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Abstract 
 

A variety of biological systems, including the circadian clock, heartbeat, and cell cycle, display 

rhythmic oscillating activities. Early genetic studies have identified central genes required for 

these biological oscillators and have mapped out the underlying molecular interaction networks. 

While these biological oscillators have distinct functions and utilize different genes and proteins, 

the central network architectures of the oscillators are highly conserved. This suggests that 

network structure is key in determining the properties of biological oscillators. In my graduate 

study, I investigated the fundamental design principles shared among biological oscillators. I first 

systematically analyzed the network structures of biological oscillators in a theoretical 

framework. This work identified novel network structures that affect robustness (resistance to 

environmental perturbations) and tunability (ability to change frequency), both are key properties 

of oscillator functions. To further study the function of these newly identified network structures, 

I have developed an artificial cell system that reconstitutes robust cell cycle oscillations in cell-

free droplets. Importantly, this system is amenable to high-throughput single-droplet analysis and 

precise control of various experimental manipulations. I have further used this system to test 

predictions from my computational works and explored the mechanisms of cell cycle regulation.  

Combining both theoretical and experimental work on the biological oscillators, my Ph.D. study 

identified novel mechanisms that fine-tune biological oscillators. These discoveries provide 

valuable insights to understand biological oscillator functions and may inspire a new 

understanding of diseases caused by deficiencies in biological oscillators.  
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Chapter 1 Introduction 
 

Oscillations are ubiquitous among biological systems and play major roles in maintaining 

life. From primitive single-celled bacteria to the most sophisticated organisms like a human, 

oscillatory signals and behaviors have been observed in a broad spectrum of biological processes 

such as neuron firing, signal transduction, heartbeats, cell cycles, and circadian rhythms (Figure 

1A). These biological oscillators are vital for living systems. They ensure the correct timing of 

critical biological events and code important physiological and biochemical information 

according to the environment. Consequently, defects in these oscillators can cause a variety of 

diseases from insomnia to cancer, and it is of great significance to elucidate the fundamental 

design principles of biological oscillators. Although theories on oscillators have been developed 

for centuries in physics and mathematics, systematic analysis of biological oscillator remains 

underexplored. Biological oscillators differ from physical oscillators in variety and complexity, 

study thereof facing challenges both theoretically and experimentally. In this chapter, I will 

briefly discuss the history of the research on biological oscillators. Some of the paragraphs and 

figure 1-2 are adapted from my previously published review (Li and Yang, 2018).  

1.1. Biological oscillators drive important biological process 

Biological oscillators are extremely diverse in their dynamic properties and compositions. 

From sub-second neural spikes, to daily circadian rhythms, to annual reproduction in plants and 

animals, the periods of biological oscillators span orders of magnitudes. The molecular 

machineries that drive these events are also drastically different. According to the differences in 
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the types of molecular machinery, intracellular oscillators can be categorized into three types (Li 

and Yang, 2018): 1) cytoplasmic oscillators, in particular, glycolytic oscillators, are formed by 

proteins and small molecule metabolites that mainly interact within the cytoplasm; 2) Ionic 

oscillators, such as action potentials in neural and cardiac pacemaker cells, are formed by 

regulatory ion channels on the membrane; 3) genetic oscillators, such as the circadian rhythm 

and segmentation clock, involve transcription and translation of genes that regulate each other 

inside organisms.  

These oscillators also perform diverse biological functions (Figure 1A). Most oscillators 

function as an endogenous pacemaker to generate regularity in time and/or space. For example, 

circadian clocks, which exist in a vast range of organisms on earth generate endogenous cycles in 

the organisms to adapt to the natural periodicity of the earth’s day-night cycles, by orchestrating 

their intrinsic gene expressions with a period of approximately 24 hours (Bell-Pedersen et al., 

2005; Dunlap, 1999; Gallego and Virshup, 2007). Heartbeat (Brown et al., 1979), respiration 

(Paydarfar and Eldridge, 1987), and the cell cycle (Hartwell and Kastan, 1994; Kastan and 

Bartek, 2004; McDonald and El-Deiry, 2000), can also be classified in this category. Pacemaker 

oscillators also play a role in the spatial organization of development. Through an excitable 

medium, a local oscillatory signal may trigger waves that propagate over a large distance much 

faster than through pure diffusion (Gelens et al., 2014). Examples of trigger waves include polar 

regeneration in Acetabularia (Novak and Bentrup, 1972), cAMP waves in the aggregation and 

differentiation of Dictyostelium discoideum (Gerisch, 1968), and mitotic waves recently 

reconstituted in Xenopus cell-free extracts (Chang and Ferrell Jr, 2013). Alternatively, in 

multidimensional or metameric systems, the phase differences among cell-autonomous periodic 

events in cells as a function of their spatial locations, resulted in another type of wave, called the 
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phase wave. These may be exemplified by pattern formation of hypostome in Hydra  (Goodwin 

and Cohen, 1969) and periodic tissue morphogenesis of vertebrates such as somitogenesis 

(Benazeraf and Pourquie, 2013; Oates et al., 2012). Other than the pacemakers, oscillators also 

function to code biological information by generating frequency-modulated signals to regulate 

downstream gene expression levels and cellular fate decisions (Isomura and Kageyama, 2014). 

Examples of these information oscillators include frequency coding of neurons (Ainsworth et al., 

2012) and a number of signal transduction pathways with oscillatory dynamics, such as NF-

kappaB (Nelson et al., 2004), p53 (Purvis et al., 2012), p38 (Tomida et al., 2015), Ca2+ signaling 

(Cai et al., 2008). These oscillators are generally also flexible in tuning their frequencies in 

response to upstream signals. 
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Figure 1 Biological oscillators are diverse and complicated. 
 (A) Examples of biological oscillators and their network structures. From top to bottom: calcium spikes in 
cardiomyocytes(Cai et al., 2008; Salazar et al., 2008), embryonic cell cycles in Xenopus(Murray and Kirschner, 
1989), segmentation clock in Zebrafish(Oates et al., 2012), and circadian clock in Mammals(Bell-Pedersen et al., 
2005), action potential in neuron(Ainsworth et al., 2012), p38 oscillations in HeLa cells(Tomida et al., 2015), NF-κB 
spikes in fibroblasts(Nelson et al., 2004), p53 oscillation in human cell lines(Purvis et al., 2012). (B) The cell cycle 
pathway diagram of Xenopus laevis adopted from Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 
Highlighting the complexity of the system 
 

Biological oscillators are highly complicated. When we look at a biological oscillator, the 

functional behavior may be obvious and simple, but the underlying oscillatory machinery usually 

involves complicated temporal and spatial interactions of tens to hundreds of molecules. Studies 

over the past decades have made major progress in identifying key genes, proteins, and 
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metabolites that are involved in the rhythmic phenomena. However, important information 

regarding the detailed molecular interactions in most oscillators remain largely incomplete, and 

the spatial and temporal information of the oscillatory molecules are usually unknown.  An 

example molecular network from the cell cycle pathway in KEGG is shown in Figure 1B. This 

network contains hundreds of interacting molecules with different spatial and temporal 

information. To fully understand such a complicated system would require simplification and 

abstraction of the system. 

1.2. Theoretical and experimental research on specific oscillators 

Given their high complexity and broad diversity, it may be difficult to define and 

investigate general biological oscillators. Previous researchers in the field have made pioneering 

progress to characterize various specific molecular mechanisms driving some oscillations. In the 

mid-20th century, breakthroughs were made to characterize the molecular mechanism of neural 

spikes.  Using giant nerve fibers of Loligo, Alan Hodgkin and Andrew Huxley carried out a 

series of measurements of the nerve cell membrane ionic current under a ‘voltage clamp’ 

(Hodgkin and Huxley, 1952a, b, c; Hodgkin et al., 1952; Hodgkin and Katz, 1949). Under certain 

conditions, the nervous system exhibits an oscillatory behavior, with electrical pulses repeatedly 

generated in response to a stimulus. To interpret their findings, they developed a set of ordinary 

differential equations (ODEs) (Hodgkin and Huxley, 1952d) that include multiple voltage-

dependent currents of ion (e.g. potassium and sodium) channels, known as the Hodgkin-Huxley 

model. The model marks the starting point for theoretical biophysics of action potential. Further 

research on other species including humans (Buchthal et al., 1954) showed striking similarities 

with regard to the mechanism of action potentials, suggesting that the action potential oscillatory 

mechanisms are highly conserved.  
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In addition to neural spikes, another key biological oscillator, the cell cycle, also showed 

significant conservation among species. Initial research on the cell cycle was conducted in 

different systems with different approaches. In yeast, cdc mutant strains enabled identification of 

genes responsible for cell division (Hartwell, 1971; Hartwell et al., 1974; Hartwell et al., 1970; 

Hartwell et al., 1973). Using Xenopus egg extract, proteins supporting cell cycle progression 

were found and named M-Phase-promoting factor (MPF)(Masui and Markert, 1971; Smith and 

Ecker, 1971). MPF was later purified and tested (Lohka et al., 1988).  Soon thereafter, it 

becomes clear that part of the MPF and Cdc2 were homologs (Gautier et al., 1988), which 

unified the cell cycle research across species.  

However, not all biological oscillators are conserved among species. Circadian clocks, for 

example, are fundamentally different between cyanobacteria and mammals. The former mainly 

involves protein phosphorylation while the latter is a genetic oscillator (Bell-Pedersen et al., 

2005; Rust et al., 2007). However, both can oscillate reliably and show some sort of temperature 

compensation (the period of oscillation is resistant to temperature changes). It is interesting to 

ask why for similar functions, some oscillators are highly conserved while the others are not? Is 

the conservation among certain biological oscillators simply a trapped local optimum (a 

convenient solution randomly found) during evolution or is there a limited number of globally 

optimal solutions to achieve certain functions? The answer to these questions may allow for a 

unified understanding of the design principles of all biological oscillators. However, given the 

complexity and variety of biological oscillators, abstraction or simplification is needed to address 

this question, and the most straightforward method is to build simplified biophysical models. 

As in the research on neural spikes, theoretical modeling has been used extensively to 

explain the mechanisms of various biological oscillators. About a decade after the first 
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publication of the Hodgkin-Huxley model, researchers reported the observations of oscillations 

in the metabolic pathway of glycolysis, demonstrated by the repetitive fluctuations of 

concentrations of intermediate metabolites. This time, the oscillations were not observed in the 

membrane of a giant cell, but in a whole cell suspension (Ghosh and Chance, 1964) and a 

cytosolic cell-free system (Chance et al., 1965) of yeast cells Saccharomyces carlsbergensis. 

Although these early metabolic assays only captured damped sinusoidal oscillations, theoretical 

work describing six reaction equations using ODE models for phosphofructokinase and the 

associated glycolytic intermediates predicted the existence of self-sustained limit-cycle behaviors 

in glycolytic oscillations (Higgins, 1964). Such limit-cycle oscillations were soon observed in a 

later experiment (Pye and Chance, 1966). Other metabolic oscillations have also been observed 

in cAMP synthesis (Gerisch et al., 1975) and peroxidase-oxidase reactions (Olsen and Degn, 

1978). These pioneering works demonstrate the power of applying theories to understand 

biological systems and guide new biological discoveries. 

The first theoretic genetic oscillator was proposed by Brian Goodwin back in 1963 

(Goodwin, 1965), shortly after the development of the operon model for the control of gene 

regulation by Francois Jacob and Jacques Monod (Jacob et al., 1960). This classical Goodwin 

oscillator contains only a single gene whose product represses itself after a sufficient delay, 

allowing for periodic gene expression to occur. Remarkably, this theoretically predicted limit 

cycle oscillations in a genetic circuit, even before any real genetic oscillator was discovered 

experimentally. The experimental investigations of genetic oscillators lagged until the 

development of genetic engineering techniques in modern molecular biology and the rapidly 

growing popularity of luminescence and fluorescence microscopy techniques.  
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One of the most characterized genetic oscillators is the circadian clock, which has been 

found in all eukaryotes and some prokaryotes such as cyanobacteria. Circadian clocks 

endogenously drive cell-autonomous oscillations roughly once per day, so that organisms 

maintain the ability to anticipate the time of day. Studies on circadian clocks have been 

performed on various organisms (Synechococcus (Liu et al., 1995), Neurospora(Crosthwaite et 

al., 1997), Drosophila(Hamblen et al., 1998), mouse (Antoch et al., 1997) and Arabidopsis 

(Goldbeter, 2002)). These studies successfully combined experimental measurements and 

mathematical modeling to enable understanding of how each of these biological oscillators 

functions in great quantitative details. Following these studies, similar quantitative approaches 

have been applied to the discovery and characterization of many more oscillators.  

Major progress has been made in understanding relevant components and functions of 

biological oscillators. However, challenges for further quantitative analysis of these oscillators in 

living systems are obvious. For one, the core architecture of an oscillator is often embedded in a 

significantly more complicated network and usually interferes with other pathways or couples 

with other oscillators (Bieler et al., 2014; Feillet et al., 2015; Yang et al., 2010). It is therefore 

difficult to isolate the central oscillator circuitry for investigation. Another obstacle is the limited 

capability of specifically dissecting or permutating feedback loops since most proteins have 

multiple functions in a cell. Two different approaches have been used to address these problems, 

one is to use tools from synthetic biology to create well-defined de novo oscillatory circuitry in a 

system amenable to detailed analysis and accurate control, the other is to extract the backbone of 

biological oscillators in an isolated and well-controlled cell-free system for extensive screening 

and systematic analysis. In the following sections, I will briefly review reported studies that used 

the two approaches to investigate biological oscillators. 
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1.3. Efforts to rebuild biological oscillators. 

1.3.1. Theoretical efforts in building simple models that support oscillations. 

 Ever since the early discoveries of biological oscillations, theorists have started pursuing 

the answers to the question of what conditions can support oscillations. Their approaches are to 

build the simplest possible models that capture fundamental mechanisms of various oscillatory 

systems. Following the discovery of metabolic oscillations, Ilya Prigogine investigated three 

biochemical oscillators of distinct catalytic properties in physicochemical terms and argued that 

all these biochemical oscillations are not different than non-equilibrium spatial and temporal 

self-organization as dissipative structures in chemical systems (Prigogine et al., 1969). This view 

provides a conceptual framework that supported later research aimed at unifying all biological 

oscillators (Goldbeter, 2002).  

Throughout the years, efforts have been made in simplifying existing detailed models, the 

complexity of which may obscure the fundamental design principles underlying the core 

architecture of an oscillator. In contrast to complicated models, a model with only the most 

essential components is more accessible to experimental validation as it requires fewer 

parameters to measure to build an accurate model. The original Hodgkin-Huxley studies of the 

action potential (Hodgkin and Huxley, 1952d) described in a detailed manner the voltage-current 

relationship based on experimental observations, which required more than twenty parameters. It 

was simplified in the FitzHugh-Nagumo (FHN) model (Fitzhugh, 1961) and later in the Morris-

Lecar model (Morris and Lecar, 1981), where two differential equations describe the system as 

coupled positive and negative feedback loops. Importantly, despite the simplifications, these 

models capture the main dynamic responses, and by adding diffusion, the FHN model generates 

trigger wave propagations as seen in axons (Gelens et al., 2014).  
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Simple models have also helped postulate the fundamental requirements for designing an 

oscillator. Since the design of the Goodwin oscillator (Goodwin, 1965), the inhibitory feedback 

loop and a source of delay in this feedback have been postulated as two required elements for 

limit cycle oscillations (Friesen and Block, 1984). However, a single time-delayed negative 

feedback loop could not explain the noise-resistance behavior in circadian rhythms. The 

activator-repressor oscillator was thus proposed by Barkai and Leibler (Barkai and Leibler, 

2000). As the name suggested, their model consisted of a two-component gene circuit that 

contains both an activator and a repressor. In addition to the negative feedback loop formed by 

the activator activating its own repressor, the activator can also auto-activate itself resulting in a 

self-positive feedback loop. Remarkably, it turns out such a ‘design principle’, i.e., the coupled 

positive and negative feedback loops, is commonly found in biological oscillators. In a 2008 

review article, Novak and Tyson extensively discussed the general requirements for biochemical 

oscillations (Novak and Tyson, 2008). Besides the negative feedback and the time delay, 

sufficient nonlinearity and properly balanced timescales of opposing chemical reactions are also 

reported to be indispensable. In addition, the positive feedback is helpful to amplify and delay 

the negative-feedback signal, which makes the oscillator more robust. A computational study has 

suggested that adding positive feedback may increase the robustness and frequency range of the 

system (Tsai et al., 2008). Altogether, these computational studies have provided key theoretical 

bases for creating robust synthetic oscillators.  

