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Abstract 

 

Microphysical parameterizations (MPs) approximate the very small-scale behavior 

associated with cloud and precipitation processes and their feedbacks on the atmosphere, which 

cannot be directly resolved by numerical weather and climate prediction models. For numerical 

simplicity, many of the effects induced by ice crystal shape variability and growth processes are 

approximated through the use of tunable parameters within MPs. These parameter values have an 

inherent uncertainty due to limited observations and natural variability which is neglected in 

MPs. It is thus hypothesized that perturbations to these microphysical parameters may be a 

source of simulated orographic precipitation uncertainty. Phase changes associated with these 

microphysical processes can alter the thermodynamic profile and the dynamics of the system, 

resulting in effects on surface precipitation. This dissertation thus aims to explore the sensitivity 

of mountain-induced/enhanced (orographic) precipitation to perturbations in microphysical 

parameters, in conjunction with changes to upstream environmental conditions.  

 To test the hypothesis, an idealized modeling framework is applied using the Cloud 

Model 1 to simulate a moist, nearly neutral environment flowing over a bell-shaped mountain. 

The upstream environment is associated with a long, narrow corridor of strong water vapor 

transport found ahead of the cold front of an extra-tropical cyclone called an atmospheric river 

(AR). The orographic precipitation produced from ARs being forced upward my mountains 

provides a source of freshwater but can also lead to flooding upwind. Statistically robust 

methods including the Morris screening method and a Markov chain Monte Carlo algorithm are 
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applied to understand precipitation sensitivities, as well as to identify which parameter 

combinations could produce a specific spatial precipitation distribution. Results show that the 

most influential parameters to orographic precipitation are associated with the fallspeed of snow, 

collection of supercooled water by ice, collection of cloud droplets by rain, the speed of air 

flowing towards the mountain, the height of the freezing level, and the relative humidity of the 

upstream environment. In general, perturbations to microphysical parameters affect the location 

of peak precipitation, while the total amount of condensate available is more sensitive to 

environmental parameter perturbations. There is a strong spatial sensitivity to the influential 

parameters, as changes in freezing level can affect the location of dominant rain processes, i.e., 

microphysical parameter sensitivities can change for different environments. Although the 

upstream environment influences the available condensate that microphysical processes can act 

upon, both processes can result in changes to precipitation of similar magnitudes, especially over 

the upwind slope of the mountain. Complex relationships between environmental and 

microphysical parameters are found, demonstrating mitigating factors that can compensate for 

the effect of perturbing a specific parameter. For example, to yield a similar precipitation 

intensity and distribution, horizontal wind speed values would need to decrease if the fallspeed 

of snow is reduced.  

The results presented herein highlight the complexity of orographic precipitation 

sensitivity to microphysics and environmental conditions, suggesting a small subset of 

parameters are responsible for most of the induced precipitation variability. Evaluation of 

parameter sensitivity is important for ensemble forecasting and data assimilation, as it is 
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generally not computationally feasible to perturb every parameter in the full set of physics 

parameterizations, thus the small subset of parameters found here could be applied. The results 

from this dissertation may help future field campaigns focus on observing key processes to better 

constrain parameter uncertainty and improve our understanding of orographic precipitation. 
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Chapter 1. Introduction 

1.1 “Snow in the Mountains, Water in the Fountains”  

Orographic precipitation describes precipitation that has been generated or modified 

through the interaction of moist flow with topography. Over 50% of the global mountain area 

provides an essential or supportive role for low-land freshwater resources, with some areas 

bearing “an essential hydropower potential” (Viviroli et al. 2007). Orographic precipitation 

supplies up to 50% of the total river discharge in humid regions and up to 90% of the total river 

discharge in arid regions (Viviroli and Weingartner 2004). Figure 1.1 emphasizes the 

hydrological importance of mountain ranges around the world, such as the Cascade and Sierra 

Nevada Mountains over the Western U.S., the Southern Andes in South America, and the 

Himalayas in Asia. At high elevations, accumulated snow stores freshwater during the winter 

months that then melts in the spring and early summer, feeding rivers, lakes, aquifers, and man-

made reservoirs during the dry season (Mote et al. 2005). Over half of the world’s population 

lives and works in regions which “rely heavily on mountain discharge”, especially in developing 

nations (Viviroli et al. 2003). As our planet’s climate continues to change from the effects of 

anthropogenic greenhouse gas emissions, water supplies may become limited as we struggle to 

provide for the growing global population, leading to local and national conflicts for water rights 

(Viviroli and Weingartner 2002). Additionally, heavy precipitation over mountains can trigger 

flooding, landslides, and avalanches that can lead to costly damage to local infrastructure and 

cause loss of life and property (Maddox et al. 1978; Caine 1980; Conway and Raymond 1993; 

Ralph et al. 2006; Neiman et al. 2008b; Leung and Quian 2009; Ralph et al. 2011; Gochis et al. 
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2015; White et al. 2019).  Given the societal impacts, it is important we understand the processes 

that control orographic precipitation and improve their representation in numerical weather and 

climate prediction models. Local water resource and emergency managers and other stakeholders 

(e.g., recreation, tourism, agricultural, and energy industries) need to know the location, amount, 

and type of precipitation that will fall over their mountain regions, e.g., if most of the 

precipitation falls as rain on previously formed snowpack it can promote early snowmelt (Kim et 

al. 2013) and induce flooding downstream (White et al. 2019). Better quantification of forecast 

precipitation uncertainty will benefit hazard and water management and help us understand how 

these processes will be affected by a warming climate. 

 

Figure 1.1 Hydrologic importance of mountain ranges worldwide (Fig. 4 from Viviroli and 

Weingartner 2004).  
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1.2 Physical Mechanisms Controlling Orographic Precipitation  

Common terms used when discussing the location of precipitation over a mountain are 

upwind and downwind. Upwind describes the region of the mountain opposing the prevailing 

wind direction, while downwind is the region in the same direction as the prevailing wind 

direction (Figure 1.2).  Typically, these two regions are located on either side of the maximum 

mountain height Hmtn. The slope of the terrain is calculated by the ratio of Hmtn and the mountain 

half-width Amtn, which represents the width of the mountain where the elevation is 50% of Hmtn.  

 

 
Figure 1.2 Orographic precipitation schematic adapted from Moran (2018). Annotations were 

added to include the possibility of lee waves, and illustrating other terms used within the text.   

 

The physical mechanisms responsible for precipitation over mountains occur over 

different spatial scales. The air masses (e.g., continental polar) and large-scale storm systems 

(e.g., extra-tropical cyclones) that move over major mountain chains extend on the order of 1000 

km, while the processes developing cloud droplets and hydrometeors (precipitating liquid or 

frozen water) and their interactions occur at the µm to mm scale. In general, mountains influence 
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precipitation through the vertical displacement (rising or descending motions) of air, which can 

be mechanically-forced as air is forced to rise over the upwind slope, or thermally-forced as the 

mountain slopes are diurnally-heated causing buoyant thermals (Houze 2012). Rising air will 

adiabatically expand and cool as the ambient pressure decreases with height (Wallace and Hobbs 

2006). If the rising air parcel contains sufficient amounts of water vapor and experiences 

sufficient cooling with height, saturation can be achieved and phase changes between vapor and 

liquid or ice can occur (Wallace and Hobbs 2006; Figure 1.2). Once a cloud forms, ice crystals 

and cloud droplets can grow through various microphysical processes and with time grow large 

enough to overcome the updraft and fall out of the cloud (Figure 1.4). Depending on the particle 

size and conditions below cloud, hydrometeors may reach the surface. Descending air on the lee 

side of the mountain will warm adiabatically and become drier, leading to sub-saturated 

conditions that cause cloud water and rain evaporation (Figure 1.2). Downslope windstorms, 

trapped lee waves, vertically-propagating waves, and other turbulent flows (e.g., rotors, 

hydraulic jumps) can develop as the flow descends over the downwind slope (Durran 1990). 

These flows may result in cloud formations over lee waves, e.g., lenticular or cap clouds, or 

stratiform clouds that may transition to buoyantly-driven circulations and grow upscale into 

thunderstorms (Houze 2012). Over a long period of time, these general rising and descending 

flows can result in forests and a wetter climate upwind and a dry, desert climate over the “rain 

shadow” region on the lee side of the mountain (Figure 1.2).  

Although mountains can generate lift that can result in precipitating clouds, mountains 

can also modify or enhance precipitation as pre-existing storm systems (e.g. extra-tropical 
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cyclones and hurricanes) travel over mountainous regions (Houze 2012). The “seeder-feeder” 

mechanism can result in enhanced precipitation as a pre-existing precipitating “seeder” cloud 

associated with the large-scale system moves over an orographically-generated low-level 

“feeder” cloud (Bergeron 1965; Robichaud and Austin 1988; Purdy et al. 2005). The 

precipitation produced by the seeder cloud falls through the feeder cloud and the hydrometeors 

can continue to grow as they collect cloud water traveling through the feeder cloud, resulting in 

enhanced precipitation rates over the upwind mountain slope (Houze 2012). The research 

presented in this dissertation focuses on orographic precipitation generated by mechanically-

forced flow and producing peak precipitation rates over the upwind slope and/or mountain top.  

Orographic precipitation can be characterized by a linear model developed by Smith 

(1979, 2006):  

𝑆(𝑥, 𝑦) =  𝜌𝑞𝑣�⃗⃗� ∙ ∇𝐻𝑚𝑡𝑛 (𝑥, 𝑦)     (1.1) 

The rate at which condensed water is generated by ascent S is described by the air density 𝜌  and 

specific humidity qv at the Earth’s surface and the vector product of the horizontal wind �⃗⃗�  (x and 

y-directions) and the terrain slope ∇𝐻𝑚𝑡𝑛 , assuming the air is saturated and moist neutral, and 

vertical velocities are independent of height (Smith 2006). This basic model illustrates the major 

environmental factors to upslope precipitation: horizontal wind speed (and direction), mountain 

slope (height and width), and moisture content. However, this model does not include the non-

linear processes associated with the complex flow dynamics that can develop for different 

stability profiles and mountain shapes, and relationships between microphysical processes and 
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dynamics-thermodynamics, all resulting in a less than straight-forward characterization of 

orographic precipitation amount, location, and type.  

1.2.1 Prevailing Wind Direction  

Observed global precipitation patterns can be broadly explained by observing the 

prevailing wind direction relative to the mountain slopes, i.e., a wetter climate tends to exist on 

the upwind side of a mountain, while a drier climate exists within the “rain shadow” on the lee or 

downwind side of the mountain (Figure 1.2). For example, the Andes Mountains extend across 

seven countries near the western coast of South America with an average elevation of over 3.5 

km (Error! Reference source not found.a). In subtropical South America (~20°S-30°S), the 

prevailing winds are from the east-northeast as the trade winds move over the Amazon rainforest 

and transport moist, warm air towards the Andes. This results in higher precipitation rates over 

northern Argentina on the eastern slopes and significantly less precipitation over the western 

slopes, which is where the Atacama Desert of northern Chile exists (Error! Reference source 

not found.b). Moving poleward along the Andes, the prevailing winds shift to westerlies, where 

extra-tropical storm systems make landfall on the western slopes in southern Chile leading to 

increased precipitation (Viale et al. 2018; Error! Reference source not found.b). The winter 

cyclones that make landfall over the Western Coast of the US can interact with coastal 

mountains and larger mountain chains, e.g., the Sierra Nevadas and Cascade Mountains, leading 

to enhanced rainfall upwind and significant snowfall over the mountain peaks (Pandey et al. 

1999; Dettinger et al. 2004; Roe 2005; Minder et al. 2008; Lundquist et al. 2010). Within the 
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intermountain west, the Great Basin sits in the “rain shadow” of the Sierras where less 

precipitation falls (Daly et al. 2008) and the climate is arid.  

 
Figure 1.3 South American (a) topographical map, and (b) average annual precipitation with 

prevailing wind direction illustrated with black arrows (Figure 2a from Guerra et al. 2016).  

 

This large-scale pattern has also been observed over the Himalayan Mountains (Lang and 

Barros 2004; Anders et al. 2006) and the New Zealand Alps (Wratt et al. 2000). Conversely, the 

European Alps experience air flow and storms coming from varying directions and thus do not 

exhibit a clear rain shadow effect (Frei and Schär, 1998). The general circulation patterns of the 

atmosphere, semi-permanent circulations (e.g., the North and South Pacific High), seasonal mid-

latitude cyclones, and mesoscale wind patterns are all important to consider when determining if 
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moist air will be forced to rise by a mountain and result in cloud development, and possible 

precipitation.   

1.2.2 Atmospheric Flow Dynamics  

Broadly speaking, atmospheric flow that encounters a mountain can either flow over the 

mountain ridge, flow around the topography, or be blocked by the mountain, leading to 

deflection parallel to the mountain ridge or flow reversal (Houze 2012). To determine how the 

flow will respond to a mountain barrier, it is important to know the characteristics of the air mass 

moving over the mountain: horizontal wind speed, stability, low-level temperature, and water 

vapor content (Sawyer 1956; Smith 1979; Roe 2005; Smith 2006; Houze 2012). These 

environmental characteristics, in conjunction with the mountain geometry (height, slope, 

orientation with respect to the flow, terrain-features) can influence the resulting flow and 

location of precipitation maxima (Houze 2012). For example, a wide mountain (half-width ≥30 

km) will provide more time for snow growth aloft compared to a narrower barrier (Colle and 

Zeng 2004b). 

In general, buoyancy depends on the relative density of air forced upward compared to 

the density of the environmental air. Vertical (positive) acceleration occurs because the lifted air 

is less dense; in this case, temperature serves as a measure of density since it is assumed that 

pressure equalizes quickly between lifted air and the environment. Depending on the buoyancy 

or stability of the air, the flow can respond differently to encountering a mountain barrier. 

Depending on the stability of the air encountering a mountain, the flow can respond differently to 

the mountain barrier.  
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The stability of dry (unsaturated) air is quantified by the Brunt-Väisälä frequency N2, 

which compares the actual rate of change of temperature with height of the environment (𝛾) to 

that of the theoretical dry adiabatic lapse rate (d):  

𝑁2 = 
𝑔

𝑇
(𝛾 − Γ𝑑)      (1.2) 

An unsaturated air parcel is considered stable for N2 > 0, i.e., if a parcel is vertically-displaced by 

the mountain the upward motion will be countered by gravity (g) and the parcel will oscillate 

about some equilibrium level with frequency N. These waves can vertically propagate away from 

the mountain, become trapped in the low-levels and decay with height, lead to wave-breaking 

and rotors that generate turbulence, or generate severe downslope winds (Smith 1979; Durran 

1990). If the vertical velocities associated with the lee gravity waves are substantial enough, 

condensation can occur and clouds can form far downwind, e.g., lenticular clouds.   For N2 = 0, 

the air parcel is said to have neutral stability, i.e., an air parcel has similar density as the ambient 

environment and no net force is applied on the parcel. This neutral flow will exert no resistance 

to vertical displacement by the mountain and will follow the terrain when forced to rise. In the 

case of N2 < 0, any vertical displacement will lead to a vertical acceleration of the parcel. This 

case would result in dry convection, or vertical mixing: warm air parcels will rise from the 

unstable layer and cold air will sink from the stable layer above. 

 Equation 1.2 neglects the effects of moisture on the lapse rates, i.e., condensation releases 

latent heat, which can decrease the rate of cooling as a saturated parcel is forced to rise. The 

magnitude of the moist adiabatic lapse rate Γ𝑚 is thus less than the dry adiabatic lapse rate. This 

results in conditional instabilities, where an air parcel is stable when dry and unstable when 
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saturated. For saturated air, the moist adiabatic lapse rate must be applied as well as the moist 

Brunt-Väisälä frequency Nm
2, described in the following equation from Durran and Klemp 

(1982): 

𝑁𝑚
2 = 

𝑔

𝑇
(
𝑑𝑇

𝑑𝑧
+ Γ𝑚)(1 +

𝐿𝑞𝑠

𝑅𝑇
) −

𝑔

1+𝑞𝑤

𝑑𝑞𝑤

𝑑𝑧
,                          (1.3) 

where qw is the total water mixing ratio (sum of the saturation mixing ratio qs and the liquid 

water mixing ratio), L is the latent heat of vaporization, and R is the ideal gas constant for dry air. 

This dissertation focuses on moist, nearly neutral flow, i.e., flow that is saturated and the moist 

Brunt-Vaisala frequency Nm
2 is approximately zero for the troposphere, as this type of flow 

commonly leads to heavy orographic precipitation during non-convective events (Miglietta and 

Rotunno 2005; Houze 2012). For example, a moist, nearly neutral event during the Olympic 

Mountains Experiment (OLYMPEX; Houze et al. 2017) produced precipitation rates on the 

order of 10 mm hr-1 and accumulated 24-hour precipitation of over 300 mm upwind of the 

mountain top (Zagrodnik et al. 2018). 

For stable and neutral flow, the non-dimensional mountain Froude number Frm 

(Pierrehumbert and Wyman 1985; Lin and Wang 1996; Markowski and Richardson 2010) is 

commonly used to determine if flow will be blocked or unblocked when encountering a 

mountain of height (Hmtn) and mean horizontal wind speed (𝑈):  

𝐹𝑟𝑚 = 
�̅�

𝑁𝐻𝑚𝑡𝑛
      (1.4) 

Frm compares the kinetic energy of the flow impinging on the barrier to the potential energy 

needed to overcome the barrier. An analogy used to determine blocking is that of a ball being 
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bowled towards a bell-shaped obstacle, where the weight of the ball represents N (or Nm), the 

height of the obstacle represents Hmtn, and the speed at which the ball is bowled is 𝑈. To get the 

ball over the obstacle, a heavy ball would need to be moving very fast (higher wind speeds), the 

weight of the ball would need to be reduced (decreased static stability), or the height of the 

obstacle would need to be lowered. Similarly, if the mountain is too tall or the cross-barrier 

winds are too weak, stable flow can become stagnant behind the barrier. For an isolated barrier 

(e.g., Olympic Mountains) the blocked air will have to go around the barrier, which can induce 

convergence and cloud development on the lee (Roe 2005; Houze 2012). For a relatively long 

mountain ridge (e.g., the Himalayan Mountains), the blocked flow can be deflected parallel to 

the mountain ridge leading to “damming” and the formation of a barrier jet (Neiman et al. 2013), 

which can affect the spatial distribution of precipitation since ascent can occur farther upwind 

from the mountain crest over the stable air (Grossman and Durran 1984; Peterson et al. 1991; 

Roe 2005; Houze 2012).  

The vertical velocity (w) that is induced for unblocked flow rising over the upwind slope 

of the mountain is proportional to the mean horizontal wind speed (𝑈) and the mountain slope 

(Smith 1979):  

𝑤 ∝  𝑈
Δ𝐻𝑚𝑡𝑛

Δ𝑥
       (1.5) 

For a constant slope, this means that an increase in 𝑈 will result in faster vertical velocities, 

which will directly affect condensation rates (Roe 2005). Observations have shown that near-

surface wind speeds can be a good predictor for rain rates when the flow is unblocked (Neiman 

et al. 2002). A study performed by Tushaus et al. (2015) found that orographic precipitation 
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upwind decreases non-linearly with increasing half-width for a constant height due to a change in 

the upwind slope, i.e., as the half-width is increased forced ascent occurs over a wider region, but 

eventually the slope becomes shallow resulting in smaller vertical motion and weaker 

precipitation rates. Although mountain height and width can cause differences in precipitation 

amount and spatial distribution, this dissertation focuses on environmental and microphysical 

effects as we assume that the mountain geometry will remain constant during a given 

precipitation event. This specification implicitly assumes that the flow traveling towards the 

mountain barrier does not shift meridionally along the mountain ridge. For the studies presented 

in the following chapters, we focus on mountains that can be described as long two-dimensional 

ridges, such as the Sierra Nevada Mountains of California, as these types can be modeled using a 

two-dimensional model framework which is less computationally expensive given the number of 

simulations needed for some of the methods used. 

1.2.3 Cloud and Precipitation Processes 

Within a cloud, various microphysical processes can occur that determine the evolution 

of liquid or frozen water particles. The complex relationships between each of these factors 

existing at different spatial-temporal scales, can influence the precipitation location, amount, and 

type, making for quite the challenge for forecasters. The following section briefly describes the 

various pathways by which cloud water and ice crystals can grow and become large enough to 

precipitate. Warm-rain processes involve liquid-only particles within warm regions of the cloud 

(temperatures > 0C), and mixed-phase and ice processes occur at temperatures below 0C 
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(Figure 1.2; Rogers and Yau 1989). Mixed-phase processes include both liquid and ice particles, 

which can coexist in cloud regions with temperatures as low as -40C (Rogers and Yau 1989).  

 

 
Figure 1.4 Schematic showing possible precipitation mechanisms within a mixed-phase cloud, 

i.e., liquid, supercooled liquid, and ice particles exist within the cloud. Source: Steve Platnick, 

NASA. 
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1.2.3.1 Warm-Rain Processes  

As previously described, orographic lifting of a moist parcel of air can lead to 

condensation on the upwind side of the mountain. The initial condensation involves the 

activation of cloud condensation nuclei (CCN), which are typically water-soluble aerosols such 

as sea salt or ammonium sulfate (Rogers and Yao 1989; Pruppacher and Klett 2010). These CCN 

act as a nucleus for the water vapor to condense on and continue to grow through condensation 

into a cloud droplet within the updraft region (Rogers and Yao 1989; Pruppacher and Klett 

2010). As the cloud evolves, larger cloud drops can develop that will fall faster compared to the 

smaller cloud droplets. As a result of the differential terminal velocities, these larger drops can 

collect smaller cloud droplets as they fall through the warm cloud region, growing large enough 

to overcome the updraft speeds and exit the cloud (Figure 1.4). This process is called collision-

coalescence and is one of the primary ways by which rain drops can grow large enough to 

precipitate within a typical cloud lifetime (Rogers and Yao 1989; Pruppacher and Klett 2010). 

Once the rain drops exit the cloud, they may experience evaporation if the air below cloud is sub-

saturated. Rain (and cloud) evaporation can increase relative humidity values below the cloud 

base, which can be advected elsewhere or provide additional moisture to a neighboring updraft.  

