motion with larger relative velocity (and higher friction loss) 

takes place.    
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Figure 3.7: (a) Sum of contact forces; (b) friction torque 
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Figure 3.8: Velocity field in the four contact areas for: (a) two-point contact in Case (I); (b) four-

point contact with sliding in Case (II) and (c) four-point contact with spin in Case (III) (Arrows 

represent relative velocity between ball and groove) 
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Table 3.2: Contact forces, friction loss, friction torque and ball motion for the three scenarios 

 Case (I) Case (II) Case (III) 

Contact forces [N] 

FIL=140.4945 

FIR=0 

FOL=0 

FOR=140.4945 

i
i

F =280.9890 

FIL=144.8352 

FIR=3.3582 

FOL=3.3643 

FOR=144.8371 

i
i

F =296.3948 

FIL=188.5374 

FIR=46.8926 

FOL=46.9413 

FOR=188.5689 

i
i

F =434.8236 

Friction loss [W] 

Pf,IL= 0.0056 

Pf,IR=0 

Pf,OL=0 

Pf,OR=0.1493 

,f i
i

P =0.1549 

Pf,IL=0.1690 

Pf,IR=0.3193 

Pf,OL=0.3207 

Pf,OR=0.0000 

,f i
i

P =0.8091 

Pf,IL=1.0518 

Pf,IR=0.1690 

Pf,OL=0.1269 

Pf,OR=0.7709 

,f i
i

P =2.1186 

Friction torque 

[N.mm] 
2.4650 12.8769 33.7180 

Ball motion 

[rad/s] 

ωB=27.4754 

ωx=−104.8742 

ωy=139.7872 

ωB=27.4469 

ωx=−136.2569 

ωy=108.5585 

ωB=27.4115 

ωx=−242.2681 

ωy=1.6094 

The transition between rolling, sliding and spin in four-point contact bearing is shown to 

contribute to significant friction variation of four-point contact ball bearing in operation in 

Chapter 4. 

3.3 Ball-to-ball Contact Modeling for Linear Ball Bearings 

Cages are commonly adopted in rotary ball bearings to separate balls from contacting 

each other, but they are not commonly used in linear ball bearings and ball screws. As a result, 

ball-to-ball can happen and contribute to significant friction increase and variation [62,63]. It is 

of interest to model what contributes to ball-to-ball contact and how to mitigate it.   
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3.3.1 Ball Motion and Friction Modeling in Linear Ball Bearings 

In order to model ball-to-ball contact between multiple balls in a linear ball bearing, a 

first step is to model the motion and friction of a single ball. Linear ball bearings share many 

common features as rotary ball bearings, and the modeling process presented in the preceding 

subsection applies to linear ball bearings with some modifications. Here, a brief summary is 

given.  

Without loss of generality, ball motion and friction modeling are presented in the basic 

module of a four-point-contact linear ball bearing as shown in Figure 3.9. In the setup, the 

bottom groove is fixed and the top groove is moving at a constant velocity of magnitude v.   

 

Figure 3.9: Basic module of two balls in a four-point-contact linear ball bearing 

To analyze ball motion and friction, coordinate systems need to be established. Figure 

3.10 depicts the cross section of a single ball in Figure 3.9. Define a global coordinate system 

(CS={x,y,z}), fixed in space as shown in Figure 3.10, with its z-axis passing through the ball 

center pathway and its x-y plane parallel to the cross section of the raceway. The ball, with radius 

RB , is in four-point contact with the BL, BR, TR and TL (representing Bottom/Top and 

Left/Right) grooves of the raceway. Contact angles βBL, βBR, βTR and βTL are measured from ±y-

axis to the corresponding contact normal in the cross section (see Figure 3.10). Notice the 

similarities between Figure 3.10 and Figure 3.2 for rotary ball bearing. 
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Figure 3.10: Geometry and coordinate systems for four-point contact 

The movement of the top groove in the global z-direction at constant velocity v makes the 

ball to translate and rotate. Assume, at quasi-static state, that the ball translates with linear 

velocity vB  in the global z-direction (i.e., vB={0, 0, vB}T in vector form) and rotates with Ω 

(={ωx, ωy, 0}T) about an axis passing through the ball center. Velocities of any point in the 

contact area on both ball side and groove side can be expressed based on rigid body kinematics 

detailed in [72]. The process is very similar to the rotary ball bearing, thus it is not presented here 

for the sake of brevity. Taking the BL contact interface as an example, the relative velocity 

between the ball and the BL groove (denoted as ΔvBL,B) at any point with local coordinates (xBL, 

zBL) in the contact plane is expressed as 

 
 

 
   

BL,B B BL BL BLBL,

BL,B B BL BL B BL BL BLBL,

sin cos

cos sin sin cos

z x yx

x y x yz

R z

v R x

    

       

           
          

v

v
 (3.22) 

For the same reason as in rotary ball bearing, the angular velocity of the ball about the z-axis 

should always be zero  (i.e. ωz=0) in order for the frictional moment about the z-axis to be 

balanced [72]. 

 Define 

 
BL BL BL

B BL BL B

BL
BL

sin cos ,

cos sin

x y

x yv R
c

    

   



 

 


 (3.23) 

the relative velocity field in Eq. (3.22) is rewritten as  

 
   

BL,B BL BLBL,

BL BL BLBL,B BL,

x

z

z

c x




            

v

v
 (3.24) 
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Following the same procedure, the relative velocity fields for the BR, TL and TR contact areas 

are also derived as shown in Appendix F. They take exactly the same general form as rotary ball 

bearing: they all appear as circular contours centered at (ci, 0) as shown in Figure 3.3 (b), with i 

∈ {BL, BR, TR, TL}. Thus frictional force, moment and loss can be calculated the same as 

rotary ball bearing in Eqs. (3.16)-(3.18). Quasi-static equilibrium can be established ignoring 

gyroscopic effect, meaning that the ball needs to be in quasi-static equilibrium under frictional 

forces and moments as 

BL,

BR,
BL BR TR TL

TR,0
BL BR TR TL

TL,

BL, B

BR, B
BL BR TR TL

TR,
BL BR TR TL

1 1 1 1

cos cos cos cos

sin sin sin sin

0 0 0 0

sin sin sin sin

cos cos cos cos

z

z

z

z

O

O

O

f

f

f

f

M R

M R

M

   
   

   
   

 
                       


 

     
   


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M
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0

0

0
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M R

 
  

      
   
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 (3.25) 

3.3.2 Low Order Numerical Model of Ball-to-ball Contact for Linear Ball Bearings 

The linear velocities of individual balls differ depending on their contact angles and 

loading conditions. Ball-to-ball contact develops: (1) when the linear velocity vB,10 of the ball 

behind (Ball 1 in Figure 3.9) is larger than vB,20 of the ball in front, i.e., vB,10> vB,20; and (2) when 

the distance between the two ball centers d12 is small enough (d12 ≤ 2RB). Note that “1” and “2” 

in the subscript denote the velocities pertaining to Ball 1 and 2 respectively; “0” is used to denote 

the velocity before ball-to-ball contact. After contact, ball-to-ball contact causes the two balls to 

eventually have the same linear velocity (i.e., vB,1= vB,2). Because the relative velocities of the 

two contacting balls at their contact interface are usually of opposite direction, large sliding 

friction loss occurs [63]. Since the contact deformations are in the μm-level, the transient process 

of ball-to-ball contact is ignored and only the quasi-steady states before and after contact are 

modeled.  

After ball-to-ball contact stabilizes (i.e., when vB,1= vB,2), the relative velocity between 

the balls at the ball-to-ball contact interface measured on Ball 1 is expressed as  
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 
 

 
 
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B2B ,1 ,2 B

y yx

y x x

R

R

 

 

                 

v

v
 (3.26) 

Denoting the normal contact force in the ball-to-ball contact interface as FB2B (i.e., in the global 

z-direction), the ball-to-ball contact frictional force in the contact interface parallel to the x-y 

plane is  

 
     2 2B2B B2B B2BB2B,

B2B B2B B2B
B2B B2B B2BB2B,

,x x

x y
y y

Ff

Ff




                      

v v
v v v

v v
 (3.27) 

where μ represents friction coefficient between contacting balls. The frictional loss measured in 

power is  

B2B B2B B2BfP F v  (3.28) 

It can be proven that there is no relative spin at the ball-to-ball contact interface, otherwise the 

frictional moment about the z-axis cannot be balanced quasi-statically for each ball. Notice that 

the ball-to-ball contact frictional forces are parallel to the x-y plane and they should influence the 

ball-to-groove contact forces in theory. However, due to the small value of μ for typical linear 

ball bearings with metallic balls (around 0.1 according to experimental measurement in [56]), 

ball-to-ball contact frictional forces are at least one order of magnitude smaller than the ball-to-

groove contact forces. Therefore, it is reasonable to assume that in practice ball-to-groove 

contact forces are not significantly affected by ball-to-ball contact friction and the calculation of 

ball-to-ball contact force and friction is decoupled from ball-to-groove contact forces. Based on 

this assumption, the new quasi-static equilibrium of Ball 1 considering ball-to-ball contact force 

and friction becomes 

B2B

B2B,

0
B2B,

1 0 0 0

0 0 1 0

0 1 0 0
x

y

F

f

f

    
                        


F

M
 (3.29) 

Notice the last two equations represent the equilibrium of normalized frictional moments. 

Similar equations hold for Ball 2, only that ball-to-ball contact force and friction are in the 

opposite direction.   

 Besides satisfying their own quasi-static equilibrium, the two balls need to satisfy ball-to-

ball contact conditions: if the two balls are in contact, then they need to move in the same linear 

velocity at the quasi-static state; otherwise the ball-to-ball contact force is zero.   
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B,1 B,2 B,10 B,20 12 B

B2B

, if and 2

0, otherwise

v v v v d R

F

  



 (3.30) 

Put together, Eq. (3.29) for quasi-static equilibrium of Ball 1, similar equations for Ball 2 and 

Eq. (3.30) for ball-to-ball contact, the motion of the two balls and ball-to-ball contact force FB2B 

are determined iteratively. Upon solution, ball-to-ball contact friction and loss are obtained 

according to Eqs. (3.27) and (3.28).  