1.3.2. Pioneering works of creating simple de novo synthetic oscillators 

With the development of the genetic engineering tools, creating a de novo designed 

oscillator in real biological systems became possible. A list of well-known synthetic oscillators 

has been summarized in Figure 2 and will be described in more details below.  
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In 2000, Elowitz and Leibler, in a landmark study in synthetic biology, constructed the 

first genetic oscillator in Escherichia coli cells, named the repressilator (Elowitz and Leibler, 

2000). In this oscillator, three negative transcriptional regulators, TetR, λcI and LacI, repress 

each other to form a delayed negative feedback loop. A green fluorescence protein GFP under 

the control of TetR promoter was used to report the oscillatory behavior of the system, 

confirming that single negative feedback is sufficient for generating oscillations. However, it was 

not robust, with only 40% of the cells oscillate. Based on this work, many new oscillators have 

been proposed aiming for improved performance.  
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Figure 2 Examples of synthetic oscillators.  
For each synthetic oscillator, the information such as its molecular network structure, the organism that the oscillator 
is built in, and the period, has been listed 
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 In 2003, Atkinson et al. constructed for the first time the activator-repressor genetic 

oscillator (Atkinson et al., 2003), reminiscent of the theoretical clock of Barkai and Leibler 

(Barkai and Leibler, 2000). Turbidostat cell cultures of E. coli containing this oscillator achieved 

synchronized oscillations. However, the oscillations became damped over time, possibly due to a 

loss of synchrony. Further development of a synthetic oscillator in bacteria was made by Stricker 

et al. (Stricker et al., 2008). Besides negative feedback formed by araC and lacI, araC also 

activates itself and lacI inhibits itself. This time, the oscillator was tested in microfluidic devices 

using single-cell fluorescence microscopy. Unlike ensemble measurements, the ability to track 

single cells relieves the requirement of synchronization. Single-cell data has shown that the 

period of this oscillator can be as short as 13 min and the oscillation is self-sustained and robust. 

The first metabolic circuit using glycolytic flux to generate oscillations was designed in 

E. coli by Fung et al, called the metabolator (Fung et al., 2005). Like all genetic oscillators at the 

time, this synthetic metabolic oscillator was designed in bacteria cells. The first synthetic 

oscillator in mammalian cells was reported by Tigges et al. in 2009 (Tigges et al., 2009). Using 

auto-regulated sense-antisense transcription control, they built a molecular network that 

resembles the typical activator-repressor circuit, where tetracycline-dependent transactivator 

(tTA) functions as an activator and pristinamycin-dependent transactivator (PIT) a repressor. 

Further development of this system has led to an oscillator with a frequency comparable to that 

of a circadian clock (Tigges et al., 2010). These pioneering studies of synthetic oscillators play 

an important role in testing the minimal design principles postulated by theoretical studies. The 

simple synthetic oscillators have also paved the way for more complicated designs.  
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1.3.3. Recent efforts in making more complicated synthetic oscillators 

At present, while new designs continue to expand the list of synthetic oscillators, the 

focus of the field has shifted from making new circuits to improving the existing oscillators with 

new functions or applications. This section reviews four types of efforts in recent studies that 

expand the features and functions of previously established synthetic oscillators. 

First, a series of studies have modified oscillator circuits to allow control of the oscillator 

dynamics properties. By modifying the aforementioned synthetic oscillator with coupled 

positive- and negative-feedback loops (Stricker et al., 2008), Mondragon-Palomino et al. have 

built an oscillator that can be entrained by external periodic signals (Mondragon-Palomino et al., 

2011). Butzin et al. (Butzin et al., 2016) further demonstrated that such synthetic oscillators can 

also be entrained by aperiodic signals, similar to the entrainment of cells in our body by the noisy 

natural signals. Modifying the same dual-feedback oscillator (Stricker et al., 2008) through a 

single amino acid mutation to its core repressor, Hussain et al. have built an oscillator with 

temperature compensation (Hussain et al., 2014). The temperature compensation, i.e. keeping a 

constant period over a range of temperatures, is an essential property of the circadian clock. In 

addition, Potvin-Trottier et al. focused on noise resistance and built an improved version of the 

repressilator that can lead to synchrony in bacteria without coupling (Potvin-Trottier et al., 

2016).  

Second, a number of interesting papers have explored methods to program population-

level dynamics and emergent collective behaviors. Using quorum sensing to couple individual 

genetic oscillators, Danino et al. were able to construct synchronized oscillations at the colony 

level. In microfluidics devices, they demonstrated a variety of spatiotemporal waves propagating 

across cellular populations (Danino et al., 2010). This work was further developed by Prindle et 
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al. by coupling 12,000 such quorum-sensing synchronized colonies, called ‘biopixels’, in a 

macroscopic array, through gas-phase redox signaling. The ability to synchronize a large scale of 

colonies across the entire array enabled the construction of a low-cost biosensor that can detect 

heavy metals like arsenic via modulation of the frequency (Prindle et al., 2011). Chen et al. 

further extended the monoclonal system to create a synthetic microbial consortium containing 

two distinct cell types. The ‘activator’ cells and ‘repressor’ cells expressed orthogonal cell-

signaling molecules and can only oscillate when both strains were present (Chen et al., 2015b). 

They also showed that certain network topologies of the two-strain circuit exhibited more robust 

oscillations than others. A recent study has developed a more complicated synthetic microbial 

community through multiplexed quorum sensing circuits (Scott and Hasty, 2016). Although all 

above-mentioned studies have utilized quorum sensing as a key design to produce population-

level dynamics, Marguet et al. were able to construct oscillations in bacterial populations that 

required no quorum-sensing genes or promoters. Instead, the oscillations arise through the 

unexpected interplay of the host cell and the density-dependent plasmid amplification that 

established population-level negative feedback. This study highlighted the importance of 

considering ‘hidden interactions’ between the synthetic circuits and the pre-existing metabolic 

and regulatory networks in complex host cells (Marguet et al., 2010). 

Third, a few studies explored integrating synthetic components into natural biological 

oscillators to modulate endogenous oscillator behaviors. By adding MTF1 in the p53 signaling 

pathway, Toettcher et al. constructed an oscillatory system that is tunable in frequency 

(Toettcher et al., 2010). In another study, Dies et al. linked the cell division cycle to a dual-

feedback oscillator (Stricker et al., 2008) in E. coli, by driving the hda and dnaN genes that 

inhibit the initiation of chromosomal replication, under the oscillator. In this engineered system, 
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they observed the entrainment between the synthetic oscillator and the cell cycle (Dies et al., 

2016).  

Finally, studies have started to introduce synthetic circuits into organisms to enable a new 

function or application. A recent study has reconstructed the cyanobacterial KaiABC oscillator in 

E. coli, making this endogenously non-circadian bacterium perform circadian rhythms (Chen et 

al., 2015a). This demonstrated that a circadian oscillator is transplantable to a heterologous 

organism. Moreover, another study engineered a bacterium capable of synchronous lysis at a 

threshold population density (Din et al., 2016). Introducing the lysis strain in combination with 

chemotherapy, the study showcased the potential of using synthetic oscillators in clinical 

applications. 

1.3.4. Investigating biological oscillator in the cell-free system 

The previous sections described efforts in making de novo synthetic oscillators in live 

bacteria and cell lines, but these synthetic oscillators often lack similarity with real biological 

oscillations. On the other hand, real biological oscillators have been reconstituted in vitro in 

well-defined cell-free systems for decades. Comparing to live cells, a cell-free system has several 

unique advantages. First, a cell-free system usually contains only the most essential components 

in a test tube, which reduces potential interferences from the complex intracellular and 

extracellular environment. Second, it is convenient to introduce recombinant plasmids, mRNAs, 

proteins, as well as small molecules and drugs into the cell-free system, to precisely tune its 

oscillatory reactions, without worrying about the cytotoxicity, delivery efficiency, cross-talks, 

etc. Because of such flexibility and specificity of introducing molecules, it is more efficient and 

less time-consuming to design and test a functional circuit in cell-free systems than in living 

systems. Remarkably, it makes dissection of the circuits much easier, allowing one to obtain the 
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steady state response function of each dissected reaction, parameters of which are crucial to 

building models. 

Previously, such cell-free assays have made major contributions to the initial discovery 

and characterization of central mitotic regulators. Extracts prepared from eggs of Xenopus laevis 

enabled the first purification and in vitro kinase activity characterization of the maturation-

promoting factor (MPF), later known as the protein complex cyclin B1-Cdk1 (Lohka et al., 1988; 

Murray, 1991). Clam oocyte extracts allowed for the first discovery of anaphase-promoting 

complex or cyclosome (APC/C) (Sudakin et al., 1995), functioning as an E3 ubiquitin ligase that 

is critical to control cell cycle progression. The activation of cyclin B1-Cdk1 drives mitotic entry 

and activates APC/C-Cdc20, which in turn marks cyclin B1 for degradation and deactivates 

Cdk1, resulting in mitotic exit, and thereby completing a core negative feedback loop. Studies 

making use of cycloheximide-treated interphase Xenopus egg extracts have shown that when 

adding APC-resistant cyclin mutants into the extracts, the extracts approach a steady state of 

Cdk1 activity rather than oscillating (Murray, 1991). This confirms the essential role of the 

negative-feedback loop in mitotic oscillations. 

In theory, negative feedback alone can generate oscillations. However, additional positive 

feedback loops through the regulations of Wee1 and Cdc25 are evolutionarily conserved 

(Kumagai and Dunphy, 1992; Mueller et al., 1995). Compromising the positive feedback loops 

will suppress oscillations in Xenopus egg extracts (Pomerening et al., 2005), suggesting that 

these are essential for sustained embryonic cell cycle oscillations. Together, these studies have 

identified the core architecture of the cell cycle as interlinked positive and negative feedback 

loops, one of the aforementioned commonly occurring motifs.  
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In addition to discovering the core architecture, cell-free assays have been combined with 

theory to study the function of the interconnected feedback loops. Tyson and Novak (Novak and 

Tyson, 1993b) and Thron (Thron, 1996) first proposed that the Cdk1/Cdc25/Wee1 system 

functions as a bistable trigger for mitosis. This hypothesis was then examined with quantitative 

measurements using the Xenopus cell-free systems, showing that both Wee1 and Cdc25 respond 

to Cdk1 in an ultrasensitive (i.e. highly non-linear) manner (Kim and Ferrell, 2007; Pomerening 

et al., 2005; Pomerening et al., 2003). In a rate balance analysis (Ferrell, 2008), this mirror-

image, two-loop structure composed of Cdk1, Cdc25, and Wee1 with ultrasensitive responses 

makes it substantially easier to generate a bistable response than otherwise. The bistability is a 

key consequence of positive feedback that delays the negative-feedback signal and prevents the 

system from entering a stable steady state (Novak and Tyson, 2008). Indeed, this hypothesis has 

been supported by experimental evidence that short-circuiting positive feedback in cell-free 

cycling Xenopus extracts makes the cell cycle oscillations damped (Pomerening et al., 2005). 

Further studies, by integrating real-time fluorescence assays into the cell-free system, 

have revealed the core negative feedback system to operate as a time-delayed, digital switch, 

with a time lag of ∼15 min between Cdk1 and APC/C-Cdc20 activation and a tremendously high 

degree of ultrasensitivity (Ferrell et al., 2011; Yang and Ferrell, 2013b). A simple, analytically 

tractable model has been developed to show how the attributes of time delay and ultrasensitivity 

contribute to the generation of robust, clock-like oscillations. The studies also postulated that 

multisite phosphorylation of APC may explain how the ultrasensitivity and the time delay are 

generated.  

Altogether, these studies have demonstrated that cell-free extracts are amenable to 

quantitative biochemical and synthetic approaches. By reconstituting and analyzing mitotic 
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cycles in cell-free extracts, they have identified the key mechanisms for the mitotic oscillations: 

negative feedback, sufficient time delay, sufficient ‘nonlinearity’ of the reaction kinetics, 

positive feedback, all consistent with the general requirements for biochemical oscillations 

(Novak and Tyson, 2008). 

1.4. New questions and challenges in the investigation of biological oscillators. 

In this chapter, we reviewed the previous research on biological oscillators, especially the 

efforts to rebuild a functional biological oscillatory system. Our understanding of biological 

oscillators has progressed extensively over the past years. Decades ago, research on specific 

oscillators mostly focused on identifying various genes and proteins responsible for the process. 

At the same time, theorists and synthetic biologists mostly used highly abstract models, focusing 

on fundamental physical questions. These different approaches left a gap between the abstract 

oscillatory system in theory and the complicated real biological oscillators. Nowadays, with 

development of the high-throughput experimental methods and computational tools, theorists 

and experimentalists are brought closer, yet challenges remain. On the one hand, while the 

research on oscillation conditions are profoundly explored, the investigation of detailed 

properties of the oscillators are far from complete. On the other hand, while the high-throughput 

method is widely used in synthetic oscillators, applications in real biological oscillators are rare. 

In my Ph.D. study, I established a pipeline to systematically analyze the properties of oscillators 

with realistic models and tested my discoveries with experiments in automated high-throughput 

systems. Using this platform, I investigated two important properties of an oscillator: robustness 

(resistance to environmental perturbations) and tunability (ability to change frequency).  In both 

studies, I focused on the role of network circuits topology, starting with a computational 
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simulation of abstract networks, and progressing to test these predictions and discoveries in cell-

free Xenopus extract which recapitulate cell cycle properties. 



 

 21 

Chapter 2 Systematic analysis of the molecular network structures of biological oscillators 
 

Biological oscillators drive essential physiological and developmental processes in all 

forms of life that range from bacteria to vertebrates. These biological oscillators span a wide 

range of periods and molecular forms. Despite the complexity and diversity of these oscillators, 

their central network architectures are highly conserved (Bell-Pedersen et al., 2005; Cross et al., 

2011), suggesting that network topology is key in determining the properties of biological 

oscillations.  

Previous studies have focused on the core topologies of oscillators to understand the 

systems-level characteristics such as periodicity and robustness (Castillo-Hair et al., 2015; 

Lomnitz and Savageau, 2014; Nguyen, 2012; Novak and Tyson, 2008; Woods et al., 2016). In 

principle, a single negative feedback loop is required and sufficient to generate self-sustained 

oscillations (Friesen and Block, 1984; Lomnitz and Savageau, 2014; Novak and Tyson, 2008). 

However, known biological oscillators are organized into more complex network structures. 

Some of the additional structures, such as positive feedback loops, are not required for 

generating oscillations but are evolutionarily conserved, which raises the question of what 

functional role they may play. I hypothesize that the auxiliary network structures are functional, 

and they may regulate the oscillator properties such as robustness and tunability. Biological 

oscillators function in a noisy and fluctuating environment. Depending on the functions served, 

some biological oscillators are required to cycle with the same rate under different environment 

while others change certain oscillator features to adapt to the environment. For example, the 
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circadian clock keeps an almost constant period despite different temperatures (Bell-Pedersen et 

al., 2005), but heartbeat raises or drops according to the physiological conditions (Brown et al., 

1979). Different oscillator performs different roles in the biological system, so different 

topologies are likely selected to optimize its performance for its function (Milo et al., 2004; Milo 

et al., 2002).  

In this chapter, I will examine the relationship between network structures and oscillator 

properties. First, I will introduce a computational pipeline for oscillatory network enumeration. 

Second, I will describe a published work on oscillator robustness(Li et al., 2017). Specifically, I 

have systematically simulated all 3-node oscillators to study the effects of network motifs on 

oscillator robustness and tunability. I have identified several interesting network structures 

including coherent/incoherent inputs which significantly affect the oscillator robustness. Some of 

the paragraphs and figures in this chapter are adapted from my previous publications (Li et al., 

2017). Last, I will discuss an exploration on oscillator tunability. Using network enumeration and 

simulation, I have verified the role of positive feedbacks on increasing network frequency range, 

and further revealed possible link between oscillatory circuits and their waveforms.  

