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I.5. Selected droplet unit operations. a) The T-junction forms droplets at the  

interface of two orthogonally directed, immiscible flows. b) The 

hydrodynamic flow focusing structure segments the dispersed phase with 

two symmetric and orthogonal continuous phase flows. c) Pairwise droplet 

fusion uses a continuous phase-miscible chemical destabilizing agent or 

other means to merge synchronized droplets. d) Direct injection forces 

reagent flow into passing droplets during temporary interface fusion under 

the influence of local electric field. e) Delay channels accommodate droplet 

populations in large-volume, continuously flowing chambers to mediate on-

device reaction time. f) Specialized drain channel structures selectively 

extract the continuous phase to alter droplet packing. g) Droplet splitting at 

the channel bifurcation in the presence of a magnetic field gradient 

concentrates magnetic particles in one of the daughter droplets, and the 

other daughter droplet only contains decanted supernatant. h) The washing 

module fuses synchronized sample and washing buffer droplets using 

electric field, a magnetic field gradient collects magnetic particles in the 

washing buffer portion of the fused droplet, and fission at the channel 

bifurcation re-divides the volume back into constituent parts. For all panels, 

light blue and dark yellow objects represent dispersed phase elements, light 

gray objects represent continuous phase elements, light red objects 

represent chemically-modified continuous phase elements, blue-grey and 

dark red objects represent electric field elements (example polarities 

indicated), brown circles represent magnetic particles, dark gray objects 

represent magnetic field elements, and black arrows indicate flow direction 

(for adjacent elements). Figure components are not to scale. 

 

II.1. K-channel device operation. Arrows indicate flow directions. After forming  

at a T-junction (left), droplets (blue) flow through the main channel to the 

K-channel element (right). The K-channel fluid (orange), an aqueous or an 

oil phase, flows through the cross-channel in an anti-parallel direction 

relative to main channel flow. An electric field may be supplied via the 

electrode channels (gray) to destabilize passing droplets. Through the 

interaction at the K-channel, droplet size, number, composition, and spacing 

can be altered. 

 

II.2. Multiple K-channel operations on a single device. Droplets flow left to  

right. The K-channel continuous phase flows right to left. a) High K-channel 

pressure with electric field injects into droplets. b) Low K-channel pressure 

with electric field extracts from droplets. c) Moderate K-channel pressure 

without electric field maintains the droplet-K-channel interface.  d) Low K-

channel pressure without electric field splits droplets under oil flow.  (scale 

bars = 100 µm) 
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II.3. K-channel operation characterization. a) Net droplet volume change  

becomes more positive with increasing applied K-channel pressure. In the 

highlighted region, a stable droplet-K-channel fluid interface occurs in the 

absence of an applied electric field. b) K-channel volumetric flow rate into 

droplets is directly proportional to applied pressure (R2 = 0.981). c) 

Increasing the K-channel inlet hydraulic resistance (by decreasing the inlet 

channel width from 40 µm to 25 µm to 15 µm) decreases net droplet volume 

change. d) Increasing applied K-channel pressure reduces the droplet 

fraction removed during oil flow-induced droplet splitting. 

 

II.4. K-channel material exchange. During K-channel operations that merge  

droplets with the continuous aqueous phase, bi-directional exchange of 

material occurs. a) The K-channel extracts fluorescein from droplets as it 

injects water. Continuous flow through the K-channel washes away 

extracted fluorescein to reduce the likelihood for droplet-to-droplet cross-

contamination. The white arrow highlights the position of a single droplet 

across subsequent frames. b) Monitoring the net change in droplet volume 

and fluorescein concentration at the K-channel enables c) decoupling of the 

relative magnitudes of water injection, fluorescein extraction, and net 

volume change (the sum of injection and extraction) at each K-channel 

pressure. (scale bar = 100 µm) 

 

II.5. Magnetic bead capture. a) Schematic of bead capture device. Arrows  

indicate flow directions. Magnetic bead (brown) containing droplets (blue) 

form at a flow focusing geometry (left) followed by droplet splitting under 

oil flow at a K-channel (middle). During droplet splitting, a magnet (dark 

gray) pulls beads into only one of the two daughter droplets. Electrode 

channels (light gray) are not enabled during this operation. After droplet 

splitting, waste droplets without magnetic beads (upper) and sample 

droplets with magnetic beads (lower) flow to the detection channels (right). 

b) The nearby magnet pulls beads (circled in red) into one of the two 

daughter droplets during droplet splitting at the K-channel. c) The detection 

channels show high incidence (96%) of magnetic beads in the sample 

droplets (lower channel) and low incidence (4%) of magnetic bead loss 

(white arrow) into waste droplets (upper channel). (scale bar = 100 µm) 

 

II.6. Magnetic Bead Washing.  (a) Schematic of washing device. Light gray  

arrows indicate flow direction. After magnetic bead encapsulation in 

droplets (not shown) droplets (b) split at the leftmost K-channel under 

parallel oil flow, (c) respace at an oil channel, and (d) double in size upon 

injection at the rightmost K-channel using parallel water flow in an electric 

field (supplied by red electrode channels in schematic). Magnetic beads 

(highlighted by red arrows) are pulled toward the magnet (dark gray in 

schematic) and are retained during operations. (scale bars = 100 µm) 
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II.S1. K-channel oil extraction. Droplets flow left to right. The K-channel  

aqueous phase flows right to left, and no electric field is applied. For low 

pressures within the range of stable droplet-K-channel interface formation, 

a fraction of the oil selectively extracts through the K-channel. In this 

example, the original distance between droplets, d0, is reduced by 40% to 

the final distance, df. Droplet volume and composition are unaffected. (scale 

bar = 100 µm) 

 

II.S2. Directional independence of K-channel operations. a) Parallel (blue) and  

antiparallel (orange) arrows indicate flow through a symmetric K-channel 

relative to droplet flow (dark gray) arrow. b) Net volume change for each 

applied K-channel pressure does not vary significantly with flow direction 

for a symmetrical K-channel device. 

 

II.S3. K-channel cross-channel angle characterization. a) K-channel schematic  

highlighting the angle between the cross-channel and the main channel, ϕ, 

and the angle between the two side channels, ϴ. b) Varying angle ϕ has little 

effect on K-channel performance. c) Varying angle ϴ does not significantly 

impact K-channel performance. 

 

II.S4. Magnetic bead quantitation.  (a) Original image of detection region.  (b)  

Red dots highlight magnetic beads or magnetic bead aggregates. Each 

independently circulating body (single particles and aggregates of many 

particles) is counted as one magnetic bead entity. By monitoring each 

droplet across the entire detection region, magnetic beads from the fringes 

of droplets can be detected, and aqueous extra-droplet satellites and channel 

defects can be discriminated from magnetic beads.  (c) Histogram of 

magnetic bead distribution in main channel sample droplets and in waste 

channel droplets. For each droplet population, N = 3 devices with N = 100 

droplets for each device. (scale bars = 100 µm) 

 

III.1. Device manufacturing in poly(methyl methacrylate) (PMMA) or cyclic  

olefin polymer (COP) through hot embossing using silicon masters 

fabricated by photolithography and deep reactive ion etching processes. 

 

III.2. Scanning electron micrographs of hot embossed droplet microfluidic device  

components in PMMA. a) T-junction; b) Picoinjector; and c) and d) K-

channel with working and reference electrodes. 

 

III.3. a) Device design for the T-junction droplet microfluidic operation in  

thermoplastic devices. b) Droplet generation at a T-junction fabricated in 

PMMA via embossing. c) Droplet flowing downstream of the T-junction 

down the main channel. 
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III.4. Picoinjector operation in PMMA for reagent injection into droplets. a)  

Picoinjector device design in thermoplastic material. b) Droplet flowing 

down a channel before the picoinector. c) Droplet immediately leaving the 

picoinjector in the presence of applied electric field and a zoomed image 

showing disruption of the droplet interface and exchange of fluid between 

the aqueous phases of the picoinjector and the droplet due to the applied 

electric field. d) Droplet flowing down the main channel after picoinjection. 

e) Droplet passing the picoinjector in the absence of applied electric field 

and a zoomed image showing no fluid exchange between the picoinjector 

and the passing droplet. WE: working electrode; RE: reference electrode. 

 

III.5. K-channel operation in PMMA for reagent injection into the droplet. a) K- 

channel device design. b) Flow of droplet in the main channel before K-

channel injection. c) Flow of droplet across the K-channel in the presence 

of applied electric field and zoomed image showing disruption of boundary 

and exchange of fluid between the aqueous phases of the K-channel and the 

droplet due to the applied electric field. d) Flow of droplet in the main 

channel after K-channel injection. e) Flow of droplet across the K-channel 

in the absence of applied electric field and zoomed image showing no fluid 

exchange between the K-channel and the passing droplet. WE: working 

electrode; RE: reference electrode. 

 

III.6. K-channel operation in PMMA for droplet splitting and magnetic bead  

concentration. a) K-channel device design. b) Flow of droplets in the main 

channel before and after splitting using a K-channel. c) Droplet immediately 

after splitting at the K-channel in the presence of applied magnetic field and 

zoomed image of split droplets with magnetic concentration of beads in the 

main channel and an empty droplet in the K-channel. d) Droplet splitting at 

the K-channel in the absence of applied magnetic field and zoomed image 

showing no magnetic concentration: both droplets contain magnetic beads. 

 

III.7. Integrated device operation in PMMA for droplet generation, injection, and  

magnetic splitting. a) Device design for the integrated device. b) Dilute dye 

injection at K-channel in the presence of applied electric field. c) Droplet 

splitting at K-channel and magnetic concentration in the presence of applied 

magnetic field and zoomed image showing the droplet containing magnetic 

beads in the main channel and the empty droplet in the K-channel. WE: 

working electrode; RE: reference electrode. 
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III.8. Fluorescence imaging of the in-droplet β-galactosidase enzymatic assay in  

integrated microfluidic devices manufactured in cyclic olefin polymer 

(COP). a) Droplets loaded with biotinylated-β-galactosidase bound to 

streptavidin coated magnetic beads approach the substrate injection K-

channel showing very low background fluorescence. b) K-channel-

mediated resorufin-β-D-galactopyranoside substrate injection in the 

presence of applied electric field initiates the chemical reaction. c) 

Immediately after injection, weak fluorescence localized near magnetic 

beads indicates initial formation of fluorescent resorufin product (see 

expanded inset). d) Downstream imaging after ~2.6 s incubation 

demonstrates additional product formation and mixing throughout the 

droplet. e) Droplet splitting at the K-channel localizes magnetic-bead bound 

enzymes in the main channel portion. f) After splitting, the magnetic-bead 

bound enzyme remains in the main channel for additional reaction or 

downstream processing (see expanded inset), while the K-channel collects 

a portion of the product. 

 

III.S1. a) Droplet generation at the T-junction of an integrated device fabricated in  

cyclic olefin polymer (COP) via embossing. b) Magnetic beads containing 

droplet flowing downstream of the T-junction down the main channel. 

 

IV.1. C3PE Operating Schematic. As the droplets (light blue) flow into the module,  

the higher pressure in the main channel relative to the counter-current oil 

flows drives oil into the cross-channel to increase droplet volume fraction 

(arrows indicate flow direction). 

 

IV.2. Oil Extraction Operation. a) Water droplets (flowing left to right) pass the  

C3PE module and pack at high φ downstream. b) Sample droplets are 

selectively retained in the main channel using micropillar structures and a 

balance of symmetrically applied forces. c) Final φ decreases with 

increasing pressure applied to oil-filled cross-channels, and error bars 

represent N = 20 droplets. 

 

IV.3. Droplet Size Versatility. The C3PE device is broadly compatible with many  

input droplet volumes, manipulating a-b) small (75 pL), c-d) medium (130 

pL), and e-f) large (230 pL) droplets without droplet breakup and sample 

loss for tunable final φ (50% and 80% shown). 
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IV.4. Droplet Tracking and Incubation. a) The K-channel (leftmost feature, saline  

electrode channels below) deterministically injects black dye into a water 

droplet sub-population before the droplets undergo oil extraction and 

incubation. Injection only occurs when the electrodes are charged. b) Dyed 

droplets follow a parabolic trajectory in the incubation channel (φ = 70%, 

flowing left to right). c) Incubation time increases with increasing φ. d) The 

relative standard deviations of the incubation times at both φ = 70% and φ 

= 80% differ significantly from the values at all other packings (95% 

confidence). 

 

IV.5. Channel Subdivisions Decrease Incubation Uniformity. a) Incubation time  

varies little between an undivided (single lane) and a subdivided channel 

(four lanes) of identical size. b) At low φ, incubation distribution is 

significantly increased (at 95% confidence) for the subdivided channel due 

to packing and velocity heterogeneities among lanes. At high φ, incubation 

distribution is significantly increased due to bifurcation-driven disordering. 

c) At low φ (50%), lift forces focus droplets toward innermost channels, 

increasing hydraulic resistance in those channels. Outer channels 

experience faster flow. d) At high φ (80%), opposing forces at channel 

bifurcations can temporarily trap droplets (example highlighted by red 

arrow). Flow in images is left to right. 

 

IV.6. Oil Viscosity Dependence of Incubation Time and Distribution. a) Increased  

Novec 7500 (N7500):Fluoroinert FC-40 ratio decreases viscosity to 

decrease average incubation times. b) At intermediate φ, high viscosity oil 

limits droplet lateral motions, trapping peripheral droplets in slow, wall-

bounded streamlines, significantly (95% confidence) increasing incubation 

distribution. At high φ, lower viscosity oil provides less resistance to the 

disturbance of close-packed droplet lattices and thus significantly increases 

incubation distribution. c) Peripheral droplets under high viscosity 

conditions (20% Novec 7500, φ = 60%) lag further behind the central 

population than (d) those under low viscosity conditions (80% Novec 7500, 

φ = 60%). For 20%, 50%, and 80% Novec 7500, η = 2.04, 1.46, and 1.08 

cSt, respectively. 
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IV.7. β-Galactosidase Incubation Optimization. a) Incubation dependence of an  

enzyme reaction in droplets was monitored using sequential resorufin β-D-

galactopyranoside substrate droplet formation, b) K-channel-mediated 

bead-bound β-galactosidase injection, oil extraction, and c) extended 

incubation with fluorescent visualization. d) A histogram of single bead-

containing droplet fluorescent intensities demonstrates that increased 

fluorescent resorufin product formation with a significantly more uniform 

distribution was achieved at high packing conditions (φ = 85%, incubation 

time ~70 s, RSD = 6.0 ± 0.8%) compared to sub-optimal incubation 

conditions (φ = 55%, incubation time ~45 s, RSD = 10 ± 2%). Gaussian 

overlays assume a normal distribution and represent the reported values for 

each population’s relative standard deviation (RSD). 

 

IV.S1. Expanded Droplet Size Versatility. The C3PE device can accommodate  

large differences in droplet size (limited here by the stability of upstream 

droplet formation). a) Small (70 pL, 100 Hz) and b) large (500 pL, 40 Hz) 

droplets are processed without sample loss. 

 

V.1. The CAR-Wash technique electrocoalesces input droplets using electric field  

applied across the washing buffer stream and a nearby ground electrode. 

Next, a channel-adjacent permanent magnet attracts sample-enriched 

magnetic beads across the buffer stream while flow forces confine waste 

material to the original streamline. An oil co-flow prevents bead trapping at 

the channel wall and, at the end of the module, resegments droplets in 

washing buffer for further manipulations. Arrows indicate flow directions. 

 

V.2. CAR-Wash Operation. a) Micrograph of the module coalescing and  

resegmenting droplets at >500 Hz each. Electric field was applied across 

the PBS washing buffer to the adjacent grounded saline electrode channel. 

The 10 µm magnetic beads are visible as small, black particles, and flow is 

generally left to right. b) Loading input droplets with fluorescein enables 

localization of free waste material from input droplets. c) Plot of the 

intensity of the channel cross-section prior to the bifurcation between the 

waste stream and the resegmentation stream (region of interest indicated by 

the white box in the previous image). The fluorescent signal in the channel 

when washing 1 mM fluorescein droplets is statistically indistinguishable 

from a 100-fold diluted standard (10 µM fluorescein) at position = 50 µm 

(red dashed line, channel bifurcation occurs at position = 120 µm). Error 

bars on each trace represent 20 fluorescent profiles. 
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VI.3. CAR-Wash Application to Alternative Particles. a) Extending the magnetic  

capture region increases the utility of the module for particles with lower 

magnetic loading. Red boxes indicate regions of interest shown in following 

panels. b) Micrograph of the module coalescing input droplets at ~250 Hz. 

Electric field was applied across the PBS washing buffer to the adjacent 

grounded saline electrode channel. 2.8 µm magnetic Dynabeads are evident 

as small, black particles in high abundance, and flow is generally left to 

right. c) High magnification micrograph of the module resegmenting 

droplets downstream at ~200 Hz with efficient Dynabead recovery, 

stabilized by an additional flow focusing structure. d) Loading input 

droplets with fluorescein enables localization of free waste material from 

input droplets. e) Plot of the intensity of the channel cross-section prior to 

the bifurcation between the waste stream and the resegmentation stream 

(region of interest indicated by the white box in the previous image). The 

fluorescent signal in the channel when washing 1 mM fluorescein droplets 

is statistically indistinguishable from a 100-fold diluted standard (10 µM 

fluorescein) at position = 60 µm (red dashed line, channel bifurcation occurs 

at position = 120 µm). Error bars on each trace represent 20 fluorescent 

profiles. 

 

VI.4. Washing Reverses IPTG Inhibition of β-Galactosidase Activity. a) Droplets  

containing bead-bound β-galactosidase incubated with 1 mM IPTG were 

washed into PBS and resorufin-β-D-galactopyranoside substrate using the 

standard CAR-Wash module. Droplets were imaged on the planar Detection 

Channel device after ~20 s of dynamic incubation accomplished via a 4 cm 

Incubation Loop of connecting tubing. The red box indicates the region of 

interest for subsequent images. b) Inhibitor-free control droplets (IPTG 

neither in original sample droplets nor in final washing buffer with 

substrate) generated fluorescent resorufin product. Droplets with higher 

bead loadings typically gave greater signal. c) Inhibited control droplets 

(IPTG both in original sample droplets and in final washing buffer with 

substrate) generated little fluorescent product. d) IPTG-containing sample 

droplets were washed into IPTG-free washing buffer with substrate. 

Comparable fluorescent product formation relative to the inhibitor-free 

control indicates inhibitor removal by washing. e) Measuring the 

fluorescence of only single bead droplets (outlined in red) confirmed that 

washing fully recovered activity in the originally inhibited system (Panel d) 

compared to uninhibited and inhibited controls (Panels b and c, 

respectively). The inhibited control (Panel c) differed significantly in 

intensity from the other conditions. 
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VI.5. Selective Enrichment of GFP-H2B from Cell Lysate. a) Anti-GFP antibody- 

functionalized beads were pre-emulsified into droplets at ~4 kHz to limit 

sedimentation. b) The bead emulsion was injected into HeLa cell lysate 

droplets with added mCherry. c) After 1 hour of off-chip incubation, 

droplets were processed via the CAR-Wash module. For all devices, flow 

was generally left to right. d) Droplet populations were fluorescently 

imaged in green and red channels under static conditions including the 

functionalized bead emulsion (Anti-GFP Beads), the sample droplets with 

beads and lysate after incubation but prior to washing (Pre-Wash), and the 

final sample droplets with beads after washing (Post-Wash). Beads are 

visible in each panel as bright spots. e) For the green fluorescent channel, 

the Pre-Wash population was significantly brighter than the original Anti-

GFP Beads, indicating the presence of GFP-H2B. Similarly, the Post-Wash 

population was significantly brighter than the original Anti-GFP Beads, 

demonstrating enrichment and retention of GFP-H2B after washing. The 

Post-Wash population was slightly, but significantly less bright than the 

Pre-Wash population, suggesting incomplete GFP-H2B recovery. f) For the 

red fluorescent channel, the Pre-Wash population was significantly brighter 

than the original Anti-GFP Beads due to the presence of mCherry added to 

the cell lysate. Importantly, the Post-Wash population was not significantly 

brighter than the original Anti-GFP Beads, indicating mCherry removal by 

washing. 

 

VI.S1. Magnetophoresis Flow Rate Dependence. a) Micrograph of the CAR-Wash  

magnetophoresis region during droplet processing at ~500 Hz input and 

output droplet frequencies. Approximate flow rates for each species are 75 

µL/min for the washing buffer, 8.5 µL/min for the oil co-flow, and 4.5 

µL/min for input droplets. Magnetic particles are circled in red, and the 

washing buffer-oil co-flow interface is highlighted with a white line. B) 

Micrograph of the same CAR-Wash magnetophoresis region during droplet 

processing at ~200 Hz input and output droplet frequencies. Approximate 

flow rates for each species are 60 µL/min for the washing buffer, 4 µL/min 

for the oil co-flow, and 2.5 µL/min for input droplets. c) Plot of particle 

migration lengths under each frequency condition. We define “migration 

length” as the distance each particle travels down the channel length before 

magnetically-driven orthogonal forces pull it into first contact with the 

washing buffer-oil co-flow interface. Decreasing frequencies and flow rates 

significantly decreases resulting migration lengths. Magnetic migration 

velocity in the direction of the flow interface (48 ± 2 mm/s at 500 Hz and 

45 ± 4 mm/s at 200 Hz) did not differ significantly between frequency 

conditions. Significance was assessed at 95% confidence for N = 75 

particles under each condition (evaluated in N = 5 bins based on distance 

from the co-flow interface when evaluating magnetic migration velocity). 

Micrographs are aligned and in scale with the plot’s migration length axis. 
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VI.1. Schematic and Representative Micrographs for the Initial ChIP Module. a)  

Schematic of the microfluidic device with regions of interest (shown in later 

micrographs) indicated by red boxes. b) The cell suspension (left, cells 

visible as small, bright circles) and lysis and chromatin digestion stream 

(right) co-encapsulate into droplets under the influence of orthogonal, 

immiscible oil flow at the T-Junction. c) Cell lysis and chromatin digestion 

occurs during incubation in a serial network of large-volume channels. d) 

Oil respaces irregularly packed droplets after incubation. e) Direct injection 

under the destabilizing influence of electric field adds antibody-

functionalized magnetic particles (visible as small, black objects in high 

abundance) and Quenching Buffer (to inhibit chromatin digestion) to 

respaced droplets. Flow is generally left to right, and all scale bars are 100 

µm. 

 

VI.2. Schematic, Representative Micrographs, and Fluorescent Profiles for the  

Second ChIP Module. a) Schematic of the microfluidic device with regions 

of interest (shown in later micrographs) indicated by red boxes. The magnet 

is represented by the large gray rectangle. b) The oil-respaced sample 

droplets (often irregular due to detergent destabilization) are coalesced with 

the washing buffer coflow under the influence of directed electric field. 

Magnetic particles (visible as small, black objects in high abundance) are 

magnetically pulled across washing buffer streams until reaching the 

interface with the co-flowing oil stream. c) The majority of fully migrated 

particles are re-encapsulated in droplets of the terminal buffer stream, 

mediated by an orthogonal flow focusing interface. The remainder of 

channel volume flows to waste. Fluorescent imaging of d) the coalescence 

region and e) the re-encapsulation region demonstrates the localization of 

the four, co-flowing washing buffers. From top to bottom, these buffers 

were Low Salt Buffer (with 100 µM fluorescein and supplying the electric 

field), High Salt Buffer, LiCl Buffer (with 100 µM fluorescein), and TE 

Buffer. Fluorescence profiles of each device region (regions of interest 

boxed in red in earlier images) demonstrate localization and mixing at f) the 

droplet coalescence and initial washing zone under destabilizing flow 

conditions and at g) the re-encapsulation zone under stabilized flow 

conditions. Each plot includes an average (black) with error bars (gray, 

representing the standard deviation) for 20 profiles as well as 5 example 

profiles from single timepoints (to indicate specific localization obscured 

by flow instabilities). Flow is generally left to right, and all scale bars are 

100 µm. 
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VI.3. Chromatin Immunoprecipitation-in-Droplets Schematic. a) The first module  

of the workflow performed three key tasks: co-encapsulation of suspended 

cells with cell lysis and enzymatic (MNase) chromatin digestion 

components, reaction time for cell lysis and chromatin digestion during 

flow through large volume channels, and direct injection of antibody-

conjugated magnetic particles in enzyme-quenching buffer. b) After 

antibody-histone target binding, droplets were reinjected onto the second 

module for washing. Upon electrical coalescence, the magnetic field from 

a channel-adjacent permanent magnet array attracted the magnetic particles 

through four miscible, co-flowing washing buffers: Low Salt Buffer 

(electrically charged), High Salt Buffer, LiCl Buffer, and Tris-EDTA (TE) 

Buffer. A co-flowing oil stream restricted particle motion from wall-

bounded trapping and participated in re-encapsulation of washed particles 

in new droplets. c) After washing, final processing coalesced droplets for 

bead recovery followed by RNAse and proteinase treatment to elute DNA. 

Once purification was complete, DNA was analyzed with quantitative 

Polymerase Chain Reaction (qPCR) and fluorimetry. Arrows indicate flow 

directions of adjacent channel features. Electrically charged structures have 

polarity indicated. Features are not shown to scale. 

 

VI.4. Manual ChIP Characterization for 250,000 HeLa Cells. a) For lower antibody  

titer (60 ng), H3K4me3 shows a (not statistically significant) increase in 

strongly H3K4me3-associated BRG1 enrichment with no change in off-

target MYT1 or hSAT. DNA yield (inset) is significantly higher with higher 

antibody titer. b) For higher antibody titer (300 ng), H3K27me3 shows a 

significant increase in strongly H3K27me3-associated MYT1 enrichment 

with no change in off-target BRG1 or hSAT. DNA yield (inset) is 

significantly higher with higher antibody titer. c) For pre-treating magnetic 

beads with 60 ng anti-H3K4me3 antibody (“Bound”), BRG1 shows 

significantly higher specific enrichment, MYT1 shows significantly lower 

non-specific enrichment, and DNA yield was significantly lower compared 

to adding the free antibody (60 ng) in the lysis and digestion reagent 

followed by adding the magnetic beads during enzymatic quenching 

(“Free”). There was no change in hSAT enrichment. d) Overnight (>12 h) 

and short (2 h) incubation show no significant difference in enrichment for 

any of the gene loci, but overnight incubation significantly increased DNA 

yield. A “-” indicated the data was unavailable (qPCR well failure). A “*” 

indicated statistical significance (Student’s t-Test at 95% confidence), but 

limited replicates limit statistical power. The red line indicated the threshold 

for positive enrichment (at least a 5-fold change in the gene of interest vs. 

reference sequence C19). 
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VI.5. Comparison of ChIP in Droplet and Manual Formats for 250,000 HeLa Cells.  

a) H3K4me3 capture for droplet (“Droplet 120 ng”) and manual (“Manual 

60 ng”) ChIP showed highly effective enrichment of the H3K4me3-

associated BRG1 locus, significantly higher than for the no antibody control 

(“Manual 0 ng”). Off-target MYT1 and hSAT showed little enrichment with 

no significant differences among groups. Manual processing did, however, 

show significantly higher DNA yield than the droplet assay. b) H3K27me3 

capture for droplet (“Droplet 600 ng”) and manual (“Manual 300 ng”) ChIP 

showed effective enrichment of the H3K27me3-associated MYT1 locus, 

significantly higher than for the no antibody control (“Manual 0 ng”). Off-

target BRG1 and hSAT generally showed little enrichment with no 

significant differences between droplet and manual ChIP. Manual 

processing showed significantly higher DNA yield than for the droplet 

assay and no antibody conditions. A “-” indicated the data was unavailable 

for this gene locus. A “*” indicated statistical significance (Student’s t-Test 

at 95% confidence), but limited replicates limit statistical power. The red 

line indicated the threshold for positive enrichment (at least a 5-fold change 

in the gene of interest vs. reference sequence C19). Legends indicated the 

antibody titer. 

 

A.1. Integrated Magnetic Device Assembly. a) The magnetic device holder was  

assembled by securing two glass coverslips (of identical thickness to the 

glass used for the microfluidic device) between two thicker glass slides to 

form a right-angled groove. Epoxy or another suitable adhesive was ensured 

a strong bond among layers. b) The microfluidic device was nested in the 

groove of the magnetic device holder to provide support while adding the 

magnet array. The magnet array was pushed onto the device glass coverslip 

while the cleanroom wipe separating the two halves of the array was 

simultaneously removed. c) Assembly was complete when the magnet array 

was fully positioned within the integrated magnetic device alignment 

region. 

 

B.1. Representative mask for novel droplet technologies. K-channel design for  

direct injection, fluid extraction, droplet splitting, and droplet formation 

(top left, index: “25:10:40”). C3PE design for time-controlled dye injection 

into droplets, continuous phase extraction, and incubation monitoring (top 

right, index: “I03-01”). CAR-Wash design for droplet-mediated 10 µm 

magnetic particle washing (bottom left, index: “G3W-06”). Multilaminar 

CAR-Wash design for droplet-mediated washing of 2.8 µm magnetic 

dynabeads through four co-flowing buffers (bottom left, index “G3W-17”). 

 

B.2. Delay channel elements for droplet incubation (index: “ChIP1-01”). These  

features were fabricated at 160 µm feature height and aligned with the the 

aid of the square alignment features. This mask includes features for two 

separate, identical devices. 
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B.3. Droplet formation, droplet respacing, and bead injection elements (index:  

“ChIP1-01”). These features were aligned with the the aid of the square 

alignment features. This mask includes features for two separate, identical 

devices. 

 

C.1. Pressure Manifold. a) Two manifolds pressured by two compressed nitrogen  

cylinders provided four pressure lines for fluid delivery each. b) Each 

pressure line was controlled by a two-stage regulator connected to a valve 

on the manifold. A barbed adapter and couple linked the regulator assembly 

to soft tubing for delivery to the solenoid valve array. 

 

C.2. Solenoid Valve Array Interface. a) Each valve array was assembled with four  

pairs of solenoid valves. Each solenoid valve pair with transistor 

represented the minimum functional unit of this array (red box). b) All 

valves were connected to their own USB power supplies, but grounding for 

each valve pair was routed through a transistor drain (D) and source (S) 

controlled by a LabView signal to the gate (G). The LabView 5 V signal 

was also connected to the ground at S. c) For each valve pair, the normally 

open (N.O.) port of the first valve was unsealed, the common (C.) port was 

connected to the regulator for pressure delivery, and the normally closed 

(N.C.) port supplied pressure to the fluid vial. For the second valve, the N.O. 

port was unsealed, the C. port received pressure from the fluid vial, and the 

N.C. port was sealed. d) Pressure was mediated from the valve array by soft 

tubing connected to stainless steel pins through the Teflon-silicone septum 

in the vial cap. Pressure in the vial headspace (black arrows) drove fluid 

into the opening of the PTFE tubing submerged in fluid toward the 

microfluidic device (blue arrows). 

 

C.3. LabView Front Panel. a) The LabView program was initiated by pressing the  

“Run” arrow (highlighted by the red box). b) Electric field control was 

included on the left side of the virtual instrument, and pressure control for 

flow was mediated by the right side. For electric field control, the 

corresponding LabView 5 V signal line (analog or digital used as analog) 

controlled the gate of a transistor interrupting the path to ground for the 

electric field inverter’s 12 V power supply. Using the “On/Off” switch 

provided continuous electric field, or setting a time and using the “Trigger” 

function provided a transient electric field for the duration selected. For 

pressure-driven flow control, selecting “Pressure Enabled” provided the 

master control necessary for actuating any of the valves. Combining 

“Pressure Enabled” with the corresponding switch actuated desired valve 

pair. The program was terminated using the “STOP” button. This example 

showed valve pairs 1, 2, and 3 active with pressure enabled. Valve pairs 4-

8 were inactive, and the timer-enabled electric field power supply control 

was also inactive. 
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C.4. LabView Block Diagram. The left side of the block diagram mediated electric  

field power supply control, and the right side of the block diagram mediated 

pressure control for microfluidic flow. Wiring lines connect elements in a 

virtual circuit, and the virtual instrument was operated within a “while 

loop.” For each functional unit (capable of actuating a valve pair or an 

electric field element), a similar logical structure in the virtual instrument 

produced a 5 V analog (or digital used as analog) signal. First, some logical 

element (switch or elapsed time function) provided a Boolean signal which 

interacted with other Boolean and numerical signals via logic elements like 

“and” and “or.” Then a “build array” element transduced the Boolean signal 

for receipt by a “DAQ Assistant” element. Receipt of a “True” signal was 

configured to trigger an electrical signal from the data acquisition device at 

the specified pinout connection, and this signal was supplied to the gate of 

a specific physical transistor interfaced to a valve pair or electric field power 

supply. Additional Boolean indicators were provided in the virtual 

instrument to improve the user interface on the front panel. 
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LIST OF SUPPLEMENTARY MOVIES 

 

SUPPLEMENTARY MOVIE 

SMII.1. K-channel injection. High K-channel pressure with electric field injects  

fluid into droplets. The K-channel flows from right to left. 

 

SMII.2. K-channel extraction. Low K-channel pressure with electric field extracts  

fluid from droplets. The K-channel flows from right to left. 

 

SMII.3. K-channel stable interface. Moderate K-channel pressure without electric  

field establishes a stable droplet-K-channel interface. The K-channel flows 

from right to left. 

 

SMII.4. K-channel droplet splitting. Low K-channel pressure without electric field  

splits droplets. Oil flows from right to left across the K-channel. 

 

SMII.5. Injection with pulsed electric field. If the device is in the pressure range for  

forming a stable droplet-K-channel interface, temporarily applying the 

electric field can inject into a subset of the total water droplet population 

(originally non-fluorescent). The duration of the electric field pulse is 

controlled manually or by an in-house LabView application. 

 

SMII.6. Serial K-channel operation. Two K-channels inject reagents into droplets  

in the presence of electric fields at each K-channel. The leftmost K-channel 

flows left to right, and the rightmost K-channel flows right to left. Serial K-

channels may also perform non-identical operations (i.e., injection followed 

by droplet splitting). 

 

SMII.7. K-channel material exchange. As water injects into passing droplets, the  

K-channel extracts fluorescein from the droplets. Continuous flow through 

the K-channel (right to left) reduces the risk for droplet-to-droplet cross-

contamination by washing away extracted fluorescein. 
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SMII.8. K-channel-enabled enzyme chemistry. Visualizing the downstream  

incubation region demonstrates β-galactosidase activity on K-channel-

injected resorufin β-D-galactopyranoside in droplets (flowing left to right). 

Fluorescence intensity increases as the concentration of fluorescent product 

increases in each droplet. Adjusting the magnitude of K-channel injection 

doses enzyme droplets with desired substrate quantities. 

 

SMII.9. K-channel magnetic bead capture. An assembly of 1/2’’ x 1/4’’ x 1/8’’ N52  

magnets positioned ~250 µm from the K-channel pulls magnetic beads 

away from the K-channel as low K-channel pressure without electric field 

splits droplets. As a result, most magnetic beads concentrate in main 

channel droplets (lower), and few escape into waste droplets (upper). Oil 

flows from left to right across the K-channel. 

 

SMII.10. Magnetic bead detection. After magnetic bead capture, main channel  

droplets with captured magnetic beads (lower) and waste channel droplets 

with lost magnetic beads (upper) flow through a slower velocity, larger 

cross-section channel further removed from the magnet (to reduce 

marginalization of the beads) for analysis. 

 

SMII.11. Magnetic bead washing. Droplet splitting removes 46 ± 1 % of droplet  

volume (leftmost panel), an oil channel respaces droplets (center panel), and 

water injection (left to right K-channel flow) adds 93 ± 7 % of remaining 

droplet volume (rightmost panel) at 200 Hz on a single device. During this 

sequence, 98 ± 5 % of droplet-encapsulated superparamagnetic beads were 

retained, initial droplet concentration was reduced by 48 %, and droplet 

volume increased by only 7 %. 

 

SMIII.1. Water droplet generation at the T-junction. 

 

SMIII.2. Droplets flow past the picoinjector where dye injects in the presence of  

electric field. 

 

SMIII.3. Droplets flow past the K-channel where dye injects in the presence of  

electric field. 

 

SMIII.4. Droplets split at the K-channel, and applied magnetic field concentrates  

magnetic beads in the main channel (lower) daughter droplets. Some 

droplets do not have magnetic beads before splitting due to bead 

sedimentation during loading. 

 

SMIII.5. In the first part of the video, the upstream (first) K-channel injects dye into  

droplets in the presence of electric field. In the second part of the video, 

dye-injected droplets split at the downstream (second) K-channel, and 

magnetic field concentrates beads into the main channel (upper) daughter 

droplets. 
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SMIII.6. In the first part of the fluorescence video, the upstream (first) K-channel  

injects resorufin-β-D-galactopyranoside substrate into the droplets 

containing β-galactosidase-magnetic bead complexes in the presence of 

electric field to initiate the reaction. In the second part of the video, these 

droplets (now also containing significant resorufin product) split at the 

downstream (second) K-channel, and magnetic field concentrates bead-

bound enzyme into the main channel (upper) daughter droplets. 

 

SMIV.1. Oil extraction operation increased final droplet volume fraction to 80%. 

 

SMIV.2. The upstream K-channel injected black dye into sequential passing  

droplets when the electrodes were charged to generate dyed subpopulations 

for oil extraction followed by incubation analysis. 

 

SMIV.3. Droplets tagged with black dye (125 ms electric field pulses) traversed the  

incubation channel at high volume fraction (80%). Droplets traveled at a 

fairly uniform linear velocity in the lattice, so peripheral droplets with the 

longest flow paths tended to exit the channel last. 

 

SMIV.4. Droplets tagged with black dye (125 ms electric field pulses) traversed the  

incubation channel at intermediate volume fraction (70%). Flaws and 

rearrangements occurred in high abundance in the central droplet lattice, 

and peripheral droplets were trapped in slow streamlines. 

 

SMIV.5. Droplets tagged with black dye (125 ms electric field pulses) traversed the  

incubation channel at low volume fraction (50%). Loosely packed 

peripheral droplets traveled at higher linear velocities across a longer flow 

path compared to central droplets. 

 

SMV.1. CAR-Wash Operation. Input droplets (141 ± 1 pL each) electrocoalesce at  

550 Hz with >98% 10 µm magnetic bead capture during droplet reformation 

at 560 Hz (189 ± 2 pL each). 

 

SMV.2. CAR-Wash Frequency Modulation. Reinjection of loosely packed droplets  

at 100 Hz with output droplet production at 500 Hz prevents 

coencapsulation of beads from different input droplets during 

resegmentation. This frequency mismatch also increases the proportion of 

empty droplets formed. 
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ABSTRACT 

Beyond the linear sequence of the genome, the epigenome dynamically controls chromatin 

remodeling and transcriptional poise without inducing changes in DNA sequence. These 

epigenetic mechanisms, particularly modifications to the histone proteins which mediate 

chromatin compaction, play critical roles in health and disease. To empower further successes in 

epigenetic therapies, current tools for understanding these systems must be improved. In particular, 

Chromatin Immunoprecipitation (ChIP) offers the gold standard technique for probing DNA 

associations with modified histones. This protocol isolates chromatin complexes (nucleosomes) 

for affinity purification of only those displaying the modification of interest. Final analysis of 

captured DNA can identify novel pathways or provide a quantitative view of current transcriptional 

state. Unfortunately, this assay’s large sample requirements and laborious, user-dependent 

protocol have generally proven prohibitive to widespread clinical deployment. 

This doctoral dissertation presents the development of a semi-automated, miniaturized 

platform for performing the ChIP assay using droplet microfluidics, capitalizing on an assay 

format in which pL-scale encapsulation in immiscible oil limits sample loss and accelerates mass 

transfer. A wide array of supporting technologies empower dynamic control over droplet 

composition and reaction conditions, making each droplet analogous to a reaction vessel (but for 

handling up to thousands of discrete volumes every second). Finally, these platforms serially 

process dynamic samples sizes by adjusting the total number of droplets handled, not individual 

reagent conditions, suggesting the potential for dynamic scalability of ChIP across a range of 

sample sizes.
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First, the dissertation informs the direction of the work in the context of epigenetic and 

microfluidic challenges. Chapter I motivates opportunities and hindrances in the analytical 

characterization of the epigenome from the perspective of precision medicine, providing a survey 

of both conventional methods and emerging microfluidic techniques. Then, it outlines strategies 

to address technical difficulties of the ChIP protocol using droplet-based methods. Importantly, it 

identifies points-of-need in droplet technologies, especially for affinity purification capabilities 

essential to ChIP (and to other important bioassays). 

Next, the dissertation describes fundamental advances in droplet microfluidic technologies. 

Chapter II describes the K-channel, a multifunctional, switchable, and scalable approach to 

improve droplet handling and chemical manipulation. K-channels performed reagent injection (0-

100% of droplet volume) and magnetically biased droplet splitting (1:1 daughter droplet ratio, 96% 

magnetic particles retained), among other operations. Chapter III presents translation of droplet 

techniques into mass manufacturable thermoplastic materials, anticipating future needs in 

practically deploying these technologies. Chapter IV describes the Counter-Current Continuous 

Phase Extraction (C3PE) module for determinant control over droplet packing fraction (50 - 85%) 

and applies it with the K-channel for high temporal resolution analysis (~100 ms) of flow behavior 

for confined droplets (example incubation time dispersions reduced by up to 50%).  

Lastly, the dissertation describes a critical innovation in droplet microfluidic purifications 

and, empowered by it, the full development and characterization of the droplet-based ChIP 

technology. Chapter V introduces the Coalesce-Attract-Resegment Washing (CAR-Wash) 

platform for efficient droplet-mediated particle washing (greater than 100-fold dilutions achieved 

at 500 Hz processing with 98% particle capture) and demonstrates its efficacy in the bioanalytical 

context of affinity separations. Chapter VI fully realizes the droplet microfluidic ChIP platform 
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with automated cell lysis, chromatin digestion, immunoprecipitation, and particle washing, 

achieving successful application to two modified histone targets (H3K4me3 and H3K27me3). 

Finally, Chapter VII concludes the work and offers future directions in both technical 

improvements and general directions for droplet bioassay development. 
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Chapter I 

Translational Opportunities in Precision Epigenomics and Technical Demands for 

Adaptation to Droplet Microfluidics 

 

This work was partly adapted from “Translational Opportunities for Microfluidic 

Technologies to Enable Precision Epigenomics,”a manuscript in preparation by Yi Xu, Steven R. 

Doonan, Tamas Ordog, and Ryan C. Bailey. Of the adapted sections, S. R. Doonan was the lead 

author on “EPIGENOMIC IMPLICATIONS FOR PRECISION MEDICINE.” Y. Xu was the lead 

author on “CURENT TECHNOLOGIES FOR EPIGENOMIC PROFILING” and 

“TRANSLATING EPIGENTIC TECHNOLOGIES TO A CLINICAL SETTING,” including Table 

I.1 and Figures I.1-I.3. 

