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Abstract 

The dramatic development of sequencing technologies in the past several 

decades has made studies of low frequency events in the human cell accessible 

for the first time. These rare events can occur in the genome and transcriptome 

and include genetic variation within small populations of somatic cells as well as 

single molecule level RNA fusion events. 

 

Somatic variations are the mutations that occur during cell division leading to 

mutations only in a portion of the cells within an individual or tissue. Such 

somatic variation has been established as a causal feature in various types of 

cancers. However, somatic mutations in normal human cells and tissues have 

yet to be well studied. We hence developed our own analysis pipeline to discover 

somatic SNVs and applied it to human postmortem brain tissues. We then 

performed amplicon validation in order to compare and validate the somatic 

SNVs identified from our pipeline. Based on our experience with somatic SNV 

detection in non-tumor tissues, we have developed a best practice guide to help 

other researchers. We conclude that it remains difficult to identify low frequency 

somatic SNVs from bulk sequencing data, however our approach successfully 

identified a conservative but accurate set of somatic SNVs for future studies. 
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We next shifted our focus to rare transcriptomic events and sought to identify 

single molecule level RNA fusion events between U6, a critical component of 

spliceosome, and other RNAs from five human cell lines. We developed a novel 

pipeline to target these specific fusion events at the RNA level and differentiate 

them from integrated genomic chimeras. Using this pipeline, we identified 31 

individual U6/L1 fusion events that had strong support as RNA fusion candidates. 

Together with the biochemical and genetics experiments, we were able to 

support a plausible mechanism for the formation of U6/L1 pseudogenes in the 

human genome. 

 

Single cell RNA sequencing further increased the sensitivity to identify rare 

events at RNA level. However, isoform quantification in single cell sequencing 

data is not well developed. We then developed Seekmer to perform a better and 

faster RNA isoform quantification using both bulk and single cell RNA 

sequencing data. This approach fills the gap between alignment-based methods 

and the alignment-free methods in performance and run time aspects. With the 

imputation module of Seekmer to collect information from other single cells with 

similar expression profiles, we were able to significantly improve the performance 

of isoform quantification from both simulated data and spike-in data. 

 

Current sequencing technologies contain artifacts that we are unable to fully 

exclude using computational methods. However, we have demonstrated that with 
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cautious filtering and collecting extra information from other methods or other 

cells, we can utilize current methods to study the characteristics and possible 

functions of rare events in the human genome and transcriptome.
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Chapter 1 Discovery of Somatic and Single Molecule Level 
Events from Complex Sequencing Data 

 
Rare events in human genome and transcriptome 

The Human Genome Project has sequenced 3.2 billion base pairs in the human 

genome (Initial sequencing and analysis of the human genome, 2001; Venter et 

al., 2001; Finishing the euchromatic sequence of the human genome, 2004). 

Together with 1000 Genomes Project (Gibbs et al., 2015) and ENCODE project 

(An integrated encyclopedia of DNA elements in the human genome, 2012), 

researchers have sequenced various human genomes and transcriptomes. With 

the large-scale studies on human genomics and transcriptomics in the past 

decades, we have gained a remarkable progress with understanding the human 

genome and transcriptome, as well as the discovery of correlated factors with 

diseases (McCarthy and MacArthur, 2017). 

 

We have gained tremendous knowledge about the human genome and its 

cellular processes, including but not limited to germline genome variations, 

differential expression of genes, different isoform splicing in different cell types, 

and so forth. However, there remain many unknowns related to the human 

genome and transcriptome. In particular, it is becoming apparent that there exists 
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a multitude of rare events which do not arise in every cell in the body or even in 

the same tissue or cell type (Li and Williams, 2013). These biologically rare 

events include events that only occur in a small number of cells in human body 

(Poduri et al., 2013), single molecule RNA level events that only occur once per 

cell (Li et al., 2008), and various alternative splicing patterns and mechanisms in 

the same tissue for different cells (Porter, Jaamour and Iwase, 2018). There are 

also population level rare events, for example, rare genetic diseases that only 

occur in a small percentage of the population (Boycott et al., 2013). From the 

technical aspect, newly developed technologies such as single cell sequencing 

generate ‘rare’ cases from the general population of multiple cells. Thus, studies 

of different rare events remain challenging with the current technologies but can 

have a great impact on studies of human diversity and development as well as 

disease. With the development of new technologies, we have now started to 

improve our understanding of rare events in human genome and transcriptome. 

 

Illumina sequencing and applications 

Illumina sequencing technology 

The innovation of first generation sequencing promoted the initiation of the 

Human Genome Project (Mardis, 2013). The completion of the Human Genome 

Project revealed the complexity of human genome (Initial sequencing and 

analysis of the human genome, 2001; Venter et al., 2001), which furthermore 

advocated the development of faster, lower cost and higher throughput 

sequencing technologies to generate larger amount of data. With the demand of 
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higher throughput sequencing platforms, the first high throughput-sequencing 

platform, as well as the first next-generation sequencing (NGS) platform, 454 

sequencing, was released in 2005 (Margulies et al., 2005). Unlike the first 

generation sequencing methods, NGS is high throughput, generating millions of 

reads in parallel. Furthermore, NGS also has shorter run time and lower cost 

compared to the first generation sequencing methods. Over the past decade, 

next-generation sequencing methods continue to develop and have generated a 

100-1,000 fold increase of throughput compared to the first generation 

sequencing methods (Kircher and Kelso, 2010). 

 

There are two major different sequencing mechanisms involved in NGS: 

sequencing by synthesis (SBS) and sequencing by ligation (SBL) (Goodwin, 

McPherson and McCombie, 2016). In SBS NGS approaches, platforms report 

the DNA sequences by different fluorescent signals released or different changes 

in ionic concentration from the incorporation of different nucleotides onto the 

single stranded DNA under synthesizing with a polymerase. One base is 

sequenced for each signal released. In SBL methods, probes of single stranded 

DNAs with fluorophore are applied to the single stranded DNAs. The ligation of 

different complementary probes will release different fluorescence for detection. 

Multiple bases are sequenced for each signal released (Kircher and Kelso, 2010). 

  

Recently, with highly successful instruments, Illumina sequencing, a method 

using SBS, has become the most applied NGS approach in research (Goodwin, 
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McPherson and McCombie, 2016). Since the sequencing technologies are 

utilized in the three following chapters, I will present more details about Illumina 

sequencing from library preparation (Figure 1.1 a), cluster amplification (Figure 

1.1 b) to DNA sequencing (Figure 1.1 c) (Illumina.com, 2019) as well as 

limitations in each step. 

 

In library preparation step, DNA or cDNA sample undergoes random 

fragmentation, followed by 5’ and 3’ adapter ligation (Figure 1.1 a). These 

adapters serve as sequencing primer binding sites, indices and regions 

complementary to the flow cell oligos (Illumina.com, 2019). PCR amplification is 

then performed using the DNA or cDNA with adapters. The PCR amplification in 

library preparation guarantees enough DNA material for further sequencing steps, 

however, possible amplification artifacts could be induced due to the error-prone 

DNA polymerase utilized (Zook et al., 2014) as well as the biased amplification of 

different regions in input DNA libraries (Rieber et al., 2013). The amplification 

artifacts generated in PCR amplification could affect downstream structural 

variation identification. Furthermore, the PCR amplification step copies the single 

molecule event at RNA level in the cDNA libraries for multiple copies, which is a 

major limitation for analysis of single molecule RNA level events. 

 

Cluster generation, the process of isothermally amplifying each fragment 

molecule, is performed after PCR amplification of the ligated DNA libraries. Each 

lane of the flow cell contains two types of oligos. Hybridization occurs between 
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the first of the two types of the oligos and the DNA fragments with 

complementary adapters. DNA polymerases then create the complementary 

sequences using the DNA templates. The double stranded molecules are then 

denatured, and the original DNA templates are washed away. The strands are 

then clonal amplified through clonal amplification utilizing DNA polymerases. At 

the end of cluster amplification, clonal amplification of all the DNA template 

fragments is formed on the flow cell. After clonal amplification, the reverse 

strands are washed off, leaving only forward strand for future sequencing 

processes. The clonal amplification step ensures strong enough fluorescent 

signals released during sequencing procedure (Illumina.com, 2019). However, 

the amplification error of the polymerase, in the earlier rounds of amplification in 

particular, could lead to sequencing errors including single nucleotide variation, 

indels and CNVs in the sequencing data (Kircher, Heyn and Kelso, 2011).  

 

With the amplified clones for each DNA fragment, sequencing begins with the 

extension of the first sequencing primer to produce the first read. With each cycle, 

complementary fluorescent-labeled nucleotide to the DNA template would be 

added to the template. Laser excitation will be performed after the addition of 

each nucleotide. The emitted fluorescence from each cluster is captured for base 

identification. The number of cycles determines the length of the read 

(Illumina.com, 2019). In each cluster, all templates in one cluster are read 

simultaneously. Hundreds of millions of clusters are sequenced in parallel, which 

provides a high throughput sequencing output. Although NGS enables much 
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higher throughput by sequencing great amount of DNA templates simultaneously, 

the high throughput approach also leads to sequencing artifacts. Image capturing 

of the flow cell generates one of the artifacts for example. In homopolymer 

regions, the sequencing artifacts could be generated by both polymerase 

amplification error and image capturing because of the same signal released 

from the same cluster in a small period of time. The generation of the same 

fluorescent signal could be easily mis-counted in the sequencing output data, 

which lead to a higher sequencing error in the homopolymer regions of the DNA 

templates (Ivády et al., 2018). 

 

The sequencing process generates millions of reads. Reads from different 

sequencing libraries are separated based on the different indices added to DNA 

template fragments. Researchers then align the read sequences in each library 

to the reference genome for variation identification. Although the efficient high 

throughput sequencing approaches promoted the variation identification among 

different individuals, due to the limitation of relatively short read length, complex 

regions, including repetitive regions, large structural variations, still remain under-

studied since the short reads generated could be aligned to multiple places in the 

genome (Pollard et al., 2018). 

 

10X Genomics sequencing providing haplotype information 

10X Genomics could generate synthetic long reads using Illumina sequencing 

platform. 10X Genomics linked-read sequencing is a barcoded short read 



	
	

7	

sequencing method. Each longer DNA molecule (~50kb) will be attached to a 

different bead inside an individual droplet. Inside each droplet, the long DNA 

fragments got fragmented into small pieces of DNA, attached with a barcode 

unique for each droplet, and then amplified. The resulting DNA library then is 

sequenced using standard next generation sequencing methods, for example, 

Illumina sequencing. After sequencing, the resulting short reads can be reunited 

with others containing the same barcode to reconstitute the original underlying 

molecule.  

 

Longranger is a software package developed by 10X Genomics that will both 

align and call haplotypes using these reconstructed long molecules by using 

known SNPs that lie within (Figure 1.2). 10X barcoding for short reads could 

ensure the reads from the same long DNA fragment to be identified as from the 

same molecule. This could be significantly helpful to exclude PCR duplicates in 

certain studies. The haplotype information provided by long DNA fragments could 

also be useful for structural variation discovery. However, with up to 100kb 

fragment length, 10X Genomics is still limited if the structural variation involves is 

longer than the fragment length (Goodwin, McPherson and McCombie, 2016). 

 

RNA sequencing 

RNA sequencing is a simple application of next generation sequencing. Instead 

of genomic DNA, RNA reverse transcribed cDNA serves as the input for library 

preparation (Chu and Corey, 2012). With RNA sequencing, scientists have been 



	
	

8	

able to study differential gene expression in different cell types, alternative 

splicing, gene fusion, RNA editing and so forth. The development of RNA 

sequencing has facilitated a better understanding of the continuously changing 

human transcriptome in different tissues and in cancer cells. 

 

RNA sequencing library preparation starts from total RNA preparation followed 

by a ribosomal RNA removal step. The total RNA from a sample is then 

processed depending on the type of RNA sequencing needed. After reverse 

transcription of the RNA into cDNA, library preparation and sequencing steps for 

RNA sequencing remains the same with regular Illumina sequencing processes 

(Illumina.com, 2019). 

 

RNA sequencing library preparation before reverse transcription could be 

enriched for mRNA, small RNA, noncoding RNA, microRNA and total RNA 

(Illumina.com, 2019). Different RNA library preparation could serve for different 

purposes of studies, for example, downstream analysis on RNAs with noncoding 

features cannot be performed using mRNA sequencing library, but total RNA 

sequencing library include all information in the transcriptome of cells at a certain 

time point. 

 

Although reverse transcription enables the application of NGS on the studies of 

transcriptome, the artifacts brought by reverse transcription still cannot be 

neglected. For example, previous studies demonstrated that the template 
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switching of reverse transcriptase could generate false alternative transcripts, 

which is a technical artifact of fusion RNAs (Cocquet et al., 2006). 

 

Single cell genomics 

The development of single cell sequencing has also improved the study of rare 

events in genome by providing information at single cell resolution. The technical 

challenges for single cell genome sequencing exist in cell isolation, whole 

genome amplification, and analysis of the single cell result. In cell isolation step, 

each single cell in the tissue needs to be efficiently separated. Four major 

methods with different advantages and disadvantages are listed in Table 1.1. 

With different request of throughput, cost and whether targeted cells needed, 

researchers have applied different cell isolation methods onto different studies 

(Table 1.1). The inefficient isolation would lead to the mixture of multiple cells for 

one single cell result. 

 

Following single cell isolation, the DNA libraries from single cells need to be 

amplified before sequencing. It is challenging to amplify a single copy of genome 

without artifacts, such as amplification bias, genome loss, mutations or chimeras. 

Three major methods have been developed to amplify the single cell genome 

with their own advantages and disadvantages (Table 1.1) (Gawad, Koh and 

Quake, 2016). The PCR-based methods, DOP-PCR, have resulted in majority 

genome loss because of the uneven distribution of the common sequences 

utilized as primers for PCR amplification (Zhang et al., 1992). Although the 
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amplification product from DOP-PCR distribute relatively uniform across the 

amplification product, the high error rate of the thermolabile polymerases and 

high percent of genome loss made DOP-PCR a less preferred whole genome 

amplification method (Gawad, Koh and Quake, 2016). Multiple displacement 

amplification (MDA), contrarily, uses isothermal random priming. Although the 

amplification product tends to be more biased towards to the fragments amplified 

earlier, the low error rate and low allelic dropout make MDA a better method for 

single cell DNA amplification (Dean, 2001; Zhang, 2001). Recently, two hybrid 

methods combining both DOP-PCR and MDA have been developed. These 

methods utilize MDA for limited cycles, then apply PCR amplifications of the 

amplicons generated from the isothermal step. The hybrid methods were able to 

achieve an intermediate amplification error and dropout rate and a lower non-

uniformity of the amplification product by combining two kinds of polymerases 

(Table 1.1). Although various techniques have been developed, amplification of a 

sequencing library from a single genome still remains biased and error-prone 

(Gawad, Koh and Quake, 2016). 

 

The amplified sequencing library is then ready for sequencing for either a 

targeted sequencing (whole exome single cell sequencing) or whole genome 

sequencing. Even with all technical limitations of sequencing errors, genome 

drop out and biased amplification, single cell genome sequencing data still 

serves as a plausible method for identification of rare events at a single cell level, 

for example, genetic mosaicism in multicellular organisms (Lodato et al., 2015; 
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McConnell et al., 2017) and genetic heterogeneity in cancer (Hou et al., 2012; Xu 

et al., 2012). 

 

Single cell RNA sequencing 

Researchers have investigated the dynamics of transcriptome in different tissues 

by using RNA sequencing technology. However, the heterogeneity of 

transcriptome of the cells in a tissue cannot be assessed from bulk RNA 

sequencing. The development of single cell RNA sequencing technologies has 

improved our knowledge of the mosaic transcriptome at single cell level. 

 

Different from single cell DNA library preparation, preparation of single cell RNA 

sequencing requires the reverse transcription and second-strand synthesis 

before cDNA library amplification. Researchers have established that only 10-20% 

of transcripts could be reverse transcribed into the cDNA library for each single 

cell (Islam et al., 2013). The random loss of majority of transcripts in the reverse 

transcription step remains an important challenge for the single cell RNA 

sequencing technologies (Hwang, Lee and Bang, 2018), which creates a rare 

event at the technical level which will be discussed in chapter 4.  

 

For RNA reverse transcription to cDNA, there are two steps. The first step utilizes 

an engineered version of the Moloney murine leukemia virus reverse 

transcriptase for first DNA strand synthesis (Gerard, 2002; Arezi and Hogrefe, 

2008). The second step is to synthesize the second strand of cDNA. Two major 
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approaches could be applied in the second step: poly(A) tailing (Tang et al., 2009; 

Sasagawa et al., 2013) or template switching mechanism (Islam et al., 2011; 

Ramsköld et al., 2012). The template switching approach ensures a non-biased 

amplification and maintains the strand information of the RNAs (Hwang, Lee and 

Bang, 2018). The cDNA library reverse transcribed from part of the transcriptome 

is then amplified using the conventional PCR or in vitro transcription. Compared 

to conventional PCR, in vitro transcription utilizes additional reverse transcription 

to make a linear amplification of the templates, which could lead to 3’ coverage 

biases (Morris, Singh and Eberwine, 2011). 

 

Multiple technologies for single cell RNA sequencing have been developed since 

2009. There are a few major types of single cell RNA sequencing technologies 

widely performed, including SMART-seq/SMART-seq2 (Ramsköld et al., 2012; 

Picelli et al., 2014), and UMI-tag based approaches (Islam et al., 2011; 

Hashimshony et al., 2012; Macosko et al., 2015). While UMI-barcoded are less 

expensive and could improve the accuracy by removing PCR bias using 

barcodes, the methods could only sequence the 5’ or 3’ end of the transcripts 

(Islam et al., 2011; Hashimshony et al, 2012). Thus, SMART-seq2 (Picelli et al., 

2014) with full coverage on each transcript fits better for the purpose of isoform 

quantification and allele specific gene expression in single cell transcriptome. 

Most frequently applied single cell RNA sequencing methods are compared in 

Table 1.3. With all the known technical artifacts of current single cell RNA 

sequencing technologies, researchers were yet able to apply single cell RNA 
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sequencing for multiple different purposes, including but not limited to, cell type 

identification (Ilicic et al., 2016) and cell hierarchy reconstruction (Shin et al., 

2015; Habib et al., 2016).  

 

Although Illumina sequencing has greatly promoted the studies of genome and 

transcriptome from population level, individual level and single cell level, the 

technical limitations of Illumina sequencing remain as an obstacle for rare event 

studies, for example, the error rate ~0.1% in average (GLENN, 2011), short read 

length in complex regions (Pollard et al., 2018), template switching induced false 

fusion transcripts (Cocquet et al., 2006), uneven amplification of genome or 

transcriptome majorly in single cell libraries, and so on. Better methods for 

analysis are required for better studies of genome ad transcriptome, in particular 

rare events. 

 

Somatic variation in human genome 

Somatic mosaicism in cancer and normal cells 

Different from germline variations inherited from parental meiosis (Figure 1.3 a, 

b), somatic variations only are present in a portion of the cells within an individual 

or tissue. The frequency of somatic variations in a population of cells depends on 

the time when the mutation occurs in individual development (Figure 1.3 c, d). 

 

One of the rare events that have not been well studied is the somatic variation in 

non-tumor cells. It has been known that cancer is caused by somatic mutations 
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(Luzzatto, 2011). Cancer is developed from the clonal expansion of a single 

mutated cell (Martincorena and Campbell, 2015). The experiment showing that 

the introduction of DNA fragments from tumor cells to normal cells could lead to 

malignant transformation and the identification of the mutation in the DNA 

fragment introduced led to the discovery of the first oncogene, whose mutation 

can convert the normal cells into cancer (summarized in Stratton, Campbell and 

Futreal, 2009). Meanwhile, scientists also revealed tumor suppressor gene, 

whose mutation can inactivate the function of the gene and lead to cancer 

(Knudson, 1971). The functional variants in the tumor suppressor gene could be 

either somatic or germline. 

 

DNA damage could be brought by various risk factors including exogenous 

factors, endogenous factors or enzymes involved in DNA repair or genome 

editing (Errol et al., 2006). The insertion of certain virus could also cause 

mutation in oncogenes or tumor suppressor genes leading to cancer (Morales-

Sánchez and Fuentes-Pananá, 2014). Somatic mutations in cells then can be 

obtained from unrepaired DNA damage or incorrectly repaired DNA damage. 

 

Although a Darwinian evolution of positive selection theory has been proposed in 

1975 (Cairns, 1975; Nowell, 1976), there is still no conclusive evidence showing 

how cancer cells progress from a single or multiple driving mutations. There are 

two possible explanations of how clonal expansion arises: normal cell gains a 

hypermutation (‘the mutator hypothesis’) (Loeb, Loeb and Anderson, 2003) 
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and/or the accumulation of early mutations leading to clonal expanded groups of 

cells acquire a ‘mutator phenotype’ which is more prone to future mutations 

(Tomlinson, Novelli and Bodmer, 1996). Although the detailed mechanism of how 

normal cell progressing to cancer cells remains unclear, scientists have 

demonstrated that cancer cells undergo clonal expansion and positive selections 

(Stratton, Campbell and Futreal, 2009) that accumulate mutations during cell 

division (Figure 1.4). 

 

The somatic mosaicism in human body has been proposed 60 years ago (Szilard, 

1959), however, we have been treating all cells in a human body with the same 

genetic content as the single embryonic cell for years for convenience because 

of the technical limitations. With the development of next generation sequencing 

(Mardis, 2011; Mardis 2017), until recently, scientists started to investigate the 

level of mosaicism in a human body and the possible phenotypic variations 

affected by the mosaicism (Shuga et al., 2010; Gottlieb et al., 2010; Gundry and 

Vijg, 2012; Biesecker and Spinner, 2013). 

 

The recent studies of somatic mosaicism include single nucleotide somatic 

variations, copy number variations, structural variations including 

retrotransposons, and large-scale changes in chromosome status. Although next 

generation sequencing has provided plenty of data for scientists to investigate 

somatic mosaicism in human body, the function and phenotypic effect of most 

somatic variations remain unclear (Pineda-Krch and Lehtila, 2004; Rinkevich, 
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2004; Strassmann and Queller, 2004; Tuomi, 2004). Further studies to 

characterize the mechanism and functions of somatic variations are required for 

better understanding of how tissues with somatic variation function in human 

body and how they are related with different diseases including primary immune 

deficiencies, secondary hypertension (Beuschlein et al., 2013) and other 

diseases. 

 

Somatic mutations in neurons and neurological disorders 

Recent studies suggested that brain contains widespread somatic mutations, 

such as aneuploidy, retrotransposons, large structural variations, as part of the 

normal development of itself (Rehen, 2005; Muotri and Gage, 2006; Baillie et al., 

2011). The long life span of neurons in human brain also provides great 

opportunities for accumulation of different variations in cells (McConnell et al. 

2017). 

 

In order to investigate the pattern of somatic mutations in neurons distributed in 

human brain, we need to understand the clonal architecture of the brains. 

Cortical development involves the cell division and differentiation of neuronal 

progenitor cells. A specific neuronal progenitor cells could transmit the somatic 

variations harbored in it to all its daughter cells. However, unlike clonal expansion 

in tumor cells, the long distance, radial migration of the daughter cells (Franco 

and Müller, 2013) will lead to a mixture of cells from different neuronal progenitor 
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cells in a nearby region of frontal cortex (Figure 1.5), which adds more difficulties 

for detection of somatic variations in neurons using bulk sequencing data. 

 

Previous studies showed multiple neurological diseases correlated with somatic 

variations in neuronal cell. Detailed introduction of somatic variations associated 

neuronal diseases will be included in chapter 2. 

 

Identification of somatic mutations in cancer and in normal tissues 

Given the long history of studying cancer related somatic variations, multiple 

tools have been developed to discover somatic single nucleotide variations in 

cancer cells compare to non-cancer cells from next generation sequencing data.  

 

Theoretically, somatic single nucleotide variants could be detected at any allele 

frequency with enough read depth from next generation sequencing. However, 

the sequencing errors and library preparation artifacts as well as the effect of 

other structural variations can cause tremendous false positives in somatic SNV 

identification. Thus, statistical models have been built to distinguish the real 

somatic SNVs in cancer cells from sequencing artifacts. Somatic SNV 

identification involves two steps: alignment of reads, and variant calling from the 

alignment. For read alignment, tools have been well developed, for example, 

BWA (Li and Durbin, 2009) and Bowtie (Langmead, 2010). There are different 

strategies for variant calling using next generation sequencing data. The first is to 

discover somatic SNVs using paired tumor and normal samples from the same 
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individual. The second is to discover somatic SNVs using single tumor sample. 

The paired sample methods identify somatic SNVs in tumor sample only and the 

single sample methods identify all somatic SNVs in an individual. There are 

various methods available for somatic SNV identification for paired samples, 

including MuTect, Strelka, VarScan and so on (Table 1.4). Most of the methods 

were built on a Bayes’ rule to calculate the posterior possibility of the candidate 

SNV to be a true somatic SNV in cancer cells (Xu, 2018). However, the models 

and hard filters applied in these methods do not fit the circumstances where we 

need to identify somatic SNVs in non-tumor tissues without clonal expansion. 

 

Discovery of somatic variations in normal tissues remains challenging with 

currently available technologies. Without clonal expansion in normal cells, the 

high error rate of single-cell sequencing as well as other sequencing artifacts in 

whole genome sequencing makes the discovery of somatic variations in normal 

tissues without massively accumulated somatic mutations difficult.  

 

In chapter 2 of my thesis, I discussed the difficulties of somatic SNV identification 

in brain tissue using existing tools. With the validation experiment and experience 

learnt from manual inspection, we suggested the best practice of somatic SNV 

identification from human postmortem brain using various types of next 

generation sequencing data. 

 

The formation of chimeric RNA in human cells and tissues 
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RNA fusion in cancer cells and normal cells 

Fusion transcript is a phenomenon in which parts of two different genes fused 

into one RNA molecule. The studies of fusion RNAs started from the fusion 

genes at genomic level correlated with cancers. For example, chimeric genes like 

BCR-ABL were found in multiple cancers, including hematological cancers 

(Mitelman, Johansson and Mertens, 2007), prostate cancers (Tomlins, 2005), 

lung cancers (Soda et al., 2007), breast cancers (Guffanti et al., 2009) and so on 

(Berger et al., 2010; Frattini et al., 2013). 

 

Recent studies demonstrated that chimeric RNAs can be generated not only from 

the transcripts of fusion genes (Figure 1.6 a), but also trans splicing (Gingeras, 

2009; Li et al., 2009) and cis splicing (Zhang et al., 2012; Qin et al., 2015) (Figure 

1.6 b). Scientists showed that these chimeric RNAs could also be discovered 

from normal human cell lines (Qin et al., 2015) as well as tissues (Carrara et al., 

2013; Babiceanu et al., 2016) in addition to cancer cells. 

 

As described above, there are two types of chimeric RNA formations; DNA fusion 

transcribed chimeric RNAs, and RNA level fusion from trans/cis splicing. The 

same chimeric RNA could be generated from different mechanism in different 

cells or tissues. For example, previous studies show that JAZF1-JJAZ1 and 

PAX3-FOXO1 fusions were generated from chromosomal translocation (DNA-

level) in cancer but were generated from trans splicing (RNA-level) in normal 

cells (Li et al., 2008; Yuan et al., 2013). To understand the function of RNA level 
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fusion events, more study of mechanisms for RNA level chimeric events is 

required. 

 

Although there have been studies showing the function relevance of chimeric 

RNAs (Li et al., 2009), the exact function of chimeric RNAs in human cells and 

tissues remains unclear. Future studies are required for better understanding of 

the function of chimeric RNAs. 

 

RNA fusion detection methods 

With the development of next generation sequencing, scientists started to 

investigate the chimeric RNAs in both DNA and RNA sequencing data. The RNA 

level fusion events could only be discovered from RNA sequencing, while the 

expressed fusion genes could be identified from both DNA and RNA sequencing. 

All the chimeric RNA detection methods rely on seeking information for paired 

end reads mapped to two different genes or single end reads with two split parts 

mapped to two different genes (Table 1.5). 

 

However, there are still limitations for the detection of RNA fusion events. It was 

reported that only very few overlaps could be found among different fusion 

detection methods, representing high false positive rates and lack of validation of 

these methods (Liu et al., 2015; Kumar et al., 2016). Another limitation of all the 

existing fusion detection methods is reads from highly similar sequences, for 

example, paralogous genes, repetitive sequences are all filtered out for a better 
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accuracy of chimeric RNA identification. However, in our study in chapter 3, we 

demonstrated a new mechanism of the chimeric RNA formation between L1 and 

U6 sequences.  

 

RNU6 snRNA plays an important role in RNA splicing 

U6 snRNA is a key component of spliceosome. The spliceosome, an intricate 

machine responsible for RNA splicing, is composed of five ribonucleoprotein 

(RNP) subunits (U1, U2, U4, U5, U6 and their associated proteins), along with a 

host of associated protein co-factors (Jurica et al. 2003; Wahl et al. 2009; Will et 

al. 2010; Matera et al. 2014). Multiple evidence show that U6 snRNA plays a role 

in the catalytic center of the spliceosome (Didychuk et al. 2018). For example, 

crosslinking and genetics studies have showed that the strictly conserved 

“ACAGA-box” sequence of U6 snRNA pairs with the intron 5’ splice site in the 

active spliceosome (Sawa et al. 1992; Sontheimer et al. 1993). Furthermore, 

biochemical experiments have showed that U6 snRNA is responsible for 

coordinating with the magnesium ions required for splicing chemistry (Yean et al. 

2000; Fica et al. 2013). The fact that U6 sequence is highly conserved in 

evolution (Brow et al. 1988) also shows the critical role of U6 snRNAs. 