2.1. Method for systematic enumeration of all network motifs that support oscillations 

Protein and genetic networks are highly complicated in biological systems. However, if 

we decompose giant networks into three or four node subnetworks, which we call network 

motifs, we could find that the distribution of a network motif in biological networks is vastly 

different from that in randomly generated networks (Milo et al., 2002). In addition, certain motifs 

are enriched in biological networks with similar functions (Milo et al., 2002). This result 

suggests that network motifs may be building blocks for specific biological function and are 

selected during evolution (Milo et al., 2004).  
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To further our understanding of the design principle of biological networks, the role of 

network motifs has been intensely investigated, and the motifs that are responsible for adaptation 

(Ma et al., 2009), switch response (Shah and Sarkar, 2011), polarity (Ma et al., 2006), and many 

more have been identified. However, oscillators perform some of the most important biological 

functions, yet a systematic enumeration of motifs that support oscillation hasn’t been performed. 

The main challenge facing oscillator enumeration is that an oscillatory system keeps changing 

over time, different from previous functions, where the system will end up in a steady state. This 

means that analyzing oscillators requires more computational power and post-processing of 

simulation data to achieve unbiased motif investigation. Here, I addressed this problem by 

building a computational pipeline to systematically enumerate topologies that are responsible for 

oscillations. 

To map out the entire design space of enzymatic networks capable of robust oscillations, 

I enumerated and analyzed all 3,325 unique topologies containing no more than three nodes. This 

approach is computationally plausible and allowed for an exhaustive analysis of all possible 

network configurations. Previous research has suggested that many biological oscillators are 

centered on three-node negative feedback loops (Gene, mRNA, Protein), and large networks can 

be decomposed into smaller networks (Han et al., 2004; Milo et al., 2004; Milo et al., 2002). In 

our study, each topology can be represented by a 3X3 matrix. Each edge can be assigned to value 

0 (no interaction), 1 (positive interaction) or -1 (negative interaction). This gives a total of 3^9 

=19683 networks. After removing all isometric equivalents by comparing networks in all 

possible permutations, the number becomes 3410. I then remove the networks with isolated 

nodes (only accepting input, giving output, or completely isolated), and the number of networks 

reduces to 3325. These include 2 one-node networks, 39 two-node networks, and 3284 three-
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node networks. However, the research is not restricted to 3-node networks. While we enumerated 

all topologies with no more than three nodes, networks with more than 3-node are also generated 

and tested. The role of incoherent inputs we revealed from three-node networks was shown 

applicable in four-node and five-node networks (Figure 7D-G) and is likely generalizable to 

larger networks. 

In the analysis, I restricted the networks to be a protein system and assumed that each 

node represents a specific protein. Many biological oscillators, including the cell cycle and the 

circadian clock of cyanobacteria, are enzymatic protein systems (Golden and Canales, 2003). I 

then used a protein interaction model to describe the networks. For each specific network, the 

interaction function may play a significant role in its dynamics, so I tested two different models. 

In both models, each variable corresponds to a node in the network, the value of which indicates 

the activity level of the protein that the node represents. Each node has both active and inactive 

forms, and these two forms can transform into each other at a basal rate. The interaction between 

any two nodes is enzymatic. In the first model, I used a previously established equation (Eq. 1) to 

describe the protein interactions (Tsai et al., 2008), which can be derived from mass action 

kinetics (Appendix 1). In the second model, I tested another equation using Michaelis-Menten 

kinetics to model the interaction (Eq. 2). The detailed functions are shown below, and the 

derivation is listed in Appendix 1. 

Equations for protein-protein interactions in the model: Let the activity of a protein on node i be 

Ai, the interaction type from node j to i be δ ji and the interaction strength kji. 

1
0

1
jiδ


= 
−  

The ODE for node A can be represented as follows:  

positive interaction 

no interaction 

negative interaction 
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( 1) ( 1)
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      [Eq 1] 

For a Michaelis-Menten kinetics model: 

( 1) ( 1)(1 )(1 )
2 (1 ) 2

n n
ji ji ji jii i i

act i inh i ji j ji jn n n n
j ji i

dA A Ak A k A k A k A
dt K A K A

δ δ δ δ+ −−
= − − + −

+ − +∑ ∑
      [Eq 2] 

Using this model, each topology was simulated independently with a collection of 

1,000,000 parameter sets randomly sampled within a pre-defined parameter space that is 

considered to be biologically relevant, as shown in Table 1. The parameter range selections are 

consistent with a study that used the same model (Tsai et al., 2008). I have mainly used 

logarithmic sampling in the study, and most parameters have a range of 4 in log10-space. Linear 

sampling was also used to verify that the sampling method won’t affect the result.  

 

Table 1 Parameter ranges in random parameter search 
Parameters Value Range (logarithmic) Value Range (linear) 

kact, kinh 10-3 ~101 0~10 

kij 10-1 ~103 0~1000 

n 100 ~101 1~10 

K 10-3 ~101 0~10 

 

For each randomly sampled parameter, a simulation was repeated five times with 

different initial conditions. Hence, we analyzed a total of approximately three billion dynamical 

systems (3,325x1,000,000 parameter sets), each having five replicates.  For the simulation, we 

used the Dormand–Prince method in Boost library to simulate the equation (with relative error 

10-6 and absolute error 10-8). Each system was simulated from t=0 to t=2000 in arbitrary units, 
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which was long enough to detect most of the oscillations. During the simulation, if a system 

reaches steady states, then it is not an oscillator. We monitored the recurrence of the states of 

nodes. Without loss of generality, the peak of a specific node is selected as a reference. Let the 

time at peak i be ti, and the values of all nodes are (xi, yi, zi). If at least N consecutive (N=7 in 

our simulation) peaks that satisfy 1 1 1((x , y , z ), (x , y , z ))i i i i i id ε+ + + <  are found, and if the system 

satisfies: 1). Stable amplitude:  

( )
( )

i

i

std x
mean x

σ<
 ,

210σ −= , and 2). Stable period: 

1

1

std(t t )
(t t )
i i

i imean
δ+

+

−
<

−  , 
-2=10δ , then we consider this system a limit cycle oscillator. 

The detected oscillators are then subjected to time-series analysis, and properties like period, 

amplitude, phase difference between variables will be calculated for further analysis. 

Specifically, in my Ph.D. study, I focused on two oscillator properties, robustness (Section 2.2) 

and tunability (Section 2.3).  

2.2.Incoherent inputs increase the robustness of biological oscillators 

Robustness means the ability of a system to function reliably under different 

perturbations or environment. Although robustness is clearly important in biological systems, the 

mathematical definition of robustness could be controversial. In my study, I have defined 

‘robustness’ as the likelihood of maintaining self-sustained oscillations under a perturbation in 

the parameter space.  

How is oscillator robustness affected by network structures? Previous studies on several 

biological oscillators such as the cell cycle have shown that adding a self-positive feedback loop, 

in which a node can activate itself, to a core oscillatory circuit can increase the oscillator’s 

robustness, while adding a self-negative feedback loop to the same core cannot 
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(Ananthasubramaniam and Herzel, 2014; Gerard et al., 2012; Tsai et al., 2008). However, 

whether positive feedback is necessary or sufficient to increase robustness has remained 

controversial. A recent study using synthetic circuits (Chen et al., 2015b), has shown that adding 

a negative feedback loop to an oscillator could also increase its robustness. In addition, while 

both Wee1 and Cdc25 form positive feedbacks in embryonic cell cycles, only the one from 

Cdc25 is critical for the robustness of the oscillation period (Tsai et al., 2014a). Moreover, a 

recent study on the p53 oscillation dynamics (Moore et al., 2015) demonstrated that only one out 

of the three microRNA-mediated positive feedbacks increases the robustness of the oscillator. 

Taken together, these studies, each focusing on a specific biological oscillator, have failed to 

yield a converging conclusion. Importantly, it also demonstrates the difficulty to identify 

generalizable mechanisms by analyzing only a subset of oscillators. To obtain a more complete 

picture beyond any subset of chosen systems, a comprehensive mapping from the entire topology 

space to the function space is necessary. 

To this end, I have systematically analyzed the robustness of all oscillatory topologies 

with no more than three nodes to search for the structures that are most significantly associated 

with high oscillation robustness. In agreement with previous work (Castillo-Hair et al., 2015; 

Goldbeter, 2002; Novak and Tyson, 2008), I found that certain core network topologies are 

essential for robust oscillations. However, I also found that local modifications on a node of the 

network have a significant impact on the global network robustness. Specifically, I identified 

local motifs such that nodes receiving incoherent inputs (both positive and negative inputs) 

significantly increase the robustness of the network, while nodes with coherent inputs (only 

positive or negative inputs) decrease the robustness. The effect can be general as it is conserved 

in networks with higher node numbers and in various real biological oscillators whose models 
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and parameters are experimentally supported. Nullcline analyses demonstrate that incoherent or 

coherent inputs differentially influence the robustness by extending or narrowing a node’s span 

of steady states. Additionally, I found that incoherent inputs are enriched in almost all known 

natural and synthetic oscillators, suggesting that incoherent inputs may be a generalizable design 

principle that promotes oscillatory robustness. 

2.2.1. Definition of oscillator robustness  

In general, ‘robustness’ in this study was defined using a mathematical representation, 

, ( ) ( )
P

s s
a P aR p D p dpψ= ∫  , proposed by Hiroaki Kitano (Kitano, 2007), where the robustness (R) 

of a system (s) depends on function (a) under a set of perturbations (P). Since the system is 

random and it is difficult to identify the real parameter distribution in general, we assumed the 

equal probability of perturbations of all parameters, which gives ( )pψ the value 1/N, where N is 

the total number of parameters. ( )s
aD p  is an evaluation function that determines to what degree 

the system still maintains function under a perturbation (p). In our system, since the only 

property of interest is whether a system is oscillating or not, ( )s
aD p  is set to 1 if the system 

maintains sustained oscillations, and otherwise 0. This definition is equivalent to the Q value, 

defined as the number of sampled parameters sets that yield sustained oscillations (Ma et al., 

2009; Tsai et al., 2008). A topology is more robust if there is a larger parameter volume to 

support oscillations. It also means that under environmental perturbations on the parameters, a 

system having a higher Q value is more likely to remain oscillatory. 

However, the Q value has some problems. Firstly, the random sampling size is limited, 

and the parameter-set range is finite, both of which may result in a Q value that is skewed by the 

dimension of a system (i.e. network complexity). For different purposes, studies have used 
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different approaches, such as unscaled percentage of parameter sets (Ma et al., 2009; Tsai et al., 

2008), or the probability distribution of the parameters based on Bayesian statistics (Woods et 

al., 2016), to restore the measure of robustness to some degree, so that it is less sensitive to 

dimension. In our study, to reconcile the dependence of robustness on network complexity 

(number of edges), we performed a normalization for the networks with the same complexity and 

used the rank percentage of the Q value of each network as a robustness measurement. This way 

we avoided a direct comparison of the Q values among networks with different complexity. 

Secondly, the 1/N value is set based on an arbitrary parameter sampling scheme, that is, if we 

change the parameter sampling method, we also change the probability of perturbation. To avoid 

this problem, I analyzed detailed distribution after identifying potential topology that increases 

the robustness, and showed that the parameters that support oscillations in non-robust oscillators 

are a subset of parameters that support oscillation in robust oscillators (Figure 8). 

2.2.2. Establishing a complete map of oscillatory networks 

This analysis generated a comprehensive atlas of 1,420 oscillators from which we can 

define a hierarchy of network complexity. Any two topologies are connected as a pair if both 

topologies contain the same number of nodes and if one topology can produce another topology 

by adding one edge. Two topologies with different numbers of nodes can be connected if one 

topology can produce another topology by adding at least two edges. In our system, all 

oscillators can be connected into one large atlas. Such connectedness of all oscillators is an 

important prerequisite for the evolvability of robustness, suggesting that a robust solution can be 

found by changing one regulatory interaction at a time without losing the ability to generate 

oscillations. These oscillators all contain at least one negative feedback loop, confirming that the 

negative feedback is a general requirement for generating oscillations (Novak and Tyson, 2008). 
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The atlas was laid out so that topological complexity (scaled with the number of edges) of the 

oscillators increased from bottom to top (Figure 3A). Oscillators of the same complexity were 

arranged within each row in decreasing order of Q values that spanned orders of magnitude, 

indicating a large variability of their ability to generate robust oscillations. The bottom-most 

eight topologies, which we define as 'oscillatory cores', serve as roots for all of the subsequent, 

more complicated, oscillators. They are minimized oscillatory networks that cannot be simplified 

further to another oscillatory network, and thus, the simplest topologies that sustain oscillation. 

2.2.3. Oscillatory cores set the basic levels of robustness  

These oscillatory cores exhibit a large variability of robustness among themselves, with 

the top three performing significantly better than the rest (Figure 3B). Affirming the validity of 

our methods, they match the three most well-known central structures of biological oscillators, 

namely the repressilator (core 1), activator-repressor (core 2), and delayed negative feedback 

(core 3).  

To determine whether these oscillatory cores are responsible for the large range of 

robustness I observed among all networks, I clustered topologies based on oscillatory core 

composition. I first compared clusters of topologies that contained only one of the eight cores, 

and found that topologies containing core 1, 2, or 3 were on average significantly more robust 

than topologies containing any of the rest cores (Figure 4A). These results suggest that the core 

structures play an essential role in determining a network’s robustness. These differences were 

compromised if we allowed topologies to contain more than one oscillatory core (Figure 4B). To 

quantify how combining cores can affect the network robustness, I clustered all topologies that 

contained any combinations of cores 1, 2, and 3 regardless of the presence or absence of all other 

less significant cores. I found that the average robustness of a cluster increases with the number 
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of the robust cores they contain, suggesting that multiple robust cores could combine to promote 

the robustness of the networks they are embedded in (Figure 4C). 

 

 

Figure 3 Building oscillator atlas of all 3-node network. 
(A) A complete map of 1,420 oscillatory topologies, whose robustness values span orders of magnitude. Each node 
is one topology. All topologies are laid out such that the topological complexity, represented by the number of edges 
(E), increases from bottom to top. Topologies with the same complexity are color sorted within the same row, 
according to their Q values on a logarithmic scale. Each row contains a total number of N topologies. Eight 
“oscillatory cores” at the bottom of the atlas are highlighted by bordered boxes. Any two topologies with one edge 
difference are connected. The color of the connection between the two topologies of each pair matches the color for 
a certain combination of cores that the upper-layer topology contains. All possible combinations of cores with 
corresponding colors are shown in the Venn diagram in Figure 3B   
(B) Eight oscillatory cores are listed in a table in decreasing (or increasing) order of mean Q value (or mean rank 
percentage of the Q value), each calculated from five replicates. The top three most robust cores are colored in cyan, 
blue, and green, and the rest cores are all colored in black. The Venn diagram on the right panel cluster all 1,420 
topologies based on which combinations of the top three cores they consist of. The number on each region of the 
Venn diagram indicates the number of topologies in the set. The black region is for all topologies that contain none 
of the top three cores, i.e., topologies that contain only any one or more of the five non-robust cores. 
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Figure 4 Effect of oscillatory cores on oscillator robustness.  
(A) Boxplots of the mean rank percentage of topologies containing only one of each of the eight cores that are listed 
in the x-axis, showing that topologies with cores 1 to 3 are significantly more robust than those with all the other 
cores. The number of topologies within each cluster is also listed at the bottom.  
(B) Boxplots of the mean rank percentage of topologies containing at least one of each of the eight cores that are 
listed in the x-axis, 
(C) Boxplots of the mean rank percentage of topologies containing different combinations of robust cores (e.g. cores 
1 to 3), regardless of the presence or absence of all other non-robust cores. The number of topologies within each 
cluster is listed in the Venn diagram in Figure 3B. 
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Despite the high dependence of the average robustness on oscillatory cores, I also 

observed a large variation of robustness within each of the clusters which cannot be explained by 

their cores alone (Figure 4C). In addition, it was unclear what mechanisms underlie the major 

differences in robustness among the cores themselves (Figure 3B). For example, cores 2 and 6 

are both self-positive-plus-negative feedback loops except that core 2 has the self-positive 

feedback added onto the activator (node B), which in core 6 is to the repressor (node A). This 

seemingly subtle difference resulted in a 45-fold change in robustness. Notably, core 2 is well-

conserved in natural and synthetic oscillators, while core 6 is rarely found in any biological 

oscillators. Together, these results suggest that, in addition to the core architecture, certain 

auxiliary local structures may play a significant role in robust network performance.    