 Ball-to-ball contact between two balls can be generalized to multi-ball-to-ball contact as 

B, B,( 1) B, 0 B,( 1)0 ( 1) B

B2B,

Quasi - static equilibrium for Ball (similar to Eq. (3.25))

, if and 2
B2B contact between Ball and 1:

0, otherwise

j j j j j j

j

j

v v v v d R
j j

F

  


       

 (3.31) 

For NB balls in contact, there are 3 kinematic variables for each of them; in addition there are 

(NB −1) variables for ball-to-ball contact. Accordingly, each ball needs to be in quasi-static 

equilibrium with 3 equations, and (NB−1) equations for ball-to-ball contact condition. In total 

there are 4(NB−1) variables and equations, so the multi-ball-to-ball contact problem is solvable. 

Again, fsolve function in MATLAB® is adopted to solve the problem. 

3.3.3 Analytical Model of Ball-to-ball Contact 

In the preceding subsection, a low order numerical model for ball-to-ball contact with 

iterative solution process was proposed. Wherever possible, it is desirable to have analytical 

models to gain more insight into the relationship between friction and the associated parameters. 

This subsection derives analytical formulas for linear velocity of an individual ball, ball-to-ball 

contact force and friction in four-point contact linear ball bearings with proper approximations. 

3.3.3.1 Analysis of frictional force and moment 

The frictional force fi,z and moment Mi,O in each contact area are functions of ci/ai, an 

indicator for the deviation of velocity center from contact center. Extreme values of fi,z and Mi,O 

are achieved at ci/ai=0 as 

, 0

2 2

, 0

| 0,

3
| sgn( ) Ellip
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i i
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i z c a

i i
i O c a i i i
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 
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 
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 (3.32) 
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where Ellip(·) represents the complete elliptic integral of the second kind. The case of ci/ai=0 

represents pure spin about the contact center. The other set of extreme values are achieved when 

ci/ai→±∞ as  

,

,

| sgn( ) ,

| 0
i i

i i

i z c a i i

i O c a

f F

M

 








 (3.33) 

where pure sliding happens.  

 The frictional force and moment in each contact area are also affected by bi/ai, which is 

the same for four contact points in a linear ball bearing and is solely determined by the 

conformity ratio (conf. = RG/2RB, with RG representing the radius of the cross-sectional groove 

profile) of the groove [52,55]. To normalize fi,z, it is divided by its extreme value sgn(ωi)μFi; 

while Mi,O is normalized by dividing it by the product of sgn(ωi)μFi and moment arm RB  in 

order to make it comparable in magnitude to fi,z  in the equations of force and moment 

equilibrium. The numerical results of normalized fi,z and Mi,O  as functions of ci /ai  under four 

typical conformity ratios of ball bearings are shown in Figure 3.11.   

 Observing from Figure 3.11, there is no significant difference among the plots of the four 

typical conformity ratios, thus they are not distinguished in the discussion. It is observed that the 

normalized frictional moment is very small compared to the normalized frictional force over a 

wide range as shown in Figure 3.11 (a). Frictional moment is only comparable to frictional force 

when ci/ai is very close to zero. When |ci /ai|<0.5, fi,z is almost linear with respect to ci/ai  as 

shown in Figure 3.11 (b). While in the same region, the change of normalized Mi,O is negligible 

compared to that of  fi,z. In fact, |ci/ai| is usually very small in four-point contact as observed 

from the results presented in [55,59]. Small |ci/ai| condition breaks down only when there is two-

point contact or near two-point contact (i.e., contact forces on one diagonal pair are significantly 

larger than those on the other pair). Thus to simplify the analysis for four-point contact, frictional 

force is approximated to be linear with respect to ci/ai while frictional moment is approximated 

to always take its extreme value given in Eq. (3.32).   
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Figure 3.11: Frictional force and moment as functions of ci/ai: (a) full plot; (b) zoomed in plot 

near ci/ai=0 

3.3.3.2 Analytical Formula for Ball Velocity  

Based on the approximation of the frictional force and moment, an analytical formula for 

linear velocity of a single ball can be obtained. To aid the analysis, an additional variable Δηi is 

introduced for each contact area (see Figure 3.12 for ΔηBL), indicating the angular deviation of 

the velocity center from the contact center in the cross section (i.e., along semi-major axis of the 

contact area). Thus 

B

1, when BR, TL
,

1, when BL,TR
ii

i i
i

s ic
s

s iR


 
     

 (3.34) 

Notice si  accounts for the sign of Δηi  in the definition. With the linear approximation, the 

frictional force becomes   



 60

B
, sgn( ) sgn( )i i

i z i i f i i f
i i i

c R
f F k F k

a a s
    
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Based on the plot in Figure 3.11, kf =1.38 is picked. It is shown in Appendix G that for the linear 

approximation to be valid, Δηi must be a small value (−6.25°<Δηi<6.25°). The length of semi-

major axis ai is related with normal contact force Fi according to Hertzian Contact Theory [77] 

as   

1 3 1 3
Bi ia R F   (3.36) 

where Ψ is a constant determined by the geometry and material properties.  

 

Figure 3.12: Angular deviation of velocity center from contact center       

In four-point contact, it is observed that typically ωBL>0, ωBR<0, ωTR<0 and ωTL>0. 

Substituting the approximated frictional force and moment to the quasi-static equilibrium in Eq. 

(3.25), it becomes   
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(3.37) 

Besides equilibrium of frictional force and moment presented in Eq. (3.37), one more 

relationship comes from the kinematic constraint. It was found that the two “zero-velocity lines” 

that pass through the zero-velocity points (i.e., velocity center ci) on the same side of the groove 

(see blue lines in Figure 3.12) are parallel [60]. It still holds true in this work with βi+Δηi 

representing the angle of zero-velocity point, which means that [60] 

   
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 (3.38) 

For contact angles βi, there is a nominal value β0. However, the actual contact angle deviates 

from β0 due to the presence of geometric error and/or misalignment. We define  

0i i      (3.39) 

where Δβi is the contact angle deviation and is usually very small (typically −3°<Δβi<3°). Under 

the assumption of small Δβi+Δηi, (3.38) is approximated as 

       BL BL TL TL BR BR TR TR 0                        (3.40) 

Putting Eqs. (3.37) and (3.40) together, the angular deviation Δηi can be analytically determined. 

The linear velocity of the ball center is formulated as [60] 
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With small Δβi+Δηi approximation, Eq. (3.41) reduces to  
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 (3.42) 

where ε is the deviation of ball center velocity from the nominal ball center velocity v/2. 

Substituting the solution of Δηi from Eqs. (3.37) and (3.40) into Eq. (3.42), ε is obtained as a 

function of four contact angle deviations Δβi and four normal contact forces Fi. The expression 

for ε is still cumbersome, but there is one more approximation to be made. Since the contact 

angle deviations Δβi are small, the contact forces on the same diagonal pair (i.e., BL and TR pair, 

BR and TL pair) are very close under external load in four-point contact [59]. With the 

approximation that FBL≈FTR ≜ FU and FBR≈FTL ≜ FD, the ball center velocity deviation is 

simplified to  
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 (3.43) 

This formula explicitly shows the effect of contact angle deviations and contact forces on the ball 

linear velocity deviation ε. A few insights from the analytical formula are: (1) ball center velocity 

deviation differs under different contact angle deviations and loading conditions; (2) ball linear 

velocity is not affected by external loading in the absence of contact angle deviations; (3) ball 

linear velocity is not affected by external loading under certain combinations of contact angle 

deviations, i.e., when ΔβBL=ΔβTR and ΔβBR=ΔβTL.  

 Compared to the low order friction models described in Section 3.3.1, four major 

approximations are made in the analytical derivation presented above: (I) ωBL>0, ωBR<0, ωTR<0 

and ωTL>0; (II) Δβi+Δηi for each contact point is small; (III) contact forces on the same diagonal 

pair are approximated to be the same; (IV) contact areas are planar. Four-point contact is a 

necessary condition for all the four approximations. If there are only two contact points or near 

two-point contact (i.e., contact forces on one diagonal pair are significantly larger than those on 

the other pair), the angular deviation of velocity center from contact center Δηi becomes large so 
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that small Δ βi +Δηi  assumption becomes invalid; approximations (I) and (III) also become 

obsolete. 

3.3.3.3 Analytical Formula for Ball-to-ball Contact Force and Friction  

So far, the analytical formula for ball center velocity of individual balls has been derived. 

According to the ball-to-ball contact model: if the two balls in Figure 3.9 with vB,10=(1+ε1)v/2 

and vB,20=(1+ε2)v/2 satisfy ε1>ε2, ball-to-ball contact will happen when the distance between the 

two ball centers d12  is small enough. Ball-to-ball contact force and friction change the 

equilibrium of each ball. On top of Δηi , assume due to ball-to-ball contact force that the 

additional angular contact deviation of contact center is Δζi for each contact area. If the deviation 

still falls in the linear region of frictional force in Figure 3.11, the frictional force is 

approximated as  

B
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f Fk

a s
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and the frictional moment is still approximated to take its maximum value given in Eq. (3.32). 

The new quasi-static equilibrium of Ball 1 considering ball-to-ball contact force becomes 
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(3.45) 

Notice here the frictional force at ball-to-ball contact interface is not included in the equations, 

which is a reasonable approximation because ball-to-ball frictional forces are typically at least 
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one order of magnitude smaller than ball-to-ball contact force. Subtracting Eq. (3.37), Eq. (3.45) 

becomes  
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 (3.46) 

which relates Δζi to ball-to-ball contact force FB2B.  

With the additional angular deviation Δ ζi , the ball still needs to satisfy kinematic 

constraint similar to Eq. (3.40) as  
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Subtracting Eq. (3.40), Eq. (3.47) becomes  
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The new velocity of the ball is expressed similar to Eq. (3.42) as  
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 (3.49) 

Let us denote the additional velocity deviation caused by ball-to-ball contact as Δε1  and Δε2 

respectively. Two contacting balls need to have the same velocity at quasi-static states, thus 

B,1 1 1 B,2 2 2(1 ) 2 (1 ) 2v v v v             or 1 1 2 2        (3.50) 

Like the approximation made in last subsection, contact forces on the same diagonal pair 

are very close under external loading. So the following approximation is made: FBL,1≈FTR,1≜F1U 

and FBR,1≈FTL,1≜F1D, FBL,2≈FTR,2≜F2U and FBR,2≈FTL,2≜F2D with 1 and 2 in subscript indicating 

Ball 1 and Ball 2 respectively. Putting together Eqs. (3.46), (3.48), (3.49) for Ball 1, the similar 

set of equations for Ball 2 and Eq. (3.50) for ball-to-ball contact, the ball-to-ball contact force 

FB2B is analytically determined as  
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 (3.51) 

The analytical formula for ball-to-ball contact force shows that ball-to-ball contact force is 

proportional to the velocity difference between the two balls. It is also affected by the normal 

contact loads on the two balls, friction coefficient and constants related to Hertzian contact.  

