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ABSTRACT

Social networks are everywhere in our everyday lives. We aggregate information,

make decisions, and form opinions through these interactions on social networks.

This thesis aims to improve our understanding of social network structures and social

network dynamics, including the spread of social contagions, opinion formation, and

myopic routing.

We first consider complex contagions where a node requires several infected neighbors

before becoming infected itself, and we give a theoretical analysis of which proper-

ties of social networks— small-world properties, power-law degree distribution, time

evolving, and community structure— can affect the spread of contagions. Finally,

we consider the influence maximization problem on social networks with community

structure when the contagions are complex.

For social network structures, we begin with the role of strong and weak ties. Ex-

ploiting the idea of strong ties we propose a Sybil detection algorithm which prevents

an adversary from creating a large number of identities to attack a recommendation

system. Later, we study the role of weak ties in echo chambers and bubble filters.

Finally, we focus on opinion formation and community structures. We propose a

family of general rich-get-richer dynamics which includes several well-studied models

as special cases. This family of dynamics reaches consensus fast on dense Erdös-Rényi

graphs. In contrast to this result, we prove a dichotomy theorem about community

structures and these richer-get-richer dynamics.

xiii



CHAPTER 1

Introduction

Social networks are omnipresent in our everyday lives. For example, we learn the

latest news from friends’ post on social media. We buy phones based on neighbors’

choices. We form our opinions on politics under our family’s effect. We derive in-

formation, make decisions, and form opinions through these interactions on social

networks. To better understand society we need to improve our understanding of

social networks.

The study of social networks starts from descriptive characterization form col-

lected data [211, 87, 70, 227, 193]. In the early 2000s, the widespread availability

of electronic databases and the development of the internet enable large-scale em-

pirical studies. These observations (e.g., power-law degree distribution, clustering,

small-world property [8, 43, 89, 11]) provided convincing evidence that real social

networks have unique structures that are not captured by previous simple mathemat-

ical (Erdös-Rényi) models of networks [87], and triggered a massive surge of interest in

using statistical models to quantify and understand this structure (e.g., small-world

model, time evaluating model [169, 234, 178, 24, 133]). This line of works discov-

ers many interesting properties of social networks. However, these should be our first

step toward the ultimate goal of understanding the function of systems built on social

networks— society. We want to ask: how do network properties (small-world, power-

law degree distribution, time evolving, community structure, and strong/weak ties)

affect the function of systems (contagions and other dynamics) on social networks?

In particular, we study

• which properties of social networks— small-world, power-law degree distribu-

tion, time evolving— enable infections spread.

• how the role of ties in social networks— strong/weak ties and inter-communities

connection— affects the global dynamics or character of social networks.
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Before diving into the details, the main contributions are outlined in this section,

and each part will be partitioned into background followed by our contributions. In

section 1.1, beginning with social contagions, we introduce basic models for social

networks. Then in section 1.2 and 1.3, we study characteristics of ties which consists

of two parts— strong/weak ties and community structure.

1.1 Social Contagions

Our everyday life is embedded in a network of social interactions. Through these

social interactions, we spread and receive information, beliefs, diseases, technologies,

and behaviors. A better understanding of these social interactions promises a better

understanding of and the ability to influence a wide range of phenomena— financial

practices, healthy/unhealthy habits, and voting practices [23, 60, 161, 4]. However,

these successful models, which apply to diseases, are missing key ingredients that

severely restrict their application to other social phenomena. One missing ingredi-

ent is that many social contagions are complex. We call contagions simple when the

influence of an additionally infected neighbor is marginally decreasing, and call con-

tagions complex when this fails to hold (e.g., contagions that require activation from

multiple neighbors). Many examples of complex contagions have been reported, in-

cluding pricey technology innovations, the change of social behaviors, the decision to

participate in a migration, etc [156, 213]. In this work, we consider two complex con-

tagion models: k-complex contagions (bootstrap percolation) [49, 50], and the general

threshold model [95].

1.1.1 Model of Contagions

Given initially infected agents, a contagion propagates through local interactions.

Therefore a model of contagion can be specified with three aspects: The initially

infected nodes, graph (the local interactions), and the dynamics of the contagions

(how do contagions propagate through local interactions?). We focus on contagions

with a constant number of initially infected vertices and say a contagion spreads if

there are a constant fraction of vertices infected with high probability.

In this section, we begin with one of the most basic model of complex contagions

considered by Centola and Macy [49] which is defined formally in Definition 2.1. Given

the set of initially infected vertices Z(0), at each round a node becomes active if at

least k neighbors are active. This single threshold model is also called a k-complex
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contagion. If k = 1, a simple contagion, all nodes connected to an infected node is

infected eventually. When k > 1, a single active neighbor is not enough to trigger

activation. Thus captures the idea of complex contagions and also the essence of the

theoretical challenges of studying complex contagions.

We will begin with discussing k-complex contagions on (1) the Erdös-Rényi mod-

els as an exercise and demonstration of the difference between simple and complex

contagions which result is done by Janson et al. [119]. Later, we will present our

results for k-complex contagions on (2) a generalized Kleinberg’s small world [97] and

(3) configuration models with power-law degree distribution [205]. These results show

the behaviors of complex contagions on social networks which have unique structures

(small world property and power-law degree distribution) are different from complex

contagions on simple mathematical models— the Erdös-Rényi model.

Finally, one of the limitations of this k-complex contagion model is the dependency

on the fixed threshold k for all nodes in the network. In practice, some people like to

try out new things and are more risk driven while others are risk averse. Therefore the

threshold function is not necessarily uniform. As a result, we also consider one step

of generalizing the k-complex contagion model by considering the threshold coming

from a distribution D on positive integers— called general threshold models [95]. The

initial adoption barrier can still exist which makes the contagion complex. We provide

analysis of the spreading behaviors on a broad family of networks that grow over time.

1.1.2 Erdös-Rényi model

Here we consider k-complex contagions on one of the simplest mathematical models—

the Erdös-Rényi model and demonstrate the difference between simple and complex

contagions. An Erdös-Rényi model [87], G(n, p), is a distribution over graphs with

vertex set [n] := {1, 2, . . . , n} where every edge appears independently with proba-

bility p = p(n). If k = 1, the fraction of contagions is related to the giant connected

component problem, and the 1-complex contagion spreads if and only if the expected

degree of each vertex is greater than 1. On the other hand, when k > 1, Janson et al.

[119] shows k-complex contagions spread only if the expected degree of each vertex

is Ω(nγ) where the constant γ depends on k and p. It is unrealistic for real human

to have a super constant number of friends; however, as we will see shortly, if the

network has certain common social network properties, the complex contagions can

spread even with a constant degree.
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1.1.3 Small world model

The Erdös-Rényi model is simple, but it does not capture many unique structures

in real social networks. A primary example is called the small-world phenomenon.

Influenced by de Sola Pool and Kochen [70], Milgram devised an experiment to test the

small-world conjecture [227]. After selecting a target person and a group of starting

individuals, the experimenter gives each starter an envelope with basic information

about the target and ask him/her to forward the envelope to someone he/she knew

so that the envelope might reach the target. The process repeated until the envelope

reached the target. Over many trials, the average number of intermediate steps in a

successful chain was between five and six, a quantity that has since entered popular

culture as the “six degrees of separation” principle. This experiment triggered a surge

of interest in modeling the small world property.

One observation from this experiment is that social networks are not only highly

clustered but also have small diameter— most pairs of individuals are connected

by short paths. Motivated by this observation, the Watts-Strogatz network [234]

was proposed to explain the small-world phenomenon. Furthermore, Kleinberg made

another insightful observation—instead of having short routes, the experiment also

supports that most pairs of individuals can find such routes, and he proposed the

Kleinberg’s small world model [133]. Kleinberg’s small world model simulates social

networks whose ties have two characters strong and weak ties which are parameterized

by γ.

One recent work [99] on social influence by k-complex contagion models discovered

that the generation of weak-ties also crucially impacts the spreading rate on Klein-

berg’s small world model: If a k-seed cluster is infected initially, the contagion spreads

to the entire network in O(polylog(n)) rounds if γ ∈ [2; 2(k+1)
k

), and in Ω(poly(n))

rounds otherwise. The parameter of γ = 2 is particular: when γ is anything but 2

the k-complex contagions spread slowly for large enough k.

Contributions [95] In Chapter 5, I propose a natural generalization of Klein-

berg’s small world model to allow node heterogeneity: each node has a personalized

parameter γ sampled from a shared distribution, and prove that this model enables

k-complex contagions on a broad range of the parameter space, improving the ro-

bustness of the model. Moreover, we empirically show that this generalization is

supported by real-world data.
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1.1.4 Power-law degree distribution

Another fundamental characteristic of a social network is its degree distribution which

is a description of the relative frequencies of nodes that have different degrees. A

graph has power-law degree distribution, if the number of nodes having degree d is

proportional to d−α, for a positive constant α, and the graph is also called scale-

free network. In 1965, Price [193] showed that the number of citations to papers

follows a power law distribution. Later, studies of the World Wide Web reported

that the network of web pages also has a power law degree distribution [8, 43, 89].

Observations of many different types of social networks also found power-law degree

distributions, as well as biological, economic and semantic networks [218, 6, 177].

Although random graph models G(n, p) do not have a power-law degree distri-

bution, we can “impose” this property on random graph model by introducing a

generalization called the configuration model graphs with degree sequence k where k is

a vector, and ki is the degree of vertex i. Given a degree sequence, we may construct a

random graph by choosing a uniformly random matching on the degree “stubs”(half-

edges), and the histogram of k would be the degree distribution of resulting graph.

Therefore, we can construct a configuration model with power-law degree distribution

by taking degree sequence k such that the corresponding histogram satisfies power-law

distribution.

Contribution [205] With this minimal modification, a natural question is: do

k-complex contagions spread on configuration model with power-law degree distri-

bution. In Chapter 4, I study this problem and tried to answer if power-law degree

distributions alone are sufficient to spread the contagions. I theoretically show the

contagions spread on configuration model graphs with power-law degree distribution

with the exponent between 2 and 3 which also have a constant average degree: the

single seed of the highest degree node will infect a constant fraction of the graph with

high probability. This result shows a distinction between random graphs G(n, p) and

configuration model with power-law degree distribution in the sense that although

both models have a constant average degree, k-complex contagions do not spread on

G(n, p) but do spread on on configuration model with a power-law degree.

1.1.5 Time evolution models

In addition to using the configuration model with power-law degree distribution to

model social network with power-law degree distribution, Barabási and Albert [24]
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proposed an elegant model— preferential attachment model— which also has power-

law degree distribution. Moreover, they attributed the power-law degree distribution

to two generic properties: first the network is time evolving, and second, nodes attach

to the previous nodes preferentially (nodes gain new edges in proportion to the number

they already have). These two properties further stimulate a large number of follow-

up work [187, 77].

It has been shown that a k-complex contagion is generally slower and more delicate

than simple contagion k = 1 [99, 84]. One of the limitations of this k-complex

contagion model is the dependency on the fixed threshold k for all nodes in the

network. In practice, some people who like to try out new things and are more risk

driven while others are risk averse. Therefore the threshold function is not necessarily

uniform.

Contribution [95] In Chapter 5, I consider a general threshold model (Defini-

tion 5.1): the threshold k for each node sampling from a distribution D identically

and independently which reduces to k-complex contagions when D is a constant dis-

tribution, and provide analysis on the spreading behaviors on a general family of

time evolving networks which contains preferential attachment model. Theoretically,

I show if the set of initial infected seed contains the early arrival agents, in the di-

rected case, the fraction of nodes infected converges and will approach to a fixed point

of a function determined by the parameters of the contagion and networks. In the

undirected case, I show with high probability, the total number of infected nodes will

always be a constant fraction higher than the highest stable fixed point of the above

polynomial, when a non-zero stable fixed point exists. Furthermore, via simulations

this work also shows, using a co-authorship network derived from DBLP databases

and the Stanford web network, that our theoretical results can be used to predict the

infection rate.

1.2 Characters of ties— Strong and weak ties

Besides the global structure of social networks— degree distribution, small-world

property or time evolving, real social networks also exhibit unique local structures

which can often be checked locally, e.g., strong/weak ties and community structure. In

this section, we want to ask how do these characters of ties affect the global behavior

of dynamics on social networks.

The connection of social networks may have different strengths and are often
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classified into strong ties and weak ties. Strong ties represent close relationships such

as family members, close friends, relationships that people invest time and energy to

maintain actively; while weak ties capture relationships with acquaintances, friends

from the old days, relationships that are relatively less invested. Due to the limited

time and energy, an individual often has only a small number of strong ties but may

have a much more significant number of weak ties.

1.2.1 Strong ties and Sybil detection

Besides the relational meanings, strong ties and weak ties also have structurally dif-

ferent meanings. Strong ties often exhibit the transitive closure or triadic closure

property [195]— if A and B are close friends, and B and C are close friends, then

it is very likely that A and C are also close friends. The existence of strong ties

in social networks separates them from “typical” graphs, say the Erdö-Rènyi model

which does not have any transitive closure with high probability when the expected

degree is constant. How can we exploit this special property of social networks and

detect anomaly?

Contribution [207] In Chapter 7, we exploit the idea of strong ties and low-

dimensional properties of social networks, and propose a Sybil Detection algorithm

which prevents an adversary from creating a large number of identities in social

networks to attack a recommendation system.

Previous Sybil detection algorithms which use networks structure typically assume

that it is difficult for an adversary to create edges to any real identities in the network

which seems to fail in real-world settings. Instead, based on the observation— though

Sybils may make a large number of weak ties, it is hard for them to form strong

ties which require time and energy to maintain. This work makes a much weaker

assumption: creating edges from Sybils to significant fraction of real identities is

difficult, yet allowing that Sybils can connect to a random constant fraction of real

identities. Moreover, by iteratively removing identities without “strong ties” our

algorithm provably detects Sybil (anomaly) in social networks.

1.2.2 Weak ties and echo chambers

In the seminal paper “The Strength of the Weak Ties” Granovetter [105] showed how

information spreads through weak ties. While strong ties connect people who are more

similar to each other (due to homophily), weak ties tend to bring fresh information to
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a social group, which can be extremely valuable, for example, in the case of looking

for new jobs. However, weak ties, especially those discovered on a social platform, are

a lot easier to form or break, making it convenient to block opinions that one does

not like and stay in a comfortable “echo chamber” [20, 223]. How do weak ties affect

the consensus of society given two roles of weak ties: the strength of weak ties—

that weak ties are useful for spreading information; and the idea of echo chambers

or filter bubbles, that people are typically bombarded by the opinions of like-minded

individuals.

Contribution In Chapter 8, I look at opinion formation and the role of weak

ties. There are two phenomena both of which promote consensus between agents

connected by ties: influence, agents changing their opinions to match their neighbors;

and selection, agents re-wiring to connect to new agents when the existing neighbor

has a different opinion. In my agent-based model, I consider that only weak ties can

be rewired and strong ties do not change. The network structure as well as the opinion

landscape thus co-evolve with two important parameters: the probability of influence

versus selection; and the fraction of strong ties versus weak ties. Using empirical and

theoretical methodologies we discovered that on a two-dimensional spatial network:

• With a no/low selection rate the presence of weak ties enables fast consensus. It

conforms with the classical theory that weak ties are helpful for quickly mixing

and spreading information, and strong ties alone act much more slowly.

• With a high selection rate, too many weak ties inhibit any consensus at all—the

graph partitions. The weak ties reinforce the opinions rather than mixing them.

However, sufficiently many strong ties promote convergence, though at a slower

pace.

1.3 Characters of ties— community structure

Similar to strong and weak ties, community structure is also ubiquitous in social

networks. Social networks may have different communities, and each agent belongs

to different communities— occupation, sex, or geographical region. Agents within the

same community tend to have more connection, and fewer when they are in different

communities. Conversely, a person has many friends in a specific community may

also in the community— the membership of the community can be checked locally.

A natural question is how does the community structure affect the global behavior
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of dynamics on social networks. In particular, we want to understand the synergy

between opinion formulation and community structure.

In addition to spreading information, social networks also interplay with the for-

mation of opinion— agents’ beliefs and opinions evolve as they interact with others

on social networks. The opinion formulation plays a role in nearly every social, polit-

ical and economic process.[175] A more preliminary question we might ask is whether

the society can form a consensus, if so how long does it take to reach a consensus?

If a social network has community structure, people interact more with those in the

same community than the other. Therefore with community structure, it is likely

to form local agreement within each community and prevent global consensus. We

present two models for opinion formulation and examine the relationship between

these dynamics and social networks with and without community structure.

1.3.1 Node Dynamics

Due to the complexity of the real world, it is unlikely that any specific simple mathe-

matical model can accurately describe the exchange of opinions among people. Thus

we seek to define general classes of dynamics, and study the holistic behavior of

these family rather than particulars. In Chapter 9 and 10, we proposed a gen-

eral model for opinion formulation on a fixed graph with a finite set of opinions—

called Node dynamics. Given a fixed graph and an initial opinion each node has,

each node’s opinion is updated over time by randomly selecting a node to update,

and then updating the node’s opinion according to some function of its neighbor’s

opinions. This model is general enough to capture a variety of well-studied models:

the voter model [65, 114, 150, 151, 32, 47, 46, 212, 221, 222, 64], iterative major-

ity [136, 34, 125, 176, 224], and iterative k-majority processes [75, 66, 63, 31, 1].

Contribution for Node Dynamics on Erdös-Rènyi models [206] In Chap-

ter 9, I prove that the Node Dynamics converge to consensus in time Θ(n log n) on

complete graphs and dense Erdös-Rènyi model with n nodes when the update func-

tion is from a large family of majority-like functions. This family of majority-like

node dynamics tries to be the minimal model to capture two important aspects of

opinion formulation: (1) People update their opinions based on the relative frequency

of each opinion in their neighbors, instead of the absolute number of each opinions.

(2) People are (disproportionally) more likely to updates to the majority opinion—

majority-like. Our results support that people converge to consensus fast when there

is no community structure (complete graphs and Erdös-Rènyi model).
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Contribution for Node Dynamics on block models In Chapter 10, I study

majority-like Node Dynamics on networks with two communities. The networks we

consider are weighted graphs comprised of two equally sized communities where in-

tracommunity edges have weight p, and intercommunity edges have weight q. Thus

q and p parameterize the connectivity between the two communities.

I prove a dichotomy theorem about the interaction of the two parameters: 1) the

“majority-like” update function, and 2) the level of inter-community connectivity.

For each setting of parameters, we show that either: the system quickly converges to

consensus with high probability in time Θ(n log(n)); or, the system can get “stuck”

and take time 2Θ(n) to reach consensus. Technically, I achieve this fast convergence

result by exploiting the connection between a family of reinforced random walks and

dynamical systems literature. One main result shows if the systems are a reinforced

random walk with a gradient-like function, it converges to an arbitrary neighborhood

of a local attracting point in O(n log n) time with high probability. This result adds

to the recent literature on saddle-point analysis and shows a large family of stochastic

gradient descent algorithm converges to local minimal in O(n log n) when the step size

O(1/n).

1.3.2 Networks with Community Structure and Naming game

Another stylized model of opinion formulation we have analyzed in depth is the Nam-

ing Game [26, 214], in which agents negotiate conventions through local pairwise in-

teractions. The Naming Game captures the generic and essential features of an agree-

ment process over a non-finite set of names in networked agent-based systems. Briefly

speaking, when two agents wish to communicate, one agent, the speaker, randomly

selects one from her list of current names and uses this name to initiate communi-

cation with the listener. If the listener recognizes that name, both the speaker and

listener purge their lists of current name to only include that “successful” convention.

If the listener does not recognize it, she adds it to her list of known names.

Contribution [96] In Chapter 11, I study the Naming Game to analyze how agents

reach global consensus, and empirically show how community structure (asymmetric

topology) and heterogeneous agents affect the convergence rates, and how consensus

get manipulated when (adversarial) stubborn nodes are introduced at different points

of the process. In this work, with stability analysis in control theory, we show the

process with binary opinions converges of segregation when the community structure
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exists which supports that community structure indeed hinders the dynamics reaching

consensus.

1.4 Technique Overview

In addition to improving understanding of social networks, the tools used and de-

veloped in this thesis might be useful in its own right in Markov chain, dynamical

system theory, and random graph theory.

1.4.1 Mean field approximation

Most of the dynamics on social networks we studied are large and complex stochastic

models—a large number of individual agents which interact with each other. To

understand this complex stochastic system, a generic approach partitions the problem

into two steps as follows:

1. First, approximate these dynamics by simpler models (e.g., use the number of

infected nodes to represent the contagions process of interest or the number of

nodes with given opinion) which are often discrete stochastic dynamical systems

over low dimensional geometrical spaces.

2. Based on the observation that, in most of the cases, as the size of the systems

increases, the time evolution become smooth, in the second step, we usually can

show the temporal behavior process of interest “converges” to the behavior of a

continuous dynamical system, and use existing tools to analyze the continuous

dynamical system.

Though in the first step, techniques to reduce complex systems to simpler mod-

els are mostly ad hoc, for the second step, there are two dominant tools to con-

nect discrete stochastic systems with continuous dynamical systems: Wormold’s

method [239], and Pemantle’s reinforced random walk [189]. However, these two

methods yield different convergence guarantee under different conditions. If a dis-

crete stochastic system has certain nice conditions, Pemantle’s method guarantees

the limit behavior of the system and corresponding continuous deterministic system

are similar. On the other hand, if a discrete stochastic system satisfies some stronger

conditions, Wormold’s method proves the system is close to the corresponding con-

tinuous deterministic system when the time span is comparable to the size of the

dimension. In this thesis, we give two examples of relaxing the above limitations.
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To apply Wormold’s method requires a detailed understanding of the continuous

deterministic behavior. However, for example, in [205], the number of infected nodes

does not have a clean closed form, and the process does not meet the condition for

Wormold’s method. We give a new analysis of the process and provide a lower bound

for the number of infected nodes due to the monotonic property of contagions.

On the other hand, Pemantle’s method shines when we want to understand the

limit behavior of a process. In [95] in the directed case the fraction of infected nodes

possesses nice limit behaviors and using Pemantle’s method off-shelf yields the frac-

tion of infected nodes converges. However, to prove the fraction of infected nodes in

undirected is constant larger the one in the directed case, the rate of convergence mat-

ters. In the paper, we give an asymptotic convergence rate for the fraction of infected

nodes in the directed case which overcome the limitation of Pemantle’s method.

1.4.2 Hitting time and potential function

A large volume of literature is devoted to bounding the hitting time on different

Markov process and achieves fast convergence. The techniques typically employed

are:

1. Showing the Markov chain has fast mixing time [171]

2. Reducing the dimension of the process into a small set of parameters (e.g., the

frequency of each opinion) and using a mean-field approximation and concen-

tration property to control the behavior of the process [31]

3. Using handcrafted potential functions [176]

In a recent work [206], we propose a general framework that upper bounds the con-

sensus time which circumvent some limitations of the above three approaches.

In Chapter 9 I combine (2) and (3): I use (2) to derive a rough characterization

of a process of interest, and then based on this characterization adaptively construct

a potential function to fit the process. Additionally, in Chapter 10, I exploit the

literature of dynamical systems and show the existence of global potential function

of our system by phase portrait.

1.5 Structure of the thesis

Chapter 2 introduces notions for social networks and related dynamics which serve as

vocabularies of most of our results. Readers may skip most of them and come back
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to this chapter later.

In the first part, we collects results about social contagions which follows the out-

line in Section 1.1. There is little dependence between chapters. Chapter 3 presents

a general Kleinberg’s small world model, and discusses k-complex contagions and

myopic routing on this model. This chapter focuses more on the new model, general

Kleinberg’s small world model, and less on complex contagions. Chapter 4 stud-

ies k-complex contagions on configuration model graphs with power-law degree dis-

tributions. This chapter mostly concentrates on a threshold property of complex

contagions on the configuration model. Chapter 5 introduces a general threshold

contagions model and considers the contagions on time evolving models. Addition-

ally, the chapter also discuss more about the difference in complex contagions and

simple contagions. Finally, Chapter 6 investigate influence maximization problem on

graphs with community structures.

The next part is a bridge to the next part about opinion formations. In this part,

Chapter 7 demonstrates an algorithm use strong ties to detect anomaly in social

networks. Chapter 8 tries to understand the role of weak ties in opinion formations,

and the model studied is related to the next chapter.

The last part focuses on opinion formation and community structures. The tech-

nical tools used are quite different than the previous chapters, Chapter 9 and 10

work on hitting time of Markov chains on Euclidean space which involves Markov

chain theory, dynamical system theory, and spectral graph theory. Chapter 9 shows

a family general rich-get-richer dynamics reaches consensus fast on graphs close to

complete graph, dense Erdös-Rényi Graphs. Chapter 10 proves a dichotomy theo-

rem about community structures and richer-get-richer dynamics. Finally, Chapter 11

studies opinion formation with a variety of interventions: 1) asymmetry in network

topology, 2) adding uniform random edges, 3) the presence of stubborn nodes.
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CHAPTER 2

Preliminaries

In this chapter, we introduce several notions related to social networks and dynamics

on them. Section 2.3 presents concepts for dynamics, including ordinary differential

equations, Markov chains, and martingales. With these concepts, we introduce our

toolbox for characterizing those dynamics, with concentration of stochastic processes

and linear algebra. In Section 2.4 we give a brief overview of dynamical systems.

Finally, we define several common models for social networks and some related prop-

erties.

2.1 Dynamics on Social Networks

Dynamics on social networks model the temporal properties of a large number of

individual agents interacting with each other. For example in contagions, each node

can be represented as a binary state, infected or not infected, and each node gets

infected based on the interaction between its neighbors. In social contagions, note

that nodes cannot be uninfected and the process is monotone, and we are mostly

interested in the span of contagions and the rate of contagions. On the other hand,

for opinion formation, each node has a (possibly binary) opinion, and it updates its

opinion based on its neighbors’ choices. Here we are interested in does the process

converges, and if the process reaches consensus. We will first define two concrete

dynamics and generalize to mathematical modeling.

2.1.1 Social Contagions

Given a social network modeled as a graph G = (V,E), in a cascade, a subset of

nodes S ⊆ V is chosen as the seed set; these seeds, being infected, then spread their

influence across the graph according to some specified model. The general threshold

model [104, 172] is a fairly general model to capture such intuition. Each node v has a
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monotone function gv : {0, 1}|Γ(v)| → [0, 1], where Γ(v) is the set of v’s neighbors in a

social networks. The functions gv represents how much influence(via knowledge social

pressure, ets) any set of neighbors has upon node v. Each node also has threshold

Rv drawn uniformly and independently from the interval [0, 1]. After an initial seed

set is infected, a node v becomes infected at time t if gv(St) ≥ Rv where St is the set

of infected neighbors of v at time t. We will define two models for social contagions

first and review other two later.

Definition 2.1 (r-complex contagions [104]). Given a constant k ∈ N, a directed

graph G(V,E), and a set of initial infected nodes (seed) X ⊆ V , a k-complex contagion

CC(G, r,X) is a contagion that initially infects vertices of X and spreads over graph

G. The contagion proceeds in rounds. At each round, each vertex with at least r

infected neighbors becomes infected.

We use σr,G(S) to denote the total number of infected vertices at the end of

the cascade, and σr,G(S) = EG∼G [σk,G(S)] if the graph G is sampled from some

distribution G. Notice that the function σr,G(·) is deterministic once the graph G and

r are fixed.

Definition 2.2 (General threshold models). Give a directed graph G = (V,E), a set

of initially infected nodes X ⊆ V , and a distribution R over non negative integer

R0, a General Threshold Contagion GTC(G,R, X) is a process (Xt)t≥0 over subset

of nodes. Initially, each node v samples a threshold Rv from the distribution R
independently, and X0 = X. The contagion proceeds in rounds. At each round t+ 1,

each node v with at least threshold number of, Rv, infected out-neighbors/neighbors

becomes infected,

Xt+1 = Xt ∪ {v ∈ V : v has Rv infected out neighbor}.

Other than the r-complex contagion, most cascade models are stochastic: the

total number of infected vertices is nondeterministic but rather a random variable.

σG(S) usually refers to the expected number of infected vertices given the seed set S.

A cascade model is submodular if, given any graph and S ⊆ T ⊆ V and any vertex

v ∈ V \ T , we have

σG(S ∪ {v})− σG(S) ≥ σG(T ∪ {v})− σG(T ),

and it is nonsubmodular otherwise. Typical submodular cascade models include the

linear threshold model and the independent cascade model [128], which are studied
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in an enormous past literature. The r-complex contagion, on the other hand, is a

paradigmatic nonsubmodular model.

2.1.2 Opinion formations

A main difference between contagions and opinion formation is monotone property:

in opinion formation, node can change back to its previous choice. This make the

analysis become much more complicated. For example, in social contagions the pro-

cess converges in linear number of iteration, but even showing the process converges

is nontrival. Additionally, the relaveant time span for opinion formation dynamics to

converge or consensus may be much longer which is challenging to analysis.

Suppose the opinion is binary. We can reuse the frame work of threshold model to

capture opinion formation: Each node v has a monotone function gv : {0, 1}|Γ(v)| →
[0, 1], where Γ(v) is the set of v’s neighbors in a social networks. The functions gv

represents how much influence(via knowledge social pressure, ets) any set of neighbors

has upon node v. At each round, each node samples a threshold Rv,t uniformly

and independently from the interval [0, 1], and the node v picks the opinion 1 if

gv(St) ≥ Rv,t where St is the set of neighbors of v with opinion 1 at time t. Here are

several examples:

Example 2.3. Given a graph (V,E), each agent v ∈ V has an binary opinion χ(v) ∈
{0, 1}. We call χ = {χ(v) : v ∈ V } the opinion vector, and σ ∈ {0, 1} we define the

set of nodes with opinion σ as x(σ) = {v ∈ V : χ(v) = σ}. Given a set of function

{gv : {0, 1}|Γ(v)| → [0, 1] : v ∈ V }, and initial opinion vector χ0, we introduce several

well studies opinion formation models (χt)t≥0 which are Markov chains on opinion

vectors:

Voter Model:[65, 114, 150, 151, 32, 47, 46, 212, 221, 222, 64] In the voter model,

at each round, a random node chooses a random neighbor and updates to its

opinion. Formally, let gv(χ) = |Γ(v)∩x(1)|
|Γ(v)| . At round t+ 1, a random node v ∈ V

update to opinion 1 with probability gv(χt).

Iterative majority:[136, 34, 125, 176, 224] In the iterative majority dynamics,

in each round, a randomly chosen node updates to the opinion of the majority

of its neighbors: At round t+1, a random node v ∈ V update to opinion 1 with
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probability gv(χt) where

gv(χ) =


1 if x > 1/2;

1/2 if x = 1/2;

0 if x < 1/2.

where x =
|Γ(v) ∩ x(1)|
|Γ(v)|

.

Iterative k-majority:[75, 66, 63, 31, 1] In this dynamics, in each round, a ran-

domly chosen node collects the opinion of k randomly chosen (with replacement)

neighbors and updates to the opinion of the majority of those k opinions: At

round t+ 1, a random node v ∈ V update to opinion 1 with probability gv(χt)

where

gv(χ) =
k∑

`=dk/2e

(
k

`

)
x`(1− x)n−` where x =

|Γ(v) ∩ x(1)|
|Γ(v)|

.

Iterative ρ-noisy majority model: [85, 100] In this dynamics, in each round,

a randomly chosen node updates the majority opinion of its neighbors with

probability 1− ρ and uniformly at random with probability ρ: At round t+ 1,

a random node v ∈ V update to opinion 1 with probability gv(χt) where

gv(χ) =


1− ρ/2 if x > 1/2;

1/2 if x = 1/2;

ρ/2 if x < 1/2.

where x =
|Γ(v) ∩ x(1)|
|Γ(v)|

.

2.1.3 Decentralized routing algorithm

In the decentralized routing algorithm, a message is passed to one of its (local or long-

range) contacts using only local information. Given the source s and destination t

in the graph, we denote the routing process/algorithm A: a sequence of nodes on

the graph (xi)i≥0 where x0 = s. The delivery time from s to t of algorithm A is

defined as min{i ≥ 0 : xi = t} which is a random variable with σ-space generated

by HetKp,q,D(n) and the myopic routing algorithm. The expected delivery time of a

decentralized algorithm A is the expected delivery time for uniformly chosen sources s

and destinations t. The myopic greedy algorithm routes the message from the current

location to be as close as possible to the destination vertex (according to the grid

distance) using only one hop from the current node.

17



2.2 Models for Dynamics

Though the models in the above section have have high dimension spaces, e.g. {0, 1}V ,

we can often project those process into a smaller phase space such as the number

of infected nodes in each round or the fraction of infection in the first k hightest

degree nodes. Here we present three types of models capture the behavior of a large

population of agents in a phase space, X—a compact manifold space—that update in

accord to some function f : X → X . We will always use X = Rd, which, technically,

must be compactified by adding infinity. We will say f ∈ Cr if the r-th derivative of

f is continuous.

1. Vector fields or ordinary differential equation with f solve for:

d

dt
x = f(x). (2.1)

The result is the continuous function ϕ : X ×R→ X such that ϕ(x, 0) = x and
d
dt
ϕ(x, t) = f(ϕ(x, t)) for all t ∈ R, x ∈ X .

2. Maps or difference equations with f are discrete time processes. Given the

step size at each round by a sequence of positive number (γk), a corresponding

discrete process can be defined as follows:

xk+1 = xk + γkf(xk), (2.2)

and the range of change of each update, ‖f(xk)‖, is bounded when the process

is in some compact set B ⊂ Rd.

3. Reinforced random walks with f consider the evolution of a process subject

to an unbiased stochastic perturbation. Let (Xk,Fk) be a random process in

X with filtration F which can be composed of a predictable part f(Xk) and

noise part Uk+1:

Xk+1 = Xk + γk (f(Xk) +Uk+1) (2.3)

such that for all x ∈ Rd, E[Uk+1 | Fk] = 0.

Here are two examples for (2.3):

Example 2.4. A stochastic approximation algorithm {Xi} is a stochastic process

taking values in R, adapted to the filtration Fi, that can be represented as

Xi+1 −Xi | Fi = γi+1 (f(Xi) + Ui+1) .
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A formal definition is in Definition 2.5. On the other hand, we can also set the step

size γk be a constant 1/n as follows:

Xi+1 −Xi | Fi =
1

n
(f(Xi) + Ui+1) .

The following two sections give a more detailed characterizations of above exam-

ples which can be skip in the first reading. Intuitively, there are two lines of work

which both show the behavior of Equation (2.3) is close to the behavior of Equa-

tion (2.1). One line of work show the process converges to the fixed points of f when

i is large enough but does not provide convergence rate. Another line of work show

in constant step size γi = 1/n the temporal behavior if close to (2.1) for all small

enough i = O(n). However, some of our problem need both rate of convergence for

large i.

2.2.1 Stochastic approximation algorithm

Definition 2.5. A stochastic approximation algorithm {Xi} is a stochastic process

taking values in R, adapted to the filtration Fi, that can be represented as

Xi+1 −Xi | Fi = γi+1 (g(Xi) + Ui+1) ,

and the following conditions hold almost surely: There exists positive constants

cl, ch, Ku, Kg, Ke such that for all i ≥ 1

1. cl
i
≤ γi ≤ ch

i
,

2. |Ui| ≤ Ku,

3. |g(Xi)| ≤ Kg,

4. |E[γi+1Ui+1 | Fi]| ≤ Keγ
2
i ,

Theorem 2.6 ([188, 189]). If Yn is a stochastic approximation algorithm with con-

tinuous feedback function g then:

1. limn→∞ Yn exists almost surely and is in Qg = {x : g(x) = 0}.

2. Suppose there is an unstable fixed point p and d > 0 such that ∀x : 0 < |x−p| < d

and Kl ≤ E[U2
n+1 | Fn] ≤ Kg holds for some Kl, Kg > 0, whenever 0 <

|Yn − p| < d. Then P [Yn → p] = 0.
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3. Suppose p ∈ Qg is a stable fixed point then P [Xn → p] > 0.

4. If p ∈ Tg and f is differentiable, P [Xn → p] > 0.

2.2.2 Wormald’s system

There is extensive literature about stochastic processes and its mean field approxima-

tion e.g. [86]. Given a non-homogeneous random walk X(t) in Z` we can associate the

behavior of it with the corresponding differential equation in R`. Formally, let Xn(t)

be a discrete time Markov chain on Z` with parameter n which is time-homogeneous

and the increments of the walk are uniformly bounded by β. As a result, random

vectors Xn(t+ 1)−Xn(t) have well defined moments, which depend on X(t) and n.

In particular, an important quantity is the one-step mean drift vector Fn : R` → R`

defined to be

Fn(X) = E[Xn(t+ 1)−Xn(t) | Xn(t) = X]. (2.4)

In particular if there exists a function f independent of n such that Fn(X) = f(X
n

),

then there is a close relationship between X and the x which we define as a solution

of the following autonomous differential system

x′ = f(x) (2.5)

with initial condition x(0) = X(0)/n.

The following theorem shows that the differential equation approximates the orig-

inal random walk X(t) such that X(t) ≈ nx̂( t
n
) under proper conditions.

Theorem 2.7 (Wormald’s method [239]). For 1 ≤ ` ≤ a where a is fixed, let y` :

S(n)+ → R and f` : Ra+1 → R such that for some constant C0 and all `, |y`(ht)| < C0n

for all ht ∈ S(n)+ and n. Let Y`(t) denote the random counterpart of y`(ht). Assume

the following three conditions hold:

1. (Boundedness) For some functions β = β(n) ≥ 1 and γ = γ(n), the probability

that

max
`
|Y`(t+ 1)− Y`(t)| ≤ β

conditional upon Ht, is at least 1− γ for t < TD.

2. (Trend) For some function λ1 = λ1(n) = o(1), for all ` ≤ a

|E[Y`(t+ 1)− Y`(t) | Ht]− f`
(
t

n
,
Y1(t)

n
, . . . ,

Ya(t)

n

)
≤ λ1
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for t ≤ TD.

3. (Lipschitz) Each function f` is continuous, and satisfies a Lipschitz condition,

on

D ∩ {(t, z1, ..., za) : t ≥ 0},

with the same Lipschitz constant for each `.

Then the following are true.

1. For (0, ẑ1, ..., ẑa) ∈ D the system of differential equations

dz`
dx
− f`(x, z1, .., za), ` = 1, ..., z (2.6)

have a unique solution in D for z` : R → R passing through z`(0) = ẑ` for

1 ≤ ` ≤ a, which extends to points arbitrarily close to the boundary of D;

2. Let λ > λ1 + C0nγ with λ = o(1). For a sufficiently large constant C with

probability 1−O
(
nγ + β

λ
exp

(
−nλ3
β3

))
,

Y`(t) = nz`

(
t

n

)
+O(λn) (2.7)

uniformly for 0 ≤ t ≤ σn and for each ` where z`(x) is the solution in Equa-

tion (2.6) with ẑ` = Y`(t)
n

, and σ = σ(n) is the supremum of those x to which the

solution can be extended before reaching within `∞-distance Cλ of the boundary

of D.

2.3 Mathematical tools

2.3.1 Markov chain and Martingale

Markov chain and hitting time LetM = (Xt, P ) be a discrete time-homogeneous

Markov chain with finite state space Ω and transition matrix P . For x, z ∈ Ω, we

define τa(x) to be the hitting time for a with initial state x:

τa(x) , min{t ≥ 0 : Xt = a,X0 = x},

and τA(x) to be the hitting time to a set of state A ⊆ Ω:

τA(x) , min{t ≥ 0 : Xt ∈ A,X0 = x}.
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By the Markov property, the expected hitting time can be written as linear equa-

tion.

EM[τA(x)] =

{
1 +

∑
y∈Ω Px,yEM[τA(y)] if x 6∈ A,

0 if x ∈ A

Due to the memory-less property of Markov chain, sometimes it is useful to analyze

its first step. Let’s consider a general measurable function w : Ω 7→ R. If the Markov

chain starts at state X = x, the next state is the random variable X ′, then the average

change of w(X) in one transition step is given by

(Lw)(x) , EM[w(X ′)− w(X)|X = x] =
∑
y∈Ω

Px,yw(y)− w(x)

To reduce the notation we will use EM[w(X ′)|X] to denote the expectation of the

measurable function w(X ′) given the previous state at X.

Definition 2.8. Given Markov chain M with state space Ω, D ( Ω, and two real-

valued functions ψ, φ with domain Ω, we define the Poisson equation as the prob-

lem of solving the function w : Ω 7→ R such that

Lw(x) = −φ(x) where x ∈ D,

w(x) = ψ(x) where x ∈ ∂D.

where the ∂D , ∪x∈D supp p(x, ·)\D is the exterior boundary of D w.r.t the Markov

chain.

Note that solving the expected hitting time of set A is a special case of the above

problem by taking D = Ω\A, φ(x) = 1 and ψ(x) = 0. The next fundamental theorem

shows that super solutions to an associated boundary value problem provide upper

bounds for the Poisson equation in Definition 2.8.

Theorem 2.9 (Maximum principle [81]). Given Markov Chain M with state space

Ω, D ( Ω, and two real-valued functions ψ, φ with domain Ω, suppose s : Ω 7→ R is

a non-negative function satisfying

Ls(x) ≤ −φ(x) where x ∈ D,

s(x) ≥ ψ(x) where x ∈ ∂D.

Then s(x) ≥ w(x) for all x ∈ D.
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Corollary 2.10 (Super solution for hitting time). Given Markov ChainM with state

space Ω and a set of states A ( Ω, suppose sA : Ω 7→ R is a non-negative function

satisfying

LsA(x) ≤ −1 where x 6∈ A,

sA(x) ≥ 0 where x ∈ A.
(2.8)

Then sA(x) ≥ EM[τA(x)] for all x 6∈ A. Moreover we call sA a potential function

for short.

Martingale and Stoppig time In this section we will define martingales and some

of its properties. Let F = (Fk)k be a filtration, that is an increasing sequence of σ-

field. A sequence Xk is said to be adapted to Fk if Xk ∈ Fk for all k. If Xk is sequence

with 1) E|Xk| < ∞, 2) Xk is adapted to Fk, and 3) E[Xk+1 | Fk] = Xk for all k, X

is saied to be a martingale with respect to Fk.
T is called a stopping time for F if and only if {T = k} ∈ Fk,∀k. Intuitively, this

condition means that the ”decision” of whether to stop at time k must be based only

on the information present at time k, not on any future information.

Theorem 2.11 (Martingale Stopping theorem). If (Wk)0≤k≤n is a martingale with

respect to (Fk)0≤k≤n and if T is a stopping time for (Fk)0≤k≤n such that Wk is bounded,

T is bounded, E[T ] <∞, and E[|Wk+1 −Wk| | Fk] is uniformly bounded, then

E[WT ] = E[W0].

2.3.2 Linear Algebra

In this section, we state some basic results of linear algebra. Given symmetric matrices

A,A′ ∈ Rd×d, A ≺ A′ denotes A′ − A is positive definite.

Definition 2.12 (Majorize [116]). Given two real-valued sequences x, y ∈ Rd, we say

that x majorizes y if for all k ≤ n and for all length k-sub-sequence i1 < i2 < . . . < ik,

k∑
j

xij ≥
k∑
j

yij

with equality for k = d.

The following characterization of the majorization relationship tells us that the
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eigenvalues of the Hermitian part of a matrix A majorize the Hermitian parts of the

eigenvalues of A.

Theorem 2.13. Let x ∈ Rd and z ∈ Cd. Then x majorizes <(z) if and only if there

is an A ∈ Rd×d such that z is the vector of eigenvalues of A and x is the vector of

eigenvalues of H(A) = 1
2
(A+ A∗)

Corollary 2.14 (Quadratic form). Let A ∈ Rd×d with eigenvalues ρ(A) = {λ1, λ2, . . . , λd}
with λmin , min<(λi) and λmax , max<(λi). For all v ∈ Rd,

λmin‖v‖2 ≤ v>Av ≤ λmax‖v‖2.

Note that the process in (2.2) is exactly the explicit Euler method for (2.1). The

following lemma is useful to show these two processes are close to each other.

Lemma 2.15 (Discrete Gronwall lemma). Let ak+1 ≤ (1 + 1
n
L)ak + b with n > 0,

L > 0, b > 0 and a0 = 0. Then

ak ≤
nb

L

(
exp

(
k

n

)
− 1

)
.

Theorem 2.16 (Convergence of Eular forward method [16]). Let f : D → Rd ∈ C1

such that the derivative f ′ exists and is continuous with ‖f(x)‖ ≤M , and ‖f(x, t)−
f(z, t)‖ ≤ L‖x − z‖. Then in Equation (2.5), for all t > 0 the Z(t) differs from the

true solution z by at most

‖Z(nt) − z(t)‖ ≤ M

n
(eLt − 1).

2.3.3 Concentration of Stochastic Process

We say a sequence of events {An}n≥1 happens with high probability if limn→∞ Pr[An] =

1 that is Pr[An] = 1− o(1).

Theorem 2.17 (A Chernoff bound [78]). Let X ,
∑n

i=1 Xi where Xi for i ∈ [n] are

independently distributed in [0, 1]. Then for 0 < ε < 1

Pr[X > (1 + ε)EX] ≤ exp

(
−ε

2

3
EX
)

Pr[X < (1− ε)EX] ≤ exp

(
−ε

2

2
EX
)
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Theorem 2.18 (Azuma Inequality). Let (Wk)0≤k≤n be a martingale with ck such that

|Wk+1 −Wk| ≤ ck. Then,

Pr[Wn ≥ W0 + t] ≤ exp

(
− t2

2
∑
c2
k

)
.

The following theorem shows this concentration property is dimension free.

Theorem 2.19 (Vector-valued martingale [124, 110]). Let g be a vector-valued func-

tion of n random variables X = (X1, . . . , Xn). If supx,x′ ‖g(x) − g(x′)‖ ≤ ci where

x and x′ only differ by one variable, x = x1, . . . , xi, . . . , xn, x
′ = x1, . . . , x

′
i, . . . , xn.

Then,

Pr [‖g(X)− E[g(X)]‖ ≥ t] ≤ 20 exp

(
− t2

2
∑

i c
2
i

)
.

The following exponential inequality for maximum of martingales can save an

extra union bound.

Theorem 2.20 (Maximum tail [93, 90]). Let W0,W1, . . . be a martingale with ck and

D such that |Wk+1 −Wk| ≤ ck and supk |Wk+1 −Wk| ≤ D. Then, for any t ≥ 0

Pr

[
max
k≤n

Wk ≥ W0 + t

]
≤ exp

(
− t2

2
∑
c2
k +Dt

)
.

If a bounded function g on a probability space (X,P ) which is Lipschitz for most

of the measure in X, then the following theorem prove a concentration property of g

by using union bound and Azuma inequality.

Theorem 2.21 (Bad events [78]). Let (Wk)0≤k≤n be a martingale which is bounded,

m ≤ Wn ≤ M . Let B be a (bad) event such that there is a sequence ck such that

|E[WT | Fk−1,Wk,¬B]− E[WT | Fk−1,W
′
k,¬B]| ≤ ck. Then,

Pr[Wn ≥ W0 + t+ (M −m) Pr[B]] ≤ exp

(
− 2t2∑

c2
k

)
+ Pr[B].

The following statement is powerful when the random variables are not mutually

infependent:

Theorem 2.22 ([25]). Let X = (x1, . . . , xN) be a finite set of N real numbers, that

X1, . . . , Xn denote a random sample without replacement from X and that Y1, . . . , Yn

denote a random sample with replacement from X . If f : R 7→ R is continuous and
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convex, then

Ef

(
n∑
i=1

Xi

)
≤ Ef

(
n∑
i=1

Yi

)
We state some concentration properties of random perfect matchings. The fol-

lowing proposition, which follows from a straightforward application of Azuma’s in-

equality, appears as Theorem 2.19 in Wormald [240].

Proposition 2.23 (Concentration on uniform matchings). Let m ∈ N and [2m] be

a finite set with even cardinality and H be a real function on matchings of [2m] such

that

|H(σ′)−H(σ)| ≤ c

if σ, σ′ differ by at most a switch. Then, if σ is a uniformly drawn matching of [2m],

and λ > 0

Pr[H(σ) ≥ EH(σ) + λ]

Pr[H(σ) ≤ EH(σ)− λ]
≤ exp

(
−λ2

2mc2

)
.

We will consider functions H which count the number of edges between two sets

of stubs S, T .

Given a matching σ on [2m] and two disjoint subsets S and T of [2m], let C(σ;S, T )

denote the size of matching between S, T . We will use random variable C(S, T ) to

denote C(σ;S, T ) when σ is a uniformly drawn matching of [2m].

Lemma 2.24 (Multiplicative error). Given two disjoint subsets S and T of [2m] with

cardinality s and t respectively,

Pr

[
(1− δ) s t

2m− 1
< C(S, T ) < (1 + δ)

s t

2m− 1

]
≥ 1− 2 exp

(
− δ2s2t2

2m(2m− 1)2

)
The following lemma is stronger when the size of S, T is relatively small.

Lemma 2.25 (Additive error). Given two disjoint subsets S and T of [2m] with

cardinality s and t respectively,

Pr[C(S, T ) < k] ≤ exp

(
− st

2m

)
when k is a constant and s, t = ω(1).

Proof. We reveal the matching in S one by one in a fixed but arbitrary order. For

each step we pick a stub τ ∈ S and uniformly match it. Let Xτ denote the indicator
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function that stub τ is connected to T . We have Pr[Xt = 0|
∑t−1

τ=0Xτ < k] ≥
1− t−k

2m−1
≥ 1− t

m
and there are at least s/2 such τ . Therefore

Pr[C(S, T ) < k] ≤ Pr

[∑
τ∈S

Xτ < k

]
≤
(
1− t

m

)s/2 ≤ exp(−Θ(
st

m
)).

2.4 Primer of dynamical systems

First, let us define some basic notions which are mostly from Robinson [197]. Let X
be Rd. A Cr-flow ϕ is defined to be a Cr-function ϕ : X × R→ X with the property

that ∀x0 ∈ X , t1, t2 ∈ R,

ϕ(x0, 0) = x0; ϕ(x0, t1 + t2) = ϕ(ϕ(x0, t1), t2).

Given function f ∈ Cr, initial condition x ∈ X , and time t ∈ R, the solution of

(2.1) forms a Cr-flow ϕ(x, t; f) called φ the flow with f . We call a set B ⊆ X positive

invariant if and only if for all x ∈ B and t ≥ 0, ϕ(x, t) ∈ B, negative invariant if and

only if it is true for all t ≤ 0, and invariant if and only if it is true for all t ∈ R.

The trajectory or orbit of a point x ∈ X is the set Ox = {ϕ(x, t; f) : t ∈ R}. A

point x ∈ X is a fixed point if Ox = {x} that is f(x) = 0, and we use Fixf to

denote the set of fixed points. The ω-limit set of x is the set of “limit points” such

that ω(x) = {y : ∃{tl}l → +∞, liml→∞ d(ϕ(x, tl),y; f) = 0} and α-limit is defined

similarly with t→ −∞.

2.4.1 Fundamental theorem of dynamical system

Now, we define different motion of “returning” which is important for understanding

limit behavior of the system. For simplicity, we only define the notion for flow.

Fixed point A point x ∈ X is a fixed point if Ox = {x} that is f(x) = 0, and we

use Fixf to denote the set of fixed points.

Periodic point A point x ∈ X is a periodic point of f if ∃T ≥ 0 such that

ϕ(x, T ; f) = x, and we use Perf to denote the set of periodic points.

ω-recurrent For other non-periodic points x ∈, the long term behavior can be char-

acterized as ω-limit set of x: ω(x) = {y : ∃tl → +∞, liml→∞ d(ϕ(x, tl),y) = 0},
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and we call x ω-recurrent if x ∈ ω(x) If we change +∞ to −∞ in above defi-

nition, it called α-limit set α(x) of x. We call Lf , ∪x∈Xω(x)∪∪x∈Xα(x) the

limit set of f .

Chain recurrent An ε-chain of length T from a point x to y is a sequence of points

(x`)0≤`≤n and a sequence of time (t`)1≤`≤n such that x0 = x, xn = y, and

d(ϕ(xi−1, ti),xi) < ε for 1 ≤ ` ≤ n with t` ≥ 1 and
∑

` t` = T . We define

a relation ∼CR on CRf . Similar to ω-limit we define Ω+(x) = ∩ε>0,T>0{y :

∃an ε, T chain from x to y}, and a point x is said to be chain recurrent for the

flow f if x ∈ Ω+(x). The set of chain recurrent points of f is called the chain

recurrent set of f denoted as CRf . We say x ∼CR y if and only if x ∈ Ω+(y)

and y ∈ Ω+(x).

It is not hard to show

Fixf ⊆ Perf ⊆ Lf ⊆ CRf ⊆ X

.

An opposite concept to “recurrence” is transit. How we show all the non recurrent

points are transit? An ideal method is to find a “potential function”, Ψ : X → R of

the system such that Ψ decrease along the trajectory of the system.

Definition 2.26 (Complete Lyapunov function). Let ϕ(·, ·; f) be a flow with f on a

metric space X . A complete Lyapunov function for f ∈ C0 is a continuous function

Ψ : X → R such that

1. For all s < t and x ∈ X \ CRf , Ψ(ϕ(x, s; f)) > Ψ(ϕ(x, t; f)),

2. for all x,y ∈ CRf , x ∼CR y if and only if Ψ(x) = Ψ(y).

3. Ψ(CRf ) is nowhere dense subset of R.

By constructing a complete Lyapunov function, Conley [62] shows:

Theorem 2.27 (Fundamental theorem of dynamical system [62]). Every flow on a

compact metric space has a complete Lyapunov function V : X → R+.

One interpretation of this theorem is that the space of the dynamics can be de-

composed into two parts: points exhibiting a particular type of recurrence, and points

proceed in a gradient-like fashion.
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2.4.2 Local recurrence

a point x̄ ∈ R` is called an equilibrium point of system (2.1) if f(x̄) = 0. Moreover

the equilibrium x̄ is asymptotically stable if ∀ε > 0,∃δ > 0 such that ||x(0) − x̄|| ≤
δ ⇒ ||x(t) − x̄|| ≤ ε,∀t and ∃δ > 0 such that limt→∞ ||x(t) − x̄|| = 0. The stability

of the system can be determined by the linearization of the system which is stated

below.

Theorem 2.28 (Lyapunov’s indirect method [220]). Let x∗ be an equilibrium point for

x′ = f(x) where f : D → Rd is continuously differentiable and D is a neighborhood

of x∗. Let A = ∂f
∂x
|x=x∗ then x∗ is asymptotically stable if A is Hurwitz, that is

Re(λi) < 0 for all eigenvalues of A.

Moreover, there exists an close set U ⊆ D and x∗ ∈ U and a potential function

V : U → R such that V (x∗) = 0, and V (x) > 0, d
dt

(V (x)) < 0 for x ∈ U \ x∗.

This section has three parts. We first introduce linear flows and linear mappings,

then talk about gradient-like flows which contain gradient flows as a special case.

Finally we state some results of planar flow.

2.4.3 Linear dynamics

Here we introduce some important properties of linear flow (and mapping) in Rd.

Given a matrix A ∈ Rd×d,

d

dt
x(t) = Ax(t) (and xk+1 = Axk)

which has a closed form solution ϕ(x0, t;A) = exp(At)x0 and ϕ(x0, k;A) = Akx0

respectively.

The long term behavior (e.g., converges to 0, diverges to infinite, or rotating) of

the above systems both depend on the real part of eigenvalues of A. For linear flow,

we denote the set of eigenvalues for the (real) matrix A by

ρ(A) = {λ1, λ2, . . . , λs, λs+1, . . . , λs+u, λs+u+1, . . . , λs+u+c},

where <(λi) < 0 for all 1 ≤ i ≤ s, <(λs+i) > 0 for all 1 ≤ i ≤ u, and <(λs+u+i) = 0
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for all 1 ≤ i ≤ c. We define the stable/unstable/center eigenspace of A,

Es = {v : v is a generalized eigenvector for an eigenvalue λi,<(λi) < 0};

Eu = {v : v is a generalized eigenvector for an eigenvalue λs+i,<(λs+i) > 0};

Ec = {v : v is a generalized eigenvector for an eigenvalue λs+u+i,<(λs+u+i) = 0}.

Moreover the subspaces Es, Eu and Ec are invariant under the flow and map with A.

Definition 2.29. We say A ∈ Rd×d is hyperbolic if Ec = ∅, i.e., for all λ ∈ ρ(A)

<(λ) 6= 0.

A hyperbolic A is called attracting (or repelling) if for all λ ∈ ρ(A),<(λ) < 0, (or

<(λ) > 0) respectively. Finally, if A is neither attracting nor repelling, we call it

saddle.

Therefore, there is a hyperbolic splitting of Rd such that Rd = Es ⊕ Eu, and two

positive real numbers λs and λu such that

max
1≤i≤s

<(λi) = −λs < 0 and min
1≤i≤u

<(λs+i) = λu > 0.

2.4.4 Nonlinear dynamics: Morse-Smale, gradient-like, and

gradient flow

For nonlinear dynamics, we first characterize some local properties of fixed points.

Definition 2.30 (Attracting, repelling, and saddle points). Given a fixed point

x ∈ X , with the linear approximation matrix A = ∇f |x. A fixed point x is called

hyperbolic if A is hyperbolic (Definition 2.29). Similarly, a fixed point x is respec-

tively an attracting, repelling or saddle fixed point if A is attracting, repelling

or saddle.

We use Attractf ,Repelf , and Saddlef to denote the sets of attracting, repelling

and saddle fixed points respectively. If all the fixed points are hyperbolic, Fixf =

Attractf ∪Repelf ∪ Saddlef .

Moreover, there is a more general family of dynamic system called Morse-Smale

flows which allows the ω- and α-limit to be cycles which is introduced in Defini-

tion 2.31. Gradient-like systems share several properties with gradient flows: no
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complicated recurrent motion and the existence of “potential function” that is de-

creasing along trajectories. Furthermore, by the Fundamental theorem of dynamical

system (Theorem 2.27). Before introducing Morse-Smale, we first define several no-

tions.

Given a hyperbolic fixed point x for a Cr function f , and a neighborhood U of x,

the local stable set/manifold for x in the neighbor U is defined as:

W s
loc(x, U, f) , {y ∈ U : ϕ(y, t; f) ∈ U,∀t > 0 and d(ϕ(y, t; f),x)→ 0 as t→∞}

W u
loc(x, U, f) , {y ∈ U : ϕ(y, t; f) ∈ U,∀t < 0 and d(ϕ(y, t; f),x)→ 0 as t→ −∞}

Opposite to the notion of tangency, transversality is a geometric notion of the

intersection of manifolds. Let x ∈ X M and N are Cr manifolds in X . M,N are

said to be transversal at x if x 6∈M ∩N ; or if x ∈M ∩N , TxM + TxN = Rd where

TxM and TxN denote the tangent space of M and N respectively at point x. M and

N are said to be transversal if they are transversal at every point x ∈ X .

Definition 2.31 (Morse-Smale flow). Let ϕ(·, ·; f) be a flow on X = Rd. ϕ is called

Morse-Smale flow if there are a constant collection of periodic orbits P1, . . . , Pl such

that

1. Pi is hyperbolic i = 1, . . . , l

2. CRf = Perf

3. WU(Pi) and W S(Pj) are transversal for all 1 ≤ i, j ≤ l.

Furthermore, if the Morse-Smale system does not have cycle, it is further called

gradient-like.

Note that the gradient flow is a special case of gradient-like flow

Definition 2.32 (Gradient flow). A flow ϕ(·, ·) on Rd is call gradient flow if there is

a real valued function V : Rd → R such that

d

dt
ϕ(x, t) = −∇V (x).

Proposition 2.33. Let V : Rd → R be a C2 function such that each critical point is

nondegenerate, i.e., at each point β where ∇V (x) = 0, the matrix of second partial

derivatives ∇2V (β) has nonzero determinant. Then the gradient flow with V has all

the fixed points are hyperbolic and the chain recurrent set for the flow equals the set

of fixed points.
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The above proposition shows the (non-degenerate) gradient flows are Morse-Smale

system if and only if the stable and unstable manifolds are transverse.

Let {β1, . . . , βm} = Fixf be the set of fixed point of f , and W s
i and W u

i be the

stable and unstable manifold associated to βi. The Morse-Smale system has the

following property.

Lemma 2.34. Let f be a Morse-Smale system on X . Let βi � βj mean there is a

trajectory not equal to βi or βj whose α-limit set is βi and whose ω-limit set is βj.

Then � satisfies:

anti-reflexive It is never true that βi � βi

partial order if βi � βj and βj � βk then βi � βk

transversal If βi � βj then dimW u
i ≥ W u

j

Morse-Smale systems share several properties with gradient fields: no complicated

recurrent motion and existence of “potential function”— Morse function— that is de-

creasing along trajectories. Furthermore, by the Fundamental theorem of dynamical

system 2.27 we have1

Corollary 2.35 (Theorem 12 in Akin [5]). If f ∈ C2 is a Morse-Smale system then

there exists a complete Lyapunov function V : X → R such that

1. V ∈ C2 is smooth.

2. d
dt
V (ϕ(x0, t))|t=0< 0 for all non fixed points of f .

We use Lie derivative to simply the notion, LfV (x0) , d
dt
V (ϕ(x0, t))|t=0.

2.4.5 One and two-dimensional flows

Given a < b ∈ R, we use [a, b] to represent the close set and (a, b) as the open set.

We also use D(c, d) to represent the open set (c− d, c+ d). We can characterized the

stability of (2.1) relatively easily if the phase space is a compact space in R,

Definition 2.36 (Fixed points). Given a function f : R→ R, y∗ ∈ R is a fixed point

of f if and only if f(y∗) = y∗. Moreover, a fixed point y∗ is

1For Morse Smale system, we have a stronger notion of potential function ξ-function [163]. How-
ever, it often requires the flow to be smooth
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• a attracting point if and only if there exists ε > 0 such that f(x) < x if x ∈
(y∗, y∗ + ε] and f(x) > x if x ∈ [y∗ − ε, y∗). Let Sf be the set of all attracting

points.

• a repelling point if and only if there exists ε > 0 such that f(x) > x if x ∈
(y∗, y∗ + ε] and f(x) < x if x ∈ [y∗ − ε, y∗). Uf is defined as the set of all

repelling points.

• a touch point if and only if there exists ε > 0 for all x such that 0 < |x− y∗| <
ε, f(x) > x or for all x s.t. 0 < |x − y∗| < d, f(x) < x. Let Tf be the set of

touch points.

We define Qf be the set of fixed points {x : f(x) = x}.

If the system (2.1) is planar, the recurrent behavior is much simpler: it only have ω-

limit. To state the theorem we need to introduce more terminology. A set is bounded

if it is contained in some cycle {x ∈ R2|||x− α < C} for some α ∈ R2 and C > 0. A

point p ∈ R2 is called an ω-limit point of the trajectory Γz0 = {z(t)|t ≥ 0, z(0) = z0}
of the system (2.5) if there is a sequence tn →∞ such that limn→∞ x(tn) = p.

Theorem 2.37 (Poincare-Bendixon Theorem [220]). Let z′ = H(z) be a system of

differential equations defined on E an open subset in R2 where H is differentiable.

Suppose a forward orbit with initial condition z0 Γz0 = {z(t)|t ≥ 0, z(0) = z0} is

bounded. Then either

• ω(z0) contains a fixed point

• ω(z0) is a periodic orbit

The following theorem gives us a sufficient condition for nonexistence of periodic

orbit

Theorem 2.38 (Bendixson’s Criteria [220]). Let H be differentiable in E where E

is a simply connected region in R2. If the divergence of the vector field H is not

identically zero and does not change sign in E then z′H(x) has no closed periodic

orbit lying entirely in E.

Note that the theorem only holds for two dimensions system and fails in general.

A flow with f is called a gradient flow if there exists a real value function

V : Rd → R such that f = −∇V . However, there is a more general family of

dynamics called gradient-like flow that contains the gradient flows with a mild

restriction which is discussed at Proposition 2.33. Here we gives a sufficient condition

for gradient-like flow on two dimensional manifolds.
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Proposition 2.39. Let X = R2 . A vector field with f ∈ Cr(R2,R2) is a gradient-like

flow if:

1. f has a finite number of fixed points which are all hyperbolic;

2. there are no saddle-connections that is an orbit whose α- and ω -limits are

saddle points; and

3. each orbit has a unique fixed point as its α-limit and has a unique fixed point

as its ω-limit.

We further call the function f gradient-like.

2.5 Models of Social Networks

2.5.1 Erdös-Rényi Random Graphs

Here we present the definition of Erdös-Rényi random graphs and show several prop-

erties of them that we need.

Definition 2.40 (Erdös-Rényi Random Graph). Gn,p is a random undirected graph

on node set V = [n]2 where each pair of nodes is independently connected with a

fixed probability p. We further use G to denote this random object.

Let AG be the adjacency matrix of G, so (AG)i,j = 1 if vi ∼ vj and 0 otherwise,

and Ā = EG[AG], so Āi,j = p if i 6= j and 0 otherwise. Let deg(v) be the degree of

node v.

Definition 2.41. The weighted adjacency matrix of undirected graph G is defined by

MG(i, j) =


1√

deg(vi)deg(vj)
if (AG)i,j = 1;

0 otherwise .

Definition 2.42 (Expansiveness [56]). For λ ∈ [0, 1], we say that a undirected graph

G is a λ-expander if if λk(MG) ≤ λ for all k > 1 where λk(MG) is the k-th largest

eigenvalue.

2[n] = {1, 2, . . . , n}
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Theorem 2.43 (Spectral profile ofGn,p [55]). For Gn,p, we denote I as identity matrix

and J as the matrix that has ones. If Gn,p has p = ω( logn
n

), then with probability at

least 1− 1/n, for all k

|λk(MG)− λk(M̄)| = O
(√

log n/(np)
)

where (M̄)i,j = 1
n−1

if i 6= j and (M̄)i,i = 0.

Because the spectrum of M̄ is {1,−1/(n− 1)} where −1/(n− 1) has multiplicity

n− 1, we can have the following corollary

Corollary 2.44. If p = ω( logn
n

), the G ∼ G is O
(√

logn
np

)
-expander with probability

1−O(1/n),

Let e(S, T ) denote the number of edges between S and T (double counting edges

from S ∩ T to itself), and let vol(S) count the number of edges adjacent to S. The

following lemma relates the number of edges between two sets of nodes in an expander

to their expected number in a random graph.

Lemma 2.45 (Irregular mixing lemma [54]). If G is a λ-expander, then for any two

subsets S, T ⊆ V : ∣∣∣∣e(S, T )− vol(S)vol(T )

vol(G)

∣∣∣∣ ≤ λ
√
vol(S)vol(T )

Finally, let E(δd; v) denote the event that the degree of some fixed node v is

between (1 − δd)np and (1 + δd)np and let E(δd) = ∩v∈VE(δd; v) a nearly uniform

degree event. By applying Theorem 2.17 we yields the following lemma.

Lemma 2.46 (Uniform degree). For any v ∈ V , if G ∼ G

Pr[E(δd; v)] ≤ 2 exp
(
−δ2

dnp/3
)

(2.9)

Furthermore, by union bound

Pr[E(δd)] ≤ 2n exp
(
−δ2

dnp/3
)

(2.10)

2.5.2 Configuration Models with Power-law Degree Distri-

butions

We use the configuration model introduced by Bollobás and McKay [41] to define a

distributions over multigraphs.
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Definition 2.47 (Configuration Model). Let d = (d1, . . . , dn) be a decreasing degree

sequence where the sum of the terms is even. Define V = [n] (Here we use integers

{1, 2, . . . , n} to denote the vertices, and call nodes with lower indexes “earlier”. Be-

cause the degrees decrease, earlier nodes have higher degrees). Let m be such that

2m =
∑

i di. To create the m (multi-)edges, we first assign each node i di stubs. Next

we choose a perfect matching of the stubs uniformly at random and for each pair of

matched stubs construct an edge connecting the corresponding nodes.

We use CM(d) to denote the Configuration Model with respect to the degree

distribution d.

For any decreasing degree sequence d = (d1, . . . , dn) where the sum of the terms

is even, we define the empirical distribution function of the degree distribution,

Fd(x) =
1

n

n∑
i=1

I[di ≤ x] ∀x ∈ [1,∞)

which is the fraction of nodes that have degree less than x. Moreover, we define

Nd(x) = n(1 − Fd(x)) be the number of nodes with degree at least x, Sd(x) be the

number of stubs from nodes with degree at least x, and sd(x) be the number of

stubs from nodes with index less than x. We will omit the index d when there is no

ambiguity.

Definition 2.48 (Power-law degree distributions). Adopting the notation of Van

Der Hofstad [230], we say a series d has power-law distribution with exponent α if

there exists 0 < C1 < C2 and 0 < x0 such that 1) Fd(x) = 0 for x < x0; 2) Fd = 1

for x > d1 = n2/(α+1), and 3) for all x0 ≤ x ≤ d1 then

C1x
−α+1 ≤ 1− Fd(x) ≤ C2x

−α+1

Let d have power-law distribution of power law with exponent α then it is easy to

check that:

Lemma 2.49. If d = (d1, . . . , dn) is a power-law distribution with exponent α then

1. N(x) = Θ(nx−α+1)

2. S(x) = Θ(nx−α+2).

3. d(i) = Θ
(

(n
i

)1/(α−1)
)

4. s(i) = Θ(n1/(α−1)i
α−2
α−1 )
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2.5.3 Small-World Models

Definition 2.50 (Kleinberg’s small world model [133]). Given p, q, n ∈ N and positive

real number γ > 1, Kleinberg’s small world model with parameter (p, q, γ, n) defined

as follows: Nodes are on a n × n planar grid.3 Each node u connects to nodes

within grid Manhattan distance dqe, and these edges are referred to as strong ties.

In addition, each node generates p random outgoing edges (without replacement),

termed weak ties. The probability that node u connects to node v via a random edge is

1/λγd(u, v)γ, in which d(u, v) is the Manhattan distance of u, v and λγ =
∑

v d(u, v)−γ

is a normalization factor.

2.5.4 Preferential attachment models

Definition 2.51 (preferential attachment models). Given positive integers k and n

with k < n, the Preferential Attachment Model, PAk(n) is a distribution over directed

graphs with n nodes. It generates Gn = (Vn, En) as follows:

1. Set Vn = [n] = {1, 2, . . . , n} and E = ∅, and we call node s is earlier than node

t if s < t.

2. Let Ek+1 consists of the edge between the first k+1 nodes, {1, . . . , k+1}, which

forms a (k + 1)-clique. Set Gk+1 := ([k + 1], Ek+1).

3. At each subsequent step t+1 > k+1, given Gt = ([t], Et) the node t+1, chooses

w1, w2, . . . , wk vertices independently according to preferential attachment rule.4

Formally, for all l between 1 and k, the node t+ 1 sets wl = s with probability,

Pr[wl = s] =
deg(s; t)

2|Et|

where deg(s; t) is the in-degree and out-degree of node s and |Et| is the total

number of edges before t+ 1 adds edges. Then node t+ 1 adds k new directed

edges (t+1, w1), . . . , (t+1, wk). We call the resulting graph Gt+1 = ([t+1], Et+1).

We use Ḡn to denote the undirected graph of Gn by changing all the directed edges

into undirected.

3In order to eliminate the boundary effect, we wrap up the grid into a torus – i.e., the top
boundary is identified with the bottom boundary and the left boundary is identified with the right
boundary.

4This may cause multiple edges.
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Note that by the definition the marginal distribution of Gt has the same distribu-

tion as PAk(t) which is an important property for our theoretical analysis.

Here we prove a lower bound of degree for preferential attachment models. First

note that we can approximate the expected degree E[deg(s; t)] easily: Because E[deg(s; t+

1) | deg(s; t)] = deg(s; t) + k deg(s;t)
2kt

, we can use the tower property of expectation and

have

E[deg(s;n)] = deg(s; s)
n∏
t>s

(
1 +

1

2t

)
≈
√
n

s
k.

With this estimation, we can use Markov inequality to have a decent upper bound

for the probability that the degree of node s being small.

We further show the following stronger lemma, and Lemma 5.8 is a corollary. Note

that if s and d are constants and n is large, the following lemma show the probability

deg(s) is smaller than d is Õ
(

1
nk/2

)
which is better then the bounded by Markov

inequality.

Lemma 2.52. Given positive integers k, s, d and n such that d ≥ k and n large

enough k + 1 < 1
e2

(n+ 1),

Pr[deg(s) ≤ d | PAk(s)] ≤
(
d− 1

k − 1

)( s
n

)k/2(
ln
kn+ 1

ks+ 1

)d
.

Note that the randomness comes from PAm(n) conditioned on PAm(k).

The idea of this proof is based on an estimation of Pr[deg(k) ≤ d | PAm(k)].

Proof. A special case when k = 1: Firstly we consider the special case when k = 1

(i.e., one edge is added for each node). Let Ps(d) be the probability that node s has

d neighbors. Let Sd = {Nd : Nd ⊂ (s, n], and |Nd| = d− 1} is the set of d− 1 nodes

after s. Given a d− 1 set Nd = (w2, . . . , wd) where s < w2 < . . . < wd, we call Ps(Nd)

be the probability that node s has degree d, and d − 1 of them are in Nd and the

other is before s. Then we have

Pr[deg(s) ≤ d | PA1(s)] =
∑
i≤d

Ps(i), and Ps(d) =
∑
Nd∈Sd

Ps(Nd). (2.11)

Thus, it is sufficient to upper bound Ps(Nd). Because node s has degree at least 1 for

all node t after s, the probability that t /∈ Nd is not a neighbor of s is upper bounded
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by 1− 1
2(t−1)

. Hence,

Ps(Nd) ≤
∏

s<t≤n:t6∈Nd

(
1− 1

2(t− 1)

)
·

d∏
j=2

j − 1

2(wj − 1)
.

By some basic computation, we have a more concrete upper bound.

Ps(Nd) ≤
∏
s<t≤n

(
1− 1

2(t− 1)

)
·

d∏
j=2

j − 1

2(wj − 1)

(
1− 1

2(wj − 1)

)−1

≤
∏
s<t≤n

(
1− 1

2(t− 1)

)
· (d− 1)!

d∏
j=2

1

wj − 1
. (because 2

(
1− 1

2(wj−1)

)
≥ 1)

≤ exp

(
n∑
t>s

−1

2(t− 1)

)
· (d− 1)!

d∏
j=2

1

wi − 1
(1 + x ≤ ex)

≤
√
s

n
· (d− 1)!

d∏
j=2

1

wj − 1
.