2.2.4. Incoherent inputs enhance the overall robustness of an oscillatory network 

In addition to the oscillator core structures, I was also curious about how auxiliary 

structures affect oscillator robustness. I started by examining the influence of two auxiliary 

structures, namely positive feedback and negative feedback, both of which have been reported to 

improve the robustness of certain networks (Chen et al., 2015b; Tsai et al., 2008). The results, 

however, did not support a simple relationship between the addition of positive or negative 

feedback and robustness. Instead, the effect depends on the core structure and the node in the 

core onto which the feedback is added (Figure 5). I also analyzed the role of positive or negative 

interaction numbers, and neither has a simple relationship with the oscillator robustness (Figure6 

A and B). Therefore, I decided to systematically identify key structures that improve robustness 

independent of any specific oscillatory cores. To this end, I compared all neighboring topologies 

that differ by only one regulatory interaction but share the exact same oscillatory cores. 

Specifically, for each pair of these neighboring topologies, I decomposed them into smaller one-
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edge (Figure 6) or two-edge (Figure 7) network. To identify which of the network structure 

components best predict the change in network robustness, I compared all eligible network pairs 

based on following two criteria: (1) their topologies only had one edge difference, and (2) they 

shared the exact same oscillatory cores. Thus, I obtained a list of N = 1831 entries of 

comparison, each of which was calculated from one pair of topologies and consisted of p 

covariates and a single outcome, 𝑦𝑦𝑖𝑖 . Then, I performed LASSO on this dataset to select the most 

significant motifs that are responsible for the changes of robustness, by solving: 
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Here, 1 2: ( , ,..., )T
i px x x x=  is the covariate vector for the ith pair of oscillators, which 

contains p predictors, each as an integer. Each integer represents the difference between the pair 

with regards to their numbers of a certain motif (out of p=4 unique motifs for one-edge 

modifications and 21 for two-edge modifications). The outcome 𝑦𝑦𝑖𝑖  is their robustness rank 

difference. 𝜆𝜆 is a nonnegative free parameter, to control for the amount of regularization of the 

fitting. The fitted coefficients 𝛽𝛽0 and 𝛽𝛽 are a scalar and p-vector respectively obtained at a 

certain 𝜆𝜆 value. I used ten-fold cross-validation and chose the largest 𝜆𝜆 such that generalization 

error (mean squared error) was within one standard error of its minimum value. The covariance 

test statistics was calculated, similar to a previous study (Lockhart et al., 2014), as a significant 

measurement for respective motifs.  
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Figure 5 Comparison of the robustness of a few example topologies 
To test whether adding a positive or negative feedback loop to an oscillator increases its robustness, topologies of 
each of the eight pairs are compared regarding their robustness levels, measured as Q value (bar plots on top) or 
Rank Percentage (bar plots on the bottom). The left bar plot of each pair corresponds to the topology with an 
additional positive feedback loop (top row), and the right bar plot of each pair corresponds to the topology with an 
additional negative feedback loop (bottom row). The color of each bar plot indicates whether the topology contains a 
node with incoherent inputs (orange) or a node with coherent inputs (cyan). It shows that adding a positive or 
negative feedback loop does not always result in a higher level of robustness. Instead, of each pair, the topology 
with incoherent inputs is unanimously more robust than the one with coherent inputs, regardless of whether positive 
or negative feedback is added, indicating that the ‘incoherent inputs’ principle can be a fundamental rule that unifies 
otherwise divergent results.   
 

Results show that while some one-edge motifs seem to decrease robustness, none of the 

one-edge motifs significantly increased oscillator robustness (Figures 6C). But I discovered 

several two-edge motifs (Figure 7B) that had a major impact on robustness. Notably, all 

incoherent input structures (one node that receives both activation and inhibition) tend to 

increase the robustness, while the coherent inputs structures (one node that receives either two 

activations or two inhibitions) tend to decrease the robustness. To confirm these results, I also 

calculated Spearman’s rank correlation coefficients and partial rank collection coefficients 

(PRCCs) (Appendix Figure A1), both of which resulted in the same conclusion. Remarkably, this 

simple “incoherent inputs rule” accurately predicted the differential influence of adding a 

positive or negative feedback loop to a core on its robustness (Figure 5), and therefore unified 

the apparently conflicting results in the literature where either positive feedback or negative 

feedback was reported to promote robustness in different contexts (Chen et al., 2015b; Gerard et 
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al., 2012; Tsai et al., 2008).  The rule also explained the divergent robustness levels we observed 

for the pairs of cores with similar designs (e.g., cores 2 and 6, cores 4 and 8, cores 5 and 7) in 

Figure 3B.  

 

Figure 6 Analyzing the effect of one-edge motifs on network robustness  
(A, B) Distributions of the rank percentage of the Q value of topologies with various numbers of negative 
interactions (A) and positive interactions (B). (C) LASSO analysis on one edge modifications, showing that there 
are no significant one edge motifs that can increase the robustness without introducing new cores. (D) Schematic of 
comparing a pair of neighboring topologies by calculating the difference in their one-edge motif compositions and 
the resulting difference in their levels of robustness (measured as R2-R1). 
 

To examine whether these motifs contribute additively to the robustness of a network, I 

clustered all topologies based on the numbers of incoherent and coherent inputs embedded. The 

results show that the more incoherent inputs and the less coherent inputs a network has, the more 

robustly it behaves (Figure 7C). The same trends were also observed using different sampling 
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methods such as linear sampling (Figure 7H), or an alternative model function based on 

Michaelis-Menten kinetics (Figure 7I).  

I also tested whether the effects of coherent and incoherent inputs on robustness scale in 

larger-size networks. To this end, I computationally simulated subsets of four or five-node 

networks using two complementary strategies. First, I enumerated all topologies that contained a 

core of a four- or five-node “delayed negative feedback” (Figures 7D and 7F). Second, I relaxed 

this constraint to randomly sample 50,000 topologies out of all configurations (Figures 7E and 

7G). Both approaches led to the same conclusion: incoherent inputs and coherent inputs 

additively increased or decreased robustness in larger networks, respectively (Appendix figures 

S2A-D).  
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Figure 7  Analyzing the effect of two-edge motifs on network robustness 
(A) Schematic of comparing a pair of neighboring topologies by calculating the difference in their two edge network 
structure compositions and the resulting difference in their levels of robustness (measured as R2-R1). 
(B) LASSO analysis on the dataset generated from (A) to estimate the coefficients (y-axis) for all two-edge motifs at 
a certain λ value (x-axis). Applying the one standard error rule, any curve with coefficients above zero at 1SE is for 
a motif that decreases the robustness, and below zero for a motif that increases the robustness. Interestingly, all 
motifs with incoherent inputs (highlighted in an orange bordered box) significantly increase the robustness, while all 
motifs with coherent inputs (highlighted in a cyan bordered box) significantly decrease the robustness. The p-values 
using covariance test statistics (Lockhart et al., 2014) are shown in tables on the right. 
(C) Heatmap of the mean rank percentages of the Q value for all topologies that are clustered based on the number 
of nodes with incoherent inputs (x-axis) and the number of nodes with coherent inputs (y-axis) they contain.  
(D-G) Incoherent inputs promote the robustness of larger-scale networks.  
Left panels: (D) contains a total of 6,561 four-node topologies with a core four-node delayed negative feedback 
loop, and each topology is simulated with 10^6 parameter sets; (E) contains 50,000 topologies that are randomly 
selected from all four-node configurations, each of which is sampled with 100K parameter sets; (F) contains a total 
of 59,049 five-node topologies with a core five-node delayed negative feedback loop, each sampled with 100K 
parameter sets; (G) contains 50,000 topologies that are randomly selected from all five-node configurations, each 
sampled with 100K parameter sets.  
Right panels: All topologies are clustered based on the number of nodes with incoherent inputs they contain, and the 
mean rank percentage of the Q value is calculated for each cluster. Error bars: the standard error of the mean (SEM) 
based on 5 replicates.  
(H-I) The relationship between the mean rank percentage of the Q values and the number of nodes with different 
input logic. The calculation is done using linear sampling for parameter generation (H), or using Michaelis-Menten 
type interaction function (I) 
 

To investigate which parameter is most strongly affected by adding incoherent inputs, I 

analyzed repressilator derived networks in a generalized enzymatic model. I projected the 

parameter volume of each topology that supports oscillations onto one of its parameter axes, and 

then compared the projected distributions along all parameter axes for each pair of topologies. 

The results (Figure 8A - C) show that the distributions of thresholds K and Hill coefficients n 

changed significantly in response to incoherent inputs versus coherent inputs, and the most 

sensitive parameter is the thresholds K from the nodes with incoherent inputs.  This result is 

confirmed by bifurcation analysis from the centroid of the parameter volume that supports the 

oscillations of a repressilator. Namely, the incoherent input increases the oscillatory range of 

thresholds K of the node. In addition, the analysis of single parameter distributions also showed 

that the distribution that supports oscillation in networks with coherent inputs is included in the 

distribution that supports oscillations in incoherent inputs networks. This result shows that 

incoherent inputs could increase the robustness independent of the sampling methods.  
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To intuitively understand why incoherent inputs could improve robustness, I performed 

nullcline analysis on a node with a pair of incoherent or coherent inputs, or with a single input as 

a control. This analysis revealed that the range of steady-states of a node varied with its input 

logic (Figure 9). Specifically, the nullcline range of a node, comparing to the control (i.e. a node 

receiving only a single input), increased when it received incoherent inputs and decreased when 

receiving coherent inputs. The nullcline range seems to increase most dramatically from the 

control when the two input signals had opposite signs but a comparable strength. Since the 

oscillation trajectory needs to cross the nullcline, a larger nullcline range leads to larger freedom 

of oscillatory variables, which allows for more flexible parameter selections regarding those 

variables. Therefore, the wider the nullcline spans, the greater is the potential of a system to 

generate sustained oscillations. This explains why certain patterns of local interactions on a node 

impose a significant impact on the overall performance of a network.  
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Figure 8 Effect of incoherent input is different on different parameters 
A. Three topology pairs used for initial analysis. B. Jensen-Shannon divergence of single-parameter distributions 
between each pair of topology, showing that the distributions of K and Hill coefficient are changed the most. C. p-
value of the two-sample Kolmogorov–Smirnov test, showing that the distribution of K is changed most significantly. 
D. Histograms of KAC, showing that the incoherent inputs result in more events favoring higher values of K. E. 
Histograms of nAC. 
 
 



 

 42 

 

Figure 9  Comparing to a single input, incoherent (coherent) inputs increase (decrease) the nullcline range of a node.  
Left panel: Heatmap of the nullcline ranges of node A that receives both an input of strength k1 and a self-feedback 
of strength k2. The value of k1 (or k2) can be positive or negative, representing activation or inhibition. The inset on 
the top shows the representative topologies for different combinations of k1 and k2 with positive or negative values. 
To eliminate any effect from parameters other than k1 and k2, the mean nullcline range is calculated from 100 
simulations, with all parameters except for k1 and k2 randomly sampled within the parameter ranges listed in Table 
1. The inset on the left shows three examples of nullcline for a node with the same negative input on one leg but 
with an additional self-positive feedback, no additional input, or an additional self-negative feedback on the other 
leg (basal reaction rate = 0.1, self-regulation rate |k2| = 1, input rate |k1| = 10, EC50 = 0.1, n = 2). Each nullcline is 
colored according to its nullcline range.  
Right panel: Heatmap of the null-plane ranges of node A that receives both two inputs of strength |k1| and of 
strength |k2|. All notations are the same as in Left panel.  
 

2.2.5. Incoherent inputs increase robustness in real biological networks 

To better understand the importance of incoherent inputs in “real-world” biological 

systems, I analyzed two well-known biological oscillators: embryonic cell cycles and the p53 

signaling system, both of which are highly conserved among organisms and have been 

extensively studied with well-established mathematical models and have experimentally 

measured parameters (Batchelor et al., 2011; Tsai et al., 2014a). The embryonic cell cycle 

(Figure 10A) centers on a core of delayed negative feedback that is modified by a double 

positive feedback loop through phosphatase Cdc25 and a double negative feedback loop through 

kinase Wee1. Although both are self-reinforcing loops, Cdc25 forms an incoherent input to 
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Cdk1-cyclin B1, while Wee1 forms a coherent input. Therefore, this system provides an ideal 

platform to test my prediction. By adopting a published model with experimentally estimated 

parameters (Tsai et al., 2014a), I found that removal of the incoherent inputs (set cdc25-cdk1 

interaction strength to 0) disrupted the ability of the system to oscillate, while removal of the 

coherent inputs (set wee1-cdk1 interaction strength to 0) did not (Figure 10C, Appendix figureA 

3A). By random parameter sampling centered on the experimentally measured parameter values 

(see parameter ranges in Appendix 2), I found that the robustness of the oscillator, measured as 

the percentage of parameters that yielded sustained oscillations, increased with the strength of 

the Cdc25 loop until it reached a plateau (Appendix figureA 3A). An opposite trend was 

observed for the Wee1 loop (Appendix figureA 3A). These results suggested that Cdc25, as an 

incoherent input modification, is essential to maintain a robust cell cycle. The impact of Cdc25 

on the cell cycle robustness was further confirmed in both nullcline analysis and bifurcation 

analysis—as the strength of Cdc25 increased, so did the range of steady-state Cdk1-cyclin B1 

activities (Figure 10E), and the ranges of several key bifurcation parameters (e.g., cyclin B1 

synthesis rate in Figure 10G; Hill coefficients in Appendix figuresA3B, C), within which 

sustained oscillations occurred. In contrast, the strength of Wee1, as part of the coherent inputs’ 

modification to the core negative feedback architecture, played an opposite role. 

In the second example, I studied the signaling network of the tumor suppressor p53, 

which cells utilize to respond to stresses such as DNA damage. Interestingly, the p53 network 

wires differently under different stimulations, leading to distinct dynamics and cell fates (Purvis 

et al., 2012). Explicitly, the p53 network oscillates in response to double-strand break (DSB), 

while exhibits a single pulse under ultraviolet radiation. The key structure to sustain the 

oscillations is a negative interaction from Wip1 to ATM (Batchelor et al., 2011) (Figure 10B). 
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This negative regulation from Wip1 (Shreeram et al., 2006), together with the positive regulation 

from the DSB-sensing complex (Mre11-Rad50-Nbs1) (Lee and Paull, 2005), form incoherent 

inputs to ATM. Removing either of the inputs terminated the oscillations (Figure 10D), and 

increasing the reaction rate constant of either input resulted in an extended nullcline range of 

ATM (Figure 3F). Similarly, through bifurcation analysis, the range of the DSB signaling input 

level that supports oscillations also widened with increasing rate constant of Wip1 -| ATM 

(Figure 3H). Together, these results strongly demonstrated the significance of incoherent inputs 

in promoting robust biological oscillations 



 

 45 

 

Figure 10 Two examples of the real biological oscillator 
 (A, B) Topologies of the cell cycle (A) and p53 oscillator (B), where the nodes that receive incoherent inputs are 
labeled in green and the interactions of interest in yellow.  
(C, D) Time courses of active Cdk1 levels (C) and total p53 levels (D), either with (labeled with *) or without 
(labeled with o) the interactions labeled in yellow in (A, B). The results show that incoherent input is necessary for 
oscillation. The rest of the parameter values are unchanged from the literature values (Batchelor et al., 2011; Tsai et 
al., 2014a). 
(E, F) Heatmaps of the nullcline ranges of Cdk1-Cyclin B (E) and ATM (F), indicating that the strength of any of 
the incoherent inputs such as Cdc25, Wip1-|ATM, and DSB signal input is positively correlated with the nullcline 
range, while the coherent input strength of Wee1 is negatively correlated with the nullcline range. The points labeled 
with * and o correspond to the same systems as in (C, D). 
(G, H) Bifurcation analysis. The shaded regions denote the parameters compatible with sustained oscillations. The 
parameter ranges of the cyclin B synthesis rate constant ksynth (G) and DSB signal input strength (H), both as the 
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essential clock inputs, become wider as the incoherent input strength kCdc25 (G) and kWip1-|ATM (H) increase. 
These results indicate that incoherent inputs increase the parameter choice for oscillation, and thus increase the 
robustness of the system. The points labeled with * and o correspond to the same systems as in (C, D). 
 
