Mechanistic Studies on Phosphoric Acid Catalyzed Acetalizations and Development of Acetal-Containing Ligands for Transition Metal Catalysis

by

Alonso J. Argüelles

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2019

Doctoral Committee:

Associate Professor Pavel Nagorny, Co-Chair Associate Professor Paul Zimmerman, Co-Chair Associate Professor Jolanta Grembecka Professor John Montgomery Alonso J. Argüelles

ajarguel@umich.edu

ORCID iD: 0000-0003-4291-0187

© Alonso J. Argüelles 2019

DEDICATION

I dedicate this work to my little angel, Isabella, whose liveliness fills me with everlasting joy.

ACKNOWLEDGMENTS

I can only take a fraction of the credit for the work described herein. It would not have been possible if not for the valuable interactions that I had throughout these past years. First and foremost, I would like to express my deepest gratitude to my advisors, Dr. Pavel Nagorny and Dr. Paul Zimmerman. Dr. Nagorny has been a true mentor to me, and I am honored to have been part of his group at the University of Michigan. I will greatly miss his perfect combination of openness, exhaustive chemical knowledge, and sincere advice that made me the independent researcher that I am now. I am also extremely grateful to Dr. Paul Zimmerman for his generous and opportune advice when I most needed it. His patience and kindness helped me weather many storms I suffered throughout my graduate studies. I am thankful to both my advisors for allowing me to partake in a successful and enjoyable co-mentored program with no major administrative and scientific hardships. In addition, I would like to extend my gratitude to National Science Foundation CAREER Award (CHE-1350060), National Institute of Health (grants R01GM111476 and U01GM1252740), PPG, Pfizer, and Rackham for their financially supporting my investigations.

I would also like to acknowledge and thank my dissertation committee members, Dr. John Montgomery and Dr. Jolanta Grembecka for their support throughout my graduate studies. I am especially grateful of Dr. Montgomery for his thoughtful comments and insights in my carbohydrate-related projects.

I am indebted with my undergraduate advisor, Dr. Helena Maruenda, for giving me a strong background in organic chemistry and safe laboratory techniques. Your passion for chemistry inspired me to follow graduate school, and I fear that without your guidance and support I would not be in the position I am today.

I am thoroughly grateful for meeting and befriending so many talented chemists and good friends in the Nagorny and Zimmerman groups. I want to acknowledge my current and former lab mates Dr. Grace Winschel, Dr. Nathan Cichowicz, Dr. Yaroslav Khomutnyk, Dr. Hem Khatri, Dr. Tay Rosenthal, Dr. Bijay Bhattarai, Dr. Jeonghyo Lee, Nicolas Diaz, Zachary Fejedelem, Rami Hourani and Dr. Andrew Vitek for their friendship and scientific advice. I am especially grateful to Brenna Budaitis, Siyuan Sun, Sibin Wang, and Shu Chang for allowing me the privilege of being their mentor, an experience from which I learned immeasurably. I am truly thankful for their sympathy and patience.

I have been truly blessed to have forged strong and invaluable friendships with Michael Robo, Grayson Ritch, and Aaron Proctor. You made my stay in Ann Arbor a true pleasure, and I will miss you greatly. Your constant support and our exciting gatherings helped me stay motivated and sane throughout graduate school.

I want to thank Ebony for her love and support during these last years. Thank you for giving me the best gift of them all, the miracle of life, in Isabella., to whom this thesis is dedicated. I am also grateful to my Ebony's mother, Valerie, for constantly taking care of Bella.

I want to acknowledge and thank the strongest pillar of support in my life, my family. I wish to thank my godmother Anita, my godfather Tomas, and my grandfather Rolando for their love and guidance. I am forever in debt with my parents, Carlos and Sarisa, for the infinite support and unconditional love; and with my brothers, Carlitos and Sebas, for their unwavering kindness and dedication. My love for you knows no bounds, and you will be forever in my heart.

iv

TABLE OF CONTENTS

DEDICATION	ii
ACKNOWLEDGMENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xiii
LIST OF SCHEMES	xvii
LIST OF APPENDICES	xxii
LIST OF ABBREVIATIONS	xxiii
ABSTRACT	xxvi
CHAPTER	
1. Introduction	1
1.1 Introduction to transition state theory	1
1.2 Introduction to mechanistic studies: experimental methods	5
1.3 Computational methods in mechanistic studies	11

1.4 Introduction to organocatalysis 14

	1.5 Asymmetric organocatalysis	17
	1.6 Brønsted acid catalysis and hydrogen-bond catalysis	21
	1.7 References	24
•		
2.	Direct Interconversion of BINOL and H8-BINOL-Based Chiral	
	Brønsted Acids Using Single-Step Red/Ox Manipulations	28
	2.1 Introduction to chiral phosphoric acid catalysis	28
	2.2 Results and discussion	36
	2.3 References	42
3.	Studies on the Mechanism of Phosphoric Acid-Catalyzed	
	Spiroketalizations	44
	3.1 Introduction to spiroketals	44
	3.2 Introduction to the anomeric effect and conformational aspects of	
	spiroketals	47
	3.3 Prior art on spiroketal synthesis	50
	3.4 Results and discussion	56
	3.5 References	85
4.	Design, Synthesis, and Application of Chiral Spiroketal-Containing	
	Ligands	89
	4.1 Introduction to asymmetric transition metal catalysis	89

	4.2 Results and discussion	95
	4.3 References	104
5.	Studies on the Mechanism of Phosphoric Acid-Catalyzed	
	Glycosylation of Complex Polyols	107
	5.1 Introduction to chemical glycosylation	107
	5.2 Mechanism of the CPA-Catalyzed Regiodivergent Glycosylation of 6-	
	deoxy-Erythronolide B	113
	5.3 Mechanism of the CPA-Catalyzed Regioselective Acetalization of	
	Sugar-Derived Diols	129
	5.4 Mechanism of the CPA-Catalyzed Regio- and Stereoselective	
	Glycosylation of Sugar-Derived Diols	140
	5.3 References	155
6.	Practical Solid-Phase Glycosylation Using Immobilized Sugar	
	Phosphonates	160
	6.1 Introduction	160
	6.2 Results and discussion	161
	6.3 References	176
7.	Studies on the Mechanism of Phosphoric Acid-Catalyzed Epoxide	
	Ring Opening	177
	7.1 Introduction	177

	7.2 Results and discussion	181
	7.3 References	191
8.	Closing Remarks	193
APPE	ENDICES	196

LIST OF TABLES

TABLE

1.1.	Relation between reaction rate and <i>Ea</i> for the rotation around the red	
	bond.	4
2.1.	Initial condition screening for the direct partial reduction of a BINOL-	
	derived CPA.	37
2.2.	Substrate scope for the partial hydrogenation of BINOL-derived CPAs.	38
2.3.	Screening of oxidation conditions for the dehydrogenation of H8-BINOL-	
	derived CPAs.	41
3.1.	Initial evaluation of the CPA-catalyzed enantioselective spiroketalization.	58
3.2.	Substrate scope for the CPA-catalyzed enantioselective spiroketalizations.	60
3.3.	Substrate scope for the CPA-catalyzed diastereoselective spiroketalization.	62
3.4.	Intermolecular acetalization with deuterated electrophile.	68
4.1.	Application of SPIRAP, SPIRAP(O), and SPIRAPO in Ir-, Pd- and Rh-	
	catalyzed asymmetric transformations.	101
4.2.	Comparison of 3D structures of SPIRAP diastereomers and SDP.	103

5.1.	Optimization of CPA-catalyzed glycosylation of 6-dEBa.	117
5.2.	Regiodivergent glycosylation of 6-dEB and oleandomycin derivative 5-7.	124
5.3.	Regioselective acetalization of sugar-based diols.	130
5.4.	C-3 selective acetalization of diols using CPAs.	131
5.5.	Dependence of selectivity on reaction temperature for the (R)-5-4a-	
	catalyzed acetalization of 5-16a .	138
5.6.	CPA-catalyzed glycosylation of diol 5-16a with benzyl protected	
	trichloroacetimidate donor 5-24.	142
5.7.	CPA-catalyzed glycosylation of diol 5-16b with trichloroacetimidate	
	glycosyl donors.	144
6.1.	Initial promoter screening for the glycosylation of phosphonates.	169
6.2.	Initial promoter screening for the glycosylation of phosphonates.	170
6.3.	Effect of the counterion in the Fe(III) catalyzed glycosylation of	
	phosphonates.	171
6.4.	Evaluation of solvents for the solid-phase glycosylation of phosphonates	
	with menthol.	173
7.1.	Initial control experiments on the intramolecular ERO of 7-1.	182
7.2.	Catalyst screening for the optimization of endo-selective conditions.	183
7.3.	Catalyst screening for the optimization of exo-selective conditions.	184

B.1.	Calculated values for starting geometries, intermediates, and transition	
	states for the concerted pathway for the [6,6]-spiroketalization catalyzed	
	by DPPA.	204
B.2.	Calculated values for starting geometries, intermediates, and transition	
	states phosphate-mediated pathway for the [6,6]-spiroketalization	
	catalyzed by DPPA.	211
B.3.	Calculated values for starting geometries, intermediates, and transition	
	states phosphate-mediated pathway for the [6,5]-spiroketalization	
	catalyzed by DPPA.	222
B.4.	Calculated values for starting geometries, intermediates, and transition	
	states concerted pathway for the [6,6]-spiroketalization catalyzed by 3-13.	230
C.1.	Calculated energy values for the described geometries.	300
C.2.	Geometrical parameters for SPIRAP Pd-complexes.	300
C.3.	Crystal data and structure refinement for aa1711	301
C.4 .	Crystal data and structure refinement for aa2393	302
D.1.	Calculated energy values for the described geometries.	319
E.1.	Calculated energy values for the BPA-catalyzed acetalization of diols.	330
E.2.	Calculated energy values geometries reoptimized without dispersion	
	corrections.	331
F.1 .	Calculated energy values for the BPA-catalyzed acetalization of diols.	348

H.1. Calculated energy values of relevant geometries for the intramolecular

ERO of **7-6.**

367

LIST OF FIGURES

FIGURE

1.1.	Hypothetical reaction of A and B.	2
1.2.	Hypothetical multi-step reaction.	3
1.3.	Hypothetical selective reaction under kinetic control.	4
1.4.	Origin of the KIE.	9
1.5.	Simplified process flow for GSM.	14
1.6.	Role of a catalyst in the kinetics of a reaction.	15
2.1.	Additional substrates for the partial hydrogenation of BINOL-derived	
	CPAs.	40
2.2.	Additional substrates for the oxidation of H8-BINOL-derived CPAs.	41
3.1.	Spiroketals are common amongst insect pheromones.	45
3.2.	Structure of (+)-spongistatin 1.	46
3.3.	Structure of ivermectin and tofogliflozin, spiroketal-containing drugs.	47
3.4.	Geminal dialkoxyalkanes are more stable than their non-acetal diether	
	isomers.	47

3.5.	Structure of pectenotoxin 2.	49
3.6.	Hammett studies for the phosphoric acid-catalyzed spiroketalizations of enol ether of hydroxy enol ethers.	71
3.7.	Concerted asynchronous mechanism for the ring closure of the model system.	75
3.8.	Anomeric phosphate mechanism for the model system.	76
3.9.	Molecular dynamics on the TS of the concerted pathway for the model system.	78
3.10.	Comparison of the activation barriers for the (R) - and (S) - 3-13a -catalyzed spiroketalizations.	81
3.11.	Comparison of TS_S and TS_R .	82
3.12.	Key steric interactions at TS_R between the phenyl groups on the alcohol appendage of the enol ether and the ortho and para substituents of the aryl substituents of (<i>R</i>)- 3-13 .	83
4.1.	Interactions between tertiary phosphines and metal centers.	91
4.2.	Spiroketal-based analogs of SPINOL.	94
4.3. 4.4.	 A. Acetal and spiroketal-containing commercial phosphine ligands. B. Pseudoenantiomeric SPIROL-based ligands. Comparison of (<i>R</i>,<i>S</i>,<i>S</i>)-SPIRAP, (<i>S</i>,<i>S</i>,<i>S</i>)-SPIRAP, and SDP complexes of 	96
- -	PdCl2.	103

5.1.	Selection of sugar-containing natural products.	108
5.2.	Regioselective glycosylation of 6-dEB.	115
5.3.	Theoretical studies on the mechanism of phosphoric acid-catalyzed	
	glycosylations.	125
5.4.	Preparation and characterization of the covalently linked phosphate	
	intermediates 5-10 and 5-12 .	128
5.5.	Energy diagram for the CPA-catalyzed intermolecular acetalization of 6-	
	deoxyglucose-derived 2,3-diols.	134
5.6.	Comparison of TS_{C-C2} and TS_{C-C3}	139
5.7.	Formation of glycosyl phosphates from donor α - 5-24 .	147
5.8.	Stereochemical assignment of glycosyl phosphates using 13C (H-coupled)	
	NMR	148
5.9.	Phosphate formation in CD ₂ Cl ₂ with different acids.	149
5.10.	Energy diagram for the CPA-catalyzed intermolecular glycosylation of 6-	
	deoxyglucose-derived 2,3-diols.	151
5.11.	Quadrant-based perspective of TSC2.	154
6.1.	Hypothesis for the glycosylation of immobilized sugar phosphonates.	162
6.2.	Reaction of phosphonic acid 6-18 with varying equivalents of donor 6-4 .	168
7.1.	Examples of complex structures containing epoxides.	177

7.2.	Ring strain in epoxides.	178
7.3.	Energy diagram for the intramolecular ERO of a truncated mupirocin model.	187
7.4.	Quadrant-based perspective for key TSs.	189
B.1.	Energy diagram for the [6,5]-spiroketalization.	221
D.1.	Energy diagram for the CPA-catalyzed glycosylation of 1,3-diols.	318
E.1.	Energy diagram for the CPA-catalyzed intermolecular acetalization of 6- deoxyglucose-derived 2,3-diols.	329
F.1.	Energy diagram for the CPA-catalyzed intermolecular glycosylation of 6- deoxyglucose-derived 2,3-diols.	347
H.1.	Energy diagram for the intramolecular ERO of a truncated mupirocin model.	367

LIST OF SCHEMES

SCHEME

1.1.	Reference reaction for the Hammett equation.	7
1.2.	Role of isotopic labelling in the discovery of benzyne.	8
1.3.	Examples of normal and inverse αSKIE.	11
1.4.	Two of the earliest examples of organocatalysis.	15
1.5.	Emil Fischer's diastereoselective homologation of glucose.	17
1.6.	Early examples of asymmetric organocatalysis.	20
1.7.	Point chirality and axial chirality.	20
1.8.	A Friedel Crafts acylation.	21
1.9.	Comparison of asymmetric Lewis acid catalysis and hydrogen bond	
	catalysis.	22
1.10.	Specific and general acid catalysis.	23
2.1.	Alkene hydration investigated by Cornforth and coworkers.	29
2.2.	General structure of Cornforth's phosphinic acids.	30

2.3.	BINOL as a chiral auxiliary.	30
2.4.	Noyori's asymmetric hydrogenation of ketones.	31
2.5.	Akiyama's asymmetric Mannich-type reaction.	32
2.6.	Terada's asymmetric Mannich-type reaction.	32
2.7.	Effect of the chiral backbone on the acidity of CPAs.	34
2.8.	Ding's enantioselective Baeyer-Villiger reaction of cyclobutanones.	34
2.9.	Standard synthesis of BINOL and H8-BINOL derived CPAs.	35
2.10.	Direct interconversion of BINOL and H8-BINOL-derived CPAs via single	26
	step Red/Ox manipulations.	36
3.1.	Orbital alignment in [6,6] spiroketals allows stabilization by the anomeric	
	effect.	49
3.2.	Spiroketal synthesis by acid-catalyzed dehydration.	50
3.3.	Effect of 1,3-diaxial interactions in the relative stability of spiroketal	
	configurations.	51
3.4.	Examples of thermodynamic acid-catalyzed strategies for nonanomeric	
	spiroketals.	52
3.5.	Deslongchamps's acid-catalyzed spiroketalizations under kinetic control.	53
3.6.	Rychnovsky's reductive spiroketalizations under kinetic control.	54
3.7.	Nagorny's CPA-catalyzed spiroketalizations under kinetic control.	55

3.8.	Catalyst control in spiroketalizations of dihydroxyketones.	57
3.9.	Potential mechanisms of CPA-catalyzed spiroketalizations	66
3.10.	Diastereoselective spiroketalization of deuterium-labeled substrates.	67
3.11.	KIE determination for 3-26 .	67
3.12.	Intermolecular acetalization with deuterated nucleophile.	69
4.1.	Early examples of phosphine ligands used in hydrogenations.	92
4.2.	a. Knowles's asymmetric synthesis of L-DOPA. b. Noyori's asymmetric	
	hydrogenation of ketones.	93
4.3.	C2 symmetry is a common feature in privileged structures.	94
4.4.	Highly diastereoselective spiroketalization of benzylic alcohols 4-2 .	97
4.5.	Diol equilibration and chemical resolution of diastereomeric ditriflates.	98
4.6.	Functionalization of scaffold 4-9 into various ligands.	99
5.1.	Simplified biosynthesis of glycogen.	109
5.2.	Examples of regioselective functionalization of polyols.	111
5.3.	Examples of site-selective glycosylation of polyols.	111
5.4.	Debenzylation of 2	118
5.5.	Single-pot traceless protection/glycosylation of the C11-position of 6-	
	dEB.	120
5.6.	Glycosylation with anomeric phosphates.	127

5.7.	CPA-controlled acetalizations developed by the Nagorny group.	129
5.8.	One-pot functionalization of diol 5-16a.	132
5.9.	Mechanistic precedents on phosphoric acid-catalyzed intermolecular	
	acetalizations.	133
5.10.	Deuterium labeling studies on the phosphoric acid-catalyzed	
	intermolecular acetalization of alcohols.	136
5.11.	CPA-catalyzed regio- and stereoselective glycosylation of sugar-derived	
	diol 5-16 .	140
5.12.	$S_N 2$ vs. $S_N i$ mechanism for the phosphoric acid-catalyzed acetalization of	
	alcohols.	150
5.13.	S _N i mechanism for the glycosylation of sugar-derived 2,3-diols.	153
6.1.	Merrifield solid-phase peptide synthesis method.	161
6.2.	Retrosynthesis of solid-supported phosphonic acid 6-1.	163
6.3.	a. Synthesis of phosphonic acid-functionalized resin. b. Replication of the	
	solid-phase route synthetic route in solution and determination of the	
	stereochemistry of glycosyl phosphonate 6-9.	164
6.4.	a. Preparation of phosphonic diacid-functionalized resin. b. Formation of	
	resin bound glycosyl phosphonate.	166
6.5.	Unsuccessful attempt at the TMSOTf-catalyzed glycosylation with resin-	
	bound peracetylated phosphonates.	167

6.6.	Glycosylation of limiting acceptor with 6-11 .	173
6.7.	Proposed mechanism for the FeCl ₃ -catalyzed glycosylation of alcohols	
	with immobilized phosphonates 6-11 .	174
7.1.	Intramolecular ERO leading to endo- or exo-product formation.	179
7.2.	Examples of substrate control strategies in endo-selective intramolecular	
	EROs.	180
7.3.	CPA-catalyzed enantioselective intermolecular ERO.	181
7.4.	Endo and exo concerted cyclizations.	188

LIST OF APPENDICES

APPENDIX

А.	Experimental Information for Chapter 2	196
B.	Experimental Information for Chapter 3	201
C.	Experimental Information for Chapter 4	244
D.	Experimental Information for Chapter 5, Section 5.2	315
E.	Experimental Information for Chapter 5, Section 5.3	327
F.	Experimental Information for Chapter 5, Section 5.4	345
G.	Experimental Information for Chapter 6	357
H.	Experimental Information for Chapter 7	365

LIST OF ABBREVIATIONS

6-dEB	6-deoxy-erythronolide B
Å	angstrom
Ac	acetyl
Acac	acetylacetone
Ad	adamantyl
Aq	aqueous
Ar	aryl
atm	atmosphere (unit)
BINOL	1,1'-bi-2-naphthol
Bn	benzyl
Boc	tert-butyloxycarbonyl
BOM	benzyloxymethyl
Br	broad
BRSM	based on recovered starting material
Bu	butyl
Bz	benzoyl
Calcd	calculated
COSY	correlation spectroscopy
CPA	chiral phosphoric acid
CSA	camphorsulfonic acid
Су	cyclohexyl
d	days
DBNE	N,N-Dibutylnorephedrine
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCM	dichloromethane
DCE	1,2-dichloroethane
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DFT	Density Functional Theory
dibm	diisobutyrylmethane

DMAP	4-dimethylaminopyridine	
DMF	dimethylformamide	
DPPA	diphenylphosphoric acid	
dr	diastereomeric ratio	
ee	enantiomeric excess	
equiv	equivalent	
ESI-MS	electrospray ionization mass spectrometry	
Et	ethyl	
EtOAc	ethyl acetate	
FDA	Food and Drug Administration	
GSM	growing string method	
h	hours	
hex	hexanes	
HMBC	heteronuclear multiple bond correlation	
HOMO	highest occupied molecular orbital	
HPLC	high-performance liquid chromatography	
HRMS	high resolution mass spectrometry	
HSQC	heteronuclear single quantum correlation	
Hz	hertz	
iPr	isopropyl	
IR	infrared	
J	coupling constant	
$k_{ m obs}$	observed rate	
kcal	kilocalorie	
LUMO	lowest unoccupied molecular orbital	
М	molar	
Me	Methyl	
mg	milligrams	
min	minutes	
mL	milliliters	
mmol	millimoles	
MS	mass spectrometry	
MS	molecular sieves	
MW	molecular weight	
NIH	National Institute of Health	
NMR	nuclear magnetic resonance	

NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser effect spectroscopy
o/n	overnight
PG	protecting group
Ph	Phenyl
PhMe	Toluene
ppm	parts per million
R	alkyl group (generic)
\mathbb{R}^2	coefficient of determination
rac	racemic
Rf	retention factor
RDS	rate determining step
RP-HPLC	reverse phase high-performance liquid chromatography
r.r.	regioisomeric ratio
rt	room temperature
SelEXSIDE	¹³ C band-selective excitation-sculptured indirect-detection experiment
$S_N 1$	unimolecular nucleophilic substitution
$S_N 2$	bimolecular nucleophilic substitution
SPINOL	1,1'-spirobiindane-7,7'-diol
SPOS	solid-phase organic synthesis
t	time
Т	temperature
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TMSOTf	trimethylsilyl trifluoromethanesulfonate
TBSOTf	tert-butyldimethylsilyl trifluoromethanesulfonate
Ts	<i>p</i> -toluenesulfonyl
TS	transition state
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
UV	ultraviolet
σ	sigma – Hammett constant
ρ	rho – slope of Hammett plot

ABSTRACT

The field of organic chemistry has evolved exponentially over the last decades. The development of catalysis has played an enormous role in this by allowing access to previously unthinkable targets, controlling the selectivity of challenging reactions, and improving on reaction greenness and efficiency. We often look up to Nature for inspiration on efficient and selective catalysis, but while Nature has found means to regio- and stereoselectively install acetals in complex molecules, finding nonbiological catalyst-controlled alternatives has been challenging. Given that acetals play a fundamental role in numerous natural and man-made products, such as key biological functions in glycosides, new stereoselective reactions to access these is highly desirable. Described herein is the development and mechanistic elucidation of phosphoric acid catalyzed regio- and stereoselective methods for the installation of spiroketals and glycosidic linkages. Inspired by our results on spiroketalizations strategies, we also designed and synthesized novel C₂-symmetric spiroketal-containing ligands for asymmetric transition metal catalysis. Finally, based on mechanistic insights into the phosphoric acid-catalyzed glycosylation, we were able to develop a practical solid-phase glycosylation methodology using solid-supported sugar phosphonates.

Chapter 1 is an introduction to transition state theory and an overview of experimental and computational ways to assess the reaction mechanism. Then, an introduction to organocatalysis is given. This chapter serves to lay a foundation for the mechanistic studies described in the context of organocatalysis for Chapters 3, 5, and 7.

Chapter 2 details our efforts in the development of a practical interconversion of BINOL and H8-BINOL through a single-step Red/Ox manipulation. This chapter also gives an introduction to BIINOL-derived chiral phosphoric acids, which were crucial in the works described later in chapters.

Chapter 3 describes our efforts towards the development of a powerful stereoselective spiroketalization method catalyzed by chiral phosphoric acids. This chapter also describes our work towards the mechanistic elucidation of this reaction using experimental techniques, state-of-the-art quantum chemical reaction path finding tools, and molecular dynamics simulations.

Chapter 4 builds on our acquired knowledge of spiroketal reactivity in Chapter 3 to describe the development of novel acetal-containing C₂-symmetric ligands for asymmetric transition metal catalysis. Our invention proved to be a very powerful tool in asymmetric catalysis, providing excellent enantiocontrol in a variety of unrelated transition metal-catalyzed reactions.

Chapter 5 describes the application of chiral phosphoric acids to control the regio- and stereoselectivity of intermolecular glycosylations and acetalizations of polyols. The mechanism of these reactions was investigated in depth using spectroscopic and computational techniques.

Chapter 6 encloses research on the development of a novel solid-phase glycosylation method that is based on the mechanistic conclusions drawn out in Chapter 5. The synthesis and characterization of a polystyrene-based resin functionalized with phosphonic acid moieties is described, as well as its application in the formation of solid-supported sugar phosphonates and their subsequent glycosylation with secondary alcohols.

Chapter 7 discloses the application of phosphoric acids as catalysts for the regioselective opening of epoxides. Computational work on the mechanistic elucidation of this reaction is described.

CHAPTER 1

Introduction

"Only those who will risk going too far can possibly find out how far one can go"

T.S. Eliot

1.1 Introduction to transition state theory

Organic chemists use of vast range of reaction conditions when developing, optimizing, and performing different kinds of reactions. Some situations require heating up the reaction to the boiling point of solvent, while in others extreme cooling is appropriate. In many instances, a wide variety of solvents with different properties like dielectric constant, hydrogen bond donor/acceptor capabilities, boiling point, etc. are screened to create a set of circumstances that favor the formation of a desired product with high selectivity in comparison to potential side reactions. The field of reaction kinetics in physical organic chemistry has been developed over the last century to answer how can reaction conditions be chosen in order to favor a particular kind of reactivity.^[1]

While thermodynamics expresses the relative stability of compounds along a reaction pathway, reaction kinetics gives us a quantitative description of chemical reactivity. For a hypothetical reaction where A and B are turned into C and D (Figure 1.1), the fundamental thermodynamic equation that relates the equilibrium constant of the reaction (*K*) to the Gibbs free energy change of product formation (ΔG) is given in Equation 1.1.^[2]

Reaction coord.

Figure 1.1. Hypothetical reaction of A and B.

Equation 1.1. Fundamental thermodynamic equation.

$$\Delta G = -RTln(K)$$

 ΔG is the reaction free energy, *R* is the gas constant, *T* is the temperature, and *K* is the equilibrium constant: $K = \frac{[C][D]}{[A][B]}$.

By assuming that an equilibrium exists between reactants and activated complexes, transition state theory (TST) was able to establish a quantitative relationship between the rate constant of an elementary reaction and the difference in free energy between reactants and activated complexes, also known as the energy of activation. This fundamental theory was independently developed by Eyring as well as Evans and Polanyi in 1935,^[3,4] and quickly emerged to become one of the most influential conceptual frameworks in physical organic chemistry.^[5–8] The most common form for the relation between rate constant and the activation barrier is known as the Eyring equation and is depicted in Equation 1.2.

Equation 1.2. Eyring's equation.

$$k = \frac{k_B T}{h} e^{\frac{\Delta G^{\ddagger}}{RT}}$$

k is the reaction rate constant, k_b is Boltzmann's constant, h is Planck's constant, T is the temperature, R is the gas constant, and ΔG^{\ddagger} , also represented as E_a is the free energy of activation of the reaction.

Transition state theory offers a powerful solution for the evaluation of reaction kinetics by considering the free energy of transition states and low energy reactants and intermediates. However, the Eyring equation only applies to an elementary reaction, in which reactants form a new species in a single reaction step containing a sole transition state. For this reason, knowledge of the reaction mechanism, or the step-by-step sequence of elementary reactions which comprise the overall transformation, is essential to understand which steps are important in the kinetics of a multistep sequence, and which transition states one should focus on for further reaction optimization. For example, in the hypothetical reaction were A turns into C depicted in Figure 1.2, it is the transformation of B to C which defines the overall reaction rate. This kinetically crucial step is called the rate determining step (RDS). In thinking about optimizing this reaction, one could focus on lowering the energy of TS₂ (transition state effect) or increasing the energy of B (ground state effect) to accelerate the reaction.^[9]

Figure 1.2. Hypothetical multi-step reaction.

Transition state theory is especially useful to understand reaction selectivity. That is, the selection of one reaction pathway over several other competing reactions. Minute amounts of energy are required to achieve almost complete selectivity. In Figure 1.3, $\Delta\Delta G^{\ddagger}$ need only be 2.8 kcal/mol to achieve 100:1 selectivity for B under standard conditions. As a reference, the strength of hydrogen bonds cover the range of 0.2 to 40 kcal/mol.^[10]

Figure 1.3. Hypothetical selective reaction under kinetic control.

Finally, transition state theory can give us an estimate on the time scale and feasibility of a reaction. Table 1.1 shows the relation between the energy of activation and the half time for different first-order reactions (rotation around the red bond). Due to the exponential nature of the relationship between k and E_a , reactions over 25 kcal/mol are considered very slow and practically unfeasible under standard conditions.

Compound	E _a (kcal/mol)	Approximate <i>k</i> at 298K (s ⁻¹)	t _{1/2} at 298K
	2.9	5x10 ¹⁰	0.02ns
	10.8	8x10 ⁴	10µs
Me N H	16.7	3	0.2s
	25.8	7x10 ⁻⁷	11 days
$Ph \rightarrow Ph$	43.0	2x10 ⁻¹⁹	10 ¹¹ years

Table 1.1. Relation between reaction rate and E_a for the rotation around the red bond. Adapted from reference [1].

1.2 Introduction to mechanistic studies: experimental methods

Because of the implications of reaction mechanisms in synthetic organic methodology, mechanistic studies of chemicals reactions drive research and is a principal point of focus in organic chemistry pedagogy.^{[11],[12]} Fortunately, a multitude of tools have been developed over the past century to interrogate reaction space and clarify even perplexing reactions and results. Among the experimental tools, the main ones are the detection and identification of reaction intermediates, the experimental determination of activation parameters, the experimental determination of the empirical rate law through kinetic analysis, the investigation of linear free energy relationships, and isotopic labeling studies. While not always possible, isolating or identifying *in situ* an intermediate can indicate a reaction profile similar to that depicted in figure 1.3 and reveal additional insights on the reaction mechanism.^[13,14]

By expanding ΔG^{\ddagger} , and rearranging equation 1.2, one can have:

Equation 1.3. The Eyring plot.

$$\ln\left(\frac{kh}{k_BT}\right) = -\left(\frac{\Delta H^{\ddagger}}{R}\right)\left(\frac{1}{T}\right) + \frac{\Delta S^{\ddagger}}{R}$$

 ΔH^{\ddagger} and ΔS^{\ddagger} , are the enthalpy and entropy of activation.

By performing reactions at different temperatures and then plotting $\ln\left(\frac{kh}{k_BT}\right)$ against $\left(\frac{1}{T}\right)$, one obtains a line where the slope is $-\left(\frac{\Delta H^{\dagger}}{R}\right)$ and the intercept is $\frac{\Delta S^{\dagger}}{R}$. This type of correlation is called an Eyring plot. Knowing ΔH^{\ddagger} and ΔS^{\ddagger} is extremely advantageous in understanding the mechanism involved. For example, a clear break in an Eyring plot strongly suggests a temperature dependent change in the mechanism of the reaction.^[15] The experimental identification of the empirical rate law can be done through classical kinetic analysis^[15] or more modern and data-driven techniques such as reaction progress kinetic analysis.^[16] This gives invaluable insights on the reaction mechanism. An obvious piece of information obtained from these experiments is the actual rate of the reaction. In addition, only reaction steps that occur before and at the rate determining step are detected in these kinetic studies, so one can make informed inferences about the molecularity and order of events in the mechanism.

Structural information regarding the activated complex can be extracted from a set of similar experiments where one of the reactant's substituents is judiciously modified. By probing the effect of substituent groups on the reactivity, structure-reactivity relationships can be found. Many of these can be expressed quantitatively in ways that allow for both insights on the transition state structure and predictive chemical behavior. The most widely used relationships are the linear free energy relationships, which correlate the energy of activation with a physical parameter that varies depending on the substituent used.^[17] Of these, the Hammett equation is perhaps the most used and well-studied, and is particularly useful in investigating the electronic changes induced by substituents:

Equation 1.4. The Hammett equation.

$$\log\left(\frac{K_X}{K_H}\right) = \rho \sigma_X$$

 K_X and K_H are the equilibrium constants when the substituent is X or H, respectively, σ_X is the empirical electronic substituent parameter, obtained when calculating $log\left(\frac{K_X}{K_H}\right)$ for the ionization of substituted benzoic acids in water (Scheme 1.1), ρ is the slope obtained in the Hammett plot.

 ρ is the slope obtained in the Hammett plot, and it indicates how the reaction in question compares to the ionization of benzoic acid in water. In other words, ρ reflects the sensitivity of the reaction to substituents effects. When $\rho > 1$, there is significant build-up of negative charge in the reaction, when ρ is between 0 and 1, the reaction has a slight build-up of negative charge, when $\rho < 0$ there is build-up of positive charge, and when $\rho = 0$, the reaction shows no substituent effects. Other linear free energy relationships are formulated similarly and are just as useful. For example, the Evans-Polanyi equation correlates the reaction enthalpy and is commonly employed in the development of computational methods that can reliably compute reaction enthalpies;^[18] while the Taft equation is excellent at probing the effect of substituent sterics.

Scheme 1.1. Reference reaction for the Hammett equation.

$$X + H_{2}O + H_{2}O + H_{3}O^{+}$$

Another important technique in mechanistic analysis is isotopic labeling. The reactant is labeled by substituting a specific atom by its isotope. This way, the atom can be tracked throughout its reaction. Upon analysis, the isotope can be detected through a variety of techniques including mass spectroscopy (MS), infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), among others. This is one of the most powerful ways of distinguishing pathways experimentally, although it has the major drawback that it requires the synthesis of isotopically enriched reactants. One of the most iconic applications of isotopic labeling was John D. Roberts work in the confirmation of the benzyne mechanism in the nucleophilic aromatic substitution of chlorobenzene with dialkyl amides.^[22] Treatment of C¹⁴-labelled chlorobenzene **1-1** with potassium amide in liquid ammonia led to the formation of **1-2** and **1-3** in equal amount, proving the involvement of a benzyne intermediate and discarding traditional mechanisms such as addition-elimination (Scheme 1.2). This had a tremendous impact in the scientific community and

led to the development of countless reactions that invoke a benzyne intermediate and the inclusion of this mechanism in basic organic chemistry textbooks.^[23]

Scheme 1.2. Role of isotopic labelling in the discovery of benzyne.

Another important technique in the experimental mechanistic studies arsenal that also relies in the judicious isotopic substitution of an atom is the kinetic isotope effect (KIE). Although, isotopic substitution does not affect the qualitative reactivity of a compound, it can often have a measurable effect in the reaction rate. KIE is formally defined as the ratio between the rate of the non labelled reactant and the isotopically substituted one, k_H and k_D , respectively, for a H/D substitution (equation 1.5). This technique offers complementary information to the other methods described above. For example, it can indicate which bonds are formed, broken, or rehybridized during the rate determining step. In addition, an advantage of KIEs is that many competent methods exist for their computation. The comparison between experimental and theoretical KIEs is often performed to understand, endorse, or reject a mechanism.^[24,25]

Equation 1.5. Definition of KIE.

$$KIE = \frac{k_H}{k_D}$$

Most KIEs result from the differences in zero-point energy (ZPE) of the reactants and TSs for the labelled and non-labelled systems, which dominates vibrational energy at room temperature (Figure 1.4).^[26]

Figure 1.4. Origin of the KIE.

Primary KIEs occur when the rate determining step involves cleavage of isotopically substituted bond. Most KIE experiments consider the H/D substitution atom, since it produces the largest KIEs by a wide margin. This can be easily explained by considering that for a bond formation or bond breaking event, the stretching vibration of that bond is the reaction coordinate. The frequency of this vibrational mode can be modeled using the harmonic oscillator model, and one can promptly conclude that the stretching frequency is inversely proportional to the reduced mass (equation 1.6). For this reason, the H/D substitution offers the largest KIEs, with primary KIEs having theoretical maximum of about 7 at room temperature.^[27,28] In addition, the magnitude of the KIE can give a qualitative indication of how early or late the transition state is. For instance, as small primary KIE indicates that the C-D bond is only slightly weakened at the transition state.

Equation 1.6. Vibrational frequency of a harmonic oscillator. In this equation v is the vibrational frequency, k_f is the force constant, and μ is the reduced mass.

$$v = \frac{1}{2\pi} \sqrt{\frac{k_f}{\mu}}$$

Secondary KIEs (SKIE) arise when bonds with isotopically labeled atom are not formed or cleaved at the rate determining step. They are usually in the range of 0.7-1.5 and are further classified as normal (>1) or inverse (<1), as well as by their position with respect to the bond formation event in the rate determining step (α , β , etc.). In α SKIEs, the isotopic substituted atom is directly connected to the atom involved in bond breaking or bond forming events at the rate determining step. The main use of α KIE is to identify rehybridizations at the TS. In effect, it has been crucial in distinguishing S_N1 and S_N2 mechanisms. This phenomenon arises from the large differences in the frequencies of the out of plane bending modes between sp³ and sp² hybridized atoms, which translates to large differences in the ZPE of the C-H and C-D bonds. Normal α SKIE are expected when rehybridization from sp³ to sp² occurs at the rate determining step, while inverse α SKIE are observed when the reaction involves a rehybridization from sp² to sp³ occurs. The hydrocyanation of *p*-methoxybenzaldehyde^[29] and the hydrolysis of chlorotoluene^[30] shown in Scheme 1.3 are illustrative examples. β SKIE tend to be even smaller and are attributed to hyperconjugative effects.^[31] Scheme 1.3. Examples of normal and inverse αSKIE.

Fortunately, with the emergence and development of density functional theory (DFT), a vast array of useful and powerful computational methods has been developed to study mechanisms over the past decades. Though there was initial skepticism, these methods have grown to become widely recognized as robust and reliable, and its application has become routine in contemporary synthetic methodology.^[32] A brief overview follows.

1.3 Computational methods in mechanistic studies

(Excerpts of this section were adapted from:

Dewyer, A. L.;* **Argüelles, A. J**.;* Zimmerman, P. M. Methods for exploring reaction space in molecular systems. *WIREs Comput Mol Sci* **2018**, 8:e1354. * equal contribution to this article.)

The area of reaction mechanism discovery simulation has taken considerable strides in recent years. Novel methods that make hypotheses for elementary steps and complementary means for reaction path and transition state (TS) optimization are lowering the amount of chemical intuition and user effort required to explore reaction networks. The resulting networks lead from reactants to reactive intermediates and products; and are becoming closer representations of

physical mechanisms involved in experiments. The powerful methods of this area are designed to locate intermediates, reaction paths, and TSs with as little guidance and effort from the researcher as possible.

First principles, or *ab initio*, simulations of reactant molecules and catalysts provide an important, central viewpoint on how computation can approach reactivity with little or no guidance from experiment.^[33–35]*Ab initio* simulations provide potential energy surfaces (PESs), a multidimensional surface which describes the energy of the system with respect to atomic coordinates. From these, free energy surfaces can be generated, which approximate the true reactive landscapes.^[36] All potential elementary steps may be located by exploring these landscapes, at least in principle. The high dimensionality (approximately 3 N, where N is the number of atoms in the system) of the surfaces, however, means that exhaustive exploration is usually impossible. Some form of search strategy, often coming from a low-dimensional reenvisioning of reaction paths, or chemical intuition, in combination with computationally economical methods, such as DFT, must be employed to locate intermediates and the TSs that connect them.

Locating a pathway for an envisioned reaction often employs local TS finders to optimize saddle points along the path.^[37] The TS structures can be guessed using intuition or approximated using various interpolation tools before optimization.^[38–42] Once a TS is found, intrinsic reaction coordinate (IRC)^[43,44] computations provide the reaction path connecting the TS to its neighboring intermediates. Largely, this method has relied on chemical intuition to designate the TSs that are of interest, as well as the intermediates that have to be found.^[45,46]

Because many of these steps may be costly or fail, constructing full reaction networks becomes hindered by difficulties in optimizing individual reaction paths. Streamlined approaches for finding reaction paths directly from mechanistic hypotheses therefore have considerable advantages over prior elementary step analysis strategies. For instance, the Zimmerman group has developed methods that systematically generate and follow qualitative reaction coordinates to construct a reaction path, find the TS, and locate an intermediate in a single computation.^[47] In related work, Li and coworkers developed a method that utilizes bond forming and breaking processes to drive reaction exploration.^[48] Both of these methods are designed to find single elementary steps, which reduces the cost of reaction exploration.

Throughout my graduate work at the University of Michigan, I have made extensive use of the methods developed in the Zimmerman group for reaction path finding. Zimmerman and coworkers have developed a single-ended growing string method (GSM), which allows for reaction path searches starting from a single structure and either user-given or automatically generated reaction coordinates.^[47,49–51] The method is developed with user-friendliness as a high priority. Organic chemists can make full use of chemical intuition to accelerate the calculation of relevant pathways by introducing driving coordinates in internal coordinates (bond formation, bond cleavage, angles, and torsions). Briefly, the method works by the sequential addition of nodes distributed along coordinates that follow the driving coordinates from the starting structure. When a node is added, it is optimized in all dimensions except the driving coordinates. After a TS is detected in in reaction path, a two more nodes are added to reach the product. Following optimization of all nodes, an exact TS search is performed using the highest energy node. The created string should then be analyzed by the user. A simplified process flow diagram is depicted in Figure 1.5.

Figure 1.5. Simplified process flow for GSM. Adapted from reference [51].

1.4 Introduction to organocatalysis

Catalysis is an essential phenomenon in both Nature and manmade processes. It is broadly defined as the intervention of a compound that makes a reaction path available with a lower energy of activation (Figure 1.6). Catalysts do not alter the free energy of the reaction (the position of equilibrium, ΔG). However, by lowering of the activation barrier, they allow chemistry that would otherwise be unfeasible. Indeed, most biological reactions occur at rates that enable life thanks to powerful catalysts that Nature engineered. In addition, traditional industries like chemical, petroleum, agriculture, polymer, electronics, and pharmaceuticals depend heavily on efficient catalytic processes. In fact, approximately over 90% of the chemicals rely on catalytic reactions.^[52] Thus, the advancement of the field is of great interest.

Figure 1.6. Role of a catalyst in the kinetics of a reaction.

Organocatalysis was defined by MacMillan in 2000 as the use of small organic molecules to catalyze organic transformations.^[53] Although this event was very important to the establishment of the field,^[54] the idea of using small organic molecules to activate reactants even in enantioselective fashion already had a long story.^[55] One of the earliest, if not the earliest, reported demonstration of a small organic molecule catalyzing a simple reaction can be attributed to Justus von Liebig, who in 1860 reported the use of aqueous acetaldehyde as a catalyst for the formation of oxamide from dicyan (Scheme 1.4a).^[56] Other sporadic examples of organocatalysis would follow, like Emil Knoevenagel's aldol condensation almost 40 years later, which employed catalytic amounts of an amine base (Scheme 1.4b).^[57]

Scheme 1.4. Two of the earliest examples of organocatalysis.

In 1900, Wilhelm Ostwald, formally classified catalysts somatic, inorganic, and organic catalysts.^[58] He was a German chemist mostly famous for the development of the Ostwald process, a catalytic process which produces nitric acid from ammonia. Later, he would be awarded the

Nobel Prize in chemistry in part for his work in catalysis. The nascent concept of organocatalysis was already recognized.

While other chemical examples of organocatalysis were reported over the last century, they were, in general, few and infrequent. It was not until the late 1990s that the field of organocatalysis blossomed thanks to the pioneering efforts of Yian Shi,^[59] Scott Denmark,^[60] and Dan Yang,^[61] who independently showed that chiral ketones could be used to catalyze the enantioselective epoxidation of simple alkenes. Other significant contributions by Eric Jacobsen,^[62] Elias J. Corey^[63] and Scott Miller^[64] would further captivate the attention of the scientific community and, after Barbas work on proline-catalyzed aldol reactions^[65] and MacMillan definition the term organocatalysis in 2000,^[53] the field rapidly developed into one of the main branches of enantioselective catalysis, alongside enzymatic catalysis and organometallic catalysis. By 2010, over one hundred discrete reactions involving different activation pathways and organic catalysts were published.^[54]

One of the main reasons for the quick growth of the organocatalysis field is that it provides several distinct advantages over other types of catalysis. The strongest fundamental advantages of organocatalysis are there ease of operation and low costs of the catalysts. In contrast to transition metal catalysis, no precious metals like rhodium, palladium, and iridium are required. In addition, these reactions are generally less susceptible to moisture and air, and the methods tend to be safer, as the required organocatalysts are typically non-toxic and environmentally friendly. On the other hand, it compares favorably to enzymatic catalysis in terms of scalability, catalytic scope, robustness, and operational simplicity.

Another advantage about organocatalysis is that it is versatile. Multiple activation modes have been studied and successfully applied, such as, enamine catalysis, iminium catalysis, hydrogen-bonding catalysis, singly-occupied molecular orbital (SOMO) catalysis, and counterion catalysis.^[54] For this reason, identifying the mode of operation of the catalyst is often key for the successful reaction development, catalyst design, and optimization studies (see Section 1.3).

1.5 Asymmetric organocatalysis

Since the majority of key molecules in biological systems are chiral, most enantiomers of drugs have markedly different biological properties. Despite this, almost half of the drugs currently used are sold as racemates.^[66] This is in part driven by the difficulties on elaborating an enantioselective route to a drug and reflects the ever-increasing demand for methodologies that help access compounds in enantiopure form. Thus, methods for the enantioselective construction of chiral building blocks are highly desirable.

One can trace the origins of the discipline of stereoselective synthesis (not to be confused with stereoselective catalysis) to Emil Fischer's experiments in the late 1880s regarding the structural characterization of carbohydrates. He observed that addition of HCN to glucose, and subsequent hydrolysis, resulted in the formation of a single diastereomer (Scheme 1.5).

Scheme 1.5. Emil Fischer's diastereoselective homologation of glucose.

We now know that this diastereoselectivity is the result of substrate control. In fact, it may be the earliest example of acyclic substrate control in diastereoselective carbonyl addition reactions.^[66] Substrate-controlled methods would become the state-of-the-art way of introducing stereocontrol in synthesis. Two techniques became predominant in stereoselective synthesis: 1) chiral pool or Chiron approach, which capitalizes on the use of chiral compounds or fragments as a starting materials; and 2) chiral auxiliary approach, in which a small fragment containing a stereocenter is temporarily introduced in order to affect stereochemical outcome of a key step in the synthesis. The chiral auxiliary approach was developed thanks to the seminal contributions of Evans,^[67] Oppolzer,^[68] Myers,^[69] and Ellman,^[70] among others; and it was crucial in the maturity of the enantioselective synthesis field.

In order to make enantioselective syntheses more robust, dependable, and versatile, nonsubstrate-controlled methods for the construction of chiral molecules was necessary. There are three other main ways of accomplishing this: 1) chiral separation, where are racemic compound is separated into its enantiomers through physical means such as crystallization or chromatography;^[71] 2) chiral reagents, in which stoichiometric amounts of a chiral reagent is utilized in a key step; and 3) chiral catalysis, where catalytic amounts of a chiral molecule is used to control the stereochemical outcome of reaction. While chiral separations are useful in their own right, they are limited in generality and scope, and tend to require expensive equipment like chiral columns for chromatography. The use of stoichiometric amounts of chiral reagents is also often costly and wasteful. The ideal, most atom economical solution to this problem is to employ small, catalytic amounts of a chiral compound to produce a highly enantiomerically enriched product.

The field of asymmetric catalysis has matured over the last century and several important branches are in constant growth and development. The most established and well-studied approaches to asymmetric catalysis are 1) transition metal catalysis, 2) organocatalysis, and 3) enzymatic catalysis. Nature, the world's finest Chemist, through evolution, has developed a powerful solution to asymmetric catalysis: chiral macromolecular structures built from amino acids. These macromolecular machines, also called enzymes, can superbly control the absolute and relative stereochemistry of an impressive array of reactions. A whole field has developed around the production, manipulation, alteration, and application of enzymes to reactions not exclusive to the portfolio Nature provides. This field is growing rapidly, and has recently been recognized with the 2018 Nobel Prize in Chemistry to Frances H. Arnold for the directed evolution of enzymes.^[72] Although these biocatalysts often make excellent catalysts for asymmetric transformations, they are generally limited in scope, scalability, ease of use, and especially, many enzymes are available only as one enantiomer, so producing both enantiomers of a product may be challenging. These deficiencies are well complemented by asymmetric transition metal catalysis is given in Chapter 4.

Asymmetric organocatalysis, defined as the use of catalytic amounts of a chiral organic compound to produce an enantiomerically enriched substance, has a long history as well. In 1913, two German chemists Bredig and Fiske reported the use of a cinchona base to catalyze the asymmetric hydrocyanation of benzaldehyde, with dismal but significant enantioselectivities (Scheme 1.6a).^[73] This would be the first asymmetric reaction that would employ cinchona bases,^[74] examples of which are seen in modern chemistry like the Sharpless Asymmetric Dihydroxylation. The usefulness of asymmetric organocatalysis would the established by two independent reports in 1971 by Hajos and Parrish (Scheme 1.6b), a famous and powerful transformation used to this day.^[75]

Scheme 1.6. Early examples of asymmetric organocatalysis.

Originally, asymmetric organocatalysis employed compounds containing chiral sp³ hybridized stereocenters such as proline or quinine (Scheme 1.7a). This type of chirality based on stereogenic centers is also referred as point chirality. However, chirality can also be present in molecules without stereogenic centers, by possessing a inherent restriction to rotation that does not allow the superimposition of mirror images. An example of these is called axial chirality, and a large number of important catalysts are based on this phenomenon.

Scheme 1.7. Point chirality and axial chirality **a.** Examples of point chirality. **b.** Compounds containing axial chirality.

1.6 Brønsted acid catalysis and hydrogen-bond catalysis

Until the popularization of chiral phosphoric acids by Akiyama^[76] and Terada,^[77] over the past decades the principal strategy for enantioselective catalysis of polar reactions relied on activation of the electrophile by chiral Lewis acids.^[78] A Lewis acid is defined as any substance that can accept a pair of electrons, i.e., has a low energy lowest unoccupied molecular orbital (LUMO). Following the formation of the dative bond with an electrophile, it would lower its LUMO, making it more susceptible to nucleophilic attack. Application of Lewis acids in organic chemistry is based of the work of Friedel and Crafts, who utilized aluminum chloride catalysts extensively in aromatic acylations and alkylations (Scheme 1.8).^[79]

Scheme 1.8. A Friedel Crafts acylation.

Since the 2000s many different types of organocatalyzed transformations have been reported. Among the several different types of activations, Brønsted acid and hydrogen bond catalysis are some of the most important, popular, and well-studied. Brønsted acids or bases are defined as proton donors or acceptors, respectively.^[80] Reactions are catalyzed by acids when, after protonation of a reactant, the conjugate acid of this species is more reactive than the unactivated starting material. Activation of this kind renders the starting material more electrophilic and prone to attack by nucleophilic reactants. At first glance, it may seem that Lewis acids have more advantages over hydrogen bond catalysis given the stronger and more directional interactions with the Lewis base, as well as high tunability of the catalyst such as in the variation of the chiral ligands framework, counterion, and especially the identity of the Lewis acidic element (La*, X, and M in Scheme 1.9, respectively). However, Nature's enzymes rely heavily on hydrogen bond catalysis

and with the advent of organocatalysis, organic chemists have recently learned to harness the latent power of Brønsted acid catalysis and hydrogen bond catalysis, especially in asymmetric catalysis applications.^[81–83]

Scheme 1.9. Comparison of asymmetric Lewis acid catalysis and hydrogen bond catalysis.

Strictly speaking, Brønsted acid catalysis can be further categorized into specific acid catalysis and general acid catalysis. In specific acid catalysis the reaction rate is dependent on the equilibrium protonation of a reactant. Thus, such type of acid catalysis is generally independent of the structure of the Brønsted acid catalyst, and its reaction rate is governed by the pH of the solution. However, if the counterion is tightly bound to the electrophile, it can play an important role in the efficiency and stereoselectivity of the reaction. On the other hand, in general acid catalysis, the rate of the reaction depends on the structure and concentration of the Brønsted acid catalyst used (Scheme 1.10).^[2] For convention sake, throughout this text we refer to Brønsted acid catalysis as a specific acid type of catalysis, where a full or almost full proton transfer occurs prior to the transition state. Likewise, we refer to hydrogen bond catalysis to the general acid mechanism case, where there is only a partial interaction through hydrogen bonding in the transition state of the rate-determining step. Although strong acids like triflic acid usually operate through Brønsted acid catalysis and weaker ones like phosphoric acid tend to function through hydrogen bond catalysis, the mechanism is dependent on the reaction conditions and, crucially, the nature and basicity of the reactant being activated. In addition, the variety and tunability of the acid catalysts offers a dynamic and broad range of acid strength, so that there is no clear borderline between Brønsted acid and hydrogen bond catalysis.^[82,84] That being said, an understanding of the

underlying mechanism of Brønsted acid and Hydrogen bond-catalyzed reactions is important in the development of new, more efficient and stereoselective methods.

Scheme 1.10. Specific and general acid catalysis. **a.** Example of specific acid catalysis mechanism (Brønsted acid catalysis). **b.** Example of general acid catalysis mechanism (hydrogen bond catalysis).

This brief introduction gives a hint on the complexity and richness of reaction mechanisms. Thanks to TST we have a clearer understanding on the implication of transition states in reaction reactivity and selectivity. We have described several tools that have been developed to probe reaction mechanisms, and this information can be useful in the development and improvement of synthetic methodology, something that I can attest based on my graduate work. We have used our mechanistic findings to start whole new projects and find explanations to perplexing scenarios. It is my hope the reader finds in these pages the practical utility and intellectual satisfaction of knowing what occurs in the flask at least a little bit better.

1.7 References

- [1] J. Clayden, N. Greeves, S. Warren, *Organic Chemistry 2nd Ed.*, Oxford University Press, **2012**.
- [2] B. E. Norcorss, Advanced Organic Chemistry: Reactions Mechanisms, and Structure (Mach, Jerry), Springer, 2009.
- [3] H. Eyring, J. Chem. Phys. 1935, 3, 107–115.
- [4] M. G. Evans, M. Polanyi, *Trans. Faraday Soc.* 1935, *31*, 875–894.
- [5] K. J. Laidler, M. C. King, J. Phys. Chem. 1983, 87, 2657–2664.
- [6] D. G. Truhlar, W. L. Hase, J. T. Hynes, J. Phys. Chem. 1983, 87, 2664–2682.
- [7] D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, J. Phys. Chem. 1996, 100, 12771–12800.
- [8] P. Pechukas, Annu. Rev. Phys. Chem. 1981, 32, 159–177.
- [9] F. M. Menger, *Biochemistry* **1992**, *31*, 5368–5373.
- [10] T. Steiner, Angew. Chemie Int. Ed. 2002, 41, 48–76.
- [11] S. J. Meek, C. L. Pitman, A. J. M. Miller, J. Chem. Educ. 2016, 93, 275–286.
- [12] K. Bain, M. H. Towns, Chem. Educ. Res. Pract. 2016, 17, 246–262.
- [13] A. R. Dick, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2005, 127, 12790–12791.
- [14] S. E. Denmark, R. F. Sweis, J. Am. Chem. Soc. 2004, 126, 4876–4882.
- [15] J. Saavedra, H. A. Doan, C. J. Pursell, L. C. Grabow, B. D. Chandler, *The Critical Role of Water at the Gold-Titania Interface in Catalytic CO Oxidation*, University Science Books, 2014.
- [16] D. G. Blackmond, Angew. Chemie Int. Ed. 2005, 44, 4302–4320.
- [17] P. R. Wells, Chem. Rev. 1963, 63, 171–219.
- [18] S. Roy, S. Goedecker, V. Hellmann, *Phys. Rev. E* 2008, 77, 056707.
- [19] R. W. Taft, J. Am. Chem. Soc. 1952, 74, 2729–2732.
- [20] R. W. Taft, J. Am. Chem. Soc. 1952, 74, 3120–3128.
- [21] R. W. Taft, J. Am. Chem. Soc. 1953, 75, 4538–4539.
- [22] J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290–3291.
- [23] H. H. Wenk, M. Winkler, W. Sander, Angew. Chem., Int. Ed. 2003, 42, 502–528.
- [24] A. González-Lafont, J. M. Lluch, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 584–603.

- [25] C. Hennig, R. B. Oswald, S. Schmatz, J. Phys. Chem. A 2006, 110, 3071–3079.
- [26] B. K. Carpenter, *Nat. Chem.* **2010**, *2*, 80–82.
- [27] K. B. Wiberg, Chem. Rev. 1955, 55, 713–743.
- [28] F. H. Westheimer, Chem. Rev. 1961, 61, 265–273.
- [29] L. Do Amaral, H. G. Bull, E. H. Cordes, J. Am. Chem. Soc. 1972, 94, 7579–7580.
- [30] V. J. Shiner, M. W. Rapp, H. R. Pinnick, J. Am. Chem. Soc. 1970, 92, 232–233.
- [31] K. T. Leffek, J. A. Llewellyn, R. E. Robertson, *Can. J. Chem.* **2006**, *38*, 2171–2177.
- [32] P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çelebi-Ölçüm, K. N. Houk, *Chem. Rev.* 2011, 111, 5042–5137.
- [33] T. Sperger, I. A. Sanhueza, I. Kalvet, F. Schoenebeck, *Chem. Rev.* 2015, 115, 9532–9586.
- [34] A. T. Bell, M. Head-Gordon, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 453–477.
- [35] S. M. Bachrach, Comput. Org. Chem. 2006, 109, 1–478.
- [36] D. J. Wales, T. V. Bogdan, J. Phys. Chem. B 2006, 110, 20765–20776.
- [37] H. B. Schlegel, in *Mod. Electron. Struct. Theory* (Ed.: D.R. Yarkoni), Singapore: World Scientific Publishing, **1995**, pp. 459–500.
- [38] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett. 1977, 49, 225–232.
- [39] M. J. S. Dewar, E. F. Healy, J. J. P. Stewart, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. **1984**, 80, 227–233.
- [40] I. V. Ionova, E. A. Carter, J. Chem. Phys. 1993, 98, 6377–6386.
- [41] C. J. Cerjan, W. H. Miller, J. Chem. Phys. 2003, 75, 2800–2806.
- [42] P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, E. Kaxiras, J. Chem. Phys. 2002, 117, 4651–4658.
- [43] K. Fukui, Acc. Chem. Res. 1981, 14, 363–368.
- [44] S. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, K. Morokuma, Int. J. Quantum Chem. 2015, 115, 258–269.
- [45] N. Graulich, H. Hopf, P. R. Schreiner, *Chem. Soc. Rev.* **2010**, *39*, 1503–1512.
- [46] B. A. Grzybowski, K. J. M. Bishop, B. Kowalczyk, C. E. Wilmer, *Nat. Chem.* **2009**, *1*, 31–36.
- [47] A. L. Dewyer, P. M. Zimmerman, Org. Biomol. Chem. 2017, 15, 501–504.
- [48] M. Yang, J. Zou, G. Wang, S. Li, J. Phys. Chem. A 2017, 121, 1351–1361.
- [49] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [50] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.

- [51] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [52] C. A. Busacca, D. R. Fandrick, J. J. Song, C. H. Senanayake, Adv. Synth. Catal. 2011, 353, 1825–1864.
- [53] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243– 4244.
- [54] D. W. C. MacMillan, *Nature* **2008**, *455*, 304–308.
- [55] F. Liu, *Chirality* **2013**, *25*, 675–683.
- [56] J. von Liebig, Justus Liebigs Ann. Chem. 1860, 113, 246–247.
- [57] E. Knoevenagel, Berichte der Dtsch. Chem. Gesellschaft 1896, 29, 172–174.
- [58] O. W., Z Phys Chem 1900, 32, 509–511.
- [59] Y. Tu, Z. X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806–9807.
- [60] S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue, R. G. Wilde, J. Org. Chem. 1995, 60, 1391–1407.
- [61] D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng, K.-K. Cheung, J. Am. Chem. Soc. 1996, 118, 491–492.
- [62] M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901–4902.
- [63] E. J. Corey, M. J. Grogan, Org. Lett. 2002, 1, 157–160.
- [64] S. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann, E. M. Ruel, J. Am. Chem. Soc. 1998, 120, 1629–1630.
- [65] B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc. 2000, 122, 2395–2396.
- [66] R. Breinbauer, *Classics in Stereoselective Synthesis*, Wiley-VCH, **2009**.
- [67] D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127–2129.
- [68] W. Oppolzer, *Tetrahedron* **1987**, *43*, 1969–2004.
- [69] A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496–6511.
- [70] J. A. Ellman, T. D. Owens, T. P. Tang, Acc. Chem. Res. 2002, 35, 984–995.
- [71] W. H. Porter, *Resolution of Chiral Drugs*, **1991**.
- [72] F. H. Arnold, Angew. Chem., Int. Ed. 2018, 57, 4143–4148.
- [73] G. Bredig, P. S. Fiske, *Biochem. Z.* **1913**, *46*, 7–23.
- [74] C. E. Song, in *Cinchona Alkaloids Synth. Catal. Ligands, Immobil. Organocatalysis*, **2009**, pp. 1–10.
- [75] Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615–1621.

- [76] T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem., Int. Ed. 2004, 43, 1566–1568.
- [77] D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357.
- [78] M. S. Taylor, E. N. Jacobsen, Angew. Chem., Int. Ed. 2006, 45, 1520–1543.
- [79] C. Friedel, J. M. Crafts, C. R. Hebd. Seances Acad. Sci. 1877, 84, 1450–1454.
- [80] M. Kilpatrick, M. L. Kilpatrick, Chem. Rev. 1932, 10, 213–227.
- [81] T. Akiyama, Chem. Rev. 2007, 107, 5744–5758.
- [82] T. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999–1010.
- [83] P. Nagorny, Z. Sun, Beilstein J. Org. Chem. 2016, 12, 2834–2848.
- [84] M. Fleischmann, D. Drettwan, E. Sugiono, M. Rueping, R. M. Gschwind, *Angew. Chem.*, *Int. Ed.* **2011**, *50*, 6364–6369.

CHAPTER 2

Direct Interconversion of BINOL and H8-BINOL-Based Chiral Brønsted Acids Using Single-Step Red/Ox Manipulations

"Everything should be made as simple as possible but not simpler"

Albert Einstein

2.1 Introduction to chiral phosphoric acid catalysis

As is highlighted in Chapter 1, the development of methods for the construction of chiral building blocks is of utmost importance in the field of synthetic organic chemistry. Asymmetric Brønsted acid catalysis and hydrogen bond catalysis are branches of asymmetric organocatalysis that have grown considerably over the past decades.^[1] Phosphorous-containing organic compounds have had a massive impact and role in catalysis, and it appears in all major branches of catalysis, including enzymatic catalysis, organocatalysis, and transition metal catalysis. This section gives a brief introduction into chiral phosphoric acid catalysts (CPAs), while the use of phosphorus in asymmetric transition metal catalysis is discussed in the introduction of Chapter 4.

The origins of phosphorus-based acid catalysis can be traced to the works of Sir John Cornforth, an Australian-British chemist and Nobel laureate for his contributions to the stereochemistry of enzyme-catalyzed reactions.^[2] Cornforth was marveled by the mysteriously selective and efficient machinations of nature, and was determined to construct catalysts that could mimic nature as close as possible. Based on the overarching guiding principle that the structure of the catalyst must easily correlate with its activity, in 1978, Cornforth enunciated the following

"prescription" of 9 items for an enzyme-mimicking catalyst for the hydration of an alkene (Scheme 2.1):^[3]

(1) The catalyst must be acidic.

(2) The catalyst must work in homogeneous aqueous medium.

(3) The catalyst must be of definite structure; therefore not a polymer.

(4) A non-polar cavity in the molecule must fit olefin in the preferred orientation.

(5) An acidic group must be located precisely in this cavity.

(6) The cavity must be not too deep, not too rigid, easily variable in detail of shape, potentially chiral, preferably electron-rich and a potential carrier of an oriented nucleophilic group.

(7) The critical micellar concentration in water must be high.

(8) Synthesis must be short, feasible on a large scale and variable at a late stage to provide different cavity shapes.

(9) The acidic group must not be too strong or too weak.

Scheme 2.1. Alkene hydration investigated by Cornforth and coworkers.

$$Me \xrightarrow{Me} H H_2O \xrightarrow{\text{catalyst}} HO \xrightarrow{Me} HO Me$$

With these tenets in mind, Cornforth and coworkers designed a phosphinic acid catalyst with the general as shown in Scheme 2.2, and synthesized a variety of derivatives. Cornforth deserves much credit for his original ideas on catalyst design over 30 years ago, most of which are valid to this day, especially those regarding the modularity of the catalyst to control the acidity and steric characteristics at the active site.

Scheme 2.2. General structure of Cornforth's phosphinic acids.

Although Cornforth's phosphinic acids would be effective in their intended role of catalyzing alkene hydration, enantioselective examples were not successful. However, Cornforth was a visionary, tenet number 6 considered the possibility of having a chiral pocket, structurally tuned to its function. Nearly a decade later, chiral atropoisomeric 2,2'-disubstitued binaphthyl scaffolds would be discovered to be excellent frameworks for creating the type of chiral environment that Cornforth envisioned.^[4] In 1983, Yamamoto and coworkers showed the high asymmetric induction of the binaphthyl architecture in the enantioselective synthesis of (+)- β -bisaboline in 76% ee and D-limonene in 77% ee from the mono substituted BINOL ether and using an aluminum catalyst (Scheme 2.3).^[5,6]

Scheme 2.3. BINOL as a chiral auxiliary.

Other 2,2'-disubstitued binaphthyl scaffolds would also find success in asymmetric catalysis. In 1980, Ryoji Noyori reported a reliable synthesis for the atropoisomers (R) and (S)-BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl. In a groundbreaking publication in 1987, Ryoji Noyori described the Nobel-prize winning asymmetric hydrogenation of ketones catalyzed by chiral ruthenium catalysts containing BINAP ligands (Scheme 2.4).^[7,8] This reaction would prove so powerful that it would have a drastic influence in modern synthesis. Since it is one of the most reliable ways of introducing chirality, it is taught in most organic chemistry courses and it is used in industry.^[9]

Inspired by these precedents in these precedents, in their seminal works in 2004, Akiyama^[10] and Terada^[11] independently published their applications of BINOL-derived CPAs. The conformationally rigid binaphthyl backbone in combination with substitutions at the 3 and 3' positions led to excellent results in enantioselectivity. Akiyama reported the use of *p*-nitrophenyl substituted CPAs in the Mannich-type reaction of aldimines with silyl enol ethers to obtain chiral amines in excellent yield, diastereoselectivity, and enantioselectivity (Scheme 2.5). The inclusion of nitro substituents in the CPA was essential for both increased reactivity, enantioselectivity and yields.^[10]

Scheme 2.5. Akiyama's asymmetric Mannich-type reaction.

HO N Ph 1eq	OTMS Me Me Me 3eq	CPA (30mc PhMe	HO HN HN HN HN HN HN	
	R	t [h]	Yield [%]	ee [%]
R	н	22	57	0
	Ph	20	100	27
	2,4,6-Me ₃ C ₆ H ₂	27	100	60
О ОН	4-MeOC ₆ H ₄	46	99	52
	$4-NO_2C_6H_4$	4	96	87

On the other hand, Terada and coworkers developed a CPA-catalyzed Mannich-type reaction of Boc-protected amines with acetyl acetone with excellent yields and enantioselectivies.^[11] They also found that without substitution at the 3 and 3' positions, enantioselectivities were very poor. In their optimized conditions they used *p*- β -naphthylphenyl substituents in CPA (Scheme 2.6).

Scheme 2.6. Terada's asymmetric Mannich-type reaction.

Since these two reports, the popularity of BINOL-derived CPAs grew explosively. As a reference, in 2013, over 100 research articles were published that utilized BINOL derived CPAs.^[12] This family of acid catalysts have several advantages which are responsible for their popularity. In the first place, they are acidic enough to catalyze many reactions efficiently, and

they offer high selectivity due to the strong stereochemical induction of the BINOL rigid and axially chiral framework. Additionally, the reactive site is well defined within the catalyst, and contains both a Lewis basic as well as a Brønsted acidic site. The bifunctional nature of CPAs allow powerful activation modes not available to traditional acids, such as the simultaneous activation of both nucleophiles and electrophiles. In the third place, both the acidity and sterics of the reactive site can be modulated by introducing different groups in place of the phosphoric acid functionality. Importantly, the chiral environment around the reactive site can be modulated in several ways such as by introducing substituents at the 3 and 3' positions or by making alterations in the BINOL backbone. Due to their high degree of tunability and activity, since the introduction of CPAs, these have been applied in a large number of scenarios and are considered a cornerstone in enantioselective organocatalysis.^[1,12–16] This has inspired several theoretical studies in the origin of the efficiency and selectivity of CPA-catalyzed reactions.^[17]

The remarkable efficiency and high degree of tunability of BINOL-derived CPAs led to many experimental and computational investigations into the effect that several structural and electronic parameters have in the acidity of the catalyst.^[18] It was found that the acidity of these catalysts could be modulated by making substitutions on the reactive site, on the substituents on the backbone, or by changing the framework itself. The Nagorny group recently published a comprehensive review that collects most of the conclusions.^[19] In Scheme 2.7, effects of the structure of the chiral backbone on the acidity of the CPA is shown.

Scheme 2.7. Effect of the chiral backbone on the acidity of CPAs. Adapted from reference [19].

In spite of the large success of BINOL-derived CPAs, the use of different backbone scaffolds is scarce, even when such drastic differences in pK_a and sterics are known.^[14,20] A frequently used alternative is the H8-BINOL backbone, which possess a marked difference in solubility, acidity, racemization profile, alternative structural conformations, and bite angle that may prove advantageous to their fully aromatic counterparts.^[12] For example, Ding and coworkers found that H8-BINOL-derived CPAs outperformed their BINOL analogues in the asymmetric Baeyer-Villiger oxidation of substituted cyclobutanones using H₂O₂ (Scheme 2.8).^[21]

Scheme 2.8. Ding's enantioselective Baeyer-Villiger reaction of cyclobutanones.

H8-BINOL CPAs are often accessed by a similar, yet independent route to BINOL CPAs that starts from partially hydrogenated BINOL (Scheme 2.9).^[12] These synthetic routes depend

heavily in cross-coupling reactions that require careful optimization and may suffer from lower yields. Therefore, a procedure to obtain H8-BINOL CPAs directly from their fully aromatic counterparts is highly desirable. Conversely, if the independent synthesis of a particular H8-BINOL CPA is higher yielding than the corresponding unsaturated CPA a direct conversion in the opposite direction would be convenient.

In collaboration with Dr. Tay Rosenthal (Nagorny group), we developed a concise way of interconverting BINOL and H8-BINOL CPAs via single-step redox manipulations (Scheme 2.10).^[22] The synthesis of H8-BINOL CPAs from the BINOL counterparts was accomplished by partial hydrogenation of the latter by heterogenous catalysis with Adam's catalyst. On the other hand, the reverse dehydrogenation was obtained by employing DDQ in chlorobenzene

Scheme 2.10. Direct interconversion of BINOL and H8-BINOL-derived CPAs via single step Red/Ox manipulations.

2.2 Results and discussion

(Excerpts of this subchapter were taken from: Tay, J. H.; **Argüelles, A. J.**; Nagorny, P. *Org. Lett.* **2015**, *17*, 3774. Experimental information can be found in **Appendix A**)

Our studies commenced with investigation of the possibility of hydrogenating chiral phosphoric acid **2-1a** in the presence of PtO₂, previously employed for the conversion of BINOL into H8-BINOL (Table 2.1).^[23] Considering that BINOL-based CPAs display a wide range of solubilities in organic solvents, various solvent systems were investigated (entries 1–7). While **2-1a** is soluble in acetone, DCM, benzene, or DMF, no reduction was observed at rt after 24h (entries 1–4). The reaction in EtOAc resulted in the formation of **2-2** in 26% after 3 days (entry 5), and no reduction of the phosphate or 3,3'-aryl substituents was noted. The corresponding hydrogenations proceeded significantly faster in the presence of the protic solvents such as AcOH or MeOH/DCM (entries 6 and 7) and were accomplished in quantitative yields.

Table 2.1. Initial condition screening for the direct partial reduction of a BINOL-derived CPA. Reactions performed at rt, between 16 to 72h. ^a Yields were determined by NMR ^b Isolated yields. Experiments were performed by Dr. Tay Rosenthal.

With the optimal hydrogenation conditions in hand, the scope of this transformation was investigated next (Table 2.2). In order to test the scalability of the hydrogenation, the reduction of 2,5-bis(trifluoromethyl)phenyl-substituted CPA **2-1a** was repeated (entry 1) on a 1.0 g scale (98% yield). Similarly, the reaction with unsubstituted acid **2-1b** proceeded selectively without overreduction of the hydrogen phosphate functionality. Importantly, neither **2-1a** nor **2-1b** was found to racemize under the reaction conditions (see Section 2.3). The acids with electron-withdrawing (entries 3–6) and electron-donating (entries 7–9) substituents in the meta position were examined next. Importantly, the reduction of popular acids such as 3,5-bis-(trifluoromethyl)phenyl-substituted acid **2-1c** and 3,5-bis-(pentafluoro-16-sulfanyl)phenyl-substituted acid 10d proceeded smoothly and selectively in quantitative yield.

		H ₂ (balloon) 10% PtO ₂ rt, solvent	
	2-1		2-2
entry	R	solvent	yield [%]
1	2-1a	AcOH CF ₃	>98
2	• **	₩ MeOH/DCM	
	2-1b	%	>98
3	CF₃ ↓	(2:3)	
-	2-1c	MeOH/DCM	>98
	www.com	F ₃ (1:1)	
4		\checkmark	
	2-1d ა	MeOH/DCM	>98
F	F Š	SF ₅ (1:1)	
5	2-1e	MeOH/DCM	>98
	- · · · · · · · · · · · · · · · · · · ·	CI (2:3)	
6	·	, , ,	
	2-1f	MeOH/DCM	-
	<u>t</u> -Bu ***	CI (2:3)	
7			
	2-1g	MeOH/DCM Bu _{ipr} (2:3)	96
8	- 6 ₅ - 1-1	^{Bu} _{<i>i</i>-Pr} (2:3)	
Ū	2-1h	MeOH/DCM	>98
	Ме х	~ ~	
9			
	2-1i	MeOH/DCM	-
	Me		
10	Cy	TI M	• ·
	2-1j مح	MeOH/DCM	91
11	ن ب ب	b (2:3) Cy	
	2-1k	Pr MeOH/DCM	>98
	i-Pr	(2:3)	

Table 2.2. Substrate scope for the partial hydrogenation of BINOL-derived CPAs. Experiments were performed by Dr. Tay Rosenthal.

Furthermore, while the reduction of 3,5-difluorophenylsubstituted acid **2-1e** proceeded smoothly, the reduction of 3,5-dichlorophenyl-substituted acid **2-1f** resulted in a mixture of products due to dechlorination followed by the reduction of resultant phenyl rings. Similar to the prior observations, CPAs containing phenyl groups with bulky *t*-Bu- and *i*-Pr-substituents in meta-positions (entries 7 and 8) were selectively reduced to provide the corresponding H8-BINOL acids in excellent yields. However, the 3,3'-aryl substituent diastereomeric overreduction products were obtained for less hindered acid **2-1i**. To our delight, frequently used in asymmetric catalysis catalysts **2-1j** and **2-1k** containing bulky substituents at the ortho- and para positions underwent efficient reduction as well (entries 10 and 11). Considering that the corresponding H8-BINOL-based acids **2-2j** and **2-2k** require challenging syntheses, the described protocol can be used for a single-step preparation of these catalysts from the commercially available catalysts **2-1j** and **2-1k**.

The protonation state of the phosphoric acid had a dramatic effect on the rate of hydrogenation in the aforementioned studies. Thus, a filtration through silica gel produced significantly less reactive form of CPA, probably, due to the formation of Na⁺ and Ca₂⁺ salts that poison the catalyst.^[24] On the other hand, washing the CPA with hydrochloric acid prior to reduction was found to improve the rate of hydrogenation in some cases. To demonstrate that this approach is applicable to the interconversion of other types of Brønsted acids, the formation of H8-BINOL acids 2-3, 2-4 and 2-5 was investigated (Figure 2.1). The reductions leading to N-triflyl phosphoramide 2-3 and disulfonimide 2-5 proceeded chemoselectively in excellent yields. However, the formation of the N-triflyl thiophosphoramide 2-4 was not observed, probably due to catalyst poisoning by sulfur. To our knowledge, the synthesis of 2-5 represents the first synthesis of H8-BINOL-based disulfonimides, and the alternative multistep approach to 2-5 from H8-BINOL is yet to be developed.

Figure 2.1. Additional substrates for the partial hydrogenation of BINOL-derived CPAs. Experiments were performed by Dr. Tay Rosenthal.

The reverse reaction (i.e., converting H8-BINOL acids to BINOL acids) was investigated next (Table 2.3). The H8-BINOL CPA **2-2a** was subjected to a variety of oxidants known to convert 1,2,3,4-tetrahydronaphthalenes into the corresponding naphthalenes. While the dehydrogenation with Pd/C in refluxing diglyme^[25] resulted in decomposition due to dephosphorylation as well as other pathways (entry 1), the oxidations with $V_2O_5^{[26]}$ did not result in any reaction, and only starting material **2-2a** was observed (entries 2 and 3). Similarly, the oxidation with DDQ^[27,28] in xylenes at reflux provided no conversion (entry 4), while a similar reaction in 1,4-dioxane resulted in some partial dehydrogenation leading to product 10a (~25%, entry 5). Finally, the oxidation with DDQ (8 equiv) in refluxing chlorobenzene resulted in clean formation of the desired product **2-1a** in 74% isolated yield. Similar to the oxidation of **2-2a**, additional H8-BINOL Brønsted acids (**2-3** and **2-5**) were efficiently converted to the corresponding BINOL derivatives **2-6** and **2-7** (Figure 2.2). To our knowledge, these are the most complex derivatives of H8-BINOL that have been successfully dehydrogenated to date.

In summary, we have developed a new approach that allows a direct reduction of BINOL-based Brønsted acids to the corresponding H8-BINOL-based catalysts. This reduction tolerates various electron-withdrawing and bulky substituents on 3,3'-aromatic rings and could be applied to the selective formation of chiral phosphates, N-triflyl phosphoramides, and disulfonimides. The reverse transformation allowing the oxidation of H8-BINOL-based catalysts into BINOL-based catalysts has also been demonstrated using DDQ as the oxidant. The outlined strategy would allow a rapid diversification of the existing libraries of Brønsted acids and will expand the availability of BINOL and H8-BINOL-based Brønsted acid catalysts for asymmetric transformations.

Table 2.3. Screening of oxidation conditions for the dehydrogenation of H8-BINOL-derived CPAs.

Figure 2.2. Additional substrates for the oxidation of H8-BINOL-derived CPAs.

2.3 References

- [1] T. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999–1010.
- [2] J. Hanson, *Nature* **2014**, *506*, 35–35.
- [3] J. W. Cornforth, Proc. R. Soc. London. Ser. B. Biol. Sci. 2006, 203, 101–117.
- [4] A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, *J. Am. Chem. Soc.* **1980**, *102*, 7932–7934.
- [5] S. Sakane, J. Fujiwara, K. Maruoka, H. Yamamoto, J. Am. Chem. Soc. 1983, 105, 6154– 6155.
- [6] S. Sakane, J. Fujiwara, K. Maruoka, H. Yamamoto, *Tetrahedron* **1986**, *42*, 2193–2201.
- [7] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. **1987**, 109, 5856–5858.
- [8] R. Noyori, H. Takaya, Acc. Chem. Res. 1990, 23, 345–350.
- [9] R. Noyori, Angew. Chem., Int. Ed. 2002, 41, 2008.
- [10] T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem., Int. Ed. 2004, 43, 1566–1568.
- [11] D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357.
- [12] D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153.
- [13] T. Akiyama, K. Mori, Chem. Rev. 2015, 115, 9277–9306.
- [14] T. Akiyama, Chem. Rev. 2007, 107, 5744–5758.
- [15] M. Fleischmann, D. Drettwan, E. Sugiono, M. Rueping, R. M. Gschwind, *Angew. Chem.*, *Int. Ed.* **2011**, *50*, 6364–6369.
- [16] A. Zamfir, S. Schenker, M. Freund, S. B. Tsogoeva, Org. Biomol. Chem. 2010, 8, 5262– 5276.
- [17] R. Maji, S. C. Mallojjala, S. E. Wheeler, *Chem. Soc. Rev.* **2018**, *47*, 1142–1158.
- [18] P. Christ, A. G. Lindsay, S. S. Vormittag, J. M. Neudörfl, A. Berkessel, A. C. O'Donoghue, *Chem. - A Eur. J.* 2011, 17, 8524–8528.
- [19] J. H. Tay, P. Nagorny, in *Nonnitrogenous Organocatalysis*, CRC Press, Boca Raton, Florida : CRC Press, [2018] | Series: Organocatalysis Series, **2017**, pp. 39–68.
- [20] A. G. Doyle, E. N. Jacobsen, *Chem. Rev.* **2007**, *107*, 5713–5743.
- [21] S. Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew. Chem., Int. Ed. 2008, 47, 2840– 2843.
- [22] J.-H. Tay, A. J. Arguelles, P. Nagorny, Org. Lett. 2015, 17, 3774–3777.
- [23] N. T. McDougal, W. L. Trevellini, S. A. Rodgen, L. T. Kliman, S. E. Schaus, Adv. Synth.

Catal. 2004, 346, 1231-1240.

- [24] M. Klussmann, L. Ratjen, S. Hoffmann, V. Wakchaure, R. Goddard, B. List, *Synlett* **2010**, 2010, 2189–2192.
- [25] J. Bergman, B. Pelcman, *Tetrahedron* **1988**, *44*, 5215–5228.
- [26] M. Karki, H. Araujo, J. Magolan, Synlett 2013, 24, 1675–1678.
- [27] E. A. Braude, A. G. Brook, R. P. Linstead, J. Chem. Soc. 1954, 0, 3569–3574.
- [28] T. Kano, Y. Tanaka, K. Osawa, T. Yurino, K. Maruoka, J. Org. Chem. 2008, 73, 7387– 7389.

CHAPTER 3

Studies on the Mechanism of Phosphoric Acid-Catalyzed Spiroketalizations

"Accuracy of observation is the equivalent to accuracy of thinking"

Wallace Stevens

3.1 Introduction to spiroketals

Spiroketals are cyclic acetals comprised by two rings joined by a single sp³-hybridized carbon atom, where the spiro atom is connected to oxygen atoms belonging to each ring. The spiroketal system is a recurrent substructure in a myriad of naturally occurring substances of marine, insect, bacterial, or plant origin.^[1] In addition, although structurally simple and unassuming, this functional motif usually has strong implications on the biological activity of the natural product.^[2,3] This is often attributed to the conformational constraints imposed by the rigidity of these cyclic acetals.^[4]

An illustrative example of the biological importance of even the simplest spiroketals can be made by the sex pheromone of the olive fruit fly, *Bactrocea oleae*. This is the major pest of olives, especially throughout the Mediterranean. In 1980, Baker and coworkers identified the major sex pheromone, the simple [6,6] spiroketal olean **3-1**.^[5] Interestingly, it was later found that the chirality of the spiroketal had a dramatic impact in the biological activity of this pheromone. Mori and coworkers synthesized both enantiomers of **3-1** from (*S*)-malic acid^[6,7] and Haniotakis and coworkers found that (*R*)-**3-1** was active against males while (*S*)-**3-1** was effective against females.^[8] As it turns out, spiroketals are particularly common amongst insect pheromones, such as (2S, 5R)-chalcogran **3-2** for the European spruce bark beetle and (5S, 7S)-conophthorin **3-3** for the navel orangeworm moth (Figure 3.1).^[9] This example highlights the importance of developing enantioselective methods for the construction of chiral spiroketals.

Figure 3.1. Spiroketals are common amongst insect pheromones.

The great relevance of spiroketals in the biological activity of natural products has inspired many chemists to come up with creative and novel solutions for the installation of spiroketals. In addition, spiroketals are extensively studied for being ideal systems to explore the role of the anomeric effect in conformational aspects of heterocyclic systems. Thus, a plethora of synthetic work has been directed towards the synthesis of several more complex spiroketal-containing compounds. For example, spongistatins such as **3-4**, which were discovered in 1993,^[10–12] have shown to be active against a panel of 60 human cancer cell lines from the US National Cancer Institute. Amongst these, spongistatin 1 (Figure 3.2) is one of the most potent tumor cell growth inhibitors reported to date.^[13] The potent biological activity and impressive structural complexity have made spongistatins formidable targets for total syntheses, which have been achieved by several groups such as Evans,^[14–16] Kishi,^[17,18] Smith,^[13,19–22] Paterson,^[23] Crimmins,^[24] Heathcock,^[25] and Ley.^[26]

Figure 3.2. Structure of (+)-spongistatin 1.

With the broad range of biological activities that spiroketals display, it comes to no surprise that spiroketal-containing molecules would be tested for medicinal purposes. Ivermectin **3-5**, which some consider a "miracle drug", is a FDA-approved drug used to treat a broad spectrum of parasitic infestations, including head lice, scabies, river blindness, among others.^[27] It was discovered in 1974, when it was isolated from the bacterium *Streptomyces avermitilis* (later renames *S. avermectinius*).^[28] In fact, Ivermectin is one compound of a family of spiroketals produced by this material called avermectins. Many other avermectins, although not FDA-approved, are used as drugs and pesticides to treat parasites and insect pests.^[29,30] As a different example, Tofogliflozin (**3-6**) is a spiroketal-containing experimental drug for the treatment of diabetes mellitus currently in Phase III clinical trials. It has been demonstrated that tofogliflozin is a highly selective sodium-glucose co-transporter-2 (SGLT2) inhibitor, which is crucial for glucose reabsorption in the kidney.^[31]

Figure 3.3. Structure of ivermectin and tofogliflozin, spiroketal-containing drugs.

3.2 Introduction to the anomeric effect and conformational aspects of spiroketals

In 1905, chemists were perplexed by the observation that that alkyl pyranosides preferred to adopt the α conformation over their β stereoisomers, contrary to steric demands.^[32] In addition, another important observation made decades ago is that acetals are more stable than their nonacetal, diether isomers. For example, the standard heat of formation (ΔH_f°) in the gas phase of 1,2diethoxyethane is -98.0kcal/mol; remarkably less stable than the ΔH_f° of the spiroketal isomer, 1,1-diethoxyethane, which is -108.4 kcal/mol (Figure 3.4a); and ΔH_f° of 1,3-diethoxypropane is 16.8 kcal/mol higher than spirocyclic 2,2-diethoxypropane in the gas phase (Figure 3.4b).^[33]

Figure 3.4. Geminal dialkoxyalkanes are more stable than their non-acetal diether isomers.

The stereoelectronic thermodynamic stabilization of geminal dioxy substitution is called the anomeric effect.^[34] It was first formally described by J. T. Edward in 1955 and studied by R. U. Lemieux the same year, which is why the phenomenon is sometimes called the Edward-Lemieux effect.^[35,36] This phenomena alone accounts for both observations noted above.

It is widely accepted that the anomeric stabilization arises from the hyperconjugative interactions of oxygen lone pairs (filled *p* orbital) with C-O antibonding orbital (unfilled σ^* orbital). The $2p_{(O)} \rightarrow \sigma^*_{(C-O)}$ interaction is strong enough that dictates the conformational preference of acetals. More precisely, each anomeric interaction contributes approximately 1.4-2.4 kcal/mole.^[37] Indeed, another way to define the anomeric effect is that it is the tendency of an electronegative atom at the anomeric carbon of anomeric to assume an axial orientation.^[4] Only by adopting an axial orientation can the orbital overlap between $2p_{(O)}$ filled orbital and the $\sigma^*_{(C-O)}$ unfilled orbital be achieved.

The [6,6]-spiroketal skeleton can adopt four conformations by chair-flipping. Of these, one will possess two axial oxygen atoms, that account for two anomeric interactions, and will tend to be the most thermodynamically stable (*gauche/gauche*), even though it is usually the least favored sterically. Two of the remaining conformations will have a single anomeric effect and will be similarly stabilized (*gauche/anti* and *anti/gauche*). Finally, the remaining conformation will be the least stable since geometrical constrains on orbital overlap don't permit an anomeric effect (Scheme 3.1).

Scheme 3.1. Orbital alignment in [6,6] spiroketals allows stabilization by the anomeric effect. Only certain configurations allow orbital overlap between $2p_{(O)}$ and $\sigma^*_{(C-O)}$. The interacting elements have the same color in this scheme.

Filled orbital **not** contributing an anomeric effect

Contrary to what might be expected, many natural products contain non-thermodynamic spiroketals. An example is diarrheic shellfish toxin pectenotoxin 2 (Figure 3.5, PTX2). This natural product was discovered in the late 1980s by Yasumoto and coworkers^[38,39] and was found to be highly toxic to mice and cytotoxic to several cancer cell lines, presumably because of their actin depolymerization capabilities.^[40–42] Despite the biological interest, the complexity of PTX2, especially around the nonthermodynamic spiroketal, has made its synthesis an extraordinary challenge. Only one reported synthesis of PTX2 exists by the Fujiwara group,^[43] though other groups have succeeded in assembling parts of the complex spiroketal.^[44–47]

Pectenotoxin 2 (PTX-2)

Figure 3.5. Structure of pectenotoxin 2.

These experiences highlight two important and arduous challenges that affront the construction of spiroketal centers: enantioselectivity for asymmetric spiroketalizations, and diastereoselectivity for conformationally locked non-thermodynamic products. The next section delves on the advancements on synthetic methodologies for spiroketal formation.

3.3 Prior art on spiroketal synthesis

The most commonly employed method in the construction of the spiroketal system relies on acid-catalysis spirocyclizations, in many cases accompanied by deprotections. Probably the most used of these methods is the acid-catalyzed dehydration of dihydroxy ketones (Scheme 3.2).^[48] This method has two main drawbacks: 1) it is limited to acid-stable substrates; and 2) it produces a mixture of thermodynamic spiroketals epimers favoring the more stable products. Most spiroketal targets consist of the more thermodynamically stable product, so this method is suitable for the large majority of synthetic needs.

Scheme 3.2. Spiroketal synthesis by acid-catalyzed dehydration.

Although it is known that three and four membered ring systems are abundant in natural products,^[49,50] nearly all spiroketal-containing natural products consist of five and six membered rings. This might lead to the speculation that spiroketals are formed under thermodynamic conditions in nature. However, a considerable number of natural spiroketal structures adopt conformations that aren't the lowest in energy, therefore disproving this generalization. It should be considered that in many cases, the non-anomeric configuration of spiroketals may be stabilized

by additional factors that result in an increased thermodynamic stability in comparison with their anomeric counterpart. These factors include intermolecular hydrogen bonding, geometrical constraints imposed by macrocyclic structures, and unfavorable 1,3-diaxial interactions. For example, Ireland demonstrated that the non-anomeric spiroketal core of aplysiatoxin, a natural product isolated from the sea hare Stylocheilus longicauda, is thermodynamically preferred due to the destabilizing effect of 1,3-diaxial interactions between the C4 and C6 methyl groups in the doubly anomeric epimer (Scheme 3.3).^[51]

Scheme 3.3. Effect of 1,3-diaxial interactions in the relative stability of spiroketal configurations.

However, many of the non-anomeric spiroketals found in nature are truly not thermodynamically favored and their synthesis is challenging. It should be noted that this anomeric/non-anomeric structural dichotomy is only relevant when two conditions are met. In the first place, there must be a clear difference between axial and equatorial anomeric positions. Six membered rings meet this criterion, while larger and smaller rings do not. For example, five membered rings possess rapid pseudorotation so that non-anomeric relationships cannot be stabilized.^[1] the second criteria is that the ring confirmation must be conformationally locked. In other words, ring flipping must be denied, which would otherwise quickly transform non-anomeric structures into their thermodynamic epimers. This is typically accomplished by the inclusion of aptly placed alkyl substituents or by ring fusion. Organic chemists have strived to provide methods for the construction of non-thermodynamic spiroketals, and some strategies are discussed next.

General synthetic strategies for the construction of non-anomeric spiroketals can be classified as thermodynamic or kinetic, depending on whether it relies on thermodynamic equilibration. Accessing the less stable products through thermodynamic means sounds impossible, however the majority of the synthetic approaches for non-thermodynamic spiroketals rely on altering the thermodynamic bias by the utilization of intermolecular hydrogen bonding, chelation effects using different metal salts, substrate specific steric effects, or using some other means. For example, the first total synthesis of spongistatin 1 by the Evans group in 1997 employed a Mg(II) internal chelation strategy to bias the formation of the desired non-thermodynamic spiroketal for the same CD rings (Scheme 3.4a).^[15] Later, in the synthetic route by the Paterson group, the nonthermodynamic CD spiroketal was achieved by allowing the acid-catalyzed thermodynamic equilibration of a spiroketal intermediate which was biased towards the desired single anomeric by an intramolecular hydrogen bond (Scheme 3.4b).^[23]

Scheme 3.4. Examples of thermodynamic acid-catalyzed strategies for nonanomeric spiroketals.

An alternative to the strategies exemplified above is to perform a spiroketalization under non-equilibrating conditions. Acid-catalyzed spiroketalizations under kinetic control have two challenges: 1) the acid catalyst must be strong enough to promote spiroketalizations, and 2) the acid must not be too strong as to allow isomerization of the acid-labile product. Deslongchamps, one of the pioneers of spiroketal chemistry, was the first to discover and report acid-catalyzed spiroketalizations under kinetic control. Treatment of hydroxy enol ethers **3-7** with strong acids such as TFA led to the formation of doubly anomeric **3-8** and singly anomeric **3-9** as a 1:1 mixture. However, exposure to a weaker acid (AcOH), resulted in formation of ~20% of some nonthermodynamic spiroketal **3-10** (Scheme 3.5).

Most of the synthetic strategies outlined above employ acid catalysts, though several other direct and indirect non acid-catalyzed strategies have been successfully used. For example, Rychnovsky's group was able to construct nonthermodynamic spiroketals by a reductive lithiation followed by a kinetic cyclization sequence. With this method, they were able to access the spiroketal fragment of pectenotoxin 1 (scheme 3.6a),^[47] as well as the CD junction of spirofungin B (Scheme 3.6b).^[52]

Scheme 3.6. Rychnovsky's reductive spiroketalizations under kinetic control.

As one can imagine, most synthetic methods for the construction of non-thermodynamic spiroketals are highly substrate dependent, since they seek to exploit unique structural features of the synthetic target. A comprehensive review on structure-based synthesis of nonthermodynamic spiroketals was published by the Pihko group.^[1] This highlights the need for the development of general and robust non-thermodynamic spiroketalization strategies.

Contemporaneously with Coric and List,^[53] our group demonstrated that CPAs could be employed as the catalysts for the cycloisomerization of cyclic enol ethers under kinetic control (Scheme 3.7a). In addition, it was observed that non-thermodynamic spiroketals could be obtained in conformationally locked substrates (Scheme 3.7b). However, the substrate scope for this transformation was limited, since tertiary alcohols were required to achieve high enantioselectivities. In collaboration with Dr. Yaroslav Khomutnyk, Grace Winschel, and Zhankui Sun, we sought to unravel the mechanism and origins of enantioselectivity of this CPA-catalyzed spiroketalization, with the hope that the insight provided might contributed to develop more new and better CPA-catalyzed spiroketalizations methods in the future.

3.4 Results and discussion

(This section was adapted from:

Khomutnyk, Y. Y.; Argüelles, A. J.; Winschel, G. A.; Sun, Z.; Zimmerman, P. M.; Nagorny, P. *J. Am. Chem. Soc.* **2016**, *138*, 444.

Experimental information can be found in **Appendix B**)

Initial Optimization Studies.

Although CPAs had been previously employed to catalyze the formation of chiral N,N-,^{[54–} ^{57]} N,O-,^[58] N,S-,^[57,59] and simple O,O-acetals,^[60] no examples of a successful chiral-catalystcontrolled enantioselective or diastereoselective spiroketalization existed at the beginning of these studies. Despite these encouraging precedents, the prospects of using chiral Brønsted acids to promote catalyst-controlled spiroketalizations were unclear considering that spiroketals are significantly more prone to epimerization under acidic conditions. With this in mind, we surmised that the use of cyclic enol ether I or III as the spirocyclization precursor was key in developing this transformation, as the mixed acetal precursors II and IV (Scheme 3.8) are too similar to spiroketals in their ability to ionize under the acidic conditions. Cycloisomerization of enol ethers I and III is easier to achieve under epimerization-free conditions, and the Deslongchamps and Pihko groups had previously utilized weak acids such as acetic acid ($pK_a = 4.7, H_2O$) to promote kinetic spiroketalizations.^[46,61] The same studies also indicated that the reactions catalyzed by stronger trifluoroacetic acid ($pK_a = -0.25$, H_2O) proceeded under thermodynamic control. At the same time, we surmised that the chiral phosphoric acids have intermediate acidities ($pK_a \sim 2, H_2O$) and would be excellent catalysts for kinetic spiroketalizations.

Scheme 3.8. Catalyst control in spiroketalizations of dihydroxyketones.

In order to evaluate the feasibility of this proposal, spiroketalization of substrate **3-11a** to give 3-12a was investigated (Table 3.1).^[62] Commercially available (S)-TRIP (3-13a) was selected as the initial catalyst for the reaction optimization. In our attempts to optimize the selectivity for the formation of 3-12a, we encountered significant solvent effects. The reactions conducted in higher-polarity solvents (entries 1-5) resulted in lower levels of stereocontrol, while oxygenated solvents such as tetrahydrofuran (THF) and ethyl acetate significantly retarded the rate of cyclization (entries 2 and 3). At the same time, the spiroketalizations conducted in nonpolar hydrocarbon solvents (entries 7-9) proceeded with higher enantioselectivities and shorter reaction times. The observed solvent effects emphasize the significance of non-covalent interactions between the substrate and chiral phosphoric acid for the productive reaction pathway. More polar, oxygenated solvents (entries 2 and 3) can competitively form hydrogen bonds with the CPA, thereby reducing the complexation with 6a. At the same time, the less polar solvents favor enhanced hydrogen bonding and other types of non-covalent interactions between 3-11a and 3-13a. Other CPAs where screened, but 3-13a was found superior (entries 9-16). On the basis of these arguments, we surmised that the selectivity for the formation of 3-12a could be further enhanced at lower reaction temperatures and if the hydrogen-bonding impurities such as water were removed. Although lowering the reaction temperature alone did not significantly affect the

enantioselectivity (entries 17 and 18), the addition of 4 Å MS combined with lowering the temperature to -35 °C resulted in the formation of **3-12a** with 92% ee (entry 20).

	3-1	Catalyst 7 (5 r OH 1a	→ <_	0 0 Ph 3-12a			
entry	catalyst	solvent	T, °C	time, ^b h	ee		
1	(S)- 3-13a	CH₃CN	rt	0.5	7		
2	(S)- 3-13a	THF	rt	12 ^c	10		
3	(S)- 3-13a	EtOAc	rt	12 [°]	16		
4	(S)- 3-13a	PhH	rt	1	24		
5	(S)- 3-13a	Toluene	rt	1	25		
6	(ຽ)- 3-13a	CCl ₄	rt	1	40		
7	(ຽ)- 3-13a	Hexanes	rt	0.5	63		
8	(S)- 3-13a	Cyclohexane	rt	0.5	60		
9	(S)- 3-13a	Pentane	rt	0.5	69		
10	(<i>R</i>)- 3-13b	Pentane	rt	0.5	-10		
11	(<i>R</i>)- 3-13c	Pentane	rt	1	1		
12	(<i>R</i>)- 3-13d	Pentane	rt	1	-43		
13	(<i>R</i>)- 3-13e	Pentane	rt	1	35		
14	(<i>R</i>)- 3-13f	Pentane	rt	1	1		
15	(<i>R</i>)- 3-13g	Pentane	rt	1	41		
16	(S)- 3-13h	Pentane	0	4	23		
17	(ຽ)- 3-13a	Pentane	0	4	73		
18	(S)- 3-13a	Pentane, 4 Å MS	-35	40	66		
19	(S)- 3-13a	Pentane, 4 Å MS	0	14	84		
20	(S)-3-13a	Pentane, 4 Å MS	-35	40	92		
$\begin{array}{c} \overbrace{\qquad}^{Ph} \stackrel{Ph}{\rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{ \rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{\rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{\rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{\rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{ \rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{ \rightarrow} \\ \overbrace{\scriptstyle}^{Ph} \stackrel{Ph}{ \rightarrow} $							
3-13b , $R = 3,5-(CF_3)_2C_6H_3$ 3-13c , $R = 9$ -anthryl 3-13d , $R = 4-(1-Ad)-2,6-iPr_2C_6H_2$ 3-13e , $R = 4-(6-anthryl)-2,6-iPr_2C_6H_2$ 3-13e , $R = 4-(6-anthryl)-2,6-iPr_2C_6H_2$							

Table 3.1. Initial evaluation of the CPA-catalyzed enantioselective spiroketalization. Experiments were performed by Dr. Yaroslav Khomutnyk.

^a Phosphoric acids were washed with 6 M HCl after purification by column chromatography. Unless specified otherwise, reactions were performed on a 0.1 mmol scale (0.02 M solution). ^b Time required for the reaction to reach completion. ^c Incomplete conversion.

Enantioselective and Diastereoselective Spiroketalizations.

After the optimal reaction conditions were identified, the scope of the enantioselective spiroketalization was evaluated next (Table 3.2). In addition to the previously evaluated 3-11a, the cyclic enol ethers **3-11b**-k were synthesized and subjected to the cyclizations leading to **3-12b**-k. The introduction of *p*-MeS substituents on the aromatic rings in **3-11b** and the extension of the tether length in 3-11c did not affect the reaction yield and selectivity for the corresponding products 3-12c and 3-12c. Similarly, the introduction of a fused benzene ring into the side chain (3-11d) or into the enol ether ring (3-11e) was well-tolerated, and the corresponding products were obtained in excellent selectivities and yields. At the same time, the cyclization of analogous substrates 3-11f-h containing less rigid Bn substituents at the tertiary alcohol consistently exhibited lower enantioselectivities. Cyclization leading to 3-12g was found to be more selective (88% yield, 74% ee) than a similar reaction leading to 3-12h that lacks a methyl group on the aromatic ring (87% yield, 62% ee). These results indicate that further variations in the substrate backbone can potentially enhance the selectivity of the substrates lacking Ph substitution at the nucleophile. This is further reinforced by the observation that primary-alcohol-containing precursor 3-11k could be cyclized enantioselectively to give 3-12k (72%, 54% ee) while the reactions with similar substrates 3-11i and 3-11j led to almost unselective formation of the corresponding spiroketals 3-12i and 3-12j.

Table 3.2. Substrate scope for the CPA-catalyzed enantioselective spiroketalizations. Experiments were performed by Dr. Yaroslav Khomutnyk.

^a Reactions were performed on a 0.1-0.05 mmol scale (0.02 M solution), and the selectivities of these reactions were found to be scale-independent. Catalyst (*S*)-**3-13a** was used, unless otherwise noted. ^b The reaction was conducted with catalyst (*R*)-**3-13a**.

The results summarized in Table 3.2 indicate that a chiral catalyst can control the selectivity of the cyclization of achiral substrates **3-11**. However, because the chirality of the substrate may completely override the course of cyclization dictated by the catalyst, the effect of the catalyst on the cyclization of chiral substrates had to be addressed next (Table 3.3).^[62] Since the reactions of carbohydrate-based oxocarbenium ions are highly sensitive to stereoelectronic and steric effects,

conformationally locked D-glucal derivatives (e.g., **3-14a**) were selected for these studies. Upon spiroketalization, these substrates can provide anomerically stabilized thermodynamic products such as **3-16a** or less stable nonthermodynamic spiroketals (**3-15a**). Thus, to evaluate the effect of the chiral catalyst on the course of these cyclizations, substrate **3-14a** was subjected to treatment with (*S*)-**3-13a**, (*R*)-**3-13a**, or the achiral catalyst (PhO)₂PO₂H. Remarkably, the treatment of glycal **3-14a** with catalyst (*S*)-**3-13a** (5 mol %) resulted in a highly diastereoselective cyclization, leading to nonthermodynamic spiroketal **3-15a** (95:5 dr). At the same time, the exposure of **3-14a** to (*R*)-**3-13a** or (PhO)₂PO₂H provided ~1:1 mixtures of nonanomeric and anomeric products **3-15a** and **3-16a**, clearly indicating that the chirality of the catalyst is essential for the selective formation of **3-15a**. Similar trends were observed for other substrates, and catalyst (*S*)-**3-13a** was used for the highly diastereoselective formation of various nonthermodynamic spiroketals (**3-15b–e**) in good yields and diastereoselectivities. Interestingly, the nature of the protecting group at C3 was found to play an important role, and, unlike the formation of **3-15e**, the cyclization leading to **3-15f** was not selective.

The results summarized in Table 3.3 suggest that the cyclizations catalyzed by **3-13a** proceed under kinetic conditions. The non-anomeric spiroketals **3-15** are clearly stable toward both enantiomers of acids **3-13a** for the duration of the reaction (i.e., 14 h). At the same time, when pure **3-15a** was treated with (*S*)-**3-13a** under the reaction conditions, complete epimerization to give **3-11a** was observed after 60 h.

Table 3.3. Substrate scope for the CPA-catalyzed diastereoselective spiroketalization.^a Experiments were performed by Dr. Yaroslav Khomutnyk.

Me

Με	$3-14$ $ \begin{array}{c} $	Me Me R ¹ 0 3-15	$\mathcal{M}R^2$	$ \begin{array}{c} $
entry	substrate	catalyst	Yield [%]	3-15 : 3-16
1 2 3	Me HO HO HO HO	(S)- 3-13a (<i>R</i>)- 3-13a (PhO) ₂ PO ₂ H	87 ^b 76 ^c 89 ^c	95 : 5 48 : 52 52: 48
4 5 6	Me Me Ho Ho Ho Ho Ho Ho	(S)- 3-13a (<i>R</i>)- 3-13a (PhO) ₂ PO ₂ H	73 ^b 83 ^c 89 ^c	81 : 19 33 : 67 31 : 69
7 8 9	Me HO HO Me	(S)- 3-13a (<i>R</i>)- 3-13a (PhO) ₂ PO ₂ H	85 ^b 90 ^c 80 ^c	90 : 10 55 : 45 45 : 55
10 11 12	Me to to Ho Ho 3-14d Ho Me	(S) -3-13a (<i>R</i>)- 3-13a (PhO) ₂ PO ₂ H	86 ^b 88 ^c 81 ^c	90 : 10 13 : 87 55 : 45
13 14 15	Me Me 3-14e Aco Ho	(S)- 3-13a (<i>R</i>)- 3-13a (PhO) ₂ PO ₂ H	92 ^b 90 ^c 92 ^c	95 : 5 23 : 77 32 : 68
13 14 15	Me Me 3-14f HO	(S) -3-13a (<i>R</i>)- 3-13a (PhO)₂PO₂H	42 ^b 88 ^c 91 ^c	51 : 49 10 : 90 43 : 57

^a The reactions with (*S*)-**3-13a** (5 mol %) and (*R*)-**3-13a** (5 mol %) were performed for 14 h, and the reactions with $(PhO)_2PO_2H$ (10 mol %) were performed for 2 h. Longer exposure to $(PhO)_2PO_2H$ (10 mol %) resulted in complete equilibration to give the thermodynamic spiroketals. The cyclizations of **3-14a** were performed on different scales without significant variation in selectivity. ^b Yield of nonthermodynamic spiroketal **3-15**. ^c Combined yield of **3-15** and **3-16**.

Mechanistic Considerations.

The above results suggest that **3-13a** is the catalyst of choice for the asymmetric spiroketalization of tertiary-alcohol-containing substrates **3-11** as well as for the diastereoselective cyclization of chiral substrates **3-14** leading to non-anomeric spiroketals **3-15**. Interestingly, the larger size of glycals **3-14** excluded the requirement of using the tertiary-alcohol-based nucleophiles, and **3-13a** could promote the cyclization leading to **3-15** with primary and secondary alcohols as nucleophiles with good-to-excellent selectivities. However, although the aforementioned results provide some crude idea about the scope and limitation of the method, the mechanistic and stereochemical models explaining the origins of the stereocontrol are essential for more general use of these and related transformations.

