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ABSTRACT

Traditional econometric methods can perform poorly in applications. The poor performance

is usually due to challenges faced by researchers conducting empirical data analysis, yet

overlooked by large sample reasonings that depend on stringent conditions. Such lack of

robustness can be detrimental to economic decision making and prescribing policy recom-

mendations. This dissertation consists of three connected chapters on important issues in

microeconometric theory, with a particular emphasis on developing robust inference proce-

dures in program evaluation and other microeconomic settings.

The first chapter discusses the implications of small probability weights entering the inverse

probability weighting estimator, and proposes an inference procedure that is robust to not

only small probability weights but also a wide range of trimming choices. Robustness is

achieved by combining resampling techniques with a novel bias correction method. This

chapter is based on the working paper “Robust Inference Using Inverse Probability Weight-

ing” (Ma and Wang, 2019).

In an important class of two-step semi-parametric models, the second chapter provides es-

timation and inference procedures that are robust to including high-dimensional covariates

in the first-step estimation. Robustness is achieved by the jackknife bias correction, and the

bootstrap is employed for statistical inference. This chapter is based on the paper “Two-Step

Estimation and Inference with Possibly Many Included Covariates” (Cattaneo, Jansson and

Ma, 2018d).

The third chapter develops a non-parametric estimator of probability density functions based

on local polynomial techniques. The proposed estimator is easy to implement and is robust

to discontinuities in the underlying density – an important concern in empirical research.

This chapter is based on the working paper “Simple Local Polynomial Density Estimators”

(Cattaneo, Jansson and Ma, 2019b).

x



CHAPTER I

Robust Inference Using Inverse Probability Weighting

Abstract. Inverse Probability Weighting (IPW) is widely used in program evaluation and

other empirical economics applications. As Gaussian approximations perform poorly in the

presence of “small denominators,” trimming is routinely employed as a regularization strat-

egy. However, ad hoc trimming of the observations renders usual inference procedures invalid

for the target estimand, even in large samples. This chapter proposes an inference procedure

that is robust not only to small probability weights entering the IPW estimator, but also to a

wide range of trimming threshold choices. Our inference procedure employs resampling with

a novel bias correction technique. Specifically, we show that both the IPW and trimmed IPW

estimators can have different (Gaussian or non-Gaussian) limiting distributions, depending

on how “close to zero” the probability weights are and on the trimming threshold. Our method

provides more robust inference for the target estimand by adapting to these different limit-

ing distributions. This robustness is partly achieved by correcting a non-negligible trimming

bias. We demonstrate the finite-sample accuracy of our method in a simulation study, and

we illustrate its use by revisiting a dataset from the National Supported Work program.

I.1 Introduction

Inverse Probability Weighting (IPW) is widely used in program evaluation settings, such as

instrumental variables, difference-in-differences and counterfactual analysis. Other applica-

tions of IPW include survey adjustment, data combination, and models involving missing

data or measurement error. In practice, it is common to observe small probability weights

entering the IPW estimator. This renders inference based on standard Gaussian approxi-

mations invalid, even in large samples, because these approximations rely crucially on the

probability weights being well-separated from zero. In a recent study, Busso, DiNardo and

McCrary (2014) investigated the finite sample performance of commonly used IPW treat-

This chapter is based on the working paper “Robust Inference Using Inverse Probability Weighting”
(Ma and Wang, 2019).
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ment effect estimators, and documented that small probability weights can be detrimental

to statistical inference. In response to this problem, observations with probability weights

below a certain threshold are often excluded from subsequent statistical analysis. The exact

amount of trimming, however, is usually ad hoc and will affect the performance of the IPW

estimator and the corresponding confidence interval in nontrivial ways.

In this chapter, we show that both the IPW and trimmed IPW estimators can have

different (Gaussian or non-Gaussian) limiting distributions, depending on how “close to zero”

the probability weights are and on how the trimming threshold is specified. We propose an

inference procedure that adapts to these different limiting distributions, making it robust not

only to small probability weights, but also to a wide range of trimming threshold choices. To

achieve this “two-way robustness,” our method employs a resampling technique combined

with a novel bias correction, which remains valid for the target estimand even when trimming

induces a non-negligible bias. In addition, we propose an easy-to-implement method for

choosing the trimming threshold by minimizing an empirical analogue of the asymptotic

mean squared error.

To understand why standard inference procedures are not robust to small probability

weights, we first consider the large-sample properties of the IPW estimator

θ̂n =
1

n

n∑
i=1

DiYi
ê(Xi)

, (I.1)

where Di ∈ {0, 1} is binary, Yi is the outcome of interest, and e(Xi) = P[Di = 1|Xi] is the

probability weight conditional on the covariates, with ê(Xi) being its estimate. The asymp-

totic framework we employ is general and allows, but does not require that the probability

weights have a heavy tail near zero. If the probability weights are bounded away from zero,

the IPW estimator is
√
n-consistent with a limiting Gaussian distribution. Otherwise, a

slower-than-
√
n convergence rate and a non-Gaussian limiting distribution can emerge, for

which regular large-sample approximation no longer applies. Specifically, in the latter case,

n

an

(
θ̂n − θ0

)
d→ L(γ0, α+(0), α−(0)), (I.2)

where θ0 is the parameter of interest and an →∞ is a sequence of normalizing factors. The

limiting distribution, L(·), depends on three parameters. The first parameter γ0 is related

to the “tail behavior” of the probability weights near zero. Only if the tail is relatively thin,

the limiting distribution will be Gaussian; otherwise it will be a Lévy stable distribution. In

the non-Gaussian case, the limiting distribution does not need to be symmetric, with its two

tails characterized by α+(0) and α−(0). Another complication in the non-Gaussian case is

2



that the convergence rate, n/an, is typically unknown, and depends again on how “close to

zero” the probability weights are.

In an effort to circumvent this problem, practitioners typically use trimming as a regu-

larization strategy. The idea is to exclude observations with small probability weights from

the analysis. However, the performance of standard inference procedures is sensitive to the

amount of trimming. We study the trimmed IPW estimator

θ̂n,bn =
1

n

n∑
i=1

DiYi
ê(Xi)

1ê(xi)≥bn . (I.3)

The large-sample properties of this estimator depend heavily on the choice of the trimming

threshold, bn. In particular,

n

an,bn

(
θ̂n,bn − θ0 − Bn,bn

)
d→ L(γ0, α+(·), α−(·)). (I.4)

Compared to (I.2), the most noticeable change is that a trimming bias Bn,bn emerges. This

bias has order P[e(X) ≤ bn], hence it will vanish asymptotically if the trimming threshold

shrinks to zero. However, the trimming bias can still contribute to the mean squared error

of the estimator nontrivially. Furthermore, it can be detrimental to statistical inference,

since the limiting distribution is shifted away from the target estimand by n
an,bn

Bn,bn , which

may not vanish even in large samples. Indeed, in a simple simulation setting with sample

size n = 2, 000 and a trimming threshold bn = 0.036, the bias Bn,bn is already quite severe

(three times as large as the variability of the point estimate). Another noticeable change

with trimming is that the normalizing factor, an,bn , can depend on the trimming threshold.

As a result, the trimmed IPW estimator may have a different convergence rate compared

to the untrimmed estimator. An extreme case is fixed trimming (bn = b > 0), which forces

the probability weights to be well-separated from zero. In this case, the trimmed estimator

converges to a pseudo-true parameter at the usual parametric rate n/an,bn =
√
n. Finally, the

form of the limiting distribution also changes and can depend on two infinite dimensional

objects, α+(·) and α−(·), making inference based on the estimated limiting distribution

prohibitively difficult.

As the large-sample properties of both the IPW and trimmed IPW estimators are sen-

sitive to small probability weights and to the amount of trimming, it is important to develop

an inference procedure that automatically adapts to the relevant limiting distributions. How-

ever, it is difficult to base inference on estimates of the nuisance parameters in (I.2) or (I.4),

and the standard nonparametric bootstrap is known to fail in our setting (Athreya, 1987;

Knight, 1989). We instead propose the use of subsampling (Politis and Romano, 1994). In

3



particular, we show that subsampling provides valid approximations to the limiting distri-

bution in (I.2) for the IPW estimator, and automatically adapts to the distribution in (I.4)

under trimming. With self-normalization (i.e., subsampling a Studentized statistic), it also

overcomes the difficulty of having a possibly unknown convergence rate.

Subsampling alone does not suffice for valid inference due to the bias induced by trim-

ming. A desirable inference procedure should be valid even when the trimming bias is

nonnegligible. That is, it should be robust not only to small probability weights but also to

a wide range of trimming threshold choices. To achieve this “two-way robustness,” we com-

bine subsampling with a novel bias correction method based on local polynomial regression.

Specifically, our method regresses the outcome variable on a polynomial of the probability

weight in a region local to 0, and estimates the trimming bias with the regression coeffi-

cients. In the current context, however, local polynomial regressions cannot be analyzed

with standard techniques available in the literature (Fan and Gijbels, 1996), as the density

of the probability weights can be arbitrarily close to zero in the subsample D = 1. Both the

variance and bias of the local polynomial regression change considerably.

Finally, we address the question of how to choose the trimming threshold. One extreme

possibility is fixed trimming (bn = b > 0). Although fixed trimming helps restore asymptotic

Gaussianity by forcing the probability weights to be bounded away from zero, this practice

is difficult to justify, unless one is willing to re-interpret the estimation and inference result

completely (Crump, Hotz, Imbens and Mitnik, 2009). We instead propose to determine the

trimming threshold by taking into consideration both the bias and variance of the trimmed

IPW estimator. We suggest an easy-to-implement method to choose the trimming threshold

by minimizing an empirical analogue of the asymptotic mean squared error.

From a practical perspective, results in this chapter relate to the large literature on

program evaluation and causal inference (Imbens and Rubin, 2015; Abadie and Cattaneo,

2018; Hernán and Robins, 2018). Inverse weighting type estimators are widely used in miss-

ing data models (Robins, Rotnitzky and Zhao, 1994; Wooldridge, 2007) and for estimating

treatment effects (Hirano, Imbens and Ridder, 2003; Cattaneo, 2010). They also feature

in settings such as instrumental variables (Abadie, 2003), difference-in-differences (Abadie,

2005), counterfactual analysis (DiNardo, Fortin and Lemieux, 1996) and survey sampling ad-

justment (Wooldridge, 1999). From a theoretical perspective, the IPW estimator is known

to behave poorly when the probability weights are close to zero (Khan and Tamer, 2010).

Some attempts have been made to deal with this problem. Heiler and Kazak (2018) also

consider how to conduct inference when the probability weights can be arbitrarily close to

zero. They establish a stable convergence result for the (untrimmed) IPW estimator, a con-

clusion similar to (I.2), and propose the use of subsampling for inference. However, they do
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not address the issue of trimming, nor do they discuss how the trimming threshold should

be chosen in practice. Chaudhuri and Hill (2016) propose a trimming strategy based on the

absolute magnitude of |DY/e(X)|. However, their method only allows the trimming of a

few observations. Moreover, both inference and bias correction rely on estimates of certain

tail features, which can be difficult to obtain. Hong, Leung and Li (2018) consider a setting

where observations fall into finitely many strata, and propose to measure the severity of lim-

ited overlap by how fast the propensity score approaches an extreme. To conduct inference

for moments of ratios, Sasaki and Ura (2018) propose a trimming method and a companion

sieve-based bias correction technique.

Trimming has also been studied in the literature on heavy-tailed random variables. As

in our setting, different limiting distributions can emerge (Csörgő, Haeusler and Mason,

1988; Hahn and Weiner, 1992; Berkes, Horváth and Schauer, 2012). However, the focus in

that literature has been almost exclusively on extreme order statistics. Hence, the results

do not apply to the trimming strategy which practitioners use. Crump, Hotz, Imbens and

Mitnik (2009) and Yang and Ding (2018) are two exceptions. They consider the probability

weight based trimming, as we do in this chapter, but both studies assume that the proba-

bility weights are already bounded away from zero. Trimming is not unique to the inverse

probability weighting framework. Hill and Renault (2012) propose tail trimming for the vari-

ance targeting estimator. It turns out that tail trimming is crucial to establish asymptotic

normality, as Vaynman and Beare (2014) show that stable convergence may arise for the

untrimmed variance targeting estimator.

With the IPW estimator as a special case, Cattaneo and Jansson (2018) and Cattaneo,

Jansson and Ma (2018d) show how an asymptotic bias can arise in a two-step semipara-

metric setting where the first step employs small bandwidths, which corresponds to under-

smoothing, or many covariates, which corresponds to overfitting. Along another direction,

Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018b) develop robust inference

procedures against oversmoothing bias. The first-order bias we document in this chapter is

both qualitatively and quantitatively different, as it emerges due to trimming and will be

present even when the probability weights are directly observed (making the estimator a

one-step procedure), and certainly will not disappear with model selection or machine learn-

ing methods (Athey, Imbens and Wager, 2018; Belloni, Chernozhukov, Chetverikov, Hansen

and Kato, 2018; Farrell, 2015; Farrell, Liang and Misra, 2018).

In Section I.2, we study the large-sample properties of the IPW estimator, and show

that subsampling provides valid distributional approximations. In Section I.3, we extend our

analysis to the trimmed IPW estimator, for which we discuss in detail the bias correction

required for our robust inference procedure. A data-driven method to choose the trimming
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threshold is also proposed. Section I.4 shows how our framework can be extended to provide

robust inference for treatment effects and parameters defined through a nonlinear moment

condition. Section I.5 provides numerical evidence from a wide array of simulation designs

and an empirical example. Section I.6 concludes. Additional results, preliminary lemmas

and all proofs are collected in Section I.7 and I.8.

I.2 The IPW Estimator

Let (Yi, Di, Xi), i = 1, 2, · · · , n be a random sample from Y ∈ R, D ∈ {0, 1} and X ∈ Rdx .

Recall that the probability weight is defined as e(X) = P[D = 1|X]. Define the conditional

moments of the outcome variable as

µs(e(X)) = E[Y s|e(X), D = 1], s > 0,

then the parameter of interest is θ0 = E[DY/e(X)] = E[µ1(e(X))]. At this level of generality,

we do not attach specific interpretations to the parameter and the random variables in our

model. To facilitate understanding, one can think of Y as an observed outcome variable and

D as an indicator of treatment status, hence the parameter is the population average of one

potential outcome (see Section I.4.1 for a treatment effect setting).

As previewed in Section I.1, the large-sample properties of the IPW estimator θ̂n depend

on the tail behavior of the probability weight near zero. If e(X) is bounded away from

zero, the IPW estimator is
√
n-consistent and asymptotically Gaussian. In the presence

of small probability weights, however, a non-Gaussian limiting distribution can emerge. In

this section, we first discuss the assumptions and formalize the notion of probability weights

“being close to zero” or “having a heavy tail.” Then we give precise statements on the

large-sample properties of the IPW estimator, and propose an inference procedure that is

robust to small probability weights.

I.2.1 Tail Behavior

For an estimator that takes the form of a sample average (or more generally can be linearized

into such), distributional approximation based on the central limit theorem only requires a

finite variance. The problem with inverse probability weighting with “small denominators,”

however, is that the estimator may not have a finite variance. In this case, distributional

convergence relies on tail features, which we formalize in the following assumption.
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Assumption I.1 (Regularly varying tail)

For some γ0 > 1, the probability weight has a regularly varying tail with index γ0− 1 at zero:

lim
t↓0

P[e(X) ≤ tx]

P[e(X) ≤ t]
= xγ0−1, for all x > 0. ‖

Assumption I.1 only imposes a local restriction on the tail behavior of the probability

weights, and is common when dealing with sums of heavy-tailed random variables. This

assumption encompasses the special case that P[e(X) ≤ x] = c(x)xγ0−1 with limx↓0 c(x) > 0

(i.e., approximately polynomial tail).1 To see how the tail index γ0 features in data, Figure I.1

shows the distribution of the probability weights simulated with γ0 = 1.5. There, it is clear

that the probability weights exhibit a heavy tail near 0 (more precisely, the density of e(X),

if it exists, diverges to infinity). In Section I.5.2, we illustrate this point with estimated

probability weights from an empirical example, and a similar pattern emerges. Later in

Theorem I.1, we show that γ0 = 2 is the boundary case that separates the Gaussian and the

non-Gaussian limiting distributions for the IPW estimator. With γ0 = 2, the probability

weight is approximately uniformly distributed, a fact that can be used in practice as a rough

guidance on the magnitude of this tail index.

Remark I.1 (Identification) The requirement γ0 > 1 ensures point identification of the

parameter θ0, as it implies P[e(X) = 0] = 0. ‖

Remark I.2 (Tail property of the inverse weight) Assumption I.1 can be equivalently

rewritten as a tail condition of the inverse weight: P[D/e(X) ≥ x] ≈ x−γ0 , as x ↑ ∞. (Pre-

cisely, D/e(X) has a regularly varying tail at ∞ with index −γ0.) Therefore, γ0 determines

what moments the inverse weight possesses. For our purpose, it is more instructive to have

a result on the tail behavior of DY/e(X). This is made precise in Lemma I.1, for which an

additional assumption is needed. ‖

Assumption I.1 characterizes the tail behavior of the probability weights. However, it

alone does not suffice for the IPW estimator to have a limiting distribution. The reason is

that, for sums of random variables without finite variance to converge in distribution, one

needs not only a restriction on the shape of the tail, but also a “tail balance condition.”

This should be compared to the asymptotically Gaussian case, in which no tail restriction is

necessary beyond a finite variance.

1Assumption I.1 is equivalent to P[e(X) ≤ x] = c(x)xγ0−1 with c(x) being a slowly varying function.
Because c(x) does not need to have a well-defined limit as x ↓ 0, Assumption I.1 is more general than
assuming an approximately polynomial tail. See Section I.7 for more detail.
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Figure I.1. Illustration of γ0.

(a)

0 0.2 0.4 0.6 0.8 1
e(X)

(b)

0 0.2 0.4 0.6 0.8 1
e(X)

D = 0

D = 1

Note. Sample size: n = 2, 000. P[e(X) ≤ x] = xγ0−1 with γ0 = 1.5. (a) Distribution of the probability
weights. (b) Distribution of the probability weights, separately for subgroups D = 1 (red) and D = 0
(blue).

Assumption I.2 (Conditional distribution of Y )

(i) For some ε > 0, E
[
|Y |(γ0∨2)+ε

∣∣e(X) = x,D = 1
]

is uniformly bounded. (ii) There exists

a probability distribution F , such that for all bounded and continuous `(·), E[`(Y )|e(X) =

x,D = 1]→
∫
R `(y)F (dy) as x ↓ 0. ‖

This assumption has two parts. The first part requires the tail of Y to be thinner

than that of D/e(X), therefore the tail behavior of DY/e(X) is largely driven by the “small

denominator e(X).” As our primary focus is the implication of small probability weights

entering the IPW estimator rather than a heavy-tailed outcome variable, we maintain this

assumption. The second part requires convergence of the conditional distribution of Y given

e(X) and D = 1. Together, they help characterize the tail behavior of DY/e(X). Specifically,

the two tails of DY/e(X) are balanced.

Lemma I.1 (Tail property of DY/e(X))

Under Assumptions I.1 and I.2,

lim
x→∞

xP[DY/e(X) > x]

P[e(X) < x−1]
=
γ0 − 1

γ0

α+(0), lim
x→∞

xP[DY/e(X) < −x]

P[e(X) < x−1]
=
γ0 − 1

γ0

α−(0),
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where

α+(x) = lim
t→0

E

[
|Y |γ01Y >x

∣∣∣e(X) = t,D = 1
]
, α−(x) = lim

t→0
E

[
|Y |γ01Y <x

∣∣∣e(X) = t,D = 1
]
.

‖

Assuming the distribution of the outcome variable is nondegenerate conditional on the

probability weights being small (i.e., α+(0)+α−(0) > 0), Lemma I.1 shows that DY/e(X) has

regularly varying tails with index −γ0. As a result, γ0 determines which moment of the IPW

estimator is finite: for s < γ0, E[|DY/e(X)|s] < ∞, and for s > γ0, the moment is infinite.

Thanks to Assumption I.2(ii), Lemma I.1 also implies that DY/e(X) has balanced tails: the

ratio P[DY/e(X)>x]
P[|DY/e(X)|>x]

tends to a finite constant. It turns out that without a finite variance, the

limiting distribution of the IPW estimator is non-Gaussian, and the limiting distribution

depends on both the left and right tails of DY/e(X). This should be compared to the

asymptotically Gaussian case, where delicate tail properties do not feature in the asymptotic

distribution beyond a finite second moment. Thus, tail balancing (and Assumption I.2(ii)) is

indispensable for developing a large sample theory allowing small probability weights entering

the IPW estimator.

Lemma I.1 also helps clarify different consequences of small probability weights/small

denominators. If γ0 > 2, the IPW estimator is asymptotically Gaussian:
√
n(θ̂n − θ0)

d→
N (0,V[DY/e(X)]), although the probability weights can still be close to zero. The reason is

that, with large γ0 > 2, small denominators appear so infrequently that they will not affect

the large-sample properties.

For γ0 ∈ (1, 2], the IPW estimator no longer has finite variance, and without further

restrictions on the data generating process, the parameter is not
√
n-estimable. Since the

distribution of e(X) does not approach zero fast enough (or equivalently, the density of e(X),

if it exists, diverges to infinity), it represents the empirical difficulty of dealing with small

probability weights entering the IPW estimator, for which regular asymptotic analysis no

longer applies.

Remark I.3 (Limited overlap) When estimating treatment effects (see Section I.4.1 for

a setup), it is possible that covariates are distributed very differently across the treatment

and the control group. Even worse, for some region in the covariates distribution, one may

observe abundant units from one group, yet units from the other group are scarce. This is

commonly referred to as “limited overlap,” and is one instance in which extreme probability

weights (propensity scores) can arise (Imbens and Rubin, 2015, Chapter 14).

Hong, Leung and Li (2018) consider a setting where observations fall into finitely many

strata (hence the propensity score has a finite support), and propose to use the quantity
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“nmin1≤i≤n e(Xi)” as the measure of the effective sample size (severity of limited overlap).

They require this measure to diverge in large samples, which is equivalent to γ0 > 2 in our

setting. To see this connection,

P

[
n min

1≤i≤n
e(Xi) > x

]
=
(

1− P[e(X) ≤ n−1x]
)n
�
(

1−
(
n−1x

)γ0−1
)n
,

so that nmin1≤i≤n e(Xi)
p→∞ if and only if γ0 > 2, which guarantees that the IPW estimator

is
√
n-consistent and asymptotically Gaussian. ‖

Remark I.4 (Implied tail of X) To see how the tail behavior of the probability weights

is related to that of the covariates X, we consider a Logit model:

e(X) = exp(XTπ0)/(1 + exp(XTπ0)).

Note that when the index XTπ0 approaches −∞, the probability weight approaches zero,

and

P[e(X) ≤ x] = P

[
1

1 + exp(−XTπ0)
≤ x

]
= P

[
XTπ0 < − log(x−1 − 1)

]
.

As a result, Assumption I.1 is equivalent to that, for all x large enough, P[XTπ0 < −x] ≈
e−(γ0−1)x, meaning that the (left) tail of XTπ0 is approximately sub-exponential. ‖

I.2.2 Large Sample Properties of the IPW Estimator

The following theorem characterizes the limiting distribution of the IPW estimator. To

make the result concise, we assume the oracle (rather than estimated) probability weights

are used, making the IPW estimator a one-step procedure. We extend the theorem to

estimated probability weights in the next subsection.

Theorem I.1 (Large sample properties of the IPW estimator)

Assume Assumptions I.1 and I.2 hold with α+(0) + α−(0) > 0. Let an be defined from

n

a2
n

E

[∣∣∣∣ DYe(X)
− θ0

∣∣∣∣2 1|DY/e(X)|≤an

]
→ 1.

Then (I.2) holds with L(γ0, α+(0), α−(0)) being:

(i) the standard Gaussian distribution if γ0 ≥ 2; and
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(ii) the Lévy stable distribution if γ0 < 2, with characteristic function:

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
. ‖

This theorem demonstrates how a non-Gaussian limiting distribution can emerge when

the IPW estimator does not have a finite variance (γ0 < 2). The limiting Lévy stable distri-

bution is generally not symmetric (unless the outcome variable is conditionally symmetrically

distributed), and has tails much heavier than that of a Gaussian distribution. As a result,

inference procedures based on the standard Gaussian approximation perform poorly.

Theorem I.1 also shows how the convergence rate of the IPW estimator depends on

the tail index γ0. For γ0 > 2, the IPW estimator converges at the usual parametric rate

n/an =
√
n. This extends to the γ0 = 2 case, except that an additional slowly varying

factor is present in the convergence rate. For γ0 < 2, an is only implicitly defined from

a truncated second moment, and generally does not have an explicit formula. One can

consider the special case that the probability weights have an approximately polynomial

tail: P[e(X) ≤ x] � xγ0−1, for which an can be set to n1/γ0 . As a result, the IPW estimator

will have a slower convergence rate if the probability weights have a heavier tail at zero (i.e.,

smaller γ0). Fortunately, the (unknown) convergence rate is captured by self-normalization

(Studentization), which we employ in our robust inference procedure.

As a technical remark, the characteristic function in Theorem I.1(ii) has an equivalent

representation, from which we deduce several properties of the limiting Lévy stable distri-

bution. In particular,

ψ(ζ) = −|ζ|γ0 Γ(3− γ0)

γ0(γ0 − 1)

[
− cos

(γ0π

2

)
+ i

α+(0)− α−(0)

α+(0) + α−(0)
sgn(ζ) sin

(γ0π

2

)]
,

where Γ(·) is the gamma function and sgn(·) is the sign function. First, this distribution is not

symmetric unless α+(0) = α−(0). Second, the characteristic function has a sub-exponential

tail, meaning that the limiting stable distribution has a smooth density function (although

in general it does not have a closed-form expression). Finally, the above characteristic

function is continuous in γ0, in the sense that as γ0 ↑ 2, it reduces to the standard Gaussian

characteristic function.
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I.2.3 Estimated Probability Weights

The probability weights are usually unknown and are estimated in a first step, which are

then plugged into the IPW estimator, making it a two-step estimation problem. In this

subsection, we discuss how estimating the probability weights in a first step will affect the

results of Theorem I.1. To start, consider the following expansion:

n

an

(
θ̂n − θ0

)
=

1

an

n∑
i=1

(
DiYi
e(Xi)

− θ0

)
︸ ︷︷ ︸

Theorem I.1

+
1

an

n∑
i=1

DiYi
e(Xi)

(
e(Xi)

ê(Xi)
− 1

)
︸ ︷︷ ︸

Proposition I.1

,

where the first term is already captured by Theorem I.1. At this level of generality, it is

not possible to determine whether the second term in the above expansion has a nontrivial

(first order) impact. In fact, nothing prevents the second term from being dominant in large

samples, which happens, for example, when the probability weights are estimated at a rate

slower than n/an. Even if the probability weights are estimated at the usual parametric

rate, the difference between their inverses may not be small at all (due to the presence of

“small estimated denominators”). In this subsection, we first impose high-level assumptions

and discuss the impact of employing estimated probability weights. Then we specialize to

generalized linear models, and verify the high-level assumptions for Logit and Probit models

which are widely used in applied work.

Assumption I.3 (First step)

The probability weights are parametrized as e(X, π) with π ∈ Π, and e(·) is continuously

differentiable with respect to π. Let e(X) = e(X, π0) and ê(X) = e(X, π̂n). Further,

(i)
√
n(π̂n − π0) = 1√

n

∑n
i=1 h(Di, Xi) + op(1), where h(Di, Xi) is mean zero and has a finite

variance.

(ii) For some ε > 0, E
[
supπ:|π−π0|≤ε

∣∣∣ e(Xi)
e(Xi,π)2

∂e(Xi,π)
∂π

∣∣∣] <∞. ‖

Now we state the analogue of Theorem I.1 but with the probability weights estimated

in a first step.

Proposition I.1 (IPW estimator with estimated probability weights)

Assume Assumptions I.1–I.3 hold with α+(0) + α−(0) > 0. Let an be defined from

n

a2
n

E

[∣∣∣∣ DYe(X)
− θ0 − A0h(D,X)

∣∣∣∣2 1|DY/e(X)−A0h(D,X)|≤an

]
→ 1,

where A0 = E

[
µ1(e(X))
e(X)

∂e(X,π)
∂π

∣∣∣
π=π0

]
. Then the IPW estimator has the following linear rep-
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resentation:

n

an

(
θ̂n − θ0

)
=

1

an

n∑
i=1

(
DiYi
e(Xi)

− θ0 − A0h(Di, Xi)

)
+ op(1),

and the conclusions of Theorem I.1 hold with estimated probability weights. ‖

To understand Proposition I.1, we again consider two cases. In the first case, the ratio

has a finite variance: V[DY/e(X)] <∞, and estimating the probability weights in a first step

will contribute to the asymptotic variance. The second case corresponds to V[DY/e(X)] =

∞, implying that the final estimator, θ̂n, has a slower convergence rate compared to the first-

step estimated probability weights. As a result, the two definitions of the scaling factor an (in

Theorem I.1 and in the above proposition) are asymptotically equivalent, and the limiting

distribution will be the same regardless of whether the probability weights are known or

estimated.

Now we consider generalized linear models (GLMs) for the probability weights, and

show that Assumption I.3 holds under very mild primitive conditions.

Lemma I.2 (Primitive conditions for GLMs)

Assume Assumptions I.1 holds with e(X, π0) = L(XTπ0). Further,

(i) π0 is the unique minimizer of E[|D−L(XTπ)|2] in the interior of the compact parameter

space Π, and π̂n = argminπ∈Π

∑n
i=1 |Di − L(XT

i π)|2.

(ii) For some ε > 0, E
[
supπ:|π−π0|≤ε

∣∣∣L(XT
i π0)L(1)(XT

i π)

L(XT
i π)2

X
∣∣∣] <∞.

(iii) E[L(1)(XTπ0)2XXT] is nonsingular.

Then Assumption I.3 holds with h(Di, Xi) =
(
E
[
L(1)(XTπ0)2XXT

])−1
(Di − L(XT

i π0))

L(1)(XT
i π0)Xi. ‖

This lemma provides sufficient conditions to verify Assumption I.3 when the probability

weight takes a generalized linear form, hence also justifies the result in Proposition I.1. Most

of the conditions in Lemma I.2 are standard, except for part (ii). In the following remark

we discuss in detail how this condition can be justified in Logit and Probit models.

Remark I.5 (Logit and Probit models) Assuming a Logit model for the probability

weights: e(Xi, π) = eX
T
i π/(1+eX

T
i π), a sufficient condition for Lemma I.2(ii) is the covariates

having a sub-exponential tail: E[eε|X|] <∞ for some (small) ε > 0. This should be compared

to Remark I.4, where we show that for Assumption I.1 to hold in a Logit model, the index

XTπ0 needs to have a sub-exponential left tail. Therefore, this sufficient condition is fully

compatible with, and in a sense is “implied” by Assumption I.1.

As for the Probit model, condition (ii) in Lemma I.2 is implied by a sub-Gaussian tail

of the covariates: E[eε|X|
2
] < ∞ for some (small) ε > 0. Again, it is possible to show that
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Assumption I.1 implies a sub-Gaussian left tail for the index XTπ0. Thus, the requirement

E[eε|X|
2
] <∞ is fairly weak and does not contradict Assumption I.1. ‖

I.2.4 Robust Inference

The limiting distribution of the IPW estimator can be quite complicated, and depends on

multiple nuisance parameters which are usually difficult to estimate. In addition, the usual

nonparametric bootstrap fails to provide a valid distributional approximation when γ0 < 2

(Athreya, 1987; Knight, 1989). As a result, conducting statistical inference is particularly

challenging. Subsampling is a powerful data-driven method to approximate the (limiting)

distribution of a statistic. It draws samples of size m� n and recomputes the statistic with

each subsample. Therefore, subsampling provides distributional approximation as if many

independent sets of random samples were available. Following is the detailed algorithm.

Algorithm I.1 (Robust inference using the IPW estimator)

Let θ̂n be defined as in (I.1), and

Sn =

√√√√ 1

n− 1

n∑
i=1

(
DiYi
ê(Xi)

− θ̂n
)2

.

Step 1. Sample m � n observations from the original data without replacement, denoted

by (Y ?
i , D

?
i , X

?
i ), i = 1, 2, · · · ,m.

Step 2. Construct the IPW estimator with the new subsample, and the self-normalized

statistic as

T ?m =
θ̂?m − θ̂n
S?m/
√
m
, S?m =

√√√√ 1

m− 1

m∑
i=1

(
D?
i Y

?
i

ê?(X?
i )
− θ̂?m

)2

.

Step 3. Repeat Step 1 and 2, and a (1− α)%-confidence interval can be constructed as[
θ̂n − q1−α

2
(T ?m)

Sn√
n

, θ̂n − qα
2
(T ?m)

Sn√
n

]
,

where q(·)(T
?
m) denotes the quantile of the statistic T ?m. ‖

Subsampling validity typically relies on the existence of a limiting distribution (Politis

and Romano, 1994; Romano and Wolf, 1999). We follow this approach, and justify our ro-

bust inference procedure by showing that the self-normalized statistic, Tn =
√
n(θ̂n−θ0)/Sn,

converges in distribution. Under γ0 > 2, the term Sn in Algorithm I.1 converges in prob-

14



ability, and Tn converges to a Gaussian distribution by the Slutsky theorem. Asymptotic

Gaussianity of Tn continues to hold for γ0 = 2. Under γ0 < 2, Tn still converges in distribu-

tion, although the limit is neither Gaussian nor Lévy stable. We characterize this limiting

distribution in the proof of the following theorem.

Theorem I.2 (Validity of robust inference)

Under the assumptions of Theorem I.1 (or Proposition I.1 with estimated probability weights),

and assume m→∞ and m/n→ 0. Then

sup
t∈R

∣∣∣P[Tn ≤ t]− P?[T ?m ≤ t]
∣∣∣ p→ 0. ‖

Before closing this section, we address several practical issues when applying the robust

inference procedure. First, it is desirable to have an automatic and adaptive procedure

to capture the possibly unknown convergence rate n/an, as the convergence rate depends

on the tail index γ0. In the subsampling algorithm, this is achieved by self-normalization

(Studentization).

Second, one has to choose the subsample size m. Some suggestions have been made

in the literature: Arcones and Giné (1991) suggest to use m = bn/ log log(n)1+εc for some

ε > 0, although they consider the m-out-of-n bootstrap. Romano and Wolf (1999) propose a

calibration technique. We use m = bn/ log(n)c which performs quite well in our simulation

study. Other choices such as m = bn2/3c and bn1/2c yield similar performance.

Finally, the denominator for self-normalization does not include all terms in the asymp-

totic linear representation stated in Proposition I.1. For example, with the probability

weights estimated in a first step, an alternative is to use

Sn =

√√√√ 1

n− 1

n∑
i=1

(
DiYi
ê(Xi)

− θ̂n − Ânĥ(Di, Xi)

)2

,

where Ân and ĥ(·) are plug-in estimates of A0 and h(·). This alternative Studentization can

be appealing for higher-order accuracy concerns (i.e., asymptotic refinements, Horowitz 2001;

Politis, Romano and Wolf 1999). On the other hand, Algorithm I.1 is easier to implement

since no additional estimation is needed.

I.3 Trimming

In response to small probability weights entering the IPW estimator, trimming is routinely

employed as a regularization strategy. In this section, we first study the large-sample prop-
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erties of the trimmed IPW estimator. It is shown that different limiting distributions can

emerge, depending on how the trimming threshold is specified. Next, we study in detail

the trimming bias, and show that for inference purpose it is typically nonnegligible or even

explosive. These two findings explain why the point estimate is sensitive to the choice of the

trimming threshold, and more importantly, why inference procedures based on the standard

Gaussian approximation perform poorly. One extreme example is fixed trimming bn = b > 0,

with which the trimmed IPW estimator is
√
n-consistent and asymptotically Gaussian. How-

ever, it induces a bias that does not vanish even in large samples, forcing the researcher to

change the target estimand and to re-interpret standard confidence intervals such as “point

estimate ± 1.96×standard error.”

As a remedy, we propose to combine resampling with a novel bias correction technique,

where the latter employs local polynomial regression to approximate the trimming bias.

Our inference procedure is robust not only to small probability weights but also to a wide

range of trimming threshold choices. We also introduce a method to choose the trimming

threshold by minimizing an empirical mean squared error, and discuss how our trimming

threshold selector can be modified in a disciplined way if the researcher prefers to discard

more observations.

I.3.1 Large Sample Properties of the trimmed IPW Estimator

If the untrimmed IPW estimator is already asymptotically Gaussian (γ0 ≥ 2, Theorem I.1(i)),

so is the trimmed estimator. Therefore we restrict our attention to the γ0 < 2 case. Also to

make the result concise, we assume the probability weights are known, and postpone to the

next subsection the impact of estimating the probability weights in a first step. Following is

the main theorem characterizing the large-sample properties of the trimmed IPW estimator.

Theorem I.3 (Large sample properties of the trimmed IPW estimator)

Assume Assumptions I.1 and I.2 hold with γ0 < 2 and α+(0) + α−(0) > 0. Further, let an

be defined as in Theorem I.1.

(i) Light trimming: For bnan → 0, (I.4) holds with an,bn = an, and the limiting distribution

is the Lévy stable distribution in Theorem I.1(ii).

(ii) Heavy trimming: For bnan → ∞, (I.4) holds with an,bn =
√
nV[DY/e(X)1e(X)≥bn ], and

the limiting distribution is the standard Gaussian distribution.

(iii) Moderate trimming: For bnan → t ∈ (0,∞), (I.4) holds with an,bn = an, and the limiting
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distribution is infinitely divisible with characteristic function:

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
. ‖

For light trimming in part (i), bn shrinks to zero fast enough so that asymptotically

trimming becomes negligible, and the limiting distribution is Lévy stable as if there were

no trimming. In part (ii), the trimming threshold shrinks to zero slowly, hence most of the

small probability weights are excluded. This heavy trimming scenario leads to a Gaussian

limiting distribution. Part (iii) lies between the two extremes. We refer to it as moderate

trimming. On the one hand, a nontrivial number of small probability weights are discarded,

making the limit no longer the Lévy stable distribution. On the other hand, the trimming

is not heavy enough to restore asymptotic Gaussianity. The limiting distribution in this

case is quite complicated, and depends on two (infinitely dimensional) nuisance parameters,

α+(·) and α−(·). For this reason, inference is extremely challenging. As a technical remark,

this limiting distribution is continuous in t, in the sense that as t → ∞, it reduces to the

standard Gaussian distribution; and as t ↓ 0, it becomes the Lévy stable distribution.

Despite the limiting distribution taking on a complicated form, the trimming threshold

choice in Theorem I.3(iii) is highly relevant, as it balances the bias and variance and leads

to a mean squared error improvement over the untrimmed IPW estimator. In addition,

unless one employs a very large trimming threshold, it is unclear how well the Gaussian

approximation performs in samples of moderate size.

I.3.2 Estimated Probability Weights

Estimating the probability weights in a first step can affect the large-sample properties

of the trimmed IPW estimator through two channels: the estimated weights enter the final

estimator both through inverse weighting and through the trimming function. More precisely,

we have the following expansion:

n

an,bn

(
θ̂n,bn − θ0 − Bn,bn

)
=

1

an

n∑
i=1

(
DiYi
e(Xi)

1e(Xi)≥bn − θ0 − Bn,bn

)
︸ ︷︷ ︸

Theorem I.3
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+
1

an,bn

n∑
i=1

DiYi
e(Xi)

(
e(Xi)

ê(Xi)
− 1

)
1ê(Xi)≥bn︸ ︷︷ ︸

Proposition I.1

+
1

an,bn

n∑
i=1

DiYi
e(Xi)

(
1ê(Xi)≥bn − 1e(Xi)≥bn

)
︸ ︷︷ ︸

Proposition I.2

.

Proposition I.2 shows that, despite the estimated probability weights entering both the

denominator and the trimming function, the second channel is asymptotically negligible

under an additional assumption, which turns out to be very mild in applications.

Assumption I.4 (Trimming threshold)

The trimming threshold satisfies cn
√
bnP[e(Xi) ≤ bn] → 0, where cn is a positive sequence

such that, for any ε > 0,

c−1
n max

1≤i≤n
sup

|π−π0|≤ε/
√
n

∣∣∣∣ 1

e(Xi)

∂e(Xi, π)

∂π

∣∣∣∣ = op(1). ‖

Remark I.6 (Logit and Probit models) To verify Assumption I.4, it suffices to set

cn = log2(n) for Logit and Probit models. Therefore, we only require the trimming threshold

shrinking to zero faster than a logarithmic rate. ‖

Proposition I.2 (Trimmed IPW estimator with estimated probability weights)

Assume Assumptions I.1–I.4 hold with γ0 < 2 and α+(0) + α−(0) > 0, and let an be defined

as in Proposition I.1. Then the conclusions of Theorem I.3 hold with estimated probability

weights. ‖

From this proposition, estimating the probability weights in a first step does not lead

to any first order impact beyond what has been stated in Proposition I.1. Equivalently, one

can always assume that the true probability weights are used for trimming.

I.3.3 Balancing Bias and Variance

If the sole purpose of trimming is to stabilize the IPW estimator, one can argue that only

a fixed trimming rule, bn = b ∈ (0, 1), should be used. Such practice, however, completely

ignores the bias introduced by trimming, forcing the researcher to change the target estimand

and re-interpret the estimation/inference result (see, for example Crump, Hotz, Imbens

and Mitnik 2009). Practically, the trimming threshold can be chosen by minimizing the

asymptotic mean squared error. For this purpose, we characterize the bias and variance of

the trimmed IPW estimator in the following lemma.
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Lemma I.3 (Bias and variance of θ̂n,bn)

Assume Assumptions I.1 and I.2 hold with γ0 < 2. Further, assume that µ1(·) and µ2(·) do

not vanish near 0. Then the bias and variance of θ̂n,bn are:

Bn,bn = −E[µ1(e(X))1e(X)≤bn ] = −µ1(0)P [e(X) ≤ bn] (1 + o(1)),

Vn,bn =
1

n
E

[
µ2(e(X))

e(X)
1e(X)≥bn

]
(1 + o(1)) = µ2(0)

1

n
E
[
e(X)−11e(X)≥bn

]
(1 + o(1)).

In addition, B2
n,bn

/Vn,bn � nbnP[e(X) ≤ bn]. ‖

A natural question is how bn can be chosen in practice. One possibility is to consider

the leading mean squared error:

B2
n,bn + Vn,bn ≈ [P [e(X) ≤ bn] · µ1(0)]2 +

1

n
E
[
e(X)−11e(X)≥bn

]
· µ2(0)

=

[∫ bn

0

dP[e(X) ≤ x] · µ1(0)

]2

+
1

n

∫ 1

bn

x−1dP[e(X) ≤ x] · µ2(0),

and by taking derivative with respect to bn, we have,

b†n · P[e(X) ≤ b†n] =
1

2n

µ2(0)

µ1(0)2
, (I.5)

which gives the optimal trimming threshold.

The (mean squared error) optimal trimming b†n helps understand the three scenarios

in Theorem I.3: light, moderate and heavy trimming. More importantly, it helps clarify

whether (and when) the trimming bias features in the limiting distribution. (The trimming

bias Bn,bn vanishes as long as bn → 0. Scaled by the convergence rate, however, it may not

be negligible even in large samples.) b†n corresponds to the moderate trimming scenario,

and since it balances the leading bias and variance, the limiting distribution of the trimmed

IPW estimator is not centered at the target estimand (i.e., it is asymptotically biased).

A trimming threshold that shrinks more slowly than the optimal one corresponds to the

heavy trimming scenario, where the bias dominates in the asymptotic distribution. The

only scenario in which one can ignore the trimming bias for inference purposes is when light

trimming is used. That is, the trimming threshold shrinks faster than b†n. In large samples,

however, no observation will be discarded. Overall, the trimming bias cannot be ignored if

one wants to develop an inference procedure that is valid for the target estimand using the

trimmed IPW estimator. In the next subsection, we propose an inference procedure that is

valid for the target estimand under a range of trimming threshold choices. This is achieved

by explicitly estimating and correcting the trimming bias with a novel application of local
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polynomial regression.

The following theorem shows that, under very mild regularity conditions, the optimal

trimming threshold can be implemented in practice by solving the sample analogue of (I.5).

In addition, it also provides a disciplined method for choosing the trimming threshold if the

researcher prefers to employ a heavy trimming.

Theorem I.4 (Optimal trimming: implementation)

Assume Assumption I.1 holds, and 0 < µ2(0)/µ1(0)2 <∞. For any s > 0, define bn and b̂n

as:

bsnP[e(X) ≤ bn] =
1

2n

µ2(0)

µ1(0)2
, b̂sn

(
1

n

n∑
i=1

1e(X)≤b̂n

)
=

1

2n

µ̂2(0)

µ̂1(0)2
,

where µ̂1(0) and µ̂2(0) are some consistent estimates of µ1(0) and µ2(0), respectively. Then

b̂n is consistent for bn, in the sense that:

b̂n
bn

p→ 1.

Therefore, for 0 < s < 1, s = 1 and s > 1, we have that b̂n/b
†
n converges in probability to 0,

1 and ∞, respectively.

If in addition Assumption I.3 holds, and for any ε > 0,

max
1≤i≤n

sup
|π−π0|≤ε/

√
n

∣∣∣∣ 1

e(Xi)

∂e(Xi, π)

∂π

∣∣∣∣ = op

(√
n

log(n)

)
,

then b̂n can be constructed with estimated probability weights. ‖

This theorem states that, as long as we can construct a consistent estimator for the

ratio µ2(0)/µ1(0)2, the optimal trimming threshold can be implemented in practice with the

unknown distribution P[e(X) ≤ x] replaced by the standard empirical estimate. Although

(I.5) and its sample analogue do not have closed-form solutions, finding b̂n is quite easy, by

first searching over the order statistics of the probability weights, and then performing a grid

search in a interval with length of order n−1.

In addition, Theorem I.4 allows the use of estimated probability weights for constructing

b̂n. The extra condition turns out to be quite weak, and is easily satisfied if the probability

weights are estimated in a Logit or Probit model.

Remark I.7 (Bias-variance trade-off when γ0 ≥ 2) The characterization of leading

variance in Lemma I.3 only applies to γ0 < 2. The trimming threshold in (I.5), however,
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remains to be mean squared error optimal even for γ0 ≥ 2. To show this, we need to

characterize a higher order variance term. Assume for simplicity that γ0 > 2, then the

variance of the trimmed IPW estimator is

1

n
V

[
DY

e(X)
1e(X)≥bn

]
=

1

n
E

[
DY 2

e(X)2

]
− 1

n
E

[
DY 2

e(X)2
1e(X)≤bn

]
− 1

n
(θ0 + Bn,bn)2

=
1

n
V

[
DY

e(X)

]
− 1

n
E

[
DY 2

e(X)2
1e(X)≤bn

]
(1 + o(1)),

provided that µ2(0) > 0. In this case, the (asymptotic) mean squared error optimal trimming

threshold is defined as the minimizer of:[∫ bn

0

dP[e(X) ≤ x] · µ1(0)

]2

− 1

n

∫ bn

0

x−1dP[e(X) ≤ x] · µ2(0),

which can be found by solving a first order condition and coincides with (I.5). The γ0 = 2

case can be analyzed similarly, although one has to take extra care on a slowly varying term

in the variance expansion. Finally, we note that Theorem I.4 remains valid and can be

employed to estimate this optimal trimming threshold for γ0 ≥ 2. ‖

I.3.4 Bias Correction and Robust Inference

To motivate our bias correction technique, recall that the bias is Bn,bn = −E[µ1(e(X))1e(X)≤bn ],

where µ1(·) is the expectation of the outcome Y conditional on the probability weight and

D = 1. Next, we replace the expectation by a sample average, and the unknown conditional

expectation by a p-th order polynomial expansion, and the bias is approximated by

− 1

n

n∑
i=1

(
p∑
j=0

1

j!
µ

(j)
1 (0)e(Xi)

j

)
1e(Xi)≤bn .

Here, µ
(j)
1 (0) is the j-th derivative of µ1(·) evaluated at 0, and has to be estimated. Given

that we do not impose parametric assumptions on the conditional expectation beyond certain

degree of smoothness, we employ local polynomial regression (Fan and Gijbels, 1996).

Our procedure takes two steps. In the first step, one implements a p-th order local

polynomial regression of the outcome variable on the probability weight using the D = 1

subsample in a region [0, hn], where (hn)n≥1 is a bandwidth sequence. In the second step,

the estimated bias is constructed by replacing the unknown conditional expectation function

and its derivatives by the first-step estimates. Following is the detailed algorithm, which is

illustrated in Figure I.2.
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Algorithm I.2 (Bias estimation)

Step 1. With the D = 1 subsample, regress the outcome variable Yi on the (estimated)

probability weight in a region [0, hn]:

[
β̂0, β̂1, · · · , β̂p

]′
= argmin

β0,β1,··· ,βp

n∑
i=1

Di

[
Yi −

p∑
j=0

βj ê(Xi)
j
]2

1ê(Xi)≤hn .

Step 2. Construct the bias correction term as

B̂n,bn = − 1

n

n∑
i=1

(
p∑
j=0

β̂j ê(Xi)
j

)
1ê(Xi)≤bn ,

so that the bias-corrected estimator is θ̂bcn,bn = θ̂n,bn − B̂n,bn . ‖

By inspecting the bias-corrected estimator, our procedure can be understood as a “lo-

cal regression adjustment,” since we replace the trimmed observations by its conditional

expectation, which is further approximated by a local polynomial. In the local polynomial

regression step, it is possible to incorporate other kernel functions: we use the uniform kernel

1ê(Xi)≤hn to avoid introducing additional notation, but all the main conclusions continue to

hold with other commonly employed kernel functions, such as the triangular and Epanech-

nikov kernels. As for the order of local polynomial regression, common choices are p = 1

and 2, which reduce the bias to a satisfactory level without introducing too much additional

variation.

Standard results form the local polynomial regression literature require the density of the

design variable to be bounded away from zero, which is not satisfied in our context. When the

probability weight is close to zero, it becomes very difficult to observe D = 1. Equivalently,

in the subsample which we use for the local polynomial regression, the distribution of the

probability weights quickly vanishes near the origin.2 As a result, nonstandard scaling is

needed to derive large-sample properties of µ̂
(j)
1 (0).

The following theorem shows the validity of our bias correction procedure.

Theorem I.5 (Large sample properties of the estimated bias)

Assume Assumptions I.1 and I.2 (and in addition Assumption I.3 and I.4 with estimated

probability weights) hold. Further, assume (i) µ1(·) is p+1 times continuously differentiable;

(ii) µ2(0) − µ1(0)2 > 0; (iii) the bandwidth sequence satisfies nh2p+3
n P[e(X) ≤ hn] � 1; (iv)

nb2p+3
n P[e(X) ≤ bn]→ 0. Then the bias correction is valid, and does not affect the asymptotic

2More precisely, P[e(X) ≤ x|D = 1] ≺ x as x ↓ 0, meaning that in the D = 1 subsample, the density of
the probability weights (if it exists) tends to zero: fe(X)|D=1(0) = 0.
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distribution:

θ̂bcn,bn − θ0 =
(
θ̂n,bn − Bn,bn − θ0

)
(1 + op(1)). ‖

Theorem I.5 has several important implications. First, our bias correction is valid for

a wide range of trimming threshold choices, as long as the trimming threshold does not

shrink to zero too slowly: nb2p+3
n P[e(X) ≤ bn]→ 0. However, fixed trimming bn = b ∈ (0, 1)

is ruled out (except for the trivial case where the probability weight is already bounded

away from zero). This is not surprising, since under fixed trimming the correct scaling is
√
n, and generally the bias cannot be estimated at this rate without additional parametric

assumptions.

Second, it gives a guidance on how the bandwidth for the local polynomial regression

can be chosen. In practice, this is done by solving nĥ2p+3
n P̂[e(X) ≤ ĥn] = c for some c > 0, so

that the resulting bandwidth makes the (squared) bias and variance of the local polynomial

regression the same order. A simple strategy is to set c = 1. It is also possible to construct a

Figure I.2. Trimming and local polynomial bias correction.
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Note. (a) Illustration of Trimming. Circles: trimmed observations. Solid dots: observations included in
the estimator. Solid curve: conditional expectation function E[Y |e(X), D = 1]. (b) Illustration of the local
polynomial regression. Solid dots: observations used in the local polynomial regression. Solid straight line:
local linear regression function.
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bandwidth that minimizes the leading mean squared error of the local polynomial regression,

for which c has to be estimated in a pilot step.

Finally, it shows how trimming and bias correction together can help improve the con-

vergence rate of the (untrimmed) IPW estimator. From Theorem I.3(ii), we have |θ̂n,bn −
θ0 − Bn,bn| = Op((n/an,bn)−1), where the convergence rate n/an,bn is typically faster when

a heavier trimming is employed. This, however, should not be interpreted as a real im-

provement, as the trimming bias can be so large that the researcher effectively changes the

target estimand to θ0 − Bn,bn . with bias correction, it is possible to achieve a faster rate of

convergence for the target estimand, since under the assumptions of Theorem I.5, one has

|θ̂bcn,bn − θ0| = Op((n/an,bn)−1), which is valid for a wide rage of trimming threshold choices.

Together with our bias correction technique, subsampling can be employed to conduct

statistical inference and to construct confidence intervals that are valid for the target es-

timand. Although Theorem I.5 states that estimating the bias does not have a first order

contribution to the limiting distribution, it may still introduce additional variability in finite

samples (Calonico, Cattaneo and Farrell, 2018). Therefore, we recommend subsampling the

bias-corrected statistic.

Algorithm I.3 (Robust inference using the trimmed IPW estimator)

Let θ̂bcn,bn be defined as in Algorithm I.2, and

Sn,bn =

√√√√ 1

n− 1

n∑
i=1

(
DiYi
ê(Xi)

1ê(Xi)≥bn − θ̂n,bn
)2

.