 At the ball-to-ball contact interface of four-point contact linear ball bearings, the relative 

velocity (i.e., sliding velocity) of the two balls can be approximated as 

B2B
0cos

v


 v  (3.52) 

by assuming both balls rotate about x-axis with nominal contact angle β0. It is observed to be a 

reasonable approximation in typical four-point contact linear ball bearing. As a result, the sliding 

friction loss measured in power in Eq. (3.28) due to ball-to-ball contact friction is explicitly 

expressed as 

B2B B2B B2B B2B
0cosf

v
P F F 


  v  (3.53) 

3.3.4 Case Studies  

3.3.4.1 Effect of Ball-to-ball on Friction 

To show the effect of ball-to-ball contact on friction and compare the derived analytical 

formulas to the proposed low order numerical model, a case study is conducted in the setup as 

shown in Figure 3.13. In the setup, nominal contact angle β0  is set to be 45°; contact angle 

deviation θ (<3°), induced by manufacturing error and/or misalignment, only takes place on the 

bottom groove (usually a long rail). External loading is represented by Nx and Ny applied to the 

top groove. It is assumed that the same Ny is applied to Ball 1 and Ball 2 but Nx on the two balls 

are of opposite direction. This kind of loading condition represents a yaw moment applied to the 

top groove, which accelerates ball-to-ball contact [63]. According to the definition of contact 

angle deviations in this work, ΔβBL=−θ, ΔβBR=θ and ΔβTL=ΔβTR=0. Since the contact angle 

deviations are small, it is reasonable to approximate the four contact forces as 

FBL,1≈FTR,1≜F1U=√2/2(Ny−Nx), FBR,1≈FTL,1≜F1D =√2/2(Ny+Nx), FBL,2≈FTR,2≜F2U=√2/2(Ny+Nx) 

and FBR,2≈FTL,2≜F2D =√2/2(Ny−Nx). Define ρ=Nx/Ny as the side force ratio and substitute all the 
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parameters into Eq. (3.43), velocity deviation of the two balls from nominal value is formulated 

as   
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 (3.54) 

Since the loading conditions on the two balls are centrally symmetric, the velocity 

deviations of the two balls are of opposite sign. Thus the velocity difference of the two balls, 

ε1−ε2, is twice the velocity deviation of a single ball.    

   

Figure 3.13: Contact angle deviations and external loading conditions in the case study  

 Parameters used in the case study are shown in Table 3.3. 

Table 3.3: Parameters for the linear ball bearing case studies 

Parameter (Symbol) Value [Unit] 

Ball radius (RB) 5 [mm] 

Conformity ratio of groove (conf.) 0.56 

Constant related to the semi-major axis length (Ψ) 5.307×10−4  [(m2/N)1/3] 

Vertical force on each ball (Ny) 100 [N] 

Velocity of the top groove (v) 10 [mm/s] 

Friction coefficient (μ) 0.1 

Young’s modulus 2.1×1011 [N/m2] 

Poisson’s ratio 0.28 

 The velocity difference (ε1−ε2) of the two balls predicted by the low order numerical 

model as a function of θ and ρ is shown in Figure 3.14 (a). As the magnitude of the contact angle 
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deviation |θ| increases, the velocity difference of the two balls also increases; the same trend is 

observed for the side force ratio ρ. Results of (ε1−ε2) based on the analytical formulas derived in 

Eq. (3.54) are shown in Figure 3.14 (b), which are observed to match closely with the proposed 

low order numerical model (see Figure 3.14 (a)). The difference of the low order numerical 

model and the analytical model only becomes noticeable when |ρ| and |θ| are large. Large |ρ| and 

|θ| are exactly where the approximations summarized at the end of Section 3.3.3.2 for the 

analytical formula of velocity deviation fails: four-point contact tends to be (near) two-point 

contact when |ρ| is large, thus the small Δβi+Δηi assumption becomes untenable, making the 

analytical formula inaccurate. 

 

Figure 3.14: Velocity difference of two balls as functions of side force ratio and contact angle 

deviation 

Ball-to-ball contact force and additional friction loss based on the proposed low order 

numerical model and the derived analytical formulas are presented in Figure 3.15. Ball-to-ball 

contact only happens when ε1−ε2>0; otherwise the two balls depart from each other instead of 

approaching and there is zero ball-to-ball contact force as shown in Figure 3.15 (a) and (b). For 

the non-zero contact force region, ball-to-ball contact force FB2B increases with increasing |ρ| 

and |θ|; so are the total friction loss (with ball-to-ball friction loss PfB2B) versus baseline friction 

loss (ball-to-groove friction loss Pf). The difference between FB2B/PfB2B predicted by the low 

order numerical model in (a)/(c) and by the analytical formula in (b)/(d) again only becomes 

noticeable at large |ρ| and |θ| region. Since the analytical formulas in Eq. (3.51) for FB2B and Eq. 

(3.53) for PfB2B are both linear functions of (ε1−ε2), the difference in (ε1−ε2) calculation shown in 

Figure 3.14 carries over in the calculation of FB2B and PfB2B here. But overall, the analytical 

formula still predicts ball-to-ball contact force and additional friction loss very well compared to 

the low order numerical model. Ball-to-ball contact gives rise to significant increase of friction: 

the additional friction loss from ball-to-ball contact contribute to more than 185.2% increase 
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compared to the baseline friction (i.e., ball-to-groove contact) in the worst case scenario 

according to the low order numerical model as shown in Figure 3.15 (c). 

 

Figure 3.15: Ball-to-ball contact forces and friction loss as functions of side force ratio and 

contact angle deviation 

3.3.4.2 Using the Analytical Model to Mitigate Ball-to-ball Contact 

Ball-to-ball contact gives rise to significant friction increase as shown in last subsection. 

Since ball-to-ball contact develops quickly, there is significant friction variation. Thus it is 

desirable to avoid or at least mitigate ball-to-ball contact.  

Take a particular case for example: with θ=2° and ρ=−0.6 in last subsection’s setup, the 

two balls have different velocities summarized as Case (a) in Table 3.4. The two balls will 

develop ball-to-ball contact since Ball 1 is moving faster than Ball 2. Figure 3.16 (a) shows the 

simulated relative displacement of the two balls using the velocity calculated based on the 

analytical formulas in Eq. (3.54), when the initial gap between the two balls is 0.1RB. Insights 

gained from the analytical formula for velocity deviation of balls can be used to mitigate ball-to-

ball contact by reducing velocity difference of balls. Given the contact angle deviations on the 

bottom groove (usually a long rail), if the contact angle deviations on the top groove (short and 

sturdy carriage) can be controlled or mated in the manufacturing or assembly processes, the 

velocity difference of balls can be minimized and ball-to-ball contact can be mitigated. From Eq. 

(3.43), it is found that if ΔβTR=ΔβBL and ΔβTL=ΔβBR, then the velocity deviation would always 
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be zero irrespective of external loading. This optimized design based on the analytical formula is 

simulated with the results shown in Table 3.4 as Case (b) and plotted in Figure 3.16 (b), the two 

balls remain constant distance because of the optimized design. This highlights a benefit of the 

proposed analytical formula – it provides explicit relationships between variables and parameters 

that can be used to guide analysis and design optimization. However, as a reminder, the 

analytical model is only useful if the assumptions summarized in Section 3.3.3.2 are valid.   

Table 3.4: Contact angle deviations and velocity deviation of balls in four-point contact linear 

ball bearings 

 
Contact angle deviations 

(−ΔβBL=ΔβBR=θ=2°) 
Velocity deviation 

 ΔβTR ΔβTL  
Low order 

numerical model 

Analytical 

formula 

Case (a) 0 0 
ε1 0.87% 0.75% 

ε2 −0.79% −0.75% 

Case (b) −θ θ 
ε1 0 0 

ε2 0 0 

 

Figure 3.16: Example of ball-to-ball contact and its avoidance by optimized design 
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3.3.5 Validation by ANSYS FEA 

In order to validate the low order numerical model and analytical model of ball-to-ball 

contact, and to show the validity of using the insight gained from analytical model to mitigate 

ball-to-ball contact, the results for Case (a) and (b) in the preceding subsection are compared to 

those from Finite Element Analysis (FEA) in ANSYS. 

As a benchmark, dynamic simulation of ball-to-ball contact in linear ball bearing is 

conducted in ANSYS Workbench 16.2. The model of two balls in contact with two rails is 

shown in Figure 3.17 with mesh. Based on the guidelines provided by ANSYS [82], the ball 

surface is set as contact surface while the groove surface is set as target surface. For the ball-to-

ball contact interface, Ball 1 is set as target surface while Ball 2 is set as contact surface. All the 

ball-to-groove and ball-to-ball contact interfaces are set as frictional contact with 0.1 friction 

coefficient. Augmented Lagrange contact formulations are used for the contact interfaces as 

recommended by ANSYS because of its robustness and flexibility [82]. All the parts are meshed 

with tetrahedral elements. It is common practice to make mesh refinement around the contact 

region while use coarse mesh elsewhere to reduce the overall number of elements. Here, a mesh 

refinement technique in ANSYS Workbench called body of influence is used. The fine mesh is 

set to be of size 0.13 mm and the coarse mesh of size 1 mm, giving the FE model 294,114 

elements in total. The mesh refinement of size 0.13mm is picked after mesh sensitivity analysis. 