1.2.3.2 Ice and Mixed-Phase Processes 

 Ice crystals can nucleate through homogeneous freezing at temperatures below -40C or 

through heterogeneous freezing, i.e., an insoluble aerosol acts as an ice nucleus where water can 

deposit (Rogers and Yao 1989; Pruppacher and Klett 2010). The nucleated ice crystals can 
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continue to grow through vapor deposition in cloud regions where conditions are supersaturated 

with respect to ice (RHice > 100%). Because the equilibrium vapor pressure of ice is less than that 

for water at the same subfreezing temperature, mixed-phase cloud regions where both liquid and 

ice particles exist can experience the Wegener-Bergeron-Findeisen process (Wegener 1911; 

Bergeron 1935; Findeisen 1938). During this process ice crystals grow through deposition at the 

expense of supercooled cloud water droplets (Figure 1.4), i.e., ambient conditions are sub-

saturated with respect to liquid water but supersaturated with respect to ice, thus cloud droplets 

evaporate and ice crystals grow quickly through deposition (Rogers and Yao 1989; Pruppacher 

and Klett 2010). Various crystal shapes can form, such as dendrites, needles, plates, and 

columns, depending on the amount of moisture available and the ambient temperature (Rogers 

and Yao 1989; Pruppacher and Klett 2010). Ice crystals can collide with each other within the 

cloud and, if the temperatures are appropriate, the ice crystals can stick together and form 

snowflakes (Rogers and Yao 1989; Pruppacher and Klett 2010). If the temperatures below the 

cloud are cold enough or if the freezing level intersects the mountain side, these snowflakes can 

reach the surface below the cloud or be advected leeward if the horizontal winds can transport 

the snow particles over the mountain top before they reach the surface. If temperatures above 

freezing exist below cloud base, the snow can melt and reach the surface as rain. Within the 

cloud a snowflake may become large enough to precipitate, but melt within the warm cloud 

region (i.e., temperatures are above freezing) and serve as a rain drop that can grow through 

continuous collection of cloud droplets (Figure 1.4). This process can lead to enhanced 

precipitation rates over the mountain and is associated with the seeder-feeder mechanism by 
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which a synoptically-forced upper-level cloud precipitates over an orographically-forced low-

level cloud to enhance precipitation over a mountain (Bergeron 1965; Robichaud and Austin 

1988; Purdy et al. 2005).  

 Ice crystals within the mixed-phase region can also grow through the collection of 

supercooled cloud droplets that then freeze on contact, also known as riming (Rogers and Yao 

1989; Pruppacher and Klett 2010). When an ice crystal experiences continuous riming to the 

point where its initial crystal shape is no longer distinguishable, the hydrometeor is called 

graupel. Graupel can melt within the warm regions of the cloud and may be able to reach the 

surface depending on its diameter. Graupel can be transported vertically within an updraft and 

experience frequent freezing-melting episodes, resulting in a multi-layered frozen hydrometeor 

termed hail (Rogers and Yao 1989; Pruppacher and Klett 2010). Hail more commonly forms in 

deep convective storms whose updrafts can be fast enough to suspend any rimed ice long enough 

to grow into hail (diameter > 5 mm, American Meteorological Society 2012).   

1.2.3.3 Microphysical and Environmental Interactions   

As hydrometeors change phase, they can release latent heat via freezing or condensation, 

and require latent heat via melting or evaporation. These phase and associated energy changes 

can affect the temperature profile and stability within those regions. For example, freezing 

processes can result in stronger updrafts as the clouds become more buoyant from latent heat 

release. On the other hand, the melting of snow can result in cooling upwind, which is theorized 

to be a cause for the vertical displacement of the freezing level towards the mountain side 

(Minder et al. 2011). Hobbs et al. (1973) demonstrated that the degree of riming of ice particles 
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influences where they will precipitate over a mountain, e.g., heavily rimed particles fall out faster 

and land on the upwind slope. The seminal study by Colle (2004) tested various mountain 

heights and half-widths and found the precipitation responses to mountain height and width 

depend on the horizontal wind speeds and location of the freezing level upwind. Horizontal wind 

speed can influence vertical velocities and condensation rates upwind (Roe 2005), affect 

mountain wave development downwind (Kunz and Wasserman 2011; Tushaus et al. 2015), and 

transport precipitation horizontally (Colle 2004; Kunz and Kottmeier 2006; Mott et al. 2014; 

Wang et al. 2017). 

Although moisture content is important for the initial formation of clouds upwind, 

relative humidity values below the cloud can also impact the amount of precipitation that reaches 

the surface. This is especially true downwind, where descending dry air can evaporate cloud 

water and rain or sublimate ice crystals. Snow advected to the lee can melt due to the warmer 

temperatures and result in rain, which may be large enough to resist complete evaporation. 

Temperature can also affect the amount of moisture that is available, as a colder environment 

will have less precipitable water available compared to a warmer environment. If the temperature 

is low, the freezing level (height of 0C isotherm) may be low enough to exist below the 

maximum terrain height and affect the spatial distribution of precipitation, i.e., more snow above 

the freezing level and rain production shifted far upstream. Changes to the freezing level can 

influence the dominant microphysical processes and the resulting precipitation type reaching the 

surface.  
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1.3 “Rivers in the Sky”  

An atmospheric river (AR) is defined as “a long, narrow, and transient corridor of strong 

horizontal water vapor transport that is typically associated with a low-level jet stream ahead of 

the cold front of an extratropical cyclone” (Ralph et al. 2018; Figure 1.5a). ARs are the largest 

"rivers" of freshwater on Earth, transporting on average more than double the flow of the 

Amazon River poleward (American Meteorological Society 2019). Moist neutral flow is a 

typical characteristic of ARs (Ralph et al. 2004, 2005), and thus when ARs make landfall over 

mountainous regions they frequently lead to heavy precipitation production (Ralph and Dettinger 

2012). ARs can contribute to flooding and damage to infrastructure (e.g., Ralph et al. 2006; 

White et al. 2019), while producing a large percentage of the annual precipitation in mountain 

regions such as the Sierra Nevadas (Dettinger et al. 2011) and the southern Andes (Viale et al. 

2018).   
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Figure 1.5 Atmospheric river (AR) schematics: (a) column-integrated precipitable water (CPW; 

cm) showing a typical atmospheric river event from Hagos et al. (2015), and (b) a plan view and 

(c) vertical-cross section across from Ralph et al. (2017).  

 

More than 90% of the poleward transport of water vapor over the midlatitudes occurs 

within ARs, which cover less than 10% of the global circumference (Zhu and Newell 1998). ARs 

are most frequent during the winter months of each hemisphere (Guan and Waliser 2015; Viale 

et al. 2018), although some can occur during the summer but are not as intense as the winter ARs 

(Neiman et al. 2008; Kamae et al. 2017). Figure 1.6 shows that ARs frequently make landfall 
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over Great Britain (Stohl et al. 2008; Lavers et al. 2013), Greenland (Neff 2018; Mattingly et al. 

2018), South America (Viale and Nuñez 2011), the Antarctic Peninsula (Gorodetskaya et al. 

2014), British Columbia (Curry et al. 2019), and the Pacific Northwest and West Coast of the US 

(Neiman et al. 2011; Guan and Waliser 2015). An “AR event” is defined by the period of time 

when integrated water vapor transport (IVT) values are greater than or equal to 250 kg m-1 s-1, or 

precipitable water values greater than 2 mm, are observed continuously over a specific location 

(Ralph et al. 2018). IVT is calculated by vertically-integrating the product of the horizontal wind 

speed (m s-1) and specific humidity (kg kg-1) from 1000 hPa to a pressure level between 500 hPa 

and 200 hPa (varies depending on approach), and dividing by the gravitational acceleration (m s-

2), resulting in IVT units of kg m-1 s-1 (Ralph et al. 2017). Over the U.S. West Coast, AR event 

duration can vary from 18-25 hours on average depending on the latitude (Rutz et al. 2014), and 

it is not uncommon to have consecutive ARs make landfall over the same region (e.g., White et 

al. 2019). The strength of an AR is determined by the IVT values, where IVT  250 kg m-1 s-1 

(precipitable water  2 cm) constitute a weak AR and IVT 1000 kg m-1 s-1 (precipitable water  

3.5 cm) constitute strong AR events (Ralph et al. 2019). General environmental characteristics of 

ARs that make landfall over the U.S. West Coast are warm, moist air from low-levels to the mid-

troposphere, moist neutral or stable flow, and a low-level jet (wind speeds > 20 m s-1) (Ralph et 

al. 2004, 2005; Neiman et al. 2008b; Figure 1.5c). On average, an AR is 850 km wide (rarely 

exceeding a width of 1000 km), 3 km deep, and over 2000 km in length (Rutz et al. 2004; Guan 

and Waliser 2015; Ralph et al. 2017; Figure 1.5b,c).  
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Figure 1.6 Frequency of atmospheric river landfalls worldwide from Guan and Waliser (2015).  

 

1.4 Numerical Modeling and Microphysical Parameterizations  

To summarize up to this point, this dissertation focuses on upwind precipitation caused 

by an atmospheric river interacting with a mountain. The socio-economic impacts of orographic 

precipitation from ARs emphasize the need for research on precipitation uncertainty within 

numerical weather prediction (NWP) and climate models. Although many sources of 

precipitation uncertainty exist within research and operational NWP models, e.g., horizontal grid 

spacing, (Morrison et al. 2015), boundary layer and radiation schemes (Jankov et al. 2017), the 

research presented here focuses on microphysics as these processes are closely tied to 

precipitation in models. Additionally, microphysics plays an important role to other processes in 
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weather and climate models, such as radiative transfer, cloud-aerosol interactions, and surface 

process.  

NWP models contain grid points spatially separated by 100s of meters to 10s of 

kilometers, while the formation and interaction of liquid and ice particles happens on the scale of 

microns to meters. Microphysical parameterizations (MPs) address this scale gap by 

approximating the very small-scale behavior associated with the development of clouds and 

precipitation and their feedbacks on the atmosphere, which cannot be resolved directly by the 

model. Previous modeling studies have shown the choice of MP can affect the forecasted 

precipitation and storm evolution (Gilmore et al. 2004b; Jankov et al. 2009). Additionally, the 

choice of microphysics scheme can affect the vertical distribution of hydrometeors and their 

phase changes, thus affecting the vertical distribution of latent heat release which can have major 

influences on the dynamics and thermodynamics of a storm system (Gilmore et al. 2004a; 

Morales et al. 2015).  

Two of the most common types of MPs are bulk and bin schemes. Bulk schemes typically 

represent the hydrometeors and suspended particles with particle size distributions that follow a 

functional form, such as gamma, log-normal, or inverse-exponential (Stensrud 2007). Bin 

schemes divide particles into a finite number of size categories and calculate the evolution of 

each bin (Stensrud 2007). Although bin schemes tend to be more realistic in their representation 

of particle sizes (i.e., better representation of particle fall speeds), they are very computationally 

expensive, especially for operational weather prediction (Stensrud 2007). Bulk schemes are thus 

often used operationally and for research purposes. Bulk schemes can also predict different 
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number of “moments” or bulk quantities for different species (x) such as cloud ice, cloud water, 

snow, rain, graupel, hail. Schemes can predict the mass mixing ratio qx (1-moment), the number 

concentration Nx (2-moment), and simulated radar reflectivity Z (3-moment) (Stensrud 2007). 

For the purposes of this dissertation, a two-moment bulk scheme is sufficient to explore our 

science questions.  

The microphysics parameterization used in this dissertation is the Morrison two-moment 

scheme (Morrison et al. 2005, 2009). It is a bulk scheme, meaning it represents the initial particle 

size distribution with a specified functional distribution (i.e., gamma distribution). The scheme 

predicts the mixing ratio and the number concentration for the following species or categories: 

cloud ice, cloud water, snow, rain, and rimed ice. The cloud ice species represents smaller ice 

crystals, regardless of the formation mechanism, and is converted to the snow species based on 

the deposition growth rate of particles at a specified diameter. In this scheme, the conversion of 

cloud ice to snow from aggregation of cloud ice is neglected, while aggregation of cloud ice by 

existing snow and aggregation via self-collection of snow is included. The rimed ice species in 

the Morrison scheme can be chosen as either graupel or hail, but not both. Although both species 

are formed by accretion of supercooled cloud droplets on ice crystals at sub-freezing 

temperatures, graupel is assumed to be far less dense than hail. Because of the characteristic 

vertical velocities and typical observations of AR precipitation, graupel is thus chosen over hail. 

The cloud ice and cloud water represent non-precipitating ice and liquid droplets, respectively. 

All particles are assumed to be spherical for calculating the mass-size relationship. However, the 
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terminal fallspeed is not itself calculated using a spherical assumption, instead it is based on 

empirical fallspeed-size relationships in the form of a power law that is a function of diameter.  

For numerical simplicity MPs like the Morrison scheme assume the population of ice 

crystals all have a spherical shape when calculating the mass-size relationship (influencing the 

size distribution parameters), even though ice crystals come in a diverse range of shapes (e.g., 

long needles, flat plates, complex dendrites) and different levels of aggregation (snowflakes, 

graupel, hail). In nature, these different particle shapes/habits and types result in a variability in 

the particle fall speed and density, which can influence the spatial distribution of precipitation 

(Mott et al. 2014; Wang et al. 2017). The effects induced by the shape and size variability are 

approximated through the use of tunable parameters, whose values have an inherent variability 

and natural uncertainty. These parameters are associated with particle characteristics (e.g., 

particle density and fallspeed parameters), conversion thresholds (e.g., self-collection of cloud 

water to form rain (autoconversion) or rimed snow converted to graupel), collection efficiencies 

(e.g., cloud water-ice, ice-ice), and processes such as snow deposition, collision-coalescence, or 

riming. Changes in these parameters have been shown to affect cloud development and 

precipitation (Jankov et al. 2007, 2009; Liu et al. 2011). For example, reducing the speed at 

which a snow particle falls can shift maximum snowfall from the windward to lee side of a 

mountain (Colle and Mass 2000).  

Over the past decade, effort has been made to produce MPs that allow ice particle types 

to vary as a function of different process rates such as riming and deposition as opposed to 

arbitrary conversion thresholds between pre-determined and fixed ice categories (e.g., Morrison 
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and Milbrandt 2015). More complex schemes also exist that predict the ice particle habits, as 

well as the mass, shape, size, density, and fall speed (e.g., Jensen et al. 2018). The use of these 

schemes is beyond the scope of this dissertation.  

 

1.5 Specific Aims  

ARs make landfall on every continent and can often coincide with mountainous regions, 

resulting in moist air to be forced to rise over the terrain. If there is enough moisture and ascent, 

clouds can form and the subsequent precipitation developed is termed orographic precipitation. 

In general, the heaviest orographic precipitation occurs on the upwind side of the mountain and 

can lead to flooding and landslides, while also providing a large percentage of the annual 

precipitation for regions downstream.  

NWP and climate models used to understand precipitation distributions and development 

cannot directly resolve many of the physical processes occurring within the atmosphere, thus 

physical parameterizations are created to approximate the small-scale processes. The 

simplification of physical processes, such as cloud and precipitation processes, introduces 

uncertainty in the model. Although different sources of uncertainty exist, this dissertation focuses 

on cloud microphysical processes. Parameters within microphysical schemes represent simplified 

processes and contain natural variability, e.g., a parameter varies spatially/temporally but is 

constant in the model, and inherent uncertainty from limited observations and measuring 

capabilities. Additionally, phase changes within the cloud can influence the latent heat exchange 

in the environment, thus leading to impacts on the dynamics and thermodynamics of the system. 
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The upstream environmental conditions can also impact the processes within the cloud and the 

precipitation development, i.e., temperature can impact the precipitation type, and wind speeds 

and moisture content can affect condensation rates. Therefore, this dissertation aims to explore 

the quantitative sensitivity of orographic precipitation from an AR to microphysical and 

environmental parameter perturbations. The main science question explored here is: how do 

cloud processes and environmental conditions affect orographic precipitation when an 

atmospheric river interacts with a mountain? This question is approached through idealized 

numerical model experiments and the application of statistical methods in studies described 

below and presented in Chapters 2, 3, and 4.  

Chapter 2 (Morales et al. 2018) explores the hypothesis that perturbations to 

microphysical parameters will exert a strong influence on orographic precipitation location and 

amount due to effects on the thermodynamics and dynamics caused by changes to latent heat 

release. The primary analysis focuses on the importance of microphysical parameters, with a 

secondary analysis investigating how the environment could affect the precipitation sensitivities 

to microphysical parameter perturbations. The study uses an idealized modeling framework and 

systematic perturbations of numerous microphysical parameters to explore the precipitation 

sensitivity. Although prior work has explored microphysical parameters in the past (Hobbs et al. 

1973; Colle and Mass 2000; Colle 2004; Colle and Zeng 2004a,b; Colle et al. 2005; Miglietta 

and Rotunno 2006; Jankov et al. 2007, 2009; Lin and Colle 2009, 2011; Liu et al. 2011; 

Morrison et al. 2015), this is the first study evaluate a large number of parameters corresponding 

to ice and warm-rain processes for an environment characteristic of an atmospheric river. In 
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addition, the study explores how the precipitation sensitivities would change in an environment 

with a lower freezing level and a weaker horizontal wind speed profile.  

 Given the results from Chapter 2, Chapter 3 applied a more complex sensitivity analysis 

method to better understand if the simultaneous perturbation of parameters impacts the 

precipitation sensitivity to individual parameters (Morales et al. 2019). Additionally, multiple 

microphysical and environmental parameters are tested simultaneously to determine if 

microphysical parameters or environmental conditions are most influential to orographic 

precipitation within an atmospheric river environment. The main hypothesis tested here asserts 

that different combinations of microphysical parameters and environmental conditions could act 

to enhance, reduce, or nullify the impacts on orographic precipitation through complex 

interactions. This study used the Morris One-at-A-Time (MOAT) method (Morris 1991; 

Campolongo et al. 2007), which allowed for the simultaneous perturbation of multiple 

parameters and screen out parameters that were least influential to precipitation. This method 

was applied for the first time to the study of orographic precipitation and provided additional 

information on non-linear parameter interactions.  

 Results from Chapter 3 showed differences in the most influential parameters for 

different precipitation types (frozen vs liquid). Thus, Chapter 4 (Morales et al. 2019, in prep.) 

focuses on precipitation type and tests the following hypothesis: environmental conditions will 

affect the type of precipitation more so than perturbations to microphysical parameter 

perturbations. Results from Chapter 3 suggest that some parameters may interact with one 

another, i.e., the value of some parameter may influence the effect of another parameter on 
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precipitation. Therefore, this project explores any possible covariance in parameters through the 

application of a Markov Chain Monte Carlo (MCMC) method to the subset of parameters most 

influential to precipitation found in Chapter 3.  

The motivation, background, methodology, and results for all three projects described 

above are found in Chapters 2, 3, and 4, respectively. Chapter 4 contains the results of the 

ongoing MCMC experiment, to be submitted for publication post-defense. Chapter 5 presents a 

summary and the general conclusions of this dissertation, and presents possible areas of future 

work, remaining science questions, and applications of this research. 
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Chapter 2. Orographic Precipitation Response to Microphysical Parameter Perturbations 

(Morales et al. 2018) 

2.1 Introduction  

Orographic precipitation during non-convective events commonly occurs in 

environments characterized by moist nearly neutral conditions. This type of flow allows for little 

resistance to orographic lifting resulting in enhancement of precipitation over windward 

mountain slopes (Miglietta and Rotunno 2005, 2006; hereafter MR05 and MR06). Atmospheric 

rivers (ARs) have been observed to have moist nearly neutral static stability in the lower levels 

of the troposphere, as well as high surface potential temperatures (approx. 285-289 K), strong 

wind speeds (low-level jet >20 m/s), high freezing level, and nearly saturated conditions (Ralph 

et al. 2005). When ARs interact with topography they can produce intense precipitation, 

triggering flooding and mudslides resulting in devastating and costly impacts to local 

infrastructure and loss of life and property (Ralph et al. 2006; Neiman et al. 2008b; Leung and 

Qian, 2009; Ralph et al. 2011).  

In California, ARs are responsible for 20-50% of the annual precipitation (Dettinger et al. 

2011), often from only a few storms producing large amounts of snow resulting in snowpack 

reaching “near-record levels of snow water equivalent” (Guan et al. 2010; Guan et al. 2013). 

Guan et al. (2013) found that lower than normal surface air temperatures during AR events favor 

increased snow accumulation over the Sierra Nevada. Colder AR events have lower amounts of 

integrated water vapor, yet they result in a higher snow-to-rain ratio and higher overall 
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precipitation values (Guan et al. 2010). Freezing level can also play an important role in 

snowpack stability. High freezing levels can shift precipitation from snow to rain (Yuter and 

Houze 2003; Colle et al. 2005a). Rain falling on snowpack can promote early snowmelt (Kim et 

al. 2013) and create challenges for water resource managers. Past studies have also found that a 

high freezing level affects where precipitation will fall, resulting in less downwind transport and 

a peak in precipitation on windward slopes or near peak elevations (Colle 2004; MR06; 

Stoelinga et al. 2013).  

Complex interactions between mountain geometry, thermodynamics, and cloud 

microphysics can also control precipitation type, amount, and its location over a mountain (Lin et 

al. 2001; Jiang and Smith 2003; Stoelinga et al. 2003; Colle 2004; MR05; MR06; Tushaus et al. 

2015 (hereafter T15)). For example, a wide barrier (≥30 km half-width) will provide more time 

for snow growth aloft, while a narrower barrier will generate more graupel through the collection 

of supercooled cloud droplets (Colle and Zeng 2004b). Wider barriers are thus more sensitive to 

parameters such as snow fall speed over the windward slope. Hobbs et al. (1973) demonstrated 

the degree of ice particle riming influences where ice particles will precipitate over a mountain, 

i.e., heavily rimed particles fall out faster and land on the windward slope. 

Microphysical parameterizations are implemented in weather forecast models to 

represent the development of clouds and precipitation. Simulated orographic precipitation for 

both AR and non-AR events has been found to be sensitive to the choice of microphysics scheme 

(Jankov et al. 2007, 2009; Liu et al. 2011). Sensitivity studies exploring the effects of 

microphysical parameters on orographic precipitation show changes in these parameters can 
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impact cloud and precipitation development. Colle and Mass (2000) found lower snow fall 

speeds shifted precipitation from the windward to lee side of the barrier during an AR over the 

Pacific Northwest. Colle and Zeng (2004a) found condensation, snow deposition, and riming and 

melting of graupel contributed most to the development of surface precipitation on the upwind 

slope. Their results also showed surface precipitation and microphysical processes were most 

sensitive to parameters associated with snow/graupel fall speeds, CCN concentrations, and snow 

size distribution, and less with ice initiation and autoconversion. A similar study performed over 

the Cascade Mountains (Colle et al. 2005) also found strong sensitivity to snow size distribution 

and fall speed parameters, as well as having cloud water accretion and melting of graupel and 

snow contribute to most of the surface precipitation production. Colle et al. 2005 found riming 

processes to be important for the amount and distribution of supercooled water within clouds, 

affecting snow growth upwind.   

These microphysical parameters have both uncertainty and inherent variability. 

Uncertainty arises because some parameters have a measurable uncertainty (e.g., particle 

densities, fall speeds), while others are uncertain because of limited measuring capabilities (e.g., 

process rates) or because they do not correspond to any physical, observable quantity in nature 

(e.g., autoconversion thresholds). There are also parameters whose values are known to vary 

spatially and temporally, beyond the range of measurement uncertainty, but are constant in the 

model. Uncertainty and variability in these parameter values leads us to ask the question: what is 

the sensitivity of orographic precipitation to changes in microphysical parameters? 
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We hypothesize that microphysics exerts a strong influence on the amount and location 

of orographic precipitation within moist nearly neutral conditions, such as those found within 

ARs. Changes in these microphysical parameters can then have secondary effects on the 

thermodynamics and dynamics through latent heating (Morales et al. 2015). Overall, we surmise 

microphysical parameter and process changes may result in non-linear responses due to complex 

interactions between parameters within the microphysics scheme. While orographic precipitation 

may vary with changes to microphysical parameter and process, will these responses differ if the 

upstream environment is also perturbed? Past studies by MR05, MR06, and T15 have shown a 

non-linear dependence of simulated precipitation to parameters controlling mountain geometry, 

mean zonal wind speed, moist static stability, relative humidity, and surface potential 

temperature. For example, increasing surface potential temperature did not result in higher rain 

rates on upwind slopes, since processes such as riming occur at lower temperatures and can 

contribute to surface precipitation (MR06). T15 performed a more systematic analysis of the 

parameter space for mountain geometry and upstream conditions, finding non-monotonic 

responses for mountain half-width, moist static stability, and mean zonal wind speed and 

monotonic responses to mountain height, relative humidity, and surface potential temperature. 

