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ABSTRACT

In many applications, models of physical systems have known structure but un-

known parameters. By viewing the unknown parameters as constant states, nonlinear

estimation methods such as the extended Kalman filter, unscented Kalman filter, and

ensemble Kalman filter can be used to estimate the states of the augmented system,

thereby providing estimates of the parameters along with the dynamic states. These

methods tend to be computationally expensive due to the need for Jacobians, ensem-

bles, or adjoints, especially when the models are high-dimensional.

This dissertation presents retrospective cost parameter estimation (RCPE), which

does not require gradients, ensembles, or adjoints. Rather, RCPE estimates unknown

parameters from a single trajectory, and requires updating an adaptive integrator gain

for each unknown parameter. RCPE is applicable to parameter estimation in linear

and nonlinear models, where the parameterization may be either affine or nonaffine.

The main contribution of this work is to show that the parameter estimates may

be permuted in an arbitrary way, and thus a permutation is needed to correctly as-

sociate each parameter estimate with the corresponding unknown parameter. RCPE

is illustrated through several numerical examples including the Burgers equation and

the Global Ionosphere Thermosphere Model (GITM), where the goal is to estimate

representational parameters such as eddy diffusion coefficient and thermal conduc-

tivity coefficients using measurements of atmospheric variables such as total electron

content, density, temperatures etc.

The next part of the dissertation focuses on forgetting in the context of recursive

least squares (RLS) algorithm. It is a well-known fact that classical RLS with for-

xi



getting diverges in the cases where the excitation is not persistent. In this work, an

information-driven directional forgetting technique is proposed, which constrains the

forgetting to directions in which new information is available, thereby allowing RLS

to operate without divergence during periods of loss of persistency.

In the last part of this dissertation, retrospective cost adaptive control (RCAC)

is extended to the problem of control allocation in overactuated systems. In partic-

ular, it is shown that the applied control input lies in the range of the target model

used in RCAC, thereby providing a simple technique to constrain the control input

to a desired subspace. Finally, RCAC is extended to asymptotically enforce output

constraint by formulating the problem as a problem of following conflicting com-

mands, and is used to prevent a scramjet combustor from unstarting using pressure

measurements.
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CHAPTER 1

Introduction

1.1 Motivation and Purpose

In many applications of science and engineering, models of physical systems have

known structure but unknown parameters. In such models, often called gray-box

models, the structure of the function describing the evolution of the state of the system

is known, but the values of the parameters in the function may be unknown. These

parameters might be embedded in the model in such a way that direct calculation is

not possible due to lack of measurements. Such parameters are called inaccessible,

which means that they relate unmeasured signals, and thus cannot be determined by

regression. Furthermore, these parameters might represent the cumulative effect of a

complex phenomena, and thus might not have a true measurable value.

To illustrate this problem, consider the problem of estimating the spring stiffness

k2 in the mass-spring system shown in Figure 1.1. The system is modeled by

m1q̈1 + (k1 + k2)q1 − k2q2 = 0, (1.1)

m2q̈2 − k2q1 + k2q2 = F, (1.2)

where q1 is the position of the mass m1, q2 is the position of the mass m2, and k1, k2

are the stiffness of the first and second spring, and F is the force applied to m2. Note

1



that the relaxed length of the springs are assumed to be zero.

m1 m2
k1 k2

q1 q2

F

Figure 1.1: Mass-spring system with unknown spring stiffness

If appropriate measurements are available, the unknown parameters can be es-

timated using regression. For example, if m2 is known and the acceleration q̈2, the

positions q1 and q2, and the force F are measured, then

k2 =
F −m2q̈2
q2 − q1

. (1.3)

Similarly, if the reaction force fk2/m1 applied to k2 by m1 and the reaction force fk2/m2

applied to k2 by m2 are measured, then

k2 =
fk2/m1 − fk2/m2

q2 − q1
. (1.4)

However, such measurements are not typically available.

Another approach uses the dynamic model of the system along with the measured

signals to estimate the unknown parameter. Let the system be modeled by

yk = f(φk, µ), (1.5)

where φk contains the measured input to the system and the measured output of

the system, and µ ∈ Rlµ is the unknown parameter parameterizing the map f . The

problem is to estimate µ using measurements yk and φk.

2



The most common approach is to use least-squares formulation to estimate the

unknown parameter. In this case, the estimate µ̂k of the unknown parameter µ at

step k is given by the minimizer of

J(µ̂)
4
=

k∑
i=0

(yi − ŷi)T(yi − ŷi), (1.6)

where ŷi is the computed output of the estimation model given by

ŷi = f(φi, µ̂). (1.7)

for all i ∈ {0, 1, · · · , k}.

If the model (1.5) is linearly parameterized by µ, that is, the output yk can be

written as yk = φkµ, then the minimizer of (1.6) has a closed-form solution [1]. In

the case where f is nonlinearly parameterized by µ, using analytical expression of

f , [2] uses Taylor series expansion to iteratively minimize J(µ̂), [3] uses gradient-

descent method to minimize J(µ̂), while [4] optimally interpolates the solution given

by the Taylor series expansion and the gradient-descent method. The severity of

nonlinearity in function f and the order of the system (1.5) render minimization of

J(µ̂) using anylytical methods difficult. In addition, these methods are plagued by

slow convergence or divergence of the estimates. Note that these methods require an

analytical expression of f to compute the gradients. Furthermore, the computational

cost increases with k.

In the case where analytical expression of f is not available, the gradient of the

cost function (1.6) can be computed by finite differences. Note that this method uses

f as a black-box model. However, this method becomes computationally expensive

as the size of the vector µ and the number of samples k increase. Alternatively, the

gradient of the cost function (1.6) can be computed by variational methods [5–7],

which require an adjoint formulation of the dynamics. Adjoint based methods tend

3



to be computationally expensive due to the need for multiple iterations of the forward

model and backward adjoint. To use the adjoint method to compute the gradient,

note that

dJ

dµ
=

k∑
i=0

∂J

∂ŷi

∂ŷi
∂µ

(1.8)

For i ∈ {0, 1, · · · , k}, define gi(ŷi, µ)
4
= ŷi − f(φi, µ). Note that gi(yi, µ) = 0. Thus,

∂gi
∂ŷi

∂ŷi
∂µ

+
∂gi
∂µ

= 0. (1.9)

It follows from (1.8) and (1.9) that

dJ

dµ
=

k∑
i=0

λTi
∂gi
∂µ

. (1.10)

where λi is obtained by solving

∂gi
∂ŷi

T

λi = − ∂J
∂ŷi

T

. (1.11)

Note that (1.11) is called the adjoint equation. Various formulations based on adjoint

method to estimate unknown parameter in a dynamical system modeled using state-

space representation are discussed in [8–12].

As a special case of this problem, a linear system may have uncertain entries

in its state space representation. For this problem, a two-step procedure is used in

[13], where a black-box model is first constructed based on the input-output data,

and a similarity transformation is used to recover the unknown parameters. In [14],

a sequential convex relaxation method is used to estimate unknown entries in the

matrices of a state space realization.

The measurements of uk and yk may be corrupted by noise. In presence of noise,

4



the unknown parameter µ is treated as a random variable in a probabilistic frame-

work. Consequently, the statistical characteristics of µ̂k depend on the the statistical

characteristics of the noise. In such cases, the parameter estimation problem has a

Bayesian interpretation. Using Bayes’ rule, the conditional probability distribution

of the unknown parameter given the measurements is formulated and maximized in

order to obtain the parameter estimate µ̂k [5, 15–17]. In [18], parameters in the spe-

cial case of a linear system are estimated using expectation maximization algorithm

under the assumption of Gaussian noise.

State estimation techniques provide another framework for estimating the un-

known parameters. In this framework, (1.5) is written in the state-space form as

xk+1 = f(xk, uk, µ), (1.12)

yk = g(xk, uk, µ), (1.13)

where xk ∈ Rlx is the state of the system at step k, uk ∈ Rlu is the input to the

system, yk ∈ Rly is the measured output of the system, and µ ∈ Rlµ is the unknown

parameter parameterizing the dynamics map f and g. Usually, the state xk of the

system (1.12) is not available to estimate µ. By viewing the unknown parameters as

constant states, and augmenting the original states with the constant states, state

estimation techniques can be used to estimate the states of the augmented system,

thereby providing estimates of the parameters along with the dynamic states [19].

However, the parameter states multiply the dynamic states, thus the resulting esti-

mation dynamics are nonlinear irrespective of whether the “original” dynamics (1.12),

(1.13) are linear or nonlinear. Consequently, nonlinear state estimation techniques

such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), and en-

semble Kalman filter (EnKF) can be applied to these problems [19–25]. For example,

to estimate k2 in (1.1), (1.2) using Kalman filter based estimation techniques, the

5



estimation model is constructed as

˙̂x = f(x̂, u), (1.14)

where

x̂
4
=

[
q̂1 ˙̂q1 q̂2 ˙̂q2 k̂2

]T
, (1.15)

f(x, u) =



x2
1

m1

(x5x3 − k1x1 − x5x1)

x4
1

m2

(u− x5x3 + x5x1)

0


. (1.16)

Note that the estimation model is nonlinear.

In the problem of state estimation in a linear system, Kalman filter minimizes the

covariance of the state estimate error to compute the optimal state estimate given the

correct knowledge of process noise and measurement noise characteristics. However,

Kalman filter based techniques are robust to noise characteristics [26]. In the noise-

free case, Kalman filter based techniques can be applied to estimate the augmented

state where the covariance variables can be used to tune the convergence rate of the

estimator.

The application of EKF to estimate the unknown parameters requires the com-

putation of Jacobian of the augmented dynamics at each time step. Note that this

requires access to the full state of the estimation model to compute the Jacobian at

each time step. The application of EnKF or UKF requires an ensemble of models.

In particular, UKF is based on an esnsemble of 2N + 1 models, where N = n+ p, n

is number of dynamic states and p is the number of unknown parameters. The total

number of states that must be propagated at each iteration is thus 2N2+N = O(N2).
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Consequently, for a system with n dynamic states and p unknown parameters, it fol-

lows that N = n + p, and thus the total number of states that must be propagated

at each iteration is (2N + 1)N = [2(n+ p) + 1](n+ p). Note that UKF also requires

access to the full state of the estimation model to construct the ensemble.

The purpose of this dissertation is to present a gradient free, ensemble free, and ad-

joint free data driven parameter estimation technique. In particular, this dissertation

presents retrospective cost parameter estimation (RCPE) algorithm for estimating

multiple unknown parameters in linear and nonlinear systems with affine or nonaffine

parameterizations.

Like UKF but unlike EKF, RCPE does not require a Jacobian of the dynamics

in order to update the parameter estimates. However, unlike UKF, RCPE does not

require an ensemble of models. In contrast to UKF, RCPE requires the propagation

of only a single copy of the “original” system dynamics, so that the number of states

that must be propagated at each iteration is simply n. In addition, unlike EKF and

UKF, RCPE does not require access to the states of the estimation model. For

both UKF and RCPE, this model need only be given as an executable simulation;

explicit knowledge of the equations and source code underlying the simulation is not

required. Finally, unlike variational methods, RCPE does not require an adjoint

model. However, the price paid for not requiring an explicit model or an ensemble

of models is the need within RCPE to select a permutation matrix that correctly

associates each parameter estimate with the corresponding unknown parameter.
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The retrospective cost parameter estimation algorithm is a variation of retrospec-

tive cost model refinement (RCMR) developed in [27–29] and is based on retrospective

cost adaptive control (RCAC) [30]. RCMR was developed to estimate unknown pa-

rameters in an affinely parameterized dynamical system. To estimate µ using RCMR,

(1.12) is written as

xk+1 = f(xk, uk) +

lµ∑
i=1

vi,k, (1.17)

vi,k = µiwi,k, (1.18)

wi,k = hi(xk, uk). (1.19)

Note that µi appears as a static feedback in the dynamics given by (1.17). RCMR

minimizes a retrospective cost function based on the measurements of vi,k and wi,k

whose minimizer provides the parameter estimate µ̂k. Although RCMR does not use

hi(xk, uk) to compute the estimate µ̂k, RCMR does require that the function hi(xk, uk)

be available to compute wi,k. These requirements prohibits RCMR to be applicable

to problems where the dynamics (1.12) is nonlinearly parameterized or the dynamics

(1.12) are so complicated that construction of the functions hi(xk, uk) is cumbersome.

On the other hand, RCPE is applicable to parameter estimation in linear and

nonlinear models, where the parameterization may be either affine or nonaffine. In

order to update the parameter estimate, RCPE uses an error signal given by the

difference between the output of the system and the output of the estimation model.

The parameter update is obtained by minimizing a retrospective cost function whose

minimizer provides an update of the gains of an integrator. The output of the adaptive

integrator consists of the parameter pre-estimates, whose absolute values are the

parameter estimates. However, the parameter estimates may be permuted in an

unknown way, and thus a permutation is needed to correctly associate each parameter

estimate with the corresponding unknown parameter.
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1.2 Contributions

The major contributions of the dissertation are listed below.

1. Development of RCPE, which is a gradient-, ensemble-, and adjoint-free data

driven parameter estimation algorithm applicable to affinely or nonaffinely pa-

rameterized systems.

2. Analysis of the retrospective cost in RCPE to show that the parameter estimate

is constrained to the subspace defined by the filter coefficients used to define

the retrospective cost.

3. Systematic demonstration of RCPE on low-order systems and high-dimensional

systems such as the Burgers equation and the global ionosphere thermosphere

model to show the effect of the ordering of the filter coefficients and the necessity

of the permutation matrix.

4. Formulation of the biquadratic retrospective cost to simultaneously optimize

the adaptive integrator gains and the filter coefficients in RCPE.

5. Analysis of asymptotic convergence of recursive least squares algorithm using

discrete-time Lyapunov theory and asymptotic bounds on RLS variables under

persistent excitation.

6. Development of the information-driven directional forgetting scheme in recur-

sive least squares algorithm to constrain forgetting to the information subspace

in the case of lack of persistent excitation.

7. Extension of RCAC to constrain the input to a desired input subspace and

application to the problem of control allocation in wide systems.

8. Extension of RCAC to enforce output constrains asymptotically and application

to a 2D scramjet combustor to prevent unstart.
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1.3 Dissertation Outline

This disseration is organized as follows.

Chapter 2 Summary

Chapter 2 presents the parameter estimation problem in dynamical systems. First,

The parameter estimator, consisting of an adaptive integrator, permutation, and a

nonlinear transformation to the first orthant is presented. Then, the retrospective cost

parameter estimation (RCPE) algorithm is presented. Next, it is shown in Theorem

2.1 that the parameter estimates produced by RCPE are constrained to lie in a

subspace defined by the filter coefficients that define the retrospective cost. Then,

the need of permutation is shown through several numerical examples. Finally, RCPE

is applied to high-dimensional nonlinear systems.

Chapter 3 Summary

Chapter 3 extends RCPE by simultaneously optimizing the the filter coefficients

that define the retrospective cost. It is shown that that the optimization problem is

biquadratic but nonconvex. An alternating convex search is used to converge to a local

minimizer. The extended algorithm is demonstrated on a low-dimensional system,

and finally, it is used to estimate eddy diffusion coefficient (EDC) in global ionosphere-

thermosphere model (GITM) by using measurements of total electron content (TEC).

Chapter 4 Summary

Chapter 4 presents a novel directional forgetting algorithm to prevent estimator

divergence under lack of persistency in the context of recursive least squares. Various

results on the effect of forgetting with and without the persistence of excitation are
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presented, and it is shown that some singular values of the covariance matrix diverge

in the case where excitation is not persistent. Finally, a matrix forgetting scheme is

proposed which constrains forgetting to the directions receiving new information.

Chapter 5 Summary

Chapter 5 presents the control allocation problem. In the context of the retro-

spective cost adaptive control (RCAC), it is shown that the the control input lies in

the range of the target model. An extension of Theorem 2.1 that includes control

penalty in the retrospective cost is presented. Finally, numerical examples demon-

strate control allocation in wide plant using RCAC.

Chapter 6 Summary

Chapter 6 extends RCAC to enforce auxiliary output constraints. First, it is shown

that in the case of conflicting commands, RCAC trades off output error based on the

choice of the target model. Next, the problem of output constraints is formulated as

a command-following problem with conflicting commands. Although the constraint

is violated, it is shown that the asymptotic magnitude of the constraint violation

error can be arbitrarily reduced by tuning the target model in RCAC. Finally, the

extended RCAC algorithm is used to prevent unstart in a two-dimensional scramjet

combustor model.

Finally, the thesis is concluded in Chapter 7.

1.4 Publications

The following is the list of publications relevant to the research presented in this

dissertation.
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CHAPTER 2

Gradient-, Ensemble-, and Adjoint-Free

Data-Driven Parameter Estimation

2.1 Introduction

In many applications, models of physical systems have known structure but un-

known parameters. By viewing the unknown parameters as constant states, nonlin-

ear estimation methods can be used to estimate the states of the augmented system,

thereby providing estimates of the parameters along with the dynamic states [19].

The extended Kalman filter (EKF), unscented Kalman filter (UKF), and ensemble

Kalman filter (EnKF) can be applied to these problems [19–25]. An alternative ap-

proach to parameter estimation is variational methods [6, 7, 31], which require an

adjoint formulation of the dynamics, These methods tend to be computationally ex-

pensive due to the need for multiple iterations of the forward model and backward

adjoint.

As a special case of this problem, a linear system may have uncertain entries in its

state space representation. Since the parameter states multiply the dynamic states,

the resulting estimation dynamics are nonlinear despite the fact that the “original”

dynamics are linear. For this problem, a two-step procedure is used in [13], where a

black-box model is first constructed based on the input-output data, and a similarity
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transformation is used to recover the unknown parameters. In [14], a sequential

convex relaxation method is used to estimate unknown entries in the matrices of a

state space realization.

The present chapter focuses on retrospective cost parameter estimation (RCPE),

which is a variation of retrospective cost model refinement (RCMR) developed in

[27–29] and is based on retrospective cost adaptive control [30]. RCPE is applicable

to parameter estimation in linear and nonlinear models, where the parameterization

may be either affine or nonaffine. In order to update the parameter estimate, RCPE

uses an error signal given by the difference between the output of the physical sys-

tem and the output of the estimation model. The parameter update is obtained by

minimizing a retrospective cost function whose minimizer provides an update of the

gains of an integrator. The output of the adaptive integrator consists of the pa-

rameter pre-estimates, whose absolute values are the parameter estimates. However,

the parameter estimates may be permuted in an unknown way, and thus a permuta-

tion is needed to correctly associate each parameter estimate with the corresponding

unknown parameter.

Like UKF but unlike EKF, RCPE does not require a Jacobian of the dynamics

in order to update the parameter estimates. However, unlike UKF, RCPE does not

require an ensemble of models. In particular, for parameter estimation, the unscented

Kalman filter (UKF) is based on an ensemble of 2N + 1 models, where N = n+ p, n

is number of dynamic states and p is the number of unknown parameters. The total

number of states that must be propagated at each iteration is thus 2N2+N = O(N2).

Consequently, for a system with n dynamic states and p unknown parameters, it

follows that N = n+p, and thus the total number of states that must be propagated at

each iteration is (2N+1)N = [2(n+p)+1](n+p). In contrast to UKF, RCPE requires

the propagation of only a single copy of the “original” system dynamics, so that the

number of states that must be propagated at each iteration is simply n. For both
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UKF and RCPE, this model need only be given as an executable simulation; explicit

knowledge of the equations and source code underlying the simulation is not required.

However, the price paid for not requiring an explicit model or an ensemble of models

is the need within RCPE to select a permutation matrix that correctly associates

each parameter estimate with the corresponding unknown parameter. Finally, unlike

variational methods, RCPE does not require an adjoint model.

The contribution of the present chapter is to present, analyze, and demonstrate the

RCPE algorithm for estimating multiple unknown parameters in linear and nonlinear

systems with affine or nonaffine parameterizations. RCPE is shown to be applica-

ble without explicit knowledge of the system equations, and thus is implementable

using only an executable simulation. The chapter analyzes the effect of the filter

coefficients in determining the search directions leading to the parameter estimates.

Most importantly, this chapter demonstrates the need for the permutation matrix in

problems with multiple unknown parameters. Finally, a numerical example with 101

dynamic states and two parameter states shows that the computation required by

RCPE (202 propagated states) is substantially less than the computation required by

UKF (21,321 propagated states).

The chapter is structured as follows. Section 2.2 describes the parameter-estimation

problem. Section 2.3 describes the RCPE algorithm. Next, section 2.4 analyzes the

effect of the user-defined filter in RCPE on the performance of the parameter estima-

tor. Sections 2.5-2.9 present several numerical examples (summarized in Table 2.1)

demonstrating the application of RCPE and its features.
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Example System Parameterization lµ ly Objective

2.1 Linear Affine 1 1
Effect of x(0) and u on the

choice of N1

2.2 Linear Nonaffine 1 1
Effect of noise and compar-

ison with UKF

2.3 Linear Nonaffine 2 2 Effect of sparse Gf

2.4 Linear Affine 2 1 Choice of N1, N2, and Op

2.5 Nonlinear Nonaffine 2 1
Choice of Op with fixed

N1, N2

2.6 Linear Affine 3 1
Choice of N1, N2, N3 with

fixed Op

2.7 Nonlinear Affine 3 1
Choice of Op with fixed

N1, N2, N3

2.9 Nonlinear Affine 2 1
High-dimensional applica-

tion

Table 2.1: Summary of the numerical examples.

2.2 Parameter-Estimation Problem

Consider the discrete-time system

x(k + 1) = f(x(k), u(k), µ) + w1(k), (2.1)

y(k) = h(x(k), u(k), µ) + w2(k), (2.2)

where x(k) ∈ Rlx is the state, u(k) ∈ Rlu is the measured input, y(k) ∈ Rly is the

measured output, w1(k) ∈ Rlx is the process noise, w2(k) ∈ Rly is the measurement

noise, and µ = [µ1 · · · µlµ ]T ∈M ⊆ Rlµ is the true parameter, which is unknown. The
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set M is assumed to be known and satisfy M ⊆ [0,∞)lµ , that is, M is contained in

the nonnegative orthant. If M does not satisfy this condition, then it may be possible

to replace M by M′
4
= µ + M and µ by µ − µ in (2.1), (2.2), where µ ∈ Rlµ shifts

M such that M′ is contained in the nonnegative orthant. With this transformation,

which can always be done if M is bounded, it can be assumed that µ is an element

of the nonnegative orthant. The system (2.1), (2.2) is viewed as the truth model of a

physical system.

