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Abstract

This thesis introduces a class of hyperplane arrangements, called Dirichlet arrange-

ments, arising from electrical networks with Dirichlet boundary conditions. Dirich-

let arrangements encode harmonic functions on electrical networks and generalize

graphic arrangements, a fundamental class of hyperplane arrangements arising from

finite graphs.

The first part of the thesis studies the main combinatorial properties of Dirichlet

arrangements in detail. We characterize these in ways that directly generalize well-

known results on graphic arrangements. Particular attention is paid to the matroids

underlying Dirichlet arrangements, called Dirichlet matroids. We prove a number

of results concerning Dirichlet matroids, including some on the half-plane property,

Bergman fans, and duals of circular electrical networks. These results are applied

to related objects and problems, including response matrices of electrical networks,

order polytopes of finite posets, and graph coloring problems.

The latter part of the thesis studies two specific problems. First, we show that a

given Dirichlet arrangement is supersolvable if and only if its Orlik-Solomon algebra

is Koszul. This answers an open question in the special case of Dirichlet arrange-

ments. Second, we establish a relationship between structural rigidity of graphs and

topological complexity of complements of hyperplane arrangements. The notion of

topological complexity originates from the motion planning problem in topological

robotics.

ix



Chapter 1

Introduction

The relationship between graphs, matroids and hyperplane arrangements is a driving

force in combinatorics. Historically, many theorems on arrangements and their ma-

troids have grown out of results from graph theory. Today, graphs serve as an

important test case for difficult questions about arrangements.

The present thesis expands this relationship to graphs with Dirichlet-type bound-

ary conditions, called electrical networks. Our aim is twofold. On the one hand,

we seek to create the same kind of explicit analogies between electrical networks,

matroids and hyperplane arrangements that graphs so productively enjoy. On the

other, we wish to bring to light any new behavior that comes with the introduction

of boundary conditions.

The thesis is separated into six chapters. In Chapter 2, we provide necessary

background material on electrical networks, hyperplane arrangements and matroids.

In Chapter 3, we associate a real hyperplane arrangement, called a Dirichlet

arrangement, with a given electrical network. Every Dirichlet arrangement is a re-

striction of a graphic arrangement to an affine subspace defined by the boundary con-

ditions. The main result is that the harmonic functions on the underlying network

are critical points of multivalued functions from mathematical physics, defined on the

complements of complex Dirichlet arrangements. The critical sets of these functions

play an important role in the Bethe ansatz of certain quantum integrable systems.

In our setting, each critical set consists of the harmonic functions that dissipate a
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prescribed amount of energy on each edge. In this chapter we also characterize the

basic combinatorial invariants of Dirichlet arrangements, including supersolvability.

We apply these results to visibility polytopes of order posets, to ψ-graphical arrange-

ments, and to the Precoloring Extension Problem, which generalizes Latin squares

and Sudoku puzzles.

In Chapter 4, we focus on the matroids attached to Dirichlet arrangements, called

Dirichlet matroids. A Dirichlet matroid is a complete principal truncation of a

graphic matroid along a clique. We feature several main results. First, we prove

that the real roots of the numerator and denominator of the response matrix of an

electrical network interlace along any line with positive direction vector. This fol-

lows from the half-plane property for Dirichlet matroids. Second, we characterize the

Bergman fan of a Dirichlet matroid as a subfan of a graphic Bergman fan. For “com-

plete” networks, this fan can be identified with a space of phylogenetic trees. Third,

we prove a Dirichlet analog of the duality theorem for planar graphic matroids. This

theorem uses the notion of the dual of a circular network. We also prove results on

the reduced characteristic polynomials and 3-connectedness of Dirichlet matroids.

The latter gives a finite upper bound on the number of distinct networks having the

same Dirichlet matroid under certain assumptions.

In Chapter 5, we prove that a Dirichlet arrangement is supersolvable if and only if

its Orlik-Solomon algebra is Koszul. It is an open question whether this holds for all

central hyperplane arrangements. Previously, the answer was known to be affirmative

for four classes of arrangements, including graphic arrangements. We construct an

infinite family of electrical networks whose associated Dirichlet arrangements are

combinatorially distinct from these previous classes.

In Chapter 6, we connect the notion of topological complexity from topological

robotics with the notion of structural rigidity for graphs. We show that a graph

is rigid in the plane if and only if the associated complex graphic arrangement is

large, a combinatorial sufficient condition for the arrangement complement to achieve

maximum topological complexity. We extend this result to Dirichlet arrangements,

using combinatorial moves on graphs from structural rigidity to provide sufficient

conditions for a Dirichlet arrangement to be large. We also provide a partial converse

2



to these conditions.

Each of chapters 3–6 can be read independently, although previous chapters might

help to establish context. Chapters 3–5, with the exception of Section 4.4, have

appeared previously as independent papers [54, 55, 56]. The material of Section 4.4

and Chapter 6 has not appeared previously.
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Chapter 2

Background

We review the basic concepts needed to read subsequent chapters. Further details

can be found in [23, 69, 87].

2.1 Electrical networks

An electrical network is a configuration of wires (or resistors), some of which meet at

their ends. To each wire we associate a positive real number, called the conductance,

that measures the ease with which electrical current may pass through the wire. The

conductance of a wire depends on its material and dimensions.

A node is a site where wires meet, or where a single wire ends and does not meet

any others. In the classical setting, two nodes are chosen as boundary nodes, and

one of them is grounded. A one-volt battery is put across the boundary nodes, and

electric current propagates through the network. Relative to the grounded node,

we can speak of the voltage of any other node in the network, i.e. the difference

in electric potential between that node and the grounded node. Thus the grounded

node has voltage 0 and the other boundary node has voltage 1. Current flows from

nodes of higher voltage to nodes of lower voltage. A fundamental question is: What

are the voltages of the remaining nodes?

This question can be answered using Kirchhoff’s laws and Ohm’s law. Taken
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together, these laws state that for any interior (i.e., non-boundary) node i we have∑
j∼i

γij(vi − vj) = 0, (2.1)

where vi is the voltage at node i, γij is the conductance of the wire between nodes i

and j, and j ∼ i indicates that j and i share a wire. In words, (2.1) says that the

current across any interior node is 0.

More generally, one can consider a network with an arbitrary number of boundary

nodes. A voltage is then imparted to each of these nodes, e.g. by multiple batteries.

One can also remove the requirement that one of the nodes be grounded. The result

is that each boundary node j receives a voltage vj, and the equation (2.1) still holds

for every interior node i. The problem of computing the interior voltages is called

the discrete Dirichlet problem, in analogy with the classical Dirichlet problem on a

continuous domain. The boundary voltages are sometimes called Dirichlet boundary

conditions. The discrete Dirichlet problem is also called the forward problem on an

electrical network [23, p. 1].

Problem 2.1.1 (Discrete Dirichlet problem). To each node i, associate a real number

hi in a way that satisfies the following conditions:hi = ui for all boundary nodes i∑
j∼i γij(hi − hj) = 0 for all interior nodes i.

(2.2)

The discrete Dirichlet problem can be formulated and solved in terms of graph

theory. Let Γ = (V,E) be the undirected graph with a vertex for every node of the

electrical network, and an edge for every wire. Let ∂V ⊆ V correspond to the set of

boundary nodes. We assume that Γ is a connected graph with no loops or multiple

edges, and that there are no edges between elements of ∂V . The conductances can

be viewed as a function γ : E → R, and the voltages as a function u : ∂V → R. We

write γ ∈ RE and u ∈ R∂V , thinking of γ and u as vectors indexed by E and ∂V ,

respectively.
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Let L be the matrix with rows and columns indexed by V and entries given by

Lij =


∑

k∼i γik if i = j

−γij if i ∼ j

0 else.

(2.3)

The matrix L is called the weighted Laplacian matrix. We will write it in block form

as

L =

[
A B

BT D

]
, (2.4)

where the rows and columns of A are indexed by ∂V .

For every function f ∈ RV we obtain a function Lf ∈ RV . Solving the discrete

Dirichlet problem is equivalent to finding a function v ∈ RV \∂V such that[
A B

BT D

][
u

v

]
=

[
ϕ

0

]
(2.5)

for some ϕ ∈ R∂V . The Matrix-Tree Theorem gives

detD =
∑
T∈T

∏
e∈T

γe, (2.6)

where T is the set of all spanning trees T ⊆ E of the multigraph obtained from

Γ by identifying all boundary nodes as a single vertex. Since the conductances are

positive, it follows that D is invertible. Thus there is a unique such v ∈ RV \∂V , given

by v = −D−1BTu. The function h ∈ RV extending both u and v is called harmonic.

While the current across an interior node is necessarily 0 by (2.1), this is not

the case for boundary nodes. The function ϕ in (2.5) gives the currents across the

boundary nodes; for all j ∈ ∂V we have

ϕj =
∑
k∼j

γjk(hj − hk), (2.7)
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where h is the harmonic function defined above. The map u 7→ ϕ is linear. Namely,

we have ϕ = Λu, where Λ = A−BD−1BT .

Definition 2.1.2. The matrix Λ = A−BD−1BT is called the response matrix.

The inverse problem on an electrical network is to recover the conductances γ

from the response matrix Λ [23, p. 1]. This is an interesting and subtle problem,

but we will not address it further.

Once the harmonic function h is established, one can discuss the energy dissipated

by each edge. Given an edge ij ∈ E, the energy of ij is given by

εij = γij(hi − hj)2. (2.8)

More compactly, we can write ε = hTLh. The total energy dissipated by the network,

also called the Dirichlet norm, is thus the sum of εij over all ij ∈ E. Notice that all

edge energies are positive, since all conductances are positive.

The discrete Dirichlet problem can be posed more generally. For example, instead

of positive real conductances γ, one can associate a complex number to each edge,

called the admittance. With this generalization we can describe networks consisting

of coils and capacitors, in addition to resistors. The voltages on the interior nodes

are then solved for exactly as above. The only difference is that the matrix D in

(2.5) is not necessarily invertible. However, it is invertible as long as the admittances

are sufficiently generic.

Over time, the term electrical network has come to refer to a number of related

constructions. By an electrical network (or simply a network) we will mean one of

the following objects, depending on the context: the pair (Γ, ∂V ), consisting of a

graph with boundary; the pair (Γ, u), consisting of a graph with Dirichlet boundary

conditions, leaving the boundary implicit; and the triple (Γ, u, γ), consisting of a

graph with Dirichlet boundary conditions and edge weights.

Example 2.1.3. Consider the network in Figure 2.1. On the left side of the figure, we

represent the network as a graph, where the edges are labeled with their conductances

and the boundary nodes are marked in white. On the right, we represent the network

7



as a circuit diagram, where the jagged edges are resistors and the symbol at the top

denotes a battery across the boundary nodes. This network is called a Wheatstone

bridge, after the work of C. Wheatstone [104].

j1

γ2

i0

γ1

j0

γ4

i1

γ3

γ5

Figure 2.1: A Wheatstone bridge represented two ways.

Set boundary voltages u(j0) = 0 and u(j1) = 1. With respect to the vertex

ordering j0, j1, i0, i1, the weighted Laplacian matrix is

L =


γ1 + γ4 0 −γ1 −γ4

0 γ2 + γ3 −γ2 −γ3

−γ1 −γ2 γ1 + γ2 + γ5 −γ5

−γ4 −γ3 −γ5 γ3 + γ4 + γ5

 .

Thus in the notation of (2.5) we have

A =

[
γ1 + γ4 0

0 γ2 + γ3

]
, B =

[
−γ1 −γ4

−γ2 −γ3

]
, D =

[
γ1 + γ2 + γ5 −γ5

−γ5 γ3 + γ4 + γ5

]
.

Note that D is invertible if and only if

detD = (γ1 + γ2 + γ5)(γ3 + γ4 + γ5)− γ2
5

is nonzero. If D is invertible, then there is a unique harmonic function h given by
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h(j0) = 0, h(j1) = 1,

h(i0) =
γ1(γ3 + γ4 + γ5) + γ4γ5

detD
, h(i1) =

γ4(γ1 + γ2 + γ5) + γ1γ5

detD
.

For instance, if γ is a constant function, then h(i0) = h(i1) = 1
2
. The response matrix

is given by

Λ =
α

detD

[
1 −1

−1 1

]
,

where α = γ1γ2γ3 +γ1γ2γ4 +γ1γ2γ5 +γ1γ3γ4 +γ1γ3γ5 +γ2γ3γ4 +γ3γ4γ5. The energies

can also be written as rational functions in the conductances. For example, writing

εi for the energy of the edge with conductance γi, we have

ε5 = γ5

(
γ1γ3 − γ2γ4

detD

)2

.

If γ is a constant function, then ε5 = 0 and the energy of every other edge is γ
4
. Thus

the total energy dissipated is equal to γ in this case.

Example 2.1.4. Let Γ be a path graph. Let ∂V consist of both ends of the path.

This graph is illustrated in Figure 2.2 with edges labeled by their conductances and

boundary nodes marked by white circles.

· · ·
γ1 γ2 γk

Figure 2.2: A path graph with edge weights labeled and boundary nodes marked in
white.

Here the matrices L and D are symmetric and tridiagonal. For instance, when

d = 6 we have

D =


γ1 + γ2 −γ2

−γ2 γ2 + γ3 −γ3

−γ3 γ3 + γ4 −γ4

−γ4 γ4 + γ5

 .
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When all conductances are 1, we have

D =



2 −1

−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 2


.

This matrix arises as the Cartan matrix of the root system An, and as the matrix of

coupling coefficients of d harmonic oscillators in a linear chain (see, e.g., [44, §11.4]

and [57, Exercise 4.2]). It also plays a role in other boundary value problems on path

graphs [7, 15].

For general conductances, equation (2.6) gives

detD =
d−1∑
i=1

∏
j 6=i

γj.

Set boundary voltages 0 and 1 for the left and right boundary nodes, respectively.

Assuming that D is invertible, the values of the harmonic function can be computed

using the recurrences in [95] for the inverse of a symmetric tridiagonal matrix. The

formula for the energy of an edge is particularly simple, assuming that the conduc-

tances are nonzero. Writing εi for the energy of the edge with conductance γi, we

have

εi =

(
d−1∑
j=1

γi
γj

)−2

for all i = 1, . . . , d− 1.

2.2 Hyperplane arrangements

Let K be a field and d a positive integer. A hyperplane arrangement (or simply an

arrangement) in Kd is a finite set of affine hyperplanes of Kd. We consider each
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arrangement A in Kd to be equipped with a set {fH : H ∈ A} of affine functionals

fH : Kd → K such that H = f−1
H (0) for all H ∈ A. The fH are called defining

functions of A. Let Q(A) denote the product of the functions fH :

Q(A) =
∏
H∈A

fH(x). (2.9)

Note that the polynomial Q(A) determines A.

We write

T (A) =
⋂
H∈A

H (2.10)

if A is nonempty, and T (∅) = Kd. The arrangement A is central if T (A) is nonempty

and essential if the normal vectors of the hyperplanes in A span Kd. We also write

U(A) = Kd \
⋃
H∈A

H. (2.11)

The set U(A) is called the complement of A. When K = R, the connected compo-

nents of U(A) are called the chambers of A.

The intersection poset is one of the main combinatorial objects associated to an

arrangement. Namely, it is the set L(A) of nonempty intersections of elements of

A, ordered by reverse inclusion. Thus X ≤ Y in L(A) means X ⊇ Y . One can

also assign a rank function to L(A) by taking the rank of any element to be its

codimension in Kd. In general, L(A) is a meet-semilattice; that is, every pair of

elements of L(A) has an infimum (called the meet). If A is central, then L(A) is

a lattice; every pair of elements has both an infimum and a supremum (called the

join).

Given X, Y ∈ L(A), the closed interval [X, Y ] is the set [X, Y ] = {Z ∈ L(A) :

X ≤ Z ≤ Y }. Define an integer-valued function µ on the set of closed intervals
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[X, Y ] of L(A) by

µ(X,X) = 1 for all X ∈ L(A)

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) for all X < Y in L(A). (2.12)

This is the Möbius function of the poset L(A). The characteristic polynomial of A
is the polynomial χA with integer coefficients given by

χA(t) =
∑

X∈L(A)

µ(0̂, X)tdim(X), (2.13)

where 0̂ is the minimal element of L(A).

In case an arrangement is not central or essential, there is a “centralized” and

“essentialized” version with very similar combinatorics. The cone cA over A is the

central arrangement in Kd+1 defined by

Q(cA) = x0

∏
H∈A

fhH(x0, . . . , xd), (2.14)

where fhH is obtained from fH by multiplying the constant term (possibly 0) in the

formula for fH by the new variable x0. For example, if fH(x1, x2) = 5 − x1 + 3x2,

then fhH(x0, x1, x2) = 5x0 − x1 + 3x2.

The essentialization ess(A) of A is the restriction of A to the subspace Y spanned

by the normal vectors of all hyperplanes in A, or equivalently the restriction of A to

any translate of Y . Clearly ess(A) is essential, and L(ess(A)) ∼= L(A).

Example 2.2.1. Consider the arrangement A consisting of all coordinate hyper-

planes in Kd. We have Q(A) = x1x2 · · ·xd. Note that T (A) consists of only the

origin. Hence A is central and essential. The lattice L(A) is isomorphic to the

lattice of subsets of {1, 2, . . . , n}, ordered by inclusion. It is not too hard to show

that µ(0̂, X) = (−1)k, where k is the rank of X in L(A). From here it follows that

χA(t) = (t − 1)d. If K = R, then the chambers of A are the (open) orthants of Rd,

of which there are 2d.
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Example 2.2.2. The braid arrangement Bd in Kd is defined by

Q(Bd) =
∏

1≤i<j≤d

(xi − xj).

Thus Bn consists of
(
d
2

)
hyperplanes. Note that T (Bd) is the set of points in Kd whose

coordinates are all equal. Thus Bd is central, but not essential, since dimT (Bd) = 1.

If K = R, then U(Bd) consists of d! chambers. Indeed, every chamber corresponds

to a linear ordering of the coordinates xi for 1 ≤ i ≤ d. It can be shown that

χBd(t) = t(t− 1)(t− 2) · · · (t− d+ 1).

2.2.1 Supersolvable arrangements

The characteristic polynomials in Examples 2.2.1 and 2.2.2 have all integer roots.

This is not usually the case for a given arrangement. However, the roots of a super-

solvable arrangement are always nonnegative integers. The supersolvable arrange-

ments form a particularly nice class of arrangements with a number of desirable

combinatorial, topological and geometric properties.

Suppose that the arrangement A is central, so that L(A) is a lattice. Given

X, Y ∈ L(A), let X ∨ Y denote the join of X and Y in L(A), and let X ∧ Y denote

their meet. Let rk(X) denote the rank of X. An element X ∈ L(A) is modular in

L(A) if

rk(X) + rk(Y ) = rk(X ∨ Y ) + rk(X ∧ Y ) (2.15)

for all Y ∈ L(A). Equivalently, X is modular in L(A) if for all Y ∈ L(A) the

Minkowski sum

X + Y = {x+ y ∈ Kd : x ∈ X and y ∈ Y } (2.16)

belongs to L(A).

Definition 2.2.3. A central arrangement A is supersolvable if the intersection lattice

L(A) admits a maximal chain consisting of modular elements of L(A). A non-central

arrangement A is supersolvable if the cone cA over A is supersolvable.
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Example 2.2.4. Consider the arrangement A from Example 2.2.1. Every X ∈ L(A)

corresponds to a set SX ⊆ {1, . . . d} such that X is the intersection of the hyperplanes

xi = 0 for all i ∈ SX . We have rk(X) = n − |SX |, where |SX | is the cardinality of

SX . For any X, Y ∈ L(A) we have SX∨Y = SX ∩ SY and SX∧Y = SX ∪ SY . Hence

(2.15) follows from the inclusion-exclusion principle, proving that A is supersolvable.

Alternatively, notice that X + Y = X ∧ Y ∈ L(A).

2.2.2 Graphic arrangements

An important class of arrangements comes from graphs. Let Γ = (V,E) be a finite

connected simple graph on d vertices.

Definition 2.2.5. The graphic arrangement A(Γ) is the arrangement in Kd defined

by

Q(A(Γ)) =
∏
ij∈E

(xi − xj), (2.17)

where the coordinates of Kd are indexed by V .

Graphic arrangements are central, but not essential, since dimT (A(Γ)) = 1. It is

possible to translate combinatorial and topological data from A(Γ), often intractable

for general arrangements, into elementary graph-theoretic terms.

A connected partition of Γ is a partition π of V such that every set in π induces a

connected subgraph of Γ. The connected partitions of Γ form a lattice ΠΓ in which

π ≤ ρ if and only if π is a refinement of ρ, i.e. every set in π is a subset of a set in ρ.

It is not immediately obvious that this defines a lattice. The join π∨ρ is the smallest

partition of V of which π and ρ are both refinements. However, the meet π ∧ ρ is

not necessarily the common refinement of π and ρ, since the common refinement is

not necessarily a connected partition. To obtain π ∧ ρ, we must further refine the

common refinement of π and ρ into a connected partition. The intersection lattice

L(A(Γ)) is isomorphic to ΠΓ.

Let k be a positive integer. A proper k-coloring of Γ is a function p : V →
{1, . . . , k} such that p(i) 6= p(j) whenever i ∼ j. The chromatic polynomial of Γ is
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a polynomial χΓ with integer coefficients such that for any k, χΓ(k) is the number

of distinct proper k-colorings of Γ. It turns out that this is also the characteristic

polynomial of A(Γ). That is, χA(Γ) = χΓ.

An orientation of Γ is called acyclic if it contains no directed cycles. When K = R,

the number of chambers of A(Γ) is the number of acyclic orientations of Γ.

Recall that the graph Γ is chordal (or triangulated) if no cycle of length greater

than 3 is an induced subgraph of Γ.

Proposition 2.2.6 ([85, Proposition 2.8]). The graphic arrangement A(Γ) is super-

solvable if and only if Γ is chordal.

Example 2.2.7. If Γ = Kd is the complete graph on d vertices, then the graphic

arrangement A(Γ) is the braid arrangement Bd. Every partition of V is a connected

partition of Γ, so L(Bd) is isomorphic to the lattice of partitions of {1, . . . , d}, ordered

by refinement.

Example 2.2.8. Let Γ be a d-cycle for d ≥ 3. We have

Q(A(Γ)) = (x1 − xd)
d−1∏
i=1

(xi − xi+1).

It can be shown that χΓ(t) = (−1)d(t− 1) + (t− 1)d. All but 2 orientations of Γ are

acyclic, so if K = R, then the number of chambers of A(Γ) is 2d − 2. If d = 3, then

Γ contains no cycles of length greater than 3, so Γ is chordal. If d ≥ 4, then Γ itself

is a cycle of length greater than 3, so Γ is not chordal. Hence A(Γ) is supersolvable

if and only if d = 3.

2.3 Matroids

One way to study the intersection lattice of a central arrangement is to study the

associated matroid. Let E be a finite set. A matroid on E is a pair M = (E, I),

where I is a set of subsets of E satisfying

(i) ∅ ∈ I
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(ii) If X ∈ I and Y ⊆ X, then Y ∈ I
(iii) If X, Y ∈ I and |X| > |Y |, then there is x ∈ X \ Y such that Y ∪ {x} ∈ I.

The set E is called the ground set of M . The elements of I are called independent

sets of M (or simply independent sets). The subsets of E not belonging to I are

called dependent sets. A matroid is simple if the cardinality of every dependent set

is at least 3.

A basis of M is an independent set that is maximal (with respect to containment).

A circuit of M is a maximal dependent set. Let X ⊆ E. The rank rkM(X) of X is

the maximal size of an independent set contained in X. The set X is a flat of M if

X = E or if rkM(X ∪ e) > rkM(X) for all e ∈ E \X. The flats of M form a lattice

L(M) ordered by inclusion. The lattice L(M) is called the lattice of flats of M .

Example 2.3.1. For positive integers m ≤ n, one can define a matroid Um,n on an

n-element set by taking the bases to be the m-element subsets. The matroids Um,n

are called uniform. The circuits of Um,n are the (m + 1)-element subsets. The rank

of a subset S is given by min(|S|,m). Thus the proper flats of Um,n are the subsets

with fewer than m elements. The matroid Um,n is simple if and only if m ≥ 2.

A matroid is equivalently determined by its set of bases, by its set of circuits, by

its rank function rkM , and by its set of flats. The set {E \B : B is a basis of M} is

the set of bases of a matroid M∗ called the dual of M . The circuits of M∗ are called

cocircuits of M . A matroid is also determined by its set of cocircuits.

If X ⊆ E, then there is a matroid M |X whose independent sets are the elements

of I contained in X. This matroid is called the restriction of M to X. For any e ∈ E
there is a matroid M/e on E \ e whose independent sets are the sets X such that

X ∪ e ∈ I. This matroid is the contraction of M by e. For any Y ⊆ E we define a

matroid M/Y on E \ Y by contracting M successively by each element of Y in any

order. This matroid is the contraction of M by Y . A minor of M is any matroid

obtainable from M by a series of restrictions and contractions.

Any central hyperplane arrangement A defines a matroid M(A) on A, where

a subset of A is independent if and only if the set of corresponding set of normal

vectors is linearly independent. A matroid M is representable over K if M = M(A)
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for some arrangement A in Kd. A matroid is binary if it is representable over F2,

and regular if it is representable over every field. The characteristic polynomial of

M(A) is the polynomial

χM(A)(t) = trk(A)−dχA(t), (2.18)

where rk is the rank function for A. Moreover we have L(M) ∼= L(A); that is, the

lattice of flats of M(A) is isomorphic to the intersection poset of A.