Their study focused on liquid-only microphysics. We extend this analysis to include ice 

microphysics and ask the following question: how will the sensitivities to changes in 

microphysical parameters change with different environments? 

Following work by MR05, MR06, and T15, this study focuses on moist nearly neutral 

flow over a two-dimensional (2D) Gaussian-shaped mountain barrier and explores the 
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sensitivities of orographic precipitation to changes in microphysical parameters in different 

environments. We utilize an idealized modeling framework, which allows us to reduce model 

complexity and isolate the most important physical controls on orographic precipitation within 

the Cloud Model 1 (CM1). 

2.2 Methodology  

2.2.1 Model Configuration  

The idealized simulations in this study were performed using version 17 of the Cloud 

Model 1 (CM1; Bryan and Fritsch 2002). CM1 is a non-hydrostatic atmospheric model designed 

for modeling of cloud-scale processes. Following MR05, MR06, and T15, our configuration uses 

a 2D domain with a horizontally stretched x-grid where the horizontal grid spacing is 2 km for 

the inner domain (1200 km in length) and stretches up to 6 km over 50 grid points on either side. 

The domain is 1600 km in length, and the total depth is 18 km with 55 vertical levels. The 

vertical grid spacing is 0.25 km from the surface to a height of 9 km, increases to 0.5 km 

between 9 and 10.5 km, then remains constant at 0.5 km until 18 km.  

 Lateral boundary conditions are open-radiative, with a no slip bottom boundary condition 

and free slip top boundary condition. A positive definite advection scheme is used and a 

Rayleigh damper with damping coefficient of 0.0003 s-2 is applied to the top 4 km to prevent 

reflection of vertically propagating gravity waves. Although interactions of radiation with the 

mountain surface can result in the forcing of mesoscale mountain circulations, e.g., mountain-

valley winds, our focus is on the interaction of microphysics and dynamics. Thus, radiative 
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transfer and surface heat flux parameterizations are neglected. All simulations are run for 20 

hours at a time step of 3 s. The Morrison microphysics scheme version 3.4 (Morrison et al. 2005, 

2009) is used for all microphysical parameter perturbation experiments. The Morrison scheme is 

a two-moment bulk microphysical parameterization that prognoses mass and number mixing 

ratios of four hydrometeor categories: rain, cloud ice, snow, and the choice of either graupel or 

hail. It also prognoses the mass mixing ratio of cloud liquid water, and in the version used here 

specifies a constant cloud droplet number concentration (set to 200 cm-3). The rimed ice species 

in the experiments presented here is set to graupel. For rain, cloud ice, snow, and graupel, the 

particle size distributions (PSDs) are described by inverse exponential functions. For cloud liquid 

water, the PSD follows a gamma function with a shape parameter that depends on the specified 

cloud water number concentration. Analysis of the precipitation produced by each simulation 

utilizes 5-min output cadence during simulated hours 6-20, as the precipitation rate, cross-

mountain flow, and spatial distribution of cloud is relatively steady during this time period.  

2.2.2 Experimental design – Control  

The environmental parameters for the idealized sounding are guided by observations of 

an AR event during the Olympic Mountains Experiment (OLYMPEX; Houze et al. 2016). The 

observed sounding (Figure 2.1a) was taken at 0300 UTC on 13 Nov 2015 at the base of the 

Quinault River Valley in Washington state (Zagrodnik et al. 2017, submitted). Our goal in 

idealizing this sounding was to create a realistic environment described by as few parameters as 

possible; thus, the observed profile was smoothed using a simple 1-2-1 filter and characteristic 

values for each parameter were determined. Table 2.1 lists the environmental parameters 
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calculated from the observed sounding. Moist Brunt-Väisälä frequency (Nm
2) for the troposphere 

(4×10-5 s-2) and stratosphere (5×10-4 s-2) was calculated by averaging Nm
2 below and above the 

tropopause height (approx. 12 km), respectively, using equation (36) of Durran and Klemp 

(1982). Within CM1 equation (13) is used for Nm
2, along with equation (19) for the moist 

adiabatic lapse rate, found in Durran and Klemp (1982). 

 
Figure 2.1 a) Skew-T diagram showing the observed sounding from OLYMPEX 13 Nov 2015 

(black), idealized sounding (magenta), and lower freezing level (LowFL) sounding (blue). For all 
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soundings, solid lines represent temperature and dashed lines represent dewpoint temperature, all 

in Celsius. (b) Vertical profile of zonal wind speed (m/s) showing the observed winds (thin black 

line), smoothed profile (thick black line), idealized profile (magenta), and reduced wind profile 

(LowU, dot-dash orange). (c) Vertical profile of relative humidity (%) showing the observed 

values (thin black line), smoothed profile (thick black line), and idealized profile (magenta). 

 

Table 2.1 List of parameters describing the environmental sounding and mountain geometry. 

 

The surface potential temperature is set to 286 K. Figure 2.1b shows the original wind 

profile, which is smoothed and idealized with linearly increasing winds of 14 m/s at the surface 

to 42 m/s at a height of 12 km, and constant winds at 42 m/s above 12 km. The idealized wind 

profile contains no directional shear, i.e., zonal winds are perpendicular to the barrier. The 

relative humidity (RH) profile (Figure 2.1c) is divided into three layers: below 4.5 km, between 

4.5 km and 12 km, and above 12 km. This sounding has already likely undergone humidification 

relative to the upstream conditions through flow interaction with the barrier, thus the RH below 

4.5 km was decreased to 95% in order to have initial conditions representative of air not yet 

forced to rise. This sub-saturated profile also helps limit cloud development far upstream before 

the flow approaches the barrier. The RH profile linearly decreases with height from 95% at 4.5 

km to 20% at 12 km, and remains constant at that value up to the model top (Figure 2.1c).  

The idealized mountain barrier is created using the following equation from MR05, 

MR06, and T15,   

Parameter description (Symbol) Control Units 

Squared moist Brunt– Vaisala frequency for troposphere (Nm,Trop
2 ) 4×10-5 s-2 

Squared moist Brunt– Vaisala frequency for stratosphere (Nm,Strat
2 ) 5×10-4 s-2 

Surface potential temperature (θsfc) 286 K 

Mountain height (Hmtn) 1×103 m 

Mountain half-width (Wmtn) 4×104 m 
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    h(x) =  
Hmtn

1+[
x−x0
Wmtn 

]
2 ,      (2.1) 

 

where mountain height (h) is a function of the horizontal position within the domain (x) and is 

described using the maximum mountain height (Hmtn), the center of the mountain (x0), and the 

mountain half-width (Wmtn). The center of the mountain is shifted 400 km downstream of the 

center of the domain to reduce influence of mountain-generated upstream-propagating waves on 

the flow entering at the upstream boundary.   

Again, we use observations to guide the barrier characteristic parameters by averaging 

the elevation over a 0.6° latitude-wide box through the center of the Olympic Mountains (Figure 

2.2). From the observations, the barrier is idealized to a maximum height of 1 km and a half-

width of 40 km (Table 2.1). This mountain shape was chosen to match as closely as possible the 

upwind slope and mean height of the Olympic mountains. Although the environmental sounding 

and mountain geometry are idealized from observations, our aim is not to simulate the exact 

evolution of the 13 Nov 2015 event, but to use these observations to anchor our simulations in 

reality.  
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Figure 2.2 Meridionally-averaged elevation over a 0.6° latitude-wide box including the center of 

the Olympic Mountains and the Quinault river valley (black box in bottom map). Solid black line 

depicts mean topography, dashed black lines correspond to +/- standard deviation, and magenta 

line corresponds to the idealized mountain shape used in CM1 simulations (height of 1 km, half-

width of 40 km). 

 

 

2.2.3 Microphysical Parameters 

One-at-a-time parameter perturbation experiments were performed on the previously 

described control simulation using the microphysics parameters listed in Table 2.2. Some 

parameters are associated with physical characteristics of the frozen hydrometeors, e.g., fall 

speed coefficient (A) and bulk particle density () of cloud ice (i), snow (s), and graupel (g), and 
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have an empirical range of values. Others are parameters within microphysics parameterizations 

that do not correspond to a real physical quantity, e.g., autoconversion thresholds, and thus they 

generally have a greater range of uncertainty. Within the Morrison scheme, like other schemes, 

there exist “hard-wired” thresholds for autoconversion rates and other processes, thus we create 

parameters acting as multiplicative factors in order to vary the processes. Multiplicative factors 

are used to perturb the processes of cloud water autoconversion, rain accretion, and snow 

deposition to represent the uncertainty and inherent variability associated with these processes. 

The control values are the default settings for these parameters within the Morrison scheme. For 

parameters which describe observable cloud properties (e.g., fall speeds and particle densities) 

the range of values is set to a consistent range from observations. The other parameters are 

varied over a range of plausible values. Each one-parameter perturbation experiment has five 

points, i.e., the control value, the min and max, and values between the control and min/max. 

Based on the complex interactions and feedbacks microphysics can have on the system, we 

surmise that the responses to changes in the microphysical parameters will be non-linear and test 

five values per parameter to explore this idea. The precipitation rate responses to microphysical 

parameter changes are assessed over six regions on the mountain where spatial averaging is 

performed: the upwind foothills, slope, and top and the downwind foothills, slope, and top 

(Figure 2.3c).    

 



 40 

Table 2.2 List of microphysical parameters, including control values and range over which the 

parameters are perturbed. Parameters in bold are those which have the largest impact on surface 

precipitation in the control simulation. 

 

Parameter description (Symbol) Control Min Max Units 

Cloud ice fall speed coefficient (Ai) 700 350 1050 m(1-b) s-1 

Snow fall speed coefficient (As) 11.72 5.86 17.58 m(1-b) s-1 

Graupel fall speed coefficient (Ag) 19.3 9.65 28.95 m(1-b) s-1 

Cloud ice density (i) 500 250 750 kg m
-3

 

Snow density (s) 100 50 150 kg m
-3

 

Graupel density (g) 400 200 600 kg m
-3

 

Cloud ice autoconversion threshold (DCS) 125 50 200 μm 

Nucleated ice crystal radius (RMI0) 10 1 30 μm 

Embryo graupel radius (RMG0) 45.71 35 1000 μm 

Ice-Ice collection efficiency (EII) 0.1 0.01 1 -- 

Ice-cloud water collection efficiency (ECI) 0.7 0.3 1 -- 

Radius of splintered ice particle (RMMULT) 5 1 30 μm 

Rain accretion factor (WRA) 1 0.5 2 -- 

Cloud water autoconversion factor (WRC) 1 0.1 10 -- 

Snow deposition factor (SDEP) 1 0.5 2 -- 
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Figure 2.3 (a) Vertical cross-section over a portion of the domain of the control simulation 

showing temporally-averaged (hours 6-20) streamlines colored with wind speed (m s-1), cloud 

water and ice mixing ratios (gray shaded contours, g kg-1), snow mixing ratio (0.05 g kg-1 

contour, cerulean), rain mixing ratio (0.05 g kg-1 contour, orange), and freezing level (black line). 

(b) Hovmöller diagram of precipitation rate (mm/hr) with simulation time (hours) on the ordinate 

and distance from center of the mountain (km) on the abscissa. Dashed gray line corresponds to 

hour 6, start of temporal averaging. (c) Mountain height (m) profile with the 6 averaging regions 

used for the calculations: upwind foothills (UF), slope (US), top (UT), and downwind top (DT), 

slope (DS), and foothills (DF).  

 

 

2.2.4 Experimental Design – Environmental Tests 

Two additional experiments are performed to test if the sensitivities to changes in 

microphysical parameters remain the same with a different environment. The first environmental 

test involves scaling down the wind profile. The control wind profile has high cross-barrier wind 

speeds (~16 m/s); the strong dynamical forcing in this case may exert a large influence on the 

precipitation response to microphysical parameter changes. To explore how changes in the 

dynamical forcing impact the precipitation response to microphysical parameter perturbations, 
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the first environmental test reduces the wind speeds by 30% throughout the entire profile 

(hereafter experiment LowU, Figure 2.1b). In addition, T15 found that adjusting the environment 

can lead to large changes in precipitation for a similar idealized moist neutral environment. Their 

results found zonal wind speed to be a dominant control on precipitation, leading to a non-

monotonic upwind precipitation response to changes in wind speed.  

The second environmental test explores the impact of the freezing level height on the 

changes in microphysics parameters/processes. The freezing level in the control is at a height of 

approximately 2.6 km, which may result in warm-rain processes dominating the production of 

precipitation at the surface. To explore how changes to the most influential microphysical 

parameters are affected in an environment where ice processes play a larger role in precipitation 

production, the freezing level is lowered by reducing the surface potential temperature by 6 K 

while retaining the same profile of Nm
2 (hereafter experiment LowFL, Figure 2.1a). This new 

atmospheric profile has an initial freezing level at a height of approx. 1.3 km, which descends to 

below the mountain top after hour 3 of the simulation, likely through adiabatic ascent and 

melting of graupel and snow that cool air near the mountain top.  

2.3 Results and Discussion  

2.3.1 Control Simulation 

A cloud forms on the upwind slope and top of the mountain with a depth of 

approximately 7 km within the first hour of our idealized simulation (not shown). Surface 

precipitation also occurs within the first hour of the simulation (Figure 2.3b) through warm-rain 



 43 

processes and increases after the generation of snow and graupel. The high freezing level 

(approximately at 2.5 km height) provides sufficient distance for frozen hydrometeors to melt 

before reaching the surface. After hour 6, the mid-level cloud over the upwind slope begins to 

dissipate, seemingly due to the Wegener-Bergeron-Findeisen process as snow development 

extends upstream (not shown), and the upper-level cloud becomes detached from the parent 

cloud, persisting for the rest of the simulation (Figure 2.3a). A shallow cloud forms between 2-3 

km heights and extends across the domain, and a deep cloud containing high mass mixing ratios 

(> 0.5 g kg-1) persists over the upwind mountain side (Figure 2.3a). Also, after hour 6, graupel no 

longer occurs and the orographic precipitation system becomes quasi-steady. Thus, we neglect 

the initial transient graupel feature and perform our temporal averaging over hours 6-20. Melting 

of snow, in addition to warm-rain processes, provide the quasi-steady precipitation from hours 6-

20 with the highest precipitation rates occurring over the upwind slope (maximum rate of 5.02 

mm hr-1; Figure 2.3b,c).  

In general, the flow is laminar (i.e., there are no breaking waves, rotors, or strong lee 

waves) as it traverses the barrier. Downwind we see an elevated freezing level (Figure 2.3a), 

likely due to adiabatic warming from descending winds on the lee side of the mountain. There 

are also low amplitude lee waves, which trigger shallow cloud development downstream (Figure 

2.3a). The freezing level remains fairly constant at z = 2.6 km far upstream, while sloping 

downward near the upwind top of the mountain (Figure 2.3a). This downward sloping of the 

freezing level was observed during OLYMPEX (Houze et al. 2016) and has been suggested to be 

a result of a combination of processes: latent cooling from snow melting, adiabatic cooling from 
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upslope lifting, and the melting distance of hydrometeors, which is controlled by particle size 

and density, as well as ambient conditions (Marwitz 1987; Medina et al. 2005; Minder et al. 

2011). The freezing level does not become low enough to reach the mountain top in our control 

simulation. 

As mentioned in the Methods section, the goal of this study is not to simulate the events 

of 13 Nov 2015 exactly, but to use observations from this atmospheric river case to guide our 

upstream environmental conditions. Nevertheless, it is encouraging to see a similar magnitude of 

orographic enhancement in our idealized control simulation (precipitation rate over 

UT/precipitation rate over UF = 5.6) compared to the observed enhancement of 4-5 on 13 Nov 

2015 (A. Rowe, 2017, personal communication). Our idealized simulation also had the highest 

precipitation rates occur on the upwind slope and not on the highest peak, which was similarly 

observed during this OLYMPEX case (Zagrodnik et al. 2017, submitted). Thus, we are confident 

in our control simulation and its ability to provide understanding of this moist nearly neutral 

environment.   

2.3.2 Microphysical Parameter Perturbations  

Perturbations were performed on the control simulation to explore the sensitivity of 

orographic precipitation and cloud development to changes in various parameters within the 

Morrison scheme. Table 2.2 lists all of the parameters tested, as well as the range of values over 

which the parameter perturbations were performed.  

To understand the overall effect of these parameters on the control simulation, the 

relative change (%) within each set of parameter perturbations was calculated by taking the 
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difference between the maximum and minimum response values and dividing it by the average 

of the five response values. All values are temporally and spatially averaged over hours 6-20 for 

the 6 mountain regions described in Figure 2.3c. Figure 2.4 shows the relative change for 

precipitation rate (PREC; mm hr-1), and liquid and ice water paths (LWP and IWP, respectively; 

kg m-2). LWP is the total amount of cloud water and rain between the surface and model top, 

calculated by vertically-integrating the cloud water and rain mixing ratios. Similarly, IWP 

represents vertically-integrated cloud ice, snow, and graupel mixing ratios. Overall, some 

parameters have little influence (< 20%) on our output metrics (PREC, LWP, and IWP), while 

others have a larger influence over specific regions or across the entire mountain. Downwind 

regions have the highest relative change, mostly because the PREC, LWP, and IWP there have 

small magnitudes and hence small absolute changes will result in large relative changes. There 

are four parameters which stand out because of large relative responses or widespread impacts on 

PREC, LWP, and IWP: snow particle fall speed coefficient (As), snow particle density (s), ice-

cloud water collection efficiency (ECI), and rain accretion multiplicative factor (WRA) (Fig. 

2.4). As and s describe hydrometeor characteristics, while ECI and WRA are associated with 

cloud water collection by ice species and rain, respectively. We focus on the responses to 

perturbing these four parameters in the rest of this section.  
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Figure 2.4 Percent relative change given by 100 x (max-min)/average for each 5-point parameter 

perturbation experiment for (a) precipitation rate (PREC; mm hr-1), (b) liquid water path (LWP 

includes cloud water and rain mixing ratios; kg m-2), and (c) ice water path (IWP includes cloud 

ice, snow, and graupel mixing ratios; kg m-2). Black colors denote undefined values, i.e. infinity. 

Ordinate: list of parameter symbols defined in Table 2.2. Abscissa: averaging regions over the 

mountain shown in Figure 2.3c. 

 

 Hovmöller diagrams in Figure 2.5 provide information on the impact on precipitation 

location and amount compared to the control simulation for each parameter perturbation. 

Overall, the effect on precipitation amount is largest at lower perturbation values (left two 

columns in Figure 2.5) for As, s, and ECI, and at the minimum and maximum values for WRA 

(Figure 2.5m,p). Given that the control simulation’s maximum precipitation value is 5 mm hr-1, 

the parameter perturbations result in precipitation changes ranging from a 42% decrease (Figure 

2.5m) to a 30% increase (Figure 2.5e). For low values of As, less precipitation falls on the 

upwind side (Figure 2.5a-d), while s has the opposite effect where less precipitation falls 

downwind for low s values (Figure 2.5e-h). ECI precipitation responses are similar to As (less 

precipitation upwind for lower values), but with changes occurring over a narrower region 
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(Figure 2.5i-l). At the maximum value of WRA (WRA=2; Figure 2.5p) we see more surface 

precipitation over the upwind slope/top, while the minimum value (WRA=0.5; Figure 2.5m) 

shows more precipitation over the upwind slope/top initially but shifting with time to the upwind 

foothills, in contrast to As, s, and ECI which has a consistent spatial change in precipitation with 

time.  

 
Figure 2.5 Hovmöller diagrams of precipitation rate difference (mm hr-1) between microphysics 

parameter/process perturbation experiments and the control. Panels show perturbations for (a-d) 

snow fall speed coefficient (AS; control=11.72 m(1-b) s-1), (e-h) snow particle density (s; 

control=100 kg m-3), (i-l) ice-cloud water collection efficiency (ECI; control=0.7), and (m-p) 
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cloud water accretion by rain (WRA; control=1). Blue colors represent larger rain rates for the 

control, red colors represent larger rain rates for the parameter perturbation experiment. Dotted 

lines show hour 6, where temporal averaging begins. 

 

 We next present temporally averaged (hours 6-20) precipitation rates for each region over 

the mountain and analyze the response functions to changes in As, s, ECI, and WRA. 

Precipitation rate (mm hr-1) is further analyzed using the following equation:  

PREC = PE <COND>,          (2.2) 

where surface precipitation rate (PREC) is a product of precipitation efficiency (PE) and 

vertically-integrated total condensation rate (<COND>, mm hr-1). Total condensation rate 

includes all processes that convert water vapor to condensate, i.e., cloud ice, snow, and graupel 

deposition and cloud water condensation, which are then vertically-integrated (indicated by < >) 

from the surface to model top. In the model, <COND> depends mainly on the vertical air 

velocity in saturated conditions, and therefore changes to <COND> indicate a link to dynamical 

changes caused by parameter perturbations. PE is directly affected by microphysical parameter 

perturbations and describes how efficiently condensate is removed from the atmosphere through 

microphysical processes and sedimentation, resulting in surface precipitation. Since we analyze 

Equation 2.2 over sub-regions of limited spatial extent, PE is also affected by horizontal 

advection of condensate. Thus, the response of PE to parameter perturbations shows that a 

particular parameter has affected the conversion of condensate to vapor (from evaporation or 

sublimation) and/or transport (sedimentation and horizontal advection). A PE value less than one 

in the sub-region corresponds to less precipitation reaching the surface compared to the amount 

of condensate produced within that sub-region. If PE is greater than one, the increase in 
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precipitation relative to the amount of condensate produced in the column is due to net 

convergence of the condensed water horizontal advective fluxes across the sub-region. We use 

this analysis to determine how much condensate is generated (<COND>), how efficient the 

model is in removing this condensate as surface precipitation, and how both are affected by 

microphysical parameter perturbations. In our calculations of PE from model output, we take the 

ratio of the average <COND> and PREC (spatial and temporal) to reduce noise, which can 

contaminate PE calculated as an average of the ratio.  

As response functions show a general trend of increasing (decreasing) precipitation rate 

upwind (downwind) with increasing As (Figure 2.6a). Using Equation 2.2 to understand the 

precipitation response, we see PE has a similar response as precipitation rate, while <COND> is 

relatively unaffected (Figure 2.6b-c). Perturbations to As influence the efficiency of condensate 

removal through the direct effect that As has on the snow particle fall speed in the Morrison 

scheme:  

   Vs = AsD
Bs ,      (2.3) 

where As is the snow fall speed coefficient (m(1-b) s-1), D is the particle diameter (m), Bs is an 

exponent parameter (that we do not vary here), and Vs is the fall speed of snow. Decreasing As 

causes the mass-weighted mean fall speed of snow to decrease, allowing more snow produced 

upwind of the mountain top to be advected downwind. Because of the change in horizontal 

advection of snow, the vertically-integrated snow melting rate increases downwind with 

decreasing As (Figure 2.6d). Thus, decreasing As reduces the snow terminal fall speed, leading to 

more snow being transported downwind of the mountain top, and increasing the amount of snow 
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that melts and reaches the surface as rain there. This is reflected by the increase of PE downwind 

of the mountain top with a decrease of PE upwind (Figure 2.6b).  

