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ABSTRACT 

 

Minimizing driver errors should improve driving safety. Driver errors are more common 

when workload is high than when it is low. Thus, it is of great importance to study driver 

workload. Knowing the amount of workload at any given time, take-over time can be 

determined, adaptive in-vehicle systems can be refined, and distracting in-vehicle secondary 

tasks can be regulated.  

In this dissertation, a model quantifying workload as a function of traffic, in which 

workload is proportional to inverse time headway (THW) and time to collision (TTC), was 

proposed. Two experiments were conducted to investigate how traffic affected driver workload 

and evaluate the proposed model. The driving scenarios were categorized into static (i.e., no 

relative movements among vehicles) and dynamic (i.e., there are relative velocities and lane 

change actions). Three categories of workload measures (i.e., workload rating, occlusion %, and 

driving performance statistics) were analyzed and compared. A GOMS model was built based 

upon a timeline model by using timerequired to represent mental resources demanded and 

timeavailable to represent mental resources available. 

In static traffic, the workload rating increased with increased number of vehicles around 

but was unaffected by participant age. The workload ratings decreased with increasing Distance 

Headways (DHWs) of each vehicle. From greatest to least, the effects were: DHWLead, 

DHWLeftLead, DHWLeftFollow, DHWFollow. Any surrounding vehicle that was 14.5 m away from the 

participant resulted in significant greater workload. Drivers tended to compromise longitudinal 



xi 

 

speed but still maintain lateral position when workload increased. Although occlusion% was less 

sensitive to scenarios having no lead vehicles, it can nonetheless be well predicted using the 

proposed workload model in sensitive scenarios. The resulting equations were occlusion% = 0.35 

+ 0.05/THWLead + 0.02/THWLeftLead - 0.08Age (Rocclusion
2=0.91); rating = 1.74 + 1.74/THWLead + 

0.20/THWFollow + 0.79/THWLeftLead + 0.28/THWLeftFollow (Rrating
2=0.73). In dynamic traffic, drivers 

experienced greater workload in the faster lane; higher workload level was associated with 

greater relative velocity between two lanes. Both rating and occlusion% can be described using 

the proposed model: Anchored rating = 4.53 + 1.215/THWLeftLeadLead + 0.001/THWLeftFollow + 

3.069/THWLeadLead + 0.524/THWLead + 0.240/(TTCLead×TTCLeadLateral) + 

30.487/(TTCLeftLead×TTCLeftLeadLateral) (Rrating
2=0.54); Occlusion% = 0.381 + 0.150/THWLeftLeadLead 

˗ 0.117/THWLeadLead + 0.021/THWLead + 2.648/(TTCLeftLead×TTCLeftLeadLateral) (Rocclusion
2=0.58). In 

addition, it was shown that the GOMS model accounted for the observed differences of workload 

ratings from the empirical data (R2>0.83). 

In contrast to most previous studies that focus on average long-term traffic statistics (e.g., 

vehicles/lane/hour), this dissertation provided equations to predict two measures of workload 

using real-time traffic. The comparisons among three workload measures provided insights into 

how to choose the desired workload measures in their future research. In GOMS model, the 

procedural knowledge of rating workload while driving was developed. They should be 

transferrable to other workload studies and can serve as the primary tool to justify experimental 

design.  

Scientifically, the results of this dissertation offer insights into the mechanism of the way 

that humans perceive workload and the corresponding driving strategies. From the engineering 

application and practical value perspective, the proposed workload model would help future 
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driving studies by providing a way to quantify driver workload and support the comparison of 

studies in different situations. 
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CHAPTER 1 

Introduction 

 

1.1 Motivation 

 

According to the World Health Organization (WHO), more than 1.2 million people die 

on the world’s roads each year, and as many as 50 million others are injured (World Health 

Organization, 2009). More than 30,000 people die in crashes on U.S. roadways each year 

(National Highway Traffic Safety Administration, 2014). From 2014 to 2015, the increase in the 

number of people who died in crashes was the largest percentage increase (7.2%) in the past 50 

years (National Highway Traffic Safety Administration, 2016). How to reduce driving deaths is 

an important issue in transportation research.  

Driver error has been found to be the main cause of 45% to 75% of crashes (Wierwille et 

al., 2002). Driving under high workload can result in increased driver errors (Hancock et al., 

1990; Briggs et al., 2011). In addition, prolonged exposure to high workload degrades driver 

performance (Strayer and Johnston, 2001; Engstrom et al., 2005; Fuller, 2005). Thus, driver 

workload is an important factor that affects the interactions between vehicles and drivers.  

Workload discussed in this dissertation refers to mental/cognitive workload. (Physical 

workload, which is commonly measured using energy expenditure rates, is not of interest here). 

Mental workload can be described as “the relation between the function relating the mental 

resources demanded by a task and those resources available to be supplied by the human 

operator” (Parasuraman et al., 2008). If either mental resources needed or resources supplied 
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changes, then workload changes. The concept of workload is valuable as it shows the distinctions 

between different operators are working on the same task and the same operator is working on 

different tasks. 

Workload can be affected by activities from both inside and outside of the vehicles. 

Inside of vehicles, different activities (e.g., cell phone use, adaptive cruise control) were found to 

increase driver workload (Ma and Kaber, 2005). Turn maneuvers resulted in significant increase 

in driver workload (Hancock et al., 1990). Outside of the vehicles, curve radius significantly 

affected driver workload (Tsimhoni and Green, 1999). Weather has been widely examined in 

terms of its relationship with driver workload. A significant increase in driver workload was 

observed when wind gust was placed at the front of the vehicle compared to gust towards the 

center of the vehicles (Hicks and Wierwille, 1979). Driver workload in fog was significant 

higher compared to normal visibility (Hoogendoorn et al., 2011).  

Besides the outside factors mentioned above, surrounding traffic is one of the most 

important factors and has not been systematically varied and examined. Previous research 

examining the effect of traffic on workload either lacked a quantitative definition of traffic (Jahn 

et al., 2005; Patten et al., 2006; Cantin et al., 2009) or provided no real-time spatial dimensions 

for the surrounding vehicles (Teh et al., 2014). No one has made a connection between real-time 

traffic and workload. The following three examples show necessity of the model relating real-

time traffic to quantified workload.  

In take-over studies (take-over refers to the transfer of control between manual driving 

and automated driving), workload should be quantified. In previous take-over studies, take-over 

timing and its effects were studied with little consideration of workload contributed by 

surrounding traffic (Table 1.1). Research showed that workload resulting from surrounding 
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vehicles affected take-over time (Radlmayr et al., 2014). Thus, results from take-over studies 

without considering workload contributed by real-time raffic are less convincing.  

Table 1.1 Previous take-over studies did not consider workload induced by traffic 

Study Tasks Main Findings Limitations 

Gold et al., 

2013 

Take over request (TOR) time (7s 

vs. 5s) was assessed in take-over 

scenarios compared to manual 

driving. A secondary task added 

workload in the worst case scenario.  

Shorter take-over time 

resulted in faster 

reactions but worse 

quality (utilization of 

acceleration potential).  

No traffic in take-over 

scenarios. There was no 

traffic on adjacent lane.  

Mok et al., 

2015 

Three transition time conditions 

were tested (2s, 5s, or 8s before 

encountering a road hazard). A 

secondary task added workload in 

the worst case scenario. 

The minimum 

transition time for take-

over should be between 

2s to 5s. 

No traffic was provided 

during take-overs. Only 

oncoming traffic was 

shown after the alert to 

keep drivers to stay in 

assigned lanes. 

Clark et 

al., 

2015 

The effectiveness of two take-over 

warnings were examined (warning 

given 7.5s or 4.5s before take-over).  

The longer warning 

(7.5s) leads to better 

control over lane 

position at take-over.  

No traffic was provided 

when studying take-

over warnings. 

Radlmayr 

et al., 2014 

Take-over time was evaluated in 4 

traffic situations (1 traffic condition 

vs. 3 no traffic conditions) and 

secondary tasks.  

Both traffic situation 

(p=0.01) and secondary 

task (p=0.02) had a 

significant impact on 

take-over time. 

Only one traffic 

situation was studied. 

No quantitative 

description of traffic 

was provided. 

 

Quantifying driver workload as a function of traffic could help contribute to the design of 

adaptive in-vehicle systems (e.g., a workload estimator: an adaptive man-machine interface that 

filters information needed according to situational requirements to avoid overload). In 

Piechulla’s research (2003), a real-time workload estimator was implemented to redirect 

incoming telephone calls to a mailbox whenever workload exceeded a threshold value. The 

research showed that workload can be reduced by using a workload estimator to manage 

distraction (i.e., route calls when workload is high, thereby reducing distraction). However, the 

workload estimator was established mainly based on driver performance after experiencing 

different traffic scenarios. In reality, the temporal workload and performance are not changing 

simultaneously (explanations can be found in Chapter 1.3 in this dissertation). In Verwey’s 
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research (2000), the road situation was identified as a critical factor for driver workload 

estimation. However, road situations were described only qualitatively (e.g., standing still at 

traffic light). The lack of unified and systematic descriptions of traffic scenarios severely hinders 

the development of workload estimators.  

Quantifying driver workload as a function of traffic would benefit regulating secondary 

tasks as well. Many studies have found some in-vehicle secondary tasks should be prohibited 

while driving (Strayer and Johnston, 2001; Horberry et al., 2006; Kass et al., 2007; Collet et al., 

2009). But what levels of secondary task are excessively distracting should depend on the 

workload of the primary driving task. For example, if the primary driver workload is low (e.g., 

no cars around, 4 straight lanes in each direction), then drivers should have the capacity to deal 

with secondary tasks.  

In sum, measuring and quantifying workload in terms of real-time traffic enhances 

driving safety by providing adequate take-over time, refining adaptive in-vehicle systems, and 

regulating in-vehicle secondary tasks. 

1.2 Mental Workload 

 

A relationship among mental workload, task performance, and task demands was 

proposed by De Waard (1996). First of all, workload and task demands are different concepts: 

workload reflects the individual reaction to task demands (Figure 1.1). In regions of the task 

demand A1, A2, A3, performance remains stable and is independent of task demands. At region 

A2, operators can easily deal with driving tasks and can maintain performance at a stable level 

with increasing demands. Task demand can shift from region A2 towards region D/C due to 

decreased driver state (driver state can be affect by monotony, fatigue, sedative drugs, and 

alcohol) or increased task complexity. From region A2 to A1, drivers experience a reduced state: 
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workload is increased but performance can be maintained. If drivers’ state keep deteriorating, 

workload will keep increasing and performance will decrease (region D). From region A2 to A3, 

drivers are able to maintain performance by increasing effort. One side effect associated with 

region A3 is increased performance, as drivers are trying to exert extra effort. In region B, 

performance degrades with increasing task demand. In region C, performance is at its minimum 

level regardless of task demands.  

As the driver workload contributed by traffic is of interest, the most important regions 

that need to be explored are regions A3 and B (due to increased task complexity). In region A3, 

performance can be maintained but workload is increasing. Thus, performance can be used to 

categorize tasks into region A3 and B: if performance decreases when workload increases, then 

the task demand falls in region B; otherwise, the task demand falls in region A3. Furthermore, 

performance cannot serve as a sensitive workload measure in region A3. When a workload 

estimator is developed using performance (Piechulla, 2003), then it has already lost its time-

sensitive property. Watching workload variations closely in region A3 before performance 

change is critical. 

Knowing this relationship, one can categorize task demands into regions by the 

relationship between workload and performance. By knowing the task demands’ regions, it is 

easy to determine whether it’s proper to use performance statistics to indicate the workload level.  
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Figure 1.1 Relationship of workload and performance in 6 regions (De Waard, 1996) 

1.3 Measurements of Workload 

 

Generally, there are five workload measurement groups: primary task performance 

measures, secondary task measures, physiological measures, occlusion measures, and subjective 

rating measures. These groups are reviewed in the following paragraphs, together with 

discussions of the measures to use in this research. 

Primary task performance measures in driving studies include longitudinal performance 

measures (e.g., standard deviation of speed (SDS), standard deviation of acceleration (SDA)) and 

lateral performance measures (e.g., standard deviation of lateral position(SDLP), standard 

deviation of steering wheel angle(SDSTW)) (Hicks and Wierwille, 1979; Lansdown et al., 2004). 

Previous research showed contradictory results on how workload affected performance 

measures. Rakauskas et al. (2004) found that cell phone use resulted in greater variation in 

accelerator pedal position and greater variation in speed. However, another study showed less 

variation in speed in dual task compared to single driving task (Becic et al., 2010). Some studies 

showed improved lateral performance with increased workload (Becic et al., 2010; Engstrom et 
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al., 2005), whereas there is research showing greater workload was associated with decreased 

lateral performance (Engstrom et al., 2005; Strayer and Johnstom, 2001). Some research showed 

there was no association between workload and lateral performance measures (Alm and Nilsson, 

1995; Rakauskas et al., 2004). There are many contradictory results, which can be explained 

using the relationship between workload and performance mentioned in section 1.2. Performance 

is sensitive to workload in region B (higher workload) whereas performance is not sensitive to 

workload in region A3 (lower workload). But primary task performance measures are still 

important in workload study for two reasons (De Warrd, 1996): (1) reduced primary task 

performance can indicate overload; (2) improved primary task performance can be due to 

compensatory effort. The Standard Deviation of Lateral Position (SDLP) and the Standard 

Deviation of Steering-wheel movement (SDSTW) were reported to be sensitive to workload (De 

Waard, 1996). The Standard Deviation of Speed (SDS) was shown to be sensitive to traffic flow 

(Teh et al., 2014). In this dissertation, SDS, the Standard Deviation of Acceleration (SDA), 

SDLP, and SDSTW will be examined. 