Step 1. Sample m � n observations from the original data without replacement, denoted

by (Y ?
i , D

?
i , X

?
i ), i = 1, 2, · · · ,m.

Step 2. Construct the trimmed IPW estimator and the bias correction term from the new

subsample, and the bias-corrected and self-normalized statistic as

T ?m,bm =
θ̂?bcm,bm

− θ̂bcn,bn
S?m,bm/

√
m

, S?m,bm =

√√√√ 1

m− 1

m∑
i=1

(
D?
i Y

?
i

ê?(X?
i )
1ê?(X?

i )≥bm − θ̂?m,bm

)2

.

Step 3. Repeat Step 1 and 2, and a (1− α)%-confidence interval can be constructed as[
θ̂bcn,bn − q1−α

2
(T ?m,bm)

Sn,bn√
n

, θ̂bcn,bn − qα2 (T ?m,bm)
Sn,bn√
n

]
,

where q(·)(T
?
m,bm

) denotes the quantile of the statistic T ?m,bm . ‖

Same as Theorem I.2, the validity of our inference procedure relies on establishing a
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limiting distribution for the self-normalized statistic, Tn,bn =
√
n(θ̂bcn,bn − θ0)/Sn,bn . This is

relatively easy if γ0 ≥ 2 or a heavy trimming is employed, in which case Tn,bn is asymptotically

Gaussian. With light or moderate trimming under γ0 < 2, the limiting distribution of Tn,bn

depends on the trimming threshold and is quite complicated. This technical by-product

generalizes Logan, Mallows, Rice and Shepp (1973).

Theorem I.6 (Validity of robust inference)

Under the assumptions of Theorem I.1 (or Proposition I.2 with estimated probability weights)

and Theorem I.5, and assume m→∞ and m/n→ 0. Then

sup
t∈R

∣∣∣P[Tn,bn ≤ t]− P?[T ?m,bm ≤ t]
∣∣∣ p→ 0. ‖

I.4 Extensions

In this section, we discuss two extensions of the current IPW framework. In the first exten-

sion, we consider treatment effect estimation under selection on observables. In the second

extension, we consider a general estimating equation where the parameter is defined by a

possibly nonlinear moment condition, not necessarily a population mean.

I.4.1 Treatment Effect Estimation

Given the prominent role of treatment effect estimands in program evaluation, we extend

the IPW framework along this direction. Let the binary indicator denote a treatment sta-

tus, D = 1 for the treatment group and 0 for the control group. The corresponding po-

tential outcomes are denoted by Y (1) and Y (0), respectively. The observed outcome is

Y = DY (1) + (1 − D)Y (0). Throughout this subsection, we maintain the selection on

observables assumption that, conditional on the covariates X, D and (Y (1), Y (0)) are in-

dependent. Following the convention in the literature, we use the terminology “propensity

score” rather than probability weight. We ignore the issue of using estimated propensity

scores for ease of exposition (see Section I.2.3 and I.3.2 for discussions).

Treatment Effect on the Treated (ATT)

We first consider the treatment effect on the treated estimand: τ ATT0 = E[Y (1)−Y (0)|D = 1].

Both Assumption I.1 and I.2 can be modified in a straightforward way.

Assumption I.5 (ATT)

(i) For some γ0 > 1, the propensity score has a regularly varying tail with index γ0 − 1 at
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one:

lim
t↓0

P[1− e(X) ≤ tx]

P[1− e(X) ≤ t]
= xγ0−1, for all x > 0.

(ii) For some ε > 0, E
[
|Y (0) +Y (1)|(γ0∨2)+ε

∣∣e(X) = x
]

is uniformly bounded. There exists a

probability distribution F(0), such that for all bounded and continuous `(·), E[`(Y (0))|e(X) =

x]→
∫
R `(y)F(0)(dy) as x ↑ 1. ‖

Assumption I.5(i) suffices for identification, as it implies P[e(X) = 1] = 0. Using inverse

probability weighting, a natural estimator of τ ATT0 is

τ̂ ATTn =
1

n1

n∑
i=1

[
DiYi −

e(Xi)

1− e(Xi)
(1−Di)Yi

]
=

1

n

n∑
i=1

(Di − e(Xi))Yi

P̂[D = 1](1− e(Xi))
,

where n1 =
∑n

i=1Di is size of the treated group, and P̂[D = 1] = n1/n. It should be

clear that propensity scores that are close to 1 will pose a challenge to both estimation and

inference. The following proposition characterizes the large sample properties of τ̂ ATTn .

Proposition I.3 (Large sample properties of the ATT estimator)

Assume Assumption I.5 holds with α(0),+(0) + α(0),−(0) > 0, where

α(0),+(x) = lim
t→1

E

[
|Y (0)|γ01Y (0)>x

∣∣∣e(X) = t
]
, α(0),−(x) = lim

t→1
E

[
|Y (0)|γ01Y (0)<x

∣∣∣e(X) = t
]
.

Let an be defined from

n

a2
n

E

[∣∣∣∣ (D − e(X))Y

P[D = 0](1− e(X))
− τ ATT0

∣∣∣∣2 1| (D−e(X))Y
P[D=0](1−e(X)) |≤an

]
→ 1.

Then n
an

(τ̂ ATTn − τ ATT0 ) converges in distribution, with the limit being:

(i) the standard Gaussian distribution if γ0 ≥ 2; and

(ii) the Lévy stable distribution if γ0 < 2, with characteristic function:

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α(0),+(0) + α(0),−(0)
|x|1−γ0

(
α(0),+(0)1x<0 + α(0),−(0)1x≥0

)]
. ‖

Proposition I.3 and Theorem I.1 share common features. The limiting distribution can

be Gaussian or non-Gaussian, depending on the tail behavior of the propensity score near

26



1. In the latter case, the limiting distribution is smooth, heavy-tailed but not necessarily

symmetric (and usually does not have a closed-form distribution or density function).

We also consider the trimmed ATT estimator, which takes the following form

τ̂ ATTn,bn =
1

n1

n∑
i=1

[
DiYi −

e(Xi)

1− e(Xi)
(1−Di)Yi11−e(Xi)≥bn

]
=

1

n

n∑
i=1

(Di − e(Xi))Yi

P̂[D = 1](1− e(Xi))
11−e(Xi)≥(1−Di)bn .

That is, observations from the control group with propensity scores above 1−bn are discarded.

It can be shown that the trimming bias is

Bn,bn =
1

P[D = 1]
E

[
e(X)E[Y (0)|e(X)]1e(X)≥1−bn

]
.

To implement bias correction, one first regresses the outcome variable on a p-th polynomial

of the propensity score, using only observations from the control group:

[
β̂0, β̂1, · · · , β̂p

]′
= argmin

β0,β1,··· ,βp

n∑
i=1

(1−Di)
[
Yi −

p∑
j=0

βje(Xi)
j
]2

1e(Xi)≥1−hn .

Then the bias is estimated by

B̂n,bn =
1

n1

n∑
i=1

p∑
j=0

β̂je(Xi)
j+11e(Xi)≥1−bn .

Next we discuss the large sample properties of the trimmed ATT estimator, for which

we focus on the γ0 < 2 case.

Proposition I.4 (Large sample properties of the trimmed ATT estimator)

Assume Assumption I.5 holds with γ0 < 2 and α(0),+(0) + α(0),−(0) > 0. Further, let an be

defined as in Proposition I.3.

(i) For bnan → 0, let an,bn = an, then n
an,bn

(τ̂ ATTn,bn
− τ ATT0 − Bn,bn) converges to the Lévy stable

distribution in Proposition I.3(ii).

(ii) For bnan → ∞, let an,bn =
√
nV[ (D−e(X))Y

P[D=1](1−e(X))
11−e(X)≥(1−D)bn ], then n

an,bn
(τ̂ ATTn,bn

− τ ATT0 −
Bn,bn) converges to the standard Gaussian distribution.

(iii) For bnan → t ∈ (0,∞), let an,bn = an, then n
an,bn

(τ̂ ATTn,bn
− τ ATT0 − Bn,bn) converges to an
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infinitely divisible distribution with characteristic function:

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α(0),+(0) + α(0),−(0)
|x|1−γ0

(
α(0),+(−tx)1x<0 + α(0),−(−tx)1x≥0

)]
. ‖

Average Treatment Effect (ATE)

The average treatment effect, τ ATE0 = E[Y (1)− Y (0)], is another commonly employed treat-

ment effect estimand. Because both small and large propensity scores can lead to “small

denominators,” Assumptions I.1 and I.2 have to be properly modified. To be specific, we

require

Assumption I.1 (ATE)

(i) For some γ0 > 1 and ω ∈ [0, 1],

lim
t↓0

P[e(X) ≤ t]

P[e(X) ≤ t] + P[1− e(X) ≤ t]
= ω,

and lim
t↓0

P[e(X) ≤ tx] + P[1− e(X) ≤ tx]

P[e(X) ≤ t] + P[1− e(X) ≤ t]
= xγ0−1, for all x > 0.

(ii) For some ε > 0, E[|Y (1) + Y (0)|(γ0∨2)+ε|e(X) = x] is uniformly bounded. Further, there

exist probability distributions, F(1) and F(0), such that for all bounded and continuous `(·),

E[`(Y (1))|e(X) = x] →
∫
`(y)F(1)(dy) and E[`(Y (0))|e(X) = 1 − x] →

∫
`(y)F(0)(dy) as

x ↓ 0. ‖

Note that in part (i), we do not require the two tails of the propensity score having the

same index, since it is possible to have ω = 0 or 1. Asymptotically, the heavier tail “wins.”

Part (i) also implies P[e(X) = 0] = P[e(X) = 1] = 0, meaning that the ATE is identified.

Part (ii) takes into account that both potential outcomes can affect the tail behavior of the

estimator. The following is a natural estimator of ATE using inverse probability weighting:

τ̂ ATEn =
1

n

n∑
i=1

[
DiYi
e(Xi)

− (1−Di)Yi
1− e(Xi)

]
=

1

n

n∑
i=1

(2Di − 1)Yi
1−Di + (2Di − 1)e(Xi)

.

Assumption I.1 suffices to characterize the tail of (2D−1)Y
(1−D+(2D−1)e(X))

. For future reference,

let

α(1),+(x) = lim
t→0

E

[
|Y (1)|γ01Y (1)>x

∣∣∣e(X) = t
]
, α(1),−(x) = lim

t→0
E

[
|Y (1)|γ01Y (1)<x

∣∣∣e(X) = t
]
,
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and re-define α+(x) and α−(x) as

α+(x) = ωα(1),+(x) + (1− ω)α(0),−(−x), α−(x) = ωα(1),−(x) + (1− ω)α(0),+(−x).

The following proposition summarizes the large sample properties of the ATE estimator.

Proposition I.5 (Large sample properties of the ATE estimator)

Assume Assumption I.1 holds with α+(0) + α−(0) > 0. Let an be defined from

n

a2
n

E

[∣∣∣∣ (2D − 1)Y

1−D + (2D − 1)e(X)
− θ0

∣∣∣∣2 1| (2D−1)Y
1−D+(2D−1)e(X) |≤an

]
→ 1.

Then n
an

(τ̂ ATEn − τ ATE0 ) converges in distribution, with the limit being:

(i) the standard Gaussian distribution if γ0 ≥ 2; and

(ii) the Lévy stable distribution if γ0 < 2, with characteristic function:

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
. ‖

For ATE estimation, trimming can lead to further complications beyond affecting the

limiting distribution and introducing a bias: different trimming thresholds can be applied to

the treatment and control groups. For the treatment group (D = 1), it is natural to discard

observations with small propensity scores, while for the control group (D = 0) observations

with large propensity scores will be dropped. To see how having two trimming thresholds

can complicate the asymptotic analysis, assume ω = 1 so that the propensity score has a

heavier left tail, and Proposition I.5 essentially reduces to Theorem I.1. When different

trimming thresholds are applied to small and large propensity scores in the treatment and

control groups, however, the relative magnitude of the two tails can be overturned. To

see this, consider the extreme scenario where fixed trimming is applied to the treatment

group but no trimming (or light trimming) for the control group. Then the trimmed ATE

estimator will be greatly influenced by the relatively heavier right tail of the propensity

score (i.e., “small denominators” in the D = 0 subsample). To avoid cumbersome notation

and lengthy discussions on each possible scenarios, we instead focus on a concrete trimming

strategy, which illuminates how trimming affects the IPW-based ATE estimator, yet does

not complicate the analysis too much. We consider the following trimmed ATE estimator:
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τ̂ ATEn,bn =
1

n

n∑
i=1

[
DiYi
e(Xi)

1e(Xi)≥bn −
(1−Di)Yi
1− e(Xi)

1e(Xi)≤1−bn

]
=

1

n

n∑
i=1

(2Di − 1)Yi
1−Di + (2Di − 1)e(Xi)

11−Di+(2Di−1)e(Xi)≥bn . (I.6)

The above trimming strategy can be understood as “discarding observations with small

denominators.” It is different, however, from “discarding observations with small or large

propensity scores,” since an observation in the control group is never trimmed because of a

small propensity score, and vice versa, an observation in the treatment group is not trimmed

even if it has a large propensity score.

The “symmetric trimming” in (I.6) is easy to analyze and implement, but employing

different trimming thresholds is also justified in practice. As discussed, trimming introduces

a bias which is generally non-negligible. For estimating the ATE, however, it is possible to

achieve “small bias” by choosing the two trimming thresholds appropriately. To see this,

the trimming bias in (I.6) is Bn,bn = E[E[Y (0)|e(X)]1e(X)≥1−bn − E[Y (1)|e(X)]1e(X)≤bn ] ≈
E[Y (0)|e(X) = 1]P[e(X) ≥ 1 − bn] − E[Y (1)|e(X) = 0]P[e(X) ≤ bn]. Assuming that the

propensity score has similar tails at the two ends and that the two conditional expectations

have the same sign and magnitude, then it is possible to use different trimming thresholds

so that the two components in the bias formula cancel each other. However, this strategy is

not always feasible, especially when the two tails behave very differently.

Proposition I.6 (Large sample properties of the trimmed ATE estimator)

Assume Assumption I.1 holds with γ0 < 2 and α+(0) +α−(0) > 0. Further, let an be defined

as in Proposition I.5.

(i) For bnan → 0, let an,bn = an, then n
an,bn

(τ̂ ATEn,bn
− τ ATE0 − Bn,bn) converges to the Lévy stable

distribution in Proposition I.5(ii).

(ii) For bnan → ∞, let an,bn =
√
nV[ (2D−1)Y

(1−D+(2D−1)e(X))
11−D+(2D−1)e(X)≥bn ], then n

an,bn
(τ̂ ATEn,bn

−
τ ATE0 − Bn,bn) converges to the standard Gaussian distribution.

(iii) For bnan → t ∈ (0,∞), let an,bn = an, then n
an,bn

(τ̂ ATEn,bn
− τ ATE0 − Bn,bn) converges to an

infinitely divisible distribution with characteristic function:

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
. ‖

Bias correction can be implemented according to Algorithm I.2 with a straightforward
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modification: one first runs two local polynomial regressions, one for the treatment group

and the other for the control group:

[
β̂l

0 , β̂
l
1 , · · · , β̂l

p

]′
= argmin

β0,β1,··· ,βp

n∑
i=1

Di

[
Yi −

p∑
j=0

βje(Xi)
j
]2

1e(Xi)≤hn

[
β̂r

0 , β̂
r
1 , · · · , β̂r

p

]′
= argmin

β0,β1,··· ,βp

n∑
i=1

(1−Di)
[
Yi −

p∑
j=0

βje(Xi)
j
]2

1e(Xi)≥1−hn .

Then the bias is estimated by

B̂n,bn =
1

n

n∑
i=1

p∑
j=0

(
β̂r
j1e(Xi)≥1−bn − β̂l

j1e(Xi)≤bn

)
e(Xi)

j.

We assume the same bandwidth hn is used for the two local polynomial regressions for

simplicity, although in practice different bandwidths can be employed.

I.4.2 General Estimating Equation

We employ the same notation used in Section I.1. Instead of focusing on a population mean,

the parameter θ0 is defined by a possibly nonlinear moment condition E[µ1(e(X), θ0)] = 0,

where µ1(e(X), θ) = E[g(Y,X, θ)|e(X), D = 1] and g is a known function. Alternatively, we

have E[Dg(Yi, Xi, θ0)/e(X)] = 0. For ease of exposition, we assume that both the parameter

and the moment condition are univariate. To estimate θ0, one can solve the following sample

analogue:

0 =
1

n

n∑
i=1

Dig(Yi, Xi, θ̂n)

e(Xi)
.

Consistency of θ̂n can be established with a uniform law of large numbers (see, for

example, Newey and McFadden 1994). Given that θ̂n is consistent, it is possible to employ

a Taylor expansion provided that g(·) is continuously differentiable in θ, and under mild

regularity conditions one can show

n

an
(θ̂n − θ0) =

Σ0

an

n∑
i=1

Dig(Yi, Xi, θ0)

e(Xi)
+ op(1), Σ0 =

(
−E
[
∂

∂θ
µ1(e(X), θ0)

])−1

, (I.7)

where n/an is a normalizing sequence which we specify in Proposition I.7. Once the estimator

has been linearized as above, we can prove a result similar to Theorem I.1. To economize

notation, define the random variables Gi(θ) = g(Yi, Xi, θ) and Gi = Gi(θ0). We make the
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following assumption.

Assumption I.1 (GEE)

(i) θ0 is the unique root of E[µ1(e(X), θ)] = 0 in the interior of a compact parameter space Θ.

(ii) g(Y,X, θ) is continuously differentiable in θ, and E[supθ∈Θ |g(Yi, Xi, θ)|∨| ∂∂θg(Yi, Xi, θ)|] <
∞.

(iii) For some ε > 0, E[|G|(γ0∨2)+ε|e(X) = x,D = 1] is uniformly bounded. There ex-

ists a probability distribution F , such that for any bounded and continuous function `,

E[`(G)|e(X) = x,D = 1]→
∫
R `(y)F (dy) as x ↓ 0. ‖

The following proposition characterizes the large-sample properties of the (IPW-based)

GEE estimator θ̂n.

Proposition I.7 (Large sample properties of the GEE estimator)

Assume Assumptions I.1 and I.1 hold with αG,+(0) + αG,−(0) > 0, where

αG,+(x) = lim
t→0

E

[
|G|γ01G>x

∣∣∣e(X) = t,D = 1
]
, αG,−(x) = lim

t→0
E

[
|G|γ01G<x

∣∣∣e(X) = t,D = 1
]
.

Let an be such that

n

a2
n

E

[∣∣∣∣ DGe(X)

∣∣∣∣2 1|DG/e(X)|≤an

]
→ 1.

Then n
an

(θ̂n − θ0) converges in distribution, with the limit being:

(i) N (0,Σ2
0) if γ0 ≥ 2; and

(ii) the Lévy stable distribution if γ0 < 2, with characteristic function:

ψ(ζ) = exp

{∫
R

eiΣ0ζx − 1− iΣ0ζx

x2
M(dx)

}
,

where M(dx) = dx

[
2− γ0

αG,+(0) + αG,−(0)
|x|1−γ0

(
αG,+(0)1x≥0 + αG,−(0)1x<0

)]
. ‖

Trimming can be implemented in an obvious way:

0 =
1

n

n∑
i=1

Dig(Yi, Xi, θ̂n,bn)

e(Xi)
1e(Xi)≥bn .

As long as the trimming threshold bn shrinks to zero as the sample size increases, the trimmed

estimator θ̂n,bn will be consistent for θ0. Assuming this is the case, we can again employ a
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Taylor expansion and linearize the estimator:

n

an,bn
(θ̂n,bn − θ0 − Σ0Bn,bn) =

Σ0

an,bn

n∑
i=1

[
DiGi

e(Xi)
1e(Xi)≥bn − Bn,bn

]
+ op(1),

where Bn,bn = −E[µ1(e(X), θ0)1e(X)≤bn ]. (I.8)

The bias term we recover only represents the leading bias in an asymptotic linear expansion,

with higher order bias absorbed into the op(1) term. The bias arises because after trimming

the estimating equation may not have a zero mean in finite samples. Assuming µ1(·) is con-

tinuous in its first argument, the bias can be further simplified as Bn,bn = −µ1(0, θ0)P[e(X) ≤
bn], which gives its precise order. From this, one can immediately see that if µ1(x, θ0) = 0 for

all x small enough, trimming does not induce any bias, and at the same time can improve

the performance of the IPW estimator. Such “small bias” scenario, however, is difficult to

justify in practice because it requires that the information provided by observations with

small probability weights does not feature in the estimating equation.

Proposition I.8 (Large sample properties of the trimmed GEE estimator)

Assume Assumptions I.1 and I.1 hold with γ0 < 2 and αG,+(0) + αG,−(0) > 0. Let an be

defined as in Proposition I.7.

(i) For bnan → 0, let an,bn = an, then n
an,bn

(θ̂n,bn − θ0−Σ0Bn,bn) converges to the Lévy stable

distribution in Proposition I.7(ii).

(ii) For bnan → ∞, let an,bn =
√
nV[DG/e(X)1e(X)≥bn ], then n

an,bn
(θ̂n,bn − θ0 − Σ0Bn,bn)

converges to the Gaussian distribution N (0,Σ2
0).

(iii) For bnan → t ∈ (0,∞), let an,bn = an. Then n
an,bn

(θ̂n,bn − θ0 − Σ0Bn,bn) converges to an

infinitely divisible distribution, with characteristic function:

ψ(ζ) = exp

{∫
R

eiΣ0ζx − 1− iΣ0ζx

x2
M(dx)

}
,

where M(dx) = dx

[
2− γ0

αG,+(0) + αG,−(0)
|x|1−γ0

(
αG,+(tx)1x≥0 + αG,−(tx)1x<0

)]
. ‖

Both Proposition I.7 and I.8 can be further generalized to a vector-valued parameter.

As long as the moment condition permits identification (and consistent estimation), one can

employ the Cramér-Wold device to characterize the limiting distribution.

Selecting the trimming threshold is more complicated, since now the conditional first

and second moment cannot be estimated directly. It is possible to employ a three-step

procedure. In the first step, one constructs a pilot point estimate. Next, one can estimate

the conditional moments applying local polynomial regression, with either Gi(θ̂n) or Gi(θ̂n,bn)
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as the dependent variable. In the final step, the trimming threshold is chosen by plugging

the second-step estimated conditional moments into the procedure of Theorem I.4.

As a final remark, bias correction is still feasible in this setting by exploiting the asymp-

totic linear representation in (I.8). To form the bias estimate, one can employ the local

polynomial regression technique and regress Gi(θ̂n,bn) on the probability weights to form

an estimate of the bias Bn,bn (Algorithm I.2). Then a bias estimate can be constructed as

Σ̂nBn,bn , where Σ̂n estimates Σ0 as by sample average.

I.5 Numerical Evidence

This section studies the performance of our inference procedure with a Monte Carlo ex-

periment. Due to the possibly non-Gaussian limiting distributions and the trimming bias

documented in Section I.2 and I.3, conventional confidence intervals can exhibit severe under-

coverage. (Alternatively, conventional t-tests over-reject the null hypothesis.) On the other

hand, our procedure is robust to small probability weights and remains valid for a wide range

of trimming threshold choices. Indeed, the robust confidence interval (Algorithm I.1 and I.3)

has an empirical coverage very close to the nominal level. We also showcase our method with

a dataset from the National Supported Work program.

I.5.1 Simulation Study

The probability weight is distributed according to P[e(X) ≤ x] = xγ0−1 with γ0 = 1.5. A

typical realization is given in Figure I.1, which resembles the distribution of the estimated

probability weights in our empirical application (Figure I.3(a)). With γ0 = 1.5, the conver-

gence rate of the IPW estimator is n1/3. Conditional on the weight and D = 1, the outcome

variable is generated as µ1(e(X)) + η, where the mean equation is either cos(2πe(X)) or

1− e(X), and the error η follows a chi-square distribution with four degrees of freedom, cen-

tered and scaled to have a zero mean and unit variance. The first specification represents the

empirical difficulty of “small denominators” combined with unrestricted conditional mean

heterogeneity of the outcome variable, as the conditional mean function is nonlinear in the

probability weight. A typical realization of the outcome variable is given in Figure I.2. In the

second specification, the leading bias remains the same, but the conditional mean function is

linear in the probability weight. Our bias correction technique is therefore expected to per-

form well. Throughout, we use 5,000 Monte Carlo repetitions, and for each repetition, 1,000

subsampling iterations are used with subsample size m = bn/ log(n)c, and the full sample

size is n ∈ {2, 000, 5, 000, 10, 000}. We follow Theorem I.4 to set the trimming threshold,
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by solving b̂snP̂[e(Xi) ≤ b̂n] = (2n)−1 with s ∈ {1, 1.5, 2, 3}. For s = 1, the trimming

threshold is rate optimal (in terms of the leading mean squared error) and corresponds to

moderate trimming. The other cases fall into the heavy trimming category. Bias correction

is based on Algorithm I.2, for which we employ a local linear regression.

The simulation results are collected in Table I.1 and I.2. Under “Conventional” we

report bias, standard deviation and root mean squared error of the IPW estimator, both

untrimmed (θ̂n) and trimmed (θ̂n,bn). Note that they have been scaled by n1−1/γ0 = n1/3.

We also report empirical coverage of the conventional Gaussian-based confidence interval

under “cov,” [θ̂n±1.96 ·Sn/
√
n] using the untrimmed estimator, and [θ̂n,bn±1.96 ·Sn,bn/

√
n]

using the trimmed estimator. (Sn and Sn,bn are defined in Algorithm I.1 and I.3.) Average

confidence interval length is reported under “|ci|,” scaled by n1−1/γ0 = n1/3. Under “Robust”

we report bias, standard deviation and root mean squared error of the trimmed and bias-

corrected IPW estimator, θ̂bcn,bn (Algorithm I.2). Under “cov” we report empirical coverage

of the subsampling-based confidence interval, using either the untrimmed IPW estimator

(Algorithm I.1) or the trimmed and bias-corrected estimator (Algorithm I.3). Also reported

is the average length of the subsampling-based confidence interval under “|ci|.” In the

following, we highlight several observations from Table I.1.

First, inference based on the Gaussian approximation performs poorly, as predicted by

our theoretical results. Without trimming, the limiting distribution of the IPW estima-

tor is heavy-tailed (Theorem I.1), and hence using critical values computed from Gaussian

quantiles leads to confidence intervals that are overly optimistic/narrow. Although heavy

trimming can help restore asymptotic Gaussianity (Theorem I.3(ii)), it is unclear how well

distributional approximation based on this result performs in samples of moderate size (The-

orem I.3(iii)). In addition, trimming introduces a bias that can significantly shift the limiting

distribution away from the target parameter (Theorem I.3 and Lemma I.3). Indeed, in a

sample of size 2, 000, using 0.1 as the trimming threshold will lead to a bias that is so severe

that a nominal 95% confidence interval will have practically zero coverage. This shows why

it is important to combine bias correction with a disciplined method to choose the trim-

ming threshold, and how ad hoc trimming can be detrimental for statistical inference: the

researcher essentially changes the target estimand.

Second, it is not surprising that employing a larger trimming threshold can help stabilize

the estimator, leading to a smaller empirical standard deviation. However, the mean squared

error increases due to the trimming bias. Indeed, by comparing the scaled bias across the

three panels in Table I.1, it is clear that the bias is explosive when heavy trimming is used.

Third, despite the fact that the conditional mean function is highly nonlinear, our bias

correction procedure successfully removes most of the bias, making the subsampling-based
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confidence interval having an empirical coverage very close to the 95% nominal level. The

performance of our inference procedure is quite robust across a range of trimming threshold

choices. For the very heavy trimming case, under-coverage remains to be an issue even with

bias correction, because it is quite difficult to estimate a nonlinear function local to a point

where observations are scarce. In addition, bias correction may introduce extra variability

in samples of moderate size. This is again confirmed by our simulation results, and is why

we recommend to conduct bias correction not only for the main estimator, but also in each

subsampling iteration.

Now we consider how the form of the conditional mean function affects the performance

of our procedure. In Table I.2, the conditional mean is a linear function of the probability

weight. If this is known a priori, a better estimation strategy is to fit a global linear regres-

sion and extrapolate to observations with small probability weights. Such regression-based

estimator will converge at the
√
n-rate and be asymptotically Gaussian. In practice, how-

ever, the shape of the conditional mean function is rarely known, so the setting in Table

I.2 is best understood as a favorable situation in which our bias correction and inference

procedure are expected to perform well. Indeed, the remaining bias is almost zero, and the

subsampling-based confidence interval has an empirical coverage very close to the nominal

95% level.

I.5.2 Empirical Application

In this section, we revisit a dataset from the National Supported Work (NSW) program. Our

aim is neither to give a thorough evaluation of the program nor to discuss to what extent

experimental estimates can be recovered by non-experimental methods. Rather, we use it to

illustrate how small probability weights may affect the performance of the IPW estimator,

and to showcase our robust inference procedure.

The NSW is a labor training program implemented in 1970’s by providing work expe-

rience, from 6 to 18 months, to individuals who face social or economic difficulties. It has

been analyzed in multiple studies and along different directions since LaLonde (1986). We

use the same dataset employed in Dehejia and Wahba (1999), and refer interested readers to

the original work for detailed discussion on institutional background, variable definition, and

sample inclusion. Briefly, our sample consists of the treated individuals in the NSW exper-

imental group (sample size 185), and a nonexperimental comparison group from the Panel

Study of Income Dynamics (PSID, sample size 1, 157). Besides the binary treatment indica-

tor (D = 1 for NSW treated units and 0 for PSID comparison units) and the main outcome

variable (Y ) of post-intervention earning measured in 1978, information on age, education,
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Table I.1. Simulation: γ0 = 1.5, E[Y |e(X), D = 1] = cos(2πe(X)).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.377)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|

− −. 0.131 3.773 3.776 0.775 7.308 0.844 21.235

0.004 0.170 0.800 1.493 1.694 0.740 5.116 0.238 1.565 1.583 0.924 7.387

0.016 1.338 1.576 0.979 1.855 0.541 3.713 0.465 1.169 1.258 0.926 5.757

0.036 4.606 2.373 0.741 2.486 0.158 2.849 0.628 1.064 1.236 0.913 4.973

0.094 19.225 3.718 0.503 3.752 0.000 1.956 0.711 0.999 1.226 0.906 4.219

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.319)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|

− − 0.025 5.681 5.681 0.786 7.948 0.869 37.240

0.002 0.173 0.764 1.546 1.724 0.755 5.336 0.259 1.592 1.613 0.928 7.196

0.010 1.689 1.697 0.966 1.953 0.514 3.717 0.485 1.103 1.205 0.916 5.233

0.025 6.653 2.692 0.714 2.785 0.077 2.805 0.696 0.961 1.187 0.891 4.457

0.072 32.182 4.484 0.478 4.510 0.000 1.885 0.883 0.894 1.257 0.846 3.780

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.281)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|

− − 0.053 7.909 7.909 0.787 7.761 0.862 59.629

0.001 0.168 0.781 1.575 1.758 0.757 5.404 0.213 1.609 1.623 0.922 6.944

0.007 1.994 1.812 0.975 2.058 0.477 3.698 0.441 1.086 1.172 0.910 4.870

0.019 8.752 2.971 0.708 3.054 0.037 2.756 0.668 0.916 1.134 0.877 4.097

0.059 47.837 5.175 0.466 5.196 0.000 1.824 0.895 0.831 1.221 0.817 3.490

Note. (i) b̂n: trimming threshold. (ii) n≤b̂n : effective number of trimmed observations. (iii) bias: empirical

bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root
mean squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95). (vii) |ci|:
average confidence interval length, scaled by n1−1/γ0 . Conventional: bias, sd and rmse are calculated for
both the untrimmed (θ̂n) and the trimmed (θ̂n,bn) IPW estimators. Coverage is calculated for the

Gaussian-based confidence interval, [θ̂n ± 1.96 · Sn/
√
n] without trimming, and [θ̂n,bn ± 1.96 · Sn,bn/

√
n]

with trimming. Robust: bias, sd and rmse are calculated for the trimmed and bias-corrected IPW
estimator (θ̂bcn,bn , Algorithm I.2). Coverage is calculated for the subsampling-based confidence interval,
using either the untrimmed (Algorithm I.1) or the trimmed and bias-corrected (Algorithm I.3) IPW

estimator. ĥn: bandwidth for local polynomial bias correction. Number of Monte Carlo repetitions: 5000.
Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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Table I.2. Simulation: γ0 = 1.5, E[Y |e(X), D = 1] = 1− e(X).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.377)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|

− − 0.132 3.771 3.773 0.774 7.295 0.864 22.017

0.004 0.170 0.800 1.490 1.691 0.742 5.105 0.012 1.569 1.569 0.939 7.755

0.016 1.338 1.569 0.977 1.849 0.543 3.716 0.003 1.172 1.172 0.957 6.029

0.036 4.606 2.357 0.747 2.472 0.165 2.875 0.001 1.063 1.063 0.964 5.228

0.094 19.225 3.730 0.510 3.764 0.000 2.005 0.017 0.984 0.984 0.967 4.530

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.319)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|

− − 0.025 5.678 5.678 0.784 7.933 0.873 37.233

0.002 0.173 0.763 1.549 1.726 0.754 5.323 0.031 1.600 1.601 0.935 7.334

0.010 1.689 1.692 0.967 1.949 0.514 3.712 0.015 1.112 1.112 0.956 5.346

0.025 6.653 2.676 0.719 2.771 0.081 2.817 0.015 0.967 0.967 0.963 4.559

0.072 32.182 4.467 0.491 4.494 0.000 1.927 0.019 0.890 0.890 0.964 3.958

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.281)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|

− − 0.045 7.909 7.909 0.790 7.747 0.863 59.692

0.001 0.168 0.773 1.571 1.751 0.760 5.391 0.019 1.609 1.609 0.928 7.017

0.007 1.994 1.801 0.973 2.047 0.477 3.689 0.005 1.092 1.092 0.952 4.943

0.019 8.752 2.949 0.710 3.033 0.040 2.760 0.003 0.923 0.923 0.958 4.152

0.059 47.837 5.136 0.474 5.158 0.000 1.856 0.006 0.829 0.829 0.964 3.588

Note. (i) b̂n: trimming threshold. (ii) n≤b̂n : effective number of trimmed observations. (iii) bias: empirical

bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root
mean squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95). (vii) |ci|:
average confidence interval length, scaled by n1−1/γ0 . Conventional: bias, sd and rmse are calculated for
both the untrimmed (θ̂n) and the trimmed (θ̂n,bn) IPW estimators. Coverage is calculated for the

Gaussian-based confidence interval, [θ̂n ± 1.96 · Sn/
√
n] without trimming, and [θ̂n,bn ± 1.96 · Sn,bn/

√
n]

with trimming. Robust: bias, sd and rmse are calculated for the trimmed and bias-corrected IPW
estimator (θ̂bcn,bn , Algorithm I.2). Coverage is calculated for the subsampling-based confidence interval,
using either the untrimmed (Algorithm I.1) or the trimmed and bias-corrected (Algorithm I.3) IPW

estimator. ĥn: bandwidth for local polynomial bias correction. Number of Monte Carlo repetitions: 5000.
Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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marital status, ethnicity and earnings in 1974 and 1975 are also available as pre-intervention

individual characteristics (X). We follow the literature and focus on the treatment effect

on the treated (ATT), which requires weighting observations from the comparison group by

ê(X)/(1 − ê(X)). As a result, probability weights that are close to 1 can pose a challenge

to both estimation and inference.

The probability weight is estimated in a Logit model with age, education, earn1974,

earn1975, age2, education2, earn19742, earn19752, three indicators for married, black

and hispanic, and an interaction term between black and unemployment status in 1974:

black×u74. Figure I.3(a) plots the distribution of the estimated probability weights, which

clearly exhibits a heavy tail near 1. Since γ0 = 2 roughly corresponds to uniformly distributed

probability weights, the tail index in this dataset should be well below 2, suggesting that

standard inference procedures based on the Gaussian approximation may not perform well.

In Figure I.3(b), we plot the bias-corrected ATT estimates (solid triangles) and the

robust 95% confidence intervals (solid vertical lines) with different trimming thresholds.

For comparison, we also show conventional point estimates and confidence intervals (solid

dots and dashed vertical lines, based on the Gaussian approximation) using the same trim-

ming thresholds. Without trimming, the point estimate is $1, 451 with a confidence interval

[−1, 763, 2, 739]. The robust confidence interval is asymmetric around the point estimate, a

feature also predicted by our theory: probability weights that are close to 1 affect the esti-

mation of E[Y (0)|D = 1] and will subsequently contribute to a long left tail to the estimator,

because the outcome variable is nonnegative.

For the trimmed IPW estimator, the trimming thresholds are chosen following Theorem

I.4, and the region used for local polynomial bias estimation is [0.71, 1], corresponding to

a bandwidth hn = 0.29. Under the mean squared error optimal trimming, units in the

comparison group with probability weights above 0.96 (five observations) are discarded.

Compared to the untrimmed case, the robust confidence interval becomes more symmetric.

In this empirical example, a noteworthy feature of our method is that both the bias-

corrected point estimates and the robust confidence intervals remain quite stable for a range

of trimming threshold choices, and the point estimates are very close to the experimental

benchmark ($1, 794). This is in stark contrast to conventional confidence intervals that

rely on Gaussian approximation. First, conventional confidence intervals fail to adapt to

the non-Gaussian limiting distributions we documented in Theorem I.1 and I.3, and are

overly optimistic/narrow. Second, by ignoring the trimming bias, they are only valid for

a pseudo-true parameter implicitly defined by the trimming threshold. As a result, the

researcher changes the target estimand each time a different trimming threshold is used,

making conventional confidence intervals very sensitive to bn.
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Figure I.3. Empirical illustration: National Supported Work program.
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Note. Panel (a): histogram of the estimated probability weights (propensity scores). Panel (b): estimated
ATT for different trimming thresholds. Numbers below the horizontal axis show the trimming
threshold/region and the effective number of observations trimmed from the comparison group. The
experimental benchmark ($1, 794) is indicated by the solid horizontal line.
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I.6 Conclusion

We study the large-sample properties of the Inverse Probability Weighting (IPW) estimator.

We show that, in the presence of small probability weights, this estimator may have a

slower-than-
√
n convergence rate and a non-Gaussian limiting distribution. We also study

the effect of discarding observations with small probability weights, and show that such

trimming not only complicates the limiting distribution, but also causes a non-negligible

bias. As a consequence, inference based on the standard Gaussian approximation can be

highly unreliable when ad hoc trimming rules are used. We consider two extensions of our

basic framework, one for treatment effect estimands and the other for parameters defined by

a nonlinear estimating equation, and show that the aforementioned conclusions continue to

hold more generally.

We propose an inference procedure that is robust not only to small probability weights

entering the IPW estimator but also to a range of trimming threshold choices. The “two-

way robustness” is achieved by combining resampling with a novel local polynomial-based

bias-correction technique. We also propose a method to choose the trimming threshold by

minimizing an empirical analogue of the asymptotic mean squared error. Implementation of

our robust inference procedure and trimming threshold selector is straightforward. As the

probability weights are typically unknown in applications, we allow the probability weights

to be estimated in a first step. In particular, we show that the two workhorse models, Logit

and Probit, can be employed under mild regularity conditions.

More generally, our results shed light on the reliability of conventional inference pro-

cedures using inverse weighting type estimators. One important insight is that with “small

denominators,” conventional inference procedures can be unreliable regardless of whether

trimming is employed or not. It will be interesting to explore the possibility of estimating

the denominator in a first step, perhaps with a nonparametric method or a high-dimensional

model. The problem is considerably more challenging, because in both cases the estimated

denominator can be highly volatile and its tail behavior can deviate significantly from the

regular variation setting.

I.7 Additional Results and Preliminary Lemmas

For ease of reference, we collect some facts from Feller (1991) on regularly varying functions

and distributional convergence of sums of random variables. We also provide preliminary

lemmas for establishing the main results.
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I.7.1 Regular Variation

In this subsection, we take X and Y as some generic univariate random variables, not

necessarily the same as in the previous sections.

With finite second moments, weak convergence is not sensitive to delicate tail features.

This is captured by the central limit theorem. However, weak convergence of sums of random

variables without finite variance relies on additional tail properties. The appropriate notion

is regular variation.

Definition I.1

A random variable X has regularly varying tail at ∞ with index −γ < 0, if for all x > 0,

P[X > tx]/P[X > t]→ x−γ as t→∞. Similarly, X has regularly varying tail at −∞ if for

all x > 0, P[X < tx]/P[X < t]→ x−γ as t→ −∞.

Assume P[X > 0] = 1, then it has regularly varying tail at 0 with index γ if 1/X has

regularly varying tail at ∞ with index −γ. ‖

One special example of regular variation is “approximately polynomial tail”: Assume

P[X > x] = c(x)x−γ with γ > 0 and c(x) tending to a strictly positive constant, then X

has regularly varying tail at ∞ with index −γ. Following is a complete characterization of

regular variation.

Lemma I.4

Assume X has regularly varying tail at ∞ with index −γ, then for all x large enough,

P[X > x] = x−γc(x), with c(x) = L(x) exp

{∫ x

s

R(t)

t
dt

}
, (I.9)

where L(x) tends to a strictly positive constant, limx→∞R(x) = 0, and s is some strictly

positive constant. ‖

If X has a regularly varying right tail with index −γ, then it is clear that E[Xα1X>0]

exists and is finite for any α < γ. However, the expectation will be infinite for all α > γ. For

the purpose of studying distributional convergence of sums of heavy-tailed random variables,

a more thorough characterization of the truncated moment E[Xα10<X<x] is necessary.

Lemma I.5

Assume X has a regularly varying right tail at ∞ with index −γ, then for any α > γ,

E[Xα10<X<x]

xαP[X > x]
→ γ

α− γ
, as x→∞. ‖

42



In previous sections, we take X to be the inverse probability weight multiplied by the

binary indicator. However, the primary quantity of interest involves the outcome variable,

and it is unclear how multiplication affects the tail behavior. The following lemma gives

sufficient conditions under which the product XY has the same tail index as X. Despite

being intuitive, it doesn’t seem to be available in the literature.

Lemma I.6

Assume X is nonnegative and has a regularly varying tail with index −γ. Further assume

(i) E[|Y |α|X = x] is uniformly bounded for some α > γ, and (ii) there exists a distribution

F , such that for all bounded and continuous `(·), E[`(Y )|X = x]→
∫
`(y)F (dy) as x→∞.

Then

lim
x→∞

P[XY > x]

P[X > x]
= lim

x→∞
E[|Y |γ1Y >0|X = x],

lim
x→∞

P[XY < −x]

P[X > x]
= lim

x→∞
E[|Y |γ1Y <0|X = x].

Therefore the product XY has a regularly varying right (resp. left) tail with index −γ, if

limx→∞ P[Y > 0|X = x] > 0 (resp. limx→∞ P[Y < 0|X = x] > 0). ‖

The first condition that E[|Y |α|X = x] is uniformly bounded is intuitive. To ensure the

product that XY has the same tail behavior as X, one needs to assume that the tail of Y

is uniformly thin enough. In general, it is not possible to drop the second requirement that

Y |X = x converges in distribution, unless one is willing to impose additional structures on

the conditional distribution. Following is a example, which shows that when the conditional

distribution of Y “oscillates” as X tends to infinity, the product XY does not have a regularly

varying tail even when Y is bounded.

Example I.1 Assume Y = 1 for X ∈ (2j, 2j+1] for j = 1, 3, 5, · · · , and equals 0 otherwise,

then on the grid (2j)j≥1, XY has right tail:

P[XY > 2j] =
∞∑

k=j, k odd

FX(2k+1)− F (2k).

Now we take limit j →∞ along the sequence of odd numbers,

lim
j→∞, j odd

P[XY > 2j]

P[X > 2j]
= lim

j→∞, j odd

∞∑
k=j,k odd

FX(2k+1)− F (2k)

P[X > 2j]

=
(

1− 2−γ
) ∞∑
k=0

2−2kγ =
1− 2−γ

1− 2−2γ
.
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If we take the limit along the sequence of even numbers,

lim
j→∞, j even

P[XY > 2j]

P[X > 2j]
=
(

1− 2−γ
) ∞∑
k=1

2−2kγ = 2−2γ 1− 2−γ

1− 2−2γ
.

Since X has regularly varying tail and the ratio P[XY > x]/P[X > x] oscillates between

two numbers, we conclude XY does not have regularly varying tail. ‖

I.7.2 Distributional Convergence

Assume (Xi,n)1≤i≤n,n≥1 is a triangular array, such that for each n, (Xi,n)1≤i≤n are inde-

pendently and identically distributed. The following lemma characterizes the asymptotic

distribution of the sum
∑n

i=1Xi,n, if exists.

Lemma I.7

Assume E[Xi,n] = 0 for all n, and that the sum
∑n

i=1Xi,n converges in distribution. Then

the limiting distribution has a characteristic function given by the canonical form:

ψ(ζ) = exp

∫
R

eiζx − 1− iζx
x2

M(dx),

where M is a nonnegative measure satisfying (i) M(I) <∞ for all bounded intervals I, and

(ii) the integrals
∫∞
c
x−1M(dx) and

∫ −c
−∞ x

−1M(dx) are finite for all c > 0. ‖

The next lemma gives conditions under which the distributional convergence of the

partial sum,
∑n

i=1Xi,n, happens.

Lemma I.8

Assume E[Xi,n] = 0 for all n, and let Fn be the distribution function of Xi,n. Then the sum∑n
i=1 Xi,n converges in distribution if and only if, for some measure M ,

nE
[
X2
i,n1Xi,n∈I

]
→M(I)

for all compact intervals with M(∂I) = 0; and

n(1− Fn(c))→
∫ ∞
c

x−2M(dx), nFn(−c)→
∫ −c
−∞

x−2M(dx),

for all c > 0 with M({c}) = 0. In this case, the limiting distribution is infinitely divisible,

and its characteristic function is given by the form in Lemma I.7. ‖

44



To understand the previous lemma, assume Xi,n = Yi/
√
n with (Yi)i≥1 being iid and

V[Yi] = σ2. Then it is quite easy to show that M(I) = σ210∈I . That is, M is a point mass of

size σ2 at the origin. The integrand is −ζ2/2 at the origin by l’Hospital’s rule, meaning that

ψ(ζ) = e−ζ
2σ2/2, which is the characteristic function of the centered Gaussian distribution

with variance σ2. The situation becomes much more delicate if Xi,n does not have a finite

variance, and/or if it involves trimming that depends on the sample size. We will be using

this lemma repeatedly in order to derive the asymptotic distributions of the IPW and the

trimmed IPW estimators.

I.7.3 Local Polynomial Regression

Local polynomial regression is employed for estimating the trimming bias. To be more

specific, the outcome variable is regressed on the probability weight in a region local to the

origin. That is,

β̂ =
[
β̂0, β̂1, · · · , β̂p

]′
= argmin

β0,β1,··· ,βp

n∑
i=1

Di

[
Yi −

p∑
j=0

βje(Xi)
j
]2

1e(Xi)≤hn ,

where for ease of exposition we assume that the true probability weights are used. The

following lemma characterizes the properties of the local polynomial estimates.

Lemma I.9

Assume Assumption I.1 and I.2 hold. In addition, assume (i) µ1(·) is p+1 times continuously

differentiable; (ii) µ2(0)−µ1(0)2 > 0; and (iii) the bandwidth sequence satisfies nhnP[e(X) ≤
hn]→∞ and nh2p+3

n P[e(X) ≤ hn] = O(1). Let β =
[
µ1(0), µ

(1)
1 (0), · · · , 1

p!
µ

(p)
1 (0)

]′
and β̂ be

defined in the above, then

√
nhnP[e(X) ≤ hn]Hn

(
β̂ − β − hp+1

n H−1
n

µ
(p+1)
1 (0)

(p+ 1)!
S−1R

)
 N

(
0, (µ2(0)− µ1(0)2)S−1

)
,

where Hn = diagonal(1, hn, h
2
n, · · · , hpn), S = (sij)1≤i,j≤p with sij = (γ0 − 1)/(γ0 + i+ j − 2),

and R = (ri)1≤i≤p with ri = (γ0 − 1)/(γ0 + i+ p). ‖

I.8 Proof

I.8.1 Proof of Lemma I.4

See Theorem VIII.9.1 and the corresponding corollary in Feller (1991). �
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I.8.2 Proof of Lemma I.5

See Theorem VIII.9.2 in Feller (1991). �

I.8.3 Proof of Lemma I.6

We split the proof into three parts.

Part 1

We first assume X and Y are independent. For simplicity, we denote by FX and FY the

distribution functions of X and Y , and ε = α− γ > 0. Define a(y, x) be

a(y, x) =
1− FX(x/y)

1− FX(x)
.

Then from the definition of regular variation, one has limx→∞ a(x, y) = yγ for all y > 0.

Consider the following limit:

lim
x→∞

P[XY > x]

P[X > x]
= lim

x→∞

∫ ∞
0

a(y, x)FY (dy)

= lim
x→∞

∫ b(x)1/(γ+ε)

0

a(y, x)FY (dy)︸ ︷︷ ︸
(I)

+ lim
x→∞

∫ ∞
b(x)1/(γ+ε)

a(y, x)FY (dy)︸ ︷︷ ︸
(II)

,

where b(x) satisfies limx→∞ b(x)(1− FX(x)) =∞ and limx→∞ b(x)/xγ+ε = 0. We first show

that the second limit is zero:

(II) = lim
x→∞

∫ ∞
b(x)1/(γ+ε)

1− FX(x/y)

1− FX(x)
FY (dy) ≤ lim

x→∞

∫ ∞
b(x)1/(γ+ε)

1

1− FX(x)
FY (dy)

≤ lim
x→∞

∫ ∞
b(x)1/(γ+ε)

yγ+ε

(1− FX(x))b(x)
FY (dy)

≤ lim
x→∞

1

(1− FX(x))b(x)
E[|Y |γ+ε] = 0.

Now we consider (I), and show that for all x large enough, the integrand is bounded by an

integrable function (of y), hence dominated convergence can be applied. First, we note that

for y ∈ (0, 1), a(y, x) ≤ 1 for all x. Therefore we only need to consider y ∈ [1, b(x)1/(γ+ε)].
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Since y ≤ b(x)1/(γ+ε), we have

x

y
≥
(
xγ+ε

b(x)

) 1
γ+ε

,

which can be made arbitrarily large for all x large enough. Also note that

a(y, x) = yγ
L(x/y)

L(x)
exp

{∫ x/y

x

R(t)

t
dt

}
,

where the ratio |L(x/y)/L(x)| is bounded by a constant for all x large enough, uniformly in

y. Similarly, |R(t)| can be chosen to be arbitrarily small, which means the exponential term

is bounded by yε. Hence, for y ∈ [1, b(x)1/(γ+ε)],

a(y, x) ≤ Cyγ+ε,

which is integrable with respect to the distribution FY . Applying the dominated convergence,

one concludes that

lim
x→∞

P[XY > x]

P[X > x]
=

∫ ∞
0

yγFY (dy) = E[Y γ1Y >0],

so that the product XY also has regularly varying tail with index γ, provided that P[Y >

0] > 0. Similar argument can be applied to analyze the left tail of XY .

Part 2

Now we drop the independence assumption, and assume instead that Y is bounded by a

constant C. For simplicity, we use F to denote the limit of the conditional distribution

FY |X=x as x→∞. Same as before, ε = α− γ > 0. First,

P[XY > x]

P[X > x]
=

∫ ∞
0

P[Y > x/y|X = y]

P[X > x]
FX(dy) =

∫ ∞
x/C

P[Y > x/y|X = y]

P[X > x]
FX(dy).

Further, let U ⊥⊥ (X, Y ) be distributed according to F . Since the conditional distribution

Y |X = x converges weakly to that of U as x→∞, one has for all x large enough,∣∣∣P[Y > x|X = y]− P[U > x]
∣∣∣ ≤ η + 1x∈A(y),
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where η > 0 is arbitrary, and for fixed η, the set A(x) takes the form

A(y) =
J⋃
j=1

(
aj − δ(y), aj + δ(y)

)
,

with δ(y) monotonically decreases to zero as y →∞. Then we have∫ ∞
x/C

∣∣∣∣P[Y > x/y|X = y]− P[U > x/y]

P[X > x]

∣∣∣∣FX(dy)

≤ η
P[X > x/C]

P[X > x]
+

∑
1≤j≤J : 0≤aj≤C

FX(x/(aj − δ(x/c)))− FX(x/(aj + δ(x/c)))

P[X > x]
,

where the right-hand-side has limit ηCγ. Since η is arbitrary, the left-hand-side tends to

zero as x→∞. As a result, we have

lim
x→∞

P[XY > x]

P[X > x]
= lim

x→∞

∫ ∞
x/C

P[U > x/y]

P[X > x]
FX(dy) = lim

x→∞

P[XU > x]

P[X > x]
.

Since we have U ⊥⊥ X, Part 1 of this proof can be applied to obtain the desired result.

Part 3

Now we drop the boundedness condition on Y . For this purpose, we only need to show that

the following ∫ x/C

0

P[Y > x/y|X = y]

P[X > x]
FX(dy),

∫ x/C

0

P[U > x/y]

P[X > x]
FX(dy),

can be made arbitrarily small by choosing C large enough. We only show for the first term.