Based on (2.1), (2.2), the estimation model is constructed as

x̂(k + 1) = f(x̂(k), u(k), µ̂(k)), (2.3)

ŷ(k) = h(x̂(k), u(k), µ̂(k)), (2.4)

where x̂(k) is the computed state, ŷ(k) is the computed output of (2.3), (2.4), and

µ̂(k) is the parameter estimate. It is assumed that f and h are known, and thus they

can be used to construct (2.3), (2.4). Since w1(k) and w2(k) are unknown, they do

not appear in (2.3), (2.4). Since µ is unknown, it is replaced by µ̂(k) in (2.3), (2.4).

The objective is to construct µ̂(k) based on the output error z(k) ∈ Rly defined by

z(k)
4
= ŷ(k)− y(k). (2.5)

The ability to estimate µ is based on the assumption that (2.1), (2.2) is structurally

identifiable [32–34] and the data are sufficiently persistent [35, 36].

Since measurements of only y are available, the state x is unknown, and thus

x(0) is unknown. For all examples in this chapter, the initial state of the estimation

model (2.3), (2.4) is chosen to be zero to reflect the absence of additional modeling

information. However, the initial state of (2.1), (2.2) is unknown and nonzero.

Definition 2.1. The system (2.1), (2.2) is affinely parameterized if there exist func-
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tions f0, f1, . . . , flµ and h0, h1, . . . , hlµ such that

f(x, u, µ) = f0(x, u) +

lµ∑
i=1

µifi(x, u), (2.6)

h(x, u, µ) = h0(x, u) +

lµ∑
i=1

µihi(x, u). (2.7)

Otherwise, (2.1), (2.2) is nonaffinely parameterized.

A specialization of (2.1), (2.2) is given by the linear discrete-time system

x(k + 1) = A(µ)x(k) +B(µ)u(k) + w1(k), (2.8)

y(k) = C(µ)x(k) +D(µ)u(k) + w2(k). (2.9)

In this case, the estimation model (2.3), (2.4) becomes

x̂(k + 1) = A(µ̂(k))x̂(k) +B(µ̂(k))u(k), (2.10)

ŷ(k) = C(µ̂(k))x̂(k) +D(µ̂(k))u(k). (2.11)

Definition 2.2. The linear system (2.8), (2.9) is affinely parameterized if there exist

constant matrices A0, A1, . . . , Alµ ∈ Rlx×lx , B0, B1, . . . , Blµ ∈ Rlx×lu , C0, C1, . . . , Clµ ∈

Rly×lx , and D0, D1, . . . , Dlµ ∈ Rly×lu such that

A(µ) = A0 +

lµ∑
i=1

µiAi, B(µ) = B0 +

lµ∑
i=1

µiBi, (2.12)

C(µ) = C0 +

lµ∑
i=1

µiCi, D(µ) = D0 +

lµ∑
i=1

µiDi. (2.13)

Otherwise, (2.8), (2.9) is nonaffinely parameterized.
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2.3 Retrospective Cost Parameter Estimation

This section presents retrospective cost parameter estimation (RCPE). RCPE uses

the estimation model (2.3), (2.4) along with a parameter estimator to construct µ̂(k).

The parameter estimator constructs µ̂(k) by minimizing a cost function based on the

output error z.

2.3.1 Parameter Estimator

System (2.1), (2.2)

Estimation
Model (2.3), (2.4)

Parameter Estimator
(2.14), (2.15), (2.16)

u y

−ŷ

zµ̂ Parameter Estimator
(2.14), (2.15), (2.16)

Figure 2.1: Retrospective cost parameter estimation.

The parameter estimator consists of an adaptive integrator and an output nonlin-

earity. In particular, the parameter pre-estimate ν is given by

ν(k) = R(k)φ(k), (2.14)

where the integrator state φ(k) ∈ Rly is updated by

φ(k) = φ(k − 1) + z(k − 1). (2.15)

The adaptive integrator gain R(k) ∈ Rlµ×ly is updated by RCPE as described later in

this section. Since ν(k) is not necessarily an element of the nonnegative orthant, an
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output nonlinearity is used to transform ν(k). In particular, the parameter estimate

µ̂(k) is given by

µ̂(k) = Op|ν(k)|, (2.16)

where the absolute value is applied componentwise. The matrix Op is explained below.

The parameter estimator, which consists of (2.14), (2.15), (2.16), is represented in

Figure 2.1. Since z(k)→ 0 is a necessary condition for φ to converge, the integrator

(2.15) allows z to converge to zero while φ converges to a finite value. Consequently,

the parameter pre-estimate ν given by (2.14) can converge to a nonzero value, which,

in turn, allows the parameter estimate µ̂, given by (2.16), to converge to µ.

Let the lµ-tuple p = (i1, . . . , ilµ) denote a permutation of (1, . . . , lµ). Then the

matrix Op ∈ Rlµ×lµ maps (1, . . . , lµ) to (i1, . . . , ilµ). Since Op is a permutation matrix,

each of its rows and columns contains exactly one “1” and the remaining entries are

all zero. Specifically, row j of Op is row ij of the identity matrix Ilµ . Now, define the

set

SOp

4
= {s ∈ Rlµ : Op|s| = µ}, (2.17)

whose elements are the vectors that are mapped to µ by the componentwise absolute

value and the permutation Op. For illustration, Figure 2.2(a) shows the elements of

SO12 , and Figure 2.2(b) shows the elements of SO21 .

To facilitate the subsequent development, note that the parameter pre-estimate

(2.14) can be rewritten as

ν(k) = Φ(k)θ(k), (2.18)
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µ

(a) p = 12.

µ

(b) p = 21.

Figure 2.2: The set SOp for lµ = 2 consists of the blue dots; µ is shown in red.

where the regressor matrix Φ(k) is defined by

Φ(k)
4
= Ilµ ⊗ φT(k) ∈ Rlµ×lθ , (2.19)

and the coefficient vector θ(k) is defined by

θ(k)
4
= vec R(k) ∈ Rlθ , (2.20)

where lθ
4
= lµly, “⊗” is the Kronecker product, and “vec” is the column-stacking

operator. Note that θ(k) is an alternative representation of the adaptive integrator

gain R(k).

2.3.2 Retrospective Cost Optimization

The retrospective error variable is defined by

ẑ(k, θ̂)
4
= z(k) +Gf(q)[Φ(k)θ̂ − ν(k)], (2.21)
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where q is the forward-shift operator and θ̂ ∈ Rlθ is determined by optimization to

obtain the updated coefficient vector θ(k + 1). The filter Gf has the form

Gf(q) =

nf∑
i=1

1

qi
Ni, (2.22)

where N1, . . . , Nnf
∈ Rly×lµ are the filter coefficients. Note that Gf is an ly × lµ finite

impulse response filter. The retrospective error variable (2.21) can thus be rewritten

as

ẑ(k, θ̂) = z(k) +NΦ(k)θ̂ −NV (k), (2.23)

where

N
4
= [N1 · · · Nnf

] ∈ Rly×nf lµ , (2.24)

Φ(k)
4
=


Φ(k − 1)

...

Φ(k − nf)

 ∈ Rlµnf×lθ , V (k)
4
=


ν(k − 1)

...

ν(k − nf)

 ∈ Rlµnf . (2.25)

The retrospective cost function is defined by

J(k, θ̂)
4
=

k∑
i=1

λk−iẑ(i, θ̂)Tẑ(i, θ̂) + λkθ̂TRθθ̂, (2.26)

where Rθ ∈ Rlθ×lθ is positive definite and λ ∈ (0, 1] is the forgetting factor. The

following result uses recursive least squares (RLS) to minimize (2.26).

Proposition 2.1. Let P (0) = R−1θ , θ(0) = 0, and λ ∈ (0, 1]. For all k ≥ 1, denote

the minimizer of the retrospective cost function (2.26) by

θ(k + 1) = argmin
θ̂∈Rn

J(k, θ̂). (2.27)
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Then, for all k ≥ 1, θ(k + 1) is given by

P (k + 1) = λ−1[P (k)− P (k)Φ(k)TNTΓ(k)−1NΦ(k)P (k)], (2.28)

θ(k + 1) = θ(k)− P (k + 1)Φ(k)TNT[NΦ(k)θ(k) + z(k)−NV (k)], (2.29)

where

Γ(k)
4
= λIly +NΦ(k)P (k)Φ(k)TNT. (2.30)

Furthermore, the parameter estimate at step k + 1 is given by

µ̂(k + 1) = Op|ν(k + 1)| = Op|Φ(k + 1)θ(k + 1)|. (2.31)

Since θ(0) = 0, it follows that ν(0) = 0 and thus µ̂(0) = 0.

2.4 Analysis of RCPE

This section analyzes the role of the filter Gf in the update of the parameter

pre-estimate ν. In particular, it is shown that the filter coefficients determine the

subspace of Rlµ that contains ν.

2.4.1 The filter Gf

To analyze the role of Gf , the cost function (2.26) is rewritten as

J(k, θ̂) = θ̂TAθ(k)θ̂ + 2bθ(k)Tθ̂ + cθ(k), (2.32)
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where

Aθ(k)
4
=

k∑
i=1

λk−iΦ(i)TNTNΦ(i) + λkRθ, (2.33)

bθ(k)
4
=

k∑
i=1

λk−iΦ(i)TNT(z(i)−NV (i)), (2.34)

cθ(k)
4
=

k∑
i=1

λk−i(z(i)−NV (i))T(z(i)−NV (i)). (2.35)

At step k, the batch least squares minimizer θ(k + 1) of (2.26) is given by

θ(k + 1) = −Aθ(k)−1bθ(k), (2.36)

which is equal to θ(k + 1) given by (2.29).

The following result shows that the parameter pre-estimate ν(k), and thus the

estimate µ̂(k), is constrained to lie in a subspace determined by the coefficients of Gf .

Theorem 2.1. Let β > 0, Rθ = βIlθ , ν(k) be given by (2.18), Φ(k) be given by (2.19),

N,Φ(k), V (k) be given by (2.24), (2.25), and θ(k + 1) be given by (2.36). Then, for

all k ≥ 1,

ν(k + 1) = − 1

β
[NT

1 · · · NT
nf

]·

k∑
i=1

λ−iΨ(k, i)[z(i) +NΦ(i)θ(k + 1)−NV (i)]

∈ R([NT
1 · · · NT

nf
]), (2.37)

where

Ψ(k, i)
4
=


φ(k + 1)Tφ(i− 1)⊗ Ily

...

φ(k + 1)Tφ(i− nf)⊗ Ily

 . (2.38)
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Proof. Note that

Φ(k + 1)Aθ(k)θ(k + 1) =
k∑
i=1

λk−iΦ(k + 1)
(
Φ(i)TNTNΦ(i)

)
θ(k + 1)+

λkβΦ(k + 1)θ(k + 1)

=
k∑
i=1

(
λk−i

nf∑
j=1

(Ilu ⊗ φ(k + 1)T)(Ilu ⊗ φ(i− j))NT
j

)
·

NΦ(i)θ(k + 1) + λkβΦ(k + 1)θ(k + 1)

=
k∑
i=1

(
λk−i

nf∑
j=1

NT
j φ(k + 1)Tφ(i− j)

)
NΦ(i)θ(k + 1)+

λkβΦ(k + 1)θ(k + 1)

= [NT
1 · · · NT

nf
]

k∑
i=1

λk−iΨ(k, i)NΦ(i)θ(k + 1)+

λkβΦ(k + 1)θ(k + 1) (2.39)

and

Φ(k + 1)bθ(k) = Φ(k + 1)
k∑
i=1

λk−iΦ(i)TNT
(
z(i)−NV (i)

)
= [NT

1 · · · NT
nf

]
k∑
i=1

λk−iΨ(k, i)
(
z(i)−NV (i)

)
. (2.40)

Writing (2.36) as Aθ(k)θ(k + 1) = −bθ(k), multiplying by Φ(k + 1), and using (2.39)

and (2.40) yields (2.37).

It follows from Lemma 2.1 that the parameter pre-estimate ν is constrained to

lie in the subspace of Rlµ spanned by the coefficients of the filter used by RCPE. In

addition to the subspace constraint, the numerical examples in sections 2.5–2.8 show

that the feasible region is determined by the choice of the filter coefficients. The

feasible region is the set of parameter pre-estimates in Rlµ that are asymptotically
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reachable by the estimator. Consequently, the permutation matrix Op must be chosen

such that at least one element of SOp , defined in (2.17), lies in the feasible region.

In view of Lemma 2.1, for all examples in this chapter where lz = 1, nf is set to be

equal to lµ, and each filter coefficient is chosen to be an element of {e1, e2, . . . , elµ},

where ei is the ith row of the identity matrix Ilµ . For lz > 1, the filter coefficients

must be selected such that µ ∈ R([NT
1 · · · NT

nf
]).

2.5 Examples with lµ = ly = 1

In this section, RCPE is used to estimate one parameter in an affinely and non-

affinely parameterized linear systems.

Example 2.1. Affinely parameterized linear dynamics with one unknown parameter

in the dynamics matrix. This example shows the effect of u , x(0) and N1 on the

feasible region. Consider the linear system (2.8), (2.9), where

A(µ) =

 µ 0.2

0.1 0.6

 , B =

 0.9

0.3

 , C =

[
1.1 0.5

]
, (2.41)

and µ = 0.3. The initial state is x(0) = [10 10]T, the input is

u(k) = 2 +
15∑
j=1

sin

(
2πj

100
k

)
, (2.42)

N1 = 1, λ = 1, and Rθ = 106. Furthermore, O1 = 1, and thus S1 = {±µ}. Figure 2.3

shows the output error, true parameter, parameter pre-estimate, parameter estimate,

state-estimate error, and estimator coefficient. (b) shows that ν(k) converges to −µ,

and thus, by (2.16), µ̂(k) = |ν(k)| converges to µ. Unless stated otherwise, the

abscissa of all plots denotes the iteration step.
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Figure 2.3: Example 2.1. (a) output error, (b) true parameter, parameter pre-

estimate, and parameter estimate, (c) state-estimate error, (d) parameter

estimator coefficient.

In order to investigate the effect of u and N1 on the feasible region, µ is estimated

with the input αu, where u is given by (2.42), α = ±1, and N1 = ±1. For all four

cases, Figure 2.4 shows the true parameter, parameter pre-estimate, and parameter

estimate. Note that, for a given input u and filter coefficient N1, ν(k) converges to

either µ or −µ, and thus µ̂(k) converges to µ.
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(d) N1 = −1, α = −1.

Figure 2.4: Example 2.1. Parameter pre-estimate ν(k) and the estimate µ̂(k) for

various choices of the filter coefficient N1 and the input u determined by

the parameter α.

Next, to investigate the effect of the initial conditions of (2.8), (2.9) on the perfor-

mance of RCPE, µ is estimated with x1(0) and x2(0) varied from −100 to 100. The

input u(k) is given by (2.42) in all cases. Each point in Figure 2.5 (a),(b) corresponds

to an initial condition of (2.8), (2.9), where green indicates that ν(k) converges to µ,

blue indicates that ν(k) converges to −µ, and red indicates that ν(k) diverges. Note

that all cases are obtained by running RCPE under the same values of λ and Rθ;

however, the set of initial conditions x(0) for which ν(k) converges can be expanded

by varying these parameters. Figures 2.4 and 2.5 suggest that, for the given input
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u and filter coefficient N1, the feasible region is either (−∞, 0] or [0,∞), and thus

cannot be determined a priori. Consequently, (2.16) ensures that there exists s ∈ SOp

in the feasible region such that, ν(k) converges to s , and thus µ̂(k) converges to µ. �
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(a) N1 = −1

-100 -50 0 50 100

-100

-50

0

50

100

(b) N1 = 1

Figure 2.5: Example 2.1. Convergence of the parameter estimate for a grid of initial

conditions of (2.8), (2.9).

Example 2.2. Nonaffinely parameterized linear dynamics with one unknown param-

eter in the dynamics matrix. This example investigates the effect of noise, and com-

pares the performance of RCPE with UKF. Consider the linear system (2.8), (2.9) ,

where

A(µ) =

 sinµ cos
µ

3
e−µ

3

0.5

1.1 + µ2

 , (2.43)

µ = 0.3, and B and C are given by (2.41). The initial state is x(0) = [10 10]T,

u(k) is given by (2.42), N1 = 1, λ = 1, and Rθ = 106. Furthermore, O1 = 1, and

thus S1 = {±µ}. Figure 2.6 shows the output error, true parameter, parameter

pre-estimate, parameter estimate, state-estimate error, and estimator coefficient. (b)

shows that ν(k) converges to −µ.

30



10
0

-0.5

0

0.5

100 200

10
-6

10
-3

10
0

100 200

-4

-2

0
10

-3

Figure 2.6: Example 2.2. (a) output error, (b) true parameter, parameter pre-

estimate, and parameter estimate, (c) state-estimate error, (d) parameter

estimator coefficient.

Next, µ is estimated using UKF with α = 1.01, P (0) = diag(103, 103, 1), Q =

10−10I2, and R = 10−10, where α affects the distribution of sigma points, and P,Q,R

are the augmented state, process and measurement covariance matrices. Figure 2.7

shows the output error, true parameter, parameter pre-estimate, parameter estimate,

state-estimate error, and estimator coefficient. Note that the UKF gain K(k) does

not converge.
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Figure 2.7: Example 2.2. UKF-based parameter estimation. (a) output error, (b) true

parameter and parameter estimate, (c) state-estimate error, (d) compo-

nents of the UKF based estimator gain.

Next, to compare the accuracy of RCPE and UKF in the presence of noise,

µ is estimated with process noise w1 ∼ N(0, σ2
1I2) and measurement noise w2 ∼

N(0, σ2
2). For RCPE, N1 = 1, λ = 1, and Rθ = 106; for UKF, α = 1.01, P (0) =

diag(103, 103, 1), Q = σ1I2, and R = σ2. For a range of values of σ1 and σ2, Figure

2.8 shows

εµ
4
=

1

100

√√√√ 1000∑
i=901

(µ̂(i)− µ)2. (2.44)
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Note that, unlike UKF, RCPE uses no knowledge of the noise statistics Q and R to

compute µ̂. �
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(b) UKF

Figure 2.8: Example 2.2. Effect of noise on the estimation accuracy of (a) RCPE and

(b) UKF; the color scale denotes values of log εµ as a function of σ1 and

σ2.

2.6 Example with lµ = ly = 2

In this section, RCPE is used to estimate two unknown parameters in linear

systems that are affinely and nonaffinely parameterized with two measurements.

Example 2.3. Nonaffinely parameterized linear dynamics with two measurements

and two unknown parameters. This example shows how RCPE can be implemented

with a sparse R(k). Consider the linear system (2.8), (2.9), where

A(µ) =

 sinµ1 cos µ1
3

e−µ1

3

0.5

1.1 + µ2
1

 , B(µ) =

 log(1 + µ2
2)

1 + sinµ2

 , C(µ) =

 µ2 4µ2
1

sinµ1 2µ2

 ,
(2.45)
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and µ = [µ1 µ2]
T = [0.4 0.2]T. The initial state is x(0) = [10 10]T, u(k) is

given by (2.42), N1 = I2, λ = 1, and Rθ = 108I4. Furthermore, p = 12, and

thus SOp = {[±µ1 ±µ2]
T}. Note that R(k) ∈ R2×2, and thus the estimates of µ1

and µ2 are determined by both z1 and z2. Figure 2.9 shows the output error, true

parameter, parameter pre-estimate, parameter estimate, state-estimate error, and

estimator coefficient. (b) shows that ν(k) converges to −µ.
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Figure 2.9: Example 2.3. (a) output error, (b) parameter estimates, (c) state-

estimation error, (d) parameter estimator coefficients.
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Next, the adaptive integrator (2.14) is constrained such that

ν(k) =

 R11(k) 0

0 R22(k)

φ(k). (2.46)

Since R(k) is sparse, it follows that µ1 is determined by z1 only, and µ2 is determined

by z2 only. Furthermore, p = 12, N1 = I2, λ = 1, and Rθ = 108. Figures 2.10

shows the output error, true parameter, parameter pre-estimate, parameter estimate,

state-estimate error, and estimator coefficient. �
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Figure 2.10: Example 2.3. Sparse integrator. (a) output error, (b) parameter esti-

mates, (c) state-estimation error, (d) parameter estimator coefficients.
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2.7 Examples with lµ = 2 and ly = 1

In this section, RCPE is used to estimate two unknown parameters in affinely and

nonaffinely parameterized systems with one measurement. These examples show that

the feasible region is determined by the choice and ordering of the filter coefficients.

Example 2.4. Affinely parameterized linear dynamics with two unknown parameters

in the dynamics matrix. This example investigates the effect of N1, N2, and Op on

the feasible region. Consider the linear system (2.8), (2.9), where

A(µ) =

 µ1 µ2

0.1 0.6

 , (2.47)

the input and output matrices are given by (2.41), and µ = [µ1 µ2]
T = [0.3 0.2]T. The

initial state is x(0) = [10 10]T, u(k) is given by (2.42), N1 = e1, N2 = e2, λ = 0.999,

and Rθ = 106I2. Furthermore, p = 12, and thus SO12 = {[±µ1 ±µ2]
T}. Figures 2.11

shows the output error, true parameter, parameter pre-estimate, parameter estimate,

state-estimate error, and estimator coefficient. (b) shows that ν(k) converges to −µ.
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Figure 2.11: Example 2.4. (a) output error, (b) true parameter, parameter pre-

estimate, and parameter estimate, (c) state-estimate error, (d) parame-

ter estimator coefficients.

Next, the effect of the choice of Op and N1 and N2 is investigated. For lµ = 2,

there are two choices of Op and two ways to order the filter coefficients e1 and e2.

Further, for each ordering, there are four ways to allocate signs. Table 2.2 shows all

such filter choices. Figure 2.12(a) shows ν(k) for p = 12, and Figure 2.12(b) shows

ν(k) for p = 21, where the corresponding filter coefficients are given in Table 2.2. Note

that, for a fixed ordering of the filter coefficients, there is exactly one permutation

matrix Op such that the parameter pre-estimate ν converges to an element of SOp .

Conversely, for a fixed permutation matrix Op, there is exactly one ordering of the
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filter coefficients such that the parameter pre-estimate ν converges to an element of

SOp . �

N1 N2

Gf1 e1 e2

Gf2 −e1 e2

Gf3 e1 −e2

Gf4 −e1 −e2

N1 N2

Gf5 e2 e1

Gf6 −e2 e1

Gf7 e2 −e1

Gf8 −e2 −e1

Table 2.2: Filter coefficients for Example 2.4.
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(a) p = 12.
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(b) p = 21.

