
Energy-Efficient Mobile Computer Vision
and Machine Learning Processors

by

Ziyun Li

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2019

Doctoral Committee:

Professor David Blaauw, Co-Chair
Professor Hun-Seok Kim, Co-Chair
Professor Dimitra Panagou
Professor Dennis Sylvester

Ziyun Li

liziyun@umich.edu

ORCID iD: 0000-0001-6070-6310

© Ziyun Li 2019

All Rights Reserved

To all the people in my life

ii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF FIGURES . vi

LIST OF TABLES . xi

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Mobile Applications for Autonomicity and Intelligence 1
1.2 Overview of Mobile Autonomous and Intelligent Systems . . . 3

1.2.1 Geometry Awareness 4
1.2.2 Semantic Awareness 6

1.3 Challenges for Intelligent Mobile Computers 8
1.3.1 High Throughput and Low Latency 8
1.3.2 Low Power Consumption 9
1.3.3 CMOS Technology Scaling and Moore’s Law 9

1.4 Thesis Contribution, Organization 10

II. A 1920×1080 30fps 2.3TOPS/W Stereo Depth Processor for
Energy-Efficient Autonomous Navigation of Micro Aerial Ve-
hicles . 13

2.1 Introduction . 13
2.2 Overview of Stereo Vision Algorithms 16

2.2.1 Local approach . 16
2.2.2 Semi-global matching and its complexity 19

2.3 Algorithm, Architecture and Circuit Optimizations 23
2.3.1 Algorithm: Overlapping Block-based SGM Processing 23
2.3.2 Energy-efficient Hardware Architecture 25
2.3.3 Dependency-resolving scan, Pipeline and Forwarding 28

iii

2.3.4 Custom Designed High Bandwidth 8T-SRAM . . . 31
2.4 Chip Measurements . 32
2.5 System Integration and Evaluation 35
2.6 Summary . 38

III. A 1920×1080 25 fps 2.4 TOPS/W Low Power 6D Vision Pro-
cessor for Unified Optical Flow and Stereo Depth with Semi-
Global Matching . 39

3.1 Introduction . 39
3.2 Overview of 6D Vision Algorithms 42

3.2.1 Local Matching Algorithm 43
3.2.2 Semi-Global Matching Algorithms 44

3.3 Neighbor-guided Semi-Global Matching Algorithm 46
3.3.1 Flow Subset Selection 46
3.3.2 Pixel-wise Matching Cost 48
3.3.3 Cost Aggregation and Flow Computation 49
3.3.4 Post Processing . 50

3.4 Optimizations for Hardware Efficient NG-SGM Algorithm . . 51
3.4.1 Parallel Block-based NG-SGM 51
3.4.2 Inertial Flow Vector Prediction Using Sequential Frames 53
3.4.3 Sparse-to-Dense Optical Flow Estimation 54

3.5 Evaluation of Hardware Oriented Optimizations 56
3.5.1 Parametric Analysis on NG-SGM 56
3.5.2 Overlapping Block-based NG-SGM 62
3.5.3 Block-based NG-fSGM with inertial guidance 63
3.5.4 Sparse-to-Dense Optical Flow Estimation 65
3.5.5 Post-Processing . 66

3.6 Architecture and Circuit Implementations 67
3.6.1 Overview of NG-SGM Datapath 67
3.6.2 Interface and Architecture Overview 69
3.6.3 Memory Architecture 72
3.6.4 Pipelining Architecture 75
3.6.5 Multiple frequency and voltage processing 76
3.6.6 High-Bandwidth, Coalescing Crosspoint Crossbar . 77

3.7 Chip Measurement Results 81
3.8 Summary . 85

IV. A 879GOPS, 243mW 80fps VGA Fully Visual CNN-SLAM
Processor for Wide Range Autonomous Exploration 87

4.1 Introduction . 87
4.2 Datapath of CNN-SLAM Algorithm 89

4.2.1 Feature Extraction and Matching 90
4.2.2 Perspective-n-Points 90

iv

4.2.3 Local Bundle Adjustment 92
4.3 Architecture of Proposed CNN-SLAM Processor 93

4.3.1 Programmable CNN Engine 94
4.3.2 Feature Matching and PnP Engine 96
4.3.3 Local BA Engine 98

4.4 Measurement Results . 100
4.5 Summary . 102

V. A 0.8TMACS, 2.5TOPS/W Energy Efficient Re-configurable
CNN Processor with 30MB Embedded MLC ReRAM 104

5.1 Introduction . 104
5.2 Architecture of Proposed ReRAM-CNN Processor 108

5.2.1 16 mesh connected PEs 108
5.2.2 Architecture of a single PE 109
5.2.3 Decompression Engine 111

5.3 Dataflow of Proposed ReRAM-CNN Processor 112
5.3.1 Data Reuse for Efficient CNN Processing Across Layers112
5.3.2 Data Reuse for Efficient CNN ProcessingWithin Con-

volution Layer . 114
5.3.3 Data Reuse for Sparse FC Processing 115
5.3.4 Model Compression 116

5.4 Simulation and Results . 117
5.5 Summary . 117

VI. Conclusions and Future Work 119

6.1 Contributions . 119
6.2 Future directions . 121

BIBLIOGRAPHY . 122

v

LIST OF FIGURES

Figure

1.1 Percentage of US consumers interested in different levels of vehicle
automation technology . 2

1.2 Growth of unmanned aircraft system traffic management (UTM)
market . 3

1.3 Overview of intelligent and autonomous system 4

1.4 Dense stereo and optical flow perception of a scene 5

1.5 SLAM for autonomous navigation 6

1.6 Recognizing objects in a scene . 7

1.7 Throughput requirement for self-driving cars 8

1.8 Comparison between general purpose and special purpose computer
vision solutions . 9

1.9 Average performance gain for a single program over time versus VAX
11/780 using SPECintCPU . 10

1.10 Annual minimum sales of ML chips in global data centers (units) . . 11

2.1 Drone with stereo vision system and its applications. 15

2.2 Comparison between stereo depth and Lidar based depth estimation. 16

2.3 Illustration of principals in stereo vision. 17

2.4 Local matching method of stereo depth estimation. 18

vi

2.5 Problems of local matching. 18

2.6 Comparison between local matching, original SGM and overlapping-
block based SGM. 19

2.7 SGM algorithm processing flow. 20

2.8 Path aggregation diagram. 21

2.9 Quantitative evaluation with overlapping-block based SGM over 194
KITTI test images. 25

2.10 Hardware architecture of energy efficient SGM. 26

2.11 Rotating FIFO based local cost generation. 27

2.12 Implementation of 4 path aggregation. 28

2.13 Illustration of conventional raster scan and proposed diagonal scan. 29

2.14 Pipelining and forwarding in SGM processing. 30

2.15 Block diagram and circuit of proposed high bandwidth 8T SRAM. . 31

2.16 Die photo and summary of performance. 33

2.17 Measured result with KITTI tests. 33

2.18 Measured result with Middlebury tests. 34

2.19 Voltage & frequency scaling of the design and comparison with state-
of-the-art chips. 35

2.20 Stereo system setup and summary. 36

2.21 Chip measurement setup with stereo system. 37

2.22 Real-time quadcopter demonstration platform. 37

2.23 Measured HD result with quad-copter. 37

3.1 Optical flow and depth estimation on autonomous MAVs. 40

3.2 Comparison between local matching and SGM matching. 43

vii

3.3 Illustration of subset selection for the center pixel p. 47

3.4 An example of an n×n non-overlapping block in the previous frame. 52

3.5 Sampling pattern examples where grey pixels are sampled. 55

3.6 Error performance analysis with parameter sweep (M, C, K, N). . . 57

3.7 Performance and complexity tradeoff analysis: (a) Memory BW vs.
Memory size vs. Error rate, (b) # of OPs vs. Memory size vs. Error
rate. 59

3.8 Colored flow maps using different algorithms. 61

3.9 Colored flow maps using KITTI dataset. 62

3.10 Colored flow maps using MPI dataset. 62

3.11 Left: accuracy of NG-SGM+B using the Middlebury training dataset.
Right: complexity vs. overlap size (l) vs. block size (n). 63

3.12 An example of inertial guidance. Top left: Input frame. Top right:
Inertial estimates. Bottom left: NG-SGM+BI. Bottom right: Groundtruth. 64

3.13 Data path of the proposed NG-SGM 6D vision algorithm. 68

3.14 8 path aggregation of NG-SGM. 68

3.15 Chip architecture of 6D vision processor. 70

3.16 Tree structured minimum selection unit. 71

3.17 On-chip rotating buffer scheme. 73

3.18 Memory size & power comparison between precomputing census vs.
computing census on-the-fly. 73

3.19 Memory grouping for high-bandwidth access. 74

3.20 Variable-latency critical path hidden diagonal scan. 76

3.21 Power break down of different modules. 77

3.22 Block diagram of the coalescing crossbar. 78

viii

3.23 Circuits and timing diagram of a coalescing crosspoint. 80

3.24 Comparison of different crossbar architectural options. 81

3.25 Comparison of different crossbar architectural options. 81

3.26 Relative power consumption of various components of the system,
and the impact of various optimization techniques. 81

3.27 Die photo. 82

3.28 Measured output from KITTI dataset and from JPL MAV captured
images. 83

3.29 Measured throughput and energy efficiency with different frequencies 85

3.30 Measured voltage & frequency scaling of proposed design. 85

3.31 Comparison of measured FoM with prior art. 86

4.1 Application of real-time SLAM processing. 88

4.2 Feature description network. 90

4.3 Example of CNN feature matching with proposed pre-trained feature
description network. 91

4.4 Pose estimation of each frame. 92

4.5 Pose optimization over multiple keyframes. 93

4.6 Chip architecture of proposed CNN-SLAM processor. 94

4.7 Architecture of programmable CNN unit. 95

4.8 Processing flow of a CNN layer. 96

4.9 Cross layer processing flow of multiple CNN layers. 96

4.10 Search space pruning with pose prediction. 97

4.11 Grid based search of keypoints. 98

4.12 Hash based feature access and early termination of feature matching. 98

ix

4.13 Graph memory for local bundle adjustment 99

4.14 Reformulation and fixed point implementation of sparse matrix solver.100

4.15 Numerically stable matrix solver with gaussian eliminating and piv-
oting. 100

4.16 Die photo. 101

4.17 Measured trajectory on KITTI dataset. 102

4.18 Measured voltage and frequency scaling of the design. 102

5.1 Model of a neuron network . 105

5.2 Memory and computation requirement for state-of-the-art CNN models105

5.3 Performance and energy efficiency of state-of-the-art NPUs 106

5.4 Conventional DRAM-NPU architecture for mobile inference 107

5.5 Overall architecture of proposed ReRAM-CNN processor 109

5.6 Architecture of a processing element. 110

5.7 ISA of the proposed ReRAM-CNN processor. 111

5.8 Parallel huffman decoder using full subtrees. 112

5.9 On-chip huffman table for decompression. 112

5.10 On-chip compressed weight storage on ReRAM. 113

5.11 Split convolution onto multiple PEs by input channels. 114

5.12 Split different layer onto multiple PEs. 114

5.13 Processing flow of convolution on MAC units. 115

5.14 Chip layout. 117

x

LIST OF TABLES

Table

2.1 Low efficiency on CPU/GPU/FPGA platforms. 22

2.2 Summary of SGM challenges and algorithm-architecture-circuit op-
timizations. 23

2.3 Measured system power break down. 37

3.1 Memory size, number of operations, memory bandwidth of NG-fSGM
with optimizations. 53

3.2 Comparison of NG-fSGM, fSGM & Lucas-Kanade. 59

3.3 Endpoint error percentage (EEP) and complexity on Middlebury
multi-frame training dataset. 65

3.4 Endpoint error percentage (EEP) and complexity on Middlebury
multi-frame training dataset. 66

3.5 Outlier percentage (EEP) with different post processing schemes. . . 66

3.6 Summary of performance. 83

3.7 Comparison with prior art. 84

4.1 Summary of performance. 103

4.2 Performance comparison with state-of-the-art chips 103

5.1 Example of apply compression scheme on AlexNet. 116

5.2 Performance summary of the chip 118

xi

5.3 Performance comparison with state-of-the-art NN processors 118

xii

ABSTRACT

Technology scaling has driven computing devices to be faster, cheaper, and smaller

while consuming less power in past decades. However, as technology scaling has be-

come increasingly difficult in recent years, power has become the major constraint in

performance, and thus, the improvement in the performance of mobile devices has

begun to diminish. Moreover, emerging intelligent mobile systems are demanding

increasing computing power. In light of this challenge associated with artificial in-

telligence (AI), domain-specific architectures are widely believed to be the path to

realizing considerable improvements in the efficiency, performance and cost of intelli-

gent mobile systems.

This thesis presents several algorithm, architecture and circuit co-optimized so-

lutions for intelligent and autonomous mobile systems, including vision-based stereo

depth, optical flow, simultaneous localization and mapping (SLAM) and convolutional

neural network- (CNN)-based image recognition.

Four prototypes are implemented for demonstration and verification. The first two

prototypes include a depth estimation processor and a 6D vision processor that en-

able real-time dense depth and motion perception, respectively. The third prototype

is a CNN-SLAM processor that estimates ego-motion for vision-based navigation.

Together, these prototypes form a geometric understanding of the environment for

mobile systems. The fourth prototype is an ReRAM-CNN processor that enables

semantic understanding through machine learning. The work presented in this dis-

sertation exploits various optimizations including parallelism, scheduling, exploiting

xiii

sparsity and circuit customization to overcome the complexity of these problems for

extremely energy-efficient, real-time, robust operation. The impact is significant in

the age of AI as mobile systems can become increasingly intelligent in daily life,

powered by these proposed solutions.

xiv

CHAPTER I

Introduction

1.1 Mobile Applications for Autonomicity and Intelligence

Autonomous and intelligent mobile systems continuously monitor their current

surroundings, process sensor information, construct geometric and semantic under-

standings of the environment and navigate to fulfill a set of tasks without human

intervention. Research on developing next-generation autonomous and intelligent

mobile systems has been increasingly gaining interest in recent years to make au-

tonomous and intelligent mobility a reality.

One well-known projection of autonomous and intelligent mobile systems is self-

driving cars. The automotive industry has shifted towards more autonomous systems

that aim to reduce traffic collisions and more intelligent systems that seamlessly inter-

act with drivers. According to a survey, two-thirds of US consumers want advanced

vehicle technologies. These include features that help reduce human driver errors,

such as lane-keeping assistance and emergency braking, as well as those that improve

user experience, such as parking assistance and adaptive cruise control. Fig. 1.1

shows the degree of desire expressed by US consumers for four graduated levels of

vehicle automation as defined by the National Highway Traffic Safety Administra-

tion. About 67 percent of US consumers have a strong desire for adaptive autonomy

features, marking an increase of 11 percentage points over the 2014 results[1]. These

1

Figure 1.1: Percentage of US consumers interested in different levels of vehicle au-
tomation technology

systems are typically referred to as Advanced Driver Assistance Systems (ADAS) and

are not fully autonomous. Nowadays, both academia and industry (technology com-

panies such as Google, Tesla, and Uber and automakers such as Ford and Toyota)

are moving toward fully self-driving cars.

Another similar projection for autonomous and intelligent mobile systems is un-

manned robots. Unmanned aerial vehicles (UAVs) represent one of the most sought-

after consumer electronics products after cellphones. According to Deloitte, the num-

ber of UAVs bought by consumers or prosumers is expected to reach 300,000 units

a year with revenue of more than $300 million[2] in 2017. UAVs are deployed in a

widening range of professional and entertainment contexts. For consumers, UAVs are

appealing for high-definition photography and can be programmed for "follow-me"

footage. For professionals, UAVs can undertake tasks such as agricultural monitoring,

search and rescue missions, geological mapping of uncharted territories and delivery

of parcels. Leading research groups and industries such as Amazon and DJI are de-

veloping smart UAVs that can avoid obstacles, track a person and navigate to make

2

Figure 1.2: Growth of unmanned aircraft system traffic management (UTM) market

their use safe.

1.2 Overview of Mobile Autonomous and Intelligent Systems

Mobile autonomous and intelligent systems monitor the environment continuously

through various sensors, including cameras, Lidar, time-of-flight cameras, ultrasonic

sensors, Radar, etc. These systems process these sensor inputs to localize them-

selves and build an understanding of their environment. Although various sensor

modalities can be applied in mobile systems, this thesis focuses on a passive camera-

based approach because passive cameras are cheap and can easily adapt to new

requirements[3, 4] with state-of-the-art computer vision and machine learning algo-

rithms.

As is shown in Fig. 1.3, a state-of-the-art vision-based mobile autonomous system

consists of components for acquiring raw sensor data, cognitive processing and con-

trol of high-level tasks. The cognitive processing component enables the system to

construct a 3D model of the environment, detect/recognize objects and understand

the semantics of the scene. These features are then used to complete high-level tasks

such as search and rescue, navigation, obstacle avoidance, etc. Various combinations

3

Figure 1.3: Overview of intelligent and autonomous system

of these components have been observed in real-world applications recently, both from

academia[5, 6] and industry[7].

1.2.1 Geometry Awareness

Geometric understanding is critical for an autonomous system to localize and

estimate its own motion and construct a 3D map of its surroundings. With indoor

and GPS-limited environments, passive camera-based approaches are favored for their

low cost, accuracy and dense scene reconstruction[8]. Examples of camera-based 3D

understandings that are widely studied by the robotics and computer vision commu-

nity include stereo depth estimation, dense optical flow and simultaneous localization

and mapping (SLAM). These algorithms and systems perform vision-based geometric

understandings using different approaches, as will be discussed later in Chapter II,

Chapter III and IV.

4

Figure 1.4: Dense stereo and optical flow perception of a scene

1.2.1.1 Stereo Vision and Optical Flow

Stereo vision, which requires extracting 3D information from a scene using mul-

tiple cameras, has been thoroughly studied by the computer vision community for

decades[9, 10, 11, 12]. The basis for stereo vision is that a single 3D physical location

projects to a unique pair of pixels in two observing cameras[9]. Therefore, computa-

tional stereo compares the objects in images taken from distinct viewpoints and then

extracts their 3D information by examining the relative positions of the common ob-

jects (Fig. 1.4, mid). A detailed discussion of stereo vision systems can be find in

chapter II.

While stereo vision perceives the 3D structure of a scene, optical flow perceives

rich motion information and also plays an integral role in intelligence. Optical flow

is defined as the apparent motion of individual pixels in an image (Fig. 1.4, bottom).

Similar to computational stereo, calculating optical flow through image sequences

has also been an important research topic[13, 14, 15] for decades. Most of these

algorithms assume the invariance of pixels under the displacement and track these

pixels from one image frame to the next. A detailed discussion of optical flow systems

is presented in chapter III.

5

Figure 1.5: SLAM for autonomous navigation

Although algorithms that compute stereo vision and optical flow have matured

significantly in recent years, many advances in computational stereo vision and optical

flow continue to be made for real-world and real-time demanding applications.

1.2.1.2 Localization and Mapping

The first attempts at estimating a system’s ego-motion and incrementally con-

structing a map of an unknown environment from a sequence of images were made in

the 1980s[16]. Since then, SLAM has been extensively studied, resulting in denser 3D

reconstruction and improved accuracy and reliability in unconstrained environments[17,

18, 19]. Typically, these SLAM systems compute ego-motion through triangulating

the common landmarks in consecutive images. A detailed description of SLAM sys-

tems can be found in chapter IV.

1.2.2 Semantic Awareness

Semantic understanding is the capability of an intelligent system to describe the

visual content of a scene. Semantic understanding of the environment includes various

kernel functions such as object detection, object tracking, and segmentation at dif-

ferent levels of detail. Mobile intelligent systems are required to identify surrounding

6

Figure 1.6: Recognizing objects in a scene

objects, avoid collision with obstacles and/or search for a target. Recent advances

in computer vision and machine learning have started to reach a human-like level

of object recognition, detection, and semantic segmentation by training a very deep

neural network[20, 21, 22] with very large datasets[23, 24]. These algorithms and

systems that perform vision-based semantic understandings will be discussed later in

Chapter V.

1.2.2.1 Object Recognition

Object Recognition is one of the fundamental problems in computer vision that

requires a form of semantic understanding of a scene (Fig. 1.4). Many model-based[25,

26, 27] and learning-based[6, 22, 20] algorithms have been proposed over the past

decades on object recognition tasks. Mostly, these object recognition systems extract

features from an image and then use these features to classify the object into a specific

object category. Recently, due to the rapid advances in deep learning, learning-based

algorithms have become favored because they surpass human performance in object

recognition tasks. A detailed discussion on object recognition with deep learning on

can be found in Chapter V.

7

Figure 1.7: Throughput requirement for self-driving cars

1.3 Challenges for Intelligent Mobile Computers

Although recent advances in computer vision and machine learning have paved the

way for autonomous and intelligent mobile systems, many practical challenges and

limitations remain. This section describes the challenges of processing extremely high

dimensional and high bandwidth information in these systems, and the dissertation

focuses on solving these practical issues with ASIC solutions.

1.3.1 High Throughput and Low Latency

While operating in a fast changing environment, an autonomous and intelligent

system needs to process sensor information quickly and make proper responses. For

example, the processing latency of a single frame for an ADAS system must be less

than 33 ms[28]. With the increase in camera resolution from VGA to HD and the

increasing number of cameras and sensors integrated in cars, approximately 1 GB of

data will need to be processed each second in a car’s real-time operating system[29].

Fig. 1.7 shows the throughput requirement for autonomous systems: the more intel-

ligent a mobile system, the more stringent the throughput requirement.

