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ABSTRACT

This dissertation examines i) how market structure and the beliefs of market par-

ticipants impact U.S. corporate bond mutual funds as well as the underlying bond

market, and ii) whether personal experiences affect central bankers’ belief formation

and their decision making.

In the first chapter of the dissertation, entitled “Returns to Scale among Corporate

Bond Mutual Funds”, I document a (within-fund) hump-shaped relation between fund

size and subsequent fund alpha among U.S. corporate bond mutual funds. When funds

are small, they exhibit increasing returns to scale but when they become large, they

exhibit decreasing returns to scale. This sharply contrasts with the previous finding of

decreasing returns to scale among equity mutual funds. Further, I show that the nature

of trading costs in the corporate bond market—in particular, a U-shaped relation

between trade size and unit trading cost at the corporate bond level—is relevant for

explaining hump-shaped returns to scale. Interpreting these empirical patterns is not

straightforward, though. In a rational expectations framework, we expect a fund’s net

alpha always to be zero and hence, there should be no time-series relation between fund

size and subsequent fund alpha. To help interpret the empirical findings, I propose a

dynamic model in which investors learn about a fund’s ability to manage its trading

cost from the fund’s past returns. The evolution of investors’ beliefs provides a source

of variation in fund size and further, in fund alpha over time.

In the second chapter of the dissertation, entitled “The Making of Hawks and

xii



Doves” and co–authored with Ulrike Malmendier and Stefan Nagel, we argue that cen-

tral bankers’ personal inflation experiences significantly alter their inflation forecasts,

votes, and speeches. First, we show that inflation experiences have a direct impact

on Federal Open Market Committee members’ inflation forecasts in their semi-annual

Monetary Policy Reports to U.S. Congress. Second, members with higher inflation

experiences are significantly more likely to cast a hawkish dissent. Over the FOMC’s

voting history since March 1951, an increase in a member’s experience-based inflation

forecast by one within-meeting standard deviation raises the probability of a hawkish

dissent by about one third, and decreases the probability of a dovish dissent also by

about one third. Third, higher inflation experiences also predict a significantly more

hawkish tone in speeches. Finally, aggregating over all FOMC members present at

a meeting, the average experience-based forecast helps predict the federal funds tar-

get rate, over and above conventional forward-looking Taylor rule components. Our

findings indicate strong and long-lasting effects of personal inflation experiences even

among monetary-policy experts, and point to the importance of FOMC members’ se-

lection.

In the third chapter of the dissertation, entitled “Electronic Trading in the U.S.

Corporate Bond Market”, I study how the addition of electronic trading affects the U.S

corporate bond market overall, which primarily depends on conventional voice trading.

Motivated by the empirical trade-off between price improvement and execution risk of

electronic trading, I develop a model of strategic trading-platform selection by investors

and show that i) the equilibrium market share of electronic trading decreases as the

capacity of dealers’ balance sheets becomes smaller, and further ii) the inclusion of

electronic trading may not benefit every single dealer—those with small balance sheet

capacity would prefer the market structure with voice trading only.
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CHAPTER I

Returns to Scale among Corporate Bond Mutual

Funds

1.1 Introduction

Understanding the nature of returns to scale is important among mutual funds.

First, it helps resolve one of the most important puzzles in the mutual fund literature:

why do equity fund investors chase fund returns even though they are not persistent

(Chevalier and Ellison (1997)). It turns out that investors can chase fund returns

rationally because past returns are informative signals about unobserved fund skill

but, in the meantime, equity funds that have higher past returns (and are therefore

growing) are expected to perform less impressively in the future due to decreasing

returns to scale (Berk and Green (2004)). Moreover, understanding returns to scale

helps us evaluate a fund’s skill. Given that a fund’s performance depends on both

its skill and size, to evaluate the fund’s skill, we need to first understand the relation

between fund size and fund performance (Pastor, Stambaugh, and Taylor (2015)).

Given its importance, returns to scale for equity mutual funds has received much

attention since Berk and Green (2004); a lot of theoretical work is now built on the

premise of decreasing returns to scale and many empirical studies have attempted to

1



verify whether such an assumption holds. More recently, empirical evidence suggests

that equity mutual funds indeed face decreasing returns to scale at the fund level (see,

e.g., Harvey and Liu (2017) and McLemore (2018)). For corporate bond mutual funds,

however, we know surprisingly little about their fund-level returns to scale. This is

particularly striking given that they are the second-largest investors in the underlying

corporate bond market.1 More importantly, our understanding of equity funds cannot

be directly applied to corporate bond funds due to the sharp difference in market

structure between underlying stocks and corporate bonds (i.e., exchanges vs. the over-

the-counter (OTC) market). In this paper, I aim to fill this gap.

I start by documenting the empirical relation between fund size and subsequent

fund performance among U.S. corporate bond mutual funds. One challenge when

estimating fund-level returns to scale is the endogeneity of fund size; funds with better

skills tend to be larger and deliver higher returns. The ordinary least squares (OLS)

estimate of the size-performance relation thus tends to suffer from an omitted-variable

bias as fund skill is not observable. Including fund fixed effects in the regression

addresses this bias as long as the unobserved fund skill is time-invariant but, in the

meantime, it introduces another bias—known as the finite-sample bias—due to the

positive contemporaneous correlation between fund size and unexpected fund alpha

(Stambaugh (1999)). To account for both the omitted-variable and the finite-sample

biases, I apply a recursive demeaning procedure to an otherwise standard fund fixed

effects model, following Pastor, Stambaugh, and Taylor (2015) and Zhu (2018).

Based on a sample of 707 such funds from 1991 to 2017, I find that for a given

fund, the next-period fund’s benchmark-adjusted return (alpha) first increases and

then decreases in its size. Point estimates from a quadratic specification suggest a

1As of year-end 2017, U.S. corporate bond mutual funds collectively manage over $2.1 trillion in
assets (vs. $7.4 trillion for U.S. domestic equity mutual funds) and hold 16% of corporate and foreign
bonds (Investment Company Institute 2018).

2



turning point at fund’s total net assets (TNA) of about $619 million. Using a piecewise

linear specification, I further find that when fund size is below that turning point, a

one-standard-deviation (42%) increase in the fund’s TNA raises the annualized gross

alpha by 173 bps. Once fund size becomes larger than $619 million, however, a one-

standard-deviation (34%) increase in the fund’s TNA lowers the annualized gross alpha

by 107 bps. This hump-shaped pattern is robust to various specifications as well as

to different measures of fund performance. Note that hump-shaped returns to scale

among U.S. corporate bond funds contrasts with the decreasing returns to scale among

U.S. equity funds documented in the literature.

Next, I examine whether the nature of trading cost in the underlying bond market

is relevant for explaining such a hump-shaped relation among corporate bond funds.

Often, decreasing returns to scale among equity funds is motivated by a positive relation

between trade size and unit trading cost at the underlying stock level (e.g., Pastor,

Stambaugh, and Taylor (2017)). But this positive relation no longer holds for corporate

bonds, due to their different market structure compared to stocks. The key difference

between the two market structures is that search friction matters a lot for corporate

bond trading (OTC market) but not so much for equity trading (exchanges). As a

consequence, the relation between trade size and unit transaction cost is U-shaped in

the corporate bond market (see, e.g., Randall (2015) and Bessembinder et al. 2018).2

Therefore, given that a positive relation between trade size and unit transaction cost

at the stock level gives rise to decreasing returns to scale among equity funds, would

such a U-shaped relation at the bond level imply hump-shaped returns to scale among

corporate bond funds?

2Specifically, one friction that could lead to the decreasing part of such a U shape is the fixed
component of search cost in the OTC market. Because it takes certain time and efforts for dealers to
find counterparts to trade regardless of the trade size, a larger trade would thus lower the unit trading
cost when trade size is relatively small. When trade size becomes sufficiently large, standard frictions
for equity trading become relevant in the corporate bond market as well (e.g., information asymmetry
and inventory costs) and therefore, we would then expect the increasing part of the U shape.

3



To tackle this question, I begin by examining whether such a U-shaped relation

holds for each fund. So far, the evidence almost all focuses on the cross-section rather

than on the individual bond investor. Presumably, larger bond investors (funds) tend

to trade in larger sizes and, due to their larger bargaining power over the dealer,

have lower unit transaction costs; this is dubbed the “clientele effect.” Thus, a cross-

sectional U-shaped relation may only reflect this clientele effect, but does not preclude

the possibility that for each bond investor, unit transaction cost may still increase with

trade size, as in the equity market. If so, such a cross-sectional U-shaped relation would

no longer account for within-fund hump-shaped returns to scale. Using additional

proprietary data which include bond investors’ (anonymous) identities, I demonstrate

that such a U-shaped relation remains after conditioning on investors. This evidence

thus ensures that it is trade size itself—rather than the potential clientele effect for

which trade size may serve as a proxy—that affects the unit transaction cost for any

given investor in the underlying corporate bond market.

Further, I examine the fund-level returns to scale for U.S. Treasury bond funds

(274 funds in the sample) because both Treasuries and corporate bonds have the same

market structure, i.e., the OTC market. But search frictions for Treasuries trading

tend to be much less severe than those for corporate bond trading. As a result, unit

transaction cost for Treasuries, unlike that for corporate bonds, still increases in trade

size (Fleming, Mizrach, and Nguyen (2017)). Therefore, if such a U-shaped relation

is relevant, we should not expect hump-shaped returns to scale among U.S. Treasury

bond funds. Indeed, I find no evidence of them.

At first glance, the finding of hump-shaped returns to scale among corporate bond

funds may seem natural given the presence of a U-shaped relation between trade size

and unit transaction cost at the underlying bond level. From the perspective of com-

petitive fund investors with rational expectations (who know the objective probability

4



they face in equilibrium), however, this finding—in particular the increasing part—is

rather puzzling. After all, why, in the equilibrium, would they settle for a fund size

that still rests in the region of increasing returns to scale when they could be (at least

weakly) better off by simply putting more money into the fund? More broadly, as

investors are competing with each other, we would expect that, for a given fund, its

net alpha always to be zero and hence, no time-series relation between fund size and

next-period fund alpha. How, then, should we interpret any empirical (within-fund)

returns-to-scale relation with competitive fund investors who have rational expecta-

tions?

The key to interpret the empirical findings is perhaps to figure out what drives

the variation in fund alpha in equilibrium over time. Here, I focus on the role of

fund investors’ behavior, and show that the evolution of investors’ beliefs could be one

driver. In particular, I develop a dynamic equilibrium model in which competitive

fund investors are uncertain about the fund’s ability to manage its trading cost and

thus have to form beliefs about it from fund past returns. In the model, I distinguish

between the subjective belief, perceived by fund investors in real time, and the objective

belief, from the perspective of econometricians who analyze the data ex-post. Under

the subjective belief, as we already know, the expected fund net alpha is always zero.

But, under the objective belief, I show that the expected fund net alpha generally

differs from zero and varies over time. This time-series variation comes from investors’

beliefs updating over time. Once fund alpha is realized, investors update their beliefs

accordingly. Given investors’ updated beliefs, the fund size is then determined in the

equilibrium, which, in turn, affects the next-period fund alpha.

In the model, the subjective returns to scale—the relation that matters for investors’

decisions on capital allocation—is strictly negative when evaluating at the equilibrium

fund size. This explains how the mutual fund market reaches its equilibrium: Compet-
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itive fund investors keep investing until the expected fund net alpha reaches zero under

their subjective beliefs, given that the expected fund alpha decreases in fund size at that

point. In the meantime, consistent with the empirical finding of hump-shaped returns

to scale among corporate bond funds, the model also implies that such a hump-shaped

relation holds under the objective belief. The intuition is: When investors’ perceived

fund’s ability is sufficiently lower than the objective one, the equilibrium fund size

becomes so small that, under the objective belief, it still remains in the increasing-

returns-to-scale region, given a U-shaped unit cost function (this is not the case under

the subjective belief, though).3 Otherwise, the equilibrium fund size would be large

enough that it always fell into the decreasing-returns-to-scale region under both the

subjective and the objective beliefs.

Clearly, the model’s implication for hump-shaped returns to scale depends on the

assumption that investors’ subjective beliefs generally differ from the objective one.

Such a wedge can arise for at least two reasons: First, investors’ learning may lead

to the wedge.4 As investors have to infer the fund’s ability from a limited sample in

real time, their inference may be different from that of econometricians, who analyze

full-sample data ex-post. As an illustration, I characterize how such a wedge emerges

in equilibrium, assuming investors are Bayesian learners. But note that the model’s

implication for hump-shaped returns to scale does not depend on the exact way in-

vestors learn. Investors can learn with the standard Bayes rule in a fully rational and

frictionless world. Or, perhaps more realistically, investors may deviate from Bayesian

updating due to certain frictions; for examples, they may learn from their personal

experience (Malmendier and Nagel (2011)) or extrapolate from past returns (Barberis,

3To reflect the unique market structure of underlying corporate bonds as discussed above, I as-
sume that the unit trading cost for a corporate bond fund is U-shaped in fund size (rather than a
monotonically increasing one that is often assumed in the literature to capture the market structure
for equity trading). More details can be found in section 1.4.1.

4Evidence on mutual fund investors learning includes Brown and Wu (2016), Choi, Kahraman, and
Mukherjee (2016), and Franzoni and Schmalz (2017).
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Greenwood, Jin, and Shleifer (2015)).5 Second, investors’ misperceptions of fund alpha

could also contribute to the wedge because their inferences on the fund’s ability depend

on their estimates of fund alpha in each period. Indeed, empirically, I find that corpo-

rate bond fund flows respond not only to the fund’s past alpha, which they should, but

also to its past “benchmark-related” returns (its exposures to the benchmark × excess

returns of the benchmark), which they shouldn’t (because investors could replicate the

“benchmark-related” returns themselves with a much lower cost by investing in the

index funds). This evidence suggests that fund investors are confused about the fund

alpha.6

To summarize, this paper has two main contributions. The first is to empirically

document a novel (time-series) hump-shaped relation between fund size and subsequent

fund alpha for U.S. corporate bond mutual funds. To the best of my knowledge, this is

the first paper to provide such evidence for fixed-income mutual funds. Existing studies

mostly focus on equity funds: Recent evidence suggests that U.S. equity mutual funds

face decreasing returns to scale at the fund level (see, e.g., Harvey and Liu (2017),

Pastor, Stambaugh, and Taylor (2017), McLemore (2018), and Zhu (2018)). Outside

the realm of mutual funds, Dyck and Pomorski (2014) find increasing returns to scale

at the fund level for private equity (PE) funds.7

Another contribution is to provide an equilibrium framework to help interpret the

empirical findings. As discussed above, it is difficult to interpret any observed pattern

5The consequence of these frictions is that investors would place different weights on their priors
relative to the Bayesian learning case. But the wedge between the subjective and the objective belief
remains.

6Details on the behavior of corporate bond fund flows can be found in Appendix Section B.7.
Similar evidence has also been documented with respect to equity fund flows (see Barber, Huang, and
Odean (2016) and Berk and van Binsbergen (2016)).

7Note that the underlying mechanism that results in an increasing returns to scale among PE funds
is different from the one that I emphasize in this paper. Dyck and Pomorski (2014) argue that as PE
funds become larger, they rely more on direct investments rather than on more costly intermediaries
(such as fund-of-funds). In addition, the authors do not address the equilibrium question of why
investors would settle for a fund size that still rests in the increasing-returns-to-scale region.
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of returns to scale within a standard rational expectations framework. This difficulty is

not limited to corporate bond funds but applies to equity funds as well. Therefore, the

framework here would also be useful in understanding the returns-to-scale relation for

equity funds. In that regard, this paper relates to the broad and emerging literature on

mutual funds in equilibrium. In a pioneering work in this strand of literature, Berk and

Green (2004) demonstrate how a rational expectations framework can be applied to

the mutual fund industry to resolve important puzzles in the literature. In this paper,

I depart from Berk and Green (2004) in two important ways: First, I assume the

unit cost function at the fund level is U-shaped in fund size and second, I distinguish

between the subjective and the objective beliefs. This allows me to interpret otherwise

puzzling hump-shaped returns to scale among corporate bond funds. More recently,

Pastor, Stambaugh, and Taylor (2017) study the equilibrium relations among fund size,

expense ratio, turnover, and portfolio liquidity among equity mutual funds, but their

focus is not on returns to scale. As a complement to their paper, mine studies how

hump-shaped returns to scale may emerge in the equilibrium.

The rest of the paper is organized as follows. Section 1.2 describes the data and

the empirical measurement of fund performance. Section 1.3 examines the empirical

relation between fund size and subsequent fund performance and investigates the role of

trading cost in the underlying bond market. Section 1.4 provides a model with a focus

on fund investors’ behavior to interpret the empirical findings. Section 1.5 concludes.

Appendix A provides proofs. Appendix B contains additional empirical results.
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1.2 Data and Empirical Measurement

1.2.1 Sample Construction

Data come from Center for Research in Security Prices (CRSP) survivorship-bias-

free mutual fund database. In this study, I focus on U.S. corporate bond mutual funds

based on the objective codes provided by CRSP.8 The sample period is from January

1991, when the CRSP database starts to report monthly data, to March 2017.

I first exclude funds with a history of less than three years as I require three years

of returns to estimate fund alpha (as described in the next subsection).9 Then I drop

funds whose total net assets (TNA) never exceed $10 million. To address the potential

incubation bias (Evans 2010), I drop fund-month observations whose date is prior to

the reported starting date of the fund. I further eliminate observations before funds

first reach the $5 million threshold for their TNA. For funds with multiple share classes,

I aggregate all subclasses up to the fund level because they share the same underlying

portfolio.10 The resulting sample includes 707 unique funds.

1.2.2 Measurement of Fund Performance

As standard in the literature, I use fund alpha—the intercept from fund-by-fund

36-month rolling regressions of excess fund returns on excess returns of a benchmark

portfolio—to measure the performance for each fund. Following the suggestion of Berk

and van Binsbergen (2015), I construct the benchmark using a number of Vanguard

8I include funds with (i) CRSP objective codes starting with “IC” or (ii) Lipper objective codes
in the set (“IID”, “SID”, “SII”). Then I exclude index funds, exchange traded funds (ETFs), and
exchange traded notes (ETNs).

9For funds that switched fund category at some point in the history—e.g., from Fixed-income to
Balanced or to Money Market—I require at least 3 years of history in the Fixed-income category to
be included in the sample.

10I calculate fund-level TNA by summing up the TNAs of each subclasses. For the fund-level
expense ratio, net return, turnover, I take the TNA-weighted average across share classes.
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bond market index funds.11 Unlike traditional non-tradable risk factors, returns on

index funds reflect the real-time investment opportunities available to investors and

incorporate actual transaction costs.12 Thus, they are preferable to non-tradable ones

when used as the benchmark.

In particular, I include the Vanguard Total Bond Market Index Fund (VBMFX)

as the aggregate bond market factor. To further account for some mechanical yield

curve strategies, I also include the Vanguard Short-Term Bond Index Fund (VBISX),

Vanguard Intermediate-Term Bond Index Fund (VBIIX), and Vanguard Long-Term

Bond Index Fund (VBLTX) as additional term structure factors. The choice of Van-

guard index funds but not index funds from other asset management firms is somewhat

arbitrary; the primary reason is that Vanguard index funds are often one of the largest

index funds within their sectors and have a long history of fund performance.

1.2.3 Summary Statistics

Table 1.1 presents summary statistics. Panel A describes various fund characteris-

tics. On average, a fund receives monthly inflow of 0.67%, reflecting the overall growth

of the corporate bond fund industry during the sample period. A median fund holds

$157 million total net assets, but the dispersion in fund size is large: the interquartile

range is $455 million (= $510 − $55). The median fund age is about eight years and

the median annual expense ratio is 72 bps.13 Notably, the median turnover is 100% per

year, which is similar to that of a typical equity fund. This high turnover ratio suggests

that corporate bond funds do trade and trade frequently and therefore, transaction cost

11Recent studies on bond mutual funds have began to use bond index funds as the benchmark as
well (e.g., Goldstein et al. 2017).

12Another advantage is that (net) returns on index funds also reflect a small yet non-zero cost for
fund investors when investing passively (bond index funds typically charge about 10-20 bps fee per
year).

13Note that the sample is tilted toward old funds since I require at least 3 years of history to estimate
fund alpha.
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should be a relevant concern for them.

Panel B illustrates fund performance. The average benchmark-adjusted return is

about 104 bps per year before fees (“gross alpha”) and 41 bps per year after fees (“net

alpha”). As evidenced by a high adjusted-R2 (78.5% on average), the four Vanguard

bond market index funds that I include in the benchmark perform well in explaining

the variation of excess fund returns.

1.3 Empirical Relation between Fund Size and Subsequent

Fund Performance

1.3.1 Main Results

Estimating returns to scale at the fund level is not trivial because fund size is not

assigned randomly; indeed, funds with better skills tend to manage larger amounts

of capital and achieve better performance (e.g., Berk and Green (2004) and Pas-

tor, Stambaugh, and Taylor (2015)). Thus, simply running a panel regression of a

fund’s benchmark-adjusted return (alpha) on its lagged size would result in an omitted-

variable bias. One way to eliminate this bias is to introduce fund fixed effects (FE),

which control for the unobserved fund skills as long as they are time-invariant. But in-

cluding fund FE would introduce another bias—namely the finite-sample bias—because

a positive shock in fund alpha tends to increase the contemporaneous fund size and

therefore, the strict exogeneity condition is violated (see more discussion in Stambaugh

(1999) and Pastor, Stambaugh, and Taylor (2015)). To account for both the omitted-

variable and the finite-sample bias, I apply the recursive demeaning (RD) procedure

to an otherwise standard fund FE model, following Pastor, Stambaugh, and Taylor

(2015) and Zhu (2018).14

14For completeness, I describe the details of the recursive demeaning procedure in Appendix B.1.
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Table 1.1: Summary Statistics

The sample includes 707 corporate bond mutual funds from January 1991 to March 2017
(excluding money market funds, index funds, ETFs, and ETNs). The unit of observation is

the fund-month. Turnover is defined as
min
(
Buys,Sells

)
FundSize . Excess return equals fund returns

minus three-month T-bill returns. Net Alpha, αj , is estimated fund by fund from the following
36-month rolling regression:

Rj,t = αj +
4∑
i=1

βj,iRi,t + εj,t

where Rj,t is the excess fund returns (after fees) and Ri,t is the excess new returns for each

of the four benchmark Vanguard index funds; i.e., total bond market (VBMFX), short-

term (VBISX), intermediate-term (VBIIX), and long-term (VBLTX). Gross Alpha equals

Net Alpha plus the expense ratio.

N Mean S.D. p10 p25 p50 p75 p90

Panel A: Fund characteristics (fund-month obs.)

Monthly fund flow (%) 92763 0.67 4.38 -2.91 -1.22 0.03 1.69 4.75

Fund size ($ millions) 92763 817 3157 22 55 157 510 1524

Fund age (years) 92763 9.7 7.3 2.0 4.2 8.1 13.6 19.2

(Annual) expense ratio (%) 92740 0.77 0.35 0.42 0.55 0.72 0.92 1.18

(Annual) turnover 92763 1.7 1.9 0.3 0.5 1.0 2.2 3.9

Panel B: Fund performance (annualized) (fund-month obs.)

Excess return (%) 92763 2.34 14.29 -12.03 -4.11 2.46 9.37 17.14

Net alpha (%) 67296 0.41 2.17 -1.18 -0.56 0.09 1.04 2.53

Gross alpha (%) 67235 1.04 2.14 -0.47 0.07 0.66 1.63 3.20

Adjusted R2 67296 0.785 0.231 0.432 0.682 0.882 0.955 0.979
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Figure 1.1: Spline Estimates of Fund-level Returns to Scale. This figure reports the estimated
shape of fund-level returns-to-scale relation among U.S. corporate bond mutual funds using
a linear spline regression with 4 knots equally placed at each quintile of log(TNAt−1). The
shaded area represents the 95% confidence intervals.

Figure 1.1 provides “semi-parametric” estimates on the fund-level returns-to-scale

relation using a linear spline regression with four knots equally placed at each quintile

of FundSize—the log of the fund’s total net assets (TNA).15 Clearly, the relation

between fund size and subsequent fund gross alpha is hump-shaped. Moreover, the

figure suggests a turning point when the fund’s TNA is about $665 million (e6.5 ≈ 665).

Next, I turn to parametric regressions to check whether such a hump-shaped pat-

tern is significant and robust. Table 1.2 reports the results. I start with a quadratic

specification. As shown in Column (i) of Panel A, I do find a statistically significantly

hump-shaped relation between fund size and subsequent fund gross alpha. Interest-

ingly, the turning point implied by the point estimates on FundSize and FundSize2

is when the fund’s TNA is about $619 million (e
0.00905

2×0.00069 ≈ 619), which is very close to

the one implied by the linear spline regression above.

15Note that the level of y-axis is not informative because the fund fixed effects are included in the
estimation.
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To further understand the economic magnitude with respect to both the increasing

and decreasing parts of the “hump-shape,” I estimate a piecewise linear regression with

a turning point at $619 million for a fund’s TNA, implied by the quadratic specification.

The result, shown in Column (i) of Panel B, again confirms a hump-shaped pattern of

returns to scale. Moreover, such a hump-shaped pattern is economically meaningful:

When the fund size is below the turning point, a one-standard-deviation increase in

FundSize (a 42% increase in the fund’s TNA) raises the annualized gross alpha by

173 bps (= 0.00344× 0.42× 12). Once the fund size becomes larger than $619 million,

a one-standard-deviation increase in FundSize (a 34% increase in the fund’s TNA)

lowers the annualized gross alpha by 107 bps (= 0.00262× 0.34× 12).

Note that an almost identical hump-shaped pattern emerges when fund performance

is instead evaluated by net alpha (rather than gross alpha), as shown in Column (ii)

of Panels A and B. I also find, as shown in Appendix B.2, a hump-shaped pattern of

fund-level returns to scale among U.S. high-yield bond funds, where a U-shaped relation

between trade size and unit transaction cost also holds at the underlying high-yield

bond level.

1.3.2 Robustness: Alternative Benchmarks

In the above main analysis, I include four Vanguard bond market index funds in

the benchmark to measure fund performance both before and after fees. As robustness

checks, I consider several alternative compositions of the benchmark. First, I only

include the aggregate bond market index fund, VBMFX, in the benchmark. Second, I

add the aggregate stock market factor, using the returns on Vanguard 500 Index Fund

(VFINX) as a proxy. Third, I include all five index funds: four bond market index funds

(as used in the main analysis) plus one stock market index fund. Lastly, instead of

using index funds, I adopt conventional risk factors as the benchmark; namely, short-
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Table 1.2: Returns to Scale

This table shows returns-to-scale relations for U.S. corporate bond mutual funds from January 1991 to
March 2017 (excluding index funds, ETFs, and ETNs). The dependent variable is either GrossAlpha
or NetAlpha, both of which are estimated over the previous 36 months. FundSize is the log of
the fund’s total net assets (TNA) while IndustrySize is the sum of the TNA for all corporate
bond funds scaled by the amounts outstanding of all corporate bonds. FundSize Smallt−1 and
FundSize Larget−1 are linear splines constructed from FundSizet−1 with a knot implied by the
corresponding quadratic specification. In particular,

FundSize Smallt−1 = min(FundSizet−1, k)

FundSize Larget−1 = max(FundSizet−1, k)− k

where k is the corresponding knot. Time-varying fund-level controls include: lagged log of fund age

(in years), lagged fund expense ratio, lagged turnover ratio, and lagged realized return volatility in the

past 12 months. Following Pastor, Stambaugh, and Taylor (2015), I first forward-demean the variables

on both the left- and right-hand sides and then instrument any variables that involve FundSize by

their backward-demeaned counterparts. In the parentheses, I report the standard errors clustered by

both month and fund.

GrossAlphat NetAlphat
(i) (ii)

Panel A: Quadratic specification

FundSizet−1 0.00905 0.00910
(0.00209) (0.00213)(

FundSizet−1

)2
-0.00069 -0.00069
(0.00020) (0.00021)

IndustrySizet−1 0.00043 0.00042
(0.00009) (0.00009)

Observations 67209 67246

Panel B: Piecewise linear specification

FundSize Smallt−1 0.00344 0.00345
(0.00064) (0.00065)

FundSize Larget−1 -0.00262 -0.00261
(0.00129) (0.00132)

IndustrySizet−1 0.00039 0.00038
(0.00009) (0.00009)

Observations 67209 67246
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rate factor (three-month Treasury-bill rate), slope factor (ten-year Treasury rate −

one-year Treasury rate), curvature factor (two-year Treasury rate + ten-year Treasury

rate − 2×five-year Treasury rate), and default risk factor (BAA-rated corporate bond

yield − AAA-rated corporate bond yield).16

I reestimate the relation between fund size and subsequent fund alpha among corpo-

rate bond funds using a quadratic specification with the above four alternative bench-

marks. The results are shown in Appendix Table B.2. As can be seen, the estimated

patterns of fund-level returns to scale under these alternative benchmarks are all hump-

shaped, as in the baseline case (where the benchmark includes four Vanguard bond

market index funds). I therefore conclude that the finding of a hump-shaped pat-

tern between fund size and subsequent fund alpha is robust to different choices of the

benchmark.

1.3.3 Transaction Costs for Corporate Bond Funds

Transaction cost is often considered as the key driver in shaping the pattern of

fund-level returns to scale (see, e.g., Pastor, Stambaugh, and Taylor (2017)). For

transaction cost to empirically matter, its magnitude needs to be non trivial. However,

empirical estimates of transaction cost for corporate bond mutual funds are scarce.

Thus, before proceeding to investigate the relevance of transaction cost in explaining

the hump-shaped returns to scale documented above, I first estimate the amount of

transaction cost that a corporate bond fund would incur when adjusting its portfolio.17

16Note that the explanatory power of these four conventional risk factors on fund excess returns is
much smaller than that of index funds, evaluated by the adjusted R2 from fund-by-fund regressions.
With above conventional risk factors, the average adjusted R2 is merely 31.5% with an interquartile
range from 20.3% to 42.9%. As a comparison, using four index funds as the benchmark (the baseline
specification used in the main analysis), the average adjusted R2 is 78.6% with an interquartile range
from 68.4% to 95.5%.

17Note that the transaction cost I consider here only captures the implicit cost, i.e., the effective
one-way trade execution cost. What I do not capture is the explicit cost, including commissions,
taxes, and fees. According to Busse, Chordia, Jiang, and Tang (2018), for equity mutual funds, the
explicit cost accounts for about 40% of the total transaction cost.
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Ideally, one may first estimate the transaction costs trade by trade and then add

them up for each fund by looking at the fund’s transaction history. Unfortunately, such

granular data is not publicly available.18 As an imperfect but reasonable alternative, I

estimate the fund total transaction cost as the product of its turnover and average unit

transaction cost. While the fund’s turnover is directly observable, I have to infer its

average unit transaction cost from its average trade size, which I then estimate from

the monthly mutual fund holding data from CRSP. In particular, the average trade

size is estimated under two assumptions: (i) no trade occurred if a fund’s position

in a specific bond remains the same in two consecutive months, and (ii) exactly one

trade occurred if a fund’s position in a specific bond changes between two consecutive

months—in other words, funds do not split one trade into multiple smaller pieces.19 It

is worth noting that with these two assumptions, I may underestimate the number of

trades and thus overestimate the average trade size. Therefore, my estimates on the

total transaction cost tend to be conservative, given that most trade sizes belong to

the decreasing part of a U-shaped relation between trade size and unit transaction cost

(Randall (2015)).

It turns out that for funds whose total net assets (TNA) are below 150 million,

the median of the average trade size is about $90K. According to the estimates in

Bessembinder et al. (2018), unit transaction cost for customer trades whose size is less

than $100K is about 0.70%. Along with a median of reported turnover at 0.9 per year

for those funds, the estimated transaction cost is thus 63 bps (= 0.70%×0.9) per year.

18Recently, some studies have begun to use propitiatory data on actual transactions of institutional
investors to investigate trading cost. For example, Busse, Chordia, Jiang, and Tang (2018) study
equity mutual funds and Frazzini, Israel, and Moskowitz (2018) focus on one large institution. No
such study, however, examines trading costs for fixed-income mutual funds.

19Although not ideal, these two assumptions are reasonable. Regarding the first assumption, given
the nature of mutual funds and the illiquidity of the corporate bond market, it seems less likely that
a fund manager would trade multiple times per month on any specific bond. Regarding the second
assumption, corporate bond funds do have the incentive to trade in a larger size due to the U-shaped
relation between trade size and unit transaction cost and hence, are less likely to split their trades
into smaller pieces. Details on constructing the average trade size can be found in Appendix B.4.
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A 63 bps annualized transaction cost is substantial, given that the average annualized

gross alpha for those funds is only 86 bps. Interestingly, for larger funds whose TNA are

above $150 million, the median of the average trade size is about $210K. Again, based

on the estimates in Bessembinder et al. (2018), the corresponding unit transaction cost

is about 0.30%. Thus, the estimated transaction cost for these larger funds is 28.5 bps

per year, given a median of reported turnover at 0.95 per year. Based on the above

back-of-the-envelope calculation, it appears that savings on transaction cost could be

meaningful if a fund can increase its trade size (by managing more TNA).

1.3.4 Within-fund Relation between Trade Size and Unit Transaction Cost

Having established the importance of transaction cost for corporate bond funds,

I now examine whether a U-shaped relation between trade size and unit transaction

cost holds for each bond investor (fund). While such a U-shaped pattern is widely

documented in the literature, most studies focus on the cross-section rather than on

the individual bond investor (see, e.g., Randall (2015) and Bessembinder et al. 2018).

The concern is that large bond investors (funds) tend to trade in large sizes and,

due to their large bargaining power over the dealer, have lower unit transaction costs

(“clientele effect”). Thus, a cross-sectional U-shaped relation may pick up this fixed

clientele effect but still does not preclude the possibility that for each bond investor,

the relation between trade size and unit transaction cost may still be positive, as in the

equity market. If so, such a U-shaped relation would no longer account for within-fund

hump-shaped returns to scale.

Ideally, one may address this concern by including investor fixed effects when es-

timating the relation between trade size and unit transaction cost. However, this ap-

proach is generally not feasible because even the most comprehensive TRACE dataset
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do not include investors’ identifiers.20 One imperfect—but at least feasible—way is to

focus on a subsample of trades that were executed via electronic platforms on which

investors’ (anonymous) identifiers are available. Following this approach, I examine the

relation between trade size and unit transaction cost using the transaction-level data

provided by MarketAxess—a leading electronic platform provider in the U.S. corporate

bond market.21

The results are reported in Appendix Table B.4. First, consistent with the litera-

ture, I document a U-shaped relation between trade size and unit transaction cost using

a quadratic specification when only time fixed effects (FE) are included. The point

estimates on the linear and quadratic terms suggest a turning point at a trade size of

$2.45 million, which is fairly large given that the average trade size is about $600K.

To account for the potential clientele effect, as discussed above, I first add investor FE.

It turns out that, with both time and investor FE, a U-shaped relation between trade

size and unit transaction cost remains. Further, by replacing “week + investor” FE

with “week × investor” FE, I find that, for a given investor in a given week, the unit

transaction cost again first decreases and then increases in trade size. Taken together,

this evidence suggest that it is trade size itself, rather than the potential clientele effect

for which trade size may serve as a proxy, that matters for the unit transaction cost

for any given investor in the corporate bond market.

20TRACE stands for Trade Reporting and Compliance Engine, which, according to a Financial
Industry Regulatory Authority (FINRA) mandate, records all secondary-market transactions for U.S.
corporate bonds. The most comprehensive version of TRACE, made available by FINRA, includes
identifies for registered dealers but not for customers (investors).