Apply this upper bound to Equation (2.11) we have,

Ps(d) ≤
∑
Nd∈Sd

√
k

n
· (d− 1)!

d∏
j=2

1

wj − 1
=

√
s

n
· (d− 1)!

∑
Nd∈Sd

d∏
j=2

1

wj − 1
. (2.12)

For the second term, we can exchange the order of produce and summation by relaxing

the condition that w1, . . . , wd need to be distinct.

(d− 1)!
∑
Nd∈Sd

d∏
i=2

1

wi − 1
≤

d∏
i=2

n∑
wi>s

1

wi − 1
=

(
n∑

wi>s

1

wi − 1

)d−1

≤
(

ln
n+ 1

s+ 1

)d−1

.

Combining this inequality to (2.12), we have

Ps(d) ≤
√
s

n

(
ln
n+ 1

s+ 1

)d−1

.

Therefore we finish our bound by (2.11) and the above inequality:

Pr[deg(s) ≤ d | PA1(s)] ≤
d∑
i=1

√
s

n

(
ln
n+ 1

s+ 1

)i−1

≤
√
s

n

(
ln n+1

s+1

)d − 1

ln n+1
s+1
− 1

≤
√
s

n

(
ln
n+ 1

s+ 1

)d
.

The last inequality holds because n+1
s+1

> e2.
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General case k of PAk(n): We now handle the more general case of m. By

Definition 2.51, each new vertex with index t forms k edges independently to nodes

with indices smaller than t. By labeling those k edges with indices k(t− 1) + 1, k(t−
1)+2, . . . , kt respectively, we can label every edge with a unique index. Therefore edge

e is incident to node d e
k
e. Let Ps(d) be the probability that node s has d neighbors,

and Sd = {Nd : Nd ⊂ (ks, kn], and |Nd| = d − k} is the set of d − k edges after s.

Given a d− k set Nd = (ek+1, . . . , ed) where ks < ek+1 < . . . < ed, we call Ps(Nd) be

the probability that node s has degree d, and d− k of them are in Nd and the others

are before s.

We can reuse (2.11), and construct an upper bound for Ps(Nd)

Ps(Nd) ≤
kn∏
t>ks

(
1− k

2k(d t
k
e − 1)

)
·

d∏
j>k

j − 1

2k(dwj
k
e − 1)

(
1− k

2k(dwj
k
e − 1)

)−1

≤
n∏
`>s

(
1− 1

2(`− 1)

)k
· (d− 1)!

(k − 1)!

d∏
j>k

1

wj − 1

≤
( s
n

)k/2
· (d− 1)!

(k − 1)!

d∏
j>k

1

wj − 1

Apply this upper bound to Equation (2.11), and we have,

Ps(d) ≤
∑
Nd∈Sd

( s
n

)k/2
· (d− 1)!

(k − 1)!

d∏
j>k

1

wj − 1
=
( s
n

)k/2 ∑
Nd∈Sd

(d− 1)!

(k − 1)!

d∏
j>k

1

wj − 1
.

Changing the order of summation and product in the second term, we yield:

(d− 1)!

(k − 1)!

∑
Nd∈Sd

d∏
j>k

1

wj − 1
≤
(
d− 1

k − 1

) d∏
j>k

kn∑
wj>ks

1

wj − 1
≤
(
d− 1

k − 1

)(
ln
kn+ 1

ks+ 1

)d−k
,

and we have

Ps(d) ≤
( s
n

)k/2(d− 1

k − 1

)(
ln
kn+ 1

ks+ 1

)d
Therefore we can bound the probability that the degree of node k is smaller than d,

Pr[deg(s) ≤ d | PAk(s)]:

( s
n

)k/2 d∑
i=k

(
i− 1

k − 1

)(
ln
kn+ 1

ks+ 1

)i
≤
( s
n

)k/2(d− 1

k − 1

)(
ln
kn+ 1

ks+ 1

)d
.
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2.5.5 Stochastic Block Models

Definition 2.53 (Stochastic Block Models [113]). Fixing n vertices in V , let B =

(B1, . . . , B`) be a partition of the set V and L = [`] be the set of labels. Let Wn :

L × L 7→ [0, 1] be a bounded non-negative function with Wn(i, j) = Wn(j, i) for all

i, j ∈ L. Given v ∈ V , we call iv the label of node v such that v ∈ Biv .

A stochastic block model G(n,B,Wn) is a distribution over undirected graph

G = (V,E) over nodes in V defined as follow: For each pair u, v ∈ V , independently

add the edge (u, v) to E with probability Wn(iu, iv).

Intuitively, the each node has a label/attribute in L, and the community structure

is represented as Wn where Wn(i, j) encodes the similarity between labels i and j.

Notice that we allow the weight function Wn depends on the size of the graph n to

allow asymptotically different density of connection.
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CHAPTER 3

General Kleinberg’s Small World Models

Kleinberg’s small world model [133] simulates social networks with both strong and

weak ties. In his original paper, Kleinberg shows how the distribution of weak-ties,

parameterized by γ, influences the efficacy of myopic routing on the network. Recent

work on social influence by k-complex contagion models shows that the distribution

of weak-ties also impacts the spreading rate in a crucial manner on Kleinberg’s small

world model [99]. In both cases the parameter of γ = 2 proves special: when γ is

anything but 2 the properties no longer hold.

In this chapter, we propose a natural generalization of Kleinberg’s small world

model to allow node heterogeneity: instead of a single global parameter γ, each

node has a personalized parameter γ chosen independently from a distribution D.

In contrast to the original model, we show that this model enables myopic routing

and k-complex contagions on a large range of the parameter space, improving the

robustness of the model. Moreover, we show that our generalization is supported by

real-world data. Analysis of four different social networks shows that the nodes do

show heterogeneity in terms of the variance of the lengths of edges incident to the

same node.

3.1 Introduction

In Milgram’s “Small World” experiments [164, 227], he gave envelops to random

residents of Wichita, Kansas and Omaha, Nebraska, and asked them to forward the

envelopes to a personal contact so that they might eventually reach a specific banker

in Massachusetts. The success of this experiment (which has since been observed

in numerous other contexts – see related work) motivated Kleinberg’s small work

model which studies why such local decisions work [133]. This ingenious model shows

not only that short paths between arbitrary nodes exist (this so-called “small world”
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phenomena was already embedded into several fundamental models [234, 179, 40]),

but also that these short paths can be easily discovered by myopic routing (i.e., using

purely local knowledge).

Kleinberg’s small world model considers an underlying metric space capturing the

diversity of the population in various social attributes. Social ties are classified into

two categories: strong ties that connect an individual to those similar in the social

attribute space, and weak ties that may connect individuals far away. Kleinberg’s

model considers one parameter γ in determining how the weak ties are placed. Each

node p takes a weak tie edge to a node q with probability proportional to 1/|pq|γ where

|pq| denotes the distance between p and q in the social space. Thus at γ = 0 the weak

ties are uniformly randomly distributed, and as γ increases shorter connections are

increasingly favored.

However, in this model when the nodes are placed in a 2-dimensional grid the

navigability only holds for a particular parameter choice: γ = 2 . At this “sweet

spot,” a message can be delivered to the destination in O(log2 n) hops, by hopping

to the neighbor closest to the destination in the Euclidean metric. For any constant

γ 6= 2, myopic routing, or, in general, any deterministic routing algorithm using only

local information, provably fails to quickly deliver the message. Intuitively why γ = 2

is crucial, because at this sweet spot each weak tie edge uniformly at random lands

in one of the annuli with inner radius 2i and outer radius 2i+1, for all i. Therefore, no

matter where the destination is, there is a neighbor with probability roughly 1/ log n

such that taking this neighbor reduces the Euclidean distance to the destination by

half. If γ < 2, it turns out that the weak tie edges are too random and myopic routing

loses its sense of direction. If γ > 2, the weak ties are simply too short and any path

to the destination discoverable from local information necessarily takes many hops.

Other good properties also hold at special ranges of the parameter γ. In recent

work on understanding complex social influence, it was shown how the distribution

of weak-ties impacts the spreading behavior of k-complex contagions, in which a

node becomes infected if at least k neighbors are infected [99, 83]. Again it was

shown that when γ = 2, for any constant k, the k-complex contagion spreads in a

polylogarithmic number of rounds to the entire network while when γ 6= 2 complex

contagions necessarily require a polynomial number of rounds. The analysis here

connects to the intuition presented earlier for myopic routing. The sweet spot γ = 2

substantially speeds up the spreading of the contagions.

While the existence of the sweet spot is both insightful and elegant, it has raised

new questions for modeling practical networks. The model feels fragile if the good
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properties only hold at a single parameter value and stop holding even with slight

deviation. As put by Jackson [118]: “It is unlikely that societies just happen to hit

the right balance. More likely there is something missing from the models, and it

is clear the the network-formation process underlying many social networks is much

more complex than in these models.” If Jackson is correct, then a theoretical model

that more robustly justifies the empirical observations of Milgram and those who

followed is needed.

Our Results. In this work, we generalize Kleinberg’s small world model by con-

sidering a personalized, possibly heterogeneous γu for each node u in the network.

In particular, each node u chooses its parameter γu ∈ [0,∞) i.i.d from a distribu-

tion D. The weak tie edges issued by u will be placed on node v with probability

proportional to 1/|uv|γu , where |uv| denotes the distance between u and v in some

underlying metric.

This model is motivated by both intuition and observations in real world data sets.

It is natural to believe that some people have weak ties that are more/less dispersed

(geographically or otherwise) that others. We also provide empirical evidence for

node heterogeneity using real world social network data. Given a network, we can

embed it in Euclidean space using spectral methods and examine the length of the

edges attached to each node. We find that the empirical variance of the lengths of

edges incident on the same vertex is substantially less than when the edge lengths are

randomly permuted — suggesting that lengths of edges incident on the same vertex

are indeed more correlated. See Section 3.8 for details.

In this paper the main technical results we report is that both myopic routing and

k-complex contagions operate quickly in the new model as long as the distribution D
for the personalized γ has non-negligible mass around 2. Thus our model provides a

robust justification for the observed properties of both myopic routing and k-complex

contagions. Moreover it does this by only slightly tweaking Kleinberg’s original model.

In particular, we can show that even if there is just Ω(εα) mass in the interval

[2−ε, 2+ε] of the distributionD, where α > 0 is any constant, then myopic routing and

k-complex contagions (for any k) still only take polylogarithmic time! For example,

it is enough that D be uniform on the interval [a, b] for any 0 ≤ a ≤ 2 ≤ b. Note that

in such a case, no particular γu will be exactly 2 (with probability 1). However, it

turns out that enough of the γu are close enough to 2, which still enables these social

processes.

We also show lower bounds. For myopic routing we show that if for some ε,
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there is no mass in [2− ε, 2 + ε], then the typical myopic routing time is polynomial.

This is not obvious, as there can be a distribution D that allows weak ties that are

short — connecting nodes nearby, and weak tie that are long – connecting nodes far

away. Recall that in the original Kleinberg proof it was shown that short ties only,

or long ties only, are not enough to enable myopic routing but it did not exclude

the possibility when both long and short ties exist simultaneously. We show that in

fact the combination of these weak tie edges are still not enough for enabling efficient

myopic routing. In particular, there is a range of distances when none of the two

types of ties are helpful, which forces the greedy routing to take a long time.

For complex contagions, our first lower bound shows that if for some ε > 0, there

is no mass in [2−ε, 2+ε], then there is some k such that k-complex contagions require

a polynomial time to spread. Again we must show that the synergy between short

and long weak ties cannot enable complex contagions to quickly spread.

The above results for complex contagion apply for any k. We also study what

happens for a particular k. Here we show that for each k there is an interval [2, βk)

where βk = 2(k+1)
k

such that when D has constant support on [2, βk), k-complex

contagions spread in polynomial time, but when, for any ε > 0, D has no support

on [2− ε, βk + ε], then k-complex contagions requires polynomial time to spread with

high probability.

3.2 Related Work

Small World Graphs The small world property—that there exists short paths

between two random members of a network–appears in many real world complex

networks in vastly different contexts ranging from film collaboration networks and

neural networks [234] to email networks [74], food webs [238] and protein interaction

networks [120].

It has been discovered in a number of settings that random edges introduced to a

graph can dramatically reduce the network diameter, creating a small world graph.

This observation was made in the Watts-Strogatz model [234] (when edges are rewired

to a random destination) as well as for regular random graphs [40] (a graph in which

all nodes have the same constant degree and edges are uniformly randomly placed).

Kleinberg’s small world model can be considered as an extension to such models. In

particular, the Newmann-Watts model [179] (a variant of the Watts-Strogatz model

in which random edges are added in addition to existing edges) is a special case of

Kleinberg’s model for choosing γ = 0 — i.e., the weak ties are uniformly randomly
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added.

Navigability Milgram’s “Small World” experiments [164, 227] illustrated not only

the small world property—that short paths exist—but, in fact, showed a stronger

property—that such paths can be efficiently found using only local information—

called navigability. A short path was discovered through a local algorithm with

the participants forwarding to a friend who they believed to be more likely to know

the target. Although forwarding decision-making was not systematically recorded,

geographical proximity was found to be an important forwarding criterion in some

cases. Other criteria such as profession and popularity may have been used as well.

A later study using email-chains [74] confirms this as well, finding that at least half

of the choices were due to either geographical proximity of the acquaintance to the

target or occupational similarity.

Besides the Kleinberg’s small world model, several other models also considered

using metric distances in modeling social ties. For example, Kumar et al. [140] ex-

tended the Kleinberg’s model to include the underlying metrics with low-doubling

dimension. This model also requires a specific distribution of the weak ties.

Another line of work diverges from distance function defined over some low-

dimensional space, but instead defines a distance function based on some hierarchical

structure. For example, Watts et al. [235] considered a hierarchical professional orga-

nization of individuals and a homophilous network with ties added between two nodes

closer in the hierarchy with a higher probability. If each node has a fixed probability

of dropping the message, they show a greedy routing algorithm sending packages to

the neighbor most similar to the target (called homophily-based routing) successfully

delivers a fraction of the messages before they are dropped. Kleinberg [134] also con-

firmed similar results on a hierarchical network, in which the nodes are represented

as leaf nodes of a hierarchical organization structure and random edges are added

to the leaves with probability dependent on their tree distance. When each node

has polylogarithmic out-degree, greedy routing based on the tree distance arrives at

the destination in O(log n) hops. While the aforementioned models also successfully

create a more robust network model for myopic routing, in doing so they abandoned

the spatial structure of Kleinberg’s small world model. While certain structures can

be modeled well as a hierarchy, others are much more natural as a continuum, as in

Kleinberg’s model—e.g. distances, wealth, political ideology, and education.

Boguna et al. [38] proposed a model that assumes a social metric space and the

power law degree distribution. They considered nodes on a ring and assigned target
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degrees from a power law distribution. An edge is then placed between two nodes

with a probability positively dependent on their distance on the ring and negatively

dependent on their degrees. They investigated greedy routing with the distances on

the ring as a means of navigating in the network. Papadopoulos et al. [186] considered

using a hyperbolic plane as the hidden social space. Nodes are uniformly distributed

in a radius R disk in a hyperbolic plane with edges placed in pairs with distance

smaller than r. They show that such a graph has power law degree distribution and

that greedy routing with hyperbolic distance has a high success rate.

3.3 Definition of General Kleinberg’s Small World

Model

Similar to Kleinberg’s small world model defined in Definition 2.50, for Heterogeneous

Kleinberg’s small world HetKp,q,D(n), we define p, q, n as in the original model, but,

instead of one global γ, each node u independently chooses its personalized param-

eter γu from the distribution D on [0,∞) with probability density function fD and

cumulative distribution function FD. Let MD(ε) = FD(2 + ε)−FD(2− ε) measure the

“mass” of D around 2.

Lemma 3.1 (The Normalization Factor). For n ≥ 4, the normalization factor λγ =∑
v d(u, v)−γ can be bounded above as follows:

λγ ≤ 4
(

1 + 1
γ−2

)
if γ > 3

λγ ≤ 8
γ−2

if 2 + 1
lnn

< γ ≤ 3

λγ ≤ 8 lnn if 2− 1
lnn
≤ γ ≤ 2 + 1

lnn

λγ ≤ 8
2−γn

2−γ if 0 ≤ γ < 2− 1
lnn

For the lower bound,

2
γ−2
≤ λγ if 2 + 1

ln(n/2)
< γ

2 ln(n/2) ≤ λγ if 2− 1
ln(n/2)

≤ γ ≤ 2 + 1
ln(n/2)

2
2−γ (n/2)2−γ ≤ λγ if 0 ≤ γ < 2− 1

ln(n/2)

3.4 Myopic Routing Upper Bounds

In this section, we prove the following theorem about myopic routing (Section 2.1.3).
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Theorem 3.2 (Myopic Routing Upper Bounds). Given a HetKp,q,D(n) with constant

p, q ≥ 1 and distribution D. If there exists some constants ε0 > 0, α ≥ 1 and K > 0

such that ∀ε < ε0, MD(ε) ≥ Kεα, the expected delivery time of the myopic greedy

algorithm is at most O(log2+α n).

The above theorem proves fast myopic routing over a large class of Heterogeneous

Kleinberg’s Small world models. The only distributions that this theorem fails to

apply to are distributions with negligible mass near 2. In particular, if D is uniform

over any finite interval containing 2, then myopic routing will take time at most

O(log3 n), and as long as the mass near 2 is non-trivial (i.e., lower bounded by the

inverse of some fixed polynomial), then delivery only takes poly-log time.

Remark 3.3. Note that if the random variable associated with D is a constant

random variable that takes a constant value 2, the HetKp,q,D(n) degenerates to the

original Kleinberg’s model with γ = 2, and the Theorem 3.2 is tight which yields the

same O(log2 n) upper bound on delivery time on myopic greedy routing algorithm.

The proof of Theorem 3.2 follows the general outline of the proof in Kleinberg’s

original paper: measure the progress of process A = (xi)i≥0 in terms of phases which

will be defined later and show the following: (1) monotone property of the process, (2)

upper bound the total number of phase, (3) lower bound the probability of finishing

each phase.

3.5 Myopic Routing Lower Bounds

In this section we prove a lower bound for any decentralized algorithms on the Het-

erogeneous Kleinberg Small World HetKp,q,D(n) in the following theorem:

Theorem 3.4. Given a Heterogeneous Kleinberg’s Small World network HetKp,q,D(n)

with constant parameters p, q and probabilistic density function fD for the distribution

D on the personalized γu for each node u, if there exists a constant ε0 > 0 such that

F (2 + ε0)− F (2− ε0) = 0, where F is the cumulative density function of D, then the

expected routing time for all decentralized algorithms is Ω(nξ) where ξ = ε0
3(3+ε0)

.

In the original Kleinberg’s model [133], all nodes use the same γ parameter. When

γ is greater than 2 the weak ties are too short in expectation such that it would need

a polynomial number of hops to reach a far away destination. When γ is smaller

than 2 the edges are too random to be useful for nearby destinations. But in a

heterogeneous model, the nodes may have different γ values. The nodes with γu > 2
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have concentrated edges while those with γu < 2 have diffuse edges. A network with

only concentrated edges or only diffuse edges cannot support polylogarithmic myopic

routing. But it is unclear whether the combination of them, as in the heterogeneous

model, can lead to polylogarithmic delivery time.Theorem 3.4 states that this is not

true. We show this by considering a scope where neither type of edges is helpful.

Proof. Fix a decentralized algorithm A and consider the source s and destination t

chosen uniformly at random in the network. With probability at least 1/2, they are

separated by a lattice distance of at least n/4. The decentralized algorithm A has

the knowledge of the grid coordinates of the current node, all neighbors, and the

destination.

We define Bj to be the disk with center t and radius 2j, i.e., Bj = {x|d(x, t) ≤ 2j}
and we denote by ¬Bj to be the nodes outside Bj. The goal of routing is to move

from larger disks (with high values of j) to smaller disks (with smaller values of j).

It turns out that diffuse weak (γ < 2) ties are mainly useful when j > 1
2

log n and

concentrated weak ties (γ > 2) are mainly useful when j < 1
2

log n. Near j = 1
2

log n,

neither will be very useful. We will show that A spends at least Ω(nξ) steps, from

when it enters Bj∗ with j∗ = 1+δ
2

log n to when it reaches B 1
2

(logn) for some constant

δ defined later.

We define Fast to be the event that the routing time T is less than nξ. Now we

only need to show that this event is unlikely, i.e., Pr [Fast] = o(1). Basically,

E[T ] = E[T |Fast] · Pr [Fast] + E[T |¬Fast] Pr [¬Fast] = Ω(nξ),

because even if we allow the first term to be 0, in the second term E[T |¬Fast] = Ω(nξ)

and Pr [¬Fast] = 1− o(1).

In order to show that Fast is unlikely, we define another event Jump, which occurs

if there exists a jump from ¬Bj∗+1 to Bj∗ during the routing process. Then we have

that:

Pr [Fast] = Pr [Fast ∧ Jump] + Pr [Fast ∧ ¬Jump]

≤ Pr [Jump|Fast] + Pr [Fast|¬Jump] (3.1)

Now we are going to upper bound the two probabilities separately.

We denote by Si the set of nodes that have been explored by time i, termed the

explored nodes. Additionally, we denote by xi, the node that has the message at

time i, and di = d(xi, t) the grid distance from xi to the target. Since each step the
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algorithm may visit at most a new node, the size of the explored nodes at time i is at

most i. And the total number of weak edges from the explored nodes Si is bounded

by q|Si| ≤ qi.

If Jump is true. Here we show that

Pr [Fast ∧ Jump] < Pr [Jump|Fast] = O

(
ε0

n
ε0(3−ε0)
2(3+ε0)

)
.

Intuitively, if Fast is true, then the routing process touches T nodes at most. The

total number of ties that could be used by A, the ties of the nodes touched by A,

is not enough to get a good probability for Jump to happen, since Jump for any

particular node is an event with small probability. Now we carry out the calculation.

Let δ = 2ε0
3+ε0

. We now define the event Jumpi to be that a jump occurs from node

xi. We can lower bound Pr [Jumpi] by considering Pr [Jumpi|γi] and maximizing over

all possible γi.

Pr [Jumpi|γi = 2 + ε] = O

(
q

n1+δ

λ2+εn
1+δ
2
·(2+ε)

)
=

O
(

ε
n(1+δ)ε/2

)
if ε > 0

O
(

|ε|
n(1−δ)|ε|/2

)
if ε < 0

,

and Pr [Jumpi | γi = 2 + ε] = O
(

ε0
n(1−δ)ε0/2

)
. Conditioning on the event Fast, and ap-

plying a union bound over all the explored nodes in xi ∈ ST \Bj∗+1, we have

Pr [Jump|Fast] = O
(
nξ · ε0

n(1−δ)ε0/2

)
= O

( ε0
n(1−δ)ε0/2−ξ

)
. (3.2)

If Jump is not true. Here we show that

Pr [Fast ∧ ¬Jump] ≤ Pr [Fast|¬Jump] ≤ O

(
ε0

n
ε0(3−ε0)
6(3+ε0)

)
.

In this case, since Jump is not true, we do not have ‘long’ ties. Then we show that

a message not using any long ties cannot travel quickly. Thus Fast is unlikely to be

true.

Given a process of A, we can define 1 ≤ τ < σ ≤ T such that xτ is the last node

outside of Bj∗+1 and σ is the first node inside B 1
2

logn:

τ = arg max{xt 6∈ Bj∗+1} and σ = arg min{xt ∈ B 1
2

logn} (3.3)

Now suppose Jump is not true. Since xτ is the last node outside of Bj∗+1, the next
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hop xτ+1 stays inside Bj∗+1 but cannot reach Bj∗ , i.e., xτ+1 ∈ Bj∗+1 \Bj∗ . Therefore,

∀i such that τ < i < σ, n
1
2 ≤ di ≤ n

1
2

(1+δ). We will consider the nodes xi for i inside

this range (τ, σ).

We consider events Hopi(ρ) to be that the message moves a ρ = 1
nξ

fraction of the

distance closer using a tie from xi, that is, di+1 < (1− ρ)di. Now,

Pr [Hopi(ρ)|γxi = 2 + ε] =

O
(

ε
ρ2+εdε

)
= O

(
ε0

ρ2+ε0nε0/2

)
if ε > 0

O
(
|ε|d|ε|

ρ2−|ε|n|ε|

)
= O

(
ε0

ρ2−ε0nε0(1−δ)/2

)
if ε < 0

The last equation is due to the fact that n
1
2 ≤ di ≤ n

1
2

(1+δ), for all i in the range of

τ < i ≤ σ.

We can then partition our event Fast|¬Jump with respect toHop =
⋃
τ≤i≤σHopi(ρ)

as follows

Pr Fast|¬Jump = Pr [Fast, Hop|¬Jump] + Pr [Fast,¬Hop|¬Jump]

≤ Pr [Hop|¬Jump,Fast] + Pr [Fast,¬Hop|¬Jump]

and we upper bound these two terms. The first term can be bounded above by

taking a union bound over all i between σ and τ , which is bounded by T < nξ. The

probability that there exists such a hop between τ and σ is

Pr

[ ⋃
τ≤i≤σ

Hopi(ρ)

]
≤ O

( ε0
nε0/2−(3+ε0)ξ

)
+O

( ε0
nε0(1−δ)/2−(3−ε0)ξ

)
= O

(
ε0

n
ε0(3−ε0)
6(3+ε0)

)
.

For the second term, if none of the Hopi events is true, di+1 ≥ (1− ρ)di. Thus,

dσ ≥ (1− ρ)σ−τ−1dτ+1 ≥
(

1− 1

nξ

)nξ
2j
∗+1 ≥ 1

e
n

1
2

(1+δ) ≥ n1/2

This contradicts with the fact that xσ ∈ B 1
2

logn. Combining these two we have,

Pr [Fast|¬Jump] = O

(
ε0

n
ε0(3−ε0)
6(3+ε0)

)
+ 0 (3.4)

Apply Equation (3.2) and (3.4) to Equation (3.1) we know Pr [Fast] = o(1) and

thus the theorem is true.
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3.6 Complex Contagion Upper Bounds

The spreading of k-complex contagion (Definition 2.1) on the original Kleinberg’s

model has been fully characterized in [99] and [83]. If a k-seed cluster is infected

initially, the contagion spreads to the entire network in O(polylog(n)) rounds if γ ∈
[2, βk), where βk = 2(k+1)

k
, and in Ω(poly(n)) rounds otherwise.

3.6.1 Non-negligible Mass Near 2

In the heterogeneous Kleinberg model, we first show a result that is analogous to our

results for myopic routing: as long as the distribution D for γu has a non-negligible

amount of mass near 2, then for any k, k-complex contagions spread in polylog time—

but the exponent of log n depends on k and D.

Theorem 3.5. Fix a distribution D, an integer k > 0 and η > 0. If there exist

constants ε0 > 0 and α ≥ 0 where MD(ε) ≥ Kεα for all ε ≤ ε0, and p, q ≥ k,

there exists κ = kα + k(k+1)
2

, such that a k-complex contagion CC(HetKp,q,D(n), k, I)

starting from a k-seed cluster I takes at most O(log(3+κ)/2 n) rounds1 to spread to the

whole network with probability at least 1− n−η over the randomness of HetKp,q,D(n).

The theorem is based on the observation that the infected region doubles its size

in a polylogarithmic number of steps. In this way the general proof framework is

similar to that in [99].

Choose some node t ∈ I, which, recall, is of constant size. Define ball Bj as the

set of nodes with Manhattan distance less than 2j from t and annulus Aj as the set

of nodes with Manhattan distance greater or equal to 2j and less than 2j+1 from t.

We say that the contagion is in phase j when the all the nodes in Bj are infected

but not all nodes in Bj+1 are infected. Note that the largest value of j is bounded

by O(log n) and the value of phase j is non-decreasing, because nodes do not become

uninfected.

By definition, (u1, . . . , uk) is a k-seed cluster only if for all 1 ≤ i < j ≤ k,

d(ui, uj) ≤ k ≤ q there are s− 1 strong ties from us to u1 . . . , us−1. A k-seed cluster

(u1, . . . , uk) in annulus Aj will be infected in k round after phase j if us has k+ 1− s
weak ties to nodes in Bj−1, and we call the k-seed cluster (u1, . . . , uk) to be good. We

first bound the probability of a good seed cluster.

1the scalar depends on the the constants k, η, α,K
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Lemma 3.6. There exists some constant C > 0 depending on D and k such that for

all 0 ≤ j ≤ log n

Pr [a k-seed cluster in annulus j is good] ≥ C

logκ n
(3.5)

where κ = kα+ k(k+1)
2

, and these events for all nonoverlap k-seed clusters are mutually

independent.

The proof is fairly technical and is delayed to the appendix.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Firstly we partition the nodes in Aj into Θ
(

C|Aj |
k(η+2) log1+κ n

)
balls such that each ball has size Θ

(
k(η+2)
C

log1+κ n
)

and contains η+2
C

log1+κ n disjoint

k-seed clusters. If each ball in Aj has at least one good k-seed cluster, this good k-seed

will be infected in k rounds after phase j. Then the time for all noded in this ball to

be infected is bounded above by the diameter of the ball, Θ
(

log(1+κ)/2 n
)

. Therefore,

it takes O
(

log(1+κ)/2 n
)

rounds to enter the next phase. There are at most O(log n)

phases. So the total time for all nodes to be infected is O
(

log3/2+κ/2 n
)

. Moreover,

by Equation (3.5) and the union bound, the probability that all such balls have a

good k-seed cluster is at least 1− n2
(

1− C
logκ n

) η+2
C

log1+κ n

≥ 1− 1
nη

.

3.6.2 Fixed k

For a specific k, we can show that as long as the distribution D has constant mass in

the interval [2, βk) (recall for the beginning of the section that βk = 2(k+1)
k

), then the

k-complex contagion will spread to the entire network in a polylogarithmic number of

rounds. Recall that the results in Theorem 3.5 only require non-negligible mass near

2. Here we require constant mass, but the mass need not be asymptotically close to

2 as long as it is in the interval (2, βk).

Theorem 3.7. Fix a distribution D, an integer k > 0 and η > 0. If Prγ∼D γ ∈ [2, βk) >

0 where βk = 2(k+1)
k

, and p, q ≥ k. There exists ξ > 0 depending on D and k such

that, the speed of a k-complex contagion CC(HetKp,q,D(n), k, I) starting from a k-seed

cluster I is at most O
(
logξ n

)
with probability at least 1− n−η.

The proof of Theorem 3.7 uses the same divide and conquer strategy as in [83].

We first state Definition 3.8 from [83] and a technical lemma, Lemma 3.9, that says

Definition 3.8 is sufficient for a k-complex contagion to spread fast.
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Definition 3.8 ([83]). Fix constants δ, c, η, k, let λγ be the normalization factor such

that λγ =
∑

v 6=u d(u, v)−γ and let constant r = O(( 6η
λγ

)c). We say that a HetKp,q,D(n)

model is (δ, c, η, k)-recursively spreading if whenever there exists some constant γ > 2

such that

1. S is an `-sized square (
√
`×
√
`) of vertices in HetKp,q,D(n) where ` > (r logc(n))

1
1−δ ;

2. A and B are any two disjoint `1−δ-sized subsquares of S; and

3. A is fully infected,

then with probability at least 1− `2(1−δ)/nη, there is a new k-seed cluster in B that is

infected in at most k rounds. The probability is over the coin flips of the HetKp,q,D(n)

model.

Lemma 3.9 ([99]). Fix constants δ, c, η, k. If a HetKp,q,D(n) model is (δ, c, η, k)-

recursively spreading , then if we start a k-complex contagion from a k-seed cluster,

it takes at most O
(
logξ n

)
rounds for the contagion to spread to the whole network

with probability at least 1 − n−η, where ξ = c
2

+ log 1
1−δ

2, and the probability is over

the coin flips of the HetKp,q,D(n) model.

By the above Lemma, we only need to prove that HetKp,q,D(n) in Theorem 3.7 is

(δ, c, η, k)-recursively spreading.

Lemma 3.10. Suppose Pr [γ ∈ (2, βk)] > 0, and let

γ̃ = inf

{
2 ≤ γ < βk : Pr [γ ∈ [2, γ]] ≥ 1

2
Pr [γ ∈ [2, βk)]

}
, 2

0 < δ < 1 − γ̃/βk, 1−δ
(k+1)(1−δ)−kγ̃/2 ≤ c, and 0 < η, then HetKp,q,D(n) is (δ, c, η, k)-

recursively spreading.

The proof is fairly technical and is delayed to the appendix.

3.7 Complex Contagion Lower Bounds

In this section, we describe a polynomial time lower bound for the spreading rate

of k-complex contagion on the Heterogeneous Kleinberg Small World HetKp,q,D(n),

when the distribution D on the personal parameter γu has zero weight around two.

Here we first state the theorem for a fixed k, and the result near two is a natural

corollary.

2γ̃ is the median of γ between 2 and βk which measure how nice the distribution D behaves in
interval [2, βk) on average.
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Theorem 3.11 (Lower bound for fixed k). Given distribution D, constant integers

k, p, q > 0, and ε0 > 0 such that MD(βk + ε0) − FD(2 − ε0) = 0, then there exist

constants ξ, η > 0 depending on D and k, such that the time it takes a k-contagion

starting at seed-cluster I, CC(HetKp,q,D(n), k, I), to infect all nodes is at least Ω(nξ)

with probability at least 1−O(n−η) over the randomness of HetKp,q,D(n).

If D satisfies the condition in Theorem 3.11, we can partition the support into

two disjoint sets Supp{D} = D1 ∪ D2 such that γ1 = 2 − ε1 = sup{γ ∈ D1} <
2− ε0, and γ2 = 2 + ε2 = inf{γ ∈ D2} > 2(1 + 1/k) + ε0.

Ebrahimi et al. [83] proved for the original Kleinberg model if γ > 2(k+1)
k

the

weak ties will be too short to create remote k-seeds; on the other hand, if γ < 2

the weak ties will be too random to form k-seeds at all. Similar to proving the

lower bound for myopic routing, the challenge in proving this theorem is the synergy

between concentrated and diffuse edges which can possibly be exploited by k-complex

contagions in the heterogeneous Kleinberg model. We resolve this by considering a

scale where neither type of edges is helpful.

Before proving Theorem 3.11 we state a corollary concerning a lower bound when

there is no mass around 2.

Corollary 3.12 (Lower bound for no mass around 2). Given distribution D, constant

integers p, q > 0, and ε0 > 0 such that FD(2 + ε0) − FD(2 − ε0) = 0, there exist a

constant integer k > 0 and ξ, η > 0 such that the time it takes a k-contagion starting at

seed-cluster I, CC(HetKp,q,D(n), k, I), to infect all nodes is at least nξ with probability

at least 1−O(n−η) over the randomness of HetKp,q,D(n).

The corollary follows directly from Theorem 3.11 by taking a sufficiently large k.

Proof of Theorem 3.11. Given a k-complex contagion CC(HetKp,q,D(n), k, I), let It ⊆
V be the set of infected nodes at time t. We let rt = maxu∈It d(u, s) be the radius

of infected nodes at time t by fixing some arbitrary node s ∈ I. Since the k-complex

contagion begins with r0 = O(1) and does not infect the whole graph until time T

with rT = Θ(n), to lower bound the time of contagions it suffices to upper bound the

radius rt for the t-th round. To achieve that, we first make the following definition.

Definition 3.13. Denote ρ1 = nδ1 , ρ2 = nδ2 , where

δ1 < min

(
kε1

kε1 + 2
,
k − 1

k

)
and

2

kε2
δ1 < δ2 < δ1 are constants.
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Let the event J be as follows (see Figure 3.1):

J ={∃ v with k edges (v, u1), . . . , (v, uk) s.t. 1 ≤ i ≤ k, d(ui, s) ≤ ρ1 and d(v, ui) ≥ ρ2}

sρ1
ρ2
v

v′u′
1, u

′
2, u

′
3, u

′
4

u1, u2, u3, u4

Figure 3.1: Event J .

We will use the following technical lemma, whose proof is deferred.

Lemma 3.14. J occurs with probability at most o(n−η) where η > 0 and depends on

δ1, δ1, ε1, ε2 and k.

Now, let’s suppose rσ = ρ2 and rτ = ρ1 and even J does not happen. Each round

σ ≤ t ≤ τ the increment of radius rt is bounded by δ2, τ − σ = Ω
(
nδ1

nδ2

)
= Ω(nδ1−δ2).

Thus the statement is true by taking

ξ ≤ δ1 − δ2;

η < min

(
kε1

kε1 + 2
− δ1,

k − 1

k
− δ1, (ε2 −

2

k
)δ1, δ2 −

2

kε2
δ1

)
.

3.8 Experiments

In this section, we report the analysis of several real world social networks that

motivated our model. In Kleinberg’s model all nodes are homogeneous and follow

the same parameter γ in selecting their edges. We denote this as the assumption

of homogeneity. The opposite of this assumption is that nodes are heterogeneous.

The length of the weak ties (defined in some underlying social metric space) are not

independent. A node with one long edge is likely to have other long edges and vice

versa.

To test this assumption we examine a number of real world social networks.

Firstly, we sort the edges according to Jaccard similarity [148] (or termed the neigh-

borhood overlap) of their endpoints which is defined in section 3.8.2, and partition

edges into strong and weak ties. Secondly, we find an embedding of the network using
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the strong ties in some metric space (Σ, d) and calculate the length of each weak tie

using this embedding. We sort the weak ties by length and produce a ranking of the

edges with increasing lengths. Finally we evaluate the variance of the ranks of the

weak ties incident to the same node u, for every node u in the network. In compari-

son, we randomly rewire those weak ties and re-compute the rank of these permuted

weak ties on the same embedding and the average variance of the rank.

If the nodes in the network are homogeneous, i.e., follow the same model in choos-

ing social ties, then the averaged variance of the ranking of edges incident to the

same node should not change much before and after the permutation. If we observe

a difference in the variance, say, the variance before permutation is smaller, then it

must be that some of the nodes have a biased preference to long ties (or short ties),

which implies that the nodes are not homogeneous. Formally the Null Hypothesis to

test here states that the nodes are homogeneous and thus the variance before and

after the permutation test should stay similar to each other. We run the permutation

test to reject this hypothesis.

Notice that the above test is only for the homogeneity of the nodes and does not

make any additional assumptions on how the social ties are selected. Further, we use

the variance of the ranking of the edges. This is more robust than the variance of the

edge lengths, which depends more on the specific embedding used.

3.8.1 Dataset Description

We use 4 social network data sets on the Stanford Network Analysis Project: Face-

book [157] and Twitter [157] as well as the Wikipedia voting network [143] and the

Epinion network [196]. The number of nodes in these networks vary between 4000

and 100,000 nodes.

The Facebook data set consists of friend ties collected from participants using a

certain Facebook app. The Twitter data has similar attributes to the Facebook one

and it was crawled from public sources. The Wikipedia data collected 2794 admin

elections with 103,663 total votes and 7066 users participating in the elections. The

Epinion data set is a who-trust-whom online social network of a general consumer

review site. These networks vary in size and degree distributions. We summarize the

basic statistics of the network data sets we used in Table 3.1.
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Social network Facebook Wiki-vote Twitter Epinion
Nodes 4039 7115 81,306 75,879
Edges 88,234 103,689 1,768,149 508,837
Average degree 21.85 14.57 21.75 6.70
Nodes in 2-core 3964 4786 76,311 37,300
Edges in 2-core 88,159 98,456 1,337,315 367,162

Table 3.1: Data set statistics

3.8.2 Implementation Details

The Jaccard similarity of e = (u, v) measures the tie strength and is defined as

J(u, v) = |Nu∩Nv |
|Nu∪Nv | , where Nv is the set of vertices adjacent to node v. If the Jaccard

similarity is high, the strength of the edge is ‘strong’, and vice versa. We take the

10% edges with the smallest Jaccard similarity as weak ties EW , and the other as

strong ties ES where E = ES∪EW . Computing the embedding on the strong ties and

the average variance of rank over weak ties helps to avoid the interference between

embedding and our test.

The most popular method to embed a graph into metric space is to use spectral

techniques [108], which, intuitively tries to minimize the distance between neighboring

vertices in the embedding. Formally, we create x : V → Rd such that x = (x1, ..., xd)

where xi : V → R. xi then can be seen as vector where x0 = 1n and for i > 0 we

obtain xi by solving

xi = arg min
x>xk=0,∀0≤k<i

∑
(u,v)∈ES

‖x(u)− x(v)‖2.

This can be solved efficiently and xi will be the eigenvector corresponding to the ith

largest eigenvalue of the Laplacian matrix of the graph. In this experiment, we take

d = 2 for embedding. The Figure 3.3 (b) is our embedding on Kleinberg’s small world

after removing edges with low Jaccard similarity, EW , and provide evidence that this

embedding captures the hidden metric structure of this graph.

A rewired graph G′ = (V ′, E ′) of G = (V,EW ) is constructed by carrying out a

series of switching steps (10|EW | times), in which a pair of edges are selected uniformly

at random (among the weak ties) and the endpoints are exchanged.

A commonly known issue with spectral embedding is that it can be greatly influ-

enced by nodes that are barely connected to the rest of the graph. For this reason, we

first take the k-core of the network. A k-core is a maximal connected subgraph of the

original graph in which all vertices have degree at least k. This can be obtained by

58



Facebook (4.5 · 109) Wiki (9.2 · 108)

Epinions (1.6 · 1011) Twitter (8.1 · 1012)

Figure 3.2: Histogram of permuted test statistics for each real social network. Since
the observed test statistic is much smaller than the permuted ones, we only plot the
histogram of 300 permuted test statistics, and the p-value are all below 0.0033

iteratively removing nodes of degree less than k. In our experiments we take k = 2.

In the networks we study, the node degrees are reasonably high so we did not lose

many edges by doing this.

3.8.3 Experimental Results

Figure 3.2 reports the averaged rank variance of our permutation test with 300 trials.

In all four networks, the averaged rank variance before random permutation is much

smaller than the value obtained in all the 300 permutation trials. Using the empirical

distribution we obtain 0.33% as the p-value on the statistical hypothesis that the

nodes are homogeneous in choosing their social ties.

As a control example, we consider the standard Kleinberg’s small world model in

Figure 3.3 (a). The result shows that more than 5% of permuted test statistics (16

out of 300) are larger than the original test statistics. Therefore the null hypothesis

is not rejected on the standard Kleinberg’s small world.
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(a) Histogram of permuted test statistics (b) Spectral embedding

Figure 3.3: In the control group, we take the 20% edges with the smallest Jaccard
similarity as weak ties and conduct the same permutation test. In (a), we consider
Kleinberg’s small world of 10, 000 nodes with p = 2, q = 3 the observed test statistic
is represented as the red dot on the same scale with the histogram of 300 permuted
test statistics. In (b), we plot the spectral embedding of Kleinberg’s small world of
2, 500 nodes with p = 2, q = 3 after removing the weak ties.
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CHAPTER 4

Configuration Models with Power-law

Degree distributions

In this chapter we continue analysis of k-complex contagions (sometimes called boot-

strap percolation). Our main result show if the graph is configuration model with

power-law distribution with exponent α ∈ (2, 3) (defined in Section 2.5.2), then with

high probability, the single seed of the highest degree node will infect a constant

fraction of the graph within time O
(

log
α−2
3−α (n)

)
. This complements the prior work

which shows that for α > 3 boot strap percolation does not spread to a constant

fraction of the graph unless a constant fraction of nodes are initially infected. This

also establishes a threshold at α = 3.

The case where α ∈ (2, 3) is especially interesting because it captures the exponent

parameters often observed in social networks (with approximate power-law degree

distribution). Thus, such networks will spread complex contagions even lacking any

other structures.

We additionally show that our theorem implies that ω
(
n
α−2
α−1

)
random seeds will

infect a constant fraction of the graph within time O
(

log
α−2
3−α (n)

)
with high proba-

bility. This complements prior work which shows that o
(
n
α−2
α−1

)
random seeds will

have no effect with high probability, and this also establishes a threshold at n
α−2
α−1 .

4.1 Introduction

Janson et al. [119] show that k-complex contagions do not spread on sparse G(n, p)

random graphs. Such cascades require Ω(n) seeds to infect a constant fraction of

vertices. Balogh and Pittel [22] extended these results to configuration model graphs

with regular degree distributions.
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However, many networks do not have regular degree distributions. In a graph

with power law degree distribution, the number of nodes having degree d is pro-

portional to 1/dα, for a positive constant α. In 1965, Price [193] showed that the

number of citations to papers follows a power law distribution. Later, studies of the

World Wide Web reported that the network of webpages also has a power law degree

distribution [24, 43]. Observations of many different types of social networks also

found power law degree distributions, as well as biological, economic and semantic

networks [218, 7, 177].

Additional work by Amini [12] studies the configuration model with power-law

degree distribution for α > 3 and showed and shows theorem which implies (see

Section 4.6) that, with high probability, infecting a constant fraction of the nodes

requires an initial seed that comprises a constant fraction of the graph.

Amini and Fountoulakis [13] also have examined the Chung-Lu model with power-

law exponent 2 < α < 3. They show that there exists a function a(n) = o(n) such

that if the number of initial seeds is� a(n), the process does not evolve w.h.p.; and if

the number of initial seeds is� a(n), then a constant fraction of the graph is infected

with high probability. However, this function is still super-constant—nΩ(1).

The question remained open, can non-submodular cascades spread and spread

quickly from a constant-sized seed set on sparse graphs with no other structure im-

posed besides a skewed degree distribution.

4.1.1 Our Contributions

Our main result is that for a configuration model graph with power-law exponent

α ∈ (2, 3), with high probability, the single seed of the highest degree node will infect

a constant fraction of the graph within time O(log
α−2
3−α (n)). This complements the

prior work which showed that for α > 3 boot strap percolation does not spread to a

constant fraction of the graph unless a constant fraction of nodes are initially infected.

This also establishes a threshold at α = 3.

The case where α ∈ (2, 3) is especially interesting because it captures the exponent

parameters often observed in social networks (with approximate power-law degree

distribution). Thus, such networks will spread complex contagions even lacking any

other structure.

We additionally show that our main theorem implies that ω(n
α−2
α−1 ) random seeds

will infect a constant fraction of the graph within time O(log
α−2
3−α (n)). This comple-

ments the prior work which shows that o(n
α−2
α−1 ) random seeds will have no effect with
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high probability. This also establishes a threshold at n
α−2
α−1 .

To prove these results, we provide new analysis that circumvents previous diffi-

culties. While our results are similar to those of Ebrahimi et al. [82] (they study the

preferential attachment model, while we study the configuration model), the tech-

niques required are completely different. For example, it is an easy observation that

k-complex contagions spread on the configuration model (if k is greater than the

minimum degree), but much more difficult to show it spreads quickly.

The previous analyses on the configuration model required that the graph was

locally tree-like, an assumption that fails in our case, and then were able to approxi-

mate the process using differential equations and obtain rigorous results by applying

Wormald’s Theorem [239]. However, their analysis fails when the degree distribution

is power-law with exponent between 2 and 3.

4.2 Main Theorem: power-law exponent α ∈ (2, 3)

In this section, we state and prove our main theorem: in a configuration model

graph with the power-law exponent α ∈ (2, 3), with high probability, the single seed

of the highest degree node will infect a constant fraction of the graph within time

O(log
α−2
3−α (n)).

We use the configuration model introduced by Bollobás and McKay [41] to define

a distributions over multigraphs. The definition is in 2.5.2.

Theorem 4.1. Given a power law distribution d = (d1, ..., dn) with exponent α ∈
(2, 3) and d1 > n

3−α
α+1 , with probability 1 − O

(
log

α−1
3−α n
n

)
, the k-complex contagion on

configuration model CM(d) with constant k and initial infection being the highest

degree node I = {1}, CC(CM(d), k, I), infects Ω(n) vertices within time O(log
α−2
3−α n).

4.2.1 Proof Setup

We consider a restricted form of contagion where nodes can only be infected by those

proceeding them in the ordering. Formally, recall the nodes {di} are ordered in terms

of their degree. Node di will only be infected if |{j : j < i and dj is infected }| ≥ k

neighbors are infected. Hence, the total number of infected nodes in this process will

be fewer than the number of infected nodes in original complex contagions, and it is

sufficient to prove that a constant fraction of nodes become infected in this restricted

contagion with high probability.
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Buckets We first partition the nodes V = [n] into buckets. We design the buckets

to have at least (and about the same number of) stubs b = Θ( n

log
α−2
3−α n

). We can define

N` as follows

N1 =
n

log
α−1
3−α n

, and N`+1 = arg min
i>N`
{s(i)− s(N`) ≥ b}

Since d(N1) = Θ(log1/(3−α) n) = o(b) and ∀i > N1, d(i) ≤ d(N1),

b < s(N`+1)− s(N`) ≤ b+ o(b) < 2b.

Therefore, we have `b ≤ s(N`) ≤ 2`b and N` = Θ
(

n

log
α−1
3−α n

`
α−1
α−2

)
by (4), and so the

total number of buckets is L ≤ s(n)
b

= O(log
α−2
3−α n).

We define our buckets to be B1 = {1, .., N1}, B2 = {N1 + 1, .., N2}, .., B`+1 =

{N` + 1, .., N`+1}, ..., BL = {NL−1 + 1, .., NL}.

Filtration We now state our filtration.

F0: The node i starts with di stubs of edges without revealing any edges.

F1: In the first stage we reveal all edges within the first bucket B1,

F`, 1 ≤ ` ≤ L: In the stage ` > 1, we reveal/match all the edges from B` to early

nodes in B<`.

4.2.2 Proof Summary

There are two parts of the proof.

1. All of the nodes in the first bucket would be infected with high probability.

2. For some constant ρ > 0, in the first L′ = ρL buckets B1, .., BL′ a constant

fraction ε of nodes will be infected. Because NL′ = Ω(n) nodes, the total

number of infection also constant fraction.

In the first part of the proof is capture by the following lem:powerlaw

Lemma 4.2 (Base). Given at F0 d1 > n
3−α
α+1 , at F1 all the nodes in B1 will be infected

within O(log log(n)) steps with probability greater than 1−O( 1
n
).
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To prove this lemma we further decompose the first bucket into O(log log(n)) finer

intervals, which we call bins. We first argue that every node in the first bin will have

at least k multi-edges to the first node, and we inductively show the nodes in following

bin will have at least k edges to the previous bins. The analysis is by straight-forward

probabilistic techniques.

The time for the first bucket’s infection is at most the number of the bins because

inclusion of each bin only costs 1 step.

We need some additional notation to state the lemma which will imply the second

part. Let X` be the number of stubs from buckets B<` to B≥`. Let Y` be the number

of uninfect stubs from B<` to B≥` before stage `, of which Y
(1)
` issue from B<`−1 and

the remaining Y
(2)
` issue from B`−1. We use Ii as the indicator variable that node

i ∈ B` is not infected after stage `. Let ε > 0 be some constant we define later. Let

δn = Θ( 1

log
α−2
3−α n

).

Now we can formally define A` as the intersection of the following three events:

1. connection: (1− δn)E[X`] ≤ X` ≤ (1 + δn)E[X`];

2. number of uninfected nodes:
∑

i∈B`−1
Ii ≤ 2µH where µH = K |B`|`

3−α
α−2

logn
for some

constant K independent of ` and n;

3. number of uninfected stubs: Y` ≤ εX`

Lemma 4.3 (Induction). Fix sufficiently small ε > 0, ρ > 0. Let ` < ρL, and

suppose Pr[A`] > 0.5, then we have

Pr[A`+1|A`] = 1−O(1)
(log n)

α−1
3−α

n`1/(α−2)

This lemma will be proved by showing that each of three events happens with

high probability conditioned on A`. The most technically challenging of these is the

second event, where we need to apply Chebychev’s Inequality twice. One challenging

is that the edges from B<` to B` are not independent. Another challenge is that if

the buckets are to small, we fail to have concentration properties, but if they are too

large, then the fraction of infected nodes at each stage will drop too quickly.

4.2.3 Proof of Theorem 4.1

Proof. If
⋂L′

`=1A` happens, then the total fraction of infected nodes is Ω(n).
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Using Lemma 4.2 as the base case and Lemma 4.3 as the induction steps we see

that

Pr

[
L′⋂
`=1

A`

]
≥ 1−

L′∑
`=1

O(1)
(log n)

α−1
3−α

n`1/(α−2)
−O

(
1

n

)
= 1−O

(
log

α−1
3−α n

n

)

which is arbitrarily close to 1.

Moreover, the total time spent is the time in first bucket plus the number of buckets

(because the infection spreads from bucket to bucket in only 1 step). Therefore the

total time spent is

O(log log n) +O(log
α−2
3−α n) = O(log

α−2
3−α n)

which completes our proof.

4.3 Proof of Lemma 4.2: Contagion in the First

Bucket

In this section, we will show that with high probability, the contagion process infects

all nodes within the first bucket. Recall that N1 = n

log
α−1
3−α n

and the number of stubs

within the first bucket is S(N1) = b.

We partition the first bucket into finer bins such that B1 =
⋃T
t=1 Vt and Vt =

{vt−1 + 1, ..., vt}, t = 1, ..., T with ascending order and v0 = 1. The vt will be specified

in Lemma 4.5. We define the event that every nodes in bin Vt is infected as Et, then

the event that all the nodes in B1 are infected is equal to
⋂T
t=1Et

We recall lemma 4.2:

Lemma 4.2 (Base). Given at F0 d1 > n
3−α
α+1 , at F1 all the nodes in B1 will be infected

within O(log log(n)) steps with probability greater than 1−O( 1
n
).

We will use two Lemmas in the proof of Lemma 4.2, which will be a proof by

induction. The first lemma will form the base case of the induction. It states the

high degree nodes will all be infected by the first node by showing any high degree

node forms k multi-edges to the first node.

Lemma 4.4. Given d1 > n
3−α
α+1 we define node v1 = max{v : d(v) ≥ n

3−α
α+1}. (Recall

nodes are ordered by degree.) Then all the nodes in V1 = {1, ..., v1} will be infected in
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one step with probability

Pr[E1] = 1− n
3−α
α+1 exp

(
−Θ(1)n

3−α
α+1 )

)
Proof. Consider u ∈ V1, u 6= 1. By Equation (3) d1, du ≥ Θ(1)n2/(α+1). Thus by

Lemma 2.25:

Pr[C(1, u) ≤ k] ≤ exp
(
−Θ(1)n

3−α
α+1 )

)
.

Applying a union bound on all u ∈ V1 we have

Pr[
⋂
u∈V1

(C(1, u) ≤ k)] ≥ 1− |V1| exp
(
−Θ(1)n

3−α
α+1 )

)

The second Lemma will form the inductive step in the proof of Lemma 4.2. It can

be proved by induction itself.

Lemma 4.5. Let v ∈ Vt = {vt−1 + 1, ..., vt} and vt = max{v : d(vt) ≥ n

log
α−1
3−α n(α−2)t

},
then

Pr

[
u is not infected |

t−1⋂
s=1

Es

]
≤ 1

n2
.

Moreover, T = O(log log n).

Proof. For any u ∈ Vt condition on all the nodes in Vt−1 being infected. Then u might

not be infected if it has fewer than k neighbors in Vt−1.

Applying Lemma 2.25 and using Properties 3 and 4 of power-law distribution we

have,

Pr[C(Vt−1, u) < k] ≤ exp

−Θ

n1/(α−1)v
α−2
α−1

t−1 · (n/vt)1/(α−1)

n


On the other hand, by taking vt = Cn

log
α−1
3−α (n(α−2)t )

, vt ≤ C n3−α

logα−1 n
· vα−2

t−1 , so

2 log n ≤ 2C
n1/(α−1)v

α−2
α−1

t−1 · (n/vt)1/(α−1)

n
.

Combining these two inequalities, for large enough constant C we have

Pr[C(Vt−1, u) < k] ≤ 1

n2
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Moreover the number of bins is at most T = O(log log n) because N1 = n

log
α−1
3−α n

.

Lemma 4.2. The proof is by induction. For the base case, Lemma 4.4 ensures every

node in the first bin will be infected. Suppose all nodes before vt−1 are infected. We

can use a union bound to show every node in Vt will be also infected. Moreover, in

each bin the contagion only takes one time step which implies that the infection time

for the first bucket is at most O(log log n).

For the probability that all these events hold, we apply a union bound

Pr[all the nodes in B1 are infected]

= Pr

[
T⋂
t=1

Et

]

≥1− Pr[¬E1]−
T∑
t=2

Pr

[
¬Et |

t−1⋂
s=1

Es

]
(union bound)

≥1− n
3−α
α+1 exp

(
−Θ(1)n

3−α
α+1 )

)
− 1

n2
|B1| (by Lemma 4.4 and 4.5)

4.4 Proof of Lemma 4.3: Contagion from Buckets

to Bucket

In this section we prove Lemma 4.3.

Lemma 4.3 (Induction). Fix sufficiently small ε > 0, ρ > 0. Let ` < ρL, and

suppose Pr[A`] > 0.5, then we have

Pr[A`+1|A`] = 1−O(1)
(log n)

α−1
3−α

n`1/(α−2)

Recall that A` is the intersection of the three events, we will show that at stage `

if these three events happen, then the requirements in Lemma 4.3 will be met, and

those events would be proven in Lemma 4.6, 4.7, 4.9 respectively.

4.4.1 First Event: Connection

We first prove that the first event holds with high probability, which follows almost

immediately from Lemma 2.24 in Section 2.5.2.
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Lemma 4.6. Let δn = Θ

(
1

log
α−2
3−α n

)
, if Pr[A`] ≥ 0.5

Pr
[
|X`+1 − E[X`+1]| ≤ δnE[X`+1]|A`

]
≥ 1− 4 exp

(
−Θ(

n

log6·α−2
3−α n

)

)
.

Here the constant only depends on the product of δn and L.

Proof. Because δnE[X`+1] = `(L−`)b2
Lb−1

≥ δn
L
b = Θ( b

L2 ), apply Lemma 2.24 we have

Pr [(1− δn)E[X`+1] ≤ X`+1 ≤ (1 + δn)E[X`+1]]

≥1− 2 exp(
−(δnE[X`+1])2

2m
)

≥1− 2 exp(− b2

mL4
)

≥1− 2 exp(−Θ(
n

log6·α−2
3−α n

)

For arbitrary events A,B where Pr[A] ≥ 0.5 : Pr[B|A] ≥ 1 − Pr[¬B]/Pr[A] ≥
1 − 2 Pr[¬B], and by taking B = (1 − δn)E[X`+1] ≤ X`+1 ≤ (1 + δn)E[X`+1], and

A = A`, we have

Pr[(1− δn)E[X`+1] ≤ X`+1 ≤ (1 + δn)E[X`+1]|A`] ≥ 1− 4 exp(−Θ(
n

log6·α−2
3−α n

))

4.4.2 Second Event: Number of infected nodes

Now we will prove the second events holds with high probability.

Lemma 4.7 (Number of uninfected nodes in a single bucket). For sufficiently small

ε > 0, conditioned on A`

Pr

[∑
i∈B`

Ii ≥ 2µH | A`

]
≤ O(1)

(log n)
α−1
3−α

n`1/(α−2)

where µH = K |B`|`
3−α
α−2

logn
and K is independent of ` and n.

The proof relies on an application of Chebyshev’s inequality and the following

Lemma, which is in turn proved using Chebyshev’s inequality.
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Lemma 4.8 (Infection of a single node). If F` ⊆ A` for some constant 0 < ε < 1/2

and δn = Θ( 1

log
α−2
3−α n

) < 1/2, then the probability any node i ∈ B` is not infected is

Pr[Ii|A`] ≤ O(1)
`

3−α
α−2

log n

where the constant O(1) only depends on α, k, ρ if δn, ε is small enough, and ρ ≤
0.3α−1

α−2
k
α−2
3−α .

The proof uses Chebyshev’s inequality to show each node in bucket ` has a high

chance of being infected when the fraction of uninfected stubs from B<`, ε, is small.

Proof. Conditioning on F` ⊆ A`, so X` is known. For a node i in B` with degree

di and s an infected stub from B<`, we let Ii,s be the indicator function for if the

infected stub s connects to node i. Pr[Ii,s = 1|F`] = di
(L−`+1)b

. Because the number of

infected stubs s is at least (1− ε)X`, the expected number of infected neighbors from

B<` of node i is

E[# neighbor of i in B<`|A`] = E[
∑
s∈X`

Ii,s] = (1− ε`)
diX`

(L− `+ 1)b

On the other hand, we have to argue the variance of
∑

s∈X` Ii,s is small. Because for

all s 6= s′,Pr[Ii,s = 1|Ii,s′ = 1] = di−1
(L−`+1)b−1

≤ di
(L−`+1)b

= Pr[Ii,s = 1], Cov(Ii,s, Ii,s′) <

0, and Var(
∑

s∈X` Ii,s) =
∑

Var Ii,s +
∑

Cov(Ii,s, Ii,s′), we have

Var(
∑
s∈X`

Ii,s) ≤
∑

Var Ii,s ≤ E
∑

Ii,s.

Therefore by Chebyshev’s inequality

Pr[
∑
s∈X`

Ii,s < 1/2E[
∑
s∈X`

Ii,s]|A`] ≤
4 Var

∑
s∈X` Ii,s

E[
∑

s∈X` Ii,s]
2
≤ 4

E
∑

s∈X` Ii,s
(4.1)

Because F` ⊆ A`, we have

E[
∑
s∈X`

Ii,s|A`] ≥ (1− ε)(1− δn)
di(`− 1)b

Lb− 1
≥ (1− ε)(1− δn)

di`

2L

Because node i is in bucket `, its degree di is higher than node N` where dN` =
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(
`α−2
α−1

)−1/(α−2)
log1/(3−α) n, and the total number of bucket is L = α−1

α−2
log

α−2
3−α n

E[
∑
s∈X`

Ii,s|A`] ≥
(1− ε)(1− δn)

2

( α− 1

`(α− 2)

) 3−α
α−2 log n (4.2)

Combining (4.1) and (4.2), if k < 0.5(1− ε)(1− δn)
(

α−1
`(α−2)

) 3−α
α−2 log n for ` = O(L)

we have the probability that i is not infected,equivalently the number of infected

edges
∑

s∈X` Ii,s is smaller than k as follows

Pr[node i is not infected|A`] = Pr[
∑
s∈X`

Ii,s < k]

≤ Pr[
∑
s∈X`

Ii,s < 1/2E[
∑
s∈X`

Ii,s]]

≤ 8

(1− δn)(1− ε)
(`(α− 2)

α− 1

) 3−α
α−2 · 1

log n

≤ O(1)
`

3−α
α−2

log n

Note that the constant O(1) only depends on α if δn, ε < 1/2.

We can now proof Lemma 4.7 which states the total number of infection in bucket

` is high.

Proof of Lemma 4.7. Recall that Ii denote the node i not being infected, and Ii = 1

if and only if the number of infected edges is smaller than k,
∑

s∈X` Ii,s < k Applying

Lemma 4.8, we have

E[
∑
i∈B`

Ii|A`] ≤ O(1)
|B`|`

3−α
α−2

log n

We will use µH to denote O(1) |B`|`
3−α
α−2

logn

As in the proof of Lemma 4.8, in order to use the second moment method, it is

sufficient to show the variance of
∑

Ii is small. For all j 6= i,Pr[Ij = 1|Ii = 1] ≤
Pr[Ij = 1|Ii = 0], because whether we condition on Ii = 1 or Ii = 0, the revealing of

the dj edges of node j will be among the same number of random matching except in

the later case the number of infected free stubs from is strictly less than the former.

Therefore,

Pr[
∑
i∈B`

Ii ≥ 2µH ] ≤ 1

µH

There is a subtle issue that we need to use an upper bound of expectation, µH , in
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second moment method instead of the original expectation, E
∑

i∈B` Ii because the

expectation itself is too hard to compute. To bound the probability of this bad event∑
i∈B` Ii ≥ 2E

∑
i∈B` Ii, we need to estimate µH which needs an upper bound for |B`|

N` −N`−1 = O(1)
n

(log n)
α−1
3−α

(`
α−3
α−2 − (`− 1)

α−3
α−2 ) ≤ O(1)

n`1/(α−2)

(log n)
α−1
3−α

The last inequality comes from the convexity.

Finally we have

Pr[
∑
i∈B`

Ii ≥ 2µH ] ≤ O(1)
(log n)

α−1
3−α

n`1/(α−2)

4.4.3 Third Event: Number of uninfected stubs

Lemma 4.9. Suppose A`, the first event, (1− δn)E[X`+1] ≤ X`+1 ≤ (1 + δn)E[X`+1]

and the second event,
∑

i∈B` Ii ≤ 2µH is true (this is the conclusion of Lemma 4.7),

then

Pr

[
Y`+1 ≤ εX`+1

∣∣∣∣|X`+1 − E[X`+1]| ≤ δnE[X`+1] ∧
∑
i∈B`

Ii ≤ 2µH ∧ A`

]

is greater than 1 − exp

(
−Θ( n

log
5·α−2

3−α
)

)
when ρ > 0 is small enough and δn > 0 is

smaller than some constant.

For the third event, in Lemma 4.9 we want to argue the fraction of uninfected

stubs is smaller then ε after stage `. That requires both that X`+1 is large and that

Y`+1—which is the summation of Y
(1)
`+1 and Y

(2)
`+1—is small. Upper bounds on Y

(1)
`+1 and

Y
(2)
`+1 will be proven by Lemma 4.10 and 4.11 respectively.

Lemma 4.10. Let Y
(1)
` be the number of free uninfected stubs from B<` to B>` over

the probability space F`+1|F`, then

Pr
[
Y

(1)
`+1 ≥ (1 + δn)εX`|A`

]
≤ exp

(
−Θ(

n

log5·α−2
3−α

)

)

Here the constant only depends on δn · L, ε and ρ

Proof. Given F` ⊆ A`, the uninfected free stubs from B<` to B>` will still around the
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same portion after stage ` revealing the connection from B` to previous nodes in B<`,

and the proof is similar to Lemma 2.24 by using concentration of Doob martingale.

The expectation of Y
(1)
`+1is

E[Y
(1)
`+1|F`] =

L− `
L− `+ 1

ε`X` ≤ ε(1 + δn)
(`− 1)(L− `)

L
b

Therefore applying Azuma’s inequality 2.18 we have

Pr[Y
(1)
`+1 ≥ (1 + δn)ε`X`|F`] ≤ exp(− 1

2b
(
δn(1 + δn)ε(`− 1)(L− `)

L
b)2)

= exp(−Θ(
δ2
nn

log3·α−2
3−α

)) = exp(−Θ(
n

log5·α−2
3−α

))

Lemma 4.11. Suppose A` and the
∑

i∈B` Ii ≤ 2µH is true (this is the conclusion of

Lemma 4.7), then Y
(2)
`+1, the total number of uninfected stubs from B` to B>` is

Y
(2)
`+1 = O(1)

(log n)
α

3−α

n`2/(α−2)

Proof. Given Lemma 4.7, the number of uninfected nodes in B` is small

O(1)
(log n)

α−1
3−α

n`1/(α−2)
,

and the degree of each node in B` is smaller than

dN`−1
= O(1)

(log n)1/(3−α)

`1/(α−2)

Therefore the total number of uninfected stubs from B` to B>` is smaller than

O(1)
(log n)

α
3−α

n`2/(α−2)

Proof of Lemma 4.9. By Lemma 4.10 and 4.11, we have

Y`+1 = Y
(1)
`+1 + Y

(2)
`+1 ≤ ε(1 + δn)2 (`− 1)(L− `)

L
b+O(1)

(log n)
α

3−α

n`2/(α−2)
(4.3)
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Suppose L′ = ρL is small enough such that (1 + δn)2(`− 1) < (1− δn)` by taking

ρ < 1
4Lδn

= Θ(1). We have 1− 1
`
≤ 1− 1

ρL
≤ 1− 4δn and

1− δn − (1 + δn)2(1− 1

`
) = δn +O(δ2

n) (4.4)

By the assumption the first event we have

X`+1 ≥ (1− δn)EX`+1 ≥
`(L− `)

L
b

Let εX`+1 subtracted by Y`+1 and apply (4.3) and (4.4) we have

εX`+1 − Y`+1 ≥
ε(L− `)`

L
b
(
1− δn − (1 + δn)2(1− 1

`
)
)
−O(1)

log
α

3−α n

n`
2

α−2

≥ 0

Therefore we have Y`+1 ≤ εX`+1, and the probability is

Pr

[
Y`+1 ≤ εX`+1 | (1− δn)E[X`+1] ≤ X`+1 ≤ (1 + δn)E[X`+1] ∧

∑
i∈B`

Ii ≤ 2µH

]

≥1− exp

(
−Θ

(
n

log5·α−2
3−α

))

4.4.4 Proof of Lemma 4.3

Proof. Recall the the event A`+1 is the intersection of the three events, so

Pr[A`+1|A`] ≥ 1− Pr[¬(|X` − E[X`]| ≤ δnE[X`])|A`] (4.5)

− Pr

 ∑
i∈B`−1

Ii ≥ 2µH |A`

 (4.6)

− Pr

Y` ≤ εX`|(|X` − E[X`]| ≤ δnE[X`]) ∧
∑
i∈B`−1

Ii ≤ 2µH ∧ A`

 (4.7)
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Applying Lemma 4.6 to Equation (4.5), Lemma 4.7 to Equation (4.6), and Lemma 4.9

to Equation (4.7), and we have

Pr[A`+1|A`] ≥ 1− 4 exp

(
−Θ(

n

log6·α−2
3−α n

)

)
−O(1)

(log n)
α−1
3−α

n`1/(α−2)
− exp

(
−Θ(

n

log5·α−2
3−α

)

)

Therefore

Pr[A`+1|A`] ≥ 1−O(1)
(log n)

α−1
3−α

n`1/(α−2)
.

4.5 Infection with Random Seeds

Theorem 4.1 together with prior results in Ebrahimi et al. [82] immediately implies

the following corollary:

Corollary 4.12. For a configuration model graph with power-law exponent α, if

Ω(n
α−2
α−1 ) initially random seeds are chosen, then with probability 1 − o(1) k-complex

contagion infects a constant fraction of nodes.

We first restate two results from Ebrahimi et al. [82].

Proposition 4.13 ([82]). For any graph, let u be a node with degree d. If Ω(d/n)

initial random seeds are chosen, then with probability 1− o(1) u is infected after one

round.

Proof. The initial node has Θ(n
1

α−1 ) neighbors. If there are Ω(n
α−2
α−1 ) initial seeds then

by Proposition 4.13 the first seed is infected with probability 1− o(1). However, then

by Theorem 4.1 a constant fraction of the remaining nodes are infected in logO(α)(1)

rounds.

This is tight as in Ebrahimi et al. [82] the following was proven:

Proposition 4.14 ([82]). For any graph, with power law distribution α, if o(n
α−2
α−1 )

initially random seeds are chosen, then with probability 1− o(1), no additional nodes

are infected.
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4.6 Power-law exponent α > 3

For the case of power-law degree distribution with α > 3, Amini [12] shows how

to analyze k-complex contagions using a differential equation method [239]. This

approach heavily depends on the variance of the degree distribution and fails when

α < 3. For the case where the seed set contains all nodes with degree greater than

ρ > 0 we can state their theorem as follows:

Theorem 4.15 ([12]). Given a power law distribution d with exponent α > 3 and

d1 < n1/α−1, the k-complex contagion on configuration CM(d) with constant k and

seed set Iρ = {i|di ≥ ρ} where 0 ≤ ρ ≤ n. Then with high probability

|CC(CM(d), k, Iρ)| = n

1−
∑

1≤d<ρ,
0≤j<k

pd(d)

(
d

j

)
(y∗)d−j(1− y∗)j + o(1)

 (4.8)

where pd(d) = (Fd(d + 1) − Fd(d)) and 0 < y∗ ≤ 1 is the largest root such that

f(y) = 0 and

f(y) = y2

(∑
1≤d

d pd(d)

)
− y

 ∑
1≤d<ρ,
0≤j<k

d pd(d)

(
d− 1

j

)
yd−1−j(1− y)j

 (4.9)

Before stating our corollary, we wish to give a brief idea of the proof of Theo-

rem 4.15. They consider a Markov chain which results in the same number infected

nodes as a k-complex contagion, but proceeds using the randomness of the configu-

ration model. The Markov chain starts with the initially infected nodes and at each

step the process reveals one of the unmatched edges from the set of infected nodes.

This process needs only track: the number of unmatched edges, and the number of

d-degree uninfected nodes with j infected neighbors, for each j < k. The Markov

chain stops when all the agent are infected, or there are no unmatched edges from

already infected nodes. As an example, if the revealed edge connects to an uninfected

node v with k−1 infected neighbors, the node v will become infected and the number

of unmatched edges will increase by dv − k. It turns out, that if α > 3, the process is

smooth and we can use the corresponding differential equations to approximate this

Markov chain and derive the fraction of infections.

With their results we can prove that to infect a constant fraction of nodes requires

the initial seed need to also be a constant fraction of nodes. Note that if our initial
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seed set infects the highest degree nodes, but does not infect a constant fraction of

the nodes, then the greatest degree node not in the initially infected set has degree

ω(1).

Corollary 4.16. Given a power law distribution d with exponent α > 3 and d1 <

n1/α−1, the k-complex contagion on configuration CM(d) with constant k and seed set

Iρ = {i|di ≥ ρ} where ρ = ω(1), the |CC(CM(d), k, Iρ)| = o(n) with high probability.

Proof. Note that
∑

0≤j<k
(
d
j

)
(y∗)d−j(1− y∗)j is the probability of a binomial random

variable Bin(d, ε) smaller than k where ε = 1 − y∗. As ε increases, the number of

infection increases. As a result, the proof has two parts: ε = 1 − y∗ = o(1) and

ε = o(1)⇒ |CC(CM(d), k, Iρ)| = o(n).

1− y∗ = o(1)⇒ |CC(CM(d), k, Iρ)| = o(n) Rewrite the contagion fraction (4.8)

|CC(CM(d), k, Iρ)| = n

1−
∑

1≤d<ρ,
0≤j<k

pd(d)

(
d

j

)
(y∗)d−j(1− y∗)j + o(1)


= n

(∑
1≤d

pd(d)−
∑

1≤d<ρ

pd(d) Pr[Bin(d, ε) < k] + o(1)

)

= n

(∑
ρ≤d

pd(d) +
∑

1≤d<ρ

pd(d) Pr[Bin(d, ε) ≥ k] + o(1)

)

= |Iρ|+ n

( ∑
1≤d<ρ

pd(d) Pr[Bin(d, ε) ≥ k] + o(1)

)

Therefore besides the initial seed |Iρ| = o(n) the number of additional infected node

is

n

( ∑
1≤d<ρ

pd(d) Pr[Bin(d, ε) ≥ k] + o(1)

)

≤n
∑

1≤d<ρ

pd(d)
dε

k
+ o(n) (Markov inequality)

≤O

(
nε

k

∑
1≤d<ρ

1

dα−1

)
+ o(n)

≤O(εn) = o(n)

Therefore the second part is proven.
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ε = 1 − y∗ = o(1) By definition y∗ ≤ 1 is the largest root for (4.9), because f is

continuous and f(1) > 0, if there exists ξ = o(1) such that f(1 − ξ) < 0, we have

1− y∗ = o(1) by intermediate value theorem.