Secondary tasks are the extra tasks that can be implemented in addition to driving, such 

as the n-back memory task, the peripheral detection task, the auditory addition task and so forth 

(Verwey, 2000; Jahn et al., 2005; Reimer, 2009; Son et al., 2010). Secondary task measures 

assess the difference between workload capacity consumed by a primary task and total workload 

capacity. However, secondary tasks are used to probe “residual capacity” and they cannot be 

applied in assessing a primary task (Wickens, 2008). Besides, different participants pay different 

levels of attention to secondary tasks (Verwey, 2000). Some could drive more cautiously than 

others by giving lower priority to secondary tasks. Thus, secondary task measures will not be 

employed in this research. 
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Physiological measures include heart rate, heart rate variability, percent eyes-off-road 

time, percent road center, and eye blink statistics (Mehler et al., 2009; Brookhuis and De Waard, 

2010; Benedetto et al., 2011; Stutts et al., 2005; Victor et al., 2005; Recarte and Nunes, 2000). 

The biggest concern about physiological measures is the delay between the appearance of the 

stimulus and the associated physiological response (Piechulla et al., 2003). Mean heart rate and 

heart rate variability are often used as measures of workload. But they actually indicate 

emotional strain and physical capacity (Nickel and Nachreiner, 2003; Jahn et al., 2005). 

Physiological statistics such as eye blink frequency and blink duration are related to workload 

(De Waard, 1996). However, the reliability of eye blink statistics was questioned when task 

demands and dual-task conditions were varied simultaneously (Faure et al., 2016).  

Visual occlusion (Senders, 1967) was shown to be an effective method to study driver 

workload (Van Der Horst, 2004). Driving is a primary visual task (Fairclough et al., 1993); so 

drivers need to see the road to drive safely. If the view is occluded, there is no way that drivers 

can drive for more than a few seconds. To see the road, drivers have to press a button to view the 

scene for a short period of time (typically 0.5s). Of interest is the maximum time that drivers can 

look away from the road. In occlusion measure, the percentage of time that drivers needed to see 

the road was defined as the workload. Therefore, visual occlusion should be an appropriate way 

to examine the workload of the primary driving task. Visual occlusion was used to examine how 

road geometry affects workload in Tsimhoni and Green’s research (1999). The study showed that 

visual occlusion is sensitive to the complexity of the task. No visual occlusion research has been 

done to study the workload associated with surrounding traffic.  

Subjective measures of workload can be divided into multidimensional (e.g., NASA-Task 

Loading Index (NASA-TLX)) and unidimensional (e.g., Rating Scale Metal Effort (RSME), 
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activation scale, anchored rating) ratings (Reid and Nygren, 1988; Hancock et al., 1990; Alm and 

Nilsson, 1995; Bartenwerfer, 1969; Scheweitzer and Green, 2007). NASA-TLX is the most 

popular multidimensional rating (Hart and Staveland, 1988; Hart, 2006). As it lacks anchors, 

between-subject comparisons are difficult to make. In addition, multidimensional ratings have 

been considered to be less sensitive than unidimensional ratings (De Waard, 1996). Therefore, 

NASA-TLX is not a good fit for this study.  

RSME provides a line from 0 to 150 mm, with an anchored point at every 10 mm (16 

anchors). Each anchored point shows its corresponding effort (e.g., almost no effort, extreme 

effort). On the activation scale, subjects are required to mark a line among reference points (e.g., 

I am reading a newspaper, I am trying to cross a busy street). The scale ranges from 0 to 270 and 

is scored by measuring the distance from the origin to the mark. RSME and activation scale are 

sensitive workload measures when task complexity increases. However, they lack an intuitive 

visual reference if used in a driving study. Anchored ratings have been developed to provide 

intuitive visual anchors that can be easily implemented while driving. Anchored ratings involve 

showing roads scenes representing Level of Service (LOS) A (minimal traffic) and LOS E 

(heavy traffic) on two looped video clips. LOS, scored A-F, as defined in Highway Capacity 

Manual (TRB, 2000), is a commonly accepted measure of traffic density. These two anchor clips 

have been assigned workload ratings of 2 and 6 on an open-ended scale. With anchored points, 

within-subjects ratings are stable and between-subjects ratings are comparable (Schweitzer and 

Green, 2007; Lin et al., 2012). Lin et al. (2012) applied anchored rating and concluded the 

following equation accounted for 89% of the rating variance: 

Workload = 8.53-3.18×(Log Mean Gap) + 0.28×(Mean Traffic Count) + 4.70×(Minimum 

Lane Position) - 0.10×(Standard Deviation of Side Vehicle Gap) 
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However, this equation included one performance statistic (i.e., Minimum Lane Position) 

as one of the predictors. According to the workload model discussed before, performance 

measure is not changing simultaneously with workload, thus it should be excluded from 

workload predictions. 

It was suggested that measures from different categories should be applied in workload 

studies (De Waard, 1996; De Waard and Lewis-Evans, 2014). Anchored ratings and visual 

occlusion measures were sensitive to task complexity in past research. The dissociation between 

workload and performance is common when workload level is low (Yeh and Wickens, 1988; De 

Waard, 1996). Thus, anchored ratings, occlusion measures, and performance statistics will be 

examined in this study. 

1.4 Overview of the Chapters 

 

The value of measuring and quantifying driver workload is demonstrated in this Chapter. 

Chapter 2 introduces the theoretical basis and implementation of the proposed driver 

workload model. 

Chapter 3 describes an experiment examining how static traffic affects driver workload. 

Static traffic can be described using categorical variables or continuous variables. Using 

categorical independent variables, critical boundaries in workload perception were provided for 

future studies of workload estimation. A model was presented showing how continuous 

measures of traffic affect driver workload perception. In addition, different workload measures 

(i.e., performance, occlusion, anchored rating) were analyzed and compared. How to better use 

performance measures in workload studies were discussed.  
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Chapter 4 describes an experiment examining how dynamic traffic affects driver 

workload. Similarly, dynamic traffic was described using categorical variables or continuous 

variables. In dynamic traffic, categorical variables are more intuitive in terms of providing the 

results whereas continuous variables describe the traffic in a more systematic way. Using 

categorical independent variables, critical boundaries in workload perception were provided for 

future studies of workload estimation. A model was presented showing how continuous traffic 

variables affect driver workload perception. Different workload measures (i.e., performance, 

occlusion, anchored rating) were analyzed and compared.  

Chapter 5 introduces the development on driver workload modeling using GOMS model. 

This shows the GOMS model can be used to estimate workload as a primary tool for engineers 

and researchers.  

Chapter 6 summarizes the results and conclusions from this dissertation and discusses 

potential directions for future research.
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CHAPTER 2 

A Workload Model 

 

2.1 Hypothesis 

 

Ideally, a workload model should be universal. It should not only account for variations 

tested in this dissertation, but should also account for variations in other studies examining how 

traffic affects workload. Thus, it is of great importance to find proper variables that can be used 

to describe driving scenarios. When abstracting the relationship between the subject vehicle and 

surrounding vehicles, the first two variables that can be used are distance and time. Besides, time 

variables also include information about velocity. Thus, time variable could be a desired choice. 

Then what kinds of time variables should be included? 

Previous research showed that drivers’ risk perception (RP) was strongly affected by time 

headway and time to collision (Kondoh et al., 2008) in car-following situations: 

RP=
𝐴

𝑇𝐻𝑊
+

𝐵

𝑇𝑇𝐶
 

Where A is the constant for the weight of stable component (inverse THW) and B is the 

constant for the weight of dynamic component (inverse TTC). Time headway (THW) is defined 

as the time interval used to travel between the same common external feature of two vehicles 

(SAE J2944). Distance headway (DHW) is defined as the distance between the same common 

feature of two vehicles (SAE J2944). Time to Collision (TTC) is defined as “time interval, 

usually measured in seconds, required for one vehicle to strike another object if both objects 
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continue on their current paths at their current speed” (SAE J2944, option B: velocity based 

TTC). The travel distance for one vehicle to strike another is the gap between two vehicles. 

Thus, the most important variables associated with THW and TTC are DHW and gap. Figure 2.1 

shows definitions of DHW and gap. It should be mentioned that the description of DHW 

between the participant vehicle and side vehicles was expanded to an adjacent lane setting 

(Figure 2.1 (b)). Similarly, gaps used in this study for calculating TTC under different situations 

(two vehicles in the same lane vs. two vehicles in different lanes) are shown in Figure 2.1. When 

two vehicles are in different lanes, there are not only longitudinal gap but lateral gap as indicated 

in Figure 2.1 (b). 

DHW

Gap

 

DHW

Gap

Gap

 

                            (a) (b) 

Figure 2.1 Definition of distance headway and gap used in this study: (a) when two vehicles are 

on the same lane and (b) when two vehicles are on different lanes. 

The combination of inverse TTC and inverse THW has been used to predict driver 

performance. Previous research has shown that drivers tend to press the brake when 

1/THW+4/TTC is greater than 2 (Kondoh et al., 2008). Inverse THW and inverse TTC were 

included in a driver assistance system algorithm (implemented as force feedback on accelerator) 

to help decrease response time and improve the user experience (De Winter et al., 2008). Other 

research showed that these two indices could distinguish situations when two vehicles have 

different absolute velocities and same relative velocity in a car following event (Kitajima et al., 

2009). The combination provides sensitive detections of participant absolute velocity and relative 
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velocity (velocity difference between lead vehicle and participant vehicle) as well as distance. 

This sensitivity is a desired property of a workload measure.  

So far, no research has been conducted to relate inverse TTC/inverse THW to workload. 

Previous research has shown that inverse TTC plays a significant role in determining when 

braking occurs for collision avoidance (Kiefer et al., 2005). Similarly, THW has been used in 

avoiding rear-end collision studies (Fairclough et al., 1997; Michael et al., 2000). Additionally, 

braking events occur more in high workload situations (Cantin et al., 2009). Thus, workload 

could be related to inverse TTC & inverse THW (Figure 2.2). Based on these findings, a bridge 

(indicated using a red arrow in Figure 2.2) between workload and inverse TTC & inverse THW 

is possible.  

 

 

Figure 2.2 TTC and THW are possibly closely related to workload 

 

Driving scenarios can be categorized into static and dynamic conditions. In static 

conditions, the relative velocity among all vehicles is zero (or close to zero) and therefore all the 

gaps are fixed (or there is no relative movement between vehicles). In dynamic conditions, 

relative velocity between vehicles in different lanes is not zero and vehicles can change lanes. In 

real world, driving scenarios could be much more complicated. This dissertation aims at most of 
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the scenarios that drivers encounter. Based on the scenarios (static conditions and dynamic 

conditions) that were mentioned above, any change in the scenarios can be described using the 

proposed variables: inverse TTC & inverse THW. 

To keep the experimental design of the present study manageable, the basic scenario was 

assumed to be a limited access road with two lanes in each direction (without exits or entrances), 

test conditions that are easier to control and more amenable to an initial evaluation. Additionally, 

limited access roads are the first application for automated driving systems. To develop a 

workload model, a set of scenarios were created that (1) include the most likely encounters with 

surrounding traffic, (2) support model development, and (3) omit excessive redundancy in the 

conditions to be explored. 

2.2 A Workload Model for Static Conditions 

 

The static scenarios to be examined, labeled as scenarios (use cases) S0-S8, are shown in 

Table 2.1. For vehicles in the driver’s lane, the gaps between those vehicles and the driver are 

constant. For vehicles in the adjacent lane, both longitudinal and lateral gaps between those 

vehicles and the driver are constant. The scenarios include driving with one vehicle at four 

relative locations (S1:lead/S2:following/S4:left lead/S5:left following), driving with two vehicles 

in the driver’s lane (S3) or in the adjacent lane (S6), driving with three surrounding vehicles (S7) 

and driving with four vehicles around (S8). The driver is always in the right lane, as it is assumed 

that staying in the right/left will not affect driver workload as the two arrangement are mirror 

images of each other.  
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Table 2.1 Illustration of basic scenarios (static conditions) 

Scenarios (Use Cases) Illustration 

S0: Participant vehicle drives freely in right lane. 

 

S1: Participant vehicle follows a lead vehicle. Both vehicles 

are in right lane. 

 

S2: Participant vehicle is followed by a following vehicle. Both 

vehicles are in right lane. 

 

S3: Participant vehicle follows lead vehicle. Following vehicle 

follows participant vehicle. All vehicles are in right lane. 

 

S4: Participant vehicle runs in the right lane. There is a 

vehicle running in the adjacent lane in front.  

 

S5: Participant vehicle runs in the right lane. There is a 

vehicle running in the adjacent lane at back.  

 

S6: Participant vehicle runs in the right lane. There are two 

vehicles running in the adjacent lane.  

 

S7: Lead vehicle and following vehicle maintain gap with 

participant vehicle. There is one vehicle running in the 

adjacent lane. 
 

S8: Lead vehicle and following vehicle maintain gap with 

participant vehicle. There are two vehicles running in the 

adjacent lane. 
 

Note: S-participant (subject) vehicle; L-lead vehicle; F-following vehicle; V1- side vehicle No.1 

in the adjacent lane (or left lead vehicle); V2- side vehicle No.2 in the adjacent lane (or left 

following vehicle). 

Table 2.2 shows the proposed workload equations for the static conditions. Workload is 

assumed to be proportional to inverse THW, as zero relative velocity leads to an infinite TTC 
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term. One divided by infinity is zero, so in that case TTC does not contribute to workload. Thus, 

TTC is ignored in the static condition. In addition, for simplicity, workload from different 

surrounding vehicles was assumed to be strictly additive (no interaction). It was assumed that 

each component of workload has different weights (αs), as vehicles at different locations have 

varied impacts on total driver workload. Wi are constant workload components in different 

driving scenarios. 