2.3.1 Graphic matroids

A graph Γ = (V,E) defines a matroid M(Γ) on E whose bases (resp., circuits) are

the spanning trees (resp., the cycles) of Γ. A matroid M is graphic if M = M(Γ) for

some Γ. Graphic matroids are regular. The lattice of flats L(M(Γ)) is isomorphic to

the lattice ΠΓ of connected partitions of Γ. The characteristic polynomial of M(Γ)

is t−1χΓ(t), where χΓ is the chromatic polynomial of Γ.

Example 2.3.2. Let Γ = Kd. There are dd−2 bases of M(Γ), by Cayley’s formula for

the number of spanning trees of a complete graph. The lattice of flats is isomorphic to

the lattice of partitions of {1, . . . , d} by Example 2.2.7. The characteristic polynomial

is χM(Γ) = (t− 1)(t− 2) · · · (t− d+ 1).

Example 2.3.3. Let Γ be a cycle on d ≥ 3 vertices. The only circuit of M(Γ) is E.

Every other subset of E is independent. Thus the bases are the sets of cardinality

d− 1. It follows that M(Γ) is the uniform matroid Ud−1,d.

Example 2.3.4. Let Γ be a tree. The only basis of M(Γ) is E. There are no

dependent sets. Thus M(Γ) is the uniform matroid Ud,d, called a free matroid.

2.3.2 Complete principal truncations

Given a flat F of M , one can define a matroid TF (M) on E with rank function

rkTF (M)(X) =

rkM(X)− 1 if rkM(X) = rkM(X ∪ F )

rkM(X) else.
(2.19)
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The set F is again a flat of TF (M), so this construction can be iterated i times

to obtain T iF (M). The complete principal truncation of M along F is the matroid

T F (M) = T iF (M), where i = rkM(F ) − 1. Geometrically, T F (M) is obtained by

freely adding a (rkM(F )− 1)-element set S to F and contracting S.
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Chapter 3

Electrical networks and

hyperplane arrangements

This chapter introduces Dirichlet arrangements, a generalization of graphic arrange-

ments arising from electrical networks. We describe the main combinatorial features

of Dirichlet arrangements, including supersolvability, in ways that directly general-

ize theorems on graphic arrangements. Dirichlet arrangements have been studied

previously as ψ-graphical arrangements, with an equivalent but materially different

definition. The definition of Dirichlet arrangements leads to clearer parallels between

these arrangements and graphic arrangements. We obtain applications to electric

networks with prescribed edge energies, and to order polytopes of finite posets.

3.1 Main definition and examples

By a graph we will mean one that is finite, connected and undirected with no loops

or multiple edges. Let Γ = (V,E) denote a graph on d vertices and k edges. Recall

that the graphic arrangement A(Γ) of Γ over a field K is the arrangement in Kd

defined by

Q(A(Γ)) =
∏
ij∈E

(xi − xj).
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Fix a set ∂V ( V of ≥ 2 vertices, no two of which are adjacent, and an injective

function u : ∂V → K. We call ∂V the boundary of Γ and V ◦ = V \ ∂V the interior

of Γ. We call u the boundary data and the scalars u(j) ∈ K the boundary values.

The elements of ∂V are called boundary nodes. Write m = |∂V | and n = |V ◦|,
so d = m + n. Whenever the vector spaces Kd and Kn appear, we consider their

coordinates to be indexed by V and V ◦, respectively.

Definition 3.1.1. Let Γ be a graph as above, with boundary ∂V and boundary data

u : ∂V → K. Let X be the affine subspace of Kd given by

X = {x ∈ Kd : xj = u(j) for all j ∈ ∂V } (3.1)

Let A(Γ, u) denote the arrangement in the space X ∼= Kn of hyperplanes H ∩ X for

all H ∈ A(Γ). An arrangement A is Dirichlet if A = A(Γ, u) for some (Γ, u).

This definition can be modified to accommodate repeated boundary values and

edges between boundary nodes. In case of repeated boundary values, one can identify

all vertices on which u takes the same value, removing any duplicate edges. In case

∂V is not an independent set, one can simply remove all edges between boundary

nodes, assuming that the resulting graph is connected.

Recall that m = |∂V |. If m = 0, then A(Γ, u) = A(Γ) is a graphic arrangement.

If m = 1, then A(Γ, u) is the essentialization of A(Γ). We assume that m ≥ 2 to

distinguish from these cases. When m ≥ 2, the arrangement A(Γ, u) is not central.

We will occasionally prefer to work with the centralized version, e.g. the cone over

A(Γ, u).

Definition 3.1.2. LetA(Γ, u) denote the cone over the Dirichlet arrangementA(Γ, u).

For the remainder of the chapter we will assume that K = R. This is a natural

base field for Dirichlet arrangements, since we will typically think of the boundary

data u : ∂V → K as voltages, which are real numbers. We will see in Corollary 3.3.3

that the intersection poset of A(Γ, u) is independent of u, and hence independent of

K.
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We think of A(Γ, u) as an n-dimensional affine slice of A(Γ), where for all i ∈ V ◦

the coordinates xi of X ∼= Rn are inherited from Rd, and for all j ∈ ∂V the coordinate

xj is specialized to the boundary value u(j).

Example 3.1.3 (Wheatstone bridge). Consider the graph Γ on the left side of Figure

3.1, where the boundary nodes j1 and j2 are marked by white circles. This is the

Wheatstone bridge from Example 2.1.3.

Fix boundary values u(j0) = 0 and u(j1) = 1. This corresponds to placing a

1-volt battery between the boundary nodes. Writing V ◦ = {i0, i1}, the Dirichlet

arrangement A(Γ, u) is defined by

Q(A(Γ, u)) = (x2
i0
− 1)(x2

i1
− 1)(xi0 − xi1).

The bounded chambers of A(Γ, u) are the open triangles shaded on the right-hand

side of Figure 3.1.

j1

i0

j0

i1 xi0 = 0 xi0 = 1

xi1 = 0

xi1 = 1

xi0 = xi1

Figure 3.1: A Wheatstone bridge and a corresponding Dirichlet arrangement.

Example 3.1.4 (Discriminantal arrangements). Suppose that V ◦ is a clique, and

that every vertex in ∂V is adjacent to every vertex in V ◦. We denote this graph with

specified boundary by

Γm,n = (Γ, ∂V ). (3.2)

For instance, the Wheatstone bridge in Example 3.1.3 is Γ2,2. The case Γ5,4 is

illustrated in Figure 3.2 with boundary nodes marked by white circles. If (Γ, ∂V ) =
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Γm,n for some m and n, then A(Γ, u) is called a discriminantal arrangement [77].

Discriminantal arrangements are studied for their connections to Lie algebras and

mathematical physics. Every Dirichlet arrangement is a subset of a discriminantal

arrangement.

Figure 3.2: The network Γ5,4 with boundary nodes marked in white.

Example 3.1.5 (Visibility arrangements of order polytopes). Let P be a convex

d-dimensional polytope in Rd. The d-dimensional faces of P are called facets. The

visibility arrangement vis(P) of P , defined by Stanley [89], is the arrangement in

Rd whose elements are the affine spans of all facets of P . It is so named because

the chambers of vis(P) correspond to the sets of facets of P visible from different

points in RP . The unbounded chambers of vis(P) correspond to the sets of facets

visible from arbitrarily far away. For example, if P is a regular hexagon in R2, then

the visbility arrangement vis(P) is illustrated in Figure 3.3. There are 7 bounded

chambers, including the interior of the hexagon, and 12 unbounded chambers.

We are interested in a certain polytope associated to a finite poset P . The

order polytope O(P ) of P is the set of all order-preserving functions P → [0, 1].

Clearly O(P ) is a convex polytope in RP . A facet of a polytope is a top-dimensional

face. The visibility arrangement vis(O(P )) of O(P ), defined by Stanley [89], is the

arrangement in RP whose elements are the affine spans of all facets of O(P ). It

is so named because the chambers of vis(O(P )) correspond to the sets of facets of
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Figure 3.3: A regular hexagon in R2, shaded, and the associated visibility arrange-
ment.

O(P ) visible from different points in RP . The unbounded chambers of vis(O(P ))

correspond to the sets of facets visible from arbitrarily far away.

Recall that the Hasse diagram of P is the graph with a vertex for every element

of P and an edge ij whenever i ≤ j in P . Let H be the Hasse diagram of P . Let

Γ be the connected graph obtained by adding 2 vertices j0 and j1 to H, with j0 ∼ i

if i is minimal in P and j1 ∼ i if i is maximal in P . Let ∂V = {j0, j1}, and let

u : ∂V → R be given by u(j0) = 0 and u(j1) = 1. Then A(Γ, u) = vis(O(P )) (see

[89, Theorem 4]).

Example 3.1.6 (Linear order polytope). Let P = {1, . . . , `} with the usual linear

ordering. The weakly increasing maps P → [0, 1] correspond to points x ∈ R` with

0 ≤ x1 ≤ · · · ≤ x` ≤ 1. Thus the order polytope O(P ) is an `-simplex in R`. Every

proper subset of the ` + 1 facets of O(P ) is a visibility set; by Corollary 3.2.3 we

must have 1
2
α(Γ̂) = 2`+1 − 1, where Γ̂ (as defined in Example 3.1.5) is a cycle graph

on `+ 2 vertices. The empty set is only visible from the interior of O(P ), and is the

only set not visible from far away.
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3.2 Main results

The Dirichlet arrangement A(Γ, u) is not a restriction of A(Γ) in the traditional

sense, since (3.1) is not an intersection of elements of A(Γ). However, the following

theorem shows that A(Γ, u) preserves a good deal of graphic structure. An order

ideal I of L(A) is a subset such that if X ∈ I and Y ≤ X in L(A), then Y ∈ I.

Theorem 3.2.1. Let Γ̂ be the graph obtained from Γ by adding an edge between each

pair of boundary nodes. The following hold:

(i) The intersection poset L(A(Γ, u)) of a Dirichlet arrangement is the order ideal

of L(A(Γ)) consisting of all connected partitions π of Γ such that no set in π

contains more than one boundary node

(ii) The characteristic polynomial of the Dirichlet arrangement A(Γ, u) is the quo-

tient of the chromatic polynomial of Γ̂ by a falling factorial

(iii) If Γ̂ is 2-connected and K = R, then the bounded chambers of the Dirichlet

arrangement A(Γ, u) correspond bijectively to the possible orientations of cur-

rent flow through Γ respecting the voltages u and in which the current flowing

through each edge is nonzero.

Each part of Theorem 3.2.1 generalizes a key theorem on graphic arrangements.

As corollaries, we obtain a formula for the number of orientations in part (iii), and

we show that the coefficients of a chromatic polynomial remain log-concave after

“modding out” by a clique of the graph.

We also characterize supersolvable Dirichlet arrangements. Stanley [85] showed

that the graphic arrangement A(Γ) is supersolvable if and only if the graph Γ is

chordal. We prove the following characterization of supersolvable arrangements

A(Γ, u), which is directly analogous to the graphic case. This answers a question of

Stanley [88].

Theorem 3.2.2. The Dirichlet arrangement A(Γ, u) is supersolvable if and only if

the graph Γ̂ from Theorem 3.2.1 is chordal.

For an application of our results, let P be a finite poset and O(P ) be the convex

polytope in RP of all order-preserving functions P → [0, 1]. The polytope O(P ) is
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called the order polytope of P [86]. Consider the sets of facets of O(P ) visible from

different points in RP , called visibility sets of O(P ). In general not all visibility

sets of O(P ) are visible from far away, since certain obstructions are eliminated by

viewing O(P ) “from infinity.”

The beta invariant of a graph is the nonnegative integer β(Γ) = |χ′Γ(1)|. One

has β(Γ) > 0 if and only if Γ is 2-connected. Write α(Γ) for the number of acyclic

orientations of Γ.

Corollary 3.2.3. Let P be a finite poset. There is a graph G such that O(P ) has

exactly 1
2
α(G) visibility sets, of which exactly 1

2
α(G)−β(G) are visible from far away.

Another application involves electrical networks with Dirichlet boundary condi-

tions. For generic γ ∈ CE the triple (Γ, u, γ) determines a unique harmonic function

h : V → C extending u (see section 2.1). The energy dissipated by a resistor ij ∈ E
is given by

εij = γij(h(i)− h(j))2. (3.3)

In the other direction, suppose that we are given a network (Γ, u) and fixed energies

ε ∈ CE. It is natural to ask which conductances γ ∈ CE produce the energies

ε. Abrams and Kenyon [2] posed the equivalent problem of describing the set of

harmonic functions associated to these γ, called ε-harmonic functions on (Γ, u).

We describe the ε-harmonic functions on (Γ, u) as critical points of master func-

tions of A(Γ, u) in the sense of Varchenko [98]. The master function of an arrange-

ment A in Cd with weights a ∈ CA is the multivalued function Φ : U(A)→ C given

by

Φ(x) =
∑
H∈A

aH log fH(x), (3.4)

where the fH are the defining functions of A. Broadly speaking, master functions

generalize logarithmic barrier functions, and their critical points generalize analytic

centers of systems of linear inequalities [10, Sections 8.5.3 and 11.2.1].

Theorem 3.2.4. The ε-harmonic functions on (Γ, u) are the critical points of the

master function of A(Γ, u) with weights ε.
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Theorem 3.2.4 connects electrical networks, a subject with a vast literature [13,

23, 72, 80, 83, 103], to critical points of master functions, an active area of research

with applications to Lie algebras, physics, integrable systems, and algebraic geometry

[20, 41, 61, 99, 100]. We obtain results of Abrams and Kenyon [2] as corollaries of

Theorem 3.2.4. Combining these with Theorem 3.2.1 yields the following.

Corollary 3.2.5. For generic ε, the number of ε-harmonic functions is

β(Γ̂)

(|∂V | − 2)!
. (3.5)

The chapter is organized as follows. In Sections 3.3.1–3.3.3 we prove the three

parts of Theorem 3.2.1. In Section 3.4 we prove Theorem 3.2.2 and relate Dirichlet

arrangements to previous work [58, 89, 90]. In Section 3.5 we prove Theorem 3.2.4.

In Section 3.6 we give alternate proofs of certain results using a different construction

of A(Γ, u). In Section 3.7 we exhibit an action of Gal(Qtr/Q) on the critical points

of any master function with positive rational weights, where Qtr is the field of totally

real numbers.

3.3 Combinatorics of Dirichlet arrangements

Let Γ = (V,E) be a graph on d vertices and k edges with boundary ∂V ⊆ V and

boundary data u : ∂V → R. Again we write m = |∂V | ≥ 2 and n = |V ◦| for the

number of boundary nodes and interior vertices, respectively.

Graphic arrangements are well studied because of the ability to translate between

properties of A(Γ) and corresponding properties of Γ [29, 30, 45, 59, 71, 78]. The

following theorem is the graphic version of Theorem 3.2.1. For proofs, see [87].

Theorem 3.3.1. For any graph Γ, the following hold:

(i) The intersection poset L(A(Γ)) is isomorphic to the lattice of connected parti-

tions of Γ
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(ii) The characteristic polynomial χA(Γ) is the chromatic polynomial of Γ

(iii) The chambers of A(Γ) correspond bijectively to the acyclic orientations of Γ.

3.3.1 Intersection poset and connected partitions

Recall from section 2.2.2 that the connected partitions of Γ form a lattice ordered

by refinement. That is, π ≤ ρ in ΠΓ if and only if π is a refinement of ρ. Recall that

a set I ⊆ ΠΓ is an order ideal if, whenever ρ ∈ I and π ≤ ρ in ΠΓ, we have X ∈ S.

Definition 3.3.2. A connected partition of Γ is boundary separating if it belongs to

ΠΓ,∂V = {π ∈ ΠΓ : |P ∩ ∂V | ≤ 1 for all P ∈ π}. (3.6)

Proof of Theorem 3.2.1(i). Let X ∈ L(A(Γ, u)) and x ∈ X. The coordinates of x

are indexed by V ; let xi denote the coordinate indexed by i ∈ V . For each i ∈ V let

Si ⊆ V be the set of j ∈ V for which there exists a path P from i to j such that xv is

the same for all v ∈ P . We obtain an element λX = {Si : i ∈ V } of ΠΓ. No distinct

boundary nodes j and j′ can belong to a single block Si, as this would imply that

u(j) = u(j′). Hence λX ∈ ΠΓ,∂V .

Now suppose that π ∈ ΠΓ,∂V . We reverse the above construction. For every block

B ∈ π, let EB ⊆ E be the subset of edges with both ends in B. These define an

element

Yπ =
⋂
B∈π

⋂
e∈EB

He

of L(A(Γ, u)), where each He ∈ A(Γ, u) is the hyperplane corresponding to e. It is

not hard to see that YλX = X and λYπ = π. Moreover, for X,X ′ ∈ L(A(Γ, u)) we

have X ⊆ X ′ if and only if πX′ ≤ πX . The result follows.

Corollary 3.3.3. The intersection poset L(A(Γ, u)) depends only on (Γ, ∂V ).

Example 3.3.4. Let (Γ, ∂V ) be the Wheatstone bridge from Example 3.1.3 with

any boundary data u. The Hasse diagram of L(A(Γ)) is drawn in Figure 3.4, where
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L(A(Γ, u)) is the order ideal consisting of the blue elements. Each element is la-

beled by the corresponding connected partition of Γ. For example, a|bcd denotes the

partition {{a}, {b, c, d}}.

a|b|c|d

a|bc|da|bd|c ab|c|d ac|b|d ad|b|c

a|bcd abc|d abd|c ac|bd acd|b ad|bc

abcd

a

c

b

d

Figure 3.4: A Wheatstone bridge (Γ, ∂V ) with boundary nodes marked in white and
the associad Hasse diagram of L(A(Γ)) with the order ideal L(A(Γ, u)) marked in
blue.

3.3.2 Characteristic polynomial and precolorings

For positive integers λ, write [λ] = {1, . . . , λ}. Recall that a (proper) λ-coloring of

Γ is a function V → [λ] taking distinct values on adjacent vertices. The chromatic

polynomial χΓ of Γ is a polynomial with integer coefficients such that χΓ(λ) is the

number of λ-colorings of Γ for all integers λ ≥ 1.

Let c : ∂V → [m] be a bijection. Herzberg and Murty [39] exhibited a polynomial

χΓ,∂V with integer coefficients such that

χΓ,∂V (λ) = |{ĉ : V → [p] | ĉ is an λ-coloring of Γ that extends c}| (3.7)

for all integers λ ≥ m. The polynomial χΓ,∂V is the basic object of the Precoloring

Extension Problem [9, 17], which generalizes Latin squares and Sudoku puzzles [39].
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Definition 3.3.5. We call χΓ,∂V the precoloring polynomial of (Γ, ∂V ).

The following result is due implicitly to Crapo and Rota [22, Section 17] and was

isolated later by Athanasiadis [4]. The resulting Finite Field Method is a powerful

means of computing characteristic polynomials of arrangements. Note that if A is

an arrangement over a finite field, then the complement U(A) is a finite set. Thus

the cardinality |U(A)| is a nonnegative integer.

Proposition 3.3.6 ([4, Theorem 2.2]). Suppose that A is an arrangement in Rd

defined over Z. Fix a prime p ∈ Z, and let Ap be the arrangement in Fdp obtained by

reducing the defining equations of A mod p. If p is sufficiently large, then χA(p) =

|U(Ap)|.

Proposition 3.3.7. The characteristic polynomial of A(Γ, u) is the precoloring poly-

nomial χΓ,∂V .

Proof. Fix a bijection c : ∂V → [m], and set boundary data u = c. Corollary 3.3.3

implies that χA(Γ,u) is unaffected by the choice of u. Consider Fnp as the set [p]n. We

can assign to any point x ∈ U(A(Γ, u)p) an element of

{ĉ : V → [p] | ĉ is a p-coloring of Γ that extends c}

by setting ĉ(i) = xi for all i ∈ V ◦. This assignment is easily seen to be a bijection,

whence χΓ,∂V (p) = |U(A(Γ, u)p)|. The result now follows from Proposition 3.3.6 and

the fact that χΓ,∂V is a polynomial, since χΓ,∂V (p) = |U(A(Γ, u)p)| for infinitely many

p.

Example 3.3.8. Let (Γ, ∂V ) = Γm,n as in Example 3.1.4. Fix a bijection c : ∂V →
[m] and an integer λ ≥ d. To extend c to a λ-coloring of Γ, we must choose for every

interior vertex a color that has not yet been used. This accounts for (λ−m)!/(λ−d)!

possible extensions of c, and there are no others. Hence

χΓ,∂V (t) = (t−m)(t−m− 1) · · · (t− d+ 1).
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In Example 3.3.8 the precoloring polynomial χΓ,∂V (t) divides the chromatic poly-

nomial χKd(t), where Kd is the complete graph on d vertices. This is a consequence

of the following proposition.

Proposition 3.3.9. Let Γ̂ be the graph obtained from Γ by adding an edge between

each pair of boundary nodes. The precoloring polynomial χΓ,∂V satisfies

χΓ̂(t) = (t)m · χΓ,∂V (t), (3.8)

where · denotes multiplication and (t)m = t(t − 1)(t − 2) · · · (t − m + 1) denotes a

falling factorial.

Proof. Fix λ ≥ d. We count the number of λ-colorings of Ĝ vertex-by-vertex, starting

with the boundary nodes. Since ∂V is a clique in Ĝ, there are λ ways to color the

first boundary node, λ − 1 ways to color the second, and λ − r + 1 ways to color

the rth. Once all the boundary nodes are colored, the number of ways to color the

interior vertices is χΓ,∂V (λ). Thus χΓ̂(t) = (t)m · χΓ,∂V (t) holds for infinitely many t,

so it holds in general.

Proof of Theorem 3.2.1(ii). The result follows from Propositions 3.3.7 and 3.3.9.

Example 3.3.10. Let Γ be the path graph on d ≥ 3 vertices, and let ∂V consist of

both ends of the path. We have Γ̂ = Cd, the d-cycle. Using the elementary formula

χCd(t) = (t− 1)d + (−1)d(t− 1), we obtain

χΓ,∂V (t) =
χCd(t)

t(t− 1)

=
n∏
r=1

(t+ ζr − 1),

where ζ ∈ C is any primitive kth root of unity.
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Recall that a sequence a0, . . . , an of nonnegative numbers is log-concave if

a2
r ≥ ar−1ar+1 (3.9)

for all r ∈ [n− 1]. A log-concave sequence is necessarily unimodal ; i.e., there exists

s ∈ {0, 1, . . . , n} such that

a0 ≤ a1 ≤ · · · ≤ as−1 ≤ as ≥ as+1 ≥ · · · ≥ an. (3.10)

Huh [40, Theorem 3] proved that the coefficients of a matroid representable over a

field of characteristic 0 form a log-concave sequence. Phrased in terms of hyperplane

arrangements, we have the following.

Proposition 3.3.11 ([40]). Let A be a real or complex hyperplane arrangement, and

write

χA(t) = a0t
n − a1t

n−1 + · · ·+ (−1)nan.

The sequence a0, . . . , an is log-concave.

We can apply the previous result to Dirichlet arrangements:

Proposition 3.3.12. Suppose that Γ contains a clique on ` vertices, and write

χΓ(t)/(t)` = a0t
n − a1t

n−1 + · · ·+ (−1)nan.

The sequence a0, . . . , an is log-concave.

Proof. This follows from Propositions 3.3.9 and 3.3.11.

Proposition 3.3.12 can help determine whether a given polynomial is chromatic.

The following corollary gives a small example.

Corollary 3.3.13. If χΓ(t) is divisible by (t)3 but the coefficients of χΓ(t)/(t)3 do

not form a log-concave sequence, then Γ contains a simple chordless cycle of length

at least 5.

31



Proof. Proposition 3.3.12 implies that Γ contains no cycle of length 3. Since χΓ(t) is

divisible by (t)3, we have χΓ(2) = 0, so Γ is not 2-colorable. In other words, Γ is not

bipartite, so it contains an odd cycle. This cycle must be of length at least 5, and

must be simple and chordless, or else Γ would contain a cycle of length 3.

Example 3.3.14. Consider the polynomial f(t) = t5 − 4t4 + 7t3 − 8t3 + 4t. Note

that f(t) is a monic polynomial whose coefficients alternate in sign and form a log-

concave sequence. However, the coefficients of f(t)/(t)3 = t2 − t + 2 do not form

a log-concave sequence. Corollary 3.3.13 implies that if f = χΓ, then Γ contains a

simple chordless cycle of length at least 5. Since deg(f) = 5, we must have |V | = 5.

Hence Γ is necessarily the 5-cycle C5. But χC5(t) = (t)3 · (t2− 2t+ 2) 6= f(t), so f is

not chromatic.

3.3.3 Chambers and compatible orientations

Given a real arrangement A, we denote by C(A) and C(A) the sets of chambers

and bounded chambers, resp., of A. There is a bijection between the chambers of

C(A(Γ)) and set of the acyclic orientations of Γ due to Greene [37]. Namely, to any

C ∈ C(A(Γ)) we take x ∈ C and assign the orientation o(C) of Γ with ~ij if and only

if xi > xj for all ij ∈ E.

Definition 3.3.15. We say that an orientation σ of Γ respects u if for any path

i→ j in σ between boundary nodes i and j we have u(i) > u(j).

Definition 3.3.16. Let OΓ,u denote the set of acyclic orientations of Γ that respect

u. Let OΓ,u ⊆ OΓ,u be the subset of those orientations with no sinks or sources in

V ◦. The orientations in OΓ,u and OΓ,u are called semicompatible and compatible,

respectively.