Despite the fact that CPA-catalyzed transformations invoking oxocarbenium ion intermediates have received significant attention in recent years, very few attempts to understand the mechanisms of such transformations and the factors governing the selectivity have been made.^{163,64]} The formation of stable oxocarbenium ion intermediates has been proposed in the recent computational studies of N-triflyl phosphoramide-catalyzed cyanohydrin ether formation^{163]} and CPA-catalyzed Petasis–Ferrier rearrangements.^{164]} However, instances where theoretical studies identified alternative mechanisms not involving the formation of oxocarbenium ion intermediates have also been documented. Thus, the recent studies of the acid-catalyzed enantioselective formation of pyrrolidines by the Toste group^{165]} and piperidines by our groups^{162]} identified alternative pathways involving covalently linked thiophosphate (or phosphate) intermediates rather than the corresponding high-energy carbenium or oxocarbenium ion pairs. The oxocarbenium-based mechanisms for acid-catalyzed acetal formation have indeed received widespread acceptance; however, transformations of this type not involving oxocarbenium ion

intermediates have also been documented. Accordingly, the Tan group observed an S_N2 -like concerted (rather than S_N1 -like oxocarbenium-based) mechanism for the methanol-promoted spirocyclization of glycal epoxides.^[66] In line with these findings is the theoretical study of the thiourea-catalyzed tetrahydropyranylation reaction by Kotke and Schreiner,^[67] in which a concerted asynchronous addition of alcohol nucleophiles rather than the formation of a discrete oxocarbenium ion intermediate is proposed. Similarly, the true nature of the glycosylation reaction intermediates has been a subject of long-standing debates.^[68] Both the ionic S_N1 -like and concerted S_N2 -like mechanisms are commonly invoked to explain the outcome of glycosylation reactions, and there is strong evidence that nonionic mechanisms are operational in some instances. For example, the Crich group has provided overwhelming evidence demonstrating that 4,6-O-benzylidenedirected β -mannosylation reactions proceed through covalently bound glycosyl triflates rather than through discrete glycosyl oxocarbenium ion intermediates.^[69,70]

With these prior observations in mind, we considered several different mechanistic pathways for the CPA-catalyzed enantioselective spiroketalization reaction (Scheme 3.9). The reaction mechanisms proceeding through an oxocarbenium ion or covalently linked phosphate intermediate and a concerted mechanism with concomitant C–H and C–O bond formation were viewed as the most prominent options. Both the counterion orientation and the relative stereochemistry of the forming C–H and C–O bonds are crucial for understanding the origins of stereoinduction and developing a stereochemical model. At the same time, these important factors are typically omitted from the mechanistic considerations. Thus, to our knowledge, no information on the selectivity of the C–H/C– O bond addition has been available prior to this work. In theory, the cyclization proceeding via an oxocarbenium ion intermediate can occur through two different modes. In the first mode of cyclization, the C–H and C–O bonds form from different faces of the

molecule (i.e., the pathway proceeding through **3-18a/3-19a/3-20a**). Alternatively, the pathway proceeding through **3-18b/3-19b/3-20b** and resulting in syn protonation/C–O bond formation can be envisioned. Similarly, the reaction proceeding through the anomeric phosphate intermediate conformation **3-21a** or **3-21b** can happen through a retentive or inversive (S_N2 -like) mechanism. An *anti* relationship between the formed C–H and C–O bonds is expected for the inversive mechanism (i.e., the **3-21a/3-22a/3-20a** pathway), and a syn relationship between the formed C–H and C–O bonds is expected for the retentive mechanism (i.e., the **3-21b/3-22b/3-20b** pathway). Unlike in the aforementioned mechanistic options that may lead to both selective product formation and mixtures of *syn* and *anti* products, the concerted mechanism, in which the phosphoric acid acts as the bifunctional catalyst, can produce only the *syn* product **3-20b**.

Studies of Diastereoselective Cyclizations.

With these considerations in mind, we designed and conducted experiments to distinguish between the diastereodivergent *syn* and *anti* spiroketalization modes (Scheme 3.10). To obtain this information, we generated deuterated cyclic enol ethers **3-24 - 3-26** and subjected them to the cyclization in a nonpolar solvent (i.e., toluene, dichloromethane, or pentane) using (*S*)-**3-13a**, chloroacetic acid, TFA, or *p*-toluenesulfonic acid (*p*-TSA) as the catalyst. The outcomes of these reactions were monitored using ²H (D) NMR (107 MHz). As per our discussion above (i.e., Scheme 3.9), the cyclization of **3-24** may lead to the *syn* product **3-27a** or the *anti* product **3-28a**. Similarly, the cyclizations of **3-25** and **3-26** may provide the *syn* diastereomers **3-27b** and **3-27c** or the *anti* diastereomers **3-28b** and **3-28c**, respectively. Remarkably, only the syn products **3-27a - c** were detected in the experiments with weaker acids (i.e., (*S*)-**3-13a** and CICH₂CO₂H; Scheme 3.10, entries 1–4); however, unselective formation of the *syn* and *anti* products was

detected for the *p*-TSA and CF3CO₂H-catalyzed reactions (entries 5 and 6). The absence of the selectivity for the *p*-TSA-catalyzed reactions is attributed to rapid epimerization under the cyclization conditions. Thus, subjecting diastereomerically pure **3-27b** to *p*-TSA at -40 °C resulted in rapid isomerization to a 1:1 mixture of **3-27b** and **3-28b** after 15 min. Finally, a substantial inverse kinetic isotope effect (KIE = 0.85) was observed for the cyclization of **3-26c** into **3-27c** (Scheme 3.11).

Scheme 3.9. Potential mechanisms of CPA-catalyzed spiroketalizations

Scheme 3.10. Diastereoselective spiroketalization of deuterium-labeled substrates.^a Experiments were performed by Dr. Yaroslav Khomutnyk.

^a The reactions were performed on a 0.5–0.05 mmol scale, and each experiment was reproduced twice. D (²H) NMR spectra were recorded at 107 MHz using a Varian VNMRS-700 spectrometer. The observed diastereoselectivities were found to be conversion-independent. ^b 10 mol % catalyst was employed. ^c The racemization reactions were found to be faster than the cyclization reactions under these conditions.

Scheme 3.11. KIE determination for 3-26. Experiments were performed by Dr. Yaroslav Khomutnyk.

The relative configurations of **3-27a–c** were established using nuclear Overhauser effect (NOE) and two-dimensional heteronuclear NMR studies, including ${}^{3}J_{CH}$ determination by SelEXSIDE,^[71] and some of the key signals are depicted in Scheme 3.10. Despite the numerous studies on the spiroketalization mechanism and the widespread use of spiroketals in organic synthesis, the results in Scheme 3.10 represent the first documented evidence suggesting that the kinetic spiroketalization of cyclic enol ethers in nonpolar solvents proceeds via highly selective *syn* H–O addition. To investigate whether the *syn* addition is more general and could be observed in intermolecular acetalization reactions, the reaction of D-labeled dihydropyran (**3-29**) and *p*-methoxybenzyl alcohol was investigated next (Table 3.4).

Table 3.4. Intermolecular acetalization with deuterated electrophile.^a Experiments were performed by Dr. Yaroslav Khomutnyk.

0 3-29	+ , , , , , , , , , , , , , , , , , , ,	solver	alyst → T °C onversion		Н-О D ОРМВ 3-30Ь
entry	catalyst	solvent	T [°C]	time [h]	3-30a:3-30b
1	(S)-3-13a	DCM	rt	12	1:1
2	3-31	pentane	0	48	1:1
3	3-31	benzene	rt	12	1:1
4 ^b	CICH ₂ CO ₂ H	neat	rt	48	-
5 ^c	3-32	benzene	0	42	1:1
Ar=2,4,6		PhO ^{-P} -OF	H F₃C	CF3 N H H	
(S)-	3-13a	3-31		3-32	

^a The reactions were performed on a 0.15–0.59 mmol scale, and each experiment was reproduced twice. D (²H) NMR spectra were recorded at 107 MHz on a Varian 700 spectrometer. The observed diastereoselectivities were found to be conversion-independent. ^b No reaction was observed with 10 mol % catalyst. ^c 2 mol % catalyst 27 was employed.

As in the spiroketalization studies with deuterium-labeled cyclic enol ethers, the formation of two diastereomeric products, *syn*-**3**-**30a** and *anti*-**3**-**30b**, is also expected in this case. The phosphoric acids (S)-**3**-**13a**, **3**-**31**, chloroacetic acid, and Schreiner's thiourea **3**-**32** were selected as the catalysts. The formation of **3**-**30** promoted by these catalysts is expected to be irreversible (i.e., kinetic) under most conditions since the tetrahydropyranyl (THP) acetals possess significantly higher stability than typical spiroketals. Interestingly, tetrahydropyranylation reactions were found to be dissimilar to spiroketalization reactions. Thus, the reaction of *p*-methoxybenzyl alcohol with **3**-**29** produced an approximately 1:1 mixture of products with Brønsted acids (S)-**3**-**13a** and **3**-**31** (entries 1–3), but no reaction was observed with chloroacetic acid (entry 4). Similar results were observed when unlabeled dihydropyran was reacted with deuterium enriched *p*-methoxybenzyl alcohol (**3**-**33**) using diphenylphosphoric acid **3**-**31** as the catalyst (Scheme 3.12).

Scheme 3.12. Intermolecular acetalization with deuterated nucleophile. Experiments were performed by Dr. Yaroslav Khomutnyk.

As before, the nonselective formation of both *syn* and *anti* products was observed in this case. Tetrahydropyranylation of methanol catalyzed by thiourea catalyst **3-32** has been investigated computationally, and the concerted asynchronous addition of methanol proceeding through a polar transition state with oxyanion hole stabilization by **3-32** has been proposed.^[67] Considering that a concerted asynchronous addition of an alcohol to dihydropyran **3-29** should result in the selective formation of *syn*-**3-30a**, we decided to investigate the outcome of the thiourea

3-32-catalyzed formation of **3-30** (Table 3.4, entry 5). Surprisingly, **3-32**-catalyzed acetalization of **3-29** and *p*-methoxybenzyl alcohol produced an equimolar mixture of *syn*-**3-30a** and *anti*-**3-30b** in benzene. Since the formation of *syn*-**3-30a** and *anti*-**3-30b** is not reversible under the reaction conditions, the outcome of the experiments in Table 3.4 is consistent with the formation of a relatively long-lived, solvent-separated (rather than contact), oxocarbenium/stabilized alkoxide ion pair. This ion pair could undergo nonselective association, and both faces of oxocarbenium ion are equally exposed to the reaction with the oxyanion nucleophile.

Hammett Studies.

The above results indicate that the intramolecular and intermolecular acetalization reactions proceed through different mechanisms. To further differentiate between the mechanistic options outlined in Scheme 3.9, a Hammett study was executed for the cyclization of aromatic enol ethers **3-34** leading to spiroketals (Figure 3.6). Thus, the rate constants for the cyclizations of substrates **3-34** with either electron-withdrawing (i.e., X = Cl, F) or electron-donating (i.e., X = CH3O, CH3) substituents as well as the unsubstituted substrate (X = H) were measured at low conversion (Figure 3.6A). The obtained log(k_{obs}/k_H) values for the electronically varied substrates **3-34** displayed an excellent linear correlation (R² = 0.98) when plotted against the corresponding known σ values. These results allowed for the measurement of ρ value to be -2.9, which is consistent with a build-up of positive charge in the transition state (TS) of the rate-limiting step (ρ <-0, see Chapter 1, section 1.2). It should be noted that the obtained ρ value is lower than the one expected for an S_N1-like mechanism involving rate-limiting formation of a fully charged epimerization of kinetic D-glucal-derived spiroketals structurally similar to **3-34** and obtained ρ =

-5.1, which is more in line with a rate-limiting ionization step than the ρ value obtained in these studies.

Figure 3.6. Hammett studies for the phosphoric acid-catalyzed spiroketalizations of enol ether of hydroxy enol ethers. Experiments were performed by Dr. Yaroslav Khomutnyk. A. Rates of conversion of **3-34** with (PhO)₂PO₂H (5 mol %) as the catalyst in pentane at 0°C. B. Hammett plot exhibiting a linear correlation for the electronically varied substrates **3-34** ($\rho = -2.9$).

The results of the aforementioned studies shed some light on the mechanism of the CPAcatalyzed spiroketalization reactions. Thus, the observed highly diastereoselective syn H-O delivery, the significant inverse secondary KIE of 0.85 for substrate 3-26, indicating that rehybridization happens in the rate-limiting step, and the accumulation of positive charge in the TS of the rate-limiting step observed in the Hammett study all speak against the formation of the covalent anomeric phosphate intermediates 3-21 (Scheme 3.9). This is further reinforced by the fact that syn H–O delivery is observed not only for the phosphoric acid catalysts but also for chloroacetic acid. The relatively small ρ value and diastereoselective syn H– O delivery are also not consistent with the long-lived oxocarbenium ion intermediates 3-18 but are more in accord with a highly asynchronous concerted mechanism proceeding through the polarized TS 3-23 (Scheme 3.9). At the same time, the scenarios involving the formation of short-lived oxocarbenium/ phosphate contact ion pair **3-18b** or phosphate **3-21** cannot be completely ruled out with the obtained experimental data. These distinctions, however, can be done on the basis of density functional theory (DFT) calculations and molecular dynamics studies that would help to identify the pathway with the lowest energy and provide information on the average lifetime of the TS or intermediate involved. With these considerations in mind, we undertook the studies described in the next section.

Computational Studies

Asymmetric spiroketalization with chiral phosphoric acids may proceed through one or more of the mechanisms depicted in Scheme 3.9, of which the most classical one is mediated by an oxocarbenium intermediate. Experimental analysis of the mechanism provided strong evidence against *anti* H–O delivery (to yield **3-20a**), but the mechanisms resulting in **3-20b** could not be

ruled out. To gain further insight into the mechanism, the transformation was studied in depth using quantum-chemical calculations. Reaction mechanisms in relatively large systems with many flexible degrees of freedom, such as the present catalytic system, are especially difficult to characterize using reaction path optimization tools. To overcome these challenging cases, the Zimmerman group developed the growing string method (GSM) to simultaneously search for reaction paths and transition states (See Chapter 1, section 1.3).^[72–74] By restricting the search to find a transition state within a series of structures along a minimum energy path from reactants to products, GSM can efficiently locate transition states on highly flat energy surfaces. When our tools were applied to the asymmetric CPA-catalyzed formation of piperidines, an accurate description of the reaction selectivity was obtained that invoked a two-step mechanism proceeding through a chiral phosphate acetal intermediate.^[75] In the piperidine formation mechanism and the present spiroketalization, GSM is especially useful in locating challenging asynchronous and concerted transformations because of its flexible treatment of the reaction pathway tangent vector. Prior to the use of GSM to locate reaction pathways, a preliminary study of the diphenyl hydrogen phosphate-catalyzed spiroketalization of a simplified enol ether leading to 1.7dioxaspiro[5.5]undecane was performed using the Zimmerman group's combinatorial reaction discovery procedure.^[76,77] The results suggested that the concerted pathway could compete with the phosphate-mediated and S_N1-like mechanisms.

Following these preliminary results, more rigorous studies were performed that involved an initial extensive exploration of possible orientations of the catalyst–product complex for three different systems: the diphenyl phosphoric acid **3-31**-catalyzed 6,6-spiroketalization, the **3-31**catalyzed 6,5-spiroketalization, and the CPA **3-13a**-catalyzed 6,6-spiroketalization. Reaction path exploration and exact transition state searches were performed using GSM for each of the three types of mechanisms shown in Scheme 3.9. The resultant intermediates and transition states were corrected for thermodynamics and solvent effects (pentane). Reported energies are solvent-phase free energies with thermodynamic corrections at 298 K (diphenyl hydrogen phosphate catalyst system) and 238 K (3-13 catalyst system) obtained at the ω B97X-D/SMD/6-31G** level. To discriminate between the three mechanisms shown in Scheme 3.9, the transformation leading to a 6,6-spiroketal (substrate 3-11a) was investigated first using a model diphenyl hydrogen phosphate catalyst. While this initial study did not use a chiral catalyst, the lowest-barrier pathway unveiled by these simulations was further examined with the full catalyst (vide infra). Before examining the phosphate-mediated and oxocarbenium pathways, 17 concerted pathways leading to thermodynamic and nonthermodynamic spiroketals were investigated. The most favored pathway produces a nonthermodynamic spiroketal (only one anomeric effect present) that can readily convert to the more stable thermodynamic spiroketal, as shown in Figure 3.7. The reaction pathway is concerted and asynchronous: from the substrate alcohol to phosphate H-bonded complex, an initial protonation of the enol ether occurs at the transition state (TS1). Additionally, the transition state shows a chair-like geometry involving the alcohol oxygen and the electrophilic carbon with a C–O distance of 2.70 Å. After the transition state, synchronous deprotonation and cyclization occur. The initial spiroketal is formed in a chair-boat conformation, which can readily rearrange to a more stable nonthermodynamic chair-chair conformation and ultimately, by a ring flip, to the most thermodynamically stable spiroketal. The Mulliken charges on the enol ether oxygen and electrophilic carbon (provided in Figure 3.7) show a significant buildup of positive charge at TS1 $(\Delta \Sigma Q = 0.247)$ that is slightly smaller than the sum of charges of a bare oxocarbenium ion solvated in n-pentane ($\Delta\Sigma Q = 0.271$). The activation barrier for this transformation was 16.0 kcal/mol above the catalyst–substrate complex, which is fully consistent with a mechanism operative at or below

room temperature. It should be noted that the dual function of the phosphoric acid as both a Brønsted acid and a Lewis base is efficiently exploited in this mechanism, as is evident in the ratedetermining TS shown in Figure 3.7. Although the product initially formed is predicted to be the nonthermodynamic spiroketal, this is only relevant in conformationally locked systems such as the glucal derivatives shown in Scheme 3.9, since otherwise the thermodynamic spiroketal is readily accessed by a ring flip.

Figure 3.7. Concerted asynchronous mechanism for the ring closure of the model system. The values in parentheses correspond to the differences in the sum of the Mulliken charges on the enol ether oxygen and electrophilic carbon with respect to the starting complex. Barriers indicated by * were not calculated.

The anomeric phosphate-mediated pathway was also examined using the diphenyl catalyst model system, and different orientations of the catalyst were explored for this mechanism. The attack of each phosphate oxygen was examined, and the lowest-energy pathway relevant to this mechanism is depicted in Figure 3.8. The initial orientation of the catalyst is similar to the concerted pathway described above, but the alcohol is not positioned in such a way that ring closure can readily occur. The formation of the anomeric phosphate intermediate instead proceeds through a concerted asynchronous mechanism. As initial protonation of the enol ether creates an ionic transition state and the alcohol moiety is further away from the electrophilic site, attack of the hydrogen-bonded oxygen of the phosphate can form an axial bond. The formation of the phosphate intermediate has a barrier of 20.6 kcal/mol (TS2), and its *syn* displacement by the nucleophilic alcohol to afford the spiroketal has a barrier of 20.7 kcal/mol (TS3) (the *anti* phosphate displacement likely involves more than one phosphate and was not modeled). Once the phosphate intermediate is formed, there is not a large preference for the immediate formation of a thermodynamic as opposed to a nonthermodynamic spiroketal. In fact, although Figure 3.8 shows the sequence for the formation of the thermodynamic spiroketal (TS4) with a barrier of 21.1 kcal/mol.

Figure 3.8. Anomeric phosphate mechanism for the model system. The energies of important stationary points are shown in kcal/mol. The values in parentheses correspond to the differences in the sum of the Mulliken charges on the enol ether oxygen and electrophilic carbon with respect to the starting complex.

The difference of 4.6 kcal/mol between the barriers for the concerted and anomeric phosphate mechanisms suggests that the phosphate mechanism is uncompetitive. To determine whether the concerted mechanism was also operative for five membered-ring formation, reactions leading to a 6,5-spiroketal (**3-26c**) were examined. Not surprisingly, the data show that the concerted mechanism ($E_a = 13.8$ kcal/mol) is favored over the anomeric phosphate path ($E_a = 22.9$ kcal/mol for spiroketal formation by *syn* displacement of the phosphate intermediate). The build-up of positive charge on the substrate and the asynchronicity of the changes in bonding are similar to those in the 6,6-spiroketalization. Finally, the KIE of 0.96 calculated for the concerted mechanism was in qualitative agreement with the experimentally measured value of 0.85.

The study of an oxocarbenium-mediated mechanism proved challenging because repeated efforts to optimize stationary points for oxocarbenium intermediates resulted in their collapse to the reactant or product structures. This observation, however, makes sense in light of the proposed concerted mechanism for spiroketalization, where the TS itself is ionic (oxocarbenium-like). Given that an unstable oxocarbenium-like structure is initially formed along the concerted path, we turned to molecular dynamics (MD) simulations to quantify the lifetime of this structure. If a stable oxocarbenium intermediate were possible, it would form after protonation of the substrate and could be identified by MD simulations following the protonation TS. Therefore, trajectories were sampled using quasiclassical initial velocities starting at the concerted TS structure to accurately mimic the experimental conditions. The plot of the C–O distance against time for the product's new C–O connection (Figure 3.9A) shows how most of the 100 MD runs proceed from the TS to the product. After removal of the trajectories that recrossed to the reactant species, Figure 3.9B shows the progression of product-forming trajectories to the ring-closed structures. Of the 71 runs that resulted in product, an average time of 519 fs was required to form the spiroketal. No persistent

oxocarbenium species were formed in any of the trajectories, including seven trajectories that needed to be run to 1.5 ps in order to complete product formation. This short time frame is consistent with the concerted asynchronous mechanism derived by GSM without a stable intermediate along the pathway. Additionally, the trajectories show that the alcohol deprotonation and ring closure occur synchronously, also in agreement with the reaction path from GSM. This occurs as a result of activation of the alcohol by the Lewis basic anionic oxygen of the catalyst, which quenches the buildup of positive charge on the alcohol oxygen by simultaneously deprotonating it while it forms the C–O bond.

Figure 3.9. Molecular dynamics on the TS of the concerted pathway for the model system. Each line represents one of the 100 independent runs. A. The new ring's C–O distance is plotted against time. B. The number of productive (71), but yet uncollapsed TSs is plotted against time.

Having established a concerted yet asynchronous mechanism for spiroketalization with the model diphenyl catalyst system, we next studied the reactions of substrate **3-11a** and chiral phosphoric acid **3-13a**. Specifically, formation of the (R)-spiroketal was modeled to determine the

key interactions dictating the stereoselectivity of the reaction. Orientations of the catalyst analogous to those in the diphenyl phosphoric acid system were considered. To our delight, we found a 1.5 kcal/mol difference between the lowest computed activation barriers for the (R)-3-13a-catalyzed and (S)-3-13a-catalyzed concerted spirocyclizations, with the (S) catalyst chirality being favored (see Figure 3.10). Since the (R)-spiroketal was the designated simulation product, this result is in agreement with the chirality of the product formed in the experiment. Using a temperature of 238 K, we proceeded to calculate the expected enantiomeric excess, which is given by

$$ee = \frac{exp\left(\frac{\Delta G^{TS}}{RT}\right) - 1}{exp\left(\frac{\Delta G^{TS}}{RT}\right) + 1}$$

where ΔG^{TS} is the energy gap, R is the gas constant, and T is the absolute temperature. The computed enantiomeric excess is 92%, which exactly matches the experimental result.^[62]

While this is a very promising result, it is only accurate because the intrinsic errors in quantum-chemical simulation have largely canceled one another out. However, this agreement has been seen in other applications of quantum-chemical methods to a number of stereoselective transformations.^[78–80] The extensive study of the PES by careful sampling of the driving coordinates and the end points of the strings, which included five different approaches of the catalyst to produce either thermodynamic (two axial C–O bonds) or nonthermodynamic (two equatorial C–O bonds and both combinations of 1 axial and 1 equatorial C–O bond) spiroketals, as well as the fact that the comparison between the lowest-energy pathways for the two catalyst chiralities gives the proper selectivity, gives us confidence in our method and results.

A description of the predicted mechanism and its associated stereochemical model follows. In the first step of the predicted concerted asynchronous mechanism, the catalyst, irrespective of its chirality, is initially oriented in such a way that the phosphate oxygen can hydrogen-bond with the tertiary alcohol, while the Brønsted acidic hydrogen is aligned to add to the enol ether. As with the diphenyl catalyst model system, protonation of the enol ether occurs at the transition state for both catalyst chiralities. Also coherent with the diphenyl system, there is a considerable buildup of positive charge on the substrate at the TS compared with the enol ether-catalyst complex, in agreement with the experimental data on the mechanism (Hammett and secondary KIE experiments). For both catalyst chiralities, deprotonation of the nucleophilic oxygen and spirocyclization occur simultaneously following protonation, as observed for the diphenyl hydrogen phosphate model system. The cyclization occurs through a six-membered chair geometry to produce an initial boat-chair spiroketal that initially relaxes to a nonthermodynamic spiroketal and finally, by means of a ring flip, to the thermodynamic conformation. The relevant stationary points on the PES, disregarding the boat-chair spiroketal and the later isomerization to a thermodynamic product, are shown in Figure 10. While in this case the conformation of the immediately formed spiroketal is not vital (its equilibration to a more stable conformer is unimpeded), in conformationally locked structures it would be of importance. This mechanism shows how CPA catalysis can be used to form nonthermodynamic spiroketals with kinetic control. A major difference between the TS structures that explains the kinetic origin of the enantioselectivity is the interaction of the 2,4,6- triisopropylphenyl groups at the 3- and 3'-position of **3-13a** with the phenyl rings of the tertiary alcohol of the substrate.

Figure 3.10. Comparison of the activation barriers for the (R)- and (S)-**3-13a**-catalyzed spiroketalizations. The insets depict the transition state structures. The values in parentheses correspond to the differences in the sum of the Mulliken charges on the enol ether oxygen and electrophilic carbon with respect to the starting complex.

Figure 3.11 shows the quadrant-based frontal perspective commonly used in stereochemical models involving CPAs and popularized by $Himo^{[81]}$ and $Terada.^{[82]}$ From this perspective, the diastereomeric relationship of the substrate–(*R*)-TRIP (TS_R) and substrate–(*S*)-TRIP (TS_S) spiroketalization TSs is made clear. At the TS, the substrate is arranged in such a way that protonation of the enol ether can take place, yet the positive charge being built in the electrophilic carbon is stabilized by its interaction with the alcohol oxygen. This is best achieved when the alcohol appendage adopts a chair-like geometry (Figure 3.11, top left diagram), in preparation for the asynchronous cyclization, and the phenyl rings are not located in the bulky quadrants near the catalytic site. To achieve this, the dihydropyran core is arranged in a different orientation for TS_R and TS_S. The alcohol-containing side chain in TS_R adopts a less ideal chair-like geometry because of unfavorable steric interactions between the phenyl rings of the substrate

and the ortho and para substituents on the aryl groups of the CPA. This is reflected by a longer distance between the nucleophilic oxygen and the electrophilic carbon (2.76 Å for TS_R vs 2.50 Å for TS_S) and a less directed angle for electronic interaction (87° H–O–C angle for TS_R vs 117° for TS_S). Figure 3.12 provides a perspective focusing on these key steric interactions in TS_R . Substitution of the phenyl rings on the tertiary alcohol with more flexible benzyl groups would be expected to relieve the steric congestion at TS_R and result in a decreased ee, as observed experimentally.

Figure 3.11. Comparison of TS_S and TS_R.

Figure 3.12. Key steric interactions at TS_R between the phenyl groups on the alcohol appendage of the enol ether and the ortho and para substituents of the aryl substituents of (*R*)-3-13.

Conclusion

This project describes the development of chiral phosphoric acid-catalyzed stereoselective spiroketalizations as well as mechanistic and computational studies of the mechanistic origins of catalysis. The commercially available TRIP catalysts were found to be effective promoters of the enantioselective formation of chiral spiroketals and diastereoselective formation of non-anomeric spiroketals. The reactions were found to proceed under kinetic control, where nonpolar solvents (i.e., pentane) and anhydrous conditions (4 Å MS as additives) were found to be essential for attaining high levels of stereocontrol. The experimental studies were designed to differentiate between the S_N1-like, S_N2-like, and covalent phosphate intermediate-based mechanisms. The CPA-catalyzed spiroketalization of deuterium-labeled cyclic enol ethers revealed a highly diastereoselective *syn*-selective protonation/nucleophile addition, thus ruling out long-lived oxocarbenium intermediates. At the same time, the intermolecular equivalent of these reactions (i.e., tetrahydropyranylation with D3-labeled dihydropyran) was found to proceed unselectively, presumably by a different (i.e., S_N1-like) mechanism. Hammett analysis of the reaction kinetics

revealed accumulation of positive charge in the transition state of the rate-limiting step ($\rho = -2.9$), and the KIE for the spiroketalization with D-labeled substrates was determined to be 0.85. The subsequent in-depth computational studies on the phosphoric acid-catalyzed spiroketalization mechanism suggested that a single-step asynchronous mechanism is responsible for the observed experimental data. This mechanism fully exploits the bifunctionality of the catalyst and is novel for this type of transformation. The anomeric phosphate pathway was shown to have higher energy barriers. Additionally, molecular dynamics simulations showed the average lifetime of oxocarbenium structures to be 519 ± 240 fs, which does not support the formation of a stable ionic intermediate. The stereoselectivity of the reaction was examined in a complete system, and the key interactions that favor the experimentally observed results were identified to be linked with the 3,3'-aryl substituents of the CPA and the substituents on the alcohol group of the substrate. This stereochemical model was highly consistent with the observed experimental results in terms of the selectivity and the level of enantiocontrol, and this will allow not only future catalyst design to overcome the procedure limitations and expand its scope, but also the analysis of related reactions, such as intermolecular CPA-catalyzed formation of acetal/aminal/hemiaminal ethers from enol ethers. Finally, the applicability of the growing string method for the analysis of hydrogen-bond organocatalytic transformations involving large systems was demonstrated, as was its usefulness in the proposal of the underlying mechanism and in the explanation of the stereocontrol observed.

3.5 References

- [1] J. E. Aho, P. M. Pihko, T. K. Rissa, *Chem. Rev.* **2005**, *105*, 4406–4440.
- [2] F. M. Uckun, C. Mao, A. O. Vassilev, H. Huang, S. T. Jan, *Bioorganic Med. Chem. Lett.* 2000, 10, 541–545.
- [3] S. Mitsuhashi, H. Shima, T. Kawamura, K. Kikuchi, M. Oikawa, A. Ichihara, H. Oikawa, *Bioorganic Med. Chem. Lett.* **1999**, *9*, 2007–2012.
- [4] J. A. Palmes, A. Aponick, *Synthesis*. **2012**, *44*, 3699–3721.
- [5] R. Baker, R. Herbert, P. E. Howse, O. T. Jones, W. Francke, W. Reith, J. Chem. Soc. Chem. Commun. 1980, 0, 52–53.
- [6] K. Mori, H. Watanabe, K. Yanagi, M. Minobe, *Tetrahedron* **1985**, *41*, 3663–3672.
- [7] K. Mori, T. Uematsu, K. Yanagi, M. Minobe, *Tetrahedron* **1985**, *41*, 2751–2758.
- [8] G. Haniotakis, W. Francke, K. Mori, H. Redlich, V. Schurig, J. Chem. Ecol. 1986, 12, 1559–1568.
- [9] W. Francke, W. Kitching, *Curr. Org. Chem.* **2005**, *5*, 233–251.
- [10] R. Bai, G. F. Taylor, Z. A. Cichacz, C. L. Herald, J. A. Kepler, G. R. Pettit, E. Hamel, *Biochemistry* 1995, 34, 9714–9721.
- [11] N. Fusetani, K. Shinoda, S. Matsunaga, J. Am. Chem. Soc. 1993, 115, 3977–3981.
- [12] M. Kobayashi, S. Aoki, H. Sakai, K. Kawazoe, N. Kihara, T. Sasaki, I. Kitagawa, *Tetrahedron Lett.* **1993**, *34*, 2795–2798.
- [13] A. B. Smith, T. Tomioka, C. A. Risatti, J. B. Sperry, C. Sfouggatakis, Org. Lett. 2008, 10, 4359–4362.
- [14] D. A. Evans, P. J. Coleman, L. C. Dias, Angew. Chem., Int. Ed., 1997, 36, 2738–2741.
- [15] D. A. Evans, B. W. Trotter, B. Côté, P. J. Coleman, Angew. Chem., Int. Ed. 1997, 36, 2741–2744.
- [16] D. A. Evans, B. W. Trotter, P. J. Coleman, B. Côté, L. C. Dias, H. A. Rajapakse, A. N. Tyler, *Tetrahedron* 1999, 55, 8671–8726.
- [17] J. Guo, K. J. Duffy, K. L. Stevens, P. I. Dalko, R. M. Roth, M. M. Hayward, Y. Kishi, *Angew. Chem.*, Int. Ed. 2002, 37, 187–190.
- [18] M. M. Hayward, R. M. Roth, K. J. Duffy, P. I. Dalko, K. L. Stevens, J. Guo, Y. Kishi, Angew. Chem., Int. Ed. 2002, 37, 190–196.
- [19] A. B. Smith, V. A. Doughty, Q. Lin, L. Zhuang, M. D. McBriar, A. M. Boldi, W. H. Moser, N. Murase, K. Nakayama, M. Sobukawa, *Angew. Chem.*, *Int. Ed.* 2001, 40, 191– 195.
- [20] A. B. Smith, Q. Lin, V. A. Doughty, L. Zhuang, M. D. McBriar, J. K. Kerns, C. S. Brook,

N. Murase, K. Nakayama, Angew. Chem., Int. Ed. 2001, 40, 196–199.

- [21] A. B. Smith, W. Zhu, S. Shirakami, C. Sfouggatakis, V. A. Doughty, C. S. Bennett, Y. Sakamoto, *Org. Lett.* **2003**, *5*, 761–764.
- [22] A. B. Smith, V. A. Doughty, C. Sfouggatakis, C. S. Bennett, J. Koyanagi, M. Takeuchi, *Org. Lett.* **2002**, *4*, 783–786.
- [23] I. Paterson, D. Y. K. Chen, M. J. Coster, J. L. Acea, J. Bach, K. R. Gibson, L. E. Keown, R. M. Oballa, T. Trieselmann, D. J. Wallace, *Angew. Chem.*, *Int. Ed.* 2001, 40, 4055– 4060.
- [24] M. T. Crimmins, J. D. Katz, D. G. Washburn, S. P. Allwein, L. F. McAtee, J. Am. Chem. Soc. 2002, 124, 5661–5663.
- [25] G. R. Ott, J. Medina, C. H. Heathcock, C. J. Hayes, J. L. Hubbs, M. M. Claffey, G. A. Wallace, R. Scott, M. McLaughlin, J. Am. Chem. Soc. 2003, 125, 12844–12849.
- [26] M. Ball, M. J. Gaunt, D. F. Hook, A. S. Jessiman, S. Kawahara, P. Orsini, A. Scolaro, A. C. Talbot, H. R. Tanner, S. Yamanoi, et al., *Angew. Chem., Int. Ed.* 2005, 44, 5433–5438.
- [27] S. Ömura, Int. J. Antimicrob. Agents 2008, 31, 91–98.
- [28] S. Õmura, A. Crump, *Nat. Rev. Microbiol.* **2004**, *2*, 984–989.
- [29] B. J. Banks, B. F. Bishop, N. A. Evans, S. P. Gibson, A. C. Goudie, K. A. F. Gration, M. S. Pacey, D. A. Perry, M. J. Witty, *Bioorganic Med. Chem.* 2000, 8, 2017–2025.
- [30] J. A. Lasota, R. A. Dybas, Annu. Rev. Entomol. 2003, 36, 91–117.
- [31] Y. Terauchi, M. Tamura, M. Senda, R. Gunji, K. Kaku, *Diabetes, Obes. Metab.* **2017**, *19*, 1397–1407.
- [32] Jungius, C. L. Z. Phys. Chem 1905, 52, 97.
- [33] S. Favre, P. Vogel, S. Gerber-Lemaire, *Molecules* **2008**, *13*, 2570–2600.
- [34] P. von Raeué Schlever, E. D. Jemmis, G. W. Spitznagel, J. Am. Chem. Soc. 1985, 107, 6393–6394.
- [35] E. Juaristi, G. Cuevas, *Tetrahedron* **2002**, *48*, 5019–5087.
- [36] R. W. Franck, *Tetrahedron* **1983**, *39*, 3251–3252.
- [37] P. Deslongchamps, D. D. Rowan, N. Pothier, G. Sauvé, J. K. Saunders, *Can. J. Chem.* **2006**, *59*, 1105–1121.
- [38] T. Yasumoto, M. Murata, Y. Oshima, M. Sano, G. K. Matsumoto, J. Clardy, *Tetrahedron* **1985**, *41*, 1019–1025.
- [39] J. S. Lee, T. Igarashi, S. Fraga, E. Dahl, P. Hovgaard, T. Yasumoto, *J. Appl. Phycol.* **1989**, *1*, 147–152.
- [40] J. S. Allingham, C. O. Miles, I. Rayment, J. Mol. Biol. 2007, 371, 959–970.

- [41] F. Leiraa, A. G. Cabadoa, M. R. Vieytes, Y. Roman, A. Alfonso, L. M. Botana, T. Yasumoto, C. Malaguti, G. P. Rossini, *Biochem. Pharmacol.* **2002**, *63*, 1979–1988.
- [42] I. Spector, F. Braet, N. R. Shochet, M. R. Bubb, *Microsc. Res. Tech.* 1999, 47, 18–37.
- [43] K. Fujiwara, Y. Suzuki, N. Koseki, Y. I. Aki, Y. Kikuchi, S. I. Murata, F. Yamamoto, M. Kawamura, T. Norikura, H. Matsue, et al., *Angew. Chem., Int. Ed.* **2014**, *53*, 780–784.
- [44] J. E. Aho, A. Piisola, K. Syam Krishnan, P. M. Pihko, European J. Org. Chem. 2011, 2011, 1682–1694.
- [45] P. M. Pihko, J. E. Aho, Org. Lett. 2004, 6, 3849–3852.
- [46] D. Castagnolo, I. Breuer, P. M. Pihko, J. Org. Chem. 2007, 72, 10081–10087.
- [47] D. Vellucci, S. D. Rychnovsky, Org. Lett. 2007, 9, 711–714.
- [48] K. Mead, B. Brewer, Curr. Org. Chem. 2005, 7, 227–256.
- [49] L. A. Wessjohann, W. Brandt, T. Thiemann, *Chem. Rev.* **2003**, *103*, 1625–1648.
- [50] J. Marco-Contelles, M. T. Molina, S. Anjum, Chem. Rev. 2004, 104, 2857–2900.
- [51] R. E. Ireland, S. Thaisrivongs, P. H. Dussault, J. Am. Chem. Soc. 1988, 110, 5768–5779.
- [52] T. E. La Cruz, S. D. Rychnovsky, Org. Lett. 2005, 7, 1873–1875.
- [53] I. Corić, B. List, *Nature* **2012**, *483*, 315–319.
- [54] G. B. Rowland, H. Zhang, E. B. Rowland, S. Chennamadhavuni, Y. Wang, J. C. Antilla, *J. Am. Chem. Soc.* **2005**, *127*, 15696–15697.
- [55] Y. Liang, E. B. Rowland, G. B. Rowland, J. A. Perman, J. C. Antilla, *Chem. Commun.* **2007**, *0*, 4477–4479.
- [56] X. Cheng, S. Vellalath, R. Goddard, B. List, J. Am. Chem. Soc. 2008, 130, 15786–15787.
- [57] M. Rueping, A. P. Antonchick, E. Sugiono, K. Grenader, *Angew. Chem., Int. Ed.* **2009**, 48, 908–910.
- [58] G. Li, F. R. Fronczek, J. C. Antilla, J. Am. Chem. Soc. 2008, 130, 12216–12217.
- [59] G. K. Ingle, M. G. Mormino, L. Wojtas, J. C. Antilla, Org. Lett. 2011, 13, 4822–4825.
- [60] H. Qian, W. Zhao, Z. Wang, J. Sun, J. Am. Chem. Soc. 2015, 137, 560–563.
- [61] N. Pothier, S. Goldstein, P. Deslongchamps, *Helv. Chim. Acta* 1992, 75, 604–620.
- [62] Z. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074– 8077.
- [63] C. Lu, X. Su, P. E. Floreancig, J. Org. Chem. 2013, 78, 9366–9376.
- [64] K. Kanomata, Y. Toda, Y. Shibata, M. Yamanaka, S. Tsuzuki, I. D. Gridnev, M. Terada, *Chem. Sci.* **2014**, *5*, 3515–3523.
- [65] N. D. Shapiro, V. Rauniyar, G. L. Hamilton, J. Wu, F. D. Toste, *Nature* 2011, 470, 245–

250.

- [66] J. M. Wurst, G. Liu, D. S. Tan, J. Am. Chem. Soc. 2011, 133, 7916–7925.
- [67] M. Kotke, P. R. Schreiner, Synthesis. 2007, 2007, 779–790.
- [68] L. Bohé, D. Crich, Carbohydr. Res. 2015, 403, 48–59.
- [69] M. Huang, P. Retailleau, L. Bohé, D. Crich, J. Am. Chem. Soc. 2012, 134, 14746–14749.
- [70] M. Huang, G. E. Garrett, N. Birlirakis, L. Bohé, D. A. Pratt, D. Crich, *Nat. Chem.* 2012, 4, 663–667.
- [71] C. P. Butts, B. Heise, G. Tatolo, Org. Lett. 2012, 14, 3256–3259.
- [72] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [73] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.
- [74] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [75] Z. Sun, G. A. Winschel, P. M. Zimmerman, P. Nagorny, *Angew. Chem., Int. Ed.* **2014**, *53*, 11194–11198.
- [76] P. M. Zimmerman, Mol. Simul. 2015, 41, 43–54.
- [77] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [78] S. T. Schneebeli, M. L. Hall, R. Breslow, R. Friesner, J. Am. Chem. Soc. 2009, 131, 3965– 3973.
- [79] C. Allemann, R. Gordillo, F. R. Clemente, P. H. Y. Cheong, K. N. Houk, Acc. Chem. Res. 2004, 37, 558–569.
- [80] E. H. Krenske, K. N. Houk, Acc. Chem. Res. 2013, 46, 979–989.
- [81] T. Marcelli, P. Hammar, F. Himo, *Chem. A Eur. J.* **2008**, *14*, 8562–8571.
- [82] I. D. Gridnev, M. Kouchi, K. Sorimachi, M. Terada, Tetrahedron Lett. 2007, 48, 497–500.

CHAPTER 4

Design, Synthesis, and Application of Chiral Spiroketal-Containing Ligands

"With respect to chemical reactions, "useful" implies wide scope, simplicity to run, and an essential transformation of readily available starting materials."

Karl Barry Sharpless

4.1 Introduction to asymmetric transition metal catalysis

Most natural products and other bioactive materials used in pharmaceutical industry possess chirality, a property that is indispensable for a selective interaction between a bioactive compound and its target. For this reason, the demands for methods that can effectively construct chiral building blocks is ever increasing. Amongst the types of the strategies used to produce enantiomerically-enriched materials, the most desirable and challenging is catalytic asymmetric synthesis, since only a small amount of chiral material is required to reproduce chirality in larger amounts of product.^[1] Amid the asymmetric catalysis strategies, enzymatic catalysis, organocatalysis, and transition metal catalysis have emerged as the most popular and successful ways of constructing chiral molecules. Other strategies and their disadvantages are briefly discussed in sections **1.5** and **2.1**.

The formation of carbon-carbon and carbon-heteroatom bonds using transition metalmediated organic reactions has been the focus of attention of synthetic organic chemists over the past three decades.^[2] Nobel Prize-winning breakthroughs have led to the development of chemistry not possible through enzymatic or organocatalytic methods. In particular, the advent of crosscoupling reactions in the formation of sp²-sp² carbon-carbon bonds has revolutionized organic syntheses.^[3–6] Chemists also realized the powerful catalytic properties of metals could be used to activate prochiral substrates and produce products enantioselectively. By the 1990s, several examples of asymmetric hydrogenations, hydrosilylations, and carbon-carbon bond forming reactions were known, and currently it is a powerful tool in the process chemist repertoire.^[1,7]

Based on the powerful capabilities of transition metal chemistry, it is no surprise that vast amounts of effort and energy to spend in the search for catalysts that exhibit improved reactivity, efficiency, and selectivity. Through these studies, it has long been recognized that the characteristics of the ancillary ligands in the coordination sphere of the metal play an essential role in the sterics, electronics, and physical properties of the metal complex, all which define its catalytic activity.^[2] One of the main benefits of transition metal chemistry is that it is extremely versatile in the selection of the ancillary ligands. There is a large variety of ligand types with drastically different properties, such as phosphines, carbenes, carbon monoxide, π -complexing ligands, and N-,O-, and S-based ligands.

Tertiary phosphines and other trivalent phosphorus ligands are arguably the most important and pervasive ligands in homogeneous catalysis. In fact, all transition metals, especially late transition metals, form complexes with trivalent phosphorus ligands. Tertiary phosphines ligands bind to transition metals strongly, forming a Lewis acid-base pair. There are two main reasons for this favorable interaction: 1) the trivalent phosphorus atom is a soft Lewis base, which matches well with the soft Lewis acidity of low valence metals used in transition metal catalysis; and 2) trivalent phosphorus-based ligands can also serve as π -acceptors, so additional stabilization of the metal complex can occur through π - π backbonding. These are the result of filled metal *d*-orbitals overlapping with unfilled *d*-orbitals on the phosphorus atom (Figure 4.1), although some studies suggest that the P-X σ^* antibonding orbital plays a bigger role than the empty *d* orbital in these backbonding interactions.^[8–10]

Figure 4.1. Interactions between tertiary phosphines and metal centers.

Because of the reasons outlined above, tertiary phosphines bind better to metals than their tertiary amine counterparts. Another major advantage over amines is that trivalent phosphorus compounds possess a much higher barrier of inversion than nitrogen, typically very slow at room temperature (29-35 kcal/mol),^[11] so P-chiral ligands are isolable and useful. However, a disadvantage over amine ligands is that many P(III) ligands are prone to oxidation, since P(V) is typically a more stable oxidation state.

In 1965, Wilkinson and coworkers were able to achieve higher yielding hydrogenations in homogeneous systems under mild conditions by using a rhodium (I) phosphine complex (Scheme 4.1a).^[12] Three years later, Nobel laureate Knowles would be the first chemist to design and perform a homogeneous catalytic hydrogenation by replacing the PPh₃ ligands in Wilkinson's catalyst with a P-chiral tertiary phosphine ligand **L1**, albeit with low enantioselectivity (Scheme 4.1b).^[13] Subsequent improvements on this method would lead to the development of **CAMP**, a

P-chiral ligand that provided the product in 90% ee,^[14,15] a truly remarkable achievement for the time (Scheme 4.1c).

Although the first instances of asymmetric hydrogenation catalyzed by transition metals involved P-chiral ligands, it was not long until Kagan and coworkers made a breakthrough in ligand design by publishing the bidentate phosphine (R,R)-DIOP, chiral in the organic framework. It proved to be an excellent ligand in asymmetric hydrogenations.^[16] Inspired by this work, the Knowles group developed DIPAMP in 1975, which was used in the commercial production of L-DOPA (Scheme 4.2a).^[17] Soon after, Noyori would develop BINAP and use it in the asymmetric hydrogenation of ketones, cementing the usefulness and importance of phosphine ligands and earning him the Nobel prize in chemistry (Scheme 4.2b).^[18–22]

Scheme 4.2. a. Knowles's asymmetric synthesis of L-DOPA. b. Noyori's asymmetric hydrogenation of ketones.

Knowles was a visionary in chiral ligand design. He made a key observation in his Nobel prize lecture: "When we started this work we expected these man-made systems to have a highly specific match between substrate and ligand, just like enzymes. Generally, in our hands and in the hands of those that followed us, a good candidate has been useful for quite a range of applications".^[23] In other words, he observed that, in many cases, the ligands which were most successful in a particular reaction were more likely to be competent in other unrelated transformations. In modern terms, such structures are called privileged, a term coined by Jacobsen.^[24] TADDOL, BINOL, and SPINOL (Scheme 4.3) are excellent examples of privileged structures. Of the few select privileged structures, a surprisingly large number of them possess C₂ symmetry. This is a desirable feature in asymmetric catalysis because it eliminates the possibility of many isomeric metal complexes, as well as substrate-catalyst conformations.^[25]

Scheme 4.3. C₂ symmetry is a common feature in privileged structures.

In particular, SPINOL-derived ligands, such as 7,7'-bis(diarylphosphino)-2,2',3,3'tetrahydro-1,1'-spirobiindenes(SDPs),^[26–28] have been used with great success in the past decades (Figure 4.2, left).^[29,30] Although their performance is notable, high prices and tedious preparation methods pose severe limitations to the application of these ligands. Recent efforts of Tan and coworkers focused on addressing some of these problems by developing an optimized synthesis of SPINOL.^[31] However, this approach still suffers from the obligatory use of SPINOL-derived phosphoric acids, which themselves are expensive and commercially unavailable on a large scale. This chapter presents a solution to this problem by the development of useful spiroketal-derived SPINOL analogs which are straightforward to synthesize on large scale (Figure 4.2, right). For an introduction on spiroketal synthesis and conformational properties, refer to sections **3.1** and **3.2**.

4.2 Results and discussion

(Excerpts of this chapter were adapted from:

Argüelles, A. J.; Sun, S.; Budaitis, B. G.; Nagorny, P. Angew. Chem. Int. Ed. 2018, 57, 5325. Experimental information can be found in Appendix C)

Based on our prior work on the asymmetric formation of axially chiral spiroketals,^[32–34] we proposed a new easily accessible spiroketal-based C₂-symmetric chiral scaffold termed SPIROL (Figure 4.2, right). While a spiroketal moiety is typically labile under strongly acidic conditions, the majority of the transition metal-catalyzed reactions are not carried out under highly acidic conditions. Due to these reasons as well as their high accessibility, acetal-^[16,35,36] and spiroketal-containing^[37] ligands have proven to be of great value in asymmetric catalysis (Figure 4.3A). We surmised that the introduction of bulky 7,7'-substituents such as $R = PPh_2$, would render the both axial pseudoenantiomeric diastereomers kinetically stable under a variety of conditions (Fig. 4.3B). Moreover, the additional stereocenters at the benzylic 3,3'-positions would prevent the epimerization of the more stable (*S*,*S*,*S*)-diastereomer ($\Delta G^{\circ} = 2.3$ kcal/mol for SPIRAP) even under equilibrating conditions. This work describes the development of a novel reliable dimerizative condensation that enables rapid access to chiral SPIROL on large scale, and the application of SPIROL-based ligands in various Pd-, Ir-, and Rh-catalyzed asymmetric reactions. These results along with the computational studies carried on Pd(II)-complexes suggest that (S,S,S)diastereomers are structurally and electronically similar to SPINOL-based ligands, whereas their axial pseudoenantiomeric, (R,S,S)-diastereomers represent a structurally and electronically different scaffolds. We believe that these features coupled with the ease of preparation and higher level of tunability (i.e. at the 3,3'-benzylic positions) make SPIROL ligands of great value to asymmetric catalysis.

B. SPIROL-based pseudoenantiomeric ligands for asymmetric catalysis

Figure 4.3. A. Acetal and spiroketal-containing commercial phosphine ligands. **B.** Pseudoenantiomeric SPIROL-based ligands.

Our studies commenced with a highly enantioselective alkylation of protected 3hydroxybenzaldehyde **4-1** (Scheme 4.4). Although commercially available DBNE could be used to catalyze a highly enantioselective additions to different protected aldehydes (R=MOM, BOM, Bn),^[38] readily available aziridine-based organocatalysts could also be used to attain the desired products **4-2** in a practically enantiopure form.^[39] The treatment of the resulting alcohol **4-2** with two equivalents of *n*-butyl lithium in toluene regioselectively afforded the dilithiated species 4-3, which is then captured by diethyl carbonate to produce the desired spiroketal **4-6** in good yields and excellent diastereoselectivity. This transformation is proposed to proceed through the

intermediacy of isobenzofuranone **4-4**, and then adduct **4-5** that subsequently collapses to **4-6** upon treatment with acetic acid. This unprecedented dimerization could be carried on a decagram scale and provides quick means for accessing protected SPIROL.

Scheme 4.4. Highly diastereoselective spiroketalization of benzylic alcohols 4-2.

a. For R=Bn/MOM: (-)-DBNE (7 mol%), Et₂Zn (1M in hex, 2.2 eq), hexanes, 0°C; 97% yield, 94% ee (R=MOM); 81% yield, 91% ee (R=Bn); **b.** For R=Bn/BOM/MOM, aziridine diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol (5 mol%), Et₂Zn (1M in hex, 2.2 eq), PhMe, 0°C; 97% yield, >99% ee (R=MOM); 83% yield, >99% ee (R=BOM); 99% yield, >99% ee (R=Bn); (*S*,*S*)- aziridine organocatalyst could be used to get (*R*)-**4-2** in excellent ee; **c.** i) *n*-Butyllithium (1 M in hex, 2.0 eq), PhMe, 0°C to rt; ii) diethylcarbonate (0.55 eq), 0°C to rt; iii) AcOH (xs), rt. 67% yield (79% BRSM), >20:1 dr (R=MOM); 54% yield (64% BRSM), >20:1 dr (R=BOM); 42% yield (66% BRSM), >20:1 dr (R=Bn).

The subsequent deprotection of substrates **4-6a–c**, provided the desired SPIROL scaffold (R,S,S)-**4-7** (Scheme 4.5). Computational studies showed that the pseudoenantiomeric diol diastereomers (R,S,S)-**4-7** and (S,S,S)-**4-7** had near equal gas-phase energy (1.0 kcal/mol difference, favoring (S,S,S)-**4-7**), and we therefore surmised that we would be able to equilibrate them under mildly acidic conditions. To our delight, we found that were able to achieve this by stirring the diol in a suspension containing silica, and we furthermore discovered that the

equilibrium could be slightly biased to one of the diastereomers depending on the solvent used (see Appendix C).

Scheme 4.5. Diol equilibration and chemical resolution of diastereomeric ditriflates.

(a) AcCl (2 eq), MeOH, 0°C to rt; for R=MOM, 99% yield; for R=BOM, 98% yield; (b) For R=Bn, H₂ (balloon), NaHCO₃ (9 eq), MeOH, rt; 93% yield; (c) PPPh₂Cl (2.5 eq), DMAP (0.1 eq) NEt₃ (4 eq), DCM, 56% yield over 2 steps, 9:1 dr; (d) Tf₂O (2.4 eq), pyridine (5.3 eq), DCM, 0°C to rt; 97% yield, with conserved dr; (e) Quantities with respect to (S,S,S)-4-8: HP(O)Ph₂ (1.9 eq), Pd(OAc)₂ (8.8 mol%), dppb (8.8 mol%), DIPEA (4.4 eq), DMSO, 80°C, 94% yield of (S,S,S)-4-9, 99% recovery of (R,S,S)-4-8. ^a(R,S,S)-4-7 is the major diastereomer that is initially formed; however, a prolonged exposure to acids, including SiO₂, results in epimerization leading to (S,S,S)-4-7.

Although the ditriflate mixture could be separated by the conventional chromatographic techniques, we have identified a more convenient method that takes advantage of the difference in reactivity between these species. Thus, the mixture of (R,S,S)-4-7 and (S,S,S)-4-7 was converted to the corresponding configurationally stable ditriflates (R,S,S)-4-8 and (S,S,S)-4-8, which underwent resolution in a Pd-catalyzed coupling with diphenylphospine oxide at 80°C. We observed that only the (S,S,S)-4-8 diastereomer reacted in excellent yield to form (S,S,S)-4-9,

while (R, S, S)-4-8 diastereomer was recovered almost quantitatively. The phosphine oxide/triflate (S, S, S)-4-9 was then recrystallized in cyclohexane with excellent recovery to obtain enantiopure material. Following this, we were able to elaborate the triflate/phosphine oxide (S, S, S)-4-9 to the respective diphosphine. An initial reduction with trichlorosilane afforded triflate/phosphine (S, S, S)-4-10, which was then subjected to a second coupling with diphenyl phosphine oxide to obtain phosphine oxide/phosphine (S, S, S)-SPIRAP(O), the structure of which was confirmed by X-ray crystallography. In addition, a direct coupling of the phosphine/triflate (S, S, S)-4-10 with diphenyl phosphine provided (S, S, S)-SPIRAP in excellent yields (Scheme 4.6).

Scheme 4.6. Functionalization of scaffold 4-9 into various ligands.

(a) HSiCl₃ (16 eq), DIPEA (40 eq), PhMe, 80°C, 81% yield; (b) HP(O)Ph₂ (2 eq), DIPEA (5 eq), Pd(OAc)₂ (5 mol%), dppb (5 mol%) DMSO, 100°C, 94% yield; (c) Cs₂CO₃ (5 eq), DMF, 80°C, 95%; (d) HPPh₂ (3 eq), DIPEA (6.1 eq), Pd(OAc)₂ (10 mol%), dppb (11 mol%) DMF, 100°C, 92% yield; (e) Pd(PhCN)₂Cl₂ (1.0 eq), benzene, 97% yield.

In line with the aforementioned studies, the ditriflate (R,S,S)-4-8 reacted in good yields with diphenyl phosphine oxide in similar coupling conditions, albeit at 100°C, to provide (R,S,S)-4-9, which was likewise elaborated to (R,S,S)-SPIRAP(O) and (R,S,S)-SPIRAP in good yields.

The absolute stereochemistry of (S,R,R)-SPIRAP(O) obtained by an identical route using (R)-4-2a was confirmed by X-ray crystallography. In addition, other ligands such as diphosphinite (R,S,S)-SPIRAPO (Scheme 4.5) and catalysts such as (S,S,S)-SPIROMP as well as stable PdCl₂ complexes 4-11 (Scheme 5.6) were conveniently generated.

The ligands synthesized above were then tested in various reported asymmetric catalysis applications (Table 4.1). We were pleased to find that (S,S,S)-SPIRAP is an exceptional ligand in the Ir-catalyzed hydroarylation of methylated cinnamyl alcohol 4-12 and 2-phenyl pyridine 4-13, which provided better enantiocontrol (entry 4) than the BINAP- (entries 1 and 3) and SEGPHOSbased (entry 2) ligands recently explored by the Nishimura group.^[40] Interestingly, it's diastereomer, (R,S,S)-SPIRAP was not a viable ligand for this reaction, and no product was detected (entry 5). Similarly, excellent performance of (S,S,S)-SPIRAP was observed in the Pdcatalyzed allylic alkylation of chalcone derivative 4-15 with dimethyl malonate 4-16 to afford chiral diester 4-17 in 94% yield and 97% ee (entry 7), which comparable to commercial (S)-SDP (entry 6).^[41] Remarkably, the pseudoenantiomeric ligand (*R*,*S*,*S*)-**SPIRAP** favored the other enantiomer of the product in 86% ee (entry 8). The phosphine oxide/phosphine ligand (S, S, S)-**SPIRAP(O)** was also used with great success in a Pd-catalyzed Heck reaction of 2-vinylphenyl triflate 4-18 with norbornene 4-19 to afford tricycle 4-20 (entry 10).^[42] As before, the diastereometric complex (R,S,S)-SPIRAP(O) favored an enantiometric product albeit with somewhat lower selectivity (entry 11). Finally, diphosphinites (S,R,R)-SPIRAPO and (R,R,R)-SPIRAPO were applied in the Rh-catalyzed asymmetric hydrogenations of dehydroalanine derivative 4-21 with excellent results.^[43] The (*R*,*R*,*R*)-SPIRAPO performed similarly to SPINOLbased ligand (S)-SDP (entries 15 and 13) while the use of the (S,R,R)-diastereomer resulted in reversal of enantioselectivity (entry 14). In addition, application of SPIROMP organocatalytic aza-

Baylis Hillman reaction^[44] has been demonstrated (see Appendix C).

Table 4.1. Application of SPIRAP, SPIRAP(O), and SPIRAPO in Ir-, Pd- and Rh-catalyzed asymmetric transformations.

A) $[IrCl(COD)]_2$ (2.5 mol%), ligand (6 mol%), NaBAr^F₄ (10 mol%), 2-phenylpyridine (1.07 eq), PhMe; **B**) $[PdCl(allyl)]_2$ (2.5 mol%), Ligand (6 mol%), dimethyl malonate (2 eq), Et₂Zn (2 eq), rt, 1,4-dioxane; **C**) Pd(dba)_2 (2.5 mol%), ligand (3 mol%), norbornene (4 eq), DIPEA (2 eq), 1,4-dioxane, 70°C **D**) [Rh(COD)]OTf (5.0 mol%), ligand (6.0 mol%), H₂ (500 psi), DCM, rt.

The consistent similar performance of (S,S,S)-SPIRAP and (S)-SDP and different behavior of (**R**,**S**,**S**)-**SPIRAP** prompted us to do a more thorough comparison between the (S,S,S)and (R,S,S)-diastereomers. The density functional theory $(DFT)^{[45]}$ analysis of diastereomeric Pd(II) complexes of SPIRAP (4-11), and commercial (S)-SDP, demonstrated that these complexes have similar natural charge at the metallic center. However, while the geometry index parameters τ_4 ^[46] and τ_4 , ^[47] showed similar values for (*S*,*S*,*S*)-4-11 and (*S*)-4-23 (entries 1 and 3, Table 4.2), τ_4 and τ_4 ' for (*R*,*S*,*S*)-**4-11** were found to be considerably different (entry 2, Table 4.2). This implied that, although these three complexes are electronically similar, the (R,S,S)-SPIRAP complex is structurally significantly different from (S)-SDP, while (S,S,S)-SPIRAP, although not identical, is much more similar. The calculated bite angles also demonstrated this trend, with (R,S,S)-SPIRAP showcasing a slightly larger angle. This explains the lower performance of (R,S,S)-SPIRAP in catalytic applications optimized for SDP. A closer inspection of the threedimensional structures of these complexes reveals that the ethyl sidechain in (R,S,S)-SPIRAP disturbs the π -stacking between the aryl groups of the backbone, leading to a different overall geometry (Figure 4.4). The structural dissimilarities between our spiroketal manifold and the SPINOL core leads us to believe that our catalytic platform could provide a unique solution to new asymmetric methodologies of importance in current organic chemistry. This divergence is reflected in the performance of some of the reactions mentioned above. The ease of preparation, stability, availability of new sites for tuning and outstanding performance of (S,S,S)-SPIRAP prompt us to suggest that it could be a widely used and successful ligand in asymmetric catalysis. In addition, easily accessible from the same chiral intermediate (R,S,S)- ligands could be used if reversed selectivity is desired. The results obtained with the (R,S,S)- ligands are particularly remarkable, as these thermodynamically unstable ligands were found to possess kinetic stability

under a variety of reaction conditions. Further application of our new ligands to novel reactions and chemical processes, as well as the preparation of other catalysts derived from the SPIROL core, are currently underway in our laboratory.

entry	complex	natural charge at Pd(II)	$ au_4$	τ4	bite angle (°)
1	Et O',, PHPh ₂ Pd ^{-Cl} Cl Et''' (S,S,S	0.425) -4-11	0.113	0.125	94.4
2	Et PPh2 Cl Pd Cl Et PPh2 (R,S,S)	0.425 - 4-11	0.086	0.092	95.3
3	PPh ₂ Pd Cl PPh ₂ Cl (S)-4	0.427 - 23	0.112	0.129	94.2

Table 4.2. Comparison of 3D structures of SPIRAP diastereomers and SDP.^a

^a τ_4 and τ_4 are geometry index parameters describe two largest angles at Pd center.

Figure 4.4. Comparison of (*R*,*S*,*S*)-SPIRAP, (*S*,*S*,*S*)-SPIRAP, and SDP complexes of PdCl₂.

4.3 References

- [1] I. Ojima, N. Clos, C. Bastos, *Tetrahedron* **1989**, *45*, 6901–6939.
- [2] N. G. Andersen, B. A. Keay, *Chem. Rev.* **2001**, *101*, 997–1030.
- [3] M. Kumada, Pure Appl. Chem. 2007, 52, 669–679.
- [4] J. K. Stille, Angew. Chem., Int. Ed. 1986, 25, 508–524.
- [5] N. Miyaura, A. Suzuki, *Chem. Rev.* **1995**, *95*, 2457–2483.
- [6] E. ichi Negishi, Acc. Chem. Res. 1982, 15, 340–348.
- [7] C. A. Busacca, D. R. Fandrick, J. J. Song, C. H. Senanayake, Adv. Synth. Catal. 2011, 353, 1825–1864.
- [8] J. C. Giordan, J. H. Moore, J. A. Tossell, Acc. Chem. Res. 1986, 19, 281–286.
- [9] J. A. Tossell, J. H. Moore, J. C. Giordan, *Inorg. Chem.* **1985**, *24*, 1100–1103.
- [10] S. X. Xiao, W. C. Trogler, D. E. Ellis, Z. Berkovitch-Yellin, J. Am. Chem. Soc. 1983, 105, 7033–7037.
- [11] R. D. Baechler, K. Mislow, J. Am. Chem. Soc. 1970, 92, 3090–3093.
- [12] J. F. Young, J. A. Osborn, F. H. Jardine, G. Wilkinson, *Chem. Commun.* 1965, 0, 131– 132.
- [13] W. S. Knowles, M. J. Sabacky, Chem. Commun. 1968, 0, 1445–1446.
- [14] W. S. Knowles, M. J. Sabacky, B. D. Vineyard, J. Chem. Soc. Chem. Commun. 1972, 0, 10–11.
- [15] T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H. Yamada, H. Tsuruta, S. Matsukawa, K. Yamaguchi, J. Am. Chem. Soc. 1998, 120, 1635–1636.
- [16] T. P. Dang, H. B. Kagan, J. Chem. Soc. D Chem. Commun. 1971, 0, 481.
- [17] W. S. Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Weinkauff, J. Am. Chem. Soc. 1975, 97, 2567–2568.
- [18] A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, *J. Am. Chem. Soc.* **1980**, *102*, 7932–7934.
- [19] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. **1987**, 109, 5856–5858.
- [20] R. Noyori, H. Takaya, Acc. Chem. Res. 1990, 23, 345–350.
- [21] R. Noyori, Angew. Chem., Int. Ed. 2002, 41, 2008.
- [22] M. Berthod, G. Mignani, G. Woodward, M. Lemaire, Chem. Rev. 2005, 105, 1801–1836.
- [23] W. S. Knowles, Angew. Chem., Int. Ed. 2002, 41, 1998.

- [24] T. P. Yoon, E. N. Jacobsen, *Science* **2003**, *299*, 1691–1693.
- [25] A. Pfaltz, W. J. Drury, Proc. Natl. Acad. Sci. 2004, 101, 5723–5726.
- [26] V. B. Birman, A. L. Rheingold, K. C. Lam, Tetrahedron Asymmetry 1999, 10, 125–131.
- [27] J. H. Zhang, J. Liao, X. Cui, K. B. Yu, J. Zhu, J. G. Deng, S. F. Zhu, L. X. Wang, Q. L. Zhou, L. W. Chung, et al., *Tetrahedron Asymmetry* **2002**, *13*, 1363–1366.
- [28] J. H. Xie, L. X. Wang, Y. Fu, S. F. Zhu, B. M. Fan, H. F. Duan, Q. L. Zhou, J. Am. Chem. Soc. 2003, 125, 4404–4405.
- [29] J. H. Xie, Q. L. Zhou, Acc. Chem. Res. 2008, 41, 581–593.
- [30] K. Ding, Z. Han, Z. Wang, Chem. An Asian J. 2009, 4, 32–41.
- [31] S. Li, J. W. Zhang, X. L. Li, D. J. Cheng, B. Tan, J. Am. Chem. Soc. 2016, 138, 16561– 16566.
- [32] Z. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074– 8077.
- [33] P. Nagorny, Z. Sun, G. A. Winschel, Synlett 2013, 24, 661–665.
- [34] Y. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, P. Nagorny, *J. Am. Chem. Soc.* **2016**, *138*, 444–456.
- [35] H. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo, T. Saito, Acc. Chem. Res. 2007, 40, 1385–1393.
- [36] C. M. Lavoie, P. M. Macqueen, N. L. Rotta-Loria, R. S. Sawatzky, A. Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J. Ferguson, M. Stradiotto, *Nat. Commun.* 2016, 7, 11073.
- [37] X. Wang, Z. Han, Z. Wang, K. Ding, Angew. Chem., Int. Ed. 2012, 51, 936–940.
- [38] K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56, 4264–4268.
- [39] M. C. Wang, Y. H. Wang, G. W. Li, P. P. Sun, J. X. Tian, H. J. Lu, *Tetrahedron Asymmetry* **2011**, *22*, 761–768.
- [40] Y. Ebe, M. Onoda, T. Nishimura, H. Yorimitsu, Angew. Chem., Int. Ed. 2017, 56, 5607– 5611.
- [41] J. H. Xie, H. F. Duan, B. M. Fan, X. Cheng, L. X. Wang, Q. L. Zhou, Adv. Synth. Catal. 2004, 346, 625–632.
- [42] J. Hu, H. Hirao, Y. Li, J. Zhou, Angew. Chem., Int. Ed. 2013, 52, 8676–8680.
- [43] R. Guo, T. T. L. Au-Yeung, J. Wu, M. C. K. Choi, A. S. C. Chan, *Tetrahedron Asymmetry* **2002**, *13*, 2519–2522.
- [44] S. Takizawa, K. Kiriyama, K. Ieki, H. Sasai, Chem. Commun. 2011, 47, 9227–9229.
- [45] P. Geerlings, F. De Proft, W. Langenaeker, *Chem. Rev.* **2003**, *103*, 1793–1874.

- [46] L. Yang, D. R. Powell, R. P. Houser, *Dalt. Trans.* 2007, 0, 955–964.
- [47] A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, *Polyhedron* **2015**, *90*, 47–57.

CHAPTER 5

Studies on the Mechanism of Phosphoric Acid-Catalyzed Glycosylation of Complex Polyols "It is well to remember that most arguments in favor of not trying an experiment are too flimsily based"

Robert Burns Woodward

5.1 Introduction to chemical glycosylation

Throughout the 20th century, it became evident that carbohydrates and glycosylated natural products, were indispensable in biological systems not just as an energy source, but also as key agents in signaling and recognition events of many biological processes.^[1] As examples, oligosaccharides on the cell surface determine human blood groups and play key roles during infection; and several carbohydrate-based vaccines are used to control bacterial disease such as *Haemophilus influenza* type B.^[2] Even today, the role of many glycoconjugates are just being discovered or remain a mystery.^[3] To put things in perspective, according to a survey conducted by Thorson, approximately 20% of bacterial natural products are glycosides.^[4] Thanks to the contributions of the past generation of chemists and biochemists, it is now commonly accepted that carbohydrates play fundamental roles in the development, recognition, growth, function, and survival of living cells and organisms.^[5]

Given the tremendous implications of carbohydrates to biological systems, it is no surprise that even simple carbohydrates are commonly found as powerful scaffolds drug in discovery.^[6,7] In addition, it is well known that glycosylation of drug candidates can result in a drastic improvement of key properties such as *in vivo* circulatory half-life,^[8] immunogenicity,^[9] selectivity, efficacy, and safety.^[10,11] However the field of glycochemistry has struggled to advance in comparison to other disciplines such as those considering oligonucleotides and proteins.^[5] Several reasons can be given to explain this: 1) the identification of the number of glycan structures in a cell or organism, the "glycome", is difficult due to the multitude of carbohydrate-containing molecules, variations in sugar identity, and possible glycoforms; 2) the carbohydrate structures themselves are structurally complex, for example glycosides in bacteria can be composed by many monosaccharides connected in a perplexing array of branched structures; and 3) the synthesis of carbohydrate smostly relies on target-specific strategies, only really accessible to synthetic groups with carbohydrate chemistry expertise, in great opposition to the assembly of oligonucleotides and oligopeptides from anomeric building blocks using standardized protocols.^[5,12,13] Figure 5.1 contains a small selection of glycosides which serves to showcase the structural diversity and complexity of some sugar-containing synthetic targets.

Figure 5.1. Selection of sugar-containing natural products.

The main challenge associated with the synthesis of sugar-containing molecules is the construction of glycosidic linkages between fragments with the correct stereo- and regiochemistry. This is especially true when fragments contain multiple functional groups capable of being glycosylated. The mainstay strategy used to address this relies on multistep protection and deprotection sequences to achieve selective regio- and chemoselective glycosylations of natural products, in conjunction with a judicious choice of a combination of glycosyl donor and glycosyl acceptor to control the stereochemistry of the product.^[14] As it is evident, this strategy represents an *ad hoc* solution tailored to each individual synthetic target. A better alternative would be to forgo the requirement of selective protection and instead rely on the design and implementation of efficient and selective catalysts for the glycosylation step.^[15] We know that this is not only possible, but ideal as it is the modus operandi of nature. Indeed, nature utilizes enzymes to perform glycosylations with exquisite regio- and stereocontrol. For instance, glycogen synthase, a class of glycosyltransferase enzymes, catalyzes the selective formation of $\alpha(1\rightarrow 4)$ glycosidic bonds between glucose monomers to produce glycogen, an essential form of energy storage in mammals and other living species (Scheme 5.1).^[16]

Although nature is very successful in derivatizing molecules with excellent control, replicating such degrees of selectivities in a flask remains a formidable challenge. However, thanks to the contributions of many research groups, remarkable advances in the site-selective functionalization of polyols have been made, some of which are mentioned next. Miller, one of the pioneers in this field, used a peptide derived organic catalyst to regioselectively install sugar moieties in complex polyols such as erythromycin,^[17] vancomycin,^[18–20] and apoptolidin A^[21] (Scheme 5.2a). In 2013, the Tan group reported the regiodivergent glycosylation of unprotected monosaccharides using a chiral amine base as an organocatalyst (Scheme 5.2b).^[22] As a final example, contemporaneously to the Tan group we published our work in the chiral phosphoric acid catalyzed regioselective acetalization of monosaccharides-derived diols (Scheme 5.2c, see section **2.1** for an introduction to phosphoric acid catalysts).^[23]

The inherent selectivity bias that bulky and chiral sugar donors impose as well as the stereochemistry in the formation of the glycosidic bond, make site-selective glycosylation of natural products even more challenging than the functionalization of natural products with simple groups such as those examples shown in Scheme 5.2. However, chemists have come up with many inventive solutions to accomplish chemical site-selective glycosylations of unprotected polyols.^[14] For example, in 2011 the Taylor group reported the use of borinic acids as catalysts in the highly rigid selective glycosylation of unprotected monosaccharides (Scheme 5.3a).^[24] In addition, indirect glycosylation strategies have also been reported such as the work by the Montgomery group on an intramolecular aglycone delivery in the synthesis of 1,6-disacharides (Scheme 5.3b).^[25]

Scheme 5.2. Examples of regioselective functionalization of polyols.

Scheme 5.3. Examples of site-selective glycosylation of polyols.

Another hurdle in the development of powerful and general glycosylation methodologies is that disproportionally small amounts of information are known about the mechanistic details of glycosylations, even though this is the most important reaction in the field of glycoscience. The lack of mechanistic insight results in an unnecessarily high degree of empiricism that slows down the development of next-generation catalysts for glycosylations. An explanation to this is that glycosylation reactions are immensely detailed and complicated, and a wide spread of competing mechanisms ranging from S_N1 to S_N2 are invoked.^[26–29] Insights in glycosylation mechanisms, therefore, are greatly needed.

The Nagorny group has a long-standing interest in the development of powerful glycosylation reactions. To this end, Dr. Tay Rosenthal (Nagorny group) studied the CPA-controlled stereo- and regioselective glycosylation of complex polyols. Given our experience and success in the application of the growing string method to the mechanistic elucidation of CPA-catalyzed spiroketalizations (See Chapter 3), a collaboration to uncover the finer mechanistic details of CPA-catalyzed glycosylations was undertaken and is described section 5.2. In addition, in 2013 the Nagorny group reported that CPAs and enol ethers could be used to regioselectively protect sugar pyranosides bearing unprotected hydroxyl groups at the C2 and C3 positions. Our computational mechanistic investigations into this related transformation are detailed in section 5.3. Finally, given our success in the regioselective glycosylation of diols in sugar frameworks (section 5.3) and in regio- and stereoselective glycosylation of 6-dEB (section 5.2), we hypothesized that we could employ CPAs to glycosylate D-glucose-derived diols with stereocontrol and site-selectivity. Computational work revealed mechanistic details of these efforts, which are expanded in section 5.4.

5.2 Mechanism of the CPA-Catalyzed Regiodivergent Glycosylation of 6-deoxy-Erythronolide B

(This section was adapted from:

Tay, J. H.; Argüelles, A. J.; DeMars, M.; Zimmerman, P. M.; Sherman, D.; Nagorny, P. J. Am. *Chem. Soc.* 2017, 139, 8570.

Experimental information can be found in Appendix D)

While some remarkable examples of stereo-, chemo-, or regioselective glycosylation reactions have recently emerged,^[24,25,48–51] the available synthetic tools have limited versatility, and many challenges for the selective glycosylation of polyols remain unaddressed. One of such challenges is achieving regiodivergent selective formation of glycosylated isoforms from the same initial polyol by judicious selection of catalysts or reaction conditions. Inspired by the seminal work of Miller and coworkers^[17,21,43] and believing that the problem of regiocontrol could be addressed with the use of chiral catalysts that would change the environment around the glycosyl donor and affect the default reactivity pattern exhibited by the acceptor,^[23] our groups pursued studies focused on developing and applying such transformations.^[52–55] In order to demonstrate the power of this approach in a complex settings medicinally important 14-membered triol, 6-deoxyerythronolide B (6-dEB), was selected as our initial target.

6-dEB is a biogenic precursor to 14-membered macrolide antibiotics erythromycins A and B.^[56] Once produced, 6-dEB undergoes sequential glycosylations first at the C3 and then at the C5 position, which is an essential requirement for both the subsequent oxygenation at the C12 position, as well as for the antibiotic activity exhibited by erythromycins (Figure 5.2A). While recombinant techniques provide access to non-glycosylated 6-dEB,^[57,58] the selective installation of sugars enzymatically represents a significant challenge.^[59,60] To address this challenge and to

demonstrate that chemical catalysis could serve as a powerful tool for the regioselective glycosylation of complex natural polyols, we initiated studies directed to discovery of new methods that would allow direct and selective formation of all three regioisomeric glycosides from unprotected 6-dEB (Figure 5.2B). In particular, we were interested in identifying chiral catalysts that could mimic the function of EryBV and accomplish selective installation of the sugar at the C3 position in the presence of other functionalities. Indeed, our subsequent studies revealed that chiral acids such as chiral phosphoric acids (CPAs)^[61–67] or chiral disulfonimides could promote regiodivergent introduction of different sugars at both the C5 or C3 positions of 6-dEB and oleandomycin-derived 14-membered macrolides. In addition, conditions based on temporarily in situ masking of the C3/C5 diol as a cyclic boronate and subsequent glycosylation of the C11 position followed by unmasking the diol upon work up have been developed. These protocols have been used to generate various isomeric glycosides of 6-dEB with 6-deoxysugars, a task that cannot be easily accomplished with existing achiral catalyst-based glycosylation or enzymatic methods. Remarkably, the mechanistic and theoretical studies contradict the traditionally proposed oxocarbenium ion-based reaction mechanism and are in line with the formation of covalently linked anomeric phosphate reaction intermediates (Figure 5.2C). This work represents the first example of chiral catalyst-controlled regioselective glycosylation, and the methods developed in this study hold great potential for the non-enzymatic generation of glycosylated isoforms of complex natural polyols.

A. Biosynthesis of erythromycin B from 6-dEB

B. Accessing glycosylated 6-dEB by mimicking glycosyltransferases with chiral catalysts (this work)

Figure 5.2. Regioselective glycosylation of 6-dEB.

To acquire sufficient amounts of 6-dEB for our studies, we employed an *E. coli* strain that had previously been engineered and optimized for high-level production of this biosynthetic intermediate.^[58] Although the original study reported 6-dEB production titers as high as 129 mg/L in shake flask fermentation experiments, we were unable to reproduce these yields under the same conditions, typically acquiring ~5 mg/L of isolated material. Furthermore, quantification of 6-dEB production by LC-MS prior to culture extraction revealed that the low isolated yields were not due to loss of material from downstream workup, isolation, and purification procedures. After testing several alternative culturing conditions, we established a protocol that could reliably furnish 20-25 mg/L of the purified macrolactone. Thus, 200 mg of pure 6-dEB for glycosylation studies could be obtained in a facile manner following purification from a standard 9 L-scale fermentation.

Our studies commenced with investigating selective glycosylation of 6-dEB with 6deoxyglucose derivative 5-A (Table 5.1). To establish the inherent reactivity of the C3, C5, and C11 hydroxyls, control experiments where the reaction between 6-dEB and 5-A was catalyzed by achiral catalysts (TMSOTf, (PhO)₂PO₂H, anhydrous *p*-TsOH and BF₃•OEt₂) were carried out (entries 1–5). The reaction with TMSOTf resulted in exclusive formation of the α -C5 product 5-2 (50% yield) along with the formation of *bis*-glycosylated product 5-3 (7% yield). The reaction with diphenylphosphoric acid (50 mol%) in dichloromethane and toluene (entries 2 and 3) proceeded with low conversion and provided the C5-glycoside (5-2) as the major product (24% and 30% yield respectively) along with minor quantities (5-6% yield) of the corresponding C3 product 5-1. Despite its higher acidity, anhydrous p-TsOH was not an effective catalyst for the glycosylation of 6-dEB and only trace amounts of products 5-1 and 5-2 (< 10%, 17:83 r.r.) was detected by NMR. Finally, the reaction catalyzed by BF₃•OEt₂, (entry 5), a standard promoter for the glycosylation with trichloroacetimidates, proceeded in 59% yield to provide products 5-2 and 5-1 in 66:34 d.r. While all of the previous control reactions (entries 1-4) resulted in clean formation of the α -anomers, the reaction with BF₃•OEt₂ as the catalyst led to the mixture of diastereomers of the C5-product 5-2 (α : β = 2.9:1). It should be noted that thus produced glycosides contain perbenzylated sugars, which can be converted in one step to the fully deprotected macrolide glycosides by hydrogenolysis over Pd/C as exemplified by the debenzylation of 5-2 to 5-2A (Scheme 5.4).

ay Ros	enthal.	<u>_</u>			~				
Me	, Me	Me Me, 11 OH Me Me, 11 OH Me Me Me Me Me Me Me Me Me Me Me							
Me,,,1		Et, Me							
Et	о ^{Ме} , ⁵ ОН		³ ,, ₀						
0.	3ОН	5-1	BnO	Z ^{Me} OBi OBn	n n	5-2 OBn			
6-dE	Me B	BnO- catalyst BnO			0				
	+	4Å M.S.	BnO	Me					
BnO BnO	Me O	4A M.S.	M	-,,, ,	11	Ме			
BnO	BnO O CCI3		5-3 _E	it un L o	Me, 5	11.			
	и NH 5-А		_		√"′′ОН	"'o			
	3-A				Me B	nO COMe OBn OBn			
entry	activator (mol%)	solvent (conc.)	T (°C)	t (h)	yield	1 : 2 : 3			
1	TMS-OTf (20)	PhMe (0.05 M)	-20	17	57%	0 : 88 : 12			
2	PhO ₂ PO ₂ H (50)	CH ₂ Cl ₂ (0.05 M)	r.t.	26	30%	21 : 79 : 0			
3	(R)-5-4a (20)	CH ₂ Cl ₂ (0.05 M)	r.t.	30	13%	13 : 87 : 0			
4	(R)-5-4b (20)	CH ₂ Cl ₂ (0.05 M)	r.t.	30	13%	17 : 83 : 0			
5	(R)-5-4c (20)	PhMe (0.10 M)	r.t.	24	57%	25 : 75 : 0			
6	(R)-5-4d (20)	CH ₂ Cl ₂ (0.05 M)	r.t.	26	50%	50 : 50 : 0			
7	(S)-5-4d (20)	PhMe (0.20 M)	r.t.	30	98%	1 : 99 : 0			
8	(R)-5-5d (20)	PhMe (0.10 M)	r.t.	24	71%	1 : 99 : 0			
9	(R)-5-4e (20)	PhMe (0.10 M)	r.t.	24	80%	52 : 48 : 0			
10	(R)-5-4f (20)	CH ₂ Cl ₂ (0.05 M)	r.t.	48	51%	69 : 31 : 0			
11	(R)-5-6f (20)	PhMe (0.10 M)	r.t.	48	75%	7 : 93 : 0			
12	(S)-5-6f (20)	PhMe (0.10 M)	r.t.	48	54%	60 : 40 : 0			
13	(S)-5-6f (20)	PhCF ₃ (0.10 M)	r.t.	64	83%	63 : 37 : 0			
14	(S)-5-6f (20)	CH ₂ Cl ₂ (0.10 M)	r.t.	64	57%	71 : 29 : 0			
15	(S)-5-6f (30)	CH ₂ Cl ₂ (0.10 M)	r.t.	72	82%	73 : 27 : 0			
	Ar	Ar		≻ ^{Ar}		Ar			
\sim		SO ₂ NH		^{∽0} 、 _₽ ≤0 -0 [.] ₽≦0) IH				
\square				≻ _{Ar}		Ar			
	(R)-5-4	(<i>R</i>)-5-5	(<i>R</i>)-	5-6		(S)-5-6			
	a : Ar = 2,6- <i>i</i> Pr <u>;</u> b : Ar = 2,4,6- <i>i</i> F			2		5-CI-C ₆ H ₃ 5-F-C ₆ H ₃			

Table 5.1. Optimization of CPA-catalyzed glycosylation of 6-dEB^a. Experiments were performed by Dr. Tay Rosenthal.

aConditions: 6-dEB (1 equiv.), A (1.2 equiv.), 4Å M.S., solvent (0.20–0.05 M). Reactions were run on 0.02 mmol scale. ^bObtained as the 2.9:1 mixture of α : β diastereomers.

Scheme 5.4. Debenzylation of 2. Experiments were performed by Dr. Tay Rosenthal.

With these results in hand, our subsequent studies were focused on evaluating various chiral catalysts (entries 6-12) with the objective of increasing the selectivity and yield of the C5glycoside 5-2. The evaluation of catalysts 5-4a-d in nonpolar solvents (entries 6–11) helped to identify catalyst (S)-5-4d as the catalyst of choice (entry 11) that promoted the formation of α -C5 glycoside 5-2 in an excellent yield and selectivity (98% yield, 99:1 r.r.) and without the formation of bis-glycoside 5-3. In addition, commercially available bis-sulfonimide (R)-5-5d could also promote highly selective formation of 5-2 albeit in lower yield (71% yield, entry 12). The biosynthesis of Erythromycin A from 6-dEB involves initial selective glycosylation at the C3 position catalyzed by EryBV.^[68–71] However, our results indicate that the non-enzymatic version of this transformation is not accessible as the C5 hydroxyl of 6-dEB is inherently more reactive than the C3 position. Therefore, one of the important objectives in our following studies was to discover a catalyst that could mimic EryBV function and promote a C3-selective glycosylation directly from 6-dEB. The aforementioned studies indicated that the use of catalyst (R)-5-4d with DCM as the solvent (entry 9) resulted in ~1:1 C5:C3 selectivity and thus we decided to explore structurally similar catalysts with the objective of enhancing selectivity for the formation of 5-1 (entries 13-19). Considering that (R)-5-4d possesses 3,3'-aryl substituents functionalized at the 3,5-positions of the phenyl ring (i.e. 3,5-(CF₃)₂Ph-), BINOL-based catalysts 5-4e and 5-4f with similar substitution of the phenyl ring were examined (entries 13 and 14). To our delight, catalyst

(R)-5-4f (Ar = 3,5-F-Ph) indeed promoted the selective formation of 1 for the first time (51% yield, 69:31 r.r.). In further attempts to optimize the reaction yield and selectivity, SPINOL-based catalysts 5-6 were examined (entries 15–19). Such catalysts possess a less flexible backbone with a different angle between substituents, which may result in a better differentiation of the diastereomeric transition states and hence higher selectivities in comparison to the BINOL based catalysts.^[72] Gratifyingly, catalyst (S)-5-6f (with a stereochemical configuration identical to (R)-**5-4f** and Ar = 3,5-F-Ph) promoted selective formation of the C3 glycoside **5-1** in higher yield and selectivity (82% yield, 73:27 r.r.) when the reaction was carried in dichloromethane at room temperature (entry 19). In addition, the use of enantiomeric catalyst (R)-5-6f resulted in a selectivity switch and enhanced formation of the C5-glycosylated product 5-2 (entry 11, 75% yield, 93:7 r.r.). These results strongly indicate that the chiral catalyst configuration plays a determining role for whether the C5 (entry 11) or C3 (entry 19) position of 6-dEB is functionalized. Although with lower selectivity than observed in nature with EryBV, catalyst (R)-5-6f overrides the inherent preference for the C5 glycosylation exhibited by 6-dEB and directs glycosylation to proceed at the C3-position.

The optimization studies depicted in Table 5.1 led to the development of selective reactions between 6-dEB and 6-deoxyglucose derivative 5-**A** that resulted in the C3-product **5-1** (73:27 r.r., >99:1 α : β , 82% yield) or the C5-product **5-2** (99:1 r.r., >99:1 α : β , 98% yield). In order to demonstrate that regiodivergent glycosylation of 6-dEB leading to all possible regioisomeric forms is possible, the development of a protocol allowing single step generation of the C11 glycoform of 6-dEB (**5-8a**) was pursued next (Scheme 5.5). Based on the prior glycosylation studies (Table 5.1), the C11 hydroxyl appeared to be the least reactive hydroxyl functionality in 6-dEB. We surmised that since the C3 and C5 hydroxyls are in 1,3-*syn* relationship, they could be selectively masked to form a cyclic boronic acid ester, which, in theory, could be formed *in situ* and cleaved upon work up without introducing additional steps. While such strategy has been successfully implemented in carbohydrate synthesis,^[73–75] we are unaware of its use for the single-pot selective glycosylation of 14-membered macrolides or other non-carbohydrate-based natural products. Upon careful selection of the reaction conditions, the traceless *in situ* protection of 6-dEB with phenylboronic acid followed by glycosylation with 5-A was accomplished to provide the corresponding C11 glycoside. This single pot sequence was completed by peroxide work up that cleaved boronate and resulted in **5-8a** in 62% yield (99:1 r.r., $3.7:1 \beta:\alpha$).

Scheme 5.5. Single-pot traceless protection/glycosylation of the C11-position of 6-dEB. Experiments were performed by Dr. Tay Rosenthal.

With selective methods for the introduction of sugar at all three positions of 6-dEB leading to glycosylated macrolides **5-1**, **5-2**, and **5-8a** (Table 5.2) in hand, the scope and limitations of these methods were investigated. To demonstrate that catalysts (*S*)-**5-4d** and (*S*)-**5-6f** could promote the reactions with other 6-deoxysugars, the reaction of 6-dEB and *D*-fucose derivative 5-

B using chiral catalyst-controlled glycosylation (conditions I and II, Table 5.2) was examined. As before, in the control experiment with TMSOTf as the promoter, the highly selective formation of C5 product **5-8c** was observed in 69% yield along with significant amounts (31% yield) of *bis*-glycosylated product. This strongly contrasts with the (*S*)-**5-6f**-catalyzed reaction (conditions I) that allowed achieving the formation of the C3 product **5-8b** that was not observed in the control experiment (56:44 r.r., >99:1 α : β , 87% yield). As before, applying the BINOL-based catalyst (*S*)-**5-4b** resulted in exclusive formation of the C5 glycoside **5-8c** (>99:1 r.r., 1.7:1 α : β , 82% yield) with no *bis*-glycosylation product observed in the reaction mixture.

Our studies turned next to demonstrating that the methods identified in Table 5.2 could be applicable to the glycosylation of macrolides other than 6-dEB. Thus, we identified a related 14membered macrolide 5-7 as a substrate that is structurally similar to 6-dEB, yet displays a dissimilar reactivity pattern due to the variant functionalities at the C8 position. In addition, this readily accessible oleandomycin derivative was selected due to its stability to spontaneous hemiacetalization documented for other deglycosylated oleandomycin derivatives.^[70,76] Interestingly, macrolide 5-7 exhibited a markedly different reactivity profile in comparison to 6dEB in reactions with achiral and chiral catalysts. When exposed to TMSOTf (conditions IV), macrolide 5-7 and donor 5-A reacted to produce the mixture of the C5 product 5-8d (99:1 r.r., 1.6:1 = α : β , 31% yield), and hemiacetalized C3 side product **5-8e** (99:1 r.r., 1.6:1 = α : β , 31% yield). These results suggest that the C3 and C5 hydroxyls are equally reactive, and that an unselective glycosylation is followed by hemiacetalization of the C3 product to form **5-8e**. Similarly, the reactions catalyzed by CPAs followed a different trend as both (R)- and (S)-CPA catalysts were found to be C3-selective. The highest selectivity for the reaction of 5-7 and 5-A was observed for the catalyst (**R**)-5-6f, while its enantiomer (S)-5-6f also promoted a C3-selective glycosylation of 5-7; albeit with lower regioselectivity. Thus, the use of (R)-5-6f led to regioselective formation of the C3 glycoside **5-8f** (71:29 r.r., 1:1 = α : β , 80% yield), while the reaction with (*R*)-**5-6f** provided 39% of **5-8f** (3.4:1= α : β) and 21% of C5-glycosylated product **5-8d** with no hemiacetalization side product 5-8e observed. In attempts to accomplish selective C5 glycosylation, catalysts (S)-5-4d and (R)-5-5d were explored, and (R)-5-5d catalyzed the selective formation of the C5 product 5-**8d** (70:30 r.r., $3.4:1 = \alpha:\beta$, 79% yield). Similar trends were observed for the glycosylation of 5-7 with fucose derivative 5-B. In a control reaction, macrolide 5-7 provided equimolar mixture of C5glycosylated product **5-8i** along with the hemiacetalized C3-glycosylaed product **5-8j**. The use of catalyst (S)-5-6f resulted in a highly selective formation of the corresponding C3 product (91:9 r.r., 1:99 = α : β , 93% yield). Using our prior findings, the formation of the C5-glycosylated product **5-8i** was accomplished with catalyst (**R**)-**5-5d** (71:29 r.r., $1.8:1 = \alpha:\beta$, 82% yield). Additionally, we demonstrated that, in analogy to 6-dEB, macrolide 5-7 could also be glycosylated at the C11 position to provide compound **5-8h** (99:1 r.r., 99:1 α : β , 48%, 89% brsm) yield) using traceless *in* situ protection with methylboronic acid prior to glycosylation (conditions V). Finally, to assess the effect of sugar chirality, the reactions of 5-7 with enantiomeric L-fucose derivative 5-C were investigated. The control experiments with C where TMSOTf was used as the catalyst resulted in essentially the same outcome as the D-fucose derivative 5-B. Similarly, the (R)-5-6f-catalyzed reaction of 5-7 and 5-C proceeded with high levels of regioselectivity and provided the corresponding C3 glycoside **5-8k** (88:12 r.r., 1:2 α:β, 76% yield). In summary, while the change in the macrolide structure may require reevaluation of a preselected group of catalyst (i.e. (R)- and (S)- enantiomers of 5-4d, 5-5d and 5-6f), the overall regioselectivity trends hold for a given macrolide and are not affected by minor changes in the donor structure.

To rule out the possibility of deglycosylation pathways that may affect the observed

selectivities, NMR studies of the reaction was employed to monitor the reaction of **5-7** and **5-B** leading to selective formation of the C3-glycoside **5-8h** at different conversions, and no changes in the product composition were observed. In addition, the overnight exposure of the C5-glycoside **5-8i** to catalyst (*R*)-**5-6f** did not lead to any isomerization products or formation of hemiacetal **5-8j**. However, the overnight treatment of the C3-glycoside **5-8h** with TMSOTf at -20 °C led to the slow formation of hemiacetalization product **5-8j**. These observations suggest that the selectivities observed in Tables 5.1 and 5.2 are due to the catalyst control and are not due to the decomposition or isomerization reactions.

In order to further understand the mechanism and stereoselectivity of the aforementioned reactions, a combined experimental and computational mechanistic investigation was undertaken (Figure 5.3). Based on a similar system,^[52–55] we hypothesized an oxocarbenium intermediate could be formed by Brønsted acid activation and departure of the trichloroacetimidate moiety. In this scenario, the chiral environment of the CPA/oxocarbenium ion pair would provide stereocontrol. To probe this mechanism a simplified model system was developed (Figure 5.3A) and modern reaction path searching algorithms developed by the Zimmerman group were used.^{[77–} $^{80]}$ This assessment surprisingly found the formation of $\beta\text{-anomeric phosphate 5-9B}$ via a $S_N2\text{-like}$ displacement of the α-trichloroacetimidate 5-9A (TS₁, Figure 5.3B) was facile, at a 12.1 kcal/mol barrier. Following an exchange with 2,4-pentadiol (5-9C), a second, rate-determining (TS₂, 20.7 kcal/mol), S_N 2-like reaction affords the α -glycoside **5-9D**. Interestingly, the syn-1,3 diol moiety plays a role in the glycosylation step, as it is more geometrically suited to do an inversion on the anomeric center. This step involves a proton shuttle mechanism akin to enzymatic reactions, where one hydroxyl group protonates the leaving phosphate and simultaneously deprotonates the proximal attacking hydroxyl group.

Table 5.2. Regiodivergent glycosylation of 6-dEB and oleandomycin derivative **5-7**. Experiments were performed by Dr. Tay Rosenthal.

Condition I: 6-dEB (1 equiv.), donor (1.2 equiv.), (*S*)-5-6f (30 mol%), 4Å M.S., CH₂Cl₂ (0.10M), r.t.; **Condition II:** 6-dEB (1 equiv.), donor (1.2 equiv.), (*S*)-5-4d (20 mol%), 4Å M.S., PhMe (0.20M), r.t.; **Condition III:** 6-dEB (1 equiv.), PhB(OH)₂ (1 equiv.), 4Å M.S., PhMe, r.t.; then 5-A (3 equiv.), TMS-OTF (0.2 equiv.); -20 °C, work-up with H₂O₂ and NaHCO₃; **Condition IV:** 5-6 (1 equiv.), donor (1.2 equiv.), TMSOTF (0.2 equiv.), 4Å M.S., PhMe (0.05 M), -20 °C; **Condition V:** 5-6 (1 equiv.), donor (1.2 equiv.), (*R*)-5-6f (20 mol%), 4Å M.S., PhMe (0.30M), r.t.; **Condition VI:** 5-6 (1 equiv.), donor (1.2 equiv.), (*R*)-5-6f (20 mol%), 4Å M.S., PhMe (0.30M), r.t.; **Condition VI:** 5-6 (1 equiv.), donor (1.2 equiv.), (*R*)-5-5d (20 mol%), 4Å M.S., PhMe (0.20 M), r.t.; **Condition VII:** 6 (1 equiv.), MeB(OH)₂ (1 equiv.), 4Å M.S., PhMe, r.t.; then 5-B (3 equiv.), TMS-OTF (0.5 equiv.), -20 °C; work-up MeOH. All reactions were carried on 0.02 mmol scale with the exception of 5-8g, which was formed on both 0.02 and 0.1 mmol scales without erosion in yield and selectivity. ^a Only C₃ and C₅ glycosides were observed. ^b The α : β selectivity for the major regioisomer ^c Isolated yield for the mixture of regioisomers

While these steps are labeled S_N2 -like, the first step has a much earlier TS (**TS**₁: C-O_{formed} 2.63 Å vs C-O_{broken} 2.23 Å) compared to the second (**TS**₂: C-O_{formed} 2.09 Å vs C-O_{broken} 2.62 Å), which indicates that the latter is more dissociative in nature.^[28,81] In comparison, reactions in which the phosphate departed to form an intermediate oxocarbenium were found to be less favorable (> 26 kcal/mol). Finally, in order to discount the possibility of an uncatalyzed background reaction, an analogous S_N2 -like displacement of α -trichloroacetimidate by the diol was modeled but found to be implausible (TS₃ in SI, 34.8 kcal/mol). Finally, it should be noted that trichloroacetamide (CCl₃CONH₂) released throughout the reaction might serve as an inhibitor by forming a hydrogen bond complex with chiral phosphoric acid or phosphate intermediate.^[82,83] Therefore further optimization of the glycosyl donor leaving group might lead to improved catalyst loading often observed for the other acetalization reactions.

Figure 5.3. Theoretical studies on the mechanism of phosphoric acid-catalyzed glycosylations.

As the proposed mechanism is fundamentally different to proposals on similar systems,^[28,52,84] experimental support was sought. Since the phosphate intermediate was predicted to be relatively stable, efforts were directed to detect the formation of 5-9B. Indeed, when monosaccharide 5-A is combined with (R)- 5-6f, anomeric phosphate β -5-10 was observed by NMR (Figure 5.4). When combined with CD₃OD, β -5-10 underwent a facile S_N2-like displacement forming product α -5-11. Likewise, when a similar investigation was carried on sugar derivative C (Figure 5.4), the formation of an α -phosphate (α -5-12) was observed. This intermediate underwent stereoselective S_N2-like reaction with CD₃OD to provide the corresponding β -fucose derivative (β -5-13). In line with these experiments, the reaction between sugar 5-B and (R)- 5-6f produced anomeric phosphate α -5-14 that was observed by NMR. When combined with macrolide 5-7, phosphate α -5-14 produced C3-glycosylation product 5-8g (67%) yield, 73:27 r.r., 99:1 α : β). Although the formation of the C3-glycoside **5-8g** for this control experiment was less selective than what was observed under conditions V (Table 5.2), we believe that this result is nonetheless consistent with the mechanistic proposal outlined in Figure 5.3 as some discrepancy in selectivity is expected based on the absence of molecular sieves as well as difference in concentration, and presence of larger quantities of trichloroacetimidate that may inhibit hydrogen bonding between α -5-14 and macrolide 5-7. Finally, a reaction of β -B and 5-7 lead to the formation of **5-8g** in the same selectivity as for the α -trichloroacetimidate **5-B** (Scheme 5.6), which is consistent with the formation of the same reaction intermediate such as anomeric phosphate from both α - and β -donors **5-B**. Altogether, these results along with the computational studies and precedents by the Schmidt group^[85–87] suggest that the mechanisms for the formation of the anomeric phosphates from trichloroacetimidates may vary and are not always S_N 2-like, especially with axial alkoxy substituents in the C3 position. In addition, these results strongly

imply that the α : β selectivity for the final glycosylation step is determined by the stereoselectivity for the anomeric phosphate formation step (Scheme 5.6). It also should be noted that the proposed involvement of the covalently linked to catalyst intermediates is consistent with the mechanistic proposals made by our group for the CPA-catalyzed reactions of acetals^[88–90] and for the related transformation by Toste,^[91] List,^[92] Luo^[93] and Takasu^[94] groups.

Scheme 5.6. Glycosylation with anomeric phosphates. Experiments were performed by Dr. Tay Rosenthal.

Conclusion

In summary, this work describes the first example of chiral catalyst-controlled regioselective glycosylation of complex chiral polyols. These transformations were found to be particularly useful for the preparation of isomeric glycosides of 6-dEB and oleandomycin B derivative 5-7 with 6-deoxysugars, a task that cannot be easily accomplished with existing achiral catalyst-based or enzymatic methods. Chiral phosphoric acids and sulfonimides were used to promote regiodivergent introduction of the sugars at both the C5 or C3 positions of 6-dEB and 5-7 in a complementary manner. In addition, the conditions based on temporarily *in situ* masking of the C3/C5 diol as a cyclic boronate with a subsequent glycosylation of the C11 position followed by unmasking the diol upon work up have been developed and applied to directly form C11 glycosides 5-8a and 5-8h in excellent regioselectivities. While the change in the macrolide structure required re-optimization of the catalyst, the methods developed for specific macrolides tolerated changes in donor structure. Mechanistic and theoretical studies have been carried to

elucidate the mechanism by which phosphoric acids promote these transformations. These studies lend support to a mechanism with the formation of covalently linked anomeric phosphate intermediates, and more detailed mechanistic studies directed to understand the observed selectivity are currently underway. This work represents the first example of chiral catalystcontrolled regioselective glycosylation, and the methods developed in this study hold great potential for the non-enzymatic generation of glycosylated isoforms of complex natural polyols.

B. ¹H-coupled and ¹G-decoupled ¹³C and ³¹P NMR spectra of intermediate β -5-10

Figure 5.4. Preparation and characterization of the covalently linked phosphate intermediates 5-10 and 5-12. Experiments were performed by Dr. Tay Rosenthal.

5.3 Mechanism of the CPA-Catalyzed Regioselective Acetalization of Sugar-Derived Diols

(Experimental information can be found in **Appendix E**)

In 2012, the Nagorny group demonstrated that BINOL-derived CPAs could be used to control the stereo- and enantioselectivity of spiroketalizations (Scheme 5.7a).^[95] These promising results showed that CPAs could control the course of intramolecular acetalizations, although the precise mechanism of this transformation would not be studied until later on (see Chapter 3).^[96] Given the impact of CPAs in intramolecular acetalizations, it was surmised that these chiral Brønsted acid catalysts could be used to impart selectivity in intermolecular acetalizations. Indeed, in 2013 the Nagorny group would extend the application of CPAs to the regioselective acetalization of carbohydrate-based diols (Scheme 5.7b).

After an extensive optimization of the reaction conditions, it was found that enol ethers **5**-**15** and (R)-4-(1-adamantyl)-2,6-*i*-PrC₆H₂-CPA (**5**-**4a**) could be used to revert the inherent substrate regioselectivity of diols **5**-**16** and favor the formation of C2-functionalized products **5**-**17** with high regioselectivities (Table 5.3, entries 1, 4, 7, 10, 13). Moreover, the reaction was found to have a broad scope in both the monosaccharide-derived diol and also the protecting group that was installed. Some of examples reported are shown in Table 5.3.

		\bigcup^{0}				
		OR 5- 1	15a			
RO	-0		catalyst	RO		RO
RO HO	× +		\rightarrow			RO^
	ОН		15b		UK	° 06
5-	16	OR		5	-17	5-18
		Me OMe				
		ll 5-1	15c			
entry	diol		PG	catalyst	Yield [%] (conv.)	5-17:5-18 ^b
1			0	(<i>R</i>)- 5-4 a	86 (87)	11:1
2	Ph-TO-	-O SPh	$\left(\right)$	(S)- 5-4a	nd (15)	1:2
3	HO	он	\smile	(PhO) ₂ PO ₂ H	43 (48)	1:2.2
4			∕ ∕OMe	(<i>R</i>)- 5-4 a	95 (97)	>25:1
5	PhTOT	-0		(S)- 5-4a	nd (79)	1:1.7
6	HO	OH SPh	\bigtriangledown	(PhO) ₂ PO ₂ H	62 (67)	1:1.3
7				(<i>R</i>)- 5-4 a	72 (95)	>25:1
8	PhTON	-0		(S)- 5-4a	nd (69)	1:2.7
9	HO	SPh OH	II	(PhO) ₂ PO ₂ H	39 (79)	1:1.7
10	Ph		0	(<i>R</i>)- 5-4 a	74 (85)	8.4:1
11	٩ĭ		$\left(\begin{array}{c} \\ \end{array} \right)$	(S)- 5-4a	nd (62)	2.9:1
12	5-16b	SPh	\checkmark	(PhO) ₂ PO ₂ H	69 (70)	1.3:1
13		н		(<i>R</i>)- 5-4 a	54 (58)	6:1
14	PhTO	-O OPMP		(S)- 5-4 a	nd (31)	1:2.6
15	HO	OPMP	\bigcup	(PhO) ₂ PO ₂ H	31 (nd)	1:1

Table 5.3. Regioselective acetalization of sugar-based diols.^a Experiments were performed by Enoch Mensah, Nicole Camasso, and Will Kaplan.

^a Reactions performed on 0.05 mmol scale and 5h. ^b Determined by ¹H NMR.

This work represented the first example of chiral catalyst-controlled regioselective acetalization of diols. Importantly, it selectively protected the C2 hydroxyl group of the 2,3-diol system, a result which is synthetically complementary to the borinic-acid catalyzed methods developed by the Taylor group^[97–99] and substrate-controlled transformations such as those relying on organotin reagents.^[100,101] However, as a limitation, this method was not useful in obtaining

C3-acetylated products in high selectivity. Based on these hallmarks, we believed that this work merits further development and understanding. To this end, in collaboration with Dr. Jeonghyo Lee, this work was expanded upon to extend the applicability of this methodology and to obtain some insights into the reaction mechanism.

In yet unpublished work, Dr. Jeonghyo Lee has furthered this method in several aspects. In the first place, he demonstrated that, as opposed to the original reported work, it is in fact possible to obtain high C3 selectivity by using (*S*)-**5-4a** and **5-15b**, provided that ortho disubstituted thioglycosides are employed (Table 5.4, entry 5). In addition, he has shown that the method is amenable to an impressive number of single-pot multi-step sequences that further functionalize C2-protected products in diverse patterns. A few examples are depicted in Scheme 5.8.

Tor	O OH SAr	I C X	alyst Ph	OTO NOT OR SAr	+ ^{Ph} ^O ^O OH
5-1	16	5-15b		5-17	5-18
-	entry	Ar	catalyst	Conv [%]	5-17:5-18 ^b
	1	ret a	(<i>R</i>)- 5-4 a	92	>25:1
	2	Ϋ́)	(S)- 5-4a	88	1:1.5
	3	5-16d t-Bu	BPA	89	1:1.1
	4	Me L	(<i>R</i>)- 5-4 a	90	22:1
	5		(S)-5-4a	71	1:5.6
	6	5-16e	BPA	93	1:1.1

Table 5.4. C-3 selective acetalization of diols using CPAs.^a Experiments were performed by Dr. Jeonghyo Lee.

^a Reactions performed on 0.04 mmol scale and 5h. ^b Determined by ¹H NMR.

Scheme 5.8. One-pot functionalization of diol 5-16a. Experiments were performed by Dr. Jeonghyo Lee.

With all of these experimental results, there remained several open-ended inquiries. For example, on the reason why these reactions are much faster than their glycosylating analogs (Section 5.2 and Section 5.4), occurring smoothly at -50°C; on the importance of maintaining this low temperature for achieving high degrees of regiocontrol; and on the origin of the stereo- and regioselectivity of this reaction. To answer some of these questions, we sought to investigate the reaction mechanism. Nevertheless, computational methods to describe the reaction mechanism in systems with many degrees of freedom, such as this, is a daunting task to even modern approaches. Fortunately, new and powerful methods on reaction path finding have emerged over the last decade.^[102] To uncover mechanistic details on this transformation, a computational study was carried out employing state-of-the-art reaction path finding tools developed by the Zimmerman group.^[77–80] In past and contemporary work, we have found success in using this method to detail the mechanism of other phosphoric-acid catalyzed transformations (See Chapter 3, Chapter 7, and Sections 5.2 and 5.4 of this Chapter), thus we were confident that employing the single-ended growing string method could shed light on some of the questions regarding the intermolecular

CPA-catalyzed acetalization of sugar-derived 2,3-diols.

To study this reaction, we considered a model system consisting of glucose-based diol **5**-**16a**, enol ether **5**-**15b**, and biphenyl phosphoric acid (**BPA**). In our mechanistic accounts on intermolecular CPA-catalyzed glycosylations of polyols (Section 5.2 and 5.4, Scheme 5.9a), we proposed that the reactive intermediate was likely a covalent phosphate **5**-**10**, a species arising from the reaction of phosphoric acid with reactive trichloroacetimidate donor α -**5**-**19** (Scheme 5.9b). We surmised that a similar phosphate intermediate **5**-**20** could arise from the addition of BPA to enol ether **5**-**15b** (Scheme 5.9c), and that a phosphate-mediated pathway should therefore be considered and contrasted to the more traditional and intuitive pathway involving the BPA-catalyzed direct addition of diol **5**-**16a** to enol ether **5**-**15b**. The most relevant stationary points in the potential energy surface calculated at room temperature are shown in Figure 5.5.