Table 2.2 Workload modeling based on THW in static conditions 

Scenarios Illustration Prediction of Workload 

S0 

 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊0 

S1 
 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊1 + 𝛼1

1

𝑇𝐻𝑊𝐿
 

S2 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊2 + 𝛼2

1

𝑇𝐻𝑊𝐹
 

S3 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊3 + 𝛼31

1

𝑇𝐻𝑊𝐿
+ 𝛼32

1

𝑇𝐻𝑊𝐹
 

S4 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊4 + 𝛼4

1

𝑇𝐻𝑊𝑣1
 

S5 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊5 + 𝛼5

1

𝑇𝐻𝑊𝑣2
 

S6 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊6 + 𝛼61

1

𝑇𝐻𝑊𝑣1
+ 𝛼62

1

𝑇𝐻𝑊𝑣2
 

S7 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊7 + 𝛼71

1

𝑇𝐻𝑊𝐿
+ 𝛼72

1

𝑇𝐻𝑊𝐹

+ 𝛼73

1

𝑇𝐻𝑊𝑣1
 

S8 

 
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊8 + 𝛼81

1

𝑇𝐻𝑊𝐿
+ 𝛼82

1

𝑇𝐻𝑊𝐹

+ 𝛼83

1

𝑇𝐻𝑊𝑣1
+ 𝛼84

1

𝑇𝐻𝑊𝑣2
 

Note: the subscript indicate the THW between driver and target vehicle (e.g., THWL is the THW 

between the participant vehicle and lead vehicle. 
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2.3 A Workload Model for Dynamic Conditions 

 

In a most recent workload study examining the effect of traffic (Teh et al, 2014), traffic 

flow, lane change presence, and lane change proximity were identified as significant factors that 

can affect driver workload. Lane change direction was found to have no effect on driver 

workload. Thus, lane change is definitely an important element which should be included in 

dynamic conditions. All the factors discussed in Teh’s research were long term average 

(vehicles/km/h) or dichotomous. In this dissertation, it is of great importance to make all the 

elements quantifiable in the workload model.  

The dynamic scenarios, labeled as scenarios D1-D10, are shown in Table 2.3. The driver 

can be in the slower lane (D1-D5) or the faster lane (D6-D10). In addition, there could be lane 

change actions (indicated by arrows in D2-D5 & D7-D10). Vehicles could change from faster 

lane to slower lane or slower lane to faster lane. The urgency of the lane change action and 

relative velocity between two lanes can vary. By changing these factors, THW and TTC can vary 

over a wide range. The driver is always in the right lane as the faster/slower lane is indicated by 

the actual relative velocity instead of lane allocation.  
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Table 2.3 Illustration of basic scenarios (dynamic conditions) 

Scenarios Illustration 

D1: Vehicles in left lane are faster than vehicles in right.  

S LF

V1+V2+

 
D2: Vehicles in left lane are faster than vehicles in right. 

Lead vehicle is changing to left lane. 
S LF

V1+V2+ L

 
D3: Vehicles in left lane are faster than vehicles in right. Side 

vehicle V1 is changing to right lane. 
S LF

V1+V2+

V1+
 

D4: Vehicles in left lane are faster than vehicles in right. 

Lead vehicle is changing to left lane. 
S LF

V1+V2+ L V3+

V4
 

D5: Vehicles in left lane are faster than vehicles in right. Side 

vehicle V1 is changing to right lane. 
S LF

V1+V2+

V1+

V3+

V4
 

D6: Vehicles in right lane are faster than vehicles in left lane. 

S+ L+F+

V1V2

 
D7: Vehicles in right lane are faster than vehicles in left lane. 

Lead vehicle is changing to left lane. 
S+ L+F+

V1V2 L+

 
D8: Vehicles in right lane are faster than vehicles in left. Side 

vehicle V1 is changing to right lane. 
S+ L+F+

V1V2

V1
 

D9: Vehicles in right lane are faster than vehicles in left lane. 

Lead vehicle is changing to left lane. 
S+ L+F+

V1V2 L V3

V4+
 

D10: Vehicles in right lane are faster than vehicles in left 

lane. Side vehicle V1 is changing to right lane. 
S+ L+F+

V1V2

V1

V3

V4+
 

Note: Plus signs indicate vehicles in the faster lane. V4 and V3 are vehicles precede lead and 

side vehicle V1 respectively. 

 

Following is the proposed workload prediction equation for dynamic conditions. The 

assumptions are: (1) for vehicles directly in front of the driver, both inverse THW and inverse 

TTC should be included as the driver could collide into them; (2) for vehicles that are not 

directly in front of the driver, only inverse THW should be included as there is no approaching 

action between the driver and the target vehicle. There are two interaction terms here for vehicles 

right in front of the driver as it shows that if TTC of the target vehicle is small enough in both 
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longitudinal and lateral directions then workload should increase. The effect of each vehicle was 

still assumed to be strictly additive (the same as for static traffic). 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑊1 + 𝛼1

1

𝑇𝐻𝑊𝐿
+𝛼2

1

𝑇𝐻𝑊𝑉1
+ 𝛼3

1

𝑇𝐻𝑊𝑉2
+ 𝛼4

1

𝑇𝐻𝑊𝑉3
+ 𝛼5

1

𝑇𝐻𝑊𝑉4

+ 𝛼6

1

𝑇𝑇𝐶𝑣1

1

𝑇𝑇𝐶𝑣1𝐿
+ 𝛼7

1

𝑇𝑇𝐶𝐿

1

𝑇𝑇𝐶𝐿𝐿
 

where the subscripts of TTC indicate the TTC between the participant and the target 

vehicle (e.g., TTCv1 is the TTC between driver and V1). If the vehicle number is followed by L, 

it indicates the TTC in lateral direction (i.e., TTCv1L).  

This chapter describes the scenarios that can be used to evaluate the proposed model. 

They are a subset of the scenarios that could be explored. Due to the limited time for conducting 

experiments (under 2 hours), not all possible combinations could be examined. In static traffic, 

the role of each vehicle, two different 2-vehicle combinations, one 3-vehicle combination, and 

one 4-vehicle combination were examined. In dynamic traffic, the combination of different 

relative velocity and lane change actions were examined.  

In future studies, the proposed workload modeling can be used to predict any scenarios. 

In static scenarios, what matter are the spatial information about surrounding vehicles. THW 

should quantitatively describe any changes about spatial information. In dynamic scenarios, 

besides spatial information, what matter are the relative velocities between vehicles as well as 

lane change actions. Both THW and TTC should quantitatively show all these information about 

lane change and relative velocities. 
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CHAPTER 3 

An Experimental Investigation of How Static Traffic Affects Driver Workload 

 

3.1 Introduction 

 

In static conditions, the relative velocity among all vehicles is zero (or close to zero) and 

all the gaps are fixed (or change by imperceptible amount). 

This driving simulator experiment addresses the following questions: 

(3.1) How can driving scenarios be categorized into region A3 and region B of task  

demand? Were performance statistics sensitive to workload? 

(3.2) How do traffic elements (i.e., DHW) affect workload measures? 

(3.3) How well are workload measures in this study predicted by the workload model 

(based upon THW)?  

(3.4) What are the differences between anchored ratings, occlusion measures, and 

performance statistics of driver workload?  

3.2 Methods 

 

3.2.1 Participants 

 

Twenty-four participants (12 males, and 12 females) were recruited. For each gender, 

half of them were old participants (age>65) and half of them were young participants (21-30 

years old). It should be noted that drivers’ experience had a significant effect on cognitive driver 
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workload (Patten, 2006): experienced drivers had a lower workload level compared to 

inexperienced drivers. Accordingly, only experienced drivers were recruited (at least 5-years-

experience and driving at least 5000 miles per year). Participants’ far vision was required to be 

20/50 or better. 

3.2.2 Workload measures and experiment design 

 

Which variables should be examined? As discussed in Chapter 1.3, “residual capacity” of 

driver workload is not of the interest, so the secondary task measures were not collected. Due to 

the limited lab resources and reliability of physiological measures, physiological measures were 

not collected neither. Based on the advantages and disadvantages of the remaining measures 

(Chapter 1.3 in this dissertation), the dependent variables chosen were: the anchored ratings of 

workload, occlusion% (i.e., percentage of time needed to see the roads during driving), and 

several performance statistics (SDS, SDA, SDLP, SDSTW). Independent variables include the 

traffic scenario, DHW, and inverse THW.  

The next step was to determine what the range of THW should be. For example, in a car-

following situation, workload should be stable when THW increases from 15s to 16s, as there is 

no substantial difference in workload when lead vehicle is that far from the driver’s vehicle. 

Previous research has pointed out that workload increases considerably when THW is 3s or less 

(Piechulla et al., 2003). Vogel suggested that a time headway of 6s can be used to distinguish 

between free driving and car following driving (Vogel, 2002). An on-road study conducted by 

Taieb-Maimon and Shinar (2001) showed that three-quarters of drivers maintained THW larger 

than 0.5s. Based on the above research, the desired range to be explored could be between 0.5s 

and 3s.  
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Participants were instructed to drive at 65 mph (29 m/s) and avoid braking. In the US, 65 

mph is the common posted speed for limited access roads. The upper limit of DHW was 87 m  

(3 s THW) as the threshold at which workload starts to increase considerably compared to free 

driving. The levels of DHW as well as THW examined are shown in Table 3.1. 

Table 3.1 The levels of THW to be examined 

DHW(m) 14.5 29.0 58.0 72.5 87.0 

THW(s) 0.5 1.0 2.0 2.5 3.0 

1/THW 2.00 1.00 0.50 0.4 0.33 

 

Table 3.2 shows the number of cases examined in each scenario. Scenario S0 was used as 

the baseline trial. It provides workload of free driving. From scenario S1 to S6, 5 levels of DHW 

were examined. To eliminate the number of cases to be explored, in S3, 𝐷𝐻𝑊𝐿 and 𝐷𝐻𝑊𝐹 were 

the same. Similarly, in S6, 𝐷𝐻𝑊𝑣1 and  𝐷𝐻𝑊𝑣2 were kept at the same level. In S7, 𝐷𝐻𝑊𝐿 

=𝐷𝐻𝑊𝐹 has 5 levels and 𝐷𝐻𝑊𝑣1 has 5 levels, so the number of case examined was 25 (5 levels 

of 𝐷𝐻𝑊𝑣1 x 5 levels of 𝐷𝐻𝑊𝐿/𝐷𝐻𝑊𝐹). In S8, 𝐷𝐻𝑊𝑣1 and  𝐷𝐻𝑊𝑣2 were kept to be same. Thus, 

the number of cases examined in S8 was 25 (5 levels of 𝐷𝐻𝑊𝑣1/𝐷𝐻𝑊𝑣2 x 5 levels of 

𝐷𝐻𝑊𝐿/𝐷𝐻𝑊𝐹). ). In sum, the total number of cases examined was 82.  
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Table 3.2 The number of cases to be examined in each scenario (stable condition) 

Scenarios Illustration Independent 

Variable 

No. of 

levels 

No. of cases  

to be examined 

S0 
S  

- - 2 

S1 
S L  

𝐷𝐻𝑊𝐿 5 5 

S2 
SF

 

𝐷𝐻𝑊𝐹 5 5 

S3 
S LF

 

𝐷𝐻𝑊𝐿= 𝐷𝐻𝑊𝐹 5 5 

S4 
S

V1

 

𝐷𝐻𝑊𝑣1 5 5 

S5 
S

V2

 

𝐷𝐻𝑊𝑣2 5 5 

S6 
S

V1V2

 

𝐷𝐻𝑊𝑣1= 𝐷𝐻𝑊𝑣2 5 5 

S7 
S LF

V1

 
𝐷𝐻𝑊𝐿= 𝐷𝐻𝑊𝐹 , 

 𝐷𝐻𝑊𝑣1  

5x5 25 

S8 
S LF

V1V2

 
𝐷𝐻𝑊𝐿 = 𝐷𝐻𝑊𝐹,

𝐷𝐻𝑊𝑣1 = 𝐷𝐻𝑊𝑣2  

5x5 25 

Total  82 

 

3.2.3 Experiment setup  

 

A fixed-base mid-fidelity driving simulator running MiniSim v2.0 software, was used for 

this experiment (http://www.nads-sc.uiowa.edu/minisim/). The simulator consists of a car seat 

mounted on a motion platform, three HDMI resolution 55-inch monitors forming a 120-degree 

field of view (Figure 3.1), speakers to produce sounds, a simulated instrument panel, a steering 

wheel and foot pedals, and software to generate the road scenes and collect the driving 

performance data (steering wheel angle, pedal positions, speeds, and the locations as well as 

movements of all vehicles in the scene). The simulation helped participants drive at the desired 

speed. If they drove too slowly, the car following honked, just as a real car would. If they drove 

too fast, then a voice would say “Please slow down”.  
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The occlusion measure was developed to meet the requirement of this research. When the 

participant pressed a button on the steering wheel, the driving scene was be viewable for 0.5s. 

When the participant pressed the button for longer than 0.5s, the driving scene would be off 

unless the button was pressed again.  

 

Figure 3.1 Driving Simulator Set up 

3.2.4 Procedure 

 

Participants completed a consent form and demographic as well as driving history 

questionnaires before the experiment. Then, vision was checked to meet the requirement. Before 

the formal experiment, each participant was given three practice sessions: One to learn how to 

drive the simulator, one to learn how to drive and rate workload simultaneously, and the last one 

to learn how to drive and complete the occlusion task simultaneously. Then, participants were 

instructed to drive 2 test blocks (driving with rating vs. driving with occlusion task). It took 

around 30 minutes to complete each block. The sequence of the two blocks was arranged within 

each age*gender group to counterbalance for learning.  

In one drive, anchored ratings were collected. Participants were asked to answer “what is 

the current workload?” during each of the designated driving segments. Anchor clips were 

presented as a loop (each loop takes 5s), with both clips appearing simultaneously on a display 
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below the road scene (Figure 3.2). Participants were instructed to report rating within 5 s to make 

sure they are reporting the instant workload (the traffic was not changing during the 5 s). In 

another formal drive, visual occlusion was collected. In both drives, performance data (SDS, 

SDA, SDLP, SDSTW) was recorded at 60 Hz.  