Figure 2.12: Example 2.4. Parameter pre-estimate ν(k) for various choices of Gf given

in Table 2.2. The true parameter µ is shown in red.

Example 2.5. Nonaffinely parameterized nonlinear dynamics with two unknown pa-

rameters. This example investigates the effect of N1, N2, and Op on the feasible region.
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Consider the (3,3) type nonlinear system [37, p. 183]

x(k + 1) =

 x2(k)

1 + 0.8x2(k) + x1(k)

1 + µ1x2(k) + µ2x1(k)

+

 0

1

u(k), (2.48)

y(k) = x1(k), (2.49)

where µ = [µ1 µ2]
T = [0.6 1.1]T. The initial state is x(0) = [10 10]T, u(k) is given

by

u(k) = 2 +
5∑
j=1

1

j
sin

(
2πj

100
k + j2

)
, (2.50)

N1 = e2, N2 = e1, λ = 0.999, and Rθ = 1012I2. Furthermore, p = 21, and thus

SOp = {[±µ2 ±µ1]
T}. Figure 2.13 shows the output error, true parameter, parameter

pre-estimate, parameter estimate, state-estimate error, and estimator coefficient. (b)

shows that ν(k) converges to O−1p µ. Analogous results shown in Figure 2.12 are

obtained for other choices of the filter coefficients and permutation matrix Op.

Figure 2.14(a) shows ν(k) for p = 21, and Figure 2.14(b) shows ν(k) for p = 12,

where the corresponding filter coefficients are given in Table 2.2. Note that, for a fixed

ordering of the filter coefficients, there is exactly one permutation matrix Op such that

the parameter pre-estimate ν converges to an element of SOp . Conversely, for a fixed

permutation matrix Op, there is exactly one ordering of the filter coefficients such

that the parameter pre-estimate ν converges to an element of SOp . �
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Figure 2.13: Example 2.5. (a) output error, (b) true parameter, parameter pre-
estimate, and parameter estimate, (c) state-estimate error, (d) parame-
ter estimator coefficients.
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Figure 2.14: Example 2.5. Parameter pre-estimate ν(k) for various choices of Gf given

in Table 2.2. The true parameter µ is shown in red.

2.8 Examples with lµ = 3 and ly = 1

In this section, RCPE is used to estimate three unknown parameters in affinely

and nonaffinely parameterized systems with one measurement.

Example 2.6. Affinely parameterized linear dynamics with three unknown parame-

ters in the dynamics matrix. This example investigates the effect of N1, N2, N3, and

Op on the feasible region. Consider the linear system (2.8), (2.9), where

A(µ) =

 µ1 µ2

0.1 µ3

 , (2.51)

the input and output matrices are given by (2.41), and µ = [µ1 µ2 µ3]
T =

[0.3 0.2 0.6]T. The initial state is x(0) = [10 10 10]T, u(k) is given by (2.42),

N1 = e3, N2 = e2, N3 = e1, λ = 0.999, and Rθ = 106I2. Furthermore, p = 123, and

thus SOp = {[±µ1 ±µ2 ±µ3]
T}. Figures 2.15 shows the output error, true parame-
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ter, parameter pre-estimate, parameter estimate, state-estimate error, and estimator

coefficient. (b) shows that ν(k) converges to −µ.
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Figure 2.15: Example 2.6. (a) output error, (b) true parameter, parameter pre-

estimate, and parameter estimate, (c) state-estimate error, (d) parame-

ter estimator coefficients.

Next, the effect of the choice of Op, N1, N2, and N3 is investigated. For lµ = 3,

there are six ways of ordering e1, e2, and e3 and six choices of Op. Figure 2.16 shows

ν(k) for each ordering of the filter coefficients, where the corresponding Op is given

in Table 2.3. Note that, in each case, |ν| converges to O−1p µ.
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Case N1 N2 N3 p

1 e1 e2 e3 321

2 e1 e3 e2 231

3 e2 e1 e3 312

4 e2 e3 e1 132

5 e3 e2 e1 123

6 e3 e1 e2 213

Table 2.3: Filter coefficients and Op for Example 2.6.
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Figure 2.16: Example 2.6. Parameter pre-estimate ν(k) for various choices of Gf and

Op given in Table 2.3.

Next, for each choice of the ordering of e1, e2, and e3, the effect of the choice of

the attitude of each filter coefficient is investigated. In particular, for i ∈ {1, 2, 3},
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each filter coefficient could be ±ei. Thus, the filter if given by

Gfi(q) =
s1N1

q
+
s2N2

q2
+
s3N3

q3
, (2.52)

where s1, s2, and s3 are given in 2.4. Figure 2.17 shows ν(k) for each choice of the

filter coefficients with the corresponding Op given in Table 2.3. Note that, for a choice

of filter coefficient ordering with the corresponding Op, each choice of the attitude of

the filter coefficients corresponds to exactly one element in SOp .

Filter s1 s2 s3
Gf1(q) 1 1 1
Gf2(q) −1 1 1
Gf3(q) 1 −1 1
Gf4(q) 1 1 −1
Gf5(q) −1 −1 1
Gf6(q) 1 −1 −1
Gf7(q) −1 1 −1
Gf8(q) −1 −1 −1

Table 2.4: Filter coefficient sign for Example 2.6.
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Figure 2.17: Example 2.6. Parameter pre-estimate ν(k) for various choices of Gf and

Op given in (2.52), where N1, N2, and N3 are given in Table 2.3 and

s1, s2, and s3 are given by Table 2.4.
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Example 2.7. Affinely parameterized nonlinear dynamics with three unknown pa-

rameters. This example investigates the effect of N1, N2, N3, and Op on the feasible

region. Consider the (3,3) type nonlinear system [37, p. 183]

x(k + 1) =

 x2(k)

µ1 + µ2x2(k) + µ3x1(k)

1 + 0.6x2(k) + 1.1x1(k)

+

 0

1

u(k), (2.53)

y(k) = x1(k), (2.54)

where µ = [µ1 µ2 µ3]
T = [0.5 0.8 1.0]T. The initial state is x(0) = [10 10 10]T,

u(k) is given by (2.42), N1 = e1, N2 = e2, N3 = e3, λ = 0.9999, and Rθ = 106I2.

Furthermore, p = 213, and thus SOp = {[±µ2 ±µ1 ±µ3]
T}. Figures 2.18 shows

the output error, true parameter, parameter pre-estimate, parameter estimate, state-

estimate error, and estimator coefficient. Analogous results shown in Figure 2.16 are

obtained for other choices of the filter coefficients and the permutation matrix Op.
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Figure 2.18: Example 2.7. (a) output error, (b) true parameter, parameter pre-

estimate, and parameter estimate, (c) state-estimate error, (d) parame-

ter estimator coefficients.

Figure 2.19 shows the output error for all six permutations. For clarity, a subset

of the data is shown. Note that the output error diverges for all permutation but p =

213. Thus, diverging output error can be used to rule out the incorrect permutations.
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Figure 2.19: Example 2.7. Output error for all six permutations. [For clarity, only

a subset of the data is plotted.] For five of the six permutations, the

parameter error diverges. However, the correct permutation 213 yields

convergence to the true parameters.

Next, for each choice of the ordering of e1, e2, and e3, the effect of the choice of

the attitude of each filter coefficient is investigated. Figure 2.20 shows ν(k) for each

choice of the filter coefficients with the corresponding Op given in Table 2.5. Note

that, for a choice of filter coefficient ordering with the corresponding Op, each choice

of the attitude of the filter coefficients corresponds to exactly one element in SOp .
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Case N1 N2 N3 p

1 e1 e2 e3 213

2 e1 e3 e2 312

3 e2 e1 e3 123

4 e2 e3 e1 321

5 e3 e2 e1 231

6 e3 e1 e2 132

Table 2.5: Filter coefficients and Op for Example 2.7.
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Figure 2.20: Example 2.7. Parameter pre-estimate ν(k) for various choices of Gf and

Op given in (2.52), where N1, N2, and N3 are given in Table 2.5 and

s1, s2, and s3 are given by Table 2.4.
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2.9 Parameter Estimation in the Generalized Burgers Equa-

tion

In this section, we consider the generalized one-dimensional viscous Burgers equa-

tion [38]

∂u

∂t
+ µ1

∂

∂x

u2

2
=

∂

∂x

(
µ2
∂u

∂x

)
, (2.55)

where u(x, t) is a function of space and time with domain [0, 1]× [0,∞), µ1 > 0 is the

convective constant and µ2 > 0 is the viscosity. Note that there is no external input to

this system and u is used to denote the solution of this partial differential equation.

The initial condition is u(x, 0) = 0 for all x ∈ [0, 1], and the boundary conditions

are u(0, t) = 0 and u(1, t) = sin(5t) + 0.25 sin(10t) for all t ≥ 0. The objective is to

estimate the unknown parameter µ
4
= [µ1 µ1]

T using measurements of u at a single

location.

The Burgers equation (2.55) is discretized using a forward Euler approximation

for the time derivative, a second-order-accurate upwind method for the convective

term, and a second-order-accurate central difference scheme for the viscous term.

The spatial domain [0, 1] is discretized using N equally spaced grid points; thus

∆x
4
= 1

N−1 . The time step ∆t is chosen to satisfy the CFL condition, that is,

∆t <
Cmax∆x

|max(u)|
, (2.56)

where the Courant number Cmax depends on the discretization scheme [39]. Finally,

the discrete variable uj(k)
4
= u((j − 1)∆x, k∆t) is defined on the grid points j ∈
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{1, . . . , N} for all time steps k ≥ 0. Hence, at each grid point, j ∈ {3, . . . , N − 1},

uj(k + 1) = uj(k)− µ1
∆t

2∆x
(1.5uj(k)2 − 2uj−1(k)2 + 0.5uj−2(k)2)+

µ2
∆t

∆x2
(uj+1(k)− 2uj(k) + uj−1(k)). (2.57)

For all k ≥ 0, the discretized boundary conditions are

u1(k) = u2(k) = 0, uN(k) = sin(5∆tk) + 0.25 sin(10∆tk), (2.58)

and, for all j ∈ {3, . . . , N − 1}, the initial condition is

uj(0) = 0. (2.59)

In this example, µ1 = 1.4, µ2 = 0.3, Cmax = 0.25, N = 100, and ∆t = 10−4 s.

Figure 2.21(a) shows the numerical solution of (2.57) with the boundary conditions

(2.58) and initial conditions (2.59), where the solid black line shows the measurement

location. Figure 2.21(b) shows the measurement y(k)
4
= u87(k) = u(0.87, k∆t).

In order to start the estimation model, nonzero values of µ̂1(0) and µ̂2(0) are

needed. A simple way to ensure this is to replace µ by µ̂(k) = µ+Opν(k), where µ =

[µ1 µ1]
T = [1 0.01]T, so that µ̂(0) 6= 0 . Furthermore, N1 = e1, N2 = e2, λ = 0.9999,

and Rθ = 106I2. Let p = 21 so that SOp = {[±(µ2 − µ2) ± (µ1 − µ2)]
T}. Figure 2.22

shows the output error, true parameter, parameter pre-estimate, parameter estimate,

state-estimate error, and estimator coefficient.
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(a) u(x, t)

2 4 6 8 10

-0.5

0

0.5

(b) y(t)

Figure 2.21: Simulation of the generalized Burgers equation with the discretization

(2.57).
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Figure 2.22: Generalized Burgers equation. (a) output error, (b) true parameter, pa-

rameter pre-estimate, and parameter estimate, (c) state-estimate error,

(d) parameter estimator coefficients.

2.10 Thermal Conductivity Estimation using Density Mea-

surements

Finally, we consider the problem of estimating thermal conductivity using density

measurements. In particular, we estimate the thermal conductivity coefficients κO2

and κO using simulated measurements of global maximum and minimum density

altitudes between 100 km and 500 km. The temperature at one level of the atmosphere
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depends on the vertical structure of the temperature through the equation

δT

δt
∝ δ

δz
λ
δT

δz
, (2.60)

where T is the temperature, t is time, z is altitude, and λ is approximated as

λ =
κO2NO2 + κONO

NO2 +NO

T S, (2.61)

where the parameters κO2 and κO depend on the density of atomic (NO) and molecular

(NO2) oxygen, and S is independent of both.

To illustrate the application of RCPE to estimate thermal conductivity coeffi-

cients κO2 and κO, we generate measurements from a simulation of Global Ionosphere

Thermosphere Model (GITM), described in detail in Section 3.2, with thermal con-

ductivity coefficients κO2 = 0.00036 and κO = 0.00056. In particular, we record

minimum and maximum values of the density between 100 and 500 km.

In the estimation model, the thermal conductivity coefficients estimates are given

by

 κ̂O2(k)

κ̂O(k)

 =

 κO2

κO

+ Op|ν(k)|, (2.62)

where κO2 = 0.00031 and κO = 0.00030 are the initial guesses of thermal conductivity

coefficients. In RCPE, we set N1 = I2, λ = 0.999, Rθ = 108I2, and p = 12. Figure 2.23

shows the output error, true parameter, parameter pre-estimate, parameter estimate,

estimated and measured densities, and the estimator coefficient.
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Figure 2.23: Estimation of thermal conductivity coefficients. (a) output error, (b)

true parameter, parameter pre-estimate, and parameter estimate, (c)

measured and estimated densities, (d) parameter estimator coefficients.

Next, thermal conductivity coefficients are estimated with various values of ini-

tial guesses with same RCPE tuning parameters. Figure 2.24 shows the thermal

conductivity coefficients estimates for various values of initial guesses.
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Figure 2.24: Effect of the initial parameter guess on the estimates of thermal conduc-

tivity coefficients.

Note that RCPE does not need to propagate an ensemble of GITM state to es-

timate the unknown parameters. In contrast, UKF would need to propagate a five

member ensemble in GITM at each step to estimate the unknown the thermal con-

ductivity coefficients.
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2.11 Conclusions

This chapter presented RCPE, which is an iterative, data-driven technique for

estimating unknown parameters in linear and nonlinear dynamical systems. Unlike

the extended Kalman filter, RCPE is gradient-free; unlike the unscented Kalman

filter, RCPE is ensemble-free; and unlike variational methods, RCPE is adjoint-free.

It is shown that to estimate multiple unknown parameters, a permutation matrix

is required to correctly associate each parameter estimate with the corresponding

unknown parameter. The need to select the permutation matrix is the price paid

for not requiring gradient information, an ensemble of models, or an adjoint model.

The potential usefulness of RCPE was demonstrated by application to the Burgers

equation and GITM. In the Burgers equation, UKF requires an ensemble of 207

models each with 101 states, requiring a total of 21,321 state updates. In contrast,

RCPE required one model and testing of two permutations, which requires a total

of 202 state updates (101 for each permutation). In GITM which has ∼ 106 states,

in the case where UKF is applied to update the unknown parameters only, a five

member ensemble needs to be propagated at each step to estimate the unknown the

thermal conductivity coefficients, increasing the computational cost by at least five

times. In contrast, RCPE required a single propagation of GITM states and testing

of two permutations.

In the next chapter, RCPE is extended to the case where the filter coefficients that

define the retrospective cost are simultaneously optimized along with the parameter

estimator coefficient. The extended RCPE is applied to the problem of estimating

eddy diffusion coefficient in GITM using the measurements of total electron content.
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CHAPTER 3

Estimation of the Eddy Diffusion Coefficient Using

Total Electron Content Data

3.1 Introduction

Computational models of high-dimensional complex physical systems often have

unknown parameters. These parameters might be unknown due to lack of a physical

measurement equipment. For example, measurements of friction force to estimate

friction coefficients might not be available. In addition, the unknown parameters

might be used as a proxy for the cumulative effect of a complex phenomenon, and thus

are representational nature, that is, they may not have a true value. For example, the

subgrid stresses in large eddy simulations are modeled using constitutive relationships

using unknown coefficients.

The present chapter focuses on estimation of such uncertain parameters arising

in a model of the upper atmosphere, which extends from about 60 km to 1000 km.

The basis of this model is the Navier-Stokes equations coupled with electrodynamics

equations. The source terms driving the ionosphere, such as the solar flux and the

Earth’s magnetic field, as well as coupling effects such as viscosity and diffusion,

are constructed statistically [40] or empirically to match the predicted output of the

model with measurements from various ground stations and satellites in orbit.
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It is well known that turbulent diffusion affects energy deposition and transport

of chemical species in the upper atmosphere. Eddy diffusion coefficient (EDC) is

used to model this mixing process. Specifically, EDC models turbulent mixing in the

upper atmosphere [41]. According to mass continuity and the momentum equations,

the altitude profile of the neutral constituents changes from full mixing at lower

altitudes (below 150 km), where turbulent mixing prevails, to molecular diffusion

at higher altitudes (above 150 km). The value of EDC represents the intensity of

the turbulent mixing, which is a key factor in determining the free-electron density

in the ionosphere, usually measured by total electron content (TEC). However, no

measurement device can directly measure EDC, and no first-principles physics model

is available to determine its value. Nevertheless, models of the upper atmosphere

routinely simulate the turbulent mixing at various altitudes by using shape functions

parameterized by EDC [42].

The estimates of EDC obtained in the present chapter are based on measurements

of the total electron content (TEC). TEC, defined as the total number of electrons

integrated along a vertical column of one meter squared cross section, is a widely used

quantity to describe the ionosphere. TEC is measured in TEC unit (TECU), where

1 TECU = 1016 electrons/m2. The free electrons in the ionosphere cause delay in the

propagation of radio waves in the atmosphere. Ionospheric irregularities also cause

random amplitude and phase fluctuations in the signals [43]. TEC measurements are

thus used to correct positioning errors and improve the accuracy of the Global Nav-

igation Satellite Systems [44]. Consequently, the physics of TEC are widely studied

[45–48]. TEC is routinely used to estimate the state of the ionosphere and thermo-

sphere [49–51]. The use of TEC measurements to estimate EDC is a novel element

of the present chapter.

In this chapter, we use retrospective cost parameter estimation (RCPE) to the

problem of estimating EDC. RCPE was applied to atmospheric models in [27, 52–54].
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The present chapter extends RCPE by simultaneously optimizing the filter Gf ,

which is used to define the retrospective cost function [55, 56]. Within the context

of adaptive control, Gf is chosen to capture knowledge of the leading sign, relative

degree, and nonminimum-phase zeros. For parameter estimation within the context

of a high-order nonlinear model such as the atmospheric model considered in this

chapter, there are no clear guidelines for constructing Gf . Consequently, the present

chapter updates Gf online through a combined optimization procedure. A related

optimization technique within the context of adaptive control was considered in [57,

58].

The optimization problem involving both the unknown parameters and the filter

Gf turns out to be biquadratic. Although this biquadratic function is strictly convex

in each variable separately, it is highly nonconvex as a joint function of its arguments.

Unfortunately, numerical algorithms that converge globally to the global minimizer

of biquadratic functions are not available [59], and this poses a technical challenge

within the context of parameter estimation for large-scale physics models. In the

present chapter we apply an alternating convex search method that is guaranteed to

converge to a local minimizer.

The chapter is organized as follows. In Section 3.2, we describe GITM and the role

played by EDC. In Section 3.3, we summarize the RCPE algorithm. In section 3.4,

an algorithm to optimize the biquadratic retrospective cost function is presented. A

low-dimensional system illustrating the application of RCPE is presented in Section

3.5. Estimation of EDC using TEC is presented in 3.6. Finally, in Section 3.7, we

summarize the results of the chapter and discuss future directions.

3.2 Global Ionosphere-Thermosphere Model

GITM is a computational code that models the thermosphere and the ionosphere

of the Earth as well as that of various planets and moons by solving coupled continuity,
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momentum, and energy equations [60]. By propagating the governing equations,

GITM computes neutral, ion, and electron temperatures, neutral-wind and plasma

velocities, and mass and number densities of neutrals, ions, and electrons. GITM uses

a uniform grid in latitude with width 2π
nlat

rad, where nlat is the number of grid points.

In longitude and altitude, GITM uses a stretched grid to account for temperature

and density variations.

GITM is implemented in parallel, where the computational domain (the atmo-

sphere from 100 km to 600 km) is divided into blocks. Ghost cells border the physical

blocks to exchange information. GITM can be run in one-dimensional mode, where

horizontal transport is ignored, or in global three-dimensional mode. Furthermore,

GITM can be run at either a constant or a variable time step, which is calculated

by GITM based on the physical state and the user-defined CFL number in order

to maintain numerical stability. To initialize GITM, neutral and ion densities and

temperatures for a chosen time are set using the Mass Spectrometer and Incoherent

Scatter radar (MSIS) model [61] and International Reference Ionosphere (IRI) [62].

The model inputs for GITM are 10.7 cm solar radio flux (F10.7 index), hemispheric

power index (HPI), interplanetary magnetic field (IMF), solar wind plasma (SWP),

and solar irradiance, all of which are read from a text file containing the time of

measurements and the measured values. These signals are available from various

terrestrial sensor platforms.

3.3 Retrospective Cost Parameter Estimation

Consider the parameter estimator where the parameter pre-estimate ν is given by

µ(k) =
lw∑
i=1

Piν(k − i) +
lw∑
i=1

Qiz(k − i) +R(k)γ(k), (3.1)
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where lw is the data-window length, and the integrator state γ(k) ∈ Rly is updated

by

γ(k) = γ(k − 1) + z(k − 1), (3.2)

and Pi(k) ∈ Rlµ×lµ , Qi(k), R(k) ∈ Rlµ×ly are the coefficient matrices, which are

updated by the RCPE algorithm. Finally, the parameter estimate µ̂(k) is given by

µ̂(k) = Op|ν(k)|, (3.3)

where Op is a permutation matrix described in Section 3.3.

We rewrite (3.1) as

ν(k) = Φ(k)θ(k), (3.4)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
= Ilµ ⊗ φT(k) ∈ Rlµ×lθ ,

where

φ(k)
4
=



ν(k − 1)

...

ν(k − lw)

z(k − 1)

...

z(k − lw)

g(k)



, (3.5)
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θ(k)
4
= vec

[
P1(k) · · ·Plw(k) Q1(k) · · ·Qlw(k) R(k)

]
∈ Rlθ , (3.6)

lθ
4
= l2µlw+lµly(lw+1), “⊗” is the Kronecker product, and “vec” is the column-stacking

operator.