21Over the sample period, January 2014 to December 2015, MarketAxess accounts for about 30%
of total trading volume (including both voice and electronic trades recored in TRACE). More details
on MarketAxess data and empirical specifications can be found in Appendix B.5.
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1.3.5 Returns to Scale among U.S. Treasury Bond Funds

In this subsection, I move on to examine whether such a U-shaped relation in

trading cost would be relevant for hump-shaped returns to scale. One way to tackle

this question is to look at the returns-to-scale relation for U.S. Treasury bond funds

because both Treasuries and corporate bonds are traded in the OTC market. But

search friction for Treasury trading is much less severe than that for corporate bond

trading. As a result, unit trading cost for Treasuries, unlike that for corporate bonds,

still increases in trade size (Fleming, Mizrach, and Nguyen (2017)). Therefore, if such

a U-shaped relation is indeed relevant, we should not expect hump-shaped returns to

scale among U.S. Treasury bond funds.

Table 1.3 presents the results. As shown in Column (i) of Panel A, estimates

on FundSize and FundSize2 are statistically insignificant when four Vanguard bond

market index funds are included in the benchmark (the same as the baseline case in

the analysis of corporate bond funds), offering no evidence of a hump-shaped relation

between fund size and subsequent fund alpha. Indeed, we cannot reject the null hy-

pothesis of a constant returns-to-scale relation. This result is robust to various choices

of the benchmark composition, as Columns (ii) to (v) show. The same conclusion holds

when fund net alpha is the dependent variable, as Panel B shows.

To summarize, I find no evidence of a hump-shaped relation between fund size and

subsequent fund alpha among U.S. Treasury bond mutual funds, which suggests that

a U-shaped relation in trading cost is relevant for hump-shaped returns to scale.

1.4 A Model with Subjective Beliefs

The previous section documents a hump-shaped pattern of fund-level returns to

scale among U.S. corporate bond mutual funds and further indicates that a U-shaped
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Table 1.3: Returns to Scale among Treasury Bond Funds

This table replicates fund-level returns-to-scale relations as shown in Table 1.2, but with U.S. Treasury

bond mutual funds (excluding money market funds, ultra-short duration funds, index funds, ETFs,

and ETNs). The sample includes 273 such funds, from January 1991 to March 2017. The performance

of Treasury bond funds is measured exactly the same way as that of corporate bond funds. “Four-

factor” is the baseline case, referring to the benchmark with four bond market index funds (VBMFX,

VBISX, VBIIX, and VBLTX); “one-factor” is the benchmark with only VBMFX; “two-factor” is

the benchmark with both VBMFX and VFINX; “five-factor” is the benchmark with five index funds

(VBMFX, VFINX, VBISX, VBIIX, and VBLTX); and “risk-factor” is short-rate factor (three-month

Treasury bill rate), slope factor (ten-year Treasury rate − one-year Treasury rate), curvature factor

(two-year Treasury rate + ten-year Treasury rate − 2×five-year Treasury rate), and default risk factor

(BAA-rated corporate bond yield − AAA-rated corporate bond yield). FundSize is the log of the

fund’s total net assets (TNA) while IndustrySize is the sum of TNA of all Treasury bond funds

scaled by the amounts outstanding of U.S. Treasury bonds. In Panel A, the dependent variable is

GrossAlpha, in Panel B, it is NetAlpha. In the parentheses, I report the standard errors clustered

by both month and fund.

Four-factor One-factor Two-factor Five-factor Risk-factor
(i) (ii) (iii) (iv) (v)

Panel A: GrossAlphat as dependent variable

FundSizet−1 0.00066 0.00173 0.00125 0.00054 0.00118
(0.00079) (0.00149) (0.00115) (0.00072) (0.00146)(

FundSizet−1

)2
-0.00004 -0.00013 -0.00010 -0.00005 -0.00014
(0.00010) (0.00018) (0.00014) (0.00009) (0.00019)

IndustrySizet−1 0.00011 0.00008 0.00005 0.00007 0.00018
(0.00005) (0.00006) (0.00005) (0.00004) (0.00008)

Observations 26498 29287 29281 26426 29287

Panel B: NetAlphat as dependent variable

FundSizet−1 0.00063 0.00161 0.00113 0.00050 0.00105
(0.00075) (0.00139) (0.00105) (0.00067) (0.00138)(

FundSizet−1

)2
-0.00004 -0.00012 -0.00009 -0.00005 -0.00013
(0.00010) (0.00017) (0.00013) (0.00009) (0.00018)

IndustrySizet−1 0.00011 0.00008 0.00005 0.00007 0.00018
(0.00005) (0.00006) (0.00005) (0.00004) (0.00008)

Observations 26498 29287 29281 26426 29287
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relation between trade size and unit transaction cost—a unique feature at the under-

lying bond level—is relevant for explaining such a hump-shaped relation. But what

remains puzzling is how to interpret these empirical findings; in a standard rational

expectations framework with competitive fund investors, we should not expect any

time-series relation between the fund size and next-period fund alpha.

In this section, I propose an equilibrium framework to help interpret the empirical

findings. I start by developing a dynamic model in which competitive fund investors

are uncertain about the fund’s ability to manage its trading cost and thus have to

form beliefs about it from fund past returns over time. I show that the evolution of

investors’ beliefs could drive the variation of fund alpha over time. I then examine

model implications for fund-level returns to scale under both the subjective and the

objective beliefs. Assuming that investors are Bayesian learners, I further illustrate how

the wedge between the subjective and the objective beliefs emerges by characterizing

investors’ belief updating process and the flow-performance sensitivity accordingly.

Finally, I discuss the dynamics between fund size and subsequent fund alpha, using a

numerical example.

1.4.1 Setting

The model is dynamic, with time discrete and infinite. There are two types of agent

in the model: one risk-neutral fund manager and (many) competitive fund investors.

In the model, I do not distinguish between fund and manager, abstracting away any

potential agency friction. As in Berk and Green (2004), the model is partial equi-

librium; the fund manager’s trading activities do not affect prices of the underlying

securities in her portfolio.

At each period t, the fund’s benchmark-adjusted return before fees (“gross alpha”)
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is given by

αGrosst = µ− c(At−1) + et (1.1)

where µ captures the manager’s ability to outperform certain passive benchmark in

the absence of trading cost, c(At−1) stands for unit trading cost, which is a function of

fund size At−1, and et represents idiosyncratic shock with mean zero.

I specify the unit trading cost function as c(At−1) = c0 + c1At−1 − θAβt−1, where

β ∈ (0, 1) and θ, c0, and c1 are positive constants.22 These parameters can be inter-

preted as the fund’s ability to manage its trading cost. Clearly, a fund’s unit trading

cost here first decreases and then increases in its size. The choice of this unit cost

function is motivated by the empirical U-shaped relation between trade size and unit

transaction cost at the underlying corporate bond level, as discussed previously. Pre-

sumably, corporate bond funds tend to trade in larger sizes when they become bigger.23

Therefore, a U-shaped relation at the bond level naturally translates into a U-shaped

unit cost function at the fund level. Note that this specification is different from a

monotonically increasing function that is often assumed in the mutual fund literature

(e.g., Berk and Green (2004) and Pastor, Stambaugh, and Taylor (2017)). I further

assume µ ≥ c0; that is, when fund size is zero, the expected gross alpha is at least zero.

As this paper focuses on how trading cost affects the fund-level returns to scale,

for tractability, I consider the case where investors know the fund manager’s ability

to beat the benchmark, i.e., µ. Due to the complexity of trading in the OTC market,

22I assume that c0 is sufficiently large that the unit trading cost c0 + c1At − θAβt is always non-

negative. Note that the minimum of c1At − θAβt is ( 1
c1

)
β

1−β (θβ)
1

1−β (1− 1
β ).

23Corporate bond funds, unlike equity mutual funds, do have the incentive to trade in large sizes
if they can, rather than splitting one trade into smaller pieces, given that most of the trades fell
into the decreasing part of the U-shaped relation in trading cost. In the meantime, the ability that
a corporate bond fund lump smaller trades into a larger one is also limited because otherwise the
number of holdings in the fund’s portfolio would be too small relative to the benchmark and thus
render the fund’s tracking error becoming too large.
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however, I assume that investors are only aware of the shape of the unit cost function

but do not know the value of all relevant parameters and thus have to learn about

them from fund’s past returns. Among the set of cost parameters {c0, c1, β, θ}, for

tractability, I further assume that investors only have to learn about θ.24 This learning

process, as will be discussed in detail below, drives the evolution of equilibrium fund

size and the expected fund alpha.

The timing of the model is as follows: at the end of each period t, fund gross

alpha is realized and investors update their beliefs about θ accordingly. Given their

updated beliefs, fund size is then determined in the equilibrium, which in turn affects

the next-period fund alpha (as in Equation 1.1), and so on.

1.4.2 Fund size and Expense Ratio in Equilibrium

The fund manager maximizes total fee revenue at each period, ftAt, by choosing

the expense ratio (or fee) ft. By doing so, the manager is fully aware that her choice of

fee would affect the amount of capital, At, that investors are willing to supply. Because

investors are competitive, in the equilibrium, the benchmark-adjusted return after fees

(“net alpha”) is zero in expectation. Further, since (i) only the subjective belief matters

for investors’ capital allocation decisions and (ii) the subjective belief may not always

coincide with the objective one (due to investors’ learning and/or misperception of

fund alpha), the assumption of competitive investors implies a zero expected net alpha

under the subjective belief but not necessarily under the objective one.

24In Appendix A.2, I show that the model’s implication for fund-level returns to scale under both
the subjective and the objective beliefs remain the same if investors instead only learn about c1 (rather
than θ).
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Having this in mind, the fund manager’s problem can be formulated as follows:

max
ft

ftAt

s.t. Êt
(
αGrosst+1

)
− ft = 0

ft ≥ 0

(1.2)

where Êt(·) denotes the expectation under investors’ subjective beliefs at time t. To

conserve space, in the text below, I denote φt ≡ Êt(θ). The following proposition

characterizes the equilibrium fund size, A∗t , and expense ratio, f ∗t :

Proposition I.1. Assuming µ ≥ c0, at each period t, the equilibrium fund size that

satisfies the manager’s problem (1.2), A∗t , is given by the unique positive solution to

the equation:

φt(β + 1)(At)
β − 2c1At + (µ− c0) = 0 (1.3)

The equilibrium expense ratio, f ∗t , is given by 1−β
1+β

c1A
∗
t + β

1+β
(µ − c0). Moreover, the

equilibrium fund size, A∗t , is monotonically increasing in φt.

Note that the equilibrium fund size A∗t increases in investors’ perception of θ; that

is, φt. The intuition is that as φt becomes larger, the perceived fund’s ability to manage

its trading cost increases and thus, investors are willing to put more money in the fund

in the equilibrium. It is also worth noting that it is the investors’ perception of θ,

rather than θ itself, that determines the equilibrium fund size and expense ratio at

each point of time.
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1.4.3 Time-varying Expected Fund Alpha

Before turning to returns to scale, it is useful to first examine what drives the

variation of expected fund alpha under the objective belief. As shown in Appendix A,

the objective expected net alpha can be written as follows:

Et(αNett+1) =
(
θ − φt

)
(A∗t )

β (1.4)

where Et(·) denotes the expectation under the objective belief at time t. Given that

econometricians are able to estimate the fund’s unit cost function with high precision

from large samples ex-post, I assume (for simplicity), under the objective belief, that

econometricians know the value of all parameters, including θ.

As we can see, as long as φt differs from θ (which is generally the case), the expected

fund net alpha is no longer zero under the objective belief, as it is under the subjective

belief. When investors are optimistic about the fund’s ability—that is, when φt is

larger than θ—the objective expected net alpha is negative; otherwise, it is positive.

Moreover, as shown in Appendix A, the expected fund gross alpha under the objec-

tive belief also varies over time as investors’ beliefs changes. Thus, I conclude that the

evolution of investors’ beliefs drives the variation of expected fund alpha over time.

1.4.4 Returns to Scale

In this subsection, I examine model-implied returns to scale at the fund level. I start

with the relation under the subjective belief—the one that matters for investors’ capital

allocation decisions. As shown in Appendix A, when evaluating at the equilibrium fund

size, the subjective returns to scale,
∂Ê(αNett+1 )

∂At
|At=A∗t , is strictly negative. This explains

how the mutual fund market equilibrates: Competitive fund investors keep providing

capital to the fund until the expected net alpha becomes zero under their subjective
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beliefs, given that the expected fund alpha decreases in fund size at that point.

While examining the subjective returns to scale helps us understand how the equi-

librium is reached, we, as econometricians, cannot observe investors’ subjective beliefs

in the data. What we can observe instead is the returns-to-scale relation under the

objective belief. For a given fund, such a relation is constant over time, since the

underlying parameters are not time-varying (see Equation 1.1). To trace out such a

time-invariant relation, we rely on the time-series variation in the equilibrium fund size

driven by the fluctuation of investors’ beliefs: As investors’ perception of θ evolves over

time (perhaps due to learning), the equilibrium fund size adjusts accordingly, which

in turn affects the next-period fund alpha. This dynamic effectively acts as a “natural

experiment” by perturbing the equilibrium fund size, and thus traces out the relation

between fund size and subsequent fund alpha under the objective belief.

The following proposition characterizes how the expected fund alpha varies as in-

vestors’ perception of θ—that is, φt—evolves:

Proposition I.2. For a given fund, both the expected gross and net alpha under the

objective belief first increase and then decrease in φt. The turning point, φ̃, is smaller

than βθ.

Given a positive one-to-one mapping between φt and the equilibrium fund size (see

Proposition I.1), it immediately follows:

Corollary I.3. For a given fund, both the expected gross and net alpha under the

objective belief first increase and then decrease in the equilibrium fund size A∗t .

Both a U-shaped unit cost function and a wedge between φt and θ are responsible for

the emergence of hump-shaped returns to scale at the fund level: When φt is sufficiently

smaller than θ, investors significantly underestimate the fund’s ability to manage its

trading cost and thus, the equilibrium fund size becomes too small. As a consequence,
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under the objective belief, the fund would still be able to benefit from the reduction

in unit trading cost by further expanding its size, given a U-shaped unit cost function.

When φt is sufficiently large, the equilibrium fund size would be big enough that it

always fell into the decreasing-returns-to-scale region under the objective belief.

At this point, it is natural to draw the link between the model’s implication and

the empirical evidence documented in Section 1.3. Given that the model focuses on

a single fund, to map it into the panel data, I assume that different funds have the

same ability to manage their trading cost but I allow their ability to outperform the

benchmark before trading cost to be different (i.e., in the empirical specification, this

fund-specific ability is captured by fund fixed effects).25 Further, I approximate the

unit cost function specified in the model with either a quadratic or a piecewise linear

specification when implemented empirically. With these identification assumptions,

the model can be exactly mapped into the empirical specifications, as in Section 1.3.

Therefore, the model’s implication for a hump-shaped pattern of fund-level returns to

scale under the objective belief is consistent with the empirical finding.

1.4.5 Beliefs Updating and Flow-performance Sensitivity

In this subsection, I complete the model by studying how investors update their

beliefs over time, assuming they are Bayesian learners, and then examining the flow-

performance sensitivity accordingly. Note that the model’s main implication for hump-

shaped returns to scale does not depend on exactly how investors update their subjec-

tive beliefs. But assuming Bayesian investors allows me to provide a concrete example

on how the wedge between the subjective and the objective beliefs may emerge with a

tractable beliefs-updating process and flow-performance sensitivity.

25In particular, I assume the cost parameters c0, c1, θ, and β are the same across funds but µ are
different across funds. Note that it is mathematically equivalent to assume that c1, θ, and β are the
same across funds, but µ− c0 vary across funds.
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As Bayesian learners, investors update their beliefs on the true parameter θ by

observing the most recent fund net alpha along with past fund size and expense ratio.

In particular, suppose investors receive a noisy signal xt of θ at each time t: xt ≡ θ+εt,

where εt stands for the noise term. Rearranging the definition of fund net alpha, we

can explicitly write out the expression of the signal: xt = (A∗t−1)−β
(
αNett − (µ− c0) +

c1A
∗
t−1 + f ∗t−1

)
.26 Applying the Bayes rule to xt leads to the following proposition,

which characterizes the investors’ belief updating process:

Proposition I.4. Suppose investors’ prior on θ follows N(θ0, 1/γ) and the noise term,

εt, is independently distributed through time and follows N(0, 1/ω), where γ is the

precision of the prior and ω is the precision of the signal. The evolution of investors’

perception on θ—that is, φt—is thus given by 27

φt = φt−1 +
ω

γ + tω

( αNett

(A∗t−1)β

)
(1.5)

Because investors always think the expected net alpha is zero under their subjective

beliefs, when observing a positive (realized) net alpha, they would thus realize that they

had underestimated θ, and would update their beliefs upwards. By the same token,

investors would update their beliefs downwards when seeing a negative net alpha. As

φt fluctuates over time, the wedge between φt and θ tends to be different from zero.

Therefore, investors’ real-time learning provides one plausible channel which could lead

26Recall that αNett = µ− c0 + θ(A∗t−1)β − c1A∗t−1 − f∗t−1 + et, which implies (A∗t−1)−β
(
αNett − (µ−

c0) + c1A
∗
t−1 + f∗t−1

)
= θ+ εt, where εt = (A∗t−1)−βet. Thus, one can interpret (A∗t−1)−β

(
αNett − (µ−

c0) + c1A
∗
t−1 + f∗t−1

)
as the signal xt.

27The way investors update their beliefs, along with the flow-performance sensitivity, in my model
are similar to those in Berk and Green (2004). This similarity is fully expected because, as in Berk
and Green (2004), I assume that (i) fund investors are competitive and (ii) they are Bayesian learners.
But I depart from Berk and Green (2004) in two important respects. First, they assume the unit cost
that a fund faces is linearly increasing in its size, but I assume the shaped of unit cost function is
instead U-shaped, motivated by the empirical evidence in the corporate bond market. Second, while
Berk and Green (2004) do not distinguish between the subjective and the objective beliefs, I assume
investors’ subjective beliefs are in general different from econometricians’ objective ones.
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to the wedge between the subjective and objective beliefs.28

Now, let’s turn to the flow-performance sensitivity. Given that the equilibrium

fund size is uniquely determined by investors’ perception of θ (see Proposition 1.2),

as investors update their beliefs when observing the most recent fund net alpha, the

equilibrium fund size adjusts accordingly. The following corollary summarizes how the

equilibrium fund size reacts to the most recent fund net alpha:

Corollary I.5. For a given fund, the percentage change in the equilibrium fund size is

given by:

A∗t − A∗t−1

A∗t−1

≈ Φ1,tα
Net
t + Φ2,t

(
αNett

)2

(1.6)

where

Φ1,t =
(β + 1)

(1− β)2c1A∗t−1 + β(µ− c0)

( ω

γ + tω

)
> 0

Φ2,t =
β(β + 1)2

(
(1− β)2c1A

∗
t−1 + (µ− c0)(1 + β)

)
(

(1− β)2c1A∗t−1 + β(µ− c0)
)3

( ω

γ + tω

)2

> 0

Clearly, in the model, the percentage change in the equilibrium fund size is an

increasing and convex function of fund’s most recent net alpha.29

28One potential concern with Bayesian updating is that nothing can be learned in the limit and
thus, φt converges to θ as t goes to ∞. To address this concern, one may instead adopt a perpetual
learning rule (e.g., constant-gain learning) in which φt never converges to θ.

29In the Appendix, I further show that, in my framework, as long as fund investors update their be-
liefs on θ upwards (downwards) when seeing a positive (negative) net alpha (which does not necessarily
have to be in line with Bayesian updating), an increasing and convex flow-performance sensitivity still
holds.
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Empirical flow-performance sensitivity Now, I examine whether this is indeed

the case in the data. In particular, I estimate the following specification:

Flowj,t = aj + bt + γ1NetAlphaj,t−1 + γ2(NetAlphaj,t−1)2 + θXj,t−1 + ej,t (1.7)

The dependent variable, Flowj,t, is defined as percentage growth of total net assets

(TNAj,t) for fund j in month t, net of internal growth Rj,t:

Flowj,t =
TNAj,t − TNAj,t−1(1 +Rj,t)

TNAj,t−1

To mitigate the impact of a number of errors in the CRSP database on flows (Elton,

Gruber, and Blake (2001)), I winsorize fund flows at the 1% and 99% levels. I include

fund fixed effects, aj, to focus on the within-fund variation in flows. I include time

fixed effects, bt, to control for any unobserved aggregate force that may affect fund

flows in general, such as investors sentiment. I include lagged fund flow, among others,

as part of the time-varying fund-level controls, Xj,t−1, to account for potential sticky

fund flows.30

Table 1.4 reports the results. Column (i) confirms an increasing and convex flow-

performance sensitivity as predicted by Corollary I.5; point estimates on bothNetAlpha

and NetAlpha2 are positive and statistically significant.31 As Columns (ii) to (v) show,

30The other controls are: lagged log of fund total net assets, lagged fund turnover, lagged log of
fund age (in years), lagged fund expense ratio, and lagged realized return volatility in the past 12
months.

31Note that the convex flow-performance sensitivity documented here is in contrast with the concave
relation documented in Goldstein, Jiang, and Ng (2017). I believe the main reason that they obtain
a concave flow-performance sensitivity is their choice of fixed effects (FE). While they have both
investment-grade (IG) and high-yield (HY) funds in their analysis, they include time FE, rather than
time×sector FE (i.e. IG vs. HY sector), in their main specification (Table 2 in their paper). Given
potential sector-specific forces that may affect fund flows across funds within the sector (for example,
investors’ overall preference on IG funds), it seems sensible to include time×sector FE. As I show in
Appendix Table B.5, when time×sector FE are included, flow-performance sensitivity are no longer
concave under the original specification of Goldstein, Jiang, and Ng (2017). Moreover, as shown in
Appendix Table B.6, when I estimate the flow-performance sensitivity separately in the subsample of

31



Table 1.4: Flow-performance Sensitivity

This table shows the flow-performance sensitivity for U.S. corporate bond mutual funds from January
1991 to March 2017 (excluding money market funds, index funds, ETFs, and ETNs). The dependent
variable is monthly net fund flow, defined as:

Flowjt =
TNAj,t − TNAj,t−1(1 +Rjt)

TNAj,t−1

where TNAj,t stands for the total net assets for fund j in month t and Rjt is the fund j’s net return in

month t. NetAlpha2 is the quadratic term of NetAlpha. “Four-factor” is the baseline case, referring

to the benchmark with four bond market index funds (VBMFX, VBISX, VBIIX, and VBLTX); “one-

factor” is the benchmark with only VBMFX; “two-factor” is the benchmark with both VBMFX and

VFINX; “five-factor” is the benchmark with five index funds (VBMFX, VFINX, VBISX, VBIIX, and

VBLTX); and “risk-factor” is short-rate factor (three-month Treasury bill rate), slope factor (ten-

year Treasury rate − one-year Treasury rate), curvature factor (two-year Treasury rate + ten-year

Treasury rate − 2×five-year Treasury rate), and default risk factor (BAA-rated corporate bond yield

− AAA-rated corporate bond yield). The time-varying fund-level controls include lagged log of fund

total net assets, lagged fund turnover, lagged log of fund age (in years), lagged fund expense ratio,

lagged realized return volatility in the past 12 months, and lagged fund flow. In the parentheses, I

report the standard errors clustered by both month and fund.

Four-factor One-factor Two-factor Five-factor Risk-factor
(i) (ii) (iii) (iv) (v)

NetAlphat−1 2.73 3.42 3.09 2.97 2.01
(0.35) (0.38) (0.53) (0.38) (0.29)

(NetAlphat−1)2 37.46 41.92 43.83 45.87 21.69
(8.61) (6.30) (9.00) (8.15) (8.44)

Fund FE Y Y Y Y Y

Month FE Y Y Y Y Y

Observations 65109 69725 69717 65109 69725
Adjusted R2 0.204 0.200 0.198 0.204 0.195
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the finding of an increasing and convex flow-performance sensitivity is robust to various

measures of fund performance.

The evidence of such an increasing and convex flow-performance sensitivity suggests

that investors do learn about the fund over time in a way consistent with the model.

1.4.6 Dynamics

Having established (i) the pattern of returns to scale in each period and (ii) how

investors update their beliefs on θ over time, I conclude this section by discussing the

dynamics between fund size and next-period fund alpha with a numerical example.

Figure 1.2 illustrates the evolution of expected fund net alpha as a function of (equi-

librium) fund size. The blue solid line describes the time-series variation between the

fund size and the expected net alpha under the objective belief (which can be observed

by econometricians). For each point on the solid blue line, there is a corresponding

curve (dashed line) describing the same relation but under investors’ subjective be-

liefs (which is not observable in the data). Each dashed line corresponds to a certain

value of investors’ perception of θ; that is, φt. As we can see from the figure, in the

equilibrium, the subjective expected net alpha is always zero (red markers on the zero

horizontal line) and the subjective returns to scale is always negative. The expected

net alpha under the subjective and the objective beliefs coincide at zero when investors’

perception of θ happens to be true (point D in the figure).

Now, let’s consider the dynamics after some shocks to fund alpha. First suppose

that, after a sequence of bad shocks, investors become quite pessimistic on θ and

thus, the (equilibrium) fund size becomes fairly small (say, point A in the figure). At

that point, since the (observed) next-period fund net alpha (which is the same as the

expected net alpha under the objective belief because no further shock hits) is positive,

IG and HY funds, I do not find such a concave relation in either subsample.
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Figure 1.2: Dynamics between Fund Size and Expected Next-period Fund Alpha. This
figure illustrates how expected next-period net alpha evolves as fund size varies under both
investors’ subjective and the objective beliefs. The parameter values are set as: µ−c0 = 0.01,
c1 = 0.001, θ = 0.005, β = 0.7

investors would update their beliefs on θ upwards (see Equation 1.5). As a result, the

subsequent fund size would become larger, which further leads to an increase in the

future fund net alpha due to increasing returns to scale. Once φt passes the turning

point but still remains smaller than θ (say, from point A to point B in the figure),

the next-period fund net alpha remains positive. Under this scenario, both φt and

the (equilibrium) fund size keep expanding but the subsequent fund net alpha now

decreases rather than increases because of decreasing returns to scale (from point B to
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point C in the figure). Eventually, when φt reaches θ, the next-period fund net alpha

becomes zero and hence, no more updating would occur in the absence of any further

shock (point D in the figure).

The dynamics after a sequence of good shocks to fund alpha operate in a similar

fashion but in the opposite direction. Suppose φt is now greater than θ and hence, the

(equilibrium) fund size is quite large (say, point E in the figure). In this situation, the

(observed) next-period fund net alpha is negative and investors would therefore update

their beliefs downwards, resulting in a smaller subsequent fund size but a higher future

fund net alpha (due to decreasing returns to scale). Once φt retreats to θ (from point

E to point D in the figure), the next-period fund net alpha stays at zero and no further

updating will occur if there are no more shocks.

1.5 Conclusion

In this paper, I study fund-level returns to scale for U.S. corporate bond mutual

funds. In contrast to the decreasing returns to scale among equity mutual funds doc-

umented in the literature, I find a novel hump-shaped relation between fund size and

subsequent fund alpha among corporate bond funds. Further, I show that a U-shaped

relation between trade size and unit transaction cost at the bond level—a unique fea-

ture in the corporate bond market—is relevant for explaining such a hump-shaped

pattern. To interpret the observed pattern of returns to scale (which is otherwise diffi-

cult in a standard rational expectations framework), I propose a model with a focus on

fund investors’ behavior and show that the evolution of investors’ beliefs could drive

the variation of fund size and further in fund alpha over time and thus, traces out the

empirical (within-fund) returns-to-scale relation.

Although my proposed source of variation—the wedge between the subjective and

objective beliefs about the fund’s trading skill—is intuitive and plausible, it remains
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open what is the underlying mechanism that leads to the wedge. I suggest that in-

vestors’ real-time learning as well as their misperception of fund alpha are potential

channels. It will be interesting to explore in future research the extent to which these

two plausible mechanisms can quantitatively match the empirical pattern of returns to

scale and the flow-performance sensitivity.
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CHAPTER II

The Making of Hawks and Doves

2.1 Introduction

Members of central-bank committees, such as the Federal Open Market Committee

(FOMC) or the European Central Bank (ECB) Governing Council, often disagree on

future inflation rates and whether to loosen or tighten monetary policy. Why do these

highly educated and well-informed experts differ in their forecasts and recommenda-

tions when they have access to the same data and tools? Why do they deviate in

their expectations from forecasts produced by their staff as documented by Romer and

Romer (2008)?

Existing macroeconomic models of optimal monetary policy do not offer much of

an explanation. Monetary policy makers, if modeled at all, assign the same weights to

inflation and output stabilization, based on private-sector agent preferences and objec-

tive data, when maximizing social welfare (see, e. g., Rotemberg and Woodford (1999)).

Even in models with learning, such as Sargent (1999), policy makers form beliefs based

on objective historical data, which leaves no room for subjective disagreement.1

These modeling approaches are hard to square with the discussions among prac-

1Outside of macroeconomics, research on group decision-making has explored sources of hetero-
geneity among monetary policy committee members, including variation in preferences such as career-
concerns, and differential information. For an overview, see Sibert (2006).
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titioners and in the media classifying central bankers as ‘hawks’ or ‘doves.’ Debates

about new appointments and their policy implications typically refer to appointees’

background and personal experiences. For example, when Charles Plosser and Richard

Fisher resigned as the Philadelphia and Dallas Federal Reserve Bank Presidents in

2014, much of the news coverage was about ‘the generational shift rooted in personal

inflation experiences: “Annual inflation in the United States has averaged 3.8 percent

during Mr. Plosser’s adult life. By contrast, inflation has averaged just 2.5 percent dur-

ing the adult life of Narayana Kocherlakota, president of the Federal Reserve Bank of

Minneapolis, who at 50 is the youngest member of the policymaking committee and who

has become the most outspoken proponent of expanding the Fed’s stimulus campaign.”2

In this paper, we argue that personal experiences exert a measurable and statis-

tically significant longterm influence on FOMC members. Whether and at what age

they experienced, say, the Great Inflation or other inflation realizations, affects their

stated beliefs about future inflation, their monetary-policy decisions, and the tone of

their speeches on monetary-policy issues. We further show that time-variation in the

average inflation experiences of all FOMC members present at a given meeting helps

explain deviations of the federal funds rate from a conventional forward-looking Taylor

rule.

Our research hypothesis and design build on a growing literature on experience

effects. Personal experiences of macro-finance, labor-market, or political outcomes ap-

pear to be a strong determinant of individual attitudes and willingness to take risks in

these areas in the long run. For example, prior experiences of stock market returns pre-

dict stock-market investment, prior experiences with IPOs predict future participation

in IPOs, and prior experiences in the bond market predict future bond investment.3

2 See “Charles Plosser and Richard Fisher, Both Dissenters, to Retire From Fed,” by Binyamin
Appelbaum, New York Times Sept. 22, 2014, www.nytimes.com/2014/09/23/business/fed-official-
critical-of-policies-set-to-retire-in-march.html.

3 Cf. Vissing-Jorgensen (2003), Kaustia and Knüpfer (2008), Chiang, Hirshleifer, Qian, and Sher-
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Evidence in line with experience effects is also found among college students who grad-

uate in recessions, among consumers who live through economic booms or busts, and in

the political realm in terms of the long-term consequences of living under communism,

its surveillance system, and propaganda.4 Most closely related, Malmendier and Nagel

(2016) show that life-time experiences of inflation significantly affect beliefs about fu-

ture inflation, and that this channel explains the substantial disagreement between

young and old individuals in periods of highly volatile inflation, such as the 1970s.

The monetary-policy setting in this paper is different. FOMC members are presum-

ably highly educated and well informed about macroeconomic history, and monetary

policy is generally considered a technocratic and model-driven area of economic policy.

Experience effects may thus seem much less plausible than for the consumers and indi-

vidual investors examined in earlier studies. Nevertheless we find a robust influence of

personal experiences on FOMC members’ stated beliefs and decisions, consistent with

views in the media about generational origins of ‘hawkishness.’

For our empirical analyses, we employ a model of experience-based learning that

maps the history of each member’s experienced inflation into a perceived long-run

mean and persistence of inflation. Members’ perceived-inflation dynamics follow a

seasonal AR(1) process where experienced lifetime data is weighted with (roughly)

linearly declining weights as estimated in Malmendier and Nagel (2016). The parameter

estimates of the inflation process are updated each period. We then construct an

experience-based inflation forecast for each FOMC member at each point in time as the

man (2011), Malmendier and Nagel (2011), and Strahilevitz, Odean, and Barber (2011). There is
similar evidence for the housing market (Malmendier and Steiny (2017), Botsch and Malmendier
(2016)), and the insurance markets (Gallagher (2014)).

4Cf. Kahn (2010) and Oreopoulos, von Wachter, and Heisz (2012) for labor markets; Malmendier
and Shen (2017) for consumption expenditures (controlling for financial constraints and wealth);
and Alesina and Fuchs-Schündeln (2007), Lichter, Löffler, and Siegloch (2016), Fuchs-Schündeln and
Schündeln (2015), or Laudenbach, Malmendier, and Niessen-Ruenzi (2018) for political experiences.
For example, Fuchs-Schündeln and Schündeln (2015) argue that the amount of time a person has lived
under a democratic system determines her political preferences for democracy.
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inflation forecast that is implied by these parameter estimates. These forecasts differ

not only across cohorts in each period, but also change within each cohort over time

as beliefs are updated in response to new inflation realizations. Hence, the identifying

variation that we rely on to explain FOMC member behavior is not spanned by fixed

age, time, and cohort effects.

As our first outcome variable, we analyze the inflation forecasts FOMC members

submit for the semi-annual Monetary Policy Reports (MPRs) to Congress. The indi-

vidual forecasts are made available with a 10-year lag, starting in 1992. We relate each

member’s experience-based forecast at a given time directly to their MPR forecast at

that time. Despite the limited sample period, our estimation provides robust evidence

that members put a substantial weight—37% or more, depending on the specification—

on their experience-based forecasts. Hence, differences in members’ lifetime experiences

of inflation explain an economically significant portion of the differences in their infla-

tion forecasts.

This first finding helps explain the puzzling time-series evidence in Romer and

Romer (2008) that the central tendency of FOMC members’ inflation expectations

often deviates from the Federal Reserve staff’s Greenbook forecast, even though their

deviations reduce forecast accuracy. Our results imply that, to a large extent, the

deviations are explained by reliance on personal inflation experiences. Hence, while our

research design emphasizes between-member differences in experiences and outcomes,

the estimates are also useful to understand why FOMC members as a group deviate

from objective benchmarks.

Next, we turn to differences in decision-making. We study FOMC votes, which

allow us to study clearly defined policy decisions over a sample period spanning several

decades, from March 1951 to January 2014. The FOMC meets at least four (and

typically eight) times per year. Members share their assessments of the economic

40



situation and propose targets and policy measures for the upcoming inter-meeting time

window, as well as the long-run. To analyze whether FOMC members’ voting decisions

are influenced by the inflation experiences they have accumulated during their lifetimes,

we have to map their experience-based forecasts from the first step of our analysis into

a voting decision. For this second step, we link the experience-based inflation forecasts

to the desired level of nominal interest rates using a subjective version of the Taylor

(1993) rule. We allow FOMC members to differ, based on their personal characteristics,

in their weights on the inflation and output stabilization objectives as well as in their

views about the appropriate inflation and output targets and the natural interest rate.

Most importantly, we allow for the possibility that they evaluate deviations from the

inflation target in terms of their own experience-based inflation forecasts. We estimate

a highly significant relationship between inflation experiences and voting decisions.

A one within-meeting standard-deviation increase in the experience-based inflation

forecast raises the probability of a hawkish dissent by about one third, and it lowers

the probability of a dovish dissent also by about one third, relative to the unconditional

dissent probabilities.