 

Figure 3.2 Anchor clips for subjective rating 

3.2.5 Statistical analysis 

 

For each scenario, the Linear Mixed Model (LMM) was employed to check the 

relationship between the workload measures(rating and occlusion) and each performance 

statistic. LMM was also employed to examine the effect of scenario type, DHW, and THW on 

workload measures. Random effect (participants) was included in the model. The residual plot 

was drawn to make sure the data meets linearity and homoskedasticity assumptions. In all post-

hoc analyses, Bonferroni correction was applied. It should be noted that as there is no widely 

accepted R2 for LMM, the R2 here was calculated based on the definition of coefficient in the 

fixed-effects world: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖−1

∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑁
𝑖−1
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The purpose of providing this number in LMM was to show the proportion of variance 

that can be explained by the proposed model.  

3.3 Results 

 

3.3.1 Categorizations of scenarios (question 3.1) 

 

Table 3.3 shows the significant levels for correlations between the performance statistics 

and rating. If the performance statistics is positively associated with rating, then the task demand 

can be categorized in region B (higher workload is associated with decreased performance). 

Otherwise, it’s in region A3 (no correlation between workload and performance when workload 

is low). Furthermore, it tells the sensitivity of performance statistics (performance statistics are 

sensitive under higher workload). During the analysis, it was assumed that certain scenario is 

either in region A3 or B. As the variation of workload in one event (one event was defined as one 

DHW level in one scenario) is limited, the relationship between workload measures and 

performance statistics cannot be analyzed at one DHW level.  

The resutls shows task demands of scenarios 1-6 were in region A3 (lower workload 

level). In scenario 7, SDLP was negatively associated with rating (p=0.022, Table 3.3). This 

outcome is expected, as one side effect associtated with region A3 is better performance with 

increased workload. Thus, task demand of scenario 7 was in region A3 (higher end of lower 

workload level). 

In scenario 8, SDS (p=0.001), SDA (p=0.036), and SDSTW (p=0.042) were positively 

associated with rating. After applying Bonferroni correction, rating vs. SDS were still positively 

correlated. This reveals that the task demand of scenario 8 should be in region B. The 

performance measures could be sensitive to workload in scneario 8. 
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Table 3.3 Correlations between performance statistics and workload rating 

Scenario Performance statistics P value 

S1 

S L
 

SDS 0.745 

SDA 0.237 

SDLP 0.082 

SDSTW 0.928 

S2 

SF
 

SDS 0.966 

SDA 0.743 

SDLP 0.350 

SDSTW 0.408 

S3 

S LF
 

SDS 0.929 

SDA 0.578 

SDLP 0.179 

SDSTW 0.850 

S4 

S

V1

 

SDS 0.696 

SDA 0.506 

SDLP 0.952 

SDSTW 0.879 

S5 

S

V2

 

SDS 0.086 

SDA 0.298 

SDLP 0.650 

SDSTW 0.364 

S6 

S

V1V2

 

SDS 0.396 

SDA 0.757 

SDLP 0.815 

SDSTW 0.304 

S7 

S LF

V1

 

SDS 0.126 

SDA 0.176 

SDLP 0.022(-) 

SDSTW 0.392 

S8 

S LF

V1V2

 

SDS 0.001(+) 

SDA 0.036(+) 

SDLP 0.419 

SDSTW 0.042(+) 

Note: The plus or minus sign indicate the performance statistics and workload are correlated 

positively or negatively. 

 

3.3.2 Anchored rating (questions 3.2, 3.3) 

 

LMM conducted on the anchored ratings found the main effect of scenario type 

(F=203.496, p=0.000) to be highly significant. Post-hoc pairwise comparisons (Table 3.4) 

showed significant differences between all scenario types with a few exceptions: scenario 0 and 
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scenario 5 (p=0.854), scenario 1 and scenario 3 (p=0.553), scenario 1 and scenario 6 (p=1.000), 

scenario 2 and scenario 5 (p=1.000), scenario 4 and scenario 6 (p=0.123). It showed there was no 

difference between rating of free driving and driving with a left following vehicle (S0&S5). 

While driving with a lead vehicle (or left lead vehicle), the following vehicle in the same lane 

with the lead vehicle did not result in additional workload (S1&S3; S4&S6). Driving with a 

following vehicle or a left following vehicle was at the same workload level (S2&S5). There was 

no difference between driving with a lead vehicle and driving with both left lead vehicle and left 

following vehicle (S1&S6).  

Table 3.4 P values for post-hoc comparisons between all scenario types (rating) 

Scenario 

type 

0 

(Mean

=0.781, 

SD=0.6

35) 

1 

(Mean

=2.975, 

SD=1.5

26) 

2 

(Mean

=1.479, 

SD=0.8

83) 

3 

(Mean

=3.375, 

SD=1.6

48) 

4 

(Mean

=2.275, 

SD=0.9

57) 

5 

(Mean

=1.275, 

SD=0.7

42) 

6 

(Mean

=2.758, 

SD=1.0

81) 

7 

(Mean

=4.132, 

SD=1.5

04) 

8 

(Mean

=4.581, 

SD=1.5

64) 

0  0.000 0.050 0.000 0.000 0.854 0.000 0.000 0.000 

1   0.000 0.553 0.001 0.000 1.000 0.000 0.000 

2    0.000 0.000 1.000 0.000 0.000 0.000 

3     0.000 0.000 0.007 0.000 0.000 

4      0.000 0.123 0.000 0.000 

5       0.000 0.000 0.000 

6        0.000 0.000 

7         0.000 

8          

 

Following the analysis of the scenario type on rating, the data were then stratified by 

DHWs. LMM was employed to examine how distance headway (DHW) affected the rating. The 

effect of DHWs on rating in different scenarios is shown in Table 3.5. In all scenarios, DHW of 

all the vehicles played significant roles in determining driver workload rating. 
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Table 3.5 The main effects of DHWs on workload rating in different scenarios 

Scenarios Illustration Independent 

Variables 

F p 

S1 
S L  

DHWLead 48.477 0.000 

S2 
SF  

DHWFollow 18.125 0.000 

S3 
S LF  

DHWLead 67.125 0.000 

S4 
S

V1

 

DHWLeftLead 13.878 0.000 

S5 
S

V2

 

DHWLeftFollow 12.582 0.000 

S6 
S

V1V2

 

DHWLeftLead 19.140 0.000 

S7 
S LF

V1

 

DHWLead 221.281 0.000 

DHWLeftLead 18.990 0.000 

S8 
S LF

V1V2

 

DHWLead 180.188 0.000 

DHWLeftLead 40.186 0.000 

S1-S8 
S LF

V1V2

 

DHWLeft 203.990 0.000 

DHWFollow 7.282 0.000 

DHWLeftLead 105.299 0.000 

DHWLeftFollow 21.486 0.000 

 Note: V1 is the left lead vehicle; V2 is the left following vehicle 

Post-hoc analysis within each scenario can be find in Figure 3.1. The significant pairs 

were identified using the asterisks.  

In a simple car following event (S1 shown in Figure 3.1), post-hoc analysis indicated that 

driver workload rating of a lead vehicle at 14.5 m was statistical significantly greater than 

workload rating of lead vehicles at 29 m (p=0.000), 58 m (p=0.000), 72.5 m (p=0.000), and 87 m 

(p=0.000). Driver workload rating of a lead vehicle at 29 m is statistical significantly greater than 

rating of a lead vehicle at 72.5 m (p=0.000), and 87 m (p=0.000).  
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In S2 (Figure 3.1), post-hoc analysis showed driver workload rating of following vehicles 

at 14.5 m and 29 m was statistical significant higher than following vehicles at 58 m (p14.5 vs 

58=0.000, p29 vs 58=0.000), 72.5 m (p14.5 vs 72.5=0.000, p29 vs 72.5=0.000) and 87 m (p14.5 vs 87=0.000, 

p29 vs 87=0.000).  

In S3, it was shown that driver workload rating of both lead vehicle and following vehicle 

at 14.5 m was statistical significantly greater than workload rating of both vehicles at 29 m 

(p=0.000), 58 m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000) (Figure 3.1). Rating of both 

vehicles at 29 m was statistical significantly greater than workload rating of both vehicles at 58 

m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000).  

In S4, driver workload rating of a left lead vehicle at 14.5 m was statistical significantly 

greater than workload rating of lead vehicles at 29 m (p=0.000), 58 m (p=0.000), 72.5 m 

(p=0.000), and 87 m (p=0.000) (Figure 3.1). Driver workload rating of a lead vehicle at 29 m 

was statistical significantly greater than rating of a lead vehicle at 87 m (p=0.007).  

In S5, driver workload of left following vehicle at 14.5 m was statistical significantly 

greater than workload rating of lead vehicles at 58 m (p=0.000), 72.5 m (p=0.000), and 87 m 

(p=0.000) (Figure 3.1). 

In S6, it was shown that driver workload rating of both left lead vehicle and left 

following vehicle at 14.5 m was statistical significantly greater than rating of both vehicles at 29 

m (p=0.002), 58 m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000) (Figure 3.1). Driver 

workload rating of left lead vehicle and left following vehicle vehicles at 29 m was statistical 

significantly greater than workload rating of both vehicles at 87 m (p=0.001).  

In S7 (Figure 3.1), post-hoc comparisons showed that driver workload rating of both lead 

vehicle and the following vehicle at 14.5 m was significant greater than other events (p=0.000). 
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Driver workload rating of both lead and following vehicles at 29 m was significant greater than 

58 m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000). Workload rating of the lead vehicle and 

following vehicles at 58 m was significant greater than 87 m (p=0.001). Workload rating of the 

left lead vehicle at 14.5 m was significant greater than 58 m (p=0.001), 72.5 m, (p=0.000), and 

87 m (p=0.000). Workload rating of the left lead vehicle at 29m was significant greater than 72.5 

m (p=0.000) and 87 m (p=0.000). 

In S8 (Figure 3.1), post-hoc comparisons showed that workload rating of the lead and 

following vehicles at 14.5 m was significant greater than 29 m (p=0.000), 58 m (p=0.000), 72.5 

m (p=0.000), 87 m (p=0.000). Workload rating of both vehicles at 29 m was significant greater 

than 58 m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000). Workload rating of both vehicles at 

58 m was significant greater than 87m (p=0.001). Workload rating of both vehicles at 72.5 m 

was significant higher than 87 m (p=0.004). Workload rating of left vehicles at 14.5 m was 

significant higher than 29 m (p=0.019), 58 m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000). 

Workload rating of left vehicles at 29 m was significant higher than 58 m (p=0.000), 72.5 m 

(p=0.000), and 87 m (p=0.000). 
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(S1) (S2) (S3) 

   

(S4) (S5) (S6) 

  

(S7) (S8) 

Figure 3.3 Driver workload ratings at different DHW levels in 8 tested scenarios
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Figure 3.3 summarizes the findings at 5 DHW levels for all tested scenarios. The 

significant pairs were identified using the asterisks. Driver workload rating was high when lead 

vehicles (lead or left lead vehicle) were close (DHW<=29 m). Following vehicle at 29 m and left 

following vehicle at 14.5 m also contributed to greater driver workload. 

Figure 3.4 Driver workload ratings at different DHW levels in all scenarios 

 

Figure 3.5 shows workload rating in the four scenarios (S1, S3, S7, S8) having the lead 

vehicle. The overall trends were consistent: workload rating decreased when distance between 

participant vehicle and surrounding vehicles increased. When the distance reached 58 m, further 

increases in distance no longer affected workload rating. When the total number of vehicles 

increased (S1:1, S3:2, S7:3, S8:4), the workload rating increased accordingly. Figure 3.6 shows 

workload rating in four scenarios (S4, S6, S7, S8) having the left lead vehicle. Overall, workload 

rating decreased when the distance between left lead vehicle and participant vehicle increased. 

Compared to the change caused by the lead vehicle, there was no abrupt change after 58 m: the 
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decreasing trend was relative smooth. When the total number of vehicles increased (S4:1, S6:2, 

S7:3, S8:4), the workload rating increased. 

Figure 3.5 Driver workload ratings in four scenarios (S1, S3, S7, S8) 

Figure 3.6 Driver workload ratings in four scenarios (S4, S6, S7, S8) 
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equations of workload rating based upon inverse THW in each scenario. All the equations used 

independent variables have a significant level less than 0.001. No age effect was found.  

Table 3.6 Regression equations in different scenarios (Rating) 

Scenario Illustration Equation R2 

S1 
S L

 

Rating=1.43+1.81/THWLead 0.72 

S2 
SF

 

Rating=0.87+0.71/THWFollow 0.58 

S3 
S LF

 

Rating=1.68+1.99/THWLead 0.78 

S4 
S

V1

 

Rating=1.64+0.74/THWLeftLead 0.50 

S5 
S

V2

 

Rating=0.86+0.49/THWLeftFollow 0.66 

S6 
S

V1V2

 

Rating=1.95+0.93/THWLeftLead 0.59 

S7 
S LF

V1

 

Rating=2.40+1.60/THWLead+0.43/THWLeftLead 0.70 

S8 
S LF

V1V2

 

Rating=2.68+1.54/THWLead+0.69/THWLeftLead 0.67 

S1-S8 - Rating=1.74+1.74/THWLead+0.20/THWFollow+

0.79/THWLeftLead +0.28/ THWLeftFollow 

0.73 

 

3.3.3 Occlusion% (questions 3.2, 3.3) 

 

LMM showed that scenario type was a significant factor on occlusion% (F=23.114, 

p=0.000). Post-hoc pairwise comparisons showed that there were significant differences except a 

few pairs: scenario 0 and scenario 2/5, scenario 1 and scenario 3/4/6/7/8, scenario 2 and scenario 

4/5, scenario 3 and scenario 4/6/7/8, scenario 7 and scenario 8 (Table 3.7). Occlusion% detected 

all the no different pairs that rating identified (shown in bold in Table 3.7).  
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The data were then stratified by DHWs. The effect of DHWs on occlusion% in different 

scenarios are shown in Table 3.8. When there is a lead vehicle (S1, S3, S7, S8), occlusion% was 

sensitive to the DHW of the lead vehicle.  