Let ξ = K 1
ρα−2 for some constant K > 0 which will be defined later.

f(1− ξ)

= (1− ξ)2

(∑
1≤d

d pd(d)

)
− (1− ξ)

 ∑
1≤d<ρ,
0≤j<k

d pd(d)

(
d− 1

j

)
(1− ξ)d−1−j(ξ)j


= (1− ξ)

(
(1− ξ)

∑
1≤d

d pd(d)−
∑

1≤d<ρ

d pd(d) Pr[Bin(d− 1, ξ) < k]

)

= (1− ξ)

(∑
ρ≤d

d pd(d) +
∑

1≤d<ρ

d pd(d) Pr[Bin(d− 1, ξ) ≥ k]− ξ
∑
1≤d

d pd(d)

)

To have a better estimate of Pr[Bin(d− 1, ξ) ≥ k] we can use multiplicative form of

Chernoff bound

f(1− ξ)

≤ (1− ξ)

(
Sd(ρ)

n
+
∑

1≤d<ρ

d pd(d) exp(−O(
k2

dξ
))− ξSd(1)

n

)
(chernoff bound)

≤ (1− ξ)

(
Sd(ρ)

n
+
∑

1≤d<ρ

d pd(d)O((
dξ

k2
)2)− ξSd(1)

n

)

≤ (1− ξ)
(
C1

ρα−2
+
C2ρξ

2

k4
− C3ξ

)
(where C1, C2, C3 are positive constants)

≤ (1− ξ)
(
C1

ρα−2
− C ′3ξ

)
(ρξ = o(1))

≤ (1− ξ)
(
C1 −KC ′3
ρα−2

)
< 0 (by taking K > C1/C ′3)
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CHAPTER 5

General Preferential Attachment Models

In this chapter we study a more general contagions model—the general threshold

model which is parameterized by a distribution over the natural numbers, the collec-

tive influence from infected neighbors of an individual u, once beyond the threshold,

will trigger the infection of u. By varying the choice of the distribution, the general

threshold model can model cascades with or without the submodular property.

We provide both analytical and experimental results for how cascades from a

general threshold model spread in a general growing network model which contains

preferential attachment models as special cases. We show that if we choose the initial

seeds as the early arriving nodes, the contagion can spread to a good fraction of the

network and this fraction crucially depends on the fixed points of a function derived

only from the specified distribution. We also show that, using a coauthorship network

derived from DBLP databases and the Stanford web network, our theoretical results

can be used to predict the infection rate up to a decent degree of accuracy, while the

configuration models does the job poorly.

5.1 Introduction

Social Contagion Models. The general threshold model [104, 172] is a fairly

general model to capture such intuition. Each node v has a monotone function

gv : {0, 1}|Γ(v)| → [0, 1], where Γ(v) indicates the set of v’s neighbors in a social

network. The function gv represents how much influence (via knowledge, social pres-

sure, etc) any set of neighbors has upon node v. In the general threshold model, each

node also has threshold Rv drawn uniformly and independently from the interval

[0, 1]. After an initial seed set is infected, a node v becomes infected if gv(S) ≥ Rv

where S is the set of infected neighbors of v.

The general threshold model captures many other models as special cases. For
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example, a special case is the linear threshold model, in which each edge (u, v) has an

influence weight w(u, v), and the function gv is then the sum of the influence from

all infected neighbors of v. 1 Another example of a class of cascades captured by

the general threshold model is the independent cascade model [102]. In this model,

there is some fixed parameter ρ, and each infected node has one chance to infect each

uninfected neighbor node with probability ρ (iid).

We call contagions simple when the influence gv is submodular—that is gv(S
′ ∪

{x}) − gv(S ′) ≤ gv(S ∪ {x}) − gv(S), if S ⊆ S ′—and call contagions complex when

this fails to hold (e.g., contagions that require infection from multiple neighbors).

In a simple contagion, the effect of an additionally infected neighbor is marginally

decreasing. In a complex contagion, there could be an initial barrier such that no

activation is possible until the barrier is crossed. There can be synergy between

neighbors such that the total influence from them is not just a simple sum. If we

define f(S) as the expected number of infected nodes when the vertices in S are

chosen as the initial seeds, then if gv is submodular for all nodes, then f is submodular

as well [172].

The monotonicity and submodularity have greatly helped with the analysis of the

diffusion behavior with respect to the choice of seeds. In particular, one can apply

the greedy set cover algorithm to choose the set of k best seeds to maximize the final

scope of the contagion. This will give a 1−1/e approximation to the maximum scope

obtained by any k seeds. In contrast, for the general threshold model, this is a very

hard question and not much is known in the literature other than that is NP-hard to

even approximate [128]. The two special cases, the linear threshold model and the

independent cascade model, have received a lot of attention because they both have

the submodular property [128].

While this result has been well recognized and celebrated, a natural question one

may ask is whether the submodularity assumption holds in reality and whether the re-

sult can be generalized. Sociologists observe that in the case of the adoption of pricey

technology innovations, the change of social behaviors, and the decision to partici-

pate in a migration, etc [61, 156], an additional confirmation is crucial, suggesting

the model of complex contagion. In practice, threshold distributions are usually com-

puted from data of contagions by using the empirical fraction of agents who adopt

directly after r ties adopt, given that they had not previously. The distributions

found depend on which cascades are analyzed, however, this conditional probability

1Often an additional restriction is imposed that for all nodes v:
∑
u∈γ(v) w(u, v) ≤ 1 to ensure

that gv is always in [0, 1].
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typically increases with r until some small constant of at least 2, and then tapers

off.Examples include LiveJournal [18], DBLP [18], Twitter [199], and Facebook [229].

Some of these data sets indeed show diminishing return of the influence function, but

others do not. They find that the second affected neighbor often has more marginal

effect than the first. Additionally, the study in the Facebook data set shows that the

number of connected components in the infected neighbors is a much better predictor

on the probability of joining Facebook, compared to the number of infected neighbors.

Work done on complex contagions is much more limited and so far focused on a

simplistic single threshold model called r-complex contagions. In r-complex conta-

gions, all nodes have the same threshold r. A node becomes infected if and only if at

least r of its neighbors have been infected. It has been shown that a r-complex con-

tagion is generally slower and more delicate than simple contagion r = 1 [99, 83, 82].

One of the limitations of this r-complex contagion model is the dependency on the

fixed threshold r for all nodes in the network. In practice there are people who like

to try out new things and are more risk driven while others are risk averse. Therefore

the threshold function is not necessarily uniform.

In this paper we consider one step of generalizing the r-complex contagion model

by considering the threshold coming from a distribution R on positive intergers. The

initial adoption barrier can still exist which makes the adoption function to be non-

submodular. We provide analysis on the spreading behaviors on a general family of

networks that grow over time.

Stochastic Attachment Network Model. In addition to a model of cascade,

the model of network is also important. A lot of mathematical models have been

developed to capture some of the attributes of real world social networks. A celebrated

set of results are the family of small world graphs [179, 234, 133, 235, 134] and the

family of graphs that produce power law degree distribution [24, 135, 138, 139].

In this work we examine a growing network in which newcomers connect stochas-

tically to nodes already in the network. This family of networks, which we call the

stochastic attachment network model, has the preferential attachment network model

as a special case. In the preferential attachment models [24], nodes arrive in a se-

quential order. Each node chooses k edges from the nodes that arrive earlier. When

an edge is added, the neighbor is selected with probability proportional to its current

degree. This model generates graphs with a power law degree distribution and has

been used to explain the observations in web graphs and social networks. We examine

a more general model in which new edges are not necessarily preferentially attached

to existing nodes and each newcomer may have a varying number of edges. The key
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feature that is used in our analysis is that the network is formed over time, when new

nodes arrive sequentially and attach to existing nodes.

We study contagions on both directed and undirected version of the stochastic

attachment network. In the first case, we consider each edge issued by a newcomer

u as directional, pointing to an earlier node v. This edge can be interpreted as u

following edge v. A social contagion spreads in the reverse direction of an edge. This

models information spreading in Twitter-type social networks, in which messages or

information only travels along the direction of the edges. A node u will be influenced

only by the neighbors u follows and not the neighbors that follow u. In the second case,

all edges are treated as undirected, allowing contagions to spread in both directions.

For example, consider a co-authorship network in which a new researcher choose

to work with senior researchers/advisors, but here information or social influence is

bidirectional.

An additional consideration is where the initially infected nodes in the contagions

reside within the network structure. In this paper we consider the scenario when some

entity is trying to initiate a cascade. The entity is allowed to choose where the nodes

go. We model this case by letting the seed equal the first nodes (in arrival order) or

a subset of these nodes.

In our earlier work we show that due to the evolutionary nature r-complex con-

tagions spread to the entire network in preferential attachment models and the con-

tagion spreads very fast [82], when r < k and the first few nodes in the arriving

order are selected as the initial seeds in both the directed and undirected cases. This

paper provides significant generalizations in both models of contagions and models of

networks. The proof ideas are also completely new.

Our Results. In this paper we study the behavior of a contagion following a general

threshold model on both directed and undirected stochastic attachment graphs. We

provide the most detailed analysis in the case of preferential attachment and later

generalize to other scenarios.

We show that the number of infected nodes on preferential attachment model

depends critically on the threshold distribution R and the number of edges a new

node connect to existing nodes k. In the directed case of preferential attachment

model, we derive a function fk,R : [0, 1]→ [0, 1] describing the probability of the i-th

arriving node being infected, which depends only on a single number summarizing the

status of the nodes with earlier arriving order, i.e., their threshold and whether they

are infected or not. This function fk,R has fixed points, which may be either stable

or unstable. The ratio of the infected nodes in the network converges to one of these
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stable fixed points with high probability. When there are multiple fixed stable points,

the contagion may converge to any one of them with at least constant probability.

In the undirected case of preferential attachment model, we note that the number

of infected nodes will be no fewer than the directed case, since the edges can possibly

spread social influence both ways. However, we show something much stronger than

this, that, with high probability, the total number of infected nodes will always be

a constant fraction higher than the highest stable fixed point of function fk,R, when

non-zero stable fixed points exist.

We performed both simulations and experiments with real world data sets. On

various stochastic attachment graphs we observe the same behaviors as predicted in

theory. We also tested real world networks. We used two datasets, the coauthorship

network derived from DBLP database which is an undirected graph and the Stanford

web graph (which is naturally directed). On both datasets we infer the arriving order

by using k-core decomposition – i.e., removing nodes with degree k for k starting

from 1 recursively. We show that using the stochastic attachment model one can

get fairly accurate prediction of the contagion rate. On the other hand, if we use

the same degree distribution and generate a graph using the configuration model2,

the contagion behaviors differ significantly from that of the real netwrok. These

experiments confirm the validity and utility of our model and analysis in helping to

understand and predict contagions on real world graphs.

In this paper we consider the edges are considered directed or undirected. In the

directed case, each edge is issued by a node s and points towards a node t earlier in

the arriving order. We consider this as s following t. Thus the contagion propagates

in the reversed direction of edge (s, t). A node s is infected if the number of infected

nodes that t follows is greater than its threshold Rs. In the undirected case, the edges

are undirected and infection can happen in both directions.

5.1.1 Preliminary

Definition 5.1 (contagions model). Give a directed/undirected graph G = (V,E), a

set of initially infected nodes X ⊆ V , and a distribution over non negative integer R,

a General Threshold Contagion GTC(G,R, X) is a process (Xt)t≥0 over subset

of nodes. Initially, each node v samples a threshold Rv from the distribution R
independently, and X0 = X. The contagion proceeds in rounds. At each round t+ 1,

each node v with at least threshold number of, Rv, infected out-neighbors/neighbors

2In a configuration model we fix the degree distribution first and then match the half edges at
the nodes randomly.
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becomes infected,

Xt+1 = Xt ∪ {v ∈ V : v has Rv infected out neighbor}.

Note that nodes cannot be uninfected and the process is monotone the process

reaches its limit in |V | rounds. In this work, we are interested in the span of infection,

i.e. what is the fraction of infected nodes at the end, which can be written as |X∞|/|V |
where X∞ ⊆ V is the set of nodes eventually infected.

In this paper we mostly consider preferential attachment model (Definition 2.51),

and the edges are considered directed or undirected. In the directed case, each edge

is issued by a node s and points towards a node t earlier in the arriving order. We

consider this as s following t. Thus the contagion propagates in the reversed direction

of edge (s, t). A node s is infected if the number of infected nodes that t follows is

greater than its threshold Rs. In the undirected case, the edges are undirected and

infection can happen in both directions.

5.2 Directed preferential attachment models

In this section, we analyze the general threshold contagion models GTC(G,R, X) on

a directed preferential attachment graph, G ∼ PAk(n). In this paper the initial seeds

are chosen as a fraction (or all) of the first few nodes.

Instead of considering the sampling of graph and contagions separately, we couple

these two processes together: Each node is only evaluated once. The first k nodes are

the initial seeds X. We start at node of index k+ 1 and process each of the following

nodes in their order of arrival in the graph. When a node is being processed we reveal

both its threshold and its outgoing edges, and based on its threshold and the status

(being infected or not) of its outgoing edges, it is determined if the current node will

be infected or not. To evaluate this probability we give some definitions.

Assume that node t is the t-th node in the arrival order in G. Let Vt−1 be the set

of first t− 1 nodes in G and Xt−1 be the set of infected nodes in Vt−1. If t’s threshold

is Rt = r, t is infected if and only if among the k edges t issues, at least r of them

land in nodes in Xt−1. Now give a specific edge of t, we define Yt as the probability

that this edge lands in an infected node (e.g., in Xt−1). Under preferential rule, Yt

is the ratio of the infected degree Yt =
∑

s∈Xt−1
deg(s)/

∑
u∈Vt−1

deg(u). Recall that

deg(s) = deg(s; t) is the total degree of each node s (counting both incoming and

outgoing edges).
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Next we can compute the probability of node t being infected when its threshold

is Rt = r. For that to happen, among the k (out) edges of t, at least r of them need

to land on a node in Xt−1.

Pr[t is infected | Rt = r] =
k∑
`=r

(
k

`

)
Y `
t (1− Yt)(k−`) (5.1)

Now, the probability of infection of node t can be described by a function fk,R:

fk,R(y) =
∑
r

Pr
R

(r)
k∑
`=r

(
k

`

)
y`(1− y)(k−`), (5.2)

such that Pr[t is infected] = fk,R(Yt). Thus, the random process (Yt) for t = k+1, ..., n

is a Markov chain. Moreover fk,R is a non-decreasing polynomial function from [0, 1]

to [0, 1]. (c.f. appendix B.1). By Brower’s fixed point theorem fk,R has fixed points

in [0, 1]. We will show that the behavior of the contagion depends crucially on the

fixed points of this function fk,R.

5.2.1 Main Results for Directed Preferential Attachment

Now we state the main theorem that characterizes the behavior of general threshold

contagion on preferential attachment graphs PAk(n).

Theorem 5.2. Given natural numbers n and k, a distribution R of threshold, and

a set of initially infected nodes X ⊂ [k], the ratio of infected degree Yn of the general

threshold contagion GTC(PAk(n),R, X) depends on the values of the fixed points of

function fk,R in Equation (5.2) as follows:

1. If fk,R(x) has a unique fixed point y∗ which is stable, Yn converges to y∗ as n

large enough.

(a) For all δ > 0 and ε > 0, there exists τ0 = O
(

log(1/δ)
ε2

)
, such that for all

n ≥ τ0

Pr[|Yn − y∗| > ε] ≤ δ

(b) If fk,R
′(y∗) < 1, then for all γ, 0 < γ < (1− fk,R′(y∗))/2, we have

|Yn − y∗| = OP (n−γ).
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That is for any δ > 0 there exists M > 0 and τ0 such that for all n ≥ τ0,

we have Pr[|Yn − y∗| > Mn−γ] < δ.

2. If fk,R(x) has a finite number of fixed points, then limn→∞ Yn exists almost

surely, and

Pr
[

lim
n→∞

Yn ∈ Sfk,R ∪ Tfk,R
]

= 1.

3. If fk,R(x) has an infinite number of fixed points, the process {Yt} is a martingale

and converges almost surely to some random variable Y .

5.2.2 Proof outline of Theorem 5.2

Let’s first understand the fixed points of function fk,R and the recursive structure for

Yt, i.e., the probability for a specific edge from the t-th arriving node landing on an

infected node.

Assume that t nodes have arrived and picked their edges. Given information Ft
at time t which consists of the subgraph PAk(t) and all the threshold of nodes with

index smaller than t, we want to compute the value of Yt+1 when the t+ 1-th node is

added. For this there are three components that contribute to Yt+1:

• First from previous steps we have 2ktYt infected degrees.

• If the new added node t+ 1 is infected, then the k degrees of the edges that

t+ 1 issues are infected. Thus, t+ 1 will contribute kfk,R(Yt) infected degree

in expectation, where fk,R(Yt) is the probability of t+ 1 being infected.

• When t+ 1 is added, it issues k edges to previous t nodes. Some of these

neighbors are already infected, so the new edges will contribute kYt degrees in

expectation.

Let Bin(n, p) be the random variable following binomial distribution, i.e., the total

number of successful events out of a total of n events when each event succeeds with

probability p independent of the others. Hence we get the following recurrence: for

all k < t ≤ n

(2k(t+ 1))Yt+1 | Ft = 2ktYt + Bin(k, Yt) + k · Bin(1, fk,R(Yt)).

Note that |Yt+1−Yt| ≤ 1/(t+ 1), and it can be decomposed as predictable part g and

noise part U :

Yt+1 − Yt | Ft =
1

t+ 1
(g(Yt) + Ut+1) (5.3)
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where

g(y) =
1

2
(fk,R(y)− y), and (5.4)

Ut+1 =
1

2

(
Bin(k, Yt)

k
+ Bin(1, fk,R(Yt))− Yt − fk,R(Yt)

)
(5.5)

Define Ws =
∑s

t=k+1 Ut/t. Because E[Ut+1|Ft] = 0 and |Ut+1| ≤ 1, {Wt : k < t ≤ n}
is a martingale and we can rewrite the process as:

Yt = Yk +
t∑

s=k+1

1

s
g(Ys−1) +Wt, for t ≥ k (5.6)

Now we present an outline of our proof.

• For Theorem 5.2 1a and 1b, we consider the function fk,R only has a single fixed

point y∗. The main observation of the proof is the noise term Wt is Cauchy-

like(Lemma 5.3). That is given ε > 0 there exists a large enough τ such that

for all τ < s < t the different between |Wt −Ws| is smaller than ε. Therefore,

the behavior of Yt in Equation (5.6) can be approximated by ignoring Wt.

– With this observation, for Theorem 5.2 1a, given ε, δ > 0 we show the

predictable part g(Yt) along will push the process Yt toward the stable fixed

point y∗, and afterward it will stay in the neighborhood (y∗ − ε, y∗ + ε)

forever with large probability. We present the proof in Section 5.2.3

– For Theorem 5.2 1b, we consider the fixed point y∗ is not only a stable

fixed point, but also hyperbolic, fk,R
′(y∗) < 1. In this case, instead of just

staying in some fixed neighborhood (y∗ − ε, y∗ + ε), we show process Yt

converges to y∗ asymptotically, and the convergence rate depends on the

slope of fk,R at y∗. We present the proof in Section 5.2.4.

• For multiple fixed point, we show the limit behavior, limt→∞ Yt. In Theo-

rem 5.2 2, we show if fk,R has finite fixed points, the process Yt converges to

stable and touch points in probability. In Theorem 5.2 3, we also show if fk,R

has infinite fixed points, the process Yt is a martingale and converges to some

random variable. We defer the proofs in appendix (Section B.2).

5.2.3 Proof of Theorem 5.2 1a

We first analyze the case when fk,R has a unique stable fixed point (Theorem 5.2 1a).
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Given an interval D(y∗, ε) of length 2ε centered at the fixed point y∗ of the function

fk,R, we will show that the process will stay in the interval with probability 1 − δ)
after some time τ = O(ε−2 log 1/δ).

Our proof has two parts. First, Lemma 5.3 shows that the noise part, Wt in

Equation (5.6), is Cauchy-like. This says that after a sufficiently large time τ0 the

distance of two noise terms, |Ws −Wt|, for s > t > τ0, would be small. Second, in

Lemma 5.4, given an interval D(y∗, ε), if at certain time τ0 the noise part is smaller

than the width of the interval, then after O(τ0) time the process will stay within

D(y∗, ε) forever with large probability. The proofs of the two Lemmas can be found

in Appendix B.2.

Lemma 5.3. Given δ0, ε0 > 0, there exists τ0 = 2
ε20

ln(1/(2δ0)) such that for all

s > t > τ0, Pr[|Ws −Wt| > ε1] < δ1.

Now we are ready to prove the Theorem 5.2 1a. Here we give a stronger result.

Lemma 5.4. Let y∗L = min{y ∈ Qfk,R} and y∗H = max{y ∈ Qfk,R}. For all δ > 0

and ε > 0, there exists τ = O
(

log(1/δ)
ε2

)
Pr[∀n ≥ τ, y∗L − ε ≤ Yn ≤ y∗H + ε] ≤ δ.

It’s easy to see Theorem 5.2 1a is a special case of the above lemma since Qf only

contains a fixed point, so y∗ = y∗L = y∗H .

5.2.4 Proof of Theorem 5.2 1b

Theorem 5.2 1b is a stronger result than Theorem 5.2 1a. It says that when the fixed

point y∗ is hyperbolic, fk,R
′(y∗) < 1, the process {Yt} will converge to the fixed point

y∗ with polynomial convergence rate with probability arbitrarily close to 1.

We decompose the process into two phases: In the first phase with large probability

the process would enter and stay in the good interval D(y∗, ε) which will be defined

later; in the second phase the process would approach y∗ fast.

Now we define the good interval D(y∗, ε). By the definition of γ we have 0 < γ <
1−fk,R′(y∗)

2
, and take ρ > 0 small enough such that 1 ≥ (1− γρ)(1 + ρ)γ. Furthermore,

we take γ1, γ2 such that γ < γ2 < γ1 < |g′(y∗)| ≤ 1/2. We define ε > 0 such that

x ∈ (y∗, y∗ + ε], g(x) < −γ1(x− y∗), and x ∈ [y∗ − ε, y∗), g(x) > γ1(y∗ − x). (5.7)
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By Lemma 5.4, it’s not hard to see the process will enter and stay in the good

interval D(y∗, ε). For the second phase, we define a random sequence (et) and two

reference sequences (αt) and (βt). Given constants A and B specified later,

αt =
A

tγ
, βt =

B

tγ
, and et = |y∗ − Yt|. (5.8)

We will prove after time τ0 the distance between Yt and the fixed point y∗ can be

bounded by βt with large probability which completes the proof.

Proof. For the first phase, given ε defined in (5.7), for any ε′ < ε, there exists a

constant τ0 such that Yτ0 ∈ D(y∗, ε′) with probability 1− δ/2 by Lemma 5.4. For the

second phase, we focus on the process Yt for time between σ and (1 + ρ)σ. We first

pick A such that ε′ = ατ0 , so eτ0 ≤ ατ0 . If et ≤ αt for all t ≥ τ0, we are done, since

αt = O(1/tγ). On the other hand, if there exists a bad transition σ > τ0 such that

eσ−1 ≤ ασ−1 and eσ > ασ, we want to show with probability 1 − exp (−C ′σ1−2γ) (1)

there exists τ between σ and (1 + ρ)σ such that the deviation eτ is smaller than ατ

and (2) the deviation et between σ and (1 + ρ)τ are smaller than βt. Formally,

Pr [∃τ, ∀t, σ ≤ t < τ ≤ (1 + ρ)σ, eτ ≤ ατ ∧ et ≤ βt | eσ > ασ] = 1− exp
(
−C ′σ1−2γ

)
(5.9)

The arguments for the above two claims are similar to Lemma 5.4. The first one is

more complicated, so we first present this one.

Part 1 Suppose

∀σ < s ≤ (1 + ρ)σ, es > α(1+ρ)σ (5.10)

We want to reach a contradiction. By the property of τ0, we have Yτ0 ∈ D(y∗, ε′). By

taking ρ and d′ small enough we have Ys ∈ D(y∗, ε) for all σ < s < (1+ρ)σ. Moreover

by (5.7) and definition of ρ we have α(1+ρ)σ ≥ (1− γρ)ασ, and

g(Ys) ≥ γ1α(1+ρ)σ ≥ γ1(1− γρ)ασ. (5.11)

Because the diameter of interval D(α(1+ρ)σ) is greater than 1/t for all σ ≤ t, we can

assume the process Yt is either greater than y∗ + α(1+ρ)σ or below y∗ − α(1+ρ)σ, and

remove the absolute value. Suppose all Yt are above y∗ + α(1+ρ)σ. By Equation (5.6)

e(1+ρ)σ ≤ Yσ−y∗+Y(1+ρ)σ−Yσ ≤ ασ−1 +
1

σ
+

(1+ρ)σ∑
t=σ+1

1

t
g(Yt−1)+(W(1+ρ)σ−Wσ). (5.12)
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The last inequality holds because after the bad transition σ eσ is still close to ασ−1.

Combining (5.10) (5.11) and (5.12) we have

(1− γρ)γ1ασ

(1+ρ)σ∑
t=σ+1

1

t
+ α(1+ρ)σ − ασ−1 −

1

σ
< W(1+ρ)σ −Wσ

which gives an lower bound on the noise W(1+ρ)σ −Wσ, and it’s sufficient to give a

lower bound on the left hand side.

(1− γρ)γ1ασ

(1+ρ)σ∑
t=σ+1

1

t
+ α(1+ρ)σ − ασ−1 −

1

σ

≥(1− γρ)γ1ασ ln

(
(1 + ρ)σ

σ + 1

)
+ α(1+ρ)σ − ασ−1 −

1

σ
(integral test)

≥(1− γρ)γ1ασ

(
ρ+ o(ρ) +O

(
1

σ

))
+ α(1+ρ)σ − ασ−1 −

1

σ
(small ρ and large σ)

≥
[
(1− γρ)γ1

(
ρ+ o(ρ) +O

(
1

σ

))
+ (1− γρ)− 1

]
ασ −O

(
1

σ

)
≥
[
(γ1 − γ)ρ+ o(ρ) +O

(
1

σ

)]
ασ −O

(
1

σ

)
≥ (γ2 − γ)ρασ

With small enough ρ, we have

Wσ −W(1+ρ)σ ≥
(
(γ2 − γ)ρ

)
ασ

With Azuma-Hoeffding inequality in Theorem 2.18, there exist constants C and C ′

such that

Pr[Wσ −W(1+ρ)σ ≥
(
(γ2 − γ)ρ

)
ασ] ≤ exp

(
−(γ2 − γ)2ρ2α2

σ
C
σ

ρ
1+ρ

)
≤ exp

(
−C ′σ1−2γ

)
.

The last inequality is true because γ < 1/2 and σ ≥ τ0 = Θ (lnn). Therefore we

prove the first claim,

Pr [∃τ, σ < τ ≤ (1 + ρ)σ, eτ ≤ ατ | eσ > ασ] = 1− exp
(
−C ′σ1−2γ

)
. (5.13)

Part 2 For the second claim, we wan to show the deviation et from σ to (1 + ρ)σ

are smaller than βt. It is identical to the above proof. Given ρ and A we can take

B large enough such that β(1+ρ)σ ≥ 3ασ which is independent to σ. Suppose there
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exists t where σ < t ≤ τ such that et ≥ βt. Using similar argument in (5.12) we have

3ασ ≤ et ≤ ασ +
1

σ
+Wt −Wσ.

By Azuma-Hoeffding inequality (Theorem 2.18), Pr[Wt−Wσ ≥ ασ] = exp (−C ′σ1−2γ),

so

Pr [∃∀t, σ ≤ t ≤ (1 + ρ)σ, et ≤ βt | eσ > ασ] = 1− exp
(
−C ′σ1−2γ

)
(5.14)

which proves (5.9) by taking union bound of (5.13) and (5.14).

By union bound on (5.9) on all possible bad transition σ, we have

Pr[∀t ≥ τ0, Yt ≤ βt] ≥ 1− δ

2
−

n∑
s≥τ0

exp
(
−C ′s1−2γ

)
≥ 1− δ

by taking constant τ0 large enough.

5.3 Undirected Preferential Attachment Graphs

In this section, we analyze the fraction of infected degree Ȳn when the underlying

network is an undirected preferential attachment graph P̄Ak(n). Here we categorize

the behavior of Ȳn based on the values of the stable fixed points of the directed version

of Yn.

Theorem 5.5. Let GTC(P̄Ak(n),R, X) be the general threshold contagions on an

undirected preferential attachment graph P̄Ak(n), Ȳn be the infected ratio, and fk,R(y)

defined on a directed PAk(n) in Equation (5.2). We have:

1. If 1 ∈ Qfk,R, 0 /∈ Qfk,R, and the initial infected nodes X 6= ∅, then the whole

network will be infected, i.e., Pr[Ȳn = 1] = 1− o(1).

2. If 0, 1 /∈ Qfk,R and y∗H = max(Qfk,R) which is a stable fixed point, there exists

a constant ∆ > 0 such that Ȳn converges to a value greater than y∗H with high

probability,

Pr[Ȳn > y∗H + ∆] = 1− o(1).

5.3.1 Proof outline

The theorem shows the fraction of infected degree on undirected preferential attach-

ment graph is constantly larger than the one on directed cases. To show this lower
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bound, in our proof, we will restrict how the contagion can proceed, which will serve

to establish a lower bound for the infection ratio of the undirected contagion.

First we only consider the contagion passing from low indexed nodes to high

indexed nodes – just as in the directed case; then we only consider the contagion

passing from high indexed nodes to low indexed nodes. We call these two processes

the forward and backward processes respectively. We will repeat these processes

twice. Each time, we only need to reveal the edges that can help spread an infection

(i.e., the edges that point to an infected node), and the remaining edges are revealed

later. We will use this to carefully manage (in)dependence so that we may employ

concentration bounds.

The intuition in the analysis is the following. The first forward process is essen-

tially the same as the directed contagion case. If there are non-zero stable fixed points

then the contagion will infect a constant fraction of nodes. In fact, since the stochas-

tic process in the directed case converges fast, among the nodes of high indices there

is a good fraction of infected nodes and these infected nodes are roughly uniformly

distributed. Therefore in the first backward process, these nodes will infect the nodes

with small indices with high probability, which will continue to boost the propagation

in the next forward round. The following analysis will make this rigorous.

Figure 5.1: Let τ1 = C1 log(n) and τ2 = C2n where constants C1 and C2 will be
specified later. In our first forward/backward process, we will actually only process
nodes from 1 to τ2 and back to 1, but in the second round, we will process all nodes
with index from 1 to n and back down to 1.

For the sake of the proof, we divide these processing steps up into three phases

and present them in the following subsections. The goal is to show that some specific

properties happen at the end of each phase:

1. First forward and backward contagion: Run the infection in the forward direc-

tion from node 1 to the node with index τ2. For each node t ≤ τ2, we set IFt
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as the indicator variable of the node being infected in the first forward pro-

cess. We also use Y F
t be the fraction of infected degree in the first forward

infection of all nodes with index between 1 and t. Then we run the backward

contagion from τ2 back to 1. Define IFBt and Y FB
t accordingly. Lemmas 5.7

and 5.9 show that all the first τ1 node will be infected with high probability,

i.e., Pr[Y FB
τ1

= 1] = 1− o(1) is high.

2. Converge to highest fixed point: Conditioned on Y FB
τ1

= 1, run the second

forward infection to node τ2 again. We show that the infection ratio after the

first τ2 nodes, denoted by Y FBF
τ2

, is around the highest stable fixed point y∗H
(Lemma 5.10).

3. Constant separation: Conditioned on the infection ratio Y FBF
τ2

being around the

highest stable fixed point, y∗H , run the infection in the forward direction from

τ2 to n and backward from n to 1 to show that the infection fraction, Y FBFB
n ,

is incremented by a constant in the second backward round (Lemma 5.11 and

5.12).

Let MF
y (s, t) be the event that all nodes with index within (s, t] are infected with

probability greater than y after the first forward process. Similarly define MFB
y (s, t)

and MFBF
y (s, t) accordingly after the first backward process and the next forward

process respectively. Recall that deg(s; t) be the degree of node s at time t. For

example deg(s; s) = k, deg(s;n) = deg(s), and deg(s;n)− deg(s; t) is the number of

neighbor in (t, n].

5.3.2 First forward and backward contagion

After the first forward phase, the fraction of infected degrees is a positive constant,

around one of the (non-zero) stable fixed point. The crucial part is to examine what

happens in the first backward phase. We use two facts: fixing a node t, t ≤ τ1, all

neighbors of node s > τ1 will still have a large probability to get infected, in the

first forward phase (proven in Lemma 5.7); furthermore, with a fact that with high

probability, early nodes have large degree (proven in Lemma 5.8). Finally, we use

a union bound to prove that all nodes t where t ≤ τ1 will get infected with high

probability. Some of the technical proofs are in the appendix.

Before jumping into the proof, note that by Lemma 5.4 we have MF
y (t, n) happens

with very high probability. Formally,
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Corollary 5.6. Given δ, ε and y, if δ, ε > 0, y < minQfk,R − ε, then there exists

τ = O
(

log 1/δ
ε2

)
such that

Pr
[
MF

y (τ, n)
]
≥ 1− δ.

Moreover, by the definition, for all y and s ≤ s′ < t′ ≤ t ≤ n, MF
y (s′, t′) ⊆MF

y (s, t).

Lemma 5.7 (Uniform infection). Given an arbitrary node s ≤ τ1, for all t such that

τ1 < t ≤ τ2. Let 0 < y < y∗L = minQfk,R and N(t, s) be the event that node t connects

to s. Then there exists a constant q∗ > 0 such that for all Ft−1 we have

Pr
[
IFt = 1 | Ft−1,M

F
y (τ1, τ2), N(t, s)

]
≥ q∗.

Informally, this lemma ensures t has constant probability to be infected given t

being a neighbor of s, N(t, s). The following lemma show the number of neighbor

between τ1 and τ2 is large. Note that the quantities deg(s; τ2)− τ(s; τ1) greater than

deg(τ1; τ2)− k, and the degree of τ1 can be computed directly.

Lemma 5.8 (Degree lower bound). If s ≤ τ1,

Pr [deg(s; τ2)− deg(s; τ1) < log log(n)] = o

(
1

log2(n)

)
.

Applying Lemma 5.7 and Lemma 5.8, we will finish the first phase by proving

that Y FB
τ1

= 1 with high probability.

Lemma 5.9. Given the network generated by the preferential attachment model with

only the top τ2 nodes, P̄Ak(τ2),

Pr
[
Y FB
τ1

= 1
]
> 1−O(1/ log τ2)

over the randomness of PAk(τ2) and thresholds of the first τ2 nodes.

5.3.3 Converge to the highest fixed point

Now we enter the second phase to show that the ratio, Y FBF
τ2

will be around the

highest stable fixed point y∗H . We consider the following two events:

1. Event Y FB
τ1

= 1;

2. Event that Y FBF
τ2

would be around the highest stable fixed point y∗H conditioned

on Y FB
τ1

= 1.
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The intersection of these two events is what we want to prove. Since the first event

happens with probability at least 1 − o(1) by Lemma 5.9. The second event can be

shown through the identical argument in Lemma 5.4.

Lemma 5.10. Let y∗H be the highest fixed point of fk,R which is stable. Conditioned

on Y FB
τ1

= 1, for all ε > 0,

Pr
[
|Y FBF
τ2

− y∗H | ≤ ε
]

= 1− o
(

1

n

)
.

5.3.4 Constant separation phase

Finally, for the third phase, we reveal the edges from node τ2 to n, and show that

the infected ratio Y FBFB
n after the second backward contagion will have a constant

improvement, i.e., Y FBFB
n > y∗H + ∆ where ∆ > 0 is independent of n.

Let XFBF be the set of infected nodes after the second forward infection, and

ZFBF = {s ≤ τ2 : s /∈ XFBF}. Given a node s ∈ ZFBF , let IFBFBs be the indicator

function that node t is not infected during the second forward infection but getting

infected in the second backward infection. First note that the extra infected degree

is lower bounded by
∑

s≤τ2 deg(s; τ2)IFBFBs ,

Y FBFB
n ≥ Y FBF

n +
1

2kn

∑
s≤τ2

deg(s; τ2)IFBFBs .

so it is sufficient to show the random variable L =
∑

s∈ZFBF deg(s; τ2)IFBFBs is Ω(n)

with high probability. We use the second moment method to show this claim in

Lemma 5.13 with the following two components:

1. E[L] is large. We first show for all s ∈ ZFBF the probability of getting infected in

the second backward infection is large by argument similar to the first backward

contagion. Second, by Lemma 5.10, with high probability Y FBF
τ2

is strictly

smaller than 1 so the number of uninfected degree is large,
∑

s∈ZFBF deg(s; τ2) =

Ω(n).

2. Var[L] is small. In Lemma 5.12, we show the indicator functions IFBFBs are

negative correlated, so the variance of L is smaller than the sum of variance of

IFBFBs .

The proof of these lemmas can be found in the Appendix B.3.
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Lemma 5.11 (Expectation). If τ2 = C2n, then there exists y < y∗H and C2 > 0 such

that for all s ≤ τ2 that is uninfected before the second backward infection

E
[
IFBFBs | Fτ2 ,MFBF

y (τ2, n)
]
≥ 1

4
.

Moreover, for all d, E
[
IFBFBs | Fτ2 ,MFBF

y (τ2, n), deg(s; τ2) ≥ d
]
≥ 1−O

(
1√
d

)
.

The moreover part ensures the high degree nodes also have high probability get

infected. Combining this observation and the negative correlation in Lemma 5.12, we

can show the variance of L is small.

Lemma 5.12 (Negative correlated). For all s and t smaller than τ2,

E
[
IFBFBs IFBFBt | Fτ2

]
≤ E

[
IFBFBs | Fτ2

]
E
[
IFBFBt | Fτ2

]
.

Lemma 5.13 (Second moment method). Given Fτ2 such that Y FBF
τ2

< 1
2
(1 + y∗H),

then

Pr

[∑
s≤τ2

deg(s; τ2)IFBFBs ≥ ∆n | Fτ2 ,MFBF
y (τ2, n)

]
≥ 1− o(1).

Now we can prove Theorem 5.5:

Proof of Theorem 5.5. The first part of the proof is derived from Lemma 5.9 since

Yτ1 = 1 with high probability and f(1) = 1 is a fixed point, then all the nodes after

τ1 will get infected and Pr[Yn = 1] = Pr[Yτ1 = 1] = 1 − o(1) by argument similar to

Lemma 5.10.

In second part, by Lemma 5.9 and 5.10 Y FBF
τ2

< 1
2
(1 + y∗H) happens with high

probability, and we finish the proof by applying Lemma 5.13. By union bound, the

event fails with probability less than 1− o(1).

5.4 General threshold cascade on stochastic at-

tachment graph

In this section, we show how to extend our result (Theorem 5.2) to a general family

of time evolving graph, stochastic attachment graph.
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5.4.1 Stochastic attachment graphs

We can generalize preferential attachment models PAk(n) in two axes: the outgoing

degree of each node can be different, and the attachment rule.

Definition 5.14 (attachment rule). An attachment rule A is a random function

mapping from a graph G(V,E) to a node in the graph. For example,

uniform Pr[Au(V,E) = v] = 1/|V | for all v ∈ V .

preferential Pr[Ap(V,E) = v] = deg(v)/(2|E|) for all v ∈ V .

α-mixture Given α ∈ [0, 1], the attchment rule is the mixture between uniform and

preferential attachment Pr[Aα(V,E) = v] = α deg(v)/(2|E|) + (1− α)1/|V | for

all v ∈ V .

Definition 5.15 (Stochastic attachment model). Given a distribution K over integers

with support supp(K) between 0 and KH , n > KH , and an attachment rule A, the

Stochastic Attachment Model , SAK,A(n) is a distribution over directed graphs

with n nodes. SAK,A(n) generate Gn = (Vn, En) as follows:

1. Set Vn = [n] = {1, 2, . . . , n} and E = ∅, and we call node s is earlier than node

t if s < t.

2. Let EKH+1 consists of the edge between the first KH +1 nodes, {1, . . . , KH +1},
which forms a (KH + 1)-clique. We set GKH+1 := ([KH + 1], EKH+1).

3. At each subsequent step t + 1 > KH + 1, given Gt = ([t], Et) the node t + 1

samples a number k from the distribution K, chooses w1, w2, . . . , wk vertices

according to the attachment rule A(Gt) independently,3 and adding k new edges

(t+ 1, w1), . . . , (t+ 1, wk). We call the resulting graph Gt+1 = ([t+ 1], Et+1).

Note that the preferential attachment model is a special case, PAk(n) = SAk,Ap(n)

where Ap is the preferential attachment rule, K is a constant k.

5.4.2 General threshold contagions on directed stochastic at-

tachment graph

The analysis we did before is for the case of preferential attachment graph. Here

we give the analysis for the more general case, when 1) the number of edges of the

3This may cause multiple edges.
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newcomer to previous nodes is sampled from a bounded distribution K with range

between 1 and KH and E[K] = µK ; 2) when the attachment rule can be either

preferential or uniformly at random.

Preferential attachment rule Similar to the analysis in Section 5.2, we first

look at the case of preferential attachment when each newcomer may choose different

number of edges from a common distribution K. Now we consider {(Zt, Yt) : KH+1 ≤
t ≤ n} where Zt is the total degree of graphGt normalized by µK , and Yt is the fraction

of infected degree before node t arrives. Similarly, we can compute the probability of

the t-th node being infected when the threshold is Rt = r and kt = k edges go to the

previous nodes Vt−1,

Pr[t is infected | Rt = r, kt = k] =
k∑
`=r

(
k

`

)
Y `
t (1− Yt)(k−`)

Using the same argument as in Section 5.2, we have

Yt+1 − Yt =
1

µKZt+1

(
Bin(kt, Yt) + kt Bin

(
1,

kt∑
`=Rt

(
kt
`

)
Y `
t (1− Yt)(kt−`)

)
− 2ktYt

)
.

(5.15)

In analogous to Theorem 5.2 2, we define a deterministic function fpK,R(y) as the

expectation of 1
µK

(
Bin(kt, Yt) + kt

∑kt
`=Rt

(
k
`

)
Y `
t (1− Yt)(k−`) − 2ktYt

)
given Yt = y.

With some rearrangement, we have

fpK,R(y) =
1

µK
EK,R

[
k

k∑
`=r

(
k

`

)
y`(1− y)(k−`)

]
− y.4 (5.16)

Intuitively, we can expect the process Yt converges to the zeros of fpK,R. Although

the total degree Zt is a stochastic process, the asymptotic behavior is rather simple,

Zt = Θ(t) with probability 1. We can achieve an analogy to Theorem 5.2 2.

Uniform attachment rule Let Yt be the fraction of infected nodes. Using the

same argument, we have

Yt+1 − Yt =
1

t+ 1

(
Bin

(
1,

kt∑
`=Rt

(
kt
`

)
Y `
t (1− Yt)(kt−`)

)
− Yt

)
, (5.17)

4Note that if K is constant k fpK,R(y) reduces to fk,R defined in (5.2)
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and we can also define a deterministic function fuK,R(y) to be

fuK,R(y) = EK,R

[
k∑
`=r

(
k

`

)
y`(1− y)(k−`)

]
− y, (5.18)

such that E[Yt+1 − Yt | Yt = y] = 1
t+1
fuK,R(y).

Now we are ready to state the theorem, and the proofs are deferred to appendix

(Section B.4).

Theorem 5.16. Given a natural number n, a distribution K of out degree, a distri-

bution R of threshold, and a set of initially infected nodes X ⊂ [KH ], the infection

of general threshold contagion on stochastic attachment models depends on the fixed

points of certain functions. Specifically,

1. For preferential attachment, the fraction of infected degree of the general thresh-

old contagion GTC(SAK,Ap(n),R, X), Yn defined in (5.15), converge almost

surely to the stable fix point of fpK,R defined in (5.16).

2. For uniform random attachment, the fraction of infected node of the general

threshold contagion GTC(SAK,Au(n),R, X), Yn defined in (5.17) will converge

almost surely to the stable fix point of fpK,R defined in (5.18).

5.5 Simulations

We ran simulations on model networks and real world data sets to understand the

behavior of a general threshold contagion and its dependency on threshold distribution

D, the network structure, and the selection of initial seeds.

Model networks We generate graphs using the stochastic attachment model and

run a contagion in both the directed and undirected version. We use two threshold

distributions R1 and R2. In R1, the probability of taking a threshold of 1, 2, 7 is

0.22, 0.39, 0.49 respectively; in R2, the probability of taking a threshold of 1, 2, 5, 7

is 0.1, 0.4, 0.45, 0.05 respectively. Using definition of function f in Equation 2, with

m = 5 and R1, f has one fixed point equal to 0.558.With m = 6 and R2, f has two

fixed points 0.875 and 0.521. In each run of the simulation, we vary I to be a fraction

β ∈ [0, 1] of a constant number of the first 6 nodes for R1 and first 7 nodes for R2 of

the network.

Directed network. We create a network G1 based on Definition 2.51, in which

each newcomer choose m edges that are preferentially attached to earlier nodes. G1
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Figure 5.2: Contagion using threshold distribution R1 in (Left) and R2 in (Right)
with different initial seeds on the directed preferential attachment graph.

Figure 5.3: Contagion using threshold distribution R1 in (Left) and R2 in (Right)
with different initial seeds on undirected preferential attachment graph.

is directed, each edge pointing from a high indexed node to a low indexed node.

Figure 5.2 show the results of running a contagion over G1 using R1 and R2 with

different sets of seeds. For different runs, the ratio of infected nodes converges to one

of the stable fixed points. When f has multiple fixed points (as in the case of R2),

the way that the first few nodes are infected typically determine the infection rate of

the entire network.

Undirected network. We take G1, make all edges undirected, call it G2. Then we

run contagion in alternating forward and backward steps. See Figure 5.3. The first

forward step behaves the same way as contagion on the directed network. The first

backward step uniformly infects more nodes everywhere. In the case of R2, the next

foward phase infects a large number of nodes. Additional steps do not change the

infection state much.

DBLP and Web graphs We use two real world networks: the Stanford web graph

(a directed network) and the DBLP co-authorship network (an undirected network).

1. Stanford web graph: Each node represents a page from Stanford University

(stanford.edu) and there is a directed edge from u to v if u has a hyperlink to

v. The network contains 281,903 nodes and 2,312,497 edges.
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2. DBLP co-authorship network: The nodes are authors and there is an undirected

between two nodes if they have published at least one paper together. This data

set has 317,080 nodes and 1,049,866 edges.

To understand contagion on real networks, we first try to fit our stochastic at-

tachment graph model. For that, we generate an arriving order from the real world

graphs. There can be multiple ways to do so. Here we iteratively remove the lowest

degree node, with ties broken arbitrarily. Then we take the reversed order and use it

as the arriving order of the nodes. If the network is directed, we iteratively remove

the node of lowest in-degree. Next, each node v has a degree dv referring to the

number of edges to the lower indexed nodes. We collect all such degrees dv, ∀v, and

use it for the outgoing degree distribution M . Then we generate a network G′ using

the stochastic attachment model with outgoing degree distribution M . Here, we set

the number of nodes of the network to be 300, 000, which is almost the same as the

number of nodes in both Stanford and DBLP data sets. We create a complete graph

of m nodes, where m is the expectation of the outgoing degree distribution M , which

is 6 for the Stanford data set and 3 for the DBLP data set. For the attachment rule

we introduce a parameter α ∈ [0, 1] as the probability that an edge is attached using

the preferential rule. If α = 0 all edges are attached uniformly at random; if α = 1

all edges are attached preferentially. In experiments, we use α = 0, 0.25, 0.5, 0.75, 1.

For contagion model, we take two approaches. First, we take R, the threshold

distribution to be the Poisson distribution with parameter λ. We start each of the

experiments from λ = 1 and increase its value until the total infection rate of the

network drops below 1%. Second, we run a k-complex contagion model, in which all

nodes have threshold k. We take seeds as the 25 lowest indexed nodes.

We run these two contagions over both real networks and their corresponding

generated model networks. For comparison, we also generate a network using the

configuration model following the same degree distribution of the real world network.

Figure 5.4 shows the results where the threshold distribution is a Poisson one. It

can be observed that the behavior of contagion on the generated stochastic attachment

graph (especially the one with α = .75) matches the behavior of the real world

graph fairly well, while the configuration model (though having the same degree

distribution) does so poorly.

Figure 5.5 shows the results for k-complex contagion. Our models, though with

infection rate shifted away from the behavior of the real world graph, is still much

better than the behavior of configuration model (for which the infection rate is zero

for any k complex contagions, k ≥ 2). In particular, we believe this is partly due to
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Figure 5.4: Contagion on (Top) Stanford web graph and (Bottom) the DBLP coau-
thorship graph, stochastic attachment models and configuration models.
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the lack of community structures in the configuration model.

Figure 5.5: Contagion on Stanford web graph (left) and the DBLP coauthorship
graph (right) under stochastic attachment models and configuration models.

5.6 Conclusion

This paper initiates the study of complex contagion with general thresholds. One

takeaway is that stochastic attachment graph model can be used to estimate the

behavior of contagion on real data sets better than configuration models.
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CHAPTER 6

Stochastic Block Models

This is the last chapter about contagions. We study an important algorithmic problem

of the r-complex contagion—influence maximization problem where one chooses a

fixed number of initial seeds in a social network to maximize the spread of their

influence. We focus on a random graph model named the stochastic hierarchical

block model, which is a special case of the well-studied stochastic block model. We

prove that, under certain mild assumptions, the optimal seeding strategy is to put

all the seeds in a single community, when the graph is not exceptionally sparse, in

particular, when each edge appears with probability ω(n−(1+1/r)). This matches the

intuition that it is beneficial to put seeds near each other to maximize their synergy

in a nonsubmodular cascade model, which is in sharp contrast to the seeding strategy

in submodular cascade models (e.g., the independent cascade model and the linear

threshold model).

Finally, we show that this observation yields a polynomial time dynamic program-

ming algorithm which outputs optimal seeds if each edge appears with a probability

either in ω(n−(1+1/r)) or in o(n−2).

6.1 Introduction

Influence maximization is extensively studied when the contagion process is submod-

ular (a node’s marginal probability of becoming infected after a new neighbor is

infected decreases when the number of previously infected neighbors increases [128]).

However, many examples of nonsubmodular contagions have been reported, including

pricey technology innovations, the change of social behaviors, the decision to partic-

ipate in a migration, etc [61, 156, 199, 18, 141]. In this case, a node’s marginal

influence may increase in the presence of other nodes—creating a kind of synergy.
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Network structure and seed placement We address this lack of understanding

for nonsubmodular influence maximization by characterizing the optimal seed po-

sitions for certain settings which we will remark on shortly. In these settings, the

optimal seeding strategy is to put all the seeds in a single community. This is arrest-

ingly different than in the submodular setting, where the seeds can only erode each

others’ efficacy. Thus, in the submodular case, the optimal solutions tends to spread

out the seeds, lest they erode each others’ influence. We demonstrate this in Sect. 6.4

by presenting an example of submodular influence maximization where the optimal

seeding strategy is to spread out the seeds.

This formally captures the intuition, as proposed by Angell and Schoenebeck [14],

that it is better to target one market to saturate first (act locally) and then to allow

the success in this initial market to drive broader success (think globally) rather

than initially attempt to a scatter-shot approach (act globally). It also cautions that

we must understand the particular nature of the contagion before blindly applying

influence maximization tools.

We consider a well-known nonsubmodular cascade model which is also the most

extreme one, the r-complex contagion [104, 49, 50, 88] (a node is infected if and only

if at least r of its neighbors are infected, also known as the bootstrap percolation)

when r ≥ 2.

We consider the stochastic hierarchical block model [204] networks which are a

special case of the stochastic block model [73, 113, 237] equipped with a hierarchical

structure. Vertices are partitioned into m blocks. The blocks are arranged in a

hierarchical structure which represents blocks merging to form larger and larger blocks

(communities). The probability of an edge between two vertices is based solely on

smallest block to which both the vertices belong. This model captures the intuitive

hierarchical structure which is also observed in many real-world networks [101, 57].

The stochastic hierarchical block model is rather general and captures other well-

studied models (e.g. the Erdos-Renyi random graphs, and the planted community

model) as special cases.

Result 1: We first prove that, for the influence maximization problem on the stochas-

tic hierarchical block model with the r-complex contagion, under certain mild tech-

nical assumptions, the optimal seeding strategy is to put all the seeds in a single

community, if the probability that each edge appears satisfies puv = ω(n−(1+1/r)).

Notice that this assumption captures many real life social networks. In fact, it is

well-known that an Erdős-Rényi graph G(n, p) with p = o(1/n) is globally discon-

nected: with probability 1 − o(1), the graph consists of a union of tiny connected
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components, each of which has size O(log n).

The technical heart of this results is a novel coupling argument in Proposition 6.16.

We simultaneously couple four cascade processes to compare two probabilities: 1)

the probability of infection spreading throughout an Erdős-Rényi graph after the

(k + 1)-st seed, conditioned on not already being entirely infected after k seeds; 2)

the probability of infection spreading throughout the same graph after the (k+ 2)-nd

seed, conditioned on not already being entirely infected after k+ 1 seeds. This shows

that the marginal rate of infection always goes up, revealing the supermodular nature

of the r-complex contagion.

Our result is in sharp contrast to Balkanski et al.’s observation. Balkanski et al.

[21] studies the stochastic block model with a well-studied submodular cascade model,

the independent cascade model, and remarks that “when an influential node from a

certain community is selected to initiate a cascade, the marginal contribution of

adding another node from that same community is small, since the nodes in that

community were likely already influenced.”

Algorithmic Aspects For influence maximization in submodular cascades, a greedy

algorithm efficiently finds a seeding set with influence at least a (1 − 1/e) fraction

of the optimal [128], and much of the work following Kempe et al. [128], which pro-

posed the greedy algorithm, has attempted to make greedy approaches efficient and

scalable [51, 52, 154, 58, 228].

Greedy approaches, unfortunately, can perform poorly in the nonsubmodular set-

ting [14]. Moreover, in contrast to the submodular case which has efficient constant

approximation algorithms, for general nonsubmodular cascades, it is NP-hard even to

approximation influence maximization to within an O(n1−ε) factor of optimal [127],

and the inapproximability results have been extended to several more restrictive non-

submodular models [53, 147, 204]. The intrinsic reason why nonsubmodular influence

maximization is hard is that one needs to take into account the potential synergy

of multiple seeds. This is in sharp contrast to submodular influence maximization,

where the submodularity enables a seed-picker to consider placing seeds one at a time

in a myopic way, as it is in the greedy algorithm.

Can the Ω(n1−ε) inapproximability results of Kempe et al. [127] be circumvented

if we further assume the stochastic hierarchical block model? On the one hand,

the stochastic hierarchical structure seems optimized for a dynamic programming

approach: performing dynamic programming from the bottom to the root in the

tree-like community structure. On the other hand, Schoenebeck and Tao [204] show
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that the Ω(n1−ε) inapproximability results extend to the setting where the networks

are stochastic hierarchical block models.

Result 2: However, our observation that, when the network is reasonably dense,

putting all the seeds in a single community is optimal can naturally be extended to a

dynamic programming algorithm. We show this algorithm is optimal if the probability

puv that each edge appears does not fall into a narrow regime. Interestingly, a heuristic

based on dynamic programming works fairly well in practice [14]. Our second result

theoretically justifies the success of this approach, at least in the setting of r-complex

contagions.

Our Results We first prove that, for the influence maximization problem on the

stochastic hierarchical block model with the r-complex contagion, under certain mild

technical assumptions, the optimal seeding strategy is to put all the seeds in a single

community, if the probability that each edge appears satisfies puv = ω(n−(1+1/r)).

Secondly, we extend this observation to a polynomial time algorithm which out-

puts optimal seeds for influence maximization on r-complex contagions on hierarchical

stochastic block models if each puv satisfies either puv = ω(n−(1+1/r)) or puv = o(n−2),

in which case the graph can be viewed as many “almost isolated” dense subgraphs

such that puv = ω(n−(1+1/r)) for u, v in the same subgraph and puv = o(n−2) for u, v in

different subgraphs. Our algorithm uses dynamic programming to decide the optimal

number of seeds allocated to each subgraph; within a single subgraph and with the

number of seeds allocated for this subgraph decided, our first result implies that the

optimal seeding strategy is to put all these seeds in a same block.

6.2 Model

We study complex contagions (Definition 2.1) on social networks with community

structure. This section defines the notions of our model for social network with

community structure.

6.2.1 Stochastic Hierarchical block models

We study the stochastic hierarchical block model first introduced in [204]. The stochas-

tic hierarchical block model is a special case of the stochastic block model [113]. Specif-

ically and intuitively, the stochastic block model is a stochastic graph model dealing

with networks with community structures, and the stochastic hierarchical block model
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further assumes that the communities form a hierarchical structure. Our definition

in this section follows closely to (the full version of) [204].

Definition 6.1. A stochastic hierarchical block model is a distribution G = (V, T ) of

unweighted undirected graphs sharing the same vertex set V , and T = (VT , ET , w, v)

is a weighted tree T called a hierarchy tree. The third parameter is the weight function

w : VT 7→ [0, 1] satisfying w(t1) < w(t2) for any t1, t2 ∈ VT such that t1 is an ancestor

of t2. Let LT ⊆ VT be the set of leaves in T . Each leaf node t ∈ LT corresponds to a

subset of nodes V (t) ⊆ V , and the V (t) sets partition the nodes in V . In general, if

t 6∈ LT , we denote V (t) =
⋃
t′∈LT :t′ is an offspring of t V (t′). Let the function v : VT 7→ 2V

in the forth parameter denote such correspondence.

The graph G = (V,E) is sampled from G in the following way. The vertex set V

is deterministic. For u, v ∈ V , the edge (u, v) appears in G with probability equal to

the weight of the least common ancestor of u and v in T . That is Pr((u, v) ∈ E) =

maxt:u,v∈V (t) w(t).

In the rest of this paper, we use the words “node” and “vertex” to refer to the

vertices in VT and V respectively. In Definition 6.1, V (t) ⊆ V , corresponded by the

node t ∈ VT , represents a community in the social network, and V (t1), V (t2), . . . ⊆
V , corresponded by the children t1, t2, . . . of t, partition V (t) into sub-communities.

Naturally, the relation between two nodes is stronger if they are in a same sub-

community in a lower level. This justifies our assumption w(t1) < w(t2) for any

t1, t2 ∈ VT such that t1 is an ancestor of t2.

To consider the algorithmic aspect of influence maximization problem prior set-

ting, because the graph G is not revealed, nodes with same label are symmetric, we

can measure the complexity with respect to the complexity of stochastic hierarchical

block (how complicate the tree structure T is), instead of the size of the graph (how

large n is). As a result, we consider the following variant of the stochastic hierarchical

block model.

Definition 6.2. A succinct stochastic hierarchical block model is a distribution G(n, T )

of unweighted undirected graphs sharing the same vertex set V with |V | = n,

where n is an integer which is assumed to be extremely large. The hierarchy tree

T = (VT , ET , w, v) is the same as it is in Definition 6.1, except for the followings.

1. Instead of mapping a node t to a weight in [0, 1], the weight function w is a

function w : VT 7→ F , where F = {f | f : Z+ 7→ [0, 1]} is the space of functions

mapping an integer to a weight in [0, 1]. The weight of t is then defined by
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(w(t))(n). We assume F is the space of all functions that can be succinctly

encoded.

2. For each node t ∈ VT , we do not record the subset of vertices V (t) ⊆ V that t

corresponds to. Instead, we record a real number v(t) ∈ (0, 1] which denotes the

fraction |V (t)|/n. Naturally, we have
∑

t∈LT v(t) = 1 and
∑

t′:t′ is a child of t v(t′) =

v(t).

We assume throughout that G(n, T ) has the following properties.

Large communities For all node t ∈ VT , we only consider the value of v(t) that is

independent of n. As a result, for each t ∈ VT , |V (t)| = v(t)n = Θ(n) tends to

infinity as n→∞.

Proper separation w(t1) = o (w(t2)) for any t1, t2 ∈ VT such that t1 is an ancestor

of t2. That is the connection between sub-community t2 is asymptotically (with

respect to n) denser than its super-community t1.

The reason we define w and v in this seemly strange way is that we want to define

G(n, T ) in a way such that a same hierarchy tree T = (VT , ET , w, v) is compatible with

varying n. Thus, we need to encode each w(t) and v(t) in a way that is independent

of V and n. The way we define w makes sure w(t) is independent, and the large

communities assumption above makes sure v(t) is also independent. As we will see in

the next subsection, we will take n → ∞ when considering InfMax, and we would

not like n or |V | to be one of the inputs to the InfMax problem. As a result, T ,

being one of the inputs to the InfMax problem, should be independent of n. Notice

that such property of the definition of InfMax enables us to consider graphs having

exponentially many vertices.

6.2.2 The InfMax Problem

We study the r-complex contagion on the succinct stochastic hierarchical block model.

Roughly speaking, given hierarchy tree T and an integer K, we want to chooseK seeds

which maximize the expected total number of infected vertices, where the expectation

is taken over the graph sampling G ∼ G(n, T ) as n→∞.

Definition 6.3. The influence maximization problem InfMax is an optimization

problem which takes as inputs an integer r, a hierarchy tree T = (VT , ET , w, v) in
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Definition 6.2, and an integer K, and outputs k ∈ N|LT |≥0 —an allocation of K seeds

into the leaves LT with
∑

t∈LT kt = K that maximizes

Σr,T (k) := lim
n→∞

EG∼G(n,T ) [σr,G(Sk)]

n
, 1

the expected fraction of infected vertices in G(n, T ) with the seeding strategy defined

by k, where Sk denotes the seed set in G generated according to k.

Before we move on, the following remark is very important throughout the paper.

Remark 6.4. In Definition 6.3, n is not the input of the InfMax instance. Instead,

the tree T is given as an input to the instance, and we take n → ∞ to compute

Σr,T (k) after the seed allocation is determined. Therefore, asymptotically, all the

input parameters to the instance, including K, r and the encoding size of T , are

constants with respect to n. Thus, there are two different asymptotic scopes in this

paper: the asymptotic scope with respect to the input size and the asymptotic scope

with respect to n. Naturally, when we are analyzing the running time of an InfMax

algorithm, we should use the asymptotic scope with respect to the input size. For

example, an algorithm runs in polynomial time would mean the running time is a

polynomial of the input size, not of n. On the other hand, when we are analyzing

the number of infected vertices after the cascade, we should use the asymptotic scope

with respect to n.

In this paper, we use OI(·),ΩI(·),ΘI(·), oI(·), ωI(·) to refer to the asymptotic scope

with respect to the input size, and we use O(·),Ω(·),Θ(·), o(·), ω(·) to refer to the

asymptotic scope with respect to n. For example, K = ΘI(|VT |2) means the number

of seeds is asymptotically the square of the tree size, while with respect to n we

always have r = Θ(1), K = Θ(1) and |VT | = Θ(1). As another example, the two

asymptotic notions, |V (t)| = v(t)n = Θ(n) and w(t1) = o(w(t2)), appeared in the

large communities and the proper separation assumptions are all in the scope of n,

so we have not put the subscripts I under Θ and o.

Lastly, we have assumed that r ≥ 2, so that the contagion is nonsubmodular.

When r = 1, the cascade model becomes a special case of the independent cascade

model [128], which is a submodular cascade model. For submodular InfMax, a

simple greedy algorithm is known to achieve a (1−1/e)-approximation to the optimal

influence [128, 127, 173].

1The purpose we divided the expected number of infected vertices by n is to avoid the infinite
limit. However, as a result of this, our analysis naturally ignores lower order terms.
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6.2.3 Complex Contagion on Erdős-Rényi Graphs

In this section, we consider the r-complex contagion on the Erdős-Rényi random

graph G(n, p). We review some results from [119] which are used in our paper.

Definition 6.5. The Erdős-Rényi random graph G(n, p) is a distribution of graphs

with the same vertex set V with |V | = n and we include an edge (u, v) ∈ E with

probability p for each pair of vertices u, v.

The InfMax problem in Definition 6.3 on G(n, p) is trivial, as there is only one

possible allocation of those K seeds: allocate all the seeds to the single leaf node of

T , which is the root. Therefore, σr,T (·) in Definition 6.3 depends only on the number

of seeds K = |k|, not on the seed allocation k itself. In this section, we slightly

misuse the notation σ for a function mapping an integer to R≥0 (rather than mapping

an allocation of K seeds to R≥0 as it is in Definition 6.3), and let σr,G(n,p)(k) be the

expected number of infected vertices after the cascade given k seeds. Correspondingly,

let σr,G(k) be the actual number of infected vertices after the graph G is sampled from

G(n, p).

Theorem 6.6 (A special case of Theorem 3.1 in [119]). Suppose r ≥ 2, p = o(n−1/r)

and p = ω(n−1). We have

1. if k is a constant, then σr,G(n,p)(k) ≤ 2k with probability 1− o(1);

2. if k = ω
(
(1/npr)1/(r−1)

)
, then σr,G(n,p)(k) = n− o(n) with probability 1− o(1).

Theorem 6.7 (Theorem 5.8 in [119]). If r ≥ 2, p = ω(n−1/r) and k ≥ r, then

PrG∼G(n,p) [σr,G(k) = n] = 1− o(1).

When p = Θ(n−1/r), the probability that k seeds infect all the n vertices is positive,

but bounded away from 1. We use Po(λ) to denote the Poisson distribution with mean

λ.

Theorem 6.8 (Theorem 5.6 and Remark 5.7 in [119]). If r ≥ 2, p = cn−1/r+o(n−1/r)

for some constant c > 0, and k ≥ r is a constant, then

lim
n→∞

Pr
(
σr,G(n,p)(k) = n

)
= ζ(k, c),

for some ζ(k, c) ∈ (0, 1). Furthermore, there exist numbers ζ(k, c, `) > 0 for ` ≥ k

such that

lim
n→∞

Pr
(
σr,G(n,p)(k) = `

)
= ζ(k, c, `)
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for each ` ≥ k, and ζ(k, c) +
∑∞

`=k ζ(k, c, `) = 1.

Moreover, the numbers ζ(k, c, `)’s and ζ(k, c) can be expressed as the hitting prob-

abilities of the following inhomogeneous random walk. Let ξ` ∈ Po
((

`−1
r−1

)
cr
)
, ` ≥ 1 be

independent, and let S̃` :=
∑`

j=1(ξj − 1) and T̃ := min{` : k + S̃` = 0} ∈ N ∪ {∞}.
Then

ζ(k, c) = Pr
(
T̃ =∞

)
= Pr

(
k + S̃` ≥ 1 for all ` ≥ 1

)
(6.1)

and ζ(k, c, `) = Pr(T̃ = `).

We have the following corollary for Theorem 6.8, saying that when p = Θ(n−1/r),

if not all vertices are infected, then the number of infected vertices is constant. As a

consequence, if the cascade spreads to more than constantly many vertices, then all

vertices will be infected.

Corollary 6.9 (Lemma 11.4 in [119]). If r ≥ 2, p = cn−1/r + o(n−1/r) for some

constant c > 0, and k ≥ r, then

lim
n→∞

Pr
(
φ(n) ≤ σr,G(n,p)(k) < n

)
= 0

for any function φ : Z+ 7→ R+ such that limn→∞ φ(n) =∞.

6.3 Our main result

Before presenting our main result, we need the following definition which defines the

density of a leaf.

Definition 6.10. Given a hierarchy tree T = (VT , ET , w, v) and a leaf t ∈ LT , the

density of the leaf ρ(t) = w(t) · (v(t)n)1/r.

Our main result is the following theorem, which states that the optimal seeding

strategy is to put all the seeds in a community with the highest density, when the

root has a weight in ω(1/n1+1/r).

Theorem 6.11. Consider the InfMax problem with r ≥ 2, T = (VT , ET , w, v),

K > 0 and the weight of the root node satisfying w(root) = ω(1/n1+1/r). Let t∗ ∈
arg max
t∈LT

ρ(t) and k∗ be the seeding strategy that puts all the K seeds on t∗. Then

k∗ ∈ arg max
k

Σr,T (k).

Notice that the assumption w(root) = ω(1/n1+1/r) captures many real life social

networks. In fact, it is well-known that an Erdős-Rényi graph G(n, p) with p = o(1/n)
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is globally disconnected: with probability 1 − o(1), the graph consists of a union of

tiny connected components, each of which has size O(log n). Therefore, if we were to

use the stochastic hierarchical block model to model the social networks in our daily

life, we should expect that the root node has weight in Ω(1/n).

The remaining part of this section is dedicated to proving Theorem 6.11. We

assume w(root) = ω(1/n1+1/r) in this section from now on. It is worthy noticing

that, in many parts of this proof, and also in the proof of Theorem 6.18, we have

used the fact that an infection of o(n) vertices contributes 0 to the objective Σr,T (k),

as we have taken the limit n→∞ and divided the expected number of infections by

n in Definition 6.3.

Definition 6.12. Given T = (VT , ET , w, v), a node t ∈ VT is supercritical if w(t) =

ω(1/n1/r), is critical if w(t) = Θ(1/n1/r), and is subcritical if w(t) = o(1/n1/r).

From the results in the last section, if we allocate k ≥ r seeds on a supercritical

leaf t ∈ LT , then with probability 1− o(1) all vertices in V (t) will be infected; if we

allocate k seeds on a subcritical leaf t ∈ LT , at most a negligible amount of vertices,

2k = Θ(1), will be infected; if we allocate k ≥ r seeds on a critical leaf t ∈ LT , the

number of infected vertices in V (t) follows Theorem 6.8.

We say a node t ∈ VT is activated in a cascade process if the number of infected

vertices in V (t) is v(t)n − o(n), i.e., almost all vertices in V (t) are infected. Given

a seeding strategy k, let Pk be the probability that at least one node is activated

when n→∞. Notice that this is equivalent to at least one leaf being activated. The

proof of Theorem 6.11 consists of two parts. We will first show that, Pk completely

determines Σr,T (k) (Lemma 6.13). Secondly, to maximize Pk, an optimal seeding

strategy is to put all seeds on a single leaf with the maximum density (Lemma 6.14).

Lemma 6.13. Given any two seeding strategies k1,k2, if Pk1 ≤ Pk2, then Σr,T (k1) ≤
Σr,T (k2).

Lemma 6.14. Let k be the seeding strategy that allocates all the K seeds on a leaf

t∗ ∈ arg max
t∈LT

(ρ(t)). Then k maximizes Pk.

Lemma 6.13 and Lemma 6.14 imply Theorem 6.11.

6.3.1 Proof Sketch of Lemma 6.13

We sketch the proof here, and the full proof is in the appendix.
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Proof (sketch). Let E be the event that at least one leaf (or node) is activated at the

end of the cascade. Theorem 6.7 and Corollary 6.9 imply that the number of infected

vertices in a critical or supercritical leaf t can only be either a constant or v(t)n, and

Theorem 6.6 indicates that a subcritical leaf will not have ω(1) infected vertices by a

constant number of seeds (as it is in our setting K = Θ(1)). Therefore, if E does not

happen, we only have o(n) infected vertices in V , regardless of the seeding strategy.

If E happens, we can show that the expected total number of infected vertices

does not vary significantly by different seeding strategies. If a leaf t1 is activated, the

probability that a vertex v ∈ V (t2) is infected due to the influence of V (t1) is at least(
v(t1)n

r

)
w(t)r(1− w(t))v(t1)n−r = ω

(
nr
(

1

n1+ 1
r

)r
· 1
)

= ω

(
1

n

)
,

where in the above equality we have further assumed w(t) = o(1/n) (which can only

further reduce the probability if w(t) were in Ω(1/n)) so that (1 − w(t))v(t1)n−r =

ω((1 − 1/n)v(t1)n) = ω(1). Thus, there are ω(1/n) · Θ(n) = ω(1) infected vertices in

V (t2). Theorem 6.7 and Corollary 6.9 show that t2 will be activated if t2 is critical

or supercritical. Therefore, when E happens, all the critical and supercritical will be

activated. As for subcritical leaves, the number of infected vertices may vary, but

Theorem 6.6 intuitively suggests that adding a constant number of seeds is insignifi-

cant (we will handle this rigorously in the full proof). Therefore, the expected total

number of infections equals to the number of vertices in all critical and supercritical

leaves, plus the expected number of infected vertices in subcritical leaves which does

not significantly depend on the seeding strategy k.

In conclusion, the number of infected vertices only significantly depends on whether

or not E happens. In particular, we have a fixed fraction of infected vertices whose

size does not depend on k if E happens, and a negligible number of infected vertices

if E does not happen. Therefore, Pk characterizes Σr,T (k), and a larger Pk implies a

larger Σr,T (k).

6.3.2 Proof of Lemma 6.14

We first handle some corner cases. If K < r, then the cascade will not even start,

and any seeding strategy is considered optimal. If T contains a supercritical leaf, the

leaf with the highest density is also supercritical. Putting all the K ≥ r seeds in

this leaf, by Theorem 6.7, will activate the leaf with probability 1− o(1). Therefore,

this strategy makes Pk = 1, which is clearly optimal. In the remaining part of this
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subsection, we shall only consider K ≥ r and all the leaves are either critical or

subcritical. Notice that, by the proper separation assumption, all internal nodes of

T are subcritical.

We split the cascade process into two phases. In Phase I, we restrict the cascade

within the leaf blocks (V (t) where t ∈ LT ), and temporary assume there are no edges

between two different leaf blocks (similar to if w(t) = 0 for all t 6∈ LT ). After Phase

I, Phase II consists of the remaining cascade process.

Proposition 6.15 shows that maximizing Pk is equivalent to maximizing the prob-

ability that a leaf is activated in Phase I. Therefore, we can treat T such that all the

leaves, each of which corresponds to a G(n, p) random graph, are isolated.

Proposition 6.15. If no leaf is activated after Phase I, then with probability 1−o(1)

no vertex will be infected in Phase II, i.e., the cascade will end after Phase I.

We sketch the proof here, and the full proof is omitted due to the space limit.