8

Figure 1.8: Comparison between general purpose and special purpose computer vision
solutions

1.3.2 Low Power Consumption

While the computers in autonomous mobile systems must deliver increasing com-

puting power, they also must do so as efficiently as possible. As mobile systems are

typically powered with batteries, their limited on-board energy poses a real challenge,

which is manifested in their low endurance. For example, computing systems in UAVs

and self-driving cars need to provide very high processing capabilities and also use

very little power[29].

1.3.3 CMOS Technology Scaling and Moore’s Law

Moore’s Law has guided the semiconductor industry for 50 years as society has

shifted from the PC era to the mobile computing era (Fig. 1.8). The resulting in-

crease in the capability, affordability, energy efficiency, performance and availability

of integrated circuits has enabled computer architects to design better computers for

various needs. Sophisticated processors and memory hierarchies have been developed

to exploit parallelism between instructions without the knowledge of the programmer.

9

Figure 1.9: Average performance gain for a single program over time versus VAX
11/780 using SPECintCPU

However, as Moore’s law is slowing down, and the computing requirement for

designing autonomous and intelligent systems is increasing rapidly, architects now

widely believe that the only path left for major improvements in performance-cost-

energy is designing domain-specific architectures. As shown is Fig. 1.9, special pur-

pose processors achieve higher processing bandwidth compared with general purpose

processors. A survey (Fig. 1.10) also revealed that ASIC chips may dramatically ex-

pand the addressable market and increase the use of machine learning because they

enable applications to use less power and at the same time become more responsive,

flexible and capable.

1.4 Thesis Contribution, Organization

This work contributes to the development of mobile computer vision ASICs and

domain-specific machine learning processors with low-power consumption, high en-

ergy efficiency and high performance, enabling its potential use in intelligent and

autonomous mobile systems. This dissertation presents four works in detail.

In Chapter II, this thesis presents an SGM stereo vision processor designed for

autonomous navigation of micro aerial vehicle applications with tight SWaP (size,

weight and power) constraints. The major contributions of this work include 1)

10

Figure 1.10: Annual minimum sales of ML chips in global data centers (units)

single-chip implementation of the semi-global matching algorithm using overlapping

block-based processing to remove the need for an external DRAM storage; 2) a new

dependency-hidden diagonal image-scanning stride with 17-stage deeply pipelined

implementation providing 512-level depth output at 30 fps FHD resolution; and 3)

customized 50 word, 1612 bit parallel ultra-wide SRAM with high (1.64 Tb/s) on-chip

memory access bandwidth and low access power (6 mW).

In Chapter III, this thesis presents a realtime optical flow/stereo vision reconfig-

urable vision processor designed for dense 6D vision perception on low-power mobile

platforms such as MAVs and VR/AR systems. The major contributions of this work

include 1) a new NG-SGM algorithm that significantly prunes the 2D optical flow

search space with negligible performance degradation; 2) single chip implementation

of a unified NG-SGM datapath that supports both wide-range (176×176-level) 2D

optical flow and 1D stereo vision computation; 3) a customized coalescing crosspoint

crossbar that provides high (2.6 Tb/s) on-chip memory access bandwidth; and 4)

11

multi-frequency and voltage partitioning of the design that reduces power consump-

tion without performance degradation.

In Chapter IV, this thesis presents a realtime CNN-SLAM processor designed for

six degrees of freedom egomotion and trajectory estimation. It is designed for low-

power mobile autonomous navigation systems and VR/AR systems with seamless

user interaction. The major contributions of this work include 1) feature extraction

and description with a highly parallelized and programmable CNN engine with 32%

better accuracy in feature matching than SIFT; 2) aggressively pruned feature match-

ing with temporal pose prediction, triangulation, and address hashing to eliminate

97% of unnecessary matchings; 3) numerically stable fixed-point implementation with

function re-organization and pivoting in the linear solver; and 4) hierarchical memory

organization, completely eliminating external DRAM accesses for BA optimization.

In Chapter V, this thesis presents a single-chip CNN processor with 30 MB on-

chip MLC ReRAM for high performance and energy efficient machine learning/deep

learning applications on an AI edge. It is designed for low-power mobile visual recog-

nition systems powered by deep learning. The proposed design is taped out with

TSMC 22-nm ULL technology. The major contributions of this work include 1)

single-chip implementation of large-scale modern CNNs with 4×4 mesh connected

cores; 2) deeply compressed weights with MLC (multi-level cell) ReRAM operation

achieving 1 million on-chip parameter storage without external DRAM; and 3) highly

parallelized processing with weight/input/output reuse on 2048 MAC units, achieving

0.8 TMACS throughput with 2.5 TOPS/W efficiency.

12

CHAPTER II

A 1920×1080 30fps 2.3TOPS/W Stereo Depth

Processor for Energy-Efficient Autonomous

Navigation of Micro Aerial Vehicles

2.1 Introduction

Precise depth estimation is essential to realize autonomous navigation in micro

aerial vehicles (MAVs), robots, and self-driving cars. Depth estimation serves as a key

kernel function in simultaneous localization and mapping (SLAM), 3D scene under-

standing and reconstruction, object recognition and obstacle avoidance, as depicted

in Fig. 2.1. Real-time reliable autonomous navigation requires the depth estimation

to be dense, accurate, wide ranged, and with high performance. Emerging mobile

platforms such as MAVs introduce additional “SWaP” (Size, Weight and Power) con-

straints on depth estimation systems. For mobile applications, the system must be

small (e.g., 50 cm2), lightweight (<100 g), fast (30 ms response time), and low power

(<1 W) [30]. Fig. 2.1 highlights the requirements of real-time stereo depth estimation

for MAV applications. LIDAR [31], RADAR [32], Ultrasonic sensor [33] or IR sensor

[34] are conventional approaches for depth sensing. IR sensors typically have low

resolution and accuracy while ultrasonic sensors have limited ranging distance [35].

Therefore, they are not widely adopted in autonomous systems. While 24G RADAR

13

is accurate and robust, it has limited field of view (30° horizontal angle) so that it

still needs other sensors for wide-range, large-scale 3D scene construction. LIDAR is

the most frequently used sensor for 360° 3D scene construction in autonomous sys-

tems. Fig. 2.2 visualizes the difference between the depth map acquired by LIDAR

and that obtained by stereo vision correspondence. Nowadays, even the most ad-

vanced LIDAR-based ranging systems suffer from a limited field of view (e.g., 30°

vertical view angle, which accounts for the top blackout region of the LIDAR image

in Fig. 2.2.), heavy weight (>600 g) and energy consumption (10 W) [31]. In con-

trast, depth estimation by stereo vision is fast, energy efficient and lightweight when

mounted on an MAV platform.

There are prior ASIC implementations of stereo vision depth estimation based

on various algorithms [36, 37, 28, 38, 39]. These designs [36, 37, 28, 38, 39] employ

hardware-oriented algorithmic optimizations to enable depth estimation in real-time

systems, but there are deficiencies associated with these ASIC designs. Some uses

local matching [36] or aggressively truncated global algorithms [37], which results in

inferior quality. Other works limit their disparity range to 32 or 64 pixels and therefore

fail to support industrial standard automotive scene benchmarks [36, 37, 28, 38, 39].

Semi-global matching(SGM)-based FPGA implementation is demonstrated in [40],

but it is not applicable in robust navigation of power constrained MAV platforms

because of its limited performance (30 fps for 320×240 QVGA) and high power

consumption (3 W for QVGA). Prior advanced driver assistance system SoCs [41,

42, 43] are not favorable for SGM because of the memory bandwidth bottleneck. Due

to the big memory requirement of SGM, prior methods [37, 28, 38] use external DRAM

to store intermediate results, leading to limited frame rate and low power efficiency.

Several alternative approaches have been explored to reduce the high complexity of

global methods [9] using dynamic programming [44], belief propagation [45, 46], flow

vector search space pruning [47], and pseudo-random flow candidate selection [48].

14

Figure 2.1: Drone with stereo vision system and its applications.

However, SGM (and its variations) is clearly one of the most widely used algorithms

in industrial standard benchmarks, such as KITTI [49].

In this work [50], we first study the computation, memory, and bandwidth bot-

tlenecks of the SGM algorithm and propose algorithm-architecture co-optimization

techniques that significantly reduce the hardware cost with negligible accuracy degra-

dation. We propose a deeply pipelined hardware architecture with a dependency-

resolving scan to handle the critical-path data dependency in the algorithm and to

expressively improve throughput. We also introduce a custom designed dual-port 8T

SRAM that leverages the unique memory access characteristics of the SGM algorithm

15

Figure 2.2: Comparison between stereo depth and Lidar based depth estimation.

to enable ultra-high bandwidth (1.64 Tb/s) and energy-efficient on-chip memory ac-

cess. The fabricated chip employs a standard USB3.0-compliant interface, allowing

effortless integration with a wide range of commercial off-the-shelf stereo cameras and

general purpose mobile application processors (APs). Integrated with a ZED camera

[51] and ODRIOD-5422 mobile AP on the ODRIOD-XU4 [52], the fabricated chip

was successfully mounted on a quadcopter MAV for system demonstration in realistic

flight scenarios. The chip delivers 512 levels of stereo depth for each pixel at full HD

(1920×1080) resolution with real-time 30 fps throughput, while consuming 836 mW.

2.2 Overview of Stereo Vision Algorithms

2.2.1 Local approach

Vision-based depth estimation is computed by stereo correspondence. As shown

in Fig. 2.3, a point P in the real world will be horizontally displaced at the pixel

16

positions p and q in stereo images because the left and right cameras are placed apart

by distance b. This horizontal displacement between a pixel in the left image p=

(x,y) and its matching pixel in the right image q= (x’,y) is defined as disparity (x’-x).

The depth Z is inversely proportional to the disparity as in

Z = f
b

x′ − x
(2.1)

where f represents the focal length of the camera and b is the baseline of stereo camera

system.

Figure 2.3: Illustration of principals in stereo vision.

The most straightforward approach to compute disparity is local matching. As

shown in Fig. 2.4, local matching compares each pixel (e.g., the white pixel in the far

left image) with all its matching candidates and then finds the best matching pixel

(e.g., the black pixel in the next image to the right) associated with the minimum

matching cost within the search range (depicted by the white bar in Fig. 2.4). Typ-

ically, to enhance robustness, local matching is performed based on a window that

consists of a group of pixels surrounding the matching pixel. The same step is applied

to determine the disparity of all the pixels. An example disparity map resulting from

using local matching is shown in Fig. 2.4. In the local approach, every pixel in the

17

image can be processed independently in parallel to improve throughput.

Figure 2.4: Local matching method of stereo depth estimation.

The accuracy of a local approach is unreliable since it typically fails to resolve

ambiguities in many challenging but realistic scenarios such as occlusions, texture-less

regions, transparency and repetitive patterns. As shown in Fig. 2.5, almost all of the

pixels of the wall on the right are saturated and texture-less due to strong illumination.

The disparity results obtained by a local approach on this texture-less region will be

completely incorrect, as shown in Fig. 2.5, because many matching pixels will appear

as identical with the same cost. As seen in other less challenging regions in Fig. 2.5,

the disparity map derived from using a local approach has substantial noise that

cannot be easily removed by advanced post processing.

Figure 2.5: Problems of local matching.

18

2.2.2 Semi-global matching and its complexity

Recently, various global methods [11, 53, 54] have been proposed to improve ac-

curacy. In these global algorithms, information from neighbouring pixels is (semi-

)globally propagated to the current processing pixel to enhance the correspondence

matching accuracy. The SGM algorithm introduced in [55] is one of the most popular

global methods. SGM is favoured for its robustness and high accuracy under various

scenarios. SGM has been validated to achieve good accuracy in various industrial

standard benchmarks [49]. In particular, it effectively handles low texture regions

with its dynamic programming-based global optimization of the disparity over the

entire image. Fig. 2.6 visualizes the output difference between the local sum of the

absolute difference (SAD) [11] algorithm and SGM, clearly illustrating the higher

quality obtained with SGM.

Figure 2.6: Comparison between local matching, original SGM and overlapping-block
based SGM.

19

SGM consists of three steps: 1) pixel-wise matching cost computation; 2) semi-

global aggregation; and 3) disparity selection. To compute the pixel-wise matching

cost, N×N census transform [56, 57] is performed on both left and right image. Census

transform IL(p) of a pixel p is computed by comparing the grayscale intensity of center

pixel p with all of its neighboring pixels within the N×N window. As a result, each

pixel in the image is converted to a bit string of the length N2-1. We use a 7×7 census

for our design, and each pixel is represented by a 48-bit string as a result of the census

transform. The pixel-wise matching cost C(p,d) for a pixel p with a disparity d is

evaluated by the Hamming distance [58] between the census transformed left image

pixel IL(p) and the right image pixel IR(p − d) as shown in 2.2 where |.|H denotes

the Hamming distance.

C(p,d) = |IL(p)− IR(p− d)| (2.2)

This operation is repeated for all disparity candidates per pixel. Since each pixel will

have 128 matching candidates, the local matching costs evaluation results in a cube

of dimension H×W×128, as shown in Fig 2.7, where H×W is the image height ×

width in the number of pixels. For each pixel, a 128-entry depth vector is generated

as the local matching cost associated with 128 disparities.

Figure 2.7: SGM algorithm processing flow.

20

Global aggregation is then performed on local matching costs. SGM aggregation
takes the current processing pixel p and propagates information from neighbouring
pixels along eight paths r over the entire image using equation 2.3 as depicted in
Fig. 2.8. The term Lr(p,d) denotes the aggregated cost for a given pixel p with
disparity d along path r. The aggregated costs of neighbouring pixels associated with
the same (d) or similar (d±1 and d±2) disparities are merged into the aggregated
cost for the current pixel with zero or small (P1,P2) penalty.

Lr(p,d) = C(p,d)+minLr(p− r,d), Lr(p− r,d− 1) + P1, Lr(p− r,d + 1) + P1,miniLr(p− r, i) + P2−min
k

Lr(p−r, k)

(2.3)

Eventually, ’good’ disparities with low matching costs (when neighbouring pixels

all see smaller matching costs in general) will propagate from far positions to the

current pixel through recursive aggregation (equation 2.3). This is particularly useful

for propagating ’good’ matching candidates for the center of a low texture region from

texture-rich boundary pixels.

The SGM aggregation is performed along 8 paths (the size of the r set is 8)

separately, as shown in Fig. 2.8, and the aggregated costs on 8 paths are summated

together as in 2.4.

S(p,d) =
∑
r

Lr(p,d) (2.4)

Figure 2.8: Path aggregation diagram.

The disparity d with the minimum summated costs S(p,d) is eventually selected

as the integer level of disparity for the processing pixel p. To obtain a sub-integer pixel

21

disparity precision, we select three minimums from all of the summated costs S(p,d)

for a given p and perform a bilinear interpolation [59] on these three minimums. This

generates an additional 2-bit sub-integer pixel disparity resolution and eventually

generates 512 levels of depth (disparity) for each pixel.

Although SGM provides superior accuracy compared with local approaches, it

poses significant hardware challenges. The original SGM requires massive compu-

tation (2TOP/s), extremely high bandwidth (38.6 Tb/s), and very large memory

(386 MB) for 30 fps full HD resolution. Therefore, when realized in general-purpose

computing platforms, it leads to very low frame rates and energy efficiency. Specif-

ically, this SGM complexity translates to 20 sec runtimes for a full HD image pair

on a 3 GHz CPU with >35 W power consumption [60]. Although server/mobile

GPUs achieve higher energy efficiency, they still consume a few Joules to process a

single full HD frame with 5 fps throughput [61]. Table 2.1 provides a comparison

of the estimated performance, power and memory for different platforms. To resolve

these challenges and address “SWaP” requirements of MAVs, we propose a highly

optimized ASIC solution attained via a cross-layer optimization conducted across

algorithm, micro-architecture, and circuit levels.

Table 2.1: Low efficiency on CPU/GPU/FPGA platforms.

22

2.3 Algorithm, Architecture and Circuit Optimizations

A high-level summary of our cross-layer optimizations designed to tackle the chal-

lenges of SGM is illustrated in Table 2.2. Firstly, strong data parallelism in the

algorithm is exploited so that the processor computes 128 local costs, aggregates 128

disparities, and accumulates 4 paths all in parallel. Secondly, instead of processing

the whole image frame, we propose an overlapping block-based processing to elimi-

nate the very large on-chip memory requirement and to achieve a single-chip SGM

implementation without off-chip DRAM accesses. Moreover, a dependency-resolving

scan with a 16-stage deep pipeline is proposed to hide the data dependency and im-

prove throughput by 3×. Finally, we also custom designed an ultra-high bandwidth

dual port SRAM that leverages unique memory access patterns of SGM for high

performance and energy-efficient memory access.

Table 2.2: Summary of SGM challenges and algorithm-architecture-circuit optimiza-
tions.

2.3.1 Algorithm: Overlapping Block-based SGM Processing

The original SGM algorithm consists of forward and backward scans as shown in

Fig. 2.8, where each scan aggregates costs for each pixel along 4 paths. This two-scan

approach is unavoidable to allow 8-path aggregation over the entire image frame.

23

The partial (4 paths) aggregated costs (12 bit each) for every pixel are stored in the

memory during the forward scan and then later combined with the backward scan

results for the remaining 4 paths. This 2-scan imposes significant on-chip memory

and bandwidth requirement for storing 128 (number of disparities) aggregated costs

(16 bits each) for every (2 M for full HD) pixel in the image. Therefore, the memory

requirement of SGM is not scalable to various image resolutions, and a single full HD

image pair will require 386 MB storage for temporary aggregated costs. A prior work

[62] reduced the amount of temporary memory usage without significant accuracy

degradation by selectively storing sparse aggregated costs. Similarly, we only store

three disparities associated with the three minimum summated costs for each pixel.

This allows the temporary memory in our SGM implementation to be independent of

the disparity search range (the number of disparities evaluated per pixel). However,

the temporary memory size still depends on the image size, and storing sparse aggre-

gated costs with their associated disparities for a full HD image would still require 20

MB of memory. This memory requirement will significantly degrade energy efficiency

if it is mapped to external DRAM.

To further reduce the on-chip memory requirement and to eliminate the need for

external DRAM, we first evaluate the sensitivity of accuracy with different overlapping

window size on 194 KITTI cases. While the original SGM achieve 6.5 outlier, over-

lapping blocks of 200×200, 150×150, 100×100, 50×50 achieve 6.61%, 6.62%, 6.75%

and 7% outliers respectively. From the evaluation, we observe that inter-pixel corre-

lation diminishes when pixel pairs are more than 50 pixels apart. Therefore, instead

of processing the whole image, the proposed design uses an overlapping block-based

processing to partition the input image into units of 50×50 pixel overlapping blocks to

minimize on-chip memory size, as shown in Fig. 2.7 top-left. Adjacent blocks are over-

lapped by 8 pixels to allow cost aggregation across block boundaries. This technique

achieves 95.4% memory reduction for storing intermediate aggregation costs for a full

24

HD image. We evaluate this technique with standard Middlebury [63] and KITTI [49]

benchmarks. Fig. 2.6 shows a side-by-side qualitative comparison of this block-based

SGM and the original SGM on Middlebury test case, which yield almost identical

results. Fig. 2.9 presents the accumulated density function evaluated on 194 realistic

KITTI automotive test cases. The proposed overlapping blocked-based SGM suffers

only 0.5% outlier percentage degradation compared with the original SGM through-

out 194 KITTI evaluation cases. An outlier is a pixel that has a disparity error of

more than 3 integer levels.

Figure 2.9: Quantitative evaluation with overlapping-block based SGM over 194
KITTI test images.

2.3.2 Energy-efficient Hardware Architecture

The proposed block-based SGM processing procedure is shown in Fig. 2.7, and

the chip architecture is shown in Fig. 2.10. One 32-bit parallel interface streams

input image data and processing instructions into the chip, and the other 32-bit

parallel interface is used to stream the final disparity results off the chip. The control

registers and on-chip input images are memory mapped and can be accessed with a

25

USB interface through an external USB-to-parallel converter [64]. To maximize the

input bandwidth, a streaming mode is supported so that input/output image data

are streamed to/from the chip continuously. The block-partitioned left and right

images are stored in two on-chip interleaved image (ping-pong) buffers (30 Kb each).

Processing is concurrently performed with input/output image blocks streaming to

achieve real-time performance.

Figure 2.10: Hardware architecture of energy efficient SGM.

As the first step, 7×7 census transformations are performed on the processing

pixel as well as its matching candidates at 128 different disparity locations using

their surrounding (7×7 window) pixels. This census transform computing on-the-

fly scheme would result in 6000 compare operations for every processing pixel and

thus have poor energy efficiency. We observe that 127 out of 128 census transformed

matching candidates of previous pixels overlap with the census transformed pixels of

the current processing pixel when processing proceeds. Therefore, an on-chip 128-

entry circular FIFO is employed to eliminate redundant census transforms and to

store the pre-computed census results. A total of 127 census transformed matching

26

candidates (48-bit each) are read directly from the on-chip FIFO as shown in Fig. 2.11.

At each cycle when a new pixel is pushed into the pipeline, only one new census

transform is performed and pushed into the FIFO. This census FIFO eliminates 98%

of redundant census transforms. In simulation, storing census transforms in a FIFO

and preloading them (5.1 pJ/pixel including memory accesses) achieves 2.8× better

energy efficiency compared with on-the-fly re-computing census (14.2 pJ/pixel) for

every pixel.

Figure 2.11: Rotating FIFO based local cost generation.

The census-transformed pixel in the left image and the census-transformed pixels

in the right image at 128 different disparity locations are then compared in parallel.

This produces 128 Hamming distances (6 bits each) for each pixel that represent

the ’local’ pixel-wise matching cost vector for the 128 disparities; C(p, d). These

128 local costs are all sent to 4 parallel aggregation units for SGM aggregation.