Table 3.7 P values for post-hoc comparisons between all scenario types (occlusion%) 

Scenario 

type 

0 

(Mean

=0.347, 

SD=0.0

15) 

1 

(Mean

=0.431, 

SD=0.0

09) 

2 

(Mean

=0.379, 

SD=0.0

09) 

3 

(Mean

=0.428, 

SD=0.0

09) 

4 

(Mean

=0.411, 

SD=0.0

09) 

5 

(Mean

=0.368, 

SD=0.0

09) 

6 

(Mean

=0.421, 

SD=0.0

09) 

7 

(Mean

=0.459, 

SD=0.0

04) 

8 

(Mean

=0.457, 

SD=0.0

04) 

0  0.000 1.000 0.000 0.013 1.000 0.001 0.000 0.000 

1   0.004 1.000 1.000 0.000 1.000 0.265 0.516 

2    0.009 0.596 1.000 0.068 0.000 0.000 

3     1.000 0.000 1.000 0.116 0.239 

4      0.048 1.000 0.000 0.000 

5       0.003 0.000 0.000 

6        0.009 0.021 

7         1.000 

8          

 

Table 3.8 The main effects of DHWs on occlusion% in different scenarios 

Scenarios Illustration Independent Variables F p 

S1 
S L  

DHWLead 2.615 0.040 

S2 
SF  

DHWFollow 0.970 0.428 

S3 
S LF  

DHWLead 12.338 0.000 

S4 
S

V1

 
DHWLeftLead 1.496 0.210 

S5 
S

V2

 
DHWLeftFollow 0.423 0.791 

S6 
S

V1V2

 
DHWLeftLead 2.135 0.083 

S7 
S LF

V1

 
DHWLead 30.317 0.000 

DHWLeftLead  2.336 0.054 

S8 
S LF

V1V2

 
DHWLead 19.341 0.000 

DHWLeftLead 5.46 0.000 

S1-S8 - DHWLead 14.949 0.000 

DHWFollow 2.501 0.029 

DHWLeftLead 9.799 0.000 

DHWLeftFollow 1.973 0.080 

   Note: V1 is the left lead vehicle; V2 is the left following vehicle 
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In a simple car-following event (S1, shown in Figure 3.7), post-hoc analysis indicated 

that occlusion% of a lead vehicle at 14.5m was statistical significantly greater than workload 

from lead vehicles at 72.5 m (p=0.044). In S3, occlusion% of both lead vehicle and following 

vehicle at 14.5 m was statistical significantly greater than workload from both vehicles at 29 m 

(p=0.000), 58 m (p=0.000), 72.5 m (p=0.000), and 87 m (p=0.000) (Figure 3.5). 

  

(S1) (S3) 

Figure 3.7 (S1) occlusion% contributed by a lead vehicle (S2) occlusion% contributed by both 

lead and following vehicles 

 

Occlusion% decreased with increased DHW of the lead and following vehicles in S7 

(Figure 3.8). Post-hoc comparisons showed that occlusion% at 14.5 m of the lead and following 

vehicles was significant greater than other events (p=0.000). Occlusion% at 29 m of the lead and 

following vehicles was significant greater than 58 m (p=0.000), 72.5 m (p=0.000), and 87 m 

(p=0.018). Occlusion% at 58 m of the left lead vehicle was significant greater than 87 m 

(p=0.029). 

The occlusion% decreased with increased DHW of the lead and following vehicles in S8 

(Figure 3.9). Post-hoc comparisons showed that occlusion% at 14.5m of the lead and following 

vehicles was significant greater than 29 m (p=0.000), 58 m (p=0.000), 72.5 m (p=0.000), 87 m 

(p=0.000). Occlusion% at 29 m of the lead and following vehicles was significant greater than 58 
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m (p=0.000). Occlusion% at 14.5 m of the left vehicles was significant greater than 58 m 

(p=0.001). Occlusion% at 29 m of the left vehicles was significant greater than 58 m (p=0.003). 

 

Figure 3.8 Occlusion% in S7 

 

Figure 3.9 Occlusion% in S8 

 

 Figure 3.10 summarizes the post-hoc findings at all DHW levels in examined scenarios. 

DHW of the lead vehicle at 14.5 m resulted in higher occlusion% compared to 29 m (p=0.024) 

and 72.5m (p=0.000).  
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Figure 3.10 Occlusion% at different DHW level in all scenarios 

The effect of the DHW of lead vehicle on occlusion% in examined scenarios can be 

found in Figure 3.11. When DHW of lead vehicle was 14.5 m, occlusion% was higher than the 

rest DHWs.  

Figure 3.11 Occlusion% in four scenarios (S1, S3, S7, S8)  

When including participants’ speed in the model, the relationship between occlusion% 

and continuous variable THW can be found in Table 3.9. Only well predicted regression 

equations using backwards elimination are listed (at least one predictor have a significant level 
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less than 0.05). All the listed independent variables have a significant level of 0.000. No age 

effect was found in S7 (0-old; 1-young).  

Table 3.9 Regression equations for different scenarios (occlusion%) 

Scenario Illustration Equation R2 

S3 
S LF  

Occlusion%=0.34+0.10/THWLead 0.69 

Occlusion%=0.30+0.10/THWLead-0.10Age 0.69 

S7 
S LF

V1

 
Occlusion%=0.40+0.07/THWLead  0.64 

S8 
S LF

V1V2

 
Occlusion%=0.39+0.05/THWLead+0.02/THWLeftLead 0.59 

Occlusion%=0.35+0.05/THWLead+0.02/THWLeftLead-0.08Age 0.91 

 

3.3.4 Performance (questions 3.2, 3.3) 

 

The categorization of scenarios indicated that performance statistics were only sensitive 

in scenario 8. Thus, the analysis in this section used data from scenario 8. Table 3.10 shows the 

effects of DHWs on performance statistics using LMM. Figure 3.12 shows the effect of DHW of 

lead vehicle on SDS and the effect of DHW of left lead vehicle on SDSTW.  

Table 3.10 the effects of DHWs on performance statistics 

Scenarios Dependent 

Variables 

Independent 

Variables 

F p 

S8 

S LF

V1V2

 

SDS DHWLead 3.176 0.013 

DHWLeftLead 0.397 0.812 

SDA DHWLead 2.165 0.071 

DHWLeftLead 0.574 0.681 

SDLP DHWLead 2.285 0.065 

DHWLeftLead 0.598 0.677 

SDSTW DHWLead 0.781 0.538 

DHWLeftLead 2.663 0.032 
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Figure 3.12 The effects of DHWs on SDS(mph) and SDSTW(degree) in S8 

The relationship between performance statistics and continuous variable THW can be 

found in Table 3.11. Block (0-occlusion block; 1-rating block) was included as an independent 

variable. Drivers had greater SDS but less SDLP in occlusion block. SDSTW was not sensitive 

to different blocks.  

Table 3.11 Regression equations for different scenarios (performance statistics) 

Scenario Illustration Equation R2 

S8 

 
S LF

V1V2

 
SDS=0.50+0.07/THWLead (p=0.016)-0.10Block 

(p=0.004)  
0.20 

SDLP=0.31-0.04/THWLead (p=0.06)+0.10Block 

(p=0.000) 
0.10 

SDSTW=0.36+0.04/THWLeftLead (p=0.04) 0.23 

3.4 Discussion 

 

3.4.1 Categorization of driving scenarios (question 3.1) 

 

According to the workload model by De Waard (1996), drivers are able to maintain 

performance (even better performance) by increasing effort in region A3. In region B, 

performance degrades with increasing task demand. By examining the relationship between 
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workload rating and performance statistics, scenarios 1, 2, 3, 4, 5, 6, 7 of Experiment 1 were 

found to be belong to region A3. Particularly, scenario 7 is at the higher end of region A3 (close 

to region B) as the performance improved when workload increased. In scenario 8, SDS 

increased when workload increased. Scenario 8 could be categorized in region B and SDS should 

be a sensitive workload measure in this study. The results also showed that when workload was 

relatively low, drivers were able to maintain lateral position with increased workload. However, 

they were not able to drive smoothly in the longitudinal direction (i.e., SDS). This is consistent 

with what was found while examining the regression equations for SDS and SDLP: Drivers 

tended to compromise speed but still maintain lateral position in occlusion blocks. 

3.4.2 Relationship between Distance Headway (DHW) and workload measures (question 3.2) 

 

Using rating as the workload measurement, the main effects of DHWs were found to be 

significant in all the scenarios examined. When driving with a lead vehicle (S1 and S3) or a left 

lead vehicle (S4 and S6), workload rating at 14.5 m was greater than any other scenarios. While 

driving with a following vehicle or a left following vehicle (S2 and S5), workload rating at  

14.5 m was greater than events having longer DHWs (58 m, 72.5 m, and 87 m). The workload 

rating was affected by the DHWs of vehicles in both lanes (S7 and S8). In both scenarios, 

situations where the DHW of lead vehicle at 14.5 m and 29 m should be highlighted as they 

contributed to the total workload significantly greater than other levels. While driving with 4 

vehicles around (S8), the role of left lead vehicle was reinforced by adding the left following 

vehicle. It made the workload ratings with left lead vehicle at 14.5m and 29m greater than any 

other events. Thus, 14.5 m was the distance that could contribute to greater workload no matter 

which vehicle it was. Besides, when lead vehicle was 58 m or further ahead of the participant’s 

vehicle, its DHW no longer affected workload. However, for the left lead vehicle: driver 
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workload always decreased when DHW increased. Generally, in terms of effects of DHWs on 

workload in all scenarios, from greatest to least, they were: DHWLead, DHWLeftLead, 

DHWLeftFollow, DHWFollow. In addition, with increased number of vehicles, the workload 

increased. 

Using occlusion as the workload measure, the main effects of DHWs were significant in 

S1, S3, S7, and S8, in which there is the lead vehicle. While driving with only following vehicle 

(S2) or vehicles in the adjacent lane (S4, S5, and S6), occlusion did not show any significant 

differences. In S3, S7, and S8, lead vehicle at 14.5 m resulted in a greater workload compared to 

all other events shown by occlusion%. However, in a simple car following event (S1), the 

difference between 14.5m and other events was not distinct. Again, the following vehicle 

reinforced the role of the lead vehicle. 

When examining the performance statistics, SDS was sensitive to changes made by the 

lead vehicle whereas SDSTW was sensitive to changes made by the left lead vehicle. Drivers 

tended to compromise speed (SDS) but still maintain lateral position (SDLP) when workload 

increased.  

In summary, workload rating was sensitive to DHW levels of all the vehicles around 

while occlusion% was only sensitive to DHW levels in scenarios having a lead vehicle. SDS was 

sensitive to the changes made by vehicles in the same lane with participant (i.e., lead vehicles). 

SDSTW was sensitive to changes made by vehicles in the adjacent lane (i.e., left lead vehicles).  

3.4.3 The Model using Time Headway (THW) to predict workload (question 3.3) 

 

When modeling rating using THWs, the regression equations can be used to describe the 

workload rating (Table 3.6). No age effect was found. While modeling occlusion using THWs, 

S3, S7, and S8 can be well described using regression equations (Table 3.9). All these three 
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scenarios have a lead vehicle. However, the simple car following event (S1) cannot be described 

using THW. In S7, the THW of left lead vehicle was not a significant predictor. The age effect 

was found in occlusion measure modeling. If considering age as a predictor, the occlusion 

regression equation can count for most of the variances (91%). For scenarios having no lead 

vehicle (S2, S4, S5, and S6), the occlusion cannot be modelled using THW. While modeling 

performance statistics using THWs, there were some significant predictors (Table 3.11). 

However, the R2s were low.  

In sum, the workload model works for both rating and occlusion%. However, occlusion% 

was not sensitive to scenarios having no lead vehicles and simple car-following event (S1). 

Performance statistics were not able to be well predicted using the proposed model.  

3.4.4 Differences between workload measures (question 3.4) 

 

While examining the effect of scenario type on workload measures, the occlusion% 

statistic identified fewer significantly different pairs than the workload ratings (Table 3.7). Thus, 

in terms of identifying the effect of scenario type on workload, occlusion% was less sensitive 

compared to rating. 

Significant differences were observed in all scenarios using ratings as the workload 

measure (Table 3.5). When examining the effect of DHWs on occlusion%, no significant effect 

was found in scenarios only having vehicles in the adjacent lane (S4, S5, and S6 in Table 3.8). 

Occlusion% was less sensitive to workload contributed by vehicles in the adjacent lane 

compared to rating. In addition, the following vehicle had no effect on occlusion% (S2 in Table 

3.8). In terms of examining the main effect of DHWs on the most complicated driving scenarios 

(i.e., S8), rating and occlusion% were consistent: both DHWs of vehicles in participant’s lane 

and adjacent lane had significant effects on total workload (S8 in Table 3.5 and Table 3.8). 
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While modeling the workload rating using inverse THWs, the workload rating was 

sensitive to inverse THW in all scenarios. However, occlusion% was less sensitive in the 

proposed workload modeling, as only three scenarios having the lead vehicle can be modeled 

using inverse THWs. In other words, occlusion% was more sensitive in scenarios where there 

was a lead vehicle in front of the participant when workload level was low. However, 

occlusion% can be well described using the proposed model (Rocclusion
2=0.91, Rrating

2=0.73). The 

age effect was not observed while using rating but was observed using occlusion% in S3 and S8. 

For future studies, if controlling age effect is desired, anchored rating should be chosen as the 

measure for workload. 