 

EPIGENOMIC IMPLICATIONS FOR PRECISION MEDICINE 

Interchangeably referred to as precision, personalized, or individualized medicine, this 

exciting paradigm in modern medicine considers a patient’s biochemical markers indicative of 

disease risk or progression in order to design an optimized prevention and treatment strategy 

tailored for a specific individual.1, 2 In 2015 President Barack Obama announced the Precision 

Medicine Initiative (PMI), which directed additional funding to the National Institutes of Health 

(NIH) to bolster efforts to realize the potential of this personalized approach to medicine. In 

support of this mission, the National Cancer Institute (NCI) has focused on improving the 

understanding of inter- and intra-tumor genomic heterogeneity to advance cancer screening and 
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treatment. The broader vision of the PMI seeks to establish a national research cohort with 

longitudinally profiled multi-omic biomarker data as a reference population for future precision 

medicine approaches.3 In parallel, ongoing efforts toward enhancing precision medicine aim at 

developing digital tools and companion diagnostics crucial to the implementation of precision 

therapies.4, 5 

As a critical innovation for precision medicine, the sequencing of the human genome has 

led to considerable insight into the genetic hallmarks of disease; and next-generation sequencing 

(NGS) has led to numerous breakthroughs in terms of revealing specific tumor-driving mutations 

and assessing patient heterogeneity.6 As the technology most associated with precision medicine, 

NGS further informs not only patient response to therapy but also pharmacogenetically-driven 

drug discovery.6-9 The combination of decreasing costs and increasing throughput for NGS 

provided by commercially available platforms (e.g., Illumina HiSeq and NovaSeq platforms), as 

well as the increasing availability and sophistication of bioinformatic tools for referencing 

genomic data against databases (e.g., the Cancer Genome Atlas), continues to increase the power 

of this approach.6, 10-13 For instance, classification of phenotypically indistinguishable cystic 

fibrosis patients into genetic subgroups has enabled successful targeted therapies based on each 

subgroup’s specific molecular aberration.14 Likewise, genetic “hotspot” analysis of non-small cell 

lung cancer (NSCLC) biopsies routinely guides therapeutic strategies in the clinical setting.6 

Additional successful, clinically relevant examples of precision therapies and diagnostics based on 

sequencing are highlighted by recent reviews.1, 2, 6, 9, 14  

The combination of NGS with the tools of molecular genetics such as CRISPR-Cas9 

genome editing has led to the elucidation of single nucleotide variants (SNVs) and other mutations 

in the genome contributing to diseases like obesity and breast cancer.15-17 On the other hand, purely 
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genetic methods may not always provide sufficient information and context to guide clinical 

decisions. In the case of cancer, most sequence mutations detected in patient samples typically 

lack a direct role in tumorigenesis, increasing the complexity of isolating targetable and actionable 

information from large sequencing libraries.8, 18, 19 Beyond the linear sequence of DNA, 

environmental factors may also influence phenotype and even lead to heritable diseases.20 Perhaps 

the most striking example of nongenetic mechanisms shaping phenotypic diversity is the 

divergence of the transcriptome and other phenotypic traits in monozygotic twins occurring likely 

in response to environmental cues.21, 22 Moreover, some toxins impair fertility across multiple 

generations after ancestral exposure even though they do not induce corresponding mutations in 

DNA sequence.23 Sensitive to environmental insults, a complex regulatory network of “epigenetic” 

factors acts beyond the genome and can even lead to diseases such as cancer, especially when 

dysregulated.24-27 In this work, we discuss the importance and opportunity held by new methods 

that can assess epigenetic states with a focus on guiding disease prevention, diagnosis, and therapy. 

We also evaluate the current state-of-the-art in terms of technologies available in the research 

laboratory setting, hindrances of these approaches to clinical translation, and opportunities for new 

tools to enable precision epigenetics. 

 

Understanding the Epigenome 

Broadly speaking, epigenetics encompasses multiple layers of interacting regulatory 

elements that define phenotypic variation beyond what is encoded in DNA sequence alone.28, 29 

For example, embryogenesis integrates cues from the local environment to modulate expression 

of genes critical to differentiation while establishing a complex network of specialized tissues from 

a single-celled zygote.30-32 Moreover, the epigenetic landscape of silenced and expressed genes 
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established at each stage of development stably programs somatic cells and persists through 

multiple rounds of cell cycle and mitotic divisions.30, 33 Some acquired epigenetic alterations may 

even be transmitted meiotically to germline cells and later affect future generations never directly 

exposed to the initiating stimuli. However stable, these epigenetically encoded traits are not 

irreversible, as germline reprogramming removes or remodels most parental epigenetic 

information during germ cell development and after fertilization as totipotent stem cells are 

formed.29, 30, 32, 34, 35 These processes can now be mimicked experimentally to generate induced 

pluripotent stem cells, e.g., for the purposes of regenerative medicine.36, 37 Beyond differentiation 

and development, epigenetic characteristics play a major role in transcriptional regulation in 

disease pathways, further underscoring the importance of understanding their molecular basis.25, 

38, 39 

 Understanding chromatin structure is crucial to understanding the epigenome. The most 

fundamental unit of chromatin is the nucleosome. Nucleosomes are octameric protein complexes 

that each contain two copies of four histone proteins (H2A, H2B, H3, and H4).33, 40 Around each 

nucleosome are ~147 base pairs (1.67 turns) of left-handed, supercoiled DNA. Nucleosomes are 

connected by linker DNA, and chromatin compaction is achieved by higher order assembly of 

nucleosomes that effectively control accessibility of particular genomic regions to transcriptional 

machinery.41-43 Epigenetic modifications provide a genome-wide indexing system that, through 

the actions of chromatin remodelers and chaperones, regulates the use of the DNA template for 

transcription, replication, and repair, and they can be indicative of the functional state of chromatin 

during analysis.30, 44 

 The best understood level of epigenetic control is provided by DNA: cytosine 

modifications. Specifically, cytosine is frequently covalently modified to 5-methylcytosine (5mC), 
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particularly in a CG dinucleotide context. Oxidative derivatives of 5mC, 5-hydroxymethylcytosine 

(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), although less stable and less 

abundant, also have functional significance besides representing a path toward complete 

demethylation.45-47 Cytosine methylation at relatively high CG dinucleotide sequence-content 

regions (so-called “CpG islands”) near gene promoter sites alters the binding of transcription 

machinery at methyl-CpG-binding domains (MBDs), typically repressing gene expression.42, 44 

Moreover, especially low density (<10 CpG per 100 bp) “CpG deserts” also have regulatory 

implications.48 The installation and maintenance of methyl groups by DNA methyltransferases 

(DNMTs) serve to regulate this process, in conjunction with Ten-Eleven Translocation (TET) 

proteins and members of the Base Excision Repair (BER) pathways, which erase these marks (with 

5hmC, 5fC and 5caC being common intermediates).44, 45, 47 Unsurprisingly, 5hmC regions most 

commonly associate with actively transcribed sequences, and 5hmC can even persist as a stable 

mark, not only as a transient intermediate from 5mC erasure pathways.46, 47 In summary, the 

landscape of modified DNA bases provides a dynamic regulatory network for gene expression. 

 Modification of core histone proteins is a major mechanism regulating the binding strength 

of specific genomic sequences to nucleosomes and also poises loci for binding of transcription 

factors and related complexes.31, 40, 43, 44, 49 Histone subunits exist in multiple isoforms which can 

exchange to and from an intracellular pool of free histones by the action of chaperone proteins. 

Variants such as H3.3 play critical roles in germline cell maturation and other processes by aiding 

in the recruitment of transcription factors and chromatin remodeling enzymes with downstream 

effects.31, 40 Similarly, post-translational modifications (PTMs) to each histone subunit directly 

impact the binding interactions among histones, DNA, and other biomolecules. For example, the 

activating mark H3K9ac (acetylation of histone H3 at lysine residue 9) decreases the positive 
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charge of the histone, thus reducing the magnitude of its electrostatic attraction to DNA. This 

altered interaction can thus play a role in increasing DNA accessibility. Mono-, di-, and 

trimethylation (me, me2, and me3) events at lysine residues or mono- and symmetrical or 

asymmetrical dimethylation (me1, me2s, me2a) at arginine residues may act as activating or 

repressive marks by changing the steric structure of the histone-DNA associations and, as a result, 

changing the binding properties to transcription factors and chaperones.43, 44, 50, 51 Writing and 

erasing histone marks by enzymes like histone acetyltransferases, deacetylases, and 

methyltransferases (HATs, HDACs, and HMTs) dynamically install and remove PTMs. Further, 

these enzymes contribute to complex mitotic and meiotic epigenetic inheritance pathways.33, 44 

The population of post-translationally modified histone variants, sometimes referred to as the 

“histone code,” synergistically interacts with other epigenetic mechanisms including modified 

DNA bases to facilitate control over transcription, replication, and repair.42, 44 

 Whereas histones restructure chromatin to modulate DNA accessibility, non-coding RNAs 

(ncRNAs) may also regulate post-transcriptional processing. Some small RNAs such as Piwi-

interacting RNAs (piRNAs) can recruit chromatin remodelers like Argonaute (Ago) proteins and 

other enzymes to modify histones.41, 44 Others like microRNAs (miRNAs, 17-25 bases) directly 

affect gene expression by binding to messenger RNA (mRNA) post-transcription in conjunction 

with the RNA-induced silencing complex (RISC) to repress translation or degrade mRNAs.52, 53 

Interestingly, populations of small RNAs can persist in germline cells to facilitate 

transgenerational epigenetic effects such as gene silencing in subsequent generations.54 An 

additional class of RNA, termed long non-coding RNA (lncRNA; ranging from 200 bases to 100 

kilobases), can serve as a pool to sequester regulatory small RNAs and can directly participate in 

chromatin remodeling. Some lncRNAs competitively bind miRNAs so that they do not bind to 
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targeted mRNA molecules, thus reducing the level of miRNA-mediated gene repression.52, 55 

Additionally, they can recruit chromatin remodelers and interact with other lncRNAs (as well as 

other regulatory species such as RNA splicing enzymes).52, 56 Ongoing work increasingly 

demonstrates the significance of chemical modifications to RNA bases as a mechanism for 

epigenetic regulation.57, 58 

 The combined actions of DNA modifications, histone protein isoforms, histone post-

translational modifications, and non-coding RNAs facilitate a complex regulatory network 

controlling gene expression by dynamically altering the three-dimensional conformation and 

accessibility of chromatin in a gene-specific manner.59-61 In conjunction with recruited adenosine 

triphosphate (ATP)-dependent chromatin remodelers, the downstream effects of these epigenetic 

factors include altering nucleosome occupancy and positioning, which manage the accessibility of 

transcription promoter and initiator sites to transcription factor and RNA polymerase binding.59-63 

Furthermore, this three-dimensional architecture affects DNA replication and repair and, overall, 

holds significant consequences for heath and disease, as we will examine in the next section.60, 61 

 

Epigenetics and Disease 

Because of their major role in managing chromatin states, dysregulation or aberrant 

function of epigenetic regulators commonly leads to serious and harmful consequences, including 

cancer development and progression.55, 64-66 Aberrant genome-wide CpG hypomethylation 

commonly occurs in cancers due mainly to the hypomethylation of highly repetitive sequences, 

which comprise approximately half of the human genome.67 Cancer-linked hypomethylation has 

also been linked to increased expression of several genes, and overexpression of the H3K27 HMT 

enhancer of zeste homolog 2 (EZH2) oncogenically dysregulates histone remodeling of tumor 
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suppressor genes, including p27 and BRCA1.65-67 Epigenetic repression of tumor suppressors also 

often arises from promoter hypermethylation of normally unmethylated CpG islands.68 Likewise, 

dysregulation of the H19 lncRNA can downregulate the tumor suppressor gene retinoblastoma and 

further dysregulates downstream miRNA activity in colorectal cancers.55 Beyond cancer, 

epigenetic dysregulation can lead to many other diseases. For example, exposure to environmental 

toxins can trigger heritable changes in DNA methylation in germline cells that correlate with 

increased risk for obesity.20 Some autoimmune diseases may even have a significant epigenetic 

component, including hyperactivity of nucleosome-remodeling HDACs that play pro-

inflammatory roles and enhance destructive immune cell activity in rheumatoid arthritis.69, 70 

Dysregulation of miRNAs has also been shown to correspond to neurological disorders, such the 

repressive activity of overexpressed miR-182 on genes like Adcy6 (involved in circadian rhythm) 

in patients with major depressive disorder.71 While these examples encompass only a small subset 

of epigenetic disease pathways, the far-reaching significance of epigenetic factors to disease and 

human health cannot be understated. 

 Mirroring their multifaceted roles in disease pathology, epigenetic factors also present 

exciting therapeutic opportunities. Currently, most epigenetic-based therapeutic strategies focus 

on one of two major approaches: (1) reprogramming aberrant epigenomic regulation to reestablish 

homeostasis, or (2) utilizing epigenetic pathways to directly induce apoptosis or increase drug 

sensitivity for destruction of aberrant cells.72 For example, HDAC inhibitors butyrate or 

trichostatin A promote repression and reversion of the glycolytic phenotype in cancer cells, thus 

repressing tumor growth and invasion.65 Other HDAC inhibitors have also shown promising 

effects to reprogram dysregulated histone acetylation in neurodegenerative diseases.65, 70, 73  In 

other contexts, several FDA-approved HDAC inhibitors (e.g., belinostat and vorinostat) 
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selectively disrupt oncogenic pathways to trigger apoptosis in cancer cells. Moreover, specific 

inhibition of the histone lysine methyltransferase activity of EZH2 re-sensitizes radio-resistant 

prostate cancer cells to radiation therapy.74 Other epigenetic factors also provide promising 

therapeutic opportunities. Examples include the alteration of miRNA pathways in psychiatric 

disorders and leveraging DNA demethylation for breast cancer treatment.71, 75 Furthermore, 

epigenetic factors may manifest critical biomarkers to enhance diagnosis, offer predictive value to 

guide therapies, and provide affirmative measures for monitoring patient response. For instance, a 

recent study successfully demonstrated a predictive association between DNA methylation profile 

and potential for relapse in children with acute myeloid leukemia.76 Increasingly sophisticated 

bioinformatics tools, coupled to the expanding information available from reference epigenomes,77 

hold great promise for the future, especially when made widely available through repositories like 

the International Human Epigenome Consortium (IHEC).78 

As efforts continue to discover epigenetic mechanisms involved in disease development, 

providing new therapeutic targets, the potential for epigenetically-driven precision therapies 

becomes increasingly within reach. However, new tools will be required to translate these basic 

biomolecular insights into personalized treatment regimens. The following sections describe the 

current state-of-the art technologies for probing epigenomic signatures that may be suggestive of 

particular treatments, as well as gaps—or chasms—that exist between promise and realization of 

precision epigenomics. 

 

CURENT TECHNOLOGIES FOR EPIGENOMIC PROFILING 

To elucidate key epigenomic mechanisms impacting human health, a number of assays 

have been developed to profile different aspects of the epigenome—many strongly coupled to the 
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rapid growth of NGS techniques. Moreover, cutting-edge analyses utilize multiple profiles of 

diverse epigenetic markers to obtain a more thorough understanding of the embedded epigenomic 

landscape and to infer causal relations among these epigenomic mechanisms.79 These 

technological developments have contributed enormously to the current understanding of 

epigenetic regulation. In this section, we will summarize the primary methods for epigenomic 

analysis. 

 

Direct Sequencing to Investigate Regulatory Noncoding RNAs 

The epigenetics community has adopted RNA sequencing (RNA-seq) to reveal information 

regarding the roles ncRNAs play in phenotypic regulation.80, 81 The general workflow starts with 

reverse transcription of a collection of RNA samples (total ribosomal RNA removed or 

fractionated by other means) to form a complementary DNA (cDNA) library. After ligating DNA 

adaptors or barcodes to one or both ends and optionally amplifying the library by polymerase chain 

reaction (PCR), commercial platforms sequence the (amplified) library. Following mapping of the 

reads to a reference genome, quantifying the number of reads mapped to a specific gene enables 

the assessment of the level of gene expression.82, 83 Concentrating targets by size selection out of 

a total RNA sample or deconvolving the total reads generally enables direct profiling of small 

ncRNAs such as miRNAs and siRNAs, whereas lncRNAs may need an additional step of 

fragmentation to break the long sequences into shorter pieces more compatible with deep-

sequencing technologies.82, 84 Additionally, conducting RNA-seq on other RNA targets, such as 

mRNA, obtains high-resolution profiling information to resolve the whole transcriptome. 

Applying the RNA-seq methods described above to ncRNA studies (1) demonstrated that 

miRNAs predominantly destabilize and decrease target protein-coding mRNA levels and reduce 
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protein production,85 (2) enabled identification and quantification of translational suppression 

induced by siRNA and miRNA targets without relying on computational predictions,86 and (3) 

revealed active transcriptional regulatory elements (TREs) and polymerase-regulator interactions 

over broad promoter regions via a modified RNA-seq protocol, named global run-on sequencing 

(GRO-seq).87, 88 Furthermore, RNA-seq has uncovered thousands of novel lncRNAs expressed in 

diffuse large B cell lymphoma and predicted their potential roles in lymphomagenesis by 

identifying co-expressed coding genes.89 RNA-seq also enabled identification of novel lncRNAs 

dysregulated in colorectal carcinogenesis.90 As a fundamental tool for epigenetics, RNA-seq excels 

at discovering unannotated ncRNAs and novel isoforms to expand the global view of the 

transcriptome. Although it may suffer from potential bias during library construction and 

challenges in bioinformatic analysis, RNA-seq offers several analytical advantages including 

single base resolution, low background signals and large dynamic ranges spanning five orders of 

magnitude.82, 83  

 

Chemical Treatment-Based Methods Followed by Sequencing to Detect DNA Modifications 

Besides ncRNAs, epigenetic studies also target modifications to DNA bases. Prevalent 

methods include a toolkit of bisulfite sequencing strategies to locate and quantify DNA 

methylation and other variants within genomic DNA by chemically altering their structures. 

Whole-genome bisulfite sequencing (WGBS) treats DNA with a bisulfite reagent before 

sequencing to convert regular cytosine, 5fC, and 5caC to uracil, while leaving 5mC and 5hmC 

intact (Fig. I.1, middle workflow). Subsequent sequencing profiles genome-wide cytosine 

methylation and hydroxymethylation down to single nucleotide resolution.91-95 Reduced 

representation bisulfite sequencing (RRBS) offers decreased cost and improved efficiency over 
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WGBS by first digesting samples with restriction enzymes (e.g., MspI and BglII) and then 

extracting appropriately-sized DNA fragments (<600 bp) to selectively enrich CpG-containing 

regions prior to bisulfite treatment.96-98 As a result, the coverage of RRBS is limited to CpG-rich 

regions, and therefore does not as extensively cover enhancers and intronic regions compared to 

WGBS.99 Additionally, Tet-assisted bisulfite sequencing (TAB-seq) specifically detects 5hmC at 

single-base resolution and determines its abundance at each modification site by protecting 5hmC 

with glycosylation and oxidizing other cytosine residues with Tet enzyme. Thus, only 5hmC 

remains intact after bisulfite treatment (Fig. I.1, left workflow).100-102 5mC can thus be detected by 

subtracting TAB-seq results from regular bisulfite sequencing data. A third modified bisulfite 

sequencing strategy, oxidative bisulfite sequencing (oxBS-Seq), differentiates 5mC and 5hmC by 

specifically oxidizing 5hmC before bisulfite treatment to obtain a positive readout of pure 5mC. 

Comparing oxBS-seq reads with those from a regular bisulfite sequencing run on the same sample 

infers the profile and distribution of 5hmC (Fig. I.1, right workflow).103, 104 Unlike TAB-seq, 

oxBS-seq does not require expensive enzymes and avoids the potential inefficiency in 

Figure I.1. Workflows of selected chemical treatment-based DNA methylation analysis 

methods. 
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glycosylation of 5hmC or enzymatic oxidization of 5mC, which can result in false calling of 

5hmC.94, 104 In practice, directly detecting the much more abundant 5mC can increase the error of 

estimating 5hmC by subtraction (compared to other methods). Beyond techniques targeting 5mC 

and 5hmC, strategies specifically detecting 5fC, 5caC, and other DNA modifications have also 

emerged. Examples include 5fC chemically assisted bisulfite sequencing (fCAB-seq) for 5fC 

mapping and chemical modification-assisted bisulfite sequencing (CAB-seq) for 5caC mapping.99 

However, methods capable of differentiating between 5mC and its oxidative derivatives have not 

gained broad acceptance, due in part to reagents and protocols not yielding robust, consistent 

results. 

Promisingly, applications of these methods have further extended our understanding of the 

mechanisms of DNA modification-regulated gene expression. WGBS and RRBS have been 

utilized to reveal DNA methylome variances induced by non-shared environmental factors,105 map 

genome-wide DNA methylation patterns in mammalian ovaries,106 and identify DNA methylome 

footprint during human B cell differentiation.107 TAB-seq and oxBS-seq have exposed the 

biological functions of 5hmC in cellular memory reprogramming, cancer development, and other 

diseases.108-111 Ongoing optimization in bisulfite sequencing-based strategies will further enable 

higher coverage and improved accuracy in DNA methylome mapping.  

 

Affinity Methods to Probe DNA Modifications, Histone Modifications, and DNA-Binding 

Proteins 

In addition to analyzing epigenetic control at the nucleic acid level using chemical 

treatments, epigenetic studies have widely exploited affinity-based methods to enrich 

modifications of interest on both DNA and DNA-associated histone proteins to elucidate 
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underlying biological impact.112 Methylated DNA immunoprecipitation (MeDIP) enriches 5mC 

DNA regions with highly efficient binding from 5mC-specific antibodies (Fig. I.2, left workflow). 

Figure I.2. Workflows of selected affinity-based chromatin modification analysis methods. 
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Sequencing the enriched product generates high-resolution whole-genome DNA methylation 

profiles (MeDIP-seq).113, 114 Similarly, antibodies targeting 5hmC, 5fC, and 5caC locate respective 

modified cytosine residues, providing multiple variants of DIP-seq (i.e., hMeDIP-seq, 5fC-DIP-

seq, and 5caC-DIP-seq).115-117 Methods using the MBD of MBD protein 2 (MBD2) to precipitate 

methylated DNA regions can also identify DNA methylation patterns when integrated with 

sequencing (i.e. MBD-seq based methods).118, 119 Compared with WGBS, TAB-seq, and oxBS-

seq, which provide genome-wide methylation profiles, affinity-based methods have limited 

methylation coverage that is biased towards CpG-rich regions; however, MeDIP- and MBD-seq 

can provide information on these specific sites at low costs and high efficiency.120, 121 Deploying 

these affinity-based methods has clarified the critical roles of DNA methylation and its variations 

involved in the mechanisms regulating differentiation, development, and carcinogenesis.122-124  

Besides analyzing modifications to DNA, affinity-based immunoprecipitation also reveals 

the profiles of modifications to histones and to DNA-binding proteins (e.g., transcription factors 

and chromatin remodeling complexes) that influence transcriptional regulation, as well as RNA 

polymerase II and its covalent modifications. The gold standard to identify such protein-DNA 

interaction is chromatin immunoprecipitation followed by sequencing (ChIP-seq) (Fig. I.2, right 

workflow). The general protocol of ChIP-seq involves: (1) optional crosslinking of DNA and 

proteins to preserve their interactions; (2) shearing of chromatin into mono- and di-nucleosome 

sizes (~147 and ~300 bp, respectively) by sonication and/or micrococcal nuclease (MNase) 

enzymatic digestion; (3) immunocapture of the modification of interest with specific antibodies; 

and (4) purification of captured DNA for library preparation and sequencing.125-127 Comparing the 

sequencing results of the ChIP DNA library to those of a control library obtained without specific 

antibody capture (otherwise following the same protocol) allows the assessment of enrichment 
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specificity and efficiency. Due to the size heterogeneity resulting from inconsistencies in DNA 

shearing and potential contamination from unbound DNA, conventional ChIP-seq suffers from 

low resolution in mapping the binding locations of proteins of interest, and thus may not profile 

them precisely and thoroughly.94 Moreover, DNA fragmentation heterogeneity, 

immunoprecipitation efficiency variations, and inconsistency from other experimental steps limit 

direct comparisons of ChIP results derived from different cell types or differentially perturbed 

cells.128 Finally, despite its popularity, this method lacks a robust normalization protocol to 

empower quantitative comparisons among heterogeneous samples.128, 129  

 To address these issues, notable variations of ChIP-seq have emerged. ChIP-exo utilizes 

exonuclease treatment to narrow the region of protein binding on ChIP DNA sequences, enhancing 

mapping resolution of bound locations down to the single-nucleotide level.129 ChIP with reference 

exogenous genome (ChIP-Rx) allows normalization of sequencing reads across cell populations 

by adding a defined quantity of a reference epigenome on a per-cell basis, thus enabling 

quantitative comparison among multiple ChIP-seq runs.128 Chromatin endogenous cleavage with 

high-throughput sequencing (ChEC-seq) exploits a fusion protein comprising a DNA-binding 

protein of interest and MNase to bind targeted DNA sequences and then precisely cuts only the 

bound regions for targeted DNA isolation for sequencing. This approach offers genome-wide high-

resolution determination of protein binding sites.130 Recently, the same group who developed 

ChEC-seq reported a protocol called “Cleavage Under Targets and Release Using Nuclease”, or 

CUT&RUN, to enable low background and base pair resolution profiling of chromatin 

modification and protein binding sites genome-wide.131 This protocol utilizes a Protein A-MNase 

fusion to recognize antibodies bound to targeted epigenetic modifications or DNA-binding 

proteins, and spatially-confined nuclease activity selectively releases only the regions of chromatin 
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involved in the targeted interaction. Replacing the DNA-binding protein of interest with Protein A 

in the MNase fusion reduces the cost of the protocol and avoids potential distortions in the fused 

protein’s structure, thus preserving its original binding affinity. In another approach, the typically 

high input requirements of ChIP-seq can be reduced within the range of ~10,000 cells (in the case 

of histone marks) to ~100,000 cells (to study transcription factor binding) by combining ChIP with 

hyperactive Tn5 transposase treatment that enables simultaneous DNA fragmentation and adaptor 

tagging (ChIPmentation; a term that combines “ChIP” with “tagmentation”).132 While limited in 

some contexts, ChIP-seq and the derivative methods have successfully identified and validated 

epigenetic factors and mechanisms related to chromatin remodeling, cellular development, disease 

progression, and other crucial processes.133-136 

Within the context of analyzing the interactions of chemically modified chromatin 

components, an additional, complementary methodology must also be recognized: mass 

spectrometry. Leveraging the impressive capabilities developed for proteomic analysis (and for 

other “–omics”), mass spectrometry provides structural determination and quantitation of 

chromatin species without necessarily requiring affinity-based separations.137-142 Thus, mass 

spectrometry provides one of the most attractive technologies for fundamental discovery of 

modified DNA bases and histone-chromatin interactions: it can probe these complexes without 

prior development of high affinity antibodies and in a multiplex format applicable to histones with 

multiple concurrent modifications.138, 140, 142 Leveraging a combinatorial toolkit of upstream 

separation methods, ionization techniques, and mass analyzers facilitates comprehensive analysis 

of nucleosomes.137, 140-142 Successes have included identification of novel methylated lysine 

interactions in the context of transcriptional repression143 and characterization of global changes 

in histone methylation and acetylation in cancerous cells.144 Further, Chromatin Interacting 
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Protein-Mass Spectrometry (ChIP-MS) and related approaches re-introduce antibody-based 

affinity separations to enrich targets for final analysis, for instance, in identifying novel 

transcriptional regulators interacting with X-chromosome-associated epigenetic modifications.145 

On the other hand, obtaining clinically useful data often requires DNA sequence information in 

addition to nucleosome structural information, but this combination can be achieved by 

sophisticated strategies using a gene sequence-targeted affinity purification prior to analysis.137, 139 

Moreover, the limited abundance of many epigenetic proteins, particularly in sample-limited 

applications, may also hinder mass spectrometry workflows (compared to the routine DNA 

amplification possible for low input nucleic acid analysis).141, 142 Nonetheless, these techniques 

have been well suited to discovery and pathway elucidation, and they have fundamentally 

increased the body of epigenetic knowledge.137, 139-142 

 

Enzymatic and Chemical Processing Methods Followed by Sequencing to Assess 

Nucleosome Distribution and Open Chromatin 

In addition to chemical modifications to histone proteins, nucleosome occupancy, 

nucleosome positioning, and consequent chromatin accessibility all epigenetically regulate gene 

expression. Various methods have been used to map these important features by exploiting diverse 

enzymatic and chemical processing strategies to expose regulatory regions of interest from open 

chromatin. MNase is an endo-exonuclease that digests chromatin with minimal sequence 

preference into (mono-)nucleosomes by cleaving exposed DNA and DNA ends until encountering 

a barrier (e.g., nucleosome).146, 147 Combining MNase digestion with high-throughput sequencing 

(MNase-seq) enables localization of DNA-binding proteins (e.g., transcriptional factors) and 

nucleosome positioning at single base pair resolution (Fig. I.3).148 Limited exposure to MNase can 
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also be used for the identification of accessible, nucleosome-free DNA.149 On the other hand, non-

occluded accessible regions on genomic sequences are more often profiled using limited digestion 

from the endonuclease DNase I (DNase-seq) (Fig. I.3).150 This allows the mapping of genetic cis-

regulatory elements (e.g., promoters, enhancers, and silencers) in open chromatin structures, which 

Figure I.3. Workflows of selected methods to analyze nucleosome distribution and open 

chromatin. 
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reveals dynamic changes in the acquisition and loss of the transcriptional competency of specific 

genomic loci.151, 152 Both MNase-seq and DNase-seq separate enzymatic processing of chromatin 

from adaptor ligation/library preparation. By contrast, a relatively recently developed assay for 

transposase-accessible chromatin using sequencing (ATAC-seq) has emerged to utilize 

hyperactive Tn5 transposase to fragment and tag the genome with sequencing adaptors 

simultaneously (Fig. I.3).153,154 ATAC-seq enables fast genome-wide mapping of active regulatory 

elements, nucleosome positioning, and chromatin accessibility simultaneously, making it an 

attractive method to assess the dynamic landscape of accessible DNA sequences in mammalian 

preimplantation embryos,155 neural progenitor cells,156 and human mesoderm development.157  

Apart from enzymes, chemicals such as formaldehyde also can be used for orthogonal 

chromatin processing, such as formaldehyde-assisted isolation of regulatory elements (FAIRE) 

(Fig. I.3).158 By crosslinking chromatin with formaldehyde prior to sonication-induced shearing, 

nucleosome-depleted regions obtain reduced crosslinking efficiencies when compared to 

nucleosome-occupied sites. Therefore, subsequent phenol-chloroform extraction enriches 

nucleosome-depleted DNA into the aqueous phase, serving as the sample for subsequent 

sequencing. FAIRE-seq provides insight on active regulatory elements abundant in open 

chromatin, serving as another alternative to DNase-seq and ATAC-seq without relying on 

enzymatic digestion.159  

Applied individually or in combination, these methods have enhanced the community’s 

understanding of the genome-wide dynamics of and relationships between nucleosome occupancy 

and chromatin remodeling during processes such as disease development, including human 

hematopoiesis, leukemia progression, and oncogenic state formation.160-163 
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Hybridization-Based Technologies 

Sequencing-based studies have revolutionized our understanding of epigenetic regulation. 

Unfortunately, translating these protocols to large clinical cohorts can prove challenging in terms 

of cost, throughput, reproducibility, and complexity of bioinformatic analysis. A desire for 

efficient and cost-effective sample analysis can therefore favor alternative approaches that rely on 

hybridization-based technologies instead of sequencing readouts,98 though at the cost of 

dramatically reduced genomic depth. Oligonucleotide microarrays simultaneously interrogate 

thousands to millions of transcripts, enabling transcriptome-wide expression profiling.164 The 

general protocol includes reverse transcribing RNA targets to labeled cDNA (e.g., with fluorescent 

tags) followed by introducing the cDNA onto a microarray for hybridization with complementary 

DNA probes. After washing steps to remove nonspecific binding, scanning the microarrays 

quantifies hybridized targets based on signals from appended tags, allowing assessment of 

expression levels. Compared to sequencing, microarray-based techniques are more sensitive in 

detecting regulatory RNAs expressed at low abundance (e.g., lncRNAs): different RNAs hybridize 

to the probes independently, while highly abundant mRNA would dominate the sequencing reads 

and impede quantification in sequencing-based methods.165 Capitalizing on this feature, 

applications of oligonucleotide microarrays excel at ncRNA profiling, including evaluating the 

regulatory roles of lncRNAs in cancer development and assessing the role of miRNAs in molecular 

pathways of disease progression.166, 167 An impressive recent example even includes a 6.9 million-

feature oligonucleotide array studying the human transcriptome in clinical studies with higher 

sensitivity than RNA-seq analysis performed in parallel.168  

Microarray methods have also garnered wide popularity in detecting DNA methylation and 

histone modifications when assessing the progression and effects of adiposity,169 quantifying 



22 

 

metabolic contributions to tumor development,170 and mapping DNA methylome footprint during 

B cell differentiation.107 This popularity is reflected in the existence of many types of commercial 

kits available to researchers, representative products among which are the Infinium Methylation 

Assays from Illumina. Infinium HumanMethylation450 BeadChip Kit (450K array) provided more 

than 485,000 methylation sites per sample at single-nucleotide resolution across the genome. Upon 

bisulfite treatment, the assay interrogated these sites with two probes differentiating methylated 

and unmethylated loci, allowing analysis of up to 96 samples simultaneously.171 Fruitful DNA 

methylation profiling results have emerged since the epigenetic research community widely 

embraced the 450K array, and updated versions of this assay are now available.172 For example, 

the Infinium Methylation EPIC Kit (EPIC array), almost doubles quantifiable methylation sites to 

over 850,000. The EPIC array significantly increases genomic coverage, particularly with more 

probes targeting methylations at enhancers while maintaining the ease of analysis and affordability 

from 450K array.172 Moreover, combining microarrays with immunoprecipitation or chemical 

processing of chromatin enables tiling array techniques including ChIP-chip, MeDIP-chip, and 

DNase-chip (“chip” indicates microarray read-out). After targeting and isolating DNA associated 

with the modification of interest via ChIP, bisulfite treatment, or other chemical modification 

methods, purified DNA hybridizes with complementary probes for microarray scanning and 

detection. Common applications of these arrays include identifying specialized chromatin domains 

in transcriptional regulation,173 identifying protein markers for psychiatric disorder 

development,174 and marking cell-specific epigenomic sites.175  

 

Cross-linking-Based Chromatin Conformation Assays 



23 

 

Beyond nucleic acid-protein interactions, higher-order three-dimensional nuclear 

organization further affects cellular interpretation of genomic information.176, 177 The development 

of chromosome conformation capture (3C) and 3C-derived methods such as chromosome 

conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), Hi-C, 

and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) have greatly 

enhanced the exploration of higher-order structural features of chromatin to an unprecedented 

extent.177 3C uses restriction endonuclease enzymes (e.g., EcoRI) to digest crosslinked and isolated 

nuclei, and intramolecular ligation links loci that are linearly separated but in close three-

dimensional proximity. Quantitative PCR (qPCR) detects the ligated products after reverse-

crosslinking and determines the frequency of interactions between any two genomic loci.178 

Results can be expressed relative to data obtained in corresponding sequences of chromatin-free 

DNA incorporated into bacterial artificial chromosomes. 4C combines 3C with microarrays or 

sequencing to search genome-wide for DNA loci that interact with a given locus.179 5C starts with 

building a 3C library of fragmented DNA and then applies multiplex ligation-dependent probe 

amplification (MLPA) to the 3C templates to determine interactions between multiple loci 

simultaneously either with microarrays or high-throughput sequencing.180 Hi-C adjusts the 3C 

protocol slightly by marking the ends of digested DNA with a biotinylated nucleotide and pulling 

down only biotinylated and ligated DNA with streptavidin-coated magnetic beads, followed by 

deep sequencing. By mapping Hi-C reads to the genome, interactions between all fragments 

generate a matrix of ligation frequencies.181 Lastly, ChIA-PET integrates ChIP with 3C by 

purifying DNA fragments with an antibody targeting a protein of interest to only detect interactions 

between loci associated with that specific protein.182 3C and 3C-based methods have revealed 

many three-dimensional epigenetic regulatory features, including (1) topologically associated 
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domains (TADs) and their functions in controlling the contact of enhancers with target genes,183 

(2) chromosomal rearrangements under both balanced and dynamic conditions with the discovery 

of a novel leukemogenic translocation partner of the T cell receptor,184 and (3) the X chromosome 

topological remodeling and regulation of chromosome-wide gene expression.185 

To conclude this section, the methods described above provide an invaluable toolbox for 

the analytical characterization of the epigenome, and Table I.1 summarizes these key approaches. 

 

TRANSLATING EPIGENTIC TECHNOLOGIES TO A CLINICAL SETTING 

Among the epigenetic marks accessible to the analytical methods introduced in this work, 

DNA methylation is the most commonly studied epigenetic marker in mammalian genomes.186 

Commercially available assays targeting DNA methylation aim to increase automation and reduce 

user dependence in clinical settings.187, 188 Because of the relative maturity of those techniques, 

this section will instead outline other research efforts to date for the analysis of protein-DNA 

epigenetic interactions as well as chromatin conformation with the goal of ultimately translating 

these technologies into a clinical setting for empowering precision medicine.  

 

Limitations of ChIP-seq and Variants 

While being the traditional workhorse to probe protein-nucleic acid interactions, 

limitations of ChIP-seq prevent its routine clinical implementation, and the importance of these 

interactions to health and development was outlined earlier in this chapter. One major challenge is 

the large input sample size requirement. Traditionally, ChIP-seq requires more than 106 cells as 

starting material per analysis of one target to ensure effective enrichment of related DNA. This is 

unfeasible for clinical biopsies containing fewer than 103 cells or samples of rare cell  
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Technologies Achieved Information Limitations to Precision Medicine 

RNA-seq Coding and non-coding RNAs 

(1) Intensive data processing 

(2) Bias from RNA fragmentation and sequencing library 

construction 

WGBS DNA 5mC and 5hmC 
(1) No differentiation between 5mC and 5hmC 

(2) High sequencing cost 

RRBS 
DNA 5mC and 5hmC, mainly from 

CpG islands 

(1) No differentiation between 5mC and 5hmC 

(2) Limited coverage of methylation 

TAB-seq DNA 5hmC 
(1) Use of expensive Tet enzyme 

(2) Potential inefficiency in 5hmC glycosylation or 5mC 

oxidization leading to false calling 

oxBS-seq DNA 5mC 
(1) Intensive sequencing depth and data processing from 

two required parallel sequencing runs 

MeDIP-seq and variants 
DNA methylation, can target 5mC, 

5hmC, 5fC, and 5caC individually 

(1) Low resolution 

(2) Antibody cross-activity 

(3) Bias towards highly methylated regions 

MBD-seq 
DNA methylation, especially in 

CpG-rich regions 

(1) Low resolution 

(2) Limited coverage 

(3) Bias towards highly methylated regions 

ChIP-seq and variants 

Profiles of DNA-binding proteins 

and modifications to DNA and 

histones 

(1) Large Input Requirements 

(2) Specificity and sensitivity depend on high-quality 

antibodies 

(3) Lack of automation (operator dependence) 

MNase-seq Nucleosome positioning 
(1) Bias towards AT-rich regions 

(2) Need for high sequencing depth 

DNase-seq 
Regulatory regions and chromatin 

accessibility 

(1) Bias from DNase I digestion 

(2) Need for high sequencing depth 

(3) May miss some distal regulatory regions 

FAIRE-seq 
Regulatory regions and chromatin 

accessibility 

(1) Lower enrichment of targets compared to DNase-seq  

(2) May miss some promoter regions 

ATAC-seq 

Nucleosome positioning, 

chromatin accessibility, and 

transcription factor binding sites 

(1) Bias towards nucleosomes around regulatory regions 

Oligonucleotide 

microarrays (e.g., RNA 

profiling, 450 kit, ChIP-

chip, MeDIP-chip, and 

DNase-chip) 

Low abundance regulatory RNAs, 

DNA-protein interactions, DNA 

modifications, etc. 

(1) Limited throughput by the number of array probes 

(2) Low resolution 

(3) Limited coverage 

3C and variants 

Interactions between gene loci and 

three-dimensional chromatin 

conformation 

(1) Interference in reading from nonspecific co-localization 

of almost any two loci 

(2) Failure to detect dynamics and cell-to-cell variations of 

chromosome folding 

 

populations.126, 127 A second challenge of ChIP-seq is its inability to profile cellular heterogeneity. 

Lysis, digestion, and analysis of cells are commonly performed in bulk followed by the 

Table I.1. Achievements and Limitations of Current Technologies for Epigenetic Studies in 

the Context of Precision Medicine. 
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aggregation of DNA from all cells, obscuring possible rare signals from low-abundance abnormal 

or novel features. Additionally, ChIP-seq suffers from poor robustness and low reproducibility as 

it relies largely on operator skills and reagent quality, especially antibody specificity. ChIP-seq 

experiments also require high quality chromatin and, therefore, are only typically amenable to 

fresh or frozen cell/chromatin samples—although methods modified for use in formalin-fixed, 

paraffin-embedded samples have been published.189, 190 Finally, ChIP-seq is inherently low 

throughput as it investigates one target per sample (by using only one antibody). When combined, 

these factors complicate the use of conventional ChIP-seq in both routine clinical practice and 

longitudinal studies on large populations, making it less amenable to profiling a wide range of 

healthy and abnormal samples.98  

Efforts have been made to improve the conventional ChIP DNA preparation workflow in 

bulk by reducing required cell numbers, shortening DNA preparation time, and improving 

automation and throughput. Early attempts included keeping multiple steps in the same tube and 

adapting ChIP to 96-well plates to reduce sample loss during material transfers and to simplify 

manual processing.191-193 Unfortunately, fully user-independent automation of the entire protocol 

coupled to an efficient approach for applying ChIP-seq to clinical samples with small numbers of 

(scarce) cells has yet to be achieved. Improvements in throughput and analysis speed are also 

needed to facilitate monitoring of multiple epigenomic targets, especially in the context of possible 

synergetic effects and dynamic changes related to disease development. To summarize, an ideal, 

clinically-friendly ChIP-seq platform would automatically process patient samples containing 

varying numbers of cells with little pre-treatment and deliver results with high confidence, high 

accuracy, and high reproducibility. Such a platform would provide a reliable information source 

for diagnostic and prognostic guidance.  
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Promising Approaches of Automated DNA-Protein Interaction Analysis 

Recent research efforts have turned to microfluidic tools as powerful alternatives to 

macroscale methods for automating ChIP-seq. Microfluidics features miniaturization of reagent 

volume, parallelization of multiple samples, and automation of an integrated workflow, which are 

all especially well-suited to sample-constrained, labor-intensive, and operator-dependent 

epigenetic analyses.194 Particularly due to microscale device sizes and features, microfluidics 

facilitates single cell handling and analysis, making it a fundamentally enabling tool for the 

investigation of single cell epigenomic heterogeneities confounded by macroscale methods. The 

toolbox of single cell manipulation and processing on microfluidics has been expanding over the 

years with the emergence of promising proof-of-concept studies including highly efficient single 

cell encapsulation in microfluidic droplets,195 high-throughput single cell reverse transcription 

PCR (RT-PCR),196, 197 and single-cell sequencing with comparable read count and improved 

sensitivity compared to tube-based protocols.198, 199 Although these methods still have limitations 

such as bias in reaction efficiency associated with minute sample amounts,198 these principles have 

enabled many exciting studies aimed at facilitating microfluidic DNA-protein interaction analysis.  