Consider the edges of Γ as resistors with arbitrary conductances γ ∈ (0,∞)k,

and suppose that every vertex in V ◦ lies on a simple path in Γ between distinct

boundary nodes. Current flows from vertices of higher voltage to vertices of lower

voltage. As γ varies, the compatible orientations are the orientations of all current
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flows through Γ that respect the boundary voltages u and in which the current across

every edge is nonzero. This point of view is reinforced by Proposition 3.3.20 below,

which generalizes [53, Theorem a.1].

Proposition 3.3.17. There is a bijection from the set of chambers (resp., bounded

chambers) of A(Γ, u) to the set of semicompatible (resp., compatible) orientations of

(Γ, u).

Proof. Recall that for any acyclic orientation C ∈ C(A(Γ)), the orientation o(C) is

obtained by taking x ∈ C and directing ~ij if and only if xi > xj for all ij ∈ E. We

first show that the function o restricts to a bijection C(A(Γ, u)) → OΓ,u. Suppose

that C ∈ C(A(Γ, u)), and let x ∈ C. Since xi = u(i) for all i ∈ ∂V , o(C) respects

u. Since U(A(Γ, u)) ⊆ U(A(Γ)), o(C) is acyclic. Hence o(C) ∈ OΓ,u. Clearly o is

injective.

Now suppose that σ ∈ OΓ,u, and note that u defines a total order on ∂V . Since

σ is acyclic, we obtain a partial order on V by setting j ≤ i if and only if ~ij ∈ σ.

Extend this order to a total order on V ; such an extension also extends the total

order on ∂V . Thus we can take y ∈ U(A(Γ, u)) whose entries respect the total order

on V . Write o−1(σ) for the chamber of A(Γ, u) containing y. We have o(o−1(σ)) = σ,

so o is a bijection C(A(Γ, u))→ OΓ,u, as desired.

We must now show that σ ∈ OΓ,u if and only if o−1(σ) ∈ C(A(Γ, u)). For the

“if” direction, suppose that σ ∈ OΓ,u \ OΓ,u, and suppose without loss of generality

that i ∈ V ◦ is a source of σ. Let x ∈ o−1(σ), and let y ∈ Rn be the standard basis

element corresponding to i. Let t > 0 be large enough that x+ ty ∈ U(A(Γ, u)), and

let C ∈ C(A(Γ, u)) be the chamber containing x + ty. Clearly i is a source of o(C),

and in fact σ = o(C). Hence o−1(σ) is unbounded, proving the “if” direction.

For the “only if” direction, suppose that σ ∈ OΓ,u. Let f ∈ o−1(σ), and let X be

as in Definition 3.1.1. We show that any ray in X originating at f is not contained

in the convex set o−1(σ). Let g ∈ Rn \ {0} with gi = 0 for all i ∈ ∂V , and suppose

without loss of generality that gv > 0 for some v ∈ V ◦. For large enough t > 0 we

have f+tg ∈ U(A(Γ, u)) and fv+tgv > u(w) for all w ∈ ∂V . If C ∈ C(A(Γ, u)) is the

chamber containing f + tg, then o(C) has a source in V ◦. Hence C 6= o−1(σ). Since
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the direction of the ray in X was arbitrary, we conclude that o−1(σ) is bounded.

Proof of Theorem 3.2.1(iii). The result follows from Propositions 3.3.20 and 3.3.17.

Zaslavsky [109] expressed the numbers of chambers and bounded chambers of a

real arrangement A in terms of the characteristic polynomial χA. We are particularly

interested in counting the bounded chambers of A(Γ, u) because of their role in

Section 3.5.3.

Proposition 3.3.18 ([109, Theorems A and C]). If A is a real arrangement, then

the number of chambers of A is |χA(−1)|, and the number of bounded chambers is

|χA(1)|.

Proposition 3.3.18 gives |C(A(Γ, u))| and |C(A(Γ, u))| in terms of the precolor-

ing polynomial χΓ,∂V . The next theorem gives these counts in terms of a genuine

chromatic polynomial. Recall that the beta invariant of Γ is the nonnegative integer

β(Γ) given by

β(Γ) = |χ′Γ(1)|, (3.11)

where χ′Γ is the derivative of χΓ. We have β(Γ) > 0 if and only if Γ is 2-connected

[6, 67].

Theorem 3.3.19. Let Γ̂ be the graph obtained from Γ by adding an edge between

each pair of boundary nodes. The number of semicompatible orientations of (Γ, u) is

|OΓ,u| =
α(Γ̂)

m!
, (3.12)

where α(Γ̂) is the number of acyclic orientations of Γ̂. The number of compatible

orientations is

|OΓ,u| =
β(Γ̂)

(m− 2)!
, (3.13)

where β(Γ̂) is the beta invariant of Γ̂.
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Proof. Proposition 3.3.9 says that

χΓ̂(t) = (t)m · χΓ,∂V (t). (3.14)

Evaluating both sides of (3.14) at t = −1 and rearranging gives |χΓ,∂V (−1)| =

|χΓ̂(−1)|/m!. Proposition 3.3.18 implies that |χΓ̂(−1)| = α(Γ̂). Now (3.12) follows

from Proposition 3.3.17.

Taking derivatives of both sides of (3.14), evaluating at t = 1 and rearranging,

we have |χΓ,∂V (1)| = |χ′
Γ̂
(1)|/(m− 2)!. Thus (3.13) follows from Propositions 3.3.17

and 3.3.18.

The identity |OΓ,u| = |χΓ,∂V (−1)| was obtained by Jochemko and Sanyal [48,

Corollary 4.5], who used a combinatorial reciprocity for χΓ,∂V . Equation (3.13) seems

to be the first analogous treatment of χΓ,∂V (1). From Theorem 3.3.19 we obtain the

following result, which reinforces the point of view of compatible orientations as

orientations of current flow.

Proposition 3.3.20. Let Γ̂ be the graph obtained from Γ by adding an edge between

each pair of boundary nodes. The following are equivalent:

(i) Γ̂ is 2-connected

(ii) (Γ, u) admits a compatible orientation for any boundary data u

(iii) Every interior vertex of Γ lies on a simple path in Γ between distinct boundary

nodes.

Proof. The equivalence of (i) and (ii) follows from Theorem 3.3.19. We prove the

equivalence of (i) and (iii).

Suppose that (i) holds. Let i ∈ V ◦. If there is no simple path in Γ connecting

i to ∂V , then Γ̂ is disconnected, a contradiction. Suppose instead that there is a

simple path in Γ connecting i to a boundary node j, but that there is no simple path

containing i and two distinct boundary nodes. Notice that Γ̂ \ j is disconnected, so

Γ̂ is not 2-connected, a contradiction. Hence (iii) holds.

Now suppose that (i) does not hold. Let i ∈ V be such that Γ̂ \ i is disconnected.

Since ∂V forms a clique in Γ̂, all boundary nodes remaining in Γ̂ \ i belong to the
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same component X of Γ̂ \ i. Let j be a vertex of Γ̂ \ i not in X. Any path in Γ that

contains j and begins and ends at distinct boundary nodes j must contain at least

2 edges (with multiplicity) incident to i. Such a path is not simple, so (iii) does not

hold.

Example 3.3.21. Suppose that ∂V = {i, j} with any boundary data u. Here the

orientations in OΓ,u are called ij-bipolar and have applications to graph drawing [24].

If one considers the edges of Γ as resistors with arbitrary positive conductances, then

the ij-bipolar orientations of Γ are the possible orientations of current flow through

Γ in which the current flowing through each resistor is nonzero after a battery is put

across i and j. In this case, the formula (3.13) was observed by Abrams and Kenyon

[2].

Proof of Corollary 3.2.3. This follows from Example 3.1.5 and Theorem 3.3.19.

Question 3.3.22. Let ∆ be the graph with a vertex for every bounded chamber of

A(Γ, u) and an edge whenever the associated chambers share a facet. O. de Mendez

[25] showed that in the case of 2 boundary nodes, if Γ̂ is 3-connected, then ∆ is

connected (see [24, Theorem 7.1]). Does this result hold in the case of 3 or more

boundary nodes?

3.4 Supersolvability and psi-graphical arrangements

Stanley [89] introduced the following class of arrangements to study visibility ar-

rangements of order polytopes (see Example 3.1.5).

Definition 3.4.1. Denote the power set of R by P(R), and let ψ : V → P(R)

be such that |ψ(i)| < ∞ for all i ∈ V . Let A(Γ, ψ) be the arrangement in Rn of

hyperplanes {xi = xj} for all ij ∈ E and {xi = α} for all i ∈ V and α ∈ ψ(i). An

arrangement is called ψ-graphical if it is of the form A(Γ, ψ) for some pair (Γ, ψ).

It turns out that every Dirichlet arrangement can be realized as a ψ-graphical

arrangement, and vice versa. We prove this equivalence. The main benefit of Defin-

tion 3.1.1 over Definition 3.4.1 is that it leads to clearer parallels between Dirichlet
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arrangements and graphic arrangements. Theorem 3.2.2 and the results of Section

3.3 are just a few examples of this.

Proposition 3.4.2. The classes of Dirichlet arrangements and ψ-graphical arrange-

ments coincide.

Proof. Let Γ = (V,E) be a graph with boundary ∂V and boundary data u. Let

Γ◦ be the subgraph of Γ induced by V ◦, and let ψ◦ : V ◦ → P(R) be given by

ψ◦(i) = {u(j) : j ∼ i and j ∈ ∂V }. We have A(Γ, u) = A(Γ◦, ψ◦). Hence every

Dirichlet arrangement is ψ-graphical.

Now consider a ψ-graphical arrangement A(Γ, ψ), and let S =
⋃
i∈V ψ(i). Let

V ′ = V ∪ {js : s ∈ S} and E ′ = {ijs : i ∈ V and s ∈ ψ(i)}. Also let Γ′ = (V ′, E ′),

and let u′ : {js : s ∈ S} → R be given by u(js) = s for all s ∈ S. It is not hard to

see that A(Γ, ψ) = A(Γ′, u′). Hence every ψ-graphical arrangement is Dirichlet.

Example 3.4.3. Consider the path graph Γ on the left side of Figure 3.5. Let

ψ : V → P(R) be given by the vertex labels, so if i is the top vertex for example,

then ψ(i) = {0, 2, 3}. The pair (Γ, ψ) corresponds to the graph on the right side of

Figure 3.5 with boundary vertices, marked in white, corresponding to the elements

of
⋃
i∈V ψ(i) = {0, 1, 2, 3}. We draw an edge between a black vertex i and a white

vertex j whenever the number associated to j belongs to ψ(i). For example, the top

black vertex is incident to the boundary vertices corresponding to 0, 2 and 3.

{1, 2}

{0, 1, 2, 3}

{0, 2, 3} 01

2 3

Figure 3.5: An illustration of the proof of Proposition 3.4.2.

The literature on ψ-graphical arrangements has focused on questions of super-

solvability. Recall that A(Γ, u) is not central, i.e. the intersection of its elements is
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empty. Definition 2.2.3 states that a non-central arrangement A is supersolvable if

L(cA) admits a maximal chain consisting of modular elements, where cA is the cone

over A.

Recall that Γ is chordal if it contains no induced cycles of length greater than 3.

Alternatively, Γ is chordal if and only if it admits a perfect elimination ordering. A

perfect elimination ordering of Γ is an ordering i1, . . . , in of V such that for every

s = 1, . . . , n the neighbors of is in {is, . . . , in} form a clique.

Proposition 2.2.6 states that a graphic arrangement A(Γ) is supersolvable if and

only if Γ is chordal. Our result, Theorem 3.2.2, is a direct generalization for Dirichlet

arrangements. This generalization builds on work of Mu–Stanley and Suyama–Tsujie

[58, 90].

Lemma 3.4.4 ([75, p. 603]). If Γ is chordal and C ⊆ V is a clique of Γ, then there

is a perfect elimination ordering of Γ ending with the elements of C.

Proof of Theorem 3.2.2. Let Γ◦ denote the subgraph of Γ induced by V ◦, and let

ψ◦ : V ◦ → 2R be given by

ψ◦(i) = {u(j) : j ∼ i and j ∈ ∂V }. (3.15)

Notice that A(Γ, u) = A(Γ◦, ψ◦). A weighted elimination ordering of (Γ◦, ψ◦) is a

perfect elimination ordering i1, . . . , in−m of Γ◦ such that if ir ∼ is with r < s, then

ψ◦(ir) ⊆ ψ◦(is). We show that (Γ◦, ψ◦) admits a weighted elimination ordering if

and only if Γ̂ is chordal. Theorem 3.2.2 will then follow from [90, Theorem 2.2].

Suppose that i1, . . . , in is a weighted elimination ordering of (Γ◦, ψ◦). We claim

that i1, . . . , in, j1, . . . , jm is a perfect elimination ordering of Γ̂ for any ordering

j1, . . . , jm of ∂V . Suppose that ir ∼ is and ir ∼ it for r < s, t. Clearly the same

adjacencies hold in Γ̂. Now suppose that ir ∼ is and ir ∼ j for some j ∈ ∂V . Since

r < s we have ψu(ir) ⊆ ψu(is), so u(j) ∈ ψu(is). Hence is ∼ j in Γ̂. Now suppose

without loss of generality that ir ∼ j1 and ir ∼ j2. Since ∂V is a clique in Γ̂, we have

j1 ∼ j2. The claim follows, proving that Γ̂ is chordal.

Conversely, suppose that Γ̂ is chordal. Since ∂V is a clique of Γ̂, Lemma 3.4.4

gives a perfect elimination ordering of Γ̂ whose last m vertices are the elements of ∂V .
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The first n vertices of this perfect elimination ordering form a weighted elimination

ordering of (Γ◦, ψ◦).

Example 3.4.5. Let (Γ, ∂V ) = Γm,n with any boundary data u. Since Γ̂ is com-

plete, any ordering of V is a perfect elimination ordering of Γ̂. Hence A(Γ, u) is

supersolvable.

More generally, suppose that V ◦ is a clique in Γ, but make no assumptions

about which boundary nodes and which interior vertices are adjacent. Write ∂V =

{j1, . . . , jm} and V ◦ = {i1, . . . , in−m} so that if ir is adjacent to a boundary node and

r < s, then is is adjacent to a boundary node. Notice that i1, . . . , in−m, j1, . . . , jm is

a perfect elimination ordering of Γ̂. Hence A(Γ, u) is supersolvable for any boundary

data u.

Example 3.4.6. In this example A(Γ) is supersolvable but A(Γ, u) is not. Let Γ

be a path graph on n ≥ 3 vertices with ∂V consisting of both ends of the path. In

Example 3.3.10 we computed

χΓ,∂V (t) =
k−1∏
r=1

(t+ ζr − 1),

where ζ ∈ C is a primitive kth root of unity. At most one root of χΓ,∂V is a positive

integer. Hence when n ≥ 4, A(Γ, u) is not supersolvable for any boundary data u.

3.5 Master functions and electrical networks

Given an arrangement A in Rd, let AC be the arrangement in Cd defined by the

polynomial

Q(AC) = Q(A),

where Q(AC) is considered as a polynomial over C. In other words, AC = A⊗R C is

the complexification of A. We think of U(A) = U(AC) ∩Rd as the set of real points

of U(AC).
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Definition 3.5.1. Let A be an arrangement of k hyperplanes in Rd. The master

function of A with weights ε ∈ Ck is the multivalued function Φε
A : U(AC) → C

given by

Φε
A(x) =

k∑
r=1

εr log fr(x), (3.16)

where the fr are the defining functions of A.

Definition 3.5.2. A point x ∈ U(AC) is a critical point of the master function Φε
A

if ∇Φε
A(x) = 0. That is,

k∑
r=1

∂fr
∂xi

εr
fr(x)

= 0 (3.17)

for all i = 1, . . . , d.

The critical points of Φε
A are independent of the choices of fr. As i ranges over

1, . . . , d, the equations (3.17) are sometimes called the Bethe Ansatz equations for

Φε
A (see [84, Section 12.1]). We denote the set of critical points of Φε

A by V(A, ε).
The term master function sometimes refers to the product x 7→ exp(Φε

A(x)) of

powers of affine functionals. Proposition 3.5.3 below is due to Varchenko [97] and is

foundational in the study of master functions. Given S ⊆ Cd and a list of mutually

disjoint sets A1, . . . , A` ⊂ Cd, we say that the elements of S form a system of distinct

representatives for the sets A1, . . . , A` if |S| = ` and S ∩ Ar is nonempty for all

r = 1, . . . , `.

Proposition 3.5.3 ([97, Theorem 1.2.1]). Let A be a real essential arrangement and

ε ∈ (0,∞)A. The critical points of the master function Φε
A form a system of distinct

representatives for the bounded chambers of A.

For a short, elementary proof of Proposition 3.5.3, see [84, §9.2].

3.5.1 Laplacians and master functions

If every hyperplane in A contains the origin, then the defining functions fr of A are

homogeneous. In this case we let L = L(γ) denote the d × d matrix in the usual
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basis of Rd with

xTLx =
k∑
r=1

γrfr(x)2 (3.18)

for all x ∈ Rd, where xT is the transpose of x. We call L the Laplacian matrix

of A with weights γ. Our terminology is explained by Example 3.5.4 below, which

features in the remainder of this section.

Example 3.5.4. We let LΓ = LΓ(γ) denote the Laplacian matrix of the graphic

arrangement A(Γ) with weights γ. Here LΓ is just the weighted Laplacian matrix

of Section 2.1, where each edge e is weighted by γe. The quadratic form associated

with LΓ is the Dirichlet norm:

xTLΓx =
∑
ij∈E

γij(xi − xj)2 (3.19)

for all x ∈ Rd. If Γ as an electrical network with conductances γ ∈ (0,∞)k, and

voltages x, then xTLΓx is the total energy dissipated by the network.

One can think of Φε
A as a (weighted) logarithmic barrier function. Hessian matri-

ces of logarithmic barrier functions play an important role in interior point methods

(see, e.g., [63]). The next proposition connects Laplacian matrices of an arrangement

A to gradients and Hessian matrices of master functions ofA. Let ΨA : Ck×Cd → Ck

be given by

ΨA(γ, x) = (γ1f1(x)2, . . . , γkfk(x)2). (3.20)

We write Ψ = ΨA. For suitable functions g, we let Hg(x) denote the Hessian matrix

of g, evaluated at x.

Proposition 3.5.5. If every hyperplane in A contains the origin and ε = Ψ(γ, x)

for some x ∈ U(AC), then ∇Φε
A(x) = Lx and HΦεA

(x) = −L.

Proof. First, notice that

Lij =
k∑
r=1

∂fr
∂xi

∂fr
∂xj

γr. (3.21)
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If ε = Ψ(γ, x) for some x ∈ U(AC), then

∂

∂xi
Φε
A(x) =

k∑
r=1

∂fr
∂xi

εr
fr(x)

=
k∑
r=1

∂fr
∂xi

γrfr(x)

=
k∑
r=1

∂f`
∂xi

γr

(
d∑
j=1

∂fr
∂xj

xj

)

=
d∑
j=1

(
k∑
r=1

∂fr
∂xi

∂fr
∂xj

γr

)
xj,

so ∇Φε
A(x) = Lx by (3.21). By a similar argument we also have

∂2

∂xi∂xj
Φε
A(x) = −Lij,

as desired.

3.5.2 Discrete harmonic functions

Let γ, ε ∈ Ck be indexed by E. We adopt the language of Section 2.1, calling γ

the conductances and ε the energies. We also refer to the entries γij (resp., εij)

collectively as the conductances (resp., energies).

Recall the weighted Laplacian matrix of Γ from Section 2.1 and Example 3.5.4.

Let LΓ,∂V = LΓ,∂V (γ) denote the submatrix of LΓ obtained by deleting all rows and

columns indexed by ∂V . Define x ∈ CV to be a harmonic function on (Γ, u, γ) if x

extends u ∈ R∂V and ∑
j∼i

γij(xi − xj) = 0 (3.22)

When there is no ambiguity, we say simply that x is harmonic.

If a harmonic function exists, then it is unique; we denote it by h(γ). A harmonic
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function exists unless LΓ,∂V is singular, which occurs only for γ in a proper algebraic

subset of Ck by (2.6). We say that γ is generic if LΓ,∂V is nonsingular. In particular,

γ is generic whenever all γe have positive real parts.

3.5.3 Fixed-energy harmonic functions

We now prove Theorem 3.2.4 and obtain results of Abrams and Kenyon [2] as corol-

laries. Recall that V(A, ε)(A, ε) is the critical set of the master function Φε
A of A.

Also recall the function ΨA defined in (3.20). Given ε ∈ Ck, we write

ΨΓ,u = ΨA(Γ,u)

ΦΓ,u = Φε
A(Γ,u)

VΓ,u = V(A(Γ, u), ε).

(3.23)

We continue to assume that Γ is connected and ∂V is nonempty. If γ is generic in

the sense of Section 3.5.2, then we write

ΨΓ,u(γ) = ΨΓ,u(γ, h(γ)). (3.24)

Example 3.5.6. Let (Γ, ∂V ) = Γm,n as in Example 3.1.4. Fix positive integers `j

for all j ∈ ∂V . Let ε ∈ Ck be given for all ij ∈ E by

εij =

2 if i, j ∈ V ◦

−`j if j ∈ ∂V .

Here we have

ΦΓ,u(x) =
∑

{i,j}⊂V ◦
2 log(xi − xj)−

∑
i∈V ◦
j∈∂V

`j log(xi − u(j)).

This master function plays a crucial role in the construction of hypergeometric solu-

tions of the sl2 Knizhnik–Zamolodchikov equations [60, 77, 79]. Since the components
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of ε are not all positive, the structure of VΓ,u is not settled by Proposition 3.5.3. In

fact, the qualitative behavior of the critical points of ΦΓ,u changes as n, m and ε are

allowed to vary. This is shown in [79] by characterizing the critical points of ΦΓ,u in

terms of polynomial solutions of Fuchsian differential equations.

Proof of Theorem 3.2.4. Let z ∈ Cn extend u, and fix ε ∈ (0,∞)k. We must show

that z is ε-harmonic on (Γ, u) if and only if z ∈ VΓ,u. Suppose first that z is ε-

harmonic on (Γ, u). Then there is γ ∈ Ck such that h(γ) = z and ΨΓ,u(γ) = ε. Thus

for all i ∈ V ◦ we have

0 =
∑
j∼i

γij(zi − zj) =
∑
j∼i

εij
zi − zj

=
∂

∂xi
ΦΓ,u(z), (3.25)

where we have used the definition of ΨΓ,u. Hence z ∈ VΓ,u.

Conversely, suppose that z ∈ VΓ,u, and let γ ∈ Ck be given by γij = εij/(zi− zj)2

for all ij ∈ E. It is not hard to see that (3.25) holds again for all i ∈ V ◦, so h(γ) = z

and moreover ΨΓ,u(γ) = ε. Hence z is ε-harmonic on (Γ, u).

It seems likely that the following corollary is known in some form, given the

extensive literature on electrical networks. However, we have not seen it stated as

such.

Corollary 3.5.7. Every point in every bounded chamber of A(Γ, u) is a harmonic

function on (Γ, u, γ) for some choice of conductances γ ∈ (0,∞)E.

Proof. This is an application of [73, Theorem 3.3] to Theorem 3.2.4.

For a fixed ε ∈ CE, as γ ranges over the generic conductances with ΨΓ,u(γ) = ε,

we call the functions h(γ) the ε-harmonic functions on (Γ, u). The results of Abrams

and Kenyon [2] now follow:

Corollary 3.5.8 ([2, Theorems 1–3]). Fix energies ε ∈ (0,∞)k, and let C(ε) be the

set of all generic conductances γ ∈ Ck for which ΨΓ,u(γ) = ε. The following hold:

(i) C(ε) ⊂ (0,∞)k
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(ii) The ε-harmonic functions on (Γ, u) form a system of distinct representatives

for the bounded chambers of A(Γ, u).

Proof. First we prove (i). Suppose that γ ∈ C(ε). For all ij ∈ E we have εij =

γij(hi(γ) − hj(γ))2 > 0, where we write hi(γ) for the ith component of h(γ). Since

h(γ) is a real point, it follows that γij > 0, proving (i).

To prove (ii), we show that A(Γ, u) is essential. The result then follows from

Theorem 3.2.4 and Proposition 3.5.3. For each e ∈ E let He be the corresponding

element of A(Γ, u) with normal vector ve of the form xi − xj or xi − u(j)xj. Since Γ

is connected, for any i ∈ V ◦ there is a path P ⊆ E with one endpoint i and the other

endpoint in ∂V . We have
∑

e∈P ve = xi, replacing some ve with −ve if necessary. It

follows that the normal vectors span Kn, so A(Γ, u) is essential.

In fact, there is a bijection from C(ε) to the set of bounded chambers of A(Γ, u)

for all ε outside a proper algebraic subset of Ck. This follows, for instance, from a

generalization of Proposition 3.5.3 due to Orlik and Terao [66]. Corollary 3.5.8 has

applications in rectangular tilings, as the ε-harmonic functions correspond to the

possible tilings of a square by k rectangles with areas given by ε ∈ (0,∞)k (see [2]).

Proof of Corollary 3.2.5. This follows from Theorem 3.3.19 and Corollary 3.5.8(ii).