By Markov’s inequality and the assumption that E[|Y |γ+ε|X = x] is uniformly bounded, we

have∫ x/C

0

P[Y > x/y|X = y]

P[X > x]
FX(dy) ≤

(
sup
x
E[|Y |γ+ε|X = x]

)∫ x/C

0

yγ+ε

xγ+εP[X > x]
FX(dy)

→
(

sup
x
E[|Y |γ+ε|X = x]

)
C−ε

γ

ε
,

where the last convergence follows from Lemma I.5. �

I.8.4 Proof of Lemma I.7 and I.8

See Section XVII.2 in Feller (1991). �
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I.8.5 Proof of Lemma I.9

We take p = 1 (i.e. local linear regression) for the proof, which allows us to show explicitly

the form of various matrices. The general case can be proven similarly, although the notation

becomes much more cumbersome. Define r(x) = [1, x]′, then the estimator can be rewritten

as [
n∑
i=1

r(e(Xi))r(e(Xi))
′wi

]−1 [ n∑
i=1

r(e(Xi))Yiwi

]
,

where wi = 1e(Xi)≤hn,Di=1. We use Fe(X) to denote the distribution function of the probability

weight. We first analyze the “denominator” term. Consider the following:

Sn =
1

n

1

hnFe(X)(hn)

n∑
i=1

r(e(Xi)/hn)r(e(Xi)/hn)′wi,

whose expectation is given by

E[Sn] =
1

Fe(X)(hn)

∫ hn

0

r(x/hn)r(x/hn)′x/hnFe(X)(dx)

=
1

Fe(X)(hn)

[
r(1)r(1)′Fe(X)(hn)−

∫ 1

0

[
1 2x

2x 3x2

]
Fe(X)(xhn)dx

]

=

[
r(1)r(1)′ −

∫ 1

0

[
1 2x

2x 3x2

]
xγ0−1dx

]
(1 + o(1)) =

[
γ0−1
γ0

γ0−1
γ0+1

γ0−1
γ0+1

γ0−1
γ0+2

]
(1 + o(1)),

which is always invertible. Next we show that Sn converges to the expectation computed

above. For this purpose, we consider the variance of individual terms in Sn, which is bounded

by

1

n

1

hnFe(X)(hn)2

∫ hn

0

(x/hn)j+1Fe(X)(dx)

=
1

n

1

hnFe(X)(hn)2

[
Fe(X)(hn)−

∫ 1

0

(j + 1)xjFe(X)(xhn)dx

]
=

1

n

1

hnFe(X)(hn)

[
1−

∫ 1

0

(j + 1)xjxγ0−1dx

]
(1 + o(1))

=
1

n

1

hnFe(X)(hn)

γ0 − 1

γ0 + j
(1 + o(1)),

which shrinks to zero provided that nhnFe(X)(hn)→∞.
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Now we consider the “numerator” term. First ignore the expectation, and let ηi = Yi−
E[Yi(1)|e(Xi)] be the residual from conditional expectation projection. Then the following

Ln =

√
1

nhnFe(X)(hn)

n∑
i=1

r(e(Xi)/hn)ηiwi

has variance:

V[Ln] =
1

Fe(X)(hn)

∫ hn

0

x/hnr(x/hn)r(x/hn)′V[Y |e(X) = x,D = 1]Fe(X)(dx)

= (µ2(0)− µ1(0)2)
1

Fe(X)(hn)

∫ hn

0

x/hnr(x/hn)r(x/hn)′Fe(X)(dx)(1 + o(1))

= (µ2(0)− µ1(0)2)E[Sn](1 + o(1)).

The Lindeberg condition can easily be verified by calculating higher moments, and Ln will

be asymptotically Gaussian provided that nhnFe(X)(hn) → ∞. We do not elaborate the

argument here.

Next we consider the bias. Assuming µ1 is twice continuously differentiable, then one

has

µ1(x) = µ1(0) + µ
(1)
1 (0)x+

1

2
µ

(2)
1 (x̃)x2,

where x̃ ∈ [0, x]. Now we rewrite the estimator as follows:[
n∑
i=1

r(e(Xi))r(e(Xi))
′wi

]−1 [ n∑
i=1

r(e(Xi))Yiwi

]
−

[
µ1(0)

µ
(1)
1 (0)

]

= H−1
n S−1

n

[√
1

nhnFe(X)(hn)
Ln + h2

nRn

]
,

where Hn is diagonal with elements 1 and hn, and Rn is

Rn =
1

nh3
nFe(X)(hn)

n∑
i=1

r(e(Xi)/hn)µ
(2)
1 (λie(Xi)

2)e(Xi)
2wi/2,

with λi ∈ [0, 1]. With the same technique applied to Sn, one can show that

∣∣∣Rn − E[Rn]
∣∣∣2 =

∣∣∣∣∣Rn −
µ

(2)
1 (0)

2

[
γ0−1
γ0+2
γ0−1
γ0+3

]
(1 + o(1))

∣∣∣∣∣
2

= Op

(
1

nhnFe(X)(hn)

)
.
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I.8.6 Proof of Lemma I.1

Let F1/e(X) be the distribution function of the inverse probability weight 1/e(X). First

consider the tail probability P[D/e(X) > x]:

P[D/e(X) > x] = E[e(X)1e(X)−1>x] =

∫ ∞
x

y−1F1/e(X)(dy)

=

∫ ∞
x

y−2F1/e(X)(y)dy − x−1F1/e(X)(x)

= x−1
(

1− F1/e(X)(x)
)
−
∫ ∞
x

y−2
(

1− F1/e(X)(y)
)

dy

= x−1
(

1− F1/e(X)(x)
)
−
∫ ∞

1

x−1y−2
(

1− F1/e(X)(xy)
)

dy.

Hence

lim
x→∞

xP[D/e(X) > x]

P[e(X) < x−1]
= lim

x→∞

xP[D/e(X) > x]

P[e(X)−1 > x]
= 1− lim

x→∞

∫ ∞
1

y−2 1− F1/e(X)(xy)

1− F1/e(X)(x)
dy

= 1−
∫ ∞

1

y−2y1−γ0dy =
γ0 − 1

γ0

.

For the second line, interchanging integration and limit is permitted since the integrand is

bounded by y−2, which is integrable. Therefore D/e(X) has regularly varying tail with index

−γ0. The rest follows from Lemma I.6. �

I.8.7 Proof of Theorem I.1

Part (i)

We first assume γ0 > 2 so that DY/e(X) has finite variance, which is also nonzero since

α+(0) + α−(0) > 0. Then we set an =
√
nV[DY/e(X)], which satisfies the requirement of

the theorem. Then asymptotic Gaussianity follows from the central limit theorem.

Next we consider the γ0 = 2 case, for which we compute the limits in Lemma I.8 and

show that M is a point mass at the origin. Let

Wn =
Z

an
, Z =

DY

e(X)
− θ0,

and FZ be the distribution function of Z. Without loss of generality, we assume α+(0) > 0,

so that DY/e(X) has a regularly varying right tail with index −2. First, note that for any
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0 < η < c,∫ anc

0

x
1− FZ(x)

a2
n(1− FZ(an))

dx ≥
∫ anc

anη

x
1− FZ(x)

a2
n(1− FZ(an))

dx =

∫ c

η

x
1− FZ(anx)

1− FZ(an)
dx→ ln c− ln η.

As a result, the left-hand-side diverges as η > 0 is arbitrary. Then one has
∫ anc

0
y(1 −

FZ(y))dy � a2
n(1 − FZ(an)) for any c > 0. Using a similar argument, we have

∫ 0

−anc y(1 −
FZ(y))dy � a2

nFZ(−an) for any c > 0. Now take an such that nE[W 2
n1|Wn|≤1]→ 1, then for

any c > 0,

nE[W 2
n1|Wn|≤c] =

n

a2
n

E
[
Z21Z/an≤c

]
=

n

a2
n

∫ anc

−anc
x2FZ(dx)

= n

[
c2FZ(anc)− c2FZ(−anc)− 2

∫ anc

−anc

x

a2
n

FZ(x)dx

]
= n

[
−c2(1− FZ(anc)) + c2FZ(−anc) + 2

∫ anc

−anc

x

a2
n

(1− FZ(x))dx

]
=

[
2n

∫ anc

−anc

x

a2
n

FZ(x)dx

]
(1 + o(1))→ 1.

Therefore, we showed that for any compact interval I containing 0 in its interior, it satisfies

nE[Xn1|Xn|≤c]→ 1. As a byproduct, n(1−FZ(anc))→ 0 and nFZ(−anc)→ 0 for any c > 0.

Hence the measure as in Lemma I.8 concentrates at the origin, showing that the limiting

distribution is standard Gaussian.

Part (ii)

Again we assume, without loss of generality, that α+(0) > 0, so that DY/e(X) has regularly

varying right tail with index −γ0. For c > 0, we compute the following:

n
(

1− FZ(anc)
)

=
1− FZ(anc)

1− F|Z|(an)
n
(

1− F|Z|(an)
)

=
1− FZ(anc)

1− F|Z|(an)

a2
n(1− F|Z|(an))

E[|Z|21|Z|≤an ]

n

a2
n

E[|Z|21|Z|≤an ]

→ α+(0)

α+(0) + α−(0)

2− γ0

γ0

c−γ0 =

∫ ∞
c

1

x2

( (2− γ0)α+(0)

α+(0) + α−(0)
x1−γ0

)
dx.

Similarly, we compute for the left tail:

nFZ(−anc)→
α−(0)

α+(0) + α−(0)

2− γ0

γ0

c−γ0 =

∫ ∞
c

1

x2

( (2− γ0)α−(0)

α+(0) + α−(0)
x1−γ0

)
dx.
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Therefore, we conjecture the measure M to be of the form:

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
.

Indeed, this is confirmed by computing the other condition in Lemma I.8. We verify for

intervals I = [c1, c2] with c1 > 0,

nE[X2
n1|Wn|∈I ] =

n

a2
n

∫ anc2

anc1

x2FZ(dx) = n

[
c2

2FZ(anc2)− c2
1FZ(anc1)− 2

∫ c2

c1

xFZ(anx)dx

]
= n

[
−c2

2

(
1− FZ(anc2)

)
+ c2

1

(
1− FZ(anc1)

)
+ 2

∫ c2

c1

x
(

1− FZ(anx)
)

dx

]
= (1 + o(1))

2− γ0

γ0

[
−c2

2

1− FZ(anc2)

1− F|Z|(an)
+ c2

1

1− FZ(anc1)

1− F|Z|(an)
+ 2

∫ c2

c1

x
1− FZ(anx)

1− F|Z|(an)
dx

]
→ 2− γ0

γ0

α+(0)

α+(0) + α−(0)

[
−c2−γ0

2 + c2−γ0
1 + 2

∫ c2

c1

x1−γ0dx

]
=

α+(0)

α+(0) + α−(0)

(
c2−γ0

2 − c2−γ0
1

)
= M(I).

Given the measure M , the characteristic function can be found by evaluating the integral in

lemma I.7, yielding∫
R

eiζx − 1− iζx
x2

M(dx)

= −|ζ|γ0 Γ(3− γ0)

γ0(γ0 − 1)
cos
(γ0π

2

)[
i
α+(0)− α−(0)

α+(0) + α−(0)
sgn(ζ) tan

(γ0π

2

)
− 1

]
.

�

I.8.8 Proof of Proposition I.1

To start,

n

an

(
θ̂n − θ0

)
=

1

an

n∑
i=1

(
DiYi
e(Xi)

− θ0

)
+

1

an

n∑
i=1

DiYi
e(Xi)

(
e(Xi)

ê(Xi)
− 1

)

=
1

an

n∑
i=1

(
DiYi
e(Xi)

− θ0

)
+

(
− 1

n

n∑
i=1

DiYi
e(Xi, π̃n)2

∂e(Xi, π̃n)

∂π

)
n

an
(π̂n − π0) ,
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where π̃n is some convex combination of π̂n and π0, hence |π̃n − π0| = Op(1/
√
n). By

Assumption I.3, the class {
DiYi

e(Xi, π)2

∂e(Xi, π)

∂π
: |π − π0| ≤ ε

}
is Glivenko-Cantelli, hence

1

n

n∑
i=1

DiYi
e(Xi, π̃n)2

∂e(Xi, π̃n)

∂π

p→ E

[
DY

e(Xi)2

∂e(Xi, π0)

∂π

]
.

Therefore, we have

n

an

(
θ̂n − θ0

)
=

1

an

n∑
i=1

(
DiYi
e(Xi)

− θ0 − E
[
µ1(e(Xi))

e(Xi)

∂e(Xi, π0)

∂π

]
h(Di, Xi)

)
+ op(1).

For γ0 > 2, we have n/an �
√
n, and the above is asymptotically Gaussian. For the other

case, the additional term in the summand is asymptotically negligible. �

I.8.9 Proof of Lemma I.2

Consider the first step estimation problem, where the parameter π0 is estimated by the

nonlinear least squares:

π̂n = argmin
π∈Π

1

n

n∑
i=1

∣∣Di − L(XT
i π)

∣∣2 ,
where L is the link function. Since Π is compact and L is continuous in π, the class

{
∣∣Di − L(XT

i π)
∣∣2 : π ∈ Π} is Glivenko-Cantelli with an finite envelop. Together with

the assumption that π0 is the unique minimizer of E[
∣∣D − L(XTπ)

∣∣2], π̂n will be consistent

for π0. For simplicity, define

V = D − e(X) = D − L(XTπ0).

Then by a standard Taylor expansion argument,

√
n (π̂n − π0) =

(
E
[
L(1)(XTπ0)2XXT

])−1 1√
n

n∑
i=1

ViL
(1)(XT

i π0)Xi + op(1),
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provided that the inverse matrix is well-defined, and that the covariates have finite second

moment E[|X|2] <∞. This justifies Assumption I.3(i), with

h(Di, Xi) =
(
E
[
L(1)(XTπ0)2XXT

])−1
ViL

(1)(XT
i π0)Xi.

�

I.8.10 Omitted Details of Remark I.5

Assumption I.3(ii) in Logit models

Note that

L(XTπ0)

L(XTπ)2

∂

∂π
L(XTπ) =

L(XTπ0)

L(XTπ)

(
1− L(XTπ)

)
X

=
eX

Tπ0

eXTπ0 + 1

eX
Tπ + 1

eXTπ

1

eXTπ + 1
X

≤ eX
T(π0−π)X.

Then

E

[
sup

|π−π0|≤ε

∣∣∣∣L(XTπ0)

L(XTπ)2

∂

∂π
L(XTπ)

∣∣∣∣
]
≤ E

[
eε|X|X

]
≤
√
E[e2ε|X|]E[|X|2],

which will be finite if we can show that, for some small ε > 0, E[e2ε|X|] <∞.

Assumption I.3(ii) in Probit models

The same argument can be applied here to show that the first step estimate has an asymptotic

linear expansion. Hence we only verify Assumption I.3(ii). Note that

L(XTπ0)

L(XTπ)2

∂

∂π
L(XTπ) =

Φ(XTπ0)φ(XTπ)

Φ(XTπ)2
X

= 1XTπ≥−2

Φ(XTπ0)φ(XTπ)

Φ(XTπ)2
X + 1XTπ≤−2

Φ(XTπ0)φ(XTπ)

Φ(XTπ)2
X

≤ Φ(−2)−2Φ(XTπ0)φ(XTπ)X + 1XTπ≤−2

Φ(XTπ0)φ(XTπ)

Φ(XTπ)2
X

≤ Φ(−2)−2Φ(XTπ0)φ(XTπ)X︸ ︷︷ ︸
(I)

+1XTπ≤−2

φ(XTπ0)

φ(XTπ)

(
|XTπ|3

|XTπ|2 − 1

)2

X︸ ︷︷ ︸
(II)

,
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where for the last line, see Proposition 2.1.2 of Vershynin (2018). Term (I) is easily bounded

by

E

[
sup

|π−π0|≤ε
|(I)|

]
≤ Φ(−2)−2φ(0)E[|X|].

We can further bound (II) by

(II) ≤ 41XTπ≤−2 exp

{
1

2
|X|2|π + π0||π − π0|

}
|XTπ|2X,

Hence

E

[
sup

|π−π0|≤ε
|(II)|

]
≤ 4(|π0|+ ε)2E

[
exp

{
1

2
|X|2ε(2|π0|+ ε)

}
|X|3

]
,

which is finite if E[eε(2|π0|+ε)|X|
2
] <∞ for some small ε > 0. �

I.8.11 Proof of Theorem I.2

Define:

Z =
DY

e(X)
− θ0, Un =

1

an

n∑
i=1

Zi, Vn =

√√√√ 1

a2
n

n∑
i=1

Z2
i .

We first establish the joint limiting distribution of (Un, V
2
n ) under γ0 < 2, which is the only

interesting case. (Otherwise the self-normalized statistic is asymptotically Gaussian). The

argument relies on a modification of the method in Feller 1991, Chapter XVII. To start,

consider the characteristic function:

E

[
ei(ζ1Un+ζ2V 2

n )
]

=
(
E

[
ei(ζ1Wn+ζ2W 2

n)
] )n

=

(
1 +

1

n

∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
nx2FWn(dx)

)n

,

where

Wn =
Z

an
.

Let K : R → (0,∞) be an auxiliary function which is smooth, symmetric, and satisfies

limx→∞ xK(x) = 1.

Take I = [c1, c2] to be a compact interval with 0 ≤ c1 < c2, following the same argument
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used to prove Theorem I.1(ii),∫
I

K(x)nx2FWn(dx)

= nE[K(Wn)W 2
n1Wn∈I ]

=
n

a2
n

E

[
K

(
Z

an

)
Z21Z/an∈I

]
=

n

a2
n

∫ anc2

anc1

K

(
x

an

)
x2dFZ(x)

= n

[
K(c2)c2

2FZ(anc2)−K(c1)c2
1FZ(anc1)−

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)
FZ(anx)dx

]
= n

[
−K(c2)c2

2

(
1− FZ(anc2)

)
+K(c1)c2

1

(
1− FZ(anc1)

)
+

∫ c2

c1

(
2xK (x) + x2K(1) (x)

) (
1− FZ(anx)

)
dx
]

→ 2− γ0

γ0

α+(0)

α+(0) + α−(0)

[
−K(c2)c2−γ0

2 +K(c1)c2−γ0
1 +

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)
x−γ0dx

]
= M †(I),

where the measure M †(dx) is defined as

M †(dx) = dx

[
2− γ0

α+(0) + α−(0)
K(x)|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
.

The same convergence holds for compact intervals [c1, c2] with c2 ≤ 0. Finally, we note that∫
R
K(x)nx2FWn(dx)→M †(R) ∈ (0,∞).

Therefore, we have the following distributional convergence:

K(x)nx2FWn(dx)∫
RK(x)nx2FWn(dx)

d→ M †(dx)

M †(R)
.

Since the following is bounded and continuous of x

ei(ζ1x+ζ2x2) − 1− iζ1x

x2K(x)
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for any ζ1, ζ2 ∈ R, we have∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
nx2FWn(dx) =

∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2K(x)
K(x)nx2FWn(dx)

→
∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2K(x)
M †(dx) =

∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
M(dx),

where M(dx) is defined in Theorem I.1(ii). To summarize, we showed:

E

[
ei(ζ1Un+ζ2V 2

n )
]
→ exp

{∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
M(dx)

}
.

A similar result was derived in Logan, Mallows, Rice and Shepp (1973). However, our

argument only relies on the fact that Z has a regularly varying tail, while they impose the

stronger assumption that Z follows a Lévy stable distribution. Given the joint limiting

characteristic function, Logan, Mallows, Rice and Shepp (1973) showed that the limiting

distribution does not have positive mass on R×{0}, implying that Un/Vn has a well-defined

limiting distribution. Further, the limiting distribution has a smooth density function.

For the self-normalized statistic Tn in Theorem I.2, we rely on Proposition I.1, which

claims that estimating the probability weights in a first step does not contribute to the

limiting distribution when γ0 < 2. Then with simple algebra,

Tn =
Un
Vn

√
n− 1

n− V 2
n

.

As a result, Tn has the same limiting distribution as Un/Vn. Therefore, subsampling is valid

by standard arguments in Politis and Romano (1994) (or Romano and Wolf 1999). �

I.8.12 Proof of Theorem I.3

Part (i)

Take c > 0 and first consider the following probability:∫ bn

0

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx) ≤
∫ bn

0

xFe(X)(dx) = P

[
D

e(X)
> b−1

n

]
.

If anbn → 0, the right-hand-side will be asymptotically negligible compared to P[D/e(X) >

anc] for any c > 0. As a result, we have for anbn → 0,
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P

[
DY
e(X)

1e(X)≥bn > anc
]

P

[
D
e(X)

> anc
] =

1

P

[
D
e(X)

> anc
] ∫ 1

bn

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx)

=
1

P

[
D
e(X)

> anc
][ ∫ 1

0

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx)

−
∫ bn

0

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx)
]

= o(1) +
P

[
DY
e(X)

> anc
]

P

[
D
e(X)

> anc
] → α+(0),

as claimed in Lemma I.1. Therefore, the same Lévy stable limiting distribution emerges

under light trimming.

Part (ii)

First note that nb2
nE[|DY/e(X)|21|DY/e(X)|≤b−1

n
]→∞ and that Sn has unit variance. Hence

we only need to verify the Lindeberg condition.

n

a2+η
n,bn

E

[
DY 2+η

e(X)2+η
1e(X)≥bn

]
≤ C

n

a2+η
n,bn

E

[
1

e(X)1+η
1e(X)≥bn

]
= C

n

a2+η
n,bn

∫ 1/bn

1

x1+ηF1/e(X)(dx)

≤ C ′n−η/2

[∫ 1/bn

1

x1+ηF1/e(X)(dx)

][∫ 1/bn

1

xF1/e(X)(dx)

]−2−η

= C ′

[∫ 1/bn
1

x1+ηF1/e(X)(dx)

b−1−η
n P[e(X) ≤ bn]

][∫ 1/bn
1

xF1/e(X)(dx)

b−1
n P[e(X) ≤ bn]

]−2−η
nP[|DY/e(X)| ≥ b−1

n ]

nbnP[e(X) ≤ bn]

E[|DY/e(X)|21|DY/e(X)|≤b−1
n

]

b−2
n P[|DY/e(X)| ≥ b−1

n ]

1

nb2
nE[|DY/e(X)|21|DY/e(X)|≤b−1

n
]
→ 0,

by Lemma I.5.

Part (iii)

Again we ignore the centering, since it is irrelevant for computing the tail probabilities

or truncated moments. Let FU be the limiting distribution of FY |e(X)=x,D=1 as x → 0,

U ⊥⊥ (X, Y ) be distributed according to FU , and c > 0. We first compute the following limit:
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lim
n→∞

nP

[
DU

e(X)
1e(X)≥ta−1

n
> anc

]
= n

∫ ∞
0

P

[
D

e(X)
1e(X)≥ta−1

n
>
anc

x

]
FU(dx)

= lim
n→∞

n

∫ ∞
0

∫ x/(anc)

t/an

yFe(X)(dy)FU(dx) = lim
n→∞

n

∫ ∞
ct

∫ x/(anc)

t/an

yFe(X)(dy)FU(dx)

= lim
n→∞

n

∫ ∞
ct

[
x

anc
Fe(X)

(
x

anc

)
− t

an
Fe(X)

(
t

an

)
−
∫ x/(anc)

t/an

Fe(X)(y)dy

]
FU(dx)

= lim
n→∞

n

∫ ∞
ct

[
x

anc
Fe(X)

(
x

anc

)
− t

an
Fe(X)

(
t

an

)
− 1

an

∫ x/c

t

Fe(X)

(
y

an

)
dy

]
FU(dx)

= lim
n→∞

[
nFe(X)(an)

an

]
[∫ ∞

ct

[
x

c

Fe(X) (x/(anc))

Fe(X) (1/an)
− t

Fe(X) (t/an)

Fe(X) (1/an)
−
∫ x/c

t

Fe(X)(y/an)

Fe(X)(1/an)
dy

]
FU(dx)

]

= lim
n→∞

[
nFe(X)(an)

an

][∫ ∞
ct

[(x
c

)γ0
− tγ0 −

∫ x/c

t

yγ0−1dy

]
FU(dx)

]

=
γ0 − 1

γ0

lim
n→∞

[
nFe(X)(an)

an

] [∫ ∞
ct

[(x
c

)γ0
− tγ0

]
FU(dx)

]
.

Finally we note that

lim
n→∞

nFe(X)(an)

an
= lim

n→∞
nP[|DY/e(X)| > an]

Fe(X)(an)

anP[|DY/e(X)| > an]

= lim
n→∞

n

a2
n

E[|DY/e(X)|21|DY/e(X)|≤an ]
a2
nP[|DY/e(X)| > an]

E[|DY/e(X)|21|DY/e(X)|≤an ]

Fe(X)(an)

anP[|DY/e(X)| > an]

=
2− γ0

γ0 − 1

1

α+(0) + α−(0)
.

Therefore,

lim
n→∞

nP

[
DU

e(X)
1e(X)≥ta−1

n
> anc

]
=

2− γ0

γ0

1

α+(0) + α−(0)

[∫ ∞
ct

[(x
c

)γ0
− tγ0

]
FU(dx)

]
=

∫ ∞
c

1

x2

[
2− γ0

α+(0) + α−(0)
x1−γ0α+(tx)

]
dx.

Similarly, we can obtain, for the left tail, that

lim
n→∞

nP

[
DU

e(X)
1e(X)≥ta−1

n
< −anc

]
=

∫ ∞
c

1

x2

[
2− γ0

α+(0) + α−(0)
x1−γ0α−(tx)

]
dx,
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where F−U is the distribution function of −U . Define a measure M as

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
,

and we verify the other condition in Lemma I.8. For simplicity, take I = [c1, c2] with

0 < c1 < c2 and t = 1. Then the truncated second moment is

n

a2
n

E

[
DU2

e(X)2
1e(X)≥a−1

n
1DU/e(X)1

e(X)≥a−1
n
∈[anc1,anc2]

]
=

n

a2
n

∫ ∞
−∞

∫ 1

0

1x≥a−1
n
1x∈[u/(anc2),u/(anc1)]

u2

x
Fe(X)(dx)FU(du)

=
n

a2
n

∫ ∞
c1

∫ u/(anc1)

((u/c2)∨1)/an

u2

x
Fe(X)(dx)FU(du)

=
n

a2
n

∫ ∞
c1

u2

[
Fe(X)(u/(anc1))

u/(anc1)
−
Fe(X)(((u/c2) ∨ 1)/an)

((u/c2) ∨ 1)/an
+

∫ u/(anc1)

((u/c2)∨1)/an

1

x2
Fe(X)(x)dx

]
FU(du)

= n

∫ ∞
c1

u2
[Fe(X)(u/(anc1))

anu/c1

−
Fe(X)(((u/c2) ∨ 1)/an)

an((u/c2) ∨ 1)

+

∫ u/c1

((u/c2)∨1)

1

anx2
Fe(X)(x/an)dx

]
FU(du)

= (1 + o(1))
2− γ0

γ0 − 1

1

α+ + α−

∫ ∞
c1

u2
[ 1

u/c1

Fe(X)(u/(anc1))

Fe(X)(1/an)
− 1

(u/c2) ∨ 1

Fe(X)(((u/c2) ∨ 1)/an)

Fe(X)(1/an)

+

∫ u/c1

((u/c2)∨1)

1

x2

Fe(X)(x/an)

Fe(X)(1/an)
dx
]
FU(du)

→ 2− γ0

γ0 − 1

1

α+(0) + α−(0)

∫ ∞
c1

u2

[
(u/c1)γ0−2 − ((u/c2) ∨ 1)γ0−2 +

∫ u/c1

((u/c2)∨1)

xγ0−3dx

]
FU(du)

= − 1

α+(0) + α−(0)

∫ ∞
c1

u2
[
(u/c1)γ0−2 − ((u/c2) ∨ 1)γ0−2

]
FU(du)

= − 1

α+(0) + α−(0)

[∫ c2

c1

uγ0

cγ0−2
1

− u2FU(du) +

∫ ∞
c2

uγ0

cγ0−2
1

− uγ0

cγ0−2
2

FU(du)

]
,

which, by simple algebra, can be shown to be the same as M([c1, c2]). The next step is to

replace DU/e(X) by DY/e(X). The same argument used to proved Lemma I.6 applies here,

which we do not repeat. �
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I.8.13 Proof of Proposition I.2

To start,

1

an,bn

n∑
i=1

(
DiYi

e(Xi, π̂n)
1e(Xi,π̂n)≥bn − θ0 − Bn,bn

)
=

1

an,bn

n∑
i=1

(
DiYi

e(Xi, π0)
1e(Xi,π0)≥bn − θ0 − Bn,bn

)
(I)

+
1

an,bn

n∑
i=1

(
DiYi

e(Xi, π̂n)
1e(Xi,π̂n)≥bn −

DiYi
e(Xi, π0)

1e(Xi,π0)≥bn

)
, (II)

where asymptotic properties of (I) is discussed in Theorem I.3. For (II), we further expand

it as

(II) =
1

an,bn

n∑
i=1

(
DiYi

e(Xi, π̂n)
− DiYi
e(Xi, π0)

)
1e(Xi,π̂n)≥bn︸ ︷︷ ︸

(II.1)

+
1

an,bn

n∑
i=1

DiYi
e(Xi, π0)

(
1e(Xi,π̂n)≥bn − 1e(Xi,π0)≥bn

)
︸ ︷︷ ︸

(II.2)

.

By the same argument used in Proposition I.1, it satisfies

(II.1) = − 1

an

n∑
i=1

A0h(Di, Xi) + op(1).

For (II.2), we first make some auxiliary calculations. Take π be a generic element in the

parameter space Π,

e(Xi, π)

e(Xi, π0)
− 1 =

1

e(Xi, π0)

∂e(Xi, π̃)

∂π
(π − π0),

where π̃ is some convex combination of π and π0. Next define

Zi(ε) = sup
|π−π0|≤ε

∣∣∣∣ 1

e(Xi, π0)

∂e(Xi, π)

∂π

∣∣∣∣ .
Then we have∣∣∣1e(Xi,π)≥bn − 1e(Xi,π0)≥bn

∣∣∣ ≤ 1 bn
1+Zi(ε)ε

≤e(Xi,π0)≤ bn
1−Zi(ε)ε

+ 1|π−π0|>ε.
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Now fix some K > 0 and let ε = K/
√
n in the above, we have

|(II.2)| ≤ 1

an,bn

n∑
i=1

Di|Yi|
e(Xi, π0)

1 bn

1+Zi(
K√
n
) K√

n

≤e(Xi,π0)≤ bn

1−Zi(
K√
n
) K√

n︸ ︷︷ ︸
(II.2.1)

+ (II.2)1|π̂n−π0|> K√
n︸ ︷︷ ︸

(II.2.2)

.

Now take a sequence cn, we expand (II.2.1) as

|(II.2.1)| ≤ 1

an,bn

n∑
i=1

Di|Yi|
e(Xi, π0)

1 bn

1+ K√
n
cn
≤e(Xi,π0)≤ bn

1− K√
n
cn︸ ︷︷ ︸

(II.2.1.1)

+ (II.2.1)1max1≤i≤n Zi(
K√
n

)>cn︸ ︷︷ ︸
(II.2.1.2)

.

Further,

E[|(II.2.1.1)|] - n

an,bn

[
Fe(X)

(
bn

1− K√
n
cn

)
− Fe(X)

(
bn

1 + K√
n
cn

)]

-
n

an,bn
Fe(X)(bn)

(1 + 2

K√
n
cn

1− K√
n
cn

)γ0−1

− 1

 � n

an,bn
Fe(X)(bn)

K√
n
cn.

From Lemma I.3, the above becomes

K
√
bnP[e(X) ≤ bn]cn → 0.

Put all pieces together, we have for any % > 0

lim sup
n

P [|(II.2)| > %]→ lim sup
n

P

[
|π̂n − π0| >

K√
n

]
,

since only (II.2.2) can be non-degenerate. The left-hand-side is independent of K and the

right-hand-side decreases to 0 as K ↑ ∞, we have that (II.2) converges in probability to

zero. �

I.8.14 Omitted Details of Remark I.6

Bounding cn in Logit models

Let

Zi(ε) = sup
|π−π0|≤ε

∣∣∣∣ e(Xi, π)

e(Xi, π0)
(1− e(Xi, π))Xi

∣∣∣∣ ,
63



for which it suffices to consider (see the proof of Proposition I.2)

Zi(ε) = sup
|π−π0|≤ε

e|Xi|·|π−π0||Xi| = eε|Xi||Xi|.

By our assumption, Xi is sub-exponential, hence

max
1≤i≤n

Zi

(
K√
n

)
≤
(

max
1≤i≤n

e
K√
n
|Xi|
)(

max
1≤i≤n

|Xi|
)

= Op

(
n

K
ε
√
n

)
Op (log(n)) = Op(log(n)).

Bounding cn in Probit models

Let

Zi(ε) = sup
|π−π0|≤ε

φ(XT
i π)φ(XT

i π0)

φ(XT
i π0)Φ(XT

i π0)
|Xi| .

Again for our purposes, it suffices to consider XT
i π0 � 0, hence

Zi(ε) = sup
|π−π0|≤ε

φ(XT
i π)

φ(XT
i π0)

|Xi|3 = e
1
2
|Xi|2ε(2|π0|+ε)|Xi|3.

By our assumption, Xi is sub-Gaussian, hence

max
1≤i≤n

Zi

(
K√
n

)
≤
(

max
1≤i≤n

e
1
2
|Xi|2 K√

n
(2|π0|+ K√

n
)

)(
max
1≤i≤n

|Xi|3
)

= Op

(
log(n)

3
2

)
.

�

I.8.15 Proof of Lemma I.3

The bias of θ̂n,bn is quite easy to derive. Note that the IPW estimator θ̂n is unbiased for θ0,

hence the bias can be written as the following expectation:

Bn,bn = E[θ̂n,bn ]− θ0 = −E

[
1

n

n∑
i=1

DiYi
e(Xi)

1e(Xi)≤bn

]
= −E

[
E[Y |e(X), D = 1]1e(X)<bn

]
≈ −µ1(0) · P[e(X) ≤ bn],
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so that the leading bias vanishes at the rate P[e(X) ≤ bn], unless the data generating process

is that the conditional mean shrinks as the probability weight approaches zero3.

For the variance of DY/e(X)1e(X)≥bn , we note that when γ0 ∈ (1, 2) and bn → 0, it

diverges to infinity. As a result,

Vn,bn =
1

n
V

[
DY

e(X)
1e(X)≥bn

]
≈ 1

n
E

[
DY 2

e(X)2
1e(X)≥bn

]
=

1

n

∫ 1

bn

E[Y 2|e(X) = x,D = 1]

x
dP[e(X) ≤ x].

As one may suspect, the behavior of the above integral is not “sensitive” to the conditional

second moment of Y , since what matters is the tail behavior of the probability weight.

To simplify notation, let a = limy→0 E[Y 2|e(X) = y,D = 1]. Choose c > 0 small enough

so that

sup
x≤c

∣∣∣E[Y 2|e(X) = x,D = 1]− a
∣∣∣ ≤ η.

Then ∫ 1

bn
ax−1Fe(X)(dx)∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

= 1 +
A+B − C∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

,

where

A =

∫ 1

c

ax−1Fe(X)(dx)

B =

∫ c

bn

(
a− E[Y 2|e(X) = x,D = 1]

)
x−1Fe(X)(dx)

C =

∫ 1

c

E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx).

Note that

A∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

→ 0,
C∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

→ 0.

3In θ̂n,bn we use the entire sample size n for normalization, rather than the effective number of observations
nbn =

∑n
i=1 1e(X)≥bn . We note that even when nbn is used, the order of bias does not change, unless one has

limx→0 E[Y |e(X) = x,D = 1] = θ0, so that the limiting conditional expectation equals exactly the target
parameter.
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For B, we have

B∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

≤ η

infx∈[0,c] E[Y 2,D=1|e(X) = x]
,

which can be made arbitrarily small. Hence∫ 1

bn
ax−1Fe(X)(dx)∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

→ 1.

For the final claim, we first note, by a slight modification of Lemma I.5,

b−1
n P[e(X) ≤ bn]

E[e(X)−11e(X)≥bn ]
→ 2− γ0

γ0 − 1
,

as bn → 0, from which the desired result follows. �

I.8.16 Proof of Theorem I.4

Let F̂e(X)(x) =
∑n

i=1 1e(X)≤x/n. We first consider the behavior of bsF̂e(X)(b) at bn (defined

in the theorem), which is given by the following probability bound (Markov’s inequality):

P

[
n
∣∣∣bsnF̂e(X)(bn)− bsnFe(X)(bn)

∣∣∣ > δ
]
≤ n2

(
bsn
δ

)2

E

∣∣∣F̂e(X)(bn)− Fe(X)(bn)
∣∣∣2

= n

(
bsn
δ

)2

V
[
1e(X)≤bn

]
= n

(
bsn
δ

)2

Fe(X)(bn)(1− Fe(X)(bn))

=
c0

δ2
bsn

(
1 + o(1)

)
,

which implies

n
∣∣∣bsnF̂e(X)(bn)− bsnFe(X)(bn)

∣∣∣ p→ 0.

To complete the proof, take some constant a ∈ (0, 1), and define bl,n and br,n as:

bsl,nFe(X)(bl,n) =
ac0

n
, bsr,nFe(X)(br,n) =

c0

an
.
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Then it is easy to see that

P

[
b̂n ≤ bl,n

]
≤ P

[
bsl,nF̂e(X)(bl,n) ≥ b̂snF̂e(X)(b̂n)

]
= P

[
bsl,nF̂e(X)(bl,n) ≥ ĉn

n

]
= P

[
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n) ≥ (1− a)c0 + (ĉn − c0)

n

]
= P

[
n
(
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n)

)
≥ (1− a)c0 + (ĉn − c0)︸ ︷︷ ︸

p→(1−a)c0>0

]
→ 0,

since the first term n
(
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n)

)
is op(1). Using a similar technique, we

can show that P[b̂n ≥ br,n]→ 0. Therefore,

P

[
bl,n ≤ b̂n ≤ br,n

]
= P

[
bl,n
bn
≤ b̂n
bn
≤ br,n

bn

]
→ 1.

Since the choice of a is arbitrary, we only need to show that both bl,n/bn and br,n/bn are

arbitrarily close to 1 for all a close to 1. To see this, note that since bn → 0, one has

a =
bsl,nFe(X)(bl,n)

bsnFe(X)(bn)
=
bsl,n
bsn

Fe(X)((bl,n/bn)bn)

Fe(X)(bn)︸ ︷︷ ︸
→(bl,n/bn)γ0−1

=

(
bl,n
bn

)γ0−1+s

(1 + o(1)).

and the same argument applies to br,n.

To show that estimated probability weights can be employed, we only need to show that

for all δ > 0,

P

[
n
∣∣∣bsnF̂ê(X)(bn)− bsnF̂e(X)(bn)

∣∣∣ > δ
]
→ 0,

where again bn is defined in the theorem. From the proof of Proposition I.2, we have, for

any |π − π0| ≤ ε, ∣∣∣1e(Xi,π)≥bn − 1e(Xi,π0)≥bn

∣∣∣ ≤ 1 bn
1+Zi(ε)ε

≤e(Xi,π0)≤ bn
1−Zi(ε)ε

,

and

Zi(ε) = sup
|π−π0|≤ε

∣∣∣∣ 1

e(Xi, π0)

∂e(Xi, π)

∂π

∣∣∣∣ .
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Therefore, for any K > 0,

P

[
n
∣∣∣bsnF̂ê(X)(bn)− bsnF̂e(X)(bn)

∣∣∣ > δ
]

≤ P

[
bsn

n∑
i=1

1 bn

1+Zi(
K√
n
) K√

n

≤e(Xi,π0)≤ bn

1−Zi(
K√
n
) K√

n

> δ

]
+ P

[
|π̂n − π0| ≥

K

n

]

≤ P

[
bsn

n∑
i=1

1 bn

1+ K√
n
cn
≤e(Xi,π0)≤ bn

1− K√
n
cn

> δ

]
+ P

[
max
1≤i≤n

Zi(
K√
n

) > cn

]
+ P

[
|π̂n − π0| ≥

K

n

]
,

and cn is to be specified. For the first term, one has

E

[
bsn

n∑
i=1

1 bn

1+ K√
n
cn
≤e(Xi,π0)≤ bn

1− K√
n
cn

]

= nbsn

[
Fe(X)

(
bn

1− K√
n
cn

)
− Fe(X)

(
bn

1 + K√
n
cn

)]

- nbsnFe(X)(bn)

(1 + 2

K√
n
cn

1− K√
n
cn

)γ0−1

− 1


� nbsnFe(X)(bn)

K√
n
cn �

K√
n
cn → 0,

which holds if cn =
√
n/ log(n). By our assumption,

P

[
max
1≤i≤n

Zi

(
K√
n

)
> cn

]
→ 0.

Finally,

P

[
|π̂n − π0| ≥

K

n

]
can be made arbitrarily small by taking K large. Since

P

[
n
∣∣∣bsnF̂ê(X)(bn)− bsnF̂e(X)(bn)

∣∣∣ > δ
]

does not depend on K, this probability converges to 0 for all δ > 0. �

I.8.17 Proof of Theorem I.5

We assume the true probability weights are used in the local polynomial regression, as

estimating the probability weights in a first step does not have a first order contribution to
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the local polynomial regression. We first consider a (trivial) situation where nFe(X)(bn)→ 0.

This clearly falls into the light trimming scenario of Theorem I.3(i). To show that our bias

correction does not contribute to the limiting distribution, note that

n

an,bn
|B̂n,bn − Bn,bn| ≤

n

an,bn
|Bn,bn|︸ ︷︷ ︸

op(1), due to light trimming

+
n

an,bn

∣∣∣B̂n,bn∣∣∣ .
The second term has expansion

n

an,bn

∣∣∣B̂n,bn∣∣∣ ≤ ∣∣∣ p∑
j=0

β̂j

∣∣∣︸ ︷︷ ︸
Op(1), Lemma I.9

n

an,bn

1

n

n∑
i=1

1e(Xi)≤bn ,

where by Markov’s inequality,

n

an,bn

1

n

n∑
i=1

1e(Xi)≤bn = Op

(
n

an,bn
E[1e(Xi)≤bn ]

)
= Op

(
n

an,bn
Fe(X)≤bn

)
= op(1),

since we assumed nFe(X)(bn)→ 0 and for all cases we consider, an,bn →∞.

Now we proceed to prove the theorem assuming nFe(X)(bn) % 1. Note that the true bias

Bn,bn has order Fe(X)(bn), hence we consider the relative accuracy:

n

an,bn
|B̂n,bn − Bn,bn| ∼

(
n

an,bn
Bn,bn

)
|B̂n,bn − Bn,bn|
Fe(X)(bn)

≤
(

n

an,bn
Bn,bn

)(
(I) + (II) + (III)

)
,

where

(I) =

p∑
j=0

(I)j =

p∑
j=0

(
|µ̂(j)

1 (0)− µ(j)
1 (0)|

j!Fe(X)(bn)

1

n

n∑
i=1

e(Xi)
j1e(Xi)≤bn

)

(II) =
1

(p+ 1)!Fe(X)(bn)

1

n

n∑
i=1

µ
(p+1)
1 (λie(Xi))e(Xi)

p+11e(Xi)≤bn

(III) =
1

nFe(X)(bn)

n∑
i=1

(
µ1(e(Xi))1e(Xi)≤bn − E[µ1(e(Xi))1e(Xi)≤bn ]

)
,
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with λi ∈ [0, 1], by a (p+ 1)-th order Taylor expansion. For 0 ≤ j ≤ p,

E[e(X)j1e(X)≤bn ] =

∫ bn

0

xjFe(X)(dx) = bjnFe(X)(bn)−
∫ bn

0

jxj−1Fe(X)(x)dx

= (1 + o(1))
γ0 − 1

γ0 + j − 1
Fe(X)(bn)bjn.

Similarly, its variance has order:

V

[
1

n

n∑
i=1

e(Xi)
j1e(X)≤bn

]
≤ 1

n
E[e(Xi)

2j1e(X)≤bn ] = (1 + o(1))
1

n

γ0 − 1

γ0 + 2j − 1
Fe(X)(bn)b2j

n .

Hence, we have

1

Fe(X)(bn)

1

n

n∑
i=1

e(Xi)
j1e(X)≤bn = Op

(
bjn + bjn

√
1

nFe(X)(bn)

)
,

which implies that (II) has order:

(II) = Op

(
bp+1
n + bp+1

n

√
1

nFe(X)(bn)

)

By Lemma I.9, term (I) has order:

(I) = Op

[(√
1

nhnFe(X)(hn)
+ hp+1

n

)
·

(
p∑
j=0

bjn
hjn

)
·

(
1 +

√
1

nFe(X)(bn)

)]

= Op

[(√
1

nhnFe(X)(hn)
+ hp+1

n

)
·
(

1 ∨ bpn
hpn

)
·

(
1 +

√
1

nFe(X)(bn)

)]
.

Now we consider some concrete situations. First, assume bn = b?n being the optimal

trimming threshold. Then we know that an,bn ∼ b−1
n . Then for bias correction to be suc-

cessful, we need bn = o(hn). Therefore, hn should be chosen such that the bias and variance

in Lemma I.9 is balanced, which requires nh2p+3
n Fe(X)(hn) ∼ 1. To explicitly calculate the

order of the remaining bias, we assume for simplicity that Fe(X)(hn) ∼ hγ0−1
n , which gives

n−(p+1)/(2p+γ0+2), and for p = 1 (i.e. local linear regression), it becomes n−2/(γ0+4). Since we

assumed γ0 < 2, the remaining bias, after normalization, is at most n−1/3.

For light trimming, the previous discussion continues to hold, although it is not necessary

to conduct bias correction in this case.

The heavy trimming case is delicate. We know that in the extreme case where fixed
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trimming is employed bn = b ∈ (0, 1), no bias correction will be satisfactory in the sense

that the remaining bias, after normalization, either explodes or the that the noise from

bias correction will contribute to asymptotic variance. The reason is simple: under fixed

trimming, the correct normalization is
√
n, but bias cannot be estimated at a faster rate

unless parametric assumption is imposed on the conditional mean function. As a result,

one has to rule out fixed trimming unless the researcher is willing to reinterpret the target

estimand.

For heavy trimming, we first note that n/an,bn =
√
Vn,bn , hence by Lemma I.3,

n

an,bn
Bn,bn =

√
nbnFe(X)(bn).

Therefore to make sure term (II) is negligible, we need

n

an,bn
Bn,bn(II) = op(1), ⇒ nb2p+3

n Fe(X)(bn)→ 0.

We can still employ the MSE optimal hn, and the bias correction will be successful.

Finally, we note that term (III) has mean zero and variance of order 1/(nFe(X)(bn)), so

that

n

an,bn
Bn,bn(III) -

√
nbnFe(X)(bn)

√
1

nFe(X)(bn)
=
√
bn,

which is negligible. �

I.8.18 Proof of Theorem I.6

Define:

Z =
DY

e(X)
1e(X)≥bn − E

[
DY

e(X)
1e(X)≥bn

]
, Un =

1

an,bn

n∑
i=1

Zi, Vn =

√√√√ 1

a2
n,bn

n∑
i=1

Z2
i .

Similar as the proof of Theorem I.2, we first establish the joint limiting distribution of

(Un, V
2
n ). Consider the characteristic function:

E

[
ei(ζ1Un+ζ2V 2

n )
]

=
(
E

[
ei(ζ1Wn+ζ2W 2

n)
] )n

=

(
1 +

1

n

∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
nx2FWn(dx)

)n

,
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where Wn = Z/an,bn . Let K : R→ (0,∞) be an auxiliary function that is smooth, symmet-

ric, and satisfies limx→∞ xK(x) = 1.

Light trimming

The proof is essentially the same as that of Theorem I.2. Take I = [c1, c2] to be a compact

interval with 0 ≤ c1 < c2, then∫
I

K(x)nx2FWn(dx)

= nE[K(Wn)W 2
n1Wn∈I ]

=
n

a2
n,bn

E

[
K

(
Z

an,bn

)
Z21Z/an,bn∈I

]
=

n

a2
n,bn

∫ an,bnc2

an,bnc1

K

(
x

an,bn

)
x2dFZ(x)

= n

[
K(c2)c2

2FZ(an,bnc2)−K(c1)c2
1FZ(an,bnc1)−

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)
FZ(an,bnx)dx

]
= n

[
−K(c2)c2

2

(
1− FZ(an,bnc2)

)
+K(c1)c2

1

(
1− FZ(an,bnc1)

)
+

∫ c2

c1

(
2xK (x) + x2K(1) (x)

) (
1− FZ(an,bnx)

)
dx
]
.

The tail probabilities can be calculated as in the proof of Theorem I.3(i), implying∫
I

K(x)nx2FWn(dx)

→ 2− γ0

γ0

α+(0)

α+(0) + α−(0)

[
−K(c2)c2−γ0

2 +K(c1)c2−γ0
1 +

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)
x−γ0dx

]
= M †(I),

where the measure M †(dx) is defined as

M †(dx) = dx

[
2− γ0

α+(0) + α−(0)
K(x)|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
.

The same convergence holds for compact intervals [c1, c2] with c2 ≤ 0. Finally, we note that∫
R
K(x)nx2FWn(dx)→M †(R) ∈ (0,∞).
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Therefore, we have the following distributional convergence:

K(x)nx2FWn(dx)∫
RK(x)nx2FWn(dx)

d→ M †(dx)

M †(R)
.

Since the following is bounded and continuous,

ei(ζ1x+ζ2x2) − 1− iζ1x

x2K(x)
,

we have∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
nx2FWn(dx) =

∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2K(x)
K(x)nx2FWn(dx)

→
∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2K(x)
M †(dx) =

∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
M(dx),

where

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
,

as defined in Theorem I.1(ii). To summarize, we showed:

E

[
ei(ζ1Un+ζ2V 2

n )
]
→ exp

{∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
M(dx)

}
,

which defines the joint limiting distribution of (Un, V
2
n ).

Moderate trimming

We do not repeat the lengthy argument. With the tail probability calculations used for

Theorem I.3(iii), one has

E

[
ei(ζ1Un+ζ2V 2

n )
]
→ exp

{∫
R

ei(ζ1x+ζ2x2) − 1− iζ1x

x2
M(dx)

}
,

where

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
,

as defined in Theorem I.3(iii).
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Heavy trimming

This case is much easier, and one can directly show that Un/Vn converges to the standard

Gaussian distribution.

For all three cases, Un/Vn has a well-defined limiting distribution. And since we focus on

γ0 < 2, the impact of estimating the probability weights can be ignored. Therefore, the self-

normalized statistic Tn,bn has the same limiting distribution as Un/Vn, and subsampling is

valid by standard arguments in Politis and Romano (1994) (or Romano and Wolf 1999). �

I.8.19 Proof of Proposition I.3

Rewrite the estimator as

τ̂ ATTn =
c0

ĉn

1

n

n∑
i=1

(Di − e(Xi))Yi
c0(1− e(Xi))

,

where c0 = P[D = 1], and ĉn = n−1
∑n

i=1Di. We first consider the tail behavior of (D −
e(X))Y/(c0(1− e(X)). Note that

P

[
(D − e(X))Y

c0(1− e(X))
> x

]
= P[D = 1]P

[
Y (1)

c0

> x

∣∣∣∣D = 1

]
+ P[D = 0]P

[
e(X)Y (0)

c0(1− e(X))
< −x

∣∣∣∣D = 0

]
,

where we take x > 0. To proceed, let F1−e(X) be the distribution function of 1− e(X), then

lim
x↓0

P[1− e(X) ≤ x|D = 0]

xP[1− e(X) ≤ x]
= lim

x↓0

P[D = 0|1− e(X) ≤ x]

xP[D = 0]

= lim
x↓0

1

xP[1− e(X) ≤ x]P[D = 0]

∫ x

0

yF1−e(X)(dy)

= lim
x↓0

1

xP[1− e(X) ≤ x]P[D = 0]

(
xF1−e(X)(x)−

∫ x

0

F1−e(X)(y)dy

)
= lim

x↓0

1

xP[1− e(X) ≤ x]P[D = 0]

(
xF1−e(X)(x)−

∫ 1

0

xF1−e(X)(xy)dy

)
= lim

x↓0

1

P[D = 0]

(
1−

∫ 1

0

F1−e(X)(xy)

F1−e(X)(x)
dy

)
=

1

P[D = 0]

(
1−

∫ 1

0

yγ0−1dy

)
=
γ0 − 1

γ0

1

P[D = 0]
.
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Applying the same argument used to prove Lemma I.1, one has

lim
x→∞

P[D = 0]P
[

e(X)Y (0)
c0(1−e(X))

< −x
∣∣∣D = 0

]
x−1P[1− e(X) < x−1]

= lim
x→∞

P[D = 0]P[1− e(X) < x−1|D = 0]

x−1P[1− e(X) < x−1]

P

[
e(X)Y (0)
c0(1−e(X))

< −x
∣∣∣D = 0

]
P[1− e(X) < x−1|D = 0]

=
γ0 − 1

γ0

c−γ00 α(0),−(0),

where

α(0),−(x) = lim
t→1

E

[
|Y (0)|γ01Y (0)<x

∣∣∣e(X) = t
]
.

Therefore,

lim
x→∞

P

[
(D−e(X))Y
c0(1−e(X))

> x
]

x−1P[1− e(X) < x−1]
=
γ0 − 1

γ0

c−γ00 α(0),−(0).

Similarly, we have

lim
x→∞

P

[
(D−e(X))Y
c0(1−e(X))

< −x
]

x−1P[1− e(X) < x−1]
=
γ0 − 1

γ0

c−γ00 α(0),+(0).