Proof (sketch). Consider any critical leaf t and an arbitrary vertex v ∈ V (t) that

is not infected after Phase I. Let Kin be the number of infected vertices in V (t)

after Phase I, and Kout be the number of infected vertices in V \ V (t). If no leaf

is activated after Phase I, Theorem 6.6 and Corollary 6.9 suggest that Kin = O(1)

and Kout = O(1). The probability that v is connected to any of the Kin infected

vertices in V (t) can only be less than w(t) = Θ(n−1/r) conditioning on the cascade

inside V (t) does not carry to v, so the probability that v has a infected neighbors

in V (t) is O(n−a/r). On the other hand, the probability that v has r − a neighbors

among the Kout outside infected vertices is o(n−(r−a)/r). Therefore, the probability

that v is infected in the next iteration is
∑r−1

a=0O(n−a/r) · o(n−(r−a)/r) = o(1/n), and

the expected total number of vertices infected in the next iteration after Phase I is

o(1). The proposition follows from the Markov’s inequality.

Since Theorem 6.6 suggests that any constant number of seeds will not activate

a subcritical leaf, we should only consider putting seeds in critical leaves. In Propo-

sition 6.16, we show that in a critical leaf t, the probability that the (i + 1)-th seed

will activate t conditioning on the first i seeds failing to do so is increasing as i in-

creases. Intuitively, Proposition 6.16 reveals a super-modular nature of the r-complex

contagion on a critical leaf, making it beneficial to put all seeds together so that the

synergy effect is maximized, which intuitively implies Lemma 6.14.

Proposition 6.16. Consider an Erdős-Rényi random graph G(n, p) with p = cn−1/r+

o(n−1/r), and assume an arbitrary order on the n vertices. Let Ek be the event that
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seeding the first k vertices does not make all the n vertices infected. We have Pr(Ek+2 |
Ek+1) < Pr(Ek+1 | Ek) for any k ≥ r − 1.

Proof. Since the event Ek+1 implies Ek, we have

Pr(Ek+1 | Ek) =
Pr(Ek+1 ∧ Ek)

Pr(Ek)
=

Pr(Ek+1)

Pr(Ek)
,

and the inequality we are proving is equivalent to

Pr(Ek+2) Pr(Ek) < Pr(Ek+1) Pr(Ek+1). (6.2)

We adopt the inhomogeneous random walk interpretation in Theorem 6.8, and view

Ek as the following process: the random walk starts at x = k; in the i-th iteration,

x moves to the right by 1 unit, and moves to the left by αi ∼ Po
((

i−1
r−1

)
cr
)

units;

Pr(Ek) is then the probability that the random walk reaches x = 0. In this proof, we

let λi = Po
((

i−1
r−1

)
cr
)
, and in particular, λ0 = λ1 = · · · = λr−1 = 0.

To prove (6.2), we consider two random walks in Z2, starting at (k + 2, k) and

(k+1, k+1) respectively. In each iteration i, we move from (x, y) to (x−1+αi, y−1+βi)

where αi and βi are sampled from Po(λi) independently. If we hit the x-axis after a

certain iteration t, then we stick to the x-axis, i.e., for any i > t, the update in the i-th

iteration is from (x, 0) to (x− 1 + αi, 0); similarly, we stick to the y-axis and update

(0, y − 1 + βi) if we hit the y-axis after certain iteration. Then, Pr(Ek+2) Pr(Ek) (or

Pr(Ek+1) Pr(Ek+1)) is the probability that the random walk starting from (k + 2, k)

(or (k + 1, k + 1)) reaches (0, 0). Let A be the random walk starting from (k + 2, k),

and B be the random walk starting from (k + 1, k + 1). To prove (6.2), we define a

coupling between the two random walks such that, 1) whenever A reaches (0, 0), B

also reaches (0, 0), and 2) with positive probability, B reaches (0, 0) but A fails to

reach (0, 0).

Before we define the coupling, we reinterpret the random walk a little bit by

breaking down each iteration i into T steps :

• at step 0 of iteration i, we update (x, y) to (x− 1, y− 1) (or (x− 1, y) if y = 0,

(x, y − 1) if x = 0);

• at each step j for j = 1, . . . , T , sample two Bernoulli random valuables in-

dependently, αij ∼ Be(λi/T ), βij ∼ Be(λi/T ), and update from (x, y) to

(x+ αij, y + βij) (notice that in each step we have at most 1 unit movement in

each direction, and we can only move further away from both the x-axis and
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y-axis);

• at the end of iteration i, if x = 0 (or y = 0), the random walk is stuck to

the y-axis (or the x-axis) forever (notice that we only do this at the end of an

iteration, i.e., after step T ; in particular, if a random walk hits one of the x-axis

or y-axis after step 0 in an iteration i, say, the x-axis, it will only stick to the

x-axis if βij = 0 for all j = 1, . . . , T ).

Standard results from Poisson process indicate that, when T → ∞, the effect of the

T steps from 1 to T is equivalent as sampling αi ∼ Po(λi) and βi ∼ Po(λi) (see, for

example, Definition 8.4 and Theorem 8.7 in [166]).

Now we are ready to describe the coupling. Figure illustrations are available in

Fig. 6.1 and Fig. 6.2. Let (xAij, y
A
ij), and (xBij, y

B
ij ) be the coordinates for A and B

respectively after iteration i step j. Similarly, let αAij, and αBij denote the x-direction

movements of both walks, and βAij , and βBij denote the y-direction movements. The

coupling consists of two phases.

Phase I A and B move in exactly the same way, i.e., αAij = αBij and βAij = βBij , until

one of the following two events happens.

Event (a) The current position of A and B are symmetric with respect to the

line y = x, i.e., xAij−xBij = yBij −yAij and xAij +xBij = yAij +yBij . Notice that (a)

may happen in some middle step j of an iteration i. When (a) happens,

we move on to Phase II(a).

Event (b) A hits the x-axis at the end of an iteration. Notice that this means

A is then stuck to the x-axis forever. When (b) happens, we move on to

Phase II(b)

It is important to notice that A is always below the line y = x before (a)

happens, so A will never hit the y-axis in Phase I. To see this, A can only

have four types of movements in each step: lower-left (x, y) 7→ (x − 1, y − 1),

up (x, y) 7→ (x, y + 1), right (x, y) 7→ (x + 1, y), and upper-right (x, y) 7→
(x + 1, y + 1). It is easy to see that, 1) A will never step across y = x in

one step, and 2) if A ever reaches the y = x at (w,w), then A must be at

(w,w− 1) in the previous step. However, when A is at (w,w− 1), B should be

at (w − 1, w) according to the relative position of A,B. In this case event (a)

already happens.
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Phase I (ended at Event (a))

B

A

Phase II(a)

B

A

Figure 6.1: The coupling with Phase I ended at Event (a)

Phase II(a) A and B move in a way that is symmetric to the line y = x: αAij = βBij

and βAij = αBij . In this phase, by symmetry, A hits the x-axis if and only if B hits

the y-axis, and A hits the y-axis if and only if B hits the x-axis. The coupling

carries on when one of these happens. For example, if A hits the x-axis and B

hits the y-axis, then we always have αAij = βBij and βAij = αBij = 0. Notice that,

in Phase II(a), A may cross y = x, after which A is above y = x while B is

below.

Phase II(b) We temporary freeze B’s movement in y-direction, and let the x-

direction movements of A and B be the same. To be specific, suppose Phase

II(b) starts at iteration i0. In each iteration i ≥ i0 and step j, we couple

αAij = αBij , and we do not sample βBij ∼ Be(λi/T ) (βAij is always 0 now, as A is

stick to the x-axis). Till now, the relative position of A and B is always the

same: xAij = xBij + 1 and yAij = yBij − 1. If B hits the y-axis at the end of an

iteration i1, we terminate the coupling. Notice that the current positions for A

and B can only be that (xA, yA) = (1, 0) and (xB, yB) = (0, 1).

To prove Eqn. (6.2), it suffices to show that

1. if the coupling moves to Phase II(a), A reaches (0, 0) if and only if B reaches

(0, 0);

2. with positive probability, the coupling moves to Phase II(b) and Phase II(b)

terminates;
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Phase I (ended at Event (b))

B

A

Phase II(b)

B
A

The y-directional movement
of B is temporary frozen

Figure 6.2: The coupling with Phase I ended at Event (b)

3. if the coupling moves to Phase II(b) and Phase II(b) terminates, then B has

strictly higher chance to reach (0, 0) than A.

By symmetry, 1 is trivial. With positive probability βAij = 0 for all i = 1, . . . , k

and all j = 1, . . . , T (this is the probability that we independently sample k Poisson

random variables with means λ1, . . . , λk respectively, and obtain 0 for all of them),

in which case event (b) happens, so 2 is also trivial. To see 3, by the time Phase

II(b) terminates, A is stuck to the x-axis and one step away from (0, 0), while B

is stuck to the y-axis and also one step away from (0, 0). Thus, we only need to

consider a one-dimensional random walk for both A and B. In each future iteration

i1 + t (for t = 1, 2, . . .), A moves one step closer to (0, 0) and moves further by a

distance sampled from Po(λi1+t), and meanwhile, taking into account that we have

frozen B’s y-direction movements between iterations i0 and i1, B also moves one step

closer to (0, 0) and moves further by a distance sampled from Po(λi0+t). Since we

have assumed k ≥ r − 1, it takes at least r − 1 steps for A to reach the x-axis, so

i0 ≥ r − 1. Since λi is strictly increasing for i ≥ r − 1, we have λt0+t < λt1+t for all

t ≥ 0. Therefore, in each future iteration after Phase II(b) terminates, the distance

that B moves away from the destination is sampled from a Poisson distribution with

mean strictly less than the mean of the Poisson distribution from which the distance

that A moves away is sampled. This implies that B is strictly more likely to reach

(0, 0) than A, which implies 3.

From 1, 2 and 3, we learn that the probability that B reaches (0, 0) is strictly

larger than that of A, which implies (6.2) and concludes the proof.

119



Equipped with Proposition 6.16, to show Lemma 6.14, we show that the seeding

strategy that allocates K1 > 0 seeds on a critical leaf t1 and K2 > 0 seeds on a critical

leaf t2 cannot be optimal. Firstly, it is obvious that both K1 and K2 should be at

least r, for otherwise those K1 (K2) seeds on t1 (t2) are simply wasted.

Let Ek be the event that the first k seeds on t1 fail to activate t1 and Fk be the

event that the first k seeds on t2 fail to activate t2. By Proposition 6.16, we have

Pr(EK1+1 | EK1) < Pr(EK1 | EK1−1)

and

Pr(FK2+1 | FK2) < Pr(FK2 | FK2−1),

which implies
Pr(EK1+1) Pr(FK2−1)

Pr(EK1) Pr(FK2)
· Pr(EK1−1) Pr(FK2+1)

Pr(EK1) Pr(FK2)

=
Pr(EK1+1 | EK1) Pr(FK2+1 | FK2)

Pr(EK1 | EK1−1) Pr(FK2 | FK2−1)
< 1.

Therefore, we have either
Pr(EK1+1) Pr(FK2−1)

Pr(EK1
) Pr(FK2

)
or

Pr(EK1−1) Pr(FK2+1)

Pr(EK1
) Pr(FK2

)
is less than 1. This

means either the strategy putting K1 + 1 seeds on t1 and K2 − 1 seeds on t2 makes

it less likely that none of t1, t2 is activated, or the strategy putting K1 − 1 seeds on

t1 and K2 + 1 seeds on t2 makes it less likely that none of t1, t2 is activated, which

implies that the strategy putting K1 and K2 seeds on t1, t2 respectively cannot be

optimal. Therefore, in an optimal strategy, we should not allocate seeds on more than

one leaf.

Finally, a critical leaf t with v(t)n vertices and weight w(t) can be viewed as an

Erdős-Rényi random graph G(m, p) withm = v(t)n and p = w(t) = ρ(t)·(v(t)n)−1/r =

ρ(t)m−1/r, where ρ(t) = Θ(1) when t is critical. Taking c = ρ(t) in Theorem 6.8, we

can see that ξ` has a larger Poisson mean if c is larger, making it more likely that the

G(m, p) is fully infected (to see this more naturally, larger c means larger p if we fix

m). Thus, given that we should put all the K seeds in a single leaf, we should put

them on a leaf with the highest density. This concludes Lemma 6.14.

6.4 Optimal Seeds in Submodular InfMax

We have seen that putting all the K seeds in a single leaf is optimal for r-complex

contagion, when the root node has weight ω(1/n1+1/r). To demonstrate the sharp

difference between r-complex contagion and a submodular cascade model, we present
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a submodular InfMax example where the optimal seeding strategy is to put no

more than one seed in each leaf. The hierarchy tree T in our example meets all

the assumptions we have made in the previous sections, including large communities,

proper separation, and w(root) = ω(1/n1+1/r), where r is now an arbitrarily fixed

integer with r ≥ 2.

We consider a well-known submodular cascade model, the independent cascade

model [128], where, after seeds are placed, each edge (u, v) in the graph appears

with probability puv and vertices in all the connected components of the resultant

graph that contain seeds are infected. In our example, the probability puv is the

same for all edges, and it is p = 1/n1− 1
4r . The hierarchy tree T contains only two

levels: a root and K leaves. The root has weight 1/n1+ 1
2r , and each leaf has weight

1. After G ∼ G(n, T ) is sampled and each edge in G is sampled with probability

p, the probability that an edge appears between two vertices from different leaves is

(1/n1− 1
4r ) · (1/n1+ 1

2r ) = o(1/n2), and the probability that an edge appears between

two vertices from a same leaf is 1·(1/n1− 1
4r ) = ω(log n/n). Therefore, with probability

1 − o(1), the resultant graph is a union of K connected components, each of which

corresponds to a leaf of T . It is then straightforward to see that the optimal seeding

strategy is to put a single seed in each leaf.

6.5 A Dynamic Programming Algorithm

In this section, we present an algorithm which finds an optimal seeding strategy when

w(t) satisfies either w(t) = ω(1/n1+1/r) or w(t) = o(1/n2) for each t ∈ VT , and we

will assume this for w(t) throughout this section. Since a parent node always has

less weight than its children (see Definition 6.1), we can decompose T into the upper

part and the lower part, where the lower part consists of many subtrees whose roots

have weights in ω(1/n1+1/r), and the upper part is a single tree containing only nodes

with weight in o(1/n2) and whose leaves are the parents of those roots of the subtrees

in the lower part. We call each subtree in the lower part a maximal dense subtree

defined formally below.

Definition 6.17. Given a hierarchy tree T = (VT , ET , w, v), a subtree rooted at

t ∈ VT is a maximal dense subtree if w(t) = ω(1/n1+1/r), and either t is the root, or

w(t′) = O(1/n1+1/r) where t′ is the parent of t.

Since we have assumed either w(t) = ω(1/n1+1/r) or w(t) = o(1/n2), w(t′) =

O(1/n1+1/r) in the definition above implies w(t′) = o(1/n2).
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The idea of our algorithm is the following: firstly, after the decomposition of T

into the upper and lower parts, we will show that the weights of nodes in the upper

part, falling into w(t) = o(1/n2), are negligible so that we can treat the whole tree T

as a forest with only those maximal dense subtrees in the lower part (that is, we can

remove the entire upper part from T ); secondly, Theorem 6.11 shows that when we

have decide the number of seeds to be allocated for each maximal dense subtree, the

optimal seeding strategy is to put all the seeds together in a single leaf that has the

highest density, where the density of a leaf t ∈ LT is defined in Definition 6.10; finally,

the only problem remaining is how to allocate theK seeds among those maximal dense

subtrees, and we decide this allocation by a dynamic programming approach.

Now, we are ready to describe our algorithm, presented in Algorithm 6.1.

Input: r ∈ Z with r ≥ 2, T = (VT , ET , w, v), and K ∈ Z+

1: Find all maximal dense subtrees T1, . . . , Tm, and let r1, . . . , rm be their roots.
2: For each Ti and each k = 0, 1, . . . , K, let s∗i (k) be the seeding strategy that puts
k seeds in the leaf t ∈ LTi with the highest density, and let

h(Ti, k) = lim
n→∞

EG∼G(v(ri)·n,Ti)[σr,G(s∗i (k))]

n

be the expected number of infected vertices in the subgraph defined by Ti, nor-
malized by the total number of vertices in the whole graph.

3: Let S[i, k] store a seeding strategy that allocates k seeds in the first i subtrees
T1, . . . , Ti, and let H[i, k] be the expected total number of infected vertices corre-
sponding to S[i, k], divided by n.

4: for k = 0, 1, . . . , K do
5: set S[1, k] = s∗i (k) and H[1, k] = h(T1, k).
6: end for
7: for each i = 2, . . . ,m do
8: for k = 0, 1, . . . , K do
9: ki = arg max

ki∈{0,1,...,k}
H[i− 1, k − ki] + h(Ti, ki);

10: set S[i, k] be the strategy that allocates k − ki seeds among T1, . . . , Ti−1

according to S[i− 1, k− ki] and puts the remaining ki seeds in the leaf of Ti
with the highest density;

11: set H[i, k] = H[i− 1, k − ki] + h(Ti, ki);
12: end for
13: end for
14: Output: the seeding strategy S[m,K].

Program 6.1: The InfMax algorithm

The correctness of Algorithm 6.1 follows immediately from Theorem 6.18 (below)

and Theorem 6.11. Recall Theorem 6.18 shows that we can ignore the upper part of
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T and treat T as the forest consisting of all the maximal dense subtrees of T when

considering the InfMax problem. Theorem 6.11 shows that for each subtree Ti and

given the number of seeds, the optimal seeding strategy is to put all the seeds on the

leaf with the highest density.

Theorem 6.18. Given T = (VT , ET , w, v), let {T1, . . . , Tm} be the set of all T ’s

maximal dense subtrees and let T− be the forest consists of T1, . . . , Tm. For any

seeding strategy k and any r ≥ 2, we have Σr,T (k) = Σr,T−(k).

Proof. Let V (Ti) be the set of vertices corresponding to the subtree Ti. Since the

total number of possible edges between those V (Ti)’s is upper bounded by n2 and

each edge appears with probability o(1/n2), the expected number of edges is o(1). By

Markov’s inequality the probability there exists edges between those V (Ti)’s is o(1) .

Therefore, we have

1

n
EG∼G(n,T ) [σr,G(k)] =

1

n

(
o(1)O(n) + (1− o(1))EG∼G(n,T ′) [σr,G(k)]

)
.

Taking n→∞ concludes the proof.

Finally, it is straightforward to see the time complexity of Algorithm 6.1, in terms

of the number of evaluations of Σr,G(n,T )(·).

Theorem 6.19. Algorithm 6.1 requires OI(|VT |K2) computations of Σr,G(n,T )(·).
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CHAPTER 7

Sybil Detection Using Strong Ties and

Latent Network Structure

Sybil attacks, in which an adversary creates a large number of identities, present a

formidable problem for the robustness of recommendation systems. One promising

method of sybil detection is to use data from social network ties to imerlicitly infer

trust.

Previous work along this dimension typically 1) Assumes that it is difficult/costly

for an adversary to create edges to honest nodes in the network. 2) Limit the amount

of damage done for each such edge, using conductance-based methods. However,

these methods fail to detect a simple class of sybil attacks which have been identified

in online systems. Indeed, conductance-based methods seem inherently unable to do

so, as they are based on the assumption that creating many edges to honest nodes is

difficult, which seems to fail in real-world settings.

We create a sybil defense system that accounts for the adversary’s ability to launch

such attacks yet provably withstands them by:

1. Not assuming any restriction on the number of edges an adversary can form, but

instead making a much weaker assumption that creating edges from the sybil

nodes to most of the honest nodes is difficult, but allowing that the remaining

nodes can be freely connected to.

2. Relaxing the goal from classifying all nodes as honest or sybil to the goal of

classifying the “core” nodes of the network as honest, and avoiding classifying

any sybil nodes as honest.

3. Exploiting a property of social networks, that nodes can be embedded in low-

dimensional spaces, that has not previously been used in Sybil detection.
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7.1 Introduction

The creation of multiple false identities, so-called sybil attacks [76], can enable actors

undo influence in recommendation systems or other algorithms that harness user-

generated data [167]. Controlling even just a small portion of the allege user-base

can enable nefarious actors to hide their ill-gotten influence over recommendation

systems [247]. Such recommendation systems might be used to classify spam, recom-

mend products, or filter user-generated content (e.g. on an online-social networking

site). Due to society’s increasing reliance on the results of harnessing user-generated

content/feedback (e.g. “big data”), guarding the veracity of the results will become

increasingly important. Manipulation can have economically important (such as

product recommendation) and politically important (as a public show of support)

outcomes which provides rational actors incentives to manipulate outcomes to match

their desires.

This has been recognized as a problem and addressed in the literature via a variety

of methods (see Section 7.1.2). This paper focuses on a particularly promising method

of using network ties to (implicitly) infer trust.

The models of prior work tend to restrict the adversary by making an edge-

limiting assumption: the number of ties that the adversary can forge between sybils

and honest nodes is restricted [245, 246, 226, 68, 236].

Armed with the edge-limiting assumption and additionally assuming that the

honest nodes of a network are “well-connected,” these works show that one of two

outcomes occurs: A) The adversary does not create many sybils; B) The adversary

creates many sybils, but there is a detectable “sparse cut” in the graph. This sparse

cut is caused by the assumption that there are few edges between the many sybil

nodes and the honest nodes. Moreover, it is unique due to the assumption that the

honest nodes are well-connected.

Thus, even if a powerful adversary can create many sybils, and moreover, endow

them with high degree by connecting them with each other, the adversary cannot

well integrate the sybils back into the rest of the network due to the limited number

of ties that the adversary can forge between sybils and honest nodes.

While this defence does indeed (provable) protect against certain types of sybil

attacks, the edge-limiting assumption seems to be too strong in practice [10]. Indeed

Yang et al [242] recently showed evidence that in the RenRen social network, sybil

attacks did not look like those that the prior work was anticipating, but instead were

characterized by isolated sybils connected by many edges to honest nodes. We call
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these periphery attacks for reasons that will be made clear shortly. In periphery

attacks, the number of sybils is only a fraction of the number of edges, yet Yang et

al [242] found many sybil nodes in such an attack pattern. As such, these attacks

violate the edge-limiting assumption; so the guarantees of the conductance-based

sybil defences appear not to apply. Indeed Alvisi et al [10] showed via simulation on

a real network, that the conductance-based defences do a poor job defending against

such attacks.

Such attacks seem difficult to attenuate, in particular because often time the

majority of nodes in a social network have a similar appearance. For example Leskovec

et al [142] showed that networks have a “core/periphery” structure, with many nodes

on the periphery poorly connected to the core of the network, which was difficult

to partition. Additionally, Yardi et al [243] showed that in Twitter, the majority

of nodes in twitter only had a few friends, and that the spammers looked like-wise.

Alvisi et al [10] looked into a collection of network topology properties and showed

that the only one that was useful to sybil detection is conductance, which failed in

thwarting periphery attacks.

7.1.1 Our Contribution

We create a framework that accounts for the adversary’s ability to launch periphery

attacks. Additionally, we create a network topology based sybil defense system that

both accounts for and provably withstands periphery attacks. Our work builds upon

and advances prior work in three main ways:

1. We replace the edge-limiting assumption with a new assumption: A random

fraction of the honest nodes are compromisable and can easily be tricked

into connecting with sybil nodes; but the remainder of the honest nodes are

trustworthy and will refuse connections from sybils. With such an assumption,

periphery attacks are easy for an adversary to launch. The adversary can test

which nodes are gullible, and then connect to them at will with his sybil network.

2. We relax the goal from classifying all nodes as honest or sybil to the goal

of classifying the “core” nodes of the network as honest; and classifying no

sybil nodes as honest. Our model acknowledges the difficult of differentiating

between the “periphery” nodes of the honest network and nodes that are part of

a coordinated periphery sybil attack. Indeed this seems impossible to do with

only information about network topology.
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3. We identify a new network property namely, that they can be embedded in

low-dimensional spaces as useful to detecting sybils. For a sybil to “blend in”

with the core of the topology structure of a network it is not enough that he has

many ties; rather the sybil needs a large number of ties amongst other nodes

that are “close” in the network. A sybil that connects to random nodes, will

not have a “location” in the network the way an honest node might.

Starting with Watts and Strogatz [234] works from the mathematical, computer

science, sociology, and statistics communities have also mathematically modeled social

networks as coming from a low-dimension latent space and use the guiding principal

that nodes which are “closer” in the latent space are more likely to be attached [2,

57, 91, 109, 112, 130, 133, 137, 194, 203, 202]. Furthermore, there is evidence of the

accuracy of such models [3, 19, 44, 149, 159, 168]. Thus, while new to sybil detection

literature, our model is well grounded in the social network literature.

For many applications, like learning algorithms, or implicit community voting al-

gorithms, having white-listed nodes is enough [10]. The system needs a representative

sample of nodes. If the nodes on the periphery are not counted, then, as long as the

nodes in “core” are sufficiently numerous, the system can succeed. Also, the zero false

positives is important because even a few sybils can distort recommendations [247].

For other applications (e.g. spam), such a classification might not to enough. There

other tools must be used (e.g. user feed-back on spam; setting participation limitations

for new nodes, etc).

7.1.2 Related Work

Well-mixed networks A growing number of works look to using a network topol-

ogy to aid in sybil detection.

Yu et al create SybilGuard [245] and SybilLimit [246], which use a random walk

technique to bound the number of sybils that an adversary can produce for each edge

that they can produce to honest nodes. This bound is O(
√
n log(n)) for SybilGuard

and was improved to O(log(n)) in SybilLimit. However, in our setting where we do

not restrict the number of edges that sybils can make to honest but gullible nodes,

these guarantees are empty.

These works are typically called “conductance-based” and require an assumption

that the network of honest nodes is well-mixing (and thus has high conductance). The

intuition is that if there are many sybil nodes, but not many edges between the sybils
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and the honest nodes, then these algorithms will find a sparse cut. The well-mixing

assumption is required to ensure that this sparse cut is unique.

Since these original works, several others works have made improvements along

certain dimensions. Danezis et al [68] create SybilInfer which, instead of classifying

nodes as safe or unsafe, using Bayesian reasoning, outputs confidence. Unlike afore-

mentioned conductance-based work SybilInfer is a centralized algorithm. They point

out that the run times of prior, distributed work are very slow because they detect

one sybil at a time and show that SybilInfer scales better. Likewise, Wei [236] et al

propose SybilDefender which uses random walks, but is centralized and has improved

scaling properties. They also suggest looking at tie strength as a method for improv-

ing results. Tran et al [226] propose Gatekeeper which achieves the same worst-case

bound as SybilLimit, but improves upon it when the number of honest-sybil edges is

very small.

Clustered Honest Networks All of theses works must assume that the network

among honest nodes is well-mixing. The SybilLimit [246] paper provides some empir-

ical evidence for this, but the claim is generally disputed. For example, Viswanath et

al [231] analyze the state of current network-based Sybil defenses, showing that they

rely on local community structure, and have trouble when their are cuts in the honest

networks because they have difficulty distinguishing between the natural partitions

in network of the honest nodes, and the sparse cuts between the sybils and honest

nodes. They propose borrowing techniques from the community detection literature.

Alvisis et al [10] also believe that the network will be too fragmented to employ the

previous techniques, and show rigorous theoretical bounds to substantiate this claim.

Without the “well-mixing” assumption, they fear the problem may be intractable as

distinguishing between honest and sybil communities seems impossible. For example,

consider the extreme case where all communities, both sybil and honest, are small and

disjoint. Instead of sybil detection, they suggested “personalized white-lists”. They

point out that there is no need to distinguish between sybil and honest communities

as long as you use the recommendation of each community for the nodes in it. A

draw-back of this is that if some communities are small, there may not be enough

data to provide optimal recommendations. Like Alvisis et al, this work provides a

white-listing strategy. However, we provide a global (not local) white list, and the

honest nodes our model cannot classify are nodes on the periphery that belong to no

community.

Cai and Jermaine [45] also address the problem of potential community structure
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within the honest nodes. There algorithm first partitions the network into disjoint

communities, and then tries to ferret out the honest communities from the sybil

communities by embedding them into a low dimensional space. They argue that the

sybil communities will be on the periphery of this latent community graph. To get

this result, their model assumes 1) the network of honest and sybil nodes partitions

into well-structured and detectable communities, 2) that honest nodes connect to

nodes in other communities according to a latent network of communities, and 3)

that some communities are easy for sybils to attach to, while other communities are

difficult for sybils to attach to. Our work differs in several ways. Most fundamentally,

their algorithm does not guard against periphery attacks. In fact, their model does

not allow periphery attacks because they make a necessary (in their setting) edge-

limiting assumption. Moreover, they use machine learning techniques and thus do

not obtain rigorous security results. Finally, our network models differ: our model of

latent structure applies to the nodes and not communities; and in our model which

nodes are vulnerable is decided at the node level rather than the community level.

Other strategies There are also an increasing sequence of work looking at infor-

mation beyond the social graph such as users click-stream data [233]; entry and exit

times [181], number of rejected friend requests [10], etc [242]. It is clear that they cur-

rently provide large practical benefits [242]. Moreover, they can be usefully combined

with network topology based techniques [10]. Thus it seems like this is a useful or-

thogonal direction to prosue in ensuring the validity of recommendations. However,

a key disadvantage of many of these techniques is that the rely on an uninformed

adversary, that does not understand the behavior of honest nodes well enough to

mimic them. Thus, there usefulness may wane as they are increasing deployed and

understood.

Another approach is to integrate sybil detection together with opinion aggrega-

tion (e.g. SumUp[225]). A key advantage here is that the sybil nodes do not have to

be completely eliminated; but instead can be “down-weighted”. However, a disadvan-

tage of such approaches is that if they depend too sharply on the specific aggregation

method, they loose some generality.

Another, someone disjoint, line of inquiry is for setting where a central authority

can restrict the entry of sybils through some verification or payment (e.g. Captchas [232]

or Netflix). And defense in sensor networks [155, 244] where, the solutions concept

offered is light-weight cryptography (so that it can be efficiently executed).
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7.2 Preliminaries

A metric space is an ordered pair M = (V, d) where V is a set and d is a metric

on V mapping V × V to R+ such that for any u, v, w ∈ V , the following holds:

d(u, v) ≥ 0; d(u, u) = 0; d(u, v) = d(v, u); and d(u, v) ≤ d(u,w) + d(w, v). We say

that M ′ = (V ′, d′) is a metric subspace of M = (V, d) if V ′ ⊆ V and d′ = d|V ′×V ′ .
We only consider finite metric spaces, i.e. |V | ∈ N.

A metric graph G = (V,E, d) is an undirected graph with distances defined

between all pairs in V such that (V, d) is a metric space.

We define BM(u, r) = {x ∈ V : d(u, x) < r} as a ball with radius r centered at u

in metric space M . We will often drop the subscript when it is clear from context,

and denote B(u, 1) by B(u).

To capture the idea of low dimension in such a metric space, we use the notion

of doubling dimension defined as follows: the doubling dimension dim(M) of a

metric space M = (V, d) is the minimum k such that every ball of radius r is covered

by 2k balls of radius R/2; i.e. ∀c ∈ V, r > 0, B(c, r) ⊆ V , there exists c1, c2, ..., cm

where m ≤ 2k such that B(c, r) ⊆
⋃
iB(ci, r/2).

The doubling dimension is a very general definition of dimension. When it is

applied to Euclidean vector spaces, it recovers the usual definition of dimension, but

it also can apply to arbitrary metric spaces. Additionally, note that all finite metric

spaces have finite doubling dimensions.

We define the neighbors of u in metric graph (V,E, d) to be N(u) = {v : (u, v) ∈
E}, and the core neighbors of u to be CN(u) = B(u) ∩N(u), i.e the neighbors of

u at distance at most 1.

7.3 Sybil Detection Framework

7.3.1 Metric Space Properties

We first define some properties of a metric space M = (V, d) which we will make use

of throughout.

Definition 7.1. The density of a metric space is den(M) = minu∈V |Bu| which is

the minimum cardinality of a unit ball.

Definition 7.2. We say that U is an r-code of a metric space M = (V, d) if U ⊆ V

and ∀u, v ∈ U, d(u, v) > r and V ⊆
⋃
u∈U B(u, r). That is U is a maximal set of

points of distance strictly more than r from each other.
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Definition 7.3. We define the volume of a metric space M = (V, d) to be vol(M) =

max{|U | : U is a 2-code of M}.

We show a natural relation between the density, the volume, and the cardinality

of a metric space.

Lemma 7.4. Let M = (V, d) be a metric space with density den(M) and volume

vol(M). Then

den(M) · vol(M) ≤ |V |.

Proof. Let Y be a 2-code of M such that |Y | = vol(M). On the one hand we have

that

den(M) · vol(M) ≤
∑
y∈Y

|B(y)|

because for any v ∈ V , den(M) ≤ |B(y)| (by Definition 7.1) and vol(M) = |Y | (by

Definition 7.3).

On the other hand, we have that∑
y∈Y

|B(y)| = |
⋃
y∈Y

B(y)| ≤ |V |

because the B(y) are disjoint—recall that for all x, y ∈ Y we have d(x, y) > 2—and⋃
y∈Y B(y) ⊆ V .

Here we provide an efficient algorithm to compute an approximation of the largest

2-code.

Lemma 7.5. Let M = (V, d) be a metric space and dim(M) = k, then there exists a

polynomial algorithm f , such that f(M) is a 2-code and vol(M)
4k
≤ |f(M)| ≤ vol(M).

Proof. Let Y be the maximum 2-code of M , then by definition |Y | = vol(M). The

algorithm f iteratively inserts a node x into X, and removes all the nodes in B(x, 2).

Therefore each pair in X has distance more than 2, and |X| ≤ |Y | = vol(M) by

definition.

On the other hand, consider a 1-code Z of metric space M , because ∀u, v ∈
Y, d(u, v) > 2, every unit ball of Z contains at most one y ∈ Y . Thus

|Y | ≤ |Z|.
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Moreover because dim(M) = k, B(x, 2) can be covered by 4k 1
2

balls, and each 1
2

ball

can contains at most 1 element in Z. Thus

|Z| ≤ 4k|X|.

Putting this together |X| ≤ |Y | = vol(M) ≤ Z ≤ 4k|X| which yields the lemma.

Definition 7.6. Given a metric space M = (V, d), we define a graph Hr(M) = (V,E)

where (u, v) ∈ E if d(u, v) ≤ r.

Definition 7.7. IfH1(M) is connected, we say a metric spaceM is hyper-connected .

This characterizes the metric space as “well connected” so that for all pairs of

nodes there exists a sequence of points such that the distance between each pair of

consecutive nodes is less than 1.

Definition 7.8. We say that M̂ = (V̂ , d̂) is a core space with density ∆ of a metric

space M = (V, d) if M̂ is a submetric of M ; density ∆ = minv∈V̂ |BM(v)|; and H1(M̂)

is connected.

This idea of a core space is important, because we only hope to classify nodes in

the “core” of the network, not those in the periphery. This is a somewhat connected

region with density above some threshold.

7.3.2 Network of Honest Nodes

In this section we both highlight exactly what we require of honest networks and

provide motivation for this model.

We will consider metric graphs that are generated on top of a metric M = (V, d)

on n points. We would like that these points a) have doubling dimension bounded

by some parameter k; and b) have a “large” core space M̂ with density ∆ where ∆

is again a parameter.

The edges of the graph are generated by including each possible edge (u, v) where

d(u, v) ≤ 3, with probability ρ. Any additional edges may then be added to the graph

after the outcomes of these random edges are realized.

Recapping, the important parameters are n, the number of nodes; k the doubling

dimension; ∆ the density of the core; and ρ, the minimum probability that edges

appear between nodes close in the metric.
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We think that this is a rather general model that is well-justified. First, the as-

sumption that nodes are embedded in a low-dimensional space where nearby nodes

are connected is implicit in many well-regarded network models. For example, in

the Watts-Strogatz model [234] nodes are arranged on ring (which is just a one-

dimensional lattice) and any two nodes within some distance d on the ring, are con-

nected via an edge with some probability that is a parameter of the model. Similarly,

Kleinberg’s Small World Model [133] has the nodes embedded into a low dimensional

lattice structure where nodes are connected to neighbors. Additionally, Kumar et al.

[140] allows an arbitrary metric space with low doubling dimension and requires an

additional property which is similar to our core space requirement. Though the latent

space Abraham et al. [2] considers is not necessary a metric space, our method can

be easily applied to their model, because once having the distance function of all

categories, we can removed individuals which fail to have enough common neighbors

in all categories.

A host of other works from the mathematical, computer science, sociology, and

statistics communities have also mathematically modeled social networks as coming

from a low-dimension latent space and use the guiding principal that nodes which are

“closer” in the latent space are more likely to be attached [2, 57, 91, 109, 112, 130,

137, 194, 203, 202].

The intuition behind these models is that the location of a node in a metric space

encodes some key properties of the individual, e.g. geographic location, income,

political beliefs on a spectrum, education level, etc; and that these attributes are

sufficient so that when individuals are “close” in this space, they are likely (with

probability ρ) to be friends. Notice that in most of the aforementioned models, nodes

are always neighbors with the nearby nodes in the metric; where as we only require

that nearby nodes are neighbors with some constant, non-zero probability.

Furthermore, there is evidence of the accuracy of such models [3, 19, 44, 149, 159,

168]. In Section 7.6, we provide our own experimental result which confirms that, for

the networks we look at, they can be fruitfully embedded in a low-dimensional latent

space. An additional feature of our model is that additional edges may be added to

the graph in any, even adversarial, manner.

Second, our model additionally requires that the nodes be sufficiently dense in

the metric. Notice that most of the aforementioned models have the nodes spread

out uniformly, so their are no sparse regions of the network. We additionally relax

this assumption and only require that there is a “large” dense region. To a first

approximation, this dense region is the area we will be able to white-list; while nodes
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in sparse regions may not be included in the white list. The necessity of dealing with

sparse regions is empirically motivated by aforementioned findings of Leskovec et al.

[142], Alvisi et al. [10], and Yardi et al. [243] which all identify nodes on the periphery

with low-degree and/or that can be disconnected from the network by only removing

a few edges.

7.3.3 Detection Game

In this section we propose a formal model for sybil detection as a game with two

agents: the adversary and the distinguisher.

The adversary will be given a metric graph G. We say that the nodes of G are the

honest nodes. This set of honest nodes is partitioned into a set of compromisable

nodes C that the adversary can attach to and a set of trustworthy nodes T that

the adversary cannot attach to. The adversary must output a new metric graph G′

which is the same as G except that the adversary can add up to Σ sybil nodes and

any edges that it likes except those between trustworthy nodes and sybil nodes.

The distinguisher will then be given the adversary’s output graph (as well as

some parameters), and must create a white-list of as many nodes as possible without

including any sybil nodes.

Definition 7.9. Let A : (G,C, p, ρ,Σ)→ G′ be a (possibly random) function where

G = (V,E, d) and G′ = (V ′, E ′, d′) are metric graphs, C ⊆ V is a set of “compromis-

able” nodes, p, ρ are real values between 0 and 1, and Σ > 0. We say that A is an

adversary if for every input G,C, p, ρ,Σ:

1. |S| < Σ where S = V ′ \ V .

2. The distance function d′ is a metric that extends d to V ∪ S.

3. E ⊆ E ′ but E ′ contains no edges from V \ C to S. However E ′ may contain

additional edges between V and itself, between S and itself, and between C and

S.

Our definition limits the adversary in two keys ways: first, he can only introduce

so many sybil nodes. Such a condition is necessary because otherwise the adversary

could just create a completely new graph on a disjoint set of vertices which is identical

to the original graph; no detection algorithm could distinguish the ordinal graph

from the identical facsimile. Second, the adversary can only connect sybils to the

original network via compromisable nodes. The intuition is that some set of nodes
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can by tricked or bribed into connecting with the sybils. The remaining vertices are

more trustworthy, concerned, aware, and/or vigilant and are thus immune from the

adversaries attempts to connect. This aligns with the observations of Yang et al. [242]

that software toolkits which facilitate the creating of sybil nodes for the Renren cite

were available and would attempt to identify network nodes that would likely accept

a sybil’s tie request (e.g. nodes with extremely large degree).

Note especially that the adversary can also add ties between honest nodes. This is

not meant to model that the adversary could or would actually compel honest nodes

to add a tie (though it does capture this as well). Rather it is meant to model that,

apart from the ties in the network that we assume to exist from the low-dimensional

embedding (that are included in G and cannot be removed), the rest of the graph

is adversarial bad. In actuality, we think that the graph on the honest nodes would

come from nature. However, we do not wish to prescribe anything more about the

honest graph other than that nodes which are “close” in the low-dimensional latent

space are often connected; and may be connected in a way that is not helpful to the

“distinguisher.”

Definition 7.10. A distinguisher D is a (possibly random) function which maps

(G′, p, den(M), vol(M)) to W where G′ = (V ′, E ′, d′) is a metric graph, p, den(M),

vol(M) are real valued parameters, and W ⊆ V ′.

Now we formally define a detection game on a metric space M = (V, d).

Definition 7.11. We define a detection game Γ with input (M, p, ρ,Σ, A,D) where

M is a metric space, p, ρ are real values between 0 and 1, Σ > 0, A is an adversary,

and D is a defender as follows,

1. Based on M = (V, d), a metric graph G = (V,E, d) is instantiated where E

is created by independently including each edges (u, v) with probability p if

d(u, v) < 3, and otherwise with probability 0. [Note that in Step 3, the adver-

sary can add any additional ties it likes between honest nodes in an attempt to

thwart the distinguisher. At that point the adversary knows which nodes are

trustworthy and compromisable, so the additional edges can depend on those

labels.]

2. We randomly partition V into two sets T (for trusthworthy) and C (for com-

promisable). Each agent v ∈ V will, independently, be included in set C with

probability ρ and in set T otherwise.
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3. The adversary A creates a new metric graph G′ = A(G,C, p, ρ,Σ).

4. The distinguisherD outputs a list of nodesW with input (G′, p, den(M), vol(M))

5. If W ⊆ V we say that the distinguisher succeeds with score |W |; otherwise,

if W ∩ S 6= ∅ we way that the distinguisher fails.

We note that we give the distinguisher help via the parameters p, den(M), vol(M).

In general, we do not feel this assumption is overly restrictive, as distinguisher could

likely learn these over time.

We also node that the detection game maps onto our definition of honest networks

in Section 7.3.2. In particular, this gives the adversely (perhaps unrealistic) power to

manipulate the graph of honest nodes by adding additional edges between any pair

of vertices even after the random edges have been realized and the compromisable

nodes have been determined. However, this only makes our results stronger.

7.4 Sybil Detection Algorithm

Theorem 7.12. Fix 0 < ε < 1√
2

and let Γ(M, p, ρ,Σ, A,D) be a detection game where

p, ρ are probabilities such that 1+ε
1−ερ < p, 0 ≤ Σ, and M is a metric space that has

n nodes and doubling dimension k with core-space M̂ = (V̂ , d̂) with density ∆ with

m = |V̂ |. Then if

Σ < (1− ε) p

2 · 128k
den(M̂) · vol(M̂)− (1 + ε)ρn

there exists a detection algorithm D such that for any adversary A the detection

algorithm D will succeed with score at least m with probability

1− n2 exp(−ε
2

2
p∆)− n exp(−ε

2

3
ρ∆)− exp(−ε

2

3
ρn).

Note that the size of the white-list is at least as large as the dense core of M .

The parameters of the theorem can cover a variety of settings. For example, if ∆ =

ω( log(n)
pε2

) and ε2ρ = o(n/ log n), then the probability of error is negligible (less than

the inverse of any polynomial).

To the end of proving Theorem 7.12, we propose the detection algorithm which is

specified in Algorithm 7.1.

Before we dig into the proof we sketch the intuition behind the detection algorithm.

Verification goes as follow: the algorithm pretends that there is no sybil node in the
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Input: G′ = (V ′, E ′, d′), p, and ∆, vol(M̂)
Output: W , denoting the white-listed nodes.

1: Find a 2-code Y of H2(V ′, d′) by the algorithm in Lemma 7.5.
2: Obtain (V ′′, E ′′, d′′) from G′ by iteratively finding nodes u ∈ V ′ where |NG′(u) ∩
BG′(u, 2)| < (1− ε)p ·∆ and removing these nodes and all incident edges.

3: for y ∈ Y do
4: Gy(Vy, Ey, dy)← (V ′′, E ′′, d′′), Wy ← ∅ and Uy ← ∅
5: while Uy = ∅ and |BGy(y)| ≥ ∆ or ∃v ∈ Uy such that ∃u ∈ BGy(v) \ Uy where

|BGy(u)| ≥ ∆ do
6: if Uy = ∅ then
7: u← y
8: else
9: Set u to be some u from Step 5

10: end if
11: Uy ← Uy ∪ {u}
12: for v ∈ BGy(u, 2), and v 6∈ Wy do
13: if |NGy(v) ∩BGy(u)| > (1− ε)p|BGy(u)| then
14: Wy = Wy ∪ {v}
15: else
16: Remove v and all its edges from Gy.
17: end if
18: end for
19: end while
20: end for

Program 7.1: Detection algorithm
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starting region B(y) for some y from Step 3 and attempts to certify nodes v ∈ B(y, 2)

by checking whether they have many neighbors in B(y). Then the algorithm moves

to a different center u in Step 11 and verifies the region B(u, 2). Doing this, it

will iteratively remove the sybils on the boundary; allowing it to grow a white-listed

region in the graph to cover the entire core.

The remaining difficulty is to find a good starting point y. In Step 3, we say

y ∈ V is a good starting point if B(y) ∩ S = ∅ and |B(y)| ≥ ∆, and say y ∈ V
is a bad starting point if B(y) ∩ S 6= ∅ and |B(y)| ≥ ∆. The main idea is that

the adversary cannot corrupt every region of the graph with many nodes. Thus after

Step 2 there will be many regions of the graph with no sybils. In Step 1, we get a

maximal independent set corresponding to a 2-code of (V ′, d′) which ensures that we

are exploring many diverse regions of the network.

The proof can be separated into two parts:

1. (completeness/soundness) If y from Step 3 is a good starting point, then with

high probability, this algorithm will white-list every honest node in the core

space and no sybil nodes will be white-listed;

2. (majority) There are many y ∈ Y that are good starting points, and not too

many bad starting points.

We first prove three lemmas about structural properties of the network that occur

with high probability. The first of these lemmas shows that if node v is near a node u

with many nodes within unit distance, then node v has large degree. The second says

that if node v has many nodes within unit distance, then v does not (fractionally)

have too many compromisable nodes within unit distance. The third lemma bounds

the total number of compromisable nodes.

We will then show that if these properties hold, then our detection algorithm

succeeds.

Lemma 7.13. Let Γ(M, p, ρ,Σ, A,D) be a detection game, let n = |M |, and let

∆ ∈ R≥0. Then with probability 1−n2 exp(− ε2

2
p∆) for every u, v ∈M with d(u, v) ≤ 2

and |BM(u)| ≥ ∆, it is the case that |NG(v) ∩BM(u)| ≥ (1− ε)p|BM(u)|.

Proof. By Definition 7.11 in Step 1, the edges will independently form between v

and nodes in B(v, 3). Because the adversary cannot remove any edges, he can only

increase |NG′(v) ∩BM(u)|.
We known ∀w ∈ BM(u), d(v, w) ≤ d(v, u) + d(u,w) ≤ 2 + 1 = 3. Thus Pr[w ∈

NG′(v)] ≥ p and E[|NG′(v) ∩ BM(u)|] =
∑

w∈BM (u) Pr[w ∈ NG′(v)] ≥ p|BM(u)|.
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Moreover because the realization of edges are independent, we can apply a Chernoff

bound and get

Pr[|NG′(v) ∩BM(u)| ≤ (1− ε)p|BM(u)|] (7.1)

≤ exp(−ε
2

2
p|BM(u)|) ≤ exp(−ε

2

2
p∆) (7.2)

The lemma follows from a union bound.

Lemma 7.14. Let Γ(M, p, ρ,Σ, A,D) be a detection game, let n = |M |, and let

∆ ∈ R≥0. Then with probability 1−n exp(− ε2

3
ρ∆) for every u ∈M with |BM(u)| ≥ ∆,

it is the case that |BM(u) ∩ C| ≤ (1 + ε)ρ|BM(u)|.

Proof. In Definition 7.11, ∀u ∈ BM(u) whether v is in C are independently random

indicator variables and |BM(u) ∩ C| is the sum of these indicator variables with

expectation ρ|BM(u)|. Applying a Chernoff bound,

Pr[|BM(u) ∩ C| > (1 + ε)ρ|BM(u)|] (7.3)

≤ exp(−ε
2

3
ρ|BM(u)|) (7.4)

≤ exp(−ε
2

3
ρ∆) (7.5)

Applying union bound and taking the complement, the lemma follows.

Lemma 7.15. Let Γ(M, p, ρ,Σ, A,D) be a detection game and let n = |M |, then with

probability 1− exp(− ε2

3
ρn), |C| < (1 + ε)ρn.

Proof. Because the expectation of |C| is ρn and it is the sum of independent indicator

variables, we can apply a Chernoff bound and get:

Pr[|C| ≥ (1 + ε)ρn] < exp(−ε
2

3
ρn)

Now notice that by a union bound, the statements of Lemmas 7.13, 7.14, and 7.15

holds with probability 1− n2 exp(− ε2

2
p∆)− n exp(− ε2

3
ρ∆)− exp(− ε2

3
ρn).

We now assume that all these statements hold, and show that when this is the

case, our detection algorithm works. The next lemma shows that no honest node

within unit distance of a node with high density is removed in Step 2.

139



Lemma 7.16. Let Γ(M, p, ρ,Σ, A,D) be a detection game where D is our detection

algorithm with inputs G′, p,∆, vol. Let v ∈ V with |BG(v)| ≥ ∆ then, assuming

statement of Lemma 7.13 holds, after Step 2, BG′′(u) ∩ V = BG(u) ∩ V .

Proof. Let W =
⋃
v∈V :|BG(v)|≥∆ BG(v). We claim that there can be no “first” w ∈ W

that is removed from V ′. For each w ∈ W let vw be a node such that w ∈ BG(vw)

and |BG(vw)| ≥ ∆. By the definition of w, we know that such a node vw exists, and

that vw ∈ W .

For the sake of contradiction say that w is the first w ∈ W removed. Then

NG(w) ∩BG(vw, 1)

⊆ NG′(w) ∩BG′(vw, 1)

⊆ NG′(w) ∩BG′(w, 2)

where the first ⊆ is because E ⊆ E ′, and the second ⊆ is because BG′(vw, 1) ⊆
BG′(w, 2).

However, by Lemma 7.14, we have that

(1− ε)p∆ ≤ (1− ε)p|BG(vw, 1)| ≤ |NG(w) ∩BG(vw, 1)|.

This is a contradiction because in this case |NG′(w)∩BG′(w, 2)| ≥ (1− ε)p∆ and

so w would not have been removed in Step 2.

Lemma 7.17. Let M be a metric space and let M̂ be a core space with density ∆.

Let Γ(M, p, ρ,Σ, A,D) be a detection game where D is our detection algorithm with

inputs G′, p,∆, vol(M̂). Assume that the conditions in Lemmas 7.13 and Lemma 7.14

are true, and let y be a good starting point. Then the Detection algorithm will output

Wy ⊆ V . Moreover, if y ∈ M̂ then V̂ ⊆ Wy ⊆ V

Proof. We assume the statements of Lemma 7.13 and Lemma 7.14 and that y is a

good starting point and then we will show that the following always hold:

1. Vy ∩ V = V ′′ ∩ V ,

2. Wy ∩ S = ∅,

3. For all u ∈ Uy and u′ ∈ BGy(u) where either |BGy(u
′)| ≥ ∆ or |BG(u′)| ≥ ∆, we

have BGy(u
′) = BG(u′) ⊆ Wy.
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If we prove this, then, by the second statement, we know that Wy ⊆ V . We must

also show that if y ∈ M̂ then M̂ ⊆ Wy. We show something stronger: each node in

M̂ is eventually included in Uy. This is a stronger statement because, by Statement

3, if u ∈ Uy, then BGy(u) = BG(u) ⊆ Wy. Say that some node w ∈ M̂ is never added

to Uy. By the hyper-connection property of M̂ we can create a spanning tree on the

nodes of H1(M̂) rooted at y, and let w be a “closest” node to y (in the tree) that is

not included and let v be its parent.

However, from the third statement above, we know BG(w) = BGy(w) because

d(w, v) ≤ 1, v ∈ Uy and |BG(w)| ≥ ∆. Thus w will also be processed as a center, and

this is a contradiction.

We now show that the three properties always hold via induction on |Uy|. For

|Uy| = 0, the first statement holds because at that point Vy = V ′′; while the second

statement holds because Wy = ∅ and the third statement holds because Uy = ∅.
We now show the inductive step, that if the three statements hold when |Uy| = k,

they will also hold when |Uy| = k + 1.

Lets say that u is the k + 1st node chosen for a center in Step 11. We know that

BGy(u) = BG(u) either because u = y and then it follows from the fact that y is a

good starting point and Lemma 7.16, or because there must exist w ∈ Uy such that

d(w, u) ≤ 1, and then it follows from the third assumption (note that |BGy(u)| ≥ ∆

because u was chosen to be a center).

Before processing center u, a node v ∈ Vy(u) ∩ V has two cases:

1) v 6∈ BGy(u, 2) then v will certainly be in Vy after the process;

2) if v ∈ BGy(u, 2), since Lemma 7.13 holds, we have |NG(v) ∩ BG(u)| ≥ (1 −
ε)p|BG(u)|. Because BGy(u) = BG(u), we have also have |NGy(v) ∩ BGy(u)| ≥ (1 −
ε)p|BGy(u)|. Thus v ∈ Vy holds after the process, and that proves Vy ∩ V = V ′′ ∩ V ,

and BGy(u, 2) ⊆ Wy.

On the other hand, let s ∈ BGy(u, 2) be a sybil node. Then s can only connect to

the compromised nodes in BGy(u) because, by assumption, BGy(u) = BG(u), which

contains no sybil nodes. Formally, we see:

|NGy(s) ∩BGy(u)| ≤ |C ∩BGy(u)| = |C ∩BG(u)|

< (1− ε)ρ|BG(u)| = (1− ε)ρ|BGy(u)|

≤ (1 + ε)p|BGy(u)|.

The first equality is from the assumption that BGy(u) = BG(u), the second in-

equality is from the assumption of Lemma 7.14, and the final inequality is because
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1+ε
1−ερ < p. This proves Wy ∩ S = ∅.

It remains to show that part 3) holds. We break the analysis into two cases by

partitioning Uy into Uy \ {u} and {u}.
First, let v ∈ Uy \ {u} and let u′ ∈ BGy(v) where |BGy(u

′)| ≥ ∆ or |BG(u′)| ≥ ∆.

Then, by the inductive hypothesis, after the time the v was processed, we had that

BGy(u
′) = BG(u′) ⊆ Wy. No node in Wy is ever removed, so this still must be the

case.

Second, let u′ ∈ BGy(u) with |BGy(u
′)| ≥ ∆ or |BG(u′)| ≥ ∆ and so that u′ was

not considered above. Then, we must show BGy(u
′) = BG(u′) ⊆ Wy.

Note that combining the facts that BGy(u
′) ⊆ BGy(u, 2) and BGy(u, 2) ⊆ Wy

(argued above) we see, that BGy(u
′) ⊆ Wy. Using that BGy(u

′) ⊆ Wy and Wy∩S = ∅
we see that BGy(u

′)∩S = ∅, which means that BGy(u
′) has no sybils and so BGy(u

′) ⊆
BG(u′). This additionally implies that |BG(u′)| ≥ ∆.

It remains to show that BG(u′) ⊆ BGy(u
′). Intuitively, the one problem we could

encounter is that some nodes of BG(u′) might have been removed in Step 2. However,

this does not happen. Rather BG(u′) = BG′′(u
′)∩ V because |BG(u′)| ≥ ∆ and so by

Lemma 7.16 BG′′(u
′) ∩ V = BG(u′). We use this to get:

BG(u′) =BG′′(u
′) ∩ V = BG′′(u

′) ∩ V ′′ ∩ V

=BG′′(u
′) ∩ Vy ∩ V = BGy(u

′) ∩ V ⊆ BGy(u
′)

The third equality is because V ′′ ∩ V = Vy ∩ V , as proved above.

Putting everything together we have BG(u′) = BGy(u
′) ⊆ Wy and this concludes

the proof of the lemma.

Lemma 7.18. (Majority) Let Γ(M, p, ρ,Σ, A,D) be a detection game and assume

that the condition in Lemma 7.15 is true, and let Y be the 2-code D gets after step

1, then at most |Y |
2·4k ≤

vol(M̂)
2·4k points in Y are bad starting points.

Proof. Suppose the lemma is false. Then we consider the subset Y ′ ⊆ Y such that

every y′ ∈ Y ′ is a bad starting point and

|Y ′| ≥ |Y |
2 · 4k

.

We consider some X ⊆ Y ′ such that X is a 8-code for Y ′. For each x ∈ X,

|B(x, 8) ∩ Y ′| ≤ 8k because B(x, 8) can be covered by less than 8k unit balls by
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definition of doubling dimension and each unit ball contains at most 1 element of Y ′.

The cardinality of 2-code Y is greater than vol(M̂)
4k

by Lemma 7.5. Thus

|X| ≥ |Y
′|

8k
≥ |Y |

2 · 32k
≥ vol(M̂)

2 · 128k
(7.6)

By the assumption of Y ′ every x ∈ X ⊆ Y is a bad starting point which

means ∀x ∈ X, ∃sx ∈ B(x) which is a sybil node, and since sx survives after step

2, |B(sx, 2)| > (1 − ε)p · ∆. Moreover, for all x, z ∈ X and x 6= z, d(sx, sz) ≥
d(x, z)− d(x, sx)− d(z, sz) > 8− 4 = 4, B(sx, 2), B(sz, 2) are disjoint. On one hand,

|C ∪ S| ≥ |
⋃
x

B(sx, 2)| ≥ |X|(1− ε)p ·∆

Using (7.6) and the condition on S, we get

|C| ≥ −|S|+ (1− ε)pvol(M̂)∆

2 · 128k
> (1 + ε)ρn

On the other hand, by Lemma 7.15, |C| ≤ (1+ε)ρn, and so we get a contradiction.

Now we can prove the Theorem 7.12

Proof. First, we note that the statements of Lemmas 7.13, 7.14, and 7.15 hold with

probability

1− n2 exp(−ε
2

2
p∆)− n exp(−ε

2

3
ρ∆)− exp(−ε

2

3
ρn) (7.7)

In the case that y is a good starting point, we never add a sybil nodes to Wy by

Lemma 7.17. By Lemma 7.18, there are only |Y |
2·4k bad starting points in Y . Thus no

sybil meets the threshold in Step 5 to be included in W .

However, by Lemma 7.5, for any node v in the M̂ -core, there are vol(M̂)
4k

start nodes

in Y. Moreover, less than vol(M̂)
2·4k of them can be bad. Thus at least vol(M̂)

2·4k of them are

good. By Lemma 7.17 for these y, M̂ ⊆ Wy and thus, M̂ will be included in W .

7.5 Sybil Detection with a Trustworthy Seed

In this section, we will make the additional assumption that the distinguisher is given

one trustworthy node as advice. The advantage is that in this setting, we do not

have to limit the number of sybil nodes (nor the doubling dimension). However,
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to take advantage of this advice, we will lose a fair bit in the trade-off between the

parameters of ρ and p—the fraction of nodes that are compromisable and the fraction

of edges present between honest nodes which are close in the underlying latent space,

respectively. Before we required that 1+ε
1−ερ < p, but in this section, we will require

1+ε
1−ερ < p3.

To formally define this new setting we modify Definition 7.9 (Adversary) to ad-

ditionally require the adversary to choose a single trustworthy node t which will be

used as advice from by the distinguisher. The idea is that the adversary can choose

a “worst-case” trustworthy seed.

Definition 7.19. Let A : (G,C, p, ρ) → (G′, t) be a (possibly random) function

where G = (V,E, d) and G′ = (V ′, E ′, d′) are metric graphs, C ⊆ V is a set of

“compromisable” nodes, p, ρ are real values between 0 and 1, and t ∈ V ′ is a node

in the output graph. We say that A is an seeding-adversary if for every input

G,C, p, ρ:

1) The distance function d′ is a metric that extends d to V ∪ S.

2) E ⊆ E ′ but contain no edges from V \ C to S. However E ′ may contain edges

between V and V , between C and S, and between S and S.

3) t ∈ V \ C.

Next we must modify Definition 7.10 (Distinguisher) to take as input a single node

t (which it will assume is trustworthy) in lieu of vol(M).

Definition 7.20. A seeded-distinguisher D is a (possibly random) function

D : (G′, p, den(M), vol(M), t) → W where G′ = (V ′, E ′, d′) is a metric graph,

p, den(M), vol(M) are real valued parameters, and W ⊆ V ′.

Finally, we accordingly modify Definition 7.11 (Detection Game).

Definition 7.21. We define a seeded-detection game identically to the detection

game (see Definition 7.11) except that in Step 3 and Step 4 the adversary and the

distingisher are replaced by a seeding-adversary and a seeded-distinguisher, respec-

tively.

In our Theorem, will only require that the distinguisher succeed if t is in the core

of the network.

Theorem 7.22. Fix 0 < ε < 1√
2

and let Γ(M, p, ρ, A,D) be a seeded-detection game

where p, ρ are probabilities such that 1+ε
1−ερ < p3, and M is a metric space that has n

nodes with core-space M̂ = (V̂ , d̂) with density ∆ with m = |V̂ |. Then there exists a
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detection algorithm D such that against adversary A that outputs a trustworthy node

t ∈ M̂ , D will succeed with score at least m with probability

1− 2n2 exp(−ε
2

2
p∆)− n exp(−ε

2

3
ρ∆).

The idea is rather straightforward, given the prior results. From Lemma 7.17 we

know that we can succeed if we can find a good starting point. The idea is then to

make t into a good starting point.

Proof. (Sketch) Our distinguisher will simply run a slightly modified version of the

Detection Algorithm. On input (G′, p, den(W ), t), it will

1) Obtain V ′′ by removing all nodes in BV ′(t) where the number of neighbors in

BV ′(t) ∩NV ′(t) is fewer than (1− ε)p2Π(t) where Π(t) = |BV ′(t) ∩NV ′(t)|.
Then it will set y to t in Step 3 and return the Wt it obtains.

We first show that with probability 1− n2 exp(− ε2

2
p2∆)− n exp(− ε2

3
ρ∆) that for

all trustworthy nodes t in core space, if t is output by the seeding-adversary then:

1) all the sybils in BV ′(t) are removed; and

2) all the honest nodes in BV ′(t) remain.

If node v ∈ H and v ∈ BV ′(t), in expectation |NV ′(v) ∩ NV ′(t) ∩ BV ′(t)| ≥
|NV (v) ∩ NV (t) ∩ BV (t)| ≥ p2|BV (t)| ≥ p2Π(t) where the second inequality holds

because adversary cannot remove edges between honest nodes. By a Chernoff bound,

with probability at most exp(− ε2

2
p2∆), |NV ′(v)∩NV ′(t)∩BV ′(t)| ≤ (1− ε)p2Π(t) and

v would be removed.

Taking a union bound over all possible t and v we get error with probability at

most n2 exp(− ε2

2
p2∆).

On the other hand, by Lemma 7.14 we have that for all t: |C∩BV (t)| ≤ (1+ε)ρΠ(t)

with probability at least 1− n exp(− ε2

3
ρ∆). Note that

(1 + ε)ρ|BV (t)| = (1 + ε)
ρ

p
|BV (t) ∩NV (t)| ≤ (1 + ε)

ρ

p
Π(t) < (1− ε)p2Π(t).

Because the common neighbors between any sybil and trustworthy node t are com-

promisable nodes, if Lemma 7.14 is satisfied, then any sybil in BV ′(t) will be removed.

At this point, if t ∈ M̂ then t is a good starting point because S ∩BV ′′(t) = ∅ and

|BV ′′(t)| ≥ ∆.

While the situation is slightly changed, and we cannot directly apply Lemma 7.17,

it is straightforward to check that the exact same proof applies. The only difference

come from not having run Step 2 in the Detection Algorithm. Note that Lemma
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7.17 requires that both Lemma 7.13 and Lemma 7.14 are satisfied. We have already

accounted for the small probability that Lemma 7.14 is not satisfied. Noting that

Lemma 7.13 is satisfied with probability 1− n2 exp(− ε2

2
p∆) we get the theorem.

We also consider the additional assumption that the distinguisher is given one

trustworthy node as advice. In the full version, we show that we can obtain similar

results as Theorem 7.12 but with no limit on the number of sybil nodes (nor the

doubling dimension). However, to take advantage of this advice, we will lose a fair

bit in the trade-off between the parameters of ρ and p—the fraction of nodes that

are compromisable and the fraction of edges present between honest nodes which are

close in the underlying latent space, respectively. Before we required that 1+ε
1−ερ < p,

but in this case, we will require 1+ε
1−ερ < p3.

7.6 Experiments

We previously noted that our assumptions hold in many generative models, and

general versions of these assumptions are typically assumed to be true. We conducted

several experiments to evaluate and further study our specific assumptions in different

online communities and social networks.

In our main theorems, we assume the social network G can be embedded into a

low doubling dimension space M(G, d); that a large fraction of nodes forms a core

space with density ∆, that every node in the core space has at least ∆ nodes whose

distance is smaller than 3, and the edges between the node and nearby nodes form

independently with probability p. Collectively, we refer to this set of assumptions our

low-dimension assumption.

Note that because our low dimensional assumptions are stochastic in nature, we

cannot exactly test them empirically. Instead we will ensure that a node connects to

some p fraction of neighbors within distance 3 (rather than a random set of neighbors).

7.6.1 Dataset Description

Our experiments use all 4 social network data sets on Stanford Network Analysis

Project with between 4, 000 and 100, 000 nodes: this includes networks collected from

Facebook [157] and Twitter [157] as well as the Wikipedia voting network [143] and the

Epinion network [196]. The Facebook data set consists of ’circles’ (or ’friends lists’)

from Facebook, and was collected from survey participants using a certain Facebook

app. The Twitter data has similar attributes to Facebooks and it was crawled from
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public sources. Wikipedia is a free encyclopedia written collaboratively by volunteers

around the world. The promotion to adminship of Wikipedia community is done

through public discussion or voting and an edge represents one volunteer voting for

another. This data set collects 2, 794 elections with 103, 663 total votes and 7, 066

users participating in the elections. Epinion data set is a who-trusts-whom online

social network of a general consumer review site. Members of the site can decide

whether to “trust” each other. These networks vary in size and degree distributions

and provide insight on the effect network parameters have on the low dimension latent

space assumption.

We summarize the basic statistics of the network data sets we used in Table 7.1.

Social network Facebook Wiki-vote Twitter Epinion
Nodes 4039 7115 81,306 75,879
Edges 88,234 103,689 1,768,149 508,837
Average degree 21.85 14.57 21.75 6.70
Nodes in 6-core 3478 3343 58,787 13,911
Edges in 6-core 86,492 94,179 1,279,919 303,324

Table 7.1: Data set statistics

We found:

1. Under proper parameters, there are large fraction of nodes in social networks

in the core space.

2. Moreover, we determined that this property is a result of the structure of the

network. We compared the results to an equivalent networks where the edges

were randomly “rewired” so that the network had the same number of nodes,

same number of edges, and same degree distribution, but the edges were dis-

tributed randomly. Such networks did not exhibit large core regions.

7.6.2 Implementation Details

To test the low-degree assumption on each network we used spectral embedding tech-

niques to embed the 6-core of the graph into Rd, and then measured the core-

fraction of the resulting metric graph as follows: for given parameters r, p, and ∆,

we first removed all nodes in the 6-core that either a) did not have ∆ nodes within

distance r, or b) were not neighbors with a p fraction of the nodes within distance r.

We then created a graph of the remaining nodes by connecting those within distance

r. We output the size of the largest component divided by the size of the 6-core, the

core-fraction.
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We additionally, randomly “rewired” the 6-core of each graph and again embedded

that into Rd, and then measured properties of the resulting metric graphs.

We now describe each step of the procedure in detail.

• Finding the k-core of the original social network. A k-core is a maximal

connected subgraph of the original graph in which all vertices have degree at

least k. This can be obtained by iteratively removing nodes of degree < k. We

fix k = 6.

• Rewire graph A rewired graph G′ = (V ′, E ′) of G(V,E) is constructed starting

out with G, and then by letting V ′ = V and carrying out a series of switching

steps (10|E| times) whereby a pair of edges are selected uniformly at random

and the ends are exchanged[165]. A rewired k-core takes two steps 1) take k-core

of the original graph 2) rewire the k-core.

• Embedding a graphs into Rd by spectral embedding [108]. Formally,

we create x : V → Rd such that x = (x1, ..., xd) where xi : V → R. xi then can

be seen as vector where x0 = 1n and for i > 0 we obtain xi by solving

xi = arg min
x>xk=0,∀0≤k<i

∑
(u,v)∈E

||x(u)− x(v)||2.

This can be solved efficiently and xi will be the eigenvector corresponding to

the i-th largest eigenvalue of the Laplacian matrix of the graph.

• Computing core-faction We fixed ∆ = 10. For values of p between 0 and 0.2

in .01 increments we tested different values of r and used the r which maximized

the core-fraction at p = 0.2.

Explanation of Procedure Though no canonical way of embedding a graph into

metric space, one conventional way is to use spectral techniques [108], which, intu-

itively tries to embed the graph in such a way as to minimize the distance between

two connected vertices in the embedding. A known issue with spectral embedding is

that it can be greatly influence by nodes that are disconnected from (or barely to) the

rest of the graph. For this reason, we first took the k-core. Additionally, we expected

that much of the core of the graph would be in the k-core, so that we would not lose

too much by doing this.

Recall that in our model, nodes in the core were required to have a sufficient

density of nearby nodes, and were randomly connected to a p fraction of these nodes.
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Additionally, it was required that the core was connected. We first determined what

“close” (that is r) should mean in terms of the embedding. Note that if r is too

small, then no nodes will have sufficient density, and thus will not be included in the

core. If r is too large, then nodes will not be connected to large fraction of the nodes

within distance r. We chose the r that worked best when p = 0.2, which corresponds

to choosing the “scale” of the embedding. We optimized r separately for the original

and rewired networks. The rewiring of the graph essential destroys any “structure”

of the graph, and serves as a sort of null hypothesis. This mostly serves as a sanity

check that the parameters of our test do not hold for all graphs, but that there is

something specific in real-world networks that support our assumptions.

Note that our goal here was not to find the “best” embedding, but to find one

that would effectively illustrate that our low-dimensional assumptions hold. If our

assumptions hold in this embedding, we know that the graph contains low-dimensional

structure; however, if our assumptions fail to hold in this embedding, we only know

that this particular embedding is a poor choice.

7.6.3 Experimental Results

The results with ∆ = 10, 0 < p < 0.2, and d = 2, 3, 4, and 5 (recall d is the dimension

of the embedding) are shown in Figure 7.1. We generally found that there is a large

fraction of nodes in core space, with the Twitter and Facebook networks embedding

more effectively than E-pinions or Wikipedia. This is promising because these data

sets are the closest to traditional social networks.

Note that the charts only show the fraction of the 6-core in the core. Table 7.1

additionally shows the fraction of the nodes in the 6-core, which averages around 50%

but varies greatly between datasets. For example, even when we required that a core

node be connected to 20% of the close nodes in the Facebook data set, about 22%

of the 6-core nodes remained in the core. Because in this dataset over 86% of the

nodes are in the 6-core, this means that about 19% of the nodes are in the core. If

we only require that a core node be connected to 10% of the close nodes, then the

overall fraction of core nodes jumps to 34%.

The exception was the E-pinions network. In this network, even when we only

required a core node be connected to 5% of the close nodes only 12% of the 6-core

remained in the core. Also, unique to this network is that the 6-core only represented

about 18% of the nodes. So at this point only 2% of the nodes are in the core. While

we cannot definitively say, we postulate that one reason for this failure is the low
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Facebook Wiki

Twitter Epinion

Figure 7.1: The relation between fraction of core space to graph under required
fraction of neighbors among close nodes and in different dimensions.

average degree of the E-pinion network, which is less than half of any other network.

Additionally, we note that even though the numbers are small, the faction of nodes

in the core of the E-pinions network is still a factor of 10 greater than in the rewired

E-pinions network.

The dimension for which we embedded a network seemed not to make a systematic

difference, though it seemed like slightly larger dimensions were more effective in

Twitter and Facebook.

In the rewiring setting, the experiments show that the embeddings of the rewired

networks do not do as well placing neighbors close by. This indicates that the link

structure in original networks contains features that the rewired networks do not. In

particular, the core-fraction of the rewired networks when p = 0.2 was about 0.46%

in Facebook, 2.2% in Wikipedia, 0.01% in Twitter, and 0.39% in E-pinion.

7.7 Conclusion

Sybil attacks, in which an adversary creates a large number of identities, present a

formidable problem for the robustness of recommendation systems. We create a sybil
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defense system that provably defends against sybil attacks, even in the setting where

an adversary can create an arbitrary number of links, though only to a constant

fraction of the network. This defends against periphery attacks, which were found

in practice, but not accounted for by previous sybil defense works. We did this by

exploiting a new, for sybil detection, social network property, namely, that nodes can

be embedded in low-dimensional spaces, which we empirically verified.
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CHAPTER 8

The Volatility of Weak Ties: Co-evolution

of Selection and Influence in Social

Networks

In this chapter, we look at opinion formation and the effects of two phenomena

both of which promote consensus between agents connected by ties: influence, agents

changing their opinions to match their neighbors; and selection, agents re-wiring to

connect to new agents when the existing neighbor has a different opinion. In our

agent-based model, we assume that only weak ties can be rewired and strong ties do

not change. The network structure as well as the opinion landscape thus co-evolve

with two important parameters: the probability of influence versus selection; and the

fraction of strong ties versus weak ties. Using empirical and theoretical methodologies

we show that on a two-dimensional spatial network:

• With no/low selection, the presence of weak ties enables fast consensus. This

conforms with the classical theory that weak ties are helpful for quickly mixing

and spreading information, and strong ties alone act much more slowly.

• With high selection, too many weak ties inhibit any consensus at all—the graph

partitions. The weak ties reinforce the differing opinions rather than mixing

them. However, sufficiently many strong ties promote convergence, though at

a slower pace.