3.3.1 Retrospective Cost Optimization

The retrospective error variable is defined by

ẑ(k, θ̂, N̂) = z(k) + Ĝf(q)(Φ(k)θ̂ − ν(k)), (3.7)

where θ̂ ∈ Rlθ contains the parameter estimator coefficients to be optimized, and Ĝf

is an FIR filter of order nf to be optimized, given by

Ĝf(q) =

nf∑
i=1

1

qi
N̂i, (3.8)

where N̂i ∈ Rly×lµ are the filter coefficients to be optimized. The retrospective error

variable (3.7) can thus be written as

ẑ(k, θ̂, N̂) = z(k) + N̂Φ(k)θ̂ − N̂V (k), (3.9)

where

N̂
4
=

[
N̂1 · · · N̂nf

]
∈ Rly×nf lµ , (3.10)

and Φ(k) and V (k) are defined by (2.25).

Using the retrospective error variable ẑ(k, θ̂, N̂), the retrospective cost function is
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defined by

J(k, θ̂, N̂)
4
=

k∑
i=1

λk−iẑ(k, θ̂, N̂)TRz ẑ(k, θ̂, N̂) + λkθ̂TRθθ̂, (3.11)

where Rz ∈ Rly×ly and Rθ ∈ Rlθ×lθ are positive definite, and λ ∈ (0, 1] is the forgetting

factor. Note that the retrospective cost J(k, θ̂, N̂) is a biquadratic function, that is,

J(k, θ̂, N̂) is a quadratic function of θ̂ for fixed N̂ , and a quadratic function of N̂

for fixed θ̂. We use alternating convex search (ACS) described in [59] to optimize the

retrospective cost with respect to the parameter estimator coefficients and the filter.

The parameter pre-estimate is given by

ν(k + 1) = Φ(k + 1)θ(k + 1), (3.12)

where θ(k + 1) is the minimizer of J(k, θ̂, N̂) at the kth step. Finally, the parameter

estimate at step k + 1 is given by

µ̂(k + 1) = Op|ν(k + 1)| = Op|Φ(k + 1)θ(k + 1)|. (3.13)

3.4 Biquadratic Retrospective Cost Optimization

In this section we show that J(k, θ̂, N̂) defined by (3.11) is biquadratic as a joint

function of the arguments θ̂ and N̂ and strictly convex in θ̂ and N̂ separately. This

property suggests an optimization algorithm in which J(k, θ̂, N̂) is minimized alter-

nately with respect to θ̂ and N̂
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3.4.1 Retrospective cost as a quadratic function of θ̂

We write the retrospective cost function (3.11) as

J(k, θ̂, N̂) = θ̂TAθ(k, N̂)θ̂ + θ̂Tbθ(k, N̂) + bθ(k, N̂)Tθ̂ + cθ(k, N̂), (3.14)

where

Aθ(k, N̂)
4
=

k∑
i=1

λk−iΦ(i)TN̂TN̂Φ(i) + λkRθ ∈ Rlθ×lθ , (3.15)

bθ(k, N̂)
4
=

k∑
i=1

λk−i
(
N̂Φ(i)

)T(
z(i)− N̂V (i)

)
∈ Rlθ , (3.16)

cθ(k, N̂)
4
=

k∑
i=1

λk−i[V (i)TN̂TN̂V (i) + z(i)Tz(i) + V (i)TN̂Tz(i)] ∈ R. (3.17)

For fixed N̂ , the global minimizer θ∗(k, N̂) of (3.11) is given by

θ∗(k, N̂) = −Aθ(k, N̂)−1bθ(k, N̂). (3.18)

3.4.2 Retrospective cost as a quadratic function of N̂

We write the retrospective cost function (3.11) as

J(k, θ̂, N̂)
4
= tr

(
N̂AN(k, θ̂)N̂T + N̂BN(k, θ̂)T +BN(k, θ̂)N̂T + CN(k, θ̂)

)
, (3.19)
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where

AN(k, θ̂)
4
=

k∑
i=1

λk−i
(
Φ(i)θ̂ − V (i)

)(
Φ(i)θ̂ − V (i)

)T ∈ Rnf lµ×nf lµ , (3.20)

BN(k, θ̂)
4
=

k∑
i=1

λk−iz(i)
(
Φ(i)θ̂ − V (i)

)T ∈ Rly×nf lµ , (3.21)

CN(k, θ̂)
4
=

k∑
i=1

λk−iz(i)z(i)T ∈ Rly×ly . (3.22)

For fixed θ̂, the global minimizer N∗(k, θ̂) of (3.11) is given by

N∗(k, θ̂)
4
= −BN(k, θ̂)AN(k, θ̂)−T ∈ Rly×nf lµ . (3.23)

It follows from Theorem 2.1 that the pre-estimate ν(k) is constrained to lie in a

subspace defined by the coefficients of Gf(q). In particular, for all k ≥ 1, ν(k) ∈

R([NT
1 · · · NT

nf
]). Consequently, the filter order nf should be chosen such that

R([NT
1 · · · NT

nf
]) = Rlµ . (3.24)

For example, to estimate lµ unknown parameters with one measurement, nf should

be at least lµ.

3.4.2.1 Sparse Filter

The following result, given in [63], allows the construction of sparse filter coeffi-

cients.

Proposition 3.1. Let N be a sparse matrix with p nonzero entries. Let q be the

number of rows of N where the p nonzero entries appear; and let r be the number of

rows of N where the p nonzero entries appear. Then N can be written as E1NE2,

where E1 and E2 are matrices containing zero and one, and N contains the p nonzero
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entries, if and only if p = qr.

In the case where ly = 1, we set nf = lµ, and constrain the filter coefficients Ni

to lie along the canonical basis vectors. In particular, it follows from Proposition 3.1

that N can be written as N = nE2. For example, let lµ = 2 and N̂ = [n̂1e2 n̂2e1].

Then,

n̂ =

[
n̂1 n̂2

]
, (3.25)

E2 =

 e2 0

0 e1

 . (3.26)

In cases where it is not possible to write N = E1NE2, it is possible to set certain

components of the filter coefficients as constants, so that Proposition 3.1 can be used.

In such cases, N can be written as

N = E1nE2 + E0, (3.27)

where E0 contains the constants. For example,

N =

 n1 0 n2 0

0 1 0 1

 (3.28)

= E1

[
n1 n2

]
E2 + E0, (3.29)

where

E0
4
=

 0 0 0 0

0 1 0 1

 , E1
4
=

 1

0

 , E2
4
=

 1 0 0 0

0 0 1 0

 . (3.30)
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Finally, with sparse filter, the retrospective cost function (3.11) can be written as

J(k, θ̂, n̂)
4
= tr

(
E1n̂AN(k, θ̂)n̂TET

1 + E1n̂BN(k, θ̂)T +BN(k, θ̂)n̂TET
1 + CN(k, θ̂)

)
,

(3.31)

where

AN(k, θ̂) = E2AN(k, θ̂)ET
2 , (3.32)

BN(k, θ̂) = E2BN(k, θ̂) + E2AN(k, θ̂)ET
0 , (3.33)

CN(k, θ̂) = CN(k, θ̂) + E0AN(k, θ̂)ET
0 + E0BN(k, θ̂) +BN(k, θ̂)TET

0 (3.34)

where AN(k, θ̂) is given by (3.20), BN(k, θ̂) is given by (3.21), and CN(k, θ̂) is given

by (3.22). For fixed θ̂, the global minimizer n∗(k, θ̂) of (3.31) is given by

n∗(k, θ̂)
4
= −(ET

1 E1)
−1ET

1 BN(k, θ̂)AN(k, θ̂)−T. (3.35)

3.4.3 Alternating Convex Search algorithm

The ACS algorithm consists of using (3.23) and (3.18) alternately to converge to

a stationary point of (3.11). At step k, ACS consists of the following rules:

1. Set i = 0 and choose nonzero N0.

2. Use (3.18) with Ni to compute θi+1.

3. Use (3.23) with θi+1 to compute Ni+1.

4. Compute Ji+1(k, θi+1, Ni+1) using either (3.14) or (3.19).

5. For i > 2, if Ji+1 − Ji ≤ ε, then stop, where ε > 0 is the user-defined stopping

criteria, and set θ(k + 1) = θi+1 and N(k + 1) = Ni+1. Otherwise, replace i by

i+ 1 and go to 2).
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Finally, the parameter pre-estimate is given by

ν(k + 1) = Φ(k + 1)θ(k). (3.36)

3.5 Illustrative example

In this section, RCPE is used to estimate an unknown scalar parameter µ that

nonaffinely parameterizes a linear system realization. Consider the LTI physical sys-

tem model

x(k + 1) = A(µ)x(k) +B(µ)u(k) + w1(k), (3.37)

y(k) = C(µ)x(k) + w2(k), (3.38)

where

A(µ) =

 e−µ 1− µ

µ2 log(1 + µ2)

 , (3.39)

B(µ) =

 sinµ

1 + cosµ

 , (3.40)

C(µ) =

[
1 + µ µ2

]
. (3.41)

The true value of µ is 0.8. The estimation model is thus

x̂(k + 1) = A(µ(k))x̂(k) +B(µ(k))u(k), (3.42)

ŷ(k) = E(µ(k))x̂(k), (3.43)

where µ(k) is the output of the parameter estimator (3.1), (3.3) updated by RCPE.

The measurement y(k) is generated using the input u(k) = 2 + sin
(
2π
40
k
)

+
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sin
(
2π
80
k − 0.3

)
+ sin

(
2π
160
k − 0.5

)
, the initial state x(0) = [10 10]T, each component

of the process noise w1 is N(0, 10−6), and the measurement noise w2 is N(0, 10−6).

To reflect the absence of additional information, the initial state x̂(0) of the estima-

tion model and the initial estimate µ(0) of the unknown parameter µ are set to zero.

We use RCPE to estimate the unknown parameter µ in the linear system (3.37),

(3.38) with the nonlinear parameter dependence (3.39)-(3.41). We set lw = 1, nf = 1,

Rz = 1, and Rθ = 106Ilθ . At each step, ACS is initialized with N0 = −1. Figure 3.1

shows the estimate µ(k) of µ.
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Figure 3.1: RCPE estimate of the unknown parameter µ in the linear system (3.37),

(3.38) with the nonlinear parameter dependence (3.39)-(3.41). (a) shows

the performance z on a linear scale, (b) shows the parameter estimate

µ, (c) shows the measured input u to the system, (d) shows the adapted

coefficients θ of the parameter estimator, (e) shows the measured out-

put and the output of the estimation model, and (f) shows the adapted

coefficient N(k) of the filter Gf .
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Next, we investigate the effect of the ACS filter initialization N0 and the weight

Rθ on the performance of RCPE. We set lw = 1, nf = 1, and Rz = 1. Figure 3.2

shows the estimate µ(k) of µ and the filter coefficient N(k) for various initializations

and weights. Note that RCPE successfully estimates the unknown parameter µ for

ACS filter initialization choices ranging several orders of magnitude, thus indicating

that ACS filter initialization choice is not critical.
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Figure 3.2: Effect of the ACS filter initialization N0 and the weight Rθ on the perfor-

mance of RCPE. (a) and (c) show the parameter estimate µ for various

values of the filter initialization N0 and the weight Rθ. (b) and (d) show

the filter coefficient N for various values of the filter initialization N0 and

the weight Rθ.
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3.6 Estimation of EDC using TEC GITM

Finally, we consider the problem of estimating the EDC in the global ionosphere

thermosphere model (GITM) using measurements of TEC at a fixed ground station

on Earth.

To generate the measurements of TEC, we simulate the upper atmosphere of Earth

using GITM for the period starting at 00:00:00, 21-Nov-2002 and ending at 00:00:00,

8-Dec-2002 with EDC = 1750. TEC is computed at every minute at a fictitious

ground station located at 1 deg North, 45 deg East. The initial state of the upper

atmosphere, comprising neutral and ion densities and temperature, is set using MSIS

and IRI for the chosen start time. The inputs to GITM, such as F10.7 index, IMF

data, SWP data, and HPI data, are read from text files.

To estimate the unknown EDC, we compute the TEC at every minute at the

ground location 1 deg North, 45 deg East for the period starting from 00:00:00,

21-Nov-2002 to 00:00:00, 8-Dec-2002. The initial state of the upper atmosphere,

comprising neutral and ion densities and temperature, is set using MSIS and IRI for

the chosen start time. GITM is run for one simulation day, that is from 00:00:00,

21-Nov-2002 to 00:00:00, 22-Nov-2002 with EDC = 1500. At the start of the second

simulation day, RCPE is switched on. Note that the delayed starting of RCPE en-

sures that, at the instant RCPE starts, the state of the atmosphere updated by the

estimation GITM model is the not same as the GITM model used to generate the

TEC measurements.

We set lw = 2, nf = 1, Rz = 1, and Rθ = 10−1Ilθ , and use RCPE to update

the estimate of EDC at every minute. Figure 3.3 shows the estimate of EDC using

RCPE. Figure 3.4 shows the measured and computed TEC.
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Figure 3.3: RCPE estimate of the unknown EDC in GITM. (a) shows the performance

z on a linear scale, (b) shows the EDC estimate, (c) shows the adapted

coefficient N(k) of the filter Gf , and (d) shows the adapted coefficients θ

of the parameter estimator.
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Figure 3.4: Measured and computed TEC at the fictitious ground station located at 1

deg North, 45 deg East. y denotes the TEC measurements generated using

GITM with a constant EDC= 1750, and ŷ denotes the TEC computed

by GITM where EDC is updated at every minute by RCPE.

Note that RCPE does not use GITM to update the parameter estimator. Instead,

GITM is used as a black box model, although the EDC estimate is injected into

GITM as a gray box model. In fact, the internal parameter dependence of GITM on

EDC is extremely complicated; fortunately, there is no need to explicitly characterize

this dependence.
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3.7 Conclusions

This chapter presented an extension of retrospective cost parameter estimation

(RCPE) by concurrently optimizing the filter Gf and the parameter estimator. This

technique was used to estimate an unknown parameter in a large-scale model of

a physical system, namely, the eddy diffusion coefficient in the global ionosphere-

thermosphere model.

Analysis of RCPE focused on the biquadratic nature of the retrospective cost

function. Alternating convex search algorithm was used to optimize the biquadratic

retrospective cost function.
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CHAPTER 4

Recursive Least Squares with Information-Driven

Directional Forgetting

Within the context of system identification, persistent excitation is crucial for

constructing estimators that converge to the unknown parameters. This convergence

depends on two things, namely, identifiability [64], which is ability to distinguish

distinct parameters, and persistent excitation, which refers to the spectral content

of the signals needed to ensure convergence of the parameter estimates to the true

parameter values [35, 65, 66]. Roughly speaking, the level of persistency must be

commensurate with the number of unknown parameters. For example, a harmonic

input has two-dimensional persistency and thus can be used to identify two parame-

ters, whereas white noise is sufficiently persistent for identifying an arbitrary number

of parameters. Within the context of adaptive control, persistent excitation is needed

to avoid bursting [67]; recent research has focused on relaxing these requirements

[68–70].

Under persistent excitation, a key issue in practice is the speed of convergence,

especially under changing conditions. For example, the parameters of a system may

change abruptly, and the goal is to ensure fast convergence to the modified param-

eters. The speed of convergence depends on the ability to forget past parameters

and incorporate new information. Although somewhat counterintuitive, the ability
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to accommodate new information depends on the ability to forget. The ability to

forget is thus crucial to the ability to learn. This paradox is widely recognized, and

effective forgetting is of intense interest in machine learning [71].

This chapter considers forgetting within the context of recursive least squares

(RLS). In the classical RLS formulation, a constant forgetting factor λ ∈ (0, 1] can be

set by the user. However, it often occurs in practice that if λ is too small—perhaps as

small as 0.99—then RLS may diverge. This phenomenon has been extensively studied

and various remedies have been studied in the form of variable-rate forgetting [72–78].

The present chapter considers a technique that complements variable-rate forget-

ting, namely, directional forgetting. Directional forgetting has been widely studied

within the context of recursive least squares [79–85]. In the absence of persistent

excitation, new information is confined to a limited number of directions. The goal

of directional forgetting is thus to determine these directions and thereby constrain

forgetting to the directions in which new information is available. This technique

allows RLS to operate without divergence during periods of loss of persistency.

The chapter is organized as follows. Section 4.1 presents the classical recursive

least squares algorithm with constant scalar forgetting factor. Section 4.2 defines

persistency of excitation and presents results on bounds of the estimator variables.

Section 4.3 connects persistency of excitation of a sequence to the condition number

of the information matrix. Section 4.4 presents Lyapunov analysis of the parameter

error. Section 4.5 shows the effect of lack of persistent excitation on the estimator.

Section 4.6 introduces the information subspace, and Section 4.7 introduces the ma-

trix forgetting that constrains forgetting to the information directions receiving new

information. Finally, the chapter concludes in Section 4.8.

Table 4.1 summarizes the results and examples in this chapter.
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Definition 4.1 Persistently exciting regressor

Definition 4.2 Uniformly Lyapunov stable equilibrium

Definition 4.3 Uniformly globally aymptotically stable equilibrium

Definition 4.4 Uniformly globally geometrically stable equilibrium

Theorem 4.1 Recursive least squares (RLS)

Theorem 4.2 Lyapunov stability theorem

Theorem 4.3 Lyapunov analysis of RLS for λ ∈ (0, 1)

Theorem 4.4 Stability analysis of RLS for λ ∈ (0, 1] based on θk

Proposition 4.1 Convergence of zk and θk

Proposition 4.2 Data-dependent subspace constraint on θk

Proposition 4.3 Bounds on Pk for λ = 1

Proposition 4.4 Bounds on Pk for λ ∈ (0, 1)

Proposition 4.5 Converse of Proposition 4.4

Proposition 4.6 Persistent excitation and Ak

Example 4.1 Necessary, but not sufficient condition for persistent excitation

Example 4.2 Persistent excitation and bounds on P−1k

Example 4.3 Lack of persistent excitation and bounds on P−1k

Example 4.4 Using κ(Pk) to determine whether (φk)
∞
k=0 is persistently exciting

Example 4.5 Effect of λ on the rate of convergence of θk

Example 4.6 Lack of persistent excitation in scalar estimation

Example 4.7 Subspace constrained regressor

Example 4.8 Effect of lack of persistent excitation on θk

Example 4.9 Lack of persistent excitation and the information subspace

Example 4.10 Information-driven forgetting for a regressor lacking persistent

excitation

Example 4.11 Effect of Information-driven forgetting on θk

Table 4.1: Summary of definitions, results, and examples in this chapter.
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4.1 Recursive Least Squares

Consider the model

yk = φkθ, (4.1)

where, for all k ≥ 0, yk ∈ Rp is the measurement, φk ∈ Rp×n is the regressor matrix,

and θ ∈ Rn is the vector of unknown parameters. The goal is to estimate θ as new

data becomes available. One approach to this problem is to minimize the quadratic

cost function

Jk(θ̂)
4
=

k∑
i=0

λk−i(yi − φiθ̂)T(yi − φiθ̂) + λk+1(θ̂ − θ0)TR(θ̂ − θ0), (4.2)

where λ ∈ (0, 1] is the forgetting factor, R ∈ Rn×n is positive definite, and θ0 ∈ Rn

is the initial estimate of θ. The forgetting factor applies higher weighting to more

recent data, which is useful for estimating time-varying parameters. The following

result is recursive least squares.

Theorem 4.1. For all k ≥ 0, let φk ∈ Rp×n and yk ∈ Rp, let R ∈ Rn×n be positive

definite, and let P0 = R−1, θ0 ∈ Rn, and λ ∈ (0, 1]. Furthermore, for all k ≥ 0,

denote the minimizer of (4.2) by

θk+1 = argmin
θ̂∈Rn

Jk(θ̂). (4.3)

Then, for all k ≥ 0, θk+1 is given by

Pk+1 =
1

λ
Pk −

1

λ
Pkφ

T
k

(
λIp + φkPkφ

T
k

)−1
φkPk, (4.4)

θk+1 = θk + Pk+1φ
T
k (yk − φkθk). (4.5)
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Furthermore, for all k ≥ 0, Pk is positive definite and

P−1k+1 = λP−1k + φT
k φk. (4.6)

Proof. See [86].

Let k ≥ 0. By defining the parameter error

θ̃k
4
= θk − θ, (4.7)

it follows that

φiθk − yi = φiθ̃k, (4.8)

and

Jk(θk+1) =
k∑
i=0

λk−iθ̃Tk+1φ
T
i φiθ̃k+1 + λk+1(θ̃k+1 − θ̃0)TR(θ̃k+1 − θ̃0). (4.9)

Furthermore, it follows from (4.5) and (4.7) that θ̃k satisfies

θ̃k+1 = (In − Pk+1φ
T
k φk)θ̃k (4.10)

= λPk+1P
−1
k θ̃k. (4.11)

Note that (4.11) implies that, for all k, l ≥ 0,

θ̃k = λk−lPkP
−1
l θ̃l. (4.12)

The following lemma is used in the proof of Proposition 4.1.
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Lemma 4.1.1. Let A ∈ Rn×n be positive semidefinite, and let λ > 0. Then,

In − A(λIn + A)−1 > 0. (4.13)

Proof. Write A = SDST, where D = diag(d1, . . . , dn) is diagonal and S is unitary.

For all i ∈ {1, . . . , n}, di ≥ 0, and thus di
λ+di

< 1. Thus,

D(λIn +D)−1 = diag
(

d1
λ+d1

, . . . , dn
λ+dn

)
< In. (4.14)

Pre-multiplying and post-multiplying (4.14) by S and ST, respectively, yields (4.13).

�

The following result shows that the estimate θk of θ converges.

Proposition 4.1. For all k ≥ 0, let φk ∈ Rp×n and yk ∈ Rp, let R ∈ Rn×n be positive

definite, and let P0 = R−1, θ0 ∈ Rn, and λ ∈ (0, 1]. Let Pk and θk be given by (4.4)

and (4.5), respectively, and define the predicted error zk
4
= φkθk − yk. Then,

lim
k→∞

zk = 0 (4.15)

and

lim
k→∞

(θk+1 − θk) = 0. (4.16)

Proof. Note that zk = φkθ̃k, and, for all k ≥ 0, define Vk
4
= θ̃Tk P

−1
k θ̃k. Note that, for
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all k ≥ 0 and θ̃k ∈ Rn, Vk ≥ 0. Furthermore, for all k ≥ 0,

Vk+1 − Vk = θ̃Tk+1P
−1
k+1θ̃k+1 − θ̃Tk P−1k θ̃k

= λ2θ̃Tk P
−1
k Pk+1P

−1
k θ̃k − θ̃Tk P−1k θ̃k

=
(
λθ̃Tk+1 − θ̃Tk

)
P−1k θ̃k

=
(
−(1− λ)θ̃Tk − λθ̃Tk φT

k φkPk+1

)
P−1k θ̃k

= −(1− λ)θ̃Tk P
−1
k θ̃k − λθ̃Tk φT

k φkPk+1P
−1
k θ̃k

= −(1− λ)θ̃Tk P
−1
k θ̃k − θ̃Tk φT

k

(
Ip − φkPkφT

k (λIp + φkPkφ
T
k )−1

)
φkθ̃k

= −
(
(1− λ)Vk + zTk

(
Ip − φkPkφT

k (λIp + φkPkφ
T
k )−1

)
zk
)

≤ 0.