 

U6 snRNA undergoes multiple modifications after transcription that likely 

contributes to its function in the spliceosome (Table 3.1). Although various 

studies have identified different U6 snRNA modifications, the function and timing 

of the modifications are still unclear (Didychuk et al. 2018). Among the multiple 
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modifications on U6 snRNA, the major form of U6 snRNA in humans ends in a 

five base polyuridine [poly(U)] tract and a terminal 2',3'-cyclic phosphate group 

(Lund et al. 1992) (Table 3.1). The enzyme responsible for the formation of the 

terminal 2',3'-cyclic phosphate group is Usix biogenesis protein 1 (Usb1) 

(Mroczek et al. 2012; Shchepachev et al. 2012; Hilcenko et al. 2013). Mutations 

in Usb1 are associated with the disease poikiloderma with neutropenia in human 

(Mroczek et al. 2013). 

 

There are over 900 copies of U6 distributed in the human genome. Most of these 

900 copies are U6 pseudogenes that are not expressed (Doucet et al. 2015), 

however, there are still at least 4 copies of active identical U6’s in human 

genome (Domitrovich et al. 2003). The presence of multiple active copies of U6 

of varying transcriptional activities in human genome has complicated the studies 

of each individual copy of U6. The different modification, function and localization 

for different copies of U6 in human genome remain unclear (Didychuk et al. 

2018).  

 

Long INterspersed Element-1 (LINE-1 or L1) is a critical component of human 

genome 

Long INterspersed Element-1 (LINE-1 or L1) and L1-derived sequences account 

for ~17% of human genomic DNA (Lander et al. 2001). L1 is the only known 

human autonomous non-Long Terminal Repeat (non-LTR) retrotransposon, 

which means that L1 can move its own sequence around in genome. L1 ‘jumps’ 
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in the genome through a ‘copy and paste’ mechanism termed retrotransposition. 

Most of the L1-derived sequences in the genome cannot move to new genomic 

locations because of 5’-trunction, insertions and/or deletions (indels) or single 

nucleotide variations in the sequences (Grimaldi et al, 1983; Scott et al. 1987; 

Lander et al., 2001). Among all L1-derived sequences in human genome, there is 

~80-100 retrotransposition-competent L1’s present in an average human genome 

(Sassaman et al. 1997; Brouha et al. 2003; Beck et al. 2010).  

 

As the only self-autonomous transposable element in human genome, the 

mobilization of L1 and L1 mediated mobile elements is a driving force in the 

dynamic nature of the human genome in evolution. The diversity of L1 insertions 

has also created extensive diversity in different individuals and populations 

(Ewing et al. 2010; Huang et al. 2010). The insertion of L1’s could also lead to 

various diseases. To date, scientists have identified over 130 diseases related to 

the pathogenic retrotransposition events mediated by L1 (Hancks et al. 2011; 

Kazazian and Moran, 2017). Germline and somatic L1 insertions gained during 

development is a mutagenesis highly correlated with various diseases, including 

neurological diseases (Richardson et al. 2014) and various cancers (Iskow et al. 

2010; Burns et al. 2017; Scott et al. 2017). 

 

Full length L1s are ~6000 base pairs long, containing a 5’UTR, two open reading 

frames (ORF1, ORF2) separated by a 63-base inter-ORF spacer, and a 3’UTR 

with a polyadenosine-rich (poly(A)) tract (Scott et al. 1987; Dombroski et al. 
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1991). The full length L1 with all elements above is required for efficient L1 

retrotransposition (Feng et al. 1996; Moran et al. 1996; Doucet et al. 2015). 

Human L1 ORF1 encodes a ~40kDa RNA binding protein (ORFp1). ORFp1 is a 

nucleic acid binding protein and also has nucleic acid chaperone activity (Hohjoh 

et al, 1996; Moran et al., 1996; Kolosha et al, 1997; Martin and Bushman, 2001; 

Basame et al., 2006; Januszyk et al., 2007; Khazina et al, 2009). Human L1 

ORF2 encodes a ~150kDa protein (ORFp2) (Ergun et al., 2004; Doucet et al., 

2010). ORFp2 contains enzymatic activities responsible for both endonuclease 

(EN) and reverse transcription (RT) (Feng et al., 1996; Mathias et al., 1991).  

 

U6/L1 chimeric sequences are present in the human genome 

L1-encoded proteins can mobilize other RNAs (for example, Short INterspersed 

Element (SINE) (Dewannieux et al., 2003; Hancks et al., 2011; Raiz et al., 2011), 

non-coding RNAs (Buzdin et al., 2003; Buzdin et al., 2002; Garcia-Perez et al., 

2007; Gilbert et al., 2005) and messenger RNAs (Esnault et al., 2000; Wei et al., 

2001) in the human genome. Previous studies suggest that ~35% of full length 

U6’s in genome are chimeric sequences with L1’s among the 161 full length U6 

pseudogenes in human genome (Buzdin et al. 2003). The mechanism of the 

formation of U6/L1 chimeric sequences in the genome, however, remains unclear. 

 

Although RNA-sequencing has been well developed for years, the computational 

analysis for discovery of chimeric sequences between repetitive elements is 

lacking. RNA fusion detection methods, like STAR fusion (Haas et al. 2017) or 
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Tophat-Fusion (Kim et al. 2011), were designed for detection of fusion genes in 

RNA-seq data. However, repetitive sequences like L1 or U6 are excluded from 

the analysis for existing methods because of the low mapping quality for reads 

mapped to multiple places in reference sequence.  

 

In chapter 3 of my thesis, I have developed a computational method to identify 

supportive reads for U6/L1 chimeric transcripts as well as for U6 and all other 

RNA chimeric transcripts. The supportive reads we identified from RNA 

sequencing data provided evidence for the mechanism of formation of U6/L1 

pseudogenes in the human genome. 

 

RNA sequencing and single cell RNA sequencing 

DNA transcription and RNA modifications 

In cells, the information goes from DNA transcribes to RNA then translated to 

protein (Figure 1.7) (CRICK, 1970). RNA, which serves as the bridge between 

DNA and protein, undergoes tremendous regulation and modification in every 

single cell (Gilbert, 1986). Thus, understanding the dynamics and modification of 

human transcriptome is important. 

 

RNA includes multiple different categories, including messenger RNA, transfer 

RNA, ribosomal RNA and so on (Clancy, 2008). Messenger RNA (mRNA) carries 

the information of the protein. mRNA, as a bridge between DNA and protein, 

plays a critical role in cells. Previous studies demonstrated that mRNA 
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undergoes various modifications after transcribed from DNA (Gilbert, Bell and 

Schaening, 2016). Among these modifications, RNA splicing, which allows the 

same DNA sequence to generate different RNA sequences, is a regulator of 

development and tissue identity (Baralle and Giudice, 2017). 

 

RNA sequencing quantification methods 

With the development of next generation sequencing, we could now quantify the 

dynamics of isoform expression in different tissues and in different single cells. 

Multiple isoform quantification tools have been developed over the past decades 

using next generation sequencing data. There are two major kinds of methods: 

alignment-based methods and alignment-free methods (Chandramohan et al., 

2013; Teng et al., 2016). For alignment-based methods, reads from RNA 

sequencing were aligned to a reference genome or transcriptome first. Then the 

tools will quantify the isoform expression based on the number of reads mapped 

to each isoform. For alignment-free methods, kmer searching was performed 

instead of read alignment. These methods seek kmers with certain length from 

the reads in the reference. With matched reference found, a pseudo-alignment 

process would be performed to identify if the reads mapped to the isoform/contig. 

The read count is then utilized to calculate the isoform expression as the 

alignment-based methods. 

 

There are both advantages and disadvantages for both types of methods. 

Alignment-based methods are more accurate since accurate alignment is 
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performed, which could exclude any artifacts from small sequencing errors, 

SNPs or indels. However, since these methods need to perform alignment before 

isoform quantification, the run time for these methods are much longer compared 

to alignment-free methods. Alignment-free methods skipped the alignment step, 

which significantly improves the speed of algorithms. However, since only exact 

kmer searching was performed, the performance for alignment-free methods is 

not as accurate as alignment-based methods. 

 

In chapter 4, we developed an isoform quantification tool, Seekmer, which 

combines the characters of alignment-based methods and alignment-free 

methods. We were able to fill the gap between alignment-based and alignment-

free methods in accuracy without too much sacrifice on run time. 

 

Single cell RNA sequencing quantification methods 

Bulk RNA sequencing is only able to assess the gene expression and isoform 

dynamics in a population of cells. With the development of single cell sequencing 

technologies, we now could investigate the cell-to-cell isoform profile difference 

among different single cells. Although experimental methods for scRNA-seq have 

been developed well to capture the dynamic of each single cell transcriptome, 

the bioinformatics tools for analyzing scRNA-seq data remains limited and 

undeveloped (Hwang, Lee and Bang, 2018). The random dropout of many genes 

(Wagner, Regev and Yosef, 2016) and biased amplification of certain genes 

(Bacher and Kendziorski, 2016) (Table 1.2) are the two major challenges for 
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most of scRNA-seq analysis tools. With relatively small amount if reads in 

scRNA-seq data compared to bulk RNA-seq data, the normalization models 

applied to bulk RNA-seq data does not perform well in scRNA-seq. 

 

In chapter 4, we further developed Seekmer with an imputation function to obtain 

information from cells with similar expression profiles to better quantify the 

isoform expression in single cells. 
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Figure 1.1: Illumina sequencing technology.  
Illumina NGS include 3 steps:  
(a) Library preparation: NGS library is prepared by fragmenting a gDNA sample 
and ligation specialized adapters to both fragment ends. 
(b) Cluster amplification: Library is loaded to a flow cell and the fragments are 
hybridized to the flow cell surface. Each bound fragment is amplified into a clonal 
cluster through bridge amplification. 
(c) Sequencing: Sequencing reagents, including fluorescently labeled 
nucleotides, are added and the first base is incorporated. The flow cell is imaged 
and the emission from each cluster is recorded. The emission wavelength and 
intensity are used to identify the base. This cycle is repeated “n” times to create a 
read length of “n” bases. 
 
*Adapted from: Illumina.com. (2019). [online] Available at: 
https://www.illumina.com/documents/products/illumina_sequencing_introduction.
pdf [Accessed 24 Apr. 2019]. 
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Figure 1.2: Schematic illustration of 10X barcoding work flow. 
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Figure 1.3: Schematic illustrations of somatic mutations in human cells and 
development. 
a) Germline mutation from mother’s side. Mutation in all cells in the body. 
b) Germline mutation from father’s side. Mutation in all cells in the body. 
c) Somatic mutation happened early in development. Mutation in half of multiple 
tissues. 
d) Somatic mutation happened late in development. Mutation in half of one 
tissue. 
 
*Adapted from: Poduri, A., Evrony, G., Cai, X. and Walsh, C. (2013). Somatic 
Mutation, Genomic Variation, and Neurological Disease. Science, 341(6141), 
p.1237758. 
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Figure 1.4: Clonal expansion in tumor cells. 
*Adapted from: Greaves, M. and Maley, C. (2012). Clonal evolution in cancer. 
Nature, 481(7381), pp.306-313. 
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Figure 1.5: Cortical development—origins of pyramidal neurons and 
astrocytes in the cerebral cortex. 
(A) A neuroepithelial cell (red) at the ventricular zone serves as progenitor for 
both a pyramidal neuron (green-blue) as well as a radial glial cell (gold). (B) A 
newly differentiated neuron (blue) migrates along a radial glial process. (C) 
Neurons (blue) continue to migrate as intermediate progenitor cells (small yellow) 
form. (D) Intermediate progenitor cells begin to generate neurons (blue). (E) The 
progenitor cells in the ventricular zone begin to give rise to astrocytes (dark 
green). Interneurons (purple) generated elsewhere migrate tangentially. CP, 
cortical plate; IZ, intermediate zone; VZ, ventricular zone. The VZ early in 
development has a thickness of ~10 cell bodies (50 to 100 μm). The CP ranges 
in thickness from two to three cell bodies at the earliest stages of development, 
eventually forming a mature cerebral cortex that is 2 to 4 mm thick. 
 
 
*Reprinted by permission from American Association for the Advancement of 
Science: Science. (Poduri, A., Evrony, G., Cai, X. and Walsh, C. (2013). Somatic 
Mutation, Genomic Variation, and Neurological Disease. Science, 341(6141), 
p.1237758.), copyright 2013.  
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Figure 1.6: Chimeric RNA formation mechanisms. 
a) RNA fusions formed at DNA level. At DNA level, fusions form by ‘unbalanced’ 
or ‘balanced’ chromosome rearrangements. 
b) RNA fusions formed at RNA level. At RNA level, fusions form by either cis or 
trans splicing in neighboring genes. 
 
*Adapted from Kumar, S., Razzaq, S., Vo, A., Gautam, M. and Li, H. (2016). 
Identifying fusion transcripts using next generation sequencing. Wiley 
Interdisciplinary Reviews: RNA, 7(6), pp.811-823. 
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Figure 1.7: Central dogma of information flow in biological systems. 
 
*Adapted from CRICK, F. (1970). Central Dogma of Molecular Biology. Nature, 
227(5258), pp.561-563. 
  

	



	
	

38	

Table 1.1 Advantages and disadvantages of common single-cell isolation 
methods 

Method 
Unbiased 

(randomized) 
or biased 
(targeted) 

Throughput Cost 
Manual or 
automatic 

isolation process 
Refs 

Micromanipulation Unbiased Low-throughput Low Mainly manually 

Kurimoto et al., 2007; 
Choi et al., 2010; 

Reizel et al., 2011; 
Shlush et al., 2012; 
Zong et al., 2012 

Fluorescence-
activated cell 

sorting 

Either biased 
or unbiased High- throughput  High Automatic Dalerba et al., 2011 

Laser-capture 
microdissection Unbiased Low- throughput High Manually 

Bhattacherjee et al., 
2004; Frumkin et al., 
2008; Yachida et al., 

2010 

Microfluidics Unbiased High- throughput High Automatic 

Fan et al., 2010; 
White et al., 2011; 

Lecault et al., 2012; 
Wang et al., 2012 

 
Adapted from: Shapiro, E., Biezuner, T. and Linnarsson, S. (2013). Single-cell 
sequencing-based technologies will revolutionize whole-organism science. 
Nature Reviews Genetics, 14(9), pp.618-630.  
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 . 

Table 1.2 Features of different single cell amplification methods 
 PCR-based 

(DOP-PCR) Isothermal (MDA) Hybrid (MALBAC or 
PicoPLEX) 

False-negative rate 
(coverage and allelic dropout) High Low Intermediate 

Non-uniformity Low High Low 
False-positive rate (amplicon 

error rate) High Low Intermediate 

 
Adapted from: Gawad, C., Koh, W. and Quake, S. (2016). Single-cell genome 
sequencing: current state of the science. Nature Reviews Genetics, 17(3), 
pp.175-188. 
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 Table 1.3 Comparison of scRNA-seq library preparation methods 
Platform Smart-seq MARS-seq CEL-seq Drop-seq 
Region Full-length 3’ end 3’ end 3’ end 

Target read 
depth (per 

cell) 
106 104-105 104-105 104-105 

UMI None Yes Yes Yes 
Amplification PCR IVT IVT PCR 

Feature Isoform 
analysis 

FACS sorting 
Multiplex 
barcoding 

Linear 
amplification 

Emulsion low 
cost 

Adapted from: Hwang, B., Lee, J. and Bang, D. (2018). Single-cell RNA 
sequencing technologies and bioinformatics pipelines. Experimental & Molecular 
Medicine, 50(8). 
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Table 1.4 Tumor-normal somatic SNV identification tools. 
Variant caller Type of variant 

Single-
sample 
mode 

Type of core algorithm 

BAYSIC (Cantarel et al., 2014) SNV No Machine learning 

CaVEMan (Jones et al., 2016) SNV No Joint genotype analysis 

deepSNV (Gerstung et al., 2012) SNV No Allele frequency analysis 

EBCall (Shiraishi et al., 2013) SNV, indel No Allele frequency analysis 

FaSD-somatic (Wang et al., 2014) SNV Yes Joint genotype analysis 

FreeBayes (Garrison and Marth, 2012.) SNV, indel Yes Haplotype analysis 

HapMuC (Usuyama et al., 2014) SNV, indel Yes Haplotype analysis 

JointSNVMix2	(Roth et al., 2012) SNV No Joint genotype analysis 

LocHap (Sengupta et al., 2015) SNV, indel No Haplotype analysis 

LoFreq (Wilm et al., 2012) SNV, indel Yes Allele frequency analysis 

LoLoPicker (Carrot-Zhang and Majewski, 2017) SNV No Allele frequency analysis 

MutationSeq (Ding et al., 2011) SNV No Machine learning 

MuSE (Fan et al., 2016) SNV No Markov chain model 

Mutect (Cibulskis et al., 2013) SNV Yes Allele frequency analysis 

SAMtools (Li, 2011) SNV, indel Yes Joint genotype analysis 

Platypus (Rimmer et al., 2014) SNV, indel, SV Yes Haplotype analysis 

qSNP (Kassahn et al., 2013) SNV No Heuristic threshold 

RADIA (Radenbaugh et al., 2014) SNV No Heuristic threshold 

Seurat (Christoforides et al., 2013) SNV, indel, SV No Joint genotype analysis 

Shimmer (Hansen et al., 2013) SNV, indel No Heuristic threshold 

SNooper (Spinella et al., 2016) SNV, indel Yes Machine learning 

SNVSniffer (Liu et al., 2016) SNV, indel Yes Joint genotype analysis 

SOAPsnv (SOAPsnv) SNV No Heuristic threshold 

SomaticSeq	(Fang et al., 2015) SNV No Machine learning 

SomaticSniper (Larson et al., 2011) SNV No Joint genotype analysis 

Strelka (Saunders et al., 2012) SNV, indel No Allele frequency analysis 

TVC (TVC) SNV, indel, SV Yes Ion Torrent specific 

VarDict (Lai et al., 2016) SNV, indel, SV Yes Heuristic threshold 

VarScan2 (Koboldt et al., 2012) SNV, indel Yes Heuristic threshold 

Virmid (Kim et al., 2013) SNV No Joint genotype analysis 

 

Adapted from: Xu, C. (2018). A review of somatic single nucleotide variant calling 
algorithms for next-generation sequencing data. Computational and Structural 
Biotechnology Journal, 16, pp.15-24. 
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Table 1.5 Features of RNA fusion detection tools 

Tools 
Anchor 
Length 
Filter 

Read 
Through 

transcript 
filter 

Supporte
d reads 

filter 

PCR 
artifact 

filter 
Homology 
based filter Alignment tool 

Bellerophontes N Y Y Y Y TopHat 

BreakFusion N N N N N BWA/BLAT 

ChimeraScan 10 Y 4 N N Bowtie/BWA 

EricScript N Y 3/1 Y Y BWA/BLAT 

FusionAnalyser Y Y Y N Y BWA 

FusionCatcher 10 Y 3/1 N Y Bowtie/STAR/BLAT/Bowtie2 

FusionFinder N Y N N Y Bowtie 

FusionHunter 10 Y 3/1 Y Y Bowtie 

FusionMap Y Y Y Y Y GSNAP 

FusionQ 10 N 3/1 N Y Bowtie 

FusionSeq N Y Y Y Y ELAND 

JAFFA N Y 3/1 N Y Bowtie/BLAT 

MapSplice N N N N N Bowtie 

deFuse 10 Y 3/1 N Y Bowtie/BLAT 

SOAPFuse 10 N 3/1 N N Soap2/BWA/BLAT 

TopHat-Fusion 10 Y 3/1 N Y Bowtie 

PRADA N N N N N BWA/BLAST 

ShortFuse N N Y N N Bowtie 

SnowShoes-FTD N Y 2/N Y Y Bowtie/BWA 

 
Adapted from: Kumar, S., Razzaq, S., Vo, A., Gautam, M. and Li, H. (2016). 
Identifying fusion transcripts using next generation sequencing. Wiley 
Interdisciplinary Reviews: RNA, 7(6), pp.811-823.
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Chapter 2 Somatic Single Nucleotide Variants Identification in 
Non-Tumor Samples 

 

This chapter presents a major portion of the computational analysis conducted as 

part of the Brain Somatic Mosaicism Network common experiment to determine 

an accurate and scalable method for identifying somatic SNVs from non-tumor 

tissues. I performed the analysis on all Michigan SNV identification as well as 

validation data analysis from all 5 different institutes, and I had a large 

contribution to the overall determination and application of the final best practice 

methodology. 

 

Introduction 

Mechanisms of somatic single nucleotide variations 

The human body reaches a steady state of ~1014 cells in adulthood (McConnell 

et al. 2017). During cell division and growth in later development stages, the 

failure of repair DNA damage during replication, transcription and cellular 

metabolism (Leibeling, Laspe and Emmert, 2006; WILSONIII and BOHR, 2007; 

Kanaar, Wyman and Rothstein, 2008) leads to diverse variation within the 

genomes of individual cells in a monozygotic individual.  
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In particular, the human neuronal population has an extraordinary diversity 

compared to other cell types (Muotri and Gage, 2006). The adult human brain 

contains 86 billion neurons (Azevedo et al., 2009; Herculano-Houzel, 2009) 

derived from neural stem cells and progenitor cells (NPCs). The tens of billions of 

cell divisions needed for the generation of neurons have potentially accumulated 

various somatic mutations in different cell lineages. Furthermore, as one of the 

longest-living cell types in human body, somatic mutations accumulated in NPCs 

as well as post-mitotic neurons can have a dramatic effect on neuronal 

development and function (Muotri and Gage, 2006; Bushman and Chun, 2013).  

 

Previous studies have showed that multiple neurological diseases are associated 

with somatic variations in neuronal cell. The level of mosaicism of PIK3R2 gene 

is correlated with developmental brain disorders ranging from BPP (Bilateral 

perisylvian polymicrogyria) with a normal head size to the MPPH 

(Megalencephaly-Polymicrogyria-Polydactyly-Hydrocephalus) syndrome (Rivière 

et al., 2012; Mirzaa et al., 2015; Mirzaa et al., 2016). Scientists discovered that a 

somatic activating mutation in GNAQ is related with Sturge-Weber syndrome and 

port-wine stains from whole genome sequencing data of 97 individuals (Shirley et 

al., 2013). Previous studies also showed that somatic mutations in GNAQ in cells 

of a later development stage are correlated with uveal melanoma and blue nevi 

(Van Raamsdonk et al., 2008). There are also heritable neurological diseases 

where germline mutations exhibit a milder phenotype when somatic mutations 

occur in the same gene. For example, somatic mutations in LIS1 or DCX genes 
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can lead to gross disruptions of neuronal migration, whereas germline mutations 

in LIS1 or DCX result in lissencephaly (Gleeson 2000; Sicca et al., 2003).  

 

Methods to detect somatic single nucleotide variations 

Like brain tissue, somatic SNVs in normal tissue have a much lower candidate 

allele frequency compared to the typical mutational burden found in tumor 

samples (Lee. 2016). Thus, it is important to balance the sensitivity and accuracy 

of the methods applied for SNV identification in non-tumor tissues. To discover 

low allele frequency somatic SNVs in non-tumor tissues, both high depth whole 

genome/exome sequencing with different platforms and single-cell sequencing 

data have been suggested as potential technologies (McConnell et al. 2017). 

 

For high coverage whole genome/exome sequencing, traditional Sanger 

sequencing could not be applied because the cost for Sanger sequencing is 

extremely high for high coverage over the genome (Genome.gov, 2019) and it 

could not detect mosaic SNVs with less than 17% candidate allele frequency 

(Jamuar et al., 2014). Previous studies showed that a read depth >1000X could 

detect a somatic SNV site with allele frequency of 1% with >90% probability 

(Shirley et al., 2013) with Illumina whole genome sequencing. However, 

amplification bias and certain artifacts in different methods could still bring false 

positives to the discovery. 
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Most of the existing computational methods for somatic SNV detection were 

developed for cancer genomics, for example, MuTect (Cibulskis et al. 2013), 

Strelka (Saunders et al. 2012), and VarScan	 (Koboldt et al., 2009). Previous 

studies have reported somatic SNVs with 1%-10% candidate allele frequency in 

paired intractable focal epilepsy brain and blood samples (Lim et al., 2015; 

Nakashima et al., 2015). However, since these methods were all designed for 

cancer somatic SNV identification, the sensitivity of these methods significantly 

drops when the candidate allele frequency is less than 8%. 

 

Validation of somatic mutations 

There are three common validation methods that are used to validate somatic 

SNVs: targeted DNA capture followed by high coverage sequencing, high 

coverage amplicon sequencing, and droplet digital PCR (ddPCR) (McConnell et 

al. 2017). Targeted DNA capture followed by sequencing with higher than 100X 

sequencing depth can validate somatic SNVs that are present in ~1% of the cells. 

High coverage amplicon sequencing with sequencing depth larger than 1000X 

could further validate somatic SNVs present in ~0.1% of the cells. Droplet digital 

PCR (ddPCR) has the potential to reach the highest sensitivity for validation of 

somatic SNVs (Hindson et al., 2011) by partitioning a DNA sample into large 

numbers of individual droplets containing one copy of template DNA but is also 

the most labor intensive. Thus, when we need to validate hundreds of somatic 

SNVs, ddPCR is not as realistic as amplicon sequencing. However, for sites that 

are difficult to validate with amplicon sequencing data, for example, similar 
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amplification bias in both original WGS sequencing and amplicon sequencing, we 

then can apply ddPCR for a more accurate validation. 

 

Schizophrenia and somatic SNVs 

Genetics constitutes a crucial risk factor for Schizophrenia. Family studies have 

demonstrated a higher rate of schizophrenia in relatives with schizophrenia 

compared to the general population (Kendler and Zerbin-Rüdin, 1996; Schulz, 

1933). Multiple large-scale studies have identified several common or rare de 

novo genetic variations associated with schizophrenia phenotypes and have 

proposed several candidate genes as potentially involved with its pathogenicity 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014; 

Fromer et al., 2014; Cai et al., 2015). However, these genes are not sufficient to 

explain the majority of sporadic schizophrenia cases (Lee, 2016). Existing 

genetics experiments, including linkage analysis, GWAS, and next generation 

sequencing have demonstrated that schizophrenia is a very complex, 

heterogeneous, and polygenic disease (Meehl, 1962;	 Badner and Gershon, 2002; 

Lewis et al., 2003; Ng et al., 2008; Purcell et al., 2009; Genome-wide association 

study identifies five new schizophrenia loci, 2011). Given that previous 

schizophrenic analysis has primarily focused on searching for germline SNVs 

from blood samples and exploring the influence of somatic SNVs to neurological 

diseases, our goal is to explore the possible somatic SNVs related to 

schizophrenia (Insel, 2013). 

 



	
	

73	

Method and Materials 

Common experiment and schizophrenic brain samples and cell culture 

Pulverized, frozen brain tissue and dural fibroblasts (FIBRO) from a deceased, 

male individual (5154) without known mental health disease were received from 

Lieber Brain Institute (Baltimore, MD) along with pulverized, frozen dorsolateral 

prefrontal cortex (DLPFC) and hippocampus (HIPPO) tissue from 42 deceased, 

male individuals, 21 diagnosed with schizophrenia and 21 without known mental 

health disease. Samples from individuals with schizophrenia were paired with 

samples from individuals without mental health disease based on age and 

ethnicity to create 21 schizophrenia/control sample pairs. We also received dural 

fibroblasts (FIBRO) from 8 pairs that are a subset of the 21 pairs. 

 

Dural fibroblast were cultured in DMEM (Gibco/ Life Technologies) supplemented 

with 10% FBS (Gibco/ Life Technologies), 2% GlutaMAX (Gibco/ Life 

Technologies), and 1% Antibiotic, Antimycotic ((Gibco/ Life Technologies). Cells 

were cultured 3-10 weeks and passaged when they reached 85%-95% 

confluence. 

 

Common experiment and schizophrenic genomic DNA isolation and sequencing 

Genomic DNA (gDNA) was extracted from 5154 brain tissue, DFPLC and HIPPO 

from 10 pairs, and FIBRO from 5154 and 8 pairs using the MagAttract HMW 

DNA Kit (Qiagen, Germantown, MD).  
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Length of gDNA was determined by standard electrophoresis in 0.4% agarose or 

pulse field gel electrophoresis in 1% agarose and 0.5 x TBE for 16 hours at 6 

V/cm and 1200 angle with initial switch time 1 second and final switch time-6 

seconds. For 5154 brain gDNA, 5154 FIBRO, and DFPLC from 10 pairs, an 

aliquot containing 1-5 μg of gDNA from the elution with the longest gDNA was 

sent to HudsonAlpha Discovery (Huntsville, AL) for linked read sequencing using 

10x Genomics technology (Pleasanton, CA). Long Ranger v2.2 (10x Genomics) 

was used to align reads and then call and phase SNPs in order to obtain 

haplotype information for each read. 

 

Whole exome sequencing was done on all extracted gDNA. Duplicate libraries 

were made for each sample by shearing 75-200ng of gDNA to 350bp. Libraries 

were purified with 0.65x SPRIselect beads (Beckman Coulter), quantitated by 

Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific, Carlsbad, CA), a 50ng 

aliquot was removed, and the remaining 400-800ng was used for exome target 

enrichment. Target enrichment was done using SeqCap EZ Exome Probes v3.0 

(Roche Sequencing Solutions, Pleasanton, CA) according to manufacturer’s 

protocol with the exception of a 72-hour incubation for hybridization and 12-16 

cycles of post-capture LM-PCR to amplify captured DNA. Quantity was 

measured by Qubit™ dsDNA HS Assay Kit and target enrichment was 

determined by abundance of control targets in post capture libraries relative to 

these targets in pre capture libraries as outline in SeqCap_EZ_UGuide_v5.4 

(Roche Sequencing Solutions). 
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Common process of sequencing data to alignment files for the consortium 

We applied a common process pipeline to align and pre-process all the whole 

exome and whole genome sequencing raw data in fastq format. We utilized bwa 

v0.7.16a (Li and Durbin, 2009) for read alignment to human reference genome 

hg19. We then transferred sam files to bam files and merged output bam files 

from different lanes using sambamba v0.6.7 (Tarasov et al., 2015). Picard 

v2.12.1 (Broadinstitute.github.io, 2019) was applied to mark duplicates in the 

bam files. We applied GATK v3.7.0 (McKenna et al., 2010) to perform indel 

realignment and base recalibration to generate the bam file for downstream 

somatic SNV identification for all institutions. 