Scheme 5.9. Mechanistic precedents on phosphoric acid-catalyzed intermolecular acetalizations. **a**. Phosphoric acid-catalyzed intermolecular glycosylation reaction scheme. **b**. Proposed mechanism. **c**. Possible covalent phosphate-mediated pathway for the analog acetalization of diols.

Figure 5.5. Energy diagram for the CPA-catalyzed intermolecular acetalization of 6-deoxyglucose-derived 2,3-diols.

Upon commencing the study of the aforementioned system, a key distinction between the CPA-catalyzed acetalization and glycosylation became immediately apparent. Although the barrier for the formation of axial phosphate was low (14.9 kcal/mol, TS_{PF}), the reaction was not found to be largely exothermic, in stark contrast to the reaction of phosphoric acids with trichloroacetimidate sugar donors such as **5-19** (See sections 5.2 and 5.4). Indeed, covalent phosphates were not detected by ³¹P NMR at room temperature or lower temperatures (-50 °C). It is possible that the computationally calculated equilibrium constant between enol ether **5-15b** and phosphate **5-20b** is not accurate due to errors in the entropic contributions that would emerge from comparing the thermodynamic properties of **5-15b** and BPA dimer with the covalent phosphates. In support of this, when geometries were reoptimized without dispersion corrections (B3LYP/6-

31G), it was found that the formation of the phosphate intermediate was disfavored by 10.6 kcal/mol, consistent with our failed attempts at detecting this species. The reason why the formation of phosphates from trichloroacetimidates occurs much more readily and exothermically can be attributed to the energetically favored release of trichloroacetamide, an element which is lacking in the **5-15b** system.

While the formation of the phosphate was not as energetically favored as in the systems previously studied, the barrier for its formation was still low, and offers a kinetically feasible platform for the acetalization of alcohols through axial phosphate 5-20a or equatorial phosphate 5-20b intermediates. Experimental evidence for the kinetic viability of phosphate formation in the phosphoric acid-catalyzed intermolecular acetalization of alcohols has been shown in deuterium labeling experiments previously reported by our group (See Chapter 3, Table 3.4). Dr. Yaroslav Khomutnyk (Nagorny group) observed that the phosphoric acid-catalyzed acetalization of benzyl alcohol 5-21 with deuterated enol ether 5-d-15a, proceeded smoothly to give a 1:1 mixture of syn and *anti* addition products **5-22a** and **5-22b** (Scheme 5.10a). This could be explained by the rapid equilibration of 5-d-17a with DPPA to produce phosphate 5-23 (a syn addition), which could ring flip and collapse to 5-17a (Scheme 5.10b). These equilibrations would lead to loss of stereochemical information on the position of the deuterium, which could explain the observed results, provided that such equilibration occurs at a scale that is faster than the acetalization. Our computations support that notion, since TSPF (TS for phosphate formation) is lower than the TS for concerted and phosphate-mediated acetalizations.

Scheme 5.10. Deuterium labeling studies on the phosphoric acid-catalyzed intermolecular acetalization of alcohols. Experiments were performed by Dr. Yaroslav Khomutnyk.

Since phosphate formation for the **5-15b** system is not as favorable as for the trichloroacetimidate **5-19**, the intermediate is higher in energy and offers comparatively lower barriers for reaction with alcohols, a ground state effect. In addition, the concentration of free phosphoric acid is much higher than in the case of glycosylation with trichloroacetimidates, since in the latter all of the initial phosphoric acid is rapidly transformed into non-acidic covalent phosphates and trichloroacetamide. Therefore, in the acetalization system there is more acid catalyst available to undertake the concerted pathway or even catalyze acetalization of phosphate intermediates. These two reasons explain why the phosphoric acid acetalization of alcohols with **5-15b** can be performed even at -50°C and occurs faster and more smoothly than phosphoric acid-catalyzed glycosylations with trichloroacetimidates such as **5-19**.

Pathways for the uncatalyzed (TSu) and BPA-catalyzed (TSc) direct addition of diol 5-

16a to form either C3 (colored red, **5-18a**) or C2 (colored blue, **5-17a**) acetals were readily found using the single-ended growing string method. As expected, BPA-catalysis offers a massive reduction in the activation barrier of the acetalization of nearly 30 kcal/mol. The concerted pathway is calculated to be intrinsically slightly C-2 selective (by 0.7 kcal/mol, **TS**c-c3 vs **TS**c-c2), while the phosphate-mediated pathways seem to be naturally slightly C-3 selective (by 0.7 kcal/mol, **TS**pa-c3 vs **TS**pa-c2). The pathway mediated by axial phosphate **5-20a** that leads to formation of C3 glycoside is calculated to be slightly kinetically favored overall (**TS**pa-c3). These results suggest that for the BPA-catalyzed system, the principal pathway is likely the one that occurs through axial phosphate **5-20a**. The slight C-3 selectivity that is observed experimentally supports this proposition.

On the other hand, the energy difference between the activation barriers for the concerted and phosphate-mediated mechanisms is narrow and implies that by manipulating reaction conditions one could attain a mechanistic switch from a phosphate-mediated mechanism to a concerted pathway. In line with this hypothesis, studies on the impact of the temperature in the outcome of CPA-catalyzed acetalizations revealed a sudden and drastic change in the regioselectivity of the reaction occurring at roughly -40°C (Table 5.5). While the (R)-**5-4a**catalyzed acetalization of **5-16a** with **5-15b** and **5-15c** occurred with poor C-3 selectivity at room temperature and -10°C (entries 1-2), and almost no selectivity at -30°C (entry 3); excellent C-2 selectivities were found at lower temperatures (entries 4-5). This sudden regioselectivity change is consistent with a mechanism switch, presumably from the inherently C3 selective phosphate mechanism to the C2-selective concerted mechanism, in large agreement with our computational model. To further confirm that the concerted mechanism is predominant at low temperatures, the (R)-**5-4a**-catalyzed acetalization of alcohols with deuterium-labelled **d-5-15a** is suggested, since solely the *syn*-addition product such as **5-22a** would be expected from this mechanism (See Scheme 5.10a).

Table 5.5. Dependence of selectivity on reaction temperature for the (R)-**5-4a**-catalyzed acetalization of **5-16a**.^a Experiments were performed by Dr. Jeonghyo Lee.

^a conditions: **5-16a** (1 equiv), **5-15** (1.2 equiv), catalyst (20 mol%), DCM (0.04M). ^b Determined by NMR.

A closer inspection on the minimum energy paths found for the C2 and C3 concerted acetalizations revealed an important difference. While the C3 pathway involved the classical bifunctional activation of the phosphoric acid, where both oxygens participate as Bronsted acid and Lewis base catalysts (Figure 5.6a), in the C2 pathway only the Bronsted acidic site was involved, both serving to protonate the enol ether and to activate the C2-hydroxyl group (Figure 5.6b). Although this is not ideal in terms of the electronic stabilization that the CPA can impart to the TS, this pathway allows the catalyst to approach in a way that minimizes steric interactions at the TS. In this C2-selective pathway, the ortho substituents of the thiophenyl group are in close proximity to the catalyst, which might explain why increased bulk at these positions lowers the C2-selectivity (Table 5.4, entries 4-5).

Figure 5.6. Comparison of TSc-c2 and TSc-c3

In summary, we have further developed the phosphoric acid-catalyzed intermolecular acetalization of sugar-derived 2,3-diols. Thanks to the efforts of Dr. Jeonghyo Lee, the method has been extended to the construction of both C2 and C3-functionalized of various sugar derivatives. In addition, the method is amenable to single-pot procedures that enable the selective and diverse decoration of sugar-derivatives with different protecting groups in all four positions. Finally, a thorough computational mechanistic study was performed to decipher some of the more enigmatic aspects of this reaction. An explanation to the increased efficiency of this system in comparison to the glycosylation of diols using glycosyl trichloroacetimidate donors is given. In addition, both direct (concerted and uncatalyzed) and phosphate-mediated pathways leading to C2 and C3 glycosides were calculated using the single-ended growing string method developed by the Zimmerman group. The phosphate mechanism was found to be inherently slightly C3 selective and minutely kinetically favoured at room temperature using BPA as the model catalyst, while the concerted pathway was found to be C2 selective. The difference between the activation barriers for these pathways is small and therefore either could be active depending on the catalyst and reaction conditions, in accord to experimental observations. These mechanistic insights cast light upon perplexing experimental observations and will help guide further elaboration of this powerful methodology.

5.4 Mechanism of the CPA-Catalyzed Regio- and Stereoselective Glycosylation of Sugar-Derived Diols

(Experimental information can be found in Appendix F)

The work presented in section 5.3 illustrates that acetalization of monosaccharide-derived 2,3-diols are not inherently highly regioselective. However, this was overcome by developing a catalyst-controlled method relying on BINOL-derived CPAs. Indeed, excellent C2 selectivity in the D-glucose system was achieved with (*R*)-**5-4a** as the catalyst. Moreover, in section 5.2 it was demonstrated that CPAs are useful not only in controlling the regioselectivity of glycosylation of a 1,3-diol system, but also its stereochemistry. With these two precedents in mind, we surmised that CPAs could also be useful in controlling the regio- and stereochemistry of glycosylations of monosaccharide-derived 2,3-diols. This is a particularly difficult challenge since in the absence of both regio- and stereocontrol, 4 distinct products can be formed: α -C3, α -C2, β -C3, and β -C2 (Scheme 5.11). This section summarizes experimental efforts in the development of this strategy (performed by Dr. Jeonghyo Lee) as well as accompanying experimental and computational mechanistic work.

Scheme 5.11. CPA-catalyzed regio- and stereoselective glycosylation of sugar-derived diol 5-16.

The studies commenced with a thorough screening of catalysts and reaction conditions to survey the possibility of establishing selectivity in the glycosylation of **5-16a** with glucose-derived α -trichloroacetimidate α -**5-24** as glycosyl donors. In contrast to the acetalization of **5-16a** reported in section 5.3, when the glycosylation was attempted 1.5 equivalents of donor α -**5-24** and 20 mol% of CPA (*R*)-**5-4d**, the reaction was found to be slow in DCM at room temperature (low conversion after 24h). Under refluxing conditions, phosphoric acid-catalyzed glycosylations began to yield better conversions. The control reaction with achiral diphenyl phosphoric acid (DPPA) yielded a mixture of the four possible products and revealed a modest inherent β -selectivity (α : β = 36:64) and C3-selectivity (C3:C2 = 70:30) (Table 5.6, entry 1). After screening a number of CPAs, it was found that BINOL-derived CPAs with (*S*) chirality afforded higher C-3 selectivity that their enantiomers, especially highly acidic (*S*)-**5-4d** and (*S*)-**5-4c** (81:19 and 85:15 C3:C2, respectively entries 2 and 4). Surprisingly, popular CPAs such as TRIP (**5-4b**) and TCYP (**5-4g**), which are less acidic and more sterically hindered, failed to promote the reaction (entries 5-7).

A contributing factor for the low reactivity of this system is the limiting solubility of the diol **5-16a** in DCM. After considering some alternative thioglycosides, it was found that 4-*tert*-butyl thiophenol-functionalized diols **5-16b** were well soluble in organic solvents including DCM, and it was hoped that the increased sterics would further enhance the regio- and stereoselectivity of the glycosylation. In accordance to this hypothesis, the **5-16b** system proved to be more reactive, as at least 20% conversion was observed with α -**5-19a** at room temperature in DCM, and the control reactions with DPPA as the catalyst showed that the glycosylation was inherently both β and C3-selective (Table 5.7, entry 1).

Ph-	HO HO 16a +	BnO NH	Catalyst (20 mol% DCM, reflux, 24)) Ph-	+	Ph O SPh BnO O α -C2 Ph O O SPh BnO O α -C2
BnČ		BnO CC		BnO	O OH SPh	BnO O O BnO
5-24 Entry	ŇН Donor	β–5-24 Catalyst [Ar]	Conv [%]	BnO BnO BnO α -C ₃ : α -C ₂ : β -C ₃	β-C3 : β-C ₂ α:	$\frac{BnO - BnO}{BnO} \beta - C2$ $\beta^{b} C3 : C2^{b}$
1	α 5-24	(PhO) ₂ PO ₂ H	41	22.6 : 13.8 : 47.1		-
2	α- 5-24	(S)- 5-4 d	65	17.3 : 9.1 : 63.6		
3	α- 5-24	(<i>R</i>)- 5-4c	71	7.1 : 4.7 : 67.8		
			55	6.2 : 3.0 : 70.0		
4	α-5-24	(S)- 5-4c		0.2 . 3.0 . 70.0	. 20.7 9.5	91 00.10
5	α –5-24	(<i>R</i>)- 5-4b	n.r.			
6	α -5-24	(S)- 5-4b	n.r.			
7	α -5-24	(S)- 5-4g	n.r.			
8	β– 5-24	(PhO) ₂ PO ₂ H	55	40.7 : 41.1 : 10.2	: 8.1 82:	18 51:49
9	β– 5-24	(<i>R</i>)- 5-4d	35	43.2 : 21.7 : 27.7	: 7.5 71:	29 65:35
10	α -5-24	(PhO) ₂ PO ₂ H (1.2 ec	q) 62	46.3 : 31.7 : 10.4	: 11.6 78 :	22 57 : 43
$ \begin{array}{c} \downarrow Pr \\ (S)-5-4-b \end{array} \qquad \begin{array}{c} \downarrow \downarrow$						

Table 5.6. CPA-catalyzed glycosylation of diol **5-16a** with benzyl protected trichloroacetimidate donor **5-24**.^a Experiments were performed by Dr. Jeonghyo Lee.

^a conditions: **5-16a** (1 equiv), **5-24** (1.4 equiv), catalyst (20 mol%), DCM (0.04M). ^b Determined by NMR and HPLC.

Our previous results on the glycosylation of 6-dEB demonstrated that 6-deoxy-sugar donors are a more reactive alternative than their oxygenated counterparts. To improve the conversion of our method, the use of deoxy-sugars was investigated next (Table 5.7). To our delight, we found that the glycosylation with 6-deoxy glucose donor α -5-19a proceeded efficiently and with high conversion. Control reactions with DPPA revealed that the trends observed in the glucose-based system were maintained (entries 3 and 4). After screening a large number of CPAs, it was found that (*S*)-5-4c provided the best C3-selectivity (79:21 C3:C2, entry 5) with high β preference (13:87 α : β). Delightfully, for the first time we were able to identify a catalytic CPA that could form the C2-glycoside preferentially: (*R*)-5-4b (25:75 C3:C2, entry 6), a catalyst which was inactive in the oxygenated system (Table 5.6, entry 5).

Given our success with the 6-deoxyglucose system, we sought to extend our methodology to other deoxy-sugar frameworks. Glycosylation using L-rhamnose donor **a-5-19c**, unlike in the prior systems studied, proceeded in exclusive α selectivity (Table 5.7, entries 7-9). The glycosylations were highly efficient, and although the substrate is chiral, it showed no intrinsic preference for the formation of either C2 or C3-glycoside (entry 7). As before, (*S*)-**5-4c** was able to induce regiocontrol in favor of the C3 glycoside (entry 8), while moderate C2-selectivity was observed using (*R*)-**5-4b** as the catalyst.

Ph O HO	он 5-16b +	Ar O Ar	Р	Ph to	Ph O HO RO RO	$\frac{1}{2} \frac{1}{2} \frac{1}$
RO	X-	CPA (15-20 mol DCM, 12h, r		+ Ph O O SAr RO RO β-C3	Ph to HO Ro RO	ο ο κο β- C2
Entry	Donor	Catalyst	Conv [%]	$\alpha\textbf{-}\mathbf{C_3}:\alpha\textbf{-}\mathbf{C_2}:\beta\textbf{-}\mathbf{C_3}:\beta\textbf{-}\mathbf{C_2}$	α : β^{b}	C3 : C2 ^b
1	$BnO \rightarrow O \rightarrow O \rightarrow CCl_3$ $\alpha-5-24 \rightarrow NH$	(R)- 5-4-d	20	7.4 : 71.6 : 5.5 : 15.4	13:87	79:21
2	β -5-24 BnO NH CCl ₃	(<i>R</i>)- 5-4-d	20	43.1 : 19.6 : 25.5 : 11.8	63:37	69:31
3	BnO	(PhO) ₂ PO ₂ H	60	10.73 : 52.66 : 10.61 : 25.99	21:79	63:37
4		(PhO) ₂ PO ₂ H (1 equiv)	90	50.19 : 6.70 : 30.48 : 12.61	81:19	57:43
5	μ α– 5-19b ΝΗ	(S)- 5-4-c	60	9.67 : 69.66 : 3.41 : 17.26	13:87	79:21
6	α– 5-19b	(<i>R</i>)- 5-4-b	40	2.05 : 23.18 : 2.35 : 72.43	4:96	25:75
7	NH U	(PhO) ₂ PO ₂ H	20	50 : 50 (α-C ₃ : α-C ₂)	α only	50:50
8		(S)- 5-4-c	65	71 : 29 (α-C ₃ : α-C ₂)	α only	71:29
9	BnO α- 5-19c BnO OBn	(<i>R</i>)- 5-4-b	65	12 : 88 (α-C ₃ : α-C ₂)	α only	12:88
10	NH L	(S)- 5-4-c	95	63.7 : 8.3 : 10.2 : 17.8	72:28	74:26
11	Me BnO OBn α- 5-19d	(<i>R</i>)- 5-4-b	20	17.8:3.7 : 4.4 : 74.1	21:79	22:78
12	BnO Me	(S)- 5-4-c	95	13.3 : 1.33 : 77.5 : 7.9	15:85	91:9
13	BnO G CCI_3 α -5-19e H	(<i>R</i>)- 5-4-b	20	25.6 : 20.5 : 42.2 : 11.8	45:55	68:32

Table 5.7. CPA-catalyzed glycosylation of diol **5-16b** with trichloroacetimidate glycosyl donors.^a Experiments were performed by Dr. Jeonghyo Lee.

^a conditions: **5-16a** (1 equiv), donor (1.4 equiv), catalyst (20 mol%), DCM (0.04M). ^b Determined by NMR and HPLC.

Following this, glycosylation with L-fucose donor α -**5-19d** was carried out. While the reactions were efficient. a reversal in stereoselectivity when compared to 6-deoxyglucose substrate was observed, in favor of the α -product (Table 5.7, entries 5 and 10). Gratifyingly, using (*R*)-**5-4b** both the regio- and stereoselectivity were reversed to favor the formation of α glycosides at the C3 position (entry 11), albeit at lower conversions. Finally, we decided to investigate the impact of the chirality of the donor in the selectivity of the glycosylation. Under the optimized reaction conditions with catalyst (*S*)-**5-4c**, diol **5-16b** was smoothly glycosylated by D-fucose donor **\alpha-5**-**19e** with good stereo- and regioselectivity (15:85 α : β , 91:9 C3:C2, entry 12). However, the intrinsic C3 selectivity could not be inverted using (*R*)-**5-4b** (entry 13). These observations indicate that the chirality of the sugar donor has a significant impact in the regio- and stereoselectivity of CPA-catalyzed glycosylations.

In parallel to this work, a combination of NMR and computational mechanistic studies was undertaken to elucidate mechanistic details and help guide some of the experiments. Based on our mechanistic work on the CPA-catalyzed glycosylation of 6-dEB (Section 5.2), we surmised that the reaction proceeded through the intermediacy of an isolable anomeric phosphate (Figure 5.7). Upon stirring 0.75 equivalents of diphenyl phosphoric acid with 1 equivalent donor α -5-24 in deuterated benzene at room temperature, immediate formation of β -phosphate β -5-25a transpired (Figure 5.7a). Under these conditions, β -5-25a partly epimerizes to the more thermodynamically stable α -5-25a at room temperature overnight (Figure 5.7b), and this epimerization is greatly accelerated upon addition of excess phosphoric acid (Figure 5.7c). The stereochemistry of the observed phosphates was unequivocally assigned by ¹³C (H coupled) NMR. The ¹J(C-H) of the anomeric carbon of β -5-25a was found to be 167 Hz, consistent with β stereochemistry (Figure 5.8a). On the other hand, the ¹J(C-H) for the same carbon of α -5-25a was found to be 176 Hz,

representative of that configuration (Figure 5.8b).

The epimerization of β -**5-25a** occurs more slowly in CD₂Cl₂, as no α -**5-25a** was found overnight at room temperature with substoichiometric amounts of DPPA (0.75 equiv) (Figure 5.9, left spectra). In contrast to this result, when using more acidic phosphoric acids such as (*R*)-**5-4h**, both α and β phosphates **5-25b** were formed, although in high β preference (1:14.2 α : β , Figure 5.9, center spectra). Moreover, this labile phosphate partly isomerized to its more stable α configuration overnight (1:7.6 α : β). In addition, we found that (*S*)-**5-4h**, had a higher proclivity towards formation of α phosphate α -**5-25c** (1:3.6 α : β , Figure 5.9, right spectra). These results show that the nature of the phosphoric acid used has an impact on the α to β ratio of the intermediate phosphate, and that even changing the chirality of the CPA can provoke substantial alterations in this ratio.

In a similar experience, it was observed that the reaction of donor β -**5-24** with diphenyl phosphoric acid led to the rapid formation of α -**5-25a**. Given that this phosphate is the probable intermediate of the reaction, and that under the reaction conditions shown in Table 5.6, clean formation of the β phosphate is observed, we conjectured that the stereochemistry of the intermediate is essential in the stereochemical outcome of the reaction. As expected, when trichloroacetimidate β -**5-24a** was subjected to the reaction conditions, a reversal of the stereochemical outcome was observed, in favor of the α glycoside (Table 5.6, entries 8-9). In addition, performing the glycosylation with α -**5-24a** and a small excess of DPPA, conditions which we showed lead to epimerization of the intermediate β -**5-25a** into α -**5-25a**, also led to selectivity reversal in favor of the α glycoside (Table 5.6, entry 10). The same trend applied to the 6-deoxyglucose system, as β -**5-19a** led to the preferential formation of α -glycosides (Table 5.7, entry 2). Moreover, Section 5.2 details NMR experiments that show that L-fucose donor α -**5-19d** instantaneously forms α -phosphate at room temperature, presumably through rapid epimerization of the β -phosphate. This explains the reversal in stereoselectivity when compared to 6-deoxyglucose system (Table 5.7, entries 5 and 10). It is also likely that rapid isomerization to α -phosphate plays a role in the stereoselectivity of the glycosylation using L-rhamnose donor α -5-19c (Table 5.7, entries 7-9). NMR studies to determine the stereochemistry of the rhamnose-based phosphate intermediate are suggested.

Figure 5.7. Formation of glycosyl phosphates from donor α -**5-24**. **a.** After 10 minutes of stirring 0.75 equiv. of DPPA with 1.0 equiv of α -**5-24**. **b.** After overnight stirring of 0.75 equiv. of DPPA with 1.0 equiv of α -**5-24**. **c.** 10 minutes after the addition of 1.5 extra equiv. of DPPA.

Figure 5.8. Stereochemical assignment of glycosyl phosphates using ¹³C (H-coupled) NMR. **a.** After 10 minutes of stirring 0.75 equiv. of DPPA with 1.0 equiv of α -**5-24**. **b.** After overnight stirring of 0.75 equiv. of DPPA with 1.0 equiv of α -**5-24**.

Figure 5.9. Phosphate formation in CD₂Cl₂ with different acids. **a.** After 10 minutes of stirring 0.75 equiv. of acid with 1.0 equiv of α -**5-24**. **b.** After overnight stirring of 0.75 equiv. of acid with 1.0 equiv of α -**5-24**.

While these results lend strong support to our mechanistic hypothesis of an intervening phosphate species, it was not entirely clear why α phosphates lead to the formation of α glycosides, and β phosphates favored the formation of β glycosides. In section 5.2 we proposed that these phosphate intermediates undergo S_N2-like substitutions with methanol (Figure 5.4) and with *syn*

1,3-diols, which leads to a selectivity trend opposite to what is reported in this section. Although simple $S_N 1 / S_N 2$ mechanistic manifolds do not explain the observed selectivities in Table 5.6 and Table 5.7, the uncommon S_N i mechanism perfectly rationalizes our stereochemical outcomes.^[103] Under this mechanistic regime, nucleophilic substitution occurs with retention of configuration. This requires a strong association of the nucleophile with the leaving group, so that the substitution of the nascent carbenium species is directed by the leaving species. We hypothesize that this is accomplished by strong hydrogen bond association of the 1,2-diol with the glycosyl phosphate. In the case of methanol, the association is weaker due to a lower availability of hydrogen bonds with the phosphate, while for *syn* 1,3-diols the methylene linker enables access to the more kinetically ideal $S_N 2$ mechanism (Scheme 5.12).

In order to validate our mechanistic proposal, we decided to pursue a computational approach. Although methods that accurately describe the reaction mechanism in large systems with flexible substituents remains a formidable challenge, new and powerful strategies on reaction path finding have emerged over the last decade.^[102] In particular, the Zimmerman group has developed an intuitive, influential, and versatile reaction discovery tool based on the growing string method,^[77–80] which we decided to implement to this system with the hope of providing further support to our proposal. To this end, we considered a model system consisting of biphenyl phosphoric acid (BPA), 6-deoxyglucose-derived trichloroacetimidate α -**5-19**, and glucose-based diol **5-16b**. The most relevant stationary points in the potential energy surface calculated at room temperature are shown in Figure 5.10.

Figure 5.10. Energy diagram for the CPA-catalyzed intermolecular glycosylation of 6-deoxyglucose-derived 2,3-diols.

As expected, the barrier for the reaction of trichloroacetimidate donor α -**5-19** with BPA was low, at just 10.8 kcal/mol (**TS**_P). The formation of phosphate occurred in S_N2 fashion, providing β -**5-10b** in a highly exothermic step (17.6 kcal/mol) due to the release of trichloroacetamide (TCA). β -**5-10b** was found to be less thermodynamically stable than its α counterpart by roughly 5 kcal/mol (See Appendix F), in agreement with the experimentally observed favorable epimerization of β -phosphates (Figure 5.9).

Various pathways for the glycosylation of β -**5-10b** with **5-16b** were then explored. In accord with our mechanistic proposal, the pathways with the lowest barriers proceeded through an S_Ni mechanism to deliver either β -C2 glycoside or β -C3 glycoside, with preference for the formation of the C3 glycoside (**TS**_{C2} vs **TS**_{C3}). Our results agree with both the C3 and the β selectivity observed experimentally (Table 5.6). The calculated barriers for the glycosylation are very high (28 kcal/mol for **TS**_{C3} and 33.7 for **TS**_{C2}). While this reflects the relatively long reaction times that are required, it is an overestimation of the real reaction barriers, which should be smaller due to the stabilizing interactions that TCA can provide as a hydrogen bond donor, a parameter that was not taken into consideration in our calculations. The formation of α -glycoside can be attributed to a combination of competing mechanisms, such as unselective S_N1, S_Ni of epimerized phosphate (α -phosphate), and S_N2 mechanisms.

Analysis of the reaction pathways revealed similarities and differences among the C2 and C3-selective glycosylation S_N mechanism (Scheme 5.13). In both cases, the glycosylation involves a concerted asynchronous mechanism. The glycosylation is highly dissociative in nature, as just prior to the transition state, the phosphate departs from the sugar forming an oxocarbenium-like species. Following this, both protonation of the phosphate and formation of the new glycosidic bond occur concurrently. Another element in common is that the protonation of the phosphate

involves both hydroxyl groups. The group that is initially hydrogen bonded to the phosphate protonates this species at the TS, while simultaneously abstracting the proton of the vicinal hydroxyl group that gets glycosylated. Therefore, the arrangements required for glycosylation at the C2 or C3 position are mirrored to each other, as is shown in Scheme 5.13.

Scheme 5.13. S_{Ni} mechanism for the glycosylation of sugar-derived 2,3-diols. **a.** C2-selective pathway. **b.** C3-selective pathway. **c.** Geometry of TS_{C2} and TS_{C3} .

benzylidene acetal is in contact with the phosphoric acid catalyst, especially around the ortho and meta positions of the benzylidene aromatic ring. Therefore, we anticipate that substitution at these positions would enhance C3-selectivity for the glycosylation. In addition, TS_{C2} was examined

using a quadrant-based perspective that has been developed and successfully applied by Himo and Terada to explain the selectivity of BINOL-based CPAs in a range of reactions (Figure 5.11).^[104,105] This perspective helps identify key interactions between the catalyst and the substrate works by juxtaposing the steric profile of (R) or (S) BINOL-derived CPAs to the reaction model. Figure 11b shows where steric elements of (R)-BINOL-derived CPA would be located in comparison to the substrate at TS_{C2}. Based on our model, it is clear that (R)-BINOL-based CPAs are matched for this C2-selective pathway, while (S) catalysts are severely mismatched. This model is in agreement with the observed results shown in Table 5.6, where it is observed that (S)-catalysts are more C3-selective in comparison to catalysts possessing (R) axial chirality

Figure 5.11. Quadrant-based perspective of TS_{C2} . Biphenyl backbone of the catalyst is omitted from the perspective for clarity purposes.

In conclusion, we have summarized our work on the development of a regio- and stereoselective CPA-catalyzed glycosylation of sugar-derived 2,3-diols. In addition, we have reported a thorough mechanistic investigation of this reaction, which supports a mechanism where glycosylation occurs from an anomeric phosphate intermediate through a rare S_N i mechanism. Through our mechanistic conclusions, we have rationalized the origin of regio- and stereoselectivity for different conditions that can preferentially form α -C2, α -C3, β -C2 or β -C3-glycosides. We hope that the gathered insight into the reaction mechanism will assist in the further development and generalization of this glycosylation strategy.

5.3 References

- [1] A. Varki, *Glycobiology* **1993**, *3*, 97–130.
- [2] P. H. Seeberger, Nat. Chem. Biol. 2009, 5, 368–372.
- [3] A. Varki, *Glycobiology* **2017**, *27*, 3–49.
- [4] S. I. Elshahawi, K. A. Shaaban, M. K. Kharel, J. S. Thorson, *Chem. Soc. Rev.* **2015**, *44*, 7591–7697.
- [5] P. Stallforth, B. Lepenies, A. Adibekian, P. H. Seeberger, J. Med. Chem. 2009, 52, 5561– 5577.
- [6] S. A. W. Gruner, E. Locardi, E. Lohof, H. Kessler, *Chem. Rev.* 2002, 102, 491–514.
- [7] M. C. Galan, D. Benito-Alifonso, G. M. Watt, Org. Biomol. Chem. 2011, 9, 3598–3610.
- [8] A. M. Sinclair, *Biol. Targets Ther.* **2013**, *7*, 161–174.
- [9] C. H. Chung, B. Mirakhur, E. Chan, Q.-T. Le, J. Berlin, M. Morse, B. A. Murphy, S. M. Satinover, J. Hosen, D. Mauro, et al., *N. Engl. J. Med.* **2008**, *358*, 1109–1117.
- [10] G. Zhang, L. Fang, L. Zhu, Y. Zhong, P. G. Wang, D. Sun, J. Med. Chem. 2006, 49, 1792–1799.
- [11] H. Y. L. Wang, Y. Rojanasakul, G. A. O'Doherty, ACS Med. Chem. Lett. 2011, 2, 264– 269.
- [12] R. B. Merrifield, Angew. Chem., Int. Ed. 1985, 24, 799-810.
- [13] M. H. Caruthers, *Science* **1985**, *230*, 281–285.
- [14] R. Das, B. Mukhopadhyay, *ChemistryOpen* **2016**, *5*, 401–433.
- [15] D.-M. Liang, J.-H. Liu, H. Wu, B.-B. Wang, H.-J. Zhu, J.-J. Qiao, Chem. Soc. Rev. 2015, 44, 8350–8374.
- [16] P. Roach, Curr. Mol. Med. 2002, 2, 101–120.
- [17] C. A. Lewis, S. J. Miller, Angew. Chem., Int. Ed. 2006, 45, 5616–5619.
- [18] T. P. Pathak, S. J. Miller, J. Am. Chem. Soc. 2012, 134, 6120–6123.
- [19] S. Yoganathan, S. J. Miller, J. Med. Chem. 2015, 58, 2367–2377.
- [20] B. S. Fowler, K. M. Laemmerhold, S. J. Miller, J. Am. Chem. Soc. 2012, 134, 9755–9761.
- [21] C. A. Lewis, K. E. Longcore, S. J. Miller, P. A. Wender, J. Nat. Prod. 2009, 72, 1864– 1869.
- [22] X. Sun, H. Lee, S. Lee, K. L. Tan, Nat. Chem. 2013, 5, 790–795.
- [23] E. Mensah, N. Camasso, W. Kaplan, P. Nagorny, *Angew. Chem., Int. Ed.* **2013**, *52*, 12932–12936.

- [24] C. Gouliaras, D. Lee, L. Chan, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 13926–13929.
- [25] J. T. Walk, Z. A. Buchan, J. Montgomery, *Chem. Sci.* **2015**, *6*, 3448–3453.
- [26] P. O. Adero, H. Amarasekara, P. Wen, L. Bohé, D. Crich, *Chem. Rev.* 2018, 118, 8242– 8284.
- [27] D. Crich, Acc. Chem. Res. 2010, 43, 1144–1153.
- [28] M. Huang, G. E. Garrett, N. Birlirakis, L. Bohé, D. A. Pratt, D. Crich, *Nat. Chem.* **2012**, *4*, 663–667.
- [29] L. Bohé, D. Crich, Carbohydr. Res. 2015, 403, 48–59.
- [30] G. Huang, X. Mei, Curr. Drug Targets 2014, 15, 780–784.
- [31] G. Huang, M. Lv, J. Hu, K. Huang, H. Xu, *Mini-Reviews Med. Chem.* 2016, 16, 1013– 1016.
- [32] O. Blixt, N. Razi, in *Glycoscience*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 1361–1385.
- [33] K. M. Koeller, C. H. Wong, *Chem. Rev.* **2000**, *100*, 4465–4493.
- [34] K. W. Fiori, A. L. A. Puchlopek, S. J. Miller, Nat. Chem. 2009, 1, 630–634.
- [35] Y. Zhao, J. Rodrigo, A. H. Hoveyda, M. L. Snapper, *Nature* **2006**, *443*, 67–70.
- [36] Y. Ueda, T. Furuta, T. Kawabata, Angew. Chem., Int. Ed. 2015, 54, 11966–11970.
- [37] C. L. Allen, S. J. Miller, Org. Lett. 2013, 15, 6178–6181.
- [38] J. H. Kim, I. Čorić, C. Palumbo, B. List, J. Am. Chem. Soc. 2015, 137, 1778–1781.
- [39] B. D. Chandler, A. L. Burkhardt, K. Foley, C. Cullis, D. Driscoll, N. Roy D'Amore, S. J. Miller, J. Am. Chem. Soc. 2014, 136, 412–418.
- [40] G. Xiao, G. A. Cintron-Rosado, D. A. Glazier, B. Xi, C. Liu, P. Liu, W. Tang, J. Am. Chem. Soc. 2017, 139, 4346–4349.
- [41] H. Yang, K.-S. Cao, W.-H. Zheng, *Chem. Commun.* **2017**, *53*, 3737–3740.
- [42] B. R. Sculimbrene, Y. Xu, S. J. Miller, J. Am. Chem. Soc. 2004, 126, 13182–13183.
- [43] C. A. Lewis, J. Merkel, S. J. Miller, *Bioorganic Med. Chem. Lett.* 2008, 18, 6007–6011.
- [44] T. P. Pathak, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 8415–8422.
- [45] S. Han, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 12414–12421.
- [46] Y. Ueda, T. Kawabata, in *Top. Curr. Chem.*, Springer, Cham, **2015**, pp. 203–231.
- [47] J. Lawandi, S. Rocheleau, N. Moitessier, *Tetrahedron* **2016**, *72*, 6283–6319.
- [48] T. M. Beale, M. S. Taylor, Org. Lett. 2013, 15, 1358–1361.
- [49] A. Nakagawa, M. Tanaka, S. Hanamura, D. Takahashi, K. Toshima, Angew. Chem., Int.

Ed. 2015, 54, 10935–10939.

- [50] G. Pelletier, A. Zwicker, C. L. Allen, A. Schepartz, S. J. Miller, J. Am. Chem. Soc. 2016, 138, 3175–3182.
- [51] Y. Park, K. C. Harper, N. Kuhl, E. E. Kwan, R. Y. Liu, E. N. Jacobsen, *Science* 2017, 355, 162–166.
- [52] D. J. Cox, M. D. Smith, A. J. Fairbanks, Org. Lett. 2010, 12, 1452–1455.
- [53] T. Kimura, M. Sekine, D. Takahashi, K. Toshima, *Angew. Chem., Int. Ed.* **2013**, *52*, 12131–12134.
- [54] D. Liu, S. Sarrafpour, W. Guo, B. Goulart, C. S. Bennett, *J. Carbohydr. Chem.* **2014**, *33*, 423–434.
- [55] C. Palo-Nieto, A. Sau, R. Williams, M. C. Galan, J. Org. Chem. 2017, 82, 407–414.
- [56] J. Cortes, S. F. Haydock, G. A. Roberts, D. J. Bevitt, P. F. Leadlay, *Nature* **1990**, *348*, 176–178.
- [57] B. A. Pfeifer, S. J. Admiraal, H. Gramajo, D. E. Cane, C. Khosla, *Science* 2001, 291, 1790–1792.
- [58] H. Zhang, B. A. Boghigian, B. A. Pfeifer, *Biotechnol. Bioeng.* 2010, 105, 567–573.
- [59] S. A. Borisova, H. J. Kim, X. Pu, H. Liu, *ChemBioChem* **2008**, *9*, 1554–1558.
- [60] L. Tang, R. McDaniel, Chem. Biol. 2001, 8, 547–555.
- [61] T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem., Int. Ed. 2004, 43, 1566–1568.
- [62] D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357.
- [63] T. Akiyama, Chem. Rev. 2007, 107, 5744–5758.
- [64] A. Zamfir, S. Schenker, M. Freund, S. B. Tsogoeva, Org. Biomol. Chem. 2010, 8, 5262– 5276.
- [65] R. J. Phipps, G. L. Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603–614.
- [66] M. Mahlau, B. List, Angew. Chem., Int. Ed. 2013, 52, 518–533.
- [67] D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153.
- [68] R. B. Woodward, E. Logusch, K. P. Nambiar, J. Am. Chem. Soc. 1981, 103, 3215–3217.
- [69] K. Toshima, Y. Nozaki, S. Mukaiyama, T. Tamai, M. Nakata, K. Tatsuta, M. Kinoshita, J. *Am. Chem. Soc.* **1995**, *117*, 3717–3727.
- [70] K. Tatsuta, Y. Kobayashi, H. Gunji, H. Masuda, *Tetrahedron Lett.* **1988**, *29*, 3975–3978.
- [71] Y. Anzai, S. Li, M. R. Chaulagain, K. Kinoshita, F. Kato, J. Montgomery, D. H. Sherman, *Chem. Biol.* **2008**, *15*, 950–959.
- [72] P. A. Champagne, K. N. Houk, J. Am. Chem. Soc. 2016, 138, 12356–12359.

- [73] T. H. Fenger, R. Madsen, *European J. Org. Chem.* **2013**, 2013, 5923–5933.
- [74] E. Kaji, T. Nishino, K. Ishige, Y. Ohya, Y. Shirai, *Tetrahedron Lett.* **2010**, *51*, 1570–1573.
- [75] R. S. Mancini, J. B. Lee, M. S. Taylor, Org. Biomol. Chem. 2017, 15, 132–143.
- [76] K. A. Parker, P. Wang, Org. Lett. 2007, 9, 4793–4796.
- [77] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [78] P. M. Zimmerman, Mol. Simul. 2015, 41, 43–54.
- [79] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [80] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [81] D. Crich, S. Sun, J. Org. Chem. 1997, 62, 1198–1199.
- [82] M. R. Monaco, B. Poladura, M. Diaz De Los Bernardos, M. Leutzsch, R. Goddard, B. List, *Angew. Chem., Int. Ed.* **2014**, *53*, 7063–7067.
- [83] M. R. Monaco, D. Fazzi, N. Tsuji, M. Leutzsch, S. Liao, W. Thiel, B. List, J. Am. Chem. Soc. 2016, 138, 14740–14749.
- [84] Y. Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R. Schmidt, Angew. Chem., Int. Ed. 2013, 52, 10089–10092.
- [85] R. R. Schmidt, H. Gaden, H. Jatzke, *Tetrahedron Lett.* **1990**, *31*, 327–329.
- [86] R. R. Schmidt, B. Wegmann, K. -H Jung, *Liebigs Ann. der Chemie* **1991**, *1991*, 121–124.
- [87] R. R. Schmidt, M. Stumpp, J. Michel, *Tetrahedron Lett.* 1982, 23, 405–408.
- [88] Z. Sun, G. A. Winschel, P. M. Zimmerman, P. Nagorny, *Angew. Chem., Int. Ed.* **2014**, *53*, 11194–11198.
- [89] P. Nagorny, Z. Sun, G. A. Winschel, Synlett 2013, 24, 661–665.
- [90] Y. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, P. Nagorny, J. Am. Chem. Soc. 2016, 138, 444–456.
- [91] N. D. Shapiro, V. Rauniyar, G. L. Hamilton, J. Wu, F. D. Toste, *Nature* 2011, 470, 245–250.
- [92] L. Liu, M. Leutzsch, Y. Zheng, M. W. Alachraf, W. Thiel, B. List, J. Am. Chem. Soc. 2015, 137, 13268–13271.
- [93] J. Lv, Q. Zhang, X. Zhong, S. Luo, J. Am. Chem. Soc. 2015, 137, 15576–15583.
- [94] Y. Kuroda, S. Harada, A. Oonishi, H. Kiyama, Y. Yamaoka, K. I. Yamada, K. Takasu, *Angew. Chem., Int. Ed.* **2016**, *55*, 13137–13141.
- [95] Z. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074– 8077.
- [96] Y. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, P.

Nagorny, J. Am. Chem. Soc. 2016, 138, 444-456.

- [97] L. Chan, M. S. Taylor, Org. Lett. 2011, 13, 3090–3093.
- [98] D. Lee, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 3724–3727.
- [99] D. Lee, C. L. Williamson, L. Chan, M. S. Taylor, J. Am. Chem. Soc. 2012, 134, 8260– 8267.
- [100] S. David, S. Hanessian, *Tetrahedron* **1985**, *41*, 643–663.
- [101] Y. Demizu, Y. Kubo, H. Miyoshi, T. Maki, Y. Matsumura, N. Moriyama, O. Onomura, Org. Lett. 2008, 10, 5075–5077.
- [102] A. L. Dewyer, P. M. Zimmerman, Org. Biomol. Chem. 2017, 15, 501–504.
- [103] M. Tanaka, A. Nakagawa, N. Nishi, K. Iijima, R. Sawa, D. Takahashi, K. Toshima, *J. Am. Chem. Soc.* **2018**, *140*, 3644–3651.
- [104] I. D. Gridnev, M. Kouchi, K. Sorimachi, M. Terada, Tetrahedron Lett. 2007, 48, 497–500.
- [105] T. Marcelli, P. Hammar, F. Himo, Chem. A Eur. J. 2008, 14, 8562-8571.

CHAPTER 6

Practical Solid-Phase Glycosylation Using Immobilized Sugar Phosphonates

"As an amateur in the field, I thought there ought to be some way to do this better, some better way to make peptides than the classical methods everybody is using."

Bruce Merrifield

6.1 Introduction

Since Merrifield's Nobel prize-winning invention and popularization of solid-phase organic syntheses (SPOS) in 1963, the field of solid-phase synthesis exploded in popularity and emerged as a powerful tool in the organic chemist arsenal.^[1,2] The concept of anchoring peptides to insoluble polymeric supports to perform a cascade of chemical reactions and then simply cleave the molecule from the support would facilitate peptide synthesis in such a dramatic way that it would enable an entire new area of chemistry and drug design around synthetic peptides.

The solid-phase synthesis strategy has been in constant growth over the past 50 years, and has been successfully applied in other areas such as the synthesis of oligonucleotides^[3] and oligosaccharides^[4], as well as in the field of small molecule combinatorial chemistry,^[5–7] which in turn led to the dramatic growth in the use of functionalized resins as reagents as catalysts. The main advantage of these solid-phase approach is that the methods allow for the use of excess reagents to drive reactions, simpler workups, and catalyst recyclability.^[8–10]

Scheme 6.1. Merrifield solid-phase peptide synthesis method.

Our group has had long-standing interest in the development of an economic, robust, efficient, and especially simple protocols for the selective chemical glycosylation of alcohols. In line with this, and inspired by our mechanistic insights in the phosphoric acid-catalyzed glycosylations of polyols, where we discovered that these reactions likely proceed through the intermediacy of a reactive covalently bound anomeric phosphate (see Chapter 5, section 5.2),^[11] we sought to commence the development of solid-phase glycosylations based on resins functionalized with glycosyl phosphonates.

6.2 Results and discussion

Experimental information can be found in Appendix G)

The vast majority of glycosylation methodologies are based on homogenous catalysis strategies. While these have merits and have contributed brilliantly to the advancement of the field, particularly with regards to selective glycosylations (See Chapter 5), some drawbacks such as the tediousness purification and poor catalyst recyclability might be addressed by a heterogenous approach. Based on our mechanistic conclusions on the phosphoric acid-catalyzed glycosylation of alcohols (Chapter 5, section 5.2 and 5.4), we hypothesized that a phosphonic acid-functionalized

resin could react in a similar way with glycosyl α -trichloroacetimidate donors to form β phosphonates covalently attached to the solid support. This would enable a solid-phase platform for the glycosylation of various substrates, and since the β -phosphonates is stereoselectively formed, perhaps with the right activator stereoselective glycosylations could be managed (Figure 6.1).

Figure 6.1. Hypothesis for the glycosylation of immobilized sugar phosphonates.

As one of our guiding principles for this project was the development of economic synthetic method, we sought to derivatize the commercially accessible Merrifield resin. Our original retrosynthetic proposal for the preparation of phosphonic acid-functionalized resins is displayed in Scheme 6.2. We believed we could readily access the phosphonic acid-functionalized resin **6-1** by the hydrolysis of the phosphonate **6-2**, which in turn could be obtained by an Arbuzov reaction^[12] on the inexpensive Merrifield resin.

We were comforted to see that the synthesis of **6-2** had been accomplished before,^[13] although not much characterization for this resin was available. We synthesized **6-2** with a slightly modified procedure where we first substituted the benzylic chlorides with iodides using Finkelstein conditions prior to performing the Arbuzov reaction, and then characterized the phosphonate-containing resin using gel ³¹P-NMR (δ 26.7ppm). Our initial attempts at hydrolyzing **6-2** under aqueous acidic conditions (HCl_(aq) 12M) failed, even under refluxing conditions, as did our attempts under basic conditions (NaOH_(aq) 3M with acetone or DMSO as cosolvents). This was not unexpected, as it is known that a swollen polymeric matrix is critical for the reaction to occur, and this requires a different set of solvents, a concept which was remarked by Czarnik in 1998.^[14] While we found that NaI and KI in MEK were unsuccessful, an excess of KOH in organic solvents such as THF could lead to the formation of **6-3**, albeit with a physical alteration of the resin, which became noticeable darker. In contrast, we found that LiBr (1.2 eq) in MEK led to clean formation of **6-3** as a white solid (δ 28.5ppm).

We were delighted to find that α -trichloroacetimidate donor **6-4** in slight excess (1.2 eq) reacted with the solid-supported phosphonate to form immobilized glycosyl phosphonate **6-5** (δ 27.5ppm) (Scheme 6.3a). In addition, washing **6-5** with organic solvents, and then subjecting it to methanol at 80°C led to the selective formation of α -methoxy glycoside **6-6**. To corroborate that the small ³¹P-NMR chemical shift changes were meaningful, the procedure was repeated in a homogeneous scenario using phosphonic acid **6-7**, derived in an identical way from **6-8**. A

diastereomeric mixture of phosphonates **6-9** were observed upon treatment with trichloroacetimidate donor **6-4** (Scheme 6.3b). Importantly, NMR analysis of **6-9** revealed it to be a mixture of diastereomeric β -phosphonates, in accordance to our previous observations.^[11] A diastereomeric mixture is also expected in **6-5**, but the signals are indistinguishable by gel NMR due to the decreased resolution of this technique.

Scheme 6.3. a. Synthesis of phosphonic acid-functionalized resin. b. Replication of the solid-phase route synthetic route in solution and determination of the stereochemistry of glycosyl phosphonate 6-9.

Unfortunately, we found that the reaction of phosphonate **6-9** with secondary alcohols such as cyclohexanol would not occur under neutral conditions. By employing strong Bronsted acid catalysts, such as MsOH, TsOH, and TfOH, the formation of the O-glycoside **6-10** would be observed, albeit with almost no stereoselectivity (1:1 to 1.1:1 β : α). Hydrolyzed starting material would also be frequently observed, as these initial experiments were not performed under strictly

anhydrous conditions. Using anhydrous TBSOTf as a Lewis acid, the desired product was obtained in 1.7:1 β : α selectivity when the reaction was carried out using phosphonate **6-9**. To our delight, when the reaction was performed under anhydrous conditions using resin **6-5**, and excess cyclohexanol (3.0 eq), the product was cleanly formed, although in 1.2:1 β : α . However, it was clear that under our acidic condition and later work-up, the ethyl phosphonate ester would not be stable. Therefore, to provide a more uniform catalyst through several reaction cycles, as well as to have an increased capacity for resin-bound sugar phosphonates, we decided to focus our attention in developing glycosylation strategies for the phosphonic diacid-functionalized resin **6-1**.

The synthesis of **6-1** was accomplished by methoxide capping of the Arbuzov product **6-6-2**, followed by treatment TMSBr, and subsequent methanolysis of the silylated phosphonate (δ 29.0ppm) (Scheme 6.4a). To the best of our knowledge, this work discloses the first synthesis of solid-phase supported phosphonic mono- and diacids. Glycosyl donor **6-4** could then be loaded to the resin in less than 20 minutes in THF to afford resin-bound diglycosyl phosphonate **6-11** (Scheme 6.4b). TMSOTf catalyzed reaction of **6-11** with excess cyclohexanol (3eq) would yield the desired product in with low stereoselectivity (1.3:1 β : α). To our delight, the reaction with limiting cyclohexanol would yield 93% of product with the same selectivity (Scheme 6.4b). Moreover, the residual resin could be washed and resubjected to the glycosylating reaction conditions to obtain glycoside product in 72% yield and the same selectivity. Importantly, NMR studies of the analog homogenous system revealed that two equivalents of the glycosyl donor reacted with the divalent acid.

Scheme 6.4. a. Preparation of phosphonic diacid-functionalized resin. b. Formation of resin bound glycosyl phosphonate.

Glycosyl donors with other protecting groups such as acetyl and benzoyl were also able to be loaded into the resin via a the phosphonic diacid **6-1**. For example, peracetylated glucose trichloroacetimidate donor **6-12** was loaded by stirring it with **6-1** in THF, while perbenzoylated glucose bromide donor formed the phosphonate by using Ag₂CO₃ as a promoter. Unfortunately, TMSOTf-catalyzed reaction of these less active phosphonates would result in decomposition into the unfunctionalized protected sugar **6-13**, presumably because cyclohexanol prefers attacking the P atom instead of the anomeric carbon (Scheme 6.5).

Scheme 6.5. Unsuccessful attempt at the TMSOTf-catalyzed glycosylation with resin-bound peracetylated phosphonates.

To prove that two equivalents of sugar are loaded to phosphonic diacid **6-1**, the reaction of its soluble analog **6-14** with trichloroacetimidate donor **6-4** in THF was conducted and monitored by ³¹PNMR. As is shown in Figure 6.2, only partial conversion is achieved with 1 equivalent of **6-14**. The ratio of the compounds obtained remains constant from 20min to 1h. However, upon addition of the second equivalent of **6-14**, complete conversion to **6-15** is observed.

Having identified perbenzylated phosphonates as ideal substrates for the glycosylation of secondary alcohols, a number of promoters were screened using the soluble glycosyl phosphonate **6-15** in the search for enhanced stereoselectivities (Table 6.1). Hydrogen-bonding catalysts such as thioureas, squaramides, and thiophosphoramides were not strong enough to catalyze this reaction (entries 1-3). Stronger phosphoric acids such as (p-NO₂C₆H₅)₂PO₂H were able to catalyze the glycosylation, although in a nonselective fashion (entry 4). Next, several Lewis acids were tested (entries 5-11), with low to moderate diastereoselectivities.

Figure 6.2. Reaction of phosphonic acid 6-18 with varying equivalents of donor 6-4.

Given the low price of FeCl₃ and the moderate selectivity that it provided (2.3:1 α : β), we decided to further investigate this catalyst (Table 6.2). To our delight, we found that by using substoichiometric amounts of FeCl₃, and by working up the reaction by directly filtering the reaction mixture through a short SiO₂ plug, good diastereoselectivities were obtained in DCM, DCE, dioxane, and PhMe (Table 6.2, entries 1, 3, 5, and 6). Moreover, with a saturated solution of FeCl₃ in DCM, the reaction was fully complete in 15 minutes, by RP-HPLC analysis.

	C DCM, rt	BnO BnO BnO BnO C	\bigcirc
entry	promoter	conversion ^b	dr (α:β) ^c
1	F_{3C} H H H H H CF_{3}	trace	
2	F_{3C} N H H H CF_{3} CF_{3} CF_{3} CF_{3} CF_{3}	trace	
3	$S_{H} = \left(\begin{array}{c} CF_{3} \\ CF_{3} \\ CF_{3} \\ CF_{3} \end{array} \right)_{3}$	trace	
4		major	1:1
5	Cu(OTf) ₂	major	1:1
6	Sc(OTf) ₂	major	3:1
7	Yb(OTf) ₂	major	1:1
8	ZnBr ₂	major	1.6:1
9	ZrCp ₂ Cl ₂	major	1.4:1
10	I ₂	major	2:1
<u>11</u>	FeCl ₃	major	2.3:1

Table 6.1. Initial promoter screening for the glycosylation of phosphonates.^a

^aGlycosylations performed according to general protocol detailed in Appendix G. ^bTrace product was not observed by TLC, only by RP-HPLC, major indicates product was the major spot in the TLC. ^cDetermined by RP-HPLC.

BnO BnO BnO BnO P O FT5 Ph	FeCl ₃ (0.15 eq) solvent		BnO BnO BnO BnO BnO O 6-10	
entry	solvent	conversion ^b	dr (α:β) ^c	
1	DCM	major	10.6	
2	CHCI ₃	trace		
3	DCE	major	11.0	
4	THF	trace		
5	dioxane	low	10.5	
6	PhMe	major	12.5	
7	MeCN	trace	-	
8	EtOAc	trace		
9	DMF	trace		

Table 6.2. Initial promoter screening for the glycosylation of phosphonates.^a

^a Glycosylations performed according to general protocol detailed in Appendix G. ^b Trace product was not observed by TLC, only by RP-HPLC, major indicates product was the major spot in the TLC, minor indicates product was a significant yet small spot in the TLC.^c Determined by RP-HPLC.

Additional experiments highlighted the importance of the counterion of the Fe(III) catalyst. Table 6.3 shows the results of different Fe(III) catalysts used. Fe(III) phosphate tetrahydrate, citrate monohydrate, acetylacetonates, and diisobutyrylmethane failed to produce detectable amounts of product, presumably because of their lower Lewis acidity (entries 1-4). Fe(III) triflate did yield the desired product, but in drastically inferior diastereoselectivity and at a much lower reaction rate (entry 5). Fe(III) sulfate provided good diastereoselectivity, but the reaction rate was even slower than the Fe(III) triflate reaction. Indeed, at 18 hours, only moderate conversion was observed for the Fe(III) sulfate reaction. The excellent diastereoselectivity and reactivity of FeCl₃ speaks for a mechanism involving an anomeric chloride intermediate.

BnC BnO [·] BnC	BnO BnO BnO BnO	Fe(III) cataly		6-10
	entry	catalyst	conversion at 5h ^b	dr (α:β) ^c
	1	Fe(PO ₄) . 4H ₂ O		
	2	Fe(C ₆ H ₅ O ₇) .H ₂ O		
	3	Fe(acac) ₃		
	4	Fe(dibm) ₃		
	5	Fe(OTf) ₃	major	1.1:1
	6	Fe ₂ (SO ₄) ₃ . 9H ₂ O	trace	13:1
	7	FeCl ₃	full	9:1

Table 6.3. Effect of the counterion in the Fe(III) catalyzed glycosylation of phosphonates.^a

Regrettably, when the optimized conditions in DCM with FeCl₃ were applied to the glycosylation of cyclohexanol with solid-supported phosphonate **6-11**, only a 1.5:1 diastereoselectivity favoring the α epimer was observed. In addition, contrary to the observation made in Table 6.1, entry 4, the use of phosphoric acids such as (*R*)-TRIP were ineffective in catalyzing this reaction. Undeterred, we reevaluated conditions that would better suit the solid-

^a Glycosylations performed according to general protocol detailed in Appendix G ^b trace product was not observed by TLC, only by RP-HPLC, major indicates product was the major spot in the TLC, full indicates full conversion by RP-HPLC. ^c Determined by RP-HPLC.

supported glycosylation. To this end, we attempted the glycosylation of (-)-menthol, a bulkier secondary alcohol compared to cyclohexanol, which might help us notice trends in our method development more easily (Table 6.4). We screened a number of Lewis acids with chloride counterions, such as CoCl₂, MnCl₂, NiCl₂, and VCl₃, but all of these were either ineffective or drastically inferior to FeCl₃ in their role as catalysts for this reaction. For this reason, we decided to reevaluate conditions for FeCl₃ in this new system. To our relief, we found that the diastereoselectivity could be increased from 3:1 in DCM (Table 6.4, entry 1) to up to 10:1 in 1,4dioxane (entry 10) in favor of the α diastereomer of the O-glycoside **6-16**. In addition, acetonitrile offers a modest reverse diastereoselectivity, approximately 2:1 favoring the β isomer (entry 7). Finally, we observed that the addition of even hindered Lewis bases in super stoichiometric amounts shuts down this chemistry, for example TEA, DIPEA, lutidine, and even excess benzophenone and external chloride sources such as LaCl₃.

When we attempted the glycosylation with limiting acceptor, we observed that the reaction suffered from poor conversions when dioxane was used as the solvent. In addition, we detected significant formation of α - glycosyl chloride **6-17** in the solution, as well as hydrolyzed donor **6-18**. After additional optimization, we noticed the reaction occurred more efficiently in toluene, and with the addition of molecular sieves we were able to diminish the amount of hydrolyzed donor. With 0.5 equivalents of FeCl3 we were able to obtain 41% yield of product **6-16** with very small amounts of residual α - glycosyl chloride **6-17** and hydrolyzed donor **6-18**. (Scheme 6.6).

Table 6.4. Evaluation of solvents for the solid-phase glycosylation of phosphonates with menthol.^a

^a Glycosylations performed according to general protocol detailed in Appendix G. ^b Determined by RP-HPLC.

Scheme 6.6. Glyco	osylation of limiting ac	ceptor with 6-11.	^a Determined by NMR.
-------------------	--------------------------	-------------------	---------------------------------

A plausible mechanism for this reaction, based on the observed intermediates and α selectivity, is shown in Scheme 6.7. Immobilized phosphonate α -6-11 could bind to FeCl₃ and
then product α -chloride 6-17 and Fe(III)-phosphonate 6-19. The latter could then bind to the
alcohol substrate, and lead to the formation of Fe(III)-alkoxide 6-20 with the release of
immobilized phosphonic acid. 6-20 could then bind to the axial chloride of 6-17 and abstract the
halide. On the basis of the principle of least motion, the alkoxide would be better suited to attack
on the α -face of the transient oxocarbenium species, which would lead to selective formation of α -6-16.

Scheme 6.7. Proposed mechanism for the FeCl₃-catalyzed glycosylation of alcohols with immobilized phosphonates 6-11.

In summary, we have developed and characterized the first solid-supported phosphonic acid resins, as well as its application in the glycosylation of secondary alcohols. Our method enables a reliable, fast, and efficient way of covalently linking glycosyl donors to a polystyrene-based solid support. The solid-supported glycosyl phosphonates can then be employed in FeCl₃-promoted glycosylations with primary and secondary alcohols to obtain highly α -enriched O-glycosides. The heterogeneous nature of our method allows for an operationally simple and reliable procedure that does not require expensive instrumentation or tedious work-ups. In a reality where a large fraction of natural products require a glycosidic bond, we envision that our method will be useful to biochemists seeking a practical and expertise-free solution to their glycosylation needs.

6.3 References

- [1] R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149–2154.
- [2] R. B. Merrifield, Angew. Chem., Int. Ed. 1985, 24, 799–810.
- [3] R. L. Letsinger, V. Mahadevan, J. Am. Chem. Soc. 1966, 88, 5319–5324.
- [4] J. M. Frechet, C. Schuerch, J. Am. Chem. Soc. 1971, 93, 492–496.
- [5] L. A. Thompson, J. A. Ellman, *Chem. Rev.* **1996**, *96*, 555–600.
- [6] J. A. Ellman, Acc. Chem. Res. **1996**, 29, 132–143.
- [7] E. M. Gordon, R. W. Barrett, W. J. Dower, S. P. A. Fodor, M. A. Gallop, J. Med. Chem. 1994, 37, 1385–1401.
- [8] M. Collot, S. Eller, M. Weishaupt, P. H. Seeberger, *Beilstein J. Org. Chem.* 2013, 9, 97– 105.
- [9] A. R. Vaino, K. D. Janda, J. Comb. Chem. 2002, 2, 579–596.
- [10] M. Benaglia, A. Puglisi, F. Cozzi, *Chem. Rev.* **2003**, *103*, 3401–3430.
- [11] J. H. Tay, A. J. Argüelles, M. D. Demars, P. M. Zimmerman, D. H. Sherman, P. Nagorny, J. Am. Chem. Soc. 2017, 139, 8570–8578.
- [12] A. K. Bhattacharya, G. Thyagarajan, Chem. Rev. 1981, 81, 415–430.
- [13] M. S. Lukashova, K. N. Belikov, K. Y. Bryleva, S. G. Kharchenko, S. G. Vishnevsky, V. I. Kalchenko, *Funct. Mater.* 2016, 23, 111–119.
- [14] A. W. Czarnik, *Biotechnol. Bioeng.* **1998**, *61*, 77–79.

CHAPTER 7

Studies on the Mechanism of Phosphoric Acid-Catalyzed Epoxide Ring Opening

"Chemical synthesis is uniquely positioned at the heart of chemistry, the central science, and its impact on our lives and society is all pervasive."

Elias J. Corey

7.1 Introduction

Among the functional motifs that comprise cyclic ethers, the three membered examples, called epoxides or, less commonly, oxiranes, have several structural and reactivity attributes that set them aside from the rest of cyclic ethers.^[1] For this reason, they are one of the most recurring substructures observed in both manmade applications and biosynthetic routes. In addition, an almost endless number of naturally occurring epoxides with a wide range of interesting biological activities are found in nature, which has further increased the interest of epoxides to biologists, pharmacologists, and synthetic chemists.^[2] A few examples of naturally occurring epoxides are shown in Figure 7.1.

Figure 7.1. Examples of complex structures containing epoxides.

Epoxides are highly strained heterocycles that are relatively easy to synthesize and reasonably stable to handle. Using a combination of experimental and computational techniques, Morgan and coworkers measured gas-phase enthalpy of formation (ΔH_f) and the strain energy of several epoxides. The latter was found to be around 20-25 kcal/mol (Figure 7.2).^[3] Thus, epoxide chemistry is dominated by ring-opening reactions that relieve the vast potential energy that is captured in the ring strain.

Figure 7.2. Ring strain in epoxides.

Epoxides are powerful and versatile intermediates in synthesis for two main reasons. A contributing factor is the emergence and development of efficient and enantioselective methods for epoxide installation such as the Sharpless asymmetric epoxidation of allylic alcohols,^[4] the Jacobsen epoxidation,^[5,6] and the Shi epoxidation.^[7,8] In addition, there exists a plethora of other methods for the construction of epoxides that have made epoxide-containing chiral building blocks and starting materials readily available.^[1,9]

The second factor is that an immeasurable amount of work has been done in the development of synthetic methods that harness the high reactivity of epoxides for the construction of oxygenated synthetic targets. Given the reactivity of epoxides towards nucleophiles and electrophiles, there exists both acid- and base-promoted epoxide ring openings that one can choose from to achieve a desired regio- and stereochemical outcome with a wide range of substitution patterns for the product.^[1] For this reason, a substantial number of total syntheses rely on the formation and use of an epoxide-containing intermediate.^[9]

While most methods for the functionalization of epoxides focus on the intermolecular epoxide ring opening (ERO) with a nucleophile, the intramolecular variant is a powerful tool for the construction of cyclic products. However, for the latter to be useful in synthesis, effective ways to control the regioselectivity of the ERO is mandatory. Baldwin's rules,^[10] a set of empirical generalizations that help discern kinetically favored intramolecular cyclizations, suggest that the regiochemistry of intramolecular ERO favors *exo* processes that proceed through a spiro transition state. Indeed, with few exceptions, intramolecular ERO leads to the formation of 5-membered rings (*exo*-products) instead of 6-membered rings (*endo*-products) (Scheme 7.1).^[11] For this reason, methods that facilitate *endo* control for intramolecular ERO are of high interest to synthetic chemists.

Most of the strategies developed to control the regiochemistry of intramolecular EROs have relied on the use of directing groups covalently present in the substrates. A variety of modifications have been tried, including alkenyl,^[12–15] alkynyl,^[16] alkyl,^[17,18] and silyl.^[19,20] The majority of these methods justify their regioselectivity in electronic perturbations of the epoxide that stabilize the 6-*endo*-tet TS or disfavor the 5-*exo*-tet TS. For instance, the Nicolaou group, pioneers of the regioselective ERO, used simple vinyl substituents on the epoxide to stabilize the nascent allyl carbocationic intermediate that leads to *endo*-cyclization (Scheme 7.2a).^[14,15] On the

other hand, Schaumann and coworkers achieved a similar stereoelectronic bias by using silylsubstituted epoxides (Scheme 7.2b).^[20]

Scheme 7.2. Examples of substrate control strategies in *endo*-selective intramolecular EROs.

The mentioned substrate-controlled strategies offered a breakthrough in intramolecular ERO. However, the use of covalently linked directing groups as a source of regiocontrol have some evident drawbacks. These methods are restricted in scope and tend to lack generality. On the other hand, catalyst-controlled regioselective intramolecular ERO could provide a more robust method that is applicable across families of substrates. The Nagorny group has ample experience and success in the application of chiral phosphoric acids (CPAs, for an introduction, see Chapter 2), in regio- and stereoselective acetalization reactions, some of which are discussed in this dissertation (Chapters 3 and 5). In collaboration with Sibin Wang, Miyuki Hotta and Dr. Tay Rosenthal (Nagorny group), we sought to extend this strategy to the intramolecular ERO by developing a practical a CPA-controlled methodology to access both *exo-* and *endo-*products. In addition, we sought to understand mechanistic details for CPA selection of either pathway using quantum chemical tools developed by the Zimmerman group.^[21–24] As an encouraging precedent, both the Sun and the List groups independently demonstrated the usefulness of CPAs in desymmetrizative intermolecular ERO with thiols and water as nucleophiles, respectively (Scheme 7.3).[25,26]

7.2 Results and discussion

To test our hypothesis that CPAs could be used to control the regioselectivity of intramolecular ERO in a complex setting, we investigated the cyclization of the methyl ester of natural antibiotic mupirocin **7-1**. The control experiments showed that under a variety of acidic, neutral, and basic conditions, either poor conversion or both *exo* (**7-2**) and *endo* (**7-3**) were formed unselectively (Table 7.1, entries 1-6). However, using catalytic amounts of the acidic phosphoric acid (*p*-NO₂-C₆H₄O)PO₂H, complete conversion of mupirocin methyl ester and a poor *endo*-selectivity was observed (entry 7). This suggests that, contrary to what might be expected by Baldwin's rules, phosphoric acid catalysis has a small inherent *endo*-selectivity for the intramolecular ERO of mupirocin methyl ester, but high selectivity for either **7-2** or **7-3** is unlikely using achiral catalysts.

		CO₂Me 5	conditions	Me HO HO HO HO HO HO HO $T-2$ Me $T-3$ HO HO HO HO $T-3$	
entry	catalyst	Solvent	Time	Conv. [%]	7-2:7-3 ^b
1 ^c	LiCl	DCM	o/n	<5	_
2 ^c	ZnCl ₂	DCM	o/n	82	1.1:1
3 ^d		water	4d	24	1:2.5
4	$\rm KH_2O_4$ buffer (7 pH)	water	4d	>98	1.1:1
5 ^e	Cs ₂ CO ₃	MeOH	4d	nr	-
6 ^f	LiHMDS	THF	4d	nr	-
7	(p-NO ₂ -C ₆ H ₄ O)PO ₂ H	DCM	5d	>98	1:2.3

 Table 7.1. Initial control experiments on the intramolecular ERO of 7-1.^a Experiments were performed by Sibin Wang, Miyuki Hotta, and Dr. Tay Rosenthal.

We then evaluated if the use of CPAs could bias or even revert the inherent low *endo*-selectivity for this transformation. To this end, we screened a number of BINOL-derived CPAs. Encouragingly, we found that the axial chirality of the BINOL backbone had a significant impact on the regioselectivity of the transformation, with (R) consistently favoring *endo*-product formation more than (S) (Table 7.2, entries 1-8). To our delight, for the first time excellent regioselectivity for *endo*-product formation was observed when using (R)-**7-4c** and (R)-**7-4d** (entries 6 and 8). After screening solvents using (R)-**7-4d** as the catalyst (Table 7.2, entries 9-12), we found that the regioselectivity could be further increased to 1:19 (entry 12) by using toluene. Under these optimized conditions, we found that the catalyst loading could be lowered to 5 mol% with minimal detriment to the regioselectivity of the reaction (entries 12-14).

^a conditions: **7-1** (1 equiv), catalyst (20 mol%), DCM (0.2M), rt. ^b Determined by RP-HPLC. ^c DCM (0.01M). ^d 70°C. ^e Cs₂CO₃ (10 equiv.), DCM (0.02M). ^f LiHMDS (3 equiv), DCM (0.01M).

Table 7.2. Catalyst screening for the optimization of *endo*-selective conditions. Experiments were performed by Sibin Wang, Miyuki Hotta, and Dr. Tay Rosenthal.

Me = O⊾			Ar O PC	он но но +	он 7-2 ОН
Me OH OH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S	olvent (0.2M) Å MS, r.t. o/n	► Me Me 7-3 HO	
entry	catalyst	Loading [mol%]	Solvent	Conv. [%]	7-2:7-3 ^b
1	(S)- 7-4a	20	DCM	>98	1:1.9
2	(<i>R</i>)- 7-4 a	20	DCM	>98	1:2.8
3	(S)- 7-4b	20	DCM	>98	1:1.9
4	(<i>R</i>)- 7-4b	20	DCM	>98	1:2.7
5	(S)- 7-4c	20	DCM	>98	1:1.3
6	(<i>R</i>)- 7-4c	20	DCM	>98	1:13
7	(S)- 7-4d	20	DCM	>98	1.2:1
8	(<i>R</i>)- 7-4d	20	DCM	>98	1:15.5
9 ^c	(<i>R</i>)- 7-4d	20	DCM	67	1:8.7
10 ^c	(<i>R</i>)- 7-4d	20	СуН	39	1:3.3
11 ^c	(<i>R</i>)- 7-4d	20	$PhCF_3$	>98	1:11.5
12 ^c	(<i>R</i>)- 7-4d	20	PhMe	>98	1:19
13 ^c	(<i>R</i>)- 7-4d	10	PhMe	>98	1:19
14 ^c	(<i>R</i>)- 7-4d	5	PhMe	>98	1:18.4
(S)-7-4a		S)- 7-4b SF ₅	i-Pr i-Pr i-Pr (S)-7-4c	ViPr POH iPr	Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy C

^a conditions: 7-1 (1 equiv), solvent (0.2M), 4Å MS, rt., o/n ^b Determined by RP-HPLC. ^c4Å MS were not used.

Having been successful in finding conditions for the preparation of the *endo*-product **7-3** with excellent conversion and regioselectivity, we conjectured that through judicious choice of a CPA, we could bias the selectivity towards the formation of *exo*-product **7-2**, especially after having observed that in all cases BINOL derived catalysts with (*S*) chirality gave better *exo*-selectivity than achiral phosphoric acids (Table 7.2, entries 1, 3, 5, 7 compared to Table 7.1, entry 7). To this end, we evaluated SPINOL-derived CPAs as well as BINOL derived CPAs containing functionalities different that aryl substituents at the 3 and 3' position (Table 7.3, entries 1-7). To our delight, we found that the use of 5 mol% of (*S*)-TIPSY resulted in the formation of the *endo*-product in high regioselectivity (5.3:1, Table 7.3, entry 6).

Table 7.3. Catalyst screening for the optimization of *exo*-selective conditions.^a Experiments were performed by Sibin Wang, Miyuki Hotta, and Dr. Tay Rosenthal.

^a conditions: 7-1 (1 equiv), DCM (0.2M), rt., o/n ^b Determined by RP-HPLC.

Although these results are promising, they are also highly empirical. Further mechanistic details to disclose the high efficiency and modest intrinsic *endo*-selectivity of the phosphoric acidcatalyzed intramolecular ERO of mupirocin methyl ester was therefore highly desirable. However, computational methods to describe the reaction mechanism in relatively large systems, with many degrees of freedom, such as this, constitutes a challenge to even modern approaches.^[27] Fortunately, the Zimmerman group has developed a number of quantum chemical methods to facilitate the accurate and fast search of relevant reactions paths and transition states.^[21–24] This method has been used by the author in the elucidation of fine mechanistic detail of phosphoric acid-catalyzed spiroketalizations and glycosylations (See Chapter 3 and 5).^[28,29] Thus, we employed the single-ended growing string method with the hope to detail the mechanism of phosphoric acid-catalyzed intramolecular ERO.

To save computational cost, a truncated model of the mupirocin methyl ester was used (7-6), and biphenyl phosphoric acid (**BPA**) was utilized as the catalyst. Given that CPAs possess both Brønsted acidic and Lewis basic sites in proximity, it is possible that CPAs simultaneously activate the electrophilic epoxide and the nucleophilic alcohol. Several arrangements that allow such concerted operation were modeled. To save time and computational cost, the starting point for the single-ended growing string calculations (GSM) were the products of the reaction 7-7 for the *exo* reaction and 7-8 for the *endo*-reaction, and driving coordinates leading to the reverse reaction to (yielding the epoxide 7-6) were given. This helps to obtain productive models more easily, since the products have less degrees of freedom, and is a valid strategy due to the principle of microscopic reversibility. Our computations (Figure 7.3) revealed that the formation of a substrate-BPA complex [7-6 – **BPA**] was thermodynamically favored by 3.5 kcal/mol, consistent with the formation of 3 hydrogen bonds between C6, C7, and C13 hydroxy groups and the phosphoric acid. In addition, as expected, the *endo*-product 7-7 is preferred thermodynamically by 5.1 kcal/mol and its formation is highly exothermic, 12.6 kcal/mol downhill from the substrate-BPA complex. Concerted pathways for the formation of both *endo*- and *exo*-products were readily found using GSM, and revealed that the preferred regiotopic pathways, while topologically distinct, shared almost identical activation barriers of around 19.1 kcal/mol. The *endo*-pathway was preferred minutely by 0.16 kcal/mol, a number that, while admittedly within statistic error, agrees with the small intrinsic *endo*-selectivity that is observed with achiral phosphoric acids experimentally (Figure 7.3 TS_{*endo*} vs. TS_{*exo*} and Table 7.1, entry 7). Additionally, a mechanism considering an epoxide opening by the phosphoric acid to form a phosphate intermediate was ruled out because the barrier for phosphate formation was substantially higher (~8.3 kcal/mol, TS_P) than the concerted pathways.

The reverse reactions for the concerted mechanism have activation barriers of 36.0 and 32.1 kcal/mol for *endo-* and *exo-*product formation, respectively, indicating an irreversible transformation at room temperature. However, these barriers are not so large that under forcing conditions equilibration to favor *endo-*product formation would not occur. In support of this, when a 1:1 mixture of *exo-* and *endo-*products **7-2** and **7-3** was heated to 80°C overnight in the presence of (S)-TIPSY and Cu(BOX)(SbF₆)₂, the resulting mixture was highly enriched in *endo-*product (>98:1).

Figure 7.3. Energy diagram for the intramolecular ERO of a truncated mupirocin model.

As mentioned earlier, the preferred *endo-* and *exo-*pathways are close in energy and share some features. For instance, in both cases it would be geometrically impossible to have a concerted pathway for this substrate without the hydroxyl group at C13 acting as a relay proton donor and acceptor (Scheme 7.4). Indeed, computational models lacking this aptly placed functional group require a stepwise sequence of events (protonation, rotation, and cyclization) to yield the product, which have a higher activation barrier. Another shared important feature for the concerted pathway is that protonation of the epoxide (red arrows) and cyclization (blue arrows) occur simultaneously in the TS.

Scheme 7.4. Endo and exo concerted cyclizations.

However, there are important and noticeable difference between the *endo-* and *exo-* pathways. The geometrical demands of 5-*exo*-tet cyclizations require a more closed and tight transition state, and the C13 hydroxyl group serves as a relay to protonate the epoxide, while the phosphoric acid activates the C7 alcohol. On the other hand, the 6-*endo*-tet mechanism involves a more open transition state, and the C13 hydroxyl group serves as a relay to activate the C7 alcohol, while the phosphoric acid protonates the epoxide directly.

A quadrant-based analysis has been developed and successfully applied by Himo and Terada to explain the selectivity of BINOL-based CPAs in a number of unrelated reactions.^[30,31] In addition, we have previously used it to explain the origin of enantioselectivity of CPA-catalyzed spiroketalizations (See Chapter 3). This model serves to juxtapose the steric profile of (R) or (S) BINOL-derived CPAs to reaction models. Figure 7.4b shows that the 6-*endo*-tet pathway leading to **7-8** does not have severe contacts with either (R) or (S) CPAs, and most of the interactions are with torsionally flexible parts of the substrate, colored blue in Figure 7.4a. This is consistent with the more open and flexible TS compared to the 5-*exo*-tet pathway and suggests that the choice of

chirality of the CPA does not have a drastic impact in the barriers of the 6-*endo*-tet cyclization. On the other hand, the tighter TS of the 5-*exo*-tet mechanism places an inflexible and bulky group (colored in red in Figure 7.4a) in the bottom right quadrant pointing towards the phosphoric acid. This implies that (R)-BINOL-derived CPAs would disfavor the *exo*-pathway due to steric clashes in this quadrant. On the other hand, CPAs with (S) chirality would not suffer from these interactions and would therefore have lower barriers for the formation of *exo*-product 7-7. These models are in agreement with the observed tendencies of (R) and (S) BINOL-derived CPAs in the intramolecular ERO of 7-1 (Tables 7.2 and 7.3).

Figure 7.4. Quadrant-based perspective for key TSs. **a.** Perspective taken. **b.** 6-*endo*-tet pathway in a (R) CPA quadrant framework. **c.** 5-*exo*-tet pathway in a (S) CPA quadrant framework. **d.** 5-*exo*-tet pathway in a (R) CPA quadrant framework. Biphenyl backbone of the catalyst is omitted from the perspective for clarity.

In summary, we have developed a catalyst-controlled method for the regioselective intramolecular epoxide ring opening of mupirocin derivatives. After an extensive screening, we found that (R)-TCYP could catalyze the formation of endo-product in 18.4:1 r.r., while (S)-TIPSY yielded the exo-product in 3:1 r.r.. Importantly, we investigated the mechanism using state-of-theart quantum chemical solutions developed by the Zimmerman group. We found that our method could rapidly describe a potential energy surface fully consistent with the experimental observations. On the basis of our results, we postulate that a concerted and highly synchronous mechanism is likely for this reaction. We obtained highly detailed reaction paths for the formation of exo- and endo-products, that although similar in activation barrier, showed key structural dissimilarities that helped us establish the origin of regiocontrol of these reactions, likely due to steric clashes of the epoxide alkyl substituents with the 3 and 3' substituents of BINOL-derived CPAs with (R) chirality. Catalyst-controlled regiodivergent methods for epoxide opening are scarce but synthetically useful and versatile. We hope that our mechanistic insights can assist in developing this methodology further to make it more broadly applicable and useful to the organic chemist.

7.3 References

- [1] A. P. S. Murphree, S. Murphree, *Arkivoc* **2012**, *2006*, 6.
- [2] J. Marco-Contelles, M. T. Molina, S. Anjum, Chem. Rev. 2004, 104, 2857–2900.
- [3] K. M. Morgan, J. A. Ellis, J. Lee, A. Fulton, S. L. Wilson, P. S. Dupart, R. Dastoori, J. Org. Chem. 2013, 78, 4303–4311.
- [4] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974–5976.
- [5] S. Chang, J. M. Galvin, E. N. Jacobsen, J. Am. Chem. Soc. 1994, 116, 6937–6938.
- [6] W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. **1990**, 112, 2801–2803.
- [7] Z. X. Wang, Y. Tu, M. Frohn, J. R. Zhang, Y. Shi, J. Am. Chem. Soc. 1997, 119, 11224– 11235.
- [8] Y. Tu, Z. X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806–9807.
- [9] B. Das, K. Damodar, in *Heterocycles Nat. Prod. Synth.*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, **2011**, pp. 63–95.
- [10] J. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 0, 734–736.
- [11] I. Vilotijevic, T. F. Jamison, Angew. Chemie Int. Ed. 2009, 48, 5250–5281.
- [12] H. Matsukura, M. Morimoto, H. Koshino, T. Nakata, *Tetrahedron Lett.* 1997, 38, 5545– 5548.
- [13] T. Suzuki, O. Sato, M. Hirama, *Tetrahedron Lett.* **1990**, *31*, 4747–4750.
- [14] K. C. Nicolaou, C. V. C. Prasad, P. K. Somers, C. K. Hwang, J. Am. Chem. Soc. 1989, 111, 5330–5334.
- [15] K. C. Nicolaou, M. E. Duggan, C. K. Hwang, P. K. Somers, J. Chem. Soc. Chem. Commun. 1985, 0, 1359–1362.
- [16] C. Mukai, Y. I. Sugimoto, Y. Ikeda, M. Hanaoka, *Tetrahedron* 1998, 54, 823–850.
- [17] Y. Morimoto, Y. Nishikawa, C. Ueba, T. Tanaka, Angew. Chemie Int. Ed. 2006, 45, 810–812.
- [18] F. Bravo, F. E. McDonald, W. A. Neiwert, B. Do, K. I. Hardcastle, Org. Lett. 2003, 5, 2123–2126.
- [19] T. P. Heffron, T. F. Jamison, Org. Lett. 2003, 5, 2339–2342.
- [20] G. Adiwidjaja, H. Flörke, A. Kirschning, E. Schaumann, *Tetrahedron Lett.* **1995**, *36*, 8771–8774.
- [21] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [22] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.

- [23] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [24] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [25] Z. Wang, W. K. Law, J. Sun, Org. Lett. 2013, 15, 5964–5966.
- [26] M. R. Monaco, S. Prévost, B. List, Angew. Chemie Int. Ed. 2014, 53, 8142-8145.
- [27] A. L. Dewyer, P. M. Zimmerman, Org. Biomol. Chem. 2017, 15, 501–504.
- [28] Y. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, P. Nagorny, *J. Am. Chem. Soc.* **2016**, *138*, 444–456.
- [29] J. H. Tay, A. J. Argüelles, M. D. Demars, P. M. Zimmerman, D. H. Sherman, P. Nagorny, *J. Am. Chem. Soc.* **2017**, *139*, 8570–8578.
- [30] I. D. Gridnev, M. Kouchi, K. Sorimachi, M. Terada, Tetrahedron Lett. 2007, 48, 497–500.
- [31] T. Marcelli, P. Hammar, F. Himo, Chem. A Eur. J. 2008, 14, 8562–8571.

CHAPTER 8

Closing Remarks

Catalysis is at the heart of chemistry. The acceleration of all kinds of reactions due to catalytic processes has enabled life on Earth to exist and mankind to flourish. The growth and evolution of the general field of catalysis continues to develop at a commendable rate, thus leading to the general advancement of modern organic chemistry. Inspired by the breathtaking efficiency and control of catalytic process that Nature has engineered over thousands of years, organic chemists strive to design and provide artificial catalysts that enable new chemistry and impart selectivity on previously untamed chemistry. The work described herein seeks to add a humble but earnest contribution to this growing field. We have added to the annals of organocatalysts by the elaboration of a synthetic method that interconverts BINOL and H8-BINOL-derived chiral phosphoric acids for asymmetric Brønsted acid and hydrogen bond catalysis (Chapter 2), as well as to the vault of ligands for transition metal catalysis by the development of a novel class of privileged spiroketal-based ligands that enable asymmetric transformations across a variety of unrelated reactions (Chapter 4).

As synthetic methodology progressed, conquering feat after feat, so too have our ambitions and goals. The field is akin to a never-ending upward spiral, continuously seeking to improve yields, perfect the relative and absolute stereoselectivities, and entice even the most unactivated substrates. However, while the complexity of the current topic in organic chemistry has increased dramatically over the past decades, the majority of organic chemists are still armed with the same old qualitative models, such as Valence Bond Theory, to interpret their results and to base their hypotheses. In other words, although the intricacy of the chemistry has increased, many organic chemists look at it through the same lens as our great predecessors. The need for an updated molecular point of view has been noted in recent years and is reflected by the additional value that computational models impart on an article, as well as the increase in the collaboration between theoretical and organic chemists.

Theoretical chemists have worked on providing a quantitative conceptual framework that can make better sense of the intricacies of current synthetic challenges. In particular, quantumchemical theories such as wavefunction theory (WFT) and density functional theory (DFT) have emerged as powerful modeling methods to quantify physical and chemical properties of interest. With the advent of powerful computing capabilities, hardware, and software; the use of such methods can be applied to simulate real systems with ever-increasing accuracy and computational efficiency. In particular, the Zimmerman group has developed tools that can rapidly explore reaction landscapes to find reaction pathways and locate transition states. These techniques are fast and reliable, and therefore can be performed in a timeframe that is amenable for collaboration. In the Zimmerman group is at the frontier of reaction space exploration, and we are not only satisfied in explanatory models, but more so in predictive models useful to the experimentalists.

This dissertation describes the application of state-of-the-art quantum chemical techniques in the assessment of different types of powerful and enabling phosphoric acid-catalyzed reactions developed by the Nagorny group. The resulting computational models not only provided a rationale for truly perplexing experimental outcomes but was also used to provide feedback on future experiments in real time and even justify the commencement of a new project (Chapter 6). Thus, the phosphoric acid-catalyzed spiroketalization of enol ether derivatives (Chapter 3), intermolecular glycosylation and acetalization of polyols (Chapter 5), and intramolecular epoxide ring opening (Chapter 7) were examined using our modern methods, and detail rich reaction mechanism networks were described. It is hoped that these accounts serve to inform the reader of the benefits of enhancing experimental efforts with a sound computational model. The effect is synergistic in both ways, since it was much more facile to construct models with a solid synthetic background. With the advent of powerful and practical reaction path discovery tools and the ever-increasing complexity of synthetic methodology, a collaborative environment with a holistic approach to reaction investigation is therefore highly recommended.

APPENDIX A

Experimental Information for Chapter 2

(Adapted from:

Supporting information for Tay, J. H.; Argüelles, A. J.; Nagorny, P. Org. Lett. 2015, 17, 3774.)

General information

All reagents and solvents were purchased from Sigma-Aldrich, Fisher Scientific, Corvinus Chemicals and were used as received without further purification unless specified. Platinum (IV) oxide was purchased from Sigma-Aldrich with surface area >75m²/g or similar catalysts from Strem. Chiral acids used in these studies were purchased from Sigma Aldrich (**2-1c**, **2-1j**, **2-1k**, **2-**7) or synthesized according to known literature procedures. Heating was achieved by use of a silicone bath with heating controlled by electronic contact thermometer. Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for extraction and chromatography were ACS or HPLC grade. Purification of reactions mixtures was performed by flash chromatography using SiliCycle SiliaFlash P60 (230-400 mesh).

¹H NMR spectra were recorded on Varian vnmrs 700 (700 MHz), Varian vnmrs 500 (500 MHz), Varian INOVA 500 (500 MHz) or Varian MR400 (400 MHz) spectrometers and chemical shifts (δ) are reported in parts per million (ppm) with solvent resonance as the internal standard (CDCl3 at δ 7.26). Data are reported as (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constant(s) in Hz; integration). Proton-decoupled ¹³C NMR spectra were

recorded on Varian vnmrs 700 (700 MHz), Varian vnmrs 500 (500 MHz), Varian INOVA 500 (500 MHz) or Varian MR400 (400 MHz) spectrometers and chemical shifts (δ) are reported in ppm with solvent resonance as the internal standard (CDCl3 at δ 77.16). High resolution mass spectra (HRMS) were recorded on Micromass AutoSpec Ultima or VG (Micromass) 70-250-S Magnetic sector mass spectrometers in the University of Michigan mass spectrometry laboratory. Infrared (IR) spectra were recorded as thin film on a Perkin Elmer Spectrum BX FT-IR spectrometer. Absorption peaks were reported in wavenumbers (cm⁻¹).

Optical rotations were measured in a solvent of choice on a JASCO P-2000 or Autopol III digital polarimeter at 589 nm (D-line) and reported as follows $[\alpha]D^{25}$ (c g/100 mL, solvent).

Experiments related to the reduction of BINOL-derived CPAs were performed by Dr. Tay Rosenthal. A complete account of these experiments, as well as characterization data can be found in the Supporting Information for reference [1]. Experiments related to the oxidation of H8-BINOL-based Brønsted acids were done by me and are described next.

Oxidation of H8-BINOL-based Brønsted acid and Characterization of Products, selected examples

(S)-3,3'-bis[2,5-di(trifluoromethyl)phenyl]-1,1'-binaphthyl-2,2'-diylphosphoric acid (**2-1a**)

A solution 2-2a (20 mg, 0.026 mmol) and DDQ (46.5 mg, 0.205 mmol) in 0.5 mL of chlorobenzene (0.05M) was heated in a closed vial at 145°C for 15h. The resulting mixture was diluted with DCM, filtered through a plug of glass wool, and washed with a 1.0 M NaOH_(aq). After extracting the aqueous solution twice with DCM, the organic extracts were combined and concentrated in vacuo. The resulting crude mixture was purified by flash chromatography on SiO_2 (EtOAc/hexanes, 7:3 \rightarrow 1:0). The isolated product was washed with 6.0 M HCl_(aq). The aqueous solution was extracted twice with DCM, and the organic extracts were combined and concentrated in vacuo to afford 10a as white solid (14.6 mg, 74% yield). $[\alpha]D^{25} + 57.8$ (c 0.45, CHCl3); ¹H NMR (700 MHz, CDCl3) δ 7.95 (d, J = 8.1 Hz, 2H), 7.89 (s, 2H), 7.82 –7.74 (m, 4H), 7.57 (dd, J = 15.5, 8.0 Hz, 4H), 7.40 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 9.6 Hz, 2H); ¹³C NMR (176 MHz, CDCl3) δ 144.15, 144.10, 136.00, 133.69, 133.50, 132.62, 132.45, 132.05, 130.89, 130.12, 129.61, 128.70, 127.64, 127.07, 126.62, 126.25, 125.43, 124.20, 123.83, 122.64, 122.27, 121.55; 19F NMR (658 MHz, CDCl3) δ -59.38, -63.59; 31P NMR (283 MHz, CDCl3) δ 4.03; HRMS (ESI neg.) m/z calcd for C36H17F12O4P [M-H]- 771.0600, found 771.0594; IR (thin film, cm-1) 2979, 1402, 1313, 1174, 1124, 1088, 1024, 980, 841, 751.

(S)-3,3'-bis[3,5-di(trifluoromethyl)phenyl]-1,1'-binaphthyl-2,2'-diyl-N-trifyl-phosphoramide (2-6)

A solution of **2-3** (20 mg, 0.022 mmol) and DDQ (39.8 mg, 0.176 mmol) in 0.5 mL of chlorobenzene (0.4 M) was heated in a closed vial at 145°C for 15 h. The resulting crude mixture was purified by flash chromatography on SiO₂ (hexanes/EtOAc, 6:4) to afford **6** as yellow solid (16.1 mg, 81% yield). [α]D²⁵ +197.4 (c 0.53, CHCl3); ¹H NMR (700 MHz, CDCl3) δ 8.23 (s, 2H), 8.18 (s, 2H), 8.07 (d, J = 13.0 Hz, 2H), 8.01 (d, J = 8.2 Hz, 2H), 7.87 (s, 2H), 7.55 (dt, J = 7.9, 4.1 Hz, 2H), 7.45 – 7.31 (m, 4H); ¹³C NMR (176 MHz, CDCl3) δ 144.53, 144.47, 143.98, 139.39, 139.35, 132.77, 132.65, 131.89, 131.68, 131.59, 131.54, 131.46, 131.35, 131.16, 130.46, 130.31, 128.88, 128.78, 127.68, 127.59, 127.18, 127.11, 126.72, 126.65, 124.40, 124.31, 123.37, 122.95, 122.85, 122.76, 121.45, 120.31.19F NMR (377 MHz, CDCl3) δ -63.01, -63.11, -80.95; 31P NMR (162 MHz, CDCl3) δ 2.49; HRMS (ESI neg.) m/z calcd for C37H17F15NO5PS [M-H]- 902.0253, found 902.0247; IR (thin film, cm-1) 3442, 2362, 1621, 1474, 1377, 1276, 1173, 1130, 1082, 990, 885, 844.

(S)-3,3'-bis[3,5-bis(trifluoromethyl)phenyl-1,1'-binaphthyl-2,2'-disulfonimide (2-7)

A solution of **5** (20 mg, 0.024 mmol) and DDQ (43.8 mg, 0.193 mmol) in 0.5mL of 1,2dichlorobenzene (0.05M) was heated in a closed vial at 185°C for 15h. The resulting crude mixture was purified by flash chromatography on SiO₂ (hexanes/EtOAc, 6:4) to afford compound **7** as an orange solid (8.3 mg, 42% yield). ¹H NMR (401 MHz, CDCl3) δ 7.94 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 12.8 Hz, 8H), 7.63 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H). Characterizations of product match with previously reported data.

References

[1] J.-H. Tay, A. J. Arguelles, P. Nagorny, Org. Lett. 2015, 17, 3774–3777.

APPENDIX B

Experimental Information for Chapter 3

(Adapted from:

Supporting information for: Khomutnyk, Y. Y.; Argüelles, A. J.; Winschel, G. A.; Sun, Z.;

Zimmerman, P. M.; Nagorny, P. J. Am. Chem. Soc. 2016, 138, 444.)

The experimental work was done by Dr. Yaroslav Khomutnyk, Grace Winschel, and Zhankui Sun; while the computational studies were done by me. A complete account of the experiments, including the synthesis of substrates as well as characterization data can be found in the supplementary information for reference [1].

Computational Studies

All quantum chemical calculations were performed using a development version of Q-Chem 4.3.^[2] Geometry optimization were evaluated using the B97-D density functional^[3] using double-ζ-quality basis sets with polarization functions, designated 6-31G**.^[4,5] Threedimensional images of important stationary points were generated in Discovery Studio 4.1 Visualizer.^[6] For the 6,6-spiroketalization (diphenyl hydrogen phosphate and full catalyst), both single and double-ended growing string methods employing B97-D density functional and mixed 6-31G**/6-31G basis sets were used to probe the potential energy profile of the reactions.^[7–9] The larger basis set was used for the phosphoric acid group in the catalyst and all atoms in the substrate excluding the phenyl rings. On the other hand, only the 6-31G** basis set was used for the 6,5spiroketalization strings.

For the growing string runs, 7-15 nodes were used, including the end points. During the growth phase, new nodes were added when the perpendicular gradient magnitude on the frontier node was less than 0.10 Hartree/Å for double-ended strings, or when the RMS gradient was less than 0.005 Hartree/Å for single-ended strings. An initial maximum optimization step size of 0.1 was used. When the total perpendicular gradient magnitude over all nodes, F, reached F < 0.3, the climbing image search was initiated. When F < 0.1, or when the highest energy node had a RMS gradient below double the nodal convergence criterion and F < 0.2, the exact transition state search was initiated within the string. The string is considered completely converged when an RMS gradient < 0.0005 Hartree/Å was obtained for the transition state node.

In all cases, the Gibbs free energies and Mulliken charges were computed through solvent corrected (pentane) single point energies using the SMD model^[10] and employing the ω B97X-D exchange functional^[11] with a 6-31G** basis set for all reported starting geometries, intermediates, transition states and final geometries. Frequency computations were performed using the B97-D functional and 6-31G** basis set in order to account for enthalpic and entropic contributions from rotations, translations and vibrations at 298 K for the model diphenyl hydrogen phosphate system and 238 K for the full catalyst system. In the latter case, partial Hessian vibrational calculations involving the 41 most relevant atoms were performed. These were, in the catalyst, the atoms of the phosphoric group, 1, 1[°], 2, 2[°], 3, 3[°], and the carbon atom of the aryl substituents attached to 3 and 3[°]; and, in the substrate, all atoms except the phenyl rings, but including the carbon directly attached to the alcohol group.

A. Computational studies with the model diphenyl hydrogen phosphate system (6,6-spiroketalization)

A model system consisting of diphenyl hydrogen phosphate and enol ether **3-11a** was utilized to explore different pathways leading to the formation of spiroketal (*rac*)-**3-12a**. The single-ended growing string method employing **3-12a** as the fixed node was run with varying driving coordinates according to each pathway explored. Three mechanisms were modeled: concerted spiroketalization, anomeric phosphate mediated pathway with syn displacement of the intermediate, and oxocarbenium mediated spiroketalization. Regarding the mechanism proceeding through the intermediacy of an oxocarbenium species, no DFT-stable oxocarbenium species were found.

A1. 6,6-Spiroketalization: concerted mechanism

12 concerted pathways leading to thermodynamic and nonthermodynamic spiroketals were modeled. The most relevant pathway leads to formation of an equatorial C-O bond during spirocyclization, producing an initial nonthermodynamic spiroketal stabilized by one anomeric effect. This spiroketal can readily rearrange to the thermodynamic spiroketal by a ring flip.

A summary of calculated values including solvent corrected single point energy values, as well as enthalpic and entropic corrections associated with vibrational energy at 298 K are provided in next table. **Table B.1.** Calculated values for starting geometries, intermediates, and transition states for the concerted pathway for the [6,6]-spiroketalization catalyzed by DPPA.

	GSMD	H _{vib}	Svib	ΔG
	[kcal/mol] ^a	[kcal/mol] ^b	[kcal/mol] ^b	[kcal/mol] ^c
Enol ether 3-11a + DPPA complex	-1299501.3	401.2	233.5	0.0
Concerted TS (TS1)	-1299485.4	397.3	220.4	16.0
Nonthermodynamic chair-chair spiroketal + catalyst complex	-1299513.2	401.9	222.2	-7.7
Thermodynamic spiroketal + catalyst complex	-1299517.4	402.2	220.3	-11.1

^a Solvent-corrected (dichloromethane) electronic energy (ωB97X-D/SMD/6-31G**). ^b Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298.15 K. ^c Corrected free energy values at 298.15 K

Final corrected free energies, cartesian coordinates, and Mulliken charges for the starting

geometry, transition states, and cyclized product are provided below.