We additionally test the aforementioned results using a real network. Our study

relates two theoretical ideas: the strength of weak ties—that weak ties are useful for

spreading information; and the idea of echo chambers or filter bubbles, that people

are typically bombarded by the opinions of like-minded individuals. The difference is

in how (much) selection operates.
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8.1 Introduction

Social ties are not static, they evolve over time and the evolution is driven by two

processes. One is selection where an individual may seek out and form new ties; often

with others that have similar attributes [217]. The other social process is influence

in which two individuals already connected by a social tie may influence one another

and converge on their personal attributes (interest, tastes, etc) [201, 219]. Both of

them result in neighboring nodes being more similar than two random nodes.

The sociology literature has, for a long time, acknowledged and studied the dif-

ference of social ties [105, 106, 145]. Strong ties refer to the ties that people regularly

spend effort to maintain, such as family members, close friends, and colleagues. Weak

ties, on the other hand, are relatively effortless to keep and typically are much more

numerous than strong ties. The difference in the type of ties is also reflected struc-

turally. Strong ties tend to be clustered with a high clustering coefficient, while weak

ties are important bridges that connect remote communities. In the seminal paper

“The Strength of the Weak Ties” Granovetter [105] showed how information spreads

through weak ties. While strong ties connect people who are more similar to each

other (due to homophily), weak ties tend to bring fresh information to a social group,

which can be extremely valuable, for example, in the case of looking for new jobs.

One of the interesting aspects of this paper is to examine the evolution of strong

ties and weak ties, with selection and influence considered. By definition, strong ties

and weak ties also differ in their stability or fragility. The physical constraints that

form a strong tie are often stable in time and are hard to change. Many of the strong

ties are not formed by selection. We are born with family ties and they stay with us for

a lifetime except in extreme cases. Neighbors and colleagues are also relatively hard to

change without some serious effort or cost. But weak ties, especially those discovered

on a social platform, are a lot easier to form or break, making it convenient to block

opinions that one does not like and stay in a comfortable “echo chamber” [20, 223].

The political science literature has confirmed the observation of geographical seg-

regation and partisan alignment [160, 94] and of ‘ideology sorting’, that people tend to

“segregate themselves into their own political worlds, blocking out discordant voices

and surrounding themselves with reassuring news and companions” [35]. In the on-

line setting, the sorting process can possibly happen at a much faster rate and a

larger scale [122, 152, 20, 37, 162]. Online forums allow people to seek out like-

minded individuals, including those holding unpopular views that have been shunned

elsewhere [69]. Moreover, social media research clearly shows that unfriending on
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Facebook [210] and unfollowing on Twitter [241, 132] disproportionately affect weak

ties as compared to strong ties. Between 16% and 26% of American SNS users have

disconnected a tie for reasons to do with politics [191, 122, 210]. While such selection

processes indeed limits the information input to certain users, it was also observed

that the disconnections helped to sustain user participation in the social network

[152].

Our Approach In this work we develop a model of opinion formation and changes

with two competing opinions/behaviors. Examples include political views (liberal

v.s. conservative) or behaviors (smoking/non-smoking, drug use/no drug use). The

opinions are influenced by one’s friends which could be connected by strong ties or

weak ties. Generally speaking, one’s opinion is going to move toward the majority

opinion in his/her friend circle over time. Meanwhile, selection may also happen such

that a node re-wires ties when he/she has different opinion from his/her friends. In

our model, we assume that only the weak ties can be rewired and strong ties do

not change. The network structure as well as the opinion landscape thus co-evolve

with two important parameters: pselect, the probability of a selection as the next

action as opposed to influence; and qstrong, the fraction of strong ties in the network.

The objective of this paper is to answer the following question: does the opinion

distribution converge and if so how fast does it converge with respect to the two

parameters?

Related Work There has been work on co-evolution of social ties and opinions

without separating strong/weak ties. Holme and Newman [115]

show a phase transition from a segregated network to a homogeneous network, con-

trolled by pselect. Durrett et al. [80] built on top of the Holme-Newman model and con-

sidered two models of selection: rewire-to-random, and rewire-to-same. Cohen et al.

[59] study a problem of opinion formation with continuous values with influence and

selection. Kempe et al. [129] considered agents with multiple dimensions/attribute

types and only agents who are similar in many dimensions can influence each other.

They characterized the equilibrium outcome and proved convergence.

An expansive literature attempted to validate selection and influence models using

real-world data, although some of them are limited as they assume independent ob-

servations and no external factors [217]. Lewis et al. [146] considered Facebook data

and discovered that there could be a large variation of whether selection or influence

is more prominent, depending on the studied attributes. Further, selection and influ-
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ence can be heavily entangled. For example, in a static network (when selection does

not exist), both cooperative and selfish behaviors are contagious. But in a dynamic

network, selfish behavior is still contagious, but cooperative behavior is not [123].

Thus selection and influence in network co-evolution definitely deserve further study

in different social settings.

8.2 Model

8.2.1 Model of Agent Network

To encode the interaction among people, we use a directed graph G = (V,ES, EW )

with V as the set of nodes and two types of edges— strong ties, ES, and weak ties,

EW . For v ∈ V let dS(v) be the out-degree of strong ties of node v and the i-th strong

out-neighbor of node v is denoted by δS(v)i. We define dW (v) and δW (v)i analogously.

We allow multi-edges and self loops in both ES and EW .

8.2.2 Dynamics of Influence and Selection

Each agent v ∈ V has an opinion χ(v) ∈ {0, 1}. We call χ = {χ(v) : v ∈ V } the

opinion vector. For σ ∈ {0, 1}, let x(σ) , {v ∈ V : χ(v) = σ} ⊆ V denote the set of

nodes with opinion σ. Let Rχ
S(v) = |{i:χ(δS(v)i)=1}|

dS(v)
be the fraction of strong ties which

have an endpoint with opinion 1, and similarly define Rχ
W (v).

The process Sel-Inf(G(0), finf , pselect, qstrong) is a discrete time Markov chain over

state space {(χ,G)} where G(0) is the initial network of agents, finf : [0, 1] 7→ [0, 1]

is an influence function, parameter pselect ∈ [0, 1) denotes the amount of selection

(versus influence), and qstrong ∈ [0, 1] denotes the influence of the strong ties (versus

weak ties). To this end we define Rχ(v) = qstrongR
χ
S(v) + (1− qstrong)Rχ

W (v) to be the

weighted fraction of v’s neighbors that are 1.

The dynamics Sel-Inf(G(0), finf , pselect, qstrong) start with the graph G(0) and initial

opinions that are uniformly and independently randomly selected. Given state Y (t) =

(χ(t), G(t)) at time t, the dynamics updates to Y (t+1) as follows: initially set Y (t+1) =

Y (t), choose an agent v uniformly at random and update Y (t+1) with one of the

following two operations:

Selection. With probability pselect, agent v randomly chooses a weak tie and

rewires if they disagree: select a random number k between 1, . . . , dW (v), and let
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u = δ
(t)
W (v)k. Then

δ
(t+1)
W (v)k =

{
u , if χ(t)(v) = χ(t)(u)

a random node in V , otherwise.
(8.1)

Influence.[206] Otherwise (with probability 1− pselect), agent u updates its opin-

ion,

χ(t+1)
v =

{
1 with probability finf

(
Rχ(t)

(v)
)

0 , otherwise.
(8.2)

recall that Rχ(t)
(v) is the qstrong weighted fraction of v’s neighbors with opinion 1 at

time t.

We say the process reaches consensus if all agents have the same opinion, and we

use the number of influence steps as the consensus time.

Remark 8.1. Our model is similar to the Holme-Newman model [115]. In the selec-

tion phase of our model, the chosen node picks a random edge, and when the endpoint

has a different opinion rewires the edge to a random node (rewired when disagreeing).

In their model, a random edge is rewired to a random node with the same opinion

(rewired to the same). For the influence phase, their model uses the voter model to

update opinions.

Remark 8.2. We will describe our simulation results using ρselect instead of pselect

where pselect = dρselect
1+(d−1)ρselect

and d is the average degree of the graph. Here ρselect just

rescales pselect to correctly normalize for the degree. This way, if v is a node of degree

d, the rate that the opinion of δW (v)i is updated via selection versus influence is ρselect

versus 1− ρselect and does not depend on d.

8.2.3 Choices of Influence dynamics

We consider k-majority dynamics (choose k neighbors according to their edge weights

independently with replacement and change the opinion to the majority opinion of

these k neighbors),

finf(x) =
k∑

`=dk/2e

(
k

`

)
x`(1− x)k−`. (8.3)

This generalizes several previously studied models:

• Voter Model (k = 1): agent u chooses a neighbor v with probability proportional

to the weight and updates to v’s opinion, finf (x) = x [114].
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Figure 8.1: The function finf for different influence dynamics. The k-majority model,
with an increasing k, changes from the voter model to the majority model.

• Majority (k → ∞): agent u updates to the opinion with maximum weight,

when there is a tie, the opinion is chosen at random [176].

• 3-majority dynamics (k = 3): agent u polls the opinion from three random

neighbors and takes the majority as the new opinion [31].

For k > 1 this family of influence dynamics can be seen as the smooth version of

majority dynamic with “the rich get richer property”— if Ru > 1/2, more than half

of u’s neighbors are 1 then the probability that agent u updates to 1 is greater than

Ru, the fraction of u’s 1 neighbors; moreover on a complete graph if the number of

agents with opinion 1 is greater than the number of agents with opinion 0 there is a

“drift” for opinion 1 such that the number of agents with opinion 1 tends to increase.

We are primarily interested in the case where k > 1, but include the k = 1 case for

contrast.

8.2.4 Our Problem

In this paper we try to understand the role of weak ties in promoting consensus with

two main parameters: ρselect, the probability of selection as the next action as opposed

to influence; and qstrong, the fractional influence of the strong ties in the network. We

consider the entire parameter space: ρselect ∈ [0, 1) and qstrong ∈ [0, 1]. For shorthand,

we refer to this as Sel-Inf(finf , pselect, qstrong), when the graph is clear.

In this paper we consider a number of graph topologies, networks generated by

the Newman-Watts model and a real-world ego-network from Facebook [158].
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8.3 Spatial Networks

(a) Voter Model (k=1) (b) 3-Majority (c) 13-Majority (d) Majority(16× 16)

(a) Voter Model (k=1) (b) 3-Majority (c) 13-Majority (d) Majority(64× 64)

Figure 8.2: Consensus time on spatial network. The color at each point (ρselect, qstrong)
in this bit map represents the average number of influence steps before consensus (or
timeout). The size of graph in the top row is 256 and the bottom row is 4096.

8.3.1 Simulation setting

In this section, the initial graph we study is based on the Newman-Watts model [180].

The nodes form a two dimensional lattice wrapped into a torus. Each node has 12

strong ties connecting it to nodes with Hamming distance less than 2, and 10 weak

ties to random nodes drawn uniformly and independently with replacement.

We run simulations on networks of size ranging from 16 × 16 to 64 × 64 (256 to

4096 nodes). A representative figure on the number of influence steps until consensus

is shown in Figure 8.2. The color at each point (ρselect, qstrong) represents the number

of influence steps before consensus (or timeout) normalized by the the size of the

graph and averaged among the trials of the dynamics Sel-Inf(finf , pselect, qstrong). We

stop the dynamics if the total number of influence steps is more than twice the square

of the size of the graph. In the larger graph, this corresponds to 33,554,432 influence

steps and, for some parameter settings, over 10 billion total steps. For the 256 node

graph, we run 10 trials for each of 100 × 101 parameter settings. For the 4096 node

graph, we run 5 trials for each of 50× 51 parameter settings.
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8.3.2 Simulation Results Overview

To better understand Figure 8.2, we first consider what happens with different selec-

tion rates. When ρselect < 0.5, which is the upper part of the plots, the majority-like

processes (3-majority, 13-majority, and majority) reach consensus faster if the weight

of weak ties is larger (qstrong being smaller). This is natural because the graph topol-

ogy is more stable when ρselect is small. Once the number of nodes with different

opinions become imbalanced the weak ties act like sampling a complete graph and

help the opinions to mix, strengthening the imbalance. If qstrong is close to 1, the

network has mostly only the strong ties that connect local neighbors. Even though

there may exist a global imbalance of opinions, it still takes a long time to spread

this imbalance through strong ties.

However, when selection rate is high (ρselect > 0.5, the lower part of the plots), the

majority-like processes (3-majority, 13-majority, and majority) reach consensus slower

or even get stuck if there are a large fraction of weak ties (when qstrong is small). In

contrast to the low selection setting, here the weak tie weights are frequently updated

and form stronger connections among the agents with the same opinion. Informally,

the weak ties form community structures which hinder the agents from communicating

between different opinions and prevent the opinions from mixing. As a result, the

higher the selection rate is, the harder for the agents to reach consensus.

We hypothesize that there are three distinct theoretical cases:

Fast Consensus Consensus takes a logarithmic number of steps (per node).

Slow Consensus Consensus is reached in polynomial time.

No Consensus Consensus is either never reached or takes exponential time.

Roughly speaking: we expect fast consensus is represented by the deep blue region;

no consensus by the deep red region; and slow consensus by the other colors. Notice

that when there are no strong ties (qstrong = 0) the transition from fast consensus to

no consensus is rapid. We hypothesize that the there is a threshold here. Moreover,

that there is a “triple point” incident on each of these three regions.

In the remainder of our analysis we focus on the three “edges”: either qstrong = 0

or ρselect ∈ {0, 1}, and we change the other parameters. Note that when qstrong = 1

selection cannot operate and the value of ρselect ∈ {0, 1} is immaterial. So this case is

omitted.
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8.3.3 Weak Ties Only (qstrong = 0)

In this section we study the effects of the relative frequency between selection and

influence (ρselect) on the consensus time of Sel-Inf(finf , pselect, qstrong) when the strong

ties are absent, qstrong = 0. This corresponds to the left edge of the plots in Figure 8.2.

We can see that if ρselect = 0, then the dynamics quickly converge in all but the

voter model, where it slowly converges. On the other hand if ρselect → 1, then it

nearly always times out before converging. We hypothesize that in this case there is

no consensus. One way we can see this is in Figure 8.3, which plots the number of

times nodes switch opinions, normalized by the size of the graph, before the processes

reach consensus. A switch is an influence step when the chosen agent changes its

opinion. The total number of switches is quite small in this region. This indicates

that no real progress is being made.

(a) Voter Model (b) 3-Majority (c) 13-Majority (d) Majority

(a) Voter Model (k=1) (b) 3-Majority (c) 13-Majority (d) Majority

Figure 8.3: Switches on Spacial Network. The color at each point (ρselect, qstrong) in
this a bit map represents the total number of switches (before consensus or timing
out) normalized by the size of the network for Sel-Inf(finf , pselect, qstrong). The size of
graph in the top row is 256 and the bottom row is 4096.

k > 1 First we consider k > 1—recall finf is k-majority. We see that on the left side

of the plots in Figure 8.2 the time quickly transitions from fast to very slow. Again

the data in Figure 8.3 backs up the story that the process transitions from making

quick progress (with few switches) to making no progress (with a lot of switches).
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In the following section we use theoretical analysis to show that in the mean field

approximation the k-majority dynamics (for odd k) converges to segregation if the

relative frequency of selection is high enough. We present theoretical results on the

mean field approximation of this setting in Section 8.4.

k = 1 Turning toward the case k = 1, we notice a large difference. Here the dynam-

ics appear to converge slowly at ρselect = 0. The time to consensus is intermediate

(Figure 8.2), and requires many switches (Figure 8.3). However, as ρselect increases,

the process transitions to fast consensus (fast time and few switches). Finally, as

ρselect continues to increase we transition to increasingly timing out (slow time and

few switches). The slow consensus at ρselect = 0 is expected, because the voter model

has no drift. However, the fast consensus time for intermediate values of ρselect is

surprising. We hypothesize that it is due to the details of the selection process which

induces a rich-get-richer drift. When updating, if a node is in the minority, then its

selections acts slower (because the updates are additive, but the total mass of its weak

ties is smaller). This means that minority nodes are more likely to be connected to

majority nodes than vice versa.

8.3.4 No Selection, Only Influence (ρselect = 0)

In this section, we consider the setting when there is no selection. Therefore the

process boils down to influence in a static network with strong and weak ties. The

results are at the top edge of the plots in Figure 8.2.

For k-majority models for k > 1, we hypothesize that any non-zero fraction of

weak ties leads to fast consensus, which is supported in the simulation results. The

reason is that as soon as an opinion is a global leader, the weak ties introduce a

global drift. Since there is no selection, each node connects uniformly to all nodes

via weak ties. The strong ties can make local imbalances, but these cancel each

other out as the size of the “boundary” for each opinion is necessarily the same. In

Figure 8.3, the number of switches increases when there are more strong ties (with

qstrong increasing). When qstrong is small, on average each node switches fewer than

4 times before consensus is reached — weak ties help to spread the imbalance of

opinion quickly and in most of the influence steps the chosen agent updates to the

global majority correctly.

However, with just strong ties (qstrong = 1, the top right corner), the process

predominantly changes only at the boundary of regions of different opinions. Since
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the boundary of each opinion is the same, the process takes an unbiased walk (without

drift) and converges slowly.

For k = 1, we have the voter model, which has no drift regardless of qstrong. How-

ever, as there are more weak ties, the graph mixes better and convergence speeds in-

crease slightly. Indeed, as the fraction of strong ties increases, the number of switches

in Figure 8.3 increases. However, compared to majority-like dynamics the voter model

has a much larger number of switches regardless of the value of qstrong.

8.3.5 Lots of Selection (ρselect → 1)

In this section, we want to understand when ρselect is nearly 1, which is near the

bottom edge of the plots in Figure 8.2. When ρselect = 1, i.e., no influence, the

opinions do not change. Thus the network does not reach consensus.

When qstrong and ρselect is nearly 1 (near the right bottom corner), there are no

weak ties. Although almost all actions are selections, there are simply no weak ties to

work on, and so the selection steps do not affect. (Note that Figure 8.2 only counts

influence steps.) Thus, as discussed in the earlier section it converges but slowly.

When ρselect → 1 and qstrong is increasing, the strong ties increasingly help with

consensus, but the weak ties are almost surely connecting nodes of the same opin-

ion. Conversely, as the number of weak ties increases, they increasingly promote

segregation.

For the majority model, it is abruptly not stuck when qstrong = 1. Here it is, in

theory, possible that the dynamics get stuck (for example if an 8× 16 region of nodes

in the torus have opinion 0 and the other 8 × 16 region have opinion 1. All agents

will have three neighbors of their type. However, in our empirical results, these trials

never do become stuck. Since there are only strong ties, we hypothesize, that in the

case the dynamics do converge it cannot be done quickly (in logarithmic time per

node) but must take a polynomial time per node to converge.

8.4 Theoretical Results

In this section, we analyze the process Sel-Inf when the d-regular random graph which

only has weak ties, and we show the mean field approximation process converges to

segregation when the selection rate is higher than a certain threshold which depends

on the influence function finf and the degree d.

Formally, we consider Sel-Inf(G(0), finf , pselect, qstrong) where the initial weak graph
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E
(0)
W is a directed d-regular random graph (i.e., each node has d out neighbors selected

at random), qstrong = 0, and finf is the k-majority influence dynamics with k ≥ 3. We

note that the nodes with the same initial state will have the same expected behavior.

Specifically we can partition the nodes by their initial opinions into U0 , x(0)(0) and

U1 , x(0)(1) and can assume |U0| = |U1| = n/2.

For σ ∈ {0, 1} we call v ∈ x(0)(σ) a type σ node, and similarly define type

τ ∈ {0, 1} nodes. We set Xσ(t) to be the average probability of type σ nodes having

opinion 1 at time t, and Cσ,τ (t), the expected cut of the weak ties between a type σ

node and a type τ node at time t. Formally, Xσ(t) , 1
|Uσ |
∑

v∈Uσ E
[
x

(t)
v

]
Cσ,τ (t) , 1

|Uσ |
∑

v∈Uσ
1

dW (v)
E
[∣∣∣{i : δ

(t)
W (v)i ∈ Uτ}

∣∣∣] (8.4)

Theorem 8.3. Given constants k > 1 odd and d, let G(0) be a directed d-regular

random graph with n nodes, and qstrong = 0, there exists pselect
∗ ∈ (0, 1) such that for

all pselect > pselect
∗ for sufficiently large n, the mean field approximation of Sel-Inf with

parameters (G(0), finf , pselect, qstrong) defined in Equation (8.4), the system converges to

segregation:

lim
t→∞

X0(t) = 0, lim
t→∞

X1(t) = 1 (8.5)

lim
t→∞

C0,1(t) = lim
t→∞

C1,0(t) = 0. (8.6)

Intuitively, this theorem shows in the mean field approximation, the cut between

two sets x(0)(0) and x(0)(1) converges to zero, the agents in x(0)(0) converge to opinion

0, and the agents in x(0)(1) converge to opinion 1.

Now we give some intuitions of the proof. We first show that as n increases the

recurrence relation can be (rigorously) quantitatively approximated by a system of

ordinary differential equation (ODE) (c.f. Figure 8.4). We analyze the corresponding

system of ODE using tools from dynamical systems theory. One major challenge of

Theorem 8.3 is to argue the limits of system (8.4) converges to (0, 0) without knowing

their analytic solutions. We achieve this by using tools in the qualitative analysis of

dynamical systems which is of independent interest.
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pselect = 0.5 pselect = 0.9

Figure 8.4: The vector field for dynamical system of (8.4) for 3-majority under dif-
ferent pselect where the initial condition (X0(t), C0,1(0)) is (0, 0.5). The green lines
represent the zeros of the system of differential equations, and the red path is the
numerical solution of the dynamical system. On the left-hand side (small pselect),
the dynamical system mixes and the probability of having opinion 1 and the con-
nection between two types of nodes converges to (0.5, 0.5). On the right-hand side
(large pselect), the system segregates— the connection/cut between two types of nodes
converges from 0.5 to 0 which is characterized in the Theorem 8.3.

8.4.1 Symmetry in Equation (8.4)

Note that by the definition C0,0(t)+C0,1(t) = C1,0(t)+C1,1(t) = 1. For all σ ∈ {0, 1},
denote the difference of a sequence (at) as ∆(at) , at+1 − at

∆(Xσ(t)) =
1− pselect

2|Uσ|
(finf(Rσ(t))−Xσ)

∆(Cσ,σ′(t)) =
pselect

4d|Uσ|
[
Cσ,σ(2Xσ(1−Xσ))− Cσ,σ′(Xσ +Xσ′ − 2XσXσ′)

]
where Rσ(t) , Cσ,σ(t)Xσ(t) +Cσ,σ′(t)Xσ′(t) and σ′ is the complement of σ such that

σ, σ′ ∈ {0, 1} and σ′ 6= σ.

For the initial conditions, by definition, X0(0) = 0, X1(0) = 1, and the initial

weak graph E
(0)
W is a directed d-regular random graph, so C00(0) = C01(0) = C10(0) =

C11(0) = 0.5. Thus, for all t ≥ 0, X0(t) = 1−X1(t), C0,0(t) = C1,1(t), and C0,1(t) =

C1,0(t).

With these symmetries, we further define Z(t) =
(
Z

(t)
1 , Z

(t)
2

)
where Z

(t)
1 , X0(t)
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and Z
(t)
2 , C0,1(t). We can reduce the number of parameters from 6 to 2 and have Z

(t+1)
1 − Z(t)

1 = 1
n
(1− pselect)f1

(
Z(t)

)
Z

(t+1)
2 − Z(t)

2 = 1
n
pselect

2d
f2

(
Z(t)

) (8.7)

where  f1(Z) = (finf (Z1 + Z2(1− 2Z1))− Z1)

f2(Z) = (−Z2 + 2Z1(1− Z1))
. (8.8)

Observe that as n increases, the above process can be approximated by the following

ODE by Theorem 2.16:  d
dt
z1 = (1− pselect)f1(z)

d
dt
z2 = pselect

2d
f2(z)

(8.9)

8.4.2 Proof of Theorem 8.3

The main idea of the proof has three parts:

1. There exists a pselect
∗ such that for all pselect > pselect

∗, Z(t) converges to (0, 0) if

there is t0 such that Z(t0) is close to (0, 0).

2. Given pselect > pselect
∗ there exists t0 large enough such that z hits an asymp-

totically stable region for (0, 0) at time t0.

3. Given t0, there exists a n large enough such that Z(nt0) and z(t0) are close.

We formalize these three statements in Lemmas 8.4, 8.5 and 8.7. The proof of Theo-

rem 8.3 is deferred to the full version.

Lemma 8.4. For all pselect, there exist δpselect > 0 and large enough n such that if

there is t0 ≥ 0,
∥∥Z(t0) − 0

∥∥ ≤ δpselect, then

lim
t→∞

∥∥Z(t) − 0
∥∥ = 0.

The detailed proof is deferred to the appendix. To prove Lemma 8.4, there are two

parts: by Theorem 2.28, we can show 0 is asymptotically stable for (8.9) and there is

a potential function V . Then we can show the Z(t) in (8.7) converges to 0 when Z(0)

is close to 0 by showing V
(
Z(t)
)

is decreasing as t increases when n sufficiently large.

Lemma 8.5. There exists pselect
∗ < 1 large enough such that for all pselect > pselect

∗

and δ > 0, there is t0, ‖z(t0)− 0‖ ≤ δ/3.
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The statement says starting from the initial condition (0, 0.5), z converges to 0

when pselect is large enough. The proof of Lemma 8.5 is more complicated, and we

need the following lemma to prove it.

Lemma 8.6 (stability). There exists pselect
∗ < 1, a region RA ⊂ R2 containing (0, 0),

and t0 > 0. If pselect ≥ pselect
∗ and z(0) = (0, 0.5), z(t0) ∈ RA, and z(t) ∈ RA for all

t ≥ t0.

The detailed proof of Lemma 8.6 is in the appendix. Informally, to prove the

second part of Lemma 8.6, we first define our stable region RA = {(x1, x2) : 0 ≤ x1 ≤
x∗1, 0 ≤ x2 ≤ x∗2}.1 where (x∗1, x

∗
2) is the fixed point of Equation (8.8) with smallest

positive x∗1. We must show at each boundary the drift is inward such that if the z(t)

is at the boundary the z(t+ ε) will go back to the stable region. For the first part, we

show z hits the stable region RA fast by taking pselect
∗ large enough. With Lemma 8.6

the rest of the proof of Lemma 8.5 goes as follows:

Proof of Lemma 8.5. Our system is two dimensional, so the solution z is a Jordan

curve, and it is bounded in RA if z ∈ RA for t > τ0 by Lemma 8.6. Therefore by

Theorem 2.37 z converges to either a fixed point or a limit cycle.

We first show no limit cycle. By Theorem 2.38, it is sufficient to show the diver-

gence of f is not identically zero and does not change sign in RA

∇f = (1− pselect) (−1 + f ′inf (Z1 + Z2(1− 2Z1)))− pselect

2d
.

Because a k-majority function defined in (8.3) is Lipschitz such that there exists

Lk > 0 for all x ∈ [0, 1], |f ′inf(x)| ≤ Lk, we can take pselect
∗ large enough such that for

all x and pselect ≥ pselect
∗, ∇f(x) ≤ (1− pselect) (−1 + Lk)− pselect

2d
≤ (1− pselect)(Lk −

1+1/2d)−1/2d < 0. Since 0 is the only fixed point in RA and there is no limit cycle,

limt→0 z(t) = 0

Lemma 8.7. Given constants t0 ≥ 0, δ > 0, and pselect there exists n large enough

such that ‖Z(n t0) − z(t0)‖ ≤ δ/3.

Since a k-majority function (8.3) is smooth, Lemma 8.7 is a corollary of Theo-

rem 2.16.

1Technically, we need our regions to avoid the fixed point, so RA = [0, y∗1 ]× [0, y∗2 ] where y∗1 < x∗1
and y∗2 < x∗2. By the continuity of the system and because the fixed point (x∗1, x

∗
2) is a saddle point,

the stability argument still holds.
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Proof of Theorem 8.3. By Lemma 8.5 and 8.7, we have ∃ pselect
∗, ∀ pselect > pselect

∗,

∀ δ > 0,∃ t0 > 0 such that for large enough n

‖Z(n t0) − 0‖ ≤ ‖Z(n t0) − z(t0)‖+ ‖z(t0)− 0‖ < δ.

The proof is completed by taking δ = δpselect and applying Lemma 8.4.

8.5 Real Social Network

8.5.1 Simulation Setting

We use a dataset consisting of social circles (egocentric networks) collected from

Facebook [158]. The graph has 4039 nodes and 88,234 edges. In this section, we only

consider the 10-core2 of Facebook graph as our base network, which contains 2987

nodes and 83,181 edges. We take V as the set of vertices of the 10-core of Facebook

graph. Then we use Jaccard similarity3 to measure tie strength and take the top 80%

edges with the highest Jaccard similarity as strong ties edges, and rest as the initial

weak ties.

8.5.2 Results

We run the influence-selection dynamics with the 3-majority influence model on the

initial graph defined in Section 8.5.1, and show the number of influence steps until

consensus in Figure 8.5. We stop a trial if the total number of influence step is more

than the two times the square of the size of the graph which is 17,844,338. The setting

of bit map is similar to Figure 8.2, but there are 20 parameters ρselect ranging from

0 to 0.95 with even space, and 21 parameters of qstrong ranges from 0 to 1 with even

space.

Small qstrong We first consider the case where qstrong is small (the left part of the

plots). When ρselect = 0 the dynamics almost always time out and the number

of switches is high which indicates influence may be not enough for the system to

consensus when the graph has a rich structure. Interestingly, when 0 < ρselect < 0.5

(upper-left quadrant except for the top boundary), the processes reach consensus

2Nodes with fewer than 10 neighbors are iteratively removed.
3The Jaccard similarity between u, v defined as J(u, v) = |Nu∩Nv|

|Nu∪Nv| , where Nv is the set of vertices

adjacent to node v. The Jaccard coefficient is commonly used to measure the strength of an edges
[185].
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Consensus time number of switches

Figure 8.5: Consensus time in Facebook and number of switches before consensus.
The color at each point (ρselect, qstrong) in this 21× 20 bitmap represents the average
number of influence steps before consensus (or timeout) of 5 trials of the dynamics
Sel-Inf(finf , pselect, qstrong) with 3-majority measured in influence steps.

quickly, as the weak ties help the opinions to mix. This result shows moderate

selection encourages agents to form (random) connections and helps the system mix.

However, when selection is dominantly taken, ρselect > 0.5 (lower-left quadrant), the

processes often time out, as the selection process creates local community structures

by the weak ties that hinder communication between agents of different opinions,

preventing the opinions from mixing.

Large qstrong In the right part of the plots with large qstrong, the processes often

reach timeout. This may due to the community structures in strong ties of the real

graph.

Interestingly, in the region of a medium-high selection rate (center height of the

plots), the processes times out if the graph mostly consists of either weak ties or

strong ties when qstrong is near 0 or 1, because of structures in strong ties and weak

ties. However, if qstrong is near 1/2, the graph has a mixture of strong and weak ties.

The community structures within the strong and weak ties seem to override each

other, and so the processes reach consensus fast. This suggests multiple independent

community structures help the processes reach consensus, even if individually, the

community structures would stifle agreement.

The results of the simulation on the real-world graph and the synthetic one are

similar when qstrong is small and pselect is large. This is not surprising because the

initial condition does not matter in the above condition. When qstrong is large or
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pselect is small the initial graph matters a lot. Our real-world social network has 10-20

rather distinct communities, but our spatial networks, Newman Watt’s model, are

more uniform. Because of this, the processes on real-world network become stuck

substantially more often.

8.6 Conclusion

As discovered by [105], the strength of weak ties is to get new information and fresh

ideas into the comfort zone created by strong ties. However, in a time-evolving spa-

tial network, especially one where selection happens at a substantially higher rate

than influence, the role of strong ties and weak ties, in terms of spreading fresh ideas,

are swapped. The weak ties are too fragile, and the power of spreading information

diminishes. The selection causes the forming of weak ties that only repeat and rein-

force the same opinion that the person already holds, which ironically, does not bring

any new thoughts. It is nevertheless the strong ties that hold the network together,

prevent it from being fully divided, and motivate the participants to compromise.
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CHAPTER 9

Erdös-Rényi Graphs

Interacting Particle Systems—exemplified by the voter model, iterative majority, and

iterative k−majority processes—have found use in many disciplines including dis-

tributed systems, statistical physics, social networks, and Markov chain theory. In

these processes, nodes update their “opinion” according to the frequency of opinions

amongst their neighbors.

We propose a family of models parameterized by an update function that we call

Node Dynamics: every node initially has a binary opinion. At each round a node is

uniformly chosen and randomly updates its opinion with the probability distribution

specified by the value of the update function applied to the frequencies of its neighbors’

opinions.

In this work, we prove that the Node Dynamics converges to consensus in time

Θ(n log n) in complete graphs and dense Erdös-Rényi random graphs when the update

function is from a large family of “majority-like” functions. Our technical contribution

is a general framework that upper bounds the consensus time. In contrast to previous

work that relies on handcrafted potential functions, our framework systematically

constructs a potential function based on the state space structure.

9.1 Introduction

We propose the following stochastic process—that we call Node Dynamics—on a

given network of n agents parameterized by an update function f : [0, 1]→ [0, 1]. In

the beginning, each agent holds a binary “opinion”, either red or blue. Then, in each

round, an agent is uniformly chosen and updates its opinion to be red with probability

f(p) and blue with probability 1− f(p) where p is the fraction of its neighbors with

the red opinion.
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Node dynamics generalizes processes of interest in many different disciplines in-

cluding distributed systems, statistical physics, social networks, and even biology.

Voter Model: In the voter model, at each round, a random node chooses a random

neighbor and updates to its opinion. This corresponds to the Node Dynamics

with

f(x) = x.

This models has been extensively studied in mathematics [65, 114, 150, 151],

physics [32, 47], and even in social networks [46, 212, 221, 222, 64]. A key ques-

tion studied is how long it takes the dynamics to reach consensus on different

network typologies.

Iterative majority: In the iterative majority dynamics, in each round, a randomly

chosen node updates to the opinion of the majority of its neighbors. This

corresponds to the Node Dynamics where

f(x) =


1 if x > 1/2;

1/2 if x = 1/2;

0 if x < 1/2.

Typically works about Majority Dynamics study 1) when the dynamics con-

verge, how long it takes the dynamics to converge, and whether they converge

to the original majority opinion—that is, does majority dynamics successfully

aggregate the original opinion [136, 34, 125, 176, 224].

Iterative k-majority: In this dynamics, in each round, a randomly chosen node

collects the opinion of k randomly chosen (with replacement) neighbors and

updates to the opinion of the majority of those k opinions. This corresponds to

the Node Dynamics where

f(x) =
k∑

`=dk/2e

(
k

`

)
x`(1− x)n−`.

A synchronized variant of this dynamics is proposed as a protocol for stabilizing

consensus: collection of n agents initially hold a private opinion and interact

with the goal of agreeing on one of the choices, in the presence of O(
√
n)-

dynamic adversaries which can adaptively change the opinions of up to O(
√
n)

nodes at every round. In the synchronized variant of this dynamics, Doerr et al.
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[75] prove 3-majority reaches “stabilizing almost” consensus on the complete

graph in the presence of O(
√
n)-dynamic adversaries. Many works extend this

result beyond binary opinions [66, 63, 31, 1].

Iterative ρ-noisy majority model: [85, 100] In this dynamics, in each round,

a randomly chosen node updates the majority opinion of its neighbors with

probability 1− ρ and uniformly at random with probability ρ.

f(x) =


1− ρ/2 if x > 1/2;

1/2 if x = 1/2;

ρ/2 if x < 1/2.

Genetic Evolution Model: In biological systems, the chance of survival of an an-

imal can depend on the frequencies of its kin and foes in the network [15, 170].

Moreover, this frequency depending dynamics is also known to model the dy-

namics for maintaining the genetic diversities of a population [131, 198].

Our Contribution We focus on a large set of update functions f that are sym-

metric, smooth, and satisfy a property well call “majority-like”, intuitively meaning

that agents update to the majority opinion strictly more often than the fraction of

neighbors holding the majority opinion. We obtain tight bounds for the consensus

time—the time that it takes the system to reach a state where each node has an

identical opinion—on Erdös-Rényi random graphs.

Our main technical tool is a novel framework for upper bounding the hitting

time for a general discrete-time homogeneous Markov chain (X , P ), including non-

reversible and even reducible Markov chains. This framework decomposes the problem

so that we only need to upper bound two sets of parameters for all x ∈ X—the

reciprocal of the probability of decreasing the distance to target 1/p+(x) and the

ratio of the probability of decreasing the distance to the target and the probability

of increasing the distance to the target: p−(x)/p+(x). Our technique can give much

stronger bounds than simply lower bounding p−(x) and upper bounding p+(x).

Once we apply this decomposition to our consensus time problem, the problem

becomes very manageable. We show the versatility of our approach by extending

the results to a variant of the stabilizing consensus problem, where we show that all

majority-like dynamics convergence quickly to the “stabilizing almost” consensus on

the complete graph in the presence of adversaries.

A large volume of literature is devoted to bounding the hitting time of different
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Markov process and achieving fast convergence. The techniques typically employed

are (1) showing the Markov chain has fast mixing time [171], (2) reducing the dimen-

sion of the process into small set of parameters (e.g. the frequency of each opinion)

and using a mean field approximation and concentration property to control the be-

havior of the process [31], or (3) using handcrafted potential functions [176].

Our results fill in a large gap that these results do not adequately cover. Mixing

time is not well-defined in non-reversible or reducible Markov chains, and so does not

apply to Markov chains with multiple absorption states, like in the consensus time

question we study. Reducing the dimension and using a mean field approximation

fails for two reasons. First, summarizing with a small set of parameters is not possi-

ble when the process of interest has small imperfections (like in a fixed Erdös-Rényi

graph). Second, the mean-field of our dynamics has unstable fixed points; in such

cases the mean field does not serve as a useful proxy for the Markov process. Hand-

crafting potential functions also runs into several problems: the first is that because

we consider dynamics on random graphs, the dynamic is not a priori well specified; so

there is no specific dynamic to handcraft a potential function for. Secondly, we wish

to solve the problem for a large class of update functions f , and so cannot individu-

ally hand-craft a potential function for each one. Typically, the potential function is

closely tailored to the details of the process.

Additional Related Work Our model is similar to that of Schweitzer and Behera

[208] who study a variety of update functions in the homogeneous setting (complete

graph) using simulations and heuristic arguments. However, they leave a rigorous

study to future work.

9.2 Preliminaries

9.2.1 Node Dynamics

Given an undirected graph G = (V,E) let Γ(v) be the neighbors of node v and

deg(v) = |Γ(v)|.
We define a configuration x(G) : V → {0, 1} to assign the “color” of each node

v ∈ G to be x(G)(v) so that x(G) ∈ {0, 1}n. We will usually suppress the superscript

when it is clear. We will use uppercase (e.g., X(G)) when the configuration is a random

variable. Moreover we say v is red if x(v) = 1 and is blue if x(v) = 0. We then write

the set of red vertices as x−1(1). We say that a configuration x is in consensus if
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x(·) is the constant function (so all nodes are red or all nodes are blue). Given a node

v in configuration x we define rx(v) = |Γ(v)∩X−1(1)|
deg(v)

to be its fraction of red neighbors.

Definition 9.1. An update function is a mapping f : [0, 1] 7→ [0, 1] with the

following properties:

Monotone ∀x, y ∈ [0, 1], if x < y, then f(x) ≤ f(y).

Symmetric ∀t ∈ [0, 1/2], f(1/2 + t) = 1− f(1/2− t).

Absorbing f(0) = 0 and f(1) = 1.

We define node dynamics as follows:

Definition 9.2. A node dynamics ND(G, f,X0) with an undirected graph G =

(V,E), update function f and initial configuration X0 is a stochastic process over

configurations at time t, {Xt}t≥0 where X0 is the initial configuration. The dynamics

proceeds in rounds. At round t, a node v is picked uniformly at random, and we

update

Xt(v) =

{
1 with probability f(rXt−1(v))

0 otherwise

This formulation is general enough to contain many well known dynamics such as

the aforementioned voter model, iterated majority model, and 3-majority dynamics.

Note that in some of the original definitions the nodes syncronously update;

whereas, to make our presentation more cohesive, we only consider asynchronous

updates.

In this paper, we will focus on the interaction between the update function f and

geometric structure of G. More specifically, we are interested in the consensus time

defined as following.

Definition 9.3. The consensus time of node dynamics ND(G, f,X0) is a random

variable T (G, f,X0) denoting the first time step that ND is in a consensus configu-

ration. The (maximum) expected consensus time ME(G, f) is the maximum ex-

pected consensus time over any initial configuration, ME(G, f) = maxX0 E[T (G, f,X0)].

Now we define some properties of functions.

Definition 9.4. Given positive M1,M2, a function f : I ⊆ < 7→ < is called M1-

Lipschitz in I ⊆ < if for all x, y ∈ I,

|f(x)− f(y)| ≤M1|x− y|.
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Moreover, f is M2-smooth in I ⊆ < if for all x, y ∈ I,

|f ′(x)− f ′(y)| ≤M2|x− y|.

9.3 Warm-up: Majority-liked Update Function on

Complete Graph

In this section we consider majority-like node dynamics on the complete graph Kn

with n nodes in which every pair of nodes has an edge (no self-loops). We use this

as a toy example to give intuition for dense Erdös-Rényi graphs even though we will

obtain better bounds later.

Theorem 9.5. Let M = ND(Kn, f,X0) be a node dynamic over the complete graph

Kn with n nodes. If the update function f satisfies ∀x : 1/2 < x < 1 then x ≤ f(x),

then the maximum expected consensus time of a node dynamic over Kn is

ME(Kn, f) = O
(
n2
)
.

A standard method of proving fast convergence is to guess a potential function of

each state and prove the expectation decreases by 1 after every step—this is just an

application of corollary 2.10.

As a warm-up, we will prove theorem 9.5 by guessing a potential function and

applying corollary 2.10.

Proof of Theorem 9.5. Given a configuration x, define Pos(x) , |x−1(1)| then for all

red nodes v where x(Kn)(v) = 1 have rx(v) = Pos(x)−1
n−1

; otherwise rx(v) = Pos(x)
n−1

.

Because the node dynamics M is on the complete graph, M is lumpable with

respect to partition {Σl}0≤l≤n where Σl = {x ∈ Ω : Pos(x) = l} such that for any

subsets Σi and Σj in the partition, and for any states x, y in subset Σi,

∑
z∈Σj

P (x, z) =
∑
z∈Σj

P (y, z)

Furthermore, inspired by an analysis of Voter Model [9] we consider ψ : [n] 7→ <
as

ψ(k) = (n− 1)
[
k(H(n− 1)−H(k − 1))

+ (n− k)(H(n− 1)−H(n− k − 1))
]

175



where H(k) ,
∑k

`=1
1
`
, and define the potential function as

φ(x) = ψ(Pos(x)) (9.1)

The proof of the following claim is deferred to the full version, and here we just

give some intuition as to why this potential function for the voter model works.

The sequence (Pos(Xt))t≥0 can be seen as a random walk on 0, 1, . . . , n with drift1.

Moreover the drift depends on f(Pos(x))−Pos(x). For voter model f(x) = x, there

is no drift. For majority-like function because there is a positive drift toward n when

Pos(x) > n/2; and a negative drift toward 0 when when Pos(x) < n/2. Informally

the drift is always helping and thus the potential function for voter models works.

Claim 9.6. Our definition of φ satisfies the inequalities (2.8): Given Markov Chain

M = ND(Kn, f,X0) in theorem 9.5, φ defined in (9.1) are non-negative and satisfy

Lφ(x) ≤ −1 where x 6= 0n, 1n,

φ(x) ≥ 0 where x = 0n, 1n.

Combining claim 9.6 and corollary 2.10, we have

EM[T (Kn, f, x)] ≤ φ(x).

By direct computation, if 0 ≤ k < n, ψ(k+1)−ψ(k) = (n−1)(H(n−k−1)−H(k)).

Therefore, the maximum ψ(k) happens at k = bn/2c,

ME(Kn, f) ≤ ψ(bn/2c) ≤ (ln 2)n2,

and completes our proof.

9.4 Smooth Majority-like Update Function on Dense

Gnp

In this section, we consider the smooth Majority-liked update function defined as

follows:

Definition 9.7. We call an update function f a smooth majority-like update function

if it satisfies ∀x : 1/2 < x < 1 then x < f(x) and the following technical conditions

1The formal definition of drift is in Equation (9.5).
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Figure 9.1: An example of smooth majority-like update function.

hold:

Lipschitz There exists M1 such that f is M1-Lipschitz in [0, 1].

Condition at 1/2 There exists an open interval I1/2 containing 1/2 and constants

1 < M̌1, 0 < M̌2 such that f is M̌2-smooth in I1/2 and 1 < M̌1 ≤ f ′(1/2).

Condition at 0 and 1 There exists intervals I0 3 0, I1 3 1 and a constant M̂1 < 1

such that ∀x ∈ I0, f(x) ≤ M̂1x and ∀x ∈ I1, 1− f(x) ≤ M̂1(1− x).

Intuitively, the majority-like update function should be “smooth” and not tangent

with y = x. The following figure shows an example of smooth majority-like update

function. Now we are ready to state our main theorem.

Theorem 9.8. Let M = ND(G, f,X0) be a node dynamic over G ∼ Gnp with p =

Ω(1), and let f be a smooth majority-like function. Then the expected consensus time

of a node dynamic over G is

ME(G, f) = O (n log n)

with high probability.

This theorem shows the fast convergence rate of this process. Note that there

is some chance of getting a disconnected graph G ∼ G which results in a reducible

Markov chainM which cannot converge from some initial configurations. Therefore,

we can only ask for the fast convergence result with high probability.

We note that, the technical conditions exclude interactive majority updates, which

we leave for future work.
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9.4.1 Proof Overview

Here we will first outline the structure of the proof. In section 9.4.2 we propose

a paradigm for proving an upper bound for the hitting time when the state space

has special structure. In section 9.4.3, we use the result in section 9.4.2 to prove

theorem 9.8.

where large literature have devote to different process. Most of them achieve fast

convergence result by using handcraft potential function or showing the Markov chain

has fast mixing time. However it is not easy to find clever potential function for any

process, and the fast mixing time is not well defined in reducible Markov chain. Recall

that the expected consensus time is

τ(x) , EM[T (G, f, x)]

which is exactly the hitting time of states 0n and 1n. However in contrast to sec-

tion 9.3, finding a clever potential function is much harder here. We prove theorem 9.8

using that the expected hitting can be formulated as a system of linear equations (2.8)

and by explicitly estimating an upper bound of this system of linear equations. More-

over, following the intuition in section 9.3, the Markov chainM can be nearly charac-

terized by one parameter Pos(x) when the node dynamics is on a graph that is close

to the complete graph. We exploit this structure of our Markov chain and construct

a potential function for Equations (2.8).

9.4.2 A Framework for Upper Bounding the Hitting Time

We want to upper bound the hitting time from arbitrary state x to {0n, 1n} denoted

as τ(x) of a given time-homogeneous Markov chain M = (Ω, P ) with finite state

space Ω = {0, 1}n where P (x, y) > 0 only if the states x, y only differ by one digit,

|x− y| ≤ 1.

We let Pos(x) be the position of state x ∈ Ω:

Pos(x) , |x−1(1)|, and pos(x) , Pos(x)/n (9.2)

and the bias of x as

Bias(x) , |n/2− Pos(x)| , and bias(x) , Bias(x)/n (9.3)

Note that the Bias(x) = n/2 if and only if x = 0n, 1n.
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Suppose thatM can be “almost” characterized by one parameter Bias(x). Infor-

mally, we want the transitions at states x and y to be similar if Bias(x) = Bias(y).

Therefore with the notion of first step analysis we define {(p+
G(x), p−G(x))}x∈Ω where

p+
G(x) = Pr

M
[Bias(X ′) = Bias(X) + 1|X = x],

p−G(x) = Pr
M

[Bias(X ′) = Bias(X)− 1|X = x].
(9.4)

Moreover, we call p+
G(x) the exertion and define the drift of state x as follows

D(x) , EM[Bias(X ′)−Bias(X)|X = x]. (9.5)

It is easy to see D(x) = p+(x)− p−(x).

Since M can be almost characterized by one parameter, Bias(x), M is almost

lumpable with respect to the partition induced by Bias(·). The following lemma gives

us a scheme for constructing an upper bound for the hitting time:

Lemma 9.9 (Pseudo-lumpability lemma). Let M = (Ω, P ) have finite state space

Ω = {0, 1}n with even n2 and P (x, y) > 0 only if the states x and y differ in at most

one coordinate and

d0 = max
x:Bias(x)=0

1

p+(x)

dl = max
x:Bias(x)=l

1

p+(x)
+ max

x:Bias(x)=l

(
p−(x)

p+(x)

)
dl−1

(9.6)

where 0 < l < n/2, and {(p+(x), p−(x)}x∈Ω are as defined in (9.4). Then the maxi-

mum expected hitting time from state x to {0n, 1n} can be bounded as follows:

max
x∈Ω

EM[τ(x)] ≤
∑

0≤`<n/2

d`

where τ(x) denotes the hitting time from state x to {0n, 1n}.

Remark 9.10. At first glance it appears this lemma “couples” the process M with

a birth-and-death chain [144], but is actually stronger as the following example il-

lustrates. We define an unbiased random walk where the self transition probability

of nodes differs. For all x ∈ {0, 1}n \ {0n, 1n} let p+(x) = p−(x) = 1
2+x1

, and 0n

and 1n are absorbing states. This lemma yield a polynomial time upper bound be-

cause 1/p+(x) = 3 and p−(x)/p+(x) = 1. On the other hand, consider a birth-and-

2To avoid cumbersome notion of parity we only consider n to be even here.
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death chain on {0, 1, . . . , n/2}, such that P (k, k + 1) = minx∈Ω:Bias(x)=k p
+(x) and

P (k, k−1) = maxx∈Ω:Bias(x)=k p
−(x). Because P (k, k+1) = 1/3 and P (k, k−1) = 1/2

for all 0 < k < n/2, the corresponding birth-and-death chain takes exponential time

to reach n/2.

lemma 9.9 can be derived from corollary 2.10 and is proven in appendix E.1.

Intuitively, to get a potential function s(x) for hitting time τ(x), we order the states

in terms of the value of Bias(·), and take the process as a non-uniform random walk

on [n]. Then we recursively estimate s(x) for each x in increasing order of Bias(x).

To use lemma 9.9, to upper bound τ(x) we need to prove for every configurations

x ∈ Ω

1. An upper bound for 1/p+(x).

2. An upper bound for p−(x)/p+(x).

In theorem 9.11 we give a framework that uses the upper bounds for 1/p+(x) and

p−(x)/p+(x) to obtain upper bounds for expected hitting time. To have some intuition

about the statement of the theorem, observe that if the drift D(x) is bounded below

by some positive constant both 1/p+(x) and p−(x)/p+(x) have nice upper bounds.

However, this bound fails when the drift is near zero or even negative. Taking our

node dynamics on dense Gnp as an example, when the states have either very small or

very large bias(x) the drift D(x) can be very close to zero or even negative. The drift

near 1/2 is close to 0 because the effects of red and blue largely cancel each other.

The drift near the extreme point is small because there are very few nodes outside

the majority.

As a result, we partition the states into subsets, and take addition care on the

sets of states with small drift. In theorem 9.11 we partition the states into Σs,Σm,Σl

according to the bias as follows:

Σs = {x ∈ Ω : bias(x) < ε̌}

Σm = {x ∈ Ω : ε̌ ≤ bias(x) ≤ 1/2− ε̂}

Σl = {x ∈ Ω : 1/2− ε̂ < bias(x)}

(9.7)

The small constants ε̂ and ε̌ depend on the process.

Theorem 9.11. Given M = (Ω, P ) defined in lemma 9.9, if there exist constants ε̂

and ε̌ defining the partition Σs,Σm, and Σl and some constants p+, A1, A2, A3, B1 > 0,
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and 0 < r,A2, A3 < 1 such that

p+ <p+(x) ≤ 1 if x ∈ Σs,Σm (9.8)

r <
p+(x)

(1/2− bias(x))
≤ 1 if x ∈ Σl (9.9)

and

p−(x)

p+(x)
≤ 1 + A1

(
B1√
n
− bias(x)

)
if x ∈ Σs (9.10)

p−(x)

p+(x)
≤ 1− A2 if x ∈ Σm (9.11)

p−(x)

p+(x)
≤ 1− A3 if x ∈ Σl, (9.12)

the maximum expected hitting time is

max
x∈Ω

EM[τ(x)] = O(n log n)

where τ(x) is the hitting time from state x to {0n, 1n}.

The proof of theorem 9.11, it is rather straightforward using lemma 9.9, and

carefully constructing the potential function from the recursive Equation (9.6).

9.4.3 Proof of Theorem 9.8

In this section, we will use theorem 9.11, to prove an O(n log n) time bound by exploit-

ing properties of our process. Specifically, let our node dynamic M = ND(G, f,X0)

be a node dynamic over G sampled from G, it is sufficient to prove an upper bound for

1/p+
G(x) and p−G(x)/p+

G(x). Note that we use subscripts to emphasize the dependency

of the graph G.

To apply theorem 9.11, we partition the states into three groups Σs,Σm, and

Σl defined in (9.7). The constants ε̌ and ε̂ depend on the update function f and

the probability of an edge p and will be specified later. Figure 9.4.3 illustrates the

partitions of the states.

The following lemma upper bounds 1/p+
G(x):

Lemma 9.12 (lower bound for p+
G(x)). Given node processM on G, if G λ-expander

with nearly uniform degree E(δd), δd < 1 and λ2 < 1−δd
1+δd
· min{ ε̂

18
, (1/2−ε̂)2

2
}, then for
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Figure 9.2: An illustration of partition in section 9.4.3.

p+ , ε̂
2
f
(
ε̂
2

)
,

p+ < p+
G(x) ≤ 1 if x ∈ Σs ∪ Σm (9.13)

1
4
<

p+G(x)

(1/2−bias(x))
≤ 1 if x ∈ Σl. (9.14)

This lemma is proved by apply mixing lemma 2.45 to show that the probability

of increasing bias is (1) larger than some constant for x ∈ Σs ∪ Σm lemma E.1 and

(2) proportional to the size of minority in Σl in lemma E.2. The proof details are in

appendix E.2.

The second part follows from the following lemma:

Lemma 9.13 (upper bound for p−G(x)/p+
G(x)). Given node processM on G, if G ∼ G,

then there exist positive constant A1, A2, A3, B1, and 0 < A2, A3 < 1 such that, with

high probability,
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p−G(x)

p+
G(x)

≤ 1 + A1

(
B1√
n
− bias(x)

)
if x ∈ Σs (9.15)

p−G(x)

p+
G(x)

≤ 1− A2 if x ∈ Σm (9.16)

p−G(x)

p+
G(x)

≤ 1− A3 if x ∈ Σl (9.17)

Instead of bounding p−G(x)/p+
G(x) directly, the drift DG(x) , p+

G(x)−p−G(x) is more

natural to work with. Taking the complete graph as example, DG(x) = f(pos(x))−
pos(x). Therefore instead of proving an upper bound of p−G(x)/p+

G(x) directly, we

prove an lower bound for the drift in Appendix E.2 (lemma E.3, E.4, E.5, and E.9).

Combining with lemma 9.12, these gives us an desired upper bound for p−G(x)/p+
G(x).

Proof of theorem 9.8. By corollary 2.44 G ∼ G is a O
(√

logn
np

)
-expander with high

probability. Thus, we can apply lemma 9.12 and 9.13 to theorem 9.11, which finishes

the proof.

9.5 The Stabilizing Consensus Problem

The consensus problem in the presence of an adversary (known as Byzantine agree-

ment) is a fundamental primitive in the design of distributed algorithms.

For the stabilizing-consensus problem—a variant of the consensus problem, Doerr

et al. [75] proves synchronized 3-majority converges fast to an almost stable consensus

on a complete graph in the presence of O(
√
n)-dynamic adversaries which, at every

round, can adaptively change the opinions of up to O(
√
n) nodes.

Here we consider an asynchronous protocol for this problem:

Definition 9.14. Given a complete network of n anonymous nodes with update

function f , and F ∈ N. In the beginning configuration, each node holds a binary

opinion specified by x0(·). In each round:

1. An adaptive dynamic adversary can arbitrarily corrupt up to F agents, and

change the reports of their opinions in this run (the true opinion of these nodes

is restored and will be reported once the adversary stops corrupting them).

2. A randomly chosen node updates its opinion according to node dynamics. (If the

chosen node is corrupted by adversary in that run, the adversary can arbitrarily

update the opinion of the chosen node.)
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Definition 9.15 (nγ-almost consensus). We say a complete network of n anonymous

nodes reaches an nγ-almost consensus if all but O(nγ) of the nodes support the same

opinion.

Our analysis in section 9.4 can be naturally extended to the stabilizing consensus

problem and proves all majority-liked update functions (definition 9.8) are stabilizing

almost consensus protocols and have the same convergence rate.

Theorem 9.16. Given n nodes, fixed γ > 1/2, F = O(
√
n), and initial configuration

X0 ∈ {0, 1}n, the node dynamic ND(Kn, f, x0) on a complete graph with update func-

tion f reaches an nγ-almost consensus in the presence of any F -corrupt adversary

within O(n log n) rounds with high probability.

Remark 9.17. The goal of this section is not to promote majority-liked node dy-

namics as a state-of-art protocol for the stabilizing consensus problem, but to show

the versatile power of the our framework of proving convergence time in section 9.2.1.

Additionally we modify the formulation of the problem here to make our presentation

more cohesive.

Let the random process with the presence of some fixed F -dynamic adversary AF
defined in theorem 9.16 be denoted X (AF ) = (Xt)t≥0. Observe that our framework in

section 9.4.2 only works for Markov chain, but with the presence of adaptive adversary

the process is no longer a Markov chain. As a result, we “couple” this process with a

nice Markov chain Y(F ) = (Yt)t≥0, and use the Markov chain as a proxy to understand

the original process.

The proof has two parts: we first define the proxy Markov chain Y(F ) and prove

an upper bound of almost consensus time by using the tools in section 9.4.2. Secondly,

we construct a monotone coupling between Y(F ) and X (AF ) to prove X (AF ) also

converges to almost consensus fast.

9.5.1 Upper Bounding the Expected Almost Consensus Time

for Y(F ).

With the notation defined in section 9.4, we define Y(F ). Informally, we construct

Y(F ) as a pessimistic version of ND(Kn, f,X0) with the presence of an adversary: at

every round the adversary tries to push the state toward the unbiased configuration,

and it always corrupts F nodes with the minority opinion.
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Initially, Y0 = X0. At time t if we set y = Yt, Yt+1 is uniformly sampled from

{y′ ∈ Ω : ∃i ∈ [n],∀j 6= i, y′j = yj}

∩ {y′ ∈ Ω : Bias(y′) = Bias(y) + 1}
(9.18)

with probability max{f
(

1
2

+ bias(y)
) (

1
2
− bias(y)

)
− (M1+1)F

n
, 0}, or uniformly sam-

pled from

{y′ ∈ Ω : ∃i ∈ [n],∀j 6= i, y′j = yj}

∩ {y′ ∈ Ω : Bias(y′) = Bias(y)− 1}
(9.19)

with probability min{f
(

1
2
− bias(y)

) (
1
2

+ bias(y)
)

+ (M1+1)F
n

, 1}; otherwise Yt+1 stays

the same: Yt+1 = y.

Recall that the time to reach an nγ-almost consensus is the hitting time to the set

of states

Aγ , {y ∈ Ω : bias(y) > 1/2− n−(1−γ)},

and we use Tγ(z) to denote the hitting time to a set of state Aγ.

Lemma 9.18. The expected nγ-almost consensus time of the Markov chain Y is

maxy EY(F )[Tγ(y)] = O (n log n).

This lemma is very similar to theorem 9.8 and we defer the proof to the full

version.

9.5.2 Monotone Coupling Between Y(F ) And X (AF ).

To transfer the upper bound of Y(F ) to X (AF ), we need to build a “nice” coupling

between them which is characterized as follow:

Definition 9.19 (Monotone Coupling). Let X, Y be two random variables on some

partially ordered set (Σ,≥). Then a monotone coupling between X and Y is a measure

(X̃, Ỹ ) on Σ× Σ such that

• The marginal distributions X̃ and X have the same distribution;

• The marginal distributions Ỹ and Y have the same distribution;

• Pr(X̃,Ỹ )[X̃ ≥ Ỹ ] = 1.
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Note that the function bias(·) induces a natural total order ≤bias of our state space

Ω = {0, 1}n such that for x, y ∈ Ω, x ≤bias y if and only if bias(x) ≤ bias(y). We

can also define a partial order over sequences of states: given two sequences (Xt)t≥0,

(Yt)t≥0 we call (Xt)t≥0 ≤bias (Yt)t≥0 if ∀t ≥ 0 Xt ≤bias Yt. We use calligraphic font to

represent the whole random sequence, e.g. Z = (Zt)t≥0.

Lemma 9.20. There exists a monotone coupling (X̃ , Ỹ) between X (AF ) and Y(F )

under the partial order ≤bias

The proof of this lemma is straightforward, and we defer the proof to the full

version.

9.5.3 Proof of Theorem 9.16

Proof of theorem 9.16. We call an event A increasing if x ∈ A implies that any y ≥ x

is also in A. Observe that Aγ := {y ∈ Ω : bias(y) > 1/2− n−(1−γ)} is increasing with

respect to ≤bias. Therefore given a random sequence Z = (Zt)t≥0

Pr
Z

[Tγ(z) > τ ] = Pr
Z

[
max
t≤τ

bias(Zt) ≤ 1/2− n−(1−γ)

]
By lemma 9.20, for fixed τ > 0 and initial configuration z ∈ Ω:

Pr
X (AF )

[Tγ(z) > τ ]

= Pr
X

[
max
t≤τ

bias(Xt) ≤ 1/2− n−(1−γ)

]
= Pr

(X̃ ,Ỹ)

[
max
t≤τ

bias(X̃t) ≤ 1/2− n−(1−γ)

]
= Pr

(X̃ ,Ỹ)

[
max
t≤τ

bias(X̃t) ≤ 1/2− n−(1−γ), X̃ ≥bias Ỹ
]

≤ Pr
(X̃ ,Ỹ)

[
max
t≤τ

bias(Ỹt) ≤ 1/2− n−(1−γ)

]
= Pr
Y(F )

[Tγ(z) > τ ].

On the other hand, applying Markov’s inequality

Pr
Y(F )

[Tγ(z) > τ ] ≤
EY(F )[Tγ(z)]

τ
,
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and by lemma 9.18, PrY(F )[Tγ(z) > τ ] can be arbitrary small by taking τ = O (n log n)

which finishes the proof.

187



CHAPTER 10

Planted Community Networks

Continuing the study in Chapter 9, we study the Node Dynamics on networks with

two communities. Each node has one of two opinions and updates its opinion as

a “majority-like” function of the frequency of opinions among its neighbors. The

networks we consider are weighted graphs each of which is comprised of two equally

sized communities where intracommunity edges have weight p, and inter-community

edges have weight q. Thus, q and p parameterize the connectivity between the two

communities.

We prove a dichotomy theorem about the interaction of the two parameters: 1)

the “majority-like” update function, and 2) the level of inter-community connectivity.

For each setting of parameters, we show that either the system quickly converges to

consensus with high probability in time Θ(n log(n)), or the system can get “stuck”

and take time 2Θ(n) to reach consensus. We note that O(n log(n)) is optimal because

it takes this long for each node to even update its opinion. Technically, we achieve this

fast convergence result by exploiting the connection between a family of reinforced

random walks and dynamical systems literature. Our main result shows if the systems

is a reinforced random walk with a gradient-like function, it converges to an arbitrary

neighborhood of a local attracting point in O(n log n) time with high probability. This

result adds to the recent literature on saddle-point analysis and shows a large family

of stochastic gradient descent algorithm converges to a local minimal in O(n log n)

time when the step size is O(1/n).

Our opinion dynamics model captures a broad range of systems, sometimes called

interacting particle systems, exemplified by the voter model, the iterative majority,

and iterative k-majority. The interacting particle systems have found use in many dis-

ciplines including distributed systems, statistical physics, social networks, and Markov

chain theory.
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10.1 Introduction

Opinion dynamics on networks study how a set of opinions evolve over a network.

In this case, we study how two mutually exclusive competing opinions evolve. This

general model captures important settings in sociology (competing beliefs or prac-

tices), economics (competing technologies/brands), statistical physics (e.g., the Ising

Model), distributed computer systems (consensus), and evolutionary biology (genetic

inheritances).

We study the maximum expected consensus time on a general set of stochastic

process called Node dynamics [206, 208]. Node dynamics are parameterized by

an update function f : [0, 1] → [0, 1]. In the beginning, each agent holds a binary

“opinion”, either red or blue. Then, in each round, an agent is uniformly chosen and

updates its opinion to red with probability f(r) and blue with probability 1 − f(r)

where r is the fraction of its neighbors with the red opinion.

By changing f , one can capture many previously studied dynamics including:

Voter Model: Update a node’s opinion to that of a randomly chosen neighbor.

Iterative majority: Update a node’s opinion to the majority opinion its neighbors.

Iterative k-majority: Update a node’s opinion to the majority opinion of k ran-

domly chosen (with replacement) neighbors.

Iterative ρ-noisy majority model: [85, 100] Update a node’s opinion to majority

opinion its neighbors with probability 1 − ρ and uniformly at random with

probability ρ.

We focus on a specific regime of f that we call “majority-like” (definition 10.2).

In particular f should be monotone, symmetric, twice continuously differentiable,

strictly convex in [0, .5], and have f(0) = 0. Though node dynamics with majority-

like function do not contain the iterative majority (non-smooth) nor voter model

(not strictly convex), this still captures rich get richer property and yields a very

general class of functions including k-majority. Such functions promote consensus

within a single homogeneous community [206]. This result is intuitive because once

symmetry is broken, the majority should retain its advantage. Here we study whether

such dynamics also quickly reach consensus in models with community structure from

arbitrary initial states.

While previous work on this general model only considered Erdös-Rényi graphs,

we study what happens when community structure is present. We model this with a
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planted community model where n nodes on a complete weighted graph are divided

into two equal sets which we call communities. Edges within each community have

weight p while edges spanning both communities have weight q. This can also be

thought of a block-model which has a long history in the sociology literature [209].

Our Contributions We prove a dichotomy theorem about the interaction of the

update function and the level of inter-community connectivity. For each “majority-

like” function we show a threshold such that if the communities (the difference be-

tween p and q) are more connected than this threshold value, they will converge to

consensus in time Θ(n log(n)) from arbitrary initial states. However, if they are more

isolated than this threshold value, an attracting, non-convergence fixed point will

emerge which can delay consensus to 2Ω(n) steps. For technical reasons, there may

exist a single point in each region (above and below the threshold) that we cannot

classify.

There are two challenges for showing fast consensus from worst case initial state:

breaking symmetry and measuring progress. For breaking symmetry, if initially pre-

cisely half of the agents have the red opinion in both each community, our process

does not move toward consensus in expectation. Thus, we show the randomness in

the process can break this symmetry and help escaping such singular states. On the

other hand, we also need to measure the global progress of the dynamics to prevent

it making cycle or having other complicated recurrent behavior.

Our analysis is mostly decoupled from the particular problem we are solving, but

instead relies on two properties: the mean-field dynamics is a gradient-like flow (which

implies the existence of a potential function for us to measure the progress), and the

dynamics are reinforcing random walks (which enables us to break symmetry). Thus

we believe there will be other applications of it in the future.

To break symmetry, our main technical lemma shows that a dynamics with the

two properties mentioned above can quickly escape from non-attracting fixed points.

This result adds to the recent literature on saddle-point analysis. In particular, the

process studied in Theorem 10.6 greatly generalize Ge et al. [98], Jin et al. [121], and

we prove the convergence time is O(` log `) as long as the noise is well-behaved, and

the objective function has a continuous third derivative.

Finally, our work has applications to ideological polarization [36]. The threshold

behavior implies that even when the dynamics are very polarized, a small change in

the network or processes can lead to large-scale consensus. Conversely, if the dynamics

are far from the threshold, small measures may yield no effect at all.
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10.1.1 Related Work

The most closely related work is the rigorous treatment of node dynamics on dense

Erdös-Rényi graphs [206] which shows that it converges in time O(n log(n)). The

technical difficulties dealt with by these works are largely orthogonal. The difficulty

with Erdös-Rényi graphs is that the exponentially many configurations are all slightly

different. Thus the potential function must be custom designed for each function f but

done in an automated fashion. However, the current treatment assumes a complete

graph with weighted edges, and so the state can be succinctly represented. Here the

difficulty in constructing a nice potential function comes from the fact that there may

be more than one non-attracting fixed point.

As mentioned, our model extends several previously studied dynamics including

the voter model, iterative majority, iterative k-majority. The voter model has been

extensively studied in mathematics [65, 114, 150, 151], physics [32, 47], and even

in social networks [46, 212, 221, 222, 64]. A major theme of this work is how long

it takes the dynamics to reach consensus on different network topologies. Works

about iterative majority dynamics [136, 34, 125, 176, 224, 248] often study when the

dynamics converge and how long it takes them to do so. Another interest question,

orthogonal to those explored here, is whether the dynamics converge to the original

majority opinion—that is, successfully aggregate the original opinion. Doerr et al.

[75] prove 3-majority reaches “stabilizing almost” consensus on the complete graph in

the presence of O(
√
n)-dynamic adversaries. Many works extend this result beyond

binary opinions [66, 63, 31, 1].

Another line of related literature is about designing and analyzing algorithms

for consensus on social networks. When dealing with binary opinions, these works

typically study more elaborate dynamics which, in particular, include nodes having

memory beyond their opinion [126, 190, 33, 174]. Another line of work deals with

agents selecting an opinion from among a large (or infinite) set of options [27, 96].

There are also myriad models where the opinions space is continuous instead of dis-

crete. Typically agents either average their neighbors’ opinions [72], or a subset of

their neighbors’ opinions which are sufficiently aligned [111, 71]. Finally, models in-

volving the coevolution of the opinions and the network [115, 79] have been studied

using simulations and heuristic arguments.

A large volume of literature is devoted to bounding the hitting time of different

Markov process and achieving fast convergence. The techniques typically employed

are (1) showing the Markov chain has fast mixing time [171], (2) reducing the dimen-

sion of the process into small set of parameters (e.g., the frequency of each opinion)
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and using a mean field approximation and concentration property to control the be-

havior of the process [31], or (3) using handcrafted potential functions [176]. Our

results extend the second approach. We map our high dimensional process into a

process on a low dimensional space (R2). This new process is a reinforced random

walk with small step size which is closely related to the solution of an ordinary differ-

ential system which can be seen as a mean-field approximation of our random walk.

However, the mean-field of our dynamics has unstable fixed points and does necessar-

ily not have a nice potential function. We circumvent these challenges by exploiting

the literature of dynamical systems and showing the existence of a potential function

by analyzing the phase portrait of the flow. Additionally, we show the process leaves

unstable fixed points by using the stochastic nature of our process.

Recently, there is a long line of research of stochastic gradient descent on non-

convex functions, see [98, 121] and the reference therein. Searching for the minimum

value of a non-convex function is in general unfeasible, and those work focus on finding

local minimal efficiently which is achieved by showing that stochastic gradient decent

leaves non minimal singular points (repelling and saddle fixed points) efficiently.

10.2 Graph with community structure and node

dynamics

In this work, we consider blockmodels with two communities:

Definition 10.1 (bi-blockmodel [73, 237]). Given p > q > 0, and the set of n vertices

V which can be decomposed into two equal size communities V1 and V2, we define a

weighted complete graph K(n, p, q) = (V,w) a Graph where

w(u, v) =

p if u, v are in the same community;

q otherwise.
(10.1)

A configuration σ(G) : V → {0, 1} assigns the “color” of each node v ∈ G to be

σ(G)(v), equivalently σ(G) ∈ {0, 1}n. We will usually suppress the superscript when

it is clear. Moreover in a configuration σ we say v is red if σ(v) = 1 and is blue if

σ(v) = 0. We then write the set of red vertices as σ−1(1). We say that a configuration

σ is in consensus if σ(·) is the constant function (so all nodes are red or all nodes are

blue), and call these two states consensus states.
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Given a node v in configuration σ we define

rσ(v) =
‖w(v, σ−1(1))‖
‖w(v, V )‖

=

∑
u∈V :σ(u)=1w(v, u)∑

u∈V w(v, u)
(10.2)

to be its fractional weight of the red neighbors σ−1(1).

Definition 10.2. An update function is a C2 function fND : [0, 1] → [0, 1] with the

following properties:

Monotone ∀x, y ∈ [0, 1], if x < y, then fND(x) ≤ fND(y).

Symmetric ∀t ∈ [0, 1], fND(1/2 + t) = 1− fND(1/2− t).

Absorption fND(0) = 0 and fND(1) = 1.

In this work, we further assume the update function has an “S” shape— f is strictly

convex in [0, 0.5], and strictly concave in [0.5, 1], and called such function smooth

majority-like update function

We define node dynamics as follows:

Definition 10.3. Given a undirected edge-weighted graph G = (V,w), an update

function fND and an initial configuration σ0, a node dynamic ND(G, fND, σ0) is

a stochastic process over configurations,
{
SND
k

}
k≥0

where SND
0 = σ0 is the initial

configuration. The dynamics proceeds in rounds. At round k + 1, a node v is picked

uniformly random, v updates its opinion

SND
k+1(v) =

{
1 with probability fND(rSND

k
(v)),

0 otherwise

where rSND
k

(v) is the fractional weight of the red neighbors with configuration SND
k

defined in Equation (10.2), and we further define Sk = SND
k and rk , rSND

k
(v) in the

later discussion.

In this paper, we will use consensus time to study on the interaction between

update function f in Definition 10.2 and community structure of G in definition 10.1.

Note that we can assume K(n, p, q) with p + q = 1 which does not change the node

dynamics.

Definition 10.4. The consensus time of a node dynamic ND(G, fND, σ0) is a stopping

time T (G, fND, σ0) denoting the first time step that ND is in a consensus configuration.

The maximum consensus time ME(G, fND) is the maximum consensus time over any

initial configuration, ME(G, fND) = maxσ0 E[T (G, fND, σ0)].
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10.3 Main results

Theorem 10.5. Given a smooth majority-like function fND in Definition 10.2, let

(SND
k )k≥0 = ND(G, fND, σ0) be a node dynamic over K(n, p, q) where p > q > 0 and

p+ q = 1. There are three constants δ′, δ∗ and δ′′ such that 0 < δ′ < δ∗ ≤ δ′′ < 1

1. If p− q ∈ (0, δ∗) \ {δ′}, the maximum expected consensus time

ME(K(n, p, q), fND) = O(n log n).