 

Mosaic SNV identification and filtering pipeline 

Candidate variants from paired brain and dural fibroblast samples were initially 

called with MuTect and Strelka with the default parameters. Concurrently, 

candidate variants from single (unpaired) brain samples were called with GATK 

Haplotype Caller with ploidy=5 parameter. Candidate mosaic SNV sites were 

then filtered out based on multiple quality filters. We first filtered out variants that 

overlapped with repetitive regions or low mappability regions, including regions 

covered by UCSC RepeatMasker simple repeats, Segmental Duplication, Simple 

Repeat tracks, regions not covered by 1000 Genome mappable segments as 

well as coverage not within +/- 3 standard deviations of mean coverage. We 

excluded common variants in gnomAD (Lek et al., 2016) with a population allele 
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frequency larger than 0.1%. During the process of counting alleles at candidate 

positions, reads with mapping quality lower than the 90 percentile of control sites 

(sites with high confidence), with more than 3% mismatches, as well as 

candidate site base quality lower than 20, were not considered. After counting for 

different alleles at candidate positions, sites with a candidate allele frequency 

larger than 0.01 in the control sample NA12878, from Genome in a Bottle Project 

(Genome in a bottle—a human DNA standard, 2015), were filtered out. We 

applied a Fisher Exact test to exclude the sites whose alternative alleles are 

enriched on one strand compared to the other. We then filtered out sites with a 

known indel in +/- 5 base pair region. Finally, we applied an allele frequency 

cutoff at 0.03 to exclude extremely low frequency events. 

 

After removing the low-quality sites, we applied a binomial test with false-

discovery protection using the Benjamini-Hochberg procedure (Freed et al., 

2016.) to filter out potential heterozygous germline sites. We also used the 

haplotype information from the 10X sequencing data from the common 

experiment brain to further filter out false positive sites (Figure 2.5 a). We further 

filtered out candidate site clusters within 100 base pair distance. 

 

Filtering false positive mosaic SNV sites using haplotype information 

We have filtered the false positive mosaic SNV sites by using haplotype 

information provided by 10X Genomics “linked-read” sequencing data. 10X 

Genomics “linked-read” sequencing data is a barcoded short read sequencing 
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method. Each longer DNA molecule (~50kb) will be attached to a different bead 

then form individual droplet. Inside each droplet, the long DNA fragments are 

fragmented into small pieces of DNA and then attached with the unique barcode 

within each droplet and then subsequently amplified. The DNA library then is 

sequenced using standard next generation sequencing methods, for example, 

Illumina sequencing. Using the short reads with the same barcodes from the 

same molecule, we then applied the LongRanger pipeline (10X Genomics, 

LongRanger. 2018) to align and call haplotypes using reconstructed long 

molecules as well as SNPs in the long molecules (Figure 2.5 a). 

 

There are two categories of false positive mosaic SNV sites that we could filter 

out using haplotype information. The first category is when the candidate allele is 

observed on both haplotypes. This indicates that the mosaic SNV discovered is 

likely a sequencing artifact because the mutation of a position in a diploid 

genome is highly unlikely to occur on both of the chromosomes at the same 

position. The second category is when a candidate allele represents the vast 

majority of the observed alleles within a haplotype (>90%). In this case, this SNV 

is more likely germline SNV rather than a mosaic SNV because a mosaic event 

is not expected to take over all cells for one chromosome (Figure 2.5 b).  

 

Amplicon validation of mosaic SNVs data generation 

Putative mosaic SNVs were validated by high throughput sequencing of 

amplicons that contain the SNV and then calculating relative abundance of reads 
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containing the alternate allele. Primers were designed using Primer 3 software 

(http://bioinfo.ut.ee/primer3-0.4.0/) with 300-400bp of genomic sequencing 

surrounding the SNV as the input. Since the read length of the amplification 

product is 300bp, we were able to gain an overlapped region between the paired 

reads. With the overlapped regions containing the somatic SNV candidates, we 

were able to sequence each candidate site twice and increase the accuracy of 

sequencing result by excluding reads with non-concordant bases from the pair 

ended reads at the candidate SNV positions. If possible, SNPs known to be 

heterozygous in our samples were included in the genomic sequence used as 

input. Primers were tested in silico (Kent et al.) to confirm they uniquely target the 

correct region of the genome. Phusion® High-Fidelity DNA Polymerase (New 

England Biolabs) was used according to manufacturer’s instructions for 

amplification and primers were cycled under varying conditions to determine 

optimal PCR mix and annealing temperature. To generate amplicons for 

sequencing, either NA12878 or gDNA from 5154 brain tissue was used as 

template. PCR product was purified with 0.7x SPRIselect beads (Beckman 

Coulter) and 10% of product was visualized on agarose gel to confirm only one 

amplicon the correct size was present. If the size is the same as the primer 

designed in the electrophoresis gel, we then performed MiSeq to sequence the 

targeted amplified genetic fragment. If the size is incorrect, we designed a 

second batch of primers to obtain unique amplification. If none of the primers 

worked, the candidate was flagged with ‘primer not designed’. (Figure 2.8 a) 

Protocols and reagents from NEBNext® Ultra™ DNA Library Prep Kit for 
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Illumina® (New England Biolabs) were used for end repair, dA-tailing, and to 

ligate NextFlex adapters (Perkin Elmer, Waltham, MA) onto amplicons. After 

ligation, reactions were purified with 0.7x SPRIselect beads (Beckman Coulter) 

and PCR enrichment of adapter-ligated DNA was done for 10 cycles using 

NEBNext® Ultra™ DNA Library Prep Kit (New England Biolabs). Amplified 

libraries were purified with 0.7x SPRIselect beads and sequenced with MiSeq 

Reagent Kit v3, 600 cycle PE on MiSeq sequencer (Illumina, San Diego, CA). 

  

In the validation experiment, we have also applied our validation pipeline to 

amplicon sequencing data generated by other four institutions. Two of the four 

institutions applied a similar amplicon sequencing method as ours, except that 

instead of running electrophoresis gel to ensure the size of the amplicon, they 

designed the primers, amplified the targeted regions, then directly sent the 

amplification material for sequencing without a further quality check of the DNA 

material. Although the amplicon sequencing data generated this way is of lesser 

quality as the data generated by our approach, it still represents a high coverage 

data set covering candidate mosaic SNV sites for a valid validation. There is one 

institution which also applied amplicon sequencing as the previous two but only 

generated single ended sequencing data. The last institution applied ion torrent 

sequencing with amplified targeted regions containing mosaic SNV sites for 

validation instead of amplicon sequencing. 

 

Amplicon sequencing data analysis pipeline 
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After performing MiSeq, pair-ended sequencing data was assembled into to a 

single read by using PEAR (Zhang et al., 2013.). The assembly of pair ended 

reads with overlap can increase the accuracy by sequencing the candidate 

position twice, and only when the bases at the candidate positions are 

concordant between the paired reads, the reads were counted in the following 

steps for further filtering. When the paired-end reads of a single fragment are 

combined, the non-concordant bases between the two reads are set to N with a 

base quality of 0. We then applied bwa mem (Li et al., 2009.) for read alignment 

to hg19, followed by application of the Genome Analysis Toolkit (McKenna et al., 

2010.) for indel realignment (Figure 2.4 a).  

 

After this pre-processing, we applied a series of filters to evaluate the mosaic 

SNVs (Figure 2.4 b). A lower limit of 200 reads covering the candidate position 

was established as a minimum requirement; sites with less than 200 reads 

covering in the amplicon sequencing were marked as ‘read not enough’ since the 

data is too sparse to make any conclusion at these sites. We then compared the 

candidate allele frequency of the brain sample to the candidate allele frequency 

of the negative control sample. Given the hypothesis that the same mosaic SNV 

event should not take place in two different individuals, we do not expect the 

candidate allele called from the brain sample to also be present in the negative 

control sample. By applying both a hard cutoff on the candidate allele frequency 

for NA12878 and a skellam test comparing the candidate allele frequency of the 
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two samples, we exclude possible false positive candidates caused by biased 

sequencing error in certain genomic context.  

Skellam test: 

𝑝(𝑘; 𝜇&; 𝜇') = Pr{𝐾 = 𝑘} = 𝑒0(12314) 5
𝜇&
𝜇'
6
7
'
𝐼𝑘(2:𝜇&𝜇') 

where μ1 is the coverage of brain sample at candidate position; μ2 is the 

coverage of NA12878 at candidate position; k is the difference between the 

alternative counts of brain and NA12878. 

 

We also established an empirical error model to exclude the biased sequencing 

error because of the artifacts by DNA amplification, library preparation and 

sequencing processed. This error model was derived for different amplicon 

sequencing libraries by assessing the mismatch rate (second allele frequency) of 

the rest of positions in the overlapped region between the pair ended reads 

except for the candidate position (Figure 2.8 d). We then take the 95 percentile of 

mismatch rate distribution for each kind of base change as the cutoff for 

sequencing error for different kinds of base changes in for candidate positions. In 

addition, we also applied a candidate allele frequency filter at 0.4 to exclude 

possible germline SNVs. 

 

Results 

Mosaic SNVs identified by existing methods for cancer samples 

Previous study developed various methods to identify mosaic SNVs in tumor 

compared to normal samples. We thus initially applied MuTect (Cibulskis et al., 



	
	

82	

2013), Strelka (Saunders et al., 2012) with default parameters and GATK 

(McKenna et al., 2010) with ploidy 5 to discover mosaic SNVs in pulverized brain 

tissue compared to dural fibroblast tissue from the same individual using the 

exome captured sequencing data. The coverage of our exome-captured 

sequencing data was ~250X (Figure 2.1 b). In total, the three methods 

discovered 249,030 mosaic SNVs across the exome, with only 5 overlapping 

sites among the three methods. We further filtered this candidate site list down 

by limiting the mosaic SNV candidates to sites only inside the exome capture 

targeted regions. This results in 23,215 mosaic SNV candidates combining all 

three existing methods, however, there was no overlap among the three methods. 

This lack of agreement among the three different methods within the targeted 

regions indicates a lack of specificity of the methods when identifying somatic 

SNVs in non-tumor normal tissues (Figure 2.2 a).  

 

Mosaic SNVs identified by new mosaic SNV identification methods 

We next applied our mosaic SNV identification and filtering pipeline to the whole 

exome and whole genome data generated by other institutes using the same 

pulverized brain tissue. In total, we identified 1148 mosaic SNV sites from 8 pairs 

of brain-fibroblast WGS data and 2 pairs of brain-fibroblast WES data (Figure 2.6 

b) with different coverage and library preparation techniques (Table 2.1) using 

our filtering method (Figure 2.4). The candidate allele frequency for the sites 

identified was primarily less than 0.05 (Figure 2.6 a). 43 discovered mosaic SNV 
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sites takes place in more than 10% of the cells, among which 8 sites are present 

in more than 20% of brain cells.  

 

Among the 1148 mosaic SNV sites, 36% of the sites were cytosine (C) to 

adenine (A) changes, 26% are adenine (A) to thymine (T) changes, and cytosine 

(C) to guanine (G) takes the least percent of the whole set (Figure 2.6 b). We 

also observed that base changes in the middle of tri-nucleotide with the same 

three bases were a frequent occurrence across all mosaic sites discovered 

(Figure 2.6 c). These sites in the middle of a homopolymer region are more 

susceptible to DNA mutations (Denver et al. 2005). However, they are also 

enriched in sequencing error prone regions. Because of the amplification nature 

of the sequencing methods, these possible sequencing artifacts inside the 

homopolymer regions are difficult to distinguish from the true mosaic SNV events. 

 

We then compared the mosaic SNVs identified from the different aliquots of the 

same brain sample in all four WGS datasets. Only 4 out of 1148 sites were 

discovered from all 4 datasets. The two datasets with the highest coverage 

(Table 2.1) have the most overlapped sites between each other. However, the 

set with the lowest coverage reported the highest number of mosaic SNVs 

(n=455). We then inspected the candidate allele count of the mosaic SNVs 

(Figure 2.6 e). For the two WGS datasets with lower coverage, the candidate 

allele counts are mostly less than 5 reads. Compared to the two samples with 

lower coverage, the candidate allele counts for the candidate sites called from 
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the two higher coverage samples are much higher. This shows the low specificity 

of both identification methods and filtering pipeline when the sequencing data 

coverage is low. 

 

Comparison of mosaic SNVs identified by other different filtering pipelines 

There are in total six groups which have made mosaic SNV identification using 

the same bam files from the common processing pipeline (See Methods). We 

performed a similar analysis of base changes and genomic context of mosaic 

SNV candidates by using the candidates from all six groups. The result shows 

that all pipeline have a similar bias towards the homopolymer regions as well as 

the cytosine (C) to adenine (A) and adenine (A) to thymine (T) changes (Figure 

2.7 a, b). There is limited overlap among the mosaic SNV calls from different 

groups using different identification and filtering strategies. Only three sites 

overlap were identified by five groups, and in total 10 sites in common for four 

groups among the 1298 mosaic SNV candidates identified in total by all six 

groups. With different sensitivity and accuracy trade-off and different number of 

libraries used, different pipelines had dramatic different call sets of mosaic SNVs 

for the same sample (Figure 2.7 c).  

 

Selection of Mosaic SNV sites for Validation experiment 

We collectively decided to select 400 / 1298 sites for validation by splitting all 

sites into 4 categories (Table 2.2). They are absolute singletons, data source 

singletons, approach singletons and multi-calls. Absolute singletons were defined 
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when the mosaic SNVs were identified by only one method and have supportive 

evidence from only one sequencing library among the six. The supportive 

evidence was measured by the candidate allele count in each library. If there was 

one high quality read supporting this mosaic SNV site in a library, we could 

define it as with supportive evidence from this library. Then data source 

singletons were sites discovered by multiple methods, but only supported by one 

sequencing library. Approach singletons are then the sites identified by only one 

approach but have supportive evidence from multiple data sources. Multi-calls 

are the sites identified by multiple approaches with supportive evidence from 

multiple data sources. In total, all six approaches identified 1298 sites, among 

which 45 sites were multi-calls (Table 2.3). These calls are either true positives 

or artifacts that none of the approaches were able to exclude.  

 

As our pipeline traded for better sensitivity over accuracy, this resulting in our 

having the most candidate mosaic SNVs compared to any other groups. Due to 

this and the limited number of validation experiment that could be carried out, we 

decided to include the 181 sites identified by all other five approaches and 

randomly select 219 sites from the 1114 unique sites identified by our method for 

validation. The 219 sites were selected based on the ratio of the four categories 

described above. 

 

Mosaic SNV validation result, manual inspection and best practice of mosaic 

SNV identification from non-tumor tissue 
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With 2 primary methods of validation (see Methods), we conducted validation 

experiments on the 400 sites with 100 sites distributed each institution, with 20 

sites from each cohort replicated by another group (Table 2.6). We filtered the 

400 sites based on the validation result using the pipeline we developed (see 

Methods). In total, we identified 86 true positive mosaic SNV candidates, among 

which 12 candidates were validated by two institutions. 19 candidates have non-

concordant decisions between the two validation institutes. We then manually 

inspected the true positive sites as well as the sites with non-concordant result 

from the validation data of two institutions. 

 

With the manual inspection of all PASS sites as well as the non-concordant sites, 

we identified 42 PASS sites as false positive because of candidates in 

homopolymer, structural variation, CNV, biased sequencing error or biased 

amplification of one haplotype (Figure 2.10; Figure 2.11; Figure 2.12; Figure 13), 

and we were able to rescue 1 non-concordant sites as PASS. There are 11 

candidate sites where we could not decide if they are true candidate or false 

positive sites. We have sent a subset of these sites for droplet digital PCR for 

further validation (Table 2.6). 

 

From the experience of validation result and manual inspection, we have 

analyzed the efficiency of different filters. We have summarized the best practice 

to discover somatic SNV sites from non-cancer tissues from both single sample 

and paired sample data (Figure 2.14).  
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Discussion 

We initially attempted to identify mosaic SNV in brain tissue compared to dural 

fibroblast tissue in our WES data using existing mosaic SNV identification tools, 

MuTect (Cibulskis et al., 2013), Strelka (Saunders et al., 2012) and GATK 

(McKenna et al., 2010) (ploidy=5). However, out result showed that the overlap 

among the three existing methods was only 5 sites which were removed after 

only considering regions targeted by the whole exome capturing kit. Given the 

non-concordance of the three existing methods, we concluded that existing 

mosaic SNV identification tools designed for cancer tissues do not fit the purpose 

of identifying somatic SNVs in non-cancer tissues, i.e. brain tissue and 

developed our own approach. 

 

We applied our filters from the raw candidates of MuTect (Cibulskis et al., 2013), 

Strelka (Saunders et al., 2012) and GATK (McKenna et al., 2010) (ploidy=5). 

With our extra quality and information filters, we were able to identify 1298 

candidates from 4 pairs of WGS data and 2 pairs of WES data. We analyzed the 

1298 candidates from different perspectives (enriched homopolymer calls, few 

overlaps among different libraries from the same sample and low alternative 

allele count from certain libraries (Figure 2.5)) and showed that there are still 

possible false positive calls from the pipeline. We also compared out somatic 

SNV calls with the calls from other institutes. The relatively few overlaps among 
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different institutes also represent possible false positives from this version of 

pipeline. 

 

In order to validate the candidates identified by different institutes, in particular 

the low allele frequency sites, we performed extremely high coverage amplicon 

sequencing for 400 sites from both the brain 5154 sample and NA12878 as a 

negative control. We then applied our analysis pipeline to filter out the false 

positive candidates from high coverage sequencing data. By comparing the 

candidate allele frequency with an out-group negative control NA12878, we were 

trying to exclude the biased amplification error with high sequencing depth in 

amplicon sequencing. 

 

We manually inspected all candidate sites passed the validation analysis pipeline 

as well as the candidate sites with different decision between two institutes to 

ensure the validation status of the final somatic SNV status. From the manual 

inspection, we were able to discover multiple cases where the validation analysis 

did not exclude certain false positive sites, for example, somatic SNV sites inside 

homopolymer regions, somatic SNVs in structural variations, somatic SNVs in 

CNVs, germline SNV in a biased amplified region or sequencing error that was 

specific to brain sample not detected in NA12878. 

 

For somatic SNV candidates in homopolymer regions, we excluded the sites as 

false positive sites (Figure 2.12). However, it is difficult to decide whether a 
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somatic SNV site in homopolymer region is a sequencing artifact or a true 

somatic SNV event. Homopolymer regions have always been considered as 

regions with high sequencing error because of the principals used for detection of 

next generation sequencing (Hyman et al. 1988; Ronaghi 1998; Metzker et al. 

2010). However, homopolymer regions in genome are highly prone to duplication 

error due to DNA replication polymerase slippage (Denver et al. 2005). Thus, 

even with an out-group negative control, we still could not decide if a somatic 

SNV in homopolymer region is a true somatic SNV event or a false positive site. 

To make our call set more accurate, we have excluded the sites in homopolymer 

regions as false positives but future work in this area is needed as some of these 

could represent bona fide somatic variation. 

 

Somatic SNV candidates in possible structural variation regions or CNV regions 

are also difficult to exclude from the true positive sites due to aberrant read depth 

in such regions (Figure 2.13). Thus, we added a filter in our best practice to 

exclude the candidate sites inside structural variation or CNV regions identified 

using other structural variation and copy number variation identification tools. 

However, SV/CNV callers themselves still have a measurable false negative rate, 

and thus we still suggest manual inspection to add additional support to the true 

positive sites. 

 

During our manual inspection, we also discovered the importance of the 

haplotype information provided by 10X Genomics data. With the 10X haplotype 
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information, we were able to exclude both sequencing artifacts (Figure 2.10) and 

biased amplified germline variants (Figure 2.11). For sites with alternative alleles 

on both of the haplotype, these were identified as sequencing artifacts (Figure 

2.10) since somatic mutation should only affect one of the two chromosomes in a 

cell. For sites with alternative allele taking over all reads of one haplotype, 

although it may only have a 30% allele fraction, it was still identified as a 

germline mutation since somatic mutation should only occur on one of the two 

chromosomes (Figure 2.11). These sites commonly have relatively high 

alternative allele frequency and cannot be excluded from any other data. Thus, 

the haplotype information is critical to exclude false positive sites due to 

amplification bias. The amplification bias here could be caused by structural 

variation, copy number variation or other reasons that we did not observe. When 

10X Genomics data is not available, haplotype information from paired end whole 

genome sequencing data could also be applied to exclude false positive sites. 

 

From the different methods applied by other institutes, we also observed the 

importance of a panel of normal samples as negative control and single cell data 

to identification of somatic SNVs. Since we do not expect that the same SNVs 

could take place in multiple other individuals, a panel of normal samples could 

serve as a better negative control than only NA12878 used in our pipeline. Single 

cell data could also provide insights to exclude negative control sites. A 

candidate somatic SNV should not present in majority of cells if it is a true 

somatic SNV site. 
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In our best practice approach to identify somatic SNVs in non-tumor tissue, we 

suggest two possible kinds of input. If only one target sample is sequenced, we 

would suggest using GATK with ploidy=2-10 to obtain the raw candidates as 

input for further filtering pipeline. If the targeted sample is sequenced with a 

paired sample from the same individual, we would suggest applying MuTect, 

Strelka and GATK with ploidy=2-10 to generate raw candidates since MuTect 

and Strelka have been demonstrated to have higher sensitivity at low allele 

frequency regions with a paired sample. This would be followed by the 

application of germline filters including common SNPs from gnomAD and a 

binomial test that could exclude possible germline events from GATK in 

particular. We then exclude the sites within complex regions including repetitive 

regions, structural variants, copy number variants, indel and sites that are not in 

1000 Genomes Project confident regions of human genome. After excluding 

possible germline SNVs and sites at less confidence regions, we then suggest 

applying a series of quality filters including base quality, mapping quality and 

percent mismatch of reads, together with strand bias Fisher Exact test and 

candidates as multi-allelic sites, NA12878 allele frequency to exclude possible 

false positive candidates brought by sequencing artifacts. Here, if a panel of 

unrelated normal samples is available, the complex quality filters could be 

replaced with the panel of normal sites. The hypothesis here is that a true 

somatic SNV site in one individual should not be identified in another unrelated 

sample. In the end, if single cell data or 10X genomics sequencing data is 
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available, we could utilize the extra information provided by these two different 

sequencing libraries to exclude possible false positives as described above in 

methods and results. 

 

With the summarized best practice above and in Figure 2.14, we will apply the 

best practice to the Schizophrenic samples. We have 10 Schizophrenic brain 

samples (DLPFC and Hippocampus) with age-matched 10 neurotypical brain 

samples (DLPFC and Hippocampus). We also have 8 Schizophrenic fibroblast 

samples with age-matched 8 neurotypical fibroblast samples. We will apply our 

best practice using the whole exome sequencing and 10X Genomics sequencing 

of these samples. From the comparison between Schizophrenic samples and 

neurotypical samples, we expect that we could discover the somatic SNVs 

associated with Schizophrenia. However, further validations both in vitro and in 

vivo are required to confirm if any somatic SNVs identified is the possible cause 

of Schizophrenia. 

 

Our study still has some limitations. For the somatic SNV candidates in 

homopolymer regions, we excluded them for a higher accuracy. Although the 

homopolymer regions are highly prone to sequencing errors, they are also the 

regions where mutations could occur because of the DNA polymerase slippage 

during DNA duplication. Because of the limitation of current next generation 

sequencing methods, we have not been able to make the decision for all 

candidates in homopolymer regions. 
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Another possible limitation is that methods for discovery of structural variations or 

copy number variants from next generation sequencing data is not perfect. Even 

with the filters of possible structural variants and copy number variants in the 

best practice pipeline, false positive somatic SNV candidates in structural 

variants or copy number variants regions could still not be excluded from the raw 

sites because of the inaccuracy of structural variants and copy number variants 

discovery. 

 

Possible limitations for our experiment to identify Schizophrenia related somatic 

SNVs include region of the brain and likely intergenic functional somatic SNVs. If 

the somatic SNV related to Schizophrenia is not in the brain region that we 

sequenced, we will not be able to discover any Schizophrenia related somatic 

SNVs. Furthermore, although human exome contains most of the disease related 

mutations, it is still possible that the somatic SNVs correlated with Schizophrenia 

are located in intergenic region and performs an important function in brain 

development. 

 

Conclusion and Future Remarks 

In sum, we have demonstrated that the available somatic SNV discovery tools 

designed for tumor does not fit the purpose of identification of somatic SNVs in 

non-tumor tissue without clonal expansion with an allele frequency as low as 1% 

depending on the total coverage. From the analysis of our validation result, we 
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were able to summarize the best practice to identify somatic SNVs in non-tumor 