The Quake group pioneered the application of microfluidic techniques to automated, low-

input epigenomic profiling. They developed automated microfluidic ChIP (AutoChIP) allowing 

enrichment of ChIP DNA from 2,000 cells and demonstrated higher precipitation efficiency than 

conventional ChIP.200, 201 AutoChIP’s multi-layered and valve-actuated ring structures controlled 

sample loading, bead washing, and elution of DNA. By multiplexing AutoChIP structures they 

obtained a high throughput, automated microfluidic device for ChIP (HTChIP) capable of 

processing 10,000-cell equivalent chromatin samples in each parallel structure, running 14 ChIP 

experiments and 2 controls simultaneously.202 Though AutoChIP and HTChIP demonstrate 
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automated enrichment and washing, the fixed ring structure volumes limited their applications to 

a determinate sample size. Moreover, HTChIP did not start directly with cells to automate cell 

lysis or chromatin fragmentation. This pre-processing and defined sample volume may limit the 

applicability for some clinical applications, but the work represents a pioneering initial approach 

to microfluidic ChIP. 

The Lu lab has also investigated epigenomic assays for small cell populations by exploiting 

microfluidic chamber structures. Using a valve-actuated microfluidic chamber to control magnetic 

bead packing, cell lysate loading, and captured DNA elution, they developed microfluidic 

oscillatory washing–based ChIP-seq (MOWChIP-seq) to capture targeted DNA from 100-cell 

chromatin equivalents for sequencing in the context of discovering new enhancer regions.203 

Further integration of sonication and immunoprecipitation enabled on-chip shearing of chromatin 

in addition to DNA capture.204 They also fabricated multiple microfluidic beds on one chip to carry 

out ChIP targeting two marks in parallel.205 Additionally, by immobilizing antibodies directly to 

the channel surface for flow-based target capture, they developed SurfaceChIP-seq to investigate 

histone marks in the mouse prefrontal cortex and cerebellum.206 These strategies further automated 

the ChIP workflow; but MOWChIP-seq’s fixed chamber structure again limited this microfluidic 

epigenetic platform’s capability in processing flexible sample sizes (as any changes in sample size 

may require labor-intensive re-optimization of immunocapture conditions). Nonetheless, these 

devices have improved throughput and plexity while reducing input requirements for microfluidic 

ChIP. 

Besides continuous flow microfluidics, the Weitz lab and colleagues have applied droplet 

microfluidics to achieve automated single-cell ChIP-seq (Drop-ChIP) that can handle samples with 

indeterminate sizes and process thousands of cells individually within minutes.207 Starting with 
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single cell encapsulation followed by simultaneous introduction of chromatin fragmentation and 

DNA immunocapture reagents to cell-containing droplets, Drop-ChIP used DNA barcoding to 

uniquely label chromatin from different cells. Therefore, it was able to analyze a mixture of three 

different cell types at single-cell resolution using deconvoluted chromatin state mapping, leading 

to cell subpopulation elucidation.207 The specificity and information content accuracy were high, 

as ~50% of reads could be aligned to known positive sites, and coverage of aggregated reads from 

50 cells was comparable to conventional profiles. On the other hand, the coverage per cell was 

sparse, comprising on the order of 1000 unique reads. Additionally, this device only automated 

cell lysis, chromatin digestion, and indexing with DNA barcodes; the protocol manually completed 

immunoprecipitation and ChIP DNA extraction off the device. Furthermore, potential repetitions 

or other errors in DNA barcoding could confound the final results.  

The Bailey lab recently described a strategy to automate chromatin fragmentation for 

MNase-seq utilizing droplet microfluidics to process cell samples directly, and their approach 

yielded high quality nucleosome mapping profiles.208 In this technique, cells were directly 

encapsulated in microdroplets at a junction that simultaneously introduced a combined cell lysis 

and enzymatic chromatin digestion reagent flow. On-chip processing was mediated by delay 

channels to define the reaction time for chromatin processing, terminated by a final injection of 

MNase quenching buffer (containing EDTA as a chelating agent to inhibit the Ca2+-dependent 

nuclease). This microfluidic device showed the capability to tolerate different sample sizes, 

making it amenable toward future clinical deployment with variable sample quantities; however, 

the approach has not yet demonstrated single cell resolution. Promisingly, these and related 

advances in droplet microfluidic technologies are being translated into mass-manufacturable 
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thermoplastic materials, bringing them closer to at-scale manufacturing and fulfilling their promise 

for clinical distribution and implementation.209, 210 

Despite their respective limitations, these promising examples show the potential of 

microfluidics to facilitate fully automated, low-input (and single-cell) epigenomic studies in a 

clinical setting. When reliable and rapid analysis of patients’ epigenomes becomes clinically 

routine, the enhanced understanding available will offer insights on the unique combination of 

epigenomic marks that play crucial roles in disease pathways in individual patients. Thus, these 

technologies will guide diagnostic, therapeutic, and prognostic decisions, furthering the advance 

of precision medicine. 

 

DROPLET MICROFLUIDICS: EXPLORING THE CAPABILITIES OF SEGMENTED 

FLOW BIOASSAYS 

Droplet microfluidics provide an exciting opportunity in automated analysis of DNA-

protein interactions using ChIP. Following seminal works from Quake and Ismagilov, droplet (or 

segmented flow) techniques emerged as a promising method for controlling networks of small 

volume samples (fL to nL per droplet) for bioassay and materials applications.211-213 Segmented 

flow systems possess a number of advantageous differences compared to more traditional, laminar 

flow-based microfluidics. By compartmentalizing each sample (the dispersed phase) in an 

immiscible, typically fluorinated oil (the continuous phase), unique samples remain discretized 

during analysis with minimal to no material transfer through the oil phase between droplets or with 

the microdevice walls. Therefore, droplet microfluidic devices can reproducibly and rapidly handle 

large numbers of heterogeneous sample volumes with minimal material loss or contamination.214-

217 Fluorosurfactant addition further promotes droplet stability by organizing at the dispersed  
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phase-continuous phase interface and decreasing surface tension (Fig. I.4).218, 219 However stable, 

individual droplet volumes still remain accessible for a range of unit operations to enable useful 

chemistry and biochemistry, as will be discussed below. Moreover, the internally recirculating 

vortices present in a flowing, wall-bounded droplet promote extremely efficient mass and heat 

transfer, with complete mixing frequently achieved on the sub-second timescale.212, 214, 215, 217 

Finally, continuously flowing droplets are facilely scalable. Serial droplet processing reproducibly 

acts on each individual droplet volume, so scaling to larger samples only requires production and 

handling of more droplets. Droplet microfluidics therefore present an attractive option for 

developing a robust, automated, and dynamically scalable ChIP workflow. 

A growing toolkit of unit operations enables a diversity of chemistry in segmented flow 

microfluidics, and these unit operations will be crucial to developing a droplet-based ChIP method. 

Droplet formation commonly takes the form of T-Junction (Fig. I.5a) or hydrodynamic flow 

Figure I.4. Simple droplet dynamics during flow in an enclosed microchannel. Major mixing 

vortices within the droplet (dark blue arrows) are oriented counter to the flow direction (green 

arrow) where in contact with channel walls (gray). The fluorinated oil (light green)-aqueous 

droplet interface (dotted line) is stabilized by fluorosurfactants (example shown in inset, 10 ≤ 

n ≤ 60 for perfluorinated polyether units, 4 ≤ m ≤ 10 for polyethylene glycol units). Figure 

components are not to scale. 
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Figure I.5. Selected droplet unit operations. a) The T-junction forms droplets at the interface 

of two orthogonally directed, immiscible flows. b) The hydrodynamic flow focusing structure 

segments the dispersed phase with two symmetric and orthogonal continuous phase flows. c) 

Pairwise droplet fusion uses a continuous phase-miscible chemical destabilizing agent or other 

means to merge synchronized droplets. d) Direct injection forces reagent flow into passing 

droplets during temporary interface fusion under the influence of local electric field. e) Delay 

channels accommodate droplet populations in large-volume, continuously flowing chambers 

to mediate on-device reaction time. f) Specialized drain channel structures selectively extract 

the continuous phase to alter droplet packing. g) Droplet splitting at the channel bifurcation in 

the presence of a magnetic field gradient concentrates magnetic particles in one of the daughter 

droplets, and the other daughter droplet only contains decanted supernatant. h) The washing 

module fuses synchronized sample and washing buffer droplets using electric field, a magnetic 

field gradient collects magnetic particles in the washing buffer portion of the fused droplet, and 

fission at the channel bifurcation re-divides the volume back into constituent parts. For all 

panels, light blue and dark yellow objects represent dispersed phase elements, light gray objects 

represent continuous phase elements, light red objects represent chemically-modified 

continuous phase elements, blue-grey and dark red objects represent electric field elements 

(example polarities indicated), brown circles represent magnetic particles, dark gray objects 

represent magnetic field elements, and black arrows indicate flow direction (for adjacent 

elements). Figure components are not to scale. 
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focusing (Fig. I.5b) configurations capable of production at up to kHz frequencies for highly 

monodisperse droplets.211, 212, 216, 217, 220 Changing channel geometry and the relative flow rates of 

the continuous and dispersed phases alters droplet size, spacing, and generation frequency across 

predictable trends.220, 221 Adaptations of these fundamental structures have increased production 

beyond tens of kHz,222 have integrated sophisticated inertial strategies for individual cell and 

particle encapsulation,223 and have enabled on demand combinatorial production.224-226 Further, 

tailoring channel surface chemistry selects which fluid acts as the continuous phase and even 

enables production of multilamellar emulsion structures.217, 227 

Encapsulating samples with reagents may be sufficient for simple processing, but adding 

additional chemical and physical controls on-chip creates opportunities for more sophisticated 

assays. After formation, desired droplets can be synchronized and merged to mediate the next step 

in a chemical workflow (Fig. I.5c). By including a mismatch in alternating droplet sizes (smaller 

droplets move faster until being trapped behind larger, wall-bounded neighbors) or by using 

ladder-like networks of pressure-equalizing channels and other structures, droplets can be brought 

together.228-233 Then, introducing a chemical destabilizer (like a coalescence-initiating, oil-

miscible co-flow) can fuse contacting droplets as a means of reagent introduction.233 Alternately, 

electric fields induce a local dielectric force on polarizable droplet components, thus providing 

sufficient disruption to droplet stability to promote fusion of adjacent volumes.228, 229, 232, 234 These 

electric fields can be delivered on-chip via conventional electrode materials, or a simple alternative 

approach charges microchannels filled with sufficiently conductive electrolyte solution, reducing 

the cost and difficulty of fabricating devices with integrated electric fields.235 Although this class 

of reagent addition operation efficiently isolates heterogeneous sample droplet volumes, it can be 
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technically challenging to achieve high fidelity synchronization to prevent a fraction of droplets 

from experiencing inaccurate processing.228, 232, 234 

Direct injection strategies take a different approach to introducing reagents into pre-formed 

droplet volumes. Instead of fusion between paired droplets, direct injection occurs at the interface 

between the droplet flow and a dispersed phase-miscible continuous reagent stream. As each 

droplet passes the junction with the reagent stream, reagent flow enters the droplet, increasing its 

total volume and correspondingly altering its composition (Fig. I.5d).213, 236, 237 Changing the flow 

rate of the reagent proportionally adjusts volume injected. Like droplet fusion, this technique also 

commonly relies on destabilizing forces (most commonly electric field) to promote temporary 

droplet-reagent stream fusion, and continuously moving droplets separate from the reagent stream 

after flow pushes them past the interface. In contrast to pairwise droplet synchronization and 

fusion, direct injection represents an arguably simpler system: the droplet sample is brought past 

a stationary reagent flow instead of coordinating two independently moving species. Simplicity of 

function notwithstanding, this technique has two key limitations. First, flow instabilities during 

routine operation can lead to aberrant formation of independent reagent droplets when reagent 

fluid is ejected into the main channel out of phase with the presence of passing droplets. Under 

these circumstances adjacent droplets may consequently receive non-standard injection volumes. 

The “picoinjector” represents a direct injection variant addressing this problem.237 By including a 

tapered nozzle feature, the picoinjector induces a stabilizing Laplace pressure from the tapered 

curvature of the reagent stream, and flow of reagents only occurred if both droplets and electric 

field were present. Practically, however, the picoinjector module may still experience aberrant and 

non-standard injections, if at reduced incidence compared to its predecessors.238 Second, direct 

injection necessitates that all sample droplets temporarily merge with the same reagent stream. 
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While injections into passing droplets ensure that reagent volume is flowing continuously toward 

the droplet train, merging leads to diffusive and convective forces at the interface. Therefore, net 

flow drives reagent fluid into the droplet, but these mixing forces simultaneously drive some 

portion of the original droplet into the reagent stream. Later droplets may thus be injected with 

material from previous droplets. For heterogeneous droplet processing under stringent conditions, 

conventional approaches to direct injection may yield unaccepted cross-contamination.236 Despite 

these limitations, direct injection strategies provide a popular and easy to implement strategy for 

reagent addition. See Chapters II and III for additional discussion. 

After establishing conditions for in-droplet chemistry, chemical reactions need sufficient 

time to occur. Long term incubations (hours to days) are routinely managed by collecting droplets 

and reinjecting them for additional on-device processing when desired, but even generally 

successful strategies result in a fraction of lost or mishandled droplets.229 Shorter term incubations 

(seconds to minutes) are most frequently mediated by relatively large cross-sectional area “delay 

channels” (Fig. I.5e).239 These features are capable of dynamic storage for large droplet volumes 

while minimizing the corresponding increases in hydraulic resistance which would result from 

solely increasing channel length to accommodate more droplets. Incubation time is proportional 

to the number of droplets packed in a given feature and inversely proportional to the droplet 

processing frequency, so changing droplet conditions correspondingly alters incubation 

performance. In particular, a range of approaches have been developed to adjust droplet packing 

by selective extraction of the continuous phase (mediated by droplet-retaining micropillar 

structures, Fig. I.5f).239-241 Continuous phase extraction includes an additional benefit: densely 

packed droplets can be uniformly respaced with fresh continuous phase after incubation for robust 

downstream processing. Unfortunately, these extraction modules function best under narrow 
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ranges of droplet flow conditions and otherwise yield droplet breakup and sample loss. Moreover, 

tools for controlling and analytically characterizing droplet-to-droplet incubation time 

reproducibility (directly affecting reaction yield and efficiency) have been limited to poor time 

resolution, potentially obscuring significant physical phenomena.239, 240 Certainly for many 

applications, these methods prove sufficient for mediating on-device reactions, but improvements 

to these technologies will improve in-droplet reaction precision and fundamental understanding of 

multiphase flows. See Chapter IV for additional discussion. 

Introducing on-chip magnetic fields creates another opportunity for droplet unit operations: 

deterministic material control orthogonal to flow forces.242, 243 Capitalizing on a wealth of available 

surface chemistries, magnetic particles capture and selectively immobilize sample material for 

workflows involving solid phase extraction, immunoassays, and others.243-245 Buffer and reagent 

exchange around sample-bound particles enables washing operations (to remove off-target 

components) as well as sophisticated multistep chemistries. In the context of droplet microfluidics, 

the most common magnetic particle manipulation strategy involves flowing a droplet train toward 

a channel bifurcation to split each droplet into two daughter droplets (Fig. I.5g). In the presence of 

a directional magnetic field gradient, magnetic particles concentrate in one droplet hemisphere 

prior to the division, and, thus, they segregate into only the daughter droplet closest to the magnet 

during fission. Under ideal conditions the other daughter droplet contains only unbound 

supernatant material, subject to further processing and analysis or discarded as waste.246 

Innovations to this core approach have tailored droplet splitting and magnetic capture through 

asymmetric fission regimes capable of more efficiently decanting supernatant,247 and some even 

show dynamic selection of splitting fraction based on flow conditions, not solely bifurcation 

geometry.248, 249 Unfortunately, these technologies operate at relatively poor throughput (0.5-30 
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Hz processing frequency) and typically leave 10% or more supernatant remaining. Chiefly, this 

limitation is due to relative magnetic force on particles (often with low, variable magnetic content 

per particle) compared to opposing hydrodynamic forces generated by internal convective flows 

and turbulence during fission.242 Combinations of these magnetic operations have been 

demonstrated, coupled to washing buffer direct injection for replenishing droplet volume, but 

errors propagate as washing effectiveness per operation exponentially decreases.250 Nonetheless, 

this technique has been successfully implemented for several simple bioassays, and even droplet 

splitting and selective droplet extraction without magnetic enrichment provide valuable sampling 

methods.243, 244, 250-252 See Chapters II, III, and V for additional discussion. 

Combining the concepts of pairwise droplet fusion and magnetically biased droplet fission, 

an additional droplet-mediated particle washing approach has been described (Fig. I.5h).230 In this 

technique, droplets with magnetic particle-bound sample (and free contaminants) are synchronized 

with a train of washing buffer droplets. At the channel region where the two droplet populations 

come into contact, local electric field fuses paired droplets while a strong magnetic field gradient 

deflects the beads toward the washing buffer side. Immediately downstream, a channel bifurcation 

re-divides the two original droplets from each other. Effectively, this module transfers particles 

from the original droplet to the washing buffer droplet, and washing efficiency depends on mixing 

and nonspecific material transfer during the merger between sample and buffer droplets. While 

technologically innovative (and, perhaps, representing the first truly integrated in-droplet particle 

washing unit operation), this technique has not been widely implemented. Besides the practical 

challenges in robust droplet synchronization and fusion, the demands of magnetophoretically 

migrating particles between the paired droplets during brief fusion restrict throughput to only a 

few volumes per second.230 See Chapter V for additional discussion. 
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This work does not attempt to include a comprehensive description of every droplet 

technology or application, and several excellent reviews include additional techniques for droplet 

sorting,253 ferrofluid applications,254 acoustic manipulations,255 and more.217, 243 Instead, this 

discussion seeks to offer a practical perspective on the droplet toolkit immediately relevant to 

bioassay prototyping. In summary, a number of basic unit operations have been established to 

varying degrees of maturity for integration into sophisticated biochemical workflows, and 

additional innovations may solve current limitations hindering the practical adoption of these 

techniques.  

 

DROPLET MICROFLUIDIC-MEDIATED ChIP: TECHNOLOGICAL CHALLENGES 

Ultimately, conventional ChIP can be subdivided into a set of unit operations which must 

be achieved in a microdroplet format for assay translation. At a simplified level, sample 

introduction represents droplet formation, potentially compartmentalizing a single cell per droplet. 

Reagents for cell lysis, enzymatic chromatin digestion, digestion quenching, and antibody-bead 

loading, as well as washing buffers, must be added to the droplet reaction volume at appropriate 

times through methods like pairwise fusion or direct injection. Reactions progress via incubation 

in delay channel structures or through off-device incubation and later reinjection onto the next 

module. Immunoprecipitation and washing for selective target enrichment could be mediated by 

any of the existing magnetic droplet manipulation modes. This initial outline does, however, ignore 

many of the technological limitations for droplets described above as well as certain practical 

considerations in effective droplet bioassay development. 

The principle impediment to the combination of these components for an integrated, 

automated ChIP-in-droplets platform (as described above) originates in the number of operations 
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required. Each reagent addition step during ChIP processing represents an additional geometrical, 

electrical, and flow component on device, yielding a complicated network of mutually perturbing 

features and fluid flows.250, 256 Isolating these operations on simplified, separate devices multiplies 

the number of droplet transfers between devices, leading to sample loss at each step.229 Failure to 

do so, however, increases droplet-to-droplet handling variance as errors and flow instabilities 

propagate among serial operations, and complicated, extended flow channels may require 

impractically high pressures to drive flow.256 These difficulties are further compounded by the 

composition of many key ChIP buffers. Detergents play vital roles in cell lysis for making 

chromatin accessible, and they help to decrease non-specific retention during immunoprecipitation 

and washing.257-263 In segmented flow, however, detergents decrease droplet stability, generating 

opportunities for sample loss and droplet breakup (which constitutes an example of unit operation-

disrupting flow perturbation). Further within the context of immunoprecipitation in droplets, 

uniformly introducing dense, iron oxide-rich magnetic particles into microscale flow is opposed 

by gravity-driven sedimentation.264 Even after particle addition, stringent washing of particles for 

selective enrichment represents perhaps the greatest challenge. ChIP protocols commonly 

exchange particles through four buffers to deliver a gradient of ionic strength and detergent 

conditions. Decanting 99% of droplet supernatant for high purity washing requires several droplet 

splitting and washing buffer additions per buffer, and poorer washing decreases ChIP enrichment. 

Therefore, this initial strategy for ChIP washing might necessitate a few tens of droplet operations 

(serial fission and direct injection). Such an approach would likely be impossible and would 

certainly exclude any resulting technology from use by non-experts. Overall, these considerations 

highlight the difficulty of adapting complex bioassays into a miniaturized, high throughput droplet 

format and suggest areas in need of innovation. 
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Promisingly, the Bailey Lab’s droplet-based chromatin preparation platform described 

earlier in this chapter not only enabled MNAse-seq but also provided a starting point to enable cell 

processing through chromatin digestion in droplets. .208 It ultimately formed the basis of the first 

module for performing ChIP using droplet microfluidics, although it did not integrate on-device 

immunoprecipitation or washing for affinity purification of targeted chromatin species. These 

capabilities (immunoprecipitation and washing) thus demand technical innovations in droplet 

processing before the realization of droplet-based ChIP. In this work, I will describe the 

development of technologies for supporting this microfluidic epigenetic assay and its final 

demonstration after component integration. See Chapter VI for additional discussion. 

 

CONCLUSIONS 

Over the years, increased efforts have aimed to elucidate the epigenomic mechanisms of 

pathogenesis to provide insights for diagnosis and treatment. While many assays have profiled 

ncRNA expression, DNA methylation, histone modifications, and other chromatin-regulating 

molecules, ongoing efforts must focus on translating these basic research techniques to clinical 

settings. Due to current drawbacks, ChIP-seq in particular struggles to assess biopsy samples 

containing small cell numbers. This limits its application in routine analysis for prognosis, 

diagnosis, and treatment. While microfluidics has provided improved automation and reduced 

reagent consumption, current microfluidic ChIP approaches still suffer from sample size restriction 

due to determinate microfluidic devices, complicated microfluidic operation, and lack of 

automation of the entire ChIP process from cell input to analytical readout. As a promising starting 

point for the development of an automated ChIP system meeting many of these needs, the droplet 

microfluidic techniques outlined here demonstrate capabilities in sample compartmentalization, 
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reagent addition, and selective material concentration and extraction. Nonetheless, additional 

innovations will be necessary to fully adapt the protocol, particularly in the context of in-droplet 

affinity-based purification. Encouraged by the potential of initial studies, the application of 

microfluidics tools to clinical epigenetic profiling promises to fundamentally transform the field 

of precision medicine. 
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Chapter II 

K-Channel: A Multi-Functional Architecture for Dynamically Re-Configurable Sample 

Processing in Droplet Microfluidics 

 

Reproduced with permission from Doonan, S.R., and Bailey, R.C. “K-Channel: A 

Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet 

Microfluidics.” Analytical Chemistry 2017, 89(7): 4091-4099. Copyright 2017 American 

Chemical Society. Available at https://pubs.acs.org/articlesonrequest/AOR-

VdtzC4qKdUPafeffyhi9 and doi: 10.1021/acs.analchem.6b05041. 

 

INTRODUCTION 

In contrast to bulk approaches or continuous flow microfluidics, droplet microfluidic 

systems compartmentalize samples and reagents into nano- to femtoliter-sized reactors in an 

immiscible oil.1-3 By segmenting flow into discrete plugs separate from each other and from device 

walls, these systems minimize sample loss from adsorption to channels or tubing, and enable 

generation of libraries containing thousands of individually addressable reaction volumes.4-6 

Capitalizing on rapid mass and heat transfer in droplets, droplet microfluidic devices have been 

applied to synthesis and nanotechnology.7, 8 Furthermore, droplet dimensions are especially 

suitable for analysis of small biological samples or even single cells, and adjusting operation times 

to handle variable numbers of droplets accommodates a range of sample volumes.9-11 Notable 

recent work leverages droplet microfluidic systems as miniaturized instruments for 

https://pubs.acs.org/articlesonrequest/AOR-VdtzC4qKdUPafeffyhi9
https://pubs.acs.org/articlesonrequest/AOR-VdtzC4qKdUPafeffyhi9
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immunoassays,12, 13 epigenetic analysis,14 and directed molecular evolution,15 among other 

applications. 

In order to achieve complex biochemical processing in droplets, devices must demonstrate 

a number of capabilities. Droplet or plug formation often occurs at T-junction and flow focusing 

structures.16, 17 Picoinjection18-20 or droplet fusion21 add reagents into sample droplets. Droplet 

reactions incubate in delay channels22 or off-device followed by reinjection.23 Droplet splitting 

samples from or parallelizes reactions.24-26 Coupled with antibody-functionalized magnetic beads, 

droplet splitting can even selectively concentrate samples and remove waste volume.13, 27-31 

Overall, these well-characterized approaches provide a toolkit for in-droplet chemistry, and recent 

reviews highlight the broad range of droplet techniques and applications.7, 8, 17, 32, 33 

Realizing the potential of droplet microfluidics will require overcoming certain limitations. 

For instance, many droplet operations occur in highly specialized geometries, and optimizing 

performance for a particular chemical system (such as changing the volume of fluid injected or 

removed) may necessitate fabricating a device with modified dimensions. Soft lithography enables 

rapid prototyping, but the multiple device iterations needed to optimize an in-droplet assay can 

still lead to high time and monetary costs.34 An additional challenge includes the sensitivity of 

droplet manipulations like injection to flow instabilities and contamination. Because these 

techniques often rely on a single inlet channel for injected reagent delivery, pressure fluctuations 

during extended device operation significantly move the equilibrium position of the injection 

interface (changing injection magnitude), and any material extracted from droplets during injection 

may contaminate later droplets.19, 35, 36 Finally, common biochemical techniques like ELISA 

typically require washing samples on a solid phase like antibody-conjugated magnetic beads,37 but 

only limited efforts have demonstrated analogous processes in continuously flowing droplets at 
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low throughput (1-5 droplets per second) compared to many other droplet operations (100-1000 

droplets per second).38, 39 Therefore, the clear need exists to engineer versatile and robust droplet 

manipulation modules that simplify assay optimization and enable in-droplet washing. 

With these considerations in mind, a promising approach to creating more robust droplet 

systems with useful, novel functions has been “cross-channel”-style geometries. As a pioneering 

first example, Chen et al. developed the “chemistrode,” a probe for delivering nL droplets via one 

channel and collecting sample droplets with the second across the parallel surface being 

interogated.40 Later examples have integrated miniaturized cross-channel architectures into fully 

self-contained droplet systems, typically as a means of droplet formation. Lin et al. used a cross-

channel flow of a cell suspension past an oil channel to generate single cell-containing droplets-

on-demand (DoD) upon nearby PDMS valve triggering.41 This structure stably maintained the 

aqueous cell suspension-oil interface before and after valve actuation. More recently, a similar 

approach adapted a cross-channel structure which dispersed flow instabilities through the cross-

channel to improve droplet formation reproducibility.36 A serial array of similar modules also 

served as a combinatorial droplet generator for DNA library assembly.6, 42 Other variations on 

cross-channel flow interfaced to droplets have been specialized to single operations.38, 43 

Aiming to develop a simple, easily switchable module for droplet manipulation, we have 

explored cross-channel interfaces that support droplet generation and sampling modes beyond 

those previously reported.6, 36, 40-43 By adding features such as on-chip electric and magnetic fields, 

our “K-channel” device enables a range of useful droplet processing steps such as reagent 

injection, volume extraction, droplet splitting, magnetic bead capture, and more. Importantly, our 

approach allows dynamic tuning of a single device among these different functional operations 

simply by adjusting external device operating conditions, such as applied pressure, electric field, 
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and fluid composition. Moreover, continuous cross-channel flow greatly reduces the chance for 

cross-contamination inherent in previous approaches.19, 35 Finally, we demonstrate the versatility 

of the K-channel module to create a two-step washing device consisting of magnetic bead-

concentrating droplet splitting followed by water injection, and realize robust device operation at 

nearly two orders of magnitude higher droplet frequency than previous reports.38, 39 

 

EXPERIMENTAL SECTION 

 

Microfluidic Device Fabrication 

PDMS microfluidic devices bonded to a glass substrate were formed via conventional soft 

lithography using SU8-2025 Photoresist (MicroChem Corp.) masters on 3’’ silicon wafers (WRS 

Materials).34 Photomasks were designed in AutoCAD (Autodesk) and printed as transparencies 

(CAD/Art Services). Prior to use, masters were treated with (tridecafluoro-1,1,2,2-

tetrahydrooctyl)trichlorosilane (Gelest, Inc.) under vacuum for 2-4 hours. PDMS was mixed 10:1 

(RTV615A:RTV615B) (Momentive) and cured for 1 hour at 70 °C. PDMS molds were removed 

from the master and punched with 20 Ga needles to create ports. PDMS molds and glass slides 

(Cover Glass, Thickness 1 ½, 22 x 40 mm, Corning, Inc.) were bonded following oxygen plasma 

activation (PDC-32G, Harrick Plasma). Devices were incubated at 70 °C overnight and treated 

with 1% (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane in FC-40 (Sigma Aldrich). All 

channels were 40 µm in height. 

Fluid Flow 

Fluids were driven by a home-built pressure controller. Briefly, a custom gas manifold 

(VWR International) distributed N2 through a parallel regulator array (VWR International) into an 
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array of LHDA0531115H solenoid valves (The Lee Company). Valves were actuated by a NI 

PCIe-6251 Multifunction Data Acquisition device (National Instruments) interfaced via LabView 

(National Instruments). Upon valve actuation, pressure was delivered into the headspace of sample 

vials via stainless steel fittings (New England Small Tube). Fluid flowed from pressurized vials 

through #30 AWG PTFE tubing (Cole Parmer) inserted directly into device ports. Typical 

pressures were 65 kPa for the continuous phase, 60 kPa for the dispersed phase, and 20-90 kPa for 

the cross-channel fluid. Typical droplet volumes were 100-200 pL, and droplets were usually 

produced at 300-500 Hz. 

For all experiments, the continuous phase was 3M™ Novec™ 7500 Engineered Fluid (The 

3M Company) with 2% poly(ethylene glycol) di-(krytox-FSH amide) (Ran Biotechnologies, Inc.) 

surfactant. For geometry characterization (Figures II.2, II.3, II.S1, II.S2, and II.S3 and 

Supplementary Movies SMII.1, SMII.2, SMII.3, and SMII.4) and for serial K-channels (Movie 

SMII.6), the dispersed phase was food dye (McCormick & Company) in water, and the fluid in 

the K-channel was identical either to the continuous phase (for droplet splitting) or to the dispersed 

phase (for other operations). Injection with pulsed electric field (Movie SMII.5) used water as the 

dispersed phase and 1 mM fluorescein (Sigma Aldrich) in water as the K-channel fluid. For 

material exchange characterization (Figure II.4 and Movie SMII.7), the dispersed phase was 200 

µM fluorescein in water, and the fluid in the K-channel was water. For the enzyme characterization 

(Movie SMII.8), β-galactosidase (Life Technologies Corporation) converted resorufin β-D-

galactopyranoside (ThermoFisher Scientific) into fluorescent resorufin in 1X phosphate buffered 

saline with 0.5% bovine serum albumin. Where indicated, an electric field (25-35 VAC) was 

supplied to 3 M NaCl in electrode channels20 or to 250 µm Pt wires submerged in solution vials 
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by a Tenma 72-6628 DC Regulated Power Supply (MCM Electronics) modified with a DC to AC 

inverter. Electric field pulses were actuated manually or by a LabView interface. 

 

Magnetic Bead Capture and Washing 

Embedded magnet devices were fabricated as described above with the addition of a 

magnet that was positioned along guide features on the master prior to pouring PDMS. The magnet 

was removed to form a guide hole in the PDMS mold after curing. Magnets were 1/2’’ x 1/4’’ x 

1/8’’ N52 (magnetized through thickness) (K&J Magnetics, Inc.). Prior to device operation, an 

array of 8 magnets was positioned along the guide hole to form a block of 4 magnets above and 4 

magnets below the glass slide (total dimensions 1/2’’ x 1/2’’ x 1/2’’). The magnetization of this 

array was along the plane of the glass slide in the direction of the main channel side of the K-

channel. 

1-3 µm paramagnetic bead samples (Protein A Magnetic Beads, New England Biolabs) 

were washed with buffer (50 mM Trizma HCl at pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% 

IGEPAL CA-630, 1% Triton X-100), suspended in Optiprep Density Gradient Medium (Sigma 

Aldrich), and filtered through a microfluidic device with 10-15 µm pores to remove contaminating 

particles and large aggregates prior to use. 

 

Droplet Imaging and Analysis 

Microfluidic devices were imaged by an M80 stereo microscope (Leica Microsystems) or 

a DMi8 light microscope (Leica Microsystems) using a Phantom Miro eX2 high speed camera 

(Vision Research). Videos and images were typically collected at 1000-6000 fps. For geometry 

and material exchange characterization, droplet size and frequency were analyzed using Droplet 
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Morphometry and Velocimetry (DMV) software, courtesy of Amar Basu (Wayne State University, 

Detroit, MI).44 Fluorescent analysis was carried out using ImageJ (NIH) to monitor pixel intensity 

followed by processing by an in-house macro. All plots use N = 3 devices in which at least N = 30 

droplets were measured on each device at each experimental condition. 

Magnetic bead analysis was performed semi-manually in ImageJ to track droplet size and 

magnetic particles in droplets across the detection channel (see Figure II.S4). Bead capture analysis 

(Figure II.5) tracked 300 main channel and 300 waste channel droplets (N = 100 droplets for each 

of N = 3 devices) and bead washing analysis (Figure II.6) tracked 180 droplets (N = 20 droplets 

for N = 3 time points for N = 3 operations: droplet formation, splitting, and injection) across 

multiple frames to reduce error from beads obscured by droplet edges and from aberrations due to 

extra-droplet satellites and channel defects. 

 

RESULTS AND DISCUSSION 

 

K-Channel Design 

The K-channel is formed by the intersection of a continuous flow cross-channel with a 

segmented flow main channel (Figure II.1). This junction resembles a capital letter “K” turned on 

its side, and also typically includes nearby electrode channels.20 As droplets pass the intersection, 

the flow through the cross-channel predictably modifies them based on applied conditions. These 

operations include, but are not limited to, injecting fluid from the cross-channel into droplets, 

extracting fluid from droplets into the cross-channel, maintaining a stable interface without altering  
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droplets, using oil (instead of aqueous) cross-channel flow to split droplets, and adding or 

extracting oil to change droplet spacing. For operations such as injection and extraction, droplets 

merge with the cross-channel flow temporarily during destabilization via a local electric field, and 

the continuously flowing cross-channel washes away extracted material to reduce the risk of 

droplet-to-droplet contamination. While approaches like picoinjection use a single inlet flow 

channel to add reagents,19, 35 the K-channel inlet-outlet functions to partially disperse flow 

instabilities so that operations are less sensitive to instabilities arising during extended operation. 

As a consequence of its versatility and robustness, K-channel devices and arrays of K-channels 

demonstrate significant potential for rational design and dynamic reconfiguration of complex 

droplet reaction sequences. 

 

Fundamental K-Channel Operations 

K-channel behavior with aqueous flow through the cross-channel follows the Hagen-

Poiseuille Equation:45  

 

Q = ΔP/RH (1) 

Figure II.1. K-channel device operation. Arrows indicate flow directions. After forming at a 

T-junction (left), droplets (blue) flow through the main channel to the K-channel element 

(right). The K-channel fluid (orange), an aqueous or an oil phase, flows through the cross-

channel in an anti-parallel direction relative to main channel flow. An electric field may be 

supplied via the electrode channels (gray) to destabilize passing droplets. Through the 

interaction at the K-channel, droplet size, number, composition, and spacing can be altered. 
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where Q is the volumetric flow rate through a system volume, ΔP is the pressure drop across the 

system volume, and RH is the hydraulic resistance of the system volume derived from the viscosity, 

the channel length, and the channel cross-sectional area. 

Selecting the junction of the cross-channel with the droplet channel as the system volume 

specifically describes the K-channel: 

 

QJ = ΔPJ/RH,J (2) 

 

where QJ is the flow through the junction (from the cross-channel into the main channel), ΔPJ is 

the pressure drop across the junction, and RH,J is the hydraulic resistance of the junction. QJ > 0 

corresponds to injection, QJ < 0 corresponds to extraction, and QJ = 0 corresponds to no net droplet 

volume change. 

The pressures for droplet formation applied to the oil continuous phase, ΔPC, and to the 

aqueous dispersed phase, ΔPD, are held constant. Assuming constant hydraulic resistance for a 

single device at equilibrium, varying the pressure applied to the K-channel inlet, ΔPK, leads to: 

 

ΔPJ = c1 * ∆PK + c2 (3) 

 

where c1 and c2 are constants derived from ΔPC, ΔPD, and the hydraulic resistances of the device. 

Clearly, ΔPJ is directly proportional to ΔPK. Substituting Equation 3 into Equation 2: 

 

QJ = c3 * ∆PK + c4 (4) 
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where c3 and c4 are constants derived in the same manner as c1 and c2. Thus, QJ is also directly 

proportional to ΔPK. Because it alters the sign and magnitude of QJ, changing ΔPK enables injecting 

into or extracting from droplets over a working range of volumes. 

Removing the destabilizing electric field establishes a relatively high RH,J based on the 

Laplace pressure of the aqueous-oil interface.19 Under a limited range of pressure conditions, this 

can be exploited to approximate QJ = 0, where a robust droplet-K-channel fluid interface prevents 

volume exchange between droplets and the aqueous cross-channel flow. At slightly lower 

pressures (where QJ < 0 and |QJ| is small) oil may stream out from the main channel into the K-

channel outlet to decrease the spacing between droplets. Significant deviations from QJ = 0 result 

in irregular droplet splitting (for QJ < 0) or new droplet formation from the cross-channel fluid (for 

QJ > 0). On the other hand, oil flow (instead of aqueous flow) through the cross-channel can lead 

to both dispersed and continuous phase removal through the K-channel (droplet splitting and oil 

removal) when QJ < 0. For QJ > 0 with oil flow, additional oil enters the main channel to increase 

the spacing between droplets. 

Figure II.2 displays the fundamental K-channel operations described by this model. 

Representing a typical device geometry, the 40 µm wide main channel (flowing left to right) 

intersects with the cross channel (flowing right to left) using a 25 µm wide inlet channel (right) 

and a 40 µm wide outlet channel (left). Droplets formed upstream at a T-Junction under constant 

pressure. While manipulating the pressure at the K-channel inlet, relatively high pressure (85 kPa) 

injected orange dye from the cross-channel into passing droplets in the presence of an electric field 

(Figure II.2a and Movie SMII.1). Decreasing the pressure (45 kPa) extracted fluid from droplets 

into the cross-channel in the presence of an electric field (Figure II.2b and Movie SMII.2).  
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Moderate pressure (73 kPa) without electric field created a stable and robust droplet-cross-channel 

interface (Figure II.2c and Movie SMII.3). Finally, oil flow with low pressure (20 kPa) and without 

electric field yielded droplet splitting (Figure II.2d and Movie SMII.4). As Figure II.2 

demonstrates, changing the applied conditions (pressure, electric field, fluid), enabled a wide range 

of operations, not only with a single geometry, but by a single device, a novel capability which 

will be useful in designing and optimizing modular droplet microfluidic assays. 

 

Device Architecture Characterization 

The performance of the K-channel over typical operating conditions is shown in Figure 

II.3. All data was collected using a standard K-channel geometry (see Figure II.2) unless otherwise 

noted. In Figure II.3a, the net change in droplet volume due to interaction with the aqueous phase 

in the K-channel across a range of K-channel pressure is plotted. Depending on the applied 

pressure, up to 50% of droplet volume could be extracted and up to 100% of droplet volume could 

be injected. Additionally, in the absence of an applied electric field, a stable interface between  

Figure II.2. Multiple K-channel operations on a single device. Droplets flow left to right. The 

K-channel continuous phase flows right to left. a) High K-channel pressure with electric field 

injects into droplets. b) Low K-channel pressure with electric field extracts from droplets. c) 

Moderate K-channel pressure without electric field maintains the droplet-K-channel interface. 

d) Low K-channel pressure without electric field splits droplets under oil flow.  (scale bars = 

100 µm) 
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droplets and the K-channel (in which droplet volume and composition were unaffected) was 

supported over a ~12 kPa range. At the lower pressures of this stable interface range, oil was 

selectively removed from the main channel, decreasing droplet spacing but leaving droplet 

composition and volume unchanged (see Figure II.S1). While operating in this stable range, pulsed 

application of the electric field enabled injections into fractions of the total droplet population 

(Movie SMII.5). The number of droplets receiving injections was defined by the droplet frequency 

and the duration of the applied electric field. Importantly, injection and material transfer only 

occurred in the presence of the electric field, so droplets passing the K-channel before or after the 

electrical pulse were unaltered. This performance was robust across multiple replicates of each 

device geometry (N = 3). 