Each aggregation unit is equipped with a high-bandwidth buffer and aggregates 128

disparity locations in parallel, accumulating costs over 4 different paths. Massive

parallelism in aggregation shown in Fig. 2.12 helps us achieve high throughput and

energy efficiency. The tree-structured selection unit identifies the best 3 aggregated

27

costs and disparities. These 3-best aggregated costs for each pixel are stored in the

on-chip memory. Once the forward scan completes, the backward scan is performed in

the similar fashion. Aggregation results that are discarded (except for 3-best results)

during the forward scan are combined with a constant penalty with the backward

scan results. The final best disparity candidates are selected based on the 8-path

aggregated costs. Finally, bilinear interpolation is performed, and the 512-level (7-

bit integer and 2-bit fractional) disparity results are stored in two interleaved result

buffers.

Figure 2.12: Implementation of 4 path aggregation.

2.3.3 Dependency-resolving scan, Pipeline and Forwarding

In the proposed highly parallelized cost aggregation, each aggregation unit has its

own ultra-high bandwidth row buffer (marked in dark gray in Fig. 2.10). During each

clock cycle, each aggregation unit reads the 128 aggregated costs from each neigh-

bouring pixel (4 neighbours as shown in Fig. 2.13) from the buffer and writes the 128

aggregated costs of the current pixel to the buffer. However, this straightforward im-

plementation would result in data dependency because the aggregation of the current

28

pixel depends on the results of the neighbour that is processed in the previous cycle.

Figure 2.13: Illustration of conventional raster scan and proposed diagonal scan.

As discussed earlier, SGM is implemented with a forward and a backward raster

scan, with each scan performing aggregation along 4 paths (Fig. 2.8). However, fol-

lowing this conventional raster scan order results in data dependency because the

previous pixel must complete its computation before the current pixel can be aggre-

gated. As shown in Fig. 2.13), the forward scan aggregates the results from its 4

neighbours marked with arrows. Aggregation in the top-left, top, top-right does not

lead to dependency because those pixels belong to the last row and are ready before

processing the current pixel. Data dependency is from the left neighbouring pixel

along the raster scan path, and processing of the current pixel must wait until its left

neighbour finishes aggregation. This data dependency dominates the critical path,

limiting the clock frequency and voltage scalability for low power operation.

We therefore propose a dependency-resolving scan in which pixel processing pro-

ceeds diagonally (Fig. 2.13). Now the original single cycle data dependency extends

to 5 cycles because of the diagonal scan. This allows pipelining the aggregation unit

with 5 cycles and resolving inter-pixel dependency in a deep pipeline. Fig. 2.14 shows

the proposed 16 stage deep pipeline for SGM processing. With the diagonal scan,

there are 5 cycles between pixel A and F during which we can process the other 4 pix-

29

els (B, C, D, E). When F is fetched into the pipeline, the aggregated costs of previous

pixels (light gray & dark gray) are already computed and stored in high bandwidth

custom SRAMs. The critical path data from pixel A is forwarded to pixel F in the

pipeline. This mechanism enables aggressive pipelining with a 4 ns clock frequency,

yielding a 3× performance gain compared with that of the conventional raster scan.

Moreover, because the data processed for pixel A are forwarded in the pipeline, this

successfully eliminates unnecessary row buffer, leading to an extra 25% memory re-

duction. The 16-stage deeply pipelined design operates at a relatively low frequency

(200MHz) to minimize the energy overhead of tremendous parallel pipeline registers

if the design has more pipeline stages with higher frequency. As shown in Fig. 2.13,

our design leverages parallelism in cost aggregation by running 4 paths in parallel on

4 aggregation units. Each aggregation unit contains 128 processing elements and 512

selection units, resulting in a total throughput of 1.882 TOP/s. Each OP is defined

as 8-bit integer operation including add, subtract, compare and memory access.

Figure 2.14: Pipelining and forwarding in SGM processing.

30

2.3.4 Custom Designed High Bandwidth 8T-SRAM

In the proposed design, each aggregation unit has its own ultra-high bandwidth

row buffer. For each row buffer, 128 aggregated costs (12 bit each) are read and

written simultaneously in a single cycle at 170 MHz. This translates to a total memory

bandwidth of 1.64 Tb/s for the 3 row buffers accessed in parallel. This bandwidth

would incur significant chip area and power overhead if realized with compiled SRAMs

as a large number of banks and redundant peripherals are unavoidable due to the

limited word length of compiled SRAMs. In simulation, Instead, we propose a custom-

designed dual port SRAM to cope with this challenging memory access characteristic

of SGM.

Because of the design’s highly parallelized structure, the row buffer has a very

unconventional aspect ratio: there are only 50 words in the buffer, but each word

is 1612 bits wide. This motivates the proposed high bandwidth custom SRAM that

provides enhanced area/power efficiency of SGM that was previously unattainable

by general-purpose computing platforms. Fig. 2.15 shows the block diagram of the

customized high-bandwidth SRAM. We partition the row buffer into 4 banks, and

each bank has 50 words with a word size of 403 bits. All four banks are accessed in

parallel with concurrent read and write functions, realizing 1612-bit dual port access.

Figure 2.15: Block diagram and circuit of proposed high bandwidth 8T SRAM.

31

The very unbalance aspect ratio of this custom SRAM results in a massive number

of very short bit lines (50 µm each) and very long word lines (380 µm each).

Therefore, unlike conventional 8T cells, we propose swapping the position of the

conventional 8T SRAM read transistor stack to avoid directly connecting the read

access transistor to the read bit line (RBL). This approach effectively reduces coupling

between the read word line (RWL) and the short, low capacitance RBL. In spice

simulation with 0.9V nominal voltage, the coupling from RWL to RBL is reduced

from 18mV to 2mV when read access transistor stack is flipped. Fig. 2.15 also shows

the bit cell circuit in the bottom right panel. To reduce leakage power in the 40-nm

technology, the custom 8T bit cell uses HVT transistors. The stacked skewed inverter-

based sense amplifier and the timing of the SRAM read operation is shown in the

bottom left of Fig. 2.15. Output latches are transparent during the RBL evaluation

phase to ensure the correct memory read operation. Employing conventional sense

amplifiers for 1612 bit lines would lead to significant area overhead. Therefore, skewed

inverters perform RBL voltage sensing to achieve better area efficiency. Compared

with conventional sense amplifiers, skewed inverters reduce the area overhead by 2.8×.

The low capacitance on the short BL allows the proposed SRAM to reliably operate

at 200 MHz with a supply voltage as low as 0.6 V, further improving the energy

efficiency. Overall, each 80-Kb SRAM is measured to consume only 6 mW with 548.1

Gb/s bandwidth at 200 MHz. Three banks operate at 200MHz with concurrent 1612-

bit read and write operations, achieving 1.64 Tb/s access bandwidth with 18 mW

power consumption.

2.4 Chip Measurements

Fig. 2.16 shows a die photo with a summary of the test chip performance. This

work is fabricated in TSMC 40-nm GP process with 10.8 mm2 chip area. TSMC

40-nm GP process has low nominal voltage (0.9V), and high performance (low Vth),

32

which meets our design target. The fabricated chip successfully produces 512 levels

of depth in full HD (1920×1080) resolution with real-time 30 fps performance with

170 MHz core frequency and consumes 836 mW from a 0.75 V supply. The depth

image outputs produced by the chip using KITTI [49] automotive scenes are shown in

Fig 2.17. Notice that the depth information of the cars in the shadow is successfully

obtained. Large (>100 pixels) disparity frequently occurs at close distances, and the

proposed processor is able to generate an accurate depth map over the entire image

due to its 512 levels of resolution. The proposed chip achieves 7% outlier pixels

running 194 KITTI evaluation images. Fig. 2.18 shows typical chip measurement

results from Middlebury indoor scenes.

Figure 2.16: Die photo and summary of performance.

Figure 2.17: Measured result with KITTI tests.

33

Figure 2.18: Measured result with Middlebury tests.

Fig. 2.19 shows the measured voltage and frequency scaling of the chip and pro-

vides a comparison with prior works. Compared with other state-of–the-art chips, this

work implements SGM depth with 512 disparity levels, resulting in 8× improvement.

It exhibits only 7% outliers in the KITTI benchmark, whereas other chips have lim-

ited disparity search ranges that are insufficient to run the industrial standard KITTI

benchmark. The chip is programmable and supports various frame rates and image

resolutions. It consumes 836 mW at 30 fps full HD. Power scales to 55 mW at 30

fps VGA at low voltage (0.52 V). Normalized energy is a FoM used in [38] and [37].

This work achieves 5.8× better FoM (energy per pixel per disparity) compared with

other state-of-the-art works at 30 fps full HD resolution. Normalized energy scales

to 0.0117 nJ at 30 fps VGA resolution, yielding 2.2× higher efficiency. Fig. 2.19 top-

right shows the frequency and voltage scaling. The maximum chip performance is 38

fps for full HD resolution.

34

Figure 2.19: Voltage & frequency scaling of the design and comparison with state-of-
the-art chips.

2.5 System Integration and Evaluation

To demonstrate a complete system, the chip is integrated with a camera general

processing (GPP) system and mounted on a real-time quadcopter platform. A small,

light custom board is designed and fabricated to satisfy the ’SWaP’ requirements for

system integration on MAVs. Fig. 2.20 provides the board specs. Our system consists

of the stereo daughterboard with the chip on top (covered with black epoxy) and a

motherboard with two Cypress USB bridges where USB signals are converted to the

32-bit parallel interface. Fig. 2.21 shows the measurement setup and complete stereo

system. The real-time image streams captured by the ZED stereo camera [51] are

rectified, block-partitioned into 50×50 blocks by a Samsung Exynos-5422 processor on

35

the ODRIOD-XU4[52] board, and then transmitted to the stereo processor through

the input USB3.0 interface. Instructions are also sent to the chip with the same input

USB3.0 interface that sustains the total 1.8 Gb/s bandwidth. The processed real-time

depth images along with the ’confidence’ side-information on each pixel are streamed

back via the other (output) USB3.0 interface exhibiting 0.8 Gb/s bandwidth. Each

50×50 block is processed concurrently when the next block is being transmitted and

stored on the on-chip interleaved image buffers. This technique minimizes camera-

chip-depth latency. The real-time demonstration platform mounted on a quadcopter

is shown in Fig. 2.22. At 0.9 V nominal voltage, the real-time VGA (full HD) frame

processing latency of the stereo processor is 4.1 ms (26 ms), which is sufficient for

real-time flight control. Table 2.3 shows the measured system power breakdown. The

stereo vision board consume 20% of the system power. Fig. 2.23 shows qualitative

results measured from our own quadcopter scene. As seen in the left image, strong

illumination on a sunny day leads to saturation of the sky and grass, however the

chip still generates accurate depth maps for navigation control.

Figure 2.20: Stereo system setup and summary.

36

Figure 2.21: Chip measurement setup with stereo system.

Figure 2.22: Real-time quadcopter demonstration platform.

Table 2.3: Measured system power break down.

Figure 2.23: Measured HD result with quad-copter.

37

2.6 Summary

We present a single-chip, accurate, high performance, energy efficient depth esti-

mation processor using the SGM algorithm for autonomous MAV applications. The

fabricated processor generates 512 levels of depth in full HD (1920×1080) resolution

with real-time 30 fps throughput consuming 836 mW from a 0.75 V supply in 40

nm CMOS. The chip reports 7% outliner on industry standard KITTI evaluation.

The overlapping block-based processing achieves 95.4% memory reduction, eliminat-

ing the need for external DRAM at the cost of only 0.5% accuracy degradation. The

proposed image-scanning stride with 16-stage deeply pipelined implementation yields

3× performance gain, 25% additional memory reduction and enables processing 512

level depth output at 30 frames per second for full HD resolution. Customized ultra-

wide SRAM enables 1.64 Tb/s on-chip memory access bandwidth with 18 mW power

consumption. The chip is measured with industry standard benchmarks. A com-

plete stereo system is built and demonstrated on a quadcopter for realistic real-time

operations.

38

CHAPTER III

A 1920×1080 25 fps 2.4 TOPS/W Low Power 6D

Vision Processor for Unified Optical Flow and Stereo

Depth with Semi-Global Matching

3.1 Introduction

In addition to the real-time high-performance and energy-efficient stereo vision

system described in Chapter II, optical flow describes the 3D motion of surround-

ings and is also widely considered as a kernel function of autonomous navigation in

micro aerial vehicles (MAVs), robots, and self-driving cars (Fig. 3.1). Stereo depth

perceives 3D structure and optical flow tracks 3D motion field of the environment.

Together, optical flow and stereo vision enable dense 6 Dimensional (6D) perception

(3D coordinate and 3D motion) and are fundamentals for mobile autonomous system.

Real-time accurate and dense perception of 3D coordinates and apparent motion

serves as a kernel function in simultaneous localization and mapping (SLAM), scene

understanding/reconstruction, object tracking, and obstacle avoidance. A broad

range of applications, including autonomous navigation of MAVs, require the depth

and optical flow perception to be high resolution (e.g., dense FHD), accurate, wide

range, low cost, and real-time with a high frame rate (e.g., >20 fps). Moreover, emerg-

ing miniaturized MAV applications impose additional stringent ’SWaP’ (size, weight,

39

and power) [30] constraints, for example <50 cm3, <50 g, and <1 W. Although

LIDAR [31] systems are widely used in autonomous systems and can provide accu-

rate 3D depth, they cannot capture the motion information of objects in the scene.

Moreover, LIDAR systems are difficult to miniaturize and do not produce dense re-

sults in high resolution. To supplement or replace LIDAR, camera and vision-based

techniques have been widely investigated [49, 39, 40, 37, 28, 36, 65]. However, the

high computational complexity of vision processing (especially optical flow) has been

a major challenge for wide adoption in low power and low cost applications. To

satisfy this technology need, we introduce a new 6D vision processor that, to our

best knowledge, demonstrates for the first time real-time dense depth and optical

flow computation with <1 W power consumption at FHD. This power budget does

not impose significant overhead to the overall system that typically includes cam-

eras (118.5mW each)[66], a mobile application processor (2W)[66], and a neuronal

network accelerator (450mW)[67].

Figure 3.1: Optical flow and depth estimation on autonomous MAVs.

As described in Chapter II, with stereo cameras, the 3D depth of a pixel in the left

image is inversely proportional to the horizontal one-dimensional (1D) displacement

40

between the pixel and its matching pixel on the epipolar line of the right image [68]

(Fig. 3.1, top right). 3D motion of a pixel in the current image is proportional to

the 2D displacement between the pixel and its matching pixel in the next frame

[69] (Fig. 3.1, bottom right). Unlike stereo depth, optical flow requires a 2D search

to find the corresponding match as a projected point can move both in horizontal

and vertical directions on the 2D image [69]. In this work, we combine the stereo

depth and optical flow problems as 1D and 2D matching problems under the same

semi-global matching (SGM framework) between images pairs. The complexity of the

search problem is quadratically increased as the searching dimension augments from

1D (depth) to 2D (optical flow).

To process stereo depth and optical flow without quadratically increased com-

plexity, we proposed a new, low-complexity optical flow method: Neighbour-Guided

Semi-Global Matching (NG-SGM) in [48]. In this chapter, we provide comprehen-

sive parametric analysis of NG-SGM along with a discussion on several optimization

techniques in both algorithm and hardware for SWaP constrained MAV applications.

The proposed NG-SGM method is based on SGM [55], a popular concept in stereo

matching, and its optical flow version, fSGM [70]. We are able to achieve orders of

magnitude complexity reduction of the original SGM while maintaining its high accu-

racy. With proposed NG-SGM approach, we studied the computation, memory, and

bandwidth bottlenecks of the NG-SGM algorithm and proposed an algorithm, archi-

tecture, and circuit-level co-optimized design that significantly reduces the hardware

cost. We also designed a unified architecture and a custom design crossbar circuit to

accelerate both the stereo depth and optical flow while maintaining similar complexity

with the NG-SGM approach.

The algorithm optimization techniques include: (1) aggressive decrease of search-

ing space size by exploiting flow similarity of neighbouring pixels, (2) cost array

aggregation approximation to avoid exhaustive pixel-wise cost computation, (3) im-

41

age partitioning into overlapping blocks and boundary flow vectors initialization with

temporal prediction to minimize accuracy degradation and overlap at the boundary,

(4) execution of the full NG-fSGM algorithm on selective pixels and application of

interpolation to construct dense flow field.

Although NG-SGM greatly reduces the complexity of stereo depth and optical

flow processing compared to the original SGM, it still raises large implementation

challenges for real-time FHD processing. Facing these implementation challenges, we

custom-designed chip architecture and circuits. To mitigate irregular and redundant

memory access patterns in NG-SGM, we introduce a new custom-designed 16×16-

mesh, high-bandwidth (128 b/access, 4.08 Tb/s peak), 2-cycle pipelined coalescing

crossbar with built-in memory access merging at each crosspoint. These coalescing

crossbars are tightly integrated with 64 on-chip rotating buffers to maximize on-chip

memory re-usability for a wide 2D searching range. In addition, a deeply pipelined

hardware architecture with a skewed diagonal image scanning stride efficiently resolves

the variable length inter-pixel dependency, significantly reducing the critical path for

more aggressive clock frequency and voltage scaling. The fabricated chip employs

two standard USB3.0-compliant interfaces, allowing effortless integration with a wide

range of commercial off-the-shelf stereo cameras and general purpose mobile applica-

tion processors. The chip supports a wide search range of 176×176 pixels to enable

dense optical flow or stereo depth on FHD image pairs with real-time 25 fps/30 fps

(flow/depth) throughput, consuming only 760 mW in 28 nm CMOS.

The content of this work in Chapter III was published previously in collaboration

with Xiang Jiang [71].

3.2 Overview of 6D Vision Algorithms

The 3D depth of a point is inversely proportional to the horizontal ’spatial’ dis-

placement of that point between the left and right camera image frames taken at the

42

same time. The optical flow of a point, on the other hand, is obtained by the ’tempo-

ral’ displacement between the previous and current frames from the same camera as

depicted in Fig. 3.1. The 3D motion of the object is proportional to the optical flow

and inversely proportional to its depth. By combining 3D depth and 3D motion, 6D

perception can be constructed [72].

3.2.1 Local Matching Algorithm

The census transform [73] is widely used for evaluating the correspondence be-

tween pixels. The N × N census transform converts each pixel to a bit stream of

length N2 − 1 to represent the intensity comparison between the center pixel and its

surrounding N2 − 1 pixels. The Hamming distance between two census transformed

pixels is the pixel correspondence. This is typically referred as the ’local’ matching

cost because the matching of each pixel pair can be evaluated independently using

only local pixels. In local approaches, the matching position is obtained by selecting

the pixel with the minimum local cost. This can be generalized to a 1D search for

stereo matching and 2D search for optical flow as shown in Fig. 3.1. Local approaches

in general are unreliable [74] since they often fail to resolve ambiguities in many chal-

lenging scenarios such as occlusions, texture-less regions, transparency, and repetitive

patterns where ’global’ contexts are required to find the proper match. For example,

the pixels of the wall on the right in Fig. 3.2 are saturated and texture-less due to

strong illumination. The local approach applied to this region is mostly incorrect as

shown in Fig. 3.2 because many pixels can have identical matching cost.

Figure 3.2: Comparison between local matching and SGM matching.

43

3.2.2 Semi-Global Matching Algorithms

As is described in Chapter II, the SGM algorithm was originally proposed by

Hirschmüller for stereo matching[55]. It achieves state-of-the-art accuracy by applying

dynamic programming based cost function optimization over the entire image. SGM

first computes pixel-wise matching costs of corresponding pixels in two frames for all

disparities (stereo matching) in the search space. This is followed by cost aggregation

along a finite number of paths that penalizes abrupt disparity changes. SGM was

applied to optical flow, fSGM in [57] by extending the search space from 1D stereo

to 2D optical flow. A brief review of fSGM is included here for completeness.

Step 1: Computation of pixel-wise matching costs C(p,o) between pixel p =

(x, y) in the previous image frame and pixel q = p + o in the current image frame,

for all flow vectors o = (u, v), where u is the horizontal component and v is the

vertical component. The cost function can be based on Rank, Census [58] and mutual

information [57].

Step 2: The smoothness constraint on matching costs is applied to penalize abrupt

changes of flow vectors among adjacent pixels. The accumulated cost Lr(p,o) of the

pixel p for a flow vector o along a path in the direction r is defined as

Lr(p,o) = C(p,o) + Z −min
k
Lr(p− r, k) (3.1)

The cost regularization summand has the form

Z = minLr(p− r,o), min
|i−o|2≤2

Lr(p− r, i) + P1,min
j
Lr(p− r, j) + P2 (3.2)

where P1 and P2 are regularization penalties (P1 6 P2). Instead of the piecewise linear

model used in fSGM[57], we adopt a constant penalty model because of its simplicity

for VLSI implementation without significant accuracy degradation [75]. The mod-

44

ification penalizes 1-pixel offset flow vectors by a smaller penalty P1 (smoothness

constraint) and all other vectors with >2 pixel offsets by a larger penalty P2[55]. The

aggregated cost S(p,o) is the sum of Lr(p,o) over all paths.

S(p,o) =
∑
r

Lr(p,o) (3.3)

Step 3: The final flow estimation uses winner-takes-all strategy. The flow vector o

with the minimum cost S(p,o) is selected as the final flow estimation.