tissue and the methods for validation. We would then apply the best practice on 

the Schizophrenic samples and discover possible somatic SNVs related to 

Schizophrenia. 
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Figure 2.1: Common experiment design, 10X sequencing and data 
description.  
a) Common control experiment design: Our collaborator from Lieber Institute 
dissected both cortical tissue and dual fibroblast from the same common control 
sample postmortem brain 5154. They then pulverized the cortical tissue sample 
from brain 5154 into homogenate and distributed the homogenate to 6 different 
institutions. Meanwhile, our collaborators in Lieber Institute cultured the dural 
fibroblast cells, then distributed the cultured dural fibroblast tissue to 6 institutions 
together with the homogenate. After we received the cortical tissue homogenate 
with the dural fibroblast, we prepared the sequencing libraries for these tissues 
using: 1) 10X Genomics Whole Genome Sequencing library preparation kit; 2) 
SeqCap EZ Exome Capture kit; 3) Gentra Puregen Whole Genome Sequencing 
library preparation kit to generate the libraries for 10X sequencing, whole exome 
sequencing as well as whole genome sequencing.  
b) Data description and data summary: Histograms of coverage for WES and 
10X libraries used for mosaic SNV identification. The pulverize brain sample has 
a coverage with mean coverage around 300X, and around 70X for 10X data. The 
dural fibroblast has coverage with around 500X, and round 70X for 10X data. By 
this much of depth, the lowest limit of mosaic SNV allele frequency could be 
identified from the brain WES data is theoretically 0.33% on average if there is 
one high quality read supporting the mosaic SNV event. 
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Figure 2.2: Existing methods on identifying mosaic SNVs. 
a) Mosaic SNV identification using existing methods: Somatic SNV candidates 
were identified using MuTect, Strelka (pair sample method comparing brain and 
fibroblast) and GATK with ploidy parameter 5 (single sample method considering 
only brain) using the WES data generated in Michigan. A few overlapped sites 
were identified from the WES data.  
b) Mosaic SNV identified by the three existing methods fall inside the targeted 
regions of the exome capturing kit (high confident regions): No overlapped sites 
were found among the three methods. 
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Figure 2.3: Mosaic SNV Identification common experiment design. 
Paired mosaic SNV identification using consortium brain and dural fibroblast 
sequencing data. Each WGS brain data is paired with 2 different dural fibroblast 
data. Each WES brain data is paired with the other WES dural fibroblast data 
because the different exome capture kit used. Mosaic SNV candidates were then 
discovered by using our customized identification pipeline.  
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Figure 2.4: Common process pipeline and mosaic SNV Identification and 
filtering pipeline, input files, formats and outputs.  
a) Common process pipeline of data generated from different institutions: Fastq 
files from Illumina sequencing using different library preparation methods were 
aligned to hg19 decoy 5 genome using bwa mem version 0.7.16a. We then 
applied sambamba v0.6.7 to sort and merge the bam files for the different 
libraries from the same sample. Picard v2.12.1 was then applied to mark 
replication duplicates from the library preparation step. We applied GATK v3.7-0 
for indel realignment and base recalibration. 
b) Mosaic SNV identification pipeline: We applied MuTect, Strelka and GATKp5 
to identify the raw mosaic SNV candidates as input for downstream filtering 
steps. Candidates inside repetitive regions, segment duplication regions and self-
chain regions with more than 90% identity are not considered. Only sites in 
mappable regions of the genome defined by 1000 Genome Project with P-base 
are considered for further filtering steps. After filtering candidates for high 
confidence regions in the genome, we filtered out the sites with more than 0.1% 
of population allele frequency from gnomAD project in all population. Candidates 
in abnormal coverage regions (outside 3 standard deviations from mean 
coverage of each sample) are filtered out. Then we take 95% percentile of map 
quality, percent mismatch and base quality as cutoff for high quality sites. The 
candidate allele frequency is then compared with the candidate allele frequency 
in a control sample, NA12878 from the Genome in a Bottle (GIAB) project with 
300X coverage. We then used Fisher Exact test to exclude the false positive 
sites caused by strand bias in sequencing libraries. We compared the candidate 
allele frequency to the allele frequency of the third base at this position. The high 
allele frequency of the third base represents high sequencing artifacts at this 
position. We also exclude the sites with an indel present in 
upstream/downstream 5 base pair because of the alignment artifacts brought by 
this indel. We then set our cutoff for candidate allele frequency as 0.03 to 
eliminate low allele frequency candidates. We applied binomial test to exclude 
the germline events. We utilized the haplotype information from 10X data to filter 
out false positive sites caused by sequencing error or germline events. At the 
end, we filtered out sites which are within 100 base pair between each other. 
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Figure 2.5: Common process pipeline and mosaic SNV Identification and 
filtering pipeline, input files, formats and outputs.  
a) 10X Genomics sequencing with barcode provided haplotype information from 
short reads: Instead of fragmenting genome into small pieces, 10X technique 
takes longer fragments of DNA (~40kb) as input. Each long DNA fragment would 
be attached to a bead then fragmented into smaller pieces for Illumina 
sequencing inside each bead. Unique barcode is then added to all small 
fragments inside each bead. All the shorter fragments are then sequenced using 
Illumina pair ended sequencing. This way, we could then build a long fragment 
based on the barcode from short reads. With the SNPs on each long fragment, 
we could then phase the sequencing result into two haplotypes.  
b) 10X haplotype information helps with excluding false positive mosaic SNV 
sites: The haplotype information is applied for filtering false positive sites. An 
ideal mosaic SNV site should be presented only at one haplotype and not take 
the major part of this haplotype. If the candidate allele is on both haplotypes, this 
site is a sequencing artifact since mosaic single nucleotide mutation is barely 
possible to take place on both chromosomes. If the candidate allele takes the 
major counts on one haplotype (>90%), this site is more possible to be an under-
amplified germline event or in a copy number / structural variant region.  
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Figure 2.6: Summary of mosaic SNV identified from the filtering pipeline.  
a) Candidate allele frequency distribution of mosaic SNV identified: The 
histogram of candidate allele frequency identified from our pipeline shows that 
we were able to exclude the germline events effectively. However, for the low 
allele frequency events, it is difficult to exclude the false positives. Downstream 
validation analysis is necessary to evaluate this result.  
b) Base change bar plot of mosaic SNVs identified: The mosaic SNV base 
changes we identified are enriched with C to A and A to T changes. Only a few C 
to G changes were identified.  
c) Base change with genomic sequence context bar plot of SNVs identified: Most 
of the mosaic SNV candidates identified are in the middle of tri-nucleotide 
homopolymer regions. This shows a possible false positive calling because of the 
confidence for sequencing inside a homopolymer region is low. Future validation 
would show if these sites are true positives or not.  
d) Upset plot of SNVs identified in different libraries prepared by different 
institutions: Only 4 common sites were identified from all four libraries made from 
the same tissue. We discovered the most mosaic SNVs from the sample with the 
lowest coverage. This shows the allele frequency filter may not be as effective as 
an allele count cutoff. 
e) Candidate allele count identified from different WGS brain bam files: This 
figure shows most sites called from Yale-1 library only have less than 4 read 
counts supporting the mosaic SNV event. 
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Figure 2.7: Summary of mosaic SNV identified from all six institutions 
using different identification pipelines. 
a) Base change bar plot of mosaic SNVs identified: Combined together, all six 
methods identified C to A, A to T and A to C base changes the most. C to G 
changes is under-represented.  
b) Base change with genomic sequence context bar plot of SNVs identified: 
Combining all sites discovered from different methods, candidate mosaic SNV 
candidates in tri-nucleotide homopolymer regions are still enriched.  
c) Upset plot of SNVs identified by different institutions using different filtering 
strategies: There is no common mosaic SNVs discovered by all six pipelines, and 
only three common mosaic SNVs identified from 5 of the methods. The few 
overlapped sites among the six different methods require downstream validation 
experiment in order to evaluate the performance of each different methods. 
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Figure 2.8: Validation of candidate mosaic SNVs using amplicon 
sequencing.  
a) Amplicon sequencing of targeted regions in genome. We designed primers to 
amplify regions ~300bp around the candidate mosaic SNV sites. After the 
designed DNA fragment is amplified, a barcode would be added to each unique 
DNA fragment. After massive amplification, we then use MiSeq to sequence the 
DNA fragment we amplified. The massive amplification in this process could 
guarantee a high sequencing depth covering the candidate site so that even low 
allele frequency mosaic SNV events could be validated. 
b) Amplicon sequencing data pre-processing pipeline. We applied PEAR v0.9.10 
to assemble the pair end reads with overlap between each other to single end 
reads for lower sequencing error by taking the consensus base of the two ends if 
available. We then used bwa v0.7.16a to align the reads to hg19d5 genome. We 
used GATK to re-align the indels around the candidate regions. We then applied 
further analysis to filter out false positive mosaic SNV sites from the amplicon 
sequencing data. 
c) Mosaic SNV validation filters using amplicon sequencing data. The filters we 
applied include: 1) number of reads covering the candidate sites (200); 2) 
NA12878 candidate allele frequency at the same position with the same 
amplicon sequencing method; 3) Candidate allele frequency difference between 
brain 5154 amplicon sequencing and NA12878 using Skellam test; 4) empirical 
sequencing error model 95 percentile as the cutoff for sequencing error; 5) 
exclude germline events by setting a cutoff between 0.4 and 0.6. 
d) Illustration of empirical model of sequencing error for each different amplicon 
sequencing libraries. The empirical model was built based on the base change 
frequency of all the other sites in the amplified regions. For pair end reads which 
overlap with each other, the empirical model was built on the overlapped regions 
only. For single end reads, the empirical model was built on all positions 
sequenced except the primer regions. The error rate for each different category 
of base changes for different sequencing libraries could represent the overall 
sequencing error of this library. 
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Figure 2.9: Sequencing error cumulative curve for each different amplicon 
sequencing libraries.  
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Figure 2.10: Examples of manual inspection of mosaic SNVs (10X) 
Somatic SNV candidate with manual inspection on chr3: 79165551. The allele 
frequency of this cite in brain WGS data is 0.066, and in NA12878 is 0. This 
candidate has a relatively low allele frequency. However, the alternative allele is 
on both of the haplotypes from the 10X data. Thus, this is a false positive 
candidate. This IGV screen shot presents the 10X Genomics data of this 
candidate. The black dashed line splits the reads belonging to two haplotypes. 
Two red boxes show the alternative allele present in both of the haplotypes. 
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Figure 2.11: Examples of manual inspection of mosaic SNVs (10X) 
Somatic SNV candidate with manual inspection on chr1: 197823218. The allele 
frequency of this cite in brain WGS data is 0.271, and in NA12878 is 0. This 
candidate has a high allele frequency reasonable somatic SNV candidate. 
However, from the 10X haplotype information, we observed that all alternative 
alleles on this site are on one haplotype only and take all of the reads in this 
haplotype. Thus, we identified this site as a germline SNV instead of a somatic 
SNV. This IGV screen shot presents the 10X Genomics data of this candidate. 
The black dashed line splits the reads belonging to two haplotypes. The red box 
shows the alternative allele takes the majority of haplotype 2, showing that this is 
a germline event. 
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Figure 2.12: Examples of manual inspection of mosaic SNVs 
(homopolymer) 
Somatic SNV candidate with manual inspection on chr4: 91717508. The allele 
frequency of this cite in brain WGS data is 0.08, and in NA12878 is 0. However, 
this is a low allele frequency candidate inside a string of polyT region. This site is 
a possible false positive candidate. The screen shot shows the candidate 
position in the brain alignment files with the highest coverage. This base change 
alters an ‘A’ in a string of ‘T’ to ‘T’. 
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Figure 2.13: Examples of manual inspection of mosaic SNVs (SV)  
Somatic SNV candidate with manual inspection on chr14: 57508069. The allele 
frequency of this cite in brain WGS data is 0.293, and in NA12878 is 0. This site 
is a reasonable candidate from all other aspects. However, from the colored 
clipped reads in the IGV screenshot, we could observe that the structural 
variation around this region, which caused a false positive call as a somatic SNV 
at this position. The grey part of reads shows a perfect match with the reference. 
The same colored pattern shows the existence of an insertion in this region. 
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Figure 2.14: Best practice for identification of mosaic SNVs. 
The best practice that we suggest applying in order to identify somatic SNVs in 
non-tumor tissue includes two possible kinds of input. If only one target sample is 
sequenced, we would suggest utilizing GATK with ploidy=2-10 to obtain the raw 
candidates as input for further filtering pipeline. If the targeted sample is 
sequenced with a paired sample from the same individual, we would suggest 
applying Mutect, Strelka and GATK with ploidy=2-10 as raw candidate since 
Mutect and Strelka have been demonstrated to have higher sensitivity at low 
allele frequency regions with a paired sample. We then would like to apply the 
germline filters including common SNPs from gnomAD and binomial test that 
could exclude possible germline events from GATK in particular. After excluding 
possible germline SNVs, we then suggest applying a series of quality filters 
including base quality, mapping quality and percent mismatch of reads, together 
with strand bias Fisher Exact test and candidates as multi-allelic sites, NA12878 
allele frequency to exclude possible false positive candidates brought by 
sequencing artifacts. Here, if a panel of unrelated normal samples is available, 
the complex quality filters could be replaced with the panel of normal sites. The 
hypothesis here is that a true somatic SNV site in one individual should not be 
identified in another unrelated sample. In the end, if single cell data or 10X 
genomics sequencing data is available, we could utilize the extra information 
provided by these two different sequencing libraries to exclude possible false 
positives as described above in methods and results.  
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Figure 2.15: Schizophrenia related mosaic SNV identification experiment 
design. 
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Table2.1: Consortium common experiment data summary. 
Data  

Source Tissue Library  
Type Coverage Standard 

Deviation 

UM Brain WES 352.38 218.44 

UM Dural Fibroblast WES 447.82 250.60 

UCSD Brain WES 432.89 251.65 

UCSD Dural Fibroblast WES 145.70 85.38 

Yale-1 Brain WGS 74.59 13.72 

Harvard Brain WGS 189.00 33.87 

LIBD Brain WGS 90.44 13.77 

Yale-2 Brain WGS 236.27 33.45 

Yale-2 Dural Fibroblast WGS 197.41 33.15 

Mt. Sinai Dural Fibroblast WGS 19.99 5.5 
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Table 2.2: Categories of mosaic SNVs identified from different institutions.  
 
Categories Definition 

Absolute 
Singletons 

Identified by one approach, supportive evidence from 
one data source 

Data Source 
Singletons 

Identified by multiple approaches, supportive evidence 
from one data source 

Approach 
Singletons 

Identified by one approach, supportive evidence from 
multiple data sources 

Multi-calls Identified by multiple approaches, supportive evidence 
from multiple data sources 
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Table 2.3: Summary of categories of SNVs identified from different 
institutions.  
  

 
Number of 

Total 
Candidates 

Number of 
Absolute 

Singletons 

Number of 
Data Source 
Singletons 

Number of 
Approach 
Singletons 

Number of 
Multi-calls 

Abyzov 100 4 2 63 31 
Gleeson 12 0 0 11 1 
Moran 1148 135 3 979 31 
Park 53 5 2 13 33 

Pevsner 57 3 1 24 29 
Sestan 16 0 0 9 7 
Total 1298 148 4 1101 45 
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Table2.4: Amplicon sequencing library specific sequencing error cutoffs. 
 

 A>T & T>A A>C & T>G A>G & T>C C>A & G>T C>T & G>A C>G & G>C 

MI 0.000764 0.000408 0.000927 0.000671 0.00132 0.000248 
Mayo 0.000440 0.000139 0.000511 0.000609 0.00106 0.000151 
KKI 0.000373 0.000248 0.00229 0.000249 0.000989 0.000125 

MtSinai 0.000611 0.00199 0.00251 0.00276 0.00138 0.000269 
Harvard 0 0 0.000126 0.000130 0.000142 0 
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Table 2.5: Mosaic SNV candidate sites for ddPCR. 
 

 
 
 
  

chrm pos ref alt comments category 

8 2210830 C G amplicon seq shows real, possible CNV ambiguous 

1 197823218 C A fail 10X, but all other evidence show true positive ambiguous 

14 38720782 C T low CAF in WGS data, and messy in amplicon seq ambiguous 

3 59577834 G A  possible indel ambiguous 

6 47565225 G C possible SV around ambiguous 

18 39944439 G A messy region, third allele frequency relatively high ambiguous 

18 12614010 A G high CAF in NA12878 FP 

9 100100349 G T amplicon seq looks ok, but found in other 17 samples FP 

14 35629120 G A fail 10X, all other evidence show a weak true positive FP 

5 58367359 A T indel downstream close by FP 

14 35673152 A T fail 10X, all other evidence show a weak true positive FP 

4 91717508 A T A in a poly T string FP 

3 71303452 G A Relatively low quality in amplicon seq PASS 

7 112009378 G A Relatively low quality in amplicon seq PASS 

15 46636659 C G strong pass, relatively low CAF PASS 

3 150634574 G A strong pass, relatively low CAF PASS 

4 3857654 C T strong pass, high CAF PASS 

14 72870518 A G strong pass, high CAF PASS 
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Table 2.6: Amplicon validation for 400 mosaic SNVs. 
 

chrm pos ref alt status1 brain_fq1 status2 brain_fq2 Decision 

1 185567840 G A PASS 0.0063 Not Assigned Not Assigned PASS 

1 197823218 C A PASS 0.2802 Not Assigned Not Assigned PASS 

1 205408125 C T PASS 0.0096 Not Assigned Not Assigned PASS 

2 5199906 C T PASS 0.0197 Not Assigned Not Assigned PASS 

2 86485588 C T PASS 0.0234 Not Assigned Not Assigned PASS 

3 10935924 G C PASS 0.0089 Not Assigned Not Assigned PASS 

3 24256930 C T PASS 0.0292 Not Assigned Not Assigned PASS 

3 66745914 C T PASS 0.0565 PASS 0.0571 PASS 

3 71303452 G A PASS 0.1156 Not Assigned Not Assigned PASS 

3 150634574 G A PASS 0.0128 PASS 0.0206 PASS 

3 178541243 C T PASS 0.0380 Not Assigned Not Assigned PASS 

4 3857654 C T PASS 0.2832 PASS 0.2731 PASS 

4 45920691 C T PASS 0.0018 Not Assigned Not Assigned PASS 

5 113236393 C A PASS 0.0053 Not Assigned Not Assigned PASS 

5 116767707 G A PASS 0.0001 Not Assigned Not Assigned PASS 

6 83968771 G C PASS 0.0224 Not Assigned Not Assigned PASS 

6 96086198 A C PASS 0.0001 Not Assigned Not Assigned PASS 

6 100611507 C A PASS 0.0094 Not Assigned Not Assigned PASS 

6 116873861 A T PASS 0.0154 Not Assigned Not Assigned PASS 

7 54489183 C A PASS 0.2346 Not Assigned Not Assigned PASS 

7 80158107 C T PASS 0.0049 PASS 0.0178 PASS 

7 90545084 G A PASS 0.0665 Not Assigned Not Assigned PASS 

7 110664350 C T PASS 0.0125 PASS 0.0153 PASS 

7 112009378 G A PASS 0.0101 Not Assigned Not Assigned PASS 

7 112461481 G T PASS 0.0002 Not Assigned Not Assigned PASS 

7 148726847 C T PASS 0.0224 Not Assigned Not Assigned PASS 

8 91413335 G A PASS 0.0238 Not Assigned Not Assigned PASS 

8 103281483 C T PASS 0.0116 Not Assigned Not Assigned PASS 

8 113973702 A G PASS 0.1799 Not Assigned Not Assigned PASS 

8 126390601 G A PASS 0.0312 PASS 0.0441 PASS 

10 1917663 C T PASS 0.0235 Not Assigned Not Assigned PASS 

10 92165549 C T PASS 0.0289 Not Assigned Not Assigned PASS 

10 107663441 T C PASS 0.0468 Not Assigned Not Assigned PASS 

11 74361284 T C PASS 0.0182 Not Assigned Not Assigned PASS 

11 97180935 G A PASS 0.0371 PASS 0.0410 PASS 

11 120386729 C T failseqerr 0.0001 PASS 0.0247 PASS 

12 65791007 C T PASS 0.0122 Not Assigned Not Assigned PASS 

14 21125803 G A PASS 0.0059 Not Assigned Not Assigned PASS 

14 49010001 A G PASS 0.0324 Not Assigned Not Assigned PASS 

15 46636659 C G PASS 0.0183 PASS 0.0183 PASS 
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16 64683305 G A PASS 0.0246 Not Assigned Not Assigned PASS 

17 44885146 G A PASS 0.0230 Not Assigned Not Assigned PASS 

18 5481334 A G PASS 0.2126 Not Assigned Not Assigned PASS 

19 9493288 G A PASS 0.0055 Not Assigned Not Assigned PASS 

1 34260647 A G readsnotenough 0.0000 Not Sequenced Not Sequenced notenoughdata 

1 51679303 T G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

1 179464991 A T readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

1 191297715 C A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

1 226036743 T G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

2 43452819 C T Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

2 230714651 C A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

3 192544607 A T readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

5 103990701 T A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

6 10920813 G A Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

6 17416384 T C readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

6 76180939 T A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

7 71907794 A G readsnotenough 0.1972 Not Sequenced Not Sequenced notenoughdata 

7 114539432 T A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

7 150344734 A C readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

7 157688045 T A Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

9 91408737 T A Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

9 127255300 A G Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

10 46970573 C G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

10 79430930 T G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

10 87963307 A C readsnotenough 0.0000 readsnotenough 0 notenoughdata 

11 61111724 A G Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

11 68688607 A T readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

11 83548887 G T readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

12 34510345 T G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

12 127840500 C T readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

14 92255639 G A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

14 105816410 G A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

16 597627 C G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

16 19193644 T G readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

16 47043306 G T Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

17 38114199 T G Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

19 58695924 A C readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

20 3656538 A C readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

21 26267966 T A readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

X 1027504 T G Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

X 6234721 A T readsnotenough 0.0000 Not Assigned Not Assigned notenoughdata 

X 107770019 A T Not Sequenced Not Sequenced Not Assigned Not Assigned notenoughdata 

2 81089746 T C failNA12878skellam 0.0002 failseqerr 0 not-decided 
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3 59577834 G A PASS 0.0039 readsnotenough 0.0105 not-decided 

4 188330530 A G PASS 0.0018 failNA12878skellam 0.0017 not-decided 

6 47565225 G C PASS 0.0066 Not Assigned Not Assigned not-decided 

9 100100349 G T PASS 0.0084 Not Sequenced Not Sequenced not-decided 

14 38720782 C T PASS 0.0112 Not Assigned Not Assigned not-decided 

14 72870518 A G readsnotenough 0.2523 Not Assigned Not Assigned not-decided 

14 97512875 A C PASS 0.0012 failNA12878skellam 0 not-decided 

17 71395357 G A PASS 0.0002 Not Assigned Not Assigned not-decided 

18 12614010 A G PASS 0.0098 Not Assigned Not Assigned not-decided 

18 39944439 G A PASS 0.0098 Not Assigned Not Assigned not-decided 

6 135199781 A G PASS 0.0647 Not Assigned Not Assigned germline 

10 47066579 A G PASS 0.0320 Not Assigned Not Assigned germline 

14 73148541 C G PASS 0.3635 Not Assigned Not Assigned germline 

18 5499876 C T PASS 0.0172 Not Sequenced Not Sequenced germline 

8 2210830 C G PASS 0.0486 Not Sequenced Not Sequenced false_positive 

10 485315 G A PASS 0.0005 PASS 0.0073 false_positive 

17 44198245 T C PASS 0.3268 Not Assigned Not Assigned false_positive 

1 10798144 T G PASS 0.0001 Not Assigned Not Assigned false_positive 

1 10871477 C T failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

1 16778457 A G failseqerr 0.0021 Not Assigned Not Assigned false_positive 

1 20799282 A C failseqerr 0.0000 Not Assigned Not Assigned false_positive 

1 29788830 A C failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

1 33562483 T C failNA12878skellam 0.0008 Not Assigned Not Assigned false_positive 

1 35366547 T G failNA12878skellam 0.0010 Not Assigned Not Assigned false_positive 

1 39021614 T G failseqerr 0.0004 failNA12878skellam 0 false_positive 

1 54653802 T G failseqerr 0.0000 Not Assigned Not Assigned false_positive 

1 71214596 A T failNA12878 0.0313 Not Assigned Not Assigned false_positive 

1 72604782 C A failNA12878skellam 0.0030 Not Assigned Not Assigned false_positive 

1 78401682 G T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

1 86383228 A T failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

1 86383232 A T failNA12878skellam 0.0004 Not Sequenced Not Sequenced false_positive 

1 107319979 T A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

1 108865995 A T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

1 147381393 C A failNA12878skellam 0.0018 Not Assigned Not Assigned false_positive 

1 157532721 T G failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

1 157636883 G T failNA12878 0.1412 Not Assigned Not Assigned false_positive 

1 160334919 A C failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

1 188615921 T A failNA12878skellam 0.0002 failNA12878skellam 0.0001 false_positive 

1 198161499 A T failNA12878skellam 0.0023 Not Assigned Not Assigned false_positive 

1 217196186 T G failNA12878skellam 0.0009 failNA12878skellam 0 false_positive 

1 220384078 A G failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

1 226549266 C T failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

1 230186624 G T failseqerr 0.0000 Not Assigned Not Assigned false_positive 
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1 232822257 A G failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

1 239503530 C A failseqerr 0.0000 PASS 0.0104 false_positive 

1 249103953 A C failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

2 3479966 A G failfreq 0.5079 Not Assigned Not Assigned false_positive 

2 20196958 C T Not Sequenced Not Sequenced failNA12878skellam 0.0007 false_positive 

2 20562971 T C failNA12878skellam 0.0008 Not Assigned Not Assigned false_positive 

2 26943588 T G PASS 0.1841 Not Assigned Not Assigned false_positive 

2 37280594 A T failseqerr 0.0000 readsnotenough 0 false_positive 

2 39629939 C A failNA12878skellam 0.0006 Not Assigned Not Assigned false_positive 

2 44910354 C A PASS 0.0024 Not Assigned Not Assigned false_positive 

2 51248705 C T failNA12878skellam 0.0050 Not Assigned Not Assigned false_positive 

2 63123790 G T failseqerr 0.0004 failseqerr 0 false_positive 

2 80526502 A C PASS 0.0038 Not Assigned Not Assigned false_positive 

2 82511802 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

2 113048297 G C failNA12878 0.2733 Not Assigned Not Assigned false_positive 

2 122678719 C T PASS 0.0022 Not Assigned Not Assigned false_positive 

2 135736455 A C failseqerr 0.0000 Not Assigned Not Assigned false_positive 

2 163408355 T G failseqerr 0.0005 failNA12878skellam 0 false_positive 

2 165433304 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

2 200122611 T G failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

2 202107935 G T failseqerr 0.0000 readsnotenough 0 false_positive 

2 222030970 A T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

2 222270513 G T failNA12878skellam 0.0093 Not Assigned Not Assigned false_positive 

2 231669920 A C failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

2 233445561 T G failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

2 235859132 A C failNA12878skellam 0.0000 failNA12878skellam 0.0003 false_positive 

3 1083092 C T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

3 6091420 G T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

3 13298985 A C failNA12878skellam 0.0001 failseqerr 0 false_positive 

3 13762684 G T failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

3 26395998 A C failNA12878skellam 0.0000 failNA12878skellam 0.0031 false_positive 

3 30897421 C A PASS 0.0015 failNA12878skellam 0.0009 false_positive 

3 33291623 T A failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

3 38609519 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

3 41513485 T A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

3 51231319 A T readsnotenough 0.0000 failNA12878skellam 0.0006 false_positive 

3 54098845 T C failfreq 0.5075 Not Assigned Not Assigned false_positive 

3 58155054 T G failNA12878skellam 0.0033 failNA12878skellam 0.0010 false_positive 

3 59889823 C T PASS 0.2261 PASS 0.0467 false_positive 

3 79165551 G T PASS 0.0201 Not Assigned Not Assigned false_positive 

3 83749180 C T failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

3 94050943 A C failNA12878 0.2759 failNA12878skellam 0.0005 false_positive 

3 126864130 A C PASS 0.0033 failNA12878skellam 0 false_positive 
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3 153160150 G T failNA12878skellam 0.0000 failNA12878skellam 0.0016 false_positive 

3 175290702 A T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

3 181631534 C T failNA12878skellam 0.0008 Not Assigned Not Assigned false_positive 

3 185839534 T G failNA12878skellam 0.0011 Not Assigned Not Assigned false_positive 

4 962222 G T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

4 10076371 T G failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

4 29265883 T C failfreq 0.4875 failfreq 0.5044 false_positive 

4 56435894 T G failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

4 86171870 A T PASS 0.0012 Not Assigned Not Assigned false_positive 

4 86293704 A T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

4 90877885 G T failNA12878skellam 0.0015 Not Assigned Not Assigned false_positive 

4 91717508 A T PASS 0.0100 failNA12878 0.0189 false_positive 

4 102289690 C A failseqerr 0.0000 readsnotenough 0 false_positive 

4 113184134 T G failseqerr 0.0000 failNA12878skellam 0 false_positive 

4 115934226 T G failNA12878 0.0137 Not Assigned Not Assigned false_positive 

4 134759331 A T PASS 0.0005 Not Assigned Not Assigned false_positive 

4 142366461 C T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

4 153129393 A C failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

4 153418587 T A failseqerr 0.0000 readsnotenough 0.0258 false_positive 

4 167193426 G T failNA12878skellam 0.0004 readsnotenough 0 false_positive 

4 174856826 T A PASS 0.0000 failNA12878skellam 0.0001 false_positive 

5 2628236 T G PASS 0.0000 Not Assigned Not Assigned false_positive 

5 3559828 G A failNA12878skellam 0.0002 failNA12878skellam 0.0006 false_positive 

5 27862789 C A PASS 0.0397 failNA12878skellam 0 false_positive 

5 38515736 T G failNA12878skellam 0.0036 Not Assigned Not Assigned false_positive 

5 50971730 G T failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

5 58255846 A G failfreq 0.5086 readsnotenough 0 false_positive 

5 58367359 A T failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

5 67767155 C T PASS 0.0001 Not Assigned Not Assigned false_positive 

5 77570181 T A failNA12878skellam 0.0002 failNA12878skellam 0 false_positive 

5 108964023 G T failseqerr 0.0004 Not Assigned Not Assigned false_positive 

5 126215731 T G failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

5 138406395 C A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

5 147821878 A C failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

5 160807871 T A failNA12878skellam 0.0018 Not Assigned Not Assigned false_positive 

5 165664363 T A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

5 167143878 G T failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

5 169417100 T C failseqerr 0.0018 Not Assigned Not Assigned false_positive 

6 6605071 G A failNA12878skellam 0.0041 failNA12878skellam 0.0025 false_positive 

6 16943118 T A failseqerr 0.0000 Not Assigned Not Assigned false_positive 

6 18811308 C T failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

6 35755658 A G failNA12878 0.3321 Not Assigned Not Assigned false_positive 

6 35765151 T C failNA12878 0.3455 Not Assigned Not Assigned false_positive 



	
	

132	

6 35765739 T C failNA12878 0.2926 failNA12878 0.3326 false_positive 

6 63374625 G A failNA12878skellam 0.0031 PASS 0.0054 false_positive 

6 94486269 A C failNA12878skellam 0.0000 failNA12878skellam 0 false_positive 

6 99224229 C A PASS 0.0016 failNA12878skellam 0 false_positive 

6 102546118 G T failNA12878skellam 0.0001 failseqerr 0 false_positive 

6 118360881 A T failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

6 161263429 A T PASS 0.0092 Not Assigned Not Assigned false_positive 

7 7555467 A T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

7 14823911 G T failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

7 17008453 A G failNA12878skellam 0.0018 Not Assigned Not Assigned false_positive 

7 29185157 T C failseqerr 0.0000 PASS 0.0172 false_positive 

7 32920141 C A failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

7 50629380 A C failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

7 71176992 C T failNA12878skellam 0.0013 Not Assigned Not Assigned false_positive 

7 85338850 G T failNA12878skellam 0.0013 Not Assigned Not Assigned false_positive 

7 87519130 A G failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

7 113842146 G A failseqerr 0.0000 failNA12878skellam 0.0006 false_positive 

7 125142865 A T failNA12878skellam 0.0015 Not Assigned Not Assigned false_positive 

7 134177108 C T failNA12878skellam 0.0011 Not Assigned Not Assigned false_positive 

7 136349550 G T failNA12878skellam 0.0001 failNA12878skellam 0.0003 false_positive 

7 137000098 G A failseqerr 0.0000 Not Assigned Not Assigned false_positive 

7 144833026 A T Not Sequenced Not Sequenced failNA12878skellam 0 false_positive 

7 150438324 C A failNA12878skellam 0.0023 Not Assigned Not Assigned false_positive 

7 150545388 A C failNA12878 0.0817 Not Assigned Not Assigned false_positive 

7 157705850 G T failNA12878skellam 0.0010 Not Assigned Not Assigned false_positive 

8 6264017 G T failseqerr 0.0000 failNA12878skellam 0 false_positive 

8 8369109 T G failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

8 14316984 C A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

8 19571965 A C failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

8 23856152 A T failNA12878 0.3603 Not Assigned Not Assigned false_positive 

8 25641757 C A PASS 0.0003 Not Assigned Not Assigned false_positive 

8 35065083 C A failseqerr 0.0018 Not Assigned Not Assigned false_positive 

8 38160548 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

8 38801168 G T failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

8 65817572 C A failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

8 83340122 T A failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

8 84839623 A T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

8 109397075 C A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

8 131324707 A T failseqerr 0.0004 Not Assigned Not Assigned false_positive 

8 134322326 C A failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

8 134972322 A T failNA12878 0.4986 Not Assigned Not Assigned false_positive 

8 140655717 A C failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

9 16825053 C T PASS 0.0202 Not Assigned Not Assigned false_positive 
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9 30336489 C T failseqerr 0.0001 Not Assigned Not Assigned false_positive 

9 35357548 G T failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

9 86540378 G A failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

9 102532443 G A failNA12878skellam 0.0008 failNA12878skellam 0 false_positive 

9 112093683 T G failNA12878skellam 0.0006 Not Assigned Not Assigned false_positive 

9 138485889 G A failNA12878skellam 0.0013 failNA12878skellam 0.0009 false_positive 

10 23922480 A C failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

10 36938391 C T failNA12878skellam 0.0005 failNA12878skellam 0.0004 false_positive 