The bottom groove is fixed and the top groove is made to move at 10 mm/s. Yaw moment of 600 

N·mm is applied to create the loading condition in Section 3.3.4. The two balls are placed at an 

initial distance of 1 μm to accelerate ball-to-ball contact such that the top rail does not move out 

of the mesh-refined area. A total simulation time of 0.1 second is split into 10 time steps to 

simulate the dynamic process from no ball-to-ball contact to the development of ball-to-ball 

contact and finally stabilized ball-to-ball contact. The force convergence tolerance is set to be 0.1% 

to balance accuracy and computational efficiency. The other settings in the finite element model 

are left at their default values. The solver type is also program-controlled, and it was found out 

that preconditioned conjugate gradient solver was adopted. Upon solution, steady-state ball-to-

ball contact force is extracted from the FEA result using Reaction Force Probe.  
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Figure 3.17: Mesh for linear ball bearing in ANSYS  

 The ball-to-ball contact force results are compared in Table 3.5. From the results of Case 

(a), it can be observed that ball-to-ball contact force predicted by the low order numerical model 

matches very well to that of ANSYS FEA, with only 1.26% difference. While the result based on 

the analytical formula shows larger error because of the approximations made in the derivation. 

But the error is still within 6%. For Case (b), ANSYS FEA result shows that ball-to-ball contact 

does not happen just as analytical formula had predicted, thus the insight gained from analytical 

model for ball-to-ball contact mitigation is also validated in ANSYS FEA. Given the accuracy of 

the proposed low order numerical model and analytical formula compared to the ANSYS FEA, it 

is of interest to compare their computational time. As shown in Table 3.5, the low order 

numerical model is three orders of magnitude faster than ANSYS FEA; while analytical formula 

with explicit form is another two orders of magnitude faster. The proposed low order model and 

analytical formula for ball-to-ball contact are therefore computationally much less expensive 

than the ANSYS FEA model with comparable accuracy, thus is much more desirable, e.g., for 

use in parametric studies and optimal design of linear ball bearings. 

Table 3.5: Comparison of ball-to-ball contact forces and computational time based on the 

proposed models and ANSYS FEA for linear ball bearing* 

 
 

Low order 

numerical model 

Analytical 

formula 

ANSYS 

FEA 

B2B Contact 

Force [N] 

Case (a) 4.01 3.74 3.96 

Case (b) 0 0 0 

Computation 

Time 

Case (a) 0.74 sec. 6.67 msec. 5.11 hr. 

Case (b) 1.46 sec. 5.54 msec. 3.51 hr. 

*All models are run on a desktop computer with Intel(R) Core(TM) i7-3770 CPU of 3.40 GHz 

and 16 GB RAM.  
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3.4 Ball-to-ball Contact Modeling for Ball Screws 

 In this section, ball-to-ball contact modeling for linear ball bearings presented in the 

preceding subsection is generalized to ball screws. 

3.4.1 Ball Motion and Friction Modeling for a Single Ball in Ball Screw 

 Just like in linear ball bearings, modeling ball motion and friction of a single ball in ball 

screw is the first step towards modeling ball-to-ball contact. The same single-start, right-handed, 

Gothic-arch-groove-type ball screw with a single ball nut in Chapter 2 is considered. Without 

loss of generality, ball motion and friction modeling is presented using a two-ball module of a 

four-point contact ball screw as shown in Figure 3.18. The global coordinate system (CS={x, y, 

z}) is fixed to the screw shaft with its z-axis pointing along the axis of the screw shaft as shown 

in Figure 3.18 (a). Relative to CS, the inner groove of the two-ball module (representing the 

screw shaft) in Figure 3.18 (b), is fixed; while the outer groove representing the ball nut rotate 

with angular velocity ωN  about the z-axis and at the same time translate at velocity vN along the 

z-axis because of the helix. According to the kinematic relationship, 

N N ,
2g g

p
v r r


   (3.55) 

where r̅g is the nominal gear ratio and pത represents the nominal lead of the ball screw.  

 

Figure 3.18: (a) Nominal ball center pathway (helix) and coordinate systems of ball screw; (b) 

two-ball module in ball screw 

 The locus of points lying on the nominal ball center pathway relative to the origin of CS 

is expressed as 
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where φ is the angular distance traversed along the nominal ball center pathway starting from the 

x-axis to the ball location of interest on the screw (φ is referred to as azimuth angle in this work 

for the sake of simplicity). RഥP is the nominal pitch circle radius of the ball screw. Ignoring effects 

of elastic deformations and geometric errors on the grooves, the ball center velocity in the global 

coordinate system CS is expressed as 
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where ωB is the orbiting angular velocity of the ball about the ball screw axis.    

 A moving coordinate system CS3={x3, y3, z3}, with its origin on the nominal ball center 

pathway, is established such that its y3-axis is tangent to the helical path and its x3-axis points 

along the radial line from screw axis to nominal ball center as shown in Figure 3.18 (a). Figure 

3.19 shows the cross-sectional profile of the ball screw in the z3-x3 plane. A ball, with radius RB, 

is in four-point contact with SL, SR, NR and NL (representing Screw/Nut and Left/Right) 

grooves. Focusing on the SL (screw left) portion of the groove, contact angles βSL are measured 

from –x3-axis to the contact normal in the cross section. Contact coordinate system CSSL  is 

established at the contact center such that the ySL-axis is parallel to the y3-axis and the xSL-axis 

lies along the contact normal as shown in Figure 3.19. Similar to linear ball bearings, the contact 

area is assumed to be in the local zSL-ySL plane in this work, as shown in Figure 3.19, since the 

contact area is relatively small compared to the ball radius.  
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Figure 3.19: Geometry and coordinate systems for a four-point contact ball screw (highlighting 

the SL contact area) 

 Besides the gross motion, the ball also rotates about its own axis. Assume that the ball is 

moving at ω=[ωx, ωy, ωz]
T measured from the local coordinate system CS3 about an axis passing 

through the ball center. Velocities of any point in the contact area on both ball side and groove 

side can be determined based on rigid body kinematics. Focusing on the SL contact area, qSL is 

defined as the vector from the ball center to the SL contact center, and is given in local 

coordinate system CS3 as 
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B SL
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q  (3.58) 

For any point with local coordinates (ySL, zSL)T in the contact area, its position qSL,B in CS3 is 

 
3 SL

T

SL,B SL CS -CS SL SL0, ,y z q q T  (3.59) 

where TCS3-CSSL is the transformation matrix from CSSL to CS3 given by 
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T  (3.60) 

The velocity at the SL contact area on the ball side expressed in the global coordinate system CS 

is  

 
3 3SL,B CS-CS SL,B CS-CS SL,B B   v T q T q v  (3.61) 

TCS-CS3 is the transformation matrix between the global coordinate system CS and the local 

coordinate system CS3 given as 

3CS-CS rot ( ) rot ( )z x  T  (3.62) 

where rot(·) represents a current-frame rotation operation about the axis specified by its 

subscript, as further described in Appendix A. Angle αത represents the nominal lead angle of the 

ball screw given by  
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 (3.63) 
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 Since the screw is fixed, the velocity at the SL contact area on the groove side is zero. 

Thus the relative velocity at any point in the SL contact area is  

SL,B SL,B SL,B   v v 0 v  (3.64) 

The relative velocity expressed in the contact plane (i.e., zSL-ySL) can be formulated as   
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where  
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The relative velocity field in Eq. (3.65(3.65) is rewritten as  
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Following the same procedure, the velocity field for other contact areas is derived (see Appendix 

F for details). It is observed that the relative velocity field in the elliptical contact area is a 

circular contour centered at (ci, di) as shown in Figure 3.8 (b), with i ∈ {SL, SR, NR, NL} 

representing different contact areas. Notice that the center of the contour represents the zero-

velocity point.  
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 With the velocity field expressed over the contact area, friction can be calculated given 

normal contact stress distribution similar to that in linear ball bearings. The frictional force fi,y 

along yi-axis and fi,z along zi-axis, frictional moment Mi,O about contact center, and friction loss 

are calculated by double integrating the frictional stress over the contact area. Comparing the 

relative velocity field of ball screw in Figure 3.8 to that of rotary and linear ball bearing in Figure 

3.8 (b), the major difference is that the helix of ball screw introduces relative rotation between 

the screw and nut about the y3-axis. Thus there are frictional forces in zSL-direction, which lie in 

the cross-sectional plane, making frictional forces (from a given contact surface) and normal 

contact forces (from other contact surfaces) coupled for individual balls in ball screw. As a 

result, friction and contact load distribution for individual balls need to be calculated together in 

ball screw. A low order static load distribution model for ball screw is presented in Chapter 3. 

Here it is augmented to include friction.  

 Since the frictional forces are small compared to the normal contact forces, it is assumed 

that the bulk elastic deformation of the ball screw shaft (i.e., US in Eq. (2.23)) calculated in the 

static load distribution model is not affected.    

 For individual balls, the friction calculation is conducted together with load distribution. 

Neglecting gyroscopic effect, each ball needs to be in quasi-static equilibrium under normal load, 

frictional force and moment as 
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(3.69) 

where modified logistic Sigmoid function defined in (3.20) is used to deal with the potential stick 

region in two-point contact. Here  

P
BS N

2
sin

R

L

     (3.70) 

is the approximated relative spin velocity in the same diagonal contact pair (i.e., |ωSL−ωNR| or 

|ωSR−ωNL|). 

 Together with the contact conditions presented in Chapter 2, a new state vector xi
' = [p3Bi

T , 

γSLi,γSRi,γNLi,γNRi,ωBi,ωxi,ωyi,ωzi]10×1
T  is defined for each ball with subscript i indicating the ith 

ball. The function Φi
' ( xi

' ) containing conditions for quasi-static equilibrium of the ball is 

formulated as 
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The same conditions hold for all the balls. The new state vector xi
' can be solved in an iterative 

process using the fsolve function in MATLAB®. 

3.4.2 Low Order Numerical Model of Ball-to-ball Contact for Ball Screws 

 The orbiting angular velocities of individual balls in ball screw differ depending on 

contact angles and loading conditions. Similar to linear ball bearing, ball-to-ball contact develops 

when the orbiting angular velocity of the ball behind is faster than the ball in front (ωB,10 > ωB,20) 

and when the angular distance between the two balls Δφ12 is close enough (Δφ12= φB,1−φB,2≤ 

2βB2B); βB2B is ball-to-ball contact angle as shown in Figure 3.20 and is defined as  
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 (3.72) 

Notice that the radius for ball-to-ball contact in Figure 3.20 is not the pitch circle radius RP, but L 

defined in Eq. (3.66) with the lead of the ball screw factored in. 