Straightforward fSGM implementation poses significant hardware challenges. The

complexity of the original SGM method is O(WHD), where W is the image width,

H is the image height and D = d2 is the size of the search space per pixel given the

one-dimensional search range d. Note that complexity of fSGM increases quadrati-

cally with the one-dimensional flow range d, making the algorithm very inefficient for

a moderate flow search range (e.g., D = 10000 for ±50 pixel search range per dimen-

sion). Prior work [62] prunes SGM aggregation results for stereo vision processing

to minimize the storage requirement and to reduce the SGM aggregation complexity

in forward and backward propagations. However, the technique in [62] still involves

exhaustively evaluating the entire search range (1D for stereo) for pixel matching,

and thus would dominate the overall complexity when applied to optical flow. In this

chapter, we introduce a new optical flow algorithm: Neighbor-Guided fSGM (NG-

fSGM) whose complexity (both matching and cost aggregation) is independent of

2D search range. Despite its significantly lower complexity and memory footprint,

the proposed NG-fSGM still achieves near fSGM accuracy. We also propose several

hardware-oriented optimizations, as will be described in the following sections.

45

3.3 Neighbor-guided Semi-Global Matching Algorithm

NG-fSGM reduces the complexity by aggressively pruning the search space based

on information from neighbors. Using neighborhood information to prune the search

space has also been used in [76] and [77] in the context of block matching for motion

estimation. We extend the idea to semi-global cost aggregation and also modify flow

computation functions to reduce the overall complexity.

3.3.1 Flow Subset Selection

It is highly likely that neighboring pixels on the image have an identical or slowly

changing flow vector since they tend to belong to the same object, and thus have

similar motion. Small flow variation usually occurs due to slanted surface of objects,

spinning objects, camera motion, etc. Large flow variations can occur at the boundary

of different objects and are typically combined with occlusion and motion disconti-

nuity. NG-SGM exploits this property by selecting a subset of search space, Op for

each pixel p, based on its neighboring pixels’ flow results. Computation of pixel-wise

matching costs is performed on the subset Op whose size is much smaller than D = d2.

This selection strategy is inspired by PatchMatch [78], in which the search space is

initialized to a random set and neighboring pixels exchange ‘good guesses’.

The subset Op selection for each pixel p is guided by its neighboring pixels along

every aggregation path r in SGM, as shown in Fig. 3.3. For pixel p, Op is initially

empty. The best N flow vectors in Op−r of previous pixel along path r with the

minimum cost Lr(p − r,o) are added to Op to construct the search subset. Pixels

correspond to these best N flow vectors are marked by B in Fig. 3.3. We may choose

multiple (N > 14 per each path r) best vectors for robustness to cost variation accu-

mulated along a path and also local abnormality of pixel-wise matching cost. Since

fSGM applies a low aggregation penalty (P1 in 3.1) when the flow varies smoothly, it

is reasonable to add adjacent flow vectors, marked by A in Fig. 3.3, around each of

46

these best N vectors to Op. Note that selection of A points around each B point is

pseudo-random and unbiased. To enable the algorithm to adapt to rapid flow vari-

ations (e.g., occlusion and object discontinuity), M random flow vectors are added

to the subset, which are marked by R in Fig. 3.3. Although the number of these

random vectors selected for each pixel is small compared with the flow search range,

it plays a very important role because randomly found ‘good’ candidates can prop-

agate to neighboring pixels through forward and backward propagations. NG-SGM

propagation starts from image boundary pixels which do not have sufficient number

of neighboring pixels. The initial subset for these boundary pixels is thus randomly

selected from a uniform distribution.

Figure 3.3: Illustration of subset selection for the center pixel p.

Typically, SGM is implemented for two scans, forward and backward, therefore

SGM aggregation paths are divided into two groups one for each scan. In Fig. 3.3,

the forward scan proceeds from top-left to bottom-right of the image in the raster

scan order, while the backward scan processes pixels in the reverse order. As a result,

pixel p has different flow vector subset Op1 and Op2, and aggregated cost S1(p,o)

and S2(p,o) for forward scan with subscript 1 and backward scan with subscript

47

2, respectively. The overall subset Op is the union of Op1 and Op2 and the overall

aggregated cost S(p,o) is the sum of S1(p,o) and S2(p,o). We propose in Section 3.3

an approximation strategy to combine forward and backward aggregation. In the

backward scan, N best flow vectors with the forward scan minimum cost S1(p,o) is

added to construct Op2 to increase algorithm accuracy.

The flow vector candidates chosen by different aggregation paths may be redun-

dant since neighboring pixels’ best vectors can be identical, and the adjacent windows

(i.e., A’s in Fig. 3.3) can overlap. When candidates are all exclusive (worst case), the

total number of vectors in the search subset Op is T = NK(P/2 + 1) +M , where

P is the total (forward and backward) number of aggregation paths, and K is the

window size to select adjacent candidates (A points) surrounding each best candidate

(B point) guided by a neighbor. Fig. 3.3 shows an example for K = 2 × 2 window.

The complexity of NG-SGM is O(WHT), which is independent of flow search range

(D = d2). With T � D, significant (>10×) complexity reduction can be achieved

compared to the original fSGM.

3.3.2 Pixel-wise Matching Cost

For pixel-wise matching cost C(p,o), we adopt Hamming distance of Census trans-

form [58]. Census transform has been proven to represent image structure well and

to be robust even with illumination variations [73].

One possible implementation of SGM is to pre-calculate the Census transform of

the entire image and store the Census image in an array of size WHC2. Here, C2

denotes the Census transform window size. Storing the Census transformed images

poses significant memory overhead because each pixel is represented with a bit string

of C2 bits instead of 8-bit greyscale value. Once Census transformed images are pre-

calculated, raw costs can be generated directly by accessing these Census transformed

pixels. Although computing the Census transform for all pixels is computationally

48

wasteful, it may lower memory bandwidth per pixel because it can be implemented

using a highly efficient sliding window based approach with deterministic memory

access patterns.

In the proposed NG-SGM, only a subset Op of full flow candidate vectors needs

to be evaluated. The calculation of C(p,o) can be performed on-the-fly only when

o is selected during the cost aggregation step. For this approach, storing an array

of precomputed pixel-wise matching cost C(p,o) is unnecessary. However, memory

bandwidth required for Census transform per pixel is significantly higher because an

efficient sliding window approach is no longer applicable. We also quantify the tradeoff

space between pre-calculating Census transform vs. computing Census transform on

selective pixels on-the-fly. Pre-calculating Census transform results in calculating

the Census transform for unused pixels whereas computing Census transform on-the-

fly loses (because of irregular pixel processing pattern) the computing and memory

efficiency of sliding window based calculations.

3.3.3 Cost Aggregation and Flow Computation

In order to compute Z in equation 3.2 for cost aggregation referring to equation 3.1,

typical SGM-based methods store Lr(p,d) in a line buffer array of size WPD. NG-

SGM stores only the best N flow vectors for each path and their costs. Thus, the line

buffer array size is reduced to WPN . Since we selectively store the aggregated cost

Lr(p,o), the cost Lr(p− r,o) may not be available for Op−r along a certain direction

r. In that case, the aggregated cost is approximated by assigning

Lr(p,o) = min
j
Lr(p− r, j) + P2 (3.4)

To access forward scan results during the backward scan, the original SGM-based

method stores the aggregated cost S(p,o) for all searched flow vectors in an array

49

of size WHD, and updates the values by accumulating path-wise aggregated cost

Lr(p,o) obtained during the backward scan. NG-SGM avoids such a large memory

usage by storing only the N best flow vectors Bp per pixel along with their corre-

sponding aggregated cost S1(p,o) from the forward scan. Similar to the Lr(p,o) line

buffer handling, S1(p,o) is approximated to minj S1(p,o) when it is not available for

backward scan aggregation. As a result, the array size for storing S1(p,o) is reduced

from WHD to WHN .

For each pixel p visited during the backward scan, the set of N best vectors Bp,

from forward scan and the neighbor-guided vectors from backward scan, Op2, may be

dissimilar. For vectors whose cost has not been calculated in either the forward or the

backward scan, the following rules are applied to approximate the final aggregation

cost S(p,o): The missing costs S1(p,o) in forward scan are assigned the maximum

cost in Bp plus P2, while the missing costs in backward scan S2(p,o) are assigned

the maximum cost in Op2. The overall cost S(p,o) is the sum of cost from two

scans. Finally, the output flow vector o is the one corresponding to the minimum

cost S(p,o).

3.3.4 Post Processing

After the raw flow results are computed, post-processing steps are applied to

refine the flow image. We apply a simple 3×3 median filter on both horizontal and

vertical components of the flow image to remove errors and smoothen flow fields. If

the accuracy requirement is high, a consistency check between previous and current

frame (similar to left-right check for stereo [55]) can be applied to create the confidence

map.

50

3.4 Optimizations for Hardware Efficient NG-SGM Algorithm

NG-SGM allows optical flow complexity reduction with aggressive search space

pruning. However, its complexity could still be excessive for power-constrained real-

time mobile applications. For full HD (1920×1080) resolution, NG-SGM requires 20MB

of memory, 0.168TOPs performance and 3.8Tb/s memory bandwidth to achieve a

throughput of 30fps. To enable low power, high throughput mobile optical flow es-

timation with high accuracy, we propose NG-SGM-specific optimizations. Proposed

techniques include: 1) performing overlapping-block based NG-SGM in parallel 2)

initializing flow search space with temporal prediction 3) performing sparse flow es-

timation with NG-SGM and interpolating results to obtain dense flows.

3.4.1 Parallel Block-based NG-SGM

We propose parallel block-based NG-SGM to enable reduction in the overall power

consumption by processing each block at a lower frequency and voltage given through-

put target. The memory space requirement for block-based approach is proportional

to the number of parallel-processed blocks and the block size instead of the image

size. Other notable advantages include improved latency and throughput. Latency is

proportional to the block size (instead of the image size) and the throughput linearly

improves with the number of parallel block processing cores.

In a naive block-based implementation, input frames are partitioned into non-

overlapping blocks and the NG-SGM algorithm is applied to each block in parallel.

This non-overlapping block approach reduces the algorithm accuracy because of sev-

eral factors. First, for the boundary pixels, NG-SGM uses random selections to

initialize the search subset so it takes some time (in term of pixel propagation) until

‘good’ (correctly guided by neighbors) flow vectors appear in neighbor-guided search

subset. Second, since the aggregating paths accumulate information from boundary

to inner pixels (because of the raster scan order), the cost aggregation is relatively

51

unreliable at the boundary. Third, the flow smoothness constraint is interrupted at

the boundary of two blocks when blocks are non-overlapping.

In order to improve the accuracy of block-based NG-SGM, we impose flow smooth-

ness constraints across the block boundary. In the proposed scheme, the ‘previous’

(or reference) frame is first divided into n× n non-overlapping blocks, and then each

block is extended by l pixels along four sides, resulting in m×m overlapping blocks,

where m = n+ 2l. The ‘current’ (or target) frame is divided into overlapping blocks

as well, but with block size of m+2d per dimension, where d is the flow search range

per dimension. The output flow map of the entire image is built using the flow map

of each n × n block. Fig. 3.4 shows an example of a non-overlapping block and its

extensions.

Figure 3.4: An example of an n×n non-overlapping block in the previous frame.

Generally, a larger size of non-overlapping block and a larger number of extended

pixels result in better flow accuracy, at the expense of higher latency, computational

cost, and memory requirement. For a certain image size, the parameter n defines the

number of blocks to be processed, and together with l, it defines the architectural

52

complexity that is a function of the memory size, memory bandwidth and the number

of operations. The latency is linear in the size of overlapping block, m = n + 2l.

Table 3.1 summarizes the effect of parameters n and l on the memory size, number

of operations and memory bandwidth (in Bytes) requirements to process a W × H

frame. Larger n and l both increase the memory, computation and memory bandwidth

per block, though larger n reduces the number of blocks to be processed. While

overlapping of the blocks can significantly improve the flow accuracy, it also increases

the complexity of computing a whole frame from O(n2) to O(m2), where m = n+2l.

Detailed analysis on this tradeoff is presented in Section 3.5.

Table 3.1: Memory size, number of operations, memory bandwidth of NG-fSGM with
optimizations.

3.4.2 Inertial Flow Vector Prediction Using Sequential Frames

Large overlapping regions in block-based processing reduce throughput while in-

creasing memory size and bandwidth requirements. We observed that the size of

overlapping region can be significantly reduced if the search space of the boundary

pixels is initialized with good flow estimates/predictions, replacing random vectors.

Our method is inspired by ’inertial estimates’ proposed in [79]. Assume that each

53

object in the frame moves at a constant velocity. Then the flow of pixels between time

frames [t, t+1] can be estimated/predicted from the flow for [t−1, t]. Let (i, j) denote

pixel position, and let (u, v)(i,j) and (u′, v′)(i,j) denote flow of pixel (i, j) between time

frames [t, t+ 1] and [t− 1, t], respectively. Then we assume that the relationship 3.5

holds.

(u, v)(i+u′,j+v′) = (u′, v′)(i,j) (3.5)

We use 3.5 to provide the inertial guided flow estimates. For each pixel in the

extended region (grey area in Fig. 3.4) in the m × m block, inertial guided flow

estimates are more reliable, in general, than neighbor-guided flows especially when

the neighbors are closer to the block boundary where flow vectors are randomly

initialized. Thus, we replace the guided flow of one neighbor (which is closest to the

boundary) and its (K-1) adjacent flow vectors with the inertial guided flow vector and

its corresponding (K-1) adjacent flow vectors. The number of operations remains the

same though small extra memory space is required for storing the inertial estimates.

As we only store inertial estimates for boundary pixels, memory overhead is low

(<2%). This approach helps significantly reduce the size of the extended region for

overlapped block processing without algorithm accuracy degradation.

3.4.3 Sparse-to-Dense Optical Flow Estimation

To further reduce the number of operations of NG-SGM, we propose to esti-

mate dense optical flow from sparse optical flow using interpolation. In the proposed

method, sparse flow vectors are computed by performing NG-SGM on selective pix-

els. It is also worth noting that the proposed method is different from conventional

subsampling approaches where optical flow is performed on a subsampled image. In-

stead, our proposed method operates on the full resolution image while the optical

flow is only computed on selective pixel positions with patterns shown in Fig. 3.5

54

Figure 3.5: Sampling pattern examples where grey pixels are sampled.

NG-SGM aggregation and optical flow computation are initially performed on

these subsampled pixels only. Once NG-fSGM is complete for selective (subsampled)

pixels, dense optical flow of remaining pixels marked in white in Fig. 3.5 is computed

by interpolating the result of subsampled (black) pixels in Fig. 3.5. This approach is

similar in spirit to [80]. While in [80], SGM (for stereo) is performed for every pixel,

here aggregated costs are updated only on selected (subsampled) pixels; the other

pixels have the same aggregated costs as the selected pixels.

Different sampling patterns exemplified in Fig. 3.5 are governed by parameters f1

and f2, the horizontal and vertical sampling rates, respectively. The proposed sparse-

to-dense NG-fSGMmethod performs interpolation in two steps. As neighboring pixels

tend to have identical or similar motion, the flow vector op at pixel p is estimated

by the bilinear interpolation of nearest subsampled (i.e., black pixels in Fig. 3.5)

neighbors’ optical flow vectors. This approach reduces the required memory size

and the number of operations by a factor of f1f2. We summarize the impact of

these hardware-oriented optimization on the memory size, number of operations, and

memory bandwidth in Table 3.1.

55

3.5 Evaluation of Hardware Oriented Optimizations

We conducted comprehensive experiments on the Middlebury[63], KITTI[49] and

MPI[81] optical flow benchmark to evaluate optical flow estimation accuracy and

hardware implementation complexity. The accuracy is quantified in terms of the

endpoint error percentage (EEP) with Middlebury (EEP radius 2) / KITTI (EEP

radius 3) benchmark, and average endpoint error (EPE) on MPI dataset. The EEP

is the percentage of pixels whose optical flow estimation error radius (error vector

magnitude) is larger than a certain threshold (2 or 3 in our case)[63]. The EPE is

the averaged error radius of optical flow estimates of all pixels[81]. The memory size,

number of computations and memory bandwidth requirements are used to quantify

the hardware complexity.

3.5.1 Parametric Analysis on NG-SGM

We evaluate the effect of multiple algorithm parameters, namely, N , M , C, K,

P , n, l, f1, and f2. Some of the parameters have correlated impact on algorithm

accuracy. First, we analyze the impact of N , M , C and K when P is fixed. For now,

block-based approach and sparse-to-dense interpolation are disabled to simplify the

analysis. In Fig. 3.6, parameters N and M are enumerated from 0 to 9, and C2 is

evaluated from 5×5 to 19×19. Fig. 3.6 (a) and (c) visualize the algorithm accuracy

for K = 1 × 1 and 2 × 2 respectively on Middlebury test in EPE (the darker, the

more accurate) when M = 3 and P = 8. Fig. 3.6 (b) and (d) show the impact of N

and M when C = 11, and P = 8 for K = 1× 1 and 2× 2, respectively.

Fig. 3.6 (a) and (b) show that, when the search window size K is 2×2, the opti-

mal accuracy is obtained with N = 2 or 3. Notice that more best-candidates (larger

N) from the neighbor degrades the algorithm accuracy because the smoothness con-

straints weakens when more (some are incorrect) candidates are admitted. Regarding

the Census size, the algorithm accuracy stabilizes when C is larger than 9 but de-

56

Figure 3.6: Error performance analysis with parameter sweep (M, C, K, N).

grades when the Census size is too large (e.g., C ≥ 17) possibly because of dissimilar

optical flows within the Census window. Analysis confirms that the number of ran-

dom vectors (M) is relatively insensitive when other parameters are chosen optimally

and M ≥ 1.

In Fig. 3.6 (c) and (d), K is changed from 2 × 2 to 1 × 1. It is worth noting

that the impact of parameter N , M and C on algorithm accuracy shows similar non-

monotonic trend as in Fig. 3.6 (a) and (b). With a smallerK, more random candidates

with M ≥ 3 are desired to compensate for the reduced number of neighbor guided

candidates, and thus to minimize the algorithm accuracy degradation. Point‘Z’ (N

= 2, M = 9, C = 9 with K = 1 × 1) in Fig. 3.6 (a) has the best accuracy of 3.69%

EPE comparable to the point ‘X’ in Fig. 3.6 (d) (3.67% EPE, with N = 2, M = 3 ,

57

C = 9 and K = 2× 2).

The algorithm complexity in terms of memory size, memory bandwidth and op-

eration counts is visualized in Fig. 3.7 (a) and (b) when K = 2 × 2. Analysis for

K = 1× 1 is omitted as it exhibits a similar trend. The comparison between Census

transform on-the-fly and pre-computed Census is also analyzed in the same figures.

The algorithm accuracy – complexity tradeoff can be identified by associating ’X,

Y, Z, W’ points in Fig. 3.6 (c), (d) to the same labelled points in Fig. 3.7. Points

in Fig. 3.7 are shaded with different levels to represent algorithm accuracy; darker

shades represent better algorithm accuracy following the same convention in Fig. 3.7.

One can observe the impact of larger Census size (from point ’X’ to ’W’) that allows

memory size vs. bandwidth vs. operations tradeoff depending on whether Census

transform is pre-computed (red) or calculated on-the-fly (blue). Horizontal shift of

’X’->’W’ indicates memory size increase while vertical shift implies more memory

bandwidth and number of operations.

Notice that all parameters have monotonic relationship with the algorithm com-

plexity while their impact on algorithm accuracy is non-monotonic. Therefore, finding

an optimal tradeoff point is a non-trivial task. The impact of parameter C and N

on both algorithm accuracy and complexity is in general more significant than that

of other parameters. For the pre-computed Census approach, a large C could result

in an excessive memory size requirement, as it is a function of C2. The number of

operations and memory requirements for the on-the-fly Census approach is propor-

tional to NC2. A reasonable complexity-accuracy tradeoff can be made with C = 9,

N = 1 and M = 1 given K = 2 × 2 and P = 8. In this case, computing Census

on-the-fly reduces memory size requirement to ≈0.5MB at the cost of ≈60% more

memory bandwidth and computation compared to the pre-computed Census option.

The impact of various parameters on algorithm accuracy and complexity is sum-

marized in Table 3.1. A smaller N implies more aggressive candidate pruning and

58

Figure 3.7: Performance and complexity tradeoff analysis: (a) Memory BW vs. Mem-
ory size vs. Error rate, (b) # of OPs vs. Memory size vs. Error rate.

slower convergence of the flow propagation among neighbors, but also avoids over-

constraining smoothness constraints that could lead to flow error. A larger M can

compensate for small search window size K and can remain small if N or K is large.

Based on the exhaustive analysis on Middlebury dataset, we picked the parameter set

that provides balanced hardware complexity and algorithm accuracy. For the rest of

the section, we use the following parameters: K = 2 × 2, C = 9, N = 1, P = 8, M

= 1.

Table 3.2: Comparison of NG-fSGM, fSGM & Lucas-Kanade.

59

Table 3.2 compares the accuracy and complexity of NG-SGM with the aforemen-

tioned parameter set to the original fSGM[70] and Lucas-Kanade (LK)[69], for the

Middlebury, KITTI and MPI benchmarks. NG-fSGM with K = 2 × 2, C=9, N=1,

P=8,M=1 is used for all three benchmarks. As Table 3.4 indicates, the proposed NG-

SGM provides significant complexity reduction compared to fSGM since NG-SGM

only evaluates <10% flow vectors and aggressively prunes the others to avoid strict

regularization of fSGM. Recall that the complexity of fSGM quadratically increases

with the search range d while the proposed NG-fSGM complexity is independent of

d. Middlebury dataset used for Table 3.4 has a limited d ≤ 32. The complexity gap

between fSGM and NG-SGM is more significant for MPI[81] and KITTI[49] bench-

marks that require a larger d. The fSGM and LK complexity for KITTI and MPI

reported in Table 3.4 is based on a three-level hierarchical pyramid approach[70] that

limits d to 40 (fSGM) or uses a 13×13 search window with 10 iterations (LK) for each

level. Non-hierarchical fSGM (d=40) and LK (13×13, 10 iterations) is used for the

Middlebury . We observed that NG-SGM significantly outperforms LK in accuracy

at the cost of slightly increased memory area requirement. The number of operations

for NG-SGM is lower than that of LK for all benchmarks.