Equation 4 predicts that fluid flow from the cross-channel into droplets should be directly 

proportional to the pressure applied to the K-channel inlet, but it is clear that net droplet volume 

change does not follow a linear trend (Figure II.3a). Because droplet formation and the K-channel 

are controlled via applied pressure, changing the pressure at one inlet changes the relative pressure 

Figure II.3. K-channel operation characterization. a) Net droplet volume change becomes more 

positive with increasing applied K-channel pressure. In the highlighted region, a stable droplet-

K-channel fluid interface occurs in the absence of an applied electric field. b) K-channel 

volumetric flow rate into droplets is directly proportional to applied pressure (R2 = 0.981). c) 

Increasing the K-channel inlet hydraulic resistance (by decreasing the inlet channel width from 

40 µm to 25 µm to 15 µm) decreases net droplet volume change. d) Increasing applied K-

channel pressure reduces the droplet fraction removed during oil flow-induced droplet splitting. 



70 

 

drop and, therefore, volumetric flow rate, across every channel in the device. Thus, droplet 

frequency and, to a lesser extent, droplet volume decrease as the K-channel pressure increases.16 

By taking the product of the net change in volume per droplet, ΔVNet,Droplet, and the droplet 

frequency, f, at each pressure, we obtained approximate values for the volumetric flow rate from 

the cross-channel into droplets, QJ: 

 

QJ = ΔVNet,Droplet * f (5) 

 

Plotting this flow rate versus K-channel pressure yielded a linear relationship (R2 = 0.981) 

consistent with the model (Figure II.3b). Minor deviations from linearity are not surprising given 

limitations of the single phase, laminar flow-based Hagen-Poiseuille-based model,45 which also 

does not account for any oil extraction from the inter-droplet spacing during K-channel operation. 

While changing pressure enabled a range of operations, K-channel behavior can also be 

tuned by varying the geometry. Most significantly, altering hydraulic resistances (by changing the 

K-channel inlet width across a range of sizes from 15 µm to 40 µm) adjusted performance (Figure 

II.3c). As the width decreased, the channel hydraulic resistance increased, so a greater fraction of 

the pressure drop occurred across the length of the inlet channel instead of across the junction 

between the cross-channel and the main channel. Flow into droplets became more negative at each 

pressure. On the other hand, flow into droplets increased when the hydraulic resistance of the K-

channel outlet increased (data not shown). For this reason, the standard K-channel geometry (25 

µm inlet, 40 µm outlet) is asymmetrical: changing cross-channel flow direction (40 µm inlet, 25 

µm outlet) selects between two ranges for K-channel pressures on a single device when desired. 

Nonetheless, flow direction does not intrinsically affect net droplet volume change. A symmetric 
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K-channel with 40 µm wide inlet and outlet channels did not significantly differ in performance 

with flow direction at 95% confidence (Student’s t-Test, Figure II.S2). Likewise, changing the 

angular orientations of the cross-channels had little effect (Figure II.S3) relative to changing 

channel widths. By altering the geometry, K-channels can be rationally designed to provide desired 

operations in a chosen pressure range. 

The K-channel also provides a simple method for tunable droplet splitting. Adjusting the 

pressure on the K-channel altered droplet splitting so that 15-50% of the droplet (1:5 – 1:1 daughter 

droplet ratio) was diverted into the cross-channel in each splitting step (Figure II.3d). This method 

provides an advantage over many previously described droplet splitting regimes: it does not require 

prototyping a new device with a different ratio of hydraulic resistances to adjust the size of 

daughter droplets,24, 25 a capability not widely demonstrated by existing methods.26, 28 At high K-

channel pressure, oil was injected into the main channel to increase droplet spacing, but droplets 

did not split (data not shown). 

Finally, K-channel devices are not limited to single operations. Instead, serial or parallel 

K-channels can enable multistep sequences on a single device. For example, two K-channels were 

operated in series (Movie SMII.6). Water droplets formed upstream were injected with yellow dye 

at the first K-channel, mixed and incubated through a serpentine region, and injected with black 

dye at the second K-channel. Adjusting the length and geometry of the channel between the two 

K-channel injections tunes reaction time.22 Moreover, tandem operations need not be identical, so 

droplets could first be injected with reagent at one K-channel, then split at the next K-channel, etc. 

As noted above, adjusting the pressure on one K-channel modifies the flow through every 

channel.45 Therefore, careful attention will be necessary to design multistep devices to orient 

multiple K-channel geometries such that they operate under mutually compatible pressures; 
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however, the versatility of this geometry allows for the potential for dynamic reconfiguration. 

 

Contamination and Bidirectional Material Exchange 

During injection and extraction, the droplet-K-channel fluid interface collapses 

temporarily. Droplets mix and exchange with the K-channel fluid in a mass transfer process 

governed by the pressure drop across the K-channel, diffusion, and convective turbulence during 

fluid merger and breakup. While any injection technique which transiently fuses droplets with a 

reagent stream will extract some fraction of droplet material into the injected fluid, the K-channel 

explicitly addresses the inter-droplet contamination that may result. Leveraging the continuous 

flow through the cross-channel, the K-channel significantly reduces the risk of contamination from 

re-injecting extracted material from one droplet into later droplets. In Figure II.4a (Movie SMII.7), 

the fluid passing the K-channel decreases 85% in fluorescent intensity between injection events at 

300 Hz, indicating efficient clearing of extracted material. When desired, this can be improved by 

Figure II.4. K-channel material exchange. During K-channel operations that merge droplets 

with the continuous aqueous phase, bi-directional exchange of material occurs. a) The K-

channel extracts fluorescein from droplets as it injects water. Continuous flow through the K-

channel washes away extracted fluorescein to reduce the likelihood for droplet-to-droplet cross-

contamination. The white arrow highlights the position of a single droplet across subsequent 

frames. b) Monitoring the net change in droplet volume and fluorescein concentration at the K-

channel enables c) decoupling of the relative magnitudes of water injection, fluorescein 

extraction, and net volume change (the sum of injection and extraction) at each K-channel 

pressure. (scale bar = 100 µm) 
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decreasing droplet frequency or increasing cross-channel linear flow rate to replace a greater 

fraction of cross-channel volume. Other injection methods lack the direct capability to flush out 

accumulated contaminants between injection events.18, 19, 35 Though continuous replacement of 

fluid through the K-channel does increase reagent consumption, the versatility of the design allows 

for the reduction/elimination of cross-contamination depending upon the application.   

Besides monitoring the net volume change per droplet, ΔVNet,Droplet, decoupling the volumes 

simultaneously injected, VInjected, and extracted, VExtracted, informs an understanding of droplet 

composition following K-channel operations: 

 

ΔVNet,Droplet = VInjected + VExtracted (6) 

 

In order to quantitatively characterize simultaneous material exchange during K-channel 

operations, droplet volume changes and fluorescence intensity were measured for water injection 

into fluorescein droplets (Figure II.4b). This information, coupled with Equation 6, was used to 

decouple injection and extraction components (Figure II.4c): 

 

[Droplet]F = [Droplet]0 * (V0 + VExtracted) / VF (7) 

 

where [Droplet]F and [Droplet]0 are the final and initial fluorescein concentrations in the droplet, 

and VF and V0 are the final and initial droplet volumes. 

While the injection or extraction terms dominated at high or low pressures, respectively, 

performance at intermediate pressures included significant contributions from injected and 

extracted volumes. For instance, intermediate pressure conditions simultaneously added and 
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removed approximately 20% of droplet material. Therefore, it is critical to account for 

bidirectional material exchange when designing droplet reaction sequences to ensure that intended 

reagent concentrations are reached. Notwithstanding, in cases where cross contamination or 

bidirectional material transfer are unacceptable risks, techniques like droplet fusion and droplet 

splitting are alternative strategies. 

 

Biochemical Compatibility 

Besides characterizing the physical responses of K-channel devices to internal and external 

perturbations, we also wanted to demonstrate the amenability of K-channel systems to biochemical 

droplet manipulations. Based on the extended dynamic range and ease of tuning for K-channel 

injections, we envision that K-channel devices could be especially suitable for precise 

measurement of enzyme kinectics.5, 7 For example, K-channel devices can routinely scan across a 

range of substrate injection volumes into enzyme-containing droplets. Coupled to the rapid internal 

convection of in-droplet mixing, this approach should enable rapid determination of enzyme 

velocities.46, 47 To this end, we confirmed the bio-compatibility of K-channel operations for this 

purpose by monitoring the action of β-galactosidase on K-channel-injected substrate (resorufin β-

D-galactopyranoside) in a downstream incubation region (Movie SMII.8). As mentioned 

previously, the increased reagent consumption via K-channel flow may make this approach poorly 

suited to studying some enzyme systems, but careful assay design can minimize substrate 

consumption. 

 

Superparamagnetic Bead Capture and Sample Washing 
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In characterizing performance and material exchange, it is clear that the K-channel offers 

significant versatility in modifying droplet size and composition. Up to this point, we have 

presented K-channel operations which interact non-selectively with droplet contents. However, 

some reaction sequences must include selective steps like concentrating samples, decanting 

supernatants, and buffer exchange. To these ends, magnetic beads present an opportunity for 

capturing samples on a functionalized solid phase subject both to fluid flow and to applied 

magnetic field. Recently examples have integrated on-chip magnetic fields to concentrate and 

manipulate bead-bound samples, typically by splitting droplets and collecting beads in one of the 

two daughter droplets.13, 27-31, 38, 39 We have expanded magnetic bead capture to take advantage of 

the simple tunability (1:1 to 1:5 daughter droplet ratio) and high throughput (200-500 Hz) of K-

channel droplet splitting. 

The K-channel device was modified to incorporate an array of N52 magnets 250 µm away 

from the main channel-cross-channel intersection (Figure II.5a).  As droplet-encapsulated 

superparamagnetic beads approached the K-channel, the magnetic force concentrated them toward 

one side of the droplet as: 

 

Fm = (1/µ0) * (m * ∇)B (8) 

 

where Fm is the magnetic force on a point-like magnetic dipole (bead), µ0 is the magnetic 

permeability of a vacuum, m is the magnetic moment of the dipole (assumed to be saturated and 

position independent in the vicinity of the magnet), and B is the magnetic field.28, 48 

When performing magnetic bead operations in droplets, uniform magnetic bead 

encapsulation is of particular interest. Bead encapsulation in the presence of a magnetic field has 
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been shown to result in ordering and chain formation that lead to variance in per droplet bead 

abundance.27 To this end, we displaced the droplet-forming flow focusing structure 1 cm from the 

leading edge of the magnet. A serpentine mixer directly upstream of encapsulation also contributed 

to the disruption of chain formation. Finally, we compensated for gravity-based bead settling and 

aggregation by shortening the tubing connection to the device (5 cm) and by adding Optiprep 

Density Gradient Medium (Sigma Aldrich) to the bead suspension. This decreased magnetic bead 

settling, and first passing beads through a 15 µm pore microfluidic device removed contaminants 

and large aggregates prior to use. Overall, 10 ± 3 superparamagnetic beads (1-3 µm diameter) were 

encapsulated per droplet. 

As droplets approached the magnet, beads were selectively pulled into the lower 

hemisphere of the droplet (away from the K-channel intersection), and, after droplet splitting, the 

Figure II.5. Magnetic bead capture. a) Schematic of bead capture device. Arrows indicate flow 

directions. Magnetic bead (brown) containing droplets (blue) form at a flow focusing geometry 

(left) followed by droplet splitting under oil flow at a K-channel (middle). During droplet 

splitting, a magnet (dark gray) pulls beads into only one of the two daughter droplets. Electrode 

channels (light gray) are not enabled during this operation. After droplet splitting, waste 

droplets without magnetic beads (upper) and sample droplets with magnetic beads (lower) flow 

to the detection channels (right). b) The nearby magnet pulls beads (circled in red) into one of 

the two daughter droplets during droplet splitting at the K-channel. c) The detection channels 

show high incidence (96%) of magnetic beads in the sample droplets (lower channel) and low 

incidence (4%) of magnetic bead loss (white arrow) into waste droplets (upper channel). (scale 

bar = 100 µm) 
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majority of beads were retained in the main channel. Daughter droplets flowed through a 

serpentine mixer to recirculate beads before passing into a detection channel region. Figures II.5b-

c provide representative examples of bead capture at the K-channel (Movie SMII.9) and at the 

detection channels (Movie SMII.10). Under these conditions, K-channel droplet splitting retained 

96 ± 1% of magnetic beads when removing 50 ± 1% of droplet volume at a droplet frequency of 

380 ± 20 Hz. (See Figure II.S4 for a detailed description of magnetic bead capture analysis.) While 

some devices have reported larger droplet fractions removed (60-90%) or higher capture 

efficiencies (98-100%), K-channel magnetic separation proceeds at droplet frequencies more than 

an order of magnitude faster than these approaches (0.5-30 Hz).27-29 We anticipate that K-channel 

bead retention would be similarly improved by velocity reduction to increase the residence time 

for beads in the magnetic field. Ongoing work seeks to concentrate magnetic beads in smaller 

droplet fractions per splitting event. 

Given the versatile range of K-channel operations, we expanded our K-channel devices to 

include a full sample washing mode. Figure II.6 (Movie SMII.11) demonstrates how magnetic 

bead-laden droplets passing through the device (Figure II.6a) split at the first K-channel (Figure 

II.6b), are respaced at an oil channel (Figure II.6c), and double upon water injection at the second 

K-channel (Figure II.6d). By removing 46 ± 2 % of droplet volume during splitting followed by 

injecting 93 ± 7 % of remaining daughter droplet volume, the washing device effected a net 

concentration decrease of 48 % with only a net volume increase of 7 % across the device. 

Importantly, droplet washing at 200 ± 10 Hz successfully retained 98 ± 5 % of encapsulated 

magnetic beads. While Electrowetting on Dielectric (EWOD) devices routinely manipulate small 

droplet populations or single droplets at a time through washing steps,49 very few examples have 

interfaced this technique into continuously flowing droplets.38, 39 This K-channel approach 
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provides a rapid (200 Hz), highly efficient (98% retention), and tunable washing strategy for 

continuously flowing droplet microfluidic systems. 

 

CONCLUSIONS 

Broadly speaking, methods for fluid manipulation within droplet microfluidics typically 

rely upon monofunctional device components that have limited capacity to be dynamically 

controlled. In contrast, the K-channel is a multifunctional tool that in a single design can 

accomplish a wide range of common droplet operations. Droplets can be injected into, extracted 

from, split, and respaced. Integration of a magnet even allows selective sample manipulation in 

droplet splitting and washing operations. As a modular building block, parallel and serial 

combinations of K-channels can be interfaced to perform sophisticated chemical and biochemical 

reaction sequences. Furthermore, we anticipate that K-channel’s robustness, ease of tuning, and 

versatility in changing operations will be very attractive features, especially in using this device as 

a fundamentally enabling tool for rapid optimization of on-chip chemistry. 

Figure II.6. Magnetic Bead Washing.  (a) Schematic of washing device. Light gray arrows 

indicate flow direction. After magnetic bead encapsulation in droplets (not shown) droplets (b) 

split at the leftmost K-channel under parallel oil flow, (c) respace at an oil channel, and (d) 

double in size upon injection at the rightmost K-channel using parallel water flow in an electric 

field (supplied by red electrode channels in schematic). Magnetic beads (highlighted by red 

arrows) are pulled toward the magnet (dark gray in schematic) and are retained during 

operations. (scale bars = 100 µm) 
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SUPPLEMENTARY INFORMATION 

The supplementary information in its original format (including videos) may be accessed 

online at doi: 10.1021/acs.analchem.6b05041. 

Supplementary Movie SMII.1. K-channel injection. High K-channel pressure with electric field 

injects fluid into droplets. The K-channel flows from right to left. 

Supplementary Movie SMII.2. K-channel extraction. Low K-channel pressure with electric field 

extracts fluid from droplets. The K-channel flows from right to left. 
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Supplementary Movie SMII.3. K-channel stable interface. Moderate K-channel pressure without 

electric field establishes a stable droplet-K-channel interface. The K-channel flows from right to 

left. 

Supplementary Movie SMII.4. K-channel droplet splitting. Low K-channel pressure without 

electric field splits droplets. Oil flows from right to left across the K-channel. 
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Supplementary Movie SMII.5. Injection with pulsed electric field. If the device is in the pressure 

range for forming a stable droplet-K-channel interface, temporarily applying the electric field can 

inject into a subset of the total water droplet population (originally non-fluorescent). The duration 

of the electric field pulse is controlled manually or by an in-house LabView application. 

Supplementary Movie SMII.6. Serial K-channel operation. Two K-channels inject reagents into 

droplets in the presence of electric fields at each K-channel. The leftmost K-channel flows left to 

right, and the rightmost K-channel flows right to left. Serial K-channels may also perform non-

identical operations (i.e., injection followed by droplet splitting). 









86 

Supplementary Movie SMII.7. K-channel material exchange. As water injects into passing 

droplets, the K-channel extracts fluorescein from the droplets. Continuous flow through the K-

channel (right to left) reduces the risk for droplet-to-droplet cross-contamination by washing away 

extracted fluorescein. 

Supplementary Movie SMII.8. K-channel-enabled enzyme chemistry. Visualizing the 

downstream incubation region demonstrates β-galactosidase activity on K-channel-injected 

resorufin β-D-galactopyranoside in droplets (flowing left to right). Fluorescence intensity 

increases as the concentration of fluorescent product increases in each droplet. Adjusting the 

magnitude of K-channel injection doses enzyme droplets with desired substrate quantities. 
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Supplementary Movie SMII.9. K-channel magnetic bead capture. An assembly of 1/2’’ x 1/4’’ 

x 1/8’’ N52 magnets positioned ~250 µm from the K-channel pulls magnetic beads away from the 

K-channel as low K-channel pressure without electric field splits droplets. As a result, most

magnetic beads concentrate in main channel droplets (lower), and few escape into waste droplets

(upper). Oil flows from left to right across the K-channel.

Supplementary Movie SMII.10. Magnetic bead detection. After magnetic bead capture, main 

channel droplets with captured magnetic beads (lower) and waste channel droplets with lost 

magnetic beads (upper) flow through a slower velocity, larger cross-section channel further 

removed from the magnet (to reduce marginalization of the beads) for analysis. 
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Supplementary Movie SMII.11. Magnetic bead washing. Droplet splitting removes 46 ± 1 % of 

droplet volume (leftmost panel), an oil channel respaces droplets (center panel), and water 

injection (left to right K-channel flow) adds 93 ± 7 % of remaining droplet volume (rightmost 

panel) at 200 Hz on a single device. During this sequence, 98 ± 5 % of droplet-encapsulated 

superparamagnetic beads were retained, initial droplet concentration was reduced by 48 %, and 

droplet volume increased by only 7 %.  
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SUPPLEMENTARY FIGURES 

 

 
 

Figure II.S1. K-channel oil extraction. Droplets flow left to right. The K-channel aqueous phase 

flows right to left, and no electric field is applied. For low pressures within the range of stable 

droplet-K-channel interface formation, a fraction of the oil selectively extracts through the K-

channel. In this example, the original distance between droplets, d0, is reduced by 40% to the final 

distance, df. Droplet volume and composition are unaffected. (scale bar = 100 µm) 

 

 

 
 

Figure II.S2. Directional independence of K-channel operations. a) Parallel (blue) and antiparallel 

(orange) arrows indicate flow through a symmetric K-channel relative to droplet flow (dark gray) 

arrow. b) Net volume change for each applied K-channel pressure does not vary significantly with 

flow direction for a symmetrical K-channel device. 
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Figure II.S3. K-channel cross-channel angle characterization. a) K-channel schematic 

highlighting the angle between the cross-channel and the main channel, ϕ, and the angle between 

the two side channels, ϴ. b) Varying angle ϕ has little effect on K-channel performance. c) Varying 

angle ϴ does not significantly impact K-channel performance. 
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Figure II.S4. Magnetic bead quantitation.  (a) Original image of detection region.  (b) Red dots 

highlight magnetic beads or magnetic bead aggregates. Each independently circulating body 

(single particles and aggregates of many particles) is counted as one magnetic bead entity. By 

monitoring each droplet across the entire detection region, magnetic beads from the fringes of 

droplets can be detected, and aqueous extra-droplet satellites and channel defects can be 

discriminated from magnetic beads.  (c) Histogram of magnetic bead distribution in main channel 

sample droplets and in waste channel droplets. For each droplet population, N = 3 devices with N 

= 100 droplets for each device. (scale bars = 100 µm) 
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Chapter III 

Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and 

Content Manipulation Using Integrated Electric and Magnetic Fields 

 

Reproduced from Sahore, V., Doonan, S.R., and Bailey, R.C. “Droplet Microfluidics in 

Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation Using 

Integrated Electric and Magnetic Fields.” Analytical Methods 2018, 10: 4264-4274. with 

permission from the Royal Society of Chemistry. Available at doi: 10.1039/C8AY01474D. 

 

INTRODUCTION 

Droplet microfluidic devices segment samples of interest into small-scale volumes (often 

fL to nL) encapsulated within an immiscible carrier fluid. Sample segmentation has multiple 

analytical advantages including minimized sample loss to channel fouling and low reagent 

consumption. Additionally, inert carrier oil prevents significant cross-contamination among 

sample volumes, and the small length scales and flow characteristics inside droplets enhance mass-

transport, thus making them suitable for applications using limited sample volumes and requiring 

fast reactions.1-4 Accordingly, droplets have found utility in a variety of integrated (bio)chemical 

analyses such as single-cell protein profiling,5 genome sequencing,6 chromatin digestion and 

nucleosome positioning determination,7 enzyme-modulator screening,8, 9 protease activity 

determination,10 and polymerase chain reaction of single-copy DNA molecules.11 Droplets are 

primarily generated using T-junction12 and flow-focusing configurations,13 and integrated 
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downstream operations have been developed to add reagents,14, 15 incubate reactions,16 merge and 

split droplets,15, 17, 18 or use electric and magnetic fields to sort droplets of interest.19-21  

Initially, droplet microfluidic devices were tested in different materials including 

poly(dimethyl siloxane) (PDMS),22 urethane,23 and thermoplastics,12, 24, 25 with PDMS emerging 

as the most popular due to the ease of fabrication via soft-lithography techniques.6, 11, 16, 26 

Moreover, rapid prototyping of PDMS and amenability to the complex, integrated designs needed 

for droplet analysis have further established PDMS as the material of choice for most droplet 

microfluidic architectures.27, 28 These PDMS droplet devices have well-characterized surface 

chemistries, but they are not suitable for large-scale production and have some limitations in terms 

of solvent compatibility and changes in material surface properties over time.29, 30 Other 

conventional materials for prototyping, such as silicon31 and glass,32 have also been used to make 

microfluidic devices, however, the material hardness, inability to be thermo-molded, and high 

manufacturing costs present potential limitations for their usage in applications requiring mass 

production.  

Mass manufacturable thermoplastics take advantage of well-characterized and stable 

chemistries and are the material of choice for many large-volume, disposable consumables, 

including many within the healthcare marketplace.33 Depending upon the critical dimensions and 

required channel quality, techniques such as laser engraving,34 hot embossing,35 and injection 

molding36 are capable of imprinting micro-channels into thermoplastic materials. Importantly, 

these all have high-volume production capability. Laser engraving is the simplest method with 

rapid prototyping potential, however, the quality of native engraved channels, including channel 

roughness and uniformity, is often insufficient and requires additional chemical processing steps 

to make them suitable for droplet microfluidic operations.37 Hot embossing and injection molding 
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techniques both use a master mold from which micro-channel features can be transferred into 

moldable thermoplastics. Typically, master fabrication employs state-of-the-art semiconductor 

processing techniques such as photolithography, deep reactive ion etching (DRIE), and 

electroplating to generate complex designs with critical dimensions in micron to sub-micron scales 

suitable for droplet microfluidic operations.38, 39  

Commonly used thermoplastics for microfluidic applications are poly(methyl 

methacrylate) (PMMA), cyclic olefin polymer (COP), polycarbonate (PC), and polypropylene 

(PP). PMMA and COP are interesting materials—particularly as an intermediate step between 

prototyping and mass production—due to their moderate-cost, easy availability, and excellent 

optical transparency. The amenability of PMMA and COP to hot embossing and injection molding, 

the low bonding temperatures required for PMMA and COP layers, and the compatibility of 

PMMA and COP with standard chip-to-world microfluidic interconnects further make them 

compelling materials for fabricating complex designs needed for droplet microfluidic operations.40 

Moreover, well-studied surface properties of PMMA and COP facilitate the introduction of 

hydrophobic surface modifications critical to stable droplet generation and manipulation.41, 42 

Beyond droplet generation,12, 13 the range of useful droplet manipulations includes direct 

reagent injection into droplets14, 15 and droplet splitting to parallelize reactions or remove waste,15, 

43, 44 among others,1 providing needed control over in-droplet chemistry. While these operations 

have been well characterized in PDMS, translation of droplet technologies into thermoplastics for 

mass fabrication depends on robustly demonstrating these processes in thermoplastic devices. 

Droplets form at T-junctions, direct injection occurs via electrically-mediated picoinjectors,14 and 

splitting occurs at channel bifurcations.44, 45 More recently, we developed a multifunctional K-

channel geometry for manipulating droplets and leveraged it for not only direct injections but also 
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for selective droplet decanting and washing steps via integrated magnetic field that concentrated 

in-droplet magnetic beads during droplet splitting operations.15 To realize these components in 

thermoplastics, it is critical to establish material compatibility with required electric and magnetic 

fields as well as to fundamentally replicate channel features with spatial resolution and fidelity 

comparable to PDMS. Ideally, droplet microfluidic device components would be tested both 

individually and as integrated devices to broadly demonstrate the applicability of thermoplastic 

materials for sophisticated droplet microfluidic analyses. 

In this work, we have developed a fabrication workflow to produce droplet microfluidic 

devices in mass-manufacturable thermoplastics, integrating droplet generation, electric field-

assisted reagent injection, and droplet splitting with magnetic bead collection. Silicon masters were 

fabricated using photolithography and DRIE. Then microfluidic channels were hot embossed into 

PMMA and COP using this template, followed by solvent-assisted low-temperature bonding and 

ultraviolet light-assisted hydrophobic modification of channel surfaces. After fabrication, several 

essential droplet microfluidic functions were demonstrated in PMMA. A simple T-junction design 

was used to show stable droplet generation without surface wetting. Next, electric field-assisted 

reagent injection into passing droplets was demonstrated using both picoinjector and K-channel 

configurations. Subsequently, magnetic field compatibility was evaluated with K-channel-based 

droplet splitting for magnetic bead concentration. These operations were then combined to realize 

an integrated magnetic bead-in-droplet washing device with both electric and magnetic fields to 

demonstrate the suitability of this fabrication workflow to enable robust droplet microfluidic 

applications in thermoplastic materials. Finally, we used the integrated microfluidic devices made 

in COP to perform an in-droplet -Galactosidase enzymatic assay and demonstrated their potential 
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for (bio)chemical applications. These complex devices provide an early translational step in 

engineering mass-fabricated thermoplastic devices for integrated in-droplet (bio)chemical assays. 

 

EXPERIMENTAL SECTION 

 

Chemicals and Materials 

Bare silicon wafers were obtained from University Wafers (Boston, MA). 1.5 mm and 2 

mm thick poly (methyl methacrylate), PMMA, sheets were purchased from Evonik (Sanford, ME). 

1 mm and 2 mm thick cyclic olefin polymer, COP, ZEONOR 1060 R sheets were purchased from 

Zeon Specialty Materials (San Jose, CA). Fluorinert FC 40, optiprep density gradient medium, 10-

m size streptavidin-functionalized magnetic beads, and biotin--Galactosidase were purchased 

from Sigma Aldrich (Milwaukee, WI). Novec 7500 Engineered Fluid was from 3M (Maplewood, 

MN). Fluorosurfactant-008 for droplet stabilization was purchased from RAN Biotechnologies 

(Beverly, MA). Potassium hydroxide pellets and resorufin--D-galactopyranoside were from 

Thermo Fisher Scientific (Waltham, MA). Food coloring dyes were obtained from McCormick 

(Baltimore, MD). Heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane used for PMMA and 

COP channel surface modification was purchased from Gelest (Morrisville, PA). All solutions 

were passed through Nylon syringe filters (0.2 m pore size) from VWR International (Radnor, 

PA) to remove particulates. NdFeB permanent magnets were purchased from K&J Magnetics, Inc. 

(Pipersville, PA). All aqueous solutions were prepared in 18 M deionized water purified using a 

Barnstead GenPure water purifying system from Thermo Scientific (Waltham, MA).  

 

Device Design and Fabrication 
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Devices were designed using AutoCAD, and the masks were printed on transparent thin 

film sheets (CAD/Art Services, Bandon, OR). Five different designs comprising the T-junction; 

picoinjector; electrical K-channel; magnetic K-channel; and integrated T-junction, electrical K-

channel and magnetic K-channel configurations were tested. All the designs were initially tested 

using PMMA, and subsequently after initial testing, the enzymatic assay was performed with the 

integrated devices manufactured in COP. All channels (except the wider K-channel side with 150 

m width) were 100 m in width. K-channel and picoinjector junctions with the main channel had 

100 m and 50 m wide openings, respectively. Typical channel lengths were 1.3 to 7.5 cm. 

Electrode channels were spaced 100 m from the main channel, and the permanent magnet was 

spaced 500 m from the main channel. All device inlets were 1.2 mm in diameter.     

Microfluidic channels were hot embossed into 1.5 mm thick PMMA or 1 mm thick COP 

sheets using silicon masters according to the overall workflow described in Figure III.1. To 

generate masters, 4” bare silicon wafers were spin coated with SPR220 photoresist (Dow 

Chemical, Midland, MI) and exposed to UV light (MA-6/BA-6 Mask and Bond Aligner, SUSS 

MicroTec, Garching, Germany) through the appropriate photomask. After a pre-development bake 

the wafers were developed using AZ726 metal ion free developer. Developed wafers were etched 

with deep reactive ion etching (STS Peagasus4, SPTS Technologies, Newport, UK) with etching 

gas, SF6, at 400 sccm; passivation layer gas, C2F6, at 200 sccm; for 100  10 cycles; and 7 or 6 

min. To remove the photoresist mask and residual polymer the etched wafers were cleaned using 

oxygen plasma: 800 sccm at 800 W and 150C for 6 min (YES CV200RFS, Yield Engineering 

Systems, Livermore, CA). Cleaned wafers were then diced (ADT 7100 Dicing Saw, Advanced 

Dicing Technologies, Yokneam, Israel) to obtain the individual silicon masters. To reduce the 

feature roughness the diced masters were etched with 40% KOH at 70C for 5 min. Before  
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embossing, the silicon masters were ultrasonically cleaned for 10 min each using acetone, IPA and 

DI water, respectively. 

Figure III.1. Device manufacturing in poly(methyl methacrylate) (PMMA) or cyclic olefin 

polymer (COP) through hot embossing using silicon masters fabricated by photolithography 

and deep reactive ion etching processes. 
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Hot embossing was performed on PMMA or COP using an in-house procedure. A 1.5 mm 

thick PMMA or 1 mm thick COP sample was aligned against the silicon master, and a glass slide 

was positioned on each side of the pair, followed by a copper plate for each side. This assembly 

was firmly clamped together with C-clamps (McMaster, Aurora, OH).46, 47 The complete clamp 

assembly was placed inside an oven (Thermo Scientific) at 135C for 26 min for embossing, and 

at 90C for 10 min followed by cooling to room temperature over 30 min to complete de-

embossing. 

For each embossed device, fluidic inlets (1.2 mm diameter) were drilled through another 2 

mm thick PMMA sample using a CO2 laser cutter (Universal Laser Systems, Scottsdale, AZ) or 2 

mm thick COP sample using the drill press (Cameron Micro Drill Presses, Sonora, CA). The 

position of these inlets complemented the channel geometry of the corresponding embossed 

sample. For the magnetic K-channel and integrated devices a rectangular slot was also cut in this 

layer to hold the permanent magnet. Drilled samples were flattened at 110C for 26 min for PMMA 

and 20 min for COP in the oven using the clamping assembly mentioned above (but with no silicon 

template in the assembly). 

PMMA layers were bonded using solvent-assisted low-temperature bonding48 and COP 

layers were bonded using the solvent-less high temperature bonding.46 Briefly, corresponding 

PMMA layers (the embossed channel portion and the drilled inlet portion) were bathed in ethanol 

for 10 min, dried, and aligned together in a clamping assembly as referenced above. Bonding 

occurred in the oven at 80C for 1-2 h, and the exact processing time depends upon the total 

bonding area (device size). COP layers were bonded at 110C for 20 min using the same procedure 

mentioned above but without using the ethanol/solvent bathing step. Bonded PMMA and COP 

device edges were sealed using acetonitrile and cyclohexane, respectively, as the solvents, and 
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channels were thoroughly vacuum cleaned using isopropanol and DI water. Commercially 

available NanoPort interconnects (Idexx Corporation, Westbrook, ME) were attached to PMMA 

and COP using epoxy and cured overnight.  

 

Device Characterization and Operation 

The quality of the hot embossed channels was determined using scanning electron 

microscopy (SEM) imaging (LEO 1455VP, Carl Zeiss AG, Oberkochen, Germany), after 

sputtering a thin layer of gold (Cressington Scientific Instruments, Watford, UK) onto the devices. 

Channel quality was also verified with optical microscopy and flow-through of isopropanol and 

DI water prior to droplet experiments. Profilometry (Dektak XT, Bruker, Tucson, AZ) was also 

used to measure the embossed channel depth and uniformity. 

To reduce dispersed phase surface wetting and to sustain stable droplet formation, the 

device channels of PMMA and COP devices were hydrophobically modified. Briefly, the channels 

were selectively exposed to UV light (Clearstone Technologies, Hopkins, MN) for 10 min by 

masking the non-channel regions with electrical tape. The exposed channels were treated with 10 

mM heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane diluted in FC 40 for 2 h at a flow rate 

of 2-5 L/min. Devices were then cleaned using FC 40 for 30 min at 10 L/min and DI water for 

30 min at 20 L/min. Modified device channels were then dried under vacuum for 30 min. 

In all experiments, the carrier oil continuous phase was 2% Fluorosurfactant-008 in Novec 

7500 Engineered Fluid. Water was the dispersed phase, except for experiments using suspensions 

of 10 µm diameter streptavidin coated magnetic microparticles (Sigma Aldrich, Milwaukee, WI) 

in optiprep density gradient medium (to reduce bead sedimentation). For picoinjector and K-

channel injections, black dye or yellow dye (for contrast without obscuring beads in integrated 
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devices) was injected. The continuous phase oil was flowed through the K-channel for magnetic 

bead enrichment during droplet splitting. For -galactosidase assay, the streptavidin-magnetic 

beads were derivatized with biotin--galactosidase for 1 h, at 4C in phosphate buffer saline (PBS), 

0.5 % bovine serum albumin (BSA) at pH 7.4. After binding, the bead contents were thoroughly 

washed using PBS, 0.5 % BSA, pH 7.4 buffer, and the beads were re-suspended in optiprep 

solution for on-chip loading. Resorufin--D-galactopyranoside in PBS, 0.5 % BSA, pH 7.4 buffer 

was used as the substrate solution for the electrical K-channel injection.     

A custom pressure-driven flow system supported by LabView (National Instruments, 

Austin, TX) was used to control the fluid flow through microchannels.15 Regulated N2 gas 

delivered to the headspace of sample vials forced fluid flow through 24 gauge Teflon tubing (Cole 

Palmer, Vernon Hills, IL) connected to the device through NanoPort interconnects, and flow rates 

for each solution were proportional to gas pressure. Typical applied pressures were from 10-40 

kPa. An electric field (~40 VAC) was supplied by a custom DC to AC inverter to charge the 3 M 

NaCl in water-filled electrode channels.49 A magnetic field was applied with a stack of four 0.4T 

NdFeB (0.5” x 0.25” x 0.125”) permanent magnets placed inside the rectangular slot in the top 

PMMA and COP layers. Droplet microfluidic operations were recorded using a high-speed camera 

(VEO 640L, Vision Research, Inc., Wayne, NJ) connected to a DMi8 microscope (Leica 

Microsystems, Wetzlar, Germany). Fluorescent images for the β-galactosidase enzyme assay were 

collected using a Texas Red Filter Cube installed on the microscope. Data was analyzed using 

ImageJ software (National Institutes of Health, Bethesda, MD) to monitor droplet volume, droplet 

frequency, and magnetic bead position. Each experiment was repeated on at least three different 

devices from each design and all reported values include at least N = 25 droplets for each condition 

to demonstrate representative performance. 
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RESULTS AND DISCUSSION 

 

Device Manufacturing 

Manufacturing devices with design complexity and channel dimensions comparable to 

PDMS is critical for adopting droplet microfluidic operations in thermoplastics. Initially, several 

materials were considered, including PMMA, COP, PC, and PP for this application. However, 

PMMA and COP were selected for their low cost, wide availability, and application-compatible 

physical properties (surface chemistry, optical window, and electromagnetic permittivity).40 Early 

attempts using laser engraved PMMA were unsatisfactory due to high channel roughness and poor 

control over channel depth and uniformity, and additionally, with COP, the material melting was 

an issue using the CO2 laser cutter. Even after post-process smoothing of PMMA channels, the 

devices could not support stable droplet operations. We then selected hot embossing, and 

established an in-house procedure to manufacture devices in PMMA and COP at lower set-up cost 

and reduced equipment requirements compared to injection molding.  

Silicon dioxide-silicon masters were originally fabricated using photolithography and wet 

etching techniques. Master fabrication worked well for simple, straight-channel designs; however, 

orientation-dependent over-etching interfered with more complex geometries.50 To overcome this 

problem, DRIE was successfully employed to generate isotropically etched features with high 

fidelity on silicon wafers. To reduce effects from scalloped features and surface roughness, which 

are associated with DRIE and could affect hot embossing yield, a 5 min KOH etching step was 

added that improved the de-molding yield of imprinted PMMA and COP. SEM imaging data in 

Figure III.2 demonstrates the quality of imprinted T-junction, picoinjector, and K-channel features 

in PMMA. Profilometry measurements gave a feature height of 30 ± 4 µm for deep reactive ion  
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etched silicon masters and channel depth of 29 ± 3 µm for hot embossed PMMA microchannel, 

with high embossing yield and uniform feature transfer. The observed small deviations in feature 

height and channel depth among templates is primarily due to the different number of cycles (100 

 10 cycles) used for different instances of wafer processing using DRIE. Moreover, a small 

variation in hot embossed channel depth (33 ± 0.3 µm, n = 5 measurement locations) across a 

single device confirms uniform pressure application during the embossing procedure. 

Next, the inlet PMMA and COP layer was bonded to the imprinted channel layer. There 

are a variety of techniques that can be used for PMMA-PMMA bonding.51 Ultimately, thermal 

bonding above the glass transition temperature of PMMA proved challenging for maintaining the 

channel quality, so solvent-assisted bonding at low temperatures was used instead, whereas the 

high temperature bonding was used for the COP device fabrication. With our existing pressure 

system set-up, we safely applied 100 kPa without any bonding failure. This applied pressure is 

limited by the system’s mechanical parts, but we believe, depending upon the microfluidic 

requirements, the applied pressure can be increased further to sustain the fluid flow. The channel 

smoothness and bonding worked well to support pressure-driven flow, as evidenced in the SEM, 

optical microscope, and solvent flow through studies. For reliable world-to-chip connections, 

Figure III.2. Scanning electron micrographs of hot embossed droplet microfluidic device 

components in PMMA. a) T-junction; b) Picoinjector; and c) and d) K-channel with working 

and reference electrodes. 
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commercially available microfluidic interconnects (Nanoports) were bonded to the devices with 

epoxy. 

Wetting of PMMA and COP device channels by the aqueous phase interferes with stable 

droplet generation. Initially, plasma oxidation was used to modify the channel walls before 

reaction with heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane to introduce a hydrophobic 

coating; however, unreliable oxygen plasma across the entire device footprint led to coating 

defects. To overcome this problem, UV-assisted activation of the channels46, 52 was used preceding 

treatment with heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane suspended in FC 40. This 

surface modification procedure allowed for stable droplet generation and subsequent complex 

device operation, as described below. 

 

Droplet Generation Using a T-Junction 

    Droplet generation is the first step in most droplet microfluidic device operations, and, 

therefore, a commonly-used T-junction geometry (Figure III.3a) was a first test objective for 

PMMA channels. As shown in Figure III.3b and III.3c, the water droplets suspended in fluorinated 

carrier oil were generated successfully. In this example, droplets had volumes of 330  15 pL (n = 

25 droplets) and were generated at 1.2 Hz frequency for further manipulation (see Supplementary 

Movie SMIII.1), but changing flow conditions (i.e. applied pressures) could alter volume and 

frequency to desired parameters.   

 

Reagent Picoinjection 

For adding reagents to pre-formed droplets to initiate in-droplet chemistry, direct injection 

advantageously does not require the added complexity of droplet train synchronization required  
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by approaches that pair and fuse sample and reagent droplets.14, 17 One such geometry for direct 

injection, the picoinjector, uses an electro-pneumatic mechanism to force fluid into passing 

droplets at the picoinjector-droplet (aqueous-aqueous) interface in the presence of an electric field, 

which disturbs the boundary between the approaching droplet and the aqueous phase in the injector 

channel.14 The applied pressure on the picoinjected fluid determines the amount of fluid injected. 

This operation in thermoplastic devices requires the penetration of electric field through PMMA, 

supplied through saline-filled electrode channels in our device. Considering the electrical 

properties of PMMA and limitations of embossing channels in PMMA (feature size and spacing, 

etc.), a picoinjector device with 200 m spacing between the boundary of the working electrode 

channel and the main droplet channel-picoinjector junction was designed (Figure III.4a). To 

demonstrate picoinjector operation, we injected black dye into passing water droplets to enable 

visualization, as shown in Figure III.4c (also see Supplementary Movie SMIII.2). Figures III.4b 

and III.4d show the droplet before and after the picoinjection. In this device operation, 70  10 pL  

Figure III.3. a) Device design for the T-junction droplet microfluidic operation in 

thermoplastic devices. b) Droplet generation at a T-junction fabricated in PMMA via 

embossing. c) Droplet flowing downstream of the T-junction down the main channel. 
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(or 23%) black dye was successfully injected into the input droplets of 310  10 pL, but changing 

picoinjector channel flow conditions (i.e. applied pressures) could alter the injected fluid volume. 

In the absence of electric field, the droplets do not interact and there is not dye (fluid) transfer, as 

shown in Figure III.4e. Overall, this data demonstrates both effective electric field application and 

fabrication with sufficient fidelity to enable picoinjection in PMMA, a useful direct reagent 

injection operation in droplet microfluidics. 