 
 

2.3. Positive feedback increases the tunability of biological oscillators 

Tunability (specifically frequency tuning) is the ability of oscillators to change their cycle 

frequency, another critical feature of many biological oscillators. Oscillators like heartbeat or 

breathing regulate biological processes that require adaption to the changing environment and 

physiological conditions. Frequency tuning is also a property for many cellular oscillators.  For 

example, the period of the cell cycle can range from half an hour in early embryos to days in 

adult cells. In addition, certain neural spikes range a wide range of oscillation frequency to 

encode information. The recent work also showed benefits of frequency tuning in transcription 

regulation. It is suggested that transient pulse of transcriptional factors ensures high 

concentration inside the nucleus so that they can coordinately activate genes even if these 

transcriptional factors have different binding coefficient with DNA (Levine et al., 2013). For 

example, Cai L. et al showed that the calcium-sensing yeast transcriptional factor Crz1 oscillates 

during activation, with similar spike width but different frequency (Cai et al., 2008). However, 

tunability is not a required feature for all biological oscillator. For example, oscillators like 

circadian clocks are not easily tunable in their periods, which is a critical feature for their role of 

timekeeping.   

As described in Section 2.2, I have built a network atlas to investigate the role of 

topologies on oscillator robustness, which also provides an ideal platform to systematically 

analyze the relation between network structure and other oscillator properties such as tunability. 

Previously, there have been several theoretical studies that examined the regulation of oscillator 

tunability, which showed that positive feedback could enhance the oscillator tunability (Tsai et 
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al., 2008), a currently widely accepted conclusion. Recent advances in synthetic biology have 

further promoted the study of oscillator tunability by developing real-world synthetic oscillators 

to test the theoretical predictions (Tomazou et al., 2018). On the other hand, computational 

studies have simulated specific biological oscillators to test parameters that affect their 

tunability. One recent work examined repressilator centered models and suggested that longer 

negative feedback also increase the tunability (Maeda and Kurata, 2018). Another computational 

study using models from synthetic biology also showed that amplitude tuning and frequency 

tuning can be independently achieved when tuning different parameters (Tomazou et al., 2018). 

However, all previous studies only focused on a few specific topologies or topologies derived 

from the same oscillatory core, therefore it is unknown whether the conclusions can be applied to 

other oscillators or network topologies. To facilitate systematic understanding of frequency 

control among biological oscillators, I applied the network enumeration pipeline described in 

Section 2.1 to systematically permutated model parameters and measure the effects on the 

oscillator frequency. This work provided a rich dataset to systematically examine the relationship 

between oscillator tunability and network structures.  

2.3.1. Method to calculate oscillator tunability 

Oscillator tunability in my study refers specifically to frequency tunability. It is defined 

as the frequency range of an oscillator when a given tuning parameter is changed. Obviously, 

according to the definition, oscillator tunability depends on the choice of the tuning parameters. 

In reality, tuning different parameters will lead to different frequency changes. Since our goal is 

to find the role of network topology, we introduced two measurements to summarize frequency 

tunability of oscillatory network topology. 1). In section 2.3.2, I used average frequency tuning 

range of all parameters as a measurement for topology tunability, which is straightforward to 
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calculate and amenable for statistical analysis. 2). In section 2.3.3. by analyzing the relationship 

between frequency tuning and amplitude tuning, I identified two prominent types of tunings. For 

each topology, I used the percentage of frequency tuning type among all random parameter set 

and tuning parameters as a measurement of oscillator tunability. Note that in my analysis, since 

the number of parameters is large, not all of them are systematically tuned. Specifically, EC50, 

which represents the binding coefficient between two proteins, and Hill coefficient, which 

represents the cooperativity of a reaction, are not tuned in my analysis since they are unlikely to 

change without structural changes of the proteins.  

 

Figure 11 Pipeline to investigate oscillator tunability 
 (A) Schematic of a computational workflow for topology-to-function mapping of biological oscillators. Left panel: 
A complete enumeration of topologies with three nodes or fewer. Each node can generate outputs to (analogous to 
enzymes) or receive inputs from (analogous to substrates) other nodes, leading to 3,325 unique topologies. Middle 
panel: Each topology is simulated (using the Runge-Kutta Dormand-Prince, or RKDP method) with 106 parameter 
sets (and 5 replicates) using LHS sampling in Log-space. Right panel: Robustness of each topology is calculated as 
the number of parameters that support oscillations (Q value) or as the rank percentage of the Q value, then the 
parameter is systematically tuned once at a time until reaching the parameter range boundary or reach the bifurcation 
when the system stops oscillating. (B) Example of Brusselator, each dot represents an oscillator detected in the 
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previous pipeline for robustness estimation. (C) The same example as in (B), but each dot is permuted on the 
parameter a, until it reaches parameter boundary (here a=1) or meets bifurcation, and the trace of tuning is shown. 
 

To calculate tunability levels for different networks, I followed a similar procedure of the 

oscillator robustness analysis (Section 2.1). First, I generated the whole list of network 

topologies with three nodes. Then, I simulated the networks with random parameters and initial 

conditions to detect oscillations as described in Section 2.1. Lastly, for each oscillator, I tuned 

one parameter at a time until the system stops oscillating or reaches the boundary of pre-defined 

parameter ranges (Figure11A), the repeat for parameters. Figure 11 B and C show an example of 

parameter tuning in the Brusselator, a well-established chemical oscillator. Each point in panel B 

represents a network with a unique parameter set, then for each of this system, parameter a is 

tuned adaptively until it reaches the Hopf bifurcation or parameter boundary. Specifically, when 

tuning the parameter, I started by adding/deleting a small value, and increase this step size 

exponentially until it passes the boundary or bifurcation point, then we use bisection method to 

find the specific critical point.  

2.3.2. Positive feedback increases the average frequency range of oscillators 

After screening the tunability of all topologies, I found that these topologies can be 

divided into two categories according to their parameter sensitivity of period/frequency and 

amplitude (Figure12). In one group, period and amplitude of topologies change proportionally 

with the parameter, and in the other groups, period and amplitude of topologies maintain 

relatively constant across the tested range of the parameters. This has led to the questions of 

whether the observed bimodal distribution is determined by network topologies, and what 

particular network structures contribute to the difference in tunability.  
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Figure 12 Relationship between parameter tuning range and oscillator property tuning range. 
Kernel density estimation for the joint distribution between parameter range and period range (A) or amplitude 
range (B). All ranges are in the logarithm scale. Gaussian kernel with standard deviation 0.05 is chosen. Results 
show the bimodal distribution in both cases. 

 

Figure 13 Statistical analysis to find the motif that is responsible for high oscillator tunability.  
LASSO analysis of the frequency range difference to estimate the coefficients (y-axis) for all one-edge (A) or two-
edge (B) motifs at a certain λ value (x-axis). Applying the one standard error rule, any curve with coefficients above 
zero at 1SE is for a motif that increases the tunability, and below zero for a motif that decreases the tunability. In 
general, positive feedbacks increases the tunability of oscillators. 
 

I again used LASSO to find the responsible network motif(s) for average period tuning 

range. For one edge motifs, I found that self-positive interaction significantly increases the 

network tunability (Figure 13A), in accordance with conclusions in previous research (Novak 

and Tyson, 2008; Tsai et al., 2008). In contrast, self-negative interactions tend to decrease 

parameter tunability. It should be noted, however, that the number of self-negative feedback 
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loops and self-positive feedback loops of a topology always adds up to no more three in a 3-node 

network, meaning that the two quantities are artificially correlated in my analysis. Therefore, the 

role of self-negative feedback, which is less significant than self-positive feedback, may come 

from its artificial correlation with self-positive feedback. For two edge motifs, I similarly found 

that the positive feedback loops, including topologies with self-positive feedback and positive 

feedbacks with two nodes, are the top-ranked topologies associated with high tunability (Figure 

13B). Interestingly, incoherent inputs, which has been shown to affect oscillator robustness 

(Section 2.1) seem to also promote oscillator tunability. As shown in Figure 12, the topologies 

are less likely to have a high tunability when they have a small parameter range (i.e., low 

robustness). This makes intuitive sense that a non-robust oscillator is less likely to be tunable 

with a narrower range of parameters that support oscillation. In this study, I showed that the 

motif of positive feedback will increase the average frequency tuning range of biology 

oscillators. 

2.3.3. Analysis on the waveform of biology oscillators 

While average frequency tunability is straightforward to calculate, it does not capture the 

details of the frequency tuning with different parameters. In addition, even for the same tuning 

parameters, the frequency tuning range may have large variation within different random 

parameter set and initial conditions.  

After identifying positive feedback as a major responsible motif for increasing network 

tunability, I examined the frequency and amplitude tunability distribution of individual 

topologies with all tuning parameters and random parameter set (Figure 14). This result 

interestingly shows that frequency tuning and amplitude tuning are almost mutually exclusive.  

Accordingly, taking advantage of previous research on oscillator theory (Forger, 2017), I have 
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classified these oscillators into the two types depending on their bifurcation types: 1) a type1 

oscillator, which is capable of frequency tuning, has saddle-node on invariant cycle bifurcation, 

and 2) a type 2 oscillator, which is capable of amplitude tuning, has Hopf bifurcation. To 

discriminate these two types of oscillators, I introduced the measurement φ which equals 

arctan(Amplitude range/ Period range). While a φ value close to 0 means frequency tuning, a 

value close to π/2 indicates amplitude tuning. Statistical analysis on all networks shows that the 

distribution of angle φ is bimodal (Figure 14B), suggesting that most of the parameter tunings 

are either amplitude tuning or frequency tuning. In the following analysis, I used φ as the 

indicator of frequency tunability level and calculated the percentage of frequency tunings and 

amplitude tunings. Specifically, two arbitrary thresholds are chosen, and φ smaller than π/8 is 

considered frequency tuning, and φ larger than 3π/8 is considered amplitude tuning. I measured 

the percentage of frequency tuning and amplitude tuning types of all topologies, and the results 

showed that the increased number of positive feedback loops increased the percentage of 

frequency tuning parameters and decreased the number of amplitude tuning parameters. This 

result suggests that the effect of positive feedback on this percentage seems to be additive.  

It is well-known that the positive feedbacks may lead to relaxation oscillation and 

increase of tunability (Tsai et al., 2008). Most of the biological oscillators responsible for 

information transfer are among this type. From traditional neural spike to transcriptional 

oscillation (Cai et al., 2008; Hodgkin and Huxley, 1952d), experimental results showed the 

pulsatile relaxation oscillation, with constant pulse width. On the other hand, there are also 

biological oscillators like circadian rhythm that generally show sinusoid shapes (Bell-Pedersen et 

al., 2005). To verify whether relaxation oscillation can explain the frequency tuning, and to 

explorer how waveform of oscillation is correlated with its tunability, I took a closer look into 
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oscillation time series. To discriminate the sinusoidal and pulsatile oscillations, I defined the 

oscillation peak time, which is the duration of the period when a variable is more than half 

maximum of its amplitude (note: if this time is larger than half period, flip the signal along the x-

axis).  

 

Figure 14 Analysis of tunability distribution of single oscillators 
(A) Example of tunability of two topologies. Each sample of interlinked positive and negative feedback (upper) is 
colored red and the sample of interlinked negative feedback (lower) is colored blue. Angle φ is defined as a 
measurement of tunability. Basal inactivation parameters of the colored nodes are used as tuning parameter. Each 
node represents a tuning on a randomly selected parameter set. The distribution of dots shows two different tuning 
patterns: amplitude tuning and frequency tuning. (B) Distribution of φ for all system parameters, tuning parameter, 
and all topologies, showing two modal distribution and the peaks are at around 0 and π/2. (C) Relationship of the 
number of positive feedbacks on amplitude tuning percentage for all topologies. (D) Effect of positive feedback 
number on frequency tuning percentage for all topologies. 
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The analysis of the relationship between period and peak time showed clear differences 

between amplitude tuning and period tuning oscillators (Figure15). In topologies with only 

amplitude tuning, the peak time is linearly correlated with the oscillator period, indicating 

sinusoidal-like oscillations. On the contrary, in topologies with frequency tuning, tuning of 

certain model parameters results in pulsatile behavior with constant peak time across a range of 

period. Systematic analysis with all topologies also shows that the positive feedbacks are needed 

for peak time and period to deviate from a linear relationship (Figure 15C). Interestingly, in 

addition to the sinusoidal and pulsatile waveform, the analysis also identified other types of 

waveforms. As shown in Figure 15D, the exemplified topology allows tuning of both peak time 

and period independently. Preliminary analysis showed that this kind of rich behavior on 

waveform type could only occur in topologies with more than one oscillatory core (coupled 

oscillators), and the detailed mechanism still needs further investigations. 

 

2.4.Conclusion 

Previous work using computational search for functional network motifs of biological 

oscillators has mainly focused on the core topologies. Much fewer studies have investigated the 

functional role of auxiliary structures. These studies have selectively examined the influence of 

one-edge structures on a few predefined oscillatory cores, resulting in a lack of generality. 

Different from the previous studies, I found the most significant local motifs for oscillator 

robustness are two-edge structures, namely the incoherent or coherent inputs. This finding has 

implied the importance of interactions between signals and helps elucidate how biological 

oscillators can improve robustness through gradual evolution. In addition, identification of 
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incoherent inputs provides useful guidance for designing robust synthetic oscillators and present 

a convenient way to modify known biological oscillators, of which the core structures are 

difficult to manipulate. 

In the analysis, we have generated a complete map of three-node oscillators where any 

pair of topologies that differ by only one regulatory interaction are connected. A similar 

connection map has been reported in a study on the evolution of robustness in circadian clocks 

by evolutionary search (Wagner, 2005). The high connectivity we observed in the oscillator 

design space suggests that an oscillator can be evolved by adding or deleting one regulatory 

interaction at each step without stopping oscillations. Interestingly, I found the effects of 

multiple local motifs are additive for both robustness and tunability. That is, the robustness or 

tunability of an oscillator can increase or decrease with the numbers of respective motifs. This 

implies that natural evolution could repeatedly use the same strategy to achieve robust or tunable 

oscillators.  

Indeed, both incoherent inputs and positive feedbacks are highly enriched in well-known 

biological oscillators. Incoherent inputs are observed in nearly all oscillators, ranging from 

circadian clocks to signaling networks (Figure 1), as well as many robust synthetic biological 

oscillators (Figure 2). The only exception is the repressilator (Elowitz and Leibler, 2000), the 

first synthetic gene oscillator, which did not show great robustness until recent modifications 

(Potvin-Trottier et al., 2016). Positive feedbacks, which were shown to increase oscillator 

tunability, are also highly enriched in oscillators that requires frequency tunability, from the 

neural spike, cardiac oscillation to cell cycles (Figure 1). A recent study on frequency tuning and 

amplitude tuning suggests that the tunability is a critical feature of biological oscillator and plays 

an important role in transcription regulation (Levine et al., 2013). Detailed analysis on parameter 
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response in our study provides valuable guidance for designing robust and tunable synthetic 

oscillators as well as understanding evolutionary strategy to improve the robustness and 

tunability of an oscillator. 

 

 

Figure 15 Relationship between peak time and oscillation period 
(A-B) Relationship between period and peak time of interlinked negative feedbacks (A) and interlinked positive 
feedback and negative feedback (B). (C) Joint distribution of average peak time and average period for all samples. 
Samples of topologies without positive feedback are labeled red, and the samples with positive feedback are labeled 
blue. (D) Relationship between period and peak time of a coupled oscillator, showing multiple forms of waveform 
tuning pattern. 
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Chapter 3 Investigating network circuits of cell cycle oscillator using cell-free Xenopus 
extract droplets 

 

The computational and theoretical study described in Chapter 2 has produced various 

interesting predictions for how network circuits affect the dynamics properties of biological 

oscillations. However, given the level of abstraction in the computational models, it is critical to 

experiment with real-world oscillatory systems to test the predictions derived from mathematical 

modeling. In this Chapter, I describe my efforts on first building an artificial cell system that 

reconstitutes cell cycle with cell-free extracts from Xenopus eggs, and then using this system to 

perform various experiments to test the predictions from my theoretical study. 

Extracts of Xenopus eggs were one of the few early classical models used to study cell 

cycle regulation (Lohka et al., 1988). Detailed dissections of the cell cycle circuits using these 

extracts have revealed an architecture of interlinked positive and negative feedbacks 

(Pomerening et al., 2005). Compared to cellular systems such as cultured cells or developing 

embryos, it is more convenient to reconstitute molecular circuits in cell-free extracts by adding 

well-defined recombinant molecules. Cell-free extracts are more amenable to the systematic 

design, manipulation, and quantitative biochemical measurements, bringing a unique advantage 

to test model predictions. However, most in vitro reconstitutions of biological oscillators up to 

date can only sustain short lifetimes of oscillations. This is because the previous methods usually 

constructed oscillations in well-mixed bulk solutions which tend to produce quickly damped 

oscillations. Additionally, these bulk reactions lack the similarity to the actual cell dimensions 

and the ability to generate oscillations with different frequencies in a high-throughput manner. 
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These limitations make it difficult to systematically study oscillator properties, especially period 

tunability.  