 
Figure 2.6 Snow fall speed coefficient (As; m(1-b) s-1) response functions for (a) precipitation rate 

(mm hr-1), (b) precipitation efficiency, (c) vertically-integrated total condensation rate (mm hr-1), 

and (d) vertically-integrated snow melting rate (mm hr-1). Values are temporally-averaged over 

hours 6-20 and spatially-averaged over the 6 mountain regions shown in Figure 2.3c. Black 

vertical lines depict the control parameter value. 

 

Snow density (s) response functions show the opposite trend compared to As; increased 

(decreased) precipitation rates occur downwind (upwind) with increasing values of s. Similarly, 

<COND> is relatively unaffected (Figure 2.7c). From a physical standpoint, it would be 
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expected that if the bulk density of snow particles is increased they should fall faster. However, 

in the Morrison scheme, as in almost all microphysics schemes, the snow particle fall speed is 

only determined through As, Bs, and D following Equation 2.3. Nonetheless, the bulk particle 

density indirectly influences the fall speed through the particle size distribution. The slope 

parameter (), which describes the slope of the gamma particle size distribution, depends on the 

cubic root of the particle density (1/3):  

     λ = [
πρNΓ(μ+4)

6qΓ(μ+1)
]

1

3
,            (2.4) 

where q is the mass mixing ratio, N is the number mixing ratio,  is the Euler gamma function, 

and  is the shape parameter of the size distribution (equal to 0 for snow). Thus, increasing s for 

given values of q, N, and  results in an increase in  (Equation 2.4). Increasing  leads to a shift 

in the particle size distribution towards smaller diameters. Since the particle fall speed is a 

function of the diameter following Equation 2.3, the shift of the distribution toward smaller 

particle sizes results in a decrease in the mass-weighted mean snow fall speed. This explains the 

trend in precipitation efficiency for s: more snow is advected downwind because of the slower 

mean fall speeds with increasing s (Figure 2.7b), leading to more snow melting downwind 

(Figure 2.7d). This relationship between s and snow fall speed causes an unphysical response in 

the precipitation rates. This unphysical behavior to changes in particle density has motivated the 

recent development of schemes that explicitly calculate fall speed as a function of the ratio of the 

particle mass and projected area, and hence incorporate the effects of particle density in a 
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physically realistic way (e.g., Lin and Colle 2009, 2011; Harrington et al. 2013; Morrison and 

Milbrandt 2015).  

 
Figure 2.7 Same as Figure 2.6, but for snow particle density (s; kg m-3). 

 

 Response functions for WRA differ from the other parameters, in that there is little effect 

on PREC (Figure 2.8a). This occurs because of compensation between the effects of increasing 

PE and decreasing <COND> as WRA increases (Figure 2.8b,c). The WRA parameter is a 

multiplicative factor which acts to increase or decrease the rain accretion process within the 
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simulation. Higher WRA corresponds to more efficient removal of cloud water, while lower 

WRA results in more cloud water remaining within the atmosphere. Therefore, increasing the 

removal of cloud condensate through higher WRA results in higher PE (Figure 2.8b). This rain 

accretion process has the largest effect on <COND> compared to the other parameters modified, 

with a decrease of over 70% on the upwind and downwind tops when WRA is increased from 

0.5 to 2 (Figure 2.8c). In all simulations, <COND> is dominated by cloud water condensation 

which occurs through saturation adjustment in the Morrison scheme. That is, at every time step 

all excess vapor above water saturation is converted to cloud water, while evaporation is treated 

by converting cloud water to vapor each time step at a rate that ensures almost exactly saturated 

conditions are maintained inside liquid cloud. We emphasize that cloud condensation rate using 

saturation adjustment in the model does not depend directly on the number or size of existing 

cloud droplets.  
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Figure 2.8 Cloud water accretion by rain (WRA) response functions for (a) precipitation rate 

(mm hr-1), (b) precipitation efficiency (note: log axis), (c) vertically-integrated total condensation 

rate (mm hr-1), and (d) vertically-integrated cloud water evaporation rate (mm hr-1). Values are 

temporally-averaged over hours 6-20 and spatially averaged over the 6 regions shown in Fig. 

2.3c. Black vertical lines depict the control parameter value. 

 

Figure 2.9a,b shows temporally-averaged (hours 6-20) vertical cross-sections of cloud 

mixing ratios, vertical air motion, cloud condensation rate, and cloud evaporation rate for the 

simulations with the smallest and largest values of WRA. We see updrafts increase in magnitude 

over the upwind slope with increasing WRA (Figure 2.9b), which may be due to the reduction in 

condensate loading as more cloud water is effectively removed upwind. Stronger updrafts likely 

explain the 10% increase in <COND> over the upwind slope seen in Figure 2.8c. For the other 
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five regions, there is little change in vertical velocity for points containing liquid cloud, and the 

large decrease in <COND> with increasing WRA is primarily explained by an indirect effect of 

cloud water removal on the cloud base height (depicted here approximately by the 0.01 g kg-1 

cloud mixing ratio contour in Figure 2.9). For small WRA, reduced conversion of cloud to rain 

means that more cloud water is available for evaporation in downdrafts compared to the 

simulations with large WRA. With more cloud water available, this implies a lowering of the 

cloud base and increasing vertical depth of the cloud layer, since the local evaporation rate 

calculated using saturation adjustment only depends on the pressure and tendencies of 

temperature (controlled mainly by the vertical velocity) and water vapor mixing ratio. 
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Figure 2.9 Vertical cross-sections over a portion of the domain of temporally-averaged (hours 6-

20) cloud mixing ratio (cloud water and ice; g kg-1), positive vertical wind speed (black contours 

at 0.1 m/s intervals starting at 0.2 m/s), cloud water condensation rate (red contours = 1x10-3 g 

kg-1 s-1, yellow contours = 5x10-4 g kg-1 s-1), cloud water evaporation rate (blue contours = -1x10-

3 g kg-1 s-1, cyan contours = -5x10-4 g kg-1 s-1), and freezing level (thick black line). (a) WRA = 

0.5, (b) WRA = 2, (c) ECI = 0.3, (d) ECI = 1. 

 

This point can be illustrated clearly for moist pseudo-adiabatic descent; while the model 

has diabatic forcing due to mixing and other microphysical processes, moist pseudo-adiabatic 

descent can serve as a useful guide for explaining this behavior. For reversible moist pseudo-
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adiabatic descent (and ascent), and assuming steady-state, we can write the change in cloud mass 

mixing ratio (qc) with height (z) as dqc/dz = -dqv/dz = -dqs/dz above the cloud base, where qv is 

the water vapor mixing ratio and qs is the saturation mixing ratio that is a function only of 

temperature (T) and pressure (p). Since dqs/dz only depends on T and p, dqc/dz also depends only 

on T and p. Thus, if qc near cloud top is relatively large due to a reduction of WRA, cloud 

parcels must descend further in order to completely evaporate all of the cloud water they contain, 

compared to the situation with relatively small qc associated with an increase in WRA. Indeed, a 

lower cloud base and greater cloud depth are seen in the small WRA simulation compared to the 

large WRA simulation (compare Figure 2.8a,b). A lower cloud base in turn contributes directly 

to larger <COND> because the region of condensation extends over a greater depth. In addition 

to wider regions of condensation and evaporation associated with the lower cloud base, 

somewhat larger magnitudes of the condensation and evaporation rates occur for the small WRA 

simulation compared to the large WRA simulation (Figure 2.8d). Since the small WRA 

simulation has somewhat higher relative humidity consistent with the lower cloud base, this is 

likely attributable to the mixing of relatively moist air into updrafts, which limits the effects of 

entrainment in reducing the condensation rate compared to the large WRA simulation.  

To briefly summarize, perturbations to WRA demonstrate the non-linear interactions 

between cloud water and surface precipitation. Reducing the rain accretion process initially 

reduces PE and precipitation rate and increases cloud water in the atmosphere, but the increased 

cloud water is associated with a deeper cloud layer (lower cloud base), leading to an increase in 
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<COND> that compensates for the decrease in PE. The opposite occurs for large WRA, thus 

resulting in little sensitivity of PREC to WRA.  

ECI also acts to remove cloud water from the atmosphere, but through the riming process 

occurring at temperatures below freezing. The response functions for ECI clearly show the 

importance of the altitude at which cloud water is being removed since, unlike WRA, changes to 

ECI do result in a change in precipitation rate; as ECI is increased there is an increase of PREC 

over the upwind slope and decrease over the downwind top (Figure 2.10a). This is consistent 

with an increase in PE over the upwind slope and a decrease over the downwind top, but little 

change in <COND>. The decrease in PE upwind by lowering ECI is expected since it 

corresponds to a decrease of the conversion of cloud water to precipitation through riming. 

Figure 2.9c,d shows an impact on cloud water amount above the freezing level on the upwind top 

and slope as ECI is varied. Increased snow amounts with an increase in ECI and the fallout and 

subsequent melting of this snow leads to more precipitation on the upwind slope. The PREC and 

PE responses are similar to those for As (compare Figure 2.6a,b and Figure 2.10a,b). In contrast 

to WRA, perturbations to ECI result in little change in <COND> even though it also affects the 

efficiency of conversion from cloud to precipitation. This occurs because ECI has little effect on 

cloud water below the freezing level. The amount of cloud water in descending air near cloud 

base is relatively unaffected, leading to little impact on the cloud base height. Thus, cloud depth 

is relatively unaffected with perturbations to ECI, in contrast to WRA (compare Figure 2.9c,d 

with 2.9a,b); correspondingly there is little impact on overall evaporation and condensation rates 

whose magnitudes are much larger below the freezing level than above.  
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Figure 2.10 Same as Figure 2.8, but for ice-cloud water collection efficiency (ECI). 

 

2.3.3 Environmental Experiments  

Experiments were performed to test how the sensitivities to microphysical parameter 

changes compared to those in an environment where the wind profile is reduced by 30% (LowU) 

or the temperature is reduced to produce a freezing level that reaches below the mountain peak 

(LowFL). The LowU experiment contains the same amount of precipitable water compared to 

the control simulation, but the reduction in horizontal wind speed causes a reduction in the 

vertical velocities (near the ground, vertical velocities are proportional to mean horizontal wind 
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speed times mountain slope) resulting in a shallower cloud than in the control environment 

(Figure 2.11a). Precipitation rates for LowU are a factor of 3 less than in the control (Figure 

2.11c), due to smaller <COND> and generally smaller PE (Figure 2.11d,e). Although the melting 

layer remains deep enough for warm-rain processes to remain active, the reduced cloud depth 

substantially reduces the contribution of ice processes to surface precipitation, as seen from the 

reduced development of snow in Fig. 2.11a. The highest total condensation and precipitation 

rates are shifted toward the upwind top in LowU compared to the control.  

 
Figure 2.11 Top panels similar to Figure 2.3a, but for (a) LowU and (b) LowFL. Bottom panels 

are temporally-averaged (hours 6-20) and spatially-averaged (6 regions) values for (c) 

precipitation rate (mm hr-1), (d) vertically-integrated total condensation rate (mm hr-1), and (e) 
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precipitation efficiency. Solid black lines show values for the control simulation, dashed blue 

lines for the LowFL experiment, and dotted orange lines for the LowU experiment. 

 

The LowFL experiment results in a deep cloud with a detached upper-level ice cloud, 

similar to the control (Figure 2.11b). In addition, high amplitude and frequency lee waves are 

triggered downstream once the freezing level descends below the mountain top (not shown). 

These lee waves form clouds over the downwind foothills and beyond. Although the precipitable 

water available in the LowFL environment is 11.7 cm less than for the control, the peak 

precipitation rate over the upwind slope is closer to that of the control than LowU (Figure 2.11c). 

This is because the condensate produced on the upwind slope is efficiently converted to 

precipitation (Figure 2.11d,e). A secondary peak in <COND> is located over the downwind 

slope, due to the lee waves previously mentioned, but because PE << 1 in this region little of this 

condensate makes it to the surface as precipitation. The reduction in freezing level allows for 

more cloud area to exist above the freezing level, thus increasing the potential for ice processes 

to dominate in this environment, as shown by the spatial reduction of rain in Figure 2.11b.  

 Overall, the LowU case results in a reduction in the magnitude of PREC responses to 

perturbations in As, s, ECI, and WRA than in the control environment (Figure 2.12 and Figure 

2.13), mainly due to less condensate being available (Figure 2.11a,d, Figure 2.12c,f, and Figure 

2.13c,f). Compared to the control simulation, WRA does have a minor effect on PREC in this 

case, with PREC increasing with WRA over the upwind slope/top and downwind top associated 

with a combination of large increases in PE and smaller decreases in <COND> (Figure 2.13). 

Additionally, PE responses to ECI are weaker in the LowU case compared to the control 
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simulation (Figure 2.13e). These responses are expected, as LowU results in weaker ascent, 

causing a reduction in the amount of cloud water available above the freezing level, thus 

allowing for warm-rain processes to dominate precipitation production. Although the ice 

processes play a smaller role in this case, the mechanisms controlling PE and <COND> are 

similar to those in the control environment: 1) changes in PE primarily explain the PREC 

responses to As and s perturbations (Figure 2.12), and 2) WRA affects <COND> through 

changes in the cloud base, while ECI does not (Figure 2.13).  

 
Figure 2.12 Snow fall speed coefficient (As, top panels) and snow particle density (s, bottom 

panels) response functions for precipitation rate (mm hr-1, left panels), precipitation efficiency 

(middle panels), and vertically-integrated total condensation rate (mm hr-1, right panels) for the 

LowU experiment. Black vertical lines depict the control parameter value. 
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Figure 2.13 Similar to Figure 2.12, but for rain accretion (WRA, top panels) and ice-cloud water 

collection efficiency (ECI, bottom panels). 

 

In contrast to the control environment and LowU environments, perturbations to As in the 

LowFL case produce notable impacts on <COND> (Figure 2.14). With a lower freezing level in 

the LowFL case, more of the cloud depth is present above the freezing level and thus, more 

cloud condensation occurs so that As has a noticeable effect on <COND> in addition to WRA 

(Figure 2.15c). Figure 2.16 illustrates this effect. Along the upwind slope the horizontal extent of 

cloud water above the freezing level increases as As is decreased, meaning that condensation 

extends over a wider region leading to greater <COND> on the upwind slope. The opposite 

occurs downwind, where <COND> increases as As is increased; this seems to be due to large As 

inducing higher amplitude lee waves compared to small As, resulting in more condensation 

downwind (Figure 2.16). As for WRA, the <COND> response functions are flatter than those in 
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the control simulation (Figure 2.15c); this is most likely due to a reduced impact of warm-rain 

processes on cloud and precipitation development because of the lower freezing level. For 

LowFL there is a minimal response of PREC, PE, and <COND> to changes in s (Figure 2.14d-

f), and PREC to changes in ECI (Figure 2.15d), compared to the control simulation. These 

results reflect the complexity of precipitation sensitivities; although ice microphysical processes 

are generally expected to play a larger role in this case, this does not hold true for all of the 

associated parameter perturbations.  

 

 
Figure 2.14 Similar to Figure 2.12, but for the LowFL experiment.  
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Figure 2.15 Similar to Figure 2.13, but for the LowFL experiment. 

 

 
Figure 2.16 Similar to Figure 2.9, except with smaller values of cloud water condensation 

contours (dark orange contours = 2x10-4 g kg-1 s-1, orange contours = 3.25x10-4 g kg-1 s-1, yellow 

contours = 5x10-4 g kg-1 s-1) and cloud water evaporation rate (dark green contours = -2x10-3 g 
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kg-1 s-1, green contours = -3.25x10-4 g kg-1 s-1, cyan contours = -5x10-4 g kg-1 s-1) for (a) As = 5.86 

and (b) As = 17.58. 

 

2.4 Summary and Conclusions  

Idealized 2D simulations of moist nearly neutral flow over a bell-shaped mountain were 

performed using the CM1 model. The idealized upwind sounding was guided by observations 

from an atmospheric river event during the 2015 OLYMPEX field campaign. The objective of 

these simulations was to explore the sensitivity of orographic precipitation to changes in 

microphysical parameters, as well as testing the robustness of these results in different 

environments. Fifteen microphysical parameters associated with both ice and warm-rain 

processes within the Morrison microphysics scheme were perturbed over a range of values 

encompassing the uncertainty in these parameters. Two environmental sensitivity experiments 

were performed where the wind speed profile was reduced by 30% and the temperature was 

reduced enough to result in a freezing level below the mountain peak. These experiments 

allowed us to explore the precipitation sensitivity to microphysical parameters in environments 

where different precipitation processes were dominant.   

 Four parameters stood out as most influential to precipitation and cloud development: 

snow fall speed coefficient (As), snow particle density (s), rain accretion multiplicative factor 

(WRA), and ice-cloud water collection efficiency (ECI). As and s affect snow particle 

characteristics, while WRA and ECI are related to particle interaction (collection) processes. 

Precipitation rate responses to As and s perturbations are mainly a result of changes to 

precipitation efficiency (PE) through direct and indirect impacts, respectively, on snow fall 
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speed. This results in a location-dependent orographic precipitation sensitivity with an increase 

of windward precipitation and decrease downwind with an increase of As, with the opposite 

occurring as s is increased. Increasing WRA leads to greater removal of cloud water below the 

freezing level from conversion of cloud to precipitation and reduced <COND> caused by drying 

and raising of the cloud base height. Increased PE compensates the decrease in <COND> and 

results in little sensitivity on PREC. On the other hand, increasing ECI also removes cloud water 

from the atmosphere yet does cause changes to PREC. Increasing ECI results in a decrease in 

cloud water above the freezing level, but little effect on updraft speeds or <COND> below the 

freezing level, where the largest condensation rates occur. An increase in riming efficiency 

through large ECI results in responses similar to those for increasing As. In conclusion, we see 

that: 

1) microphysics parameters which directly or indirectly impact snow fall speed induce a 

large sensitivity on the location of orographic precipitation and  

2) perturbations to processes which affect the conversion of cloud water to precipitation will 

result in different sensitivities to cloud development, orographic precipitation, and 

thermodynamics-dynamics, depending on where the cloud water is affected in the 

vertical.   

  

The environmental experiments showed that perturbing the upwind environment results 

in changes to the dynamics, which has consequences for the precipitation distribution and 

amount, as found in MR06 and T15. Compared to perturbations of the microphysical parameters, 
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the total amount of precipitation was more sensitive to environmental parameter perturbations. 

Overall, reducing wind speed had a strong effect on the amount of precipitation, while the 

changes in microphysical parameters in this environment had similar mechanisms responsible for 

changes in precipitation as in the control environment. However, because this case had much less 

condensate, the sensitivities were weaker. Lowering the freezing level through a reduction in the 

temperature profile resulted in As having an effect on <COND>, while PREC and PE were 

insensitive to s perturbations. Changes to the freezing level also had an effect on the overall 

location of maximum precipitation, shifting it upstream to where the freezing level was above 

the surface and warm-rain processes could aid in precipitation production. In general, our results 

show complex responses of microphysical parameter perturbations to precipitation for 

environments where different cloud processes dominate, i.e., warm-rain processes in LowU and 

ice processes in LowFL.   

These results highlight the complexity of the orographic precipitation response to 

microphysical parameter changes, leading us to the following questions: 1) will changing various 

parameters simultaneously modify the precipitation response? 2) how do simultaneous changes 

to microphysical, environmental, and mountain shape parameters affect the orographic 

precipitation sensitivity? To answer these questions, chapter 3 presents results from multivariate 

perturbations using the parameters tested in this study as well as additional environmental 

parameters.  
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Chapter 3. Orographic Precipitation Sensitivity Analysis using the Morris One-at-a-Time 

Method (Morales et al. 2019) 

 

3.1 Introduction  

Microphysical parameterizations represent cloud and precipitation processes within 

numerical weather prediction models used in operational forecasting and research. All schemes 

contain parameters whose values are known to naturally vary in space and time, yet are typically 

held constant, e.g., snow particle density. These parameter values also have a range of 

uncertainty due to limited observations and measuring capabilities, or because the parameter may 

not have a physical equivalent in nature, e.g., autoconversion thresholds. Changes in these 

parameters have been shown to affect cloud development, as well as precipitation distribution 

and timing over mountains (e.g., Colle et al. 2005; Jankov et al. 2007, 2009; Liu et al. 2011). For 

example, reducing the snow particle fallspeed, or the degree of riming, can shift maximum 

precipitation from the windward to lee side of a mountain (Hobbs et al. 1973; Colle and Mass 

2000; Lin and Colle 2009, 2011; Morrison et al. 2015; Morales et al. 2018 (hereafter M18)). 

Communities worldwide depend on orographic precipitation for their freshwater resources, thus 

it is of utmost importance to understand how uncertainty in microphysical parameters may 

impact where and how much precipitation is forecast to occur.  

Colle (2004) was one of the first studies to rigorously explore the sensitivity of 

orographic precipitation to changes in ambient conditions and mountain geometry. Performing 

hundreds of two-dimensional (2D) idealized simulations, the study showed the spatial 
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distribution of precipitation was dependent on the flow regime and gravity wave evolution 

caused by changes to horizontal wind speed and direction. Through the numerous combinations 

of individual parameter perturbations, this study demonstrated the complex relationships 

between microphysics, dynamics, and environmental conditions. For example, melting of snow 

and graupel can lower the freezing level upwind of a mountain range more for a wider and 

higher barrier in a moderate wind speed environment (Colle 2004). Additionally, precipitation 

distribution response to wind speed changes can vary depending on the height of the freezing 

level, i.e., lower freezing level can result in decreased upwind precipitation efficiency with 

increasing wind speed, as faster flow favors the leeside advection of ice (Colle 2004). For a 

higher freezing level, more efficient warm-rain processes would increase precipitation over the 

windward slope as less precipitation is advected leeward (Colle 2004; M18).  

Motivated by previous studies attributing poor precipitation forecasts to microphysics 

representation in mesoscale models, Colle and Zeng (2004a) varied parameters within a bulk 

scheme for an idealized simulation of a 1986 Sierra Nevada precipitation event. They found 

precipitation to be most sensitive to snow and graupel fall velocities, snow size distribution 

intercept parameter, and cloud condensation nuclei concentration. A subsequent study by Colle 

and Zeng (2004b) varied barrier width and freezing levels in addition to microphysical 

parameters. They found orographic precipitation over wide mountains was most sensitive to 

snow fall velocity owing to increased time for snow growth before reaching the surface (Colle 

and Zeng 2004b). Additionally, precipitation sensitivity to microphysics varied for different 

freezing levels due to different processes being activated. Although an increase in surface 
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temperature led to an increase in available precipitable water, there was a nonlinear effect on 

precipitation due to different microphysical processes activating at different temperatures and a 

decrease in the depth over which ice processes occur, resulting in reduced precipitation 

contribution from melting (Miglietta and Rotunno 2006; Kirshbaum and Smith 2008; M18). 