As a result, (D−e(X))Y/(c0(1−e(X)) has regularly varying tails with index−γ0 if α(0),+(0)+

α(0),−(0) > 0. The rest of the proof employs the same argument used for Theorem I.1. �

I.8.20 Proof of Proposition I.4

This employs the same argument used for Theorem I.3 and Proposition I.3. �

I.8.21 Proof of Proposition I.5

We first consider the tail behavior of (2D− 1)Y/(1−D + (2D− 1)e(X)). For this, we note

that

P

[
(2D − 1)Y

1−D + (2D − 1)e(X)
> x

]
= P[D = 1]P

[
Y (1)

e(X)
> x

∣∣∣∣D = 1

]
+ P[D = 0]P

[
Y (0)

1− e(X)
< −x

∣∣∣∣D = 0

]
,
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where we take x > 0. Then if ω > 0,

lim
x↓0

P[e(X) ≤ x|D = 1]

xP[e(X) ≤ x]
= lim

x↓0

P[D = 1|e(X) ≤ x]

xP[D = 1]

= lim
x↓0

1

xP[e(X) ≤ x]P[D = 1]

∫ x

0

yFe(X)(dy)

= lim
x↓0

1

xP[e(X) ≤ x]P[D = 1]

(
xP[e(X) ≤ x]−

∫ x

0

Fe(X)(y)dy

)
= lim

x↓0

1

xP[e(X) ≤ x]P[D = 1]

(
xP[e(X) ≤ x]−

∫ 1

0

xFe(X)(xy)dy

)
= lim

x↓0

1

P[D = 1]

(
1−

∫ 1

0

Fe(X)(xy)

Fe(X)(x)
dy

)
=

1

P[D = 1]

(
1−

∫ 1

0

yγ0−1dy

)
=
γ0 − 1

γ0

1

P[D = 1]
.

Therefore, conditional on D = 1, the probability weight has regularly varying left tail with

index γ0. Applying the same argument used to prove Lemma I.1, one has

lim
x→∞

P[D = 1]P
[
Y (1)
e(X)

> x
∣∣∣D = 1

]
x−1P[e(X) < x−1]

= lim
x→∞

P[D = 1]P[e(X) < x−1|D = 1]

x−1P[e(X) < x−1]

P

[
Y (1)
e(X)

> x
∣∣∣D = 1

]
P[e(X) < x−1|D = 1]

=
γ0 − 1

γ0

α(1),+(0).

Similarly, we can show that if ω < 1,

lim
x↓0

P[D = 0]P
[

Y (0)
1−e(X)

< −x
∣∣∣D = 0

]
x−1P[1− e(X) < x−1]

=
γ0 − 1

γ0

α(0),−(0).

Together, they imply

lim
x→∞

xP
[

(2D−1)Y
1−D+(2D−1)e(X)

> x
]

P[e(X) < x−1] + P[1− e(X) < x−1]
=
γ0 − 1

γ0

(
ωα(1),+(0) + (1− ω)α(0),−(0)

)
.

By the same argument,

lim
x→∞

xP
[

(2D−1)Y
1−D+(2D−1)e(X)

< −x
]

P[e(X) < x−1] + P[1− e(X) < x−1]
=
γ0 − 1

γ0

(
ωα(1),−(0) + (1− ω)α(0),+(0)

)
.
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As a result, (2D− 1)Y/(1−D+ (2D− 1)e(X)) has regularly varying tail with index −γ0 if

ω
(
α(1),+(0) + α(1),−(0)

)
+ (1− ω)

(
α(0),+(0) + α(0),−(0)

)
> 0.

The rest of the proof employs the same argument used for Theorem I.1. �

I.8.22 Proof of Proposition I.6

This employs the same argument used for Theorem I.3 and Proposition I.5. �

I.8.23 Proof of Proposition I.7

This employs the same argument used for Theorem I.1. �

I.8.24 Proof of Proposition I.8

This employs the same argument used for Theorem I.3. �
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CHAPTER II

Two-Step Estimation and Inference

with Possibly Many Included Covariates

Abstract. This chapter studies the implications of including many covariates in a first-step

estimate entering a two-step estimation procedure. We find that a first order bias emerges

when the number of included covariates is “large” relative to the square-root of sample size,

rendering standard inference procedures invalid. We show that the jackknife is able to es-

timate this “many covariates” bias consistently, thereby delivering a new automatic bias-

corrected two-step point estimator. The jackknife also consistently estimates the standard

error of the original two-step point estimator. For inference, we develop a valid post-bias-

correction bootstrap approximation that accounts for the additional variability introduced by

the jackknife bias-correction. We find that the jackknife bias-corrected point estimator and the

bootstrap post-bias-correction inference perform excellent in simulations, offering important

improvements over conventional two-step point estimators and inference procedures, which

are not robust to including many covariates. We apply our results to an array of distinct

treatment effect, policy evaluation, and other applied microeconomics settings. In particular,

we discuss production function and marginal treatment effect estimation in detail.

II.1 Introduction

Two-step estimators are very important and widely used in empirical work in economics and

other disciplines. This approach involves two estimation steps: first an unknown quantity

is estimated, and then this estimate is plugged in a moment condition to form the second

and final point estimator of interest. For example, inverse probability weighting (IPW)

and generated regressors methods fit naturally into this framework, both used routinely in

treatment effect and policy evaluation settings. In practice, researchers often include many

This chapter is based on the paper “Two-Step Estimation and Inference with Possibly Many Included
Covariates” (Cattaneo, Jansson and Ma, 2018d).
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covariates in the first-step estimation procedure in an attempt to flexibly control for as

many confounders as possible, even after model selection or model shrinking has been used

to select out some of all available covariates. Conventional (post-model selection) estimation

and inference results in this context, however, assume that the number of covariates included

in the estimation is “small” relative to the sample size, and hence the effect of overfitting in

the first estimation step is ignored in current practice.

We show that two-step estimators can be severely biased when too many covariates

are included in a linear-in-parameters first-step, a fact that leads to invalid inference pro-

cedures even in large samples. This crucial, but often overlooked fact implies that many

empirical conclusions will be incorrect whenever many covariates are used. For example, we

find from a very simple simulation setup with a first step estimated with 80 i.i.d. variables,

sample size of 2, 000, and even no misspecification bias, that a conventional 95% confidence

interval covers the true parameter with probability 76% due to the presence of the many

covariates bias we highlight in this chapter (Table II.1 below).1 This result is not specific to

our simulation setting, as our general results apply broadly to many other treatment effect,

policy evaluation, and applied microeconomics settings: IPW estimation under unconfound-

edness, semiparametric difference-in-differences, local average response function estimation,

marginal treatment effects, control function methods, and production function estimation,

just to mention a few other popular examples. We illustrate the usefulness of our results

by considering the estimation and inference for the marginal treatment effect (Heckman and

Vytlacil, 2005) when possibly many covariates/instruments are present. This offers new es-

timation and inference results in instrumental variable (IV) settings allowing for treatment

effect heterogeneity and many covariates/instruments.

The presence of the generic many covariates bias we highlight implies that developing

more robust procedures accounting for possibly many covariates entering the first step esti-

mation is highly desirable. Such robust methods would give more credible empirical results,

thereby providing more plausible testing of substantive hypotheses as well as more reliable

policy prescriptions. With this goal in mind, we show that jackknife bias-correction is able to

remove the many covariates bias we uncover in a fully automatic way. Under mild conditions

on the design matrix, we prove consistency of the jackknife bias and variance estimators,

even when many covariates are included in the first-step estimation. Indeed, our simula-

tions in the context of MTE estimation show that jackknife bias-correction is quite effective

in removing the many covariates bias, exhibiting roughly a 50% bias reduction (Table II.1

1Including 80 regressors is quite common in empirical work: e.g., settings with 50 residential dummy
indicators, a few covariates entering linearly and quadratically, and perhaps some interactions among these
variables.
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below). We also show that the mean squared error of the jackknife bias-corrected estimator

is substantially reduced whenever many covariates are included. More generally, our results

give a new, fully automatic, jackknife bias-corrected two-step estimator with demonstrably

superior properties to use in applications.

For inference, while the jackknife bias correction and variance estimation deliver a valid

Gaussian distributional approximation in large samples, we find in our simulations that the

associated inference procedures do not perform as well in small samples. As discussed in

Calonico, Cattaneo and Farrell (2018) in the context of kernel-based nonparametric infer-

ence, a crucial underlying issue is that bias correction introduces additional variability not

accounted for in samples of moderate size (we confirm this finding in our simulations). There-

fore, to develop better inference procedures in finite samples, we also establish validity of a

bootstrap method applied to the jackknife-based bias-corrected Studentized statistic, which

can be used to construct valid confidence intervals and conduct valid hypothesis tests in a

fully automatic way. This procedure is a hybrid of the wild bootstrap (first-step estimation)

and the multiplier bootstrap (second-step estimation), which is fast and easy to implement

in practice because it avoids recomputing the relatively high-dimensional portion of the first

estimation step. Under generic regularity conditions, we show that this bootstrap procedure

successfully approximates the finite sample distribution of the bias-corrected jackknife-based

Studentized statistic, a result that is also borne out in our simulation study.

Put together, our results not only highlight the important negative implications of

overfitting the first-step estimate in generic two-step estimation problems, which leads to a

first order many covariates bias in the distributional approximation, but also provide fully

automatic resampling methods to construct more robust estimators and inference procedures.

Furthermore, because our results remain asymptotically valid when only a few covariates are

used, they provide strict asymptotic improvement over conventional methods currently used

in practice. All our results are fully automatic and do not require additional knowledge

about the data generating process, which implies that they can be easily implemented in

empirical work using straightforward resampling methods on any computing platform.

Our work is related to several interconnected literatures in econometrics and statis-

tics. From a classical semiparametric perspective, when the many covariates included in the

first-step are taken as basis expansions of some underlying fixed dimension regressor, our

final estimator becomes a two-step semiparametric estimator with a nonparametric series-

based preliminary estimate. Conventional large sample approximations in this case are well

known (e.g., Newey and McFadden, 1994; Chen, 2007; Ichimura and Todd, 2007, and ref-

erences therein). From this perspective, our result contributes not only to this classical

semiparametric literature, but also to the more recent work in the area, which has devel-
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oped distributional approximations that are more robust to tuning parameter choices and

underlying assumptions (e.g., smoothness). In particular, first, Cattaneo, Crump and Jans-

son (2013) and Cattaneo and Jansson (2018) develop approximations for two-step non-linear

kernel-based semiparametric estimators when possibly a “small” bandwidth is used, which

leads to a first-order bias due to undersmoothing the preliminary kernel-based nonparamet-

ric estimate, and show that inference based on the nonparametric bootstrap automatically

accounts for the small bandwidth bias explicitly, thereby offering more robust inference pro-

cedures in that context.2 Second, Chernozhukov, Escanciano, Ichimura, Newey and Robins

(2018b) study the complementary issue of “large” bandwidth or “small” number of series

terms, and develop more robust inference procedures in that case. Their approach is to

modify the estimating equation so that the resulting new two-step estimator is less sensitive

to oversmoothing (i.e., underfitting) the first-step nonparametric estimator. Our result com-

plements this recent literature by offering new inference procedures with demonstrably more

robust properties to undersmoothing (i.e., overfitting) a first step series-based estimator,

results that are not currently available in the semiparametrics literature. See Section II.3

for more details.

Our results go beyond semiparametrics because we do not assume (but allow for) the

first-step estimate to be a nonparametric series-based estimator. In fact, we do not rely on

any specific structure of the covariates in the first step, nor do we rely on asymptotic lin-

ear representations. Thus, our results also contribute to the literature on high-dimensional

models in statistics and econometrics (e.g., Mammen, 1989, 1993; El Karoui, Bean, Bickel,

Lim and Yu, 2013; Cattaneo, Jansson and Newey, 2018f; Li and Müller, 2017, and references

therein) by developing generic distributional approximations for two-step estimators where

the first-step estimator is possibly high-dimensional. See also Fan, Lv and Qi (2011) for

a survey and discussion on high-dimensional and ultra-high-dimensional models.3 A key

distinction here is that the class of estimators we consider is defined through a moment

condition that is non-linear in the first step estimate (e.g., propensity score, generated re-

gressor, etc.). Previous work on high-dimensional models has focused exclusively on either

linear least squares regression or one-step (possibly non-linear) least squares regression. In

contrast, this chapter covers a large class of two-step non-linear procedures, going well be-

2A certain class of linear semiparametric estimators has a very different behavior when undersmoothing
the first step nonparametric estimator; see Cattaneo, Crump and Jansson (2010, 2014a,b) and Cattaneo,
Jansson and Newey (2018e) for discussion and references. In particular, their results show that undersmooth-
ing leads to an additional variance contribution (due to the underlying linearity of the model), while in the
present chapter we find a bias contribution instead (due to the non-linearity of the models considered).

3We call models high-dimensional when the number of available covariates is at most a fraction of the
sample size and ultra-high-dimensional when the number of available covariates is larger than the sample
size.
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yond least squares regression for the second step estimation procedure. Most interestingly,

our results show formally that when many covariates are included in a first-step estimation

the resulting two-step estimator exhibits a bias of order k/
√
n in the distributional approx-

imation, where k denotes the number of included covariates and n denotes the sample size.

This finding contrasts sharply with previous results for high-dimensional linear regression

models with many covariates, where it has been found that including many covariates leads

to a variance contribution (not a bias contribution as we find herein) in the distributional

approximation, which is of order k/n (not k/
√
n as we find herein). By implication, the

many covariates bias we uncover in this chapter will have a first-order effect on inference

when fewer covariates are included relative to the case of high-dimensional linear regression

models.

Our results also have implications for the recent and rapidly growing literature on infer-

ence after covariate/model selection in ultra-high-dimensional settings under sparsity condi-

tions (e.g., Belloni, Chernozhukov and Hansen, 2014; Farrell, 2015; Belloni, Chernozhukov,

Fernández-Val and Hansen, 2017, and references therein). In this literature, the total num-

ber of available covariates/instruments is allowed to be much larger than the sample size,

but the final number of included covariates/instruments is much smaller than the sample

size, as most available covariates are selected out by some penalization or model selection

method (e.g., LASSO) employing some form of a sparsity assumption. This implies that the

number of included covariates/instruments effectively used for estimation and inference (k

in our notation) is much smaller than the sample size, as the underlying distribution theory

in that literature requires k/
√
n = o(1). Therefore, because k/

√
n = O(1) is the only re-

striction assumed in this chapter, our results shed new light on situations where the number

of selected or included covariates, possibly after model selection, is not “small” relative to

the sample size. We formally show that valid inference post-model selection requires that

a relatively small number of covariates enter the final specification, since otherwise a first

order bias will be present in the distributional approximations commonly employed in prac-

tice, thereby invalidating the associated inference procedures. Our results do not employ

any sparsity assumption and allow for any kind of regressors, including many fixed effects,

provided the first-step estimate can be computed.

Our findings are also qualitatively connected to the literature on non-linear panel models

with fixed effects (Fernandez-Val and Weidner, 2199, and references therein) in at least two

ways. First, in that context a first-order bias arises when the number of time periods

(T ) is proportional to the number of entities (N), just like we uncover a first-order bias

when k ∝
√
n, and in both cases this bias can be heuristically attributed to an incidental

parameters/overfitting problem. Second, in that literature jackknife bias correction was
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shown to be able to remove the large-(N, T ) bias, just like we establish a similar result in

this chapter for a class of two-step estimators with high-dimensional first-step. Beyond these

two superficial connections, however, our findings are both technically and conceptually quite

different from the results already available in the large-(N, T ) non-linear panel fixed effects

literature.

Section II.2 introduces the setup and gives an overview of our results. Section II.3

gives details on the main properties of the two-step estimator, in particular characterizing

the non-vanishing bias due to many covariates entering the first-step estimate. Section II.4

establishes validity of the jackknife bias and variance estimator, and therefore presents our

proposed bias-corrected two-step estimator, while Section II.5 establishes valid distributional

approximations for the jackknife-based bias-corrected Studentized statistic using a carefully

modified bootstrap method. Section II.6 applies our main results to the marginal treatment

effect (Heckman and Vytlacil, 2005) estimation with a Monte Carlo experiment and an em-

pirical illustration building on the work of Carneiro, Heckman and Vytlacil (2011). Finally,

Section II.7 concludes. Additional results, preliminary lemmas and all proofs are collected

in Section II.8 and II.9.

II.2 Setup and Overview of Results

We consider a two-step GMM setting where wi = (yT
i , ri, z

T
i )T, i = 1, 2, . . . , n, denotes an

observed random sample, and the finite dimensional parameter of interest θ0 solves uniquely

the (possibly over-identified) vector-valued moment condition E[m(wi, µi,θ0)] = 0 with

µi = E[ri|zi]. Thus, we specialize the general two-step GMM approach in that we view

the unknown scalar µi as a “generated regressor” depending on possibly many covariates

zi ∈ Rk, which we take as the included variables entering the first-step specification. Our

results extend immediately to vector-valued unknown µi, albeit with cumbersome notation.

Given a first-step estimate µ̂i of µi, which we construct by projecting ri on the possibly

high-dimensional covariate zi with least squares, as discussed further below, we study the

two-step estimator:

θ̂ = argmin
θ∈Θ

∣∣∣∣∣Ω1/2
n

n∑
i=1

m(wi, µ̂i,θ)

∣∣∣∣∣ , (II.1)

where | · | denotes the Euclidean norm, Θ ⊆ Rdθ is the parameter space, and Ωn is a

(possibly random) positive semi-definite conformable weighting matrix with positive definite

probability limit Ω0. Regularity conditions on the known moment function m(·) are given
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in the next section.

When the dimension of the included variables zi is “small” relative to the sample size,

k = o(
√
n), textbook large sample theory is valid, and hence estimation and inference can

be conducted in the usual way (e.g., Newey and McFadden, 1994). However, when the

dimension of the included covariates used to approximate the unknown component µi is

“large” relative to the sample size, k = O(
√
n), standard distribution theory fails. To be

more specific, under fairly general regularity conditions, we show in Section II.3 that:

V −1/2(θ̂ − θ0 −B)
d→ N (0, I), (II.2)

where
d→ denotes convergence in distribution, with limits always taken as n → ∞ and

k = O(
√
n), and V and B denoting, respectively, the approximate variance and bias of the

estimator θ̂. This result has a key distinctive feature relative to classical textbook results:

a first-order bias B emerges whenever “many” covariates are included, that is, whenever

k is “large” relatively to n in the sense that k/
√
n 6→ 0. A crucial practical implication

of this finding is that conventional inference procedures that disregard the presence of the

first-order bias will be incorrect even asymptotically, since V −1/2B = Op(k/
√
n) is non-

negligible. For example, non-linear treatment effect, instrumental variables and control

function estimators employing “many” included covariates in a first-step estimation will be

biased, thereby giving over-rejection of the null hypothesis of interest. In Section II.6 we

illustrate this problem using simulated data in the context of instrumental variable models

with many instruments/covariates, where we find that typical hypothesis tests over-reject

the null hypothesis four times as often as they should in practically relevant situations.

Putting aside the bias issue when many covariates are used in the first-step estimation,

another important issue regarding (II.2) is the characterization and estimation of the variance

V . Because the possibly high-dimensional covariates zi are not necessarily assumed to be a

series expansion, or other type of convergent sequence of covariates, the variance V is harder

to characterize and estimate. In fact, our distributional approximation leading to (II.2) is

based on a quadratic approximation of θ̂, as opposed to the traditional linear approximation

commonly encountered in the semiparametrics literature (Newey, 1994; Chen, 2007; Hahn

and Ridder, 2013), thereby giving a more general characterization of the variability of θ̂ with

potentially better finite sample properties.

Nevertheless, our first main result (II.2) suggests that valid inference in two-step GMM

settings is possible even when many covariates are included in the first-step estimation, if

consistent variance and bias estimators are available. Our second main result (in Section

II.4) shows that the jackknife offers an easy-to-implement and automatic way to approximate
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both the variance and the bias:

T = V̂ −1/2(θ̂ − θ0 − B̂)
d→ N (0, I), (II.3)

To implement the jackknife method, one first constructs θ̂
(`)

, for which the `th observation

is deleted and then both steps are re-estimated using the remaining observations. Denote

by θ̂
(·)

= n−1
∑n

`=1 θ̂
(`)

the average of the leave-one-observation-out estimators, then

B̂ = (n− 1)(θ̂
(·)
− θ̂), V̂ =

n− 1

n

n∑
`=1

(θ̂
(`)
− θ̂

(·)
)(θ̂

(`)
− θ̂

(·)
)T. (II.4)

Simulation evidence reported in Section II.6 confirms that the jackknife provides an auto-

matic data-driven method able to approximate quite well both the bias and the variance of

the estimator θ̂, even when many covariates are included in the first-step estimation pro-

cedure. An important virtue of the jackknife is that it can be implemented very fast in

special settings, which is particularly important in high-dimensional situations. Indeed, our

first-step estimator will be constructed using least-squares, a method that is particularly

amenable to jackknifing.

While result (II.3) could be used for inference in large samples, a potential drawback

is that the jackknife bias-correction introduces additional variability not accounted for in

samples of moderate size. Therefore, to improve inference further in applications, we develop

a new, specifically tailored bootstrap-based distributional approximation to the jackknife-

based bias-corrected and Studentized statistic. Our method combines the wild bootstrap

(first-step) and the multiplier bootstrap (second-step), while explicitly taking into account

the effect of jackknifing under the multiplier bootstrap law (see Section II.5 for more details).

To be more specific, our third and final main result is:

sup
t∈Rdθ

∣∣∣P[T ≤ t]− P?[T ? ≤ t]
∣∣∣ p→ 0, T ? = V̂ ?−1/2

(θ̂
?
− θ̂ − B̂?), (II.5)

where θ̂
?

is a bootstrap counterpart of θ̂, B̂? and V̂ ? are properly weighted jackknife bias and

variance estimators under the bootstrap distribution, respectively, and P? is the bootstrap

probability law conditional on the data. Our bootstrap approach is fully automatic and

captures explicitly the distributional effects of estimating the bias (and variance) using the

jackknife, and hence delivers a better finite sample approximation. Simulation evidence

reported in Section II.6 supports this result.

In sum, valid and more robust inference in two-step GMM settings with possibly many

covariates entering the first-step estimate can be conducted by combining results (II.3) and
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(II.5). Specifically, our approach requires three simple and automatic stages: (i) constructing

the two-step estimator θ̂, (ii) constructing the jackknife bias and variance estimators B̂ and

V̂ , and finally (iii) conducting inference as usual but employing bootstrap quantiles obtained

from (II.5) instead of those from the normal approximation. In the remainder of this chapter

we formalize these results and illustrate them using simulated as well as real data.

II.3 The Effect of Including Many Covariates

In this section we formalize the implications of overfitting the first-step estimate entering

(II.1), and show that under fairly general conditions the estimator θ̂, and transformations

thereof, exhibit a first-order bias whenever k is “large”, that is, whenever k ∝
√
n. The

results in this section justify, in particular, the distributional approximation in (II.2).

We first present some regularity conditions maintained throughout this chapter. A

random variable is said to be in BM` (bounded moments) if its `th moment is finite, and

in BCM` (bounded conditional moments) if its `th conditional on zi moment is bounded

uniformly by a finite constant. In addition, define the transformation

Hα,δ
i (m) = sup

(|µ−µi|+|θ−θ0|)α≤δ

|m(wi, µ,θ)−m(wi, µi,θ0)|
(|µ− µi|+ |θ − θ0|)α

.

The following assumption collects some basic notation and regularity conditions.

Assumption II.1 (Regularity conditions)

Let 0 < δ, α, C < ∞ be some fixed constants. (i) m is twice continuously differen-

tiable in µ with derivatives denoted by ṁ(wi, µ,θ0) = ∂
∂µ

m(wi, µ,θ0) and m̈(wi, µ,θ0) =
∂2

∂µ2
m(wi, µ,θ0). In addition, m and ṁ are continuously differentiable in θ. (ii) Hα,δ

i (m),

Hα,δ
i (∂m

∂θ
), Hα,δ

i (∂ṁ
∂θ

) ∈ BM1. (iii) mi, ṁi, m̈i, Hα,δ
i (m̈), ε3

i , |ṁiεi|, |m̈i|ε2
i , |H

α,δ
i (m̈)|ε2

i ∈
BCM2, where mi = m(wi, µi,θ), ṁi = ṁ(wi, µi,θ), m̈i = m̈(wi, µi,θ), and εi = ri − µi.
(iv) M0 = E

[
∂
∂θ

m(wi, µi,θ0)
]

has full (column) rank dθ. ‖

These conditions are standard in the literature. They require smoothness of m(w, µ,θ)

with respect to both µ and θ, and boundedness of (conditional) moments of various orders.

In future work we plan to extend our results to non-differentiable second-step estimating

equations.

II.3.1 First-Step Estimation

We are interested in understanding the effects of including possibly many covariates zi,

that is, in cases where its dimension k is possibly “large” relative to the sample size. For
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tractability and simplicity, we consider linear approximations to the unknown component:

µi = E[ri|zi] = zT
i β + ηi, E[ziηi] = 0, (II.6)

for a non-random vector β, where ηi represents the error in the best linear approximation.

This motivates the least-squares first-step estimate:

µ̂i = zT
i β̂, β̂ ∈ argmin

β∈Rk

n∑
i=1

(ri − zT
i β)2, (II.7)

which is quite common in empirical work. It is possible to allow for non-linear models,

but such methods are harder to handle mathematically and usually do not perform well

numerically when zi is of large dimension. Furthermore, a non-linear approach will be

computationally more difficult, as we discuss in more detail below. Our proofs explicitly

exploit the linear regression representation of µ̂i to scale down the already quite involved

technical work. Nevertheless, we also conducted preliminary theoretical work to verify that

the main results presented below carry over to non-linear least-squares estimators (e.g.,

logistic regression when ri is binary).

Using the first-step estimate µ̂i in (II.7), we investigate the implications of introducing

possibly many covariates zi, and thus our approximations allow for (but do not require

that) k being “large” relative to the sample size. Specifically, we show that when k ∝
√
n

conventional inference procedures become invalid due to a new bias term in the asymptotic

approximations.

In some settings, the covariates zi can have approximation power beyond the first-step

estimation, as it occurs for instance when these covariates are basis expansions. To allow for

this possibility, we also define, for a non-random matrix Γ,

E[ṁ(wi, µ,θ0)|zi] = Γzi + ζi, E[ziζ
T
i ] = 0, (II.8)

where ζi is the error from the best linear approximation of E[ṁ(wi, µi,θ0)|zi] based on zi.

This approximation error will not be small in general, because our result allows for generic

high-dimensional first-step covariates. However, in some special cases it can be small as we

discuss further below.

The following assumption collects the key restrictions we impose on the first-step pro-

cedure.

Assumption II.2 (First-step)

(i) max1≤i≤n |µ̂i − µi| = op(1). (ii) E[|ηi|2] = o(n−1/2) and E[|ηi|2]E[|ζi|2] = o(n−1). ‖
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This assumption imposes high-level conditions on the covariates zi entering the first-step

estimate (II.7), covering both series-based nonparametric estimation and, more generally,

many covariates settings. Assumption II.2(i) requires uniform consistency of µ̂i for µi only,

without a convergence rate. Primitive conditions can be found in the vast literatures on

nonparametric sieve estimation and high-dimensional models. Underlying this assumption

is the implicit requirement that the best linear approximation of µi based on zi in (II.6)

should vanish asymptotically.

Assumption II.2(ii) concerns the approximation power of the covariates zi explicitly,

measured in terms of the mean squared error of best linear approximations. It requires, at

least, that the best linear approximation error in (II.6) is sufficiently small relative to the

sample size in mean square. The condition E[|ηi|2] = o(n−1/2) cannot be dropped without

affecting the interpretation of the final estimand θ0 because the first-step best linear approx-

imation error will affect (in general) the probability limit of the resulting two-step estimator.

In other words, either the researcher assumes that the best linear approximation is approxi-

mately exact in large samples, or needs to change the interpretation of the probability limit

of the two-step estimator because of the misspecification introduced in the first step. The

latter approach is common in empirical work, where researchers often employ a “flexible”

parametric model, such as linear regression, Probit or Logit, all of which are misspecified in

general.

Furthermore, the exact quality of approximation for the first-step estimate required in

Assumption II.2(ii) depends on the quality of approximation in (II.8). At one extreme, the

covariates zi may not offer any approximation of E[ṁ(wi, µ,θ0)|zi] in mean square, in which

case E[|ζi|2] = O(1), and hence the relevant restriction becomes E[|ηi|2] = o(n−1). This

corresponds to the case of many generic covariates zi and non-linear E[ṁ(wi, µ,θ0)|zi], that

is, cases where zi are not basis of approximation and/or E[ṁ(wi, µ,θ0)|zi] can not be well

approximated by a linear combination of zi.

At the other extreme, if E[ṁ(wi, µi,θ0)|zi] can be well approximated by the best linear

mean square prediction based on zi so that, at least, E[|ζi|2] = O(n−1/2), then the relevant

restriction on the first-step estimate becomes E[|ηi|2] = o(n−1/2). This case encompasses the

standard two-step semiparametric setup, where the covariates zi include basis expansions

able to approximate µi = E[ri|zi] and E[ṁ(wi, µ,θ0)|zi] accurately enough in mean square

(usually justified by smoothness of these conditional expectations). From this perspective,

the sufficient conditions E[|ηi|2] = o(n−1/2) and E[|ζi|2] = O(n−1/2) reassemble the usual

requirement of better than n1/4-consistency of first-step nonparametric estimators in two-

step semiparametrics (see Cattaneo and Jansson, 2018, and references therein), but this is

imposed only on best linear approximation errors (i.e., misspecification/smoothing bias),
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which are exacerbated for small k and not for large k, the latter being the main focus of the

present chapter.

II.3.2 Distribution Theory

It is not difficult to establish θ̂
p→ θ0, even when k/

√
n = O(1). Thus, we impose the

following high-level assumption.

Assumption II.3 (Consistency)

(i) θ̂
p→ θ0 the unique solution of E[m(wi, µi,θ)] = 0 and an interior point of Θ. (ii)

Ωn
p→ Ω0 positive definite. ‖

On the other hand, the
√
n-scaled mean squared error and distributional properties of

the estimator θ̂ will change depending on whether k is “small” or “large” relative to the

sample size. To describe heuristically the result, consistency of θ̂ and a second-order Taylor

series expansion give:

√
n(θ̂ − θ0) ≈ 1√

n
Σ0

n∑
i=1

m(wi, µi,θ0) (II.9)

+
1√
n

Σ0

n∑
i=1

ṁ(wi, µi,θ0)
(
µ̂i − µi

)
(II.10)

+
1√
n

Σ0

n∑
i=1

1

2
m̈(wi, µi,θ0)

(
µ̂i − µi

)2

, (II.11)

where Σ0 = −(MT
0 Ω0M0)−1MT

0 Ω0.

Term (II.9) will be part of the influence function. Using conventional large sample

approximations (i.e., k fixed or at most k/
√
n→ 0), term (II.10) contributes to the variability

of θ̂ as a result of estimating the first step, and term (II.11) will be negligible. Here, however,

we show that under the many covariates assumption k/
√
n 6→ 0, both (II.10) and (II.11)

will deliver nonvanishing bias terms. The main intuition is as follows: as the number of

covariates increases relative to the sample size, the error in µ̂i−µi also increases and features

in terms (II.10) and (II.11). This, in turn, affects the finite sample performance of the usual

asymptotic approximations, delivering unreliable results in applications. To be specific, the

term (II.10) contributes a leave-in bias arising from using the same observation to estimate

µi and later the parameter θ0, while the term (II.11) contributes with a bias arising from

averaging (non-linear) squared errors in the estimation of µi.

The following theorem formalizes our main finding. The proof relies on several pre-

liminary results given in Section II.8. Let Z = [z1, z2, · · · , zn]T be the first step included
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covariates and Π = Z(ZTZ)−ZT be the projection matrix with elements {πij : 1 ≤ i, j ≤ n}.

Theorem II.1 (Asymptotic normality)

Suppose Assumption II.1, II.2 and II.3 hold. If k = O(
√
n), then (II.2) holds with

B = Σ0
1

n

n∑
i=1

E[Bi|Z], V =
1

n
Σ0

(
V[E[m(wi, µi,θ0)|Z]] +

1

n

n∑
i=1

V[Ψi|Z]

)
Σ0,

where

Bi = ṁ(wi, µi,θ0)(ri − µi)πii +
1

2
m̈(wi, µi,θ0)

n∑
j=1

(rj − µj)2π2
ij,

Ψi = m(wi, µi,θ0) +
( n∑
j=1

E[ṁ(wj, µj,θ0)|Z]πij

)
(ri − µi). ‖

Using well known properties of projection matrices, it follows that B = Op(k/n) and

non-zero in general, and thus the distributional approximation in Theorem II.1 will exhibit

a first-order asymptotic bias V −1/2B whenever k is “large” relative to the sample size (e.g.,

k ∝
√
n). In turn, this result implies that conventional inference procedures ignoring this

first-order distributional bias will be invalid, leading to over-rejection of the null hypothesis

of interest and under-coverage of the associated confidence intervals. Section II.6 presents

simulation evidence capturing this phenomena.

To understand the implications of the above theorem, we discuss the two terms in Bi.

The first term corresponds to the contribution from (II.10), because a first order approxima-

tion gives m(wi, µ̂i,θ0) ≈ ṁ(wi, µi,θ0)(µ̂i − µi) ≈ ṁ(wi, µi,θ0)(
∑

j πij(rj − µj)). Because

E[rj − µj|zj] = 0, this bias is proportional to the sample average of Cov[ṁ(wi, µi,θ0), ri −
µi|zi]πii. Hence the bias, due to the linear contribution of µ̂i, will be zero if there is no resid-

ual variation in the sensitivity measure ṁ (i.e., V[ṁ(wi, µi,θ0)|zi] = 0) or, more generally,

the residual variation in the sensitivity measure ṁ is uncorrelated to the first step error term

(i.e., Cov[ṁ(wi, µi,θ0), ri − µi|zi] = 0).

The second term in Bi captures the quadratic dependence of the estimating equation on

the unobserved µi, coming from (II.11). Because of the quadratic nature, this bias represents

the accumulated estimation error when µ̂i is overfitted. When i 6= j, which is the main part of

the bias, E[m̈(wi, µi,θ0)(rj −µj)2|zi, zj] = E[m̈(wi, µi,θ0)|zi]E[(rj −µj)2|zj], and hence this

portion of the bias will be non-zero unless an estimating equation linear in µi is considered

or, slightly more generally, E[m̈(wi, µi,θ0)|zi] = 0. Intuitively, overfitting the first step does

not give a quadratic contribution if the estimating equation is not sensitive to the first step

on average to the second order.
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The first bias can be manually removed by employing a leave-one-out estimator of

µi. However, the second bias cannot be removed this way. Furthermore, the leave-one-out

estimator µ̂
(i)
i usually has higher variability compared with µ̂i, hence the second bias will be

amplified, which is confirmed by our simulations.

Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018b) introduced the class

of locally robust estimators, which are a generalization of doubly robust estimators (e.g.,

Bang and Robins, 2005) and the efficient influence function estimators (e.g., Cattaneo,

2010, p. 142). These estimators can offer demonstrable improvements in terms of smooth-

ing/approximation bias rate restrictions and, consequently, they offer robustness to “small”

k (underfitting). See also Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and

Robins (2018a) and Newey and Robins (2018) for related approaches. This type of estimators

are carefully constructed so that (II.10) is removed, but they do not account for (II.11). Be-

cause the “large” k bias is in part characterized by (II.11), locally robust estimators cannot

(in general) reduce the bias we uncover in this chapter. Therefore, our methods complement

locally robust estimation by offering robustness to overfitting, that is, situations where the

first step estimate includes possibly many covariates. Cattaneo and Jansson (2018) illustrate

this fact in the context of kernel-based estimation.

Consider next the variance and distributional approximation. Theorem II.1 shows that

the distributional properties of θ̂ are based on a double sum in general, and hence it does

not have an “influence function” or asymptotically linear representation. Nevertheless, after

proper Studentization, asymptotic normality holds as in (II.2). The following remark sum-

marizes the special case when the estimator, after bias correction, does have an asymptotic

linear representation.

Remark II.1 (Asymptotic linear representation) Suppose the conditions of Theorem

II.1 hold. If, in addition, E[|ζi|2] = o(1), then

√
n(θ̂ − θ0 −B) = Σ0

1√
n

n∑
i=1

{
m(wi, µi,θ0) + E[ṁ(wi, µi,θ0)|zi](ri − µi)

}
+ op(1),

hence θ̂ is asymptotically linear after bias correction even when k/
√
n 6→ 0. However, θ̂ is

asymptotically linear if and only if k/
√
n→ 0 in general. See Newey (1994) and Hahn and

Ridder (2013) for more discussion on asymptotic linearity and variance calculations. ‖

In practice one needs to estimate both the bias and the variance to conduct valid sta-

tistical inference. Plug-in estimators could be constructed to this end, though additional

unknown functions would need to be estimated (e.g., conditional expectations of derivatives

of the estimating equation). Under regularity conditions, these estimators would be con-
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sistent for the bias and variance terms. As a practically relevant alternative, we show in

the upcoming sections that the jackknife can be used to estimate both the bias and vari-

ance, and that a carefully crafted resampling method can be used to conduct inference. The

key advantage of these results is that they are fully automatic, and therefore can be used

for any model considered in practice without having to re-derive and plug-in for the exact

expressions each time.

Remark II.2 (Delta method) Our results apply directly to many other estimands via

the so-called delta method. Let ϕ(·) be a possibly vector-valued continuously differentiable

function of the parameter θ0 with gradient ϕ̇(·). Then, under the conditions of Theorem

II.1, (
ϕ̇(θ0)V ϕ̇(θ0)T

)−1/2(
ϕ(θ̂)−ϕ(θ0)− ϕ̇(θ0)B

)
d→ Normal(0, I),

provided that ϕ̇(θ0) is full rank. Hence, the usual delta method can be used for estimation

and inference in our setting, despite the presence of potentially many covariates entering the

first-step estimate. ‖

Plug-in consistent estimation of the appropriate GMM efficient weighting matrix is also

possible given our regularity conditions, but we do not give details here to conserve space.

II.4 Jackknife Bias Correction and Variance Estima-

tion

We show that the jackknife is able to estimate consistently the many covariate bias and the

asymptotic variance of θ̂, even when k = O(
√
n), and without assuming a valid asymptotic

linear representation for θ̂.

The jackknife estimates are constructed by simply deleting one observation at the time

and then re-estimating both the first and second steps. To be more specific, let µ̂
(`)
i denote

the first-step estimate after the `th observation is removed from the dataset. Then, the

leave-`-out two-step estimator is

θ̂
(`)

= arg min
θ

∣∣∣Ω1/2
n

n∑
i=1,i 6=`

m(wi, µ̂
(`)
i ,θ)

∣∣∣, ` = 1, 2, . . . , n.

Finally, the bias and variance estimates are constructed as in (II.4). This approach is fully

data-driven and automatic. In addition, another appealing feature of the jackknife in our case

is that it is possible to exploit the specific structure of the problem to reduce computational
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burden. Specifically, because we consider a linear regression fit for the first step, the leave-

`-out estimate µ̂
(`)
i can easily be obtained by

µ̂
(`)
i = µ̂i +

µ̂` − r`
1− π``

· πi`, 1 ≤ i ≤ n,

where recall that πi` is the (i, `)th element of the projection matrix for the first step Π =

Z(ZTZ)−ZT. Since recomputing the first-step estimate can be time-consuming when k is

large, the above greatly simplifies the algorithm and reduces computing time.

To show the validity of the jackknife, we impose the following additional mild assump-

tions on the possibly large dimensional covariates zi, captured through the projection matrix

of the first-step estimate.

Assumption II.4 (Jackknife)

(i)
∑

1≤i≤n π
2
ii = op(k). (ii) max1≤i≤n 1/(1− πii) = Op(1). ‖

The first two conditions together correspond to “design balance”, which states that

asymptotically the projection matrix is not “concentrated” on a few observations. They are

slightly weaker than max1≤i≤n πii = op(1), which is commonly assumed in the literature on

high-dimensional statistics. For more discussion on design balance in linear least squares

models see, e.g., Chatterjee and Hadi (1988). With these conditions, we obtain the following

result.

Theorem II.2 (Jackknife-based valid inference)

Suppose Assumption II.1, II.2, II.3 and II.4 hold. If k = O(
√
n), then (II.3) holds. ‖

By showing the validity of the jackknife, one can construct confidence intervals and

conduct hypothesis tests using the jackknife bias and variance estimators, and the normal

approximation. In particular, bias correction will not affect the variance of the asymptotic

distribution. On the other hand, any bias correction technique is likely to introduce ad-

ditional variability, which can be nontrivial in finite samples. This is indeed confirmed by

our simulation studies. In the next section, we introduce a carefully crafted fully automatic

bootstrap method that can be applied to the bias-corrected Studentized statistic to obtain

better finite sample distributional approximations.

Remark II.3 (Delta method) Consider the setup of Remark II.2, where the goal is to

conduct estimation and inference for a (smooth) function of θ0. In this case, the estimator is

ϕ(θ̂). There are at least three ways to conduct bias correction: (i) plug-in method leading to

ϕ(θ̂−B̂), (ii) linearization-based method leading to ϕ(θ̂)−ϕ̇(θ̂)B̂, and (iii) direct jackknife

of ϕ(θ̂). The three methods are asymptotically equivalent, and can be easily implemented
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in practice. The same argument applies to the variance estimator when ϕ(θ0) is the target

parameter. ‖

II.5 Bootstrap Inference after Bias Correction

In this section we develop a fast, automatic and specifically tailored bootstrap-based ap-

proach to conducting post-bias-correction inference in our setting. The method combines

the wild bootstrap (first-step estimation) and the multiplier bootstrap (second-step estima-

tion) to give an easy-to-implement valid distributional approximation to the finite sample

distribution of the jackknife-based bias-corrected Studentized statistic in (II.3). See Mam-

men (1993) for a related result in the context of a high-dimensional one-step linear regression

model without any bias-correction, and Kline and Santos (2012) for some recent higher-order

results in the context of parametric low-dimensional linear regression models.

Let ω?i , i = 1, 2, · · · , n be i.i.d. bootstrap weights with E[ω?i ] = 1, V[ω?i ] = 1, E[(ω?i −
1)3] = 0 and finite fourth moment. First, we describe the bootstrap construction of θ̂

?
. We

employ the wild bootstrap to obtain µ̂?i , mimicking the first-step estimate (II.7): we regress

r?i on zi, where r?i = µ̂i + (ω?i − 1)(ri − µ̂i). Then, we employ the multiplier bootstrap to

obtain θ̂
?
, mimicking the second-step estimate (II.1):

θ̂
?

= arg min
θ

∣∣∣Ω1/2
n

n∑
i=1

ω?im(wi, µ̂
?
i ,θ)

∣∣∣. (II.12)

Second, we describe the bootstrap construction of B̂ and V̂ ; that is, the implementation

of the jackknife bias and variance estimators under the bootstrap. Because we employ a

multiplier bootstrap, the jackknife estimates need to be adjusted to account for the effective

number of observations under the bootstrap law. Thus, we have:

B̂? = (n− 1)(θ̂
?,(·)
− θ̂

?
), V̂ ? =

n− 1

n

n∑
`=1

ω?` (θ̂
?,(`)
− θ̂

?,(·)
)(θ̂

?,(`)
− θ̂

?,(·)
)T,

where θ̂
?,(·)

= n−1
∑n

`=1 ω
?
` θ̂

?,(`)
, and

θ̂
?,(`)

= arg min
θ

∣∣∣Ω1/2
n

{ n∑
i=1

[
ω?i − 1(i=`)

]
m(wi, µ̂

?,(`)
i ,θ)

}∣∣∣, ` = 1, 2, . . . , n.

Here µ̂
?,(`)
i is obtained by regressing r?i on zi, without using the `th observation. Equivalently,

the jackknife deletes the `th observation in the first step wild bootstrap, and reduces the `th

94



weight ω?` by 1 in the second step multiplier bootstrap.

Our resampling approach employs the wild bootstrap to form µ̂?i , which is very easy

and fast to implement and does not require recomputing the possibly high-dimensional pro-

jection matrix Π, and then uses the same bootstrap weights to construct θ̂
?

via a multiplier

resampling approach. It is possible to use the multiplier bootstrap for both estimation steps,

which would give a more unified treatment, but such an approach is harder to implement

and does not utilize efficiently (from a computational point of view) the specific structure

of the first-step estimate. To be more specific, employing the multiplier bootstrap in the

first-step estimation leads to µ̂?i = zT
i (ZTW?Z)−ZTW?R, where R = [r1, r2, . . . , rn]T and

W? is a diagonal matrix with diagonal elements {ω?i }1≤i≤n, which requires recomputing the

projection matrix for each bootstrap replication. In contrast, our bootstrap approach leads

to µ̂?i = zT
i (ZTZ)−ZTR?, where R? = [r?1, r

?
2, . . . , r

?
n]T. As discussed before, this impor-

tant practical simplification also occurs because we are employing a linear regression fit in

the first step. Employing the standard nonparametric bootstrap may also be possible, but

additional (stronger) regularity conditions would be required. Last but not least, we note

that combining the jackknife with the multiplier bootstrap näıvely (that is, deleting the `th

observation with its weight ω?` altogether in the second step) does not deliver a consistent

variance estimate.

Only two additional mild, high-level conditions on the bootstrap analogue first-step and

second-step estimators are imposed as follows.

Assumption II.5 (Bootstrap)

(i) max1≤i≤n |µ̂?i − µ̂i| = op(1). (ii) |θ̂
?
− θ̂| = op(1). ‖

The following theorem summarizes our main result for inference employing the bootstrap

after jackknife bias and variance estimation.

Theorem II.3 (Bootstrap validity)

Suppose Assumption II.1, II.2, II.3, II.4 and II.5 hold. If k = O(
√
n), then (II.5) holds. ‖

It is common to assume the bootstrap weights ω?i to have mean 1 and variance 1. For

the jackknife bias and variance estimator to be consistent under the bootstrap distribution,

we also need that the third central moment of ω?i is zero. Examples include ω?i = 1 + e?i with

e?i following the Rademacher distribution or the six-point distribution proposed in Webb

(2014).

For inference, consider for example the one dimensional case: dim(θ0) = 1. The boot-

strap percentile-t bias-corrected (equal tail) confidence interval for θ0 is[
θ̂ − B̂ − q̂1−α/2 ·

√
V̂ , θ̂ − B̂ − q̂α/2 ·

√
V̂
]
,
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where q̂α = inf{t ∈ R : F̂ (t) ≥ α} is the empirical αth quantile of {T ?
b : 1 ≤ b ≤ B}, with

F̂ (t) = 1
B

∑B
b=1 1[T ?

b ≤ t] and T ?
b denoting the bootstrap statistic in (II.5) in bth simulation.

II.6 Numerical Evidence

We provide numerical evidence for the methods developed in this chapter. First, we offer a

short introduction to the marginal treatment effect, and then present a Monte Carlo exper-

iment constructed in the context of MTE estimation, which highlights the role of the many

covariates bias and showcases the role of jackknife bias correction and bootstrap approxi-

mation for estimation and inference. Second, also in the context of MTE estimation and

inference, we offer an empirical illustration following the work of Carneiro, Heckman and

Vytlacil (2011).

II.6.1 Marginal Treatment Effect

Originally proposed by Björklund and Moffitt (1987), and later developed and popularized

by Heckman and Vytlacil (2005) and Heckman, Urzua and Vytlacil (2006), the marginal

treatment effect (MTE) is an important parameter of interest in program evaluation and

causal inference. Not only it can be viewed as a limiting version of the local average treat-

ment effect (LATE) of Imbens and Angrist (1994) for continuous instrumental variables (c.f.

Angrist, Graddy and Imbens, 2000), but also it can be used to unify and interpret many

other treatment effects parameters such as the average treatment effect or the treatment

effect on the treated. Another appealing feature of the MTE is that it provides a description

of treatment effect heterogeneity.

To describe the MTE, we adopt a potential outcomes framework under random sam-

pling. Suppose (Yi, Ti,Xi,Zi), i = 1, 2, . . . , n, is i.i.d., where Yi is the outcome of interest, Ti

is a treatment status indicator, Xi ∈ Rdx is a dx-variate vector of observable characteristics,

and Zi ∈ Rk is k-variate vector of “instruments” (which may include Xi and transforma-

tions thereof). The observed data is generated according to the following switching regression

model, also known as potential outcomes or the Roy model,

Yi = TiYi(1) + (1− Ti)Yi(0), Yi(1) = g1(Xi) + U1i, Yi(0) = g0(Xi) + U0i, (II.13)

Ti = 1[Pi ≥ Vi], Pi = P (Zi) = E[Ti|Zi], Vi|Xi ∼ Uniform[0, 1], (II.14)

where Yi(1) and Yi(0) are the potential outcomes when an individual receives the treatment

or not, (U1i, U0i, Vi) are unobserved error terms, and Pi is the propensity score or probability
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of selection. The selection equation (II.14) is taken essentially without loss of generality to

be of the single threshold-crossing form (see Vytlacil, 2002, for more discussion), though this

representation may affect the interpretation of the unobserved heterogeneity.

The (conditional on Xi) MTE at level a is defined as

τMTE(a|x) = E[Yi(1)− Yi(0)|Vi = a,Xi = x].

The MTE will be constant in a if either (i) the individual treatment effect Yi(1) − Yi(0) is

constant, or (ii) there is no selection on unobservables, that is, the error terms of the outcome

equation (II.13) are unrelated to that of the selection equation (II.14). The parameter

τMTE(a|x) is understood as the treatment effect for the subpopulation where an infinitesimal

increase in the propensity score leads to a change in participation status. Note that for a

close to 1, the MTE measures the treatment effect in a subpopulation that is very unlikely

to be treated. Other treatment and policy effects can be recovered using the MTE.

Two assumptions are made to facilitate identification. First, the collection of instru-

ments Zi is nondegenerate and independent of the error terms (U1i, U0i, Vi) conditional on

the covariates Xi. Second, 0 < P[Ti = 1|Xi] < 1, so that conditional on the covariates, both

treated and untreated individuals are observable in the population. It can then be shown

that, for any limit point a in the support of the propensity score, τMTE(a|x) is

τMTE(a|x) =
∂

∂a
E[Yi|Pi = a,Xi = x].

This representation shows that the MTE is identifiable, and could in principle be estimated

by standard nonparametric techniques (once Pi is estimated). In practice, however, nonpara-

metric methods for estimating τMTE(a|x) and functionals thereof are often avoided because

of the curse of dimensionality, the negative impact of smoothing and tuning parameters,

and efficiency considerations. A flexible parametric functional form can be used instead:

E[Yi|Pi,Xi] = e(Xi, Pi,θ0), where e(·) is a known function up to some finite dimensional

parameter θ0.

Therefore, the MTE estimator is often constructed as follows:

τ̂MTE(a|x) =
∂

∂a
e(x, a, θ̂), θ̂ = argmin

θ

n∑
i=1

(
Yi − e(Xi, P̂i,θ)

)2

,

P̂i = ZT
i β̂, β̂ = argmin

β

n∑
i=1

(
Ti − ZT

i β
)2

,

Identification and estimation of the MTE, as well as other policy-relevant parameters
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based on it, require exogenous variation in the treatment equation (II.14) induced by instru-

mental variables. In practice, researchers induce this variation by (i) employing many instru-

ments, possibly generating them using power expansions and interactions, and (ii) including

interactions with the “raw” or expanded instruments. Employing a flexible, high-dimensional

specification for the probability of selection is also useful to mitigate misspecification errors.

These observations have led researchers to employ many covariates/instruments in the prob-

ability of selection, that is, have a “large” k relative to the sample size. In this paper, we

show that flexibly modeling the probability of selection can lead to a first-order bias in the

estimation of the MTE and related policy-relevant estimands, even when the outcome equa-

tion is modeled parametrically and low-dimensional. Furthermore, we provide automatic

bias-correction and inference procedures based on resampling methods.

The following result characterizes the asymptotic properties of the estimated MTE.

Corollary II.1 (Asymptotic Normality: MTE)

Suppose the assumptions of Theorem II.1 hold. Then, for θ̂,

Bi =
∂2e(Xi, Pi,θ0)

∂Pi∂θ

[
(1− Pi) · E[TiYi(1)|Zi]− Pi · E[(1− Ti)Yi(0)|Zi]

]
πii

+
1

2

n∑
j=1

[
∂2e(Xi, Pi,θ0)

∂Pi∂θ
τMTE(Pi|Xi) +

1

2

∂e(Xi, Pi,θ0)

∂θ

∂τMTE(Pi|Xi)

∂Pi

]
Pj(1− Pj)π2

ij,

Ψi =
∂e(Xi, Pi,θ0)

∂θ

(
Yi − e(Xi, Pi,θ0)

)
−

(
n∑
j=1

∂e(Xj, Pj,θ0)

∂θ
τMTE(Pj|Xj)πij

)
(Ti − Pi). ‖

The above result gives a precise characterization of the asymptotic possibly first-order

bias and variance of θ̂ via the results in Theorem II.1. To obtain the corresponding result

for the estimated MTE, τ̂MTE(a|x), the delta method is employed and an extra multiplicative

factor ∂2e(x, a,θ0)/∂a∂θT shows up. As a result, both the bias and variance for the estimated

MTE will depend on the evaluation point (x|a).

To understand the implications of the above corollary, we consider the bias terms. Note

that the factor associated with πii essentially captures treatment effect heterogeneity (in

the outcome equation) and self-selection. To make it zero, one needs to assume there is no

heterogeneous treatment effect and that the agents do not act on idiosyncratic characteristics

that are unobservable to the analyst. For the second bias term associated with π2
ij, note that

it involves both the level of the MTE and its curvature. Hence the second bias is related

not only to treatment effect heterogeneity captured through the shape of the MTE, but also

to the magnitude of the treatment effect. Thus, aside from the off chance of these terms

canceling each other, the many instruments bias will be zero only when there is neither

heterogeneity nor self-selection, and the treatment effect is zero. Since these conditions are
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unlikely to hold in empirical work, even in randomized controlled trials, we expect the many

instruments bias to have a direct implication in most practical cases. Therefore, conventional

estimation and inference methods that do not account for the many instruments bias will be

invalid, even in large samples, when many instruments are included in the estimation.