The voting outcome is a clear indication that experiences significantly affect FOMC

members’ behavior; but it is also coarse, given the well-known reluctance of FOMC

members, in particular governors, to formally cast a dissenting vote. To tease out

more subtle differences in desired interest rate changes, we analyze, in a third step,

the opinions FOMC members express in their speeches. We construct a data set of all

“Speeches and Statements” from the Federal Reserve Archival System for Economic

Research (FRASER) as well as hand-collected speeches from the websites of the re-

gional Federal Reserve Banks (FRBs). We classify the language in these speeches and

discussions as hawkish or dovish using the automated search-and-counts-approach of

Apel and Grimaldi (2014). Applied to our sample, their Net Index of hawkishness
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reveals that FOMC members use a significantly more hawkish tone when their lifetime

experiences imply a higher experience-based inflation forecast.

Finally, we turn from the cross-sectional analysis of individual behavior to the

time series of the federal funds rate target. Traditionally, the FOMC implements

monetary policy by setting a target for the federal funds rate, i. e., the interest rate

at which banks lend overnight to each other. Within the forward-looking Taylor rule

framework, we show that the federal funds rate target is tilted away from the Federal

Reserve Board staff’s Greenbook forecast of inflation and towards the experience-based

inflation forecasts of the voting members present at the FOMC meeting. This result

is robust to including the lagged federal funds rate in the interest-rate rule to account

for interest-rate smoothing as part of the Federal Reserve’s policy. Moreover, the

strength of the tilt that we estimate here is broadly consistent with the tilt away from

the staff forecast and towards personal experiences in the initial analysis of inflation

forecasts. We quantify the implied effect in a rough calculation that abstracts from the

equilibrium consequences of a different interest-rate path. We find that, relying only

on the staff forecast and not on members’ own inflation experiences, a counterfactual

FOMC would have chosen a similar interest-rate path in the late 1980s and 1990s, but

50 to 100 basis points lower in the 2000s.

The four sets of empirical results can be parsimoniously explained by a model

of experience effects, in which personal inflation experiences affect subjective beliefs

about future inflation. Under such a model of experience-based learning, individuals

overweight realizations of past inflation that they have experienced in their lives so far,

consistent with earlier evidence on experience effects in individual inflation expectations

(Malmendier and Nagel (2016)). In addition, there might be a preference-based link

between inflation experiences and aversion to inflation. A preference-based explanation

does not suffice, though, to explain all of our findings for at least two reasons. First, the
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preference channel does not easily explain the link between inflation experiences and

FOMC members’ stated beliefs in their MPR forecasts. While it is possible that the

MPR forecasts reflect members’ inflation preferences rather than their beliefs, this is not

the standard interpretation of these data (e.g., Romer and Romer (2008)). Second, it is

not clear why experience-based forecasts generated by an adaptive learning rule, which

our empirical analysis employs, would be a good way to summarize FOMC members’

inflation preferences. Ultimately, pinning down the precise channel is not essential

for the validity of our findings. Irrespective of the preferred explanation, our findings

show that heterogeneity in lifetime experiences has significant explanatory power for

the heterogeneity in monetary-policy views and for the decisions of the experts on the

FOMC.

Our findings add to a growing literature that studies experience-related heterogene-

ity in economic decisions and macroeconomic expectations. Relative to the macro and

finance literature on experience effects cited above, our analysis stands out in that it is

the first paper to provide evidence of personal experiences affecting policy experts. At

the same time, it is not the first to find experience effects among professional agents,

and complements prior evidence on experience effects among mutual fund managers

who experienced the stock market boom of the 1990s (Greenwood and Nagel (2009)),

among CEOs who grew up in the Great Depression (Malmendier and Tate (2005), Mal-

mendier, Tate, and Yan (2011)), and even among lenders in 18th century Amsterdam

(Koudijs and Voth (2016)).

Our results provide a new perspective on macroeconomic models in which mone-

tary policy makers learn about the economy’s stochastic processes (see Sargent (1999),

Cho, Williams, and Sargent (2002), and Primiceri (2006), among others). A common

assumption in these models is that policy makers update their beliefs (e. g., about the

natural rate of unemployment, the slope of the Philips curve, or inflation persistence)
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using a constant-gain updating scheme that leads to perpetual learning with exponen-

tial downweighting of data in the past. Primiceri (2006) shows that this constant-gain

assumption helps the model explain macroeconomic dynamics, including the high in-

flation in the 1970s and the subsequent disinflation. However, it is unclear why pol-

icymakers would update beliefs with a constant gain. One (standard) explanation is

structural change in the stochastic processes agents learn about. Our findings point to

an alternative: Data in the distant past carries low weight because policy makers over-

weight personal experience relative to objective historical data. In fact, Malmendier

and Nagel (2016) show that the average experience-based belief of a group of individu-

als can be closely approximated by a constant-gain learning rule, and hence experience

effects can provide an approximate “microfoundation” for constant-gain learning.

In addition, our results highlight sources of belief heterogeneity that the standard

representative policy-maker approach in the literature would miss: the age distribution

of the policy committee, as well as the differences in such age effects over time. As such,

the evidence in this paper sheds light on the likely consequences of choosing specific

individuals as central bankers—a topic much discussed in practice. Romer and Romer

(2004) provide narrative evidence that the Federal Reserve chairs are heterogeneous

in their views about the workings of the macroeconomy and the potency of monetary

policy. They argue that this heterogeneity affects policy choices. Accordingly, Reis

(2013) suggests that the choice of a central banker shapes the effective objective func-

tion for the central bank. Our evidence suggests that heterogeneity in macroeconomic

experiences influence the beliefs that enter as inputs into this objective function.

Our evidence on the role of inflation experiences also adds a new dimension to

a prior literature that links monetary policy decisions to the personal characteristics

of FOMC members. Chappell, Havrilesky, and McGregor (Chappell, Havrilesky, and

McGregor (1993), Chappell, Havrilesky, and McGregor (1995)) and Chappell and Mc-
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Gregor (2000) document that a number of characteristics, including the role of regional

Federal Reserve president versus Federal Reserve governor, are associated with differ-

ences in voting. While this earlier literature views policy maker characteristics as

determinants of their preferences or incentives, our approach is motivated by a sub-

jective beliefs channel. In support of this channel, we show that lifetime experiences

explain FOMC members’ stated beliefs about future inflation.

Finally, our analysis of the tone in FOMC members’ speeches relates to the literature

on textual analysis in monetary policy. Apel and Grimaldi (2014) measure the tone of

the Swedish central bank minutes and use it to predict policy rate decisions. Numerous

other text-mining approaches have recently been employed, for example by Hansen and

McMahon (Hansen and McMahon (2016a), Hansen and McMahon (2016b)). Lucca and

Trebbi (2011) analyze FOMC communication using an automated linguistics-based

method to predict long-term Treasury yields. Most studies in this area focus on the

role of transcripts, minutes, and statements of official meetings in predicting macro

variables. We focus on how personal experiences explain tone differences across FOMC

members’ speeches outside their meetings.

The rest of the paper is organized as follows. In the next section, we lay out the

methodology underlying our empirical approach and specify FOMC members’ learning

rule. We show that the resulting experience-based forecasts of inflation help predict the

MPR inflation forecasts of FOMC members. In Section 2.3, we map the experience-

based inflation forecasts into desired interest rates and show that they help explain

dissenting votes. In Section 2.4, we perform a similar analysis for FOMC members’

speeches. Section 2.5 relates the average inflation experiences of all FOMC members

at each meeting to the federal funds rate decision, and Section 2.6 concludes.
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2.2 Inflation Experiences and Inflation Forecasts

We start our analysis by examining the stated inflation expectations of FOMC mem-

bers in the Semiannual Monetary Policy Report (MPR). This data set provides us with

an inflation forecast for each individual FOMC member twice a year during the period

from 1992 to 2004. We test whether we can detect experience-related heterogeneity

in inflation expectations, even among the highly educated and professionally trained

individuals on the FOMC: Does their personal lifetime experience of more or less infla-

tionary environments affect their stated beliefs about future inflation? Do they attach

higher weights to past realizations of inflation if they happen to have personally lived

through those times?

2.2.1 Learning from Experience

Experience-based learning is a variant of adaptive learning where economic agents have

a perceived law of motion for the variable they want to forecast, which may be a simple

approximation of some unknown true law of motion. The agents estimate the parame-

ters of this law of motion based on observed data and then use the estimated model to

construct forecasts. As new observations arrive, they update the parameter estimates

and forecasts. (See, e.g., Bray (1982), Marcet and Sargent (1989), Sargent (1993),

and Evans and Honkapohja (2001).) The key modification of the standard approach

that introduces learning from experience is that we allow the learning gain, i. e., the

strength of updating in response to surprise inflation, to depend on age. Young indi-

viduals react more strongly to an inflation surprise than older individuals who already

have accumulated a longer data set of lifetime observations. As a result, experience-

based forecasts at a given point in time are heterogeneous by age (or, equivalently,

across cohorts). Moreover, since individuals update their beliefs in response to new

observations, experience-based forecasts vary within person, and hence within cohort.
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There are no fixed cohort effects.

We utilize the learning-from-experience model of Malmendier and Nagel (2016) to

generate FOMC members’ experience-based inflation forecasts based on their experi-

enced inflation histories, which we then compare with FOMC members’ actual inflation

forecasts. In the learning-from-experience framework of Malmendier and Nagel (2016),

individual consumers perceive inflation as an AR(1) process, and use data on expe-

rienced inflation to estimate the AR(1) parameters and construct their forecasts. As

they experience new inflation realizations, they update the AR(1) parameters and revise

their forecasts. Intuitively, the AR(1) assumption implies that experienced inflation is

summarized in terms of long-run mean and the persistence of shocks.

We modify this framework in a minor way to address seasonality. Especially to-

wards the end of our sample period, the seasonal component of inflation accounts for

a substantial share of its variance,5 and we expect experts to be aware of the pattern.

While the seasonality adjustment is not material for the results, it avoids seasonality-

induced volatility in experienced-based forecasts in the later part of the sample, which

plays a bigger role in the analysis here than in the Malmendier and Nagel (2016) sam-

ple that reached back to the 1950s. Hence, we model their perceived law of motion as

a mixed seasonal AR(1) process,

πt+1 = α + φ1πt + φ4πt−3 − φ5πt−4 + ηt+1, (2.1)

where the t− 3 and t− 4 lags capture a four-quarter seasonal pattern.6

5Bryan and Cecchetti (1995) show that the relative variance share of the seasonal component rose
as inflation became more stable after 1982, and Gospodinov and Wei (2015) note a strong seasonal
component since the financial crisis in 2008.

6With the restriction φ5 = φ4φ1, this is an ARIMA(1, 0, 0) × (1, 0, 0)4 model, a special case of
the seasonal ARIMA model discussed, e.g., in Box, Jenkins, Reinsel, and Ljung (2015). We do not
impose this restriction in the learning algorithm (which does not affect consistency), so that the
belief updating formulas still retain a recursive least-squares form. An alternative would be to use
seasonally-adjusted data. However, seasonally-adjusted data is available only back to 1947. Moreover,
standard seasonally-adjusted data suffers from a potential look-ahead bias as the seasonal adjustment
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FOMC members use least-squares to estimate the vector b of parameters in (2.1),

b ≡ (α, φ1, φ4, φ5)′. Expressed recursively, the least-squares estimates of an FOMC

member born in year s are updated every period as follows:

bt,s = bt−1,s + γt,sR
−1
t,s ht−1(πt − b′t−1,sht−1), (2.2)

Rt,s = Rt−1,s + γt,s(ht−1h
′
t−1 −Rt−1,s), (2.3)

where ht ≡ (1, πt, πt−3, πt−4)′. Based on the newly revised estimates of bt,s, members of

cohort s form their subjective expectation of next period inflation as

πej,t+1|t = b′t,sht. (2.4)

The sequence of gains γt,s in (2.2) and (2.3) determines how strongly cohort s revises

the parameter estimates when faced with an inflation surprise, πt − b′t−1,sht−1, at time

t. Following Malmendier and Nagel (2016), we specify the gain as

γt,s =


θ
t−s if t− s ≥ θ,

1 if t− s < θ.

(2.5)

That is, while the recursive least-squares set up follows standard implementations of

adaptive learning (cf.; Evans and Honkapohja (2001)), the gain specification is different.

In standard adaptive-learning models with decreasing gain, the gain is decreasing in

the total size of available historical data and is the same for everybody. In contrast,

the gain in (2.5) is decreasing in the size t− s of the lifetime data of cohort s at time

t. As a consequence, younger individuals have a higher gain and react more strongly

to an inflation surprise than older individuals. Hence, the variation in gains is the

factors applied to the CPI time-series are estimated and retroactively updated by the Bureau of Labor
Statistics using ex-post realized data over the full sample.
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source of between-cohort heterogeneity in inflation forecasts, as well as within-cohort

heterogeneity (over time), in our framework.

The parameter θ > 0 is constant and determines how much weight the forecaster

puts on recent data versus data in the distant past. For example, θ = 1 implies equal

weighting of recent data and data earlier in life, while θ > 1 implies that recent data

receives more weight than early experiences. Throughout the paper, we conduct our

baseline estimation by setting θ = 3.044, which is the value Malmendier and Nagel

(2016) estimate from the data on inflation expectations in the Michigan Survey of

Consumers (MSC). This value of θ implies that weights on past observations decline

a little faster than linearly, going back from the current period to a weight of zero at

birth.7 By using this value of θ, we impose consistency with earlier evidence and tie

our hands with regards to this parameter, rather than picking θ to best fit the FOMC

member data. We test the robustness of our results to using a range of values around

this point estimate. We also reestimate θ on the sample of college graduates in the

MSC, which makes it plausibly more representative of the typical FOMC member. Our

results are unaffected when we use the resulting parameter estimate of θ = 3.334.

For a given θ, we calculate the experience-based inflation forecast πej,t+1|t of member

j at time t based on inflation data since j’s birth year. Our data source is the quarterly

CPI series from Shiller (2005) that goes back to 1871Q1.8 We measure inflation rates

7We find that the inflation forecast of an adult is not sensitive to the precise starting point of
the experience accumulation for a fairly wide range of values around θ = 3.044. In Malmendier and
Nagel (2016), we stretch and compress the weighting function to include years before birth into the
experience accumulation or start later (e.g., at the age of 18) without much effect, also because the
initial years in an adult’s lifetime carry relatively little weight.

8See the updated long-term stock, bond, interest rate and consumption data at http://www.econ.
yale.edu/~shiller/data.htm. Shiller’s inflation rate series is based on the CPI-U (Consumer Price
Index-All Urban Consumers) published by the U.S. Bureau of Labor Statistics from 1913 onwards,
and on the Warren-Pearson wholesale price index before 1913. Since the earlier price index is focused
on commodities, it is more volatile. Appendix C.7 replicates key parts of our analyses excluding
pre-1913 data, i.e., restricting the sample to FOMC members born after 1913. The results on voting
remain essentially unchanged, as do the results on speech tone; the other two sets of analyses do not
use pre-1913 data.
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as annualized quarterly changes in the log CPI. As in Malmendier and Nagel (2016),

we iterate on the perceived law of motion (2.1) at each cohort’s quarter-t parameter

estimates to construct experience-based forecasts of the average inflation rate over the

relevant horizon (which is four quarters in most of our applications, unless otherwise

noted).

In Appendix C.1, we illustrate the resulting heterogeneity in expectations and

learning-from-experience dynamics in more details. There, we plot how the perceived

persistence and long-run mean of inflation evolve over time, separately for different age

groups. The graphs highlight the two key features of experience-based expectations

formation. First, since individuals update their beliefs in response to new inflation

observations, experience-based forecasts vary within person (and hence also within co-

hort) over time. Second, since younger individuals have a shorter life-time data set

and place a higher weight on recent inflation surprises than older individuals, expecta-

tions are heterogeneous by age, but in a time-varying way. As a consequence, a linear

combination of time, age, or cohort fixed effects cannot absorb experience-based expec-

tations heterogeneity. For this reason, our approach to estimating experience effects is

not subject to the age-time-cohort collinearity problem that plagues methods that are

based on estimation of cohort fixed effects. (See Malmendier and Nagel (2016) for a

more general discussion of this point.)

2.2.2 Inflation Forecast Data

We obtain individual inflation forecasts of FOMC members from the Semiannual MPR.9

Twice a year, in February and July, the FOMC submits an MPR to Congress, which

contains the FOMC members’ inflation forecasts. In February, the forecasts concern

the time period from Q4 of the previous year to Q4 of the current year. In July, two

9www.philadelphiafed.org/research-and-data/real-time-center/

monetary-policy-projection
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sets of forecasts are included in the report: one for Q4 of the previous year to Q4 of

the current year, and another one for Q4 of the current year to Q4 in the next year.

We supplement the individual FOMC members’ forecasts with forecasts in the

“Greenbooks” that are prepared by Federal Reserve staff about a week prior to each

FOMC meeting.10 We use the Greenbooks for the February and July FOMC meeting

and match them with the member forecasts from the MPR. As Romer and Romer

(2008) discuss, the FOMC members have access to the Greenbook forecasts when they

prepare their forecasts before the FOMC meeting that precedes the MPR. They also

have an opportunity to revise their forecast after seeing other members’ economic views

and staff’s summary of the other members’ forecasts. Romer and Romer (2008) show

that the central tendency of FOMC members’ forecasts deviates from the staff forecast

in the Greenbooks, and that this deviation from the staff forecasts reduces the forecast

accuracy.

Our objective here is to test whether the deviations from staff forecasts reflect

the influence of their personal inflation experiences. For this purpose, we extract the

individual inflation forecasts contained in the MPRs (rather than the central tendency

that Romer and Romer (2008) analyze) to construct a panel data set. The individual

FOMC members’ forecasts become available only with a 10-year lag, and the earliest

ones available are from 1992. Hence, our sample runs from 1992 to 2004, covering 26

FOMC meetings. This data set of individual forecasts is introduced and described in

Romer (2010).

2.2.3 Econometric specification

Our estimating equation relates FOMC members’ deviation from the staff forecasts

to their personal inflation experiences. We start from modelling FOMC member j’s

10www.federalreserve.gov/monetarypolicy/fomc_historical.htm
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forecast at time t, π̃j,t+1|t, as a weighted average of j’s experience-based forecast πej,t+1|t

and the staff forecast π̃t+1|t reported in the most recent Greenbook:

π̃j,t+1|t = φπej,t+1|t + (1− φ)π̃t+1|t. (2.6)

Subtracting π̃t+1|t on both sides, we obtain our estimating equation

π̃j,t+1|t − π̃t+1|t = a+ φ(πej,t+1|t − π̃t+1|t) + εt, (2.7)

where we include a constant and a residual to account for other unobserved variables

that could influence the FOMC members’ forecasts.

One complication when estimating equation (2.7) is that the forecasted inflation

variable switched in February 2000 from the consumer price index (CPI-U) to the

price index for personal consumption expenditure (PCE). Our construction of πej,t+1|t

is based on the history of the CPI, and from 2000 to the end of our sample in 2004,

the average CPI inflation rate was about 0.40% higher than the PCE inflation rate.

We take two approaches to address this discrepancy. First, we simply re-calculate

π̃j,t+1|t post-1999 by adding the difference in CPI and PCE inflation rates over the

12 months prior to the meeting to the FOMC member forecast. Second, we estimate

a version of equation (2.7) with time fixed effects. As long as views about the CPI-

PCE discrepancy are similar among FOMC members, the effect of the discrepancy

will be absorbed by the time fixed effects. In this case, the coefficient φ is identified

purely from (time-varying) cross-sectional differences between FOMC members in their

forecasts and their inflation experiences.

Another complication is that forecast horizons vary. To match the forecasts in the

February MPR (from the end of the previous-year Q4 to the end of the current-year

Q4), we construct the experience-based forecast using data until the end of previous-
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year Q4 and then iterate to construct a four-quarter-ahead forecast. To match the

same (previous-year Q4 to current-year Q4) forecast in the July MPR, we average the

two-quarter-ahead experience-based forecast (from end of Q2 to end of current-year

Q4) and the realized inflation over the past two quarters (from end of last-year Q4 to

end of Q2). To match the next-year forecast (from current-year Q4 to next-year Q4)

in the July MPR, we subtract the same two-quarter-ahead experience-based forecast

from the six-quarter-ahead experience-based forecast (from end of Q2 this year to end

of Q4 next year).

Panel A in Table 2.1 reports summary statistics for the dependent and explanatory

variables in (2.7), separately for each forecast horizon. The mean column shows that the

FOMC members’ actual MPR forecast exceeds the Greenbook forecast on average over

the 1992-2004 sample period by between 0.17 to 0.32 percentage points. Interestingly,

the same pattern, but at a greater magnitude, holds for FOMC members’ experience-

based forecast. This is a first hint that partial reliance on personal inflation experiences

could be the reason why FOMC members deviate from the Greenbook forecast. The

standard deviation column shows that actual and experience-based forecast deviations

from the Greenbook have a standard deviation of around 0.50 percentage points for

the February MPRs, and around 0.40 to 1.10 percentage points for the two July MPR

forecasts. These means and standard deviations are large relative to the magnitudes

of a typical federal-funds-rate target change of 0.25 percentage points that the FOMC

might consider in a meeting.

The table also reports the within-member standard deviation of the actual and

the experience-based forecast. This statistic reveals that member fixed effects do not

absorb much of the variation. The much smaller within-meeting standard deviation

in the next column indicates that much of the total standard deviation reflects time-

series variation of the average members’ deviation from the Greenbook forecast, rather
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Table 2.1: Influence of FOMC Members’ Inflation Experiences on their Inflation Fore-
casts

Panel A presents summary statistics for the dependent and explanatory variables in the estimations

shown in Panel B. MPR fcst. - staff fcst. is the difference between i) FOMC members’ stated inflation

projection from the MPR and ii) the most recent Fed Staff’s inflation forecast from the Greenbook

prior to the February or July FOMC meeting. In February, the horizon of the members’ MPR forecasts

is over the four quarters until the end of the current year. In July, two horizons are available: four

quarters until the end of the current year and the four quarters during next year. From February

2000 on, we add the difference between CPI and PCE inflation rate to each FOMC member forecast.

The sample period runs from the first half of 1992 to the second half of 2004. In Panel B, MPR

fcst. - staff fcst. is the dependent variable. The explanatory variable is the difference between the

i) experience-based forecast πej,t+1|t for each FOMC member at each meeting, and ii) the Fed staff’s

inflation forecast. We calculate πej,t+1|t for each member at each meeting by recursively estimating a

mixed seasonal AR(1) model using the member’s lifetime history of inflation, as described in Section

2.2.1 (with θ = 3.044). In parentheses we report the standard error based on clustering as described

in the table.

Panel A: Summary statistics

Mean S.D. Within-Member Within-Meeting
S.D. S.D.

February MPR: Current-year forecast

MPR fcst. - staff fcst. 0.26% 0.53% 0.44% 0.21%
Exp.-based fcst. - staff fcst. 0.66% 0.53% 0.43% 0.03%

July MPR: Current-year forecast

MPR fcst. - staff fcst. 0.17% 0.44% 0.39% 0.18%
Exp.-based fcst. - staff fcst. 0.66% 1.09% 0.78% 0.03%

July MPR: Next-year forecast

MPR fcst. - staff fcst. 0.32% 0.61% 0.50% 0.32%
Exp.-based fcst. - staff fcst. 1.16% 0.75% 0.61% 0.06%

Panel B: OLS regression
(i) (ii) (iii) (iv)

Exp.-based fcst. - staff fcst. 0.37 0.40 0.81 0.82
(0.10) (0.12) (0.37) (0.39)

Member × fcst. horizon FE No Yes No No
Member FE No No No Yes
Meeting × fcst. horizon FE No No Yes Yes

Clustered s.e. Member Member Member Member
and and
Meeting Meeting

Observations 383 383 383 383
Adjusted R2 34.7% 41.0% 77.7% 81.5%
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than cross-sectional dispersion between members in a given FOMC meeting. This

is a consequence of the fact that the sample period for these forecast data features

relatively low and stable inflation rates. As a consequence, the heterogeneity in FOMC

members’ experience-based forecasts is limited. Our analysis of voting and speeches,

which we turn to below, will instead cover the 1970s in its sample period, which bring

in substantially greater dispersions in experience-based forecasts.

2.2.4 Estimation Results

The estimation results are in Panel B in Table 2.1. The panel reports the OLS esti-

mates of the weight φ on the experience-based forecasts, relative to the staff forecasts,

in equation (2.7). We find that the experience-based inflation forecast plays a signif-

icant role in explaining the variation of members’ reported inflation forecasts. The

specification in column (i) uses the total variation without fixed effects. The resulting

estimate of 0.37 (s.e. 0.10) implies that FOMC members put about 37% weight on their

experience-based forecast and 63% on the staff forecast. Figure 2.1 presents the scatter

plot corresponding to this regression, comparing individual members’ actual inflation

forecast π̃j,t+1|t to their experience-based forecast πej,t+1|t. The scatter plot illustrates

the high R2 of 34.7% in this regression.

The estimate of φ remains very similar when we add member×forecast-horizon

fixed effects, i. e., FOMC member dummies interacted with dummies for the three

types of forecast in Panel A. As shown in column (ii), the coefficient estimate is now

0.40 (s.e. 0.12). This stability of the estimate implies that the results are not driven by

cohort fixed effects (which are absorbed by the member fixed effects in this regression).

Experience-based learners update their beliefs over time, and this time-variation in

expectations is not captured by cohort fixed effects. Instead, the estimate is identified

from variation in cross-sectional differences over time. The estimates in column (ii)
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Figure 2.1: Relationship Between FOMC Member Inflation Forecasts in the MPR and
their Experience-based Inflation Forecasts

also show that any alternative explanation based on fixed member characteristics (e.g.,

educational background) cannot explain the results.

The estimates so far largely reflect the time-series comovement of the average FOMC

member’s forecasts and experiences at a given meeting. Periods in which the average

FOMC member submits an inflation forecast above the Greenbook forecast also tend

to be periods in which the average FOMC member’s experience-based forecast is above

the Greenbook forecast. It is interesting that the time-series variation in these variables

lines up so closely, as evident also from Figure 2.1. To rule out that that some omitted

time-series factor is driving this co-movement, it is useful to focus on within-meeting

variation. For this reason, we include meeting×forecast-horizon fixed effects in the

estimations in columns (iii) and (iv). The magnitude of the φ estimate roughly doubles.

However, only a small amount of variation remains after including this extensive set

of fixed effects, and so the standard errors become fairly large. As a consequence, we

cannot reject that the estimates are unchanged compared to those in column (i) and
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(ii). Nevertheless, even though pinning down the precise magnitude of the effect is

difficult, it is reassuring that the results are qualitatively similar when we identify φ

only from within-meeting variation.

Finally, we note that the estimates in column (iv) also include member fixed effects,

on top of the meeting × forecast-horizon fixed effects. This estimation illustrates the

point made earlier that the heterogeneity in experience-based inflation forecasts is not

fully absorbed by time and member fixed effects. This dimension of identification

constitutes the key difference between our approach and methods that try to capture

experience effects through cohort fixed effects (which would be absorbed by the member

fixed effects in column (iv)).

We conclude that the estimates are consistent with the view that heterogeneity in

lifetime experiences of inflation results in significant heterogeneity in FOMC members’

beliefs about future inflation. In terms of magnitude, while the focus on within-meeting

variation in columns (iii) and (iv) is useful to achieve identification, independent of

any correlated omitted time-series variables, the relevant variation for the assessment

of experience effects and for counterfactual exercises is the total variation plotted in

Figure 2.1, including the large between-meeting component. For example, to predict

the policy stance of the committee, one may want to know by how much experience-

based learning could shift the average member’s inflation expectation away from the

Greenbook forecast.

The large economic effect of personal inflation histories on FOMC members’ stated

beliefs has a similar order of magnitude as the effect estimated in the MSC. Among

households surveyed in the MSC, Malmendier and Nagel (2016) find that that survey

respondents put a weight of 0.67 on their experience-based forecasts. Considering the

estimation uncertainty, it is difficult to make a precise comparison, but broadly, the

weight put on personal experiences when forming inflation expectations appears quite
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similar across FOMC members and the households surveyed in the MSC.

In terms of interpretation, one potential concern specific to the FOMC setting is

that strategic considerations might affect the forecasts stated in the MPR, including

the desire to appear consistent or to send a message. This concern is somewhat muted

because individual forecasts are actually not revealed in the MPR; they are made pub-

lic only with a 10-year lag. The focus of public attention is usually on the published

summary measures, especially the central tendency of the distribution of member fore-

casts. Also, as always with data on reported beliefs, it is important to keep in mind

that it may not be possible to cleanly separate beliefs from preferences. Nevertheless,

a direct effect of inflation experienced on beliefs about future inflation provides the

most straightforward explanation of these results.

2.3 Inflation Experiences and Voting

Our first finding that FOMC members put substantial weights on their personal infla-

tion experiences when forming inflation expectations raises the possibility that differ-

ences in experiences also give rise to differences in FOMC members’ monetary policy

stance. To find out, we examine how FOMC members’ voting records relate to their

inflation experiences. This analysis allows us to turn to actual monetary-policy deci-

sions, and also to considerably expand the sample period backwards in time, compared

to the relatively short sample period of MPR inflation expectations.

2.3.1 Policy Rule

In order to isolate the effects of inflation experiences on FOMC members’ monetary-

policy stance, we need a framework that allows us to map their beliefs about future

inflation into their monetary-policy views. Such a framework should also allow for

other sources of heterogeneity in policy preferences and incentives that could affect
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members’ policy views.

We model monetary policy makers as following, explicitly or implicitly, an interest-

rate rule that pins down their desired interest rates. We use the Taylor (1993) rule as

a starting point, and augment it to allow for heterogeneity.

The standard Taylor rule implies a nominal interest rate

i∗t = r + π∗ + λ(πt − π∗) + γ(yt − y∗) with λ > 0, γ > 0, (2.8)

where πt is the inflation rate, π∗ is the inflation target (assumed to be 2 percent by

Taylor), yt denotes output, y∗ is potential output, and r is the “natural” real interest

rate consistent with an output gap yt − y∗ of zero. Orphanides (2003) shows that

this rule explains well the evolution of the Federal Reserve’s policy rate (federal funds

rate) all the way back to the 1950s, with the exception of a few years in the early

1980s during the “Volcker disinflation.” This does not mean that the FOMC explicitly

followed such a rule; but its policy decisions are well described by this rule.

We augment the rule and introduce heterogeneity in two ways. First, we allow

FOMC members to differ, relative to other members and over time, in their preferences

for inflation versus output stabilization through different weights λ and γ, and in their

views about the targets π∗, y∗, and about the natural rate r. Second, we introduce a

subjective forward-looking element into the Taylor rule by allowing FOMC members to

evaluate the deviations from the inflation target partly in terms of their own subjective

inflation expectation.

With these sources of heterogeneity incorporated into the policy rule, FOMC mem-

ber j’s desired nominal interest rate at time t becomes

i∗j,t = rj,t+π
∗
j,t+λj,t(ωπ

e
j,t+1|t+(1−ω)πt−π∗j,t)+γj,t(yt−y∗j,t), where0 ≤ ω ≤ 1. (2.9)
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The parameter ω represents the weight that FOMC members put on their own subjec-

tive expectation πej,t+1|t rather than the objective information πt.

Note that one can go further and replace πt and yt with expectations of future

inflation and output to make the Taylor rule fully forward-looking as in Clarida, Gaĺı,

and Gertler (2000). However, this does not change our estimating equation in our

analysis of voting (and later our analysis of speeches) in a substantial way since we

focus on cross-sectional heterogeneity between FOMC members. It will matter when

we examine the time-series of the federal funds rate, and we will turn to a fully forward-

looking specification there (at the expense of a much shorter sample, due to limited

availability of forecast data).

We specify the heterogeneity of FOMC members in the following way:

λj,t = λ0 + (xj,t − µx)′λ1,

γj,t = γ0 + (xj,t − µx)′γ1,

π∗j,t = π∗ + (xj,t − µx)′α1,

y∗j,t = y∗ + (xj,t − µx)′α2,

rj,t = r + (xj,t − µx)′α3, (2.10)

where xj,t is a vector of characteristics of FOMC member j at time t with popula-

tion mean µx. After substituting these expressions into equation (2.9), we perform a

first-order Taylor approximation of ij,t as a function of (πej,t+1|t, x
′
j,t) around (πt, µ

′
x);

cf. Appendix C.2. We obtain

i∗j,t ≈ at + λ0ωπ
e
j,t+1|t + κ′xj,t + πtx

′
j,tλ1 + (yt − y∗)x′j,tγ1, (2.11)

where at is a time fixed effect and κ is a vector of constants. We use this version of the
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Taylor rule to derive individual desired interest rates and corresponding policy views,

whether expressed in voting decisions or speech tones.

2.3.2 Data on the FOMC Voting History

We study the FOMC voting history from March 1951 to January 2014. The starting

point is dictated by the Treasury-Federal Reserve Accord of 1951, with which the

Federal Reserve System regained its independence from the Department of Treasury

after World War II.

The data comes from several sources. For meetings from January 1966 to December

1996, we use the data from Chappell, McGregor, and Vermilyea (2005). For meetings

before January 1966 and after January 1997, we collect the data directly from FOMC

meeting statements. Each statement reports all votes, typically followed by explana-

tions of the dissenting opinions, if any. We exclude eight dissents that cannot easily

be classified as hawkish or dovish.11 Four FOMC members were both regional Fed

presidents and governors at different points during their career, and we account for

their varying roles in our empirical analysis.

We collect biographical information for each FOMC member from the Federal Re-

serve History Gateway12 and the Who’s Who database. The data includes the year

and place of birth, gender, the highest degree earned, the program they graduated

from, the role served in the Fed (board member or regional bank president), and the

political party of the U.S president who was in office at the time of the member’s first

appointment.

We use these data to construct the vector xj,t of FOMC members’ characteristics

that we allow to influence the desired interest rate at meeting time t in equation (2.11).

We include age to make sure the experience-based inflation forecast is not picking up

11Details on the construction of the voting data set are in Appendix C.3.
12http://www.federalreservehistory.org/People
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Table 2.2: Summary Statistics

The table shows statistics for all FOMC meetings from 3/8/1951 to 1/29/2014. Details of

the data construction are in Appendix C.3. The first column in Panel A reports the statistics

for all FOMC members; and columns 2 to 4 report separately those for members who dissent

towards monetary easing (Dovish Dissent), who consent (Consent), and who dissent towards

monetary tightening (Hawkish Dissent). Panel B reports the pairwise correlations between

voting record, experience-based inflation forecast, and member characteristics. We code Vote

as 1 for a hawkish dissent, as 0 for a consent, and as −1 for a dovish dissent; Fed Role as

1 for regional Fed presidents and 0 for board members; Party as 1 if the member was first

appointed while a Republican was U.S. president and 0 otherwise; and Same Party as 1 if

the party of the U.S. president at the time of the appointment is the same as the party of

the current president and 0 otherwise.

Panel A

All Dovish Dissent Consent Hawkish Dissent

#Meetings 659 109 659 178
#Votes 7,350 160 6,925 265

Avg. age 56.4 55.6 56.4 57.1
Avg. tenure (in days) 2,286 1,924 2,285 2,545
% w/ PhD 46.3 50.6 45.8 56.2
% studied Economics 67.5 70.6 67.0 78.9
% Male 93.9 83.1 93.9 100
% Regional Fed president 44.6 23.7 44.0 72.1
% Republicans 53.7 45.0 53.3 70.9
% Same party as current pres. 56.7 67.5 56.6 52.1

Expr.-based infl. fcst.: mean 3.4% 3.8% 3.4% 4.1%
std.dev. 1.8% 2.2% 1.8% 2.1%

Panel B: Pairwise Correlation

Vote Infl. fcst. Male Age Fed role Party Same pty.