Note that, since (Vk)
∞
k=1 is a nonnegative, nonincreasing sequence, it converges to a

nonnegative number. Hence limk→∞(Vk+1 − Vk) = 0, which implies that

lim
k→∞

(
(1− λ)Vk + zTk Rkzk

)
= 0,

where Rk
4
= Ip − φkPkφT

k (λIp + φkPkφ
T
k )−1. Lemma 4.1.1 implies that Rk is positive

definite. Since Vk ≥ 0, it follows that limk→∞ zk = 0. Finally, (4.16) follows from (4.5)

and (4.15).

The following lemma is used in the proof of Proposition 4.2.

Lemma 4.1.2. Let X ∈ Rp×n and y ∈ R1×n, and let W ∈ Rp×p be positive

definite. Then,

(In +XTWX)−1yT ∈ R([XT yT]). (4.17)
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Proof. Note that

yT ∈ R([XT yT])

= R[XT yT +XTWXyT]

= R

[XT (In +XTWX)yT]

 Ip +WXXT 0

0 1




= R([XT(Ip +WXXT) (In +XTWX)yT])

= R([(In +XTWX)XT (In +XTWX)yT])

= (In +XTWX)R([XT yT]),

which implies (4.17).

The following result shows that the estimate θk of θ is constrained to a data-

dependent subspace.

Proposition 4.2. For all k ≥ 0, let φk ∈ Rp×n and yk ∈ Rp, let R ∈ Rn×n be positive

definite, let θ0 ∈ Rn, let λ ∈ (0, 1], and define θk+1 by (4.3). Then, θk+1 satisfies

(
k∑
i=0

λk−iφT
i φi + λk+1R

)
θk+1 =

k∑
i=0

λk−iφT
i yi + λk+1Rθ0. (4.18)

Furthermore,

θk+1 ∈ R(ΦT
k Φk +R−1ΦT

k ΦkR
−1 + θ0θ

T
0 ), (4.19)

where

Φk
4
= [φT

0 · · · φT
k ]T ∈ R(k+1)p×n. (4.20)
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Proof. Note that

Jk(θ̂) = θ̂TAkθ̂ + θ̂Tbk + ck,

where

Ak
4
=

(
k∑
i=0

λk−iφT
i φi + λk+1R

)
,

bk
4
=

k∑
i=0

−λk−iφT
i yi − λk+1Rθ0,

ck
4
=

k∑
i=0

λk−iyTi yi + λk+1θT0 Rθ0.

Since Ak is positive definite, it follows from Lemma 1 in [86] that the minimizer θk+1

of Jk satisfies (4.18).

Next, define Wk
4
= diag(λ−1Ip, . . . , λ

−1−kIp) ∈ R(k+1)p×(k+1)p. Using (4.18) and

Lemma 4.1.2, it follows that

θk+1 =
(
In + ΦT

kWkΦk

)−1( k∑
i=0

λ−i−1R−1φT
i yi + θ0

)

=
k∑
i=0

(
In + ΦT

kWkΦk

)−1
λ−i−1R−1φT

i yi +
(
In + ΦT

kWkΦk

)−1
θ0

∈
k∑
i=0

R([ΦT
k R−1φT

i ]) + R([ΦT
k θ0])

= R([ΦT
k R−1ΦT

k θ0])

= R(ΦT
k Φk +R−1ΦT

k ΦkR
−1 + θ0θ

T
0 ).

Table 4.2 summarizes the various expressions for the RLS variables.
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Variable Equation Reference

Pk • Pk+1 =
1

λ
Pk −

1

λ
Pkφ

T
k

(
λIp + φkPkφ

T
k

)−1
φkPk (4.4)

• P−1k+1 = λP−1k + φT
k φk (4.6)

• P−1k+1 = λk+1P−10 +
∑k

i=0 λ
k−iφT

i φi (4.6)
θk • θk+1 = θk + Pk+1φ

T
k (yk − φkθk) (4.5)

• θk+1 = θk + Pkφ
T
k

(
λIp + φkPkφ

T
k

)−1
(yk − φkθk) [86]

• θk+1 = Pk+1

(∑k
i=0 λ

k−iφT
i yi + λk+1P−10 θ0

)
(4.18)

θ̃k • θ̃k = θk − θ (4.7)

• θ̃k+1 = (In − Pk+1φ
T
k φk)θ̃k (4.10)

• θ̃k+1 = λPk+1P
−1
k θ̃k (4.11)

• θ̃k = λk−lPkP
−1
l θ̃l (4.12)

Table 4.2: Various expressions for RLS variables.

4.2 Persistent Excitation and Forgetting

In this section, we define persistent excitation of the regressor sequence and in-

vestigate the effect of persistent excitation and forgetting on Pk. For all j ≥ 0 and

k ≥ j, define

Fj,k
4
=

k∑
i=j

φT
i φi. (4.21)

Definition 4.1. The sequence (φk)
∞
k=0 ⊂ Rp×n is persistently exciting if there exist

N ≥ n/p and α, β ∈ (0,∞) such that, for all j ≥ 0,

αIn ≤ Fj,j+N ≤ βIn. (4.22)

Suppose that (φk)
∞
k=0 is persistently exciting and (4.22) is satisfied for N,α, β.

Then, it can be seen that, with suitable values of α and β, (4.22) is satisfied for all

larger values of N . For example, if N is replaced by 2N, then (4.22) is satisfied with

α replaced by 2α and β replaced by 2β.
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Lemma 4.2.1. Let λ = 1. For all k ≥ 1, define Pk as in Theorem 4.1. Then,

P−1k = F0,k + P−10 . (4.23)

The following result shows that, if (φk)
∞
k=0 is persistently exciting and λ = 1, then

Pk converges to zero.

Proposition 4.3. Assume that (φk)
∞
k=0 ∈ Rp×n is persistently exciting, let N,α, β be

given by Definition 4.1, let R ∈ Rn×n be positive definite, define P0
4
= R−1, let λ = 1,

and, for all k ≥ 0, let Pk be given by (4.4). Then, for all k ≥ N + 1,

b k
N+1
cαIn + P−10 ≤ P−1k ≤ d k

N+1
eβIn + P−10 . (4.24)

Furthermore,

lim
k→∞

Pk = 0. (4.25)

Proof. First, note that, for all k ≥ 0,

F0,k =

b k
N+1

c∑
i=1

F(i−1)(N+1),i(N+1)−1 + F
b k
N+1

c(N+1),k

≤
d k
N+1

e∑
i=1

F(i−1)(N+1),i(N+1)−1,
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and thus (4.22) implies that

b k
N+1
cαIn ≤

b k
N+1

c∑
i=1

F(i−1)(N+1),i(N+1)−1

≤
d k
N+1

e∑
i=1

F(i−1)(N+1),i(N+1)−1

≤ d k
N+1
eβIn. (4.26)

It follows from Lemma 4.2.1 and (4.26) that, for all k ≥ N + 1,

b k
N+1
cαIn + P−10 ≤ F

0,b k
N+1

c(N+1)−1
+ P−10

≤ F0,k + P−10

= P−1k

≤ F
0,d k

N+1
e(N+1)−1

+ P−10

≤ d k
N+1
eβIn + P−10 .

Finally, it follows from (4.24) that limk→∞ Pk = 0.

Example 4.1 shows that limk→∞ Pk = 0 is a necessary condition (φk)
∞
k=0 to be

persistently exciting, but not a sufficient condition.

Example 4.1. Necessary, but not sufficient condition for persistent excita-

tion. For all k ≥ 0, let φk = 1√
k+1

. Let λ = 1. For all N ≥ 1, note that Fj,j+N ≤ N+1
j+1

,

and thus there does not exist α satisfying (4.22). Hence, (φk)
∞
k=0 is not persistently

exciting. However, it follows from (4.6) that, for all k ≥ 0,

P−1k =
k∑
i=0

1

i+ 1
+ P−10 . (4.27)

Thus, limk→∞ Pk = 0. �
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The following result given in [87] shows that, if (φk)
∞
k=0 is persistently exciting and

λ ∈ (0, 1), then Pk is bounded.

Proposition 4.4. Assume that (φk)
∞
k=0 ∈ Rp×n is persistently exciting, let N,α, β

be given by Definition 4.1, let R ∈ Rn×n be positive definite, define P0
4
= R−1, let

λ ∈ (0, 1), and, for all k ≥ 0, let Pk be given by (4.4). Then, for all k ≥ N + 1,

λN(1− λ)α

1− λN+1
In ≤ P−1k ≤

β

1− λN+1
In + P−1N . (4.28)

Proof. It follows from (4.6) that, for all i ≥ 0, λP−1i ≤ P−1i+1 and φT
i φi ≤ P−1i+1, and

thus, for all i, j ≥ 0, λjP−1i ≤ P−1i+j. Hence, for all k ≥ N + 1,

αIn ≤
k−1∑

i=k−N−1

φT
i φi

≤
k∑

i=k−N

P−1i

≤ (λ−N + · · ·+ 1)P−1k

=
1− λN+1

λN(1− λ)
P−1k ,

which proves the first inequality in (4.28). To prove the second inequality in (4.28),

91



note that, for all k ≥ N + 1,

P−1k ≤
1− λ

1− λN+1

k+N−1∑
i=k−1

P−1i+1

≤ 1− λ
1− λN+1

(
λ
k+N−1∑
i=k−1

P−1i + βIn

)

≤ 1− λ
1− λN+1

(
λk

N∑
i=0

P−1i +
1− λk

1− λ
βIn

)

≤ λk−NP−1N +
(1− λk)β
1− λN+1

In.

≤ P−1N +
β

1− λN+1
In.

The next result, which is an immediate consequence of (4.6), is a converse of

Proposition 4.4.

Proposition 4.5. Define φk, yk, R, and P0 as in Theorem 4.1. Let λ ∈ (0, 1), and

let Pk be given by (4.4). Furthermore, assume there exist α, β ∈ (0,∞) such that, for

all k ≥ 0, αIn ≤ P−1k ≤ βIn. Let N ≥ λβ−α
(1−λ)α . Then, for all j ≥ 0,

[(1 + (1− λ)N)α− λβ]In ≤
j+N∑
i=j

φT
i φi ≤

1− λN+1

λN(1− λ)
βIn. (4.29)

Consequently, (φk)
∞
k=0 is persistently exciting.
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Proof. Note that, for all j ≥ 0,

[(1 + (1− λ)N)α− λβ]In = αIn + (1− λ)NαIn − βIn

≤ P−1j+N+1 + (1− λ)

j+N∑
i=j+1

P−1i − λP−1j

=

j+N∑
i=j

(P−1i+1 − λP−1i )

=

j+N∑
i=j

φT
i φi,

which proves the first inequality in (4.29). To prove the second inequality in (4.29),

note that (4.6) implies that, for all i ≥ 0, λP−1i ≤ P−1i+1 and φT
i φi ≤ P−1i+1, and thus,

for all i, j ≥ 0, λjP−1i ≤ P−1i+j. Hence, for all j ≥ 0,

j+N∑
i=j

φT
i φi ≤

j+N∑
i=j

P−1i+1

≤ (λ−N + · · ·+ 1)P−1j+N+1

≤ 1− λN+1

λN(1− λ)
βIn.

Finally, it follows from Definition 4.1 with N ≥ λβ−α
(1−λ)α , α = (1 + (1 − λ)N)α − λβ,

and β = 1−λN+1

λN (1−λ)β, that (φk)
∞
k=0 is persistently exciting.

Note that the proof of Proposition 4.5 shows that the lower bound in Definition

4.1 requires that N satisfy N ≥ λβ−α
(1−λ)α . However, the upper bound in Definition 4.1

is satisfied for all N ≥ 1.

Example 4.2. Persistent excitation and bounds on P−1k . Let φk = [uk uk−1],

where uk is the periodic signal

uk = sin
2πk

17
+ sin

2πk

23
+ sin

2πk

53
. (4.30)
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For j = 1, . . . , 5000, Figures 4.1a) and b) show the singular values of Fj,j+N for

N = 2 and N = 10. For each value of N, the constants α, β are chosen to satisfy

(4.22). Letting λ = 0.99, Figure 4.1c) shows the singular values of P−1k with the

corresponding upper and lower bounds given by (4.28) for N = 2 and N = 10. Since

uk is periodic, it follows that, for all j ≥ 0, the lower and upper bounds (4.22) on

Fj,j+N are satisfied. Hence, (φk)
∞
k=0 is persistently exciting. Finally, note that α and

β are larger for N = 10 than for N = 2, as expected. �

Figure 4.1: Example 4.2. Persistent excitation and bounds on P−1k . a) and b) show

the singular values of Fj,j+N for N = 2 and N = 10, where α and β

are chosen to satisfy (4.22). c) shows the singular values of P−1k , with

corresponding bounds given by (4.28) for λ = 0.99.

Example 4.3. Lack of persistent excitation and bounds on P−1k . Let φk =

[uk uk−1], where uk is given by (4.30) for all k < 2500 and uk = 1 for all k ≥ 2500.

For j = 1, . . . , 5000, Figure 4.2a) shows the singular values of Fj,j+2. Note that the
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smaller singular value of Fj,j+2 reaches zero in machine precision, and thus there does

not exist α > 0 satisfying (4.22). Hence, (φk)
∞
k=0 is not persistently exciting. Figures

4.2b) and c) show the singular values of P−1k for λ = 1 and λ = 0.9, respectively. Note

that, if λ = 1, then one of the singular values of P−1k diverges, whereas, if λ ∈ (0, 1),

then one of singular values of P−1k converges to zero. �

Figure 4.2: Example 4.3. Lack of persistent excitation and bounds on P−1k . a) shows

the singular values of Fj,j+2. Note that the smaller singular value of Fj,j+2

reaches zero in machine precision, and thus that α > 0 satisfying (4.22)

does not exist. Hence, φk is not persistently exciting. The upper bound

β shown by the dashed line is chosen to satisfy (4.22). b) and c) show

the singular values of P−1k for λ = 1 and λ = 0.9, respectively. Note

that, if λ = 1, then one of the singular values of P−1k diverges, whereas,

if λ ∈ (0, 1), then one of singular values of P−1k converges to zero.

Table 4.3 summarizes the results in this section.
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Excitation \ λ λ = 1 λ ∈ (0, 1)
Persistent

• Pk converges to zero • Pk remains bounded

• Proposition 4.3 • Propositions 4.4, 4.5

• Example 4.2 • Example 4.2
Not Persistent

• Some singular values of Pk
remain bounded

• Some singular values of Pk
diverge

• Other singular values of Pk
converge to zero

• Other singular values of Pk
remain bounded

• Example 4.3 • Example 4.3

Table 4.3: Behavior of Pk under persistent and not persistent excitation.

4.3 Persistent Excitation and the Condition Number

For nonsingular A ∈ Rn×n, the condition number of A is defined by

κ(A)
4
=
σmax(A)

σmin(A)
, (4.31)

For B ∈ Rn×m, let ‖B‖ denotes the maximum singular value of B. If A is positive

definite, then

‖A−1‖−1In = σmin(A)In ≤ A ≤ σmax(A)In = ‖A‖In. (4.32)

Therefore, if α, β ∈ (0,∞) satisfy α ≤ σmin(A) and σmax(A) ≤ β, then κ(A) ≤ β

α
.

Thus, if λ = 1 and (φk)
∞
k=0 is persistently exciting with N,α, β given by Definition

4.1, then it follows from (4.24) that

κ(Pk) ≤
β

α
. (4.33)
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Similarly, if λ ∈ (0, 1) and (φk)
∞
k=0 is persistently exciting with N,α, β given by

Definition 4.1, then it follows from (4.28) that

κ(Pk) ≤
β + (1− λN+1)‖P−1N ‖

λN(1− λ)α
. (4.34)

However, as shown by Example 4.3, if (φk)
∞
k=0 is not persistently exciting, then there

may not exist α > 0 satisfying (4.22), and thus κ(Pk) cannot be bounded. Hence κ(Pk)

can be used to determine whether or not the (φk)
∞
k=0 is persistently exciting, where

a bounded condition number implies that (φk)
∞
k=0 is persistently exciting, whereas a

diverging condition number implies that φk is not persistently exciting, as illustrated

by the following example. [88] provides a recursive algorithm for computing κ(Pk).

Example 4.4. Using the condition number of Pk to determine whether

(φk)
∞
k=0 is persistently exciting. Consider the 5th-order IIR system

yk =
0.68q4 − 0.16q3 − 0.12q2 − 0.18q + 0.09

q5 − q4 + 0.41q3 − 0.17q2 − 0.03q + 0.01
uk, (4.35)

where q is the forward-shift operator, and uk is given by (4.30). To apply RLS, let θ

consist of the coefficients in (4.35) and

φk = [uk−1 · · · uk−5 yk−1 · · · yk−5], (4.36)

Note that the regressor (4.36) corresponds to a 5th-order IIR parameterization of a

linear input-output model. Let P0 = I10. Figure 4.3a) shows the singular values of

Fj,j+20, where the singular values of Fj,j+20 close to machine precision (∼ 10−15) are

essentially zero. Thus, Definition 4.1 implies that (φk)
∞
k=0 is not persistently exciting.

Figures 4.3b) and c) show the singular values and the condition number of Pk for

λ = 1. Note that the six singular values of Pk decrease due to the presence of three

harmonics in uk. Note that κ(Pk) is diverging due to the lack of persistent excitation.
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Figures 4.3d) and e) show the singular values and the condition number of Pk

for λ = 0.99. Note that the six singular values of Pk remain bounded due to the

presence of three harmonics in uk. However, Pk becomes ill-conditioned due to the

lack of persistent excitation. Consequently, numerical computation with Pk becomes

erroneous once Pk becomes ill-conditioned. �
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Figure 4.3: Example 4.4. Using the condition number of Pk to evaluate persistency.

a) shows the singular values of Fj,j+20, where the singular values of Fj,j+20

close to machine precision (∼ 10−15) are essentially zero, thus implying

that (φk)
∞
k=0 is not persistently exciting. b) and c) shows the singular

values and the condition number of Pk for λ = 1. Note that the six

singular values of Pk decrease due to the presence of three harmonics in

uk. d) and e) shows the singular values and the condition number of Pk

for λ = 0.99. Note that the six singular values of Pk remain bounded

due to the presence of three harmonics in uk. However, Pk becomes ill-

conditioned due to the lack of persistent excitation.
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Example 4.4 shows that if (φk)
∞
k=0 is not persistently exciting and λ = 1, then some

singular values of Pk converge while the rest decrease to zero. On the other hand,

if (φk)
∞
k=0 is not persistent and λ ∈ (0, 1), then some singular values of Pk diverge

while the rest remain bounded. In particular, let (φk)
∞
k=0 be not persistent such that,

for λ = 1, n1 singular values of Pk converge to zero, while n − n1 remain bounded.

Then, for λ ∈ (0, 1), n1 singular values remain bounded, while n− n1 singular values

diverge.

4.4 Lyapunov Analysis of the Parameter Error

Let k ≥ 0, and consider the system

xk+1 = f(k, xk), (4.37)

where xk ∈ Rn, f : {0, 1, 2, . . .}×Rn → Rn is continuous, and, for all k ≥ 0, f(k, 0) =

0.

Definition 4.2. The zero solution xk ≡ 0 of (4.37) is uniformly Lyapunov stable if,

for all ε > 0, there exists δ ∈ (0, ε] such that, for all k0 ≥ 0 and all xk0 ∈ Rn such

that ‖xk0‖ < δ, it follows that, for all k ≥ k0, ‖xk‖ < ε.

Definition 4.3. The zero solution xk ≡ 0 of (4.37) is uniformly globally aymptot-

ically stable if it is uniformly Lyapunov stable, and for all x0 ∈ Rn, if follows that

limk→∞ xk = 0.

Definition 4.4. The zero solution xk ≡ 0 of (4.37) is uniformly globally geometrically

stable if there exist α0 > 0 and β0 > 1 such that, for all x0 ∈ Rn, it follows that, for

all k ≥ 0,

‖xk‖ ≤ α0‖x0‖β−k0 . (4.38)
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Note that, if the zero solution xk ≡ 0 of (4.37) is uniformly globally geometri-

cally stable, then it is uniformly globally aymptotically stable as well as uniformly

Lyapunov stable.

The following result is a specialization of Theorem 13.11 given in [89, pp. 784,

785].

Theorem 4.2. Consider (4.37), and assume there exist a continuous function V :

Rn → R and α1, β1 > 0 such that, for all k ≥ 0,

α1‖x‖2 ≤ V (k, x) ≤ β1‖x‖2, (4.39)

V (k + 1, f(k, x))− V (k, x) ≤ 0. (4.40)

Then the zero solution xk ≡ 0 of (4.37) is uniformly Lyapunov stable. Furthermore,

assume there exists γ1 > 0 such that, for all k ≥ 0 and x ∈ Rn,

V (k + 1, f(k, x))− V (k, x) ≤ −γ1‖x‖2. (4.41)

Then the zero solution xk ≡ 0 of (4.37) is uniformly globally geometrically stable.

The following result uses Lyapunov theory to show that, if (φk)
∞
k=0 is persistently

exciting, then the RLS estimate θk with λ ∈ (0, 1) converges to θ in the sense of

Definition 4.4. A related result is given in [87].