• Enol ether 3-11a + DPPA complex Geometry: 75	H -1.77349309 -0.23695325 1.95097383 H 1.88213748 -2.10660018 -1.60391210 H 2.20935411 -0.40899429 -1.93320426 H 144900145 -1 56287146 0.83098301
C 0.66724502 0.94857449 1.35273613 C -0.03145891 2.05784349 0.99409247 C -1.33249505 2.45920077 1.65275030 C -1.51239076 1.66943658 2.96450306 C -1.13549173 0.20317164 2.73263344 O 0.24721942 0.05998094 2.30713342 O -0.11609735 0.58841972 -1.53833889 C 0.13098212 -0.83906546 -1.66669386 C 1.6256043 -1.08312926 -1.29310995 C 2.04317910 -0.90545253 0.18224631 C 1.99707092 0.53645549 0.76625876 H 0.39608067 2.71087120 0.23256076 H -0.9659731 1.44195264 -2.44305892	H 1.44900145 -1.56287146 0.83098301 H 3.08482863 -1.25600219 0.24672037 H 2.74386129 0.59036935 1.57667596 H 2.28817664 1.27198760 0.00213042 C -0.06270032 -1.13417313 -3.16646650 C -0.78590403 -2.24561016 -3.63408524 H -1.25135969 -2.92827148 -2.92475599 C -0.93048835 -2.47401337 -5.01225610 H -1.49911258 -3.33954575 -5.35564921 C -0.35748722 -1.59375153 -5.94080075 H -0.47339104 -1.7715589 -7.01100889 C 0.36209651 -0.47917731 -5.48264488 H 0.79567119 0.22508139 -6.19338105 C 0.51283077 -0.25634460 -4.10862352
H -0.3003931 1.44193204 -2.4430392 H -1.32634621 3.54198524 1.84922424 H -2.17611865 2.27534900 0.96734409 H -0.86002353 2.08354706 3.74927739 H -2.55126724 1.72289260 3.32347107 H -1.21129152 -0.39909472 3.64716851	H 1.05397307 -0.62211560 -3.76027955 C -0.85213273 -1.62982020 -0.79540375 C -0.52361397 -2.91114235 -0.31255932 H 0.45959617 -3.33124123 -0.51899678 C -1.45094928 -3.65683931 0.42891244

H -1.17488483	-4.64375389	0.80314662
C -2.72763216	-3.13491926	0.68806497
H -3.45043811	-3.71459097	1.26427006
C -3.06751775	-1.86559912	0.19597764
H -4.05815049	-1.44789873	0.38090748
C -2.13789693	-1.11673042	-0.54174324
H -2.41841358	-0.13221232	-0.91050794
O -3.37877134	1.88248426	-1.23408385
P -2.90262367	2.51091146	-2.49942137
O -1.43262397	2.16551387	-2.99868223
O -2.93471408	4.16017881	-2.49718785
C -2.22189098	4.78621729	-1.46338814
C -0.82247487	4.87215807	-1.52241186
Н -0.29765312	4.42022675	-2.36141282
C -0.13893416	5.52573463	-0.48580559
Н 0.94935772	5.59498907	-0.52102424
C -0.84551674	6.09075749	0.58855250
Н -0.30721730	6.59888177	1.38932969
C -2.24674042	6.00021270	0.62627291
H -2.80156517	6.43450274	1.45899062
C -2.94229623	5.34138458	-0.39838161
H -4.02648930	5.24144364	-0.38384419
O -3.89121888	2.21540998	-3.75990460
C -3.41253378	2.29257262	-5.08018813
C -3.52428886	3.50220038	-5.77533205
H -3.94066594	4.37200342	-5.26994475
C -3.08339961	3.55883811	-7.10628602
H -3.16210016	4.49627345	-7.65873133
C -2.53957051	2.42065237	-7.72297806
H -2.19712932	2.47157698	-8.75737589
C -2.43446261	1.21857981	-7.00451859
H -2.00354859	0.33160204	-7.46905872
C -2.87128231	1.14625310	-5.67463730
Н -2.78229465	0.22718628	-5.09841361
Н -0.21248172	0.83735687	-0.58525494

Mulliken charges:

TATALINA	ch chaiges.
1 C	0.337929
2 C	-0.256307
3 C	-0.244998
4 C	-0.269570
5 C	0.009222
6 O	-0.527186
7 O	-0.641711
8 C	0.186913
9 C	-0.211574
10 C	-0.240292
11 C	-0.279393
12 H	0.130379
13 H	0.433074
14 H	0.126690
15 H	0.162308
16 H	0.133424
17 H	0.133954
18 H	0.138481
19 H	0.134490
20 H	0.128783
21 H	0.127319
22 H	0.141546
23 H	0.127009
24 H	0.151652
25 H	0.135351
26 C	0.069700
27 C	-0.147476
28 H	0.138141
29 C	-0.147752
30 H	0.141281
31 C	-0.138176
32 H	0.137349
33 C	-0.136792

34 H	0.141593
35 C	-0.142051
36 H	0.142331
37 C	0.033724
38 C	-0.148986
39 H	0.132915
40 C	-0.147178
41 H	0.140060
42 C	-0.134439
43 H	0.139593
44 C	-0.152627
45 H	0.147709
46 C	-0.142582
47 H	0.149284
48 O	-0.579187
49 P	1.249266
50 O	-0.643731
51 O	-0.614453
51 O 52 C	
	0.292969
53 C	-0.136545
54 H	0.163740
55 C	-0.146805
56 H	0.145309
57 C	-0.133966
58 H	0.141877
59 C	-0.148092
60 H	0.146582
61 C	-0.128924
62 H	0.158918
63 O	-0.596509
64 C	0.303628
65 C	-0.135358
66 H	0.159207
67 C	-0.148286
68 H	0.144313
69 C	-0.134991
70 H	0.138250
71 C	-0.140565
72 H	0.132112
73 C	-0.118947
74 H	0.150465
75 H	0.336609
•	Concerted TS (TS ₁)
Geomet	try:
75	
0000	CECA 0 CC0527 0 04042

C 0.066564 -0.660537 -0.842435 C 0.074765 0.300456 -1.876649 C 0.180542 1.774124 -1.480855 C -0.652584 1.956780 -0.198954 C -0.122152 1.027986 0.888565 O -0.011714 -0.370806 0.440465 C 0.212009 -2.132902 -1.127346 C -0.307503 -3.118856 -0.054353 C -1.818954 -3.423759 -0.097320 C -2.793027 -2.257603 0.235522 O -2.574557 -1.194642 -0.687972 H -0.224931 2.391072 -2.294037 H 1.225979 2.082700 -1.309091 H -1.699816 1.701510 -0.414482 H -0.612462 2.989885 0.177990 H -0.786471 0.965691 1.757495 H 0.891530 1.315501 1.207254 H -2.025974 -4.271225 0.572940 H -2.091644 -3.761127 -1.109450 H -0.251783 -2.325930 -2.104845 H 1.298111 -2.293680 -1.260244 C -2.614980 -1.652572 1.636226

C -2.033752 -2.364069 2.705971
H -1.645697 -3.368009 2.541132
C -1.942508 -1.789906 3.989138
H -1.483003 -2.354511 4.801735
C -2.441155 -0.495666 4.223391
H -2.374149 -0.051946 5.217601
C -3.037421 0.217937 3.163570
H -3.442332 1.216527 3.336667
C -3.123513 -0.356498 1.883840
H -3.586285 0.188044 1.063119
C -4.243074 -2.795168 0.129534
C -4.688452 -3.801813 1.016061
H -4.015261 -4.171837 1.790625
C -5.994158 -4.312060 0.927572
H -6.321893 -5.086956 1.622461
C -6.878995 -3.819613 -0.052225
H -7.893557 -4.213896 -0.123602
C -6.443470 -2.816101 -0.936535
H -7.117415 -2.429918 -1.702429
C -5.134738 -2.304621 -0.846538
H -4.805199 -1.538032 -1.543144
H 0.217434 -4.072563 -0.219457
H -0.013806 -2.764297 0.942530
H 0.600518 -0.032256 -2.777957
H -1.136723 0.300753 -2.371570
P -2.754844 -0.565728 -3.894554
O -2.225116 0.618134 -3.042968
O -2.006027 -0.494999 -5.383193
C -0.599243 -0.501956 -5.310608
C 0.091861 0.709892 -5.485512
H -0.477381 1.621000 -5.658163
C 1.497093 0.713466 -5.413603
H 2.041519 1.648637 -5.548939
C 2.199879 -0.482744 -5.161183
H 3.288700 -0.475176 -5.105601
C 1.491668 -1.688978 -4.985135
H 2.031032 -2.617102 -4.792518
C 0.086005 -1.705209 -5.057841
H -0.488402 -2.616413 -4.906902
O -4.295579 -0.248214 -4.350152
C -4.620904 1.047842 -4.821821
C -4.956715 2.052304 -3.899504
H -4.904261 1.835424 -2.834920
C -5.332949 3.319232 -4.381539
H -5.593888 4.107779 -3.674956
C -5.370454 3.570484 -5.767958
H -5.663550 4.553755 -6.136975
C -5.027777 2.549492 -6.676442
H -5.053399 2.740281 -7.749776
C -4.648741 1.278184 -6.206257
H -4.369702 0.475576 -6.885297
O -2.675178 -1.948291 -3.293167
H -2.614371 -1.575132 -1.602775
11 -2.0145/1 -1.5/5152 -1.002//5
Mulliken charges:
1 C = 0.525697

	en en geor
1 C	0.525697
2 C	-0.422506
3 C	-0.230221
4 C	-0.283781
5 C	0.014280
6 O	-0.468424
7 C	-0.310839
8 C	-0.227594
9 C	-0.236078
10 C	0.182455
11 O	-0.628836
12 H	0.149260
13 H	0.129562
14 H	0.168684
15 H	0.143330

16 H	0.161757
	0.153052
18 H	0.118373
19 H	0.142752
20 H	0.170992
21 H	0.166263
22 C	0.102931
23 C	-0.159559
24 H	0.123844
25 C	-0.150090
26 H	0.135903
27 C	-0.141399
28 H	0.135200
29 C	-0.149402
30 H	0.136120
50 11	
31 C	-0.150283
32 H	0.146761
33 C	0.078590
34 C	-0.145369
35 H	0.119440
	0.1.47.47.6
36 C	-0.147476
37 H	0.132375
38 C	-0.140101
39 H	0.132421
40 C	-0.145961
	0.138064
41 H	
42 C	-0.150555
	0.125004
43 H	0.135094
44 H	0.129352
	0.12/332
45 H	0.135014
46 H	0.160314
	0.100314
47 H	0.365373
48 P	1.286607
49 O	-0.671955
50 O	-0.621414
51 C	0.281514
52 C	-0.135408
53 H	0.158962
54 C	-0.149667
	0.146197
56 C	-0.139537
57 H	0.140984
58 C	-0.152544
59 H	0.145622
60 C	-0.139431
61 H	0.167524
62 O	-0.610120
63 C	0.297222
	0 10 4096
64 C	-0.124286
65 H	0.155227
66 C	-0.151409
67 H	0.142646
68 C	-0.134987
69 H	0.138041
70 C	-0.150215
71 H	0.143506
	0.1-0000
72 C	-0.133509
73 H	0.158097
74 O	-0.659035
75 H	0.366588

Nonthermodynamic chair-chair spiroketal + DPPA complex

Geometry: 75

206

C -1.16488148	0.41219989	-0.21711642
C -1.44830284	1.69875907	-1.01222993
C -0.13569506	2.42138943	-1.36995306

C 0.64272200	2.69763602	-0.07129436
C 0.88122264	1.37538277	0.66637197
O -0.34643278	0.67646410	0.92277888
C -0.54787212	-0.70617474	-1.08082458
C -0.50557248	-2.03346911	-0.31028617
C -1.93595190	-2.39334569	0.11662326
C -2.55578458	-1.29966957	1.02159482
O -2.44429188	-0.01134622	0.29877784
Н -0.36335100	3.35829266	-1.89927041
Н 0.47577651	1.80271086	-2.04798428
Н 0.04856144	3.36184437	0.57482732
H 1.61065524	3.18146966	-0.27743624
Н 1.32178725	1.53382908	1.65984200
Н 1.57205573	0.73854184	0.07956883
H -1.98963263	-3.36137250	0.63135422
H -2.57393428	-2.47269735	-0.77672764
H -1.16163760	-0.81645794	-1.98919185
H 0.45577748	-0.39488820	-1.40148690
C -1.91654227	-1.18269118	2.41295753
C -1.25281829	-2.26173695	3.02177122 2.48528041
H -1.11198876	-3.19886500	4.33284703
C -0.75909178 H -0.24144940	-2.15326270 -3.00101801	4.78488295
H -0.24144940 C -0.93251785	-0.96405249	4.78488293
H -0.55008607	-0.90403249	6.07112034
C -1.60054204	0.11586350	4.45227855
H -1.75026110	1.04730225	4.99731491
C -2.09192345	0.00603718	3.14832318
Н -2.57291794	0.86347033	2.68732903
C -4.06527298	-1.57500872	1.13599159
C -4.60146700	-2.21788186	2.26622493
H -3.95296044	-2.45651195	3.10698085
C -5.96624732	-2.53583553	2.32643054
Н -6.36279898	-3.03389651	3.21266412
C -6.82048524	-2.19726916	1.26681317
Н -7.88541573	-2.42694566	1.32248826
C -6.29138837	-1.56200499	0.13242441
H -6.94296201	-1.29037939	-0.69909741
C -4.92288070	-1.27206449	0.06107797
Н -4.51936255	-0.77582436	-0.81968600
Н -0.08448986	-2.82990538	-0.94217379
Н 0.13588954	-1.92385964	0.57616358
Н -2.04328671	1.45040095	-1.90257837
H -2.03129305	2.36462804	
		-0.36574071
O -4.45105734	1.69051994	0.44634055
O -4.45105734 P -4.24707759		0.44634055 1.34401727
O -4.45105734 P -4.24707759 O -2.86615634	1.69051994 2.99051216 3.24680361	0.44634055 1.34401727 1.84803464
O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514	1.69051994 2.99051216 3.24680361 2.92899905	0.44634055 1.34401727 1.84803464 2.50126288
O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586
O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572 \end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663
O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.35845925 	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.35845925 H -3.87693255 	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229	$\begin{array}{c} 0.44634055\\ 1.34401727\\ 1.84803464\\ 2.50126288\\ 3.62552586\\ 4.74416663\\ 4.69857181\\ 5.89088008\\ 6.76968749\\ 5.90682397 \end{array}$
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.358459255 C -4.78941122 H -4.64190995 	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229 -0.04189089	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.35845925 H -3.87693255 C -4.78941122 H -4.64190995 C -5.39814188 	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229 -0.04189089 0.01626361	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.35845925 H -3.87693255 C -4.78941122 H -4.64190995 C -5.39814188 H -5.72172881 	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229 -0.04189089 0.01626361 -1.02387405	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229 -0.04189089 0.01626361 -1.02387405 0.78809965	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.35845925 H -3.87693255 C -4.78941122 H -4.64190995 C -5.39814188 H -5.72172881 C -5.58549452 H -6.04071871 	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229 -0.04189089 0.01626361 -1.02387405 0.78809965 0.36868879	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033
 O -4.45105734 P -4.24707759 O -2.86615634 O -5.40804514 C -5.15994570 C -4.53843823 H -4.20781805 C -4.35845925 H -3.87693255 C -4.78941122 H -4.64190995 C -5.39814188 H -5.72172881 C -5.58549452 H -6.04071871 O -4.91645636 	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.78809965\\ 0.36868879\\ 4.11311629\end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77097751 3.61440553 2.71893033 0.36612113
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.78809965\\ 0.36868879\\ 4.11311629\\ 5.43582751\end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.36868879\\ 4.11311629\\ 5.43582751\\ 6.18961083\\ \end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.36868879\\ 4.11311629\\ 5.43582751\\ 6.18961083\\ 5.72360905\\ \end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.36868879\\ 4.11311629\\ 5.43582751\\ 6.18961083\\ 5.72360905\\ 7.52171541 \end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329 1.60310450
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.78809965\\ 0.36868879\\ 4.1131162\\ 5.43582751\\ 6.18961083\\ 5.72360905\\ 7.52171541\\ 8.11679773\\ \end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329 1.60310450 1.91315383
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.78809965\\ 0.36868879\\ 4.11311629\\ 5.43582751\\ 6.18961083\\ 5.72360905\\ 7.52171541\\ 8.11679773\\ 8.08948326\end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329 1.60310450 1.91315383 1.59862065
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.78809965\\ 0.36868879\\ 4.11311629\\ 5.43582751\\ 6.18961083\\ 5.72360905\\ 7.52171541\\ 8.11679773\\ 8.08948326\\ 9.12676269\end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329 1.60310450 1.91315383 1.59862065 1.90493691
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.69051994 2.99051216 3.24680361 2.92899905 2.12209475 2.69173572 3.72795067 1.90540007 2.33677784 0.56889229 -0.04189089 0.01626361 -1.02387405 0.78809965 0.36868879 4.11311629 5.43582751 6.18961083 5.72360905 7.52171541 8.11679773 8.08948326 9.12676269 7.31792274	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329 1.60310450 1.91315383 1.59862065 1.90493691 1.19916578
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.69051994\\ 2.99051216\\ 3.24680361\\ 2.92899905\\ 2.12209475\\ 2.69173572\\ 3.72795067\\ 1.90540007\\ 2.33677784\\ 0.56889229\\ -0.04189089\\ 0.01626361\\ -1.02387405\\ 0.78809965\\ 0.36868879\\ 4.11311629\\ 5.43582751\\ 6.18961083\\ 5.72360905\\ 7.52171541\\ 8.11679773\\ 8.08948326\\ 9.12676269\end{array}$	0.44634055 1.34401727 1.84803464 2.50126288 3.62552586 4.74416663 4.69857181 5.89088008 6.76968749 5.90682397 6.79807683 4.77055459 4.77097751 3.61440553 2.71893033 0.36612113 0.81855670 1.20783212 1.21316329 1.60310450 1.91315383 1.59862065 1.90493691

	18399138 54995376		0.50468328 0.45568273
Mullik	en charge	s:	
1 C	0.550097	7	
2 C 3 C	-0.263062		
4 C	-0.25070		
5 C	0.020598		
60	-0.51889		
7 C 8 C	-0.232674		
9 C	-0.21937		
10 C	0.19186		
11 O 12 H	-0.63578 0.13366		
13 H	0.11654		
14 H	0.14817		
15 H 16 H	0.12254 0.14328		
17 H	0.10306		
18 H	0.13256		
19 H 20 H	0.12821 0.12453		
20 H 21 H	0.12536		
22 C	0.07647		
23 C 24 H	-0.16427 0.12360		
25 C	-0.14981		
26 H 27 C	0.13229		
27 C 28 H	-0.14183 0.13160		
29 C	-0.14021	4	
30 H 31 C	0.13030		
32 H	0.11697		
33 C	0.04572		
34 C 35 H	-0.13201 0.13606		
36 C	-0.15256	53	
37 H	0.13751		
38 C 39 H	-0.13679 0.13985		
40 C	-0.14411		
41 H	0.14179		
42 C 43 H	-0.13123 0.13746		
44 H	0.12718	33	
45 H 46 H	0.13787 0.12917		
40 H 47 H	0.12917		
48 O	-0.62312		
49 P 50 O	1.30047		
51 O	-0.60137		
52 C	0.27358		
53 C 54 H	-0.12412 0.15783		
55 C	-0.15323		
56 H 57 C	0.14329		
57 C 58 H	0.12675		
59 C	-0.13200		
60 H 61 C	0.13063		
62 H	0.14979		
63 O	-0.59228		
64 C 65 C	0.29992		
66 H	0.16813	34	

67 C	-0.149452
68 H	0.145399
69 C	-0.133679
70 H	0.139846
71 C	-0.146625
72 H	0.145020
73 C	-0.141472
74 H	0.157054
75 H	0.416621

• Thermodynamic spiroketal + DPPA complex Geometry:

	257365 0.17714954
	211738 0.03762645
C -0.24017070 2.74	751218 0.67550577
C -0.52447730 2.17	701181 2.07460486
	196694 1.95491008
	695078 1.43990267
	742487 -0.90565356
	546246 -1.15953843
	991326 -1.21929901
	505109 -0.05913333
C 2.34021783 -0.11	375353 -0.01108925
Н 1.87952655 2.35	030019 0.55070322
H 1.05523230 2.28	495759 -1.02448795
Н -0.02338732 3.82	510118 0.71874266
	464508 0.05663021
	374944 2.76057430
	624936 2.50292292
	125569 2.92747818
	599239 1.29502089
	196034 -1.29821260
	277000 -2.16007613
Н 1.91750189 -2.02	376270 0.90091572
Н 3.30026583 -2.05	354174 -0.21740343
H 2.96661722 0.24	219302 0.81787079
H 2.74899604 0.28	758653 -0.95160215
	391774 -2.57575266
	521661 -2.91258524
	405166 -2.13715945
	066512 -4.23503867
	313657 -4.47850837
	484272 -5.23446321
	527207 -6.25802575
C -0.69558957 -0.88	730896 -4.90525345
Н -0.42871624 -0.15	493668 -5.66677691
C -0.25738463 -0.69	867240 -3.58787487
	830406 -3.33681769
	506074 -0.11215892
	356559 0.71224652
	155382 0.65449461
	270638 2.25888258
	558716 1.72203636
	081249 2.43106556
	859203 0.89038095
Н -4.22223755 -1.70	939337 0.94478593
	037508 -0.01972755
	255648 -0.66950979
	291946 -4.81135442
	380081 -4.88141030
	876078 -5.31418051
	468624 -4.39914249
	306846 -4.45739590
	072675 -3.84732950
	292988 -3.47594423
	147992 -3.77331536
Н -3.03629892 -0.54	511908 -3.35587738

H -4.50957707 C -3.66699603 O -2.37586955 P -1.68538934 O -2.71498647 C -3.10186171 C -4.44384898 C -4.89446133 H -5.93760056 C -4.01344694 H -4.36886225 C -2.67366790 H -1.98124630	1.31099573 -4.25480978 1.86715126 -4.24825557 2.38867194 -2.85992647 3.55247754 -2.31958341 4.62949992 -3.12287708 5.02428160 -3.01989918 6.11962440 -3.76915827 6.43006380 -3.69203282 6.80922356 -4.61861739 7.65835616 -5.20334667 6.40014708 -4.70772857
Н -5.11161478	4.46305437 -2.36792725
C -2.20255249 H -1.16370053	
O -1.97632313	1.30829646 -1.72913909
H -1.13380952 O -0.27142550	
0 -0.27142550	2.78740270 -5.10458411
Mulliken charge	
1 C 0.51932 2 C -0.26618	
3 C -0.25340	00
4 C -0.24521 5 C 0.01660	
6 O -0.52094	
7 0 -0.63852	
8 C 0.19823 9 C -0.22605	
10 C -0.2480	77
11 C -0.23212 12 H 0.1294	
13 H 0.16334	
14 H 0.1302	
15 H 0.1325 16 H 0.1229	
17 H 0.1286	
18 H 0.1362 19 H 0.1161	
20 H 0.1343	
21 H 0.13574 22 H 0.13965	
23 H 0.1297	
24 H 0.1374	
25 H 0.13174 26 C 0.02704	
27 C -0.1417	
28 H 0.1366 29 C -0.1494	
30 H 0.1398	
31 C -0.1325	
32 H 0.1410 33 C -0.1291	
34 H 0.1494	17
35 C -0.1603 36 H 0.1533	
37 C 0.1040	
38 C -0.1503	
39 H 0.12919 40 C -0.1494	
41 H 0.1387	40
42 C -0.1363 43 H 0.1387	
44 C -0.1460	27
45 H 0.14254 46 C -0.1576	
47 H 0.1422	
48 C -0.1313	
49 C -0.1529	14

0.142552
-0.133074
0.138042
-0.159238
0.141257
-0.077237
0.125926
0.150765
0.279256
-0.608581
1.310346
-0.609400
0.298275
-0.149016
-0.146849
0.144189
-0.136662
0.140087
-0.150218
0.147252
0.155985
-0.154981
0.175260
-0.643894
0.432266
-0.589860

• Bare oxocarbenium (for comparison) Geometry: 50

С	4.27373293	-3.27781826	-0.64820620
С	3.91775194	-4.43904887	0.22412227
С	4.36604194	-5.80433527	-0.32650746
С	5.80391962	-5.67323388	-0.85908876
С	5.85279846	-4.63349739	-1.96580924
0	5.14487705	-3.34998456	-1.59160700
С	-0.67586231	0.45513388	-1.63016436
С	-0.00200283	-0.92375290	-1.88960362
С	1.42467697	-0.82849615	-1.24877824
С	2.23064090	-2.13189300	-1.33535350
С	3.57081397	-1.98876208	-0.51793486
Н	4.41482634	-4.22615391	1.19091384
Н	4.30707292	-6.55911029	0.46673231
Н	3.68871069	-6.11738155	-1.13509839
Н	6.49069636	-5.39111511	-0.04679707
Н	6.16301421	-6.62251095	-1.28109251
Н	6.86029408	-4.28372078	-2.21284530
Н	5.33035449	-4.94810393	-2.87818695
Н	1.97330978	-0.03012421	-1.76979911
Н	1.32900813	-0.51696490	-0.19676174
Н	1.63736015	-2.96227493	-0.92819450
Н	2.46356796	-2.36122699	-2.38345500
Н	4.16993232	-1.16509619	-0.92587400
Н	3.32456518	-1.80338775	0.53770709
С	0.19288686	-1.21111402	-3.39371854
С	0.35762574	-0.16780063	-4.32536329
Н	0.26728624	0.86982952	-4.00813530
С	0.62738706	-0.43860766	-5.67606981
Н	0.73947871	0.38895540	-6.37750763
С	0.74347357	-1.76155831	-6.12505408
Н	0.94532678	-1.97066169	-7.17594829
С	0.58566815	-2.81333474	-5.20916899
Н	0.65865643	-3.84866940	-5.54582134
С	0.31594672	-2.53809386	-3.86147299
Н	0.17091070	-3.36195078	-3.16286358
С	-0.89654723	-1.97423370	-1.19998668
С	-0.66604815	-2.41350287	0.11916849

C -1.5 H -1.1 C -2.0 H -3.1 C -2.9 H -3.1 C -2.0 H -3.1 C -2.0 H -2.1 H -0.0 H -0.0 H -1.0	19975135 -2.04922999 0.67375390 54670796 -3.30554463 0.75214021 34590531 -3.62938207 1.77449719 68474504 -3.76952681 0.07819504 36970416 -4.46202636 0.56795611 93919422 -3.32460823 -1.22877434 82767961 -3.6658933 -1.76050122 05623153 -2.43595113 -1.85603056 25830289 -2.09732875 -2.87184313 04052636 1.28871400 -1.96309994 85806299 0.57231756 -0.55343761 63993423 0.51252370 -2.15265269 33944010 -4.38142524 0.43505137
	en charges: 0.482883
1 C 2 C	-0.327430
2 C 3 C	-0.261673
4 C	-0.292076
5 C	-0.024700
6 O 7 C	-0.400962 -0.354746
8 C	-0.099282
9 C	-0.207059
10 C	-0.252482
11 C 12 H	-0.314833 0.229763
12 H 13 H	0.184759
14 H	0.170286
15 H	0.172042
16 H	0.194051
17 H 18 H	0.214481 0.209568
19 H	0.140551
20 H	0.131255
21 H	0.144386
22 H 23 H	0.164357 0.204638
24 H	0.193482
25 C	0.084002
26 C	-0.162263
27 H 28 C	0.133323 -0.142266
28 C 29 H	0.149176
30 C	-0.137746
31 H	0.147877
32 C	-0.147275
33 H 34 C	0.141662 -0.156623
35 H	0.126108
36 C	0.084142
37 C 38 H	-0.167344
38 H 39 C	0.108171 -0.146931
40 H	0.140696
41 C	-0.137706
42 H	0.148694
43 C 44 H	-0.141434 0.151268
45 C	-0.148089
46 H	0.143392
47 H	0.129114
48 H 49 H	0.136618 0.146228
49 H 50 H	0.146228 0.215945

A2. 6,6-Spiroketalization: covalent phosphate mechanism

12 different orientations of the catalyst with respect to the substrate were modeled for the phosphate mediated mechanism leading to thermodynamic and nonthermodynamic spiroketals. 9 strings were modeled for the formation of a covalently linked anomeric phosphate intermediate were modeled. Attack of either oxygen of the phosphoric acid was considered. The most relevant one has an activation barrier of 20.6 kcal/mol and produces a relatively stable (1 kcal/mol) phosphate intermediate. 24 strings leading to thermodynamic and nonthermodynamic spiroketals by the syn displacement of the phosphate by the alcohol were studied. No significant bias was observed for the formation of a nonthermodynamic (21.1 kcal/mol barrier, axial C-O bond formed) over a thermodynamic (20.7 kcal/mol barrier) spiroketal. A summary of calculated values including solvent corrected single point energy values, as well as enthalpic and entropic corrections associated with vibrational energy at 298 K are provided in next table.

	GSMD	H _{vib}	Svib	ΔG
	[kcal/mol] ^a	[kcal/mol] ^b	[kcal/mol] ^b	[kcal/mol] ^c
Enol ether 3-11a + DPPA complex	-1299501.3	401.2	233.5	0.0
FormationofthephosphateintermediateTS (TS2)	-1299478.4	397.5	228.9	20.6
Phosphate intermediate + catalyst complex	-1299504.9	402.6	222.8	1.0
Syn phosphate displacement leading to thermodynamic product (TS ₃)	-1299483.2	399.9	220.7	20.7
Syn phosphate displacement leading to nonthermodynamic product (TS ₄)	-1299484.3	400.1	216.5	21.1
Thermodynamic spiroketal + DPPA complex	-1299517.4	402.2	220.3	-11.1
Nonthermodynamic spiroketal + DPPA complex	-1299512.9	402.1	221.2	-7.0

Table B.2. Calculated values for starting geometries, intermediates, and transition states phosphate-mediated pathway for the [6,6]-spiroketalization catalyzed by DPPA.

^a Solvent-corrected (dichloromethane) electronic energy (ωB97X-D/SMD/6-31G**). ^b Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298.15 K. ^c Corrected free energy values at 298.15 K

Final corrected free energies, cartesian coordinates, and Mulliken charges for the starting geometry, transition states, intermediate, and cyclized product are provided below.

•	Enol ether 3-11a + DPPA	complex
Geometry	:	

C			
	0.66724502	0.94857449	1.35273613
С	-0.03145891	2.05784349	0.99409247
	-1.33249505		
С		2.45920077	1.65275030
С	-1.51239076	1.66943658	2.96450306
С	-1.13549173	0.20317164	2.73263344
õ	0.24721942	0.05998094	2.30713342
0	-0.11609735	0.58841972	-1.53833889
С	0.13098212	-0.83906546	-1.66669386
С	1.62056043	-1.08312926	-1.29310995
С	2.04317910	-0.90545253	0.18224631
С	1.99797092	0.53645549	0.76625876
Н	0.39608067	2.71087120	0.23256076
Н	-0.96659731	1.44195264	-2.44305892
Η	-1.32634621	3.54198524	1.84922424
Η	-2.17611865	2.27534900	0.96734409
Н	-0.86002353	2.08354706	3.74927739
Н	-2.55126724	1.72289260	3.32347107
Η	-1.21129152	-0.39909472	3.64716851
Н	-1.77349309	-0.23695325	1.95097383
Н	1.88213748	-2.10660018	-1.60391210
Н	2.20935411	-0.40899429	-1.93320426
Η	1.44900145	-1.56287146	0.83098301
Н	3.08482863	-1.25600219	0.24672037
Н	2.74386129	0.59036935	1.57667596
Н	2.28817664	1.27198760	0.00213042
С	-0.06270032	-1.13417313	-3.16646650
С	-0.78590403	-2.24561016	-3.63408524
Н	-1.25135969	-2.92827148	-2.92475599
С	-0.93048835	-2.47401337	-5.01225610
Η	-1.49911258	-3.33954575	-5.35564921
С	-0.35748722	-1.59375153	-5.94080075
Н	-0.47339104	-1.77155889	-7.01100889
	0.36209651		-5.48264488
С		-0.47917731	
Η	0.79567119	0.22508139	-6.19338105
С	0.51283077	-0.25634460	-4.10862352
Н	1.05397307	0.62211560	-3.76027955
С	-0.85213273	-1.62982020	-0.79540375
	-0.03213273	-1.02982020	
	0.500 (1.005		
С	-0.52361397	-2.91114235	-0.31255932
С Н	-0.52361397 0.45959617		
Н	0.45959617	-2.91114235 -3.33124123	-0.31255932 -0.51899678
H C	0.45959617 -1.45094928	-2.91114235 -3.33124123 -3.65683931	-0.31255932 -0.51899678 0.42891244
H C H	0.45959617 -1.45094928 -1.17488483	-2.91114235 -3.33124123 -3.65683931 -4.64375389	-0.31255932 -0.51899678 0.42891244 0.80314662
H C	0.45959617 -1.45094928	-2.91114235 -3.33124123 -3.65683931	-0.31255932 -0.51899678 0.42891244
H C H	0.45959617 -1.45094928 -1.17488483	-2.91114235 -3.33124123 -3.65683931 -4.64375389	-0.31255932 -0.51899678 0.42891244 0.80314662
H C H C H	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006
H C H C H C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764
H C H C H C H C H	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748
H C H C H C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764
H C H C H C H C H	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748
H C H C H C H C H C H C H C H C H C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794
H C H C H C H C H O	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385
H C H C H C H C H C H C H C P	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426 2.51091146	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137
H C H C H C H C H O	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385
H C H C H C H C H C H C H C P	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426 2.51091146	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137
H C H C H C H C H O P O O	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426 2.51091146 2.16551387 4.16017881	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785
H C H C H C H C H O P O O C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098	$\begin{array}{c} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814
H C H C H C H C H O P O O C C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098 -0.82247487	$\begin{array}{c} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186
H C H C H C H C H O P O O C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098	$\begin{array}{c} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814
H C H C H C H C H O P O O C C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098 -0.82247487	$\begin{array}{c} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186
H C H C H C H C H O P O O C C H C	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098 -0.82247487 -0.29765312 -0.13893416	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559
H C H C H C H C H O P O O C C H C H	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098 -0.82247487 -0.29765312 -0.13893416 0.94935772	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907 \end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 -0.52102424
H C H C H C H C H O P O O C C H C H C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 -0.52102424 0.58855250
H C H C H C H C H O P O O C C H C H	0.45959617 -1.45094928 -1.17488483 -2.72763216 -3.45043811 -3.06751775 -4.05815049 -2.13789693 -2.41841358 -3.37877134 -2.90262367 -1.43262397 -2.93471408 -2.22189098 -0.82247487 -0.29765312 -0.13893416 0.94935772	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907 \end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 -0.52102424
H C H C H C H C H O P O O C C H C H C H	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 -0.52102424 0.58855250
H C H C H C H C H O P O O C C H C H C H C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.5949807\\ 6.09075749\\ 6.59888177\\ 6.00021270\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 0.52102424 0.58855250 1.38932969 0.62627291
H C H C H C H C H O P O O C C H C H C H C H C H	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042 - 2.80156517	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\\ 6.59888177\\ 6.00021270\\ 6.43450274\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 0.52102424 0.58855250 1.38932969 0.62627291 1.45899062
H C H C H C H C H O P O O C C H C H C H C H C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.38751674 - 0.30721730 - 2.24674042 - 2.80156517 - 2.94229623	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\\ 6.59888177\\ 6.00021270\\ 6.43450274\\ 5.34138458\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 0.52102424 0.58855250 1.38932969 0.62627291 1.45899062 -0.39838161
H C H C H C H C H O P O O C C H C H C H C H C H	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042 - 2.80156517	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\\ 6.59888177\\ 6.00021270\\ 6.43450274\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 0.52102424 0.58855250 1.38932969 0.62627291 1.45899062
H C H C H C H C H O P O O C C H C H C H C H C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.38751674 - 0.30721730 - 2.24674042 - 2.80156517 - 2.94229623	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\\ 6.59888177\\ 6.00021270\\ 6.43450274\\ 5.34138458\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 0.52102424 0.58855250 1.38932969 0.62627291 1.45899062 -0.39838161
H C H C H C H C H O P O O C C H C H C H C H C H O	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042 - 2.80156517 - 2.94229623 - 4.02648930 - 3.89121888	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426 2.51091146 2.16551387 4.16017881 4.78621729 4.87215807 4.42022675 5.52573463 5.59498907 6.09075749 6.59888177 6.00021270 6.43450274 5.34138458 5.24144364 2.21540998	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 -0.52102424 0.58855250 1.38932969 0.62627291 1.45899062 -0.39838161 -0.38384419 -3.75990460
H C H C H C H C H O P O O C C H C H C H C H C H O C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042 - 2.80156517 - 2.94629623 - 4.02648930 - 3.89121888 - 3.41253378	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\\ 6.59888177\\ 6.00021270\\ 6.43450274\\ 5.34138458\\ 5.24144364\\ 2.21540998\\ 2.29257262\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.4633814 -1.52241186 -2.36141282 -0.48580559 -0.52102424 0.58855250 1.38932969 0.62627291 1.45899062 -0.39838161 -0.38384419 -3.75990460 -5.08018813
H C H C H C H O P O O C C H C H C H C H O C C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.82247487 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042 - 2.80156517 - 2.94229623 - 4.02648930 - 3.891218888 - 3.41253378 - 3.52428886	-2.91114235 -3.33124123 -3.65683931 -4.64375389 -3.13491926 -3.71459097 -1.86559912 -1.44789873 -1.11673042 -0.13221232 1.88248426 2.51091146 2.16551387 4.16017881 4.78621729 4.87215807 4.42022675 5.52573463 5.59498907 6.09075749 6.59888177 6.00021270 6.43450274 5.34138458 5.24144364 2.21540998 2.29257262 3.50220038	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.46338814 -1.52241186 -2.36141282 -0.48580559 -0.52102424 0.58855250 1.38932969 0.62627291 1.45899062 -0.39838161 -0.38384419 -3.7590460 -5.08018813 -5.77533205
H C H C H C H C H O P O O C C H C H C H C H C H O C	0.45959617 - 1.45094928 - 1.17488483 - 2.72763216 - 3.45043811 - 3.06751775 - 4.05815049 - 2.13789693 - 2.41841358 - 3.37877134 - 2.90262367 - 1.43262397 - 2.93471408 - 2.22189098 - 0.29765312 - 0.13893416 0.94935772 - 0.84551674 - 0.30721730 - 2.24674042 - 2.80156517 - 2.94629623 - 4.02648930 - 3.89121888 - 3.41253378	$\begin{array}{r} -2.91114235\\ -3.33124123\\ -3.65683931\\ -4.64375389\\ -3.13491926\\ -3.71459097\\ -1.86559912\\ -1.44789873\\ -1.11673042\\ -0.13221232\\ 1.88248426\\ 2.51091146\\ 2.16551387\\ 4.16017881\\ 4.78621729\\ 4.87215807\\ 4.42022675\\ 5.52573463\\ 5.59498907\\ 6.09075749\\ 6.59888177\\ 6.00021270\\ 6.43450274\\ 5.34138458\\ 5.24144364\\ 2.21540998\\ 2.29257262\end{array}$	-0.31255932 -0.51899678 0.42891244 0.80314662 0.68806497 1.26427006 0.19597764 0.38090748 -0.54174324 -0.91050794 -1.23408385 -2.49942137 -2.99868223 -2.49718785 -1.4633814 -1.52241186 -2.36141282 -0.48580559 -0.52102424 0.58855250 1.38932969 0.62627291 1.45899062 -0.39838161 -0.38384419 -3.75990460 -5.08018813

C -3.08 H -3.16 C -2.53 H -2.19 C -2.43 H -2.00 C -2.87 H -2.78 H -0.21	210016 957051 712932 446261 354859 128231 229465	3.55883811 4.49627345 2.42065237 2.47157698 1.21857981 0.33160204 1.14625310 0.22718628 0.83735687	-7.72297806 -8.75737589 -7.00451859 -7.46905872 -5.67463730 -5.09841361
Mulliken	charges		
2 C -	0.256307		
	0.244998		
	0.26957(0.009222		
60 -	0.527186		
	0.641711 0.186913		
	0.211574		
	-0.24029		
11 C - 12 H	-0.27939 0.13037		
12 H 13 H	0.43307		
14 H	0.12669		
15 H 16 H	0.16230 0.13342		
17 H	0.13395	4	
18 H 19 H	0.13848 0.13449		
20 H	0.13449		
21 H	0.12731		
22 H 23 H	0.14154 0.12700		
24 H	0.15165		
25 H	0.13535		
	0.06970 -0.14747		
28 H	0.13814	1	
29 C - 30 H	-0.14775 0.14128		
31 C -	-0.13817		
32 H	0.13734		
33 C - 34 H	-0.13679 0.14159		
	-0.14205	1	
36 H 37 C	0.14233 0.03372		
	-0.14898		
39 H	0.13291		
40 C - 41 H	-0.14717 0.14006		
42 C -	0.13443	9	
43 H 44 C -	0.13959 -0.15262		
45 H	0.13202		
	-0.14258	2	
47 H 48 O	0.14928 -0.57918		
49 P	1.249266	5	
	-0.64373 -0.61445		
	0.29296		
	-0.13654		
54 H 55 C -	0.16374 -0.14680		
56 H	0.14530	9	
57 C - 58 H	-0.13396 0.14187		
	0.14187		

60 H	0.146582
61 C	-0.128924
62 H	0.158918
63 O	-0.596509
64 C	0.303628
65 C	-0.135358
66 H	0.159207
67 C	-0.148286
68 H	0.144313
69 C	-0.134991
70 H	0.138250
71 C	-0.140565
72 H	0.132112
73 C	-0.118947
74 H	0.150465
75 H	0.336609

• Formation of the phosphate intermediate TS (TS₂) Geometry:

75

C 1.652259 1.663080 -0.419432 C 2.011881 2.971563 -0.849372 C 1.016144 4.116981 -0.552188 C 0.018056 3.722267 0.547065 C -0.572325 2.366806 0.160858 O 0.489036 1.355982 0.099776 O -0.854549 -0.576207 -1.354426 C -0.146939 -1.801149 -1.505990 C 1.382584 -1.516716 -1.588762 C 2.022590 -0.923206 -0.300353 C 2.618571 0.501407 -0.439246 H 3.068813 3.154717 -0.607895 H 2.069168 3.050590 -2.155349 H 1.561078 5.040366 -0.312886 H 0.441855 4.311708 -1.470799 H 0.507017 3.641128 1.530781 H -0.794933 4.458741 0.628627 H -1.282778 1.956645 0.886380 H -1.022100 2.387468 -0.840761 H 1.903838 -2.445304 -1.856758 H 1.524774 -0.840298 -2.435755 H 1.300504 -0.943725 0.525794 H 2.859641 -1.567569 0.005633 H 3.312378 0.679349 0.402310 H 3.218344 0.588059 -1.356429 C -0.608244 -2.535960 -2.795725 C 0.007455 -3.735905 -3.220075 H 0.836599 -4.148974 -2.645943 C -0.456924 -4.421827 -4.356126 H 0.029988 -5.347766 -4.665812 C -1.552862 -3.921439 -5.087827 H -1.917868 -4.455859 -5.965959 C -2.171725 -2.726864 -4.673769 H -3.019809 -2.327878 -5.232253 C -1.703800 -2.042588 -3.536184 H -2.184418 -1.123975 -3.207909 C -0.527096 -2.690808 -0.308328 C 0.355853 -3.667876 0.200300 H 1.356333 -3.769255 -0.218451 C -0.035572 -4.515382 1.254117 H 0.663363 -5.261760 1.635275 C -1.320773 -4.399019 1.815725 H -1.625748 -5.055384 2.631948 C -2.208411 -3.428087 1.315261 H -3.207679 -3.330219 1.742700 C -1.816352 -2.583782 0.261406 H -2.500098 -1.832148 -0.127556 C 1.151837 0.805449 -6.344547

C 2.060491 0.833597 -7.414584 C 2.137905 -0.278628 -8.271534 H 2.844435 -0.268820 -9.101862 C 1.318673 -1.403171 -8.049462 H 1.388170 -2.268282 -8.709980 C 0.411481 -1.409784 -6.971608 H -0.218376 -2.276548 -6.780834 H 2.697640 1.705619 -7.550086 C 0.315696 -0.298727 -6.113304 H -0.369142 -0.297113 -5.269328 O 1.100590 1.966058 -5.525609 P 1.301934 1.813266 -3.904658 O 2.485338 0.654580 -3.769592 C 3.716031 0.664172 -4.451667 C 4.245524 -0.607318 -4.739059 C 5.478018 -0.707141 -5.405097 H 5.886107 -1.691758 -5.635049 C 6.174872 0.458072 -5.786201 H 7.127971 0.381554 -6.310215 C 5.633101 1.722182 -5.484756 H 6.168710 2.627786 -5.772674 H 3.674407 -1.490526 -4.458251 C 4.403493 1.839699 -4.809043 H 3.981772 2.812822 -4.572098 O 0.118627 1.275451 -3.143650 H -0.503744 0.045386 -2.031610 O 1.874017 3.181840 -3.458526 Mulliken charges: 1 C 0.480535 2 C -0.4478323 C -0.231725 4 C -0.276966 5 C -0.006796 60 -0.424444 7 O -0.623154 8 C 0.189412 -0.253267 9 C 10 C -0.218450-0.323192 11 C 12 H 0.177186 13 H 0.366324 14 H 0.144529 15 H 0.155787 16 H 0.142612 17 H 0.151772 18 H 0.171308 19 H 0.183242 20 H 0.111303 21 H 0.155889 0.147357 22 H 23 H 0.125700 24 H 0.173884 25 H 0.174733 26 C 0.080699 27 C -0.147707 28 H 0.120506 29 C -0.14282930 H 0.134694 31 C -0.145606 32 H 0.134456 33 C -0.139137 34 H 0.137716 35 C -0.158580 36 H 0.138768 37 C 0.080830

38 C

39 H

40 C

41 H

-0.152263

0.118256

-0.148756

0.133318

42 C	-0.139933
43 H	0.133277
44 C	-0.142617
45 H	0.134261
46 C	-0.143795
47 H	0.143248
48 C	0.281481
49 C	-0.135741
50 C	-0.145871
51 H	0.141798
52 C	-0.139267
53 H	0.136066
54 C	-0.134140
55 H	0.130532
56 H	0.150426
57 C	-0.130318
58 H	0.151248
59 O	-0.615411
60 P	1.330721
61 O	-0.662731
62 C	0.310572
63 C	-0.147318
64 C	-0.145235
65 H	0.143573
66 C	-0.138704
67 H	0.137910
68 C	-0.153696
69 H	0.144347
70 H	0.152687
71 C	-0.158891
72 H	0.169635
73 O	-0.652083
74 H	0.362610
75 O	-0.658753

• Phosphate intermediate + DPPA complex Geometry: 75

С	0.22738980	-0.04904722	-1.39430129
С	1.51041885	0.65085479	-1.88407936
С	2.12378932	1.54536922	-0.78686288
С	1.05345578	2.51569988	-0.25551592
С	-0.16430459	1.71744367	0.21552308
0	-0.69367769	0.90269461	-0.85249291
С	0.50117803	-1.22413253	-0.42623667
С	-0.66601194	-1.64419479	0.49552097
С	-1.96230473	-2.09367921	-0.22619419
\mathbf{C}	-3.24818692	-1.42364381	0.35478484
0	-3.05705181	-0.00128192	0.45057554
Н	2.98273408	2.09540306	-1.19801706
Н	2.50492532	0.92707401	0.04354096
Н	0.74317529	3.20199669	-1.05879965
Н	1.44118483	3.11622658	0.58205242
Н	-1.00104770	2.35896597	0.51874500
Η	0.10776526	1.07038306	1.06812381
Н	-2.07600951	-3.18364496	-0.15279588
Н	-1.92133668	-1.84737713	-1.29145471
Н	0.84608472	-2.06636224	-1.04509571
Н	1.35279019	-0.93539676	0.20878772
С	-3.47632572	-1.95113981	1.78055296
\mathbf{C}	-3.98884672	-3.24827890	1.97475496
Η	-4.29992046	-3.83355661	1.10836571
\mathbf{C}	-4.11688887	-3.78188684	3.26351793
Н	-4.51756276	-4.78867692	3.39456315
С	-3.73870869	-3.02268599	4.38323860
Н	-3.84100435	-3.43643048	5.38779515
С	-3.23498460	-1.72726209	4.19834073
Н	-2.94315792	-1.12521831	5.06107770

	1.19506467	2.90569352
	0.18763624	2.75751466
C -4.47958034 -	1.70137551	-0.53206958
C -4.54465123 -	2.75536117	-1.46108454
Н -3.69592365 -	3.42487876	-1.59811783
C -5.69284954 -	2.95114001	-2.24653156
Н -5.71761804 -	3.77056576	-2.96735240
	2.09394973	-2.11619810
	2.23803538	-2.73586497
	1.03971799	-1.19099888
	0.35480880	-1.09065233
	0.85207436	-0.40533109
	0.02543814	0.30191315
	2.45022086	1.14857702
	0.80280540	1.15665080
	0.11963895	-2.22355262
	1.26977916	-2.74699938
		-2.74699938 -3.49281231
	1.58798617	-3.95263294
	0.87865703	-4.65948325
	1.18109328	-5.56459278
	0.21358918	-6.45606305
	0.80098307	-6.40799842
	0.58427737	-7.37086355
	0.15951444	-8.06773240
	1.89831758	-7.39566943
Н 2.06272904 -	2.17769144	-8.11356106
C 0.78953976 -2	2.85163923	-6.49456627
Н 1.17135170 -	3.87332173	-6.50784897
C -0.20160263 -	2.49556950	-5.56805968
Н -0.60561631 -	3.21125023	-4.85306025
O -2.83585104	0.11215020	-2.65435242
C -4.04351927	0.68695555	-3.09119421
C -4.55108825	1.76814872	-2.36454359
	2.16090466	-1.52486010
	2.29107892	-2.72447666
	3.13115598	-2.16433876
	1.73318909	-3.79333204
	2.14186168	-4.06716846
	0.64686086	-4.50536208
Н -6.55078573	0.20509770	-5.32980560
	0.11105904	-4.15652870
	0.74463372	-4.67648435
	0.62062106	-2.54349114
	0.26382821	-2.34349114
п -2.33/30203	0.20382821	-0.32973140
Mulliken charges:		
1 C 0.525268		
2 C -0.239887		
20 -0.23968/		

0.525268
-0.239887
-0.255075
-0.246456
0.014742
-0.550711
-0.257783
-0.229531
-0.249403
0.179040
-0.613373
0.137977
0.122425
0.145360
0.131948
0.152800
0.121296
0.123319
0.148059
0.144898
0.126929
0.077264
-0.146051

24 H	0.124905
25 C	-0.146943
26 H	0.133858
27 C	-0.139384
28 H	0.132084
29 C	-0.144397
30 H	0.131561
31 C	-0.149963
32 H 33 C 34 C 35 H 36 C	0.138450 0.074542 -0.157908 0.122328 -0.151583 0.120225
37 H	0.130325
38 C	-0.134357
39 H	0.129984
40 C	-0.135509
41 H	0.131150
42 C	-0.134076
43 H	0.136589
44 H	0.129127
45 H	0.129353
46 H	0.136746
47 H	0.159311
48 P	1.303793
49 O	-0.561480
50 O	-0.610011
51 C	0.293064
52 C	-0.133403
53 H	0.173005
54 C	-0.150031
55 H	0.148225
56 C	-0.132641
57 H	0.141811
58 C	-0.147485
59 H	0.145911
60 C	-0.139471
61 H	0.154732
62 O	-0.626692
63 C	0.311763
64 C	-0.127776
65 H	0.153552
66 C	-0.149450
67 H	0.145142
68 C	-0.131263
69 H	0.139658
70 C	-0.146598
71 H	0.144597
72 C	-0.124513
73 H	0.161621
74 O	-0.604397
75 H	0.359097

• Syn phosphate displacement leading to thermodynamic product (TS₃)

Geometry:

75

 $\begin{array}{l} C \ 2.687317 \ -0.262422 \ -0.316587 \\ C \ 3.650580 \ 0.849369 \ -0.598032 \\ C \ 3.009465 \ 2.245507 \ -0.484744 \\ C \ 2.239742 \ 2.328805 \ 0.846310 \\ C \ 1.176893 \ 1.239172 \ 0.868350 \\ O \ 1.735047 \ -0.105936 \ 0.535760 \\ O \ 0.010799 \ -0.271219 \ -1.492325 \\ C \ -0.454225 \ -1.610003 \ -1.578417 \\ C \ 0.734532 \ -2.606730 \ -1.759532 \\ C \ 1.810903 \ -2.698627 \ -0.647288 \\ C \ 2.980203 \ -1.683436 \ -0.660258 \\ \end{array}$

H 4.408832 0.733883 0.205252
H 4.140313 0.679896 -1.560678 H 3.792834 3.011157 -0.550944
H 2.315147 2.394770 -1.322289
H 2.923258 2.214131 1.702840 H 1.726185 3.296526 0.953466
H 0.706626 1.077923 1.843863
H 0.412648 1.370814 0.093915 H 0.301730 -3.612643 -1.860420
H 1.207966 -2.376139 -2.722358 H 1.343940 -2.711946 0.346687
H 2.304067 -3.675034 -0.774098
H 3.695764 -1.991165 0.130421 H 3.523320 -1.691994 -1.610923
C -1.411873 -1.762746 -2.788909
C -2.020862 -3.005202 -3.073648 H -1.817892 -3.865107 -2.433744
C -2.913335 -3.137422 -4.152452
H -3.376871 -4.104218 -4.357488 C -3.219340 -2.020138 -4.954371
H -3.914657 -2.117554 -5.789689
C -2.619331 -0.779850 -4.672568 H -2.830959 0.085242 -5.297873
C -1.718713 -0.650011 -3.599604
H -1.245349 0.309835 -3.401493 C -1.272404 -1.856126 -0.296441
C -1.278308 -3.090759 0.388883 H -0.661082 -3.915537 0.034046
C -2.079172 -3.279637 1.532597
H -2.065857 -4.242083 2.046926 C -2.890424 -2.235341 2.009259
H -3.512197 -2.380876 2.893442
C -2.899815 -1.000604 1.326592 H -3.536498 -0.187165 1.678164
C -2.102063 -0.816550 0.184594
H -2.116500 0.131124 -0.352622 P 2.233581 1.149530 -3.801174
O 1.160110 2.168155 -3.526339
O 2.344038 0.736477 -5.410039 C 1.195349 0.255028 -6.062285
C 0.308270 1.161860 -6.666793
H 0.479932 2.229208 -6.546258 C -0.775733 0.660938 -7.411932
H -1.466402 1.356286 -7.891537 C -0.970369 -0.728586 -7.540675
H -1.815682 -1.110826 -8.114083
C -0.085921 -1.623262 -6.910519 H -0.251773 -2.697686 -6.984337
C 1.003213 -1.135182 -6.166175
H 1.705721 -1.802638 -5.671401 O 3.788079 1.758369 -3.660639
C 4.173032 2.968741 -4.262324
C 3.466928 4.168976 -4.046561 H 2.539662 4.143914 -3.480920
C 3.957854 5.360065 -4.612741
H 3.412026 6.291276 -4.454485 C 5.141059 5.358261 -5.377816
H 5.516545 6.286431 -5.809917 C 5.834081 4.148764 -5.586426
H 6.746700 4.136367 -6.183311
C 5.350728 2.949869 -5.032225 H 5.863573 2.002648 -5.186871
O 2.283520 -0.126532 -2.945232
H 0.652777 -0.115419 -2.225736

Mulliken charges:

04
260
909

4 C	-0.280766

5 C	-0.014198
6 O	-0.390791
7 O	-0.629227
8 C	0.191600
9 C	-0.234080
10 C	-0.231369
11 C	-0.301707
12 H	0.180063
13 H	0.210308
14 H	0.155390
15 H	0.176535
16 H	0.142898
17 H	0.166766
18 H	0.179664
19 H	0.209915
20 H	0.115790
21 H	0.150805
22 H	0.135007
23 H	0.136839
24 H	0.180214
25 H	0.196358
26 C	0.072756
27 C	-0.151129
28 H	0.118016
29 C	-0.147987
30 H	0.130546
31 C	-0.141930
32 H	0.128019
33 C	-0.120500
34 H	0.130326
35 C	-0.165026
36 H	0.148279
37 C	0.091746
38 C	-0.163020
39 H	0.121527
40 C	-0.149225
41 H	0.134770
42 C	-0.140798
43 H	0.134711
44 C	-0.145679
45 H	0.135573
46 C	-0.146835
47 H	0.144428
48 P	1.255579
49 O	-0.664266
50 O	-0.620421
51 C	0.301916
52 C	-0.131130
53 H 54 C 55 H	0.155040 -0.152557 0.137584 -0.131243
56 C	-0.131243
57 H	0.130581
58 C	-0.136001
59 H	0.138024
60 C	-0.138417
61 H	0.147350
62 O	-0.653581
63 C	0.320099
64 C	-0.148987
65 H	0.160013
66 C	-0.150787
67 H	0.138376
68 C	-0.140597
69 H	0.133058
70 C	-0.147150
71 H	0.138149
72 C	-0.155402
73 H	0.145684
74 O	-0.707429

75 H 0.363198

• *Syn* phosphate displacement leading to nonthermodynamic product (TS₄)

Geometry: 75

C -0.480881 1.165940 0.285013 O -0.541644 2.445235 0.432500 C -0.026037 3.110519 1.671013 C -0.316121 2.281026 2.914453 C 0.241223 0.858839 2.729384 C -0.297468 0.240622 1.433461 O 1.646824 -0.111972 -1.530362 C 1.334865 -1.501606 -1.555890 C -0.105873 -1.536538 -2.134512 C -1.199470 -0.799386 -1.320956 C -0.997580 0.718479 -1.059589 H -0.534144 4.080733 1.652155 H 1.047238 3.210206 1.471307 H -1.401774 2.265755 3.107247 H 0.167539 2.781008 3.766736 H -0.036931 0.212272 3.573188 H 1.336475 0.890085 2.676359 H -0.434192 -2.576884 -2.285010 H -0.036503 -1.082066 -3.134036 H -1.388344 -1.318225 -0.371232 H -2.129645 -0.891902 -1.901202 H -1.977906 1.227413 -1.125369 H -0.362229 1.179639 -1.827303 C 2.288509 -2.223588 -2.536677 C 2.305834 -3.635230 -2.607793 H 1.677330 -4.214852 -1.930147 C 3.148438 -4.296217 -3.517652 H 3.154841 -5.386783 -3.557167 C 3.994391 -3.551218 -4.364988 H 4.659280 -4.062788 -5.062941 C 3.985581 -2.145767 -4.294585 H 4.648681 -1.559009 -4.931585 C 3.133840 -1.482380 -3.391629 H 3.144652 -0.398376 -3.321397 C 1.452859 -2.159271 -0.171868 C 0.499827 -3.074310 0.331332 H -0.350438 -3.373467 -0.280741 C 0.627045 -3.601141 1.631810 H-0.123616-4.298949 2.005988 C 1.710579 -3.222631 2.447416 H 1.797097 -3.613717 3.461447 C 2.687067 -2.343369 1.939957 H 3.530687 -2.030566 2.552279 C 2.568601 -1.837674 0.635122 H 3.342565 -1.181504 0.246865 H -1.332998 -0.138813 1.570129 H 0.278209 -0.630841 1.109895 C 7.428605 4.497880 0.362351 H 7.986028 4.984354 -0.439387 C 8.048278 4.243418 1.602263 H 9.087259 4.533704 1.764381 C 7.321957 3.605341 2.628448 H 7.797217 3.399862 3.588457 C 5.981842 3.226437 2.427646 C 5.378812 3.489886 1.182460 O 4.027998 3.172036 0.929177 P 3.519146 1.586795 1.065104 O 4.612523 0.780090 0.081813 C 4.930832 1.140149 -1.233980 C 6.148831 0.621648 -1.716229 C 6.544680 0.885680 -3.036266 H 7.486635 0.478216 -3.405143 C 5.734147 1.671453 -3.878884

C 4.52 H 3.88 H 6.76 C 4.10 H 3.16 O 2.15 H 1.99 O 3.67 H 5.40 C 6.09	2851 1.877386 -4.904528 0931 2.186853 -3.384604 2502 2.793053 -4.029704 2261 0.018234 -1.049497 7585 1.926388 -2.066113 0281 2.301008 -1.695700 5597 1.613697 0.362450 2031 0.253178 -0.679437 2774 1.012471 2.442809 99199 2.712517 3.195300 1941 4.119672 0.146008 0268 4.283299 -0.811011
$ \begin{array}{c} \textbf{Mullika} \\ 1 \ C \\ 2 \ O \\ 3 \ C \\ 4 \ C \\ 5 \ C \\ 6 \ C \\ 7 \ O \\ 8 \ C \\ 10 \ C \\ 11 \ C \\ 12 \ H \\ 13 \ H \\ 14 \ H \\ 15 \ H \\ 17 \ H \\ 19 \ H \\ 20 \ H \\ 21 \ H \\ 12 \ H \\ 12 \ H \\ 23 \ H \\ 24 \ C \\ 26 \ H \\ 27 \ C \\ 28 \ H \\ 27 \ C \\ 28 \ H \\ 27 \ C \\ 10 \ C \\ 11 \ C \\ 12 \ H \\ 13 \ H \\ 10 \ H \\ 21 \ H \\ 12 \ H \\ 22 \ H \\ 23 \ H \\ 24 \ C \\ 26 \ H \\ 27 \ C \\ 10 \ H \\ 21 \ H \\ 23 \ H \\ 24 \ C \\ 10 \ H \\ 21 \ H \\ 20 \ H \\ 21 \ H \\ 21 \ H \\ 20 \ H \\ 21 \ H \\ 20 \ H \\ 21 \ H \\ 21 \ H \\ 20 \ H \\$	en charges: 0.508022 -0.413593 -0.011217 -0.285071 -0.251249 -0.290012 -0.627183 0.214941 -0.205573 -0.249350 -0.299406 0.172717 0.213102 0.138690 0.169289 0.142975 0.198431 0.119783 0.134456 0.121578 0.142607 0.180170 0.218906 0.063219 -0.148474 0.1131267 -0.140241 0.132238 -0.135810 0.136654 0.008211 -0.162666 0.125725 -0.147496 0.136654 0.108775 -0.144188 0.140044 -0.129338 0.160998 -0.140472 0.155402 0.187156 0.191203 -0.139461 0.132614 -0.129171 -0.648258

$\begin{array}{llllllllllllllllllllllllllllllllllll$
74 C -0.141424 75 H 0.142320 • Thermodynamic spiroketal + DPPA complex Geometry: 75 C 0.93869814 0.48257365 0.17714954 C 0.96190416 2.02211738 0.03762645 C -0.24017070 2.74751218 0.67550577 C -0.52447730 2.17701181 2.07460486 C -0.69713295 0.66196694 1.95491008 O 0.50062595 0.03695078 1.43990267 O 0.05830695 -0.00742487 -0.90565356 C -0.04591328 -1.46546246 -1.15953843 C 1.38210878 -2.06991326 -1.21929901 C 2.29091420 -1.64505109 -0.05913333 C 2.34021783 -0.11375353 -0.01108925 H 1.87952655 2.35030019 0.55070322 H 1.05523230 2.28495759 -1.02448795 H -0.02338732 3.82510118 0.71874266 H -1.13686202 2.62464508 0.05663021 H 0.31098069 2.39374944 2.76057430 H -1.43949037 2.61624936 2.50292292 H -0.86380775 0.18125569 2.92747818 H -1.54604013 0.42599239 1.29502089 H 1.28543148 -3.16196034 -1.29821260 H 1.83372676 -1.72277000 -2.16007613 H 1.91750189 -2.02376270 0.90091572 H 3.30026583 -2.05354174 -0.21740343 H 2.96661722 0.24219302 0.81787079 H 2.74899604 0.28758653 -0.95160215 C -0.63083795 -1.60391774 -2.57575266 C -1.42686827 -2.71521661 -2.91258524 H -1.71411126 -3.42405166 -2.13715945 C -1.85236880 -2.91066512 -4.23503867 H -2.4747355 -3.77313657 -4.47850837 C -1.49222569 -1.99484272 -5.23446321 H -1.84201925 -2.1352707 -6.25802575 C -0.69558957 -0.88730896 -4.90525345 H -0.42871624 -0.1549368 -5.6677691 C -0.25738463 -0.69867240 -3.58787487 H 0.35143138 0.16830406 -3.33681769
75 C 0.93869814 0.48257365 0.17714954 C 0.96190416 2.02211738 0.03762645 C -0.24017070 2.74751218 0.67550577 C -0.52447730 2.17701181 2.07460486 C -0.69713295 0.66196694 1.95491008 O 0.50062595 0.03695078 1.43990267 O 0.05830695 -0.00742487 -0.90565356 C -0.04591328 -1.46546246 -1.15953843 C 1.38210878 -2.06991326 -1.21929901 C 2.29091420 -1.64505109 -0.05913333 C 2.34021783 -0.11375353 -0.011089225 H 1.87952655 2.35030019 0.5507322 H 1.05523230 2.28495759 -1.02448795 H -0.02338732 3.82510118 0.71874266 H -1.13686202 2.62464508 0.05663021 H 0.31098069 2.39374944 2.76057430 H -1.43949037 2.61624936 2.50292292 H -0.86
C 0.96190416 2.02211738 0.03762645 C -0.24017070 2.74751218 0.67550577 C -0.52447730 2.17701181 2.07460486 C -0.69713295 0.66196694 1.95491008 O 0.50062595 0.03695078 1.43990267 O 0.05830695 -0.00742487 -0.90565356 C -0.04591328 -1.46546246 -1.15953843 C 1.38210878 -2.06991326 -1.21929901 C 2.29091420 -1.64505109 -0.05913333 C 2.34021783 -0.11375353 -0.01108925 H 1.87952655 2.35030019 0.55070322 H 1.05523230 2.28495759 -1.02448795 H -0.02338732 3.82510118 0.71874266 H -1.13686202 2.62464508 0.05663021 H 0.31098069 2.39374944 2.76057430 H -1.43949037 2.61624936 2.50292292 H -0.86380775 0.18125569 2.92747818 H -1.54604013 0.42599239 1.29502089 H 1.28543148 -3.16196034 -1.29821260 H 1.83372676 -1.72277000 -2.16007613 H 1.91750189 -2.02376270 0.90091572 H 3.30026583 -2.05354174 -0.21740343 H 2.96661722 0.24219302 0.81787079 H 2.74899604 0.28758653 -0.95160215 C -0.63083795 -1.60391774 -2.57575266 C -1.42686827 -2.71521661 -2.91258524 H -1.71411126 -3.42405166 -2.13715945 C -1.8523680 -2.91066512 -4.23503867 H -2.47473565 -3.77313657 -4.47850837 C -1.49222569 -1.99484272 -5.23446321 H -1.84201925 -2.13527207 -6.25802575 C -0.69558957 -0.88730896 -4.90525345 H -0.42871624 -0.1549368 -5.66677691 C -0.25738463 -0.69867240 -3.35877487 H 0.35143138 0.16830406 -3.33681769
C -0.98107888 -2.08506074 -0.11215892 C -0.61978094 -3.16356559 0.71224652 H 0.37921565 -3.59155382 0.65449461 C -1.53803426 -3.70716688 1.62577970 H -1.23554774 -4.54270638 2.25888258

C -2.2	29567586	-1.58037508	-0.01972755
	50177315	-0.76255648	-0.66950979
	70820456	2.06291946	-4.81135442
	98932154	1.49380081	-4.88141030
Н -6.8	80941495	2.06876078	-5.31418051
C -6.2	21651640	0.19468624	-4.39914249
	21384198	-0.24306846	-4.45739590
	15521086	-0.54072675	-3.84732950
	32000114	-1.55292988	-3.47594423
	86932246	0.01147992	-3.77331536
Н -3.0	03629892	-0.54511908	-3.35587738
Н -4.	50957707	3.07225957	-5.16658896
C -3.0	56699603	1.31099573	-4.25480978
	37586955	1.86715126	-4.24825557
	68538934	2.38867194	-2.85992647
	71498647	3.55247754	-2.31958341
C -3.1	10186171	4.62949992	-3.12287708
C -4.4	14384898	5.02428160	-3.01989918
	39446133	6.11962440	-3.76915827
	93760056	6.43006380	-3.69203282
)1344694		
		6.80922356	-4.61861739
	36886225	7.65835616	-5.20334667
	57366790	6.40014708	-4.70772857
H -1.9	98124630	6.93257159	-5.36110236
Н -5.	11161478	4.46305437	-2.36792725
	20255249	5.31298113	-3.95565846
	16370053	4.99153295	-4.01020954
	97632313	1.30829646	-1.72913909
Н -1.	13380952	0.82152836	-1.41954704
O -0.2	27142550	2.78740276	-3.10438411
Mullik	en charge	s:	
1 C	0.519328		
2 C	-0.26618		
2 C	-0.20010	/	
20			
3 C	-0.25340	0	
4 C	-0.25340 -0.24521	0 5	
	-0.25340 -0.24521 0.016608	0 5 3	
4 C	-0.25340 -0.24521	0 5 3	
4 C 5 C 6 O	-0.25340 -0.24521 0.016608 -0.52094	0 5 3 7	
4 C 5 C 6 O 7 O	-0.25340 -0.245213 0.016608 -0.52094 -0.63852	0 5 3 7 7	
4 C 5 C 6 O 7 O 8 C	-0.253400 -0.245212 0.016608 -0.52094 -0.63852 0.198232	0 5 7 7 2	
4 C 5 C 6 O 7 O 8 C 9 C	-0.253400 -0.245213 0.016608 -0.52094 -0.63852 0.198232 -0.22605	0 5 7 7 2 1	
4 C 5 C 6 O 7 O 8 C 9 C 10 C	-0.253400 -0.245211 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807	0 5 7 7 2 1 7	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C	-0.253400 -0.245213 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212	0 5 7 7 2 1 7 8	
4 C 5 C 6 O 7 O 8 C 9 C 10 C	-0.253400 -0.245211 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807	0 5 7 7 2 1 7 8	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C	-0.253400 -0.245213 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212	0 5 7 7 2 1 7 2 8 8 0	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H	-0.253400 -0.245213 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946	0 5 3 7 7 2 1 7 7 8 8 00 2	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H	-0.253400 -0.245211 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022	0 5 7 7 2 1 7 7 8 8 0 0 2 4	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251	0 5 7 7 2 1 7 7 8 8 00 2 2 4 9	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295	0 5 7 7 2 1 7 7 8 8 0 0 2 2 4 9 1	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869	0 5 7 7 2 1 7 7 8 8 0 0 2 2 4 4 9 1 1 3	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622	0 5 7 7 2 1 7 7 8 8 0 0 2 2 4 9 9 1 1 3 6	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619	0 5 7 7 2 1 7 7 8 8 0 0 2 2 4 4 9 1 1 3 6 0 0	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622	0 5 7 7 2 1 7 7 8 8 0 0 2 2 4 4 9 1 1 3 6 0 0	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H	-0.253400 -0.245213 0.016603 -0.52094 -0.63852 0.198233 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619	0 5 7 7 2 1 7 7 2 8 0 2 2 4 9 9 1 1 3 6 6 0 7	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H	-0.253400 -0.245213 0.016608 -0.52094 -0.638522 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13439 0.13574	0 5 7 7 2 1 7 2 1 7 8 8 0 2 4 9 1 1 3 6 6 0 7 7 6	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 20 H 21 H 22 H	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13622 0.13622 0.13622 0.136574 0.13965	0 5 7 7 2 1 7 7 2 1 7 7 8 8 00 2 4 9 9 1 3 6 6 00 7 6 9	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 22 H 23 H	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13574 0.13574 0.13965 0.12973	0 5 3 7 7 2 1 7 7 2 1 7 7 8 8 0 0 2 4 9 1 3 6 6 0 7 7 6 9 9 4	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 23 H 24 H	-0.253400 -0.24521: 0.016603 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13747	0 5 3 7 7 2 1 7 7 2 1 7 7 8 8 0 0 2 4 9 1 3 6 0 0 7 7 6 9 9 4 3	
4 C 5 C 6 O 7 O 8 C 9 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 21 H 23 H 24 H 25 H	-0.253400 -0.24521: 0.016609 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174	0 5 3 7 7 2 1 7 7 8 8 0 2 4 9 1 3 6 0 7 7 6 9 9 4 3 4	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 23 H 24 H 25 H 26 C	-0.253400 -0.24521: 0.016603 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13622 0.13674 0.13965 0.12973 0.13747 0.13174 0.02704	0 5 7 7 2 1 7 7 8 8 0 2 4 9 1 3 6 0 7 7 6 9 9 4 3 4 3	
4 C 5 C 6 O 7 O 8 C 9 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 21 H 23 H 24 H 25 H	-0.253400 -0.24521: 0.016609 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174	0 5 7 7 2 1 7 7 8 8 0 2 4 9 1 3 6 0 7 7 6 9 9 4 3 4 3	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 23 H 24 H 25 H 26 C	-0.253400 -0.24521: 0.016603 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13622 0.13674 0.13965 0.12973 0.13747 0.13174 0.02704	0 5 7 7 2 1 7 7 8 0 2 4 9 1 3 6 0 7 7 6 9 9 4 3 4 3 4	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 23 H 24 H 25 H 26 C 27 C	-0.253400 -0.24521: 0.016603 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13629 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174 0.02704 -0.14175	0 5 7 7 2 1 7 7 8 0 0 2 2 4 9 1 1 3 6 0 7 6 9 9 4 3 4 3 4 3 4 9	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 19 H 20 H 21 H 22 H 23 H 24 H 25 C 27 C 28 H 29 C	-0.253400 -0.245213 0.016608 -0.52094 -0.638522 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174 0.02704 -0.14175 0.13667 -0.14946	0 5 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 2 1 7 7 2 2 1 7 7 2 2 1 7 7 2 2 4 9 1 3 6 6 0 0 7 7 6 9 4 9 1 3 6 6 9 9 1 3 8 00 2 4 9 1 3 6 6 9 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 1 7 7 2 2 1 1 7 7 2 2 1 1 7 7 7 2 2 1 1 7 7 2 2 1 1 7 7 7 2 2 1 1 7 7 7 7	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 19 H 20 H 21 H 22 H 23 H 24 H 25 C 27 C 28 C 27 C 28 C 20 C	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13774 0.13174 0.02704 -0.14175 0.13667 -0.14946 0.13982	0 5 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 2 1 7 7 2 2 4 9 9 1 3 6 6 0 0 7 7 6 9 4 9 9 1 3 6 6 9 9 4 9 9 1 3 8 00 2 4 9 9 1 3 8 00 2 4 9 9 1 1 3 6 6 9 9 4 9 1 1 3 6 6 9 9 4 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 9 4 3 3 4 9 9 4 3 8 9 9 4 9 1 3 6 6 9 9 4 3 3 4 9 9 4 9 1 3 6 6 9 9 4 3 3 4 3 8 9 9 4 3 8 9 9 4 9 9 4 3 3 4 3 8 8 9 9 4 9 9 4 9 9 4 3 8 8 9 9 4 9 9 4 9 9 4 3 8 9 9 4 8 9 9 4 8 9 9 4 9 9 4 8 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 9 9 9 9	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 19 H 20 H 21 H 22 H 23 H 24 H 25 H 26 C 27 C 28 C 27 C 28 C 27 C 28 C 29 C 20 C	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13622 0.13657 0.13965 0.12973 0.13774 0.13174 0.13174 0.13174 0.131667 -0.14946 0.13982 -0.13255	0 5 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 1 7 7 2 2 1 7 7 2 2 4 9 1 3 6 60 0 2 4 9 9 1 3 6 6 0 7 7 7 2 2 1 7 7 2 2 1 7 7 2 2 1 7 7 8 8 00 2 4 9 1 1 3 6 6 0 0 7 7 7 2 2 1 7 7 7 2 1 1 3 8 8 0 0 2 4 9 1 1 3 8 8 0 0 2 4 9 1 1 3 8 8 0 0 2 4 9 1 1 3 8 8 9 1 1 3 8 9 9 1 1 3 8 8 9 9 1 1 3 8 9 9 1 1 3 8 9 9 1 1 3 8 9 9 1 1 3 8 9 9 1 1 3 8 9 9 1 1 3 8 9 9 1 1 3 8 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 1 9 9 1 1 1 9 9 1	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 22 H 23 H 24 H 25 H 26 C 27 C 28 C 28 C 28 C 20 C 28 C 20 C	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.129460 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174 0.02704 -0.13955 0.14075 0.13982 -0.13255 0.14103	0 5 3 7 7 2 1 7 7 2 1 7 7 8 8 00 2 4 9 1 3 6 0 0 7 6 9 4 3 4 3 4 3 4 3 4 9 8 8 9 3 2 2 3 2 3 2 3 4 9 9 1 3 6 6 0 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 2 2 1 7 7 7 8 8 00 2 2 4 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 1 3 6 6 9 1 7 7 7 7 7 7 7 7 7 7 8 8 9 1 7 7 7 7 7 8 8 9 1 3 6 6 9 1 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 7 7 7 7 8 8 9 9 1 8 8 8 9 9 1 8 8 9 9 1 8 9 9 1 8 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 8 9 9 1 8 9 9 1 8 9 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 8 9 9 1 8 9 9 1 8 9 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 8 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 1 8	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 22 H 23 H 24 H 25 H 26 C 27 C 28 C 28 C 20 C	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13574 0.13574 0.13574 0.13747 0.13174 0.02704 -0.14175 0.13667 -0.14946 0.13982 -0.13255 0.14103 -0.12910	0 5 3 7 7 2 1 7 7 8 0 0 2 4 9 1 3 6 0 7 7 6 9 4 3 4 3 4 3 4 9 8 9 9 3 2 2 2 2 2 2 2 2 2 4 9 1 3 6 0 0 7 7 7 2 2 1 7 7 8 8 0 0 7 7 7 2 2 1 7 7 7 8 8 0 0 2 4 9 1 3 6 9 1 8 9 1 3 6 9 1 8 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 1 8 9 1 8 9 1 8 1 9 1 8 1 8	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 23 H 24 H 25 H 26 C 27 C 28 H 29 C 30 C 31 C 32 C	-0.253400 -0.24521: 0.016603 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174 0.02704 -0.14175 0.13667 -0.14946 0.13982 -0.13255 0.14103 -0.12910 0.14941	0 5 3 7 7 2 1 7 7 2 1 7 7 8 0 0 2 4 9 1 3 6 0 7 6 9 9 1 3 6 0 7 7 6 9 9 1 3 4 3 4 3 4 9 8 9 3 2 2 7 7 7 2 7 7 7 2 7 7 7 7 2 7 7 7 7	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 22 H 23 H 24 H 25 H 26 C 27 C 28 C 28 C 20 C	-0.253400 -0.24521: 0.016608 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.12869 0.13622 0.11619 0.13574 0.13574 0.13574 0.13747 0.13174 0.02704 -0.14175 0.13667 -0.14946 0.13982 -0.13255 0.14103 -0.12910	0 5 3 7 7 2 1 7 7 2 1 7 7 8 0 0 2 4 9 1 3 6 0 7 6 9 9 1 3 6 0 7 7 6 9 9 1 3 4 3 4 3 4 9 8 9 3 2 2 7 7 7 2 7 7 7 2 7 7 7 7 2 7 7 7 7	
4 C 5 C 6 O 7 O 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20 H 21 H 23 H 24 H 25 H 26 C 27 C 28 H 29 C 30 C 31 C 32 C	-0.253400 -0.24521: 0.016603 -0.52094 -0.63852 0.198232 -0.22605 -0.24807 -0.23212 0.12946 0.16334 0.13022 0.13251 0.12295 0.13622 0.13439 0.13574 0.13965 0.12973 0.13747 0.13174 0.02704 -0.14175 0.13667 -0.14946 0.13982 -0.13255 0.14103 -0.12910 0.14941	0 5 3 7 7 2 1 7 7 8 0 2 4 9 1 3 6 0 7 6 9 4 3 4 3 4 3 4 9 8 9 3 2 2 7 8 9 7 7 7 2 1 7 7 8 8 0 2 4 9 1 3 6 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 0 7 7 7 8 8 9 1 7 7 7 8 8 0 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 7 8 8 9 1 7 8 8 9 1 7 8 8 9 8 8 9 1 8 8 9 8 8 8 8 9 8 8 8 9 8 8 9 8 8 8 8 8 8 8 8 9 8 8 8 9 8	

37 C 0.104016 38 C -0.150300

$\begin{array}{c} 39 \text{ H} \\ 410 \text{ C} \\ 411 \text{ H} \\ 420 \text{ H} \\ 411 \text{ H} \\ 420 \text{ H} \\ 411 \text{ H} \\ 420 \text{ H} \\ 411 \text{ H} \\ $	0.129196 -0.149445 0.138740 -0.136301 0.138744 -0.146027 0.142540 -0.157600 0.142204 -0.157600 0.142204 -0.131351 -0.152914 0.142552 -0.133074 0.138042 -0.159238 0.141257 -0.077237 0.125926 0.150765 0.279256 -0.608581 1.310346 -0.609400 0.298275 -0.149016 -0.146849 0.144189 -0.136662 0.140087 -0.150218 0.147252 0.155985 -0.154981 0.175260 -0.643894
71 C	-0.154981
	0.175260
	-0.643894
73 0	
73 O 74 H	0.432266
73 O	-0.0+307+
720	-11/5/13X9/1
	-0.6/389/
	0.175260
	0.175260
71 C	-0.154981
69 H	0.147252
66 C	-0.136662
65 H	0.144189
050	
62 C	
	-0.609400
	0.150705
57 H	0 150765
	0.125926
55 C	-0.077237
54 H	0.141257
44 C	-0.146027
42 C	
	0.138740
	-0.149445
20.11	0.120106

• Nonthermodynamic spiroketal + DPPA complex

Geometry: 75

C -0.87133700 0.40196161 0.32279713
O -1.11653599 1.77572440 0.39236219
C -0.24167651 2.59791118 1.21305565
C -0.01842354 2.02656566 2.61340199
C 0.44992131 0.56611331 2.50428562
C -0.58341895 -0.23342181 1.69861832
O 0.31929701 0.23457795 -0.57929558
C 0.56690791 -1.06012211 -1.24830902
C -0.75215274 -1.58585033 -1.86297025
C -1.90727787 -1.61023631 -0.85494877
C -2.12314624 -0.18141366 -0.34806249
H -0.75012704 3.57068455 1.24872489
Н 0.72094848 2.73271939 0.70847634
Н -0.95902928 2.07223507 3.18741848
Н 0.73772953 2.64218300 3.11847450
Н 0.57397287 0.11646703 3.50062812
H 1.43195312 0.53287399 2.01435016
H -0.55633314 -2.57169278 -2.30682243
H -1.01932434 -0.91237077 -2.69024524
Н -1.68582325 -2.28685239 -0.01708376
Н -2.82305129 -1.97926516 -1.34087737
H -2.94356357 -0.12444629 0.38095335
Н -2.37839884 0.47673047 -1.19238712
C 1.51267124 -0.75582514 -2.42386694
C 2.43151269 -1.71851446 -2.87866584
Н 2.54445287 -2.65778585 -2.33877984

С	3 21// 9872	-1.47401653	-4.01652821	
Н		-2.22922517		
C		-0.25886593		
Н		-0.06171211		
C		0.70340581		
Н		1.65527364		
C	1.37857911		-3.13996212	
Н		1.19710725		
C		-2.03590121		
C		-3.36326163		
Н			-0.62615704	
C		-4.20341805		
H C		-5.22832784 -3.73217576	1.56404149	
Н		-4.38711862		
		-4.38/11802	2.26867932	
С				
H C		-2.02879030		
		-1.58502462		
Н		-0.57495032		
		-0.23312552		
H		-1.27541945 3.61723213		
C				
Н		3.40499952		
C		4.24126791	0.74766444	
Н		4.52159076	1.05013818	
C		4.49965616		
Н	7.40165647	4.98296857		
C	5.93631525		1.21895358	
C	5.74622370		-0.01900355	
0	4.46503159		-0.47149952	
Р	3.52795549	2.17856129		
0	4.47605910		0.75315758	
C	5.39096933		-0.16399223	
C		-0.05570320		
C	7.59474258	-0.61354507		
Н		-0.90609664		
C	7.32520022	-0.78409262		
H	8.08180674		-2.50034306	
C	6.07556433	-0.40569884		
Н	5.84411407	-0.54268130		
Н	6.81855994		1.43111347	
C	5.09126197		-1.52112549	
Н	4.12186028		-1.92193941	
0	2.49301412	1.79413260		
Н	1.68977709		-0.49445283	
0	3.00461387		1.73019500	
H	5.08096815		1.86606870	
	6.81585556		-0.88146521	
Н	6.62400575	2.73070803	-1.82044546	
N/	lilion abanga			
1 (lliken charge C 0.53745			
2				
3				
4				
5				
6 C -0.224680				
7 0 -0.632589				
8 C 0.207558				
9 C -0.222212				
10 C -0.249337				
10 C -0.245337 11 C -0.245727				
12				
13				
10				

14 H	0.114861
15 H	0.147783
16 H	0.126948
17 H	0.117707
18 H	0.133094
19 H	0.135167 0.124470
20 H 21 H	0.124470
21 H 22 H	0.133205 0.135093
23 H	0.137168
24 C	0.030631
25 C	-0.136230
26 H 27 C	0.136698 -0.148031
27 C 28 H	0.138428
29 C	-0.138240
30 H	0.137425
31 C	-0.144291
32 H 33 C	0.142660 -0.127927
34 H	0.146256
35 C	0.057303
36 C	-0.158692
37 H	0.131237
38 C 39 H	-0.146401 0.139751
40 C	-0.137666
41 H	0.141046
42 C	-0.143088
43 H 44 C	0.146796 -0.078655
44 C 45 H	0.070771
46 H	0.121747
47 H	0.129213
48 C	-0.147049
49 H 50 C	0.144666 -0.133500
51 H	0.140280
52 C	-0.150829
53 H	0.147059
54 C 55 C	-0.143694 0.282818
56 O	-0.602431
57 P	1.336093
58 O	-0.634022
59 C 60 C	0.293371 -0.140296
61 C	-0.146747
62 H	0.144125
63 C	-0.137636
64 H 65 C	0.138555
65 C 66 H	-0.145353 0.132913
67 H	0.156202
68 C	-0.117839
69 H 70 O	0.155283
70 O 71 H	-0.634249 0.402997
72 O	-0.569914
73 H	0.174096
74 C 75 H	-0.127014 0.151559
15 П	0.151559

B. Computational studies with the diphenyl hydrogen phosphate system (6,5-spiroketalization)

A model system consisting of diphenyl hydrogen phosphate and non-deuterated enol ether **3-26** was utilized to study different pathways leading to the formation of spiroketal (*rac*)-**3-27**. Single-ended growing string runs employing **3-27** as the fixed node were performed with varying driving coordinates according to the pathway analyzed. 18 different orientations of the catalyst were studied, and both the concerted and phosphate-mediated mechanisms were considered. 42 strings for the concerted pathways and 38 pathways describing the spirocyclization by syn displacement of a phosphate intermediate were modeled. The lowest energy barriers between the concerted spiroketalization and the formation of **3-27** via syn displacement of the phosphate intermediate are compared in the following figure. The considerable difference between these activation energies allowed us to conclude that the phosphate mechanism is uncompetitive without the need of further analysis of the other step of the pathway.

Figure B.1. Energy diagram for the [6,5]-spiroketalization. The values in parenthesis correspond to the difference of the sum of Mulliken charges at the enol ether oxygen and the electrophilic carbon with respect to the starting complex.

A summary of calculated values including solvent corrected single point energy values, as well as enthalpic and entropic corrections associated with vibrational energy at 298 K are provided in the next table.

	GSMD	H _{vib}	S _{vib}	ΔG
	[kcal/mol] ^a	[kcal/mol] ^b	[kcal/mol] ^b	[kcal/mol] ^c
Enol ether 3-26 + DPPA complex	-1370455.7	398.8	231.4	0.0
Concerted pathway TS (TS5)	-1370441.5	395.2	231.0	10.7
Nonthermodynamic spiroketal + catalyst complex	-1370466.2	398.9	233.5	-10.9
Phosphate intermediate	-1370458.4	399.4	232.1	-2.2
Syn Phosphate displacement (TS ₆)	-1370438.0	396.0	222.0	17.8

Table B.3. Calculated values for starting geometries, intermediates, and transition states phosphate-mediated pathway for the [6,5]-spiroketalization catalyzed by DPPA.

^a Solvent-corrected (dichloromethane) electronic energy (ω B97X-D/SMD/6-31G**). ^b Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298.15 K. ^c Corrected free energy values at 298.15 K

Final corrected free energies, cartesian coordinates, and Mulliken charges for the starting

geometry, intermediate, transition states, and cyclized product are provided below.

• Enol ether 3-26 + DPPA complex Corrected energy: -1370125.9 kcal/mol

Geometry:

76

C -3.23754940 -2.37090578 3.42949345
C -2.55852016 -3.50333754 2.95274048
C -2.55852016 -3.50333754 2.95274048 C -2.57921187 -1.12701392 3.46193088
C -1.26022582 -1.01891612 3.01378710
C -1.26022582 -1.01891612 3.01378710 C -0.56080674 -2.16227436 2.54706261
C -1.22878077 -3.40280946 2.51743953
C -0.52842755 0.30193242 2.92027411
O 0.89253928 0.17065831 3.21309706
C 1.51307817 -0.87148086 2.57674606
C 0.84275164 -1.99208999 2.19437638
O 1.51008998 0.72334031 0.23607782
C 2.95581880 0.85873828 0.29507919
C 3.40050497 0.67766106 1.77122448
C 2.99587429 -0.65975813 2.43328323
C 3.31572186 2.24717437 -0.26047985
C 4.19020267 3.13556810 0.38962377
C 2.73550251 2.63622932 -1.48491398 C 4.47357145 4.39210209 -0.17005313
C 4.47357145 4.39210209 -0.17005313
C 3.88541289 4.77452323 -1.38389373
C 3.88541289 4.77452323 -1.38389373 C 3.01407214 3.88973127 -2.03979813
C 3.55795717 -0.25626256 -0.57675148
C 4.81882526 -0.08056530 -1.17497814
C 5.39581121 -1.09778865 -1.94914010
C 5.39581121 -1.09778865 -1.94914010 C 4.72027041 -2.31366925 -2.13643521
C 3.46853199 -2.50330107 -1.53151369
C 2.89529174 -1.48587052 -0.75495806
H -4.27191554 -2.45049364 3.76512144
H -3.06353141 -4.47048928 2.92821888
H -3.10182143 -0.23814879 3.82163046
H -0.69774144 -4.28784437 2.16234386
Н -0.90906164 1.03718986 3.64055555
H -0.61246839 0.72084442 1.90243999
H 1.39282227 -2.80188945 1.71828875
H 0.29151298 -0.33277050 -0.17363220
H 2.97809406 1.50675963 2.35592929
H 4.49682274 0.75659314 1.80905075
H 3.44606628 -0.66703673 3.44089893
H 3.41951363 -1.50924572 1.88070040
H 4.65068508 2.85931316 1.33657533
H 2.06583449 1.95160071 -1.99859538
H 5.15044828 5.07155931 0.35000201
H 4.10343508 5.75307302 -1.81409646
H 2.54859212 4.16580006 -2.98611667
H 5.34119451 0.86857342 -1.05207659
H 6.37027101 -0.93478866 -2.41208130 H 5.16522408 -3.10355339 -2.74310332
H 5.16522408 -3.10355339 -2.74310332
H 2.93229807 -3.44472050 -1.66212208 H 1.92836072 -1.65946235 -0.28991582
H 1.92836072 -1.65946235 -0.28991582
C -3.44780169 -1.98995207 -0.17440387
H -3.04698823 -1.76441018 0.81004589
C -3.97820510 -3.25184888 -0.47763711
C -4.47899686 -3.52446421 -1.76113380
Н -4.88942062 -4.50871918 -1.99038574
C -4.44926666 -2.52868221 -2.75114687
C -3.92222648 -1.26007224 -2.46422843
Н -3.87570197 -0.47175181 -3.21332302
H -4.83462922 -2.73622388 -3.75029549
C -3.43230328 -1.01591278 -1.17702274
O -2.94896377 0.27413074 -0.85975499
P -1.38819528 0.63942261 -1.06087708
O -0.58413150 -0.65082153 -0.53921627
O -1.29605169 0.59483208 -2.70413239
C -0.04644672 0.77585366 -3.31774953

H 0.75557724 C 2.16367381 H 2.94614461 C 2.38492513 H 3.33913721 C 1.38038074 H 1.54749390 C 0.16168709 H -0.6242499 O -0.9906235	-0.21810712 -3.23732169 -1.11621421 -2.65369633 -0.01770676 -3.89202952 -0.76909852 -3.78806655 1.14775244 -4.64162470 1.29933613 -5.14682575 2.12613601 -4.72435986 3.03595119 -5.30281171 1.95116974 -4.05201991 6 2.70449052 -4.08340072 4 1.93498889 -0.43604882 1.59060413 0.25083320
Mulliken charg	
1 C 2 C	-0.150958 -0.141663
3 C	-0.165867
4 C 5 C	-0.001085 0.111230
6 C	-0.175011
7 C 8 O	-0.023035 -0.537337
9 C	0.388492
10 C 11 O	-0.262847 -0.629740
12 C	0.219585
13 C 14 C	-0.218414 -0.304204
15 C	-0.000180
16 C 17 C	-0.151612 -0.088889
17 C 18 C	-0.148570
19 C 20 C	-0.133945 -0.136093
20 C 21 C	0.076749
22 C 23 C	-0.141896 -0.146685
23 C 24 C	-0.140095
25 C 26 C	-0.150513 -0.133085
20 C 27 H	0.137423
28 H 29 H	0.134566 0.136996
30 H	0.132253
31 H 32 H	0.151423 0.133634
32 H 33 H	0.126937
34 H	0.415465
35 H 36 H	0.145334 0.131022
37 H	0.156644 0.142186
38 H 39 H	0.133998
40 H 41 H	0.115412 0.140635
41 H 42 H	0.140459
43 H 44 H	0.130739 0.136236
45 H	0.141443
46 H 47 H	0.141135 0.142776
47 H 48 H	0.117052
49 C 50 H	-0.083933 0.138083
51 C	-0.148775
52 H 53 C	0.135218 -0.131663
55 C 54 H	0.139757
55 C 56 C	-0.150497
56 C	-0.127865

57 H	0.159911
58 H	0.145217
59 C	0.277121
60 O	-0.589753
61 P	1.287883
62 O	-0.640272
63 O	-0.613334
64 C	0.286573
65 C	-0.131470
66 H	0.153285
67 C	-0.125433
68 H	0.137034
69 C	-0.132959
70 H	0.142772
71 C	-0.149586
72 H	0.145556
73 C	-0.139217
74 H	0.159488
75 O	-0.604182
76 H	0.362944

• Concerted pathway TS (TS₅) Geometry:

C -3.983415 -2.642955 2.952894
C -3.003126 -3.642155 2.848297
C -3.623667 -1.293463 2.824045
C -2.290321 -0.954541 2.568127
C -1.301504 -1.952086 2.472129
C -1.662536 -3.300279 2.614799
C -1.834068 0.459651 2.339832
O -0.506091 0.694623 2.957821
C 0.423070 -0.205421 2.729548
C 0.105373 -1.505357 2.218029
O 1.132028 1.156630 0.703104
C 2.392074 1.627009 1.175101
C 2.236463 1.595600 2.718447
C 1.791882 0.195305 3.195527
C 2.645233 3.043975 0.626321
C 3.014172 4.130754 1.436904
C 2.532916 3.241894 -0.765260
C 3.263195 5.394218 0.871794
C 3.144564 5.582055 -0.511366
C 3.144504 5.582055 -0.511500
C 2.776433 4.499058 -1.327819
C 3.564616 0.704564 0.778161
C 4.888532 1.133694 0.996830
C 5.969443 0.291915 0.714014
C 5.744438 -0.995905 0.201820
C 4.430307 -1.429673 -0.021479
C 3.342499 -0.586717 0.268155
H -5.025801 -2.912820 3.124168
H -3.282579 -4.692074 2.947773
H -4.380888 -0.510862 2.885176
H -0.897851 -4.074854 2.536946
H -2.488524 1.204395 2.803875
H -1.689881 0.688871 1.274276
H 0.884791 -2.239969 2.452396
H 0.190669 -1.517423 0.938724
H 1.489409 2.343386 3.017586
H 3.191864 1.843251 3.198875
H 1.770087 0.177798 4.298814
H 2.504747 -0.569557 2.862469
H 3.108352 4.003718 2.514579
H 2.247779 2.407596 -1.407258
H 3.547146 6.227512 1.516982
H 3.335984 6.562818 -0.951410
H 2.681284 4.634086 -2.407049
п 2.001204 4.054000 -2.407049

H 5.066572 2	.142541 1.373111
	.644172 0.884743
H 6.587003 -	1.651486 -0.026143
H 4.241118 -2	2.424440 -0.426703
H 2.330807 -0	0.933368 0.079711
H -3.840283	1.064388 -0.951772
C -3.963850 -	0.006062 -0.789749
H -0.384337 (0.771196 -6.501108
H -6.110444 (0.065236 -0.585875
C -5.228029 -	0.576899 -0.590712
	-0.161309 -0.995567
C -2.824672 -	0.827759 -0.807820
C -0.979257 (0.132065 -5.847367
O 0.757883 0	.240615 -1.787882
	0.184401 -4.409190
	1.963228 -0.414706
	0.401485 -4.690014
	.951824 -0.267937
	2.216158 -0.615753
	0.262637 -7.072072
	0.153084 -6.167339
	-2.408433 -0.265905
	0.885776 -1.442276
	2.770642 -0.426753
	-2.840215 -0.588459
	1.218445 -3.857232
	1.918432 -0.361382
	-3.846889 -0.274538
	0.971566 -5.319364
	-1.821043 -2.721081
	1.509200 -4.153662
	-1.190764 -5.559475
H -3.084812 -	-2.132030 -3.469131
M	
Mulliken char 1 C	-0.134064
2 C	-0.134004
2 C 3 C	-0.136398
4 C	0.015539
4 C 5 C	0.105213
6 C	-0.164797
0 C 7 C	-0.052946
80	-0.448894
00	-0.440074

6 C	-0.164797
7 C	-0.052946
8 O	-0.448894
9 C	0.534120
10 C	-0.490197
11 O	-0.630228
12 C	0.179521
13 C	-0.231235
14 C	-0.312512
15 C	0.091269
16 C	-0.162413
17 C	-0.152082
18 C	-0.148216
19 C	-0.135278
20 C	-0.147286
21 C	0.067867
22 C	-0.149009
23 C	-0.145724
24 C	-0.139065
25 C	-0.149171
26 C	-0.146216
27 H	0.140305
28 H	0.141993
29 H	0.140889
30 H	0.142714
31 H	0.176783
32 H	0.197653
33 H	0.179750
34 H	0.370804
35 H	0.151511

36 H	0.141344
37 H	0.187047
38 H	0.169242
39 H	0.123614
40 H	0.150299
41 H	0.134968
42 H	0.135672
43 H	0.141060
44 H	0.127181
45 H	0.135970
46 H	0.135230
40 H 47 H	0.140436
47 H 48 H	0.140456
49 H	0.150265
50 C	-0.166538
51 H	0.142523
52 H	0.139452
53 C	-0.146757
54 O	-0.641137
55 C	0.313341
56 C	-0.150256
57 O	-0.640583
58 H	0.164684
59 C	-0.143422
60 C	-0.128346
61 H	0.378250
62 C	-0.148062
63 H	0.136203
64 C	-0.134501
65 H	0.133198
66 P	1.328343
67 C	-0.142515
68 H	0.165144
69 C	0.283756
70 O	-0.675763
71 H	0.138916
72 C	-0.149829
73 0	-0.619834
74 C	-0.131673
75 H	0.141103
76 H	0.143607
/011	0.145007

• Nonthermodynamic spiroketal + DPPA complex Geometry:

76

C -2.41356044 -2.45765902 3.77976650 C -1.86078053 -3.53737745 3.07168681 C -1.88492709 -1.17391116 3.60719382 C -0.80715960 -0.95408002 2.73267423 C -0.24706825 -2.03328102 2.02223234 C -0.78581169 -3.32096387 2.20080439 C -0.24121512 0.44529203 2.58840803 O 0.68813055 0.58070280 1.49760900 C 1.65341968 -0.52380311 1.34326948 $C \ 0.88655327 \ -1.80533474 \ 1.04074517$ O 2.42669237 -0.16965296 0.23792876 C 3.53261122 0.70554715 0.64707031 C 3.46520501 0.71697688 2.21504282 C 2.62460083 -0.52829816 2.52893339 C 3.31748243 2.08108783 0.01395243 C 3.77020223 3.25179843 0.64928738 C 2.69605877 2.18710640 -1.24440957 C 3.59849208 4.50687348 0.04563008 C 2.96308306 4.60587099 -1.20073870 C 2.51023616 3.44127150 -1.84068837 $C \ 4.84301858 \ 0.05492131 \ 0.17178895$ C 6.02795643 0.81448226 0.12344618 C 7.24534272 0.21778430 -0.22989622

C 7.29748810 -1.14943340 -0.54547815
C 6.12090948 -1.91067520 -0.50427586
C 4.90177789 -1.31392802 -0.14634708
Н -3.26000676 -2.61269372 4.44936498
Н -2.26808376 -4.54167333 3.19530607
H -2.32374348 -0.32692303 4.13896144
H -0.35379038 -4.15452228 1.64359238
H 0.26004469 0.75279226 3.52544585
H -1.04324253 1.16323885 2.37456632
H 1.58588500 -2.65433511 1.05134322
Н 0.47334834 -1.71725023 0.02463622
H 2.93125526 1.61293270 2.55528162
H 4.46464254 0.69635704 2.66466015
H 2.12071784 -0.49548001 3.50256105
H 3.22661849 -1.44617877 2.47467429
H 4.25648341 3.18652066 1.62338261
H 2.32948664 1.28950851 -1.73772085
H 2.81946089 5.58148029 -1.66741296 H 2.00710190 3.50530937 -2.80641798
H 5.99191812 1.88022956 0.34928371
H 8.15214325 0.82358362 -0.26622428
H 8.24412008 -1.61302658 -0.82683528
Н 6.14586644 -2.97227951 -0.75594739
H 3.98748094 -1.90423367 -0.13358781
H -4.75157680 1.84746405 0.63978398
C -4.84391613 0.77292999 0.78888552
Н -3.46026883 5.25677133 -0.65131070
Н -6.95643619 0.79509575 1.23422525
C -6.06863413 0.17243432 1.11487051
O -2.49229749 0.60654926 0.38522854
C -3.71415341 -0.04038010 0.63467998
C -3.80680628 4.34369200 -1.13760400
O -0.42800375 1.34504731 -0.77917703
Н -1.86541364 3.35734190 -1.01986749
C -6.15262215 -1.21971322 1.28186022
C -2.90260163 3.29021917 -1.34154778
H 0.10290096 1.08323889 0.03446157
C -3.77203463 -1.42944646 0.79947188
Н -5.83768445 5.05701828 -1.39564989
C -5.14210668 4.23296267 -1.55799190
H -7.10706801 -1.68278528 1.53586541
P -1.63937333 0.32572701 -0.99563951
C -5.00523585 -2.01326828 1.12320740
H -2.86950241 -2.02377392 0.68601375
C -3.36287552 2.11755305 -1.95739807
O -1.33767978 -1.09523050 -1.30721857
H -5.06191831 -3.09397483 1.26000940
C -5.57605174 3.05823710 -2.19371046
O -2.52380926 1.01856068 -2.18441074
C -4.68804731 1.99281138 -2.39451481
H -6.61081333 2.96384664 -2.52556734
H -5.00603708 1.06106394 -2.85982590
Mulliken charges:
1 C -0.136152
0.0

1 C	-0.136152
2 C	-0.141537
3 C	-0.152591
4 C	0.017134
5 C	0.062567
6 C	-0.171448
7 C	-0.014856
8 O	-0.591562
9 C	0.505552
10 C	-0.294645
11 O	-0.565058
12 C	0.182024
13 C	-0.255480
14 C	-0.245037
15 C	0.066507

C -1.60902491 -3.06119886 4.09746068
C -1.00011324 -2.57632509 2.92763910
C -0.30141584 -3.46142562 2.08685022
C -0.21397458 -4.82068134 2.43233369
C -1.15014171 -1.11412428 2.55107561
O -0.34718025 -0.69464437 1.42726911
C -0.27802688 -1.60533190 0.36942710
C 0.34988495 -2.93183695 0.82888701
O 0.47903034 -0.19279563 -3.58158375
C 0.52480861 0.85080234 -2.59169886
C -0.13692493 0.34293501 -1.28143594
C 0.48782536 -0.96612168 -0.78356911
C -0.18746678 2.10400544 -3.14280755
C -0.99398429 2.94321711 -2.35397065
C -0.01670193 2.42105150 -4.50455632
C -1.62701512 4.06502968 -2.91475139
C -1.46113049 4.36419379 -4.27412010
C -0.64754853 3.53726349 -5.06770685
C 2.00411314 1.16480003 -2.32289178
C 2.33673627 2.29086616 -1.54655665
C 3.67065881 2.56493429 -1.21948509
C 4.69409378 1.71442208 -1.66903383
C 4.36911842 0.59161214 -2.44367764
C 3.03115475 0.31440842 -2.76739503
Н -1.97891919 -4.77941345 5.35868090
Н -0.73369717 -6.35741456 3.86242083
Н -2.16237109 -2.37327637 4.74117567
H 0.31335456 -5.50415636 1.76452314
Н -0.83477511 -0.46292741 3.37917023
Н -2.20992451 -0.90104033 2.32824456
H 1.41404563 -2.71081136 1.01225677
H 0.31111365 -3.66750254 0.01491466
Н -1.20860962 0.19283873 -1.47548063
Н -0.04588885 1.10436217 -0.49652276
H 1 51704971 -0 79025943 -0 44065279
H 1.51704971 -0.79025943 -0.44065279 H 0.52753858 -1.69986883 -1.59861889
H -1.15051401 2.72038298 -1.29976772
H 0.60287671 1.76550933 -5.11548620
Н -2.25263363 4.70099892 -2.28574439
Н -1.95419126 5.23441644 -4.71022643
Н -0.50447727 3.76443406 -6.12564542
Н 1.54178639 2.95869774 -1.21301100
H 3.91186702 3.44307203 -0.61818431
H 5.73443581 1.92708120 -1.41762882
H 5.15762750 -0.07544834 -2.79660255
H 2.77567865 -0.56001220 -3.36151211
Н -3.49794039 -7.97371263 2.11875497
Н -3.13479943 -5.49137897 2.12534006
C -3.41905969 -7.43306299 1.17446989
O -1.70904704 -1.80734211 -0.05769589
C -3.22333466 -6.04553746 1.19331243
Н -0.46047775 -0.40998398 -3.70526876
C -3.50899401 -8.12262228 -0.04535505
C -3.12091241 -5.35684777 -0.02279035
H -4.26712044 0.14459445 -1.30586844
O -2.96378402 -3.96952890 0.09343806
Н -3.65767973 -9.20286328 -0.05622724
P -2.22874958 -3.00421134 -0.99088125
O -3.55780173 -2.33072018 -1.67341028
C -3.82778143 -0.02437412 -2.28796404
C -3.40706497 -7.41305527 -1.25149364
C -3.21687440 -6.02271440 -1.25321129
C -3.37060555 -1.30625013 -2.61725146
O -1.25930718 -3.63805016 -1.92631408
H -4.01154821 2.01817390 -2.97116220
C -3.68766233 1.00988211 -3.22522468
Н -3.47712304 -7.93890097 -2.20457906
Н -3.12636668 -5.47361819 -2.18781158
C -2.78282731 -1.58042036 -3.86132477
Н -2.42657959 -2.58591590 -4.07560598

16 C	-0.161638
17 C	-0.132622
18 C	-0.147442
19 C	-0.136928
20 C	-0.141730
21 C	0.078312
22 C	-0.142567
23 C	-0.144777
24 C	-0.136623
25 C	-0.142662
26 C	-0.149443
27 H	0.139486
28 H	0.138581
29 H	0.135429
30 H	0.136095
31 H	0.142857
32 H	0.169417
33 H	0.140851
34 H	0.194326
35 H	0.145491
36 H	0.146898
37 H	0.143849
38 H	0.145938
39 H	0.130646
40 H	0.154866
41 H	0.136558
42 H	0.136849
43 H	0.143125
44 H	0.128428
45 H	0.138570
46 H	0.137442
47 H	0.138232
48 H	0.135823
49 H	0.144339
50 C	-0.127589
51 H	0.146242
52 H	0.141864
53 C	-0.153563
54 O	-0.638195
55 C	0.281664
56 C	-0.153342
57 O	-0.617053
58 H	0.169714
59 C	-0.134091
60 C	-0.142941
61 H	0.410621
62 C	-0.101395
63 H	0.140428
64 C	-0.137195
65 H	0.137790
66 P	1.279203
67 C 68 H 69 C 70 O 71 H	-0.154870 0.154278 0.295198 -0.563552 0.141853 0.147210
72 C	-0.147210
73 O	-0.605544
74 C	-0.138911
75 H	0.145565
76 H	0.159638

• Phosphate intermediate + DPPA complex Geometry:

С	-1.50975622	-4.41574645	4.44336469
С	-0.80579551	-5.29932742	3.60820304

С	-3.09898505	0.76043561	-4.47420538
С	-2.65210287	-0.53306076	-4.78977974
Н	-2.96154116	1.57503778	-5.18341049
Н	-2.18972302	-0.73056498	-5.75775919

Mulliken charges:

numken charges:	
1 C	-0.143431
2 C	-0.144272
3 C	-0.162157
4 C	
	0.017795
5 C	0.067244
6 C	-0.160130
7 C	-0.003889
80	-0.528312
9 C	0.480574
10 C	-0.303471
11 0	-0.591763
12 C	0.178322
13 C	-0.223629
14 C	-0.234694
15 C	0.065783
16 C	-0.154365
17 C	-0.140051
18 C	-0.152872
19 C	-0.139000
20 C	-0.146754
21 C	0.069009
22 C	-0.141739
23 C	-0.146950
24 C	-0.138351
25 C	-0.143179
26 C	-0.151765
27 H	0.138824
28 H	0.138701
29 H	0.134503
30 H	0.139393
31 H	0.156763
32 H	0.156820
33 H	0.166506
34 H	0.165396
35 H	0.120888
36 H	0.134910
37 H	0.143657
38 H	0.155107
39 H	0.131263
40 H	0.143617
41 H	0.136599
42 H	0.137154
43 H	0.138304
44 H	0.124897
45 H	0.135908
46 H	0.134213
47 H	0.135491
48 H	0.149492
49 H	0.142315
50 H	0.147653
51 C	-0.150545
52 O	-0.593790
53 C	-0.132186
54 H	0.326528
55 C	-0.135302
55 C 56 C	0.305735
57 H	0.160379
58 O	-0.581103
59 H	0.139597
60 P	1.309101
61 O	-0.596993
62 C	-0.138628
63 C	-0.151676
64 C	-0.145187
04 C	-0.14318/

65 C	0.295676
66 O	-0.606932
67 H	0.146742
68 C	-0.133630
69 H	0.146460
70 H	0.163202
71 C	-0.148237
72 H	0.173167
73 C	-0.105583
74 C	-0.184156
75 H	0.143589
76 H	0.157444

• *Syn* Phosphate displacement TS (TS₆) Geometry:

76

C -3.243645 -3.217351 3.437016 C -2.488254 -4.225087 2.815165 C -2.778285 -1.897670 3.435872 C -1.565070 -1.582242 2.801062 C -0.808108 -2.585929 2.177050 C -1.274373 -3.909910 2.188431 C -1.101765 -0.150497 2.741139 O 0.343347 -0.015394 2.483126 C 0.993940 -0.894299 1.784969 C 0.418785 -2.195171 1.388339 O 2.591828 -0.295752 -0.983587 C 3.437926 0.597582 -0.278547 C 2.934874 0.727895 1.206285 C 2.473045 -0.649220 1.747043 C 3.446992 1.983323 -0.959244 C 3.696174 3.173655 -0.248666 C 3.205668 2.057374 -2.343360 C 3.708164 4.412068 -0.906709 C 3.466689 4.477218 -2.286355 C 3.212612 3.293959 -3.000451 C 4.853445 -0.009973 -0.280237 C 5.932577 0.699329 0.282175 C 7.217051 0.144353 0.314027 C 7.445837 -1.136295 -0.221921 C 6.378128 -1.845490 -0.789939 C 5.090951 -1.288198 -0.819872 H-4.192510-3.458613 3.916087 H -2.847913 -5.254571 2.811558 H -3.360923 -1.107632 3.912517 H -0.693651 -4.685201 1.687065 H -1.233994 0.365320 3.700207 H -1.590129 0.418204 1.936961 H 1.215696 -2.952566 1.386958 H 0.079308 -2.114342 0.312213 H 2.110050 1.449628 1.254305 H 3.750737 1.102444 1.837659 H 2.763773 -0.736270 2.809533 H 2.959695 -1.461989 1.196174 H 3.870846 3.142154 0.827245 H 2.982149 1.144635 -2.890294 H 3.896440 5.324616 -0.338190 H 3.466980 5.441117 -2.797787 H 3.001350 3.326551 -4.069618 H 5.766812 1.702529 0.676228 H 8.041451 0.711932 0.749823 H 8.447149 -1.569982 -0.201538 H 6.545266 -2.836241 -1.216164 H 4.263645 -1.829358 -1.273805 C -3.872028 -1.610687 0.107178 H -3.059350 -2.150917 0.582314 C -5.154736 -2.163314 -0.003379 H -5.345780 -3.153040 0.414766

C -6.18369	6 -1.456077 -0.646678	27 H	0.150928
H -7.18049	4 -1.892065 -0.728674	28 H	0.151178
C -5.92289	9 -0.188301 -1.192378	29 H	0.150046
C -4.64301	6 0.376619 -1.090788	30 H	0.150185
H -4.41157	4 1.355769 -1.508592	31 H	0.186479
H -6.71508	5 0.363001 -1.701718	32 H	0.221961
C -3.63346	4 -0.338807 -0.434022	33 H	0.189905
O -2.39474	2 0.288461 -0.257411	34 H	0.283449
P -1.02769	7 -0.283451 -0.999394	35 H	0.163685
O -1.03303	6 -1.794107 -1.129446	36 H	0.134352
O -1.23479	3 0.479771 -2.458926	37 H	0.192522
C -0.22007	9 0.496163 -3.413324	38 H	0.176088
C 0.667484	-0.577331 -3.611578	39 H	0.118838
H 0.587645	5 -1.469327 -2.993691	40 H	0.133356
C 1.648326	5-0.474945-4.609805	41 H	0.131780
H 2.344486	5 -1.301917 -4.754339	42 H	0.131693
C 1.741103	0.671635 -5.411859	43 H	0.123975
H 2.506974	0.741978 -6.185069	44 H	0.121296
C 0.838200	1.729347 -5.209870	45 H	0.135517
H 0.897834	2.627448 -5.826960	46 H	0.134208
C -0.14152	9 1.646777 -4.210637	47 H	0.134453
H -0.84028	2 2.462514 -4.027685	48 H	0.148653
	0.358429 -0.252238	49 C	-0.092324
H 1.674466	5 0.058755 -0.844138	50 H	0.127727
		51 C	-0.155837
Mulliken ch	arges:	52 H	0.135254
1 C	-0.138198	53 C	-0.136451
2 C	-0.134218	54 H	0.134568
3 C	-0.143899	55 C	-0.148855
4 C	-0.007098	56 C	-0.141768
5 C	0.070358	57 H	0.152571
6 C	-0.156609	58 H	0.140215
7 C	-0.039732	59 C	0.305086
8 O	-0.415002	60 O	-0.631458
9 C	0.513313	61 P	1.252448
10 C	-0.394180	62 O	-0.655887
11 O	-0.635994	63 O	-0.607340
12 C	0.201536	64 C	0.316428
13 C	-0.245375	65 C	-0.148079
14 C	-0.298359	66 H	0.166713
15 C	0.060473	67 C	-0.150583
16 C	-0.160162	68 H	0.141041
17 C	-0.118718	69 C	-0.141704
18 C	-0.148779	70 H	0.134428
19 C	-0.139205	71 C	-0.143466
20 C	-0.133109	72 H	0.137159
21 C	0.070800	73 C	-0.151616
22 C	-0.145880	74 H	0.147691
23 C	-0.147049	75 O	-0.705735
24 C	-0.139133	76 H	0.376349
25 C	-0.143510		
26 C	-0.153391		

C. Computational studies with (*R*) and (*S*)-3-13a (6,6-spiroketalization)

Model systems involving substrate **3-11a** and either (R) or (S)-**3-13a** catalysts were studied to determine the origin of enantioselectivity. Single-ended growing string runs employing an (R)-**3-12a**-catalyst complex as the initial structure were performed with varying driving coordinates according to the pathway explored. Double-ended growing string runs were also performed, using an (R)-**3-12a**-catalyst complex and a **3-11a**-catalyst complex (obtained by the optimization of the final node of the single-ended strings) as the endpoints. Due to the fact that very high accuracy is needed to discern enantiomeric pathways, the concerted pathway was thoroughly explored for both of the acid chiralities. 5 major different productive orientations of the catalyst with respect to the substrate were modeled, which could lead to either thermodynamic or nonthermodynamic spiroketals. In total, 188 strings were created (115 for the (S)-**3-13a** pathways, the rest for the (R) catalyst chirality), of which 155 were single-ended. Additionally, 44 strings were computed to investigate the mechanism involving an oxocarbenium intermediate. However, in the few strings where an apparent oxocarbenium was produced, the structure would collapse to either the enol ether or the spiroketal when its geometry optimization was performed.

After an initial survey of the results of strings from the five productive orientations mentioned, we decided to devote our attention to the favored orientation of the diphenyl hydrogen phosphate model. 86 of the strings constructed had an analogous catalyst-substrate orientation. As specified in the general information about the computational methods, the frequency calculations were performed at 238 K. A difference of 1.5 kcal/mol was found for the enantiomeric concerted pathways, in favor of the (S) chirality of the catalyst.

A summary of calculated values including solvent corrected single point energy values, as well as enthalpic and entropic corrections associated with vibrational energy at 238 K are provided in the following table. The frequency calculation was run using partial Hessian calculations of the

41 most relevant atoms.

Table B.4. Calculated values for starting geometries, intermediates, and transition states concerted pathway for the [6,6]-spiroketalization catalyzed by **3-13**.

	GSMD	Hvib	Svib	ΔG
	[kcal/mol] ^a	[kcal/mol] ^b	[kcal/mol] ^b	[kcal/mol] ^c
Enol ether 3-11a + catalyst complex	-2225385.1	205.0	129.2	0.0
TS _R	-2225366.4	202.1	125.1	16.9
TSs	-2225367.2	201.7	125.8	15.4
Nonthermodynamic spiroketal + (<i>R</i>)-3-13a complex	-2225395.2	205.8	123.7	-7.8
Nonthermodynamic spiroketal + (S)-3-13a complex	-2225395.4	205.3	126.5	-9.3

^a Solvent-corrected (dichloromethane) electronic energy (ω B97X-D/SMD/6-31G**). ^b Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298.15 K. ^c Corrected free energy values at 298.15 K

Final corrected free energies, cartesian coordinates, and Mulliken charges for the starting

geometry, transition states, and cyclized product are provided below.