Orographic precipitation location and amount can be affected by changes to static stability, wind 

speed, and mountain height through changes in updraft strength, flow characteristics, and gravity 

wave dynamics (Durran 1990; Colle 2004; Kunz and Kottmeier 2006; Kunz and Wassermann 

2011).   

More recently, Tushaus et al. (2015) performed a multivariate sensitivity analysis using 

Bayesian methods to determine the impact of upwind environment and mountain geometry to 

orographic precipitation. Their results showed non-unique responses of precipitation rate to 

changes in mountain half-width, Brunt-Väisälä frequency, and horizontal wind speed values, as 

well as showing multiple combinations of parameters can result in the same precipitation amount 

and distribution. Tushaus et al. (2015) did not include ice microphysical processes in their study, 

which are influential to precipitation development and intensity (Castellano et al. 2004; Colle et 

al. 2005; Purdy et al. 2005; Minder et al. 2008). Ice microphysics adds considerable complexity 

owing to the numerous processes for ice growth, and the wide variety of ice types and crystal 

habits. Thus, M18 expanded on previous work by including ice microphysics while testing the 

effects of microphysical parameter perturbations on orographic precipitation. Their idealized 

simulations found four dominant parameters were responsible for the largest changes in 

precipitation rate and liquid and ice water paths: snow fallspeed coefficient, snow particle 
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density, rain accretion, and ice-snow collection efficiency. Overall, M18 found changes to 

environmental parameters (i.e., wind speed and surface temperature) were largely responsible for 

the total amount of available condensate for the microphysics to act upon, and affected which 

microphysical processes were dominant (i.e., warm-rain versus ice).  

These previous studies suggest complex relationships between microphysics and the 

upstream environment, i.e., microphysical parameter sensitivities can change with different 

environments, perturbations to environmental conditions can result in non-linear responses, etc. 

However, most model parameter sensitivity studies on orographic precipitation perturb one 

parameter at a time while holding the rest constant, also known as having a constant “base state”. 

This method for sensitivity analysis is inherently limited, and if relationships among parameters 

are nonlinear, may result in incomplete conclusions. On the other hand, quantifying multi-

parameter sensitivity is challenging because the number of simulations required is equal to MN, 

where M is the number of values tested per parameter and N is the number of parameters. As 

microphysical parameterizations have become more complex, the number of “tunable” 

parameters have increased. Thus, brute-force calculation of multi-parameter sensitivity in the 

large-dimensional parameter space is not generally computationally feasible.  

To address this problem, we employ the Morris one-at-a-time (MOAT) method, which 

explores interactions between parameters through multivariate parameter perturbations (Morris 

1991; Campolongo et al. 2007). MOAT can test a large number of parameter combinations and 

isolate the influences of individual parameters on model output (Saltelli et al. 2008). This 

statistically robust method has been widely used for hydrologic model sensitivity analysis (King 
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and Perera 2013; Shin et al. 2013; Yang et al. 2014; Song et al. 2015) but has been infrequently 

applied to atmospheric science. Covey et al. (2013) introduced this method to the climate science 

community in a study that explored the sensitivity of outgoing longwave and shortwave radiation 

to various climate model input parameters in the Community Atmospheric Model; while Zhang 

et al. (2015) used MOAT for parameter sensitivity analysis in the Grid-point Atmospheric 

Model. Most recently, Zarcycki and Ullrich (2017) applied MOAT to investigate the sensitivity 

of “objectively tracked output metrics”, e.g., accumulated cyclone energy and false alarm rate, in 

climate model data to various tropical cyclone tracking algorithm parameters. To our knowledge, 

the study described herein is the first to use MOAT to analyze simulations of orographic 

precipitation.   

Our study focuses on understanding simulated precipitation sensitivities for moist, nearly 

neutral flow over a 2D bell-shaped mountain. This type of flow is commonly found within 

wintertime atmospheric rivers (ARs) off the Western US Coast and allows for little resistance to 

orographic lift, causing enhanced precipitation over windward mountain slopes (Lin et al. 2001; 

Ralph et al. 2004, 2005; Nieman et al. 2011; Ralph and Dettinger 2011). This AR-produced 

precipitation is responsible for up to 50% of California’s annual precipitation (Dettinger et al. 

2011) and can lead to flash floods and landslides (Ralph et al. 2006).  

Given the importance of both microphysics and environmental conditions to orographic 

precipitation, this study explores the following science questions:  

• Which microphysical parameters are most influential to orographic precipitation 

when multi-parameter interactions are allowed? 
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• How are microphysical parameter sensitivities changed when environmental 

parameters are perturbed simultaneously for a given environmental state? 

• Are the effects from microphysical parameter perturbations larger than the effects of 

environmental parameter uncertainty? 

• How does the influence of microphysical parameter perturbations change when 

different environments are imposed?  

• Are the effects from microphysical parameter perturbations in a single scheme larger 

than the effects caused by using different microphysical schemes?  

We hypothesize that both microphysical and environmental parameters will be important; 

that is, perturbations to microphysical parameters will cause a change in the model output 

comparable to that from small perturbations to the environmental state, over ranges of parameter 

uncertainty for both. We also expect that sensitivity to microphysical parameter perturbations 

will vary depending on the environmental state, regardless of multi-parameter perturbations 

allowed in MOAT, since changes to environmental conditions have been shown to be 

responsible for the total amount of condensate produced (M18). 
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3.2 Methodology  

3.2.1 Model Configuration  

All experiments are performed using version 17 of CM1, a non-hydrostatic numerical 

model often used for idealized simulations of cloud-scale processes (Bryan and Fritsch 2002). 

The model configuration follows that of M18, thus only a brief summary will be provided here. 

A two-dimensional (2D) domain 1600 km in length is used. The inner domain is 1200 km 

in length, spanning over 600 grid points, with a horizontal grid spacing of 2 km that stretches to 

6 km over 50 grid points on each side. The mountain center is shifted 400 km downstream to 

limit the reflection of waves from the upwind boundary. Total domain height is 18 km with 55 

vertical levels. The vertical grid spacing (∆𝑧) is 0.25 km below a height of 9 km, and stretches to 

0.5 km up to 10.5 km, after which ∆𝑧 remains constant at 0.5 km. Lateral boundaries are open-

radiative and the bottom boundary condition is no-slip. Radiation, surface fluxes, and Coriolis 

acceleration are neglected. Simulations are run for 20 hours using a 3 sec time step. A Gaussian 

bell-shaped mountain with a 2 km height and 40 km half-width is used. Note, the mountain 

height used here is twice the size of that used in M18. These mountain shape parameters are 

characteristic of the Sierra Nevada and Cascade mountains, which have been idealized as 2D 

ridges in previous studies (e.g., Colle and Zeng 2004a,b; Colle 2004; Kirshbaum and Smith 

2008). Limitations do exist when using a 2D domain, for example over-amplification of 

mountain waves due to energy dispersion limited to one direction, unrealistic mountain profiles, 

and reduced deflection of low-level flow. However, a 2D model configuration is applied as it 
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simplifies the number of parameters controlling the upstream flow, allowing for a more 

controlled set of experiments. We thus follow past studies which have applied a 2D domain to 

study mountain flow dynamics and orographic precipitation (e.g., Doyle et al. 2000; Colle 2004; 

Colle and Zeng 2004; Miglietta and Rotunno 2005, 2006; Tushaus et al. 2015; M18).  

The idealized control sounding and wind speed profile (Figure 3.1) is the same as in 

M18, and closely corresponds to conditions observed during atmospheric river events for 

OLYMPEX (Houze et al., 2017) and other field campaigns (e.g., Ralph et al. 2005). The 

atmospheric profile is described by the following default values: a surface potential temperature 

(sfc) of 286 K; surface u-wind speed (U) of 14 m s-1, linearly increasing to 42 m s-1 at a height of 

12km, then remaining constant at 42 m s-1 above 12 km; relative humidity (RH) below 4.5 km of 

95%, then linearly decreasing to 20% at a height of 16 km, and remaining constant above 16 km; 

and a moist Brunt-Väisälä frequency (Nm
2) for the troposphere and stratosphere of 4x10-5 s-2 and 

5x10-4 s-2, respectively. 
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Figure 3.1 a) Skew-T diagram showing the observed sounding from OLYMPEX 0300 UTC 13 

NOV 2015 (black), idealized sounding (magenta), MP_COLD sounding (blue), and MP_WARM 

sounding (orange). For all soundings, solid lines represent temperature and dashed lines 

represent dewpoint temperature, all in degrees Celsius. (b) Vertical profile of zonal wind speed 

(m s-1) showing the idealized profile (solid magenta), MP_SLOW profile (dashed purple), and 

MP_FAST profile (dot-dashed green). 

 

3.2.2 Microphysical and Environmental Parameters  

The Morrison two-moment microphysics scheme version 3.4 (Morrison et al. 2005; 

2009) is used, with the rimed ice species set to graupel. Microphysical parameters and their 

uncertainty ranges are the same as those listed in M18. The microphysical parameters examined 

focus on prescribed parameters for frozen condensate, conversion thresholds, collection 

efficiencies, and ice processes within the Morrison scheme (Table 3.1). Because there are few 

(a)
(b)
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prescribed parameters for warm-rain processes, we apply a multiplicative factor for rain 

accretion and autoconversion. The range of values used to perturb the parameters is based on our 

estimate of uncertainty and variability for each microphysical parameter. As described in the 

introduction, previous studies have found sfc, RH, tropospheric Nm
2, and U impact orographic 

cloud and precipitation development through condensate production and advection, freezing 

level effects, and changes to the vertical velocities.  To understand the influence of 

environmental parameter perturbations on microphysical parameter sensitivities, and compare 

the effects on precipitation when both groups of parameters are perturbed, we use a range of 

values consistent with the relative uncertainty of observations. For example, we assume the 

average uncertainty for sfc in a sounding is 1 K, thus our uncertainty range is +/- 1 K from the 

default surface potential temperature of 286 K (Table 3.1). The RH, Nm
2, and U parameters are 

perturbed using “additive factors”, which act to increase/decrease the value for that parameter in 

the module. To determine the Nm
2 change for a potential temperature perturbation of 1 K, 

equation 36 from Durran and Klemp (1982) is used to calculate a range of uncertainty +/- 

2.5x10-6 s-2 from the default tropospheric moist Brunt-Väisälä frequency. The additive factors for 

U and RH act to shift the wind speed and relative humidity profiles, respectively, to higher or 

lower values. The additive factor for wind speed is given a typical uncertainty range for a 

sounding of +/- 1 m s-1, thus the control wind profile is perturbed within this narrow range of 

values. Lastly, the additive factor for RH is assumed to have an uncertainty of +/- 10% for a 

sounding. Because the control profile has a surface RH at 95% and the profile below 16 km 

depends on the surface RH value, this region has an uncertainty range between -10% and 5%. 
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Above a height of 16 km it is allowed to increase up to 10%. Thus, the range of RH values in our 

sensitivity tests is 85-100% below 4.5 km, and 10-30% above 16 km.  

 Analysis of precipitation rate, total condensation rate, and precipitation efficiency is 

performed using 5-minute model output temporally-averaged between hours 6-20, during which 

the cross-mountain flow, precipitation rate, and cloud and hydrometeor development are 

relatively steady (Figure 3.2). We spatially average model output over six locations on the 

mountain: upwind foothills (UF), slope (US), and top (UT) and downwind foothills (DF), slope 

(DS), and top (DT) (Figure 3.2c). Total condensation rate (<COND>, mm hr-1) is a vertical 

integral of all process rates that convert water vapor to condensate, and is subsequently 

horizontally-averaged over the six mountain regions (M18). Precipitation efficiency (PE) is 

calculated as PE = PREC/<COND>, where PREC is the horizontally-averaged total (liquid + 

frozen) precipitation rate over the six regions, and quantifies the fraction of condensate removed 

through microphysical processes (evaporation and sublimation) and sedimentation. PE can also 

be affected by horizontal transport of condensate because of the spatial averaging performed 

over limited regions of the domain. This analysis provides information on whether a parameter’s 

influence on PREC is due to that parameter effecting dynamical-thermodynamical processes 

(<COND>) and/or microphysical processes and sedimentation (PE).  

 

Table 3.1 Input parameters varied in MOAT experiments 

j Parameter Description (Symbol) Uncertainty Range 

1 Cloud ice fallspeed coefficient (Ai) 700 m(1-b) s-1 +/- 50% 

2 Snow fallspeed coefficient (As) 
11.72 m(1-b) s-1 +/- 

50% 
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3 Graupel fallspeed coefficient (Ag) 19.3 m(1-b) s-1 +/- 50% 

4 Cloud ice density (i) 500 kg m-3 +/- 50% 

5 Snow density (s) 100 kg m-3 +/- 50% 

6 Graupel density (g) 400 kg m-3 +/- 50% 

7 Cloud ice autoconversion threshold (DCS) 125 μm +/- 50% 

8 Nucleated ice crystal radius (RMI0) 1–30 μm 

9 Embryo graupel radius (RMG0) 35–1000 μm 

10 Ice-Ice collection efficiency (EII) 0.01–1 

11 Ice-cloud water collection efficiency (ECI) 0.3–1 

12 Radius of splintered ice particle (RMMULT) 1–30 μm 

13 Rain accretion multiplicative factor (WRA) 0.5–2 

14 Cloud water autoconversion multiplicative factor (WRC) 0.1–10 

15 Snow deposition multiplicative factor (SDEP) 0.5–2 

16 Relative humidity profile additive factor (RH) +/- 10% 

17 U-wind speed profile additive factor (U) +/- 1 m s-1 

18 Surface potential temperature (θsfc) 285 K–287 K 

19 
Tropospheric moist Brunt-Väisälä frequency additive factor 

(Nm
2) 

+/- 2.5x10-6 s-2 
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Figure 3.2 (a) Vertical cross-section showing temporally averaged (hours 6-20) streamlines 

colored with wind speed (m s-1), freezing level (black line), cloud water and ice mixing ratios 

(gray shaded contours, g kg-1), and 0.05 g kg-1 mixing ratio contours for snow (blue), rain 

(orange), graupel (magenta) for the control simulation over a portion of the domain. (b) 

Hövmöller diagram of precipitation rate (mm hr-1) with simulation time on the ordinate and 

distance from center of the mountain on the abscissa. The dashed gray line corresponds to hour 

6, the start of temporal averaging. (c) Mountain height (m) profile with the six averaging regions 

used for the calculations: upwind foothills (UF), slope (US), top (UT), and downwind top (DT), 

slope (DS), and foothills (DF). 

 

3.2.3 Experimental Design  

The Morris one-at-a-time (MOAT) method is used to determine which subset of 

microphysical and environmental parameters results in the largest changes to surface 

precipitation. To understand how simultaneously perturbing microphysical and environmental 

parameters impacts precipitation sensitivities, experiment “MP_ENV” is performed and 

compared to “MultiParam”, which perturbs multiple microphysical parameters using MOAT 

while keeping the environment constant (Table 3.2). It is known that upstream conditions can 
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vary the precipitation sensitivity to microphysical parameter perturbations (Colle and Zeng 

2004b; Miglietta and Rotunno 2006; M18), thus we perform a second set of experiments to test if 

these previous findings still hold when multi-parameter perturbations are included using MOAT. 

We expand on M18 and test four environments corresponding to a colder (MP_COLD), warmer 

(MP_WARM), slower wind speed (MP_SLOW), or faster wind speed (MP_FAST) environment.   

 

Table 3.2 List of experiments 

Experiment Description Purpose 

MultiParam 

Multiple microphysical parameters perturbed 

using MOAT. Environmental parameters held 

constant at default values.  

Building on Morales et al. 

(2018) by allowing for multi-

parameter interactions using 

MOAT 

MP_ENV 
Microphysical and environmental parameters 

perturbed simultaneously using MOAT. 

Testing the influence of 

microphysics versus 

environment 

MP_COLD 

Multiple microphysical parameters perturbed 

using MOAT. Surface potential temperature 

default value decreased by 6 K (θsfc = 280K).   

Testing microphysical 

parameter sensitivities in a low 

freezing level environment  

MP_WARM 

Multiple microphysical parameters perturbed 

using MOAT. Surface potential temperature 

default value increased by 2 K (θsfc = 288K).   

Testing microphysical 

parameter sensitivities in a 

higher freezing level 

environment  

MP_SLOW 

Multiple microphysical parameters perturbed 

using MOAT. Zonal wind speed profile 

decreased by 4 m s-1 (Usfc = 10 m s-1).   

Testing microphysical 

parameter sensitivities in an 

environment with weaker 

dynamics 

MP_FAST 

Multiple microphysical parameters perturbed 

using MOAT. Zonal wind speed profile 

increased by 6 m s-1 (Usfc = 20 m s-1).   

Testing microphysical 

parameter sensitivities in an 

environment with stronger 

dynamics 
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MultiPhys 

An “ensemble” (4 simulations total) using 

different microphysical schemes (Morrison 

two-moment, Thompson, NSSL two-moment, 

and NASA-Goddard LFO).  

No changes to default environmental or 

microphysical parameters in any schemes. 

Comparing the influence of 

using different schemes to 

parameter perturbations within 

a single scheme 

 

 MP_COLD decreases the control temperature profile by 6 K (sfc = 280 K; Figure 3.1a), 

thus simulating an environment where much of the upwind slope and mountain top are above the 

freezing level and upon which most precipitation falls as snow. This case should exhibit greater 

dominance of ice processes, since a larger amount of the cloud occurs above the 0C level, and 

there will be less available precipitable water owing to the decrease in temperature. MP_WARM 

increases the control temperature profile by 2 K (sfc = 288 K; Figure 3.1a) and thus has a deeper 

melting layer where warm-rain processes dominate and a larger fraction of the precipitation falls 

as rain. Because RH is held constant, increased water vapor content due to increased 

temperatures is expected to increase total precipitation. MP_SLOW decreases the wind speed 

profile by 4 m s-1, resulting in a surface wind speed of 10 m s-1 (Figure 3.1b). MP_FAST 

increases the wind speed profile by 6 m s-1, resulting in a surface wind speed of 20 m s-1 (Figure 

3.1b). This case acts to simulate a low-level jet, which has been observed below 2 km MSL 

during AR events (Ralph et al. 2005), impinging on the barrier. Given a strong cross-barrier 

flow, we expect more downwind transport as well as more condensation upwind caused by 

stronger vertical velocities relative to the control environment.  

Finally, experiments are performed in which the entire microphysics scheme is changed 

rather than individual parameters within a single scheme (MultiPhys) to compare the sensitivity 
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of surface precipitation to different microphysics schemes. In addition to the Morrison two-

moment scheme used for the MOAT experiments, the Thompson (Thompson et al. 2008), 

NASA-Goddard LFO (Gilmore et al. 2004), and NSSL two-moment (Ziegler 1985; Mansell et 

al. 2010; Mansell 2010) schemes are used for the “ensemble” used in MultiPhys. The same four 

schemes are tested with the upstream soundings used for MP_COLD, MP_WARM, MP_SLOW, 

and MP_FAST to account for possible sensitivity to the environment. A summary of all the 

experiments is listed in Table 3.2.   

3.2.4 Morris one-at-a-time (MOAT) Method  

As described in Section 3.1, previous studies have performed sensitivity analysis on 

microphysical and environmental parameters by perturbing each parameter of interest 

individually while holding the rest constant, i.e., a “constant base state”. This type of single 

parameter perturbation may miss interactions with other parameters. Therefore, the MOAT 

method, also known as the Morris screening or Elementary Effects method, is used to determine 

the input factors that have the largest influence on the model output when considering 

multivariate parameter perturbations (Morris 1991; Campolongo et al. 2007).  

MOAT allows for simultaneous testing of a large number of input parameters while being 

computationally affordable, i.e., M(N+1) simulations are required for N input parameters and M 

trajectories or paths, compared to MN for a standard multi-parameter sensitivity analysis. 

Although MOAT allows for nonlinearity and interaction effects, is computational efficient, and 

its results are straightforward to understand, this method only provides a qualitative sensitivity 

analysis. For example, while it can be used to rank the influence of parameters and determine 
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whether there is nonlinearity in the input – output relationship, it cannot be used to compute the 

fraction of the variance in model output explained by each parameter, or combinations of 

multiple parameters. For a quantitative analysis that can provide deeper understanding of 

nonlinear parameter interactions and determine individual parameters’ contribution to the output 

variance, more computationally expensive variance-based methods must be applied (Saltelli et 

al. 2008). MOAT is commonly used as a first step toward variance-based analysis, as it identifies 

which parameters are influential, allowing a smaller subset to be explored using more 

computationally expensive methods.  

 MOAT provides a sensitivity analysis by perturbing individual input parameters with 

respect to different parameter base states. The values for each input parameter are randomly 

chosen from a range of values encompassing the parameter uncertainty and/or variability (see 

Table 3.1). For a set of parameters 𝑋 =  𝑥1, 𝑥2,… , 𝑥𝑁 the “elementary effect” of the jth parameter 

is defined as:  

                                                    𝑑𝑗 =
𝑦(𝑥1,…,𝑥𝑗+∆,…,𝑥𝑁)−𝑦(𝑥1 ,…,𝑥𝑗,…,𝑥𝑁)

∆
  ,       (3.1) 

where y represents the model output and ∆ represents a small, discrete change in the value of 

parameter j relative to the range. These variables are normalized to a range of [0,1] before each 

initial parameter set is generated, to avoid issues comparing parameters with different units. The 

elementary effect basically calculates the change in the model output, i.e., surface precipitation 

rate, given a change in the input parameter. This process is repeated for M paths within the 

parameter space, where each path uses a different randomly generated base state. Here we apply 
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the algorithm M = 20 times, resulting in a total of 320 simulations for 15 parameters (e.g., 

MultiParam) and 400 simulations for 19 parameters (e.g., MP_ENV). Tests showed the results 

for this study generally converge after M = 15, thus we believe 20 MOAT paths is sufficient as 

suggested by Covey et al. (2013). From this distribution of elementary effects, the mean of the 

absolute value of the elementary effects, 𝜇𝑗
∗(Campolongo et al. 2007), and the standard 

deviation of the elementary effects, 𝜎𝑗, are calculated as follows:  

𝜇𝑗
∗ =

1

𝑀
∑ |𝑑𝑖,𝑗|

𝑀
𝑖=1 ,                    (3.2) 

𝜎𝑗 = √
1

𝑀
∑ (𝑑𝑖,𝑗 −

1

𝑀
∑ 𝑑𝑖,𝑗

𝑀
𝑖=1 )2𝑀

𝑖=1 ,       (3.3) 

The average influence of the input parameter on the model output is given by 𝜇𝑗
∗ and the 

nonlinearity is determined by 𝜎𝑗. If 𝜇𝑗
∗ is large, this means the input parameter caused a large 

change in the model output, i.e., it is an influential/important parameter. If 𝜎𝑗 is large, or large 

relative to its corresponding 𝜇𝑗
∗, this means a perturbation to the input parameter resulted in a 

large variety of output values caused by nonlinear interactions with other parameters or a 

nonlinear individual response. Parameters with low 𝜇𝑗
∗ and 𝜎𝑗 are non-influential, implying they 

could be set to a constant value in the model. These two sensitivity measures can be further used 

to rank the most influential parameters (high to low 𝜇𝑗
∗), as well as calculate sensitivity 

characteristics like monotonicity of the response. In the following section, we use fractional 

sensitivity (FS) to understand the influence of the input parameters on precipitation rate over the 

six averaging regions of the domain. FS normalizes 𝜇𝑗
∗ by the model output range (ymax - ymin) to 
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compare the variation caused by individual parameters to the variation generated from all the 

one-at-a-time simulations (Equation 3.4):   

 

𝐹𝑆 =
𝜇𝑗

∗

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
× 100        (3.4) 

 

For a more detailed description of MOAT and a step-by-step example of how the algorithm is 

applied, see Section 3.2 in Covey et al. (2013). 