10 37538722 G A failseqerr 0.0000 failNA12878skellam 0.0007 false_positive 

10 43959293 G T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

10 54987087 T A failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

10 66110752 G A failseqerr 0.0000 Not Assigned Not Assigned false_positive 

10 68356850 C A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

10 71162274 A T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

10 87257726 A T failseqerr 0.0000 failNA12878skellam 0.0002 false_positive 

10 116088338 A T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

10 126137142 A C failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

10 126349585 T A failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

11 200035 G A failfreq 0.5004 Not Assigned Not Assigned false_positive 

11 16092704 T C failNA12878skellam 0.0028 Not Assigned Not Assigned false_positive 

11 24813517 C T failNA12878 0.0119 Not Assigned Not Assigned false_positive 

11 31419808 A T PASS 0.0000 Not Assigned Not Assigned false_positive 

11 46752346 A G PASS 0.0205 Not Assigned Not Assigned false_positive 

11 55447282 G T failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

11 64078628 A G failfreq 0.4883 failfreq 0.4780 false_positive 

11 64326584 G C failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

11 71100137 A C PASS 0.0000 failNA12878skellam 0.0007 false_positive 

11 83545514 G C failseqerr 0.0000 Not Assigned Not Assigned false_positive 

11 115225623 A G failNA12878skellam 0.0012 Not Assigned Not Assigned false_positive 

11 116460961 A C failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

12 1446527 A T failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

12 12959688 T A PASS 0.0064 Not Assigned Not Assigned false_positive 

12 14693158 T A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

12 23981687 C A failNA12878skellam 0.0009 failNA12878skellam 0.0004 false_positive 

12 25260574 G T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

12 46299033 G T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

12 72122667 C A failNA12878skellam 0.0028 Not Assigned Not Assigned false_positive 

12 93969049 A C failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

12 95971001 A C failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

12 99108593 A T failNA12878skellam 0.0036 PASS 0 false_positive 

12 100445423 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

12 101724340 A G readsnotenough 0.0000 failNA12878skellam 0.0002 false_positive 

12 103675636 T A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 
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12 118255566 T C failNA12878skellam 0.0057 Not Assigned Not Assigned false_positive 

12 120079309 T C failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

12 124496153 C T failseqerr 0.0000 failNA12878 0.2711 false_positive 

13 37244385 G T failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

13 48663332 A C failNA12878skellam 0.0008 failNA12878skellam 0.0019 false_positive 

13 49876270 T G readsnotenough 0.0000 failseqerr 0.0016 false_positive 

13 79778665 T A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

13 96820946 C A failNA12878skellam 0.0053 Not Assigned Not Assigned false_positive 

13 99006094 G T failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

13 107086032 A C failNA12878 0.0354 Not Assigned Not Assigned false_positive 

13 112570956 T C failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

13 113231211 T A failNA12878 0.0194 Not Assigned Not Assigned false_positive 

14 20216484 A C failseqerr 0.0000 Not Assigned Not Assigned false_positive 

14 34493324 G T PASS 0.0116 failNA12878 0.0368 false_positive 

14 35413420 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

14 35629120 G A PASS 0.3290 Not Assigned Not Assigned false_positive 

14 35673152 A T PASS 0.3407 Not Assigned Not Assigned false_positive 

14 38680450 A C failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

14 43752350 T G failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

14 43980974 C T failNA12878skellam 0.0006 readsnotenough 0 false_positive 

14 53517817 C A failNA12878skellam 0.0057 PASS 0.0141 false_positive 

14 57508069 G A PASS 0.1054 Not Assigned Not Assigned false_positive 

14 64460551 A T PASS 0.0151 Not Assigned Not Assigned false_positive 

14 66263885 C A failseqerr 0.0001 Not Assigned Not Assigned false_positive 

14 67356563 T A failseqerr 0.0000 Not Assigned Not Assigned false_positive 

14 68284524 A G failNA12878skellam 0.0002 readsnotenough 0 false_positive 

14 94184622 A C failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

14 104250100 A C failNA12878skellam 0.0005 Not Assigned Not Assigned false_positive 

15 23931814 C T failNA12878skellam 0.0008 Not Assigned Not Assigned false_positive 

15 42801562 C A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

15 48599623 C A failseqerr 0.0000 failNA12878skellam 0 false_positive 

15 56931486 C A failNA12878skellam 0.0000 failNA12878skellam 0.0014 false_positive 

15 81002072 A C failNA12878skellam 0.0019 failNA12878skellam 0.0002 false_positive 

15 83574009 T A failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

15 85150677 A C failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

15 89819945 T G failNA12878skellam 0.0000 failNA12878skellam 0 false_positive 

15 91611998 C T failNA12878skellam 0.0051 Not Assigned Not Assigned false_positive 

15 98304382 A G failNA12878skellam 0.0027 failNA12878skellam 0.0063 false_positive 

16 148328 C T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

16 1588998 G A Not Sequenced Not Sequenced failNA12878 0.0012 false_positive 

16 16730657 C T failNA12878 0.1567 Not Assigned Not Assigned false_positive 

16 18040558 C T failfreq 0.4808 Not Assigned Not Assigned false_positive 

16 27475614 T G PASS 0.0000 Not Assigned Not Assigned false_positive 
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16 32586271 A C failNA12878 0.3238 Not Assigned Not Assigned false_positive 

16 47556462 A T failNA12878skellam 0.0059 Not Assigned Not Assigned false_positive 

16 49040091 A C failseqerr 0.0004 failseqerr 0 false_positive 

16 50836894 G C failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

16 58906982 A T failNA12878skellam 0.0014 Not Sequenced Not Sequenced false_positive 

16 62089393 A T failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

16 68469512 T G failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

16 69295259 G T failNA12878skellam 0.0000 PASS 0.0197 false_positive 

16 84502596 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

16 87017311 T G failNA12878skellam 0.0009 Not Assigned Not Assigned false_positive 

17 486647 C T failNA12878 0.0362 Not Assigned Not Assigned false_positive 

17 486651 G A failNA12878skellam 0.0009 Not Assigned Not Assigned false_positive 

17 14952264 A T failfreq 0.5055 Not Assigned Not Assigned false_positive 

17 32760113 G A failNA12878skellam 0.0001 failNA12878skellam 0.0004 false_positive 

17 50495972 C A failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

17 52466053 T G failNA12878skellam 0.0001 PASS 0.0064 false_positive 

17 54006407 C A failseqerr 0.0004 Not Assigned Not Assigned false_positive 

17 61091217 G T failNA12878skellam 0.0049 Not Assigned Not Assigned false_positive 

18 5952670 G A failfreq 0.5072 failfreq 0.4905 false_positive 

18 45925102 A C failseqerr 0.0000 Not Assigned Not Assigned false_positive 

18 66870912 G A failseqerr 0.0005 Not Assigned Not Assigned false_positive 

19 792183 T G failNA12878skellam 0.0004 Not Assigned Not Assigned false_positive 

19 3345510 T C failseqerr 0.0001 Not Assigned Not Assigned false_positive 

19 6591373 A C PASS 0.0027 Not Assigned Not Assigned false_positive 

19 11505881 T C failNA12878 0.0349 Not Assigned Not Assigned false_positive 

19 18415232 T G failNA12878 0.0130 Not Assigned Not Assigned false_positive 

19 42528285 A C PASS 0.0157 Not Assigned Not Assigned false_positive 

19 46284797 T G PASS 0.0000 PASS 0.0023 false_positive 

19 50673439 A C readsnotenough 0.0000 failNA12878skellam 0.0004 false_positive 

19 52338664 T A PASS 0.0017 PASS 0.0051 false_positive 

19 54984467 T G failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

20 18293788 G T failNA12878skellam 0.0006 Not Assigned Not Assigned false_positive 

20 19699823 T G failseqerr 0.0000 failNA12878skellam 0.0003 false_positive 

20 23318936 C A failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

20 33791826 T A failseqerr 0.0000 Not Assigned Not Assigned false_positive 

20 51021056 G T failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

20 59241417 T A PASS 0.0000 Not Assigned Not Assigned false_positive 

21 18187206 C A failNA12878skellam 0.0001 failseqerr 0.0005 false_positive 

21 47089164 G T failNA12878skellam 0.0015 Not Assigned Not Assigned false_positive 

22 34819068 A T failNA12878skellam 0.0003 Not Assigned Not Assigned false_positive 

22 36682920 C T failNA12878skellam 0.0009 Not Assigned Not Assigned false_positive 

22 49743408 T G failNA12878 0.0529 Not Assigned Not Assigned false_positive 

X 12811469 C T failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 
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X 39971300 T G failNA12878 0.2565 PASS 0.0038 false_positive 

X 57032203 G T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

X 68836605 C G failseqerr 0.0000 Not Assigned Not Assigned false_positive 

X 86254255 C A failNA12878skellam 0.0040 Not Assigned Not Assigned false_positive 

X 95400821 T A failNA12878skellam 0.0014 Not Assigned Not Assigned false_positive 

X 108506261 G T failNA12878skellam 0.0009 Not Assigned Not Assigned false_positive 

X 121831997 G T failseqerr 0.0010 Not Assigned Not Assigned false_positive 

X 130905070 G C failseqerr 0.0000 failNA12878skellam 0 false_positive 

X 134606031 C A failNA12878skellam 0.0002 Not Assigned Not Assigned false_positive 

X 138338550 A T failNA12878skellam 0.0003 failNA12878skellam 0 false_positive 

X 138628753 C A failNA12878skellam 0.0000 Not Assigned Not Assigned false_positive 

X 150725216 A T failNA12878 0.2802 Not Assigned Not Assigned false_positive 

X 154555643 C A failNA12878skellam 0.0001 Not Assigned Not Assigned false_positive 

Y 14756883 T A failNA12878skellam 0.0010 Not Assigned Not Assigned false_positive 

Y 16642956 A T failseqerr 0.0000 Not Assigned Not Assigned false_positive 

Y 18833875 G T Not Sequenced Not Sequenced PASS 0.0038 false_positive 
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Chapter 3 Identification of RNA Level Single Molecule U6 Fusion 
Events 

 

This chapter presents the computational contributions to the submitted 

manuscript entitled: “RNA ligation precedes the retrotransposition of U6/LINE-1 

chimeric RNA” with Dr. John B. Moldovan, Dr. Stewart Shuman, Dr. Ryan E. Mills 

and Dr. John V. Moran. Dr. Stewart Shuman generously provided us the RtcB 

enzyme for biochemical experiments. A portion of the results section and the 

methods section from the original manuscript are presented here with minor 

modifications. Dr. John B. Moldovan performed all library preparation and 

biochemical experiments in vivo and in vitro and led the project with Dr. John V. 

Moran. I performed all the computational analysis of the RNA sequencing data as 

well as the junction search in HeLa genome and 1000 Genome 22 deep whole 

genome sequencing data, which I describe in detail in this chapter.  

 

Introduction 

Long INterspersed Element -1 (LINE-1, L1) and U6 snRNA in human genome 

Long INterspersed Element-1 (LINE-1 or L1) and L1-derived sequences account 

for ~17% of human genomic DNA (Lander et al. 2001). L1 is the only known 

human autonomous non-Long Terminal Repeat (non-LTR) retrotransposon. L1 
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‘jumps’ in the genome through a ‘copy and paste’ mechanism termed 

retrotransposition. Most of the L1-derived sequences in the genome cannot move 

to new genomic locations because of 5’-trunction, insertions and/or deletions 

(indels) or single nucleotide variations in the sequences (Grimaldi et al, 1983; 

Scott et al. 1987; Lander et al., 2001). Among all L1-derived sequences in human 

genome, there are approximately 80-100 retrotransposition-competent L1’s 

present in human genome (Sassaman et al. 1997; Brouha et al. 2003; Beck et al. 

2010). Details of L1 retrotransposition and structure are included in chapter 2. 

 

U6 snRNA is a key component of spliceosome. The spliceosome, an	 intricate 

machine responsible for RNA splicing, is composed of five ribonucleoprotein 

(RNP) subunits (U1, U2, U4, U5, U6 and their associated proteins), along with a 

host of associated protein co-factors (Jurica et al. 2003; Wahl et al. 2009; Will et 

al. 2010; Matera et al. 2014). Multiple evidences show that U6 snRNA plays a 

role in the catalytic center of the spliceosome (Didychuk et al. 2018). Details of 

U6 structure and function are included in chapter 2. 

 

There are over 900 copies of U6’s (Doucet et al. 2015) and thousands of L1’s 

composing 17% (Lander et al. 2001) of total sequence in human genome. As 

discussed in the last session, these repetitive sequences are excluded from the 

analysis for chimeric RNA discovery in all existing methods. However, 35% of 

full-length U6 sequences are in chimeric sequences with L1’s in human genome 

(Buzdin et al. 2003). The mechanism of formation for this chimeric pseudogene 
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remains unclear. To fill this gap of analysis of fusion events between repetitive 

RNAs, we developed and applied a computational approach to identify U6/L1 

chimeric sequences in cells. In contrast to the previous hypothesis of the 

pseudogenization occurring via template switching during reverse transcription of 

L1 (Figure 3.1), we sought to explore whether the RNA ligase enzyme, RtcB 

(Englert et al. 2011; Tanaka et al. 2011; Popow et al. 2011) could join U6 RNAs 

ending in a 2',3'-cyclic phosphate to L1 or other mRNAs	 containing a 5'-OH group 

in HeLa cells. We identified U6/L1 RNA fusions in multiple cell lines, which could 

then be retrotransposed into genome by L1 machinery (Figure 3.2). We further 

investigated the overall fusion of U6 with other RNAs in different cell lines and 

characterized the genomic positions where the U6 sequence fused. 

 

Method and Materials 

RNA sequencing library preparation and sequencing 

Adapted from Dr. John B. Moldovan’s library preparation description 

All cDNA library preparation and sequencing were conducted at the University of 

Michigan sequencing core facility (Ann Arbor, MI). Briefly, total RNA was 

collected from HeLa-JVM, HeLa-HA, and PA-1 cells using a RNeasy mini kit 

(Qiagen). Total RNA from hESC (Garcia-Perez et al. 2007; Macia et al. 2011), 

and hESC derived NPCs (Coufal et al. 2009) was a generous gift of Dr. Jose 

Garcia-Perez. To generate cDNA libraries, total RNA from each cell line was first 

depleted of ribosomal RNA using a Ribo-Zero rRNA removal kit (Illumina, San 

Diego, CA), and then cDNA libraries were generated from the rRNA-depleted 



	
	

147	

RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina) with random 

hexamers. Paired-end sequencing (100 bp reads) was performed on the Illumina 

HiSeq 2500. Sequencing data for PA-1, H9, and NPCs have been uploaded to 

the Sequence Read Archive (submission number: 3608651). HeLa sequencing 

data will be deposited to dbGaP. 

 

RNA sequencing analysis pipeline 

Trimmomatic (Bolger et al. 2014) was used to trim the sequencing adaptors from 

a total of ~1.1 X 109 RNA sequencing reads. We assessed the quality of our data 

using FastQC (Andrews S. et al. 2010). Samtools rmdup (Li et al. 2009) and 

Picard MarkDuplicates (http://broadinstitute.github.io/picard) were used to 

remove PCR duplicate reads. We aligned all reads that passed the quality check 

with BWA-MEM with default parameters (Li et al. 2013). Aligning sequence 

reads, clone sequences and assembly contigs with BWA-MEM to a custom built 

human reference genome from hg38 with all repeats masked using 

RepeatMasker and Repbase (Jurka et al. 2005), but including a single 

representative copy of a human specific L1 (L1.3; accession no. L19088) 

(Sassaman et al. 1997) and human U6 snRNA (accession no. X59362). FLASH 

(Magoc et al. 2011) then was used to reconstruct overlapping read pairs that 

aligned at one end to the 3' portion of U6 snRNA and the other end to L1. 

Merged U6/L1 sequences that contained U6 snRNA sequence at the 5' end 

conjoined to L1 sequence at the 3' end were then mapped back to the non-

masked HGR (HGR/build GRCh38) using BWA-MEM in order to differentiate 
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events aligned to the genome from those which did not exhibit a clear mapping 

(Figure 3.3 a, b). We then applied blastn with the last 25 base pair of U6 snRNA 

sequence to ensure the existence of full length U6 in the reads. Our software for 

extracting these fusion reads from RNA-seq data can be found at 

https://github.com/mills-lab/U6L1. After alignments, non-aligned merged U6/L1 

reads were hand curated to manually identify PCR duplicate reads. Merged 

U6/L1 reads that were either identical and/or differed by only a single nucleotide 

were marked as duplicates. All U6/L1 reads were manually aligned to the HGR 

using BLAT (Kent et al. 2002) to verify BWA-MEM alignments. The L1 portion of 

each U6/L1 read was manually aligned to the L1.3 sequence and consensus 

sequences from L1 subfamilies (L1PA1-L1PA13) (Khan at al. 2006) to determine 

the L1 subfamily and to derive L1 sequences for L1 junction analyses (Table 

3.5). 

 

In order to extend the capabilities of this process, we modified the above U6/L1 

junction identification pipeline by including an option to consider all repetitive 

sequences in Repbase in addition to U6 and L1 sequences to identify putative 

RNA level U6 fusion events with other genes/repetitive elements in 

transcriptome. (Figure 3.6) 

 

U6/L1 Junction Motif Search of HeLa cells and 1000 Genomes Project High 

Coverage Samples 
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Junction motifs across putative U6/L1 junctions were extracted from all merged 

reads as described above, including aligned, non-aligned and artifact junction 

sequences. Each 25 base pair junction motif contains U6 snRNA nucleotides 94-

102 followed by 5-8 thymidines and ~8-11 nucleotides of L1 sequence (Table 

3.6). All motifs and their reverse complements were used to interrogate HeLa cell 

genomic data from dbGaP (dbGaP accession number phs000640.v1.p1) 

(Mailman MD et al. 2007; Landry et al. 2013; Adey et al. 2013) and 23 high 

coverage PCR-free DNA sequencing samples from the 1000 Genomes Project 

(Table 3.7) (Genomes Project C, et al. 2015) to look for genomic evidence of 

each U6/L1 junction sequence. The script for 25 base pair motif searching is 

available at: https://github.com/mills-lab/U6L1. An exact match was required for 

labeling the existence of the junction from the HeLa genomic and 1000 Genomes 

DNA sequencing data. Two exceptions were noted in the 1000 genomes data, in 

which two genomes (NA20845 and HG03742) contained the same SNP within 

the U6 sequence for the U6/L1 chimera sequence with L1.3 junction 2052 and 

therefore did not initially exhibit an exact match to the genomic sequences of 

these samples (see Results and Table 3.6). 

 

Random permutation of gene enrichment for U6 fusion events 

In order to identify the RNAs that U6 fused with generally in the cell lines, we 

cross-referenced the fusion point identified from the pipeline of full Repbase 

sequences with GENCODE v24 annotation. We randomly selected genes from 

the annotation files for a background permutation test. For each round of 
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permutation test, we randomly selected 6321 genes (total number of fusion sites 

identified from five cell lines) from the annotation file. We repeated this process 

for 10,000 times. The distribution of genes selected is then served as the 

background model to be compared with RNAs fused with U6 in the five different 

cell lines. 

 

Random permutation of motif analysis for U6 fusion junctions 

For each U6 fusion point discovered from the five RNA libraries, we took the 

upstream and downstream 10 base pairs of the fusion points. After collecting all 

20 base pair regions around the fusion points, we applied MEME Suite (Bailey et 

al. 2009) to discover the enriched motifs at the U6 fusion points with other RNAs. 

 

To simulate the genomic context of motif at random positions in transcriptome, 

we randomly picked 20 base pair genomic fragments containing enriched ‘AUA’ 

motif for 6321 times each round of permutation. We performed the permutation 

for 10,000 times to assess the position of ‘AUA’ motif in random 20 base pair 

DNA fragments in transcriptome (Figure 3.8 b). We then compared the relative 

position of ‘ATA’ motif in random DNA fragments with the relative position of 

‘ATA’ in U6 fusion points using a Kolmogorov-Smirnov test.  

 

Random permutation of distance to loop in secondary structure for U6 fusion 

sites 
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We further investigated if any secondary structure feature could affect the fusion 

with U6 of certain RNAs. We utilized Vienna (Hofacker, 2003; Kerpedjiev et al. 

2015) to predict the secondary structure of all snRNAs and snoRNAs. We only 

applied the prediction method to short RNAs since it is difficult to predict the 

secondary structure of longer RNAs. We started with calculating the relative 

distance of fusion sites to the closest loop in the secondary structure. The 

positions in loops are counted as 0’s, and the positions right at the edge of the 

loops are counted as 1’s (Figure 3.9 a). 

 

Secondary structure background is then simulated for 6321 times by randomly 

selecting small RNAs as well as the position in the RNAs that were selected. We 

simulated for 10,000 rounds. The fusion sites distance to loops is then compared 

with the random permutation results (Figure 3.9 b). 

 

Results 

Endogenous U6/L1 RNA is part of the transcriptome in human cells (adapted 

from: RNA ligation precedes the retrotransposition of U6/LINE-1 chimeric RNA, 

Moldovan et at., 2019, PNAS, under review) 

Data from our transfection experiments and in vitro ligation experiments 

performed by Dr. John B. Moldovan suggested that U6 snRNA could be ligated 

to L1 RNA in vivo, thus we sought to determine whether U6/L1 chimeric RNA 

could be part of the normal transcriptome in human cells. To accomplish this, we 

searched for U6/L1 junction reads in 100 base pair paired-end RNA sequencing 
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(RNA-seq) data generated from two independent HeLa cell lines (HeLa-JVM and 

HeLa-HA), a human embryonic carcinoma cell line (PA-1), a human embryonic 

stem cell line (H9-hESCs), and H9-derived neural progenitor cells (NPCs) (see 

Methods). Each of these cell lines can accommodate the retrotransposition of 

engineered human L1s in vitro (Coufal et al. 2009; Moran et al. 1996; Garcia-

Perez et al. 2010; Garcia-Perez et al. 2007; Macia et al. 2017). We identified 398 

U6/L1 chimeric RNA read-pairs out of ~1.1 X 109 RNA sequencing reads across 

the five cell lines. After removing PCR duplicate reads, we then merged 

overlapping reads to identify 64 intact U6/L1 junction sequences. 

  

Both alignment back to non-masked genome and hand-annotation of the 64 

U6/L1 junctions revealed that 53 (~83%) U6/L1 chimeric junction sequences 

consisted of the 3' end of U6 snRNA cDNA ending in ~4-8 thymidine nucleotides 

conjoined to a variably 5'-truncated L1 sequence (Figure 3.4; Table 3.4). Notably, 

4 out of these 53 U6/L1 chimeras consisted of U6 ending in 5-7 thymidines 

conjoined to an L1 sequence in the antisense orientation, suggesting that U6 can 

become conjoined to both sense and anti-sense L1 RNAs. As above, there was 

not a specific sequence within L1 that appeared to facilitate U6/L1 chimera 

formation (Figure 3.4; Table 3.4). The remaining 11 out of 64 (~17%) U6/L1 

sequences contained a 3'-truncated U6 snRNA conjoined to a 5'-truncated L1 

and were excluded from further analysis, as they were structurally similar to 

template switching artifacts generated during cDNA synthesis described above 
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(Houseley et al. 2010) (Table 3.4). Thus, 53 bona fide unique U6/L1 chimeras 

were subjected to further analysis. 

 

Most U6/L1 chimeric RNA sequences do not align to the genome (adapted from: 

RNA ligation precedes the retrotransposition of U6/LINE-1 chimeric RNA, 

Moldovan et at., 2019, PNAS, under review) 

The low proportion of U6/L1 chimeras in our dataset suggested that U6/L1 

chimeric RNA might represent a rare and unique subset of the total RNA in 

human cells. To determine whether the RNA-seq U6/L1 chimeras were derived 

from the transcription of an existing genomic U6/L1 or represented unique 

chimeric RNAs, the 53 unique U6/L1 sequences were used as probes in BLAT 

searches of the HGR (Figure 3.3; see Methods). Sixteen out of fifty-three (~30%) 

U6/L1 junctions were present in the HGR, suggesting that they could have 

resulted from the transcription of extant U6/L1 pseudogene insertion. Seven out 

of the sixteen putative transcribed U6/L1 chimeric RNAs were detected in 

multiple cell lines (Figure 3.4; Table 3.4) and seven were supported by multiple 

reads from the same cell line (Figure 3.4; Table 3.4). The 16 genomic U6/L1 

chimeric pseudogenes that served as putative transcription templates that gave 

rise to chimeric U6/L1 RNAs exhibited L1 retrotransposition insertion structural 

hallmarks (Table 3.5). They consisted of a full-length U6 snRNA sequence 

ending in 5 to 7 thymidine nucleotides conjoined to a variably 5'-truncated L1, 

were flanked by 6-19 bp target site duplications, and inserted into a L1 EN 

consensus cleavage sequence. By comparison, 37 out of 53 (~70%) U6/L1 
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junction sequences did not align to the HGR and were unique to a single cell line 

(Figure 3.4). Thirty-one out of thirty-seven junctions were supported by a single 

merged read pair, 5/37 were supported by two merged reads that may represent 

PCR duplicates, and one junction was supported by three merged reads (Figure 

3.4; see Methods).  

 

Human-specific L1 insertions can be polymorphic with respect to 

presence/absence in the human population (Beck et al. 2011); thus, it is 

conceivable that some of the cell lines used to generate RNA-seq data could 

contain a genomic U6/L1 chimeric pseudogene that is absent from the HGR. To 

test this possibility, we used the 53 U6/L1 junctions as probes to query HeLa 

genome sequencing data available in the database of Genotypes and 

Phenotypes (dbGaP accession number phs000640.v1. p1) (Mailman MD et al. 

2007; Landry et al. 2013; Adey et al. 2013). Controls revealed that the 16 U6/L1 

junction sequences that aligned to the HGR were also present in the HeLa 

genome data (Figure 3.4, Table 3.4; see Methods). By comparison, the 37 non-

aligned U6/L1 junction sequences were absent from HeLa genome data. 

 

To further validate the uniqueness of the 37 U6/L1 junction sequences, we 

aligned the 53 U6/L1 junction sequences to 23 high-coverage individual 

genomes representing 23 distinct human geographic populations from the 1000 

Genomes Project dataset (Figure 3.5; see Methods) (1000 Genomes Project et 

al. 2015). The 16 U6/L1 junction sequences that were present in the HGR and 
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HeLa cell genomic datasets also were present in each of the 23 of high coverage 

1000 Genomes Project individual genomes; two genomes (NA20845 and 

HG03742) contained a SNP in the U6 portion of the junction sequences (Figure 

3.5). In contrast, the 37 non-aligned U6/L1 junction sequences were absent from 

the high coverage 1000 Genomes Project individual genomes. Thus, the data 

suggest that 37 U6/L1 junctions detected in RNA-seq experiments do not to 

correspond to an existing genomic sequence in the HGR and that different cell 

types may contain a unique cohort of chimeric RNAs that are generated by post-

transcriptional RNA ligation events.  

 

Chimeric U6/L1 RNAs are present in human cells (adapted from: RNA ligation 

precedes the retrotransposition of U6/LINE-1 chimeric RNA, Moldovan et at., 

2019, PNAS, under review) 

RNA-seq experiments demonstrated that U6/L1 chimeric RNAs are a normal 

component of the transcriptome in human cancer cell lines, hESCs, and human 

NPCs (Figure 3.4). Approximately, 30% of the U6/L1 chimeric RNAs aligned to 

the HGR, HeLa, and 23 high-coverage genomes in the 1000 Genomes Project 

dataset (Figure 3.5), indicating that they are generated from existing U6/L1 

chimeric pseudogenes. Vertebrate U6 snRNA is transcribed by RNA polymerase 

III and relies on upstream promoter elements to drive its transcription (Didychuk 

et al. 2018; Kunkel et al. 1986). Thus, unless U6/L1 chimeric pseudogenes 

fortuitously inserted downstream of a promoter that could augment RNA 

polymerase III transcription, it remains unlikely that U6/L1 chimeric RNAs are 
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transcribed as discrete transcription units. In contrast, the majority (~70%) of 

U6/L1 chimeric RNA-seq reads failed to align to the HGR, HeLa, or 23 high-

coverage genomes in the 1000 Genomes Project dataset (Table 3.7), suggesting 

that they were generated de novo, by a post-transcriptional mechanism that joins 

U6 snRNA to L1 RNA. Our transfected cell RT-PCR experiments and in vitro 

ligation data suggest that U6 RNA is ligated to a variably 5'-truncated L1 RNA, 

and that there is not a specific sequence in L1 that serves as a ligation substrate. 

These data imply that U6/L1 ligation results in the formation of a unique U6/L1 

chimeric RNA molecule. Consistent with this conclusion, the majority of the 37 

“non-aligned” junctions was supported by a single RNA-seq read and was unique 

to a single cell line. 

 

Other cellular genes are fused with U6  

In addition to U6/L1 chimeric pseudogenes, the human genome also contains the 

fragments of full length U6 co-localized with other truncated RNAs (Garcia-Perez 

et al. 2007; Buzdin et al. 2003). We thus broadened our hypothesis to investigate 

potential fusion events between U6 and any other possible RNA fragments in 

cells. We identified 2,314 genes fused with U6 snRNA in total (Table 3.8 & Table 

3.9). For all genes fused with U6, we observed that small nuclear RNAs 

(snRNAs) and small nucleolar RNAs (snoRNAs) are significantly enriched 

(Figure 3.7 b; Table 3.8). We also discovered that compared to snRNAs and 

snoRNAs, protein-coding genes contain the most unique genes fused with U6 

snRNAs, but for each transcript, only a few molecules were fused with U6 (Table 
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3.9). As expected, L1 was also among the most frequent transcripts fused with 

U6 snRNAs. From the permutation of random selection from all annotated genes, 

protein coding genes, snRNAs and snoRNAs are all enriched with fusion of U6 

(Figure 3.7 c).  