To visualize the algorithm quality difference, Fig. 3.8 shows the flow maps obtained

from a Middlebury test image using each algorithm. The color of each pixel indicates

the direction of the flow whereas the color intensity is proportional to the magnitude

of the flow. NG-SGM (2nd row) and fSGM (3rd row) both outperform LK (4th row).

The raw (before post-processing) flow map output of NG-SGM shows blurry results

along object edges but has fewer error patches compared to fSGM. The neighbor

guidance in NG-SGM is less reliable at the object edges when aggressive search space

pruning is applied. However, after a simple post processing of 3×3 median filtering,

this difference becomes insignificant. Table 3.2 confirms that the overall accuracy of

NG-SGM for Middlebury evaluation is comparable to that of fSGM.

60

Figure 3.8: Colored flow maps using different algorithms.

For the KITTI and MPI dataset, the search range is substantially larger; d =

128 for a non-hierarchical approach. Unlike NG-SGM, a multi-level hierarchical ap-

proach is preferred for LK and/or fSGM to limit d (e.g., 40) for each pyramid level.

Fig. 3.9 and 3.10 show output flow images from KITTI and MPI for qualitative

comparison. Proposed non-hierarchical NG-fSGM achieves 11.37% EEP on KITTI

benchmark, which significantly outperforms pyramidal LK whose EEP is 28.91%.

NG-SGM exhibits 0.63% degradation compared with a hierarchical fSGM[70] while

achieving >10× memory and computation complexity reduction. NG-SGM achieves

7.91 average EPE (end point error) on MPI test cases significantly outperforming

LK whose EPE is 10.45. Evaluation of hierarchical fSGM on MPI benchmark is not

reported in [70] and so could not be included.

61

Figure 3.9: Colored flow maps using KITTI dataset.

Figure 3.10: Colored flow maps using MPI dataset.

3.5.2 Overlapping Block-based NG-SGM

So far, for more direct comparison to other algorithms, NG-SGM complexity and

accuracy have been analyzed without additional hardware optimization techniques.

In the following subsections, we discuss the impact of overlapped block-based process-

ing, inertial guidance for flow initialization, and sparse-to-dense flow interpolation to

further reduce hardware implementation complexity specifically for NG-SGM.

We evaluate the basic overlapped block-based processing (denoted by NG-SGM+B)

62

by sweeping parameter n from 30 to 100 and l from 0 to 15. The accuracy is evaluated

in EPE (radius = 2 pixels) for the Middlebury dataset. In Fig. 3.11, it is evident that

a larger n or l monotonically improves algorithm accuracy but the gain diminishes

(approaches the original algorithm accuracy without block-based processing) when n

and l are around 75 and 16, respectively. Fig. 3.11 also quantifies the memory size

increase for supporting larger n or l. We observe that n = 64 provides reasonable

tradeoff between algorithm accuracy and complexity. In later subsections we assume

n = 64 unless stated otherwise.

Figure 3.11: Left: accuracy of NG-SGM+B using the Middlebury training dataset.
Right: complexity vs. overlap size (l) vs. block size (n).

3.5.3 Block-based NG-fSGM with inertial guidance

We evaluate the effect of the proposed inertial guidance technique on Middlebury

dataset. Fig. 3.12 shows an example of inertial guidance for the flow estimate of the

current frame. The average accuracy of inertial estimates from [t− 1, t] is 10.13% in

EEP for Middlebury dataset, which is 6% lower than that of NG-SGM. This implies

that the inertial estimates can provide useful guidance for flow vector initialization in

NG-fSGM. Table 3.3 shows the impact of inertial guidance where NG-fSGM+BI de-

notes the method combining overlapped block-based processing and inertial guidance.

The inertial guidance consistently improves the accuracy especially for images with

63

a relatively large flow range (Grove3, Urban2 and Urban3). With inertial guidance,

the overlap size l can be reduced from 16 to 2 with negligible loss in accuracy (see

second and fourth columns of Table 3.5). This also helps to achieve lower architec-

tural complexity; memory size is reduced by 85% from 0.65MB to 0.38MB and the

number of operations is reduced by 93% from 0.058 to 0.028 GOPs per block. This

significant complexity reduction is feasible because inertial guidance reduces number

of overlapping pixels.

Figure 3.12: An example of inertial guidance. Top left: Input frame. Top right: Iner-
tial estimates. Bottom left: NG-SGM+BI. Bottom right: Groundtruth.

Note that block-based NG-SGM cannot always resolve the ambiguity from multi-

ple flow candidates for images with repeated patterns that span the entire block (e.g.,

Urban3). NG-fSGM without block partitioning propagates flow vectors globally be-

yond the block boundary, thus it can resolve local (within a block) ambiguity by

aggregating the cost from the region where repeated patterns no longer exist. Inertial

guidance combined with block-based NG-fSGM show improved results for resolving

local ambiguity (e.g., Urban3) by utilizing additional temporal guidance. However, if

images do not have strong local ambiguity, block-based NG-fSGM performs relatively

well within each block.

64

Table 3.3: Endpoint error percentage (EEP) and complexity on Middlebury multi-
frame training dataset.

While the original NG-SGM (processing the whole image as a single block) has a

mean error of 4.43%, NG-SGM+BI has a mean error of 4.72% with n = 64 and l =

2, exhibiting 0.29% average accuracy degradation. For individual data images, the

accuracy difference ranges from -0.09% to 3.14%.

3.5.4 Sparse-to-Dense Optical Flow Estimation

The last optimization technique we evaluate is the sparse-to-dense NG-SGM with

different sampling rates f1 and f2. The sparse-to-density NG-SGM is evaluated on

Middlebury images with n = 64 and l = 16. Table 3.4 confirms that significant

reduction in the memory size and number of operations requirement is feasible with

only a modest accuracy degradation. The subsampling rate of f1 = 1/2 and f2 = 1/2

provides a reasonable tradeoff between accuracy and complexity. The memory size is

reduced by 40% and number of operations is reduced by 75% with 1.23% increase in

error percentage.

65

Table 3.4: Endpoint error percentage (EEP) and complexity on Middlebury multi-
frame training dataset.

3.5.5 Post-Processing

Different post processing techniques are evaluated for tradeoff study in low com-

plexity optical flow computation. We analyze and compare the complexity and ac-

curacy between 5×5 median filter and 25×25 weighted median filter (WMF)[82].

Results are shown in Table 3.5. With pyramidal LK, the weighted median filter

outperforms the median filter by 1.5% on KITTI benchmarks. When the raw flow

rate is more accurate, the improvement from weighted median filter starts to become

marginal compared to a simple median filter. Pyramidal LK is still not able to meet

NG-SGM accuracy even when a 25×25 weighted median filter is applied. Applying

this weighted median filter introduces ≈25% extra computation for pyramidal LK.

Table 3.5: Outlier percentage (EEP) with different post processing schemes.

66

3.6 Architecture and Circuit Implementations

Although proposed NG-SGM algorithm greatly reduces the complexity of stereo

depth and optical flow processing compared to the original SGM, it still poses large

implementation challenges for real-time FHD processing. First, it requires very high

memory bandwidth of about 2.6 Tb/s with highly irregular access patterns because

of the dynamic search space pruning of the NG-SGM algorithm. Second, NG-SGM

involves a large memory footprint of about 4 MB to enable a wide-range 2D search

for optical flow. Third, the variable-latency data dependency from neighboring pixels

makes the control of pipelined massive parallel processing more challenging. To make

SGM feasible for low power real-time 6D vision, we also custom designed a hardware

architecture that accelerates the NG-SGM to achieve high throughput and energy

efficiency for power critical real-time mobile systems.

3.6.1 Overview of NG-SGM Datapath

NG-SGM realized on our 6D vision processor involves five steps (Fig. 3.13): 1)

Fetching, block-partitioning and scheduled transfer of image blocks; 2) aggressively

pruned neighbor-guided flow candidate search; 3) pixel-wise matching cost computa-

tion; 4) cost aggregation of the sparsely populated local cost cuboid; and 5) optical

flow selection and guidance propagation to neighbor pixels. To compute the pixel-

wise local matching cost, we selectively apply a 9×9 census transform on the matching

candidate pixel pairs. Each candidate pixel is transformed to a bit string of the length

80. The local matching cost C(p, d) for a pixel at the location p with the displacement

vector d is evaluated by the Hamming distance[79] between the census transformed

pixel pair at p and p− d on the current and target image pair, respectively.

We repeat this operation on all candidates in the pruned search space, constructing

a cuboid that is sparsely populated with local matching costs for each pixel as shown

in Fig. 3.13. Because of NG candidate pruning, there are at most 64 non-zero costs per

67

Figure 3.13: Data path of the proposed NG-SGM 6D vision algorithm.

pixel in the 3D cost cuboid. We then perform SGM aggregation following equation 3.1

on matching costs using 4 paths (rs) for the forward scan and another 4 paths for the

backward scan (Fig. 3.14). In total, NG-SGM aggregation is performed on 8 paths

for every pixel as shown in Fig. 3.14.

Figure 3.14: 8 path aggregation of NG-SGM.

When the cost C(p,d) is unavailable for some ds because of candidate pruning,

it is replaced by maxLrstored(p,d) + P2. Finally, for each pixel, we get a vector of

summated cost as in equation 3.3.

The vector d with the minimum summated cost S(p,d) is the final displacement

68

(either optical flow or stereo disparity) vector for the current pixel. At the same time,

we also select the best 3 candidates (marked as A in Fig. 3.13) for each aggregation

path and hand this information to neighboring pixels to guide candidate pruning.

The maximum number of pruned candidates per pixel is 64, which consists of 3(best

candidates from each path) × 4(surrounding pixels for each best candidate) × 5(4

paths per scan and the forward scan result) + 4 random candidates. Application

of NG-SGM for 1D stereo depth matching has not been discussed in the literature

[48, 47], but it is straightforward.

3.6.2 Interface and Architecture Overview

Fig. 3.15 shows the chip architecture and datapath overview. On-chip control

registers and 64 on-chip rotating input image buffers are memory mapped and can

be accessed with a USB3.0 interface through an external USB-to-parallel converter

[64]. During operation, one 32-bit parallel interface streams input images and pro-

cessing instructions into the chip, and the other 32-bit parallel interface streams the

final optical flow or depth disparity images off from the chip. A streaming mode is

supported so that the input/output images are streamed on/off the chip continuously

to maximize the bandwidth of the interface. The block-partitioned previous (or left)

and current (or right) frames for computing optical flow (or stereo) are stored in 64

on-chip rotating image buffers (20 Kb each, 1280 Kb in total). Optical flow and

stereo processing are performed concurrently when the input/output image blocks

are transferred to support real-time streaming operation.

As the first step of NG-SGM, aggressively pruned matching candidates are selected

based on guidance from neighboring pixels. Hamming distances of census transformed

pixels at d = 64 different sparse optical flow/disparity locations are then compared

in parallel. This produces 64 pixel-wise matching costs C(p,d) for the 64 candidate

ds. These pixel-wise matching costs are all sent to 4 parallel aggregation units for

69

Figure 3.15: Chip architecture of 6D vision processor.

NG-SGM aggregation. Each aggregation unit is equipped with a small 12 Kb buffer

to aggregates 64 candidates for each path in parallel. In each aggregation unit, the 64

candidates are divided into 19 clusters (15 clusters guided by neighbors and 4 random

candidates). Candidates in a neighbor guided cluster have at most ±1 displacement

vector difference. To simplify evaluating 3.1, only one candidate in that cluster is

compared with the three best displacement vectors of the previous neighboring pixel,

and P1, P2 (penalties) are added to the aggregated cost depending on the distance

between the candidate and the previous displacement vectors. The aggregated costs

of the remaining candidates in that cluster are directly obtained based on the posi-

tion of the evaluated candidate. This eliminates 75% of redundant comparisons and

saves 68% power on cost aggregation. Also, it helps parallelizing the aggregation of 4

paths with 64 candidates per path to achieve higher throughput and energy efficiency

(Fig. 3.15).

Each aggregation unit is then followed by tree-structured selection units to identify

the best 3 aggregated costs and corresponding displacement vectors, ds, for each

70

aggregation path, while there are 4 paths for either forward or backward propagation.

As shown in Fig. 3.16, the top-1 minimum cost is selected based on the comparison of

a full radix-2 tree. The second minimum is selected among the (green) elements that

were compared and lost to the top-1 minimum. The third minimum is selected among

the (green and blue) elements that were compared and lost to the top-1 and top-2

minimums. This implementation saves 52% energy consumed in candidate selection

compared with implementing three full radix-2 trees. These path-wise optimal optical

flows and costs are sent to the next processing pixel to guide its search space pruning.

After the costs are aggregated on each path, aggregated costs over 4 different paths are

accumulated, resolving the sparse overlap of candidates among multiple paths. Then a

tree structured selection unit identifies the best 3 aggregated costs and corresponding

ds from the accumulated costs. These 3 best aggregated costs for each pixel are stored

in the on-chip 96 kB result buffer. The processor first completes these steps for each

pixel following the skewed-diagonal forward scan. The backward scan is performed in

a similar fashion but in the reverse order. The aggregation results that are discarded

(all except the 3 best results) during the forward scan are replaced with the maximum

stored accumulated cost in the backward scan. The final best candidates are selected

based on the minimum cost from the aggregation of 8 paths. Finally, the selected d

vectors are stored in two interleaved output buffers.

Figure 3.16: Tree structured minimum selection unit.

71

3.6.3 Memory Architecture

Adopting the technique in [50], the processor only stores the 3 best accumulated

costs for every pixel after the forward scan and then later combines the entry with the

backward scan results for the remaining 4 paths. Despite this simplified 2-scan ap-

proach, NG-SGM would still require ≈13 MB of on-chip memory for the accumulated

cost storage to support FHD processing. To reduce the on-chip memory requirement,

eliminate the need of using external DRAM and provide a single chip solution, the

proposed design uses block-based processing to partition the input image into units of

88×88-pixel overlapping blocks. The inter-pixel correlation in NG-SGM aggregation

diminishes when pixel pairs are more than 88 pixels apart[83]. As shown in Fig. 3.14

top left, adjacent blocks are overlapped by 24 pixels to allow cost aggregation across

block boundaries.

Image buffering in on-chip memory is rather straightforward in stereo depth

computation[50] because the matching direction is 1D unidirectional with respect to

the current processing pixel location. In contrast, optical flow processing involves 2D

omnidirectional (around the current pixel) search, incurring significant image buffer-

ing overhead for block-based processing. The same image blocks are read multiple

times to evaluate 2D displacement if a raster scan progression is used. Therefore, we

propose a rotating image buffer scheme, shown in Fig. 3.17, that consists of 64 SRAMs

to buffer 16 image blocks. Each 88×88-pixel image block occupies 4 SRAM banks.

As shown in Fig. 3.17, the block processing follows the row-alternating raster scan

order where the 2 dark gray blocks are fetched on chip to replace black blocks while

the chip processes the red block. This approach maximizes on-chip memory reuse

and reduces interface bandwidth by 2× at the cost of 28% larger on-chip memory.

Unlike stereo SGM, computing census transform for the entire image is wasteful

as NG-SGM evaluates only a small set of candidates. Thus, the proposed architec-

ture selectively computes 9×9 census transform only for sparse matching candidates.

72

Figure 3.17: On-chip rotating buffer scheme.

Note that computing census for sparse points on-the-fly does not necessarily lead to

lower energy consumption compared to full census computation for the entire image

because the latter can benefit from the deterministic sliding window approach for

the maximum memory reuse[50]. However, when the density of the selected pixels is

low, as in NG-SGM, we have observed that on-the-fly census computation is desirable

despite the highly irregular memory access pattern. As shown in Fig. 3.18, selectively

computing census transform on-the-fly is associated with 34% energy reduction and

10× memory reduction compared with precomputing census transform.

Figure 3.18: Memory size & power comparison between precomputing census vs.
computing census on-the-fly.

Although on-the-fly census transform significantly reduces the memory bandwidth

73

requirement, it still imposes a challenge because matching candidates are dynamically

selected depending on neighboring pixels’ guidance. Moreover, as each census trans-

form requires 9×9 pixel block accesses, 1824 pixel accesses are required to evaluate

all candidates for a single pixel. To reduce the number of memory word accesses

and improve access energy efficiency, we group 4×4 pixels into a single memory word

as shown in Fig. 3.19. In addition, we made a modification to NG-SGM so that

the cluster of 4 candidates consisting of one best candidate (red in Fig. 3.19 and

A in Fig. 3.3) and the surrounding adjacent candidates (blue in Fig. 3.19 and B in

Fig. 3.3) is always confined within the 4×4 pixel memory word block. This can be

guaranteed by adjusting the adjacent candidate locations based on the best candidate

position. With this approach, the memory access for on-the-fly census computation

is simplified, and exactly 9 memory word accesses are sufficient to fetch all the pixels

necessary to process the census transform of the cluster of 4 NG candidates.The al-

gorithm evaluation of NG-SGM includes the impact of this modification, which turns

out to be negligible.

Figure 3.19: Memory grouping for high-bandwidth access.

74

3.6.4 Pipelining Architecture

In the proposed highly parallelized cost aggregation, each aggregation unit (one

per aggregation path) has its own row buffer, storing 3 minimum aggregated costs and

their corresponding displacement vectors from the previous pixel. During each clock

cycle, each aggregation unit aggregates costs over 64 sparsely scattered displacement

vector locations and selects the 3 best displacement vectors (per aggregation path) to

guide the NG-SGM search pruning of the next pixel. When each pixel is processed

in the raster scan order, it incurs severe data dependency because neighbor guidance

is only available when all aggregation and best candidate selection of previous pixels

completes. Moreover, this severe inter-pixel dependency issue is aggravated by vari-

able processing latency in resolving irregular (based on dynamic neighbor guidance)

image buffer memory access collisions.

This challenge is mitigated by adopting a dependency-resolving and variable la-

tency tolerant deeply pipelined architecture inspired by [50]. The forward and back-

ward scan of NG-SGM performs aggregation along 4 paths, indicated by black arrows

in Fig. 3.14 and 3.20. In the proposed pipeline architecture, the pixel processing pro-

ceeds in a skewed-diagonal fashion, as shown in Fig. 3.20, where the pixel processing

step is in alphabetical order. When ’G’ is fetched into the pipeline, the aggregated

costs of previous pixels (light gray & dark gray) are already computed and stored

in high bandwidth SRAMs. Consequently, the original single cycle data dependency

from the left adjacent pixel in the raster scan processing extends to 7 cycles in the

proposed skewed-diagonal scan. This significantly relaxes the critical path length of

the pipeline and provides slack for the variable latency of candidate matching, cost

aggregation, and the flow selection up to the maximum of 7 cycles to resolve inter-

pixel dependency. The proposed pipelining achieves a 3 ns critical path, yielding a

4× performance gain compared with that of the conventional raster scan. Moreover,

because of the improved throughput with deep pipelining, further energy reduction

75

is achieved via more aggressive voltage and frequency scaling.

Figure 3.20: Variable-latency critical path hidden diagonal scan.

3.6.5 Multiple frequency and voltage processing

The proposed design is partitioned into 3 power and frequency domains as shown

in Fig. 3.15 to balance throughput among different modules while improving energy

efficiency. Optical flow processing with the NG-SGM algorithm at 25 fps FHD re-

quires 2.6 Tb/s irregular memory access governed by NG search space pruning. These

memory accesses cannot be easily parallelized due to the dynamic and data-dependent

nature of the neighbor guidance. Meanwhile, once the local matching costs are evalu-

ated, cost aggregation and candidate selection over 4 paths can be highly parallelized

and processed at the same time. Based on this inherent throughput mismatch, we

partition the design into three voltage-frequency domains shown in Fig. 3.15. The

image buffer access, census transform and local cost generation modules are placed in

the high voltage (up to 1.3 V) and high frequency (500 MHz) domain to provide 2.6

Tb/s memory access bandwidth and improve throughput. The highly parallelizable

NG-SGM cost aggregation and candidate vector selection modules are placed in the

low voltage (0.7 V) and low frequency (200 MHz) domain to balance the computation

throughput with memory bandwidth and save energy. Parallel interfaces are placed in

a separate voltage (0.7 V) and frequency (100 MHz) domain to balance the interface

76

data bandwidth and processing throughput. The Fxbar and Fcore clocks in Fig. 3.15

are generated with two separate on-chip VCOs while Finterface is divided from Fcore.

Fig. 3.21 shows the power distribution between different blocks in the proposed ar-

chitecture, where memory access (labeled ’xbar’, ’mem access’, ’census transform’ in

Fig. 3.21) consumes 74% while highly parallelized processing (other items in Fig. 21)

consumes 26% of the overall power. The power of NG-SGM aggregation and selec-

tion is reduced by 27% compared with that of a single voltage design without any

performance degradation.

Figure 3.21: Power break down of different modules.

3.6.6 High-Bandwidth, Coalescing Crosspoint Crossbar

The NG-SGM algorithm unified for stereo depth and optical flow requires 2.6 Tb/s

memory bandwidth for the image buffer to compute on-the-fly census transform of

pruned candidates. The memory access patterns are irregular and unpredictable

due to the dynamic nature of neighbor guidance. However, we observe that many

of these memory accesses frequently overlap because neighboring pixels often agree

on the same matching candidates and provide the same guidance. In simulation,

only 30% of the memory accesses are unique on average. To exploit this property

77

while maintaining >2 Tb/s on-chip memory access bandwidth, we propose a new

crossbar circuit that efficiently coalesces redundant memory accesses.