In sum, though occlusion% was less sensitive to scenarios having no lead vehicles, it can 

be well modelled using the proposed workload model. Workload rating was sensitive in all 

scenarios and had no age effect. 
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CHAPTER 4 

An Experimental Investigation of How Dynamic Traffic Affects Driver Workload 

 

4.1 Introduction 

 

In the previous chapter, static traffic was defined as scenarios when there were no relative 

movements among vehicles (fixed headways, same velocity, no lane changes). In this chapter, 

dynamic traffic is defined as scenarios when there are relative movements between vehicles 

(different velocities, sometimes changing lanes). While experiencing various relative speeds, 

participants were asked to drive either in the faster lane or the slower lane. Participants 

experienced different lane change urgencies by changing how fast the lane change vehicle turned 

its steering wheel. 

This driving simulator experiment addresses the following questions: 

(4.1) How do the traffic elements (i.e., relative velocity, lane change urgency, drive in the 

slower/faster lane, number of vehicles) affect workload measures? 

(4.2) How well are workload measures in this study predicted by the workload model 

(based upon inverse THW and TTC)? 

(4.3) What are the differences among the anchored ratings, occlusion measure, and 

performance statistics in dynamic traffic?  

 



54 
 

4.2 Methods 

 

4.2.1 Participants 

 

Twenty-five participants (14 males, and 11 females) were recruited. Eight (3 males and 5 

females) of them were elderly participants (age>65) and seventeen (11 males and 6 females) of 

them were young participants (21-30 years old). It should be noted that elderly participants were 

not able to complete the occlusion task in this experiment because of the high workload of the 

driving task (some of them reported that they wanted to press the button very frequently but they 

cannot do it due to arthritis). Thus occlusion data was collected only from young participants. 

Only experienced drivers were recruited (at least 5-years-experience and driving at least 5000 

miles/year). Participants’ far vision was required to be 20/50 or better. 

4.2.2 Workload measures and experiment design 

 

The dependent variables were: the anchored rating, occlusion%, and driving performance 

statistics (SDS, SDA, SDLP, SDSTW). Independent variables include two sets: categorical set 

and continuous set. The categorical set includes relative velocity, lane change urgency, the lane 

the driver was in (slower/faster lane), and number of vehicles. The continuous set includes 

inverse THW and inverse TTC. Both the categorical set and the continuous set were used to 

describe dynamic traffic. The categorical set serves the purpose of providing intuitive feedback 

of how people perceive workload in various dynamic scenarios. The continuous set was applied 

to show the workload model presented in Chapter 2. In addition, the continuous set could 

describe the scenario more comprehensively than categorical set. If any elements change in 

dynamic scenarios (even traffic elements that were not included in the categorical set), the 

proposed continuous set can always be used to describe the scenario. 
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Table 4.1 shows the number of cases examined in each scenario. D1-D5 are the scenarios 

in which participants are in the slower lane while D6-D10 are the scenarios in which participants 

are in the faster lane. Relative velocity has 3 levels (7 mph/14 mph/21 mph) and lane change 

urgency has 3 levels (none/smooth/sharp). In total, the number of cases examined was 54. 

Table 4.1 The number of cases examined in dynamic traffic. 

Scenarios Illustration Independent 

Variable 

Levels No. of cases 

examined 

D1 
S LF

V1+V2+

 

V’(relative 

velocity) 

3 3 

D2 
S LF

V1+V2+ L

 

V’, ɵ 3x2 6 

D3 
S LF

V1+V2+

V1+

 

V’, ɵ 3x2 6 

D4 
S LF

V1+V2+ L V3+

V4

 

V’, ɵ 3x2 6 

D5 
S LF

V1+V2+

V1+

V3+

V4

 

V’, ɵ 3x2 6 

D6 
S+ L+F+

V1V2

 

V’ 3 3 

D7 
S+ L+F+

V1V2 L+

 

V’, ɵ 3x2 6 

D8 
S+ L+F+

V1V2

V1

 

V’, ɵ 3x2 6 

D9 
S+ L+F+

V1V2 L V3

V4+

 

V’, ɵ 3x2 6 

D10 
S+ L+F+

V1V2

V1

V3

V4+

 

V’, ɵ 3x2 6 

Total  54 

Note: V’ = relative velocity;  ɵ = lane change urgency 

4.2.3 Experiment Setup 

 

A fixed-base mid-fidelity driving simulator running MiniSim v2.0 software was used for 

this experiment (http://www.nads-sc.uiowa.edu/minisim/). The simulator consists of a car seat 
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mounted on a motion platform, three HDMI resolution 55-inch monitors forming a 120-degree 

field of view, speakers to produce sounds, a simulated instrument panel, a steering wheel and 

foot pedals, and software to generate the road scenes and collect the driving performance data 

(steering wheel angle, pedal positions, speeds, and the locations as well as characteristics of all 

vehicles in the scene). The simulation helped participants drive at the desired speed. If they 

drove too slowly, the car following them honked, just as a real car would. If they drove too fast, 

then a voice would say “Please slow down”. The occlusion measure was the same as the 

previous experiment. The driving scene was blocked unless the driver pressed a button on the 

steering wheel. For each button press, the driving scene will be viewable for 0.5s.  

4.2.4 Procedure 

 

Participants completed the consent and demographic forms as well as driving history 

questionnaires before the experiment. Then, their far acuity was checked to meet the 

requirement. Next, each participant learned how to drive the simulator, how to drive and rate the 

workload simultaneously, and how to drive while the road scene was intermittently occluded. 

Then, participants were instructed to drive 4 test blocks: rating in faster lane, rating in slower 

lane, occlusion task in faster lane, occlusion task in slower lane. It took approximately 10 

minutes to complete each block. The sequence of the four blocks was arranged within each age 

group to counterbalance the learning effect.  

In the two anchored rating blocks, participants were asked to answer “what is the current 

workload?” during each of the designated driving segments. Anchored clips were presented as a 

5 s loops, with both clips appearing simultaneously on a display below the road scene. 

Participants were asked to report the highest workload level they experienced within 5s. In the 
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two occlusion test blocks, visual occlusion was collected. In all four blocks, performance data 

were recorded at 60 Hz.  

4.2.5 Statistical Analysis 

 

LMM was employed to examine the relationship between workload rating and each 

performance measure. LMM was also employed to examine the effect of categorical set and 

continuous set on workload measures. Participants were modeled as a random effect. The 

residual plot was drawn to make sure the data meets linearity and homoskedasticity assumptions. 

In all post-hoc analyses, Bonferroni correction was applied. Similar to the previous chapter, there 

is no widely accepted R2 for LMM, and the R2 here was calculated based on the definition of 

coefficient in the fixed-effects world: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖−1

∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑁
𝑖−1

 

The purpose of providing this number in LMM was to show the proportion of variance 

that was explained by the proposed model.  

4.3 Results 

 

4.3.1 The effects of traffic elements on anchored rating (question 4.1) 

 

 Table 4.2 shows that all the main effects and two-way interaction effects were 

statistically significant. Figure 4.1 shows that participants experienced higher workload in the 

faster lane compared to the slower lane (p=0.001). Post-hoc test (Figure 4.2) indicates that 

participants experienced significant lower workload when the relative velocity was 7 mph 

(p7vs14=0.003, p7vs21=0.001) compared to 14/21 mph. Post-hoc test (Figure 4.2) also shows that 
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participants experienced less workload when a lane change was sharp compared with no lane 

change (p=0.032).  

Table 4.2 The effects of traffic elements on workload ratings 

Independent Variables F p 

Lane (stay in the faster lane or slower lane) 11.064 0.001 

Lane change urgency 3.968 0.019 

Relative velocity 7.953 0.000 

No. Vehicles 202.758 0.000 

Lane*Relative velocity 23.614 0.000 

Lane*Lane change urgency 6.342 0.002 

Lane change urgency *Relative velocity 9.141 0.000 

 

 

Figure 4.1 The comparison between workload ratings in different lanes (faster/slower)  
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Figure 4.2 The comparison among workload ratings with different relative velocities 

 

Figure 4.3 The comparison among workload ratings with different lane change actions 

 

Figure 4.4 shows the interaction effect (p=0.000) between lane and relative velocity. In 

the slower lane, participants experienced higher workload when the relative velocity between 
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two lanes was low. In the faster lane, participants experienced lower workload when the relative 

velocity between two lanes was low. 

Figure 4.4 Interaction effect between relative velocity and lane on ratings 

 Figure 4.5 shows the interaction effect (p=0.002) between lane and lane change urgency. 

When a sharp lane change was presented, participants experienced higher workload while 

driving in the slower lane. In contrast, participants experienced greater workload in the faster 

lane when a smooth lane change was presented or there was no lane change. When there was a 

lane change action, the difference between faster lane and slower lane was no longer obvious.  
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Figure 4.5 Interaction effect between lane change urgency and lane on ratings 
 

 Figure 4.6 shows the interaction effect (p=0.000) between lane change urgency and 

relative velocity. When the relative velocity was low (RelativeV=7 mph), lane change action or a 

faster lane change action resulted in higher ratings. In contrast, when the relative velocity 

increased (RelativeV=14 mph/21mph), rating was higher when it was a smooth/no lane change 

compared to sharp lane changes. 

 

Figure 4.6 Interaction effect between relative velocity and lane change urgency on ratings 
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4.3.2 The effects of traffic elements on occlusion% (question 4.1) 

 

 Table 4.3 shows that all the main effects of traffic elements on occlusion% were 

statistically significant. Figure 4.7 shows that participants spent more time looking at the roads in 

the faster lane compared to the slower lane (p=0.036). Post-hoc test (Figure 4.8) did not show 

any statistical significant pairs among the different relative velocities. However, the comparison 

between 7 mph and 21 mph did show engineering significant (p=0.067, using Bonferroni 

correction). If no correction was applied, then 14mph (p=0.037) and 21 mph (p=0.022) resulted 

in greater occlusion% compared to 7 mph. Post-hoc test (Figure 4.9) also shows that participants 

spent more time on looking at the roads when there was no lane change compared to smooth 

(p=0.003)/sharp lane change (p=0.001). 

Table 4.3 The effects of traffic elements on occlusion% 

Independent Variables F p 

Lane (stay in faster lane or not) 4.418 0.036 

Lane change urgency 6.399 0.002 

Relative velocity 3.204 0.041 

No. Vehicles 4.401 0.036 

Lane*Relative velocity 18.781 0.000 

Lane*Lane change urgency 1.272 0.281 

Lane change urgency*Relative velocity 4.930 0.001 
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Figure 4.7 The comparison between occlusion% in different lanes (faster/slower)  

 

Figure 4.8 The comparison among occlusion% with different relative velocities. 
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Figure 4.9 The comparison among occlusion% with different lane change events 

 

Figure 4.10 shows, in the slower lane, participants spent more time on looking at roads 

when the relative velocity is low. In the faster lane, participants spent less time looking when the 

relative velocity is low (p=0.000).  

 

Figure 4.10 Interaction effect between relative velocity and lane on occlusion% 
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LMM shows no interaction effect (p=0.282) between lane and lane change urgency 

(Figure 4.11). With any kind of lane change action, participants spent more time looking at the 

roads in the faster lane.  

 

Figure 4.11 Interaction effect between lane change action and lane on occlusion% 
 

 The interaction effect (p=0.001) between lane change urgency and relative velocity can 

be found in Figure 4.12. When the relative velocity was low (RelativeV=7mph), lane change 

action or a faster lane change action resulted in greater occlusion%. In contrast, when the relative 

velocity increased (RelativeV=14 mph/21 mph), participants spent less time looking at the roads 

when there was a smooth/sharp lane change compared to no lane change. 
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Figure 4.12 Interaction effect between relative velocity and lane change urgency on occlusion% 

 

4.3.3 The effects of traffic elements on performance (question 4.1) 

 

Table 4.4 shows that performance statistics were positively correlated with anchored 

rating. In other words, higher workload is associated with poorer performance (larger SD). The 

task demands of all the tested dynamic scenarios should fall in region B in De Waard model. It 

indicated that the performance measures should be sensitive to workload in dynamic traffic. In 

the first experiment (Chapter 3), only some of the performance statistics showed its correlation 

with rating in the most complicated static traffic scenario (S8) (Table 3.3). 
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Table 4.4 The relationship between performance statistics and anchored rating 

Performance Statistics               p value 

SDS 0.000 (+) 

SDA 0.000 (+) 

SDLP 0.000 (+) 

SDSTW 0.000 (+) 

                               Note: plus signs show DV and IDV are positively correlated. 

 Then how traffic elements affect each of the performance statistics is in Table 4.5. No 

age effect was found in analyzing any of the performance statistics.  

Table 4.5 The effects of traffic elements on performance statistics  

Dep. Variables Independent Variables F p 

 

 

SDS 

 

Lane 0.000 0.995 

Lane change urgency 2.382 0.093 

Relative velocity 3.765 0.023 

No. Vehicles 1.152 0.283 

Lane *Lane change urgency 1.088 0.337 

Lane *Relative velocity 7.643 0.001 

Lane change urgency*Relative velocity 1.368 0.243 

 

 

SDA 

 

Lane 21.060 0.000 

Lane change urgency 6.131 0.002 

Relative velocity 10.657 0.000 

No. Vehicles 0.371 0.543 

Lane *Lane change urgency 1.536 0.216 

Lane *Relative velocity 6.455 0.002 

Lane change urgency*Relative velocity 1.151 0.331 

 

 

SDLP 

 

Lane 3.260 0.071 

Lane change urgency 9.756 0.000 

Relative velocity 6.219 0.002 

No. Vehicles 1.061 0.303 

Lane *Lane change urgency 5.929 0.003 

Lane *Relative velocity 1.639 0.195 

Lane change urgency*Relative velocity 1.859 0.115 

 

 

SDSTW 

 

Lane 0.411 0.521 

Lane change urgency 4.720 0.009 

Relative velocity 4.751 0.009 

No. Vehicles 0.106 0.745 

Lane *Lane change urgency 3.976 0.019 

Lane *Relative velocity 4.931 0.007 

Lane change urgency*Relative velocity 0.564 0.688 
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Figure 4.13 shows the main effects of lane on performance statistics. Figure 4.14 shows 

the main effects of lane change urgency on performance statistics. Figure 4.15 shows the main 

effects of relative velocity on performance statistics. The significant pairs were indicated using 

the asterisks. The interaction effect of lane and relative velocity for all four performance 

statistics are shown in Figure 4.16. The interaction effect of lane and lane change urgency for 

SDLP and SDSTW can be found in Figure 4.17. 