 

Reagent Injection Using the Multifunctional K-Channel 

Next, we tested the multifunctional K-channel design in reagent injection mode. This 

droplet manipulation scheme also relies on an electro-pneumatic direct injection mechanism, but 

stabilizes flow and reduces droplet-droplet cross-contamination by continuously flowing fresh 

reagent past the junction with the main channel.15 This device, shown in Figure III.5a, included a 

K-channel structure instead of the picoinjector but was otherwise identical in critical features   

Figure III.4. Picoinjector operation in PMMA for reagent injection into droplets. a) 

Picoinjector device design in thermoplastic material. b) Droplet flowing down a channel before 

the picoinector. c) Droplet immediately leaving the picoinjector in the presence of applied 

electric field and a zoomed image showing disruption of the droplet interface and exchange of 

fluid between the aqueous phases of the picoinjector and the droplet due to the applied electric 

field. d) Droplet flowing down the main channel after picoinjection. e) Droplet passing the 

picoinjector in the absence of applied electric field and a zoomed image showing no fluid 

exchange between the picoinjector and the passing droplet. WE: working electrode; RE: 

reference electrode. 
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 (channel length and cross-section, T-junction geometry, electrode channel structure, etc.). While 

a single K-channel device can be reconfigured between injecting reagents and extracting droplet 

volume, this first demonstration focused on electro-pneumatic fluid addition. Considering the K-

channel architecture, there is an exchange of a small volume between the droplet and the K-

channel, however overall there is a net volume that is injected into the droplet from the K-channel. 

This injected volume is calculated based upon the size difference between the droplet approaching 

K-channel and the one leaving K-channel. For effective reagent injection, black dye was flowed 

through the K-channel from narrow-to-wide channel size direction such that the black dye was 

injected into the water droplets, as shown in Figure III.5c (also see Supplementary Movie SMIII.3). 

Figures III.5b and III.5d show the droplet before and after the K-channel injection, respectively. 

In this device operation, 85  20 pL (or 20%) black dye was successfully injected into input 

droplets of 415  20 pL, but changing K-channel channel flow conditions (i.e. applied pressures) 

could alter the injected fluid volume or could also initiate the extraction of fluid volume from 

Figure III.5. K-channel operation in PMMA for reagent injection into the droplet. a) K-channel 

device design. b) Flow of droplet in the main channel before K-channel injection. c) Flow of 

droplet across the K-channel in the presence of applied electric field and zoomed image 

showing disruption of boundary and exchange of fluid between the aqueous phases of the K-

channel and the droplet due to the applied electric field. d) Flow of droplet in the main channel 

after K-channel injection. e) Flow of droplet across the K-channel in the absence of applied 

electric field and zoomed image showing no fluid exchange between the K-channel and the 

passing droplet. WE: working electrode; RE: reference electrode. 
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droplets. When an electric field is not applied, as shown in Figure III.5e, there is no interaction 

between the K-channel aqueous phase and the passing droplet, and hence, no injection of dye into 

the droplet. Overall, the results from both picoinjector and K-channel operations not only 

fundamentally confirm that PMMA transmits sufficient electric field to enable electrically-

mediated droplet processing, but also that PMMA does not intrinsically change the performance 

of higher order droplet functions. 

 

Droplet Splitting and Magnetic Bead Enrichment Using the Multifunctional K-Channel 

The K-channel also supports another useful droplet operation: droplet splitting. Droplet 

splitting can not only parallelize a single reaction volume into two daughter volumes, but can also 

enrich magnetic beads into one daughter droplet when coupled with a local magnetic field. 

Therefore, sample associated with the magnetic bead (perhaps through antibody- or nucleotide 

sequence-based recognition and binding) is selectively concentrated in one daughter droplet, while 

the other daughter droplet can be discarded or otherwise manipulated. Therefore, this process can 

remove waste volume from a droplet while enriching bead-bound sample.15, 43, 44 For magnetic 

bead-containing droplet processing, this K-channel device was designed with 500 m spacing 

between the main channel and the permanent magnet, as shown in Figure III.6a. To optimize 

magnetic bead loading and counter bead sedimentation, droplets were formed from a suspension 

of magnetic beads in optiprep density gradient medium. In this example, fluorinated oil was flowed 

through the K-channel from wide-to-narrow channel size direction, and the applied pressure-

dependent flow rate through this element selected the droplet splitting ratio. Importantly, as shown 

in Figure III.6c, the daughter droplet in the main channel carried all the beads due to the presence 

of magnetic field, which pulled the beads to the lower boundary of the initial droplet prior to the  
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splitting event (see Supplementary Movie SMIII.4). The daughter droplet split into the K-channel 

outlet did not contain any beads. Figure III.6b shows droplets before and after splitting in the main 

channel. In this device operation, 285  30 pL (or 59 %) of the droplet volume was removed from 

480  15 pL input droplets along with the successful retention of all magnetic beads under these 

conditions, but increasing the proportion of the droplet removed increases the chance of bead loss. 

In contrast, in the absence of a magnetic field, the magnetic beads are randomly distributed within 

each droplet volume, as shown in Figure III.6d where they are found in both fractions of the split 

input droplet. This result further demonstrates the compatibility of PMMA thermoplastic devices 

with established droplet operations in the context of droplet splitting and magnetic field 

permeation. 

 

Multi-Step Droplet Processing Using Thermoplastic Microfluidics: Integrated Droplet 

Generation, Reagent Injection, and Magnetic Bead Enrichment 

Figure III.6. K-channel operation in PMMA for droplet splitting and magnetic bead 

concentration. a) K-channel device design. b) Flow of droplets in the main channel before and 

after splitting using a K-channel. c) Droplet immediately after splitting at the K-channel in the 

presence of applied magnetic field and zoomed image of split droplets with magnetic 

concentration of beads in the main channel and an empty droplet in the K-channel. d) Droplet 

splitting at the K-channel in the absence of applied magnetic field and zoomed image showing 

no magnetic concentration: both droplets contain magnetic beads. 
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As a next demonstration to establish the ability of thermoplastic microfluidic devices to 

support higher-order component integration for multi-step sample processing, droplet generation, 

electrical K-channel injection, and magnetic K-channel droplet splitting operations were 

performed sequentially on a single device, as shown in Figure III.7a.  Magnetic bead-containing 

optiprep-in-oil droplets were first generated at the T-junction, followed by injection of dye at the 

Figure III.7. Integrated device operation in PMMA for droplet generation, injection, and 

magnetic splitting. a) Device design for the integrated device. b) Dilute dye injection at K-

channel in the presence of applied electric field. c) Droplet splitting at K-channel and magnetic 

concentration in the presence of applied magnetic field and zoomed image showing the droplet 

containing magnetic beads in the main channel and the empty droplet in the K-channel. WE: 

working electrode; RE: reference electrode. 
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first K-channel, as shown in Figure III.7b. At the second K-channel the magnetic splitting 

operation collected magnetic beads in the main channel daughter droplet only (Figure III.7c). A 

zoomed in image provides a closer view of the droplet splitting to show the final position of 

captured magnetic beads. In this integrated device, input droplets of 755  30 pL size were first 

injected with 375  35 pL of dye solution (a 50 % volume increase), followed by the removal of a 

total of 525  30 pL (a 46 % reduction in droplet volume) via droplet splitting (see Supplementary 

Movie SMIII.5). We observed a small fabrication defect in the second K-channel, which was 

probably due to the melted PMMA displaced during the embossing process, that was not 

completely removed during the subsequent device fabrication steps. We do not expect this defect 

to significantly affect the droplet manipulation as can be clearly seen through the droplet 

movement in Supplementary Movie SMIII.5. .By including formation, injection, and magnetic 

enrichment components in series, this device washes the beads in the droplets, exchanging the 

droplet fluid composition while retaining the bead sample. While a proof-of-concept experiment, 

combining serial modules encompassing both electric and magnetic field components clearly 

demonstrates the ability of PMMA thermoplastic microfluidic devices made via hot embossing to 

support multi-step droplet processing capabilities with equivalent performance to conventional 

PDMS devices. 

As a final demonstration, we applied the integrated washing device to perform a simple in-

droplet enzymatic activity and sampling assay. For this application, we expanded our material 

selection capabilities to COP and successfully performed needed droplet operations without 

significant deviations from PMMA channel quality or performance. For this demonstration, we 

captured biotinylated β-galactosidase on the surface of streptavidin-coated magnetic beads, then 

loaded the enzyme-functionalized beads into droplets in the integrated COP device. Upon substrate  



112 

 

 

 

 

 

 

 

 

 

injection at the first K-channel (resorufin-β-D-galactopyranoside), the enzyme reaction initiated. 

Figures III.8a-b show low background fluorescence from substrate and bead samples prior to 

injection, but fluorescent resorufin product immediately formed upon injection, as evidenced from 

weak fluorescence localized near the beads in Figure III.8c. After ~2.6 s reaction time in the 

channel, Figure III.8d shows a significant increase in fluorescence both near enzyme-coated beads 

and delocalized throughout the droplet, indicating reaction progress. Finally, K-channel splitting 

samples a portion of the product for immediate collection at this time point, and bead-bound 

enzyme was retained in the main channel portion by local magnetic field for additional reaction or 

other processing (see Supplementary Movie SMIII.6). With this proof-of-concept experiment, 

Figure III.8. Fluorescence imaging of the in-droplet β-galactosidase enzymatic assay in 

integrated microfluidic devices manufactured in cyclic olefin polymer (COP). a) Droplets 

loaded with biotinylated-β-galactosidase bound to streptavidin coated magnetic beads approach 

the substrate injection K-channel showing very low background fluorescence. b) K-channel-

mediated resorufin-β-D-galactopyranoside substrate injection in the presence of applied electric 

field initiates the chemical reaction. c) Immediately after injection, weak fluorescence localized 

near magnetic beads indicates initial formation of fluorescent resorufin product (see expanded 

inset). d) Downstream imaging after ~2.6 s incubation demonstrates additional product 

formation and mixing throughout the droplet. e) Droplet splitting at the K-channel localizes 

magnetic-bead bound enzymes in the main channel portion. f) After splitting, the magnetic-

bead bound enzyme remains in the main channel for additional reaction or downstream 

processing (see expanded inset), while the K-channel collects a portion of the product. 
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combining both electric and magnetic field components to process an in-droplet enzymatic 

process, we clearly demonstrated our ability to apply these thermoplastic microfluidic devices to 

multi-step (bio) chemical assays.   

 

CONCLUSIONS 

We have reported a fabrication workflow to manufacture droplet microfluidic devices in 

thermoplastics and have demonstrated successful operation of several key droplet manipulation 

operations. Photolithography followed by deep reactive ion etching was used to fabricate silicon 

masters that facilitated high performance hot embossing. This approach was utilized to create 

individual microfluidic components supporting droplet generation at a T-junction, reagent 

injection using both picoinjector and K-channel designs, and volume removal and magnetic bead 

enrichment using the K-channel. In addition to demonstrating the compatibility of PMMA and 

COP thermoplastic for droplet microfluidics in terms of channel size and surface properties, these 

devices also showed that electric and magnetic field-based droplet actuation can be achieved 

comparably to devices in PDMS. This work is the first to report multi-step droplet manipulations 

in thermoplastics and therefore lays the groundwork for the translation of droplet microfluidic 

devices from PDMS-based prototypes into materials systems that are poised for mass production.  
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SUPPLEMENTARY INFORMATION 

The supplementary information in its original format (including videos) may be accessed 

online at doi: 10.1039/C8AY01474D. 

Supplementary Movie SMIII.1. Water droplet generation at the T-junction. 

Supplementary Movie SMIII.2. Droplets flow past the picoinjector where dye injects in the 

presence of electric field. 
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Supplementary Movie SMIII.3. Droplets flow past the K-channel where dye injects in the 

presence of electric field. 

Supplementary Movie SMIII.4. Droplets split at the K-channel, and applied magnetic field 

concentrates magnetic beads in the main channel (lower) daughter droplets. Some droplets do not 

have magnetic beads before splitting due to bead sedimentation during loading. 
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Supplementary Movie SMIII.5. In the first part of the video, the upstream (first) K-channel 

injects dye into droplets in the presence of electric field. In the second part of the video, dye-

injected droplets split at the downstream (second) K-channel, and magnetic field concentrates 

beads into the main channel (upper) daughter droplets. 

Supplementary Movie SMIII.6. In the first part of the fluorescence video, the upstream (first) K-

channel injects resorufin-β-D-galactopyranoside substrate into the droplets containing β-

galactosidase-magnetic bead complexes in the presence of electric field to initiate the reaction. In 

the second part of the video, these droplets (now also containing significant resorufin product) split 

at the downstream (second) K-channel, and magnetic field concentrates bead-bound enzyme into 

the main channel (upper) daughter droplets. 
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SUPPLEMENTARY FIGURE 

 

 
 

Figure III.S1. a) Droplet generation at the T-junction of an integrated device fabricated in cyclic 

olefin polymer (COP) via embossing. b) Magnetic beads containing droplet flowing downstream 

of the T-junction down the main channel. 
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Chapter IV 

C3PE: Counter-Current Continuous Phase Extraction for Improved Precision of in-

Droplet Chemical Reactions 

 

Adapted from a Manuscript in Preparation by Steven R. Doonan, Melissa Lin, Dongkwan 

Lee, Jamy Lee, and Ryan C. Bailey. 

 

INTRODUCTION 

Droplet microfluidic technologies enable continuous, automated, and high throughput (up 

to 1000s of droplets per second) processing and analysis of non-deterministic sample volumes.1, 2 

By encapsulating samples in miniature volumes (fL-nL) surrounded by immiscible (often 

fluorinated) oils and stabilized by specially tailored surfactants, each droplet acts as an individually 

addressable reactor. Compartmentalization in these volumes limits sample loss via non-specific 

adsorption to tubing and channel walls and favorably increases the rate of internal mixing.3-5 As 

this technology has become more broadly implemented within a range of material systems6 and 

contexts, such as genomic and epigenomic analyses,7-9 immunoassays,10 and (bio)material 

applications,11 the accompanying suite of droplet formation and manipulation techniques has 

similarly grown. Flow focusing and T-junction structures form mono-disperse droplets at high 

frequencies.12, 13 Specialty architectures enable gradient generation,14 deterministic droplet pairing 

and fusion,15-17 direct injection into droplets,18, 19 and dielectrophoretically-20 or acoustically-

mediated21 droplet sorting. Other techniques tether recognition molecules to in-droplet magnetic 
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particles, enabling sample capture and purification.18, 22-25 A number of reviews profile droplet 

technologies in detail.2, 26, 27 

While these techniques manipulate droplet size, position, and composition, fully realizing 

the potential of in-droplet chemistry requires interfacing serial combinations of modules to 

establish reaction conditions and to provide time for the reactions to occur.3 Incubating droplets 

statically on-28 or off-chip15 provides hours or longer of reaction time, although ensuring droplet 

stability during collection, storage, and recovery can be technically challenging.5 On the other 

hand, on-chip incubation relies on elongated stretches of large cross-section features like delay 

channels, thereby increasing total device volume while limiting the corresponding increases in 

hydraulic resistance and back-pressure. Importantly, the design and implementation of such 

features should not only take total incubation time into account but must also consider droplet flow 

uniformity. Thus, it is critical to ensure homogenous conditions to limit inter-droplet variance in 

reaction performance, particularly to achieve high precision in using time-sensitive chemistry.29, 

30 

Packing is central to control over droplet incubation. The volume fraction of the droplets, 

φ, describes the relative portion of the total channel volume occupied by droplets. Beyond directly 

controlling the number of droplets packed into a given microchannel, φ also affects flow 

characteristics and droplet motions, consequentially altering in-droplet reaction performance.30, 31 

Through selective continuous phase removal, on-device oil extraction provides a practical method 

to usefully manipulate φ in particular channel regions.17, 29, 31 This operation lends itself to two 

principle applications, controlling droplet incubation time and enabling uniform respacing. First, 

increased φ at fixed droplet size and frequency leads to proportionally greater residence time for 

each droplet within an incubation module.29-31 Second, useful multistep chemistry often requires 
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several reaction steps separated by intermediary incubation periods. Extracting oil before 

incubation with uniform oil re-addition afterwards minimizes deviations in droplet spacing due to 

stochastic droplet-oil redistribution in large cross-section incubation channels.29 Because many 

useful downstream operations (such as direct injection and pairwise droplet merging) often depend 

on droplet spacing uniformity, retaining excess oil through the entire reaction sequence limits the 

practical implementation of multistep in-droplet reactions.15, 17, 30 Overall, control of φ through oil 

extraction can afford significant control over in-droplet reaction performance. 

Limited examples of oil extraction have been employed for droplet applications. The most 

common motif for on-chip oil extraction leverages micropillar structures.17, 29, 31 As flow enters 

these modules, oil exits through the narrow gaps between pillars, but surfactant-stabilized droplets 

are occluded unless high flow forces distort and fragment droplets through these apertures. 

Multilayer fabrication approaches have also been included to improve droplet retention by 

decreasing drain channel height to more closely match reduced width.17, 31 In addition, including 

active oil extraction flow rate control using gravity- or pump-based methods provides dynamic 

selection of final φ.17 These devices have empowered efficient droplet packing for droplet 

synchronization or for obtaining incubation times up to a few tens of minutes.17, 29, 31 Nonetheless, 

they presented specialized examples tailored to targeted droplet sizes, frequencies, and final φ. 

There has not yet been an example of a single architecture demonstrating dynamically selectable 

final φ without droplet breakup for a broad range of droplet sizes and frequencies. 

Here, we present an oil extraction method, the Counter-Current Continuous Phase 

Extraction (C3PE) module, which leverages a single microfluidic architecture to deterministically 

modulate φ. Not only could this device realize a wide distribution of φ, but we also showed 

exceptional compatibility with a range of initial droplet volumes without causing droplet fission 



124 

 

and sample loss. Additionally, operation was effective for droplets at frequencies from 40 to 200 

Hz. We then labeled defined droplet subpopulations via electro-fluidic injection to probe the flow 

characteristics of droplets in incubation channels as a function of φ at high temporal resolution 

compared to previous methods.29, 31 This facilitated an understanding of the relationship between 

droplet packing density and the duration and uniformity of on-chip incubation. We also 

characterized the effects of channel geometry and oil viscosity as examples where using this 

approach lent additional insight into optimizing the precision of in-droplet reaction times. Finally, 

we applied these principles to monitoring in-droplet β-galactosidase activity in an extended reactor 

volume to demonstrate significantly improved reaction performance, validating conclusions 

derived from our incubation tracking model. We envision this versatile approach will be applicable 

to a range of in-droplet chemistries and will ultimately lead to both an expanded microfluidic 

toolkit and more reproducible droplet handling. 

 

EXPERIMENTAL SECTION 

 

Fabrication 

All devices were fabricated in 5:1 poly(dimethyl siloxane) (PDMS) (RTV615, Momentive) 

molded around SU8 2025 (Microchem) features on silicon wafers (University Wafer). Master 

molds were created via conventional soft lithography with 40 µm channel height.32 Devices were 

designed in AutoCAD (Autodesk), and photomasks were sourced from CAD/Art Services, Inc. 

PDMS devices were irreversibly sealed to glass coverslips (Corning) after punching holes for 

fluidic connections with a 30 ga needle and activation by oxygen plasma (PDC-32G, Harrick 
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Plasma). Microchannels were treated with 1% tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane 

(Gelest, Inc.) in Fluoroinert FC-40 (The 3M Company) prior to use. 

 

Device Operation 

A pressure-driven flow system delivered fluids on-chip. For this system, a custom manifold 

(VWR) distributed high pressure N2 gas to an array of regulators. Gas flow continued through 

tygon tubing to a solenoid valve array (LHDA0531115H, The Lee Company) controlled by an in-

house LabView program (National Instruments) that delivered selected gas pressures to the head 

space of solution-filled vials through stainless steel fittings (New England Small Tube). This 

pressure drove fluids from the vials through 20 cm lengths of #30 PTFE tubing (Cole Parmer) 

connected directly to device inlet ports. Changing pressures (measured at the regulators for each 

fluid line) proportionally adjusted the corresponding fluid flow rates (20-80 kPa typical pressures 

yielding flows on the order of µL/min). 

The continuous phase oil for droplet formation and oil extraction channels was a mixture 

of Fluoroinert FC-40 (typically 80%) with Novec 7500 Engineered Fluid (typically 18%) (The 3M 

Company) and 2% 008-Fluorosurfacant to stabilize droplets (Ran Biotechnologies). Oil kinetic 

viscosity measurements were collected using a No. 75 Cannon-Manning Semi-Micro Type for 

Transparent Liquids viscometer operated at room temperature (Cannon Instrument Company). For 

characterization and droplet tracking experiments, the dispersed phase for droplet formation was 

water, and the K-channel fluid was black food dye (McCormick). Typical droplet volumes were 

~150 pL, and typical droplet frequencies were ~100-200 Hz. All solutions were passed through a 

0.2 µm syringe filter prior to use. For enzyme activity experiments, the dispersed phase was 500 

µM resorufin-β-D-galactopyranoside (Thermo Fisher Scientific) in 1X PBS with 0.5% BSA, pH 
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7.4. The K-channel delivered the enzyme sample, a slurry of 10 µm diameter streptavidin-coated 

magnetic microparticles (Sigma Aldrich) resuspended in OptiPrep Density Gradient Medium 

(Sigma Aldrich). Microparticles were previously incubated for 1 h with β-galactosidase-biotin 

(Sigma Aldrich) in 1X PBS with 0.5% BSA, pH 7.4. 

A custom DC to AC inverter supplied ~40 VAC electric field for transient K-channel dye 

injections. The electric field was applied via in-device 3M NaCl solution-filled electrode channels. 

Precise electric field pulse timing was controlled via LabView interfaced directly to the inverter. 

 

Imaging and Analysis 

A DMi8 microscope platform (Leica Microsystems) coupled to a VEO 640L high speed 

camera (Vision Research, Inc.) enabled bright-field and fluorescence imaging of droplet 

performance. Fluorescence images were collected using a TXR Cube Filter (Leica Microsystems). 

Videos were analyzed via ImageJ to monitor droplet size, position, frequency, φ, and fluorescence 

intensity. φ was measured in straight channel segments where droplets flowed single file and was 

calculated as the ratio of droplet area to the total channel area from the leading edge of one droplet 

to the leading edge of the next. Oil extraction plots represent at least N = 20 droplets measured for 

each condition tested, and incubation tracking experiments evaluated at least three droplet tagging 

pulses per each of three devices used under each condition. Incubation time was calculated by 

finding the average and standard deviation among all incubation times corresponding to each 

tagged droplet sub-population for each condition. Incubation dispersion was calculated by first 

finding the relative standard deviation for each tagged droplet sub-population and then finding the 

average and standard deviation of these values for each condition (see the Supplementary 

Information for the detailed incubation analysis method). For plots of geometry and oil viscosity 
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variants versus incubation time and dispersion, the same standard dataset was included, 

representing single lane incubation with high oil viscosity. Statistical significance was assessed 

using an F-test to compare the variances among different incubation test datasets (as described in 

the ESI) and by using a two-sample Student’s t-test to assess incubation time relative standard 

deviation (RSD) values. 

For the β-galactosidase enzyme assay, videos were collected to visualize the final 1 mm of 

the incubation channel while opening the shutter to the exposure source (to minimize 

photobleaching). Droplet intensity was measured for droplets containing only one bead across 

three trials for each condition tested, and each trial included at least 15 droplets, contingent on 

stochastic bead distribution. Between trials, packing fraction was verified, and flow conditions 

were adjusted as needed to compensate for flow perturbations across the extended channel. 

Fluorescence dispersion was evaluated by finding the RSD of fluorescence intensity for each trial. 

For each condition, the average and standard deviation among these RSDs was calculated. Finally, 

the two conditions were compared using a two-sample Student’s t-test. To generate the histogram, 

droplet intensity values from each trial were normalized to the overall average intensity for each 

condition, and points were weighted so that each trial represented 33% of the total area per 

condition. The superimposed fit lines assumed a normal distribution centered at each average 

intensity with standard deviations calculated from the reported RSD values from each condition.  

 

RESULTS AND DISCUSSION 

 

C3PE Operating Principles 
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The Counter-Current Continuous Phase Extraction (C3PE) module consisted of two 

symmetric cross-channels linked to the droplet-containing main channel by an array of narrow 

apertures (Fig. IV.1). As droplets entered the system, oil drained out through the narrow apertures 

which blocked droplet passage. Importantly, counter-current, antiparallel oil flows through the 

cross-channels (relative to droplet flow direction) provided an active control element to adjust 

extraction performance in response to droplet size, initial φ, and desired final φ, among other 

parameters. At relatively low cross-channel oil flow rates and pressures, a net pressure difference 

drove more oil from the higher pressure main channel into the cross-channels, removing it from 

the sample emulsion. 

A combination of principles made fluid removal specific to the oil phase (Fig. IV.2a-b, 

Supplementary Movie SMIV.1). Narrow connecting channels blocked the passage of droplets 

unless the net force toward cross-channels overcame the Laplace pressure from severe droplet 

curvature through narrow apertures.17, 19 Additionally, hydrodynamic (lift) forces provided a 

focusing force toward the center of the channel for droplets of smaller diameter than the channel 

width.33 Moreover, because the lateral forces toward each cross-channel balanced at the center of 

the channel, the system minimized the net force felt by droplets toward either cross-channel. Due  

Figure IV.1. C3PE Operating Schematic. As the droplets (light blue) flow into the module, the 

higher pressure in the main channel relative to the counter-current oil flows drives oil into the 

cross-channel to increase droplet volume fraction (arrows indicate flow direction). 
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to the central symmetry of forces on droplets, fluid removal via C3PE preferentially eliminated 

peripheral oil first. This symmetry reduced the need to employ higher complexity fabrication-

based strategies (such as shorter channel heights for only the connecting channels) to prevent 

droplet loss.17, 31 In summary, this single-layer module reproducibly extracted oil from passing 

droplets to increase φ because it successfully counterbalanced forces that might fragment droplets. 

Adjusting oil extraction cross-channel flow rates (by manipulating pressure-driven flow) 

controlled the direction and magnitude of oil flow through the connecting apertures (Fig. IV.2c). 

Using lower cross-channel oil pressures created a greater net pressure difference from the main 

channel to the oil extraction channels, leading to greater flow of main channel oil into the cross- 

Figure IV.2. Oil Extraction Operation. a) Water droplets (flowing left to right) pass the C3PE 

module and pack at high φ downstream. b) Sample droplets are selectively retained in the main 

channel using micropillar structures and a balance of symmetrically applied forces. c) Final φ 

decreases with increasing pressure applied to oil-filled cross-channels, and error bars represent 

N = 20 droplets. 
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channels. For example, this module yielded a final φ of up to 80% at low oil cross-channel 

pressures without droplet break-up (150 pL each, 100 Hz generation frequency). Further extraction 

was possible but presented a higher likelihood of instabilities as forces on droplets increased 

(higher droplet frequencies were demonstrated in later examples). Conversely, higher cross-

channel oil pressures and flow rates limited oil flow out of the main channel (decreasing final φ). 

While the exact pressure values depended primarily on the oil cross-channel dimensions, on oil 

viscosity, and on the pressures driving other on-device flows, careful control of these cross-channel 

flows effectively selected φ. 

This ability to extract oil from the main channel while minimizing droplet stresses 

empowered the platform to access a range of droplet sizes (Fig. IV.3 and Supplementary Fig. 

IV.S1). For small, loosely spaced droplets (Fig. IV.3a-b and Supplementary Fig. IV.S1a), low 

initial values for φ necessitated very low cross-channel oil pressures for effective oil extraction. 

The increased oil flow from the main channel exerted larger forces on the droplets. In this case, 

Laplace pressure from increased droplet curvature (smaller radius) further stabilized the system 

against droplet fission.17 Increasing droplet size necessitated higher cross-channel pressures to 

compensate for the lower relative oil fraction in initial droplets (Fig. IV.3c-f). Additionally, the 

Figure IV.3. Droplet Size Versatility. The C3PE device is broadly compatible with many 

input droplet volumes, manipulating a-b) small (75 pL), c-d) medium (130 pL), and e-f) large 

(230 pL) droplets without droplet breakup and sample loss for tunable final φ (50% and 80% 

shown). 
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symmetry of forces applied to droplets toward the cross-channels expanded the use of this module 

to even larger, less stable droplet sizes, which were processed without fission (Supplementary Fig. 

IV.S1b). Accessing droplets beyond the 7-fold size range demonstrated here may require scaling 

of channel features, and extreme input conditions can destabilize operation. Nonetheless, dynamic 

control of flow parameters empowered this monolayer device to adapt to a broader range of initial 

and final droplet packing states beyond those shown by any single previous example. 

 

K-Channel-Mediated Droplet Labeling 

In order to investigate the effects of φ on time-dependent droplet systems, we developed a 

model device where droplets passed into a delay-type incubation channel after oil extraction. The 

uniformity of chemical reaction progress across a droplet population should directly correlate with 

the homogeneity of droplet incubation time, termed “dispersion.”29 Droplet behavior and residence 

time was evaluated in this model system’s incubation channel as a function of φ and additional 

parameters to better profile the physical principles that lead to incubation dispersion. 

To more easily monitor droplet trajectories through the incubation channel, a K-channel 

module18 was included upstream of the C3PE geometry (Fig. IV.4a, Supplementary Movie 

SMIV.2). The K-channel’s precisely balanced cross-channel flow of aqueous black dye injected a 

small volume of dye into passing droplets only when the adjacent saline electrodes were charged.18, 

34 Using high dye concentrations ensured droplet size did not appreciably increase while still 

generating sufficient optical contrast. This on-demand control over electric field timing provided 

a method for generating discrete, trackable populations of black-dyed droplets amongst the total 

water droplet population (Fig. IV.4b). Because droplets and the K-channel- stream only fused and 

exchanged material in the presence of the interface-destabilizing electric field, changing the length  
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of time during which the electrodes were charged determined how many sequential droplets were 

labelled with dye. For example, pulses 100-250 ms in duration commonly injected into 15-40 

droplets (depending on droplet generation frequencies, typically 150-200 Hz). Droplets passing 

the K-channel before or after the electrical pulse were unaffected, as were up- and downstream 

operations, which were shielded from the field by grounding channels.18 In summary, short electric 

field pulses for K-channel injections provided a high temporal resolution tool for studying the 

behavior of droplet flow through incubation channels and represented a sophisticated alternative 

to previous techniques varying input droplet composition.29, 31 

 

Volume Fraction and Incubation Characterization 

Leveraging this model system, the effects of the oil extraction module on droplet 

incubation were evaluated. A detailed description of the analysis method is presented in the 

Supplementary Information. For these experiments, a smaller incubation volume (providing 

Figure IV.4. Droplet Tracking and Incubation. a) The K-channel (leftmost feature, saline 

electrode channels below) deterministically injects black dye into a water droplet sub-

population before the droplets undergo oil extraction and incubation. Injection only occurs 

when the electrodes are charged. b) Dyed droplets follow a parabolic trajectory in the 

incubation channel (φ = 70%, flowing left to right). c) Incubation time increases with increasing 

φ. d) The relative standard deviations of the incubation times at both φ = 70% and φ = 80% 

differ significantly from the values at all other packings (95% confidence). 
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generally less than 10 s of incubation) with all droplets confined within a single plane was chosen. 

This channel provided a simple model system with easily monitored droplets to avoid obscuring 

core phenomena with confounds from an overly large or complex incubation feature. 

Fundamentally, increasing droplet packing for droplets of fixed size and frequency leads 

to proportionally greater residence time per droplet in a given incubation volume. In practice, 

incubation time increases can compound due to increased downstream hydraulic resistance from 

more densely packed droplets in the incubation channel. This resistance decreases upstream flow 

rates and droplet generation frequency (185 Hz at φ = 50% decreased to 175 Hz at φ = 80% in one 

example). Nonetheless, this compounding effect has lesser significance to incubation time than the 

number of droplets packed in the channel. Overall, the K-channel-coupled C3PE platform 

dynamically selected incubation times, nearly doubling values from φ = 50% (3.6 s) to φ = 80% 

(6.6 s) for a fixed channel volume (Fig. IV.4c). 

Modulating droplet packing significantly alters the character of droplet motions within the 

incubation region, leading to changes in the incubation dispersion, evaluated in this work as the 

relative standard deviation (RSD) of each droplet population’s incubation time. This dispersion is 

due to dis-uniform droplet motions throughout the channel volume, driving some droplets into 

trajectories which take relatively longer or shorter times. For instance, changing the channel cross-

sectional area plays a major role in incubation dispersion because droplets flowing in a confined, 

single-file channel experience fewer degrees of freedom in their motions than those flowing 

through a region with lateral dimensions much larger than the droplet diameter. Incubation 

dispersion can further compound when increased channel heights permit significant motions. We 

limited this study to monitoring effectively two-dimensional droplet flows through relatively 

confined channels, resulting in smaller incubation dispersions29 with simplified flow behavior. 
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Using this system, we monitored incubation dispersion as altering φ passed droplets 

through different regimes (Fig. IV.4d). At very high φ (80%, Supplementary Movie SMIV.3), 

droplets approached maximal packing and organized into a hexagonal lattice. In this jammed state, 

droplets in the rigid array moved at a uniform linear velocity across the incubation channel.30 

Primarily, incubation deviations for individual droplets arose from shuffling and defects in the 

lattice,31 especially at the regions where the channel cross section changed. It is also at these 

regions of channel expansion and contraction where droplets crossing the channel center followed 

a shorter path length (than those which travel around the periphery) and could exit the channel 

first, hence the parabolic pattern in the dyed droplet population. As φ decreased (70%, 

Supplementary Movie SMIV.4), the prevalence of flaws in the lattice increased, leading to droplet 

shuffling and whole faces of the lattice shifting relative to one another. At the channel periphery, 

loosely packed droplets in contact with walls moved the slowest, and this condition had the highest 

dispersion. At even lower φ (50%, Supplementary Movie SMIV.5), rafts of uniformly-moving 

droplet lattice transiently formed and broke up near the center of the channel, driven by 

hydrodynamic forces. Moreover, because a larger portion of the channel became occupied by 

loosely packed droplets, flow velocity at the edges increased as freely moving droplets flowed 

through the lower resistance streamlines. Therefore, droplets on the edges still traversed a longer 

path length but did so at a higher linear velocity. These results agreed with previous work29 to help 

confirm the validity of this incubation monitoring workflow as well as to verify that the C3PE 

module did not generate any unexpected flow disruptions. 

 

Channel Geometry: Subdivisions 
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For continuous (not segmented) flow through a microchannel, subdividing the channel 

cross-section into parallel channels can correspondingly subdivide the parabolic flow profile 

through it into a series of parallel, smaller parabolic profiles. For segmented flow systems, the key 

factor in performance for this geometry was not actually the re-scaling of the laminar flow profile 

closer to the critical dimensions (i.e., diameter) of droplets, but instead that droplets in the 

subdivided channels had less opportunity to move laterally.29 Although narrowing channels to flow 

droplets single file should theoretically yield the lowest dispersion (no droplet lateral motion), we 

chose a 4-fold divided approach. This not only simplified fabrication (larger channels are more 

tolerant of small defects), but also limited the increases in hydraulic resistance and back-pressure 

which can make very narrow channels prohibitively resistive to be practical for longer incubations. 

In our 4-fold sub-divided channel the width of each sub-channel restricted more than four 

droplets from flowing side-by-side. The total incubation times were not greatly affected (Fig. 

IV.5a), and, as expected, reduced lateral motions within each sub-channel were qualitatively 

observed compared to the bulk channel. On the other hand, significantly higher dispersion under 

most values of φ were measured (Fig. IV.5b). At low φ (50%), hydrodynamic forces focus 

incoming droplets near the center of the channel,33, 35 leading to asymmetry among sub-channel 

packings (Fig. IV.5c). The higher viscosity of densely packed droplets in the midline channels 

caused slower flow, so droplets exited peripheral channels first. At high φ (80%), droplets 

experienced little shuffling even in the absence of sub-division-induced confinement, so the 

incidence of droplets overtaking each other was already low, largely eliminating the purpose of 

the sub-division. In this case, however, flow at channel bifurcations exerted approximately 

balanced forces toward both possible flow directions. This balance temporarily trapped some 

droplets at bifurcation points, thus leading to the observed dispersion increase (Fig. IV.5d). These  
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results consistently showed poorer performance for the subdivided channel, but additional 

investigation may enable optimization of channel inlets and bifurcation points.  

 

Oil Viscosity 

Figure IV.5. Channel Subdivisions Decrease Incubation Uniformity. a) Incubation time 

varies little between an undivided (single lane) and a subdivided channel (four lanes) of 

identical size. b) At low φ, incubation distribution is significantly increased (at 95% confidence) 

for the subdivided channel due to packing and velocity heterogeneities among lanes. At high 

φ, incubation distribution is significantly increased due to bifurcation-driven disordering. c) At 

low φ (50%), hydrodynamic forces focus droplets toward innermost channels, increasing 

hydraulic resistance in those channels. Outer channels experience faster flow. d) At high φ 

(80%), opposing forces at channel bifurcations can temporarily trap droplets (example 

highlighted by red arrow). Flow in images is left to right. 
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Viscosity plays a major role in droplet flow, proportionally changing flow rates under fixed 

pressures and altering flow segmentation characteristics. The fluorinated oil continuous phase 

further provides the medium through which droplet trajectories determine incubation time and 

dispersion, so we examined the relationship between oil viscosity and incubation performance. As 

expected, increasing the viscosity of the oil phase (by changing its blending ratio) generated 

slower-moving droplets with longer incubation times under similar flow conditions and droplet 

sizes (Fig. IV.6a). 

Beyond routine effects from viscosity-induced flow rate changes, incubation dispersion as 

a function of oil viscosity was evaluated. Dispersion originates from heterogeneous droplet 

motions, so we hypothesized that altering the medium through which these motions occur should 

also alter incubation uniformity. Correspondingly, increasing the rigidity of the packed droplet 

lattice using high oil viscosity reduced dis-uniform droplet motions, decreasing incubation 

dispersion at high φ (80%) (Fig. IV.6b). Interestingly, the opposite trend was observed at 

intermediate φ (60-70%), where higher oil viscosity increased dispersion. Under intermediate 

packing conditions, center-directed hydrodynamic forces were generally insufficient to hold the 

droplets into a central lattice. Therefore, examining the flow character of loosely packed droplets 

at the periphery revealed significant contributions to dispersion (particularly for droplets moving 

more slowly than the central population).29, 33, 35 In cases where these droplets had less resistance 

to slide past each other and were not rigidly trapped in contact with the walls, the low viscosity oil 

streams enabled many peripheral droplets to travel at higher velocity through longer peripheral 

flow paths (Fig. IV.6c-d). This effect significantly reduced dispersion compared to using higher 

viscosity oil. At low φ (50%), even the highest viscosity oil condition entered the loose-packed 

regime where peripheral droplets traveled faster than central ones, and no significant differences  
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in incubation dispersion were observed. These results provide an initial demonstration of the 

significant role oil viscosity plays in droplet motions in the context of controlling incubation 

uniformity. 

Figure IV.6. Oil Viscosity Dependence of Incubation Time and Distribution. a) Increased 

Novec 7500 (N7500):Fluoroinert FC-40 ratio decreases viscosity to decrease average 

incubation times. b) At intermediate φ, high viscosity oil limits droplet lateral motions, trapping 

peripheral droplets in slow, wall-bounded streamlines, significantly (95% confidence) 

increasing incubation distribution. At high φ, lower viscosity oil provides less resistance to the 

disturbance of close-packed droplet lattices and thus significantly increases incubation 

distribution. c) Peripheral droplets under high viscosity conditions (20% Novec 7500, φ = 60%) 

lag further behind the central population than (d) those under low viscosity conditions (80% 

Novec 7500, φ = 60%). For 20%, 50%, and 80% Novec 7500, η = 2.04, 1.46, and 1.08 cSt, 

respectively. 
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Β-Galactosidase Reaction Optimization 

Finally, we wanted to confirm that the incubation guidelines derived by the simple 

incubation model system would apply meaningfully to a biochemical reaction in droplets with 

more practically useful incubation times. Because of its broad deployment as an enzymatic 

amplification strategy (when coupled to a suitable antibody) in enzyme-linked immunoassays, we 

chose β-galactosidase. In this context, control over enzyme incubation directly affects the final 

fluorescent product signal (generally proportional to analyte concentration in an immunoassay), 

and devising a meaningful, accurate, and precise in-droplet immunoassay will thus require high 

precision incubation for effective analyte quantitation. We used a K-channel injection of 

streptavidin beads bound to β-galactosidase-biotin to stochastically deliver discrete loadings of 

enzyme into resorufin-β-D-galactopyranoside substrate droplets (Fig. IV.7a-b). Following oil 

extraction, droplets incubated in an extended delay channel, and droplet packing and flow behavior 

were confirmed using brightfield imaging to ensure that packing performance would be 

representative of results from prior droplet tracking experiments. At the end of the incubation 

channel, fluorescent imaging monitored turnover of fluorescent resorufin product in droplets 

containing only one enzyme-coated bead (Fig. IV.7c-d). Higher fluorescence intensities observed 

in droplets containing multiple beads (representing accelerated reactions) confirmed that substrate 

was not depleted within the reactions measured. As expected, droplets at lower packing (φ = 55%) 

incubated for shorter time (~45 s) and had lower average fluorescence intensity than those 

incubated at higher packing (φ = 85%, ~70 s incubation). Droplets at the sub-optimal packing 

condition (φ = 55%) also showed significantly greater fluorescence dispersion (RSD = 10 ± 2%) 

compared to optimal packing (φ = 85%, RSD = 6.0 ± 0.8%). These results are in good agreement 

with the conclusions from our droplet tracking model. In summary, leveraging the C3PE module  
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both increased fluorescent product yield and decreased droplet-to-droplet variability. Further, 

these results suggest that similar manipulations of the other parameters tested (like channel 

geometry and oil viscosity) will be comparably effective in influencing the uniformity of 

(bio)chemical reactions in droplets. 

 

CONCLUSIONS 

In this work, the C3PE microfluidic architecture leveraged symmetric oil countercurrent 

flow structures to efficiently extract oil from sample emulsions without droplet breakup, even at 

Figure IV.7. β-Galactosidase Incubation Optimization. a) Incubation dependence of an enzyme 

reaction in droplets was monitored using sequential resorufin β-D-galactopyranoside substrate 

droplet formation, b) K-channel-mediated bead-bound β-galactosidase injection, oil extraction, 

and c) extended incubation with fluorescent visualization. d) A normalized histogram of single 

bead-containing droplet fluorescent intensities demonstrates that increased fluorescent 

resorufin product formation with a significantly more uniform distribution was achieved at high 

packing conditions (φ = 85%, incubation time ~70 s, RSD = 6.0 ± 0.8%) compared to sub-

optimal incubation conditions (φ = 55%, incubation time ~45 s, RSD = 10 ± 2%). Gaussian 

overlays assume a normal distribution and represent the reported values for each population’s 

relative standard deviation (RSD). 
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high packing fractions. Moreover, adjusting external pressures applied to the module selected the 

final value for φ, and compatibility was demonstrated across a range of input droplet conditions. 