Vote 1.00 - - - - - -
Exp.-based infl. fcst. 0.04 1.00 - - - - -
Male 0.08 -0.03 1.00 - - - -
Age 0.02 -0.07 0.06 1.00 - - -
Fed role: Fed pres. 0.12 -0.01 0.10 -0.09 1.00 - -
Party: Republican 0.07 0.15 -0.01 -0.02 0.10 1.00 -
Same Party -0.03 0.05 -0.05 -0.18 0.03 0.12 1.00
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an age effect, as well as other characteristics that the prior literature has found to be

important determinants of FOMC voting (Chappell, Havrilesky, and McGregor Chap-

pell, Havrilesky, and McGregor (1993), Chappell, Havrilesky, and McGregor (1995);

Chappell and McGregor (2000)): gender, indicators for being a Regional Federal Re-

serve Bank President, for being appointed during the time a Republican U.S. president

was in office, and for the U.S. president at the time of the first appointment being in

the same party as the current president. For reasons we discuss below, we also include

an interaction between the indicator for Regional Federal Reserve Bank President and

an indicator for meeting times after November 1993.13

Table 2.2 presents the summary statistics. Our data covers 659 FOMC meetings

with 7,350 votes. Overall, we have 160 dovish and 265 hawkish dissenting votes.

For the interpretation of the estimation results below, it is useful to keep in mind

that the share of dovish and hawkish dissents is quite small, typically somewhere

between 2.2% and 3.6%. These averages hide, however, a large degree of heterogeneity

by role served and over time. Figure 2.2 shows the number of dissents in each FOMC

meeting separately for Federal Reserve Board members (Panel a) and Regional Federal

Reserve Presidents (Panel b). We can see that governors are much more likely to cast

a dovish than a hawkish dissenting vote. The opposite holds for regional presidents,

with a much higher fraction of hawkish dissents, as also indicated in Panel A of Table

2.2. Figure 2.2 also reveals a significant shift in voting behavior in November 1993,

indicated by the red line. At that time, the Federal Reserve responded to pressure

from Congress for more transparency and accountability, and agreed to publish lightly

edited transcripts of the FOMC meetings with a five-year lag (Lindsey (2003)). Before

1993, the Federal Reserve published individual votes and summary minutes, but not

13In addition, we have checked the robustness to including further control variables and their in-
teractions, such as tenure (as a possible control for expertise, cf. Hansen and McMahon (2016a)) and
educational background. None of our results are affected if we include tenure, tenure squared, and
controls for the school attended, the highest degree, and the field studied.
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Figure 2.2: Dissents in FOMC Meetings

Notes. The red vertical line is the time-stamp for November 1993, after which the FOMC
agreed to make public its lightly-edited transcripts with a five-year lag.
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the full transcripts. Meade and Stasavage (2008) find that this change reduced the

willingness of FOMC members to verbally express dissents in the meetings. They

also find a decrease in the propensity of Federal Reserve board members to dissent in

formal voting, but the effect is not statistically significant in their sample until 1997.

Figure 2.2, however, shows a fairly clear pattern. Dissents among Federal Reserve

Board members became almost non-existent after the increase in transparency in 1993

(only 6 subsequent dissents). In contrast, dissents among regional Federal Reserve

presidents remained quite common (71 subsequent dissents). Thus, the thresholds for

FOMC members to voice dissent seems to have changed in 1993, and differently so for

governors and presidents. This is an important feature of the data that we will need

to accommodate in our econometric specification.

Returning to Panel A of Table 2.2, we see that hawkish dissenters are older, have

a longer tenure on the FOMC, are more likely to have a PhD, to have studied eco-

nomics, to be male, and to be appointed when the U.S. president in office was from a

different party than the current U.S. president. (All differences other than the doctoral

degree and field of study are statistically significant.) At the bottom of Panel A, we

show the mean and standard deviation of FOMC members’ experience-based forecasts

πej,t+1|t, calculated as described in Section 2.2.1. The average experience-based inflation

forecasts for dovish dissenters is 3.8% while the average for hawkish dissenters is 4.1%,

though the difference is not significant, and the average among consenters is even lower

(3.4%).

Panel B shows the pairwise correlations between the key variables. We note again

the positive relationship between the role of Fed president and votes leaning in a

hawkish direction, and the same for being male, older, and Republican. Experience-

based forecasts and hawkish voting are also positively correlated, and the correlation

is significant. Our empirical analysis will test whether this relationship persists when
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analyzing the between-member variation in experiences after controlling for all other

characteristics and their interaction effects, as implied by the policy rule (2.11).

In order to illustrate the identifying variation in our estimations, we plot two mea-

sures of the cross-sectional differences in experience-based inflation forecasts. Panel

(a) of Figure 2.3 shows the learning-from-experience forecasts πej,t+1|t of the youngest

and oldest FOMC members at each meeting, both net of the forecast of the median-

age member. The differences range from 0 to 1.5 percentage points, with the biggest

differences occurring during the high-inflation years of the late 1970s and early 1980s.

At that time, younger members’ inflation experiences are dominated by the high and

persistent inflation of the 1970s, more so than those of older members, and young

members have the highest experience-based forecasts. From the mid-1980s onwards,

younger members adapted more quickly to the now low rates of inflation and the rela-

tively low persistence, and the lines cross. The perception of a low inflation persistence

among younger members also contributes to the spike around 2010, when young mem-

bers’ learning-from-experience forecast is temporarily much higher than the median:

When faced with the recession-driven low inflation rates at the time, young members

expected a faster reversion of inflation rates up (towards the mean of slightly above

2%) than older members.

As a second measure of the heterogeneity in experience-based inflation forecasts,

Panel (b) plots the time-series of the within-meeting standard deviation of πej,t+1|t.

There is a lot of variation in this dispersion measure over time. A typical value would

be around 0.1 percentage points (the full-sample within-meeting s.d. is 0.10 pp). It

is useful to keep these magnitudes in mind for the interpretation of our empirical

results below. Overall, the within-meeting dispersion of the experience-based forecasts

is higher than in our earlier 1992-2004 sample of FOMC member inflation expectations.
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Figure 2.3: Dispersion of Experience-based Inflation Forecasts in Each FOMC Meeting
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2.3.3 Econometric Specification

At each FOMC meeting, all current voting members cast a vote to either support or

dissent from the proposal of the Fed chairperson. We classify the vote Vj,t of member

j in the meeting at time t as falling into one of three categories, Vj,t ∈ {−1, 0, 1}, for

dovish dissent, no dissent, and hawkish dissent, respectively. We express the probability

of being in one of these three categories as a function of the desired interest rate from

equation (2.11) via the following ordered probit model: For k ∈ {−1, 0},

P (Vj,t ≤ k|πej,t+1|t, xj,t, πt, yt)

= Φ[δk,j,t − at − λ0ωπ
e
j,t+1|t − κ′xj,t − πtx′j,tλ1 − (yt − y∗)x′j,tγ1], (2.12)

where Φ(.) denotes the standard normal cumulative distribution. We normalize a1 = 0,

and we suitably scale all variables so that the latent residual has unit standard devi-

ation.14 The main variable of interest in estimating equation (2.12) is the experience-

based forecast πej,t+1|t.

The model in equation (2.12) generalizes the ordered-probit model because we allow

the dissent thresholds δk,j,t to vary with the characteristics of the FOMC member and

over time, especially across the transparency regime change in 1993. The most impor-

tant concern motivating this generalization is that regional Fed presidents may have

different dissent thresholds than Federal Reserve Board governors. As we illustrated

in Figure 2.2, this concern is particularly relevant since the November 1993 change

in transparency. To accommodate the possibility of threshold-heterogeneity among

FOMC members, we let the thresholds in equation (2.12) depend on the FOMC mem-

ber characteristics xj,t, including an interaction between indicators for the role of Fed

14These normalizations are of no consequence for the estimated partial effects, and so we do not
explicitly write them out.
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President and for a meeting time after November 1993:

δk,j,t = δ0,k + δ′1,kxj,t for k ∈ {−1, 0}.

Note that coefficients of δ0,k and δ1,k are threshold-specific. With this threshold specifi-

cation, we obtain a version of the generalized ordered probit model in Williams (2006).

We estimate the model with maximum likelihood. As a robustness check, we also

explore conventional fixed-threshold ordered probit specifications in Section 2.3.6.

2.3.4 Hyperinflation Experiences

One FOMC member in our data set, Henry Wallich, personally experienced hyperinfla-

tion.15 Wallich was born in Germany in 1914 in a family of bankers, and lived through

Germany’s hyperinflation from 1921 to 1924. In the 1930s, he emigrated to the United

States. He was Federal Reserve governor from 1974 to 1986. Mr. Wallich dissented

27 times during his tenure on the Federal Reserve Board, the highest number of dis-

sents among all FOMC members in Federal Reserve history, according to Thornton

and Wheelock (2014).16

The presence of Wallich in our sample poses the question of how to include hy-

perinflation experiences into a parametric belief-updating scheme that is designed for

(and works well in) a regime in which inflation rates are at most a few percent per

quarter. How can we adjust it to properly describe expectation formation from data

15Henry Wallich is the only FOMC member with personal hyperinflation experiences that we could
identify. H. Robert Heller, another German-born Federal Reserve Board member in the 1980s was
born in 1940, after the hyperinflation. Stanley Fischer, who was born in Zambia in 1943, spent time
in Israel, but not during its hyperinflation. He is not included in our sample because he started his
tenure as vice chairman of the Federal Reserve Board in June 2014 while our sample ends in January
2014.

16In our sample, we identify only 26 dissents by Wallich, 24 of which were hawkish. The difference
to Thornton and Wheelock’s classification could be Wallich’s vote on the 2/6/1979. In this meeting he
dissented regarding the adopted growth rates of the monetary aggregates (M1-M3), but not regarding
the open market transactions that were authorized. In our sample, this vote is not counted as dissent.
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that include inflation rates around one million percent per quarter? Note that early

life experiences are heavily downweighted in the calculation of the experience-based

forecast, and it therefore makes virtually no difference whether we use inflation rates

of the U.S. or another country, in which an individual might have grown up as a

teenager, in low-inflation environments (with, say, single digit inflation rates). This

is different with hyperinflation experiences. For example, if we naively plug German

inflation rates from the 1920s into Wallich’s experienced inflation history, the outliers

are so big that three or four quarterly observations in 1923 would completely deter-

mine the autoregressive coefficients for the rest of Wallich’s life. The post-1923 history

would be rendered irrelevant, which is unlikely to be a plausible representation of how

hyperinflation experiences influence inflation expectations.

We implement two approaches. First, we take a non-parametric approach and aug-

ment the inflation experience-based forecast (using U.S. data) with an indicator variable

that we label “Wallich Dummy.” With the caveat that this variable captures the voting

behavior of just one individual member, the corresponding coefficient estimate provides

at least tentative evidence on the effects of a “hyperinflation” treatment, i. e., how the

extreme experience of hyperinflation may influence monetary policy views. Second, we

also explore experience-based expectations formation with a mixed inflation process

that includes a hyperinflation regime. This approach allows us to integrate hyperin-

flation experiences within one parametric framework with qualitatively similar results,

but at the cost of additional complexity. We show the corresponding estimation results

in Appendix C.4.

2.3.5 Baseline Results

Table 2.3 presents the estimates of our baseline ordered probit specification (2.12) using

data from 1951 to 2014. Our focus is on the coefficient estimate, and the correspond-
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ing marginal effect, of each member’s experience-based inflation forecast πej,t+1|t. The

chairman’s vote is excluded from the sample because he never dissented during our

sample period.

Column (i) of Table 2.3 reports estimates for a specification where the dissent

thresholds can vary with indicators for the type of FOMC member (governor versus

regional president) and with an indicator for the post-November 1993 period, as well

as their interaction. This allows the model to accommodate the dramatic shift towards

fewer dissents among Federal Reserve Board members after November 1993 that we

saw in Figure 2.2. The coefficient on the experience-based inflation forecast of 216.6

(s.e. 66.1) is significantly different from zero at conventional significance levels. The

magnitude of the effect on the probability of dissent can be inferred from the average

partial effects (APE) reported in the middle block of the table. An increase of 0.1

percentage points (pp) in the experience-based forecasts of an FOMC member—which,

according to Figure ??, is a typical within-meeting standard deviation of FOMC mem-

bers experience-based inflation forecasts during much of the sample—translates into

an increase in the probability of a hawkish dissent vote of 1.21 pp, which is a little less

than a third of the unconditional probability of hawkish dissent (265/6707 ≈ 4.0%).

The probability of a dovish dissent drops by 0.76 pp, which is approximately a third of

the unconditional probability of dovish dissent (160/6707 ≈ 2.4%). Thus, the estimates

imply an economically large impact of inflation experiences on voting behavior.

The APE of the Wallich dummy indicates that the “hyperinflation treatment” is

associated with a very large reduction in the probability of dovish dissent, 5 pp, and

increase in the probability of hawkish dissent, 8 pp. In other words, the effects associ-

ated with the Wallich dummy are roughly of the same magnitude as those associated

with a 1.0 pp increase in an FOMC member’s experience-based inflation forecast.

All results are virtually identical in column (ii) where we allow the dissent thresholds
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to also depend on the FOMC members’ individual characteristics (age, gender, party

of president at appointment indicator, and same party as current president indicator).

2.3.6 Robustness Checks

One potential concern with the estimates in columns (i) and (ii) in Table 2.3 is that

the inclusion of meeting fixed effects in the ordered probit model might introduce an

incidental parameters problem.17 To address this concern, we estimate an alternative

specification in which we omit the meeting fixed effects. Instead, we specify that

the probabilities of dissent are driven directly by cross-sectional differences (against

the incumbent chairperson) in inflation experiences and other personal characteristics.

That is, we forgo the non-parametric controls for the time-specific determinants of

voting behavior, but still remove some of their effect to the extent that it is captured

by the time-varying values associated with the chairperson.

The results are in columns (iii) and (iv) of Table 2.3. The coefficient estimates

of the experience-effect forecast variable and the Wallich dummy decrease, but these

changes largely reflect the altered econometric specification. As the APE calculations

reveal, the implied economic magnitudes remain similar to those in columns (i) and

(ii). Both sets of estimates also remain statistically significant. We conclude that our

findings are not generated by estimator inconsistencies due to the incidental parameter

problem.

As a second robustness check, we test whether we still find experience effects if we

employ a simple ordered probit model with fixed dissent thresholds and restrict the

analysis to subsamples in which the fixed-threshold assumption is more likely to hold,

i. e., prior to the decrease in dissents in November 1993 and for the votes of regional

17As T increases, the number of meeting fixed effects grows at the same rate as T . As a consequence,
the probit estimator is inconsistent and standard formulas for the asymptotic distribution of the
estimator may not provide a good approximation of its finite-sample properties.
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Table 2.3: Experience-based Inflation Forecasts and FOMC Voting Behavior

The sample period is March 8, 1951 to January 29, 2014. The experience-based inflation forecast for

each member at each meeting is calculated by recursively estimating a mixed seasonal AR(1) model

using the member’s lifetime history of inflation, as described in Section 2.2.1 (with θ = 3.044). The

Wallich Dummy equals one if the member is Henry Wallich; 0 otherwise. The average partial effects

(APE) reported at the bottom of the table are calculated by taking the partial derivative of the

probability of a given voting category with respect to the experience-based inflation forecast at each

sample observation and then averaging these partial derivatives across the whole sample. Column

(i) and (iii) report the results assuming that the thresholds depend on a) whether the member is

a board member or regional president, and b) whether the meeting occurs after Nov. 1993 and the

interaction of a) and b). Column (ii) and (iv) report the results assuming that the thresholds depends,

in addition, on age, gender, party of president at appointment indicator, and same party as current

president indicator. In parentheses we report the standard error based on two-way clustering by both

member and meeting.

Ordered Probit Ordered Probit
“de-chaired”

(i) (ii) (iii) (iv)

Experienced-Based Forecast 216.6 214.4 97.2 98.5
(66.1) (67.8) (39.5) (39.0)

Wallich Dummy 1.43 1.39 1.05 1.05
(0.36) (0.36) (0.17) (0.17)

Meeting FE Yes Yes No No
Thresholds Role × I>93 All Role × I>93 All

Observations 6,707 6,707 6,707 6,707
Pseudo R2 39.0% 39.1% 9.7% 10.0%

APE of Experienced-Based Forecast:
Dovish Dissent -7.6 -7.6 -5.1 -5.1
Consent -4.4 -4.3 -2.5 -2.5
Hawkish Dissent 12.1 11.9 7.6 7.7

APE of Wallich Dummy:
Dovish Dissent -0.050 -0.050 -0.055 -0.055
Consent -0.029 -0.028 -0.027 -0.027
Hawkish Dissent 0.080 0.077 0.082 0.082

73



Table 2.4: Experience-based Inflation Forecasts and FOMC Voting Behavior: Different
Sample Periods with Fixed Ordered Probit Thresholds

The experience-based inflation forecast for each member at each meeting is calculated as in Table 2.3.

The Wallich Dummy equals one if the member is Henry Wallich; 0 otherwise. The average partial

effects (APE) reported at the bottom of the table are calculated by taking the partial derivative of the

probability of a given voting category with respect to the experience-based inflation forecast at each

sample observation and then averaging these partial derivatives across the whole sample. Column

(i) reports the results with all FOMC members prior to November 1993. Column (ii) reports the

results with regional Fed presidents only prior to November 1993. Column (iii) reports the results

with regional Fed presidents only over the entire sample. Column (iv) reports the results with all

FOMC members prior to November 1993 and regional Fed presidents only afterwards. In parentheses

we report the standard error based on two-way clustering by both member and meeting.

All Regional Regional Mixed
Members Pres. Only Pres. Only Members
pre-1993 Full Sample pre-1993 Full Sample

(i) (ii) (iii) (iv)

Expr.-Based Fcst. 230.0 379.2 495.5 230.9
(80.0) (103.9) (155.9) (68.9)

Wallich Dummy 1.49 - - 1.51
(0.37) - - (0.37)

Meeting FE Yes Yes Yes Yes

Observations 5,123 3,275 2,467 5,931
Pseudo R2 38.0% 45.3% 49.2% 38.3%

APE of Expr.-Based Fcst.:
Dovish Dissent -9.5 - 6.4 -8.0 -9.0
Consent -3.5 -19.5 -21.0 -5.2
Hawkish Dissent 13.0 26.0 29.0 14.2

APE of Wallich Dummy:
Dovish Dissent -0.062 - - -0.059
Consent -0.022 - - -0.034
Hawkish Dissent 0.084 - - 0.093
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presidents.

Table 2.4 presents the results of this exercise. The specification in column (i) em-

ploys the voting records of all members from November 1993 onwards. The estimated

results turn out to be very close to our benchmark case with characteristics-dependent

dissent thresholds. We estimate slightly larger average partial effects of −9.5 pp for

dovish dissents and +13.0 pp for hawkish dissents, again measured as the response to

an increase of 1.0 pp in FOMC member’s experience-based forecasts. The APE of the

Wallich dummy also become slightly larger in both directions in this subsample.

In column (ii) we restrict the sample to regional Fed presidents, but use the full

sample period. This subsample exploits the fact that the November 1993 transparency

change did not have much effect on the voting behavior of regional presidents, as we

showed in Figure 2.2. We find that the estimated effects are even stronger.18 In

this subsample, the proper comparison for the APEs is the unconditional probability

of dovish or hawkish dissent by Federal Reserve presidents. The estimated average

partial effects (APE) of changes in experience-based inflation forecast on the voting

behavior of regional presidents suggests that an increase of 0.1% in the experience-

based forecast of regional Fed presidents translates into an increase in the probability

of a hawkish dissent by roughly 2.6 pp, which is a bit less than one half of the uncondi-

tional probability of a hawkish dissent by regional Fed presidents (191/3275 ≈ 5.8%).

Meanwhile, the probability of a dovish dissent drops by 0.6 pp, which is roughly half

of the unconditional probability of dovish dissent by regional Fed presidents (38/3275

≈ 1.2%). Comparing these numbers to our baseline case with all FOMC members, it

appears that past inflation experience has a stronger effect on the votes of regional Fed

presidents.

In column (iii), we further restrict the sample of regional presidents to include only

18Since Henry Wallich is not a regional Fed president, we cannot estimate the Wallich dummy
coefficient in this case.
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the pre-November 1993 periods. The estimated APEs remain very similar.

Finally, in column (iv), we analyze the union of the column (i) and column (ii) sub-

samples, i. e., all members pre-November 1993 and only Fed presidents post-November

1993. The estimated effects are very similar to those in column (i), as well as to the

benchmark case.

Appendix C.5 contains an additional set of results with fixed thresholds where we

use the full sample of all members and meetings. These results, shown in Table C.2,

are again very similar. This simplified specification also allows a straightforward inter-

pretation of the effects of the member characteristics, xj,t. We report the coefficients

associated with these variables in Table C.3.

As a last robustness check, we employ variations in the gain parameter θ of the

learning algorithm. So far we fixed θ at the point estimate of 3.044 from Malmendier

and Nagel (2016). Relying on a prior estimate has the advantage that we credibly

tied our hands, rather than picking θ to fit the voting behavior of FOMC members.

We now check how the fit and the estimated APE change if we vary θ. That is, we

reestimate the learning rule for each FOMC member over a range of plausible values of

θ. We then rerun the estimation from column (i) of Table 2.3 with the corresponding

alternative experience-based forecasts of inflation.

For our first alternative value, we reestimate the gain parameter using MSC data

based on the same procedure as in Malmendier and Nagel (2016), but with the sample

restricted to college graduates. This sub-sample is more comparable to the FOMC

members in terms of educational background. We estimate θ = 3.334 (with s.e. of

0.347). That is, the θ estimate for college grads is less than one standard error from

the full-sample estimate. As column (i) of Table 2.5 shows, employing θ = 3.334 rather

than θ = 3.044 does not alter our findings. The results remain very similar to our

baseline estimates in column (i) of Table 2.3.
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Table 2.5: Experience-based Inflation Forecast and FOMC Voting Behavior: Varying
Weights on Past Experience

The sample period is from March 8, 1951 to January 29, 2014. The ordered probit specification is

the same as in column (i) of Table 2.3, but here with different values of the gain parameter θ in the

calculation of the experience-based inflation forecast. The Wallich Dummy equals one if the member

is Henry Wallich; 0 otherwise. The average partial effects (APE) reported at the bottom of the table

are calculated by taking the partial derivative of the probability of a given voting category with respect

to the experience-based inflation forecast at each sample observation and then averaging these partial

derivatives across the whole sample. We assume that the ordered probit thresholds depend on a)

whether the member is a board member or regional president, and b) whether the meeting occurs

after Nov. 1993 and the interaction of a) and b). In parentheses we report the standard error based

on two-way clustering by both member and meeting.

θ = 3.334 θ = 2 θ = 2.5 θ = 3.5 θ = 4
(i) (ii) (iii) (iv) (v)

Experience-Based Forecast 183.8 218.2 256.7 165.4 117.6
(61.2) (68.4) (74.3) (58.0) (48.5)

Wallich Dummy 1.42 1.45 1.46 1.41 1.39
(0.36) (0.36) (0.36) (0.36) (0.36)

Meeting FE Yes Yes Yes Yes Yes

Observations 6,707 6,707 6,707 6,707 6,707
Pseudo R2 38.9% 38.9% 39.1% 38.8% 38.6%

APE of Experienced-Based Forecast
Dovish Dissent -6.5 -7.7 -9.1 -5.9 -4.2
Consent -3.8 -4.5 -5.2 -3.4 -2.4
Hawkish Dissent 10.3 12.2 14.3 9.2 6.6

APE of Wallich Dummy
Dovish Dissent -0.050 -0.051 -0.052 -0.058 -0.050
Consent -0.029 -0.030 -0.030 -0.029 -0.029
Hawkish Dissent 0.079 0.081 0.081 0.079 0.078
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Second, we employ a range of θ values between θ = 2 to θ = 4 (in steps of 0.5).

As shown in columns (ii) to (v) of Table 2.5, all results are qualitatively similar to

our baseline estimates as in column (i) of Table 2.3. We conclude that our results are

robust to variations over a broad range of plausible θ values.

In summary, we find that lifetime inflation experiences have an economically large

and robust effect on FOMC members’ voting behavior. When an FOMC members’

lifetime experience suggests higher inflation going forward than the experience of their

peers, they are more likely to dissent in a hawkish direction. The opposite holds for

inflation experiences suggesting lower future inflation; they induce dovish dissents.

2.4 Inflation Experiences and the Tone of FOMC Members’

Speeches

The seeming reluctance of governors to dissent, especially since November 1993, indi-

cates that FOMC members may not always fully reveal their disagreement in their vot-

ing behavior. They might voice their monetary policy views in discussions or speeches,

but ultimately refrain from casting a dissenting vote.

In this section, we test whether FOMC members’ attitude towards monetary policy

can be detected in the language, or tone, they use in their speeches. To categorize lan-

guage as hawkish or dovish, we employ an automated search-and-count approach that

closely builds on the analysis of Apel and Grimaldi (2014). Apel and Grimaldi (2014)

examine the Swedish Riksbank minutes and test whether the tone of an Executive

Board member conveys a policy inclination toward loosening or tightening monetary

policy. We apply their classification of tone to the speeches of FOMC members, with

some adjustments to the different context and sample, as described in detail below.

Our data consists of all 6, 353 “Speeches and Statements” available from the Federal
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Figure 2.4: Number of FOMC Member Speeches Over Time

Reserve Archival System for Economic Research (FRASER), and additional 658 hand-

collected speeches from the websites of the regional FRBs. To be consistent with the

analysis of votes in the previous section, we focus on voting members and remove

speeches delivered by the (rotating) non-voting regional Fed presidents. We also drop

pdf files that could not be properly converted into text and for which the date of the

speech cannot be determined. The final sample consists of 4, 294 speeches for 86 FOMC

members from the meeting on March 8th, 1951, to June 2014, with an average of 50

speeches per member. A quarter of the members have 15 or fewer speeches in the

sample, while long-serving FOMC members, especially chairmen, tend to have more

than 100 speeches. For example, our sample includes 482 speeches by Alan Greenspan

and 264 by Ben Bernanke. Appendix C.6 details the construction of the data set.

Figure 2.4 shows the time series of the speeches in our sample. The total number

increases over time. From 1965 onwards, the average number of speeches in a quarter
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is above 17, i.e., more than one speech per FOMC member per quarter. The share of

speeches delivered by the chair increases only slightly over time and lies around 30%.

To classify the tone of these speeches, we follow Apel and Grimaldi (2014) and

generate two-word combinations from two sets of words: nouns describing the goals of

a central bank, and adjectives describing the attitudes of a central banker towards a

goal. The list of goals in Apel and Grimaldi (2014) consists of “inflation,” “cyclical

position,” “growth,” “price,” “wages,” “oil price,” and “development.” In addition,

we show estimation results after adapting the list to the FOMC context by adding

“(un-)employment.” Apel and Grimaldi had omitted this term because the Swedish

Riksbank has price stability as a single goal, while the U.S. Federal Reserve System

has a dual mandate. The list of attitudes consists of “decrease,” “slow,” “weak,” and

“low” on the dovish side, and “increase,” “fast,” “strong,” and “high” for the hawkish

counterpart. For unemployment, we swap the hawkish and the dovish adjectives.

For each mention of a goal, we check whether words from the attitudes list occur

within a range (n-gram) of two words before and after the goal. While Apel and

Grimaldi (2014) require the attitude word to appear directly before the goal, such

two-word combinations do not generate sufficient variation between the speeches of

FOMC members, possibly because the language is less formal and standardized than

the Swedish central bank minutes, and the speeches of the FOMC members address

a wider audience. We choose a range of two words before and after the goal (i.e.,

five-grams) in order to accommodate two-word goals such as “oil price,” for which the

attitude word is allowed to appear either one or two words before “oil” or one word

after “price”, as well as to accommodate different relative positions of the classification

words. For example, an FOMC member might refer to “increasing prices” or mention

that “prices are increasing.” In addition, by centering the n-grams around the noun

of interest, we avoid double-counting: Every word of the speech can occur in up to n
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n-grams but is at most once in the center of an n-gram.

We drop n-grams containing more than one “goal” or “attitude” with different con-

notations. For example, the sequence “... low growth and unemployment ...” generates

a five-gram centered around the goal ‘growth’ combined with the attitude ‘low;’ but the

same five-gram also features another goal, unemployment. Since these two goals gener-

ate a dovish combination (“low growth”) as well a hawkish one (“low unemployment”),

we drop the five-gram from our analysis.

As in Apel and Grimaldi (2014), we then collapse the number of hawkish and dovish

combinations in each speech into a single index:

Net Index =
Hawkish

Hawkish+Dovish
− Dovish

Hawkish+Dovish
. (2.13)

The index ranges from −1 to +1, where −1 indicates that all of the tagged n-grams

are dovish, and +1 that all tagged n-grams are hawkish. Hence, larger values of Net

Index indicate greater hawkishness. If no hawkish or dovish n-grams can be found in

the text, Net Index is set to zero.

Table 2.6 provides some summary statistics of Net Index and its components.

On average, a speech contains 3,378 five-grams, but there is a large variation across

speeches. A mean of 1.50 five-grams are tagged as hawkish, and 0.99 as dovish, when

we use the original set of goals defined in Apel and Grimaldi (2014). By adding “em-

ployment/unemployment” to the goal list, we add an additional 0.29 hawkish and 0.22

dovish tags per speech. The average Net Index across speeches is about 0.10, irrespec-

tive of the specification of the goal list. The positive value indicates that the language

used in our sample of speeches is slightly tilted towards a more hawkish wording, albeit

with a large standard deviation of 0.55.

To develop our estimating equation, we assume that cross-sectional differences in
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Table 2.6: Tone of Speeches: Summary Statistics

The sample includes voting FOMC members’ speeches from March 1951 to June 2014. Net In-

dex is an index of hawkishness calculated as described in equation (2.13). Hawkish/Dovish Tags is

the average count of hawkish and dovish word combinations in a speech. Hawkish/Dovish Tags for

employment counts the additional hawkish/dovish word combination per speech for the goal employ-

ment/unemployment.

N Mean Std. Dev. Min Median Max

5-grams per speech 4,294 3,378 2,098 10 3,058 23,891

Net Index excl. (un)empl. 4,294 0.10 0.55 -1 0 1
Net Index incl. (un)empl. 4,294 0.10 0.55 -1 0 1

Hawkish Tags excl. (un)empl. 4,294 1.50 3.05 0 0 68
Hawkish Tags for (un)empl. 4,294 0.29 0.85 0 0 16

Dovish Tags excl. (un)empl. 4,294 0.99 2.08 0 0 33
Dovish Tags for (un)empl. 4,294 0.22 0.72 0 0 12

Net Index between FOMC members map approximately linearly into differences in

their desired interest rate according to equation (2.11). We obtain

Net Indexj,t = αt + β1π
e
j,t+1|t + β′2xj,t + πtx

′
j,tβ3 + (yt − y∗)x′j,tβ4, (2.14)

where the coefficients are multiples (by the same factor) of the corresponding coeffi-

cients in equation (2.11). As before in the voting analysis, we relate the outcome during

quarter t to πej,t+1|t, which is constructed based on the inflation history leading up to

the end of quarter t− 1. We also continue to focus on cross-sectional heterogeneity by

employing time-fixed effects, αt, to absorb common time-variation in the use of hawkish

and dovish expressions.19 The vector of member characteristics xj,t is the same as in

the voting analysis (age, gender, party of president at appointment indicator, and same

party as current president indicator), and it can influence the level of hawkishness as

19For example, in times of high unemployment, all FOMC members might be likely to employ the
goal-attitude combination “high unemployment” in their five-grams.
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well as the extent to which inflation or output gap increase or decrease hawkishness.

In addition, we also account for the fact that, differently from voting behavior,

speech tone is likely subject to additional sources of heterogeneity. ‘Speech style’ and

the choice of words can depend on other personal characteristics of the speaker, in-

cluding education and prior professional experience. This heterogeneity adds noise

and it could introduce correlated omitted variables. We use two approaches to account

for these additional personal characteristics. First, we augment equation (2.14) with

dummy variables that control for education and prior professional experience.20 We

generate indicator variables for having earned a PhD, a JD, an MBA, or a Master’s

degree as the highest degree. We also collect information on FOMC members’ prior

professional experience from the Fed’s History Gateway and from the personal vitae of

FOMC members. Using those sources, we generate indicator variables for prior experi-

ence in the financial industry, in non-finance industries, in other government organiza-

tions and agencies besides the Fed, and as an academic (i. e., having worked full-time

in an academic department at some point prior to becoming an FOMC member). As

a second approach to addressing heterogeneity in speech style, we absorb any time-

invariant personal characteristics with member fixed effects. Under this approach, the

coefficient of interest, β1, is identified from within-member variation of speech tone as

their inflation experience changes. The inclusion of member fixed effects is, on the one

hand, most comprehensive in accounting for unobserved person-specific determinants

of language use. On the other hand, it removes a substantial amount of variation com-

ing from the differences in average experience-based inflation forecasts between FOMC

members.

Table 2.7 presents the results. In columns (i) to (iii), we use the original NetIndex

with the same list of goals as in Apel and Grimaldi (2014). In columns (iv) to (vi), we

20Details on the construction of both variables are at the end of Appendix C.6, including summary
statistics in Appendix-Table C.4.
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Table 2.7: Experience-based Inflation Forecasts and FOMC Members’ Tone of Speeches

OLS regressions with the NetIndex measure of speech hawkishness from equation (2.14) as the depen-
dent variable. The experience-based inflation forecast for each member at each meeting is calculated
as in Table 2.3. All estimations include the same controls and interactions with recent CPI inflation
and unemployment as in Table 2.3. In addition, we include the controls for education and professional
background detailed in the text, except for columns (3) and (6) where we instead employ member fixed
effects. In columns (2) and (5), we drop speeches of chairmen. Standard errors, shown in parentheses,
are calculated allowing for two-way clustering by FOMC member and year-quarter.

Net Index Net Index
excluding (un)empl. including (un)empl.

(i) (ii) (iii) (iv) (v) (vi)

Experience-Based Fcst. 32.88 39.15 43.28 29.97 38.97 47.07
(14.52) (18.50) (16.32) (13.70) (17.74) (14.68)

Wallich Dummy 0.10 0.17 - 0.12 0.16 -
(0.08) (0.10) - (0.07) (0.07) -

Member FE No No Yes No No Yes
Year-quarter FE Yes Yes Yes Yes Yes Yes
Chair’s speeches dropped No Yes No No Yes No
Industry expr. controls Yes Yes No Yes Yes No
Degree controls Yes Yes No Yes Yes No

Adjusted R2 4.4% 4.7% 5.7% 3.9% 4.3% 5.1%
Observations 4294 3295 4294 4294 3295 4294

expand the index and add (un-)employment to the list of goals.

We estimate a significant effect of differences in inflation experiences on speech

tone. In the baseline specification in column (i), the coefficient of 32.88 (s.e. 14.52) is

significantly different from zero at the 5% level. An increase of 0.1 percentage points in

the experience-based forecasts of an FOMC member—which is a typical within-meeting

standard deviation—is associated with an increase of about 0.03 in the NetIndex, or

about 1/16th of a standard deviation of NetIndex. This magnitude seems plausible

for two reasons. First, the experience effects should be relatively subtle given the small

age heterogeneity of FOMC members. Second, there is likely substantial measurement

noise in NetIndex. This is apparent from the fact that the R2 is only 4.4% despite the
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inclusion of time fixed effects, even though one would presumably expect substantial

common time-variation in the true hawkishness of speeches.

The point estimate for the Wallich dummy suggests that hyperinflation experience

predicts a 0.10 higher NetIndex than that of other Fed governors with similar charac-

teristics at the time; but given the standard error (0.08) it is not possible to rule out

a zero effect at conventional significance levels in first specification. Nevertheless, it is

noteworthy that the ratio of the point estimates for the experience-based forecasts and

the Wallich dummy (about 200-300 here depending on the specification) is of the same

order of magnitude as in the voting analysis in Table 2.3 (about 100-150).

In column (ii) we test the extent to which our estimation results are affected by

the large number of speeches given by the chairperson. Speeches of the chair might

systematically differ from the speeches of other FOMC member for at least two reasons.