 

           Figure 4.13 The main effects of block on performance statistics 
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                   Figure 4.14 The main effects of lane change urgency on performance statistics 

 

Figure 4.15 The main effects of relative velocity on performance statistics 
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Figure 4.16 The interaction effect of relative velocity and lane on performance statistics 

  
Figure 4.17 The interaction effect of lane change action and lane on some performance statistics 

4.3.4 The effects of continuous set on workload measures (question 4.2) 

 

To evaluate the proposed workload model, the traffic elements should be described 
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regression equations. Only significant predictors (significant level less than 0.05) are included in 

the equations using backwards elimination. No age effect was found for rating.  

Table 4.6 Coefficients for possible regression equations and corresponding p values 

 Rating Occlusion% 

constant 4.53 0.381 

1/THWLeftLeadLead 1.215  

(p=0.005) 

0.150 

(p=0.001) 

1/THWLeftFollow 0.001 

(p=0.011) 

 

1/THWLeadLead 3.069 

(p=0.000) 

-0.117 

(p=0.012) 

1/THWLead 0.524 

(p=0.000) 

0.021 

(p=0.000) 

1/(TTCLead* 

TTCLeadLateral) 

0.240 

(p=0.029) 

 

1/(TTCLeftLead* 

TTCLeftLeadLateral) 

30.487 

(p=0.002) 

2.648 

(p=0.004) 

R2 0.54 0.58 

 

4.4 Discussion  

 

4.4.1 Effects of traffic elements on workload (question 4.1) 

 

 All the traffic elements had a statistical significant effect on workload rating and 

occlusion%. Generally speaking, drivers experienced greater workload in the faster lane. Higher 

workload level was associated with greater relative velocity between two lanes. Drivers 

experienced greater workload when there was no lane change. Both workload rating and 

occlusion % indicated that when relative velocity was low, the more urgent of lane change was, 

the greater workload participants experienced. In contrast, when relative velocity increased, the 

urgency of the lane change can no longer increase driver workload. Workload rating, 

occlusion%, and performance statistics showed participants experienced greater workload with 

increased relative velocity while in the fast lane. In contrast, they experienced reduced workload 

with increased relative velocity while in the slow lane. 
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The effects of traffic elements on performance statistics varied. Only SDA identified the 

main effect of lane on workload. Only lateral statistics (i.e., SDLP, SDSTW) were able to 

identify the main effect of lane change urgency. All the performance statistics identified the main 

effects of relative velocity.  

4.4.2 Workload model determined by THW and Time to Collision (TTC) (question 4.2) 

 

Both rating and occlusion% can be described using the proposed model. The regression 

equations showed the relative importance of each component. However, the R2 was less than 

desired for rating. One possible source of noise could come from the way that participants 

considered lane change actions in terms of its effect on total workload. Lane changes were not 

shown in the anchored clips.  

Two less term was included in modeling occlusion%: it was not sensitive to the left 

following vehicle (same characteristic while examining it in static traffic). When the lead lead 

vehicle was too close, the occlusion% dropped. This can be explained by the trade-off between 

performance and workload level: When there were too many activities happening in the scene, 

participants can no longer fully involved in the driving task. Thus, the occlusion% decreased. It 

shows that occlusion% is no longer a sensitive measure when workload level is high.  

4.4.3 Differences among workload measures (question 4.3) 

 

In terms of how traffic elements affect rating/occlusion%, the interaction between lane 

and lane change urgency was not consistent. When there was a sharp lane change, drivers 

experienced higher workload level in slower lane measured by rating. However, occlusion% was 

not able to detect the interaction effect: at different lane change urgency levels, participants 

experienced higher workload while driving in the faster lane compared to the slower lane.  
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While examining the main effect of lane change urgency, rating showed higher workload 

was associated with no lane change and participants spent shorter time observing the road when 

there was a sharp lane change activity. In addition, analyses showed the main effect of lane 

change urgency on performance statistics was significant: greater longitudinal statistic (i.e., 

SDA) were associated with no lane change events; smaller lateral measures were associated with 

no lane change events. Two conclusions can be drawn here: (1) rating, occlusion%, and 

longitudinal measures are consistent in terms of capturing workload level in different levels of 

lane change urgency; However, (2) What actually captured was the trade-off between workload 

level and performance: when there was a lane change action, lateral performance decreased; at 

the same time, participants were not able to actively be involved in rating/occlusion task/velocity 

maintaining task as the most critical task for them was stay in the right lane. Thus, all these 

measures dropped. As mentioned in the previous chapter, occlusion% was sensitive in scenarios 

where there was a lead vehicle in front of the participant when workload level was low. In high 

workload scenarios contributed by lane change activities, occlusion% cannot reflect actual 

workload level. 

Here is a summary of all the workload measures examined in the dissertation:  

(1) Anchored ratings are a sensitive workload measure and they are unaffected by age. 

(2) Occlusion measure is a sensitive measure of workload, when the workload level is 

low. At high levels of workload, the act of pressing the button is a sufficiently loading task that it 

interferes with driving, and therefore occlusion% becomes a less accurate indicator of workload. 

(3) Performance statistics were influenced by driving, which indicated that drivers paid 

more attention to the lane keeping task than velocity control in the tested scenarios. In future 
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workload studies, besides the verification of the sensitivity of performance measure, multiple 

performance statistics should be applied as one performance measure cannot illustrate the full 

story of how participants drive. 
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CHAPTER 5 

GOMS Modeling of Driver Workload in Static and Dynamic Traffic 

 

5.1 Introduction 

 

In this chapter, GOMS model (Card et al., 1983) is used to model driver workload. 

GOMS represents Goals, Operators, Methods, and Selection rules. It is a method that uses 

production rules. The GOMS model is widely used to predict learning time and performance 

time of procedural tasks.  

There are several GOMS family models. The simplest one is the Keystroke-Level Model 

(KLM, Card et al., 1980), which can be used to predict the total execution time for elementary 

keystroke actions. The most complex one is Cognitive Perceptual Motor GOMS (CPM-GOMS, 

Gray et al., 1993), which predicts execution time using a schedule chart mapped out by motor 

processes. Natural GOMS Language (NGOMSL, Keiras, 1997) is a method in between these two 

methods: structured natural language is used to describe the procedural knowledge that a user 

must follow to get the task done. A NGOMSL model decomposes the main goal into several sub-

goals. All the sub-goals can be described at the level of basic operators.  

As mentioned above, GOMS models were primarily used to predict time. No previous 

research used GOMS model only to predict workload. To model workload in this chapter, a time 

line model is used. Mental workload can be described as “the relation between the function 

relating the mental resources demanded by a task and those resources available to be supplied by
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the human operator” (Parasuraman et al., 2008). The time line model (North and Riley, 1989) 

satisfies the definition by using timerequired to represent mental resources demanded and 

timeavailable representing mental resources available. Thus, it is proposed that the use of expected 

workload (Equation 5.1) is an index of workload. 

ExpectedWorkload = 
𝑇𝑖𝑚𝑒𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝑇𝑖𝑚𝑒𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
                                                                      (5.1) 

5.2 Methods 

 

To model driver workload using NGOMSL, a task analysis was conducted in the format 

of a flow chart (Figure 5.1). Procedure-based task descriptions can be found in Figure 5.2 and 

Figure 5.3.  

As GOMS models are not designed for concurrent tasks or interferential tasks, in this 

research, the “rate workload while driving” is described as one single task: rate workload. 

However, the driving task can be embedded into the procedural knowledge that the participant 

must follow to get the task done. In this research, the driving task was extracted as looking at the 

front view and two other mirrors (i.e., the center mirror and the left side mirror) before each 

workload rating. For all driving tasks, it is essential to look at the front view. In addition, 

participants were instructed to look at the other two mirrors. Thus, the procedural knowledge 

listed did show rules that a participant was supposed to executed.  

In the modeling, each step in the GOMSL model takes 50ms to execute. No extra time 

was added to total execution time if it’s a primitive mental operator (No long term memory was 

involved in the task). In addition, each analyst-defined mental operator (i.e., retain, calculate, 

perceive, consider) requires extra 1200ms.  
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Figure 5.1 A Flow Chart of the Workload Rating Task  
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Method for GOAL: Rate Workload while Driving  

 Step1. Look at <front road scene>  

 Step2. Accomplish goal: generate workload value of front road scene  

 Step3. Look at <side mirror scene> 

 Step4. Accomplish goal: generate workload value of side mirror scene  

 Step5. Look at <center mirror scene> 

 Step6. Accomplish goal: generate workload value of center mirror scene  

 Step7. Accomplish goal: calculate total workload value 

 Step8. Retrieve <total workload value> from short-term memory 

 Step9. Report <total workload value> 

 Step10. Return with goal accomplished 

Method for Goal: generate workload level of front road scene 

 Step1. Decide: If <front road scene> is empty, <front road scene value> = 0 and go to 

step 3, else go to step 2.  

 Step2. Accomplish goal: think about the front road scene value 

 Step3. Store <front road scene value> to short-term memory  

 Step4. Return with goal accomplished 

Method for Goal: think about the front road scene value 

 Step1. Compare <front road scene> to < scene of anchor 2>: If <front road scene> is 

less busy than <scene of anchor 2>, go to step3, else go to step 2 

 Step2. Compare <front road scene> to < scene of anchor 6> 

 Step3. Retain <front road scene value> 

 Step4. Return with goal accomplished 
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Method for Goal: generate workload level of side mirror scene 

 Step1. Decide: If <side mirror scene> is empty, <side mirror scene value> = 0 and go 

to step 3, else go to step 2.  

 Step2. Accomplish goal: think about the side mirror scene value 

 Step3. Store <side mirror scene value> to short-term memory  

 Step4. Return with goal accomplished 

Method for Goal: think about the side mirror scene value 

 Step1. Compare <side mirror scene> to < scene of anchor 2>: If <side mirror scene> is 

less busy than <scene of anchor 2>, go to step3, else go to step 2 

 Step2. Compare <side mirror scene> to < scene of anchor 6> 

 Step3. Retain <side mirror scene value> 

 Step4. Return with goal accomplished 

Method for Goal: generate workload level of center mirror scene 

 Step1. Decide: If <center mirror scene> is empty, <center mirror scene value> = 0 and 

go to step 3, else go to step 2.  

 Step2. Accomplish goal: think about the center mirror scene value 

 Step3. Store <center mirror scene value> to short-term memory  

 Step4. Return with goal accomplished 

Method for Goal: think about the center mirror scene value 

 Step1. Compare <center mirror scene> to < scene of anchor 2>: If <center mirror 

scene> is less busy than <scene of anchor 2>, go to step3, else go to step 2 

 Step2. Compare <center mirror scene> to < scene of anchor 6> 

 Step3. Retain <center mirror scene value> 
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 Step4. Return with goal accomplished 

Method for Goal: Calculate total workload value 

            Step1. Retrieve <front road scene value> <side mirror scene value> < center mirror 

scene value> from short-term memory  

            Step2. Decide: If <front road scene value> = 0, then go to step 5, else go to step 3 

 Step3. Calculate <weighted front road scene value>   

 Step4. Store <weighted front road scene value> to short-term memory 

 Step5. Decide: If <side mirror scene value> = 0, then go to step 8, else go to step 6 

            Step6. Calculate <weighted side mirror scene value>   

 Step7. Store <weighted side mirror scene value> to short-term memory 

            Step8. Decide: If <center mirror scene value> = 0, then go to step 11, else go to step 9 

            Step9. Calculate <weighted center mirror scene value>   

 Step10. Store <weighted center mirror scene value> to short-term memory 

            Step11. Calculate <total workload value> 

            Step12. Store <total workload value> to short-term memory 

            Step13. Return with goal accomplished 

Figure 5.2 NGOMSL-Style Description of the Workload Rating Task in Static Traffic 

Method for GOAL: Rate Workload while Driving   

 Step1. Accomplish goal: Look at <front road scene>  

 Step2. Accomplish goal: generate workload value of front road scene  

 Step3. Accomplish goal: Look at <side mirror scene> 

 Step4. Accomplish goal: generate workload value of side mirror scene  

 Step5. Accomplish goal: Look at <center mirror scene> 
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 Step6. Accomplish goal: generate workload value of center mirror scene  

 Step7. Accomplish goal: calculate total workload value 

 Step8. Retrieve <total workload value> from short-term memory 

 Step9. Report <total workload value> 

 Step10. Return with goal accomplished 

Method for Goal: Look at <front road scene> 

Step1. Perceive in which lane (slow/fast) the driver is driving 

Step2. Store <lane value> to short-term memory 

Step3. Perceive the relative velocity (low/medium/high) between two lanes 

Step4. Store <relative velocity value> to short-term memory 

Step5. Perceive if there is a lane change action.  

Step6. Decide: If there is a lane change action, go to Step 7; if no, <lane change 

urgency> = 0 and go to Step8. 

Step7. Perceive how urgent (smooth/sharp) the lane change action is.  

Step8. Store <lane change urgency> to short-term memory. 