•	Enol	ether	3-11a +	 catalyst 	complex
---	------	-------	---------	------------------------------	---------

Corrected energy: -2225210.909 kcal/mol

Geometry: 159

I	Э	9	

С	0.30593744	-1.22546491	-0.28108028
č	0.21481530	-1.37919451	-1.61863676
č	0.85763515	-0.42749406	-2.59945462
C	1.23901510	0.88166521	-1.88395984
c	1.88892456	0.55755007	-0.53384571
0	1.02553886		
		-0.21471925	0.32964652
C	-0.32423334	-2.13618930	0.74721629
C	-1.08991845	-1.44887489	1.92320890
C	-2.62538095	-1.33680977	1.79522436
С	-3.14936347	-0.23777355	0.83481254
0	-2.49473081	-0.45324530	-0.43656874
Η	0.15992160	-0.21632590	-3.41843422
Η	1.74971553	-0.88288330	-3.06569063
Η	0.33557538	1.48910112	-1.72577064
Η	1.93934313	1.48140358	-2.48587839
Η	2.12864023	1.46356248	0.04044558
Н	2.81907220	-0.01777617	-0.69514346
Η	-3.03940419	-1.12854438	2.79347433
Н	-3.04563766	-2.30276827	1.46843871
Н	-0.98090120	-2.84652126	0.22375310
Н	0.49330766	-2.72607667	1.19715381
С	-2.70492809	1.13956761	1.34117082
č	-3.41289087	1.75630805	2.38783379
н	-4.31716255	1.28419908	2.77135019
C	-2.97984975	2.97877188	2.91934473
Н	-3.54437753	3.44428578	3.72842765
C	-1.83525810	3.60898945	2.40402813
н	-1.50408376	4.56527997	2.81103257
		2.99308012	1.36792293
С	-1.11978428		
Н	-0.22178439	3.46308504	0.96402688
С	-1.54554958	1.76189351	0.84706465
Н	-0.95539531	1.27149731	0.08023284
С	-4.66971612	-0.30424047	0.60801736
С	-5.53385939	-1.02364702	1.45341648
Н	-5.14447925	-1.52773864	2.33703137
С	-6.90445823	-1.11600629	1.16206544
Η	-7.55939080	-1.67899406	1.82878133
С	-7.42294709	-0.50662457	0.01114183
Н	-8.48415768	-0.59404956	-0.22612946
С	-6.56988517	0.22634466	-0.82760757
Η	-6.95729931	0.72663948	-1.71307282
С	-5.20925351	0.34279048	-0.52212666
Н	-4.56719839	0.94524298	-1.16066436
Н	-0.90244556	-2.04306489	2.83028574
Н	-0.65706848	-0.45695255	2.11050548
Н	-0.38836943	-2.19861846	-2.00431565
Н	-2.21925563	0.53415090	-1.59558053
С	-7.11525202	1.87377820	-4.64003882
Ĉ	-7.20757909	3.09424829	-3.69545982
č	-6.06857659	3.28525996	-2.68068923
C	-4.68597788	3.40562209	-3.01242170
c	-3.73103796	3.70267982	-2.00460315
c	-2.22688782	4.01815611	-2.16798757
		3.39152491	
H	-1.73211676		-1.40997505
С	-1.48155373	3.77114780	-3.49669627
Н	-0.40373885	3.86617244	-3.29055410
Н	-1.65563989	2.77642300	-3.91056562
Н	-1.74111830	4.51865751	-4.25732394
С	-1.98097377	5.49696414	-1.76058109
Η	-0.90147024	5.71636260	-1.76764643
Н	-2.37616437	5.71823711	-0.75997232
Н	-2.47134717	6.17253673	-2.47940981
С	-4.18473965	3.80107854	-0.66931933

H -3.45170630	3.98012370	0.11824125
C -5.53165444	3.70048183	-0.31891379
C -5.99656683	3.91845214	1.11353313
Н -5.09702071	4.01763256	1.73857526
C -6.82339192	2.73504287	1.65337437
H -6.24670139	1.80279845	1.63363797
H -7.14313185	2.93655984	2.68825501
Н -7.72714994	2.57680165	1.04553237
C -6.80240970	5.23341714	1.21379872
Н -6.20571986	6.08971328	0.86585676
H -7.11538071	5.41939056	2.25335046
H -7.70715331	5.17294579	0.58944004
C -4.24714631	3.23098125	-4.43026948
C -4.07599703	4.32311606	-5.26331033
H -4.30898359	5.31792443	-4.88254862
C -3.53022443	4.19582259	-6.56827319
C -3.26427025	5.34609925	-7.36732282
H -3.54222001	6.32581871	-6.97425528
C -2.64653218	5.22594462	-8.60009827
Н -2.43943276	6.11238953	-9.20106731
C -2.26019118	3.94352087	-9.07250675
H -1.74443571		-10.02939806
C -2.52166518	2.80467905	-8.32730224
Н -2.20921758	1.83279853	-8.70094757
C -3.18431627	2.88777245	-7.06616199
C -3.47669309	1.73103430	-6.25319550
C -3.21969548	0.35589942	-6.75617840
C -2.42904791	-0.52097225	-6.01866072
O -1.93078803	-0.10305379	-4.77497192
P -2.96209926	-0.02772228	-3.50889692
O -2.14119620	0.92073596	-2.53711664
O -3.44694006	-1.30556153	-2.91100919
H -2.94000771	-1.16929209	-0.93409956
O -4.21060549	0.83606678	-4.13162887
C -1.99600154	-1.79024698	-6.49610626
C -1.20238711	-2.67594070	-5.59611921
C 0.19929122	-2.48956333	-5.45637635
C 1.05706547	-1.59513610	-6.36564885
Н 2.05927875	-1.59095491	-5.90663595
C 0.65773665	-0.10930064	-6.51807142
Н 1.50349970	0.43672696	-6.96381946
Н 0.41765935	0.35161003	-5.55263131
Н -0.20293151	0.01688291	-7.18635168
C 1.20913944	-2.24517737	-7.76137938
H 1.94543936	-1.68790176	-8.36228620
Н 1.54315241	-3.28971717	-7.67603773
Н 0.25024028	-2.22830762	-8.29878660
C 0.89018159	-3.26295301	
		-4.50888467
Н 1.96698724	-3.12114233	-4.41219160
	-3.12114233	-4.41219160
C 0.23867663	-3.12114233 -4.18753607	-4.41219160 -3.68113723
C 0.23867663 C 0.98888393	-3.12114233 -4.18753607 -5.04495551	-4.41219160 -3.68113723 -2.66925942
C 0.23867663 C 0.98888393 C 2.17932344	-3.12114233 -4.18753607 -5.04495551 -4.32911695	-4.41219160 -3.68113723 -2.66925942 -2.00129459
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797
C 0.23867663 C 0.98888393 C 2.17932344	-3.12114233 -4.18753607 -5.04495551 -4.32911695	-4.41219160 -3.68113723 -2.66925942 -2.00129459
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.33313362	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763 -5.02126766
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.33313362 H -3.61927090	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731 -4.58309515	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763 -5.02126766 -4.05819860
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.33313362 H -3.61927090 C -4.46680078	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731 -4.58309515 -3.13745931	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763 -5.02126766 -4.05819860 -5.36314795
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.33313362 H -3.61927090	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731 -4.58309515	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763 -5.02126766 -4.05819860
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.33313362 H -3.61927090 C -4.46680078	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731 -4.58309515 -3.13745931	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763 -5.02126766 -4.05819860 -5.36314795
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.3331362 H -3.61927090 C -4.46680078 H -4.45547148 H -4.43627647	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731 -4.58309515 -3.13745931 -2.26634529 -2.80497988	$\begin{array}{r} -4.41219160\\ -3.68113723\\ -2.66925942\\ -2.00129459\\ -2.73880797\\ -1.23315957\\ -1.53584187\\ -3.34775473\\ -4.14460037\\ -2.61725803\\ -3.80041622\\ -1.87847802\\ -3.86660274\\ -3.25083754\\ -4.81931763\\ -5.02126766\\ -4.05819860\\ -5.36314795\\ -4.70278750\\ -6.40683826\end{array}$
C 0.23867663 C 0.98888393 C 2.17932344 H 2.96669638 H 2.62212855 H 1.86268700 C 1.46030935 H 2.18412749 H 1.95320034 H 0.61552647 H 0.26872940 C -1.13728555 H -1.65255928 C -1.88395880 C -3.33313362 H -3.61927090 C -4.46680078 H -4.45547148	-3.12114233 -4.18753607 -5.04495551 -4.32911695 -4.10846525 -4.98105626 -3.38501645 -6.35317778 -6.12028843 -7.01421339 -6.89311044 -5.31724515 -4.37042813 -5.11324875 -3.64986509 -4.13110731 -4.58309515 -3.13745931 -2.26634529	-4.41219160 -3.68113723 -2.66925942 -2.00129459 -2.73880797 -1.23315951 -1.53584187 -3.34775473 -4.14460037 -2.61725803 -3.80041622 -1.87847802 -3.86660274 -3.25083754 -4.81931763 -5.02126766 -4.05819860 -5.36314795 -4.70278750

H -2.58597581 -6.05026320 -5.80504958 H -3.04166516 -4.86701243 -7.05825380 H -4.31321533 -5.72895364 -6.15399904 C -2.38512466 -2.16565316 -7.76979927 H -2.05294605 -3.12503522 -8.16666354 C -3.27631295 -1.37055553 -8.54252142 C -3.75821615 -1.81743535 -9.80720087 H -3.39418230 -2.77079700 -10.19496556 C -4.68275131 -1.07240908 -10.51944461 C -5.17166515 0.14944456 -9.98430480 C -4.71121069 0.61937942 -8.76438182 H -5.09443646 1.55344193 -8.35839206 H -5.92070888 0.72037755 -10.53438930 H -5.04918485 -1.42936504 -11.48281325 C -3.74016777 -0.10988046 -8.01749517 C -3.94588015 1.94140527 -4.95560651 C -6.45563528 3.45724117 -1.34453476 H -7.51607636 3.39089281 -1.09188410 C -7.45758526 4.38578880 -4.50919607 H -6.62774110 4.57206175 -5.20374286 H -7.55847160 5.25542324 -3.84300768 H -8.38214965 4.28629713 -5.0985201 H -8.10998142 2.93289584 -3.08381578 H -6.41994903 2.05156599 -5.46955416 H -6.78934902 0.96954920 -4.10943333	
H -8.10840136 1.68657079 -5.07714129	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
39 H 0.137523 40 C -0.114323 41 H 0.129659 42 C -0.096545	

$\begin{array}{c} 43 \text{ H} \\ 44 \text{ H} \\ 45 \text{ H} \\ 45 \text{ H} \\ 47 \text{ H} \\ 48 \text{ C} \\ 50 \text{ C} \\ 51 \text{ C} \\ 52 \text{ C} \\ 53 \text{ C} \\ 55 \text{ C} \\ 61 \text{ H} \\ 62 \text{ H} \\ 63 \text{ C} \\ 66 \text{ C} \\ 67 \text{ H} \\ 66 \text{ C} \\ 69 \text{ H} \\ 11 \text{ H} \\ 72 \text{ C} \\ 73 \text{ H} \end{array}$	0.108986 0.120256 0.142290 0.109515 0.424802 -0.368746 -0.150172 0.116904 -0.092922 0.119579 -0.129590 0.118534 -0.353972 0.110472 0.128266 0.112544 -0.358779 0.121506 0.118903 -0.204985 0.104026 0.137601 -0.148977 0.108773 -0.349261 0.122940 0.112443 0.115276 -0.360380 0.126215
73 H	0.126215
74 H	0.119072
75 H	0.119912
76 C	0.010197
77 C	-0.201928
78 H	0.149252
79 C	0.080047
80 C	-0.164851
81 H	0.142218
82 C	-0.143825
83 H	0.142559
84 C	-0.146417
85 H	0.143346
86 C	-0.150182
87 H	0.146439
88 C	0.031814
89 C	0.019885
90 C	0.010643
91 C	0.260318
92 O	-0.643259
93 P	1.398427
94 O	-0.649134
95 O	-0.603269
96 H	0.366168
97 O	-0.635977
98 C	0.009317
99 C	-0.088591
100 C	0.119154
101 C	-0.151042
102 H	0.117077
103 C	-0.365475
104 H	0.118680
105 H	0.138236
106 H	0.118935
107 C	-0.356408
108 H	0.120767
109 H	0.124302
110 H	0.118851
111 C	-0.209930
112 H	0.108729

IIS C	0.122108
114 C	-0.151465
	0.101100
115 C	-0.369090
116 H	0.116804
117 H	0.119066
118 H	0.128175
119 C	-0.356317
	0.000017
120 H	0.122888
121 H	0.121606
122 H	0.125137
123 H	0.118033
	0.116055
124 C	-0.218748
105 11	0.110100
125 H	0.112108
126 C	0.138439
120 0	
127 C	-0.146523
128 H	0.124023
129 C	-0.376711
	0 154407
130 H	0.154427
131 H	0.111573
132 H	0.112932
133 C	-0.352141
	-0.332141
134 H	0.121788
	0.113652
135 H	0.115052
136 H	0.121418
	0.100021
137 C	-0.199931
138 H	0.148343
139 C	0.077250
140 C	-0.166448
141 H	0.142440
	-0.143423
142 C	
143 C	-0.145793
	0.150500
144 C	-0.150508
145 H	0.147496
146 H	0.144160
147 H	0.142911
148 C	0.021235
149 C	0.236120
1470	0.230120
149 C 150 C	-0.217419
151 H	0.110540
152 C	-0.358841
153 H	0.120717
154 H	0.123311
	0.120000
155 H	0.120689
156 H	0.116389
15011	
157 H	0.119587
158 H	0.141718
159 H	0.119127

113 C 0.122108

• TS_R Geometry: 159

C -0.121153 -0.209234 -0.158088 C 0.363520 0.817809 -0.998971 C 0.552352 2.211104 -0.391431 C -0.581141 2.415726 0.628955 C -0.517231 1.314159 1.678794 O -0.518147 -0.030828 1.083480 C -0.157451 -1.647272 -0.597859 C -1.148095 -2.587425 0.124167 C -2.622505 -2.517461 -0.324457 C -3.466741 -1.285759 0.119506 O -2.869990 -0.086848 -0.374099 H 0.489724 2.965707 -1.187895 H 1.536315 2.321295 0.096257 H-1.546170 2.371734 0.107519 H -0.514505 3.387967 1.137160 H -1.386047 1.302370 2.347190 H 0.408650 1.376731 2.270918

H -3.114874 -3.431329 0.034879 H -2.666996 -2.549556 -1.419578 H -0.305994 -1.681074 -1.686196 H 0.864222 -2.022075 -0.406762 C -3.572632 -1.116967 1.643118 C -3.376240 -2.178726 2.549599 H -3.110752 -3.167411 2.178570 C -3.506880 -1.973892 3.937016 H -3.344536 -2.806886 4.622902 C -3.839532 -0.703117 4.437866 H -3.938101 -0.544338 5.512563 C -4.053040 0.361253 3.538219 H -4.326664 1.349564 3.911587 C -3.925906 0.151952 2.155613 H-4.099958 0.964905 1.455773 C -4.905643 -1.431179 -0.447522 C -5.632046 -2.636975 -0.311545 H -5.193617 -3.482174 0.219054 C -6.931159 -2.758056 -0.837623 H -7.471929 -3.699988 -0.731549 C -7.532662 -1.667715 -1.493934 H -8.540382 -1.760062 -1.901621 C -6.824757 -0.458020 -1.616002 H -7.279833 0.392885 -2.122285 C -5.521219 -0.341130 -1.099887 H -4.964989 0.586396 -1.218091 H -0.802876 -3.609544 -0.095436 H -1.066576 -2.446186 1.209936 H 1.110451 0.459029 -1.718464 H -0.490851 1.079219 -1.974552 C -6.314503 2.468098 -3.817834 C -6.058437 3.691920 -2.900292 C -4.619598 3.949589 -2.410871 C -3.491645 4.112855 -3.269476 C -2.241546 4.549491 -2.741354 C -0.999110 4.966379 -3.562093 H -0.153258 4.901942 -2.853060 C -0.567086 4.148855 -4.808134 H 0.458205 4.459615 -5.074439 H -0.558918 3.073793 -4.604099 H -1.205428 4.345625 -5.677894 C -1.143277 6.466820 -3.954919 H -0.208538 6.827632 -4.416030 H -1.373668 7.090809 -3.076530 H -1.955715 6.583126 -4.688646 C -2.148719 4.779527 -1.349735 H -1.195549 5.121806 -0.938009 C -3.235013 4.600289 -0.478845 C -3.109234 4.936070 1.006033 H -2.039219 5.112362 1.217617 C -3.597137 3.788448 1.924770 H -3.049102 2.859222 1.723132 H -3.457118 4.062170 2.983600 H-4.669093 3.592840 1.763039 C -3.881837 6.245037 1.327846 H -3.516298 7.078578 0.707703 H -3.765152 6.514761 2.390760 H -4.955487 6.107457 1.119008 C -3.578632 3.756842 -4.718230 C -3.737199 4.707225 -5.715606 H -3.888552 5.750528 -5.441599 C -3.622269 4.365552 -7.095096 C -3.671337 5.368001 -8.112805 H -3.855422 6.401389 -7.814185 C -3.464158 5.040350 -9.446767 H -3.495707 5.813942 -10.214493 C -3.186669 3.691186 -9.810573 H -2.991960 3.442541 -10.854211 C -3.152748 2.690182 -8.846262 H -2.936149 1.663721 -9.132580

C -3.393419 2.986451 -7.467798
C 5.575417 2.700451 7.407770
C -3.396105 1.969927 -6.439672
C -3.384841 0.518479 -6.773271
C -2.484457 -0.343417 -6.142340
O -1.537250 0.194128 -5.243949
P -2.067006 0.555640 -3.728665
O -0.957525 1.440022 -3.126264
O -2.499578 -0.634205 -2.919314
H -2.747992 -0.241022 -1.349371
O -3.422700 1.441872 -4.068122
C -2.423237 -1.747072 -6.397246
C -1.606528 -2.619714 -5.498743
C -0.198002 -2.762479 -5.681970
C 0.572386 -2.284054 -6.927982
H 1.628045 -2.550874 -6.739438
C 0 5(2215 0 7(15(1 7 224194
C 0.562215 -0.761561 -7.224184
H 1.328106 -0.546834 -7.988589
H 0.781893 -0.173647 -6.323064
H -0.406848 -0.432908 -7.621824
C 0.136024 -3.076728 -8.192452
H 0.811302 -2.842070 -9.032734
H 0.168674 -4.162015 -8.006116
H -0.886844 -2.801490 -8.488587
п -0.000044 -2.001490 -0.400307
C 0.539608 -3.496066 -4.730627
H 1.613854 -3.612968 -4.884292
C -0.066604 -4.089829 -3.609440
C 0.735664 -4.935202 -2.621990
C 2.064699 -4.268923 -2.189588
H 2.747187 -4.160665 -3.048312
H 2.572411 -4.887320 -1.431555
H 1.888229 -3.266491 -1.771586
C 1.011530 -6.340655 -3.224494
H 1.628819 -6.247260 -4.133475
H 1.548621 -6.976598 -2.500614
H 0.067128 -6.834874 -3.501272
H 0.111693 -5.074841 -1.719335
C -1.457971 -3.968218 -3.475239
H -1.949804 -4.453601 -2.629242
C -2 256704 -3 255608 -4 399056
C -2.256704 -3.255608 -4.399056
C -3.782081 -3.382048 -4.163955
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.33268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.33268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.33268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.33268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.33268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ C & -6.320467 & 0.088260 & -9.141571 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ C & -6.320467 & 0.088260 & -9.141571 \\ C & -5.438663 & 0.677543 & -8.241779 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.073991 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ C & -6.320467 & 0.088260 & -9.141571 \\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955 \\ H -3.885512 -3.570692 -3.081502 \\ C -4.750999 -2.211459 -4.468651 \\ H -4.400623 -1.271528 -4.036377 \\ H -4.924086 -2.077874 -5.542900 \\ H -5.718904 -2.455293 -4.000732 \\ C -4.285274 -4.664167 -4.893578 \\ H -3.670547 -5.540336 -4.631708 \\ H -4.240936 -4.521132 -5.985213 \\ H -5.333268 -4.864338 -4.614681 \\ C -3.234016 -2.259659 -7.399316 \\ H -3.188943 -3.323876 -7.627541 \\ C -4.206588 -1.452587 -8.059844 \\ C -5.117085 -2.022539 -9.002683 \\ H -4.995065 -3.07391 -9.268572 \\ C -6.150899 -1.267443 -9.543161 \\ C -6.320467 0.088260 -9.141571 \\ C -5.438663 0.677543 -8.241779 \\ H -5.588673 1.708613 -7.932523 \\ H -7.155954 0.668100 -9.534913 \\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955 \\ H -3.885512 -3.570692 -3.081502 \\ C -4.750999 -2.211459 -4.468651 \\ H -4.400623 -1.271528 -4.036377 \\ H -4.924086 -2.077874 -5.542900 \\ H -5.718904 -2.455293 -4.000732 \\ C -4.285274 -4.664167 -4.893578 \\ H -3.670547 -5.540336 -4.631708 \\ H -4.240936 -4.521132 -5.985213 \\ H -5.333268 -4.864338 -4.614681 \\ C -3.234016 -2.259659 -7.399316 \\ H -3.188943 -3.323876 -7.627541 \\ C -4.206588 -1.452587 -8.059844 \\ C -5.117085 -2.022539 -9.002683 \\ H -4.995065 -3.07391 -9.268572 \\ C -6.150899 -1.267443 -9.543161 \\ C -6.320467 0.088260 -9.141571 \\ C -5.438663 0.677543 -8.241779 \\ H -5.588673 1.708613 -7.932523 \\ H -7.155954 0.668100 -9.534913 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.07391 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ C & -5.320467 & 0.088260 & -9.141571 \\ C & -5.438663 & 0.677543 & -8.241779 \\ H & -5.588673 & 1.708613 & -7.932523 \\ H & -7.155954 & 0.668100 & -9.534913 \\ H & -6.844707 & -1.714467 & -10.255633 \\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.07391 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ C & -5.320467 & 0.088260 & -9.141571 \\ C & -5.438663 & 0.677543 & -8.241779 \\ H & -5.588673 & 1.708613 & -7.932523 \\ H & -7.155954 & 0.668100 & -9.534913 \\ H & -6.844707 & -1.714467 & -10.255633 \\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ \end{array}$
$\begin{array}{l} C & -3.782081 & -3.382048 & -4.163955 \\ H & -3.885512 & -3.570692 & -3.081502 \\ C & -4.750999 & -2.211459 & -4.468651 \\ H & -4.400623 & -1.271528 & -4.036377 \\ H & -4.924086 & -2.077874 & -5.542900 \\ H & -5.718904 & -2.455293 & -4.000732 \\ C & -4.285274 & -4.664167 & -4.893578 \\ H & -3.670547 & -5.540336 & -4.631708 \\ H & -4.240936 & -4.521132 & -5.985213 \\ H & -5.333268 & -4.864338 & -4.614681 \\ C & -3.234016 & -2.259659 & -7.399316 \\ H & -3.188943 & -3.323876 & -7.627541 \\ C & -4.206588 & -1.452587 & -8.059844 \\ C & -5.117085 & -2.022539 & -9.002683 \\ H & -4.995065 & -3.07391 & -9.268572 \\ C & -6.150899 & -1.267443 & -9.543161 \\ C & -5.320467 & 0.088260 & -9.141571 \\ C & -5.438663 & 0.677543 & -8.241779 \\ H & -5.588673 & 1.708613 & -7.932523 \\ H & -7.155954 & 0.668100 & -9.534913 \\ H & -6.844707 & -1.714467 & -10.255633 \\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ C -3.423086 2.389893 -5.104769\end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -5.243663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ C -3.423086 2.389893 -5.104769\\ C -4.462994 4.193499 -1.031220\\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ C -3.423086 2.389893 -5.104769\end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ C -3.423086 2.389893 -5.104769\\ C -4.462994 4.193499 -1.031220\\ H -5.333188 4.086348 -0.380816\\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ C -3.423086 2.389893 -5.104769\\ C -4.462994 4.193499 -1.031220\\ H -5.333188 4.086348 -0.380816\\ C -6.625723 4.978328 -3.567619\\ \end{array}$
$\begin{array}{l} C -3.782081 -3.382048 -4.163955\\ H -3.885512 -3.570692 -3.081502\\ C -4.750999 -2.211459 -4.468651\\ H -4.400623 -1.271528 -4.036377\\ H -4.924086 -2.077874 -5.542900\\ H -5.718904 -2.455293 -4.000732\\ C -4.285274 -4.664167 -4.893578\\ H -3.670547 -5.540336 -4.631708\\ H -4.240936 -4.521132 -5.985213\\ H -5.333268 -4.864338 -4.614681\\ C -3.234016 -2.259659 -7.399316\\ H -3.188943 -3.323876 -7.627541\\ C -4.206588 -1.452587 -8.059844\\ C -5.117085 -2.022539 -9.002683\\ H -4.995065 -3.073991 -9.268572\\ C -6.150899 -1.267443 -9.543161\\ C -6.320467 0.088260 -9.141571\\ C -5.438663 0.677543 -8.241779\\ H -5.588673 1.708613 -7.932523\\ H -7.155954 0.668100 -9.534913\\ H -6.844707 -1.714467 -10.255633\\ C -4.339074 -0.056991 -7.697526\\ C -3.423086 2.389893 -5.104769\\ C -4.462994 4.193499 -1.031220\\ H -5.333188 4.086348 -0.380816\\ C -6.625723 4.978328 -3.567619\\ \end{array}$
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -5.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.333188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -5.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.333188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -6.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.333188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152 H -6.484005 5.854325 -2.914681
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -5.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.333188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152 H -6.484005 5.854325 -2.914681 H -7.703316 4.855525 -3.768522
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -5.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.333188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152 H -6.484005 5.854325 -2.914681 H -7.703316 4.855525 -3.768522
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -6.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.33188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152 H -6.484005 5.854325 -2.914681 H -7.703316 4.855525 -3.768522 H -6.654112 3.518270 -1.985630
C -3.782081 -3.382048 -4.163955 H -3.885512 -3.570692 -3.081502 C -4.750999 -2.211459 -4.468651 H -4.400623 -1.271528 -4.036377 H -4.924086 -2.077874 -5.542900 H -5.718904 -2.455293 -4.000732 C -4.285274 -4.664167 -4.893578 H -3.670547 -5.540336 -4.631708 H -4.240936 -4.521132 -5.985213 H -5.333268 -4.864338 -4.614681 C -3.234016 -2.259659 -7.399316 H -3.188943 -3.323876 -7.627541 C -4.206588 -1.452587 -8.059844 C -5.117085 -2.022539 -9.002683 H -4.995065 -3.073991 -9.268572 C -6.150899 -1.267443 -9.543161 C -5.320467 0.088260 -9.141571 C -5.438663 0.677543 -8.241779 H -5.588673 1.708613 -7.932523 H -7.155954 0.668100 -9.534913 H -6.844707 -1.714467 -10.255633 C -4.339074 -0.056991 -7.697526 C -3.423086 2.389893 -5.104769 C -4.462994 4.193499 -1.031220 H -5.333188 4.086348 -0.380816 C -6.625723 4.978328 -3.567619 H -6.116628 5.167462 -4.525152 H -6.484005 5.854325 -2.914681 H -7.703316 4.855525 -3.768522

	320116 1.563836 -3.443364 401738 2.285885 -3.860149
Mullik	en charges:
1 C	0.516579
2 C	-0.439715
3 C	-0.235818
4 C	-0.270985
5 C	0.013874
60	-0.457897
7 C 8 C	-0.312222 -0.222754
9 C	-0.239569
10 C	0.185837
11 O	-0.647567
12 H	0.145310
13 H	0.130038
14 H	0.166689
15 H 16 H	0.137004 0.161937
17 H	0.152545
18 H	0.108312
19 H	0.150403
20 H	0.178247
21 H	0.165956
22 C	0.106381
23 C 24 H	-0.160952 0.121947
24 H 25 C	-0.148881
26 H	0.134486
27 C	-0.142159
28 H	0.133546
29 C	-0.146485
30 H	0.132098
31 C 32 H	-0.139470 0.135675
33 C	0.073691
34 C	-0.152624
35 H	0.122004
36 C	-0.146557
37 H	0.132714
38 C 39 H	-0.142425 0.132426
40 C	-0.129946
41 H	0.126504
42 C	-0.146395
43 H	0.134708
44 H	0.122151
45 H 46 H	0.132793 0.181760
40 H 47 H	0.376804
48 C	-0.363081
49 C	-0.156576
50 C	0.118749
51 C	-0.076563
52 C	0.136160
53 C 54 H	-0.146458 0.113780
55 C	-0.376835
56 H	0.108740
57 H	0.159870
58 H	0.115173
59 C	-0.352254
60 H	0.121298
61 H 62 H	0.120235 0.115643
63 C	-0.221683
64 H	0.105355
65 C	0.126520
66 C	-0.157046

67 H	0.109902
68 C	-0.356862
69 H	0.121075
70 H	0.119778
70 H 71 H 72 C 73 H 74 H	0.127246 -0.358693 0.129093 0.121433
75 H	0.124704
76 C	-0.005196
77 C	-0.196541
78 H	0.145693
79 C	0.069916
80 C	-0.165772
81 H	0.140226
82 C	-0.145279
83 H	0.141061
84 C	-0.146210
85 H	0.142615
86 C	-0.150733
87 H	0.146645
88 C	0.020119
89 C	0.011442
90 C	0.014396
91 C	0.251634
92 O	-0.635541
93 P	1.361994
94 O	-0.656930
95 O	-0.655060
96 H	0.388997
97 O	-0.648845
98 C	0.014039
99 C	-0.094511
100 C	0.121050
101 C	-0.156593
102 H	0.115051
103 C	-0.356585
104 H	0.114233
105 H	0.139655
106 H	0.119892
107 C	-0.359736
108 H	0.119879
109 H	0.122370
110 H	0.121660
111 C	-0.228040
112 H	0.109807
113 C	0.119926
114 C	-0.154524
115 C	-0.363709
116 H	0.125629
117 H	0.123470
118 H	0.116136
119 C	-0.357626
120 H	0.124798
121 H	0.121537
122 H	0.129362
123 H	0.114015
124 C	-0.218671
125 H	0.107060
126 C	0.159392
127 C	0.135928
127 C	-0.135928
128 H	0.111844
129 C	-0.363846
130 H	0.148006
131 H	0.106939
132 H	0.109774
133 C	-0.355250
134 H	0.117273
135 H	0.113102
136 H	0.122132

137 C 138 H 139 C 140 C 141 H 142 C 143 C 144 C 145 H 144 C 145 H 146 H 147 H 148 C 150 C 151 H 152 C 151 H 152 H 155 H 155 H 155 H 155 H 157 H 158 H 159 H	-0.198140 0.146332 0.067845 -0.166435 0.140481 -0.142152 -0.146880 -0.150098 0.146266 0.142191 0.141145 0.030982 0.277261 -0.218701 0.114843 -0.356752 0.120361 0.122661 0.122661 0.121440 0.117904 0.118539 0.145822 0.114745 TSs ry:	
$\begin{array}{c} 159\\ C \ 0.988\\ C \ 0.633\\ C \ -0.81\\ C \ -1.71\\ C \ -1.28\\ O \ 0.122\\ C \ 2.422\\ C \ 2.672\\ C \ 2.659\\ C \ 1.322\\ O \ 1.044\\ H \ -1.05\\ H \ -0.98\\ H \ -1.60\\ H \ -1.82\\ H \ -1.82\\ H \ 3.39\\ H \ 3.00\\ H \ 2.779\end{array}$	5716 1.1392 3099 2.2068 3991 2.7017 5920 1.4797 88494 0.8344 8596 0.4646 3123 0.7399 1738 -0.7157 9980 -1.8120 2731 -2.0267 0578 -0.744 8221 3.155 1329 3.468 98082 0.7537 98749 -0.102 44859 1.5327 5080 -2.766 6131 -1.555 1331 0.9559 9322 1.4265	48 3.987094 43 3.162063 312 3.172427 941 3.429589 054 4.742537 33 4.746431 18 4.247893 262 4.724310 621 3.634721 292 2.880071 540 2.343058 690 2.202980 401 3.949123 878 2.611356 454 3.494925 1268 4.958697 973 5.583701 590 4.076219 108 2.861601 59 3.338847 37 5.036935 970 3.767122

C -0.777577 -3.494933 5.807475 H -0.616803 -3.915320 6.801574 C -2.078867 -3.402298 5.283204 H -2.933322 -3.753507 5.863390 C -2.266158 -2.862256 3.994455 H -3.264333 -2.796491 3.561986 C -1.164585 -2.410445 3.249034 H -1.330673 -2.003916 2.253696 C 1.551713 -3.030205 1.728155 C 1.408621 -4.423685 1.904760 H 1.082735 -4.812956 2.869657 C 1.653814 -5.307841 0.837564 H 1.530199 -6.381658 0.987364 C 2.048429 -4.811877 -0.420907 H 2.232855 -5.498146 -1.248843 C 2.208740 -3.425747 -0.594020 H 2.542882 -2.994006 -1.533949

H -0.754501 5.090848 -6.458462 C 2.817565 2.454358 -3.478408 H 3.874397 2.708570 -3.559697 C 2.412726 1.541220 -2.514841 C 3.365494 0.873437 -1.572679 C 3.677811 1.468671 -0.316688 C 3.402019 2.921693 0.148151 H 2.988482 2.825609 1.168344 C 2.436523 3.843929 -0.635633 H 2.242030 4.732525 -0.010930 H 1.477027 3.369394 -0.857480 H 2.887960 4.189261 -1.576211 C 4.770463 3.664862 0.263826 H 4.618060 4.675389 0.678132 H 5.479804 3.121306 0.905742 H 5.221376 3.764299 -0.737476 C 4.403241 0.698084 0.621978 H 4.612558 1.132505 1.602548 C 4.889148 -0.585718 0.342278 C 5.730744 -1.324886 1.382041 H 5.435791 -0.938039 2.375305 C 5.517780 -2.857117 1.382513 H 4.454707 -3.116119 1.482149 H 6.078823 -3.312191 2.215058 H 5.890495 -3.302643 0.445826 C 7.234758 -0.988106 1.178533 H 7.402538 0.099757 1.225522 H 7.848327 -1.478500 1.952764 H 7.570134 -1.344494 0.190095 C 4.644690 -1.112539 -0.938550 H 5.033550 -2.098144 -1.190908 C 3.872824 -0.425839 -1.896581 C 3.726725 -1.117705 -3.271603 C 4.614721 -0.423174 -4.342035 H 4.204613 0.564609 -4.598125 H 5.644217 -0.292649 -3.972667 H 4.641704 -1.033138 -5.260711 C 2.286964 -1.319211 -3.822472 H 1.890184 -0.391467 -4.254201 H 1.596920 -1.655226 -3.036457 H 2.312317 -2.078111 -4.621973 H 4.141061 -2.131728 -3.129060 C -0.456637 3.528043 -5.012058 H -1.517039 3.302637 -4.922347 C 1.024048 1.216313 -2.440404 O -0.775524 -0.497117 0.510676 H 0.301297 -0.790767 1.686073 O 0.640324 0.236857 -1.495950

Mulliken charges:

in charges.
0.537279
-0.464744
-0.226617
-0.269280
0.022040
-0.493097
-0.283040
-0.233941
-0.201618
0.188301
-0.634903
0.139903
0.125035
0.151778
0.131560
0.151539
0.142026
0.116419
0.120497
0.146940

C 1.964226 -2.543349 0.470660
H 2.106364 -1.476664 0.321613
H 3.671926 -0.731910 5.185795
H 1.949898 -0.955768 5.515502
H 1.441253 2.923685 2.983335
H 0.643721 1.720370 1.762322
P -0.270558 0.721277 -0.205883
O 0.504176 1.796400 0.610266
O -1.448252 1.597364 -0.939800
C -2.021129 1.068091 -2.114587
C -3.312609 0.476578 -2.002521
C -3.888229 0.140778 -0.662956
C -4.477497 1.127132 0.182705
C -4.619169 2.637818 -0.110099
H -5.594028 2.916896 0.332091
C -3.543158 3.455190 0.662184
H -3.749247 4.534371 0.563125
H -3.551129 3.193329 1.731810
H -2.544329 3.246133 0.260159
C -4.680539 3.094852 -1.587431
H -5.047687 4.134456 -1.616169
H -5.362278 2.466453 -2.179473
H -3.692960 3.077305 -2.068344
C -5.003601 0.725207 1.428967
H -5.471364 1.482084 2.062477
C -4.963163 -0.607268 1.869490
C -5.565199 -1.013131 3.213379
C -4.812070 -0.347889 4.393694
H -4.926686 0.747867 4.345103
H -5.216096 -0.695410 5.359044
H -3.741744 -0.590260 4.350103
C -7.078696 -0.677885 3.279788
H -7.230346 0.410170 3.190914
H -7.503928 -1.008853 4.241724
H -7.626615 -1.169720 2.460707
H -5.455939 -2.108262 3.313251
C -4.369064 -1.556521 1.025357
II 4 222CAC 2 500207 1 250005
H -4.332646 -2.399307 1.330003
H -4.332646 -2.599307 1.350005
C -3.827927 -1.224279 -0.236008
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876 C -4.443561 -3.081421 -1.865728
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ \end{array}$
$\begin{array}{l} C \ -3.827927 \ -1.224279 \ -0.236008 \\ C \ -3.292229 \ -2.437919 \ -1.038610 \\ H \ -3.020757 \ -3.176504 \ -0.262718 \\ C \ -2.023256 \ -2.299045 \ -1.918876 \\ H \ -1.217987 \ -1.789435 \ -1.381478 \\ H \ -2.216485 \ -1.779893 \ -2.865965 \\ H \ -1.674643 \ -3.316583 \ -2.164876 \\ C \ -4.443561 \ -3.081421 \ -1.865728 \\ H \ -5.336954 \ -3.246929 \ -1.242236 \\ H \ -4.722690 \ -2.435322 \ -2.711625 \\ H \ -4.110570 \ -4.050495 \ -2.273722 \\ C \ -3.959593 \ 0.120664 \ -3.177875 \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ \end{array}$
$\begin{array}{l} C \ -3.827927 \ -1.224279 \ -0.236008 \\ C \ -3.292229 \ -2.437919 \ -1.038610 \\ H \ -3.020757 \ -3.176504 \ -0.262718 \\ C \ -2.023256 \ -2.299045 \ -1.918876 \\ H \ -1.217987 \ -1.789435 \ -1.381478 \\ H \ -2.216485 \ -1.779893 \ -2.865965 \\ H \ -1.674643 \ -3.316583 \ -2.164876 \\ C \ -4.443561 \ -3.081421 \ -1.865728 \\ H \ -5.336954 \ -3.246929 \ -1.242236 \\ H \ -4.722690 \ -2.435322 \ -2.711625 \\ H \ -4.110570 \ -4.050495 \ -2.273722 \\ C \ -3.959593 \ 0.120664 \ -3.177875 \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.10570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.688097 & -4.518477 \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.10570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.688097 & -4.518477 \\ C & -1.271420 & 0.602539 & -5.775789 \\ \end{array}$
$\begin{array}{l} C \ -3.827927 \ -1.224279 \ -0.236008 \\ C \ -3.292229 \ -2.437919 \ -1.038610 \\ H \ -3.020757 \ -3.176504 \ -0.262718 \\ C \ -2.023256 \ -2.299045 \ -1.918876 \\ H \ -1.217987 \ -1.789435 \ -1.381478 \\ H \ -2.216485 \ -1.779893 \ -2.865965 \\ H \ -1.674643 \ -3.316583 \ -2.164876 \\ C \ -4.443561 \ -3.081421 \ -1.865728 \\ H \ -5.336954 \ -3.246929 \ -1.242236 \\ H \ -4.722690 \ -2.435322 \ -2.711625 \\ H \ -4.110570 \ -4.050495 \ -2.273722 \\ C \ -3.959593 \ 0.120664 \ -3.177875 \\ H \ -4.965996 \ -0.291680 \ -3.125657 \\ C \ -3.312382 \ 0.208156 \ -4.444516 \\ C \ -1.947703 \ 0.688097 \ -4.518477 \\ C \ -1.271420 \ 0.602539 \ -5.775789 \\ H \ -0.229840 \ 0.906533 \ -5.837514 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.688097 & -4.518477 \\ C & -1.271420 & 0.602539 & -5.775789 \\ H & -0.229840 & 0.906533 & -5.837514 \\ C & -1.923686 & 0.132724 & -6.910063 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.688097 & -4.518477 \\ C & -1.271420 & 0.602539 & -5.775789 \\ H & -0.229840 & 0.906533 & -5.837514 \\ C & -1.923686 & 0.132724 & -6.910063 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.688097 & -4.518477 \\ C & -1.271420 & 0.602539 & -5.775789 \\ H & -0.229840 & 0.906533 & -5.837514 \\ C & -1.923686 & 0.132724 & -6.910063 \\ C & -3.284783 & -0.282466 & -6.846983 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.68097 & -4.518477 \\ C & -1.271420 & 0.602539 & -5.775789 \\ H & -0.229840 & 0.906533 & -5.837514 \\ C & -1.923686 & 0.132724 & -6.910063 \\ C & -3.284783 & -0.282466 & -6.846983 \\ H & -3.785081 & -0.641991 & -7.746500 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008 \\ C & -3.292229 & -2.437919 & -1.038610 \\ H & -3.020757 & -3.176504 & -0.262718 \\ C & -2.023256 & -2.299045 & -1.918876 \\ H & -1.217987 & -1.789435 & -1.381478 \\ H & -2.216485 & -1.779893 & -2.865965 \\ H & -1.674643 & -3.316583 & -2.164876 \\ C & -4.443561 & -3.081421 & -1.865728 \\ H & -5.336954 & -3.246929 & -1.242236 \\ H & -4.722690 & -2.435322 & -2.711625 \\ H & -4.110570 & -4.050495 & -2.273722 \\ C & -3.959593 & 0.120664 & -3.177875 \\ H & -4.965996 & -0.291680 & -3.125657 \\ C & -3.312382 & 0.208156 & -4.444516 \\ C & -1.947703 & 0.688097 & -4.518477 \\ C & -1.271420 & 0.602539 & -5.775789 \\ H & -0.229840 & 0.906533 & -5.837514 \\ C & -1.923686 & 0.132724 & -6.910063 \\ C & -3.284783 & -0.282466 & -6.846983 \\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008\\ C & -3.292229 & -2.437919 & -1.038610\\ H & -3.020757 & -3.176504 & -0.262718\\ C & -2.023256 & -2.299045 & -1.918876\\ H & -1.217987 & -1.789435 & -1.381478\\ H & -2.216485 & -1.779893 & -2.865965\\ H & -1.674643 & -3.316583 & -2.164876\\ C & -4.443561 & -3.081421 & -1.865728\\ H & -5.336954 & -3.246929 & -1.242236\\ H & -4.722690 & -2.435322 & -2.711625\\ H & -4.110570 & -4.050495 & -2.273722\\ C & -3.959593 & 0.120664 & -3.177875\\ H & -4.965996 & -0.291680 & -3.125657\\ C & -3.312382 & 0.208156 & -4.444516\\ C & -1.947703 & 0.688097 & -4.518477\\ C & -1.271420 & 0.602539 & -5.775789\\ H & -0.229840 & 0.906533 & -5.837514\\ C & -1.923686 & 0.132724 & -6.910063\\ C & -3.284783 & -0.282466 & -6.846983\\ H & -3.785081 & -0.641991 & -7.46500\\ H & -1.384565 & 0.074326 & -7.856059\\ \end{array}$
$\begin{array}{l} {\rm C}$-3.827927 -1.224279 -0.236008\\ {\rm C}$-3.292229 -2.437919 -1.038610\\ {\rm H}$-3.020757 -3.176504 -0.262718\\ {\rm C}$-2.023256 -2.299045 -1.918876\\ {\rm H}$-1.217987 -1.789435 -1.381478\\ {\rm H}$-2.216485 -1.779893 -2.865965\\ {\rm H}$-1.674643 -3.316583 -2.164876\\ {\rm C}$-4.443561 -3.081421 -1.865728\\ {\rm H}$-5.336954 -3.246929 -1.242236\\ {\rm H}$-4.722690 -2.435322 -2.711625\\ {\rm H}$-4.110570 -4.050495 -2.273722\\ {\rm C}$-3.959593 0.120664 -3.177875\\ {\rm H}$-4.965996 -0.291680 -3.125657\\ {\rm C}$-3.312382 0.208156 -4.444516\\ {\rm C}$-1.947703 0.688097 -4.518477\\ {\rm C}$-1.271420 0.602539 -5.775789\\ {\rm H}$-0.229840 0.906533 -5.837514\\ {\rm C}$-1.923686 0.132724 -6.910063\\ {\rm C}$-3.284783 -0.282466 -6.846983\\ {\rm H}$-3.785081 -0.641991 -7.7465005\\ {\rm C}$-3.959364 -0.251343 -5.633664\\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008\\ C & -3.292229 & -2.437919 & -1.038610\\ H & -3.020757 & -3.176504 & -0.262718\\ C & -2.023256 & -2.299045 & -1.918876\\ H & -1.217987 & -1.789435 & -1.381478\\ H & -2.216485 & -1.779893 & -2.865965\\ H & -1.674643 & -3.316583 & -2.164876\\ C & -4.443561 & -3.081421 & -1.865728\\ H & -5.336954 & -3.246929 & -1.242236\\ H & -4.722690 & -2.435322 & -2.711625\\ H & -4.110570 & -4.050495 & -2.273722\\ C & -3.959593 & 0.120664 & -3.177875\\ H & -4.965996 & -0.291680 & -3.125657\\ C & -3.312382 & 0.208156 & -4.444516\\ C & -1.947703 & 0.688097 & -4.518477\\ C & -1.271420 & 0.602539 & -5.775789\\ H & -0.229840 & 0.906533 & -5.837514\\ C & -1.923686 & 0.132724 & -6.910063\\ C & -3.284783 & -0.282466 & -6.846983\\ H & -3.785081 & -0.641991 & -7.46500\\ H & -1.384565 & 0.074326 & -7.856059\\ \end{array}$
$\begin{array}{l} C & -3.827927 & -1.224279 & -0.236008\\ C & -3.292229 & -2.437919 & -1.038610\\ H & -3.020757 & -3.176504 & -0.262718\\ C & -2.023256 & -2.299045 & -1.918876\\ H & -1.217987 & -1.789435 & -1.381478\\ H & -2.216485 & -1.779893 & -2.865965\\ H & -1.674643 & -3.316583 & -2.164876\\ C & -4.443561 & -3.081421 & -1.865728\\ H & -5.336954 & -3.246929 & -1.242236\\ H & -4.722690 & -2.435322 & -2.711625\\ H & -4.110570 & -4.050495 & -2.273722\\ C & -3.959593 & 0.120664 & -3.177875\\ H & -4.965996 & -0.291680 & -3.125657\\ C & -3.312382 & 0.208156 & -4.444516\\ C & -1.947703 & 0.688097 & -4.518477\\ C & -1.271420 & 0.602539 & -5.775789\\ H & -0.229840 & 0.906533 & -5.837514\\ C & -1.923686 & 0.132724 & -6.910063\\ C & -3.284783 & -0.282466 & -6.846983\\ H & -3.785081 & -0.641991 & -7.746500\\ H & -1.384565 & 0.074326 & -7.856059\\ C & -3.959364 & -0.251343 & -5.633664\\ H & -4.991213 & -0.598595 & -5.559136\\ \end{array}$
$\begin{array}{l} C -3.827927 -1.224279 -0.236008\\ C -3.292229 -2.437919 -1.038610\\ H -3.020757 -3.176504 -0.262718\\ C -2.023256 -2.299045 -1.918876\\ H -1.217987 -1.789435 -1.381478\\ H -2.216485 -1.779893 -2.865965\\ H -1.674643 -3.316583 -2.164876\\ C -4.443561 -3.081421 -1.865728\\ H -5.336954 -3.246929 -1.242236\\ H -4.722690 -2.435322 -2.711625\\ H -4.110570 -4.050495 -2.273722\\ C -3.959593 0.120664 -3.177875\\ H -4.965996 -0.291680 -3.125657\\ C -3.312382 0.208156 -4.444516\\ C -1.947703 0.688097 -4.518477\\ C -1.271420 0.602539 -5.775789\\ H -0.229840 0.906533 -5.837514\\ C -1.923686 0.132724 -6.910063\\ C -3.284783 -0.282466 -6.846983\\ H -3.785081 -0.641991 -7.746500\\ H -1.384565 0.074326 -7.856059\\ C -3.959364 -0.251343 -5.633664\\ H -4.991213 -0.598595 -5.559136\\ C -1.321014 1.191486 -3.316148\\ \end{array}$
$\begin{array}{l} {\rm C} -3.827927 - 1.224279 - 0.236008\\ {\rm C} -3.292229 - 2.437919 - 1.038610\\ {\rm H} -3.020757 - 3.176504 - 0.262718\\ {\rm C} -2.023256 - 2.299045 - 1.918876\\ {\rm H} -1.217987 - 1.789435 - 1.381478\\ {\rm H} -2.216485 - 1.779893 - 2.865965\\ {\rm H} -1.674643 - 3.316583 - 2.164876\\ {\rm C} -4.443561 - 3.081421 - 1.865728\\ {\rm H} -5.336954 - 3.246929 - 1.242236\\ {\rm H} -4.722690 - 2.435322 - 2.711625\\ {\rm H} -4.110570 - 4.050495 - 2.273722\\ {\rm C} -3.959593 0.120664 - 3.177875\\ {\rm H} -4.965996 - 0.291680 - 3.125657\\ {\rm C} -3.312382 0.208156 - 4.444516\\ {\rm C} -1.947703 0.688097 - 4.518477\\ {\rm C} -1.271420 0.602539 - 5.775789\\ {\rm H} -0.229840 0.906533 - 5.837514\\ {\rm C} -1.923686 0.132724 - 6.910063\\ {\rm C} -3.284783 - 0.282466 - 6.846983\\ {\rm H} -3.785081 - 0.641991 - 7.746500\\ {\rm H} -1.384565 0.074326 - 7.856059\\ {\rm C} -3.321014 1.191486 - 3.316148\\ {\rm C} 0.065283 1.737211 - 3.318544\\ \end{array}$
$\begin{array}{l} {\rm C} -3.827927 - 1.224279 - 0.236008\\ {\rm C} -3.292229 - 2.437919 - 1.038610\\ {\rm H} -3.020757 - 3.176504 - 0.262718\\ {\rm C} -2.023256 - 2.299045 - 1.918876\\ {\rm H} -1.217987 - 1.789435 - 1.381478\\ {\rm H} -2.216485 - 1.779893 - 2.865965\\ {\rm H} -1.674643 - 3.316583 - 2.164876\\ {\rm C} -4.443561 - 3.081421 - 1.865728\\ {\rm H} -5.336954 - 3.246929 - 1.242236\\ {\rm H} -4.722690 - 2.435322 - 2.711625\\ {\rm H} -4.110570 - 4.050495 - 2.273722\\ {\rm C} -3.959593 0.120664 - 3.177875\\ {\rm H} -4.965996 - 0.291680 - 3.125657\\ {\rm C} -3.312382 0.208156 - 4.444516\\ {\rm C} -1.947703 0.688097 - 4.518477\\ {\rm C} -1.271420 0.602539 - 5.775789\\ {\rm H} -0.229840 0.906533 - 5.837514\\ {\rm C} -1.923686 0.132724 - 6.910063\\ {\rm C} -3.284783 - 0.282466 - 6.846983\\ {\rm H} -3.785081 - 0.641991 - 7.746500\\ {\rm H} -1.384565 0.074326 - 7.856059\\ {\rm C} -3.321014 1.191486 - 3.316148\\ {\rm C} 0.065283 1.737211 - 3.318544\\ \end{array}$
$\begin{array}{l} C -3.827927 -1.224279 -0.236008\\ C -3.292229 -2.437919 -1.038610\\ H -3.020757 -3.176504 -0.262718\\ C -2.023256 -2.299045 -1.918876\\ H -1.217987 -1.789435 -1.381478\\ H -2.216485 -1.779893 -2.865965\\ H -1.674643 -3.316583 -2.164876\\ C -4.443561 -3.081421 -1.865728\\ H -5.336954 -3.246929 -1.242236\\ H -4.722690 -2.435322 -2.711625\\ H -4.110570 -4.050495 -2.273722\\ C -3.959593 0.120664 -3.177875\\ H -4.965996 -0.291680 -3.125657\\ C -3.312382 0.208156 -4.444516\\ C -1.947703 0.688097 -4.518477\\ C -1.271420 0.602539 -5.775789\\ H -0.229840 0.906533 -5.837514\\ C -1.923686 0.132724 -6.910063\\ C -3.284783 -0.282466 -6.846983\\ H -3.785081 -0.641991 -7.746500\\ H -1.384565 0.074326 -7.856059\\ C -3.959364 -0.251343 -5.633664\\ H -4.991213 -0.598595 -5.559136\\ C -1.321014 1.191486 -3.316148\\ C 0.065283 1.737211 -3.318544\\ C 0.475976 2.784533 -4.223670\\ \end{array}$
$\begin{array}{l} C -3.827927 -1.224279 -0.236008\\ C -3.292229 -2.437919 -1.038610\\ H -3.020757 -3.176504 -0.262718\\ C -2.023256 -2.299045 -1.918876\\ H -1.217987 -1.789435 -1.381478\\ H -2.216485 -1.779893 -2.865965\\ H -1.674643 -3.316583 -2.164876\\ C -4.443561 -3.081421 -1.865728\\ H -5.336954 -3.246929 -1.242236\\ H -4.722690 -2.435322 -2.711625\\ H -4.110570 -4.050495 -2.273722\\ C -3.959593 0.120664 -3.177875\\ H -4.965996 -0.291680 -3.125657\\ C -3.312382 0.208156 -4.444516\\ C -1.947703 0.688097 -4.518477\\ C -1.271420 0.602539 -5.775789\\ H -0.229840 0.906533 -5.837514\\ C -1.923686 0.132724 -6.910063\\ C -3.284783 -0.282466 -6.846983\\ H -3.785081 -0.641991 -7.746500\\ H -1.384565 0.074326 -7.856059\\ C -3.959364 -0.251343 -5.633664\\ H -4.991213 -0.598595 -5.559136\\ C -1.321014 1.191486 -3.316148\\ C 0.065283 1.737211 -3.318544\\ C 0.475976 2.784533 -4.223670\\ C 1.879033 3.123804 -4.316678\\ \end{array}$
$\begin{array}{l} C -3.827927 -1.224279 -0.236008\\ C -3.292229 -2.437919 -1.038610\\ H -3.020757 -3.176504 -0.262718\\ C -2.023256 -2.299045 -1.918876\\ H -1.217987 -1.789435 -1.381478\\ H -2.216485 -1.779893 -2.865965\\ H -1.674643 -3.316583 -2.164876\\ C -4.443561 -3.081421 -1.865728\\ H -5.336954 -3.246929 -1.242236\\ H -4.722690 -2.435322 -2.711625\\ H -4.110570 -4.050495 -2.273722\\ C -3.959593 0.120664 -3.177875\\ H -4.965996 -0.291680 -3.125657\\ C -3.312382 0.208156 -4.444516\\ C -1.947703 0.688097 -4.518477\\ C -1.271420 0.602539 -5.775789\\ H -0.229840 0.906533 -5.837514\\ C -1.923686 0.132724 -6.910063\\ C -3.284783 -0.282466 -6.846983\\ H -3.785081 -0.641991 -7.746500\\ H -1.384565 0.074326 -7.856059\\ C -3.959364 -0.251343 -5.633664\\ H -4.991213 -0.598595 -5.559136\\ C -1.321014 1.191486 -3.316148\\ C 0.065283 1.737211 -3.318544\\ C 0.475976 2.784533 -4.223670\\ \end{array}$
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876 C -4.443561 -3.081421 -1.865728 H -5.336954 -3.246929 -1.242236 H -4.722690 -2.435322 -2.711625 H -4.110570 -4.050495 -2.273722 C -3.959593 0.120664 -3.177875 H -4.965996 -0.291680 -3.125657 C -3.312382 0.208156 -4.444516 C -1.947703 0.688097 -4.518477 C -1.271420 0.602539 -5.775789 H -0.229840 0.906533 -5.837514 C -1.923686 0.132724 -6.910063 C -3.284783 -0.282466 -6.846983 H -3.785081 -0.641991 -7.746500 H -1.384565 0.074326 -7.856059 C -3.959364 -0.251343 -5.633664 H -4.991213 -0.598595 -5.559136 C -1.321014 1.191486 -3.316148 C 0.065283 1.737211 -3.318544 C 0.475976 2.784533 -4.223670 C 1.879033 3.123804 -4.316678 C 2.291623 4.148387 -5.224364
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876 C -4.443561 -3.081421 -1.865728 H -5.336954 -3.246929 -1.242236 H -4.722690 -2.435322 -2.711625 H -4.110570 -4.050495 -2.273722 C -3.959593 0.120664 -3.177875 H -4.965996 -0.291680 -3.125657 C -3.312382 0.208156 -4.444516 C -1.947703 0.688097 -4.518477 C -1.2271420 0.602539 -5.775789 H -0.229840 0.906533 -5.837514 C -1.923686 0.132724 -6.910063 C -3.284783 -0.282466 -6.846983 H -3.785081 -0.641991 -7.746500 H -1.384565 0.074326 -7.856059 C -3.959364 -0.251343 -5.633664 H -4.991213 -0.598595 -5.559136 C -1.321014 1.191486 -3.316148 C 0.065283 1.737211 -3.318544 C 0.475976 2.784533 -4.223670 C 1.879033 3.123804 -4.316678 C 2.291623 4.148387 -5.224364 H 3.354498 4.388331 -5.288105
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876 C -4.443561 -3.081421 -1.865728 H -5.336954 -3.246929 -1.242236 H -4.722690 -2.435322 -2.711625 H -4.110570 -4.050495 -2.273722 C -3.959593 0.120664 -3.177875 H -4.965996 -0.291680 -3.125657 C -3.312382 0.208156 -4.444516 C -1.947703 0.688097 -4.518477 C -1.271420 0.602539 -5.775789 H -0.229840 0.906533 -5.837514 C -1.923686 0.132724 -6.910063 C -3.284783 -0.282466 -6.846983 H -3.785081 -0.641991 -7.746500 H -1.384565 0.074326 -7.856059 C -3.959364 -0.251343 -5.633664 H -4.991213 -0.598595 -5.559136 C -1.321014 1.191486 -3.316148 C 0.065283 1.737211 -3.318544 C 0.475976 2.784533 -4.223670 C 1.879033 3.123804 -4.316678 C 2.291623 4.148387 -5.224364 H 3.354498 4.38331 -5.288105 C 1.361396 4.837366 -5.992074
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876 C -4.443561 -3.081421 -1.865728 H -5.336954 -3.246929 -1.242236 H -4.722690 -2.435322 -2.711625 H -4.110570 -4.050495 -2.273722 C -3.959593 0.120664 -3.177875 H -4.965996 -0.291680 -3.125657 C -3.312382 0.208156 -4.444516 C -1.947703 0.688097 -4.518477 C -1.271420 0.602539 -5.775789 H -0.229840 0.906533 -5.837514 C -1.923686 0.132724 -6.910063 C -3.284783 -0.282466 -6.846983 H -3.785081 -0.641991 -7.746500 H -1.384565 0.074326 -7.856059 C -3.959364 -0.251343 -5.633664 H -4.991213 -0.598595 -5.559136 C -1.321014 1.191486 -3.316148 C 0.065283 1.737211 -3.318544 C 0.475976 2.784533 -4.223670 C 1.879033 3.123804 -4.316678 C 2.291623 4.148387 -5.224364 H 3.354498 4.38331 -5.288105 C 1.361396 4.837366 -5.992074
C -3.827927 -1.224279 -0.236008 C -3.292229 -2.437919 -1.038610 H -3.020757 -3.176504 -0.262718 C -2.023256 -2.299045 -1.918876 H -1.217987 -1.789435 -1.381478 H -2.216485 -1.779893 -2.865965 H -1.674643 -3.316583 -2.164876 C -4.443561 -3.081421 -1.865728 H -5.336954 -3.246929 -1.242236 H -4.722690 -2.435322 -2.711625 H -4.110570 -4.050495 -2.273722 C -3.959593 0.120664 -3.177875 H -4.965996 -0.291680 -3.125657 C -3.312382 0.208156 -4.444516 C -1.947703 0.688097 -4.518477 C -1.2271420 0.602539 -5.775789 H -0.229840 0.906533 -5.837514 C -1.923686 0.132724 -6.910063 C -3.284783 -0.282466 -6.846983 H -3.785081 -0.641991 -7.746500 H -1.384565 0.074326 -7.856059 C -3.959364 -0.251343 -5.633664 H -4.991213 -0.598595 -5.559136 C -1.321014 1.191486 -3.316148 C 0.065283 1.737211 -3.318544 C 0.475976 2.784533 -4.223670 C 1.879033 3.123804 -4.316678 C 2.291623 4.148387 -5.224364 H 3.354498 4.388331 -5.288105

21 H	0.152539
22 C	0.104878
23 C	-0.160760
24 H	0.124227
25 C	-0.151483
26 H	0.134105
27 C	-0.144654
28 H	0.132818
29 C	-0.134395 0.119500
30 H 31 C	-0.161100
32 H	0.145068
33 C	0.043809
34 C	-0.149634
35 H	0.125292
36 C	-0.149506
37 H	0.132260
38 C	-0.145280
39 H	0.131317
40 C	-0.116354
41 H	0.112824
42 C	-0.126587
43 H	0.129818
44 H	0.122190
45 H	0.134236
46 H	0.158349
47 H	0.399261
48 P	1.403765
49 O	-0.641377
50 O	-0.633471
51 C	0.241452
52 C	0.007206
53 C	-0.086063
54 C	0.107646
55 C	-0.149976
56 H	0.121468
57 C	-0.361987
58 H 59 H	$0.116405 \\ 0.112404$
60 H	0.150866
61 C	-0.367373
62 H	0.119037
63 H	0.123252
64 H 65 C	0.126459
66 H	-0.210695 0.108939
67 C	0.128701
68 C	-0.157375
69 C	-0.351852
70 H	0.117712
71 H	0.122186
72 H	0.118984
73 C	-0.363559
74 H	0.122250
75 H	0.122551
76 H	0.130903
77 H	0.115407
78 C	-0.225868
79 H	0.112150
80 C	0.145535
81 C	-0.148963
82 H	0.126425
83 C	-0.372550
84 H	0.152632
85 H	0.111689
86 H	0.113930
87 C	-0.353508
88 H	0.119391
89 H	0.112457
90 H	0.122265
70 11	0.122200

• Nonthermodynamic spiroketal + (*R*)-3-13a Geometry:

159

C -1.18819304 1.04024598 0.05562871 C -1.34193568 2.36790725 -0.69066380 C -0.32914301 3.40326347 -0.16808312 C -0.48498535 3.56997221 1.35309683 C -0.35724975 2.19366335 2.01729890 O -1.29468266 1.25590134 1.46763707 C 0.08209006 0.25417643 -0.30855141 C 0.06356343 -1.13123899 0.35525330 C -1.20859427 -1.89525218 -0.05846134 C -2.48835580 -1.09918939 0.28894148 O -2.35509760 0.25046811 -0.30817052 H -0.48234262 4.35566821 -0.69165483 H 0.69488970 3.06725765 -0.39880649 H -1.47757784 3.98930369 1.58117885 H 0.27749942 4.25055390 1.76510032 H -0.59292455 2.22548364 3.08985884 H 0.67677660 1.81809525 1.89906902 H -1.24289909 -2.88456523 0.41642881 H -1.20988312 -2.06805171 -1.14318856 H 0.11901366 0.16650060 -1.40302095 H 0.96736690 0.82834838 -0.00244040 C -2.80909498 -0.99494350 1.79290303 C -2.18187723 -1.79099144 2.76239278 H -1.38601958 -2.47911192 2.48171961 C -2.55768441 -1.70076032 4.11378358 H -2.05316512 -2.32428150 4.85376228 C -3.56781612 -0.81503515 4.50938864 H -3.85842385 -0.74487737 5.55868317 C -4.20882262 -0.02337723 3.54028062 H -5.00069783 0.66873158 3.83182715 C -3.83738734 -0.12095423 2.19761426 H -4.33080633 0.49381319 1.44776986 C -3.74818819 -1.71232774 -0.34154127 C -3.99272705 -3.08740419 -0.16023042 H -3.24415194 -3.70486049 0.33513482 C -5.20198351 -3.66095148 -0.57236743 H -5.37138861 -4.72836830 -0.42470148 C -6.19439886 -2.86327653 -1.16416717 H -7.13988494 -3.30586180 -1.47982942 C -5.95385940 -1.49603612 -1.35426940 H -6.70730597 -0.86613879 -1.82794690 C -4.73876839 -0.92304783 -0.95218045 Н -4.56275530 0.13960223 -1.10566666 H 0.95406181 -1.70485172 0.06168342 H 0.08875264 -1.00698110 1.44673223 H -1.19928490 2.22557741 -1.76297462 H -2.36205593 2.72502629 -0.51717634 C -6.00535651 1.46515119 -3.87870467 C -6.05801346 3.00884466 -3.81328646 C -4.88512028 3.65607881 -3.04889483 C -3.65033898 4.09305723 -3.61404139 C -2.73056902 4.83776010 -2.82818917 C -1.42098937 5.47301458 -3.32403438 H -0.82321427 5.63425919 -2.41135304 C -0.52118880 4.64690754 -4.26747022 H 0.48538368 5.09362099 -4.26329238 H -0.43629455 3.60392859 -3.94321818 H -0.88215872 4.65759710 -5.30272313 C -1.67807989 6.88419224 -3.90625593 H -0.71773721 7.39040940 -4.09167064 Н -2.27286248 7.49950792 -3.21474339 H -2.21362737 6.82346013 -4.86349522 C -3.04425240 5.07104980 -1.47469886 Н -2.33957556 5.63996205 -0.86403818 C -4.19056081 4.55244406 -0.86469728

C -4.44441738 4.72549033 0.62643791

Н -3.57386687 5.25234913 1.05259558
C -4.57166724 3.35873161 1.33865196
Н -3.65727355 2.75969898 1.24029824
H -4.77601196 3.50145754 2.41126392
C -5.70024462 5.58758399 0.88067486
Н -5.61268767 6.56773166 0.38944684
H -5.84989803 5.74368015 1.96012757
H -6.59403700 5.08412134 0.48119546
C -3.32624694 3.70328664 -5.01986003
C -3.36482974 4.60194197 -6.07248613
H -3.62137688 5.64116058 -5.87371677
C -3.07922716 4.20171770 -7.40552888
C -2.99861024 5.15095339 -8.46617213
H -3.16145389 6.20485007 -8.23293604
C -2.70085651 4.74868331 -9.75732622
Н -2.63125401 5.48490680 -10.55915071
C -2.46879544 3.37460614 -10.03637244
H -2.20948432 3.06476939 -11.04954054
C -2.56272737 2.42478684 -9.03191948
H -2.38206064 1.37376446 -9.24990555
C -2.98564251 1.84064220 -6.62680221
C -3.13598810 0.38325225 -6.90704694
C -2.39564853 -0.58363267 -6.23376390
O -1.37007877 -0.20435021 -5.36636150
P -1.58176510 0.61413375 -3.98412190
O -0.35327178 1.38270707 -3.65474474
O -2.09513944 -0.44436663 -2.91162840
Н -2.20248308 -0.08738717 -1.97770394
O -2.97390913 1.45813800 -4.23773038
C -2.54510837 -1.98792962 -6.43047697
C -1.90200759 -2.90609624 -5.44313844
C -0.54433998 -3.30898135 -5.56465611
C 0.30014662 -3.11756266 -6.83055155
H 1.29925012 -3.51120539 -6.58033409
C 0.51905781 -1.66518795 -7.30752497
H 1.29296009 -1.66013503 -8.09133328
H 0.84564818 -1.01429061 -6.48661994
H -0.39394851 -1.23888715 -7.74188537
C -0.23846731 -3.99039504 -7.98901879
H 0.47335458 -3.98071771 -8.82963718
Н -0.38225793 -5.03141415 -7.66350925
H -1.20037801 -3.60601451 -8.35700470
C 0.04243926 -4.01173066 -4.50073675
H 1.08719757 -4.31844741 -4.58758362
C -0.66537317 -4.32423528 -3.32972401
C 0.00696403 -5.05022859 -2.17422464
C 1.25141899 -4.28386258 -1.67848676
H 2.03076987 -4.26567265 -2.45578736
H 1.67610400 -4.76203272 -0.78186925
H 0.99518514 -3.24351847 -1.43738508
C 0.37465782 -6.49874572 -2.56431771
H 1.09132852 -6.49893744 -3.40030639
Н 0.83583478 -7.02768926 -1.71547553
Н -0.51765416 -7.05663582 -2.88447131
Н -0.72006939 -5.09385993 -1.34515296
C -2.01439522 -3.96635155 -3.26378912
H -2.58768505 -4.22552551 -2.37086905
C -4.16790817 -3.03262677 -4.09486983
Н -4.32377514 -3.12987471 -3.01406004
C -4.79979566 -1.67718550 -4.46647073
H -4.23058628 -0.84315057 -4.04900017
H -4.91415994 -1.53191972 -5.54472997
H -5.80500876 -1.64480309 -4.02247894
C -4.95244345 -4.18401171 -4.76636357
Н -4.57960886 -5.16456466 -4.43417352
H $-4.85539312 -4.12956206 -5.86069858$ H $-6.85539312 -4.12956206 -5.86069858$

H -6.02206133 -4.10905645 -4.51332428

C -3.40445336 -2.41080511 -7.42621169 H -3.52134286 -3.47804162 -7.61362939 C -4.22787334 -1.49213824 -8.13496808 C -5.19908680 -1.95942621 -9.06784235 H -5.22710820 -3.02740346 -9.29255156 C -6.0673480 -1.08974458 -9.64729950 C -6.08180174 0.28516012 -9.29642045 C -5.13344720 0.77505582 -8.41187990 H -5.14072924 1.83015603 -8.15288810 H -6.82164681 0.96573243 -9.71979096 H -6.85323853 -1.46058672 -10.35082985 C -4.15598362 -0.08322066 -7.82513282 C -3.05286942 2.33675378 -5.32138633 C -5.10597118 3.87146523 -1.67904213 H -6.03919446 3.51359243 -1.23775652 C -6.35788833 3.5805633 -5.21431057 H -5.67751099 3.18513816 -5.97538380 H -6.27762683 4.68239977 -5.22295131 H -7.38370646 3.30848317 -5.50294373 H -6.93970912 3.25422851 -3.19790625 H -5.30191889 1.11627650 -4.64076568 H -5.70068243 1.03121966 -2.91730848 H -7.00144811 1.07447210 -4.13986503
Mulliken charges:
1 C 0.527918
2 C -0.233642 3 C -0.240755
4 C -0.243435
5 C 0.017710 6 O -0.529203
7 C -0.245054
8 C -0.238209
9 C -0.241298 10 C 0.165680
11 0 -0.624407
12 H 0.118136
13 H 0.123145 14 H 0.125078
15 H 0.123208
16 H 0.140787 17 H 0.109610
18 H 0.125523
19 H 0.142905
20 H 0.144411 21 H 0.125707
22 C 0.146027
23 C -0.164730 24 H 0.122838
24 H 0.122838 25 C -0.150045
26 H 0.133318
27 C -0.139982 28 H 0.133169
28 H 0.155109 29 C -0.149581
30 H 0.132693
31 C -0.107714 32 H 0.123295
33 C 0.053593
34 C -0.135689 35 H 0.120585
35 H 0.129585 36 C -0.148456
37 H 0.139933
38 C -0.137559 39 H 0.138314
40 C -0.130713
41 H 0.134765
42 C -0.135341 43 H 0.143162
44 H 0.127103
45 H 0.130354

46 H 47 H 48 C 55 C 55 C 55 C 55 C 55 C 55 C 55 C 5	0.136384 0.126435 -0.333566 -0.162545 0.119493 -0.071091 0.119157 -0.148000 0.116154 -0.382803 0.113591 0.161323 0.117447 -0.353210 0.123709 0.122526 0.112297 -0.225212 0.110368 0.129295 -0.160345 0.116236 -0.362802 0.136521 0.120728 0.119434 -0.361808 0.122484 -0.05599 -0.191787 0.145665 0.082608 -0.165401 0.141670 -0.145145 0.142460 -0.145145 0.146778 0.14476 -0.145455 0.165401 0.144216 0.144216 0.144216 0.144216 0.144216 0.144216 0.144216 0.144216 0.145438 0.165401 0.1447700 0.011441 -0.002962 0.027769 0.252336 -0.603168 1.355139 -0.571943 -0.609454 0.391765 -0.648781 -0.002002 -0.085613 0.124038 -0.156037 0.117728 -0.361124 0.117620 -0.359029 0.120851 0.123823
105 H 106 H 107 C 108 H	0.143984 0.117620 -0.359029 0.120851
115 C	-0.363080

116 H	0.124222
117 H	0.120228
118 H	0.129166
119 C	-0.360659
120 H	0.123118
121 H	0.121511
122 H	0.128841
123 H	0.111775
124 C	-0.212891
125 H	0.100409
126 C	0.140101
127 C	-0.140248
128 H	0.118955
129 C	-0.340082
130 H	0.127240
131 H	0.105153
132 H	0.101986
133 C	-0.351847
134 H	0.119865
135 H	0.112271
136 H	0.116760
137 C	-0.194316
138 H	0.149185
139 C	0.069756
140 C	-0.163576
141 H	0.141858
142 C	-0.144059
143 C	-0.147206
144 C	-0.146689
145 H	0.145512
146 H	0.143029
147 H	0.142403
148 C	0.022480
149 C	0.276148
150 C	-0.214967
150 C 151 H 152 C 153 H 154 H 155 H 156 H 157 H 158 H	0.114734 -0.360788 0.122207 0.122379 0.120999 0.122661 0.128421 0.116670
159 H	0.115511

• Nonthermodynamic spiroketal + (*S*)-3-13a complex

Geometry:

159

С	-2.24986765	1.86588808 1.04847190
С	-2.46923290	3.28162639 0.50677551
С	-2.58885725	4.29693276 1.66012559
С	-3.70875863	3.85104633 2.61712494
С	-3.45063238	2.41131442 3.08192817
0	-3.28757071	1.51219350 1.97241144
С	-0.85283137	1.67807404 1.66895610
С	-0.60331689	0.21020952 2.03399150
С	-0.76023555	-0.63176606 0.76004321
С	-2.15625018	-0.47800222 0.11061278
0	-2.40447022	0.97772671 -0.07855577
Н	-2.79746778	5.29356870 1.24567996
Н	-1.63489248	4.36409473 2.20916552
Н	-4.67375593	3.88559034 2.09021283
Н	-3.77337790	4.51291211 3.49535194
Н	-4.30155434	2.00605503 3.64559756
Н	-2.55649853	2.38108079 3.73354759
Н	-0.55884590	-1.69845127 0.92813108

Н -0.03006186 -0.28335131 0.01923885
H -0.11828421 2.01220959 0.91967695
H -0.75262632 2.33340012 2.54373664
C -3.30896027 -1.09853568 0.90656154
C -3.09742705 -2.03245213 1.93243717
C -4.18311405 -2.63133748 2.59302182
Н -3.99793371 -3.35095259 3.39197893
C -5.49423077 -2.30544348 2.22603042
Н -6.34065359 -2.76637440 2.73742708
C -5.71210513 -1.38279424 1.18861991
Н -6.73077803 -1.12748977 0.89662671
C -4.63093019 -0.79018555 0.52920567
Н -4.80223222 -0.07468554 -0.27394420
C -2.08497128 -1.06975795 -1.30533438
C -2.65520718 -2.31984319 -1.60853263
H -3.23683418 -2.84616619 -0.85369663
C -2.48123918 -2.89325219 -2.87728981
H -2.93514368 -3.86103440 -3.09570883
C -1.73434653 -2.22503121 -3.85730261
Н -1.60473429 -2.66383069 -4.84763096
C -1.16391078 -0.97946875 -3.55932478
Н -0.58098340 -0.44483608 -4.30210079
C -1.33402459 -0.40707277 -2.29400101
Н -0.88148395 0.55771897 -2.07542679
H 0.41086185 0.08448816 2.44269243
Н -1.32343429 -0.10658167 2.80159272
Н -1.66403486 3.54064470 -0.19054826
Н -3.40629392 3.28283759 -0.06223331
P -3.28051067 2.91229548 -3.10422959
O -2.71087002 4.08522688 -2.39758113
O -4.60637616 3.33175541 -3.95727901
C -6.31278267 2.04359927 -5.02766775
C -6.94506361 1.90209368 -3.68261973
C -7.63365239 2.98743077 -3.07548619
C -8.08604186 4.25114444 -3.82099493
Н -8.63618116 4.84770670 -3.07443022
C -6.97150200 5.17376960 -4.36164866
Н -7.41889427 6.13672942 -4.65423256
Н -6.19841729 5.35473795 -3.60495921
Н -6.48785727 4.75001206 -5.25028634
C -9.09990931 3.91509624 -4.93990556
Н -9.52782419 4.84351000 -5.35042528
Н -9.92095517 3.29322901 -4.55270441
Н -8.61285599 3.37404422 -5.76206997
C -8.00240306 2.88013094 -1.72361298
H -8.50905381 3.72759730 -1.25795733
C -7.73636934 1.73066522 -0.96475509
C -8.00418848 1.66301199 0.53272849
C -6.80374865 2.26950211 1.29841866
Н -6.68747272 3.32928981 1.02063087
Н -6.97056523 2.21446796 2.38642318
Н -5.86697095 1.74711095 1.06362662
C -9.31885634 2.34398452 0.95909435
Н -9.27157223 3.43004441 0.78908135
Н -9.49657696 2.18459200 2.03341074
H -10.17593321 1.94602990 0.39614405
Н -8.07258145 0.59748974 0.80867833
C -7.13846436 0.64693400 -1.61762568
Н -6.96782354 -0.27369019 -1.05713370
C -6.71950208 0.69984563 -2.95977022
C -6.13852000 -0.60804565 -3.52588556
H -5.86131689 -1.20130288 -2.63967108
H -4.08786332 0.06037775 -3.96193707
H -5.06522196 -0.22923520 -5.42497004
H -4.46896666 -1.59013573 -4.46303370
C -7.25327005 -1.39543977 -4.25733144
Н -8.15099355 -1.49684994 -3.62928613

Н -7.53532565 -0.87915933 -5.18565411
H -6.89192985 -2.40123131 -4.52449462
C -6.84349954 1.51056589 -6.18771182
Н -7.83619954 1.06123978 -6.16280079
C -6.09008670 1.45296118 -7.39262161
C -4.75764064 2.00673391 -7.42514926
C -3.97689213 1.80200894 -8.60120437
H -2.95353052 2.16865368 -8.62721209
C -4.49759513 1.13493786 -9.69904164
C -5.82707270 0.63627673 -9.68186136
Н -6.22658967 0.11885402 -10.55495909
H -3.87411522 0.98544057 -10.58161824
C -6.60225923 0.78940983 -8.54515606
H -7.61532511 0.38517015 -8.50158255
C -4.26247440 2.71174169 -6.26613906
C -2.94283206 3.40177654 -6.28458680
C -2.58820562 4.35823443 -7.30275262
C -1.23016650 4.84104904 -7.37046398
C -0.86986792 5.77110832 -8.38872103
H 0.16369904 6.11997116 -8.42933061
C -1.81084695 6.23590128 -9.29172679
H -1.52572264 6.95298392 -10.06267379
C -3.15744663 5.79158925 -9.20198265
H -3.90272460 6.18106238 -9.89681533
$H = -3.90272400 \ 0.18100238 \ -9.89081333$
C -0.28011528 4.40075445 -6.40800838
H 0.74797392 4.75790888 -6.47592022
C -0.64316797 3.57767290 -5.35840205
C 0.30165919 3.05618397 -4.32549127
C 0.48059547 3.70938948 -3.07703327
C 0.15160338 5.17263152 -2.72495653
Н -0.39305868 5.13194750 -1.76921468
C -0.69800668 6.02821728 -3.68157385
Н -0.91835431 6.97955999 -3.17350194
H -1.64709519 5.55024962 -3.93498921
H -0.15148704 6.26115036 -4.60540361
C 1.49397838 5.91758236 -2.48249221
H 1.30086197 6.95084346 -2.15408302
H 2.11375954 5.41925025 -1.72349111
H 2.07208806 5.95563738 -3.41915146
C 1.10005167 2.98173905 -2.03944482
H 1.18914565 3.45568749 -1.05820819
C 2.28556216 0.97760202 -1.04199493
H 1.67709367 1.17754731 -0.14193213
C 2.38186945 -0.55011632 -1.21769375
H 1.40993350 -0.98861541 -1.48446131
H 2.73587696 -1.01614364 -0.28636208
H 3.09882969 -0.80600584 -2.01288479
C 3.68824092 1.57872050 -0.78921901
H 3.62801719 2.66259516 -0.61336510
H 4.16474955 1.10669676 0.08469408
H 4.33024808 1.41199182 -1.66798082
C 1.53410321 1.12835509 -3.49276886
H 1.95786764 0.14033701 -3.67178052
C 0.86957943 1.77052030 -4.54996848
C 0.91328442 1.05558283 -5.91178585
C 1.98564708 1.71313853 -6.81244580
H 1.66872539 2.72464180 -7.10193887
H 2.94918990 1.78787986 -6.28740359
H 2.12909453 1.12261050 -7.73138315
C -0.40104251 0.86838976 -6.71276229
H -1.24729212 0.59184409 -6.07126943
H -0.24586385 0.06304941 -7.44733797
H 1.27274650 0.03760097 -5.68856675
C -3.53618442 4.87473279 -8.23450201
H -4.57105393 4.54579250 -8.16854049
C 1 00032003 2 1100550C 5 20043450
C -1.98923802 3.11095506 -5.30942458
O -3.73797755 1.66138171 -2.24253845

O -2.32999782 2.22872603 -4.27107048

	n charges:
1 C	0.541791
2 C	-0.240288
3 C	-0.255056
4 C	-0.245450
5 C 6 O	0.017670
80 7 C	-0.523025 -0.236722
8 C	-0.230722
9 C	-0.215501
10 C	0.189038
11 0	-0.634426
12 H	0.139055
12 H 13 H	0.115147
14 H	0.133967
15 H	0.123448
16 H	0.140157
17 H	0.107868
18 H	0.132160
19 H	0.122486
20 H	0.125688
21 H	0.125147
22 C	0.085709
23 C	-0.156967
24 H	0.126729
25 C	-0.149956
26 H	0.136102
27 C	-0.141920
28 H	0.136227
29 C	-0.136129
30 H	0.126682 -0.100627
31 C 32 H	0.123776
32 H 33 C	0.038732
33 C 34 C	-0.137888
35 H	0.135489
36 C	-0.150286
37 H	0.137519
38 C	-0.135727
39 H	0.136163
40 C	-0.096682
41 H	0.109279
42 C	-0.122120
43 H	0.126261
44 H	0.126263
45 H	0.133948
46 H	0.142942
47 H	0.139163
48 P	1.327830
49 O	-0.565577
50 O	-0.616929
51 C	0.266493
52 C	0.001251
53 C 54 C	-0.086554 0.127499
54 C 55 C	-0.156683
56 H	0.117060
57 C	-0.356290
58 H	0.114864
59 H	0.142402
60 H	0.117113
61 C	-0.360720
62 H	0.119582
63 H	0.122970
64 H	0.119505
65 C	-0.227591
66 H	0.110430
67 C	0.128025

68 C	-0.161518	114 H	0.146320
69 C	-0.352815	115 C	0.010412
70 H	0.121120	116 C	-0.082795
71 H	0.114932	117 C	0.125255
72 H	0.136502	118 C	-0.133644
73 C	-0.369971	119 H	0.136563
74 H	0.122902	120 C	-0.353524
75 H	0.122418	121 H	0.111414
76 H	0.129164	122 H	0.143080
77 H	0.113754	123 H	0.103825
78 C	-0.208958	124 C	-0.361380
79 H	0.096522	125 H	0.120779
80 C	0.145242	126 H	0.116509
81 C	-0.146081	127 H	0.119677
82 H	0.115941	128 C	-0.212504
83 C	-0.358260	129 H	0.111118
84 H	0.140774	130 C	0.113322
85 H	0.109871	131 C	-0.148584
86 H	0.108200	132 H	0.116295
87 C	-0.352242	133 C	-0.371859
88 H	0.121044	134 H	0.129512
89 H	0.112218	135 H	0.123330
90 H	0.119943	136 H	0.124019
91 C	-0.201821	137 C	-0.359007
92 H	0.148480	138 H	0.125814
93 C	0.072158	139 H	0.122153
94 C	0.027180	140 H	0.126812
95 C	-0.149561	141 C	-0.209660
96 H	0.143166	142 H	0.112517
97 C	-0.147660	143 C	0.108884
98 C	-0.144828	144 C	-0.146377
99 H 100 H	0.141072	145 C	-0.357443
100 H 101 C	0.141628	146 H	0.118984
	-0.164513	147 H	0.125033
102 H 103 C	0.140711 0.020546	148 H 149 C	0.122046 -0.367726
103 C 104 C	0.020546	149 C 150 H	-0.367726
104 C 105 C	0.007821	150 H 151 H	0.136255
105 C 106 C	0.023343	151 H 152 H	0.121231
100 C 107 C	-0.166806	152 H 153 H	0.121231
107 C 108 H	0.140478	155 H 154 C	-0.147210
108 H 109 C	-0.145212	154 C 155 H	0.147066
109 C 110 H	0.143212	155 H 156 C	0.260167
110 H 111 C	-0.141410	150 C 157 O	-0.622431
112 H	0.144382	157 O 158 H	0.425956
112 H 113 C	-0.204536	158 H 159 O	-0.648553
1150	0.204550	1570	0.0+0555

References

- [1] Y. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, P. Nagorny, J. Am. Chem. Soc. 2016, 138, 444–456.
- [2] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., *Mol. Phys.* **2015**, *113*, 184–215.
- [3] A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
- [4] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.
- [5] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [6] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA, **2015**.
- [7] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [8] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [9] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.
- [10] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [11] J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.

APPENDIX C

Experimental Information for Chapter 4

(Adapted from:

Supporting information for: Argüelles, A. J.; Sun, S.; Budaitis, B. G.; Nagorny, P. Angew. Chem. Int. Ed. 2018, 57, 5325.)

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring, unless otherwise noted. Air-sensitive reagents and solutions were transferred *via* syringe or cannula and were introduced to the apparatus through rubber septa. Reactions were cooled via external cooling baths: ice water (0°C), dry ice-acetone (-78°C), or Neslab CB 80 immersion cooler (0 to -60°C). Heating was achieved using a silicone bath with regulated by an electronic contact thermometer. Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for extraction and column chromatography were ACS or HPLC grade. Dry tetrahydrofuran (THF), dichloromethane (DCM), toluene (PhMe), and diethyl ether (Et₂O) was prepared by filtration through a column (Innovative Technologies) of activated alumina under nitrogen atmosphere. Reactions were monitored by nuclear magnetic resonance (NMR, see below) or thin layer chromatography (TLC) on silica gel precoated glass plates (0.25 mm, SiliCycle, SiliaPlate). TLC plate visualization was accomplished by irradiation with UV light at 254 nm or by staining with a potassium permanganate (KMnO4)

or cerium ammonium molybdate (CAM) solution. Flash chromatography was performed using SiliCycle SiliaFlash P60 (230-400 mesh) silica gel. Powdered 4 Å molecular sieves were preactivated by flame-drying under vacuum before use.

Proton (¹H), deuterium (D), carbon (¹³C), fluorine (¹⁹F), and phosphorus (³¹P) NMR spectra were recorded on Varian VNMRS-700 (700 MHz), Varian VNMRS-500 (500 MHz), Varian INOVA 500 (500 MHz), or Varian MR400 (400 MHz). ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra are referenced on a unified scale, where the single reference is the frequency of the residual solvent peak in the ¹H NMR spectrum. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane for ¹H and ¹³C NMR, fluorotrichloromethane for ¹⁹F, 85% phosphoric acid for ³¹P. Data is reported as (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constant(s) in Hz; integration). Slight shape deformation of the peaks in some cases due to weak coupling (e.g. aromatic protons) is not explicitly mentioned. High resolution mass spectra (HRMS) were recorded on Micromass AutoSpec Ultima or VG (Micromass) 70-250-S Magnetic sector mass. IR spectra were collected using a Nicolet iS10 spectrometer equipped with a diamond attenuated total reflectance (ATR) accessory. IR absorption peaks were reported in wavenumbers (cm⁻¹). The enantiomeric excesses were determined by GC, SFC, or HPLC analysis employing a chiral stationary phase column and conditions specified in the individual experiment. SFC analysis was carried out in a Waters Investigator SFC instrument. HPLC experiments were performed using a Waters Alliance e2695 Separations Module instrument. GC analysis was done in a Shimadzu GC-2010 Plus instrument. Optical rotations were measured at room temperature in a solvent of choice on a JASCO P-2000 digital polarimeter at 589 nm (Dline).

Synthesis of diphosphine (*S*,*S*,*S*)-SPIRAP and Pd(II) complex

3-(methoxymethoxy)benzaldehyde (4-1a)

3-hydroxybenzaldehyde (24.0g, 196.5mmol), DCM (500mL), and N,N-Diisopropylethylamine (100mL, 589.6mmol) were cooled to 0°C before adding chloromethyl methyl ether (23mL, 303.6mmol) over 2h with a venting needle to handle the fumes. Reaction mixture was then warmed to room temperature. After 17h at room temperature, reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (500 mL). After separating the phases, the aqueous layer was extracted DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain the desired product **4-1a** as pale yellow liquid (31.94g, 97.8% yield).

¹**H NMR** (700 MHz, CDCl₃) δ 9.98 (s, 1H), 7.57 – 7.51 (m, 2H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.32 – 7.28 (m, 1H), 5.24 (s, 2H), 3.49 (s, 3H).

¹³C NMR (176 MHz, CDCl₃) δ 191.96, 157.76, 137.82, 130.11, 123.81, 122.83, 115.93, 94.39, 56.16.

IR (film): $v_{max} = 2956$, 2923, 2849, 2730, 1699, 1585, 1463, 1454, 1389, 1248, 1152, 1077, 1008, 789 cm⁻¹

3-((benzyloxy)methoxy)benzaldehyde (4-1b)

NaH (60% suspension) (2.47g, 61.42mmol) was added to a solution of 3hydroxybenzaldehyde (5.00g, 40.94 mmol) in DMF (122mL) at 0°C. After 15min, benzyl chloromethyl ether (8.54mL, 61.42mmol) was added dropwise followed by the addition of tetrabutylammonium iodide (826mg, 2.24mmol). After overnight stirring at 0°C, reaction mixture was quenched with water (80mL), and the product was extracted with DCM (4 x 70mL). Combined organic was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford aldehyde **4-1b** as clear oil (9.62g, 97% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 9.98 (s, 1H), 7.60 (s, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.39 – 7.28 (m, 6H), 5.36 (s, 2H), 4.74 (s, 2H).

13C NMR (126 MHz, CDCl₃) δ 191.93, 157.83, 137.86, 136.96, 130.14, 128.49, 128.00, 127.98, 123.74, 122.76, 116.16, 92.24, 70.22.

IR (film): $v_{max} = 2904, 2729, 1699, 1585, 1483, 1454, 1383, 1242, 1157, 1144, 1076, 1013, 989, 736 cm⁻¹$

3-(benzyloxy)benzaldehyde (4-1c)

A solution of 3-hydroxybenzaldehyde (13.50g, 110.54mmol) and potassium carbonate (22.90g, 165.82mmol) in DMF (225mL) was treated dropwise with solution of benzylchloride (19mL, 165.82mmol) in DMF (160mL). After 15min at 50°C, reaction mixture was heated to 85°C for 24h. Reaction mixture was cooled to room temperature, diluted with DCM (150mL), and quenched with water (300mL). After separating the phases, the aqueous layer was extracted with DCM (3 x 200mL). Combined organic was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to yield aldehyde **4-1c** as a white solid (18.77g, 80% yield).

1H NMR (500 MHz, CDCl₃) δ 9.98 (s, 1H), 7.51-7.43 (m, 5H), 7.40 (t, 7.8 Hz, 2H), 7.37-7.32 (m, 1H), 7.27-7.23 (m, 1H), 5.13 (s, 2H).

13C NMR (126 MHz, CDCl₃) δ 192.02, 159.30, 137.82, 136.30, 130.10, 128.66, 128.19, 127.53, 123.65, 122.17, 113.27, 70.22.

IR (film): $v_{\text{max}} = 2811, 2727, 1693, 1594, 1480, 1443, 1383, 1325, 1255, 1146, 1016, 990, 794, 741, 697 cm⁻¹$

248

(S)-1-(3-(methoxymethoxy)phenyl)propan-1-ol (4-2a)

Alkylations using DBNE as a catalyst were based on a reported procedure.^[1] Those using aziridine catalyst **4-3a** or **4-3b** were based on another report.^[2]

a) Using (-)-DBNE

Aldehyde **4-1a** (31.92g, 192.1mmol), hexanes (370 mL), and N,N-Dibutyl-D-(–)norephedrine (3.8mL, 13.6mmol) were cooled to 0°C before adding a 1 M solution of diethylzinc in hexanes (430mL, 430mmol) portionwise over 2h. After 27h at 0°C, reaction mixture was quenched with an aqueous solution of HCl 1 M (150mL) and then filtered with DCM washings. Water (400mL) was added to the filtrate. After separating the layers, the aqueous fraction was with DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 30% EtOAc in hexanes) to obtain (*S*)-4-2a as pale yellow oil (36.5g, 96.8% yield, 94% ee).

¹**H NMR** (700 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.03 (t, *J* = 2.0 Hz, 1H), 6.99 (dt, *J* = 7.4, 1.2 Hz, 1H), 6.96 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 5.19 (s, 2H), 4.60 – 4.55 (m, 1H), 3.49 (s, 3H), 1.85 – 1.71 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (176 MHz, CDCl₃) δ 157.36, 146.44, 129.44, 119.47, 115.15, 113.91, 94.44, 75.83, 56.01, 31.84, 10.15.

IR (film): $v_{max} = 3411$ (br), 2961, 2932, 1586, 1486, 1451, 1242, 1149, 1077, 1011, 993, 923 cm⁻¹

HPLC (Chiralpak IA column, 96:4 hexanes/isopropanol, 1.0 ml/min), $t_r = 15.4$ min (minor, *R*), 17.0 min (major, *S*)

b) Using aziridine organocatalyst 4-3a:

Hexanes (20mL), and diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol **4-3a** (100.0mg, 0.3mmol) were cooled to 0°C before adding a 1 M solution of diethylzinc in hexanes (13.3mL, 13.3mmol) dropwise. Reaction mixture was stirred at 0°C before the addition of aldehyde **4-1a** (1.00g, 6.0mmol) dropwise. After 20h at 0°C and 20h at room temperature, action mixture was quenched with a saturated solution of NH₄Cl (20mL). After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (*S*)-**4-2a** (1.14g, 96.7% yield, 99.8% ee) as pale yellow oil.

Identical spectral properties as above.

(*R*)-1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol (4-2b)

Using aziridine organocatalyst 4-3b:

A solution of Et_2Zn (1M in hexanes) (6 mL) was added dropwise to a cooled (0°C) solution of diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol **4-3b** (50mg , 0.15mmol) in toluene (0.5mL). After 30min at 0°C, a solution of aldehyde **4-1b** (658mg, 2.71mmol) in toluene (4.5mL) was added dropwise, and the reaction mixture was allowed to slowly warm to room temperature. After 24h, reaction mixture was quenched with a saturated solution of NH₄Cl (8mL), the solid was filtered, and filtrate was extracted with Et_2O (3 x 8mL). Combined organic was washed with brine, dried over anhydrous MgSO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 10% EtOAc in hexanes) to alcohol (*R*)-**4-2b** as a clear oil (548mg, 74.0% yield, 98.9% e.e.).

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 7.24 (m, 6H), 7.08 (s, 1H), 7.00 (t, 7.6 Hz, 2H), 5.30 (s, 2H), 4.73 (s, 2H), 4.57 (td, J = 6.6, 3.4 Hz, 1H), 1.96 (d, J = 3.4 Hz, 1H), 1.87 – 1.70 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 157.42, 146.43, 137.26, 129.46, 128.43, 128.01, 127.85, 119.51, 115.22, 113.99, 92.30, 75.81, 69.93, 31.84, 10.13.

IR (film): $v_{\text{max}} = 3406$ (br), 2962, 2932, 2875, 1585, 1486, 1453, 1237, 1157, 1075, 1015, 993, 785, 736, 696 cm⁻¹

HPLC (Chiralpak IA column, 96:4 hexanes/isopropanol, 1.0 ml/min), $t_r = 22.6 \text{ min}$ (major, *R*), 24.2 min (minor, *S*)

1-(3-(benzyloxy)phenyl)propan-1-ol (4-2c)

Aldehyde **4-1c** (50mg, 0.24mmol), toluene (3mL), and N,N-Dibutyl-D-(+)-norephedrine (4 μ L, 0.014mmol) were cooled to 0°C before adding a 1 M solution of diethylzinc in hexanes (0.5mL, 0.5mmol) dropwise over 20min. After 20h from 0°C to room temperature, reaction mixture was quenched with a saturated solution of NH₄Cl (5mL). After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (*R*)-4-2c (47mg, 81% yield, 95% B.R.S.M., 91% ee) as pale yellow oil.

¹**H NMR** (700 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.04 (s, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.93 (dd, J = 8.1, 2.3 Hz, 1H), 5.09 (s, 2H), 4.56 (t, J = 6.6 Hz, 1H), 2.44 (d, J = 9.4 Hz, 1H), 1.87 – 1.80 (m, 1H), 1.80 – 1.73 (m, 1H), 0.96 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (176 MHz, CDCl3) δ 158.93, 146.52, 137.08, 129.44, 128.61, 127.99, 127.58, 118.71, 113.80, 112.55, 75.81, 69.99, 31.88, 10.21.

IR (film): $v_{max} = 3366$ (br), 3032, 2962, 2929. 2873, 1583, 1485, 1446, 1250, 1154, 1025, 994, 779 cm⁻¹

HPLC (Chiralpak IA column, 95:5 hexanes/isopropanol, 1.0 ml/min), $t_r = 21.2 \min (R)$, 24.5 min (*S*)

b) Using aziridine organocatalyst 4-3a

Aldehyde **1c** (14.2g, 66.8mmol), toluene (35mL), and diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol **4-3a** (1.32g, 4.09mmol) were cooled to 0°C before adding a 1 M solution of diethylzinc in toluene (148mL, 148mmol) dropwise over 6h. Reaction mixture was allowed to warm to room temperature slowly. After 30h, reaction mixture was quenched with a saturated solution of NH₄Cl (150mL). After separating the layers, the aqueous fraction was with EtOAc three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (*S*)-**4-2c** (16.2g, quant. yield, 98.3% ee) as pale yellow oil.

Identical spectral properties as above.

Using organocatalyst 4-3b, (R)-4-2c obtained in 97.8% ee.

Lithiation studies

Before optimizing the spiroketalization reaction, we decided to study the selectivity of the *ortho*-lithiation of alcohols **4-2**. After treating **4-2** with 2 equivalents of *n*-butyllithium, aliquots were extracted at time points and then quenched with CD_3OD . After removing the volatiles, the deuterated material was analyzed by NMR. We found that selective and almost quantitative lithiation at the desired position occurred for **4-2a** and **4-2b**, and **4-2c** at around 2-3h in toluene. For example, for **4-2a**:

Additionally, using THF as solvent, or TMEDA as additive gave unselective lithiations.

(*1R*,3*S*,3'S)-3,3'-diethyl-7,7'-bis(methoxymethoxy)-3H,3'H-1,1'-spirobi[isobenzofuran]

((R,S,S)-4-6a)

Alcohol (S)-4-2a (22.84g, 116.4mmol) and PhMe (330mL) were cooled to 0° C before addition of a 2.5 M solution *n*-Butyllithium in hexanes (44mL over 15min, then 50 mL over 1h,

235.0mmol). Reaction mixture was then warmed to room temperature. After 3h, the resulting suspension was dissolved using 12mL of THF and cooled again to 0°C. Diethyl carbonate (7.7mL, 63.5mmol) was incorporated over 2h at 0°C. Reaction mixture was allowed to warm slowly to room temperature overnight (12h). Glacial acetic acid (100mL) was then added slowly at room temperature. After 4h at room temperature, reaction mixture was quenched with 500mL of water, followed by careful addition of 100g of NaHCO₃. After separating the layers, the aqueous fraction was with DCM three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The mixture components were purified by FCC (SiO₂): 3.34g of starting material **4-2a** (14.6% recovery) were obtained at 15% EtOAc in hexanes, while 15.65g of desired product **4-6a** (67.2% yield, 78.7% BRSM) were isolated at 25% EtOAc in hexanes as pale yellow oil. Additionally, some intermediate isobenzofuranone **4-4a** (2.43g, 9.4% yield) was obtained at 35% EtOAc in hexanes as pale yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.8 Hz, 2H), 6.88 (dd, *J* = 7.9, 3.6 Hz, 4H), 5.40 (dd, *J* = 7.4, 3.9 Hz, 2H), 4.95 (d, *J* = 6.6 Hz, 2H), 4.82 (d, *J* = 6.6 Hz, 2H), 3.07 (s, 6H), 1.98 (dtd, *J* = 14.8, 7.3, 3.9 Hz, 2H), 1.86 (dq, *J* = 14.3, 7.3 Hz, 2H), 1.04 (t, *J* = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 152.44, 145.61, 130.58, 127.76, 113.99, 112.15, 93.29, 83.15, 55.60, 28.06, 9.74.

ESI-HRMS Calcd. for C₂₃H₂₉O₆⁺ 401.1964 [M+H]⁺, found 401.1958.

IR (film): $v_{max} = 2962, 2934, 1614, 1599, 1479, 1256, 1152, 1002, 960, 928, 734 cm⁻¹$

(*1S*,*3R*,*3'R*)-7,7'-bis((benzyloxy)methoxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((*S*,*R*,*R*)-4-6b)

Alcohol (*R*)-4-2b (210mg, 0.77mmol) and PhMe (4.6mL) were cooled to 0°C before dropwise addition of a 2.5 M solution *n*-Butyllithium in hexanes (690 μ L, 1.73mmol). Reaction mixture was stirred at room temperature for 90min. Diethyl carbonate (50 μ L, 0.41mmol) was incorporated over 20min at 0°C. Reaction mixture was allowed to warm slowly to room temperature overnight. After 24h, glacial acetic acid (1mL) was then added slowly at room temperature. After 5h at room temperature, reaction mixture was treated with a saturated solution of NaHCO₃ (8mL). After separating the layers, the aqueous fraction was washed with DCM three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The mixture components were purified by FCC (SiO₂, 5% EtOAc in hexanes) to obtain ((*S*,*R*,*R*)-**4-6b**) (126mg, 54% yield, 64% B.R.S.M.) as pale yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.33 (t, J = 7.9 Hz, 2H), 7.28 – 7.20 (m, 6H), 7.03 (dd, J = 6.5, 2.8 Hz, 4H), 6.97 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 7.5 Hz, 2H), 5.42 (dd, J = 7.4, 4.0 Hz, 2H), 5.04 (d, J = 6.7 Hz, 2H), 4.87 (d, J = 6.8 Hz, 2H), 4.27 – 4.11 (m, 4H), 1.98 (m, 2H), 1.87 (m, 2H), 1.04 (t, J = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 152.53, 145.77, 136.67, 130.73, 128.28, 128.25, 128.16, 127.81, 127.78, 115.94, 114.04, 112.11, 90.33, 83.28, 69.03, 28.13, 9.85.

ESI-HRMS Calcd. for C₃₅H₃₇O₆⁺ 553.2584 [M+H]⁺, found 553.2580.

IR (film): v_{max} = 2964, 2874, 1599, 1479, 1250, 1155, 1093, 1065, 1002, 958, 734, 697 cm⁻¹ (*IR*,3*S*,3'*S*)-7,7'-bis(benzyloxy)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran] ((*R*,*S*,*S*)-4-6c)

Alcohol (S)-4-2c (200mg, 0.83mmol) and PhMe (2.4mL) were cooled to 0°C before addition of a 2.5 M solution *n*-Butyllithium in hexanes (300µL dropwise, then 370µL over 30min, 1.67mmol). Reaction mixture was stirred at 0°C for 3h. Dimethyl carbonate (38µL, 0.45mmol) was incorporated over 30min 0°C. Reaction mixture was allowed to warm slowly to room temperature overnight (12h). Glacial acetic acid (1.2mL) was then added slowly at room temperature. After 6h at room temperature, reaction mixture was diluted with water (20mL) and then neutrailized carefully with solid NaHCO₃. The product was extracted with DCM three times. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The mixture components were purified by FCC (SiO₂, 10% EtOAc in hexanes) to obtain ((*R*,*S*,*S*)-4-**6c**) (84.8mg, 42% yield, 66% B.R.S.M.) as white solid, as well as 74.1mg of (*S*)-4-2c.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (t, *J* = 7.8 Hz, 2H), 7.19 – 7.02 (m, 6H), 6.83 (dd, *J* = 14.9, 7.8 Hz, 4H), 6.75 – 6.62 (m, 4H), 5.39 (dd, *J* = 7.2, 4.3 Hz, 2H), 5.00 – 4.80 (m, 4H), 1.87 – 1.59 (m, 4H), 0.86 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 154.21, 145.84, 136.62, 130.52, 127.97, 127.50, 127.15, 126.42, 115.83, 113.51, 110.36, 83.14, 68.86, 27.79, 9.64.

ESI-HRMS Calcd. for C₃₃H₃₃O₄⁺ 493.2373 [M+H]⁺, found 493.2370.

IR (powder): v_{max} = 3030, 2963, 2933, 2872. 1735, 1612, 1597, 1480, 1451, 1284, 1267, 1027, 930 cm⁻¹

(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol ((R,S,S)-4-7) and (S,S,S)-4-7 diastereomer from 4-6a

The deprotection of the MOM group using AcCl in MeOH was mild enough that after 6h at room temperature the contrathermodynamic diol (R,S,S)-4-7 is the major compound. However, SiO₂ and other acidic conditions epimerize it into (S,S,S)-4-7. These results agree with the calculated ΔG of 1.0 kcal/mol favoring (R,S,S)-4-7. Consequently, neutralizing the acidic conditions after 6h of reaction yields (R,S,S)-4-7 selectively, while performing chromatography after the reaction time gives (S,S,S)-4-7 enriched material, as exemplified below.

(*R*,*S*,*S*)-selective deprotection

Spiroketal (R,S,S)-4-6a (21.9mg, 0.055mmol) and MeOH (0.5mL) were added to a vial. Solution was cooled to 0°C, and then acetyl chloride (8.0µL, 0.11mmol) was added slowly. Reaction mixture was warmed to room temperature. After 6h, reaction mixture was quenched with a saturated solution of NaHCO₃. Extracted three times with DCM, and then combined organic was dried with Na₂SO₄, and concentrated *in vacuo* to afford diol **7** (17.0mg, 99% yield, dr ~1:3.1:11.7 of (*S*,*R*,*S*)-4-7:(*S*,*S*,*S*)-4-7:(*R*,*S*,*S*)-4-7).

¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, J = 7.7 Hz, 1H), 6.86 (d, J = 7.5, 1H), 6.77 (d, J = 8.0, 1H), 5.41 (dd, J = 6.7, 4.1 Hz, 1H), 4.73 (s, 1H), 2.07 (m, 1H), 1.83 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H).
¹³C NMR (126 MHz, CDCl₃) δ 151.86, 145.37, 132.30, 123.26, 115.49, 113.62, 83.07, 27.76, 9.18.

ESI-HRMS Calcd. for C₁₉H₂₁O₄⁺ 314.1440 [M+H]⁺, found 314.1435.

(S,S,S)-selective deprotection

Spiroketal (R,S,S)-4-6a (2.82g, 7.04mmol) and MeOH (35mL) were added to a round bottom flask. Solution was cooled to 0°C, and then acetyl chloride (1.0mL, 14.1mmol) was added slowly. Reaction mixture was warmed to room temperature. After 6h, reaction mixture was concentrated *in vacuo*, and purified by FCC (SiO₂, 30% \rightarrow 40% EtOAc in hexanes) to obtain diol 7 (2.15g, 97.5% yield 1:5.7:11.0 dr (S,R,S)-4-7:(R,S,S)-4-7:(S,S,S)-4-7).

¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 7.8 Hz, 1H), 6.86 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.27 (dd, J = 7.6, 4.4 Hz, 1H), 4.60 (s, 1H), 1.99 – 1.85 (m, 2H), 1.07 (t, J = 7.3 Hz, 3H).
¹³C NMR (126 MHz, CDCl₃) δ 151.65, 145.24, 131.99, 123.37, 115.46, 113.84, 84.89, 30.61, 9.74.

(1S,3R,3'R)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol (S,R,R-4-7) from 4-6b

Spiroketal (*S*,*R*,*R*)-4-6b (20.9mg, 0.04mmol) and MeOH (200µL) were added to a vial. Solution was cooled to 0°C, and then acetyl chloride (8.0µL, 0.11mmol) was added slowly. Reaction mixture was warmed to room temperature. After 3h, reaction mixture was diluted with EtOAc, and treated with a saturated solution of NaHCO₃ (1 mL). After separating layers, the aqueous fraction was extracted three times with EtOAc. Combined organic was washed with brine, dried with Na₂SO₄, and purified by FCC (SiO₂, 5%→40% EtOAc in hexanes) to obtain diol 4-7 (11.6mg, 98% yield 1.3:3.6:4.5 dr (*R*,*S*,*R*)-4-7:(*R*,*R*,*R*)-4-7:(*S*,*R*,*R*)-4-7).

(*1R*,3*S*,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diol (*R*,*S*,*S*)-4-7) from 4-6c

Spiroketal (R,S,S)-4-6c (54mg, 0.11mmol), Pd/C (22mg, 0.022mmol), NaHCO₃(84mg, 1mmol) and methanol (2mL) were added to a round bottom flask charged with nitrogen before purging with hydrogen balloon twice. After 2h at room temperature, reaction mixture was filtered

through syringe filter and concentrated *in vacuo* to obtain (R,S,S)-4-7 (32 mg, 93% yield, d.r. = 7:1) as white solid. Spectral properties described above.

Diol equilibration studies

The isomeric ratio of the diols was variable, because epimerization happens in silicacontaining solutions and the d.r. is dependent on the solvent. Most solvents, such as EtOAc/Hexanes mixtures slightly favor the (S,S,S)-4-7 isomer. Curiously, SiO₂ in PhMe lightly favors equilibration towards the (R,S,S)-4-7 isomer, this is not unreasonable given that the gas phase free energy difference between diastereomers is small.

A vial was charged with a 2.9:1 (S,S,S)-4-7:(R,S,S)-4-7 mixture (300mg), PhMe (3mL), and SiO₂ (3.0g). After stirring at room temperature for 4 days, the diol mixture was recovered quantitatively by filtration and concentration *in vacuo*, with a 1:2.4 (S,S,S)-4-7:(R,S,S)-4-7 d.r.. Similarly, a vial was charged with a 1:2.4 (S,S,S)-4-7:(R,S,S)-4-7 mixture (100mg), EtOAc (0.5mL), hexanes (0.5mL), and SiO₂ (1.0g). After stirring at room temperature for 2 days, the diol mixture was recovered quantitatively by filtration and concentration *in vacuo*, with a 1.2:1 (S,S,S)-4-7:(R,S,S)-4-7 d.r..