First, chairs might use a more balanced language for political reasons, especially given

that they tend to attract more attention. Second, chairs might use the speeches to

provide signals to financial markets, whereas the other FOMC member might primarily

use the speeches to communicate their views between each other. When we drop the

chair’s speeches, we obtain a slightly larger coefficient of 39.15 (s.e. 18.50) which is

also significant at the 5% level. In column (iii), we include both member fixed effects

and speeches of the chair. The outcome remains almost unchanged.

In columns (iv) through (vi), we re-estimate the specifications from columns (i)

through (iii) for the version of Net Index that includes (un-)employment as a goal.

The results are very similar.

We conclude that the personal lifetime inflation experiences of FOMC members

leave a significant imprint not only on their dissenting votes and the strong policy

leanings expressed with those, but also on the more subtle expressions of attitudes

towards monetary policy voiced in speeches.
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2.5 Inflation Experiences and the Federal Funds Rate Target

Our analyses of cross-sectional differences in stated inflation expectations, voting deci-

sions, and the tone of speeches all indicate that FOMC members rely, to a significant

extent, on their own inflation experiences. We now test whether this partial reliance on

personal experiences affects even the committee’s ultimate decision about the Federal

Funds target rate. That is, we test whether there is an incremental effect of FOMC

members’ experience-based inflation forecasts on the consensus decision, alongside con-

ventional interest-rate determinants in a Taylor rule.

This last analysis has to overcome two additional difficulties. First, we aim to ex-

plain the time series of federal funds rates rather than cross-sectional differences in

behavior. In the preceding analyses, we were able to identify the effects of inflation

experiences from cross-sectional cohort-specific differences as well as from changes in

those differences over time. Time dummies allowed us to absorb any potentially con-

founding time-series factors, including conventional determinants of monetary policy.

Here, instead, we cannot absorb time-series factors but need to take a stand on a spe-

cific model of the time-series determinants of monetary policy decisions. We will focus

on standard versions of the Taylor rule that have been proven successful in predicting

the FOMC’s federal funds rate policy in the recent empirical literature.

The second challenge is the limited data availability in the time-series dimension,

relative to our earlier cross-sectional analyses. As we detail below, the need for output-

gap forecast data and limitations of the forecast-based Taylor rule restrict our analysis

to 1987Q3-2007Q2.

Because of these additional challenges, the time-series tests in this section should

be viewed in conjunction with our earlier evidence from inflation forecasts, voting

decisions, and the tone in speeches. The analysis in this section evaluates whether the

federal funds rate moves over time in a way that is consistent with the evidence above.
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In order to test whether we can detect the influence of FOMC members’ personal

experience in the fed funds rate target they set, we first have to aggregate the lifetime

experiences of all members present at a given meeting, and hence their corresponding

desired interest rates. We start from the linear approximation of the subjective Taylor

rule in (2.11) that represents the desired federal funds rates of the individual FOMC

members present at the meeting. In our baseline specification, we assume that the

federal funds rate target decided at an FOMC meeting represents the average of the

members’ desired rate levels. (Alternatively, we use the median or the chairperson’s

desired rates instead; see Appendix C.8 for both robustness checks.) Averaging equa-

tion (2.11) across all FOMC members present at a meeting at time t, we obtain (as

derived in Appendix C.2)

i∗t = β0 + z̄t + βeπ̄
e
t+1|t + βππt + βy(yt − y∗), (2.15)

where π̄et+1|t is the average of the FOMC members’ experience-based inflation forecasts

as of the meeting at time t, and z̄t is the time-t average of

zj,t = κ′xj,t + πtx
′
j,tλ1 + (yt − y∗)x′j,tγ1. (2.16)

With z̄t = 0 and βe = 0 (the latter would follow from ω = 0 in equation (2.11)), this

reduces to the standard Taylor rule. Our earlier analyses suggest instead ω > 0 and

hence βe > 0, i. e., that FOMC members rely to some extent on their experience-based

inflation forecast, over and above the standard inflation- and output-gap components

of the Taylor rule.

Turning to the empirical implementation, we aim to minimize the chance that π̄et+1|t

picks up the effects of measurement error in the objective macroeconomic information

used by the FOMC. In order to do so, we need to use empirical measurements of πt
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and (yt − y∗) that are as close as possible to the information used by the FOMC. We

do so in three steps. First, we build on Orphanides (Orphanides (2001), Orphanides

(2003)), who shows that forecast-based variants of the Taylor rule provide a better

empirical fit to the actual decisions about the federal funds rate target than a rule

based on realized macroeconomic data. We follow Orphanides (2003) and replace, for

every meeting in quarter t, πt and (yt− y∗) with the Federal Reserve staff’s Greenbook

forecasts of inflation from quarter t − 1 to t + 3 and forecasts of the output gap in

quarter t+ 3.21 Second, we use the inflation index that the FOMC relies on primarily.

Following Mehra and Sawhney (2010) and Bernanke (2010), we construct the time

series of the staff’s “core inflation forecast” from Greenbook forecasts of the core CPI

inflation before the year 2000 and of the core PCE inflation thereafter. Third, we follow

Coibion and Gorodnichenko (2012) and use one FOMC meeting per quarter (the one

that is closest to the middle of the quarter). This ensures that the CPI information

leading up to the end of the previous quarter, which is embedded in π̄et+1|t, is available

to the FOMC. Moreover, obtaining data points that are almost equally spaced in time

is useful when we include lagged interest rates.

We start the sample in 1987Q3 when the Federal Reserve’s staff forecast of the

output gap become available. As shown in Orphanides (2001), the Taylor rule, and its

forecast-based variant in particular, then provides a good description of actual Federal

Reserve policy. We end the sample in 2007Q2, just before the start of the financial

crisis. Mishkin (2010) argues that starting in the summer of 2007, the FOMC reacted

to information from financial markets that did not yet show up in inflation and output

gap forecasts. As a result, the Taylor rule does not provide a good description of the

21In the earlier sample, the Greenbooks did not not explicitly include output gap fore-
casts, but the Board of Governors staff used them to construct wage and inflation forecasts.
See www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data/gap-and-financial-
data-set.cfm for more details.
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FOMC’s policy during this period.22

Column (i) of Table 2.8 provides a benchmark for the analysis. We replicate the

standard Taylor rule findings without z̄t and π̄et+1|t. The estimated coefficients on

the output gap (0.67) and on the inflation variable (1.51) are consistent with typical

findings in the literature. In column (ii), we include the average experience-based

forecast, π̄et+1|t. We estimate a coefficient of 0.38 (s.e. 0.21) that is significantly different

from zero at a 10% level. Hence, FOMC members’ average experience-based inflation

forecast has explanatory power for the federal funds rate target over and above the

staff forecast of inflation and the output gap, albeit only marginally significant in this

specification. Considering the coefficients on the two inflation variables together, the

weight on the experience-based forecast in our experience-augmented Taylor rule (2.15)

is about 0.38/(1.27 + 0.38) ≈ 0.23.

Column (iii) turns to the full specification (2.15) by including z̄t, which captures

the effect of the changing characteristics of the FOMC members on interest-rate de-

cisions. Through equation (2.16), z̄t depends on parameters that we cannot credibly

estimate purely from time-variation in the federal funds rate target. For this reason, we

construct z̄t from the estimates in our voting analysis. The fitted values of the latent

desired interest rate of our ordered probit model (2.12) allow us to construct zj,t in

equation (2.16) up to scaling by a constant. More precisely, we use the ordered probit

specification with fixed thresholds, shown in the robustness tables in the Appendix in

Table C.2. (With characteristics-dependent thresholds, we would not be able to sepa-

rate the effect of characteristics on the thresholds from the effect on the latent desired

interest rate.) Averaging the fitted zj,t across FOMC members each period yields z̄t.

After adding z̄t to the Taylor rule as an explanatory variable in column (iii) of Table

22Baxa, Horváth, and Vaš́ıček (2013) provide empirical evidence consistent with this description of
FOMC policy. They show that adding financial market variables to the Taylor rule equation matters
significantly in 2008-09, over and above inflation and output gap information.
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Table 2.8: Influence of FOMC Members’ Inflation Experiences on the Target Federal
Funds Rate

The sample period is from the 8/18/1987 to 6/28/2007. The dependent variable is the target federal

funds rate set at the FOMC meeting closest to the middle of the quarter t. The experience-based

forecast is the average of FOMC members’ experienced-based 4-quarter forecast of inflation based

on CPI data leading up to the end of quarter t − 1, calculated as in Table 2.3. The staff’s core

inflation forecast is from end of quarter t − 1 to end of quarter t + 3 based on the core CPI before

2/1/2000 and the core PCE thereafter. The staff’s output gap forecast at quarter t is the forecast

for quarter t+ 3. The staff’s forecasts of CPI/PCE and of the output gap are from the Philadelphia

Fed Greenbook data set. Lagged fed funds rate target is the federal fund funds rate target from the

previous quarter’s meeting. Columns (i) to (iii) report the OLS estimates based on (2.15). Columns

(iv) and (v) report the estimates of βe, βπ, βy, ρ, and c from non-linear least-squares regressions as

specified in (2.18). Columns (iii) and (v) include a proxy for z̄t, the linear combination of five FOMC-

member characteristics and their interaction with inflation and unemployment estimated from voting

data as reported in the Appendix in Table C.2. In parentheses, we report Newey-West standard errors

with six lags from column (i) to (iii), and zero lags in column (iv) and (v).

(i) (ii) (iii) (iv) (v)

Experience-based inflation forecast - 0.38 0.61 0.46 0.44
- (0.21) (0.24) (0.21) (0.21)

Staff’s core inflation forecast 1.51 1.27 1.44 1.27 1.25
(0.13) (0.23) (0.23) (0.17) (0.20)

Staff’s output gap forecast 0.67 0.69 0.46 0.98 1.00
(0.06) (0.06) (0.10) (0.08) (0.15)

Lagged federal funds rate target - - - 0.68 0.69
- - - (0.04) (0.04)

Intercept 0.80 0.11 2.17 -0.03 -0.08
(0.44) (0.36) (0.86) (0.16) (0.42)

Member characteristics N N Y N Y
Method OLS OLS OLS NLS NLS
Observations 80 80 80 80 80
Adjusted R2 85.8% 86.5% 87.7% 97.6% 97.6%
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2.8, we find that the coefficient on the experience-based inflation forecast increases to

0.61 (s.e. 0.24), which is now statistically highly significant.

Finally, in columns (iv) to (v), we check whether the experience variable might

be picking up the effect of a lagged federal funds rate. Existing evidence from the

literature on monetary policy rules, e. g., Clarida, Gaĺı, and Gertler (2000) and more

recently Coibion and Gorodnichenko (2012), indicates that the Federal Reserve’s policy

is best characterized by partial adjustment, where the actual federal funds rate target

it is a weighted average of the desired federal funds rate i∗t from equation (2.15) and

the lagged actual federal funds rate target it−1,

it = (1− ρ)i∗t + ρit−1. (2.17)

To check whether accounting for partial adjustment of this form changes the conclusions

regarding the experience effects, we combine the partial adjustment rule with equation

(2.15):

it = c+ (1− ρ)
[
z̄t + βeπ̄

e
t+1|t + βππt + βy(yt − y∗)

]
+ ρit−1. (2.18)

Since the parameter of interest, βe, is now interacted with 1 − ρ, we estimate (2.18)

with non-linear least squares. We report the estimates of βe, βπ, βy, ρ, and c in columns

(iv) and (v) for the specification without and with the z̄t variable, respectively.

Column (iv) presents the version without the z̄t variable. Consistent with the

existing literature on federal funds rate inertia, the lagged target rate has a strong

predictive power and absorbs a large portion of the residual. The coefficients on the

inflation variables are not affected much, though. The estimate of βe of 0.46 (s.e. 0.21)

is now a bit higher than in column (ii), and significantly different from zero at the

5% level. The implied weight on experienced inflation relative to the staff forecast is

now 0.46/(1.27 + 0.46) ≈ 0.27. Turning to the estimation with the z̄t variable included
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Figure 2.5: Counterfactual Federal Funds Rate Target (with experience effects re-
moved)

in column (v), we find that adding z̄t has very little effect on the estimates when the

lagged federal funds rate target is included.

Overall, the evidence from the time-series of the target federal funds rate is con-

sistent with the inflation experience effects that we identified in FOMC members’

heterogeneous forecasts, voting decisions, and wording of speeches.

To assess the magnitude of this effect, we can compare these estimate to the those

from the inflation forecast regressions in Table 2.1. There, we found that members put

a weight of about 37-40% weight on their experience-based forecasts. It is reassuring

that the weights obtained here, around 25%, are of very similar magnitude.

In Figure 2.5, we illustrate the magnitude of the effect by constructing a counterfac-

tual federal funds rate target path that removes the estimated experience effects from

the actual path. To construct the counterfactual path, we take the actual federal funds

rate target and subtract the estimated βe from column (ii) times the difference be-

tween FOMC members’ average experience-based forecast and the Greenbook forecast
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of inflation. This counterfactual path represents the target that the FOMC would have

chosen if its members had relied only on the staff forecast, not on their own inflation

experiences—at least if we abstract from follow-on equilibrium effects.23

As the figure shows, the incremental effects of inflation experiences are substantial

at times, but not unreasonably large. In the late 1980s and early 1990s, the effects

were small. At the time, the average experience-based forecast remained very close to

the staff’s core inflation forecast. In contrast, in the 2000s the counterfactual federal

funds rate target is often between 50 to 100 basis points lower than the actual federal

funds rate.

2.6 Conclusion

We present novel evidence showing that personal lifetime experiences significantly af-

fect the inflation forecasts, voting behavior, tone of speeches, and federal funds target

rate decisions of FOMC members. Our findings suggest that heterogeneous inflation

experiences generate heterogeneity in the desired policies and the macroeconomic out-

look of FOMC members. Personal experiences exert this influence even though FOMC

members are highly educated individuals and receive extensive decision-support from

professional staff. In fact, experience effects help explain to a substantial extent why

FOMC members deviate in their inflation forecasts from the forecasts prepared by

Federal Reserve staff.

Our findings add to a growing literature on the role of experience-based hetero-

geneity in economic decisions and macroeconomic expectations. While existing studies

focus on decisions and expectations of individual consumers and investors, this study

23If the FOMC had chosen a different target rate path, macroeconomic performance would presum-
ably have been different. As a consequence, the inputs to the Taylor rule would have been different,
which would in turn have affected the federal funds rate target. Our simple counterfactual analy-
sis does not consider these equilibrium effects, but allows us to get a sense of the magnitude of the
experience effects relative to the other drivers of the federal funds rate target.
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is the first one to provide evidence of similar experience effects for policy makers.

The evidence in this paper also helps shed light on the behavioral origins of ‘ex-

perience effects.’ The overweighting of personal experiences by individual consumers

documented in the earlier literature could perhaps be explained by informational fric-

tions that restrict the availability of data they did not experience themselves. For

sophisticated policy makers like the FOMC members in this study, such an explana-

tion seems less plausible. Presumably, FOMC members are extensively exposed to

historical macroeconomic data. Thus, there seems to be a deeper behavioral reason

for why personal experiences get a relatively high weight in belief formation, even if

historical information is easily accessible.

On the policy side, our results add a twist to the practical notion that the choice

of a policy maker can have a long-lasting impact on policy outcomes: To predict a

policy maker’s leanings, it is helpful to look at the person’s prior lifetime experiences.

For a given outcome variable of interest, here inflation, we can calculate their weighted

average experience with (roughly) linearly declining weights, and obtain a directional

and quantitative prediction about their future decision-making. It will be interesting

to explore in future research the extent to which such a model of experience-based

learning is helpful in predicting policy makers’ behavior in other policy areas.
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CHAPTER III

Electronic Trading in the U.S. Corporate Bond

Market

3.1 Introduction

Traditionally, trading in the U.S corporate bond market, a dealer-centric and over-

the-counter market, has been primary done by voice where the investor contacts and

negotiates with one dealer either over the phone or via electronic chat-room (such as

Bloomberg). Over the last decade, however, the voice trading convention has grad-

ually migrated to the use of electronic auction where the investor can now contact

multiple dealers at the same time. According to Greenwich Associates, an industry

consultancy, the market share of electronic trading (auction) in US investment-grade

corporate bonds has grown from 5% in 2005 to about 20% as of 2015.1 Despite the

proliferation (and hence the growing importance) of electronic trading, we have little

knowledge on how the addition of electronic trading would affect the corporate bond

market overall. Specifically, how should an investor choose between voice and elec-

tronic platforms? Can both market structures coexist in the equilibrium? If so, what

is the equilibrium market share of electronic trading? Further, would the introduction

1“The Continuing Corporate Bond Evolution” - Greenwich Associates (Q4 2015)
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of electronic trading benefit all existing dealers?

This paper aims to shed some light on these questions through the lens of a model of

strategic trading-platform selection by investors. In particular, I focus on the investor’s

choice between voice trading, which features a one-to-one negotiation between the

investor and the dealer, and electronic auction, which allows the investor to contact

multiple dealers simultaneously.

I start by motivating the theoretical model with two empirical observations of elec-

tronic trading in the US corporate bond market. On the one hand, I document that

trading through the electronic auction has smaller transaction costs ex-post, comparing

to the conventional voice trading. For instance, for investment-grade bonds, transac-

tion cost on the electronic platform is about 30-70% of that through voice trading

(depending on the trade sizes). On the other hand, however, I find that electronic

trading entails a nontrivial execution risk ex-ante. On average, about one-quarter of

the time, an investor receives zero response on her inquiry to the dealer community.

Such trade delays are costly to investors. The execution delay costs are estimated

to be about 8 basis points (0.08% of the notional value) for investment grade bond

trades and about 19 basis points for high-yield ones, both of which are economically

significant compared to their benchmark transaction costs.

Next, I develop a model of platform selection where an investor has to choose either

voice or electronic trading.2 In particular, I consider an environment in which the risk-

averse investor and dealers share their endowment/inventory risks through trading. In

voice trading, the investor negotiates with a dealer over both the price and quantity

according to the standard Nash bargaining protocol. For electronic trading, I model it

as a first-price-sealed-bid auction following the “Request-for-quote” (RFQ) protocol in

2In this paper, I only focus on customer-dealer trades and do not consider customer-customer or
inter-dealer transactions because only customer-dealer trades take place on the electronic platform
during the sample period.
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practice.3 This modeling choice builds on Biais (1993) but with one major difference

motivated by the empirical observation: Dealers may not always participate in the

electronic auction; instead, they decide whether to respond to an investor’s electronic

inquiry based on their inventory positions.

The key trade-off involved in this platform selection problem is price improvement

versus execution risk of electronic trading. On the one hand, a potential price im-

provement comes from the observation that electronic auction, by allowing investors to

contact multiple dealers simultaneously, increases the investor’s probability of finding

a dealer with a large opposite inventory position. Because holding (excess) inventory

is costly,4 dealers are more inclined to improve their quotes to induce orders from the

public and thereby allow their inventory to revert to the desired level. Thus, trading

through the electronic auction offers the investor a better chance to receive a more

favorable price than (randomly) contacting a single dealer as in voice trading.5

On the other hand, however, trading through the electronic auction entails a non-

trivial execution risk, which is costly to the investor. The risk of no execution is driven

by dealers’ positive participation costs. Given an investor buying inquiry, I show that

only dealers with sufficiently large (positive) inventory positions would choose to par-

ticipate in the auction because their expected gain-to-trade would then be large enough

to compensate the participation cost. Therefore, the probability of investor receiving

zero response from dealers is not negligible.

In the equilibrium, I confirm the intuition that investors tend to receive better prices

through the electronic auction than through the voice market when dealer’s inventory

3Although some other electronic trading protocols exist, according to Markets Committee (2016),
RFQ remains the dominant protocol in the corporate bond market, accounting for more than 95% of
total transaction volume.

4The inventory-holding cost exists due to dealer’s limited risk-bearing capacity especially given the
recently more stringent capital requirement on a risk-weighted basis.

5Note that reaching out to multiple dealers simultaneously is different from contacting them se-
quentially because of search costs. In the sequential contact case, a non-trivial search cost may well
dampen the benefit of “shopping-around”. More discussions on this are in Section 3.4.2.
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position is large. Further, I show that investors with small relative bargaining powers

would love to trade electronically because to them, the larger the bargaining power,

the more to gain from the bilateral bargaining (voice trading) while, by definition,

bargaining power does not matter for electronic trading. Relatedly, the equilibrium

market share of electronic trading tends to decrease as i) dealer’s (exogenous) inventory

distribution becomes more concentrated around mean, and ii) dealers become less risk

averse. When the dealer’s inventory distribution becomes tighter, the investor’s chance

to trade with a dealer with a large opposite inventory becomes smaller and therefore,

investor’s benefit of trading electronically goes down. In the meantime, as dealers

become less risk averse, they would be less worry about their own inventory risk and

therefore, given the fixed participation cost for electronic auction, their participation

threshold would thus be higher. Thus, the execution risk of electronic trading would

be larger. Either way, the market share of electronic trading would decline accordingly.

In addition, as for dealer’s welfare implication, I show that adding electronic auction

on top of voice trading does not necessary improve each dealer’s utility; dealers with

relatively small balance sheet capacity would prefer the market structure with voice

trading only. This is because when dealer’s inventory position is not large enough, the

probability to win the auction is essentially zero and therefore, dealer’s expected gain

from participating the auction would not compensate his relative loss in voice trading

due to investors’ self-selection.6

It is worth emphasizing that the key mechanism drives the results is dealer’s inven-

tory management motive. In the U.S. corporate bond market, inventory is a primary

concern to dealers and hence, is of first-order importance in understanding the pricing

and liquidity implications (see Friewald and Nagler (2016) and Dick-Nielsen and Rossi

6As mentioned earlier, with both voice and electronic trading, investors with large relative bar-
gaining power would choose to trade in the voice market. Therefore, under this market structure with
two platforms, the dealer’s expected gain from voice trading would become smaller compared to the
market structure with voice trading only. In that sense, dealers would incur a relative loss.
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(2016)). This inventory management motive also complements the informational chan-

nel studied in the earlier literature on trading platform selection (see, e.g., Hendershott

and Mendelson (2000) and Zhu (2014)).

The remaining of the paper proceeds as follows: Section 3.2 reviews the literature.

Section 3.3 provides two motivating observations of electronic trading. Section 3.4

develops a model of strategic platform selection by investors and studies the equilibrium

outcomes. Section 3.5 concludes. Appendix D contains additional figures. Appendix

E provides proofs and related derivations.

3.2 Related Literature

This paper mainly connects to three streams of literature. First, it fits into the

literature studying the role of dealer inventories in providing liquidity and their as-

set pricing implications. On the theory front, Ho and Stoll (1981, 1983) establish an

optimal dynamic pricing rule for dealers to manage their inventory risks. Relatedly,

Grossman and Miller (1988) model the role of dealers in providing the immediacy due

to the temporary order imbalance. Empirically, Comerton-Forde et al. (2010) provide

evidence that shocks to the market-maker’s balance sheet and income statement af-

fect daily stock market liquidity using a panel of New York Stock Exchange (NYSE)

specialist inventory positions. More relatedly, equipped with transaction data in the

US corporate bond market along with dealers’ identities, Friewald and Nagler (2016)

study the cross-sectional properties of dealer inventories and demonstrate that inven-

tory considerations are important when it comes to the pricing of corporate bonds.

Second, this paper adds to the emerging literature that studies how relationship

affects trading in the over-the-counter market. Theoretically, Seppi (1990) and Des-

granges and Foucault (2005) study why dealers often offer price improvement to their

clients and argue that the long-lasting investor-dealer relationship is the key for enforc-
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ing the no-informed trading agreement. More broadly, Duffie, Garleau, and Pedersen

(2005, 2007) study the equilibrium allocation and price formation in the context of

search-based friction and bargaining powers. Direct empirical evidence on the impact

of trading relationship in the OTC market is relatively limited perhaps due to data

limitations. Until very recently Hendershott et al. (2015) study the customer-dealer

relationship in the US corporate bond market using data on insurer transactions and

find that larger insurers trade with both large and small dealers and enjoy better exe-

cution while smaller insurers only trade with large dealers and suffer higher execution

costs. As a complement to Hendershott et al. (2015), Maggio et al. (2016) focus on

the relationship among dealers in the US corporate bond market and show that the

inter-dealer market exhibits a clear core-periphery structure, with core dealers taking

advantages of their connections to enjoy lower transaction costs at the expenses of

smaller dealers and clients.

Third, this paper ties closely with the literature on comparing different market

structures. For example, Biais (1993) and De Frutos and Manzano (2002) compare

the centralized market, where quotes are visible to all market participants, and frag-

mented market, where the agents cannot observe the quotes of their competitors, with

respect to equilibrium price and liquidity. Further, Yin (2005) extends Biais (1993) by

taking the investor’s search cost into consideration. More recently, Hendershott and

Mendelson (2000) and Zhu (2014) study the impact of introducing a passive crossing

network (dark pool) on top of an existing exchange (dealer market) with a focus on

liquidity externalities (Hendershott and Mendelson (2000)) and price discovery (Zhu

(2014)). While most existing studies in this stream either consider an anonymous mar-

ket, where there is no room for trading relationship to play a role, or abstract away

from the trading relationship, this paper explicitly studies the investor’s platform selec-

tion problem, i.e., voice vs. electronic, with the consideration of bilateral relationship
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between investors and dealers.

Finally, perhaps the most related paper to this article is Hendershott and Madhavan

(2015) (HM) who also compare the voice and electronic trading in the U.S corporate

bond market. This article complements HM in one important way. In HM, they focus

on what different bond characteristics matter for investor’s platform choice and do not

consider any heterogeneity among market participants. In this paper, however, I am

particularly interested in understanding how heterogeneity among dealers (character-

ized by their different inventory positions) would affect investor’s platform choice. My

modeling approach allows me to tackle this question directly.

3.3 Motivating Evidence

The sample covers from January 2014 to December 2015. The electronic trading

data are provided by MarketAxess, a leading electronic platform provider in the U.S

corporate bond market.7 It contains detailed information on each electronic inquiry

submitted by investors, including the number of dealers quired, the inquiry size and

direction, the quote from each responding dealer, an indicator of whether the inquiry

leads to trade, and the transaction price if the trade occurs. One novelty of the Marke-

tAxess data is that it provides the (anonymous) identities of bond investors. I further

supplement the MarketAxess data with details on all customer-to-dealer corporate

bond transactions, including both voice and electronic trades, from Trade Reporting

and Compliance Engine (TRACE). Also, I obtain reference information on all corporate

bonds, including ratings, coupon, maturity, and issue size, from Mergent FISD.

7According to Greenwich Associates (2015), MarketAxess is the dominate player in electronic
trading of US investment-grade bonds with an estimated market share of 75%. The other players are
Bloomberg FIT and Tradeweb with estimated market shares being 20% and 5%, respectively. For high-
yield bonds, the market share of MarketAxess is even higher, amounting to nearly 90%. Therefore, it
is reasonable to think of the data from MarketAxess is representative of overall electronic trading in
the U.S corporate bond market.

101



Table 3.1: Summary Statistics

The sample period is from January 2014 to December 2015. Given that MarketAxess does

not include inter-dealer trades, I restrict my attention to the customer-to-dealer transactions

on TRACE accordingly.

Electronic (MarketAxess) Overall (TRACE)

Inv.-grade High-yield Inv.-grade High-yield

Number of Bonds 10,812 3,808 15,677 16,751

Number of Trades 1,730,830 377,670 7,261,147 3,227,161

Client Buy 744,220 163,245 4,080,358 1,745,155
Client Sell 986,610 214,425 3,180,789 1,482,006

Average Daily Volume (in billions) 1.46 0.19 4.90 0.82

Client Buy 0.62 0.09 2.59 0.43
Client Sell 0.84 0.10 2.31 0.39

Average Trade Size (in thousands) 425 269 349 149

Client Buy 418 303 327 143
Client Sell 430 243 379 158

Table B.3 presents the summary statistics. During the sample period, around 16K

(17K) different investment grade (high-yield) bonds were traded, among which about

11K (4K) bonds were covered by MarketAxess. In terms of number of trades, Mar-

ketAxess accounts for about 24% (12%) of all investment grade (high-yield) bonds

transactions. As for trading volume, MarketAxess contributes roughly 30% (23%) of

total volume of investment grade (high-yield) bonds.8 Further breaking trades accord-

ing to their directions, I find that the client selling volume is larger than the buying

volume on MarketAxess, in contrast to the case found in the TRACE sample. Fi-

nally, as far as trade size is concerned, trades on MarketAxess appear to be larger than

their counterparts in TRACE regardless of a bond’s rating (either investment-grade or

high-yield).

8Note that the trade size on TRACE is masked for so-called “mega” trades, i.e. $5MM for IG and
$1MM for HY bonds. Thus, for the ease of comparison, I report the average trade volume only for
those “non-Mega” trades on the MarketAxess. The same rule applies to the average trade size as well.
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3.3.1 Transaction Cost: Voice vs. Electronic Trading

One natural way to compare different trading platforms is to look at its transaction

cost. Measuring transaction cost in the OTC market is not trivial, though. Given the

decentralized nature of corporate bond trading, high-quality intraday bid-ask quotes

generally do not exist. Therefore, some commonly-used trading cost measures in the

equity market, like effective bid-ask spreads, i.e. the difference between transaction

price and mid-point of the quoted spread (see, e.g., Huang and Stoll (1996) and Has-

brouck (2009)), can not be directly applied in the corporate bond market. To address

this problem, I instead define the transaction cost as the percentage difference between

the trade price and the benchmark following Hendershott and Madhavan (2015), i.e.

Transaction Cost =
TradePrice− Benchmark

Benchmark
× Trade Direction

where Trade Direction equals 1 if the investor is buying and -1 otherwise. Intuitively,

the transaction cost defined above captures the premium that investors pay for the in-

termediation. The challenge here is how to find an appropriate benchmark empirically.

Hendershott and Madhavan (2015) use the last interdealer price as the benchmark

throughout. While this approach is straightforward, it has drawbacks. The main con-

cern is that dealers may unwind the position obtained from their last customer trade

with either other dealer(s) or customer(s) shortly after.9 For these so-called “riskless

principal trades”,10 the last interdealer price should not be considered as an appropri-

ate benchmark because dealers tend to quote these inquiries based on the offsetting

legs that show up later in the dataset instead of based on what happened before. This

concern is more relevant when the last interdealer trade occurred days (or even weeks)

before the current inquiry. To address this concern, for trades that I can identify

9About 20% of the trades fall into this category in the sample.
10More detailed discussions on riskless principal trades can be found in Harris (2015)
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Table 3.2: Transaction Cost: MarketAxess vs. TRACE

The sample period is from January 2014 to December 2015. The calculation of transaction

cost only involves “non-mega” trades as defined in the text. All numbers are in basis points.

Electronic (MarketAxess) Overall (TRACE)

Inv.-grade High-yield Inv.-grade High-yield

All Trades

Micro (1-100K) 13.1 26.5 46.9 80.8
Odd (100K-1MM) 13.3 15.8 19.2 30.9
Round (1-5MM) 10.6 - 9.6 -

Client Buy

Micro (1-100K) 14.0 21.0 58.9 105.7
Odd (100K-1MM) 14.3 12.5 22.1 39.0
Round (1-5MM) 10.5 - 7.2 -

Client Sell

Micro (1-100K) 12.5 29.1 30.8 49.6
Odd (100K-1MM) 12.4 19.0 15.4 21.6
Round (1-5MM) 10.7 - 12.3 -

their immediate offsets, I instead use the price on the offsetting leg to construct the

benchmark.11 Otherwise, I follow Hendershott and Madhavan (2015) and take the last

interdealer price as the benchmark.

Table 3.2 presents the transaction costs by various trade-size bucket according to

the industry convention.12 Not surprisingly, transaction costs of investment grade

bonds are smaller than that of high yield ones regardless of the trade-size bucket. For

example, for an odd-lot investment grade bond trade on MarketAxess, the average

transaction cost is about 13 basis points, or 0.13% of the notional value, while the cost

of an odd-lot high-yield trade on MarketAxess is 16 basis points. Such transaction cost

11I treat the trade which occurred right after the original transaction (within the same day) with
the same quantity and opposite direction as the offsetting leg. As far as how the benchmark is
constructed, I directly take the trade price of the offsetting leg as the benchmark if the offsetting leg
is an inter-dealer trade. Otherwise, I compute the benchmark as the average price of the pair of two
offsetting trades.

12Given that the trade size for “mega” trades are masked on TRACE, it is difficult to find the
exact match between MarketAxess and TRACE for those “mega” trades, and hence, obtaining a
clean benchmark price becomes problematic. Therefore, I only focus on the “non-mega” trades for
both MarketAxess and TRACE.
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differences between investment grade bond and high yield ones are more prominent in

the overall TRACE sample.

Comparing transaction costs between MarketAxess and TRACE, we can easily see

that trades on MarketAxess tend to have more favorable prices to investors. Such price

improvements on MarketAxess is more pronounced for micro trades and for high-yield

bonds. However, it is important to keep in mind that a smaller ex-post transaction

cost does not necessarily imply trading on MarketAxess is ex-ante cheaper. Indeed, as

I will show in the next section, trading on MarketAxess involves nontrivial execution

risks and such trade delays are costly to investors.

3.3.2 Execution Delay Cost

The risk of no execution on MarketAxess is not negligible.13 At the bond level,

about 10% of all inquiries on investment grade bonds receive no response from dealers

while the zero-response rate for high-yield inquiries is even higher, which is about 39%.

From the investor’s perspective, on average, about 27% of the time, an investor receives

zero response on her inquiry. Looking at a sub-sample of major investors, I find that

the zero-response rate for the largest 100 investors is still as high as 16%.14

Execution risk matters for investors because trade delays are costly to them. Con-

ceptually, for example, trade delay is costly to liquidity traders because they can not

fulfill their liquidity needs immediately. To empirically estimate such execution de-

lay cost on the electronic platform, I look at the difference in the transaction costs

between repeated inquiries and normal ones. By repeated inquiries, I refer to those

13Unfortunately, direct evidence about the execution risk in the voice market is hard to obtain since
data on those voice inquiries, such as phone tapes or Bloomberg chats, is not available to the public.
But based on my conversations with corporate bond traders, at least anecdotally, practitioners believe
that the execution risk of voice trading is much smaller than that of electronic market perhaps due to
the reputation concerns of dealers.

14Among 800 investors in the sample, the largest 100 investors constitute about 85% of total trading
volume.
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electronic inquiries that initially received zero response but were sent later again and

got filled electronically.15 To identify such repeated inquiries, I restrict the initially un-

filled inquiries and the later-filled ones to be on the same bond, with the same buy/sell

direction and the same size, from the same investor, submitted within seven business

days. By doing so, I am able to find 25, 520 such repeated inquiries out of 391, 671

zero-response ones.

Table 3.3 presents the results. As column (1) and (3) suggest, given an investor,

the transaction cost of a repeated inquiry is significantly higher than that of a normal

one. For investment grade bonds, the difference is about 8 basis points (0.08% of the

notional value) while for high-yield ones, such difference is higher, which is about 19

basis points. Note that the differences in transaction costs between a repeated inquiry

and a normal one, i.e., the execution delay cost, are economically large. As can be seen

in Table 3.2, the average transaction cost for an investment grade (high-yield) bond

trade is about 10 to 15 (15 to 30) basis points on MarketAxess.

Taken together, the empirical evidence suggests that, on average, trading on the

electronic platform (MarketAxess) enjoys a smaller transaction cost ex-post but, ex-

ante, it bears a nontrivial execution delay cost.

3.4 Model: Voice vs. Electronic Trading

This section presents a static model of trading platform selection between voice

and electronic trading faced by investors, featuring the trade-off between potential

price improvement and execution delay cost as observed in the data.