3.6 Dirichlet arrangements as modular fibers

A different realization of Dirichlet arrangements yields alternate proofs of some of

our results, including Theorem 3.2.2. Given a central arrangement A in Rd and

X ∈ L(A), write AX = {H ∈ A : H ⊇ X}. Let π : Rd → Rd/X be the natural

projection. For every H ∈ AX the image π(H) is a hyperplane of Rd/X. Thus

we can consider the arrangement π(AX) and its complement U(π(AX)). For every

v ∈ U(π(AX)) let Av be the restriction of A to the fiber π−1(v). In general Av is

not central, so we will consider the cone cAv over Av instead.

45



Recall from Section 2.3 that a central arrangement A defines a matroid M(A) on

A. Also recall the definition of a complete principal truncation from Section 2.3.2.

The set X ∈ L(A) corresponds to aflat of the matroid M(A). Thus we can speak

of the complete principal truncation of M(A) along X. We say that X ∈ L(A) is

modular if X + Y ∈ L(A) for all Y ∈ L(A), where X + Y denotes the Minkowski

sum. Equivalently, X is modular if rk(X ∨ Y ) + rk(X ∧ Y ) = rk(X) + rk(Y ) for all

Y ∈ L(A), where rk is the rank function of L(A).

Proposition 3.6.1 ([32, Theorem 2.4]). If A is central and X ∈ L(A) is modu-

lar, then the matroid M(cAv) is isomorphic to TX(M(A)), the complete principal

truncation of M(A) along X.

Arrangements of the form Av enjoy a number of desirable properties when X is

modular in L(A) [26, 32, 92]. In particular we have the following.

Proposition 3.6.2. Suppose that X is a modular element of L(A).

(i) The intersection lattice L(cAv) is independent of v ∈M(π(AX))

(ii) We have χA(t) = χAX (t) · χAv(t)
(iii) If L(A) admits a maximal chain of modular elements including X, then Av is

supersolvable.

(iv) If AX and Av are supersolvable, then A is supersolvable.

Proof. Item (i) follows from [32, Theorem 2.4]. Item (ii) then follows from the main

result in [14].

To prove (iii) and (iv) we think of the elements of L(A), L(AX) and L(cAv) as

subsets of E by identifying them with the flats of the underlying matroids (see Section

2.3). From this point of view, the elements of L(cAv) are precisely the elements of

L(A) that contain X or are disjoint from X (see [74, pp. 365–366]). Denote the rank

functions of L(A) and L(cAv) by rk and rk, respectively. By Proposition 3.6.1 and

induction on (2.19) we have

rk(F ) =

rk(F )− rk(X) + 1 if F ⊇ X

rk(F ) if X ∩ F = ∅.
(3.26)
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To prove (iii), suppose that ∅ ⊆ Y1 ⊆ · · · ⊆ Yd−1 is a maximal chain of modular

elements of L(A) with Ym−1 = X. We claim that ∅ ⊆ Ym−1 ⊆ Yd−1 is a maximal

chain of modular elements of L(cAv). Let F ∈ L(cAv). Since Xi ∨ F ⊇ X for all

i, we have rk(Xi ∨ F ) = rk(Xi ∨ F ) − rk(X) + 1. If F ⊇ X, then X ∧ F ⊇ X, so

rk(X ∧ F ) = rk(X ∧ F ) − rk(X) + 1. If X ∩ F = ∅, then (Xi ∧ F ) ∩ X = ∅, so

rk(Xi ∧ F ) = rk(Xi ∧ F ). In either case we have

rk(Xi ∨ F ) + rk(Xi ∧ F ) = rk(Xi ∨ F ) + rk(Xi ∧ F ) = rk(Xi) + rk(F ),

proving the claim.

To prove (iv), suppose that ∅ ⊆ X1 ⊆ · · · ⊆ Xm−1 and ∅ ⊆ Z1 ⊆ · · · ⊆ Zn+1

are maximal chains of modular elements of L(AX) and L(cAv), respectively. In this

case ∅ ⊆ X1 ⊆ · · · ⊆ Xm ⊆ X ∪ Z1 ⊆ · · · ⊆ X ∪ Zn is a maximal chain of modular

elements of L(A), where all but one of these containments are proper. The argument

is similar to the the one in the previous paragraph.

Dirichlet arrangements can be realized as arrangements of the form Av. For the

remainder of the section, let A = AΓ̂ and

X = {x ∈ RV : xi = xj for all i, j ∈ ∂V }. (3.27)

Here we have π(AX) = ess(A(Km)), so L(AX) ∼= L(A(Km)). Let ũ ∈ RV be

any point extending u, and let v = ũ + X ∈ RV /X. Then A(Γ, u) = ess(Av), so

L(A(Γ, u)) ∼= L(Av).

Lemma 3.6.3. The set X defined in (3.27) is a modular element of L(A).

Proof. The subspace X corresponds to the connected partition σ of Γ̂ whose only

non-singleton part is ∂V . If Y ∈ L(A) has corresponding connected partition τ , then

X+Y is the subspace corresponding to the common refinement of τ and σ. Since ∂V

is a clique, the common refinement is a connected partition. HenceX+Y ∈ L(A).
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Corollary 3.3.3 now follows from Proposition 3.6.2(i). Theorem 3.2.1(ii) follows

from Proposition 3.6.2(ii), since χA = χΓ̂, χAv(t) = t ·χA(Γ,u)(t) and t ·χAX (t) = (t)m

by (2.13). Theorem 3.2.2 can be proven using Proposition 3.6.2 as follows.

Alternate proof of Theorem 3.2.2. Suppose that Γ̂ is chordal. By Proposition 2.2.6,

A = A(Γ̂) is chordal. Since ∂V is a clique of Γ̂, Lemma 3.4.4 implies that L(A)

admits a maximal chain of modular elements including the set X defined in (3.27).

Proposition 3.6.2(iii) says that Av is supersolvable, so A(Γ, u) is supersolvable.

Conversely, suppose that A(Γ, u) is supersolvable. Since Km is chordal, AX is

supersolvable. Proposition 3.6.2(iv) then implies that A is supersolvable, as desired.

In Chapter 4 we define a Dirichlet arrangement to be a matroid of the form

M(A(Γ, u)), where A(Γ, u) = cA(Γ, u) is the cone over A(Γ, u). The following

theorem identifies these matroids as complete principal truncations.

Theorem 3.6.4. The Dirichlet matroid M(A(Γ, u)) is the complete principal trun-

cation of the graphic matroid M(Γ̂) along the flat X consisting of all edges of Γ̂

between boundary nodes.

Proof. This follows from Proposition 3.6.1 and the discussion preceding Lemma 3.6.3.

3.7 Galois actions on critical sets

We prove Theorem 3.7.1 below, which generalizes an observation of Abrams and

Kenyon [2, Corollary 5]. An algebraic number in R is called totally real if all of its

Galois conjugates over Q are real. The set Qtr of all totally real numbers is a subfield

of R, and the (infinite) extension Qtr/Q is Galois.

Theorem 3.7.1. If A is an essential real arrangement defined over Q and ε ∈
(0,∞)A is a rational point, then Gal(Qtr/Q) acts on the set of critical points of the

48



master function Φε
A coordinatewise:

σ · (x1, . . . , xn) = (σ(x1), . . . , σ(xn)). (3.28)

Hence Gal(Qtr/Q) acts on the set of bounded chambers of A.

Proof. Let k = |A|. We have x ∈ V(A, ε) if and only if x satisfies (3.17) for all

i = 1, . . . , d. Clearing denominators in (3.17) gives a system of polynomial equations

over Q:
k∑
r=1

∂fr
∂xi

εr
∏
s 6=r

fs(x) = 0. (3.29)

By Proposition 3.5.3, the system has only finitely many solutions x ∈ M(AC), so

each solution is an algebraic point.

Let K be the field generated over Q by xi, as x ranges over V(A, ε) and i ranges

over 1, . . . , d. Replace K by a Galois closure if necessary, and let σ ∈ Gal(K/Q).

Clearly if x is a solution of the system (3.29), then σ(x) is also a solution. Hence

Gal(K/Q) acts on V(A, ε). Moreover, Proposition 3.5.3 says that all solutions of

(3.29) are real, so K ⊂ Qtr. The result follows.

When A = A(Γ, u), Theorem 3.7.1 gives an action of Gal(Qtr/Q) for each rational

point ε ∈ (0,∞)k on the set of ε-harmonic functions of (Γ, u) (or equivalently on the

set of compatible orientations). Abrams and Kenyon conjectured in this case that if

Γ is 3-connected, then the action is transitive given sufficiently general choices of u

and ε [2, Conjecture 1]. Theorem 3.7.1 suggests that a similar statement might hold

for any sufficiently “robust” arrangement A.

Proposition 3.7.2 below describes an example in which Γ is 3-connected but the

corresponding action is not transitive. A wheel graph on d vertices consists of a

(d− 1)-cycle and an additional vertex that is adjacent to every vertex in the (d− 1)-

cycle. The wheel graph on 15 vertices appears in Figure with vertex labels and

directed edges.

Proposition 3.7.2. Let Γ be a wheel graph on d ≡ 3 (mod 4) vertices, and let ∂V

consist of 2 opposite vertices on the outer cycle of the wheel. Fix rational boundary
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data u, and let ε ∈ Ck be identically 1. If d > 3, then the action of Gal(Qtr/Q) on

the set of ε-harmonic functions on (Γ, u) is not transitive.

Proof. Label the outer vertices of Γ in a cycle by i0, . . . , id−2, and write d = 4` −
1. Without loss of generality, suppose that ∂V = {i0, i2`−1} with boundary values

u(i0) = 1 and u(i2`−1) = −1. We exhibit an ε-harmonic function f ∈ Qn−2 on (Γ, u).

Such a function is necessarily fixed by the action of Gal(Qtr/Q). Theorem 3.3.19

gives |OΓ,u| = (2`− 1)2, so the result will follow.

For r = 1, . . . , `− 1 let

f(ir) =
r−1∏
s=0

2(`− 2s)− 1

2(`− 2s) + 1
. (3.30)

For r = `, . . . , 2` − 2 let f(ir) = −f(i2`−r−1), and for r = 2`, . . . , 4` − 3 let f(ir) =

f(i4`−r−2). Finally, let f be 0 at the center of the wheel. This defines a function

f ∈ Qn. It is routine to verify that f is ε-harmonic on (Γ, u). The case d = 15 is

illustrated in Figure 3.6.

−1

−11
13

− 77
117

− 77
195

77
195

77
117

11
13

1

11
13

77
117

77
195

− 77
195

− 77
117

−11
13

0

Figure 3.6: A harmonic function on a network and the associated compatible orien-
tation.
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Chapter 4

Matroids of Dirichlet

arrangements

In this chapter we study the matroids underlying Dirichlet arrangements, called

Dirichlet matroids. Theorem 3.6.4 characterizes Dirichlet matroids as complete prin-

cipal truncations of graphic matroids along cliques. While graphic matroids are well

studied, relatively little is known about the operation of complete principal trun-

cation. We study the effect of this operation on various key properties of graphic

matroids, including the half-plane property, planar duality and Bergman fans. In

doing so, we relate Dirichlet matroids to other objects of interest, including response

matrices of electrical networks, biased graphs and phylogenetic trees. Electrical net-

works are important objects in matroid theory, giving rise to positroids, Rayleigh ma-

troids, log-concavity results, and related objects, such as electroids [18, 50, 72, 101].

Dirichlet matroids have not been previously connected to electrical networks.

4.1 Main results

Let Γ be a graph with an independent set ∂V ⊆ V called the boundary and an

injective function u : ∂V → K. Recall that the Dirichlet arrangement A(Γ, u) is the
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restriction of the graphic hyperplane arrangement A(Γ) over K to the affine subspace

{x ∈ KV : xj = u(j) for all j ∈ ∂V }.

The cone A(Γ, u) over A(Γ, u) defines a matroid. It follows from Corollary 3.3.3 that

this matroid depends only on N = (Γ, ∂V ). This is the Dirichlet matroid associated

to N , denoted by M(N). Thus M(N) = M(A(Γ, u)).

Our first result concerns the real roots of polynomials associated with the response

Λ, which captures the electrical properties of the network N on the boundary (see

Section 2.1). The entries of Λ are rational functions in the variables xe for all e ∈ E
that encode the pairwise relationships between the boundary nodes.

Theorem 4.1.1. Write tr Λ = f/g in lowest terms. The roots of f and g interlace

along any line x+ ty with (x, y) ∈ RE × (0,∞)E.

We show that Theorem 4.1.1 follows from the half-plane property for Dirichlet

matroids. A matroid M with set B of bases has the half-plane property if the poly-

nomial
∑

B∈B
∏

e∈B xe has no root with every xe in the upper half-plane of C. It

is a folklore result from electrical engineering that every graphic matroid has the

half-plane property [101, p. 4].

Our second result characterizes the Bergman fan B̃(N) of M(N), i.e., the tropical

variety defined by the circuits of M(N). The Bergman fan of a representable ma-

troid determines the tropical compactification of the complement of the associated

projective arrangement. We identify B̃(N) as a subfan of B̃(Γ̂), the Bergman fan of

the graphic matroid M(Γ̂), where Γ̂ is the graph obtained from Γ by adding an edge

between each pair of boundary nodes.

Theorem 4.1.2. There is a linear homeomorphism

B̃(N)→ B̃(Γ̂)∂V , (4.1)

where B̃(Γ̂)∂V is the subfan of B̃(Γ̂) consisting of all points constant on E(Γ̂) \E(Γ).
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Ardila and Klivans [3] showed that the Bergman fan B̃(Kn) is homeomorphic

to the space of phylogenetic n-trees. As a corollary of Theorem 4.1.2, we show

that if N = Γm,n as in Example 3.1.4, then B̃(N) is homeomorphic to the space of

phylogenetic trees with leaf set V in which every pair of leaves in ∂V has the same

most recent common ancestor.

Our third result is a Dirichlet generalization of the result that M∗(Γ) ∼= M(Γ∗)

when Γ is planar and Γ∗ is any dual. When N is circular (i.e., when Γ can be embed-

ded into a closed disk with ∂V lying on the boundary circle), there is a corresponding

notion of a dual circular network N∗. We prove the following duality theorem for

Dirichlet matroids.

Theorem 4.1.3. Suppose that N is circular, that no vertex has degree 1, and that

no vertex in V \ ∂V has degree 2. Let Γ be the planar graph obtained from Γ by

identifying all boundary nodes as a single vertex. If C is a cocircuit of M(N), then

one of the following holds:

(i) C is a circuit of M(Γ
∗
)

(ii) C can be written as a union of k distinct circuits of M(N∗), where the minimum

such k is less than 1
2
|∂V |+ 1 but not less than 1

4
|∂V |+ 1

2
.

In particular, if |∂V | = 2, then M∗(N) ∼= M(N∗).

Thus the cocircuits of M(N) are either cocycles of a related planar graph, or they

are the union of a small number of circuits of M(N∗). We give explicit families of

examples to show that the bounds on k in part (ii) are tight.

Our next result concerns the reduced characteristic polynomial χM(N), i.e., the

precoloring polynomial of N defined in Section 3.3.2. We apply the broken circuit

theorem from matroid theory to bound the coefficients of this polynomial.

Theorem 4.1.4. Let d = |V | and n = |V \ ∂V |. Write the chromatic polynomial of

Γ and the precoloring polynomial of N as

χΓ(λ) = a0λ
d − a1λ

d−1 + · · ·+ (−1)dad

χM(N)(λ) = b0λ
n − b1λ

n−1 + · · ·+ (−1)nbn.
(4.2)
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We have ai ≥ bi for all i = 0, . . . , n, with ai = bi if i is less than the minimum

number of edges in a path in Γ between distinct boundary nodes.

Our final result in this chapter is a simple characterization of 3-connected Dirich-

let matroids.

Theorem 4.1.5. The Dirichlet matroid M(N) is 3-connected if and only if Γ\∂V is

connected and Γ̂, the graph obtained from Γ by adding a clique on ∂V , is 3-connected.

Whitney [105] showed that 3-connected graphs are isomorphic if and only if the

associated graphic matroids are isomorphic. It follows from Theorem 4.1.5 and a

result of [27] that if Γ\∂V is connected and Γ̂ is 3-connected, then there are at most

27 other networks with Dirichlet matroids isomorphic to M(N).

4.2 Hyperplane, bias and matrix representations

We show how to represent Dirichlet matroids by Dirichlet arrangements and biased

graphs. We also characterize the fields over which a given Dirichlet matroid is repre-

sentable. We assume familiarity with basic matroid theory; our terminology follows

[69].

4.2.1 Dirichlet arrangements and matroids

Let Γ = (V,E) be a finite connected undirected graph with no loops or multiple

edges. Let ∂V ⊆ V be a set called the boundary that consists of ≥ 2 vertices, called

boundary nodes. We call the pair N = (Γ, ∂V ) a network. Let ∂E ⊆ E be the

set of edges meeting ∂V . Recall that A(Γ, u) denotes the cone over the Dirichlet

arrangement A(Γ, u).

Definition 4.2.1. A matroid M is Dirichlet if M ∼= M(A(Γ, u)) for some pair (Γ, u).
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The resulting matroid does not depend on u. We write a Dirichlet matroid

as M(N), where N = (Γ, ∂V ) is the associated network. Definition 4.2.1 can be

extended to include |∂V | ≤ 1, in which case the associated Dirichlet matroid A is

isomorphic to M(Γ). We assume that |∂V | ≥ 2.

Example 4.2.2. If |∂V | = 2, then M(N) ∼= M(Γ̂) is graphic, where Γ̂ is the graph

obtained from Γ by adding an edge between the two boundary nodes (see Proposition

4.2.22).

Example 4.2.3. Let Γ be a star graph on 4 vertices, with ∂V consisting of the 3

leaves. Let u : ∂V → K be injective. The Dirichlet arrrangement A(Γ, u) consists

of 3 points in K. The Dirichlet matroid M(N) is the uniform matroid U2,4, i.e., the

4-pointed line.

Example 4.2.4. Let P be a finite poset. Recall that the order polytope O(P ) of P

is the set of all order-preserving functions P → [0, 1]. Also recall that the visibility

arrangement vis(O(P )) of O(P ) is the arrangement in RP whose elements are the

affine spans of all facets of O(P ).

Let Γ, ∂V and u be as in Example 3.1.5, so that A(Γ, u) = vis(O(P )). Example

4.2.2 implies that M(N) ∼= M(Γ̂) is graphic.

4.2.2 Background on biased graphs

A theta graph is a graph consisting of 2 “terminal” vertices and 3 internally vertex-

disjoint paths between the terminals. In other words, a theta graph resembles the

symbol θ (see Figure 4.1). A circle of Γ is the edge set of a simple cycle of Γ. We

say that a set B of circles of Γ is a linear subclass of Γ if, for any 2 distinct circles in

B belonging to a theta subgraph H of Γ, the third circle of H also belongs to B.

A biased graph is a pair Ω = (Γ,B) where B is a linear subclass of Γ. If a circle

of Γ belongs to B, then it is balanced ; otherwise it is unbalanced. An edge set or

subgraph X is balanced if every circle of Γ contained in X is balanced; otherwise X

is unbalanced.
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Figure 4.1: A theta graph.

There are three matroids associated to a biased graph Ω = (Γ,B), introduced

by Zaslavsky [112]. The bias matroid G(Ω) is a matroid on E in which a set is

independent if and only if each component contains either no circles, or exactly one

circle, which must be unbalanced.

Let e0 be an element not in E, and write

E0 = E ∪ e0. (4.3)

For X ⊆ E, let c(X) denote the number of connected components of the graph

(V,X). For X ⊆ E0 with e0 ∈ X, write c(X) = c(X \ e0). The complete lift matroid

L0(Ω) is the matroid on E0 with rank function given by

rkL0(Ω)(X) =

|V | − c(X) if X ⊆ E is balanced

|V | − c(X) + 1 if X ⊆ E is unbalanced or e0 ∈ X,
(4.4)

The lift matroid L(Ω) is the restriction of L0(Ω) to E. Thus the circuits of L(Ω)

are all the circuits of L0(Ω) contained in E. A subset of E is independent in the

lift matroid L(Ω) if and only if it contains no circles, or at most one circle, which

must be unbalanced. This differs from the definition of independent sets in G(Ω)

because there must be at most one circle overall, instead of one circle per connected

component. The complete lift matroid is obtained by adding the unbalanced loop e0

to L(Ω).

56



4.2.3 Biased graphs and networks

Let Ω(Γ) be the biased graph with underlying graph Γ whose linear subclass consists

of all circles of Γ. Given ∆ ⊆ E, let Γ/∆ be the graph obtained by contracting all

edges in ∆. Thus the edge set of Γ/∆ is E \∆. Let Ω/∆ be the biased graph with

underlying graph Γ := Γ/∆ and linear subclass

{C ∈ B : C ⊆ E \∆ and C is a circle of Γ/∆}

∪ {C \∆ : C ∈ B and C ∩∆ is a simple path}. (4.5)

Let Γ̂ be the graph obtained from Γ by adding edges between every pair of boundary

nodes, and let Ê be the set of added edges. The pair N = (Γ, ∂V ) is called a network.

We associate to N the biased graph Ω(N) = Ω(Γ̂)/Ê. We write G(N) = G(Ω(N)),

and similarly for L0(N) and L(N).

Definition 4.2.5. A crossing C ⊆ E of N is a minimal path meeting 2 boundary

nodes.

A circle C of Ω(N) is unbalanced if and only if C is a crossing of N .

Example 4.2.6. Consider the network N whose interior vertices form a cycle and

whose boundary nodes are pendants, with each interior vertex adjacent to exactly 1

boundary node. The case |∂V | = 6 is illustrated in Figure 4.2. In this example there

is only one balanced circle of Ω(N), and it is the unique circle of Γ.

Figure 4.2: Left to right: a network N with boundary nodes marked in white, the
graph Γ̂, and the graph Γ.
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There is a characterization of the biased graphs Ω(N) by Zaslavsky [110]. For

i ∈ V let Ω \ i be the biased graph obtained by deleting i and all edges incident to

i. If Ω is unbalanced but Ω \ i is balanced, then i is called a balancing vertex of Ω.

A biased graph with a unique balancing vertex is called almost balanced.

Proposition 4.2.7 ([110, Proposition 1]). A biased graph Ω is almost balanced if

and only if Ω = Ω(N) for some network N .

4.2.4 Equivalence of hyperplane and bias representations

A gain graph is a triple Φ = (Γ, ϕ,G) consisting of a graph Γ, a group G called

the gain group and a function ϕ : V × V → G called the gain function such that

ϕ(i, j) = ϕ(j, i)−1 for all (i, j). If ij ∈ E, then we consider (i, j) to be the edge ij

oriented from i to j.

For any circle C of Γ, order the vertices of C in a cycle as i1, . . . , i` = i1, and

write

ϕ(C) = ϕ(i1, i2)ϕ(i2, i3) · · ·ϕ(i`−1, i`). (4.6)

In general the element ϕ(C) depends on the choice of starting vertex and direction,

unless ϕ(C) is the identity. Let

B = {C ⊆ E : C is a circle of Γ with ϕ(C) the identity of G}. (4.7)

The set B is a linear subclass of Γ. Thus every gain graph defines a biased graph

whose set of balanced circles is B.

Let u : ∂V → K. Let Φ(Γ, u) be the gain graph with underlying graph Γ; gain

group K, considered as an additive group; and gain function ϕ : V × V → K given

by

ϕ(i, j) =


u(j) if ij ∈ ∂E with j ∈ ∂V

−u(i) if ij ∈ ∂E with i ∈ ∂V

0 else.

(4.8)

Example 4.2.8. Consider the graph Γ on the left side of Figure 4.2.8 with boundary
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nodes marked in white and values of u labeled. The associated gain graph Φ(Γ, u) is

illustrated on the right side of Figure 4.2.8. An edge oriented from i to j with label

k means that ϕ(i, j) = k.

1

a

b
b

a
a b

Definition 4.2.9. Let i ∈ V \ ∂V . The block of N containing i is the set U ⊆ V

of all vertices j such that there exists a path i1 · · · ik in Γ with i1 = i, ik = j, and

i1, . . . , ik−1 ∈ V \ ∂V .

Definition 4.2.10. The function u : ∂V → K is block injective if the restriction of

u to U ∩ ∂V is injective for every block U of N .

A circle C of Φ(Γ, u) is unbalanced if and only if C is a crossing of N between

boundary nodes on which u takes distinct values, so Φ(Γ, u) is independent of u, as

long as u is block injective. Write Φ(N) = Φ(Γ, u), where u is any block-injective

function.

Proposition 4.2.11. If u is block injective, then L0(N) ∼= M(cA(Γ, u)). In partic-

ular, L0(N) ∼= M(N).

Proof. Suppose that u is block injective. A circle C of Φ(Γ, u) is unbalanced if and

only if C is a crossing of N . The discussion before Definition 4.2.5 implies that

Φ(N) = Ω(N) as biased graphs. We have L0(Φ(N)) ∼= M(N) by [113, Theorem

4.1(a)], so the result follows.
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4.2.5 Independent sets, bases and circuits

A forest F ⊆ E is a grove of N if F meets every vertex in V \∂V and every component

of F meets at least one boundary node.

Definition 4.2.12. Let Σ1 be the set of all groves F of N that contain exactly 1

crossing of N . Let Σ0 be the set of all groves F of N that contain no crossing of N .

Following Proposition 4.2.11, we take E0 = E ∪ e0 to be the ground set of M(N).

Proposition 4.2.13. A set X ⊆ E0 is independent in M(N) if and only if one of

the following holds:

(A) X ⊆ F for some F ∈ Σ1

(B) X ⊆ F ∪ e0 for some F ∈ Σ0.