II.6.2 Simulation Study

We set the potential outcomes to Yi(0) = U0i and Yi(1) = 0.5+U1i. We assume there are many

potential instruments Zi = [1, Z1,i, Z2,i, . . . , Z199,i], with Z`,i ∼ Uniform[0, 1] independent

across ` = 1, 2, . . . , 199. The selection equation is assumed to take a very parsimonious

form: Ti = 1
[
0.1 + Z1,i + Z2,i + Z3,i + Z4,i ≥ Vi

]
. In this case Assumption II.2 holds

automatically without misspecification error. Finally, the error terms are distributed as

Vi|Zi ∼ Uniform[0, 1], U0i|Zi, Vi ∼ Uniform[−1, 1] and U1i|Zi, Vi ∼ Uniform[−0.5, 1.5− 2Vi].

Because additional covariates Xi do not feature in this data generating process, the treatment

effect heterogeneity and self-selection are captured by the correlation between U1i and Vi.

It follows that E[Yi|Pi = a] = a− a2

2
, and the MTE is τMTE(a) = 1− a. Given a random

sample index by i = 1, 2, . . . , n, the second-step regression model is set to E[Yi|Pi] = θ1 + θ2 ·
Pi+θ3 ·P 2

i and therefore the estimated MTE is τ̂MTE(a) = θ̂2 +2a · θ̂3 with (θ̂1, θ̂2, θ̂3)′ denoting

the least-squares estimators of (θ1, θ2, θ3)′. We consider the quantity
√
n (τ̂MTE(a)− τMTE(a))

at a = 0.5, with and without bias correction, for two sample sizes n = 1, 000 and n = 2, 000,

and across 2, 000 simulation repetitions. To estimate the propensity score, we regress Ti on

a constant term and {Z`,i} for 1 ≤ ` ≤ k − 1, where the number of covariates k ranges from

5 to 200. Note that k = 5 corresponds to the most parsimonious model which is correctly

specified.

For inference, we consider two approaches. In the conventional approach, the many

instruments bias is ignored, and hypothesis testing is based on normal approximation to

the t-statistic, where the standard error comes from the simulated sampling variability of

the estimator (i.e. the oracle standard error, which is infeasible). That is, this benchmark

approach considers the infeasible statistic (τ̂MTE − τMTE)/
√
V[τ̂MTE], with V[τ̂MTE] denoting the

simulation variance of τ̂MTE, and employs standard normal quantiles. The other approach,

which follows the results in this chapter, utilizes both the jackknife and the bootstrap: the

feasible statistic (τ̂MTE − B̂ − τMTE)/
√

V̂ is constructed as in Section II.4 and inference is

conducted using the bootstrap approximation as in Section II.5.

The results are collected in Table II.1. The bias is small with small k, as the most

parsimonious model is correctly specified. With more instruments added to the propensity

score estimation, the many instruments bias quickly emerges, and without bias correction, it
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leads to severe empirical undercoverage (conventional 95% confidence is used). Interestingly,

the finite sample variance shrinks at the same time. Therefore for this particular DGP,

incorporating many instruments not only leads to biased estimates, but also gives the illusion

that the parameter is estimated precisely. With jackknife bias correction, there is much less

empirical size distortion, and the empirical coverage rate remains well-controlled even with

200 instruments used in the first step. Moreover, the jackknife bias correction also (partially)

restores the true variability of the estimator.

Although the focus here is on inference and, in particular, empirical coverage of associ-

ated testing procedures, it is also important to know how the bias correction will affect the

Standard Deviation (sd) and the Mean Squared Error (MSE) of the point estimators. Recall

that the model is correctly specified with 5 instruments, hence it should not be surprising

that incorporating bias correction there increases the variability of the estimator and the

MSE – although the impact is very small. As more instruments are included, however, the

MSE increases rapidly without bias correction, while the MSE of the bias corrected estimator

remains relatively stable. In particular, this finding is driven by a sharp reduction in bias

that more than compensates the increase in variability of the estimator. A larger variance of

the bias-corrected estimator is expected, as additional sampling variability is introduced by

the bias correction. All in all, the bias-corrected estimator seems to be appealing not only

for inference, but also for point estimation because it performs better in terms of MSE when

the number of instruments is moderate or large.

II.6.3 Empirical Illustration

To illustrate our procedure, we consider estimating the marginal returns to college educa-

tion following the work of Carneiro, Heckman and Vytlacil (2011, CHV hereafter) with MTE

methods. The data consists of a subsample of white males from the 1979 National Longitu-

dinal Survey of Youth (NLSY79), and the sample size is n = 1, 747. The outcome variable,

Yi, is the log wage in 1991, and the sample is split according to the treatment variable Ti = 0

(high school dropouts and high school graduates), and Ti = 1 (with some college education

or college graduates). The dataset includes covariates on individual and family background

information, and four “raw” instrumental variables: presence of four-year college, average

tuition, local unemployment and wage rate, measured at age 17 of the survey participants.4

We normalize the estimates by the difference of average education level between the two

groups, so that the estimates are interpreted as the return to per year of college education.

4Source: National Longitudinal Surveys, Bureau of Labor Statistics. Disclaimer: This research was
conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views expressed here do not
necessarily reflect the views of the BLS.
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Table II.1. Simulation: marginal treatment effects.

Conventional Bias-Corrected

k k/n k/
√
n bias sd

√
mse coverage length bias sd

√
mse coverage length

Panel (a) n = 1000

5 0.00 0.16 0.14 4.72 4.73 0.95 18.51 −0.21 4.93 4.93 0.93 18.28

20 0.02 0.63 1.73 4.11 4.46 0.93 16.11 0.18 5.26 5.27 0.94 19.81

40 0.04 1.26 3.08 3.54 4.69 0.86 13.88 1.03 5.11 5.22 0.94 19.67

60 0.06 1.90 3.96 3.22 5.11 0.77 12.63 1.75 5.02 5.32 0.93 19.27

80 0.08 2.53 4.61 3.00 5.50 0.66 11.76 2.28 4.91 5.41 0.92 18.67

100 0.10 3.16 5.10 2.83 5.83 0.56 11.08 2.65 4.78 5.46 0.90 18.28

120 0.12 3.79 5.55 2.67 6.16 0.46 10.48 2.96 4.66 5.51 0.89 17.80

140 0.14 4.43 5.97 2.54 6.49 0.35 9.98 3.24 4.57 5.60 0.87 17.46

160 0.16 5.06 6.35 2.45 6.81 0.26 9.59 3.46 4.43 5.62 0.86 17.15

180 0.18 5.69 6.69 2.33 7.09 0.18 9.13 3.58 4.35 5.63 0.86 16.97

200 0.20 6.32 7.03 2.23 7.38 0.12 8.75 3.81 4.22 5.69 0.84 16.75

Panel (b) n = 2000

5 0.00 0.11 0.13 4.85 4.85 0.95 19.00 −0.12 4.95 4.95 0.93 18.21

20 0.01 0.45 1.42 4.47 4.69 0.94 17.51 0.06 5.16 5.16 0.94 19.31

40 0.02 0.89 2.73 4.17 4.99 0.90 16.36 0.54 5.35 5.38 0.94 19.72

60 0.03 1.34 3.78 3.95 5.47 0.84 15.47 1.18 5.44 5.57 0.93 19.75

80 0.04 1.79 4.62 3.74 5.95 0.76 14.67 1.82 5.43 5.73 0.91 19.59

100 0.05 2.24 5.27 3.55 6.35 0.68 13.91 2.33 5.37 5.86 0.90 19.31

120 0.06 2.68 5.77 3.37 6.68 0.59 13.22 2.74 5.27 5.94 0.90 19.04

140 0.07 3.13 6.27 3.20 7.03 0.49 12.53 3.21 5.11 6.04 0.88 18.85

160 0.08 3.58 6.67 3.07 7.35 0.41 12.03 3.53 5.05 6.16 0.87 18.66

180 0.09 4.02 7.07 2.95 7.65 0.32 11.54 3.87 4.95 6.28 0.85 18.40

200 0.10 4.47 7.42 2.83 7.94 0.26 11.11 4.13 4.84 6.36 0.85 18.22

Note. The marginal treatment effect is evaluated at a = 0.5. Panel (a) and (b) correspond to sample size
n = 1000 and 2000, respectively. Statistics are centered at the true value. k = 5 is the correctly specified
model. (i) k: number of instruments used for propensity score estimation. (ii) bias: empirical bias (scaled
by
√
n). (iii) sd: empirical standard deviation (scaled by

√
n). (iv)

√
mse: empirical root-MSE (scaled by√

n). (v) coverage: empirical coverage of a 95% confidence interval. Without bias correction, it is based on
normal approximation and simulated sampling variability of the estimator (i.e. the oracle standard error).
With bias correction, the test is based on the percentile-t method, where the bias-corrected and
Studentized statistic is bootstrapped 500 times (Rademacher weights). (vi) length: the average confidence
interval length (scaled by

√
n).

We make the same assumption as in CHV that the error terms are jointly independent of

the covariates and the instruments. Then, τMTE(a|x) = ∂E[Yi|Pi = a,Xi = x]/∂a with

E[Yi|Pi = a,Xi = x] = xTγ0 + a · xTδ0 + φ(a)Tθ0,

where Pi = P[Ti = 1|Zi] is the propensity score, and φ is some fixed transformation. The
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covariates Xi include (i) linear and square terms of corrected AFQT score, education of mom,

number of siblings, permanent average local unemployment rate and wage rate at age 17; (ii)

indicator of urban residency at age 14; (iii) cohort dummy variables; and (iv) average local

unemployment rate and wage rate in 1991, and linear and square terms of work experience

in 1991. For the selection equation, the instruments Zi include (i), (ii) and (iii) described

earlier, as well as (v) the four raw instruments as well as their interactions with corrected

AFQT score, education of mom and number of siblings. To make the functional form of the

propensity score flexible, we also include interactions among the variables described in (i),

and interactions between the cohort dummies and corrected AFQT score, education of mom

and number of siblings.

We are employing the same covariates, instruments, and modeling assumptions as in

CHV, but our estimation strategy is different than theirs. For the first step, the selection

equation (propensity score) is estimated using a linear probability model with k = 66 as

more interaction terms are included (which implies k/
√
n = 1.58), while CHV employ a

Logit model with k = 35. Thus, our estimation approach reflects Assumption II.2 in the

sense that we assume away misspecification errors from using a flexible (high-dimensional)

linear probability model, while CHV assume away misspecification errors from using a lower

dimensional Logit model. For the second step, while the specification of E[Yi|Pi = a,Xi = x]

coincides, we estimate the partially linear model (that is, the φ(a) component) using a flexible

polynomial in Pi while CHV employ a kernel local polynomial approach with a bandwidth of

about 0.30 over the support [0, 1]. To be specific, we implement the second step estimation

by using least-squares regression with a fourth-order polynomial of the estimated propensity

score φ(P̂i) = [P̂i, P̂
2
i , P̂

3
i , P̂

4
i ]T. Here the dimension of Xi is 23, so the second step model

can be regarded as either “flexible” parametric or high-dimensional.

We summarize the empirical findings in Figure II.1, where we plot the estimated MTE

evaluate at the sample average of Xi. In the upper panel of this figure, we plot the estimated

MTE together with 95% confidence intervals (solid and dashed blue line), using conventional

two-step estimation methods (i.e., without bias correction and employing the standard nor-

mal approximation). These empirical results are quite similar to those presented by CHV,

both graphically and numerically. In particular, for individuals who are very likely to enroll

in college, the per year return can be as high as 30%, while the return to college can also be

as low as −20% for people who are very unlikely to enroll. Integrating the estimated MTE

gives an estimator of the average treatment effect, which is roughly 9%.

The upper panel of Figure II.1, also depicts the bias-corrected MTE estimator (dashed

red line). The average treatment effect corresponding to the bias-corrected MTE is 8%,

quite close to the previous estimate. On the other hand, the bias-corrected MTE curve has
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much steeper slope, implying a wider range of heterogeneity for returns to college educa-

tion. This bias-corrected MTE curve lies close to the boundary of the confidence intervals

constructed using the conventional two-step method, hinting at the possibility of a many

instruments/covariate bias in the conventional estimate (blue line).

The lower panel of Figure II.1 plots the bias corrected MTE estimator, together with the

confidence intervals constructed using our proposed bootstrap-based method, which takes

into account the extra variability introduced by bias correction. Not surprisingly, the new

confidence intervals are wider than the conventional ones.

II.7 Conclusion

We studied the distributional properties of two-step estimators, and functionals thereof,

when possibly many covariates are used to fit the first-step estimate (e.g., a propensity

score, generated regressors or control functions). We show that overfitting in the first step

estimation leads to a first-order bias in the distributional approximation of the two-step

estimator. As a consequence, the limiting distribution is no longer centered at zero and usual

inference procedures become invalid, possibly exhibiting severe empirical size distortions in

finite samples.

As a remedy for the many covariates bias we uncover, we develop bias correction methods

using the jackknife. Importantly, this approach is data-driven and fully automatic, and does

not require additional resampling beyond what would be needed to compute the jackknife

standard error, which we show is also consistent in our setting even when many covariates

are used. Therefore, implementation is straightforward and is available in any statistical

computing software. Furthermore, to improve finite sample inference after bias-correction,

we also establish validity of an appropriately modified bootstrap for the jackknife-based

bias-corrected Studentized statistic. We demonstrate the performance of our estimation and

inference procedures in a comprehensive simulation study and an empirical illustration.

From a more general perspective, our main results give one additional contribution.

They shed new light on the ultra-high-dimensional literature: one important implication

is that typical sparsity assumptions imposed in that literature cannot be dropped in the

context of non-linear models, since otherwise the effective number of included covariates will

remain large after model selection, which in turn will lead to a non-vanishing first-order bias

in the distributional approximation for the second-step estimator. It would be interesting to

explore whether resampling methods are able to successfully remove this many selected or

included covariates bias in ultra-high-dimensional settings, where model selection techniques

are also used as a first-step estimation device.
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Figure II.1. Estimated marginal treatment effects.
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Note. The marginal treatment effect, τ̂MTE(a|X̄), is evaluated at mean value of the covariates. Bootstrap is
used to construct the confidence interval, with 500 repetitions. Top: Estimated MTE without bias
correction (solid blue line), together with 95% confidence interval (dashed blue line). Also included is the
bias-corrected MTE (dashed red line). Bottom: Bias-corrected MTE, together with 95% confidence
interval, taking into account the effect of bias correction.
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II.8 Additional Results and Preliminary Lemmas

In this section we collect some preliminary results which are used to establish the main

results in the earlier sections. Proof of these results and the main theorems are given in the

next section.

II.8.1 Properties of Projection Matrices

Recall that Π = Z(ZTZ)−ZT is the projection matrix, with its entries denoted by πij. Then

the first conclusion is that

tr[Π] = k.

And since Π is a projection matrix, one has ΠΠ = Π, which means

πij =
∑
`

πi`πj`.

Also, πij = πji (i.e., Π is symmetric), and 0 ≤ πii ≤ 1 from the idempotency of the projection

matrix.

Next consider the trace of ΠΠ = Π2:

k = tr[Π2] =
∑
i

∑
j

π2
ij =

∑
i

π2
ii +

∑
i,j,j 6=i

π2
ij,

which implies that ∑
i

π2
ii ≤ k,

∑
i,j

π2
ij ≤ k.

Next we replace πii by
∑

j π
2
ij, which gives

k ≥
∑
i

π2
ii =

∑
i

πii

(∑
j

π2
ij

)
=
∑
i

∑
j

πiiπ
2
ij,

hence ∑
i

π3
ii ≤ k,

∑
i,j

πiiπ
2
ij ≤ k.
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Now make a further replacement,

k ≥
∑
i

π2
ii =

∑
i

(∑
j

π2
ij

)2

=
∑
i

π4
ii +

∑
i,j,i6=j

π4
ij +

∑
i,j,`,j 6=`

π2
ijπ

2
i`.

One direct consequence is that∑
i

π4
ii ≤ k,

∑
i,j

π4
ij ≤ k,

∑
i,j,`

π2
ijπ

2
i` ≤ k.

We summarize the above in the following lemma:

Lemma II.1

Let Π be a projection matrix with rank at most k, then:

(i) Π is symmetric, nonnegative definite, and Π2 = Π, which implies πij =
∑

` πi`πj`.

(ii) The diagonal elements satisfy

0 ≤ πii ≤ 1 ∀i, and
∑
i

πii = tr[Π] ≤ k. (II.15)

(iii) The following higher order summations hold:∑
i

π2
ii ≤ k,

∑
i,j

π2
ij ≤ k, (II.16)∑

i

π3
ii ≤

∑
i

π2
ii ≤ k,

∑
i,j

πiiπ
2
ij ≤

∑
i

π2
ii ≤ k, (II.17)∑

i

π4
ii ≤

∑
i

π2
ii ≤ k,

∑
i,j

π4
ij ≤

∑
i

π2
ii ≤ k,

∑
i,j,`

π2
ijπ

2
i` ≤

∑
i

π2
ii ≤ k. (II.18)

‖

II.8.2 Summation Expansion

We first consider the expansion of (
∑

i,j,i6=j aij)
2, where aij 6= aji.(∑

i,j,i6=j

aij

)2

=
∑
i,j,i′,j′

i 6=j, i′ 6=j′

aijai′j′ =
∑
i,j,i′,j′

distinct

aijai′j′ +
∑
i,j,j′

distinct

aijaij′ +
∑
i,j,i′

distinct

aijai′i +
∑
i,j,j′

distinct

aijajj′

+
∑
i,j,i′

distinct

aijai′j +
∑
i,j
i 6=j

a2
ij +

∑
i,j
i 6=j

aijaji.
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Note that the two terms
∑

i,j,i′

distinct

aijai′i and
∑

i,j,j′

distinct

aijajj′ are identical by relabeling, hence

Lemma II.2

(∑
i,j,i6=j

aij

)2

=
∑
i,j,i′,j′

distinct

aijai′j′ +
∑
i,j,j′

distinct

aijaij′ + 2
∑
i,j,i′

distinct

aijai′i +
∑
i,j,i′

distinct

aijai′j

+
∑
i,j
i 6=j

a2
ij +

∑
i,j
i 6=j

aijaji. (II.19)

‖

A special case is when aij = aji so that the two indices are exchangeable. Then

Lemma II.3

(i, j)-exchangeable

(∑
i,j,i6=j

aij

)2

=
∑
i,j,i′,j′

distinct

aijai′j′ + 4
∑
i,j,i′

distinct

aijaii′ + 2
∑
i,j
i 6=j

a2
ij. (II.20)

‖

Next we consider (
∑

i,j,`
distinct

aibij`)
2, where bij` = bi`j, i.e. for b the last two indices are

exchangeable. For convenience define the following

di =
∑
j,`,j 6=`

bij`, ci =
∑
j,`

j 6=i,` 6=i, 6=`

bij`.

Then

ci = di − 2
∑
j

biij + 2biii = di − 2
∑
j,j 6=i

biij.

And the decomposition becomes ∑
i,j,`

distinct

aibij`


2

=

(∑
i

aici

)2

=
∑
i

a2
i c

2
i +

∑
i,i′,i 6=i′

aiai′cici′ .
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To make further progress, consider

c2
i =

(
di − 2

∑
j,j 6=i

biij

)2

=

( ∑
j,`,j 6=`

bij`

)2

+ 4

(∑
j,j 6=i

biij

)2

− 4

( ∑
j,`,j 6=`

bij`

)(∑
`′,`′ 6=i

bii`′

)
=
∑
j,`,j′,`′

distinct

bij`bij′`′ + 4
∑
j,`,j′

distinct

bij`bijj′ + 2
∑
j,`
j 6=`

b2
ij`

+ 4
∑
j,j 6=i

b2
iij + 4

∑
j,`

j 6=i,` 6=i,j 6=`

biijbii` − 4
∑
j,`,`′

j 6=`,`′ 6=i

bij`bii`′ ,

and

cici′ =

( ∑
j,`,j 6=`

bij`

)( ∑
j,`,j 6=`

bi′j`

)
=
∑
j,`,j′,`′

distinct

bij`bi′j′`′ + 4
∑
j,`,`′

distinct

bij`bi′j`′ + 2
∑
j,`
j 6=`

bij`bi′j`.

Therefore we have the following

Lemma II.4

(j, `)-exchangeable

 ∑
i,j,`

distinct

aibij`


2

=
∑
i

a2
i

 ∑
j,`,j′,`′

distinct

bij`bij′`′ + 4
∑
j,`,j′

distinct

bij`bijj′ + 2
∑
j,`
j 6=`

b2
ij`



+ 4
∑
i

a2
i

∑
j,j 6=i

b2
iij +

∑
j,`

j 6=i,` 6=i,j 6=`

biijbii`



− 4
∑
i

a2
i

 ∑
j,`,`′

j 6=`,`′ 6=i

bij`bii`′

+
∑
i,i′,i 6=i′

aiai′

 ∑
j,`,j′,`′

distinct

bij`bi′j′`′

+ 4
∑
i,i′,i 6=i′

aiai′

 ∑
j,`,`′

distinct

bij`bi′j`′



+ 2
∑
i,i′,i 6=i′

aiai′

∑
j,`
j 6=`

bij`bi′j`

 . (II.21)

‖
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II.8.3 Preliminary Lemmas

The following lemma justifies an expansion of the estimator.

Lemma II.5

If Assumption II.1, II.2 and II.3 hold, and k = O(
√
n), then

√
n
(
θ̂ − θ0

)
= Σ0

[
1√
n

∑
i

m(wi, µ̂i,θ0)

](
1 + op(1)

)
, (II.22)

where Σ0 = −(MT
0 Ω0M0)−1MT

0 Ω0. ‖

A Taylor expansion with respect to the first-step estimate, µ̂i, gives

1√
n

∑
i

m(wi, µ̂i,θ0) =
1√
n

∑
i

m(wi, µi,θ0) (II.9)

+
1√
n

∑
i

ṁ(wi, µi,θ0)
(
µ̂i − µi

)
(II.10)

+
1√
n

∑
i

1

2
m̈(wi, µi,θ0)

(
µ̂i − µi

)2

(II.11)

+ op(1).

The following lemma shows that (II.10) contributes to not only the asymptotic variance,

but also the asymptotic bias.

Lemma II.6

If Assumption II.1, II.2 and II.3 hold, and k = O(
√
n), then

(II.10) =
1√
n

∑
i

(∑
j

E[ṁ(wj, µj,θ0) |zj]πij

)
· εi +

1√
n

∑
i

b1,i · πii + op(1),

where b1,i = E

[
ṁ(wi, µi,θ0) · εi

∣∣∣zi]. If, in addition, E[|ζi|2] = o(1), then

1√
n

∑
i

(∑
j

E[ṁ(wj, µj,θ0) |zj]πij

)
· εi =

1√
n

∑
i

E[ṁ(wi, µi,θ0) |zi] · εi + op(1). ‖

Inspection of the proof of this lemma shows that only E[η2
i ] = o(1) and E[|ζi|2]E[η2

i ] =

o(n−1) is required; the stronger assumption E[η2
i ] = o(n−1/2) will be used when studying

the quadratic term (II.11) in the expansion. Furthermore, when E[|ζi|2] = o(1), this lemma
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shows that it is possible to drop the double sum as well as the projection matrix in the

variance component, leading to an asymptotic linear representation.

The following lemma shows that the quadratic term (II.11) also contributes a bias.

Lemma II.7

If Assumption II.1, II.2 and II.3 hold, and k = O(
√
n), then

(II.11) =
1√
n

∑
i,j

b2,ij · π2
ij +Op

(√
k

n

)
+ op(1),

where b2,ij = 1
2
E

[
m̈(wi, µi,θ0) · ε2

j

∣∣∣zi, zj]. ‖

The following proposition combines the previous lemmas, and gives the asymptotic

representation of the estimator θ̂ when k = O(
√
n)

Proposition II.1 (Asymptotic representation)

If Assumption II.1, II.2 and II.3 hold, and k = O(
√
n), then

√
n

(
θ̂ − θ0 −

B√
n

)
= Ψ̄1 + Ψ̄2 + op(1),

where

B =
1√
n

Σ0

[∑
i

b1,iπii +
∑
i,j

b2,ijπ
2
ij

]

Ψ̄1 =
1√
n

Σ0

[∑
i

m(wi, µi,θ0)

]
, Ψ̄2 =

1√
n

Σ0

[∑
i

(∑
j

E[ṁ(wj, µj,θ0) |zj]πij

)
· εi

]
. ‖

Here we use B to denote the bias term. Note that B = Op(k/
√
n) hence is non-

vanishing under the assumption that k ∝
√
n. The term B can be viewed as the bias of the

limiting distribution. In the earlier sections, we use B to denote the bias of θ̂. The two

terms are connected through the
√
n-scaling: B =

√
nB. In addition, for the asymptotic

representation, we use

Ψi = m(wi, µi,θ0) +

(∑
j

E[ṁ(wj, µj,θ0) |zj]πij

)
· εi,

and therefore Ψ̄1 + Ψ̄2 = Σ0

∑
i Ψi/

√
n.

We also consider an asymptotic representation for the bootstrap, implemented without

jackknifing.
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Proposition II.2 (Asymptotic representation: bootstrap)

Assume II.1, II.2, II.3 and II.5 hold, and k = O(
√
n). Then

√
n

(
θ̂
?
− θ̂ − B + B′√

n

)
= Ψ̄

?
1 + Ψ̄

?
2 + op(1),

where B is given in Proposition II.1, and

B′ = Σ0
1√
n

[∑
i

b2,ii · π2
ii · E[e?3i ]

]

Ψ̄
?
1 = Σ0

1√
n

[∑
i

m(wi, µi,θ0) · e?i

]

Ψ̄
?
2 = Σ0

1√
n

[∑
i

(∑
j

E[ṁ(wj, µj,θ0) |zj]πij

)
εi · e?i

]
. ‖

II.9 Proof

II.9.1 Proof of Lemma II.5

We apply Taylor expansion to the GMM problem, which gives

op(1) =

[
1

n

∑
i

∂

∂θT
m(wi, µ̂i, θ̂)

]T

Ωn
1√
n

∑
i

m(wi, µ̂i, θ̂)

=

[
1

n

∑
i

∂

∂θT
m(wi, µ̂i, θ̂)

]T

Ωn(
1√
n

∑
i

m(wi, µ̂i,θ0) +

[
1

n

∑
i

∂

∂θT
m(wi, µ̂i, θ̃)

]
√
n
(
θ̂ − θ0

))
,

where θ̃ is (possibly random) convex combination of θ̂ and θ0. Then we have

√
n
(
θ̂ − θ0

)
= −(M̂T

nΩnM̃n)−1M̂T
nΩn

1√
n

∑
i

m(wi, µ̂i,θ0) + op(1)

= −(MT
0 Ω0M0)−1MT

0 Ω0
1√
n

∑
i

m(wi, µ̂i,θ0) + op(1),
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where

M̂n =
1

n

∑
i

∂

∂θT
m(wi, µ̂i, θ̂), M̃n =

1

n

∑
i

∂

∂θT
m(wi, µ̂i, θ̃).

In the above, we used the fact that both M̂n and M̃n converge in probability to M0.

This is easily shown by noting that (c.f. Assumption II.1)∣∣∣∣∣M̂n −
1

n

∑
i

∂

∂θT
m(wi, µi,θ0)

∣∣∣∣∣
≤
( 1

n

∑
i

Hα,δ
i (∂m/∂θ)

)
·
(

max
1≤i≤n

|µ̂i − µi|+ |θ̂ − θ0|
)α

= op(1),

since µ̂i is uniformly consistent and θ̂ is consistent. And note that n−1
∑

i ∂m(wi, µi,θ0)/∂θT

p→M0 by the law of large numbers. The same argument applies to M̃n. �

II.9.2 Proof Lemma II.6

Approximation Bias

For simplicity, let ṁi = ṁ(wi, µi,θ0), then∣∣∣∣∣ 1√
n

∑
i

ṁi

(
ηi −

∑
j

πijηj

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1√
n

∑
i

E[ṁi|zi]
(
ηi −

∑
j

πijηj

)∣∣∣∣∣
+

∣∣∣∣∣ 1√
n

∑
i

(ṁi − E[ṁi|zi])
(
ηi −

∑
j

πijηj

)∣∣∣∣∣ ,
and we call the two terms (I) and (II) respectively. For term (I), we use projection matrix

property, which implies

(I) =

∣∣∣∣∣ 1√
n

∑
i

ηi

(
E[ṁi|zi]−

∑
j

πijE[ṁj|zj]
)∣∣∣∣∣

≤
√
n

√
1

n

∑
i

η2
i

√
1

n

∑
i

∣∣∣E[ṁi|zi]−
∑
j

πijE[ṁj|zj]
∣∣∣2.
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By further splitting the conditional expectation E[ṁi|zi] into a linear projection and an error

term,

(I) ≤
√
n

√
1

n

∑
i

η2
i

√
1

n

∑
i

∣∣∣ζi −∑
j

πijζj

∣∣∣2 ≤ √n√ 1

n

∑
i

η2
i

√
1

n

∑
i

∣∣∣ζi∣∣∣2
= Op

(√
nE[η2

i ]E[|ζi|2]

)
= op(1).

The second term (II) can be bounded with conditional expectation and variance calculations.

First note that since ηi is the error from linear approximation, this term has zero conditional

mean:

E[·|Z]

[
1√
n

∑
i

(ṁi − E[ṁi|zi])
(
ηi −

∑
j

πijηj

)]

=
1√
n

∑
i

E[ṁi − E[ṁi|zi]|zi]
(
ηi −

∑
j

πijηj

)
= 0.

Next we consider the conditional second moment:∣∣∣∣∣V[·|Z]

[
1√
n

∑
i

(ṁi − E[ṁi|zi])
(
ηi −

∑
j

πijηj

)]∣∣∣∣∣
-

1

n

∑
i

(
ηi −

∑
j

πijηj

)2

E[|ṁi − E[ṁi|zi]|2|zi]

-
1

n

∑
i

(
ηi −

∑
j

πijηj

)2

≤ 1

n

∑
i

η2
i = Op

(
E[η2

i ]
)

= op(1),

where for the second line, we used the assumption that ṁi has uniformly bounded conditional

variance.

Influence Function and Asymptotic Bias

The conclusion will be self-evident after two decompositions. First rewrite ṁ(wi, µi,θ0) =

ṁ(wi, µi,θ0)−E [ṁ(wi, µi,θ0) |zi] +E [ṁ(wi, µi,θ0) |zi] as the conditional expectation de-

composition. Then

(II.10) =
1√
n

∑
i

(∑
j

E[ṁ(wj, µj,θ0) |zj]πij

)
· εi +

1√
n

∑
i,j

uiεjπij,
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where we use ui = ṁ(wi, µi,θ0)− E [ṁ(wi, µi,θ0) |zi] to save notation. Then

1√
n

∑
i,j

uiεjπij = E[·|Z]

[
1√
n

∑
i,j

uiεjπij

]
+Op

V[·|Z]

[
1√
n

∑
i,j

uiεjπij

]1/2
 ,

where we use E[·|Z] and V[·|Z] to denote the expectation and variance conditional on {zi, µi}1≤i≤n,

respectively. Then

E[·|Z]

[
1√
n

∑
i,j

uiεjπij

]
=

1√
n

∑
i

b1,iπii,

with b1,i = E[·|Z][uiεi] = E[·|Z][ṁ(wi, µi,θ0)εi], since

i 6= j ⇒ E[·|Z] [uiεj] = E[·|Z][ui] · E[·|Z][εj] = 0.

Next we estimate the order of the conditional variance. To this end, consider

E[·|Z]

( 1√
n

∑
i,j

uiεjπij

)(
1√
n

∑
i,j

uiεjπij

)T


=
1

n

∑
i,j,i′,j′

E[·|Z]

[
uiu

T
i′εjεj′πijπi′j′

]
=

1

n

∑
i,i′

distinct

E[·|Z]

[
uiu

T
i′εiεi′πiiπi′i′

]
(i = j, i′ = j′)

+
1

n

∑
i,j

distinct

E[·|Z]

[
uiu

T
i εjεjπijπij

]
(i = i′, j = j′)

+
1

n

∑
i,j

distinct

E[·|Z]

[
uiu

T
j εjεiπijπij

]
(i = j′, j = i′)

+
1

n

∑
i

E[·|Z]

[
uiu

T
i εiεiπiiπii

]
. (i = j = i′ = j′)

Hence
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V[·|Z]

[
1√
n

∑
i,j

uiεjπij

]

= E[·|Z]

( 1√
n

∑
i,j

uiεjπij

)(
1√
n

∑
i,j

uiεjπij

)T


− E[·|Z]

[
1√
n

∑
i,j

uiεjπij

]
E[·|Z]

[
1√
n

∑
i,j

uiεjπij

]T

=
1

n

∑
i,j

distinct

E[·|Z]

[
uiu

T
i εjεjπijπij

]
+

1

n

∑
i,j

distinct

E[·|Z]

[
uiu

T
j εjεiπijπij

]
+

1

n

∑
i

E[·|Z]

[
uiu

T
i εiεiπiiπii

]
− 1

n

∑
i

b1,ib
T
1,iπ

2
ii.

Due to Assumption II.1, the above terms are easily bounded by∣∣∣∣∣∣∣
1

n

∑
i,j

distinct

E[·|Z]

[
uiu

T
i εjεjπijπij

]∣∣∣∣∣∣∣ -
1

n

∑
i,j

π2
ij ≤

k

n∣∣∣∣∣∣∣
1

n

∑
i,j

distinct

E[·|Z]

[
uiu

T
j εjεiπijπij

]∣∣∣∣∣∣∣ -
1

n

∑
i,j

π2
ij ≤

k

n∣∣∣∣∣ 1n∑
i

E[·|Z]

[
uiu

T
i εiεiπiiπii

]∣∣∣∣∣ - 1

n

∑
i

π2
ii ≤

k

n∣∣∣∣∣ 1n∑
i

b1,ib
T
1,iπ

2
ii

∣∣∣∣∣ - 1

n

∑
i

π2
ii ≤

k

n
,

which closes the proof.

Variance Simplification

For notational convenience, denote ai = E[ṁ(wi, µi,θ0)|zi]. Then it suffices to give condi-

tions such that

1√
n

∑
i

[
ai −

∑
j

ajπij

]
εi = op(1).
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Note that the conditional variance of the LHS is (use Assumption II.1)

V[·|Z]

[∣∣∣∣∣ 1√
n

∑
i

[
ai −

∑
j

ajπij

]
εi

∣∣∣∣∣
]
-

1

n

∑
i

∣∣∣ai −∑
j

ajπij

∣∣∣2
=

1

n

∑
i

∣∣∣ai − Γzi + Γzi −
∑
j

ajπij

∣∣∣2
≤ 2

n

∑
i

(∣∣∣ai − Γzi

∣∣∣2 +
∣∣∣Γzi −

∑
j

ajπij

∣∣∣2) =
2

n

∑
i

∣∣∣ai − Γzi

∣∣∣2 +
2

n

∑
i

∣∣∣∑
j

(aj − Γzj)πij

∣∣∣2
≤ 4

n

∑
i

∣∣∣ai − Γzi

∣∣∣2 (Projection)

= op(1),

where the last line shows why the assumption in Lemma II.6 is sufficient. Note that by

projection, Γzi =
∑

j Γzjπij. �

II.9.3 Proof of Lemma II.7

Approximation Error

For the current proof, we use m̈i = m̈(wi, µi,θ0) for notational convenience. Then recall

that µ̂i − µi =
∑

j πijεj − (ηi −
∑

j πijηj). Then

(II.11) =
1

2
√
n

∑
i

m̈i

(∑
j

πijεj − (ηi −
∑
j

πijηj)

)2

=
1

2
√
n

∑
i

m̈i

(∑
j

πijεj

)2

︸ ︷︷ ︸
(I)

+
1

2
√
n

∑
i

m̈i

(
ηi −

∑
j

πijηj

)2

︸ ︷︷ ︸
(II)

− 1√
n

∑
i

m̈i

(∑
j

πijεj

)(
ηi −

∑
j

πijηj

)
︸ ︷︷ ︸

(III)

.

We first deal with (II). Again we make a conditional expectation expansion of m̈i, which

implies
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|(II)| ≤

∣∣∣∣∣∣ 1

2
√
n

∑
i

E[m̈i|zi]

(
ηi −

∑
j

πijηj

)2
∣∣∣∣∣∣︸ ︷︷ ︸

(II.1)

+

∣∣∣∣∣∣ 1

2
√
n

∑
i

(m̈i − E[m̈i|zi])

(
ηi −

∑
j

πijηj

)2
∣∣∣∣∣∣︸ ︷︷ ︸

(II.2)

.

(II.1) has the simple bound:

(II.1) ≤ 1

2
√
n

∑
i

|E[m̈i|zi]|

(
ηi −

∑
j

πijηj

)2

-
1√
n

∑
i

(
ηi −

∑
j

πijηj

)2

≤ 1√
n

∑
i

η2
i

= Op(
√
nE[η2

i ]) = op(1),

where we used the assumption that m̈i has uniformly bounded conditional expectation.

For (II.2), we employ conditional expectation and variance calculation. Note that it has

zero conditional expectation:

E[·|Z]

 1

2
√
n

∑
i

(m̈i − E[m̈i|zi])

(
ηi −

∑
j

πijηj

)2


=
1

2
√
n

∑
i

E[m̈i − E[m̈i|zi]|zi]

(
ηi −

∑
j

πijηj

)2

= 0.

The conditional variance is bounded by the following:∣∣∣∣∣∣V[·|Z]

 1

2
√
n

∑
i

(m̈i − E[m̈i|zi])

(
ηi −

∑
j

πijηj

)2
∣∣∣∣∣∣ - 1

n

∑
i

E[|m̈i|2|zi]

(
ηi −

∑
j

πijηj

)4

-
1

n

∑
i

(
ηi −

∑
j

πijηj

)4

=
1

n

∑
i

η̌4
i ,

where in the second line we used the assumption that m̈i has uniformly bounded conditional

second moment, and we use η̌i = ηi −
∑

j πijηj for simplicity. Next, note that

1

n

(∑
i

η̌4
i +

∑
i,j,i6=j

η̌2
i η̌

2
j

)
=

(
1√
n

∑
i

η̌2
i

)2

≤

(
1√
n

∑
i

η2
i

)2

= op(1),

so that we conclude the previous conditional variance is asymptotically negligible.
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For term (III), we first compute its conditional expectation:∣∣∣∣∣E[·|Z]

[
1√
n

∑
i

m̈i

(∑
j

πijεj

)(
ηi −

∑
j

πijηj

)]∣∣∣∣∣ =

∣∣∣∣∣ 1√
n

∑
i

πiiE[m̈iεi|zi]

(
ηi −

∑
j

πijηj

)∣∣∣∣∣
≤
√
n

√
1

n

∑
i

π2
ii|E[m̈iεi|zi]|2

√√√√ 1

n

∑
i

(
ηi −

∑
j

πijηj

)2

-
√
n

√
1

n

∑
i

π2
ii

√√√√ 1

n

∑
i

(
ηi −

∑
j

πijηj

)2

= op

(
√
n

√
k

n

1

n1/4

)
= op

(√
k√
n

)
= op(1).

Here for the second line, we use the assumption that E[m̈iεi|zi] is uniformly bounded. Hence

to bound (III), it suffices to consider the conditional second moment, which is bounded by

the following (where η̌i = ηi −
∑

j πijηj):

E[·|Z]

[
1

n

∑
i,j,k,`

|m̈i||m̈j|εkε`πikπj`η̌iη̌j

]

=
1

n

∑
i,j,`

distinct

E[|m̈i||zi]E[|m̈j||zj]E[ε2
` |z`]πi`πj`η̌iη̌j (III.1: k = `)

+
1

n

∑
i,j

distinct

E[|m̈i||zi]E[|m̈j|ε2
j |zj]πijπjj η̌iη̌j (III.2: j = k = `)

+
1

n

∑
i,`

distinct

E[|m̈i|2|zi]E[ε2
` |z`]π2

i`η̌
2
i (III.3: i = j, k = `)

+ op(1), (i = k, j = `)

where the last op(1) is the squared conditional expectation, and has been handled earlier.

(III.3) is the simplest, which has bound

(III.3) -
1

n

∑
i,`

π2
i`η̌

2
i =

1

n

∑
i

πiiη̌
2
i ≤

1

n

∑
i

η̌2
i ≤

1

n

∑
i

η2
i = op(1).

(III.1) is also easy, since by projection property, one has (it is easier to write it into a

118



quadratic matrix form)

(III.1) -
1

n

∑
i,j,`

E[|m̈i||zi]E[|m̈j||zj]πi`πj`η̌iη̌j

≤ 1

n

∑
i

|E[|m̈i||zi]|2|η̌|2i -
1

n

∑
i

η̌2
i ≤

1

n

∑
i

η2
i = op(1).

(III.2) is bounded by the following:

(III.2) -

∣∣∣∣∣ 1n∑
j

E[|m̈j|ε2
j |zj]πjj η̌j

∑
i

E[|m̈i||zi]πij η̌i

∣∣∣∣∣
≤
√

1

n

∑
j

(E[|m̈j|ε2
j |zj])2π2

jj η̌
2
j

√√√√ 1

n

∑
j

(∑
i

E[|m̈i||zi]πij η̌i

)2

-

√
1

n

∑
j

η2
j

√
1

n

∑
j,i,`

E[|m̈i||zi]πij η̌iE[|m̈`||z`]π`j η̌`

=

√
1

n

∑
j

η2
j

√
1

n

∑
i,`

E[|m̈i||zi]η̌iπi`E[|m̈`||z`]η̌`

≤
√

1

n

∑
j

η2
j

√
1

n

∑
i

(E[|m̈i||zi]η̌i)2 -

√
1

n

∑
j

η2
j

√
1

n

∑
i

η̌2
i ≤

1

n

∑
j

η2
j = op(1),

which concludes the proof.

Asymptotic Bias

Again we define m̈i = m̈(wi, µi,θ0) to save notation. For the proof again we consider the

expansion

1

2
√
n

∑
i

m̈i

(∑
j

πijεj

)2

=
1

2
√
n

∑
i,j,`

m̈iπijπi`εjε`

=
1

2
√
n

∑
i,j,`

distinct

m̈iπijπi`εjε`

︸ ︷︷ ︸
(I)

+
1

2
√
n

∑
i,j,i6=j

m̈iπ
2
ijε

2
j︸ ︷︷ ︸

(II)

+
2

2
√
n

∑
i,j,i6=j

m̈iπijπiiεiεj︸ ︷︷ ︸
(III)

+
1

2
√
n

∑
i

m̈iπ
2
iiε

2
i︸ ︷︷ ︸

(Iv)

.

Expectation

It is easy to see that both (I) and (III) have zero conditional expectation. Hence we consider

(II) and (IV).
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E[·|Z] [(II)] =
1

2
√
n

∑
i,j,i6=j

E[·|Z]

[
m̈iπ

2
ijε

2
j

]
=

1√
n

∑
i,j,i6=j

b2,ijπ
2
ij.

where the last line uses (II.16). And

E[·|Z] [(IV)] =
1√
n

∑
i

b2,iiπ
2
ii.

Variance, Term (I)

First for (I) we use (II.21) with ai = m̈i and (ignore the 1/2 in front) bij` = πijπi`εjε`, and

E[·|Z]


 1√

n

∑
i,j,`

distinct

m̈iπijπi`εjε`


2

=
2

n

∑
i

∑
j,`,j 6=`

E[·|Z]

[
m̈T

i m̈ib
2
ij`

]
︸ ︷︷ ︸

(I.1)

+
4

n

∑
i

∑
j,j 6=i

E[·|Z]

[
m̈T

i m̈ib
2
iij

]
︸ ︷︷ ︸

(I.2)

+
2

n

∑
i,i′,i 6=i′

∑
j,`,j 6=`

E[·|Z]

[
m̈T

i m̈i′bij`bi′jl
]

︸ ︷︷ ︸
(I.3)

.

Next by (II.18) and (II.17), respectively,

(I.1) -
1

n

∑
i

∑
j,`,j 6=`

π2
ijπ

2
i` ≤

1

n

∑
i

π2
ii ≤

k

n
. (I.2) -

1

n

∑
i,j

π2
iiπ

2
ij ≤

1

n

∑
i

π3
ii ≤

k

n
.

And

(I.3) =
2

n

∑
i,i′,i 6=i′

∑
j,j′,j 6=j′

E[·|Z]

[
m̈T

i m̈i′πijπij′πi′jπi′j′ε
2
jε

2
j′

]
=

2

n

∑
i,i′,j,j′

distinct

E[·|Z]

[
m̈T

i m̈i′πijπij′πi′jπi′j′ε
2
jε

2
j′

]
+

4

n

∑
i,i′

distinct

E[·|Z]

[
m̈T

i m̈i′πiiπ
2
ii′πi′i′ε

2
i ε

2
i′

]
+

8

n

∑
i,i′,j

distinct

E[·|Z]

[
m̈T

i m̈i′πiiπijπii′πi′jε
2
i ε

2
j

]
.

120



Define ci = E[m̈i|zi], dj = E[ε2
j |zj], and ei = E[ε2

i m̈i|zi], and with (II.21) the above becomes

(I.3) =
2

n

∑
i,i′,j,j′

distinct

πijπij′πi′jπi′j′c
T
i ci′djdj′ +

4

n

∑
i,i′

distinct

πiiπ
2
ii′πi′i′e

T
i ei′ +

8

n

∑
i,i′,j

distinct

πiiπijπii′πi′je
T
i ci′dj

=
2

n

∑
i,i′,i 6=i′

∑
j,j′,j 6=j′

πijπij′πi′jπi′j′c
T
i ci′djdj′

+
4

n

∑
i,i′

distinct

πiiπ
2
ii′πi′i′

(
eT
i ei′ − cT

i dici′di′
)

+
8

n

∑
i,i′,j

distinct

πiiπijπii′πi′j (ei − cidi)
T ci′dj

=
2

n

∑
i,i′,j,j′

πijπij′πi′jπi′j′c
T
i ci′djdj′︸ ︷︷ ︸

(I.3.1)

+
4

n

∑
i,i′

distinct

πiiπ
2
ii′πi′i′

(
eT
i ei′ − cT

i dici′di′
)

︸ ︷︷ ︸
(I.3.2)

+
8

n

∑
i,i′,j

distinct

πiiπijπii′πi′j (ei − cidi)
T ci′dj

︸ ︷︷ ︸
I.3.3

− 2

n

∑
i,i′,i 6=i′

∑
j

π2
ijπ

2
i′jc

T
i ci′d

2
j︸ ︷︷ ︸

(I.3.4)

− 2

n

∑
i

∑
j,j′

π2
ijπ

2
ij′|ci|2djdj′︸ ︷︷ ︸

(I.3.5)

.

Then use (II.16)

|(I.3.1)| =

∣∣∣∣∣ 2n ∑
i,i′,j,j′

πijπij′πi′jπi′j′c
T
i ci′djdj′

∣∣∣∣∣
=

∣∣∣∣∣∣ 2n
∑
i,i′

cT
i ci′

(∑
j

πijπi′jdj

)2
∣∣∣∣∣∣ ≤ max

1≤i,i′≤n
|cT
i ci′ |

2

n

∑
i,i′

(∑
j

πijπi′jdj

)2

= max
1≤i,i′≤n

|cT
i ci′ |

2

n

∑
i,i′,j,j′

πijπij′djdj′ = max
1≤i,i′≤n

|cT
i ci′ |

2

n

∑
j,j′

djdj′

(∑
i

πijπij′

)2

≤ max
1≤i,i′,j,j′≤n

|cT
i ci′djdj′ |

2

n

∑
j,j′

(∑
i

πijπij′

)2

≤ max
1≤i,i′,j,j′≤n

|cT
i ci′djdj′|

2

n

∑
j,j′

π2
jj′ -

k

n
.

And by (II.17)
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|(I.3.2)| =

∣∣∣∣∣∣∣
4

n

∑
i,i′

distinct

πiiπ
2
ii′πi′i′

(
eT
i ei′ − cT

i dici′di′
)∣∣∣∣∣∣∣ ≤ max

1≤i,i′≤n
|eT
i ei′ − cT

i dici′di′ |
4

n

∑
i,i′

distinct

πiiπ
2
ii′πi′i′

≤ max
1≤i,i′≤n

|eT
i ei′ − cT

i dici′di′|
4

n

∑
i,i′

distinct

π2
ii′πi′i′ -

k

n
.

And by (II.16) and (II.18)

|(I.3.3)| =

∣∣∣∣∣∣∣
8

n

∑
i,i′,j

distinct

πiiπijπii′πi′j (ei − cidi)
T ci′dj

∣∣∣∣∣∣∣
-

1

n

∑
i′,j,i′ 6=j

|ci′dj||πi′j|

∣∣∣∣∣∣∣
∑
i

i 6=i′,i 6=j

(ei − cidi)πiiπijπii′

∣∣∣∣∣∣∣
-

1

n

√∑
i′,j

π2
i′j

√√√√√√∑
i′,j

∣∣∣∣∣∣∣
∑
i

i 6=i′,i 6=j

(ei − cidi)πiiπijπii′

∣∣∣∣∣∣∣
2

-

√
k

n

√∑
i,i′,j,j′

(ei − cidi)T(ej′ − cj′dj′)πiiπijπii′πj′j′πjj′πi′j′

=

√
k

n

√∑
i,j′

(ei − cidi)T(ej′ − cj′dj′)πiiπ2
ij′πj′j′

-

√
k

n

√∑
i,j′

πiiπ2
ij′πj′j′ ≤

√
k

n

√∑
i,j′

πiiπ2
ij′ ≤

√
k

n

√∑
i

π2
ii ≤

k

n
.

And by (II.18)

|(I.3.4)| =

∣∣∣∣∣ 2n ∑
i,i′,i 6=i′

∑
j

π2
ijπ

2
i′jc

T
i ci′d

2
j

∣∣∣∣∣ ≤ max
1≤i,i′,j≤n

|cT
i ci′d

2
j |

2

n

∑
i,i′,i 6=i′

∑
j

π2
ijπ

2
i′j -

k

n
.

And by (II.18)

|(I.3.5)| =

∣∣∣∣∣ 2n∑
i

∑
j,j′

π2
ijπ

2
ij′ |ci|2djdj′

∣∣∣∣∣ ≤ max
1≤i,j,j′≤n

||ci|2djdj′|
2

n

∑
i

∑
j,j′

π2
ijπ

2
ij′ -

k

n
.
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Variance, Term (II)

Then for (II), one has (by using (II.19))

E[·|Z]

( 1√
n

∑
i,j,i6=j

m̈iπ
2
ijε

2
j

)2
−( 1√

n

∑
i,j,i6=j

E[·|Z]

[
m̈iπ

2
ijε

2
j

])2

=
1

n

∑
i,i′,j,j′

distinct

E[·|Z]

[
m̈T

i m̈i′π
2
ijπ

2
i′j′ε

2
jε

2
j′

]
−

(
1√
n

∑
i,j,i6=j

E[·|Z]

[
m̈iπ

2
ijε

2
j

])2

︸ ︷︷ ︸
(II.1)

+
1

n

∑
i,j,j′

distinct

E[·|Z]

[
|m̈i|2 π2

ijπ
2
ij′ε

2
jε

2
j′

]
︸ ︷︷ ︸

(II.2)

+
2

n

∑
i,i′,j

distinct

E[·|Z]

[
m̈T

i m̈i′π
2
ijπ

2
ii′ε

2
i ε

2
j

]
︸ ︷︷ ︸

(II.3)

+
1

n

∑
i,i′,j

distinct

E[·|Z]

[
m̈T

i m̈i′π
2
ijπ

2
i′jε

4
j

]
︸ ︷︷ ︸

(II.4)

+
1

n

∑
i,j,i6=j

E[·|Z]

[
|m̈i|2 π4

ijε
4
j

]
︸ ︷︷ ︸

(II.5)

+
1

n

∑
i,j,i6=j

E[·|Z]

[
m̈T

i m̈jπ
4
ijε

2
i ε

2
j

]
︸ ︷︷ ︸

(II.6)

.

With (II.18) it is easy to see (together with the uniform bounded moments assumption) that

(II.2)–(II.6) are of order Op(n−1
∑

i π
2
ii) = Op(k/n), hence asymptotically negligible. As for

(II.1), note that

(II.1) = − 1

n

∑
i,j,j′

distinct

π2
ijπ

2
ij′E[·|Z]

[
m̈iε

2
j

]T E[·|Z]

[
m̈iε

2
j′

]
− 2

n

∑
i,i′,j

distinct

π2
ijπ

2
ii′E[·|Z]

[
m̈iε

2
j

]T E[·|Z]

[
m̈i′ε

2
i

]
− 1

n

∑
i,i′,j

distinct

π2
ijπ

2
ij′E[·|Z]

[
m̈iε

2
j

]T E[·|Z]

[
m̈i′ε

2
j

]
− 1

n

∑
i,j,i6=j

π4
ij

(
E[·|Z]

[
m̈iε

2
j

])2

− 1

n

∑
i,j,i6=j

π4
ijE[·|Z]

[
m̈iε

2
j

]T E[·|Z]

[
m̈jε

2
i

]
.

Therefore we have (II.1) is of order Op(n−1
∑

i π
2
ii) = Op(k/n).
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Variance, Term (III)

Next we consider (III), and still (II.19) implies

E[·|Z]

( 2√
n

∑
i,j,i6=j

m̈iπijπiiεjεi

)2
 =

4

n

∑
i,j,distinct

E[·|Z]

[
|m̈i|2 π2

ijπ
2
iiε

2
i ε

2
j

]
+

8

n

∑
i,j,distinct

E[·|Z]

[
m̈T

i m̈jπ
2
ijπiiπjjε

2
i ε

2
j

]
,

where the two terms are denoted by (III.1) and (III.2), respectively. For (III.1) it is bounded

by

|(III.1)| - 1

n

∑
i

π2
ii

∑
j 6=i

π2
ij =

1

n

∑
i

π3
ii,

which is bounded by k/n due to (II.17). Similarly

|(III.2)| - 1

n

∑
i,j

πiiπjjπ
2
ij ≤

1

n

∑
i,j

πjjπ
2
ij = O(k/n),

due to (II.17) and πii ≤ 1.