15Note that this definition of “repeated inquiries” is somewhat conservative. One may also think of
a repeated inquiry as the one that was later executed in the voice market instead of in the electronic
market again. However, if I were to apply this broader definition, any difference in the transaction
cost between the normal inquiries (which are filled electronically) and the repeated ones (which are
later filled in the voice market) could be partly due to the (perhaps unobserved) difference between
voice and electronic platform.
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Table 3.3: Execution Delay Cost

The sample period is from 1/1/2014 to 12/31/2015. The dependent variable is the transaction cost,

defined as TradePrice - Benchmark
Benchmark ×Trade Direction, where Trade Direction equals 1 if the client is buying

and -1 otherwise. 1Repeated inquiry is an indicator variable for a repeat inquiry as defined in the text.

Client Buy equals one if the investor is buying from the dealer and zero otherwise. The order size

is in million dollars. The bond-specific controls include time to maturity, time since initial offering,

rating, and offering amount. In the parenthesis, I report the standard errors clustered at both bond

and week level.

Inv.-grade High-yield

(1) (2) (3) (4)

1Repeated inquiry 0.083 0.078 0.194 0.174
(0.014) (0.015) (0.028) (0.027)

Order size -0.011 -0.011 -0.036 -0.100
(0.002) (0.002) (0.008) (0.013)

Client Buy 0.013 0.010 -0.093 -0.092
(0.029) (0.029) (0.024) (0.023)

Investor FE Yes No Yes No

Week FE Yes Yes Yes Yes

Bond-specific controls Yes Yes Yes Yes

Observations 1,432,787 1,432,787 239,695 239,695
Adjusted R2 0.020 0.017 0.035 0.019
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3.4.1 Setting

I consider the market of one risky asset with a random payoff v whose mean is µ

and variance is σ2. There are two types of agents participating in this market, i.e.

risk-averse investors and dealers. Both investors and dealers are endowed with the

mean-variance utility function with risk aversion parameter θ and γ, respectively. The

investor receives an endowment shock e, which can be either a long position +L or a

short position −L of the risky asset. Each dealer is endowed with some inventory Ij,

following an exogenous distribution F (·). Further, the inventory position Ij is bounded

between −R and R, suggesting dealers can either long or short the risky asset.

The investor chooses either voice or electronic trading to share her endowment

risk. In voice trading, the investor randomly contacts one of the dealers and then

bargains with him over the price p and the quantity y according to standard Nash

bargaining protocol. For electronic trading, the investor sends her inquiry to N dealers

simultaneously.16 Upon receiving the inquiry, each dealer first decides whether to

respond. Once participating, dealers have to quote the entire size of the inquiry (rather

than part of it). The dealer with the best quote wins the trade.

3.4.2 Assumptions

Before describing the model, I first discuss the key assumptions made throughout

the analysis.

First, to focus on the effect of risk-sharing motive, I assume that there is no in-

formation asymmetry between the investor and dealers, i.e., both µ and σ2 are known

to each market participant. The trade, if any, is thus only motivated by risk-sharing

between the investor and dealers.

Second, consistent with the real-world scenario, I assume that each dealer only

16For simplicity, I assume N is exogenously given.
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knows his own inventory position Ij but not everyone else and the investor is not aware

of the inventory position of any dealer. Yet, the inventory distribution, F (·), is common

knowledge to both the investor and dealers.

Third, I assume that the investor would never contact more than one dealer (se-

quentially) in the voice market because the search cost is so high that it prevents her

from contacting a second dealer (see Yin (2005)). Given that the electronic auction

involves zero search cost, this assumption allows me to focus on the key trade-off of

electronic trading, i.e., zero search cost vs. execution risk.17

Finally, for the electronic auction, I assume an exogenous reservation price p̄ for

the investor to prevent responding dealers from charging an arbitrarily high price.18 I

further assume an exogenous participation cost for dealers, C > 0. As we will see later,

this assumption is critical since it drives dealers’ endogenous participation strategy;

each dealer responds if and only if his expected gain-to-trade is strictly greater than

the participation cost. We may think of the participation cost as dealer’s opportunity

cost since most of the electronic inquiries are still manually priced by sell-side traders

nowadays. Alternatively, we may interpret the participation cost as dealer’s reputation

cost. For many dealers, they would rather choose to pass the inquiry instead of quoting

a non-competitive price, which may impair their relationship with clients (investors).19

17By reducing search frictions, the electronic auction allows the investor to contact multiple dealers
simultaneously and thus, increases the investor’s chance to trade with a dealer with a large opposite
inventory position. As a result, the price that the investor would receive through the electronic auction
tends to be more favorable than the one through the voice market where the investor (randomly)
contacts and trades with one dealer.

18As shown in Figure D.1 in the appendix, any reasonable choice of p̄ would not have a significant
impact on the equilibrium relationship between different variables of interests

19Note that such non-competitive prices can be still away from investor’s reservation prices.
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3.4.3 Equilibrium Outcomes

3.4.3.1 Voice Trading

I first characterize the equilibrium in voice trading. Following Nash bargaining, both

the investor and the (contacted) dealer choose price p and quantity y to maximize the

product of their respective gain to trade weighted by their relative bargaining powers,

i.e.

max
y, p

[
UMM

gain

]η[
U Inv

gain

]1−η

where,

UMM
gain = y(p− µ)− 1

2
γσ2y(y − 2I)

U Inv
gain = y(µ− p)− 1

2
θσ2y(y + 2e)

Solving for the above bargaining problem, the equilibrium trade size, yvoice, is given

as follows (see details in Appendix E)

yvoice =
γ

γ + θ
I − θ

γ + θ
e (3.1)

That is, through trading, the investor bears γ
γ+θ

share of dealer’s inventory risk and,

in the meantime, offloads θ
γ+θ

share of her own endowment risk to the dealer. Af-

ter trading, the investor ends up with γ
γ+θ

share of the total risk, I + e, while the

dealer bears the rest. Effectively, the investor and the dealer are thus sharing their

inventory/endowment risk in proportion to their relative risk aversion.
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Further, the equilibrium price, pvoice, can be shown as (also see Appendix E)

pvoice = µ− 1

2

[
2− γ

γ + θ
− η
]
γσ2I − 1

2

[ γ

γ + θ
+ η
]
θσ2e (3.2)

Clearly, price goes down as the inventory level I becomes bigger since the coefficient

of I is negative (assuming I is positive). The intuition is that given the mean-variance

utility function, holding inventory is costly to dealers (which can be thought as a convex

holding cost). Therefore, the larger amount of inventory the dealer holds, the more the

dealer would like to offload by settling at a lower price. Further notice that the bigger

the dealer’s bargaining power η, the worse price the investor receives.20

Finally, given the equilibrium price p and trade size y, it is indeed incentive-

compatible for both the investor and the dealer to trade since both parties’ gain-to-trade

are positive.21 Put it differently, there is no execution risk in the voice trading.

3.4.3.2 Electronic Auction

The equilibrium in the electronic auction consists of dealers’ participation and pric-

ing strategies and the investor’s trading strategy. By symmetry, I only consider the

case where the investor receives a negative endowment shock e = −L. Assuming the

20This can be seen by re-arranging Eq. (3.2) as follows

pvoice = µ− 1

2

[
2− γ

γ + θ

]
γσ2I − 1

2

[ γ

γ + θ

]
θσ2e+

1

2
[γI − θe]σ2η

Thus, as investor is buying (y > 0 or equivalently γI−θe > 0), the price is increasing in η. As investor
is selling (y < 0 or equivalently γI − θe < 0), the price is decreasing in η. Taken together, the larger
the η, the worse the price for the investor.

21Both investor and dealer’s gain to trade are as follows

UMM
gain =

ησ2

2(γ + θ)

(
γI − θe

)2 ≥ 0

U Inv
gain =

(1− η)σ2

2(γ + θ)

(
γI − θe

)2 ≥ 0
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investor wants to buy in this case,22 I look for a symmetric equilibrium where a dealer

would participate if and only if his inventory position is larger than some endogenous

threshold.

Given the investor’s inquiry size y and his own inventory position Ij, dealer’s par-

ticipation and pricing strategy are summarized as:

Proposition III.1. Given that an investor receives a negative endowment shock, e =

−L, each dealer chooses to participate in the electronic auction if and only if Ij > Ī∗,

where Ī∗ uniquely solves

F (Ī∗)N−1y
[
p̄− p̃(Ī∗, y)

]
= C (3.3)

Once participating, dealer’s optimal pricing strategy is given by

p(Ij, y) = p̃(Ij, y) + γσ2

∫ Ij
Ī∗
F (I)N−1dI

F (Ij)N−1
+
[F (Ī∗)

F (Ij)

]N−1[
p̄− p̃(Ī∗, y)

]
(3.4)

where,

p̃(Ij, y) = µ+
1

2
γσ2(y − 2Ij)

The price is decreasing in the inventory position Ij and the number of dealers N. Fur-

ther, dealer’s expected trading surplus is increasing in his inventory position Ij.

The intuition of the dealer’s participation strategy is as follows. Since the dealer’s

expected gain-to-trade increases in his inventory position, only dealers with sufficiently

large inventory would love to participate (whose the expected gain would thus outweigh

the exogenous participation cost). Further note that as the number of competing

dealers becomes bigger (a larger N), the participation threshold Ī∗ would increase

22I will confirm this conjecture after solving for the equilibrium
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accordingly (see Eq. 3.3), and therefore, the participation probability for each dealer

would decrease.

Next, I turn to describe dealer’s pricing strategy, which consists of three compo-

nents. The first component p̃(Ij, y) is dealer’s reservation price, which amounts to the

sum of the fundamental value µ and the dealer’s required risk premium 1
2
γσ2(y− 2Ij).

It turns out that the dealer’s reservation price in the electronic auction equals the low-

est possible price in the voice market given the same inquiry size y (in which case the

dealer’s relative bargaining power η is zero). The second component
∫ Ij
Ī∗ F (I)N−1dI

F (Ij)N−1 γσ2 is

the standard first-price auction “adjustment term”, which guarantees the seller (dealer)

would obtain a strictly positive surplus in the case of winning the auction. This pure

“first-price auction effect” is more pronounced when dealers are more risk averse (a

larger γ) and the asset is riskier (a higher σ2).

The key of dealer’s pricing rule is the third component,
[F (Ī∗)
F (Ij)

]N−1[
p̄ − p̃(Ī∗, y)

]
,

which can be interpreted as the threshold effect. When the dealer’s inventory position

Ij is higher than but still close to the threshold Ī∗,
[F (Ī∗)
F (Ij)

]N−1
is close to one and thus,

dealer’s optimal quote remains close to the investor’s reservation price p̄. The intuition

is that when the dealer’s inventory position is not sufficiently high, the incentive for

him to participate is low (as the chance to win remains close to zero and is not sensitive

to the price change) and hence, he would quote a price close to the highest possible

price he could charge, i.e., the investor’s reservation price. As the inventory position

gets larger and further away from the threshold, the dealer’s incentive to participate

increases and, as a result, the optimal quote becomes smaller.

Taken together, when deciding his optimal quote, the dealer starts from his reser-

vation price p̃ and then raise the quote to capture the required surplus (the sum of

the second and third element of the pricing rule). The more competing dealers, the

greater chances that raising the quote would result in dealer missing the trade. There-
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fore, the surplus (as well as the quote) decreases in total number of dealers N . As

N goes to infinity, the optimal quote converges to the reservation price, suggesting

dealers can no longer earn any surplus when the number of competitors is infinitely

large. Further notice that if the participation cost were zero, there would be no thresh-

old anymore, i.e., Ī∗ = −R. Consequently, the pricing rule p(Ij, y) would collapse to

p̃(Ij, y) + γσ2
∫ Ij
−R F (I)N−1dI

F (Ij)N−1 , which is the same as in Biais (1993).

Compared to dealer’s strategies discussed above, the investor’s strategy is rela-

tively straightforward; she simply chooses an order size to maximize her expected gain

to trade (by taking the execution risk into consideration). In the equilibrium, the

dealer’s endogenous participation threshold Ī∗ and the investor’s optimal order size y

are jointly determined.23 Unfortunately, neither the threshold nor the order size has

a simple expression. As a consequence, the equilibrium price does not have a closed-

form expression either, but I will illustrate the relation between the dealer’s inventory

position and the equilibrium price in the following numerical example.

3.4.3.3 A Numerical Example

Figure 3.1 illustrates how the price changes as the inventory position I varies in

both voice and electronic trading. Here, I set the investor’s reservation price p̄ as 2µ

and dealer’s relative bargaining power η as 0.5.24 For the ease of comparison, I plot the

graph starting from I = Ī∗.25 As expected, both voice and electronic price decrease

as dealer’s inventory position gets larger. Yet, the electronic price tends to drop much

faster than the voice one. This is mainly because as the inventory becomes further away

from the threshold, the impact of the investor’s reservation price on the electronic price

decays dramatically, which is shown as the diminishing difference between the red solid

23Details on solving the equilibrium in the electronic auction are provided in Appendix E.
24As shown in Appendix figure D.2, the choice of p̄ would not have a significant impact here.
25The price of voice trading exists for any inventory position while the price of electronic trading is

only valid when I > Ī∗.
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line and red dash line in the graph. When the inventory position is relatively small

(but still larger than the threshold), the electronic price can be higher than the voice

one since the investor’s reservation price still plays an important role in determining

the electronic price in this case. As the inventory position gets large enough, however,

the electronic price tends to be smaller than the voice one due to i) the competition

among dealers and ii) the diminishing impact of investor’s reservation price.
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Figure 3.1: Dealer’s Pricing Strategy: Voice vs. Electronic trading. The voice price
(and voice benchmark) refers to Eq. (3.2). The electronic price corresponds to Eq.
(3.4) with the electronic benchmark being the sum of first two components in the

pricing rule, i.e. p̃(Ij, y) + γσ2
∫ Ij
Ī∗ F (I)N−1dI

F (Ij)N−1 . Model parameters: µ = 10, γ = 0.5, θ = 3,

σ2 = 1, L = 4, R = 5, C = 5, N = 50, and I has a scaled beta distribution with
a = b = 1.5. Moreover, p̄ = 2µ.
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3.4.4 Equilibrium Market Share of Electronic Trading

So far, our analysis has focused on the equilibrium in voice and electronic trading

separately for each investor. To study the aggregate effect, I now consider a continuum

of investors characterized by their relative bargaining power over the dealer, i.e. δ ≡

1−η ∈ [0, 1], and each facing the choice between voice and electronic trading. Assume δ

follows some exogenous distribution H(·). Further, to be consistent with the discussion

above, I only consider the case where investors receive negative endowment shocks in

this subsection.

To calculate the equilibrium market share of electronic trading, I first derive the

investors’ participation rate in the electronic auction. For each investor, the gain from

voice trading, denoted as Vvoice(δ), monotonically increases in her relative bargaining

power δ while the gain from the electronic auction, denoted as Velec, is independent

of δ since bilateral negotiation never occurs in the electronic auction.26 Therefore, if

Vvoice(1) > Velec, there must exist a unique threshold δ∗ such that Vvoice(δ
∗) = Velec.

Thus, any investor whose bargaining power is smaller than δ∗ would love to trade

electronically and as a result, the investor’s participation rate of electronic trading

equals H(δ∗). Otherwise, if Vvoice(1) ≤ Velec, the participation rate is simply 100%.

With the investors’ participation rate, I now compute the equilibrium market share

of electronic trading, i.e., the proportion of trading volume occurred through the elec-

tronic auction. The expected trading volume in voice and electronic trading can be

written as follows, respectively,

Volvoice =
(

1−H(δ∗)
)
E(yvoice)

Volelec = H(δ∗)
(

1− F (Ī∗)N
)
yelec

26In fact, investor’s gain from voice trading can be written as δσ2

2(γ+θ)E
[
(γI + θL)2

]
.
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where yelec stands for the trade size in the electronic auction.
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Figure 3.2: Market Share of E-trading with respect to the Inventory Distribution.
Model parameters (unless otherwise stated): µ = 10, γ = 0.5, θ = 3, σ2 = 1, L = 4,
R = 5, C = 5, N = 50, δ has a uniform distribution between 0 and 1, and I has a
scaled beta distribution with a = b = 1.5.

Figures 3.2 describes how the dealer’s inventory distribution affects the equilibrium

market share of electronic trading. The left-hand-side plot of Figure 3.2 focus on the

shape of inventory distribution. In particular, I perturb the two parameters, a and b,

of a scaled beta distribution, which, I believe, is flexible to capture different shapes

of inventory positions across dealers. As I vary from a = b = 0.5 to a = b = 1.5,

the inventory mass becomes more concentrated around the mean (see Figure D.1 in

Appendix D). As a result, the chance that the investor would trade with a dealer with

a large opposite inventory through the electronic auction becomes smaller. Therefore,

the benefit for investors to trade electronically goes down, and the market share of

electronic trading drops accordingly.

The right-hand-side plot of Figure 3.2 illustrates the effect of inventory bound R.

When increasing the bound, one essentially shifts more inventory mass to the extreme.

Therefore, similar intuition discussed above applies here as well; as R becomes larger,

investors tend to benefit more from trading electronically since their chances to meet
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some dealer with a large opposite inventory position increase and consequently, the

market share of electronic trading goes up.

The discussion above further generates an interesting empirical implication. That

is, we can test whether dealer’s inventory distribution matters for investor’s trading-

platform choice by running a cross-sectional regression of the (time-series) variance of

dealer’s inventory of each individual bond on its market share of electronic trading. A

smaller variation in dealer’s inventory over time corresponds to a more concentrated

inventory distribution or a tighter bound R. Hence, my model suggests that, all else

equal, bonds with smaller inventory variances have a lower market share of electronic

trading compared to those with bigger variances.
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Figure 3.3: Market Share of E-trading with respect to Dealer’s Risk Aversion γ. Model
parameters: µ = 10, θ = 3, σ2 = 1, L = 4, R = 5, C = 5, N = 50, δ has a uniform
distribution between 0 and 1, and I has a scaled beta distribution with a = b = 1.5.

Figure 3.3 plots the equilibrium market share of electronic trading as a function

of dealer’s risk aversion γ. As dealers become more risk averse (a larger γ), their risk

sharing motives become stronger and hence, their expected gain-to-trade increases.27

Therefore, their participation threshold would be lower and thus result in a substantial

27Dealer’s expected gain from the electronic auction can be written as γσ2y
∫ Ij
Ī∗
F (I)N−1dI + C
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increase of trading volume through electronic trading. In the meantime, the volume

through voice trading may only increase mildly or even decrease. Taken together,

the market share of electronic trading would thus increase as dealer’s risk aversion γ

increases. Note that when γ is high enough, the investor’s largest possible gain from

voice trading, Vvoice(1), becomes smaller than the gain from electronic trading. In this

case, investors would all choose to trade electronically and thus, the market share of

electronic trading stays at 100% regardless of γ.

3.4.5 Welfare Implication for Dealers

I close the model section by discussing how the addition of electronic auction (on

top of voice trading) would affect the welfare of each dealer.

With both voice and electronic trading available, as discussed above, investors with

large relative bargaining powers would choose to trade by voice. Therefore, the dealer’s

expected gain from voice trading would be smaller in the “voice + electronic” case

than that in the “voice only” case. Thus, the dealer’s preference over the two market

structures critically depends on whether such relative losses in voice trading can be

compensated by the potential gain from electronic trading. If not, dealers would then

prefer the market structure with voice trading only.

The left-hand-side plot of Figure 3.4 illustrates the dealer’s expected surplus under

two market structures, i.e., “voice only” and “voice + electronic”, when the participa-

tion cost is strictly positive. First of all, if the dealer’s inventory position is smaller than

the threshold (which is not shown in the plot), he would never choose to participate in

the electronic auction even if he receives an electronic inquiry. Therefore, in this case,

the dealer would always prefer voice trading only. More interestingly, as shown in the

plot, even if the inventory position is greater than the threshold, as long as it is not

sufficiently large, the dealer would still prefer voice trading only. The intuition is that,
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Figure 3.4: Dealer’s Expected Gain under the Two Market Structures. Model parame-
ters: µ = 10, θ = 3, σ2 = 1, L = 4, R = 5, C = 5, N = 50, δ has a uniform distribution
between 0 and 1, and I has a scaled beta distribution with a = b = 1.5.

with a close-to-threshold inventory position, the dealer’s probability of winning the

electronic auction remains close to zero. As a result, the dealer’s expected gain from

the electronic trading (which is close to zero) can not compensate his relative losses

in the voice trading as discussed above. As the inventory position becomes sufficiently

large, dealer’s incentive to offload his inventory would be so strong that his chance

to win the electronic auction would become much higher (by quoting a better price)

and consequently, his expected gain from the electronic trading would be larger. Thus,

dealers with large enough inventory position would prefer the market structure with

both electronic and voice trading. The same conclusion holds even if the participation

cost is zero, as shown in the right-hand-side plot of Figure 3.4.

3.5 Conclusion

Electronic trading in the U.S corporate bond market has become increasingly im-

portant over the past years. This paper studies the effect of adding the fast-growing

electronic trading on top of the traditional voice trading, through the lens of a model
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of strategic trading-platform selection by investors. Empirically, I document that in-

vestors who trade electronically tend to have smaller transaction costs ex-post but,

in the meantime, have to bear a nontrivial execution risk ex-ante, which is costly to

them. Built on these empirical observations, I develop a theoretical model featuring

the trade-off between price improvement and execution delay cost of the electronic

auction.

Within the model, I find that investors tend to receive better prices through elec-

tronic auction than through voice trading when dealers’ inventory position are large.

Then, I show that electronic auction attracts investors with relatively small bargain-

ing powers. Further, the equilibrium market share of electronic trading decreases as

i) dealer’s inventory distribution becomes more concentrated toward the mean and,

ii) dealer becomes less risk-averse. Finally, for dealers’ welfare implication, the model

reveals that, through a mechanism of investors self-selection, adding electronic auction

may not benefit every individual dealer; indeed, those with relatively small balance

sheet capacity would prefer the market structure with voice trading only.
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APPENDIX A

Returns to Scale: Proofs

A.1 Proofs

Proof of Proposition I.1: The first-order-condition to the manager’s problem (1.2)

is

φt(β + 1)(A∗t )
β − 2c1A

∗
t + (µ− c0) = 0 (A.1)

where φt ≡ Êt(θ), i.e., investors’ perception on θ at time t.

First, I show that if µ− c0 ≥ 0, there exists a unique positive solution to Equation

(A.1). Denote f(A∗t ), a function of the equilibrium fund size A∗t , as the left-hand side

of Equation (A.1). When µ − c0 = 0, A∗t =
(φt(β+1)

2c1

) 1
1−β > 0. When µ − c0 > 0,

it is straightforward to see that (i)
∂f(A∗t )

∂A∗t
< 0, (ii) f(0) > 0, and (iii) f(∞) = −∞.

Therefore, there exists a unique positive solution to equation (A.1).

Given that the second-order-condition to the manager’s problem (1.2) is strictly

negative, i.e.,

φtβ(β + 1)(A∗t )
β−1 − 2c1 =

1

A∗t

(
− (1− β)2c1A

∗
t − β(µ− c0)

)
< 0

the unique solution to equation (A.1) is indeed the maximum as wanted. Plugging the

equation (A.1) into f ∗t = (µ−c0)−c1A
∗
t +φt(A

∗
t )
β, we have f ∗t = 1−β

1+β
c1A

∗
t + β

1+β
(µ−c0),

which is always strictly positive.
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Next, I show that A∗t increases in φt, i.e.,

∂A∗t
∂φt

= −
∂f(·)
∂φt
∂f(·)
∂A∗t

=
(β + 1)(A∗t )

β

2c1 − φtβ(β + 1)(A∗t )
β−1

=
(β + 1)(A∗t )

β+1

(1− β)2c1A∗t + β(µ− c0)
> 0 (A.2)

Proof of Negative Subjective Returns to Scale: The subjective returns to scale

evaluated at the equilibrium fund size is given by,

∂Ê(αNett+1)

∂At
|At=A∗t = φtβ(A∗t )

β−1 − c1

=
β

1 + β

(
2c1 −

µ− c0

A∗t

)
− c1

= −c1
1− β
1 + β

− β

1 + β

µ− c0

A∗t
< 0

Proof of Proposition I.2: First, I show that the expected fund net alpha first

increases and then decreases in φt under the objective belief. The (objective) expected

net alpha can be written as

Et
(
αNett+1

)
= µ− (c0 + c1At − θAβt )− f ∗t
= θ(A∗t )

β − φt(A∗t )β

= (θ − φt)(A∗t )β

The second equation follows because Êt
(
αNett+1

)
= µ− (c0 + c1At − φtAβt )− f ∗t = 0.

Thus, we can write:

∂E(αNett+1)

∂φt
= −(A∗t )

β + (θ − φt)β(A∗t )
β−1∂A

∗
t

∂φt

= (A∗t )
β−1
(

(θ − φt)
β(β + 1)(A∗t )

β

2c1 − φtβ(β + 1)(A∗t )
β−1
− A∗t

)
It follows:

∂E(αNett+1)

∂φt
> 0⇔ θ >

1

β
φt +

µ− c0

β(1 + β)(A∗t )
β

⇔ βθ > φt
( 2c1A

∗
t

2c1A∗t − (µ− c0)

)
︸ ︷︷ ︸

h(φt)
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Now, I prove h(φt) is invertible by showing that h(φt) is strictly increasing in φt:

∂h(φt)

∂φt
=

2c1A
∗
t

2c1A∗t − (µ− c0)
+ φt

∂
( 2c1A∗t

2c1A∗t−(µ−c0)

)
(∂φt)

=
φt(1 + β)(A∗t )

β+1

2c1A∗t (1− β) + (µ− c0)β

(1− β)φt(1 + β)(A∗t )
β(

2c1A∗t − (µ− c0)
)2 > 0

Therefore,

∂E(αNett+1)

∂φt
> 0⇔ φt < h−1(βθ)

Because h(φt) > φt, h
−1(βθ) < βθ.

Next, I show the same pattern holds when net alpha is replaced with gross alpha.

The (objective) expected gross alpha can be written as E(αGrosst+1 ) = µ− c0 + θ(A∗t )
β −

c1A
∗
t . Obviously, it is a function of φt and hence, varies with φt.

It follows that

∂E(αGrosst+1 )

∂φt
= θβ(A∗t )

β−1∂A
∗
t

∂φt
− c1

∂A∗t
∂φt

=
∂A∗t
∂φt

(
θβ(A∗t )

β−1 − c1

)
=
∂A∗t
∂φt

( θ
φt

β

1 + β

(
2c1 −

µ− c0

A∗t

)
− c1

)
Therefore,

∂E(αGrosst+1 )

∂φt
> 0⇔ βθ > φt

( (1 + β)c1A
∗
t

2c1A∗t − (µ− c0)

)
︸ ︷︷ ︸

g(φt)≡ 1+β
2
h(φt)

As h(φt) is invertible, g(φt) ≡ 1+β
2
h(φt) is also invertible. Thus,

∂E(αGrosst+1 )

∂φt
> 0⇔ φt < g−1(βθ)

Because g(φt) > φt and g(φt) < h(φt) (as 1+β
2
< 1), h−1(βθ) < g−1(βθ) < βθ.

Proof of Corollary I.3: Proposition I.2 along with the fact that the equilibrium

fund size increases in φt (see Equation A.2) immediately leads to Corollary I.3.
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Proof of Proposition I.4: Recall that xt ≡ θ+ εt where xt = (A∗t−1)−β
(
αNett − (µ−

c0) + c1A
∗
t−1 + f ∗t−1

)
. Suppose investors’ prior on θ follows N(θ0, 1/γ) and the noise

term, εt, is independently distributed through time and follows N(0, 1/ω), where γ is

the precision of prior and ω is the precision of signal uncertainty. Applying the Bayes

rule to xt leads to the investors’ belief updating process as follows:

φt =
γ

γ + tω
θ0 +

tω

γ + tω
x̄t

=
γ + (t− 1)ω

γ + tω
φt−1 +

ω

γ + tω
xt

= φt−1 +
ω

γ + tω

( αNett

(A∗t−1)β

)
(A.3)

The first equality directly follows Theorem 1 in DeGroot (1970, page 167). The second

equality follows by substituting φt−1 = γ
γ+(t−1)ω

θ0 + (t−1)ω
γ+(t−1)ω

x̄t−1. Finally, the last

equality follows because µ− c0 +φt−1(A∗t−1)β − c1A
∗
t−1 = f ∗t−1 given the zero subjective

expected net alpha condition i.e. Ê(αNett−1) = 0.

Proof of Corollary I.5: We can write the percentage change in the equilibrium

fund size as follows:

A∗t − A∗t−1

A∗t−1

≡ A(φt)− A(φt−1)

A(φt−1)

≈
A(φt−1) + A′(φt−1)(φt − φt−1) + A′′(φt−1)

2
(φt − φt−1)2 − A(φt−1)

A(φt−1)

=
A′(φt−1)

(A∗t−1)β+1

( ω

γ + tω

)
αNett +

A′′(φt−1)

2(A∗t−1)2β+1

( ω

γ + tω

)2(
αNett

)2

(A.4)

The approximation follows by the second-order Taylor expansion at φt−1. Note that

A′(φt−1) =
(β + 1)(A∗t−1)β+1

(1− β)2c1A∗t−1 + β(µ− c0)
> 0

A′′(φt−1) =
β(β + 1)(A∗t−1)β(

∂A∗t−1

∂φt−1
)
(

(1− β)2c1A
∗
t−1 + (µ− c0)(1 + β)

)
(
(1− β)2c1A∗t−1 + β(µ− c0)

)2 > 0
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Plugging A′(φt−1) and A′′(φt−1) into equation (A.4), we have

Φ1 =
(β + 1)

(1− β)2c1A∗t−1 + β(µ− c0)

( ω

γ + tω

)
> 0

Φ2 =
β(β + 1)2

(
(1− β)2c1A

∗
t−1 + (µ− c0)(1 + β)

)
(

(1− β)2c1A∗t−1 + β(µ− c0)
)3

( ω

γ + tω

)2

> 0

That is, the percentage change in fund size in positive on both αNett and (αNett )2.

Further notice that given that A′(φt−1) > 0 and A′′(φt−1) > 0, as long as φt − φt−1

increases in αNett (which does not have to be in line with Bayesian updating though),

we still obtain an increasing and convex flow-performance relation.

A.2 Predictions on Returns to Scale when Investors Learn

about c1

In this subsection, I derive predictions on fund-level returns to scale under both

the subjective and objective beliefs when investors learn about the parameter c1 rather

than θ, and show that the predictions remain the same as investors learn about θ.

Solving the equilibrium: The first-order-condition to the manager’s problem (1.2)

now becomes:

θ(β + 1)(A∗t )
β − 2ψtA

∗
t + (µ− c0) = 0 (A.5)

where ψt ≡ Ê(c1).

First, I show that if µ− c0 ≥ 0, there exists a unique positive solution to Equation

(A.5). Denote f(A∗t ), a function of fund size A∗t , as the left-hand side of Equation

(A.5). When µ − c0 = 0, A∗t =
( θ(β+1)

2ψt

) 1
1−β > 0. When µ − c0 > 0, it is easy to check

that (i) f(A) is monotonically decreasing in A, (ii) f(0) > 0, and (iii) f(∞) = −∞.

Therefore, there exists a unique positive solution to equation (A.5).

It follows that f ∗t = 1−β
1+β

ψtA
∗
t + β

1+β
(µ−c0) > 0. Further, the second-order-condition

is strictly negative, i.e.,

θ(β + 1)β(A∗t )
β−1 − 2ψ = −2ψt(1− β)− µ− c0

A∗t
β < 0
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Therefore, the unique solution to equation (A.5) is indeed the maximum as wanted.

Next, I show the equilibrium fund size A∗t decreases in investors’ perception of

c1—that is, ψt:

∂A∗t
∂ψt

= −
∂f(·)
∂ψt
∂f(·)
∂A∗t

= − 2(A∗t )
2

(µ− c0)β + 2ψtA∗t (1− β)
< 0 (A.6)

Subjective Returns to Scale: The subjective returns to scale evaluated at the

equilibrium fund size is strictly negative, i.e.,

∂Ê(αNett+1)

∂At
|At=A∗t = θβ(A∗t )

β−1 − ψt

= −µ− c0

2A∗t
− 1− β

2
θβ(A∗t )

β−1 < 0

Objective Returns to Scale: First, I show that the expected fund net alpha first

increases and then decreases in ψt under the objective belief. The (objective) expected

net alpha can be written as

Et
(
αNett+1

)
= µ− (c0 + c1At − θAβt )− f ∗t
= (ψt − c1)A∗t

The second equation follows because Êt
(
αNett+1

)
= µ− (c0 + ψtAt − θAβt )− f ∗t = 0.

Thus, we can write:

∂E(αNett+1)

∂ψt
= A∗t + (ψt − c1)

∂A∗t
∂ψt

= A∗t

(
1 + (c1 − ψt)

2A∗t
2ψtA∗t (1− β) + (µ− c0)β

)
It follows:

∂E(αNett+1)

∂ψt
> 0⇔ c1

β
> ψt −

µ− c0

2A∗t︸ ︷︷ ︸
h(ψt)
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Now, I prove h(ψt) is invertible by showing that h(ψt) is strictly increasing in ψt:

∂h(ψt)

∂ψt
= 1 +

µ− c0

2(A∗t )
2

∂A∗t
∂ψt

=
(1− β)θ(β + 1)(A∗t )

β

2ψtA∗t (1− β) + (µ− c0)β
> 0

Therefore,

∂E(αNett+1)

∂ψt
> 0⇔ ψt < h−1

(c1

β

)
Note that h−1

(
c1
β

)
> c1

β
> c1 as ψt > h(ψt).

Next, I show the same pattern holds when gross alpha replaces net alpha. The

(objective) expected gross alpha can be written as E(αGrosst+1 ) = µ− c0 + θ(A∗t )
β − c1A

∗
t .

It follows that

∂E(αGrosst+1 )

∂ψt
= −c1

∂A∗t
∂ψt

+ θβ(A∗t )
β−1∂A

∗
t

∂ψt

=
∂A∗t
∂ψt

(
θβ(A∗t )

β−1 − c1

)
=
∂A∗t
∂ψt︸︷︷︸
<0

( 2β

1 + β
(ψt −

µ− c0

2A∗t
)− c1

)

It follows:

∂E(αGrosst+1 )

∂ψt
> 0⇔ 1 + β

2β
c1 > ψt −

µ− c0

2A∗t︸ ︷︷ ︸
h(ψt)

⇔ ψt < h−1
(1 + β

2β
c1

)
Note that h−1

(
c1
β

)
> h−1

(
1+β
2β
c1

)
> 1+β

2β
c1 > c1.

Given that A∗t decreases in ψt, i.e.
∂A∗t
∂ψt

< 0, it follows that both expected gross and

net alpha first increase and then decrease in the equilibrium fund size. (When ψt is

small, A∗t is large and meanwhile, A∗t decreases in ψt. Thus, a positive relation between

ψt and expected fund alpha when ψt is small translates into a negative relation between

A∗t and expected fund alpha when A∗t is large. By the same token, a negative relation
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between ψt and expected fund alpha when ψt is large translates into a positive relation

between A∗t and expected fund alpha when A∗t is small. Putting together, the expected

fund alpha is hump-shaped in the equilibrium fund size.)

130



APPENDIX B

Returns to Scale: Additional Results

B.1 Details on Recursive Demeaning Estimators

In this subsection, I describe the recursive demeaning (RD) procedure, following

Pastor, Stambaugh, and Taylor (2015) and Zhu (2018).

Let’s start with the standard fixed effects model,

Alphaj,t = aj + βFundSizej,t−1 + θIndSizet−1 + γXj,t−1 + ej,t (B.1)

where aj stands for fund fixed effects, FundSizet−1 is the log of fund’s total net assets

(TNA), and IndSizet−1 is the sum of TNA for all relevant bond funds scaled by

amounts of outstanding of all corresponding bonds. Xj,t−1 represents fund-level time-

varying controls, which include log of fund age (in years), fund expense ratio, turnover

ratio, and realized return volatility in the past 12 months.