Step9. Return with goal accomplished 

Method for Goal: generate workload level of front road scene 

 Step1. Compare <front road scene> to < scene of anchor 2>: If <front road scene> is 

less busy than <scene of anchor 2>, go to step17, else go to step 2 

            Step2. Compare <front road scene> to < scene of anchor 6>: If <front road scene> is 

less busy than <scene of anchor 6>, go to step17, else go to step 3 

Step3. Retrieve <relative velocity value> 

 Step4. Compare <relative velocity value> to < relative velocity in scene of anchor 6>  
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 Step5. Decide: If <relative velocity value> <= < relative velocity in scene of anchor 

6>, go to step 7, else go to step 6 

Step6. Consider how much extra workload brought by <relative velocity value> 

Step7. Retain <extra front scene value 1> 

Step8. Store <extra front scene value 1> to short-term memory 

Step9. Retrieve <lane change urgency> 

Step10. Decide: If <lane change urgency> = 0, go to step 14, else go to step 11 

Step11. Decide: If <lane change urgency> = smooth, go to step 12; if <lane change 

urgency> = sharp, go to step13 

Step12. Check whether lane change action interfere with the driving task 

Step13. Consider how much extra workload brought by <lane change urgency> 

Step14. Retain <extra front scene value2> 

Step15. Store <extra front scene value 2> to short-term memory 

Step16. Retrieve <extra front scene value1> and <extra front scene value2> 

Step17. Retain <front scene value> 

 Step18. Return with goal accomplished 

Method for Goal: Look at <side mirror scene> 

Step1. Retrieve  <lane value>  

Step2. Decide: If <lane value> = fast, go to step 3, else go to step 4 

Step3: Check whether side vehicles interfere with the driving task 

Step4. Take a glance of the left side mirror 

Step5. Return with goal accomplished 

Method for Goal: generate workload level of side mirror scene 
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 Step1. Decide: If <side mirror scene> is empty, <side mirror scene value> = 0 and go 

to step 3, else go to step 2.  

 Step2. Accomplish goal: think about the side mirror scene value 

 Step3. Store <side mirror scene value> to short-term memory  

 Step4. Return with goal accomplished 

Method for Goal: think about the side mirror scene value 

 Step1. Compare <side mirror scene> to < scene of anchor 2>: If <side mirror scene> is 

less busy than <scene of anchor 2>, go to step3, else go to step 2 

 Step2. Compare <side mirror scene> to < scene of anchor 6> 

 Step3. Retain <side mirror scene value> 

 Step4. Return with goal accomplished 

Method for Goal: Look at <center mirror scene> 

Step1. Retrieve  <lane value>  

Step2. Decide: If <lane value> = fast, go to step 3, else go to step 4 

Step3: Check whether side vehicles interfere with the driving task 

Step4. Take a glance of the center mirror 

Step5. Return with goal accomplished 

Method for Goal: generate workload level of center mirror scene 

 Step1. Decide: If <center mirror scene> is empty, <center mirror scene value> = 0 and 

go to step 3, else go to step 2.  

 Step2. Accomplish goal: think about the center mirror scene value 

 Step3. Store <center mirror scene value> to short-term memory  

 Step4. Return with goal accomplished 
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Method for Goal: think about the center mirror scene value 

 Step1. Compare <center mirror scene> to < scene of anchor 2>: If <center mirror 

scene> is less busy than <scene of anchor 2>, go to step3, else go to step 2 

 Step2. Compare <center mirror scene> to < scene of anchor 6> 

 Step3. Retain <center mirror scene value> 

 Step4. Return with goal accomplished 

Method for Goal: Calculate total workload value 

            Step1. Retrieve <front road scene value> <side mirror scene value> <center mirror 

scene value> from short-term memory  

 Step2. Calculate <weighted front road scene value>   

 Step3. Store <weighted front road scene value> to short-term memory 

 Step4. Decide: If <side mirror scene value> = 0, then go to step 6, else go to step 5 

            Step5. Calculate <weighted side mirror scene value>   

 Step6. Store <weighted side mirror scene value> to short-term memory 

            Step7. Decide: If <center mirror scene value> = 0, then go to step 9, else go to step 8 

            Step8. Calculate <weighted center mirror scene value>   

 Step9. Store <weighted center mirror scene value> to short-term memory 

            Step10. Calculate <total workload value> 

            Step11. Store <total workload value> to short-term memory 

Step12. Return with goal accomplished 

Figure 5.3 NGOMSL-Style Description of the Workload Rating Task in Dynamic Traffic 
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5.3 Results 

 

Figure 5.4 shows the data produced by GOMSL in static traffic situation while treating 

all the vehicles as equally important. In comparison with the data produced by human subjects, 

the simulated data describe a similar trend (R2 = 0.833). Figure 5.5 shows the data using 

GOMSL model in static traffic while all the vehicles were not assumed to be equally important 

by applying weighting factors to the time spent on lead/left lead/following/left following 

(100%/50%/12.5%/12.5%).  The simulated data show the same trend with human rating (R2 = 

0.966). 

Figures 5.6, 5.7, and 5.8 show the comparison between the human results and the model 

results in dynamic traffic. The simulated data showed the similar trend with human results 

(Rlane
2=1.000, RrelativeV

2=0.994, Rurgency
2=0.870). 

Figure 5.4 Workload rating comparisons between the GOMSL model and experimental 

results in static traffic (Assumption: all the vehicles are equally important) 
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Figure 5.5 Workload rating comparisons between the GOMS model and experimental results in 

static traffic (Assumption: vehicles are not equally important by assigning weighting factors to 

different vehicles) 

 

Figure 5.6 Workload rating comparisons between the GOMS model and experimental results  

in dynamic traffic (IDV: lane) 
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Figure 5. 7 Workload rating comparisons between the GOMS model and experimental results in 

dynamic traffic (IDV: relative velocity) 

 

Figure 5. 8 Workload rating comparisons between the GOMS model and experimental results in 

dynamic traffic (IDV: the urgency of lane change action) 

5.4 Discussion 

 

Using the NGOMSL model, the model simulation was able to generate workload data 

that were similar to the human experimental study. However, it should not be expected that 
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NGOMSL model can produce extremely precise data. In the future, GOMS task analysis can be 

used to help experiment design and get an estimation about the possible experimental data.  

However, the NGOMSL model was not able to produce data for all the existing 

independent variables. In this dissertation, THW and TTC cannot be included in the NGOMSL 

model directly, as time variables themselves can hardly be incorporated into procedural 

knowledge of the workload rating task. Instead, variables directly manipulated (e.g., number of 

vehicles in static traffic, lane change urgency in dynamic traffic) in the design of experiment 

were examined using the NGOMSL model.  
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CHAPTER 6 

Conclusions 

 

6.1 Dissertation Summary 

 

Minimizing driver errors should improve driving safety. Driver errors are more common 

when workload is high than when it is low. Thus, it is of great importance to study workload. 

Quantifying driver workload as a function of traffic would benefit driving safety by providing 

adequate take-over time, refining adaptive in-vehicle systems, and regulating in-vehicle 

secondary tasks. 

Among all the factors that affected driver workload, traffic is the one that has not been 

systematically varied and examined. Previous research studied qualitatively periodic traffic 

instead of quantitatively real-time traffic. In this dissertation, a model relating quantified traffic 

to real-time driver workload was investigated and validated. Generally, the driving scenarios 

were categorized into static (no relative movements among vehicles) and dynamic (movements 

including relative velocity and lane changes). In static scenarios, workload was assumed to be 

proportional to inverse THW (TTC is infinity as no relative movements). In dynamic scenarios, 

workload was assumed to be proportional to inverse THW and inverse TTC.  

Besides constructing the workload model, it is also critical to find the proper measures for this 

research. Among five workload measurement groups (primary task performance measures, 

secondary task measures, physiological measures, occlusion measures, and subjective rating 
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measures), physiological measures and secondary task measures were excluded from this study 

due to the mismatch between their characteristics and the purpose of this research.  

Two experiments were conducted to investigate how traffic affected real-time driver 

workload. In the first experiment (Chapter 3), the effect of static traffic (no relative movements) 

was examined from two perspectives: DHW and inverse THW. The findings from this study 

contributed to the existing knowledge of systematic descriptions of static traffic while studying 

workload. In addition, it investigated the relationship between DHW and workload and validated 

the workload model proposed in this dissertation. The chosen three workload measures were 

compared and discussed in lower workload scenarios.  

In the second experiment (Chapter 4), the effect of dynamic traffic (relative velocity 

between two lanes and lane change could occur) was examined from two perspectives: 

categorical set and continuous set. The findings from this study make contributions to the 

existing knowledge of universal quantified descriptions of dynamic traffic in workload studies. 

The proposed workload model was validated. The differences of three workload measures were 

further discussed.  

 Besides experimental work, GOMS model was first used to model driver workload in the 

scenarios examined. It enables the researchers to predict the data from their experiment design. 

This new task analysis solution has great advantages over other modeling methods as it takes less 

time and less effort to obtain a relative accurate estimation in workload studies.  

 Following is a summary of conclusions from this dissertation. 
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6.2 Conclusions 

 

6.2.1 The effects of DHW on workload in static traffic 

 

While examining the effect of DHW on workload in static traffic, the results show that 

DHWs of all the vehicles are important in terms of determining driver workload. But the 

importance of different vehicles vary: lead vehicle>left lead vehicle>left following 

vehicle>following vehicle. The experiment provide insights into a real-time quantified definition 

of driver workload with respect to static traffic and important DHW thresholds that can be used 

in future workload estimations.  

6.2.2 The effects of traffic elements on workload in dynamic traffic 

 

Drivers experienced higher workload in the faster lane. Higher workload was associated 

with greater relative velocity. The relative velocity showed different effects on driver workload 

in different lanes (faster/slower). The interaction effect between lane and relative velocity was 

shown by all used measures. 

6.2.3 The workload model  

 

While examining the relationship between inverse THW and workload in static traffic, 

the proposed workload model can be used to describe driver workload. The model was able to 

account for most variances from human data using rating and occlusion% as the measures 

(Rating=1.74+1.74/THWLead+0.20/THWFollow+0.79/THWLeftLead +0.28/ THWLeftFollow, Rrating
2=0.73; 

Occlusion%=0.35+0.05/THWLead+0.02/THWLeftLead-0.08Age, Rocclusion
2=0.91). However, several 

limitations are associated with occlusion%: (1) it was less sensitive to the vehicles in adjacent 

lane and not sensitive to following vehicles; (2) age effect was found while using occlusion% 



93 
 

was the measure: Elderly participants experienced higher workload compared to young 

participants. In dynamic traffic, the percentage of variance that can be explained decreased 

(Anchored rating = 4.53+1.215/THWLeftLeadLead+0.001/THWLeftFollow +3.069/THWLeadLead 

+0.524/THWLead +0.240/(TTCLead×TTCLeadLateral)+30.487/(TTCLeftLead×TTCLeftLeadLateral), 

Rrating
2=0.54;Occlusion%=0.381+0.150/THWLeftLeadLead˗0.117/THWLeadLead+0.021/THWLead+2.64

8/(TTCLeftLead×TTCLeftLeadLateral), Rocclusion
2=0.58). However, the coefficient of predictors still 

showed relative importance of different measures.  

6.2.4 The differences among workload measures 

 

While comparing the effects on workload measures, the results show insights about the 

sensitivity of 3 workload measures: workload rating >occlusion%>performance statistics. In 

addition, occlusion% was sensitive in scenarios where there was a lead vehicle in front of the 

participant when workload level was low. In high workload scenarios contributed by lane change 

activities, occlusion% can no longer reflect actual workload level. In static traffic, it is shown 

that performance statistics should not be used when workload level is low. In dynamic traffic, it 

shows longitudinal performance statistics and occlusion% could be compromised due to high 

workload level. In these high workload scenarios, they are not sensitive workload measures. In 

addition, the results show that anchored rating is the best workload measure if elimination age 

effects is desired.  

6.2.5 The GOMS model 

 

 The GOMS model shows similar results produced by the experimental work. The 

organization of procedural knowledge should be transferrable to other workload studies.  
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6.3 Contributions to Current Knowledge 

 

 The main contribution of this dissertation is in emphasizing the significance of proposing 

a universal model to quantify the effect of traffic on driver workload.  

By quantifying the relationship between traffic and workload, driver workload can be 

well determined in future research. No matter what research topics researchers are interested in 

(e.g., attention, distraction, take-over), it is always essential to make sure that the driving task 

itself is at the desired workload level. For real application, it is of great importance to consider 

workload contributed by traffic in any driver studies. Besides, same workload level can be 

created using diverse traffic scenarios based on the workload model. Similar findings have not 

been reported elsewhere.  

Furthermore, two experimental methods involving different workload measures are 

demonstrated in this dissertation. The work contributes to the knowledge of sensitivity of 

workload measures and how to better use performance measures in workload studies.  

The GOMS modeling work along with the experimental results integrates the 

experimental findings into a hands-on analysis tool of predicting driver workload. A cognitive 

model of workload rating task was used to provide detailed task descriptions of procedural 

knowledge and predictions of workload rating.  

6.4 Future Research 

 

6.4.1 The workload model 

 

 The workload model can be improved by considering some other factors. As a next step, 

the model can be enriched by considering a lot of other factors related to traffic. The length of 
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the surrounding vehicles could be an interesting variable to incorporate into the model. 

Additionally, some other factors that are closely related to traffic can also be added (e.g., road 

curvature, wind). As these factors are also related to THW and TTC, it is believed that they can 

fit well in the model.  

 In addition, workload can also be affected by driver internal status. Based on Figure 1.1, 

the trends from region A2 to C and D are almost symmetric. However, they were caused by 

different reasons: task complexity and internal status. This dissertation examined the role of task 

complexity. The next step of developing the workload model would be incorporating driver 

status (e.g., fatigue) into the model.  

6.4.2 Differences among workload measures 

 

 This dissertation gives the flavor of considering multiple measurements in workload 

study. This work showed pros and cons of different measures used. In addition, each workload 

measure was able to capture different information expressed by participants. The next step would 

be to learn more characteristics of workload measures and make the knowledge system more 

comprehensive.  

6.4.3 Incorporate the workload model into other driving studies 

 

 In future driving studies, the workload can be well predicted using the workload model 

based on the traffic that is provided. Thus, the workload contributed by traffic can be a control 

variable or independent variable in any driving studies (e.g., attention, distraction, take-over). 

For example, the take-over timing could be provided by considering the effect of workload 

contributed by traffic. More realistic results will be provided in future driving studies.  

 