Equivalently, X is dependent in M(N) if and only if one of the following holds:

(C) X contains a cycle of Γ

(D) X contains 2 crossings

(E) X contains e0 and a crossing.

Proof. This follows from [112, Theorem 3.1(c)].

Proposition 4.2.14. A set X ⊆ E0 is a basis of M(N) if and only if one of the

following holds:

(A) X ∈ Σ1

(B) X = Y ∪ e0 for some Y ∈ Σ0.

Proof. This follows from [112, Theorem 3.1(g)].

Proposition 4.2.15. A set C ⊆ E0 is a circuit of M(N) if and only if one of the

following holds:

(A) C = X ∪ e0 for some crossing X

(B) C ⊆ E is a cycle of Γ meeting at most 1 boundary node

(C) C ⊆ E is a minimal set containing 2 distinct crossings and no circuits of type

(B).

Proof. This follows from [112, Theorem 3.1(e)].
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Example 4.2.16. This example generalizes Example 4.2.3. Let N be a network with

a single interior vertex. We call N the star network on |V | vertices. Here Γ consists

of 2 vertices connected by |∂V | edges, and every circle is unbalanced in Ω(N). A set

X ⊆ E0 is independent if and only if |X| ≤ 2. Hence M(N) is the |V |-pointed line

U2,|V |.

4.2.6 Matrix representations

The following theorem characterizes the fields over which a Dirichlet matroid M(N)

is representable. We deduce that most Dirichlet matroids are not graphic, since

graphic matroids are regular.

Theorem 4.2.17. The Dirichlet matroid M(N) is representable over K if and only

if

|K| ≥ max |U ∩ ∂V |, (4.9)

where the maximum runs over all blocks U of N , defined in Definition 4.2.9.

Lemma 4.2.18. If e ∈ E, then M(N)/e = L0(Ω(N)/e), where Ω(N)/e is the biased

graph with underlying graph Γ/e and in which a circle C ⊆ E \ e of Γ/e is balanced

if and only if C ∪ e is a balanced circle of Ω(N).

Proof. The result follows from the discussion in [111, p. 38].

Proof of Theorem 4.2.17. Let s = max |U∩∂V |. If |K| ≥ s, then there exists a block-

injective function u : ∂V → K. Thus M(N) is representable over K by Proposition

4.2.11, since any hyperplane representation over K gives a matrix representation over

K.

Now suppose that |K| < s, and let U be a block with s = |U ∩ ∂V |. Let F ⊆ E

be the set of all edges with both endpoints in U . Let ∂F ⊆ F be the set of all edges

with one endpoint in U ∩ ∂V . Deleting all edges in E \ F and contracting all edges

in F \ ∂F yields the star network N ′ on s + 1 vertices (see Example 4.2.16). Since

M(N ′) ∼= U2,s+1, we obtain U2,s+1 as a minor of M(N) by Lemma 4.2.18. But U2,s+1

is not a minor of any matroid representable over K [69, Corollary 6.5.3].
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Corollary 4.2.19. The matroid M(N) is representable over K if and only if |K| is

at least the chromatic number of the graph with vertex set ∂V and edge set

{ij : P ∩ ∂V = {i, j} for some path P ⊆ V in Γ}. (4.10)

Corollary 4.2.20. The following are equivalent:

(a) M(N) is binary

(b) M(N) is regular

(c) |U ∩ ∂V | ≤ 2 for all blocks U of N .

A matroid is called a 6
√

1-matroid if it can be represented over C by a matrix A

such that η6 = 1 for every minor η of A.

Corollary 4.2.21. The matroid M(N) is a 6
√

1-matroid if and only if |U ∩ ∂V | ≤ 3

for all blocks U of N .

Proof. A matroid M is a 6
√

1-matroid if and only if M is representable over F3 and

F4 [106, Theorem 1.2]. Hence the result follows from Theorem 4.2.17.

Proposition 4.2.22. If |∂V | = 2, then M(N) ∼= M(Γ̂) is graphic.

Proof. Suppose that m = 2, and let e be the edge of Γ̂ between the boundary nodes.

Swapping e0 and e gives an explicit isomorphism of matroids.

Alternative proof. Suppose that m = 2. Assign an orientation of Γ̂, and let A be the

associated vertex-edge incidence matrix, so that A represents M(Γ̂) over K. Write

∂V = {i, j}, and suppose that e = ij is oriented from i to j, so that Aj,e = 1. The

sum of all rows of A is 0, so deleting the ith row of A does not affect the matroid

represented by A. But the columns of the resulting matrix A′ are normal vectors of

the elements of A(N, u), where u : ∂V → K is given by u(i) = 0 and u(j) = 1. Hence

A′ represents M(A(N, u)) over K, and the result follows from Theorem 4.2.17.
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4.3 Half-plane property and the response matrix

Let S be a finite set. For any set T of subsets of S, define a polynomial w(T ) over

C by

w(T )(x) =
∑
T∈T

∏
s∈T

xs, (4.11)

where the variables xs are indexed by S and x denotes the tuple of all xs. The basis

generating polynomial of a matroid M is w(B), where B is the set of bases of M .

Given a complex number, vector, or matrix z, let Re(z) and Im(z) denote the

real and imaginary parts of z, resp. Let Rn
+ denote the (strictly) positive orthant in

Rn. A polynomial f ∈ C[x1, . . . , xn] is stable if f has no roots x with Im(x) ∈ Rn
+.

Definition 4.3.1. A matroid M is HPP (short for half-plane property) if the basis

generating polynomial of M is stable.

Stable polynomials and HPP matroids are well studied [11, 12, 19, 101, 102]. For

a list of known HPP and non-HPP matroids, see [28]. The next proposition describes

a fundamental family of examples (see, e.g., [19, Theorem 1.1]).

Proposition 4.3.2. Every graphic arrangement is HPP.

4.3.1 Laplacian and response matrices

Let x ∈ CE, and let L = L(x) be the weighted Laplacian matrix with weights x,

defined in Section 2.1. Write L in block form as

L =

[
A B

BT D

]
, (4.12)

where A is the submatrix of L with rows and columns indexed by ∂V . If D is

invertible, then recall that the response matrix of N is the ∂V ×∂V matrix Λ = Λ(x)

given by

Λ = A−BD−1BT . (4.13)
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If N is considered as an electrical network with edge conductances x ∈ RE
+ and

voltages u ∈ R∂V applied to the boundary, then Λu is the vector of resulting currents

across the boundary nodes.

Lemma 4.3.3. Suppose that D is invertible. Let u ∈ R∂V , v = −D−1BTu and

ϕ = Λu. We have [
A B

BT D

][
u

v

]
=

[
ϕ

0

]
. (4.14)

Proof. This is verified by direct computation.

Lemma 4.3.4. If Re(x) ∈ RE
+, then Re(Λ) is positive semidefinite.

Proof. Suppose that Re(x) ∈ RE
+, and let u ∈ R∂V . Let f ∈ CV be the column

vector on the left side of (4.14). Order the boundary nodes 1, . . . ,m and the interior

vertices m+ 1, . . . , d. We have

uT Re(Λ)u =
m∑

i,j=1

ui Re(Λ)ijuj =
m∑

i,j=1

Re(uiΛijuj) =
m∑
i=1

Re(ui[Λu]i).

Lemma 4.3.3 implies that Lf |∂V = Λu and Lf |V \∂V = 0, so

m∑
i=1

Re(ui[Λu]i) =
d∑
i=1

Re(fi[Lf ]i).

Write xij = 0 for all non-adjacent i, j ∈ V . Direct computation gives

[Lf ]i =
d∑
j=1

xij(fi − fj),

64



so

d∑
i=1

Re(fi[Lf ]i) =
d∑

i,j=1

Re(fixij(fi − fj))

=
∑

1≤i<j≤d

Re(fixij(fi − fj)) +
∑

1≤j<i≤d

Re(fixij(fi − fj))

=
∑

1≤i<j≤d

Re(fixij(fi − fj))−
∑

1≤i<j≤d

Re(fjxij(fi − fj))

=
∑

1≤i<j≤d

Re((fi − fj)xij(fi − fj))

=
∑

1≤i<j≤d

Re(xij)|fi − fj|2

is positive. The result follows.

4.3.2 Basis generating polynomial

We establish formulas for the basis generating polynomial of M(N) and use them to

prove that every Dirichlet arrangement has the half-plane property. This can also be

proven using the results of Section 3.6 and [19, Proposition 4.11], but the connection

to the response matrix is lost.

Let P denote the basis generating polynomial of M(N), and for i = 0, 1 write

Pi = w(Σi), (4.15)

where w is as defined in (4.11), and Σi are the sets of groves from Definition 4.2.12.

Proposition 4.2.14 implies that

P (x, x0) = P1(x) + x0P0(x) (4.16)

for all (x, x0) ∈ CE×C, where x0 is the variable corresponding to e0. Let tr Λ denote

the trace of the response matrix Λ.
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Lemma 4.3.5. For all (x, x0) ∈ CE × C with Im(x) ∈ RE
+, the basis generating

polynomial of M(N) is given by

P (x, x0) = P0(x)

(
x0 +

1

2
tr Λ

)
. (4.17)

Proof. For all distinct boundary nodes i and j let

Σij = {F ∈ Σ1 : F contains a path from i to j}.

Let Pij = w(Σij), so that P1 = 1
2

∑
i 6=j Pij. The Principal Minors Matrix-Tree

Theorem implies that detD = P0, where D is the matrix defined in (4.12) (see [16]).

Since P0 is the basis generating polynomial of M(Γ), Proposition 4.3.2 implies that

Λ is well defined whenever Im(x) ∈ RE
+. Thus if Im(x) ∈ RE

+, then for all i 6= j we

have

− Λij =
Pij
P0

(4.18)

(see, e.g., [49, Proposition 2.8]). It is not hard to see that Λ is symmetric, and that

every row sum of Λ is zero [23, p. 3]. Hence
∑

i 6=j Λij = − tr Λ. The result now

follows from (4.16) and (4.18).

Proposition 4.3.6. Every Dirichlet matroid has the half-plane property.

Proof. Let (x, x0) ∈ CE × C with Re(x) ∈ RE
+ and Re(x0) > 0. Since P is ho-

mogeneous, it suffices to show that P (x, x0) 6= 0. Since P0 is the basis generating

polynomial of M(Γ), Proposition 4.3.2 implies that P0(x) 6= 0. Thus by Lemma 4.3.5

it suffices to show that Re(tr Λ(x)) ≥ 0 whenever Re(x) ∈ Rn
+. This is the content

of Lemma 4.3.4.

Corollary 4.3.7. The bias matroid G(N) is HPP.

Proof. The set of bases of G(N) is Σ1 by [112, Theorem 2.1(g)]. Hence P1 is the

basis generating polynomial of G(N). The result follows from [19, Proposition 2.1],

since P1 = P (x, 0).
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4.3.3 Interlacing roots

We prove Theorem 4.1.1. For 1 ≤ i ≤ n, the Wronskian with respect to xi is the

bilinear map Wxi on R[x1, . . . , xn] given by

Wxi(f, g) = f · ∂ig − ∂if · g. (4.19)

If x, y ∈ Rn, then Wt(f(x + ty), g(x + ty)) is a univariate polynomial in t. Two

polynomials f, g ∈ R[x1, . . . , xn] are in proper position, written f � g, if for all

(x, y) ∈ Rn × Rn
+ we have

Wt(f(x+ ty), g(x+ ty))(t) ≥ 0 (4.20)

for all t ∈ R. For technical reasons we also declare that 0� f and f � 0 for all f .

If f � g, then for any (x, y) ∈ Rn × Rn
+ the real zeros of f(x + ty) and g(x + ty)

interlace (see [11]).

Proposition 4.3.8 ([11, Corollary 5.5]). Let f, g ∈ R[x1, . . . , xn]. We have g � f

if and only if f + x0g ∈ R[x0, . . . , xn] is stable.

Proof of Theorem 4.1.1. The result follows from (4.16), Proposition 4.3.6, and Propo-

sition 4.3.8.

4.3.4 Rayleigh monotonicity

For all 1 ≤ i, j ≤ n let Eij be the bilinear map on R[x1, . . . , xn] given by

Eij(f, g) = ∂if · ∂jg + ∂jf · ∂ig − f · ∂i∂jg − ∂i∂jf · g, (4.21)

where ∂i = ∂
∂xi

etc. Also let

∆ij(f) =
1

2
Eij(f, f) = ∂if · ∂jf − f · ∂i∂jf. (4.22)
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The polynomial f is multiaffine if the power of every xi is at most 1 in every term

of f .

Proposition 4.3.9 ([11, Theorem 5.10]). A multiaffine polynomial f ∈ R[x1, . . . , xn]

is stable if and only if ∆ij(f)(x) ≥ 0 for all x ∈ Rn.

Consider a matroid M on E(M) with basis generating polynomial f . For any

i, j ∈ E(M), the Rayleigh difference of i and j in M is the polynomial

∆ij(M) = ∆ij(f). (4.23)

Proposition 4.3.9 implies that M is HPP if and only if ∆ij(M)(x) ≥ 0 for all i, j ∈
E(M) and all x ∈ RE(M).

Consider N as a network of resistors with conductances x ∈ RE
+. If |∂V | = 2,

then tr Λ is the effective conductance between the two boundary nodes. Rayleigh’s

Monotonicity Law is the classical result that if a single conductance xe increases while

all other conductances remain constant, then the effective conductance between the

two boundary nodes does not decrease. Thus the following proposition generalizes

Rayleigh’s Monotonicity Law.

Proposition 4.3.10. If x ∈ RE with P0(x) 6= 0, then tr Λ(x) does not decrease when

a single xf increases and xe remains constant for all e 6= f .

Proof. We have

∆e0f (P ) = P0 · (∂fP1 + x0∂fP0)− (P1 + x0P0) · ∂fP0 = P0 · ∂fP1 − P1 · ∂fP0.

Hence
1

2
∂f tr Λ =

P0 · ∂fP1 − P1 · ∂fP0

(P0)2
=

∆e0f (P )

(P0)2
=

∆e0f (M(N))

(P0)2
,

since tr Λ = P1/P0. On the other hand, Theorem 4.3.6 and Proposition 4.3.9 imply

that ∆e0f (M(N)) is nonnegative on RE × R. The result follows.

The next proposition gives a Cauchy–Schwarz-type characterization of multivari-

ate polynomials in proper position, and seems to be new.
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Proposition 4.3.11. We have g � f for f, g ∈ R[x1, . . . , xn] if and only if f or g

is stable,

Wxi(f, g) ≤ 0 (4.24)

for all 1 ≤ i ≤ n and all x ∈ Rn, and

Eij(f, g)2 ≤ Eij(f, f) · Eij(g, g) (4.25)

for all 1 ≤ i, j ≤ n and all x ∈ Rn.

Proof. Let h(x) = f(x) + x0g(x). Direct computation gives

∆ij(h)(x, x0) = x2
0 ·∆ij(g)(x) + x0 · Eij(f, g)(x) + ∆ij(f)(x),

which is nonnegative for all (x, x0) ∈ Rn×R by Proposition 4.3.9 and, considered as

a polynomial in x0, has discriminant

Eij(f, g)2 − 4∆ij(f) ·∆ij(g) = Eij(f, g)2 − Eij(f, f) · Eij(g, g).

The result follows.

Proposition 4.3.2 is equivalent to the statement that ∆ij(P0) is nonnegative on

RE. The next result strengthens Proposition 4.3.2 by giving a nontrivial lower bound

for ∆ij(P0).

Corollary 4.3.12. For all e, f ∈ E and all x ∈ RE that are not roots of ∆ef (P1) we

have

∆ef (M(Γ))(x) ≥ Eef (P0, P1)(x)2

4∆ef (P1)(x)
≥ 0. (4.26)

Proof. Let e, f ∈ E, and let x ∈ RE be such that ∆ef (P1)(x) 6= 0. Theorem 4.3.6

and Proposition 4.3.11 imply that

Eef (P0, P1)(x)2 ≤ 4∆ef (P0)(x) ·∆ef (P1)(x) = 4∆ef (M(Γ))(x) ·∆ef (P1)(x). (4.27)
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Proposition 4.3.2 implies that ∆ef (M(Γ))(x) ≥ 0. Since P0 and P1 are nonzero,

(4.27) implies that ∆ef (P1)(x) > 0. The result follows after dividing (4.27) through

by 4∆ef (P1)(x).

4.4 Bergman fans

We prove Theorem 4.1.2. Given a ground set E and a subset X ⊆ E, let V (X) be

the set of points w ∈ RE such that the minimum of the set {we : e ∈ X} is achieved

at least twice. For a set X of subsets of E, let V (X ) =
⋂
X∈X V (X). The Bergman

fan of a matroid M on E is the set B̃(M) = V (C), where C is the set of circuits of

M . If M is representable, then B̃(M) determines the tropical compactification of

the complement of the associated projective arrangement [34].

Write B̃(Γ) = B̃(M(Γ)) and B̃(N) = B̃(M(N)). The Bergman fan of a matroid

is the support of a polyhedral fan, i.e. a polyhedral complex in which every polyhe-

dron is a cone. Theorem 4.1.2 identifies B̃(N) as a subfan of B̃(Γ̂). Bergman fans of

matroid truncations appear in the proof of Rota’s log-concavity conjecture for rep-

resentable matroids by Huh and Katz [42]. Bergman fans of graphic matroids have

also been studied, and have been shown to realize the space of phylogenetic trees

[3, 107].

A tropical basis of M is any set X of subsets of E such that V (X ) = B̃(M). We

prove Theorem 4.1.2 by computing a suitable tropical basis of the Dirichlet matroid

M(N). This tropical basis happens to be minimal (with respect to inclusion). First

we need a basic lemma. Pasting two circuits means taking their symmetric difference.

Since the symmetric difference operation is commutative and associative, we can

paste any finite number of sets.

Lemma 4.4.1. If Y is obtained by pasting elements of X , then V (X ) ⊆ V (Y ).

Proof. Suppose that Y is obtained by pasting elements X1 and X2 of X . Let w ∈
V (X ). Suppose without loss of generality that min{we : e ∈ X1} ≤ min{we : e ∈
X2}. If min{we : e ∈ X1} is achieved on X1∩X2, then it equals min{we : e ∈ X2}, so
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min{we : e ∈ Y } is achieved at least once on each of X1 and X2. If not, then min{we :

e ∈ Y } is achieved at least twice on X1. In either case we have w ∈ V (Y ).

A chord of a circuit C is any element i such that there exist circuits C1 and C2

with C1 ∩C2 = i and C14C2 = C. Recall the 3 types of circuits of M(N) described

in Proposition 4.2.15. A chord of a circuit X ∪ e0 of type (A) is any edge in E \X
joining two vertices met by X. A chord of a circuit C of type (B) is any edge in

E \ C joining two vertices met by C.

Proposition 4.4.2. There is a minimal tropical basis of M(N) consisting of all

chordless circuits of types (A) and (B) in Proposition 4.2.15.

Proof. Suppose that a circuit C ⊆ E of type (B) admits a chord j. Then there is a

set F ⊆ C such that F ∪ j and (C \F )∪ j are circuits of type (B). Pasting these two

circuits yields C. Iterating this argument gives C as a pasting of chordless cycles of

type (B).

Let X = X ∪ e0 be a circuit of type (A) for some X ⊆ E. If i is a chord of X,

then X∪ i contains a single circuit Z of type (B), and the set (X \Z)∪ i is a crossing.

Pasting Z and (X \Z)∪ i yields X. Iterating this argument and the argument from

the first paragraph gives X as a pasting of chordless cycles of types (A) and (B).

Let B be the set of all chordless circuits of types (A) and (B). Let Y be a circuit

of type (C). We claim that V (B) ⊆ V (Y ). Let C1 and C2 be distinct crossings

contained in Y , so that Y = C1 ∪ C2. Let w ∈ V (B). Suppose without loss of

generality that min{we : e ∈ Y ∪ e0} occurs on C1∪ e0. If C1 and C2 are disjoint and

we0 = min{we : e ∈ Y }, then this minimum is achieved at least once on each of C1

and C2. If C1 and C2 are disjoint and we0 6= min{we : e ∈ Y }, then this minimum is

achieved at least twice on C1. Therefore w ∈ V (Y ) in this case.

Suppose now that C1 and C2 are not disjoint, so that Y contains a third crossing

C3. If min{we : e ∈ C2} > min{we : e ∈ C1 ∪ e0}, then the latter must occur twice

on C1; otherwise, min{we : C2∪e0} occurs only once, on e0, contradicting w ∈ V (B).

Hence min{we : e ∈ Y } occurs twice, on C1. If min{we : e ∈ C2} = min{we : e ∈
C1 ∪ e0} and these are both equal to we0 , then min{we : e ∈ C3 ∪ e0} occurs only
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once, on e0, a contradiction. Hence if min{we : e ∈ C2} = min{we : e ∈ C1 ∪ e0},
then these minima are less than we0 , and the minimum min{we : e ∈ Y } occurs at

least 3 times. Therefore w ∈ V (Y ) again, proving the claim. It follows that B is a

tropical basis of M(N).

We show that B is inclusion minimal. Suppose that the circuit C from above is

chordless. For some e ∈ C, let w ∈ RE0 be 1 on C \ e and 0 on the rest of E0. Any

circuit in B \ C must contain at least two elements of E0 not in C. The point w

achieves its minimum at least twice on such a circuit. Hence w ∈ V (B \ C) \ V (B),

proving that B \ C is not a tropical basis.

Suppose now that the circuit X from above is chordless. Let x ∈ RE0 be 1 on X

and 0 on E0 \X. Any circuit of type (A) in B \X must contain e0 and at least one

edge in E \X. Any circuit of type (B) in B\X must contain at least two elements of

E \X. The point x achieves its minimum at least twice on any such circuit. Hence

B \X is not a tropical basis, proving that B is inclusion minimal.

We remarked in the introduction that B̃(M) has the structure of a polyhedral

fan. Two points w and z belong to the same cone of B̃(M) if and only if the set

of w-maximal bases is the set of z-maximal bases [34, Proposition 2.5]. By a w-

maximal basis B we mean that
∑

i∈B wi is maximal among all bases B of M . This

decomposition of B̃(M) is sometimes called its coarse subdivision. A subfan of B̃(M)

is a polyhedral fan, each of whose cones is a cone of B̃(M).

Lemma 4.4.3. For any w ∈ B̃(Γ̂) and any w-maximal spanning tree T of K∂V , there

is a w-maximal spanning tree of Γ̂ containing T .

Proof. Let w ∈ B̃(Γ̂). We construct the desired tree with a greedy algorithm. Sup-

pose that some number, possibly zero, of the edges of Γ̂ are colored red. Let C be

a cycle of Γ̂. If C contains a red edge, then do nothing. If C contains no red edges,

then color a w-minimal edge of C red. This procedure is called the red rule. Starting

with all edges of Γ̂ uncolored and applying the red rule to all cycles of Γ̂ in any

order yields a w-maximal spanning tree of Γ̂ consisting of the uncolored edges [91,

Theorem 6.1].
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Suppose that no edge in C is red, and that C contains exactly one edge not

in E(Γ). Since w ∈ B̃(Γ̂), there must be a w-minimal edge of C in E(Γ). When

applying the red rule to such a cycle, we stipulate that only edges in E(Γ) may be

colored red. We will call this the modified red rule.

Start with Γ̂ uncolored. First apply the red rule to all cycles of Γ̂ contained in

E(Γ). Next, apply the modified red rule to all cycles of Γ̂ containing exactly one

edge not in E(Γ). At this stage, if a cycle contains edges in E(Γ), then it contains a

red edge. Moreover all red edges are in E(Γ). Let S be the set of uncolored edges

in E(Γ). It follows that if T is any w-maximal spanning tree of K∂V , then S ∪ T is

a w-maximal spanning tree of Γ̂.

Proof of Theorem 4.1.2. Let f : RE0 → RE(Γ̂) be such that the eth coordinate of

f(x) is xe if e ∈ E(Γ) and xe0 otherwise. Clearly f is linear and injective. We claim

that f(B̃(N)) = B̃(Γ̂)∂V .

Let U ⊆ RE(Γ̂) be the subspace of points constant on E(K∂V ). Let x ∈ B̃(Γ̂)∩U ,

and let X ⊆ E0 be a circuit of M(N). If X ⊆ E(Γ), then X is also a circuit of M(Γ̂),

so the minimum of {f(x)e : e ∈ X} is obtained at least twice. If instead e0 ∈ X, then

X \ e0 is a crossing between two boundary nodes i and j. In this case (X \ e0)∪ ij is

a circuit of M(Γ̂). Since ij ∈ E(K∂V ) we have xij = f(x)e0 , so again the minimum

of {f(x)e : e ∈ X} is achieved at least twice. Hence f(x) ∈ B̃(N), proving the claim.

It remains to be shown that B̃(Γ̂)∂V is a subfan of B̃(Γ̂). Let w ∈ B̃(Γ̂). The

restriction w|E(K∂V ) of w to E(K∂V ) belongs to B̃(K∂V ). Since K∂V is complete, this

restriction defines a combinatorial type of phylogenetic m-tree (see Section 4.4.1).

By [3, Proposition 3], the combinatorial type of tree determines and is determined

by the set of w|E(K∂V )-maximal spanning trees of K∂V . In particular, the following

are equivalent:

(i) This tree has no internal edges

(ii) Every spanning tree of K∂V is w|E(K∂V )-maximal

(iii) w ∈ U .