As in Pastor, Stambaugh, and Taylor (2015), for a given variable xj,t, I define its

backward-demeaned counterpart, xj,t, for t = 2, · · · , Tj, as

xj,t ≡ xj,t −
1

t− 1

t−1∑
s=1

xj,s

Similarly, forward-demeaned variables are defined as

x̄j,t ≡ xj,t −
1

Tj − t+ 1

Tj∑
s=t

xj,s
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First applying the recursively forward-demeaning procedure to variables on both sides

of equation (B.1), we end up with the following,

Alphaj,t = βFundSizej,t−1 + θIndSizet−1 + γXj,t−1 + ēj,t (B.2)

Then, I estimate equation (B.2) with an instrumental variable approach where I use

FundSizej,t−1 as the instrument for FundSizej,t−1 because FundSizej,t−1 and ēj,t are

correlated by construction.1

B.2 Returns to Scale among High-yield Bond Funds

In this subsection, I examine the pattern of fund-level returns to scale among U.S.

high-yield bond funds whose Lipper objective code is “HY”. The sample includes 245

such funds, covering the period between January 1991 and March 2017. Since none

of the four bond market index funds (VBMFX, VBISX, VBIIX, and VBLTX) used to

construct the benchmark for corporate bond funds contain high-yield bonds, I instead

choose Vanguard High-Yield Corporate Fund (VWEHX) as the benchmark for high-

yield bond funds (the “one-factor” benchmark). For robustness, I also include both

VWEHX and Vanguard 500 Index Fund (VFINX) in the benchmark (the “two-factor”

benchmark). Other than the benchmark composition, the empirical specification here

is identical to the one used in Table 1.2.

Table B.1 presents the results. I stat with a quadratic specification. As shown in

Column (i) of Panel A, I find a statistically significant hump-shaped relation between

fund size and subsequent fund gross alpha. The point estimates on FundSize and

FundSize2 suggest a turning point at a fund size of $454 million (e
0.0245

2×0.0020 ≈ 454).

Interesting, the turning point is close to the one for corporate bond funds. Turning

a piecewise linear specification with a turning point at $454 million implied by the

quadratic specification, the result confirms a hump-shaped pattern of return to scale,

as shown in Column (i) of Panel B.

Note that the finding of hump-shaped pattern of returns to scale are robust to the

case where the fund alpha is calculated instead using the “two-factor” benchmark, as

shown in Column (iii) and (iv). In addition, the same hump-shaped pattern holds

when fund performance is evaluated by net alpha, as present in Panel B.

1Unlike in Pastor, Stambaugh, and Taylor (2015) where intercept is not included in their first-stage
regression, I include both the intercept and FundSizej,t−1 in the first-stage regression as suggested in
Zhu (2018).
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In sum, the above findings suggest the pattern of fund-level returns to scale among

high-yield bond funds is hump-shaped, similar to the one documented among corporate

bond funds.

B.3 Returns to Scale: Alternative Benchmarks

In this subsection, I re-estimate the relation between fund size and subsequent fund

alpha among corporate bond funds using a quadratic specification with four different

benchmarks: (1) One-factor benchmark includes only VBMFX; (2) two-factor bench-

mark includes both VBMFX and VFINX; (3) five-factor benchmark contains VBMFX,

VFINX, VBISX, VBIIX, VBLTX; and finally (4) risk-factor benchmark consists of

short rate factor (three-month Treasury-bill rate), slope factor (ten-year Treasury rate

- one-year Treasury rate), curvature factor (two-year Treasury rate + ten-year Treasury

rate - 2×five-year Treasury rate), and default risk factor (BAA-rated corporate bond

yield - AAA-rated corporate bond yield).

The results are reported in Table B.2. As can be seen, across different choices

of the benchmark composition, the relation between fund size and subsequent fund

performance is always significantly hump-shaped, consistent with the baseline case

(where four bond market index funds are included in the benchmark).

B.4 Estimating the Average Trade Size

In this subsection, I describe how I estimate the average trade size for fund j in

month t using the monthly holding data from CRSP. Denote pi,t as bond i’s price in

month t, and ni,j,t as fund j’s position on bond i in month t. Further denote I as the

set of trades in which case ni,j,t does not equal ni,j,t−1, and N as the number of trades.

Thus, given the two assumptions mentioned in the main text, the average trade size

for fund j in month t is calculated as follows

AverageTradeSizej,t =
1

N

∑
k∈I

|pk,tnk,j,t − pk,t−1nk,j,t−1|

B.5 Details on Electronic Trading in Corporate Bond Market

In this subsection, I provide details on how I estimate the relation between trade

size and the unit transaction cost.
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Table B.1: Returns to Scale: High-yield Bond Funds

This table replicates the returns-to-scale results shown in Table 1.2, but using U.S. high-yield bond
funds defined with Lipper objective codes being “HY” (excluding index funds, ETFs and ETNs). The
sample includes 245 such funds, from January 1991 to March 2017. The dependent variable is either
fund gross alpha or net alpha, estimated over the previous 36 months. “One-factor” is the benchmark
only with VWEHX (Vanguard High-Yield Corporate Funds); “two-factor” is the benchmark with both
VWEHX and VFINX. FundSize Smallt−1 and FundSize Larget−1 are linear splines constructed
from FundSizet−1 with the knot implied by the corresponding quadratic specification. In particular,

FundSize Smallt−1 = min(FundSizet−1, k)

FundSize Larget−1 = max(FundSizet−1, k)− k

where k is the corresponding knot. Time-varying fund-level controls include: lagged log of fund age

(in years), lagged fund expense ratio, lagged turnover ratio, and lagged realized return volatility in the

past 12 months. In the parentheses, I report the standard errors clustered by both fund and month.

One-factor Two-factor

GrossAlphat NetAlphat GrossAlphat NetAlphat
(i) (ii) (iii) (iv)

Panel A: Quadratic specification

FundSizet−1 0.0245 0.0239 0.0266 0.0261
(0.0085) (0.0084) (0.0092) (0.0090)(

FundSizet−1

)2
-0.0020 -0.0020 -0.0021 -0.0021
(0.0008) (0.0008) (0.0008) (0.0008

IndustrySizet−1 -0.0003 -0.0003 -0.0004 -0.0004
(0.0008) (0.0007) (0.0008) (0.0008)

Observations 24579 24579 24579 24579

Panel B: Piece-wise linear specification

FundSize Smallt−1 0.0082 0.0080 0.0089 0.0087
(0.0025) (0.0025) (0.0027) (0.0027)

FundSize Larget−1 -0.0067 -0.0065 -0.0072 -0.0070
(0.0036) (0.0035) (0.0040) (0.0039)

IndustrySizet−1 -0.0005 -0.0005 -0.0006 -0.0006
(0.0007) (0.0006) (0.0007) (0.0007)

Observations 24579 24579 24579 24579
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Table B.2: Returns to Scale: Alternative Benchmarks

This table replicates the returns-to-scale results shown in Table 1.2, but using different benchmarks

to estimate fund alpha. The dependent variable is either gross alpha (Panel A) or net alpha (Panel

B), estimated over the previous 36 months. “One-factor” is the benchmark with only VBMFX; “two-

factor” is the benchmark with both VBMFX and VFINX; “five-factor” is the benchmark with five

index funds (VBMFX, VFINX, VBISX, VBIIX, and VBLTX); and “risk-factor” is short-rate factor

(three-month Treasury bill rate), slope factor (ten-year Treasury rate − one-year Treasury rate),

curvature factor (two-year Treasury rate + ten-year Treasury rate − 2×five-year Treasury rate), and

default risk factor (BAA-rated corporate bond yield − AAA-rated corporate bond yield). In the

parentheses, I report the standard errors clustered by both fund and month.

One-factor Two-factor Five-factor Risk-factor
(i) (ii) (iii) (iv)

Panel A: GrossAlphat as dependent variable

FundSizet−1 0.0070 0.0072 0.0081 0.0127
(0.0018) (0.0018) (0.0019) (0.0027)(

FundSizet−1

)2
-0.0005 -0.0006 -0.0007 -0.0009
(0.0002) (0.0002) (0.0002) (0.0003)

IndustrySizet−1 0.0003 0.0002 0.0003 0.0007
(0.0001) (0.0001) (0.0001) (0.0001)

Observations 71905 71897 67209 71905

Panel B: NetAlphat as dependent variable

FundSizet−1 0.0069 0.0072 0.0081 0.0126
(0.0018) (0.0018) (0.0020) (0.0027)(

FundSizet−1

)2
-0.0005 -0.0006 -0.0007 -0.0009
(0.0002) (0.0002) (0.0002) (0.0003)

IndustrySizet−1 0.0003 0.0002 0.0003 0.0007
(0.0001) (0.0001) (0.0001) (0.0001)

Observations 71942 71934 67246 71942
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The electronic trading data are provided by MarketAxess, a leading electronic plat-

form provider in the U.S corporate bond market.2 The sample covers the period from

January 2014 to December 2015. The data contains detailed information on each elec-

tronic inquiry submitted by bond investors, including the number of dealers quired,

the inquiry size and direction, the quote from each responding dealer, an indicator of

whether the inquiry leads to trade, and the transaction price if so. One novelty of the

MarketAxess data is that it contains investors’ (anonymous) identities. I further sup-

plement the MarketAxess data with details on all customer-to-dealer corporate bond

transactions, including both voice and electronic trades, from Trade Reporting and

Compliance Engine (TRACE). Also, I obtain reference information on all corporate

bonds, including ratings, coupon, maturity, and issue size, from Mergent FISD.

I define the unit transaction cost as the percentage difference between the trade

price and the benchmark following Hendershott and Madhavan (2015), i.e.

Unit Transaction Cost =
TradePrice− Benchmark

Benchmark
× Trade Direction

where Trade Direction equals 1 if the investor is buying and -1 otherwise. Intuitively,

the unit transaction cost defined above captures the premium that investors pay for the

intermediation. For trades that I can identify their immediate offsets, I use the price

on the offsetting leg to construct the benchmark.3 Otherwise, I follow Hendershott and

Madhavan (2015) and take the last inter-dealer price as the benchmark.

Table B.3 presents the summary statistics. Over the sample period, around 16

thousands different investment grade bonds were traded, among which about 11 thou-

sand were covered by MarketAxess. In terms of market share, MarketAxess accounts

for about 24% of total number of trades and roughly 30% of total trading volume.4 For

trading costs, as an example, the average unit transaction cost for an odd-lot trade on

2According to Greenwich Associates (2015), MarketAxess is the dominate player in electronic
trading of US investment-grade bonds with an estimated market share of 75%. The other players
are Bloomberg FIT and Tradeweb with estimated market shares being 20% and 5%, respectively.
Therefore, it is reasonable to think of the data from MarketAxess is representative of overall electronic
trading in the U.S corporate bond market.

3I treat the trade that occurred right after the original transaction (within the same day) with
the same quantity and opposite direction as the offsetting leg. To construct the benchmark, I use
the trade price of the offsetting leg as the benchmark if the offsetting leg is an inter-dealer trade.
Otherwise, I compute the benchmark as the average price of the pair of two offsetting trades.

4Trade sizes from MarketAxess and TRACE are masked for trades whose sizes are $5 million and
above (“Mega” trades). Thus, I report the average trade volume only for those ”non-Mega” trades.
The same rule applies to the average trade size.
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Table B.3: Summary Statistics: MarketAxess vs. TRACE

The sample period is from January 2014 to December 2015. Given that MarketAxess only

include customer-to-dealer trades, I restrict my attention to the customer-to-dealer transac-

tions on TRACE as well. The unit transaction cost is defined as TradePrice - Benchmark
Benchmark ×Trade

Direction×100%, where Trade Direction equals 1 if the client is buying and -1 otherwise, and

Benchmark equals the price on the offsetting leg, if any, and otherwise, the last inter-dealer

price.

Electronic (MarketAxess) Overall (TRACE)

Number of Bonds 10,812 15,677

Number of Trades 1,730,830 7,261,147

Client Buy 744,220 4,080,358
Client Sell 986,610 3,180,789

Average Daily Volume (in billions) 1.46 4.90

Client Buy 0.62 2.59
Client Sell 0.84 2.31

Average Trade Size (in thousands) 425 349

Client Buy 418 327
Client Sell 430 379

Unit transaction cost (in bps)

Micro (1-100K) 13.1 46.9
Odd (100K-1MM) 13.3 19.2
Round (1-5MM) 10.6 9.6

MarketAxess is about 13 bps, or 0.13% of the notional value.

Table B.4 reports the results on how the unit transaction cost changes as trade size

varies. Consistent with the literature, as shown in Column (i), the relation between

trade size and the unit transaction cost is U-shaped when only time fixed effects (FE)

are included. The point estimates on TradeSize and TradeSize2 suggest a turning

point at a trade size of $2.45 million ( 0.0319
2×0.0065

≈ 2.45), which is fairly large given the

average trade size is about $425K. Then, to control for potential client effect, I first

add investor fixed effects. As Column (ii) shows, with both time and investor FE, the

relation between trade size and unit transaction cost remains U-shaped. Further, by

replacing week + investor FEs with week × investor FE, I find that, given an investor

in a given week, the unit transaction cost again first decreases and then increases in

trade size, as is shown in Column (iii). Taken together, the above evidence suggests
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Table B.4: Relation between Trade Size and the Unit Transaction Cost on MarketAxess

The sample period is from 1/1/2014 to 12/31/2015. The dependent variable is the unit trans-

action cost, defined as TradePrice - Benchmark
Benchmark ×Trade Direction×100%, where Trade Direction

equals 1 if the client is buying and -1 otherwise, and Benchmark equals the price on the

offsetting leg, if any, and otherwise, the last inter-dealer price. Trade size is in million dol-

lars. Time-varying bond-specific controls include time to maturity, time since initial offering,

rating, and offering amount. In the parentheses, I report the standard errors clustered by

both week and bond.

(i) (ii) (iii)

Trade Size -0.0319 -0.0339 -0.0296
(0.0055) (0.0053) (0.0065)

(Trade Size)2 0.0065 0.0068 0.0060
(0.0013) (0.0012) (0.0014)

Week FE Y Y N
Investor FE N Y N
Week × Investor FE N N Y

Observations 1,408,379 1,408,379 1,405,628
Adjusted R2 0.017 0.020 0.051

that it is trade size itself—rather than the potential clientele effect that trade size may

approximate—that matters for the unit transaction cost for any given corporate bond

investor.

B.6 A Replication of Goldstein, Jiang, and Ng (2017) on

Flow-performance Sensitivity

In this subsection, I aim to understand what might lead Goldstein, Jiang, and

Ng (2017) to document a concave flow-performance sensitivity among corporate bond

mutual funds. I start with replicating their main result, i.e., Column (i) of Table 2.

Following Goldstein, Jiang, and Ng (2017), I include two index funds in the benchmark,

i.e., aggregate bond market and aggregate stock market index funds, when estimating

fund alpha. Also, as in Goldstein, Jiang, and Ng (2017), I adopt a piecewise linear

specification with a kink at zero net alpha (instead of a quadratic specification used in

the main analysis). Lastly, I include the same set of fund-level controls as in Goldstein,
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Jiang, and Ng (2017): lagged log of total net assets, lagged fund flow, lagged log of

fund age (in years), lagged expense ratio, and an indicator variable that equals one if

the fund charges rear loads in the last period and zero otherwise.

Column (i) of Table B.5 represents the closest possible specification relative to

Goldstein, Jiang, and Ng (2017). Consistent with their finding, the interaction term,

i.e. Alpha×1Alpha<0, is positive and statistically significant, suggesting a concave flow-

performance sensitivity. The same conclusion continues to hold when I further add

fund fixed effects (FE) and cluster the standard errors at both fund and month level

(both of which are reasonable modifications of the original specification in Goldstein,

Jiang, and Ng (2017)), as Column (2) and (3) show.

Next, I modify the original specification in Goldstein, Jiang, and Ng (2017) by

replacing month FE with “month × sector” FE—investment-grade (IG) and high-

yield (HY) sector—to control for any sector-specific unobservable variables which may

affect different bond funds within the sector (e.g., investors’ overall preference for IG

bond funds).

As shown in Column (4), when “month×sector” FE is included, the point estimate

of the interaction term, i.e. Alpha×1Alpha<0, becomes negative and statistically in-

significant, indicating no evidence of a concave flow-performance sensitivity. The same

conclusion holds when I add fund FE and cluster the standard errors at both fund and

month level, as Column (5) and (6) show.

Moreover, when I repeat the above exercise for IG and HY bond funds separately, as

shown in Table B.6, I do not find any evidence of a concave flow-performance sensitivity

in either subsample, which is consistent with the above finding with month×sector FE.

B.7 Flow-performance Sensitivity with Return Decomposi-

tion

In this subsection, I decompose fund excess returns into two parts—benchmark-

adjusted (alpha) and benchmark-related (fund’s exposures to the benchmark × bench-

mark excess returns)—and examine how corporate bond fund flows respond to the two

components. In particular, I run the following panel regression:

Flowj,t = a+ θNetAlphaj,t + ψ

4∑
i=1

βj,iri,t−1 + γXj,t + µt + δj + ej,t (B.3)
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where βj,i is estimated loading on each of the four index funds included in the bench-

mark, i.e. VBMFX, VBISX, VBIIX, and VBLTX, ri,t−1 corresponds to the excess

return of these four index funds, µt stands for time fixed effects, and δj is fund fixed

effects. The time-varying fund-level controls, Xj,t, includes: lagged log of fund total

net assets, lagged fund turnover, lagged log of fund age (in years), lagged fund expense

ratio, lagged realized return volatility in the past 12 months, and lagged fund flow. In

addition, I run a similar panel regression with four individual components, βj,iri,t−1 for

i = 1, · · · , 4, rather than just one aggregate component
∑4

i=1 βj,iri,t−1.

I report the results in Table B.7. As shown in Column (i), flows not only respond

positively to the fund net alpha, which they should, but also to the benchmark-related

returns, which they shouldn’t. This evidence suggests that fund investors are confused

the fund alpha when allocating their capital. In terms of which component(s) of the

benchmark-related returns investors respond most strongly to, the total market com-

ponent (VBMFX) and the short-term component (VBISX) appear to stand out, as

shown in Column (ii).
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Table B.5: A Replication of Goldstein, Jiang, and Ng (2017): Flow-performance Sen-
sitivity

This table aims to replicate the main result in Goldstein et al. (2017), i.e. Column (1) of Table 2,
with various specifications. The sample includes both investment-grade and high-yield bond mutual
funds, from January 1991 to March 2017. The unit of observation is fund-month. The dependent
variable is the monthly net fund flow, defined as

Flowjt =
TNAj,t − TNAj,t−1(1 +Rjt)

TNAj,t−1

where TNAj,t is the total net assets for fund j in month t and Rjt is the fund j’s net return in month

t. As in Goldstein et al. (2017), Alpha refers to net alpha estimated from 36-month rolling regressions

with two factors—the aggregate bond market and the aggregate stock market factor, 1Alpha<0 is an

indicator variable whose value equals one if Alpha is negative and zero otherwise, and fund-level time-

varying controls include lagged log of total net assets, lagged proportional fund flow, lagged log of

fund age (in years), lagged fund expense ratio, and an indicator variable that equals one if the fund

charges rear loads in the last period and zero otherwise. I report standard errors in the parentheses.

(1) (2) (3) (4) (5) (6)

Alpha 0.16 0.09 0.09 1.91 1.79 1.79
(0.14) (0.16) (0.32) (0.30) (0.33) (0.35)

Alpha×1Alpha<0 0.92 1.12 1.12 -0.46 -0.23 -0.23
(0.24) (0.25) (0.42) (0.44) (0.42) (0.44)

1Alpha<0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Month FE Y Y Y N N N

Month×Sector FE N N N Y Y Y

Fund FE N Y Y N Y Y

Cluster at Fund Level Y Y N Y Y N

Two-way Cluster at Fund & Month N N Y N N Y

Observations 93489 93479 93479 93489 93479 93479
Adjusted R2 0.162 0.188 0.188 0.193 0.219 0.219
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Table B.6: A Replication of Goldstein, Jiang, and Ng (2017): Flow-performance Sen-
sitivity in IG and HY subsamples

This table aims to replicate the main results in Goldstein et al. (2017) in two subsamples: Investment
Grade (IG) bond and High Yield (HY) bond funds. The sample is from January 1991 to March 2017.
The unit of observation is fund-month. The dependent variable is the monthly net fund flow, defined
as

Flowjt =
TNAj,t − TNAj,t−1(1 +Rjt)

TNAj,t−1

where TNAj,t is the total net assets for fund j in month t and Rjt is the fund j’s net return in month

t. As in Goldstein et al. (2017), Alpha refers to net alpha estimated from 36-month rolling regressions

with two factors—the aggregate bond market and the aggregate stock market factor, 1Alpha<0 is an

indicator variable whose value equals one if Alpha is negative and zero otherwise, and fund-level time-

varying controls include lagged log of total net assets, lagged proportional fund flow, lagged log of

fund age (in years), lagged fund expense ratio, and an indicator variable that equals one if the fund

charges rear loads in the last period and zero otherwise. I report standard errors in the parentheses.

IG Bond Funds Only HY Bond Funds Only

(1) (2) (3) (4) (5) (6)

Alpha 1.85 1.73 1.73 2.07 1.95 1.95
(0.50) (0.59) (0.62) (0.35) (0.37) (0.40)

Alpha×1Alpha<0 -0.62 -0.18 -0.18 -0.35 -0.30 -0.30
(0.66) (0.75) (0.77) (0.51) (0.50) (0.53)

1Alpha<0 -0.01 -0.01 -0.01 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Month FE Y Y Y Y Y Y

Fund FE N Y Y N Y Y

Cluster at Fund-level Y Y N Y Y N

2-way Cluster at Fund & Month N N Y N N Y

Observations 69739 69730 69730 23750 23749 23749
Adjusted R2 0.173 0.199 0.199 0.247 0.269 0.269

142



Table B.7: Flow-performance Sensitivity with Return Decomposition

This table shows the flow-performance sensitivity for U.S. corporate bond mutual funds from January
1991 to March 2017 (excluding money market funds, index funds, ETFs, and ETNs). The dependent
variable is monthly net fund flow, defined as:

Flowjt =
TNAj,t − TNAj,t−1(1 +Rjt)

TNAj,t−1

where TNAj,t is the total net assets for fund j in month t and Rjt is the fund j’s net return in month

t. VBMFX component is defined as the product of estimated loading on VBMFX and realized excess

return of VBMFX. Same definition applies to VBISX, VBIIX, and VBLTX.
∑4
i=1 βj,iri,t−1 is the

sum of these four components. The time-varying fund-level controls include lagged log of fund total

net assets, lagged fund turnover, lagged log of fund age (in years), lagged fund expense ratio, lagged

realized return volatility in the past 12 months, and lagged fund flow. In the parentheses, I report the

standard errors clustered by both month and fund.

(i) (ii)

Net Alpha 2.25 2.31
(0.59) (0.68)∑4

i=1 βj,iri,t−1 0.93
(0.30)

VBMFX component 0.81
(0.34)

VBISX component 1.22
(0.31)

VBIIX component 0.46
(0.29)

VBLTX component 0.25
(0.30)

Fund FE Y Y

Month FE Y Y

Observations 65109 65109
Adjusted R2 0.204 0.204
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APPENDIX C

FOMC: Additional Results and Related Derivations

C.1 Evolution of Perceived Law of Motion Parameters

We illustrate the experience-based belief-updating mechanism by showing how indi-

viduals’ estimates of the parameters of the perceived law of motion (2.1) evolve over

time. Figure C.1 presents the estimates of persistence (autocorrelation) φ1 and of the

long-run mean inflation rate µ = α
1−φ1−φ4+φ5

obtained from the learning algorithm de-

scribed in the main text with θ = 3.044, separately for individuals of a few selected

ages, 45, 60, and 75.

As the figure shows, the perceived mean rises until 1980 and then declines, while

the path of perceived persistence is flatter but also increases around 1980 and then

drops dramatically after 2000. Both graphs reveal that the assessments of younger

individuals are more volatile than those of older individuals: In 1980s, younger indi-

viduals perceived a higher mean than older individuals, while after 2000, the perceived

mean of younger individuals falls below that of older individuals. The same pattern

also holds for the perceived persistence.
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Figure C.1: Mixed Seasonal AR(1) Model Estimates (with θ = 3.044 at ages 45, 60,
and 75)
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C.2 First-order Taylor approximation of the Subjective Tay-

lor Rule

We start from the subjective Taylor rule in equation (2.9) and substitute the linear

specifications in (2.10) to obtain

ij,t = r + (xj,t − µx)′α3 + π∗ + (xj,t − µx)′α1

+
(
λ0 + (xj,t − µx)′λ1

)[
ωπej,t+t|t + (1− ω)πt − π∗ − (xj,t − µx)′α1

]
+
(
γ0 + (xj,t − µx)′γ1

)[
yt − y∗ − (xj,t − µx)′α2

]
. (C.1)

We then perform a first-order Taylor approximation of ij,t as a function of (πej,t+1|t, x
′
j,t)

around (πt, µ
′
x), which yields

ij,t ≈ r + π∗ + λ0(πt − π∗) + γ0(yt − y∗) + (πej,t+1|t − πt)ωλ0

+ (xj,t − µx)′ [α3 + α1 − λ0α1 − γ0α2 + λ1(πt − π∗) + γ1(yt − y∗)] . (C.2)

We can rewrite this expression as

ij,t ≈ a0 + [λ0(1− ω)− µ′xλ1] πt + (γ0 − µ′xγ1)(yt − y∗)

+ λ0ωπ
e
j,t+1|t + κ′xj,t + πtx

′
j,tλ1 + (yt − y∗)x′j,tγ1, (C.3)

where

a0 = r + π∗(1− λ0)− µ′x(α3 + α1 − λ0α1 − γ0α2 − λ1π
∗),

κ = α3 + α1 − λ0α1 − γ0α2 − π∗λ1.

Denoting the first three terms on the right-hand side of (C.3) as at, we obtain equation

(2.11) in the main text. Defining

β0 = a0, βe = λ0ω, βπ = λ0(1− ω)− µ′xλ1, βy = γ0 − µ′xγ1, (C.4)

and averaging across FOMC members at meeting time t yields equation (2.15) in the

text.
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C.3 Vote Sample Construction

Our sample of FOMC votes starts in 1951, after the official reinstatement of the Federal

Reserve Bank’s independence in the Treasury-Federal Reserve agreement of March

4, 1951. During our sample period from March 1951 to January 2014, eight Fed

Chairmen lead the FOMC: McCabe (4/1948 to 4/1951), Martin (4/1951 to 1/1970),

Burns (2/1970 to 3/1978), Miller (3/1978 to 8/1979), Volcker (8/1979 to 8/1987),

Greenspan (8/1987 to 1/2006), and Bernanke (2/2006 to 1/2014).

The data set is constructed from two main sources. First, for meetings before Jan-

uary 1966 and after January 1997, we collect information on the votes from the FOMC

meeting statements available at http://www.federalreserve.gov/monetarypolicy/

fomccalendars.htm. Second, for meetings between January 1966 and December 1996,

we use the data from Chappell, McGregor, and Vermilyea (2005), available at http:

//professorchappell.com/Data/Book/index.htm. In this latter data, we correct one

coding error: In the meeting on 11/5/1985, governor Seger cast a dovish dissent (−1);

the original data set had her vote coded as consent (0).

We also note several discrepancies between our sample and the data employed by

Thornton and Wheelock (2014) in their analysis of votes in the Federal Reserve Bank

of St. Louis Review:

• For the meeting on 10/3/1961, the Fed Review data records one dissent. We find

no dissent reported in the meeting minutes.

• For the meeting on 2/9/1983, the Fed Review data records one dissent. We find

four dissents reported in the minutes.

• Other discrepancies reflect dissents that occurred in conference calls (no separate

Record of Policy Actions was released), which are not included in our sample.

Our sample does include nine conference calls (94 total votes and 2 dissents), after

which a separate Record of Policy Actions/Statement was available. We exclude

those from the baseline sample. Including them does not alter the results.

We further exclude five votes by the two members who voted less than five times during

their tenure with the FOMC, Paul Miller and Jamie Stewart. Mr. Miller only had one

vote because he died in office (on Oct. 21, 1954), less than three month after he was

appointed to the Board of Governors (on Aug. 13, 1954). Mr. Stewart cast four votes

as the acting governor, when he was the first vice president of New York Fed, from

147

http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm
http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm
http://professorchappell.com/Data/Book/index.htm
http://professorchappell.com/Data/Book/index.htm


June through December 2003, during which the position of New York Fed president

was vacant after McDonough resigned in 2003 and before his successor Geithner took

place in Nov. 2003.

After the above corrections (and excluding votes from conference calls), our sample

contains 160 dovish dissents, 265 hawkish dissents, and 8 un-codeable dissents between

3/8/1951 to 1/29/2014.1 The eight un-codeable dissents are as follows:

• In the 12/19/1961 meeting, Robertson dissented with the reason explained as

follows: “While Mr. Robertson’s analysis of the economic situation and the

proper direction of policy was the same in its essentials as that of the major-

ity, he voted against adoption of this directive on the grounds that it was unde-

sirable to tie monetary policy to the bill rate.” See www.federalreserve.gov/

monetarypolicy/files/fomcropa19611219.pdf.

• In the 7/30/1963 meeting, Bopp dissented with the reason explained as follows:

“Mr. Bopp stated that he had voted favorably on the policy directive at the July

9 meeting because it seemed to him that the use of the different instruments of

monetary policy should be consistent and an increase in the discount rate was then

imminent. Under such circumstances, it had seemed undesirable to reverse what

had taken place in terms of yields only to reverse again. His vote, therefore, was

essentially a vote on tactics. As to the future, it was still an open question whether

short-term rates could be maintained at the new levels, and reserve availability

at the old. Under these conditions, he agreed with the view that it would be

desirable to maintain essentially an even keel for the time being, and to supply

reserves through purchases of coupon issues, selling bills if necessary. In his

opinion, emphasis should be placed on the availability of reserves.” See www.

federalreserve.gov/monetarypolicy/files/fomchistmin19630730.pdf.

• In the 12/12/1967 meeting, Maisel dissented with the reason explained as fol-

lows: “Mr. Maisel dissented from this action in part because he thought the

directive was susceptible to an interpretation under which growth in member bank

reserves and bank deposits would be slowed too abruptly, and perhaps succeeded

by contraction. He favored seeking growth rates in reserves, deposits, and bank

credit considerably below the average rates thus far in 1967, but still high enough

1There are 13 additional dissents that occurred between 1936 and 1950, and two dissenting votes
were cast during the nine conference calls in our sample. Neither are included in our data.
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to facilitate expansion in GNP at a somewhat faster rate than had prevailed on

average in the first three quarters of the year. He noted that whether or not in-

terest rates would rise further under the course he advocated would depend upon

the strength of market demands for funds in relation to the supplies that would

be available under such a Committee policy. Mr. Maisel also thought that the

statement of the Committee’s general policy stance contained in today’s direc-

tive had far too narrow a focus; in particular, he objected to the omission of

reference to the basic policy goal of facilitating sustainable economic expansion.

This omission resulted from the substitution of language stating that it was the

Committee’s policy “to foster financial conditions conducive to resistance of in-

flationary pressures and progress toward reasonable equilibrium in the country’s

balance of payments” for the language of other recent directives stating that it

was the Committee’s policy “to foster financial conditions, including bank credit

growth, conducive to sustainable economic expansion, recognizing the need for rea-

sonable price stability for both domestic and balance of payments purposes.” See

www.federalreserve.gov/monetarypolicy/files/fomcropa19671212.pdf.

• In the 1/11/1972 meeting, Brimmer dissented with the reason explained as fol-

lows: “Mr. Brimmer shared the majority’s views concerning broad objectives of

policy at this time, and he indicated that he would have voted favorably on the

directive were it not for the decision to give special emphasis to total reserves as

an operating target during coming weeks. In his judgment the Committee should

have had more discussion of the implications of that decision, and in any case it

should have postponed the decision until after it had held a contemplated meet-

ing to be devoted primarily to discussion of its general procedures with respect

to operating targets.” See www.federalreserve.gov/monetarypolicy/files/

fomcropa19720111.pdf.

• In the 7/17/1973 meeting, Francis dissented with the reason explained as fol-

lows: “Mr. Francis dissented from this action not because he disagreed with

the objectives of the policy adopted by the Committee but because he believed

that—as had proved to be the case following other recent meetings—the objectives

would not be achieved because of the constraint on money market conditions.” See

www.federalreserve.gov/monetarypolicy/files/fomcropa19730717.pdf.

• In the 7/20/1976 meeting, Volcker dissented with the reason explained as follows:
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“Mr. Volcker dissented from this action because in the present circumstances

he would not wish to raise or lower the Federal funds rate by as much as 1/2

of a percentage point—a change that might be interpreted as a strong signal of

a change in policy and that could have repercussions in financial markets—in

response merely to short-term fluctuations in the monetary aggregates that might

well prove transient.” See www.federalreserve.gov/monetarypolicy/files/

fomcropa19760720.pdf.

• In the 12/22/1981 meeting, Soloman dissented with the reason explained as

follows: “Mr. Solomon dissented from this action because he felt it was par-

ticularly important at the beginning of an annual target period that the Com-

mittee not formulate its directive in terms that conveyed an unrealistic sense

of precision. In his view, the directive language referring to the November-

to-March growth rates in M1 and M2 did seem to convey such a sense.” See

www.federalreserve.gov/monetarypolicy/files/fomcropa19811222.pdf.

• In the 2/9/1983 meeting, Horn dissented with the reason explained as follows:

“Mr. Black and Mrs. Horn dissented from this action because they preferred to

give more weight to M1 as a policy objective. While recognizing the difficulties

in interpreting M1 currently, they believed that over time M1 was more reliably

related to the Committee’s ultimate economic objectives than were the broader

aggregates and that it constituted a better basis for setting appropriate paths for

reserve growth. They also favored reemphasizing M1 because they viewed it as a

more controllable aggregate. In addition, Mr. Black indicated that he saw a need

for lower target ranges, but he wanted to reduce monetary expansion gradually

to avert dislocative effects.” See www.federalreserve.gov/monetarypolicy/

files/fomcropa19830209.pdf. We record Black’s vote as hawkish (+1).

As we note in the main text, four members of the FOMC were both regional Fed

presidents and governors at some point, and we account for their varying roles in our

empirical analysis. These four members are: Phillip Coldwell (Dallas Fed President

from 2/68 to 10/74 and governor from 10/74 to 2/80), Oliver Powell (governor from

9/50 to 6/52 and Minneapolis Fed President from 7/52 to 3/57), Paul Volcker (NY

Fed president from 5/75 to 8/79 and Fed Chairman from 8/79 to 11/87), and Janet

Yellen (governor from 8/94 to 2/97, SF Fed president from 6/04 to 10/10, and then

again governor since 10/2010, including her role as Fed Chairwoman).
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C.4 Mixed Inflation Process with a Hyperinflation Regime

This section presents an alternative approach for integrating Henry Wallich’s hyperin-

flation experiences into the estimation.

We assume that every period, inflation is drawn from the following mixed process

with two regimes, one for hyperinflation, which takes place with probability p, and one

for non-hyperinflationary periods

πt+1 = µ+ ut+1 with probability p, (C.5)

πt+1 = α + φπt + et+1 with probability 1− p, (C.6)

where Et[ut+1] = 0 and Et[et+1] = 0. Therefore, µ is the expected value of πt+1

conditional on a hyperinflation occurring, and we can define

µ0 =
α

1− φ
(C.7)

as the expected value conditional on no hyperinflation. With known parameters, a

forecast conditional on observed inflation would be

Et[πt+1] = pµ+ (1− p)(α + φπt) = p(µ− µ0) + α + φπt − p(α + φπt − µ0). (C.8)

For small hyperinflation probabilities, the last term p(α + φπt − µ0) is tiny relative to

the others (µ− µ0 is orders of magnitude bigger than to α + φπt − µ0). Thus, we can

approximate,

Et[πt+1] ≈ p(µ− µ0) + α + φπt (C.9)

i.e., the usual AR(1) forecast conditional on no hyperinflation plus an upward adjust-

ment to the long-run mean to account for the fact that a hyperinflation might occur

with probability p. This is the forecast we want to construct (in an experience-based

way).