3.3 Results and Discussion  

3.3.1 Control Simulation  

Temporally-averaged results for the analysis period (hours 6-20) show the control 

simulation is characterized by a deep mixed-phase cloud over the upwind mountain side and an 

upper-level ice cloud downwind (Figure 3.2a). Snow extends from a height of 7 km to below the 

freezing level upwind, where it reaches the surface over the mountain top, but melts into rain 

over UF, US, and DT (Figure 3.2a). Rain formed through warm-rain processes exists mainly 

over UF and US. Graupel forms over the top of the mountain and upwind slope, where vertical 

velocities are strong enough to sustain growth of rimed ice hydrometeors, and plenty of cloud 

water is available within supercooled cloud regions. The freezing level lowers towards the 

mountain, but does not actually intersect the mountain. As the flow descends on the lee side of 

the mountain, the wind speed increases by approximately 20 m s-1 and the freezing level rises to 

a height of approximately 4 km, caused by adiabatic warming. Trapped lee waves develop, with 
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narrow upward motion strong enough to generate clouds and snow, but no surface precipitation 

(Figure 3.2). In general, the flow follows the terrain and contains no wave-breaking or blocked 

flow upstream.  

A Hovmöller diagram of precipitation rate shows an initial maximum over UT caused by 

rapid graupel development, fallout, and melting, followed by relatively steadier precipitation and 

a secondary period of intense precipitation (Figure 3.2b). Frozen precipitation (snow and 

graupel) reaches the surface within a narrow region centered over the mountain peak, while 

liquid precipitation extends to UF/US and DT, caused by melting of snow and advected rain (not 

shown). To avoid the 0-6 hour model spin-up period and gain a broader perspective of the effects 

caused by multi-parameter perturbations, our analysis is focused on hours 6-20, where the 

condensate development, and flow are relatively steady (Figure 3.2a).  

A brief comparison of the control simulation in this study and that of M18 shows the 

difference caused by the increased mountain height. The taller mountain height (2 km) used in 

this study generates stronger vertical velocities that are able to sustain graupel development 

during hours 6-20 and produce higher PREC over the mountain top. In contrast, the control 

simulation in M18 with a 1 km mountain height had a PREC maximum over US and no graupel 

during hours 6-20.  

3.3.2 Microphysical and environmental parameter perturbations  

We first discuss which microphysical parameters are most influential to PREC when the 

environmental conditions are held constant within the control sounding based on the MultiParam 
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MOAT experiment. Figure 3.3 shows the 𝜇𝑗
∗-𝜎𝑗 plots with each parameter color-coded and 

labeled. The MultiParam results show the largest effects on PREC occur over the upwind slope 

and top (Figure 3.3b,c), and are caused by changes to the snow fallspeed coefficient (As) and 

density (s), ice-cloud water collection efficiency (ECI), and rain accretion multiplicative factor 

(WRA).  Notably, these parameters are the same as those identified by M18 as influential based 

on one-at-a-time individual parameter perturbations. Ranking the parameters from highest to 

lowest 𝜇∗ shows that As is ranked most important over more locations on the mountain than any 

other parameter (Figure 3.4a). In addition to having a large influence on PREC, the use of 

MOAT shows that As has nonlinear parameter interactions (i.e., large 𝜎). This means there are a 

variety of elementary effects from changes to As, seemingly as a result of interactions with other 

parameters. As acts to directly affect the snow fallspeed and thus impacts existing snow aloft. 

The large variability in PREC responses to As is understandable, because various microphysical 

parameters and processes can impact how much snow is generated for As to subsequently act 

upon. Although not as highly ranked, s is also influential over all regions on the mountain. M18 

found this parameter caused an unphysical indirect impact on snow fallspeeds through 

interactions with the particle size distribution. WRA is highest ranked over the upwind foothills 

and slope (Figure 3.4a). This is expected, as these locations have large amounts of cloud water 

and a deep melting layer creating a favorable environment for rain accretion (Figure 3.2a). 

Results also show that ECI and ice-ice collection efficiency (EII) are ranked highly over regions 

that would have cloud ice and supercooled water, respectively. Thus, the microphysical 

parameters’ influence on PREC can vary spatially, depending on the specific processes 
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dominating over a particular region. Normalizing the rankings by the range of PREC (max – min 

computed per spatial region) generated from all simulations performed using MOAT gives us the 

fractional sensitivity of each parameter (Equation 3.4). Parameters with the highest fractional 

sensitivities are As and WRA (Figure 3.4b). This means that perturbations to As and WRA 

produce variability in PREC that is 30-50% as large as the total variation in PREC.  

 
Figure 3.3 Mean magnitude 𝜇𝑗

∗ and standard deviation 𝜎𝑗 for total precipitation rate (mm hr-1) 

given 15 microphysical parameters varied using the MOAT screening method for the control 

environment (MultiParam). Labels j =1,…,15 correspond to the parameters listed in Table 3.1. 

Results are temporally and spatially averaged over the six locations on the mountain: (a) upwind 

foothills, (b) upwind slope, (c), upwind top, (d), downwind foothills, (e) downwind slope, and (f) 

downwind top. The one-to-one line is shown for reference. 
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Figure 3.4 (a) Ranking of precipitation rate (mm hr-1) sensitivity to parameters for MultiParam. 

Rank 1 represents the largest 𝜇𝑗
∗ value, while Rank 15 or 19 represents the smallest 𝜇𝑗

∗ value, for 

the simulations. Rows are the input parameters described in Table 1 and columns show results 

for each region over the mountain. (b) Fractional sensitivity (%) of precipitation rate (mm hr-1) to 

parameters for MultiParam. Rows are input parameters described in Table 3.1 and columns show 

each region over the mountain. 

 

Next, we describe the MOAT experiment MP_ENV that simultaneously perturbs 

microphysical and environmental parameters, testing the influence of environmental parameter 

uncertainty on PREC sensitivities to microphysics. The MP_ENV results show that perturbations 

to environmental parameters cause a larger change in PREC than microphysical parameter 

perturbations alone, mainly over regions UF, US, and DT (Figure 3.5). This is because changes 

in the environment affect the amount of moisture available, the resistance to vertical motion, 

and/or the type of precipitation that develops. Over the UF, US, and DT regions, perturbations to 

the RH result in the largest effects on PREC, while perturbations to RH and As have similar 

magnitudes of µ* over UT (Figure 3.5). These results show that although the environment does 

dominate the formation of condensate through dynamic-thermodynamic effects, in some regions, 

perturbations to microphysics are as important to surface precipitation as are perturbations to the 
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environment; over DS, microphysical impacts can actually be larger than those of the 

environment (Figure 3.5e). Additionally, the inclusion of environmental parameter perturbations 

can have an effect on the microphysical parameter sensitivities. For example, over UT in 

MultiParam, s and ECI have different µ* values, but when environmental parameters are 

simultaneously perturbed, the value for s increases while the value for ECI decreases resulting 

in them having a similar influence as one another (Figure 3.5c). Overall, the MP_ENV results 

show that RH, θsfc, and U are the environmental parameters causing the largest changes to PREC 

(Figure 3.5).  

 
Figure 3.5 Same as Figure 3.3, except for MP_ENV, which includes the additional four 

environmental parameters varied using MOAT. Labels j = 1,…,19 correspond to the parameters 

listed in Table 3.1. 
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 Ranking all the parameters by their µ* values shows the top parameters in MultiParam 

(As, s, ECI, and WRA) are also relatively influential in MP_ENV, but with As being the only 

microphysical parameter ranked as number 1 in at least one region (Figure 3.6a). Relative 

humidity is ranked as most influential over the windward side and DT/DF regions; this may be 

due to its effect on the number of grid points undergoing condensation in the model, resulting in 

changes to spatially-averaged condensation rates and the amount of condensate available to 

generate precipitation. Over DS, adiabatic warming leads to low RH, thus perturbations within 5-

10% RH do not have a significant influence over this region. The surface potential temperature is 

most important over DT (Figure 3.6a), likely due to its effect on the freezing level height which 

affects the type of precipitation reaching the surface. The wind speed is most important over UF, 

DS, and DF (Figure 3.6a), most likely due to its impact on vertical velocities associated with 

uplift over the elevated terrain and subsequent effects on lee wave generation. Normalizing the 

µ* values shows RH and As are the most dominant parameters, responsible for fractional 

sensitivities of 30-50% (Figure 3.6b). The difficulty in trying to understand why As is such an 

important microphysical parameter arises when attempting to disentangle its interactions with 

other parameters. However, some microphysical parameter interactions can be plausibly 

explained. For example, the response of PREC to changes in ECI is moderately anti-correlated 

with the response to changes in As (correlation coefficient = -0.53). An increase in ECI results in 

more snow converted into graupel owing to more efficient riming of snow by cloud water, and 

because As only acts on existing snow, this reduction of the snow amount aloft limits the effect 

of perturbations to As. To quantify which parameter combinations are acting together to 
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influence PREC, a variance-based or Bayesian method would be required (Saltelli et al. 2008), 

which is beyond the scope of this study. 

 

 
Figure 3.6 Same as Figure 3.4, except for MP_ENV, which includes the additional four rows for 

the environmental parameters described in Table 3.1.   

 

The MP_ENV fractional sensitivity results show that over the regions with the largest µ* 

(UF, US, UT, and DT), the upwind top is the only location where both microphysical and 

environmental parameter perturbations have a large effect on PREC. If we compare the change 

in PREC caused by the three most influential environmental parameters (RH, θsfc, and U) to the 

maximum change in PREC caused by any microphysical parameter we observe generally similar 

magnitudes (Table 3.3). For example, over the upwind top the value of µ* for As (ranked 2) is 

98% of the value for relative humidity (ranked 1). MP_ENV results show that both 

microphysical and environmental parameter perturbations can result in similar changes to PREC 

when perturbing over a typical observational uncertainty range for the environmental parameters.  
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Table 3.3 Ratio of maximum 𝜇𝑗
∗ for j = 1-15 to 𝜇𝑗

∗  for j = 16, 18, and 19 for experiment 

MP_ENV. 

 
UF 

(WRC) 

US 

(WRA) 

UT 

(As) 

DT 

(s) 

DS 

(As) 

DF 

(As) 

RH 20% 45% 98% 37% 226% 74% 

 85% 130% 320% 68% 298% 110% 

U 54% 172% 171% 122% 126% 93% 

 

 Total condensation rate <COND> (vertically integrated and horizontally-averaged over 

the domain sub-regions) is primarily affected by changes to the dynamics (vertical motion) and 

relative humidity, and secondarily by changes to the temperature. Figure 3.7 shows the 

parameters most influential (highest values of µ*) to <COND> are RH, U, θsfc, and WRA. 

Moving downwind over the mountain, we see more microphysical parameters acting to influence 

<COND>, with the largest µ* values occurring over DF and DS (Figure 3.7). These results show 

that the environmental parameters strongly impact condensation, as expected, through changes in 

the dynamics and thermodynamics. For example, increased U results in larger vertical velocities 

upwind of the mountain top, which triggers strong downslope winds and generates lee waves. 

Changes to θsfc affect the height of the freezing level and directly impact cloud water 

condensation/evaporation through the model’s saturation adjustment scheme, while perturbing 

RH can influence the number of grid points that undergo condensation and thus the average 

condensation rate. WRA was shown to be a key influence on <COND> in M18, but using 

MOAT shows us that other microphysical parameters can also strongly affect condensation 

(Figure 3.7), evidently by impacting lee wave development which affects cloud development 

downwind of the mountain.  
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Figure 3.7 Same as Figure 3.5, except for total condensation rate (mm hr-1). 

 

 Because precipitation efficiency PE is affected both by microphysical processes acting on 

condensate and condensate transport, it is reasonable that both microphysical and environmental 

parameters influence it (Figure 3.8). Changes to θsfc affect the phase of condensed water as well 

as the condensation rate, and changes to U directly impact condensate horizontal transport. 

Values of µ* for PE become very large over the downwind slope (Figure 3.8) because 

microphysical and environmental parameter perturbations affect transport of condensate to this 

region by horizontal advection, which can lead to relatively large PREC despite little generation 

of condensate locally, and hence very large values of PE. This analysis shows that the large 

changes in PREC over UT from perturbations to As (Figure 3.5c) are seemingly a result of the 

large influence As has on PE (Figure 3.8c) compared to <COND> (Figure 3.7c). Thus, 
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supporting the findings in M18, which conclude that the direct effects of As on the snow 

fallspeed, and hence transport, are the primary mechanism for this parameter’s strong influence 

on PREC.  

 
Figure 3.8 Same as Figure 3.5, except for precipitation efficiency. 

 

3.3.3 Microphysical Parameter Perturbations in Different Environments  

The MP_ENV results showed that microphysical parameter sensitivities are affected by 

relatively small changes in environmental parameters, and since the range of values chosen for 

the parameters can influence the results, we test different wind speed and surface potential 

temperature regimes within a climatological range to understand the impact of different 

processes and changes to available precipitable water on PREC. Figure 3.9 shows a summary of 
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PREC for simulations using the default microphysical parameter values and the MP_COLD, 

MP_WARM, MP_SLOW, and MP_FAST environments, compared to using the control 

environment. For the different wind regimes, the overall pattern of precipitation is similar, with a 

PREC peak over the upwind top (Figure 3.9a) and frozen precipitation only occurring over the 

mountain tops (not shown). The difference in PREC values between the slower and faster wind 

speed environments is mainly caused by changes to the vertical velocities over the upwind slope. 

Averaging over hours 6-20 and over the windward side, a maximum vertical velocity of 0.13 m 

s-1 occurs at a height of ~1.5 km above sea level (ASL) in the slower wind speed case, while the 

faster wind speed case produces a maximum vertical velocity of 0.25 m s-1 at a height of 2.7 km 

ASL. The warm environment is more similar to the control, but with slightly more precipitation 

over the upwind foothills/slope (Figure 3.9b). The freezing level in this case is approximately 1 

km above the mountain top, thus there is a significant depth where frozen hydrometeors can 

melt. The only region where frozen precipitation occurs in the control and warm environment is 

over the mountain top. The cold environment has two PREC peaks, one over the upwind 

foothills where both liquid and frozen precipitation occurs and the other over the upwind top 

where all precipitation is frozen (Figure 3.9b). In this case, the freezing level intersects the 

mountain at about 1 km ASL, so that rain is limited to the UF and US regions, while all other 

regions have only frozen precipitation (not shown). The large difference in PREC amounts 

between the warm/control environments and the cold environment is caused by a reduction in 

precipitable water in the cold environment; it has precipitable water of 16 cm, while the warm 

and control environments have values of 33 cm and 27 cm, respectively.   
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Figure 3.9 Temporally (hours 6-20) and spatially averaged (six regions) precipitation rate (mm 

hr-1) for simulations with default microphysical parameter values and (a) reduced and increased 

wind speeds or (b) lower and higher θsfc. Solid black lines represent values using the control 

sounding. 

 

3.3.3.1 MOAT Results for Wind Speed Regimes  

Results for MP_SLOW show that perturbations to the microphysical parameters produce 

the largest influence on PREC over US, UT, and DT. The most influential parameter over US 

and UT is As (Figure 3.10), similar to the control environment. Over DT, the largest µ* values 

are caused by WRA, DCS, and s. The MP_FAST results have the largest µ* values over both 

slopes and tops and As is the most influential parameter in all four locations (Figure 3.11). 

Microphysical parameters that are moderately influential in this case are WRC, ECI, EII, WRA, 

and s.  
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Figure 3.10 Same as Figure 3.3, except for experiment MP_SLOW. 

 



 101 

 
Figure 3.11 Same as Figure 3.3, except for experiment MP_FAST. 

 

Fractional sensitivity results for these two experiments show there are many more 

microphysical parameters with FS >20% in MP_SLOW (Figure 3.12a) than in MP_FAST 

(Figure 3.12b) or the control (Figure 3.4b). We surmise that the weaker sensitivity to 

microphysics in MP_FAST and the control may be due to those environments being more 

dynamically forced. Stated another way, more rapid flow leads to stronger water vapor flux 

convergence upwind, and as such, condensate will form and precipitate regardless of changes to 

microphysical parameter values. Differences in fractional sensitivity over the downwind regions 

between MP_SLOW and MP_FAST may be due to the different mountain wave regimes that 

develop given the change in wind speed. The environment in MP_SLOW produces vertically-

propagating, large amplitude lee waves, while MP_FAST and the control simulation produce 
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trapped lee waves with smaller amplitudes that dissipate in the vertical (Figure 3.13). We 

hypothesize that the waves in MP_SLOW trigger a wider region downwind to reach its lifting 

condensation level where latent heating then further enhances buoyancy and condensate 

development, e.g., the vertical velocities are strong enough to form graupel at mid-levels (Figure 

3.13). MP_FAST does not form condensate downwind as the wave amplitude is small over very 

narrow regions. Therefore, precipitation downwind would be more sensitive to changes in 

microphysical parameters for MP_SLOW because this environment allows for cloud, snow, and 

graupel to form downwind, while condensate over DT and DS in MP_FAST is mainly formed 

upwind of the mountain top and advected downwind. The control simulation does form clouds 

and some snow in the mid-levels over DF despite the trapped lee waves; this may be due to some 

threshold wave amplitude being met that allows for enough upward motion to generate 

condensate. Nonetheless, As continues to have a large fractional sensitivity regardless of wind 

speed regime (Figure 3.12a,b). If we separate the PREC results into liquid and frozen (snow + 

graupel) components, details emerge as to how each environment affects precipitation type. 

Results for MP_SLOW show that the liquid precipitation is most sensitive to As and WRA 

(Figure 3.12c). In MP_FAST we see that frozen precipitation is sensitive to additional 

parameters: s, EII, and ECI also have large impacts on frozen precipitation (Figure 3.12d).  
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Figure 3.12 Top panels are the same as Figure 3.4a, but for experiments MP_SLOW (left panels) 

and MP_FAST (right panels). Bottom panels show the fractional sensitivity (%) for liquid and 

frozen precipitation rate (mm hr-1) for their respective environmental experiments. Black shaded 

cells represent no precipitation over these regions. 
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Figure 3.13 Temporally-averaged (hours 6-20) vertical cross-sections over a portion of the 

domain for simulations using the (a) control sounding, (b) slower wind speed profile used in 

MP_SLOW, and (c) faster wind speed profile used in MP_FAST. Shaded contours represent 

cloud water and ice mixing ratios (g kg-1). Colored contours represent the 0.05 g kg-1 mixing 

ratio for snow (cyan), rain (orange), and graupel (magenta). Black contours are isentropes 

starting at 270 K at 5 K intervals (the 300 K isentrope is labeled for reference). 

 

3.3.3.2 MOAT Results for Temperature Regimes  

Results for MP_COLD have relatively smaller values of µ* compared to the other 

experiments, but all regions except DF have non-negligible values (Figure 3.14). The most 

influential parameter for UF and DS is As, and for US it is WRA. The upwind and downwind 
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tops both have a cluster of parameters considered influential in this case: As, WRA, EII, ECI, and 

WRC for UT, and As and EII for DT (Figure 3.14c,f). Similar to MP_FAST, results for 

MP_WARM show the largest µ* values occur over both the mountain slopes and tops (Figure 

3.15). In this case it is clear that As is the most influential parameter overall, and WRA, WRC, 

ECI, and s are moderately influential over the slopes and tops (Figure 3.15). 

 
Figure 3.14 Same as Figure 3.3, except for experiment MP_COLD. 
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Figure 3.15 Same as Figure 3.3, except for experiment MP_WARM. 

 

Fractional sensitivities for PREC show that As leads to FS values >30% regardless of the 

temperature regime. MP_COLD has more parameters with FS values >20% compared to 

MP_WARM; these include ice-ice (EII) and ice-cloud water (ECI) collection efficiency, rain 

accretion (WRA), cloud water autoconversion (WRC), and snow deposition (SDEP) (Figure 

3.16a,b). Liquid precipitation is sensitive to As and s in both temperature regimes, meaning that 

most of the liquid precipitation may be a result of snow melting compared to warm-rain 

processes (Figure 3.16c,d). For frozen precipitation, MP_COLD has fractional sensitivities > 

30% for As, EII, and WRA, while s and ECI are responsible for FS >30% in MP_WARM 

(Figure 3.16c,d), emphasizing the influence of mixed phase processes in a warmer environment.  
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Figure 3.16 Same as Figure 3.12, but for experiments MP_COLD (left panels) and MP_WARM 

(right panels) for top panels. 

 

3.3.4 Microphysical Parameterization Tests 

In this section, we compare variations in PREC caused by microphysical parameter 

perturbations within a single scheme using MOAT (MultiParam) to those resulting from an 

ensemble of four different schemes (MultiPhys). The standard deviations shown in Figure 3.17 

for the single scheme test are calculated from the PREC values produced by all 320 simulations 

using MOAT, while the standard deviations for the MultiPhys experiments are calculated from 

the PREC values from the four-member ensemble with different schemes; all of which are 
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calculated for the five environments: control, colder temperature, warmer temperature, slower 

wind speed, faster wind speed. Results from these tests show standard deviations for parameter 

perturbations in a single scheme produce variations in PREC with a similar order of magnitude 

to those caused by choosing an entirely different scheme (Figure 3.17). We also see a strong 

spatial nonlinearity of precipitation sensitivities, i.e., standard deviations vary with location over 

the mountain. For the MultiPhys experiments, the standard deviations are largest over DT for 

warm, fast, and slow environments, while the peak standard deviations occur over UT for the 

control and cold environments (Figure 3.17).  

 
Figure 3.17 Precipitation rate standard deviation (mm hr-1) temporally averaged (hours 6-20) and 

spatially averaged (6 regions) for the (a) control environment (black), (b) warmer (orange) and 

colder (blue) environments, and (c) slower (purple) and faster (green) wind speed environments. 

Solid lines represent results from multiple microphysical parameter perturbations using a single 

scheme with MOAT. Dashed lines represent the MultiPhys experiment. See Table 3.2 for a 

description of the simulations.  