Fig. 3.22 shows the architectural block diagram of the proposed high-bandwidth,

2-cycle pipelined coalescing crossbar. The crossbar has an SRAM-like layout with

crosspoints (Xpoints) connected in a 16×16 mesh. Query queues are connected on

the right side, and 16 memory banks are connected at the top and bottom of the

crossbar. Each queue holds 6 11 entries to avoid queue overflow in the worst case

(no coalescing). The memory system hierarchically connects 4 such custom-designed

coalescing crossbars for accessing 64 on-chip image rotating buffers (Fig. 3.15). The

data width of the crossbar is 128 bit, and the crossbar operates at 500 MHz.

Figure 3.22: Block diagram of the coalescing crossbar.

In the first cycle, arbitration is performed when multiple queries try to access

the same memory bank. In the proposed crossbar, each crosspoint locally handles

78

arbitration and remembers collision. If a collision occurs, the query with the higher

priority wins arbitration and sends its address to the memory. The query with the

lower priority loses arbitration and is suppressed. In the second cycle, the data

requested by the wining query is fetched, and the request from the wining query is

fulfilled. At the same time, the crosspoint that blocked a losing query broadcasts its

data and its access address to all losing queries to check if any coalescing memory

access exists in its queue. If any query in the queue of the losing query has a coalescing

memory access, it consumes the broadcasted data and eliminates itself from the queue,

coalescing the two requests and removing the redundant memory access.

Complexity of the arbitration logic increases quadratically with the number of

input or output ports, making conventional CMOS MUX/NOR-based design very in-

efficient for a large number of ports[84]. Inspired by [85] and to achieve an area/power

efficient solution, we customized the arbitration circuits to perform arbitration and

detect collision with dynamic logic on bitlines. Fig. 3.23 shows the detailed arbitra-

tion circuit at each crosspoint and the timing of its control logic. The timing control

of the crossbar is verified through Monte Carlo simulations considering PVT varia-

tions to ensure sufficient margins for correct functionality. The proposed dynamic

logic on bitlines does not suffer from charge sharing because the discharge transistor

on each bitline are not stacked. There are 16 arbitration lines, one per input channel.

All lines are pre-charged high during operation. Then each crosspoint discharges all

arbitration bitlines whose indices are smaller than its query index and therefore have

lower priority. Then the crosspoint examines the bitline with its own index to see if

it won or lost the arbitration. Each crosspoint remembers the collision and stores it

in the local register if the query loses. The winning crosspoint then sends the query

address to its memory. All queries including losing queries receive the same broad-

casted data from memory as well as the address of the winning query. If the queue

has a matching address, the broadcast data is returned, and the query is removed

79

from the queue, completing coalescing.

Figure 3.23: Circuits and timing diagram of a coalescing crosspoint.

With 64 SRAM banks, a single 162×64 crossbar (162 is the total number of mem-

ory accesses issued for on-the-fly census transform) would be ideal for maximizing

performance. However, the area and energy consumption of a crossbar also increase

quadratically when the number of input/output ports of a crossbar increases. There-

fore, instead of using large crossbars, we instantiate four smaller 16×16 coalescing

crossbars in the design hierarchically so that each handles the accesses of 16 mem-

ory banks. Fig. 3.24 and Fig. 3.25 show the tradeoff (based on simulation) between

different crossbar design choices. Compared with a single 64×64 coalescing crossbar,

the proposed design achieves 3.1× power reduction and 3.4× area reduction. Com-

pared to an ideal case of using a single 162×64 crossbar with unlimited resources, the

proposed design achieves a comparable throughput with 3.8× reduced area and 3.6×

reduced power. Moreover, the proposed coalescing crossbar yields 54% higher per-

formance compared to a regular crossbar without coalescing. Overall, this proposed

approach enables 2.6 Tb/s average bandwidth from 4 instances of high-bandwidth,

2-cycle pipelined coalescing crossbars. Fig. 3.26 summarizes the relative power con-

sumption (normalized to the final optimized power) of various components of the

system. It also quantifies the power reduction from the proposed circuit and archi-

tecture optimization techniques.

80

Figure 3.24: Comparison of different crossbar architectural options.

Figure 3.25: Comparison of different crossbar architectural options.

Figure 3.26: Relative power consumption of various components of the system, and
the impact of various optimization techniques.

3.7 Chip Measurement Results

Fig. 3.27 shows a die photo, and Table 3.6 shows the performance summary of

the fabricated chip. This work is fabricated in TSMC 28-nm HPC process with 9.3-

81

mm2 chip area. The host mini-computer (Odroid-XU4) performs block-partition of

images and streams real-time input to the processor through USB3.0 interfaces via

Cypress FX3 USB-to-parallel bridge chips. The parallel interface on the processor

serves 2 USB bridge chips in parallel. The host sends control instructions to the chip

via the USB interface shared with the input image streaming. The 6D vision output

from the chip is streamed via a separate dedicated USB channel. The fabricated

chip successfully produces optical flow and stereo depth with 176×176 and 1×176

pixel search ranges, respectively, in FHD (1920×1080) resolution. The real-time

operation is confirmed at 25 fps (optical flow)/30 fps (stereo) FHD processing with

180 MHz core (Fcore) and 500 MHz memory frequency (Fxbar) consuming 760 mW

combined from 0.9 V and 1.3 V supplies. Fig. 3.28 shows the measured optical

flow and depth results for the 194 KITTI automotive benchmark, achieving 11.37%

outlier for optical flow, 7.52% outlier for depth. An outlier is defined as a pixel that

has a displacement error of more than 3 integer levels (disparity) or 2 integer levels

horizontally or vertically (optical flow). The chip is also measured with over 1000

JPL-captured MAV benchmarks, and the qualitative results are shown in Fig. 3.28.

Figure 3.27: Die photo.

82

Table 3.6: Summary of performance.

Figure 3.28: Measured output from KITTI dataset and from JPL MAV captured
images.

Fig. 3.29 shows the measured throughput and energy efficiency trade-off with

varying Fxbar and Fcore of two different voltage-frequency domains. The optimal

83

energy point occurs when Fxbar is ≈2.7× greater than Fcore. Comparison with prior

works is provided in Table 3.7. Only the proposed design can support optical flow

computation. We achieve 1.5× higher energy efficiency for stereo processing compared

to our prior chip [50], optimized for stereo processing only. Normalized energy is the

FoM proposed in [38] and adopted in [38, 28, 50]. The FoM applied to the optical

flow shows >100× improvement compared to the stereo processing of prior chips.

Fig. 3.31 shows this FoM comparison, with 1.5× better energy efficient at FHD for

stereo processing and >100× better efficiency for optical flow compared with prior

works[38, 28, 50], which are stereo vision-only ASICs. The chip is programmable

and supports various frame rates and image resolutions. Fig. 3.30 shows the voltage

and frequency scaling over different frame resolutions and frame rates. It consumes

760 mW to process optical flow at 25 fps/stereo at 30 fps FHD, while the power

consumption scales to 62 mW at 30 fps VGA operating at lower voltages (0.72 V,

0.65 V).

Table 3.7: Comparison with prior art.

84

Figure 3.29: Measured throughput and energy efficiency with different frequencies

Figure 3.30: Measured voltage & frequency scaling of proposed design.

3.8 Summary

This work presents a single-chip, accurate, high performance, energy efficient uni-

fied optical flow and stereo depth 6D vision processor using the NG-SGM algorithm for

low power computer vision applications. The fabricated 6D vision processor generates

85

Figure 3.31: Comparison of measured FoM with prior art.

dense optical flow and depth with a wide search range of 176 pixels per dimension in

FHD resolution with real-time 25 fps throughput for optical flow and 30 fps through-

put for stereo depth, consuming only 760 mW in 28-nm TSMC HPC CMOS. The chip

reports 11.7% outlier accuracy on industry standard KITTI automotive optical flow

evaluation. The proposed rotating on-chip image buffer scheme reduces the inter-

face bandwidth by 2× compared with raster scan progression and enables real-time

streaming operation at the cost of 28% larger on-chip memory size. The proposed

dependency-resolving image-scanning stride with deeply pipelined implementation

yields 4× performance gain. The customized coalescing crosspoint crossbar yields

2.6 Tb/s on-chip bandwidth, efficiently mitigating irregular memory access patterns

from the dynamic neighbor guidance of NG-SGM. A complete optical flow and stereo

processing is built and demonstrated for realistic scenes in real-time operations.

86

CHAPTER IV

A 879GOPS, 243mW 80fps VGA Fully Visual

CNN-SLAM Processor for Wide Range Autonomous

Exploration

4.1 Introduction

As is described in Chapter. II and Chapter. III, stereo vision system provides dense

3D perception of surroundings and optical flow perceives 3D motion field of the envi-

ronment. These two functions behave as kernel functions in many autonomous navi-

gation systems. However, other than geometric environment perception, autonomous

navigation systems finally needs to estimate the ego-motion based on the visual per-

ception. In Chapter IV, we will further introduce a CNN-SLAM processor that en-

ables energy-efficient ego-motion estimation in real-time for autonomous navigation

systems and VR/AR(virtual reality/augment reality) system.

Simultaneous localization and mapping (SLAM) continuously estimates an agent’s

trajectory for all six degrees of freedom (6 DoF) and constructs a 3D map of unknown

surroundings. It is a fundamental kernel that provides delightful user interaction with

head-mounted augmented/virtual reality devices and autonomous navigation of mi-

cro aerial vehicles and self-driving cars (Fig. 4.1). A noticeable recent trend in visual

SLAM is to apply computation- and memory-intensive convolutional neural networks

87

(CNNs) that outperform traditional hand-designed feature-based methods to achieve

accurate tracking[86]. For each video frame, CNN-extracted features are matched

with stored keypoints to estimate the agent’s 6-DoF posture by solving a perspective-

n-points (PnP) non-linear optimization problem. The agent’s long-term trajectory

over multiple frames is refined by a bundle adjustment process, which involves a

large-scale (120 variables) non-linear optimization. Visual SLAM requires massive

computation (>250GOP/s) in the CNN-based feature extraction, matching as well as

data-dependent dynamic memory access and control flow with high-precision opera-

tions, which throws out significant low-power design challenges. Software implementa-

tions are impractical, resulting in 0.2s runtime with a 3GHz CPU+ GPU system with

>100MB memory footprint and >100W power consumption. Prior ASICs have imple-

mented either an incomplete SLAM system [87] that lacks estimation of ego-motion

or employed a simplified (non-CNN) feature extraction and tracking [87, 88, 89] that

limits SLAM quality and range. A recent ASIC [89] augments visual SLAM with a

high-precision inertial measurement unit (IMU), simplifying the computational com-

plexity but adding significant additional power consumption.

Figure 4.1: Application of real-time SLAM processing.

This chapter presents an accurate, low-power, real-time CNN-SLAM processor

88

that, for the first time, implements full-visual SLAM on a single chip. The proposed

major design features are:

1) feature extraction and description with a highly parallelized and programmable

CNN engine with 32% better accuracy in feature matching than SIFT;

2) aggressively pruned feature matching with temporal posture prediction, trian-

gulation, and address hashing to eliminate 97% of unnecessary matchings;

3) numerically stable fixed-point implementation with function re-organization

and pivoting in the linear solver;

4) hierarchical memory organization, completely eliminating external DRAM ac-

cesses for BA optimization.

By applying these optimizations, we propose the Visual SLAM ASIC to report per-

formance tested on the industrial standard KITTI benchmark that renders large-scale

realistic automobile trajectory over 1km. The proposed design supports localization

and mapping of >1000 keypoints/frame on VGA (640×480) resolution in real-time

at 80fps, consuming 243.6mW from a 0.9V supply in 28nm CMOS.

4.2 Datapath of CNN-SLAM Algorithm

In this section we describe overall procedure of the proposed SLAM system, con-

sisting of keypoint description, CNN-based feature description, frame-by-frame PnP

and multi-frame BA. PnP processing computes the 6-DoF pose (represented by a

combination of 3D translation T and 3D rotation R) for each frame by analyzing

the projected coordinate differences of matched keypoints in two subsequent frames.

CNN-extracted keypoints are matched with others in the previous frame to establish

correspondence of the same points in the environment. The 6-DoF pose is obtained

by solving a non-linear optimization to minimize the 2D reprojection error of these

matched points. After acquiring the pose of the current frame, all newly added key-

points are projected onto 3D real-world coordinates for PnP processing of the next

89

frame. A frame that contains >50% new keypoints is registered as a keyframe. To

refine the long-term trajectory of the agent (camera), BA is performed over the last

20 keyframes whenever a new keyframe is registered.

4.2.1 Feature Extraction and Matching

We extract DoF corners with 6 levels Gaussian pyramidal images. For image res-

olutions from 640×480 to 1226×370 pixels, we typically found 1000 ~1500 keypoints

per frame. For higher resolution or a frame with more than 1536 keypoints detected,

we divide each scale level into a 16×16 grid, extracting at most 4 corners per cell to

ensure an homogeneous distribution of keypoints across the entire frame. All retained

keypoints and their surrounding 16×16 image patch are passed to a CNN to compute

the feature descriptor (the network is shown in Fig. 4.2). The CNN used for feature

extraction is pre-trained on Middlebury Multi-View stereo dataset[90] and is tested

on KITTI[49] automotive dataset, as is shown in Fig. 4.3. Proposed CNN-based fea-

ture description achieves 32% better feature matching accuracy compared with widely

used descriptors such as SIFT[91].

Figure 4.2: Feature description network.

4.2.2 Perspective-n-Points

Once feature vectors of each keypoints are extracted, we predict the camera pose

of the current frame with a constant acceleration model to prune the feature matching

90

Figure 4.3: Example of CNN feature matching with proposed pre-trained feature de-
scription network.

space and guide the feature match. Euclidean distance is used to match the feature

vectors. Matching candidates within the prune search space that has the lowest

euclidean distance is identified as the best match. Best matches are also filtered with

a programmable threshold to ensure robust matching results. Typically, we find 400

matching keypoints on KITTI dataset[49]. We then perform PnP optimization to find

a camera pose for the current frame. The PnP algorithm estimates the camera pose

between two consecutive frames using motion-only bundle adjustment. As shown in

Fig. 4.4, given each 3D world coordinates and 2D image coordinates of the keypoints,

motion-only bundle adjustment minimizes the reporjection error while finding out the

current camera pose with equation 4.1,

min
R,t

M∑
j=1

ρ(||(RXj + t)− xj||) (4.1)

where R is the 3×3 rotation matrix, t is the translator vector of the current frame

and Xj/xj are world/image coordinates of the keypoint respectively. ρ is a non-linear

function to ensure the robustness and we use Humble loss[92] in our system. The

PnP problem is solved with Levenbury-Marquardt[93] method in our case.

91

Figure 4.4: Pose estimation of each frame.

4.2.3 Local Bundle Adjustment

Once we have an initial estimation of the camera pose of the current frame from

PnP and an initial set of keypoint matches between current and previous frames, we

can look up the matches into the older frames and acquire more map point corre-

spondences. Local bundle adjustment at time t optimizes the set of 3D points and

camera poses which have at least one detected projection in frames tn ... t1 and t.

min
Ri,ti

N∑
i=1

M∑
j=1

||(RiXj + t)− xij|| (4.2)

Where Ri and ti corresponds to a 3×3 rotation matrix and a 3×1 translator vector

of each keyframe, and Xij/xij are world/image coordinates of the keypoint respec-

tively. The local bundle adjustment can be also solved with Levenbury-Marquardt[93]

method in our case. To bound the complexity of our design, the number of appear-

92

ance of a keypoint is set to be less than 8 keyframes and a keyframe is registered if

>50% new keypoints are detected from previous keyframe (shown in Fig. 4.5).

Figure 4.5: Pose optimization over multiple keyframes.

4.3 Architecture of Proposed CNN-SLAM Processor

Fig. 4.6 represents the overall architecture of the proposed SLAM processor, in-

cluding a programmable CNN engine, a PnP engine and a BA engine. The CNN

engine has a mesh of 512 MAC units in 8 clusters (each with a grid of 8 × 8 MAC

units), a 192kB memory for CNN weights/activations, and two interleaved 32kB im-

age buffers for stream processing (see also Fig. 4.6). The CNN uses 8-bit weights and

does not require any off-chip weight loading. If the current frame is identified as a

keyframe, the list of 3D real-world and 2D projected coordinates of keypoints will be

sent to the graph memory in the BA engine (Fig. 4.6 bottom right), where iterative

Levenberg–Marquardt (LM) optimization is applied over the last 20 keyframes.

93

Figure 4.6: Chip architecture of proposed CNN-SLAM processor.

4.3.1 Programmable CNN Engine

Fig. 4.7 details the architecture of the programmable CNN engine. The CNN

engine has a mesh of 512 8-bit multiply/24-bit accumulate MAC units in 8 clusters

(each with a grid of 8 × 8 MAC units). 512 mesh-connected MAC units allow paral-

lel processing of intensive CNN operations. Moreover, processing 8 input channels, 8

output channels and 8 pixels in parallel maximizes the data re-usability in the MAC

array. Weights are first transferred to small 16kB weight buffers for frequent accesses.

4 bank partitioning of weight buffer provides 512bit/cycle memory access bandwidth

with high access energy efficiency. 128kB local buffer stores input and output ac-

tivation. High data bandwidth from weight buffer and local buffer ensures the full

utilization of the 512 MAC units. 48kB instruction memory stores the processing

sequence of the keypoint detection algorithm and feature extraction network.

94

Figure 4.7: Architecture of programmable CNN unit.

Fig. 4.8 details the operation of the programmable CNN engine. First, 1D convo-

lution are performed with shifting input activations (IAs) using a row of 8 MAC units

with k (kernel size) cycles. This operation is repeated on a second and third row of

IAs to complete the 2D convolution. Pooling and extrema detection are performed in

the same fashion as 1D convolution in the MAC array. Partial 2D convolution outputs

are accumulated locally in each MAC unit. Using 8 clusters of 8 × 8 MAC arrays,

8 consecutive input channels are convolved in parallel to accumulate partial output

activations with 8 accumulators, and 8 consecutive output channels are processed in

parallel to maximize reuse of the same IAs.

Moreoever, as is shown in Fig. 4.9, the proposed architecture computes convolu-

tion, pooling, and ReLU together rather than treating them as separate layers with

buffering inputs-outputs in between. This reduces the instruction count, maximizes

local re-usability and improves energy efficiency.

95

Figure 4.8: Processing flow of a CNN layer.

Figure 4.9: Cross layer processing flow of multiple CNN layers.

4.3.2 Feature Matching and PnP Engine

Keypoints and features extracted from the CNN engine are transferred to PnP

Engine for frame-based pose estimation. As each frame contains >1000 keypoints,

enumerating all possible matchings (≈ 1000×1000) is extremely costly. Aiming at this

challenge, we propose a prediction-based pruned keypoint matching scheme depicted

in Fig. 4.10. We assume the velocity changes between consecutive frames are constant

and use a locally linearised camera movement model to predict the new pose of the

current frame from the poses of the previous two frames (Fig. 4.10). We then only

96

re-project the keypoints of current frame onto previous frame. Extracted keypoints

from previous frame that are adjacent to the projected keypoints from the current

frame are treated as matching candidates. Feature matching is only performed on

these selected matching candidates. Based on this pose prediction, the search range

for each keypoint is reduced to ≈ ± 24 pixels/dimension on the 2D projected image.

This eliminates 97% of unnecessary matchings with negligible accuracy degradation

(<0.1%).

Figure 4.10: Search space pruning with pose prediction.

Prediction-based matching efficiency is further improved by employing a hierar-

chical memory system (492kB) using keypoint position-based hashing to store/load

feature descriptors and 3D coordinates. As shown in Fig. 4.11, the image is parti-

tioned into grid of 16×16 pixels and each 16×16 block may contain 4 features at

maximum. We then use the predicted keypoints location to directly select the match-

ing candidates from previous frame. The hash input is the keypoint location, and

its output points to the keypoint entry in the memory where stores a list of feature

descriptors and 3D coordinates in adjacent locations.

After the matching candidates are selected and reading from the frame memory, we

perform L2 based feature matching. Each feature has 64 elements, and the feature

matching cost is calculated by 8 parallel processing units, taking up to 8 cycles.

Additionally, we deploy the early termination so that we stop and move to next

97

Figure 4.11: Grid based search of keypoints.

candidate if the L2 matching distance is larger than a programmable threshold. Early

termination cuts down to ≈4.8 cycles when feature elements mismatch in early stages

(Fig. 4.12).

Figure 4.12: Hash based feature access and early termination of feature matching.

4.3.3 Local BA Engine

BA processing involves 20 keyframes and 4096 keypoints stored in the hierarchi-

cal graph memory (Fig. 4.13). Because each keypoint appears on multiple keyframes,

each keypoint entry is structured to contain a single 3D coordinate and multiple 2D

98

projected coordinates associated with different keyframe IDs as shown in Fig. 4.13.Although

local bundle adjustment is performed over 20 keyframes, only maximum of 8 con-

secutive appearances of a keypoint are stored. This yields 52% additional memory

reduction. A separate FIFO serves to eliminate and insert keypoints into the graph

memory, while matched keypoints are merged into a single entry.

Figure 4.13: Graph memory for local bundle adjustment

In each BA iteration, the keypoints’ 3D coordinates are updated according to the

frame pose, and very small increments are applied to numerically compute the Jaco-

bian matrix. Because of this increment, computing Jacobians requires an extremely

large dynamic range and high precision, thus, prior works [88, 89] used double preci-

sion floating point operations. We reformulate the reprojection step so that common

offset is subtracted before normalizing the projected 2D points into homogeneous

coordinates. This allows a 32-bit fixed point implementation with ≈ 40% energy

reduction while maintaining numerical stability in computing the Jacobian. After

linearization, we construct a sparse Hessian matrix that only has non-zero 6×6 diag-

onal submatrix that relate to the 6-DoF pose of each keyframe as shown in Fig. 4.14.