Suppose that w ∈ U and z ∈ B̃(Γ̂) \ U . Let T be a spanning tree of K∂V that is not

z|E(K∂V )-maximal. There is no z-maximal spanning tree of Γ̂ containing T . However,
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Lemma 4.4.3 implies that w-maximal spanning tree of Γ̂ containing T . Hence w and

z belong to different cones of B̃(Γ̂), proving that B̃(Γ̂) ∩ U = B̃(Γ̂)∂V is a subfan of

B̃(Γ̂).

4.4.1 Phylogenetic trees and discriminantal arrangements

We show that when Γ̂ is complete, B̃(N) realizes a certain subclass of phylogenetic

trees. Let T be a rooted tree with labeled leaves and a real-valued function ω on its

edges. Suppose that the root is not a leaf, and that no non-root vertex has degree 2.

The distance between any distinct vertices i, j of T is the (possibly negative) sum of

ω(e) over the edges e in the unique path between i and j. The pair (T, ω) is called

a phylogenetic tree if

(i) The distance between the root and any leaf is the same, and

(ii) ω(e) > 0 for any edge e not incident to a leaf.

A phylogenetic tree with ` leaves is called a phylogenetic `-tree.

The vertices of a phylogenetic tree form a poset in which the root is the unique

minimal element and the leaves are the maximal elements. If two vertices i and j

are adjacent with i ≤ j, then j is the child of i. A phylogenetic tree is binary if

every non-leaf vertex has exactly two children. The most recent common ancestor of

two vertices i and j is their infimum. The combinatorial type of a phylogenetic tree

(T, ω) is simply the tree T (along with its root and leaf labeling).

Billera, Holmes and Vogtmann [8] gave a geometric realization of the space of

phylogenetic n-trees. To construct the space Tn, one first takes (n− 2)-dimensional

orthants corresponding to the combinatorial types of binary phylogenetic n-trees.

The n − 2 facets of such an orthant correspond to the internal edges of the binary

tree; a point in the facet represents a tree in which the corresponding edge has been

contracted. Every contracted tree arises from exactly 2 binary trees. One then

glues the facets of 2 orthants together when they represent the same combinatorial

type of tree. The lower-dimensional faces represent further contractions and are

glued together according to the same rule. Thus the common vertex of the orthants

represents the tree with no internal edges. The space T3 is illustrated in Figure 4.3.
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Figure 4.3: The space T3.

The space Tn ×R parametrizing the phylogenetic n-trees. The factor of R keeps

track of the distance between the root and any leaf, which is not fixed in the con-

struction of [8]. Moreover Tn × R is a polyhedral fan whose cones correspond to

the combinatorial types of the trees. Ardila and Klivans [3] showed that B̃(Kn) and

Tn × R realize the same polyhedral fan.

Proposition 4.4.4 ([3, Proposition 3]). There is a piecewise-linear homeomorphism

Tn × R→ B̃(Kn) (4.28)

that identifies the decomposition of Tn × R into combinatorial tree types with the

coarse decomposition of B̃(Kn).

If we identify the leaves of a phylogenetic tree (T, ω) ∈ Tn×R with Kn, then the

function f is easy to describe: f(T )ij = ω(i, j) for all leaves i and j. We say that

a set S of leaves of T is equidistant if every pair of leaves in S has the same most

recent common ancestor. It is not hard to check that S is equidistant if and only

if ω(i, j) = ω(i, k) for all i, j, k ∈ S. Let Tm,n × R denote the space of phylogenetic
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(m+n)-trees with a prescribed equidistant m-set. Up to permutation of coordinates,

this space depends only on the size of the equidistant set.

Let N = Γm,n, so that Γ̂ = Kd. Restricting f : Td ×R→ B̃(Γ̂) to the set of trees

with ∂V equidistant, we obtain the following.

Proposition 4.4.5. There is a piecewise-linear homeomorphism

Tm,n × R→ B̃(Γm,n) (4.29)

that identifies the decomposition of Tm,n × R into combinatorial tree types with the

coarse decomposition of B̃(Γm,n).

4.5 Dual networks

We now prove Theorem 4.1.3. A network N is circular if there is an embedding of Γ

into a closed disk D in the plane such that ∂V belongs to the boundary ∂D and V ◦

belongs to the interior. In this section we assume that N is circular and equipped

with such an embedding. We also assume that no vertex in V is of degree 1, and

that no vertex in V \ ∂V is of degree 2.

Let R be the set of components of D\Γ, and let ∂R ⊂ R be the set of components

meeting ∂D. There is a circular network N∗ whose vertices (resp., boundary nodes)

correspond to the elements of R (resp., of ∂R) and in which two vertices are adjacent

if and only if the corresponding elements of R are adjacent. Thus the edges of N∗

correspond to the edges of N . The network N∗ is called the dual of N . An example

is illustrated in Figure 4.4.

The requirement that N have no vertices of degree 1 and no interior vertices of

degree 2 ensures that N∗ has no multiple edges or edges between boundary nodes.

Moreover N∗ has no vertices of degree 1 and no interior vertices of degree 2.

Definition 4.5.1. An insulator of N is a minimal set Y ⊂ E containing paths

between every pair of boundary nodes of N∗.
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Figure 4.4: A circular network and its dual network, with one vertex set marked in
white and the other in black.

Proposition 4.5.2. A set X ⊂ E0 is a cocircuit of M(N) if and only if one of the

following holds:

(i) X is a cocircuit of M(Γ)

(ii) X = Y ∪ e0 for some insulator Y of N .

Proof. This follows from Proposition 4.2.14.

Lemma 4.5.3. If |∂V | = 2, then M∗(N) ∼= M(N∗).

Proof. Suppose that |∂V | = 2. Proposition 4.2.22 says that M(N) ∼= M(Γ̂). Since N

is circular, Γ̂ is planar; let Γ̂∗ be its dual graph. Notice that Γ̂∗ is the graph obtained

by adding an edge between the 2 boundary nodes of N∗. Hence M(N∗) ∼= M(Γ̂∗)

again by Proposition 4.2.22. We have M∗(Γ̂) ∼= M(Γ̂∗) by [69, Lemma 2.3.7], so (i)

follows.

Lemma 4.5.4. Any cocircuit C of M(N) of type (ii) in Proposition 4.5.2 can be

written as a union of distinct circuits of M(N∗). The minimal number of circuits

required is at least 1
4
|∂V | + 1

2
and at most 1

2
|∂V | + 1

2
, with both extremes occurring

for infinitely many values of |∂V |.
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Proof. The case |∂V | = 2 follows from Lemma 4.5.3. Suppose that |∂V | ≥ 3. Let

C1, . . . , Ck be distinct circuits of M(N∗) such that C = C1 ∪ · · · ∪ Ck. Recall the 3

types of circuits of M(N∗) from Proposition 4.2.15. If k is minimal, then one Ci is

a circuit of type (iii), and the others are circuits of type (ii). A circuit of type (ii)

meets exactly 3 nodes if it is connected and exactly 4 nodes if it is disconnected. A

circuit of type (iii) meets exactly 2 nodes. Hence k is not less than 1
4
|∂V |+ 1

2
.

We now show by induction that k can be taken to be less than 1
2
|∂V |+ 1

2
. For the

base case, let C ′1 be a circuit of M(N∗) of type (ii), so C ′1 meets at least 3 boundary

nodes of N∗. For the inductive step, suppose that C ′1, . . . , C
′
j−1 are distinct circuits

of M(N∗) of type (ii). Let nj be the number of boundary nodes of N∗ not met by

Uj := C ′1 ∪ · · · ∪C ′j−1. If nj ≤ 1, then set ` = j. If nj = 0, then let C ′j be any circuit

of M(N∗) of type (iii). If nj = 1, then let C ′j be a circuit of M(N∗) of type (iii) such

that Cj∩E is not contained in Uj. If nj ≥ 2, then let C ′j be a circuit of M(N∗) of type

(ii) meeting exactly 2 boundary nodes of N∗ not met by Uj. Continue this procedure

until a value of ` is reached. By construction we have ` = d1
2
|∂V |e ≤ 1

2
|∂V | + 1

2
, as

desired.

For proofs that both extreme values of k occur infinitely often, see Examples 4.5.5

and 4.5.6 below.

Example 4.5.5. Consider the networks in Figure 4.5. From left to right, these are

the sunflower networks on 4, 5 and 6 boundary nodes. We obtain a similar network

on any number of boundary nodes.

Figure 4.5: Three sunflower networks.
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The left side of Figure 4.8 illustrates the sunflower network N with |∂V | = 5

and its dual N∗. On the right side, an insulator Y of N is highlighted in blue. The

minimum number of circuits of M(N∗) whose union is Y ∪ e0 is 3. In a similar

fashion we can construct an insulator of the sunflower network on any odd number

m of boundary nodes. The corresponding minimum number of circuits is 1
2
m + 1

2
,

achieving the upper bound for k in Lemma 4.5.4.

Figure 4.6: A sunflower network and its dual, left; an insulator in blue, right.

Example 4.5.6. Consider the networks in Figure 4.7. From left to right, these are

the double sunflower networks on 4, 6 and 10 boundary nodes. We obtain a similar

network on any even number of boundary nodes.

Figure 4.7: Three double sunflower networks.

The left side of Figure 4.8 illustrates the double sunflower network N with |∂V | =
6 and its dual N∗. On the right side, an insulator Y of N is highlighted in blue.
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The minimum number of circuits of M(N∗) whose union is Y ∪ e0 is 2. In a similar

fashion we can construct an insulator of the double sunflower network on any number

m ≡ 2 (mod 4) of boundary nodes. The corresponding minimum number of circuits

is 1
4
m+ 1

2
, achieving the lower bound for k in Lemma 4.5.4.

Figure 4.8: A double sunflower network and its dual, left; an insulator in blue, right.

Proof of Theorem 4.1.3. The result follows from Lemmas 4.5.3 and 4.5.4 and Propo-

sition 4.5.2.

4.6 Characteristic polynomials and graph color-

ings

4.6.1 Results from hyperplane arrangements

Given a matroid or hyperplane arrangement M , write χM for the characteristic

polynomial of M . If M is a matroid, then write χM for the reduced characteristic

polynomial of M , given by

χM(λ) = (λ− 1)−1χM(λ).
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Write χΓ for the chromatic polynomial of Γ, given by

χΓ(λ) = λχM(Γ)(λ). (4.30)

The beta invariant of a matroid M is

β(M) = (−1)rk(M)+1χ′M(1),

where χ′M is the derivative of χM . Crapo showed that β(M) ≥ 0, and that β(M) > 0

if and only if M is 2-connected [21, Theorem II].

The graph Γ is 2-connected if Γ is connected and Γ \ i is connected for all i ∈ V .

The graph Γ is chordal if for any cycle Z of length ≥ 4 there is an edge not in Z

meeting two vertices of Z. The next theorem summarizes results of Chapter 3 as

they apply to M(N).

Proposition 4.6.1. Write m = |∂V |, and let Γ̂ denote the graph obtained from Γ

by adding an edge between each pair of boundary nodes. Then

(i) The polynomial χM(N) can be written in terms of a chromatic polynomial:

χM(N)(λ) = (λ)−1
m (λ− 1)χΓ̂(λ), (4.31)

where (λ)m = λ(λ− 1)(λ− 2) · · · (λ−m+ 1) is a falling factorial

(ii) The beta invariant of M(N) divides the beta invariant of M(Γ̂):

β(M(N)) =
β(M(Γ̂))

(m− 2)!
(4.32)

(iii) The matroid M(N) is 2-connected if and only if Γ̂ is 2-connected

(iv) The lattice of flats L(M(N)) is supersolvable if and only if Γ̂ is chordal.

Example 4.6.2. Suppose that N = Γm,n as in Example 3.1.4. Here Γ̂ = Kd is

complete, so that χΓ̂(λ) = (λ)d. Theorem 4.6.1(i) gives

χM(N)(λ) = (λ)−1
m (λ)d = (λ−m)d−m.
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Example 4.6.3. Consider the network N from Example 4.2.6 and Figure 4.2. For

all m ≥ 3 let χm = χM(N). Let C be the unique circle of Γ. A deletion-contraction

argument gives

χm(λ+ 1) =
∑
S(C

(−1)|S|λm−|S|−|K(S)|
∏

K∈K(S)

(λ− |K|),

where K(S) is the set of components of S. We propose the following closed form and

recurrence relation for χm, which we have verified for m ≤ 11 using SageMath [93].

Conjecture 4.6.4. For m ≥ 3 we have

χm(λ+ 1) =
ωm+ + ωm−

2m
+ (−1)m(λ−m− 1). (4.33)

where ω± = λ− 2±
√
λ2 + 4. In particular, χm satisfies the recurrence

χ3(λ) = λ3 − 6λ2 + 14λ− 13

χ4(λ) = λ4 − 8λ3 + 28λ2 − 51λ+ 41

χm+2(λ) = (λ− 1)χm+1(λ) + (λ+ 1)χm(λ) + (−1)m(−2λ+m− 1).

(4.34)

4.6.2 Broken circuits and the precoloring polynomial

We now prove Theorem 4.1.4. The proof uses the Broken Circuit Theorem of matroid

theory, which we state below as Proposition 4.6.5. Fix an ordering of the ground set

E(M) of a matroid M . With respect to this ordering, a broken circuit of M is a set

C \min(C), where C is a circuit of M . The broken circuit complex of M is the set

BC(M) = {X ⊂ E(M) : X contains no broken circuit of M}. (4.35)

We view BC(M) as a (simplicial) complex whose (i − 1)-dimensional faces are the

i-elements sets in BC(M). The complex BC(M) depends on the ordering of E(M),

but the number of faces of a given dimension does not:

Proposition 4.6.5 ([87, Theorem 4.12]). Let M be a matroid on E(M). With
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respect to any ordering of E(M), the number of i-element sets in BC(M) is (−1)i

times the coefficient of λrk(M)−i in χM(λ).

We also consider the reduced broken circuit complex BC(M), obtained from

BC(M) by deleting the minimal element of E(M) and all faces containing it. Every

facet of BC(M) contains the minimal element of E(M), so BC(M) is easily recovered

from BC(M).

Corollary 4.6.6. With respect to any ordering of E(M), the number of i-element

sets in BC(M) is (−1)i times the coefficient of λrk(M)−i−1 in χM(λ).

Recall Proposition 4.2.15, which classifies the circuits of M(N). Note that the

circuits of type (C) come in two flavors: one contains 3 distinct crossings, while

the other contains only 2. These are illustrated in Figure 4.9. Circuits of type (C)

containing only 2 distinct crossings are either disconnected, as pictured, or connected

with both crossings meeting at a single boundary node.

Figure 4.9: Two circuits of type (C) in Proposition 4.2.15.

Lemma 4.6.7. Fix an ordering of E, and extend this ordering to E0 by taking e0

to be minimal. The reduced broken circuit complex BC(M(N)) is a subcomplex of

BC(M(Γ)):

BC(M(N)) = {X ∈ BC(M(Γ)) : X contains no crossing} ⊂ BC(M(Γ)). (4.36)

Proof. Let X ∈ BC(M(N)), so that X ⊂ E contains no broken circuit of M(N).

Recall the 3 types of circuits of M(N) from Proposition 4.2.15. A circle of Γ is a
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circuit of type (B) if it meets at most 1 boundary node, or of type (C) if it meets

exactly 2 boundary nodes. If a circle C of Γ meets 3 or more boundary nodes, then

every element of C is contained in a circuit Y ⊂ C of type (C). Any broken circuit of

M(Γ) is a circle of Γ minus its minimal element. Thus X contains no broken circuit

of M(Γ). A broken circuit of M(N) arising from a type (B) circuit is a crossing.

Hence X contains no crossing.

Now suppose instead that X ∈ BC(M(Γ)) contains no crossing. Since X contains

no broken circuit of M(Γ), it contains no broken circuit of M(N) arising from a type

(B) circuit. Since X contains no crossing, it contains no broken circuit of M(N)

arising from a circuit of type (A) or (C). Hence X contains no broken circuit of

M(N).

Proof of Theorem 4.1.4. The result follows from Proposition 4.6.5, Corollary 4.6.6

and Lemma 4.6.7.

4.7 3-Connectedness

We prove Theorem 4.1.5. Our main tools are characterizations by Slilaty and Qin

[82] of 2- and 3-connected bias matroids G(Ω) in terms of the biased graph Ω. Given

a biased graph Ω we write E(Ω) for the edge set of Ω.

Definition 4.7.1. For any integer k ≥ 1, a vertical k-biseparation of a biased graph

Ω = (Γ,B) is a partition (X, Y ) of E(Ω) satisfying the following two conditions:

(i) |X|, |Y | ≥ k

(ii) Each of X and Y meets a vertex not met by the other,

and any one of the following three conditions:

(iii) ` = k + 1 with both X and Y balanced

(iv) ` = k with only one of X and Y balanced

(v) ` = k − 1 with neither X nor Y balanced,

where ` is the number of vertices met by both X and Y .
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We say that Ω is vertically k-biconnected if it admits no vertical r-biseparations

for any r < k. We say that Ω is simple if it has no balanced circles of length 1 or 2

and no vertices incident to 2 or more unbalanced loops. A balancing set of Ω is an

edge set S such that Ω \ S is balanced.

Proposition 4.7.2 ([82, Corollary 1.2]). If Ω is a connected and unbalanced biased

graph on at least 3 vertices, then G(Ω) is 2-connected if and only if Ω is vertically

2-biconnected and admits no balanced loops or balancing sets of rank 1.

Proposition 4.7.3 ([82, Theorem 1.4]). If Ω is a connected and unbalanced biased

graph on at least 3 vertices, then G(Ω) is 3-connected if and only if Ω is simple and

vertically 3-biconnected and admits no balancing sets of rank 1 or 2.

Let Ω0(N) be the biased graph obtained from Ω(N) by adding an unbalanced

loop to v. Call this loop e0, so that E(Ω0(N)) = E0. Notice that G(Ω0(N)) = M(N).

Thus to prove Theorem 4.1.5 it suffices to show that Ω0(N) satisfies the hypothesis

of Proposition 4.7.3 if and only if Γ \ ∂V is connected and Γ̂ is 3-connected.

Lemma 4.7.4. The biased graph Ω0(N) is connected, unbalanced and simple.

Proof. Clearly Ω0(N) is connected because Γ is connected; and Ω0(N) is unbalanced

because e0 is unbalanced. It remains to show that Ω0(N) is simple. The only circle

of Ω0(N) of length 1 is e0, which is unbalanced. A balanced circle of length 2 would

be a double edge in Γ, which we have excluded by assumption. Hence Ω0(N) is

simple.

Lemma 4.7.5. If Ω0(N) admits a balancing set S of rank 2, then m = 2 and

S = {e0, e} for some e ∈ E such that Γ \ e contains no crossing.

Proof. A balancing set must contain e0. Thus a balancing set of rank 2 is of the form

{e, e0} for some e ∈ E such that Γ \ e contains no crossing. This is only possible if

m = 2.

Lemma 4.7.6. No vertical k-biseparation of Ω0(N) satisfies condition (iii) of Defi-

nition 4.7.1.
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Proof. Given any partition of E0, the part containing e0 is unbalanced.

Let Si be the vertex sets of the components of Γ\∂V . For each i let Ti be the set

of all edges meeting Si. We call the Ti the tracts of N . Note that Γ\∂V is connected

if and only if E is the only tract of N . Also note that every vertex met by distinct

tracts of N is a boundary node. Since Γ is connected and ∂V is an independent set,

every tract meets at least 2 boundary nodes.

A vertical k-separation of a graph Γ is a partition (X, Y ) of E such that |X|, |Y | ≥
k and exactly k vertices are met by both X and Y . Removing these k vertices

disconnects Γ.

Lemma 4.7.7. Let (X, Y ) be a partition of E0 satisfying conditions (i) and (ii) of

Definition 4.7.1 with k = 2, and assume that e0 ∈ X. Then (X, Y ) satisfies (iv) if

and only if there is a unique tract T of N containing Y and satisfying one of

(iv†) (X∩T, Y ) is a vertical 1-separation of Γ(T ) and Y meets exactly one boundary

node

(iv‡) (X ∩ T, Y ) is a vertical 2-separation of Γ(T ) and Y meets no boundary nodes,

where Γ(T ) is the subgraph of Γ induced by T .

Proof. It is easy to verify that either of (iv†) or (iv‡) implies (iv). We prove the

opposite direction. Suppose that Y meets more than one boundary node. If Y

contains a tract of N , then Y is balanced. If Y does not contain a tract of N , then

|S| > 2, where S ⊂ (V \ ∂V ) ∪ v is the set of all vertices met by both X and Y . In

either case, (X, Y ) does not satisfy (iv).

Now suppose that (X, Y ) is a vertical 2-biseparation satisfying (iv), so that Y

meets at most one boundary node. Note that Y must be contained in a tract T of

N , since otherwise |S| > 2, a contradiction. Thus S ∩V is the set of vertices of Γ(T )

met by both X ∩ T and Y . Since |S ∩ V | is 2 minus the number of boundary nodes

met by Y , (X ∩ T, Y ) is a vertical |S ∩ V |-separation of Γ(T ).

Lemma 4.7.8. A partition (X, Y ) of E0 satisfying conditions (i) and (ii) of Defini-

tion 4.7.1 with k = 2 satisfies (v) if and only if it satisfies
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(v†) X ∩ E and Y ∩ E are nonempty unions of tracts of N

Proof. It is easy to check that (v†) implies (v). We prove the opposite direction. If

Y is unbalanced, then it contains a path between distinct boundary boundary nodes.

Thus if ` = 1, then v is the only vertex of Γ met by both X and Y . It follows that

Y is a nonempty union of tracts of N . The same follows for X \ e0 = E \ Y .

Proof of Theorem 4.1.5. The networks N with |V \ ∂V | = 1 are the star networks of

Example 4.2.16. In this case the uniform matroid M(N) = U2,|V | is 3-connected by

[46, p. 312]. Suppose that |V \ ∂V | ≥ 2 for the remainder of the proof.

We prove the “only if” direction first. Suppose that M(N) is 3-connected. A

fortiori M(N) is 2-connected, so Γ̂ is 2-connected by Theorem 4.6.1(iii). Suppose

that Γ̂ \ {i, j} is disconnected for some i, j ∈ V . Condition (v†) of Lemma 4.7.8

implies that there is only one tract of N , which must be E, so Γ \ ∂V is connected.

If i, j ∈ ∂V , then Γ \ ∂V is disconnected, a contradiction. If i, j ∈ V ◦ (resp., if

i ∈ V ◦ and j ∈ ∂V ), then Ω0(N) admits a vertical 2-biseparation satisfying (iv‡)

(resp., (iv†)) of Lemma 4.7.7 with T = E, a contradiction. Hence Γ̂ is 3-connected.

Now we prove the “if” direction. Suppose that Γ \ ∂V is connected and Γ̂ is

3-connected. A fortiori Γ̂ is 2-connected, so Ω0(N) is vertically 2-biconnected and

admits no balancing sets of rank 1 by Theorem 4.6.1(iii) and Proposition 4.7.2. If

a balancing set of rank 2 existed, then Lemma 4.7.5 would imply that Γ is not

2-connected and m = 2. But then Γ̂ would not be 3-connected, a contradiction. Fol-

lowing Proposition 4.7.3, it remains to show that Ω0(N) is vertically 3-biconnected.

Suppose that Ω0(N) admits a vertical 2-biseparation (X, Y ). Lemma 4.7.6 then says

that (X, Y ) does not satisfy (iii). If (X, Y ) satisfies either (iv†) or (iv‡), then Γ̂ is

not 3-connected, a contradiction. Specifically, in case (iv†), we can disconnect Γ̂ by

removing the boundary node met by Y and the vertex met by X \ e0 and Y . In case

(iv‡) we remove the two vertices met by both X \ e0 and Y . Finally (X, Y ) cannot

satisfy (v†) since E is the only tract of N by assumption.

Matroids that are 3-connected enjoy nice structural properties. For example, if

the graphic matroid M(Γ) is 3-connected, then it is uniquely determined by Γ up to
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isomorphism. We have the following analog for Dirichlet matroids. Two networks

N = (Γ, ∂V ) and N ′ = (Γ′, ∂V ′) are isomorphic if there is an isomorphism of Γ and

Γ′ that maps ∂V to ∂V ′.

Corollary 4.7.9. If Γ\∂V is connected and Γ̂ is 3-connected, then up to isomorphism

there are at most 27 networks N ′ such that M(N) ∼= M(N ′).

Proof. This follows from Theorem 4.1.5, Proposition 4.2.7 and [27, Corollary 2].

We say that the network N is Hamiltonian if there is a circuit of M(N) meeting

every vertex of Γ. Such a circuit is called Hamiltonian. For example, the star network

N from Example 4.2.16 is Hamiltonian, and every circuit of M(N) is Hamiltonian.

Corollary 4.7.10. If N is Hamiltonian and

1

3
|E| ≥ |V | − |∂V |+ 2, (4.37)

then for any Hamiltonian circuit C of M(N) there is a circle C ′ ⊂ E disjoint from

C such that (Γ \ ∂V ) \ C ′ is connected and Γ̂ \ C ′ is 3-connected.

Proof. This is an application of [68, Theorem 6.1] to Theorem 4.1.5.
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Chapter 5

Koszulness and supersolvability

In this chapter we characterize supersolvable Dirichlet arrangements in terms of their

Orlik-Solomon algebras. The Orlik-Solomon algebra of a complex arrangement is a

combinatorially defined graded algebra that is isomorphic to the cohomology ring

of the complement of the arrangement. We show that a Dirichlet arrangement is

supersolvable if and only if its Orlik-Solomon algebra is Koszul, an algebraic property

that is slightly weaker than being semisimple. It is an open question whether a given

arrangement is supersolvable if and only if its Orlik-Solomon algebra is Koszul. This

question has been previously been answered for four other classes of arrangements.