        At the ball-to-ball contact interface between Ball 1 and Ball 2, another coordinate system 

CS4 is established: z4-x4 plane is where ball-to-ball contact happens. Similar to the linear ball 

bearing case, the relative velocity at the ball-to-ball contact interface measured on Ball 1 is 

expressed as  
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Denoting the normal contact force at the ball-to-ball contact interface as FB2B  (i.e., in y4 -

direction), the ball-to-ball contact frictional force in the contact interface (z4-x4 plane) is  
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Figure 3.20: Ball-to-ball contact between two balls in ball screw 

        Under ball-to-ball contact, Ball 1 needs to be in quasi-static equilibrium with the addition of 

ball-to-ball contact force and friction to Eq. (3.69) as 
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Similar equations hold for Ball 2, only that ball-to-ball contact force and friction are in the 

opposite direction.   

 Besides satisfying their own quasi-static equilibrium, the two balls need to satisfy ball-to-

ball contact conditions: if the two balls are in contact, then they need to move at the same 

orbiting angular velocity at quasi-static states; otherwise the ball-to-ball contact force is 0. 

B,1 B,2 B,10 B,20 12 1 2 B2B

B2B

, if and 2

0, otherwiseF

            



 (3.76) 

 Put together Eq. (3.75) for quasi-static equilibrium of Ball 1, similar equations for Ball 2 

and Eq. (3.76) for ball-to-ball contact, the motion of two balls and ball-to-ball contact force (if 

there is any) are determined. Upon solution, ball-to-ball contact friction and loss are calculated 

accordingly.  

 Similar to that in linear ball bearings, ball-to-ball contact between two balls in ball screws 

can be generalized to multi-ball-to-ball contact as 
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3.4.3 FEA Validation of Ball-to-ball Contact Model 

 To validate the low order numerical model of ball-to-ball contact for ball screws, the 

results are compared to those from ANSYS FEA in the same ball-to-ball contact module between 

two balls as shown in Figure 3.18. The reasons for validation in two-ball module instead of the 

whole ball screw are: (1) ball-to-ball contact modeling is the main focus of this work, thus 

validation of ball-to-ball contact is the priority; (2) the dynamic simulation of a full ball screw 

with enough accuracy using FEA is computationally too demanding.  

 Parameters for ball screw used in this validation study are shown in Table 3.6. The 

geometry and material properties are similar to those in Section 2.4. The groove profile on the 

screw side has contact angle deviation θ as shown in Figure 3.21. Two cases are simulated to 

demonstrate the effect of different contact angle deviation: θ=0° is set for Ball 1 in both cases; 

for Ball 2, θ=2° is set in case (a) and θ=3° is used in case (b). This kind of contact angle 

deviation induces different orbiting angular velocities of balls and results in ball-to-ball contact 

in both case (a) and (b).                             

 

Figure 3.21: Contact angle deviation at the cross section of ball screw grooves 

Table 3.6: Parameters for ball-to-ball contact simulation in ball screw  

Parameter (Symbol) Value [Unit] 

Ball radius (RB) 2.778 [mm] 

Conformity ratio of groove (conf.) 0.56 

Pitch radius of ball screw (RP) 16.5 [mm] 
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Lead of ball screw (p) 20 [mm] 

Nominal contact angle (β0) 45 [°] 

Angular velocity of the nut (ωN) 2π [rad/s] 

Friction coefficient (μ) 0.1 

Young’s modulus 210 [N/mm2] 

Poisson’s ratio 0.28 

 As a benchmark, dynamic simulation of ball-to-ball contact in ball screw is conducted in 

ANSYS Workbench 16.2. The CAD model of the two-ball module for case (a) is shown in 

Figure 3.22, which are meshed with tetrahedral elements of size 0.05 mm around the contact area 

and 1 mm elsewhere, giving the FE model 230,816 elements in total. Mesh refinement of size 

0.05 mm is picked after mesh sensitivity analysis. Similarly, the FEA model of case (b) has 

231,931 elements. The ball nut is made to rotate about the ball screw axis at ωN. The screw shaft 

is constrained by frictionless support to only translate along axial direction with external force 50 

N in both cases. The two balls are placed at an initial distance of 1 μm apart to accelerate ball-to-

ball contact. A total simulation time of 0.005 second is split into 10 time steps to simulate the 

dynamic process from no ball-to-ball contact to the development of ball-to-ball contact and 

finally stabilized ball-to-ball contact under quasi static equilibrium. The other important settings 

in ANSYS FEA are kept the same as in the linear ball bearing case in Section 3.3.5. The contact 

problem is solved using the same desktop computer as used for the linear ball bearing case study.  

 

Figure 3.22: Mesh for ball screw in ANSYS  

 The ball-to-ball contact forces from the low order numerical model and ANSYS FEA are 

compared in Table 3.7. It is observed that ball-to-ball contact forces predicted by the low order 

numerical model are reasonably close to those from ANSYS FEA, with 6.67% and 6.64% 

difference for case (a) and (b) respectively. As shown in the comparison of computational time in 

Table 3.7, the low order numerical model is three orders of magnitude faster than ANSYS FEA, 
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indicating the computational efficiency of the proposed low order model once again. For case (a), 

the friction increase caused by ball-to-ball contact is 39.2% relative to that before ball-to-ball 

contact, according to the low order numerical model; while 60.2% friction increase is observed 

for case (b). Both results indicate the significance of ball-to-ball contact to the friction increase 

of ball screw.    

Table 3.7: Comparison of ball-to-ball contact forces and computational time based on low order 

numerical model and ANSYS FEA for ball screw 

  Low order 

numerical model 

ANSYS 

FEA 

Case (a) 
B2B Contact force [N] 1.92 1.80 

Computational time 15.3 sec. 5.75 hr. 

Case (b) 
B2B Contact force [N] 2.89 2.71 

Computational time 14.7 sec. 5.35 hr. 

3.4.4 Simulation of a Whole Ball Screw with Ball-to-ball Contact 

 Since the proposed low order numerical model of ball-to-ball contact in ball screw has 

been validated, it can be incorporated in the whole ball screw friction model to simulate the 

friction behavior of the whole ball screw. A ball screw with the same parameters as shown in 

Table 3.6 is used in the simulation. The ball screw is 800 mm long with the nut initially placed in 

the middle. A total time of 2s in 200 steps are simulated. The nut is confined to only rotate, while 

screw shaft is only allowed to translate in the axial direction at the two ends. Axial load of 1500 

N is applied to the screw shaft on one end, and 37 balls in two loaded turns yields 97.8% 

occupation ratio of the active ball track. Recirculation of balls is modeled by connecting the start 

and end of the return tube. The same type of contact angle deviation in Figure 3.21 is adopted; 

the magnitude of contact angle deviation θ on the screw side is set to be sinusoidal with respect 

to azimuth angle as shown in Figure 3.23.    
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Figure 3.23: Contact angle deviation with respect to azimuth angle 

        The balls are evenly distributed at the start of the simulation. However, due to the sinusoidal 

contact angle deviation, the orbiting angular velocities of the balls differ, making the distance 

between balls to change over time. Figure 3.24 shows the angular distance between balls with 

respect to the nut rotation angle (i.e., which is proportional to time); balls in ball-to-ball contact 

are marked as black dots. Four groups of ball-to-ball contact form because of the velocity 

difference induced by the four cycles of contact angle deviations in Figure 3.23.  

 

Figure 3.24: Angular distance between balls and ball-to-ball contact status (ball-to-ball contact is 

marked using black dots) 

 Figure 3.25 shows the total friction torque and the contribution of ball-to-groove and ball-

to-ball contact. It is observed that ball-to-groove contact friction barely has variation in this case 

study, while ball-to-ball contact contributes to a maximum of 49.6% additional friction torque at 

126° nut rotation angle. As the contacted balls gradually disengage, the friction torque 

contributed by ball-to-ball contact decreases and reaches its minimum value zero at 306° nut 
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rotation angle when there is no ball-to-ball contact. After that, ball-to-ball contact builds up again 

and gradually stabilizes. Thus ball-to-ball contact not only gives rise to significant friction 

increase, but also significant friction variation due to the engagement and disengagement of ball-

to-ball contact. 

 

Figure 3.25: Total friction torque and the contribution of ball-to-groove and ball-to-ball contact 

3.5 Summary 

 In this chapter, two sources of friction variation in ball bearings and ball screws related to 

rolling, sliding and spin of balls at the contact interface are discussed and modeled. A sensitivity 

analysis of friction to rolling, sliding and spin in a ball from four-point contact ball bearing is 

first conducted. To do this, the ball-to-groove contact friction of rotary ball bearing is modeled 

following a well-established procedure but with a simplifying assumption of planar contact area. 

In a case study, sliding and spin in four-point contact operation is shown to result in more than 

10 times larger friction than two-point contact which mainly has rolling. 

 The sliding friction at ball-to-ball contact interface is another source of friction increase 

and variation, particularly in linear ball bearings and ball screws which typically do not use 

caged balls. In this chapter, low order velocity difference driven ball-to-ball contact models at 

steady state are proposed for both linear ball bearings and ball screws. Based on the friction 

analysis and relevant approximations, analytical formulas for velocity deviation of balls and ball-

to-ball contact friction are derived for four-point contact linear ball bearing. Compared to ball-to-

ball friction predictions from FEA models developed in ANSYS, the proposed numerical models 

are shown in case studies to be accurate within 7%, while computing at least three orders of 

magnitude faster. Using the insights gained from the analytical model, ball-to-ball contact is 
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shown to be mitigated by reducing the velocity difference of balls in four-point contact linear 

ball bearings. Significant friction increase and variation due to ball-to-ball contact are 

demonstrated in a case study of ball screw, highlighting the importance of modeling ball-to-ball 

contact. However, the velocity-difference driven ball-to-ball contact models presented in this 

chapter have limitations. They only model the steady state conditions of the ball-to-ball contact, 

the transient process of ball-to-ball contact is not captured.  
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Chapter 4 Application of the Developed Load Distribution and Friction 

Models to Rack EPAS 

 

4.1 Overview 

Four-point contact ball bearing and ball screw are the two key mechanical components in 

rack EPAS gear. They are subjected to large multi-directional load and manufacturing errors in 

EPAS, making it hard to accurately calculate their load distribution for the purpose of sizing. The 

EPAS gear also suffers from “stick-slip” problem (i.e., sticky feel sensed by the driver) mainly 

due to the friction variation of ball bearing and ball screw.  