Variance, Term (IV)

Finally we consider (IV), and the variance is

E[·|Z]

( 1√
n

∑
i

m̈iπ
2
iiε

2
i

)2
−( 1√

n

∑
i

E[·|Z]

[
m̈iπ

2
iiε

2
i

])2

=
1

n

∑
i,j,i6=j

E[·|Z]

[
m̈T

i m̈jπ
2
iiπ

2
jjε

2
i ε

2
j

]
−

(
1√
n

∑
i

E[·|Z]

[
m̈iπ

2
iiε

2
i

])2

+
1

n

∑
i

E[·|Z]

[
|m̈i|2 π4

iiε
4
i

]
.

And both terms are bounded by O(k/n).

The last step is to show that one can essentially replace µ̃i by µi in (II.11). This is

trivial due to Assumption II.1, and the consistency assumption II.2. �

II.9.4 Proof of Proposition II.1

By the condition k = O(
√
n), all terms of order Op(

√
k/n) can be ignored asymptotically.

Also the bias term has order B = Op(k/
√
n) = Op(1). In particular, both (II.10) and (II.11)
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are of order Op(1). By Assumption II.2, the remainder term in the quadratic expansion

(after (II.11)) has the order op(|(II.11)|), which is negligible. �

II.9.5 Proof of Theorem II.1

We first make the following decomposition:

Ψ̃1 = E[Ψ̄1|Z], Ψ̃2 = Ψ̄1 − E[Ψ̄1|Z] + Ψ̄2.

Then note that Ψ̃1 is mean zero, and Ψ̃2 is conditionally mean zero (on Z). One special case

is that Ψ̃1 = 0 almost surely, which will happen if the moment condition for the second step is

actually a conditional moment restriction. In what follows, we assume Ψ̃1 is nondegenerate.

By the usual central limit theorem, one has(
V[Ψ̃1]

)−1/2

Ψ̃1
d→ N (0, I).

Next we consider the large sample distribution of Ψ̃2, which requires triangular array type

argument. Let α be a generic vector, and consider

1

n

∑
i

E[·|Z]

[
(ai + bi)

21
[
|ai + bi| > 2ε

√
n
] ]
,

where

ai = αT
(
m(wi, µi,θ0)− E[m(wi, µi,θ0)|zi]

)
, bi = αT

(∑
j

E[ṁ(wj, µj,θ0)|zj]πij
)
εi.

Note that

1

n

∑
i

E[·|Z]

[
(ai + bi)

21
[
|ai + bi| > 2ε

√
n
] ]

-
1

n

∑
i

E[·|Z]

[(
a2
i + b2

i

)(
1
[
|ai| > ε

√
n
]

+ 1
[
|bi| > ε

√
n
])]

,

which is a sum of four terms.

The first case is the easiest:

E

∣∣∣∣∣ 1n∑
i

E[·|Z]

[
a2
i1
[
|ai| > ε

√
n
] ]∣∣∣∣∣ =

1

n

∑
i

E

[
a2
i1
[
|ai| > ε

√
n
] ]
→ 0,
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where the first equality is true since the summands are nonnegative, and the last line comes

from the i.i.d.ness of ai. Therefore

1

n

∑
i

E[·|Z]

[
a2
i1
[
|ai| > ε

√
n
] ]

= op(1).

For future reference, define b̃i = αT
(∑

j E[ṁ(wj, µj,θ0)|zj]πij
)

. Then the second case

becomes (where we used the union bound)

1

n

∑
i

E[·|Z]

[
a2
i1
[
|bi| > ε

√
n
] ]
≤ 1

n

∑
i

E[·|Z]

[
a2
i1

[
|b̃i| > ε

√
n/ log(n)

] ]

+
1

n

∑
i

E[·|Z]

[
a2
i1 [|εi| > log(n)]

]
.

the last term in the above display is op(1) since it has expectation (note that it is nonnegative)

lim
n
E

[
1

n

∑
i

E[·|Z]

[
a2
i1 [|εi| > log(n)]

]]
= lim

n
E

[
a2
i1 [|εi| > log(n)]

]

= E

[
a2
i lim

n
1 [|εi| > log(n)]

]
= 0,

and interchanging limit and expectation is justified by dominated convergence, and the fact

that E[a2
i ] <∞. The other terms is handled by the following:

1

n

∑
i

E[·|Z]

[
a2
i1

[
|b̃i| > ε

√
n/ log(n)

] ]
=

1

n

∑
i

1

[
|b̃i| > ε

√
n/ log(n)

]
E[·|Z][a

2
i ]

-
1

n

∑
i

1

[
|b̃i| > ε

√
n/ log(n)

]
.

The first line comes from the fact that b̃i is constant after conditioning on Z, and the second

line is true since E[·|Z][a
2
i ] is bounded. We show it is op(1) again by taking expectation, and

the fact that b̃i is the projection of random variable with finite expectation.

The next case is again very simple:
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1

n

∑
i

E[·|Z]

[
b2
i1
[
|ai| > ε

√
n
] ]
-

1

n

∑
i

b̃2
iE[·|Z]

[
ε2
i1
[
|ai| > ε

√
n
] ]

≤

(
max
1≤i≤n

E[·|Z]

[
ε2
i1
[
|ai| > ε

√
n
] ]) 1

n

∑
i

b̃2
i -

(
max
1≤i≤n

E[·|Z]

[
ε2
i1
[
|ai| > ε

√
n
] ])

→ 0.

The first inequality comes from the definition of b̃i; the second is Hölder’s inequality; the

third inequality uses the fact
∑

i b̃
2
i = O(n); and the final inequality is true since we assumed

bounded conditional moment.

Finally, the last case is

1

n

∑
i

E[·|Z]

[
b2
i1
[
|bi| > ε

√
n
] ]
-

1

n

∑
i

b̃2
i1

[
|b̃i| > ε

√
n/ log(n)

]
+ op(1) = op(1),

since b̃i comes from projecting a bounded sequence.

To summarize, we have the following two convergence results: (1) Ψ̃1 converges uncon-

ditionally to a multivariate normal distribution; and (2) conditional on Z, Ψ̃2 converges to

a multivariate normal distribution (more precisely, conditional on Z the distribution func-

tion of Ψ̃2 converges to that of a multivariate normal in probability). The following remark

shows how joint convergence can be established (not that it is not true in general that one

can conclude joint convergence from marginal convergence)

Remark II.4 (From marginal convergence to joint convergence) Here we consider

one special case where it is possible to deduce joint convergence from marginal convergence.

Assume Xn
d→ N (0, 1) and Yn|Zn

d→p N (0, 1), and Xn ∈ σ(Zn), where Yn|Zn
d→p N (0, 1).

Then, [Xn, Yn]T
d→ N (0, I).

This follows because

P

[
Xn ≤ x, Yn ≤ y

]
= E

[
1[Xn ≤ x]P[Yn ≤ y|Zn]

]
= E

[
1[Xn ≤ x]

(
P[Yn ≤ y|Zn]− Φ(y)

)]
+ P

[
Xn ≤ x

]
Φ(y)

→ Φ(x)Φ(y),

using the dominated convergence theorem and the assumption that P[Yn ≤ y|Zn]→P Φ(y).

‖

127



Hence we are able to show
(
V[Ψ̃1]

)−1/2

Ψ̃1(
V[Ψ̃2|Z]

)−1/2

Ψ̃2

 d→ N

([
0

0

]
,

[
I 0

0 I

])
,

and the desired result follows by considering the linear combination(
V[Ψ̃1] + V[Ψ̃2|Z]

)−1/2
[(
V[Ψ̃1]

)1/2

,
(
V[Ψ̃2|Z]

)1/2
]
.

�

II.9.6 Proof of Theorem II.2

Part 1

For the ease of exposition we ignore (asymptotic negligible) remainder terms in the proof.

Then θ̂ has the expansion

√
n
(
θ̂ − θ0

)
=

1√
n

∑
i

ai +
1√
n

∑
i

bi (µ̂i − µi) +
1√
n

∑
i

ci (µ̂i − µi)2 ,

where to save notations we used

ai = −
(
MT

0 Ω0M0

)−1
MT

0 Ω0m(wi, µi,θ0)

bi = −
(
MT

0 Ω0M0

)−1
MT

0 Ω0ṁ(wi, µi,θ0)

ci = −1

2

(
MT

0 Ω0M0

)−1
MT

0 Ω0m̈(wi, µi,θ0).

Denote the leave-j-out estimator by θ̂
(j)

, it is easy to see that

√
n
(
θ̂

(j)
− θ0

)
=

√
n

n− 1

∑
i,i 6=j

ai +

√
n

n− 1

∑
i,i 6=j

bi

(
µ̂

(j)
i − µi

)
+

√
n

n− 1

∑
i,i 6=j

ci

(
µ̂

(j)
i − µi

)2

.

Recall that the jackknife estimator is defined as

θ̂
(·)

=
1

n

∑
j

θ̂
(j)
,
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and with some algebraic manipulation,

(n− 1) ·
√
n
(
θ̂

(·)
− θ̂

)
=

1√
n

∑
j

∑
i,i 6=j

bi
πij

1− πjj

(
µ̂j − rj

)
(I)

+
1√
n

∑
j

∑
i,i 6=j

ci

(
πij

1− πjj

)2 (
µ̂j − rj

)2

(II)

+
2√
n

∑
j

∑
i,i 6=j

ci
πij

1− πjj
(µ̂i − µi)

(
µ̂j − rj

)
. (III)

By Assumption II.2, we could ignore the approximation error. And (I) becomes

(I) =
1√
n

∑
j

∑
i,i 6=j

bi
πij

1− πjj

(
µ̂j − µj + µj − rj

)
=

1√
n

∑
j

∑
i,i 6=j

bi
πij

1− πjj

(∑
`

πj`ε`

)
︸ ︷︷ ︸

(I.1)

− 1√
n

∑
j

∑
i,i 6=j

bi
πij

1− πjj
εj︸ ︷︷ ︸

(I.2)

+op(1).

Then we have the following conditional expectations:

E[·|Z] [(I.1)] =
1√
n

∑
j

∑
i,i 6=j

π2
ij

1− πjj
E[·|Z] [biεi]

= − 1√
n

(
MT

0 Ω0M0

)−1
MT

0 Ω0

[∑
i

b1,iπii

]

+
1√
n

∑
i

E[·|Z] [biεi]

(∑
j,j 6=i

π2
ij

1− πjj
− πii

)
E[·|Z] [(I.2)] = 0.

To further simplify, note that∣∣∣∣∣ 1√
n

∑
i

E[·|Z] [biεi]

(∑
j,j 6=i

π2
ij

1− πjj
− πii

)∣∣∣∣∣ - 1√
n

∑
i

∣∣∣∣∣∑
j,j 6=i

π2
ij

1− πjj
− πii

∣∣∣∣∣
-

1√
n

∑
i

π2
ii = op(1).

One could conduct variance calculation, which is tedious yet straightforward. Now we con-

sider (II), which has the following expansion:
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(II) =
1√
n

∑
j

∑
i,i 6=j

ci

(
πij

1− πjj

)2 (
µ̂j − µj + µj − rj

)2

=
1√
n

∑
j

∑
i,i 6=j

ci

(
πij

1− πjj

)2
(∑

`,m

πj`πjmε`εm

)
︸ ︷︷ ︸

(II.1)

+
1√
n

∑
j

∑
i,i 6=j

ci

(
πij

1− πjj

)2

ε2
j︸ ︷︷ ︸

(II.2)

− 2√
n

∑
j

∑
i,i 6=j

ci

(
πij

1− πjj

)2
(∑

`

πj`ε`εj

)
︸ ︷︷ ︸

(II.3)

+op(1).

Therefore

∣∣E[·|Z] [(II.1)]
∣∣ =

∣∣∣∣∣ 1√
n

∑
i,j,i6=j

∑
`

E[·|Z]

[
ciε

2
`

]( πij
1− πjj

)2

π2
j`

∣∣∣∣∣
-p

1√
n

∑
i,j,i6=j

∑
`

π2
ijπ

2
j` ≤

1√
n

∑
j,`

π2
j`πjj = op(1),

and

E[·|Z] [(II.2)] =
1√
n

∑
j

∑
i,i 6=j

E[·|Z]

[
ciε

2
j

]( πij
1− πjj

)2

=
1√
n

∑
i,j

E[·|Z]

[
ciε

2
j

]( πij
1− πjj

)2

+ op(1)

= − 1√
n

(
MT

0 Ω0M0

)−1
MT

0 Ω0

[∑
i,j

b2,ijπ
2
ij

]

+
1√
n

∑
i,j

E[·|Z]

[
ciε

2
j

] π2
ijπjj

(1− πjj)2
+ op(1)

= − 1√
n

(
MT

0 Ω0M0

)−1
MT

0 Ω0

[∑
i,j

b2,ijπ
2
ij

]
+ op(1), (II.17)

and using (II.17) again,

∣∣E[·|Z] [(II.3)]
∣∣ =

∣∣∣∣∣ 2√
n

∑
j

∑
i,i 6=j

E[·|Z]

[
ciε

2
j

]( πij
1− πjj

)2

πjj

∣∣∣∣∣ -p
1√
n

∑
i,j

π2
ijπjj = op(1).
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Finally (III) has the expansion:

(III) =
2√
n

∑
j

∑
i,i 6=j

ci
πij

1− πjj

(∑
`,m

πi`πjmε`εm

)
︸ ︷︷ ︸

III.1

− 2√
n

∑
j

∑
i,i 6=j

ci
πij

1− πjj

(∑
`

πi`ε`εj

)
︸ ︷︷ ︸

III.2

+op(1).

Again we consider the conditional expectations:

E[·|Z] [III.1] =
2√
n

∑
j

∑
i,i 6=j

∑
`

E[·|Z]

[
ciε

2
`

] πijπi`πj`
1− πjj

,

E[·|Z] [III.2] = − 2√
n

∑
j

∑
i,i 6=j

E[·|Z]

[
ciε

2
j

] π2
ij

1− πjj
.

Therefore using (II.17) and πj′j′ ≤ 1

∣∣E[·|Z] [III.1] + E[·|Z] [III.2]
∣∣

=

∣∣∣∣∣ 2√
n

∑
i,j,`

E[·|Z]

[
ciε

2
`

] πijπi`πj`
1− πjj

− 2√
n

∑
i,`

E[·|Z]

[
ciε

2
`

] π2
i`

1− π``

∣∣∣∣∣+ op(1)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

E[·|Z]

[
ciε

2
`

] πijπi`πj`
1− πjj

− 2√
n

∑
i,j,`

E[·|Z]

[
ciε

2
`

]
πijπi`πj`

∣∣∣∣∣+ op(1)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

E[·|Z]

[
ciε

2
`

] πijπi`πj`πjj
1− πjj

∣∣∣∣∣+ op(1)

-p
1√
n

√∑
i,`

π2
i`

√√√√∑
i,`

(∑
j

πijπj`πjj
1− πjj

)2

=

√
k√
n

√∑
i,`

∑
jj′

πijπj`πjjπij′πj′`πj′j′

(1− πjj)(1− πj′j′)
-p

√
k√
n

√∑
jj′

πjjπj′j′π2
jj′ =

√
k√
n
· op(
√
k) = op(1).

Therefore we showed the desired result.
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Part 2

First note that the jackknife variance estimator takes the form:

(n− 1)
∑
j

(
θ̂

(j)
− θ̂

(·))2

,

where for a (column) vector v, we use v2 to denote vvT to save space. Then the variance

estimator could be rewritten as

V̂ = (n− 1)
∑
j

(
θ̂

(j)
− θ̂

)2

− 1

n− 1

(
B̂
)2

= (n− 1)
∑
j

(
θ̂

(j)
− θ̂

)2

+Op

(
1

n

)
.

Next recall that

θ̂
(j)
− θ̂ =

1

n− 1

(
θ̂ − θ0

)
︸ ︷︷ ︸

(I)

− 1

n− 1
aj︸ ︷︷ ︸

(II)

− 1

n− 1
bj

(
µ̂j − µj

)
︸ ︷︷ ︸

(III)

− 1

n− 1
cj

(
µ̂j − µj

)2

︸ ︷︷ ︸
(IV)

+
1

n− 1

∑
i,i 6=j

bi
πij

1− πjj

(
µ̂j − rj

)
︸ ︷︷ ︸

(V)

+
1

n− 1

∑
i,i 6=j

ci

(
πij

1− πjj

)2 (
µ̂j − rj

)2

︸ ︷︷ ︸
(VI)

+
2

n− 1

∑
i,i 6=j

ci
πij

1− πjj

(
µ̂i − µi

)(
µ̂j − rj

)
︸ ︷︷ ︸

(VII)

.

Therefore we have to consider the square of each term, as well as their interactions. As the

proof is quite tedious, we list the main steps here. First we would like to recover the variance

terms in Theorem II.1 with

(n− 1)
∑
j

(II)2 = V[Ψ̄1] + op(1), (n− 1)
∑
j

(II)(V)T

= Cov[·|Z][Ψ̄1, Ψ̄2] + op(1), (n− 1)
∑
j

(V)2 = V[·|Z][Ψ̄2] + op(1).

Furthermore, all the other square terms and interactions are asymptotically negligible. We

use the following fact repeatedly: For two sequences {ui} and {vj},

∣∣∣∣∣∑
i,j

uiπijvj

∣∣∣∣∣ ≤
√∑

i

u2
i

√√√√∑
i

(∑
j

πijvj

)2

≤
√∑

i

u2
i

√∑
i

v2
i .
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Term (I):

(n− 1)
∑
j

(I)2 =
1

n− 1

∑
j

(
θ̂ − θ0

)2

�
(
θ̂ − θ0

)2

= op(1),

by consistency. Then it is also easy to show that for † = II, · · · ,VII

(n− 1)
∑
j

(I)(†)T = (I)
1

n− 1

∑
j

(†)T = op(1) · 1

n− 1

∑
j

(†)T = op(1),

since the summands are bounded in probability uniformly in j.

Next term (II):

(n− 1)
∑
j

(II)2 =
1

n− 1

∑
j

a2
j ,

which is asymptotically equivalent to V[Ψ̄1] in Theorem II.1. Now we consider the interac-

tions:∣∣∣(n− 1)
∑
j

(II)(III)T
∣∣∣ =

∣∣∣ 1

n− 1

∑
j

ajb
T
j

(
µ̂j − µj

)∣∣∣ ≤ op(1) · 1

n− 1

∑
j

|ajbT
j | = op(1).

Similar techniques can be used to establish the following

(n− 1)
∑
j

(II)(IV)T = op(1).

The interactions between (II) and (V), (VI) and (VII) are more involved. We first consider

the interaction between (II) and (V):

(n− 1)
∑
j

(II)(V)T = − 1

n

∑
j

ajεj
∑
i,i 6=j

bi
πij

1− πjj
+ op(1) (Assumption II.2)

=
1

n

∑
j

ajεj
∑
i,i 6=j

biπij −
1

n

∑
j

ajεj
∑
i,i 6=j

bi
πijπjj

1− πjj
+ op(1)

=
1

n

∑
j

ajεj
∑
i,i 6=j

biπij + op(1),

which is asymptotically equivalent to Cov[·|Z][Ψ̄1, Ψ̄2]. And by symmetry, (n−1)
∑

j (V)(II)T

is equivalent to Cov[·|Z][Ψ̄2, Ψ̄1]. And as a short digression,
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(n− 1)
∑
j

(V)2

=
1

n− 1

∑
j

ε2
j

(∑
i,i 6=j

bi
πij

1− πjj

)2

+ op(1)

=
1

n− 1

∑
j

ε2
j

(∑
i,i 6=j

E[·|Z][bi]
πij

1− πjj

)2

+
1

n− 1

∑
j

ε2
j

(∑
i,i 6=j

(
bi − E[·|Z][bi]

) πij
1− πjj

)2

+
1

n− 1

∑
j

ε2
j

(∑
i,i 6=j

E[·|Z][bi]
πij

1− πjj

)(∑
i,i 6=j

(
bi − E[·|Z][bi]

) πij
1− πjj

)T

+ op(1),

where the first term in the above display recovers V[·|Z][Ψ̄2], while the rest two are negligible

by conditional expectation calculation. Therefore we recovered the asymptotic variance.

Back to the interaction terms,

∣∣∣(n− 1)
∑
j

(II)(VI)T
∣∣∣ =

∣∣∣ 1

n− 1

∑
j

aj
∑
i,i 6=j

cT
i

(
πij

1− πjj

)2 (
µ̂j − rj

)2∣∣∣ -p
1

n− 1

∑
i,j

π2
ij = op(1),

and ∣∣∣(n− 1)
∑
j

(II)(VII)T
∣∣∣ =

∣∣∣ 2

n− 1

∑
j

aj

(
µ̂j − rj

)∑
i,i 6=j

cT
i

πij
1− πjj

(
µ̂i − µi

)∣∣∣
�p

∣∣∣ 2

n− 1

∑
i,j

aj

(
µ̂j − rj

)
cT
i πij

(
µ̂i − µi

)∣∣∣ (Assumption II.4)

≤ 2

n− 1
·
√∑

j

|aj|2
(
µ̂j − rj

)2
√∑

j

|cj|2
(
µ̂j − µj

)2

≤ op(1) · 2

n− 1
·
√∑

j

|aj|2
(
µ̂j − rj

)2
√∑

j

|cj|2 = op(1),

With a quick inspection, the above method also applies to the following interactions

(n− 1)
∑
j

(III)(V)T = op(1), (n− 1)
∑
j

(III)(VI)T = op(1), (n− 1)
∑
j

(III)(VII)T = op(1),

(n− 1)
∑
j

(IV)(V)T = op(1), (n− 1)
∑
j

(IV)(VI)T = op(1), (n− 1)
∑
j

(IV)(VII)T = op(1).
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Next we consider the squared terms involving (III) and (IV):

(n− 1)
∑
j

(III)2 =
1

n− 1

∑
j

(bj)
2
(
µ̂j − µj

)2

≤ op(1) · 1

n− 1

∑
j

|bj|2 = op(1),

(n− 1)
∑
j

(IV)2 =
1

n− 1

∑
j

(cj)
2
(
µ̂j − µj

)4

≤ op(1) · 1

n− 1

∑
j

|cj|2 = op(1).

What remains are (V)(VI)T, (V)(VII)T, (VI)2, (VI)(VII)T and (VII)2.

∣∣∣(n− 1)
∑
j

(V)(VI)T
∣∣∣ =

∣∣∣ 1

n− 1

∑
i,j

biπij

(
µ̂j − rj

)3
(∑
`,` 6=j

c`

(
π`j

1− π``

)2
)T ∣∣∣+ op(1)

-p

√
1

n

∑
j,i,`

π2
ijπ

2
`j = op(1).

And ∣∣∣(n− 1)
∑
j

(V)(VII)T
∣∣∣

=
∣∣∣ 2

n− 1

∑
j

(∑
i,i 6=j

bi
πij

1− πjj

(
µ̂j − rj

))(∑
`,` 6=j

c`
π`j

1− π``

(
µ̂` − µ`

)(
µ̂j − rj

))T ∣∣∣
-p

√√√√ 1

n− 1

∑
j

(
µ̂j − rj

)4

∣∣∣∣∣∑
`,` 6=j

c`
π`j

1− π``

(
µ̂` − µ`

)∣∣∣∣∣
2

= op(1),

where the last line uses Assumption II.2. Using techniques in the above results, we can show

(n− 1)
∑
j

(VI)2 = op(1), (n− 1)
∑
j

(VII)2 = op(1), (n− 1)
∑
j

(VI)(VII)T = op(1),

which closes the proof. �

II.9.7 Proof of Proposition II.2

Given consistency, we are able to linearize the bootstrap estimating equation with respect

to θ̂
?
, around θ̂:

√
n
(
θ̂
?
− θ̂

)
= Σ0

[
1√
n

∑
i

m?(wi, µ̂
?
i , θ̂)

](
1 + op(1)

)
,
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where for notational simplicity, we define m?(wi, ·, ·) := (1 + e?i ) ·m(wi, ·, ·). We further

expand the above with respect to the bootstrapped first step:

1√
n

∑
i

m?(wi, µ̂
?
i , θ̂) =

1√
n

∑
i

m?(wi, µ̂i, θ̂) (II.23)

+
1√
n

∑
i

ṁ?(wi, µ̂i, θ̂)
(
µ̂?i − µ̂i

)
(II.24)

+
1√
n

∑
i

1

2
m̈?(wi, µ̃

?
i , θ̂)

(
µ̂?i − µ̂i

)2

+ op(1). (II.25)

Analyses of the above terms are similar to those of Lemma II.6 and II.7, with more delicate

arguments.

Lemma II.8 (Term (II.23))

Assume Assumption II.1, II.2, II.3 and II.5 hold, and k = O(
√
n). Then

(II.23) =
1√
n

∑
i

e?i ·m(wi, µi,θ0) +Op

(√
k

n

)
+ op(1). ‖

Note that

(II.23) =
1√
n

∑
i

m?(wi, µ̂i, θ̂) =
1√
n

∑
i

e?i ·m(wi, µ̂i, θ̂) + op(1)

=
1√
n

∑
i

e?i ·m(wi, µ̂i,θ0) + op(1).

the last equality comes from the argument that

1√
n

∑
i

e?i ·
∂

∂θ
m(wi, µ̂i, θ̃)

(
θ̂ − θ0

)
-P

1

n

∑
i

e?i ·
∂

∂θ
m(wi, µ̂i, θ̃)

p→ E

[
e?i ·

∂

∂θ
m(wi, µi,θ0)

]
,

given Assumption II.1. To further understand the last term, we still need to expand it with

respect to µ̂i, yielding

1√
n

∑
i

e?i ·m(wi, µ̂i,θ0) =
1√
n

∑
i

e?i ·m(wi, µi,θ0) (I)

+
1√
n

∑
i

e?i · ṁ(wi, µi,θ0)
(
µ̂i − µi

)
(II)

+
1√
n

∑
i

e?i ·
1

2
m̈(wi, µi,θ0)

(
µ̂i − µi

)2

· (1 + op(1)). (III)
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(I) apparently contributes to the first order. For (II), note that it can be simplified using

exactly the same argument used in Lemma II.6 and II.6. Equivalently, assuming Assumption

II.1 and II.2, then

(II) = Op

(√
k

n

)
+ op(1).

By the same argument, (III) can be simplified with Lemma II.7 and II.7:

(III) = Op

(√
k

n

)
+ op(1).

�

Lemma II.9 (Term (II.24))

Assume Assumption II.1, II.2, II.3 and II.5 hold, and k = O(
√
n). Then

(II.24) =
1√
n

∑
i

(∑
j

E [ṁ(wj, µj,θ0)|zj] πij

)
εie

?
i +

1√
n

∑
i

b1,i · πii + op(1),

where b1,i is given in Lemma II.6. ‖

For (II.24), we first show that it is possible to replace θ̂ by θ0, provided ∂ṁ/∂θ is

Hölder continuous in µi and θ:

(II.24) =
1√
n

∑
i

ṁ?(wi, µ̂i,θ0)
(
µ̂?i − µ̂i

)
+

1

n

∑
i

∂

∂θ
ṁ?(wi, µ̂i, θ̃)

(
µ̂?i − µ̂i

)√
n
(
θ̂ − θ0

)
,

where the second term is bounded by the following∣∣∣∣∣ 1n∑
i

∂

∂θ
ṁ?(wi, µ̂i, θ̃)

(
µ̂?i − µ̂i

)√
n
(
θ̂ − θ0

)∣∣∣∣∣
-p

1

n

∑
i

∣∣∣∣ ∂∂θṁ?(wi, µ̂i, θ̃)
(
µ̂?i − µ̂i

)∣∣∣∣ = op(1) · 1

n

∑
i

∣∣∣∣ ∂∂θṁ?(wi, µ̂i, θ̃)

∣∣∣∣ = op(1),

where the last one uses the uniform consistency of µ̂?i and µ̂i. Hence
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(II.24) =
1√
n

∑
i

ṁ?(wi, µ̂i,θ0)
(
µ̂?i − µ̂i

)
+ op(1) =

1√
n

∑
i

ṁ?(wi, µ̂i,θ0)
(∑

j

πijεje
?
j

)
− 1√

n

∑
i

ṁ?(wi, µ̂i,θ0)
(∑

j

πij(µ̂j − µj)e?j
)

︸ ︷︷ ︸
(I)

+op(1).

For (I),

E?
[
(I)(I)T

]
=

1

n
E?

[ ∑
i,i′,j,j′

ṁ?(wi, µ̂i,θ0)ṁ?(wi′ , µ̂i′ ,θ0)T(µ̂j − µj)(µ̂j′ − µj′)e?je?j′πijπi′j′
]

=
1

n

∑
i,i′,j

distinct

ṁ(wi, µ̂i,θ0)ṁ(wi′ , µ̂i′ ,θ0)T(µ̂j − µj)2πijπi′j (II)

+
2

n

∑
i,i′

distinct

ṁ(wi, µ̂i,θ0)ṁ(wi′ , µ̂i′ ,θ0)T(µ̂i − µi)(µ̂i′ − µi′)πiiπi′i′ (III)

+
2

n

∑
i,j

distinct

ṁ(wi, µ̂i,θ0)ṁ(wi, µ̂i,θ0)T(µ̂j − µj)2π2
ij (IV)

+
C1

n

∑
i,j

distinct

ṁ(wi, µ̂i,θ0)ṁ(wj, µ̂j,θ0)T(µ̂j − µj)2πijπjj (V)

+
C2

n

∑
i

distinct

ṁ(wi, µ̂i,θ0)ṁ(wi, µ̂i,θ0)T(µ̂i − µi)2π2
ii, (VI)

where C1 and C2 are related to the third and fourth moments of e?i . Then for each term,

|(II)| ≤
(

max
1≤i≤n

|µ̂i − µi|2
)
· 1

n

∑
i,i′

distinct

|ṁ(wi, µ̂i,θ0)| |ṁ(wi′ , µ̂i′ ,θ0)| πii′

≤ op(1) · 1

n

∑
i

|ṁ(wi, µ̂i,θ0)|2 = op(1), (projection and Assumption II.2)

provided ṁ is Hölder continuous in µi. (III) can be handled by observing that
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|(III)| ≤

(
1√
n

∑
i

|ṁ(wi, µ̂i,θ0)|πii |µ̂i − µi|

)2

≤ op(1) ·

(
1√
n

∑
i

|ṁ(wi, µi,θ0)|πii

)2

= op

(
k2

n

)
.

Similarly

|(IV)| ≤ op(1) · 2

n

∑
i,j

distinct

|ṁ(wi, µi,θ0)|2 π2
ij = op

(
k

n

)
,

and

|(V)| ≤ C1

n

(∑
i

|ṁ(wi, µ̂i,θ0)|2
)1/2(∑

i

|ṁ(wi, µ̂i,θ0)|2 |µ̂i − µi|4π2
jj

)1/2

-P n
−1 ·
√
n ·
√
k · op(1) = op

(√
k

n

)
.

Finally,

|(VI)| ≤ C2

n

∑
i

|ṁ(wi, µ̂i,θ0)|2 |µ̂i − µi|2π2
ii = op

(
k

n

)
.

To summarize, we have the following

(II.24) =
1√
n

∑
i

ṁ?(wi, µ̂i,θ0)
(∑

j

πijεje
?
j

)
+ op

(
k√
n
∨ 1

)
=

1√
n

∑
i

ṁ?(wi, µi,θ0)
(∑

j

πijεje
?
j

)
+ op

(
k√
n
∨ 1

)
,

where the second line relies on almost the same argument. Finally, we can apply the same

techniques used to prove Lemma II.6 and II.6, yielding

(II.24) =
1√
n

∑
i

(∑
j

E [ṁ(wj, µj,θ0)|zj] πij

)
εie

?
i +

1√
n

∑
i

b1,i · πii + op

(
k√
n
∨ 1

)
.

�

Lemma II.10 (Term (II.25))
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Assume Assumption II.1, II.2, II.3 and II.5 hold, and k = O(
√
n). Then

(II.25) =
1√
n

∑
i,j

b2,ij · π2
ij +

1√
n

∑
i

b2,ii · π2
ii · E[e?3i ] + op(1),

where b2,ij is given in Lemma II.7. ‖

First note that

(II.25) =
1√
n

∑
i

1

2
m̈?(wi, µ̃

?
i , θ̂)

(
µ̂?i − µ̂i

)2

=
1√
n

∑
i

1

2
m̈?(wi, µi,θ0)

(
µ̂?i − µ̂i

)2

︸ ︷︷ ︸
(I)

+
1√
n

∑
i

1

2

[
m̈?(wi, µ̃

?
i , θ̂)− m̈?(wi, µi,θ0)

] (
µ̂?i − µ̂i

)2

,

where the second term is easily bounded by∣∣∣∣∣ 1√
n

∑
i

1

2

[
m̈?(wi, µ̃

?
i , θ̂)− m̈?(wi, µi,θ0)

] (
µ̂?i − µ̂i

)2

∣∣∣∣∣
≤ 1√

n

∑
i

1

2
(1 + ei) · Hα,δ

i (m̈) · (|µ̃?i − µi|+ |θ̂ − θ0|)α · |µ̂?i − µ̂i|2

≤ op(1) · 1√
n

∑
i

1

2
(1 + ei) · Hα,δ

i (m̈) · |µ̂?i − µ̂i|2. (II)

Compare (I) and (II) and note that Assumption II.1 imposes the same restrictions on m̈ and

Hα,δ
i (m̈). Hence generically, (II) has the order

(II) = op (|(I)|) .

Next we consider (I), which can be written as

(I) =
1√
n

∑
i

1

2
m̈?(wi, µi,θ0)

(∑
j

πij ε̂je
?
j

)2

=
1√
n

∑
i,j,`

1

2
m̈?(wi, µi,θ0)ε̂j ε̂`e

?
je
?
`πijπi`.

The key step, as before, is to replace ε̂ by ε. Note that
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(I) =
1√
n

∑
i,j,`

1

2
m̈?(wi, µi,θ0)ε̂jε`e

?
je
?
`πijπi`

− 1√
n

∑
i,`

1

2
m̈?(wi, µi,θ0)(µ̂?i − µ̂i)(µ̂` − µ`)e?`πi`, (III)

and (for simplicity let a?i = m̈?(wi, µi,θ0)(µ̂?i − µ̂i))

E?
[
(III)(III)T

]
=

1

4n

∑
i,i′,j,j′

E?
[
a?ia

?T
i′ (µ̂j − µj)(µ̂j′ − µj′)e?je?j′πijπi′j′

]
=

1

4n

∑
i,i′,j

distinct

E?
[
a?ia

?T
i′

]
(µ̂j − µj)2πijπi′j (IV)

+
1

4n

∑
i,j

distinct

E?
[
a?ia

?T
i

]
(µ̂j − µj)2π2

ij (V)

+
1

2n

∑
i,i′

distinct

E?[a?i e
?
i ]E

?[a?i′e
?
i′ ]

T(µ̂i − µi)(µ̂i′ − µi′)πiiπi′i′ (VI)

+
1

2n

∑
i,i′

distinct

E? [a?i ]E
?
[
e?2i′ a

?T
i′

]
(µ̂i′ − µi′)2πii′πi′i′ (VII)

+
1

4n

∑
i

E?
[
a?ia

?T
i e

?2
i

]
(µ̂i − µi)2π2

ii. (VIII)

Then

|(IV)| =

∣∣∣∣∣∣∣
1

4n

∑
i,i′,j

distinct

E?
[
a?ia

?T
i′

]
(µ̂j − µj)2πijπi′j

∣∣∣∣∣∣∣
- op(1) · 1

n

∑
i,i′

E?
[
a?ia

?T
i′

]
πii′ ≤ op(1) · 1

n

∑
i,i′

E? [|a?i |]E? [|a?i′|] πii′

≤ op(1) · 1

n

∑
i,i′

|m̈(wi, µi,θ0)||m̈(wi′ , µi′ ,θ0)|πii′ ≤ op(1) · 1

n

∑
i

|m̈(wi, µi,θ0)|2 = op(1),

where the second line uses Assumption II.2, the fourth line uses Assumption II.5, and the
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last line uses projection property and Assumption II.1. Similarly, we have, for (V),

|(V)| =

∣∣∣∣∣∣∣
1

4n

∑
i,j

distinct

E?
[
a?ia

?T
i

]
(µ̂j − µj)2π2

ij

∣∣∣∣∣∣∣ - op(1) · 1

n

∑
i,j

|m̈(wi, µi,θ0)|2π2
ij = op

(
k

n

)
,

and the last equality is a simple consequence of Assumption II.1. (VI) is the most difficult,

which can be rewritten as

|(VI)| = 1

2n

∑
i,i′

distinct

E?[a?i e
?
i ]E

?[a?i′e
?
i′ ]

T(µ̂i − µi)(µ̂i′ − µi′)πiiπi′i′

�

(
1√
n

∑
i

E?[a?i e
?
i ](µ̂i − µi)πii

)2

- op(1) ·

(
1√
n

∑
i

|m̈(wi, µi,θ0)|πii

)2

= op

(
k2

n

)
.

And

|(VII)| =

∣∣∣∣∣∣∣
1

2n

∑
i,i′

distinct

E? [a?i ]E
?
[
e?2i′ a

?T
i′

]
(µ̂i′ − µi′)2πii′πi′i′

∣∣∣∣∣∣∣
-

1

n

(∑
i

|E? [a?i ] |2
)1/2(∑

i

|E?
[
e?2i a?i

]
|2|µ̂i − µi|2π2

ii

)1/2

(projection)

≤ op(1) · 1

n

(∑
i

|m̈(wi, µi,θ0)|2
)1/2(∑

i

|m̈(wi, µi,θ0)|2π2
ii

)1/2

= op(1) · n−1 · n1/2 · k1/2 = op

(√
k

n

)
.

Finally

|(VII)| = 1

4n

∑
i

E?
[
a?ia

?T
i e

?2
i

]
(µ̂i − µi)2π2

ii - op(1) · 1

n

∑
i

|m̈(wi, µi,θ0)|2π2
ii = op

(
k

n

)
.

Hence we have shown that

(I) =
1√
n

∑
i,j,`

1

2
m̈?(wi, µi,θ0)ε̂jε`e

?
je
?
`πijπi` + op

(
k√
n
∨ 1

)
.

Not surprisingly, we can replicate the above argument, and replace ε̂j by εj in the above
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display, yielding

(I) =
1√
n

∑
i,j,`

1

2
m̈?(wi, µi,θ0)εjε`e

?
je
?
`πijπi` + op

(
k√
n
∨ 1

)
.

The next step is to apply Lemma II.7 to conclude that

(I) =
1√
n

∑
i,j

1

2
E[·|Z]

[
m̈?(wi, µi,θ0)ε2

je
?2
j

]
π2
ij + op

(
k√
n
∨ 1

)
=

1√
n

∑
i,j

b2,ij · π2
ij +

1√
n

∑
i

b2,ii · π2
ii · E[e?3i ] + op

(
k√
n
∨ 1

)
.

�

Asymptotic Representation

This is a simple consequence of linearization, Lemma II.8, II.9 and II.10. �

II.9.8 Proof of Theorem II.3

Part 1

For the ease of exposition we ignore (asymptotic negligible) remainder terms in the proof.

Then θ̂
?

has the expansion

√
n
(
θ̂
?
− θ̂

)
=

√
n

nω

∑
i

ω?i âi +

√
n

nω

∑
i

ω?i b̂i (µ̂
?
i − µ̂i) +

√
n

nω

∑
i

ω?i ĉi (µ̂
?
i − µ̂i)

2 ,

where to save notations we used ω?i = 1 + e?i , nω =
∑

i ω
?
i , and

âi = Σ0m(wi, µ̂i, θ̂) b̂i = Σ0ṁ(wi, µ̂i, θ̂) ĉi = Σ0
m̈(wi, µ̂i, θ̂)

2
.

For future reference, let

ai = Σ0m(wi, µi,θ0) bi = Σ0ṁ(wi, µi,θ0) ci = Σ0
m̈(wi, µi,θ0)

2
.
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Denote the leave-j-out estimator by θ̂
?,(j)

, it is easy to see that

√
n
(
θ̂
?,(j)
− θ̂

)
=

√
n

nω − 1

∑
i

(ω?i − δij)âi +

√
n

nω − 1

∑
i

(ω?i − δij)b̂i
(
µ̂
?,(j)
i − µ̂i

)
+

√
n

nω − 1

∑
i

(ω?i − δij)ĉi
(
µ̂
?,(j)
i − µ̂i

)2

,

where δij = 1[i = j]. Recall that the jackknife estimator is defined as

θ̂
?,(·)

=
1

nω

∑
j

ω?j θ̂
?,(j)

,

hence

√
n
(
θ̂
?,(·)
− θ̂

)
=

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)âi +

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)b̂i

(
µ̂
?,(j)
i − µ̂i

)
+

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
µ̂
?,(j)
i − µ̂i

)2

.

To simplify, we further expand the leave-j-out propensity score, which satisfies

µ̂
?,(j)
i − µ̂i = µ̂?i − µ̂i +

πij
1− πjj

(µ̂?j − r?j ),

hence

√
n
(
θ̂
?,(·)
− θ̂

)
=

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)âi

+

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)b̂i (µ̂?i − µ̂i)

+

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)ĉi (µ̂?i − µ̂i)

2

+

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)b̂i

πij
1− πjj

(µ̂?j − r?j )

+
2
√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)ĉi

πij
1− πjj

(µ̂?i − µ̂i)(µ̂?j − r?j )

+

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(µ̂?j − r?j )2.
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Note that

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)âi =

√
n

nω(nω − 1)

∑
i

âi
∑
j

(
ω?j (ω

?
i − δij)

)
=

√
n

nω(nω − 1)

∑
i

âi ((nω − ω?i )ω?i + ω?i (ω
?
i − 1))

=

√
n

nω

∑
i

ω?i âi.

Similarly, we have

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)b̂i (µ̂?i − µ̂i) =

√
n

nω

∑
i

ω?i b̂i (µ̂
?
i − µ̂i) ,

and

√
n

nω(nω − 1)

∑
i,j

ω?j (ω
?
i − δij)ĉi (µ̂?i − µ̂i)

2 =

√
n

nω

∑
i

ω?i ĉi (µ̂
?
i − µ̂i)

2 .

As a consequence,

(nω − 1)
√
n
(
θ̂
?,(·)
− θ̂

?
)

=

√
n

nω

∑
i,j

ω?j (ω
?
i − δij)b̂i

πij
1− πjj

(µ̂?j − r?j )

+
2
√
n

nω

∑
i,j

ω?j (ω
?
i − δij)ĉi

πij
1− πjj

(µ̂?i − µ̂i)(µ̂?j − r?j )

+

√
n

nω

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(µ̂?j − r?j )2

=
1√
n

∑
i,j

ω?j (ω
?
i − δij)b̂i

πij
1− πjj

(µ̂?j − r?j ) (I)

+
2√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

πij
1− πjj

(µ̂?i − µ̂i)(µ̂?j − r?j ) (II)

+
1√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(µ̂?j − r?j )2 (III)

+ op(1).

Next we analyze each term. For term (I), it is
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(I) =
1√
n

∑
i,j

ω?j (ω
?
i − δij)b̂i

πij
1− πjj

(µ̂?j − r?j )

=
1√
n

∑
i,j

ω?j (ω
?
i − δij)b̂i

πij
1− πjj

(∑
`

πj`e
?
` ε̂` − e?j ε̂j

)
=

1√
n

∑
i,j,`

ω?j (ω
?
i − δij)e?` b̂i

πij
1− πjj

πj`ε̂` (I.1)

− 1√
n

∑
i,j

ω?j e
?
j(ω

?
i − δij)b̂i

πij
1− πjj

ε̂j. (I.2)

Again we consider conditional expectation:

E?[(I.1)] = E?

[
1√
n

∑
i,j,`

ω?j (ω
?
i − δij)e?` b̂i

πij
1− πjj

πj`ε̂`

]

= E?

[
1√
n

∑
i,j,i6=j

ω?jω
?
i e
?
i b̂i

π2
ij

1− πjj
ε̂i

]
+ E?

[
1√
n

∑
i,j,i6=j

ω?jω
?
i e
?
j b̂i

πijπjj
1− πjj

ε̂j

]

+ E?

[
1√
n

∑
i

ω?i (ω
?
i − 1)e?i b̂i

π2
ii

1− πii
ε̂i

]

=
1√
n

∑
i,j,i6=j

b̂i
π2
ij

1− πjj
ε̂i +

1√
n

∑
i,j,i6=j

b̂i
πijπjj

1− πjj
ε̂j +

1√
n

∑
i

(E?[e?3i ] + 1)b̂i
π2
ii

1− πii
ε̂i.

Similarly,

E?[(I.2)] = E?

[
− 1√

n

∑
i,j

ω?j e
?
j(ω

?
i − δij)b̂i

πij
1− πjj

ε̂j

]

= E?

[
− 1√

n

∑
i,j,i6=j

ω?j e
?
jω

?
i b̂i

πij
1− πjj

ε̂j

]
+ E?

[
− 1√

n

∑
i

ω?i e
?
i (ω

?
i − 1)b̂i

πii
1− πii

ε̂i

]

= − 1√
n

∑
i,j,i6=j

b̂i
πij

1− πjj
ε̂j −

1√
n

∑
i

(E?[e?3i ] + 1)b̂i
πii

1− πii
ε̂i.

Therefore
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E?[(I)] =
1√
n

∑
i,j,i6=j

b̂i
π2
ij

1− πjj
ε̂i (I.3)

− 1√
n

∑
i,j,i6=j

b̂iπij ε̂j (I.4)

− 1√
n

∑
i

(E?[e?3i ] + 1)b̂iπiiε̂i. (I.5)

Furthermore,

(I.3) =
1√
n

∑
i,j,i6=j

b̂i
π2
ij

1− πjj
ε̂i

=
1√
n

∑
i,j,i6=j

bi
π2
ij

1− πjj
εi + op(1) =

1√
n

∑
i,j,i6=j

bi

(
π2
ij +

π2
ijπjj

1− πjj

)
εi + op(1)

=
1√
n

∑
i,j,i6=j

biπ
2
ijεi + op(1) =

1√
n

∑
i,j

biπ
2
ijεi + op(1)

=
1√
n

∑
i

biπiiεi + op(1) =
1√
n

∑
i

E[biεi|zi]πii + op(1)

= Σ0
1√
n

∑
i

b1,iπii + op(1).

The second line follows from consistency and (II.16); the third line follows from Assumption

II.4 and (II.17); the fourth line is a simple fact of Lemma II.6. Similar argument applies to

(I.5), which implies

(I.5) = − 1√
n

∑
i

Σ0(E?[e?3i ] + 1)b1,iπii + op(1).

Finally,

(I.4) = − 1√
n

∑
i,j,i6=j

b̂iπij ε̂j = − 1√
n

∑
i,j

b̂iπij ε̂j +
1√
n

∑
i

b̂iπiiε̂i

=
1√
n

∑
i

b̂iπiiε̂i =
1√
n

∑
i

Σ0b1,iπii + op(1),

where, in the second line, we used the fact that
∑

ij πij ε̂j = 0 for all i. Therefore
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(I) = (1− E?[e?3i ])
1√
n

∑
i

Σ0b1,iπii + op(1).

Next we consider (II). Note that it has the expansion:

(II) =
2√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

πij
1− πjj

(µ̂?i − µ̂i)(µ̂?j − r?j )

=
2√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

πij
1− πjj

(
∑
`

πi`e
?
` ε̂`)(

∑
`

πj`e
?
` ε̂` − e?j ε̂j)

=
2√
n

∑
i,j,`,`′

ω?j (ω
?
i − δij)e?`e?`′ ĉi

πij
1− πjj

πi`πj`′ ε̂`ε̂`′ (II.1)

− 2√
n

∑
i,j,`

ω?j e
?
j(ω

?
i − δij)e?` ĉi

πij
1− πjj

πi`ε̂`ε̂j. (II.2)

Then

E?[(II.1)]

= E?

[
2√
n

∑
i

ω?i (ω
?
i − 1)e?i e

?
i ĉi

πii
1− πii

πiiπiiε̂iε̂i

]

+ E?

[
2√
n

∑
i,j,i6=j

ω?jω
?
i e
?
i e
?
i ĉi

πij
1− πjj

πiiπjiε̂iε̂i

]
+ E?

[
2√
n

∑
i,j,i6=j

ω?jω
?
i e
?
je
?
j ĉi

πij
1− πjj

πijπjj ε̂j ε̂j

]

+ E?

[
2√
n

∑
i,`,i 6=`

ω?i (ω
?
i − 1)e?`e

?
` ĉi

πii
1− πii

πi`πi`ε̂`ε̂`

]

+ E?

[
2√
n

∑
i,j,i6=j

ω?jω
?
i e
?
i e
?
j ĉi

πij
1− πjj

πiiπjj ε̂iε̂j

]

+ E?

[
2√
n

∑
i,j,i6=j

ω?jω
?
i e
?
je
?
i ĉi

πij
1− πjj

πijπjiε̂j ε̂i

]

+ E?

 2√
n

∑
i,j,`

distinct

ω?j (ω
?
i − δij)e?`e?` ĉi

πij
1− πjj

πi`πj`ε̂`ε̂`


=

2√
n

∑
i,j,i6=j

ĉi
πijπiiπjj
1− πjj

ε̂iε̂j +
2√
n

∑
i,j,i6=j

ĉi
π3
ij

1− πjj
ε̂iε̂j +

2√
n

∑
i,j,`

distinct

ĉi
πijπi`πj`
1− πjj

ε̂2
` + op(1),
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where the op(1) terms follows from (II.17) and Assumption II.4. Similarly,

E?[(II.2)] = E?

[
− 2√

n

∑
i

ω?i e
?
i (ω

?
i − 1)e?i ĉi

πii
1− πii

πiiε̂iε̂i

]

+ E?

[
− 2√

n

∑
i,j,i6=j

ω?j e
?
jω

?
i e
?
i ĉi

πij
1− πjj

πiiε̂iε̂j

]

+ E?

[
− 2√

n

∑
i,j,i6=j

ω?j e
?
jω

?
i e
?
j ĉi

πij
1− πjj

πij ε̂j ε̂j

]

=
1√
n
Op(
∑
i

π2
ii)−

2√
n

∑
i,j,i6=j

ĉi
πijπii

1− πjj
ε̂iε̂j −

2√
n

∑
i,j,i6=j

(E?[e?3i ] + 1)ĉi
π2
ij

1− πjj
ε̂2
j

= − 2√
n

∑
i,j,i6=j

ĉi
πijπii

1− πjj
ε̂iε̂j −

2√
n

∑
i,j,i6=j

(E?[e?3i ] + 1)ĉi
π2
ij

1− πjj
ε̂2
j + op(1).

Hence

E?[(II)] =
2√
n

∑
i,j,i6=j

ĉi
πijπiiπjj
1− πjj

ε̂iε̂j (II.3)

+
2√
n

∑
i,j,i6=j

ĉi
π3
ij

1− πjj
ε̂iε̂j (II.4)

+
2√
n

∑
i,j,`

distinct

ĉi
πijπi`πj`
1− πjj

ε̂2
` (II.5)

− 2√
n

∑
i,j,i6=j

ĉi
πijπii

1− πjj
ε̂iε̂j (II.6)

− 2√
n

∑
i,j,i6=j

(E?[e?3i ] + 1)ĉi
π2
ij

1− πjj
ε̂2
j + op(1). (II.7)

First note that

(II.4) =
2√
n

∑
i,j,i6=j

ci
π3
ij

1− πjj
εiεj + op(1) =

2√
n

∑
i,j,i6=j

E[ciεiεj|zi, zj]
π3
ij

1− πjj
+ op(1) = op(1).

Next

(II.3)+(II.6) = − 2√
n

∑
i,j,i6=j

ĉiπijπiiε̂iε̂j = − 2√
n

∑
i,j

ĉiπijπiiε̂iε̂j +
2√
n

∑
i

ĉiπ
2
iiε̂

2
i

=
2√
n

∑
i

ĉiπ
2
iiε̂

2
i = op(1),
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where for the third line we used the fact
∑

i,j πij ε̂j = 0, and the last line follows from

Assumption II.4. Hence

E?[(II)] =
2√
n

∑
i,j,`

distinct

ĉi
πijπi`πj`
1− πjj

ε̂2
` −

2√
n

∑
i,j,i6=j

ĉi
π2
ij

1− πjj
ε̂2
j (II.8)

− 2√
n

∑
i,j,i6=j

E?[e?3i ]ĉi
π2
ij

1− πjj
ε̂2
j + op(1). (II.9)

For the first line, we have the following result:

(II.8) =

∣∣∣∣∣∣∣
2√
n

∑
i,j,`

distinct

ĉiε̂
2
`

πijπi`πj`
1− πjj

− 2√
n

∑
i,j,i6=j

ĉiε̂
2
j

π2
ij

1− πjj

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2√
n

∑
i,j,`

distinct

ĉiε̂
2
`

πijπi`πj`
1− πjj

− 2√
n

∑
i,`,i 6=`

ĉiε̂
2
`

π2
i`

1− π``

∣∣∣∣∣∣∣ (change j → `)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

ĉiε̂
2
`

πijπi`πj`
1− πjj

− 2√
n

∑
i,`,i 6=`

ĉiε̂
2
`

π2
i`

1− π``

∣∣∣∣∣+ op(1)

((II.17) and Assumption II.4)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

ĉiε̂
2
`

πijπi`πj`
1− πjj

− 2√
n

∑
i,`,i 6=`

ĉiε̂
2
`π

2
i`

∣∣∣∣∣+ op(1) ((II.17) and Assumption II.4)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

ĉiε̂
2
`

πijπi`πj`
1− πjj

− 2√
n

∑
i,`

ĉiε̂
2
`π

2
i`

∣∣∣∣∣+ op(1) (Assumption II.4)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

ĉiε̂
2
`

πijπi`πj`
1− πjj

− 2√
n

∑
i,j,`

ĉiε̂
2
`πijπi`πj`

∣∣∣∣∣+ op(1)

=

∣∣∣∣∣ 2√
n

∑
i,j,`

ĉiε̂
2
`

πijπi`πj`πjj
1− πjj

∣∣∣∣∣+ op(1)

-p
1√
n

√∑
i,`

π2
i`

√√√√∑
i,`

(∑
j

πijπj`πjj
1− πjj

)2

=

√
k√
n

√√√√∑
i,`

(∑
j

πijπj`πjj
1− πjj

)2

=

√
k√
n

√∑
i,`

∑
jj′

πijπj`πjjπij′πj′`πj′j′

(1− πjj)(1− πj′j′)
=

√
k√
n

√√√√∑
jj′

πjjπj′j′π2
jj′

(1− πjj)(1− πj′j′)

-p

√
k√
n

√∑
jj′

πjjπj′j′π2
jj′ =

√
k√
n
· op(
√
k) = op(1).
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Hence we have:

(II) = − 2√
n

∑
i,j,i6=j

E?[e?3i ]ĉi
π2
ij

1− πjj
ε̂2
j + op(1) = − 2√

n

∑
i,j,i6=j

E?[e?3i ]ci
π2
ij

1− πjj
ε2
j + op(1)

= − 2√
n

∑
i,j

E?[e?3i ]ci
π2
ij

1− πjj
ε2
j + op(1) = −E?[e?3i ]Σ0

2√
n

∑
i,j

b2,ijπ
2
ij + op(1),

and the last line follows essentially from Lemma II.7.