We exhibit an infinite family of Dirichlet arrangements that do not belong to any of

these other four classes, showing that our results properly extend previous work.

5.1 Main results

A Koszul algebra is a graded algebra that is “as close to semisimple as it can possibly

be” [5, p. 480]. Koszul algebras play an important role in the topology of complex

hyperplane arrangements. For example, if A is such an arrangement and U its

complement, then the Orlik-Solomon algebra OS(A) is Koszul if and only if U is

a rational K(π, 1)-space. Also if OS(A) is Koszul and G1 . G2 . · · · denotes the

lower central series of the fundamental group π1(U), defined by G1 = π1(U) and
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Gn+1 = [Gn, G1], then the celebrated Lower Central Series Formula holds:

∞∏
k=1

(1− tk)ϕk = P (U,−t), (5.1)

where P (U, t) is the Poincaré polynomial of U and ϕk = rk(Gk/Gk+1).

It is natural to seek a combinatorial characterization of the arrangements A for

which OS(A) is Koszul. Shelton and Yuzvinsky [81, Theorem 4.6] showed that if A
is supersolvable, then OS(A) is Koszul. Whether the converse holds is unknown.

Question 5.1.1. If the Orlik-Solomon algebra of a central hyperplane arrangement

A is Koszul, then is A supersolvable?

We answer this question affirmatively for cones (or centralizations) over Dirich-

let arrangements, a generalization of graphic arrangements arising from electrical

networks and order polytopes of finite posets (see Chapter 3).

Theorem 5.1.2. The cone over a Dirichlet arrangement is supersolvable if and only

if its Orlik-Solomon algebra is Koszul.

Question 5.1.1 has been answered affirmatively for other classes of arrangements,

including graphic arrangements [43, 47, 78, 96]. Our next theorem shows that Theo-

rem 5.1.2 properly extends all previous results. We say that two central arrangements

are combinatorially equivalent if the underlying matroids are isomorphic.

Theorem 5.1.3. There are infinitely many cones over Dirichlet arrangements that

are not combinatorially equivalent to any arrangement for which Question 5.1.1 has

been previously answered.

Dirichlet arrangements have also been called ψ-graphical arrangements [58, 89,

90]. It was conjectured in [58] and proven in [90] that the cone over a Dirichlet

arrangement is supersolvable if and only if it is free.
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5.2 Background

5.2.1 Orlik-Solomon algebras

Given an ordered central arrangement A over K, let V be the K-vector space with

basis {ea : a ∈ A}. Let Λ = Λ(V ) be the exterior algebra of V . Write xy = x ∧ y in

Λ. The algebra Λ is graded by taking Λ0 = K and Λp to be spanned by all elements

of the form ea1 · · · eap .
Let ∂ : Λ→ Λ be the linear map defined by ∂1 = 0, ∂ea = 1 for all a ∈ A, and

∂(xy) = ∂(x)y + (−1)px∂(y) (5.2)

for all x ∈ Λp and y ∈ Λ.

The set X is dependent if the normal vectors of the hyperplanes in X are linearly

dependent. A circuit is a minimal dependent set. If X = {a1, . . . , ap} ⊆ A, assuming

the ai are in increasing order, write eX = ea1 · · · eap in Λ.

Definition 5.2.1. The Orlik-Solomon algebra OS(A) of a central arrangement A is

the quotient of Λ by the Orlik-Solomon ideal

I = 〈∂(eC) : C ⊆ A is a circuit〉. (5.3)

That is, OS(A) = Λ/I.

5.2.2 Koszul algebras

We briefly recall the definition of a Koszul algebra. For more detail, see [31, 36]. Let

A be a Noetherian graded algebra over a field K, with grading A =
⊕

i≥0Ai. Let M

be an A-module. A resolution (or projective resolution) of M is an exact sequence

of A-modules

· · · → Pn → · · · → P2 → P1 →M → 0 (5.4)

such that each Pi is a projective module.
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Suppose that M is graded and finitely generated. In this situation M is projective

if and only if it is free. Hence in any resolution of M , there are integers bi ≥ 0 such

that Pi = Abi for all i, where Abi is the bi-fold direct sum of A. We obtain an exact

sequence

· · · → Abn → · · · → Ab1 → Ab0 →M → 0 (5.5)

of finitely generated graded A-modules.

Each map Abi → Abi−1 is given by a bi−1× bi matrix Ti whose entries are homoge-

neous elements of A. Write A+ =
⊕

i>0Ai. The resolution is minimal if the entries

of all Ti belong to A+. Up to isomorphism of chain complexes there is a unique

minimal resolution of M . If the resolution (5.5) is minimal, then b0 is the minimal

number of generators of M .

Let ε : A→ A/A+
∼= K be the quotient map, called the augmentation map, and

consider K as an A-module by setting a ·x = ε(a)x for all a ∈ A and x ∈ K. Consider

the minimal resolution of K:

· · · Tn+1−−−→ Abn
Tn−→ · · · T2−→ Ab1

T1−→ A→ K→ 0. (5.6)

If all entries of the matrices Ti belong to A1, then A is Koszul.

Example 5.2.2. Let V be the vector space over K with basis {x1, . . . , xn}. Let

A = T (V ) be the tensor algebra of V . The minimal resolution of K is

0→ An → A→ K→ 0,

where the map An → A is given by the row vector (x1 x2 · · · xn).

Quadraticity is a key property of Koszul algebras. A minimal generator of the

Orlik-Solomon algebra I is an element of the form ∂(eC), where C is a circuit and

∂(eC) /∈ 〈∂(eX) : X ⊆ A is a circuit with |X| < |C|〉. (5.7)

If the minimal generators of I are of degree 2, then OS(A) is called quadratic.
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Proposition 5.2.3 ([36, Definition-Theorem 1]). If OS(A) is Koszul, then OS(A)

is quadratic.

5.3 Proof of Theorem 5.1.2

We prove the following theorem, which implies Theorem 5.1.2.

Theorem 5.3.1. Let Γ̂ be the graph obtained from Γ by adding an edge between each

pair of boundary nodes. The following are equivalent:

(i) Γ̂ is chordal

(ii) A(Γ, u) is supersolvable

(iii) OS(A(Γ, u)) is Koszul

(iv) OS(A(Γ, u)) is quadratic.

We write x instead of {x} for all single-element sets. Let e0 be an element not

in E, and let E0 = E ∪ e0, so that A(Γ, u) is indexed by E0. Fix an ordering of E0

with e0 minimal. We say that C ⊆ E0 is a circuit if the corresponding subset of A
is a circuit.

Definition 5.3.2. A set X ⊆ E is a crossing if it is a minimal path between 2

distinct boundary nodes.

The following is a restatement of Proposition 4.2.15 for convenience.

Proposition 5.3.3. A set C ⊆ E0 is a circuit if and only if one of the following

holds:

(A) C = X ∪ e0 for some crossing X

(B) C ⊆ E is a cycle of Γ meeting at most 1 boundary node

(C) C ⊆ E is a minimal set containing 2 distinct crossings and no circuit of type

(B).

The circuits of type (C) in Proposition 5.3.3 come in two flavors: one contains

3 distinct crossings, while the other contains only 2. These are illustrated in Figure
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4.9. Circuits of type (C) containing only 2 distinct crossings are either disconnected,

as pictured, or connected with both crossings meeting only on the boundary.

Taken together, the following 2 lemmas imply that circuits of type (C) do not

contribute minimal generators to the Orlik-Solomon ideal I. When the usage is clear

we will write S = eS, so that S is considered as an element of Λ and a subset of E0.

Lemma 5.3.4. Let C ⊆ E be a circuit containing distinct crossings X1, X2 and X3.

In Λ we have

∂(C) ∈ 〈∂(e0X1), ∂(e0X2), ∂(e0X3)〉. (5.8)

Proof. There are mutually disjoint paths P1, P2, P3 ⊆ E in Γ such that C = P1 ∪
P2 ∪ P3 and Xi = Pj ∪ Pk for distinct i, j, k. Write ai = |Pi|, and suppose without

loss of generality that X1 = P2P3, X2 = P1P3 and X3 = P1P2 in Λ. We have

∂(e0X3) = P1P2 − e0∂(P1)P2 − (−1)a1e0P1∂(P2)

∂(e0X2) = P1P3 − e0∂(P1)P3 − (−1)a1e0P1∂(P3)

∂(e0X1) = P2P3 − e0∂(P2)P3 − (−1)a2e0P2∂(P3)

Thus

∂(P3)∂(e0X3) = (−1)(a1+a2)(a3−1)(P1P2∂(P3)− e0∂(P1)P2∂(P3)

− (−1)a1e0P1∂(P2)∂(P3))

∂(P2)∂(e0X2) = (−1)a1(a2−1)(P1∂(P2)P3 − e0∂(P1)∂(P2)P3

+ (−1)a1+a2e0P1∂(P2)∂(P3))

∂(P1)∂(e0X1) = ∂(P1)P2P3 + (−1)a1e0∂(P1)∂(P2)P3

+ (−1)a1+a2e0∂(P1)P2∂(P3)

Since C = P1P2P3, we have

∂(C) = ∂(P1)P2P3 + (−1)a1P1∂(P2)P3 + (−1)a1+a2P1P2∂(P3),
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A computation now gives

∂(C) = ∂(P1)∂(e0X1) + (−1)a1a2∂(P2)∂(e0X2) + (−1)(a1+a2)a3∂(P3)∂(e0X3),

proving the result.

Lemma 5.3.5. Suppose that X1 and X2 are crossings such that no vertex in V \∂V
is met by both X1 and X2. In Λ we have

∂(C) ∈ 〈∂(e0X1), ∂(e0X2)〉. (5.9)

Proof. The proof is similar to that of Lemma 5.3.4. In particular, we have

∂(X1X2) = ∂(X1e0)∂(X2) + ∂(X1)∂(X2e0),

proving the result.

Let C ⊆ E0 be a circuit. An element i ∈ E0 is a chord of C if there exist circuits

C1 and C2 such that i = C1 ∩ C2 and C = (C1 \ C2) ∪ (C2 \ C1). If C admits no

chord, then C is chordless.

Proposition 5.3.6. The minimal generators of I are the elements of the form ∂(C),

where C ⊆ E0 is a chordless circuit of type (A) or (B) in Proposition 5.3.3.

Proof. Let J be the ideal of Λ generated by the elements of the form ∂(C) for all

circuits C of types (A) and (B) in Proposition 5.3.3. Note that any circuit of type

(C) is described by either Lemma 5.3.4 or 5.3.5. It follows that J = I is the Orlik-

Solomon ideal.

Let C ⊆ E0 be a circuit of type (A) or (B). It remains to show that ∂(C) is a

minimal generator of I if and only if C is chordless. Notice that a chord of C is any

edge i ∈ E connecting two vertices met by E ∩ C.
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Suppose first that C is of type (B), and write C = {e1, . . . , er}. We have

∂(C) =
r∑
j=1

(−1)j−1e1 · · · êj · · · er.

There is a chord i of C if and only if there is a circuit C ′ of with a term of ∂(C ′)

dividing e2 · · · er. Suppose that such a chord i exists, and partition C into two paths

P1 and P2 such that P1 ∪ i and P2 ∪ i are cycles of Γ. Write aj = |Pj|, and suppose

without loss of generality that C = P1P2 in Λ. We have

∂(C) = ∂(P1)∂(iP2) + (−1)a1a2∂(P2)∂(iP1),

so ∂(C) is not a minimal generator. Thus if C is a cycle of Γ, then ∂(C) is a minimal

generator of I if and only if C is chordless.

Now suppose that C = X∪e0 for some crossing X. We have ∂(C) = X−e0∂(X).

There is a circuit C ′ with a term of ∂(C ′) dividing X if and only if there is a chord i

of X. Suppose that such a chord i exists. Partition X into two sets X1 and X2 such

that X1 ∪ i is a cycle of Γ and X2 ∪ i is a crossing. Write bj = |Xj|, and suppose

without loss of generality that X = X1X2 in Λ. We have

(−1)b1∂(C) = ∂(X1)∂(e0iX2) + (e0∂(X2) + (−1)b2X2)∂(iX1),

where X1∪ i and X2∪{e0, i} are circuits of smaller size than C. Hence ∂(C) is not a

minimal generator. Thus if C = X ∪ e0 for some crossing X, then ∂(C) is a minimal

generator of I if and only if C is chordless. The result follows.

Proposition 5.3.7. The graph Γ̂ is chordal if and only if there are no chordless

circuits of type (A) or (B) in Proposition 5.3.3 having size ≥ 4.

Proof. Let Ê be the set of edges of Γ̂ not in E. Suppose that C is a chordless circuit

of size k ≥ 4. If C = X ∪ e0 is of type (A) for some crossing X, then there is e ∈ Ê
such that X ∪ e is a cycle of Γ̂ admitting no chord. If C is of type (B), then C is a

cycle of Γ (and hence Γ̂) admitting no chord. The “only if” direction follows. Now
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suppose that Γ̂ has a cycle Z of size ≥ 4 admitting no chord. Then either Z ⊆ E, in

which case Z is a circuit of type (B); or Z ∩ Ê consists of a single edge e, in which

case (Z \ e) ∪ e0 is a circuit of type (A).

Proof of Theorem 5.3.1. (i) ⇒ (ii): This follows from Theorem 3.2.2. (ii) ⇒ (iii):

This follows from [81, Theorem 4.6]. (iii) ⇒ (iv): This is the content of Proposition

5.2.3. (iv) ⇒ (i): This follows from Propositions 5.3.6 and 5.3.7.

5.4 An infinite family

We prove Theorem 5.4.3 below, which implies Theorem 5.1.3. There are four classes

of arrangements for which Question 5.1.1 was previously answered:

(i) Graphic arrangements

(ii) Ideal arrangements

(iii) Hypersolvable arrangements

(iv) Ordered arrangements with disjoint minimal broken circuits.

See [43, 47, 78, 96] for individual treatments. A priori it is unclear how these classes

overlap with cones over Dirichlet arrangements.

Given a central arrangement A, let M(A) be the usual matroid on A, so X

is independent in M(A) if and only if the set of normal vectors of X is linearly

independent. For more on matroids and central arrangements, see [87]. Recall that

two central arrangements are called combinatorially equivalent if their underlying

matroids are isomorphic.

Definition 5.4.1. Let χ(Γ, ∂V ) denote the chromatic number of the graph with

vertex set ∂V and an edge between i and j if and only if there is a crossing in Γ

connecting i and j.

Example 5.4.2. Consider the graph Γ on the left side of Figure 5.1 with ∂V marked

in white. On the right side is the graph with vertex set ∂V and an edge between

i and j if and only if there is a crossing in Γ connecting i and j. This graph can
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Figure 5.1: A graph with boundary nodes marked in white and an illustration of the
associated number χ(Γ, ∂V ).

be colored using 6 colors, as pictured, and no fewer, since it contains a clique on 6

vertices. Hence χ(Γ, ∂V ) = 6.

Theorem 5.4.3. Suppose that |E| ≥ 240 and χ(Γ, ∂V ) ≥ 4, and that some vertex

of Γ is adjacent to at least 3 boundary nodes. If Γ \ ∂V contains the wheel graph on

5 vertices as an induced subgraph, then A(Γ, u) is not combinatorially equivalent to

any graphic arrangement, ideal arrangement, hypersolvable arrangement, or ordered

arrangement with disjoint minimal broken circuits.

Example 5.4.4. Recall that the join G + H of 2 graphs G and H is the disjoint

union of G and H with edges added between every vertex of G and every vertex of

H. The join of any finite number of graphs is defined by induction. Let Kn and

Kn be the edgeless and complete graphs, resp., on n vertices. Let W5 be the wheel

graph on 5 vertices. The graph Γ = K4 +K14 +W5 with boundary ∂V = K4 satisfies

the hypothesis of Theorem 5.4.3 and does so with the minimum possible number of

vertices. In particular we have |E| = 245, χ(Γ, ∂V ) = 4, and |V | = 23.

The proof of Theorem 5.4.3 can be found at the end of the section. First we need

some preliminary results on the classes of arrangements (ii)–(iv).

5.4.1 Ideal arrangements

Let Φ ⊆ Kn be a finite root system with set of positive roots Φ+. A standard

reference for root systems is [44]. The Coxeter arrangement associated to Φ is the
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set of normal hyperplanes of Φ+. Every Coxeter arrangement associated to a classical

root system An, Bn, Cn or Dn is a subset of an arrangement of the following type.

Definition 5.4.5. For all n ≥ 2 let Bn be the arrangement in Kn of hyperplanes

{xi = xj : 1 ≤ i < j ≤ n} ∪ {xi + xj = 0 : 1 ≤ i < j ≤ n} ∪ {xi = 0 : 1 ≤ i ≤ n}.

Proposition 5.4.6. If χ(Γ, ∂V ) ≥ 4 and |E| ≥ 240, then A(Γ, u) is not combinato-

rially equivalent to any subarrangement of any Coxeter arrangement.

Proof. The matroids M(Bn) are representable over any field |K| with |K| ≥ 3. How-

ever M(A(Γ, u)) is not representable over K if |K| < χ(Γ, ∂V ) by Theorem 4.2.17.

Hence if χ(Γ, ∂V ) ≥ 4, then A(Γ, u) is not combinatorially equivalent to any subar-

rangement of Bn.

The exceptional root systems E6, E7, E8, F4 and G2 all have 240 or fewer elements.

Hence no subarrangement of the associated Coxeter arrangements can have more

than 240 elements. The result now follows from the classification of finite root

systems.

An ideal arrangement (or a root ideal arrangement) is a certain subarrangement

of a Coxeter arrangement (see [1, 43]). Graphic arrangements are subarrangements

of Bn. Thus we have the following.

Corollary 5.4.7. If χ(Γ, ∂V ) ≥ 4 and |E| ≥ 240, then A(Γ, u) is not combinatorially

equivalent to any ideal arrangement or graphic arrangement.

5.4.2 Hypersolvable arrangements

Let A be a central arrangement, and let X ⊆ Y ⊆ A. The containment X ⊆ Y is

closed if X 6= Y and {a, b, c} is independent for all distinct a, b ∈ X and c ∈ Y \X.

The containment X ⊆ Y is complete if X 6= Y and for any distinct a, b ∈ Y \ X
there is γ ∈ X such that {a, b, γ} is dependent.
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If X ⊆ Y is closed and complete, then the element γ is uniquely determined

by a and b. Write γ = f(a, b). The containment X ⊆ Y is solvable if it is closed

and complete, and if for any distinct a, b, c ∈ Y \X with f(a, b), f(a, c) and f(b, c)

distinct, the set {f(a, b), f(a, c), f(b, c)} is dependent.

An increasing sequence X1 ⊆ · · · ⊆ Xk = A is called a hypersolvable composition

series for A if |X1| = 1 and each Xi ⊆ Xi+1 is solvable.

Definition 5.4.8 ([47, Definition 1.8]). The central arrangement A is hypersolvable

if it admits a hypersolvable composition series.

There is an analog for graphs. Let S ⊆ T ⊆ E. We say that S ⊆ T is solvable if

it satisfies the following conditions:

(a) There is no 3-cycle in Γ with two edges from S and one edge from T \ S
(b) Either T \ S = e with neither endpoint of e met by S, or there exist distinct

vertices v1, . . . , vk, v met by T with v1, . . . , vk met by S such that

(i) S contains a clique on {v1, . . . , vk}, and

(ii) T \ S = {vvs ∈ E : s = 1, . . . , k}.
An increasing sequence S1 ⊆ · · · ⊆ Sk = E is called a hypersolvable composition

series for Γ if |S1| = 1 and each Si ⊆ Si+1 is solvable

Definition 5.4.9 ([70, Definition 6.6]). The graph Γ is hypersolvable if it admits a

hypersolvable composition series.

Proposition 5.4.10. If the graph Γ is hypersolvable, then so is any induced subgraph

of Γ.

Proof. Suppose that S1 ⊆ · · · ⊆ Sk is a hypersolvable composition series for Γ, and

let Γ be an induced subgraph of Γ with edge set E ⊆ E. By eliminating empty

sets and trivial containments in the sequence S1 ∩ E ⊆ · · · ⊆ Sk ∩ E one obtains a

hypersolvable composition series for Γ.

The following proposition generalizes half a result of Papadima and Suciu [70,

Proposition 6.7], who showed that Γ is hypersolvable if and only if the associated

graphic arrangement is hypersolvable.
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Proposition 5.4.11. If A(Γ, u) is hypersolvable, then the graph Γ̂, obtained from Γ

by adding edges between every pair of boundary nodes, is hypersolvable.

Proof. Let Ê be the set of added edges, so that the edge set of Γ̂ is the disjoint union

E ∪ Ê. Write ∂V = {v1, . . . , vm}. For i = 1, . . . ,m− 1

Ti = {vrvs ∈ Ê : r < s ≤ i+ 1},

so for example Tm−1 = Ê.

Suppose that X1 ⊆ · · · ⊆ Xk is a hypersolvable composition series for A(Γ, u).

For each i let Si ⊆ E0 be the set corresponding to Xi. Let j be the smallest index

for which e0 ∈ Sj. Consider the increasing sequence

S1 ⊆ · · · ⊆ Sj−1 ⊆ Sj−1 ∪ T1 ⊆ · · · ⊆ Sj−1 ∪ Tm−1 ⊆ Sj+1 ∪ Ê ⊆ · · · ⊆ Sk ∪ Ê,

omitting the initial portion S1 ⊆ · · · ⊆ Sj−1 if j = 1. It is routine to show that this

sequence is a hypersolvable composition series for Γ̂.

Example 5.4.12. Consider the network N on the left side of Figure 5.2. Here Γ̂ =

W5 is the wheel graph on 5 vertices. An exhaustive argument shows that W5 is not

hypersolvable. Hence Proposition 5.4.11 implies that A(Γ, u) is not hypersolvable.

Figure 5.2: Left to right: a network N with boundary nodes marked in white and
the associated graph Γ̂ = W5.

Question 5.4.13. Does the converse of Proposition 5.4.11 hold? In other words, is

A(Γ, u) hypersolvable whenever Γ̂ is hypersolvable?
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5.4.3 Disjoint minimal broken circuits

Fix an ordering of a central arrangement A, and let minX denote the minimal

element of any X ⊆ A. The broken circuits of A are the sets C \ minC for all

circuits C of A. A broken circuit is minimal if it does not properly contain any

broken circuits. Van Le and Römer [96, Theorem 4.9] answered Question 5.1.1

affirmatively for all ordered arrangements with disjoint minimal broken circuits. No

matter the ordering, many Dirichlet arrangements do not satisfy this requirement,

as the following proposition implies.

Proposition 5.4.14. If there is an element of V \∂V adjacent to at least 3 boundary

nodes, then the minimal broken circuits of A(Γ, u) are not disjoint with respect to

any ordering.

Proof. Suppose that i ∈ V \ ∂V is adjacent to distinct boundary nodes j1, j2 and j3.

Let er be the edge ijr for r = 1, 2, 3. Fix an ordering of A(Γ, u) and suppose without

loss of generality that e1 < e2 < e3. We obtain circuits {e0, e1, e3} and {e0, e2, e3}.
The associated broken circuits are minimal, since there are no circuits of size ≤ 2.

Moreover both broken circuits contain e3.

Proof of Theorem 5.4.3. Since χ(Γ, ∂V ) ≥ 4 and |E| ≥ 240, Corollary 5.4.7 says

that A(Γ, u) is not combinatorially equivalent to any ideal arrangement or graphic

arrangement. Since Γ \ ∂V contains W5 as an induced subgraph, Γ̂ also contains

W5 as an induced subgraph. Example 5.4.12 and Propositions 5.4.10 and 5.4.11

imply that A(Γ, u) is not hypersolvable, a property depending only on M(A(Γ, u)).

Finally Proposition 5.4.14 says that the broken circuits of A(Γ, u) are not disjoint

with respect to any ordering. This property only depends on M(A(Γ, u)), so the

result follows.
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Chapter 6

Topological complexity and

structural rigidity

In this chapter we relate the notion of topological complexity, originating in topologi-

cal robotics, with the notion of rigidity of graphs in surfaces. Topological complexity

measures the difficulty of planning a continuous motion through a topological space.

A rigid graph is one for which, when its vertices are placed generically on a surface

in R3, the only continuous motions preserving all edge lengths are rigid motions. We

study largeness of a central complex arrangement, a combinatorial property guaran-

teeing that the complement of the arrangement is maximally topologically complex.

First, we recast a result of Fieldsteel [35] to show that a graphic arrangement is large

if and only if the underlying graph is rigid in the plane. We use combinatorial moves

from structural rigidity to give a new proof of the “if” direction of the theorem.

We then use these and other moves to identify a class of electrical networks whose

associated Dirichlet arrangements are large. We provide a partial converse to this

theorem as well. The electrical networks in question relate to rigid graphs in an

infinite cylinder.
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6.1 Main results

Our starting point is the problem of planning a continuous motion through a given

topological space X. Let XI denote the space of continuous paths γ : [0, 1] → X

equipped with the compact-open topology. For every integer s ≥ 2 let Xs denote

the s-fold Cartesian product of X, and let πs : XI → Xs be given by

πs(γ) =

(
γ(0), γ

(
1

s− 1

)
, . . . , γ

(
s− 2

s− 1

)
, γ(1)

)
. (6.1)

The higher topological complexity TCs(X) of X is the minimum number |C|−1 where

C is an open cover of Xs such that πs admits a continuous section on every set in C.