Adding a K-channel-mediated injection strategy enabled a robust droplet tracking approach that 

allowed for characterization of droplet behavior in incubation channels at high temporal resolution. 

By altering parameters such as φ, channel sub-divisions, and oil viscosity, both the overall 

incubation time and the relative dispersion of incubation times within each droplet population were 

dynamically adjusted. Finally, monitoring β-galactosidase activity in an extended incubation 

application demonstrated that the trends derived from the simple model can be meaningfully 

applied to in-droplet biochemistry. This extraction geometry, especially when coupled to the 

incubation monitoring approach, represents a valuable fundamental tool for controlling and 

understanding droplet flow behavior—particularly in the context of time-dependent chemistry. 

 

ACKNOWLEDGEMENTS 

We gratefully acknowledge financial support from the National Institutes of Health (NIH 

CA191186). S.R.D. was supported by the National Science Foundation Graduate Research 

Fellowship Program. M.L. was supported by the Pfizer Undergraduate Summer Research Award 

(University of Michigan). We also want to thank Prof. Robert Kennedy and Dr. Brian Shay 

(University of Michigan) for assistance with viscosity measurements. 

 

REFERENCES 

1. T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, Phys Rev Lett, 2001, 86, 4163-

4166. 

2. L. Shang, Y. Cheng and Y. Zhao, Chemical Reviews, 2017, 117, 7964-8040. 

3. H. Song, J. D. Tice and R. F. Ismagilov, Angew Chem, Int Ed, 2003, 42, 768-772. 



142 

 

4. T. M. Squires and S. R. Quake, Rev Mod Phys, 2005, 77, 977-1026. 

5. J.-C. Baret, Lab Chip, 2012, 12, 422-433. 

6. V. Sahore, S. R. Doonan and R. C. Bailey, Anal Methods, 2018, 10, 4264-4274. 

7. F. Lan, B. Demaree, N. Ahmed and A. R. Abate, Nat Biotechnol, 2017, 35, 640-646. 

8. R. Zilionis, J. Nainys, A. Veres, V. Savova, D. Zemmour, A. M. Klein and L. Mazutis, 

Nat Protoc, 2016, 12, 44-73. 

9. Y. Xu, J.-H. Lee, Z. Li, L. Wang, T. Ordog and R. C. Bailey, Lab Chip, 2018, 18, 2583-

2592. 

10. N. Choi, J. Lee, J. Ko, J. H. Jeon, G.-e. Rhie, A. J. deMello and J. Choo, Anal Chem, 

2017, 89, 8413-8420. 

11. H. Huang, Y. Yu, Y. Hu, X. He, O. Berk Usta and M. L. Yarmush, Lab Chip, 2017, 17, 

1913-1932. 

12. S.-Y. Teh, R. Lin, L.-H. Hung and A. P. Lee, Lab Chip, 2008, 8, 198-220. 

13. P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides, Lab on a Chip, 2006, 

6, 437-446. 

14. M. Sun and S. A. Vanapalli, Anal Chem, 2013, 85, 2044-2048. 

15. M. Lee, J. W. Collins, D. M. Aubrecht, R. A. Sperling, L. Solomon, J.-W. Ha, G.-R. Yi, 

D. A. Weitz and V. N. Manoharan, Lab Chip, 2014, 14, 509-513. 

16. M. T. Chung, D. Nunez, D. Cai and K. Kurabayashi, Lab Chip, 2017, 17, 3664-3671. 

17. J. R. Haliburton, S. C. Kim, I. C. Clark, R. A. Sperling, D. A. Weitz and A. R. Abate, 

Biomicrofluidics, 2017, 11, 034111. 

18. S. R. Doonan and R. C. Bailey, Anal Chem, 2017, 89, 4091-4099. 

19. A. R. Abate, T. Hung, P. Mary, J. J. Agresti and D. A. Weitz, Proc Natl Acad Sci U S A, 

2010, 107, 19163-19166. 

20. L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths and J. A. Heyman, Nat 

Protoc, 2013, 8, 870-891. 

21. S. Li, X. Ding, F. Guo, Y. Chen, M. I. Lapsley, S.-C. S. Lin, L. Wang, J. P. McCoy, C. E. 

Cameron and T. J. Huang, Anal Chem, 2013, 85, 5468-5474. 

22. E. Brouzes, T. Kruse, R. Kimmerling and H. H. Strey, Lab Chip, 2015, 15, 908-919. 



143 

 

23. B. Verbruggen, K. Leirs, R. Puers and J. Lammertyn, Microfluid Nanofluid, 2015, 18, 

293-303. 

24. S. R. Doonan, M. Lin and R. C. Bailey, Lab Chip, 2019, DOI: 10.1039/C9LC00125E. 

25. D. Lombardi and P. S. Dittrich, Anal Bioanal Chem, 2011, 399, 347-352. 

26. H.-D. Xi, H. Zheng, W. Guo, A. M. Ganan-Calvo, Y. Ai, C.-W. Tsao, J. Zhou, W. Li, Y. 

Huang, N.-T. Nguyen and S. H. Tan, Lab Chip, 2017, 17, 751-771. 

27. P. C. Gach, K. Iwai, P. W. Kim, N. J. Hillson and A. K. Singh, Lab Chip, 2017, 17, 3388-

3400. 

28. A. Huebner, D. Bratton, G. Whyte, M. Yang, A. J. deMello, C. Abell and F. Hollfelder, 

Lab Chip, 2009, 9, 692-698. 

29. L. Frenz, K. Blank, E. Brouzes and A. D. Griffiths, Lab Chip, 2009, 9, 1344-1348. 

30. P. Mary, A. R. Abate, J. J. Agresti and D. A. Weitz, Biomicrofluidics, 2011, 5, 024101. 

31. W. G. Cochrane, A. L. Hackler, V. J. Cavett, A. K. Price and B. M. Paegel, Anal Chem, 

2017, 89, 13227-13234. 

32. Y. Xia and G. M. Whitesides, Angew Chem, Int Ed, 1998, 37, 550-575. 

33. B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah and W. Zimmermann, Phys Rev E, 2008, 

77, 021903. 

34. A. Sciambi and A. R. Abate, Lab Chip, 2014, 14, 2605-2609. 

35. K. S. Jayaprakash, U. Banerjee and A. K. Sen, Langmuir, 2016, 32, 2136-2143. 

36. A. S. Basu, Lab Chip, 2013, 13, 1892-1901. 

37. Z. Z. Chong, S. B. Tor, A. M. Gañán-Calvo, Z. J. Chong, N. H. Loh, N.-T. Nguyen and 

S. H. Tan, Microfluid Nanofluid, 2016, 20, 66. 

 

 

 

 

 

 

 

 

 

 

 



144 

SUPPLEMENTARY INFORMATION 

Supplementary Movie SMIV.1. Oil extraction operation increased final droplet volume fraction 

to 80%. 

Supplementary Movie SMIV.2. The upstream K-channel injected black dye into sequential 

passing droplets when the electrodes were charged to generate dyed subpopulations for oil 

extraction followed by incubation analysis. 
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Supplementary Movie SMIV.3. Droplets tagged with black dye (125 ms electric field pulses) 

traversed the incubation channel at high volume fraction (80%). Droplets traveled at a fairly 

uniform linear velocity in the lattice, so peripheral droplets with the longest flow paths tended to 

exit the channel last. 

Supplementary Movie SMIV.4. Droplets tagged with black dye (125 ms electric field pulses) 

traversed the incubation channel at intermediate volume fraction (70%). Flaws and rearrangements 

occurred in high abundance in the central droplet lattice, and peripheral droplets were trapped in 

slow streamlines. 
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Supplementary Movie SMIV.5. Droplets tagged with black dye (125 ms electric field pulses) 

traversed the incubation channel at low volume fraction (50%). Loosely packed peripheral droplets 

traveled at higher linear velocities across a longer flow path compared to central droplets. 

Incubation Tracking and Analysis Method 

After adding a K-channel for tagging sequential droplet populations with dye, a simple and 

robust method for analyzing incubation performance in terms of absolute incubation time and 

distribution of incubation times within each population was developed. Continuously monitoring 

each droplet through its entire trajectory improves qualitative understanding of flow phenomena 

but can prove challenging to implement for large numbers of droplets. Specifically, manual 

tracking would be prohibitively time-consuming, and optical tracking methods often rely on 

thresholding and background subtractions that suffer for large footprint and inhomogeneously 

illuminated incubation channels (due to microscope field of view, shadows from tubing, etc.). 

Further, automated discrimination and tracking of droplets becomes increasingly difficult with 

increased packing densities. While sophisticated tracking programs have been demonstrated in 

prior work,36, 37 an analysis method independent of individual droplet flow-paths was developed. 

For this alternative method, the time at which each dyed droplet enters the incubation 

channel was first determined. Next, the time at which each tagged droplet exits the incubation 

channel was measured. Importantly, the specific trajectory of each droplet in the incubation 

channel was ignored and droplets were not indexed from entry to exit. The averages and standard 
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deviations of all entry and exit times were then used to calculate average incubation time, I, and 

the associated error was propagated to find the final standard deviation corresponding to the 

incubation dispersion, D.  

This analysis only holds if initial droplet order does not significantly contribute to D. To 

verify this, we constructed two test datasets from the entry and exit times which represent the 

boundary conditions for incubation dispersion. For the first dataset, “Forward,” it was assumed 

that droplet order was maintained from entry to exit, and for the second dataset, “Reverse,” the 

assumption was that droplet order was inverted from entry to exit. These two cases represent the 

minimum and maximum contributions to dispersion from initial droplet order. The difference 

between entry and exit times corresponding to each droplet in the assigned orders was then 

calculated and statistically evaluated: 

 

IForward = I = IReverse       Eq. S1 

 

DForward < D < DReverse    Eq. S2 

 

Average incubation times are equal (eq. 1) because they represent a different order of mathematical 

operations without fundamentally changing the calculation. On the other hand, incubation 

distributions range from DForward to DReverse as a function of droplet order (eq. 2). When DForward 

and DReverse do not significantly differ (F-test, 95% confidence threshold), this analysis holds, so 

there is no significant contribution from droplet order to incubation dispersion. As the labeled 

population becomes smaller (shorter K-channel electric field pulses), droplet order plays a 

correspondingly smaller role. 
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Overall, while individually tracking the motion of each droplet through the entire delay 

channel may add valuable information about flow characteristics, this analysis technique provides 

a simple and rapid alternative which eliminates the need for complex droplet-tracking software 

and still generates a quantitative understanding of incubation time and dispersion. 
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SUPPLEMENTARY FIGURE 

 

 
 

Figure IV.S1. Expanded Droplet Size Versatility. The C3PE device can accommodate large 

differences in droplet size (limited here by the stability of upstream droplet formation). a) Small 

(70 pL, 100 Hz) and b) large (500 pL, 40 Hz) droplets are processed without sample loss. 
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Chapter V 

Droplet CAR-Wash: Continuous Picoliter-Scale Immunocapture and Washing 

 

Reproduced from Doonan, S.R., Lin, M., and Bailey, R.C. “Droplet CAR-Wash: 

Continuous Picoliter-Scale Immunocapture and Washing.” Lab on a Chip 2019, 19, 1589-1598. 

with permission from the Royal Society of Chemistry. Available at doi: 10.1039/C9LC00125E. 

 

INTRODUCTION 

Droplet microfluidics have enabled revolutionary miniaturization capabilities for 

chemistry and biochemistry. By compartmentalizing samples in oil, two-phase segmented flow 

systems enable the automated handling of discretized samples through complex operations at rates 

of up to several kHz.1-4 Individual droplets (fL-nL in volume) experience rapid mass transfer due 

to internal convective flows and short mixing distances, enhancing the speed and efficiency of in-

droplet chemistry.2, 3, 5 By leveraging fluorinated oils and optimized surfactants, these systems 

allow stable droplet production, extended storage, and sophisticated manipulation to provide 

performance analogous to or exceeding that of many bulk assays.6 Further, the power of handling 

large numbers of discrete, often heterogeneous sample volumes through miniaturized, rapid 

processing has uniquely poised droplet microfluidics at the forefront of several exciting 

biochemical developments. As recent examples, droplet technologies have achieved single-

nucleus RNA sequencing,7 epigenetic analysis of nucleosome positioning,8 and directed enzyme 
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evolution,9 among other implementations. A number of reviews profile notable droplet 

applications in detail.2, 4, 10-12 

Beyond these developments, integrating solid phase sample capture and manipulation can 

significantly extend the capabilities of microfluidics.4, 13-16 This class of sample processing is 

ubiquitous in chemistry and biochemistry, retaining selected targets on a solid phase by 

immobilizing antibodies or complementary oligonucleotide sequences, by manipulating surface 

chemistry, or by using other approaches while allowing for the exchange or washing of buffers, 

reagents, and off-target species.17-21 Clearly, sample immobilization and washing via interactions 

with a solid phase provides a range of important opportunities in synthesis, pre-concentration, 

extraction, and analytical measurements.4, 13, 15 For example, a powerful bioanalytical technique, 

the (heterogeneous phase) immunoassay, leverages a sequence of washing and reagent exchange 

steps to provide an important method for clinical protein quantitation.13, 18 To empower these 

capabilities in integrated droplet-based microfluidic devices, magnetic fields have provided a 

popular choice of flow-orthogonal force for selective manipulation of the solid phase.4, 13, 16 

Successful techniques include magnetic droplet translation through a series of co-flowing laminar 

reagent streams for applying polyelectrolyte surface coatings,22, 23 magnetic tweezers for 

immobilizing bead volumes while exchanging reagent droplets around them for multistep 

bioassays,24, 25 and additional examples of ferrofluid dispersed or continuous phase components 

for droplet generation and manipulation.26, 27 These approaches have demonstrated efficient and 

selective magnetic phase manipulation for a range of applications, but additional capabilities are 

needed to fully adapt solid phase (bio)chemical techniques into droplet microfluidics. 

Unfortunately for continuously flowing droplet technologies a key deficiency remains. 

Although well-characterized strategies in a range of material systems28 continuously and reliably 
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form droplets and add reagents using T-junctions,29 pairwise droplet fusion,14 picoinjectors,30 and 

other modules,2, 3, 31, 32 approaches for selective sample capture and washing have faced serious 

limitations. The most prevalent scheme for in-droplet sample purification combines droplet 

splitting with a channel-adjacent magnetic field, concentrating magnetic bead-tethered sample in 

only one of the daughter droplets. A range of variations on this approach have achieved limited 

success within a few analytical applications. Examples have demonstrated high magnetic bead 

recovery, removal of up to 95% of starting waste volume through droplet splitting asymmetry, 

and/or low to modest throughput (0.5-200 Hz droplet frequencies).17, 31, 33-37 Nonetheless, this 

approach can require serial droplet splitting and reagent addition operations (with exponentially 

decreasing effect) to reach higher washing purity, increasing device complexity while decreasing 

throughput.35, 36 Lee et al. proposed an interesting alternative: collecting magnetic beads in a 

washing buffer droplet during temporary fusion with the original bead-laden sample droplet.14 This 

was followed by nearly immediate breakup into the two original component droplets. While this 

device achieved approximately 25-fold dilution and bead transfer into collected droplets with little 

sample loss, it was also hindered by reduced throughput (3 Hz reported) and the added complexity 

of droplet synchronization for pairwise fusion and breakup. Finally, Alorabi et al. showed an 

impressive example of magnetic washing using multilaminar flow for magnetic droplet 

processing.22 This device demonstrated effective washing by magnetically pulling entire ferrofluid 

droplets across orthogonally flowing washing buffer streams during a sophisticated layer by layer 

surface functionalization, in contrast to the discrete washing volumes involved in other droplet 

washing strategies. Recent reviews profile the breadth of solid phase manipulations in droplets, 

including alternative washing technologies to the continuously flowing droplet systems described 

here.4, 13 These alternatives include micropillar and microwell-based devices,38, 39 acoustic and 
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magnetic systems for temporary bead trapping (like those described above),24, 25, 40 and digital 

microfluidic (DMF) strategies.41 Such techniques, however, sacrifice the throughput and mixing 

characteristics common to continuously flowing droplet systems. A clear need for high speed, high 

efficiency in-droplet washing technologies remains. 

In this work we sought to develop an efficient washing device without compromising 

simplicity of operation and droplet processing throughput. Our “Coalesce-Attract-Resegment 

Wash” (CAR-Wash) approach leverages a combination of electric and magnetic fields to fuse input 

droplets and then generate new droplets from a continuous washing buffer flow while capturing 

magnetic particles selectively in those final droplets. Thus, we realized greater than 100-fold 

dilution of the original droplets with minimal magnetic particle loss. Importantly, this technique 

operates at hundreds of Hz droplet frequencies, making it compatible with the high frequencies of 

many other droplet operations. Finally, we applied this technique to wash away a small molecule 

inhibitor to restore enzyme activity and to perform a selective protein enrichment and purification 

from cell lysate. 

 

EXPERIMENTAL SECTION 

 

Microfluidic Device Preparation 

Devices were fabricated using standard soft lithography.42 In brief, SU8 2025 Negative 

Epoxy Photoresist (MicroChem Corp.) was spin coated to 40 µm thickness on silicon wafers 

(University Wafer). Devices were designed in AutoCAD software (Autodesk, Inc.) and sourced as 

transparencies (CAD/Art Services, Inc.) for use in photolithography. After wafer baking and 

development, masters were surface treated under vacuum with tridecafluoro-1,1,2,2-
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tetrahydrooctyl trichlorosilane (Gelest, Inc.) prior to use. A 5:1 base:curing agent ratio was used 

to fabricate PDMS (RTV615, Momentive Performance Materials, Inc.) devices that were bonded 

to  glass cover slips (Sigma Aldrich) via oxygen plasma activation (PDC-32G, Harrick Plasma, 

Inc.) after punching inlet ports with a 30 gauge needle. All channels were 40 µm in depth and 40-

200 µm in width. Devices were treated with 1% tridecafluoro-1,1,2,2-tetrahydrooctyl 

trichlorosilane in Fluoroinert FC-40 (Sigma Aldrich) prior to use.  

 

Flow Control 

Flow control on-device used a custom pressure controller. Nitrogen gas was directed 

through a splitting manifold to an array of two-stage regulators (VWR International) which 

selected applied pressures. From the regulators, gas was directed into a network of 

LHDA0531115H solenoid valves (The Lee Company) actuated by LabView via a NI PCIe-6251 

Multifunction Data Acquisition Device (National Instruments Corporation). Finally, this gas was 

delivered through stainless steel pins (New England Small Tube Corporation) into the headspace 

of solution-filled reservoir vials connected to microfluidic device inlets through lengths of #30 

PTFE tubing (Cole-Parmer). Applied pressures were between 10 and 100 kPa, yielding typical 

flow rates on the scale of µL/min. For example, the 500 Hz operation shown in Figure V.2 applied 

55 kPa to the washing buffer, 45 kPa to the oil co-flow, 65 kPa to the input droplets, and 10 kPa 

to the waste outlet. This resulted in approximate flow rates of 75 µL/min for washing buffer, 8.5 

µL/min for the oil co-flow, and 4.5 µL/min for input droplets. 

 

Electric and Magnetic Fields 
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Electric field was generated using a custom inverter to apply ~45 VAC (36 kHz) to the 

device. Electric field was connected via a submerged platinum wire in the washing buffer reservoir 

and via a syringe with 3M NaCl used to fill saline electrode channels (40 µm channel depth).43 

Magnetic field was provided by an array of eight grade N52 NdFeB 1/2” x 1/4” x 1/8” magnets 

(K&J Magnetics, Inc.) positioned 200-500 µm from the channel using microfabricated alignment 

marks, and magnetization was directed toward the separation channel. 

 

Reagents and Sample Preparation 

Magnetic beads were Streptavidin Microparticles, 10 μm particle size (Sigma Aldrich), or 

Protein G Dynabeads, 2.8 µm particle size (Thermo Fisher Scientific). Beads were rinsed in water 

or buffer and re-suspended prior to use. For device characterization experiments, magnetic beads 

were re-suspended in 1 mM fluorescein (Sigma Aldrich) in water with 60% Optiprep (Sigma 

Aldrich) and 20% PBS, and the washing buffer was PBS. The fluorescent standard for these 

experiments was 10 µM fluorescein in PBS, and the continuous phase oil was 1% or 2% 008-

Fluorosurfactant (Ran Biotechnologies, Inc.) in Novec 7500 (The 3M Company). 

For the enzyme inhibition assay, 10 µg β-Galactosidase-biotin labeled from Escherichia 

coli (Sigma Aldrich) was incubated on 10 µm streptavidin microparticles for 2 hours then washed 

to remove unbound enzyme and re-suspended in 60% optiprep with 40% PBS and 0.2% BSA. 

Substrate (used as washing buffer) was 500 nM resorufin-β-D-galactopyranoside (Thermo Fisher 

Scientific) prepared in PBS, 0.5% BSA. Initial droplets or substrate with inhibitor also contained 

1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) (Thermo Fisher Scientific) as indicated. 

For the fluorescent protein enrichment assay, the cells were HeLa with Green Fluorescent 

Protein-Histone H2B (GFP-H2B) fusion expressed. Briefly, the cell sample processing procedure 
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included bulk lysis and enzymatic chromatin digestion of ~250,000 cells in detergent-rich Lysis 

and Digestion Buffers with Micrococcal Nuclease (New England BioLabs) as described 

previously.8 mCherry (BioVision, Inc.) was added to 3.3 µg/mL for the final cell lysate suspension. 

Anti-GFP beads were prepared using 10 µm streptavidin microparticles with 4.5 µg GFP Rabbit 

anti-Jellyfish, Polyclonal Antibody (Thermo Fisher Scientific) following biotinylation of the 

antibody according to manufacturer’s protocols (EZ-Link Sulfo-NHS-LC-Biotin, Thermo Fisher 

Scientific). After overnight incubation in 10 mM HEPES, 150 mM NaCl, 50 mM EDTA, 0.1% 

PEG, pH 7.4, beads were manually washed and re-suspended in a fresh aliquot of the same buffer 

to remove unbound antibodies. This buffer was also used as the washing buffer during device 

operation. 

 

Data Collection and Analysis 

Images were collected using a VEO 640L high speed camera (Vision Research, Inc.) 

connected to a DMi8 light microscope (Leica Microsystems). Fluorescent imaging was performed 

using a FITC filter cube for the green channel and a TXR filter cube for the red channel (Leica 

Microsystems). Image processing and analysis were performed using ImageJ software (NIH). 

Droplet size, spacing, and frequency and magnetic particle position were manually determined 

from brightfield images. Flow rates were calculated from droplet size, spacing, and frequency and 

particle velocity down the channel length. For evaluating magnetic migration velocity, particle 

trajectories were divided into five bins based on particle starting position in the y (magnet-

oriented) direction. Magnetic migration velocity calculations compared the average velocity values 

for each bin after discarding the bin containing the washing buffer-oil co-flow interface (where 

magnetically-induced particle migration was restricted by the interface). Representative  
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fluorescent images in figures were uniformly adjusted in brightness by fluorescent channel for ease 

of visualization, but quantitative data were obtained from the original images. For device 

characterization, droplet fluorescence localization plots average N = 20 time-points each, and the 

final plots were smoothed using a five point moving average. Plots of intensity values for the 

enzyme inhibition and fluorescent protein enrichment assays provide representative results for at 

least N = 50 droplets or beads for each reported sub-population. Statistical significance was 

assessed using a two sample Student’s t-Test with a 95% confidence significance threshold 

(significance indicated by a dashed red line or an asterisk in plots). 

 

RESULTS AND DISCUSSION 

 

CAR-Wash Operating Principles 

To provide a simple, robust, and effective droplet-based magnetic purification and washing 

method, we developed the “Coalesce-Attract-Resegment Wash” (CAR-Wash) platform. The main 

operating principles for this technique are highlighted in Figure V.1. Droplets containing the 

Figure V.1. The CAR-Wash technique electrocoalesces input droplets using electric field 

applied across the washing buffer stream and a nearby ground electrode. Next, a channel-

adjacent permanent magnet attracts sample-enriched magnetic beads across the buffer stream 

while flow forces confine waste material to the original streamline. An oil co-flow prevents 

bead trapping at the channel wall and, at the end of the module, resegments droplets in washing 

buffer for further manipulations. Arrows indicate flow directions. 
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magnetic bead solid phase enter the device and are subject to a destabilizing electric field. This 

field triggers droplet coalescence with a parallel washing buffer stream and can be generated on-

device by directly charging a suitably conductive washing buffer and/or through conventional 

electrolyte-filled microchannel features.43 As the boundaries between each input droplet and the 

washing buffer fuse, superparamagnetic beads escape the original droplet volume under the 

attractive influence of a channel-adjacent permanent magnet. While the laminar flow condition 

confines the input droplet fluid to its original streamline with relatively little mixing into the buffer 

flow, magnetic beads fully translate across the channel width. An oil co-flow provides a moving 

boundary to stop beads from reaching the channel wall while keeping them moving toward the end 

of the module. In the absence of this co-flow, beads may be trapped under the combined influence 

of maximum magnetic field and minimum orthogonal flow forces in the near-zero slip flow at the 

channel wall. Finally, the majority of channel flow diverts to waste (containing the input droplet 

volume and much of the washing buffer), and the streamline with magnetic beads segments into 

new droplets in combination with the oil co-flow. The abrupt local decrease in channel cross 

section and dispersed phase flow rate drives stable droplet formation in a dripping regime (under 

typical flow conditions).32 Resegmented bead-containing droplets (now comprised of washing 

buffer) are suitable for further downstream processing, including, but not limited to, additional 

CAR-Wash operations for sequential buffer exchange. 

Beyond this qualitative description of CAR-Wash operation, we also examined the 

physical principles interacting with parameters such as magnetic field, flow conditions, and 

magnetic bead identity. Each contributes to magnetic particle trajectory through the device, so we 

probed the effects of these parameters on the relative magnitudes of each force and the relative 

magnitudes of each force per unit particle mass (in examining different bead sizes). First, the 
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magnetic component of particle motion under a constant, high magnetic field is described under 

conditions of uniformly saturated magnetization throughout the particle: 

 

𝐅𝐦 = (
1

𝜇0
) (𝐦 ∙ ∇)𝐁 eq. 1 

 

Where Fm is the magnetic force, µ0 is the permeability of the medium, and m is the 

magnetic moment of the particle within the gradient of magnetic field, B.13, 16, 23 The magnetic 

moment of the particle is directly proportional to its volume (for uniformly saturated 

magnetization), so the relative magnitude of the magnetic force per unit mass is constant for 

different particle sizes (assuming uniform particle density). On the other hand, the primary flow-

derived force in the system, the hydrodynamic drag force, is directly proportional to particle radius 

for a spherical particle:  

 

𝐅𝐝 = 6 𝜋 𝜼 𝒓 Δ𝐯 eq. 2 

 

Where Fd is the hydrodynamic drag force, η is the fluid viscosity, r is the particle radius, 

and Δv is the velocity difference in fluid and particle motions.4, 16, 23 Because volume and mass 

scale with the cube of the radius for a sphere of uniform density, the relative hydrodynamic drag 

force per unit particle mass decreases with increasing particle size. 

These equations give insight about the key parameters in magnetic particle capture within 

the CAR-Wash. As applied magnetic field or particle magnetic moment increase, the magnetic 

force correspondingly increases to more effectively capture particles. These effects are achieved 

by using a stronger magnet or particles with a higher magnetization. Slower washing buffer flows 
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decrease hydrodynamic drag forces pushing particles through the channel, resulting in shorter 

channel lengths traversed during magnetic migration across the channel width.4, 16 Additionally, 

larger particles experience a greater relative magnetic force compared to hydrodynamic drag force 

due to the relations discussed for eq. 1 and 2. Therefore, hydrodynamic drag forces opposing 

magnetically-induced motions across washing buffer streamlines have lower relative magnitudes 

for larger particles. Other forces like hydrodynamic lift (focusing particles toward equilibrium 

positions within the washing buffer’s flow profile) have lower magnitude in this system compared 

to the magnetic force and the hydrodynamic drag force. While the lift force may oppose the 

magnetic force in a particle size-, particle position-, and flow velocity-dependent manner, a 

detailed mathematical treatment of this phenomena in the washing buffer flow bounded by 

immiscible, co-flowing oil streams is beyond the scope of this work.44, 45 

From these relationships, we can infer that magnetic bead capture is most efficient with 1) 

high magnetic field, 2) large, highly magnetic particles, and 3) relatively slow washing buffer flow 

velocity toward the waste stream. These demands must be balanced to provide a practically useful 

device in the context of washing efficiency, throughput, and versatility. 

 

CAR-Wash Performance Characterization 

We first evaluated the module with high (≥20 %) magnetite content 10 µm diameter 

particles. This provided both ease of visualization and high effectiveness for the applied magnetic 

field in translating beads across the channel. Figure V.2a and Supplementary Movie SMV.1 show 

a representative example of CAR-Wash operation. As reinjected bead-loaded droplets enter the 

module (550 Hz, 141 ± 1 pL each), electric field applied across the washing buffer and an adjacent 

saline electrode channel triggered coalescence. The standard design for the platform also included  
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a second electrode feature nearby to enable washing into lower conductivity buffers, but directly 

charging the washing buffer most efficiently oriented the electric field to coalescence incoming 

droplets. Electrocoalescence and local turbulence generated and trapped small satellite volumes, 

particularly at high frequency, but these micron-sized droplet fragments very rarely contained 

magnetic beads, especially when using 10 µm particles. Satellites usually flowed out through the 

waste channel with no discernable effect on performance or bead recovery. After droplet 

coalescence, beads magnetophoretically traversed the channel width until reaching the washing 

buffer-oil co-flow interface, and they were effectively re-encapsulated in washing buffer droplets 

(560 Hz, 189 ± 2 pL each). Monitoring more than 4,000 beads at input and output droplet 

frequencies of ~500 Hz demonstrated greater than 98% successful bead capture into final droplets.  

While obtaining specific droplet frequencies required balancing pressure and flow 

conditions for the washing buffer, oil, droplet, waste, and sample collection lines, the CAR-Wash 

Figure V.2. CAR-Wash Operation. a) Micrograph of the module coalescing and resegmenting 

droplets at >500 Hz each. Electric field was applied across the PBS washing buffer to the 

adjacent grounded saline electrode channel. The 10 µm magnetic beads are visible as small, 

black particles, and flow is generally left to right. b) Loading input droplets with fluorescein 

enables localization of free waste material from input droplets. c) Plot of the intensity of the 

channel cross-section prior to the bifurcation between the waste stream and the resegmentation 

stream (region of interest indicated by the white box in the previous image). The fluorescent 

signal in the channel when washing 1 mM fluorescein droplets is statistically indistinguishable 

from a 100-fold diluted standard (10 µM fluorescein) at position = 50 µm (red dashed line, 

channel bifurcation occurs at position = 120 µm). Error bars on each trace represent 20 

fluorescent profiles. 
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could also achieve robust operation across a range of conditions. Adjusting these relative flow 

rates could independently select droplet frequencies and final droplet size, as shown in 

Supplementary Movie SMV.2. This flexibility may prove beneficial when using beads originating 

from non-identical sample droplets: relatively faster output frequencies produced more empty 

droplets and reduced the incidence of bead co-encapsulation from different input droplets. 

Moreover, changing flow conditions also adjusted magnetic particle trajectories. Faster flows 

displaced particles further down the magnetophoresis channel region during magnetic migration 

but did not significantly change migration speed in the direction of the magnet, as shown in Figure 

V.S1. From this observation, we hypothesize that effective magnetic particle capture using higher 

operating frequencies with higher flow rates may be obtainable in the future by lengthening the 

magnetophoresis channel region correspondingly. In summary, several flow and device parameters 

influenced operation, but magnetic capture and overall performance were generally quite stable 

under many different flow conditions, and devices were routinely operated for >1 hour. 

Next, the washing efficiency was evaluated. Specifically, we wanted to confirm effective 

exclusion of free material from the original droplets in the final bead-containing droplets. To test 

this characteristic, we added 1 mM fluorescein to starting droplets, enabling fluorescent 

monitoring of the content of the original droplets throughout the module as shown in Figure V.2b. 

Uniformly flowing a 10 µM fluorescein standard through the device at comparable flow rates 

provided a reference representing fluorescence intensity at 100-fold dilution. Figure V.2c shows 

the results of plotting time-averaged profiles of the fluorescent channel cross section when 

operating the module and when collecting the fluorescent reference. Promisingly, the channel’s 

fluorescence intensity became statistically indistinguishable from the reference even before the 

position where the channel bifurcated to divert a fraction of the flow into droplet resegmentation 
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(50 µm position vs. 120 µm for channel bifurcation). Interestingly, positions closer to the channel 

bifurcation showed significantly lower fluorescence intensity compared to the reference, indicating 

effective dilution greater than 100-fold in final droplets. Although flow rate and geometry 

adjustments altered the exact channel position corresponding to the 100-fold dilution threshold, 

this result demonstrated that the CAR-Wash platform provided highly efficient removal of free 

species. 

Compared to related continuously flowing magnetic droplet approaches, the CAR-Wash 

platform demonstrates a number of advantages. Our technique cannot discretely collect 

dynamically selectable portions of sample droplets, a feature shown by some tunable droplet 

splitting approaches,31, 33-35 but it exceeds the other capabilities of previous droplet splitting 

platforms in the context of washing for sample purification. Specifically, exchanging >99% of 

droplet volume (as confirmed by fluorescent characterization) surpassed even the highest reported 

proportion of droplet splitting (95%)35 and more closely resembled the continuously flowing 

washes of co-laminar approaches.22, 23 Therefore, highly efficient removal of unbound species was 

achieved without complex sequential splitting and dilution operations.36 While maintaining bead 

capture efficiency (>98%) comparable to these technologies, throughput (~500 Hz) was 

significantly greater than most splitting examples (0.5-30 Hz)17, 33-37 and surpassed our previous 

work in this area (200 Hz).31 Compared to Lee et al.’s synchronized washing design, our system 

shows similar advantages in volume exchange (~96% reported) and throughput (3 Hz reported).14 

Importantly for applications with heterogeneous droplets (perhaps containing single cells, etc.), 

Lee et al.’s system discretely paired sample and washing buffer droplets to ensure that beads from 

unique sample droplets did not mix in final droplets, and we can achieve this result by offsetting 

input and output droplet frequencies. 
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CAR-Wash Bead Input Versatility 

We next re-engineered the device to accommodate alternative magnetic particles. 

Depending on properties such as surface coating and binding capacity, bead requirements can vary 

by assay, and previous magnetic droplet assays have employed a range of particle identities.14, 17, 

31, 33-37 Therefore, we anticipated highest utility for the CAR-Wash if applicable within the 

limitations of other commercially available beads, particularly those with low magnetic content 

per bead. Figure V.3a provides the schematic of the modified CAR-Wash module for handling 

smaller 2.8 µm Dynabeads with 14% reported magnetite content. The chief modification was the 

extension of the magnetophoresis region by more than five-fold compared to the original device 

to compensate for the lower proportion magnetite observed in these particles. Increased residence 

time for Dynabeads through the extended channel (at relatively fixed flow rates) was necessary to 

fully capture beads which were less rapidly deflected by the magnet as shown in Figure V.3b. 

Next, Figure V.3c shows deflected particles re-encapsulated in new droplets at the end of the 

magnetophoresis region, and the added flow focusing oil channels stabilized this terminal 

operation. This added feature was necessary to compensate for less stable flow across the longer 

co-flow capture region, largely originating from variance in reinjected droplets but exaggerated by 

the extended co-flow distance. Without the added flow focusing structure, resegmentation of 

droplets sometimes generated irregular droplet sizes or did not occur at all (co-flow only). 

Monitoring N > 1000 Dynabeads at droplet input and output frequencies ≥200 Hz yielded higher 

than 99% bead recovery. Finally, repeating the fluorescent droplet characterization method 

described earlier for this device indicated reaching the 100-fold dilution threshold at the 60 µm 

channel position (with channel bifurcation still occurring at 120 µm, Figure V.3d-e). Therefore, 

this CAR-Wash variant retained the advantages in throughput and waste removal efficiency of the  
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original design in comparison to previous magnetic washing examples while still achieving 

effective particle capture.14, 31, 33-36 In summary, this modification slightly increased footprint and 

operating complexity, but it established comparable performance for smaller, lower magnetic 

Figure V.3. CAR-Wash Application to Alternative Particles. a) Extending the magnetic capture 

region increases the utility of the module for particles with lower magnetic loading. Red boxes 

indicate regions of interest shown in following panels. b) Micrograph of the module coalescing 

input droplets at ~250 Hz. Electric field was applied across the PBS washing buffer to the 

adjacent grounded saline electrode channel. 2.8 µm magnetic Dynabeads are evident as small, 

black particles in high abundance, and flow is generally left to right. c) High magnification 

micrograph of the module resegmenting droplets downstream at ~200 Hz with efficient 

Dynabead recovery, stabilized by an additional flow focusing structure. d) Loading input 

droplets with fluorescein enables localization of free waste material from input droplets. e) Plot 

of the intensity of the channel cross-section prior to the bifurcation between the waste stream 

and the resegmentation stream (region of interest indicated by the white box in the previous 

image). The fluorescent signal in the channel when washing 1 mM fluorescein droplets is 

statistically indistinguishable from a 100-fold diluted standard (10 µM fluorescein) at position 

= 60 µm (red dashed line, channel bifurcation occurs at position = 120 µm). Error bars on each 

trace represent 20 fluorescent profiles. 
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content particles, widening the device’s potential application space and extending general 

usability. 

 

CAR-Wash Enzyme Inhibition Reversal 

Beyond profiling the physical performance of the CAR-Wash approach, we also wanted to 

demonstrate biochemical utility for the device. As an initial application, we chose to monitor 

washing-mediated inhibition reversal for β-galactosidase activity in cleaving resorufin-β-D-

galactopyranoside to free fluorescent resorufin product. Tethering biotinylated enzyme to the 

surface of 10 µm streptavidin beads added the magnetic handle, and isopropyl β-D-1-

thiogalactopyranoside (IPTG—a well-characterized non-hydrolyzable substrate analog for β-

galactosidase) served as a competitive inhibitor in initial droplets. Therefore, the CAR-Wash 

module provided a means to wash bead-bound β-galactosidase for IPTG removal. Enzyme activity 

was monitored through production of fluorescent resorufin, and fully recovered enzyme function 

relative to uninhibited and inhibited controls indicated successful washing. 

Figure V.4a outlines the schematic for device operation. Droplets loaded with β-

galactosidase-conjugated beads and IPTG were first washed through the original 10 µm magnetic 

bead CAR-Wash platform with input and output frequencies near 200 Hz and final droplet volumes 

between 260 and 300 pL. Output droplets flowed through a short loop of connecting tubing to 

provide ~20 s of incubation while delivering them to a secondary device for dynamic imaging 

within a planar microchannel. To provide an uninhibited control, Figure V.4b shows bright 

fluorescence in collected droplets during operation without inhibitor in the initial droplets or final 

washing buffer. Serving as an inhibited control, weakly fluorescent droplets in Figure V.4c were 

continuously exposed to IPTG in both initial droplets and in the final washing buffer. Next, Figure  
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V.4d shows bright fluorescence in final droplets when washing away IPTG from the initial 

droplets. To standardize enzyme loading per droplet, quantitative measurements of droplet 

Figure V.4. Washing Reverses IPTG Inhibition of β-Galactosidase Activity. a) Droplets 

containing bead-bound β-galactosidase incubated with 1 mM IPTG were washed into PBS and 

resorufin-β-D-galactopyranoside substrate using the standard CAR-Wash module. Droplets 

were imaged on the planar Detection Channel device after ~20 s of dynamic incubation 

accomplished via a 4 cm Incubation Loop of connecting tubing. The red box indicates the 

region of interest for subsequent images. b) Inhibitor-free control droplets (IPTG neither in 

original sample droplets nor in final washing buffer with substrate) generated fluorescent 

resorufin product. Droplets with higher bead loadings typically gave greater signal. c) Inhibited 

control droplets (IPTG both in original sample droplets and in final washing buffer with 

substrate) generated little fluorescent product. d) IPTG-containing sample droplets were 

washed into IPTG-free washing buffer with substrate. Comparable fluorescent product 

formation relative to the inhibitor-free control indicates inhibitor removal by washing. e) 

Measuring the fluorescence of only single bead droplets (outlined in red) confirmed that 

washing fully recovered activity in the originally inhibited system (Panel d) compared to 

uninhibited and inhibited controls (Panels b and c, respectively). The inhibited control (Panel 

c) differed significantly in intensity from the other conditions. 
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intensities in Figure V.4e only included data for single bead-containing droplets (circled in red in 

the images) since droplets with multiple beads appear to have more enzyme than can be inhibited 

by the provided concentration of inhibitor. Crucially, the washed system with initial IPTG did not 

differ significantly in fluorescence intensity from the uninhibited control, indicating full enzyme 

activity after washing. On the other hand, the inhibited control showed significantly lower 

fluorescence than the two other populations, corresponding to competitive inhibition by IPTG. 

Because washing succeeded in fully recovering β-galactosidase activity after inhibition, this result 

verified that the CAR-Wash platform could efficiently remove small molecules in a biologically 

relevant context. 