Thanks to the sparse and deterministic matrix structure, we block partition the Hes-

sian and solve each 6×6 submatrix sequentially instead of solving the full 120×120

linear system. We apply pivoting to Gaussian elimination (GE) to maintain numeri-

cal stability in the linear system solver as shown in Fig. 4.15. With pivoting, non-zero

elements in other rows are eliminated with the maximum element of the selected row.

Row shuffling is performed before back substitution (BS), and GE/BS share 6 parallel

99

computing units.

Figure 4.14: Reformulation and fixed point implementation of sparse matrix solver.

Figure 4.15: Numerically stable matrix solver with gaussian eliminating and pivoting.

4.4 Measurement Results

The proposed SLAM processor is fabricated on 28nm HPC CMOS. Die photo is

shown in Fig. 4.16 and performance summary is shown in Table. 4.1. Real-time image

100

input and 6-DoF SLAM output are streamed using a USB3.0 interface. Fig. 4.17

shows the trajectory produced by the chip for KITTI automobile scenes with >1000

images and >500m range. Fig. 4.18 shows frequency/energy scaling of the chip across

voltage. At 0.9V nominal voltage, the real-time VGA frame processing latency is

12.5ms. It achieves 97.9% accuracy in translation, 99.34% in rotation on KITTI

evaluation rendering large scale automotive scenes over 1km. The chip consumes

243.6mW to process 80fps VGA images at 3.6TOPS/W, marking a 15× improvement

in performance and 1.44× in energy efficiency over listed prior works. Moreover, prior

works use hand-crafted features or off-chip IMU and do not support large scale KITTI

automotive evaluation. Now power reduces to 61.8mW for VGA images at 30fps at

0.63V, yielding 48% additional energy efficiency.

Figure 4.16: Die photo.

101

Figure 4.17: Measured trajectory on KITTI dataset.

Figure 4.18: Measured voltage and frequency scaling of the design.

4.5 Summary

We designed an energy-efficient CNN-SLAM processor to enable low-power vision

based navigation for mobile devices. Proposed processor is fabricated and measured

in TSMC 28nm HPC technology. Comparison with prior works is shown in Table. 4.2.

Proposed design implements full visual SLAM pipeline with CNN-based feature in

a single chip. This design also supports localization and mapping of >1000 key-

points/frame on VGA (640×480) resolution in real-time at 80fps, consuming 243.6mW

from a 0.9V supply. It achieves 1.44× better energy efficiency over prior works.

102

Table 4.1: Summary of performance.

Table 4.2: Performance comparison with state-of-the-art chips

103

CHAPTER V

A 0.8TMACS, 2.5TOPS/W Energy Efficient

Re-configurable CNN Processor with 30MB

Embedded MLC ReRAM

5.1 Introduction

As is discussed in chapter I, semantic understanding of the surrounding environ-

ment is key to autonomous and intelligent systems. Deep neural networks (DNNs),

which were proposed back in the 1960s (Fig. 5.1), are the cornerstone of modern ar-

tificial intelligence (AI) because of their unprecedented accuracy on many computer

vision tasks. They are widely applied to extract the semantic of a scene through

various kernel functions such as image recognition[23], semantic segmentation[6] and

image-to-text synthesis[94].

The next wave in the AI revolution is the deployment of deep learning in mobile

systems to perform challenging tasks under real-world constraints. However, existing

hardware and infrastructure cannot provide satisfying performance and energy effi-

ciency for emerging deep learning-based applications because of the excessive compu-

tation and large memory footprints in recent DNN models. As is shown in Fig. 5.2,

state-of-the-art DNN models typically comprise more than 10 million parameters and

require more than 10 GOP per inference, which translates to more than 50 MB on-

104

Figure 5.1: Model of a neuron network

chip storage and more than 300 GOPS throughput for real-time 30 fps operation.

Thus, there is a growing demand for designing high-performance, energy-efficient,

re-configurable software-hardware systems for mobile AI applications.

Figure 5.2: Memory and computation requirement for state-of-the-art CNN models

To address these issues, compressed NN models have been proposed to reduce

the model size and computation dramatically for mobile applications. However,

these compressed models sacrifice accuracy and robustness compared with original

models[95, 96]. In addition to the compressed NN models, many other ASICs have

been proposed recently to accelerate deep learning on mobile platforms [97, 98, 99,

105

100, 101, 102, 103]. Various optimization techniques have been explored in these de-

signs, including dataflow optimizations, precision reduction, bit-serial operation, etc.

Combining these techniques, state-of-the-art NN processors achieve more than 100

GOPS performance and 2 TOPS/W efficiency during inference. Fig. 5.3 details the

performance, efficiency and precision of these digital ASICs.

However, most of these digital chips [97, 98, 99, 100, 101, 102, 103] adopt the

DRAM-NPU- (neural processing unit)-style processing architecture for computing

large models (Fig. 5.4). Weights and input activations (IAs) are transferred on chip

for processing while computed output activations are transferred back to the DRAM.

As the processing on the NPU is extensively optimized, transferring data on/off the

NPU becomes a major bottleneck in the overall system because of frequent data

access on external DRAMs. To reduce the off-chip data/parameter accesses, a few

works [104, 102] have proposed to store all parameters on chip. However, these works

suffer from either limited memory capacity (only 100 kB of weights are supported in

[104]) or high access energy due to using low density SRAMs.

To address these challenges, this chapter presents a high-performance, energy-

efficient, re-configurable CNN processor with 30 MB embedded multi-level cell (MLC)

Figure 5.3: Performance and energy efficiency of state-of-the-art NPUs

106

Figure 5.4: Conventional DRAM-NPU architecture for mobile inference

ReRAM on a single chip. The proposed design targets large DNN model inference,

and the major design features are as follows:

1) 30 MB compact ReRAM memory using MLC for on-chip non-volatile weight

storage, eliminating the need for external DRAMs;

2) Deep compressed and Huffman-coded weights and runlengths to store 50-layer

ResNet on a single chip;

3) Distributed memory and compute architecture to maximize data reuse and

reduce on-chip data movement (Fig. 5.2 and Fig. 5.3); and

4) Outer product-based matrix multiplication to improve MAC utilization.

By applying these optimizations, we designed a re-configurable ReRAM CNN

processor that can process >50 layers ResNet on a single chip, removing the need for

external memories. The proposed design fabricated in TSMC 22-nm ULL technology

supports real-time DNN inference with 0.8 TMACS throughput and 2.5 TOPS/W

energy efficiency.

107

5.2 Architecture of Proposed ReRAM-CNN Processor

In this section, the overall architecture of the proposed ReRAM-CNN processor

is described. Moreover, the detailed architecture of a single PE as well as the decom-

pression engine in the PE are also discussed in this chapter.

5.2.1 16 mesh connected PEs

As shown in Fig. 5.5, the chip consists of 4× 4 mesh-connected processing elements

(PEs) and a global shared memory. Each PE has its local memory for buffering the

input/output activations, ReRAM memory for non-volatile parameter storage, MAC

units for highly parallelized processing and instruction memory for controlling the

layer functions. In the mesh, each PE has both read and write access to its own local

memory but only read access to its neighboring PEs’ local memories. The global

shared memory is 8 Mb. It supports parallel write and read access if the accesses

are pre-partitioned to different memory banks. Moreover, the shared global memory

coalesces accesses. The shared memory broadcasts data to a row of, a column of, or

all 16 PEs if the requested addresses of the PEs coalesce. In simulation, broadcasting

data to coalescing requests results in 4× latency reduction when multiple PEs are

fetching the same IA from the global shared memory.

During a layer function, a PE first loads a chunk of IAs from the global shared

memory to its local memory. The PE’s neighbors can also share its input activation

because of the local connectivity between PEs. The PE then processes the layer

function on the chunk of inputs with local stored weights. After all output activations

are computed, the PE moves the output chunk back to the shared global memory.

Each PE may process different data and may execute different instructions, which

can lead to a variable processing latency. Therefore, synchronization is necessary to

ensure correct layer operations when PEs are collaborating. In the proposed design,

the PEs can be synchronized between a row of, a column of, or all 16 PEs.

108

Figure 5.5: Overall architecture of proposed ReRAM-CNN processor

5.2.2 Architecture of a single PE

Fig. 5.6 details the design of a single PE in the 4 × 4 mesh architecture. The

architecture of a single PE is similar to the programmable CNN engine described in

chapter IV. Each PE has a mesh of 128 8-bit multiply/32-bit accumulate MAC units

in 4 clusters (each with a grid of 4 × 8 MAC units). In total, 16 PEs have 2048 MAC

units on chip, enabling massive parallel processing capability under compute-intensive

CNN operations. Moreover, similar to chapter. IV, each PE processes 4 input chan-

nels, 4 output channels and 8 pixels in parallel to maximize the data re-usability in the

MAC array. Each PE has its private 18-Mb ReRAM for parameter storage. During

the CNN operation, weights are first read from the ReRAM, decompressed through

the decompression engine and transferred to small 2-kB interleaved weight buffers for

frequent accesses. The processing happens concurrently when the weights are decom-

109

pressed to maximize the throughput. Accessing the small 1-kB weight memory bank

provides 128-bit/cycle memory access bandwidth with high access energy efficiency.

The 2 bank, 256-kB local buffer stores input and output activation with 256-bit/cycle

access bandwidth. Both the high data bandwidth from the weight buffer and the local

buffer ensure the full utilization of the 128 MAC units.

Figure 5.6: Architecture of a processing element.

Moreover, instructions from the 32-kB instruction memory control the process-

ing sequence and synchronization of the NN algorithm. Furthermore, 256-bit Very

long Instruction Word (VLIW) instructions are used to control the processing of the

MAC units under hundreds of cycles without explicit instruction decoding in each cy-

cle. Fig. 5.7 details the ISA of the proposed ReRAM-CNN processor. The proposed

architecture and instruction set support various layer functions, such as convolu-

tion, pooling, matrix multiplication, ReLU, etc., as well as flexible layer partition

strategies. Data concatenation and scaling can also be achieved through MOV, ADD

instructions.

110

Figure 5.7: ISA of the proposed ReRAM-CNN processor.

5.2.3 Decompression Engine

Each PE is coupled with a decompression engine to decompress the weights stored

in the ReRAM. Each decompression engine consists of Huffman tables for both weights

and runlength codes as well as a shared parallel look-up table- (LUT)-based decoder.

Decompressing Huffman-encoded weights and runlengths involves very long critical

paths and thus dominates the pipeline. Therefore, instead of decoding the Huffman

tree serially, we decode 4 bits in parallel to improve the performance (Fig. 5.8). This

results in storing full 4-bit subtrees in the design (Fig. 5.9). Decompressing weights

in parallel reduces the clock cycle of a single PE to 2.5 ns. Moreover, these Huffman

tables are stored in each PE and are programmed through the interface. To minimize

the programming overhead, multiple PEs can be programmed together if they share

the same table.

As is shown in Fig. 5.10, compressed weights are stored in the ReRAM as packets.

Each packet is variable in length and is split into multiple ReRAM words. Each packet

contains a layer specification and Huffman-coded weights and runlength codes. Each

packet only contains Huffman-coded weights and runlengths for 4 input and 4 output

channels. The layer specification consists of the offset and location for the entire

package. With this configuration, static ReRAM errors can be identified and fixed

during the program time. The weights translated from incorrect ReRAM words can

be overridden with a following correct packet.

111

Figure 5.8: Parallel huffman decoder using full subtrees.

Figure 5.9: On-chip huffman table for decompression.

5.3 Dataflow of Proposed ReRAM-CNN Processor

The proposed architecture and ISA support flexible mapping of a network for effi-

cient hardware execution. This section discusses the various energy-efficient dataflows

that are supported in the proposed architecture.

5.3.1 Data Reuse for Efficient CNN Processing Across Layers

One example of mapping a network layer to the architecture is shown in Fig. 5.11.

Straightforward mapping splits the IAs by different input channels and sends them

112

Figure 5.10: On-chip compressed weight storage on ReRAM.

to different PEs. Note that only 2 PEs are shown in the figure for simplification. The

weights are pre-partitioned on these 2 PEs, and each PE is programmed to compute

different input channels through instructions. Because of the limited local memory

capacity in each PE, the IAs are partitioned into 8 × 8 blocks for processing. After

the processing of an 8 × 8 block finishes, the selected PE merges the results from

neighboring PEs hierarchically and then writes to the global memory. These 2 PEs

then move onto the next 8 × 8 block. Splitting the weights by output channels works

in a similar manner and thus is not described here.

Moreover, this architecture also supports mapping different layers to different PEs.

As is shown in Fig. 5.12, a bottleneck layer is mapped onto the architecture. Each

PE processes a different layer in a pipelined fashion. Similar to an input channel

split, IAs are partitioned into 8 × 8 blocks for processing. Each PE processes the

current 8 × 8 block of activations, passes output activations to the neighboring PE

through a local connection and then fetches the next 8 × 8 input block from the

global memory. This mapping scheme enables data reuse across layers but can only be

selectively used for efficiency because the valid output activation field decreases after

each convolution depending on the kernel size. However, this partition is efficient

113

Figure 5.11: Split convolution onto multiple PEs by input channels.

specifically for bottleneck layers, which are widely used in state-of-the-art residual

networks [22].

5.3.2 Data Reuse for Efficient CNN ProcessingWithin Convolution Layer

Fig. 5.13 details the operation of the convolution layer on a PE. Similar to chap-

ter IV, a 1D convolution is performed with shifting IAs using a row of 8 MAC units

with k (kernel size) cycles. This operation is repeated on a second and third row of

Figure 5.12: Split different layer onto multiple PEs.

114

IAs to complete the 2D convolution. Max pooling and average pooling are performed

in the same fashion as convolution in the 128 MAC units. Partial products in the 2D

convolution are fully accumulated locally in each MAC unit. Using 4 clusters of 8 ×

4 MAC arrays, 4 consecutive input channels are convolved in parallel to accumulate

partial output activations with 4 accumulators, and 4 consecutive output channels

are processed in parallel to maximize the reuse of the same IAs.

Figure 5.13: Processing flow of convolution on MAC units.

5.3.3 Data Reuse for Sparse FC Processing

The compressed weights for fully connected layers are very sparse, with less than

15% density, while the IAs for the fully connected layers are densely populated. To

efficiently compute the fully connected layer and skip all zero multiplications, we

deploy the outer product-based matrix multiplication for fully connected layers. Each

element of the IAs is multiplied with sparse non-zero weights from ReRAM in each

PE. Partial outputs are then accumulated and stored in the accumulators depending

on the location of the non-zero weights. Similar to other layer functions, sparse fully

connected layer operation is also partitioned on multiple PEs for highly parallelized

processing.

115

5.3.4 Model Compression

To enable single chip implementation for large networks, we leverage an idea

from state-of-the-art deep compression schemes [105] for compressing an NN model.

However, the compression scheme also must be co-designed for maximizing perfor-

mance and efficiency with the architecture. The convolution layers typically require

less bandwidth on decompressing weights because each weight can be reused over

multiple cycles. Therefore, the weights for the convolution layers are pruned and

non-linearly quantized with 64 weight centroids and runlength coded using 5-bit run-

lengths. Because of the high bandwidth required on fully connected layers, weights

for fully connected layers are only pruned without any encoding. On average, the

proposed compression scheme achieves 7.3 bit per non-zero weight on convolution

layers and 13 bit per non-zero weight on FC layers. Table. 5.1 shows an example of

applying the compression on AlexNet. Pruning reduces the model size of the con-

volution layers by 63% and fully connected layers by 85%. Runlength coding and

Huffman coding further improves the compression rate by 42%. After restoring the

compressed weights, the NN model accuracy only drops by 0.1% under ImageNet [24]

evaluation, which is negligible.

Table 5.1: Example of apply compression scheme on AlexNet.

116

5.4 Simulation and Results

The ReRAM-CNN processor is prototyped on TSMC 22-nm ULL technology. The

layout of the chip is shown in Fig. 5.14, and the performance summary is shown in

Table. 5.2. The image input and programming instructions are streamed using a

USB3.0 interface. The inference output is streamed through another USB3.0 inter-

face. In simulation, the chip consumes 640 mW at 400 MHz logic frequency under 0.8

V supply. The throughput of the chip is 0.88 TMACS, marking an energy efficiency

of 2.5 TOPS/W with 8 bit arithmetic. Moreover, prior work has limited on-chip

memory and needs high bandwidth external DRAM for buffering parameters and in-

termediate outputs. The proposed design is estimated to achieve 15% improvement

in performance over the listed prior works.

Figure 5.14: Chip layout.

5.5 Summary

We designed an energy-efficient CNN-SLAM processor to enable efficient single

chip inference of a large NN model for mobile devices. The proposed processor is

117

Table 5.2: Performance summary of the chip

Table 5.3: Performance comparison with state-of-the-art NN processors

prototyped and simulated in TSMC 22-nm ULL eReRAM technology. A comparison

with prior works is shown in Table. 5.3. The proposed design supports a large NN

model inference with more than 1 million parameters in a single chip. This design

achieves 0.8 TMACS throughput in real time, consuming 640 mW from a 0.8 V supply.

It achieves 0.15% better performance over prior works.

118

CHAPTER VI

Conclusions and Future Work

6.1 Contributions

This dissertation focuses on mobile domain-specific computer vision and machine

learning processors with low-power consumption, high energy efficiency and high per-

formance, providing potential uses in intelligent and autonomous mobile systems.

As we approach the limit of Moore’s law for technology scaling, it is challenging

to develop mobile general-purpose processors for diverse intelligent mobile applica-

tions due to power constraints. In order to solve such difficult problems, we studied,

learned and analyzed various kernels of intelligent and autonomous mobile systems

including 3D stereo vision perception, 3D optical flow perception, SLAM and deep

learning. We proposed novel solutions to optimize mobile vision and machine learning

processing from different perspectives in algorithms, architectures and circuits. The

proposed solutions were implemented in four prototype systems for demonstration

and verification.

The first prototype is an SGM stereo vision processor designed for autonomous

navigation of micro aerial vehicle (MAV) applications with tight size, weight and

power (SWaP) constraints. The fabricated processor generates 512 levels of depth in

full HD (1920×1080) resolution with real-time 30 fps throughput consuming 836 mW

from a 0.75 V supply in 40-nm CMOS. Customized ultra-wide SRAM enables 1.64

119

Tb/s on-chip memory access bandwidth with 18 mW power consumption. The chip

is measured with industry standard benchmarks. A complete stereo system is built

and demonstrated on a quadcopter for realistic real-time operations.

The second prototype is a real-time optical flow/stereo vision reconfigurable vision

processor designed for dense 6D vision perception on low-power mobile platforms such

as MAVs and VR/AR systems. The fabricated 6D vision processor generates dense

optical flow and depth with a wide search range of 176 pixels per dimension in FHD

resolution with real-time 25 fps throughput for optical flow and 30 fps throughput for

stereo depth, consuming only 760 mW in 28-nm TSMC HPC CMOS. The proposed

dependency-resolving image-scanning stride with deeply pipelined implementation

yields a 4× performance gain. The customized coalescing crosspoint crossbar yields

2.6 Tb/s on-chip bandwidth. A complete optical flow and stereo processing system

is built and demonstrated for realistic scenes in real-time operation.

The third prototype is a real-time CNN-SLAM processor designed for six degrees

of freedom egomotion and trajectory estimation for MAV and VR/AR applications.

The proposed processor is fabricated and measured in TSMC 28-nm HPC technology.

The design implements full visual SLAM pipeline with CNN-based features in a single

chip. This design also supports localization and mapping of >1000 keypoints/frame

on VGA (640×480) resolution in real-time at 80 fps, consuming 243.6 mW from a 0.9

V supply.

The fourth prototype is a large-scale CNN processor with 30 MB on-chip MLC

ReRAM and 2 k MACs for high performance and energy-efficient machine learn-

ing/deep learning applications on mobile platforms. The proposed processor is fab-

ricated in TSMC 22-nm ULL technology. The design implements 100-million weight

CNN model inference in a single chip.

120

6.2 Future directions

The work presented in this dissertation improves use cases of mobile computing

systems by identifying and optimizing kernel functions for next-generation intelligent

and autonomous applications. The impact of this work is significant in this era of

rapid development of AI, when computers are becoming intelligent, and mobile sys-

tems (drones, self-driving cars) are becoming autonomous. However, many issues still

remain to be explored and solved in future work. First, domain-specific or application-

specific processors might involve significant design effort but lack sufficient volume for

mass production. This would, therefore, increase the design costs. Secondly, balanc-

ing the performance, power and flexibility will be important in the design. Algorithms

keep improving, and therefore sufficient programmability is required for current de-

signs to support further need for new algorithms. Thirdly, memory and control logic

have become a bottleneck to improving energy efficiency in computing systems these

days. Domain/application-specific designs simplify the control logic, making memory

power/latency/bandwidth new performance bottlenecks for many applications that

require big data. Managing more volatile and non-volatile memory effectively and

distributing compute near memory is becoming increasingly important.

121

BIBLIOGRAPHY

122

BIBLIOGRAPHY

[1] Deloitteauto. Deloitte automotive whitepaper. https://www2.deloitte.com/
content/dam/insights/us/articles/3565_Race-to-autonomous-driving/
DR20_The\%20race\%20to\%20autonomous\%20driving_reprint.pdf. Ac-
cessed: 2018-11-09.

[2] DeloitteUAV. Deloitte uav whitepaper. https://www2.
deloitte.com/content/dam/Deloitte/global/Images/infographics/
gx-eri-managing-the-evolving-skies.pdf. Accessed: 2018-11-09.