(*1S*,*3S*,*3'S*)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((*S*,*S*,*S*)-4-8) from (*R*,*S*,*S*)-4-6a

The (*R*,*S*,*S*)-4-8:(*S*,*S*,*S*)-4-8 ratio was mostly conserved during the triflation, so the product ratio depended on the d.r. of the diol used. An (*S*,*S*,*S*)-4-8-selective preparation is described next. Spiroketal (*R*,*S*,*S*)-4-6a (12.57g, 7.0mmol) and methanol (160mL) were cooled to 0°C before dropwise addition of acetyl chloride (1.0mL, 14.1mmol). Reaction mixture was then warmed to room temperature. After for 6h, the volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂, 30% \rightarrow 40% EtOAc in hexanes). Purified diol, DCM (150mL), and pyridine (12.5mL, 165.3mmol) were cooled to 0°C before addition of trifluoromethanesulfonic anhydride (12.0mL, 71.5mmol) over 30min. Reaction mixture was then warmed to room temperature. After 1h, a saturated aqueous solution of NaHCO₃ (150mL) was added. After separating the layers, the aqueous phase extracted with DCM twice. Combined organic was dried over Na₂SO₄ and concentrated *in vacuo*. Crude was purified by a short column (SiO₂, 10% EtOAc in hexanes) to afford a mixture of triflates as an oil which solidified on cooling (15.8g, 1:2.6:4.7 d.r. of (*S*,*R*,*S*)-**4-8:**(*R*,*S*,*S*)-**4-8:**(*S*,*S*,*S*)-**4-8**, 49.6% yield of desired (*S*,*S*)-**4-8**, 27.1% yield of (*R*,*S*,*S*)-**4-8**).

The ditriflates can be separated by FCC (SiO₂, 4% EtOAc in hexanes), but for convenience we chose to do a chemical resolution (*vide infra*). The spectral characteristics of the isolated ditriflates are shown below:

(1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl

bis(trifluoromethanesulfonate) ((*R*,*S*,*S*)-4-8)

¹H NMR (400 MHz, CDCl₃) δ 7.53 (t, J = 7.9 Hz, 2H), 7.30 (d, J = 8.5 Hz, 4H), 5.36 (dd, J = 8.5, 4.0 Hz, 2H), 2.05 (m, J = 15.0, 7.5, 4.0 Hz, 2H), 1.97 – 1.82 (m, 2H), 1.11 (t, J = 7.4 Hz, 6H).
¹⁹F NMR (376 MHz, CDCl₃) δ -74.57.

¹³**C NMR** (100 MHz, CDCl₃) δ 147.80, 144.92, 132.21, 129.82, 122.91, 120.81, 119.72, 119.13, 116.54, 113.33, 83.64, 27.39, 10.05.

ESI-HRMS Calcd. for $C_{21}H_{19}F_6O_8S_2^+$ 577.0426 [M+H]⁺, found 577.0415.

IR (powder): $v_{max} = 2975$, 2878, 1470, 1419, 1204, 1137, 936, 896, 848 cm⁻¹

(1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-diyl bis(trifluoromethanesulfonate) ((*S*,*S*,*S*)-4-8)

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 5.38 (dd, *J* = 7.2, 4.5 Hz, 2H), 2.07 – 1.81 (m, 4H), 1.06 (t, *J* = 7.4 Hz, 6H)

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.58.

¹³**C NMR** (100 MHz, CDCl₃) δ 147.33, 144.73, 132.07, 130.30, 122.92, 121.21, 119.74, 119.62, 119.60, 116.55, 114.51, 113.37, 84.77, 30.09, 9.45.

ESI-HRMS Calcd. for C₂₁H₁₉F₆O₈S₂⁺ 577.0426 [M+H]⁺, found 577.0418.

IR (powder): $v_{max} = 2973$, 2880, 1470, 1422, 1207, 1137, 935, 852, 749 cm⁻¹

(1S,3S,3'S)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl

trifluoromethanesulfonate ((*S*,*S*,*S*)-4-9)

A flask in the glovebox was charged with a 1:2.6:4.7 mixture of ditriflates (*S*,*R*,*S*)-4-8:(*R*,*S*,*S*)-4-8:(*S*,*S*,*S*)-4-8 (12.624g, 21.86mmol), palladium(II) acetate (245mg, 1.09mmol), 1,4-Bis(diphenylphosphino)butane (466mg, 1.09mmol), and diphenylphosphine oxide (4.861g, 24.04mmol). The flask was taken outside the glovebox, and DMSO (85mL) and N,N-Diisopropylethylamine (9.5mL, 54.64mmol) were added. Reaction mixture was then stirred at room temperature for 1h, before being heated to 80°C. After 8h, reaction mixture was cooled to room temperature and partitioned between EtOAc (260mL) and a half saturated aqueous solution of NaHCO₃ (260mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 10 \rightarrow 50% EtOAc in hexanes) to yield two fractions. At 10% EtOAc in hexanes, a mixture of (*S*,*R*,*S*)-4-8 and (*R*,*S*,*S*)-4-8). At 50% EtOAc in hexanes, a mixture of (*S*,*R*,*S*)-4-9 and desired phosphine oxide (*S*,*S*,*S*)-4-9).

The desired product was further purified by two recrystallizations from cyclohexane with excellent recovery. The first recrystallization of 5.71g of the product mixture gave 5.33g of a 1:26 mixture of epimeric product (S,R,S)-4-8 and desired phosphine oxide (S,S,S)-4-8, respectively (97% recovery of product). Chiral HPLC analysis showed that the desired product was enantioenriched to >99% ee. A second recrystallization of 5.02g of this mixture produced 4.58g of almost pure (S,S,S)-4-8 (1:65 with respect to (S,R,S)-4-8) (93% recovery of product), as a white foam.

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.42 (m, 4H), 7.42 – 7.31 (m, 4H), 7.27 – 7.21 (m, 2H), 7.21 – 7.10 (m, 4H), 7.02 (dd, *J* = 13.9, 7.5 Hz, 1H), 6.41 (dd, *J* = 7.1, 1.5 Hz, 1H), 5.56 (dd, *J* = 7.1, 4.7 Hz, 1H), 5.28 (dd, *J* = 7.2, 5.0 Hz, 1H), 1.92 (m, *J* = 13.5, 6.3 Hz, 3H), 1.83 (m, *J* = 14.3, 7.2 Hz, 1H), 1.06 (t, *J* = 7.4 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 148.85, 146.47, 146.40, 144.19, 141.69, 141.64, 133.80, 133.77, 133.70, 132.93, 132.51, 132.14, 132.07, 131.68, 131.55, 131.53, 131.31, 131.25, 131.20, 131.18, 131.01, 130.94, 128.59, 128.49, 128.22, 128.19, 128.12, 128.09, 127.40, 125.38, 125.36, 121.89, 120.41, 119.34, 118.47, 116.80, 116.25, 85.27, 83.49, 30.60, 29.71, 26.90, 9.88, 9.66.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -75.05.

³¹**P NMR** (202 MHz, CDCl₃) δ 28.57.

ESI-HRMS Calcd. for $C_{32}H_{29}F_3O_6PS^+$ 629.1375 [M+H]⁺, found 629.1366.

IR (powder): $v_{max} = 2934$, 1419, 1210, 1194, 1140, 931 cm⁻¹

 $[\alpha]_{D}$: -70.8 (c = 1.0 in DCM)

(*1S*,*3S*,*3'S*)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((*S*,*S*,*S*)-4-10)

Phosphine oxide (*S*,*S*,*S*)-4-9 (4.95g, 7.88mmol), PhMe (80mL), and Diisopropylethylamine (55mL, 316.8mmol) were cooled to 0°C before addition of trichlorosilane (12.5mL, 126.1mmol) over 10min. The flask was sealed with a glass stopped and heated to 80°C. After 20h, the mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of NaHCO₃ (120mL) at 0°C, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over Na₂SO₄ and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford (*S*,*S*,*S*)-4-10 (3.89g, 80.7% yield) as white foam.

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.29 – 7.20 (m, 6H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.13 (td, *J* = 7.5, 1.5 Hz, 2H), 7.07 (td, *J* = 7.5, 2.0 Hz, 2H), 6.89 (dd, *J* = 7.4, 4.6 Hz, 1H), 6.85 (td, *J* = 7.9, 1.4 Hz, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 5.35 (td, *J* = 6.8, 4.6 Hz, 2H), 1.96 (m, *J* = 16.9, 14.0, 5.9 Hz, 2H), 1.87 (m, *J* = 14.2, 7.2, 4.6 Hz, 2H), 1.06 (t, *J* = 7.3 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 147.39, 147.37, 144.53, 143.68, 143.62, 142.55, 142.35, 137.03, 136.93, 135.49, 135.41, 133.96, 133.94, 133.63, 133.49, 133.46, 133.33, 132.58, 132.56, 132.42, 131.46, 129.59, 128.42, 128.20, 128.17, 128.12, 128.00, 127.95, 122.04, 120.56, 119.35, 118.87, 116.81, 116.51, 116.49, 84.66, 84.61, 84.05, 30.47, 29.70, 9.64, 9.43.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -74.90.

³¹**P NMR** (202 MHz, CDCl₃) δ -18.88.

ESI-HRMS Calcd. for C₃₂H₂₉F₃O₅PS⁺ 613.1425 [M+H]⁺, found 613.1419.

IR (powder): $v_{max} = 2970$, 1738, 1421, 1211, 1140, 943 cm⁻¹

 $[\alpha]_{D}$: -44.0 (c = 1.0 in DCM)

((*1S*,*3S*,*3'S*)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7yl)diphenylphosphine oxide ((*S*,*S*,*S*)-SPIRAP(O))

A flask in the glovebox was charged with phosphine (*S*,*S*,*S*)-4-10 (3.89g, 6.35mmol), palladium(II) acetate (71.3mg, 0.32mmol), 1,4-Bis(diphenylphosphino)butane (135.4mg, 0.32mmol), and diphenylphosphine oxide (2.57g, 12.7mmol). The flask was taken outside the glovebox, and DMSO (25 mL) and N,N-Diisopropylethylamine (5.5mL, 31.56mmol) were added. Reaction mixture was then stirred at room temperature for 1h before being then heated to 100°C. After 2h, reaction mixture was cooled down to room temperature and partitioned between EtOAc (160mL) and a half saturated aqueous solution of NaHCO₃ (160mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine,

dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 20 \rightarrow 30% EtOAc in hexanes) to yield (*S*,*S*,*S*)-SPIRAP(O) (3.95g, 93.5% yield) as white foam.

¹**H NMR** (700 MHz, CDCl₃) δ 7.45 (td, *J* = 6.3, 2.6 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.29 – 7.13 (m, 13H), 7.07 (td, *J* = 7.3, 2.1 Hz, 2H), 7.02 (td, *J* = 7.7, 1.7 Hz, 2H), 6.87 (dd, *J* = 7.5, 4.8 Hz, 1H), 6.71 (dd, *J* = 13.9, 7.5 Hz, 1H), 5.35 (t, *J* = 5.2 Hz, 1H), 4.71 (dd, *J* = 8.2, 3.8 Hz, 1H), 1.93 (m, *J* = 14.8, 7.5, 3.8 Hz, 1H), 1.79 (m, *J* = 14.0, 6.9 Hz, 1H), 1.72 (m, *J* = 11.4, 3.4 Hz, 1H), 1.64 (m, *J* = 14.3, 7.4 Hz, 1H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.75 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (176 MHz, CDCl₃) δ 146.70, 146.55, 146.26, 146.24, 146.21, 146.19, 144.53, 144.51, 144.50, 143.64, 143.60, 138.60, 138.53, 136.55, 136.48, 134.76, 134.17, 134.16, 134.06, 133.46, 133.42, 133.40, 133.24, 133.13, 133.05, 132.87, 132.36, 132.31, 131.56, 131.51, 131.08, 131.07, 131.03, 131.01, 130.99, 130.93, 128.79, 128.29, 128.22, 127.95, 127.93, 127.89, 127.86, 127.81, 127.76, 127.74, 127.72, 127.65, 127.27, 124.65, 124.64, 121.46, 118.68, 84.29, 83.26, 83.21, 29.93, 29.54, 9.85, 8.82.

³¹**P NMR** (283 MHz, CDCl₃) δ 28.63, -18.52.

ESI-HRMS Calcd. for $C_{43}H_{39}O_3P_2^+$ 665.2374 [M+H]⁺, found 665.2366.

IR (powder): $v_{max} = 2964$, 1434, 1336, 1214, 998, 915, 696 cm⁻¹

 $[\alpha]_{D}$: -93.3 (c = 1.0 in CHCl₃)

Crystallographic data: CCDC **1812181** contains the supplementary crystallographic data of (*S*,*S*,*S*)-**SPIRAP(O**). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>

((1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-

diyl)bis(diphenylphosphane) ((S,S,S)-SPIRAP) from phosphine oxide (S,S,S)-SPIRAP(O)

Phosphine oxide (*S*,*S*,*S*)-**SPIRAP(O)** (106mg, 0.159 mmol), PhMe (1.6mL), and diisopropylethylamine (1.1mL, 6.3mmol) were cooled to 0°C before dropwise addition of trichlorosilane (0.25mL, 2.5mmol). The flask was sealed with a glass stopped and heated to 80°C. After 20h, reaction mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of NaHCO₃ (5mL) at 0°C, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over Na₂SO₄, and concentrated *in vacuo*. Crude mixture was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford (*S*,*S*,*S*)-**SPIRAP** (58.2mg, 56% yield) as white foam. The yield for this reaction was variable, with a 2.9g scale giving 35% yield due to the formation of an epimeric (*S*,*R*,*S*)-**SPIRAP** trichlorosilane adduct as the major component of the mixture, which can be cleanly converted to its free phosphine by stirring in isopropanol with traces of acetyl chloride. For this reason, we developed a direct method of obtaining (*S*,*S*,*S*)-**SPIRAP** from monophosphine (*S*,*S*,*S*)-**4-10**. Spectral properties described below.

((1S,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-

diyl)bis(diphenylphosphane) ((S,S,S)-SPIRAP) from phosphine (S,S,S)-4-10

A Schlenk flask was charged with palladium(II) acetate (36.6mg, 0.163mmol) and 1,4-Bis(diphenylphosphino)butane (76.6mg, 0.180mmol). DMF (3.0mL) and diisopropylethylamine (1.8mL, 10.3mmol) were added. Solution was stirred at room temperature. After 1h, diphenyl phosphine (850µL, 4.89mmol) was added. After 5min, phosphine (*S*,*S*,*S*)-4-10 (1.000g, 1.632mmol) was added as a solution in DMF (3.5mL, including washings). The sealed flask was heated to 100°C. After 24h, volatiles were removed under N₂ flow. Crude was purified by FCC (SiO₂, $0 \rightarrow 15\% \rightarrow 30\%$ DCM in hexanes), and the product was then washed with hexanes to yield (*S*,*S*,*S*)-SPIRAP (977mg, 92.3% yield) as white solid.

¹**H NMR** (700 MHz, CDCl₃) δ 7.30 (t, *J* = 7.5 Hz, 2H), 7.23 (tq, *J* = 13.7, 7.6 Hz, 10H), 7.17 – 7.10 (m, 4H), 7.06 (td, *J* = 7.5, 1.8 Hz, 4H), 6.89 (dd, *J* = 7.5, 4.5 Hz, 2H), 6.83 (t, *J* = 7.4 Hz, 4H), 4.96 (dd, *J* = 6.8, 4.3 Hz, 2H), 1.86 (m, *J* = 14.6, 7.3, 4.1 Hz, 2H), 1.76 (m, *J* = 14.3, 7.2 Hz, 2H), 0.87 (t, *J* = 7.3 Hz, 6H).

¹³C NMR (176 MHz, CDCl₃) δ 145.51, 145.49, 145.36, 145.34, 144.09, 144.07, 144.05, 144.03, 138.22, 138.15, 136.81, 136.74, 134.11, 133.99, 133.72, 133.71, 133.13, 133.02, 132.59, 132.48, 129.12, 128.23, 128.02, 127.98, 127.93, 127.85, 127.82, 127.76, 121.54, 118.55, 83.29, 83.25, 29.76, 9.32.

³¹**P NMR** (283 MHz, CDCl₃) δ -18.71.

ESI-HRMS Calcd. for $C_{43}H_{39}O_2P_2^+$ 649.2425 [M+H]⁺, found 649.2417.

IR (powder): $v_{max} = 2970, 1739, 1433, 1365, 1217, 696 cm⁻¹$

 $[\alpha]_{D}$: -227.4 (c = 1.0 in CHCl₃)

[((*1S*,*3S*,*3'S*)-**3**,**3'**-diethyl-**3H**,**3'H**-**1**,**1'**-spirobi[isobenzofuran]-7,7'diyl)bis(diphenylphosphane)]palladium(II) chloride ((*S*,*S*,*S*)-4-**1**1)

Diphosphine (S,S,S)-SPIRAP (8.0mg, 0.012mmol), bis(benzonitrile)palladium(II) chloride (4.7mg, 0.012mmol), and benzene (0.82mL) were stirred at room temperature. After 6h, the complex was precipitated upon addition of hexanes as an orange solid, which was collected by filtration and washed with hexanes. The solid was redissolved in DCM for collection, and the volatiles were evaporated *in vacuo* to yield pure complex (S,S,S)-4-11 as a yellow-orange solid (9.9mg, 97% yield).

¹**H** NMR (700 MHz, CDCl₃) δ 7.77 (dd, *J* = 12.3, 7.4 Hz, 4H), 7.57 (s, 4H), 7.48 – 7.40 (m, 2H), 7.35 (d, *J* = 7.8 Hz, 6H), 7.24 – 7.17 (m, 4H), 7.09 (d, *J* = 7.8 Hz, 4H), 6.88 (d, *J* = 7.5 Hz, 2H), 3.75 (dd, *J* = 9.9, 4.3 Hz, 2H), 1.80 (m, 2H), 1.72 – 1.62 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 6H). ¹³**C NMR** (176 MHz, CDCl₃) δ 147.30, 147.26, 137.91, 137.87, 135.23, 135.16, 134.24, 134.18, 133.99, 133.93, 131.75, 131.39, 130.52, 130.30, 129.46, 129.41, 128.02, 127.95, 126.64, 126.33, 125.54, 125.42, 125.31, 116.26, 83.57, 30.49, 11.27.

³¹**P NMR** (283 MHz, CDCl₃) δ 32.83.

ESI-HRMS Calcd. for C₄₃H₃₈ClO₂P₂Pd⁺ 789.1070 [M-Cl]⁺, found 789.1076.

IR (powder): $v_{max} = 2225$, 1435, 1095, 998, 921 727, 688 cm⁻¹

 $[\alpha]_{D}$: +10.9 (c = 0.5 in CHCl₃)

Synthesis of diphosphine (*R*,*S*,*S*)-SPIRAP and Pd(II) complex

(*1R*,*3S*,*3'S*)-7'-(diphenylphosphoryl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((*R*,*S*,*S*)-4-9)

Recovered (R,S,S)-4-8 (from the coupling of (S,S,S)-4-8 to diphenylphosphine oxide) was recrystallized from cyclohexane. A flask in the glovebox was charged with ditriflate (3.946g, 6.85mmol), palladium(II) acetate (154mg, 0.68mmol), 1,4-Bis(diphenylphosphino)butane (321mg, 0.75mmol), and diphenylphosphine oxide (2.768g, 13.69mmol). The flask was taken outside the glovebox, and DMSO (27mL) and N,N-Diisopropylethylamine (4.8mL, 27.59mmol) were added. Reaction mixture was then stirred at room temperature for 1h, before being heated to 100°C. After 24h, reaction mixture was cooled to room temperature and partitioned between EtOAc (60mL) and a half saturated aqueous solution of NaHCO₃ (60mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, $5 \rightarrow 40\%$ EtOAc in hexanes). At 5% EtOAc in hexanes, some impure starting material was recovered (100.9mg). At 40% EtOAc in hexanes, the desired product (*R*,*S*,*S*)-4-9 was obtained as white foam (4.081g, 94.8% yield).

¹**H NMR** (401 MHz, CDCl₃) δ 7.51 – 7.28 (m, 13H), 7.15 (dd, *J* = 10.0, 8.0 Hz, 2H), 7.06 (dd, *J* = 13.8, 7.5 Hz, 1H), 5.33 (dd, *J* = 8.2, 4.0 Hz, 1H), 5.14 (dd, *J* = 10.0, 3.5 Hz, 1H), 2.03 (m, *J* = 14.9, 7.4, 4.1 Hz, 1H), 1.88 (m, *J* = 14.4, 7.3 Hz, 1H), 1.70 (m, *J* = 15.0, 7.5, 3.7 Hz, 1H), 1.60 – 1.44 (m, 1H), 1.08 (t, *J* = 7.4 Hz, 3H), 0.53 (t, *J* = 7.4 Hz, 3H).

³¹**P** NMR (162 MHz, CDCl₃) δ 29.90.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -75.08.

ESI-HRMS Calcd. for C₃₂H₂₉F₃O₆PS⁺ 629.1375 [M+H]⁺, found 629.1372.

IR (powder): $v_{max} = 2970$, 1738, 1419, 1214, 1141, 930, 695 cm⁻¹

 $[\alpha]_{D}$: -46.3 (c = 1.0 in CHCl₃)

(*1R*,*3S*,*3'S*)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-yl trifluoromethanesulfonate ((*R*,*S*,*S*)-4-10)

Phosphine oxide 3.18mmol), (R,S,S)-4-8(2.00g, PhMe (32mL), and Diisopropylethylamine (22.2mL, 127.3mmol) were cooled to 0°C before addition of trichlorosilane (6.80mL, 50.9mmol) over 10min. The flask was sealed with a glass stopped and heated to 80°C. After 16h, the mixture was cooled to room temperature and quenched carefully by transferring it to a flask containing a saturated aqueous solution of NaHCO₃ (70mL) at 0°C, with diethyl ether washings. Crude was filtered through Celite with diethyl ether washings, and the filtrate was dried over Na₂SO₄ and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 5% EtOAc in hexanes) to afford (*R*,*S*,*S*)-**4-10** (870mg, 44.6% yield, 66.1% BRSM) as white foam. Starting material was recovered at 50% EtOAc in hexanes (311mg).

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.29 – 7.20 (m, 6H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.13 (td, *J* = 7.5, 1.5 Hz, 2H), 7.07 (td, *J* = 7.5, 2.0 Hz, 2H), 6.89 (dd, *J* = 7.4, 4.6 Hz, 1H), 6.85 (td, *J* = 7.9, 1.4 Hz, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 5.35 (td, *J* = 6.8, 4.6 Hz, 2H), 1.96 (m, *J* = 16.9, 14.0, 5.9 Hz, 2H), 1.87 (m, *J* = 14.2, 7.2, 4.6 Hz, 2H), 1.06 (t, *J* = 7.3 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 147.39, 147.37, 144.53, 143.68, 143.62, 142.55, 142.35, 137.03, 136.93, 135.49, 135.41, 133.96, 133.94, 133.63, 133.49, 133.46, 133.33, 132.58, 132.56, 132.42,

131.46, 129.59, 128.42, 128.20, 128.17, 128.12, 128.00, 127.95, 122.04, 120.56, 119.35, 118.87, 116.81, 116.51, 116.49, 84.66, 84.61, 84.05, 30.47, 29.70, 9.64, 9.43.

¹⁹**F** NMR (471 MHz, CDCl₃) δ -74.90.

³¹**P NMR** (202 MHz, CDCl₃) δ -18.88.

ESI-HRMS Calcd. for C₃₂H₂₉F₃O₅PS⁺ 613.1425 [M+H]⁺, found 613.1419.

IR (powder): $v_{max} = 2968$, 1469, 1421, 1211, 1140, 1009, 962, 926, 848, 743 cm⁻¹

 $[\alpha]_{D}$: +47.6 (c = 1.0 in CHCl₃)

((*1R*,*3S*,*3'S*)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7yl)diphenylphosphine oxide ((*R*,*S*,*S*)-SPIRAP(O)

A flask in the glovebox was charged with phosphine (R,S,S)-4-10 (83mg, 0.14mmol), palladium(II) acetate (1.52mg, 0.007mmol), 1,4-Bis(diphenylphosphino)butane (2.89mg, 0.007mmol), and diphenylphosphine oxide (54.8mg, 0.271mmol). The flask was taken outside the glovebox, and DMSO (540µL) and N,N-Diisopropylethylamine (100µL, 74.4mmol) were added. Reaction mixture was then stirred at room temperature for 1h before being then heated to 100°C. After 3h, reaction mixture was cooled down to room temperature and partitioned between EtOAc (1mL) and a half saturated aqueous solution of NaHCO₃ (1mL). After separating the layers, the aqueous phase was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, 35% EtOAc in hexanes) to yield (R,S,S)-SPIRAP(O) (84.8mg, 94% yield) as white foam.

¹**H NMR** (500 MHz, CDCl₃) δ 7.54 – 7.16 (m, 20H), 7.16 – 7.00 (m, 5H), 6.95 (dd, *J* = 13.9, 7.5 Hz, 1H), 5.19 (dd, *J* = 9.9, 3.5 Hz, 1H), 5.11 (dd, *J* = 10.1, 3.5 Hz, 1H), 1.81 (m, 1H), 1.73 – 1.62 (m, 1H), 1.55 (m, 1H), 1.40 (m, 1H), 0.83 (t, *J* = 7.4 Hz, 3H), 0.45 (t, *J* = 7.4 Hz, 3H).

³¹**P NMR** (202 MHz, CDCl₃) δ 29.82, -22.07.

¹³**C NMR** (126 MHz, CDCl₃) δ 148.72, 148.49, 147.11, 147.09, 147.04, 147.02, 144.48, 142.80, 142.74, 138.82, 138.71, 137.86, 137.75, 135.25, 135.22, 135.04, 134.93, 134.21, 134.10, 133.59, 133.55, 133.44, 132.83, 132.68, 132.59, 132.52, 131.97, 131.89, 131.16, 131.13, 131.10, 131.08, 130.47, 130.33, 128.67, 128.21, 128.11, 128.08, 128.03, 128.01, 127.97, 127.90, 127.81, 127.45, 126.62, 124.66, 124.64, 121.61, 110.00, 83.37, 82.38, 28.03, 28.00, 27.32, 10.88, 10.59.

ESI-HRMS Calcd. for C₄₃H₃₉O₃P₂⁺ 665.2374 [M+H]⁺, found 665.2370.

IR (powder): $v_{max} = 2969, 2842, 1435, 1217, 1007, 973, 917, 741, 694 cm⁻¹$

 $[\alpha]_{D}$: -45.8 (c = 1.0 in CHCl₃)

Crystallographic data: CCDC **1812182** contains the supplementary crystallographic data of (S,R,R)-SPIRAP(O) made by using (R)-4-2a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>

((1R,3S,3'S)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7,7'-

diyl)bis(diphenylphosphane) ((R,S,S)-SPIRAP) from phosphine (R,S,S)-4-10

A Schlenk flask was charged with palladium(II) acetate (21.9mg, 0.097mmol) and 1,4-Bis(diphenylphosphino)butane (46.0mg, 0.107mmol). DMF (1.9mL) and diisopropylethylamine (1.04mL, 5.97mmol) were added. Solution was stirred at room temperature. After 1h, diphenyl phosphine (510µL, 2.92mmol) was added. After 5min, phosphine (R,S,S)-4-10 (596mg, 0.97mmol) was added as a solution in DMF (2.0mL, including washings). The sealed flask was heated to 100°C. After 16h, volatiles were removed under N₂ flow. Crude was purified by FCC (SiO₂, 30% → 40% DCM in hexanes) and the product was washed in hexanes to yield (R,S,S)-SPIRAP (551mg, 87% yield) as white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (t, *J* = 7.5 Hz, 2H), 7.31 – 7.14 (m, 14H), 7.06 – 6.92 (m, 10H), 5.15 (dd, *J* = 10.1, 3.5 Hz, 2H), 1.70 (m, 2H), 1.30 (m, 2H), 0.66 (t, *J* = 7.3 Hz, 6H).

³¹**P NMR** (202 MHz, CDCl₃) δ -20.99.

¹³C NMR (126 MHz, CDCl₃) δ 145.38, 145.15, 144.72, 144.69, 144.65, 138.28, 138.18, 137.55, 137.44, 134.73, 134.14, 134.05, 133.97, 132.98, 132.90, 132.83, 132.15, 132.12, 131.98, 131.95, 129.28, 128.22, 128.19, 128.17, 128.14, 128.11, 128.09, 128.04, 128.02, 128.00, 127.97, 127.95, 127.57, 121.73, 117.51, 82.84, 27.88, 10.77.

ESI-HRMS Calcd. for C₄₃H₃₉O₂P₂⁺ 649.2425 [M+H]⁺, found 649.2421.

IR (powder): $v_{max} = 3067, 2969, 2845, 1434, 1274, 1005, 969, 917, 741, 694 cm⁻¹$

 $[\alpha]_{D}$: +203.8 (c = 1.0 in CHCl₃)

[((*1R*,*3S*,*3'S*)-**3**,**3'**-diethyl-**3H**,**3'H**-**1**,**1'**-spirobi[isobenzofuran]-7,7'diyl)bis(diphenylphosphane)]palladium(II) chloride ((*R*,*S*,*S*)-**4**-**11**)

Diphosphine (R,S,S)-SPIRAP (12.0mg, 0.018mmol), bis(benzonitrile)palladium(II) chloride (7.1mg, 0.018mmol), and benzene (1.2mL) were stirred at room temperature. After 16h, the complex was precipitated upon addition of hexanes as an orange solid, which was collected by filtration and washed with hexanes. The solid was redissolved in DCM for collection, and the volatiles were evaporated *in vacuo* to yield pure complex (R,S,S)-4-11 as a yellow-orange solid (14.0mg, 92% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (ddd, *J* = 12.3, 6.6, 2.7 Hz, 4H), 7.65 – 7.51 (m, 4H), 7.41 (dd, *J* = 12.8, 7.9 Hz, 2H), 7.36 (d, *J* = 2.6 Hz, 6H), 7.24 (t, *J* = 7.8 Hz, 2H), 7.21 – 7.14 (m, 2H), 7.05 (ddd, *J* = 18.8, 9.1, 4.8 Hz, 6H), 4.71 (dd, *J* = 9.8, 4.0 Hz, 2H), 1.50 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 6H), 0.84 (m, 2H).

³¹**P NMR** (202 MHz, CDCl₃) δ 33.38.

¹³**C NMR** (126 MHz, CDCl₃) δ 148.22, 148.16, 140.26, 140.19, 135.74, 135.64, 134.11, 134.03, 133.87, 133.78, 132.70, 132.19, 130.83, 130.25, 129.57, 129.50, 128.23, 128.13, 128.08, 128.03, 127.88, 127.46, 125.78, 125.42, 124.17, 113.55, 80.36, 24.97, 10.80.

ESI-HRMS Calcd. for C₄₃H₃₉O₂P₂Pd⁺ 755.1460 [M-2Cl+H]⁺, found 755.1438.

IR (powder): $v_{max} = 2970$, 1738, 1435, 1092, 998, 969, 912, 740, 688 cm⁻¹

 $[\alpha]_{D}$: +27.1 (c = 1.0 in CHCl₃)

Synthesis of diphosphinite (*S*,*R*,*R*)-SPIRAPO

(((*1S*,*3R*,*3'R*)-**3**,**3'-diethyl-3H**,**3'H-1**,**1'-spirobi[isobenzofuran]-7**,**7'**diyl)bis(oxy))bis(diphenylphosphane) ((*S*,*R*,*R*)-SPIRAPO)

Spiroketal (*S*,*R*,*R*)-4-6a (40mg, 0.10mmol) and methanol (1.0mL) were cooled to 0°C before dropwise addition of acetyl chloride (14 μ L, 0.20mmol). Reaction mixture was then warmed to room temperature. After for 6h, the volatiles were removed in vacuo. The crude diol and 4-Dimethylaminopyridine (1.2mg, 0.01mmol) were dissolved into DCM (1.0mL) at room temperature before addition of triethylamine (0.13mL, 1.0mmol) and chlorodiphenylphosphine (46 μ L, 0.25mmol) over 30min. After 12h, volatiles were removed *in vacuo*, and the crude was

purified by FCC (SiO₂ treated with 5% TEA, 4% \rightarrow 9% EtOAc in hexanes) to afford (*S*,*R*,*R*)-**SPIRAPO** (34mg, 56% yield) and (*R*,*R*,*R*)-**SPIRAPO** (17mg, 26% yield) as white foams.

For purified (*S*,*R*,*R*)-4-12

¹**H NMR** (399.54 MHz, CDCl₃) *δ* 7.31-7.21 (m, 12H), 7.14 (t, J = 7.4 Hz, 2H), 7.06 (m, 6H), 6.97 – 6.90 (m, 4H), 6.86 – 6.81 (m, 2H), 5.26 (dd, J = 8.2, 4.2 Hz, 2H), 1.57 (m, 2H), 1.41 (m, 2H), 0.87 (t, J = 7.4 Hz, 6H)

¹³**C NMR** (100 MHz, CDCl₃) δ 152.36, 152.27, 146.31, 140.11, 139.92, 139.88, 139.72, 130.73, 130.59, 130.49, 129.74, 129.63, 129.52, 128.89, 128.39, 128.31, 128.25, 128.18, 115.33, 115.17, 115.09, 114.69, 82.94, 28.02, 10.25

³¹**P NMR** (161.75 MHz, CDCl₃) δ 105.24

ESI-HRMS Calcd. for $C_{43}H_{39}O_4P_2^+$ 681.2317 [M+H]⁺, found 681.2316.

 $[\alpha]_{D}$: -80.7 (c = 1.25 in THF)

For purified (*R*,*R*,*R*)-4-12

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.19 (m, 12H), 7.15 (t, J = 7.7 Hz, 2H), 7.13 – 6.99 (m, 6H), 6.97 (t, J = 7.4 Hz, 4H), 6.71 (d, J = 7.5 Hz, 2H), 4.78 (dd, J = 7.2, 4.5 Hz, 2H), 1.89 – 1.72 (m, 4H), 0.99 (t, J = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 145.83, 130.82, 130.63, 130.47, 130.46, 129.75, 129.61, 129.57, 129.06, 128.23, 128.17, 115.11, 114.72, 84.21, 30.06, 9.74.

³¹**P NMR** (202 MHz, CDCl₃) δ 104.37.

 $[\alpha]_{D}$: -14.8 (c = 5.25 in THF)

Synthesis of monophosphine (*R*,*S*,*S*)-SPIROMP and (*S*,*S*,*S*)-SPIROMP

(*1S*,*3S*,*3'S*)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((*S*,*S*,*S*)-SPIROMP)

Hydrolysis based on a modified reported procedure.^[3] Triflate (*S*,*S*,*S*)-4-10 (300mg, 0.49mmol), wet Cs₂CO₃ (800mg, 2.45mmol), and DMF (8.0mL) were added to a flask. Reaction mixture was heated to 80°C. After 8h, reaction mixture was filtered through Celite and then purified by FCC (SiO₂, 20% \rightarrow 25% EtOAc in hexanes) to obtain (*S*,*S*,*S*)-SPIROMP (224mg, 95% yield) as white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 1H), 7.26 (m, 5H), 7.16 – 7.06 (m, 4H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.93 (dd, *J* = 7.3, 4.4 Hz, 1H), 6.86 (t, *J* = 7.7 Hz, 2H), 6.73 (d, *J* = 7.4 Hz, 1H), 6.10 (d, *J* = 7.9 Hz, 1H), 5.42 (t, *J* = 5.4 Hz, 1H), 5.24 (dd, *J* = 7.9, 4.3 Hz, 1H), 4.13 (s, 1H), 2.04 – 1.77 (m, 4H), 1.11 (t, *J* = 7.4 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H).

³¹**P NMR** (202 MHz, CDCl₃) δ -18.74.

¹³**C NMR** (126 MHz, CDCl₃) δ 151.04, 145.19, 145.17, 143.40, 143.35, 142.91, 142.71, 137.32, 137.22, 135.46, 135.38, 134.29, 134.27, 133.86, 133.68, 133.63, 133.53, 133.46, 133.38, 131.46, 129.56, 128.40, 128.16, 128.11, 127.88, 127.82, 126.08, 126.05, 122.12, 116.75, 116.73, 114.46, 113.09, 85.38, 85.32, 83.73, 30.96, 29.54, 10.04, 9.14.

ESI-HRMS Calcd. for $C_{31}H_{30}O_3P^+$ 481.1933 [M+H]⁺, found 481.1934.

IR (powder): $v_{max} = 3306, 2962, 1606, 1474, 1297, 1005, 927, 741, 692 cm⁻¹$

 $[\alpha]_{D}$: -3.7 (c = 1.0 in CHCl₃)

(*1R*,*3S*,*3'S*)-7'-(diphenylphosphanyl)-3,3'-diethyl-3H,3'H-1,1'-spirobi[isobenzofuran]-7-ol ((*R*,*S*,*S*)-SPIROMP)

Triflate (R,S,S)-4-10 (112mg, 0.18mmol), wet Cs₂CO₃ (300mg, 0.92mmol), and DMF (3.0mL) were added to a flask. Reaction mixture was heated to 80°C. After 8h, reaction mixture was filtered through Celite and then purified by FCC (SiO₂, 20% EtOAc in hexanes) to obtain (R,S,S)-SPIROMP together with an impurity (90.1mg, 1:11.6 impurity:product). The product was further purified by recrystallization from cyclohexane (35mg, 40% yield).

¹**H NMR** (401 MHz, CDCl₃) δ 7.37 (t, *J* = 7.5 Hz, 1H), 7.32 – 7.16 (m, 8H), 7.02 (m, 5H), 6.79 (d, *J* = 7.4 Hz, 1H), 6.47 (d, *J* = 8.0 Hz, 1H), 5.41 (dd, *J* = 6.7, 4.0 Hz, 1H), 5.24 (dd, *J* = 9.6, 3.9 Hz, 1H), 4.24 (s, 1H), 2.07 (m, 1H), 1.90 – 1.77 (m, 2H), 1.77 – 1.66 (m, 1H), 1.00 (t, *J* = 7.4 Hz, 3H), 0.83 (t, *J* = 7.4 Hz, 3H).

³¹**P NMR** (162 MHz, CDCl₃) δ -23.06.

¹³**C NMR** (101 MHz, CDCl₃) δ 150.95, 145.81, 143.90, 143.84, 142.99, 142.72, 137.33, 137.20, 136.59, 136.45, 135.30, 134.12, 133.91, 133.70, 132.98, 132.80, 131.38, 130.09, 128.51, 128.18,

128.11, 127.81, 125.98, 125.95, 122.30, 115.57, 114.87, 113.10, 84.39, 84.34, 81.67, 81.63, 27.94, 27.64, 27.59, 10.70, 9.24

ESI-HRMS Calcd. for C₃₁H₃₀O₃P⁺ 481.1933 [M+H]⁺, found 481.1929.

IR (powder): $v_{max} = 3326$ (br), 2959, 2853, 1604, 1473, 1295, 1005, 922, 740, 696 cm⁻¹

 $[\alpha]_{D}$: +13.2 (c = 1.0 in CHCl₃)

Asymmetric hydroarylation of methylated cynnamyl alcohol

Preparation of substrate - (E)-(3-methoxyprop-1-en-1-yl)benzene

Alkenyl ether (**4-15**) was prepared according a reported procedure^[4] A flask was charged with a suspension of NaH (60%, prewashed with hexanes, 520mg, 21.7mmol) and THF (30mL) before addition of cinnamyl alcohol (1.4mL, 10.87mmol). After stirring at room temperature for 100min, methyl iodide (2.0mL, 32.6mmol) was added at room temperature. After 3h, reaction mixture was filtered through a SiO₂ pad, with 50% EtOAc in hexanes elution. The filtrate was concentrated *in vacuo* and purified by FCC (SiO₂, 5% EtOAc in hexnes) to afford the desired product (1.52g, 94.4% yield) as a colorless oil. Spectral properties match those reported in literature.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.31 (dd, *J* = 8.4, 6.7 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.28 (dt, *J* = 16.0, 6.0 Hz, 1H), 4.09 (dd, *J* = 6.0, 1.5 Hz, 1H), 3.38 (d, *J* = 0.5 Hz, 2H).

¹³C NMR (100 MHz, cdcl₃) δ 136.70, 132.40, 128.52, 127.63, 126.44, 125.94, 73.07, 57.96.
 IR (film): v_{max} = 3026, 2924, 2820, 1494, 1449, 1379, 1190, 1119, 965, 734, 691 cm⁻¹

Hydroarylation procedure

(S)-2-(2-(1-methoxy-3-phenylpropyl)phenyl)pyridine

Hydroarylations were carried out according to a recently reported procedure.^[5] Bis(1,5cyclooctadiene)diiridium(I) dichloride (3.3mg, 0.0049 mmol) and (*S*,*S*,*S*)-SPIRAP (7.6mg, 0.012mmol) were added to a Schlenk tube strictly under nitrogen. PhMe (330µL) was added and the mixture was stirred at room temperature. After 20min, sodium tetrakis[3,5bis(trifluoromethyl)phenyl]borate (18.1mg, 0.0196mmol) was added. After 15min, 2phenylpyridine **4-13** (30µL, 0.21mmol) and alkenyl ether **4-12** (30µL, 0.196mmol) were added. Reaction mixture was then heated to 70°C. After 24h, reaction mixture was cooled to room temperature. Volatiles were removed *in vacuo* and the crude was purified by FCC (10% EtOAc in hexanes) to obtain pure product **4-14** (56.9mg, 96% yield, 95.4% ee) as colorless oil that solidifies on cooling.

¹**H NMR** (500 MHz, CDCl₃) δ 8.59 – 8.51 (m, 1H), 7.63 (td, *J* = 7.7, 5.3 Hz, 2H), 7.46 (dt, *J* = 8.2, 4.3 Hz, 1H), 7.35 (d, *J* = 4.3 Hz, 2H), 7.19 (ddt, *J* = 26.8, 14.7, 7.7 Hz, 5H), 7.11 – 7.04 (m, 2H), 4.45 (dd, *J* = 8.4, 4.2 Hz, 1H), 3.17 (s, 3H), 2.75 (m, 1H), 2.65 (m, 1H), 2.02 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.28, 149.05, 142.02, 140.75, 140.19, 136.06, 129.41, 128.73, 128.52, 128.18, 127.06, 126.16, 125.50, 123.99, 121.63, 78.18, 56.57, 39.61, 32.20.

ESI-HRMS Calcd. for C₂₁H₂₂NO⁺ 304.1701 [M+H]⁺, found 304.1696.

IR (film): $v_{max} = 2924$, 1585, 1425, 1100, 1022, 747, 698 cm⁻¹

SFC (Chiralpak OD-H, 92:8 CO₂/isopropanol, 3.5 ml/min, 40°C, 120 bar back pressure), $t_r = 7.4$ min (minor, *R*), 7.9 min (major, *S*)

Asymmetric allylic alkylation of chalcone derivatives

Preparation of substrate - (*E*)**-1**,**3-diphenylallyl acetate**

(E)-1,3-diphenylallyl acetate was synthesized following a slightly modified reported procedure.^[2] (*E*)-chalcone (988mg, 4.74mmol) and methanol (12mL) were cooled to 0°C before portionwise addition of sodium borohydride (365mg, 9.66mmol). Reaction mixture was then warmed to room temperature. After 1h, reaction mixture was partitioned between EtOAc (30mL)

and water (30mL). After separating the layers, the aqueous solution was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. without further purification The allylic alcohol was acetylated as follows. 4-Dimethylaminopyridine (58.8mg, 48.1mmol), DCM (30mL), and triethylamine (1.7mL, 12.2mmol) were added to the crude. Reaction mixture was cooled to 0°C before dropwise addition of acetic anhydride (1.1mL, 11.6mmol). Reaction mixture was warmed to room temperature and stirred overnight. Water (30mL) was added, and after separating the layers, the aqueous solution was extracted with DCM twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Pure product 4-15 (841.2mg, 70.3% yield) was obtained after purification by FCC (SiO₂, $10 \rightarrow 20\%$ EtOAc in hexanes). Spectral properties match those reported in literature.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.13 (m, 10H), 6.65 (d, *J* = 15.8 Hz, 1H), 6.46 (d, *J* = 6.9 Hz, 1H), 6.36 (dd, *J* = 15.7, 6.8 Hz, 1H), 2.15 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.97, 139.20, 136.14, 132.56, 128.59, 128.54, 128.45, 128.39, 128.29, 128.13, 128.02, 127.47, 127.01, 126.66, 76.10, 21.32.

IR (film): $v_{\text{max}} = 3029, 1734, 1495, 1370, 1227, 1017, 962, 743, 694 \text{ cm}^{-1}$

For (*S*,*R*,*R*)-**SPIRAP** – No product observed.

Asymmetric allylic alkylation procedure

Dimethyl (S,E)-2-(1,3-diphenylallyl)malonate

The asymmetric alkylation was performed following a modified reported procedure.^[6] (E)-1,3-diphenylallyl acetate (49.3mg, 0.195mmol) 4-15 and 1,4-dioxane (1mL) were stirred at room temperature. In a separate flask, allylpalladium(II) chloride dimer (1.8mg, 0.0049mmol), (S,S,S)-**SPIRAP** (7.6mg, 0.012mmol), and 1,4-dioxane (1mL) were stirred for 1h at room temperature. The catalyst solution was transferred to the substrate flask by syringe with dioxane washings (1mL). In another flask, dimethyl malonate 4-16 (45µL, 0.39mmol) and 1,4-dioxane (1mL) were cooled to 0°C, and then treated with a 1 M solution of diethylzinc in hexanes (390µL, 0.39mmol). The substrate flask was cooled with an ice bath while the reagent solution was slowly transferred via syringe with dioxane washings (1mL). Reaction mixture was then warmed to room temperature. After 90min, reaction mixture was diluted with EtOAc (5mL) and quenched with a saturated aqueous solution of NH₄Cl (5mL). After separating the layers, the aqueous solution was extracted with EtOAc twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, gradient $0 \rightarrow 10\%$ EtOAc in hexanes) to afford pure product 4-17 (59.8mg, 94% yield, 96.6% ee) as colorless oil. Spectral properties match those reported in literature.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.18 (m, 10H), 6.51 (d, *J* = 15.7 Hz, 1H), 6.37 (dd, *J* = 15.7, 8.6 Hz, 1H), 4.30 (dd, *J* = 10.9, 8.5 Hz, 1H), 3.99 (d, *J* = 10.8 Hz, 1H), 3.73 (s, 3H), 3.54 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.20, 167.78, 140.20, 136.84, 131.85, 129.14, 128.74, 128.49, 127.89, 127.59, 127.18, 126.40, 57.67, 52.63, 52.46, 49.22.

IR (film): $v_{max} = 3316$ (br), 3026, 2861, 1494, 1091, 945, 733, 691 cm⁻¹

HPLC (Chiralpak AD column, 95:5 hexanes/isopropanol, 1.0 ml/min), t_r = 12.6 min (minor, *R*),

17.1 min (major, *S*)

For (*R*,*S*,*S*)-SPIRAP – 98% yield, 86% ee

Asymmetric Heck reaction of 2-vinylphenyl triflate with norbornene

Substrate synthesis

2-vinylphenyl trifluoromethanesulfonate was synthesized following a two-step procedure reported elsewhere.^[8] Methyltriphenyl-phosphonium bromide (3.52g, 9.85mmol) and diethyl ether (60mL) were cooled to 0°C before the addition of KOt-Bu (2.16g, 19.25mmol). After 15min, a solution of salicylaldehyde (1mL, 9.38mmol) in diethyl ether (30mL) was added. Reaction mixture was then warmed to room temperature. After 16h, a saturated aqueous solution of NH₄Cl (30mL) was added. After separating the layers, the aqueous solution was extracted with diethyl ether twice. Combined organic was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Crude was purified by FCC (SiO₂, gradient 5 \rightarrow 15% EtOAc in hexanes) to afford unreacted starting material (141mg, 12% recovery) and pure 2-vinylphenol (942 mg, 84% yield) as light yellow liquid.

Vinylphenol (767mg, 6.38mmol), DCM (18mL), and pyridine (1mL, 12.77mmol) were cooled to 0°C before the dropwise addition of trifluoromethanesulfonic anhydride (1.3mL, 7.66mmol). Reaction mixture was then warmed to room temperature. After 13h, reaction mixture was filtered with DCM washings, concentrated *in vacuo*, and purified by FCC (SiO₂, hexanes) to afford 2-vinyltriflate (1.427g, 89% yield) as colorless liquid.

¹**H NMR** (401 MHz, CDCl₃) δ 7.69 – 7.59 (m, 1H), 7.39 – 7.15 (m, 3H), 6.92 (dd, *J* = 17.5, 11.1 Hz, 1H), 5.84 (d, *J* = 17.5 Hz, 1H), 5.48 (d, *J* = 11.0 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 146.82, 131.01, 129.23, 128.81, 128.35, 127.21, 121.62, 120.15, 118.58, 116.97.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -73.64.

IR (film): $v_{max} = 1419, 1207, 1137, 1077, 886, 792, 760 cm⁻¹$

Asymmetric Heck reaction

(1S,4R,4aS,9aR)-9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene

The asymmetric Heck reaction was performed following a modified reported procedure.^[7] Bis(dibenzylideneacetone)palladium(0) (4.7mg, 0.0082mmol), (*S*,*S*,*S*)-SPIRAP(O) (6.5mg, 0.0098mmol) were added to a Schlenk tube strictly under nitrogen. 1,4-dioxane (320µL) was added, and the mixture was stirred at room temperature. After 30min, 2-vinyltriflate **4-18** (60µL, 0.32mmol), norbornene (122.1mg, 1.30mmol), and diisopropylethylamine (110µL, 0.63mmol) were added and then the mixture was heated to 70°C. After 20h, reaction mixture was concentrated *in vacuo* and purified through a short pipette column (SiO₂) with hexanes elution to afford pure product **4-20** (63.7mg, 99% yield, 95% ee)

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.39 (m, 1H), 7.29 – 7.12 (m, 3H), 5.51 (d, *J* = 2.4 Hz, 1H), 5.03 (d, *J* = 2.0 Hz, 1H), 3.06 (d, *J* = 7.0 Hz, 1H), 2.83 (d, *J* = 7.0 Hz, 1H), 2.36 – 2.20 (m, 2H), 1.61 (m, *J* = 18.4, 15.4, 11.6, 5.7 Hz, 2H), 1.41 (m, *J* = 18.9, 9.0, 2.4 Hz, 2H), 1.09 – 0.92 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.44, 148.89, 142.58, 128.54, 126.57, 125.09, 119.95, 102.93, 52.20, 52.01, 44.59, 42.49, 32.33, 29.36, 28.62.

IR (film): $v_{max} = 2948, 2868, 1635, 1471, 868, 782, 756, 730 \text{ cm}^{-1}$

SFC (Chiralpak OJ-H, 99:1 CO₂/isopropanol, 3.5 ml/min, 40°C, 120 bar back pressure), $t_r = 3.5$ min (minor, (*1R*,4*S*,4*aR*,9*aS*)), 3.8 min (major, (*1S*,4*R*,4*aS*,9*aR*))

For (*R*,*S*,*S*)-**SPIRAP(O)** – 96% yield, -86% ee (enantiomer of **20**)

Asymmetric hydrogenation of acrylate derivatives

Methyl acetyl-*L*-alaninate

The asymmetric hydrogenation of acetamidoacryllic esters was based on a reported procedure.^[8] (*S*,*R*,*R*)-SPIRAPO (11.2mg, 0.016mmol) and Rh(COD)₂OTf (7.0mg, 0.015mmol) were measured and packed into a Schlenk tube in the glovebox before the addition of dry DCM (3.0mL) to make a stock solution. Methyl 2-acetamidoacrylate (28.6mg, 0.20mmol) was added to the flask before addition of the stock solution (2.0mL). The reaction flask was placed into the hydrogenation apparatus before purging with N₂ and H₂, and the reaction was stirred under 500 psi H₂ for 3h. Volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂, 20% EtOAc in hexanes) to afford methyl acetyl-L-alaninate (*S*)-4-22 (25.3mg, 87% yield, 91% ee) as clear oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.02 (s, 1H), 4.58 (p, *J* = 7.3 Hz, 1H), 3.74 (s, 3H), 2.00 (s, 3H), 1.38 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.62, 169.52, 52.46, 48.00, 23.15, 18.55.

IR (film): $v_{max} = 3282, 2955, 1739, 1652, 1533, 1436, 1372, 1207, 1160, 1058, 733, 607 \text{ cm}^{-1}$ GC conditions 1:

Rt- bDExsm column (df = 0.25 μ m, 0.25 mm i.d. × 30 m, fused silica capillary column); carrier gas, He (flow 1.5 mL/min); injection temp, 230 °C; initial column temperature, 70 °C; progress rate, 2 °C /min; final column temperature, 90 °C); t_r = 28.9 min (minor, *R*), 29.3 min (major, *S*)

GC conditions 2

Rt- bDExsm column (df = 0.25 μ m, 0.25 mm i.d. × 30 m, fused silica capillary column); carrier gas, He (flow 1.5 mL/min); injection temp, 230 °C; initial column temperature, 70 °C; progress rate, 2 °C /min; final column temperature, 110 °C); t_r = 48.7 min (major, *R*), 51.2 min (minor, *S*)

For (S)-SDPO – 85% yield, 94% ee (S)-4-22

For (S)-BINAPO – 84% yield, -91% ee (R)-4-22

For (*R*,*R*,*R*)-SPIRAPO – 85% yield, -93% ee (*R*)-4-22

Asymmetric Baylis-Hillman reaction of methyl vinyl ketone and an aromatic tosylimine (S)-4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide

The asymmetric Baylis-Hillman reaction was performed following a reported procedure.^[9] Imine C-1 (48mg, 0.16mmol), catalyst (*S*,*S*,*S*)-SPIROMP (7.9mg. 0.02mmol), activated 3Å MS, and CHCl₃ (820µL) were added to a Schlenk tube. Mixture was cooled to -78°C, then 3-Buten-2one (41µL, 0.50mmol) was added before warming the reaction to -10°C. After 5 days, volatiles were removed *in vacuo*, and the crude was purified by FCC (SiO₂, 20→40% EtOAc in hexanes) to afford sulfonamide (*S*)-C-2 (50.2mg, 85% yield, 83% ee).

¹**H NMR** (500 MHz, CDCl₃) δ 8.10 – 8.01 (m, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.13 (s, 1H), 6.08 (s, 1H), 5.93 (d, *J* = 9.3 Hz, 1H), 5.32 (d, *J* = 9.4 Hz, 1H), 2.41 (s, 3H), 2.15 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.72, 147.18, 146.15, 145.42, 143.81, 137.36, 129.63, 127.23, 127.17, 123.61, 58.95, 26.17, 21.51.

SFC (Chiralpak IA, 70:30 CO₂/isopropanol, 3.5 ml/min, 40°C, 120 bar back pressure), $t_r = 4.0$ min (major *S*), 4.6 min (minor, *R*)

For (*R*,*S*,*S*)-SPIROMP – 6.8% yield, -71.8% ee (*R*)-C-2

Computational models and analysis

Quantum chemical calculations were performed using the Q-Chem 4.3 package.^[10] Geometry optimizations were evaluated using the B97-D density functional.^[11] For compounds not containing transition metals, double- ζ - quality basis set with polarization functions was used on all atoms, 6-31G**.^[12,13] For Pd-complexes, the LANL2DZ basis set was used of Pd, P, and Cl atoms, while 6-31G** was used on all other atoms.^[14–16] Pictorial representations of we made in Discovery Studio 4.1 Visualizer.^[17] The electronic Gibbs free energy values were obtained from single point calculatings using the ω B97X-D exchange functional.^[18] The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298 K. These frequency computations were performed using the B97-D functional. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below 50 cm⁻¹ were treated as if they were 50 cm⁻¹.

Cartesian coordinates for starting geometries, transition states, and products are described below.

43	• Diol (<i>S</i> , <i>S</i>	,S)- 4 -7	
С	-3.16660418	2.51676888	1.21187067
c	-3.47220673	1.73275471	0.08830678
č	-2.53030555	0.80808774	-0.40577742
С	-1.30924670	0.68440827	0.27839571
С	-1.01430839	1.47044495	1.39556754
C	-1.93172027	2.40595904	1.88125011
C O	-0.12997580 0.70580487	-0.19398482 -0.09105548	-0.05346636 1.11598208
c	0.39861682	1.13963116	1.82881223
С	-0.37560667	-1.64951697	-0.36454275
С	0.38034724	-2.02588796	-1.47838614
C	1.15869767	-0.80975373	-1.93518700
O C	0.51272696 -1.16867638	0.29807553 -2.57630232	-1.24524866 0.33225338
C	-1.19723175	-3.90426804	-0.13963789
č	-0.43227714	-4.27249729	-1.25731951
С	0.37379853	-3.34325761	-1.94429854
0	-1.91800076	-2.25264222	1.42462945
0	-2.84906405	0.06926319	-1.50667348
C C	3.41783300 2.65144451	0.38462186 -0.89646971	-1.92406340 -1.56304832
c	2.84936369	1.86763352	1.78200466
č	1.39725415	2.25469900	1.46328589
Н	-3.91142875	3.22728152	1.57364590
Н	-4.43155190	1.82694792	-0.41941506
H H	-1.70717902 0.47683546	3.02792390 0.90246922	2.74812206 2.90277633
н Н	0.47683546	0.90246922	-3.01314195
Н	-1.82004054	-4.63174383	0.37983659
Н	-0.47177422	-5.30695997	-1.60170327
Н	0.96516968	-3.64555388	-2.80885692
Н	-1.80138354	-1.30443316	1.61090982
H H	-2.08996952 4.47230619	-0.49764490 0.31117324	-1.72910958 -1.62012042
Н	3.38544103	0.57146204	-3.00921822
Н	2.96579672	1.24714660	-1.41595888
Н	2.71218848	-1.09304024	-0.48259783
H H	3.08175872	-1.76942095 2.67255686	-2.08222447 1.49694678
п Н	3.54273745 2.97854259	1.66895187	2.85785605
н	3.12365368	0.95793215	1.23163953
Н	1.28101785	2.46614191	0.38996576
Н	1.10629563	3.16536281	2.01307874
43	• Diol (R, S, S) -4-7		
~			
C C	-3.76748275 -4.04786752	-3.51818612 -4.32271515	3.74134222 2.62564730
C	-4.04780732	-4.03988022	1.37903507
č	-2.58731767	-2.93968672	1.29453362
С	-2.33080690	-2.13637533	2.40609471
C	-2.90764851	-2.40726314	3.65048742
C O	-1.75263192 -1.33419260	-2.46918854	0.12313126
C	-1.33419260	-1.15283165 -1.02425722	0.52609458 1.97727821
C	-2.41852000	-2.41568750	-1.22378468
С	-1.76340458	-3.25381099	-2.12681959
С	-0.58568313	-3.88561829	-1.41845772
0	-0.63347975	-3.35355276	-0.06748417
C C	-3.54783541 -4.04281795	-1.66657797 -1.82777312	-1.59694885 -2.90574637
C	-4.04281793	-1.82777512	-3.79983007
č	-2.24066834	-3.41529605	-3.43270641
0	-4.17439363	-0.80788731	-0.74398872
0	-3.76646128	-4.84404146	0.31544995
C C	0.53095627 -0.65273218	-6.03436956 -5.42162842	-0.60243733 -1.36568745
C	-0.652/3218 -0.95554273	-5.42162842 1.48604679	-1.36568745 1.79257206
c	-1.88902753	0.38542121	2.32117428
Н	-4.24178652	-3.75594205	4.69457540
Н	-4.73073494	-5.16856809	2.70062728

Η	-2.70758831	-1.77956704	4.51933719
Н	-0.38105357	-1.17187408	2.38584392
Η	0.37166407	-3.57603345	-1.87653534
Н	-4.92315513	-1.26253861	-3.20950163
Н	-3.79409634	-2.80270317	-4.80896192
Н	-1.74017002	-4.07168318	-4.14457134
Н	-3.59982713	-0.69337294	0.03439360
Н	-3.42615899	-4.43070991	-0.49806151
Н	0.44644039	-7.12979398	-0.55685303
Н	1.48529960	-5.78251220	-1.09156344
Н	0.55748647	-5.64086814	0.42266486
Η	-1.60205125	-5.70440808	-0.88514505
Н	-0.68313979	-5.79451996	-2.40318202
Η	-1.34103428	2.48445362	2.04502104
Н	0.05015853	1.38430648	2.22935637
Η	-0.86048987	1.41117827	0.70081747
Н	-2.90513296	0.50713752	1.90944932
Η	-1.98200101	0.45008968	3.41754948

• Diphosphine (S,S,S)-SPIRAP

85

-7.90764641 4.02001391 С -0.83380907 C C -0.82809801 -8.73687968 2.88382919 -8.19982073 1.57815228 -0.84935829С -6.79307735 1.47712345 -0.87837356 С -5.96971226 2.60520309 -0.86840526 С -6.51019265 3.89422007 -0.85036631 С -5.907923730.25061771 -0.97713722 0 -4.59106596 0.73441794 -0.67744595 C C -4.52621460 2.16693643 -0.88023199-0.96590450 -6.17256176 -0.11275732С -6.08335956 -2.10139521 -0.92085989 С -1.68030128 -5.80582018 -2.34138947 0 -0.24283852 -5.97863626 -2.32359121 С -6.42856914 -1.05256265 1.27216854 1.80273633 С -6.58147584 -2.35190383 С -6.48332319 -3.49521836 0.98946764 Č -0.38623589 -6.23375823-3.38431127Р -6.78078390 0.48213066 2.26531693 С -6.98264883 -0.23098775 3.97005112 С -5.93078373 -0.39357444 4.89360778 C C -6.17654444 -0.95213631 6.15720737 -7.47150586 -1.36450667 6.50908669 С -8.52607438 -1.20765798 5.59522774 C C -8.28407762 -0.63542328 4 33831026 -5.11365286 1.28903301 2.37946729 С -3.89754775 0.59604254 2.21516053 С -2.67533597 1.27755487 2.29588594 C C -2.653905802.66017617 2.54586685 -3.85990152 3.35978388 2.70811059 С -5.08302591 2.67798932 2.61664993 Р -9.24673037 0.05359405 -0.62106436 С -10.95981583 0.77002223 -0.64094337 С -11.42747123 1.34630849 0.56147976 С -12.71456381 1.89554698 0.63696180 1.85516235 -13.56372506 С -0.48138255С -13.11358046 1.27113343 -1.67522810 С -11.81748872 0.73823713 -1.75841582 C -9.13924589 -0.77089700-2.27768337 С -9.37509966 -2.15997856 -2.32426442 С -9.29822771 -2.85484377 -3.54094681 С -8.96937924 -2.16851902 -4.72072830 C C -0.78601403 -4.68035743 -8.72122194-8.80806051 -0.09071416 -3.46615752 С -4.09030743 -1.53863732 -4.22412336 Ċ -4.38555316 -2.04782917 -2.80522051 С -2.36275746 1.96149457 -2.21138747 С -3.80347831 2.49280888 -2.20007364 Η -8.36371906 5.01127638 -0.81735828 -9.81679996 3.01756759 -0.79335127 Н Η -5.86560702 4.77455090 -0.83789391 Η -3.96614341 2.57700505 -0.02528605 Η -6.55538974 -2.07544920 -3.04544850

Н	-6.79072764	-2.47799627	2.86382364
Н	-6.60982679	-4.48034059	1.44186675
Н	-6.17110686	-4.26957097	-1.02086764
Н	-4.92247659	-0.08204485	4.62077012
Н	-5.35450550	-1.07121192	6.86539243
Н	-7.65843792	-1.80122674	7.49143592
Н	-9.53596752	-1.52224537	5.86359684
Н	-9.10645234	-0.50624819	3.63096079
Η	-3.91734998	-0.47097711	1.99572448
Н	-1.74025911	0.73275036	2.15605383
Н	-1.70158551	3.18961372	2.60643515
Н	-3.84960055	4.43542765	2.89213393
Н	-6.02140882	3.22693431	2.71661133
Н	-10.77256313	1.37381334	1.43531412
Н	-13.05766320	2.34635264	1.56983298
Н	-14.56961448	2.27340596	-0.42041490
Н	-13.76841783		-2.54772753
		1.23629022	
Н	-11.46941555	0.29827418	-2.69309161
Н	-9.59714548	-2.69919218	-1.40145400
Н	-9.48293789	-3.93011735	-3.56527841
Н	-8.89936938	-2.70873016	-5.66628152
Н	-8.45468321	-0.25169991	-5.59363251
		0.97630720	
Н	-8.59199231	0	-3.42701153
Н	-3.07018880	-1.80464183	-4.53924995
Н	-4.19382515	-0.44556076	-4.25707290
Н	-4.79867957	-1.96941946	-4.94991582
Н	-4.27968607	-3.14500505	-2.75648042
н	-3.67935161	-1.61255768	-2.08224141
Н	-1.86467047	2.17860027	-3.16798376
Н	-2.36715602	0.87370143	-2.05587264
Н	-1.77079779	2.41772489	-1.40197647
Н			
	-3.81717628	3.58735788	-2.33851580
Н	-4.38677856	2.04683405	-3.01971212
	Dinhorn	hing (S D D) SD	IDAD
	 Dipnospi 	hine (S,R,R)-SP	IKAF
85			
-	0 50 11 51 50	20.00706502	0.41070710
Р	-0:78415159	20.90/96583	8.410/9/10
P	-0.78415159	20.90796583	8.41079710
Р	1.44835665	20.43430813	5.41165053
P O	1.44835665 -1.04984959	20.43430813 17.26105507	5.41165053 7.80678199
P O O	1.44835665 -1.04984959 -0.30266885	20.43430813 17.26105507 17.20831307	5.41165053 7.80678199 5.55590269
P O O C	1.44835665 -1.04984959 -0.30266885 -1.66600258	20.43430813 17.26105507 17.20831307 20.13399215	5.41165053 7.80678199 5.55590269 9.84495430
P O C C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669
P O O C	1.44835665 -1.04984959 -0.30266885 -1.66600258	20.43430813 17.26105507 17.20831307 20.13399215	5.41165053 7.80678199 5.55590269 9.84495430
P O C C H	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342
P O C C H C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947
P O C C H C H	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462
P O C C H C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947
P O C C H C H C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070
P O C C H C H C H C H	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197
P O C C H C H C H C H C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215
P O C C H C H C H C H C H C H	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703 -4.28555929	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561
P O C C H C H C H C H C H C H	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215
POOCCHCHCHCHCHC	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703 -4.28555929 -2.81978708	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592
P O C C H C H C H C H C H C H C H C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703 -4.28555929 -2.81978708 -3.24943097	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742 \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144
P O C C H C H C H C H C H C H C H C C	$\begin{array}{c} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\end{array}$	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996
P O C C H C H C H C H C H C H C H C	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703 -4.28555929 -2.81978708 -3.24943097	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742 \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144
P O C C H C H C H C H C H C H C C C	$\begin{array}{c} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\end{array}$	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.899247111\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114 \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908
P O O C C H C H C H C H C H C H C H C H C	$\begin{array}{c} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\end{array}$	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.899247111\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302
POOCCHCHCHCHCHCCHCCHCCHCCHCC	$\begin{array}{c} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\end{array}$	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042
P O O C C H C H C H C H C H C H C H C H C	$\begin{array}{c} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\end{array}$	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.899247111\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913
P O O C C H C H C H C H C H C H C H C H C	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\end{array}$	$\begin{array}{c} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ 24.96770466\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913
POOCCHCHCHCHCHCHCHCHCHCHC	1.44835665 -1.04984959 -0.30266885 -1.66600258 -1.09623503 -0.18905620 -1.68127432 -1.23242863 -2.83319146 -3.28284917 -3.39766703 -4.28555929 -2.81978708 -3.24943097 -1.31874942 -2.15880668 -2.57059359 -2.46775272 -3.11890619 -1.95381877	$\begin{array}{l} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ 24.96770466\\ 25.43645292 \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159
POOCCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662
POOCCHCHCHCHCHCHCHCHCHCHC	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\end{array}$	$\begin{array}{l} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ 24.96770466\\ 25.43645292 \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159
POOCCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662
P O O C C H C H C H C H C H C H C H C H C	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087
P O O C C H C H C H C H C H C H C H C H C	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575
P O O C C H C H C H C H C H C H C H C H C	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.06600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.1923754\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.06600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.1923754\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.566646622 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366
POOCCHCHCHCHCHCHCHCHCHCHCHCHCC	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ \end{array}$	$\begin{array}{l} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ 24.96770466\\ 25.43645292\\ 26.49952954\\ 24.92154126\\ 25.58191739\\ 23.55870422\\ 23.16803974\\ 20.30637233\\ 21.06589082\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.123977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.06600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\end{array}$	$\begin{array}{l} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ 24.96770466\\ 25.43645292\\ 26.49952954\\ 24.92154126\\ 25.58191739\\ 23.55870422\\ 23.16803974\\ 20.30637233\\ 21.06589082\\ 22.01858200\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.77222087 7.52324894 6.76246850 6.36246850 6.36246850 6.80791271 5.20081197
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.06600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\end{array}$	$\begin{array}{l} 20.43430813\\ 17.26105507\\ 17.20831307\\ 20.13399215\\ 20.30205435\\ 20.89924711\\ 19.70405196\\ 19.84458927\\ 18.91319687\\ 18.43739840\\ 18.73140872\\ 18.10901962\\ 19.33731675\\ 19.17805742\\ 22.68327129\\ 23.20666114\\ 22.54357470\\ 24.57630343\\ 24.96770466\\ 25.43645292\\ 26.49952954\\ 24.92154126\\ 25.58191739\\ 23.55870422\\ 23.16803974\\ 20.30637233\\ 21.06589082\\ 22.01858200\\ \end{array}$	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.24283339	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.774064575 6.95544366 6.36246850 6.36246850 6.36246850 6.807912711 5.20081197 4.77186890
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.24283339 19.41576269	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.225082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.807912711 5.20081197 4.77186890 4.58694232
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\\ -3.60632120\\ \end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.24283339 19.41576269 19.08016497	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271 5.20081197 4.77186890 4.58694232 3.67733792
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.24283339 19.41576269	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.225082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.807912711 5.20081197 4.77186890 4.58694232
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.50632120\\ -2.08213158\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43545292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 20.01858200 20.62695103 21.24283339 19.41576269 19.08016497 18.66129965	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.23977342 12.25082947 13.23547462 12.1066070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.74064575 6.95544366 6.36246850 6.80791271 5.20081197 4.77186890 4.58694232 3.67733792 5.16631175
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCC	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.143768711\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\\ -3.60632120\\ -2.08213158\\ -1.43572263\end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 20.01858200 20.62695103 21.2428339 19.41576269 19.08016497 18.66129965 19.09156420	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271 5.20081197 4.77186890 4.586942322 3.67733792 5.16631175 6.32870521
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCCC	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.06600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\\ -3.60632120\\ -2.08213158\\ -1.43572263\\ -0.45011830\\ \end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.24283339 19.41576269 19.08016497 18.66129965 19.09156420 18.01137998	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77022087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271 5.20081197 4.77186890 4.58694232 3.67733792 5.16631175 6.32870521 6.73664555
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCCCC	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.66600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\\ -3.60632120\\ -2.08213158\\ -1.43572263\\ -0.45011830\\ -0.01387803\\ \end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.2428339 19.41576269 19.09156420 18.01137998 16.65003924	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77222087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271 5.20081197 4.77186890 4.58694232 3.67733792 5.16631755 6.32870521 6.73645555 8.61711635
POOCCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCCC	$\begin{array}{l} 1.44835665\\ -1.04984959\\ -0.30266885\\ -1.06600258\\ -1.09623503\\ -0.18905620\\ -1.68127432\\ -1.23242863\\ -2.83319146\\ -3.28284917\\ -3.39766703\\ -4.28555929\\ -2.81978708\\ -3.24943097\\ -1.31874942\\ -2.15880668\\ -2.57059359\\ -2.46775272\\ -3.11890619\\ -1.95381877\\ -2.19874538\\ -1.12030554\\ -0.71441795\\ -0.79722161\\ -0.14376871\\ -1.77123850\\ -2.80272911\\ -3.08520489\\ -3.46127534\\ -4.25336544\\ -3.10603661\\ -3.60632120\\ -2.08213158\\ -1.43572263\\ -0.45011830\\ \end{array}$	20.43430813 17.26105507 17.20831307 20.13399215 20.30205435 20.89924711 19.70405196 19.84458927 18.91319687 18.43739840 18.73140872 18.10901962 19.33731675 19.17805742 22.68327129 23.20666114 22.54357470 24.57630343 24.96770466 25.43645292 26.49952954 24.92154126 25.58191739 23.55870422 23.16803974 20.30637233 21.06589082 22.01858200 20.62695103 21.24283339 19.41576269 19.08016497 18.66129965 19.09156420 18.01137998	5.41165053 7.80678199 5.55590269 9.84495430 11.12593669 91.12593669 11.23977342 12.25082947 13.23547462 12.10660070 12.97944197 10.83504215 10.71593561 9.71008592 8.72261144 8.50317996 9.50525908 10.26624302 9.52951042 10.31330913 8.54770159 8.56664662 7.54042534 6.77022087 7.52324894 6.74064575 6.95544366 6.36246850 6.80791271 5.20081197 4.77186890 4.58694232 3.67733792 5.16631175 6.32870521 6.73664555

С	-0.45802469	16.64005166	10.08296308	
Н	0.37627309	16.23896695	10.68282052	
Н	-0.62826443	17.67615770	10.40413394	
С	-1.72308853	15.79686732	10.30075393	
Н	-2.53627035	16.17476779	9.66774796	
Н	-2.05086861	15.85060209	11.34866297	
Н	-1.54480759	14.74088983	10.04150267	
С	-1.47175595	17.35675891	4.71104185	
Н	-2.16325425	16.51494294	4.91083434	
C	-1.03798088	17.32672629	3.24210820	
Ĥ	-0.32112489	18.14124582	3.07505656	
Н	-1.92853948	17.53369087	2.62476451	
С	-0.41765011	15.97954802	2.84489722	
Ĥ	0.44671025	15.76284502	3.48662920	
Н	-0.07162089	16.00354784	1.80182159	
Н	-1.14707909	15.16104056	2.95664787	
C	0.94298216	18.32973076	7.24450786	
č	1.21184547	17.48143543	8.32188346	
Č	2.45775386	17.49231728	8.95504196	
Ĥ	2.66414729	16.83238112	9.79920224	
C	3.43127793	18.38740700	8.48397498	
Н	4.41276123	18.42395247	8.95938475	
C	3.15621713	19.24681701	7.40628079	
Н	3.92190114	19.94425583	7.06981299	
C	1.90162380	19.23810159	6.76101811	
č	2.81885080	21.67689055	5.55692059	
C	2.79328531	22.52623338	6.68689579	
Н	2.02042159	22.38908734	7.44513480	
C	3.76034101	23.52640402	6.84830858	
Н	3.73045732	24.16933122	7.72956545	
C	4.75869560	23.70602320	5.87560954	
Н	5.50681619	24.49082982	5.99685308	
C	4.78771088	22.87115013	4.74871476	
Н	5.56366650	23.00082813	3.99221152	
C	3.82783956	21.85817009	4.59107684	
Н	3.86448584	21.20608385	3.71875756	
C	1.88737349	19.49699309	3.87551629	
C	1.54939669	20.08168870	2.63484725	
Н	1.08602933	21.07010352	2.61118928	
C	1.78783169	19.39689245	1.43513121	
Н	1.52278789	19.86110757	0.48379392	
C	2.34942177	18.10985989	1.45932229	
Н	2.52195944	17.57094257	0.52651538	
C	2.67936470	17.51833252	2.68790860	
Н	3.10922365	16.51603927	2.71429402	
С	2.45247597	18.20612908	3.88879625	
Н	2.69521526	17.73460756	4.83950101	
11	2.07521520	11.15400150	1.05750101	

• Pd(II) complex (*S*,*S*,*S*)-4-11

С	-7.31325408	4.25310845	-0.85667450
С	-8.28059072	3.24108705	-0.78570509
С	-7.93246512	1.87306479	-0.83350841
С	-6.56592680	1.55823475	-0.95121539
С	-5.60241497	2.57883528	-0.94677030
С	-5.95192899	3.92821540	-0.91974585
С	-5.80235929	0.25904828	-1.18699475
0	-4.46953808	0.56102088	-0.74196306
С	-4.22397977	1.97335870	-0.96471382
С	-6.20460791	-1.08161074	-0.61060131
С	-6.05771916	-2.04471358	-1.61904520
С	-5.60278464	-1.37020693	-2.88440487
0	-5.81246810	0.03811196	-2.61280113
С	-6.63842165	-1.45885458	0.66281852
С	-6.96377874	-2.81704924	0.88649366
С	-6.79154084	-3.77349867	-0.12268943
С	-6.32587692	-3.39353971	-1.39253495
Р	-7.16546413	-0.32380265	2.05888680
С	-6.38682904	-1.09286747	3.59038195
С	-5.26550328	-1.93255208	3.47963304
С	-4.61203625	-2.37426697	4.64162253
С	-5.07302815	-1.97280590	5.90407583
С	-6.19098177	-1.12829268	6.00673118

-			
С	-6.85107267	-0.68525327	4.85272282
С	-6.31391949	1.34702163	2.09853202
С	-4.91584006	1.43367961	2.21162113
С	-4.32023188	2.68131853	2.44001535
С	-5.11800771	3.83205463	2.56350910
С	-6.51389486	3.73556724	2.46194299
č	-7.11631737	2.48903229	2.23762135
P	-9.32435365	0.62351327	-0.51425630
C	-10.85596410	1.64584230	-0.88476260
С	-11.49617429	2.29316183	0.18570072
С	-12.57591914	3.14907211	-0.06982510
С	-13.02373340	3.34333004	-1.38745467
С	-12.39005938	2.68140842	-2.45046109
С	-11.29882039	1.83342641	-2.20215958
С	-9.21260266	-0.65364489	-1.87287261
Ĉ	-9.67151795	-1.95567625	-1.61016789
C	-9.64592498	-2.90995223	-2.63764062
C			
	-9.18516828	-2.56198054	-3.91757950
C	-8.73835520	-1.25492923	-4.17440044
С	-8.73901121	-0.29827514	-3.14835466
С	-3.68605429	-0.95947120	-4.51823506
С	-4.13283724	-1.66674286	-3.23085743
С	-2.09229412	1.54184743	-2.30938289
С	-3.46371114	2.23190164	-2.27740697
Ĥ	-7.63113301	5.29610331	-0.82964156
н	-9.32554374	3.52692046	-0.68616545
H	-5.18618099	4.70481481	-0.92297706
Н	-3.62679775	2.32103147	-0.10691819
Н	-6.25369424	-1.62320374	-3.73470222
Н	-7.37771482	-3.11556068	1.84997212
Н	-7.05021874	-4.81325055	0.07980392
Н	-6.21410856	-4.12622044	-2.19246212
Н	-4.90604542	-2.24554626	2.49992378
Н	-3.74420512	-3.02994199	4.55429657
Н	-4.56605695	-2.31945358	6.80584430
H	-6.55951071	-0.82137195	6.98620323
Н	-7.73243805	-0.05189617	4.93020940
Н	-4.30415581	0.53726095	2.12415480
Н	-3.23524151	2.75288559	2.53166522
Н	-4.65058437	4.80083117	2.74651897
Н	-7.13567811	4.62582302	2.56091574
Н	-8.20055590	2.39269092	2.17264325
Н	-11.16611965	2.10027636	1.20617408
Н	-13.07863312	3.64599650	0.76096440
Н	-13.87133813	4.00200992	-1.58288924
Н	-12.74445882	2.81979047	-3.47295034
Н	-10.80667392	1.31362397	-3.02367618
Η	-10.05101401	-2.20698801	-0.62018825
Н	-9.99229999	-3.92407491	-2.43553562
Н	-9.17475736	-3.30658540	-4.71542256
Н	-8.37837332	-0.98053258	-5.16723401
Н	-8.34911614	0.70243305	-3.32788003
Н	-2.62954037	-1.16867867	-4.74107223
Н	-3.81063922	0.12672242	-4.41717802
Н	-4.29200442	-1.29308113	-5.37578636
H	-4.02572267	-2.75960897	-3.33513720
Н	-3.51816056	-1.35346984	-2.37499949
Н	-1.57366928	1.73804862	-3.25933052
Н	-2.21227782	0.45618507	-2.19819514
Н	-1.45092205	1.89990159	-1.48809403
Η	-3.34567476	3.32363939	-2.38362073
Н	-4.09554755	1.88395096	-3.10589737
Pd	-9.49227147	-0.41132773	1.63300775
Cl	-9.77093887	-1.66774910	3.69369728
Cl	-11.80753886	-0.89597443	1.04150558
CI	-11.00/33000	-0.0737/443	1.04130338
	BJ/ID	mmlor (C D D)	4 11
00	• Pd(11) co	omplex (<i>S</i> , <i>R</i> , <i>R</i>)-	4-11
88			
Р	-0.90564579	21.52013263	8.07779970
Р	2.16806278	20.99025472	6.47176278
0			
	-0.95078418	17.50092404	7.78344443
		17.50092404 17.41601059	
0	0.26231649	17.41601059	5.76324743
O C	0.26231649 -1.35079455	17.41601059 20.49334597	5.76324743 9.58341307
0	0.26231649	17.41601059	5.76324743

Н	0.32824982	21.20966943	10.74427984
С	-1.00182537	19.95375836	11.91884091
Ĥ	-0.40280373	20.03804863	12.82624115
C	-2.20318614	19.22714287	11.92942193
н			
	-2.54124877	18.74478364	12.84790900
С	-2.96190689	19.10416717	10.75368338
Н	-3.87973749	18.51560037	10.75070386
С	-2.52681182	19.72004304	9.57191755
Н	-3.09627699	19.60549305	8.65032876
С	-2.07811039	22.99178613	8.10870204
č	-3.31591521	22.94245564	8.76589386
Н	-3.59917440	22.05709976	9.33400277
C	-4.17452960	24.05232766	8.71015458
Н	-5.13153366	24.01991386	9.23297052
С	-3.79997274	25.19919794	7.99340370
Н	-4.46757351	26.06118174	7.95464202
С	-2.55672563	25.24404137	7.34024500
Н	-2.25008198	26.14192128	6.80217674
C	-1.69126862	24.14455192	7.40367756
н	-0.70195011	24.18974647	6.94644487
С	-1.57184049	20.51924643	6.61029570
С	-2.57753439	21.10411717	5.80966925
Н	-2.97380301	22.08201989	6.07103630
С	-3.07103039	20.46494859	4.66402478
Н	-3.84502743	20.95527900	4.07220695
С	-2.56317241	19.21849103	4.27200935
Ĥ	-2.92556535	18.71775093	3.37372654
C	-1.57076247	18.63761675	5.06063761
		19.26307605	
C	-1.07849215		6.21933342
С	-0.13644549	18.24956101	6.86830331
С	-0.07712602	16.73118240	8.64616236
Н	0.10333090	15.74710319	8.17271379
С	-0.73048509	16.54030308	10.01427912
Н	-0.04073392	15.93589047	10.62676931
Н	-0.82197094	17.52233748	10.49259318
C	-2.10007994	15.85181375	9.91914806
Н	-2.78224143	16.45923472	9.30961356
H	-2.54365684	15.72250480	10.91712146
H	-2.00967130	14.85971302	9.44853023
С	-0.88281105	17.30245735	4.88677719
Н	-1.54157975	16.50154626	5.27534765
С	-0.42867905	16.94448117	3.47329937
Н	0.18390921	17.76809073	3.08736338
Н	-1.32969555	16.88069572	2.84074421
С	0.34796931	15.61851467	3.43331392
Ĥ	1.24046857	15.68523157	4.07080849
н	0.66520449	15.37840211	2.40785480
Н	-0.27268430	14.78792381	3.80501582
С	1.13189910	18.52477805	7.66037711
С	1.19002909	17.54924819	8.66917596
С	2.27780561	17.44768145	9.53640179
Н	2.29901847	16.68787867	10.31862176
С	3.32751412	18.37020794	9.39845726
Н	4.17769098	18.34332250	10.08059748
C	3.27809876	19.35584370	8.40480813
Н	4.06599659	20.10605994	8.34966042
C	2.19103983	19.42625597	7.50254438
С	3.92621206	21.18316787	5.83375426
С	4.73532032	20.05528789	5.61476928
Н	4.40086149	19.06761642	5.93196298
С	5.98559189	20.21054947	4.99472612
Н	6.61778244	19.33673683	4.82913123
C	6.41732724	21.48311330	4.59112502
Ĥ	7.39053821	21.60109094	4.11210904
C	5.60085671	22.60498736	4.81000651
H	5.93869160	23.59742811	4.50950412
С	4.35332156	22.45948237	5.43211456
Н	3.72870756	23.32718987	5.63638208
С	1.27434986	20.86034865	4.82956477
С	0.32560267	21.84322627	4.51388123
Н	0.02905756	22.56109464	5.27864226
C	-0.22383937	21.89327637	3.22490956
Н	-0.97091852	22.65059116	2.98586328
C	0.19392073	20.97612557	2.24997567
Н	-0.22438864	21.02116090	1.24349056

C H C H Pd Cl Cl	1.16460265 1.50269242 1.70385045 2.45924527 1.30592700 3.54114409 0.51438352	20.01004349 19.30654444 19.94474043 19.19958720 22.42607994 23.30447829 23.78480381	2.56315947 1.80090692 3.85490949 4.09994906 8.12900717 8.48135910 9.99552640
80		omplex of SDP 4	4-23
Р	-1.03083899	21.55173105	7.79536988
Р	2.06039684	20.97466813	6.28960293
С	-0.98767733	17.27059421	7.80515386
С	0.48969899	17.27541403	5.72945301
С	-1.17251147	20.64137704	9.42161851
С	-0.19336920	20.85507908	10.40490781
Н	0.61803050	21.55401082	10.21023899
С	-0.28099594	20.16741362	11.62413992
Н	0.48626648	20.32328689	12.38278033
С	-1.34406614	19.28218619	11.86419547
Н	-1.40668141	18.74883844	12.81411744
С	-2.33370203	19.08793244	10.88660721
Н	-3.16603158	18.40732435	11.07224498
С	-2.24948386	19.76984386	9.66351473
Н	-3.00405613	19.60940129	8.89232618
С	-2.37400534	22.87238890	7.79650815
С	-3.56310989	22.72329959	8.52344495
Н	-3.71042163	21.85588468	9.16493512
С	-4.55644256	23.71238959	8.43701482
Н	-5.47684825	23.60433495	9.01278008
С	-4.36292258	24.83628667	7.61966909
Н	-5.13549755	25.60405963	7.55576632
С	-3.16798370	24.98138634	6.89472715
Н	-3.00368192	25.86401401	6.27527072
С	-2.16904360	24.00423565	6.98807280
Н	-1.21825627	24.12638373	6.46826680
С	-1.62995039	20.35434238	6.43789451
С	-2.64632130	20.85252935	5.59049559
Н	-3.12033800	21.80180167	5.82533229
С	-3.04515981	20.17503217	4.43248802
Н	-3.83436917	20.59829226	3.80963759
С	-2.40782050	18.98468165	4.06529556
Н	-2.67452727	18.46637950	3.14288064
С	-1.41241163	18.47079658	4.89864663
С	-1.03002399	19.11722531	6.09778147

С	-0.10218013	18.16784479	6.86441945
C	-0.05474690	16.79733495	8.94048947
Н	0.37345269	15.80353583	8.72388060
Н	-0.57529273	16.72957884	9.90688781
С	-0.63511182	17.19009738	4.67484001
Н	-1.27933528	16.31149857	4.84780952
Н	-0.24920012	17.11921210	3.64696471
С	1.00587261	18.64190236	7.78981086
С	1.03784974	17.84420493	8.95626251
С	1.99605847	18.04206580	9.95188413
Н	1.98724353	17.42729632	10.85311158
С	2.95104882	19.05776303	9.78535274
Н	3.69259476	19.25349626	10.56049546
С	2.94764391	19.84151370	8.62623437
Н	3.66787028	20.65294431	8.51999286
С	1.99414993	19.62085026	7.60270120
С	3.86625655	20.99920877	5.76514979
С	4.66533426	19.85186794	5.90938651
Н	4.28271740	18.98077970	6.44009574
С	5.96281023	19.83578595	5.37245063
Н	6.58357362	18.94597223	5.48890700
С	6.45521834	20.95915690	4.69154949
Н	7.46505963	20.94742688	4.27859857
С	5.64944659	22.10042277	4.54584606
Н	6.03219412	22.97969317	4.02645439
С	4.35337044	22.12513843	5.07908614
Η	3.73494920	23.01604166	4.99246844
С	1.26700022	20.62682274	4.62312530
С	0.22470765	21.47042040	4.21311281
Н	-0.15955015	22.21140280	4.91352790
С	-0.31141761	21.34152882	2.92477727
Н	-1.13177921	21.98861599	2.61432776
С	0.20582017	20.38124490	2.04238014
Н	-0.21157895	20.28179575	1.03935322
С	1.27360231	19.55993966	2.44232346
Н	1.69727208	18.83230403	1.74860401
С	1.81829993	19.69351626	3.72706708
Н	2.68292733	19.09902480	4.02175109
Pd	1.08559651	22.67095635	7.60769297
Cl	3.20684563	23.84515231	7.63532991
Cl	0.23715372	24.18187929	9.32889567
Н	1.36983928	17.77012854	5.30232504
Н	0.80322027	16.29761799	6.12167921
Н	-1.44210045	16.44644670	7.23832794
Н	-1.79714027	17.87613280	8.22169960

Energy values and geometric parameters are described in the following tables.

	Gel ^a (kcal/mol)	H _{vib} ^b (kcal/mol)	Svib ^b (kcal/mol)	G _{corr} ^c (kcal/mol)
Diol (<i>S</i> , <i>S</i> , <i>S</i>)-4-7	-650274.0	230.2	148.1	-650088.0
Diol (<i>R</i> , <i>S</i> , <i>S</i>)-4-7	-650273.2	230.1	147.5	-650087.0
Diphosphine (S,S,S)- SPIRAP	-1565059.2	450.3	245.8	-1564682.1
Diphosphine (S,R,R)- SPIRAP	-1565058.5	449.8	238.7	-1564679.8
Pd(II) complex ((<i>S</i> , <i>S</i> , <i>S</i>)-4-11)	-1243189.9			
Pd(II) complex ((<i>S</i> , <i>R</i> , <i>R</i>)-4-11)	-1243184.6			
Pd(II) complex of SDP (4-23)	-1099473.7			

Table C.1. Calculated energy values for the described geometries.

^a Gas-phase electronic energy (ωB97X-D/SMD/6-31G**). ^b Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. ^c Corrected free energy values at 298K. Pd(II) complexes vibrational, rotational, and translational contributions to the total free energy were not calculated.

Table C.2. Geometrical	parameters for SPIRAF	Pd-complexes.
------------------------	-----------------------	---------------

	α (°) ^a	β (°) ^a	$ au_4^{ m b}$	τ4 ^{°c}	Bite angle (°) ^d
(<i>S</i> , <i>S</i> , <i>S</i>)-4-11	173.8	169.9	0.11	0.13	94.4
(<i>S</i> , <i>R</i> , <i>R</i>)-4-11	174.8	172.8	0.09	0.09	95.3
4-23	174.7	169.2	0.11	0.13	94.2

^a Largest angles at Pd. ^bgeometry index parameter, calculated from: $\tau_4 = -0.00709\alpha - 0.00709\beta + 2.55$;^{[19] c}geometry index parameter, calculated from $\tau_4' = -0.00399\alpha - 0.01019\beta + 2.55$;^{[20] d}P-Pd-P angle.

X-Ray crystallography studies

(S,S,S)-SPIRAP(O) – CCDC Number: 1812181

Table C.3. Crystal data and structure refinement for aa1711:

Identification code	aa1711	
Empirical formula	C43 H38 O3 P2	
Formula weight	664.67	
Temperature	85(2) K	
Wavelength	1.54184 A	
Crystal system, space group	Hexagonal, P6(4)	
	a = 15.22339(13) A alpha = 90 deg.	
Unit cell dimensions	b = 15.22339(13) A beta = 90 deg.	
	c = 12.75692(12) A gamma = 120 deg.	
Volume	2560.35(5) A^3	
Z, Calculated density	3, 1.295 Mg/m^3	
Absorption coefficient	1.472 mm^-1	
F(000)	1053	
Crystal size	0.190 x 0.150 x 0.100 mm	
Theta range for data collection	3.352 to 69.236 deg.	
Limiting indices	-18<=h<=17, -18<=k<=18, -15<=l<=15	
Reflections collected / unique	39371 / 3173 [R(int) = 0.0574]	
Completeness to theta $= 67.684$	100.00%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.82517	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3173 / 1 / 224	
Goodness-of-fit on F^2	1.109	
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0865	
R indices (all data)	R1 = 0.0343, wR2 = 0.0866	
Absolute structure parameter	-0.130(18)	
Extinction coefficient	0.0089(6)	
Largest diff. peak and hole	0.191 and -0.227 e.A^-3	

(*S*,*R*,*R*)-SPIRAP(O) – CCDC: 1812182

 Table C.4. Crystal data and structure refinement for aa2393:

Identification code	aa2393
Empirical formula	C43 H38 O3 P2
Formula weight	664.67
Temperature	225(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, P2(1)
	a = 10.01060(10) A alpha = 90 deg.
Unit cell dimension	b = 31.3874(3) A beta = 90.2490(10) deg.
	c = 11.24650(10) A gamma = 90 deg.
Volume	3533.69(6) A^3
Z, Calculated density	4, 1.249 Mg/m^3
Absorption coefficient	1.422 mm^-1
F(000)	1400
Crystal size	0.12 x 0.04 x 0.04 mm
Theta range for data collection	2.816 to 69.327 deg.
Limiting indices	-12<=h<=11, -37<=k<=38, -13<=l<=13
Reflections collected / unique	54487 / 12761 [R(int) = 0.0529]
Completeness to theta $= 67.679$	100.00%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.59423
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	12761 / 1 / 870
Goodness-of-fit on F ²	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0481, wR2 = 0.1318
R indices (all data)	R1 = 0.0509, wR2 = 0.1375
Absolute structure parameter	0.048(15)
Extinction coefficient	n/a
Largest diff. peak and hole	0.776 and -0.350 e.A^-3

HPLC, SFC, and GC traces

1-(3-(methoxymethoxy)phenyl)propan-1-ol (4-2a)

Racemic

Retention Time [min]	% Area
15.446	50.56
17.033	49.44

(S)-4-2a

Retention Time [min]	% Area
15.912	0.09
18.161	99.91

1-(3-((benzyloxy)methoxy)phenyl)propan-1-ol (4-2b)

Retention Time [min]	% Area
21.454	49.87
23.025	50.13

(*R*)-4-2b

Retention Time [min]	% Area
22.623	99.43
24.154	0.57

1-(3-(benzyloxy)phenyl)propan-1-ol (4-2c)

Racemic

(*R*)-4-2b

Retention Time [min]	% Area
20.276	98.91
23.915	1.09

Retention Time [min]	% Area
21.868	0.86
25.427	99.14

Dimethyl (E)-2-(1,3-diphenylallyl)malonate (4-17)

Retention Time [min]	% Area
10.590	49.39
15.338	50.61

Using (*S*,*S*,*S*)-SPIRAP

Retention Time [min]	% Area
12.622	1.71
17.132	98.29

2-(2-(1-methoxy-3-phenylpropyl)phenyl)pyridine (4-14)

Retention Time [min]	% Area
7.14	50.18
7.78	49.82

Using (*S*,*S*,*S*)-SPIRAP

Retention Time [min]	% Area
7.38	2.30
7.92	97.70

9-methylene-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanofluorene (4-20)

Retention Time [min]	% Area
3.56	50.05
3.93	49.95

Using (*S*,*S*,*S*)-**SPIRAP**(**O**)

Retention Time [min]	% Area
3.48	3.05
3.84	96.95

Using (*R*,*S*,*S*)-SPIRAP(O)

Retention Time [min]	% Area
3.52	94.69
3.90	5.31

Methyl acetylalaninate (4-22)

Racemic (GC conditions 1)

Retention Time [min]	% Area
28.800	50.176
29.476	49.824

Racemic (GC conditions 2)

Retention Time [min]	% Area
48.687	49.415
51.078	50.585

With (*R*,*R*,*R*)-SPIRAPO (GC conditions 1)

Retention Time [min]	% Area
28.914	96.449
29.344	3.551

With (*S*,*R*,*R*)-SPIRAPO (GC conditions 2)

Retention Time [min]	% Area
48.776	4.785
51.595	95.215

With (S)-SDPO (GC conditions 1)

With (S)-BINAPO (GC conditions 2)

4-methyl-N-(2-methylene-1-(4-nitrophenyl)-3-oxobutyl)benzenesulfonamide (C-2)

Retention Time [min]	% Area
4.03	50.14
4.57	49.86

Using (*S*,*S*,*S*)-SPIROMP

Retention Time [min]	% Area
4.00	91.41
4.55	8.59

Using (*R*,*S*,*S*)-SPIROMP

Retention Time [min]	% Area
4.08	14.08
4.62	85.92

References

- [1] K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56, 4264–4268.
- [2] M. C. Wang, Y. H. Wang, G. W. Li, P. P. Sun, J. X. Tian, H. J. Lu, *Tetrahedron Asymmetry* **2011**, *22*, 761–768.
- [3] A. E. Green, V. Agouridas, E. Deniau, *Tetrahedron Lett.* **2013**, *54*, 7078–7079.
- [4] R. Matsubara, T. F. Jamison, *Chem. An Asian J.* **2011**, *6*, 1860–1875.
- [5] Y. Ebe, M. Onoda, T. Nishimura, H. Yorimitsu, Angew. Chem., Int. Ed. 2017, 56, 5607– 5611.
- [6] J. H. Xie, H. F. Duan, B. M. Fan, X. Cheng, L. X. Wang, Q. L. Zhou, Adv. Synth. Catal. 2004, 346, 625–632.
- [7] J. Hu, H. Hirao, Y. Li, J. Zhou, Angew. Chem., Int. Ed. 2013, 52, 8676–8680.
- [8] R. Guo, T. T. L. Au-Yeung, J. Wu, M. C. K. Choi, A. S. C. Chan, *Tetrahedron Asymmetry* **2002**, *13*, 2519–2522.
- [9] S. Takizawa, K. Kiriyama, K. Ieki, H. Sasai, *Chem. Commun.* **2011**, *47*, 9227–9229.
- [10] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., *Mol. Phys.* **2015**, *113*, 184–215.
- [11] A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
- [12] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.
- [13] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [14] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299–310.
- [15] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284–298.
- [16] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283.
- [17] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA, 2015.
- [18] J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- [19] L. Yang, D. R. Powell, R. P. Houser, *Dalt. Trans.* 2007, 0, 955–964.
- [20] A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, *Polyhedron* 2015, 90, 47–57.

APPENDIX D

Experimental Information for Chapter 5, Section 5.2

(Adapted from:

Supporting information for: Tay, J. H.; Argüelles, A. J.; DeMars, M.; Zimmerman, P. M.; Sherman, D.; Nagorny, P. J. Am. Chem. Soc. 2017, 139, 8570.)

The experimental work was done by Dr. Tay Rosenthal while the computational studies were done by me. A complete account of the experiments, including the synthesis of substrates as well as characterization data can be found in the supplementary information for reference [1].

Computational Studies

All quantum chemical calculations were performed using the Q-Chem 4.3 package.^[2] Geometry optimizations were evaluated using the B97-D density functional^[3,4] using the double- ζ - quality basis set with polarization functions on all atoms, 6-31G**.^[5,6] Pictorial representations of important stationary points were generated in Discovery Studio 4.1 Visualizer.^[7]

For the growing string reaction path optimizations, between 7-15 nodes were used, including the end points. In the initial phase, termed growth phase, new nodes were added when the perpendicular gradient magnitude on the frontier node was less than 0.10 Hartree/Å for double-ended strings, or when the RMS gradient was less than 0.005 Hartree/Å for single-ended strings. Additionally, an initial maximum optimization step size of 0.1 Å-radians was used. When the total perpendicular gradient magnitude over all nodes, F, reached a value of less than 0.3, the climbing

image search was initiated. When F < 0.1, or when the node of highest energy had a RMS gradient below double the nodal convergence criterion and F < 0.2, the exact transition state search was initiated. The string is considered fully converged when an RMS gradient < 0.0005 Hartree/Å was obtained for the node representing the transition state. Further detail regarding the growing string implementation developed in the Zimmerman group can be found in the references.^[8–11]

The electronic Gibbs free energy values of all stationary points were computed through solvent corrected (dichloromethane) single point energies using the SMD model.^[12] For these calculations the ω B97X-D exchange functional^[13] was employed with a 6-31G** basis set. The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298.15 K. These frequency computations were performed using the B97-D functional and 6-31G** basis set. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below 50 cm⁻¹ were treated as if they were 50 cm⁻¹.

A model system consisting of diphenyl hydrogen phosphate (**DPPA**); 2,3,4-Tri-*O*-methyl- α -D-6-deoxyglucopyranosyl trichloroacetimidate **5-9A** and 2,4-*syn*-pentadiol (**X-3**) was utilized to explore various pathways leading to the overall conversion of the sugar donor to the respective *O*-glycoside. Single-ended growing string calculations were performed on optimized starting materials or intermediates as the fixed nodes with varying driving coordinates according to the pathways explored. To account for variation in conformations and binding complexes, the most stable conformations were sampled for the growing string calculations. These were obtained in part by manually sampling relevant torsions and angles of approach, and also by using an algorithm which allowed a thorough conformational analysis by ranking a vast number of unique conformers generated by the systematic variation of the torsional angles.^[14] In the latter approach, 10,000

configurations were sampled and the lowest 100 energy structures at the semi-empirical PM6 level of theory were further investigated.

The interaction between **DPPA** and **5-9A** is estimated to be favorable (~0.6 kcal/mol), due to the formation of a hydrogen bond between the acidic proton of **DPPA** and the basic nitrogen of 5-9A. An S_N2-like displacement of the trichloroacetimide moiety was modeled and found to be facile (TS1: 12.1 kcal/mol barrier). This was confirmed experimentally by the instantaneous formation of β -phosphates upon mixing donor A with phosphoric acids (R)-5-6f (cf. SI-8). Following the exothermic release of trichloroacetamide (TCA), β -phosphate X-4 would bind to the diol **X-3** (**5-9C** to **5-9D**). Subsequently, a second SN₂-like displacement of the phosphate may occur to yield α -O-glycoside α -5-9F, with an estimated barrier of 20.7 kcal/mol (TS2). This double displacement mechanism supports the α -selectivity observed for the reaction of donor A with 6**dEB** catalyzed by a phosphoric acid. The increased β preference of glycosylations with fucose, or with the less reactive 7 may be due to a competing phosphate anomerization of the β -phosphate to the more stable α -form. A computed ΔG of 0.7 kcal/mol has been calculated between the β phosphate X-4 and the more stable α anomer X-5. This difference could be easily enhanced by the introduction of bulky groups in the phosphate. This hypothesis is backed-up by the fact that mostly α -phosphate is formed when benzyl protected 6-deoxyfucose- α -trichloroacetimidate is treated with various CPAs. Additionally, an analogous uncatalyzed SN₂-like reaction of the atrichloroacetimidate 5-9A with diol X-3 to afford the β -glycoside (β -5-9F) was modelled but found to be high in energy (**TS3**: 34.8 kcal/mol barrier).

Figure D.1. Energy diagram for the CPA-catalyzed glycosylation of 1,3-diols.

A summary of calculated values, including solvent corrected single point electronic energies, as well as enthalpic and entropic corrections associated with vibrational, rotational, and translational energy at 298.15 K are provided below.

	G _{SMD} (kcal/mol) ^a	H _{vrt} (kcal/mol) ^b	Svrt (cal/mol.K) ^b	G _{corr} (kcal/mol) c
DPPA	-694020.3	139.1	124.1	-693918.2
6-deoxyglucose α-donor 5-9A	-1406312.9	197.2	158.6	-1406163.0
Diol	-218452.9	110.6	89.3	-218368.9
α-donor 5-9A bound to DPPA	-2100349.7	337.5	233.7	-2100081.8
TS1: formation of β -phosphate	-2100336.1	336.7	236.1	-2100069.7
β -phosphate bound to TCA	-2100363.5	338.5	235.6	-2100095.2
β-phosphate	-1103956.6	303.2	191.9	-1103710.6
ТСА	-996395.8	33.4	90.4	-996389.3
β -phosphate bound to diol X-3	-1322424.8	415.7	235.9	-1322079.4
TS2: formation of α -glycoside α -5-9F	-1322401.9	414.1	238.5	-1322058.9
α -glycoside α -5-9F bound to DPPA	-1322436.3	415.7	230.5	-1322089.2
α-glycoside α-5-9F	-628393.9	274.5	160.6	-628167.3
α-phosphate-5-5	-1103958.0	303.4	190.6	-1103711.4
TS3: direct formation of $β$ -glycoside β-5-9F	-1624742.1	305.9	206.6	-1624497.8

Table D.1. Calculated energy values for the described geometries.

^aGas-phase electronic energy (∞ B97X-D/SMD/6-31G**). ^bVibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. ^cCorrected free energy values at 298K.

Cartesian coordinates for starting geometries, transition states, and products are described below.