If no such cover exists, then we set TCs(X) =∞. This definition is due to Rudyak

[76], generalizing work of Farber [33] on the motion planning problem in robotics.

One can think of TCs(X) as measuring the difficulty of planning a continuous motion

through a given sequence of s points in X.

It is a natural problem to compute TCs(X) for familiar classes of spaces in combi-

natorics, such as complements of hyperplane arrangements. If M is the complement

of a central complex arrangement A of rank r, then

TCs(M) ≤ rs− 1. (6.2)

Yuzvinsky [108] gave a combinatorial condition on arrangements guaranteeing equal-

ity in (6.2). Arrangements satisfying the condition of Yuzvinsky are called large.

Our first result takes a characterization of large graphic arrangements due to

Fieldsteel [35] and recasts it in terms of structural rigidity. Let S ⊆ R3 be a surface

and Γ = (V,E) a graph. A framework of Γ on S is a pair (Γ, p), where p ∈ SV

is a tuple of points in S indexed by V . The framework (Γ, p) is rigid if the only

continuous motions preserving the distance between pi and pj for all ij ∈ E are the

rigid motions in R3. The graph Γ is generically rigid in S if (Γ, p) is rigid whenever

all coordinates of all pi are algebraically independent.

Theorem 6.1.1. The graphic arrangement A(Γ) is large if and only if Γ is generi-
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cally rigid in the plane.

Certain classes of rigid graphs admit constructions by sequences of combinatorial

moves. A graph Γ is minimally generically rigid in S if Γ is rigid in S and removing

any edge from Γ yields a graph that is not generically rigid in S. The minimally

generically rigid graphs in the plane are the graphs obtainable from K2 by any

sequence of the two moves on the top of Figure 6.1, called Henneberg moves. We use

this fact to give a new proof of the “if” direction of Theorem 6.1.1.

Figure 6.1: Four combinatorial moves on graphs.

There is a similar construction for a certain class of graphs that admit rigid

frameworks in the infinite cylinder. These graphs are obtainable from K4 by any

sequence of Henneberg moves and the moves on the bottom of Figure 6.1, called

edge-to-K3 and vertex-to-K4. Our main result, Theorem 6.1.2, uses these four moves

to identify a class of large Dirichlet arrangements.

Given an independent set ∂V ⊆ V and injective function u : ∂V → C, recall that

the Dirichlet arrangement A(Γ, u) in CV \∂V is the set of hyperplanes given byxi = xj for all ij ∈ E with i, j ∈ V \ ∂V

xi = uj for all ij ∈ E with j ∈ ∂V .

We assume that |∂V | ≥ 2. LetA(Γ, u) denote the cone overA(Γ, u). Let Γ denote the

multigraph obtained from Γ by identifying all boundary nodes as a single vertex v0.

The multigraphs Γ in the following theorem admit rigid frameworks in the infinite

cylinder, by results of Nixon and Owen [64, Theorem 1.5] and Nixon, Owen and

Power [64, Theorem 5.4].
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Theorem 6.1.2. If there is a spanning subgraph of Γ obtainable from a K4 containing

v0 by a sequence of edge-to-K3, vertex-to-K4 and Henneberg moves respecting v0, then

A(Γ, u) is large.

The phrase respecting v0 has a technical meaning explained in Section 6.5. Our

final result is a partial converse to Theorem 6.1.2. A large pair of a central arrange-

ment A is a pair of subsets of A satisfying certain properties with respect to a given

ordering of A. The arrangement A is large if there exists an ordering with respect

to which A admits a large pair. We are interested in orderings of A(Γ, u) in which

the cone hyperplane x0 = 0 is minimal.

Theorem 6.1.3. If A(Γ, u) admits a large pair with respect to an ordering in which

the cone hyperplane is minimal, then there is a spanning subgraph H of Γ/∂V such

that the following hold:

(i) H is rigid in the cylinder

(ii) No subgraph of H away from v0 is rigid in the cylinder.

6.2 Background

An arrangement A in Cs is a finite set of affine hyperplanes in Cs. The rank of A is

the dimension of the span of the normal vectors of elements of A. The arrangement

A is central if its elements all contain the origin. Any central arrangement A defines

a matroid on A in which a set X is independent if and only if the normal vectors of

the elements of X are linearly independent. A basis (resp., a circuit) of a matroid is

a maximal independent (resp., minimal dependent) set.

6.2.1 Large arrangements

Let A be a central arrangement. Recall that a subset of A is NBC with respect to

an ordering of A if it contains no broken circuits of the matroid M(A).

Definition 6.2.1. A basic pair of M(A) with respect to an ordering of A is an

ordered pair (B,C) of disjoint NBC subsets of A such that B is a basis.
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Definition 6.2.2. A large pair of M(A) with respect to an ordering of A is a basic

pair (B,C) with |C| = r − 1.

Definition 6.2.3. A central arrangement A is large if there exists an ordering with

respect to which M(A) admits a basic pair.

Proposition 6.2.4 ([108, pp. 125–126]). The following hold for any large arrange-

ment A of rank r:

(i) If U is the complement of A, then TCs(U) = rs− 1.

(ii) If A′ is a central arrangement of rank r with A ⊆ A′, then A′ is large.

6.2.2 Dirichlet arrangements and matroids

Let Γ, ∂V and u be as in the introduction. Let ∂E ⊆ E be the set of edges meeting

∂V . Write d = |V |, m = |∂V | and n = d −m. We take the coordinates of Cn+1 to

be zi for all i ∈ V \ ∂V and an additional coordinate z0. Thus A(Γ, u) consists of all

hyperplanes in Cn+1 of the forms zi = u(j)z0 for all ij ∈ ∂E with j ∈ ∂V ; zi = zj

for all ij ∈ E \ ∂E; and z0 = 0.

Let E0 = E ∪ e0, where e0 is a new element, so that A(Γ, u) is indexed by E0.

The matroid on E0 defined by A(Γ, u) depends only on the network N = (Γ, ∂V ).

Denote this matroid by M(N).

The next two propositions are restatements of Propositions 4.2.14 and 4.2.15.

They describe the bases and circuits of M(N). A forest X ⊆ E is a grove of N

if X meets every element of V \ ∂V and every component of X meets at least one

boundary node. A crossing of N is the edge set of a minimal path in Γ between

boundary nodes. Let Σ0 (resp., Σ1) be the set of groves of N containing no crossings

(resp., exactly 1 crossing).

Proposition 6.2.5. A set X ⊆ E0 is a basis of M(N) if and only if one of the

following holds:

(i) X = Y ∪ {e0} for some Y ∈ Σ0

(ii) X ∈ Σ1.
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Proposition 6.2.6. A set X ⊆ E0 is a circuit of M(N) if and only if one of the

following holds:

(i) X = Z ∪ {e0} for a crossing Z ⊆ E of N

(ii) X ⊆ E is a cycle of Γ meeting at most 1 boundary node

(iii) X ⊆ E is a minimal acyclic set containing more than 1 crossing.

Example 6.2.7. Suppose that Γ = K4, where Γ is the multigraph obtained by

identifying all vertices of ∂V as a single vertex. There are two possibilities for N , both

illustrated in Figure 6.2 with boundary nodes marked in white. The corresponding

Γ is illustrated on the left of Figure 6.2.7 with v0 marked in white. In the middle

and on the right of Figure 6.2.7 are two spanning trees of Γ. Let B = T ∪ e0, where

T is the tree in the middle, and let C be the tree on the right. Take the ordering

e0 < e1 < · · · < e6 of E0. We claim that (B,C) is a large pair of M(N).

e6

e4

e5

e3

e1

e2

e6

e4

e5

e3

e1

e2

Figure 6.2: The two networks N with Γ = K4.

By Proposition 6.2.6 the subsets of B that are circuits of M(N) minus one element

are {e0, e1, e4}, {e0, e1, e4, e5} and {e4, e5}. The missing elements are e2, e3 and e6,

resp. None of these are minimal in the corresponding circuits, so B is NBC. If N is

the network on the right of Figure 6.2, then {e1, e2} is the only subset of C that is a

circuit of M(N) minus one element. The missing element is e4, which is not minimal

in the corresponding circuit. If N is the network on the left, then no subset of C is

a circuit of M(N) minus one element. In either case C is NBC. Hence (B,C) is a

large pair of M(N).
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e1

e2

e3
e4

e5

e6

e3

e6

e4

e1

e2 e5

Figure 6.3: Disjoint spanning trees of K4.

6.2.3 Tight graphs

The graph Γ is (k, `)-tight if |E| = k|V | − s and for every subgraph H = (VH , EH)

we have |EH | ≤ k|VH | − s. This definition is due to Lee and Streinu [52]. A theorem

of Nash-Williams and Tutte [62, 94] says that the (k, k)-tight graphs are precisely

those that can be partitioned into k edge-disjoint spanning trees.

There are inductive constructions of the simple (2, 3)-tight and (2, 2)-tight graphs.

We define four operations on graphs. A Henneberg 1 move consists of adding a new

vertex v and two edges vi and vj for distinct vertices i and j. A Henneberg 2 move

consists of deleting an edge ij, adding a new vertex v, and adding the edges vi, vj

and vk for some other vertex k.

Proposition 6.2.8 ([38, 51]). The following are equivalent for a simple graph Γ:

(i) Γ is (2, 3)-tight

(ii) Γ is minimally rigid in the plane

(iii) Γ can be obtained from K2 by a sequence of Henneberg 1 and 2 moves.

An edge-to-K3 move consists of deleting an edge ij and splitting a vertex j into

two vertices k and `, reassigning its remaining incident edges between k and `, and

adding the edges ik, i`, and k`. A vertex-to-K4 move consists of removing a vertex v

and reassigning its incident edges among 3 new vertices i, j and k, adding a fourth

new vertex, and drawing a K4 on the new vertices. These operations are easier to

understood visually; see Figure 6.1. We write Γ → ∆ if ∆ is obtained from Γ by

such a move.
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Recall the definition of a rigid framework (Γ, p) in a surface S ⊆ R3 from Section

6.1. We say that (Γ, p) is minimally rigid in S if (Γ, p) is rigid in S and removing any

edge of Γ yields a framework that is not rigid in S. One can also define a completely

regular framework in S, but we do not do so here; we refer the reader instead to [65,

Definition 3.3].

Proposition 6.2.9 ([64, Theorem 1.5] and [65, Theorem 5.4]). The following are

equivalent for a simple graph Γ:

(i) Γ is (2, 2)-tight

(ii) Γ admits a minimally rigid completely regular framework on the infinite cylin-

der

(iii) Γ can be obtained from K4 by a sequence of Henneberg, edge-to-K3 and vertex-

to-K4 moves.

6.3 Graphic arrangements

A result of Fieldsteel implies that the graphic arrangement A(Γ) is large if and only

if Γ is (2, 3)-tight. Proposition 6.2.8 says that this is equivalent to Theorem 6.1.1,

and leads to the following proof of the “if” direction of the theorem. Given X, Y ⊆ E

and e ∈ E we say that X ⊂ E is an e-broken circuit of M(N) (resp., an e-broken

cycle of Γ) in Y if X ⊆ Y , e /∈ Y , and X ∪ e is a circuit of M(N) (resp., a cycle of

Γ).

Lemma 6.3.1. If Γ is obtained from K2 by Henneberg 1 and 2 moves, then A(Γ) is

large.

Proof. Suppose that Γ = K2. Take B to consist of the only edge and C to be empty.

Then (B,C) is a large pair of Γ.

For the remainder of the proof suppose that Γ is any large graph, and let (B,C)

be a large pair of Γ with respect to a fixed ordering of E. Suppose that Γ → Γ0 is

a Henneberg 1 move. Let k be the added vertex, and ik and jk the added edges,

as illustrated in Figure 6.3.1. Let B0 = B ∪ ik and C0 = C ∪ jk. Any cycle of Γ0
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containing an element of {ik, jk} must properly contain both. Thus by declaring ik

and jk to be greater than any element of E we obtain an ordering of E ∪ {ik, jk}
with respect to which (B0, C0) is a large pair of Γ0.

i j i
k

j

Figure 6.4: A Henneberg 1 move.

Next suppose that Γ → Γ1 = (V1, E1) is a Henneberg 2 move. Call the deleted

edge ij and the added vertex v, so that the added edges are vi, vj, and vk for some

other vertex k. This is illustrated in Figure 6.3.1.

i

j

i

v j

k

Figure 6.5: A Henneberg 2 move.

Suppose without loss of generality that ij ∈ B. Let B1 = (B \ ij) ∪ {vi, vj} and

C1 = C ∪ vk. Consider the ordering of E as a string of strict inequalities. Replacing

ij in this string with vi < vk < vj gives an ordering of E1. We claim that (B1, C1)

is a large pair of Γ1 with respect to this ordering.

Given a forest F and two vertices x and y, let P xy
F denote the edge set of the

unique path in F from x to y, assuming one exists. The only possible vi-broken cycle

of G1 in C1 is P iv
C1

= P ik
C ∪ vk. But P ik

C ∪ vk is a vi-broken cycle of G1 in C1 only if

(i) vi < e for all e ∈ P ik
C ∪ vk.

Similarly the only possible vj-broken cycle of G1 in C1 is P jv
C1

= P jk
C ∪ vk, which is a

vj-broken cycle of G1 in C1 only if

(ii) vj < e for all e ∈ P ik
C ∪ vk.

Since B is a tree, one of P ik
B and P jk

B must be contained in the other. Suppose

without loss of generality that P ik
B ⊆ P jk

B . The only possible vk-broken cycle of G1

in B1 is P vk
B1

= P ik
B ∪ vi. But P ik

B ∪ vi is a vk-broken cycle of G1 in B1 only if
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(iii) vk < vi and vk < e for all e ∈ P ik
B ∪ vi.

There must be an edge f ∈ P ik
C ∪ P

jk
C such that ij > f ; otherwise P ik

C ∪ P
jk
C is

an ij-broken cycle of Γ in C, contradicting the assumption that C is NBC. Suppose

without loss of generality that f ∈ P ik. This violates condition (i), so there is no

vi-broken cycle of Γ1 in C1. We have also declared vk < vj, violating (ii), so there

is no vj-broken cycle in C1. Since C is NBC, the only possible broken cycles of Γ1

in C1 are the vi- or vj-broken cycles. Hence C1 is NBC.

We have declared vi < vk, violating (iii), so there are no vk-broken cycles of Γ1

in B1. By replacing ij in the ordering of E, we have ensured that ij < e for e ∈ E0 if

and only if vi < e and vj < e. Since B is NBC, it follows that there are no e-broken

cycles of Γ1 in B1 for any e ∈ C1 \ vk. Hence B1 is NBC and (B1, C1) is a large pair

of Γ1.

6.4 Proof of Theorem 6.1.3

For this section, fix an ordering of E0 with e0 minimal. Theorem 6.1.3 follows from

Lemmas 6.4.1 and 6.4.2 below. Recall that Σ0 is the set of groves of N containing

no crossing, defined in Definition 4.2.12.

Lemma 6.4.1. If B and C are NBC subsets of E0, then (B,C) is a large pair of

A(Γ, u) if and only if e0 ∈ B, B \ e0 ∈ Σ0 and C ∈ Σ0.

Proof. The “if” direction follows immediately from Proposition 6.2.5. We prove the

“only if” direction. Suppose that e0 is minimal in E0 and that (B,C) is a large

pair of E0. Since B is a basis of M(N), by Proposition 6.2.5 we must have B ∈ Σ1

or e0 ∈ B and B \ e0 ∈ Σ0. If B ∈ Σ1, then B contains a crossing. But since

e0 is minimal, any crossing is a broken circuit, a contradiction. Hence e0 ∈ B and

B \ e0 ∈ Σ0. If a subset of E0 \ B of size n contains no circuits, then it must be a

spanning tree of Γ. Hence C ∈ Σ0.

Lemma 6.4.2. If (B,C) is a large pair of M(N), then H = (B \ e0) ∪ C is a

(2, 2)-tight spanning subgraph of Γ, and every (2, 2)-tight subgraph of H contains v0.
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Proof. Lemma 6.4.1 implies that H is a (2, 2)-tight spanning subgraph. Let J be

a (2, 2)-tight subgraph of H. By restricting B and C to the edges of J , we obtain

disjoint NBC spanning trees S and T of J . If J does not contain v0, then these

spanning trees must in fact contain no broken cycle. We claim that this is impossible.

Let e be the minimal edge in J , and suppose that e ∈ S. There is a path P in T

between the endpoints of e. Since e is minimal, P is an e-broken cycle of J , proving

the claim. Hence J must contain v0.

6.5 Proof of Theorem 6.1.2

Continue to fix an ordering of E0 with e0 minimal. We call v0 the quotient vertex of

Γ = Γ/∂V . Let Ni = (Γi, ∂V i) be a network with Γi = Γi/∂V i. We maintain this

notation throughout. We say that N → Ni is a Henneberg 1, Henneberg 2, edge-to-

K3 or vertex-to-K4 move if Γi is obtained from Γ by such a move that respects the

quotient vertex. By this we mean that

(i) For a Henneberg 1 or 2 move, the quotient vertex in the original graph remains

the quotient vertex in the new graph

(ii) For an edge-to-K3 move, the quotient vertex is not the deleted vertex, and

remains the quotient vertex in the new graph

(iii) For a vertex-to-K4 move, the vertex in question is v0, and the quotient vertex

in the new graph is the “center” of the new K4 (i.e., the only black vertex of

the graph on the bottom-right of Figure 6.1).

Taken together, the following four lemmas imply Theorem 6.1.2.

Lemma 6.5.1. Let N → N0 be a Henneberg 1 move. If M(N) is large, then M(N0)

is large.

Proof. Suppose that (B,C) is a large pair of M(N). Let k be the added vertex with

ik and jk the added edges, as in Figure 6.3.1. Let B1 = B ∪ ik and C1 = C ∪ jk.

Declare ik and jk to be greater than every element in E0. We claim that this

gives an ordering with respect to which (B1, C1) is a large pair of M(N1). The only
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possible broken circuits introduced by the Henneberg 1 move are the ik- and jk-

broken circuits. Any ik- or jk-broken circuit of M(N1) must contain an element of

E. Such a broken circuit cannot be ik- or jk-broken, since these are greater than

the element of E. The claim follows.

Lemma 6.5.2. Let N → N2 be a Henneberg 2 move. If M(N) is large, then M(N2)

is large.

Proof. Suppose that (B,C) is a large pair of M(N). Call the deleted edge ij and

the added vertex v, so that the added edges are vi, vj, and vk for some other vertex

k, as illustrated in Figure 6.3.1.

Suppose that ij ∈ B; the argument is similar if ij ∈ C instead. Let B2 =

(B \ ij) ∪ {vi, vj} and C2 = C ∪ vk. Consider the ordering of E0 as a string of

inequalities e0 < · · · < e|E|. Replacing ij in this string with vi < vk < vj gives an

ordering of E2 ∪ e0. We claim that (B2, C2) is a large pair of M(N2) with respect to

this ordering.

Given a tree T and two vertices x and y, let P xy
T denote the edge set of the unique

path in T from x to y. If P ik
B ∪{vi, vk}, P ik

C ∪{vi, vk} and P jk
C ∪{vj, ck} are circuits of

M(N2) (i.e. if they are are cycles of Γ2), then the proof of Lemma 6.3.1 implies that

B2 and C2 are NBC. If instead any of P ik
B ∪{vi, vk}, P ik

C ∪{vi, vk} and P jk
C ∪{vj, ck}

are not circuits of M(N2) (i.e., if any of these sets is a crossing of N2), then since e0

is minimal, Proposition 6.2.6 implies that we can ignore the corresponding condition

(i), (ii) or (iii) in the proof of Lemma 6.3.1. Hence B2 and C2 are NBC, so (B2, C2)

is a large pair of M(N2).

Lemma 6.5.3. Let N → N3 be an edge-to-K3 move. If M(N) is large, then M(N3)

is large.

Proof. Suppose that (B,C) is a large pair of M(N). Call the deleted edge ij and

the added vertices k and `, as in Figure 6.5.3.

Suppose without loss of generality that ij ∈ B. Let B3 = (B \ ij) ∪ {ik, i`}
and C3 = C ∪ k`. Replace ij in the ordering of E0 with ik < i` < k`. We claim

that (B3, C3) is a large pair of M(N3) with respect to this ordering. First, note that
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i j i

k

`

Figure 6.6: An edge-to-K3 move.

B3 \{ik, i`} cannot contain a k`-broken circuit of M(N3), since otherwise B contains

a cycle of Γ. Also, C3 cannot contain an ik- or a i`-broken circuit, since otherwise

C would contain an ij-broken circuit. The only possible remaining broken circuit

introduced by the move is {ik, i`}, but the minimal element of the cycle {ik, i`, k`}
is ik. The claim follows.

Lemma 6.5.4. Let N → N4 be a vertex-to-K4 move. If M(N) is large, then M(N4)

is large.

Proof. Suppose that (B,C) is a large pair of M(N). Label the edges of the new

K4 according to the left side of Figure 6.2. Let B4 = B ∪ {e3, e4, e6} and C4 =

C ∪ {e1, e2, e5}. Declare the new edges to be greater than e0 but less than any

element of E, and set e1 < e2 < · · · < e6. We claim that B4 and C4 contain no

e-broken circuits of M(N4) for any new edge e. Such a broken circuit must consist

of only new edges, since otherwise B or C contained a cycle of Γ. Example 6.2.7

implies that there are no such broken circuits consisting of only new edges, proving

the claim. Moreover B4 and C4 cannot contain any e-broken circuits of M(N4) for

any e ∈ E0, since otherwise B or C would have contained an e-broken circuit of

M(N). Hence B4 and C4 are NBC, so (B4, C4) is a large pair of M(N4).
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5:153–164, 1923.

[104] C. Wheatstone. An account of several new instruments and processes for de-
termining the constants of a voltaic circuit. Philos. Trans., 133:303–327, 1843.

[105] H. Whitney. 2-isomorphic graphs. Amer. J. Math., 55(1):245–254, 1933.

[106] G. Whittle. On matroids representable over GF(3) and other fields. Trans.
Amer. Math. Soc., 349(2):579–603, 1997.

123



[107] J. Yu and D. Yuster. Representing tropical linear spaces by circuits. In Formal
Power Series and Algebraic Combinatorics (FPSAC ’07), page Proceedings,
Tianjin, China, 2007.

[108] S. Yuzvinsky. Higher topological complexity of Artin type groups. In F. Cale-
garo, F. Cohen, C. De Concini, E. M. Feichtner, G. Gaiffi, and M. Salvetti,
editors, Configuration Spaces: Geometry, Topology and Representation Theory,
volume 14 of INdAM, pages 119–128. Springer, 2016.

[109] T. Zaslavsky. Facing up to Arrangements: Face-Count Formulas for Partitions
of Space by Hyperplanes, volume 154 of Mem. Amer. Math. Soc. AMS, 1975.

[110] T. Zaslavsky. Vertices of localized imbalance in a biased graph. Proc. Amer.
Math. Soc., 101(1):199–204, 1987.

[111] T. Zaslavsky. Biased graphs. I. Bias, balance, and gains. J. Combin. Theory
Ser. B, 47(1):32–52, 1989.

[112] T. Zaslavsky. Biased graphs. II. The three matroids. J. Combin. Theory Ser.
B, 51(1):46–72, 1991.

[113] T. Zaslavsky. Biased graphs IV: Geometrical realizations. J. Combin. Theory
Ser. B, 89(2):231–297, 2003.

124


	Dedication
	Acknowledgments
	List of Figures
	Abstract
	Introduction
	Background
	Electrical networks
	Hyperplane arrangements
	Supersolvable arrangements
	Graphic arrangements

	Matroids
	Graphic matroids
	Complete principal truncations


	Electrical networks and hyperplane arrangements
	Main definition and examples
	Main results
	Combinatorics of Dirichlet arrangements
	Intersection poset and connected partitions
	Characteristic polynomial and precolorings
	Chambers and compatible orientations

	Supersolvability and psi-graphical arrangements
	Master functions and electrical networks
	Laplacians and master functions
	Discrete harmonic functions
	Fixed-energy harmonic functions

	Dirichlet arrangements as modular fibers
	Galois actions on critical sets

	Matroids of Dirichlet arrangements
	Main results
	Hyperplane, bias and matrix representations
	Dirichlet arrangements and matroids
	Background on biased graphs
	Biased graphs and networks
	Equivalence of hyperplane and bias representations
	Independent sets, bases and circuits
	Matrix representations

	Half-plane property and the response matrix
	Laplacian and response matrices
	Basis generating polynomial
	Interlacing roots
	Rayleigh monotonicity

	Bergman fans
	Phylogenetic trees and discriminantal arrangements

	Dual networks
	Characteristic polynomials and graph colorings
	Results from hyperplane arrangements
	Broken circuits and the precoloring polynomial

	3-Connectedness

	Koszulness and supersolvability
	Main results
	Background
	Orlik-Solomon algebras
	Koszul algebras

	Proof of Theorem 5.1.2
	An infinite family
	Ideal arrangements
	Hypersolvable arrangements
	Disjoint minimal broken circuits


	Topological complexity and structural rigidity
	Main results
	Background
	Large arrangements
	Dirichlet arrangements and matroids
	Tight graphs

	Graphic arrangements
	Proof of Theorem 6.1.3
	Proof of Theorem 6.1.2

	Bibliography