Theorem 4.3. Assume that (φk)
∞
k=0 is persistently exciting, let N,α, β be given by

Definition 4.1, let R ∈ Rn×n be positive definite, define P0
4
= R−1, let λ ∈ (0, 1], and,

for all k ≥ 0, let Pk be given by (4.4). Then the zero solution of (4.10) is Lyapunov

stable. In addition, if λ ∈ (0, 1), then the zero solution of (4.10) is uniformly globally

geometrically stable.
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Proof. Define the Lyapunov candidate

V (k, x)
4
= xTP−1k x,

where x ∈ Rn. It follows from Proposition 4.4 that, for all k ≥ N + 1,

λN(1− λ)α

1− λN+1
‖x‖2 ≤ V (k, x) ≤ β

1− λN+1
‖x‖2 + xTP−1N x

≤
(

β

1− λN+1
+ ‖P−1N ‖

)
‖x‖2,

which confirms (4.39) for all λ ∈ (0, 1] with α1 = λN (1−λ)α
1−λN+1 , and β1 = β

1−λN+1 + ‖P−1N ‖.

Next, defining

f(k, x)
4
= (In − Pk+1φ

T
k φk)x,

it follows that

V (k + 1, f(k, x))− V (k, x) = f(k, x)TP−1k+1f(k, x)− xTP−1k x

= xT[(In − φT
k φkPk+1)P

−1
k+1(In − Pk+1φ

T
k φk)− P−1k ]x

= xT[(P−1k+1 − φ
T
k φk)(In − Pk+1φ

T
k φk)− P−1k ]x

= xT[(λ− 1)P−1k − λP
−1
k Pk+1φ

T
k φk]x

= xT[(λ− 1)P−1k − λφ
T
k (λIp − φkPkφT

k )−1φk]x.

≤ 0,

which confirms (4.40). It thus follows from Theorem 4.2 that the zero solution of

(4.10) is uniformly Lyapunov stable.
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Furthermore, if λ ∈ (0, 1), then

V (k + 1, f(k, x))− V (k, x) ≤ (λ− 1)xTP−1k x

≤ (λ− 1)

(
β

1− λN+1
+ ‖P−1N ‖

)
‖x‖2,

which confirms (4.41) with γ1 = (1−λ)( β
1−λN+1 +‖P−1N ‖). It thus follows from Theorem

4.2 that the zero solution of (4.10) is uniformly globally geometrically stable.

The following result provides an alternative proof of Theorem 4.3 that does not

depend on Theorem 4.2. In addition, this result considers the case λ = 1, where the

RLS estimate θk converges to θ in the sense of Definition 4.3.

Theorem 4.4. Assume that (φk)
∞
k=0 is persistently exciting, let N,α, β be given by

Definition 4.1, let R ∈ Rn×n be positive definite, define P0
4
= R−1, let λ ∈ (0, 1], and,

for all k ≥ 0, let Pk be given by (4.4). Then the zero solution of (4.10) is uniformly

globally asymptotically stable. Furthermore, if λ ∈ (0, 1), then the zero solution of

(4.10) is uniformly globally geometrically stable.

Proof. Let k0 ≥ 0 and θ̃k0 ∈ Rn. Then, it follows from (4.12) that, for all k ≥ k0,

‖θ̃k‖ = λk−k0‖PkP−1k0
θ̃k0‖

≤ ‖PkP−1k0
θ̃k0‖

≤ ‖Pk‖‖P−1k0
‖‖θ̃k0‖. (4.42)

First, consider the case where λ = 1. Let δ > 0, and suppose that θ̃k0 ∈ Rn satisfies

‖θ̃k0‖ ≤ δ. Now note that it follows from (4.6) with λ = 1 that Pk ≤ Pk−1 ≤ · · · ≤ Pk0 .

Hence, for all k ≥ k0, ‖Pk‖ ≤ ‖Pk0‖, and thus ‖Pk‖‖P−1k0
‖ = ‖Pk‖/‖Pk0‖ ≤ 1. It

thus follows from (4.42) that, for all k ≥ k0, ‖θ̃k‖ ≤ ‖θ̃k0‖ < δ.It thus follows from

Definition 4.2 with ε = δ that the zero solution of (4.10) is uniformly Lyapunov

stable.
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Next, let θ̃0 ∈ Rn. Then, Proposition 4.3 implies that

lim
k→∞

θ̃k = lim
k→∞

PkP
−1
0 θ̃0 = 0.

It thus follows from Definition 4.3 that the zero solution of (4.10) is uniformly globally

asymptotically stable.

Next, consider the case where λ ∈ (0, 1). Let k0 ≥ 0 and δ > 0, and let θ̃k0 ∈ Rn

satisfy ‖θ̃k0‖ ≤ δ. It follows from Proposition 4.4 and (4.42) that, for all k ≥ max(N+

1, k0),

‖θ̃k‖ ≤ ε,

where

ε
4
=
β + (1− λN+1)‖P−1N ‖

λN(1− λ)α
δ.

It thus follows from Definition 4.2 that the zero solution of (4.10) is uniformly Lya-

punov stable.

Next, let θ̃0 ∈ Rn. Then, it follows from (4.12) and Proposition 4.4 that, for all

θ̃0 ∈ Rn, and k ≥ N + 1,

‖θ̃k‖ ≤ α0‖θ̃0‖β−k0 ,

where β0
4
= 1/λ and

α0
4
=

1− λN+1

λN(1− λ)α
‖P−10 ‖.

Thus, it follows from Definition 4.4 that the zero solution of (4.10) is uniformly

globally geometrically stable, and thus uniformly globally asymptotically stable.
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The following result shows that persistent excitation produces an infinite sequence

of matrices whose product converges to zero.

Proposition 4.6. Let P0 ∈ Rn×n be positive definite, let λ ∈ (0, 1], and, for all k ≥ 0,

let Pk be given by (4.4). Then, for all k ≥ 0, all of the eigenvalues of Pk+1φ
T
k φk are

contained in [0, 1]. If, in addition, (φk)
∞
k=0 is persistently exciting, then

lim
k→∞

Ak = 0, (4.43)

where

Ak
4
= (In − Pk+1φ

T
k φk) · · · (In − P1φ

T
0 φ0). (4.44)

Proof. It follows from (4.6) that, for all k ≥ 0, φT
k φk ≤ P−1k+1, and thus, for all k ≥ 0,

P
1/2
k+1φ

T
k φkP

1/2
k+1 ≤ In. Hence, for all k ≥ 0,

0 ≤ λmax(Pk+1φ
T
k φk) = λmax(P

1/2
k+1φ

T
k φkP

1/2
k+1) ≤ 1.

To prove (4.43), suppose that (φk)
∞
k=0 is persistently exciting and, for all i ∈ {1, . . . , n},

define θ0
4
= ei + θ, where ei is the ith column of In. Note that, for all i ∈ {1, . . . , n},

θ̃0
4
= θ0 − θ = ei. Then, (4.12) implies that, for all k ≥ 0 and all i ∈ {1, . . . , n},

θ̃k+1 = Akei = λk+1Pk+1P
−1
0 ei.

It follows from Proposition 4.4 that, for all i ∈ {1, . . . , n}, θ̃k converges to 0. Hence,

for all i ∈ {1, . . . , n}, the ith column of Ak converges to zero as k →∞, which implies

(4.43).

It follows from Proposition 4.4 that, if (φk)
∞
k=0 is persistently exciting, then, for

all λ ∈ (0, 1], θ̃k converges to zero. In addition, if λ ∈ (0, 1), then θ̃k converges to zero
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geometrically, that is, the rate of convergence of ‖θ̃k‖ is O(λk). However, in the case

λ = 1, as shown in [87] and the next example, θ̃k converges to zero as O(1/k), and

thus the convergence is not geometric.

Example 4.5. Effect of λ on the rate of convergence of θk. Consider the

3rd-order FIR system

yk =
q2 + 0.8q + 0.5

q3
uk, (4.45)

where q is the forward-shift operator. To apply RLS, let θ = [1 0.8 0.5], θ0 = 0, and

φk = [uk−1 uk−2 uk−3], where the input uk is zero-mean Gaussian white noise with

unity standard deviation. Figures 4.4a) - f) show the parameter error norm ‖θ̃k‖ for

several values of P0 and λ. Note that the convergence rate of ‖θ̃k‖ is O(1/k) for λ = 1

and geometric for all λ ∈ (0, 1). Figures 4.4g), h), and i) show the condition number

of the corresponding Pk for several values of P0 and λ. Note that, as λ is decreased,

the convergence rate of θk increases; however, the condition number of Pk degrades,

and the effect of P0 is reduced. �
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Figure 4.4: Example 4.5. Effect of λ on the rate of convergence of θk. a)-f) show

the parameter error norm ‖θ̃k‖ for several values of P0 and λ. Note that

the slope of −1 between log ‖θ̃k‖ and log k in d) is consistent with the

fact that the rate of convergence of ‖θ̃k‖ is O(1/k) for λ = 1. Similarly,

the slope of log λ between log ‖θ̃k‖ and k in b) and c) is consistent with

the fact that the rate of convergence of ‖θ̃k‖ is O(λk) for λ ∈ (0, 1). g),

h), and i) show the condition number of the corresponding Pk for several

values of P0 and λ. Note that, as λ is decreased, the convergence rate

of θk increases; however, the condition number of Pk degrades, and the

effect of P0 is reduced.
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4.5 Lack of Persistent Excitation

In this section, we investigate the effect of lack of persistent excitation on Pk and

θk using numerical examples. Recall that, as shown in Example 4.3 and Example

4.4, if (φk)
∞
k=0 is not persistently exciting and λ = 1, then some singular values of

Pk converge to zero, while the rest remain bounded. On the other hand, if (φk)
∞
k=0

is not persistently exciting and λ ∈ (0, 1), then some singular values of Pk remain

bounded, while the rest diverge. Furthermore, it follows from Proposition 4.1 that

the predicted error zk and the parameter error θ̃k converge to zero, irrespective of

whether (φk)
∞
k=0 is persistent or not.

Example 4.6. Lack of persistent excitation in scalar estimation. Let n = 1,

so that (4.4), (4.5) are given by

Pk+1 =
Pk

λ+ Pkφ2
k

, (4.46)

θ̃k+1 =
λθ̃k

λ+ Pkφ2
k

. (4.47)

Now, let k0 ≥ 0 and assume that, for all k ≥ k0, φk = 0. Therefore, for all j ≥

0 and N ≥ 1, Fj,j+N cannot be lower bounded as in (4.22), and thus (φk)
∞
k=0 is

not persistently exciting. For λ = 1, Pk and θ̃k converge in k0 steps to P and θ̃,

respectively, where P 6= 0 and, if θ0 6= θ, then θ̃ 6= 0. However, for all λ ∈ (0, 1), Pk

diverges geometrically and θ̃k converges in k0 steps.

Note that, for all λ ∈ (0, 1], since φk = 0 for all k ≥ k0, it follows from (4.46) and

(4.47) that, for all k ≥ k0, the minimum of (4.2) is achieved in a finite number of

steps. Consequently, RLS provides no further refinement of the estimate θk of θ, and

thus θ̃ 6= 0 implies that θk does not converge to θ.

Next, assume that, for all k ≥ 0, φk = φ, where φ 6= 0. Then Definition 4.1

is satisfied with N = 1, α = φ
2
, and β = 3φ

2
, and thus (φk)

∞
k=0 is persistently
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exciting. If λ = 1, then both Pk and θ̃k converge to zero. However, if λ ∈ (0, 1),

then Pk converges to 1−λ
φ
2 and θ̃k converges geometrically to zero. Table 4.4 shows the

asymptotic behavior of θ̃k and Pk for various cases. �

Excitation \ λ λ = 1 λ ∈ (0, 1)

Not persistently exciting θ̃k → θ̃, Pk → P θ̃k → θ̃, Pk diverges

Persistently exciting θ̃k → 0, Pk → 0 θ̃k → 0, Pk → 1−λ
φ
2

Table 4.4: Asymptotic behavior of RLS in Example 4.6. In the case of persistent
excitation with λ < 1, the convergence of θ̃k is geometric.

Example 4.7. Subspace constrained regressor. Consider (4.1), where φk =

(sin 2πk
100

)[1 1] and θ = [0.4 1.4]T. To estimate θ using RLS, let P0 = I2 and θ0 = 0.

Figures 4.5 and 4.6 show the estimate θk of θ with λ = 1 and λ = 0.99. Note that

all regressors φk lie along the same one-dimensional subspace, and thus, (φk)
∞
k=0 is

not persistently exciting. It follows from (4.19) that the estimate θk of θ lies in this

subspace.

For λ = 1, note that one of the singular value decreases to zero, while the other

singular value remains bounded. Note that θ̃k converges along the singular vector

corresponding to the bounded singular value. For λ = 0.99, one of the singular value

remains bounded, while the other singular value diverges. Note that θ̃k converges

along the singular vector corresponding to the diverging singular value. �
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-1 0 1

-1

0

1

Figure 4.5: Example 4.7. Subspace constrained regressor. The first component of

each vector is plotted along the horizontal axis, and the second component

is plotted along the vertical axis. The singular values σi(P1000) are shown

with the corresponding singular vector uP1000,i. All regressors φk lie along

the same one-dimensional subspace, and thus, (φk)
∞
k=0 is not persistently

exciting. Consequently, each estimate θk of θ lies in this subspace. The

color gradient from yellow to blue of θk and θ̃k shows the evolution from

k = 1 to k = 1000. In a), the singular value corresponding to the cyan

singular vector decreases to zero, while the singular value corresponding

to the magenta singular vector remains bounded. Note that θ̃k converges

along the singular vector corresponding to the bounded singular value.
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Figure 4.6: Example 4.7. Subspace constrained regressor. The first component of

each vector is plotted along the horizontal axis, and the second compo-

nent is plotted along the vertical axis. The singular values σi(P1000) are

shown with the corresponding singular vector uP1000,i. All regressors φk lie

along the same one-dimensional subspace, and thus, (φk)
∞
k=0 is not persis-

tently exciting. Consequently, each estimate θk of θ lies in this subspace.

The color gradient from yellow to blue of θk and θ̃k shows the evolution

from k = 1 to k = 1000. The singular value corresponding to the cyan

singular vector remains bounded, while the singular value corresponding

to the magenta singular vector diverges. Note that θ̃k converges along the

singular vector corresponding to the diverging singular value.

Example 4.8. Lack of persistent excitation and finite-precision arithmetic.

Consider the problem of fitting a 5th-order IIR model to the measured input-output

data from the system (4.35), where the input uk is given by (4.30). Note that φk
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is given by (4.36), and is not persistently exciting as shown in Example 4.4. Let

P0 = I10, θ0 = 0, and λ = 0.999. Figure 4.7a) shows the predicted error zk, and b)

shows the norm of the parameter error θ̃k. Note that the θ̃k does not converge to 0.

c) shows the singular values of Pk, and d) shows the condition number of Pk. Note

that six singular values of Pk remain bounded due to the presence of three harmonics

in the regresssor. Due to finite-precision arithmetic, computation becomes erroneous

as Pk becomes numerically ill-conditioned, and thus, the estimate θk diverges. �
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Figure 4.7: Example 4.8. Effect of lack of persistent excitation on θk. a) shows

the predicted error zk, b) shows the norm of the parameter error θ̃k,

c) shows the singular values of Pk, and d) shows the condition number

of Pk. Note that six singular values of Pk remain bounded due to the

presence of three harmonics in the regresssor. Due to finite-precision

arithmetic, computation becomes erroneous as Pk becomes numerically

ill-conditioned, and thus, the estimate θk diverges.

The numerical examples in this section show that, if λ ∈ (0, 1] and (φk)
∞
k=0 is not

persistently exciting, then θ̃k does not necessarily converge to zero. Furthermore, if

λ ∈ (0, 1) and (φk)
∞
k=0 is not persistently exciting, then some singular values of Pk di-
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verge, and θk diverges due to finite-precision arithmetic when Pk becomes numerically

ill-conditioned.

4.6 Information Subspace

Using the singular value decomposition, (4.6) can be written as

P−1k+1 = λUkΣkU
T
k + Ukψ

T
k ψkU

T
k , (4.48)

where Uk ∈ Rn×n is an orthonormal matrix whose columns are the singular vectors

of P−1k , Σk ∈ Rn×n is a diagonal matrix whose diagonal entries are the corresponding

singular values, and

ψk
4
= φkUk. (4.49)

The columns of Uk are the information directions at step k, and each row of ψk is

the projection of the corresponding row of φk onto the information directions. The

magnitude of column of ψk thus indicates the information content present in φk along

the corresponding information direction. The smallest subspace that is spanned by a

subset of the information directions and that contain all rows of φk is the information

subspace Ik at step k. Figure 4.8 shows an illustrative example of the information

subspace.
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Figure 4.8: Illustrative example of the information subspace. Let u1, u2, and u3 be

the information directions (shown in blue). The regressor φ1 (shown in

red) has new information along all three information directions, as shown

by the nonzero values ψ1,1, ψ1,2, and ψ1,3; the information subspace is thus

R([u1 u2 u3]). On the other hand, the regressor φ2 (shown in green) has

new information only along u1 and u3, as shown by the nonzero values

ψ2,1 and ψ2,3; the information subspace is thus R([u1 u3]).
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Now, consider the case where

ψk =

[
ψk,1 0p×(n−n1)

]
, (4.50)

where ψk,1 ∈ Rp×n1 , which implies that φk provides new information along the first n1

columns of Uk; these directions constitute the information subspace. It thus follows

from (4.48) and (4.50) that P−1k+1 is given by

P−1k+1 = Uk

 λΣk,1 + ψT
k,1ψk,1 0

0 λΣk,2

UT
k , (4.51)

where Σk,1 ∈ Rn1×n1 is the diagonal matrix whose diagonal entries are the first n1

singular values of P−1k , and Σk,2 is the diagonal matrix whose diagonal entries are the

remaining n− n1 singular values of P−1k . In particular, writing

Uk =

[
Uk,1 Uk,2

]
, (4.52)

where Uk,1 ∈ Rn×n1 contains the first n1 columns of Uk, and Uk,2 ∈ Rn×n−n1 contains

the remaining n− n1 columns of Uk, it follows that

P−1k+1 =

[
Uk+1,1 Uk+1,2

] Σk+1,1 0

0 Σk+1,2


 UT

k+1,1

UT
k+1,2

 , (4.53)

where

Uk+1,1 = Uk,1Vk, (4.54)

Σk+1,1 = Dk, (4.55)

Uk+1,2 = Uk,2, (4.56)

Σk+1,2 = λΣk,2, (4.57)
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where Vk ∈ Rn1×n1 contains the singular vectors of λΣk,1 + ψT
k,1ψk,1 and Dk ∈ Rn1×n1

is the diagonal matrix containing the corresponding singular values. It follows from

(4.56), (4.57) that if, for all k ≥ 0, ψk is given by (4.50) and λ ∈ (0, 1), then the last

n−n1 singular vectors of P−1k do not change and the corresponding singular values of

P−1k decrease to zero geometrically. It thus follows from Proposition 4.4 that (φk)
∞
k=0

is not persistently exciting. Furthermore, since Pk and P−1k have the same singular

vectors and the singular values of Pk are the inverse of the singular values of P−1k , the

last n− n1 singular values of Pk diverge.

The following example shows that, if (φk)
∞
k=0 is not persistently exciting, then

the information subspace is a proper subset of Rn and the singular values of P−1k

corresponding to the singular vectors in the orthogonal complement of the information

subspace converge to zero.

Example 4.9. Lack of persistent excitation and the information subspace .

Consider the regressor φk given by (4.36) used in Example 4.4. Recall that (φk)
∞
k=0 is

not persistently exciting. Let P0 = I10. Figures 4.9a), b), and c) show the informa-

tion content |ψk,i| for several values of λ. Note that the information subspace is six

dimensional due to the presence of three harmonics in uk as shown by six relatively

large components of ψk. Figures 4.9d), e), and f) show the singular values of P−1k

for several values of λ. Note that, for λ < 1, the singular values that correspond

to the singular vectors not in the information subspace convergeto zero in machine

precision. �

4.7 Information-Driven Forgetting

Motivated by the fact that some singular values of P−1k converge to zero if φk is

not persistently exciting, as shown in Examples 4.3, 4.4, 4.6, 4.7, and 4.8, we propose

the following modification. We modify (4.6) by replacing the scalar forgetting factor
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λ by a data-dependent forgetting matrix Λk. To do this, we redefine P−1k+1 as

P−1k+1 = ΛkP
−1
k Λk + φT

k φk, (4.58)

where Λk is a positive-definite (and thus symmetric) matrix constructed below. Note

that, for all k ≥ 0, P−1k+1 given by (4.58) is positive-definite. Using the singular value

decomposition, (4.58) can be written as

P−1k+1 = ΛkUkΣkU
T
k Λk + Ukψ

T
k ψkU

T
k , (4.59)

where Uk, Σk, and ψk are as defined in the previous section.

The objective is to apply forgetting to only those singular values of P−1k that

correspond to the singular vectors in the information subspace, that is, forgetting

is restricted to the subspace of P−1k where sufficient new information is provided

by φk. Specifically, forgetting is applied to those information directions where the

information content is greater than ε > 0, where ε should be selected to be larger

than the noise to signal ratio or larger than the machine zero, if no noise is present.

To do so, we write (4.59) as

P−1k+1 = UkΛkΣkΛkU
T
k + Ukψ

T
k ψkU

T
k , (4.60)

where Λk is a diagonal matrix whose diagonal entries are either
√
λ or 1. In particular,

Λk(i, i)
4
=


√
λ, ‖ψk,i‖ > ε,

1, otherwise,

(4.61)

where ψk,i is the ith column of ψk and λ ∈ (0, 1]. Next, it follows from (4.59), (4.60)
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that

Λk = UkΛkU
T
k , (4.62)

which is positive definite.

Using Uk obtained by the singular value decomposition of Pk, the information

content ψk given by (4.49), Λk is given by (4.61), and applying the matrix inversion

lemma to (4.58), the recursive update of Pk is given by

Λ−1k = UkΛ
−1
k UT

k , (4.63)

P k = Λ−1k PkΛ
−1
k , , (4.64)

Pk+1 = P k − P kφk(Ip + φT
kP kφk)

−1φT
kP k. (4.65)

Next, we show that the forgetting scheme (4.63) in (4.65) prevents the singular

values of Pk from diverging. Consider the case where, for all k,

ψk =

[
ψk,1 0

]
, (4.66)

where ψk,1 ∈ Rp×n1 , that is, the information subspace is spanned by the first columns

of Uk. It thus follows from (4.60) and (4.66) that P−1k+1 is given by

P−1k+1 = Uk

 λΣk,1 + ψT
k,1ψk,1 0

0 Σk,2

UT
k . (4.67)

It follows from the (2, 2) block of (4.67) that the last n−n1 information directions and

the corresponding singular values are not affected by φk. Furthermore, if n1 = n, that

is, new information is present in φk along every information direction, then forgetting

is applied to all of the singular values of P−1k , and thus information-driven directional

forgetting specializes to spatially uniform forgetting, that is, RLS with the update for
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Pk given by (4.6).