In this chapter, I will introduce our approaches to tackle these challenges. In part 3.1, 3.3 

and 3.4, I will discuss our efforts to develop an artificial mitotic cycle system by encapsulating 

reaction mixtures containing cycling Xenopus egg cytoplasm in cell-scale micro-emulsions. This 

is a published work in collaboration with Ye Guan (Guan et al., 2018), a previous graduate 

student in the lab, who did most of the experiments, and some of the paragraphs and figures are 

adapted from previous publications (Guan et al., 2018). We showed that energy level may play 

an important role in cell cycle progression. In part 3.2, I’m going to present the experimental 

evidence I collected supporting that incoherent input increases the oscillator robustness. Part 3.5-

3.7 is ongoing projects in collaboration with Meng Sun, a postdoctoral researcher in the lab with 

expertise in nanofabrication and droplet microfluidics, and we further developed artificial mitotic 

cycle system using microfluidic devices to allow for reliable high-throughput analysis. Using this 

system, we collected experimental evidence supporting positive feedbacks increasing the 

oscillator tunability. In the meantime, and we also verified that the cell cycle is a pulsatile 

oscillator with consistent mitotic phase and variable interphase. 

3.1. Droplets of Xenopus egg extracts reliably drive the periodic progression of multiple 

mitotic events 

To generate the extracts droplets, we have developed and optimized a protocol to 

encapsulate cell-free cycling extracts into microfluidic droplets and have used fluorescent 

imaging to examine their cell cycle activities. Cell-free cycling extract was made from Xenopus 

eggs (Figure 16) using a published protocol (Murray, 1991) with a small modification and tested 

for biological activities. The modification we made was in the cell cycle activation method in 
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which we replaced the electrical shock activation by adding calcium ionophore A23187 (200 

ng/µL). The extract was then mixed with surfactant oil 2% PFPE-PEG, and vortexed to generate 

droplets (Ho et al., 2017). This method could compartmentalize cycling Xenopus egg extracts 

into microemulsion droplets, with radii ranging from 10 µm to 300 µm (Figure 16A). After 

vortexing, the droplets were loaded into a Teflon-coated chamber with a height of 100 µm and 

recorded using long-term time-lapse fluorescence microscopy.  

To enable measurement of cell cycle activities, we added cell cycle reporters in the 

extract which allowed high-resolution measurements of the cell cycle dynamics. The 

fluorescence time courses of each droplet were then analyzed to obtain information of its cell 

cycles including period, reporter amplitude, number of sustained cycles, and droplet size. 

Specifically, we added securin-mCherry mRNA, de-membranated sperm chromatin, purified 

green fluorescent protein-nuclear localization signal (GFP-NLS), and Hoechst 33342 dye to the 

cytoplasmic extracts, which together visualize cell cycle dynamics of individual droplets (Figure 

17A). Securin is an anaphase substrate of APC/C. Therefore, the securin-mCherry reporter is 

periodically degraded and indicates the oscillation of cell cycle. The sperm chromatin, GFP-NLS 

and Hoechst dye in combination visualize the breakdown and reconstruction of the nucleus as 

well as the condensation and relaxation of chromatin that oscillates between interphase and 

mitosis. In interphase, the presence of sperm chromosomal DNA, labeled by Hoechst, initiated 

the self-assembly of a nucleus, upon which GFP-NLS protein was imported through the nuclear 

pores. The spatial distributions of Hoechst and GFP-NLS thus coincided in an interphase nucleus 

(Figure 17A columns 1, 3, and 5). As the artificial cell entered mitosis, the chromosome 

condensed resulting in a tighter distribution of Hoechst, while the nuclear envelope broke down 

and GFP-NLS quickly dispersed into a uniform distribution in the whole droplet (Figure 
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17A columns 2 and 4). In another set of experiments, we also supplied the system with purified 

mRNAs of full-length cyclin B1 fused to YFP (cyclin B1-YFP), which function both as a 

reporter of APC/C activity and as an activator of Cdk1. A droplet supplied with both cyclin B1-

YFP and securin-mCherry mRNAs exhibited oscillations with highly correlated signals, 

suggesting that both are reliable reporters for the cell cycle activity. Altogether, these 

experiments showed that the droplet system successfully reconstituted a cell-free mitotic 

oscillator centered on Cdk1 and APC/C that can reliably drive the periodic progression of 

downstream events including chromosome morphology change and nuclear envelope breakdown 

and re-assembly, like what occurs in vivo. 
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Figure 16 Making cell-free cell cycle extract from Xenopus eggs 
(A) Schematic view of a cell cycle oscillator that consists of coupled positive and negative feedback loops. The 
central regulator, cyclin B-Cdk1 complex activates its own activator, phosphatase Cdc25, forming a positive 
feedback loop, and inhibits its own inhibitor, kinase Wee1, forming a double negative feedback loop. Additionally, 
cyclinB-Cdk1 activates the E3 ubiquitin ligase APC/C, which targets cyclin B for degradation and completes a core 
negative feedback loop. Active APC/C also promotes the degradation of another substrate securin. Once the cyclin 
B1-Cdk1 complex is activated, the circuit drives a set of mitotic events including chromosome condensation and 
nuclear envelope breakdown (NEB). (B) Experimental procedures. Cycling Xenopus extracts are supplemented with 
various combinations of recombinant proteins, mRNAs, and de-membraned sperm DNAs, which are encapsulated in 
2% Perfluoropolyether-poly (ethylene glycol) (PFPE-PEG) oil microemulsions. Scale bar is 100 µm. 
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Figure 17  Xenopus extract cell cycle oscillator reliably drives the periodic progression of multiple mitotic events 
(A) Snapshots of a droplet were taken periodically both in fluorescence channels (top three rows) and bright-field 
(the last row). The cyclic progression of the cell cycle clock and its downstream mitotic processes are 
simultaneously tracked by multiple fluorescence reporters. The clock regulator APC/C activity is reported by its 
substrate securin-mCherry, chromosomal morphology changes by the Hoechst stains, and NEB by GFP-NLS. 
Nuclear envelopes (red arrows) are also detectable on bright field images, matching the localization of GFP-NLS 
indicated nuclei. Scale bar is 30 µm. (B) Simultaneous measurements of fluorescence intensities of securin-mCherry 
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(upper panel) and cyclin B-YFP (lower panel), showing sustained oscillations for about 58 hr. The mRNA 
concentrations of securin-mCherry and cyclin B-YFP are 10 ng/µL and 1 ng/µL. The series of mCherry and YFP 
images correspond to selected peaks and troughs in the time courses of fluorescence intensities. The two channels 
have coincident peaks and troughs for all cycles, suggesting that they both are reliable reporters for the cell cycle 
oscillator. 
 

 

 
 
Figure 18 wee1 inhibitor could increase the cell cycle oscillation number and sustaining time.  
(A) The expression level of cdc25 divided by the expression level of wee1 during the development of Xenopus 
embryos. Calculated from the database of a previous study (Peshkin et al., 2015). (B) Relationship between wee1 
inhibitor concentration and cell cycle oscillator sustaining time. (C) Relationship between wee1 inhibitor 
concentration and cell cycle oscillation number 
 

3.2. Oscillation duration of Xenopus extract is effectively tuned by wee1 inhibitors. 

Cell cycle oscillations in Xenopus egg extract mainly consist of two phases, mitotic phase 

and interphase, and its transition (also called G2/M transition) is mainly driven by the Cdk1-

cyclinB complex. The molecular mechanisms underlying G2/M transition has been reviewed in 

detail in (Kastan and Bartek, 2004). In brief, kinase wee1 phosphorylate Cdk1 and inhibits its 

activity; conversely, cdc25, a phosphatase can dephosphorylate and activates Cdk1. Cdk1, in 

return, phosphorylates both cdc25 and wee1, which activates cdc25 but inhibits wee1 (Figure 
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16A). As a result, cdc25 and wee1 each forms a positive feedback loop on Cdk1-cyclinB 

complex respectively. After activation, Cdk1 can drive a series of downstream events including 

the phosphorylation of the APC/C complex, an E3 ligase. The APC/C complex is activated by a 

series of phosphorylation events and could mediate ubiquitin-mediated degradation of cyclin B 

with the help of cdc20, which forms a negative feedback to the Cdk1-cyclinB complex. As a 

result, APC/C and wee1 form a pair of coherent inputs to regulate Cdk1 activity while APC/C 

and cdc25 form a pair of incoherent inputs to regulate Cdk1. According to the predictions from 

my computational work (Chapter 2), the robustness of the cell cycle oscillator should be 

enhanced by cdc25 activity and inhibited by wee1 activity.  

To test this prediction, I first examined published data on cell cycle during development 

(Peshkin et al., 2015) and calculated the ratio between cdc25 and wee1 during different 

developmental stages (Figure18A). I found that the ratio of cdc25 to wee1 activity remains 

relatively high and decreases rapidly during gastrulation, and remained low at later 

developmental stages, which supports my prediction as cell cycle is more likely to sustain 

oscillation during early developmental stages. Then I experimented with the Xenopus cyclin B 

extract droplets and performed perturbations to the cell cycle circuits. While a specific inhibitor 

of cdc25 is difficult to find, several specific wee1 inhibitors have been developed. Specifically, I 

have used PD0166285, a previously tested wee1 inhibitor (Tsai et al., 2014a), to inhibit wee1 

activity. Since it is difficult to measure parameter volume that supports oscillations 

experimentally, we proposed several measurements to indicate oscillator robustness, including 1) 

The percentage of droplets that shows oscillations. 2) The sustaining time of oscillation droplets. 

3) The number of cycles the system could perform. From our results, I observed that adding 

wee1 inhibitor has little effect on the percentage of droplets that show oscillations at time zero 
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(data not shown). However, treatment of wee1 inhibitor had a significant effect on the number of 

oscillations and total oscillation duration a droplet sustains. Specifically, wee1 inhibitor 

PD0166285 below 1μM increase both the oscillation sustaining time (Figure 18B) and the 

number of oscillations in the extract system (Figure 18C). This result suggests that inhibit wee1 

activity may increase the robustness of cell cycle oscillations. Somewhat surprisingly, wee1 

inhibitor treated at concentrations above 1μM reverses this increase. This is probably a result of 

substrate depletion of cdc25 when wee1 activity is vastly reduced. 

3.3. Cell cycle frequency can be effectively tuned with cyclin B1 mRNAs and is sensitive to 

droplet size 

Frequency tunability, the ability to adjust oscillation frequency is an important feature 

shared by many oscillators (Tsai et al., 2008) (also in Chapter 2.3). The Xenopus egg extract 

droplets which support multiple oscillations of cell cycles provide an effective experimental 

solution to study tunability of the biological oscillators. To avoid interference from the 

complicated nuclear dynamics, I used a minimal mitotic oscillatory system with no addition of 

sperm chromatin, therefore forms no nuclei. This simple, cytoplasmic-only oscillator produced 

highly robust, undamped, self-sustained cell cycle oscillations up to 32 cycles over a lifetime of 

4 days, significantly better than many existing synthetic oscillators (Guan et al., 2018) (Figure 

17). 

Cyclin B1-YFP is used in the experiment to both visualize the cell cycle dynamics and 

manipulate cyclin B1 expression. With increasing concentrations of cyclin B1-YFP mRNAs 

added to the system, I observed a decrease in the average period (Figure 19B), meaning that 

higher cyclin B1 concentrations tend to speed up the cell cycle. However, the average number of 

cycles (Figure 19A) reduces with increased cyclin B1 concentrations, resulting in a negative 
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correlation between the lifetime of oscillations and the amount of cyclin B1 mRNAs, and the 

extracts will eventually arrest at a mitotic phase in the presence of high concentrations of cyclin 

B1. We have proposed an energy-related model to explain this phenomenon which is detailed in 

the next section. 

In the experiments, we have generated droplets with radii ranging from a few µm to 300 

µm. This enabled the characterization of size-dependent behaviors of cell cycles. At the scale of 

a cell, the dynamics of biochemical reactions may become stochastic. Although stochastic 

phenomena have been studied extensively in the context of steady-state gene expressions, 

studying a stochastic system that is out of steady-states can be challenging in living organisms 

due to low throughput and complications from cell growth and division. These limitations can be 

overcome by reconstitution of in vitro oscillators inside cell-scale droplets, which omit cell 

growth and divisions. Parallel tracking of droplets also enables high-throughput data generation 

for statistical analysis. In vitro compartmentalization of molecules, especially rate-limiting 

molecules such as cyclin B1 mRNAs, into cell-sized droplets may have a major effect on the 

reaction kinetics of cell cycles. The smaller the size of a droplet, the smaller the copy number of 

molecules encapsulated inside the droplet and the larger the inherent stochasticity of biochemical 

reactions. Additionally, the partition errors of these molecules resulting from 

compartmentalization may further contribute to the variation of droplet behaviors in a size-

dependent manner. Figure 19C shows that smaller droplets have slower oscillations with a larger 

variation in the periods. This is similar with the size effect reported on an in vitro transcriptional 

oscillator (Weitz et al., 2014), further suggesting that the size effect on oscillation period is likely 

a result of stochasticity in the system independent of specific oscillating molecules. We also 

observed a reduced number of oscillations in smaller droplets (Figure 19B). Interestingly, these 
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size effects become less dramatic for droplets with larger sizes or with higher concentrations of 

cyclin B1 mRNAs, suggesting that stochasticity effects diminish as the molecule number 

increases. 

 

 
Figure 19 Effect of external cyclinB concentration and droplet size on cell cycle number and period. 
(A, B) The oscillator is tunable in frequency (A) and the number of cycles (B) as a function of the concentration of 
cyclin B mRNAs. Cyclin B not only functions as a substrate of APC/C but also binds to Cdk1 for its activation, 
functioning as an ‘input’ of the clock. Each data point represents a single droplet that was collected from one of the 
loading replicates. Red dashed line connects medians at different conditions. Error bar indicates median absolute 
deviation (MAD). (C, D) Droplets with smaller diameters have larger periods on average and a wider distribution of 
periods (C) and exhibit a smaller number of oscillations on average (D). Colored areas represent moving 25 
percentiles to 75 percentiles and are smoothed using the LOWESS smoothing method. The equivalent diameter is 
defined as the diameter of a sphere that has an equal volume to that of a droplet, estimated by a volume formula in 
literature (Good et al., 2013). Note that these size effects are smaller for droplets with higher cyclin B mRNA 
concentrations. 
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3.4. Energy depletion model recapitulates dynamics of the oscillator 

 
As discussed in the previous section, the period of the Xenopus cycling extract can be 

tuned by cyclin B1 mRNA concentration and droplet size. Interestingly, the period and number 

of cycles are affected by droplet sizes in opposite directions, but changes in the same direction 

when affected by the level of cyclin B1 mRNAs (Figure 19). This means that the lifespan of the 

oscillatory system is sensitive to cyclin B1 mRNA concentration but not droplet size (Figure 19). 

Moreover, I have observed that both securin-mCherry and cyclin B1-YFP levels exhibited 

increased amplitude, baseline, and period over time. These trends cannot be explained by any 

existing cell cycle models (Tsai et al., 2014a; Yang and Ferrell, 2013b). 

To explain these phenomena, we explored factors of cell-free extracts that differ from 

existing cell cycle models. Unlike intact embryos, cell-free extracts lack yolk which is an energy 

source for embryo development and exclude some of the mitochondria which are responsible for 

energy regeneration. We postulated that energy is an important regulator for the droplet system 

with a limited amount of energy sources to consume over time.  