2. If p− q ∈ (δ∗, 1) \ {δ′′}, the maximum expected consensus time

ME(K(n, p, q), fND) = exp (Ω(n)) .

We prove the first part of the Theorem 10.5, fast convergence result, in three

parts:

1. We first construct a function φ and show both the process φ(SND
k ) is a reinforced

random walk with a gradient-like function and only the images of consensus

states are the attracting fixed points of the gradient-like flow (Theorem 10.7).

2. We next show a general theorem that a family of reinforced random walks with

a gradient-like function reaches an arbitrary neighborhood of some attracting

fixed point in O(n log n) with high probability under mild conditions on the per-

turbation (Theorem 10.6). Combining these we can show our process SND
k gets

close to the consensus states in O(n log n) with high probability. In section F.3

we additionally show the process indeed hits the consensus states after arriving

the neighborhoods of consensus states.

The second part is relatively straightforward, and proved in Section F.3.

10.3.1 Fast convergence result of reinforced random walk

Informally, if the Markov chain Sk of interest can be mapped into Xk , φ(Sk) such

that Xk is a reinforced random walk in Rd with a gradient-like function f , then

Theorem 10.6 shows that the behavior of the reinforced random walk with f is closely

related to its mean field—the flow with f . By the definition of the gradient-like flow

with f , the flow (mean field) converges to the (repelling, attracting, and saddle)

fixed points of f . The theorem, on the other hand, shows the process Xk converges
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to an arbitrary neighborhood of an attracting fixed point fast as long as the noise

around repelling and saddle points is sufficiently large. Intuitively, this noise allows

the process Xk to quickly escape from any non-attracting fixed point, this is unlike

analogous the flow (mean field).

Theorem 10.6 (Hitting time of reinforced random walk). Let Sk be a time homoge-

neous Markov chain on state space Ω. If there exist constants d ∈ N, D, d1, d2 ∈ R+,

a function φ : Ω → Rd, a compact set B ⊂ Rd, and f ∈ C2(Rd,Rd) with the set of

fixed points Fixf = {β1, . . . , βm} for any {Ni}1≤i≤m which is a set of open sets in Rd

with βi ∈ Ni, such that

1. the flow with f in (2.1) is a gradient-like system and B is positive invariant

under the flow with f ,

2. {Xk}k∈N = {φ(Sk)}k∈N is a function of the Markov chain in Rd, and

Xk+1 = Xk +
1

n
(f(Xk) +U (Sk))

such that Xk ∈ B with probability 1 and the noise is well-behaved: let Uk+1 ,

U(Sk).

(a) For all Xk ∈ B, E[Uk+1 | Sk] = 0,

(b) For all Xk ∈ B, ‖Uk+1‖ ≤ D

(c) For all Xk ∈ ∪i:βi∈Repelf ∪ SaddlefNi,

d1Id ≺ Cov[Uk+1 | Sk] ≺ d2Id

there exists τ = O(n log n) for all X0 ∈ B, XT ∈ ∪i:βi∈AttractfNi for some T ≤ τ with

high probability.

The proof is in Section 10.4. Note that when the reinforced function is gradient-

like, by Corollary 2.35, there is a complete Lyapunov function for the flow, and we

can use it to control the global movement of the reinforced random walk. However,

the technical difficulty is how to control the behavior of the reinforced random walk

around fixed points, and this is carefully analyzed in Section 10.4.

In Theorem 10.18, we show the connection between stochastic gradient descent

on non-convex functions and Theorem 10.6. Informally, Theorem 10.6 ensures that

the reinforced random walk with the gradient of a non-convex function converges to

a local minimal (attracting fixed point) in O(n log n).
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10.3.2 Phase portrait

To apply Theorem 10.6, we need to show our node dynamics on bi-blockmodel are

time homogeneous Markov chains which can be mapped to R2 as a reinforced random

walk with gradient-like function. In this section, we define such a mapping φ, and

show (φ(SND
k )) itself is a Markov chain which is stronger than reinforced random walk

defined in Equation (2.3).

Because of the symmetry of SND
k and bi-blockmodel defined in Definition 10.1,

we define a mapping from σ = {0, 1}d to the numbers of red nodes in those two

communities, Pos : {0, 1}n → [n/2]× [n/2] and φ = pos , 2Pos/n such that

Pos(σ) =
(
‖V1 ∩ σ−1(1)‖, ‖V2 ∩ σ−1(1)‖

)
=

(∑
v∈V1

σ(v),
∑
u∈V2

σ(u)

)
. (10.3)

Then we define the process: for all k ∈ N0

XND
k , φ(σk), (10.4)

which is a function of Markov chain SND
k , and it is a two-dimensional reinforced

random walk, as defined in (2.3), with FND : [0, 1]2 → R2 defined as follows:

FND(x1, x2) , (fND (p x1 + q x2)− x1, fND (p x2 + q x1)− x2) . (10.5)

Moreover, XND
k itself is also a Markov chain and the consensus states 0n and 1n

is mapped o (0, 0) and (1, 1) respectively. As a result, we will use XND and SND

interchangeably as our node dynamics.

As mentioned in section 2.2, we summarize three closely related dynamics here:

1.
{
SND
k

}
k∈N0

the stochastic sequence on state space Ω = {0, 1}n, the dynamics in

theorem 10.5, ND(G, fND, σ0) with G = K(n, p, q),

2.
{
XND
k

}
k∈N0

the stochastic sequence on state space {0, 2/n, 4/n, . . . , 1}2 ⊂ R2

defined in Equation (10.4) which is a function of Markov chain and a reinforced

random walk with FND.

3.
{
xND(t)

}
t∈R the deterministic flow in R2 associated with FND.1

1We need to extend the domain of FND into R2 which is defined in Section 10.5 and call it as
F̄ND.
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Theorem 10.7 (Phase portrait). Given fND and p, q in the Node Dynamics defined

in Theorem 10.5, there exist three constants 0 < δ′ < δ∗ ≤ δ′′ < 1 such that the flow

with F̄ND defined in (10.5) has three cases:

1. When p−q ∈ (0, δ∗)\{δ′}, the flow is a gradient-like system, and the consensus

states (0, 0), (1, 1) are the only attracting fixed point.

2. When p− q ∈ (δ∗, 1) \ {δ′′}, FND has an attracting fixed point βa 6= (0, 0), (1, 1).

A more detailed characterization of δ′, δ∗ and δ′′ is in Theorem 10.14.

10.3.3 From neighborhood of fixed points to the fixed points

In Section F.3, we complete the proof of Theorem 10.5. For the first part of Theo-

rem 10.5, we want to show the process indeed reach a consensus state 0n or 1n fast.

Theorem 10.6 ensures our process reach a neighborhood of those consensus states

which is not enough. In section F.3, we show after reaching arbitrary neighborhoods

of consensus states the process can reach a consensus state in O(n log n) steps with

constant probability. We achieve this by constructing a coupling between our pro-

cess and a birth-and-death process in Lemma F.4, and an upper bound for expected

hitting time of birth-and-death in Lemma F.6 and F.7.

Finally, for the second part, Theorem 10.7 shows the existence of an attracting

fixed point βa other than consensus states. By a standard argument (Lemma F.5)

if the process starts at βa, the probability of leaving Q′ a neighborhood of βa in n

steps is exponentially small. Therefore the expected time of reach consensus states is

exp(Ω(n)).

10.4 Reinforced random walks of gradient-like func-

tion and the proof of Theorem 10.6

This section is concerned with proving Theorem 10.6. To show the process reach a

neighborhood of an attracting fixed point fast, we need to show two parts: locally, the

process does not stuck at any small neighborhood; globally, the process to progress

without making circle or having complicated recurrent behavior.

For global characterization, because the flow is gradient-like, by Corollary 2.35,

there exists a smooth complete Lyapunov function V for the flow. With this real-

value function V , we can control the behavior of the reinforced random walk Xk.
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Locally, for each fixed point βi ∈ Fix(f), we define a small neighborhood Ni around

it containing no additional fixed points, and we set the index such that βi ∈ Ni. There

are two cases: either x ∈ X \ (∪iNi), and we say x is a regular point. In this case the

complete Lyapunov function V has large (linear) decrements. Otherwise, x ∈ Ni for

some i, we say that x is a neighborhood point and V decrements increasingly slowly

as it approaches the fixed point βi.

The first lemma deals with the regular points, and shows that from them the

trajectory will quickly reach a non-regular point. The proof is in appendix.

Lemma 10.8 (regular points). If X0 6∈ ∪Ni, there exists i and T = O(n) such that

XT ∈ Ni and V (βi) < V (X0) with probability 1− o(1).

The next lemma says that as long as βi is not an attracting fixed point, then from

any point in its neighborhood, the process will quickly leave the neighborhood in a

manner that decreases the potential function.

Lemma 10.9 (non attracting fixed points). If X0 ∈ Ni and βi is not an attracting

point, there exists δ > 0 such that τ = O(n log n), XT 6∈ Ni, and V (βi) > δ + V (X0)

for some T ≤ τ with high probability.

This is proved in the appendix. The proof relies heavily on our main technical

lemma, Lemma 10.10, which shows that the processes leaves saddle points (or unstable

fixed points). Lemma 10.10 is proved in Section 10.4.1.

Proof of Theorem 10.6. Combining the above two characterizations, we can study the

process in two alternating stages.

1. Given an initial condition x0 ∈ B where B is compact and positive invariant, if

x0 6∈ ∪iNi, it converges to someNi inO(n) with high probability by Lemma 10.8.

2. If βi is not an attracting point by Lemma 10.9, the process leaves the region Ni

and V (x) < V (βi)− δ in O(n log n) time with high probability.

3. After leaving Ni, by Lemma 10.8, the process converges to Nj a neighborhood of

another fixed point βj where V (βj) < V (βi) in O(n) steps with high probability.

4. We can repeat these arguments until the process reaches some attracting point.

The processes can never return to the neighborhood of the same fixed point

twice because V (β(i)) is always decreasing. Moreover since the number fixed

points are constant (and independent to the step size), the alternation between

the above stages stops in constant rounds.
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10.4.1 Escaping local saddle points

In this section we state and prove our main technical lemma, which shows that our

process will quickly leave the neighborhood of a saddle point or unstable fixed point.

Lemma 10.10 (Leaving non-attracting fixed point). Given the setup in Theorem 10.6,

there are a sufficiently small constant r > 0 and τi = O(n log n), such that if the pro-

cess starting in Ni for some non-attracting fixed points, after Ti ≤ τi,

Pr[XTi ∈ B(βi, 3r/4) \B(βi, r/2)] = 1− o(1).

Roughly, around the saddle point βi the dynamics can be approximated by a linear

flow with A = ∇f(βi) defined in section 2.4.3. That is the process is expanding in the

subspace Eu, and contracting in subspace Es with respect to A. However, because

of the non-linearity of the process, there is a quadratic error term O(‖Zk‖2). To

handle this, we partition the process into O(log n) phases illustrated in Figure 10.1

such that as long as the difference between ‖Zu
k ‖ and ‖Zs

k‖ is not too large, the errors

are comparable (and small).

The proof has three parts. Intuitively, Lemma 10.11 shows the magnitude in

contracting subspace decrease rapidly. Lemma 10.12 shows if the process is very close

to or at βi, the noise of the process can ensure the unstable part of the process can be

Ω((log n)1/3/
√
n) far away from βi in O(n log n) times. Finally, Lemma 10.13 shows if

the unstable part of the process is Ω((log n)1/3/
√
n) away from βi, the unstable part

double in O(n) time with probability 1− exp
(
−Ω

(√
log n

))
= 1− o(1/ log n).

Proof. Because the fixed points of the Gradient-like system are hyperbolic we can

rewrite the process around B(βi, r) as,

Zk+1 − Zk =
1

n
(AZk +

−−−−−−→
O(‖Zk‖2) + noise) (10.6)

where A = ∇f(βi) is hyperbolic and Zk = Xk − βi. Note that here we use
−−−−−−→
O(‖Zk‖2)

to denote an error vector such that each coordinate of this vector is O(‖Zk‖2).

Furthermore, given the matrix A, we can decompose the tangent space Rd into

the stable and the unstable subspaces Es and Eu with respect to A (Section 2.4.3).

Let P u and P s be the projection operators for Es and Eu respectively. Without loss

of generality, we consider βi to be a saddle point.

We can consider the following two (correlated) processes which are updated by

the original process decomposed into operating on the (not necessarily orthogonal)
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Figure 10.1: The solid blue circle represents Ni, dash circles are different phases
of the process, non-grid region are those ‖Zu‖ ≥ 8‖Zs‖, and the other solid cir-
cle is B(βi, 3r/4). For Lemma 10.10, we partition the process around saddle point
βi into O(log n) phases: In phase 0 the process hits Ni(the solid blue circle), and
Lemma 10.11 shows the process hits ‖Z‖ ≤ l1(the smallest dash circle), in O(n log n)
with probability 1−o(1). In the phase 1, by Lemma 10.12, after hitting ‖Z‖ ≤ l1, the
process enter ‖Zu‖ ≥ l1 (the non-grid region of the bigger dash circle) in O(n log n).
The Lemma 10.13 shows if ‖Zu

0 ‖ ≥ lj the process will enter the ‖Zu‖ ≥ lj+1 (the
non-grid region of the next bigger dash circle) in additional O(n) times. Finally, the
process leaves the region B(βi, 3r/4).
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spaces Es and Eu:

Zu
k+1 − Zu

k =
1

n
(AZu

k +
−−−−−−→
O(‖Zk‖2) + noiseu) ∈ Eu (10.7)

Zs
k+1 − Zs

k =
1

n
(AZs

k +
−−−−−−→
O(‖Zk‖2) + noises) ∈ Es (10.8)

where noiseu , P uUk+1 ∈ Eu and noises , P sUk+1 ∈ Es. We call Zu
k and Zs

k unstable

component and stable component of the process Zk respectively

If we can show after τi = O(n log n) steps both in the stable manifold (10.8)

we have ‖Zs
τi
‖ ≤ r/4 and in unstable manifold (10.7) we have ‖Zu

τi
‖ ≥ 3r/4, the

‖Zτi‖ ≥ ‖Zu
τi
‖ − ‖Zs

τi
‖ = r/2 which completes the proof.2

Let λu = min{<(λi)} > 0 which is minimum real part of eigenvalue of A in Eu.

We define a length J = O(log n) sequence

l1 =
(log n)1/3

√
n

, lj+1 = 2lj for j = 1, 2, . . . , J − 1, and lJ = 3r/4. (10.9)

With the sequence (lj), we partition the processes in B(βi, 3r/4) into O(log n) phases,

and say the process Zu
k is in phases j if and only if lj−1 ≤ ‖Zu

k ‖ < lj and ‖Zs
k‖ ≤

‖Zu
k ‖/8.

First in Lemma 10.11, we show either the stable component ‖Zs‖ is smaller than

the unstable component ‖Zu‖ or enters the phase 0, ‖Z‖ ≤ l1 in O(n log n) time with

high probability.

Secondly, by Lemma 10.12, suppose the process is at phase 0, ‖Z0‖ ≤ l1, the

process reach phase 1 within O(n log n) steps with probability 1− o(1).

Finally, by Lemma 10.13, starting at phase j, the process reach phase j + 1 with

in O(n) steps with probability 1 − exp
(
−Ω

(√
log n

))
= 1 − o(1/ log n). Thus the

proof completes by taking union bound on these J = O(log n) phases.

Due to the space constrain, we put all of the proofs of the following lemmas in to

the appendix.

10.4.1.1 Phase 0: decreasing the stable component

Lemma 10.11 (Phase 0). If X0 ∈ Ni, in time τ0 = O(n log n), there exists T0 ≤ τ0

such that ‖Zu
T0
‖ ≥ 8‖Zs

T0
‖ or ‖ZT0‖ ≤ l1 with probability 1− o(1).

2Although the process Zk may even leave B(β, r) before τi such that Equation (10.6) does not
hold anymore, we can define another process by Equation (10.6) and couple it with the original
process when the process is in B(β, 3r/4). We analyze the new process instead and show it leaves
B(β, 3r/4) with high probability. Therefore the original process also leave it with high probability.
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10.4.1.2 Phase 1: leaving the fixed point

For Lemma 10.12, because the drift of the process is too small, we use the anti-

concentration of noise (Lemma F.1) to show in expectation it can reach l1 = Ω((log n)1/3/
√
n)

after O(n(log n)2/3) steps. By Markov inequality, we show it will happen in O(n log n)

with probability 1− o(1).

Lemma 10.12 (Phase 1). If ‖Z0‖ ≤ l1, there are τ1 = O(n log n) and T1 ≤ τ1 such

that ‖Zu
T1
‖ ≥ 2l1 and ‖Zs

T1
‖ = o(l1) with probability at least 1− o(1).

10.4.1.3 Phase j: amplifying the unstable component

To the end we want to show ‖Zu
k ‖ in (10.7) increases rapidly which depends on three

things: the linear part AZu
k is large, the nonlinear term O(‖Zk‖2) is small and the

noise, noiseu, is small. However, O(‖Zk‖2) depends both on Zu
k and Zs

k, so we need

to upper bound the value of ‖Zs
k as well. Therefore in contrast to Lemma 10.11,

to prove the ‖Zu
k ‖ reach large value fast, we use induction because to control the

process multiple quantities ‖Zs
k‖/‖Zu

k ‖, ‖Zk‖, and ‖Zu
k ‖, and it requires more delicate

argument than optional stopping time theorem.

For non-linearity because f ∈ C2 is smooth we can upper bound the quadratic

values ‖Zk‖2 by ‖Z0‖ = o(lj) for all 0 ≤ k ≤ T with high probability. However, the

standard Chernoff bound and union bound are not enough, so use a more advanced

tail bound for the maximum deviation (Theorem 2.20). For the noise part, condition

on ‖Zk‖2 being small we use linear approximation of f to study two aspect to the

Doob martingale Yk = E[ZT |Z0, . . . , Zk]: 1) the effect variance
∑
c2
i is small and 2)

the expectation Y0 = E[ZT ] is nice.

Lemma 10.13 (Phase j > 1). If ‖Zs
0‖ ≤ 1

8
‖Zu

0 ‖ and lj ≤ ‖Zu
0 ‖ ≤ lj+1, τj = O(n)

such that ‖Zs
τj
‖ ≤ 1

8
lj+1 and ‖Zu

τj
‖ > lj+1 with probability 1− exp

(
−Ω

(√
log n

))
.

Note that in contrast to Lemmas 10.11 and 10.12 which show upper bounds for

hitting times, this lemma characterizes the behavior of Z at time τj.

10.5 Phase portrait

In this section, we prove Theorem 10.7 (which will follow immediately from theo-

rem 10.14), by analyzing the fixed points of the function FND defined in (10.5). We

can classify the fixed points into three types: symmetric, anti-symmetric and eccen-

tric. Lemma 10.15 characterizes the property of symmetric fixed points; Lemma 10.16,
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anti-symmetric fixed points; and Lemma 10.17, eccentric fixed points. The following

section introduces the symmetry property of the flow on FND and Theorem 10.14 is

proved in the next one.

10.5.1 Setup and examples

The fixed points of the system xND are the zeroes of FND which can be parameterized

by δ , p− q:
0 = fND (p x1 + q x2)− x1,

0 = fND (p x2 + q x1)− x2.
(10.10)

Denote the solutions of equation (10.10) as

γ1 =
{

(x
(1)
1 , x

(1)
2 ) ∈ [0, 1]2 : x

(1)
1 = fND

(
p x

(1)
1 + q x

(1)
2

)}
γ2 =

{
(x

(2)
1 , x

(2)
2 ) ∈ [0, 1]2 : x

(2)
2 = fND

(
p x

(2)
2 + q x

(2)
1

)}. (10.11)

Note that the system of Equation 10.10 is symmetric with respect to two axes

x1 = x2 and x1 + x2 = 1, so we define four disjoint regions of [0, 1]2 :

R1 = {(x1, x2) ∈ [0, 1]2 : x1 < x2 and x1 + x2 < 1},

R2 = {(x1, x2) ∈ [0, 1]2 : x1 < x2 and x1 + x2 > 1},

R3 = {(x1, x2) ∈ [0, 1]2 : x1 > x2 and x1 + x2 < 1}, and

R4 = {(x1, x2) ∈ [0, 1]2 : x1 > x2 and x1 + x2 < 1}.

With this symmetric property, we classify the fixed points of (10.10) into three

types:

• symmetric fixed points: (x
(s)
1 , x

(s)
2 ) such x

(s)
1 = x

(s)
2 ,

• anti-symmetric fixed points:(x
(a)
1 , x

(a)
2 ) such x

(a)
1 + x

(a)
2 = 1,

• eccentric fixed points:(x
(e)
1 , x

(e)
2 ) such x

(e)
1 + x

(e)
2 > 1 and x

(e)
1 < x

(e)
2 .

Figure 10.2 shows some examples of a dynamic with different p, q.

To consider the dynamic xND(t) as a flow, there is a caveat: the function FND

only has domain in [0, 1]2 instead of R2, and the set [0, 1]2 is not invariant since the

xND(t) leaves [0, 1] if we reverse the time t. Fortunately, it’s not hard to extend

the domain of FND without changing the structure: let m1 = limx→1− f
′
ND(x) and

m0 = limx→0+ f
′
ND(x)

203



(a) p− q < δsymm (b) δsymm < p− q < δecce (c) δecce < p− q < δanti (d) δanti < p− q

Figure 10.2: In Theorem 10.14 there are three critical values δsymm, δecce and δanti. In
the case (a), the difference p−q is smaller than δsymm = 1/f ′ND(1/2), and there are only
three fixed points characterized in Lemma 10.16. In case (b), the p− q is bigger such
that there are two extra saddle anti-symmetric fixed points. For some specific update
function fND there is case (c) such that there are two extra eccentric fixed points but
the antisymmetric fixed points are saddle which is discussed in Lemma 10.17. Finally
in case (d), the p− q is big enough such that the antisymmetric fixed points become
attracting which is characterized in Lemma 10.16.

f̄ND(x) =


m1x if x < 0

fND(x) if x ∈ [0, 1]

m1(x− 1) + 1 if x > 1

.

We can have F̄ND by using f̄ND in (10.5) instead of fND.3

10.5.2 Proof of Theorem 10.7

The following theorem is a detailed characterization of the flow xND with FND,

and Theorem 10.7 is an corollary of it. In the first case, we take (δ′, δ∗, δ′′) =

(δsymm, δecce, δanti) and (δsymm, δanti, δanti) in the second case.

Theorem 10.14 (Phase portrait). Fix the flow xND with p, q and F̄ND defined in

(10.5), depending on the property of fND there are two situations

1. If there exists δe such that equation (10.10) with pe = (1+δe)/2 has an eccentric

fixed point (x
(e)
1 , x

(e)
2 ) where x

(e)
1 + x

(e)
2 > 1 and x

(e)
1 < x

(e)
2 there are three con-

stants δsymm < δecce < δanti where δanti = 1/f ′ND(1/2) is defined in Lemma 10.15

and δanti is defined in Lemma 10.16 and δecce defined in Lemma 10.17 such that

there are three cases:

3To make f̄ND ∈ C2(R,R), we can consider ε > 0 and set f ′′(x) = 0 if x < −ε and set the
intermediate value in [−ε, 0] smoothly. Then we have an C2 function moreover it can be arbitrary
close to the above definition if we take ε small enough.
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(a) When p−q < δsymm, there are only three fixed points (0, 0), (0.5, 0.5), (1, 1).

The system is a gradient-like system, and the consensus states (0, 0), (1, 1)

are the only attracting fixed point.

(b) When δanti < p− q < δecce, there are five fixed points, (0, 0), (0.5, 0.5), (1, 1)

and two anti-symmetric saddle points. The system is a gradient-like system

and the consensus states (0, 0), (1, 1) are the only attracting fixed point.

(c) When δecce < p− q < δanti or δanti < p− q, there exists an attracting fixed

point β 6= (0, 0), (1, 1).

2. Otherwise, there are two constants δsymm < δanti where δsymm = 1/f ′ND(1/2)

is defined in Lemma 10.15 and δanti is defined in Lemma 10.16 such that the

following three cases:

(a) When p−q < δsymm, there are only three fixed points (0, 0), (0.5, 0.5), (1, 1).

The system is a gradient-like system, and the consensus states (0, 0), (1, 1)

are the only attracting fixed point.

(b) When δsymm < p−q < δanti, there are five fixed points, (0, 0), (0.5, 0.5), (1, 1)

and two anti-symmetric saddle points. The system is a gradient-like system

and the consensus states (0, 0), (1, 1) are the only attracting fixed point.

(c) When δanti < p− q, there exists an attracting fixed point β 6= (0, 0), (1, 1).

We will use two lemmas to proof Theorem 10.14.

Lemma 10.15 (symmetric fixed points). Given FND with p, q and fND, let 0 <

δsymm , 1/f ′ND(1/2). There are three symmetric fixed points: (0, 0), (1, 1) are attract-

ing points, and (0.5, 0.5) which is a saddle point if (p − q) < δsymm and a repelling

point when (p − q) > δsymm. Moreover, when (p − q) < δsymm, the system in (10.10)

only has the above three fixed points.

Lemma 10.16 (anti-symmetric fixed points). Given FND with p, q and fND and δsymm

in Lemma 10.15, there exists δanti > δsymm such that there are two cases for the anti-

symmetric fixed points in Equation (10.10) depending on the value of p− q:

saddle If δsymm < p − q < δanti, there are anti-symmetric fixed points which are

saddle.

attracting If δanti < p− q, there are anti-symmetric fixed points which are stable.
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With Lemma 10.16, one might guess the systems only have consensus as stable

fixed points when p− q < δanti, and have two extra stable fixed points when p− q >
δanti. However, as p − q increases there is some fND such that the system has extra

stable eccentric fixed points before the anti-symmetric fixed points become stable, e.g.

Figure 10.2. Though we can use simulation to estimate the phase space, the following

lemma shows: Given fND suppose there exists δe < δanti such that the system with

δe = pe − qe in Equation (10.10) has an eccentric fixed point. Then there exists

δecce < δanti such that for all p′e such that δecce < p′e− q′e < δanti the system (10.10) has

attracting eccentric stable fixed points fixed points. By symmetry, we only state the

result in R2.

Lemma 10.17 (eccentric fixed points). Given FND with p, q, fND, δsymm and δanti

in Lemma 10.15, 10.16, if there exists δe < δanti such that equation (10.10) with

pe = (1+δe)/2 has an eccentric fixed point (x
(e)
1 , x

(e)
2 ) ∈ R2, then for all δe < δ′e < δanti

the system in (10.10) with p′e has an eccentric fixed point (x
(e)′

1 , x
(e)′

2 ) ∈ R2 which is a

stable fixed point.

We call δecce = min{δe} which is the smallest δe such that the there exists a

eccentric fixed point and anti-symmetric saddle points.

Now we are ready to prove Theorem 10.14.

Proof of Theorem 10.14. The main statement of theorem is proved by Lemma 10.16

and 10.17. Now we prove the case 1 and 2 are indeed gradient-like. Because it’s only

a two dimensional system, by Proposition 2.39, we only need to show 1) the system

only have constant hyperbolic fixed points, 2) there is no saddle connections 3) there

is no cycle.

For the first case, by Lemma 10.16, the system have constant hyperbolic fixed

points and no saddle connections. By symmetric and positive invariant property of

[0, 1]2, suppose there is cycle in the system, it should contained in one of the triangles,

R1, R2, R3 or R4. However, it is impossible, since there is no fixed point within those

four region.

For the second case, by Lemma 10.16 and 10.17, the system only have 5 fixed

points. Secondly, the saddle point have stable manifold in {(x1, x2) : x1 + x2 = 1}, so

there is no saddle connection. No limit cycle argument is similar to the first case.

206



10.6 Stochastic gradient descent and Theorem 10.6

Several machine learning and signal processing applications induce optimization prob-

lems with non-convex objective functions. The global optimization of a non-convex

objective is an NP-hard problem in general. As a result, a much sought-after goal in

applications with non-convex objectives is to find a local minimum of the objective

function. One main hurdle in achieving local optimality is the presence of saddle

points which can mislead local search method by stalling their process.

Our analysis in Section 10.4 can be applied to these problems. Formally, given

an objective function F : Rd → R, an popular heuristic to minimize F is by gradient

descent method:

xt+1 = xt − η∇F (xt), (10.12)

The gradient descent is well-studied when the objective function is convex: for any

constant ε, |F (xt) − minx∈Rd F (x)| ≤ ε in time O(1/η). In this section, we want to

study the convergence property when F is non-convex. In particular, we are interested

in the time complexity with respect to the step size η.

10.6.1 Bounded stochastic gradient descent algorithm

We now state a general stochastic gradient descent with bounded martingale difference

perturbation, and show such processes converge to a local minimal.

Input: An objective function F : Rd → R, the step length η, the running time T ,

and the initial point x1

Output: A point x ∈ Rd

for t = 1,2. . . , T do

Sample a perturbation Ut+1 with properties defined in Theorem 10.18

xt+1 = xt − η (∇F (xt) + Ut+1)

end for

Program 10.1: Bounded Stochastic Gradient Descent Algorithm

Using the same argument for Theorem 10.6 and Proposition 2.33, we have:

Theorem 10.18 (Bounded Stochastic Gradient Descent Algorithm). Given a con-

stant d, an objective function F ∈ C3(Rd,Rd), a compact set B ⊂ Rd which is positive

invariant for Equation (10.12), constants D, d1, d2 > 0, such that

1. The objective function F has
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(a) a continuous third derivative.

(b) a constant number of fixed points in B, {β ∈ B : ∇F (β) = 0}. Moreover,

these fixed points are non-degenerate: ∇2F (β) is invertible.

2. The perturbation of the process in Algorithm 10.1 satisfies

(a) Xt ∈ B with probability 1.

(b) E[Ut+1 | xt] = 0 for all xt ∈ B,

(c) ‖Ut+1‖ ≤ D,

(d) For all xt ∈ ∪β:∇F (β)=0B(β, ε), d1Id ≺ Cov[Uk+1 | Xk] ≺ d2Id

where B(β, r) is a ball in Rd, {y : ‖y − β‖ ≤ r}.

Then for any ε > 0, there exist η > 0 and T = O
(

log 1/η
η

)
such that for all initial

points x1 ∈ B ‖xt−x∗‖ ≤ ε for some local minimal x∗ and t ≤ T with high probability.

Note that though this theorem only shows the hitting time is O ((log 1/η)/η) with

high probability, with Lemma F.5 it is not hard to show the process stays in an

arbitrary neighborhood of a local minimal after hitting a neighborhood of the local

minimal.

10.6.2 Related work

For the time complexity with respect to the step size η, this framework contains

several previous results as special cases, and provides a tighter convergence time

upper bound. For example, Ge et al. [98] propose the following algorithm:voterbm

Input: An objective function F : Rd → R, the step length η, the running time T ,

and the initial point x1

Output: A point x ∈ Rd

for t = 1,2. . . , T do

Sample a perturbation Ut+1 ∼ Sd−1(Random point on unit sphere)

xt+1 = xt − η (∇F (xt) + Ut+1)

end for

Program 10.2: Noisy Gradient Descent

They show the convergent time to constant neighborhood of some local minima

is O(1/η2) which is weaker than Theorem 10.18 when the objective function satisfies

our condition.
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Similarly, Jin et al. [121] proposes a perturbed gradient descent algorithm:voterbm

Input: An objective function F : Rd → R, the step length η, the running time T ,

and the initial point x1

Output: A point x ∈ Rd

1: for t = 1,2. . . do

2: if ‖∇F (xt)‖ is small then

3: Ut+1 ∼ Sd−1

4: else

5: Ut+1 = 0

6: end if

7: xt+1 = xt − η (∇F (xt) + Ut+1)

8: end for

Program 10.3: Perturbed Gradient Descent

They show the convergent time to a constant neighborhood of some local minimal

is O((log 1/η)4/η) which is weaker than Theorem 10.18 when the objective function

satisfies our condition.

Remark 10.19. Here we put some comparison between Theorem 10.18 and previous

work.

1. The running time is optimal with respect to step size 1/n, O(n log n).

2. This result applies to a larger family of stochastic gradient descent algorithm.

Instead of requiring the perturbation to be a uniform point in the unit sphere,

our result only requires the noise is bounded and the covariance matrix is pos-

itive definite (Theorem 10.18).

3. In gradient flow, the stable and unstable manifold are orthogonal at the saddle

point (the Hessian of the function is symmetric), but it is not true for hyperbolic

saddle points of non-gradient flow. Our result extends to reinforced random

walks with non-gradient flows.

On the other hand, our result doesn’t handle some aspects in Ge et al. [98], Jin et al.

[121]:

1. We consider the step size η is small enough, but do not provide a closed-form

upper bound.
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2. We do not work out the dependency of running time on the dimension (and

several parameters), although we believe our analysis is dimension free.

3. The number of fixed points in our work is constant, and they avoid this condition

by assuming a uniform lower bound of positive eigenvalue of all saddle points

which ensures a universal constant improvement after escape from any saddle

points.
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CHAPTER 11

Engineering Agreement: The Naming

Game with Asymmetric and

Heterogeneous Agents

A popular topic in language evolution, cognitive science, and culture dynamics, the

Naming Game has been widely used to analyze how agents reach global consensus

via communications in multi-agent systems. Most prior work considers networks that

are symmetric and homogeneous (e.g., vertex transitive). In this paper we consider

asymmetric or heterogeneous settings that complement the current literature: 1) we

show that increasing asymmetry in network topology can improve convergence rates.

Empirically, the star graph converges faster than all previously studied graphs; 2) we

consider graph topologies that are particularly challenging for Naming Game such as

disjoint cliques and multi-level trees. For these cases, we and ask how much extra

homogeneity (random edges) is required to allow convergence or fast convergence.

We provide theoretical analysis which was confirmed by simulations; 3) we analyze

how consensus can be manipulated when stubborn nodes are introduced at different

points in the process. Early introduction of stubborn nodes can easily influence the

outcome in certain families of networks, while stubborn nodes introduced later have

much less power.

11.1 Introduction

The analysis of shared conventions in multi-agent systems and complex decentralized

social networks has been the focus of study in several diverse fields, such as linguistics,

sociology, cognitive science, and computer science. The problem of how such conven-

tions can be established, from among countless options, without a central coordinator

has been addressed by several disciplines [182, 42]. Among them, the multi-agent
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models and mathematical approaches gain the most attention by accounting for both

the network topology and opinion change over time [215, 184, 30, 192, 92]. It has been

shown that the emergence of new political, social, economic behaviors, and culture

transmission are highly dependent on such convention dynamics [18, 117, 183].

In order to analyze the social dynamics in multi-agent systems in depth, we focus

on one stylized model, the Naming Game, in which agents negotiate conventions

through local pairwise interactions [214, 26]. The Naming Game captures the generic

and essential features of an agreement process in networked agent-based systems.

Briefly speaking, when two agents wish to communicate, one agent, the speaker,

randomly selects one convention from her list of current conventions and uses this

convention to initiate communication with the listener. If the listener recognizes that

convention, both the speaker and listener purge their lists of current conventions to

only include that “successful” convention. If the listener does not recognize that

convention, she adds it to her list of known conventions.

This simple model is able to account for the emergence of shared conventions in

a homogeneous population of agents. Both simulations and experiments have been

conducted on various network topologies.

However many key questions, especially those related to asymmetric and heteroge-

neous agents, remain open. For example: what network topologies enable the fastest

convergence? Does community structure help or harm convergence? Does homo-

geneity or heterogeneity help or harm convergence? How robust are the dynamics to

possible manipulations by a small number of agents? Moreover, rigorous theoretical

analysis is almost entirely absent in previous work on the Naming Game. In this

paper we aim to fill in the literature in the following aspects:

1. We discovered that the star graph empirically converges faster than all previ-

ously considered graphs for the Naming Game. This network differs from previ-

ously analyzed topologies in that it is not symmetric (vertex transitive). In some

sense, it is not too surprising that the star graph, an asymmetric graph, works

so well to reach consensus, which is a symmetry breaking problem. Though,

from first principles, this is far from obvious, and other asymmetric graphs, for

example a multi-level tree, perform extremely poorly.

2. To understand network topologies that inhibit fast convergence of the Naming

Game, we study two networks with community structures: agents divided into

two disconnected communities; and a multi-level tree. For the first network, it

is clear that it cannot converge to consensus (it is disconnected). We investi-
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gate how much inter community communication needs to be added in order to

facilitate convergence. Empirically we observe a sharp threshold on the level

of inter community communication: above this threshold, fast convergence is

guaranteed, and below it the dynamics fail to converge before time out. We

give theoretical justifications for this threshold by showing that convergence

takes exponentially long if inter community communication is insufficient (be-

low the threshold). For the second network, the multi-level tree, we observe via

simulations that it converges exceedingly slowly—we conjecture that it takes

exponential time. For this network, we perform the same simulation tests for

adding homogeneity and obtain similar results.

We show that with added communication, the community divisions that thwart

consensus can be overcome. Perhaps surprisingly, the amount of intercommu-

nity communication required after disagreement is entrenched, is not substan-

tially more than the amount of communication needed to avoid such division in

the first place.

3. Finally, we analyze a third way of introducing asymmetry and heterogeneity:

including “stubborn” nodes that do not follow the standard Naming Game

protocol. Our experimental results suggest the following hypothesis: in some

graphs (e.g. cliques) even a small constant (e.g. 5) number of stubborn nodes

can assure convergence to a particular name. However, in others networks (e.g.

star graphs, grid graphs, Kleinberg’s small world models), the number of nodes

required seems to grow with the size of the graph. Additionally, we prove that in

a complete graph, manipulation after convergence is much harder than before:

there exists a value p such that if an adversary controls more than a p fraction

of the nodes, consensus results can be easily manipulated; otherwise it takes

exponential time to manipulate the consensus.

The results on stubborn nodes have implications for the use of the Naming

Game in distributed systems. In Steels and McIntyre [216] it was assumed that

the protocol would be robust to manipulation. We confirmed this claim if the

stubborn nodes appear after the system has converged. But in certain networks

these protocols are immensely vulnerable to rogue agents that appear from the

start.
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Figure 11.1: Overview of considered graph structures.

11.1.1 Related Work

Baronchelli et al. [28] proposed the Naming Game as a simple multi-agent framework

that accounts for the emergence of shared conventions in a structured population.

One of the most important problems for Naming Game is to understand how fast

the global consensus can be reached and what factors affect it. Some research has

been conducted to analyze the effect of network topology on the Naming Game dy-

namics [67]. Lu et al. [153] show via simulations on real-world graphs that commu-

nities show speedy convergence of the dynamics. Centola and Baronchelli [48], using

human-subject study, empirically demonstrate the spontaneous creation of univer-

sally adopted social conventions and show simple changes in a population’s network

structure can greatly change the dynamics of norm formation. Baronchelli et al. [29]

show that finite connectivity, combined with the small-world property, ensures supe-

rior performance in terms of memory usage and convergence rate to that of the grid

or complete network. Additionally, a dynamically evolving topology of co-evolution

of language and social structure has been studied by Gong et al. [103], for a more

complex language game.

One common way to influence the social dynamics and facilitate the converging

process towards the consensus is to break the symmetry. Lu et al. [153]Lu et al. have

made use of a special kind of agents called “committed” nodes, who will stick to a

preferred opinion without deviating, and show that such agents often reduce the time

needed to reach consensus. However, in their work they did not evaluate how these

nodes might influence which name was converged upon. Additionally, they did not

study how the network topology interacted with stubborn nodes or how robust the

communication protocol is.
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11.2 Preliminary

We present here the version of the Naming Game introduced in Baronchelli et al. [26]

in which agents negotiate conventions (names), i.e. associations between forms and

meaning. The process stops when all agents reach consensus on a single ‘name.’ The

Naming Game is played by agents on a (weighted) graph G = (V,E,w) and proceeds

in steps. At each step t, each agent v, is characterized by its inventory (list of names)

At(v) ⊆ S. At time 0 each agent has an initial inventory A0(·) which is possibly

empty. At each time step s = 1, 2...

• An edge is randomly chosen with probability proportional to its weight; and

with equal chance one vertex incident to the edge is considered as the speaker

and the other as the listener.

• The speaker v selects a word c uniformly at random from its inventory At(v)

and sends c to the listener u. If the speaker’s inventory is empty, the speaker

invents a new word c (one that is not in the list of any other agent).

• If the word is in the listener’s inventory, c ∈ As(u), the interaction is a “suc-

cess”, and both the speaker and listener remove all words besides c from their

inventories.

• If the word is not in the listener’s inventory, c 6∈ As(u), the interaction is a

“failure” and the listener adds c to its inventory.

The process stops when all the inventories are a singleton of the same name, and

we say the process has reached consensus. Notice that the only time a node can have

an empty inventory is if it starts that way and has yet to engage in any interaction.

The way in which agents may interact with each other is determined by the topol-

ogy of the underlying contact network. Here we will introduce the models considered

in this paper.

1. Complete graphs : all agents are mutual connects.

2. Regular random graph Gn,k (see Bollobás [39]): every node has degree k = 8

and the connection is randomly sample under this constrain.

3. Kleinberg’s small world model [133]: in standard Kleinberg’s model the nodes

are on two dimensional grid. Each node u connects to every other node within

Manhattan distance p as strong ties, and there are q weak ties which connects
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to other nodes v proportional to d(u, v)α. In our simulation, the each nodes has

4 strong tie which is p = 1, and 4 weak ties with α = 2.

4. Watts-Strogatz’s small world model [234]: the nodes are on one-dimensional

ring, and connect to 8 nearest nodes with respect to Manhattan distance, then

we rewire the edges of independently with probability 0.5.

5. Complete bipartite graph is a bipartite graph such that every pair of graph

vertices in the two sets are adjacent. If there are p and q graph vertices in the

two sets, the complete bipartite graph is denoted K(p, q).

6. The trees in this paper refer to perfect k-ary trees with height h—that is,

a rooted tree with h levels where each node except leaf nodes has exactly k

children and the leaf nodes are all at the level h. Note that a star graph with

n leaves is the complete bipartite graph K1,n. Alternatively, a star graph can

also be defined as rooted tree of branching factor n− 1 with depth 1.

11.3 Networks with Fast and Slow Convergence

In this section we study the convergence rate of various graphs. Here we show that a

family of asymmetric graphs, the star graphs, empirically converge faster than previ-

ously proposed graphs. Next, we point out, perhaps surprisingly, that the convergence

time of a multi-level tree is extremely slow. We will engineer and analyze fast converge

versions of trees by adding random edges in Section 11.4.1.

We first examine the convergence time for different graphs on a large scale. Here

we calculate the time in terms of the number of communication steps denoted as

“s”. We look at complete graphs, random regular graphs (Gn,k graphs), Kleinberg’s

small world graphs, Watts-Strogatz graphs, as well as star and tree graphs. Unless

mentioned otherwise, we will use the same setting defined above in Section 11.2. From

Figure 11.2 we can see that the star graph converges the fastest. The tree graph is in

fact the slowest. If the tree has two levels with 5000 nodes, after 107 steps the nodes

still cannot reach consensus. Therefore we did not present the consensus time of the

tree in the figure. Among the rest of the graphs, the Kleinberg’s small world model is

the second slowest, while the other graphs have convergence rate roughly a constant

factor of each other.

The network topology’s impact on the Naming Game’s consensus time is fairly

intriguing. To better understand the results, let us consider the best and worst

216



Figure 11.2: Evaluation of the consensus time for different graphs with size growing
until 40000.

topology scenarios for multiple agents to reach consensus. The best (quickest) way

to reach consensus is to have a specific node to inform all the other nodes of the

name. In other words, it is represented by a star graph and the center node is always

the speaker. In the naming game framework, even when the speaker/listener role

assignment is uniformly random, the star graph is still the fastest in reaching global

consensus. This is partly attributed by the asymmetry inherent in the star graph

topology.

To analyze the effect of asymmetry, we simulate the graph morphing from a bal-

anced complete bipartite graph to a star by increasing the number of vertices in the

larger side of a complete bipartite graph. Figure 11.3 shows the converge time for

various complete bipartite graphs. Moving to the right in the figure, the graph be-

comes more asymmetric and we see that the convergence time decreases. Note that at

m = n (m/n = 1), this is a balanced bipartite network, and at m = 2n−1 (m/n ≈ 2)

this is a star graph. This finding is also aligned with the idea that breaking sym-

metry can improve consensus efficiency for naming game via “stubborn” agents [153]

(and see Section 11.5). On the other hand, the worst graph topology for reaching

global consensus is the multi-level tree graph. We hypothesize that this is due to

the “community structure” embedded in the tree that converge fast by themselves.

In a two-level tree, the subtrees of the main tree are themselves star graphs. Such

community structure enables fast “local” convergence of the dynamics within the

communities, but face challenges in reaching global convergence — the communities

are trying to influence each other but each community has more internal influence

than external influence. This phenomena is the topic of the next section, where we

give both empirical and rigorous theoretical analysis.
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Figure 11.3: Evaluation for converging time for various complete bipartite graphs
Km,2n−m where m is the cardinality of the larger partition of vertices.

11.4 Effects of Community Structure

In this section we study the effects of community structure using two network models,

one of them is a dense graph and the other one a sparse graph. The first is a graph

of heterogeneous agents divided into two disconnected communities. The simplicity

of this model permits theoretical analysis of precisely how and when community

structure can exhibit convergence. The second is a multi-level tree introduced in the

previous section.

Given a weighted graph G where the sum of the weights is W we construct

Hom(G, p) by adding p
1−p

W

(n2)
mass to each edge (creating a new edge if it does not

exist). This effectively samples the complete graph with probability p and the graph

G with probability 1− p.
For each network, we first examine the convergence rate of Hom(·, p) using sim-

ulations. We show that adding a sufficient amount of homogeneity overcomes the

heterogeneity. For the first network, we will provide a theoretical analysis which

predicts, supports, and explains the empirical results.

11.4.1 Disjoint Cliques

Naturally, a graph G of 2n heterogeneous agents divided into two equally sized dis-

connected communities will not converge to consensus. As p increases from 0 toward

1 Hom(G, p) becomes a network of increasingly interconnected communities.

Additionally, the behavior of the Naming Game depends on the initial states,

i.e., the collection of names at these nodes at the beginning. We consider two situa-
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tions for the initial states. 1) “Empty” start, where all nodes start with empty lists

∀v ∈ V,A0(v) = φ. 2) “Segregated” start, in which the two groups have different

initial opinions, ∀v ∈ V1, A0(v) = {0} and ∀v ∈ V2, A0(v) = {1}. Clearly it is more

challenging for the Naming Game to reach global convergence under the segregated

initial state.

Simulation Results. Figure 11.4 (row 1 (a)) shows the convergence time for different

values of p under different initial scenarios on graphs of size n. For each setting we

run the simulation multiple times and plot the time to reach consensus for each run

as a dot in the figure. In certain situations it is hard to reach consensus even after

a long time. Therefore we set 107 as the time-out criteria – i.e., if no consensus is

reached after 107 rounds and we stop the simulation. From Figure 11.4 (row 1 (a)) we

can see that when p is smaller it is harder to reach consensus for all situations. When

p is sufficiently small all situations may hit the timeout condition before consensus

is reached. In addition, the threshold of p which allows this happen is larger for the

“segregated” initial setup compared to the empty initial setup. Similarly, for graphs

of larger size it is easier to hit the time out condition. When p > 0.2 the time to

reach consensus for all situations is small so we chose not to plot it.

To further analyze the naming game behavior when p is in between [0, 0.25], we

show in Figure 11.4 (row 2 (a)) the fraction of trials failing to reach consensus (before

timing out) with different values of p. It is clear that for the empty start initial

condition, the game will time out at about p = 0.24, while for the segregated start

case, the game will time out when p is around 0.26. This threshold value changes

with the size of the local community.

Curiously, for the “empty” start, graphs with smaller sizes are more likely to

encounter timeouts than their larger counterparts. This may be because the smaller

size of each community results in a greater chance of quickly reaching local consensus,

which resembles the segregated start scenario. Therefore, it takes longer for graphs

with smaller sizes to break the local consensus and escape the so called “stuck”

situation.

However, for the segregated start, it immediately starts with the “worst” case

setting where the two communities have diverging opinions, so overall it takes longer

to leave “stuck” situation compared with graphs of the same size in the “empty” start

scenario. Additionally, graphs with larger sizes in the segregated setting more easily

encounter a timeout. This may be because larger graphs occasionally time out even if

they are not really “stuck” because they take longer to reach consensus in any event.

Theoretical Analysis. Next we will analyze the consensus time for the naming game
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(a) (b)

(c)

Figure 11.4: Evaluations of reaching global consensus for different initialization sce-
narios and sizes of graphs. Row 1: Consensus time for (a) disjoint cliques (b) tree
structure; row 2: fraction of nodes failing to reach consensus, based on different prob-
ability of random edges p for (a) disjoint cliques (b) tree structure; (c) normalized
number of random edges used for communication as a function of the probability of
random edges p.
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on Hom(G, p) where G has 2n agents divided into two equally sized disconnected

communities with segregated start.

Theorem 11.1. Let G be the disjoint union of two n cliques, each of size n. Then for

the segregated start naming game on Hom(G, p), there exists a constant p0 ≈ 0.110

such that if 0 ≤ p < p0 the expected consensus time is exp(Ω(n)).

Here we sketch a proof of theorem. A full proof appears in the appendix.

To prove this theorem, we formulate the naming game as a nonhomogenous ran-

dom walk on Z4 and relate this nonhomogenous random walk to a corresponding

autonomous system in R4.

In the segregated start scenario, every node has an initial opinion, therefore no

new name will be generated, and nodes inventory will be either {0}, {1}, or {0, 1}.
Due to the symmetry among nodes, at each step t we only need to keep track of

the number of nodes in the two groups whose inventory corresponds to the three

categories above. Moreover, because the total number of two communities are n, we

can use four variables to discribes this random process: fraction of {0}, {1} nodes in

two communities.

As the size of community increase, the above process is closely related to its mean

field which can be seen as a autonomous system in R4. We show that this system

has a stable fixed point as long as 0 ≤ p < p0. To proof Theorem 11.1 we show two

things with the help in autonomous system:

1. Global behaviour: the random process X(t) will initially “converge” to a point

corresponding to the stable fixed point of the autonomous system.

2. Local behaviour: the random process X(t) takes exponential time to leave the

regions corresponding to the regions around stable fixed point of the autonomous

system.

11.4.2 Tree Structure

In this section, we systematically study the Naming Game on trees and examine how

the naming game converges when applying Hom(·, p) to the tree structure. We show

that convergence is substantially sped up for random edges added with small prob-

abilities. In Figure 11.4 (row 1 (b)) we evaluate the time to reach consensus based

on the probability p of choosing random edges. It is clear that for trees with smaller

depth (d) and more branches, the time to reach consensus is larger. Compared with
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(a) (b) (c)

Figure 11.5: Evaluation for early stage coordinated stubborn nodes within different
graphs. (a) fraction of trials converging to the stubborn nodes’ opinion, as a function
of the number of stubborn nodes with size 1000; (b) fraction of trials converging to
the stubborn nodes’ opinion, as a function of the number of stubborn nodes with size
10000; (c) fraction of nodes converging to the stubborn nodes’ opinion in the late
stage situation for complete graph of size 1000 and 10000.

Figure 11.4 (row 1 (a)) we see that by adding random edges, the tree graph is much

less likely to encounter a timeout than the densely connected community graph. Fig-

ure 11.4 (row 2 (b)) show the fraction of agents failing to reach consensus as a function

of p. Additionally, though the additional pairs can break up the sparse community

structure and help to accelerate the converging process, redundant communications

may be introduced at the same time. Therefore in Figure 11.4 (c) for various p, we

present the total number of time the dynamics choose a homogeneous edge before con-

sensus is reached, normalized by time it takes homogeneous graph (clique) to reach

consensus. We can see that there is actually an tipping point where the homogeneous

edges are used the least, which implies the edges of the original tree actually help

towards consensus. Above this point, the homogeneous edges provide unnecessary

communication redundancy.

11.5 Stubborn Nodes

In this section we introduce another aspect of asymmetry and heterogeneity. We intro-

duce special agents called “stubborn” nodes, which never change their own opinions

and aim to influence the whole network. The topic is also related to the robustness of

the naming game in the real world setting, in which a small number of nodes can be

malicious and not follow the protocol. The primary question we want to ask is: how

and when can such nodes affect the opinion/name to which the dynamics converge?

There are two important factors to consider here – the network topology and the
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time when the stubborn nodes are activated. Here we consider two situations: 1) the

stubborn nodes join at the beginning of the game; 2) the nodes become “stubborn”

after the graph has converged to one global opinion. Figure 11.5 (a) (b) show the

fraction of trials converging to the stubborn nodes’ preference based on the number of

stubborn nodes in situation 1) for graphs of size 1000 and 10000, respectively. From

Figure 11.5 (a), it is clear that in some graphs (e.g. the clique) even a small constant

(e.g. 5) number of stubborn nodes can guarantee convergence to a particular name.

Note that as the number of nodes increase, the curve barely changes, and if anything,

becomes a sharper threshold. However, in others networks (e.g. star, grid, Kleinberg

model), the number of required nodes seems to grow with the size of the graph.

This shows that in certain networks these protocols are not robust to rogue/stubborn

agents. By comparing Figure 11.5 (a) and (b)), we see that the complete graph is not

affected much by its size in terms of the influence efficiency of the “stubborn” nodes.

However, in the Kleinberg and star graphs the number of stubborn nodes needed

greatly depends on the size of the network. Note that here we choose the same num-

ber of stubborn nodes because complete, regular and Watts-Strogatz graphs actually

perform similarly with size 1000 on these number of stubborn nodes.

Additionally, we show that in the complete graph, manipulating the name after

convergence is much harder than before: there exists a value p0 ∈ [0, 1], such that if

an adversary controls more than p0 fraction of the node, consensus can be easily ma-

nipulated and otherwise it will take exponential time to manipulate the consensus. In

Figure 11.5 (c) we verify this empirically by showing the fraction of trials converging

to the stubborn nodes’ preference (before timing out) based on the fraction of “stub-

born” nodes within the network. It shows that at least 10% such stubborn nodes are

needed to manipulate the opinion of the original graph empirically.

We provide theoretical analysis on the lower bound for the number of “stubborn”

nodes required to manipulate the global consensus to align with the “stubborn” nodes’

in a complete graph. In completed graph if the naming game converges to opinion

1, we want to answer the following question: what fraction of stubborn nodes with

opinion 0 are required in order to convert the graph’s consensus to 0 in polynomial

time?

Theorem 11.2. Given the naming game with p fraction of stubborn nodes defined

above, there exists a constant p0 ≈ 0.108 such that for all 0 ≤ p < p0 the expected

consensus time is exp(Ω(n)). Additionally, if p0 < p ≤ 1 for all ε > 0 the fraction of

original opinion is smaller than ε after O(n) steps.

The proof appears in the appendix.
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APPENDIX A

Proofs for General Kleinberg’s Small
World Models

A.1 Proof in the preliminary

In contrast to the original Kleinberg model, when the parameter γ is allow to scale
with the size of the graph n the normalization factor λγ requires more careful treat-
ment than the O-notation.

Proof of Lemma 3.1. The proof is easy, and is include for completeness. Recall that
to eliminate the boundary effect, we wrap up the grid into a torus, and by definition
of λγ, we have

4

bn/2c∑
k=1

k

kγ
≤ λγ =

∑
v

d(u, v)−γ ≤ 4
n∑
k=1

k

kγ
(A.1)

Now we use integration
∫
x1−γ dx to approximate the summation

∑
k1−γ. There are

two cases: if γ < 1, x1−γ is increasing, and if γ ≤ 1 is decreasing. As a result,∫ m+1

1

x1−γ dx ≤
m∑
k=1

k1−γ ≤ 1 +

∫ m

1

x1−γ dx if γ > 1 (A.2)

∫ m

0

x1−γ dx ≤
m∑
k=1

k1−γ ≤
∫ m+1

1

x1−γ dx if γ ≤ 1 (A.3)

Now we are ready the prove the above inequality.
Case: γ ≥ 3. Apply Equation (A.2) into (A.1), and we have

λγ ≤ 4
n∑
k=1

k

kγ
≤ 4

(
1 +

∫ n

1

x1−γ dx

)
≤ 4

(
1 +

1

γ − 2
(1− n−(γ−2))

)
≤ 4

(
1 +

1

γ − 2

)
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For the lower bound, we have

λγ ≥ 4

bn/2c∑
k=1

k

kγ
≥ 4

(∫ n/2

1

x1−γ dx

)
≥ 4

(
1

γ − 2
(1− (n/2)−(γ−2))

)
≥ 2

(
1

γ − 2

)
(Because γ − 2 ≥ 1, it holds when n ≥ 4.)

Case: 2 < γ < 3. For the upper bound, by similar computation we have

λγ ≤ 4
n∑
k=1

k

kγ
≤ 4

(
1 +

∫ n

1

x1−γ dx

)
≤ 4 +

4

γ − 2

(
1− n−(γ−2)

)
Here we need to be more careful. Let r1 , (γ − 2) lnn, and we have λγ ≤ 4 +

4
γ−2

(1− exp (−r1)). If r1 ≥ 1, because γ − 2 < 1

λγ ≤ 4 +
4

γ − 2
≤ 8

(
1

γ − 2

)
.

Otherwise, if r1 < 1, since exp(−r1) ≥ 1− r1 and

λγ ≤ 4 +
4 lnn

r1

r1 ≤ 8 lnn.

For the lower bound, after similar computation we have

λγ ≥
4

γ − 2

(
1− (n/2)−(γ−2)

)
=

4

γ − 2

(
1− exp

(
−(γ − 2) ln

n

2

))
Let r2 , (γ−2) ln n

2
, and we have λγ ≥ 4

γ−2
(1− exp (−r2)). If r2 ≥ 1, exp(−r2) ≤ e−1

and

λγ ≥
4

γ − 2

(
1− e−1

)
≥ 2

γ − 2
.

Otherwise, if r2 < 1, by convexity of exp we have exp(−r2) ≤ 1− (1− e−1)r2 and

λγ ≥
4 ln n

2

r2

(
(1− e−1)r2

)
≥ 2 ln

n

2
.

Case: γ = 2. We just use Equation (A.2) and if n ≥ e we have

λγ ≤ 4
n∑
k=1

k

kγ
≤ 4

(
1 +

∫ n

1

x1−γ dx

)
≤ 4 (1 + lnn) ≤ 8 lnn
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For the lower bound, if we have

λγ ≥ 4

bn/2c∑
k=1

k

kγ
≥ 4

(∫ n/2

1

x1−γ dx

)
≥ 4 ln

n

2

Case: 1 ≤ γ < 2. We just use Equation (A.2) and have

λγ ≤ 4
n∑
k=1

k

kγ
≤ 4

(
1 +

∫ n

1

x1−γ dx

)
= 4

(
1 +

1

2− γ
(
n2−γ − 1

))

Here we need to be more careful. Let r3 , (2 − γ) lnn, and we have λγ ≤ 4 +
4

2−γ (exp(r3)− 1). If r3 ≥ 1, because 2− γ ≤ n2−γ when n ≥ e

λγ ≤ 4 +
4

γ − 2
≤ 8

2− γ
n2−γ.

Otherwise, if r3 < 1, since exp(r) ≤ 1 + (e− 1)r and

λγ ≤ 4 +
4(e− 1) lnn

r3

r3 ≤ 8 lnn.

For the lower bound, we have

λγ ≥
4

2− γ
(
(n/2)2−γ − 1

)
=

4

2− γ

(
exp

(
(2− γ) ln

n

2

)
− 1
)

Let r4 , (2 − γ) ln n
2
, and we have λγ ≥ 4

2−γ (exp (r4)− 1). If r4 ≥ 1, exp(r4) − 1 ≥
(1/2) exp(r4) and

λγ ≥
4

2− γ
(e− 1) ≥ 2

2− γ

(n
2

)2−γ
.

Otherwise, if r4 < 1, we have exp(r4) ≥ 1 + r4 and

λγ ≥
4 ln n

2

r4

(r4) ≥ 2 ln
n

2
.

Case: γ < 1. Apply Equation (A.3) into (A.1), and if n ≥ 4 we have

λγ ≤ 4
n∑
k=1

k

kγ
≤ 4

(∫ n+1

1

x1−γ dx

)
≤ 4

2− γ
(
(n+ 1)2−γ − 1)

)
≤ 8

2− γ
n2−γ

For the lower bound, if n ≥ 7 we have

λγ ≥ 4

bn/2c∑
k=1

k

kγ
≥ 4

(∫ n/2−1

0

x1−γ dx

)
≥ 4

γ − 2
(n/2− 1)2−γ ≥ 2

γ − 2
(n/2)2−γ
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A.2 Proofs for Myopic Routing

Proof of Theorem 3.2. As defined in section 3.3, we use A = (xi)i≥0 to denote the
routing process of the myopic greedy algorithm towards the destination t. Recall the
definition of the myopic greedy algorithm which greedily routes the message from
the “current location” to a neighbor that is as close as possible to the destination
vertex. This process is memory-less. Because one of the grid neighbors will always
have a smaller distance to t, the distance to the destination is strictly decreasing, and
the sequence (xi)i≥0 is a simple path. Therefore for each node u that A encounters,
the value of γu and the formation of node u’s long-range contacts are independent of
other nodes, and the process (xi)i≥0 is a Markov chain, and we can study its behavior
independent of its history.

To measure the progress of process A = (xi)i≥0, we say that the i-th run of A is
in phase j when the lattice distance from the current node to t is between 2j and
2j+1— 2j < d(xi, t) ≤ 2j+1. Note that the phase of myopic greedy algorithm A is
always non-increasing because the distance to destination is strictly decreasing, and
the initial value of j is at most log n which prove the first two parts.

Now we are ready to address the last part of this proof: what is the probability
Pj that phase j will end after this step? Note that this event is well defined because
the the phases is non-increasing. Suppose there exists constant L > 0 depending on
α and K such that

Pj ≥ L · 1

logα+1 n
(A.4)

Because this event is independent for each node, the expected number of steps spent
in phase j is (logα+1 n)/L. Therefore, the expected routing time from phase log n is
O
(
logα+2 n

)
, and the expected delivery time is O

(
logα+2 n

)
which finishes the proof.

To prove Equation (A.4), note that if node u has a neighbor to a node v such that
d(v, t) < 2j, the phase j will end. We fix the γu, and compute the probability of ending
phase j—Pj,γu . Then we use the property of D and can compute Pj = Eγu∼D[Pj,γu ].
With Lemma 3.1 if |ε| < 1/ log n, a direct computation:

Pj,2+ε , Pr [A exits phase j|γu = 2 + ε] =
2 · 22j

λ2+ε(2j+2)2+ε

≥

{
1

256
· 1

(logn)2jε
if 0 ≤ ε ≤ 1/ log n

1
256
· 1

(logn)2(logn−j)|ε|
if − 1/ log n ≤ ε < 0

The first equality is because there are 2(2j)2 nodes at distance at most 2j from t,
and each is distance at most 2j+2 away from the current location. The last equality
follows from the computation of λγ given in Lemma 3.1. Because 0 ≤ j/ log n ≤ 1,
we have

Pj,2+ε , Pr [A exists phase j|γu = 2 + ε] ≥ 1

512
· 1

log n
(A.5)

By applying the condition of D and taking n large enough such that 1/ log n < ε0,
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MD

(
1

logn

)
≥ K

logα n
. Then we can use a point-wise comparison of Pj,2+ε and derive

Pj = Eγ∼D[Pj,γ] ≥
∫ 1/ logn

−1/ logn

Pj,2+ε fD(2 + ε)dε

≥ 1

512
· 1

log n
MD

(
1

log n

)
≥ K

512
· 1

logα+1 n

which proves Equation A.4 with L = K
512

.

A.3 Proofs for Complex Contagions

Proof of Lemma 3.6. By Equation (3.1) we have

Pr[A fixed weak tie of u connects to Bj|2+ε] ≥

{
1

256
· 1

logn2jε
if 0 ≤ ε < 1/ log n

1
256
· 1

logn2(logn−j)|ε|
if − 1/ log n < ε ≤ 0

Because fixing a node u in Aj the connection of its p weak ties are mutually indepen-
dent given γu, for any ` ≤ k

Pr[` of u1’s p weak ties connect to Bj] ≥
∫

Pr[A fixed weak tie of u connects to Bj|γu = x]` fD(x)dx

Similar arguments in the proof of Theorem 3.2 yields

Pr[` of u1’s p weak ties connect to Bj] ≥
K

29`
· 1

(log n)`+α

Since weak ties from different nodes are mutually independent by definition, the
probability that a k-seed cluster is good is at least C

logkα+k(k+1)/2 n
with some constant

C > 0 that depends on D and k. This finishes the proof.

Proof of Lemma 3.10. Essentially, we want to lower bound the probability of forming
a long connection which yields the statement of this lemma by careful arguments.

Fix ` > (r logc n)( 1
1−δ ) where constant r will be defined later, an `-sized square

S and two disjoint `(1−δ)-sized subsquares A and B, and partition B into `(1−δ)/k
disjoint seed clusters (u1, . . . , uk).

Let µ2 = Pr [γ ∈ (2, γ̃)].

• Q1(`) = Pr [u1 is connected to A, via k weak ties]

• Q′s(`) = Pr [us has k weak ties to u1]

• P1(`) = Pr [(u1, . . . uk) form a new seed in B]

• P2(`) = Pr [a new seed forms in B]
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For Q1 and Q′s we have

Q1(`) =

∫ βk

2

(Pr [u has a weak tie to A, via a particular edge|γu = γ])k fD(γ)dγ

≥
∫ βk

2

(
|A|λγ
d(u, a)γ

)k
fD(γ)dγ ≥

∫ βk

2

(
λγ`

1−δ−γ/2)k fD(γ)dγ

≥
∫ γ̃

2

(
λγ`

1−δ−γ/2)k fD(γ)dγ

= µ2

(
λγ̂`

1−δ−γ̂/2)k where γ̂ ∈ (2, γ̃) (by Mean value theorems)

= Ω
(
`1−δ−γ̃/2) (since γ̂ < γ̃ and the constant depends on D and k)

and

Q′s(`) =

∫ βk

2

(Pr [u has a weak tie to u1, via a particular edge|γu = γ])k fD(γ)dγ

≥
∫ βk

2

(
λγ
kγ

)k
fD(γ)dγ (decreasing with respect to distance)

≥
∫ γ̃

2

(
λγ
kγ

)k
fD(γ)dγ

= µ2

(
λγ̄
kγ̄

)k
where γ̄ ∈ (2, γ̃) (by Mean value theorems)

= Ω (1) (the constant depends on D and k)

For P1(`), the event (u1, . . . , uk) becoming a new seed, we have

P1(`) = Q1(`)×Q′2(`)× . . .×Q′k(`) = Ω
(
`k(1−δ−γ̃/2)

)
and all disjoint seed clusters in B are mutually independent, so

P2(`) = 1− (1− P1(`))|B|/k ≥ 1− exp (P1(`)|B|/k) ≥ 1− exp
(
−Ω(`(k+1)(1−δ)− kγ̃

2 )
)

Note that P2 is increasing in `. Therefore, the smallest probability happens when the

` is the smallest; that is ` = (r logc n)
1

1−δ , and

P2(`) ≥ 1− exp
(
−Ω

(
r′ log

c
1−δ ((k+1)(1−δ)− kγ̃

2 )n
))

where constant r′ = r(k+1)(1−δ)− kγ̃
2 By the definition of c, c ≥ 1−δ

(k+1)(1−δ)−kγ̃/2 , and
taking r large enough, we have

P2(`) ≥ 1− n−η.
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Proof of Lemma 3.14. Let’s define Jv to be the event that v satisfies the conditions
in event J . Clearly J =

⋃
v∈V Jv. Now we consider Pr [J ] when the nodes’ personal

γ parameters have been revealed and partition the events {Jv} by two conditions: 1)
if d(v, s) is less than 2ρ1 or greater than 2ρ1; 2) if γv is less than γ1 or greater than
γ2.

Pr [J ] = Pr

[⋃
v∈V

Jv

]
≤
∑
v∈V

Pr [Jv]

=
∑
v∈V :

d(v,s)≤2ρ1,
γv<γ1

Pr [Jv] +
∑
v∈V :

d(v,s)≤2ρ1,
γv>γ2

Pr [Jv] +
∑
v∈V :

d(v,s)>2ρ1,
γv<γ1

Pr [Jv] +
∑
v∈V :

d(v,s)>2ρ1,
γv>γ2

Pr [Jv]

There are four terms on the right hand side, if all of them are O(n−η), then we finish
the proof. Now we estimate them term by term.

To make the above four terms work, the choice of ρ1 and ρ2 are critical: ρ1 should
be small to prevent term 1 nodes from forming new seeds, and also so we can apply
a union bound over the term 2 nodes. But ρ1 should also be large enough to prevent
term 3 and 4 nodes from forming new seeds. Additionally, ρ2 should be large enough
to prevent nodes in term 2 from forming new seeds. But ρ2 also needs to be much
smaller than ρ1 to derived a polynomial lower bound on the contagions time.

Type 1: d(v, s) ≤ 2ρ1 and γv < γ1 In this case, v is nearby and has a small γv, i.e.,
a set of diffuse edges. Note that by triangle inequality the ball Bρ1(s) = {u : d(u, s) ≤
ρ1} is contained in the ball B3ρ1(v) = {u : d(u, v) ≤ 3ρ1}. Thus the probability that
one weak tie issued by v falls inside Bρ1(s) is no greater than the probability of this
weak tie connecting to nodes in B3ρ1(v). The latter can be bounded from above:

Pr [A given edge of v connects to some node in B3ρ1(v)|γv ≤ γ1]

≤
∫ 1

3ρ1

λγ
yγ

Θ(y)dy = O(λγ(3ρ1)2−γ) = O

(
n(2−γ)δ1

n2−γ

)
=O

(
1

nε1(1−δ1)

)
(by the definition of ε1)

Recall that each edge issued by v is independent of the others,

Pr [Jv|γv ≤ γ1]

≤Pr [ At least k weak ties of v connect to some node in B3ρ1(v)]

≤
(
p

k

)
· Pr [A given edge of v connects to some node in B3ρ1(v)]k (union bound)

=O

(
1

nk(ε1(1−δ1))

)
(p is constant)
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Therefore∑
v∈V :

d(v,s)≤2ρ1,
γv<γ1

Pr [Jv] =
∑
v∈V :

d(v,s)≤2ρ1,
γv<γ1

O

(
1

nk(ε1(1−δ1))

)

= O

(
ρ2

1

nk(ε1(1−δ1))

)
= O(1/n

(kε1+2)
(

kε1
kε1+2

−δ1
)
) = O(n−η)

Type 2: d(v, s) ≤ 2ρ1 and γv > γ2 v is nearby but has a large γv, i.e., a set of
concentrated edges. The probability that one weak tie issued by v has length more
than ρ2 can be bounded from above:

Pr [A given edge of v connects to a node u in Bρ1(s) and d(u, v) > ρ2]

≤Pr [A given edge of v connects to a node u such that d(u, v) > ρ2]

=

∫ n

ρ2

λγ
yγ

Θ(y)dy = O(ρ2−γ
2 ) = O

(
1

nε2δ2

)
Again by applying the union bound, Pr [Jv] ≤ O(1/nkε2δ2).

Therefore we can upper bound the second type as follows∑
v∈V :

d(v,s)≤2ρ1,
γv>γ2

Pr [Jv] =
∑
v∈V :

d(v,s)≤2ρ1,
γv>γ2

O

(
1

nkε2δ2

)
= O

(
ρ2

1

nkε2δ2

)
= O(1/n

kε2
(
δ2− 2

kε2
δ1
)
) = O(n−η)

Type 3: d(v, s) > 2ρ1 and γv < γ1 Since d(v, s) > 2ρ1, ∀u ∈ Bρ1(s) we have
d(v, u) > d(v, s) − ρ1 > d(v, s)/2 by triangle inequality, and we have the following
upper bound

Pr [A given edge of v connects to some node in Bρ1(s)]

= O

(
|Bρ1(s)|

λγ
d(v, s)γ

)
= O

(
λγρ

2
1

d(v, s)γ

)
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Since the edges issued by v are independent, Pr [Jv] = O

((
m
k

) ( λγρ21
d(v,s)γ

)k)
and

∑
v∈V :

d(v,s)>2ρ1,
γv<γ1

Pr [Jv] =
∑
v∈V :

d(v,s)>2ρ1,
γv<γ1

O

((
λγρ

2
1

d(v, s)γ

)k)

=O

(∫ n

ρ1

(
λγρ

2
1

yγ

)k
ydy

)
= O

(
λkγρ

2k
1

∫ n

ρ1

y1−kγdy

)

=



(
ρ21
n2−γ

)k
n2−kγ, 0 ≤ γ < 2/k,(

ρ21
n2−γ

)k
log n, γ = 2/k(

ρ21
n2−γ

)k
ρ2−kγ

1 , 2/k < γ < γ1

=


O
(

1/n2k·( k−1
k
−δ1)
)
, 0 ≤ γ < 2/k,

O
(

log n/n2k( k−1
k
−δ1)
)
, γ = 2/k

O
(

1/n
(kε1+2)(

kε1
kε1+2

−δ1)
)
, 2/k < γ < γ1

=O(n−η)

Type 4: d(v, s) > 2ρ1 and γv > γ2 Similar to type 3, we have Pr [Jv] = O

((
ρ21

d(v,s)γ

)k)
,

and

∑
v∈V :

d(v,s)>2ρ1,
γv>γ2

Pr [Jv] =
∑
v∈V :

d(v,s)>2ρ1,
γv<γ2

O

((
ρ2

1

d(v, s)γ

)k)
= O

(∫ n

ρ1

(
ρ2

1

yγ

)k
ydy

)

=O

(
ρ2k

1

∫ n

ρ1

y1−kγdy

)
= O

(
ρ2k

1 ρ
2−kγ
1

)
= O

(
1/nδ1(kε2−2)

)
= O(n−η)
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APPENDIX B

Proofs for Preferential attachment models

B.1 Properties of the function fk,R

In this section, we will explore some relationships between the feedback function fk,R
and threshold distribution R, monotonicity and degeneracy, which help us to state
the result in Theorem 5.2.

Lemma B.1. Given a distribution R and a constant k ∈ N, the function fk,R defined
in (5.2) is a non-decreasing polynomial function from [0, 1] to [0, 1].

Moreover, fk,R(x) = x for all x ∈ [0, 1] if and only if PrR(r) = 1
k

for r = 1, . . . , k.