Example 4.10. Information-driven forgetting for a regressor lacking per-

sistent excitation. Reconsider Example 4.9. Let P0 = I10, and P−1k be given by

(4.65), where ε = 10−8. Figures 4.10a) and b) show the information content |ψk,i| for

several values of λ. Note that the information subspace is six dimensional due to the

presence of three harmonics in uk as shown by six relatively large components of ψk.

Figures 4.10c) and d) show the singular values of P−1k for several values of λ. Note

that the singular values that correspond to the singular vectors not in the information

subspace do not convergeto zero. �
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Figure 4.10: Example 4.10. Information-driven forgetting for a regressor lacking per-

sistent excitation. a) and b) show the information content ‖ψk‖ for

λ = 0.9 and λ = 0.8. c) and d) show the singular values of P−1k for

λ = 0.9 and λ = 0.8. The inverse of the condition number of Pk is

shown in black. Note that, for λ < 1, the singular values that corre-

spond to the singular vectors not in the information subspace do not

converge to zero.

Example 4.11. Effect of information-driven forgetting on θk. Reconsider

Example 4.8. Let P0 = I10, and P−1k be given by (4.65), where ε = 10−8. Figure

4.11a) shows the predicted error zk, and b) shows the norm of the parameter error
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θ̃k. Note that the θ̃k does not converge to 0. c) shows the singular values of Pk, and

d) shows the condition number of Pk. Note that, unlike spatially uniform forgetting,

all singular values of Pk remain bounded, and θk does not diverge. �

Figure 4.11: Example 4.11. Effect of Information-driven forgetting on θk. a) shows

the predicted error zk, b) shows the norm of the parameter error θ̃k, c)

shows the singular values of Pk, and d) shows the condition number of

Pk. Note that all singular values of Pk remain bounded.
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Figure 4.9: Example 4.9. Relation between Pk and the information content ψk. a),
b), and c) show the information content ψk,i for several values of λ. Note
that, in each case, the information subspace is six dimensional due to the
presence of three harmonics in uk. d), e), and (f) show the singular values
of P−1k for several values of λ. The inverse of the condition number of
Pk is shown in black. Note that, for λ < 1, the singular values of P−1k

corresponding to the singular vectors in the orthogonal complement of
the information subspace converge to zero.
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4.8 Conclusions

This chapter presented various results on uniform and directional forgetting within

the context of RLS. It was shown that, in the case of persistent excitation without

forgetting, the parameter estimates converge asymptotically, whereas, with forgetting,

the parameter estimates converge geometrically. Numerical examples were presented

to illustrate this behavior.

In the case where the excitation is not persistent and forgetting is used, it was

shown that forgetting is enforced in all information directions, whether or not new in-

formation is present in along all information directions. Consequently, the parameter

estimates converge, but not necessarily to their true values; furthermore, the matrix

Pk diverges leading to numerical instability. This phenomenon was traced to the di-

vergence of the singular values of Pk corresponding to singular vectors orthogonal to

the information subspace.

In order to address this problem, a data-dependent forgetting matrix was con-

structed to restrict forgetting to the information subspace. Numerical examples pre-

sented show that this directional forgetting technique prevents Pk from diverging

under lack of persistent excitation.
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CHAPTER 5

Adaptive Squaring-Based Control Allocation for

Wide Systems

5.1 Introduction

Redundant actuators provide the opportunity to allocate control effort to account

for saturation and other input constraints. This is especially true in wide systems,

where the number of input channels is greater than the number of outputs. The

present chapter considers the control allocation problem within the context of adap-

tive control.

Many control applications possess the mixed blessing of more actuators than con-

trolled outputs. For these applications, the required control inputs can be realized by

combinations of redundant actuators, thus providing reliability. At the same time,

however, the presence of actuators with similar effect on the system demands that

these actuators be used optimally with respect to magnitude and rate saturation,

energy usage, and other limitations. This is the control allocation problem [90, 91].

Control allocation is widely studied within the context of aerospace vehicles [92–

95], where the moments obtainable from control surfaces are limited by there size and

depend on the current the aircraft speed. A classical case of actuator redundancy in

lateral flight control concerns the use of ailerons and rudders to perform turning
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maneuvers. Separate use of these actuators for turning yields poor performance, due

to adverse aileron yaw and adverse rudder roll. Consequently, control allocation can

ensure that the ailerons and rudder are used in a desirable combination to perform

coordinated turns.

In the present chapter, we consider control allocation within the context of retro-

spective cost adaptive control (RCAC) [96]. RCAC is a direct digital control technique

that is applicable to stabilization, command following, and disturbance rejection. A

key feature of RCAC discussed in [96] is the role of the filter Gf in defining the

retrospective cost variable. As shown in [96], Gf serves as a target model for the

intercalated transfer function from the virtual external control perturbation to the

performance variable. Modeling information concerning the leading numerator sign,

relative degree, and nonminimum-phase (NMP) zeros is used to construct Gf .

The present chapter extends the development of [96] by focusing on wide (that is,

overactuated) systems for the purpose of control allocation. In particular, we show

that the applied control input lies in the range of the target model. For example, if

the plant is MISO and the target model Gf is chosen to be Gf(q) = N1
1
q
, where q

is the forward shift operator and N1 is a row vector, then the control input vector is

constrained to the direction NT
1 . For example, if the plant has two inputs and one

output andN1 is chosen to beN1 = [3 6], then, for all time steps k, u1(k)/u2(k) = 1/2.

Consequently, the target model provides a simple and convenient technique for control

allocation in overactuated systems.

The contents of the chapter are as follows. Section 5.2 states the control allocation

problem. Next, Section 5.3 reviews RCAC, and Theorem 5.1 demonstrates how the

target model constrains the allowable directions of the control input. Section 5.4

presents several examples illustrating control allocation for RCAC. The chapter ends

with some conclusions and directions for future research.
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5.2 Control allocation problem

Consider the MIMO discrete-time plant

x(k + 1) = f(x(k), u(k)) +D1w(k), (5.1)

y(k) = g(x(k)) +D2w(k), (5.2)

z(k) = Ex(k) + E0w(k), (5.3)

where x(k) ∈ Rlx is the state, y(k) ∈ Rly is the measurement, u(k) ∈ Rlu is the control

signal, w(k) ∈ Rlw is the exogenous signal, and z(k) ∈ Rlz is the performance variable.

The components of w can represent either command signals to be followed, external

disturbances to be rejected, or both. Figure 5.1 shows a block diagram representation

of (5.1)–5.3.

The goal is to develop an adaptive output-feedback controller that produces the

control effort in a desired ratio and minimizes z in the presence of the exogenous

signal w with limited modeling information about (5.1)–(5.3) .

In this chapter, we consider overactuated systems, that is, lu > ly. In overactuated

systems, the control input required to generate a desired output is not unique. For

example, consider step command following for a two-input, one-output LTI plant. At

steady state,

y∞ = C(I − A)−1Bu∞, (5.4)

where y∞ ∈ R is the asymptotic output of the plant, and u∞ ∈ R2 is the asymptotic

control input. Since C(I − A)−1B is a wide matrix, it follows that the asymptotic

control input u∞ is not unique. The goal of the control allocation problem is thus to

achieve the specified performance objectives while confining the control input vector

u to a chosen subspace that constrains the direction of the allowable control inputs.
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Gc G
r z u

d

y

v

Figure 5.1: Block diagram representation of the adaptive control allocation problem

with the adaptive controller Gc and plant G. The goal is to design the

controller Gc that produces the control effort in a desired ratio such that

the plant output y follows the reference command r in presence of process

noise d and measurement noise v.

5.3 RCAC algorithm

We consider a dynamic compensator represented by an ARMA model.The control

u(k) is thus given by

u(k) =
nc∑
i=1

Pi(k)u(k − i) +
nc∑
i=1

Qi(k)z(k − i), (5.5)

where the coefficient matrices Pi(k) ∈ Rlu×lu , Qi(k), R(k) ∈ Rlu×lz are updated by

the RCAC algorithm.

We rewrite (5.5) as

u(k) = Φ(k)θ(k), (5.6)
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where the regressor matrix Φ(k) is defined by

Φ(k)
4
= Ilu ⊗ φT(k) ∈ Rlu×lθ , (5.7)

where

φ(k)
4
= [µ̂(k − 1)T · · · µ̂(k − nc)

T z(k − 1)T · · · z(k − nc)
T]T,

θ(k)
4
= vec

[
P1(k) · · ·Pnc(k) Q1(k) · · ·Qnc(k)

]
∈ Rlθ ,

lθ
4
= l2unc + lulync, “⊗” is the Kronecker product, and “vec” is the column-stacking

operator.

5.3.1 Retrospective Performance Variable

We define the retrospective performance variable

ẑ(k) = z(k) +Gf(q)(Φ(k)θ̂ − u(k)), (5.8)

where q is the forward-shift operator, θ̂ ∈ Rlθ contains the controller coefficients to

be optimized,

Gf(q) =

nf∑
i=1

Niq
−i, (5.9)

and, for all i = 1, . . . , nf , Ni ∈ Rly×lu . Gf is an FIR filter of order nf whose choice is

discussed below. We rewrite (5.8) as

ẑ(k) = z(k) +NΦb(k)θ̂ −NUb(k), (5.10)
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where

N
4
=

[
N1 · · · Nnf

]
∈ Rly×nf lu ,

Φb(k)
4
=


Φ(k − 1)

...

Φ(k − nf)

 ∈ Rlunf×lθ ,

Ub(k)
4
=


u(k − 1)

...

u(k − nf)

 ∈ Rlunf .

The vector θ̂, which contains the controller coefficients, is determined by minimizing

the retrospective cost function, as described next.

5.3.2 Retrospective Cost Function

Using the retrospective performance variable ẑ(k), we define the retrospective cost

function

J(k, θ̂)
4
=

k−1∑
i=1

λk−i
(
ẑ(i)TRz ẑ(i) + θ̂TΦb(i)TNTRfNΦ(i)bθ̂+

θ̂TΦ(i)TRuΦ(i)θ̂
)

+ λkθ̂TRθθ̂, (5.11)

where Rz, Rf , Ru, and Rθ are positive-definite matrices, and λ ≤ 1 is the forgetting

factor. The following result uses recursive least squares (RLS) to minimize (5.11).

Proposition 5.1. Let P (0) = R−1θ and θ(0) = 0. Then, for all k ≥ 1, the retrospec-
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tive cost function (5.11) has a unique global minimizer θ(k), which is given by

θ(k) = θ(k − 1)− P (k)

 NΦb(k − 1)

Φ(k − 1)


T  Rz 0

0 Ru


·

 NΦb(k − 1)θ(k − 1) + z(k − 1)−NUb(k − 1)

Φ(k − 1)θ(k − 1)

 , (5.12)

P (k) = λ−1P (k − 1)− λ−1P (k − 1)

 NΦb(k − 1)

Φ(k − 1)


T

· Γ(k)−1

 NΦb(k − 1)

Φ(k − 1)

P (k − 1), (5.13)

where

Γ(k)
4
= λ

 Rz 0

0 Ru


−1

+

 NΦb(k − 1)

Φ(k − 1)

P (k − 1)

·

 NΦb(k − 1)

Φ(k − 1)


T

. (5.14)

Furthermore, the control input at step k is given by

u(k) = Φ(k)θ(k). (5.15)

5.3.3 The Target Model Gf

The following result shows that the control u(k) is constrained to the subspace

spanned by the transposes of the coefficients of Gf .

Theorem 5.1. Let Rθ = βIlθ , Ru = γIlu and let θ(k) be given by (5.15). Let
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Φ
4
= Ilu ⊗ φT, where φ ∈ Rlφ, and lφ

4
= lθ/lu. Then, for all k ≥ 1,

Φθ(k) ∈ R

([
NT

1 · · · NT
nf

])
. (5.16)

Proof. Note that

ΦAθ(k)θ(k) =
k−1∑
i=1

λk−iΦ
(
Φb(i)TNT(Rz +Rf)NΦb(i) + Φ(i)TγΦ(i)

)
θ(k)+

λkβΦθ(k)

=
k−1∑
i=1

(
λk−i

nf∑
j=1

(Ilu ⊗ φT)(Ilu ⊗ φ(i− j))NT
j

)
(Rz +Rf)NΦb(i)θ(k)+

λk−i(Ilu ⊗ φT)(Ilu ⊗ φ(i))γΦ(i)θ(k) + λkβΦθ(k)

=
k−1∑
i=1

(
λk−i

nf∑
j=1

NT
j φ

Tφ(i− j)

)
(Rz +Rf)NΦb(i)θ(k)+

λk−iγφTφ(i)Φ(i)θ(k) + λkβΦθ(k)

=

[
NT

1 · · · NT
nf

] k−1∑
i=1

λk−iΞ(i)(Rz +Rf)NΦb(i)θ(k) + Φ̄(k)θ(k),

where

Ξ(i)
4
=


φTφ(i− 1)⊗ Ilz

...

φTφ(i− nf)⊗ Ilz

 ,
Φ̄(k)

4
= Ilu ⊗ φ̄(k)T,

φ̄(k)
4
= M(k)φ,

M(k)
4
=

k−1∑
i=1

λk−iγφ(i)φ(i)T + λkβIlφ .
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Note that M(k) is positive-definite. Further,

Φbθ(k)

= Φ
k−1∑
i=1

λk−iΦb(i)TNTRz (z(i)−NUb(i))

=

[
NT

1 · · · NT
nf

] k−1∑
i=1

λk−iΞ(i)Rz (z(i)−NUb(i)) .

Using ΦAθ(k)θ(k) = −Φbθ(k) yields

Φ̄(k)θ(k) = −
[
NT

1 · · · NT
nf

] k−1∑
i=1

λk−iΞ(i)

· (Rzz(i) + (Rz +Rf)NΦb(i)θ(k)−RzNUb(i))

∈ R

([
NT

1 · · · NT
nf

])
.

For φ ∈ Rlφ , there exists a unique φ̃ ∈ Rlφ such that φ = M(k)φ̃. Consequently,

Φ = Ilu ⊗ (M(k)φ̃)T. It follows that Φθ(k) ∈ R

([
NT

1 · · · NT
nf

])
.

The following proposition follows from Theorem 5.1.

Proposition 5.2. Let Rθ = βIlθ , Ru = γIlu and let θ(k) be given by (5.15). Then,

for all k ≥ 1,

u(k) = Φ(k)θ(k) ∈ R

([
NT

1 · · · NT
nf

])
. (5.17)

5.4 Illustrative Examples

In this section, we present several examples demonstrating control allocation based

on RCAC.
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5.4.1 Colocated actuators

Consider the two-input, one-output discrete-time system

x(k + 1) = Ax(k) +Bu(k), (5.18)

y(k) = Cx(k), (5.19)

where

A =



−0.2650 −0.2225 −0.0938 −0.1211

−0.0727 0.3296 0.0594 −0.3238

0.2661 −0.2316 0.1396 0.2074

−0.2016 −0.1591 0.8285 0.1352


, (5.20)

B =



0.8752 0.8752

0.3179 0.3179

0.2732 0.2732

0.6765 0.6765


, (5.21)

C =

[
0.8700 0.2437 0.8429 0.5577

]
. (5.22)

The identical columns of B indicate that the two actuators are colocated. Let the

command r be a unit step. We set

Gf(q) = N1q
−1 =

[
0.5 1

]
q−1, (5.23)

nc = 2, and Rθ = 10−3Ilθ . With this choice of Gf , the control input u(k) produced

by RCAC is such that u2(k) = 2u1(k) for all k. Figure 5.2 shows the closed-loop

response of the system.

134



50 100

-0.5

0

0.5

1

1.5

50 100

-0.4
-0.2

0
0.2
0.4
0.6

50 100

-0.5

0

0.5

1

-0.2 0 0.2

-0.4
-0.2

0
0.2
0.4
0.6

Figure 5.2: Example 5.4.1. Control allocation for setpoint command following. (a)

shows the response y, (b) shows the control signal u generated by RCAC,

(c) shows the controller coefficients θ adapted by RCAC, and (d) shows

the control signals. In (d), the direction of NT
1 is shown in red.

5.4.2 Independent actuators

We reconsider the plant in Example 5.4.1 with the modified input matrix

B =



0.8752 0.0712

0.3179 0.1966

0.2732 0.5291

0.6765 0.1718


. (5.24)
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Let the command r be a unit step. We set

Gf(q) = N1q
−1 =

[
0.5 1

]
q−1, (5.25)

nc = 2, and Rθ = 10−3Ilθ . With this choice of Gf , the control input produced by

RCAC is in the direction NT
1 . Figure 5.3 shows the closed-loop response of the system.
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Figure 5.3: Example 5.4.2. Control allocation for setpoint command following. (a)

shows the response y, (b) shows the control signal u generated by RCAC,

(c) shows the controller coefficients θ adapted by RCAC, and (d) shows

the control signals. In (d), the direction of NT
1 is shown in red.
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5.4.3 Uncontrollable channels

We reconsider the plant in Example 5.4.1 with the modified input matrix

B =

[
b1 b2

]
=



0.8826 0.0984

0.5405 0.2135

0.0808 0.5128

0.3543 0.2059


. (5.26)

Note that (A, b1) and (A, b2) each have one uncontrollable mode, but (A,B) is con-

trollable. Hence, u1 and u2 must work together to achieve the control objective. Let

the command r be a unit step. We set

Gf(q) = N1q
−1 =

[
0.5 1

]
q−1, (5.27)

nc = 2, and Rθ = 10−3Ilθ . With this choice of Gf , the control input produced by

RCAC is in the direction NT
1 . Figure 5.4 shows the closed-loop response of the system.
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Figure 5.4: Example 5.4.3. Control allocation for setpoint command following. (a)

shows the response y, (b) shows the control signal u generated by RCAC,

(c) shows the controller coefficients θ adapted by RCAC, and (d) shows

the control signals. In (d), the direction of NT
1 is shown in red.

5.5 Conclusions

This chapter presented a novel approach to control allocation for wide systems

within the context of retrospective cost adaptive control (RCAC). The approach is

based on the fact that the control input is constrained to the range of the transpose

of the target model. This technique was applied to illustrative examples.

The next chapter extends RCAC to asymptotically enforce auxiliary output con-
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straints by formulating the auxiliary output constraints as conflicting commands.
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CHAPTER 6

Output-Constrained Adaptive Control for Unstart

Prevention in a 2D Scramjet Combustor

6.1 Introduction

A supersonic combustion ramjet (scramjet) engine is an air-breathing propulsion

system that compresses and ignites a supersonic stream of air and generates thrust

by expelling high-energy gases through a nozzle without any moving parts. Scramjet

engines have high potential for high-speed transport, access to space, and payload

delivery. Although mechanically simple, the flow inside a scramjet engine, comprised

of pockets of subsonic regions and multiple shock structures, is extremely complex,

and is highly sensitive to external disturbances such as inlet mach number and angle

of attack of the leading ramp.

A major challenge in the operation of a scramjet is the problem of preventing

the scramjet from unstarting. The flow inside the scramjet can thermally choke

when sufficient heat is added in the combustor, resulting in a normal shock that

travels upstream, thereby destroying the shock structure and the supersonic flow.

Consequently, the thrust generated by the scramjet drops precipitously. Since it is

extremely difficult to re-establish stable supersonic flow structure quickly enough once

the engine has unstarted completely, unstart is usually fatal to the engine operation.
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In addition to excessive heat addition, the scramjet engine can unstart because of

flow and structural perturbations.

In [97], unstart was prevented by constraining the hypersonic vehicle to remain

within a predefined flight envelope. In [98], a second-order linear, time-invariant

model relating the ramp angle and the shock train location was identified. A PID

controller was developed based on the identified model, and was applied to the high-

order model to shift the location of the shock train to prevent unstart. In [99],

a particle filter was used to estimate the state of a scramjet described by a one-

dimensional model, and a full-state-feedback control law was suggested to prevent

the scramjet from unstarting. As a result, the control altered the cycle length as well

as the burst length of the fuel flow based on the predicted future location of the shock

front computed using the filtered state. In [100], retrospective cost adaptive control

(RCAC) was used for unstart prevention in a 2D scramjet model with a single pressure

measurement near the combustor, however, the closed-loop response was oscillatory.

In the present work, RCAC is used to prevent unstart by enforcing auxiliary output

constraints.

RCAC is a direct discrete-time adaptive control algorithm that is applicable to sta-

bilization, command following, and disturbance rejection. RCAC minimizes a convex

cost function based on a performance variable, such as the thrust error, to optimize

the controller coefficients based on past control inputs and past measurements. The

retrospective cost minimized by RCAC is based on the retrospective performance,

which is defined using the target model Gf . The target model Gf reflects the qual-

itative response of the performance variable to the control input, which is usually

captured by the key dynamics features of the system to be controlled such as its rel-

ative degree, sign of the leading Markov parameter, and nonminimum-phase (NMP)

zeros, if any. As shown in [30], RCAC adapts the control law in order to match the

intercalated transfer function to the target model Gf .
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RCAC was applied to the problem of possibly conflicting commands in an aircraft

to follow trim commands in [101]. The contribution of the present chapter is to

show that output constraints can be asymptotically enforced by casting them as

additional conflicting commands; these commands are conflicting in the sense that the

tradeoff necessitates a constraint violation. As in the case of conflicting commands,

the asymptotic response of the controlled system may not be able follow all of the

commands simultaneously, and thus RCAC automatically trades off the output error

and the constraint violation error. Although the constraint is violated, it is shown

that the asymptotic magnitude of the constraint violation can be reduced by varying

the tuning parameters in RCAC. By defining a conservative constraint, the required

constraint can be satisfied.

The chapter is organized as follows: in Section 6.2, the scramjet model used in this

chapter is presented; unstart and its characterization based on open-loop simulations

of the scramjet model is presented in Section 6.3. The control architecture for the

setpoint command following is presented in Section 6.4. In Section 6.5, RCAC is

extended to the problem of following conflicting setpoint commands. In Section 6.6,

RCAC is extended to the problem of preventing the scramjet from unstarting by

enforcing an auxiliary output constraint. Finally, the chapter is concluded in Section

6.7.