(III) has the following expansion:

(III) =
1√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(µ̂?j − r?j )2

=
1√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(
∑
`

πj`e
?
` ε̂` − e?j ε̂j)2

=
1√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(
∑
`

πj`e
?
` ε̂`)

2 (III.1)

− 2√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(
∑
`

πj`e
?
` ε̂`)e

?
j ε̂j (III.2)

+
1√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2

(e?j ε̂j)
2. (III.3)

Then

E?[(III.1)] = E?

 1√
n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2
(∑

`

πj`e
?
` ε̂`

)2


=
1√
n
Op

(∑
i

π4
ii +

∑
i,j

π4
ij +

∑
i,j

π2
ijπ

2
jj +

∑
i,`

π2
i`π

2
ii +

∑
i,j

π3
ijπjj +

∑
i,j,`

π2
ijπ

2
j`

)
= op(1),

by (II.17), (II.18) and Assumption II.4. Next

E?[(III.2)] = E?

[
− 2√

n

∑
i,j

ω?j (ω
?
i − δij)ĉi

(
πij

1− πjj

)2
(∑

`

πj`e
?
` ε̂`

)
e?j ε̂j

]

= − 2√
n

∑
i,j,i6=j

E[ciεiεj|zi, zj]
(

πij
1− πjj

)2

πij + op(1) = op(1).
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Finally

E?[(III.3)] =
1√
n

∑
i,j

(E?[e?3i ] + 1)ĉi

(
πij

1− πjj

)2

ε̂2
j + op(1)

=
1√
n

∑
i,j

(E?[e?3i ] + 1)ci

(
πij

1− πjj

)2

ε2
j + op(1)

= (E?[e?3i ] + 1)Σ0
1√
n

∑
i,j

b2,ijπ
2
ij + op(1).

Given the previous results,

(nω − 1)
√
n
(
θ̂
?,(·)
− θ̂

?
)

= (1− E?[e?3i ])Σ0
1√
n

(∑
i

b1,iπii +
∑
i,j

b2,ijπ
2
ij

)
+ op(1)

= (1− E?[e?3i ])B + op(1).

Part 2

We follow the notational convention used in the previous part:

âi = Σ0m(wi, µ̂i, θ̂) b̂i = Σ0ṁ(wi, µ̂i, θ̂) ĉi = Σ0
m̈(wi, µ̂i, θ̂)

2
.

Similarly,

ai = Σ0m(wi, µi,θ0) bi = Σ0ṁ(wi, µi,θ0) ci = Σ0
m̈(wi, µi,θ0)

2
.

First note that the jackknife variance estimator for the bootstrap data takes the form:

(n− 1)
∑
j

(
θ̂
?,(j)
− θ̂

?,(·))2

,

where for a (column) vector v, we use v2 to denote vvT to save space. Then the variance

estimator could be rewritten as

V̂
?

= (n− 1)
∑
j

(
θ̂
?,(j)
− θ̂

?
)2

− 1

n− 1

(
B̂
?
)2

= (n− 1)
∑
j

(
θ̂
?,(j)
− θ̂

?
)2

+Op

(
1

n

)
.
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Next recall that

θ̂
?,(j)
− θ̂ =

1

nω − 1

∑
i

(ω?i − δij)âi +
1

nω − 1

∑
i

(ω?i − δij)b̂i
(
µ̂
?,(j)
i − µ̂i

)
+

1

nω − 1

∑
i

(ω?i − δij)ĉi
(
µ̂
?,(j)
i − µ̂i

)2

.

Then we make the following decomposition:

1

nω − 1

∑
i

(ω?i − δij)âi =
1

nω − 1

∑
i

ω?i âi −
1

nω − 1
âj,

and

1

nω − 1

∑
i

(ω?i − δij)b̂i
(
µ̂
?,(j)
i − µ̂i

)
=

1

nω − 1

∑
i

(ω?i − δij)b̂i
(
µ̂?i − µ̂i −

πij
1− πjj

e?j ε̂j

)
=

1

nω − 1

∑
i

(ω?i − δij)b̂i (µ̂?i − µ̂i)−
1

nω − 1

∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

)
=

1

nω − 1

∑
i

ω?i b̂i (µ̂
?
i − µ̂i)−

1

nω − 1
b̂j
(
µ̂?j − µ̂j

)
− 1

nω − 1

∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

)
,

and

1

nω − 1

∑
i

(ω?i − δij)ĉi
(
µ̂
?,(j)
i − µ̂i

)2

=
1

nω − 1

∑
i

(ω?i − δij)ĉi
(
µ̂?i − µ̂i −

πij
1− πjj

e?j ε̂j

)2

=
1

nω − 1

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
2

+
1

nω − 1

∑
i

(ω?i − δij)ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2

− 2

nω − 1

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

e?j ε̂j

)
=

1

nω − 1

∑
i

ĉi (µ̂
?
i − µ̂i)

2

− 1

nω − 1
ĉj
(
µ̂?j − µ̂j

)2

+
1

nω − 1

∑
i

(ω?i − δij)ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2

− 2

nω − 1

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

e?j ε̂j

)
.
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Therefore

θ̂
?,(j)
− θ̂ =

1

nω − 1

∑
i

ω?i âi −
1

nω − 1
âj

+
1

nω − 1

∑
i

ω?i b̂i (µ̂
?
i − µ̂i)−

1

nω − 1
b̂j
(
µ̂?j − µ̂j

)
− 1

nω − 1

∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

)
+

1

nω − 1

∑
i

ĉi (µ̂
?
i − µ̂i)

2 − 1

nω − 1
ĉj
(
µ̂?j − µ̂j

)2

+
1

nω − 1

∑
i

(ω?i − δij)ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2

− 2

nω − 1

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

e?j ε̂j

)
.

Then we have

θ̂
?,(·)
− θ̂ =

1

nω

∑
j

ω?j

(
θ̂
?,(j)
− θ̂

)
=

1

nω − 1

∑
i

ω?i âi −
1

nω(nω − 1)

∑
j

ω?j âj

+
1

nω − 1

∑
i

ω?i b̂i (µ̂
?
i − µ̂i)−

1

nω(nω − 1)

∑
j

ω?i b̂j
(
µ̂?j − µ̂j

)
− 1

nω(nω − 1)

∑
i,j

(ω?i − δij)ω?j b̂i
(

πij
1− πjj

e?j ε̂j

)
+

1

nω − 1

∑
i

ĉi (µ̂
?
i − µ̂i)

2 − 1

nω(nω − 1)

∑
j

ω?j ĉj
(
µ̂?j − µ̂j

)2

+
1

nω(nω − 1)

∑
i,j

(ω?i − δij)ω?j ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2

− 2

nω(nω − 1)

∑
i,j

(ω?i − δij)ω?j ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

e?j ε̂j

)
,

which means
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θ̂
?,(j)
− θ̂

?,(·)
=

1

nω − 1

(
θ̂
?
− θ̂ − B̂

?
/
√
nω

)
− 1

nω − 1
âj −

1

nω − 1
b̂j
(
µ̂?j − µ̂j

)
− 1

nω − 1
ĉj
(
µ̂?j − µ̂j

)2

− 1

nω − 1

∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

)
+

1

nω − 1

∑
i

(ω?i − δij)ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2

− 2

nω − 1

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

e?j ε̂j

)
=

1

nω − 1

(
θ̂
?

bc − θ̂
)

(I)

− 1

nω − 1
âj (II)

− 1

nω − 1
b̂j
(
µ̂?j − µ̂j

)
(III)

− 1

nω − 1
ĉj
(
µ̂?j − µ̂j

)2
(IV)

− 1

nω − 1

∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

)
(V)

+
1

nω − 1

∑
i

(ω?i − δij)ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2
(VI)

− 2

nω − 1

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

e?j ε̂j

)
. (VII)

Term (I) is the easiest:

(nω − 1)
∑
j

ω?j (I)
2 �

(
θ̂
?

bc − θ̂
)2

= op(1),

by consistency. Similarly

(nω − 1)
∑
j

ω?j (I)
(

(II) + · · · (VII)
)T

=
(
θ̂
?

bc − θ̂
)∑

j

ω?j

(
(II) + · · · (VII)

)T

= op(1).
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Next

(nω − 1)
∑
j

ω?j (II)
2 =

1

nω − 1

∑
j

ω?j (âj)
2 p→ V[Ψ̄1].

By the uniform consistency of µ̂?j , it is very easy to show that

(nω − 1)
∑
j

ω?j (II)(III)
T = op(1), (nω − 1)

∑
j

ω?j (II)(IV)T = op(1).

Then

(nω − 1)
∑
j

ω?j (II)(V)T =
1

nω − 1

∑
i,j

âjb̂
T
i ω

?
j (ω

?
i − δij)

(
πij

1− πjj
e?j ε̂j

)
=

1

nω − 1

∑
j

âjω
?
j e
?
j ε̂j
∑
i

[
b̂T
i (ω?i − δij)

πij
1− πjj

]
=

1

nω − 1

∑
j

âjω
?
j e
?
j ε̂j
∑
i

[
b̂T
i πij

]
(i)

+
1

nω − 1

∑
j

âjω
?
j e
?
j ε̂j
∑
i

[
b̂T
i

πijπjj
1− πjj

]
(ii)

+
1

nω − 1

∑
j

âjω
?
j e
?
j ε̂j
∑
i,i 6=j

[
b̂T
i e

?
i

πij
1− πjj

]
(iii)

+
1

nω − 1

∑
j

âjω
?
j e
?
j ε̂j

[
b̂T
j (e?j − 1)

πjj
1− πjj

]
. (iv)

Then we have (i)
p→ Cov[Ψ̄1, Ψ̄2|Z], and the other terms are asymptotically negligible. This

essentially uses the same technique (conditional mean and variance calculation) used for

Lemma II.6 and II.7, and we do not repeat here. By taking transpose, we have (nω −
1)
∑

j ω
?
j (V)(II)T p→ Cov[Ψ̄2, Ψ̄1|Z]. Further,

∣∣∣(nω − 1)
∑
j

ω?j (II)(VI)T
∣∣∣ =

∣∣∣ 1

nω − 1

∑
j

ω?j âj
∑
i

(ω?i − δij)ĉi
(

πij
1− πjj

)2 (
e?j ε̂j

)2
∣∣∣

-p
1

n

∑
i,j

π2
ij = op(1),
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and∣∣∣(nω − 1)
∑
j

ω?j (II)(VII)T
∣∣∣ =

∣∣∣ 2

nω − 1

∑
j

ω?j e
?
j ε̂jâj

∑
i

(ω?i − δij)ĉi (µ̂?i − µ̂i)
(

πij
1− πjj

) ∣∣∣
-p

1

n
·
√∑

j

|ω?j e?j ε̂jâj|2
√∑

j

|(ω?i − δij)ĉi (µ̂?i − µ̂i) |2

= op(1).

Due to uniform consistency of µ̂?j , the following are easy to establish:

(nω − 1)
∑
j

ω?j (III)
2 = op(1), (nω − 1)

∑
j

ω?j (III)(IV)T = op(1),

(nω − 1)
∑
j

ω?j (III)(V)T = op(1)

(nω − 1)
∑
j

ω?j (III)(VI)T = op(1), (nω − 1)
∑
j

ω?j (III)(VII)T = op(1),

as well as

(nω − 1)
∑
j

ω?j (IV)2 = op(1), (nω − 1)
∑
j

ω?j (IV)(V)T = op(1),

(nω − 1)
∑
j

ω?j (IV)(VI)T = op(1), (nω − 1)
∑
j

ω?j (IV)(VII)T = op(1).

Next it is easy to show that

(nω − 1)
∑
j

ω?j (V)2 p→ (1 + E?[e?3i ])V[Ψ̄2|Z].

What remains are terms involving (V)(VI)T, (V)(VII)T, (VI)2, (VI)(VII)T and (VII)2.∣∣∣(nω − 1)
∑
j

ω?j (V)(VI)T
∣∣∣

=
∣∣∣ 1

nω − 1

∑
j

ω?j

(∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

))(∑
`

(ω?` − δ`j)ĉ`
(

π`j
1− πjj

)2 (
e?j ε̂j

)2

)T ∣∣∣
-p

 1

n

∑
j

∣∣∣∣∣∑
`

(ω?` − δ`j)ĉ`
(

π`j
1− πjj

)2
∣∣∣∣∣
2
1/2

�p
√

1

n

∑
j,i,`

π2
ijπ

2
`j = op(1).
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And∣∣∣(nω − 1)
∑
j

ω?j (V)(VII)T
∣∣∣

=
∣∣∣ 2

nω − 1

∑
j

(∑
i

(ω?i − δij)b̂i
(

πij
1− πjj

e?j ε̂j

))(∑
`

(ω?` − δ`j)ĉ` (µ̂?` − µ̂`)
(

π`j
1− πjj

e?j ε̂j

))T ∣∣∣
=
∣∣∣ 2

nω − 1

∑
i,j

(ω?i − δij)b̂i
πij

1− πjj
(e?j ε̂j)

2

(∑
`

(ω?` − δ`j)ĉ` (µ̂?` − µ̂`)
(

π`j
1− πjj

))T ∣∣∣
-p

√√√√ 1

n

∑
j

∣∣∣∣∣∑
`

π`j
1− π``

(
µ̂?` − µ̂`

)∣∣∣∣∣
2

= op(1),

Using techniques in the above results, we can show

(nω − 1)
∑
j

ω?j (VI)2 = op(1), (nω − 1)
∑
j

ω?j (VII)2 = op(1), (nω − 1)
∑
j

ω?j (VI)(VII)T = op(1),

which closes the proof. �
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CHAPTER III

Simple Local Polynomial Density Estimators

Abstract. This chapter introduces an intuitive and easy-to-implement nonparametric den-

sity estimator based on local polynomial techniques. The estimator is fully boundary adaptive

and automatic, but does not require pre-binning or any other transformation of the data. We

study the main asymptotic properties of the estimator, and use these results to provide prin-

cipled estimation, inference, and bandwidth selection methods. As a substantive application

of our results, we develop a novel discontinuity in density testing procedure, an important

problem in regression discontinuity designs and other program evaluation settings. An illus-

trative empirical application is provided. Two companion Stata and R software packages are

provided.

III.1 Introduction

Flexible (nonparametric) estimation of a probability density function features prominently in

empirical work in statistics, economics, and many other disciplines. Sometimes the density

function is the main object of interest, while in other cases it is a useful ingredient in form-

ing other nonparametric or semiparametric procedures. In program evaluation and causal

inference settings, for example, nonparametric density estimators are used for manipulation

testing, distributional treatment effect and counterfactual analysis, instrumental variables

treatment effect specification and heterogeneity analysis, and common support/overlap test-

ing. See Imbens and Rubin (2015) and Abadie and Cattaneo (2018) for recent reviews and

further references.

A common problem faced when implementing density estimators in empirical work is the

presence of boundary evaluation points on the support of the variable of interest: whenever

the density estimator is constructed at or near boundary points, which may or may not

be known by the researcher, the finite- and large-sample properties of the estimator are

This chapter is based on the working paper “Simple Local Polynomial Density Estimators” (Cattaneo,
Jansson and Ma, 2019b)

159



affected. Standard kernel density estimators are invalid at or near boundary points, while

other methods may remain valid but usually require choosing additional tuning parameters,

transforming the data, a priori knowledge of the boundary point location, or some other

boundary-related specific information or modification. Furthermore, it is usually the case

that one type of density estimator is used for evaluation points at or near the boundary,

while a different type is used for interior evaluation points.

We introduce a novel nonparametric estimator of a density function constructed using

local polynomial techniques (Fan and Gijbels, 1996). The estimator is intuitive, easy to

implement, does not require pre-binning of the data or a priori knowledge of the boundary

location, and enjoys all the desirable features associated with local polynomial regression

estimation. In particular, the estimator automatically adapts to the (possibly unknown)

boundaries of the support of the density without requiring specific data modification or

additional tuning parameter choices, a feature that is unavailable for most other density es-

timators in the literature: see Karunamuni and Albert (2005) for a review on this topic. The

most closely related approaches currently available in the literature are the local polynomial

density estimators of Cheng, Fan and Marron (1997) and Zhang and Karunamuni (1998),

which require knowledge of the boundary location and pre-binning of the data (or, more

generally, pre-estimation of the density near the boundary), and hence introduce additional

tuning parameters that need to be chosen for implementation.

The heuristic idea underlying our estimator and differentiating the estimator from exist-

ing one is simple to explain: whereas other nonparametric density estimators are constructed

by smoothing out a histogram-type estimator of the density, our estimator is constructed by

smoothing out the empirical distribution function using local polynomial techniques. Ac-

cordingly, our density estimator is constructed using a preliminary tuning-parameter-free

and
√
n-consistent distribution function estimator (where n denotes the sample size), imply-

ing in particular that the only tuning parameter required by our approach is the bandwidth

associated with the local polynomial fit at each evaluation point. For the resulting den-

sity estimator, we establish (i) asymptotic expansions of the leading bias and variance, (ii)

asymptotic Gaussian distributional approximation and valid statistical inference, (iii) con-

sistent standard error estimates, and (iv) consistent data-driven bandwidth selection based

on an asymptotic mean squared error (MSE) expansion. All these results apply to both

interior and boundary points in a fully automatic and data-driven way, without requiring a

prior knowledge of the boundary location, transforming the estimator or the data in specific

ways, or employing additional tuning parameters (beyond the main bandwidth present in

any kernel-based nonparametric method).

As a substantive methodological application of our proposed density estimator, we de-
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velop a novel discontinuity in density testing procedure. In a seminal paper, McCrary (2008)

proposed the idea of manipulation testing via discontinuity in density testing for regression

discontinuity (RD) designs, and developed an implementation thereof using the density esti-

mator of Cheng, Fan and Marron (1997), which requires pre-binning of the data and choosing

two tuning parameters. On the other hand, the new proposed discontinuity in density test

employing our density estimator requires choosing only one tuning parameter, and enjoys

other features associated with local polynomials methods. We also illustrate its performance

with an empirical application employing the canonical Head Start data in the context of

RD designs (Ludwig and Miller, 2007; Cattaneo, Titiunik and Vazquez-Bare, 2017). For

recent practical introductions to RD methodology, and further references, see also Calonico,

Cattaneo and Titiunik (2015), Cattaneo and Escanciano (2017), and Cattaneo, Idrobo and

Titiunik (2018a,b).

Two general purpose software packages, for Stata and R, have been developed based on

the main results discussed in the paper. Cattaneo, Jansson and Ma (2018c) discusses the

package rddensity, which is specifically tailored to manipulation testing (i.e., two-sample

discontinuity in density testing), while Cattaneo, Jansson and Ma (2019c) discusses the

package lpdensity, which provides generic density estimation over the support of the data.

Section III.2 introduces the estimator and Section III.3 gives the main technical results.

Bandwidth selection is discussed in Section III.4. Section III.5 applies these results to non-

parametric testing of a discontinuity in a density at a boundary point (i.e., manipulation

testing), while Section III.6 illustrates the new method with an empirical application. Sec-

tion III.7 discusses extensions and concludes. Additional results, preliminary lemmas and

proofs are collected in Section III.8 and III.9.

III.2 Boundary Adaptive Density Estimation

Suppose {x1, x2, · · · , xn} is a random sample, where xi is a continuous random variable

with a smooth cumulative distribution function over its possibly unknown support X ⊆ R.

The probability density function is f(x) = F (1)(x) = ∂
∂x
P[xi ≤ x], where the derivative is

interpreted as a one-sided derivative at a boundary point of X , and F is the cumulative

distribution function of xi. Our results apply to known and unknown, as well as bounded

or unbounded support X , which is an important feature in most empirical applications

employing density estimators. For example, in the context of manipulation testing (Section

III.5), the random variable xi is a running variable, score or index, and the parameter of

interest is the potential discontinuity of the density function at an induced boundary point

determined by the treatment eligibility cutoff.
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Let F̃ (x) = n−1
∑n

i=1 1[xi ≤ x] denote the classical empirical distribution estimator.

Given p ∈ N, our local polynomial distribution estimator is defined as

β̂p(x) = arg min
b∈Rp+1

n∑
i=1

(
F̃ (xi)− rp(xi − x)Tb

)2

K

(
xi − x
h

)
,

where rp(u) = [1, u, u2, · · · , up] is a (one-dimensional) polynomial expansion; K is a kernel

function whose properties are to be specified later; h = hn is a bandwidth sequence. The

estimator, β̂p(x), is motivated as a local Taylor series expansion, hence the target parameter

is (i.e. the population counterpart, assuming exists)

βp(x) =

[
1

0!
F (x),

1

1!
F (1)(x), · · · , 1

p!
F (p)(x)

]T

.

Therefore, we also write1

β̂p(x) =

[
1

0!
F̂p(x),

1

1!
F̂ (1)
p (x), · · · , 1

p!
F̂ (p)
p (x)

]T

,

or equivalently, F̂
(v)
p = v!eT

v β̂p(x), provided that v ≤ p, and ev is the (v + 1)-th unit vector

of Rp+1. We also use f = F (1) to denote the corresponding probability density function for

convenience. In other words, we take the empirical distribution function F̃ as the starting

point, then construct a smooth local approximation to the distribution function using a

polynomial expansion, and finally obtain the density estimator f̂p as the slope coefficient in

the local polynomial regression.

The idea behind the density estimator f̂p(x) is explained graphically in Figure III.1. In

this figure, we consider three distinct evaluation points on X = [−1, 1]: a is near the lower

boundary, b is an interior point, and c = 1 is the upper boundary. The conventional kernel

1The estimator has the following matrix form, which we will utilize:

β̂p(x) = H−1
(

1

n
XT
hKhXh

)−1(
1

n
XT
hKhY

)
,

where

Xh =
[(xi − x

h

)j ]
1≤i≤n, 0≤j≤p

,

Kh is a diagonal matrix collecting {h−1K((xi − x)/h)}1≤i≤n, and Y is a column vector collecting

{F̃ (xi)}1≤i≤n. We also use the convention Kh(u) = h−1K(u/h).
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density estimator,

f̂KD(x) =
1

nh

n∑
i=1

K

(
xi − x
h

)
,

is valid for interior points, but otherwise inconsistent. See, e.g., Wand and Jones (1995)

for a classical reference. On the other hand, our density estimator f̂p(x) is valid for all

evaluation points x ∈ X and can be used directly, without any modifications to approximate

the unknown density. Figure III.1 is constructed using n = 500 observations. The top panel

plots one realization of the empirical distribution function F̃ (x) in dark gray, and the local

polynomial fits for the three evaluation points x ∈ {a, b, c} in red, the latter implemented

with p = 2 (quadratic approximation) and bandwidth h (different value for each evaluation

point considered). The vertical light gray areas highlight the localization region controlled by

the bandwidth choice, that is, only observations falling in these regions are used to smooth

out the empirical distribution function via local polynomial approximation, depending on the

evaluation point. The estimator f̂p(x) is the slope coefficient accompanying the first-order

term in the local polynomial approximation, which is depicted in the bottom panel of Figure

III.1 as the solid line in red. The bottom panel also plots three other curves: dashed blue line

corresponding to the population density function, dashed-dotted green line corresponding to

the average of our density estimate over simulations, and dashed black line corresponding to

average of the standard kernel density estimates obtained using f̂KD(x).

Figure III.1 illustrates how our proposed density estimator adapts to (near) boundary

points automatically, showing graphically its good performance in repeated samples. Eval-

uation point b is an interior point and, consequently, a symmetric smoothing around that

point is employed, just like the standard estimator f̂KD(x) does. On the other hand, evalu-

ation points a and c both exhibit boundary bias if the standard kernel density estimator is

used: point a is near the boundary and hence employs asymmetric smoothing, while point c

is at the upper boundary and hence employs one-sided smoothing. In contrast, our proposed

density estimator f̂p(x) automatically adapts to the (possibly unknown) boundary point, as

the bottom panel in Figure III.1 illustrates. This feature makes f̂p(x) particularly well-suited

for empirical applications where there is known or unknown finite boundaries on the support

of the data.

III.3 Main Technical Results

We summarize three main large sample results concerning the proposed estimator: (i) an

asymptotic distributional approximation with precise leading bias and variance characteriza-
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tions, (ii) a consistent standard error estimator which is also data-driven and fully automatic,

and (iii) bandwidth selection. We report additional theoretical results, preliminary lemmas

and detailed proofs in Section III.8 and III.9 to conserve space.

We first give detailed assumptions supporting results, including preliminary lemmas and

our main results. Other specific assumptions will be given in corresponding sections. Let

O be a connected subset of R with nonempty interior, Cs(O) denotes functions that are at

least s-times continuously differentiable in the interior of O, and that the derivatives can be

continuously extended to the boundary of O.

Assumption III.1 (DGP)

{xi}1≤i≤n is a random sample from distribution F , supported on X = [xL, xU]. Further,

F ∈ Cαx(X ) for some αx ≥ 1, and f(x) = F (1)(x) > 0 for all x ∈ X . ‖

This assumption imposes basic regularity conditions on the data generating process,

ensuring that f(x) is well-defined and possesses enough smoothness.

Assumption III.2 (Kernel)

The kernel function K(·) is nonnegative, symmetric, and belongs to C0([−1, 1]). Further, it

integrates to one:
∫
RK(u)du = 1. ‖

This assumption is standard in nonparametric estimation, and is satisfied for common

kernel functions. We exclude kernels with unbounded support (e.g., Gaussian kernel) for sim-

plicity, since such kernels will always hit boundaries. Our results, however, can be extended

to accommodate unbounded support kernels, albeit more cumbersome notation would be

needed.

We also collect some matrices which will be used throughout this chapter. They show

up in asymptotic results as components of bias and variance. Note that x can be either a

fixed point, or it can be a drifting sequence to capture the issue of estimation and inference

in boundary regions. For the latter, x takes the form x = xL + ch or x = xU − ch for some

c ∈ [0, 1).

Sp,x =

∫ xU−x
h

xL−x
h

rp(u)rp(u)TK(u)du,

cp,x =

∫ xU−x
h

xL−x
h

rp(u)up+1K(u)du, c̃p,x =

∫ xU−x
h

xL−x
h

rp(u)up+2K(u)du,

Γp,x =

∫∫ xU−x
h

xL−x
h

(u ∧ v)rp(u)rp(v)K(u)K(v)dudv, Tp,x =

∫ xU−x
h

xL−x
h

rp(u)rp(u)TK(u)2du.
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Figure III.1. Graphical illustration of density estimator.
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Note. (i) Constructed using companion R (and Stata) package described in Cattaneo et al. (2019c) with
simulated data.

Later we will assume the kernel function K being supported on [−1, 1], hence with bandwidth

h ↓ 0, the region of integration in the above display can be replaced by

x (xL − x)/h (xU − x)/h

x interior −1 +1

x = xL + ch in lower boundary −c +1

x = xU − ch in upper boundary −1 +c

Since we do not allow xL = xU, no drifting sequence x can be in both boundary regions, at

least asymptotically.
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The following theorem gives a characterization of the asymptotic bias and variance of

our estimator, as well as a valid distributional approximation.

Theorem III.1 (Asymptotic Normality)

Assume Assumptions III.1 and III.2 hold with αx ≥ p + 1 for some integer p ≥ 0. Further

h→ 0, nh2 →∞ and nh2p+1 = O(1). Then

√
nh2v−1

(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v(x)

)
d→ N

(
0, Vp,v(x)

)
, 1 ≤ v ≤ p,√

n

Vp,0(x)

(
F̂p(x)− F (x)− hp+1Bp,0(x)

)
d→ N

(
0, 1

)
.

The constants are

Bp,v(x) = v!
F (p+1)(x)

(p+ 1)!
eT
v S−1

p,xcp,x,

and

Vp,v(x) =


(v!)2f(x)eT

v S−1
p,xΓp,xS

−1
p,xev 1 ≤ v ≤ p

F (x)(1− F (x)) v = 0, x interior

hf(x)
(
eT

0 S−1
p,xΓp,xS

−1
p,xe0 + c

)
v = 0, x = xL + ch or xU − ch. ‖

In this theorem, the integration region reflects the effect of boundaries. Because K(·)
is compactly supported, if x is an interior point, we have h−1(X − x) ⊃ [−1, 1] for h small

enough, thus ensuring the kernel function is not truncated and the local approximation is

symmetric around x. On the other hand, for x near or at a boundary of X (i.e., for h not small

enough relative to the distance of x to the boundary), we have h−1(X − x) 6⊃ [−1, 1], and

the local approximation is asymmetric (or one-sided). It follows that the density estimator

f̂(x) is boundary adaptive and design adaptive, as in the case of local polynomial regression

(Fan and Gijbels, 1996).

Remark III.1 (On nh2p+1 = O(1)) This condition ensures that higher order bias, after

scaling, is asymptotically negligible. ‖

Remark III.2 (On nh2 →∞) This condition ensures that a second-order remainder term,

which turns out to take a U-statistic form, has smaller order compared to the leading term.

This second order remainder term arises as our estimator involves a double summation: one

is used to construct the empirical distribution function F̃ , and the other comes from the

local polynomial smoothing step. Note that this condition can be dropped for boundary x

or when the parameter of interest is the distribution function F̂p. ‖
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Remark III.3 (On Vp,0(x)) It may seem that the variance formula has a discontinuity

in x for the smoothed empirical distribution function (i.e. v = 0), when x switches from

interior to boundary. This phenomenon, however, is purely an artifact of employing different

asymptotic frameworks. To see this, assume xL = 0 and xU = 1, and for some sample the

bandwidth h = 0.2 is used. Given our convention, the point x = 0.3 is not a boundary point,

hence we should consider
√
n as the correct scaling for F̂p(0.3). On the other hand, one can

also consider 0.3 as part of the asymptotic sequence x = 1.5h, in which case one promises

to move the evaluation point closer to the lower boundary as sample size increases. Then

despite the fact that such x is not a boundary point, F̂p(x) is still an estimator of zero, which

means it is super consistent and the correct scaling is
√
n/h.

This discussion also applies to the usual empirical distribution function F̃ (x). Such phe-

nomenon, however, does not occur for other components of β̂p(x), for which the evaluation

point only affects the exact form of multiplicative constants, but not the rate of convergence.

‖

Now we consider the problem of variance estimation. Given the formula in Theorem

III.1, it is possible to estimate the asymptotic variance by “plug-in” unknown quantities

regarding the data generating process. For example consider Vp,1(x) for the estimated density.

Assume the researcher knows the location of the boundary xL and xU, the matrices Sp,x and

Γp,x can be constructed with numerical integration, since they are related to features of the

kernel function, not the data generating process. The unknown density f(x) can also be

replaced by its estimate, as long as p ≥ 1.

Another approach is to estimate the unknown quantities in an “automatic” way. To

introduce our variance estimator, we make the following definitions.

Ŝp,x =
1

n
XhKhXn =

1

n

n∑
i=1

rp

(
xi − x
h

)
rp

(
xi − x
h

)T

Kh(xi − x)

Γ̂p,x =
1

n3

n∑
i,j,k=1

rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)(
1[xi ≤ xj]− F̃ (xj)

)(
1[xi ≤ xk]− F̃ (xk)

)
.

Following is the main result regarding variance estimation. It is automatic and fully-adaptive,

in the sense that no knowledge about the boundary location is needed.

Theorem III.2 (Variance Estimation)

Assume Assumptions III.1 and III.2 hold with αx ≥ p + 1 for some integer p ≥ 0. Further
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h→ 0, nh2 →∞ and nh2p+1 = O(1). Then

V̂p,v(x) ≡ (v!)2eT
v NxŜ

−1
p,xΓ̂p,xŜ

−1
p,xNxev

p→ Vp,v(x).

Define the standard error as

σ̂p,v(x) ≡ (v!)

√
1

nh2v
eT
v Ŝ−1

p,xΓ̂p,xŜ−1
p,xev,

then

σ̂p,v(x)−1
(
F̂ (v)
p (x)− F (v)(x)− hp+1−vBp,v(x)

)
d→ N

(
0, 1

)
. ‖

Although constructing V̂p,v(x) requires the knowledge of the location of boundaries, it

is not needed for inference. This is why the standard error, σ̂p,v(x), is automatic and fully-

adaptive. In addition, although we have to split the definition of Vp,v(x) by different v and

x, σ̂p,v(x) automatically adapts to these different scenarios, and hence it provides a unified

approach for variance estimation/inference.

Finally, we recommend implementing the density estimator f̂p(x) with p = 2 (and gener-

ally implementing F
(v)
p (x) with p = v+1), which corresponds to the minimal odd polynomial

order choice (i.e., equivalent to local-linear local polynomial regression). Higher-order local

polynomials could be used, but they typically exhibit erratic behavior near boundary points

(usually known as the Runge’s Phenomenon, see Calonico, Cattaneo and Titiunik, 2015, pp.

1756-1757), and lead to counter-intuitive weighting schemes (Gelman and Imbens, 2018).

See Fan and Gijbels (1996) for further discussion and automatic polynomial order selection

methods that can be applied to our estimator as well.

III.4 Bandwidth Selection

In this section we consider the problem of constructing MSE-optimal bandwidth for our

local polynomial regression-based distribution estimators. We focus exclusively on the case

v ≥ 1, hence the object of interest will be either the density function or derivatives thereof.

Valid bandwidth choice for the distribution function F̂p(x) is also an interesting topic, but

difficulty arises since it is estimated with (at least) parametric rate. We will briefly mention

MSE expansion of the estimated distribution function at the end.
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III.4.1 For Density and Derivatives Estimates (v ≥ 1)

Consider some 1 ≤ v ≤ p, the following lemma gives finer characterization of the bias.

Lemma III.1 (Bias)

Assume Assumptions III.1 and III.2 hold with αx ≥ p + 2, h→ 0 and nh3 →∞. Then the

leading bias of F̂
(v)
p (x) is

hp+1−vBp,v(x) = hp+1−v
{F (p+1)(x)

(p+ 1)!
v!eT

v S−1
p,xcp,x

+ h

(
F (p+2)(x)

(p+ 2)!
+
F (p+1)(x)

(p+ 1)!

F (2)(x)

f(x)

)
v!eT

v S−1
p,xc̃p,x

}
. ‖

The above lemma characterizes the higher-order bias. To see its necessity, we note that

when p − v is even and x is an interior evaluation point, the leading bias is zero. This is

because eT
v S−1

p,xcp,x is zero, which is explained in Fan and Gijbels (1996). Except for rare

cases such as F (p+1)(x) = 0 or F (p+2)(x) = 0, we have

Order of bias: hp+1−vBp,v(x) �
p− v odd even

x interior hp+1−v hp+2−v

boundary hp+1−v hp+1−v

Note that for boundary evaluation points, the leading bias never vanishes.

The leading variance is also characterized by Theorem III.1, and we reproduce it here:

1

nh2v−1
Vp,v(x) =

1

nh2v−1
(v!)2f(x)eT

v S−1
p,xΓp,xS

−1
p,xev.

The MSE-optimal bandwidth is defined as a minimizer of the following

hp,v(x) = arg min
h>0

[
1

nh2v−1
Vp,v(x) + h2p+2−2vBp,v(x)2

]
.

Given the discussion we had earlier on the bias, it is easy to see that the MSE-optimal

bandwidth has the following asymptotic order:

Order of MSE-optimal bandwidth: hp,v(x) �
p− v odd even

x interior n−
1

2p+1 n−
1

2p+3

boundary n−
1

2p+1 n−
1

2p+1
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Again only the case where p− v is even and x is interior needs special attention.

There are two notions of bandwidth consistency. Let h be some non-stochastic band-

width sequence, and ĥ be an estimated bandwidth. Then ĥ is consistent in rate if ĥ �p h (in

most cases it is even true that ĥ/h
p→ C ∈ (0,∞)). And ĥ is consistent in rate and constant

if ĥ/h
p→ 1.

To construct consistent bandwidth, either rate consistent or consistent in both rate and

constant, we need estimates of both the bias and variance. The variance part is relatively

easy, as we have already demonstrated in Theorem III.2:

n`2v−1 σ̂p,v(x)2

Vp,v(x)

p→ 1,

where ` is some preliminary bandwidth used to construct σ̂p,v(x).

For the bias, there are two approaches. The first one is more common in the literature,

where one distinguishes between boundary and interior cases, and propose consistent bias

estimators separately. This method is appealing in the sense that the bandwidth constructed

will be consistent both in rate and constant. The drawback, however, is that it requires the

precise knowledge of the location of x relative to the boundaries, which is not always obvious.

We will follow the second approach, where we replace the unknown bias by an estimate

which is consistent in rate (but not necessarily in constant). To be precise, our bias estimator

will be consistent in rate and constant if either x is boundary or p − v is odd, and will be

consistent in rate otherwise. This bias estimator has an appealing feature: it is purely data-

driven and no precise knowledge about the positioning of x relative to the boundaries is

needed, with the price that it (and the bandwidth constructed thereof) is not consistent in

constant when x is interior and p− v is even.

To introduce this approach, first assume there are consistent estimators for F (p+1)(x)

and F (p+2)(x), denoted by F̂ (p+1)(x) and F̂ (p+2)(x). They can be obtained, for example, using

our local polynomial regression-based approach, or can be constructed with some reference

model (such as the normal distribution). The critical step is to obtain consistent estimators

of the matrices, which are given in the following lemma.

Lemma III.2

Assume Assumptions III.1 and III.2 hold, `→ 0 and n`→∞. Then
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Ŝ−1
p,xcp,x =

(
1

n

∑
i

rp

(
xi − x
`

)
rp

(
xi − x
`

)T

K`(xi − x)

)−1

(
1

n

∑
i

(
xi − x
`

)p+1

rp

(
xi − x
`

)
K`(xi − x)

)
p→ S−1

p,xcp,x,

and

Ŝ−1
p,xc̃p,x =

(
1

n

∑
i

rp

(
xi − x
`

)
rp

(
xi − x
`

)T

K`(xi − x)

)−1

(
1

n

∑
i

(
xi − x
`

)p+2

rp

(
xi − x
`

)
K`(xi − x)

)
p→ S−1

p,xc̃p,x. ‖

Note that we used different notation, `, for bandwidth.

Now we have enough ingredients for bandwidth selection. Define:

hp+1−vB̂p,v(x) = hp+1−v

{
F̂ (p+1)(x)

(p+ 1)!
v!eT

v Ŝ−1
p,xcp,x + h

F̂ (p+2)(x)

(p+ 2)!
v!eT

v Ŝ−1
p,xc̃p,x

}
,

and assume that σ̂p,v(x) is constructed using the preliminary bandwidth `. Then

ĥp,v(x) = arg min
h>0

[
`2v−1

h2v−1
σ̂p,v(x)2 + h2p+2−2vB̂p,v(x)2

]
.

We make three remarks here.

Remark III.4 (Preliminary bandwidth `) The optimization argument h enters the RHS

of the previous display in three places. First it is part of the variance component, by 1/h2v−1.

Second it shows as a multiplicative factor of the bias component, h2p−2v+2. Finally within

the definition of B̂p,v(x), there is another multiplicative h, in front of the higher order bias.

The preliminary bandwidth `, serves a different role. It is used to estimate the variance

and bias components. Of course one can use different preliminary bandwidths for σ̂p,v(x),

Ŝ−1
p,xcp,x and Ŝ−1

p,xc̃p,x. ‖

Remark III.5 (Known boundaries) If boundary locations are known, either from a

priori knowledge or suggested by the data, then it is possible to simplify the problem, and

closed-form solution for ĥp,v(x) is feasible. To be precise, if it is known that x is a boundary

point or p− v is odd, one can simply ignore the second component in B̂p,v(x). Similarly, if

171



it is the case that x is interior and p− v is even, then the first component in B̂p,v(x) can be

dropped.

The option we opt-for is more flexible in the sense that it adapts to any p− v (odd or

even) and any x (interior or boundary). ‖

Remark III.6 (Consistent bias estimator) The bias estimator we proposed, hp−v+1B̂p,v(x),

is consistent in rate for the true leading bias, but not necessarily in constant. Compare B̂p,v(x)

and Bp,v(x), it is easily seen that the term involving F (p+1)(x)F (2)(x)/f(x) is not captured.

To capture this term, we need one additional nonparametric estimator for F (2)(x). This is

indeed feasible, and one can employ our local polynomial regression-based estimator for this

purpose. ‖

Theorem III.3 (Consistent bandwidth)

Let 1 ≤ v ≤ p. Assume the preliminary bandwidth ` is chosen such that nh2v−1σ̂p,v(x)2/Vp,v(x)
p→ 1, Ŝ−1

p,xcp,x
p→ S−1

p,xcp,x, and Ŝ−1
p,xc̃p,x

p→ S−1
p,xc̃p,x. Under the conditions of Lemma III.3 (in

Section III.8) and Theorem III.2:

• If either x is in boundary regions or p−v is odd, let F̂ (p+1)(x) be consistent for F (p+1) 6=
0. Then

ĥp,v(x)

hp,v(x)

p→ 1.

• If x is in interior and p− v is even, let F̂ (p+2)(x) be consistent for F (p+2) 6= 0. Further

assume nh3 → 0 and hp,v(x) is well-defined. Then

ĥp,v(x)

hp,v(x)

p→ C ∈ (0,∞). ‖

III.4.2 For Distribution Function Estimate (v = 0)

In this subsection we mention briefly how to choose bandwidth for the distribution function

estimate, F̂
(0)
p (x) ≡ F̂p(x). We assume x is in interior. Previous discussions on bias remains

to apply:

hp+1Bp,0(x) = hp+1

{
F (p+1)(x)

(p+ 1)!
eT

0 S−1
p,xcp,x + h

(
F (p+2)(x)

(p+ 2)!
+
F (p+1)(x)

(p+ 1)!

F (2)(x)

f(x)

)
eT

0 S−1
p,xc̃p,x

}
,

which means the bias of F̂p(x) has order hp+1 if either x is boundary or p is odd, and hp+2

otherwise. Difficulty arises since the distribution function estimator has leading variance of
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order

Vp,0(x) � 1[x interior] + h

n
,

which cannot be used for bandwidth selection, because the above is proportional to the

bandwidth (i.e., there is no bias-variance trade-off).

The trick is to use a higher order variance term. In Section III.8 we show that the local

polynomial regression-based estimator is essentially a second order U-statistic, which is then

decomposed into two terms, a linear term L̂ and a quadratic term R̂, where the latter is a

degenerate second-order U-statistic. The variance of the quadratic term R̂ has been ignored

so far, as it is negligible compared to the variance of the linear term. For the distribution

function estimator, however, it is the variance of this quadratic term that leads to a bias-

variance trade-off. The exact form of this variance is given in Lemma III.6 in Section III.8.

With this additional variance term included, we have (with some abuse of notation)

Vp,0(x) � 1[x interior] + h

n
+
1[x interior] + h

n2h
.

Provided x is an interior point, the additional variance term increases as the bandwidth

shrinks. As a result, a MSE-optimal bandwidth for F̂p(x) is well-defined, and estimating

this bandwidth is also straightforward.

Order of MSE-optimal bandwidth: hp,0(x) �
p− v odd even

x interior n−
2

2p+3 n−
2

2p+5

boundary undefined undefined

What if x is in a boundary region? Then the MSE-optimal bandwidth for F̂p(x) is not

well defined. The leading variance now takes the form h/n + 1/n2, which is proportional

to the bandwidth. (This is not surprising, since for boundary x the distribution function is

known, and a very small bandwidth gives a super-consistent estimator.). Although MSE-

optimal bandwidth for F̂p(x) is not well-defined for boundary x, it is still feasible to minimize

the empirical MSE. To see how this works, one first estimate the bias term and variance

term with some preliminary bandwidth `, leading to B̂p,0(x) and V̂p,0(x). Then the MSE-

optimal bandwidth can be constructed by minimizing the empirical MSE. Under regularity

conditions, B̂p,0(x) will converge to some nonzero constant, while, if x is boundary, V̂p,0(x)

has order `, the same as the preliminary bandwidth. Then the MSE-optimal bandwidth

constructed in this way will have the following order:

Order of estimated MSE-optimal bandwidth: ĥp,0(x) �
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p− v odd even

x interior n−
2

2p+3 n−
2

2p+5

boundary (n2/`)−
1

2p+3 (n2/`)−
1

2p+5

Note that the preliminary bandwidth enters the rate of ĥp,0(x) for boundary x, because it

determines the rate at which the variance estimator V̂p,0(x) vanishes. Although this estimated

bandwidth is not consistent for any well-defined object, it can be useful in practice, and it

reflects the fact that for boundary x it is appropriate to use bandwidth shrinks fast when

the object of interest is the distribution function

III.5 Application to Manipulation Testing

Testing for manipulation is useful when units are assigned to two (or more) distinct groups

using a hard-thresholding rule based on an observable variable, as it provides an intuitive

and simple method to check empirically whether units are able to alter (i.e., manipulate)

their assignment. Manipulation tests are used in empirical work both as falsification tests of

RD designs and as empirical tests with substantive implications in other program evaluation

settings.

Available implementations require choosing multiple tuning parameters (McCrary, 2008),

or employ empirical likelihood methods together with boundary-corrected kernels (Otsu, Xu

and Matsushita, 2014). In contrast, our proposed method requires choosing only one tuning

parameter, avoids pre-binning the data, and permits the use of simple well-known weighting

schemes (e.g., uniform or triangular kernel), thereby avoiding the need of choosing the length

and positions of bins or of employing more complicated boundary kernels. In addition, our

method is intuitive, easy-to-implement, and fully data-driven and principled: bandwidth se-

lection methods are formally developed and implemented, along with valid inference methods

based on robust bias correction.

To describe the manipulation testing setup, suppose units are assigned to one group

(“control”) if xi < x̄ and to another group (“treatment”) if xi ≥ x̄. For example, in the

application discussed below we employ the Head Start data, where xi is a poverty index at

the county level, x̄ = 59.1984 is a fixed cutoff determining eligibility to the program (see

panel (a) in Figure III.2 below). The goal is to test formally whether the density f(x) is

continuous at x̄, using the two subsamples {xi : xi < x̄} and {xi : xi ≥ x̄}, and thus the null

and alternative hypotheses are:

H0 : lim
x↑x̄

f(x) = lim
x↓x̄

f(x) vs H1 : lim
x↑x̄

f(x) 6= lim
x↓x̄

f(x).
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This hypothesis testing problem induces a nonparametric boundary point at x = x̄

because two distinct densities need to be estimated, one from the left and the other from

the right. Our proposed density estimator f̂p(x) is readily applicable because it is boundary

adaptive and fully automatic, and it can also be used to plot the density near the cutoff in

an automatic way. See panel (b) of Figure III.2 below for an example using the Head Start

data.

To start, consider the following polynomial basis rp

rp(u) =
[
1{u<0} u1{u<0} · · · up1{u<0}

∣∣∣ 1{u≥0} u1{u≥0} · · · up1{u≥0}

]T

∈ R2p+2.

The following two vectors will arise later, which we give the definition here:

r−,p(u) =
[
1 u · · · up 0 · · · 0

]T

, r+,p(u) =
[
0 0 · · · 0 1 · · · up

]T

.

Also we define the vectors to extract the corresponding derivatives

I2p+2 =
[
e0,− e1,− · · · ep,− e0,+ e1,+ · · · ep,+

]
.

With the above definition, the estimator at the cutoff is2

β̂p(x̄) = arg min
b∈R2p+2

∑
i

(
F̃ (xi)− rp(xi − x̄)Tb

)2

Kh(xi − x̄).

We assume the same bandwidth is used below and above the cutoff to avoid cumbersome

notation. Generalizing to using different bandwidths is straightforward. Other notations

(for example X and Xh) are redefined similarly, with the scaling matrix H adjusted so that

H−1rp(u) = rp(h
−1u) is always true. we denote the estimates by

F̂ (v)
p (x̄−) = v!eT

v,−β̂p(x̄), F̂ (v)
p (x̄+) = v!eT

v,+β̂p(x̄).

Now we state the main result concerning the manipulation testing. Let Ŝp,x̄ and Γ̂p,x̄ be

constructed as in Section III.3, and

V̂p,1(x̄) =
1

h
(e1,+ − e1,−)TŜp,x̄Γ̂p,x̄Ŝp,x̄(e1,+ − e1,−).

Corollary III.1 (Manipulation testing)

Assume Assumptions III.1 and III.2 hold separately on X− and X+ with αx ≥ p+1 for some

2The empirical distribution function is defined with the whole sample as before: F̃ (u) = n−1
∑
i 1[xi ≤ u].
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integer p ≥ 1. Further, n · h2 → ∞ and n · h2p+1 → 0. Then under the null hypothesis

H0 : f(x̄+) = f(x̄−),

Tp(h) =
f̂p(x̄+)− f̂p(x̄−)√

1
nh
V̂p,1(x̄)

 N (0, 1).

As a result, under the alternative hypothesis H1 : f(x̄+) 6= f(x̄−),

lim
n→∞

P[|Tp(h)| ≥ Φ1−α/2] = 1.

Here Φ1−α/2 is the (1− α/2)-quantile of the standard normal distribution. ‖

Remark III.7 (Separate estimation) An alternative implementation is to apply our local

polynomial-based estimator separately to the two samples, one with observations below the

cutoff, and the other with observations above the cutoff. To be precise, let F̃−(·) and F̃+(·)
be the empirical distribution functions constructed by the two samples. That is,

F̃−(x) =
1

n−

∑
i: xi<x̄

1[xi ≤ x], F̃+(x) =
1

n+

∑
i: xi≥x̄

1[xi ≤ x],

where n− and n+ denote the size of the two samples, respectively. The the local polynomial

approach, applied to F̃−(·) and F̃+(·) separately, will yield two sets of estimates, which we

denote by F̂
(v)
p,−(x̄) and F̂

(v)
p,+(x̄). To see the relation between joint and separate estimations,

we note the following (which can be easily seen using least squares algebra)

v = 0 F̂p,−(x̄) =
n

n−
F̂p(x̄−), F̂p,+(x̄) =

n

n+

F̂p(x̄+)− n−
n+

v ≥ 1 F̂
(v)
p,−(x̄) =

n

n−
F̂ (v)
p (x̄−), F̂

(v)
p,+(x̄) =

n

n+

F̂ (v)
p (x̄+).

The difference comes from the fact that by separate estimation, one obtains estimates of the

conditional distribution function and the derivatives.

For manipulation testing, let f̂p,−(x̄) and f̂p,+(x̄) be the two density estimates, and

V̂p,1,−(x̄) and V̂p,1,+(x̄) be the associated variance estimates. Then the test statistic is equiv-

alently:

Tp(h) =
n+

n
f̂p,+(x̄)− n−

n
f̂p,−(x̄)√

1
nh

(
n+

n
V̂p,1,+(x̄) + n−

n
V̂p,1,−(x̄)

) .
‖

A key implementation issue of our manipulation test is the choice of bandwidth h, a
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problem common to all nonparametric manipulation tests available in the literature. To

select h in an automatic and data-driven way, we obtain an approximate MSE-optimal

bandwidth choice for the point estimator f̂p(x̄+) − f̂p(x̄−), and then propose a consistent

implementation thereof, which is denoted by ĥp. Given the data-driven bandwidth choice

ĥp, or its theoretical (infeasible) counterpart hp, we propose a simple robust bias-corrected

test statistic implementation following ideas in Calonico, Cattaneo and Titiunik (2014) and

Calonico, Cattaneo and Farrell (2018); see the later reference for theoretical results on higher-

order refinements and the important role of pre-asymptotic variance estimation. Specifically,

our proposed data-driven robust bias-corrected test statistic is Tp+1(ĥp), which rejects H0 iff

|Tp+1(ĥp)| ≥ Φ1−α/2 for a nominal α-level test. This approach corresponds to a special case

of manual bias-correction together with the corresponding adjustment of Studentization. In

practice, most common choices are p = 2, and this is the default in the Stata and R software

implementations (Cattaneo, Jansson and Ma, 2018c, 2019c).

Finally, we point out that it is possible to impose additional assumptions to improve

the power of the manipulation testing. Recall that our construction of the test statistic

Tp essentially applies the local polynomial density estimator twice, and separately on the

two sides of the cutoff point using the corresponding subsamples. However, one may argue

that, under the null hypothesis that there is no manipulation, the distribution function may

exhibit additional smoothness properties. We explore this possibility in Section III.8, and

demonstrate how to estimate the density function on the two sides of a cutoff point, while at

the same time imposing the assumption that higher order derivatives of the density function

remain continuous across this cutoff point.

III.6 Empirical Illustration

We apply our proposed manipulation test to the data of Ludwig and Miller (2007) on the

original Head Start implementation in the U.S. In this empirical application, a discontinuity

on access to program funds at the county level occurred in 1965 when the program was

first implemented: the federal government provided assistance to the 300 poorest counties,

thus creating a discontinuity in program participation. Using our notation, xi denotes the

poverty index for county i, which was computed in 1965 using 1960 Census variables, and

x̄ = 59.1984 is the cutoff point and poverty index of the 300-th poorest municipality.