 

Selective Protein Enrichment via CAR-Wash 

Finally, we wanted to highlight the capabilities of the CAR-Wash platform by 

demonstrating affinity-based protein enrichment and separation. We chose a HeLa cell line 

expressing a green fluorescent protein-histone H2B (GFP-H2B) fusion in the nucleus to provide a 

target protein to fluorescently monitor and because selective enrichment of chromatin-associated 

targets provides the basis of many important epigenetic bioassays.24 After manual cell lysis and 

enzymatic chromatin digestion to increase the accessibility of GFP-H2B, we added mCherry to 

the cell lysate as an off-target fluorescent protein to be removed during washing in addition to 

other, non-fluorescent lysate components. Anti-GFP antibody-functionalized magnetic particles 

selectively captured GFP-H2B prior to magnetic washing. Detection of bead-associated 

fluorescence in green and red channels indicated the abundance of GFP-H2B and mCherry, 

respectively, at each stage of the enrichment assay. 
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Figure V.5 includes the workflow for the enrichment assay. First, magnetic beads with 

surface-tethered anti-GFP antibody were rapidly encapsulated in droplets using a simple flow 

Figure V.5. Selective Enrichment of GFP-H2B from Cell Lysate. a) Anti-GFP antibody-

functionalized beads were pre-emulsified into droplets at ~4 kHz to limit sedimentation. b) The 

bead emulsion was injected into HeLa cell lysate droplets with added mCherry. c) After 1 hour 

of off-chip incubation, droplets were processed via the CAR-Wash module. For all devices, 

flow was generally left to right. d) Droplet populations were fluorescently imaged in green and 

red channels under static conditions including the functionalized bead emulsion (Anti-GFP 

Beads), the sample droplets with beads and lysate after incubation but prior to washing (Pre-

Wash), and the final sample droplets with beads after washing (Post-Wash). Beads are visible 

in each panel as bright spots. e) For the green fluorescent channel, the Pre-Wash population 

was significantly brighter than the original Anti-GFP Beads, indicating the presence of GFP-

H2B. Similarly, the Post-Wash population was significantly brighter than the original Anti-

GFP Beads, demonstrating enrichment and retention of GFP-H2B after washing. The Post-

Wash population was slightly, but significantly less bright than the Pre-Wash population, 

suggesting incomplete GFP-H2B recovery. f) For the red fluorescent channel, the Pre-Wash 

population was significantly brighter than the original Anti-GFP Beads due to the presence of 

mCherry added to the cell lysate. Importantly, the Post-Wash population was not significantly 

brighter than the original Anti-GFP Beads, indicating mCherry removal by washing. 
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focusing device at ~4 kHz (Figure V.5a). This approach reduced a common problem in deploying 

solid phase particles onto microfluidic assays: gravity-driven settling of dense beads results in a 

rapid decrease in their effective concentration, preventing efficient loading.46 By emulsifying the 

entire bead population in the span of a few minutes, the beads remained in suspension for 

subsequent processing. Next, the lysate sample was encapsulated in droplets, and loading the bead 

emulsion on-chip at high packing fraction enabled electrode-mediated direct injection of beads 

into lysate droplets (Figure V.5b). Bead injection was subject to Poisson statistics and not 

completely uniform, but integrating sophisticated bead loading approaches in future applications 

could conceivably ensure uniform bead delivery.47 Following off-device incubation to allow for 

target binding, bead-laden droplets were processed via the original 10 µm bead-handling CAR-

Wash (Figure V.5c) prior to final imaging. This washing portion of the assay demonstrated another 

key advantage of the platform. Because the only input requirement for CAR-Wash was that 

droplets fuse with the washing buffer (which constituted the majority of flow through the module), 

performance was relatively insensitive to input droplet size and spacing uniformity. In particular, 

coalescence did not require precise coordination or synchronization between droplet and buffer 

flows.14 Therefore, this technology interfaced well with detergent-enabled bioassays, such as the 

inclusion here of detergent-lysed HeLa in droplets. For other washing approaches, detergent-

associated instability and partial channel wetting may cause size or spacing heterogeneities that 

disrupt the uniformity of droplet synchronization or compromise control of droplet splitting. 

Droplets from each portion of the assay were statically imaged in a planar microchannel 

(Figure V.5d). In both green and red channels, low native fluorescence from antibody-

functionalized beads resulted in background signal, but inclusion of GFP-H2B and mCherry when 

adding cell lysate greatly increased fluorescence intensities before washing, especially the 
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fluorescent signal localized to the surface of the beads via specific and non-specific interactions. 

After washing, antibody-antigen interactions retained GFP-H2B on bead surfaces while mCherry 

was washed away, returning red channel fluorescence to background levels. In the green 

fluorescence channel, significantly higher intensities for pre-wash and post-wash beads compared 

to the original beads indicated successful GFP-H2B enrichment and retention during washing 

(Figure V.5e). Post-wash beads did have slightly but statistically significantly lower fluorescence 

than pre-wash beads, suggesting some fraction of sample loss from low antibody-antigen affinity, 

inconsistent GFP-H2B binding capacity among beads, or the presence of other confounds. Other 

washing-based droplet assays have reported similar instances of sample loss,14, 36 so it is clear that 

future CAR-Wash applications beyond this proof of concept implementation will also require 

careful optimization to maximize sample capture and retention on magnetic particles. Crucially, 

red fluorescence from mCherry peaked upon lysate loading before washing, but original beads and 

beads after washing did not differ significantly from each other in fluorescence intensity (Figure 

V.5f). This result verified that washing effectively removed non-specifically interacting mCherry, 

returning signal to background levels. Therefore, the CAR-Wash module succeeded in selectively 

enriching and separating GFP-H2B from mCherry and HeLa lysate components.  

 

CONCLUSIONS 

Combining simple, robust operation with high throughput and efficiency, the CAR-Wash 

platform changes the paradigm for in-droplet solid phase-mediated sample processing. We have 

characterized system performance in terms of bead loss and final droplet dilution for selected 

magnetic particles and flow conditions, showing excellent bead recovery and buffer exchange. In 

optimizing module design, we demonstrated that lengthening the magnetophoresis channel 
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provided a practical strategy for adapting the system to lower magnetite particles. We have also 

applied the approach in recovering enzyme activity by washing away a small molecule inhibitor 

and in selectively enriching a target fluorescent protein from cell lysate. The CAR-Wash platform 

represents an exciting advance in realizing the promise of droplet microfluidics by narrowing the 

technological gap between pre-existing droplet methodologies and important (bio)chemical 

techniques leveraging solid supports. Beyond these initial applications, we anticipate a breadth of 

downstream technologies capable of high throughput, miniaturized analogs for immunoassays, 

solid phase extraction, and many others. 
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SUPPLEMENTARY INFORMATION 

The supplementary information in its original format (including videos) may be accessed 

online at doi: 10.1039/C9LC00125E. 

Supplementary Movie SMV.1. CAR-Wash Operation. Input droplets (141 ± 1 pL each) 

electrocoalesce at 550 Hz with >98% 10 µm magnetic bead capture during droplet reformation at 

560 Hz (189 ± 2 pL each). 

Supplementary Movie SMV.2. CAR-Wash Frequency Modulation. Reinjection of loosely 

packed droplets at 100 Hz with output droplet production at 500 Hz prevents coencapsulation of 

beads from different input droplets during resegmentation. This frequency mismatch also increases 

the proportion of empty droplets formed. 
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SUPPLEMENTARY FIGURE 
 

 
 

Figure V.S1. Magnetophoresis Flow Rate Dependence. a) Micrograph of the CAR-Wash 

magnetophoresis region during droplet processing at ~500 Hz input and output droplet frequencies. 

Approximate flow rates for each species are 75 µL/min for the washing buffer, 8.5 µL/min for the 

oil co-flow, and 4.5 µL/min for input droplets. Magnetic particles are circled in red, and the 

washing buffer-oil co-flow interface is highlighted with a white line. B) Micrograph of the same 

CAR-Wash magnetophoresis region during droplet processing at ~200 Hz input and output droplet 

frequencies. Approximate flow rates for each species are 60 µL/min for the washing buffer, 4 

µL/min for the oil co-flow, and 2.5 µL/min for input droplets. c) Plot of particle migration lengths 

under each frequency condition. We define “migration length” as the distance each particle travels 

down the channel length before magnetically-driven orthogonal forces pull it into first contact with 

the washing buffer-oil co-flow interface. Decreasing frequencies and flow rates significantly 

decreases resulting migration lengths. Magnetic migration velocity in the direction of the flow 

interface (48 ± 2 mm/s at 500 Hz and 45 ± 4 mm/s at 200 Hz) did not differ significantly between 

frequency conditions. Significance was assessed at 95% confidence for N = 75 particles under 

each condition (evaluated in N = 5 bins based on distance from the co-flow interface when 

evaluating magnetic migration velocity). Micrographs are aligned and in scale with the plot’s 

migration length axis. 
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Chapter VI 

Chromatin Immunoprecipitation in Microfluidic Droplets: Toward Miniaturized and 

Automated Epigenetic Analysis 

 

This work was performed with Gloria Diaz, Yi Xu, Vishal Sahore, Jeong-Heon Lee, Tamas 

Ordog, and Ryan C. Bailey. G. Diaz, Y. Xu, and V. Sahore (University of Michigan) participated 

in experimental design, microfluidic device design and fabrication, and data collection and 

analysis. J.-H. Lee and T. Ordog (The Mayo Clinic) provided indicated samples and reagents, 

participated in experimental design (especially in establishing biochemical protocols), and 

assisted in data analysis. 

 

INTRODUCTION 

Complicating the fundamental relationships of the Central Dogma of molecular biology, 

complex regulatory networks govern the transcription of DNA into RNA for translation into 

protein.1 Epigenetic determinants, like non-coding RNAs, chemical modifications to DNA bases, 

and histone protein post-translational modifications (PTMs), provide a heritable and dynamically 

modifiable basis for regulating gene expression without inducing corresponding changes in the 

genome.2-4 Of particular interest, epigenetic regulation and dysregulation by histone PTMs play 

major roles in development and health.2, 5, 6 Correspondingly, they have provided a fertile area for 

the development of epigenetic therapies which commonly target histone-modifying enzymes (so-

called epigenetic “writers” and “erasers”) to reprogram dysregulated, often cancer-associated 
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pathways.5, 7 Building on the promise of these initial successes, further maturity and depth of our 

understanding of epigenetic histone PTMs will almost certainly empower additional developments 

in treatment and diagnosis. 

Epigenetic analysis of histone proteins seeks to profile the association of protein isoforms 

with DNA sequences. Histones organize DNA into nucleosome structures (typically with ~147 

DNA base pairs per nucleosome), and chemical modifications like methylation and acetylation 

remodel the association between the histone and DNA as well as modulate the recruitment of and 

interactions with transcriptional machinery.2, 6 To probe these interactions, Chromatin 

Immunoprecipitation (ChIP) uses an affinity separation to isolate and analyze DNA associated 

with a targeted histone PTM.8-14 Supported by a growing knowledge base for the diversity of 

histone PTMs and their context-dependent transcriptional effects, ChIP with DNA sequencing 

(ChIP-seq) can de novo identify the transcriptional state of sequenced genes. For well-

characterized relationships, ChIP with Quantitative Polymerase Chain Reaction (qPCR) provides 

a quantitative snapshot of the relative association of target genes with the modification of interest.6, 

15 Strategic use of these tools enables discovery of new epigenetic pathways, elucidates the 

regulatory state of target genes, and may be of interest in developing a quantitative diagnostic 

approach for epigenetic wellness.7, 9 

As a critical barrier to widespread implementation, ChIP suffers from technical limitations. 

Assay protocols follow a laborious, user-dependent manual process to facilitate sample handling 

from input cells to final, enriched DNA. Due to poor robustness and sample loss at each phase, 

ChIP protocols rarely use fewer than 106 cells per assay, discouraging use on rare cell populations 

or with less-invasive patient biopsies.9-11 Beyond technician variability, inconsistent reagent 

performance and antibody affinity during capture of targeted PTM-displaying nucleosomes further 
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hinder ChIP reproducibility.9, 10 Extensive ChIP protocols have been developed with detailed 

guides to troubleshooting inconsistent results and for decreasing time and sample requirements, 

but further improvements are needed to realize the assay’s full potential.8-14 

Leveraging the capabilities of microfluidics, miniaturized devices have been developed to 

enable small sample, automated epigenetic analysis. Among the most successful examples, the 

Quake Group was first to establish a miniaturized, parallel platform for processing samples as 

small as few thousand cells for ChIP.16, 17 While they showed good enrichment and effective DNA 

processing for sequencing analysis, the device featured a fixed-volume chamber which lost sample 

with each reagent addition and required precisely optimized assay conditions as a function of 

sample size. Next, the Lu Group developed a series of modules for effective ChIP down to a few 

10s of cells and even integrated on-device sonication for chromatin shearing as well as expansion 

to non-histone immunoprecipitation targets.18-21 Similarly, this platform was also limited to fixed 

sample size processing under precise assay conditions in a discrete microfluidic chamber. Most 

recently, the Weitz Group expanded the capabilities of droplet-enabled DNA barcoding to single 

cell ChIP.22 Despite impressive single cell ChIP-seq capabilities, most of the ChIP assay after 

barcoding was performed manually, and processing was limited by both barcoding efficiency and 

number of unique barcodes. Nonetheless, these approaches have provided impressive examples of 

miniaturized ChIP and laid the groundwork for automated epigenetic analysis of rare cell 

populations. 

In answering some of the existing limitations in bulk (large sample size, user dependence, 

etc.) and microfluidic (fixed sample size with intensive re-optimization) ChIP, droplet 

microfluidics presents exciting possibilities.23, 24 By segmenting samples within a fluorinated oil 

and stabilizing volumes with fluorosurfactants, droplet systems enable high throughput serial 
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processing in which each portion of a bulk sample is processed as its own fL- to nL-scale reactor.25-

27 Thus, reaction conditions (reagent concentrations) do not require scaling with sample size. 

Instead, larger or smaller samples merely change the total number of droplets handled through 

uniform assay conditions. Sophisticated droplet technologies emulate manual sample handling 

steps at up to kHz rates for miniaturized volumes, and in-droplet physics promote rapid mass 

transfer for efficient chemical reactions. These approaches enable direct injection of reagents, in-

droplet affinity purifications, and more, providing a basis for bioassay adaptation. 28-33  

The Bailey Lab’s recent innovations in droplet-enabled chromatin preparation and droplet-

based magnetic affinity separations established proof-of-concept for important ChIP unit 

operations.32, 34 In this work, we extended those basic capabilities in more sophisticated devices 

and ultimately developed a microfluidic ChIP assay for serial processing of droplet-encapsulated 

cell samples. After biochemical optimization of ChIP on the bulk scale, we applied these 

conditions for droplet-enabled ChIP targeting H3K4me3 and H3K27me3 as representative 

activating and repressive histone PTMs. Critically, validation versus manual ChIP demonstrated 

effective, selective enrichment using the droplet method, if at reduced DNA yield, and it verified 

the potential of this technology for automated, non-deterministic epigenetic analysis. 

 

EXPERIMENTAL SECTION 

 

Device Preparation 

 Microfluidic devices were fabricated by adapting conventional soft lithography 

techniques.35 In brief, devices were designed in AutoCAD (Autodesk, Inc.) and sourced in plastic 

with an ink emulsion (CAD/Art Services, Inc.). For master mold fabrication, all devices used SU8 
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2025 or SU8 2050 Negative Epoxy Photoresists (MicroChem Corp.) spun-coat onto 3 in diameter 

silicon wafers (University Wafer). All devices first used SU8 2025 at 40 µm feature height which 

was exposed via MJB3 Mask Aligner (SUSS MicroTec) with a high-pass optical filter (PL-360-

LP, Omega Optical) after soft baking. Following exposure, devices were post-baked, developed in 

propylene glycol monomethyl ether acetate (Sigma Aldrich), and hard-baked for mechanical 

durability. For dual-layer devices (such as the cell encapsulation, cell lysis, chromatin digestion, 

and immunoprecipitation device), a layer of SU8 2050 was spun-coat over existing features to 160 

µm feature height and processed with a second, complementary photomask following a similar 

procedure as for the first feature layer. After final development and hard-baking, all wafers were 

treated under vacuum with tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (Gelest, Inc.) as a 

release aid. 

 Devices were fabricated from master molds using poly(dimethyl siloxane) PDMS in a 5:1 

or 10:1 base: curing agent ratio (RTV615, Momentive, Inc.). After curing for at least 1 h in a 70 

°C oven, PDMS stamps were removed from the master and cut to size. Devices were ported using 

needles (18 and 30 Ga) lubricated with Fluoroinert FC-40 (Sigma Aldrich). Finally, devices were 

bonded to glass slides (1 mm thickness, 75 mm x 50 mm, Thermo Fisher Scientific) or glass 

coverslips (No. 11/2, 22 mm x 40 mm, Sigma Aldrich) using oxygen plasma (PDC-32G, Harrick 

Plasma). After bonding, devices were baked at 70 °C overnight. 

 For the cell encapsulation, cell lysis, chromatin digestion, and immunoprecipitation device, 

devices were surface treated with Aquapel (Pittsburgh Glass Works) prior to use. Teflon tubing 

(#24 PTFE, Cole Parmer) was treated with 1% (w/v) Pluronic F127 (Sigma Aldrich) in PBS prior 

to use. 
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 For integrated magnetic field devices, fabrication and preparation were modified as 

described previously.29, 32 Briefly, designs included magnetic alignment features so that a magnet 

(Grade N52, 0.5 in x 0.25 in x 0.125 in, magnetized through thickness, K&J Magnetics, Inc.) was 

precisely positioned on the master prior to PDMS addition and curing. After curing, the magnet 

was removed, leaving a magnet port for later aligning the magnets in the assembled device (eight 

magnets total, arranged in a block of approximate dimensions: 0.5 in x 0.5 in x 0.5 in, direction of 

magnetization oriented toward the microchannel). Prior to use, magnetic devices (and bead-

emulsifying devices) were surface treated with 1% (v/v) tridecafluoro-1,1,2,2-tetrahydrooctyl 

trichlorosilane in FC-40. For these devices, Teflon tubing (#24 PTFE, Cole Parmer) was used 

without modification. 

 

Samples and Reagents 

The continuous phase for droplet microfluidic operations was Novec 7500 (The 3M 

Company) with 1 or 2% (w/w) 008-Fluorosurfactant (RAN Biotechnologies, Inc.). All samples 

(except for cell and bead suspensions described below) were filtered via 0.2 µm nylon syringe 

filter (VWR International) prior to use on-device. 

Cell samples were HeLa, typically suspended at a density of 7 x 106 cells mL-1 in PBS with 

21.9% (v/v) Optiprep Density Gradient Medium (Sigma Aldrich) to decrease gravity-driven 

sedimentation. Samples were handled off-device or during bulk processing using DNA LoBind 

tubes (Thermo Fisher Scientific). 

Cell lysis and chromatin digestion were mediated by Lysis Buffer, Digestion Buffer, and 

Quenching Buffer as described previously.34 Lysis Buffer contained 10 mM HEPES, 1.5 mM 

MgCl2, 10 mM KCl, and 0.5% (w/v) IGEPAL-CA630 (Sigma Aldrich) at pH 7.9. Digestion Buffer 
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contained 20 mM Tris-HCl, 15 mM NaCl, 60 mM KCl, 5 mM CaCl2, 0.15 mM spermine, and 0.5 

mM spermidine at pH 7.5. Quenching Buffer contained 100 mM Tris-HCl, 20 mM EDTA, 200 

mM NaCl, 2% Triton-X 100, and 0.2% sodium dodecyl sulfate (SDS) at pH 8. To simplify 

processing, a single combined buffer was prepared for cell processing comprised of Lysis Buffer, 

Digestion Buffer, and Micrococcal Nuclease (MNase, 2000 GU μL-1, New England Biolabs) at a 

ratio of 10:4:1, respectively. 

Magnetic particles were Protein g Dynabeads (Thermo Fisher Scientific). Bead preparation 

began with manual magnetic washing and resuspension in 50 mM Tris-HCl, 10 mM EDTA, 100 

mM NaCl, 1% Triton-X 100, and 0.1% SDS at pH 8. Next, ChIP-grade anti-H3K4me3 (produced 

by and generously provided by the Mayo Clinic) or anti-H3K27me3 (Cell Signaling Technologies, 

generously provided by the Mayo Clinic) antibodies were added to the particles so that the final 

titer was scaled as 1-8 µg with 30 µL beads for 4 x 106 cells (specific values indicated with data). 

Quantities were proportionally scaled for smaller samples. After 2 h of incubation with rotation at 

4 °C, beads were manually magnetically washed in the same buffer before final resuspension in 

Quenching Buffer. 

For sample washing after immunoprecipitation, Low Salt Washing Buffer, High Salt 

Washing Buffer, LiCl Washing Buffer, and Tris-EDTA (TE) Washing Buffer were used. Low Salt 

Washing Buffer contained 20 mM Tris-HCl, 2 mM EDTA, 150 mM NaCl, 0.1% SDS, and 1.0% 

Triton X-100 at pH 8.1. High Salt Washing Buffer contained 20 mM Tris-HCl, 2 mM EDTA, 500 

mM NaCl, 0.1% SDS, and 1.0% Triton X-100 at pH 8.1. LiCl Washing Buffer contained 10 mM 

Tris-HCl, 1 mM EDTA, 250 mM LiCl, 1.0% Igepal-CA630, and 1.0% sodium deoxycholate at pH 

8.1. Finally, TE Washing Buffer contained 10 mM Tris-HCl and 1 mM EDTA at pH 8.1. 
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For final purification and analysis, chemical coalescence of droplets was achieved with 

1H,1H,2H,2H-perfluoro-1-octanol (Sigma Aldrich). Next, magnetic particles were exchanged into 

Elution Buffer, containing 20 mM Tris-HCl, 20 mM EDTA, 300 mM NaCl, and 2% SDS at pH 

8.0. RNase A (1 h treatment at 65 °C, 2 µL at 10 mg mL-1 per sample, Sigma Aldrich) and 

Proteinase K (2 h treatment at 65 °C, 2 µL at 10 mg mL-1 per sample, Thermo Fisher Scientific) 

were used to degrade RNA and protein, respectively, during sample purification. Final DNA 

purification was performed using a QIAquick PCR purification kit (Qiagen) according to the 

manufacturer’s instructions. 

 

Microfluidic Device Operation 

 For the cell encapsulation, cell lysis, chromatin digestion, and immunoprecipitation device, 

devices were operated with syringe pumps (Pump 11 Pico Plus Elite, Harvard Apparatus) along 

guidelines from previous work.34 Representative flow rates were 2 µL min-1 for the cell suspension, 

2 µL min-1 for the combined Cell Lysis Buffer, Digestion Buffer, and MNase flow, 6 µL min-1 for 

the sample-encapsulating oil flow, 10 µL min-1 for the respacing oil flow, and 4 µL min-1 for the 

bead emulsion in Quenching Buffer. 

For the integrated magnetic field washing devices and the bead-emulsifying devices, 

microfluidic devices were operated with pressure-driven flow as described previously.29, 32 Briefly, 

this custom-assembled system distributed N2 pressure from a gas cylinder through a custom 

manifold (VWR International) to individual two-stage regulators (VWR International) for 

selecting the pressure applied to each fluid line. Gas flowed through Tygon tubing (1/16 in ID x 

1/8 in OD, Cole Parmer) through a solenoid valve (LHDA0531115H, The Lee Company) array 

and was interfaced via metal pins (New England Small Tube Corp.) through Teflon-silicone septa 
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(13 mm Autosampler Vial Septa, Thermo Fisher Scientific) into the headspace of solution-filled 

vials (Screw-Thread N-51A Borosilicate Glass Sample Vials, Thermo Fisher Scientific). The 

solenoid valve array provided digital control of individual pressure lines (turning them on or off) 

and was actuated by a custom LabView virtual instrument (National Instruments) communicating 

with a data acquisition device (NI PCIe-6251 Multifunction Data Acquisition Device with an SCB-

68 Shielded I/O Connector Block, National Instruments). Tubing lengths (#30 PTFE, Cole Parmer) 

were typically fixed at 20 cm, but the droplet input for the integrated magnetic field washing 

devices used 25 cm for ease of use, and the bead suspension input for the bead-emulsifying devices 

used 5 cm from an inverted vial to minimize gravity-driven bead sedimentation.36 Applied 

pressures were directly proportional to achieved flow rates. For the integrated magnetic field 

washing devices, representative pressures were 50 kPa for the input droplets, 55 kPa for the oil 

respacing the input droplets, 55 kPa for the Low Salt Washing Buffer, 65 kPa for the High Salt 

Washing Buffer, 65 kPa for the LiCl Washing Buffer, 40 kPa for the TE Washing Buffer, 55 kPa 

for the oil co-flowing with the washing buffers, 55 kPa for the oil resegmenting washed particles 

back into droplets, and 20 kPa for the waste collection outlet. For the bead-emulsifying devices, 

representative pressures were 55 kPa for the bead suspension and 85 kPa for the oil. Under these 

conditions, final flow rates were on the order of µL min-1, and pressures were dynamically adjusted 

during operation as needed to achieve desired flow performance. 

Electric field for all devices was mediated by a custom inverter to apply ~45 VAC (36 kHz) 

to the device. Electric field was typically supplied via on-device electrolyte-filled (3 M NaCl) 

channels connected to the inverters using syringes.37 For integrated magnetic field washing 

devices, the electric field was connected via a submerged platinum wire in the Low Salt Washing 

Buffer reservoir, but the ground electrode was an electrolyte-filled channel as described above. 
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Imaging and Analysis 

 Device operation was monitored using an M80 Stereomicroscope (Leica Microsystems, 

Inc.) with a Phantom Miro Ex2 High Speed Camera (Vision Research, Inc.) or a DMi8 Microscope 

(Leica Microsystems) with a VEO 640L High Speed Camera (Vision Research, Inc.). Fluorescent 

imaging was performed on the DMi8 with the VEO 640L using a FITC fluorescence cube filter 

(Leica Microsystems). Image processing and analysis were performed using ImageJ software 

(National Institutes of Health). Droplet flow characteristics (size, frequency, velocity, etc.) were 

determined manually within the software from brightfield images, and analysis included at least N 

= 20 droplets for each conditions shown. Brightfield and fluorescent images were uniformly 

increased in brightness for ease of visualization, but quantitative data were obtained from the 

original, non-adjusted images. 

 Purified DNA was quantitatively evaluated across two primary metrics. DNA amount was 

measured with the Qubit dsDNA assay (Thermo Fisher Scientific) according to the manufacturer’s 

protocol. DNA enrichment (indicating ChIP enrichment specificity) was measured using 

quantitative polymerase chain reaction (qPCR) performed on the 7900HT Fast Real-Time PCR 

System (Thermo Fisher Scientific), and this assay was performed by the DNA Sequencing Core 

(University of Michigan). For qPCR analysis, primer DNA sequences (see Table VI.1, Integrated 

DNA Technologies, Inc.) and master mix (Applied Biosystems™ PowerUp™ SYBR™ Green 

Master Mix, Thermo Fisher Scientific) were added to each sample prior to amplification. 

Evaluation of this data is described in the following sections, and, within each plot, the data 

represent parallel ChIP experiments with the same starting cell population. One of the datasets 

supplied a comparison for multiple parameters, alternately labeled as “60 ng,” “Bound,” and 

“Manual 60 ng” in Fig. VI.4a, VI.4c, and Fig. VI.5a, respectively. 
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RESULTS AND DISCUSSION 

 

Microfluidic Assay Design Principles 

As a starting point, assay development initiated from two recent technologies developed 

by the Bailey Lab. First, Xu et al. described a droplet microfluidic method for chromatin 

preparation in an epigenetic context.34 To profile nucleosome positioning as an indicator of the 

transcriptional state of proximal genes, the device compartmentalized cells into droplets at a co-

flowing interface which simultaneously added cell lysis and chromatin digestion reagents 

(principally detergent and micrococcal nuclease, MNase, respectively). Following incubation 

through an extended delay channel network (the volume of which determined processing time), 

direct injection inhibited the Ca2+-dependent MNase by adding EDTA into sample droplets as a 

chelator. Finally, droplets were collected from the device and processed for analysis of obtained 

DNA, including DNA yield, digested DNA fragment length, and DNA sequence. Overall, this 

method achieved effective automated processing across a range of sample sizes, and the 

combination of cell lysis and chromatin digestion elements (typically performed as separate, 

Gene Primer Direction DNA Sequence (5' to 3')

BRG1 Forward TTG GCG AAG CTG CGA TCG GG

Reverse AGG GGA CCG CTA ATG CCC GT

MYT1 Forward CCT GCC GTG TGC TGT TTT T

Reverse CAC AAC ATG TCC CCT GGA ATC

hSAT Forward AAG GTC AAT GGC AGA AAA GAA

Reverse CAA CGA AGG CCA CAA GAT GTC

C19 Forward AGC TTG TCT TTC CCA AGT TTA CTC

Reverse TAG CTG TCG CAC TTC AGA GGA

Table VI.1. Primer Sequences Used in Quantitative Polymerase Chain Reaction Analysis of 

ChIP Enrichment. 
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discrete steps) proved an innovative approach to simplify the workflow. In the context of the ChIP 

assay, it represented much of the early stages of the assay: processing from input samples to 

digested chromatin. 

The second supporting technology was very recently described by Doonan et al.32 ChIP 

requires highly effective washing steps to exchange antibody-histone complexes through a series 

of detergent and ionic strength conditions for removal of off-target species. The Coalesce-Attract-

Resegment Washing (CAR-Wash) module fused input droplets (containing magnetic particle-

bound sample) with washing buffer flow. Next, a permanent magnet pulled particles across 

washing buffer streamlines to the opposite side of the channel as laminar flow confined the 

original, non-magnetic droplet material to its original flow path. Lastly, magnetic particles were 

re-encapsulated in new droplet volumes at the end of the device for further handling. Module 

characterization showed nearly complete particle capture and superior exclusion of starting waste 

volume compared to previous droplet microfluidic purification techniques. The CAR-Wash was 

originally deployed for proof-of-concept assays including a selective protein enrichment where, 

importantly, it was relatively insensitive to input droplet quality. This feature is particularly 

important for ChIP processing: continuing the ChIP assay through the washing stages requires 

robustly handling detergent-destabilized droplets (from both Lysis Buffer and washing buffer 

components). 

These two examples prototyped features of the ChIP protocol, including cell processing 

through chromatin digestion and particle-mediated washing of captured chromatin complexes. 

Nonetheless, they omitted other crucial technical aspects of ChIP. First, bead and antibody addition 

must be delivered in controlled stoichiometry to promote specific enrichment of targets while 

minimizing background. Second, standard protocols wash immune complexes through a series of 
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washing buffers for efficient and selective ChIP, but the CAR-Wash only demonstrated single 

washing examples. Serially transferring sample through multiple iterations of the device will 

increase processing complexity, operation time, and sample loss. Overall, these technologies 

offered promising starting points for ChIP, but they required further adaptation before enabling 

the assay. 

 

Expanding Microfluidic Device Functionality 

Microfluidic devices were correspondingly altered to integrate additional ChIP functions. 

First, the core device described by Xu et al. was adapted to facilitate both robust processing of 

cells and terminal magnetic bead-bound antibody injection (Fig. VI.1a).34 As before, cells were 

co-encapsulated with cell lysis and chromatin reagents to initiate chromatin preparation (137 ± 3 

pL in volume each at 380 ± 30 Hz generation frequency for this example). This portion was only 

slightly adjusted to improve robustness against channel obstructions by decreasing the incidence 

of sharp channel bends in these relatively narrow channel regions (Fig. VI.1b). The delay channel 

region was left unchanged in geometry (and total storage volume) to ensure that slowly flowing 

droplets were processed according to previously optimized reaction duration (~210 s incubation, 

Fig. VI.1c). By maintaining the properties of these upstream features, the fundamental operating 

parameters and performance for well-established cell lysis and chromatin digestion functions were 

maintained.34  

Downstream, the device was more significantly altered. After the incubation region, adding 

a respacing oil feature improved performance for terminal operations (Fig. VI.1d). Delay channels 

achieved droplet incubation using channels with large cross-sectional area to limit impractical 

increases in device hydraulic resistance.33 Unfortunately, these channels gave droplets additional  
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degrees of freedom (lateral and vertical) where they rearranged and shuffled within the continuous 

phase. Subsequent processing was hindered by random distribution of droplets, particularly for 

Figure VI.1. Schematic and Representative Micrographs for the Initial ChIP Module. a) 

Schematic of the microfluidic device with regions of interest (shown in later micrographs) 

indicated by red boxes. b) The cell suspension (left, cells visible as small, bright circles) and 

lysis and chromatin digestion stream (right) co-encapsulate into droplets under the influence of 

orthogonal, immiscible oil flow at the T-Junction. c) Cell lysis and chromatin digestion occurs 

during incubation in a serial network of large-volume channels. d) Oil respaces irregularly 

packed droplets after incubation. e) Direct injection under the destabilizing influence of electric 

field adds antibody-functionalized magnetic particles (visible as small, black objects in high 

abundance) and Quenching Buffer (to inhibit chromatin digestion) to respaced droplets. Flow 

is generally left to right, and all scale bars are 100 µm. 
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droplet-spacing dependent direct injections. Thus, re-spacing the droplets further at the end of 

incubation helped to ensure all droplets received sufficient quenching buffer and antibody-

magnetic bead addition, while avoiding total droplet destabilization and fusion with neighboring 

volumes (Fig. VI.1e). Bead and quenching buffer injection were further facilitated by rapid 

emulsion of the bead suspension as previously described (using a tabletop vortex mixer or simple 

droplet formation device).32 Beneficially, this technique limited sedimentation of dense magnetic 

particles which might prevent uniform on-device loading during extended operation.36 Two 

additional optimizations of the direct injection increased device robustness: (1) flow-through 

(instead of dead-end-filled) electrode channels required lower pressures to fill with electrolyte 

solution, improving ease of use and reducing the chance of total device mechanical failure during 

assay preparation, and (2) direct injection of the bead emulsion was interfaced at a less severe 

angle (40° instead of 90° relative to the intersecting flow channel). This redirection promoted more 

robust handling of the reinjected bead emulsion stream which was frequently subject to obstruction 

in the original design (by concentrated magnetic particles and incidental contaminants). These 

alterations added immunoprecipitation capabilities and decreased device sensitivity to channel 

obstructions.34 

 Next, the second device was expanded from the Dynabead particle washing module 

described by Doonan et al.32 Here, the critical deficit in the original platform resided in the need 

for multiple washing phases supported by the consensus of ChIP protocols.8-14 Experiments 

attempting serial reinjection for repeated washing of a single droplet population through different 

buffers were laborious and largely failed due to sample loss at each step (data not shown). On the 

other hand, interesting examples have demonstrated the potential of magnetically-mediated co-

laminar sample processing.38, 39 These microfluidic devices have been applied to bioassay and 
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material synthesis applications, achieving effective chemical manipulation of migrating particles 

during passage through orthogonal reagent streams. Therefore, the CAR-Wash principle was 

adapted to a co-laminar particle processing strategy for fully integrated ChIP washing (Fig. VI.2a). 

Droplets entering this device were frequently irregular due to detergent-driven instabilities and to 

variance in terminal quenching buffer-particle injection volume from the first module. After a 

simple oil respacing intersection, droplets were effectively electrocoalesced with the Low Salt 

Buffer stream (Fig. VI.2b). Lack of respacing increased the rate of coalescence failure when 

adjacent, closely packed droplets experiences disuniform flux of the electric field.. Upon fusion, 

particles rapidly migrated through the co-laminar streams (Low Salt Buffer, High Salt Buffer, LiCl 

Buffer, and TE Buffer). The fastest particles with highest magnetic content reached the TE Buffer-

oil boundary (to restrict them from trapping at the channel wall) in as little as 10 ms, but a large 

fraction of the population did not completely migrate until flowing much further downstream. At 

the end of the co-flowing migration channel, beads were re-encapsulated into droplets (Fig. VI.2c). 

Precise flow conditions varied based on input droplet quality and magnetic alignment, and example 

input flow conditions approximated 200-500 Hz (estimated from total volume for coalesced input 

droplets) with output generation at up to 1500 Hz. More important than their exact values, flow 

conditions were dynamically selected to give effective droplet coalescence and magnetic particle 

capture while maximizing throughput. 

 The original CAR-Wash example physically and biochemically confirmed washing 

effectiveness in this format for a single buffer, and expanding this platform required profiling 

washing characteristics in the co-laminar format.32 Fluorescently dying the first (Low Salt Buffer) 

and third (LiCl Buffer) washing buffers gave qualitative insight about the chemical environment 

of migrating magnetic particles at the beginning (Fig. VI.2d) and end (Fig. VI.2e) of the device.  
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Figure VI.2. Schematic, Representative Micrographs, and Fluorescent Profiles for the Second 

ChIP Module. a) Schematic of the microfluidic device with regions of interest (shown in later 

micrographs) indicated by red boxes. The magnet is represented by the large gray rectangle. b) 

The oil-respaced sample droplets (often irregular due to detergent destabilization) are coalesced 

with the washing buffer coflow under the influence of directed electric field. Magnetic particles 

(visible as small, black objects in high abundance) are magnetically pulled across washing 

buffer streams until reaching the interface with the co-flowing oil stream. c) The majority of 

fully migrated particles are re-encapsulated in droplets of the terminal buffer stream, mediated 

by an orthogonal flow focusing interface. The remainder of channel volume flows to waste. 

Fluorescent imaging of d) the coalescence region and e) the re-encapsulation region 

demonstrates the localization of the four, co-flowing washing buffers. From top to bottom, these 

buffers were Low Salt Buffer (with 100 µM fluorescein and supplying the electric field), High 

Salt Buffer, LiCl Buffer (with 100 µM fluorescein), and TE Buffer. Fluorescence profiles of  
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Exact position of each buffer stream depended on the relative flow rates applied, and the 

disuniformity of input sample droplet flow generated instabilities in upstream profiles (Fig. VI.2f) 

which equilibrated after extended flow (Fig. VI.2g). Moreover, the lack of complete return to 

baseline in non-fluorescent washing buffers indicated the extent of convective (from the 

coalescence region’s instabilities) and diffusive (from extended co-laminar flow) mixing. The 

device thus provided chemical gradients as particles migrate among streamlines, and we anticipate 

that the washing gradient could be adjusted as needed with buffer flow rates, co-laminar buffer 

channel length, and magnetophoresis channel width, among other strategies. Finally, variance in 

particle magnetic content could lead to very short interactions with each washing buffer (a few ms 

in duration across some tens of µm in lateral distance), but earlier CAR-Wash characterization 

showed highly efficient buffer exchange (100-fold dilution) at similar scales (~50 µm).32 Later 

data in this work highlighting selective enrichment suggest that even these seemingly brief 

washing buffer interactions successfully recapitulate bulk ChIP washing effectiveness. 

 In combination of these two platforms, Fig. VI.3 summarizes this total droplet-based ChIP 

workflow: microfluidic droplet processing from original cells to purified nucleosomes (with 

manual final DNA recovery and analysis). 

 

Manual ChIP Optimization and Analysis 

The optimized microfluidic devices developed the mechanical capabilities for a 

streamlined ChIP protocol, and characterization in a manual format provided a useful strategy to 

each device region (regions of interest boxed in red in earlier images) demonstrate localization 

and mixing at f) the droplet coalescence and initial washing zone under destabilizing flow 

conditions and at g) the re-encapsulation zone under stabilized flow conditions. Each plot 

includes an average (black) with error bars (gray, representing the standard deviation) for 20 

profiles as well as 5 example profiles from single timepoints (to indicate specific localization 

obscured by flow instabilities). Flow is generally left to right, and all scale bars are 100 µm. 
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optimize operating conditions. Briefly, the first module was designed to lyse cells, digest 

chromatin, and initiate immunoprecipitation. After incubation, the second module was designed 

to wash immunoprecipitated sample through the four washing buffers. Therefore, the manual ChIP 

protocol performed these key steps by (1) manually adding the lysis and digestion reagents 

Figure VI.3. Chromatin Immunoprecipitation-in-Droplets Schematic. a) The first module of 

the workflow performed three key tasks: co-encapsulation of suspended cells with cell lysis 

and enzymatic (MNase) chromatin digestion components, reaction time for cell lysis and 

chromatin digestion during flow through large volume channels, and direct injection of 

antibody-conjugated magnetic particles in enzyme-quenching buffer. b) After antibody-histone 

target binding, droplets were reinjected onto the second module for washing. Upon electrical 

coalescence, the magnetic field from a channel-adjacent permanent magnet array attracted the 

magnetic particles through four miscible, co-flowing washing buffers: Low Salt Buffer 

(electrically charged), High Salt Buffer, LiCl Buffer, and Tris-EDTA (TE) Buffer. A co-

flowing oil stream restricted particle motion from wall-bounded trapping and participated in re-

encapsulation of washed particles in new droplets. c) After washing, final processing coalesced 

droplets for bead recovery followed by RNAse and proteinase treatment to elute DNA. Once 

purification was complete, DNA was analyzed with quantitative Polymerase Chain Reaction 

(qPCR) and fluorimetry. Arrows indicate flow directions of adjacent channel features. 

Electrically charged structures have polarity indicated. Features are not shown to scale. 
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simultaneously, (2) injecting magnetic particles with antibody in Quenching Buffer after ~210 s 

incubation, and (3) performing manual magnetic washing after overnight incubation. Final DNA 

elution and analysis were performed manually in both on-device and manual samples. 

To simplify microfluidic adaptation of ChIP, certain assay steps were combined or omitted. 

Prior characterization confirmed that the combined cell lysis and chromatin digestion (enzymatic 

only) were suitable for chromatin processing into mono-nucleosomes, even though other protocols 

performed these operations separately or even isolated nuclei before processing. 8-14, 34 

Nonetheless, it was unclear as to how combining these steps followed by the addition of the 

immunoprecipitation solid phase during enzymatic quenching might affect enrichment. Further, 

our protocol did not use a clearing method (centrifugation or non-specific particle incubation) to 

remove insoluble chromatin and cell lysate components. 8-14 Such species might interfere with 

specific binding to antibodies and increase background during analysis. These discrepancies 

required evaluation prior to implementation of the microfluidic approach. 