 

An “AUA” sequence motif is enriched near the fusion sites with U6 

Next, we looked for into more details of the characteristics of the junction 

sequences where U6 fuses into other RNAs. From the U6/L1 analysis, we were 

not able to identify any significant motif that were enriched at the fusion sites of 

L1s with U6 using MEME Suite (Bailey et al. 2009) because of the limited 

number of single molecule U6/L1 fusion events discovered from the five different 

cell lines. Motif finding algorithms are not able to build statistical model to find 

significant motifs from less than 50 junction sequences (Liu, Ma and Wang, 

2008). With the larger number of candidate fusion events with U6 identified with 

other RNAs, we were able to discover an enriched motif at the fusion sites in the 

transcriptome with U6. From the motif enrichment analysis, we identified ‘AUA as 

the motif enriched in all junction sequences by using MEME Suite (See 

Methods). In specific types of RNAs that U6 fused with, we were able to identify 

more specific motifs at junctions (i.e. ‘AAAAAUA’ for junctions of protein coding 

genes fused with U6, ‘CTAUA’ for junctions of snoRNAs fused with U6) (Figure 

3.8 a). 
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To further investigate the randomness of ‘AUA’ motif enriched at fusion site with 

U6, we performed a random permutation of the position of ‘AUA’ in any random 

20 base pairs in transcriptome (Figure 3.8 b). The ‘AUA’ motif is equally 

distributed in the 20 base pair fragments from random transcriptomic sequences, 

while in the 20 base pair fragments around junctions fused with U6, ‘AUA’ motif is 

significantly enriched around positive 5 base pairs from the junction point. The 

result of Kolmogorov-Smirnov test comparing the position of ‘AUA’ motif in U6 

fusion points and random fragments returns a 2.2e-16 p-value, representing a 

statistically significant difference between the two sets of fragments. 

 

Loops in RNA secondary structure are enriched near U6 fusion junctions 

Another potential important aspect for RNA level fusion events is related to 

secondary structure. We analyzed the distance of fusion sites to constructed 

secondary structure loops of RNAs using Vienna (see Methods) (Hofacker, 2003; 

Kerpedjiev et al. 2015). We hypothesized that loops are more accessible to 

excision and fusion enzymes. Compared to random positions selected from all 

secondary structures constructed, U6 fusion sites are more enriched in positions 

inside as well as within 1 or 2 bases from the loops (Figure 3.9c). This provides 

additional support to our hypothesis that positions in loops or nearby loops in 

secondary structure are more accessible to U6 RNA level fusions. 

 

Discussion 
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We identified both single molecule RNA level fusion events and expressed 

existing genomic U6/L1 fragments from five RNA sequencing libraries of different 

cell lines by applying our customized pipeline (Figure 3.4). Except for potential 

PCR duplicates, all single molecule RNA level fusion events are unique in every 

single cell line, while the expressed genomic events are mostly detected in 

multiple cell lines with multiple supportive reads. From the result of searching for 

25 base pair junction sequence in the 22 high coverage 1000 Genomes samples, 

we were able to successfully identify all aligned U6/L1 junction sequences (3 

events with SNPs in one of the 22 samples after manual checking) in all 22 

samples. In contrast, the non-aligned U6/L1 junction sequences were not 

detected in any of the 22 samples, suggesting that the non-aligned U6/L1 events 

are unique, RNA level fusion events. Possible template switching artifacts that 

could have resulted during library preparation were not detected in our searches 

(Figure 3.5 & Table 3.6). 

 

The biochemical analysis from our collaborators Dr. John Moldovan and Dr. John 

Moran showed that the U6/L1 fusion RNAs could be generated independently of 

L1 retrotransposition. This indicates that the U6/L1 events that we identified from 

the 5 different cell lines may not be the results of template switching during L1 

retrotransposition as previously suggested (Figure 3.1) (Garcia-Perez et al. 

2007). They also performed the experiment demonstrating that purified RtcB 

could ligate U6 RNA to L1 RNA in vitro as well as the necessity of a 2’,3’-cyclic 

phosphate on U6 and a 5’-OH on L1 in the fusion RNA formation process. 
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Furthermore, two HeLa cell lines with reduced RtcB expression utilizing 

CRISPR/Cas9 gene-editing method showed a depletion of U6/L1 fusion events 

for ~ 4-5 folds compared to the negative control with RtcB regularly expressed. In 

addition to all the biochemical experiment results, our discovery of multiple U6/L1 

fusion single molecule RNAs suggests that the U6/L1 RNA fusions found in the 5 

cell lines were generated by RtcB-mediated RNA ligation. 

 

As a critical part of spliceosome, U6 snRNA is enriched in the nucleus (Didychuk, 

Butcher and Brow, 2018; Zhang et al., 2014). RtcB is present in both cytoplasm 

and nucleus (Lu, Liang and Wang, 2014; Kosmaczewski et al., 2015). The co-

localization of U6 snRNA, transcribed L1 RNA as well as RtcB in the nucleus, 

together with previously known mechanism for L1 retrotransposition, we propose 

a new mechanistic hypothesis for U6/L1 chimeric gene formation (Figure 3.2) in 

addition to the previously suggested mechanism of template switching during L1 

retrotransposition (Figure 3.1) (Garcia-Perez et al. 2007). An endonuclease could 

cleave L1 RNAs and generate a 5’-OH end, together with the U6 snRNA 2',3'-

cyclic phosphate and the co-localization of RtcB enzyme, the fusion between U6 

snRNA and truncated L1 RNA could occur in nucleus. The 5’-OH end of L1, in 

turn, would assist the reverse transcription of the U6/L1 chimeric RNA into 

genome through L1 retrotransposition in cis (Buzdin, 2003; Garcia-Perez et al., 

2007). 
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Previous genome studies showed that the majority pseudogenes identified from 

human genome contain a full-length U6 with a polyT tract conjoined with a 

collection of various 5’-truncated L1 sequences (Buzdin et al., 2002; Garcia-

Perez et al., 2007; Doucet et al., 2015). The mechanism that we proposed 

provides a plausible explanation for the generation of U6/L1 pseudogenes in 

genome with full length U6. Furthermore, our model could also explain the 

formation of U6atac /L1 pseudogene (Garcia-Perez et al., 2007; Doucet et al., 

2015) formation since U6atac snRNA also contains a 2',3'-cyclic phosphate 

(Shchepachev et al., 2015). 

 

We have generated evidence from both biochemical experiments and 

computational analysis for the new mechanism for the formation of U6/L1 

chimeric pseudogenes in the human genome. Other than the template switching 

mechanism suggested in previous studies (Garcia-Perez et al. 2007), our study 

found extra evidence supporting that the U6/L1 chimeric RNAs were ligated at 

the RNA level under RtcB catalysis first. The U6/L1 chimeric RNA is then 

inserted back to the human genome with the L1 retrotransposition machinery 

(Figure 3.2).  

 

With the in-depth characterization of U6/L1 RNA fusion events, we then 

investigated what other RNAs were fused to U6 snRNA in our 5 cell lines. 

Several studies have shown that U6 is fused to other mRNAs in the human 
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genome (Garcia-Perez et al. 2007; Buzdin et al. 2003). Our collaborators showed 

that U6 snRNA and GFP were ligated in HeLa cell nuclear extracts.  

 

We also observed that U6 snRNA is ligated to protein coding RNAs, other 

snRNAs as well as snoRNAs and that the enrichment of these RNA sequences 

fused to U6 is correlated to their relative abundance in the human transcriptome 

(Figure 3.7). Although the function of U6 fusion with L1 or other RNAs is not 

clear, the discovery of the enriched types of RNAs could help with future studies. 

In particular, the enriched fusion of U6 snRNA with other snRNAs and snoRNAs, 

which are also key components of spliceosome, suggests that the fusion 

phenomena between U6 snRNA and other RNAs is possibly related with RNA 

splicing or RNA degradation. 

 

With more junctions identified after we broaden the analysis to U6 and all other 

possible RNAs, we were able to perform the motif enrichment analysis on the 

junction sequences where U6 snRNA were fused in. We discovered that 

compared to the random simulated background motif, ‘AUA’ motif is significantly 

enriched 7-8 base pairs downstream of the U6 snRNA fusion point towards the 

3’-end of the RNAs. Further experiments and analysis are still needed to 

investigate the mechanism of this ligation process as well as the role of ‘AUA’ 

motif in this process. 
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Single stranded RNAs fold to secondary structures, for example, stem-loop 

structure (Svoboda et al. 2006) and pseudo-knot structure (Staple et al. 2005), in 

cells after being transcribed. The secondary structure of an RNA molecule has a 

critical impact on the function and stability of the RNA (Staple et al. 2005; 

Svoboda et al. 2006). Thus, we analyzed the impact of secondary structure of the 

RNAs ligated with U6 snRNAs. Because of the limitation of computational 

methods predicting secondary structures of longer RNAs, this analysis was 

limited to the snRNAs and snoRNAs ligated with U6 snRNAs. From this analysis, 

we discovered that U6 snRNAs ligation points are enriched in loop structures of 

other snRNAs, and in 1-2 bases away from loop structures in snoRNAs. 

Considering that bases in loop structures are more accessible to other molecules 

and enzymes, it is reasonable that the ligation point of other snRNAs and 

snoRNAs are enriched nearby loop structure. However, more precise secondary 

structure analysis is needed to make further conclusions about the hot spot of U6 

snRNA ligation point in the secondary structure of RNAs. 

 

Our study still has some limitations and caveats. For the biochemical analyses, 

since RtcB is a key ligase catalyzing tRNA splicing (Tanaka et al. 2011), we were 

not able to knock out RtcB entirely to show the necessity of RtcB to the ligation 

between U6 snRNA and L1. With this limitation, we were only able to show 

decreased U6/L1 ligation efficiency resulted from lower RtcB protein expression 

and that U6/L1 ligation efficiency increased in the same cell line with the 

transfected RtcB cDNA. 
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We identified the U6/L1 fusion reads from the RNA-seq data of 5 cell lines. 

However, due to the limitation of sequencing technique, we were not able to 

efficiently discard the PCR duplicates from the sequencing library itself. We 

utilized further analyses including searching for junction motifs in 22 non-related 

1000 Genome high coverage samples to address this issue (Figure 3.5). With the 

improvement of bar-coded sequencing methods, we should be able to identify 

the single molecule level events better in the future. 

 

The use of number of gene counts as the pool for random simulation could be 

another criticism of our study. Since what we were trying to characterize here is 

mostly related to repetitive sequences (i.e. U6 snRNAs, L1s, other snRNAs, 

snoRNAs etc.), the expression level of these elements are relatively difficult to 

evaluate from short read sequencing data. This could be improved by applying 

an estimated expression level for each of the repetitive elements and utilize the 

expression level as the pool for random simulation as negative control for gene 

type enrichment analysis. 

 

We were only able to perform the secondary structure analysis in shorted RNAs 

such as snRNAs and snoRNAs due to the inaccuracy of computational method 

(Fallmann et al. 2017) to predict secondary structure and the high cost of 

experimental secondary structure prediction (Westhof et al. 2015). Despite this 

shortcoming, our result presented a reasonable explanation on how U6 snRNAs 
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could fuse with other RNAs at more flexible and accessible regions of the RNA 

secondary structure. Further studies on the ‘AUA’ motif enrichment correlation 

with the secondary structure positions are necessary for further conclusion of U6 

snRNA fusion characteristics. 

 

The detailed mechanism and function of U6 snRNA ligation process still remains 

unknown after this study. As part of the splicing machinery in cells, U6 snRNA is 

critical for cell development and survival. Further analysis for the function of RtcB 

catalyzed U6 snRNA fusion events with other RNAs could reveal possible 

mechanisms for other critical processes in cells, for example, RNA molecule 

degradation. As a highly active component of cell life cycle, we still need 

tremendous more effort both experimentally and computationally to further 

understand the function of U6 snRNA in cells. 

 

Conclusion and Future Remarks 

In sum, we have provided evidence both experimentally and computationally for 

a new mechanism for the formation of U6/L1 chimeric pseudogenes in the 

human genome. While the mechanism and function of U6 snRNA ligation with 

L1’s and other RNAs remains unclear, our study presents strong evidence for the 

existence of this ligation process in cells.  
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Figure 3.1: Previously suggested mechanism for U6/L1 fusion in human 
genome. 
In previous research, U6/L1 fusion in genome happens when L1 is inserted to 
genome by template switching when reverse transcription takes place. 
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Figure 3.2: Formation of U6/L1 landmarks in genome by RNA level fusion 
between U6 and L1 catalyzed by RtcB. 
In this study, we hypothesized that U6 and L1 RNA molecules form the fusion 
RNA first, then is inserted into human genome by L1 insertion mechanism 
catalyze by enzyme RtcB. 
 
 
  

	



	
	

168	
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Figure 3.3: Method for identification of U6/L1 fusion from RNA-seq data. 
a) Customized human reference genome: We masked out all repetitive 
sequences from human genome GRCh38 using repeat masker, then added the 
only copy of U6 and L1 into the customized reference for future alignment of 
RNA-seq data. 
b) Identification of RNA level U6/L1 fusion events: We applied bwa mem to align 
the reads to align the RNA-seq reads to the customized reference genome. We 
used FLASH to assemble the pair ended reads mapped to U6 and L1 to longer 
single ended reads. To ensure the reconstructed reads containing full length U6, 
we applied blastn of the assembled reads with the last 25 base pair of U6. We re-
align the reads containing the last 25 base pair to the non-masked human 
genome GRCh38 to exclude the existing genomic U6/L1 events. 
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Figure 3.4: U6/L1 fusion events identified from 5 different samples RNA-seq 
data. 
The top panel shows reads which could be aligned back to the genome, 
compared to the bottom panel where reads do not align back to the genome, 
most of the reads aligned have multiple supportive reads from different cell lines, 
representing the same genomic U6/L1 fragments got transcribed. The 
uniqueness of reads in the non-aligned panel after excluding the PCR duplicates 
shows the RNA level U6/L1 fusion events were happening at single molecule 
level. There is no specific hot-spot in L1 observed which preferentially fused with 
U6 snRNA. 
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Figure 3.5: U6/L1 fusion events in high coverage 1000 Genome Project 
whole genome sequencing data. 
For the 25 base pair k-mers around the junction of non-aligned reads (red (U6/L1 
fusion with only 1 supportive read) and blue (U6/L1 fusion with more than 1 
supportive reads, but are likely PCR duplicates)) identified from five cell lines, we 
were not able to find any matched k-mers in the 22 1000 Genome whole genome 
sequencing samples with high coverage. For the 25 base pair k-mers around the 
junction of aligned reads (black) identified from five cell lines, we were able to 
find all of them in at least 21 samples out of the 22. For the ones which were not 
found, we have identified SNP/sequencing errors which lead to the mismatches 
in k-mers searching. 
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Figure 3.6: Method for identification of U6-other sequences fusion from 
RNA-seq data. 
a) Customized human reference genome: We masked out all repetitive 
sequences from human genome GRCh38 using repeat masker, then added all 
sequences in RepBase into the customized reference for future alignment of 
RNA-seq data. 
b) Identification of RNA level U6-other sequences fusion events: We applied bwa 
mem to align the reads to align the RNA-seq reads to the customized reference 
genome. We used FLASH to assemble the pair ended reads mapped to U6 and 
L1 to longer single ended reads. To ensure the reconstructed reads containing 
full length U6, we applied blastn of the assembled reads with the last 25 base 
pair of U6. We re-align the reads containing the last 25 base pair to the non-
masked human genome GRCh38 to exclude the existing genomic U6-other 
sequences events. 
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Figure 3.7: Analysis of gene type enrichment for U6 RNA level fusions. 
a) Permutation method for enrichment analysis of genes fused with U6. In order 
to test if the number of genes fused with U6 in each gene categories, we 
permutated the number of genes by random selecting each different type of 
genes for 6321 times, which is the total number gene fusions identified. We 
repeated this process for 10,000 times. 
b) Top genes fused with U6 at RNA level. Most of genes fused with U6 at RNA 
level are snRNAs or snoRNAs. 
c) Genes enriched with U6 RNA fusions with permutation result. Compared with 
random permutation result, U6 fused with protein coding genes, snRNAs and 
snoRNAs are more enriched than the other kinds. 
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Figure 3.8: Motif analysis at junctions of U6 fusions at RNA level. 
a) AUA motif enriched in all U6 RNA level fusion junctions. Based on junction 
analysis, we identified ‘AUA’ motif enriched in all three kinds of most enriched 
gene types fused with U6 at the RNA level.  
b) Permutation experiment for motif enrichment analysis. We selected all 20 base 
pair exon fragments containing ‘AUA’ motif from GRCh38 genome. From the pool 
of genetic fragments containing ‘AUA’ motif, we randomly selected the candidate 
fragments from the pool for 6321 times and recoded the position of ‘AUA’ motif in 
the selected gene fragments. We repeated this process for 10,000 times for 
background distribution of ‘AUA’ motif in the genomic context of the 
transcriptome. 
c) ‘AUA’ motif position distributed in 20 base pair DNA fragments in random 
genome and in 20 base pair of junction motif with U6 insertion. We have 
observed a significant enrichment of ‘AUA’ motif at the positive position around 5 
base pairs away from the insertion point compared to the negative control of 
‘AUA’ motif in genomic context. 
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Figure 3.9: Method for identification of U6-other sequences fusion from 
RNA-seq data. 
a) Illustration of secondary structure position counts using a secondary structure 
example for SNORA64. The relative distance of each base in the secondary 
structure to the closest loop is counted as the distance for U6 fusion point. 
b) Permutation experiment for negative control of secondary structure analysis of 
U6 fusion genes. We applied Vienna to build secondary structure for all snRNAs 
and snoRNAs for permutation experiment. We randomly selected positions in 
these RNAs to calculate the distance to loops for 6321 times. We then repeated 
this process for 10,000 times as background distribution for genomic context of 
distance to loops. 
c) U6 fusion point distance too loop compared to negative control from genomic 
context. For snRNAs, U6 fusion events are enriched in loops, while for snoRNAs, 
U6 fusion sites are enriched 2 bases away from the loop. 
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Table 3.1: Human U6 snRNA post-transcriptional modifications. 
Modification Position Enzyme or guide RNA 

Terminal Modifications 
5’ Capping 5’ γ-Monomethyl Bin3/MePCE 

3’ End trimming 3’ Terminal 2’,3’-cyclic phosphate Usb1/Mpn1 
3’ End 

oligouridylation 3’ End U6 TUTase 

3’ End 
oligoadenylation 3’ End TRAMP? 

Internal Modifications 
Pseudouridylation U31 ? 

 U40 ? 
 U86 ? 

Ribose 2’-O-
methylation A47 mgU6-47 

 A53 mgU6-53, mgU6-53B 
 G54 ? 
 C60 MBII-166 
 C62 ? 
 C63 ? 
 A70 ? 
 C77 mgU6-77 

N-6-adenosine 
methylation A43 METTL16 

N-2-guanosine 
methylation G72 ? 

 
Modified from Didychuk et al. 2018. 
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Table 3.2: Junction analysis of aligned RNA-seq U6/L1 sequences. 
 

L1.3 
Junction 

L1 
subfamily U6/L1 junction -20 Junction 

Ts U6/L1 junction + 20 

2052 L1PA10 GTAAATGGGCTAAATGCCCC 5 AATTAAAAGACACAGAATGG 

2234 L1PA3 AATCCTAGTCTCTGATAAAA 5 CAGACTTTAAACCAACAAAG 

2568 L1PA4 AATCAACAGAATATACATTC 8 TTTTCAGCACCACACCACAC 

2598 L1PA5 CCACATCACACTTATTCCAA 5 AATTGACCACATAGTTGGAA 

3450 L1PA7 CTACCAGGAGTACAAAGAGG 5 AGCTGGTACCAATCCTTCTG 

4268 L1PA5 ATGAGTGAACTCCCATTCAC 5 AATTGCTTCAAAGAGAATAA 

4611 L1PA2 GGAGGCATCACACTACCTGA 5 CTTCAAACTATACTACAAGG 

s4683 L1PA2 CAAAACAGAGATATAGATCA 5 ATGGAACAGAACAGAGCCCT 

5030 L1PA7 AATTGACAAATGGGATCTAA 6 TTAAAATAAAGAGCTTCTGC 

5095 L1PA7 TGAACAGACAACCTACAGAA 5 TGGAAGAAAATTTTTGCAAT 

5281 L1PA2 ACATGAAAAAATGCTCATCA 5 TCACTGGCCATCAGAGAAAT 

5358 L1PA5 GTTAGAATGGCGATCATTAA 5 AAAGTCAGGAAACAACAGGT 

5558 L1PA7 TTATAAATCATTCTACTGTA 5 AAAACACATGCACACATGTT 

5647 L1PA2 GTCCAACAATGATAGACTGG 5 ATTAAGAAAATGTGGCACAT 

5720 L1PA5 TGATGAGTTCATGTCCTTTG 5 TAGGGACATGGATGAAGCTG 

5906 L1PA3 GGGGGAGGGATAGCATTAGG 5 AGATATACCTAATGCTAAAT 
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Table 3.3: Junction analysis of non-aligned RNA-seq U6/L1 sequences. 
L1.3 Junction U6/L1 junction -20 Junction Ts U6/L1 junction + 20 

474 TGAGGCTTGAGTAGGTAAAC 5 AAAGTAGCCGGGAAGCTCGA 
832 TTAGAAGGAAAACTAACAAC 5 CAGAAAGGACATCTACACCG 
864 ATCTACACCGAAAACCCATC 6 TGTACATCACCATCATCAAA 
1125 GTTAAAAACTTTGAAAAAAA 5 ATTAGACGAATGGCTAACTA 
1231 GTGACGAATGCACAAGCTTC 5 AGTAGCCGATTCGATCAACT 
1454 AAACACTCTGCAGGATATTA 6 TCCAGGAGAACTTCCCCAAT 
1559 AAGAGCAACTCCAAGACACA 6 TAATTGTCAGATTCACCAAA 
1748 AAAGAATTTTCAACCCAGAA 8 TTTCATATCCAGCCAAACTA 
1752 AATTTTCAACCCAGAATTTC 5 ATATCCAGCCAAACTAAGCT 
1824 GACAAGCAAATGTTGAGAGA 6 TTTTGTCACCACCAGGCCTG 
2025 TCACACATAACAATATTAAC 6 TTTAAATATAAATGGACTAA 
2395 TCAGTGACCTACAAAGAGAC 7 TTAGACTCCCACACATTAAT 
2657 ATGTAAAAGAACAGAAATTA 6 TAACAAACTATCTCTCAGAC 
2728 AGAATCTCACTCAAAGCCGC 6 TCAACTACATGGAAACTGAA 
2849 AGACACCACATACCAGAATC 5 TCTGGGACGCATTCAAAGCA 
2884 AAGCAGTGTGTAGAGGGAAA 5 TTTATAGCACTAAATGCCTA 
3056 AATAGAGACACAAAAAACCC 6 TTCAAAAAATCAATGAATCC 
3262 TCTACGCAAATAAACTAGAA 5 AATCTAGAAGAAATGGATAC 
3307 ACACATACACTCTCCCAAGA 5 CTAAACCAGGAAGAAGTTGA 
3311 CACATACACTCTCCCAAGAC 6 TAAACCAGGAAGAAGTTGAA 
3872 TATTGATGGGACGTATTTCA 5 AAATAATAAGAGCTATCTAT 
3945 CAAAAACTGGAAGCATTCCC 8 TTTGAAAACCGGCACAAGAC 
4131 CTAGAAAACCCCATCGTCTC 6 AGCCCAAAATCTCCTTAAGC 
4190 CAGGATACAAAATCAATGTA 5 CAAAAATCACAAGCATTCTT 
4783 AATGGGGAAAGGATTCCCTA 8 TTTAATAAATGGTGCTGGGA 
4854 CCCTTCCTTACACCTTATAC 6 AAAAATCAATTCAAGATGGA 
4887 AATTCAAGATGGATTAAAGA 6 TTTAAACGTTAAACCTAAAA 
5029 AAATTGACAAATGGGATCTA 5 ATTAAACTAAAGAGCTTCTG 
5145 GACAAAGGGCTAATATCCAG 5 AATCTACAATGAACTCAAAC 
5197 AAAAAACAAACAACCCCATC 7 AAAAAGTGGGCGAAGGACAT 
5416 AAATAGGAACACTTTTACAC 5 TGTTGGTGGGACTGTAAACT 
5593 GTATGTTTATTGCGGCACTA 6 TTCACAATAGCAAAGACTTG 
5757 TTGGAAACCATCATTCTCAG 6 TAAACTATCGCAAGAACAAA 
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Table 3.4: Sequences features of the 25bp U6/L1 junction sequences motifs 
of the “aligned”, “non-aligned”, and putative “artifact” RNA-seq chimeras 
 

Category 
L1.3 

Junction 
25bp Junction Motif 

# Supporting 

reads 
Cell Line 

aligned 2052 5'-CATTCTGTATTTTTAATTAAAAGAC  1 NPC 

aligned 2234 5'-CGTTCTGTATTTTTCAGACTCTAAA 2 NPC 

aligned 2568 5'-CGTTCCATTTCTTTTTTCAGCACCA 4 NPC, JVM 

aligned 2598 5'-CGTTCCATATTTTTAATTGACCACA 3 H9, PA-1 

aligned 3450 5'-CGTTCCATATTTTTACTGGTACCAT 1 HA 

aligned 4268 5'-CGTTCCATATTTTTAATTGCTTCAA 6 PA-1, NPC, JVM 

aligned 4611 5'-CGTTCCATATTTTTCTTCAAACTAT 2 NPC, JVM 

aligned 4683 5'-CGTTCCATATTTTTATGGAACAGAA 5 H9, NPC, PA-1, HA 

aligned 5030 5'-CGTTCCGTATTTTTTAAACTAAAGA 1 NPC 

aligned 5095 5'-CATTCCATATTTTTGGGAGAAAATT 3 PA-1, H9 

aligned 5281 5'-CGTTCCATATTTTTCACTGGCCATC 4 JVM, NPC 

aligned 5358 5'-CGTTCCATATTTTTAAAGTCAGGAA 1 NPC 

aligned 5558 5'-AGTTCCGTATTTTTAAAACACATGC 1 NPC 

aligned 5647 5'-CGTTCCATATTTTTATTAAGAAAAT 3 NPC 

aligned 5720 5'-CGTTCCATATTTTTAGGGACATGGA 1 NPC 

aligned 5906 5'-CGTTCCATATTTTTAGATATACCTA 1 HA 

non-aligned 474 5'-CGTTCCATATTTTTAAAGCGTCCTG 1 JVM 

non-aligned 832 5'-CGTTCCATATTTTTAACAGAAAGGA 1 HA 

non-aligned 864 5'-CGTTCCATATTTTTTGTACATCACC 1 NPC 

non-aligned 1125 5'-CGTTCCATATTTTTATTGACGAATG 1 NPC 

non-aligned 1231 5'-CGTTCCATATTTTTAGTAGCTGATT 1 NPC 

non-aligned 1454 5'-CGTTCCATATTTTTTCCAGGAGAAC 1 H9 

non-aligned 1559 5'-CGTTCCATATTTTTTAATTGTCAGA 1 JVM 

non-aligned 1748 5'-CGTTCCATATTTTTTTTCATATCCA 2(2) HA 

non-aligned 1752 5'-CGTTCCATATTTTTATATCCAGCCA 1 NPC 

non-aligned 1824 5'-CGTTCCATATTTTTTTGTCACCACC 2(2) NPC 

non-aligned 2025 5'-CGTTCCATATTTTTTAAATGTAAAT 1 H9 

non-aligned 2395 5'-CGTTCCATATTTTTTTAGACTCCCA 2(2) NPC 

non-aligned 2657 5'-CGTTCCATATTTTTTAACAAACTGT 1 NPC 

non-aligned 2728 5'-CGTTCCATATTTTTTCAACTACATA 1 H9 

non-aligned 2849 5'-CGTTCCATATTTTTCTGGGACACAT 1 NPC 

non-aligned 2884 5'-CGTTCCATATTTTTATAGCACTAAA 2(2) NPC 

non-aligned 3056 5'-CGTTCCATATTTTTTCAAAAAATCA 1 NPC 

non-aligned 3262 5'-CGTTCCATATTTTTAATCTAGAAGA 1 NPC 

non-aligned 3307 5'-CGTTCCATATTTTTAGGCTAAACCA 1 NPC 
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non-aligned 3311 5'-CGTTCCATATTTTTTAAACCAGGCA 1 JVM 

non-aligned 3872 5'-CGTTCCATATTTTTAAATAATAAGA 1 NPC 

non-aligned 3945 5'-CGTTCCATATTTTTTTTGAAAACTG 1 H9 

non-aligned 4131 5'-CGTTCCATATTTTTTAGCCCAAAAT 1 JVM 

non-aligned 4190 5'-CGTTCCATATTTTTATGTTCAAAAA 1 NPC 

non-aligned 4783 5'-CGTTCCATATTTTTTTTAATAAATG 3(2) NPC 

non-aligned 4854 5'-CGTTCCATATTTTTTATACAAAAAA 1 NPC 

non-aligned 4887 5'-CGTTCCATATTTTTTAAACGTTAGA 1 NPC 

non-aligned 5029 5'-CGTTCCATATTTTTATTAAACTAAA 1 NPC 

non-aligned 5145 5'-CGTTCCATATTTTTAATCTACAATG 1 NPC 

non-aligned 5197 5'-CGTTCCATATTTTTTTAAAAAGTGG 2(2) NPC 

non-aligned 5416 5’-CGTTCCATATTTTTGTTGGTGGGAC 1 H9 

non-aligned 5593 5'-CGTTCCATATTTTTTCACAATAGCA 1 HA 

non-aligned 5757 5'-CGTTCCATATTTTTTAAACTATCGC 1 HA 

non-aligned 934 5'-CGTTCCATATTTTTTTCTGCTCTGT 1 NPC 

non-aligned 4322 5'-CGTTCCATATTTTTTTCACATCCCT 1 JVM 

non-aligned 5259 5'-CGTTCCATATTTTTTTGTTGGCCAC 1 NPC 

non-aligned 5343 5'-CGTTCCATATTTTTAATGATGACGT 1 NPC 

artifact - 5'-TTCGTGAAGCGTATACACCAATAAC 1 NPC 

artifact - 5'-GACACGCAAATTCTATTGAGGGTTT 2(2) H9 

artifact - 5'-ACACGCAAATTCATCAGTGAATCCA 1 NPC 

artifact - 5'-ACGCAAATTCGATAAAAATCCTAGA 2(2) H9 

artifact - 5'-GACACGCAAATTCTTTTTATGGCTG 1 NPC 

artifact - 5'-CACGCAAATTCAAAATACTGGCAAA 1 HA 

artifact - 5'-ACGCAAATTCGATGAAATAAAGCAT 1 NPC 

artifact - 5'-GACACGCAAATTCTTGGGTTGGTTC 2(2) H9 

artifact - 5'-CACGCAAATTCTTGAAGATGACATG 1 H9 

artifact - 5'-CACGCAAATTCGGTACCTGAAAGGA 1 NPC 

artifact - 5'-ATGACACGCAAATTCGACAAAGGGC 1 NPC 
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Table 3.5: Characterization of 16 genomic U6/L1 chimeras. 
 