To gain insights into our experimental observations and to better understand the in vitro 

oscillator system, we built a computational model to examine how energy consumption affects 

the cell cycle oscillation behaviors. This energy depletion model is modified based on a well-

established cell-cycle model (Tsai et al., 2014b; Yang and Ferrell, 2013a) by introducing ATP 

into all phosphorylation reactions (Appendix Tables A2, A3). In the cell cycle network, the 

activation of Cdk1 is co-regulated by a double positive feedback through a phosphatase Cdc25 

and a double negative feedback through a kinase Wee1. The balance between Wee1 and Cdc25 

activity was suggested to be crucial for the transition of cell cycle status during early embryo 
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development (Tsai et al., 2014a). In light of this, we defined the balance between Wee1 and 

Cdc25 by the ratio 𝑅𝑅 = 𝑘𝑘𝑊𝑊𝑊𝑊𝑊𝑊1[𝑊𝑊𝑊𝑊𝑊𝑊1]
𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶25[𝐶𝐶𝐶𝐶𝐶𝐶25]. We noted that ATP-dependent phosphorylation of Cdc25 

and Wee1 can decrease R by activating Cdc25 and inhibiting Wee1 simultaneously, resulting in a 

high dependence of R on the ATP concentration (Figure 20B). 

Using this model, we further investigated the relationship between ATP and oscillation 

behaviors. We introduced a parameter r into our system to systematically change the ratio R. In 

Figure 20C, the phase plot of the two-ODE model shows that at a low r (e.g. 0.5), the system will 

stay in a stable steady-state with low cyclin B concentration. Conversely, at a high r (e.g. 2.5), 

the oscillation will be arrested in a stable steady-state with high cyclin B concentration. At an 

intermediate value, increasing r produced oscillations of increased amplitude, baseline and 

period (Figure 20C, D). We assume that the available ATP concentration decreases over time 

which makes sense in the case of our droplets with no energy reserve. This model therefore 

successfully recapitulates the experimentally observed increment of amplitude, baseline, and 

period of the cyclin B time course (Figure 20E).  
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Figure 20 Energy depletion model of cell cycle  
(A) Schematic view of the cyclin B-Cdk1 oscillation system. Note that ATP is taken into consideration. Activated 
molecules are marked in red, inactivated molecules in green and ATP or Pi in yellow. Black line indicates a reaction 
and blue dotted line phosphorylation. (B) Relationship between ATP percentage and R value, showing that 
decreasing the ATP concentration leads to a higher R value. Error bars represent ranges from three simulations. Two 
inserts represent the dynamics of R value over time when the ATP percentage [ATP]/([ATP]+[ADP]) is set as 0.2 
(left) and 0.5 (right). The model is simulated using the Gillespie algorithm. (C) Phase plots of the two-ODE model. 
Parameters for the cyclin B nullcline (Ncyc) (Yang and Ferrell, 2013) and the Cdk1 nullclines with a variety of 
values of r were chosen based on previous experimental work (Pomerening et al., 2003). Note that the r here is a 
parameter and is different from R in Figure 20B. Two sample traces of limit cycle oscillations are plotted for r = 0.8 
and r = 1.5, showing that a larger r value leads to a higher amplitude and baseline. In addition, r = 0.5 generates a 
low stable steady-state of cyclin B, while r = 2.5 a high stable steady-state of cyclin B. (D) Relationship between the 
oscillation baseline and amplitude values and ATP concentration (positively correlated with r). Error bars indicate 
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the ranges of 3 replicates. Inserts show two example time courses of total cyclin B with different r values (upper: r = 
0.8, lower: r = 1.5), colors of which match the ones in Figure 20C. Simulation is done using the Gillespie algorithm. 
(E) Time series of total cyclin B molecules from the model without ATP (top panel, green line) and with ATP 
(bottom panel, yellow line). 
 

3.5. Building artificial cells with a uniform size  

Given the sensitivity of the oscillator period on droplet size, when tuning frequency with 

mRNA concentrations, the system shows high variation among droplets with the same mRNA 

concentrations. To systematically investigate the oscillator tunability without this additional 

variable, I worked with Meng Sun to use the microfluidic system to produce droplets with 

uniform sizes and shape. Droplet microfluidic technology is a state-of-art technology (Damiati et 

al., 2018) that is capable of producing cell-like compartments and sub-compartments of 

controlled size at a high level of precision. Recent studies have used microfluidic systems to 

generate nucleus (Guan et al., 2018), microtubules (Sanchez et al., 2012), and spindle (Good et 

al., 2013) in uniform-sized droplets. Microfluidic systems can generate large quantities of 

monodispersed droplets of controlled sized and content from small sample volumes at high 

speed. It allows expeditious processing of raw samples prepared from live embryos or cells that 

oftentimes have unpredictable and limited quantities and thus can help maximally preserve the 

biological activities of the samples in vitro. However, to obtain accurate and high-resolution 

measurements for a large number of droplets, it also requires compatible droplet detection 

techniques, analytical throughput, and spatiotemporal resolution. In addition, for those artificial 

droplet cells that mimic dynamic cellular behaviors and biological processes, it becomes difficult 

computationally to extract the sophisticated dynamics and morphological details in the droplets 

with long-term live monitoring. These challenges have limited the technology to be generalized 

for biological applications. 
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To tackle the challenges, we have developed a droplet microfluidic toolbox (Figure 21A) 

and an image-based droplet analysis framework (Figure 21B) that address the aforementioned 

challenges to create and analyze artificial droplet cells. As shown in Figure 21B, droplets are 

generated in a flow-focusing device and loaded from an on-chip reservoir into rectangular 

shaped thin glass tubes. Compared to traditional methods which use micro-wells or -traps 

fabricated on a chip, our method largely reduces the complexity of manipulating fluid dynamics 

in the microchannel network (Du et al., 2009). A key challenge is to trace the origin and 

constitution of individual droplets which we addressed by using automated droplet tracking. 

After loading the droplets to the tubes, they are then immersed and arrayed in an oil dish for 

long-term droplet incubation and imaging. Unlike previously reported tracking methods using 

fluorescence markers (Genot et al., 2016), which may be subject to cross-talk, photobleaching, 

fluctuations, and photo-toxicity to biological samples, we developed an automatic image analysis 

method using bright-field images to segment and track every single droplet over the entire 

acquisition time.  

The detailed image analysis pipeline is shown in Figure 22. Images are preprocessed with 

background subtraction to compensate illumination difference. An LoG (Laplacian of Gaussian) 

filter is then applied to the image to increase the contrast of edge and suppress noise. Hough 

circle transform is used to detect circular objects (droplets), and the detected circles are trimmed 

to avoid overlapping. Automated lineage tracking is performed on features calculated during 

segmentation. Segments are organized in K-D trees for faster searching. Droplets from each time 

point T were compared with the ones from T+1 to search for the globally optimal matches 

between neighboring time points (Huh et al., 2011). Parameters used for tracking were 

automatically calculated based on the distribution of droplets features and confirmed in 
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subsamples by eye. As an output from tracking, each track starts at the first time point, or when 

the droplet moves into the image field and ends at the last time point, or when the droplet moves 

out of the image field. After tracking, individual droplet tracks are further filtered based on 

tracking length, droplet shape/size, and the fluorescent intensity of cell cycle reporters are 

measured and recorded frame by frame over all the captured time-lapse images.  

Having the combined advantages of high-throughput droplet generation, long-term 

incubation, as well as accurate tracking and detection, our droplet microfluidic framework can be 

flexibly adapted for a wide variety of chemical and biological applications.  

 
Figure 21 Droplet microfluidic platform.  
(A) Schematic diagram showing droplet generation and loading into a glass tube: a reservoir opened at the end of a 
flow-focusing device with a diameter of 3 mm; the tube width is 2.1 mm. The arrows indicate the flow direction of 
droplets. (B) Droplet microfluidic workflow. 
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Figure 22 Image processing pipeline for automatic droplet analysis.  
(A) A section of an original Image. (B) Image after LoG filter (r1=6 pixel, r2=2 pixel).  (C) Hough circle 
transformation followed by thresholding and overlap detection. (D) Watershed segmentation with seeds generated 
from circle detection. (E) Illustration of the linking process. 6 possible links found between two frames with 3 
segments. The number next to tracks represent linking probability. After optimizing maximum probability, 4 of the 
links (solid line) are adopted and added to tracks, while the rest (dashed line) are discarded. Note that track 4 
represents the droplet moving in from outside while track 3 represents the droplet moving out of the view (F) 
Example of tracking results 
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3.6.  Disruption of positive feedback reduces the tunability of cell cycle oscillators. 

Using the microfluidic system, we generated droplets of controlled size and content to study 

the control of frequency tunability of the cell cycle. In Chapter 3.3, it has been showed that 

external human cyclinB1-mRNA can reliably tune the cell cycle oscillator frequency, suggesting 

that cyclin B1 level is an ideal candidate tuning parameter. However, adding external cyclin B 

mRNA can only increase, but not decrease the oscillator period, which restricts the dynamical 

range of the cell cycle period. To solve the problem, we used morpholino, a polymer that binds 

to specific mRNA to block translation. We applied cyclin B morpholinos to the droplets to 

inhibit internal cyclin B mRNAs which effectively tuned the cell cycle oscillator to a longer 

period. As shown in Figure 23, we added a mixture of 4 morpholinos to the extracts droplets, 

targeting Xenopus cyclinB1a (ACATTTTCCCAAAACCGACAACTGG), Xenopus cyclinB1b 

(ACATTTTCTCAAGCGCAAACCTGCA), Xenopus cyclinB2l 

(AATTGCAGCCCGACGAGTAGCCAT), Xenopus cyclinB2s 

(CGACGAGTAGCCATCTCCGGTAAAA) respectively, and the average period of the cell 

cycle significantly increases. In comparison, the droplets treated with control morpholinos (a 

mixture of random 25mers) shows no significant change. This indicates that the morpholino 

mixture can reliably block the translation of internal cyclin B mRNAs. As an additional control, 

the effect of morpholino on cell cycle period is compensated when we added 10ng/ul external 

human cyclinB1 mRNA to the extract. This confirms that the effect of morpholino is specific and 

we can use a combination of morpholino mixture and cyclin B mRNA to increase the dynamical 

range of frequency tuning.  

We developed microfluidic platforms to identify the operating concentration range of 

morpholino and mRNAs (Figure 23B, C). We added fluorescent dyes to both the morpholino 
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mixture and external cyclin B mRNA to facilitate measurements of their concentrations in 

individual droplets. We use microfluidic devices to fine tune the volume of morpholino mixture 

or external cyclin B mRNA added to the droplets. As the molecule numbers of both the dye and 

morpholino/mRNA are large enough, we assume that the intensity of the fluorescence dye 

linearly correlates with the concentration of morpholino/mRNAs in the droplets. By changing the 

pressure of two microfluidic inlets, we can continuously change the value of the tuning 

parameter. After imaging and data analysis, we binned the data based on the morpholino or 

mRNA concentrations. The result shows that by increasing morpholino or mRNA concentration, 

the percentage of oscillators that support oscillation decreases and reached 0, which means that 

we have identified the bifurcation point of this oscillatory system. The critical condition for 

morpholino is around 2.5μM. As a result, we can add mRNAs in extract supplemented with 3μM 

morpholino to achieve full range parameter scan. Under this condition, the bifurcation point for 

mRNA is around 10ng/ul (Figure 23C).  

We then used the microfluidic design with three inlets channels. This design allows for 

systematically tuned both mRNA concentration and wee1 inhibitor concentration with the 

droplet system as guided by previous research (Genot et al., 2016). The result shows that when 

wee1 inhibitor concentration increases, the range of cell cycle oscillation period decreases 

(Figure 23), supporting the computation prediction in Chapter 2. To fully address the role of 

positive feedback on tunability, it helps to have further experiments with more tuning parameters 

and different circuit perturbations. 

Investigation of tunability in real biological oscillator will provide valuable data to 

understand the control mechanisms of the biological oscillator. In addition, by dissecting cell 

cycle circuits in vivo, this work represents the first reported experimental effort to systematically 
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analyze the mechanism of changing tunability in the cell cycle. This study also provides an 

optimized scheme for cell cycle period control, which may help inspire the development of novel 

target for diseases caused by cell cycle malfunctions. Furthermore, as the frequency range in the 

cell cycle is changing drastically from embryo to adult, a study on frequency range may provide 

useful information on organism development and cell differentiation. 

 

 
 
Figure 23. Investigation of the effect of the wee1 inhibitor on cell cycle tunability in response to cyclin B mRNAs.  
(A) Effect of different experimental conditions on average cell cycle oscillator period (min). wt, pure Xenopus 
extract; mp, add anti-Xenopus cyclinB morpholino mix; ctrl, add control morpholino (targeting random sequence); 
mRNA, add human cyclinB1 mRNA. (B) Tune cell cycle oscillator using morpholinos. The microfluidic setup 
scheme is shown on the upper right corner. By changing the relative pressure of two channels, the morpholino 
concentration is changed continuously. The x-axis shows the equivalent morpholino concentration measured by 
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fluorescent dye. Y-axis shows the percentage of all droplets tracked that oscillate for least two cycles.  (C) Tune cell 
cycle oscillator using mRNAs. The microfluidic setup scheme is shown on the upper right corner. The x-axis shows 
the equivalent mRNA concentration measured by fluorescent dye. Y-axis shows the percentage of all droplets 
tracked that oscillate for least two cycles. (D) Role of wee1 inhibitor on the period range. Showing all cycles within 
700 min. The microfluidic setup scheme is shown on the upper right corner, both cyclin B mRNA and wee1 
inhibitor concentration is tuned continuously.  The result shows a reduced cell cycle period range under high wee1 
inhibitor concentrations.  
 

3.7.Cell cycle oscillation shows a pulsatile waveform  

Another advantage of having uniform droplet size is the ease of image analysis, in 

particular, identification of nuclei in the droplets. Accurate identification of nuclear breakdown 

and reconstruction allows us to precisely capture the initiation and termination of the mitotic 

phase. Therefore, we used the microfluidics generated droplets to analyze the relative timing of 

the interphase vs mitotic phase in the mitotic cycle.  

To generate nucleus-containing droplets, we used similar protocols as described in 

Chapter 3.1. In brief, we supplemented the droplets with demembranated sperm chromatin to 

trigger self-assembly of nuclei surrounding the sperm DNA. We used a GFP-tagged nuclear 

localization signal (GFP-NLS) to report nuclear formation, and additionally added an ATP 

energy regeneration system (creatine - creatine phosphate system). These enable the creation of 

an artificial cell with a nucleus that exhibits periodic morphological changes across cell cycle 

oscillations. Figure 24 demonstrates an example droplet from the experiment showing that a 

nucleus forms during interphase when GFP-NLS translocates to the nucleus forming a bright dot 

in the droplet (Figure 24A, upper-row images), while nuclear envelope breaks down during 

mitotic phase, with NLS-GFP evenly distributed throughout the droplet (Figure24A, bottom-row 

images). To accurately discriminate the droplets with nucleus (at mitotic phase) vs the ones 

without a nucleus (at interphase), I calculated the standard deviation of GFP-NLS fluorescence 

within each droplet and applied supervised learning based on support vector machine to classify 

interphase and mitotic phase droplets. 
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Similar to the droplets containing no nuclei, we found that the period of oscillations 

increased over time (Figure 24A). Interestingly, the impact seems to be predominantly on the 

interphase which gets longer at each cell cycle (Figure 24B), while the length of the mitotic 

phase maintains almost constant (Figure 24C). Using a cell cycle model discussed in Chapter 

3.4, we further recapitulated such differential behaviors of interphase and mitotic phase in 

response to energy reduction (Figure 24D). Together, it confirms that cell cycle behaves as a 

relaxation oscillator, as suggested by previous studies in bulk solutions (Yang and Ferrell, 

2013b) and in mammalian cell lines (Araujo et al., 2016). Building on a hysteretic switch by the 

Cdk1-Cdc25-Wee1 interlinked positive feedback loops, cell cycle (Araujo et al., 2016; Yang and 

Ferrell, 2013b) alternates between a long relaxation interphase period that is subject to 

environmental perturbations and a short impulsive mitotic period that is temporally insulated 

from variability. 
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Figure 24 Pulsatile waveform of the cell cycle oscillations 
 (A) Cell cycle oscillations in droplets containing Xenopus extract, sperm DNA and NLS-GFP. Images above and 
beneath of the curve show a representative droplet oscillating between interphase (red dots) and mitotic phase (blue 
dots). Yellow dots indicate pre- and post-oscillation periods. X-axis, time after imaging (around 15min after 
activation); y-axis, the standard deviation of NLS-GFP intensity inside one droplet, logarithm scale. Scale bar: 50 
μm. Periods of interphase (B) and mitotic phase (C) versus cycling number. (D) Theoretical modeling of the periods 
of oscillations at the interphase and mitotic phase, consistent with our experimental observations. 
 