This chapter applies the developed load distribution model for ball screw (presented in 

Chapter 2), friction model for four-point contact ball bearing and ball-to-ball contact model for 

ball screw (presented in Chapter 3) to rack EPAS in a few realistic scenarios. Important insights 

for ball bearing and ball screw design, inspection and manufacturing tolerance specification are 

derived based on the developed models.  

The chapter is organized as follows: two applications of the developed load distribution 

model are presented in Section 4.2. The robustness of two stiffness tests for ball screw are 

compared. Then the developed models are applied to the sizing of ball bearing and ball screw in 

rack EPAS under different tie rod angles. Section 4.3 presents the applications of the developed 

friction models to ball bearing and ball screw in rack EPAS. The friction variation of four-point 

contact ball bearing and double-row angular contact ball bearing are compared. Finally, the 

effect of different ball screw manufacturing errors on ball-to-ball contact are demonstrated. 

Section 4.4 provides a summary of the chapter. 

4.2 Applications of the Developed Load Distribution Model to Rack EPAS 

4.2.1 Lash Tests of Ball Screw 

 Lash tests are important to characterize the stiffness of ball screws where they usually 

serve as the end of line check for stiffness. There are two types of lash tests: axial lash test and 
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conical lash test whose setups are shown in Figure 4.1 (a) and (b) respectively. In both tests, the 

ball nuts are fixed. In axial lash test, axial force Faxial ranging from −200 to 200 N is applied to 

one end of the screw shaft which is constrained from rotating and the axial displacement is 

measured in the case of Figure 4.1 (a) at the end of the screw shaft. While in conical lash test, 

lateral force Flateral is applied from a certain distance to the ball nut and lateral displacement is 

measured.  

 

Figure 4.1: Setup for (a) axial lash test; (b) conical lash test 

 Based on the proposed static low order load distribution model for ball screw, the load 

distribution and elastic deformation of the ball screw under external loads can be calculated, thus 

stiffness curves can be generated for both axial and conical lash tests. To compare the robustness 

of the two lash tests, the only variable here is the location of balls inside the active ball track. 

Four patterns of ball distribution are studied as shown in Figure 4.2. The parameters for ball 

screw used in the case study are shown in Table 4.1. They are chosen to be close to the actual 

parameters in rack EPAS.  

 

Figure 4.2: Patterns of ball locations: (a) evenly distributed; (b) stacked on one end; (c) stacked 

on one side; (d) half-half 
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Table 4.1: Parameters of ball screw in lash tests  

Parameter (Symbol) Value [Unit] 

Length of screw shaft 750 [mm] 

Location of the nut 154 [mm] 

Nominal pitch circle radius (Rഥp) 14.5 [mm] 

Nominal pitch (pത) 7 [mm] 

Nominal contact angle (βത) 45 [°] 

Nominal ball radius (r̅B) 2 [mm] 

Nominal radius of curvature of groove (r̅G) 2.16 [mm] 

Number of loaded balls (NB) 71 

Number of rounds of balls 3.75 

Young’s modulus (ES=EN=EB) 2.1×1011 [N/m2] 

Poisson’s ratio (νS=νN=νB) 0.28 

 The simulated stiffness curves of axial and conical lash tests are shown in Figure 4.3 (a) 

and (b) respectively. Observe that axial lash curves with the four different ball distribution 

patterns show more consistency than conical lash curves: there is only 3.72% difference in the 

axial lash curves; while there is 14.7% difference in the conical lash curves. The reason is that 

the load distribution under bending moment (in conical lash test) is more sensitive to the location 

of balls. Based on the results of the proposed load distribution model, axial lash test shows better 

robustness to ball locations than conical lash test given the same gauge repeatability and 

reproducibility (gauge R&R).  
 

 

Figure 4.3: (a) Axial lash curves; (b) conical lash curves with four different ball locations 

A
xi

al
 d

is
pl

ac
em

en
t [

um
]



 89

4.2.2 Sizing of Bearing and Ball Screw in EPAS 

 The developed static load distribution model for ball screw can be applied to ball bearing 

by treating ball bearing as ball screw with zero lead. Thus the developed load distribution models 

can be used for the sizing of bearing and ball screw in EPAS. In the simulation, the loading and 

boundary conditions are set to mimic the operating conditions of EPAS as shown in Figure 4.4: 

the outer ring of the four-point contact (4P) ball bearing is fixed, while the rack at the rack/pinion 

location is only allowed to translate; external force with magnitude F/2 is applied to both ends of 

the rack at the tie rod angle, θ, measured from the axis of the screw shaft.  

 

Figure 4.4: Loading and boundary conditions for rack EPAS 

 The load distribution on the 4P bearing and ball screw under four different tie rod angles 

are shown in Figure 4.5 when rack load F = 14500 N is applied. When tie rod angle is 0°, the 

contact loads are almost even in the 4P bearing as shown in Figure 4.5 (a). The contact loads in 

ball screw show variations due to the coupling effect of deformation discussed in Section 2.4.1.1, 

but they are almost evenly distributed. The tie rod angle introduces bending moment to the 4P 

bearing and ball screw, so the compressed sides of the bearing and ball screw have higher 

contact loads as shown in Figure 4.5 (a), (b) and the visualization in Figure 4.5 (c). With 

increasing tie rod angle, the maximum load on the balls also increases. At 18° tie rod angle, the 

maximum load on the 4P bearing is 1.47 times of the maximum load with 0° tie rod angle; while 

the ratio for ball screw is 3.32. If 4P bearing and ball screw are sized with 0° tie rod angle, their 

strength under large tie rod angle is undermined. The proposed static load distribution model is 

thus useful for sizing ball bearing and ball screw in EPAS.  
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Figure 4.5: Load distribution on balls under different tie rod angles: (a) four-point contact ball 

bearing; (b) ball screw; (c) visualization of the 18° tie rod angle case (arrows represent contact 

forces) 
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4.3 Applications of the Developed Friction Models to Rack EPAS 

 Friction is another important characteristic for EPAS gear. “Stick-slip” is an extreme case 

of friction variation and is targeted to mainly come from the two key mechanical components: 

four-point contact ball bearing and ball screw. In this subsection, two sources of friction 

variation are examined based on the friction models presented in Chapter 3: transition of rolling, 

sliding and spin in four-point contact ball bearing; ball-to-ball contact in ball screw. Important 

insights for design and manufacturing tolerance specification are derived.  

4.3.1 Four-point Contact Ball Bearing vs. Double-row Angular Contact Ball Bearing 

 Four-point contact ball bearings (4P bearing) are adopted in rack EPAS because of its 

capability of taking multi-directional loads in a compact configuration. However, the 4P bearings 

in rack EPAS usually comes with undersized balls to reduce the overall friction. Thus the balls 

are expected to operate with two-point contact like angular contact ball bearings. However, 

depending on the external load, the balls can also develop four-point contact as shown in Figure 

4.6 (a). The transition between two-point contact and four-point contact in 4P bearing can induce 

significant friction variation as evidenced by the sensitivity analysis of friction to rolling, sliding 

and spin in a single ball from 4P bearing, discussed in Section 3.2. As an alternative, if double 

row angular contact ball bearing (DR bearing) is used, each ball is confined to move with two-

point contact only by design as shown in Figure 4.6 (b).  

 

Figure 4.6: (a) Four-point contact bearing; (b) double row angular contact bearing 

 To compare the friction torque of 4P bearing and DR bearing, a case study is conducted 

with parameters presented in Table 4.2. These parameters are chosen to be close to the actual 

ones in rack EPAS. External force FBr=3000N at various angles θ is applied to the inner ring of 

both ball bearings as shown in Figure 4.6. The outer ring of the bearings are fixed while the inner 
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ring of the bearings are set to rotate at 10 revolutions per second. The friction torque of both 

bearings is shown in Figure 4.7. As the external load changes direction with θ, the 4P bearing 

shows larger frictional variation due to the transition between four-point and two-point contact of 

some balls. In this case study, the maximum friction torque of the 4P bearing is 5.69 times the 

minimum even under the same magnitude of external force. While DR bearing has consistent 

friction torque under varying external load direction because there is always two-point contact. 

From the friction variation point of view, DR bearing is better than 4P bearing in rack EPAS 

application.  

Table 4.2: Parameters of four-point (4P) contact ball bearings and double row (DR) ball bearings 

 Parameter (Symbol) Value [Unit] 

Shared 

Pitch circle diameter 70 [mm] 

Outer ring diameter  90 [mm] 

Inner ring diameter 50 [mm] 

Contact angle  45 [°] 

Young’s modulus (ES=EN=EB) 210 [N/mm2] 

Poisson’s ratio (νS=νN=νB) 0.28 

4P Bearing 

Ball radius (r̅B) 6.25 [mm] 

Radius of curvature of groove (r̅G) 6.75 [mm] 

Thickness of ball bearing  16 [mm] 

Number of balls  9 

DR Bearing 

Ball radius (r̅B) 4 [mm] 

Radius of curvature of groove (r̅G) 4.32 [mm] 

Thickness of ball bearing  24 [mm] 

Number of balls 9×2 
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Figure 4.7: Comparison of the friction torque from 4P bearing and DR bearing under changing 

external load direction 

4.3.2 Effect of Different Manufacturing Errors on Ball-to-ball Contact 

 Geometric errors are common in ball screw especially in the slender screw shaft (see 

Figure 4.8 (a)) due to manufacturing errors. The proposed model can be used to analyze different 

types of geometric errors and their effects on ball-to-ball contact. The first type of common 

geometric errors in the screw shaft of ball screw is pitch error as shown in Figure 4.8 (b), where 

the actual ball center pathway deviates from the nominal one (see Figure 4.8 (a)) in z-direction. 

Assume sinusoidal pitch error with magnitude ep occurs one cycle per revolution, the SL groove 

surface is described as 
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The equivalent error of the SL groove surface at the contact point along the nominal contact 

normal direction is calculated as  

eqv,SL ( ) cos sin sinpe e      (4.2) 

which can be measured by Coordinate Measurement Machine (CMM) in practice. 