 

3.4 Summary and Conclusions  

CM1 was used to perform idealized 2D simulations of moist, nearly neutral flow over a 

bell-shaped mountain. The model configurations and initial sounding were similar to that used in 

M18, except a 2 km mountain height is used here. Experiments perturbing multiple 
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microphysical parameters (MultiParam) were compared to experiments where both 

microphysical and environmental parameters were simultaneously perturbed (MP_ENV). The 

objective of these simulations was to explore orographic precipitation sensitivities to 

microphysical and environmental parameter perturbations using the Morris one-at-a-time 

(MOAT) method, which simultaneously perturbs a large number of parameters at low 

computational cost. This is in contrast to nearly all previous parameter sensitivity studies that 

varied parameters individually while holding all other parameter values fixed. Four different 

environments were also tested to determine how the multi-parameter MOAT results change in 

colder (MP_COLD), warmer (MP_WARM), slower wind speed (MP_SLOW), and faster wind 

speed (MP_FAST) environments. MOAT was applied for the first time to the study of 

orographic precipitation sensitivity, providing unique insight on the most influential parameters 

to precipitation and their interaction with other parameters. Finally, we compared the PREC 

variability caused by perturbations to microphysical parameters within the Morrison scheme to 

the variability found in a four-member ensemble using entirely different microphysics schemes 

(MultiPhys). 

 The most influential parameters on orographic precipitation were As, s, ECI, and WRA, 

especially over the upwind slope and top. These are the same parameters having the largest 

influence on PREC in the one-at-a-time parameter perturbations tests in M18. In addition to 

causing a large change in PREC, As had a large range of elementary effects, which demonstrated 

its strong interaction with other parameters. Furthermore, As had a larger effect on precipitation 

efficiency compared to total condensation rate, emphasizing its direct effects on snow fallspeed 
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and subsequent condensate advection. The location over which each parameter is influential 

depended on the processes active in that region. For example, WRA was most influential over 

the upwind foothills and slope as these locations contained large amounts of supercooled water 

and a deep melting layer. As and WRA were found to contribute 30-50% of the total PREC 

variation in the MultiParam simulations.  

M18 showed that large changes in the environment influence the total amount of 

condensate produced, thereby affecting the influence a particular microphysics parameter can 

have on PREC. Our focus was on understanding relative sources of model uncertainty, and as 

such, the environmental parameter perturbations tested were small (informed by estimates of 

typical observational uncertainty). Even so, these perturbations were influential to <COND> and 

resulted in a relative decrease of microphysical parameters’ influence on PREC. The most 

influential environmental parameters to PREC were RH, θsfc, and U, resulting in large PREC 

changes over the upwind foothills and slope, and downwind top, mainly due to effects on 

<COND> through updraft development and lee wave formation. Interestingly, out of the four 

most influential parameters found in MultiParam, As and WRA remained influential to PREC in 

MP_ENV, with As perturbations leading to nearly the same (98% as large) PREC variability 

over the upwind top as that caused by RH perturbations. This suggests that improved 

representation and observational constraint of the fallspeed of snow particles would be useful. 

Results from this study show strong spatial variability in the parameters’ influence, as well as 

demonstrating that both microphysical and environmental parameters are important to orographic 

precipitation uncertainty.  
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Different temperature and wind speed regimes were tested, and although these other 

environments impacted the amount of available condensate and location of peak precipitation, As 

remained the most important microphysical parameter in all four environmental experiments. In 

the wind speed regime tests, more microphysical parameters had a fractional sensitivity >20% in 

MP_SLOW compared to MP_FAST, which may be due to stronger dynamical forcing and 

different mountain wave regime in the latter. The temperature regime tests showed large changes 

to the location and amount of liquid versus frozen precipitation. This is because the freezing 

level decreased in MP_COLD, leading to liquid precipitation falling mainly over the upwind 

slope. The spatial change in dominant precipitation processes resulted in the microphysical 

parameters’ influence on PREC to also vary spatially. MP_WARM results showed that snow 

aloft was important for liquid precipitation production, while mixed phase processes were 

important for frozen precipitation.  

This study tested many of the user-prescribed parameters within the Morrison scheme, 

but there remain various thresholds and processes within the scheme that could be tested with 

MOAT in the future. A caveat of the MOAT method is that results may change depending on the 

range of uncertainty used. Parameter sensitivities would need to be re-tested if a specific 

parameter’s uncertainty range were to be narrowed, but results would be dependent on whether 

that parameter interacts with the others, i.e, if that parameter has no influence on other 

parameters, then changing its uncertainty range will not cause much change in the results. 
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Chapter 4. Multivariate Sensitivity Analysis of Orographic Precipitation Using a Markov 

Chain Monte Carlo Algorithm (Morales et al. 2019, In prep.) 

4.1 Introduction 

Moist, nearly neutral flow forced to rise through orographic lift commonly produces 

heavy precipitation during non-convective events (Roe 2005; Houze 2012; Zagrodnik et al. 

2018). For this study, we focus on moist neutral flow associated with atmospheric rivers (ARs), 

which are synoptic features that transport large amounts of moisture from the tropics to higher 

latitudes (Ralph et al. 2018). Atmospheric rivers are responsible for 95% of the meridional water 

vapor flux around the globe and are critical to the global water cycle (Zhu and Newell 1998). For 

example, ARs produce up to 50% of the annual precipitation for California, often from a couple 

of storms yielding large amounts of snowfall in the northern Sierra Nevadas (Dettinger et al. 

2011). Orographic precipitation from ARs can end droughts (Dettinger 2013), but can also lead 

to severe flooding and landslides causing damage to infrastructure and loss of life (Ralph et al. 

2006; Porter et al. 2011; Florsheim and Dettinger 2007) 

Because neutrally stratified flow exerts little to no resistance to the vertical displacement 

caused by encountering a mountain, condensation over the upwind slopes mainly depends on the 

speed of the upslope component of the flow and the moisture content available (Roe et al. 2005; 

Houze et al. 2012). Observational studies have shown high correlations between these upstream 

environment characteristics and orographic precipitation rates (Pandey et al. 1999; Neiman et al. 

2002; Ralph et al. 2013; Lin et al. 2013; Purnell and Kirshbaum 2018). Neiman et al. (2002) 
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found that 58% to 88% of the variance in surface rain rates over the coastal mountains of 

California could be explained by the upslope flow speed measured near the coast. Similarly, 

Ralph et al. (2013) found 74% of the rainfall variance can be accounted for through a linear 

relationship with upslope integrated water vapor flux or IWV, which combines observations of 

moisture content and wind speed. When upslope flow is not the dominant forcing for 

precipitation development, additional mechanisms such as the “seeder-feeder” process can 

enhance orographic precipitation (Neiman et al. 2002; Purnell and Kirshbaum 2018).  

Although these past studies have shown that the upstream environmental conditions are 

important to determining if precipitation will occur, the details of precipitation amount, type, and 

location become more complicated as we account for the complex relationships between 

environmental and microphysical parameters. For cooler ARs during winter, stronger upslope 

wind speeds can compensate for reduced precipitable water amounts (Ralph et al. 2013). The 

horizontal advection of snow can also be affected by environmental parameters such as surface 

temperature and horizontal wind speed, i.e., a lower freezing level favors more frozen 

condensate to spill over into the lee, especially with an increased wind speed (Colle 2004; Kunz 

and Kottmeier 2006; Mott et al. 2014; Wang et al. 2017). The microphysical melting distance, 

the depth below cloud base over which frozen precipitation can melt before it reaches the 

surface, increases with increasing surface temperature in idealized simulations of orographic 

precipitation and can impact precipitation type (Minder et al. 2011) and the dominant 

microphysical processes, i.e., warm-rain or ice processes (Colle 2004; Miglietta and Rotunno 

2006; Morales et al. 2018 (hereafter M18)).  
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A study by Lin et al. (2013) comparing observations of multiple wintertime storms over 

the West Coast of the U.S. to model forecasts showed a systematic overprediction of orographic 

precipitation and ice water content aloft during events when the freezing level existed below the 

average mountain height. This positive model bias is thought to be related to the representation 

of ice processes within bulk microphysics schemes and thermodynamic/dynamics processes that 

can affect frozen hydrometeor development (Lin et al. 2013). Microphysics parameterizations 

represent precipitation and cloud processes that cannot be directly resolved by numerical weather 

prediction (NWP) models. Various parameters exist within these schemes that are known to 

naturally vary in space and time yet are typically set at some constant value, i.e., graupel particle 

density. These parameters also have an inherent uncertainty arising from limited measuring and 

observation capabilities, as well as lacking a physical equivalent in nature, i.e., thresholds for 

converting cloud water to rain. Multiple studies have shown that the value of these parameters 

can influence surface orographic precipitation and liquid and ice water content (Colle and Zeng 

2004b; Colle et al. 2005; Miglietta and Rotunno 2006; Jankov et al. 2007, 2009; Liu et al. 2011; 

M18). For example, decreasing the snow particle fallspeed can shift the peak precipitation rates 

to the downwind side of the mountain, as the snow is horizontally transported away from its 

source region; a similar process occurs when the degree of riming is changed (Hobbs et al. 1973; 

Colle and Mass 2000; Lin and Colle 2009, 2011; Morrison et al. 2015; M18). Microphysical 

processes, such as the collection of cloud droplets by rain, can influence the location of 

precipitation and also affect the thermodynamics of the system through changes to cloud water 

(M18).  
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Most of these studies perform orographic precipitation sensitivity analysis by perturbing 

one parameter at a time while keeping the rest constant (e.g., Colle 2004; Colle and Zeng 2004a, 

b; Miglietta and Rotunno 2006; Kirshbaum and Smith 2008; M18). These are termed “one-at-a-

time” methods (OAT), which are invaluable to our understanding of the physical (or 

nonphysical) effects of parameter perturbations to precipitation but neglect the possibility of 

nonlinear parameter interactions. An OAT study by M18 showed that not only can the 

microphysical parameter value influence orographic precipitation, the sensitivities can change 

with different upstream environments. For example, perturbations to microphysical parameters 

linked to snow fallspeed affected precipitation location, but for a lower wind speed environment, 

weaker responses were observed due to reduced amounts of available condensate caused by 

weaker updrafts (M18). In general, environmental parameters are largely responsible for the total 

amount of available condensate for microphysical parameters and processes to act on, in addition 

to determining which microphysical processes (warm-rain or ice processes) will dominate 

specific mountain regions (M18). Accounting for changes in other parameters of interest can 

influence the precipitation sensitivity to an individual parameter.  

To properly account for every possible combination of parameters would require MN 

simulations, where N represents the number of parameters and M represents the number of 

discrete values to test. This “brute force” method quickly becomes computationally expensive, 

and sifting through the results could become unmanageable, especially for a large number of 

parameters. To combat part of this issue, Morales et al. (2019; hereafter M19) applied the Morris 

one-at-a-time (MOAT) method, a screening method that calculates elementary effects 
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(Campolongo et al. 2007) to determine parameters whose perturbation led to large changes in 

precipitation. MOAT is efficient for a large number of parameters, and provided a straight-

forward and statistically robust way of determining which parameters resulted in the largest 

changes to orographic precipitation. This parameter subset contains: snow fallspeed coefficient 

(As), ice-cloud water collection efficiency (ECI), rain accretion (WRA), relative humidity (RH), 

horizontal wind speed (U), and surface potential temperature (θsfc). The microphysical 

parameters were also found to be influential by OAT methods in M18.  

Results from M19 showed strong nonlinear responses to changes in As, meaning that the 

impact of As on precipitation depends on the value of other parameters; a simple analysis was 

performed and M19 found a negative correlation with ECI. Although MOAT was useful to 

reduce the number of parameters of interest, the method could not provide detailed information 

on parameter (co)variability. For example, As and ECI may co-vary, but is their relationship 

linear or is there a more complex response? M19 showed that other parameters could have 

relationships, but what are they? The past studies described here have shown mitigating factors 

can play a role in this type of orographic precipitation system, e.g., stronger upslope wind speeds 

can compensate for reduced moisture amounts (Ralph et al. 2013). Which parameters can 

compensate for the effects of others, leading to an overall null effect on precipitation? For the 

most influential parameter subset found in M19 there exist a range of physically realistic values, 

but do all these values have the same probability of producing a specific precipitation amount or 

distribution? Examining every parameter combination within the N-dimensional parameter space 

would be incredibly costly. M18 and M19 both examined the sensitivity of orographic 
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precipitation to changes in microphysics and the upstream environment, however, in addition to 

understanding the key controls on precipitation, it is also useful to understand which 

combinations of model parameters and environment can lead to a particular outcome; e.g., heavy 

precipitation on the upwind slope. This requires a different sort of experiment, one in which we 

seek combinations of parameters that produce a given precipitation distribution. Since not all 

combinations are likely to result in the desired outcome, a method is required that can sample the 

entire parameter space, while identifying specific combinations of control variables that produce 

the precipitation distribution of interest.  

A 2015 study by Tushaus et al. showed the potential for application of Bayesian 

inference methods to explore multivariate sensitivity in an orographic precipitation system. 

Tushaus et al. (2015) used an idealized model framework focusing on upslope precipitation from 

liquid-only processes to understand precipitation sensitivity to environmental and mountain 

shape parameters. Their results found non-linear responses for different parameters and “tipping 

points” where the wave dynamics drastically changed across a sharp gradient in the parameter 

space, thus providing a poor fit to the desired simulated precipitation rates for small changes in 

horizontal wind speed. The particular method used in Tushaus et al. (2015) is a Markov chain 

Monte Carlo (MCMC) algorithm (Posselt 2013), where Monte Carlo represents random 

sampling of values within the parameter space and Markov chain represents a series of proposed 

values (a chain) the next of which only depends on the current value within the parameter space. 

MCMC has been used as a sensitivity analysis tool for the study of tropical and deep moist 

convection, particle dispersion in the boundary layer, climate sensitivity, and coastal hurricane 
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variations (Pang et al. 2001; Elsner et al. 2004; Avila and Raza 2005; Tomassini and Reichert 

2007; Delle Monache et al. 2008; Posselt and Vukicevic 2010; Santos et al. 2016; Posselt 2016), 

as well as used to explore error characteristics of cloud satellite retrievals and determine the 

effectiveness of radar and satellite observations to data assimilation, and parameter estimation, to 

name a few (Posselt et al. 2008; Posselt and Bishop 2012; Van Lier-Walqui et al. 2012). 

Although MCMC has been a prolific tool in atmospheric science over the past two decades, 

Tushaus et al. (2015) is the only study we know to apply MCMC to the study of orographic 

precipitation sensitivity analysis.  

As opposed to brute force methods previously described, a Bayesian framework provides 

effective and efficient exploration of the N-dimensional parameter space and combines prior 

information with model data to produce a joint posterior probability distribution of the input 

parameters and observations (Posselt and Vukicevic 2010). The maximum (mode) of this 

distribution will provide the “optimal” value estimate for a specific observation or model output, 

but the real perk of MCMC is the probability density functions mapped for each parameter, 

which provide information on inter-parameter correlations and can be sampled from to improve 

ensemble forecasts. MCMC can also provide guidance on the effectiveness of including certain 

observations in data assimilation efforts, as well as determining the range of uncertainty needed 

for individual observations.  

The present study extends the Bayesian sensitivity analysis on orographic precipitation 

performed by Tushaus et al. (2015) by adding more complexity and realism to the model and 
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initial sounding, i.e., including ice processes and using more realistic wind speed and relative 

humidity profiles (M18 and M19). We use MCMC to explore the following science questions: 

 

1. Which parameter combinations yield a given orographic precipitation spatial distribution 

and do any covariances exist between parameters?  

2. Given that the MCMC algorithm only uses total precipitation to constrain the result, does 

there exist a subset of simulations where more of the total precipitation falls as 

snow/graupel compared to rain?  

 

We hypothesize that there will be more than one combination of parameters that can 

produce a similar precipitation distribution, as M19 found high non-linearity for microphysical 

and environmental parameters with a strong effect on precipitation amount. Non-linearities can 

arise from non-unique solutions, i.e., similar precipitation rates produced by different values of a 

specific parameter, or can arise from interactions with other parameters, i.e., the effect of 

parameter X on precipitation can vary given the value of parameter Y. For example, M19 found 

a negative correlation between the snow fallspeed coefficient (As) and ice-cloud water collection 

efficiency (ECI), meaning that the precipitation sensitivity of As could possibly change 

depending on the value ECI. Additionally, environmental experiments have shown that wind 

speed changes can impact the horizontal transport of precipitation (Colle 2004; Kunz and 

Kottmeier 2006; Mott et al. 2014; Wang et al. 2017; M18; M19). Therefore, we hypothesize that 
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there may exist values of horizontal wind speed that could compensate for changes in As to 

produce a similar precipitation at the surface.  

Previous studies have shown that microphysical parameter sensitivity can change 

depending on the environment, due to spatial changes in dominant microphysical processes and 

changes in dynamical forcing strength and mountain wave regimes (Colle and Zeng 2004b; 

Miglietta and Rotunno 2006; M18; M19). Since the MCMC algorithm is only constrained by the 

total precipitation rate, it is hypothesized that different environmental combinations could arise 

where most of the precipitation is frozen versus liquid, or vice versa. Additionally, M19 showed 

parameters’ influence on precipitation can change depending on the region over the mountain. 

For example, it was found that perturbations to As could produce precipitation changes of similar 

magnitude to perturbing relative humidity over the upwind slope of the mountain, but nowhere 

else (M19). Therefore, it is hypothesized that differences in parameter sensitivities will be found 

over different regions on the mountain.  

4.2 Methodology 

4.2.1 Model Configuration  

Cloud Model 1 (CM1; Bryan and Fritsch 2012) version 17 is used with a model 

configuration following M19, but because the Markov chain Monte Carlo (MCMC) method 

requires hundreds of thousands of simulations, changes had to be made to the total run time and 

time step. Tests showed that results from M19 were similar when temporally and spatially 

averaged from hours 6-20 and hours 6-16 (not shown). Additional tests concluded that MCMC 
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results using an averaging period from hours 6-9 produced similar results to those from hours 6-

16 (not shown). Therefore, the total run time was set to 9 hours using a time step of 6 seconds. 

These changes reduced computational expense and wall-clock time. For a full summary of the 

model configuration, see Chapter 3, Section 2 (M19). A quasi two-dimensional (2D) domain of 

1600 km length is used, where the inner 1200 km domain has a horizontal grid spacing of 2 km 

and the 50 grid points on either side have horizontal grid spacing stretched up to 6 km. The 

vertical depth of the model is 18 km, where the vertical grid spacing below 9 km is 0.25 km, 

increasing to 0.5 km between 9 km and 10.5 km, and remaining constant at 0.5 km from 10.5 km 

to the model top. Open radiative lateral boundaries are applied, as well as a no-slip bottom 

boundary condition. Coriolis acceleration and parameterizations for radiation, land-surface, and 

boundary layer are neglected to simplify the system and focus the study on the impact of 

microphysical processes to precipitation, thermodynamics, and dynamics. The Morrison 

microphysics scheme version 3.4 (Morrison et al. 2005; 2009) is used with the rimed ice species 

set to graupel.  

A Gaussian mountain profile is used with a mountain height of 2 km and a half-width of 

40 km. These values have been used in past studies to idealize the Sierra Nevada and Cascade 

Mountains as 2D infinite ridges (Colle and Zeng 2004a, b). The initial sounding idealizes the 

observational sounding from an atmospheric river event on 13 Nov 2015 during the Olympic 

Mountain Experiment (OLYMPEX, Houze et al. 2017) using a simple 1-2-1 smoothing filter. 

Similar to M19, the idealized upstream sounding is characterized as moist, nearly neutral with a 

tropospheric moist Brunt-Vaisala Frequency Nm
2 of 4x10-5 s-2 and a surface potential temperature 
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of 286 K. The stratospheric Nm
2 of 5x10-4 s-2 is set above the tropopause height (approximately 

12 km). The relative humidity (RH) profile is constant at 95% from the surface to 4.5 km, then 

linearly decreases to RH=20% at a height of 16 km where it remains constant until the model top 

is reached. The horizontal wind speed (U) profile starts at 14 m s-1 at the surface, linearly 

increasing to 42 m s-1 at a height of 12 km and remaining constant at 42 m s-1 until the model top 

is reached.  

4.2.2 Microphysical and Environmental Parameters 

Results from our previous studies (M18 and M19) have shown that one-at-a-time and 

multivariate perturbations to microphysical parameters, such as snow fallspeed coefficient (As), 

ice-cloud water collection efficiency (ECI), and the rain accretion process (WRA) cause the 

largest relative changes to orographic precipitation in a moist, nearly neutral environment. The 

most influential environmental parameters to orographic precipitation were relative humidity 

(RH), horizontal wind speed (U), and surface potential temperature (θsfc). Thus, it is appropriate 

for the present study to focus our experiments on understanding the combinations of parameters 

within this subset (Table 4.1) that can produce the total precipitation rate distribution from the 

control simulation described in Section 2.1. Although snow particle density was also found to be 

influential to orographic precipitation in M19, the present study neglects this parameter as its 

precipitation response has been shown to be unphysical (M18). Table 4.1 shows the range of 

values used for the six parameters and the default values for the control simulation used to 

produce the synthetic precipitation observations that constrain the MCMC algorithm. The 
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MCMC analysis is performed using hourly precipitation rates temporally averaged from hours 6-

9 and spatially averaged over six regions on the mountain (Figure 4.2c).  

The range for As is increased to include faster falling snow particles, while the ranges for 

ECI and WRA remain the same as those used in M18 and M19. Note, the units for As are m(1-b)s-

1 due to the nature of the power law that represents the snow fallspeed equation, Vs=AsDBs, 

where D is the snow particle diameter in meters. The range of values for θsfc and U were 

increased to include a variety of different environments, as the MCMC method will determine 

the environments best suited to produce the prescribed precipitation distribution and intensity 

and we do not want to restrict the algorithm to a narrow range of options. The surface horizontal 

wind speed spans environments with slow wind speeds (10 m s-1) to fast wind speeds (20 m s-1), 

while the surface potential temperatures span from 280 K to 293 K, acting as a proxy for freezing 

level height, i.e., an increase in surface temperature will increase the freezing level and vice 

versa. The range of values for RH encompasses low-level values of RH between 80% and 99%, 

keeping the low-levels moist, but unsaturated until parcels are lifted by the mountain. These 

environments have been observed using dropsondes and satellite observations over the western 

coast of North America (Ralph et al. 2005; Neiman et al. 2008).  

 

Table 4.1 List of microphysical and environmental parameters, ranges, and control values. 

Parameter description Units Control Min Max 

Snow fallspeed coefficient (As) m(1-b) s-1 11.72 5.86 23.44 

Ice-cloud water collection 

efficiency (ECI) 
-- 0.7 0.3 1.0 
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Rain accretion multiplicative 

factor (WRA) 
-- 1 0.5 2.0 

Relative humidity profile additive 

factor (RH) 
% RH(z) RH(z) - 10% RH(z) + 10% 

Surface potential temperature (θsfc) K 286 280 293 

U-wind speed profile additive 

factor (U) 
m s-1 U(z) U(z) - 4 m s-1 U(z) + 6 m s-1 

 

4.2.3 Experimental Design and Markov chain Monte Carlo (MCMC) Method 

The goals of our Bayesian inference experiments are to 1) determine all the possible 

parameter value sets 𝒙 that produce a given total precipitation rate spatial distribution and 

intensity 𝒚, and 2) understand the sensitivity of orographic precipitation to changes in the 

microphysical and environmental parameters. The large dataset of simulations produced by 

MCMC can then be mined to determine if any of the possible environments able to produce 𝒚 

could have produced a larger fraction of frozen precipitation. A six-element vector 𝒙 = [As, ECI, 

WRA, RH, θsfc, U] represents the parameters described in Table 4.1, each with a uniform prior 

probability distribution where each value within the given range are equally likely to occur. A 

control CM1 simulation run with the default parameter values (Table 4.1) produces the 

“synthetic observations” of total precipitation rates (mm hr-1) over six regions on the mountain 

(Figure 4.2c): upwind foothills (UF), slope (DS), and top (DT), and downwind foothills (DF), 

slope (DS), and top (DT). These synthetic observations are represented by the six-element vector 

𝒚 = [PUF, PUS, PUT, PDT, PDS, PDF] described by a Gaussian probability distribution centered 

around the control precipitation values with standard deviations for each region shown in Table 
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4.2. The standard deviation, or observational error, informs the algorithm how far it can stray 

from the truth and still accept the proposed parameters as being a good fit. These standard 

deviation values where calculated from the ensemble of simulations where microphysical and 

environmental parameters were perturbed used the Morris one-at-a-time screening method in 

Morales et al. (2019). There is more flexibility allowed in the MCMC algorithm over the two 

mountain top regions, while the upwind foothills and downwind regions have less flexibility. A 

caveat of the MCMC methods is that results can be sensitive to the choice of standard deviation 

(Tushaus et al. 2015).  