 

3.8.Conclusion 

In this Chapter, I present the development of a novel artificial cell system that enables 

highly robust and tunable mitotic oscillations. Taking advantage of the microfluidics system as 
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well as automatic image processing, this system enables measurements at high throughput, high 

sensitivity, and high-spatiotemporal resolution, and opens exciting possibilities for systematic 

studying oscillator properties. We showed that the cycling Xenopus extract can reliably 

recapitulate various cell cycle events and is amenable to external regulations.  Although the work 

described here is focused on cell cycles, it may have general implications in the design principles 

of biological oscillators give that common topologies are shared among biological oscillators 

Our energy depletion model has suggested an interesting mechanism to modulate 

oscillations with a single control parameter that depends on the energy-tunable balance of two 

positive feedback loops. The rapid, synchronous cleavages of early embryo require high energy 

consumption (Zotin and Zotina, 1967), it is possible that the mid-blastula transition which 

triggers prolonged cell cycle is sensed by an energy-dependent “checkpoint”. Our results also 

showed a significant difference between interphase and mitotic phase during the slowing. This 

suggests that while interphase is sensitive to the energy level, the mitotic phase is isolated and 

functions in a pulsatile pattern.  

Investigation of tunability and robustness in real biological oscillator will provide 

valuable data to verify and guide theoretical studies. Importantly, such exploration is critical to 

understand the control mechanisms of biological oscillators. In addition, by dissecting the cell 

cycle circuit in vivo, it will be the first time to systematically analyze the mechanism of changing 

tunability in the cell cycle. This study provides an optimized scheme for cell cycle period 

control, which may help inspire novel treatment strategies for diseases caused by cell cycle 

malfunction like cancer. Furthermore, as the frequency range in the cell cycle is changing 

drastically from embryo to adult, a study on frequency range may provide useful information on 

organism development and cell differentiation.
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Chapter 4 Discussions 
 

Biological oscillators are widespread in living organisms and play important roles in 

various biological functions including cell proliferation and circadian rhythm. In my Ph.D. study, 

I have comprehensively investigated the design principles of biological oscillators from both 

theoretical and experimental perspectives. 

I first performed a systematic network search using numerical simulations to theoretically 

examine the role of network structures on oscillator functions, including robustness and 

tunability. Robustness and tunability are critical features that differentiate biological oscillators 

from physical or simple biochemical oscillators. These properties allow biological oscillators to 

stably function in a noisy environment and adapt to external changes. My theoretical study 

identified a novel local structure, incoherent or coherent inputs, that directly promotes or 

weakens oscillator robustness. This discovery has two major significance. First, it provides an 

intuitive understanding of how natural evolution can gradually select highly robust oscillators. 

Second, it provides a useful and easily adaptable method for designing robust synthetic 

oscillators or manipulates known biological oscillators. I further studied tunability using similar 

pipelines. I verified that positive feedbacks could increase the frequency turnability of biological 

oscillators and showed that the role of positive feedbacks is additive. In addition, we found that 

the oscillator waveform is associated with its network circuit, suggesting a potential correlation 

between oscillator tuning pattern and their waveform shape. 
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I also performed an experimental study to verify results from computational analysis and 

to guide further theoretical investigations. We first developed an artificial mitotic cycle system 

by encapsulating reaction mixtures containing cycling Xenopus egg cytoplasm in cell-scale 

micro-emulsions. We showed that we can successfully recapitulate various cell cycle activities in 

a cell-sized compartment.  Using this system, we collected the evidence that incoherent input 

increases the oscillator robustness. In this experiment, we also find that baseline and amplitude 

of cell cycle oscillation keeps increasing over time, different with previous computational 

models. To explain this phenomenon, we proposed an energy-dependent model and showed 

computationally that the new model can explain the observed experimental result. This result 

suggesting that energy level may play an important role in determining the progression of the 

cell cycle. To investigate the role of positive feedbacks on oscillator tunability, we further 

developed an artificial mitotic cycle system using microfluidic devices to allow for reliable high-

throughput analysis. Using this system, we collected experimental evidence supporting positive 

feedbacks increasing the oscillator tunability. In the meantime, and we also showed that the cell 

cycle is a pulsatile oscillator with consistent mitotic phase and variable interphase, in accordance 

with a previous study (Araujo et al., 2016).  

My graduate study has shown that coordinated computational and experimental efforts 

has its unique advantage in advancing our understanding of biological systems. While the initial 

question about robustness and tunability are purely theoretical, experimental system is needed to 

support our computational results in real biological oscillators. During experimental verification, 

we found phenomena like increased baselines, which again requires a theoretical explanation. 

This continuous pursue of questions cannot be achieved without an integrated multidisciplinary 

approach. In addition, my work will also provide valuable data to verify and guide further studies 



 

 84 

on oscillator properties and help understand the control mechanisms of the biological oscillator. 

Such knowledge may help inspire novel treatment strategies for diseases caused by oscillator 

malfunctions. 

In my research on oscillator tunability, I have shown that the frequency tuning and 

amplitude tuning are two distinct strategies of oscillator regulation. These two different tuning 

patterns have been observed in many signaling pathways and their differences are considered 

critical for reliable oscillator function under different environment (Micali et al., 2015). In part 

3.8, I have shown that adding wee1 inhibitor decreased cyclinB frequency tunability in droplets. 

However, our current experimental design also has its limitations. First, we only used wee1 

inhibitor as the tool to perturb positive feedbacks, but since there are more positive feedbacks 

loops in our system, more drugs to disrupt different molecular circuits is necessary. In addition, 

since drugs are subjects to diffusion in droplets, and mRNAs takes time to be translated, it would 

be ideal to identify non-diffusible alternatives of drugs and find tuning parameters that can take 

effects immediately. In the future, I plan to further my experimental exploration by using more 

tuning method, like temperature, and test more network structure perturbing methods like new 

drugs or antibodies. The final goal is not only systematically to verify the role of positive 

feedbacks on oscillator tunability, but also to explore how different perturbing factors may affect 

oscillator tuning patterns. 

In addition to the role of positive feedbacks on increasing tunability, we also showed that 

frequency tunability is associated with non-sinusoidal oscillations which introduced the topic of 

waveform control of biological oscillators. The oscillator waveform represents a higher level of 

details in biological oscillations. With the recent progress in genetic tools, biological sensors and 

imaging techniques, more details of biological oscillator have been discovered and investigated. 



 

 85 

The waveform of biological oscillator have been suggested to play critical roles in maintaining 

oscillator functions in different biological systems, including neural system (Cole and Voytek, 

2017), signaling pathways (Zhang et al., 2017) and circadian rhythms (Jo et al., 2018). However, 

waveform is very difficult to manipulate and record experimentally, and our theoretical 

understanding on waveform regulation is also limited. These difficulties and limitations have 

prevented us from further exploration of oscillator waveform regulation which has a great 

significance in determining functions of biological oscillator. With recent development of 

biological technologies however, these questions are more within reach. Computational approach 

on waveform regulation requires detailed analysis of oscillator time series which is very 

computational expensive. My oscillator enumeration pipeline could be an ideal system to further 

our understanding of oscillator waveforms. In the future, I plan to record time series of one full 

cycle in each oscillation and quantify their shape using Fourier coefficients, then I can compute 

the similarity between different oscillators and identify the network motifs that are responsible 

for waveform difference. Besides network enumeration pipeline, our experimental system using 

Xenopus egg extract is a useful platform to study waveform tuning, since it allows for real-time 

droplets imaging and tracking. Together it will not only help understanding biological oscillators 

but also further our understanding on the regulation of the real biological system.  
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Appendix 
 

1. Derivation of the enzymatic reaction models 

The model we used (i.e., Eq 1) can be derived from the simple mass action kinetics with a few 

assumptions, as follows. Consider a node A, and when there is no input from outside, the 

equations are as below: 

degdeg in

act synthesis

kkk
active inactivek k

A A←  

 

                                                              [Eq 3] 

       

                [Eq 4] 

If protein B activate A through binding, then 

1 2
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               [Eq 5] 

Assume that the binding and unbinding of proteins are fast, we have 
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Assume that the binding between proteins are independent, we have 
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Then the interaction term can be represented by 
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where 
1 2

1

k kK
k

− +
=

  and the reaction rate of A is: 

1, 2, 2
[ ](1 ) (1 )

[ ]

n

basal basal n

dA Bk A k A k A
dt K B

= − + − + −
+       [Eq 9] 

 

2. Models for real-world biological oscillators 

The models we used to investigate the role of incoherent inputs in real-world biological 

oscillators are adopted from published work (Batchelor et al., 2011; Tsai et al., 2014a). 

 

Cell cycle model: 

 

 

p53-ATR model: 
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p53-ATM model: 
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3.  A stochastic model of the embryonic cell cycle including energy effect 

To explore how energy consumption could affect the oscillations, we took ATP into account for 

phosphorylation and dephosphorylation of Wee1 (Tuck et al., 2013), such that:  

𝑊𝑊𝑊𝑊𝑊𝑊1 + 𝐴𝐴𝐴𝐴𝐴𝐴↔𝑊𝑊𝑊𝑊𝑊𝑊1 − 𝐴𝐴𝑃𝑃 + 𝐴𝐴𝐴𝐴𝐴𝐴                                                                                      [Eq 10] 

In our model, we assumed Wee1 is in equilibrium with the activity of Cdk1 due to fast reactions 

between Cdk1 and Wee1. Using the reaction coefficients for Wee1 phosphorylation as 𝑘𝑘1𝑊𝑊𝑊𝑊𝑊𝑊1 
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and that for Wee1-Pi dephosphorylation as 𝑘𝑘2𝑊𝑊𝑊𝑊𝑊𝑊1, along with the steady-state approximation, 

we have: 

𝑘𝑘1𝑊𝑊𝑊𝑊𝑊𝑊1[𝑊𝑊𝑊𝑊𝑊𝑊1][𝐴𝐴𝐴𝐴𝐴𝐴] = 𝑘𝑘2𝑊𝑊𝑊𝑊𝑊𝑊1[𝑊𝑊𝑊𝑊𝑊𝑊1 − 𝐴𝐴𝑃𝑃][𝐴𝐴𝐴𝐴𝐴𝐴]   = 𝑘𝑘2𝑊𝑊𝑊𝑊𝑊𝑊1([𝑊𝑊𝑊𝑊𝑊𝑊1𝑡𝑡𝑡𝑡𝑡𝑡]− [𝑊𝑊𝑊𝑊𝑊𝑊1])(1 −

[𝐴𝐴𝐴𝐴𝐴𝐴])                                                                                                                                  [Eq 11]  

All above modifications for Wee1 reactions also applied to Cdc25. After normalizing [ATP] and 

[ADP] by [𝐴𝐴𝐴𝐴𝐴𝐴] + [𝐴𝐴𝐴𝐴𝐴𝐴], we have the updated reaction rates summarized in Table A3. Here the 

[wee1]0 and [cdc25-Pi]0 represent the steady-state concentration of active Wee1 and Cdc25 

when ATP is not considered in reaction. The ratios of the steady-state to total concentrations of 

Wee1 and Cdc25 can be calculated as a function of active CDK1 using the parameters from 

previous work (Novak and Tyson, 1993a) 

 

TableA 1 Parameter ranges in the cell cycle model, related to STAR Methods: Models for real-world biological 
oscillators. 

 

Parameter 
Nominal value (Tsai 
et al., 2014) 

Parameter range for 
random parameter 
simulations with 
linear range 

0 synthk  1.5  0-10 

1 destk  0.4 0-1 

2 r 1 1 

3 kcdc25 0.0354 0-1 

4 kwee1 0.0354 0-1 

5 p1 5 0-50 

6 p2 5 0-50 

7 2550cdcec  30 nM 0-200 nM 

8 25cdcn  11 1-15 
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9 150weeec  35 nM 0-200nM 

10 1ween  3.5 1-10 

11 plxonk  1.5 0-10 

12 plxoffk  0.15 0-1 

13 50 plxec  60 nM 0-200 nM 

14 plxn  5 2-6 

15 apconk  1.5 0-10 

16 apcoffk  0.125 0-1 

17 50apcec  0.5 0-1 

18 apcn  4 2-6 

 

TableA 2 Reaction rates and stoichiometry of the cell cycle two-ODE model 

Reaction Rate Stoichiometry 

Active Cdk1 

Synthesis 
𝜌𝜌1 = 𝑘𝑘𝑠𝑠𝑠𝑠 < 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > +1 

Active Cdk1 to 

Inactive Cdk1 

𝜌𝜌2 = √𝑟𝑟 �𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊1 +

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊1𝐸𝐸𝐶𝐶50𝑊𝑊𝑊𝑊𝑊𝑊1
𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊1

<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊1+𝐸𝐸𝐶𝐶50𝑊𝑊𝑊𝑊𝑊𝑊1
𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊1� < 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > −1 

 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 > +1 

Inactive Cdk1 

to Active Cdk1 

𝜌𝜌3 = 1
√𝑟𝑟
�𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶25 +

𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶25<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶25

<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶25+𝐸𝐸𝐶𝐶50𝐶𝐶𝐶𝐶𝐶𝐶25
𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶25� <

𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 > 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > +1 

 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 > −1 
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Active Cdk1 

Degradation 

𝜌𝜌4 = �𝑎𝑎𝐶𝐶𝑊𝑊𝑑𝑑 + 𝑏𝑏𝐶𝐶𝑊𝑊𝑑𝑑<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>
𝑛𝑛𝐶𝐶𝑊𝑊𝑑𝑑

<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>
𝑛𝑛𝐶𝐶𝑊𝑊𝑑𝑑+𝐸𝐸𝐶𝐶50𝐶𝐶𝑊𝑊𝑑𝑑

𝑛𝑛𝐶𝐶𝑊𝑊𝑑𝑑� 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > −1 

Inactive Cdk1 

Degradation 

𝜌𝜌5 = �𝑎𝑎𝐶𝐶𝑊𝑊𝑑𝑑 + 𝑏𝑏𝐶𝐶𝑊𝑊𝑑𝑑<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>
𝑛𝑛𝐶𝐶𝑊𝑊𝑑𝑑

<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>
𝑛𝑛𝐶𝐶𝑊𝑊𝑑𝑑+𝐸𝐸𝐶𝐶50𝐶𝐶𝑊𝑊𝑑𝑑

𝑛𝑛𝐶𝐶𝑊𝑊𝑑𝑑� 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 > 

< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 >=< 𝐶𝐶𝐶𝐶𝑘𝑘1𝑖𝑖 > −1 

 

 

TableA 3 Reaction rates in the model considering ATP 

Reaction Rate 

Active Cdk1 

Synthesis 
𝜌𝜌1 = 𝑘𝑘𝑠𝑠𝑠𝑠 

 Active Cdk1 to 

Inactive Cdk1 

𝜌𝜌2 = 2[𝐴𝐴𝐴𝐴𝐴𝐴] < 𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎 > �𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊1 + 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊1𝐸𝐸𝐶𝐶50𝑊𝑊𝑊𝑊𝑊𝑊1
𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊1

<𝐶𝐶𝐶𝐶𝑘𝑘1𝑎𝑎>𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊1+𝐸𝐸𝐶𝐶50𝑊𝑊𝑊𝑊𝑊𝑊1
𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊1� 

� 1−[𝐴𝐴𝐴𝐴𝐴𝐴]
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FigureA 1 Incoherent inputs improve the robustness of biological oscillators in network enumeration.  
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(A) Spearman’s rank correlation between the changes in the rank percentage of the Q value of a topology and a two-
edge modification. B. Partial rank correlation between the change in the rank percentage of the Q value of a 
topology and a two-edge modification (controlling other two-edge modifications). Note that two motifs with the 
lowest rank correlation are dropped to avoid linear correlation of inputs. 

 

FigureA 2 Role of some network motifs in oscillators with more than 3 nodes.  
The left panels show network topologies (as in Figures 7D-G). The middle panels show the relationship between the 
mean rank percentage of the Q values and the number of nodes with different input logic. The right panels show the 
mean rank percentage of the Q values as a function of the number of coherent inputs and the number of incoherent 
inputs the topologies contain. 
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FigureA 3 .Supplemental analysis on cell cycle model 
 (A) Percentage of parameters that yield sustained oscillations changes with increasing interaction strength of Cdc25 
(p1) or Wee1 (p2). The parameter ranges of simulation are shown in Table S2. It shows that strong cdc25 can 
benefit robust oscillations. (B, C) Hopf bifurcation diagram of nplx (B) and napc (C) with Cdc25 interaction strength 
and Wee1 interaction strength. 
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