 The second common type of geometric errors is roundness error as shown in Figure 4.8 

(c); the actual ball center pathway deviates from the nominal one in both x- and y-direction. The 

oval shape of the groove with roundness error in Figure 4.8 (c) indicates that roundness error 
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shows a pattern of two cycles per revolution. Assume the roundness error is sinusoidal with 

magnitude eR, the groove surface is described as  
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The equivalent error at the contact point (measured by CMM) along the nominal contact normal 

direction is  

eqv,SL R( ) cos sin 2e e      (4.4) 

 The equivalent errors of sinusoidal pitch error in Eq. (4.2) with ep = 5 μm are plotted in 

Figure 4.9 (a). Similarly, the equivalent errors of sinusoidal roundness error in Eq. (4.4) with eR 

= 5 μm is plotted in Figure 4.9 (b). It is obvious that different geometric errors have different 

patterns.  

 

Figure 4.8: (a) Nominal groove profile; (b) demonstration of pitch error (exaggerated); (b) 

demonstration of roundness error (exaggerated) 
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Figure 4.9: Equivalent errors for: (a) pitch error with ep =5μm; (b) roundness error with eR =5μm 

 Since ball nut is sturdy, it is less susceptible to manufacturing errors compared to ball 

screw. It is assumed that ball nut does not have any geometric error in this case study. With the 

same boundary condition in Figure 4.10 (a) and axial force Faxial = 1000 N, the load distribution 

in the ball screw with the described pitch error and roundness error are shown in Figure 4.10 (a), 

and visualized in (b) and (c) respectively. It is worth noticing that due to the applied axial load, 

the balls are in two-point contact at SL and NR contact points. The two types of manufacturing 

errors show very different effect on load distribution. The load distribution in balls with 

roundness error is less uniform than that with pitch error. From Figure 4.10 (c), it can be 

observed that some balls lose contact with the groove, which corresponds to the pattern of 

roundness error in Figure 4.9 (c). 
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Figure 4.10: (a) Comparison of contact load distribution; (b) visualization of load distribution 

with pitch error; (c) visualization of load distribution with roundness error  

 As a result of the load distribution pattern, pitch error and roundness error have different 

effect on ball-to-ball contact. It is obvious that ball screw with roundness error develops ball-to-

ball contact quicker if the balls lost contact are assumed to not move or move at a lower velocity 

than the nominal velocity, which makes the BNA in rack EPAS gear to have higher possibility of 

developing “stick-slip”.   

 Due to the cost limit, manufacturing errors of ball screw cannot be eliminated. But based 

on the insights derived from the developed models, roundness error with two cycles per 

revolution pattern needs to have tighter tolerance than pitch error with one cycle per revolution 

pattern. 

4.4 Summary 

In this chapter, the developed low order load distribution and friction models for ball 

bearing and ball screw are applied to various case studies related to rack EPAS. Using the load 

distribution model, it is found that axial lash test for ball screw stiffness inspection is more 

robust (i.e., shows less variation under the same gauge R&R) than conical lash test. The 

maximum contact loads on ball bearing and ball screw under non-zero tie rod angle are also 

shown to be much larger than those with 0° tie rod angle, indicating that sizing of ball bearing 

and ball screw must be done carefully to ensure the strength of both parts. Thus the developed 

static load distribution model is proven to be a good analytical design verification tool for sizing 

the ball bearing and ball screw in rack EPAS.  

In terms of friction, the four-point contact ball bearing shows much larger friction 

variation than double row angular contact ball bearing under changing external load direction, 

indicating that double row angular contact ball bearing is better for rack EPAS application from 
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friction variation point of view. Ball-to-ball contact in ball screw gives rise to significant friction 

increase and variation, thus it is always desirable to mitigate ball-to-ball contact from happening. 

It is found out that, under the same magnitude of manufacturing errors, balls are more likely to 

lose contact with groove under roundness error on ball screw than pitch error, causing the ball 

screw to have higher chance of developing ball-to-ball contact and “stick-slip”.    

The developed models not only provide useful tools for sizing the ball bearing and ball 

screw in rack EPAS, but also provide important insights for the inspection, optimal design and 

manufacturing tolerance specification of ball bearings and ball screws in rack EPAS. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusions  

 In this dissertation, low order models of load distribution and friction for ball bearings 

and ball screws are proposed. Load distribution and friction variation under the effect of multi-

directional loading and manufacturing errors are the main topics of focus.  

 In Chapter 2, a low order static load distribution model for ball screw is proposed 

incorporating geometric errors and elastic deformations. A new and comprehensive way of 

describing the ball screw groove surfaces with geometric errors using multivariate functions is 

proposed. A ball-to-groove contact model based on Hertzian Contact Theory including geometric 

errors is developed. Low order finite element method (FEM) is adopted to incorporate axial, 

torsional and lateral elastic deformations of the ball screw into the contact model. Benchmarked 

against high order finite element analysis (FEA) model created in ANSYS Workbench 16.2, the 

proposed model is shown in simulation studies to be accurate in predicting load distribution in a 

ball screw with and without geometric error. However, an existing low order model, which 

considers only axial deformation but not lateral deformation effects, exhibits significant errors in 

predicting load distribution, even when only axial loads are applied to the ball screw. Moreover, 

compared to the ANSYS model, the proposed model is shown to be over 6800 times faster, while 

providing versatility in describing and analyzing different types of geometric errors. It is 

therefore more convenient for use in parametric studies and design optimization of ball screws. 

 In Chapter 3, two sources of contact-related friction variation in ball bearings and ball 

screws are investigated and modeled. A sensitivity analysis of friction to rolling, sliding and spin 

in a ball from four-point contact ball bearing is first conducted. To do this, the ball-to-groove 

contact friction of rotary ball bearing is modeled following a well-established procedure but with 

planar contact area assumption. In a case study, sliding and spin in four-point contact operation 

is shown to result in much higher friction than two-point contact which mainly has rolling. Ball-

to-ball contact is another source of friction variation. In this work, low order numerical models 

for ball-to-ball contact friction in linear ball bearings and ball screws are proposed. Furthermore, 
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an analytical model for ball-to-ball contact friction in four-point contact linear ball bearing is 

derived by making simplifications to its low-order numerical model. Compared to ball-to-ball 

friction predictions from FEA models developed in ANSYS, the proposed numerical models are 

shown in case studies to be accurate within 7% difference, while computing at least three orders 

of magnitude faster. Using the insights gained from the analytical model, ball-to-ball contact is 

shown to be mitigated by reducing the velocity difference of balls in four-point contact linear 

ball bearings. Significant friction increase and variation due to ball-to-ball contact are 

demonstrated in a case study of ball screw, highlighting the importance of modeling ball-to-ball 

contact. However, the velocity-difference driven ball-to-ball contact models presented in this 

work do have limitations: they only model the steady state conditions of the ball-to-ball contact, 

the transient process of ball-to-ball contact is not captured. 

 The developed load distribution and friction models are then applied to rack EPAS gear 

in a few realistic scenarios in Chapter 4. Important insights are gained, e.g., axial lash test is 

more robust to ball locations than conical lash test as stiffness inspection of ball screws; double 

row angular contact ball bearings show much less friction variation than four-point contact ball 

bearings because they are constrained to always have two-point contact operation; manufacturing 

errors with two cycles per revolution pattern (e.g., roundness error) are more likely to cause balls 

to lose contact with grooves than pitch error with one cycle per revolution pattern, causing the 

ball screw to have higher chance of developing ball-to-ball contact and “stick-slip”. The 

developed models not only provide useful tools for rack EPAS sizing and analysis, but could also 

provide important insights for inspection, optimal design and manufacturing tolerance 

specification of ball bearings and ball screws in rack EPAS.   

 The work presented in this dissertation has be published in several journal and conference 

articles. The low order load distribution model has been published in [70,84]. The proposed ball-

to-ball contact friction models have been published in [71–73]. The application of the developed 

load distribution and friction models to rack EPAS gear is published in [74].   

5.2 Future Work 

 Although the proposed static load distribution models for ball screw, ball-to-ball contact 

models of linear ball bearing and ball screws are validated against ANSYS FEA, it is desirable to 

have experimental validations for them. Measurement of contact forces is hard due to sensing 
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difficulties, however, the insight gained from the static load distribution model: axial lash test is 

more robust to ball locations than conical lash test as stiffness inspection of ball screws, can be 

experimentally tested. Experiments can be carried out to validate the other two important insights 

derived from friction modeling: (1) double row angular contact ball bearing shows much less 

friction variation than four-point contact ball bearing; (2) manufacturing errors with two cycles 

per revolution pattern (e.g., roundness error) are more likely to cause balls to lose contact with 

grooves than pitch error of the same magnitude, causing the ball screw to have higher chance of 

developing ball-to-ball contact and “stick-slip”. 

 The developed friction models can be expanded to include more factors, e.g., transient 

process of ball-to-ball contact, realistic stick region treatment, lubricant, thermal effects. The 

developed friction models can be extended to include dynamic (i.e., centrifugal and gyroscopic) 

effect for high-speed applications of ball bearings and ball screws.  

As a versatile tool, the developed models can be applied to aid the analysis and design 

optimization of ball bearing and ball screw in rack EPAS. The static load distribution model can 

be utilized to conduct fatigue analysis of rack EPAS; design optimization of parameters can be 

conducted to minimize number of balls losing contact while ensuring the strength of the ball 

bearing and ball screw in rack EPAS.  
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Appendices 
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Appendix A: Current Frame Rotation Matrix  
 

The current frame rotation operator rotx/y/z(θ) performs a rotation of angle θ around x/y/z-

axis. Their elements are given as 
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Appendix B: Hertzian Contact Theory 
 

Hertzian Contact Theory enables the calculation of contact deformation, area and stress 

in the vicinity of the contact region [77]. Without loss of generality, Hertzian Contact Theory is 

explained here with respect to the SL ball-to-groove contact interface, but the procedure can be 

generalized to other contact interfaces as well. The Hertzian constant, CSLi, occurring in Eq. 

(2.14), is given by the general expression in Eq. (4.31) in [77] as 
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where ρSLi,eq denotes the equivalent radius of curvature at the SL contact point of ball i, given by 
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RSLi
'  and RSLi

''  are the relative principal radii of curvature with variables ρSLi
'  and ρSLi

"  representing 

principal radii of curvature of the SL groove surface at its contact point with ball i; they are given 

by the eigenvalues of the matrix of the second fundamental form of SSL(φ, γ) as [85] 
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where mෝ SLi represents the groove surface contact normal unit vector. Since the groove surface is 

parameterized as a multivariate function of real-valued angles, φ and γ, its surface contact normal 

unit vector can be expressed as a cross product of partial derivatives given by 
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Notice that ρSLi
'  and ρSLi

"  can be positive or negative, thus are able to represent convex, concave 

or saddle-like surfaces. A convex surface is taken to have a positive radius. Continuing with Eq. 