[3] Shashank Dabral, Sanmati Kamath, Vikram Appia, Mihir Mody, Buyue Zhang,
and Umit Batur. Trends in camera based automotive driver assistance systems
(adas). In Circuits and Systems (MWSCAS), 2014 IEEE 57th International
Midwest Symposium on, pages 1110–1115. IEEE, 2014.

[4] Mihir Mody, Pramod Swami, Kedar Chitnis, Shyam Jagannathan, Kumar De-
sappan, Anshu Jain, Deepak Poddar, Zoran Nikolic, Prashanth Viswanath,
Manu Mathew, et al. High performance front camera adas applications on
ti’s tda3x platform. In High Performance Computing (HiPC), 2015 IEEE 22nd
International Conference on, pages 456–463. IEEE, 2015.

[5] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision, pages 834–849.
Springer, 2014.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Computer Vision (ICCV), 2017 IEEE International Conference on, pages
2980–2988. IEEE, 2017.

[7] Gauto. Google automotive whitepaper. https://storage.googleapis.
com/sdc-prod/v1/safety-report/waymo-safety-report-2017-10.pdf. Ac-
cessed: 2018-11-09.

[8] Amrthesis. Amr thesis. file:///C:/Users/liziyun/Downloads/
1052124202-MIT.pdf. Accessed: 2018-11-09.

[9] Myron Z Brown, Darius Burschka, and Gregory D Hager. Advances in compu-
tational stereo. IEEE transactions on pattern analysis and machine intelligence,
25(8):993–1008, 2003.

123

[10] Henry Harlyn Baker. Depth from edge and intensity based stereo. Technical
report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1982.

[11] Yuichi Ohta and Takeo Kanade. Stereo by intra-and inter-scanline search using
dynamic programming. IEEE Transactions on pattern analysis and machine
intelligence, (2):139–154, 1985.

[12] W Eric L Grimson. Computational experiments with a feature based stereo
algorithm. 1984.

[13] Padmanabhan Anandan. A computational framework and an algorithm for
the measurement of visual motion. International Journal of Computer Vision,
2(3):283–310, 1989.

[14] Alireza Bab-Hadiashar and David Suter. Robust optic flow computation. In-
ternational Journal of Computer Vision, 29(1):59–77, 1998.

[15] Edward H Adelson and J Anthony Movshon. Phenomenal coherence of moving
visual patterns. Nature, 300(5892):523, 1982.

[16] Hans P Moravec. Obstacle avoidance and navigation in the real world by a
seeing robot rover. Technical report, STANFORD UNIV CA DEPT OF COM-
PUTER SCIENCE, 1980.

[17] Richard A Newcombe and Andrew J Davison. Live dense reconstruction with
a single moving camera. In 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 1498–1505. IEEE, 2010.

[18] Abraham Bachrach, Samuel Prentice, Ruijie He, Peter Henry, Albert S Huang,
Michael Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy. Estima-
tion, planning, and mapping for autonomous flight using an rgb-d camera
in gps-denied environments. The International Journal of Robotics Research,
31(11):1320–1343, 2012.

[19] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-
d mapping: Using kinect-style depth cameras for dense 3d modeling of indoor
environments. The International Journal of Robotics Research, 31(5):647–663,
2012.

[20] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9, 2015.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

124

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[23] Jia Deng, Alexander C Berg, Kai Li, and Li Fei-Fei. What does classifying
more than 10,000 image categories tell us? In European conference on computer
vision, pages 71–84. Springer, 2010.

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[25] Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based
object detection in images by components. IEEE Transactions on Pattern Anal-
ysis & Machine Intelligence, (4):349–361, 2001.

[26] Paul Viola, Michael Jones, et al. Rapid object detection using a boosted cascade
of simple features. CVPR (1), 1:511–518, 2001.

[27] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In international Conference on computer vision & Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE Computer Society, 2005.

[28] Kyuho Jason Lee, Kyeongryeol Bong, Changhyeon Kim, Jaeeun Jang, Kyoung-
Rog Lee, Jihee Lee, Gyeonghoon Kim, and Hoi-Jun Yoo. A 502-gops and
0.984-mw dual-mode intelligent adas soc with real-time semiglobal matching
and intention prediction for smart automotive black box system. IEEE Journal
of Solid-State Circuits, 52(1):139–150, 2017.

[29] Intelauto. Intel automotive whitepaper. http:
//les-svc.org/wp-content/uploads/2015/06/
2016-05-18-Intel-automotive-autonomous-driving-vision-paper.pdf.
Accessed: 2018-11-09.

[30] William R Davis, Bernard B Kosicki, Don M Boroson, and DE Kostishack.
Micro air vehicles for optical surveillance. Lincoln Laboratory Journal, 9(2):197–
214, 1996.

[31] Velodyne LiDAR LLC. Puck hi-res lidar. https://velodynelidar.com/
vlp-16-hi-res.html. Accessed: 2018-11-09.

[32] Josef Wenger. Automotive radar-status and perspectives. In Compound Semi-
conductor Integrated Circuit Symposium, 2005. CSIC’05. IEEE, pages 4–pp.
IEEE, 2005.

125

[33] TA Krouskop, DR Dougherty, FS Vinson, et al. A pulsed doppler ultrasonic
system for making noninvasive measurements of the mechanical properties of
soft tissue. J Rehabil Res Dev, 24(2):1–8, 1987.

[34] HC Wikle Iii, S Kottilingam, RH Zee, and BA Chin. Infrared sensing techniques
for penetration depth control of the submerged arc welding process. Journal of
materials processing technology, 113(1-3):228–233, 2001.

[35] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragunathan Raj Ra-
jkumar. A multi-sensor fusion system for moving object detection and tracking
in urban driving environments. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 1836–1843. IEEE, 2014.

[36] Masanori Hariyama and Michitaka Kameyama. Vlsi processor for reliable stereo
matching based on window-parallel logic-in-memory architecture. In VLSI Cir-
cuits, 2004. Digest of Technical Papers. 2004 Symposium on, pages 166–169.
IEEE, 2004.

[37] Kyuho J Lee, Kyeongryeol Bong, Changhyeon Kim, Jaeeun Jang, Hyunki Kim,
Jihee Lee, Kyoung-Rog Lee, Gyeonghoon Kim, and Hoi-Jun Yoo. 14.2 a 502gops
and 0.984 mw dual-mode adas soc with rnn-fis engine for intention prediction
in automotive black-box system. In Solid-State Circuits Conference (ISSCC),
2016 IEEE International, pages 256–257. IEEE, 2016.

[38] Hong-Hui Chen, Chao-Tsung Huang, Sih-Sian Wu, Chia-Liang Hung, Tsung-
Chuan Ma, and Liang-Gee Chen. 23.2 a 1920× 1080 30fps 611 mw five-view
depth-estimation processor for light-field applications. In Solid-State Circuits
Conference-(ISSCC), 2015 IEEE International, pages 1–3. IEEE, 2015.

[39] Junyoung Park, Seungjin Lee, and Hoi-Jun Yoo. A 30fps stereo matching pro-
cessor based on belief propagation with disparity-parallel pe array architecture.
In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Sym-
posium on, pages 453–456. IEEE, 2010.

[40] Stefan K Gehrig, Felix Eberli, and Thomas Meyer. A real-time low-power
stereo vision engine using semi-global matching. In International Conference
on Computer Vision Systems, pages 134–143. Springer, 2009.

[41] Jun Tanabe, Sano Toru, Yutaka Yamada, Tomoki Watanabe, Mayu Oku-
mura, Manabu Nishiyama, Tadakazu Nomura, Kazushige Oma, Nobuhiro Sato,
Moriyasu Banno, et al. 18.2 a 1.9 tops and 564gops/w heterogeneous multi-
core soc with color-based object classification accelerator for image-recognition
applications. In Solid-State Circuits Conference-(ISSCC), 2015 IEEE Interna-
tional, pages 1–3. IEEE, 2015.

[42] Junyoung Park, Injoon Hong, Gyeonghoon Kim, Youchang Kim, Kyuho Lee,
Seongwook Park, Kyeongryeol Bong, and Hoi-Jun Yoo. A 646gops/w multi-
classifier many-core processor with cortex-like architecture for super-resolution

126

recognition. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2013 IEEE International, pages 168–169. IEEE, 2013.

[43] Yasuki Tanabe, Masato Sumiyoshi, Manabu Nishiyama, Itaru Yamazaki, Shin-
suke Fujii, Katsuyuki Kimura, Takuma Aoyama, Moriyasu Banno, Hiroo
Hayashi, and Takashi Miyamori. A 464gops 620gops/w heterogeneous multi-
core soc for image-recognition applications. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2012 IEEE International, pages 222–223.
IEEE, 2012.

[44] Youngsu Kim, Sungchan Park, Chao Chen, and Hong Jeong. Real-time architec-
ture of stereo vision for robot eye. In Signal Processing, 2006 8th International
Conference on, volume 1. IEEE, 2006.

[45] Chao-Chung Cheng, Chung-Te Li, Chia-Kai Liang, Yen-Chieh Lai, and Liang-
Gee Chen. Architecture design of stereo matching using belief propagation. In
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Sym-
posium on, pages 4109–4112. IEEE, 2010.

[46] Yu-Cheng Tseng, Nelson Yen-Chung Chang, Tian-Sheuan Chang, et al. Low
memory cost block-based belief propagation for stereo correspondence. In
ICME, pages 1415–1418. Citeseer, 2007.

[47] Jiang Xiang, Ziyun Li, Hun Seok Kim, and Chaitali Chakrabarti. Hardware-
efficient neighbor-guided sgm optical flow for low power vision applications.
In Signal Processing Systems (SiPS), 2016 IEEE International Workshop on,
pages 1–6. IEEE, 2016.

[48] Jiang Xiang, Ziyun Li, David Blaauw, Hun Seok Kim, and Chaitali Chakrabarti.
Low complexity optical flow using neighbor-guided semi-global matching. In
Image Processing (ICIP), 2016 IEEE International Conference on, pages 4483–
4487. IEEE, 2016.

[49] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[50] Ziyun Li, Qing Dong, Mehdi Saligane, Benjamin Kempke, Shijia Yang, Zhengya
Zhang, Ronald Dreslinski, Dennis Sylvester, David Blaauw, and Hun Seok Kim.
3.7 a 1920× 1080 30fps 2.3 tops/w stereo-depth processor for robust autonomous
navigation. In Solid-State Circuits Conference (ISSCC), 2017 IEEE Interna-
tional, pages 62–63. IEEE, 2017.

[51] Yingcai Bi, Jiaxin Li, Hailong Qin, Menglu Lan, Mo Shan, Feng Lin, and
Ben M Chen. An mav localization and mapping system based on dual realsense
cameras. In Int. Micro Air Vehicles, Conf. Competitions, Nat. Univ. Singapore,
Singapore, Tech. Rep, 2016.

127

[52] Jovan Ivković, Alempije Veljović, Branislav Ranđelović, and Vladimir Veljović.
Odroid-xu4 as a desktop pc and microcontroller development boards alternative.
In Proc. 6th Int. Conf.(TIO), 2016.

[53] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on pattern analysis and machine
intelligence, 23(11):1222–1239, 2001.

[54] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using
belief propagation. IEEE Transactions on pattern analysis and machine intel-
ligence, 25(7):787–800, 2003.

[55] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual in-
formation. IEEE Transactions on pattern analysis and machine intelligence,
30(2):328–341, 2008.

[56] Daniel I Barnea and Harvey F Silverman. A class of algorithms for fast digital
image registration. IEEE transactions on Computers, 100(2):179–186, 1972.

[57] Paul Viola and William M Wells III. Alignment by maximization of mutual
information. International journal of computer vision, 24(2):137–154, 1997.

[58] Ramin Zabih and John Woodfill. Non-parametric local transforms for comput-
ing visual correspondence. In European conference on computer vision, pages
151–158. Springer, 1994.

[59] Cosmin D Pantilie and Sergiu Nedevschi. Sort-sgm: Subpixel optimized real-
time semiglobal matching for intelligent vehicles. IEEE Transactions on Vehic-
ular Technology, 61(3):1032–1042, 2012.

[60] Heiko Hirschmuller. Accurate and efficient stereo processing by semi-global
matching and mutual information. In Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2,
pages 807–814. IEEE, 2005.

[61] Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Espinosa, David
Vázquez, Juan Carlos Moure, and Antonio M López. Embedded real-time stereo
estimation via semi-global matching on the gpu. Procedia Computer Science,
80:143–153, 2016.

[62] Heiko Hirschmüller, Maximilian Buder, and Ines Ernst. Memory efficient semi-
global matching. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 3:371–376, 2012.

[63] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow. In-
ternational Journal of Computer Vision, 92(1):1–31, 2011.

128

[64] Cypress Semiconductor Corporation. Ez-usb fx3:superspeed usb controller.
http://www.cypress.com/file/140296/downloadkernel.htm, 2018. Ac-
cessed: 2018-09-25.

[65] Stephan Gehrke, Kristian Morin, Michael Downey, Nicolas Boehrer, and
Thomas Fuchs. Semi-global matching: An alternative to lidar for dsm gen-
eration. In Proceedings of the 2010 Canadian Geomatics Conference and Sym-
posium of Commission I, volume 2, 2010.

[66] Intel Inc. D435 camera datasheet. https:
//software.intel.com/en-us/realsense/d400/
intel-realsense-depth-camera-d400-series-datasheet. Accessed:
2018-11-09.

[67] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.

[68] Richard Szeliski. Computer vision: algorithms and applications. Springer Sci-
ence & Business Media, 2010.

[69] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying frame-
work. International journal of computer vision, 56(3):221–255, 2004.

[70] Simon Hermann and Reinhard Klette. Hierarchical scan-line dynamic program-
ming for optical flow using semi-global matching. In Asian Conference on Com-
puter Vision, pages 556–567. Springer, 2012.

[71] Li-Xuan Chuo, Yao Shi, Zhihong Luo, Nikolaos Chiotellis, Zhiyoong Foo, Gy-
ouho Kim, Yejoong Kim, Anthony Grbic, David Wentzloff, Hun-Seok Kim, et al.
7.4 a 915mhz asymmetric radio using q-enhanced amplifier for a fully integrated
3× 3× 3mm 3 wireless sensor node with 20m non-line-of-sight communication.
In Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pages
132–133. IEEE, 2017.

[72] Clemens Rabe, Thomas Müller, Andreas Wedel, and Uwe Franke. Dense, ro-
bust, and accurate motion field estimation from stereo image sequences in real-
time. In European conference on computer vision, pages 582–595. Springer,
2010.

[73] Heiko Hirschmuller and Daniel Scharstein. Evaluation of stereo matching costs
on images with radiometric differences. IEEE transactions on pattern analysis
and machine intelligence, 31(9):1582–1599, 2009.

[74] Yibing Yang, Alan Yuille, and Jie Lu. Local, global, and multilevel stereo
matching. In Computer Vision and Pattern Recognition, 1993. Proceedings
CVPR’93., 1993 IEEE Computer Society Conference on, pages 274–279. IEEE,
1993.

129

[75] Christian Banz, Peter Pirsch, and Holger Blume. Evaluation of penalty func-
tions for semi-global matching cost aggregation. In International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences [XXII
ISPRS Congress, Technical Commission I] 39 (2012), Nr. B3, volume 39, pages
1–6. Göttingen: Copernicus GmbH, 2012.

[76] Christoph Stiller. Motion estimation for coding of moving video at 8 kbit/s with
gibbs-modeled vectorfield smoothing. In Visual Communications and Image
Processing’90: Fifth in a Series, volume 1360, pages 468–477. International
Society for Optics and Photonics, 1990.

[77] Gerard De Haan, Paul WAC Biezen, Henk Huijgen, and Olukayode A Ojo. True-
motion estimation with 3-d recursive search block matching. IEEE transactions
on circuits and systems for video technology, 3(5):368–379, 1993.

[78] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman.
Patchmatch: A randomized correspondence algorithm for structural image edit-
ing. ACM Transactions on Graphics (ToG), 28(3):24, 2009.

[79] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique
with an application to stereo vision. 1981.

[80] Simon Hermann, Sandino Morales, and Reinhard Klette. Half-resolution semi-
global stereo matching. In Intelligent Vehicles Symposium (IV), 2011 IEEE,
pages 201–206. IEEE, 2011.

[81] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A natu-
ralistic open source movie for optical flow evaluation. In European Conference
on Computer Vision, pages 611–625. Springer, 2012.

[82] Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and Enhua Wu. Constant time
weighted median filtering for stereo matching and beyond. In Proceedings of
the IEEE International Conference on Computer Vision, pages 49–56, 2013.

[83] Ziyun Li, Jiang Xiang, Luyao Gong, David Blaauw, Chaitali Chakrabarti, and
Hun Seok Kim. Low complexity, hardware-efficient neighbor-guided sgm optical
flow for low power mobile vision applications. IEEE Transactions on Circuits
and Systems for Video Technology, 2018.

[84] Terry Tao Ye. On-chip multiprocessor communication network design and anal-
ysis. PhD thesis, stanford university, 2003.

[85] Sudhir Satpathy, Korey Sewell, Thomas Manville, Yen-Po Chen, Ronald Dres-
linski, Dennis Sylvester, Trevor Mudge, and David Blaauw. A 4.5 tb/s 3.4
tb/s/w 64× 64 switch fabric with self-updating least-recently-granted priority
and quality-of-service arbitration in 45nm cmos. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2012 IEEE International, pages
478–480. IEEE, 2012.

130

[86] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam:
Real-time dense monocular slam with learned depth prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, 2017.

[87] Jae-Sung Yoon, Jeong-Hyun Kim, Hyo-Eun Kim, Won-Young Lee, Seok-Hoon
Kim, Kyusik Chung, Jun-Seok Park, and Lee-Sup Kim. A unified graphics
and vision processor with a 0.89 µw/fps pose estimation engine for augmented
reality. IEEE Trans. VLSI Syst., 21(2):206–216, 2013.

[88] Injoon Hong, Gyeonghoon Kim, Youchang Kim, Donghyun Kim, Byeong-Gyu
Nam, and Hoi-Jun Yoo. A 27 mw reconfigurable marker-less logarithmic camera
pose estimation engine for mobile augmented reality processor. IEEE Journal
of Solid-State Circuits, 50(11):2513–2523, 2015.

[89] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivi-
enne Sze. Navion: A fully integrated energy-efficient visual-inertial odometry
accelerator for autonomous navigation of nano drones. In 2018 IEEE Sympo-
sium on VLSI Circuits, pages 133–134. IEEE, 2018.

[90] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A comparison and evaluation of multi-view stereo reconstruction algo-
rithms. In null, pages 519–528. IEEE, 2006.

[91] David G Lowe. Object recognition from local scale-invariant features. In Com-
puter vision, 1999. The proceedings of the seventh IEEE international confer-
ence on, volume 2, pages 1150–1157. Ieee, 1999.

[92] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

[93] Jorge J Moré. The levenberg-marquardt algorithm: implementation and theory.
In Numerical analysis, pages 105–116. Springer, 1978.

[94] Jyoti Aneja, Aditya Deshpande, and Alexander Schwing. Convolutional image
captioning.

[95] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[96] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

131

[97] Dongjoo Shin, Jinmook Lee, Jinsu Lee, and Hoi-Jun Yoo. 14.2 dnpu: An
8.1 tops/w reconfigurable cnn-rnn processor for general-purpose deep neural
networks. In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
pages 240–241. IEEE, 2017.

[98] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127–138, 2016.

[99] Giuseppe Desoli, Nitin Chawla, Thomas Boesch, Surinder-pal Singh, Elio
Guidetti, Fabio De Ambroggi, Tommaso Majo, Paolo Zambotti, Manuj Ayo-
dhyawasi, Harvinder Singh, et al. 14.1 a 2.9 tops/w deep convolutional neural
network soc in fd-soi 28nm for intelligent embedded systems. In 2017 IEEE
International Solid-State Circuits Conference (ISSCC), pages 238–239. IEEE,
2017.

[100] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst.
14.5 envision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm fdsoi. In
2017 IEEE International Solid-State Circuits Conference (ISSCC), pages 246–
247. IEEE, 2017.

[101] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim,
and Hoi-Jun Yoo. Unpu: A 50.6 tops/w unified deep neural network accelerator
with 1b-to-16b fully-variable weight bit-precision. In 2018 IEEE International
Solid-State Circuits Conference-(ISSCC), pages 218–220. IEEE, 2018.

[102] Kodai Ueyoshi, Kota Ando, Kazutoshi Hirose, Shinya Takamaeda-Yamazaki,
Junichiro Kadomoto, Tomoki Miyata, Mototsugu Hamada, Tadahiro Kuroda,
and Masato Motomura. Quest: A 7.49 tops multi-purpose log-quantized dnn
inference engine stacked on 96mb 3d sram using inductive-coupling technology
in 40nm cmos. In 2018 IEEE International Solid-State Circuits Conference-
(ISSCC), pages 216–218. IEEE, 2018.

[103] Zhe Yuan, Jinshan Yue, Huanrui Yang, Zhibo Wang, Jinyang Li, Yixiong Yang,
Qingwei Guo, Xueqing Li, Meng-Fan Chang, Huazhong Yang, et al. Sticker: A
0.41-62.1 tops/w 8bit neural network processor with multi-sparsity compatible
convolution arrays and online tuning acceleration for fully connected layers. In
2018 IEEE Symposium on VLSI Circuits, pages 33–34. IEEE, 2018.

[104] Suyoung Bang, Jingcheng Wang, Ziyun Li, Cao Gao, Yejoong Kim, Qing Dong,
Yen-Po Chen, Laura Fick, Xun Sun, Ron Dreslinski, et al. 14.7 a 288µw pro-
grammable deep-learning processor with 270kb on-chip weight storage using
non-uniform memory hierarchy for mobile intelligence. In 2017 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), pages 250–251. IEEE, 2017.

132

[105] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

133