20	• DPPA			
28				
C	-4.10738	1.21178	1.67082	
C C	-4.32407 -3.77138	0.40975 -0.88019	2.80231 2.85779	
č	-3.01683	-1.37353	1.78490	
С	-2.81599	-0.55925	0.66357	
C O	-3.34328 -2.02978	0.73714 -1.09985	0.59343 -0.36745	
P	-2.48372	-1.12452	-1.93683	
0	-4.11105	-1.20952	-1.89617	
C	-4.74524	-2.28253	-1.23677	
C C	-4.44406 -5.13723	-3.61239 -4.63529	-1.55857 -0.89293	
č	-6.11810	-4.32673	0.06254	
С	-6.40610	-2.98501	0.36196	
C O	-5.71568 -2.35275	-1.95070 0.40615	-0.28444 -2.47481	
0 0	-2.33273	-2.13225	-2.71372	
H	-4.52731	2.21742	1.62366	
Н	-4.91706	0.78782	3.63560	
H H	-3.93622 -2.59989	-1.51166 -2.37938	3.73162 1.78978	
Н	-3.16652	1.35198	-0.28709	
Н	-3.67775	-3.82513	-2.30196	
Н	-4.91016	-5.67542	-1.12977	
H H	-6.65609 -7.16379	-5.12708 -2.74004	0.57176 1.10724	
Н	-5.89945	-0.90333	-0.05226	
Η	-1.69489	0.41669	-3.18923	
38	• 6-deoxy	glucose α-d	onor 5-9A	
a	0.0.0001		0.01.501	
C C	0.26331	-2.70561	-3.31594	
C C C	0.26331 1.12486 0.83283	-2.70561 -1.77389 0.14105	-2.39151	
C C C	1.12486 0.83283 0.33207	-1.77389 0.14105 -0.32343	-2.39151 -0.91748 0.47132	
C C C C	1.12486 0.83283 0.33207 -1.20020	-1.77389 0.14105 -0.32343 -0.21179	-2.39151 -0.91748 0.47132 0.56065	
C C C C C	1.12486 0.83283 0.33207 -1.20020 -1.65131	-1.77389 0.14105 -0.32343 -0.21179 1.19601	-2.39151 -0.91748 0.47132 0.56065 0.13065	
C C C C C C N	1.12486 0.83283 0.33207 -1.20020	-1.77389 0.14105 -0.32343 -0.21179	-2.39151 -0.91748 0.47132 0.56065	
C C C C C C C N C	1.12486 0.83283 0.33207 -1.20020 -1.65131 -1.06267 2.36918 -2.04257	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369	
C C C C C C C N C C	1.12486 0.83283 0.33207 -1.20020 -1.65131 -1.06267 2.36918 -2.04257 2.07803	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846	
C C C C C C C N C	1.12486 0.83283 0.33207 -1.20020 -1.65131 -1.06267 2.36918 -2.04257	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369	
C C C C C C C C C C C C C C C C C C C	1.12486 0.83283 0.33207 -1.20020 -1.65131 -1.06267 2.36918 -2.04257 2.07803 -3.74677 -1.32763 0.31367	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458 1.73744 3.03770 -0.82195	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049	
C C C C C C C C C C C O O	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\end{array}$	$\begin{array}{c} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ \end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398	
C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047 \end{array}$	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458 1.73744 3.03770 -0.82195 1.41030 -1.72338	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684	
C C C C C C C C C C C O O	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\end{array}$	$\begin{array}{c} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ \end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398	
C C C C C C N C C C C O O CI CI CI O	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994 \end{array}$	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458 1.73744 3.03770 -0.82195 1.41030 -1.72338 -4.04275 -3.44810 -1.66051	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014	
C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413 \end{array}$	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458 1.73744 3.03770 -0.82195 1.41030 -1.72338 -4.04275 -3.44810 -1.66051 -0.42623	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142	
C C C C C C N C C C C O O CI CI CI O	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994 \end{array}$	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458 1.73744 3.03770 -0.82195 1.41030 -1.72338 -4.04275 -3.44810 -1.66051	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014	
C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.77094\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\end{array}$	$\begin{array}{c} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284	
$\begin{array}{c} C\\ $	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914	
C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.77094\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\end{array}$	$\begin{array}{c} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284	
C C C C C C N C C C C O O Cl Cl O O O H H H H H H H	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\\ 1.92492\\ 0.91534\\ -2.65433\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207	
C C C C C C N C C C C O O Cl Cl O O O H H H H H H H H H H H H H H H H	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\\ -2.41131\end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\\ 1.92492\\ 0.91534\\ -2.65433\\ -1.78202\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207 3.20887	
$\begin{array}{c} C \\ C $	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\\ -2.41131\\ -2.85860\end{array}$	-1.77389 0.14105 -0.32343 -0.21179 1.19601 1.58149 -1.86436 -1.77266 -1.79458 1.73744 3.03770 -0.82195 1.41030 -1.72338 -4.04275 -3.44810 -1.66051 -0.42623 1.25688 0.15063 0.37456 -0.94539 1.92492 0.91534 -2.65433 -1.78202 -2.08785	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207 3.20887 1.49598	
C C C C C C N C C C C O O Cl Cl O O O H H H H H H H H H H H H H H H H	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\\ -2.41131\end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\\ 1.92492\\ 0.91534\\ -2.65433\\ -1.78202\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207 3.20887	
C C C C C C N C C C C O O CI CI CI O O O H H H H H H H H H H H H H H H H	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70794\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\\ -2.41131\\ -2.85860\\ -1.19903\\ 2.20614\\ 2.76376\end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\\ 1.92492\\ 0.91534\\ -2.65433\\ -1.78202\\ -2.08785\\ -2.47153\\ -2.83794\\ -1.58656\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207 3.20887 1.49598 2.06930 1.47562 0.32023	
C C C C C C N C C C C O O CICICIO O O H H H H H H H H H H H H H H H H H	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70994\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\\ -2.41131\\ -2.85860\\ -1.19903\\ 2.20614\\ 2.76376\\ 2.30963\\ \end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\\ 1.92492\\ 0.91534\\ -2.65433\\ -1.78202\\ -2.08785\\ -2.47153\\ -2.83794\\ -1.58656\\ -1.12408\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207 3.20887 1.49598 2.06930 1.47562 0.32023 2.00779	
C C C C C C N C C C C O O CI CI CI O O O H H H H H H H H H H H H H H H H	$\begin{array}{c} 1.12486\\ 0.83283\\ 0.33207\\ -1.20020\\ -1.65131\\ -1.06267\\ 2.36918\\ -2.04257\\ 2.07803\\ -3.74677\\ -1.32763\\ 0.31367\\ 0.38560\\ -0.43047\\ 1.26779\\ -1.07781\\ 0.70794\\ -1.64413\\ -3.07072\\ 1.92592\\ 0.76753\\ -1.65073\\ -1.29475\\ -1.50169\\ 2.79942\\ -2.41131\\ -2.85860\\ -1.19903\\ 2.20614\\ 2.76376\end{array}$	$\begin{array}{r} -1.77389\\ 0.14105\\ -0.32343\\ -0.21179\\ 1.19601\\ 1.58149\\ -1.86436\\ -1.77266\\ -1.79458\\ 1.73744\\ 3.03770\\ -0.82195\\ 1.41030\\ -1.72338\\ -4.04275\\ -3.44810\\ -1.66051\\ -0.42623\\ 1.25688\\ 0.15063\\ 0.37456\\ -0.94539\\ 1.92492\\ 0.91534\\ -2.65433\\ -1.78202\\ -2.08785\\ -2.47153\\ -2.83794\\ -1.58656\end{array}$	-2.39151 -0.91748 0.47132 0.56065 0.13065 -1.24497 -2.14021 2.17369 1.15846 1.15641 -1.60114 -1.91049 -1.25398 -4.67684 -4.02500 -2.34439 0.76014 1.90142 -0.00736 -0.98444 1.21284 -0.12914 0.88367 -2.00422 -2.62207 3.20887 1.49598 2.06930 1.47562 0.32023	

H H H H	-3.43061 -2.41087 -0.84385 -0.93211	2.77024 3.21272 3.69992 3.26546	1.40149 -1.58701 -0.86778 -2.59995
19	Diol X	-3	
C O H C H H H H C H C H O H C H H H H H	$\begin{array}{c} -1.90604\\ -1.03433\\ -0.13388\\ -3.32347\\ -3.57045\\ -3.38942\\ -4.05911\\ -1.88167\\ -1.49941\\ -1.40502\\ -0.19029\\ -2.29241\\ 0.86545\\ -0.28433\\ 0.14135\\ 1.65118\\ 0.22125\\ 1.09954\\ -0.64019 \end{array}$	5.13988 5.00926 4.97374 4.83513 5.47818 3.78583 5.00882 6.18177 4.20385 3.17658 4.60734 4.20422 4.51270 5.66112 3.72443 4.93464 2.67401 4.02732 3.80687	-2.86560 -1.74314 -2.11551 -2.37409 -1.51755 -2.04874 -3.17400 -3.25720 -4.02516 -3.63674 -4.71435 -3.72293 -5.04361 -5.92298 -4.10026 -5.60777 -6.37481 -6.69373
66	• a-dono	or 5-9A boun	d to DPPA
C C C C C C N C C C C O O CI CI CI O O O H H H H H H H H H H H H H H H H	0.20014 1.45109 1.95514 1.70857 0.35316 0.21117 0.41719 2.67172 -0.41053 3.01837 -1.19956 0.41680 1.02355 1.70825 -0.82839 0.68364 -0.72791 1.75210 0.27212 -1.09631 2.97533 2.49557 -0.37618 2.75953 -0.39999 -1.45957 0.09102 2.90794 3.82628 3.27418 -2.23772 -0.96239 -0.51896 -0.54700 1.22323	-3.68847 -2.75959 -0.45788 -0.34102 0.31857 1.61296 1.32464 -3.14982 -0.34124 -1.95136 3.16568 2.58828 -1.52249 0.68639 -3.04214 -5.39093 -3.70318 -1.62756 0.64394 2.16743 -0.76155 0.31909 -0.36771 2.32784 0.63726 -4.14764 0.02272 -0.45301 -1.31916 -2.95579 -1.95838 -1.23282 3.52501 2.75199 4.01494 3.09854 3.26245	-2.17462 -1.97865 -1.29579 0.22655 0.52848 -0.28992 -1.79111 -1.99431 2.69788 1.42345 0.85928 -2.63940 -1.79205 -2.01543 -3.51532 -2.58748 -0.62129 0.83731 1.91764 -0.15844 -0.15844 -1.51920 0.62587 0.23788 0.04023 -2.12701 -2.18184 3.73460 2.36377 2.63788 1.85355 0.67661 2.22192 0.83729 1.85075 0.65318 -2.51914 -2.31442

Н	0.56987	2.33738	-3.69751
Н	3.77943	2.57352	-1.94413
Н	3.24927	3.82152	0.16536
С	4.12552	2.21740	-0.97675
С	3.82646	2.89686	0.20982
0	5.06918	0.41577	-2.16132
С	4.86249	1.02311	-0.92609
0	5.66205	-1.35575	-3.90524
Н	9.48795	1.80251	-4.54860
С	4.25870	2.39257	1.44861
С	9.25651	1.49085	-3.52924
Р	5.71233	-1.07931	-2.44921
Н	7.86954	-0.07196	-4.15692
С	8.35111	0.43901	-3.32472
С	5.31525	0.51208	0.30156
Н	4.01628	2.91774	2.37246
С	9.86459	2.13513	-2.44028
Η	10.57007	2.94918	-2.60974
С	5.00541	1.20656	1.48279
С	8.05517	0.05341	-2.00895
0	5.02558	-2.09699	-1.43403
Η	4.11374	-2.47109	-1.73639
С	9.55973	1.72790	-1.13181
Н	5.88621	-0.41081	0.33982
0	7.18404	-1.01247	-1.72634
С	8.64914	0.68522	-0.90880
Н	5.35215	0.80523	2.43608
Н	10.02494	2.22438	-0.27907
Н	8.38800	0.36158	0.09757

•	TS ₁ :	formation	of β-	phos	phate X-4	
---	-------------------	-----------	-------	------	-----------	--

С	0.96082	-3.58642	2 70(92
C			-2.70683
C	1.63722 1.47117	-2.19861 0.53729	-2.33866 -1.05649
C		-0.03347	-1.05649
C	1.02428	-0.03347	0.000
	-0.51054	0.00.72	0.43605
C	-1.01112	1.39719	0.05016
C	-0.61260	1.75035	-1.39429
N	2.95567	-2.18029	-2.17045
C	-1.16009	-1.61306	2.08987
С	2.77819	-1.44631	1.15690
С	-2.98067	1.97495	1.28565
С	-0.82511	3.21339	-1.74598
0	0.84652	-1.24255	-2.24242
0	0.82160	1.46016	-1.68150
Cl	0.08183	-3.38131	-4.26952
Cl	2.14111	-4.97564	-2.88195
Cl	-0.19486	-3.98835	-1.37775
0	1.49690	-1.34320	0.50643
0	-0.87357	-0.24174	1.78910
0	-2.43117	1.47683	0.05781
Н	2.46353	0.35351	-1.46312
Н	1.45156	0.67721	1.01056
Н	-0.96096	-0.75050	-0.24025
н	-0.56437	2.13623	0.74173
Н	-1.15374	1.08516	-2.08030
н	3.48671	-3.03535	-2.28628
н	-1.51015	-1.63079	3.13095
н	-1.95745	-2.00129	1.42967
н	-0.26419	-2.24208	1.98227
Н	2.81979	-2.46204	1.57217
Н	3.59866	-1.30463	0.44436
Н	2.87695	-0.70456	1.96421
Н	-4.06927	2.00314	1.14211
Н	-2.72546	1.31763	2.12928
Н	-2.61401	2.99801	1.49418
11	-2.01401	2.79801	1.49410

Н	-1.88409	3.45216	-1.58610
Н	-0.20750	3.85319	-1.10060
н	-0.56343	3.40185	-2.79515
н	7.19760	0.60233	2,70564
н	9.55958	-0.23773	2.71147
С	7.61998	0.10376	1.83434
C	8.93864	-0.36349	1.82328
0	5.51803	0.42260	0.79545
C	6.81992	-0.04918	0.68984
0	3.46327	1.76472	0.14547
Н	5.96063	5.58130	1.90826
С	9.46615	-0.97820	0.67471
C	6.48928	4.85769	1.28462
Р	4.66169	1.08284	-0.47816
Н	4.66446	3.95746	0.49268
С	5.75241	3.96661	0.49234
С	7.32849	-0.67300	-0.46376
Н	10.49708	-1.33498	0.66603
С	7.89375	4.82659	1.28078
Н	8.45847	5.52484	1.89958
С	8.65592	-1.12721	-0.46141
С	6.44247	3.03342	-0.29804
0	4.42390	0.03979	-1.57461
Н	3.47896	-1.31136	-1.88742
С	8.56732	3.88906	0.47956
Н	6.69472	-0.78048	-1.34062
0	5.76677	2.13208	-1.12718
С	7.84430	2.98445	-0.31043
Н	9.05555	-1.60286	-1.35936
Н	9.65747	3.85130	0.47767
Н	8.33958	2.22538	-0.91466

	 β-phos 	phate X-4 bo	ound to TCA
66			
С	1.43608	-3.62307	-1.86648
С	1.89092	-2.13674	-2.23136
С	2.46391	0.93530	-0.42405
С	1.90763	0.14628	0.76743
С	0.36770	0.04724	0.63978
С	-0.28758	1.39451	0.23279
С	0.48667	2.09748	-0.90688
Ν	3.20988	-1.97316	-2.42871
С	-1.34408	-1.12341	1.85825
С	2.59595	-1.78467	2.01629
С	-2.00070	0.58546	-1.28226
С	-0.03644	3.50140	-1.17677
0	1.02606	-1.28238	-2.40309
0	1.87039	2.21146	-0.50240
Cl	1.30874	-4.52277	-3.44568
Cl	2.62109	-4.49629	-0.78418
Cl	-0.16544	-3.59904	-1.05352
0	2.52336	-1.14116	0.74299
0	-0.11445	-0.39507	1.91379
0	-1.68703	1.25416	-0.05378
Η	2.29998	0.37833	-1.35724
Н	2.16142	0.69230	1.69464
Η	0.16886	-0.70977	-0.13531
Η	-0.25112	2.05064	1.11546
Н	0.43587	1.48126	-1.82189
Η	3.89211	-2.66377	-2.13873
Н	-1.50416	-1.53609	2.86446
Н	-2.18865	-0.47453	1.58181
Н	-1.27636	-1.95569	1.13337
Н	3.18904	-2.69629	1.86431
Н	3.10160	-1.13536	2.75665
Н	1.59811	-2.04174	2.39793
Н	-3.07457	0.36020	-1.23710

ННННННССОСОНССРНССНСНССОНСНОСННН	$\begin{array}{r} -1.80828\\ -1.43911\\ -1.10695\\ 0.09043\\ 0.51194\\ 5.31053\\ 5.31798\\ 5.70102\\ 5.69574\\ 6.21627\\ 6.18377\\ 3.87072\\ 3.11407\\ 6.14954\\ 3.3380\\ 4.85692\\ 4.70507\\ 4.22609\\ 6.64186\\ 6.13066\\ 2.72077\\ 2.02612\\ 6.62065\\ 4.48778\\ 4.28441\\ 3.54701\\ 2.99661\\ 6.98797\\ 5.42456\\ 3.88591\\ 6.96763\\ 2.51925\\ 4.10827\end{array}$	$\begin{array}{c} 1.23165\\ -0.35291\\ 3.44889\\ 4.12162\\ 3.96711\\ -1.00083\\ -3.51284\\ -1.56023\\ -2.96161\\ 0.53974\\ -0.87128\\ 1.14944\\ 6.33217\\ -3.65259\\ 5.70111\\ 1.26298\\ 4.39693\\ 4.62855\\ -1.53497\\ -4.74213\\ 5.95838\\ 6.79281\\ -2.93841\\ 3.82978\\ 0.74675\\ 5.13714\\ -0.95479\\ 2.77831\\ 4.05890\\ -3.47065\\ 5.33138\\ 3.39712 \end{array}$	-2.15706 -1.41947 -1.41576 -0.27774 -2.00532 0.95968 0.94690 0.11403 0.08597 -0.97770 -1.00396 -0.21213 0.20221 -1.05020 -0.65957 -1.49729 0.42874 -0.52099 -2.14767 -1.06906 -1.89614 -1.99736 -2.16501 -1.63690 -2.77824 -2.67420 -3.00114 -3.00118 -1.49071 -2.87864 -3.05101 -3.96230 -3.71370
	• B-nhos	phate X-4	
57	P Photo		
ССССССССООООНННННННННННННННННН	$\begin{array}{c} 1.47686\\ 0.60932\\ -0.86324\\ -1.00333\\ -0.02545\\ -2.31227\\ 1.61514\\ -3.20561\\ -0.03058\\ 1.31546\\ 0.67970\\ -1.64261\\ -2.32105\\ 1.23038\\ 0.95245\\ -1.24101\\ -0.74835\\ -0.30064\\ -2.86896\\ -3.02397\\ -1.59549\\ 1.58628\\ 2.63833\\ 1.32055\\ -4.17177\\ -3.32455\\ -2.83489\\ -1.04481\\ 0.27303\\ 0.66921\\ 5.88937\\ 5.50414 \end{array}$	0.75613 0.36618 0.73514 2.18097 2.43035 -0.66424 -1.41230 2.99100 3.87609 2.12708 -1.03657 0.59582 2.42003 0.11893 0.94565 0.06490 2.88240 1.75337 -0.63841 -0.80577 -1.49908 -2.50732 -1.09617 -0.98370 3.12707 2.33247 3.97659 4.14323 4.54316 4.00183 -0.68770 -2.78178	-0.54949 0.66051 0.37630 -0.14281 -1.31339 1.67322 1.91546 0.33325 -1.79068 -0.87737 0.89632 1.56532 -0.63392 -1.41848 1.53535 -0.41801 0.67379 -2.14541 2.62029 0.83778 1.68004 1.97100 1.67030 2.89173 -0.17215 1.20662 0.67644 -2.11254 -0.96980 -2.62746 1.84259 3.18841

ССОСОНССРНССНСНССОСНОСННН	5.35922 5.13228 5.15204 4.87463 2.84662 3.87327 4.42318 4.58426 3.97372 3.10237 4.14125 4.17544 4.24466 5.92851 6.26372 3.94646 5.06969 3.51296 6.84073 3.81621 4.65564 6.41426 3.39641 7.88625 7.09661	$\begin{array}{c} -1.54314\\ -2.71296\\ -0.29037\\ -1.46944\\ 0.58362\\ 4.69951\\ -3.78431\\ 4.10683\\ 0.52854\\ 3.44143\\ 3.41933\\ -2.53079\\ -4.68940\\ 4.03547\\ 4.57291\\ -3.68810\\ 2.66273\\ 0.01787\\ 3.27102\\ -2.43553\\ 1.99732\\ 2.57513\\ -4.51772\\ 3.21279\\ 1.96801 \end{array}$	1.42541 2.16536 -0.59106 0.11407 -0.19009 2.16014 1.59845 1.58268 -1.37607 0.12093 0.44265 -0.47725 2.17989 1.98240 2.87011 0.28134 -0.28189 -2.68842 1.23707 -1.50109 -1.45701 0.09569 -0.16427 1.54245 -0.49663
9	• TCA		
O C H Cl N Cl C H Cl	$\begin{array}{c} -1.30869\\ -0.73985\\ 0.40827\\ -2.13744\\ 0.17868\\ -1.85601\\ -1.05625\\ 0.63350\\ 0.50310\end{array}$	-1.27960 -1.86867 -3.12783 -0.13582 -2.85558 -3.01396 -1.54373 -3.31513 -1.20288	-1.52241 -2.42298 -1.31179 -4.08638 -2.25794 -4.69634 -3.95653 -3.03440 -4.86013
76	 β-phos 	phate X-4 bo	ound to diol X-3
ССССССССООООННННННННННН	$\begin{array}{c} 1.84302\\ 0.92078\\ -0.54694\\ -0.76878\\ 0.27196\\ -2.01106\\ 1.95007\\ -3.07259\\ 0.19068\\ 1.60229\\ 1.12007\\ -1.40662\\ -2.05504\\ 1.72489\\ 1.12443\\ -0.77719\\ -0.63706\\ 0.12061\\ -2.63151\\ -2.65198\\ -1.24973\\ 2.04668\\ 2.94739\\ 1.47461\\ -3.97791\\ -3.26267\end{array}$	0.53432 -0.16624 0.13892 1.65713 2.24318 -1.60483 -2.06691 2.14640 3.75726 1.92888 -1.57864 -0.34856 1.94070 0.10685 0.25008 -0.32768 2.14752 1.76035 -1.88121 -1.52127 -2.38109 -3.14903 -1.60767 -1.87953 2.43674 1.23505	-1.24980 -0.24088 -0.60910 -0.76925 -1.75070 0.10919 0.79893 -0.33068 -1.87658 -1.26381 -0.26196 0.42637 -1.31085 -2.25769 0.76135 -1.58127 0.21551 -2.73134 0.97357 -0.78780 -0.06622 0.64218 0.78349 1.77921 -0.88180 0.25601

Н	-2.79514	2.96284	0.36503	Н -1.47422 1.04078	-1.48528
Н	-0.81712	4.03330	-2.21019	Н -0.42905 2.80970	0.80059
Н	0.38792	4.22750	-0.90129	Н -0.80352 3.55151	-2.14574
Н	0.93235	4.11962	-2.60111	Н -2.73839 -1.11597	0.99636
Н	5.39579	0.50424	1.55101	Н -3.05322 -0.42922	-0.63591
Н	5.23222	-1.21380	3.36711	Н -1.58505 -1.42166	-0.35498
С	5.40841	-0.55875	1.31973	Н 1.40073 -2.43633	-0.53838
С	5.31564	-1.53097	2.32696	Н 2.26920 -1.04341	0.18565
0	5.66692	-0.02911	-1.03343	Н 0.65019 -1.51869	0.81781
С	5.51082	-0.98166	-0.01108	Н -3.79404 3.81019	1.01426
0	3.19937	0.35082	-0.80056	Н -3.13767 2.17039	1.38382
Н	3.40260	3.49806	2.85006	Н -2.24156 3.63353	1.90297
С	5.32618	-2.89790	2.00320	Н -0.73483 5.42525	-0.46855
С	4.23258	3.30114	2.17005	Н 0.86406 4.85200	0.09974
Р	4.45214	0.80499	-1.72611	Н 0.68020 5.48544	-1.56458
Н	2.94930	2.85612	0.45665	Н 4.85598 -0.88050	2.17764
С	3.96344	2.94961	0.83857	Н 3.85864 -3.09634	2.82902
С	5.52788	-2.33651	-0.35770	C 4.65441 -1.65063	1.43406
Н	5.25190	-3.64732	2.79169	C 4.09331 -2.88767	1.78332
С	5.55633	3.39895	2.63008	O 5.52715 -0.16988	-0.24868
Н	5.75462	3.67151	3.66718	C 4.95166 -1.38747	0.08758
С	5.43336	-3.29642	0.66132	O 3.34399 1.24582	-0.10411
С	5.04507	2.69662	-0.01433	Н 4.41067 5.63850	1.70158
õ	4.32097	0.63573	-3.19810	C 3.82713 -3.85227	0.79688
С	6.62389	3.15058	1.75188	C 5.10151 4.82321	1.47728
Н	5.61117	-2.62176	-1.40450	P 4.51971 0.93375	-1.00920
0	4.80474	2.34829	-1.35910		-0.30125
С	6.37257	2.79276	0.41851	C 4.87709 4.01506	0.35355
Н	5.44179	-4.35559	0.40139	C 4.69083 -2.34306	-0.90869
Н	7.65327	3.22564	2.10379	Н 3.39059 -4.81309	1.07487
Н	7.17857	2.57496	-0.28022	C 6.20532 4.58703	2.31336
Н	0.77238	-2.39868	-2.50333	Н 6.37531 5.21866	3.18657
Н	3.12086	-2.16792	-2.14734	C 4.12877 -3.57581	-0.54697
Н	-1.76265	-2.56004	-2.71620	C 5.77035 2.96969	0.07258
Н	0.46166	-0.24397	-4.16246	O 4.28216 0.51250	-2.45442
0	-0.44336	-0.56372	-3.96612	C 7.08760 3.53421	2.02189
0	2.20676	-0.75051	-4.34317	Н 4.92016 -2.09308	-1.94317
С	0.83784	-2.62252	-3.57847	O 5.59393 2.19159	-1.06914
С	3.32888	-2.58446	-3.14278	C 6.87352 2.71891	0.90016
С	-1.68886	-2.59821	-3.81342	Н 3.92443 -4.32016	-1.31852
Н	3.04308	-0.34220	-4.03368	Н 7.94453 3.34383	2.67055
Н	0.77617	-3.71774	-3.69541	Н 7.53585 1.88924	0.65724
Н	-2.53992	-2.04830	-4.23975	Н 0.66742 0.10119	-5.90071
Н	4.30479	-2.21414	-3.49054	Н 2.82742 -1.18939	-6.50917
С	-0.37397	-1.96659	-4.27286	Н -1.44532 1.44155	-5.34813
С	2.21477	-2.17753	-4.11527	Н 0.95328 0.13848	-3.41018
	3.37582				
Н		-3.68058	-3.05535		-3.34025
Н	-1.74663	-3.64949	-4.13319	O 2.37037 -0.47226	-3.94873
Н	-0.27272	-2.10035	-5.36969	C 1.28891 0.94929	-5.56780
Н	2.38706	-2.66468	-5.09418	C 3.42096 -0.33829	-6.14251
				C -0.82210 2.27211	-4.98647
				Н 3.09014 -0.27359	-3.27894
	• $1S_2:10$	rmation of a	-glycoside α-9		-6.43461
76				Н -1.36443 2.78423	-4.17765
				Н 4.36018 -0.72090	-5.71833
~	1 9 40 7 4	1	4 45005		
С	1.26956	1.61067	-1.65837	C 0.52201 1.73978	-4.49125
С	0.52545	0.73608	-0.68413	C 2.64085 0.41643	-5.06410
С	-0.93888	1.19047	-0.53350	Н 3.66075 0.32229	-6.99038
С	-0.92647	2.68732	-0.18160	Н -0.66630 2.98572	-5.80849
С	-0.17351	3.51796	-1.24489	Н 1.15265 2.57932	-4.14980
С	-2.26913	-0.68969	0.09941	Н 3.24652 1.26218	-4.69619
C C				11 5.21052 1.20210	
C	1.28432	-1.44626	-0.08258		
С	-2.88332	3.20403	1.11090		
Č	0.18899	4.91426	-0.76595		
					14 DDD
0	1.09747	2.90155	-1.71070	 a-glycoside a-9F bo 	ound to DPPA
0	0.64517	-0.61640	-1.07743	76	
Õ	-1.56764	0.48383	0.53198		
				A	1 1
0	-2.22882	3.26424	-0.16353	C 0.92283 1.79659	-1.16778
Н	2.17487	1.26615	-2.14478	C 0.70724 0.29456	-0.86890
Н	1.03046	0.91899	0.27947	C -0.78742 -0.04651	-0.97656
11	1.03040	0.21077	0.2/24/	0.70742 -0.04031	-0.77050

С	-1.59267	0.91134	-0.08129	Н 0.69473	5.28851
С	-1.29048	2.38038	-0.43383	Н 2.16627	3.38421
č	-1.89361	-2.12200	-1.39739	Н 3.48152	2.21210
		-1.81999		11 5.40152	2.21210
C	1.63426		-1.67090		
С	-3.57610	-0.06086	0.83060		
С	-1.98024	3.35814	0.50818	 α-glycosi 	de α-9F
0	0.13380	2.61066	-0.31457	48	
0	1.55243	-0.39430	-1.78856		
ŏ				G 0.60210	1.00500
	-1.00601	-1.40018	-0.54614		1.98582
0	-2.99813	0.68143	-0.24293		0.44556
Н	1.96255	2.07526	-0.96663	С -0.75412	-0.08825
Н	1.04207	0.10143	0.16287		0.71049
Н	-1.10535	0.08761	-2.02350	C -1.39866	2.23212
Н	-1.28410	0.74505	0.96672		-2.38958
Н	-1.60465	2.55863	-1.47579	С 2.70452	-0.02425
Н	-1.99113	-3.13021	-0.97080	С -3.33923	-0.65817
Н	-2.88450	-1.64144	-1.44698	C -2.01345	3.04657
Н		-2.20506	-2.42388		
	-1.48657			O -0.00187	2.60888
Н	2.59337	-2.09872	-2.12574	O 1.29281	-0.22352
Н	1.60675	-2.12855	-0.61699	O -0.75085	-1.46020
Н	0.80574	-2.31154	-2.20496	O -2.92465	0.41345
Н	-4.64806	-0.15466	0.60705	Н 1.71897	2.38459
Н	-3.12341	-1.06233	0.91659	Н 1.23168	0.21993
Н	-3.45264	0.46735	1.79530	Н -1.27631	0.03726
Н	-3.06485	3.19367	0.46886	Н -1.10911	0.46802
Н	-1.62740	3.19798	1.53806	Н -1.88928	2.47348
Н	-1.75889	4.39469	0.21856		-3.38692
Н	3.97430	2.17646	0.41278	Н -1.68902	-2.19512
Н	2.47894	2.53528	2.37500	Н 0.09989	-2.34530
С	3.54200	1.33081	0.94042		-0.63930
		1.51926			
С	2.70022		2.04704		1.02937
0	4.61610	-0.27326	-0.58797	Н 3.20519	-0.33556
С	3.79258	0.02374	0.49269	Н -4.43607	-0.69402
0	4.14825	1.95209	-1.96330		-1.61954
Ĥ	7.98020	4.29719	-0.05812		
					-0.47152
С	2.14322	0.42339	2.72454	Н -3.06328	2.75208
С	7.96482	3.20854	-0.12614	Н -1.47164	2.85665
Р	4.75736	0.58611	-1.98920	Н -1.96061	4.12067
Н	6.53778	3.16377	-1.77832	Н -0.42446	3.08538
С	7.16132	2.59016	-1.09553	Н 1.05443	2.48512
С	3.27043	-1.08246	1.18057	Н -1.60049	4.27112
Н	1.48728	0.58271	3.58076	Н 0.90618	0.94949
С	8.74546	2.43592	0.74860	O 0.16010	2.26125
Н		2.92281			
	9.37012		1.49836	O 1.22896	1.05466
С	2.44688	-0.87913	2.29647		3.41367
С	7.14861	1.18991	-1.16904	C 1.96603	2.60647
0	4.33372	-0.39646	-3.15081	С -0.60977	4.58695
Č	8.71933	1.03479	0.65729	Н 0.76418	4.40967
Н	3.50791	-2.08320	0.82393	Н -0.63019	4.66010
0	6.38472	0.54007	-2.15314	Н 2.69857	1.85340
С	7.91534	0.40187	-0.30210	C 0.45123	3.57208
Н	2.03266	-1.74204	2.81941	C 1.63304	2.41285
Н	9.32045	0.43018	1.33780	Н 2.38074	3.60999
Н	7.86727	-0.68273	-0.38703	Н -0.38572	5.57809
Н	0.52179	2.49202	-5.07890	Н 1.44207	3.89048
Н	2.01061	1.31360	-6.87182	Н 2.55008	2.61574
Н	-0.70668	4.18214	-3.45604		
Н	1.66619	0.64425	-3.53418		
0	0.62729	1.99005	-2.54865		
0	2.25150	0.53317	-4.32044	• a-phosph	ate X-5
С	1.45462	2.86094	-4.62121	57	
Č	2.90528	1.65830	-6.33235	51	
c	0.25394		-2.95602	0 001501	1 70150
		4.37965		C -0.24524	1.72159
Н	3.48262	-0.05795	-3.64102		1.20370
Н	1.73054	3.79387	-5.13762	C 0.63420	-0.30706
Н	0.07264	4.54680	-1.88725		-1.05506
Н	3.69985	0.90897	-6.45652		-0.42079
C		3.19034			
	1.20055		-3.14323		-0.90709
С	2.58771	1.84942	-4.85055		3.18560
Н	3.24525	2.60782	-6.77193	С -0.48588	-3.32814

-3.39372

-2.64878

-4.31746

-1.31233

-1.14161

-0.99956 0.06699

-0.16528

-1.68417

-2.33336

0.86369

0.96604 -0.24311

-2.24467

-0.59811

0.01535

-1.23420

-0.20723

-1.96470

1.06165

-1.12195 -1.23257

-2.32488 -2.30383

-3.17138

-2.54487 -1.39762 0.80194

0.54380 1.91415

1.08958 1.90475

0.74007

-5.06313

-7.20798 -3.05936

-4.05338 -2.58893

-4.96722 -4.65931

-6.60355

-2.70051

-5.07882 -1.60605

-6.92645 -3.13907

-5.12135

-6.78104

-3.12340

-2.75776 -4.52225

-1.85611

-0.52633 -0.60560

-1.11153

-2.41088

0.89958

0.36803

-0.35234

С	-2.49752	-1.00821	-2.83189		С	0.50716	-0.14507	0.72777
0	-1.36996	1.01060	-2.24156		С	-1.02167	0.06764	0.61034
0	1.55093	1.88088	-0.18972		С	-1.31433	1.45375	0.01084
0	0.97952	-0.81892	0.68249		С	-0.62421	1.59768	-1.35510
0	-0.31062	-2.41150	-1.43482		Ν	2.23908	-2.42859	-2.23480
Н	-0.53430	2.77849	-1.79492		С	-2.10451	-1.29628	2.25220
Н	-0.42278	1.36775	0.25017		С	1.99584	-1.78077	1.66455
Н	1.44750	-0.47959	-1.32922		С	-3.43128	2.25686	0.79353
Н	-1.40298	-1.00122	-0.33402		С	-0.73427	2.99188	-1.94935
Н	-0.40577	-0.57305	-3.20138		0	0.10072	-1.56194	-1.93703
Н	2.52409	-1.36661	1.88956		0	0.81904	1.30019	-1.27448
Н	2.87274	-1.53929	0.13154		Cl	-0.76927	-2.96206	-4.49767
Н	2.86429	0.08615	0.87934		Cl	1.31108	-4.93661	-3.77191
Н	2.33718	3.53851	0.68727		Cl	-0.94117	-4.43406	-1.92052
Н	0.94838	3.88860	-0.37939		0	0.73599	-1.50352	1.04725
Н	0.67348	3.13374	1.24248		0	-1.61964	0.00602	1.90012
Н	-0.29017	-4.32934	-0.76118		0	-2.70308	1.61630	-0.25758
Н	0.20589	-3.11344	0.47526		Н	1.78118	-0.48072	-1.09048
Н	-1.52306	-3.29203	0.03415		Н	0.86382	0.51588	1.54035
Н	-2.38561	-2.09199	-2.96147		Н	-1.43242	-0.70080	-0.06398
Н	-3.25450	-0.81333	-2.05764		Н	-0.94736	2.23888	0.69955
Н	-2.83325	-0.55913	-3.77632		Н	-1.03235	0.83112	-2.02681
Н	3.90082	1.07997	-5.97134		Н	2.65867	-3.25347	-2.65864
Н	5.79193	2.03382	-7.31737		Н	-2.62286	-1.18160	3.21378
С	4.00845	2.15480	-6.10632		Н	-2.81657	-1.66882	1.49392
Õ	2.00384	2.44164	-4.81875		Н	-1.27888	-2.01710	2.34968
Ĉ	5.06374	2.69970	-6.85259		Н	1.92370	-2.80338	2.05530
Õ	0.77734	1.58645	-2.91434		Н	2.82774	-1.73781	0.94471
č	3.08199	3.02152	-5.51516		Н	2.19843	-1.08093	2.49644
H	3.65529	-2.12141	-3.63708		Н	-4.47222	2.31769	0.44924
C	5.18588	4.09078	-6.99745		Н	-3.37443	1.68123	1.72876
H	2.63984	0.11572	-4.02344		Н	-3.04884	3.27978	0.97377
P	1.82545	2.76653	-3.22282		Н	-1.79726	3.24151	-2.05427
C	3.95946	-1.27945	-3.01406		Н	-0.25489	3.72723	-1.28529
č	3.38232	-0.02009	-3.24160		Н	-0.25411	3.02989	-2.93606
Н	5.35839	-2.44082	-1.83494		н	5.56720	1.07669	-0.57853
C	3.18083	4.41301	-5.64990		Н	4.62606	2.77708	1.09124
č	4.24586	4.94170	-6.39443		н	6.43752	-0.76225	-2.22254
H	6.00933	4.50896	-7.57729		Н	3.25974	-1.58183	-1.55454
C	4.91377	-1.45947	-2.00184		0	4.00676	-0.94002	-1.08893
õ	1.44706	4.14833	-2.83371		ŏ	2.90412	0.87755	0.19728
č	3.76597	1.05966	-2.42883		č	4.78549	1.31985	-1.31673
Н	2.44227	5.05119	-5.16799		C	3.89632	3.08841	0.33018
0	3.27198	2.35518	-2.57678		C	5.59429	-0.53150	-2.89049
c	5.28993	-0.36608	-1.20404		Н	3.38505	-0.00379	-0.15293
c	4.71605	0.89445	-1.41096		Н	5.19616	2.07312	-2.00522
Н	6.02914	-0.49396	-0.41225		Н	5.28530	-1.45766	-3.39498
H	4.33570	6.02314	-6.50366		Н	2.98749	3.44137	0.83637
H	4.98170	1.75271	-0.79598		C	4.42666	0.02982	-2.07997
	4.70170	1.73271	0.17570		c	3.56330	1.92785	-0.60113
					Н	4.32243	3.92123	-0.24929
	• TS3+ 4	irect formet	ion of B-alve	oside β-9F from α-	H	5.92698	0.19062	-3.65215
	donor		ion of p-give	usine h-21, 110111 n-	H	3.57478	0.23975	-2.75529
57	401101	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Н	2.83306	2.25516	-1.35622
51					**	2.03300	2.23310	1.55022

С	0.18417	-3.63388	-3.10233
С	0.92248	-2.41207	-2.34934
С	1.24394	0.27515	-0.54510

References

- [1] J. H. Tay, A. J. Argüelles, M. D. Demars, P. M. Zimmerman, D. H. Sherman, P. Nagorny, *J. Am. Chem. Soc.* **2017**, *139*, 8570–8578.
- [2] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., *Mol. Phys.* **2015**, *113*, 184–215.
- [3] A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
- [4] S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- [5] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.
- [6] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [7] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA, 2015.
- [8] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [9] P. M. Zimmerman, *Mol. Simul.* **2015**, *41*, 43–54.
- [10] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [11] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [12] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [13] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- [14] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminform. 2011, 3, 33.

APPENDIX E

Experimental Information for Chapter 5, Section 5.3

Computational Studies

All quantum chemical calculations were performed using the Q-Chem 4.3 package.^[1] Geometry optimizations were evaluated using the B3LYP-D3 density functional^[2,3] using the double- ζ - quality basis set with polarization functions on all atoms, 6-31G**.^[4,5] Pictorial representations of important stationary points were generated in Discovery Studio 4.1 Visualizer.^[6]

For the growing string reaction path optimizations, between 7-15 nodes were used, including the end points. In the initial phase, termed growth phase, new nodes were added when the perpendicular gradient magnitude on the frontier node was less than 0.10 Hartree/Å for double-ended strings, or when the RMS gradient was less than 0.005 Hartree/Å for single-ended strings. Additionally, an initial maximum optimization step size of 0.1 Å-radians was used. When the total perpendicular gradient magnitude over all nodes, F, reached a value of less than 0.3, the climbing image search was initiated. When F < 0.1, or when the node of highest energy had a RMS gradient below double the nodal convergence criterion and F < 0.2, the exact transition state search was initiated. The string is considered fully converged when an RMS gradient < 0.0005 Hartree/Å was obtained for the node representing the transition state. Further detail regarding the growing string implementation developed in the Zimmerman group can be found in the references.^[7–10]

The electronic Gibbs free energy values of all stationary points were computed through solvent corrected (dichloromethane) single point energies using the SMD model.^[11] For these calculations the ω B97X-D3 exchange functional^[12] was employed with a 6-31G** basis set. The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298.15 K. These frequency computations were performed using the B3LYP-D3 functional and 6-31G** basis set. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below 50 cm⁻¹ were treated as if they were 50 cm⁻¹.

A model system consisting of biphenyl hydrogen phosphate (**BPA**), enol ether **5-15b**, and diol **5-16a** was utilized to explore various pathways that lead to formation either C2 glycosides **5-17a** or C3 glycosides **5-18a**. Both the direct addition of diol **16a** to enol ether **5-15b** (concerted and uncatalyzed pathways), as well as mechanisms mediated by axial phosphate **5-20a** and equatorial phosphate **5-20b**. To account for variation in conformations and binding complexes, the most stable conformations were sampled for the growing string calculations. These were obtained in part by manually sampling relevant torsions and angles of approach, and also by using an algorithm which allowed a thorough conformational analysis by ranking a vast number of unique conformers generated by the systematic variation of the torsional angles.^[13]

Figure E.1. Energy diagram for the CPA-catalyzed intermolecular acetalization of 6-deoxyglucose-derived 2,3-diols.

A summary of calculated values, including solvent corrected single point electronic energies, as well as enthalpic and entropic corrections associated with vibrational, rotational, and translational energy at 298 K are provided below.

Table E.I. Calculated ene	GSMD [kcal/mol] ^a	Svrt [cal/mol] ^b	H _{vrt} [kcal/mol.K] ^b	G _{corr} [kcal/mol]
BPA	-693422.0	113.1	128.3	-693327.4
BPA dimer	-1386862.3	176.6	257.5	-1386657.5
Diol 5-16a	-947766.9	152.8	242.5	-947570.0
Enol 5-15b	-219113.8	86.4	118.3	-219021.2
Enol 5-15b +diol 5- 16a complex	-1166892.4	194.1	362.8	-1166587.5
Enol 5-15b + BPA complex	-912550.3	154.3	248.3	-912348.0
Enol 5-15b + diol 5- 16a + BPA complex	-1860334.0	255.9	493.0	-1859917.2
Axial phosphate 5- 20a	-912556.7	148.1	249.2	-912351.6
Equatorial phosphate 5-20b	-912555.7	148.4	249.1	-912350.8
Axial phosphate 5- 20a + diol 5-16a	-1860336.4	252.1	493.2	-1859918.4
Equatorial phosphate 5-20b + diol 5-16a	-1860334.5	250.6	493.6	-1859915.6
TSu-c2	-1166847.0	195.6	360.0	-1166545.3
TS _{U-C3}	-1166845.4	191.0	359.1	-1166543.3
TS _{C-C2}	-1860321.1	248.0	490.6	-1859904.4
TSC-C3	-1860319.0	255.8	491.5	-1859903.7
TSPF	-912538.5	151.3	247.3	-912336.4
ТЅра-с2	-1860321.5	247.5	491.0	-1859904.3
ТЅРА-СЗ	-1860322.0	251.3	491.9	-1859905.0
ТЅре-с2	-1860315.9	255.2	491.4	-1859900.5
ТЅре-сз	-1860322.9	250.5	492.8	-1859904.8

Table E.1. Calculated energy values for the BPA-catalyzed acetalization of diols.

^aGas-phase electronic energy (ω B97X-D3/SMD/6-31G**). ^bVibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. ^cCorrected free energy values at 298K.

To probe the theoretical equilibrium constant for phosphate formation from enol ether **5**-**15b** and BPA, relevant geometries were reoptimized without dispersion (B3LYP/6-61g**). A summary of calculated values, including solvent corrected single point electronic energies, as well as enthalpic and entropic corrections associated with vibrational, rotational, and translational energy at 298 K for these geometries are provided below.

	GSMD [kcal/mol] ^a	Svrt	Hvrt	Gcorr [kcal/mol]
		[cal/mol] ^b	[kcal/mol.K] ^b	с
BPA	-693422.0	113.2	128.3	-693327.5
BPA dimer	-1386885.0	173.3	256.2	-1386680.5
BPA + enol ether 5- 15b complex	-912549.1	153.3	247.3	-912347.6
Enol ether 5-15b	-219113.8	86.7	118.2	-219021.4
Axial phosphate 5- 20a	-912567.5	150.4	248.5	-912363.8
Equatorial phosphate 5-20b	-912567.4	150.2	248.6	-912363.6

Table E.2. Calculated energy values geometries reoptimized without dispersion corrections.

^aGas-phase electronic energy (ω B97X-D3/SMD/6-31G**). ^bVibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. ^cCorrected free energy values at 298K.

Cartesian coordinates for starting geometries, transition states, and products are described below.

• BPA

26

BPA dimer

52

H -5.32892985 -0.85420909 -1.28047371 C -6.13555259 -1.43708757 -1.71343674 C -7.20799086 -1.83332005 -0.91850698 H -7.22375888 -1.57199351 0.13473974 C -8.26622681 -2.55053718 -1.47991429 H -9.10949020 -2.85863508 -0.86995850 C -8.24028230 -2.87101182 -2.83474932 H -9.03742928 -3.43345033 -3.30787037 C -7.15879207 -2.47322379 -3.61232181 O -7.14228475 -2.92974448 -4.93606147 C -6.07755336 -1.74857677 -3.08293863 H -3.44017013 -1.81801048 -2.43870421 H -1.52781751 -0.98007029 -3.76208865 C -3.60994463 -1.37729772 -3.41587383 C -2.53299939 -0.91020796 -4.16557501 C -4.92418681 -1.31145054 -3.90547711 C -2.74463553 -0.35827906 -5.43139126 H-1.90927967 0.01210191 -6.01703795 C -5.09648062 -0.76633387 -5.18731851 C -4.03682349 -0.28605231 -5.94749496 O -6.38809439 -0.62764005 -5.70192758 H-4.25115367 0.14079923 -6.92064201 P -7.14989837 -1.96048235 -6.21746262 O -8.63031006 -1.47576531 -6.41679910 O -6.49716367 -2.63570414 -7.37822793 H -8.72251943 -0.96833323 -7.28660788 H -6.93329658 -2.57049560 -8.93922133 O -8.51204319 -0.25371768 -8.71738570 O -7.17681296 -2.20581361 -9.84447963 O -6.06971448 0.07642575 -9.31562032 P -7.46237330 -0.66427660 -9.69353118 H -4.08887339 -1.46836524 -8.70292095 C -3.95274700 -0.98117491 -9.66229554 C -4.96087799 -0.15221535 -10.13864158 O -7.72408952 -0.25929964 -11.22756490 H -9.40713308 1.45645949 -12.08849189

C -7.35673416 0.98892095 -11.74005161
H -2.02149102 -1.82319172 -10.08676286
C -2.81549809 -1.17525679 -10.44369479
C -8.38496706 1.79295783 -12.21917380
C -4.90034854 0.47842992 -11.39011404
C -6.00226532 1.34050725 -11.88007376
C -8.07932331 2.98802219 -12.86583819
H -8.87955663 3.61595289 -13.24415423
C -5.72747321 2.55322091 -12.53322681
C -6.74514750 3.36614032 -13.02549363
H -4.69176051 2.85927084 -12.63993197
H -6.49655839 4.29697736 -13.52514674
C -2.71360783 -0.55310820 -11.69039169
C -3.74621658 0.25663288 -12.15778138
H -1.83599951 -0.71329964 -12.30868047
H -3.68015254 0.70530221 -13.14411031

• Diol 5-16a

45

C -7.29651667 -1.31448222 0.81837879 C -7.98754074 -2.09282284 -0.28440331 C -7.06281363 -2.14358202 -1.51236149 C -6.57340081 -0.73589698 -1.90192975 O -5.94313222 -0.09301983 -0.79699281 C -6.85222916 0.05465533 0.28963297 C -6.17915759 0.81666871 1.42601337 O -8.17258277 -1.10347960 1.91704525 O -8.28118838 -3.39917087 0.16716387 O -7.83009700 -2.74549014 -2.54279022 O -7.08985259 0.89280752 2.51959277 C -7.51919326 -0.38738269 2.95288106 C -8.47320549 -0.23357327 4.11351334 C -8.41123471 0.88863526 4.94420240 C -9.27142680 0.99617290 6.03755489 C -10.19206651 -0.01714808 6.30922112 C -10.25153176 -1.13970151 5.48102712 C -9.39521846 -1.24985090 4.38621044 S -5.37689753 -0.85758397 -3.28070381 C -5.65005586 0.71334987 -4.10153448 C -5.77015171 0.73544399 -5.49561940 C -5.94782039 1.95018769 -6.15812593 C -6.02809551 3.14093406 -5.43479268 C -5.91438094 3.11525033 -4.04326835 C -5.71007377 1.90958786 -3.37286690 H -6.40656700 -1.87897753 1.14259853 H -8.90500698 -1.55309692 -0.57148429 H -6.18917484 -2.75800830 -1.24307106 H -7.42656084 -0.14140270 -2.25889460 H -7.74895973 0.61119923 -0.02374349 H-5.24911020 0.29987368 1.71117037 H-5.93578638 1.84069450 1.13427888 H -8.62755967 -3.87745338 -0.59991894 H -7.26428961 -2.83454555 -3.32312113 H -6.62461716 -0.96723140 3.25487759 H-7.69868056 1.67432062 4.72137952 H -9.22376797 1.87399549 6.67533510 H-10.86131705 0.06766032 7.16050744 H -10.96887342 -1.92957770 5.68425938 H -9.44361774 -2.11075150 3.72868611 H -5.73599933 -0.19382200 -6.05595162 H -6.04050749 1.96107849 -7.24017870 H -6.17815245 4.08320995 -5.95285366 H -5.97120329 4.03916745 -3.47529194 H -5.59709400 1.88583865 -2.29430173

 Enol 5 	-15b
----------------------------	------

20

C -6.80079762 0.42751417 -0.14966134 C -7.63890678 1.46015848 -0.32995077 C -9.12870080 1.34668009 -0.10083277 C -9.59755304 -0.11255455 -0.01418213 $C \ -8.65989437 \ -0.92417927 \ \ 0.88668052$ C -7.23904099 -0.94024910 0.30725694 O -5.44745358 0.44127260 -0.36194305 C -4.86880165 1.63947490 -0.85111904 H-7.26382914 2.42741931 -0.64689313 H-9.40452319 1.87659839 0.82460790 H -9.66598172 1.86392361 -0.90680577 H-10.62854586-0.15891046 0.35472645 H -9.59752655 -0.55465739 -1.01958191 H-8.64013974-0.47052421 1.88628973 H -9.02445593 -1.95006985 1.01008562 H -6.51570126 -1.30847035 1.04420925 H -7.18069818 -1.63034222 -0.54619994 H-5.00144135 2.46940393 -0.14391093 H -3.80321296 1.43813059 -0.97501294 H-5.30119527 1.92952135 -1.81851267

- Enol 5-15b + diol 5-16a complex
- 65

C -9.74084568 -4.35471810 5.17475708
C -9.31491299 -4.14791691 6.48804807
C -8.16883300 -3.38945899 6.73258915
C -7.45002614 -2.84086829 5.67035035
C -7.87778418 -3.04586705 4.35505939
C -9.02534072 -3.80689818 4.11031112
C -7.06988614 -2.51306888 3.19816090
O -7.93438913 -2.24265302 2.10407192
C -7.16832847 -1.83208872 0.97918507
C -6.40968616 -0.54772309 1.34343719
C -5.55109808 -0.82022360 2.57522745
O -6.37911537 -1.34110279 3.60914174
C -8.03883974 -1.56437182 -0.23112682
C -7.10524800 -1.10177964 -1.35976969
C -6.30016965 0.13184098 -0.91087423
O -5.56343010 -0.13488276 0.26992608
O -7.94117058 -0.80578276 -2.46692956
O -8.75477702 -2.72812867 -0.59944679
H -6.32628636 -3.25993516 2.86411459
S -5.15530308 0.74596134 -2.21549281
C -3.91717472 -0.55792384 -2.23168001
C -3.88242497 -1.48856534 -3.27596134
C -2.88242219 -2.46206746 -3.31241894
C -2.88242219 -2.46206746 -3.31241894 C -1.92043535 -2.51497089 -2.30276181
C -1.95966714 -1.59194774 -1.25459461
C -2.94975796 -0.61077267 -1.21856510
H -10.63332705 -4.94158748 4.97688947
H -9.87345889 -4.57493257 7.31603665
H -7.83438206 -3.22168321 7.75230046
H -6.56321957 -2.24459545 5.85273231
H -9.35453695 -3.95465158 3.08752110
H -6.43724604 -2.60948690 0.72401478
H-7.14237083 0.23832021 1.58262013
H -4.75417132 -1.52882282 2.30498220
H-5.09369363 0.09639372 2.95422886
H -8.73793302 -0.74398415 0.00129492
H -6.40291999 -1.91844577 -1.58224968
H -6.99902872 0.97080019 -0.76543539
H -7.36820204 -0.56238764 -3.20808277
H -9.15969083 -2.53183483 -1.45735510
H -4.63530294 -1.44842690 -4.05677761
H -2.86292093 -3.18258361 -4.12445599

H -1.14435490 -3.27388352 -2.33140539
H -1.21408368 -1.63213483 -0.46588151
H -2.99217432 0.10684295 -0.40793610
H -7.96300927 -4.44843718 -2.04581129
H -7.62339036 -4.85776275 0.50729193
H -5.94024849 -4.03407173 -3.29913918
O -4.95893649 -4.53293642 1.03701279
H -2.98702633 -4.37047623 0.37332304
C -7.37373005 -5.33068901 -2.31140060
C -6.88367454 -5.58267106 0.14286347
H -3.39168313 -3.65401499 1.95931886
C -5.59892586 -4.85225569 -0.13814091
C -5.16379109 -4.53423891 -1.36717200
H -4.22702115 -4.00987863 -1.50945301
H -7.82781924 -5.78948129 -3.19699409
C -3.74202738 -3.80759565 0.93687283
H -8.43311573 -6.64379950 -0.93656068
C -5.93375541 -4.89474026 -2.61564804
C -7.41230784 -6.28820266 -1.11388556
H -6.70820268 -6.29471280 0.95727558
H -3.89007891 -2.83854664 0.44443279
H -5.40585276 -5.69633475 -3.15636474
H -6.79691274 -7.17293560 -1.32641094

• Enol 5-15b + BPA complex

46

C -7.06528773 0.37142474 -0.01831926
C -8.08905411 1.06263490 -0.52882087
C -9.44643715 0.43622205 -0.74400357
C -9.38870521 -1.09813260 -0.72450403
C -8.55702116 -1.59294979 0.46447279
C -7.11385335 -1.07672280 0.37881989
O -5.79532703 0.88979949 0.20607679
C -5.46703601 2.14624567 -0.39599969
H -7.98321657 2.11658284 -0.75969108
H -10.13392939 0.79174274 0.03874823
H -9.86953541 0.78433807 -1.69511299
H -10.40272511 -1.51112253 -0.68434575
H -10.40272311 -1.31112233 -0.08434373 H -8.93285809 -1.45508857 -1.65753174
H -9.01185049 -1.23273615 1.39300547
H -8.55653288 -2.68723459 0.51211166
H -6.60493165 -1.19361552 1.34143341
H -6.53447715 -1.65765549 -0.35230632
H -6.05268616 2.96215019 0.03288239
H -4.40860101 2.31024873 -0.18969341
H -5.63802220 2.09745551 -1.47654916
H -5.03797963 4.55777559 2.94324643
O -6.06138288 0.57324548 5.16653164
O -6.57674544 2.77248446 3.96933274
C -5.98978611 4.48995064 2.42853343
H-5.36678364 0.92166176 1.84474304
H-5.60168120 6.07568355 1.02856787
P -6.25852538 1.17596070 3.84250801
C -6.90870073 3.53505768 2.85913361
C -6.31528978 5.33042239 1.36591397
O -5.08341957 0.99637837 2.79392194
C -8.16870062 3.38840249 2.24976577
C -7.55455552 5.20025084 0.73276626
O -7.51881621 0.64614380 2.94611327
C -9.16825472 2.40889562 2.73520015
H -7.80981459 5.83948576 -0.10659419
C -8.46290289 4.24034162 1.17166660
C -8.81504988 1.10588060 3.12479244
H -10.83123063 3.75624455 2.53369679
C -10.52996390 2.75028219 2.80827440
C -9.76104078 0.19151850 3.58109754
H -9.42373434 -0.79669960 3.87260813
C -11.48887179 1.84030394 3.24603432

H -9.41608574 4.12652748 0.66404922 C -11.10363761 0.55695565 3.63920494 H -12.53181804 2.13737628 3.29399829 H -11.84328054 -0.15544724 3.99123063

• Enol 5-15b + diol 5-16a + BPA complex

91

C -11.51825289 -1.87746686 1.63570700 C -12.25713675 -1.68248938 2.80479329 C -11.67786558 -1.01538109 3.88622486 C -10.37113249 -0.53485766 3.79714412 C -9.63575099 -0.72034183 2.62374717 C -10.20969372 -1.40248225 1.54635914 C -8.22596509 -0.19144529 2.51435626 O-7.93708994 0.02692366 1.15046597 C -6.61944542 0.55365882 0.96447370 C -6.51884295 1.85501802 1.75596683 C -6.82369562 1.57373490 3.21761235 O -8.12790460 0.99661046 3.28734270 C -6.38970078 0.82446714 -0.50659214 C -5.11363848 1.67054073 -0.72654599 C -5.05615053 2.87091591 0.25227887 O -5.23749636 2.44298148 1.60603081 O -5.04388521 2.10704925 -2.07124520 O -6.32246775 -0.40653999 -1.20051472 H-7.49389166-0.92139290 2.91348125 S-3.52726385 3.86512500 0.14839224 C -2.28644852 2.58335015 0.33878930 C -1.44526600 2.27522324 -0.73659043 C -0.46523124 1.29116406 -0.59657999 C -0.33455451 0.59829056 0.60764816 C-1.18172656 0.89711052 1.67738323 C -2.14944513 1.89326070 1.55193169 H-11.96103017 -2.39981009 0.79202981 H-13.27645341-2.05185651 2.87362701 H-12.24822174-0.86164076 4.79797435 H-9.92638383 0.01148956 4.62074907 H -9.63092989 -1.53878373 0.63963429 H-5.86853151-0.16496572 1.33208202 H-7.28981891 2.53365258 1.37859542 H-6.06342267 0.89853404 3.64229875 H-6.84566985 2.49279752 3.80658812 H-7.23510986 1.41630835 -0.86262896 H-4.24605009 1.02720330 -0.55356180 H -5.84575781 3.58714042 -0.01978353 H-5.81792610 2.67945875 -2.21915623 H -6.62060472 -0.21922508 -2.10315738 H-1.57771829 2.79390501 -1.68023122 H 0.18372833 1.05548572 -1.43510495 H 0.42070228 -0.17534155 0.71133703 H -1.08588599 0.35631206 2.61476065 H-2.81485369 2.12934940 2.37419252 O -9.06128767 5.17829221 -0.92104956 O -10.16979744 3.64478689 -2.52261280 H-10.13092587 4.93589195 3.49980789 H-11.98075446 3.36640736 3.99380320 H -6.86425493 6.55346665 -1.14106562 H-10.01858130 2.93397206 -3.19285513 C -10.35913366 4.13003865 2.80909770 C -11.40293019 3.25031814 3.08240412 C -7.02427478 6.18683138 -0.13388044 C -8.15937308 5.43078386 0.13445429 H-5.20530086 6.98407982 0.68794142 C -6.11198548 6.42524201 0.89214080 C -8.42754242 4.89107789 1.39857609 C -9.58896297 4.00803898 1.64321400 C -11.69895133 2.21915341 2.19026033

H-12.48570365 1.50584668 2.40990043

P -8.88545705 3.72163623 -1.58817136 C -6.35517700 5.91467162 2.16941573 C -7.50264145 5.16749784 2.41773236 C -9.92106101 2.96690420 0.76084207 C-10.95145988 2.07471888 1.02417590 H-5.63556989 6.07584126 2.96448170 H-7.67443640 4.73840480 3.39917900 H-11.12502571 1.25356938 0.34205500 O -7.59174266 3.44115107 -2.25429351 O -9.11590579 2.70119605 -0.35398500 H -11.60844370 -0.95713688 -4.03753413 H -7.21894886 2.38570493 -4.47420075 H -9.43220795 -1.17021390 -2.50166865 H-11.60327454 0.91548453 -5.56912729 C -11.83573446 0.02400899 -3.60122788 H-12.92467355 0.09083940-3.50633262 C -6.95922929 1.32358783 -4.48642327 H-11.58629085-0.57616622-1.51421859 C -11.31846986 1.13030408 -4.53170978 H -7.14504209 0.89294596 -5.47697935 H-5.91546852 1.20944136 -4.19810253 C -9.64834679 -0.10328985 -2.35589795 C -9.80863538 1.27972913 -4.46024087 C -9.06376154 0.65565911 -3.51945180 C -11.15866162 0.13281123 -2.23114803 H -9.32351869 1.80601162 -5.27559404 O -7.70615865 0.62378259 -3.48506530 H -9.12573348 0.18677682 -1.43880792 H-11.81776916 2.07929608 -4.28298992 H-11.33495353 1.13901331 -1.83200334

Axial phosphate 5-20a

46

C -6.91181663 0.79044834 0.98138860 C -8.24799421 0.32328627 1.56153070 C -8.09282224 -0.92771862 2.43327209 C -7.41173637 -2.06027500 1.65231185 C -6.06250323 -1.60387460 1.07989027 C -6.20396301 -0.33623456 0.22183183 O -7.17561968 1.93418087 0.23865080 C -6.10391640 2.48393097 -0.53750366 H-8.89585169 0.11070094 0.70312986 H-7.49884915-0.68351390 3.32003147 H -9.07838596 -1.24652488 2.79029039 H -7.26907379 -2.93529501 2.29679778 H -8.06630955 -2.37629550 0.82719829 H -5.37231763 -1.39407712 1.90469807 H-5.61111706-2.39992460 0.47690787 H -5.22059567 0.00974998 -0.10800085 H -6.80448540 -0.54172671 -0.67277252 H -6.45047255 3.46603025 -0.86122419 H-5.20048390 2.61430167 0.06381242 H -5.89216147 1.86755943 -1.41905781 O -5.13347101 1.89347825 4.29707678 O -5.33454411 3.63894106 2.41234855 H-7.70449842 2.00488878 8.03312377 H-8.93020361 4.14441065 8.28798336 H-4.06948928-0.45025118 4.16636309 H-8.69845152 1.14881025 2.11300745 C -7.92689853 2.61282342 7.16130748 C -8.61110696 3.81782671 7.30324766 C -4.95022525 -0.43341046 4.79794601 C -5.63055088 0.77038597 4.95652089 H-4.91360459-2.52501552 5.29495611 C -5.42966803 -1.57925529 5.42822705 C -6.78305200 0.87714139 5.74897418 C -7.49300607 2.16646388 5.90388616 C -8.87359682 4.60719867 6.18134799

C -9.51140591 -1.56977784 3.85949547
C -8.58411461 -1.72176548 2.64747206
C -8.87279506 -0.65503265 1.58421834
O -9.18001537 1.76456648 1.28513598
C -8.58038043 1.78368136 -0.01265588
H-10.63930370 0.93350679 3.09268630
H -8.39020757 -0.06455174 4.91611586
H -10.10550869 -0.03647870 5.28482685
H -9.27012731 -2.32414327 4.61678900
H -10.55169560 -1.74843603 3.55058632
H -7.54418523 -1.61574486 2.97183640
H -8.68324181 -2.71635974 2.19931735
H -8.18165601 -0.75548027 0.74306514
H -9.89370829 -0.76051033 1.19748092
H -8.84666952 2.74691919 -0.44720665
H-7.48992516 1.71342879 0.05428253
H -8.96522486 0.97733306 -0.64751532
O -7.14061129 3.37220200 3.38131955
O -6.50011452 1.39215143 4.81133056
H -3.80185016 6.31510506 2.27620815
H-1.58816081 5.76786254 3.23919268
H -9.21258256 4.19827863 2.13350246
H -9.40108001 1.92698717 3.84632868
C -3.56784188 5.29209490 2.55309210
C -2.32501843 4.98341934 3.09856996
C -7.08450967 4.19880506 2.25439986
H -9.26242597 5.76151010 0.18209951
C -8.31423910 5.45597910 0.61351402
C -5.85427592 4.65621556 1.75749826
C -4.55461533 4.30699835 2.37672016
C -2.03692927 3.67169423 3.47671443
H-1.08229114 3.41750495 3.92323946
P -6.54202514 1.86951624 3.40802025
C -7.10829135 5.90137945 0.06853456
C -5.90127968 5.50703544 0.63841055
C -4.23759513 3.00480021 2.79201533
C -2.99776417 2.67598552 3.32169044
H -7.10904351 6.55062804 -0.80138536
H -4.96427016 5.84288321 0.20716835
H -2.81089555 1.65916855 3.63908341
O -7.31055866 0.92691412 2.38591771
O -5.15499708 1.96004708 2.58708458
H -1.03991962 -1.38438684 6.16690475
H -2.55495162 0.17142605 7.18211109
H -3.62508984 -1.63435420 6.25386778
H -4.76698811 -3.57981249 5.26259892
C -1.20076544 -0.82658858 5.23165435
H -0.29156335 -0.88194211 4.62871242
S -3.09315028 -5.21633329 3.61790652
O -2.27253978 -2.81773740 4.37234660
O -1.44294035 0.56009556 5.49657814
C -2.63740299 0.75935973 6.24740853
H -0.77916326 -3.61428463 2.67713340
H-0.71085210 2.57679588 6.83615389
C -3.67285073 -1.09588294 5.29293027
C -2.40708140 -1.40702150 4.49680623
C -3.35220209 -3.41223628 3.63618969
C -1.91546545 -5.40361665 2.28507488
C -4.71911000 -3.09071660 4.27526613
C -0.88539949 -4.48403253 2.03899717
C -1.69907345 3.02449749 6.82292818
C -2.81154992 2.22979102 6.53469895
O -3.76303374 0.29972886 5.52840315
H -2.83385017 -7.25466425 1.66688973
O -6.10181431 -1.38261935 5.17635559
C -2.02742453 -6.55020936 1.48647139
H -6.57160060 -3.28698251 3.82418824
H -6.57160060 -3.28698251 3.82418824 C -4.87374554 -1.58162259 4.50592969 H -0.99255773 5.00772278 7.26630065

H -9.40335156 5.54890742 6.28506621
P-5.93039632 2.41876169 2.97966394
C -6.58341614 -1.50847091 6.21295080
C -7.24405264 -0.29288625 6.37456919
C -7.77224529 2.98208846 4.79512119
C -8.45389086 4.18733243 4.92043653
H -6.97457057 -2.40219730 6.68901229
H -8.15490563 -0.24431106 6.96299084
H-8.64871453 4.76886607 4.02627220
O -5.96585405 1.10113679 2.08146720
O -7.46810971 2.53626788 3.51112983

• Equatorial phosphate 5-20b

C -7.73248847 -0.02484694 -1.14496832 C -8.94345743 0.79996147 -0.70713739 C -8.88976635 1.08170986 0.80122963 C -8.76602469 -0.21289025 1.61603651 C -7.55425417 -1.03786042 1.15702940 C -7.62367520 -1.32770410 -0.34841433 O -6.61915530 0.81387674 -1.03383802 C -5.33212830 0.22874247 -1.24456361 H-8.96677674 1.72592944 -1.28370118 H-8.02625100 1.72570567 1.00429194 H-9.78440039 1.63974217 1.09838545 H-8.68603317 0.01415989 2.68528930 H -9.67862217 -0.81218490 1.48704556 H -6.63413754 -0.48171353 1.37589084 H-7.49569749-1.98223691 1.70950923 H -6.76022352 -1.90278336 -0.69411408 H -8.51158467 -1.92648316 -0.57787028 H-4.64813310 1.06280343 -1.40841182 H -5.00103498 -0.34008743 -0.36745968 H -5.32287501 -0.41136289 -2.13050701 O -8.33983307 -0.48787261 -4.99497965 O -8.81233302 1.70676175 -3.72828672 H -5.34041931 -0.17420757 -8.41864388 H -4.62048175 2.15507087 -8.84439445 H -8.79017344 -2.97636590 -4.55804550 H -9.84296109 0.22997250 -0.96372988 C -5.39015091 0.56301098 -7.62315793 C -4.99285728 1.87588051 -7.86374503 C -7.87693596 -2.81857119 -5.12049730 C -7.47920800 -1.51197780 -5.38545853 H -7.41955424 -4.90191145 -5.39230435 C -7.11027924 -3.88087286 -5.59395511 C -6.30816813 -1.22248726 -6.10603785 C -5.88785141 0.17090940 -6.37088322 C -5.09092728 2.83325224 -6.85174265 H -4.79377502 3.86039614 -7.03822730 P-7.94145439 0.52215743 -3.79424670 C -5.94950841 -3.62624475 -6.32770736 C -5.55647086 -2.31309905 -6.57415128 C -5.96239479 1.15404496 -5.37119786 C -5.57853190 2.47085043 -5.59770719 H -5.34658417 -4.44926091 -6.69871906 H-4.64225120-2.11637550-7.12539932 H-5.66837610 3.18463016 -4.78697189 O -7.87840922 -0.47383735 -2.54327605 O -6.35815613 0.78982762 -4.08419609

• Axial phosphate 5-20a + diol 5-16a

91

C -8.76498896 0.75995036 2.15765354 C -9.59690914 0.93425295 3.43030219 C -9.38117130 -0.17045138 4.47335599

C -1.86068646 4.39060885 7.05242491
C 0.00021598 -4.70474626 0.98360672
C -4.08849776 2.79867171 6.50774295
H 0.78838503 -3.98249693 0.79070681
H -2.48614151 -0.92941236 3.50676136
H-4.94802878 2.18219942 6.27822168
H -6.25110384 -0.41624827 5.20670027
O -5.73839858 -3.56452312 3.41687007
H -3.34717952 -3.05096631 2.59770939
C -1.11824416 -6.77558594 0.45437795
C -0.10686685 -5.84985749 0.19257526
C -3.13224755 4.96582892 6.99757482
C -4.24397655 4.16591601 6.73030798
H -1.21314928 -7.66797888 -0.15762584
H -4.87969252 -1.07891291 3.52427071
H-3.25552409 6.03193489 7.16409549
Н 0.59206008 -6.02095527 -0.62046654
H-5.23722958 4.60309506 6.68001538

• Equatorial phosphate 5-20b + diol 5-16a

91

C -7.36262029 -0.49902034 -0.32184092 C -8.77034383 0.07010446 -0.18057868 C -9.16583617 0.14902121 1.30305748 C -9.05549875 -1.22140799 1.98004730 C -7.63909389 -1.79155374 1.82532581 C -7.24823925 -1.87249802 0.34107667 O -6.49382526 0.46780364 0.17151620 C -5.11993745 0.10972842 0.29567081 H-8.80789011 1.05765879 -0.64444166 H-8.51793009 0.87420523 1.80899315 H-10.19311746 0.52272298 1.37706141 H -9.32949258 -1.14631362 3.03823785 H -9.77397705 -1.90670868 1.51477761 H -6.92551868 -1.15369426 2.36353778 H-7.57326551 -2.79058853 2.27021033 H -6.23661602 -2.26469787 0.20528181 H -7.93042704 -2.53704483 -0.19329725 H-4.58343489 1.04399987 0.46619905 H-4.95005078-0.56292288 1.14413794 H -4.74666207 -0.35880560 -0.62094563 O -6.55507271 1.03142143 -3.57224512 O -7.24661761 -1.32953308 -4.23668793 H -9.19398007 4.74959235 -3.87235803 H-11.24907400 4.42482284 -5.20634178 H -4.52114565 1.79633385 -2.19542681 H -9.45521239 -0.59489475 -0.70752823 C -9.60193346 3.75228526 -4.00200103 C -10.75497482 3.56823862 -4.75897268 C -5.38343608 2.43425390 -2.04031282 C -6.56113574 2.13122111 -2.71230809 H-4.43226692 3.76606330-0.64808469 C -5.34637764 3.52996267 -1.18345382 C -7.71399105 2.92076830 -2.59550974 C -8.92492970 2.67114336 -3.41052319 C -11.26299976 2.28207222 -4.94840092 H -12.16068351 2.12131170 -5.53676122 P -7.40852930 -0.29856768 -3.18643890 C -6.49218933 4.30818567 -1.00529421 C -7.65504649 4.00845072 -1.70820776 C -9.45238325 1.38873189 -3.63640592 C -10.61205350 1.18841795 -4.38372521 H -6.48048191 5.14948163 -0.31994040 H-8.54669135 4.61100376 -1.56608935 H -11.01067486 0.18786097 -4.50767526 O -6.96850676 -0.76567306 -1.74896459 O -8.92008254 0.26657286 -3.00332399 H -13.33702776 -0.36044027 -2.58981217

II 12 0070(424 0 47520000 0 524(2421
H -12.09706434 -0.47538898 -0.52463431
H -10.91490444 -1.08542572 -2.40639747
H -9.75176872 -1.60248180 -4.41797141
C -13.60980960 -1.41323287 -2.41313441
H -14.60359076 -1.59267492 -2.82909148
S -11.26576823 -2.22531946 -6.81286440
O -12.37463669 -1.95596083 -4.41354305
O -13.67949336 -1.70005652 -1.01514659
C -12.42778183 -1.51972343 -0.36704612
H -14.06987123 -2.58731574 -5.99863487
H -12.76697962 0.24741364 1.66920936
C -11.24291972 -2.12816990 -2.28212535
C -12.55549607 -2.31596345 -3.04514009
C -11.40434601 -2.78466350 -5.08329882
C -12.66077712 -3.07195916 -7.55281979
C -10.04721668 -2.65293338 -4.37179663
C -13.92485360 -3.09324484 -6.94638478
C -12.75262049 -0.78225631 2.01685090
C -12.58902548 -1.81966569 1.09778127
O -11.44307770 -2.39213847 -0.89731986
H -11.48889692 -3.70198904 -9.24831965
O -8.96318201 -2.84627244 -2.20849656
C -12.47266988 -3.70307974 -8.78924879
H -8.28212877 -2.87320878 -5.09025173
C -10.18905530 -3.03058722 -2.88317083
H -13.01206901 -0.25360963 4.08860492
C -12.89156783 -1.06477816 3.37684924
C -14.97975297 -3.76280525 -7.56650281
C -12.57558913 -3.14573569 1.54061650
H -15.95392593 -3.78540054 -7.08593654
H -12.87780127 -3.36446542 -2.95340325
H -12.43483759 -3.93928022 0.81525028
H -8.26551116 -3.16882412 -2.79967796
O -9.04441079 -3.46081080 -4.95489782
H -11.74541299 -3.82903306 -5.08960186
C -13.54155013 -4.34514984 -9.41486296
C -14.79560276 -4.38428053 -8.80319453
C -12.86923160 -2.38835654 3.81815043
C -12.71225230 -3.42823740 2.89783554
H -13.38695815 -4.83185020 -10.37360599
H -10.51496150 -4.08194607 -2.81091984
H -12.97135770 -2.61027441 4.87640064
H -15.62303962 -4.89556600 -9.28629430
H -12.69276770 -4.45890340 3.23977256
11 12.09270770 1110090010 5.25977250

TS_{U-C2}

65

C -8.370396 -5.575241 5.292173 C -8.555836 -5.075632 6.582951 C -8.129980 -3.783182 6.892701 C -7.518502 -2.992566 5.919236 C -7.333724 -3.491362 4.626783 C -7.760301 -4.787297 4.316440 C -6.629421 -2.669350 3.572157 O -7.182508 -2.970518 2.307261 C -6.498427 -2.259005 1.271245 C -6.639586 -0.757603 1.556717 C -6.088149 -0.460439 2.946242 O -6.750544 -1.292822 3.894788 C -7.082968 -2.534479 -0.091727 C -6.390839 -1.650475 -1.166300 C -6.447316 -0.167547 -0.723089 O -5 939453 0 026725 0 601977 O -6.989803 -1.873469 -2.369615 O -6.926651 -3.884273 -0.492661 H -5.549252 -2.921499 3.545957 S -5.557189 0.980442 -1.846479 C -3.927684 0.240449 -1.965346

C -3.398022 -0.031153 -3.233144
C -2.105831 -0.541492 -3.363204
C -1.340138 -0.807923 -2.228169
C -1.871202 -0.551205 -0.961738
C -3.150838 -0.015128 -0.825206
H -8.704183 -6.579034 5.042752
H -9.031809 -5.690097 7.342589
H -8.276446 -3.387653 7.893958
H -7.190640 -1.985422 6.148371
H -7.623007 -5.159961 3.306627
H -5.429798 -2.531017 1.276739
H -7.714003 -0.514701 1.546802
H -5.000497 -0.640048 2.950727
H -6.271856 0.575493 3.239177
H -8.152925 -2.258477 -0.075590
H -5.315527 -1.934354 -1.140055
H -7.492062 0.176769 -0.790167
H -6.059865 -1.189885 -3.888574
H -6.990302 -3.787932 -1.462343
H -4.007599 0.127694 -4.116909
H -1.706486 -0.747060 -4.352835
H -0.338315 -1.215444 -2.328626
H -1.281511 -0.759326 -0.072926
H -3.566074 0.190803 0.154111
H -8.672531 0.065147 -6.387014
H -8.739519 -4.561975 -5.275626
H -9.416043 -2.146554 -5.235705
H -6.289929 0.406840 -6.423957
C -8.235345 0.444848 -5.452341
H -8.427652 1.522168 -5.431494
C -7.973773 -4.496614 -4.499175
H -9.971407 0.010069 -4.206002
C -6.717656 0.200685 -5.437795
H -8.434801 -4.322938 -3.525949
H -7.367654 -5.398954 -4.484827
C -8.784797 -1.773484 -4.410668
C -6.327271 -1.223967 -4.985189
C -7.391535 -2.188535 -4.733201
C -8.911344 -0.253817 -4.268002
H -5.493405 -1.680711 -5.518989
O -7.048786 -3.428769 -4.825525
H -9.074282 -2.281356 -3.490291
H -6.259786 0.894686 -4.726834
H -8.427082 0.017009 -3.325627

• TS_{U-C3}

C -6.626335 -5.871218 5.312893 C -7.819057 -5.631531 6.000811 C -8.504469 -4.432135 5.804296 C -8.007739 -3.472751 4.919403 C -6.819420 -3.712483 4.228841 C -6.130091 -4.913173 4.430205 C -6.283899 -2.744680 3.205254 O -6.615871 -3.265617 1.928163 C -6.091298 -2.435793 0.884925 C -6.655319 -1.028385 1.046783 C -6.346861 -0.512218 2.448732 O -6.832065 -1.458319 3.405271 C -6.459522 -3.022347 -0.479932 C -5.930940 -2.031740 -1.546335 C -6.368658 -0.578775 -1.247471 O -6.073936 -0.159386 0.079990 O -6.472679 -2.436410 -2.796391 O -5.991551 -4.289062 -0.641935 H -5.180873 -2.675372 3.272398 S -5.626388 0.634885 -2.415698 C -3.876861 0.333933 -2.135793

C -3.095353 -0.204685 -3.164931
C -1.729837 -0.416718 -2.968928
C -1.142918 -0.109013 -1.741371
C -1.923329 0.419881 -0.711113
C -3.284460 0.652895 -0.905808
H -6.082919 -6.798998 5.468150
H -8.208639 -6.375188 6.689475
H -9.430107 -4.242548 6.339592
H -8.531277 -2.536865 4.760293
H -5.203678 -5.094727 3.891375
H -4.992902 -2.394788 0.971751
H -7.749896 -1.071201 0.922220
H -5.259426 -0.370562 2.553776
H -6.846542 0.436990 2.654957
H -7.566903 -2.940703 -0.550634
H -4.833506 -2.092031 -1.544742
H -7.450081 -0.505160 -1.446365
H -6.103382 -1.851704 -3.473722
H -6.693384 -5.097056 -1.799756
H -3.558685 -0.464160 -4.112275
H -1.130460 -0.834182 -3.772081
H -0.081794 -0.281364 -1.587711
H -1.470234 0.659744 0.246831
H -3.896870 1.064236 -0.114025
H -10.474439 -6.010655 -1.837742
H -7.286663 -6.710218 2.024059
H -9.256071 -6.118642 0.746747
H -8.951866 -5.609174 -3.695043
C -10.034704 -5.006659 -1.930080
H -10.771985 -4.384606 -2.449799
C -6.461169 -6.633956 1.312252
H -10.704556 -4.431066 0.047790
C -8.742153 -5.089535 -2.755281
H -6.012851 -5.636367 1.341758
H -5.729105 -7.418634 1.502821
C -8.740979 -5.276632 0.256548
C -7.624191 -5.828632 -2.011294
C -7.697264 -5.954461 -0.585850
C -9.772885 -4.444419 -0.529482
H -7.156140 -6.681182 -2.507108
O -6.910943 -6.855342 -0.045304
H -8.273713 -4.691519 1.052444
H -8.395968 -4.084251 -3.016572
H -9.448291 -3.401224 -0.598865
п -7.446271 -3.401224 -0.398865

• TS_{C-C2}

C -7.444034 -5.157386 6.163946 C -7.134182 -5.292410 7.518660 C -6.304360 -4.354654 8.135896 C -5.784703 -3.286973 7.403715 C -6.097763 -3.149725 6.047965 C -6.927641 -4.090717 5.429089 C -5.502178 -2.025102 5.234791 O -6.408833 -1.672927 4.202133 C -5.860451 -0.643983 3.385791 C -5.577532 0.576613 4.266125 C -4.633463 0.162720 5.388579 O -5.221957 -0.930969 6.089222 C -6.814477 -0.258780 2.276525 C -6.249519 0.955878 1.504131 C -5.881654 2.091597 2.491061 O -4.992466 1.619664 3.505283 O -7.256309 1.352857 0.590336 O -7.013097 -1.367935 1.413613 H -4.552796 -2.345326 4.760257 S -5.182754 3.599016 1.742797 C -3.866184 3.002070 0.681498

C -3.673573 3.685742 -0.523924 C -2.651035 3.294284 -1.385254 C -1.827581 2.214486 -1.061255 C -2.018079 1.539931 0.146900 C -3.020130 1.940346 1.031314 H -8.091062 -5.882377 5.678248 H -7.537524 -6.123624 8.089964 H -6.062370 -4.452735 9.190217 H -5.145824 -2.550837 7.877657 H -7.171399 -3.971023 4.379048 H -4.912069 -0.983163 2.935106 H -6.529769 0.905097 4.713109 H -3.656125 -0.115678 4.962471 H-4.485885 0.970138 6.108259 H -7.770120 0.055174 2.731047 H -5.338438 0.633159 0.982831 H -6.816889 2.450264 2.951701 H -6.909887 2.025842 -0.053537 H -7.609686 -1.025930 0.736155 H-4.328421 4.499045 -0.812782 H -2.520226 3.832233 -2.319180 H -1.039692 1.902928 -1.741010 H -1.374206 0.706130 0.413463 H -3.151006 1.438553 1.982753 O -8.127231 4.001262 -3.131124 O -6.660195 2.801190 -1.534810 H -12.220948 3.963073 -1.182220 H -12.246624 3.002181 1.102084 H -8.254637 5.384564 -5.298414 H-8.099109 1.892336 -1.980192 C -11.312020 3.955306 -0.587215 C -11.325148 3.410198 0.696057 C -9.090171 5.572405 -4.633034 C -9.095296 4.945485 -3.388747 H -10.146313 6.884588 -5.969332 C -10.149558 6.400918 -4.997041 C -10.145298 5.147243 -2.471599 C -10.141144 4.501783 -1.139144 C -10.153443 3.401144 1.459179 H -10.155777 2.988506 2.463940 P -6.924698 4.233468 -1.995910 C -11.212845 6.601126 -4.113802 C -11.201263 5.985594 -2.864451 C -8.967951 4.458966 -0.358732 C -8.976160 3.921869 0.927242 H -12.041344 7.245704 -4.391314 H -12.013924 6.163618 -2.166289 H -8.048185 3.930808 1.482468 O -5.849529 5.133173 -2.471528 O -7.804513 5.020666 -0.830287 H -6.359544 1.246423 -3.807461 H -11.018049 -0.036481 -0.773720 H -6.314977 0.086727 -1.517577 H -8.654803 1.980904 -4.306395 C -7.080459 0.493983 -4.146844 H -6.929949 0.366247 -5.224220 C -10.194094 0.040272 -0.062745 H -5.788764 -1.171279 -3.586438 C -8.505419 0.986384 -3.885051 H -9.964916 1.076000 0.186566 H -10.405736 -0.536462 0.835253 C -7.031072 -0.656081 -1.900378 C -8.806725 1.090806 -2.365367 C -8.353288 -0.047523 -1.601835 C -6.813511 -0.827129 -3.420644 H -9.827584 1.405686 -2.151661 O -9.004666 -0.591470 -0.627752 H -6.893906 -1.577397 -1.330279 H -9.234067 0.307515 -4.346374 H -7.480797 -1.613863 -3.795492

• TS_{C-C3}

91

C -9.055553 -5.027503 4.671664 C -9.389272 -4.394568 5.870975 C -8.869575 -3.131158 6.156916 C -8.022354 -2.498146 5.246961 C -7.695195 -3.128756 4.043277 C -8.201954 -4.402165 3.764979 C -6.776092 -2.464754 3.045418 O -7.193864 -2.840218 1.743168 C -6.385711 -2.240548 0.744997 C -6.441813 -0.717691 0.894828 C -5.994903 -0.359130 2.307128 O -6.817971 -1.061033 3.233064 C -6.873318 -2.634903 -0.631542 C -6.131156 -1.816332 -1.695134 C -6.022473 -0.314006 -1.391445 O -5.576915 -0.100077 -0.053384 O -6.732359 -1.996630 -2.967350 O -6.632235 -4.006166 -0.901926 H -5.728793 -2.803682 3.179405 S -4.865862 0.555477 -2.526035 C -3.454692 -0.554557 -2.464471 C -3.016081 -1.167088 -3.646867 C -1.935370 -2.051614 -3.620496 C -1.301486 -2.349391 -2.412664 C -1.736648 -1.739431 -1.233072 C -2.795494 -0.831881 -1.256144 H -9.451861 -6.013163 4.446494 H-10.054385 -4.882935 6.577366 H -9.129463 -2.633461 7.086512 H -7.628065 -1.510196 5.453503 H -7.956804 -4.875228 2.820354 H -5.333771 -2.557011 0.860222 H-7.478289-0.3779410.746233 H -4.933000 -0.629922 2.429625 H -6.110674 0.707271 2.511172 H -7.951558 -2.436330 -0.701803 H -5.108140 -2.207320 -1.706091 H -6.995029 0.168711 -1.568909 H -7.310181 -2.780959 -2.924078 H -7.468332 -4.343624 -1.346598 H -3.530872 -0.953729 -4.578396 H -1.593492 -2.514093 -4.542441 H -0.468066 -3.045461 -2.391566 H -1.240305 -1.959962 -0.292422 H -3.139795 -0.356672 -0.345831 O -9.621916 -3.500811 -4.404943 O -9.145886 -6.016559 -4.270025 H-13.972273 -2.693957 -5.504570 H -15.259830 -4.761341 -5.948737 H -8.569720 -1.201181 -3.960804 H -7.102392 -6.223219 -2.143633 C -13.659926 -3.633440 -5.058577 C -14.379160 -4.798332 -5.314820 C -9.645427 -1.187669 -3.850306 C -10.343245 -2.378706 -4.038285 H -9.771055 0.912415 -3.417200 C -10.327834 -0.008212 -3.566425 C -11.750135 -2.409679 -3.979214 C -12.511093 -3.649302 -4.251522 C -13.955237 -6.013400 -4.770347 H -14.505805 -6.927124 -4.974945 P -9 510528 -4 847259 -3 429408 C -11.722096 -0.018787 -3.480985 C -12.416055 -1.208992 -3.689377 C -12.112492 -4.882521 -3.708023 C -12.818489 -6.055339 -3.966526 H -12.268124 0.892000 -3.254645

H -13.499963 -1.226979 -3.619383
H -12.459103 -6.979338 -3.527844
O -8.678987 -4.469347 -2.213287
O -11.047979 -4.920879 -2.831773
H -3.311941 -7.213313 -1.312204
H -4.165790 -4.050161 -4.840120
H -3.326394 -5.179493 -2.943859
H -5.537688 -8.163570 -0.971109
C -4.002378 -6.671858 -0.650060
H -3.751489 -6.971805 0.372670
C -5.244967 -3.907633 -4.770809
H -2.782330 -4.844922 -0.596325
C -5.461984 -7.072907 -0.934852
H -5.505330 -2.941893 -4.334529
H -5.723712 -4.041243 -5.737966
C -4.099115 -4.759491 -2.274579
C -6.046513 -6.510698 -2.245457
C -5.368418 -5.318168 -2.807698
C -3.801585 -5.164488 -0.827463
H -6.063345 -7.244387 -3.062760
O -5.837988 -4.955390 -3.941392
H -4.060542 -3.679483 -2.426737
H -6.089861 -6.737862 -0.104719
H -4.482182 -4.625830 -0.164875

• **TS**_{PF}

46

C -6.904353 0.318007 0.104449 C -7.787890 1.202274 -0.673043 C -9.199014 0.654789 -0.957628 C -9.754494 -0.099906 0.255769 C -8.823194 -1.257787 0.621894 C -7.421929 -0.750176 1.008764 O -5.647127 0.516999 -0.091582 C -4.640207 -0.001795 0.826096 H -7.257958 1.558391 -1.561730 H -9.841735 1.499647 -1.221253 H -9.176877 -0.014824 -1.827768 H -9.839013 0.579380 1.110886 H -10.756549 -0.480170 0.035953 H -9.220357 -1.830681 1.464877 H -8.745640 -1.950520 -0.226553 H -7.444282 -0.263877 1.994309 H -6.695522 -1.565883 1.075731 H -3.703920 0.418072 0.464725 H -4.894857 0.371155 1.818647 H -4.608495 -1.092790 0.782699 O -7.361987 3.639459 3.812865 O -8 104978 3 515854 1 367397 H-10.913611 3.907252 6.614294 H -13.075949 4.063234 5.415732 H -5.249737 3.311550 5.261979 H -7.912671 2.112962 -0.028049 C -11.006463 3.508661 5.608353 C -12.220509 3.603161 4.930761 C -6.161266 3.056023 5.788969 C -7.371167 3.143584 5.103268 H -5.203879 2.587890 7.655004 C -6.147946 2.655294 7.123544 C -8.590648 2.825764 5.730188 C -9 877880 2 930679 5 006699 C -12.326031 3.125477 3.623138 H-13 264612 3 209481 3 083144 P -7.665379 2.663908 2.515620 C -7.345355 2.338932 7.769331 C -8.549697 2.423333 7.074172 C -10.013286 2.442582 3.694381 C -11.219373 2.547936 3.003584

H -7.340555 2.018965 8.806794 H -9.483048 2.157830 7.562005 H -11.271154 2.179062 1.985331 O -6.574075 1.636753 2.339653 O -8.957648 1.777164 3.105472

• **TS**_{PA-C2}

91

C -8.128880 -0.514834 3.071984 C -8.612479 0.034127 4.372189 C -8.207291 -0.756180 5.627949 C -8.112430 -2.260766 5.351580 C -7.057835 -2.506878 4.266682 C -7.413550 -1.812697 2.942105 O -8.687759 0.043358 2.051441 C -8.309681 -0.322649 0.696907 H -9.705412 0.055121 4.257020 H -7.240574 -0.406552 5.989724 H -8.933433 -0.537317 6.415768 H -7.826347 -2.784255 6.269648 H -9.089396 -2.664586 5.045291 H -6 104609 -2 109280 4 613775 H -6.928832 -3.574130 4.062514 H -6.515370 -1.693842 2.323234 H -8.117057 -2.437770 2.366968 H -8.823621 0.394053 0.060776 H -7.230541 -0.218781 0.600121 H-8.649721-1.338565 0.479815 O -6.935109 3.440867 2.361504 O -6 243068 2 277179 4 481814 H -4.364936 7.144111 1.576671 H -2.644414 7.538563 3.313235 H -8.443275 3.094289 0.327688 H-8.291662 1.081731 4.439488 C -4.003719 6.317776 2.180783 C -3.039173 6.538728 3.162202 C -7.588753 3.721473 0.097262 C -6.662726 3.965509 1.110122 H -8.131684 4.098747 -1.950434 C -7.411220 4.290947 -1.161553 C -5.535242 4.781000 0.898080 C -4.541672 5.038677 1.966736 C -2.589737 5.479291 3.954922 H -1.840477 5.647666 4.722501 P -6.019567 2.237024 2.996073 C -6.301108 5.104229 -1.400257 C -5.380824 5.340744 -0.381029 C -4.071562 3.997392 2.783578 C -3.108162 4.199811 3.766075 H -6.147267 5.544400 -2.380353 H -4.505208 5.952448 -0.576636 H -2.786165 3.348632 4.358535 O -6.215083 0.911489 2.285230 O -4.507461 2.701712 2.547895 H 0.397096 0.283322 3.438427 H -0.178126 -0.874102 1.381428 H-1.933243 0.009080 2.579607 H -3.720183 0.970618 3.979407 C 0.295926 -0.697251 3.931274 H 0.991417 -0.740701 4.772255 S-3.064255 1.538474 6.784253 O -1.513337 0.188620 5.235994 O 0 635119 -1 762350 3 045614 C -0.243835 -1.834364 1.931577 H -3.811327 -0.592831 8.643478 H 2.256110 -2.823335 1.554882 C -2.036971 -0.939512 3.133952 C -1.147624 -0.883897 4.382405

C -2.849568 0.056724 5.695334 C -4.594269 1.144364 7.633184 C -3.836952 0.022124 4.515047 C -4.681692 0.037643 8.487378 C 1.522677 -3.345196 0.950260 C 0.175671 -2.983390 1.046029 O -1.589085 -2.024216 2.327149 H -5.653358 2.800798 6.754485 O -4.343393 -1.089311 2.382349 C -5.706351 1.975218 7.453886 H -5.578487 0.750239 4.976482 C -3.499225 -1.105953 3.520655 H 2.957617 -4.658656 0.032098 C 1.910186 -4.378684 0.097444 C -5.884256 -0.255410 9.127454 C -0.779257 -3.657467 0.278653 H -5.949692 -1.123029 9.777300 H -1.232324 -1.847905 4.908933 H -1.821957 -3.372312 0.364635 H-4.869193-0.260168 2.372913 O -5.160321 -0.141433 4.972076 H -2.980277 -0.851185 6.304087 C -6.899437 1.689435 8.117156 C -6.995953 0.571701 8.947058 C 0.956142 -5.053975 -0.665993 C -0.388228 -4.690552 -0.572936 H -7.761021 2.332632 7.962230 H -3.617873 -2.077840 4.023539 H 1.258634 -5.859518 -1.328820 H-7.930507 0.345348 9.452836 H -1.135612 -5.213968 -1.162316

• TS_{PA-C3}

91

C -9.222764 0.108577 2.740904 C -9.520101 0.739620 4.059804 C -9.525019 -0.212445 5.267921 C -9.979918 -1.626212 4.888817 C -9.030785 -2.193757 3.828990 C -9.048970 -1.357447 2.543473 O -9.491153 0.884097 1.742257 C -9.183045 0.478194 0.381470 H-10.498919 1.218577 3.920056 H -8.516682 -0.275110 5.680086 H-10.166632 0.219658 6.041108 H -9.974141 -2.267367 5.775836 H -11.014397 -1.611508 4.513338 H -8.012259 -2.190751 4.219656 H -9.290508 -3.223652 3.566329 H -8.150204 -1.548890 1.951659 H -9.904813 -1.644906 1.910325 H -9.423378 1.344673 -0.229418 H -8.118754 0.254682 0.332972 H -9.797462 -0.376983 0.092760 O -6.900036 3.245058 2.480001 O -6.498007 1.857464 4.518653 H -3.474143 6.162216 1.733471 H -1.647403 6.000236 3.400586 H-8.537668 3.497667 0.541685 H -8.802330 1.556250 4.209980 C -3.314669 5.236232 2.277759 C -2.287368 5.143010 3.214816 C -7.547207 3.855870 0.282399 C -6.544950 3.756177 1.246348 H-8.049175 4.500307 -1.709343 C -7.268332 4.425532 -0.957826 C -5.243396 4.234933 1.008276 C -4.177680 4.155039 2.035130

C -2.089619 3.954453 3.919725 H-1.301747 3.873463 4.661509 P -6.317927 1.808549 3.024724 C -5.980709 4.894310 -1.226642 C -4.989406 4.799149 -0.252608 C -3.966075 2.981882 2.777117 C -2.930234 2.866165 3.696536 H -5.747652 5.327497 -2.194834 H -3.985013 5.146714 -0.469875 H -2.793651 1.927055 4.217825 O -6.902439 0.624516 2.263421 O -4.754702 1.862218 2.525864 H -1.656384 -1.879782 6.577607 H -2.939882 -0.071854 7.679159 H-4.175053-1.727729 6.224602 H -5.573180 -3.117952 4.205867 C -1.535198 -1.187097 5.730402 H -0.553119 -1.349863 5.280577 S -3.748643 -4.448806 2.486895 O -2.763891 -2.697496 4.227404 O -1.571718 0.177920 6.162463 C -2.809586 0.540890 6.765401 H -1.033450 -3.296359 2.716017 H -0.697988 2.045940 7.576698 C -3.977181 -1.012001 5.410921 C -2.666117 -1.369706 4.726516 C -3.709250 -2.749683 3.144840 C -2.305329 -4.461903 1.427406 C -5.139451 -2.325608 3.580347 C -1.104713 -3.823822 1.773456 C -1.599508 2.641390 7.476070 C -2.786258 2.024609 7.068046 O -3.903003 0.315518 5.906888 H -3.321360 -5.656843 -0.052277 O -6.350679 -0.776733 4.971623 C -2.387612 -5.175736 0.224440 H -6.068311 -1.187260 2.290977 C -5.093840 -1.028833 4.390212 H -0.647458 4.492161 8.023023 C -1.573932 4.016087 7.716684 C -0.013557 -3.882638 0.905766 C -3.950311 2.787524 6.907206 H 0.908753 -3.376023 1.175400 H -2.492046 -0.660458 3.901634 H-4.856819 2.323598 6.534500 H -6.428516 0.206800 5.013765 O -5.961124 -2.147885 2.435870 H -3.384029 -2.080691 2.335410 C -1.280807 -5.252543 -0.621360 C -0.092974 -4.599680 -0.288273 C -2.733351 4.777150 7.554733 C -3.917373 4.159652 7.152598 H-1.355587 -5.809072 -1.550977 H -4.830392 -0.235253 3.679440 H -2.710638 5.847181 7.732983 H 0.762497 -4.649622 -0.953849 H-4.816810 4.747713 7.002399

TS_{PE-C2}

91

C -9.997069 -2.125650 -2.601961 C -9.411997 -1.571839 -1.354981 C -9.654289 -2.534789 -0.163277 C -11.105168 -3.026885 -0.109165 C -11.518740 -3.660770 -1.443487 C -11.409160 -2.606631 -2.582259 O -9.165878 -2.397547 -3.528569 C -9.568969 -2.746081 -4.892269

H -8.356431 -1.361452 -1.519326 H -8.976573 -3.392426 -0.262032 H -9.380937 -2.013870 0.758334 H -11.235612 -3.739327 0.711711 H -11.770571 -2.179480 0.102691 H -10.882634 -4.525240 -1.670604 H -12.550685 -4.021882 -1.414310 H -11.735149 -2.987910 -3.549368 H -12.046957 -1.763193 -2.318777 H -8.707605 -2.459225 -5.488128 H -9.774379 -3.817751 -4.930767 H-10.428376-2.137646-5.170924 O -6.077948 1.315892 -4.505271 O -8.106541 1.562589 -2.992745 H -2.219053 0.124578 -2.438388 H -2.445288 0.161529 0.029447 H -5.714244 1.115745 -7.045330 H -9.933227 -0.619618 -1.204653 C -3.194765 -0.004484 -1.980253 C -3.324243 0.025900 -0.592827 C -4.983419 0.549803 -6.478736 C -5.088472 0.544271 -5.089562 H -3.882625 -0.163946 -8.181059 C -3.960315 -0.163848 -7.098255 C -4.184703 -0.174941 -4.286196 C -4.311658 -0.167524 -2.812688 C -4.587860 -0.091102 -0.010468 H -4.701275 -0.043983 1.067981 P -7.411967 0.577938 -3.886193 C -3.047402 -0.883011 -6.324526 C -3.162668 -0.884792 -4.935892 C -5.569716 -0.315307 -2.202126 C -5.711986 -0.258415 -0.817618 H -2.254947 -1.450665 -6.802263 H -2.469397 -1.464621 -4.334449 H -6.706711 -0.333197 -0.391851 O -8.224370 -0.141182 -4.933184 O -6.677049 -0.610410 -2.976371 H-14.871367 3.522981 -1.850631 H -13.549288 3.897791 0.203234 H -12.395323 3.097459 -1.844715 H-11.268116 1.868653 -3.984836 C -15.025094 2.493167 -1.489860 H -16.020713 2.159042 -1.794491 8 -13.134070 0.295109 -5.676879 O -13.907921 1.534524 -3.437484 O -14.970399 2.426418 -0.064827 C -13.710772 2.835307 0.459894 H -15.845243 0.408511 -4.581620 H -13.815481 4.695104 2.481191 C -12.585372 2.076170 -1.476547 C -13.928971 1.580929 -2.014956 C -12.976560 0.547577 -3.874031 C -14.496616 -0.872346 -5.664787 C -11.539987 0.936682 -3.471971 C -15.718321 -0.560317 -5.051336 C -13.797848 3.673170 2.850998 C -13.744929 2.611272 1.949119 O -12.634395 2.063980 -0.048883 H -13.373231 -2.359234 -6.742023 O -10.239909 1.594513 -1.463931 C -14.323904 -2.120421 -6.275535 H -9.795566 0.192367 -4.167260 C -11.470915 1.149173 -1.941038 H -13.860567 4.254194 4.924670 C -13.822671 3.423569 4.226113 C -16.746952 -1.503908 -5.036177 C -13.717448 1.296615 2.426039 H-17.688712-1.262179-4.551989 H -14.110560 0.575781 -1.600344

 $\begin{array}{l} H \ -13.663924 \ 0.483418 \ 1.711154 \\ H \ -9.501726 \ 1.555493 \ -2.127506 \\ O \ -10.680261 \ -0.125418 \ -3.858790 \\ H \ -13.228083 \ -0.415985 \ -3.405482 \\ C \ -15.366053 \ -3.048385 \ -6.278385 \\ C \ -16.576732 \ -2.745360 \ -5.652929 \\ C \ -13.787126 \ 2.112288 \ 4.699320 \\ C \ -13.731806 \ 1.047998 \ 3.794453 \\ H \ -15.227475 \ -4.012651 \ -6.759890 \\ H \ -11.719550 \ 0.166608 \ -1.492306 \\ H \ -13.793793 \ 1.918715 \ 5.768268 \\ H \ -17.384752 \ -3.472439 \ -5.647592 \\ H \ -13.700097 \ 0.025316 \ 4.159373 \end{array}$

• TS_{PE-C3} 91

C -5.472703 -0.298291 0.587954 C -6.571789 0.626635 0.924165 C -6.781608 0.551694 2.465926 C -6.978772 -0.897634 2.923004 C -5.823685 -1.796467 2.463507 C -5.644235 -1.731465 0.909581 O -4.378819 0.233536 0.214177 C -3.210393 -0.538073 -0.189518 H -6.330831 1.631364 0.580083 H -5.914568 1.006776 2.950899 H -7.650760 1.166696 2.714693 H-7.060012-0.9367994.015168 H -7.919517 -1.286589 2.514415 H-4.890776-1.490939 2.954904 H -6.001416 -2.842278 2.730240 H -4.815711 -2.353988 0.573016 H -6.565788 -2.052793 0.410035 H -2.556674 0.197852 -0.646426 H -2.770080 -1.001481 0.695186 H -3.504713 -1.275983 -0.935248 O -7.630348 1.018506 -1.972308 O -6.074847 -0.691766 -2.993024 H -8.992302 3.043476 -5.921941 H -8.109448 1.945342 -7.911426 H-8.651456 2.408585 -0.104572 H -7.463059 0.248037 0.415217 C -8.723039 1.997214 -5.861505 C -8.219803 1.371423 -6.997456 C -9.149655 2.568122 -1.053812 C -8.724244 1.824916 -2.158559 H -10.496994 4.071013 -0.318159 C -10.174621 3.500184 -1.183749 C -9.313374 2.015517 -3.425495 C -8.832675 1.315571 -4.637544 C -7.826360 0.033749 -6.945600 H -7.412169 -0.453184 -7.823141 P -7.437788 -0.610991 -2.343589 C -10.784793 3.691278 -2.424779 C -10.354482 2.954338 -3.522819 C -8.460016 -0.039189 -4.621781 C -7.955516 -0.675583 -5.754269 H -11.594576 4.403766 -2.536287 H-10.829912 3.095079 -4.487920 H -7.664616 -1.716807 -5.672299 O -7.784888 -1.417140 -1.133282 O -8.624014 -0.783930 -3.463398 H -4.474914 6.030465 -1.625690 H -3.540565 4.565639 0.044735 H -3.538440 3.668149 -2.145593 H -3.719040 2.712574 -4.543581 C -5.438152 5.536204 -1.427107 H -6.243135 6.257247 -1.581725

S -5.550470 4.201707 -6.284082 O -5.436695 4.695130 -3.685081 O -5.518209 5.103687 -0.065490 C -4.542635 4.133959 0.238835 H -7.479303 5.581582 -4.512694 H -6.440483 4.851274 2.088339 C -4.545653 3.263805 -1.950154 C -5.594402 4.318198 -2.326260 C -5.700922 3.593229 -4.572328 C -7.180205 4.889961 -6.533200 C -4.743841 2.406447 -4.298832 C -7.923354 5.471480 -5.494727 C -5.692864 4.188649 2.507921 C -4.659802 3.726179 1.690827 O -4.679344 2.964801 -0.553434 H -7.176354 4.340448 -8.618662 O -3.981203 0.945903 -2.492500 C -7.744980 4.795525 -7.813332 H -5.725615 0.743452 -4.658578 C -4.819276 2.039880 -2.797937 H -6.554588 4.166780 4.480689 C -5.748401 3.802995 3.850346 C -9.236556 5.883251 -5.723224 C -3.692257 2.865657 2.221069 H -9.813835 6.295754 -4.900639 H -6.592287 3.887387 -2.149007 H -2.903553 2.495480 1.573469 H -4.527299 0.185200 -2.784943 O -5.050869 1.287587 -5.101748 H -6.733098 3.243975 -4.438796 C -9.046494 5.239891 -8.040600 C -9.806451 5.766958 -6.991982 C -4.772374 2.960116 4.381912 C -3.743229 2.487433 3.561531 H -9.477234 5.147012 -9.033595 H -5.853763 1.759288 -2.595119 H -4.813668 2.668612 5.427023 H-10.829308 6.086309 -7.165374 H-2.981835 1.827818 3.967684

BPA no dispersion reoptimized without dispersion

26

H -5.72378886 -0.46097378 0.97187728
C -6.27774776 -0.34909621 0.04514956
C -7.66996351 -0.35391065 0.06373547
H-8.19575597-0.48341738 1.00451089
C -8.38558143 -0.18028019 -1.12254759
H -9.47098589 -0.17828749 -1.11434828
C -7.70317932 -0.00337390 -2.32419697
H -8.22694310 0.12960973 -3.26425872
C -6.31218969 -0.00297626 -2.32514193
O -5.65949834 0.08317706 -3.55931810
C -5.56178462 -0.17587792 -1.15132593
H -3.92160443 -1.85697409 0.18995159
H -1.45146796 -1.88746378 0.21946043
C -3.36602425 -1.12979584 -0.39419638
C -1.97406430 -1.15199715 -0.38405130
C -4.08083428 -0.19893688 -1.16691151
C -1.25597207 -0.23840341 -1.15784006
H -0.17058602 -0.25086785 -1.15762860
C -3.32864658 0.70655164 -1.93405126
C -1.93716477 0.69480497 -1.93609801
O -3.96459781 1.72686105 -2.64486517
H -1.41070724 1.42673786 -2.53851201
P -4.87163292 1.43929943 -3.95439259
O -5.64106726 2.62213221 -4.37368356
O -3.87912897 0.82706185 -5.06332905

H -3.83533270 1.42594696 -5.82240819

BPA dimer reoptimized without dispersion

52

H -6.14870047 -1.60584753 -0.40100539 C -6.86034705 -1.71491215 -1.21330380 C -8.22601209 -1.63372637 -0.95425060 H -8.57306249 -1.47632195 0.06211431 C -9.14312422 -1.74150214 -2.00137801 H -10.20902518 -1.67364075 -1.80784075 C -8.68803173 -1.93386129 -3.30404324 H -9.37229957 -2.02945819 -4.13963103 C -7.32062934 -2.01610270 -3.54535059 O -6.90944798 -2.31108885 -4.84864198 C -6.37095455 -1.91010899 -2.51582100 H -4.51371830 -3.25850943 -1.07363840 H -2.07609510 -3.38474708 -1.46029066 C -4.07271022 -2.73439493 -1.91577902 C -2.70043110 -2.81176966 -2.13867656 C -4.91542005 -2.01017499 -2.77561537 C -2.13319794 -2.16448717 -3.23822664 H -1.06477006 -2.22422374 -3.42009069 C -4.31268410 -1.37279691 -3.87236571 C -2.94386989 -1.44116291 -4.11019807 O -5.08194354 -0.56284614 -4.71315019 H -2.53628857 -0.92031693 -4.96946987 P-6.12226468 -1.23208460 -5.75460760 O -7.09902912 -0.05301646 -6.06691670 O -5.48944616 -1.92106728 -6.91772681 H-7.14085739 0.20286137 -7.05446072 H -5.72001684 -1.80536456 -8.43135007 O -7.11568875 0.51295636 -8.54763682 O -5.87809312 -1.61276118 -9.41867406 O -5.16790580 0.78633800 -10.13474467 P -6.39738039 -0.15820781 -9.67058882 H -2.72709437 -0.04370109 -10.25705199 C -3.15324298 0.13720108 -11.23765010 C -4.47937268 0.54776471 -11.32672433 O -7.24659424 -0.36572844 -11.02414713 H -9.59120550 0.66365215 -11.32593651 C -7.52442566 0.71879836 -11.86233696 H -1.37041120 -0.34366849 -12.33740637 C -2.40487909 -0.02133369 -12.40195384 C -8.84655073 1.14122071 -11.95287711 C -5.09854975 0.81278192 -12.55922996 C -6.50280825 1.27808472 -12.64694248 C -9.18163490 2.15416842 -12.84891729 H-10.21115113 2.49007782 -12.92199425 C -6.87152170 2.29884191 -13.53945547 C -8.19050091 2.73260276 -13.64384857 H -6.09989748 2.76775738 -14.14216259 H-8.44185191 3.52833676-14.33808839 C -2.99111854 0.23107193 -13.64376873 C -4.32014542 0.64010565 -13.71596094 H -2.41734190 0.10057232 -14.55590124 H -4.78108586 0.81423003 -14.68318622

BPA + enol ether 5-15b complex reoptimized without dispersion

46

C -7.20366235 0.28765183 -0.24973137 C -8.34822476 0.80794667 -0.70830923 C -9.50324835 -0.05747667 -1.15510041 C -9.09414838 -1.52320530 -1.36062391 C -8.21905666 -2.00911469 -0.19995831

C -6.92723390 -1.18510689 -0.11175724
O -6.09901916 1.03255287 0.14135196
C -6.13588616 2.44779121 -0.05306579
H -8.48894262 1.88265768 -0.75887608
H -10.31241626 0.00115493 -0.41100557
H -9.92803627 0.34703414 -2.08317891
H -9.92805027 0.54705414 -2.08517891 H -9.98627128 -2.15075848 -1.46426549
H -8.52957651 -1.61436950 -2.29799461
H -8.77396571 -1.90644462 0.74138903
H -7.97406119 -3.07067461 -0.31168767
H -6.42208166 -1.36529556 0.84282873
H -6.21936758 -1.48863640 -0.89597944
H-6.90312646 2.91571247 0.57250045
H-5.15332835 2.81838900 0.23967299
H -6.32287295 2.67966094 -1.10667773
H-4.57396808 3.74376066 3.60446557
O -5.26015922 -0.80844677 4.72331112
O -5.83429990 1.66531762 4.44308185
C -5.64340415 3.81462232 3.43822517
H-5.34100682 0.59147108 1.60948175
H-5.60249572 5.79817667 2.60866520
P -5.71695752 0.19251332 3.75109271
C -6.44623110 2.73664905 3.80786345
C -6.22643627 4.95576742 2.89106139
Q -4.84717140 0.34192927 2.43314304
C -7.84391569 2.76472284 3.64655608
C -7.61069239 5.00996981 2.71203749
O -7.20478880 0.00971580 3.09465020
C -8.70460137 1.63729987 4.07560509
H -8.07273381 5.89281401 2.28117535
C -8.40264313 3.92584982 3.08456400
C -8.35124204 0.29953187 3.83111696
H -10.20941659 2.89196269 4.95939045
C -9.92385376 1.86881791 4.73462894
C -9.16406437 -0.76125104 4.21949155
H -8.83820260 -1.77279211 4.00386359
C -10.74955157 0.81774781 5.12462743
H -9.47670643 3.96316387 2.93121681
C -10.36935723 -0.50100748 4.86802448
H -11.68219315 1.02755881 5.63885771
H -11.00488035 -1.32558413 5.17530125

• Enol ether 5-15b reoptimized without dispersion

C -6.80016768 0.42382097 -0.15738892 C -7.63802951 1.45669281 -0.33782435 C -9.12776226 1.34700051 -0.10744730 C -9.60083810 -0.10995372 -0.00540928 C -8.65770648 -0.92587151 0.88597016 C -7.23845517 -0.94345508 0.30215553 O -5.44615898 0.44142905 -0.36789645 C -4.86810141 1.64392328 -0.84511579 H -7.26025005 2.42309327 -0.65550435 H -9.40371970 1.89025098 0.81034894 H -9.66425151 1.85603159 -0.91940540 H -10.62686374 -0.14896010 0.37818008 H -9.62015162 -0.55677071 -1.00854424 H -8.63284055 -0.47988295 1.88897857 H -9.02380715 -1.95178371 1.00584128 H -6.51442291 -1.31041079 1.03934693 H -7.18128926 -1.63828138 -0.54783995 H -5.00644815 2.46753445 -0.13233396 H -3.80156383 1.44555797 -0.96470234 H -5.29557192 1.94017509 -1.81215914 Axial phosphate 5-20a reoptimized without dispersion

20

C -7.04042421 0.17232605 -1.10419642
C -8.17419654 1.07100221 -0.60403125
C -9.46110266 0.29126580 -0.30755975
C -9.20557172 -0.87777557 0.65445757
C -8.09850785 -1.79806029 0.12299388
C -6.80474192 -1.02331440 -0.17280282
O -5.93182706 0.99593012 -1.28833886
C -4.67996646 0.37106345 -1.57963066
H -7.80183448 1.54393209 0.31247692
H-10.20605794 0.97650438 0.11178117
H -9.88162215 -0.08588100 -1.24714039
H -8.90952899 -0.48376741 1.63725487
H -10.12703708 -1.45026535 0.81277474
H -7.88308029 -2.59832167 0.84028004
H -8.43715641 -2.28179502 -0.80063881
H -6.38301151 -0.62169434 0.75709921
H -6.05862071 -1.69026607 -0.61440941
п-0.03802071-1.09020007-0.01440941
H -4.00856907 1.17884827 -1.87497888
H -4.26466659 -0.13180922 -0.69846539
H -4.76760265 -0.33816683 -2.40726826
O -8.35915572 -0.87153268 -4.67287139
O -8.56625356 1.50983370 -3.72397236
H -6.14734962 -1.10774018 -8.67378427
п-0.14/34902 -1.10//4018 -8.0/3/842/
H -5.47126588 1.10144513 -9.55731781
H -8.76583721 -3.28741299 -3.89293627
H -8.34906853 1.85958953 -1.33798769
C -6.01371187 -0.27101943 -7.99515035
C -5.64021350 0.97490982 -8.49246144
C -7.98008990 -3.22183859 -4.63745370
C -7.62010898 -1.96551608 -5.11738694
H -7.62077136 -5.33780087 -4.75698262
C -7.34099533 -4.35740424 -5.13002360
C -6.62314549 -1.80225224 -6.09492606
C -6.25061043 -0.46947873 -6.62477036
C -5.49730437 2.06021730 -7.62527918
H -5.21191069 3.03500194 -8.00833954
P -7.71830552 0.30642312 -3.76029806
C -6.34481103 -4.22787392 -6.09977299
C -5.99384782 -2.96537187 -6.57013464
C -6.09591878 0.64146374 -5.77991673
C -5.72717523 1.89370280 -6.26121626
H -5.83701158 -5.10728598 -6.48332444
H -5.20552468 -2.86245183 -7.30943458
H -5.62269406 2.71330137 -5.55908156
O -7.40303057 -0.46540032 -2.39790034
O -6.22745302 0.47358628 -4.40027329

• Equatorial phosphate 5-20b reoptimized without dispersion

C -7.65461191 0.01223339 -1.06411186 C -8.94319792 0.75642452 -0.70525401 C -9.02383023 1.02874963 0.80469243 C -8.87737148 -0.26072952 1.62347467 C -7.58557482 -1.00580536 1.25442940 C -7.51009160 -1.28203260 -0.25509734 O -6.60739581 0.92287036 -0.89647611 C -5.27049287 0.43389222 -1.01777925 H -8.98494406 1.68311155 -1.28004717 H-8.22947987 1.73204022 1.08136793 H-9.97641223 1.52053600 1.03138586 H -8.88994298 -0.03630937 2.69636344 H -9.73916692 -0.91535374 1.42952606 H -6.72014516 -0.40403538 1.55996124 H -7.51729729 -1.95411613 1.79972981 H -6.57995153 -1.78968358 -0.52658647 H -8.32744351 -1.94610597 -0.55618859

46

H -4.63648440 1.31984062 -1.08134469
H -4.97192896 -0.15297328 -0.14115803
H -5.14048050 -0.16061202 -1.92607784
O -8.28415850 -0.52336327 -4.90458776
O -8.64341413 1.70783341 -3.68050693
H -5.50480470 -0.16821938 -8.52616447
H-4.71118697 2.13691659 -8.94060588
H -8.78111158 -3.02215797 -4.57309100
H -9.78668149 0.13422065 -1.02525138
C -5.47392594 0.54808313 -7.71103541
C -5.03433877 1.84844163 -7.94520702
C -7.89722586 -2.85538549 -5.17868081
C -7.47937544 -1.54610684 -5.40122738
H -7.51288348 -4.93289086 -5.57436606
C -7.18812652 -3.91139351 -5.74644025

 $\begin{array}{l} C & -6.35152907 & -1.24989461 & -6.18659958 \\ C & -5.90938135 & 0.14169925 & -6.43873090 \\ C & -5.02345062 & 2.78098731 & -6.90578121 \\ H & -4.68807376 & 3.79786107 & -7.08419233 \\ P & -7.79888011 & 0.50398643 & -3.74765286 \\ C & -6.06413692 & -3.64985450 & -6.53242604 \\ C & -5.65552168 & -2.33595282 & -6.74426177 \\ C & -5.88496004 & 1.10335510 & -5.41541103 \\ C & -5.45207878 & 2.40748865 & -5.63377253 \\ H & -5.50229817 & -4.46758103 & -6.97289808 \\ H & -4.76940852 & -2.13356916 & -7.33798043 \\ H & -5.45601875 & 3.10534660 & -4.80390943 \\ O & -7.69061979 & -0.45096959 & -2.46914627 \\ O & -6.22493104 & 0.72533564 & -4.11482268 \\ \end{array}$

References

- [1] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., *Mol. Phys.* **2015**, *113*, 184–215.
- [2] A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
- [3] S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- [4] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.
- [5] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [6] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA, 2015.
- [7] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [8] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.
- [9] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [10] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [11] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [12] J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- [13] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminform. 2011, 3, 33.