L1.3 
Junction  

L1 
Subfamily  

Genomic Position Remarks 

2052 L1PA10  chrX:102678813-102674130 ARMCX5-GPRASP2 Intron 
2234 L1PA3 chr13:48987911-48988334 FNDC3A intron 
2568 L1PA4  chr1:180758722-180762284 XPR1 intron 
2598 L1PA5  chr3:98805084-98801701 DCBLD2 intron 
3450 L1PA7  chr8:103384961-103387948 intergenic  
4268 L1PA5 chr13:72706123-72704270 intergenic 
4611 L1PA2  chr18:68858934-68860488 CCDC102B intron 
4683 L1PA2  chr4:39296252-39297711 RFC1 intron 
5030 L1PA7  chr1:42569034-42570125 CCDC30 intron 
5095 L1PA7  chr14:37434573-37433236 MIPOL1 intron 
5281 L1PA2  chr3:196784226-196785086 PAK2 intron 
5358 L1PA5  chr4:109992325-109993102 EGF intron 
5558 L1PA7  chr14:102865856-102866427 TRAF3 intron 
5647 L1PA2  chr15:65553187-65552698 HACD3 intron 
5720 L1PA5  chr4:76532327-76531908 SHROOM3 intron 
5906 L1PA3  chr2:174558072-174557836 intergenic 
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Table 3.6: U6/L1 fusion junction search in 1000 Genomes Project samples. 

25bp Junction Motif 
Number 
of 1kg 

Sample 
(25bp) 

Classification 
Number of 

Reads 
Called 

Sample(s) 

CGTTCCATATTTTTGTTGGTGGGAC 0 non-aligned 1 H9 

CGTTCCATATTTTTTCAACTACATA 0 non-aligned 1 H9 

CGTTCCATATTTTTTAAACTATCGC 0 non-aligned 1 HA 

CGTTCCATATTTTTAATGATGACGT 0 non-aligned 1 NPC 

CGTTCCATATTTTTTTGTTGGCCAC 0 non-aligned 1 NPC 

CGTTCCATATTTTTTAATTGTCAGA 0 non-aligned 1 JVM 

CGTTCCATATTTTTTAAATGTAAAT 0 non-aligned 1 H9 

CGTTCCATATTTTTTCCAGGAGAAC 0 non-aligned 1 H9 

CGTTCCATATTTTTAAAGCGTCCTG 0 non-aligned 1 JVM 

CGTTCCATATTTTTTAAACGTTAGA 0 non-aligned 1 NPC 

CGTTCCATATTTTTATGTTCAAAAA 0 non-aligned 1 NPC 

CGTTCCATATTTTTTTCTGCTCTGT 0 non-aligned 1 NPC 

CGTTCCATATTTTTAGTAGCTGATT 0 non-aligned 1 NPC 

CGTTCCATATTTTTATATCCAGCCA 0 non-aligned 1 NPC 

CGTTCCATATTTTTTAGCCCAAAAT 0 non-aligned 1 JVM 

CGTTCCATATTTTTTAAACCAGGCA 0 non-aligned 1 JVM 

CGTTCCATATTTTTATTGACGAATG 0 non-aligned 1 NPC 

CGTTCCATATTTTTAGGCTAAACCA 0 non-aligned 1 NPC 

CGTTCCATATTTTTCTGGGACACAT 0 non-aligned 1 NPC 

CGTTCCATATTTTTAACAGAAAGGA 0 non-aligned 1 HA 

CGTTCCATATTTTTTGTACATCACC 0 non-aligned 1 NPC 

CGTTCCATATTTTTTATACAAAAAA 0 non-aligned 1 NPC 

CGTTCCATATTTTTTTCACATCCCT 0 non-aligned 1 JVM 

CGTTCCATATTTTTAAATAATAAGA 0 non-aligned 1 NPC 

CGTTCCATATTTTTTTTGAAAACTG 0 non-aligned 1 H9 

CGTTCCATATTTTTTCACAATAGCA 0 non-aligned 1 HA 

CGTTCCATATTTTTTAACAAACTGT 0 non-aligned 1 NPC 

CGTTCCATATTTTTATTAAACTAAA 0 non-aligned 1 NPC 

CGTTCCATATTTTTTCAAAAAATCA 0 non-aligned 1 NPC 

CGTTCCATATTTTTAATCTACAATG 0 non-aligned 1 NPC 
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CGTTCCATATTTTTAATCTAGAAGA 0 non-aligned 1 NPC 

CGTTCCATATTTTTTTTCATATCCA 0 non-aligned 2 HA 

CGTTCCATATTTTTTTTAATAAATG 0 non-aligned 3 NPC 

CGTTCCATATTTTTTTAGACTCCCA 0 non-aligned 2 NPC 

CGTTCCATATTTTTTTGTCACCACC 0 non-aligned 2 NPC 

CGTTCCATATTTTTATAGCACTAAA 0 non-aligned 2 NPC 

CGTTCCATATTTTTTTAAAAAGTGG 0 non-aligned 2 NPC 

CGTTCCATATTTTTAGATATACCTA 22 aligned 1 HA 

CGTTCCATATTTTTCACTGGCCATC 22 aligned 4 multiple 

CGTTCCATATTTTTATTAAGAAAAT 21 aligned 3 NPC 

CGTTCCATATTTTTAATTGCTTCAA 21 aligned 6 multiple 

CGTTCCATATTTTTAAAGTCAGGA 22 aligned 1 NPC 

CGTTCCATATTTTTACTGGTACCA 21 aligned 1 HA 

CGTTCCATATTTTTCTTCAAACTA 21 aligned 2 multiple 

CGTTCCATATTTTTAGGGACATGGA 22 aligned 1 NPC 

CGTTCCATATTTTTAATTGACCACA 22 aligned 3 multiple 

CATTCCATATTTTTGGGAGAAAATT 21 aligned 3 multiple 

CGTTCCATATTTTTATGGAACAGAA 22 aligned 5 multiple 

TTCGTGAAGCGTATACACCAATAAC 0 artifact 1 NPC 

GACACGCAAATTCTATTGAGGGTTT 0 artifact 1 H9 

ACACGCAAATTCATCAGTGAATCCA 0 artifact 1 NPC 

ACGCAAATTCGATAAAAATCCTAGA 0 artifact 1 H9 

GACACGCAAATTCTTTTTATGGCTG 0 artifact 1 NPC 

CACGCAAATTCAAAATACTGGCAAA 0 artifact 1 HA 

ACGCAAATTCGATGAAATAAAGCAT 0 artifact 1 NPC 

GACACGCAAATTCTTGGGTTGGTTC 0 artifact 1 H9 

CACGCAAATTCTTGAAGATGACATG 0 artifact 1 H9 

CACGCAAATTCGGTACCTGAAAGGA 0 artifact 1 NPC 

ATGACACGCAAATTCGACAAAGGGC 0 artifact 1 NPC 
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Table 3.7: 1000 Genomes Project sample numbers with population codes. 

Sample Population 
HG00096 GBR 
HG00268 FIN 
HG00419 CHS 
HG00759 CDX 
HG01051 PUR 
HG01112 CLM 
HG01500 IBS 
HG01565 PEL 
HG01583 PJL 
HG01595 KHV 
HG01879 ACB 
HG02568 GWD 
HG02922 YRI 
HG03052 MSL 
HG03642 STU 
HG03742  ITU 
NA18525 CHB 
NA18939 JPT 
NA19017 LWK 
NA19625 ASW 
NA19648 MXL 
NA20502 TSI 
NA20845 GIH 
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Table 3.8: Number of genes fused with U6 in different categories. 
Number of Fusion Events 

Gene Type Count Percentage 
Protein Coding 3514 56% 

snoRNA 1522 24% 
snRNA 641 10% 
lincRNA 159 3% 

Antisense 159 3% 
Processed Pseudogene 122 2% 

Processed Transcript 62 1% 
Others 142 2% 
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Table 3.9: Number of unique genes fused with U6 in different categories. 
Number of Unique Genes 

Gene Type Count Percentage 
Protein Coding 1854 80% 

snoRNA 94 4% 
snRNA 20 1% 
lincRNA 52 2% 

Antisense 99 4% 
Processed Pseudogene 101 4% 

Processed Transcript 17 1% 
Others 77 3% 
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Chapter 4 Seekmer: Expression Quantification for both Bulk and 
Single-cell RNA Sequencing 

 

This chapter presents a working draft of the manuscript “Seekmer recovers 

single-cell transcriptomic expression profiles through weighted pooling” in 

preparation with Hongjiu Zhang, Dr. Ryan E. Mills and Dr. Yuanfang Guan. 

Hongjiu Zhang developed the original algorithm design. I performed all the 

benchmark analysis using different data sets and algorithm refinement based on 

the benchmark result. 

 

Introduction 

RNA sequencing (RNA-seq) technologies and RNA quantification methods 

The DNA makeup of individual cells in a human body remains mostly the same, 

with the exception of somatic variation. However, RNA is highly dynamic and can 

vary in different cell types. The human transcriptome includes all transcripts in a 

cell as well as their quantity (Mortazavi et al., 2008; Wang, Gerstein and Snyder, 

2009). The variability of a transcriptome comes from differences in expressed 

genes, differences in specific isoforms that are spliced from those genes, as well 

as differences in the quantity of transcripts expressed per gene. Thus, RNA 

sequencing based on Illumina sequencing of reverse transcribed cDNA library 
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from cells can represent the features of transcriptome for certain cells and 

tissues. 

 

Bioinformatics tools for quantifying gene/transcript expression have been 

developed for decades. In general, there are two major kinds of RNA-seq 

quantifications tools. RNA-seq quantification was initially developed to quantify 

isoform expression based on read alignment, for example, TopHat (Trapnell, 

Pachter and Salzberg, 2009) + Cufflinks	 (Trapnell et al., 2012), STAR (Dobin et 

al, 2012) + RSEM (Li and Dewey, 2011). These alignment-based tools are 

relatively accurate to quantify isoforms in transcriptome (Teng et al., 2016), but 

take a long time and large memory footprint to perform due to the time and 

memory needed for read alignment. In recent years, multiple alignment-free 

RNA-seq quantification tools have been developed, including Kallisto (Bray et al. 

2016), Sailfish (Patro, Mount and Kingsford, 2014) and Salmon (Patro et al., 

2017). For alignment free methods, a pseudo-alignment is performed using the 

RNA-seq reads. The pseudo-counts for each isoform are then used as input for 

further quantification. Without alignment, these alignment-free methods have 

shortened the running time significantly compared to alignment-based methods 

(Patro, Mount and Kingsford, 2014; Bray et al. 2016; Patro et al., 2017). 

However, because of the relative lower accuracy of read assignment, alignment-

free methods are slightly less accurate compared to alignment-based methods 

(Teng et al., 2016). 
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Single cell RNA-seq technologies and RNA quantification methods 

Bulk RNA-seq is performed with RNA extracted from large population of cells as 

discussed in Chapter 2. However, the results from a bulk RNA-seq analysis will 

only represent the average isoform profile of thousands to millions of cells, and 

as such the quantification of the cell-to-cell difference is impossible to ascertain. 

In 2009, the first protocol of single cell RNA-seq (scRNA-seq) was published 

(Tang et al., 2009). Multiple technologies for scRNA-seq has been developed 

since then. There are a few major types of scRNA-seq technologies widely 

performed, including SMART-seq/SMART-seq2 (Ramsköld et al., 2012; Picelli et 

al., 2014), and UMI-tag based approaches (Islam et al., 2011; Hashimshony et 

al., 2012; Macosko et al., 2015). While UMI-barcoded can improve the accuracy 

by removing PCR bias using barcodes, these methods can only sequence the 5’ 

or 3’ end of the transcripts (Islam et al., 2011; Hashimshony et al, 2012). Thus, 

SMART-seq2 (Picelli et al., 2014) with full coverage on each transcript fits better 

for the purpose of isoform quantification and allele specific gene expression in 

single cell transcriptome. 

 

Although experimental methods for scRNA-seq have been developed to capture 

the dynamics of each single cell transcriptome, the bioinformatics tools for 

analyzing scRNA-seq data remains limited and underdeveloped	 (Hwang, Lee 

and Bang, 2018). The random dropout of many genes (Wagner, Regev and 

Yosef, 2016) and biased amplification of certain genes	 (Bacher and Kendziorski, 

2016) are two major challenges for most of scRNA-seq analysis tools. 
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Furthermore, with a relatively small amount of reads in scRNA-seq data 

compared to bulk RNA-seq data, the normalization models applied to bulk RNA-

seq data do not perform well in scRNA-seq. 

 

Here we developed Seekmer, an RNA-seq quantification tool that combines the 

advantages of both alignment-based and alignment-free methods to quantify 

isoform expression level in both bulk and single cell RNA-seq data. We further 

present an imputation method designed for scRNA-seq to better quantify isoform 

expression in a smaller total number reads scRNA-seq library by cell pooling 

based on the initial isoform expression quantification. 

 

Method and Materials 

Seekmer Algorithm 

Seekmer consists of two parts, an alignment-free mapper and an abundance 

estimator (Figure 4.1 a). The alignment-free mapper is similar to existing 

alignment-free transcript quantification tools such as Kallisto (Bray et al. 2016). 

Seekmer mapper generates an index of reference transcriptomic sequences. To 

build an index, Seekmer first collects all possible k-mers from reference 

transcriptomic sequences. Each k-mer is associated with a set of transcripts to 

which the k-mer can be mapped. Due to the high similarities between sequences 

of splicing isoforms from same genes, many k-mers can be mapped to more than 

one transcript. Seekmer groups together k-mers that are contiguous on the 

transcript sequences and share same sets of mappable transcripts. These 
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grouped k-mers form contigs, as they occupy continuous segment of transcript 

sequences. Each contig has two terminal k-mers (and their reverse 

complements). These grouped k-mers, together with their sets of mappable 

transcripts, are the index for later mapping process. 

 

When mapping a read, the mapper looks for a k-mer in the read that is also 

present in the Seekmer index. If a read has no such k-mer, the read is discarded. 

Starting from the matched k-mer, the mapper keeps extending the match by 

iteratively jumping over the terminal k-mers of the contigs and mapping k-mers. 

By jumping over the contig, the mapper skips over k-mers that have the same 

mappable target transcripts, both speeding up the process and avoiding potential 

sequencing errors or mutations in the middle of the contig. The output of the 

mapper for each cell is a long list of transcript sets and how many reads can be 

mapped to these sets. These data are the input for the abundance estimator. 

 

The abundance estimator of Seekmer takes the read mapping data and performs 

an initial estimation the abundance of genes. The initial estimation optimizes a 

uniform mixture model. The log-likelihood function is expressed as: 

,  

where i, j is the effective length of the j-th transcript and is the abundance of the j-

th transcript. The estimator estimates the gene abundance of each cell by adding 

the abundance of all transcripts from same genes.  
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Based on the initial estimation, the abundance estimator then calculates the 

Pearson correlation coefficients of gene expression for all pairs of cells as 

 

 

where gik is the expression level of k-th gene in i-th cell, and rij is the Pearson 

correlation coefficient between the gene expression profile of i-th cell and j-th 

cell. The estimator then applies K-mean clustering (K = 2) on the coefficients in 

the matrix and zeros out (Figure 4.1 b). The cluster of the lower coefficients in the 

correlation matrix is zero out. Seekmer then raise all elements in the processed 

correlation matrix to higher power to get the weight matrix W for all cells. Given a 

target cell to impute, Seekmer build a model similarly to the uniform expression 

cells to the same number of the target cell. Then the read counts are multiplied 

by the pre-calculated weights. By optimizing the likelihood function of the mixture 

model, Seekmer estimates the transcript-level abundance of the cells. 

 

Real-world RNA sequencing data 

Public available real RNA sequencing data in this work includes: 1) bulk RNA 

sequencing data of two uniformly used samples, Universal Human Reference 

RNA (UHRR) and Human Brain Reference RNA (HBRR) (SEQC/MAQC-III 
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Consortium et al. 2014.); 2) SMRT-seq sequencing of mouse embryonic cells 

with ERCC and SIRV spike-ins (ID: E-MTAB-5485) (Svensson et al. 2017). The 

quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay 

results for UHRR and HBRR were generated from SEQC project as a ‘gold 

standard’ for RNA-seq quantification (GEO Accession: GSM1361812, 

GSM1361813) (SEQC/MAQC-III Consortium et al. 2014).  

 

Simulated sequencing data 

All simulated sequencing data in this work were generated using RSEM v1.2.28 

(coupled with STAR v2.7.0e aligner). STAR and RSEM aligned and estimated 

the transcript abundance of a UHRR sample (SRR950078) and a HBRR sample 

(SRR950079) against ENSEMBL 90 human reference cDNA sequences. RSEM 

simulator then took the quantification results as the expression level for each 

transcript and simulated 48 RNA sequencing libraries based on the UHRR 

sample and 48 based on the HBRR sample. The total number of reads for the 96 

RNA-seq libraries is randomly selected from a normal distribution. 

 

Benchmarks 

The UHRR, HBRR, simulated, and Fluidigm Polaris samples were mapped 

against ENSEMBL 90 human reference cDNA sequences. The mouse embryonic 

stem cells with spike-ins were mapped against ENSEMBL 90 mouse reference 

cDNA sequences. 
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The quantification and imputation results of simulated 96-cell dataset, the mouse 

embryonic stem cell dataset, and the Fluidigm Polaris dataset were also 

analyzed using Seurat. 

 

Results 

Seekmer fills the gap of alignment-free and alignment-based RNA quantification 

methods in real bulk RNA sequencing benchmark by more accurate pseudo-

alignment 

We performed Kallisto (Bray et al. 2016), Sailfish (Patro, Mount and Kingsford, 

2014), Salmon (Patro et al., 2017), STAR+RSEM	 (Li and Dewey, 2011; Dobin et 

al., 2012) and Seekmer on the two uniformly used samples, Universal Human 

Reference RNA (UHRR) and Human Brain Reference RNA (HBRR) 

(SEQC/MAQC-III Consortium et al. 2014). Seekmer performs slightly better than 

all other alignment-free methods and have a similar performance with alignment-

based method (STAR+RSEM) in both UHRR and HBRR libraries (Figure 4.2; 

Figure 4.3; Table 4.1; Table 4.2). With a similar performance of Seekmer with 

STAR+RSEM, Seekmer is on average 20 times faster than STAR+RSEM (Table 

4.3) and is slightly slower than the other three alignment-free methods. 

 

The local alignment applied in non-matching k-mers increased the accuracy of 

read alignment for Seekmer. The total number of mapped reads from Seekmer 

was observed to be consistent with those mapped using STAR (Figure 4.4 a). In 

order to test whether the aligned reads in Seekmer were accurately mapping to 
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the correct positions in the genome, we further generated a set of negative 

control “pseudo” reads with 0-50 base pair mapped to a position in the reference 

and the remaining portion as non-reference randomly generated sequence. We 

performed all five methods on the negative control data. Only Seekmer and 

STAR+RSEM did not align any of these pseudo-reads to the reference, while all 

three alignment-free methods aligned 48% reads from the negative control set 

(Figure 4.4 b). 

 

Seekmer single cell imputation improves single cell RNA sequencing 

quantification in simulated single cell RNA sequencing data 

With fewer reads in the single cell RNA sequencing libraries, we tested the 

performance of Seekmer imputation on single cell data using a set of simulated 

libraries, each with a different total number of reads. We observed that the 

performance of Seekmer drops when the total number of reads falls under 

1,000,000 (Figure 4.5 a, b, c).  

 

We also tested the log-Pearson and Spearman correlation of Seekmer 

imputation quantification in simulated single cell RNA data with known gene and 

transcript level expression levels as well as qRT-PCR expression of 20801 

genes. With imputation, Seekmer performs much better on both higher mean log-

Pearson and Spearman correlation as well as exhibiting smaller standard error 

among different libraries. 
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We then also tested different power (exponent) levels of the weight matrix used 

for single cell pooling in the simulated single cell data. From both log-Pearson 

and Spearman correlation, power=16 performed the best with a higher mean 

compared to power 1-12 and with a smaller standard error compared to power 

32. Thus, we chose power=16 for future Seekmer imputation analysis (Figure 

4.7; Table 4.4). Furthermore, the performance of Seekmer imputation is not 

affected by different ratio of cells in different clusters (Figure 4.9; Figure 4.10). 

 

Both PCA and tSNE plots show a distinct clustering of the two types of simulated 

cells (Figure 4.8 a, b). The cells further away from the center of clusters show a 

clear fewer number of reads (Figure 4.8 c). 

 

Seekmer single cell imputation improves single cell RNA sequencing 

quantification in SIRV spike-in RNA sequencing data 

SIRV is a spike-in isoform test set that is used for quantification assessment. We 

were able to thus assess the accuracy of Seekmer imputation against real RNA 

sequencing data with SIRV. We observed a clear clustering of cells after 

imputation compared to raw quantification results (Figure 4.11; Figure 4.12). Both 

log-Pearson and Spearman correlation between Seekmer quantification result of 

SIRV transcripts and original spike-in amount increased after imputation 

compared to the result before imputation (Figure 4.13), representing a huge 

amount of performance improvement after imputation performed. 
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Seekmer single cell imputation correctly identified gene markers for different cell 

types in Fluidigm Polaris sequencing on K562 and SUM149 

As a case study, we applied Seekmer to a Fluidigm Polaris sequencing data on 

two cell lines. One is the leukemia cell line K562, and the other is the triple-

negative breast cancer cell line SUM149. Both cell lines are well studied and 

have many splicing isoforms have been characterized. 

 

K562 cells clustered distinctly from SUM149 cells, with some outliers of cells 

containing fewer total number of reads (Figure 4.14; Figure 4.15). We observed 

both transcripts of CD44 markers and both transcripts of EGFR markers better 

enriched in SUM149 after imputation, as well as a better enrichment of GYPA 

and GYPB in K562 after imputation. (Figure 4.16; Figure 4.17; Figure 4.18) 

 

Discussion 

We have developed Seekmer to perform RNA quantification for both bulk RNA 

sequencing and single cell RNA sequencing with imputation. We have shown 

that Seekmer has similar performance with alignment-based method, 

STAR+RSEM, with a significantly shorter run time. We also showed that with 

imputation, Seekmer could significantly improve the performance of RNA 

quantification from simulated single cell RNA sequencing data and SIRV spike-in 

data. We also showed a case study of RNA sequencing on K562 and SUM149 

with Seekmer imputation and presented the correct enrichment of certain marker 

genes previously known in both of the cell lines. 
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While Seekmer has been shown to perform well in these scenarios, there are a 

few limitations. One limitation is that Seekmer calculates the similarity between 

cells based on read counts of all genes. Considering most platforms can detect 

only a few thousand genes in each cell, more than half of the elements in gene 

expression vectors of cells are zeros. Due to the majority of zeros in the 

expression vectors in every cell, the expression profile of cells tends to be 

similar, and it is difficult for Seekmer to cluster the similar cells. Also, for studies 

involving cells from the same tissues or organs, there may be many genes with 

similar expression levels. This may lead to high correlations between cells and 

cause Seekmer to be insensitive to minor differences between them. However, 

we did not observe this in our analysis. A potential reason for the absence may 

be our 2-way clustering and our use of higher power of correlation coefficients. 

This issue may be alleviated by using the most variable genes instead of all 

genes to calculate the correlation matrix.  

 

Another limitation is that the current implementation of Seekmer is not scalable to 

handle cases where are many thousands of cells. Inference for more than a few 

thousand cells may take many days to complete. This is currently acceptable as 

major full-length single-cell sequencing platforms accept at most a few hundred 

cells per batch but may be limiting in the future as technology continues to 

advance. At the same time, this can be easily improved in algorithm 

implementation and future hardware upgrades.  
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Conclusion 

This work presents Seekmer, an imputation method that estimates single-cell 

transcript abundance through read pooling. The weighted pooling approach 

enables estimating the abundance of the transcripts per cell much more 

accurately. The algorithm is able to differentiate splicing isoforms from same 

genes in the imputation process and performs well even for limited numbers of 

cells. In sum, Seekmer provides more accurate transcript profiling analysis and 

empowers researchers in single-cell splicing studies. 
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Figure 4.1: Seekmer RNA quantification method and single cell pooling 
strategy. 
a) Seekmer RNA sequencing pseudo-alignment and quantification. Seekmer 
RNA quantification tool looks for k-mers in reads in the pre-built de Bruijn graph 
of index for transcriptome. Once one k-mer is matched with reference, the k-mer 
search would be extended along the reference. If there is no exact match when 
extending k-mer search, a local alignment (SIFT alignment) would be performed 
to ensure if the reason for non-match is sequencing error or SNP in certain 
samples. After counts for each transcript, a quadratic gradient optimization is 
performed to get the final expression level of each transcript. 
b) Seekmer single cell pooling and imputation. The RNA quantification result for 
each single cell is used to calculate the correlation between the single cells. The 
cells are then pooled based on the correlation. Seekmer imputation then re-
quantifies the expression level of each single cell based on the most correlated 
single cells. 
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Figure 4.2: Seekmer RNA quantification performance on bulk RNA 
sequencing compared to other methods (UHRR). 
Correlation of the TPM calculated by different algorithms (Kallisto, Sailfish, 
Salmon, STAR-RSEM and Seekmer) with the qRT-PCR quantification of 
20801genes in five UHRR RNA sequencing libraries.  
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Figure 4.3: Seekmer RNA quantification performance on bulk RNA 
sequencing compared to other methods (HBRR) 
Correlation of the TPM calculated by different algorithms (Kallisto, Sailfish, 
Salmon, STAR+RSEM and Seekmer) with the qRT-PCR quantification of 
20801genes in five HBRR RNA sequencing libraries.  
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Figure 4.4: Seekmer RNA quantification performance on bulk RNA 
sequencing data (UHRR and HBRR) map ratio compared to other alignment 
free methods and alignment based methods. 
a) Percentage of reads mapped in bulk RNA sequencing data. The percentage of 
reads mapped to reference from 10 different bulk RNA sequencing libraries in 
different methods including both alignment-free and alignment-based methods. 
Seekmer has a closer mapped rate of reads compared to STAR-RSEM which is 
the alignment-based methods with more alignment accuracy. 
b) Percentage of reads mapped in simulated negative control. With negative 
control where only less than half of the reads contain the k-mer in genome, all 
alignment-free methods would still align 48% reads, while Seekmer performs as 
STAR, which did not align any simulated negative control reads. 
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Figure 4.5: Total number of reads and Seekmer RNA quantification 
performance on simulated single cell RNA sequencing data. 
a) Seekmer RNA quantification result compared with qRT-PCR result with 2.13M 
reads in the simulated library. The quantification of single cell RNA sequencing 
library with relatively high number of reads (2.13M) has a high correlation with 
the qRT-PCR result. 
b) Seekmer RNA quantification result compared with qRT-PCR result with 0.05M 
reads in the simulated library. The quantification of single cell RNA sequencing 
library with relatively low number of reads (0.05M) has a lower correlation with 
the qRT-PCR result. 
c) Spearman correlation of Seekmer quantification result with qRT-PCR result 
from simulation. Spearman correlation increases when the number of reads in 
single cell RNA-seq library increases. It reaches a flat curve after ~106 total reads 
in the library.  
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Figure 4.6: Seekmer RNA quantification performance on simulated single 
cell RNA sequencing data. 
a) Log-Pearson correlation of Seekmer quantification result with different true 
answers before and after imputation. The imputed log-Pearson correlation of 
Seekmer quantification result after imputation with gene level true answer, with 
transcirpt level true answer and qRT-PCR quantification result is all better (higher 
mean and smaller standrad deviation) than the log-Pearson correlation of 
Seekmer quantification result before imputation. 
b) Spearman correlation of Seekmer quantification result with different true 
answers before and after imputation. The imputed Spearman correlation of 
Seekmer quantification result after imputation with gene level true answer, with 
transcirpt level true answer and qRT-PCR quantification result is all better (higher 
mean and smaller standrad deviation) than the log-Pearson correlation of 
Seekmer quantification result before imputation. 
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Figure 4.7: Seekmer RNA quantification performance on simulated single 
cell RNA sequencing data with different power. 
a) Log-Pearson correlation of Seekmer quantification result with different true 
answers with different power of imputation. The log-Pearson correlation of 
Seekmer quantification result with gene level true answer, with transcirpt level 
true answer and qRT-PCR quantification result is best with power=16, with the 
higher mean as well as a lower standard deviation. 
b) Spearman correlation of Seekmer quantification result with different true 
answers with different power of imputation. The Spearman correlation of 
Seekmer quantification result with gene level true answer, with transcirpt level 
true answer and qRT-PCR quantification result is best with power=16, with the 
higher mean as well as a lower standard deviation. 
 