Parameters can now be estimated as follows: α and φ can be estimated in the

usual way (the same way we do it for other FOMC members) from a sample excluding

hyperinflation periods, for which we simply take US data only (mixing in some early

German data would not make a difference as long as the hyperinflation years are

excluded). To estimate p(µ − µ0), we can use the fact that the mean from sampling
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data from both regimes (i.e., German data for Wallich’s youth years included) is

E[πt] = pµ+ (1− p)µ0 (C.10)

which implies

p(µ− µ0) = E[πt]− µ0 (C.11)

We can estimate E[πt] as the simple mean estimate from mixed German-US data. And

µ0 = α/(1− φ) follows from the AR(1) estimates based on US data. Combining these

gives us an estimate for p(µ − µ0) which we can then add to the no-hyperinflation

AR(1) forecast α+φπt to get Et[πt+1] as in (C.9). For simplicity of exposition, we have

illustrated the approach above with a simple AR(1) for the non-hyperinflation regime.

But in our estimation, we instead use a mixed seasonal Ar(1) as in (2.1) in the main

text.

Table C.1 reports the results. Apart from the use of the mixed inflation process

and the absence of the Wallich dummy, everything else is the same as in Table 2.3

in the main text. As Table C.1 shows, there is still a strong and statistically highly

significant effect on voting decisions. The APE show at the bottom of the table are

somewhat smaller than in Table 2.3 in the main text, but with Wallich’s hyperinflation

experiences integrated through the mixed inflation process, the average within-meeting

dispersion is now 0.15 percentage points (instead of the 0.10 that we had earlier). A one

standard deviation change now translates into a change in the probability of hawkish

or dovish dissent of about 1/6 of the unconditional dissent probabilities (compared

with between 1/4 to 1/3 earlier).

C.5 Fixed-Threshold Ordered Probit Estimates

This section presents estimates from an ordered probit model as in (2.12), but with

fixed dissent thresholds. Note that we use the fitted values from this estimation to

construct the z̄t variable in (2.15), which is the basis for the results on the Fed Funds

Rate target presented in Table 2.8.

Table C.2 presents the ordered probit estimates. In column (i) we employ time

fixed effects, and in column (ii) we express explanatory variables values as deviations

from their values for the chairperson. The results are similar to the corresponding ones

in Table 2.3 in the main text.

This fixed-threshold specification also offers the opportunity to examine the co-
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Table C.1: Experience-based Inflation Forecasts and FOMC Voting Behavior

This table repeats the estimation from Table 2.3 in the main text, but with experience-forecasts for

Henry Wallich calculated using the mixed inflation process with a hyperinflation regime.

Ordered Probit Ordered Probit
“de-chaired”

(i) (ii) (iii) (iv)

Experienced-Based Forecast 79.5 75.3 47.8 48.0
(23.3) (23.8) (11.6) (12.1)

Meeting FE Yes Yes No No
Thresholds Role × I>93 All Role × I>93 All

Observations 6,707 6,707 6,707 6,707
Pseudo R2 0.394 0.396 0.108 0.112

APE of Experienced-Based Forecast:
Dovish Dissent -2.8 -2.7 -2.5 -2.5
Consent -1.6 -1.5 -1.3 -1.2
Hawkish Dissent 4.4 4.1 3.7 3.7

efficients of the control variables. In the characteristics-dependent specification they

are difficult to interpret because their effect on the dissent threshold is intertwined

with their effect on the conditional mean of the latent variable and hence the voting

decision. Table C.3 presents the coefficient estimates, including those for the interac-

tions. Directionally, the results are broadly sensible. For example, FOMC members

put more weight on current inflation and less weight on unemployment if they are

older, are regional Fed presidents, male, appointed when a Republican U.S. president

was in office, and are not in the same party as the current president. However, many

of these estimates are statistically not significantly different from zero. To interpret

the direct effect of the characteristics, we need to add the interacted terms evaluated

at particular values of CPI inflation (e.g., 2%) and unemployment (e.g., 6%). Doing so

reveals that there is a fairly strong association of hawkishness with regional president

role and appointment while a Republican president was in office, while female gender

is associated with a more dovish voting behavior.
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Table C.2: Experience-based Inflation Forecasts and FOMC Voting Behavior: Simple
Ordered Probit without Characteristics-Dependent Thresholds

The sample period is from March 8, 1951 to January 29, 2014. The experience-based inflation forecast

for each member at each meeting is calculated by recursively estimating a mixed seasonal AR(1)

model using the member’s lifetime history of inflation with θ = 3.044, as described in Section 2.2.1.

The Wallich Dummy equals one if the member is Henry Wallich; 0 otherwise. The average partial

effects (APE) reported at the bottom of the table are calculated by taking the partial derivative of

the probability of a given voting category with respect to the experience-based inflation forecast at

each sample observation and then averaging these partial derivatives across the whole sample. In

parentheses, we report the standard error based on two-way clustering by both member and meeting.

Ordered Probit Ordered Probit
“de-chaired”

(i) (ii)

Experienced-Based Forecast 192.2 89.7
(60.0) (36.1)

Wallich Dummy 1.6 1.2
(0.4) (0.2)

Meeting FE Yes No

Observations 6,707 6,707
Pseudo R2 37.0% 8.2%

APE of Experienced-Based Forecast:
Dovish Dissent -7.0 -4.7
Consent -4.1 -2.3
Hawkish Dissent 11.1 7.1

APE of Wallich Dummy:
Dovish Dissent -0.06 -0.06
Consent -0.03 -0.03
Hawkish Dissent 0.09 0.09
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Table C.3: Experience-based Inflation Forecasts and FOMC Voting Behavior: All
coefficients

The sample period is from March 8, 1951 to January 29, 2014. The variables are defined as described

in the main text. In parentheses we report standard errors based on two-way clustering by both

member and meeting.

Ordered Probit Ordered Probit - “de-chaired”

Experienced-Based Forecast 192.24 89.66
(60.04) (36.12)

Wallich Dummy 1.57 1.16
(0.37) (0.18)

Age -0.04 -0.03
(0.03) (0.01)

Fed Role 0.41 0.15
(0.36) (0.28)

Gender 0.01 0.09
(0.87) (0.58)

Party 1.09 0.47
(0.46) (0.29)

Same Party -0.09 -0.42
(0.43) (0.25)

Fed Role × 1Post1993 -0.11 -0.03
(0.25) (0.20)

CPI × Age 0.45 0.44
(0.30) (0.14)

CPI × Fed Role 4.23 5.42
(3.88) (1.96)

CPI × Gender 12.44 6.22
(6.21) (3.23)

CPI × Party -5.83 -1.72
(4.08) (2.57)

CPI × Same Party -0.88 -2.85
(3.68) (1.88)

Unemp. rate × Age -0.67 -0.39
(0.45) (0.25)

Unemp. rate × Fed Role -1.21 -2.25
(5.90) (4.89)

Unemp. rate × Gender -9.87 -4.49
(11.54) (6.58)

Unemp. rate × Party 9.78 5.16
(7.61) (4.47)

Unemp. rate × Same Party 0.36 -7.43
(7.60) (4.31)

Meeting FE Yes No
Observations 6707 6707
Pseudo R2 37.0% 8.2%

155



C.6 Speech Sample Construction

The FRASER economic history database at the Federal Reserve Bank of St. Louis

maintains a digital library of speeches of past and current FOMC members. To con-

struct our sample of speeches, we first download the HTML source code of the webpage

listing the Statements and Speeches of Federal Reserve Officials. The source code con-

tains a list of the FOMC members and their record IDs. (See the screenshot in Figure

C.2a.) Each record ID uniquely identifies a webpage with the links to all speeches of

the respective FOMC member. We use the record IDs to download the HTML source

code of those webpages (see Figure C.2b), and then extract the so-called issue IDs of

the individual speeches. The issue IDs, in turn, link to the webpages containing the

metadata of the speeches, including the links to the pdfs (see Figure C.2c). We collect

all links to the pdfs of the speeches in a single text document and parse the document

to the wget function, which downloads the pdf files.2 In addition, we hand-collected

speeches from the websites of the regional FRBs for the regional presidents.

To search the speeches for hawkish and dovish language, the downloaded pdfs are

converted to text format using a unix shell executable script. During this step, the

speech text is cleaned of reference sections, typographic ligature, and duplicates of

the speech header or title which is often repeated on every page of the pdfs. (Even

though some of the speeches are photographs of the manuscript, the images are already

translated into text and we do not have to run OCR for any of the cases.)

We restructure the text into sequences of five adjacent words, and then select the

relevant subset of goal-centered five-grams. For example, words from the sentence

“Inflation continued to be well behaved, and in fact with talk of lower oil prices there

was even a whiff of deflation.” said by Thomas Meltzer in a 1985 address to the Harry

J. Loman Foundation, initially show up in twenty nine different five-grams. Only two

of these five grams are kept and searched for words from the attitudes list: “[two words

from the previous sentence]. Inflation continued to” and “of lower oil prices there”.

After searching for these attitude words, the second five-gram is tagged as dovish,

because it contains the word “lower” from the attitudes list, and the first is not tagged

at all.

There is a cluster of short speeches with around 500 n-grams. Checking these

speeches by hand reveals that a large fraction are short opening remarks and intro-

ductions for other speeches, or short-hand notes for longer speeches instead of full

2We invoke the wget function from www.gnu.org/software/wget/Overview via OS X Terminal.

156



Figure C.2: FRASER Source Code to Obtain Speech PDFs
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Figure C.3: Net Index Over Time

Notes. The graph depicts the average Net Index (using the expanded set of goals) of
all speeches in year-quarter.

transcripts. Controlling for these short speeches by including an indicator variable for

less than 750 n-grams has virtually no effect on the results.

In the main text, we describe the construction of the Net Index of speech hawkish-

ness. Figure C.3 plots the time-series of the index. The index decreases slightly over

time, especially after 1980. But overall there is fairly strong time-variation without

much persistence. This may reflect a considerable amount of measurement noise in

Net Index. The more muted amplitude of the Net Index in later sample years probably

reflects the substantially larger number of speeches available, rather than a general

trend towards a more neutral language, implying that the mean of Net Index contains

less measurement error in later years.

As also discussed in the main text, our analysis of FOMC members’ choice of words

and tone of speeches might warrant further controls for personal characteristics to

reduce noise and concerns about correlated omitted variables. We construct control

variables for education and prior professional experience. Information on education,

including degree type and degree granting institutions, is available from the member
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Table C.4: Summary Statistics on FOMC Members’ Educational Background

The table below shows statistics on the educational background for the 144 FOMC members

who voted at least 5 times during the meetings from 3/8/1951 to 1/29/2014. Panel A shows

every school that awarded the highest degree of at least three members, along with the number

of bachelor’s and PhD degrees awarded by those schools. Panel B shows the frequency with

which each degree type was the highest degree awarded to an FOMC member. All data is

from the Federal Reserve History Gateway.

Panel A: Most Common Schools

School Highest Degree PhD Bachelors

Harvard University 24 10 8
University of Pennsylvania 10 6 4
MIT 7 7 1
University of Michigan 6 4 1
University of Missouri 6 1 3
Indiana University 5 4 2
University of Chicago 4 4 1
John Hopkins University 4 2 0
Stanford University 4 1 3
UCLA 3 3 0
University of Wisconsin 3 3 0
University of California, Berkeley 3 2 3
Yale 3 1 5
University of Virginia 3 1 3
Columbia University 3 1 2
Iowa State University 3 1 1
NYU 3 1 1
Georgetown University 3 0 1

Panel B: Highest Degree

School Number of FOMC Members Percentage

PhD 65 45.1%
JD 22 15.3%
Master’s 20 13.9%
Bachelor’s 17 11.8%
MBA 15 10.4%
Other 5 3.5%
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biographies provided by the Fed on the Federal Reserve History Gateway website.

Table C.4 shows the summary statistics on the educational background for the

144 FOMC members in our sample.: 45.1% of members have a PhD as their highest

degree, while 15.3% have a law degree, and 10.4% have an MBA. 24 of the 144 members

hold their highest degrees from Harvard, ten from the University of Pennsylvania, seven

from MIT, and six each from the University of Michigan and the University of Missouri.

Harvard has also granted the most PhDs to FOMC members (ten). MIT follows with

seven, six members have PhDs from the University of Pennsylvania, and four have

PhDs from the Universities of Chicago, Michigan, and Indiana each. 67.4% have their

highest degree in economics, or majored in it if their highest degree is a bachelors.

Also from the Federal Reserve History Gateway website, we collect mentions of

FOMC members’ industry experience prior to their first FOMC meeting. Members are

classified as having had, or not had work experience in the financial industry, an aca-

demic department, the military, a government agency other than the Federal Reserve

or the military, and other industries, e.g. manufacturing. 76 of the 144 members with

at least three votes are classified as having financial industry experience, 74 as having

worked at another government agency, 62 in academia, 53 in another industry, and 37

as having military experience.

C.7 Results without Members born before 1913

We replicate the results on voting and the tone of speeches including only FOMC Mem-

bers born after 1913. These analyses address potential concerns about the method-

ological change in the inflation series in 1913. As can be seen below, our results remain

the same. Our analyses of Fed Funds target rate and MPR inflation forecasts are not

affected by this methodological change as they do not use pre-1913 data.

Voting The following three tables replicate the results as in Table 2.3 to 2.5 focusing

on FOMC Members born after 1913.
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Table C.5: Experience-based Inflation Forecasts and FOMC Voting Behavior: Only
with Members who were Born after 1913

The sample period is from March 8, 1951 to January 29, 2014. The sample excludes FOMC Members

who were born before 1913. The experience-based inflation forecast for each member at each meeting

is calculated by recursively estimating a mixed seasonal AR(1) model using the member’s lifetime

history of inflation, as described in Section 2.2.1 (with θ = 3.044). The Wallich Dummy equals one if

the member is Henry Wallich; 0 otherwise. The average partial effects (APE) reported at the bottom

of the table are calculated by taking the partial derivative of the probability of a given voting category

with respect to the experience-based inflation forecast at each sample observation and then averaging

these partial derivatives across the whole sample. Column (i) and (iii) report the results assuming

that the thresholds depend on a) whether the member is a board member or regional president, and

b) whether the meeting occurs after Nov. 1993 and the interaction of a) and b). Column (ii) and

(iv) report the results assuming that the thresholds depends, in addition, on age, gender, party of

president at appointment indicator, and same party as current president indicator. In parentheses we

report the standard error based on two-way clustering by both member and meeting.

Ordered Probit Ordered Probit
“de-chaired”

(i) (ii) (iii) (iv)

Experienced-Based Forecast 265.3 289.8 126.6 138.0
(72.6) (78.9) (42.5) (45.3)

Wallich Dummy 1.4 1.3 1.0 0.8
(0.4) (0.3) (0.2) (0.2)

Meeting FE Yes Yes No No
Thresholds Role × I>93 All Role × I>93 All

Observations 4284 4284 4284 4284
Pseudo R2 38.2% 39.4% 12.0% 13.5%

APE of Experienced-Based Forecast:
Dovish Dissent -9.1 -9.8 -6.2 -6.7
Consent -7.8 -8.3 -4.7 -4.9
Hawkish Dissent 16.9 18.1 11.0 11.7

APE of Wallich Dummy:
Dovish Dissent -0.048 -0.042 -0.047 -0.040
Consent -0.041 -0.036 -0.036 -0.029
Hawkish Dissent 0.089 0.079 0.083 0.069
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Table C.6: Experience-based Inflation Forecasts and FOMC Voting Behavior: Different
Sample Periods with Fixed Ordered Probit Thresholds and Only with Members who
were Born after 1913

The sample excludes FOMC Members who were born before 1913. The experience-based inflation

forecast for each member at each meeting is calculated as in Table 2.3. The Wallich Dummy equals

one if the member is Henry Wallich; 0 otherwise. The average partial effects (APE) reported at the

bottom of the table are calculated by taking the partial derivative of the probability of a given voting

category with respect to the experience-based inflation forecast at each sample observation and then

averaging these partial derivatives across the whole sample. Column (i) reports the results with all

FOMC members prior to November 1993. Column (ii) reports the results with regional Fed presidents

only prior to November 1993. Column (iii) reports the results with regional Fed presidents only over

the entire sample. Column (iv) reports the results with all FOMC members prior to November 1993

and regional Fed presidents only afterwards. In parentheses we report the standard error based on

two-way clustering by both member and meeting.

All Regional Regional Mixed
Members Pres. Only Pres. Only Members
pre-1993 Full Sample pre-1993 Full Sample

(i) (ii) (iii) (iv)

Expr.-Based Fcst. 282.5 403.4 498.4 288.7
(85.8) (107.3) (133.9) (76.7)

Wallich Dummy 1.4 - - 1.5
(0.4) - - (0.4)

Meeting FE Yes Yes Yes Yes

Observations 2700 2046 1238 3508
Pseudo R2 35.3% 45.0% 50.5% 36.6%

APE of Expr.-Based Fcst.:
Dovish Dissent -13.0 - 7.7 -9.8 -11.5
Consent -6.9 -24.5 -24.3 -10.2
Hawkish Dissent 19.9 32.2 34.2 21.7

APE of Wallich Dummy:
Dovish Dissent -0.065 - - -0.058
Consent -0.035 - - -0.052
Hawkish Dissent 0.099 - - 0.110
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Table C.7: Experience-based Inflation Forecast and FOMC Voting Behavior: Varying
Weights on Past Experience and Only with Members who were Born after 1913

The sample period is from March 8, 1951 to January 29, 2014. The sample excludes FOMC Members

who were born before 1913. The ordered probit specification is the same as in column (i) of Table

2.3, but here with different values of the gain parameter θ in the calculation of the experience-based

inflation forecast. The Wallich Dummy equals one if the member is Henry Wallich; 0 otherwise.

The average partial effects (APE) reported at the bottom of the table are calculated by taking the

partial derivative of the probability of a given voting category with respect to the experience-based

inflation forecast at each sample observation and then averaging these partial derivatives across the

whole sample. We assume that the ordered probit thresholds depend on a) whether the member is

a board member or regional president, and b) whether the meeting occurs after Nov. 1993 and the

interaction of a) and b). In parentheses we report the standard error based on two-way clustering by

both member and meeting.

θ = 3.334 θ = 2 θ = 2.5 θ = 3.5 θ = 4
(i) (ii) (iii) (iv) (v)

Experience-Based Forecast 246.9 150.5 231.5 230.6 182.5
(71.3) (68.0) (76.5) (69.6) (60.6)

Wallich Dummy 1.4 1.4 1.4 1.4 1.4
(0.4) (0.4) (0.4) (0.4) (0.4)

Meeting FE Yes Yes Yes Yes Yes

Observations 4284 4284 4284 4284 4284
Pseudo R2 38.1% 37.7% 38.0% 38.1% 38.0%

APE of Experienced-Based Forecast
Dovish Dissent -8.5 -5.2 -8.0 -7.9 -6.3
Consent -7.3 -4.5 -6.8 -6.8 -5.4
Hawkish Dissent 15.7 9.7 14.8 14.7 11.7

APE of Wallich Dummy
Dovish Dissent -0.048 -0.049 -0.049 -0.048 -0.049
Consent -0.041 -0.042 -0.041 -0.042 -0.042
Hawkish Dissent 0.089 0.091 0.090 0.090 0.091
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The Tone of FOMC Members’ Speeches The following table replicates the re-

sults in Table 2.7 with an focus on FOMC members who were born after 1913.

Table C.8: Experience-based Inflation Forecasts and FOMC Members’ Tone of
Speeches: Only with Members who were Born after 1913

The sample excludes FOMC Members who were born before 1913. Dependent variable is theNetIndex
measure of speech hawkishness defined as in equation (2.14). The experience-based inflation forecast
for each member at each meeting is calculated as in Table 2.3. All estimations include the same
controls and interactions with recent CPI inflation and unemployment as in Table 2.3. In addition,
we include controls for education and professional background as explained in the text, except for
columns (iii) and (vi) where we instead employ member fixed effects. In columns (ii) and (v), we
drop speeches from chairmen. The regressions are estimated with OLS. Standard errors, shown in
parentheses, are calculated allowing for two-way clustering by FOMC member and year-quarter.

Net Index Net Index
excluding (un)empl. including (un)empl.

(i) (ii) (iii) (iv) (v) (vi)

Experience-Based Fcst. 41.13 55.11 47.84 44.02 61.90 51.38
(17.91) (22.83) (19.30) (16.07) (20.46) (17.30)

Wallich dummy 0.14 0.13 - 0.16 0.14 -
(0.11) (0.12) - (0.08) (0.09) -

Member FE No No Yes No No Yes
Year-quarter FE Yes Yes Yes Yes Yes Yes
Chair’s speeches dropped No Yes No No Yes No
Industry expr. controls Yes Yes No Yes Yes No
Degree controls Yes Yes No Yes Yes No
Adjusted R2 3.7% 4.2% 4.6% 3.2% 3.5% 3.6%
Observations 3519 2639 3519 3519 2639 3519

C.8 Target Federal Funds Rate Regressions with Median and

Chair’s Experience Measures

The results on experience effects on the fed funds rate target in Table 2.8 use a measure

of mean experiences across FOMC members. To address the concern that committee

decisions do not necessarily reflect the average opinion of the committee’s members,

we show that our results are robust to using the median or the chairman’s experience-

based forecast, rather than the average. We also note that the concern is immaterial

in our application as the difference between the average experience-based forecast at
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a meeting and the conventional, objective inflation-rate component of the Taylor rule

tends to be substantially bigger than the differences between FOMC members. As a

result, it does not matter much whether we use the average, the median, or even any

specific FOMC member’s experience-based forecast.

In columns (i) and (ii) of Table C.9, we use the median, and in columns (iii) and

(iv) the chairman’s experience-based forecast. As the table show, these changes result

in only minor changes in the coefficient estimate compared with Table 2.8. The same

is true when we add the lagged federal funds rate in columns (v) to (viii). The reason

is that the time-series variation in the members’ experience-based forecasts relative to

the staff forecast is much greater than the dispersion between members’ experience-

based forecasts. These results imply that it does not matter much which measure

of central tendency of the experience-based forecasts, or which individual experience-

based forecast is used.
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Table C.9: Influence of FOMC Members’ Inflation Experiences on Target Federal Funds
Rate: Median and Chair’s Experienced Inflation

The sample period is from the 8/18/1987 to 6/28/2007. The dependent variable is the target federal

funds rate set at the FOMC meeting closest to the middle of the quarter t. The experience-based

forecast is the median (chair’s) experienced-based CPI forecast from quarter t− 1 to quarter t+ 3 at

each meeting. The staff’s core inflation forecast is from quarter t− 1 to quarter t+ 3 and represents

the core CPI before 2/1/2000 and the core PCE thereafter. The staff’s output gap forecast at quarter

t is the forecast for quarter t + 3. The staff’s forecasts of CPI/PCE and of the output gap are from

the Philadelphia Fed Greenbook data set. Lagged fed funds rate target is the federal funds rate target

from the previous quarter. Columns (i) to (iii) report the OLS coefficient estimates for the estimating

equation in (2.15). Columns (iv) and (v) report the estimates of c, βe, βπ, βy, and ρ from non-linear

least-squares regressions as specified in (2.18). In parentheses, we report Newey-West standard errors

with six lags from column (i) to (iii), and zero lags in column (iv) and (v).

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Exp.-based infl. fcst. (median) 0.39 0.62 - - 0.47 0.46 - -
(0.21) (0.24) - - (0.21) (0.21) - -

Exp.-based infl. fcst. (chair) - - 0.40 0.63 - - 0.47 0.45
- - (0.22) (0.24) - - (0.21) (0.21)

Staff’s core inflation forecast 1.27 1.44 1.26 1.44 1.26 1.25 1.26 1.25
(0.23) (0.23) (0.23) (0.23) (0.17) (0.20) (0.17) (0.20)

Staff’s output gap forecast 0.69 0.46 0.70 0.46 0.98 1.00 0.98 1.00
(0.06) (0.10) (0.06) (0.10) (0.07) (0.15) (0.07) (0.15)

Lagged FFR target - - - - 0.68 0.69 0.68 0.69
- - - - (0.04) (0.04) (0.04) (0.04)

Intercept 0.10 2.16 0.10 2.19 -0.03 -0.08 -0.03 -0.08
(0.35) (0.86) (0.36) (0.86) (0.16) (0.42) (0.16) (0.42)

Member characteristics N Y N Y N Y N Y
Method OLS OLS OLS OLS NLS NLS NLS NLS
Observations 80 80 80 80 80 80 80 80
Adjusted R2 86.6% 87.7% 86.6% 87.8% 97.6% 97.6% 97.6% 97.6%
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APPENDIX D

E-trading in Corporate Bond Market: Additional

Figures

D.1 Additional Figures
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Figure D.1: Probability density function (PDF) of a Scaled Beta Distribution
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Figure D.2: Dealer’s Pricing Strategy in E-trading with respect to Different Investor’s
Reservation Price p̄. Model parameters: µ = 10, γ = 0.5, θ = 3, σ2 = 1, L = 4, R = 5,
C = 5, N = 50, and I has a scaled beta distribution with a = b = 1.5.
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APPENDIX E

E-trading in Corporate Bond Market: Proofs and

Derivations

E.1 Voice Trading

Following Nash bargaining, both investor and the dealer face the following opti-

mization problem

max
y,p

[
UMM

gain

]η[
U Inv

gain

]1−η

where,

UMM
gain = y(p− µ)− 1

2
γσ2y(y − 2I)

U Inv
gain = y(µ− p)− 1

2
θσ2y(y + 2e)

Taking f.o.c with respect to p and y yields,

η

1− η
=
UMM

gain

U Inv
gain

(E.1)

η
[
p− µ− γσ2y + γσ2I

]
= [1− η]

UMM
gain

U Inv
gain

[
p− µ+ θσ2y + θσ2e

]
(E.2)
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Substituting Eq.(E.1) into Eq.(E.2), we have the optimal trade size as

y =
γI − θe
γ + θ

(E.3)

Plugging Eq.(E.3) into Eq.(E.1), we obtain the trade price

p = µ− 1

2
γσ2
[
2− η − γ

γ + θ

]
I − 1

2
θσ2
[ γ

γ + θ
+ η
]
e

After trading, investor holds y+e = γ
γ+θ

[I+e] while the dealer holds I−y = θ
γ+θ

[I+e]

E.2 Electronic Trading

Throughout, by symmetry, I only consider the case where the investor receives

a negative endowment shock, i.e. e = −L. I conjecture, in this case, the investor

would like to buy from the market maker and will confirm this when I solve for the

equilibrium.

Dealer’s problem Given the inquiry size y and its inventory level Ij, each dealer

chooses the pricing function p(·) to maximize its expected gain to trade, i.e.

max
p(·)

G(p)
[
y
(
p− p̃(Ij, y)

)]
where

p̃(Ij, y) = µ+
1

2
γσ2(y − 2Ij)

and,

G(p) = G(Ij) =

F (Ī∗)N−1 if Ij ≤ Ī∗

F (Ij)
N−1 if Ij > Ī∗
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F.O.C. yields

∂G

∂p

[
y(p− p̃)

]
+G(Ij)y = 0

∂G

∂I

∂I

∂p
(p− p̃) +G(Ij) = 0

∂G

∂I
p+

∂p

∂I
G(Ij) = p̃

∂G

∂I
∂Gp

∂I
= p̃

∂G

∂I
(E.4)

Integrate over [−R, Ij] on both sides of Eq.(E.4), we have

• When Ij < Ī∗, ∫ Ij

−R

∂Gp

∂I
dI =

∫ Ij

−R
p̃
∂G

∂I
dI

F (Ī∗)N−1
[
p(Ij, y)− p(−R, y)

]
= p̃× 0

p(Ij, y) = p(−R, y) ∀ Ij

• When Ij > Ī∗,

∫ Ī∗

−R

∂Gp

∂I
dI +

∫ Ij

Ī∗

∂Gp

∂I
dI =

∫ Ī∗

−R
p̃
∂G

∂I
dI +

∫ Ij

Ī∗
p̃
∂G

∂I
dI

F (Ī∗)N−1
[
p(Ī∗, y)− p(−R, y)

]
+
[
F (Ij)

N−1p(Ij, y)− F (Ī∗)N−1p(Ī∗, y)
]

= 0 +

∫ Ij

Ī∗
p̃
∂G

∂I
dI

⇒ · · · = p̃G(·)
∣∣Ij
Ī∗
−
∫ Ij

Ī∗
G(·)dp̃

⇒ · · · = p̃(Ij, y)F (Ij)
N−1 − p̃(Ī∗, y)F (Ī∗)N−1 + γσ2

∫ Ij

Ī∗
G(I)dI

⇒ p(Ij, y) = p̃(Ij, y) +
γσ2

∫ Ij
Ī∗
F (I)N−1dI

F (Ij)N−1
+
[F (Ī∗)

F (Ij)

]N−1[
p(−R, y)− p̃(Ī∗, y)

]
(E.5)

Therefore, we can write down the dealer’s expected gain asF (Ī∗)N−1y
[
p(−R, y)− p̃(Ij, y)

]
if Ij ≤ Ī∗

y
[
γσ2

∫ Ij
Ī∗
F (I)N−1dI + F (Ī∗)N−1

[
p(−R, y)− p̃(Ī∗, y)

]]
if Ij > Ī∗
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It follows that dealer’s expected gain is increasing in inventory Ij. Further note that,

when Ij < Ī∗, the dealer would simply charge the highest possible price, i.e. the

reservation price of the investor, since his probability to win the trade does not depend

on his quote anymore. That is p(−R, y) = p̄.

Given above two observations, dealer’s indifference condition for the electronic auc-

tion given the participation cost C can be written as

F (Ī∗)N−1y
[
p̄− p̃(Ī∗, y)

]
= C (E.6)

Note that the LHS of Eq.(E.6) is increasing in I and also LHS = 0 when Ī∗ =

−R. Taken together, it implies there must exists some unique Ī∗ which satisfy the

indifference condition.

Now, let’s consider the comparative statics of price p with respect to inventory

I and the number of dealers N . First, note that ∂p
∂Ij

=
∂G
∂I

(p̃−p)
G(Ij)

< 0 when Ij > Ī∗,

suggesting the price is decreasing in inventory.

Further, since

∂p

∂N
= γσ2

∫ Ij

Ī∗
log
( F (I)

F (Ij)

)
e

(N−1)log(
F (I)
F (Ij)

)

︸ ︷︷ ︸
<0

dI + log
(F (Ī∗)

F (Ij)

)[F (Ī∗)

F (Ij)

]N−1
(p̄− p̃(Ī∗, y))︸ ︷︷ ︸

<0

< 0

when Ij > Ī∗, the price is decreasing in the number of dealers. As N goes to infinity,

p converges to p̃(Ij, y).

Finally, when C = 0, there would be no participation threshold, i.e. Ī∗ = −R.

Consequently, the pricing rule, i.e., Eq. (E.5), would collapse to

p(Ij, y) = p̃(Ij, y) + γσ2

∫ Ij
−R F (I)N−1dI

F (Ij)N−1

This is exactly the Biais (1993) result.

Investor’s problem Knowing the dealer’s pricing function, the investor faces the

following problem

max
y

E
[(

1− F (Ī∗)N
)(
y
(
µ− p(Imax, y)

)
− 1

2
θσ2y(y + 2e)

)]
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F.O.C is

∂(1− F (Ī∗)N)

∂y
E
[
y(µ− p(Imax))−

1

2
θσ2y(y + 2e)

]
+(1− F (Ī∗)N)E

[
µ− p(Imax)− (

∂p

∂y
+ θσ2)y − θσ2e

]
= 0 (E.7)

where,

∂(1− F (Ī∗)N)

∂y
=
∂(1− F (Ī∗)N)

∂Ī∗
∂Ī∗

∂y
= −NF (Ī∗)N−1f(Ī∗)

∂Ī∗

∂y

∂Ī∗

∂y
can be computed applying the implicit function theorem with respect to the

dealer’s indifference condition E.6, i.e.

∂Ī∗

∂y
= −

F (Ī∗)N
[
p̄− µ− γσ2(y − Ī∗)

]
(N − 1)f(Ī∗)C + F (Ī∗)Nγσ2y

and from the pricing rule, we have

∂p

∂y
=

1

2
γσ2
[
1−

( F (Ī∗)

F (Imax)

)N−1]
The expectation of Eq. (E.7) operates on the conditional distribution of Imax given

Imax > Ī∗. Its CDF and PDF are given as follows

Pr(Imax ≤ x|Imax > Ī∗) =
Pr(Imax ≤ x, Imax > Ī∗)

Pr(Imax > Ī∗)
=

[
F (x)N − F (Ī∗)N

][
1− F (Ī∗)N

]
f(Imax ≤ x|Imax > Ī∗) =

Nf(x)F (x)N−1[
1− F (Ī∗)N

]
Put together, we can now solve for y and Ī∗ jointly with two equations, i.e. the

dealer’s indifference condition, Eq. (E.6), and the F.O.C of the investor problem, Eq.

(E.7).

E.2.0.1 Voice vs. Electronic Trading

Consider a continuum of investors characterized by their relative bargaining power

δ ≡ 1− η ∈ [0, 1]. Further assume δ follows some exogenous distribution H(·).
We first consider the investor choice between electronic trading and voice one.
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Investor’s gain from the voice trading can be written as

Vvoice(δ) =
δσ2

2(γ + θ)
E
[
(γI + θL)2

]
Apparently, investor’s gain from voice market is increasing in his bargaining power δ.

In the meantime, investor’s gain from the electronic auction is given by

Velec =
[
1− F (Ī∗)N

]
yelecE

[
µ− pelec −

1

2
θσ2(yelec − 2L)

]
where E[pelec] follows the pricing rule Eq. (E.5) and operates under the conditional

distribution of Imax given Imax > Ī∗.

If Vvoice(1) > Velec, there must exist some δ∗ such that Vvoice(δ
∗) > Velec. Hence,

investor’s participation rate of electronic trading is H(δ∗). Otherwise, if Vvoice(1) ≤
Velec, the participation rate of electronic trading is simply 1.

Further, we compute the market share of electronic trading λ as follow:

λ =
Volelec

Volvoice + Volelec

(E.8)

where,

Volvoice =
(
1−H(δ∗)

)
E(yvoice)

Volelec = H(δ∗)
[
1− F (Ī∗)N

]
yelec

Finally, we consider the welfare implication for dealers with different inventory

positions regarding the addition of electronic trading.

Dealer’s gain from the “voice trading only” is given by

Uvoice =
1

N

E(1− δ)σ2

2(γ + θ)

[
γIj + θL

]2

In the meantime, the dealer’s gain from “voice + electronic trading” is

Uboth =H(δ∗)
[
max

(
F (Ij)

N−1yelec

(
pelec − p̃

)
− C, 0

)]
+
(
1−H(δ∗)

)[ 1

N

E(1− δ|δ > δ∗)σ2

2(γ + θ)

[
γIj + θL

]2]
If Ij < Ī∗, the dealer would choose not to participate in the electronic auction.
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Comparing Uvoice and Uboth, we have

Uboth =
(
1−H(δ∗)

)[ 1

N

E(1− δ|δ > δ∗)σ2

2(γ + θ)

[
γIj + θL

]2]
<

1

N

E(1− δ|δ > δ∗)σ2

2(γ + θ)

[
γIj + θL

]2
<

1

N

E(1− δ)σ2

2(γ + θ)

[
γIj + θL

]2

= Uvoice

That is, when Ij < Ī∗, the dealer would always prefer the “voice trading only”.

If Ij > Ī∗, Uboth < Uvoice may still hold for a relatively small Ij. That being said, for

dealers with not large enough inventory position, they would still prefer “voice trading

only”. This pattern may hold true even if there is no participation cost of electronic

auction at all, i.e. C = 0 (see the numerical example in section 3.4.5).
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