A manipulation test in this context amounts to testing whether there is a disproportional

number of counties are situated above x̄ relative to those present below the cutoff. Figure

III.2(a) presents the histogram of counties below and above the cutoff, while Figure III.2(b)

presents our local polynomial density estimate along with pointwise robust bias-corrected
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Figure III.2. Manipulation testing: Head Start data.

0.00

0.01

0.02

0.03

19.1984 39.1984 59.1984 79.1984

Note. (i) panel (a) reports histogram estimate of the running variable (poverty index) computed with
default values in R, and panel (b) reports local polynomial density using companion R (and Stata) package
described in Cattaneo, Jansson and Ma (2018c); and (ii) n− = 2, 504, n+ = 300, and x̄ = 59.1984.

confidence intervals over a grid of points near the cutoff x̄, implemented using p = 2 and

the corresponding MSE-optimal data-driven bandwidth estimate. Table III.1 presents the

empirical results from our manipulation test. We consider two main approaches, both covered

by our theoretical work and available in our software implementation: (i) using two distinct

bandwidths on each side of the cutoff (h− 6= h+), and (ii) using a common bandwidth for

each side of the cutoff (h− = h+), with h− and h+ denoting the bandwidth on the left and

on the right, respectively. For each case, we consider three distinct implementations of our

manipulation test, which varies the degree of polynomial approximation used to smooth out

the empirical distribution function: Tq(hp) denotes the test statistic constructed using a q-th

order local polynomial density estimator, with bandwidth choice that is MSE-optimal for p-

th order local polynomial density estimator. For example, our recommended choice is T3(h2),

with either common bandwidth or two different bandwidths, which amounts to first choose

MSE-optimal bandwidth(s) for a local quadratic fit, and then conduct inference using a cubic

approximation. This approach is the simplest implementation of the robust bias correction

inference: Tp(hp) does not lead to a valid inference approach because a first-order bias will

make the test over-reject the null hypothesis.

Our empirical results show no evidence of manipulation. In fact, this finding is con-
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Table III.1. Manipulation testing: Head Start data.

Pre-binning Bandwidths Eff. n Test

left right left right left right T p-val

h− 6= h+

T2(ĥ1) 15.771 2.326 581 65 0.024 0.981

T3(ĥ2) 19.776 8.296 762 210 −1.146 0.252

T4(ĥ3) 32.487 10.808 1598 232 −1.083 0.279

h− = h+

T2(ĥ1) 3.274 3.274 99 95 −1.355 0.175

T3(ĥ2) 9.213 9.213 316 221 −0.515 0.607

T4(ĥ3) 12.270 12.270 419 243 −0.712 0.477

McCrary 76 60 13.950 13.950 24 24 0.142 0.887

Note. (i) Tp(h) denotes the manipulation test statistic using p-th order density estimators with bandwidth

choice h (which could be common on both sides or different on either side of the cutoff), and ĥp denotes
the estimated MSE-optimal bandwidths for p-th order density estimator or difference of estimators
(depending on the case considered); (ii) Columns under “Bandwidths” report estimated MSE-optimal
bandwidths, Columns under “Eff. n” report effective sample size on either side of the cutoff, and Columns
under “Test” report value of test statistic (T ) and two-sided p-value (p-val); and (iii) first three rows allow
for different bandwidths on each side of the cutoff, while last three rows employ a common bandwidth on
both sides of the cutoff (chosen to be MSE-optimal for the difference of density estimates). All estimates
are obtained using companion R (and Stata) package described in Cattaneo, Jansson and Ma (2018c).

sistent with the underlying institutional knowledge of the program: the poverty index was

constructed in 1965 at the federal level using county level information from the 1960 Census,

which implies it is indeed highly implausible that individual counties could have manipu-

lated their assigned poverty index. Our findings are robust to different bandwidth and local

polynomial order specifications.

III.7 Conclusion

We introduced a boundary adaptive kernel-based density estimator employing local poly-

nomial methods, which requires choosing only one tuning parameter and does not require

boundary-specific data transformations (such as pre-binning). We studied its main asymp-

totic properties, including bias, variance and distributional approximations, consistent vari-

ance estimation, and consistent bandwidth selection. We used these results to develop a new

manipulation test via discontinuity in density testing at a boundary point. Several exten-

sions and generalizations of our results are underway in ongoing work (Cattaneo, Jansson

179



and Ma, 2019a), and two distinct general purpose software packages in Stata and R are

readily available Cattaneo, Jansson and Ma (2018c, 2019c).

III.8 Additional Results and Preliminary Lemmas

III.8.1 Other Standard Error Estimators

The standard error σ̂p,v(x) (see Theorem III.2) is fully automatic and adapts to both interior

and boundary regions. In this section we consider two other ways to construct a standard

error.

Plug-in Standard Error

Take v ≥ 1. Then the asymptotic variance of F̂
(v)
p (x) takes the following form:

Vp,v(x) = (v!)2f(x)eT
v S−1

p,xΓp,xS
−1
p,xev.

One way of constructing estimate of the above quantity is to plug-in a consistent estimator

of f(x), which is simply the estimated density. Hence we can use

V̂p,v(x) = (v!)2f̂p(x)eT
v S−1

p,xΓp,xS
−1
p,xev.

The next question is how Sp,x and Γp,x should be constructed. Note that they are related

to the kernel, evaluation point x and the bandwidth h, but not the data generating process.

Therefore the three matrices can be constructed by either analytical integration or numerical

method.

Jackknife-based Standard Error

The standard error σ̂p,v(x) is obtained by inspecting the asymptotic linear representation.

It is fully automatic and adapts to both interior and boundaries. In this part, we present

another standard error which resembles σ̂p,v(x), albeit with a different motivation.

Recall that β̂p(x) is essentially a second order U-statistic, and the following expansion

is justified:

1

n
XT
hKh

(
Y −Xβp(x)

)
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=
1

n

∑
i

rp

(
xi − x
h

)(
F̃ (xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp

(
xi − x
h

)(
1

n− 1

∑
j;j 6=i

(
1(xj ≤ xi)− rp(xi − x)Tβp(x)

))
Kh(xi − x) +Op

(
1

n

)
=

1

n(n− 1)

∑
i,j;i 6=j

rp

(
xi − x
h

)(
1(xj ≤ xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x) +Op

(
1

n

)
,

where the remainder represents leave-in bias. Note that the above could be written as a

U-statistic, and to apply the Hoeffding decomposition, define

U(xi, xj) = rp

(
xi − x
h

)(
1(xj ≤ xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x)

+ rp

(
xj − x
h

)(
1(xi ≤ xj)− rp(xj − x)Tβp(x)

)
Kh(xj − x),

which is symmetric in its two arguments. Then

1

n
XT
hKh

(
Y −Xβp(x)

)
= E [U(xi, xj)] +

1

n

∑
i

(
U1(xi)− E [U(xi, xj)]

)

+

(
n

2

)−1 ∑
i,j;i<j

(
U(xi, xj)−U1(xi)−U1(xj) + E [U(xi, xj)]

)
.

Here U1(xi) = E [U(xi, xj)|xi]. The second line in the above display is the analogue of L̂,

which contributes to the leading variance, and the third line is negligible. The new standard

error, we call the jackknife-based standard error, is given by the following:

σ̂(JK)
p,v (x) ≡ (v!)

√
1

nh2v
eT
v Ŝ−1

p,xΓ̂
JK

p,xŜ
−1
p,xev,

with

Γ̂
JK

p,x =
1

n

∑
i

(
1

n− 1

∑
j;j 6=i

Û(xi, xj)

)(
1

n− 1

∑
j;j 6=i

Û(xi, xj)

)T

−

((
n

2

)−1 ∑
i,j;i 6=j

Û(xi, xj)

)((
n

2

)−1 ∑
i,j;i 6=j

Û(xi, xj)

)T

,
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and

Û(xi, xj) = rp

(
xi − x
h

)(
1(xj ≤ xi)− rp(xi − x)Tβ̂p(x)

)
Kh(xi − x)

+ rp

(
xj − x
h

)(
1(xi ≤ xj)− rp(xj − x)Tβ̂p(x)

)
Kh(xj − x).

The name jackknife comes from the fact that we use leave-one-out “estimator” for U1(xi):

with xi fixed,

“
1

n− 1

∑
j;j 6=i

Û(xi, xj)
p→ U1(xi)”.

Under the same conditions specified in Theorem III.2, one can show that the jackknife-based

standard error is consistent.

III.8.2 Manipulation Testing: Restricted Estimation

In Section III.5, we provide a test procedure on the discontinuity of the density by estimating

on the two sides of the cutoff separately. This procedure is flexible and requires minimum

assumptions. There are ways, however, to improve the power of the test when the densities

are estimated with additional assumptions on the smoothness of the distribution function

In a restricted model, the polynomial basis is re-defined as

rp(u) =
[
1 u1(u < 0) u1(u ≥ 0) u2 u3 · · · up

]T

∈ Rp+2,

and the estimator in the fully restricted model is

β̂p(x̄) =
[
F̂p(x̄) f̂p(x̄−) f̂p(x̄+) 1

2
F̂

(2)
p (x̄) · · · 1

p!
F̂

(p)
p (x̄)

]T

= arg max
b∈Rp+2

∑
i

(
F̃ (xi)− rp(xi − x̄)Tb

)2

Kh(xi − x̄).

Again the notations (for example X and Xh) are redefined similarly, with the scaling matrix

H adjusted to ensure H−1rp(u) = rp(h
−1u). Here F̂p(x̄) is the estimated distribution function

and 1
2
F̂

(2)
p (x̄), · · · , 1

p!
F̂

(p)
p (x̄) are the estimated higher order derivatives, which we assume are

all continuous at x̄, while f̂p(x̄−) and f̂p(x̄+) are the estimated densities on the two sides

of x̄. Therefore we call the above model restricted, since it only allows discontinuity of the

first derivative of F (i.e. the density) but not the other derivatives.

With the modification of the polynomial basis, all other matrices in the previous sub-
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section are redefined similarly, and

Ip+2 =
[
e0 e1,− e1,+ e2 · · · ep

]
(p+2)×(p+2)

.

where the subscripts indicate the corresponding derivatives to extract. Moreover

r−,p(u) =
[
1 u 0 u2 · · · up

]
, r+,p(u) =

[
1 0 u u2 · · · up

]
.

Now we state the main result concerning the manipulation testing. Let Ŝp,x̄ and Γ̂p,x̄ be

constructed as in Section III.3, and

V̂p,1(x̄) =
1

h
(e1,+ − e1,−)TŜp,x̄Γ̂p,x̄Ŝp,x̄(e1,+ − e1,−).

Corollary III.2 (Manipulation testing: restricted estimation)

Assume Assumptions III.1 and III.2 hold separately on X− and X+ with αx ≥ p+1 for some

integer p ≥ 1. Further, n · h2 → ∞ and n · h2p+1 → 0. Then under the null hypothesis

H0 : f(x̄+) = f(x̄−),

Tp(h) =
f̂p(x̄+)− f̂p(x̄−)√

1
nh
V̂p,1(x̄)

d→ N (0, 1).

As a result, under the alternative hypothesis H1 : f(x̄+) 6= f(x̄−),

lim
n→∞

P[|Tp(h)| ≥ Φ1−α/2] = 1.

Here Φ1−α/2 is the (1− α/2)-quantile of the standard normal distribution. ‖

III.8.3 Preliminary Lemmas for Section III.3

We first consider the object XT
hKhXh/n

Lemma III.3

Assume Assumptions III.1 and III.2 hold, h→ 0 and nh→∞. Then

1

n
XT
hKhXh = f(x)Sp,x + o(1) +Op

(
1/
√
nh
)
. ‖

Lemma III.3 shows that the matrix XT
hKhXh/n is asymptotically invertible. Also note

that this result covers both interior and boundary evaluation point x, and depending on the

nature of x, the exact form of Sp,x differs.
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With simple algebra, one has

β̂p(x)− βp(x) = H−1

(
1

n
XT
hKhXh

)−1(
1

n
XT
hKh(Y −Xβp(x))

)
,

and the following gives a further decomposition of the “numerator.”

1

n
XT
hKh(Y −Xβp(x)) =

1

n

∑
i

rp

(
xi − x
h

)(
F̃ (xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp

(
xi − x
h

)(
F (xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x)

+

∫ xU−x
h

xL−x
h

rp(u)
(
F̃ (x+ hu)− F (x+ hu)

)
K(u)f(x+ hu)du

+
1

n

∑
i

rp

(
xi − x
h

)(
F̃ (xi)− F (xi)

)
Kh(xi − x)

−
∫ xU−x

h

xL−x
h

rp(u)
(
F̃ (x+ hu)− F (x+ hu)

)
K(u)f(x+ hu)du.

The first part represents the smoothing bias, and the second part can be analyzed as a sample

average. The real challenge comes from the third term, which can have a nonnegligible (first

order) contribution. We further decompose it as

1

n

∑
i

rp

(
xi − x
h

)(
F̃ (xi)− F (xi)

)
Kh(xi − x)

=
1

n2

∑
i,j

rp

(
xi − x
h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

=
1

n2

∑
i

rp

(
xi − x
h

)(
1− F (xi)

)
Kh(xi − x)

+
1

n2

∑
i,j;i 6=j

rp

(
xi − x
h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x).

As a result,

1

n

∑
i

rp

(
xi − x
h

)(
F̃ (xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x)

=
1

n

∑
i

rp

(
xi − x
h

)(
F (xi)− rp(xi − x)Tβp(x)

)
Kh(xi − x)

(smoothing bias B̂S)
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+

∫ xU−x
h

xL−x
h

rp(u)
(
F̃ (x+ hu)− F (x+ hu)

)
K(u)f(x+ hu)du (linear variance L̂)

+
1

n2

∑
i

rp

(
xi − x
h

)(
1− F (xi)

)
Kh(xi − x) (leave-in bias B̂LI)

+
1

n2

∑
i,j;i 6=j

{
rp

(
xi − x
h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

− E
[
rp

(
xi − x
h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

∣∣∣xj]}.
(quadratic variance R̂)

To provide intuition for the above decomposition, the smoothing bias is a typical feature

of nonparametric estimators; leave-in bias arises since each observation is used twice, in

constructing the empirical distribution function F̃ and as a design point (that is, F̃ has

to be evaluated at xi); and a second order U-statistic shows up because the “dependent

variable,” Y, is estimated, which leads to a double sum.

We first analyze the bias terms.

Lemma III.4

Assume Assumptions III.1 and III.2 hold with αx ≥ p+ 1, h→ 0 and nh→∞. Then

B̂S = hp+1F
(p+1)(x)f(x)

(p+ 1)!
cp,x + op(hp+1), B̂LI = Op

(
n−1
)
. ‖

By imposing additional smoothness, it is also possible to characterize the next term in

the smoothing bias, which has order hp+2. We report the higher order bias in a later section

as it is used for bandwidth selection.

Next we consider the “influence function” part, L̂. This term is crucial in the sense that

(under suitable conditions such that R̂ is negligible) it determines the asymptotic variance

of our estimator, and with correct scaling, it is asymptotically normally distributed.

Lemma III.5

Assume Assumptions III.1and III.2 hold with αx ≥ 2, h → 0 and nh → ∞. Define the

scaling matrix

Nx =

diag
{

1, h−1/2, h−1/2, · · · , h−1/2
}

x interior,

diag
{
h−1/2, h−1/2, h−1/2, · · · , h−1/2

}
x boundary,
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then

√
nNx

[
f(x)Sp,x

]−1

L̂
d→ N (0, Vp,x),

with

Vp,x =


F (x)(1− F (x))e0e

T
0 + f(x)(I− e0e

T
0 )S−1

p,xΓp,xS
−1
p,x(I− e0e

T
0 ) x interior

f(x)
(
S−1
p,xΓp,xS

−1
p,x + ce0e

T
0

)
x = xL + ch

f(x)
(
S−1
p,xΓp,xS

−1
p,x + ce0e

T
0 − (e1e

T
0 + e0e

T
1 )
)

x = xU − ch. ‖

The scaling matrix depends on whether the evaluation point is located in the interior or

boundary, which is a unique feature of our estimator. To see the intuition, consider an interior

point x, and recall that the first element of β̂p(x) is the smoothed empirical distribution

function, which is
√
n-estimable. Therefore, the property of F̂p(x) is very different from

those of the estimated density and higher order derivatives.

When x is either in the lower or upper boundary region, F̂p(x) essentially estimates

0 or 1, respectively, hence it is super-consistent in the sense that it converges even faster

than 1/
√
n. In this case, the leading 1/

√
n-variance vanishes, and higher order residual

noise dominates, which makes F̂p(x) no longer independent of the estimated density and

derivatives, justifying the formula of boundary evaluation points.

Finally we consider the second order U-statistic component.

Lemma III.6

Assume Assumptions III.1 and III.2 hold, h→ 0 and nh→∞. Then

V[R̂] =
2

n2h
f(x)F (x)(1− F (x))Tp,x +O(n−2).

In particular, when x is in the boundary region, the above has order O(n−2). ‖

III.8.4 Preliminary Lemmas for Section III.5

In the following lemmas, we will give asymptotic results for the estimation problem in Section

III.5. Proofs are omitted.

Lemma III.7

Let Assumptions of Lemma III.3 hold separately on X− and X+, then

1

n
XT
hKhXh = f(x̄−)S−,p + f(x̄+)S+,p +O

(
h
)

+Op

(
1/
√
nh
)
,
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where

S−,p =

∫ 0

−1

r−,p(u)r−,p(u)TK(u)du, S+,p =

∫ 1

0

r+,p(u)r+,p(u)TK(u)du. ‖

Again we decompose the estimator into four terms, namely B̂LI, B̂S, L̂ and R̂.

Lemma III.8

Let Assumptions of Lemma III.4 hold separately on X− and X+, then

B̂S = hp+1

{
F (p+1)(x̄−)f(x̄−)

(p+ 1)!
c−,p +

F (p+1)(x̄+)f(x+)

(p+ 1)!
c+,p

}
+ op(hp+1), B̂LI = Op

(
1

n

)
,

where

c−,p =

∫ 0

−1

up+1r−,p(u)K(u)du, c+,p =

∫ 1

0

up+1r+,p(u)K(u)du. ‖

Lemma III.9

Let Assumptions of Lemma III.5 hold separately on X− and X+, then

V

[√
n

h

(
e1,+ − e1,−

)T(
f(x̄+)S+,p + f(x̄−)S−,p

)−1

L̂

]
= f(x̄−)eT

1,−S−1
−,pΓ−,pS

−1
−,pe1,− + f(x̄+)eT

1,+S−1
+,pΓ+,pS

−1
+,pe1,+ +O(h),

where

Γ−,p =

∫∫
[−1,0]2

(u ∧ v)r−,p(u)r−,p(v)TK(u)K(v) dudv,

Γ+,p =

∫∫
[0,1]2

(u ∧ v)r+,p(u)r+,p(v)TK(u)K(v) dudv. ‖

Note that the above gives the asymptotic variance of the difference f̂(x̄+)− f̂(x̄−), and

the variance takes an additive form. This is not surprising, since the two density estimates,

f̂(x̄+) and f̂(x̄−), rely on distinctive subsamples, meaning that they are asymptotically

independent.

Finally the order of R̂ can also be established.

Lemma III.10

Let Assumptions of Lemma III.6 hold separately on X− and X+, then

R̂ = Op

(√
1

n2h

)
. ‖
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III.8.5 Preliminary Lemmas for Manipulation Testing with Re-

stricted Estimation

Lemma III.11

Let Assumptions of Lemma III.3 hold with the exception that f may be discontinuous across

x̄, then

1

n
XT
hKhXh = {f(x̄−)S−,p + f(x̄+)S+,p}+O (h) +Op(1/

√
nh),

where

S−,p =

∫ 0

−1

r−,p(u)r−,p(u)TK(u)du, S+,p =

∫ 1

0

r+,p(u)r+,p(u)TK(u)du. ‖

Again we decompose the estimator into four terms, B̂LI, B̂S, L̂ and R̂, which correspond

to leave-in bias, smoothing bias, linear variance and quadratic variance, respectively.

Lemma III.12

Let Assumptions of Lemma III.4 hold with the exception that f may be discontinuous across

x̄, then

B̂S = hp+1

{
F (p+1)(x̄−)f(x̄−)

(p+ 1)!
c−,p +

F (p+1)(x̄+)f(x̄+)

(p+ 1)!
c+,p

}
+ op(hp+1), B̂LI = Op

(
1

n

)
,

where

c−,p =

∫ 0

−1

up+1r−,p(u)K(u)du, c+,p =

∫ 1

0

up+1r+,p(u)K(u)du. ‖

Lemma III.13

Let Assumptions of Lemma III.5 hold with the exception that f may be discontinuous across

x̄, then

V

[√
n

h

(
e1,+ − e1,−

)T(
f(x̄+)S+,p + f(x̄−)S−,p

)−1

L̂

]
= (e1,+ − e1,−)T(f(x̄+)S+,p + f(x̄−)S−,p)

−1(f(x̄+)3Γ+,p

+ f(x̄−)3ΨΓ+,pΨ)(f(x̄+)S+,p + f(x̄−)S−,p)
−1(e1,+ − e1,−) +O(h),
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where

Γ−,p =

∫∫
[−1,0]2

(u ∧ v)r−,p(u)r−,p(v)TK(u)K(v) dudv,

Γ+,p =

∫∫
[0,1]2

(u ∧ v)r+,p(u)r+,p(v)TK(u)K(v) dudv.

and

Ψ =



(−1)0

(−1)1

(−1)1

(−1)2

(−1)3

. . .

(−1)p


.

‖

Again we can show that the quadratic part is negligible.

Lemma III.14

Let Assumptions of Lemma III.6 hold with the exception that f may not be continuous across

x̄, then

R̂ = Op

(√
1

n2h

)
. ‖

III.9 Proof

III.9.1 Proof of Theorem III.1

This follows from the preliminary lemmas. �

III.9.2 Proof of Theorem III.2

First we note that the second half of the theorem follows from the first half and the asymptotic

normality result of Theorem III.1, hence it suffices to prove the first half, i.e. the consistency

of V̂p,v(x).

The analysis of this estimator is quite involved, since it takes the form of a third order

V-statistic. Moreover, since the empirical distribution function F̃ is involved in the formula,
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a full expansion leads to a fifth order V-statistic. However, some simple tricks will greatly

simplify the problem.

We first split Γ̂p,x into four terms, respectively

Σ̂p,x,1 =
1

n3

∑
i,j,k

rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)(
1[xi ≤ xj]− F (xj)

)(
1[xi ≤ xk]− F (xk)

)
Σ̂p,x,2 =

1

n3

∑
i,j,k

rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)(
F (xj)− F̃ (xj)

)(
1[xi ≤ xk]− F̃ (xk)

)
Σ̂p,x,3 =

1

n3

∑
i,j,k

rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)(
1[xi ≤ xj]− F̃ (xj)

)(
F (xk)− F̃ (xk)

)
Σ̂p,x,4 =

1

n3

∑
i,j,k

rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)(
F (xj)− F̃ (xj)

)(
F (xk)− F̃ (xk)

)
.

Leaving Σ̂p,x,1 for a while, since it is the key component in this variance estimator. We

first consider NxŜ
−1
p,xΣ̂p,x,4Ŝ

−1
p,xNx. By the uniform consistency of the empirical distribution

function, it can be shown easily that

NxŜ
−1
p,xΣ̂p,x,4Ŝ

−1
p,xNx = Op

(
(nh)−1

)
.

Note that the extra h−1 comes from the scaling matrix Nx, but not the kernel function Kh.

Next we consider NxŜ
−1
p,xΣ̂p,x,2Ŝ

−1
p,xNx, which takes the following form (up to the negligible

smoothing bias):

NxŜ
−1
p,xΣ̂p,x,2Ŝ

−1
p,xNx

=NxH(βp(x)− β̂p(x))

(
1

n2

∑
i,k

rp

(
xk − x
h

)T

Kh(xk − x)
(
1[xi ≤ xk]− F̃ (xk)

))
Ŝ−1
p,xNx

=Op((nh)−1/2) = op(1),

where the last line uses the asymptotic normality of β̂p(x). For Σ̂p,x,1, we make the obser-
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vation that it is possible to ignore all “diagonal” terms, meaning that

Σ̂p,x,1 =
1

n3

∑
i,j,k

distinct

rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)

(
1[xi ≤ xj]− F (xj)

)(
1[xi ≤ xk]− F (xk)

)
+ op(h),

under the assumption that nh2 →∞. As a surrogate, define

Ui,j,k = rp

(
xj − x
h

)
rp

(
xk − x
h

)T

Kh(xj − x)Kh(xk − x)(
1[xi ≤ xj]− F (xj)

)(
1[xi ≤ xk]− F (xk)

)
,

which means

Σ̂p,x,1 =
1

n3

∑
i,j,k

distinct

Ui,j,k.

The critical step is to further decompose the above into

Σ̂p,x,1 =
1

n3

∑
i,j,k

distinct

E[Ui,j,k|xi] (I)

+
1

n3

∑
i,j,k

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj]

)
(II)

+
1

n3

∑
i,j,k

distinct

(
E[Ui,j,k|xi, xj]− E[Ui,j,k|xi]

)
. (III)

We already investigated the properties of term (I) in Lemma III.5, hence it remains to

show that both (II) and (III) are o(h), hence does not affect the estimation of asymptotic

variance. We consider (II) as an example, and the analysis of (III) is similar. Since (II) has

zero expectation, we consider its variance (for simplicity treat U as a scaler):

V[(II)] = E

 1

n6

∑
i,j,k

distinct

∑
i′,j′,k′

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj]

)(
Ui,j,k − E[Ui′,j′,k′ |xi′ , xj′ ]

) .
The expectation will be zero if the six indices are all distinct. Similarly, when there are only
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two indices among the six are equal, the expectation will be zero unless k = k′, hence

V[(II)] = E

 1

n6

∑
i,j,k

distinct

∑
i′,j′,k′

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj]

)(
Ui,j,k − E[Ui′,j′,k′|xi′ , xj′ ]

)
= E

 1

n6

∑
i,j,k,i′j′

distinct

(
Ui,j,k − E[Ui,j,k|xi, xj]

)(
Ui,j,k − E[Ui′,j′,k|xi′ , xj′ ]

)
+ · · · ,

where · · · represent cases where more than two indices among the six are equal. We can

easily compute the order from the above as

V[(II)] = O(n−1) +O((nh)−2),

which shows that

(II) = Op(n−1/2 + (nh)−1) = op(h),

which closes the proof. �

III.9.3 Proof of Lemma III.1

We rely on Lemma III.3 and III.4 (note that whether the weights are estimated is irrelevant

here), hence will not repeat arguments already established there. Instead, extra care will be

given to ensure the characterization of higher order bias.

Consider the case where with enough smoothness on F , then the bias is characterized

by

h−vv!eT
v

[
f(x)Sp,x + hF (2)(x)S̃p,x + o(h) +Op(1/

√
nh)
]−1

[
hp+1F

(p+1)(x)

(p+ 1)!
f(x)cp,x + hp+2

[
F (p+2)(x)

(p+ 2)!
f(x) +

F (p+1)(x)

(p+ 1)!
F (2)(x)

]
c̃p,x + o(hp+2)

]
= h−vv!eT

v

[
1

f(x)
S−1
p,x − h

F (2)(x)

[f(x)]2
S−1
p,xS̃p,xS

−1
p,x +Op

(
1/
√
nh
)]

[
hp+1F

(p+1)(x)

(p+ 1)!
f(x)cp,x + hp+2

[
F (p+2)(x)

(p+ 2)!
f(x) +

F (p+1)(x)

(p+ 1)!
F (2)(x)

]
c̃p,x + o(hp+2)

]
{1 + op(1)},
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which gives the desired result. Here S̃p,x =
∫ xU−x

h
xL−x
h

urp(u)rp(u)Tk(u)du. And for the last line

to hold, one needs the extra condition nh3 →∞ so that Op

(
1/
√
nh
)

= op(h). See Fan and

Gijbels (1996) (Theorem 3.1, pp. 62). �

III.9.4 Proof of Lemma III.2

The proof resembles that of Lemma III.3, and is omitted here. �

III.9.5 Proof of Theorem III.3

The proof splits into two cases. We sketch one of them. Assume either x is boundary or

p− v is odd, the MSE-optimal bandwidth is asymptotically equivalent to the following:

h̃p,v(x)

hp,v(x)
→ 1, h̃p,v(x) =

 1

n

(2v − 1)f(x)eT
v S−1

p,xΓp,xS
−1
p,xev

(2p− 2v + 2)(F
(p+1)(x)
(p+1)!

eT
v S−1

p,xcp,x)
2

 1
2p+1

,

which is obtained by optimizing MSE ignoring the higher order bias term. With consistency

of the preliminary estimates, it can be shown that

ĥp,v(x) =

 1

n

(2v − 1)σ̂p,v(x)2n`2v−1

(2p− 2v + 2)(v! F̂
(p+1)(x)
(p+1)!

eT
v S−1

p,xcp,x)
2

 1
2p+1

{1 + op(1)}.

Apply the consistency assumption of the preliminary estimates again, one can easily show

that ĥp,v(x) is consistent both in rate and constant.

A similar argument can be made for the other case, and is omitted here. �

III.9.6 Proof of Corollary III.1

This follows from the previous lemmas and verifying the Lindeberg condition. See also the

proof of Lemma III.5, Theorem III.1 and Theorem III.2. �

III.9.7 Proof of Corollary III.2

This follows from the previous lemmas and verifying the Lindeberg condition. See also the

proof of Lemma III.5, Theorem III.1 and Theorem III.2. �
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III.9.8 Proof of Lemma III.3

A generic element of the matrix 1
n
XT
hKhXh takes the form:

1

n

∑
i

1

h

(
xi − x
h

)s
K

(
xi − x
h

)
, 0 ≤ s ≤ 2p.

Then we compute the expectation:

E

[
1

n

∑
i

1

h

(
xi − x
h

)s
K

(
xi − x
h

)]
= E

[
1

h

(
xi − x
h

)s
K

(
xi − x
h

)]

=

∫ xU

xL

1

h

(
u− x
h

)s
K

(
u− x
h

)
f(u)du =

∫ xU−x
h

xL−x
h

vsK (v) f(x+ vh)dv

=

∫ xU−x
h

xL−x
h

vsK (v) f(x+ vh)dv,

hence for x in the interior,

E

[
1

n

∑
i

1

h

(
xi − x
h

)s
K

(
xi − x
h

)]
= f(x)

∫
R

rp(v)rp(v)TK(v)dv + o(1),

and for x = xL + ch with c ∈ [0, 1],

E

[
1

n

∑
i

1

h

(
xi − x
h

)s
K

(
xi − x
h

)]
= f(xL)

∫ ∞
−c

rp(v)rp(v)TK(v)dv + o(1),

and for x = xU − ch with c ∈ [0, 1],

E

[
1

n

∑
i

1

h

(
xi − x
h

)s
K

(
xi − x
h

)]
= f(xU)

∫ c

−∞
rp(v)rp(v)TK(v)dv + o(1),

provided that F ∈ C1.

The variance satisfies

V

[
1

n

∑
i

1

h

(
xi − x
h

)s
K

(
xi − x
h

)]
=

1

n
V

[
1

h

(
xi − x
h

)s
K

(
xi − x
h

)]

≤ 1

n
E

[
1

h2

(
xi − x
h

)2s

K

(
xi − x
h

)2
]

= O

(
1

nh

)
,

provided that F ∈ C1. �
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III.9.9 Proof of Lemma III.4

First consider the smoothing bias. The leading term can be easily obtain by taking expecta-

tion together with Taylor expansion of F to power p+1. The variance of this term has order

n−1h−1h2p+2, which gives the residual estimate op(hp+1) since it is assumed that nh→∞.

Next for the leave-in bias, note that it has expectation of order n−1, and variance of

order n−3h−1, hence overall this term of order Op(n−1). �

III.9.10 Proof of Lemma III.5

We first compute the variance. Note that

∫ xU−x
h

xL−x
h

rp (u)
(
F̃ (x+ hu)− F (x+ hu)

)
K(u)f(x+ hu)du

=
1

n

∫ xU−x
h

xL−x
h

rp (u)
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)f(x+ hu)du,

and

V

[∫ xU−x
h

xL−x
h

rp (u)
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)f(x+ hu)du

]

=

∫∫ xU−x
h

xL−x
h

rp (u) rp (v)T K(u)K(v)f(x+ hu)f(x+ hv)[∫
R

(1[t ≤ x+ hu]− F (x+ hu)) (1[t ≤ x+ hv]− F (x+ hv)) f(t)dt

]
dudv

=

∫∫ xU−x
h

xL−x
h

rp (u) rp (v)T K(u)K(v)f(x+ hu)f(x+ hv)(
F (x+ h(u ∧ v))− F (x+ hu)F (x+ hv)

)
dudv. (I)

We first consider the interior case, where the above reduces to:

(I)interior

=

∫∫
R

rp (u) rp (v)TK(u)K(v)f(x)2
(
F (x)− F (x)2

)
dudv

+ h

∫∫
R
(u ∧ v)rp (u) rp (v)TK(u)K(v)f(x)3dudv
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− h
∫∫

R
(u+ v)rp (u) rp (v)TK(u)K(v)f(x)3F (x)dudv

+ h

∫∫
R
(u+ v)rp (u) rp (v)TK(u)K(v)f(x)F (2)(x)

(
F (x)− F (x)2

)
dudv + o(h)

= f(x)2
(
F (x)− F (x)2

)
Sp,xe0e

T
0 Sp,x

− hf(x)3F (x)Sp,x(e1e
T
0 + e0e

T
1 )Sp,x

+ hf(x)F (2)(x)
(
F (x)− F (x)2

)
Sp,x(e1e

T
0 + e0e

T
1 )Sp,x

+ hf(x)3Γp,x + o(h).

For x = xL + hc with c ∈ [0, 1) in the lower boundary region,

(I)lower boundary

= h

∫∫
R
(u ∧ v + c)rp (u) rp (v)T K(u)K(v)f(xL)

3dudv + o(h)

= hf(xL)
3
(
Γp,x + cSp,xe0e

T
0 Sp,x

)
+ o(h).

Finally, we have

(I)upper boundary

= h

∫∫
R
(u ∧ v − c)rp (u) rp (v)T K(u)K(v)f(xU)

3dudv

− h
∫∫

R
(u+ v − 2c)rp (u) rp (v)T K(u)K(v)f(xU)

3dudv + o(h)

= hf(xU)
2f(xU)

(
Γp,x + cSp,xe0e

T
0 Sp,x − Sp,x(e1e

T
0 + e0e

T
1 )Sp,x

)
+ o(h).

With the above results, it is easy to verify the variance formula, provided that we can show

the asymptotic normality.

We first consider the interior case, and verify the Lindeberg condition on the fourth

moment. Let α ∈ Rp+1 be an arbitrary nonzero vector, then

∑
i

E

(
1√
n
αTNx(f(x)Sp,x)

−1

∫ xU−x
h

xL−x
h

rp (u)
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)f(x+ hu)du

)4

=
1

n
E

(
αTNx(f(x)Sp,x)

−1

∫ xU−x
h

xL−x
h

rp (u)
(
1[xi ≤ x+ hu]− F (x+ hu)

)
K(u)f(x+ hu)du

)4

=
1

n

∫∫∫∫
A

∏
j=1,2,3,4

(
αTNx(f(x)Sp,x)

−1rp (uj)K(uj)
)
f(x+ huj)

196



[∫
R

∏
j=1,2,3,4

(
1[t ≤ x+ huj]− F (x+ huj)

)
f(t)dt

]
du1du2du3du4

≤ C

n
·
∫∫∫∫

A

∏
j=1,2,3,4

(
αTNx(f(x)Sp,x)

−1rp (uj)K(uj)
)
f(x)du1du2du3du4 +O

(
1

nh

)
,

where A = [xL−x
h
, xU−x

h
]4 ⊂ R4. The first term in the above display is asymptotically negligi-

ble, since it is takes the form C · (αTNxe0)4/n where the constant C depends on the DGP,

and is finite. The order of the next term is 1/(nh), which comes from multiplying n−1, h−2

(from the scaling matrix Nx), and h (from linearization), hence is also negligible.

Under the assumption that nh → ∞, the Lindeberg condition is verified for interior

case. The same logic applies to the boundary case, whose proof is easier than the interior

case, since the leading term in the calculation is identically zero for x in either the lower or

upper boundary. �

III.9.11 Proof of Lemma III.6

For R̂, we rewrite it as a second order degenerate U-statistic:

R̂ =
1

n2

∑
i,j;i<j

Ûij,

where

Ûij = rp

(
xi − x
h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

+ rp

(
xj − x
h

)(
1[xi ≤ xj]− F (xj)

)
Kh(xj − x)

− E
[
rp

(
xi − x
h

)(
1[xj ≤ xi]− F (xi)

)
Kh(xi − x)

∣∣∣xj]
− E

[
rp

(
xj − x
h

)(
1[xi ≤ xj]− F (xj)

)
Kh(xj − x)

∣∣∣xi] .
To compute the leading term, it suffices to consider

2E

[
rp

(
xi − x
h

)
rp

(
xi − x
h

)T

(1[xj ≤ xi]− F (xi))
2Kh(xi − x)2

]

= 2E

[
rp

(
xi − x
h

)
rp

(
xi − x
h

)T (
F (xi)− F (xi)

2
)
Kh(xi − x)2

]
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=
2

h

∫ xU−x
h

xL−x
h

rp (v) rp (v)T
(
F (x+ hv)− F (x+ hv)2

)
K(v)2f(x+ hv)dv

=
2

h

∫ xU−x
h

xL−x
h

rp (v) rp (v)T
(
F (x)− F (x)2

)
K(v)2f(x)dv +O(1)

=interior
2

h
f(x)

[
F (x)− F (x)2

]
Tp,x +O(1),

=boundary O(1),

which closes the proof. �

III.9.12 Proof of Lemma III.7

This resembles the proof of Lemma III.3, and we only perform the mean computation. To

start,

E

[
1

n
XT
hKhXh

]
= E

[
rp

(
xi − x̄
h

)
rp

(
xi − x̄
h

)T
1

h
K

(
xi − x̄
h

)]

= E

[
rp

(
xi − x̄
h

)
rp

(
xi − x̄
h

)T
1

h
K

(
xi − x̄
h

)∣∣∣∣∣xi < x̄

]
F (x̄)

+ E

[
rp

(
xi − x̄
h

)
rp

(
xi − x̄
h

)T
1

h
K

(
xi − x̄
h

)∣∣∣∣∣xi ≥ x̄

]
(1− F (x̄)).

Then by Lemma III.3, the first term takes the form:

E

[
rp

(
xi − x̄
h

)
rp

(
xi − x̄
h

)T
1

h
K

(
xi − x̄
h

)∣∣∣∣∣xi < x̄

]
F (x̄)

= f(x̄− |xi < x̄)F (x̄)

∫ 0

−1

r−,p(u)r−,p(u)TK(u)du+O(h),

where f(x̄ − |xi < x̄) is the one-sided density of xi at the cutoff, conditional on xi < x̄.

Alternatively, we can simplify by the fact that f(x̄|xi < x̄)F (x̄) = f(x̄−). Similarly, one has

E

[
rp

(
xi − x̄
h

)
rp

(
xi − x̄
h

)T
1

h
K

(
xi − x̄
h

)∣∣∣∣∣xi ≥ x̄

]
(1− F (x̄))

= f(x̄+ |xi ≥ x̄)(1− F (x̄))

∫ 1

0

r+,p(u)r+,p(u)TK(u)du+O(h),
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and that f(x̄+ |xi ≥ x̄)(1−F (x̄)) = f(x̄+). The rest of the proof follows standard variance

calculation, and is not repeated here. �

III.9.13 Proof of Lemma III.8

This follows from Lemma III.4 by splitting the bias calculation for the two subsamples, below

and above the cutoff x̄. �

III.9.14 Proof of Lemma III.9

To start, ∫ 1

−1

rp (u)
(
F̃ (x̄+ hu)− F (x̄+ hu)

)
K(u)f(x̄+ hu)du

=
1

n

∫ 1

−1

rp (u)
(
1[xi ≤ x̄+ hu]− F (x̄+ hu)

)
K(u)f(x̄+ hu)du,

and

V

[∫ 1

−1

rp (u)
(
1[xi ≤ x̄+ hu]− F (x̄+ hu)

)
K(u)f(x̄+ hu)du

]
=

∫∫ 1

−1

rp (u) rp (v)TK(u)K(v)f(x̄+ hu)f(x̄+ hv)[∫
R

(1[t ≤ x̄+ hu]− F (x̄+ hu)) (1[t ≤ x̄+ hv]− F (x̄+ hv)) f(t)dt

]
dudv

=

∫∫ 1

−1

rp (u) rp (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)(
F (x̄+ h(u ∧ v))− F (x̄+ hu)F (x̄+ hv)

)
dudv. (I)

Now we split the integral of (I) into four regions.

(u < 0, v < 0) (I)

=

∫∫ 0

−1

r−,p (u) r−,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)(
F (x̄+ h(u ∧ v))− F (x̄+ hu)F (x̄+ hv)

)
dudv
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= f(x̄−)2
(
F (x̄)− F (x̄)2

)
S−,pe0,−eT

0,−S−,p

− hf(x̄−)3F (x̄)S−,p(e1,−eT
0,− + e0,−eT

1,−)S−,p

+ hf(x̄−)F (2)(x̄−)
(
F (x̄)− F (x̄)2

)
S−,p(e1,−eT

0,− + e0,−eT
1,−)S−,p

+ hf(x̄−)3Γ−,p +O(h2),

and

(u ≥ 0, v ≥ 0) (I)

=

∫∫ 1

0

r+,p (u) r+,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)(
F (x̄+ h(u ∧ v))− F (x̄+ hu)F (x̄+ hv)

)
dudv

= f(x̄+)2
(
F (x̄)− F (x̄)2

)
S+,pe0,+eT

0,+S+,p

− hf(x̄+)3F (x̄)S+,p(e1,+eT
0,+ + e0,+eT

1,+)S+,p

+ hf(x̄+)F (2)(x̄+)
(
F (x̄)− F (x̄)2

)
S+,p(e1,+eT

0,+ + e0,+eT
1,+)S+,p

+ hf(x̄+)3Γ+,p +O(h2),

and

(u < 0, v ≥ 0) (I)

=

∫∫
[−1,0]×[0,1]

r−,p (u) r+,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)

F (x̄+ hu)
(

1− F (x̄+ hv)
)

dudv

=

[∫ 0

−1

r−,p (u)K(u)f(x̄+ hu)F (x̄+ hu)du

]
[∫ 1

0

r+,p (v)TK(v)f(x̄+ hv)
(

1− F (x̄+ hv)
)

dv

]
=
[
f(x̄−)F (x̄)S−,pe0,− + h

(
f(x̄−)2 + F (2)(x̄−)F (x̄)

)
S−,pe1,− +O(h2)

]
[
f(x̄+)(1− F (x̄))S+,pe0,+ + h

(
− f(x̄+)2 + F (2)(x̄+)(1− F (x̄))

)
S+,pe1,+ +O(h2)

]T

,
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and

(u ≥ 0, v < 0) (I)

=

∫∫
[0,1]×[−1,0]

r−,p (u) r+,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)

F (x̄+ hv)
(

1− F (x̄+ hu)
)

dudv

=

[∫ 1

0

r+,p (u)K(u)f(x̄+ hu)(1− F (x̄+ hu))du

]
[∫ 0

−1

r−,p (v)TK(v)f(x̄+ hv)F (x̄+ hv)
)

dv

]

=
[
f(x̄+)(1− F (x̄))S+,pe0,+ + h

(
− f(x̄+)2 + F (2)(x̄+)(1− F (x̄))

)
S+,pe1,+ +O(h2)

]
[
f(x̄−)F (x̄−)S−,pe0,− + h

(
f(x̄−)2 + F (2)(x̄−)F (x̄)

)
S−,pe1,− +O(h2)

]T

.

Let S−1
−,p and S−1

+,p be the Moore–Penrose inverse of S−,p and S+,p, respectively. Then

V

[
(e1,+ − e1,−)T

√
n

h
(f(x̄+)S+,p + f(x̄−)S−,p)

−1L̂

]
= f(x̄−)eT

1,−S−1
−,pΓ−,pS

−1
−,pe1,− + f(x̄+)eT

1,+S−1
+,pΓ+,pS

−1
+,pe1,+ +O(h).

�

III.9.15 Proof of Lemma III.10

This follows from Lemma III.6 by splitting the bias calculation for the two subsamples, below

and above the cutoff x̄. �

III.9.16 Proof of Lemma III.11

This follows from Lemma III.3 by splitting the bias calculation for the two subsamples, below

and above the cutoff x̄. See also the proof of Lemma III.7. �

III.9.17 Proof of Lemma III.12

This follows from Lemma III.4 by splitting the bias calculation for the two subsamples, below

and above the cutoff x̄. �
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III.9.18 Proof of Lemma III.13

To start, ∫ 1

−1

rp (u)
(
F̃ (x̄+ hu)− F (x̄+ hu)

)
K(u)f(x̄+ hu)du

=
1

n

∫ 1

−1

rp (u)
(
1[xi ≤ x̄+ hu]− F (x̄+ hu)

)
K(u)f(x̄+ hu)du,

and

V

[∫ 1

−1

rp (u)
(
1[xi ≤ x̄+ hu]− F (x̄+ hu)

)
K(u)f(x̄+ hu)du

]
=

∫∫ 1

−1

rp (u) rp (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)[∫
R

(1[t ≤ x̄+ hu]− F (x̄+ hu)) (1[t ≤ x̄+ hv]− F (x̄+ hv)) f(t)dt

]
dudv

=

∫∫ 1

−1

rp (u) rp (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv) (I)(
F (x̄+ h(u ∧ v))− F (x̄+ hu)F (x̄+ hv)

)
dudv.

Now we split the integral of (I) into four regions.

(u < 0, v < 0) (I)

=

∫∫ 0

−1

r−,p (u) r−,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)(
F (x̄+ h(u ∧ v))− F (x̄+ hu)F (x̄+ hv)

)
dudv

= f(x̄−)2
(
F (x̄)− F (x̄)2

)
S−,pe0e

T
0 S−,p

− hf(x̄−)3F (x̄)S−,p(e1,−eT
0 + e0e

T
1,−)S−,p

+ hf(x̄−)F (2)(x̄)
(
F (x̄)− F (x̄)2

)
S−,p(e1,−eT

0 + e0e
T
1,−)S−,p

+ hf(x̄−)3Γ−,p +O(h2),
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and

(u ≥ 0, v ≥ 0) (I)

=

∫∫ 1

0

r+,p (u) r+,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)(
F (x̄+ h(u ∧ v))− F (x̄+ hu)F (x̄+ hv)

)
dudv

= f(x̄+)2
(
F (x̄)− F (x̄)2

)
S+,pe0e

T
0 S+,p

− hf(x̄+)3F (x̄)S+,p(e1,+eT
0 + e0e

T
1,+)S+,p

+ hf(x̄+)F (2)(x̄)
(
F (x̄)− F (x̄)2

)
S+,p(e1,+eT

0 + e0e
T
1,+)S+,p

+ hf(x̄+)3Γ+,p +O(h2),

and

(u < 0, v ≥ 0) (I)

=

∫∫
[−1,0]×[0,1]

r−,p (u) r+,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)

F (x̄+ hu)
(

1− F (x̄+ hv)
)

dudv

=

[∫ 0

−1

r−,p (u)K(u)f(x̄+ hu)F (x̄+ hu)du

]
[∫ 1

0

r+,p (v)T K(v)f(x̄+ hv)
(

1− F (x̄+ hv)
)

dv

]
=
[
f(x̄−)F (x̄)S−,pe0 + h

(
f(x̄−)2 + F (2)(x̄)F (x̄)

)
S−,pe1,− +O(h2)

]
[
f(x̄+)(1− F (x̄))S+,pe0 + h

(
− f(x̄+)2 + F (2)(x̄)(1− F (x̄))

)
S+,pe1,+ +O(h2)

]T

,

and

(u ≥ 0, v < 0) (I)

=

∫∫
[0,1]×[−1,0]

r−,p (u) r+,p (v)T K(u)K(v)f(x̄+ hu)f(x̄+ hv)

F (x̄+ hv)
(

1− F (x̄+ hu)
)

dudv

=

[∫ 1

0

r+,p (u)K(u)f(x̄+ hu)(1− F (x̄+ hu))du

]
[∫ 0

−1

r−,p (v)TK(v)f(x̄+ hv)F (x̄+ hv)
)

dv

]
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=
[
f(x̄+)(1− F (x̄))S+,pe0 + h

(
− f(x̄+)2 + F (2)(x̄)(1− F (x̄))

)
S+,pe1,+ +O(h2)

]
[
f(x̄−)F (x̄)S−,pe0 + h

(
f(x̄−)2 + F (2)(x̄)F (x̄)

)
S−,pe1,− +O(h2)

]T

.

By collecting terms, one has

(I) =
(
f(x̄+)S+,p + f(x̄+)S−,p

)
e0e

T
0

(
f(x̄+)S+,p + f(x̄+)S−,p

)T

− hf(x̄−)F (x̄)f(x̄−)S−,pe1,−eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄−)
F (x̄)(1− F (x̄))f(x̄−)S−,pe1,−eT

0 (f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄−)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,−f(x̄−)S−,p

+ h
F (2)(x̄)

f(x̄−)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e0e

T
1,−f(x̄−)S−,p

− hf(x̄+)F (x̄)f(x̄+)S+,pe1,+eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄+)
(1− F (x̄))F (x̄)f(x̄+)S+,pe1,+eT

0 (f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄+)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,+f(x̄+)S+,p

+ h
F (2)(x̄)

f(x̄+)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e0e

T
1,+f(x̄+)S+,p

+ hf(x̄−)f(x̄−)S−,pe1,−eT
0 f(x̄+)S+,p

+ hf(x̄−)f(x̄+)S+,pe0e
T
1,−f(x̄−)S−,p

+ h(f(x̄+)3Γ+,p + f(x̄−)3Γ−,p).

Next, we note that

S+,pe1,− = S−,pe1,+ = 0,

which implies

(I) =
(
f(x̄+)S+,p + f(x̄+)S−,p

)
e0e

T
0

(
f(x̄+)S+,p + f(x̄+)S−,p

)T

− hf(x̄−)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e1,−eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄−)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e1,−eT

0 (f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄−)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,−(f(x̄+)S+,p + f(x̄−)S−,p)
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+ h
F (2)(x̄)

f(x̄−)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e0e

T
1,−(f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄+)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e1,+eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄+)
(1− F (x̄))F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e1,+eT

0 (f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄+)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,+(f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄+)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e0e

T
1,+(f(x̄+)S+,p + f(x̄−)S−,p)

+ hf(x̄−)(f(x̄+)S+,p + f(x̄−)S−,p)e1,−eT
0 f(x̄+)S+,p

+ hf(x̄−)f(x̄+)S+,pe0e
T
1,−(f(x̄+)S+,p + f(x̄−)S−,p)

+ h(f(x̄+)3Γ+,p + f(x̄−)3Γ−,p).

Next note that

Γ−,p =

∫∫
[−1,0]2

(u ∧ v)r−,p(u)r−,p(v)TK(u)K(v)dudv

=

∫∫
[0,1]2

((−u) ∧ (−v))r−,p(−u)r−,p(−v)TK(u)K(v)dudv

=

∫∫
[0,1]2

(u ∧ v − u− v)Ψr+,p(u)r+,p(v)TΨK(u)K(v)dudv

= ΨΓ+,pΨ−ΨS+,pe1,+eT
0 S+,pΨ−ΨS+,pe0e

T
1,+S+,pΨ

= ΨΓ+,pΨ + S−,pe1,−eT
0 S−,p + S−,pe0e

T
1,−S−,p,

then

(I) =
(
f(x̄+)S+,p + f(x̄+)S−,p

)
e0e

T
0

(
f(x̄+)S+,p + f(x̄+)S−,p

)T

− hf(x̄−)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e1,−eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄−)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e1,−eT

0 (f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄−)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,−(f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄−)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e0e

T
1,−(f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄+)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e1,+eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)
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+ h
F (2)(x̄)

f(x̄+)
(1− F (x̄))F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e1,+eT

0 (f(x̄+)S+,p + f(x̄−)S−,p)

− hf(x̄+)F (x̄)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,+(f(x̄+)S+,p + f(x̄−)S−,p)

+ h
F (2)(x̄)

f(x̄+)
F (x̄)(1− F (x̄))(f(x̄+)S+,p + f(x̄−)S−,p)e0e

T
1,+(f(x̄+)S+,p + f(x̄−)S−,p)

+ hf(x̄−)(f(x̄+)S+,p + f(x̄−)S−,p)e1,−eT
0 (f(x̄+)S+,p + f(x̄−)S−,p)

+ hf(x̄−)(f(x̄+)S+,p + f(x̄−)S−,p)e0e
T
1,−(f(x̄+)S+,p + f(x̄−)S−,p)

+ h(f(x̄+)3Γ+,p + f(x̄−)3ΨΓ+,pΨ).

Therefore,

V

[
(e1,+ − e1,−)T

√
n

h
(f(x̄+)S+,p + f(x̄−)S−,p)

−1L̂

]
= (e1,+ − e1,−)T(f(x̄+)S+,p + f(x̄−)S−,p)

−1(f(x̄+)3Γ+,p

+ f(x̄−)3ΨΓ+,pΨ)(f(x̄+)S+,p + f(x̄−)S−,p)
−1(e1,+ − e1,−) +O(h).

�

III.9.19 Proof of Lemma III.14

This follows from Lemma III.6 by splitting the bias calculation for the two subsamples, below

and above the cutoff x̄. �
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Arcones, Miguel A. and Evarist Giné, (1991). “Additions and correction to ‘The
bootstrap of the mean with arbitrary bootstrap sample size’,” Annals of the Institute
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