6.2 Scramjet Model

The scramjet engine considered in this work is based on the Hyshot-II geometry

[102] shown in Figure 6.1. The flow is modeled by coupled nonlinear partial differential

equations based on the assumption of inviscid flow along with a heat release model.
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The two-dimensional CFD model is obtained by discretizing the Euler equations

∂

∂t



ρ

ρu

ρv

e


+

∂

∂x



ρu

ρu2 + p

ρuv

u(e+ p)


+

∂

∂y



ρv

ρuv

ρv2 + p

v(e+ p)


=



0

0

0

Q̇


, (6.1)

where u, v are the longitudinal and lateral velocity components, ρ is the fluid density,

and p is the pressure. The total energy per unit volume

e =
p

γ − 1
+

1

2
ρ(u2 + v2), (6.2)

where γ is the ratio of specific heats.

Figure 6.1: Geometry of the Hyshot-II scramjet engine [103]. The solution domain is

shown in yellow. Note that all lengths are shown in millimeters.

The discretized governing equations are solved over the isolator, combustor and

the nozzle section of the engine (shown in yellow in Figure 6.1). Note that the model

has O(105) degrees of freedom. The flow is assumed to be deflected by two shocks from

the vehicle’s forebody and cowl at the entrance of the isolator section. All numerical

computations are performed using the unstructured mesh compressible flow solver

Joe [103–105].

The combustion process is modeled by the heat-release model given in [106]. In
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particular, the source term Q is modeled by

Q̇ = φfstHfṁairη(x/Lc), (6.3)

η(x/Lc) = 1− e−(Cc(x−xc)/Lc)Dc
, (6.4)

where xc < x < xc + Lc, φ is the fuel-air equivalence ratio, η is the heat-release

distribution function, and the numerical values of various parameters is given in Table

6.1. The thrust generated by the scramjet is computed by integrating the pressure

along the flow path, and is normalized and nondimensionalized by the free-stream

dynamic pressure and unit area. Finally, the heat addition, and thus the thrust is

controlled by varying the fuel-air equivalence ratio φ

Symbol Definition Nominal Value

fst Stoichiometric fuel/air ratio 0.028

Hf Fuel heating value (H2) 120 MJ/kg

xc Combustion ignition position 0.408 m

Lc Combustor length 0.368 m

Kc Fraction of completed combustion 0.95

Dc Shape parameter 0.75

Cc Shape parameter − log(1−Kc)
1/Dc

Table 6.1: Summary of parameters used in the heat-release model (6.3), (6.4).

6.3 Unstart and Unstart detection

A major challenge in the operation of a scramjet is the need to prevent the scramjet

from unstarting. When sufficient heat is released in the combustor, usually by means

of too much fuel flow, the flow can thermally choke, resulting in a normal shock

that travels upstream, thereby destroying the shock structure and the supersonic
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flow. Consequently, the thrust generated by the scramjet drops precipitously. This

is usually fatal to the engine operation since it is extremely difficult to establish

a stable supersonic flow structure quickly enough once the engine has unstarted. In

addition to excessive heat addition, a scramjet engine can unstart because of flow and

structural perturbations. Because of unstart, there is an upper limit on the thrust

that a scramjet engine can produce at a given operating condition. The maximum

asymptotic thrust that can be generated by the scramjet at a constant inlet Mach

number M0 is called the critical thrust at M0, and the constant equivalence ratio φ0

that corresponds to the critical thrust at M0 is called the critical equivalence ratio at

M0.

To characterize the onset of unstart, we simulate the scramjet without feedback

control for various fixed values of the equivalence ratio φ0 at various constant inlet

Mach numbers M0 for 3000 time steps. At each M0, if the applied equivalence ratio

is less than the critical equivalence ratio, the scramjet reaches a stable equilibrium

state and generates a constant thrust y0 at the end of the simulation. If, however,

the equivalence ratio is greater than the critical equivalence ratio, the state of the

scramjet starts diverging as it attempts to establish a stable subsonic flow inside the

scramjet, leading to a sharp loss of thrust. Figure 6.2(a) shows the asymptotic thrust

y0 for various values of constant equivalence ratios φ0 at various constant inlet Mach

numbers M0.

In [103], a functional defined based on the pressure profile on the upper wall of the

combustor is used to detect unstart. In [100], a single pressure measurement is used

to detect and prevent unstart. Since the shock structure shifts longitudinally as the

equivalence ratio is varied, the measured pressure can change sharply as the shock

moves across the pressure sensor. In the present work, the mean pm of the pressure

along the bottom wall near the combustor is used to detect unstart. Specifically, 20

pressure sensors located uniformly between x = 0.279 m and x = 0.294 m are used
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to define the pressure metric pm. This sensor arrangement corresponds to pressure

measurements from 20 grid points in the simulation. Figure 6.2(b) shows the mean

pressure pm for various values of constant equivalence ratios φ0 at various constant

inlet Mach numbers M0. Note that the mean pressure metric pm increases abruptly

once the scramjet unstarts due to the presence of a normal shock wave. Hence, the

value of the metric pm can be used to constrain the control algorithm to prevent the

scramjet from unstarting.

0.25 0.3 0.35 0.4 0.45
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0.28

0.3
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(a) Steady state Thrust
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0.35

0.4

0.45

0.5

0.55

(b) Pressure Metric

Figure 6.2: Critical thrust y0 and the pressure metric pm in the normal operating and

unstarting scramjet. The critical thrust at each value of M0 is shown with

a black circle.

6.4 Adaptive Setpoint Command Following

In this work, RCAC is used to optimize an infinite impulse response (IIR) con-

troller to follow setpoint thrust commands. The notation used for RCAC variables is

given in [100]. The scramjet is assumed to be operating in a steady state with the

equivalence ratio φ0 at the constant inlet Mach number M0. The thrust error, defined

as z(k)
4
= r(k) − y(k), where r(k) is the commanded value of the thrust and y(k) is

the generated thrust, is used to drive and optimize the controller Gc. The equivalence

ratio applied to the scramjet is φ(k) = φ0 + uc(k), where uc(k) is the output of Gc.
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The control system architecture is shown in Figure 6.3.

- Gc

φ0

scramjet

M

uc φr z y

Figure 6.3: Scramjet command-following control system architecture. The controller
Gc is updated by RCAC.

In [100], a feedback/feedforward controller structure is optimized using RCAC,

whereas, in this chapter, a feedback controller with an embedded integrator is opti-

mized. The embedded integrator ensures that uc(k) converges to the required constant

value as k →∞ and z(k)→ 0.

6.5 Adaptive Command Following with Conflicting Commands

Consider the SISO system

x(k + 1) = f(x(k), u(k)), (6.5)

y(k) = g(x(k), u(k)), (6.6)

where x(k) ∈ Rn is the state, u(k) ∈ R is the input, and y(k) ∈ R is the measured

output. The objective is to construct a control law such that y(k) − r(k) → 0 as

k →∞, where r(k) is the command.

As a first step in developing a strategy for enforcing constraints, we consider the

response of RCAC in the case of conflicting commands. In particular, we define the
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performance variable

z(k)
4
=


y(k)− r1(k)

...

y(k)− rq(k)

 ∈ Rq, (6.7)

where r1(k), . . . , rq(k) ∈ R. If r1, . . . , rq are different signals, then the commands are

conflicting, that is, the output y(k) is simultaneously requested to follow different

commands. It is shown below that conflicting commands provide a technique for

asymptotically enforcing constraints.

Let

N1 =


N1,1

...

N1,q

 , Rz = diag(Rz,1, . . . , Rz,q), (6.8)

where Rz,i > 0. Numerical examples show that, if limk→∞ z(k) exists, then

lim
k→∞

q∑
j=1

N1,jRz,jzj(k) = 0. (6.9)

Consequently,

lim
k→∞

z(k) ∈ N(NT
1 Rz), (6.10)

and thus,

lim
k→∞

y(k) =

∑q
j=1Rz,jN1,jrj∑q
j=1Rz,jN1,j

. (6.11)

Thus, by choosing N1, and Rz, (6.11) can be used to specify the tradeoff between

several conflicting commands. �
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Example 6.1. Consider the spring-mass-damper system

mẍ+ cẋ+ kx = u, (6.12)

where x is the position of the particle with mass m = 1, the damping coefficient is

c = 5, the spring stiffness is k = 5, and u is the applied input. Let the measured

output be y(k) = x(kTs), where Ts = 0.01 sec is the sampling time.

The conflicting commands for the two-component performance variable (6.7) are

chosen to be the setpoints r1(k) = 1 and r2(k) = 2. RCAC is implemented with

N1 = [1 1]T, Rz = I2, Rθ = 102Ilθ , and λ = 0.999. Figure 6.4 shows the closed-loop

response of the spring-mass-damper system with conflicting commands, (a) shows the

measured output y(k), (b) shows the control u(k), (c) shows the output error z(k),

and (d) shows the coefficients of the controller optimized by RCAC.

Next, RCAC is implemented with N1 = [1 N1,2]
T, Rz = diag(1, Rz,2), Rθ = 102Ilθ ,

and λ = 0.999, where N1,2 and Rz,2) are varied from 0.1 to 10. For each choice of

N1,2 and Rz,2, Figure 6.5 shows the asymptotic output y(k) the end of the simulation.

Note that the asymptotic output satisfies (6.11). �
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Figure 6.4: Example 6.1. Closed-loop response of the spring-mass-damper system

with conflicting commands. (a) shows the commands and the output,

(b) shows the equivalence ration φ, (c) shows the output error z, and (d)

shows the controller coefficients θ. Note that the output converges to the

mean of the conflicting commands.
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Figure 6.5: Example 6.1. Asymptotic output of the spring-mass-damper system with

conflicting commands for various filter and performance weight choices.

Note that the asymptotic output satisfies (6.11).

Next, the closed-loop response of the scramjet to conflicting commands is consid-

ered. The conflicting commands are assumed to be less than the critical thrust at

the operating conditions. The scramjet is commanded to follow the step commands

r1(k) = 0.24 and r2(k) = 0.29 for all k > 0. At k = 0, the scramjet is assumed to be

operating in steady state with φ = 0.2 at the inlet Mach number M = 2.7. RCAC is

implemented with N1 = [0.1 0.1]T, λ = 0.9999, Rθ = 107I8, and Rz = I2. Figure 6.6

shows the closed-loop response of the scramjet to the conflicting commands. Note

that the asymptotic value of the generated thrust is in the middle of the commanded
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values since N1,1Rz,11 = N1,2Rz,22. Figure 6.7(a) shows the generated thrust with

various filter choices. Note that the assymptotic value of the generated thrust can

be arbitrarily chosen by varying the entries of N1 and Rz. Figure 6.7(b) shows the

correspondng values of equivalence ratios.

Figure 6.6: Closed-loop response of the scramjet to conflicting commands. (a) shows

the commands and the output, (b) shows the equivalence ration φ, (c)

shows the output error z, and (d) shows the controller coefficients θ.
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(a) Thrust

(b) Equivalence ratio

Figure 6.7: Closed-loop response of the scramjet to conflicting commands for various

filter choices. (a) shows the commands and the output, and (b) shows

the equivalence ration φ.
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6.6 Adaptive Command Following with Auxiliary Output

Constraints

Consider the system (6.5), (6.6), with auxiliary outputs

yc(k) = hc(x(k), u(k)), (6.13)

where yc(k) ∈ Rq is an auxiliary measured output to be constrained. Let r(k) be

the reference command. The objective is to construct a control law such that y(k)−

r(k) → 0 as k → ∞ while enforcing constraints of the form yc(k) ∈ Yc for all k ≥ 0,

where Yc ⊂ Rq. For all i = 1, . . . , q, the constraint on yci(k) is assumed to be given

by

ȳlci ≤ yci(k) ≤ ȳuci, (6.14)

where ȳlci, ȳ
u
ci are the lower and the upper constraint bounds.

Now, consider the performance variable

z(k)
4
=



R1d(yc1(k), ȳlc1, ȳ
u
c1)

...

Rqd(ycq(k), ȳlcq, ȳ
u
cq)

y(k)− r(k)


, (6.15)

where Ri ≥ 0 and the two-sided constraint violation metric is defined by

d(yci(k), ȳlci, ȳ
u
ci)
4
=


yci(k)− ȳuci, yci(k) > ȳuci,

0, ȳlci ≤ yci(k) ≤ ȳuci,

yci(k)− ȳlci, yci(k) < ȳlci.

(6.16)
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Note that, if y(k) = r(k) and ȳlci ≤ yci(k) ≤ ȳuci hold asymptotically, then the ith

constraint is said to be satisfied. Otherwise, the constraint is violated.

Let N1 and Rz be given by (6.8). Numerical examples show that, if limk→∞ z(k)

exists, then

lim
k→∞

q+1∑
j=1

N1,jRz,jzj(k) = 0. (6.17)

Consequently,

lim
k→∞

z(k) ∈ N(NT
1 Rz). (6.18)

Thus, by choosing N1 and Rz, (6.17) can be used to specify the tradeoff between the

output error and the constraint violation.

Example 6.2. Consider the linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), (6.19)

y(k) = Cx(k), (6.20)

where

A
4
=


0.41 0.17 0.65

0.18 0.34 0.29

0.14 0.77 0.02

 , B
4
=


0.19

0.24

0.56

 , C
4
= [0.43 0.61 0.04]. (6.21)

Let r = 1. At steady state, the equilibrium state xeq is given by

xeq = (I − A)−1B(C(I − A)−1B)−1r = [1.18 0.75 0.84]T, (6.22)

so that Cxeq = r = 1. It follows that x(k)→ xeq if y(k)→ r as k →∞.
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Consider the auxiliary output

yc(k) = x3(k), (6.23)

and consider the constraint given by ȳuc = 0.5. Thus, if r = 1, it follows from

(6.22) that the constraint is violated in the case where y(k)→ r as k →∞. RCAC is

implemented with N1 = [5 1]T, Rz = diag(10, 1), Rθ = 102Ilθ , R1 = 2, and λ = 0.999.

It follows from (6.17) that

lim
k→∞

100(yc(k)− ȳuc ) + y(k)− r = 0. (6.24)

Figure 6.8 shows the states and the constrained output of the system (6.19), (6.20).

Note that, asymptotically, the output error z2(k) = −0.4, and the constraint violation

metric yc(k)− ȳuc = 0.004 = −0.01z2(k) satisfy (6.24). �
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Figure 6.8: Example 6.2. Closed-loop response of the system (6.19), (6.20) with aux-

iliary output constraints. Note that the constraint is violated if the com-

mand is followed. Thus, asymptotically, the output error y(k)−r(k), and

the constraint violation metric yc(k)− ȳuc satisfy (6.24).

Next, the closed-loop response of the scramjet with the auxiliary output constraint

is considered, where the auxiliary output is the pressure metric pm defined in Section

6.3. Specifically, the constraint is given by

pm(k) ≤ 0.4. (6.25)

Note that pm = 0.4325 at the critical thrust M0 = 2.7. The scramjet is commanded

157



to follow the step command

r(k) =


0.32, k < 8000,

0.355, k ≥ 8000.

(6.26)

At k = 0, the scramjet is assumed to be operating in steady state with φ0 = 0.3 at

the inlet Mach number M = 2.7. RCAC is implemented with N1 = [1 1]T, Rz = I2, ,

Rθ = 107I8, R1 = 1, and λ = 0.9999.

For k < 8000, the commanded thrust is less than the critical thrust at the oper-

ating conditions, and thus the scramjet does not unstart and reaches a steady state.

Note that pm < 0.4 for k < 9000, and thus the constraint is satisfied. For k ≥ 8000,

the commanded thrust is greater than the critical thrust at the operating conditions,

thus the scramjet begins to unstart as the controller increases the equivalence ratio

to increase the generated thrust. However, the constraint eventually becomes active,

the scramjet converges to a steady state, and the output error and the constraint

violation metric converge to constant values based on the choice of N1, Rz, and R1.

Figure 6.9 shows the closed-loop response of the scramjet with auxiliary output

constraint, (a) shows the measured output y(k), (b) shows the equivalence ratio φ(k),

(c) shows the constraint violation metric z1(k) and the output error z2(k), and (d)

shows the coefficients of the controller optimized by RCAC.
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Figure 6.9: Closed-loop response of the scramjet with the auxiliary output constraint.

(a) shows the commands and the output, (b) shows the equivalence ration

φ, (c) shows the output error z, and (d) shows the controller coefficients

θ.

6.7 Conclusions

In this chapter, retrospective cost adaptive control (RCAC) with auxiliary output

constraints was used to prevent a 2D scramjet combustor from unstarting. As a

first step towards enforcing output constraints, RCAC was applied to the problem

of following conflicting setpoint commands. The asymptotic response of the system

to the conflicting commands was shown to be directly related to the filter choice
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and the performance weights in RCAC. Finally, RCAC was extended to implement

output constraints by defining the constraint violation metric and augmenting the

performance variable. The asymptotic response of the system and the asymptotic

constraint violation metric were shown to be directly related to the filter choice and

the performance weights in RCAC.

RCAC does not prevent the constraint from being violated. Instead, RCAC bal-

ances the several conflicting objectives by trading the cost between the output error

and the constraint violation metric. This tradeoff can be designed by the choice of

the filter choice and the performance weights in RCAC.

RCAC was implemented to follow conflicting commands and enforce auxiliary

output constraints in low-order linear systems to numerically explore the asymptotic

response. Finally, RCAC was applied to prevent the scramjet from unstarting by

using several pressure measurements as the auxiliary output.

The upper bound of the pressure metric used to prevent unstart used in this work

is based on open-loop simulations of the scramjet, which are chosen to be sufficiently

far from unstart.
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CHAPTER 7

Conclusions and Future Work

This dissertation first presented retrospective cost parameter estimation algo-

rithm, which is an iterative, data-driven technique for estimating unknown parame-

ters in linear and nonlinear dynamical systems. Unlike the extended Kalman filter,

RCPE is gradient-free; unlike the unscented Kalman filter, RCPE is ensemble-free;

and unlike variational methods, RCPE is adjoint-free.

The parameter estimator system consisted of an adaptive integrator with an out-

put nonlinearity and a permutation. It was shown that to estimate multiple unknown

parameters, a permutation of the estimated paramters is required to correctly asso-

ciate each parameter estimate with the corresponding unknown parameter. The need

to select the permutation matrix is the price paid for not requiring gradient informa-

tion, an ensemble of models, or an adjoint model. In particular, it was shown that

for a choice filter coefficients that define the retrospective cost, there is exactly one

correct choice of permutation matrix. In fact, the parameter estimate diverges with

all other choices of the permutation matrix. In addition, it was shown that the RCPE

estimate is constrained to lie in a subspace defined by filter coefficients that define

the retrospective cost.

The potential usefulness of RCPE was demonstrated by application to the prob-

lem of estimating two unknown parameters in the Burgers equation, for which UKF
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requires an ensemble of 207 models each with 101 states, requiring a total of 21,321

state updates. In contrast, RCPE required one model and testing of two permuta-

tions, which requires a total of 202 state updates (101 for each permutation).

Next, it was shown that RCPE can implemented with simultaneous optimization

of the filter coefficients. The resulting optimization problem is biquadratic and non-

convex, however it is convex in the filter coefficients and the parameter estimator

coefficients separately. Thus, an alternating convex search algorithm was used to

optimize the retrospective cost function. The extended RCPE is applied to the prob-

lem of estimating eddy diffusion coefficient in global ionosphere-thermosphere model

using the measurements of total electron content.

Several key issues remain unexplored in RCPE. First, the number of permutation

matrices that must be tested is potentially lµ!, which is prohibitive when lµ is large.

Fortunately, divergence of the parameter estimates can be used to rule out incorrect

permutation matrices. An online technique based on the performance metric may be

developed to determine the correct permutation matrices. Next, RCPE is based on

RLS with a constant, scalar forgetting factor, and the performance of RCPE tends to

be sensitive to the choice of λ. Variable-rate forgetting technique can be implemented

within RCPE to optimize the retrospective cost. Next, all of the examples consid-

ered in this dissertation involve asymptotically stable dynamics. Preliminary results

suggest that RCPE is effective for systems that are Lyapunov stable; however, in

this case, the performance of RCPE is sensitive to the weighting parameters. Better

understanding of this case is needed to mitigate the sensitivity.

Finally, this dissertation did not consider the problem of uncertainty propagation

in parameter estimation. It maybe possible to compute the parameter error covari-

ance in RCPE by using ensemble methods or analytical expressions. Furthermore,

methods such as unscented transformation, quadrature formulas maybe used to prop-

agate uncertainty separately. Finally, the independent propagation of state error and
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parameter error covariance may be compared with Monte-Carlo based methods to

propagate uncertainty.

Next, this dissertation focused on forgetting in the context of recursive least

squares algorithm. Note that the minimizer of the retrospective cost in RCPE is

given by the RLS algorithm. It was shown that in the case where the excitation

is not persistent and forgetting factor is less than one, singular values of Pk cor-

responding to the singular vectors orthogonal to the information subspace diverge.

A data-dependent forgetting matrix scheme was developed to restrict forgetting to

the information subspace, and prevent Pk from diverging under lack of persistent

excitation.

Next, the dissertation focused on the problem of control allocation in wide systems

using RCAC. The approach is based on the fact that the control input is constrained to

the range of the transpose of the target model. This technique was demonstrated using

numerical examples. The illustrative examples that were considered were minimum

phase, and thus it was not necessary to account for the presence of NMP zeros.

Although NMP zeros are nongeneric in nonsquare plants, they arise generically in

square systems (with SISO plants as the special case 1× 1). It is thus of interest to

consider control allocation for NMP square systems. The challenge is thus to enforce

control allocation by choosing the filter coefficients to also account for the presence

of NMP zeros and simultaneously allowing the constraining the subspace defined by

the filter coefficients.

Finally, the dissertation presented a technique to asymptotically enforce auxil-

iary output constraints in RCAC. In particular, the problem of enforcing auxiliary

output constraints was formulated as a problem of following conflicting commands.

The asymptotic response of the system to the conflicting commands was shown to be

directly related to the filter choice and the performance weights in RCAC. Finally,

RCAC was extended to implement output constraints by defining the constraint vio-
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lation metric and augmenting the performance variable. The asymptotic response of

the system and the asymptotic constraint violation metric were shown to be directly

related to the filter choice and the performance weights in RCAC.

It was shown that RCAC does not prevent the constraint from being violated.

Instead, RCAC balances the several conflicting objectives by trading the cost between

the output error and the constraint violation metric. This tradeoff can be designed

by the choice of the filter choice and the performance weights in RCAC.

The constraint violation metric was defined using a non-smooth nonlinear func-

tion. Future research should focus on using smooth nonlinear functions to construct

the constraint violation metric to improve the transient behaviour of the closed loop

system.
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