ChIP performance was primarily assessed using a fluorimeter to determine DNA yield and 

by using Quantitative Polymerase Chain Reaction (qPCR) to determine immunoprecipitation 

specificity. In particular, qPCR assayed the relative abundance of expected on- and off-target gene 

sequences for our well-characterized histone PTMs. The final analysis was performed using the 

ΔΔCt Method:40 

 

∆∆Ct = (CtGOI:IP − CtRG:IP) − (CtGOI:Input − CtRG:Input) eq. 1 

 

Where the ΔΔCt is the change in the threshold cycle, Ct, for the gene of interest in the 

immunoprecipitated sample, GOI:IP, compared to the reference gene for the immunoprecipitated 
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sample, RG:IP, corrected by the same calculation for a non-immunoprecipitated input sample, 

GOI:Input and RG:Input, respectively. Compared to absolute ΔCt evaluation, the input correction 

reduces the effects from experimental variability in cell processing and qPCR performance.40 

Because qPCR functions on an approximate doubling of the amplified DNA target (within optimal 

cycle number), the enrichment of targeted DNA, described as the fold-change of target DNA 

sequence amount compared to reference DNA sequence amount, is: 

 

= 2−∆∆𝐶𝑡 eq. 2 

 

For the assay, we selected a stringent 5-fold enrichment threshold for target DNA amount relative 

to the reference provides for positive enrichment (corresponding to -ΔΔCt ≈ 2.3), but an 

enrichment threshold as low as 3-fold has been accepted previously.15 

 To demonstrate ChIP efficacy we chose to profile two well-characterized marks, one 

activating for associated DNA and the other repressive. Trimethylation of lysine 4 on histone H3 

(H3K4me3) was the activating target, trimethylation of lysine 27 on histone H3 (H3K27me) was 

the repressing target, and genes for qPCR analysis were correspondingly selected.14, 41 The BRG1 

Transcription Start Site (TSS) was actively expressed in the context of ATP-dependent chromatin 

remodeling and was expected to associate with H3K4me3.42 Next, the MYT1 TSS was repressed 

by the Polycomb Repressive Complex 2 (PRC2) and was expected to associate with H3K27me3.9 

A constitutive heterochromatin site, hSAT, was also included and not expected to associate with 

either modified histone.43 Finally, an intergenic region, C19, was used as the reference gene not 

associated with either modification.9 
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 Fig. VI.4 shows example ChIP characterization and optimization data. First, we optimized 

antibody titer for H3K4me3 (Fig. VI.4a) and H3K27me3 (Fig. VI.4b). In both cases, DNA yield 

increased significantly with titer due to increased specific binding capacity but, perhaps, also due 

Figure VI.4. Manual ChIP Characterization for 250,000 HeLa Cells. a) For lower antibody 

titer (60 ng), H3K4me3 shows a (not statistically significant) increase in strongly H3K4me3-

associated BRG1 enrichment with no change in off-target MYT1 or hSAT. DNA yield (inset) 

is significantly higher with higher antibody titer. b) For higher antibody titer (300 ng), 

H3K27me3 shows a significant increase in strongly H3K27me3-associated MYT1 enrichment 

with no change in off-target BRG1 or hSAT. DNA yield (inset) is significantly higher with 

higher antibody titer. c) For pre-treating magnetic beads with 60 ng anti-H3K4me3 antibody 

(“Bound”), BRG1 shows significantly higher specific enrichment, MYT1 shows significantly 

lower non-specific enrichment, and DNA yield was significantly lower compared to adding the 

free antibody (60 ng) in the lysis and digestion reagent followed by adding the magnetic beads 

during enzymatic quenching (“Free”). There was no change in hSAT enrichment. d) Overnight 

(>12 h) and short (2 h) incubation show no significant difference in enrichment for any of the 

gene loci, but overnight incubation significantly increased DNA yield. A “-” indicated the data 

was unavailable (qPCR well failure). A “*” indicated statistical significance (Student’s t-Test 

at 95% confidence), but limited replicates limit statistical power. The red line indicated the 

threshold for positive enrichment (at least a 5-fold change in the gene of interest vs. reference 

sequence C19). 
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to increased non-specific interactions with a higher antibody loading on the bead surface. In fact, 

our data supports both possibilities. Anti-H3K4me3 at higher titer showed lower specific 

interactions with BRG1 (Fig. VI.4a), but anti-H3K27me3 at higher titer showed significantly 

higher specific enrichment for MYT1 (Fig. VI.4b). Next, antibody loading method was evaluated 

(Fig. VI.4c). Antibodies were typically applied to the bead surface and magnetically washed before 

introduction with the quenching buffer. On the other hand, we anticipated that variance in the 

microfluidic operation’s terminal direct injection of beads and antibody (due to inconsistent 

droplet spacing after incubation) might interfere with antibody-target stoichiometry. Therefore, 

this study tested adding the free antibody with the lysis and digestion reagent to take advantage of 

the robustness and reproducibility of upstream microfluidic operation. Nonetheless, for H3K4me3, 

we saw significantly reduced BRG1 specific enrichment with significantly higher non-specific 

MYT1 enrichment and DNA yield. Therefore, this approach increased non-specific binding 

because it did not pre-coating the particles with antibody prior to interactions with non-specific 

lysate and chromatin components. Lastly, immunoprecipitation incubation time was evaluated 

(Fig. VI.4d). For overnight and 2 h incubation (terminated by manual particle washing), 

enrichment did not differ significantly, but overnight incubation obtained significantly higher 

DNA yield. 

Generally, these data showed positive enrichment of specific loci with only inconsistent, 

slight enrichment of off-target sequences (primarily hSAT). Higher yield for H3K27me3 ChIP 

also conforms to expectations of high target abundance.14 Unfortunately, biological replicates of 

similar conditions (such as 60 ng particle-bound anti-H3K4me3 with overnight incubation) 

showed enrichment and DNA yield inconsistencies (for example, spanning 5 ng to nearly 20 ng, 

Fig. VI.4a,d). These data emphasize the challenges of reproducibility in manual ChIP protocols 
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and the clear need for a robust, automated assay. Finally, low replicate numbers limit the statistical 

power of these results, but the promising trends provide proof-of-principle for implementing the 

modified method into droplet platform. 

 

ChIP in Droplets 

Finally, the ChIP assay was performed using the droplet microfluidic modules (with side-

by-side manual experiments for validation). Optimized antibody titers and bead amounts were 

doubled for droplet experiments to conserve stoichiometry by taking into account the ~50% of 

droplets formed that did not encapsulate any cells. In line with manual characterization, cell lysis 

and chromatin digestion were performed simultaneously, and the digestion was quenched 

simultaneously with antibody-coated particle addition. After overnight incubation, droplets were 

reinjected for co-laminar magnetic particle washing. Washed droplets were coalesced for final 

manual DNA purification and analysis. 

Fig. VI.5 shows representative ChIP results from the full droplet-enabled assay. Manual 

processing directly provided a standard for comparison for microfluidic performance, and 

including a manually-processed control group without antibody further confirmed ChIP 

enrichment specificity. For the activating mark H3K4me3, both droplet and manual ChIP showed 

good enrichment of BRG1, significantly higher than the no antibody control, and non-specific 

enrichment of off-target genes was generally low (Fig. VI.5a). While positive enrichment of BRG1 

did not differ significantly among droplet and manual trials, DNA yield was significantly lower 

for the droplet system. For the repressing mark H3K27me3, both droplet and manual samples show 

enrichment of MYT1, significantly higher than for the no-antibody control (Fig. VI.5b). Non-

specific enrichment of other genes for this target was similarly low for most trials, and we obtained  
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Figure VI.5. Comparison of ChIP in Droplet and Manual Formats for 250,000 HeLa Cells. a) 

H3K4me3 capture for droplet (“Droplet 120 ng”) and manual (“Manual 60 ng”) ChIP showed 

highly effective enrichment of the H3K4me3-associated BRG1 locus, significantly higher than 

for the no antibody control (“Manual 0 ng”). Off-target MYT1 and hSAT showed little 

enrichment with no significant differences among groups. Manual processing did, however, 

show significantly higher DNA yield than the droplet assay. b) H3K27me3 capture for droplet 

(“Droplet 600 ng”) and manual (“Manual 300 ng”) ChIP showed effective enrichment of the 

H3K27me3-associated MYT1 locus, significantly higher than for the no antibody control 

(“Manual 0 ng”). Off-target BRG1 and hSAT generally showed little enrichment with no 

significant differences between droplet and manual ChIP. Manual processing showed 

significantly higher DNA yield than for the droplet assay and no antibody conditions. A “-” 

indicated the data was unavailable for this gene locus. A “*” indicated statistical significance 

(Student’s t-Test at 95% confidence), but limited replicates limit statistical power. The red line 

indicated the threshold for positive enrichment (at least a 5-fold change in the gene of interest 

vs. reference sequence C19). Legends indicated the antibody titer. 
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significantly higher DNA yields for manual ChIP (this time compared to both droplet and no 

antibody control values). 

Overall, our microfluidic ChIP assay showed convincing positive enrichment of 

corresponding genes for activating H3K4me3 and repressing H3K27me3 with minimal non-

specific enrichment using the ΔΔCt Method.15 Importantly, validating microfluidic performance 

with parallel manual processing confirmed no significant difference in enrichment as a function of 

assay format. Lower DNA yields for the microfluidic assay may also be improved by technical 

optimization in the future: more robust cell loading onto the first device, improved droplet transfer 

onto the washing device, or higher efficiency magnetic bead capture during washing. Compared 

to other microfluidic ChIP assays, we have not yet scaled down to very small cell numbers (100 

to 10,000 cells) or achieved single cell resolution.16-20, 22 We have, however, shown serial droplet-

by-droplet ChIP operations, opening the possibility for variable sample size by serially processing 

more or fewer droplets without needing intensive re-optimization of reagent concentrations. For 

evaluating enrichment, microfluidic ChIP assays have taken a range of approaches or provided 

DNA sequencing data, obscuring direct comparisons in some cases.16-20, 22 Nonetheless, we have 

demonstrated comparable enrichment, if for different targets, relative to those directly providing 

fold change values.18, 19 Future expansion of our assay to include DNA sequencing will empower 

broader comparisons while enhancing its scope and information yield. 

 

CONCLUSIONS 

 In summary, this work established a proof-of-concept implementation for droplet-based 

microfluidic ChIP.  Promisingly, DNA enrichment for both an activating (H3K4me3) and a 

repressing (H3K27me3) histone isoform showed expected correlations with analyzed DNA targets 
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and did not differ significantly from manual processing in this exploratory study. Future work will 

optimize DNA yield and expand processing to additional histone targets and to dynamic sample 

sizes. More generally, this work lays out an unprecedented advance in droplet microfluidic 

technologies, demonstrating a complex, multistep bioassay with integrated functions for cell 

processing and affinity-based purification at a previously unrealized scale. We anticipate that, in 

addition to ChIP, these technical innovations will empower a host of other droplet-enabled 

bioassays. 
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Chapter VII 

Conclusions and Future Directions 

 

DISSERTATION SUMMARY 

This work summarized five years of effort toward developing a droplet microfluidic-based 

chromatin immunoprecipitation (ChIP) assay. Chapter I began by providing a broad overview of 

the epigenome from the context of precision medicine. After surveying epigenetic analysis 

techniques, it discussed impressive advances in clinically-driven microfluidic platforms for assay 

automation and miniaturization as well as ongoing research directions which may empower future 

deployment of these methods. Next, it contextualized the goal of addressing deficiencies in ChIP 

by exploring the core challenges associated with miniaturizing the technique into a droplet-based 

format. In particular, it profiled the state-of-the-art for microdroplet manipulations and identified 

areas of need, particularly in magnetic particle-enabled affinity separations. 

Next, Chapter II described an initial technological development for improving droplet 

microfluidic capabilities, the K-channel.1 This approach provided a new standard for versatility in 

droplet manipulation by using a single architecture for droplet generation, direct injection, and 

magnetic extraction. Operation was primarily dictated by applied conditions, not channel 

geometry, although specialized examples showed promise in serial operations for magnetic affinity 

purification. Chapter III included the K-channel and related technologies in demonstrating the 

applicability of thermoplastic-based hot embossing to mass-production of droplet microfluidic 

devices.2 Importantly, it showed initial examples of secondary droplet operations like direct 
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injection and droplet splitting with integrated electric and magnetic fields, confirming that these 

materials did not interrupt fundamental performance characteristics. Chapter IV coupled the K-

channel to a new module, the Counter-Current Continuous Phase Extraction (C3PE) system. 

Similarly to the K-channel, this platform provided effective droplet handling across a wide range 

of conditions (this time for control over droplet packing fraction), and exact results were 

dynamically adjustable. Overall, the coupling of this extraction module with the K-channel 

enabled high temporal resolution analysis of droplet incubation conditions in the context of time-

sensitive biochemistry. 

Chapter V described a paradigm shift in droplet-based affinity purifications, the Coalesce-

Attract-Resegment Washing (CAR-Wash module).3 Compared to generally inefficient and input-

sensitive magnetically-biased droplet splitting methods, the CAR-Wash empowered nearly 

complete fluid exchange for particle washing at much higher throughput, and applications to 

reversing enzyme inhibition and protein enrichment demonstrated its robustness and versatility. 

Finally, Chapter VI innovated on the CAR-Wash concept and another Bailey Lab droplet 

technology for chromatin preparation to realize droplet microfluidic ChIP.3, 4 This semi-automated 

workflow processed from cells to affinity-purified DNA-histone protein complexes, including 

droplet-based immunoprecipitation and multistage washing. Early data showed good enrichment 

for selected activating and repressive histone isoforms, comparable to example microfluidic ChIP 

workflows and validated by parallel, manually-processed controls. 

 

FUTURE DIRECTIONS 

 The droplet-based workflow successfully achieved ChIP with convincing enrichment and 

DNA yield for two targets, but additional work must improve the platform. Technologically, 
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droplet processing at particular stages could be irregular, such as in bead and antibody addition 

after in-droplet chromatin digestion and during washing coalescence and particle capture. Thus, 

the technology will benefit from further refinement to standardize operating conditions and 

increase robustness, perhaps by adapting strategies for synchronizing and uniformly guiding 

droplet populations.5 Additional work may even simplify operational requirements (such as the 

number of actively controlled flow lines for the washing device) by using hydraulic circuit-based 

approaches for driving multiple fluids (like the washing buffers) at desired flow rates using a single 

source for pressure generation.6 Lastly, the mature technology should handle small droplet 

populations with reduced sample loss, especially from device-to-device transfers, and dynamic 

adjustment to larger sample sizes may be best achieved by parallelizing processing through 

networks of identical device units. 

 Other areas for improvement depend on biochemical optimization of microfluidic ChIP. 

Fully characterizing immunoprecipitation in the small scale and rapid mass transfer regimes of 

flowing droplets may reveal fundamentally altered enrichment results and timescale. Thus, it may 

be possible to combine the chromatin preparation and the washing modules into a single, integrated 

device with only brief immunoprecipitation time. Likewise, post-processing of recovered 

nucleosome complexes (through DNA elution, purification, and, perhaps, analysis by in-droplet 

polymerase chain reaction) may also benefit from microfluidic automation to decrease user 

dependence, sample loss, and processing time. These optimizations must also extend the assay to 

additional histone, transcription factor, and modified DNA targets to fully realize the capabilities 

of epigenetic immunoprecipitation. Preliminary studies of other captures (including H3K4me, 

H3K27ac, and CTCF transcription factor) for HeLa and other cell lines were initially unsuccessful 

(data not shown). Adaptation to these species may require not only antibody titer and incubation 
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optimization but also the integration of other ChIP stages like sonication for chromatin shearing, 

chemical crosslinking for stabilizing transient associations, and clearing of insoluble, off-target 

chromatin and lysate components for decreasing background.7 These features may require re-

engineering devices, for example, with direct injection of non-magnetic particles in high 

abundance (which will be eliminated during magnetic washing) to provide excess surface area for 

non-specific precipitation. The overall goal of these aims must be to extend the applicability of the 

droplet-based ChIP method, but, admittedly, they will not address the fundamental challenge of 

developing high affinity ChIP antibodies. 

 In the longer term, the single cell handling capabilities of droplet microfluidic offer an 

exciting direction. Ongoing work in the Bailey Lab seeks to adapt active cell detection and droplet 

sorting as well as inertial ordering methods to compartmentalizing a single cell in nearly every 

droplet.8, 9 Therefore, the next step would be in adapting DNA barcoding and/or single cell DNA 

sequencing library preparation methods to facilitate single cell analysis (pending cost and 

throughput limitations).10 Particularly for rare and heterogeneous cell populations, single cell 

ChIP-seq may give additional insights into important epigenetic phenomena confounded by 

conventional, ensemble-limited analysis, but the limited copy number of target genes may raise 

challenges in establishing the validity of this workflow.11 

 Finally, the technology development to enable ChIP should be generalized to other 

applications. Recent, innovative epigenetic workflows like Cleavage Under Targets and Release 

Using Nuclease (CUT&RUN) and the Assay for Transposase Accessible Chromatin (ATAC-seq) 

may be adapted within the Bailey Lab’s existing technologies.12, 13 Thus, the lessons and strategies 

from ChIP assay development will translate to alternative means of chromatin mapping to yield 

complementary epigenetic information. More broadly speaking, these droplet manipulation and 
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washing technologies are also well-poised to performing heterogeneous phase protein 

immunoassays and other solid phase-enabled manipulations (for the first time in a high efficiency, 

high throughput droplet format).14  

 

CONCLUDING REMARKS 

In closing, this work has contributed to the fields of droplet microfluidics and miniaturized 

epigenetic analysis by adapting the complex, multistep ChIP protocol into a highly sophisticated 

droplet-enabled platform. Establishing this integrated system required technical innovations, 

particularly in magnetically-actuated affinity purification, which will drive the overall direction of 

microfluidic droplet assay development. Future implementations of these platforms will push the 

limits of automated and miniaturized bioanalytical measurements, and I look forward to seeing 

mature droplet technologies validated in a widespread clinical context. 
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APPENDIX A 

Integrated Magnetic Field Device Fabrication and Assembly 

 

INTRODUCTION 

 This appendix provides an overview of the procedure for fabricating and using the 

integrated magnet microfluidic devices featured in this work. In brief, it offers guidelines for 

photomask design, master fabrication, device preparation, and final device assembly. The process 

of microfluidic device fabrication for polydimethylsiloxane (PDMS, RTV615, Momentive, Inc.) 

devices has been well established by the literature,1 and this appendix provides a specialized 

protocol. 

 

PHOTOMASK DESIGN 

First, the photomask was designed using a suitable computer-aided-drafting program 

(AutoCAD, Autodesk, Inc.). This fabrication used a negative photoresist, so features were 

transparent to ultraviolet (UV) light on the photomask. Besides conventional flow channel, 

electrode channel, and tubing port feature inclusions, these designs also included magnetic 

alignment structures. Such features delineated the boundary positions for the magnet in the final 

device by providing thick (>100 µm wide) photoresist barriers in direct contact with the magnet 

during later processing. Alignment structures were typically separated at least 100 µm from the 

nearest adjacent features to promote a strong, leak-free bond between the poly(dimethyl siloxane) 

(PDMS) and glass layers in the final device. The plastic photomask was printed with the emulsion 
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down (ink on the side in contact with the coated wafer) for best feature resolution in final devices 

(CAD/Art Services, Inc.). Example photomasks are shown in APPENDIX B. 

 

MASTER FABRICATION 

After obtaining the photomask, master mold fabrication was performed. To obtain 40 µm 

height features using SU8 2025 Negative Epoxy Photoresist (MicroChem, Corp.), the following 

representative procedure was used: 

A 3 in diameter silicon wafer (<100>, test grade, University Wafer) was rinsed with 

acetone followed by isopropanol. The wafer was dried with air or nitrogen flow. The wafer was 

baked in an oven at 70 °C for 5 minutes to ensure complete solvent removal then left to cool at 

room temperature for 5 minutes. After cooling, 2-5 mL SU8 2025 negative epoxy photoresist was 

poured onto the center of the polished side of the silicon wafer. The wafer was processed via spin 

coater at 500 rpm for 10 s then at 2000 rpm for 30 s with a ramp of 300 rpm/s. The wafer was soft 

baked on a pre-heated hotplate at 65 °C for 3 minutes then transferred to a 95 °C hotplate for an 

additional 6-10 minutes of baking. Then, the wafer was removed from heat and left to cool to room 

temperature for 5 minutes. Prior to wafer processing, equipment like the spin coater, hot plates, 

and other work surfaces were lined with aluminum foil to contain photoresist waste. 

 The photomask (secured by tape to a Mask Plate, 4 in, Soda Lime Glass, 90 mil Thick, 

5300 A*, Low Reflect Chrome, Nanofilm) and the wafer were loaded into the MJB3 Mask Aligner 

(SUSS MicroTec) at power setting “3” with the cooling fan enabled, with contact distance “9.00,” 

in soft contact mode, and with the high pass UV filter (PL-360-LP, Omega Optical). Exposure was 

conducted for 66 s. The wafer was removed from the aligner and let rest at room temperature for 

10 minutes. The wafer was post baked on a pre-heated hotplate at 65 °C for 1 minute then 
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transferred to a 95 °C hotplate for an additional 6 minutes of baking. At this point, device features 

were visible on the wafer surface. The wafer was removed from heat and left to cool to room 

temperature for 5 minutes. 

 After cooling, the wafer was submerged in propylene glycol monomethyl ether acetate 

(PGMEA, Sigma Aldrich) for 3 minutes for development. PGMEA provided an organic solvent 

selective for dissolving unpolymerized SU8 negative epoxy photoresist at short development 

times. Then, the wafer was removed from the solvent bath and rinsed with PGMEA followed by 

isopropanol. The wafer was dried with air or nitrogen flow. White streaks on the wafer, particularly 

near device features, indicated underdevelopment. Additional rinsing with PGMEA followed by 

isopropanol then drying was necessary. Channel features lifting off the surface indicated 

overdevelopment or underexposure. For overdevelopment, PGMEA development time was 

reduced in future wafer processing. For underexposure, the UV exposure time was increased in 

future wafer processing. 

 Fabrication quality was optically inspected under a brightfield microscope. Inspection 

revealed underdevelopment if photoresist was visible beyond device features, overdevelopment if 

channel features lifted off the wafer surface, or underexposure if features were lost. These 

problems were addressed as discussed above. After letting the wafer rest at room temperature for 

5 minutes, it was baked for 5 minutes on a pre-heated hotplate at 65 °C, and then the temperature 

was ramped to 150 °C for 15 minutes. For this hard bake step, the photoresist slightly reflowed to 

anneal defects and yield higher mechanical strength in the final result. The hotplate was returned 

to 65 °C for 5 minutes before turning off the heat. 30 minutes was allowed for gradual cooling to 

room temperature. Abrupt temperature changes resulted in feature failure, especially in 

delaminating features from the wafer surface. After cooling, the wafer was placed in a vacuum 



215 

 

vessel with 20 µL tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (Gelest, Inc.). After 

evacuating via house supplied-vacuum, the wafer was left in the vaporized silane atmosphere for 

45 minutes. The wafer was recovered after carefully releasing the vacuum. Care was taken in 

handling the toxic and water-reactive silane in the chemical fume hood, and an aqueous trap was 

used to neutralize hazardous trichlorosilane vapors during evacuation. The master mold was then 

ready to use. 

 

PDMS DEVICE ASSEMBLY 

After fabricating the master mold, device fabrication from the master was performed. 

Wafers were stored in 3 in diameter petri dishes to cover them from contamination as well as to 

contain pre-cured PDMS. For magnetic device fabrication, N52 magnets (0.5 in x 0.25 in x 0.125 

in, magnetized through thickness, KJ Magnetics, Inc.) were positioned in contact with the wafer 

prior to PDMS addition. To accomplish this, the magnetized face of a magnet was carefully placed 

on the wafer surface, then a second magnet was slowly placed underneath the petri dish to interact 

with the first magnet’s magnetic field. This second magnet held the first securely in position. Then, 

the paired magnet assembly was carefully pushed across wafer and petri dish surfaces until it 

stopped in contact with the raised magnetic alignment feature patterned onto the wafer surface. 

Too much pressure during assembly and alignment caused the magnets to damage the alignment 

features. After all magnets were aligned, PDMS mixed and degassed in a 5:1 base: curing agent 

ratio was poured over the wafer. PDMS pouring was oriented from the channel side towards each 

magnet assembly to reduce the incidence of trapping bubbles at the magnet over channel regions. 

PDMS was cured at 70 °C for 1 hour in the oven, with care taken to keep magnets isolated from 

magnetic oven racks and walls. 
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Once the PDMS was fully cured, the devices were ready for final preparation and assembly. 

After removal from the oven, the magnet(s) were carefully removed from the underside of each 

master. Then, a scalpel or razor blade was used to cut the PDMS on the wafer surface to delineate 

the outline of each device. Each in-device magnet was gently pushed away from the alignment and 

channel features to free them from direct contact with the wafer surface, then all integrated magnet 

PDMS devices were removed from the wafer surface. Devices still containing magnets were 

isolated from each other during subsequent processing to prevent accidental damage to devices 

and masters. Also, care was taken to avoid hazardous attractions between magnets and metal blades 

or needles during subsequent processing. 

On a soft surface (like a rubber stopper), a blade was used to cut away the corner of the 

PDMS device containing the magnet, cutting parallel but 2-4 mm away from the position of the 

actual alignment features. The magnet was then removed through this cutaway portion. Magnets 

used during fabrication were not used during device operation due to loss of magnetization from 

oven heating and incidental damage incurred to magnets during fabrication. 

After cleaning PDMS surfaces and the working surface (rubber stopper) with tape, PDMS 

ports were punched at designated channel areas using a needle (30 ga for later interface with #30 

PTFE tubing, Cole Parmer). For best results, the needle had a rounded (not tapered) but well-

sharpened edge, and it was lubricated with inert oil (Fluoroinert FC-40, Sigma Aldrich). Punching 

was performed from the channel side of the PDMS, and a narrow inner diameter metal wire was 

used to remove the PDMS core before removing the needle. These steps, in combination with rigid, 

well-cured 5:1 PDMS, helped promote accurate and reasonably fragment-free port creation to 

prevent future operating failures. Once all ports were punched, a blade was used to trim the PDMS 

device to its final size. Particularly, any extra PDMS near the magnet alignment region was 



217 

 

removed so that it would not interfere with final magnet insertion. Once the devices were fully 

ported and shaped, they were cleaned with tape once more. Next, a vacuum line with a trap was 

used to pull deionized water through each flow port from the channel side for additional cleaning, 

and the devices were dried thoroughly with air or nitrogen flow. 

Devices were now ready for oxygen plasma bonding. The following were cleaned with 

tape: the PDMS device, a glass coverslip (No. 11/2, 22 mm x 40 mm, Sigma Aldrich), and a 

roughened glass sample-holding slide. The glass coverslip was placed in the plasma oven (PDC-

32G, Harrick Plasma), as was the PDMS device (on top of the rough glass sample holder, channel 

side up). The plasma chamber door and inlet valve were closed, then the vacuum line was opened 

to pump down the chamber to 1.0 Torr. The needle valve on the door was adjusted to throttle the 

air intake for tuning the final chamber pressure. The device was exposed to plasma on “high” for 

30 seconds. The vacuum was isolated, and then the chamber was slowly re-pressurized the 

chamber using the valve on the door. All components were quickly recovered from the plasma 

oven, and the PDMS device was dropped (channel side down) onto the clean side of the glass 

coverslip. Successful bonding was indicated by the PDMS lying flat without air bubbles on the 

glass. Bonded devices were baked in the oven at 70 °C overnight. 

 

MAGNET ARRAY POSITIONING 

For each device, eight magnets were assembled into two separate blocks of four magnets 

each, with adjacent magnets in contact in the direction of magnetization. The two blocks were 

connected to each other orthogonal to the direction of magnetization with a cleanroom wipe 

separating them, and the magnets were manually adjusted as needed to promote straight alignment. 

The final magnet block had dimensions of approximately 0.5 in x 0.5 in x 0.5 in. All tubing and 
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other interfacing materials were inserted into the PDMS-glass device before magnet introduction. 

For loading the magnet onto the integrated device, the PDMS-glass device was first secured by a 

simple holder assembled from sandwiching glass coverslips partway between two thicker glass 

slides (Fig. A.1a). The inner coverslips were positioned such that they left a vacant corner between 

the thicker slides into which the free leading edge of the device coverslip was be securely held 

against laterally-directed forces. This holder also reduced the hazard of personal injury in the event 

of broken glass from the device. Immediately prior to magnet loading onto the device, the 

cleanroom wipe was partly withdrawn from between the halves of the final magnet block so that 

a small portion of the leading magnet edges were free. The lagging edge of the device coverslip 

was inserted into this free region. Then, the magnet block was pushed onto the coverslip while 

simultaneously retracting the cleanroom wipe (Fig. A.1b). Force was not applied perpendicularly 

to the coverslip to avoid device coverslip fracture. This operation was most effective with a well-

aligned set of smooth magnets, as any defects created pressure points. Once the magnet assembly 

Figure A.1. Integrated Magnetic Device Assembly. a) The magnetic device holder was 

assembled by securing two glass coverslips (of identical thickness to the glass used for the 

microfluidic device) between two thicker glass slides to form a right-angled groove. Epoxy or 

another suitable adhesive was ensured a strong bond among layers. b) The microfluidic device 

was nested in the groove of the magnetic device holder to provide support while adding the 

magnet array. The magnet array was pushed onto the device glass coverslip while the 

cleanroom wipe separating the two halves of the array was simultaneously removed. c) 

Assembly was complete when the magnet array was fully positioned within the integrated 

magnetic device alignment region. 
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was fully on the coverslip, it was pushed carefully against the PDMS boundaries in the magnetic 

alignment region (Fig. A.1c). Pushing the magnet too far with too much force distorted or 

delaminated the PDMS to cause device failure. 

 

CONCLUSIONS 

While this photomask design and master fabrication strategy provide specific adaptations 

of general protocols, device preparation and final assembly include critical details for this class of 

integrated magnet designs. Ultimately, these processes are crucial to obtaining the high on-chip 

magnetic fields necessary for novel magnetic droplet operations. Future work may optimize these 

processes, particularly final assembly with the magnet array, to increase successful device yield 

and decrease user-dependence in assay operation. 
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APPENDIX B 

Microfluidic Device Photomask Designs 

 

INTRODUCTION 

These images show photomasks at actual size (3 in diameter) representing the core devices 

used for this work. Some photomasks pictured include multiple copies of the same device. 

Additional designs related to these elements were also used. Photomasks were designed for use 

with negative photoresists and for fabrication at 40 µm feature height unless otherwise indicated. 

White features were transparent on the physical mask, and black features were opaque. Plastic 

photomasks were manufactured with the ink emulsion down (on the wafer-oriented side). An 

original file containing these designs is stored within Box at U-M cloud storage via “Bailey Lab 

Internals/Alumni Data/Steven Doonan/Device Photomasks.dwg” and may be made available by 

Prof. Ryan Bailey upon request. 
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PHOTOMASKS 

 

 
 

Figure B.1. Representative mask for novel droplet technologies. K-channel design for direct 

injection, fluid extraction, droplet splitting, and droplet formation (top left, index: “25:10:40”). 

C3PE design for time-controlled dye injection into droplets, continuous phase extraction, and 

incubation monitoring (top right, index: “I03-01”). CAR-Wash design for droplet-mediated 10 µm 

magnetic particle washing (bottom left, index: “G3W-06”). Multilaminar CAR-Wash design for 

droplet-mediated washing of 2.8 µm magnetic dynabeads through four co-flowing buffers (bottom 

right, index “G3W-17”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



222 

 

 
 

Figure B.2. Delay channel elements for droplet incubation (index: “ChIP1-01”). These features 

were fabricated at 160 µm feature height and aligned with the the aid of the square alignment 

features. This mask includes features for two separate, identical devices. 
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Figure B.3. Droplet formation, droplet respacing, and bead injection elements (index: “ChIP1-

01”). These features were aligned with the the aid of the square alignment features. This mask 

includes features for two separate, identical devices. 
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APPENDIX C 

Pressure-Driven Flow Control 

 

INTRODUCTION 

Flow control for the majority of microfluidic droplet techniques demonstrated herein was 

achieved via pressure-driven flow. The flow controller was assembled from a combination of 

custom-fabricated and commercially available components. 

 

PRESSURE MANIFOLD 

Primarily, each flow controller (providing up to four individually addressable fluid lines) 

was supplied from a nitrogen gas cylinder. This cylinder was connected to a custom manifold 

(VWR International) which delivered the high pressure to up to four two-stage regulators (55850-

420, VWR International, Fig. C.1a). Each regulator controlled the specific lower pressure supplied 

to its connected fluid line (Fig. C.1b). Using barbed fittings (NPT Male Pipe Adapter, 316 SS, 1/4 

in NPT(M) x 1/16 in, Cole Parmer) and couples (Female Threaded Straight Coupling, 1/4 in 

NPT(F), 316 SS, Cole Parmer), regulators were connected to flexible Tygon tubing (1/16 in ID x 

1/8 in OD, Cole Parmer), and this carried the pressure to the solenoid valve array (Fig. C.2a). 

Caution was exercised when working with high pressure cylinders, which were always capped or 

connected to pressure regulating equipment. Cylinders were also secured to walls or laser tables 

during use and only moved when secured to an approved cylinder cart. The custom manifold was 

professionally fabricated to safely handle high pressures.
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SOLENOID VALVE ARRAY 

Each fluid line was controlled by a pair of three-port solenoid valves (LHDA0531115H, 

The Lee Company, Fig. C.2b) actuated by a LabView program (National Instruments). When the 

5 V signal from LabView (National Instruments) was received at the gate of the transistor (IRF520) 

corresponding to each valve pair, the current from each USB power supply (5 V, 110 mA) could 

pass through each solenoid valve and through the transistor drain and source (grounded). 

Therefore, the addition of the LabView signal switched the valves from the normally open (N.O.) 

position to the normally closed (N.C.) position (Fig. C.2c). The circuit was assembled so that each 

valve was connected to a spliced 5 V USB power supply, and the path to ground for the solenoid 

valve’s circuit passed between drain and source of a shared transistor. The transistor gate was 

connected to the specific control line on the data acquisition device (DAQ, NI PCIe-6251  

Figure C.1. Pressure Manifold. a) Two manifolds pressured by two compressed nitrogen 

cylinders provided four pressure lines for fluid delivery each. b) Each pressure line was 

controlled by a two-stage regulator connected to a valve on the manifold. A barbed adapter and 

couple linked the regulator assembly to soft tubing for delivery to the solenoid valve array. 
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Multifunction Data Acquisition Device with an SCB-68 Shielded I/O Connector Block, National 

Instruments) corresponding to the LabView program. The transistor source was connected to the 

USB power supply grounds and to a digital ground on the DAQ. 

Figure C.2. Solenoid Valve Array Interface. a) Each valve array was assembled with four pairs 

of solenoid valves. Each solenoid valve pair with transistor represented the minimum functional 

unit of this array (red box). b) All valves were connected to their own USB power supplies, but 

grounding for each valve pair was routed through a transistor drain (D) and source (S) 

controlled by a LabView signal to the gate (G). The LabView 5 V signal was also connected to 

the ground at S. c) For each valve pair, the normally open (N.O.) port of the first valve was 

unsealed, the common (C.) port was connected to the regulator for pressure delivery, and the 

normally closed (N.C.) port supplied pressure to the fluid vial. For the second valve, the N.O. 

port was unsealed, the C. port received pressure from the fluid vial, and the N.C. port was 

sealed. d) Pressure was mediated from the valve array by soft tubing connected to stainless steel 

pins through the Teflon-silicone septum in the vial cap. Pressure in the vial headspace (black 

arrows) drove fluid into the opening of the PTFE tubing submerged in fluid toward the 

microfluidic device (blue arrows). 
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Actuating the valves to the N.C. position supplied pressure to the corresponding fluid lines, 

and removing the signal to restore the N.O. position removed and vented pressure to atmosphere. 

Pressure was delivered into the headspace of fluid-containing glass vials via stainless steel pins 

(New England Small Tube Corp.) piercing a Teflon-silicone septum (13 mm Autosampler Vial 

Septa, Fisher Scientific) in the cap of each vial (Screw-Thread N-51A Borosilicate Glass Sample 

Vials, Fisher Scientific, Fig. C.2d). Pins were connected to solenoid valves via the same flexible 

Tygon tubing which connected the valves to the regulator assembly. Polytetrafluoroethylene 

(PTFE) tubing (#30 PTFE, Cole Parmer) submerged in each fluid was inserted directly into inlet 

ports in microfluidic devices and passed through the Teflon-silicone septum. Therefore, 

pressurizing the vial exerted a pressure on the fluid which drove it through the PTFE tubing into 

the microfluidic device. Achieved fluid flow rates depended on tubing length and inner diameter, 

sample fluid physical properties, and microfluidic device architecture. 

For each valve pair, the first valve received pressure from the regulator through the 

Common (C.) port. The N.O. port was left with a short length of open flexible tubing, and the N.C. 

port was connected to the fluid vial. The operation of this valve thus diverted input pressure to 

atmosphere until actuation led to pressure delivery into the fluid vial. For the second valve in each 

pair, the C. port was connected to the fluid vial. The N.O. port was left with a short length of open 

flexible tubing, and the N.C. port was connected to a short length of heat-sealed flexible tubing. 

Thus, this second valve equilibrated the fluid vial with atmospheric pressure in the absence of 

signal and sealed the pressurized volume (including the fluid vial) when receiving the LabView 

signal. In summary, the actuation delivered pressure via the first valve and sealed the system via 

the second valve. Removing signal diverted input pressure via the first valve and released fluid 

vial pressure via the second valve. 
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LABVIEW PROGRAM 

See Fig. C.3 for the LabView user interface and Fig. C.4 for the LabView programming 

and additional details. An original file containing this virtual instrument (VI) is stored in the Box 

at U-M cloud storage via “Bailey Lab Internals/Alumni Data/Steven Doonan/PressureControl.vi” 

and may be made available by Prof. Ryan Bailey upon request. In summary, the VI mediated 

electrical signals to transistor gates, and these transistors controlled the operation of solenoid 

valves (and electric field power supply elements). By providing a simple network of Boolean logic  

 

Figure C.3. LabView Front Panel. a) The LabView program was initiated by pressing the 

“Run” arrow (highlighted by the red box). b) Electric field control was included on the left side 

of the virtual instrument, and pressure control for flow was mediated by the right side. For 

electric field control, the corresponding LabView 5 V signal line (analog or digital used as 

analog) controlled the gate of a transistor interrupting the path to ground for the electric field 

inverter’s 12 V power supply. Using the “On/Off” switch provided continuous electric field, or 

setting a time and using the “Trigger” function provided a transient electric field for the duration 

selected. For pressure-driven flow control, selecting “Pressure Enabled” provided the master 

control necessary for actuating any of the valves. Combining “Pressure Enabled” with the 

corresponding switch actuated the desired valve pair. The program was terminated using the 

“STOP” button. This example showed valve pairs 1, 2, and 3 active with pressure enabled. 

Valve pairs 4-8 were inactive, and the timer-enabled electric field power supply control was 

also inactive. 
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operations, the LabView program allowed switching of flow and electric field elements to control 

microfluidic device function. 

 

EXAMPLE STANDARD OPERATING PROCEDURE 

Figure C.4. LabView Block Diagram. The left side of the block diagram mediated electric field 

power supply control, and the right side of the block diagram mediated pressure control for 

microfluidic flow. Wiring lines connect elements in a virtual circuit, and the virtual instrument 

was operated within a “while loop.” For each functional unit (capable of actuating a valve pair 

or an electric field element), a similar logical structure in the virtual instrument produced a 5 V 

analog (or digital used as analog) signal. First, some logical element (switch or elapsed time 

function) provided a Boolean signal which interacted with other Boolean and numerical signals 

via logic elements like “and” and “or.” Then a “build array” element transduced the Boolean 

signal for receipt by a “DAQ Assistant” element. Receipt of a “True” signal was configured to 

trigger an electrical signal from the data acquisition device at the specified pinout connection, 

and this signal was supplied to the gate of a specific physical transistor interfaced to a valve 

pair or electric field power supply. Additional Boolean indicators were provided in the virtual 

instrument to improve the user interface on the front panel. 
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Before the experiment, several features of the flow controller were checked. First, the 

connections between the transistors in the solenoid valve array were confirmed. Specifically, each 

transistor gate was connected to the corresponding digital line (P0.#, where # = valve pair index – 

1), and at least one transistor source per flow controlling solenoid valve array was connected to a 

digital ground. The electrical connections of each valve in the array were also verified. Then, the 

power cables for the USB power supply hubs were connected to power the solenoid valve array. 

Next, the LabView program was enabled, and the operation of each valve pair was confirmed. 

After verifying correct performance of the LabView-controlled solenoid valve array, the 

pressure lines were joined to each valve pair by connecting the corresponding regulator-attached 

soft tubing line to the C. port of the first valve in each pair. Before opening the gas cylinder valve 

to pressurize the system, the manifold valves for each regulator were closed, and each regulator 

was set to minimum delivery pressure. After opening the gas cylinder valve, the manifold valve 

for each regulator was also opened. Then, the regulator was adjusted to desired pressures for device 

operation. The needle valves on each regulator after pressure regulation were left open unless gas 

flow was to be temporarily restricted without pressure adjustment. Delivered gas pressures were 

calibrated with a pressure sensor as needed to account for inaccuracies and hysteresis in individual 

regulator performance. Gas pressures were never set above 15 psi, the pressure limit for the 

solenoid valves used. 

Finally, the flow controller was interfaced to the microfluidic device. After removing the 

storage glass vial from each fluid vial assembly, the plastic cap, Teflon-silicone septum, and 

stainless steel pins were cleaned with deionized water on a cleanroom wipe to remove soluble 

contaminants. Then, they were cleaned with tape to remove contaminating particles. At this stage, 

the cleaned cap assembly was screwed onto the sample fluid-containing vial. Precise lengths of 
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PTFE soft tubing (typically #30, 20 cm length, Cole Parmer) were cut perpendicular to the tubing 

length with a sharp blade. After cleaning the PTFE tubing with tape, it was inserted through the 

Teflon-silicone septum into the fluid in the vial. Finally, the opposite end of the tubing was cleaned 

with tape then inserted into an inlet fluid port in the microfluidic device. This process was repeated 

for all flow lines, and device waste lines generally used PTFE tubing connected to a waste 

collection tube instead of a fluid vial. 

Once all lines were fully connected, the flow control system was ready for microfluidic 

device operation. During operation, flow rates were changed by proportionally increasing or 

decreasing the pressure delivered by the corresponding regulator. When decreasing pressure, it 

was critical to pulse the LabView signal to that solenoid valve pair in order to vent higher pressure 

trapped in the fluid vial. To compensate for regulator error and hysteresis, experimental notes 

recorded both the pressure readings and the index for each regulator used. 

After operation, proper cleaning and storage reduced the chance of flow controller 

contamination and damage. First, the gas cylinder valve was closed, and the residual pressure in 

the manifold and regulators vented. The flow controller was never left under pressure to prevent 

hazards from users unknowingly interacting with a high pressure system. After pressure 

dissipation, the manifold valves to each regulator were closed, and the regulators were set to 

minimum pressure. Then, the USB power supply hubs for the solenoid valves were unplugged, 

and the LabView program was stopped and closed. The PFTE tubing was disconnected from the 

microfluidic device, removed from the fluid vials, and discarded. After removing sample fluid 

vials from each fluid vial assembly, the plastic cap, Teflon-silicone septum, and stainless steel pins 

were cleaned with deionized water on a cleanroom wipe to remove soluble contaminants. The 

storage glass vials were replaced onto each assembly. 
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CONCLUSIONS 

This appendix describes the basic components and operation of a custom pressure-driven 

flow controller, and this method was successfully applied to many of the microfluidic techniques 

described in this work. Alternatives for pressure-driven flow, some commercial, are also possible, 

and flow control may also use other methods like syringe pumps, peristaltic pumps, or gravity-

driven flow. For any flow approach chosen, proper precautions should be taken, particularly for 

high pressure systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	00 Frontmatter
	01 Chapter 1
	02 Chapter 2
	03 Chapter 3
	04 Chapter 4
	05 Chapter 5
	06 Chapter 6
	07 Chapter 7
	08 Appendix A Fabrication
	09 Appendix B Photomasks
	10 Appendix C Flow Control