  

	



	
	

222	
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Figure 4.8: Clustering after imputation on simulated single cell RNA 
sequencing data. 
a) PCA plot of simulated single cells after imputation. PCA plot of simulated 
single cell RNA sequencing data from UHRR and HBRR of different gene 
expression profiles. Except for a few samples, all UHRR and HBRR samples are 
cluestered together after imputation.  
b) tSNE plot of simulated single cells after imputation. tSNE plot of simulated 
single cell RNA sequencing data from UHRR and HBRR of different gene 
expression profiles. UHRR and HBRR samples clustered into two groups, but 
there are a few samples with a few of samples furhter away from the center of 
each cluster. 
c) tSNE plot of simulated single cells after imputation colored with read count. 
tSNE plot of simulated single cell RNA sequencing data from UHRR and HBRR 
of different gene expression profiles colored with read count of each single cell 
RNA sequencing library. The two further away small clusters from the center of 
the two major clusters both have much fewer reads compared to the other 
samples closer to the center of the two clusters.  
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Figure 4.9: Performance (Log-Pearson) of Seekmer on different ratio of 
cells with simulated single cell data. 
a) Log-Pearson correlation of Seekmer quantification result for all cells with gene 
level true answer (upper), with transcript level true answer (middle) and qRT-
PCR quantification result (lower) before and after imputation with different ratio of 
numbers of single cells from two classes. Different ratio of cells from different 
clusters did not significantly affect the performance of Seekmer from log-Pearson 
correlation. 
b) Log-Pearson correlation of Seekmer quantification result for HBRR cells 
(upper) and UHRR cells (lower) with transcript level true answer before and after 
imputation with different ratio of numbers of single cells from two classes. 
Different ratio of cells from different clusters did not significantly affect the 
performance of Seekmer from log-Pearson correlation in the two clusters of cells.  
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Figure 4.10: Performance (Spearman) of Seekmer on different ratio of cells 
with simulated single cell data. 
a) Spearman correlation of Seekmer quantification result for all cells with gene 
level true answer (upper), with transcript level true answer (middle) and qRT-
PCR quantification result (lower) before and after imputation with different ratio of 
numbers of single cells from two classes. Different ratio of cells from different 
clusters did not significantly affect the performance of Seekmer from Spearman 
correlation. 
b) Spearman correlation of Seekmer quantification result for HBRR cells (upper) 
and UHRR cells (lower) with transcript level true answer before and after 
imputation with different ratio of numbers of single cells from two classes. 
Different ratio of cells from different clusters did not significantly affect the 
performance of Seekmer from Spearman correlation in the two clusters of cells. 
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Figure 4.11: Clustering of single cells before imputation in SIRV spike-in 
single cell data. 
a) PCA plot of SIRV spike-in single cell data before imputation. In PCA plot of 
SIRV single cell RNA sequencing data, all single cells are clustered togrther 
before imputation with the exception of a few single cells. 
b) tSNE plot of SIRV spike-in single cell data before imputation. In tSNE plot of of 
SIRV single cell RNA sequencing data, samples do not cluster well before 
imputation. 
c) tSNE plot of SIRV spike-in single cell data before imputation colored with read 
count. In tSNE plot of SIRV single cell RNA sequencing data colored with read 
count of each single cell RNA sequencing library, there is not significant cluster 
signature observed.   
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Figure 4.12: Clustering of single cells after imputation in SIRV spike-in 
single cell data. 
a) PCA plot of SIRV single cell data after imputation. In PCA plot of SIRV single 
cell RNA sequencing data, all single cells significantly split into two clusters after 
imputation in PCA plot. 
b) tSNE plot of SIRV single cell data after imputation. In tSNE plot of of SIRV 
single cell RNA sequencing data, all single cells significantly split into two 
clusters after imputation in tSNE plot similar to PCA plot. 
c) tSNE plot of SIRV single cell data after imputation colored with read count. In 
tSNE plot of SIRV single cell RNA sequencing data colored with read count of 
each single cell RNA sequencing library, total number of reads do not differ too 
much in the SIRV spike in singe cell data and did not affect clustering.  
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Figure 4.13: Performance of Seekmer in SIRV spike-in single cell data. 
a) Log-Pearson correlation of SIRV transcripts quantification with true answer 
before and after imputation with different read counts in RNA sequencing 
libraries. Log-Pearson performance after imputation is much higher than the 
performance before imputation. The performance after imputation does not 
change much compared to the performance before imputation with read counts. 
b) Spearman correlation of SIRV transcripts quantification with true answer 
before and after imputation with different read counts in RNA sequencing 
libraries. Spearman performance after imputation is much higher than the 
performance before imputation. The performance after imputation does not 
change much compared to the performance before imputation with read counts.  
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Figure 4.14: Clustering of Seekmer in real single cell data before 
imputation. 
a) PCA plot of real single cell data before imputation. In PCA plot of real single 
cell RNA sequencing data, all single cells are clustered togrther before 
imputation with the exception of a few single cells. 
b) tSNE plot of real single cell data before imputation. In tSNE plot of of SIRV 
single cell RNA sequencing data, most of K562 and SUM149 cells culstered 
separately with a few exceptions. 
c) tSNE plot of real single cell data before imputation colored with read count. In 
tSNE plot of SIRV single cell RNA sequencing data colored with read count of 
each single cell RNA sequencing library, the smallest cluster with both K562 and 
SUM149 contain all the cells with the fewst reads.  
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Figure 4.15: Clustering of Seekmer in real single cell data after imputation. 
a) PCA plot of real single cell data after imputation. In PCA plot of real single cell 
RNA sequencing data, three distinct clusters could be observed. 
b) tSNE plot of real single cell data after imputation. In tSNE plot of of SIRV 
single cell RNA sequencing data, three distinct clusters could be 
observed.Mmost of K562 and SUM149 cells culstered separately in two major 
clusters, while there is one small cluster with both of the cell types. 
c) tSNE plot of real single cell data after imputation colored with read count. In 
tSNE plot of SIRV single cell RNA sequencing data colored with read count of 
each single cell RNA sequencing library, the small cluster with both K562 and 
SUM149 contain all the cells with the fewst reads.  



	
	

237	

 
 

 
 
 

	



	
	

238	

Figure 4.16: Identification of different transcripts of CD44 in real single cell 
RNA-sequencing data. 
tSNE plot of real single cell RNA sequencing data with K562 and SUM149. The 
color represents the expression of certain transcripts in each single cell. Seekmer 
imputation significantly improves the quantification of gene marker CD44 in 
SUM149. 
a) CD44-201 expression level quantified by Seekmer after imputation.  
b) CD44-206 expression level quantified by Seekmer after imputation. 
c) CD44-201 expression level quantified by Seekmer before imputation. 
d) CD44-206 expression level quantified by Seekmer before imputation.  
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Figure 4.17: Identification of different transcripts of EGFR in real single cell 
RNA-seq data. 
tSNE plot of real single cell RNA sequencing data with K562 and SUM149. The 
color represents the expression of certain transcripts in each single cell. Seekmer 
imputation significantly improves the quantification of gene marker EGFR in 
SUM149. 
a) EGFR-201 expression level quantified by Seekmer after imputation. 
b) EGFR-211 expression level quantified by Seekmer after imputation. 
c) EGFR-201 expression level quantified by Seekmer before imputation. 
d) EGFR-211 expression level quantified by Seekmer before imputation. 
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Figure 4.18: Identification of GYPA and GYPB in real single cell RNA-seq 
data. 
tSNE plot of real single cell RNA sequencing data with K562 and SUM149. The 
color represents the expression of certain transcripts in each single cell. Seekmer 
imputation significantly improves the quantification of gene marker GYPA and 
GYPAB in K562. 
a) GYPA expression level quantified by Seekmer after imputation. 
b) GYPB expression level quantified by Seekmer after imputation. 
c) GYPA expression level quantified by Seekmer before imputation. 
d) GYPB expression level quantified by Seekmer before imputation. 
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Table 4.1: Performance of Seekmer compared to other methods (HBRR). 
  SRR950079 SRR950081 SRR950083 SRR950085 SRR950087 

Log-Pearson 

Kallisto 0.7601 0.7565 0.7583 0.7566 0.7641 
Sailfish 0.7595 0.7558 0.7576 0.7561 0.7638 
Salmon 0.7599 0.7562 0.7584 0.7567 0.7641 

STAR-RSEM 0.7760 0.7727 0.7753 0.7731 0.7779 
Seekmer 0.7747 0.7719 0.7747 0.7729 0.7760 

Spearman 

Kallisto 0.8165 0.8133 0.8152 0.8126 0.8197 
Sailfish 0.8162 0.8129 0.8147 0.8123 0.8195 
Salmon 0.8163 0.8131 0.8151 0.8126 0.8195 

STAR-RSEM 0.8237 0.8211 0.8232 0.8207 0.8266 
Seekmer 0.8252 0.8224 0.8253 0.8228 0.8273 
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Table 4.2: Performance of Seekmer compared to other methods (UHRR). 
  SRR950078 SRR950080 SRR950082 SRR950084 SRR950086 

Log-Pearson 

Kallisto 0.7325 0.7350 0.7352 0.7301 0.7464 
Sailfish 0.7321 0.7344 0.7348 0.7295 0.7461 
Salmon 0.7327 0.7350 0.7353 0.7301 0.7466 

STAR-RSEM 0.7456 0.7483 0.7477 0.7428 0.7575 
Seekmer 0.7481 0.7500 0.7511 0.7461 0.7578 

Spearman 

Kallisto 0.8043 0.8061 0.8077 0.8032 0.8161 
Sailfish 0.8041 0.8056 0.8073 0.8028 0.8159 
Salmon 0.8045 0.8061 0.8077 0.8033 0.8162 

STAR-RSEM 0.8105 0.8117 0.8132 0.8088 0.8213 
Seekmer 0.8141 0.8147 0.8169 0.8131 0.8223 
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Table 4.3: Run time (mins) of Seekmer compared to other methods. 
 SRR950079 SRR950081 SRR950083 SRR950085 SRR950087 

HBRR 

Kallisto 29 25 21 18 11 
Sailfish 84 75 72 64 40 
Salmon 82 63 142 61 43 

STAR-RSEM 1157 1151 900 953 552 
Seekmer 51 55 54 52 32 

 SRR950078 SRR950080 SRR950082 SRR950084 SRR950086 

UHRR 

Kallisto 26 24 20 30 15 
Sailfish 66 61 53 81 42 
Salmon 91 62 47 81 43 

STAR-RSEM 1060 920 651 1203 741 
Seekmer 52 45 36 73 40 
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Table 4.4: Performance of Seekmer single cell imputation with different 
power. 

 Power 1 2 4 6 8 10 16 32 

Log-
Pearson 

Gene 0.8321 0.8322 0.8323 0.8324 0.8325 0.8326 0.8327 0.8327 
Transcript 0.6723 0.6727 0.6734 0.6741 0.6747 0.6752 0.6766 0.6781 

PCR 0.7236 0.7237 0.7238 0.7240 0.7242 0.7243 0.7246 0.7247 

Spearman 
Gene 0.8471 0.8471 0.8471 0.8472 0.8472 0.8472 0.8473 0.8473 

Transcript 0.5449 0.5452 0.5459 0.5464 0.5467 0.5470 0.5480 0.5495 
PCR 0.8149 0.8149 0.8149 0.8150 0.8152 0.8153 0.8156 0.8161 
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Chapter 5 Conclusion 

Overview 

In this dissertation, I have outlined three diverse projects that are unified by the 

theme of detecting low frequency events in complex sequencing data. I have 

demonstrated a series of best practices to identify somatic single nucleotide 

variants in non-tumor tissues, in particular somatic SNVs with low allele fractions 

in brain tissues, using primarily whole genome and whole exome sequencing 

data with the additional haplotype information from 10X Genomics data. 

 

Furthermore, I have presented a pipeline I developed to detect reads supporting 

single molecule RNA level fusion events between two repetitive sequences, U6 

and L1, to investigate the mechanism of the formation of U6/L1 pseudogenes in 

the human genome and have extended this analysis to included other RNAs as 

well. The fusion RNA detection methods between repetitive sequences can help 

with future studies of possible function of fusion RNAs in cells. 

 

Finally, I described an approach, Seekmer, that fills the gap between alignment-

free methods and alignment-based methods in the performance of isoform 

quantification in both simulated and real RNA sequencing data. Seekmer 
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provides a better quantification of isoform expression particularly in single cell 

RNA sequencing data by collecting information from cells with similar expression 

profiles. The more accurate isoform quantification of single cells can facilitate the 

research of single cell level dynamics of transcriptome in different individuals, 

tissues and diseases. 

 

Somatic single nucleotide variations (SNVs) in genome of non-tumor cells 

 

In chapter 2, I have proposed a series of best practice to discover somatic SNVs 

in non-tumor tissue, in particular, for somatic SNVs with low allele fraction in 

tissues. A more accurate and sensitive pipeline for somatic SNV identification 

can facilitate future studies of somatic SNVs in different tissues and diseases 

particularly in non-tumor tissues without clonal expansion that have been less 

studied previously. 

 

What is the overall level of mosaicisms and the function of somatic SNVs in brain 

and other tissues?  

With the more sensitive somatic SNV detection methods, we can now begin to 

discover the potential functional role that somatic SNVs in brain tissues may play 

and how they are related to neurological diseases. Researchers began to 

characterize loss of function (LoF) genomic variants in protein coding regions 

with the large scale of sequencing projects in both healthy individuals and 

patients with different diseases (MacArthur and Tyler-Smith, 2010; MacArthur et 
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al., 2012). Previous studies showed the relationship between genomic mutations 

and phenotypes, diseases as well as the role of somatic mutations in evolution. 

With our best practice, we can now start to study the somatic LoF SNVs in 

protein coding region in different tissues.  

 

Starting from the brain, with the whole exome sequencing data available we can 

analyze the somatic LoF SNVs in normal brains and discover the relationship 

between somatic LoF SNVs and age. Although existing study showed an 

increase of somatic SNVs in brain with age (Lodato et al., 2017), whether 

number of low allele fraction somatic LoF SNVs will increase or decrease with 

age still remains unknown. Somatic LoF SNVs can accumulate over time when 

brain grows old, however, if certain somatic LoF SNVs are lethal enough the kill 

the neurons with certain somatic SNVs, the number of somatic LoF SNVs can 

also decrease as the brain ages. We can also compare the age matched brains 

of neurotypical individuals and schizophrenic individuals to discover the somatic 

SNVs associated with schizophrenia. We can also investigate if somatic LoF 

SNVs are selected against to the same extent as observed with the germline LoF 

SNVs in previous studies. Furthermore, similar studies can be performed using 

other different tissues. Since neurons are unique due to their long life span and 

no mitosis during adult life compared to most of the other tissues which still 

undergo mitosis, the somatic LoF SNV pattern may be different in tissues other 

than brain tissue. 
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With the discovered somatic LoF SNVs in protein coding regions, we then can 

investigate into RNA sequencing data from the same tissue to identify whether 

there is an impact of the somatic LoF SNVs on the type of isoform expressed as 

well as the expression level of the isoforms. This is a challenge to which our 

Seekmer approach is well suited. The presence of the impact of isoform 

expression of somatic LoF SNVs would provide strong evidence that certain 

somatic SNVs act an important role in the tissue that we study. 

 

How does the somatic mutation accumulate in brain tissues? 

Previous studies show that a single neuron in a healthy human brain can harbor 

as many as 1458 to 1580 SNVs (Lodato et al., 2015). In addition, at least one 

megabase CNV is present in 13-41% human frontal cortex neurons (McConnell 

et al., 2013). Explanations of relatively high somatic mutation rate in neurons 

include long life span of neurons in human brain, which provides great 

opportunities for accumulation of different variations in cells (McConnell et al. 

2017).  

 

Somatic mutations could accumulate in long life span neurons due to both 

endogenous and exogenous factors. Exogenous factors include various kinds of 

environmental mutagenesis including radiations, mutagenic chemicals and so 

forth (Perera and Herbstman, 2011). Endogenous factors include failure of DNA 

repair for DNA damages from transcription, mobile element insertion and so on. 

The active transcription of genes in neuron cells can bring a huge burden to DNA 
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repair. Existing studies presented that the single strand DNA formed during 

transcription is exposed to multiple possible DNA damage factors that will induce 

the formation of SNVs, CNVs and large structural variations by recombination	

(Aguilera, 2002).  

 

In addition to somatic mutations occur post-mitotically, somatic mutations in 

neurons can also be accumulated in mitosis during brain development at early 

stage. Compared to the mutations occurred post-mitotically, the mutations 

accumulated during brain development are more likely to be present in more 

neurons and have a larger impact. There are in total ~ 80 billion neurons in 

human brain (McConnell et al. 2017). The rudimentary brain structure and central 

nervous system are formed during the embryonic period. Although proliferation, 

migration, and differentiation continue postnatally, the ~80 billion neurons in an 

adult human brain have been generated during embryonic development (Stiles 

and Jernigan, 2010). The mechanism of how this tremendous feat of cell 

divisions completing in such a short time window with such a low error rate for 

the DNA replication remain unclear to the field. A reasonable hypothesis of the 

somatic mutations accumulated in neurons can be that the somatic mutations 

start to accumulate during the rapid cell division of brain cell generation in 

embryonic brain development already. Future studies on how and when the 

somatic mutation occurs during development can start from the somatic 

mutations in mouse brains at different developmental stages. With the existing 

technologies, researchers have begun to discover the somatic mutation rate in 
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neurons, however, the studies of the mechanisms of how the somatic mutations 

accumulate in neurons still remain unclear. Better discovery methods of somatic 

mutation in non-tumor tissues, like the best practice summarized in Chapter 2 

can facilitate more studies of somatic mutations in brain in the future. 

 

What is the possible function or effect of accumulated high mosaicism in brain 

tissues? 

Somatic mutations in neurons have been associated with multiple neurological 

diseases in previous studies (Poduri et al., 2013). However, somatic mutations 

are also identified in normal human postmortem neurons from multiple studies 

(McConnell et al., 2013; Cai et al., 2014; Bae et al., 2017; Lodato et al., 2017). 

Researchers showed the increasing number of somatic SNVs in elder human 

brains compared to younger ones (Lodato et al., 2017). While CNVs and 

complex karyotypes are discovered to be rarer in elder brains (Chronister et al., 

2019). Although somatic mutations have been associated with aging of brains in 

previous studies (Lodato et al., 2017), it still cannot explain the decrease of 

CNVs and complex karyotypes in elder brains. The accumulation of SNVs and 

decrease CNVs overtime in human brains can be associated with cell apoptosis 

and maintaining the large size and active transcription in neurons. The difference 

between somatic SNVs and somatic CNVs can also be due to the different 

lethality of different kind of mutations. In this situation, somatic CNVs may be 

more lethal to neurons leading to the apoptosis of neurons with accumulated 

CNVs. While somatic SNVs are more neutral for most of the cases, the 
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accumulation of somatic SNVs did not kill the neurons. This could also explain 

why somatic SNVs accumulate in neurons while number of somatic CNVs 

decreases during aging. However, additional research is needed, for example, 

the total number of neurons in brains of different ages and so on, before any 

conclusion can be drawn. 

 

What if we apply best practice of somatic SNV discovery in normal human cells 

to tumor cells? 

We have demonstrated a series of best practices for discovery of somatic SNVs 

in non-tumor tissues in chapter 2. With these approaches, we were able to filter 

the somatic SNV candidates from the output of existing methods for somatic 

SNVs with allele fraction as low as 1%. Given that the sensitivity of cancer 

somatic SNV detection methods dramatically decreases when allele fraction is 

less than 5% (Cibulskis et al., 2013), if we could apply our best practice somatic 

SNV identification pipeline to tumor samples, we may be able to find more 

somatic SNVs with lower allele fraction in tumors. The ability to discover lower 

allele fraction somatic SNVs in tumor could help to better characterize the 

evolution of tumors. As discussed in chapter 2, the detailed evolution mechanism 

for cancer cell progression and evolution still remain unclear (Stratton, Campbell 

and Futreal, 2009). Thus, with a better profile of somatic SNVs in tumor tissues 

can possibly facilitate building the evolutionary process of tumor cells. 

 

Limitations of somatic SNV identification from current sequencing methods 
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Homopolymer regions are highly prone to sequencing errors, however, they are 

also the regions where mutations could occur because of the DNA polymerase 

slippage during DNA duplication (Streisinger et al., 1966; Kunkel, 2004). Due to 

the limitations of current next generation sequencing methods, we have not been 

able to ascertain the validity of candidates in homopolymer regions. As such, we 

have excluded the somatic SNV candidates in homopolymer regions to retain a 

high specificity in our accuracy. Most of the methods for sequencing or base 

identification requires PCR amplification, for example, ddPCR and next 

generation sequencing. PCR amplification of DNA libraries before sequencing or 

other methods is applied to amplify the signals for downstream detection. We 

thus have difficulty distinguishing amplification error from true somatic SNVs if 

there is error-prone amplification step involved in the DNA preparation steps. 

With current technologies, we could make use of restriction enzymes if a 

restriction site is created or removed by the mutation of certain bases inside a 

homopolymer region. However, this has a both high tissue and labor 

requirements if validating all candidate somatic SNVs identified in homopolymer 

regions. Furthermore, this method would only be limited to the sites where 

restriction sites could be created. In the future, methods without an amplification 

step could solve this issue to distinguish between sequencing artifacts and true 

somatic SNVs in homopolymer regions. However, even third generation 

sequencing technologies like Oxford Nanopore Technologies (ONT) still have 

relatively high sequencing errors in homopolymer regions due to the same signal 
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released for a string of homopolymers longer than the k-mer length of reading	

(Rang, Kloosterman and de Ridder, 2018). 

 

Another possible limitation is that methods for discovery of structural variations 

(SV) or copy number variants (CNV) from next generation sequencing data are 

not perfect. False positive somatic SNV candidates in structural variant or copy 

number variant regions could still not be excluded from the raw sites due to the 

inaccuracy of the SV/CNV calls themselves. Third generation sequencing 

methods with extremely long read length can better identify structural variation 

and CNVs, however, current methods are still expensive to apply in large 

numbers of samples for further disease related somatic SNV studies. 

 

U6 snRNA chimeric events in human transcriptome 

Chimeric U6/L1 RNAs are present in human cells 

In chapter 3, I developed a method to identify individual RNA-Seq reads 

exhibiting evidence of a U6/L1 chimeric RNA. We were able to distinguish reads 

with U6/L1 chimeric RNA supportive evidence from U6/L1 chimeric reads 

generated from template switching and U6/L1 reads transcribed from existing 

genomic U6/L1 pseudogenes (Figure 3.4). We have also searched the 25 base 

unique pair junction sequences formed at the fusion position in 22 high coverage 

1000 Genomes samples. We were able to successfully identify all aligned U6/L1 

junction sequences (3 events with SNPs in one of the 22 samples after manual 

checking) in all 22 samples. This indicates that the U6/L1 chimeric reads aligned 
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to genome were generated from existing U6/L1 pseudogenes. In contrast, the 

non-aligned U6/L1 junction sequences were not detected in any of the 22 

samples, suggesting that the non-aligned U6/L1 events are unique, RNA level 

fusion events. Possible template switching artifacts that could have resulted 

during library preparation were not detected in our searches. 

 

The uniqueness of the junction sequences and the fact that these sequences all 

containing the full length U6 sequence strongly suggest that the U6/L1 chimeric 

sequences that we identified are formed from U6/L1 RNA level ligation rather 

than RNA fusion artifacts formed by template switching during RNA sequencing 

library preparation. 

 

RNA ligation generated chimeric U6/L1 RNA with RtcB ligase 

The biochemical analysis from our collaborators Dr. John Moldovan and Dr. John 

Moran showed that U6 snRNAs and L1 RNAs could be ligated to form U6/L1 

chimeric RNA with RtcB ligase in vitro. Furthermore, two HeLa cell lines with 

reduced RtcB expression utilizing CRISPR/Cas9 gene-editing method showed a 

depletion of U6/L1 fusion events for ~ 4-5 folds compared to the negative control 

with RtcB regularly expressed. These biochemical and genetic experiments all 

showed that U6/L1 chimeric RNAs were ligated under the catalysis of RtcB 

enzyme. 

 

U6 chimeric RNAs presents in the transcriptome of human cells 
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In chapter 3, I have then further studied the RNAs fused with U6 snRNAs in 

human cancer cell lines, hESCs, and human NPCs. With the existence of 

U6/other RNA fused pseudogenes in human genome (Buzdin et al. 2003) (Figure 

5.1), we hypothesized that RtcB could also fuse U6 with other RNAs in the 

transcriptome. We found multiple reads supporting U6 snRNA fusion with other 

RNAs in human cell transcriptome (Figure 3.7). With all the junction sequences 

identified from U6 snRNA chimeric events, we were able to briefly characterize 

the motif and secondary structure of enriched U6 fusions (Figure 3.8; Figure 3.9). 

To further understand the mechanism of the formation of U6 snRNA fusion at 

RNA level, more studies are necessary including both biochemical and 

computational experiments. 

 

A model of U6/other pseudogene formation 

With all previous evidence, we suggest that the mechanism of U6/other 

pseudogene formation takes the same fusion step as the formation of U6/L1 

chimeric RNAs. Fewer chimeric RNAs could then be retrotransposed to genome 

in trans with the L1 retrotransposition machinery. Since the retrotransposition of 

these chimeric RNAs requires the L1 machinery in trans, it does not occur as 

frequent as U6/L1 chimeric RNA retrotransposition in cis (Wei et al., 2001). This 

explains the fewer U6/mRNA and U6/Alu pseudogenes in genome compared to 

the U6/L1 pseudogenes (Figure 5.1) (Buzdin et al. 2003). Future study is 

required for understanding the formation of 5’-OH group by endonucleases in the 

other RNAs. 
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What is possible function of U6 chimeric RNAs? 

From our gene fusion discovery with U6 snRNA from five human cell lines, we 

were able to identify the enrichment of snRNAs and snoRNAs fused with U6. The 

co-localization of U6 and other snRNAs in the spliceosome (Papasaikas and 

Valcárcel, 2016) makes the fusion events occur easier. In addition, both the 

formation of mature mRNA and snoRNA involves RNA splicing catalyzed by 

spliceosome. The fusion of U6 snRNA with mRNAs (Shi, 2017) as well as 

snoRNAs (Dupuis-Sandoval, Poirier and Scott, 2015) could form when splicing 

takes place in cells. Future studies of possible motif or secondary structures 

recognized by certain endonuclease to create the 5’-OH group, which is 

necessary for U6 fusion to happen, is also required for more detailed studies of 

U6 fusion phenomena in general. 

 

The detailed mechanism of formation of U6/other RNA formation remains 

unclear. Thus, the function of U6 fusion with other genes is still not clear. The 

high involvement of U6 fusion genes with RNA splicing may provide a hypothesis 

that the formation of U6 and other RNAs is related with RNA degradation. The 

hypothesis would be the RNAs needed to be degraded fuse with U6 as a signal 

for further degradation steps. However, there have been no studies successfully 

demonstrating the detailed mechanism of how RNA degradation happens 

efficiently in human cells (Arraiano et al., 2010). Further studies are necessary to 

demonstrate the function of U6 snRNA fusion phenomena in human cells. 
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Limitations of identification of single molecule events from next generation 

sequencing 

As we described in the method of Chapter 3, we were cautious of the PCR 

duplicates generated from RNA sequencing library preparation reverse 

transcription. However, there is no perfect solution for this issue except for 

checking the read similarity due to the PCR amplification step of the next 

generation sequencing method. In order to identify single molecule level events 

in transcriptome, we need to apply barcoded method to distinguish the PCR 

duplicates from reads generated from two different molecules. Current 

technologies with barcoded RNA sequencing could better solve this PCR 

duplicates problem in the future. 

 

RNA sequencing quantification 

In chapter 4, I have demonstrated that Seekmer can accurately quantify isoform 

expression in particular in single cell RNA sequencing by collecting information 

from single cells with similar isoform expression patterns. With a better isoform 

quantification in single cells, we expect to perform more analysis and investigate 

the dynamics of transcriptome at single cell level. 

 

What can we improve with single cell RNA sequencing data using Seekmer? 

Existing methods for RNA sequencing expression analysis either do not perform 

imputation or only perform imputation at gene level. The development of 
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Seekmer can facilitate with future single cell RNA sequencing analysis by 

providing better isoform quantification for each single cell. Previous studies using 

single cell RNA sequencing data mostly focuses on identifying signature genes 

expressed in different cell types by clustering single cells with similar expression 

level together (Gupta et al., 2018). Due to the lack of better isoform quantification 

method, limited studies have been focusing on investigating the difference 

among single cells in the same tissue. While the most important feature of single 

cell technologies is that we can now study each single cell and study the 

dynamics of different cells in the same tissue. With Seekmer, although we 

utilized the information provided by other single cells with similar isoform 

expression profile, we should still to some extent be able to study the difference 

among different cells at the transcriptome level. 

 

Concluding Remarks 
 

My thesis has developed methods to identify rare events including somatic single 

nucleotide variants, single molecule RNA level repetitive element fusion as well 

as single cell RNA sequencing quantification. 

 

I have generated the best practice to discover somatic single nucleotide variants 

from non-tumor tissue with the information collected from multiple different 

sequencing libraries. I was able to identify the supportive evidence for single 

molecule RNA level U6/L1 chimeric events and helped with forming the new 

mechanism of U6/L1 pseudogene formation. I also showed the possibility that U6 
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also fuses with other RNAs in cells and possibly to have a cellular function 

related with RNA degradation from the genes that fused with U6. I also 

developed a single cell RNA sequencing quantification tool with a better 

performance than existing methods by collecting information from cells with 

similar expression profiles. 

 

With the current sequencing technologies, there are artifacts that we are not able 

to exclude using computational methods. However, we have demonstrated that 

with cautious filtering and collecting extra information from other methods or 

other cells, we could to the largest extent utilize the current methods to study the 

characters and possible functions of the rare events in human genome and 

transcriptome.  
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Figure 5.1 Schematic representation of the U6 chimeric pseudogenes in 
public databases.  
*Adapted from Buzdin et al. 2003. 
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