(B.1), ES,eq , represents the equivalent Young’s modulus of the screw, given as functions of 

Poisson’s ratios (νB, νS) and Young’s moduli (EB, ES) of ball and screw by the equation  
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Note that the constant F1(eSLi)  in Eq. (B.1) can be regarded as a correction factor for the 

eccentricity eSLi of the SL contact ellipse at the contact point; it can be obtained from lookup 

tables (like the one found in Ref. [22]) as a function of ball radius rBi and principal radii of 

curvature ρSLi
'  and ρSLi

"  , or, for simplicity, it may be set equal to unity [77]. 

The maximum contact pressure in the contact area is given by  
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For friction calculation, the length of semi-major axis aSLi and semi-minor axis bSLi of 

the contact region needs to be determined. In order to do that, the ratio between them needs to be 

calculated first. According to Eq. (4.28) in [77], 

     
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2'
SL SL SL SLSL
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0i i i ii
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 (B.8) 

where K(eSLi ) and E(eSLi ) are complete elliptical integrals of the first and second kind as 

functions of eccentricity eSLi which is given as 

2
SL

SL 2
SL

1 i
i

i

b
e

a
   (B.9) 

It is worth noticing when calculating K and E using the ellipke function in MATLAB®, the input 

should be square of eccentricity. Given the relative principle radii of curvature RSLi
'  and RSLi

'' , the 
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ratio aSLi/bSLi can be calculated first according to Eq. (B.8). On the other hand, the product of 

aSLi and bSLi can be calculated according to Eq. (4.30) in [77] as  
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 (B.10) 

Combine Eqs. (B.8) and (B.10), the semi-major and semi-minor axes can be calculated 

individually. Given surface geometry and material properties, the semi-major and semi-minor 

axes are only dependent on contact forces as 

2 3
SL SL SL

2 3
SL SL SL

,i a i i

i b i i

a C F

b C F




 (B.11) 

The values for all the parameters related to Hertzian Contact Theory based on the 

nominal ball screw parameters in Table 2.1 are shown in Table B.1. Although geometric errors 

and elastic deformation changes the results, their effect are minimal due to their small quantity. 

Since nominal ball screw parameters are used, the parameters are not ball number i dependent 

anymore; there is no difference between SL and SR, NL and NR as well. Thus all the subscripts 

in Table B.1 are simplified. 

Table B.1: Parameters for Hertzian Contact Theory with nominal ball screw parameters 

Parameter (Symbol) Value [Unit] 

Eccentricity of the contact area for the screw side (eS) 0.978 

Eccentricity of the contact area for the nut side (eN) 0.967 

Correction factor for the eccentricity (F1(eS), F1(eN)) 1  

Hertzian Constant of contact deformation for the screw side (CS) 1.812×10−7 [m/N2/3] 

Hertzian Constant of contact deformation for the nut side (CN)  1.628×10−7 [m/N2/3] 

Hertzian Constant of semi-major axis for the screw side (CaS) 7.962×10−5 [m/N1/3] 

Hertzian Constant of semi-minor axis for the screw side (CbS) 1.657×10−5 [m/N1/3] 

Hertzian Constant of semi-major axis for the nut side (CaN) 8.030×10−5 [m/N1/3] 

Hertzian Constant of semi-minor axis for the nut side (CbN) 2.036×10−5 [m/N1/3] 

Principal radius of curvature 1 for the screw side (ρS
' ) −3.137 [mm] 

Principal radius of curvature 2 for the screw side (ρS
" ) 10.254 [mm] 

Principal radius of curvature 1 for the nut side (ρN
' ) −13.141 [mm] 
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Principal radius of curvature 2 for the nut side (ρN
" ) −3.077 [mm] 

Relative principal radius of curvature 1 for the screw side (RSi
' ) 2.186  [mm] 

Relative principal radius of curvature 2 for the screw side (RSi
'' ) 24.254 [mm] 

Relative principal radius of curvature 1 for the nut side (RNi
' ) 3.523 [mm] 

Relative principal radius of curvature 2 for the nut side (RNi
'' ) 28.612 [mm] 

Equivalent radius of curvature for the screw side (ρS,eq) 7.281 [mm] 

Equivalent radius of curvature for the nut side (ρN,eq) 10.040 [mm] 
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Appendix C: Timoshenko Beam Shape Function Matrix 
 

The shape function matrix TS-ξ  describes the relationship between the generalized 

displacements/forces of a point along the centerline within the element and generalized 

displacements/forces acting on the adjacent nodal points. The elements of TS-ξ are all functions 

of ξ, a dimensionless number indicating the relative location of the point within the nodal points. 

The shape function matrix is given as 
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For a circular cross section, 
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 (C.3) 

is usually used. In Eq. (C.2), E is the Young’s modulus, ν is the Poisson’s ratio, G is the shear 

modulus; A is the cross sectional area of the element and I is the second moment of area. In 

calculating A and I, the indentation of the groove on the cylindrical screw is factored in as an 

adjustment factor to the outer diameter/radius of screw. It is calculated in the following process. 

The cross sectional area ΔS of the Gothic-arch-type groove in Figure C.1 can be calculated as  
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Figure C.1: Cross sectional area of Gothic-arch-type groove  

The cross-sectional area is swept along the helix, thus in the span of one lead p, the cut 

volume is  
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On the other hand, the original volume of the screw shaft in the span of one lead p is  
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The factor kr can be factored in to the outer diameter/radius of screw as  

org

org
r

V V
k

V


  (C.8) 

in calculating A and I of the cross section of ball screw.  
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Appendix D: Stiffness Matrix of Individual Timoshenko Beam Element 
 

The detail of stiffness matrix of a Timoshenko beam can be found in [86][87]. The global 

stiffness matrix is assembled from the individual stiffness matrices of each Timoshenko finite 

element [80], KElm, given by 
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with K defined as 
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where most of the notations are defined in Appendix C, J is the polar moment of inertia. In 

calculating J, the indentation of the groove on the cylinder is also factored in as an adjustment 

factor. 
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Appendix E: Explicit Jacobian for the Static Load Distribution Model 
 

Explicit Jacobian helps speed up the computation of Eq. (2.26) in the iterative solution 

process. All the variables and equations are listed here for references. The variables for the static 

load distribution model are 
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And the equations for load distribution model are  



 B S

2 1

SL SL

th

SL SR NL NR

S S S 6 6 1

ˆ

ball
( ) =

i i

i i i i

N N

i



   

 
 

           
 
 

  

n t

x
F F F F

K U F







   (E.2) 

where  

3B SL
SL

3B SL

ˆ i i
i

i i





p A

n
p A




 (E.3) 

SL SL SLi i i A A d  (E.4) 

SL SL SL
SL

SL SL SL

i i i
i

i i i  
  

  
  
A A d

t


 (E.5) 

  1T
SL 3 2 B SL

d-u

rot ( ) rot ( )i z i x i  
   d T u

T


 
(E.6) 

   

 

ST
SL SL S SL

S( 1)

S SL SL,

j
i i i

j

i i

  










 
  

 

U
u T r T

U
T r


 

(E.7) 



 112

SL SL B SL

1 0 0

0 1 0 ( , )

0 0 0
i i i 

 
   
  

r S  (E.8) 

  SL B SL
SL

Elm

0 0 1 ( , )i i j
i

j

z

L

 


 


S
 (E.9) 

SL SL SLˆi i iF F n  (E.10) 

3

2

SL SL
SL SL B 3B SLS

SL

1
if 0,

0 if 0

i i
i i i i i

i

F rC
  




       



p A  (E.11) 

In Eq. (E.5), 

SL SL
d-u

SL SL

i i

i i 
 

 
 
d u

T  (E.12) 

where 

   
 

 

 

ST
S SL

S( 1)SSL TSL
S SL SL

S( 1)SL SL SL

SL SL

SL SL

SL

SL SL

SL Elm

ST
S SL

S( 1)

d ,

1 0 0

0 1 0 ,

0 0 0

0 0 1

,

j

i
jjii

i i
ji i i

i i

i i

i

i i

i j

j
i

j

L




   








  

 

 













  
                    

 
     

  



 






U
T

UUru
T T T r

U

r S

S

U
T

U  T
SS SL SL

S( 1)SL SL SL

ji i

ji i i

  
  





  
           

    

UT

U

 (E.13) 
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The Jacobian is calculated for each item with respect to each variable in the following 

equations.   
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and  
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Finally 
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The basic derivatives used in the process are 
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Appendix F: Relative Velocity Field at the Contact Areas in Linear Ball Bearing and Ball 
Screw 

 

The relative velocity field at the BR, TR and TL contact areas in linear ball bearing are 

formulated as  
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The relative velocity field at the SR, NR and NL contact areas in ball screw are 

formulated as 
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Appendix G: The Magnitude of Δηi for the Linearized Region of Frictional Force 
  

 The magnitude of angular deviation Δηi in Eq. (3.34) is decomposed as    

B B

i i i
i

i

c c a

R a R
     (G.1) 

In order for linear approximation of frictional force to be valid, |ci/ai|<0.5 has to be satisfied as 

shown in Figure 3.11. The ratio of the semi-major axis ai to the ball radius RB depends on the 

normal contact load Fi  (or maximum contact stress σi over the contact area) and the conformity 

ratio of the groove. Figure G.1 plots ai/RB as a function of σi with four typical conformity ratios 

of ball bearings. The plot is cut off at maximum allowable stress of 1554 MPa for Hertzian 

contact, which is 4.2 times of typical carbon steel’s yield strength (370 MPa) according to [88].  

 

Figure G.1: The ratio of the semi-major axis ai to the ball radius RB 

 The maximum value of ai/RB is 0.218 achieved at the maximum allowable stress with 

conf.=0.52. The higher the conformity ratio, the smaller ai/RB; ai/RB also decreases with contact 

stress (or contact load). In the worst case scenario, |Δηi|<0.5×0.218=0.109, which is equivalent 

of 6.25°.     
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