Proof. By Equation (5.2), fk,R is a convex combination of a finite number of Bernstein
polynomials b`,k(x) =

(
k
`

)
x`(1 − x)(k−`), so fk,R is a polynomial of degree at most k

Because
∑k

`=r b`,k(x) is non-decreasing in interval [0, 1], as a convex combination of
{
∑m

`=k b`,m(x)}k=0...m, fk,R is also non-decreasing.
For the second part, we can rewrite fk,R as

fk,R(x) =
k∑
`=0

Pr
R

[r ≤ `]b`,k(x).

Because Bernstein polynomials {b`,m : 0 ≤ ` ≤ m} are linearly independent1 and

k∑
`=0

`

k
b`,k(x) = x

Therefore, fk,R(x) = x if and only if PrR[r ≤ `] = `
k

which finishes the proof.

B.2 Proof of Directed case

B.2.1 Proof of Theorem 5.2 1a

Proof of Lemma 5.3. Recall that in Equation (5.5) the random variable Ui+1 is bounded
by 1 and the expectation is E[Ui+1 | Fi] = 0. Hence Wt defined in Equation (5.6) is

1That is given a` ∈ R, ` = 0, . . . ,m∀x ∈ [0, 1],
∑
a`
a`b`,m(x) = 0 ⇐⇒ ∀`, a` = 0
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a martingale. Applying Azuma-Hoeffding inequality in Theorem 2.18,

Pr[|Ws −Wt| < ε1] ≤ 2 exp

(
−ε21

2
∑t

i=s |
1
i
Ui|2

)

However, 2
∑s

i=t+1 |
1
i
Ui|2 ≤ 2

∑s
i=t+1

1
i2
≤ 2

t
− 2

s
≤ 2

τ0
where the second inequality is

true by an integration test. Therefore,

Pr[|Ws −Wt| < ε1] ≤ 2 exp(−τ0ε
2
1/2))

which is smaller than δ1 if τ0 = 2 ln(1/(2δ1))

ε21
.

Proof of Lemma 5.4. By symmetry, we only need to show one side of the statement,
Pr[Yn ≥ y∗−ε] ≤ δ. If y∗−ε ≤ 0, the statement is trivial, because Yn ≥ 0. If y∗−ε > 0,
0 is not a fixed point and g(y) > 0 for all y ∈ [0, y∗L) because fk,R(y) ∈ [0, 1]. Hence,
let gL = min{g(y) : y ∈ [0, y∗L − ε/2]} > 0 which is positive.

For the first part we want to show Yt hits (y∗L − ε/2, y∗H + ε/2) with small t.
We set τ0 = 2·4

ε2
ln(1/(δ)), and τ1 = exp(2/gL)τ0. By Lemma 5.3, we have for all

s, t ≥ τ0, |Ws −Wt| > ε
2

with probability less than δ/2. Suppose Yτ0 ≤ y∗L − ε/2, and
Yt /∈ (y∗L− ε/2, y∗L + ε/2) for all t between τ0 and τ1. Because the step size at time t is
bounded by 1/t by (5.3), ∀τ0 ≤ t ≤ τ1, Yt ≤ y∗L− ε/2. By rearranging Equation (5.6),

Wτ1 −Wτ0 =

τ1∑
k=τ0+1

1

k
g(Xk−1) + Yτ0 − Yt ≥ min

τ0<k≤τ1
(g(Xk−1)

(
τ1∑

k=τ0+1

1

k

)
− 1

≥ gL ln

(
τ1

τ0

)
− 1 = 1 >

ε

2

Therefore,

Pr
[
∃τ0 ≤ t ≤ τ1, Yt ∈

(
y∗L −

ε

2
, y∗H +

ε

2

)]
≥ 1− δ

2
. (B.1)

For the second part, if Yσ0 ∈ (y∗L − ε/2, y∗H + ε/2), at time τ0 ≤ σ0 ≤ τ1, we want
to show it will stay in the interval (y∗L− ε, y∗H + ε). Suppose there exists τ3 > σ1 such
that, Yτ3 < y∗L − ε. Then there exist σ1 and σ2 such that τ0 ≤ σ0 ≤ σ1 ≤ σ2 ≤ τ3,

Yσ1 > y∗L −
ε

2
, and Yσ2 < y∗L − ε (B.2)

∀σ1 ≤ t < σ2, y
∗
L − ε ≤ Yt ≤ y∗H −

ε

2
. (B.3)

Using similar argument,

Wσ1 −Wσ2 = Yσ1 − Yσ2 +

σ2∑
k>σ1

1

k
g(Xk−1) ≥ Yσ1 − Yσ2 ≥

ε

2

Because (B.3) g(Yt) ≥ gL > 0, the first inequality holds. The second inequality is
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true by (B.2). Therefore by union bound, there exists τ = O
(

1
ε2

ln(1/δ)
)

such that

Pr [∀t ≥ τ, Yt ∈ [y∗L − ε, y∗H + ε]] ≥ 1− δ.

B.2.2 Proof of Theorem 5.2 2

In this case, fk,R has multiple stable fixed points, and the process (5.3) is indeed
a special case of stochastic approximation algorithms defined in Definition 2.5 such
that

1. γi+1 = 1/(i+ 1),

2. Ui+1 = 1
2
(Bin(k, Yi)/k − Yi + Bin(1, fk,R(Yi)) − fk,R(Yi)) is a martingale with

Ku = 4k and E[γi+1Ui+1 | Fi] = 0,

3. g(Yi) = E[(Bin(k, Yi) + k · Bin(1, fk,R(Yi)) − 2kYi) | Yi]/2k = (fk,R(Yi) − Yi)/2
is bounded by Kg = 1,

4. |E[γn+1Un+1 | Fn]| = |E[Ui+1

i+1
]| = 0 ≤ Keγ

2
n, where Ke = 1.

To prove this convergence property, we apply Theorem 2.6.

Proof. The first statement is a result of Theorem 2.6 (1) because g is a polynomial.
The second is a result of Theorem 2.6 (1) and 2.6 (2). However to apply Theorem 2.6
(2) we have to prove E[U2

i+1] is bounded below by constant KL which in our case is
sufficient to prove the variance of Bin(k, Yi)− kYi + kBin(1, g(Yi)− kg(Yi) is nonzero
when 0 < |Yi − p| < d. Formally,

Var(Bin(k, Yi)− kYi + kBin(1, g(Yi)− kg(Yi))

= Var(Bin(k, Yi)) + Var(kBin(1, g(Yi)) + 2 Cov(Bin(k, Yi), kBin(1, g(Yi))

≥kYi(1− Yi) + k2g(Yi)(1− g(Yi)) > 0

The last inequality comes from Cov(Bin(k, Yi), kBin(1, g(Yi)) ≥ 0 by FKG inequality.
Finally, Theorem 2.6 (3) and 2.6 (4) show that Yi will converge to an arbitrary stable
or touch point with positive probability.

B.2.3 Proof of Theorem 5.2 3

In the special case when fk,R has an infinite number of fixed points, because fk,R is
a polynomial with degree at most m, we have fk,R(x) = x by Fundamental Theory
of Algebra. As a result, the predictable part g(x) = 0 in (5.4) and Ui is a martingale
difference such that E[Ui+1 | Fi] = 0 and |Ui+1 | Fi| ≤ 1. Therefore our random
process {Yi} is the martingale Yi =

∑i
`=m+1

1
`
{U`}. To prove the convergence of

martingale {Yi} we can use standard martingale convergence theorem (c.f. Theorem
1 in Chapter 7.8 in [107]) to prove convergence. Because E[Y 2

i ] =
∑i

`=m+1
1
`2
|U`|2 ≤
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∑i
`=m+1

1
`2
<∞ for all i, there exists a random variable Y such that Yi converges to

Y almost surely.

B.3 Proofs of Undirected Case

B.3.1 Phase 1: first forward and backward contagion

Proof. The intuition is that if MF
y (τ1, t− 1) happens, Yt−1 is large and the node t is

likely to be infected. Our goal is to argue that even when conditioned on Ft−1,M
F
y (t−

1, τ2), N t
k, the probability node t being infected is still large.

First, we use the Markov property to argue that Ft−1 does not affect the probabil-
ity after conditioning on Yt−1. Second we use positive correlation to remove condition
MF

y (t − 1, τ2). Finally, we use independence among edges of node t to show that
conditioning on N(t, s) will not affect the probability too much.

Note that IFt only depends on Y F
t , we have

Pr
[
IFt | Ft−1,M

F
y (τ1, τ2), N(t, s)

]
≥Pr[IFt | Yt−1 > y,MF

y (t− 1, τ2), N(t, s),¬IFs ]

≥Pr[IFt | (Yt−1 > y), N t
k,¬IFs ]

(positively correlated between IFt and MF
y (t− 1, τ2))

=
∑
r

Pr[Rt = r | (Yt−1 > y), N(t, s),¬IFs ] Pr[IFt | (Yt−1 > y), N t
k,¬IFs , Rt = r].

Note that for all r Pr[Rt = r|(Yt−1 > y), N t
k, Ik] = Pr[Rt = r|(Yt−1 > y)] and it is

greater than Pr[Rt = r]− Pr[¬(Yt−1 > y)]. Moreover, the second term is very small.
Now we want to have a lower bound for Pr[IFt | (Yt−1 > y), N t

k,¬IFs , Rt = r].
Because all k edges of node t are added independently, there are three different
outcomes of each edge:

• Connected to an infected node with probability Yt−1;

• Connected to node s with probability (1− Yt−1)q;

• Connected to an uninfected node except node s with probability (1−Yt−1)(1−q),

where q > 0 is the probability that an edge goes to node s conditioned on the edge
not connected to infected nodes.

Therefore the distribution is a multinomial distribution. Let X1 be the number
of edges that land on infected nodes, X2 be the number of edges that land on node
s, and X3 be the number of edges that land on uninfected nodes other than s. With
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these notation,

Pr[IFt |(Yt−1 > y), N(t, s),¬IFs , Rt = r] = Pr[X1 ≥ r|X2 > 0]

=

∑
`≥r
(
k
`

)
Y `
t−1(1− Yt−1)k−`

(
1− (1− q)k−`

)
1− (1− (1− Yt−1)q)k

(` of k edges to an infected node)

≥min
`<k

1− (1− q)k−`

1− (1− (1− Yt−1)q)k
·
∑
`≥s

(
k

`

)
Y `
t−1(1− Yt−1)k−`

Because 1− (1− (1− Yt−1)q)k ≤ 1− (1− k(1− Yt−1)q) = k(1− Yt−1)q, and 1− (1−
q)k−` ≥ q. The first term can be lower bounded as following:

1− (1− q)m−`

1− (1− (1− Yt−1)q)m
≥ q

m(1− Yt−1)q
=

1

m(1− Yt−1)
. (B.4)

Moreover, for the second term
∑m−1

`=s

(
m
`

)
Y `
t−1(1 − Yt−1)m−` is non-decreasing with

respect to Yt−1 when it is between [0, 1], Yt−1 > y, so

m−1∑
`=s

(
m

`

)
Y `
t−1(1− Yt−1)m−` ≥

m−1∑
`=s

(
m

`

)
y`(1− y)m−` (B.5)

Combining Equations (B.4) and (B.5) we get

Pr[It|Ft−1,M
F
y (τ1, τ2), N(t, s), Rt = r] ≥ 1

m(1− y)
·
m−1∑
`=s

(
m

`

)
y`(1− y)m−`,

and have Pr[IFt |(Yt−1 > y), N(t, s),¬IFs , Rt = r] is greater than

1

m(1− y)

∑
r≥0

Pr[Rt = r]
k−1∑
`=r

(
k

`

)
y`(1− y)(k−`) − k Pr[¬MF

y (τ1, τ2)]

Let q∗ = 1
2k(1−y∗L)

∑
r≥0 Pr[Rt = r]

∑k−1
`=r

(
k
`

)
(y∗L)`(1 − y∗L)(k−`). By Corollary 5.6,

we can take ε0 = y∗L − y and δ0 = q∗/(100k), and there exists some constant τ0 =

O
(

log 1/δ0
ε20

)
such that τ1 > τ0 and Pr[MF

y (τ1, τ2)] ≤ Pr[MF
y (τ1, n)] ≤ q∗/(100k) and

complete the proof.

Proof of Lemma 5.9. We first prove that a node s < τ1 will get infected with high
probability and then use the union bound. Given nodes s and t such that s < τ1 and
s < t, let N(t, s) be the indicator that node t is a neighbor of s, and RH = max{r :
Pr[Ru = r] 6= 0}, which is the maximum of the support of threshold distribution.
Then for node s, the random variable of the number of infected neighbor at time τ2

can be written as
∑τ2

t>s I
F
t N(t, s). If this value is greater than the maximum possible

threshold K, s will be infected in the first backward infection.
First we show that with additional condition MF

y (τ1, τ2) the probability Pr[IFBs ]
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is not affected too much

Pr[IFBs = 1] ≥ Pr

[
τ2∑
t>s

IFs ·N(t, s) ≥ RH

]
≥ Pr

[
τ2∑
t>τ1

IFt ·N(t, s) ≥ RH

]
(k ≤ τ1)

≥ Pr

[
τ2∑
t>τ1

IFt N(t, s) ≥ RH |MF
y (τ1, τ2)

]
− Pr[¬MF

y (τ1, τ2)]

≥ Pr

[
τ2∑
t>τ1

IFt ·N(t, s) ≥ RH |MF
y (τ1, τ2)

]
− 1

n
(by Corollary 5.6)

With this condition MF
y (τ1, τ2) and Lemma 5.7, the following proof will show that

at time τ2 the node s will, with high probability, both have 1) degree deg(s) higher
than d = 2 loglog n and 2) have more than RH infected neighbors.

Pr[IFBs ] ≥ Pr

[
τ2∑
t>τ1

IFt ·N(t, s) ≥ RH |MF
y (τ1, τ2)

]
− 1

n

≥Pr

[
deg(s; τ2)− deg(s; τ1) > d ∧

τ2∑
t>τ1

IFt ·N(t, s) ≥ RH |MF
y (τ1, τ2)

]
− 1

n

≥1− Pr

[
τ2∑
t>τ1

IFt ·N(t, s) < RH | deg(s; τ2)− deg(s; τ1) > d,MF
y (τ1, τ2)

]

− Pr[deg(s; τ2)− deg(s; τ1) ≤ d]− 2

n

If the degree of node s < τ1 at time τ2 is at least d, deg(s; τ2) − deg(s; τ1) ≥ d,
there are at least d/k − 1 neighbors at time t, because each neighbor of node s, t,
contributes the degree of node s at most k. On the other hand, by Lemma 5.7 the
probability of any neighbor of node k gets infected is lower bounded by a constant
p∗ which is independent of the history. Thus we can couple each neighbor of node s
getting infected or not with a Bernoulli trial which succeeds with probability p∗ which
is independent of history. Therefore the probability that the node s with d/k − 1
neighbors has more than RH infected neighbors is bounded below by Pr[Bin(d/k −
1, p∗) < RH ]. Moreover,

Pr[IFBt |MF
y (τ1, τ2), deg(s; τ2)− deg(s; τ1) > d]

≥1− Pr[Bin(d/k − 1, p∗) < RH ]− Pr[deg(s; τ2)− deg(s; τ1) ≤ d]− 1

n

≥1− 1

(log n)2
(by Lemma 5.8)
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We apply union bound over all nodes with index less than τ1 = C1 log n:

Pr[Y FB
τ1

= 1] > 1− C1

log n
> 1− ε.

B.3.2 Phase 3: Constant separation

Proof of Lemma 5.11. Because for nodes t > τ2 nothing is revealed until the last
phase, IFBFt , IFt have the same distribution. Therefore given that node s < τ2 is not
infected at time τ2, we can use coupling and the same argument in Lemma 5.9,

E[IFBFBs ] ≥Pr

[
n∑

t>τ2

IFBFt ·N(t, s) > RH |MFBF
y (τ2, n)

]
− o(1) (for all y < y∗H)

= Pr

[
n∑

t>τ2

IFt ·N(t, s) > RH |MFBF
y (τ2, n)

]
− o(1).

To have event
∑n

t>τ2
IFt ·N(t, s) > RH , it is sufficient that 1) the total degree of node

s is greater than d = 7mRH
p∗

and 2) there are RH infected neighbor among the first d

neighbor of s. Let deg(s; t) is the degree of s at time t > s. By Lemma 2.52, for all
s ≤ τ2 ≤ e−2n and d ≥ m, the number of neighbor in τ2 to n is deg(s;n)−deg(s; τ2) ≥
deg(τ2;n) = deg(τ2). That is

Pr[deg(s;n)− deg(s; τ2) < d] ≤
(
d− 1

k − 1

)(τ2

n

)k/2
ln

(
kn+ 1

kτ2 + 1

)d
≤ 1

4
(B.6)

by taking constant r small enough.
By argument similar to Lemma 5.7 each t will be infected with probability at least

p∗ defined the statement, so

Pr[IFBFBs |MFBF
y (τ2, n), deg(s;n)− deg(s; τ2) > d]

≥1− Pr[Bin(d/k − 1, p∗) < RH ]− Pr[deg(s;n)− deg(s; τ2) ≤ d]− o(1)

≥3

4
− Pr[Bin(6RH/p

∗, p∗) < RH ]− Pr[deg(s;n)− deg(s; τ2) ≤ d] (by (B.6))

≥3

4
− 1

6
(by Markov inequality)

Hence we get Pr[IFBFBs ] > 1/4.
For the moreover part, if deg(s; τ2) = d, the expected number of neighbors from

τ2 to n is proportional to d, by Markov inequality we have Pr[deg(s;n)−deg(s; τ2) ≤√
d] ≤ O(1/

√
d) and Pr[IFBFBs |MFBF

y (τ2, n), deg(s;n)−deg(s; τ2) ≥
√
d] ≥ 1−1/

√
d

which completes the proof.

Proof. Here we are going to show that IFBFBs and IFBFBt are negatively dependent,

258



i.e.,
Pr[IFBFBs = 1 | IFBFBt = 1] ≤ Pr[IFBFBs = 1].

Suppose nodes s, t are not infected in the forward infection, if we reveal all the edges
that do not go to either s or t as condition Hs,t, then the result of forward infection is
revealed since the edges that go to nodes s, t do not affect the infection. We will show
if IFBFBt = 1 which t is infected, s has fewer edges than s has without conditioning
on IFBFBt = 1.

Formally, conditioned on Hs,t given s < t the set of edges go to either s or t is
fixed. We set N = {e1, . . . , el} to be the set of edges, and define an order on the edges
in N based on their arriving order.2 Under this order, given the `-th edge in N e`
we consider the (random) sets N(`) ,N1(s; `) ,N2(s; `), N1(t; `), and N2(t; `). N(`) is
the set of the edges before edge e`+1 that go to node s or t. N1(s; `) (N1(s; `)) is the
set of edges goes to s (t) given Hs,t and IFBFBt = 1, and N2(s; `) (N2(t; `)) is the set
given Hs,t. Note that given Hs,t, the set of edges go to either s or t is fixed, that is

N(`) = N1(s; `) ∪N1(t; `) = N2(s; `) ∪N2(t; `).

With these notions, our goal is to prove for any u the cardinality of N2(s; `) stochastic
dominates the cardinality of N1(s; `). We will show this by constructing a coupling
(N̂1(s; `), N̂2(s; `)) between N1(s; `) and N2(s; `) such that N̂1(s; `) ⊆ N̂2(s; `) and the
marginal distribution N̂1(s; `) (N̂2(s; `)) is equal to N1(s; `) (N2(s; `)).

Now we define the coupling by induction. Given e` ∈ N(u), we define the event
E(s, `) such that the edge e` goes to s, and ¬E(s, `) would be the event when the
edge e` goes to t.

For the base case, when edge e1 reveals its connection, the degree of s and t are
the same, so we have Pr[E(s, 1) | IFBFBj = 1,Hs,t] ≤ Pr[E(s, 1) | Hs,t]. Therefore, we
can construct a coupling such that

N̂1(s; 1) ⊆ N̂2(s; 1).

For the inductive steps, suppose N̂1(s; `) ⊆ N̂2(s; `). For the edge e`+1, because of
the positive feedback property of preferential attachment graph,

Pr[E(s; `+ 1) | N̂1(s; `),Hs,t] ≤ Pr[E(s; `+ 1) | N̂2(s; `),Hs,t], (B.7)

On the other hand, the more edges j has, the higher chance IFBFBj = 1:

Pr[IFBFBt = 1 | E(s; `+1), N̂1(s; `),Hs,t] ≤ Pr[IFBFBt = 1 | ¬E(s; `+1), N̂1(s; `),Hs,t].

Therefore

Pr[E(s; `+ 1) | IFBFBt = 1, N̂1(s; `),Hs,t] ≤ Pr[E(s; `+ 1) | N̂1(s; `),Hs,t], (B.8)

2To compare two edges, we first compare their oldest endpoints, and break tie arbitrarily.
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Combining inequalities (B.7) and (B.8) we have,

Pr[E(s; `+ 1) | IFBFBt = 1, N̂1(s; `),Hs,t] ≤ Pr[E(s; `+ 1) | N̂2(s; `),Hs,t],

so we can have
N̂1(s; `+ 1) ⊆ N̂2(s; `+ 1).

Therefore we complete the proof.

Proof of Lemma 5.13. Firstly, by Lemma 5.11, the expectation is large. Formally, if
Y FBF
τ2

< 1
2
(1 + y∗H), we know there are constant fraction of degree at time τ2 being

uninfected after the second forward infection,∑
s∈UFBF :s≤τ2

deg(s; τ2) = 2kτ2(1− Y FBF
τ2

) ≥ kτ2(1− y∗H). (B.9)

By Lemma 5.11 and linearity of expectation we have

E

[∑
s≤τ2

deg(s; τ2)IFBFBs |MFBF
y (τ2, n)

]
=

∑
s∈UFBF :s≤τ2

deg(s; τ2)E
[
IFBFBs |MFBF

y (τ2, n)
]

(deg(s; τ2) are deterministic)

≥1

4

∑
s∈UFBF :s≤τ2

deg(s; τ2) (Lemma 5.11)

≥1

4
kτ2(1− y∗H) =

kC2(1− y∗H)

4
n (by (B.9))

Second, we need to upper bound the variance. By Lemma 5.12, the indicator
functions IFBFBs are negative correlated, and the variance can be upper bounded by
sum of individual variance. That is

Var

[∑
s≤τ2

deg(s; τ2)IFBFBs |MFBF
y (τ2, n)

]
≤

∑
s∈UFBF :s≤τ2

deg(s; τ2)2 Var
[
IFBFBs |MFBF

y (τ2, n)
]

≤
∑

s∈UFBF :s≤τ2

deg(s; τ2)2E
[
IFBFBs |MFBF

y (τ2, n)
]

(indicator function)

=O

 ∑
s∈UFBF :s≤τ2

deg(s; τ2)2 1√
deg(s; τ2)

 (Lemma 5.11)

=O

 ∑
s∈UFBF :s≤τ2

deg(s; τ2)
√

deg(s; τ2)

 = O(n
√
n)
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Therefore applying the second moment method for all ∆ <
kC2(1−y∗H)

4
we have

Pr

[∑
s≤τ2

deg(s; τ2)IFBFBs ≥ ∆n |MFBF
y (τ2, n)

]
≥ 1−O

(
n
√
n

(1
4
(kC2(1− y∗H))−∆)2n2

)

which is greater than 1−O(1/
√
n).

B.4 Proof for Directed Stochastic Attachment Model

Proof of the Theorem 5.16. We first show Part (1).
Let D(Yi,mi+1) = (−2mi+1Yi + Bin(mi+1, Yi) +mi Bin(1, f

mi+1

0 (Yi))). We have

Yi+1 − Yi | Fi =
1

di+1

(g0(Yi) + Ui+1)

g0(y) = E[D(y,m) | y] = −2µmy + µmy + E[mfm0 (y)]

Ui+1 = D(Yi,mi+1)− g0(Yi) = D(Yi,mi+1)− E[D(Yi,mi+1)|Yi]

Now we check the conditions in Definition 2.5

1. Because i ≤ di ≤ chi,
1
chi
≤ γi = 1/di ≤ 1

i
.

2. |Ui| ≤ 4mi+1 ≤ 4ch.

3. |g(Yi)| ≤ 4ch

4. |E[ 1
di+1

Ui+1|Fi]| ≤ Ke/d
2
i

Here we prove Property (4).

E
[

1

di+1

Ui+1|Fi
]

= E
[

1

di+1

(D(Yi,mi+1)

]
− E [D(Yi,mi+1)|Yi])|Fi]

=E
[

1

di+1

D(Yi,mi+1)|Fi
]
− E

[
1

di+1

|Fi
]
E[D(Yi,mi+1)|Fi] (B.10)

= Cov

[
1

di+1

, D(Yi,mi+1)|Fi
]

(B.11)

≤

√
Var(

1

di+1

|Fi) · Var [D(Yi,mi+1)|Fi] (B.12)

Equation B.10 is true by linearity of expectation and the tower property for condi-
tional expectations. By the definition of covariance we have Equation (B.11), and
Equation (B.12) comes from the Cauchy inequality.

Consider a random variable X restricted to [a, b], then E[X] is also in [a, b] and
|X−E[X]| ≤ (a−b). Hence Var[X] = E[(X−µX)2] ≤ (a−b)2. By definition |Yi| ≤ 1
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and 1 ≤ |mi+1| ≤ ch. Because 0 ≤ D(Yi,mi+1) ≤ | − 2mi+1Yi + Bin(mi+1, Yi) +
mi Bin(1, f

mi+1

0 (Yi))| ≤ 4|mi+1| ≤ 4ch is a bounded random variable:√
Var(D(Yi,mi+1)) ≤ 4ch

On the other hand, we have to analyze Var( 1
di+1
|Fi) carefully. Because 1

di+1
|Fi is

restricted to [ 1
di+2ch

, 1
di+2

],√
Var

(
1

di+1

|Fi
)
≤
(

1

di + 2ch
− 1

di + 2

)
≤ 2ch

d2
i

Property (4) is true by taking large enough constant Ke ≥ 8c2
h,∣∣∣∣E [ 1

di+1

Ui+1|Fi
]∣∣∣∣ ≤ 8c2

h/d
2
i ≤ Ke/d

2
i

Therefore Yi converges by applying Theorem 2.6.
For the random uniform attachment, part (2), the proof is similar.
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APPENDIX C

Proofs for Blockmodel

C.1 Full Proofs

C.1.1 Proof of Lemma 6.13

Proposition C.1. Suppose the root of T has weight ω(1/n1+1/r) and consider a leaf
t. If there are Θ(n) infected vertices in V \ V (t), then these infected vertices outside
V (t) will infect ω(1) vertices in V (t) with probability 1− o(1).

Proof. Let X = Θ(n) be the number of infected vertices in V \V (t). For each u ∈ V (t)
and v ∈ V \ V (t), we assume that the probability puv that the edge (u, v) appears
satisfies puv = ω(1/n1+1/r) and puv = o(1/n), where puv = ω(1/n1+1/r) holds since
the root of T has weight ω(1/n1+1/r), and assuming puv = o(1/n) may only decrease
the number of infected vertices in V (t) if the least common ancestor of the two leaves
containing u and v has weight Ω(1/n). Let p be the minimum probability among
those puv’s, and we further assume that each edge (u, v) appears with probability p,
which again may only reduce the number of infected vertices in V (t).

For each vertex u ∈ V (t), by only accounting the probability that it has exactly r
neighbors among those X outside infected vertices, the probability that u is infected
is at least

ρ :=

(
X

r

)
pr(1− p)X−r = ω

(
nr ·

(
1

n1+1/r

)r (
1− 1

n

)n)
= ω

(
1

n

)
,

and the expected number of infected vertices in V (t) is v(t)n · ρ = ω(1).
Let Y be the number of vertices in V (t) that are infected due to the influence of

V \ V (t), so we have E[Y ] = v(t)nρ. Applying Chebyshev’s inequality,

Pr

(
Y ≤ 1

2
v(t)nρ

)
≤ Pr

(
|Y − E[Y ]| ≥ 1

2
v(t)nρ

)

≤ Var(Y )

(1
2
v(t)nρ)2

=
v(t)nρ(1− ρ)

1
4
v(t)2n2ρ2

= o(1),

where we have used the fact that nρ = ω(1) and the variance of the Binomial random
variable with parameter n, p is np(1 − p). Therefore, with probability 1 − o(1), the
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number of infected vertices in V (t) is at least 1
2
v(t)nρ = ω(1).

Let E be the event that at least one leaf (or node) is activated at the end of the
cascade. By our definition, Pk = limn→∞ Pr(E). Given a seeding strategy k, let
σ(k) := EG∼G(n,T )[σr,G(k)] be the expected number of infected vertices, σ(k | E) :=
EG∼G(n,T )[σr,G(k) | E] be the expected number of infected vertices conditioning on
event E happens, and σ(k | ¬E) := EG∼G(n,T )[σr,G(k) | ¬E] be the expected number
of infected vertices conditioning on E does not happen. We have

σ(k) = Pr(E) · σ(k | E) + (1− Pr(E)) · σ(k | ¬E),

and

Σr,T (k) = lim
n→∞

σ(k)

n

= Pk · lim
n→∞

σ(k | E)

n
+ (1− Pk) · lim

n→∞

σ(k | ¬E)

n
. (C.1)

First, we show that σ(k | ¬E) = o(n), so the second term in (C.1) is always 0.
If there is no critical or supercritical leaf in T , given that the total number of seeds
K = Θ(1) is a constant, Theorem 6.6 suggests that there can be at most 2K = Θ(1)
infected vertices. To be specific, we can take the maximum weight w∗(t) over all the
leaves, and assume the entire graph is the Erdős-Rényi graph G(n,w∗(t)). This makes
the graph denser, so the expected number of infected vertices increases. However,
even in this case, Theorem 6.6 implies that the total number of infected vertices is
less than 2K. If there is at least one critical or supercritical leaf t, for the sake of
contradiction we assume the total number of infected vertices is Θ(n) and E does not
happen. Since the number of leaves is a constant, there exists t′ ∈ LT such that the
number of infected vertices in V (t′) is Θ(n). Theorem 6.7 and Corollary 6.9 indicate
that, with probability 1 − o(1), the number of infected vertices in V (t) is either a
constant or v(t)n. Therefore, if t′ = t, with probability o(1), those Θ(n) infected
vertices in V (t) will not activate t, and this probability becomes 0 after taking the
limit n → ∞, which makes no contribution to the second term in (C.1). If t′ 6= t,
let X = Θ(n) be such that with probability 1− o(1) the number of infected vertices
in V (t′) is more than X, then the total number of vertices in V (t) that are infected
by those X vertices in V (t′) is ω(1) according to Proposition C.1. Theorem 6.7 and
Corollary 6.9 suggest that those ω(1) infected vertices in V (t) will further spread and
activate t, which again contradicts to that E does not happen.

Secondly, to conclude the proof, it remains to show that the first term in (C.1) only
depends on Pk, or σ(k | E) = cn + o(n) for some constant c which does not depend
on k. As an intuitive argument, Proposition C.1, Theorem 6.7 and Corollary 6.9
suggest that, when E happens, a single activated leaf will activate all the critical
and supercritical leaves, and the number of vertices corresponding to all the critical
and supercritical leaves is fixed and independent of k; based on the tree structure
and the number of infected outside vertices, the number of infected vertices in a
subcritical leaf may vary; however, we will see that the seeding strategy k, adding
only a constant number of infections, is too weak to affect the number of infected
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vertices in a subcritical leaf.
To break it down, we first show that all critical and supercritical leaves will be

activated if E happens. This is straightforward: Proposition C.1 shows that an
activated leaf can cause ω(1) infected vertices in every other leaf, and Theorem 6.7
and Corollary 6.9 indicate that those critical and supercritical leaves will be activated
by those ω(1) infected vertices.

Lastly, assuming all critical and supercritical leaves are activated, we show that
the number of infected vertices in any subcritical leaf does not depend on k. We
do not need to worry about those seeds that are put in the critical or supercritical
leaves, as all vertices in those leaves will be infected later. As a result, we only need
to show that a constant number of seeds in subcritical leaves has negligible effect to
the cascade.

We say a subcritical leaf t is vulnerable if there exists a criticial or supercritical
leaf t′ such that the least common ancestor of t and t′ has weight Ω(1/n), and we say
t is not-very-vulnerable otherwise. It is easy to see that a vulnerable leaf t will always
be activated, even if no seed is put into it. Since each v ∈ V (t) is connected to one of
the v(t′)n vertices in V (t′) with probability Ω(1/n), the number of infected neighbors
of v follows a Binomial distribution with parameter (v(t′)n, p) where p = Ω(1/n). We
only consider p = Θ(1/n), as there can only be more infected vertices if p = ω(1/n). If
p = Θ(1/n), the Binomial distribution becomes a Poisson distribution with a constant
mean λ for n → ∞. In this case, with constant probability e−λ λ

r

r!
, v has r infected

neighbors. Therefore, v will be infected with constant probability, and V (t) has Θ(n)
vertices that are infected by V (t′) outside. The second part of Theorem 6.6 suggests
that, these Θ(n) infected vertices will further spread and activate t. Therefore, the
seeds on those vulnerable subcritical leaves have no effect, since vulnerable subcritical
leaves will be activated regardless the seeding strategy.

Let t1, . . . , tM be all the not-very-vulnerable subcritical leaves. Suppose we are at
the stage of the cascade process where all those critical, supercritical and vulnerable
subcritical leaves have already been activated (as they will with probability 1− o(1)
since we assumed that E has happened) and we are revealing the edges between V \⋃M
m=1 V (tm) and

⋃M
m=1 V (tm) to consider the cascade process in

⋃M
m=1 V (tm). For each

i = 0, 1, . . . , r− 1 and each m = 1, . . . ,M , let χmi be the number of vertices in V (tm)
that have exactly i infected neighbors among V \

⋃M
m=1 V (tm), which can be viewed as

a random variable. For each m = 1, . . . ,M , let χmr be the number of vertices in V (tm)
that have at least r infected neighbors. If there are Km seeds in V (tm), we increase
the value of χmr by Km. Let χm = (χm0 , χ

m
1 , . . . , χ

m
r ). Since (χ1, . . . ,χM) completely

characterize the expected number of infected vertices in the subcritical leaves, we let
σ(χ1, . . . ,χM) be the total number of infected vertices in the subcritical leaves, given
(χ1, . . . ,χM). We aim to show that adding K1, . . . , KM seeds in V (t1), . . . , V (tM)
only changes the number of infected vertices by o(n). Let (χ1, . . . ,χM) correspond
to the case where no seed is added, and (χ̄1, . . . , χ̄M) correspond to the case where
Km seeds are added to tm for each m = 1, . . . ,M . The outline of the proof is that,
we first show that the total variation distance of the two distributions (χ1, . . . ,χM)
and (χ̄1, . . . , χ̄M) is o(1); then we show that σ(χ1, . . . ,χM) and σ(χ̄1, . . . , χ̄M) can
only differ by o(n) in expectation.
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To show the first claim, noticing that M is a constant and χm1 is independent of
χm2 for any m1,m2 (the appearances of edges between V (tm1) and V \

⋃M
m=1 V (tm)

are independent of the appearances of edges between V (tm2) and V \
⋃M
m=1 V (tm)),

it is sufficient to show that the total variation distance between χm and χ̄m is o(1).
For each vertex v ∈ V (tm), it is connected to an arbitrary vertex in a critical or
supercritical leaf with probability between ω(1/n1+1/r) (since the root has weight
ω(1/n1+1/r)) and o(1/n) (otherwise tm is vulnerable). Since the number of infected
vertices in V \

⋃M
m=1 V (tm) is Θ(n), the number of v’s infected neighbors follows

a Binomial distribution, Bin(n, θ), with mean nθ between ω(1/n1/r) and o(1), we
can use Poisson distribution Po(nθ) to approximate it. Formally, the total variation
distance is dTV (Bin(n, θ),Po(nθ)) ≤ nθ2 = o(1/n). Thus, this approximation only
changes the total variation distance of χm by o(1).

Observing these, the proposition below shows the total variation distance between
χm and χ̄m is o(1).

Proposition C.2. Let λ be such that λ = ω(1/n1/r) and λ = o(1). Let Y1, . . . , Yn ∈ Z
be n independently and identically distributed random variables where each Yi is sam-
pled from a Poisson distribution with mean λ, Let Z1, . . . , Zn ∈ Z be n random vari-
ables where Z1 = · · · = ZK = r with probability 1, and ZK+1, . . . , Zn are independently
sampled from a Poisson distribution with mean λ. For i = 0, 1, . . . , r−1, let χi be the
numbers of random variables in {Y1, . . . , Yn} that have value i, and χ̄i be the num-
bers of random variables in {Z1, . . . , Zn} that have value i. Let χr be the numbers of
random variables in {Y1, . . . , Yn} that have values at least r, and χ̄r be the numbers
of random variables in {Z1, . . . , Zn} that have values at least r. The total variation
distance between χ = (χ0, χ1, . . . , χr) and χ̄ = (χ̄0, χ̄1, . . . , χ̄r) is dTV (χ, χ̄) = o(1) if
K = Θ(1).

To show this for random vectors χ and χ̄ that have small total variation distance,
we use some straightforward computations and the Poisson approximation [17, 200].
We first decouple the correlation between χ = (χ0, χ1, . . . , χr), and consider r + 1
coordinate-wise independent Poisson ζ = (ζ0, ζ1, . . . , ζr) with the same expectation
E[χ] = E[ζ]. Then we define ζ̄ similarly. Finally the total variational distance
between two coordinate-wise independent Poisson vectors is well studied in the liter-
ature. The full proof of this proposition is omitted due to the space limit.

To show the second claim, notice that the range of the function σ(·) falls into the
interval [0, n]. The total variation distance of (χ1, . . . ,χM) and (χ̄1, . . . , χ̄M) being
o(1) implies that∣∣E(χ1,...,χM )[σ(χ1, . . . ,χM)]− E(χ̄1,...,χ̄M )[σ(χ̄1, . . . , χ̄M)]

∣∣ = o(n),

by a standard property of total variation distance (see, for example, Proposition 4.5
in [144]).

This concludes that the seeds on subcritical leaves can only affect o(n) infections.
Adding together, σ(k | E) equals to the number of vertices in all critical and

supercritical leaves which is independent of the seeding strategy, plus the expected
number of infected vertices in those subcritical leaves for which different seeding
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strategies only affect a value in o(n). This implies that limn→∞
σ(k|E)
n

in the first
term of (C.1) does not depends on k. Therefore, Eqn. (C.1) reveals that Σr,T (k) is
proportional to Pk, which implies the lemma.
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APPENDIX D

Proofs for Selection and Influence

D.0.1 Proof of Lemma 8.4

The proof has two parts. With Theorem 2.28, we can show (0, 0) is asymptotic
stable in the system (8.9) by considering the first order approximation of the system
at (0, 0). Therefore, we derive a potential function for system (8.9). Then since the
linear approximation of f at 0 in (8.9) is Hurwitz, there is a smooth potential function
V defined in Theorem 2.28, so we can argue V is also a valid potential function for
the discrete process defined in (8.7).

Proof. Because

∂f

∂z

∣∣∣∣
0

=

(1−pselect
2

(f ′inf(0)− 1) 1−pselect
2

f ′inf(0)

2pselect(1−γ)
2

−pselect(1−γ)
2

)
with the influence function of k-majority defined in Equation (8.3),

finf(x) =
k∑

`=dk/2e

(
k

`

)
x`(1− x)n−`,

∂f
∂z

∣∣
0

is Hurwitz. By Theorem 2.28, there exists δpselect > 0, B(δpselect) = {x ∈ R2 :
‖x − 0‖ ≤ δpselect} and a potential function V : B(δpselect) 7→ R such that V (0) = 0,
and V (x) > 0, d

dt
(V (x)) < 0 for x ∈ B(δpselect), x 6= 0.

We want to show V is also a potential function for (8.7) as n large enough, the
series V (Z(i)) is decreasing. Because V is smooth there exists a function, we have

V (Z(i+1))− V (Z(i)) = ∇V (Z(i)) · (Z(i+1) − Z(i)) +O
(
(Z(i+1) − Z(i))2

)
Because ∇V (Z(i)) · (Z(i+1) − Z(i)) ≤ 1

n
d
dt
V (z)

∣∣
z=Z(i) and ‖Z(i+1) − Z(i)‖ ≤ C/n for

some constant C, we have

V (Z(i+1))− V (Z(i)) =
1

n

(
d

dt
V (z) +O(1/n)

)∣∣∣∣
z=Z(i)∈N

< 0

Therefore, limt→∞ ‖Z(t) − 0‖ = 0.
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D.0.2 Proof of Lemma 8.6

The first part of Lemma 8.6 is quite straightforward. We first define our stable region
RA and show at each boundary the drift is inward such that if the z(t) is at the
boundary the z(t+ ε) will go back to the stable region. For the second part, we show
z hits the stable region RA fast by taking pselect

∗ large enough.

Proof of Lemma 8.6. Because finf is k majority which is strictly increasing which
is invertible, the zeros of Equation (8.8) can be denoted as two continues curves(
x1, x

(1)
2 (x1)

)
and

(
x1, x

(2)
2 (x1)

)
where

x
(1)
2 (t) =

f−1
inf (t)− t
1− 2t

, and x
(2)
2 (t) = 2t(1− t) (D.1)

, see Figure 8.4 for an example. Now we want to show these two curves have an
intersection (x∗1, x

∗
2), and we pick the one with the smallest positive x∗1 and define

RA = {(x1, x2) : 0 ≤ x1 ≤ x∗1, 0 ≤ x2 ≤ x∗2}.

To show these two curves have an intersection, since f ′inf(0) = 0, by Equa-

tion (D.1), there exists x̃1 > 0 such that x
(1)
2 (x̃1) ≥ x

(2)
2 (x̃1). On the other hand,

because

lim
t→1/2

x
(1)
2 (t) =

1

2

(
1− 1

f ′inf(0.5)

)
<

1

2
= x

(2)
2 (0.5)

, there exists x̄1 such that x
(1)
2 (x̄1) ≤ x

(2)
2 (x̄1). By intermediate value theorem, we

have x∗1 and x∗2 such that x∗2 = x
(1)
2 (x∗1) = x

(2)
2 (x∗1).

Now we want to prove this is a stable region for z in (8.9). To prove boundedness,
we only need to prove z cannot leave the upper and right boundaries. Suppose
z(t0) ∈ RA, and given arbitrary t1 > t0. At the right boundary x ∈ {(x1, x2) : 0 ≤
x1 ≤ x∗1, x2 = x∗2} by (8.8) we have f1(x, t) ≤ 0 for all t > 0 so the process cannot
increase and z1(t1) ≤ x∗1. On the upper boundary {(x1, x2) : x1 = x∗1, 0 ≤ x∗2} by (8.8)

we have f2(x, t) ≤ 0 so the process cannot increase and z2(t1) ≤ x
(2)
2 (x∗1). Therefore

we prove RA is a stable region for Equation (8.9).
Now we want to prove the second part: If z(0) = (0, 0.5), there exists pselect

∗ < 1,
and τ0 such that z(τ0) ∈ RA. We define δ = min{x∗1, x∗2} which is a positive constant

independent to pselect. Note that in (8.9) we have z1(t) ≤ (1−pselect)
2

t Therefore if
t ≤ (1− γ)δ/4(1− pselect),

z1(t) ≤ (1− γ)δ/8 (D.2)

Additionally, by (8.9) and (D.2) we have z′2 ≤ −pselect(1− γ)/2 z2 + (1− γ)δ/8 and

z2(t) ≤
(

1

2
− δ

4pselect

)
exp

(
−pselect(1− γ)

2
t

)
+

δ

4pselect
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If we take τ0 = (1− γ)δ/4(1− pselect), we have

z1(τ0) ≤ (1− γ)δ

8
and z2(τ0) ≤

(
1

2
− δ

4pselect

)
exp

(
− pselect

1− pselect

δ(1− γ)2

8

)
+

δ

4pselect

which are smaller than δ if we take 1−pselect small enough. Therefore z(τ0) ∈ RA.
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APPENDIX E

Proofs for Gnp

E.1 Proofs in Section 9.4.2

Proof of lemma 9.9. Define s : Ω 7→ R as follows

s(x) =

n/2−1∑
`=Bias(x)

d`, where Bias(x) < n/2

s(x) = 0, where Bias(x) = n/2

Note that the value of s only depends on the bias of each state and for x, y ∈ Ω with
Bias(x) = Bias(y) we have s(x) = s(y), so we can abuse the notion and consider
potential function with integral domain s : [0, n/2− 1] 7→ R such that s(l) , s(x) for
some x such that Bias(x) = l.

To prove s is a valid super solution of τ , by corollary 2.10 it is sufficient for us to
show that

Ls(x) ≤ −1 where Bias(x) < n/2, (E.1)

s(x) ≥ 0 where Bias(x) = n/2. (E.2)

For the Equation (E.1), if Bias(x) = ` and 0 < ` < n/2,

Ls(x) =
∑
y∈Ω

Px,ys(y)− s(x)

=
∑
y∈Ω

Px,y
(
s(Bias(y))− s(Bias(x))

)
By the definition ofM, P (x, y) > 0 only if the states x, y differ by at most one digit,
we only need to consider the states y such that |Bias(y)− `| ≤ 1, by the defintion of
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s,

Ls(x) =
∑

y:Bias(y)=`+1

Px,y
(
s(`+ 1)− s(`)

)
+

∑
y:Bias(y)=`−1

Px,y
(
s(`− 1)− s(`)

)

= −

 ∑
y:Bias(y)=`+1

Px,y

 d` +

 ∑
y:Bias(y)=`−1

Px,y

 d`−1

= −Pr
M

[Bias(X ′) = `+ 1|X = x]d`

+ Pr
M

[Bias(X ′) = `− 1|X = x]d`−1

by the definition of p+(x) and p−(x)

Ls(x) = −p+(x)d` + p−(x)d`−1

≤ −p+(x)

(
1

p+(x)
+
p−(x)

p+(x)
d`−1

)
+ p−(x)d`−1 = −1

where the last equality comes from the definition of d` On the other hand, if Bias(x) =
0

Ls(x) =
∑

y:Bias(y)=1

Px,y
(
s(1)− s(0)

)
= −Pr

M
[Bias(X ′) = 1|X = x]d0 = −p+(x)d0 ≤ −1.

Equation (E.2) automatically holds by the definition of s.

Therefore, applying corollary 2.10 we have maxx∈Ω τ(x) ≤ maxx∈Ω s(x) =
∑n/2−1

`=0 d`.

The proof of theorem 9.11, which is rather straightforward but tedious, uses
lemma 9.9 and a careful estimation of the potential function from the recursive equa-
tion (9.6).

is rather straightforward but tedious by use of lemma 9.9, and estimation of the
potential function from the recursive Equation (9.6) carefully.

Proof of theorem 9.11. With the help of lemma 9.9, we only need to give an upper
bound the recursive equations (9.6). With the condition in the statements, suppose we
prove the following equations: There exists some positive constant C1, C2, C3, C4, D1
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such that

d` ≤ C1

√
n where ` < D1

⌈√
n
⌉
, (E.3)

d` ≤ C2
n

`
where D1

⌈√
n
⌉
≤ ` ≤ ε̌n, (E.4)

d` ≤ C3 where ε̌n < ` ≤ (1/2− ε̂)n, (E.5)

d` ≤ C4
n

n/2− `
where (1/2− ε̂)n < ` < n/2 (E.6)

Supposing the above inequalities are true, by lemma 9.9 we can complete the proof
as follows:

max
x∈Ω

EM[T (G, f, x)] ≤
n/2−1∑
`=0

d`

≤
D1d√ne−1∑

`=0

C1

√
n+

ε̌n∑
`=D1d√ne

C2
n

`
+

(1/2−ε̂)n∑
`=ε̌n+1

C3 +

n/2−1∑
`=(1/2−ε̂)n+1

C4
n

n/2− `

≤D1

⌈√
n
⌉
· C1

√
n+ C2n

ε̌n∑
`=D1d√ne

1

`
+ C3(1/2− ε̂− ε̌)n+ C4n

ε̂n−1∑
`=1

1

`

=O(n lnn)

Now we are going to use induction to prove Equations (E.3), (E.4), (E.5), and (E.6).

Equation (E.3): We first use induction to prove the following inequality: If A(n) =
1
p+

+
√
n

p+A1B1
and B(n) =

√
n

p+A1B1
, for all `, 0 ≤ ` ≤ D1 d

√
ne

d` ≤ A(n)

(
1 +

A1B1√
n

)`
−B(n) (E.7)

Because for all constant D1 there exists some constant C1 > 0 such that

A(n)

(
1 +

A1B1√
n

)`
−B(n) ≤ C1

√
n

for all ` ≤ D1 d
√
ne, the Equation (E.3) is proven once the Equation (E.7) is true.

Now, let’s prove (E.7).
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For ` = 0, applying Equation (9.8) to Equation (9.6), we have

d0 = max
x∈Ω:Bias(x)=0

1

p+(x)

≤ max
x∈Σs∪Σm

1

p+(x)
(because {x ∈ Ω : Bias(x) = 0} ⊂ Σs ∪ Σm)

≤ 1/p+ (by Equation (9.8))

= A−B (by the definition of A and B)

Suppose d`−1 ≤ A
(

1 + A1B1√
n

)`−1

− B for some 1 < ` < D1 d
√
ne. Since ` <

D1 d
√
ne − 1 < ε̌n, {x ∈ Ω : Bias(x) = `} ⊂ Σs and we can apply equation (9.10)

and (9.8) to equation (9.6) and have

d` ≤
1

p+
+

(
1 + A1

(
B1√
n
− `
))

d`−1 (E.8)

≤ 1

p+
+

(
1 +

A1B1√
n

)
d`−1

By induction hypothesis, and definition of B we have

≤ 1

p+
+

(
1 +

A1B1√
n

)(
A

(
1 +

A1B1√
n

)`−1

−B

)

≤ A

(
1 +

A1B1√
n

)`
−B −

(
A1B1√
n
B − 1

p+

)
≤ A

(
1 +

A1B1√
n

)`
−B

Equation (E.4): We use induction again to prove Equation (E.4) holds forD1 d
√
ne ≤

` ≤ ε̌n.
For ` = D1 d

√
ne, we already have d` ≤ C1

√
n ≤ C2

n

D1d√ne so if we take C2 ≥
C1D1

d` ≤ C1

√
n ≤ C2

n

D1 d
√
ne

= C2
n

`
.

Suppose d`−1 ≤ C2
n
`−1

for some D1 d
√
ne < ` < ε̌n. Because {x ∈ Ω : Bias(x) =

`} ⊂ Σs, by equation (E.8) and induction hypothesis we have

d` ≤
1

p+
+

(
1 + A1

(
B1√
n
− `
))

d`−1

=
1

p+
+

(
1−

(
A1`− A1B1

√
n

n

))
d`−1
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and

d` ≤
1

p+
+

(
1−

(
A1`− A1B1

√
n

n

))
C2

n

`− 1

=
C2n

`
+

(
1

p+
+

(
1− A1`− A1B1

√
n

n

)
C2n

`− 1
− C2n

`

)
.

Therefore equation (E.4) is proven if 1
C2p+

+
(

1− A1`−A1B1
√
n

n

)
n
`−1
− n

`
≤ 0. By taking

C2 ≥ 2
p+A2

and D1 ≥ 4B1 and D2
1 ≥ 4/A1 we have

A1

2
≤ A1 −

A1B1

D1

− 1

D2
1

≤ n

`

(
A1`− A1B1

√
n

n
− 1

`

)
(because ` > D1 d

√
ne)

≤ n

`− 1

(
A1`− A1B1

√
n

n
− 1

`

)
=
n

`
− n

`− 1

(
1− A1`− A1B1

√
n

n

)
Because C2 ≥ 2

p+A2
, we have 1

C2p+
≤ A1

2
and using the above inequality we get

1

C2p+
≤ n

`
− n

`− 1

(
1− A1`− A1B1

√
n

n

)
which completes proving Equation (E.4). Finally, by the Equation (E.4)

dε̌n ≤ C2
n

ε̌n
= C2/ε̌. (E.9)

Equation (E.5): We use induction to prove d` is bounded above by some constant
C3 for all ` such that ε̌n < ` ≤ (1/2− ε̂)n.

For ` = ε̌n + 1, because {x ∈ Ω : Bias(x) = ε̌n + 1} ⊂ Σm, we can apply (9.16)
and (9.13) into Equation (9.6) and have

d` ≤
1

p+
+ (1− A2) d`−1 (E.10)

≤ 1

p+
+ (1− A2)C2/ε̌ (by Equation (E.9))

≤ A2
1

p+A2

+ (1− A2)C2/ε̌

Because 0 ≤ A2 < 1 if we take C3 = max{ 1
p+A2

, C2/ε̌} the base case of (E.3) is true.

Suppose d`−1 ≤ C3 for some ε̌n < ` < (1/2−ε̂)n, because {x ∈ Ω : Bias(x) = `} ⊂ Σm
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we can use (E.10) and

d` =
1

p+
+ (1− A2) d`−1 ≤

1

p+
+ (1− A2)C3

≤ C3 −
(
A2C3 −

1

p+

)
≤ C3,

because C3 = max{ 1
p+A2

C2/ε̌}
This finishes the proof of Equation (E.5).

Equation (E.6): Because {x ∈ Ω : Bias(x) = `} ⊂ Σl for all (1/2− ε̂)n < ` < n/2
we can apply (9.17) and (9.14) into Equation (E.9), and get

d` ≤
4

1/2− `/n
+ (1− A3)d`−1 =

4n

n/2− `
+ (1− A3)d`−1

Recursively applying this relation, d` is upper bounded by

l∑
j=(1/2−ε̂)n+1

4n(1− A3)`−j

n/2− j
+ (1− A3)`−(1/2−ε̌)nd(1/2−ε̂)n

because of Equation (E.5) this is at most

≤
l∑

j=(1/2−ε̂)n+1

4n(1− A3)`−j

n/2− j
+ C3

≤ 4n

`−(1/2−ε̂)n−1∑
i=0

(1− A3)i

n/2− `+ i
+ C3 (taking i = `− j)

≤ 4n

n/2− `

`−(1/2−ε̂)n−1∑
i=0

(1− A3)i
n/2− `

n/2− `+ i
+ C3

Because (1 − A3)i n/2−`
n/2−`+i ≤ (1 − A3)i and taking C4 ≥ 2/A3 + ε̂C3, d` is bounded

above by
4n

n/2− `

∞∑
i=0

(1− A3)i + C3 =
4

A3

n

n/2− `
+ C3 ≤

C4n

n/2− `

E.2 Exertion and Drift: Proof of Lemma 9.12 and

9.13

In this section, we want to control the exertion p+
G(x) and drift p+

G(x) − p−G(x) of
the process M on graph G ∼ G. To achieve these upper bounds, we prove several

276



properties of dense Erdös-Rényi graphs which might seem ad-hoc, but there is a
common thread under these lemmas: concentration phenomena in dense Erdös-Rényi
graph. Our main tools are the spectral property of random graph and several variants
of Chernoff bounds.

E.2.1 Exertion and Lemma 9.12

We partition the lemma 9.12 into lemma E.1 and E.2, and use the mixing lemma 2.45
to show all configurations have p+

G(x) close to that of the complete graph if G is a
good expander.

Lemma E.1 (Exertion of Σs,Σm). If G λ-expander with nearly uniform degree E(δd),
δd < 1 and λ2 < 1−δd

1+δd
· ε̂

18
, for all x with Bias(x) < 1/2− ε̂,

ε̂

2
f

(
ε̂

2

)
< p+

G(x) ≤ 1.

Proof. Let’s consider a fixed configuration x where ε̂ ≤ pos(x) < 1/2 and where the
number of red nodes is less than the number of blue nodes’. We can partition the V
into three sets of vertices Sx, Tx, Ux ⊂ V such that

Sx = {v ∈ V : x(v) = 0, rx(v) <
ε̂

2
}, (E.11)

Tx = {v ∈ V : x(v) = 0, rx(v) ≥ ε̂

2
}, and (E.12)

Ux = {v ∈ V : x(v) = 1}. (E.13)

Observe that Ux is the set of red nodes in configuration x, and Sx ∪ Tx is the set
of blue nodes so |Sx ∪ Tx| = Pos(x) ≥ ε̂n. Moreover by the definition of M with
update function f , the definition in (E.12), and the monotone property of f , the
probability a node v ∈ Tx becomes red in the next step, given v is chosen and the
current configuration is x, is greater than f( ε̂

2
). As a result, every node in Tx has a

constant probability to change if chosen, and

p+
G(x) ≥ |Tx|

n
· f
(
ε̂

2

)
Therefore, if we prove the following inequality

|Sx| <
ε̂

2
|V | (E.14)

then the size of set Tx is greater than ε̂
2
|V |, and we have p+

G(x) ≥ ε̂
2
f
(
ε̂
2

)
which finishes

the proof.
Now it is sufficient for us to prove equation (E.14). By the definition in (E.11) we

can upper bound the number of edges between Sx and Ux, e(Sx, Ux), and use mixing
lemma 2.45 to upper bound the size of Sx.
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First, since the degree of nodes are nearly uniform, the volume of Sx, and Ux can
be bounded

(1− δd)np|Sx| ≤ vol(Sx) ≤ (1 + δd)np|Sx| (E.15)

(1− δd)np|Ux| ≤ vol(Ux) ≤ (1 + δd)np|Ux|, (E.16)

and by the definition of Sx in (E.11) the number of edges between Sx and Ux can be
bounded as follows:

e(Sx, Ux) ≤
ε̂

2
· vol(Sx) ≤

ε̂

2
· (1 + δd)np|Sx| (E.17)

Applying mixing lemma 2.45 on sets Sx and Ux, and we have∣∣∣∣e(Sx, Ux)− vol(Sx)vol(Ux)

vol(G)

∣∣∣∣ ≤ λ
√
vol(Sx)vol(Ux)

vol(Sx)vol(Ux)

vol(G)
− e(Sx, Ux) ≤ λ

√
vol(Sx)vol(Ux)

vol(Sx)vol(Ux)

vol(G)
− ε̂

2
vol(Sx) ≤ λ

√
vol(Sx)vol(Ux) (by equation (E.17))(

vol(Ux)

vol(G)
− ε̂

2

)√
vol(Sx) ≤ λ

√
vol(Ux) (E.18)

For the left hand side, because the degree of G is near uniform, we can approximate
the ratio of vol(Ux)

vol(G)
by the ratio of |Ux||G| as follows(

vol(Ux)

vol(G)
− ε̂

2

)√
vol(Sx)

≥
(

(1− δd)|Ux|
(1 + δd)|V |

− ε̂

2

)√
vol(Sx)

Because pos(x) < 1/2, this is

≥
(

(1− δd)/2
(1 + δd)

− ε̂

2

)√
vol(Sx)

≥ 1

2

(
1− δd
1 + δd

− ε̂
)√

vol(Sx)

≥ 1

3

√
vol(Sx). (E.19)

For the right hand side, we can upper bound the volume of Ux by

vol(Ux) ≤ vol(V ) ≤ (1 + δd)n
2p. (E.20)
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Applying equations (E.19) and (E.20) into equation (E.18) yields

1

9
vol(Sx) ≤ λ2vol(Ux)

vol(Sx) ≤ 9λ2(1 + δd)n
2p

(1− δd)np|Sx| ≤ 9λ2(1 + δd)n
2p

|Sx| ≤ 9λ2 1 + δd
1− δd

n = o(n)

which is smaller than ε̂
2
n because λ2 < 1−δd

1+δd
· ε̂

18
.

Lemma E.2 (Exertion of Σl). If G is a λ-expander with nearly uniform degree E(δd),

δd < 1 and λ2 < 1−δd
1+δd
· (1/2−ε̂)2

2
, for all x with bias(x) > 1/2− ε̂,

1

4
(1/2− bias(x)) < p+

G(x) ≤ (1/2− bias(x)).

Proof. Without lose of generality, we consider the configuration x where pos(x) < ε̂.
The proof of the upper bound is straightforward. Suppose Hv = {v changes from

blue to red in the step given v is chosen and the configuration is x}

p+
G(x) = Pr

M
[Bias(X1) = Bias(x) + 1|X0 = x]

=
1

n

∑
v∈V

Pr
M

[Hv]

≤ 1

n

∑
v∈V

I[v is blue] = pos(x) = (1/2− bias(x)).

For the lower bound, similar to lemma E.1, given a configuration, we partition the
set of nodes V into three sets S ′x, T

′
x, U

′
x

S ′x = {v ∈ V : x(v) = 1, rx(v) ≥ 1

2
}, (E.21)

T ′x = {v ∈ V : x(v) = 1, rx(v) <
1

2
}, (E.22)

U ′x = {v ∈ V : x(v) = 1} = S ′x ∪ T ′x (E.23)

To show a lower bound for p+
G(x), it is sufficient to show that the fraction of red

nodes T ′x ⊂ V is large and has constant probability to change to blue if selected to
update. Because the probability that node v ∈ T ′x becomes blue in the next step
given v is chosen with configuration x is f(1− rx(v)), by the definition in (E.22) and
by the monotone property of f

f(1− rx(v)) ≥ f

(
1

2

)
≥ 1/2.
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Suppose

|S ′x| <
1

2
Pos(x) (E.24)

then the size of set T ′x is greater than 1
2
Pos(x), and we have a lower bound for p+

G(x):
1
2
|T ′x|
n
≥ 1

4
pos(x) which finishes the proof

Now it is sufficient for us to prove equation (E.24). By the definition in (E.21) we
can upper bound the number of edges between S ′x and U ′x, e(S

′
x, U

′
x), and use mixing

lemma 2.45 to upper bound the size of S ′x.
First, since the degree of nodes are nearly uniform, the volume of Sx, and Ux can

be bounded

(1− δd)np|S ′x| ≤ vol(S ′x) ≤ (1 + δd)np|S ′x| (E.25)

(1− δd)np|U ′x| ≤ vol(U ′x) ≤ (1 + δd)np|U ′x|, (E.26)

and by the definition of S ′x in (E.11) the number of edges between S ′x and U ′x can be
bounded as follows

e(S ′x, U
′
x) ≥

1

2
· vol(S ′x) (E.27)

Applying mixing lemma 2.45 on sets S ′x and U ′x, we have∣∣∣∣e(S ′x, U ′x)− vol(S ′x)vol(U
′
x)

vol(G)

∣∣∣∣ ≤ λ
√
vol(S ′x)vol(U

′
x)

e(S ′x, U
′
x) ≤

vol(S ′x)vol(U
′
x)

vol(G)
+ λ
√
vol(S ′x)vol(U

′
x)

By equation (E.27)

1

2
· vol(S ′x) ≤

vol(′Sx)vol(U
′
x)

vol(G)
+ λ
√
vol(S ′x)vol(U

′
x)

Reorganizing the last inequality we have,

vol(S ′x) ≤

(
λ

1
2
− vol(U ′x)

vol(G)

)2

vol(U ′x)

Because 1
2
− vol(U ′x)

vol(G)
= 1

2
− pos(x) > 1/2− ε̂,

vol(S ′x) ≤
λ2

(1/2− ε̂)2
vol(U ′x).

Finally by equations (E.25) and (E.26) and taking δd small enough

|S ′x| ≤
λ2

(1/2− ε̂)2
· 1 + δd

1− δd
vol(U ′x) <

1

2
vol(U ′x)
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The last inequality holds because λ2 < 1−δd
1+δd
· (1/2−ε̂)2

2
.

E.2.2 Drift and Lemma 9.13

In this section, we want to prove lemma 9.13 As discussed in section 9.4.3, we will
prove lower bounds for drift DG(x) in Σs,Σm and Σl separately, and use the lower
bound for p+

G(x) in lemma 9.12 to prove lemma 9.13.

E.2.2.1 Drift in Σs and Σm

The high level idea is to use a serial of triangle inequalities: Given a configuration
x ∈ Ω:

1. The drift DG(x) is close to its expectation EG[DG(x)];

2. The expectation EG[DG(x)] is close to the drift on complete graphs DKn(x);
and

3. The drift on the complete graph DKn(x) is lower bounded by its bias(x).

The third part is easy because when pos(x) > 1/2 the drift DKn(x) is

DKn(x) = p+
Kn

(x)− p−Kn(x) = f(pos(x))− pos(x) (E.28)

and equations (9.15), (9.16), and (9.17) can be obtained by the definition of f .
Therefore, our strategy for states in Σs,Σm is to argue the value of {DG(x)}x∈Ω

is close to {DKn(x)}x∈Ω with high probability. The first part is proved in lem-
mas E.3 and E.4, and the second part is fulfilled in lemma E.5. Informally lemma E.3
shows EG[DG(x)]−DKn(x) = O(1/n), and lemma E.4 shows EG[DG(x)]−DKn(x) =
O(
√

(log n)/n).
Before digging into the lemmas, let’s rewrite DG(x). Without lost of generality if

pos(x) > 1/2,

DG(x) = EM[Pos(X ′)|X = x]− Pos(x)

=
1

n

∑
v∈V

Pr
M

[X ′(v) = 1|v is chosen, X = x]− pos(x)

=
1

n

∑
v∈V

f(rx(v))− pos(x),

and by symmetry of G we can fixed arbitrary node v ∈ V and have

EG[DG(x)] = EG[f(rx(v))]− pos(x). (E.29)

Lemma E.3 (Expected Drift in Σs). If x ∈ Σs where bias(x) < ε̌ then there exists
constant K1 > 0 such that for large enough n,

EG[DG(x)] ≥ f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

)
− K1

n
.
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Lemma E.4 (Expected Drift in Σm). If x ∈ Σm where ε̌ ≤ bias(x) ≤ 1/2 − ε̂ then
there exists constant K2 > 0 such that for large enough n, EG[DG(x)] is greater than

f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

)
−K2

√
log n

n
.

Lemma E.5 (Small noise in Σs and Σm). For all x ∈ Σs ∪Σm, DG(x) there exists a
constant L > 0 such that when n large enough

DG(x)− EG[DG(x)] > − L√
n

happens with high probability over the randomness of G.

Properties of rx(v). Due to equation (E.29), to prove lemma E.3 and E.4, it is
sufficient for us to analyze {EG [f(rx(v))]}x∈Ω is close to {f (pos(x))}x∈Ω for some fixed
node v ∈ V . We use the principal of deferred decisions—We reveal the randomness
of the graph G ∼ G after fixing node v and configuration x, and apply a union bound
over all configurations x ∈ Ω.

Fixing a configuration and node v, let’s consider a bin with Pos(x) red balls and
n−Pos(x) blue balls, if we sample k balls without replacement, the expected number
of red balls among those k ball is pos(x) · k, and this random number has the same
distribution as the random variable rx(v) · k if G ∼ G is conditioned on the degree of
v being k.

We define Ex(δr; v) to be the event

Ex(δr; v) , {G : |rx(v)− pos(x)| ≤ δrpos(x)}. (E.30)

Since rx(v) · k can be seen as a sample without replacement, a standard argument
combining theorems 2.17 and 2.22 upper bounds the probability of it deviating from
expectation by the one of sampling with replacement.

Pr
G

[Ex(δr; v)|deg(v) = k] ≤ 2 exp

(
−δ

2
rk pos(x)

3

)
(E.31)

Proof of the Lemmas As discussed below equation (E.29), we want to prove
the difference between EG[f(rx(v))] and f (pos(x)) is of order O(1/n). However, in
contrast to the O(

√
(log n)/n) error in lemma E.4 we need a smoothness property of

f around 1/2 to derived this stronger result. The following two lemmas prove some
basic results about smooth functions and conditional variance.

Lemma E.6. Given I ⊆ R, and X is a random variable with support in I and
expectation EX, if g : R 7→ R is M2-smooth in I, then∣∣E[g(X)]− g(EX)

∣∣ ≤ M2

2

(
EX2 − (EX)2

)
.
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Lemma E.7. Given a real-valued random variable X and ε > 0 such that Pr[EX−ε ≤
X ≤ EX + ε)] > 0, we have

Var[X|EX − ε ≤ X ≤ EX + ε] ≤ Var[X]

Proof of lemma E.6. Let h(t) , g(EX + t(X − EX)). Because g is smooth, we use
the fundamental theorem of Calculus, and have

E[g(X)]− g(EX) = EX [g(X)− g(EX)] = E
[∫ 1

0

h′(t)dt

]
= E

[∫ 1

0

g′
(
EX + t(X − EX)

)
(X − EX)dt

]
Because g is M2-smooth, we have for all a, a + b ∈ I g′(a) −M2|b| ≤ g′(a + b) ≤
g′(a) +M2|b| and by taking a = EX and b = t(X − EX)

EX [g(X)]− g(EX)

≤ EX
[∫ 1

0

(g′(EX) +M2t(X − EX)) (X − EX)dt

]
= EX

[
g′(EX)(X − EX) +

M2

2
(X − EX)2

]
=
M2

2
EX
[
(X − EX)2

]
The lower bound −M2

2
EX [(X − EX)2] ≤ EX [g(X)] − g(EX) is can be derived simi-

larity.

Proof of lemma E.7. Let A the event that X is in the interval [EX − ε,EX + ε]

Var[X|(1− δr)EX ≤ X ≤ (1 + δr)EX] (E.32)

= Var[X|A]

= E
[(
X − E[X|A]

)2|A
]

≤ E
[(
X − E[X]

)2|A
]

(E.33)

The last inequality is true, because for all z, E [(Z − z)2] ≥ E [(Z − EZ)2].
On the other hand, Var[X] is equal to

E
[
(X − E[X])2

∣∣A] Pr[A] + E
[
(X − E[X])2

∣∣¬A](1− Pr[A])

Because |X − E[X]| ≥ ε conditioned on ¬A and ε ≥ |X − E[X]| if A happens,

E
[
(X − E[X])2

∣∣A] ≤ Var[X] (E.34)

The proof is completed by combining (E.33), and (E.34).
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Proof of lemma E.3. Following equation (E.29), our goal is to derive a better approx-
imation of

|EG[f(rx(v))]− f(pos(x))|

We take ε̌ small enough so that [1/2 − 2ε̌, 1/2 + 2ε̌] ⊆ I1/2, and so by the definition
the update function f is M̌2-smooth function in [1/2 − 2ε̌, 1/2 + 2ε̌]. Moreover we
take constants δr, δd to that δr ≤ ε̌ and δd < 1.

Let E be the event Ex(δr; v)∧E(δd; v) defined in equation (E.30) and lemma 2.46
respectively. Informally, if E happens that means the value of rx(v) is close to its
expectation pos(x) and the degree is nearly uniform. Therefore we can decompose
EG[f(rx(v))]− f(pos(x)) as follows

|EG[f(rx(v))]− f(pos(x))|
≤ |EG[f(rx(v))|E ]− f(pos(x))|+ Pr

G
[¬E ]

≤
∣∣EG[f(rx(v))|E

]
− f

(
EG[rx(v)|E ]

)∣∣
+
∣∣f(EG[rx(v)|E ]

)
− f(pos(x))

∣∣+ Pr
G

[¬E ]

Now we want to give upper bounds for these three terms.

For the first term, |EG
[
f(rx(v))|E

]
−f
(
EG[rx(v)|E ]

)
| only depends on the random

variable rx(v)|E . By the definition of E the random variable rx(v)|E has support in
[(1− δr)pos(x), (1 + δr)pos(x)] and pos(x) ∈ [1/2− ε̌, 1/2 + ε̌]. Therefore the support
of rx(v)|E is in I1/2 and ∣∣EG[f(rx(v))|E]− f (EG[rx(v)|E ])

∣∣
≤ M̌2

2
VarG[rx(v)|E ]

≤ M̌2

2
VarG[rx(v)|E(δd)].

The first inequality is true because f is smooth in I1/2 and lemma E.6. The second
comes from lemma E.7. Now we want to upper bound Var[rx(v)|E(δd)]. Recall that
we observed that the random variable k·rx(v)|deg(v) = k can be seen as sampling balls
from bin with a pos(x) fraction of red balls without replacement. Because the variance
is a convex function by theorem 2.22, the value of Var[rx(v)|deg(v) = k] is upper
bounded by the variance of sampling k balls from the same bin with replacement,
pos(x)(1−pos(x))

k
. As a result,

VarG[rx(v)|E(δd)] ≤
pos(x)(1− pos(x))

(1− δd)np
.

Because x ∈ Σs, 1/2− ε̌ < pos(x) < 1/2 + ε̌, and δd is some constant independent of
n

|EG
[
f(rx(v))|E

]
− f

(
EG[rx(v)|E ]

)
| = 1/4− ε̌2

(1− δd)p
· 1

n
. (E.35)
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For the second term, because the update function f is Lipschitz, it is sufficient
to prove an upper bound for |EG[rx(v)|E] − pos(x)|. Note that in the properties of
rx(v) we show that EG[rx(v)] = pos(x). By the law of total probability we have,
|EG[rx(v)] − EG[rx(v)|E]| ≤ |EG[rx(v)|¬E] − EG[rx(v)|E ]|PrG[¬E ] which is less than
≤ 2 PrG[¬E ] because 0 ≤ rx(v) ≤ 1. Therefore we have

|EG[rx(v)|E ]− pos(x)| ≤ 2 Pr
G

[¬E ]. (E.36)

For the last term, PrG[¬E ] we just use a union bound:

Pr
G

[¬E ] = Pr
G

[¬Ex(δr; v) ∪ ¬E(δd; v)]

≤ Pr
G

[¬Ex(δr)|E(δd; v)] + Pr
G

[¬E(δd; v)]

≤ 2 exp

(
−1

3
δ2
r(1− δd)np · pos(x)

)
+ 2 exp

(
−δ2

dnp

3

)
. (E.37)

Equation (E.37) is derived from equation 2.9 and equation (E.31). Because p > 0
and pos(x) ≥ 1/2− ε̌ are constants when x ∈ Σs for large enough n we have

Pr
G

[¬E ] ≤ 1

n
. (E.38)

Recall that δd, δr are constants independent of n. Combining equations (E.35), (E.36),

and (E.38), we finish the proof with K1 = 1/4−ε̌2
(1−δd)p

+ 3.

For lemma E.4, we want to prove the difference between EG[f(rx(v))] and f (pos(x))
is of order O(

√
log n/n) which is much weaker than lemma E.3, and we only need to

use the Lipschitz properties of update function f , and concentration phenomenon for
rx(v) shown in equation (E.31).