APPENDIX F

Experimental Information for Chapter 5, Section 5.4

General information

Proton, carbon, and deuterium NMR spectra were recorded on Varian VNMRS-700 (700 MHz), Varian VNMRS-500 (500 MHz), Varian INOVA 500 (500 MHz) or Varian MR400 (400 MHz). ¹H NMR chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane with the solvent resonance employed as the internal standard (C₆D₆, δ 7.16 ppm; CD₂Cl₂ δ 5.32 ppm; CDCl₃, δ 7.24 ppm).

Computational Studies

All quantum chemical calculations were performed using the Q-Chem 4.3 package.^[1] Geometry optimizations were evaluated using the B97-D density functional^[2,3] using the double- ζ - quality basis set with polarization functions on all atoms, 6-31G**.^[4,5] Pictorial representations of important stationary points were generated in Discovery Studio 4.1 Visualizer.^[6]

For the growing string reaction path optimizations, between 7-15 nodes were used, including the end points. In the initial phase, termed growth phase, new nodes were added when the perpendicular gradient magnitude on the frontier node was less than 0.10 Hartree/Å for double-ended strings, or when the RMS gradient was less than 0.005 Hartree/Å for single-ended strings. Additionally, an initial maximum optimization step size of 0.1 Å-radians was used. When the total

perpendicular gradient magnitude over all nodes, F, reached a value of less than 0.3, the climbing image search was initiated. When F < 0.1, or when the node of highest energy had a RMS gradient below double the nodal convergence criterion and F < 0.2, the exact transition state search was initiated. The string is considered fully converged when an RMS gradient < 0.0005 Hartree/Å was obtained for the node representing the transition state. Further detail regarding the growing string implementation developed in the Zimmerman group can be found in the references.^[7–10]

The electronic Gibbs free energy values of all stationary points were computed through solvent corrected (dichloromethane) single point energies using the SMD model.^[11] For these calculations the ω B97X-D3 exchange functional^[12] was employed with a 6-31G** basis set. The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298.15 K. These frequency computations were performed using the B97-D functional and 6-31G** basis set. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below 50 cm⁻¹ were treated as if they were 50 cm⁻¹.

A model system consisting of biphenyl hydrogen phosphate (**BPA**), 6-deoxyglucosederived trichloroacetimidate α -**5-19**, and glucose-based diol **5-16b** was utilized to explore the phosphoric acid-catalyzed glycosylation of sugar-derived 2,3-diols. To account for variation in conformations and binding complexes, the most stable conformations were sampled for the growing string calculations. These were obtained in part by manually sampling relevant torsions and angles of approach, and also by using an algorithm which allowed a thorough conformational analysis by ranking a vast number of unique conformers generated by the systematic variation of the torsional angles.^[13] Using the growing string method, pathways for the reaction of BPA with trichloroacetimidate donor α -**5-19** leading to the formation of phosphate β -**5-10b** through S_N2-like mechanism were readily found. Following this, the reaction of the phosphate intermediate β -**5-10b** with diol **5-16b** to form C2 and C3 glycosides was evaluated. The lowest reaction pathways calculated for the formation of these glycosides proceeded through a S_Ni mechanism with retention of configuration.

Figure F.1. Energy diagram for the CPA-catalyzed intermolecular glycosylation of 6-deoxyglucose-derived 2,3-diols.

A summary of calculated values, including solvent corrected single point electronic energies, as well as enthalpic and entropic corrections associated with vibrational, rotational, and translational energy at 298 K are provided below.

	GSMD	Svrt	Hvrt	Gcorr
	[kcal/mol] ^a	[cal/mol] ^b	[kcal/mol.K] ^b	[kcal/mol] ^c
BPA	-693418.0	114.1	126.3	-693325.7
Diol 5-16a	-1046439.2	177.3	310.9	-1046181.1
Trichloroacetimidate donor α-5-19	-1841479.5	217.4	357.7	-1841186.7
Trichloroacetimidate donor α-5-19 + BPA complex	-2534913.6	276.0	484.7	-2534511.2
Trichloroacetamide (TCA)	-996497.9	90.4	33.4	-996491.4
α-phosphate 5-10b	-1538418.7	237.2	450.9	-1538038.5
β-phosphate 5-10b	-1538413.8	238.3	451.2	-1538033.6
β-phosphate 5-10b + diol 5-16a complex	-2584872.8	355.9	764.9	-2584214.0
TSP	-2534901.7	281.7	484.2	-2534501.5
TS _{C2}	-2584837.9	365.3	760.8	-2584186.0
TS _{C3}	-2584846.5	355.2	760.7	-2584191.7

Table F.1. Calculated energy values for the BPA-catalyzed acetalization of diols.

^aGas-phase electronic energy (ω B97X-D3/SMD/6-31G**). ^bVibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. ^cCorrected free energy values at 298K.

Cartesian coordinates for starting geometries, transition states, and products are described below.

• BPA

26

H -5.72428523 -0.48831442 0.98697438
C -6.28439443 -0.36620410 0.06007891
C -7.68832232 -0.36341207 0.07668617
H -8.21878366 -0.49755063 1.01925451
C -8.40824701 -0.17254738 -1.11938955
H -9.49782706 -0.16110110 -1.11076079
C -7.71851142 0.00685161 -2.33069717
H -8.24375641 0.14914534 -3.27295870
C -6.31717770 -0.00517093 -2.33003536
O -5.65460079 0.06060007 -3.58302558
C -5.56356336 -0.18448078 -1.14510677
H -3.92068644 -1.85692296 0.21829797
H -1.42723110 -1.89050223 0.23304154
C -3.36034227 -1.13416699 -0.37500477
C -1.95668993 -1.15639827 -0.37407259
C -4.08202246 -0.20016108 -1.15752358
C -1.23660574 -0.24141830 -1.16732597
H -0.14707102 -0.25756904 -1.17597693
C -3.32891776 0.71387622 -1.93510103
C -1.92724273 0.69920244 -1.95046188
O -3.97830017 1.76149982 -2.63449179
H -1.40039703 1.42919197 -2.56173595
P -4.87333364 1.44496470 -3.96867356
O -5.65780224 2.62401335 -4.40603117
O -3.84439723 0.82979409 -5.06646961
H -3.81574089 1.43633068 -5.82391071

• Diol 5-16a

57

C -7.33779976 -1.23607297 0.64464879 C -8.08925588 -1.94447219 -0.47368577 C -7.20570556 -1.91256272 -1.74361214 C -6.74559910 -0.48708998 -2.10214028 O -6.06662540 0.14906535 -0.96894192 C -6.94991969 0.19377435 0.20955380 C -6.18940012 0.88909710 1.34415808 O -8.18917913 -1.11760538 1.84031500 O -8.35522467 -3.28355554 -0.09013656 O -7.98997612 -2.47519369 -2.79160551 O -7.04761729 0.89542317 2.54309276 C -7.44150612 -0.46599392 2.91823865 C -8.29606823 -0.41841198 4.16241049 C -8.10827481 0.60479936 5.11561960 C -8.86562813 0.61077130 6.30079656 C -9.81001411 -0.40516698 6.54311347 C -9.99633533 -1.42717501 5.59238465 C -9.24181200 -1.43761625 4.40562056 S -5.52476119 -0.49754218 -3.57573424 C -4.27323142 -1.70190155 -2.90094923 C -4.16650647 -2.98338795 -3.46743314 C -3.23382376 -3.90567645 -2.95370350 C -2.39907533 -3.56947855 -1.86519150 C -2.52490866 -2.26953002 -1.31494969 C -3.44381968 -1.33766918 -1.82099451 H -6.42228569 -1.80296167 0.90077082 H -9.02544674 -1.38693508 -0.67695619 H -6.31015482 -2.52489846 -1.53537956 H -7.59699615 0.12577814 -2.44522124 H-7.87142462 0.75245866 -0.02829650 H-5.24947254 0.34102505 1.54303400 H-5.97411616 1.93785742 1.11432044 H -8.73588627 -3.70780785 -0.87565579 H -7.41005272 -2.51969095 -3.57030714 H -6.50704591 -1.05082085 3.06809009 H-7.38232533 1.39022059 4.91599410

H-8.71977921 1.40797242 7.03070074
H-10.39577023-0.39987963 7.46322708
H-10.72955302 -2.21414322 5.77267898
H -9.38576528 -2.21739498 3.66054499
H -4.80847576 -3.26477323 -4.30253220
H -3.17555835 -4.89327780 -3.40712853
C -1.37047676 -4.54656244 -1.25973357
H -1.89046512 -1.98244992 -0.47607637
H -3.53429962 -0.34832499 -1.37966754
C -1.68825131 -4.76003648 0.25045437
C 0.05762930 -3.93990895 -1.40033357
C -1.37966142 -5.92786426 -1.96115574
H 0.12922647 -2.96515978 -0.89360618
H 0.30961042 -3.79618014 -2.46276161
H 0.79681240 -4.62253163 -0.94947168
H -1.65514036 -3.80892322 0.80403954
H -0.94505652 -5.44333449 0.69321657
H -2.69110948 -5.19771570 0.37830011
H -2.36655707 -6.41182265 -1.88261143
H -0.63498248 -6.58221114 -1.48226105
H -1.12009170 -5.83265090 -3.02764029

Trichloroacetimidate donor α-5-19

68

C 1.45740144 2.59434689 -3.10882893
C 0.75318749 2.34096720 -1.74605697
C -0.65098136 2.96331411 -1.71806237
C -0.62071183 4.41600066 -2.21387691
C 0.07967033 4.52117548 -3.58395033
C -1.69172948 1.74290738 0.23483293
C 1.72353084 0.23920007 -0.85864111
C 0.28497057 5.96605007 -4.03199086
O 1.43235971 3.92246449 -3.49499644
0 0.58066574 0.95482999 -1.48365748
O -1.18431429 3.01171695 -0.34685070
O -1.97305136 4.93386096 -2.43709492
H 1.37299498 2.82342942 -0.96525579
H -1.31453803 2.36854712 -2.36190746
H -0.07662427 5.03930409 -1.48598314
H -0.50267095 3.95658873 -4.32784177
H 0.88134908 6.51228751 -3.28495617
H 0.80565893 5.99420576 -5.00000393
H -0.69598089 6.44980477 -4.12494303
C 1.16610499 -1.09369170 -0.42790821
C 0.85797380 -1.34822081 0.92454706
H 1.10342435 -0.59897113 1.67946149
C 0.22724887 -2.54987494 1.29877336
H -0.00793226 -2.73825993 2.34691724
C -0.11035767 -3.50190750 0.31742647
H -0.60690277 -4.42922136 0.60530378
C 0.19557593 -3.25376569 -1.03622965
H -0.06713261 -3.98576715 -1.80049066
C 0.83353361 -2.05714660 -1.40486542
H 1.05191588 -1.84940301 -2.45151388
C -2.63868287 0.97471526 -0.66448605
C -3.65014710 1.64227041 -1.38982926
H -3.72163948 2.72791020 -1.32651032
C -4.51834697 0.91968907 -2.22624538
H -5.28433993 1.44520033 -2.79790058
C -4.39357621 -0.48060458 -2.33459264
H -5.06650083 -1.04058643 -2.98508940
C -3.38609374 -1.15038456 -1.61265101
C -2.50425890 -0.42274710 -0.79190969
H -1.69514394 -0.93286298 -0.27156999
H -2.20617998 2.09672240 1.14198418
H -0.84849686 1.09994376 0.52219039
H 2.08846666 0.82574614 0.00285672
H 2.52258885 0.13168408 -1.60823421

•	Trichloroacetimidate donor α-5-19 + BPA complex
94	

C 3.07077242 2.81337158 -1.83064999
C 2.32362001 2.24285186 -0.61505065
C 0.91755128 2.86018478 -0.50923418
C 1.01139671 4.39940123 -0.56940472
C 1.88838901 4.90945370 -1.74351689
C -1.11670149 2.34147981 0.84148262
C 2.39711001 0.05984360 0.47048867
C 2.22468769 6.39214746 -1.60585186
O 3.17426750 4.18742699 -1.81343139
O 2.25939666 0.83473168 -0.77593027
O 0.36508181 2.41456438 0.77627004
0 -0.31730745 5.04275675 -0.62022161
H 2.92257120 2.51745349 0.26874046
H 0.31089848 2.46118565 -1.33549776
H 1.42932335 4.74934273 0.38428420
H 1.36488022 4.71996398 -2.69200463
H 2.80052077 6.74036235 -2.47502840
H 2.81440049 6.56267877 -0.69239094
C 2.16501290 -1.40326362 0.16060516
C 2.02025403 -2.31002847 1.23437464
H 2.07801981 -1.94259085 2.26079233
C 1.81234129 -3.67881749 0.99146051
H 1.70961870 -4.36748159 1.83079989
C 1.74006201 -4.15956472 -0.33131368
H 1.57755274 -5.22162988 -0.51908626
C 1.87822183 -3.25910043 -1.40519005
H 1.82773912 -3.62077173 -2.43299498
C 2.09129452 -1.88804931 -1.16213187
H 2.19585201 -1.19017556 -1.98821990
C -1.72178391 1.31941325 -0.10818623
C -1.08732195 0.08128378 -0.34251633
H -0.14600057 -0.14018632 0.14707954
C -1.65088645 -0.85709291 -1.22444608
H -1.13924276 -1.80408113 -1.39733430
C -2.86034117 -0.56431988 -1.88776512
H -3.29270836 -1.28632726 -2.58225700
C -3.50694012 0.66395866 -1.64823073
C -2.94191851 1.59994293 -0.76161148
H -3.44426488 2.54907803 -0.58327579
H -1.54237467 3.33656287 0.65400698
H -1.29196972 2.06282186 1.89178158

H 1.66128512 0.42780390 1.20190315
H 3.40696114 0.22873028 0.87538617
C -1.05431023 4.87446886 -1.88669153
C -2.54662873 4.88339238 -1.62989464
C -3.40213665 4.37756233 -2.63274526
H -2.97449225 3.97269874 -3.55243843
C -4.79332514 4.35580834 -2.43811629
H -5.44364120 3.95418461 -3.21599702
C -5.34405504 4.83247921 -1.23158315
H -6.42278347 4.80629446 -1.07365337
C -4.49411825 5.34121749 -0.23138522
H-4.91449140 5.70995686 0.70491695
C -3.10027771 5.37616872 -0.43069710
H -2.43800972 5.76367143 0.34136390
H -0.77743511 3.92831854 -2.37960230
H -0.77299158 5.69944141 -2.56744997
H -4.44161176 0.90094717 -2.15811441
Н 3.57639816 -0.13836515 -4.33500408
N 3.56469990 0.61517480 -3.64765344
Cl 1.77921154 -0.10107917 -6.03138794
Cl -0.04913084 0.50643177 -3.78732982
C 2.53229206 1.36272132 -3.76207848
C 1.34346243 1.12260816 -4.76012553
O 2.25906243 2.43542080 -3.04084058
Cl 0.89343978 2.67188847 -5.59208055
H 4.07340025 2.38983118 -1.92269420
H 4.07540025 2.58985118 -1.92209420 H 1.28989281 6.96563527 -1.52996718
H 5.20385060 -5.43897785 -0.09959911
H 7.59635764 -5.80050340 0.58082421
C 5.84235631 -4.59112884 0.14908166
H 4.28343230 -3.10847056 -0.19206892
C 7.99771981 -3.69034071 0.83831967
C 6.13963319 -2.20154455 0.40959201
H 9.04339927 -3.83789112 1.10976362
O 5.45006804 -0.30495679 -2.05720935
H 4.69293030 0.20244846 -2.51224202
C 7.49706587 -2.36659885 0.78035510
O 5.54182437 -0.92128526 0.47812627
P 5.90535683 0.23265786 -0.63560397
C 8.36868771 -1.21292053 1.10642745
O 7.53089120 0.07058925 -0.80900430
H 9.32154296 -2.18553682 2.78056474
O 5.39808671 1.55434491 -0.17195116
C 9.29291259 -1.27835976 2.17752926
C 8.33414534 -0.01433686 0.35087311
C 10.13997889 -0.19995741 2.47870543
C 9.16677088 1.07460196 0.64621627
H 10.83938543 -0.27613079 3.31114676
H 9.09680386 1.96873738 0.02986718
C 10.07563295 0.98193294 1.71383404
H 10.72757594 1.82461144 1.94476802

• Trichloroacetamide (TCA)

O -1.30869000 -1.27960000 -1.52241000 C -0.73985000 -1.86867000 -2.42298000 H 0.40827000 -3.12783000 -1.31179000 Cl -2.13744000 -0.13582000 -4.08638000 N 0.17868000 -2.85558000 -2.25794000 Cl -1.85601000 -3.01396000 -4.69634000 C -1.05625000 -1.54373000 -3.95653000 H 0.63350000 -3.31513000 -3.03440000 Cl 0.50310000 -1.20288000 -4.86013000

• α-phosphate 5-10b

9

0	~
- 75	-

C 2.33289451 1.21322823 -1.00181290 C 1.22296839 0.99414006 0.04698457
C 1.22290039 0.99414000 0.04090437
C 0.15982016 2.09233754 -0.06758692
C 0.79089662 3.50034090 -0.19720361
C 2.07174383 3.58945936 -1.07148194
C -2.05993218 2.42873371 0.97946657
C -2.03993218 2.42873371 0.97940037
C 1.26294542 -1.45006847 0.39380444
C 2.88189747 4.84564085 -0.75695402
O 2.96734030 2.43736697 -0.84235839
O 0.57180124 -0.25128371 -0.15531892
O -0.64276616 2.03572127 1.16044408
O -0.19260790 4.49403995 -0.67388329
H 1.69620795 1.04243528 1.04621294
H-0.47009022 1.85183173 -0.93696504
H 1.02464049 3.84013713 0.82138301
H 1.79099744 3.57120096 -2.13435067
H 3.73789308 4.93967255 -1.44054671
H 3.25385384 4.80359127 0.27835078
C 0.26136029 -2.57495441 0.32999226
C -0.68480538 -2.73463727 1.36462007
C -0.08480558 -2.75405727 1.50402007
H -0.64455530 -2.07238211 2.23096816
H -0.64455530 -2.07238211 2.23096816 C -1.68230630 -3.72129287 1.27341621
C -1.08230030 -3.72129287 1.27341021
H -2.41271801 -3.83401372 2.07521872
C -1.73756140 -4.56088643 0.14250639
H -2.50889792 -5.32894395 0.07072394
C -0.79203022 -4.40956237 -0.89097492
H -0.83074919 -5.05865170 -1.76695018
C 0.20330858 -3.41721271 -0.80067501
Н 0.92072892 -3.27097143 -1.60746567
C -2.84490133 1.45628820 0.11714022
C -2.59256708 0.06952901 0.18588551
H -1.78098731 -0.28874239 0.81225193
C -3.33745423 -0.82576128 -0.59829430
H -3.12592267 -1.89362218 -0.53752962
C -4.34132531 -0.34451336 -1.46361176
H -4.90769309 -1.03947812 -2.08475073
C -4.59292333 1.03792920 -1.53963985
C -3 84737617 1 93475144 -0 75099796
C -3.84737617 1.93475144 -0.75099796 H -4.03537405 3.00529798 -0.82002932
H -4.03537405 3.00529798 -0.82002932
H -2.11552525 3.44540781 0.56205798
H -2.11552525 3.44540781 0.56205798
H -2.11552525 3.44540781 0.56205798 H -2.43888629 2.44259322 2.01295330
H -2.11552525 3.44540781 0.56205798 H -2.43888629 2.44259322 2.01295330 O 1.97825996 -1.40978125 -2.80491888
O 1.97825996 -1.40978125 -2.80491888
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895 O 1.73392382 1.18775931 -2.34560921
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895 O 1.73392382 1.18775931 -2.34560921 C -1.46445369 -0.02972273 -5.05813038
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895 O 1.73392382 1.18775931 -2.34560921 C -1.46445369 -0.02972273 -5.05813038 H -3.33671517 -3.34850009 -4.09288974
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895 O 1.73392382 1.18775931 -2.34560921 C -1.46445369 -0.02972273 -5.05813038 H -3.33671517 -3.34850009 -4.09288974
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895 O 1.73392382 1.18775931 -2.34560921 C -1.46445369 -0.02972273 -5.05813038 H -3.33671517 -3.34850009 -4.09288974 C -1.87633335 -1.87718270 -3.47651044
O 1.97825996 -1.40978125 -2.80491888 O 1.39960219 0.29518846 -4.67245575 C 1.30451722 2.58232518 -5.43327101 C 0.63264489 1.38375223 -5.15029461 P 1.24737358 -0.15146916 -3.09844640 H -3.83361180 -2.20624893 -6.26870412 C -3.10202971 -1.78134442 -5.58141376 C 0.59646952 3.65373894 -6.00584266 C -2.42788490 -0.59825631 -5.92495277 H 1.11195219 4.58863417 -6.22466017 C -0.75095061 1.21917139 -5.41002969 C -2.82147518 -2.42576659 -4.35960895 O 1.73392382 1.18775931 -2.34560921 C -1.46445369 -0.02972273 -5.05813038 H -3.33671517 -3.34850009 -4.09288974 C -1.87633335 -1.87718270 -3.47651044 C -1.22140150 -0.69231330 -3.83151135
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.8763335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.43323014 2.30601164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.4323014 2.30601164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43323610$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.8763335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.43323014 2.30601164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.4323014 2.30601164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43322610$ H $2.15079725 - 1.66950477 - 0.21724224$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.43323014 2.30601164 - 6.00759850$ H $-1.322891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43323610$ H $2.15079725 - 1.66950477 - 0.21724224$ H $3.10422490 0.43211184 - 0.95246522$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.4323014 2.30601164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43322610$ H $2.15079725 - 1.66950477 - 0.21724224$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.43323014 2.30061164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43323610$ H $2.15079725 - 1.66950477 - 0.21724224$ H $3.10422490 0.43211184 - 0.95246522$ C $-0.64921803 4.32040503 - 2.07361564$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.43323014 2.30601164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43323610$ H $2.15079725 - 1.66950477 - 0.21724224$ H $3.10422490 0.43211184 - 0.95246522$ C $-0.64921803 4.32040503 - 2.07361564$ C $-2.12494107 4.64530933 - 2.17875606$
O $1.97825996 - 1.40978125 - 2.80491888$ O $1.39960219 0.29518846 - 4.67245575$ C $1.30451722 2.58232518 - 5.43327101$ C $0.63264489 1.38375223 - 5.15029461$ P $1.24737358 - 0.15146916 - 3.09844640$ H $-3.83361180 - 2.20624893 - 6.26870412$ C $-3.10202971 - 1.78134442 - 5.58141376$ C $0.59646952 3.65373894 - 6.00584266$ C $-2.42788490 - 0.59825631 - 5.92495277$ H $1.11195219 4.58863417 - 6.22466017$ C $-0.75095061 1.21917139 - 5.41002969$ C $-2.82147518 - 2.42576659 - 4.35960895$ O $1.73392382 1.18775931 - 2.34560921$ C $-1.46445369 - 0.02972273 - 5.05813038$ H $-3.33671517 - 3.34850009 - 4.09288974$ C $-1.87633335 - 1.87718270 - 3.47651044$ C $-1.22140150 - 0.69231330 - 3.83151135$ C $-0.77362026 3.51054210 - 6.30178455$ O $-0.37332186 - 0.09030317 - 2.87085145$ C $-1.43323014 2.30061164 - 6.00759850$ H $-1.32891580 4.33801707 - 6.74231433$ H $1.56228901 - 1.22802834 1.43323610$ H $2.15079725 - 1.66950477 - 0.21724224$ H $3.10422490 0.43211184 - 0.95246522$ C $-0.64921803 4.32040503 - 2.07361564$

H -2.42797841 3.26871439 -3.81754690
C -4.25912619 4.32204755 -3.32628355
H -4.84645239 3.82058251 -4.09687169
C -4.87056980 5.25033879 -2.46210082
H -5.93145207 5.48096991 -2.56654594
C -4.10702547 5.87410113 -1.45479628
H -4.57778074 6.58869868 -0.77840333
C -2.73738743 5.57972258 -1.31750618
H -2.14081870 6.04553941 -0.53499398
H -0.46637359 3.29453205 -2.43104248
H -0.05411213 5.00069875 -2.70955107
H -5.35405162 1.42461509 -2.21867639
H 2.36695226 2.65204964 -5.20843886
H -2.49959061 2.20089791 -6.20694358
H -2.62099997 -0.11181386 -6.88111797
H -1.65245319 -2.32947701 -2.51500625
H 2.22800173 5.72390537 -0.86226024

• β-phosphate 5-10b 85

C 1.24588822 0.95312557 -0.79668787
C 0.27467059 1.14859737 0.38067019
C -0.67028069 2.33112748 0.11249841
C 0.11727137 3.57574528 -0.34582542
C 1.05985702 3.20793917 -1.52305984
C -2.65106602 3.29550201 1.29580395
C -0.67644437 -0.49490075 1.96964760
C 1.93695780 4.37692589 -1.96612896
O 1.95110497 2.14609669 -1.07259596
O -0.46169673 -0.05936666 0.54865453
O -1.37989165 2.54564433 1.37905347
O -0.74491786 4.72301197 -0.66584629
H 0.89248419 1.38070517 1.26286148
H -1.38631459 2.02463614 -0.66836787
H 0.72776612 3.94017543 0.49113262
H 0.45646424 2.82970067 -2.37301843
H 2.57832768 4.07490732 -2.80618256
H 2.57555687 4.69574200 -1.12844688
C 0.62434931 -0.70757452 2.70487068
C 1.43509058 -1.82535950 2.41112293
H 1.08775220 -2.56583220 1.69546434
C 2.68786543 -1.97499322 3.02665237
H 3.31199971 -2.83426243 2.77876198
C 3.14295388 -1.00945984 3.94724016
C 2.33948907 0.10662881 4.24909246
H 2.68953876 0.85832549 4.95780898
C 1.08655355 0.25826817 3.62510629
H 0.46271892 1.12914218 3.83753734
C -3.69189391 2.66962777 0.38012910
C -4.65853706 3.49807248 -0.22945205
H -4.61832029 4.57611553 -0.07523248
C -5.65651657 2.94280945 -1.05150125
H -6.39373937 3.59599703 -1.51954827
C -5.68816007 1.55445158 -1.28398981
H -6.45551624 1.12384447 -1.92878308
C -4.71710119 0.72482685 -0.68846904
C -3.72690661 1.27725393 0.14417489
H-2.95505322 0.64594086 0.58207664
H-2.45231388 4.33272004 0.99105229
H-2.99868029 3.29001713 2.34064403
O 3.52338233 -0.34444316 -2.68004306
O 1.78334475 -2.07573553 -1.92519166
C -0.13094092 -2.88843865 -0.72043796
C 1.24152652 -2.98600613 -0.99109503
P 2.91347456 -0.96613919 -1.48410276
Н 5.85655501 -6.54415259 -1.46420492
C 5.43894796 -5.55725135 -1.26541045

H 2.20950175 1.71896710 3.35772437 C -2.52242609 3.76913939 0.70965074
C -2 52242609 3 76913939 0 70965074
C -3.49180920 4.64784954 0.17946302
H -3.26638720 5.71092659 0.09887782
C -4.73289637 4.15546151 -0.26488971
C -5.01124007 2.77678569 -0.19380334
H -5.96978097 2.39252530 -0.54529226
C -4.04180567 1.89431876 0.32330802
C -2.80517187 2.38739324 0.77665406
H -2.03837240 1.70737833 1.14246201
H-0.97690259 5.27616085 0.69536852
H -1.23613229 4.51227068 2.29448989
O 4.12498521 -0.19548886 -3.13298054
O 2.44472196 -2.00249510 -2.38715201
C 0.53687194 -2.75820428 -1.12516047
C 1.91077110 -2.85448158 -1.38188817
P 3.46993047 -0.80943747 -1.94691608
Н 6.74720169 -6.15896949 -1.38144374
C 6.26112320 -5.18916427 -1.27341133
C -0.05858950 -3.65041696 -0.21755134
C 4.86817736 -5.12730550 -1.09585536
H -1.12527244 -3.57654361 -0.00828976
C 2.73656275 -3.81096104 -0.74031251
C 7.02607336 -4.00596747 -1.32258796
O 2.66482844 0.15925671 -0.92864937
C 4.20158318 -3.88423507 -0.96808265
H 8.10448184 -4.03880947 -1.47042786
C 6.39199892 -2.75902075 -1.19148687
C 5.00461393 -2.72108813 -1.02481679
C 0.72810373 -4.62890913 0.42197411
O 4.41038710 -1.45371288 -0.79028028
C 2.10656335 -4.70137534 0.16348931
Н 0.27285573 -5.31858311 1.13220042
H -0.44996371 -0.43370594 2.14307354
H 0.04915765 1.27010743 2.45756722
H 0.90431380 0.58008069 -1.96963155
C -0.91137226 5.02273684 -2.25549685
C -1.73760133 6.29205791 -2.17395378
C -1.30270228 7.43126810 -1.46868873
H -0.33582514 7.41513800 -0.97499924
C -2.11516850 8.57983966 -1.40648734
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \\ H \ 5.11161949 \ 1.40292828 \ -2.62914931 \\ \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -0.4538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \\ H \ 5.11161949 \ 1.40292828 \ -2.62914931 \\ O \ 5.46404926 \ 2.18735274 \ -2.16452356 \\ \end{array}$
$ \begin{array}{l} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \\ H \ 5.11161949 \ 1.40292828 \ -2.62914931 \\ O \ 5.46404926 \ 2.18735274 \ -2.16452356 \\ H \ 1.72685812 \ 7.00745829 \ -1.81253933 \\ \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -0.4538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \\ H \ 5.11161949 \ 1.40292828 \ -2.62914931 \\ O \ 5.46404926 \ 2.18735274 \ -2.16452356 \\ \end{array}$
$\begin{array}{c} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \\ H \ 5.11161949 \ 1.40292828 \ -2.62914931 \\ O \ 5.46404926 \ 2.18735274 \ -2.16452356 \\ H \ 1.72685812 \ 7.00745829 \ -1.81253933 \\ H \ 3.28785007 \ 7.28742092 \ -2.62723816 \\ \end{array}$
$ \begin{array}{l} C \ -2.11516850 \ 8.57983966 \ -1.40648734 \\ H \ -1.76581004 \ 9.45468240 \ -0.85656308 \\ C \ -3.36657850 \ 8.60137912 \ -2.04911952 \\ H \ -3.99525233 \ 9.49088937 \ -1.99854268 \\ C \ -3.80317942 \ 7.46481058 \ -2.76021617 \\ H \ -4.77260299 \ 7.47020447 \ -3.26002212 \\ C \ -2.99322843 \ 6.31824061 \ -2.82049837 \\ H \ -3.34150180 \ 5.43269438 \ -3.35603118 \\ H \ -1.53670030 \ 4.16338674 \ -1.95621572 \\ H \ -0.56720453 \ 4.85509344 \ -3.29284833 \\ H \ -4.24610670 \ 0.82361786 \ 0.36881383 \\ H \ -0.04538589 \ -1.98784152 \ -1.62508013 \\ H \ 2.72580886 \ -5.43528151 \ 0.67859475 \\ H \ 4.27488021 \ -6.04147440 \ -1.07338460 \\ H \ 6.94738938 \ -1.82559077 \ -1.21447154 \\ H \ 1.80555450 \ 5.08318248 \ -3.51862544 \\ H \ 5.11161949 \ 1.40292882 \ -2.62914931 \\ O \ 5.46404926 \ 2.18735274 \ -2.16452356 \\ H \ 1.72685812 \ 7.00745829 \ -1.81253933 \\ H \ 3.28785007 \ 7.28742092 \ -2.62723816 \\ H \ 1.99199126 \ 8.52009761 \ -2.73099742 \\ \end{array}$
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831 H 5.28979951 0.86260355 -0.55418019
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831 H 5.28979951 0.86260355 -0.55418019 C 5.79611100 1.79589222 -0.84261162
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831 H 5.28979951 0.86260355 -0.55418019 C 5.79611100 1.79589222 -0.84261162 H 1.63070389 6.50252389 0.48878178
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831 H 5.28979951 0.86260355 -0.55418019 C 5.79611100 1.79589222 -0.84261162 H 1.63070389 6.50252389 0.48878178 H 10.39096155 -4.33210443 -4.05182306
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831 H 5.28979951 0.86260355 -0.55418019 C 5.79611100 1.79589222 -0.84261162 H 1.63070389 6.50252389 0.48878178 H 10.39096155 -4.33210443 -4.05182306
C -2.11516850 8.57983966 -1.40648734 H -1.76581004 9.45468240 -0.85656308 C -3.36657850 8.60137912 -2.04911952 H -3.99525233 9.49088937 -1.99854268 C -3.80317942 7.46481058 -2.76021617 H -4.77260299 7.47020447 -3.26002212 C -2.99322843 6.31824061 -2.82049837 H -3.34150180 5.43269438 -3.35603118 H -1.53670030 4.16338674 -1.95621572 H -0.56720453 4.85509344 -3.29284833 H -4.24610670 0.82361786 0.36881383 H -0.04538589 -1.98784152 -1.62508013 H 2.72580886 -5.43528151 0.67859475 H 4.27488021 -6.04147440 -1.07338460 H 6.94738938 -1.82559077 -1.21447154 H 1.80555450 5.08318248 -3.51862544 H 5.11161949 1.40292828 -2.62914931 O 5.46404926 2.18735274 -2.16452356 H 1.72685812 7.00745829 -1.81253933 H 3.28785007 7.28742092 -2.62723816 H 1.99199126 8.52009761 -2.73099742 O 3.85835801 2.92695275 0.05899186 C 2.46931361 7.77460386 -2.07254593 H 3.59648562 2.71592279 -0.86098831 H 5.28979951 0.86260355 -0.55418019 C 5.79611100 1.79589222 -0.84261162 H 1.63070389 6.50252389 0.48878178

C -0.74326799 -3.84701966 0.10409387
C 4.06649798 -5.42060291 -1.00386521
H -1.80898994 -3.77169611 0.31962651
C 2.03947285 -4.02809828 -0.45603096
C 6.27077555 -4.42012457 -1.28470653
O 2.20477639 -0.01076578 -0.37701141
C 3.48793862 -4.15251433 -0.75036229
H 7.33550228 -4.51981495 -1.49385931
C 5.72419145 -3.14970109 -1.03686192
C 4.35265318 -3.03113411 -0.77290375
C 0.02225497 -4.89452044 0.65429470
O 3.86182821 -1.75485677 -0.40986845
C 1.39591868 -4.97684116 0.37739957
H -0.44565282 -5.63339426 1.30442627
H -1.23092788 -1.43372532 1.84771116
H-1.29823913 0.26316110 2.46512651
H 0.69388320 0.60246156 -1.69220749
C -1.61581289 4.57067075 -1.83834528
C -2.67801575 5.65375120 -1.81563278
C -2.69024205 6.67841245 -0.84835632
H -1.89668749 6.71912172 -0.10593430
C -3.72635599 7.63311021 -0.84215403
H -3.72933809 8.41965554 -0.08614802
C -4.75163722 7.57712291 -1.80394516
H -5.55386668 8.31603947 -1.79583693
C -4.73487151 6.56118646 -2.78095252
H -5.52511907 6.50980732 -3.53120987
C -3.70481437 5.60551680 -2.78425750
H -3.70847459 4.80425390 -3.52624701
H -2.11201031 3.58446323 -1.82886560
H -1.00735104 4.63975287 -2.75913274
H -4.72893737 -0.35022886 -0.87508839
H -0.69167165 -2.05321959 -1.12886163
H 1.99875747 -5.77138415 0.81660868
H 3.41658967 -6.29536809 -1.01201524
H 6.33792099 -2.25133371 -1.03703286
H 0.35792099 -2.25135371 -1.05703286 H 1.30548091 5.22509738 -2.26683801
п 1.30348091 3.22309738 -2.26683801

• β-phosphate 5-10b + diol 5-16a complex 142

C 1.66537861 1.08115438 -1.34260682 C 1.04105116 1.61506354 -0.04370934 $C \ 0.22084416 \ 2.89532934 \ \text{-}0.26999305$ C 1.01207168 3.90606115 -1.11980464 C 1.48341179 3.23904844 -2.43528537 C-1.20190985 4.33137244 1.20936193 C 0.31402997 0.33164203 1.94970372 C 2.35235499 4.15840476 -3.29107119 O 2.32919821 2.09236857 -2.08706951 O 0.19057180 0.54227264 0.47354013 O -0.05818936 3.40058938 1.08029391 O 0.25499490 5.14277499 -1.37215247 H 1.86493970 1.84673239 0.64558201 H-0.72418236 2.62710728-0.76953243 H 1.89000980 4.24790877 -0.56178112 H 0.61090647 2.86290962 -3.00219746 H 2.63908351 3.65465762 -4.22445503 H 3.26381630 4.41722722 -2.73343050 C 1.69039131 -0.13657082 2.36231682 C 2.14856727 -1.41781100 1.98348416 H 1.49754361 -2.07018673 1.40451720 C 3.44126260 -1.84013873 2.33033608 H 3.79209913 -2.82282388 2.01558621 C 4.28751660 -0.99034563 3.07197379 H 5.28987316 -1.32274119 3.34646990 C 3.83740712 0.28703440 3.45578875 H 4.48471444 0.95378417 4.02611733 C 2.54743596 0.71693587 3.08877281

H 8.76033151 -2.66132685 -4.95729350
C 5.26997363 2.90473295 0.11067420
C 10.14069995 -3.44163886 -3.47364639
C 9.22755591 -2.49942747 -3.98560402
O 7.71196201 0.38041858 -1.40191774
H 2.45503750 4.67462637 1.93607702
H 11.43163980 -3.95826124 -1.80637407
C 2.69250102 6.45312869 0.72570651
C 10.72631257 -3.23090655 -2.21059287
H 1.07962688 8.59781082 0.24159464
C 8.90673012 -1.34990971 -3.24313483
C 7.29156407 1.58112615 -0.64336318
H 7.86563367 2.45517124 -1.00080799
H 8.18275584 -0.63099266 -3.62253257
C 3.02966135 8.47603758 -0.79840498
C 3.15317391 5.41453982 1.54867853
H 1.45742950 10.00036545 -0.79846124
C 10.40435133 -2.08307591 -1.46133828
C 9.49266887 -1.13748265 -1.97568424
H 10.84344543 -1.91973439 -0.47963815
C 3.58433531 7.39431638 0.15287044
C 1.88558301 9.26599171 -0.09599523
H 3.65460363 10.25691057 -1.88425010
H 4.91506746 8.99737447 -1.80470304
H 9.69311258 1.01148822 -1.54516423
C 9.14077162 0.11280354 -1.19848541
C 4.11271037 9.49355491 -1.23607923
C 5.69785945 2.60591933 1.55205556
H 5.25489424 1.65427165 1.88424675
C 4.53126464 5.29646627 1.81600159
C 4.95909680 7.26397409 0.44684604
H 7.04082080 0.43695283 1.17462644
C 7.59771661 1.33252432 0.84590372
S 5.14167171 3.88395223 2.86295728
H 2.27431658 9.80200836 0.78474721
C 5.43415071 6.22484473 1.27296403
O 7.17468912 2.50649988 1.62516031
H 5.67740156 7.96622520 0.02779606
H 4.55968312 9.99875080 -0.36468976
O 9.45547176 -0.08970621 0.21323164
H 6.49910230 6.13176235 1.48358322
C 9.09698396 1.09354038 1.02964061
H 9.66717253 1.97831533 0.69340412
H 9.36042927 0.84053592 2.06196900

• **TS**_P 94

C 3.294382 2.605560 -1.413501 C 2.332059 2.028264 -0.405132 C 0.977666 2.753482 -0.373544 C 1.203892 4.278132 -0.360361 C 2.220642 4.785895 -1.411451 C -1.141337 2.368923 0.872877 C 2.291090 -0.190608 0.564563 C 2.758799 6.175823 -1.102171 O 3.425629 3.879730 -1.584264 O 2.169087 0.653090 -0.645995 O 0.343221 2.342280 0.882691 O -0.051078 5.031102 -0.531857 H 2.835035 2.215762 0.563351 H 0.382372 2.417338 -1.233216 H 1.540956 4.543702 0.650878 H 1.776736 4.730620 -2.413444 H 3.424627 6.528229 -1.901729 H 3.310215 6.168114 -0.150024 C 2.041301 -1.631531 0.187065 C 1.916821 -2.583137 1.222764 H 1.963263 -2.254476 2.262988

C 1.761681 -3.947364 0.924896 H 1.685358 -4.673606 1.734684 C 1.716206 -4.375360 -0.417238
H 1.685358 -4.673606 1.734684
C 1 716206 -4 375360 -0 417238
H 1.604042 -5.434453 -0.652474
C 1.817599 -3.427798 -1.452925
H 1.785502 -3.752106 -2.494094
C 1.981921 -2.061049 -1.155311
H 2.077026 -1.330093 -1.953022
C -1.763654 1.333747 -0.046752
C -1.216509 0.037716 -0.156307
H -0.316900 -0.212638 0.396564
C -1.813862 -0.921518 -0.991648
H -1.367883 -1.912686 -1.075088
C -2.974451 -0.594287 -1.724549
H -3.440685 -1.337349 -2.372844
C -3.527752 0.696603 -1.616004
C -2.923861 1.657276 -0.783865
H -3.352991 2.655041 -0.705876
H -1.485935 3.379843 0.614987
H -1.388362 2.165169 1.925900
H 1.561752 0.161390 1.312159
H 3.306048 -0.063389 0.968826
C -0.675902 4.918677 -1.875455
C -2.185128 4.936498 -1.757341
C -2.948312 4.410110 -2.821520
H -2.440848 3.976004 -3.685082
C -4.352266 4.404544 -2.753775
H -4.932927 3.986794 -3.576755
C -5.005205 4.916579 -1.614784
H -6.093838 4.901154 -1.555243
C -4.246162 5.444602 -0.553057
H -4.746021 5.840377 0.331735
C -2.840173 5.463046 -0.625610
H -2.246373 5.862536 0.194420
H -0.361686 3.987491 -2.372705
H -0.316462 5.766396 -2.486674
H -4.420924 0.960778 -2.183523
H 3.064958 -0.541451 -4.344165
N 3.066537 0.272481 -3.741983
Cl 1.274214 -0.475201 -6.043927
Cl -0.504134 0.297286 -3.803348
C 2.071921 1.147963 -3.822515
C 0.883572 0.829611 -4.825108
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096
C 0.883572 0.829611 -4.825108
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501 H 4.293807 -2.997925 -0.278918
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501 H 4.293807 -2.997925 -0.278918 C 7.315126 -4.507429 0.316729
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501 H 4.293807 -2.997925 -0.278918
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501 H 4.293807 -2.997925 -0.278918 C 7.315126 -4.507429 0.316729 C 5.343103 -3.113868 -0.024453
C 0.883572 0.829611 -4.825108 O 1.928408 2.190207 -3.154096 Cl 0.458867 2.339418 -5.731081 H 4.026902 1.995393 -1.919616 H 1.906099 6.863671 -1.005833 H 5.365693 -5.258274 -0.292382 H 7.793643 -5.487373 0.313305 C 5.953988 -4.379879 -0.025501 H 4.293807 -2.997925 -0.278918 C 7.315126 -4.507429 0.316729 C 5.343103 -3.113868 -0.024453 C 8.063442 -3.364429 0.647340
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.198757 \ 1.740559 \ -0.075582$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.198757 \ 1.740559 \ -0.075582$ C $9.192971 \ -0.909775 \ 2.076326$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.198757 \ 1.740559 \ -0.075582$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.198757 \ 1.740559 \ -0.075582$ C $9.192971 \ -0.909775 \ 2.076326$ C $8.134386 \ 0.341126 \ 0.289092$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.1987571 \ 1.740559 \ -0.075582$ C $9.192971 \ -0.909775 \ 2.076326$ C $8.134386 \ 0.341126 \ 0.289092$ C $9.951072 \ 0.220722 \ 2.422957$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.1987577 \ 1.740559 \ -0.075582$ C $9.192971 \ -0.909775 \ 2.076326$ C $8.134386 \ 0.341126 \ 0.280992$ C $9.951072 \ 0.20722 \ 2.422957$ C $8.879019 \ 1.480656 \ 0.635717$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.1987577 \ 1.740559 \ -0.075582$ C $9.192971 \ -0.909775 \ 2.076326$ C $8.134386 \ 0.341126 \ 0.280992$ C $9.951072 \ 0.20722 \ 2.422957$ C $8.879019 \ 1.480656 \ 0.635717$
C $0.883572 \ 0.829611 \ -4.825108$ O $1.928408 \ 2.190207 \ -3.154096$ Cl $0.458867 \ 2.339418 \ -5.731081$ H $4.026902 \ 1.995393 \ -1.919616$ H $1.906099 \ 6.863671 \ -1.005833$ H $5.365693 \ -5.258274 \ -0.292382$ H $7.793643 \ -5.487373 \ 0.313305$ C $5.953988 \ -4.379879 \ -0.025501$ H $4.293807 \ -2.997925 \ -0.278918$ C $7.315126 \ -4.507429 \ 0.316729$ C $5.343103 \ -3.113868 \ -0.024453$ C $8.063442 \ -3.364429 \ 0.647340$ C $6.097074 \ -1.982543 \ 0.322442$ H $9.124051 \ -3.451900 \ 0.886030$ O $5.129557 \ 0.007239 \ -2.052622$ H $3.819437 \ 0.305943 \ -2.998505$ C $7.473629 \ -2.076635 \ 0.652555$ O $5.439238 \ -0.745898 \ 0.451890$ P $5.674051 \ 0.438122 \ -0.702135$ C $8.265701 \ -0.875792 \ 1.007944$ O $7.330727 \ 0.401772 \ -0.859169$ H $9.293115 \ -1.835463 \ 2.643440$ O $5.1987571 \ 1.740559 \ -0.075582$ C $9.192971 \ -0.909775 \ 2.076326$ C $8.134386 \ 0.341126 \ 0.289092$ C $9.951072 \ 0.220722 \ 2.422957$

H 8.734517 2.390284 0.055724 C 9.789381 1.421815 1.703755 H 10.367312 2.306489 1.972940

• **TS**_{C2}

C 1.332358 1.509819 -0.840632 C 0.601042 2.161986 0.302950 C -0.170524 3.439121 -0.080132 C 0.621945 4.198476 -1.162165 C 0.751948 3.309537 -2.420664 C -1.386585 5.195317 1.237825 C -0.188008 0.640293 2.133678 C 1.761674 3.836417 -3.433779 O 1.216489 1.902147 -2.063718 O -0.364377 1.131941 0.716366 O -0.322869 4.166079 1.175910 O 0.053469 5.496922 -1.543986 H 1.318789 2.391098 1.104914 H -1.155916 3.134406 -0.467253 H 1.618728 4.451031 -0.785147 H -0.232496 3.128484 -2.874514 H 1.823217 3.175453 -4.308966 H 2.753860 3.912852 -2.967358 C 1.055608 -0.178597 2.365214 C 1.182212 -1.474406 1.816257 H 0.376811 -1.884358 1.206835 C 2.356572 -2.217873 2.010841 H 2.457980 -3.199177 1.552679 C 3.416009 -1.675528 2.763097 H 4.331282 -2.251776 2.900627 C 3.298236 -0.388291 3.324147 H 4.113885 0.032991 3.913780 C 2.121601 0.359395 3.121516 H 2.024703 1.356246 3.554592 C -2.781970 4.673495 0.941483 C -3.755998 5.568963 0.446929 H -3.484263 6.606300 0.252074 C -5.065539 5.124938 0.190227 H -5.807100 5.826104 -0.194205 C -5.409751 3.777726 0.413669 H -6.422081 3.428955 0.206847 C -4.440085 2.879874 0.901875 C -3.134049 3.324765 1.173113 H -2.377146 2.628369 1.531082 H -1.134795 6.032534 0.571201 H -1.310658 5.538242 2.280712 O 4.061933 -0.866327 -2.998674 O 2.836515 -2.953088 -2.205524 C 1.310171 -4.182190 -0.814215 C 2.624645 -3.958747 -1.258112 P 3.606230 -1.552225 -1.722734 H 7.912371 -6.216165 -2.314255 C 7.281387 -5.379583 -2.011082 C 1.037563 -5.244326 0.064535 C 5.940413 -5.608750 -1.657827 H 0.017959 -5.414039 0.412517 C 3.697098 -4.787615 -0.837046 C 7.810018 -4.073575 -1.965840 O 2.814977 -0.796925 -0.671909 C 5.091753 -4.541678 -1.277553 H 8.853707 -3.886837 -2.215725 C 6.989447 -3.000676 -1.579625 C 5.642240 -3.235152 -1.267396 C 2.084659 -6.084832 0.493176 O 4.870341 -2.161699 -0.805286 C 3.395820 -5.854336 0.043078 H 1.881847 -6.907634 1.179032

H -1.103692 0.049988 2.270217
H -0.204985 1.526947 2.787272
П -0.204983 1.320947 2.787272
H 1.795387 0.490450 -0.754749
C -1.276605 5.463312 -2.186348
C -1.953925 6.812093 -2.049970
C -1.338184 7.915367 -1.427737
H -0.319673 7.821158 -1.062524
C -2.040500 9.128439 -1.282904
H -1.554787 9.976497 -0.798606
C -3.358030 9.247509 -1.760683
H -3.901720 10.185629 -1.644514
C -3.972233 8.147427 -2.393742
H -4.993163 8.231237 -2.767652
C -3.273286 6.937883 -2.537593
H -3.759565 6.080834 -3.007547
H -1.908872 4.690999 -1.716811
H -1.147755 5.206149 -3.253671
H -4.700849 1.834319 1.070885
H 0.524105 -3.518662 -1.170709
H 4.216371 -6.485165 0.386190
H 5.526706 -6.617452 -1.690413
H 7.370506 -1.989574 -1.474300
H 1.445531 4.840604 -3.751501
H 4.706908 0.580661 -2.520488
O 4.968318 1.516156 -2.253146
H 1.755386 9.071338 -0.771767
H 1.756563 7.767119 -1.996984
H 2.294714 9.418618 -2.437444
O 3.310234 2.611197 -0.607136
C 2.294784 8.659295 -1.640425
H 3.491335 2.274607 -1.530760
H 4.994343 0.425178 -0.491800
C 5.358034 1.381416 -0.895076
H 1.652250 7.003143 0.099032
H 11.741041 -3.235385 -3.730188
H 5.143618 3.481335 -0.313689
H 9.875216 -1.953715 -4.801899
C 4 653150 2 518071 -0 104617
C 4.653150 2.518071 -0.104617 C 11 105232 - 2.482400 - 2.160082
C 11.195232 -2.482400 -3.160083
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.077573 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741 H 4.410329 1.238723 1.661378
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741 H 4.410329 1.238723 1.661378 C 3.944159 4.988275 1.597799
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741 H 4.410329 1.238723 1.661378
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741 H 4.410329 1.238723 1.661378 C 3.944159 4.988275 1.597799
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741 H 4.410329 1.238723 1.661378 C 3.944159 4.988275 1.597799 C 5.049598 6.645348 0.209782 H 6.621163 0.263758 1.169312
C 11.195232 -2.482400 -3.160083 C 10.149327 -1.758371 -3.765146 O 7.613726 0.458039 -1.305742 H 1.781898 5.097394 1.644005 H 12.332333 -2.798179 -1.338630 C 2.634450 6.631310 0.378327 C 11.529170 -2.234750 -1.815215 H 4.006449 9.935698 0.164303 C 9.445184 -0.787991 -3.031842 C 6.846652 1.490862 -0.597275 H 7.242061 2.487731 -0.871677 H 8.619225 -0.243193 -3.485228 C 3.752317 8.285127 -1.267838 C 2.699780 5.542770 1.265875 H 4.465870 10.341567 -1.519125 C 10.826294 -1.264890 -1.076541 C 9.780631 -0.538694 -1.683162 H 11.071705 -1.075753 -0.033888 C 3.801410 7.178299 -0.196901 C 4.489504 9.552711 -0.748831 H 4.427136 8.561497 -3.334965 H 3.956123 6.877127 -2.949204 H 9.376543 1.557622 -1.163691 C 9.030733 0.529258 -0.921063 C 4.460045 7.777169 -2.560479 C 4.808367 2.229151 1.393741 H 4.410329 1.238723 1.661378 C 3.944159 4.988275 1.597799 C 5.049598 6.645348 0.209782

 $\begin{array}{l} {\rm H} 5.541975 \ 9.327071 \ -0.515654 \\ {\rm C} \ 5.131474 \ 5.562657 \ 1.102708 \\ {\rm O} \ 6.266009 \ 2.296488 \ 1.679330 \\ {\rm H} \ 5.969017 \ 7.065415 \ -0.198511 \\ {\rm H} \ 5.514333 \ 7.527800 \ -2.365751 \\ {\rm O} \ 9.209995 \ 0.329687 \ 0.514922 \\ {\rm H} \ 6.093533 \ 5.130539 \ 1.375654 \\ {\rm C} \ 8.491869 \ 1.352593 \ 1.303232 \\ {\rm H} \ 8.880030 \ 2.361166 \ 1.071204 \\ {\rm H} \ 8.672693 \ 1.107049 \ 2.354860 \end{array}$

• TS_{C3}

142

C 1.797558 1.701300 -0.524595 C 1.113567 2.141332 0.737966 C 0.335614 3.456464 0.561185 C 1.278994 4.434962 -0.169549 C 1.517962 3.899770 -1.601447 C -1.081468 4.857655 2.084328 C 0.026947 0.803907 2.545508 C 2.626630 4.612193 -2.359681 O 1 897489 2 415454 -1 583874 O 0.244184 1.023468 1.078833 O -0.018190 3.843347 1.917362 O 0.790213 5.811287 -0.230512 H 1.886683 2.307366 1.507791 H -0.571523 3.273355 -0.037706 H 2.229207 4.511646 0.373927 H 0.570508 3.879442 -2.158350 H 2.757982 4.181457 -3.361888 H 3.566556 4.530670 -1.797232 C 1.305007 0.644694 3.332097 C 2.334999 -0.193186 2.850843 H 2.245914 -0.660359 1.872286 C 3.501423 -0.380682 3.611677 H 4.306959 -0.992511 3.224095 C 3.628033 0.231686 4.874720 H 4.533087 0.072066 5.460932 C 2.607268 1.075062 5.355022 H 2.712268 1.568030 6.322468 C 1.455815 1.298254 4.575401 H 0.670899 1.971030 4.926200 C -2.425477 4.459599 1.496404 C -3.355894 5.481296 1.203835 H -3.078513 6.522082 1.369717 C -4.624649 5.164724 0.687723 H -5.334334 5.963614 0.469234 C -4.973164 3.821894 0.445339 H-595403535752290037731 C -4.047558 2.799652 0.729524 C -2.782659 3.113925 1.259456 H -2.064476 2.320702 1.461769 H -0.746028 5.818768 1.669525 H -1.137060 4.957445 3.177912 O 5.344552 -1.233376 -1.557591 O 3.054657 -1.198099 -2.668995 C 0.707212 -0.781127 -2.956773 C 1.761293 -1.703679 -2.835562 P 3.880899 -1.453023 -1.229508 H 3.815680 -6.878738 -4.571444 C 3.771084 -6.076890 -3.834224 C -0.597209 -1.229919 -3.224046 C 2.725452 -5.139735 -3.881938 H -1.411882 -0.510252 -3.314279 C 1.538161 -3.097444 -3.002427 C 4.769663 -5.967984 -2.845890 O 3.237437 -0.682416 -0.096630 C 2.646875 -4.080267 -2.946333

H 5.589579 -6.685736 -2.810781 C 4.712046 -4.927975 -1.902051 C 3.656826 -4.003349 -1.955514 C -0.844925 -2.608143 -3.377804 O 3.539725 -3.057281 -0.928398 C 0.214872 -3.523348 -3.271410 H -1.855270 -2.966730 -3.574835 H -0.563259 -0.122801 2.539034 H -0.575924 1.631746 2.943304 H 2.081040 0.635409 -0.622270 C -0.444797 6.045143 -1.009361 C -0 961237 7 432853 -0 687684 C -0.123650 8.429210 -0.142354 H 0.915673 8.194936 0.075230 C -0.641593 9.707830 0.139763 H 0.009924 10.468081 0.572256 C -1.990023 10.006086 -0.134252 H -2.387882 10.997565 0.084669 C -2.824229 9.017494 -0.692812 H -3.870132 9.240184 -0.907185 C -2.312482 7.736695 -0.966242 H -2.965519 6.964271 -1.375208 H -1.207444 5.290996 -0.752856 H -0.216369 5.956525 -2.087893 H -4.307913 1.757714 0.539867 H 0.934835 0.279895 -2.870445 H 0.029672 -4.592013 -3.382119 H 1.964914 -5.203759 -4.660827 H 5.465614 -4.820403 -1.124084 H 2.358226 5.674251 -2.451648 H 4.380320 1.920150 -0.759652 O 3.973171 2.487742 -0.062428 H 2.615647 -3.887827 2.071183 H 2.379977 -3.065920 3.637244 H 1.841982 -4.764237 3.425913 O 6.129215 1.014337 -0.558552 C 2.620783 -4.029227 3.162438 H 5.879762 0.089002 -0.882274 H 5.744095 3.309078 0.567213 C 5.048053 2.512240 0.892596 H 4.653516 -3.743220 1.130867 H 1.315922 9.376931 4.018818 H 5 164651 0 348859 1 176880 H 0.541460 7.641083 2.382785 C 5.815319 1.157279 0.809537 C 1.807027 8.403473 3.975894 C 1.368985 7.428664 3.059102 O 3.988796 4.166374 2.388848 H 6 290843 -2 063882 0 369061 H 3.228313 8.860489 5.551675 C 5.264370 -3.233864 1.872101 C 2.881116 8.112062 4.838019 H 4.333612 -5.830315 1.899086 C 2.000805 6.174829 3.005366 C 4.627741 2.825100 2.312213 H 3.941198 2.070043 2.725819 H 1.654155 5.420554 2.310520 C 4.008985 -4.539249 3.658316 C 6.186441 -2.271359 1.431421 H 3.532258 -6.642812 3.273595 C 3.514716 6.856469 4.786538 C 3.079207 5.880497 3.864721 H 4.344904 6.631474 5.451429 C 5.089331 -3.519825 3.246265 C 4.313867 -5.915775 2.996426 H 3.151829 -5.471734 5.430000 H 3.674543 -3.783882 5.693114 H 3.052308 3.709882 4.199812 C 3.713785 4.508728 3.809756 C 3.932672 -4.731910 5.193534

C 7.061895 1.260150 1.716209 H 7.737701 2.050221 1.341752 C 6.945201 -1.556002 2.376198 C 5.887962 -2.813244 4.174712 H 6.580184 3.659586 2.719866 C 5.935955 2.869277 3.147196 S 8.166078 -0.274970 1.805143 H 5.290011 -6.300098 3.334034 C 6.803043 -1.829762 3.747798 O 6.623623 1.575172 3.099865 H 5.783236 -3.000164 5.242073 H 4.890208 -5.096105 5.600200 O 4.932758 4.521855 4.603824 H 7.388306 -1.266383 4.472581 C 5.621099 3.214746 4.599149 H 4.980621 2.440260 5.047515 H 6.531918 3.351826 5.191368

References

- [1] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., *Mol. Phys.* **2015**, *113*, 184–215.
- [2] A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
- [3] S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- [4] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.
- [5] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [6] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA, 2015.
- [7] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [8] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.
- [9] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [10] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [11] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [12] J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- [13] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminform. 2011, 3, 33.

APPENDIX G

Experimental Information for Chapter 6

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under an atmosphere of nitrogen in flame- or oven-dried glassware with magnetic stirring, unless otherwise noted. Air-sensitive reagents and solutions were transferred via syringe or cannula and were introduced to the apparatus through rubber septa. Reactions were cooled via external cooling baths: ice water (0 °C), dry iceacetone (-78 °C), or Neslab CB 80 immersion cooler (-20 to -60 °C). Heating was achieved by the use of a silicone bath with heating controlled by an electronic contact thermometer. Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for extraction and column chromatography were ACS or HPLC grade. Tetrahydrofuran (THF), dichloromethane (DCM), toluene and diethyl ether (Et₂O) were filtered through a column (Innovative Technologies) of activated alumina under nitrogen atmosphere. Reactions were monitored by thin layer chromatography on silica gel precoated glass plates (0.25 mm, SiliCycle, SiliaPlate). Visualization was accomplished by irradiation with UV light at 254 nm or by staining with potassium permanganate (KMnO₄) or cerium ammonium molybdenate (CAM). Purification of the reactions mixtures was performed by flash chromatography using SiliCycle SiliaFlash P60 (230-400 mesh) silica gel. Powdered 4 Å molecular sieves were pre-activated before the use. Proton, carbon, and deuterium NMR spectra were recorded on Varian VNMRS-700 (700 MHz),

Varian VNMRS-500 (500 MHz), Varian INOVA 500 (500 MHz) or Varian MR400 (400 MHz). ¹H NMR chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane with the solvent resonance employed as the internal standard (C₆D₆, δ 7.16 ppm; CD₂Cl₂ δ 5.32 ppm; CDCl₃, δ 7.24 ppm). Data are reported as (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, sext S4 = sextet, m = multiplet; coupling constant(s) in Hz; integration). Slight shape deformation of the peaks in some cases due to weak coupling (e.g. aromatic protons) is not explicitly mentioned. The diastereomeric ratio of product mixtures were analyzed using a Shimadzu RP-HPLC with Waters Nova-Pak C18 column (60Å, 4µm, 3.9 x 150mm).

Preparation of phosphonic acid-functionalized resin

Merrifield resin (200-400mesh, 1.3 mmol/g. 2.0g), and NaI (780mg, 2.0equiv), were put in in a flask. N₂-sparged acetone (5mL) was then added to the flask, and the suspension was stirred in the dark at rt. After 15h, the resin was filtered and washed with: 1) acetone; 2) water; 3) acetone; and finally, 4) DCM, and was then dried *in vacuo*. The iodinated resin was then put in a flask and $P(OEt)_3$ (9.0mL, 20equiv) was added. The suspension was heated at 150°C for 2d. Following this, the resin was filtered and then washed with: 1) DCM; 2) acetone; 3) water; 4) acetone; and finally, 5) THF. In another flask, NaH (1.0g of 60% dispersion, washed with hexanes prior to use, 10equiv) was suspended in THF (25mL), and MeOH (1mL, 10equiv) was added. This suspension was stirred at rt for 30min, and then added to the diethyl phosphonate-functionalized resin. The suspension was stirred at 50° for 16h, then the solid was filtered and washed with: 1) MeOH; 2) acetone; 3) water; 4) acetone; and finally, 5) DCM, and was then dried *in vacuo*. The capped diethyl phosphonate-functionalized resin could now be treated either with LiBr (1.2equiv) in MEK for 16h at 80°C, then filtered and washed with 1) 1M HCl_(aq); 2) 1:1 THF: 1M HCl_(aq); 3) THF; and finally, 4) DCM to give the solid-supported ethyl hydrogen benzylphosphonate **6-3**; or, continuing this example, it could be suspended in DCM (20mL), then treated with TMSBr (1.4mL, 4.0equiv) at rt for 3h, then treated with MeOH (20mL) and stirred at rt for 16h. The phosphonate diacid-functionalized resin **6-1** is then filtered and washed with 1) MeOH; 2) acetone; 3) water; 4) acetone; and finally, 5) DCM, before being dried *in vacuo* (1.904g, light beige solid).

Each phosphorous-containing synthesized resin was characterized by NMR by putting a substantial amount of resin (30-50mg) in an NMR tube, and then swelling the resin with CDCl3₃ for 15min before acquiring the spectra.

³¹P Gel NMR

6-1: 29.9 ppm

6-2: 26.7 ppm

6-3: 28.5 ppm

Example ³¹P Gel NMR spectra for 6-2:

Preparation of soluble glycosyl phosphonates

A. Using trichloroacetimidate donors:

Benzyl phosphonic diacid **6-18** (20mg, 0.12mmol) and trichloroacetimidate donor **6-4** (175mg, 2.2 equiv) were stirred in THF (0.6mL) at rt for 12h. Then the mixture was purified using a short silica column, using 0.5:9.5 EtOAc:Hexanes to elute residual trichloroacetimidate and then 1:1 to give the product **6-14** (132mg, quant).

This protocol also works for peracetylated trichloroacetimidate **6-12** (81% yield, ³¹P-NMR: 26.7ppm), but does not proceed with perbenzoylated trichloroacetimidate **G-1**.

B. Using bromide donors:

Benzyl phosphonic acid (8mg) **6-18**, perbenzoylated bromide donor **G-1** (67mg, 2.2equiv), and Ag₂CO₃ (28.2mg, 2.2equiv) were stirred in MeCN (0.5mL) for 12h at rt. The product was directly purified using a short column and eluting first with 1:9 EtOAc/Hexanes and then with 3:7 EtOAc:Hexanes to afford the product **G-2** (50mg, 81% yield).

³¹**P-NMR:** 27.7 ppm

Preparation of solid-supported glycosyl phosphonates

Phosphonic diacid-containing resin **6-1** (200mg) was stirred with trichloroacetimidate donor **6-4** (198mg) in DCM (2mL) at rt. After 30min, the resin was filtered and washed with DCM, to give 324mg of glucosyl phosphonate-functionalized resin **6-11**. The loading could also be

performed in other solvents besides DCM, such as THF and PhMe, with no difference in the outcome, although the reaction did not work in more polar solvents such as MeCN.

General procedure for glycosylation with soluble glucosyl phosphonates

Stirred glucosyl benzylphosphonate **6-14** and cyclohexanol in DCM for 15min, then added catalyst (0.5equiv). After 1-2h, the mixture was filtered through a silica plug, eluting with 1:3 EtOAc:Hexanes, then concentrated, redissolved in 1mL MeCN, and analyzed by RP-HPLC (Nova-Pak C18, 95% MeCN, t_R =3.1min for α and, t_R =3.5min for β). Examples of HPLC traces:

Unselective glycosylation (Using Fe(III) triflate): 1.1α : β

Retention Time [min]	% Area
3.142	52.1
3.526	47.9

α -selective glycosylation (Using Fe(III) chloride): 10.6:1 α : β

Retention Time [min]	% Area
3.257	91.4
3.684	8.6

General procedure for glycosylation with solid-supported phosphonates

Stirred glucosyl phosphonate-containing resin **6-11** and (-)-menthol in solvent for 15min, then added catalyst (0.2-0.5 equiv calculated from amount of sugar that was loaded on the resin). After 1-2h, the mixture was filtered through a silica plug, eluting with 1:3 EtOAc:Hexanes, then concentrated, redissolved in 1mL MeCN and analyzed by RP-HPLC (Nova-Pak C18, 97% MeCN $t_R=5.2$ min for α and , $t_R=6.0$ min for β). Examples of HPLC traces:

a-selective glycosylation (Using Fe(III) chloride and excess acceptor) in 1,4-dioxane: 10.0:1 α : β

a-selective glycosylation (Using Fe(III) chloride and limiting acceptor) in PhMe: 5.1:1 α : β

16.4

β -selective glycosylation (Using Fe(III) chloride) in MeCN: 1:1.9 α : β

Retention Time [min]	% Area
5.248	34.4
6.002	65.6

APPENDIX H

Experimental Information for Chapter 7

Computational Studies

All quantum chemical calculations were performed using the Q-Chem 4.3 package.^[1] Geometry optimizations were evaluated using the B97-D density functional^[2,3] using the double- ζ - quality basis set with polarization functions on all atoms, 6-31G**.^[4,5] Pictorial representations of important stationary points were generated in Discovery Studio 4.1 Visualizer.^[6]

For the growing string reaction path optimizations, between 7-15 nodes were used, including the end points. In the initial phase, termed growth phase, new nodes were added when the perpendicular gradient magnitude on the frontier node was less than 0.10 Hartree/Å for double-ended strings, or when the RMS gradient was less than 0.005 Hartree/Å for single-ended strings. Additionally, an initial maximum optimization step size of 0.1 Å-radians was used. When the total perpendicular gradient magnitude over all nodes, F, reached a value of less than 0.3, the climbing image search was initiated. When F < 0.1, or when the node of highest energy had a RMS gradient below double the nodal convergence criterion and F < 0.2, the exact transition state search was initiated. The string is considered fully converged when an RMS gradient < 0.0005 Hartree/Å was obtained for the node representing the transition state. Further detail regarding the growing string implementation developed in the Zimmerman group can be found in the references.^[7–10]

The electronic Gibbs free energy values of all stationary points were computed through solvent corrected (dichloromethane) single point energies using the SMD model.^[11] For these calculations the ω B97X-D3 exchange functional^[12] was employed with a 6-31G** basis set. The final Gibbs free energy values were obtained by correcting the electronic free energy with the enthalpic and entropic contributions from vibrations, rotations, and translations at 298.15 K. These frequency computations were performed using the B97-D functional and 6-31G** basis set. For the enthalpic and entropic corrections to the free energies from the harmonic oscillator approximation, all frequencies below 50 cm⁻¹ were treated as if they were 50 cm⁻¹.

A model system consisting of biphenyl hydrogen phosphate (**BPA**) and truncated mupirocin **7-6** was utilized to explore various pathways leading to the intramolecular epoxide opening to either the *exo*-product **7-7** or the *endo*-product **7-8**. Single-ended growing string calculations were performed on optimized **7-6** (phosphate intermediate pathway), **7-7** (concerted *exo*-pathway), and **7-8** (concerted *endo*-pathway) as the fixed nodes with varying driving coordinates according to the pathways explored. To account for variation in conformations and binding complexes, the most stable conformations were sampled for the growing string calculations. These were obtained in part by manually sampling relevant torsions and angles of approach, and also by using an algorithm which allowed a thorough conformational analysis by ranking a vast number of unique conformers generated by the systematic variation of the torsional angles.^[13]

A summary of calculated values, including solvent corrected single point electronic energies, as well as enthalpic and entropic corrections associated with vibrational, rotational, and translational energy at 298 K are provided below.

Figure H.1. Energy diagram for the intramolecular ERO of a truncated mupirocin model.

	GSMD	Hvrt	Svrt	Gcorr
	[kcal/mol] ^a	[kcal/mol] ^b	[cal/mol.K] ^b	[kcal/mol] ^c
BPA	-693279.38	124.90	113.94	-693188.43
Truncated mupirocin 7-6	-771958.45	308.30	180.35	-771703.89
7-6 BPA complex	-1465259.56	435.04	238.69	-1464895.66
Exo-product 7-7	-771972.45	309.58	174.45	-771714.85
7-7 BPA complex	-1465274.50	436.72	237.76	-1464908.64
Endo-product 7-8	-771977.47	309.49	174.55	-771720.00
7-8 BPA complex	-1465279.88	435.93	230.46	-1464912.63
Concerted <i>endo</i> cyclization TS _{endo}	-1465239.96	433.97	237.38	-1464876.73
Concerted <i>exo</i> cyclization TS_{exo}	-1465241.98	433.19	227.42	-1464876.57
TS for phosphate formation from 7-6 TS _P	-1465230.80	434.597	242.335	-1464868.42

Table H.1. Calculated energy values of relevant geometries for the intramolecular ERO of 7-6.

^a Gas-phase electronic energy (ω B97X-D/SMD/6-31G**). ^b Vibrational, rotational, and translational entropic and enthalpic contributions (B97-D/6-31G**) at 298K. ^c Corrected free energy values at 298K.

Cartesian coordinates for starting geometries, transition states, and products are described below.

• BPA

26

H -5.72428523 -0.48831442 0.98697438
C -6.28439443 -0.36620410 0.06007891
C -7.68832232 -0.36341207 0.07668617
H -8.21878366 -0.49755063 1.01925451
C -8.40824701 -0.17254738 -1.11938955
H -9.49782706 -0.16110110 -1.11076079
C -7.71851142 0.00685161 -2.33069717
H -8.24375641 0.14914534 -3.27295870
C -6.31717770 -0.00517093 -2.33003536
O -5.65460079 0.06060007 -3.58302558
C -5.56356336 -0.18448078 -1.14510677
H -3.92068644 -1.85692296 0.21829797
H -1.42723110 -1.89050223 0.23304154
C -3.36034227 -1.13416699 -0.37500477
C -1.95668993 -1.15639827 -0.37407259
C -4.08202246 -0.20016108 -1.15752358
C -1.23660574 -0.24141830 -1.16732597
H -0.14707102 -0.25756904 -1.17597693
C -3.32891776 0.71387622 -1.93510103
C -1.92724273 0.69920244 -1.95046188
O -3.97830017 1.76149982 -2.63449179
H -1.40039703 1.42919197 -2.56173595
P -4.87333364 1.44496470 -3.96867356
O -5.65780224 2.62401335 -4.40603117
O -3.84439723 0.82979409 -5.06646961
H -3.81574089 1.43633068 -5.82391071

• Truncated mupirocin 7-6

C 30.46969421 82.65695276 81.87093348 C 29.31945566 82.36830261 80.98829127 C 28.19469668 83.11508470 80.86386709 C 27.11437851 82.66829940 79.90198393 C 25.75056866 82.47698501 80.57583024 C 24.64738105 82.12760823 79.54463137 C 23.32645641 81.80750548 80.26937525 C 23.54187039 80.73370825 81.36544576 C 23.85756170 79.33977800 80.77047134 C 22.87357544 78.94783680 79.68801136 C 23.20734392 79.04765479 78.25374782 C 22.17549447 79.36792245 77.17434054 C 22.02790869 78.18620134 76.17461356 C 21.14442686 78.53744447 74.97397423 C 27.89468888 84.37860880 81.63211101 C 24.68462653 81.20938530 82.28385867 C 32.61517540 81.85908811 82.49565071 O 31.43082470 81.69002873 81.68851281 O 30.61118571 83.58413098 82.66103862 O 25.88667475 81.41431785 81.53515823 O 22.88044945 83.05809002 80.83931021 O 24.46392775 83.16204946 78.57959183 O 23.16257774 77.75236548 78.92973295 C 22.59806715 80.68617289 76.49103974 O 21.42182629 77.06038279 76.81007174 H 29.41064052 81.46076086 80.38995242 H 26.96742499 83.43296792 79.12174697 H 27.39609710 81.72579715 79.40767635 H 25.44930384 83.40697710 81.09350950 H 24.96641800 81.23246879 78.99282473 H 22.59479175 81.46511518 79.51860358 H 22.61167610 80.66575587 81.95787173 H 24.87571520 79.34024572 80.35730700 H 23.83512000 78.59473685 81.58237906 H 21.81240921 79.05322427 79.95709932 H 24.23568197 79.33952868 78.00318402

H 21.18663417 79.48932851 77.64790948
H 23.04522723 77.93021653 75.80591269
H 20.98347196 77.63668003 74.36582859
H 21.61527963 79.30851310 74.34962310
H 20.16505974 78.90277786 75.31963254
H 27.40314093 85.11387247 80.97452186
H 28.79214143 84.80731414 82.08582055
H 27.17939643 84.14617209 82.43907514
H 24.38304372 82.14604018 82.78582502
H 24.92287912 80.44836367 83.04007014
H 32.36270286 81.82172969 83.56536579
H 33.09267376 82.82658933 82.28360509
H 21.94598440 82.95236423 81.06706051
H 23.93027887 83.83763248 79.03369032
H 21.79437927 81.06711385 75.84829254
H 23.48634881 80.51607046 75.86159940
H 22.85765329 81.46710154 77.22149745
H 21.91824578 76.91472027 77.63566925
H 33.27664289 81.02875646 82.22271214

• 7-6 BPA complex

81

C -5.93507924 -0.41246604 -0.92033089
C -5.22771240 -1.51682474 -1.73059982
C -4.06639864 -0.81569852 -2.46609831
O -3.13022686 -0.22467236 -1.56048179
C -3.68699417 0.70884724 -0.62265652
C -4.92551016 0.14755375 0.11178278
O -4.44483263 -0.85073416 1.01079272
C -3.97646939 2.08703404 -1.29732141
C -4.16461822 3.18640160 -0.27511002
C -2.88986993 3.74526299 0.30313056
C -5.42229060 3.55747290 0.08000265
C -5.78977190 4.54488448 1.11500340
O -5.06641806 5.31370963 1.73572944
O -7.17126857 -0.78486157 -0.31535505
C -6.97560062 -3.30106929 -1.93173900
C -6.15987032 -2.28218661 -2.69745666
C -7.37742244 -4.63989756 -2.40126346
C -8.62634401 -5.31020559 -1.80230227
C -8.25027968 -6.42551788 -0.79155183
O -7.52005219 -5.85655656 0.33337976
O -6.22848464 -4.48171745 -1.50735397
O -7.15475813 4.49222308 1.32009588
C -7.65126232 5.40971201 2.31901037
C -9.45827685 -7.14592718 -0.19766037
C -9.52547463 -5.82082720 -2.94258314
H -6.20883957 0.39634834 -1.61903347
H -6.20883957 0.39634834 -1.61903347 H -4.78175356 -2.23004436 -1.02236522
H -4.47988000 -0.05699340 -3.16391120
H -3.48447473 -1.53989761 -3.05428465
H -2.89362528 0.84295552 0.12523638
H-5.41726002 0.96811876 0.66252031
H -5.19931974 -1.33108965 1.39490158
H -3.10609307 2.30909486 -1.93387240
H -4.85966220 2.00686118 -1.94544785
H -2.36988587 4.33163109 -0.47410013
H-3.06740748 4.38897870 1.16833157
H -2.21192401 2.91977231 0.57215977
H -6.26599094 3.06598328 -0.40781260
H -7.59816518 -2.87882080 -1.14248394
H -6.84113580 -1.58252916 -3.20947459
H -5.56437046 -2.80518405 -3.46360004
H -7.08624306 -4.97250824 -3.40592057
H -9.17723437 -4.55347962 -1.21965026
H -7.58291455 -7.15200644 -1.28824971
H -7.58291455 -7.15200644 -1.28824971 H -8.32722054 -4.93887918 1.21578814
H -6.81242033 -5.28941948 -0.07103061

H -8.72422323 5.20175529 2.39736001
H -7.14742140 5.24381699 3.28201790
H -7.47643789 6.44919455 2.00652345
H -9.12282900 -7.85014175 0.57599619
H -10.14303772 -6.41923160 0.26573944
H -10.00351992 -7.70598553 -0.96921461
H -10.49694957 -6.15687665 -2.56014680
H -9.70505572 -5.01976070 -3.67454841
H -9.04794149 -6.66263204 -3.46950130
O -7.36531001 -3.42321469 3.84487199
O -6.65134363 -2.85696903 1.45970694
H-7.99510846 0.31839256 6.40298188
H -7.46640555 2.42897833 5.18574034
H -8.18159028 -5.45946973 5.21893418
H -6.97806411 -1.50527504 0.32270418
C -8.05348718 0.35447229 5.31482471
C -7.75159859 1.53660429 4.62749937
C -8.57655877 -4.51777459 5.59795708
C -8.26424398 -3.33590802 4.91953279
H -9.62325453 -5.37774951 7.28108783
C -9.37160480 -4.45887793 6.75059478
C -8.73215049 -2.07374540 5.35131063
C -8.40830293 -0.82447728 4.62369688
C -7.79743639 1.56837895 3.22377458
H -7.55554010 2.47913568 2.67651266
P -7.85798098 -3.11507228 2.31778549
C -9.84021791 -3.21911311 7.21473859
C -9.52437288 -2.04581799 6.51945653
C -8.45380102 -0.75325851 3.21466361
C -8.15411641 0.41555838 2.50996672
H -10.46079050 -3.16806439 8.10981309
H -9.90440996 -1.08359619 6.86423496
H -8.18030333 0.39840005 1.42219910
O -8.82804314 -4.26292183 1.82993444
O -8.89810177 -1.87387466 2.47916123

• Exo-product 7-7

55

C -4.77009321 -0.96377823 -0.40117379
C -3.50004789 -1.80177314 -0.46332413
C -2.65499626 -1.29277927 -1.63082172
O -2.35868009 0.10263204 -1.42906488
C -3.49052184 0.96790935 -1.23841644
C -4.45515644 0.49582478 -0.11117274
O -3.79792143 0.66833625 1.14214846
C -4.22935774 1.19971294 -2.59114496
C -5.42888388 2.11470139 -2.47821251
C -5.13621765 3.50870655 -1.98438081
C -6.65731810 1.62469841 -2.78358834
C -7.94568074 2.34894716 -2.70672735
O -8.15205016 3.50257136 -2.35009589
O -5.54242625 -1.60664763 0.62494515
C -5.41249647 -3.04388936 0.37065702
C -4.08881232 -3.22000817 -0.45226648
C -6.64210875 -3.58099825 -0.39570170
C -8.02686961 -3.42559645 0.29144146
C -8.66016059 -1.99748514 0.27701728
O -8.16549538 -1.13934124 1.30254459
O -6.38969076 -4.96198403 -0.71886635
O -8.95292380 1.50540816 -3.11059533
C-10.27807901 2.07917141 -3.06860223
C -8.58581370 -1.31342467 -1.09862817
C -8.04069424 -3.98937275 1.72323969
H -5.31173593 -1.02288477 -1.36457208
H -2.94474147 -1.60684634 0.46538374
H -3.18674375 -1.46251074 -2.58776338
H -1.67587854 -1.78663318 -1.69138523
H -3.04829817 1.91483700 -0.90099103

H -5.37784444 1.10133427 -0.15802835
H-4.32838171 0.17500612 1.78868715
H -3.48446857 1.63970472 -3.27366977
H -4.53476285 0.23233561 -3.01383374
H -4.27474416 3.92381560 -2.53245968
H -6.00235844 4.16852106 -2.07815861
H -4.83947543 3.46819156 -0.92280653
H -6.73522401 0.59161404 -3.12544975
H -5.35138227 -3.52386770 1.35889048
H -4.32793514 -3.56294287 -1.47013632
H -3.42097262 -3.96219405 0.00304146
H -6.67278587 -3.07738874 -1.37282490
H -8.69016501 -4.04370842 -0.33712471
H -9.72301146 -2.15130637 0.52781223
H -7.20220209 -1.08952698 1.14036238
H -6.42808342 -5.45513579 0.11623654
H-10.95160639 1.27986188 -3.39743970
H-10.52384981 2.40405800 -2.04771982
H-10.34219268 2.94752059 -3.73980512
H -9.18764518 -0.39648118 -1.09500702
H -7.55120017 -1.02252898 -1.33114460
H -8.94846391 -1.97307409 -1.90349558
H -9.07108242 -4.02544842 2.10457662
H -7.63735468 -5.01419639 1.77805579
H -7.46451310 -3.33966692 2.39435971

• 7-7 BPA complex

81

C -4.90139140 -1.10555506 -0.61101869 C -3.87262091 -1.99993154 -1.28578414 C -2.90647637 -1.09357226 -2.05380040 O -2.31800410 -0.12581900 -1.15977133 C -3.23366705 0.66954471 -0.39321320 C -4.24863851 -0.19291236 0.42092031 O -3.51039606 -0.89669991 1.41355239 C -3.92647231 1.73910723 -1.31032164 C -5.05740550 2.46193787 -0.61612044 C -4.64376776 3.40736755 0.48082037 C -6.33505135 2.13475182 -0.94140806 C -7.56195786 2.55712526 -0.23528159 O -7.70086866 3.46810544 0.57484924 O -5.88504264 -2.02650685 -0.09426216 C -6.05528939 -3.07040113 -1.14025541 C -4.78277767 -2.98795850 -2.03733672 C -7.36198398 -2.78640894 -1.90883342 C -8.62854712 -2.74396231 -0.99617201 C -9.30387967 -4.13722980 -0.87737203 O -8.33176833 -5.19670133 -0.74520279 O -7.46619348 -3.71651779 -2.98848221 O -8.58558786 1.71487753 -0.59102735 C -9.83559534 1.92233851 0.11000713 C-10.33193588 -4.20701217 0.25825226 C -9.62554755 -1.70054445 -1.53999403 H -5.40540110 -0.47956149 -1.36573753 H -3.31436420 -2.50929200 -0.48723351 H -3.44428871 -0.59622142 -2.88520141 H -2.05613589 -1.64428959 -2.47616984 H-2.59895353 1.17972910 0.34301963 H-4.99587134 0.47057144 0.88307890 H -4.14230449 -1.26128721 2.05353350 H -3.13960943 2.44337126 -1.62070412 H -4.29975601 1.24243951 -2.21592449 H-3.99579763 4.19385434 0.05921052 H-5.50007058 3.87170852 0.97669353 H-4.02946567 2.86778823 1.22119490 H -6.49715387 1.40776058 -1.73864679 H -6.13915140 -4.02051901 -0.60092035 H -5.06038580 -2.59999837 -3.02890006

C -10.03645811 1.36879271 -1.52255094
H -5.92354230 -0.28292142 0.95912342
H -4.53637580 0.40750715 -1.67082443
H -3.58109788 0.74887498 1.23500795
H -2.66772858 1.20615954 -0.22871656
H -3.13561509 -2.77264244 0.31646040
H -5.68864665 -2.64299282 0.20617752
H -4.01595081 -1.72495156 -1.85476415
H -4.56354133 -0.99943587 2.39400063
H -4.27772660 -2.74675464 2.41511501
H -1.07085856 -2.34391741 1.47309204
H -0.60144785 -2.49254341 3.18782968
H -1.85415973 -3.57560111 2.47730341
H -3.26502404 0.15062809 3.80430265
H-8.01145771 0.93058464 0.15837291
H -6.49119196 1.76225335 -2.35924911
H -4.81599152 2.77980390 -0.83466244
H-5.70187226 2.15069586 0.57868311
H -9.16376074 -0.60362536 -1.53332918
H -8.36470105 1.47924715 -3.61192070
H -6.93469276 -0.71840432 -2.79479122
H -7.03086918 3.81985374 -1.51774151
H-0.76763730 2.37380830 6.48469552
H-0.06984187 0.72066592 6.70319639
H 0.47594662 1.73467834 5.33830168
H -9.22036333 -0.25299983 -5.21361799
H -9.69604394 -1.28395810 -3.83827251
H -10.50634777 0.29112730 -4.09990013
H -10.93690715 1.02458086 -2.04949002
H-10.26255097 1.39934857 -0.44609381
H -9.79833746 2.38996580 -1.84559835

• **7-8 BPA complex** 81

C -5.84381390 -0.21018497 -0.38739799
C -5.06182232 0.99675055 -0.92226540
C -3.62233825 0.92700879 -0.40332480
O -3.00161135 -0.31615545 -0.79194826
C -3.67327829 -1.47517619 -0.25433710
C -5.13246090 -1.51892360 -0.77767843
O -5.14770757 -1.70724550 -2.19467794
C -3.56003061 -1.58310221 1.28848673
C -2.14870014 -1.31523250 1.77176998
C -1.07487197 -2.17219341 1.15457838
C -1.94950440 -0.31366728 2.66420576
C -0.65075135 0.12360977 3.22263379
O 0.46720768 -0.31745742 2.98468980
O -7.17896973 -0.25676545 -0.90078886
C -7.97532458 0.94536780 -0.67126073
C -7.21068858 2.18169560 -1.21459409
C -5.82004643 2.27954198 -0.57089884
C -9.32485970 0.62682736 -1.35204944
C -9.25462227 0.65398890 -2.90127805
O -8.03177046 0.02816013 -3.43191535
O -7.94458990 3.39171789 -1.04623848
O -0.86737718 1.16308729 4.09546393
C 0.32831584 1.70142878 4.70048319
C -10.44183159 -0.05820618 -3.55039915
C -10.44968751 1.55089033 -0.84619935
H -5.90004476 -0.12949370 0.71567748
H -5.03129457 0.91561342 -2.02131839
H -3.59727900 1.04219997 0.69472850
H -3.00606757 1.71920621 -0.84844820
H -3.13699852 -2.32163686 -0.70410566
H -5.66746868 -2.37875585 -0.34815275
H -4.46745927 -1.10916727 -2.54841988
H -4.26415882 -0.90431595 1.78804427
H -3.85893322 -2.61272545 1.55317168

H -4.32289781 -3.97360888 -2.17811721
H -7.23922131 -1.79759469 -2.38393598
H -8.31171483 -2.43061643 0.00859549
H -9.79923602 -4.34455692 -1.83948048
H -7.96510827 -5.14120983 0.16270286
H -7.57761777 -4.58006695 -2.54353063
H -10.55128236 1.24988556 -0.37471243
H -9.71462108 1.65942822 1.17029406
H-10.15416804 2.97002318 0.02761396
H -10.76033680 -5.21809519 0.30110459
H -9.84771335 -3.98800372 1.21994294
H -11.14936240 -3.48732299 0.10644813
H -10.53871285 -1.65812868 -0.92938235
H -9.17049074 -0.69932659 -1.54444768
H -9.91202599 -1.95684202 -2.57225520
O -6.63402354 -3.75372839 4.23416413
O -5.47874006 -3.00671531 2.20011961
H-8.13422273 0.08655804 6.25658716
H -7.67270268 2.15854742 4.95083093
H -7.49583500 -5.74988218 5.63212553
H -5.55640860 -2.65374948 1.23466068
C -7.99162134 0.03468339 5.17672796
C -7.72594659 1.19581142 4.44204331
C -8.04388560 -4.83211145 5.83996718
C -7.72504756 -3.68095236 5.11394635
H -9.29914835 -5.66811254 7.38618960
C -9.04480895 -4.77262599 6.81878533
C -8.38757083 -2.45007695 5.32524933
C -8.06438048 -1.22869013 4.55037185
C -7.52294779 1.12435212 3.05354043
H -7.33256974 2.02935504 2.47937861
P -6.87363102 -3.64438428 2.62727204
C -9.71524051 -3.56292325 7.06161138
C -9.38915011 -2.42159326 6.32008842
C -7.85672545 -1.26708962 3.15467316
C -7.58716691 -0.11770765 2.40374893
H -10.49915721 -3.51160629 7.81757107
H -9.92402725 -1.48592009 6.48582712
H -7.45493151 -0.21223383 1.32743749
O -7.32526887 -4.87547170 1.91882646
O -8.01821529 -2.47797317 2.46653894

• Endo-product 7-8

55

C -5.68748840 -0.49279435 -0.10390782
C -4.73698579 0.60444261 -0.60538368
C -3.41591345 0.50743580 0.16989836
O -2.83627319 -0.80366748 0.03517658
C -3.67763483 -1.85078928 0.56690883
C -5.01887479 -1.87694597 -0.21134149
O -4.78720712 -2.24440014 -1.57111266
C -3.84519886 -1.77903118 2.10594050
C -2.52625527 -1.56233954 2.81848029
C -1.44035284 -2.55386645 2.48990659
C -2.40412199 -0.50513298 3.65902604
C -1.19967152 -0.12678244 4.43171445
O -0.10300732 -0.67275776 4.45088551
O -6.90079648 -0.52481667 -0.84778609
C -7.64984749 0.71743505 -0.86704020
C -6.75573081 1.90754837 -1.29951468
C -5.45260528 1.95196763 -0.47784657
C -8.85221537 0.42222254 -1.79572652
C -8.46404923 0.42230635 -3.30121535
O -7.19963146 -0.20468375 -3.58045229
O -7.53240435 3.09858575 -1.10973749
O -1.48213434 0.99527284 5.17358583
C -0.38413878 1.48245549 5.97529307
C -9.54646735 -0.24269236 -4.16439048
C -9.54040755 -0.24209250 -4.10459048

H -0.92273094 -1.83963099 0.11475898
H -0.12548404 -2.09354647 1.69048943
H -1.40825433 -3.22198008 1.11258915
H-2.81572704 0.24667278 3.02059485
H-8.12756466 1.06728203 0.41794877
H -7.04796749 1.98097693 -2.27662220
H -5.30361975 3.16042649 -0.97134835
H -5.91361653 2.39520909 0.52255750
H -9.55927355 -0.40808702 -1.04827701
H -9.22257953 1.70117611 -3.23199330
H -7.50839354 -0.33766877 -2.67841064
H -8.18609553 3.67597880 -1.95169074
H -0.01686571 2.48330132 5.38649208
H 0.87442259 0.91702697 5.24334990
H 0.99206066 2.12274846 3.93151636
H -10.32631972 -0.05465010 -4.64278541
H -10.49291207 -1.10163403 -3.20424652
H-11.38468522 0.44716283 -3.29879574
H-11.42407793 1.23283522 -1.24066944
H -10.49909851 1.51727127 0.25177036
O -5.55129267 3.60086762 -3.57022194
O -6.60822885 1.66036553 -4.75215962
H -2.19988844 5.52754494 -5.92991549
H -1.68416091 4.28866707 -8.03174227
H -6.16145978 5.15297189 -1.55013434
H -7.21774587 0.99927366 -4.21742639
C -2.96263702 4.90956487 -6.40490583
C -2.67364571 4.20744063 -7.58079961
C -5.56115411 5.65541113 -2.30833037
C -5.22805690 4.96349473 -3.47697463
H -5.38513566 7.53452142 -1.25774542
C -5.13083926 6.98224445 -2.16298892
C -4.51600500 5.56302066 -4.53792561
C -4.22721289 4.81764149 -5.78472547
C -3.65228248 3.38737203 -8.16569069
H -3.43211606 2.83080017 -9.07716935
P -6.84641785 3.20165856 -4.50574101
C -4.38469214 7.59712956 -3.18221962
C -4.09042393 6.89612488 -4.35864076
C -4.91945050 3.28128276 -7.57698052
H -4.05098348 8.62917118 -3.06962990
H -3.54667218 7.38238629 -5.16933208
H -5.70376308 2.66230330 -8.00988132
O -8.15953275 3.65109041 -3.94716033
O -6.51100427 3.94877236 -5.91837538
0-0.51100427 5.74077250-5.91057550

• TSendo

81

C -5.784503 -0.542422 -0.295462 C -5.002851 0.678860 -0.829826 C -3.567008 0.637611 -0.278634 O -2.904142 -0.593512 -0.606897 C -3.563179 -1.749069 -0.043414 C -4.997929 -1.837668 -0.613709 O -4.960208 -2.062090 -2.023796 C -3.505847 -1.787330 1.504802 C -2.123369 -1.458402 2.032421 C -1.003567 -2.314945 1.501786 C -1.985332 -0.414765 2.887847 C -0.721487 0.082220 3.476908 O 0 416117 -0 337827 3 303093 O -7.123489 -0.642835 -0.784797 C -8.178903 1.418189 -0.809187 C -6.974827 2.080794 -1.309136 C -5.687766 2.024593 -0.516354 C -9.339776 0.883672 -1.596965

C -9.069513 0.602821 -3.102538 O -7.806822 -0.063680 -3.306086 O -7.835099 3.235216 -1.161759 O -1.000997 1.153430 4.290287 C 0.152871 1.753151 4.918797 C -10.171267 -0.275572 -3.706113 C -10.569882 1.807122 -1.402956 H -5.885562 -0.437413 0.796287 H -4.937585 0.588953 -1.927146 H -3.572452 0.792638 0.815127 H -2.966182 1.435804 -0.733140 H -2.989847 -2.597391 -0.439289 H -5.531172 -2.695367 -0.178028 H -4.263733 -1.479855 -2.368137 H -4.248191 -1.108596 1.946201 H -3.787379 -2.812657 1.802331 H -0.804740 -2.020304 0.458190 H -0.083915 -2.194446 2.079811 H -1.312499 -3.372894 1.486000 H-2.878187 0.138731 3.184997 H-8.315846 1.461525 0.273950 H -6.767042 1.868042 -2.355375 H -5.045809 2.849753 -0.860400 H -5.866275 2.147494 0.564026 H -9.556682 -0.078805 -1.101922 H -9.047117 1.572756 -3.621855 H -7.132851 -0.624579 -1.784608 H -7.989199 3.559003 -2.212665 H -0.241855 2.565650 5.539320 H 0.686714 1.014302 5.533315 H 0.845602 2.143397 4.159222 H -9.935343 -0.470013 -4.760473 H -10.217060 -1.239776 -3.176750 H -11.156695 0.207836 -3.650257 H-11.472145 1.323166 -1.798486 H -10.733709 2.028816 -0.338605 H -10.407724 2.754830 -1.933518 O -5.412572 3.808923 -3.584005 O -6.664525 1.902361 -4.708239 H -2.523442 5.753224 -6.514673 H -2.513186 4.664112 -8.757872 H -5.575234 5.325407 -1.447694 H-7.250214.0.592302-3.808784 C -3.396915 5.199329 -6.859847 C -3.391707 4.582070 -8.117087 C -5.095603 5.813062 -2.294282 C -5.035476 5.150240 -3.526809 H -4.633642 7.631683 -1.224084 C -4.585129 7.113534 -2.182603 C -4.516029 5.782053 -4.681732 C -4.512208 5.107581 -6.000389 C -4.511919 3.851844 -8.543036 H -4.511873 3.360585 -9.516548 P -6.816367 3.367591 -4.368971 C -4.024009 7.746689 -3.302589 C -4.004377 7.088245 -4.537823 C -5.630548 4.373958 -6.461709 C -5.635081 3.746249 -7.712711 H -3.625689 8.758446 -3.219063 H -3.609651 7.589836 -5.422182 H -6.521053 3.189468 -8.013229 O -8.016076 3.851214 -3.534384 O -6.801678 4.337221 -5.699353

• TS_{exo}

C -5.019010 -0.843776 -0.623416 C -4.116971 -1.892251 -1.279148

C -3.096899 -1.112529 -2.139860 O -2.343612 -0.172146 -1.363747 C -3.116818 0.749354 -0.573138 C -4 150498 0 019498 0 312793 O -3.433036 -0.746458 1.268482 C -3.770325 1.854537 -1.483625 C -4.830563 2.644465 -0.746465 C -4.319019 3.551195 0.341645 C -6.138447 2.393287 -1.016272 C -7.307594 2.827646 -0.223155 O -7.372277 3.706745 0.629581 O -6.125181 -1.434509 0.038416 C -6.178422 -3.356192 -1.323540 C -4.940916 -2.932825 -2.080910 C -7.527285 -3.063560 -1.795138 C -8 733014 -2 981969 -0 836658 C -9.335159 -4.385712 -0.557789 O -8.249803 -5.364968 -0.400386 O -7.123442 -4.401096 -2.304863 O -8.379414 2.029982 -0.552450 C -9.571909 2.249040 0.238190 C -10.264271 -4.446522 0.650702 C -9.799470 -2.019355 -1.388444 H -5.455421 -0.198485 -1.399404 H -3.571175 -2.400960 -0.471049 H -3.645679 -0.602556 -2.959093 H -2.349003 -1.778115 -2.593359 H -2.381781 1.220990 0.091980 H -4.801569 0.758665 0.806793 H-4.070162-1.217824 1.838427 H -2.956825 2.509038 -1.831588 H -4.209539 1.371112 -2.366645 H -3.641884 4.302065 -0.098829 H -5.127509 4.057489 0.875643 H -3.712042 2.966432 1.053030 H -6.373941 1.693050 -1.818850 H -6.070437 -3.902504 -0.386274 H -5.241321 -2.526299 -3.060003 H -4.317114 -3.820763 -2.258847 H -7.560658 -2.336215 -2.614492 H -8.350138 -2.574767 0.106048 H -9.866643 -4.729375 -1.459070 H -7.757457 -5.116153 0.474571 H -7.553927 -5.048135 -1.452148 H-10.342604 1.618578 -0.220132 H -9.393002 1.944125 1.279004 H -9.863764 3.307926 0.213997 H -10.605905 -5.482017 0.786829 H -9 762984 -4 113715 1 568896 H -11.146741 -3.811458 0.485594 H-10.641969-1.938275-0.688888 H -9.370042 -1.014762 -1.520789 H-10.185221 -2.368527 -2.359685 O -6.665569 -3.790088 4.138258 O -5.331958 -2.734707 2.232445 H -8.405749 -0.113640 6.317585 H-7.833805 2.062186 5.242828 H -7.661509 -5.881358 5.241521 H -5.781007 -1.899040 0.854683 C -8.169861 -0.072294 5.253684 C -7.846765 1.148622 4.647559 C -8.242319 -4.986729 5.462143 C -7.844358 -3.776759 4.877394 H -9.653599 -5.965673 6.771872 C -9.348585 -5.020637 6.320327 C -8.547444 -2.570833 5.131543 C -8.167486 -1.277176 4.516776 C -7.521896 1.193094 3.281086 H -7.239842 2.131366 2.803521 P -6.643798 -3.441792 2.525187

C -10.056550 -3.839237 6.595699 C -9.655693 -2.636206 6.004179 C -7.844418 -1.200125 3.145700 C -7.529697 0.012797 2.521841 H -10.921934 -3.856731 7.258616 H -10.213167 -1.717831 6.194048 H -7.300772 0.009966 1.458780 O -7.050026 -4.651782 1.704416 O -7.912543 -2.365463 2.377601

•

81

TSP

C 30.511550 84.528693 81.481703 C 29.332561 84.094506 80.709292 C 28.045190 84.261972 81.099361 C 26.927373 83.725569 80.235638 C 26.152067 82.601070 80.931492 C 24 908532 82 169333 80 115618 C 24.230714 80.940086 80.747394 C 25.239782 79.816912 81.082469 C 25.730965 79.056998 79.812583 C 24.607761 78.366114 79.117644 C 24.015277 78.881655 77.871868 C 22.552401 78.627818 77.451824 C 22.395464 77.252261 76.741412 C 20.941810 76.795692 76.649166 C 27.622381 84.916375 82.396078 C 26.432236 80.429991 81.835044 C 32.883159 84.594887 81.452111 O 31.658686 84.223248 80.785472 O 30.528817 85.074404 82.580393 O 27.045820 81.483182 81.086207 O 23.595619 81.385680 81.960176 O 23.973287 83.233349 79.957971 O 25.051280 77.948362 77.362608 C 22.054115 79.774076 76.551099 O 23.199082 76.240576 77.413349 H 29.539443 83.595889 79.761768 H 26.192740 84.519387 80.025258 H 27.312053 83.344338 79.276874 H 25.806240 82.940589 81.926702 H 25.257409 81.894431 79.105858 H 23.461310 80.574513 80.057157 H 24.738737 79.092485 81.737731 H 26.224606 79.766759 79.134480 H 26.470295 78.308780 80.132569 H 24.361573 77.353720 79.419698 H 24.352258 79.902091 77.652990 H 21.967123 78.609661 78.379577 H 22.843110 77.333129 75.738131 H 20.894188 75.809849 76.168372 H 20.345319 77.505995 76.059317 H 20.519241 76.718232 77.660485 H 26.550867 85.162910 82.376887 H 28.214574 85.815070 82.603457 H 27.803821 84.230679 83.238915 H 26.056340 80.816806 82.798951 H 27.216867 79.682168 82.022253 H 32.975980 84.067255 82.412684 H 32.906515 85.677869 81.646017 H 22.916490 80.715607 82.150721 H 23.459162 83.228754 80.786077 H 20.990448 79.645720 76.309014 H 22.620566 79.806149 75.606562 H 22.169582 80.743641 77.057272 H 24.502575 77.062782 77.343471 H 33.689740 84.303838 80.768133 O 21.034524 77.102247 81.998062 O 21.996838 76.171516 79.799401 H 22.226819 75.285730 85.986504 H 23.483559 73.142931 85.757014 H 20.009615 79.455780 82.454679 H 22.794165 76.131798 78.329624 C 22.777567 75.065444 85.069745 C 23.477407 73.860473 84.937042 C 20.609006 79.089029 83.287677 C 21.237202 77.843531 83.165075 H 20.267611 80.789406 84.579623 C 20.754839 79.819016 84.475949 C 22.040214 77.306069 84.196584 C 22.748162 76.016162 84.027507 $\begin{array}{l} C \ 24.164216 \ 73.578747 \ 83.745670 \\ H \ 24.714816 \ 72.642819 \ 83.638620 \\ P \ 22.272441 \ 77.165870 \ 80.906830 \\ C \ 21.524097 \ 79.296738 \ 85.528785 \\ C \ 22.156977 \ 78.055682 \ 85.386629 \\ C \ 23.455812 \ 75.711562 \ 82.838174 \\ C \ 24.152803 \ 74.504631 \ 82.694843 \\ H \ 21.641103 \ 79.862344 \ 86.453755 \\ H \ 22.782748 \ 77.662186 \ 86.189232 \\ H \ 24.686792 \ 74.319222 \ 81.763305 \\ O \ 22.615171 \ 78.611488 \ 80.575984 \\ O \ 23.581502 \ 76.660231 \ 81.830213 \\ \end{array}$

References

- [1] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., *Mol. Phys.* **2015**, *113*, 184–215.
- [2] A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
- [3] S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- [4] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.
- [5] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [6] Discovery Studio 4.1 Visualizer: Accelrys Software Inc. San Diego, USA, 2015.
- [7] P. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
- [8] P. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385–1392.
- [9] P. M. Zimmerman, J. Comput. Chem. 2015, 36, 601–611.
- [10] P. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043–3050.
- [11] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [12] J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- [13] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, *J. Cheminform.* **2011**, *3*, 33.