Proof of lemma E.4. Let E be the event of Ex(δr; v)∧E(δd; v) defined in equation (E.30)
and lemma 2.46 respectively. Informally, if E happens that means the value of rx(v)
is close to expectation pos(x) and the degree is nearly uniform. Therefore we can
decompose EG[f(rx(v))]− f(pos(x)) as follows

|EG[f(rx(v))]− f(pos(x))|
≤ |EG[f(rx(v))|E ]− f(pos(x))|+ Pr

G
[¬E ] (E.39)

The first term |EG[f(rx(v))|E ] − f(pos(x))| Since the update function f is Lipschitz
with Lipschitz constant M1, if the event E happens |rx(v)− pos(x)| ≤ δrpos(x) and,

|f(rx(v))− f(pos(x))| ≤M1 · |rx(v)− pos(x)|
≤M1 · δrpos(x) ≤M1δr
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By taking δr = A
√

log n/n for some constant A which will be specified later we have

|EG[f(rx(v))|E ]− f(pos(x))| = M1A

√
log n

n
(E.40)

For the second term by equation (E.37), PrG[¬E ] is smaller than

2 exp

(
−δ

2
r(1− δd)np · pos(x)

3

)
+ 2 exp

(
−δ2

dnp

3

)
because pos(x) ≥ ε̂ = Ω(1) when x ∈ Σm. If δd is some small constant and δr =

A
√

log n/n, then by takingA large enough PrG[¬E ] is smaller than 2 exp
(
−A2(1−δd)p·pos(x)

3
log n

)
+

2 exp
(
−δ2dnp

3

)
Therefore

Pr
G

[¬E ] ≤
√

log n

n
(E.41)

Combining equation (E.40) and (E.41) into equation (E.39), and have

|EG[f(rx(v))]− f(pos(x))| ≤ (M1A+ 1)

√
log n

n

and the proof is completed by taking K2 = (M1A+ 1).

Proof of lemma E.5. Given a fixed configuration x ∈ A, random variable DG(x) has
expectation D(x) with randomness over G. Assuming the following claim which we
will later prove:

Claim E.8. If δd is some fixed constant, there exists some constant K > 0 such that
for all t > 1/

√
n, then

Pr
G

[DG(x)− EGDG(x) < −Kt|E(δd)] ≤ exp
(
−n2t2

)
By taking t =

√
2 ln 2/n

Pr
G

[
DG(x)− EGDG(x) < −K

√
2 ln 2√
n

∣∣E(δd)

]
≥ 1− exp (−2n ln 2) = 1− 1

4n
.

(E.42)

Apply a union bound over all configurations x ∈ Ω = {0, 1}n we will derived a high
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probability result with L = K
√

2 ln 2

Pr
G

[
∀x,DG(x)− EGDG(x) ≥ −K

√
2 ln 2√
n

]

≥ Pr
G

[
∀x,DG(x)− EGDG(x) ≥ −K

√
2 ln 2√
n

∣∣E(δd)

]
− Pr
G

[¬E(δd)].

By union bound, it is greater than

1− 2n Pr
G

[
DG(x)− EGDG(x) ≥ −K

√
2 ln 2√
n

∣∣E(δd)

]
− Pr
G

[¬E(δd)].

By equation (E.42), this is lower bounded by

1− 2n · 4−n − Pr
G

[¬E(δd)] = 1− o(1).

Therefore, it is sufficient for us to prove claim E.8.
Following the analysis in equation (E.29), if pos(x) > 1/2,

DG(x) =
1

n

∑
v∈V

f(rx(v))− pos(x)

Now we think of {f(rG,x(v))}x∈Ω,v∈V as a set real-valued functions with input G
indexed by x and v. Similarly we think {DG(x)}x∈Ω as a set of real-valued functions
with input G. We will apply Theorem 2.19 with event E(δd) to prove claim E.8 which
consists of two parts: showing the maximum effect/Lipschitz constant ci is small, and
showing the event E(δd) happens with high probability so that it does not change the
expectation too much.

For the first part, recall that the update function f is M1-Lipschitz. Because
given x, v if the degree of the node v is k then adding/removing a single edge in
G changes the value of rG,x(v) by at most 1/k, rG,x(v) is 1/k-Lipschitz. Therefore
the Lipschitz constants of {f(rG,x(v))}x∈Ω,v∈V are uniformly bounded by O(M1/k) =
O(1/k). Moreover fixing x if every node have degree at least k, adding/removing a
single edge in G only affects two endpoints, and changes the value of 1

n

∑
v∈V f(rx(v))

by at most O( 1
nk

).
As a result, if E(δd) happens, every node has nearly uniform degree with constant

δd. For all G,G′ in E(δd) that differ in just the presence of a single edge e, we can
take ce = maxG,G′ |DG(x)−DG′(x)| and

ce = O

(
1

nminv∈V deg(v)

)
= O

(
1

n2

)
(E.43)
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Therefore, there exists some constant ξ > 0 such that
∑

e c
2
e = ξ/n2 and 0 ≤ DG(x) ≤

1, so we can apply theorem 2.19 and

Pr
G

[
DG(x)− EGDG(x) < −t′ − Pr

G
[¬E(δd)]|E(δd)

]
≤ exp

(
−2

ξ
n2t′2

)
Note that by equation (2.10) when δd is some fixed constant and n is large enough
PrG[¬E(δd)] ≤ 1/

√
n, and we finish the proof of equation (E.8) by taking K ≥√

ξ/2 + 1 and t ≥ 1/
√
n.

E.2.2.2 Drift in Σl

Here we consider the phase of the process when the fraction of red nodes is almost 1.
The laziness 1/p+

G(x) should be roughly the inverse of the fraction of blue nodes and
increases as the bias increases. As a result to prove equation (9.17) we need to give
a better lower bound for the drift DG(x).

Lemma E.9. There exists small enough constants δd > 0, ε̂ > 0, and K3 > 0. If
G has nearly uniform degree, E(δd), such that DG(x) ≥ K3(1/2 − bias(x)) for all
x ∈ Σl.

The following proof is basically a counting argument: when x ∈ Σl the number of
red nodes is so small for any node to ahve a majority of red neighbors.

Proof. Without lose of generality, we only consider configurations x where pos(x) < ε̂
and pos(x) = 1/2−bias(x). Given p, δd we can take ε̂ small enough such that ε̂

(1−δd)p
∈

I0. Because there are at most ε̂n red nodes and for all v ∈ V deg(v) ≥ (1− δd)np, we
have rx(v) ∈ I0 and by the property of update function

f(rx(v)) ≤ M̂1 · rx(v) < rx(v) (E.44)

If we define Rx = {u ∈ V : x(u) = 1} to be the set of red nodes, by similarly to
equation (E.29)1 we have

p+
G(x)− p−G(x) = pos(x)− 1

n

∑
v∈V

f(rx(v)).

1In contrast to equation (E.29) where pos(x) > 1/2, here pos(x) < 1/2
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By the equation (E.44), this is greater than

≥ pos(x)− 1

n

∑
v∈V

M̂1rx(v)

= pos(x)− M̂1

n

∑
v∈V

e(Sx, v)

deg(v)

≥ pos(x)− M̂1

n

e(Sx, V )

minv∈V deg(v)
.

The last is true because deg(v) ≥ minv∈V deg(v) and
∑

v e(Sx, v) = e(Sx, V ). Because∑
v e(Sx, v) ≤ |Sx|maxu∈Sx deg(u), and |Sx|

n
= pos(x),

p+
G(x)− p−G(x) ≥

(
1− M̂1 maxu∈Sx deg(u)

minv∈V deg(v)

)
pos(x)

≥
(

1− 1 + δd
1− δd

M̂1

)
pos(x)

> K3pos(x) = K3(1/2− bias(x))

The last inequality is true by taking δd small enough and 0 < K3 ≤ 1− 1+δd
1−δd

M̂1.

E.2.3 Proof of Lemma 9.13

Proof. We prove each equation in turn.
Equation (9.15). First, for drift DG(x) = p+

G(x) − p−G(x) we apply the idea
illustrated at the beginning of section E.2.2.1. For the first and second steps, we have

p+
G(x)− p−G(x)−

(
f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

))
= p+

G(x)− p−G(x)− (p+(x)− p−(x)) + (p+(x)− p−(x))

−
(
f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

))
By lemma E.3 and E.5, with high probability, this is greater than

≥ −K1

n
− L√

n
≥ −K1 + L√

n

For the last step, because the update function f satisfies f ′(1/2) ≥ M̌1 > 1, we can
take ε̌ small enough such that for all h such that 0 ≤ h < ε̌,

f

(
1

2
+ h

)
− f

(
1

2

)
≥ M̌1 + 1

2
h
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As a result, with high probability we have for all x ∈ Σs where bias(x) < ε̌

p−G(x)− p+
G(x) ≤ −M̌1 − 1

2
bias(x) +

K1 + L√
n

(E.45)

On the other hand, by equation (9.13), we have

1 ≤ 1

p+
G(x)

<
1

ε̂
2
f
(
ε̂
2

) (E.46)

Multiplying equation (E.45) by equation (E.46) we have,

p−G(x)

p+
G(x)

≤ 1 +−M̌1 − 1

ε̂f
(
ε̂
2

) bias(x) +
K1 + L
ε̂
2
f
(
ε̂
2

) 1√
n

which finishes the proof of equation (9.15) by taking A1 = M̌1−1

ε̂f( ε̂2)
, and B1 = 2(K1+L)

M̌1−1

which are positive constants.
For equation (9.16). First, for drift DG(x) = p+

G(x) − p−G(x) using argument
similar to the proof of (9.15), we have with high probability by lemmas E.4 and E.5,
for all x ∈ Σm, p+

G(x)− p−G(x) is greater than

f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

)
− K2√

n
− L

n
. (E.47)

Recalled that the update function f is Lipschitz and ∀0 < h < 1/2, f(1/2 + h) >
1/2 + h, we can define its minimum over a compact set [1/2 + ε̌, 1− ε̂]

0 < δf , min
ε̌≤h≤1/2−ε̂

f

(
1

2
+ h

)
−
(

1

2
+ h

)
(E.48)

Combining equations (E.47), and (E.48), for large enough n we have with high prob-
ability for all x ∈ Σm

p−G(x)− p+
G(x) ≤ −δf +

K2√
n

+
L

n
≤ −δf

2
(E.49)

Multiplying equation (E.49) by equation (E.46) we have,

p−G(x)

p+
G(x)

≤ 1− δf

ε̂f
(
ε̂
2

)
which finishes the proof of equation (9.16) by taking A2 =

δf

ε̂f( ε̂2)
and 0 < A2 < 1.

For equation (9.17), by lemmas E.9 and 9.12, we have p−G(x)−p+
G(x) ≤ −K3(1/2−
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bias(x)), and 1
4
(1/2− bias(x)) ≤ p+

G(x). Therefore

p−G(x)

p+
G(x)

≤ 1− 4K3

This finishes the proof by taking A3 = 4K3.
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APPENDIX F

Proofs for Blockmodel

F.1 Missing proofs for Section 10.4

Proof of Lemma 10.8. Since (2.1) is a Morse-Smale system and V is a complete Lya-
punov function, starting at x0 we know there exists a fixed point βi ∈ Fixf such
that lim inft→∞ d(ϕ(x0, t), βi) = 0 and V (βi) ≤ V (x0). Therefore, given r > 0 a
neighborhood of βi, B(βi, r), there is a constant t such that ϕ(x0, t) ∈ B(βi, r).

Moreover by Wormald’s method (Theorem 2.7), the random component Xk con-
verges to B(βi, 2r) in O(n) steps with high probability. Fixing Ni we can take r small
enough and finish the proof.

F.1.1 Non attracting fixed points—Lemma 10.9

The rest of this section is devoted to prove the Lemma 10.9. Lemma 10.9 is very
similar to the literature of leaving saddle points, and we discuss more details in
section 10.6.

The proof of Lemma 10.9 has two parts: we first show the process is constant
away from the fixed point βi within time T1 = O(n log n) with high probability in
Lemma 10.10, and we use the property of complete Lyapunov function, and show
the value of V (XT1) is not much bigger than V (βi). In the second part, we run the
process for extra T2 = O(n) steps. Because the process is far from fixed point, the
decrease rate of V is large and V (XT1+T2) is constantly smaller than V (βi).

To define this two parts formally, We first define several neighborhood of βi:
Ni ⊂ B(βi, r/2) ⊂ B(βi, 3r/4) ⊂ B(βi, r) where B(βi, r) is the open ball with radius
βi and center at βi. Lemma 10.9 keeps track of the process when it enter the region
Ni and stop after leaving B(βi, r). Taking r small enough such that B(βi, r) only
has a single fixed point βi. Because the complete Lyapunov function V ∈ C2 and
LfV (x) < 0 for all x ∈ B(βi, r)\B(βi, r/2) which is a compact set, there exists κ > 0
such that

∀x ∈ B(βi, r) \B(βi, r/2), LfV (x) < −κ. (F.1)

Fixing r with κ, because f is smooth, there exists D′ such that D′ = max ‖f(x)‖+D
for all x ∈ B(βi, r) which is an upper bound for the movement of the process in
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B(βi, r). Finally we can take Ni small enough such that

∀x ∈ Ni, ‖V (x)− V (βi)‖ ≤
κr

32D′
. (F.2)

Proof of Lemma 10.9. Suppose the process starting at X0 ∈ Ni. Let V (k) , V (Xk),
by Equation (F.2),

V (0) ≤ V (βi) +
κr

32D′

We show T1 = O(n log n/ρ) time the process starting atNi leaves βi: XT1 ∈ B(βi, 3r/4)\
B(βi, r/2) with probability 1− ρ in Lemma 10.10.

Because by direct computation the value of complete Lyapunov function V is
a almost a supermartingale , E[V (Xk+1)] ≤ V (Xk) + O

(
1
n2

)
, by Azuma’s inequal-

ity(Theorem 2.18), with high probability,

V (T1) ≤ V (0) +
κr

32D′
≤ V (βi) +

κr

16D′
.

By Equation (F.1), LfV (x) ≤ −κ for all x ∈ B(βi, r) \B(βi, r/2), we run the process
for additional T2 = rn

4D′
steps then

V (T1 + T2) = V (T1) +

T1+T2∑
k=T1

V (k + 1)− V (k)

=V (T1) +

T1+T2∑
k=T1

(
d

dt
V (Xk) +O(

1

n2
)

)
1

n

≤ V (T1) +

T1+T2∑
k=T1

(
−κ+O(

1

n2
)

)
1

n

≤ V (T1)− κr

4D′
+O

(
1

n2

)
≤ V (βi)−

κr

8D′

which shows the process leaves the neighborhood Ni in O(n log n/ρ) time with prob-
ability 1− ρ.

F.1.2 Proofs for Sect. 10.4.1

Proof of Lemma 10.11. This is proved by optional stopping time theorem. Given
Z0 + βi = X0 ∈ Ni, Suppose T0 is the stopping time such that ‖Zu

T0
‖ ≥ 8‖Zs

T0
‖ or

‖ZT0‖ ≤ l1. We consider the following random variables W s
k ,

(
1− λs

2n

)−k ‖Zs
k‖2

2.
Suppose W s

k is a super martingale and r small enough, and by optional stopping time
theorem

E[W s
T0

] ≤ W s
0 ≤ r2 ≤ 1. (F.3)
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On the other hand, let p = Pr[T0 ≤ n log n]

E[W s
T0

] = E

[(
1− λs

2n

)−T0
‖Zs

T0
‖2

2

]

≥ E

[(
1− λs

2n

)−T0
l21/2

]
(stop before ‖ZT0‖2 < l21/2)

≥ pl21/2 + (1− p)
(

1− λs
2n

)−n logn

l21/2

≥ pl21/2 + (1− p)nλs/2l21/2.

Therefore combining the equation (F.3) and the above, we have Pr[T ≤ n log n] =

p ≥ 1− l21−2

(nλs/2−1)l21
= 1− o(1).

Now, let’s use induction show W s
T is a supermartingale before stopping time T0:(

1− λs
2n

)k+1

E[W s
k+1 | Fk]

=E
[
‖Zs

k+1‖2 | Fk
]

=E

[∥∥∥∥Zs
k +

1

n
AZs

k +
1

n
(O(‖Zk‖2) + noises)

∥∥∥∥2

| Fk

]

=‖Zs
k‖2 + E

[〈
Zs
k,

1

n
AZs

k +
1

n
(O(‖Zk‖2) + noises)

〉
| Fk

]
+O

(
1

n2

)
(by (10.6))

=‖Zs
k‖2 +

1

n
(Zs

k)
>AZs

k +
1

n
O(‖Zk‖3) +O

(
1

n2

)
≤
(

1− λs
n

)
‖Zs

k‖2 +
1

n
O(‖Zk‖3) +O

(
1

n2

)
(by Corollary 2.14)

If we take Ni small enough and n large enough,(
1− λs

2n

)k+1

E[W s
k+1 | Fk] ≤

(
1− λs

2n

)
‖Zs

k‖2 =

(
1− λs

2n

)k+1

W s
k .

This completes the proof.

Proof of Lemma 10.12. Let T1 be the stopping time that ‖ZT1‖ ≥ Cl1 for some con-
stant C. We first show the expectation of T1 is much smaller than τ1. Then we show
the stable component ‖Zs

k‖ is small for all k ≤ τ1. By union bound on these two
event, we show with high probability ‖ZT1‖ is large and ‖Zs‖ is small before τ1.

For the first part, because we are in a Euclidean space, the principle angle between
Eu and Es is bounded that is

θus = min {arccos(|〈vs, vu〉|) : vs ∈ Es, ‖vs‖ = 1, vu ∈ Eu, ‖vu‖ = 1} > 0. (F.4)
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As a result for all Z = Zu + Zs, we can lower bound

‖Z‖ ≥ ‖Zu‖/ sin θus, (F.5)

so it is sufficient to lower bound the magnitude of unstable component, ‖Zu‖. Let

aunoise , d1 Tr((P u)>P u) > 0 and Wk , ‖Zu
k ‖2

2 −
aunoise
n2 k. If Wk is a submartingale, by

optional stopping theorem (Theorem 2.11) E[WT1|F0] ≥ E[W0] ≥ 0 and

E[‖Zu
T1
‖2

2] ≥ aunoise

E[T1]

n2
. (F.6)

Therefore by (F.5) and (F.6),

E[T1] ≤ n2

aunoise

E[‖Zu
T1
‖2

2] ≤ (n sin θus)
2

aunoise

E[‖ZT1‖2
2] ≤ (Cn sin θusl1)2

aunoise

= O(n log2/3 n).

By Markov inequality there exists τ1 = O(n log n) such that ‖Zk‖ is greater than Cl1
for some k ≤ τ1 with probability 1− 1/(log n)1/3 = 1− o(1).

Now, let’s show Wk is a submartingale with respect to Fk before stopping time
T1. Let Zu

k+1 = Zu
k +Dk where Dk = 1

n
(AZu

k +O(‖Zk‖2) + noiseu):

E[Wk+1|Fk] = E
[
‖Zu

k+1‖2
2 −

aunoise

n2
(k + 1)|Fk

]
= E [〈Zu

k +Dk, Z
u
k +Dk〉|Fk]−

aunoise

n2
(k + 1)

= Wk + 2E [〈Zu
k , Dk〉|Fk] + E [〈Dk, Dk〉|Fk]−

aunoise

n2
.

To prove E[Wk+1|Fk] ≥ Wk, it is sufficient to show the following two claims:

2E [〈Zu
k , Dk〉|Fk]− o(1/n2) ≥ 0 (F.7)

E [〈Dk, Dk〉|Fk] ≥
aunoise

n2
(F.8)

For (F.7), we need to use the fact that A is expanding is subspace of Eu before
stopping time,

2E [〈Zu
k , Dk〉|Fk] = 2〈Zu

k ,E [Dk|Fk]〉

=
2

n
〈Zu

k , AZ
u
k +O(‖Zk‖2)〉 (E[noise] = 0)

=
2

n

(
(Zu

k )>AZu
k +O(‖Zk‖3)

)
≥ 2

n

(
λu‖Zu

k ‖2 +O(‖Zk‖3)
)

(by Corollary 2.14)

>
1

n
O(‖Zk‖3) = o(1/n2). ( ‖Zs

k‖ = O(‖Zk‖) = O(l1))
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For (F.7), we use the variance of noise is bounded below by some constant

E [〈Dk, Dk〉|Fk] =
1

n2
‖AZu

k +O(‖Zk‖2)‖2 +
1

n2
E
[
〈AZu

k +O(‖Zk‖2), noiseu〉
]

+
1

n2
E
[
‖noiseu‖2

]
≥ 1

n2
E
[
‖noiseu‖2

]
≥ 1

n2
d1 Tr((P u)>P u) =

1

n2
aunoise

(by Lemma F.1 and definition of aunoise)

For the second part, ‖Zs
k‖ = o(l1) for all k ≤ τ1, we can use similar argument in

Lemma 10.11 to show it’s true with high probability.
Finally because with high probability T1 < τ1 such that ‖ZT1‖ ≥ Cl1 and ‖Zs

k‖ =
o(l1) for all k ≤ τ1, we have ‖Zu

T1
‖ ≥ 2l1 which completes the proof.

Lemma F.1 (projected noise). Given a d-dimensional random vector X ∈ Rd, ma-
trices P, S ∈ Rd×d, and 0 < d1 < d2 where E[X] = 0, Cov[X] = S, P is not the zero
matrix, and S is positive definite matrix with d1Id ≺ S ≺ d2Id, then

0 < d1 Tr(P>P ) < E
[
‖PX‖2

]
< d2 Tr(P>P ).

Proof.

E
[
‖PX‖2

]
=E

[
Tr
(
X>P>PX

)]
=E

[
Tr
(
P>PXX>

)]
= Tr

(
P>PE

[
XX>

])
(linearity of trace)

= Tr
(
P>PS

)
> 0

Because S is positive definite and P>P is positive semi-definite and not the zero
matrix.

Finally, since d1Id ≺ S, S − d1Id is positive definite, and

E
[
‖PX‖2

]
− d1 Tr(P>P ) = Tr

(
P>PS

)
− d1 Tr(P>P ) = Tr

(
P>P (S − d1Id)

)
> 0.

Proof of Lemma 10.13. Let τj = Cn, Tj be the stopping time, Tj = arg min{Xt /∈
B(βi,

√
r)} given X0 = Z0 +βi defined in the statement of Lemma 10.13, and r small

enough such that (10.6) holds. Here we abuse the notation and define Zk as a new
process by Equation (10.6) and couple it with the original process until Tj. Therefore,
the lemma can be proved with the following are three equations:

1. With very high probability the stopping time Tj is greater than τj ,

Pr[Tj > τj] = 1− o(1/ log n); (F.9)
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2. The expectation at time τj, E[Zτj ], is nice,

lj+1 ≥ 8‖E[Zs
τj

]‖ and ‖E[Zu
τj

]‖ > lj+1, and (F.10)

3. Zτj is concentrated

Pr
[
lj+1 ≥ 8‖Zs

τj
‖ and ‖Zu

τj
‖ > lj+1

]
= 1− o(1/ log n). (F.11)

Before proving these, let’s do some computation to gain some intuition. To com-
pute the E[Zτj ] suppose Tj > τj we can use the linear function Ax to approximate
f(x) and tower property of expectation:

E[Zk+1] = E[E[Zk+1 | Fk]]

= E
[
E
[
Zk +

1

n
(AZk +O(‖Zk‖2) + noise) | Fk

]]
(by Equation (10.6))

=

(
1 +

1

n
A

)
E [Zk] +

1

n

−−−−−−−−−→
E
[
O(‖Zk‖2)

]
.

Apply this recursive relation repeatedly and we have,

E[Zτj ] =

(
1 +

1

n
A

)τj
E [Z0] +

1

n

∑
k<τj

(
1 +

1

n
A

)τj−k
E
[−−−−−−→
O(‖Zk‖2)

]
. (F.12)

Therefore, suppose the norm ‖Zk‖2 for all 0 ≤ k < τj are small, the value E[Zτj ]

can be approximated by the first term,
(
1 + 1

n
A
)τj E [Z0]. Formally, it is sufficient to

show for all constant ε > 0,

‖Zk‖2 ≤ ε‖Z0‖ for all 0 ≤ k < τj. (F.13)

Equation (F.9): We defineWk ,
(
1 + 2λmax

n

)−k ‖Zk‖2
2 where λmax = maxλ∈ρ(A)<(λ)

is the maximum real part of eigenvalues of A. By Corollary 2.14 and similar argument
in Lemma 10.11, Wk is a supermartingale such that E[Wk+1 | Fk] ≤ Wk.

Let’s apply Theorem 2.20 on (Wk). Because for all k ≤ Cn |‖Zk+1‖2
2 − ‖Zk‖2

2| =
O
(

1
n

)
uniformly, D = O(1/n), ck = |Wk+1 − Wk| = O

((
1 + 2λmax

n

)−k 1
n

)
, and∑

c2
i = O

(
1
n

)
. Let δ = (logn)1/4√

n
. By Theorem 2.20,

Pr

[
max
k≤τj

Wk ≥ W0 + δ

]
≤ exp

(
− δ2

2
∑

k≤τj c
2
k +Dδ

)
= exp

(
−Ω

(√
log n

))
.

Let E be the good event that maxk≤τj Wk < W0 + δ. Note that condition on E , with
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probability Pr[E ] = 1−exp
(
−Ω

(√
log n

))
we have Equation (F.13) for all 0 ≤ k ≤ τj

‖Zk‖2 ≤
(

1 +
2λmax

n

)k (
‖Z0‖2 + δ

)
≤ 2r exp (2λmaxC) · ‖Z0‖. (F.14)

Given ε, C, λmax > 0, we can take r small enough such that 2r exp (2λmaxC) ≤ ε ≤ 1.
Moreover, this also proves Equation (F.9), because ‖Zk‖ ≤

√
εr ≤

√
r.

Equation (F.10): Now we are ready to prove the first part. By Equation (F.12)
and (F.14), let E be the event defined in (F.13) we have

E[Zτj ]−
(

1 +
1

n
A

)τj
E [Z0]

=
1

n

∑
k<τj

(
1 +

1

n
A

)τj−k−−−−−−−−−→
E
[
O(‖Zk‖2)

]
(by (F.12))

=
1

n

∑
k<τj

(
1 +

1

n
A

)τj−k (
E
[−−−−−−→
O(‖Zk‖2) | E

]
+ E

[−−−−−−→
O(‖Zk‖2) | ¬E

])
=

1

n

∑
k<τj

(
1 +

1

n
A

)τj−k (
E
[−−−−−−→
O(‖Zk‖2) | E

]
+
−−−−−−−→
O (Pr[¬E ])

)
(by (F.14) and Zτj ∈ B)

≤ r
−−−−−→
O(‖Z0‖) +

−−−−−−−−−−−−−−→
exp

(
−Ω

(√
log n

))
=
−→
εlj. (by E)

Therefore, we have if ‖Z0‖ ≤ lj,

E[Zτj ] =

(
1 +

1

n
A

)τj
Z0 + r

−−−→
O(lj), (F.15)

and for the unstable component and stable component we have

‖E[Zu
τj

]‖ ≥
(

1 +
λu
n

)τj
‖Zu

0 ‖ ≥ exp (λuC) lj − rO(lj). (F.16)

‖E[Zs
τj

]‖ ≤ exp(−λsC)

8
lj + rO(lj). (F.17)

and the constant of O(lj) depends on C, dimension d, and the principle angle θus
defined in (F.4). This proves Equation (F.10) by taking C large enough and r small
enough.

Equation (F.11): We define a vector-valued Doob martingale,

Yk(Z0, . . . , Zk) = E[Zτj |Z0, . . . , Zk] ∈ Rd. (F.18)

and prove Equation (F.11) by using concentration property of vector-valued martin-
gale Yk (Theorem 2.19 and 2.21). With good event E , we want to bound {ck}0≤k≤τj

298



the “variability” of each variable Z0, . . . , Zτj on the martingale Yk condition on this
good event defined in (F.18),

ck = sup
{∥∥E[Zτj |Z0, . . . Zk−1, Zk = zk, E ]− E[Zτj |Z0, . . . Zk−1, Zk = z′k, E ]

∥∥} .
Equivalently, ck is the 2-norm error with initial difference ‖zk − z′k‖ = O(1/n). For-
mally by (F.15) and E , we have ck = O(1/n) for all k ≤ τj and

∑τj
k=0 c

2
k = O(1/n).

By concentration property of vector-valued martingale Yk (Theorem 2.19), for any
constant D′ > 0

Pr

[
‖Zτj − E[Zτj ]‖ ≥

lj
16D′

]
≤ O

(
exp

(
−Ω(nl2j )

))
+ Pr[¬E ] = exp

(
−Ω

(√
log n

))
(F.19)

Therefore, by Equations (F.16), (F.17), and (F.19), with probability 1−exp
(
−Ω

(√
log n

))
=

1− o(1/ log n) we have,

‖Zu
τj
‖ ≥ ‖E[Zu

τj
]‖ − lj

16D′
≥
(

exp (λuC)−O(r)− 1

16D′

)
lj ≥ 2lj = lj+1.

This the last inequality can be true by first take D′ large, C large, and r small enough.
The stable component can be upper bounded as follows

‖Zs
τj
‖ ≤ ‖E[Zs

τj
]‖+

lj
16D′

≤
(

exp (−λsC) +O(r) +
1

2D′

)
lj
8
≤ 1

8
lj ≤

1

8
lj+1.

which proves Equation (F.11).

F.2 Missing proofs for Sect. 10.5

Proof of Lemma 10.15. We first show there is no fixed point outside [0, 1]2, that is
the curve γ1 and γ2 do not have intersection outside.

Let (x1, x2) ∈ γ1 ∩ γ2. When m0 = fk,R
′(0) = 0, if p x1 + q x2 ≤ 0 or p x2 + q x1 ≤

by the definition of f̄ND and γ1, (x1, x2) = (0, 0). On the other hand, when m0 =
fk,R

′(0) > 0, f̄ND is monotone, the above solution curve can be rewritten with respect
to

g(z) ,
1

q

(
fk,R

−1(z)− pz
)

(F.20)

γ1 =
{

(x1, x2) ∈ [0, 1]2 : x2 = g(x1)
}

γ2 =
{

(x1, x2) ∈ [0, 1]2 : x1 = g(x2)
} (F.21)

For x1 < 0, because (x1, x2) ∈ γ1, x2 < x1, and because (x1, x2) ∈ γ2, x2 > x1.
Therefore there is no fixed point out side [0, 1]2.

If δsymm = 1/fk,R
′(1/2), we want to show (0, 0), (1, 1) and (0.5, 0.5) are the only

intersections between γ1 and γ2 in [0, 1]2 which by symmetry is enough to show the
curve γ1 is in R1 ∪ R3 ∪ {(0, 0), (1, 1), (0.5, 0.5)}. By Definition 9.1, fk,R(0) = 0,
fk,R(1/2) = 1/2, and fk,R is strictly convex in [0.0.5], g(0) = 0, g(0.5) = 0.5, and g is
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strictly concave in [0, 0.5], so for all x1 ∈ (0, 0.5),

g(x1) = g

(
(1− 2x1) · 0 + 2x1 ·

1

2

)
>

(
(1− 2x1) · g(0) + 2x1 · g

(
1

2

))
= x1,

(F.22)
and we show γ1 is above x1 = x2.

On the other hand, since g is strictly concave and C2 in [0, 0.5], g′(x1) > g′(0.5),

and g′(0.5) = 1
q

(
1

f ′(0.5)
− p
)
> −1, since p− q < δsymm = 1/f ′ND(0.5). Thus we have

g(x1) = g(0.5) +

∫ x1

0.5

g′(s) ds = 0.5−
∫ 0.5

x1

g′(s) ds < 0.5 + (0.5− x1),

and show
g(x1) + x1 < 1. (F.23)

Combining equations (F.22) and (F.23) we prove the number of fixed points is exactly
3.

For the property of these three fixed points for all p and q. By Definition 2.30 it
is sufficient to study the linear approximation of the dynamics at these points:

∇F̄ND|(x1,x2)=

[
−1 + pf̄ ′ND (p x1 + q x2) qf̄ ′ND (p x1 + q x2)
qf̄ ′ND (q x1 + p x2) −1 + pf̄ ′ND (q x1 + p x2)

]
(F.24)

When (x1, x2) = (0, 0),∇F̄ND|(0,0)=

[
−1 + pf̄ ′ND(0) qf̄ ′ND(0)
qf̄ ′ND(0) −1 + pf̄ ′ND(0)

]
has trace 2(pf̄ ′ND(0)−

1) and determinant ((p−q)f̄ ′ND(0)−1)(f̄ ′ND(0)−1). Thus ∇F̄ND|(0,0) has two negative
real eigenvalues since fk,R

′(0) < 1.
Similarly there are two cases for the fixed point (0.5, 0.5): if 1 < fk,R

′(0.5) <
1/(p−q), the determinant is negative ((p−q)f̄ ′ND(0)−1)(f̄ ′ND(0)−1) < 0, so (0.5, 0.5)
is a saddle point. On the other hand if fk,R

′(0.5) > 1/(p− q), (0.5, 0.5) is a repelling
point.

Proof of Lemma 10.16. We first show the number of anti-symmetric fixed points is
two, than analyze the property of those fixed points.

Because p − q > δsymm, we have g′(0.5) = 1
q

(
1

f ′(0.5)
− p
)
< −1, so the curve γ1

overlaps with R2. Therefore there exists a non-symmetric intersection between γ1

and the line x1 + x2 = 1, (x
(a)
1 , x

(a)
2 ) with x

(a)
1 6= x

(a)
2 which is also in the intersection

of γ1 and γ2 due to the symmetry.
x

(a)
1 = f̄ND

(
p x

(a)
1 + q x

(a)
2

)
x

(a)
2 = f̄ND

(
p x

(a)
2 + q x

(a)
1

)
1 = x

(a)
1 + x

(a)
2 and x

(a)
1 < x

(a)
2

(F.25)

Because f is convex in [0, 0.5], the system only has two anti-symmetric fixed points

(x
(a)
1 , x

(a)
2 ) and (1− x(a)

1 , 1− x(a)
2 ).

300



Now we want to show the property of these fixed points. Let δ = p − q and
s(a) = p x

(a)
1 + q x

(a)
2 and t(a) = p x

(a)
2 + q x

(a)
1 . Rearrange the above equations we have,

1 = fk,R(s(a)) + fk,R(t(a)) (F.26)

p+ q

p− q
=
fk,R(s(a))− fk,R(t(a))

s(a) − t(a)
(F.27)

1 = s(a) + t(a) and s(a) > t(a) (F.28)

Because 1 = x
(a)
1 + x

(a)
2 and the symmetry of fk,R, we have f̄ ′ND

(
s(a)
)

= f̄ ′ND

(
t(a)
)

and call it m(a)(δ). By Equation (F.27) and the convexity of fk,R, as δ increases,
the derivative at s(a), m(a)(δ), decreases. By the monotone property, there exists
δanti > δsymm such that m(a)(δ) < 1 for all δ = p − q < δanti, and m(a)(δ) > 1 for all
δ < δanti.

Using Equation (F.24) the matrix ∇F̄ND|(x(a)1 ,x
(a)
2 )

has the trace 2(pm(a)(δ) − 1)

and the determinant ((p− q)m(a)(δ)− 1)(m(a)(δ)− 1), so

attracting Both eigenvalues are negative, when m(a)(δ) < 1.

saddle One positive and negative eigenvalues, when 1
p−q < m(a)(δ) < 1.

Note it is impossible that 1
p−q > m(a)(δ); otherwise, g′(x

(a)
1 ) < −1 and implies there

are more than two anti-symmetric fixed points contradicting the property of fk,R.

Proof of Lemma 10.17. Let (x
(a)
1 , x

(a)
2 ) be the anti-symmetric fixed point defined in

(F.25). Given pe, qe and δe < δanti, let (x
(e)
1 , x

(e)
2 ) ∈ R2 be the eccentric fixed point

such that x
(e)
1 is the smallest value that greater than x

(a)
1 .

We first characterize the local behavior of (x
(e)
1 , x

(e)
2 ). Because fk,R is a C2 function

by implicit function theorem, we can parametrize curves (10.11) as (x
(1)
1 , x

(1)
2 ) and

(x
(2)
1 , x

(2)
2 ) of γ1, and γ2 respectively. Given δe < δanti, by Lemma 10.16 (x

(a)
1 , x

(a)
2 ) is

a saddle point,

m(a)(δe) =
dx

(1)
2

dx
(1)
1

∣∣∣∣
(x

(a)
1 ,x

(a)
2 )

< 1 <
dx

(2)
2

dx
(2)
1

∣∣∣∣
(x

(a)
1 ,x

(a)
2 )

=
1

m(a)(δe)
.

By convexity of fk,R and definition of (x
(e)
1 , x

(e)
2 ) we have

dx
(2)
2

dx
(2)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

≤ dx
(1)
2

dx
(1)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

< m(a)(δe) < 1 (F.29)

Let I ⊆ (δe, δanti) be the set of δ such that the system (F.21) has eccentric fixed
points. We want to show the system has an eccentric fixed point when δ is between δe
and δanti— I = (δe, δanti). Since (δe, δanti) is connected, it is sufficient to show the set
I is relative open and closed. By the continuity of system (F.21), we know the set I is
closed. To show I is open, without loss of generality, we show there is a neighborhood
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of δe contained in I. Given (x
(e)
1 , x

(e)
2 ) with δe, fixing x1 = x

(e)
1 , let’s consider and the

movement of x
(1)
2 (δ) and x

(2)
2 (δ) as δ changes around δe where x

(1)
2 (δ) (and x

(2)
2 (δ)) is

the highest intersection between x1 = x
(e)
1 and γ1 (γ2 respectively).

d

dδ

(
x

(1)
2 − x

(2)
2

)
> 0. (F.30)

Informally, by Equation (F.21), as δ changes, the curve γ1 is stretched vertically (x2

direction) and the movement is proportional to the change rate of δ. On the other
hand, γ2 is stretched horizontally (x1 direction), and by Equation (F.29) the slope is
smaller than 1, so the vertically increment rate is smaller than the rate of δ. Therefore
the x

(1)
2 (δ) should increase faster than x

(2)
2 (δ) in x2. Now let give a formal argument.

Through direct computation on Equation (F.21),

dx
(1)
2

dδ
=

1

2(1− δ)
(x

(1)
2 − x

(1)
1 ) =

1

2(1− δ)
(x

(e)
2 − x

(e)
1 ).

Similarly,(
1 +

1

1− δ

(
1

fk,R
′(fk,R

−1(x
(e)
2 ))

− 1

))
dx

(2)
2

dδ
=

1

2(1− δ)
(x

(e)
2 − x

(e)
1 )

Therefore, to prove Equation (F.30), it is sufficient to show(
1 +

1

1− δ

(
1

fk,R
′(fk,R

−1(x
(e)
2 ))

− 1

))
> 1. (F.31)

This can be proved by taking derivative at Equation (F.21) with respect to x
(2)
1 and

applying Equation (F.29),

1 =

(
1 +

1

1− δ

(
1

fk,R
′(fk,R

−1(x
(e)
2 ))

− 1

))
dx

(2)
2

dx
(2)
1

<

(
1 +

1

1− δ

(
1

fk,R
′(fk,R

−1(x
(e)
2 ))

− 1

))
.

Now, let’s prove the eccentric fixed point is stable. Note that by (F.29) and (F.30),
for all δ > δe,

0 <
dx

(2)
2

dx
(2)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

<
dx

(1)
2

dx
(1)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

< 1. (F.32)

Rewrite the above inequality in terms of fk,R we have,

1 >
1

1− δ

(
1

fk,R
′(fk,R

−1(x
(e)
1 ))

− δ

)
>

[
1

1− δ

(
1

fk,R
′(fk,R

−1(x
(e)
2 ))

− δ

)]−1

> 0.
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By Equation (F.24), the matrix ∇F̄ND|(x(e)1 ,x
(e)
2 )

is[
−1 + pf̄ ′ND(fk,R

−1(x
(e)
1 )) qf̄ ′ND(fk,R

−1(x
(e)
1 ))

qf̄ ′ND(fk,R
−1(x

(e)
2 )) −1 + pf̄ ′ND(fk,R

−1(x
(e)
2 ))

]
.

The trace is negative, because fk,R
′(fk,R

−1(x
(e)
1 )) < 1 and fk,R

′(fk,R
−1(x

(e)
2 )) < 1/δ.

The determinant is positive, because

(
1

fk,R
′(fk,R

−1(x
(e)
1 ))
− δ
)
·
(

1

fk,R
′(fk,R

−1(x
(e)
2 ))
− δ
)
>

(1− δ)2. Therefore, the (x
(e)
1 , x

(e)
2 ) is a stable fixed point.

F.3 Node dynamics on bi-blockmodel

To prove the first part, our proof has two steps: given an arbitrary neighborhood
of consensus states Q, the Markov chain XND reaches Q in O(n log n) with high
probability, and it hits the consensus states in O(n log n) with constant probability
if XND

0 ∈ Q when Q small enough. The first one is proved in Lemma F.2 and the
second part is proved in Lemma F.4.

Lemma F.2 (Reaching neighborhood Q). In case 1 of Theorem 10.5, given arbitrary
neighborhoods M0,M1 ⊂ [0, 1]2 such that (0, 0) ∈M0 and (1, 1) ∈M1, the hitting time
of XND to set Q ,M0 ∪M1 is

Pr[∀σ0 ∈ {0, 1}n, TQ(σ0) = O(n log n)] = 1− o(1),

where TQ(σ0) denotes the stopping time of SND such that pos(SND
TQ

) ∈ Q from the
initial state σ0.

Proof of Lemma F.2. With Theorem 10.7, and 10.6, XND reaches a fixed neighbor-
hood of consensus states (0, 0), (1, 1), Q in O(n log n) with high probability if the
noise is well-behaved:

∃d1, d2 > 0,∀x ∈ ΩX \Q, d1Id ≺ Cov[U(x)] ≺ d2Id. (F.33)

which is proved in Lemma F.3.

Lemma F.3 (Well-behaved noise). Given XND defined in (10.4), there exist d1, d2 >
0, for all x ∈ ΩX \Q,

d1Id ≺ Cov[U (x)] ≺ d2Id
where U(x) , n (X ′ − E[X ′]) condition on X = x.

Lemma F.4 (Reaching consensus). In the first case of Theorem 10.5, there exist T =
O(n log n), neighborhoods M0,M1, and Q in [0, 1]2 where (0, 0) ∈ M0, (1, 1) ∈ M1,
and Q ,M0 ∪M1, such that for all pos(σ0) ∈ Q

Pr[T (σ0) ≤ T ] ≥ 1/6
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where T (σ0) denotes the hitting time of SND to consensus states 0n or 1n with initial
state σ0.

Lemma F.5 (Potential wall). Given a time homogeneous Markov chain Sk with
state space Ω, if there exist constants d ∈ N, D ∈ R+ compact sets Q ⊂ Q′ ⊂ Rd,
functions φ : Ω → Rd, and f ∈ C2(Rd,Rd) with an attracting fixed point βa ∈ Q, if
{Xk}k∈N = {φ(Sk)}k∈N is a function of Markov chain in Rd, and

1. Xk+1 = Xk + 1
n

(f(Xk) +U(Sk)), and set Uk+1 , U(Sk).

2. For all Xk ∈ Ω, E[Uk+1 | Sk] = 0,

3. For all Xk ∈ Ω, ‖Uk+1‖ ≤ D

For all s0 with φ(s0) ∈ Q and T ≥ 1

Pr[∀k < T,Xk ∈ Q′] ≥ 1− T exp(−Ω(n)).

With above four lemmas, we are ready to prove the Theorem 10.5

Proof of Theorem 10.5. For the first part, by Lemma F.2 XND reaches a fixed neigh-
borhood of consensus states (0, 0), (1, 1), Q in O(n log n) with high probability. By
Lemma F.4, if Q is small enough, the process hits consensus states in Tc = O(n log n)
with probability at least 1/7. Therefore

Pr[∀σ0 ∈ {0, 1}n, T (σ0) ≤ Tc] ≥ 1/7. (F.34)

Because the XND is a Markov chain which is bounded in B ⊆ [0, 1]2 and the upper
bound in (F.34) is independent of initial states, we can show upper bound the expected
hitting time to consensus states. Let Ec be the event of hitting Q in time Tc =
O(n log n), and by Equation (F.34) we have Pr[Ec] ≥ 1/7. Because the process XND

is a Markov chain and bounded, we can partition the time into intervals with duration
Tc, the process XND reaches consensus with probability at most Pr[Ec] and this
bounds are independent of different time intervals so the expected number of intervals
for Ec to happens is bounded by the expectation of a geometric random variable
with success probability Pr[Ec] which is constant. Therefore, ME(K(n, p, q), fk,R) =
O(n log n).

For the second part, by Theorem 10.7 there is an extra attracting fixed point βa
of F̄ND. By Lemma F.5, there exists neighborhoods of βa, Q and Q′ such that for
any σ0 with φ(σ0) ∈ Q and T ≥ 1 Pr[XT ∈ Q′] ≥ 1− T exp(−Ω(n)). Therefore, with
initial state σ0

Pr[T (G, fk,R, σ0) ≥ k] ≥ Pr[Xk ∈ Q′] ≥ 1− k exp(−Ω(n))

Because the hitting time is a non-negative random variable

E[T (G, fk,R, s0)] =
∑
k

Pr[T (G, fk,R, s0) ≥ k] ≥
∑
k

1− k exp(−Ω(n)) = exp(Ω(n)).
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Proof of Lemma F.5. Because βa is a attracting fixed point, all the eigenvalue of
A , ∇f |βa has negative real part which is called stable matrix (or sometimes Hurwitz
matrix), and by Lyapunov theorem there exists a positive definite matrix P such that
PA+A>P = −Id. We define V (x) , x>Px. Therefore, with Taylor expansion on V
and the property of A, we have

E[V (Xk+1)|Sk] = E
[
V (Xk) +

1

n
∇V (Xk) · (f(Xk) +Uk+1) +O

(
1

n2

)
| Sk

]
≤ V (Xk) +

2

n
X>k P · (f(Xk)) +O

(
1

n2

)
≤ V (Xk) +

2

n
X>k PAXk +

L

n
‖Xk‖3

(L bounded because f ∈ C2 in B)

≤ V (Xk) +
1

n
X>k (PA+ A>P )Xk +

L

n
‖Xk‖3

≤ V (Xk)−
1

n
‖Xk‖2 +

L

n
‖Xk‖3 (PA+ A>P = −Id)

Therefore the value V (Xk) is a super martingale and there exists r > 0 such that
E[V (Xk+1)|Sk] − V (Xk) ≤ −r for all Xk ∈ Q′ when Q′ are small enough. Further-
more, because P is positive definite we can take Q ⊂ Q′ small enough such that the
potential value has constant separation: maxx∈Q V (x) < minx/∈Q′ V (x).

Suppose there exists 0 ≤ l ≤ T such that Xl /∈ Q′. Because X0 = φ(s0) ∈ Q, there
exists an interval of time from k to l such that Xk ∈ Q, Xl /∈ Q′ and X` ∈ Q′ \Q for
all k < ` < l, we define this event as El. Because each step the process Xk can only
increase by 1/n and the potential value in Q and outside Q′ has constant separation,
the time interval is l−k ≥ cn for some constant c > 0 However, such event El happen
with probability

Pr[Xl /∈ Q′] ≤ Pr[El] ≤ exp(−Ω(n))

by Azuma’s inequality. The proof is finished by taking union bound on l.

Proof of Lemma F.3. By the definition of XND, given X = x = (x1, x2) ∈ ΩX \Q, de-
fine the difference to be Y , n(X ′−X) where Y = (Y1, Y2) ∈ {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}
only have these five possible outcomes, and we can compute these directly:

p+
1 (x) ,Pr[Y = (1, 0) |X = x] =

1− x1

2
fND(px1 + qx2),

p−1 (x) ,Pr[Y = (−1, 0) |X = x] =
x1

2
(1− fND(px1 + qx2)) ,

p+
2 (x) ,Pr[Y = (0, 1) |X = x] =

1− x2

2
(fND(qx1 + px2)) ,

p−2 (x) ,Pr[Y = (0,−1) |X = x] =
x1

2
(1− fND(qx1 + px2)) .
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We omit x when it is clear. Then by the definition of U(x) and Y ,

Cov[U(x)] = Cov[n (X ′ − E[X ′]) |X = x]

= Cov[n (X ′ − x) |X = x]

= Cov[Y |X = x]

=

[
Var[Y1] E[Y1Y2]− E[Y1]E[Y2]

E[Y1Y2]− E[Y1]E[Y2] Var[Y2]

]
=

[
p+

1 + p−1 − (p+
1 − p−1 )2 −(p+

1 − p−1 )(p+
2 − p−2 )

−(p+
1 − p−1 )(p+

2 − p−2 ) p+
2 + p−2 − (p+

2 − p−2 )2

]
.

Let S1 = p+
1 + p−1 , S2 = p+

2 + p−2 , D1 = p+
1 − p−1 , and D2 = p+

2 − p−2 , and Cov[U(x)]
can be simplified as,

Cov[U(x)] =

[
S1 −D2

1 −D1D2

−D1D2 S2 −D2
2

]
. (F.35)

Because Cov[U(x)] is symmetric, the eigenvalues are real. By Gershgorin circle the-
orem and (F.35), the eigenvalues are upper bounded by

max
{
S1 −D2

1 + |D1D2|, S2 −D2
2 + |D1D2|

}
≤ 1,

and lower bounded by

min
{
S1 −D2

1 − |D1D2|, S2 −D2
2 − |D1D2|

}
, (F.36)

so to find d1 it is sufficient to lower bound Equation (F.36).
Because Q = M0 ∪ M1, there exists constant α > 0 such that 1-norm balls

{x ∈ [0, 1]2 : ‖x‖1 ≤ α} and {x ∈ [0, 1]2 : ‖x − (1, 1)‖1 ≤ α} are insides Q. Thus, if
(x1, x2) ∈ ΩX \Q, px1 + qx2, qx1 + b̄x2 are in [qα, p(1− α)], so

0 < fND(qα) ≤ fND(px1 + qx2) and fND(qx1 + px2) ≤ fND(p(1− α)) < 1 (F.37)

As a result, p+
1 , p

−
1 , p

+
2 and p−2 are smaller or equal to 1

2
fND(p(1−α)), and |D1|, |D2| ≤

1
2
fND(p(1− α)). Moreover,

(F.35) ≥min {S1 − fND(p(1− α))|D1|, S2 − fND(p(1− α))|D2|}
≥(1− fND(p(1− α))) min {S1, S2} .

Because S1 = p+
1 +p−1 is a convex combination of fND(px1 +qx2)/2 and (1−fND(px1 +

qx2))/2, and S2 = p+
2 + p−2 is a convex combination of fND(qx1 + px2)/2 and (1 −

fND(qx1 + px2))/2, by (F.37), min{S1, S2} ≥ 1
2

min{fND(qα), 1− fND(p(1− α))},

(F.35) ≥ (1− fND(p(1− α))) · 1

2
min{fND(qα), 1− fND(p(1− α))} > 0

Therefore, we can take 0 < d1 <
1
2
(1−fND(p(1−α)))·min{fND(qα), 1−fND(p(1−α))}
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and d2 = 2 which completes the proof.

Proof of Lemma F.6. Let ψ(k) =
∑

1≤`≤k d` and ψ(0) = 0. By direct computation,
for all 0 < k < m

Lψ(k) =p+(k) (ψ(k + 1)− ψ(k))− p−(k) (ψ(k)− ψ(k − 1))

=p+(k)dk+1 − p−(k)dk (definition of ψ)

≤− 1 (definition of dk)

Finally, Lψ(m) = −p−(k) (ψ(k)− ψ(k − 1)) − p−(k)dk ≤ −1. Therefore ψ(m) is a
upper bound for the maximum expected hitting time by Corollary 2.10.

F.3.1 From neighborhood of attracting fixed points to fixed
points

In this section, we want to prove Lemma F.4: once the process XND hits the set
Q defined in Lemma F.2 process reaches consensus states with constant probability
within O(n log n) time. We achieve this by coupling the process with a birth-and-
death chain. In Lemma F.6, we give a simple upper bound for hitting time of birth-
and-death chain. In Lemma F.7, a uniform bound for (F.38) is given for our process.

Lemma F.6 (Hitting time of birth-and-death chains). Let discrete time Markov chain
Wk be a birth-and-death chain on space Ω = {0, 1, . . . ,m} such that in each transition
the state can increase or decrease by at most 1 where

Pr[W ′ = W + 1 | W = `] = p+(`)
Pr[W ′ = W | W = `] = 1− p+(`)− p−(`)
Pr[W ′ = W − 1 | W = `] = p−(`)

Let d1, . . . , dm be a positive sequence such that

dm ≥
1

p−(m)
and dl−1 ≥

1

p−(`− 1)
+

(
p+(`+ 1)

p−(`− 1)

)
dl (F.38)

Then the maximum expected hitting time from state ` to 0 can be bounded as follows:

max
`∈Ω

E[T0(x)] ≤
∑

0<`≤m

d`

where T0(x) denotes the hitting time from state x to state 0.

Lemma F.7. Let h(σ) , ‖Pos(σ)‖1. There exist positive constants α, γ and ε, such
that for all SND

k with h(SND
k ) ≤ εn,

Pr
[
h(SND

k+1) = h(SND
k )− 1 | SND

k = σ0

]
≥ γh(σ0)/n, (F.39)
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and
Pr
[
h(SND

k+1) = h(SND
k ) + 1

]
Pr
[
h(SND

k+1) = h(SND
k )− 1

] ≤ 1− α. (F.40)

Proof of Lemma F.4. Without loss of generality, suppose pos(σ0) ∈ M0. Consider a
function h : Ω→ N0 where h(σ) , ‖Pos(σ)‖1. Let Vk = h(Sk) is a stochastic process
on N0 and the process Sk reaches 0n if and only h(SND

k ) = 0. With M0 and h we
define m0 = max{h(σ) : pos(σ) ∈M0} = Θ(n).

To show the process hits 0n in O(n log n) with probability 1/6, the proof has two
steps: we first upper bound the expected optional stopping time, T = min{k : Vk =
0 ∨ Vk ≥ 2m0},

E[T ] = τ ′ = O(n log n) (F.41)

Then show
Pr[VT = 0] ≥ Pr[VT ≥ 2m0] (F.42)

With the above two equations, we have

Pr[T ≤ 3τ ′] ≥ Pr[T ≤ 3τ ′ ∧ VT = 0]

≥ 1− Pr[VT 6= 0]− Pr[T ≥ 3τ ′] (union bound)

≥ 1/2− 1/3 = 1/6 (by Markov inequality and (F.42))

Now let’s prove the Equation (F.41) and (F.42). For Equation (F.41) we couple
the process Vk with a birth-and-death chain Wk as follows: Wk is a Markov chain on
space {0, 1, . . . , 2m0}, one step the state can increase or decrease by at most 1 such
that for all 0 < ` < 2m0

Pr[W ′ = W + 1 | W = `] = maxσ:h(σ)=` Pr[V ′ = V + 1 | V = h(σ)]
Pr[W ′ = W − 1 | W = `] = minσ:h(σ)=` Pr[V ′ = V − 1 | V = h(σ)]

(F.43)

recalled that we use W ′ to denote state of single transition of a discrete time Markov
chain starting at W . For the boundary states 0 and 2m0, we set Pr[W ′ = W + 1 |
W = 2m0] = 0 and Pr[W ′ = W − 1 | W = 0] = 0.

By Lemma F.7 and F.6, the expected hitting time of Wk to state 0 is upper
bounded by

∑
`≤2m0

d` where d` is defined in Lemma F.6. By Lemma F.7, we can set

d2m0 = n
γ2m0

= O(1), for all 1 ≤ ` < 2m0, d` = 1
γ`

+ (1− α)d`+1. By induction there

exists C such that d` ≤ Cn
`

for all 1 ≤ ` ≤ 2m0. Therefore

E[min{k : Wk = 0}] ≤
∑

d` = O(n log n).

By the definition of Wk, we can couple these two process Vk and Wk before the
process hits the boundary such that Wk ≥ Vk for all k ≤ τ . Therefore, we can upper
bound E[τ ] ≤ E[min{k : Wk = 0}] = O(n log n).

Finally Equation (F.42) is true, because Vk is a supermartingale, E[Vk+1 | SND
k ] ≤

Vk by Lemma F.7.

Proof of Lemma F.7. This Lemma shows if the fraction of opinion 1 in V1 and V2 is
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smaller than α, the number of 1 opinion decrease fast. Given configuration Sk, let
ak, bk be the number of 1 opinion in V1, V2 at time k. Note that the update function
fk,R is smooth and strictly concave in [0.5, 1] and fk,R(1) = 1, fk,R(0.5) = 0.5, there
exists m1 such that fk,R

′(1) < m1 < 1 and for all 0 < 1− x < ε

fk,R(x) ≤ 1 +m1(x− 1). (F.44)

Similarly there exists m0 such that fk,R
′(0) < m0 < 1 and for all 0 < x < ε

fk,R(x) ≥ m0x. (F.45)

Let’s first prove (F.39). The event that h(Sk+1) = h(Sk)− 1 is equal at time k+ 1
a node with opinion 1 is chosen and updates its opinion to 0,

Pr[h(Sk+1) = h(Sk)− 1 | Sk]

=
ak
n

Pr[v1 ∈ V1 updates to0] +
bk
n

Pr[v2 ∈ V2 updates to0]

=
ak
n

(
1− fk,R

(
p

2ak
n

+ q
2bk
n

))
+
bk
n

(
1− fk,R

(
q

2ak
n

+ p
2bk
n

))
≥ak
n
m1

(
1− p2ak

n
− q2bk

n

)
+
bk
n
m1

(
1− q2ak

n
− p2bk

n

)
(by (F.44))

≥ak + bk
n

m0 (1− 2ε)

≥m1

2n
(ak + bk) =

m1

2
h(Sk)/n (if ε smaller than 1/4)

Therefore this proves (F.39) by taking 0 < γ < m1

2

For the (F.40), with (F.39), it is sufficient to show there exists δ such that
Pr [h(Sk+1) = h(Sk)− 1] − Pr [h(Sk+1) = h(Sk) + 1] is greater than δh(Sk)/n. This
can be done by computation

Pr [h(Sk+1) = h(Sk)− 1]− Pr [h(Sk+1) = h(Sk) + 1]

=E[h(Sk+1)]− h(Sk)

=E[ak+1 + bk+1]− ak − bk
=fk,R(pak/n+ qbk/n) + fk,R(qak/n+ pbk/n)

≥m0(pak/n+ qbk/n) +m0(qak/n+ pbk/n) (by (F.45))

≥m0(ak/n+ bk/n) = m0h(Sk)/n

, and these complete the proof for (F.40).
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APPENDIX G

Proofs for Naming game

G.1 Proof of Theorem 11.1

Recall that we want to formulate the naming game as nonhomogenous random walk
on Z4 and relate this nonhomogenous random walk to a correpsonding autonomous
system in R4 to study consensus time. Note that we can use four variables to describe
this random process: fraction of {0}, {1} nodes in two communities by following
notations.

At community1 community2
{0} R1(t) R2(t)
{1} B1(t) B2(t)
{0, 1} M1(t) M2(t)

Since n = R1(t) + B1(t) + M1(t) = R2(t) + B2(t) + M2(t) for all t, it’s sufficient to
consider X(t) = (R1(t), B1(t), R2(t), B2(t)) in Z4 with initial state X(0) = (n, 0, 0, n)
and the naming game reaches consensus at T when X(T ) = (n, 0, n, 0) or (0, n, 0, n).

We can now define F (·) as the mean field of this system (as in Equation (2.4)):

F (X(t)) = E[X(t+ 1)−X(t)|X(t)]. (G.1)

Our approach to understand the behavior of X is mainly inspired by the stability
property of nonlinear autonomous systems. We define f(·) such that Fn(X) = f(X

n
)

and then we can relate the nonhomogeneous random walk X to the solution of x′ =
f(x) as in (2.5).

Intuitively we will prove that there exists p such that the system has an “un-
desirable” asymptotically stable points x∗ (which will be defined mathematically in
appendix)

x∗ = (r∗, b∗, b∗, r∗)

where r∗ = e2+
√
−4e+6e2−e4

2e
, b∗ = e2−

√
−4e+6e2−e4

2e
and p = 2

3
(1−e) such that the random

process X(t) in Equation (G.1) will

1. Reach some region of nx∗.

2. Given X(T0) is in some region of nx∗ the expected consensus time of the corre-
sponding naming game is exponential in the size of each group exp(Ω(n)).
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These two conclusions can be proved by the following two lemmas, respectively and
the proof of Theorem 11.1 follows directly from the above two Lemmas.

Lemma G.1. Given the naming game defined above, if 0 ≤ p < 4−2
√

3
3
≈ 0.178 given

arbitrary constant ra > 0 the random walk X(t) will converge to x∗. That is there
exist T0 = O(n) such that ||X(T0)/n− x∗|| ≤ ra with probability 1−O( logn

exp( −n
log3 n

)
)

Lemma G.2. Given the naming game defined above, there exists a constant p0 ≈
0.110 such that for all 0 ≤ p < p0 there exists some constant ra > 0 such that if
||X(T0)/n− x∗|| ≤ ra then the consensus time is exp(Ω(n))

Now we need to quantify the evolution of this process. Recalled that our naming
game defined in (G.1)

E[R1(t+ 1)−R1(t)|X(t)] =
1

2

{
(1− R1

n
− 2

B1

n
+ (

B1

n
)2)

+
p

2
(
−R1

2n
+
B1

n
+
R2

2n
− B2

n
− (

B1

n
)2 − 3R1B2

2n2
− B1R2

2n2
)
}

E[B1(t+ 1)−B1(t)|X(t)] =
1

2

{
(1− B1

n
− 2

B1

n
+ (

R1

n
)2)

+
p

2
(
−B1

2n
+
R1

n
+
B2

2n
− R2

n
− (

R1

n
)2 − 3B1R2

2n2
− R1B2

2n2
)
}

E[R2(t+ 1)−R2(t)|X(t)] =
1

2

{
(1− R2

n
− 2

B2

n
+ (

B2

n
)2)

+
p

2
(
−R2

2n
+
B2

n
+
R1

2n
− B1

n
− (

B2

n
)2 − 3R2B1

2n2
− B2R1

2n2
)
}

E[B2(t+ 1)−B2(t)|X(t)] =
1

2

{
(1− B2

n
− 2

B2

n
+ (

R2

n
)2)

+
p

2
(
−B2

2n
+
R2

n
+
B1

2n
− R1

n
− (

R2

n
)2 − 3B2R1

2n2
− R2B1

2n2
)
}

R1(0) = n,B1(0) = 0, R2(0) = 0, B2(0) = n
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has corresponding autonomous differential system as follow.

r′1 =
1

2

{
(1− r1 − 2b1 + b2

1

+
p

2
(
−1

2
r1 + b1 +

1

2
r2 − b2 − b2

1 −
3

2
r1b2 −

1

2
b1r2)

}
b′1 =

1

2

{
(1− b1 − 2r1 + r2

1

+
p

2
(
−1

2
b1 + r1 +

1

2
b2 − r2 − r2

1 −
3

2
b1r2 −

1

2
r1b2)

}
r′2 =

1

2

{
(1− r2 − 2b2 + b2

2

+
p

2
(
−1

2
r2 + b2 +

1

2
r1 − b1 − b2

2 −
3

2
r2b1 −

1

2
b2r1)

}
b′2 =

1

2

{
(1− b2 − 2r2 + r2

2

+
p

2
(
−1

2
b2 + r2 +

1

2
b1 − r1 − r2

2 −
3

2
b2r1 −

1

2
r2b1)

}
r1(0) = 1, b1(0) = 0, r2(0) = 0, b2(0) = 1 (G.2)

G.1.1 Proof of Lemma G.2

With Theorem G.3, to prove Lemma G.2, it is sufficient to prove x∗ is a stable fixed
point.

Proof of Lemma G.2. With Theorem 2.28, it is sufficient to show all the eigenvalues
of A = ∂f

∂x
|x=x∗ are negative. By elementary computation, the eigenvalues of A are

−e− 5

6
−D1,

−e− 5

6
+D1

e2 − 3

2
−D2,

e2 − 3

2
+D2

where p = 2
3
(1− e) and

D1 =
1

6

√
(1− e)(−8e4 − 36e3 + 7e2 + 153e+ 64)

e

D2 =
1

2

√
(1− e)(−e3 − 5e2 + e+ 25)

Therefore A is Hurwitz and x∗ is asymptotically stable if e > 0.835 and 0 ≤ p <
0.110

G.1.2 Proof of Lemma G.1

To proof Lemma G.1 we prove two claims:
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1. The solution x to the differential equation in (G.2) converges to x∗;

2. the limit behavior of random process in (G.1) can be approximated by x in
(G.2), that is limn→∞X(nt)/n ≈ x(t).

With these two claims we can conclude given any ra > 0 there exists t0 such that
||X(t)/n − x∗|| < ra for all t > t0 with high probability. For the first claim we use
Poincare-Bendixon Theorem 2.37 and use Wormald’s differential equation method 2.7
to prove the second.

Proof of Lemma G.1. First, by the symmetry of the system and initial conditions
r̂1 = b̂2 = 1 and b̂1 = r̂2 = 0. we can assume that r̂1(t) = b̂2(t) and b̂1(t) = r̂2 for all
t ≥ 0, and the system of differential equations is equivalent to the following

r′ = (1− r − 2b+ b2) +
1− e

2
(b− r − b2 − r2)

b′ = (1− b− 2r + r2) +
1− e

2
(r − b− r2 − b2)

where r(0) = 1, and b(0) = 0

where r(t) = r̂1(t) = b̂2(t) b(t) = r̂1(t) = b̂2(t) and p = 1−e
3

, and the system will

have stable fixed point r∗ = e2+
√
−4e+6e2−e4

2e
and b∗ = e2−

√
−4e+6e2−e4

2e
, and we take

x∗ = (r∗, b∗, b∗, r∗)

Note that such x∗ exists if −4 + 6e− e3 ≥ 0, i.e. 0 ≤ p ≤ 4−2
√

3
3
≈ 0.178.

To apply Theorem 2.37 in (G.3), we need to show the orbit of (r, b) is bounded
and there is no periodic cycle. It is easy to see that r(t), b(t) are bounded in interval
[0, 1]. Moreover because if r(t) = b(t) for some t then r(t′) = b(t′) for all t′ ≥ t,
we have r(t) ≥ b(t). Combining these two observations we have (r, b) is bounded
in Ω = {(r, b)|r ≥ b, 0 ≤ r, b ≤ 1}. On the other hand, because ∇ · H = −2 +
1−e

2
(−2 − 2r − 2b) < 0∀(r, b) ∈ Ω which, by Theorem 2.38, proves there is no closed

orbit. Therefore we have proven the first claim: limt→∞(r(t), b(r)) = (r∗, b∗) by
Theorem 2.37. Furthermore in (G.2) we have

||x(t)− x∗|| < 0.5ra∀t > t0. (G.3)

For the second claim, we want to show the original process in (G.1) can be ap-
proximated by (G.2). It is not hard to show that the process is bounded by β = 1 and
γ = 0, and by taking λ = O( 1

log(n)
) we have with probability 1−O(log n exp(− n

log3 n
)

X(nt)/n = x(t) +O(
1

log n
) (G.4)

in terms of each component.
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Combining (G.3) and (G.4) we have with probability 1−O(log n exp(− n
log3 n

))

||X(nt)/n− x∗|| ≤ ra,∀t > t0

when n is large enough.

G.2 Main Results

The main idea used to prove both Theorem 11.1 and Theorem 11.2 is to show the
existence of a stable fixed point x∗ of the solution to differential system (2.5) and
then to relate this stable fixed point to the nonhomogeneous random walk (2.4) by
showing:

1. Global behaviour: the random process X(t) will initially “converge” to a point
corresponding to the stabile fixed point of the autonomous system.

2. Local behaviour: random processX(t) takes exponential time to leave the region
corresponding to a regions around stabile fixed point of the autonomous system.

Here we prove a auxiliary theorem for the second part.

Theorem G.3. If x∗ is an asymptotically stable equilibrium of (2.5), given a closed
set U containing x∗ there exists ra > 0 such that in system (2.4) if ||X(t0)/n−x∗|| ≤ ra
then

E[arg min
τ>t0

{X(τ) 6∈ U}
∣∣||X(t0)/n− x∗|| ≤ ra] = exp(Ω(n)).

To prove Lemma G.3, we use the second part of Lyapunov’s indirect method
Theorem 2.28, which shows the existence of a potential function V̂ (x) at some region
around the asymptotically stable fixed point in system (2.5) such that the value of
potential function is strictly decrease along the trajectory. On the other hand, the
counterpart of that potential function in (2.4) will be a supermartingale V (X(t)) and
we use the optional stopping time to show that it takes an exponential time for the
supermartingale to increase by constant.

Proof of Lemma G.3. By Theorem 2.28, we know that there exists a potential func-
tion V and an open region U ⊆ D such that V (x∗) = 0, and V (x) > 0, d

dt
(V (x)) < 0

for x ∈ U \ x∗. Now we consider a random process

W (i) = V

(
X(i)

n

)
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and the conditional expectation is

E[W (i+ 1)−W (i)|X(i)]

=E[V (
X(i+ 1)

n
)− V (

X(i)

n
)|X(t)]

=∇V (
X(i)

n
) · (E[X(i+ 1)−X(i)|X(i)]

n
) +O(

1

n2
)

=∇V (
X(i)

n
) ·
f(X(i)

n
)

n
+O(

1

n2
)

=
1

n

d

dt
V (x)

∣∣∣
x=

X(i)
n

+O(
1

n2
) (G.5)

Therefore W (i) is a supermartingale such that E[W (i + 1) −W (i)|X(i)] < 0 when
X(t)
n
∈ U \ {x∗} and n is large enough.

The idea is to use the optional stopping theorem by proving the process X(t) is not
likely to pass through the annulus Brb \Bra for some properly choosen ra, rb. Here we
need to use the properties of the potential function V from Theorem 2.28. Note that U
is open, there exists rb > 0 such that a open set Brb = {||x−x∗|| < rb} ⊆ U . Because
the boundary U \ Brb is compact and V is continuous, there exists minx∈Brb V (x)
which is denoted as lb. On the other hand, because V (x∗) = 0 and V is continuous,
there exists a close set B̄ra where 0 < ra < rb such that la = maxx∈B̄ra V (x) ≤ 0.3lb.

Given such ra, rb if X(t0)/n ∈ Bra at some time t0 and the system leaves the stable
region U at time t1 > t0 there exists σ,τ when n is large enough such that

τ = arg min
t0<t<t1

{X(t)/n ∈ U \Brb}

σ = arg max
t0<s<τ

{X(s)/n ∈ Bra}

which gives us
W (σ) < 0.5la, and W (τ) ≥ lb

Moreover by the definition of σ, τ , for all σ ≤ t < τ the random process X(t) would
stay in the annulus Brb \ Bra . Therefore for all t such that σ ≤ t < τ , we have W (t)
is a strict supermartingale

W (t) =
1

n

d

dt
V (x)

∣∣∣
x=

X(i)
n

+O(
1

n2
) =
−h
2n

< 0

where constant −h = maxx∈Brb\Bra
d
dt
V (x)

∣∣∣
x
< 0 since the annulus is compact.

Therefore by standard optional stopping time theorem with initial state W (σ+1)
where la < W (σ+ 1) < lb the average time for W (t) to hit W (t) ≥ lb is exp(Ω(hn)) =
exp(Ω(n)).
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G.3 Proof of Theorem 11.2

We define stubborn node which has different behavior in naming game. A node s
is stubborn if its inventory will not change the process At(s) = A0(s) even when it
is the speaker or listener, and we call node s is stubborn node with A0(s), and we
call other node as ordinary nodes. Here we consider that on completed graph if the
naming game is already consensus on opinion 1. The Theorem 11.2 gives a way to
understand the following question: how many nodes stubborn with opinion 0 do we
make in order to change the graph consensus on opinion 0 in polynomial time?

Theorem G.4 (Restate theorem 11.2). Given the naming game with p fraction of
stubborn nodes defined above, there exists a constant p0 ≈ 0.108 such that for all
0 ≤ p < p0 the expected consensus time is exp(Ω(n)). Additionally, if p0 < p ≤ 1 for
all ε > 0 the fraction of original opinion is smaller than ε after O(n) steps.

Similar to the proof of theorem 11.1, we formulate this process as nonhomogenous
random walk on Z2 and relate this nonhomogenous random walk to a correpsonding
autonomous system in R2 to study consensus time.

G.3.1 Model Description

Given a completed graph G which has n nodes and the weight of every pair of node
is uniform, if every nodes consensus on 1, we want to make p fraction of nodes
stubborn on 0, and all the set of stubborn nodes S such that |S| = pn. That is
∀s ∈ S,A0(s) = {0} and for all ordinary node v ∈ V (G) \ S,A0(v) = {0}.

Because the symmetry of the completed graph, only the number of stubborn nodes
matters, and we apply the same method in theorem 11.1 to simplify the notations.
At time t, we define X(t) = (R(t), B(t)) as our state of Markov chain where R(t)
the number of ordinary node with inventory {0}, B(t) the number of ordinary node
with inventory {1} and M(t) be the number of ordinary node with inventory {0, 1}.
Moreover we use ñ to denote the number of ordinary nodes, ñ = |V (G)\S| = (1−p)n.
Here we have

E[R(t+ 1)−R(t)|X(t)]

=(1− p)2(
R

ñ

M

ñ
+ (

M

ñ
)2 − R

ñ

B

ñ
) + p(1− p)3

2

M

ñ
E[B(t+ 1)−B(t)|X(t)]

=(1− p)2(
B

ñ

M

ñ
+ (

M

ñ
)2 − R

ñ

B

ñ
)− p(1− p)B

ñ

316



and the corresponding autonomous differential system is

r′ =(1− p)2(rm+m2 − rb) + p(1− p)3

2
m

b′ =(1− p)2(bm+m2 − rb)− p(1− p)b

G.3.2 Proofs

Similar to theorem 11.1, when p < 0.108 it is striaghtforward to show there exists a
stable fixed point x∗ 6= (1, 0) and derived the following two lemmas to prove the first
part of Theorem 11.2.

Lemma G.5. Given the naming game defined above, there exists p0 ≈ 0.108 such
that for all constant 0 ≤ p < p0 there exists some constant ra > 0 such that if
||X(T0)/n− x∗|| ≤ ra then the consensus time is exp(Ω(n))

Lemma G.6. Given the naming game defined above, if constant 0 ≤ p < 0.108 given
arbitrary constant ra > 0 the random walk X(t) will converge to x∗. That is there
exists T0 = O(n) such that ||X(T0)/n− x∗|| ≤ ra with probability 1−O( logn

exp( −n
log3 n

)
)

For the second part of Theorem 11.2, since if p > p0 the consensus point,c∗ = (1, 0)
is the only fixed point of the system, we can use similar technique in Lemma G.1 and
Theorem G.3 to prove given arbitrary small constant ε > 0, b(t) ≤ ε for t = O(n).
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