 

Table 4.2 Temporally and spatially averaged total precipitation rates (mm hr-1) for the control 

simulation and the standard deviations (mm hr-1) used in the Gaussian likelihood distribution.  

 UF US UT DT DS DF 

Total Precipitation Rate 1.55 3.41 4.89 5.45 0.372 4.25E-6 

Standard Deviation  0.4 0.6 0.8 0.8 0.2 0.02 

 

 

Markov chain Monte Carlo (MCMC) methods perform repeated random sampling of the 

multi-dimensional parameter space to map the joint probability density function (PDF) of model 

parameters x and observations or model output y using Bayes’ theorem:  

 

𝑃(𝒙|𝒚) =  
𝑃(𝒚|𝒙) 𝑃(𝒙)

𝑃(𝒚)
,   (4.1) 

 

where the posterior distribution 𝑃(𝒙|𝒚) is estimated from the conditional probability density 

𝑃(𝒚|𝒙), representing the likelihood parameters 𝒙 are the true parameters leading to 𝒚, and the 
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prior probability distribution of the parameter values 𝒙. The likelihood also represents the 

uncertainty in the observations or model output 𝒚 given a set of input parameters 𝒙. The prior 

represents the initial knowledge of (including uncertainty in) our input parameters. The posterior 

represents the updated probability distribution of the input parameters after we incorporate 

information from the observational or model data, which is the conditional distribution of 𝒙 

given y. To summarize, MCMC methods can approximate the value or distribution of values for 

a parameter of interest by randomly sampling values from a probability space by updating the a 

priori parameter probability distribution given additional information from observations or 

models. Details on the theory behind MCMC can be found in Posselt (2013) and references 

therein.  

In practice, the MCMC algorithm performs a “random walk” across the multi-

dimensional parameter space to find regions where input values have a high probability of 

producing our synthetic observations. Figure 4.1 illustrates the steps performed in a single 

iteration of the MCMC algorithm, and we note that the procedure in Fig. 4.1 is repeated for 

hundreds of thousands of successive iterations.  

Step 1: For each iteration of the algorithm, a proposed set of parameters 𝒙 is generated 

from a proposal distribution 𝑞(𝒙𝒊, 𝒙) centered around the current estimate of the parameter 

values 𝒙𝒊, i.e., the current location within the parameter space. The variance of this proposal 

distribution is tuned over a number of iterations at the start of each Markov chain to assure the 

algorithm is efficiently sampling the parameter space, while also sampling smaller regions of 
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high probability (Tushaus et al. 2015). This is called the adaptive burn-in period and the 

parameter sets sampled during this period are neglected from the analysis.  

Step 2: The proposal set 𝒙 is then used to run the forward model �̂� = 𝑓(𝒙), i.e., CM1 

with the configurations described in Section 1.  

Step 3: The resulting model output (i.e., simulated precipitation rates) are compared to 

the synthetic observations or “truth” (i.e., precipitation rates produced by control simulation) by 

calculating an acceptance ratio , which is described as the following equation for a uniform 

prior (Posselt et al. 2008):  

𝜌 =  
𝑃(𝒚|𝒙)

𝑃(𝒚|𝒙𝒊)
      (4.2).  

Step 4: If the proposed parameter set 𝒙 provides a better or similar fit to the desired 

precipitation distribution compared to the current parameter set 𝒙𝒊 ( > 1), then the proposed set 

𝒙 is accepted and saved as a sample 𝒙𝒊+𝟏 = 𝒙 of the joint PDF 𝑃(𝒙|𝒚) (Fig. 1). This means that 

the precipitation rates produced by the proposed set of parameters are within the given standard 

deviation or observational error. If the proposed set 𝒙 does not provide a better fit to the 

precipitation distribution ( < 1), a test number is randomly chosen from uniform (0,1) and 

compared to the value of . If the acceptance ratio is greater than the random number, the 

parameter set is accepted as a sample of the joint PDF (this is called probabilistic acceptance). 

For this study, the algorithm also performs a delayed reject (Posselt et al. 2017), whereby 

additional parameter sets can be proposed from the initially rejected set (i.e., two additional 

proposals are allowed). This provides the algorithm opportunities to sample the space in smaller 
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steps to find possible pockets of higher probability near low probability regions. If the proposed 

parameter set is rejected, an additional copy of the current parameter set is saved 𝒙𝒊+𝟏 = 𝒙𝒊 and a 

new proposal is generated, continuing the MCMC processes until the prescribed number of 

model iterations are completed. Details on this version of the MCMC algorithm can be found in 

Posselt (2016) and Posselt et al. (2017).  

 
Figure 4.1 Flowchart illustrating the Markov chain Monte Carlo process. (from Tushaus et al. 

2015). 
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Multiple Markov chains were run simultaneously to allow for more efficient sampling of 

the parameter space, with each chain initialized at a different randomly generated starting point. 

Ten chains were used with approximately 20,000 iterations each. After iterations associated with 

the burn-in period were removed, a total of 199,290 samples remained for analysis. This number 

of iterations was determined to be sufficient for the current analysis.  

4.3 Results  

4.3.1 Control Simulation  

The control CM1 simulation temporally-averaged from hours 6-9 is characterized by the 

development of a deep mixed-phase cloud upwind of the mountain peak where snow, graupel, 

and rain develop (Figure 4.2a). As the flow descends the mountain it adiabatically warms, 

producing a cloud-free region over the downwind top and slope (Figure 4.2a). Trapped lee waves 

develop downwind, with vertical velocities strong enough to form ice clouds aloft and narrow 

mixed-phase clouds over the upwind foothills, but no precipitation (Figure 4.2a,b). Peak total 

precipitation rates occur over the downwind top, which is different from the results in M19; this 

is primarily because the analysis period is shortened to hours 6-9, while M19 extends the period 

to hour 20, allowing for sufficient time to develop more graupel and snow to cause a upwind top 

peak in total precipitation. The total precipitation rates produced during this period are used as 

the synthetic observations that constrain the MCMC algorithm, as described in Section 2 (Table 

4.2). Separating total precipitation into its liquid-only and frozen precipitation components 

shows a double peak in rain over US and DT, and frozen precipitation over UT and DT (Figure 
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4.2b). The liquid precipitation in the UF region is formed through warm-rain processes, e.g., 

collision-coalescence, while the rain over US and UT forms through a combination of warm- and 

cold-rain processes, as the deep melting layer in this region allows for complete melting of snow 

and graupel. The secondary rain peak over DT originates from snow melting (Figure 4.2b). 

 

 
Figure 4.2 (a) Vertical cross-section showing temporally-averaged (hours 6-9) isentropes starting 

at 270 K at increments of 5 K (black contours), freezing level (thick dashed black line) cloud 

water and ice mixing ratios (shaded contours, g/kg), and 0.05 g/kg mixing ratio contours for 

snow (cyan), graupel (magenta), and rain (orange) for the control simulation over a portion of the 

domain. (b)  Temporally and spatially averaged precipitation rate (mm/hr) of frozen precipitation 

(dashed purple line), liquid-only precipitation (dotted orange line), and total (frozen+liquid) 

precipitation (solid black line), over the six regions in the mountain shown in (c) the mountain 

height (m) profile: upwind foothills (UF), slope (US), top (UT), and downwind foothills (DF), 

slope (DS), and top (DT).  
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4.3.2 MCMC-based Analysis 

The joint posterior PDF 𝑃(𝒙|𝒚) describing the combination of parameters 𝒙 that 

produced a good fit to the synthetic precipitation observations 𝒚 is calculated from multiplying 

the prior and the likelihoods computed from the MCMC algorithm. To more easily interpret the 

results of the 6-dimensional joint PDF, a two-dimensional (2D) marginal PDF for each pair of 

parameters are presented (Figure 4.3). Because the 2D marginal PDFs integrate over the 

remaining four parameters, the true value of the parameter pair may lie outside of any high 

probability regions, i.e., the higher probability region for two parameters may depend on the 

value of the others. In the 2D marginal PDFs, brighter colors represent regions of higher 

probability, i.e., the combination of parameter values produces a good fit to the observations, and 

darker colors represent regions of lower probability, i.e, the parameter values produce a poor fit 

to the observations.  
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Figure 4.3 Posterior two-dimensional marginal PDFs for each pair of parameters from the 

MCMC experiment. In each panel, brighter and warmer colors represent regions of relatively 

higher probability density whereas darker and cooler colors represent regions of relatively lower 

probability density. The red lines show the locations of the parameter truth values (see Table 

4.2).  

 

The 2D marginal PDF of ECI and As supports the results found in M19 and show an 

inverse relationship, where As must increase if ECI is decreased to reproduce the control 

precipitation (Figure 4.3a). This relationship is expected, and is a good test of the MCMC 

algorithm, as these two parameters are found together in equations describing the accretion of 

supercooled cloud droplets onto snow and/or graupel and the conversion of rimed snow to 
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graupel within the Morrison scheme. In addition to confirming the inverse relationship, the 2D 

marginal PDF shows three distinct regions: a low-probability region for small values of As, a 

higher probability region (inverse relationship), and a moderate probability region where large 

values of As and ECI produce an acceptable, but not great match to the control precipitation 

values. The smaller values of As produce snow that falls too slow leading to an incorrect match 

to the synthetic observations, as the snow will be horizontally advected away from the upwind 

slope and either precipitate downwind or be advected far enough to experience sublimation or 

melting and subsequent evaporation, thus never reaching the surface.  

In contrast, rain accretion (WRA) which represents the processes of rain drops removing 

cloud droplets through collision-coalescence has no clear relationship with ECI or As. This result 

is expected, as WRA is not directly linked to ECI or As through any processes in the Morrison 

scheme. Although WRA is allowed to occur both above and below freezing, the 2D marginal 

PDFs shows that any value of ECI or As (except very small As values) in combination with WRA 

can reproduce the control precipitation distribution. Thus, there is little precipitation sensitivity 

to WRA, which was also found in M18 and M19, the cause being a compensating effect between 

changes to precipitation efficiency and total condensation rates near the cloud base.  

Results show a strong sensitivity to the value of surface potential temperature and 

horizontal wind speeds, illustrated by narrow regions of relative high temperature and wind 

speed probability, where values outside of these regions provide a poor fit to the synthetic 

observations (Figure 4.3g-o). The 2D marginal PDF for θsfc versus U shows a localized high 

probability region between 285 K and 289 K and surface wind speeds from approx. 11 m s-1 to 
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17 m s-1 (Figure 4.3o). It seems that most values for the microphysical parameters (As, ECI, and 

WRA) could be a good fit to the synthetic observations, as long as the θsfc and U values lie 

within their respective narrow regions (Figure 4.3g-i,l-m). Within the narrow U range, lower 

values of ECI produce a much better fit to the synthetic observations (Figure 4.3l). The clearest 

covariance between parameters and strongest sensitivity is shown in the 2D marginal PDF of As 

and U (Figure 4.3k). These two parameters show a positive relationship associated with 

horizontal transport of snow, i.e., if As is increased and snow falls faster, U will need to increase 

so that the precipitation falls over the appropriate region in order to maintain a good fit to the 

synthetic observations. Figure 4.3k shows that for As values close to the truth U values cannot 

deviate by more than 1 m s-1 or the precipitation distribution will be incorrect.  

Relative humidity results show a narrow region of lower probability creating a secondary 

maximum between surface RH values of 91.5% and 87.5% (Figure 4.3d-f, and Figure 4.3j,n). 

This secondary high probability region is found when mapped against all other parameters. To 

further investigate the source of this lower probability, 2D marginal PDFs are presented for the 

six individual regions over the mountain. Instead of using the likelihood added up for all regions, 

the likelihoods for each region on the mountain are multiplied with the priors to produce the 

location-specific joint posterior PDFs. Comparing all regions, the upwind foothills is the only 

region that prominently shows the low probability region for RH compared with all other 

parameters (Figure 4.4d-f,j,n). A possible positive slope in the 2D marginal PDF for θsfc and RH 

appears (Figure 4.4j), while a possible negative slope appears for RH versus U (Figure 4.4n). 

This analysis isolates the source of the secondary maximum to precipitation effects over UF, but 
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analysis comparing temporally-averaged vertical cross-sections for different values of RH do not 

show any substantial differences in the wave patterns, flow, or cloud distributions (not shown) 

that could explain the feature.  

 
Figure 4.4 Same as Figure 4.3 but for the upwind foothills (UF) region.  

 

 In general, there is not much of a sensitivity to parameter values over the upwind slope or 

upwind top regions (Figure 4.5 and Figure 4.6), except for the inverse relationship between ECI 

and As. This relationship is most apparent in these regions as mixed-phase clouds exist above US 

and UT and most of the snow is produced here (Figure 4.2), but the three regions described 
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earlier do not appear in each region. The region of poor fit to the synthetic observations for 

smaller values of As exists in the 2D marginal PDF for DT (Figure 4.7). 

  

 
Figure 4.5 Same as Figure 4.3, but for the upwind slope (US) region.  
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Figure 4.6 Same as Figure 4.3, but for the upwind top (UT) region.  

 

The 2D marginal PDFs for downwind top and slope show that phase change is important 

to properly capturing the total precipitation distribution. Over the downwind top, there is a strong 

sensitivity to the value of θsfc and the positive relationship between U and As begins to appear 

(Figure 4.7). There also seems to be a better fit to RH values greater than or equal to the default 

value, regardless of the value of the microphysical parameters (Figure 4.7e-f). A strong 

sensitivity over US to wind speed values is very clear, especially when mapping U with As, ECI, 

WRA, and RH (Figure 4.8k-n). There is a strong, linear relationship between U and As for 

smaller values of As, which then asymptotes to a narrow range of values for U at higher As 
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values (Figure 4.8k). Physically, this relationship represents precipitation over the downwind 

slope being more sensitive to wind speed for large values of As (faster snowfall), but for slower 

wind speeds the value of As can mitigate the effects of changing U. Finally, the downwind 

foothills region shows most parameter combinations produce a good fit to the control 

precipitation distribution (Figure 4.9). This is because the precipitation uncertainty (standard 

deviation of likelihood distribution) for this region is relatively large compared to the total 

precipitation this location receives (Table 4.2).  

 
Figure 4.7 Same as Figure 4.3, but for the downwind top (DT) region.  
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Figure 4.8 Same as Figure 4.3, but for the downwind slope (DS) region.  
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Figure 4.9 Same as Figure 4.3, but for the downwind foothills (DF) region.  

 

Overall, MCMC results showed that for orographic precipitation from an atmospheric 

river environment, there does not exist a single unique set of parameter values that produce 

precipitation rates consistent with the control simulation. Increasing wind speed values are 

compensated by increasing As values, acting to balance the speed at which the snow falls and 

how fast the snow is advected horizontally. An increase in As is compensated by a decrease in 

ECI, especially for smaller values of As. The elongated high probability features for θsfc and the 

three microphysical parameters demonstrates that the precipitation rates will remain constant as 



 141 

long as θsfc remains within the narrow 4 K window (Figure 4.3g-i). Strong non-linearity is found 

for RH results, where a very narrow range of values exist over which the probability drops 

substantially, and precipitation rates are no longer similar to those from the control simulation 

(Figure 4.3d-f). This “tipping point” is found in RH results regardless of the parameter it is 

compared to. Given the combination of the RH nonlinearity and the narrow range of high 

probability values for θsfc and U, there exists two high probability regions (Figure 4.3o). 

Additionally, the combination of U and θsfc shows a “bull’s eye” region of high probability 

implying that precipitation rates will be consistent with the control only within these parameter 

value combinations.   

 Although parameter combinations were found using MCMC that were a good fit to the 

control precipitation rates, these same parameter values may not be a good fit if applied to a 

more realistic case. For example, if a three-dimensional (3D) test case was constructed and the 

high probability parameter sets found here were applied, the precipitation may not be reproduced 

due to additional flow dynamics that arise with 3D flow. The results presented here are limited to 

2D idealized flow over a bell-shaped mountain using the Morrison scheme. The parameter sets 

found in this study may not produce the same precipitation distribution of interested if a different 

microphysics scheme is used, or if a different model is applied, such as the Weather Research 

and Forecasting model. Changes in the standard deviation values for the precipitation rates may 

also impact the results, as found in Tushaus et al. (2015).   

Additionally, if precipitation type is used to constrain the algorithm, not just the amount 

of total precipitation, the resulting parameter sets may change. Therefore, the next logical step is 
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to understand how MCMC partitions precipitation type given that only the total precipitation 

amount impacts the parameter combinations.  

 

4.4 Summary and Future Work 

Orographic precipitation from atmospheric rivers is a valuable source of freshwater to 

communities worldwide, in addition to being potentially hazardous to life and property when 

flooding or landslides occur. The goals of this study were to 1) determine which combinations of 

microphysical and environmental parameters could yield heavy precipitation rates over the 

upwind slope and mountain top with similar intensities to those from a control CM1 simulation 

of moist, nearly neutral flow over a bell-shaped mountain and 2) identify any parameter 

relationships and sensitivities. To answer our science questions, idealized CM1 simulations of 

moist, nearly neutral flow over a bell-shaped mountain in conjunction with a Markov chain 

Monte Carlo (MCMC) algorithm were applied. MCMC allowed efficient and thorough 

exploration of the parameter space, focusing on regions with higher probabilities and avoiding 

regions with lower probabilities. The resulting joint posterior probability density function (PDF) 

was used to identify parameter co-variabilities between six microphysical and environmental 

parameters: snow fallspeed coefficient, ice-cloud water collection efficiency, rain accretion, 

horizontal wind speed, relative humidity, and surface potential temperature.  

Previous methods, such as the one-at-a-time (OAT) and Morris OAT (MOAT) methods 

(Chapters 2 and 3), primarily used a “forward” model to determine how orographic precipitation 

can change given perturbations to microphysical and environmental parameters. OAT and 
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MOAT provide information on which parameters are important, i.e., result in a large change in 

precipitation, and not much information on parameter relationships. Additionally, the focus is on 

discrete parameter ranges with no probabilistic information. MCMC methods can approximate 

the value or distribution of values for a parameter of interest by updating the a priori parameter 

probability distribution given additional information from the model output. This approach is the 

basis of data assimilation and is often used to improve weather forecasts using observational data 

from satellites and radar.  

Compared to the other regions over the mountain, the upwind slope and top appeared to 

have the least sensitivity to most of the parameters. This means that most parameter 

combinations within the discrete range of possible values can produce simulated total 

precipitation rates similar to those produced by the control simulation. Because moist air will 

always be transported perpendicular to the mountain slope, the upwind slope and top will 

experience condensation and sufficient time to develop precipitation that can reach these two 

regions.   

In general, the MCMC results showed a strong sensitivity to horizontal wind speed and 

surface potential temperature, depicted by a narrow region of parameter values that yielded a 

good fit to the synthetic precipitation observations. Potential temperature was found to be most 

sensitive over the downwind top region, where changes to the freezing level could impact the 

precipitation type which could influence the particle fallspeed. Over the downwind slopes, the 

precipitation is very sensitive to wind speed, since the snow that develops upwind can be 

transported to the lee side and bring precipitation to an otherwise dry region. Additionally, a 



 144 

positive relationship between wind speed and the snow fallspeed coefficient was found, 

emphasizing the close relationships between upstream environmental conditions and 

precipitation over the mountain.  

The inverse relationship previously found in M19 was corroborated in the 2D marginal 

PDF for ice-cloud water collection efficiency (ECI) and snow fallspeed coefficient (As). This 

pair of parameters is found in equations describing the conversion of rimed snow to graupel and 

describing the collection of supercooled water by snow/graupel within the Morrison scheme. 2D 

marginal PDFs for relative humidity (RH) showed a consistent secondary maximum for RH 

values less than the default value, which was identified to originate over the upwind foothills 

region. As of writing there is no physical reason to explain this feature in the probability 

distribution, thus further analysis is required.  

4.4.1 Next Steps 

The most eye-catching, and most challenging to explain, result was the secondary 

maximum found in all 2D marginal PDFs with RH (Figure 4.3d-f,j,n). The analysis performed 

thus far has identified the upwind foothills of being the location where this sensitivity to RH 

occurs (Figure 4.4 d-f,j,n), but the reason behind it is unclear. The next step to understanding this 

peculiar feature in the 2D marginal PDFs will be to produce histograms of the other parameter 

values. We hypothesize that the values of the remaining 5 parameters may be important to 

determining the source of the probability minimum. This seems plausible, as M19 found RH to 

produce non-linear responses when multivariate perturbations were performed.  
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As described in Section 2, the MCMC algorithm is only aware of the total precipitation 

rates over the six regions on the mountain produced by the control simulation. Given those 

restrictions and the prior probability distribution for the parameters, the algorithm is allowed to 

produce any combination of frozen vs liquid precipitation as long as the total precipitation is 

close to the observations. Therefore, there may be instances where the CM1 model generated 

more or less frozen precipitation relative to the total precipitation, i.e., more precipitation 

reached the surface as snow/graupel compared to rain. To explore this hypothesis, the accepted 

parameter sets found using MCMC will be applied to the forward model (CM1) to produce a 

large ensemble of simulations. Two ensemble subsets are created: a subset where the frozen 

precipitation rates are greater than 50% of the total precipitation rates over the upwind and 

downwind top (FRZ), and a subset where the frozen precipitation rates are less than or equal to 

50% of the total precipitation rates (LIQ). The UT and DT regions are chosen because they have 

the largest amount of frozen precipitation relative to the other regions. The frozen precipitation 

rates are 39% and 33% of the total precipitation over UT and DT in the control simulation, 

respectively. The simulations will then be analyzed to understand 1) if there actually exist 

simulations where more frozen precipitation is produced and 2) how the cloud development and 

environmental flow changed to produce more or less frozen precipitation. These additional 

experiments will be performed for the manuscript to be submitted. 
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Chapter 5. Conclusions and Future Work 

5.1 Motivation  

Over the past decade, extensive research has been performed to improve our 

understanding of atmospheric rivers (ARs) with the aim of improving precipitation forecasts and 

better quantifying precipitation uncertainty. Most ARs are beneficial to mountain regions, 

especially in the West Coast of the U.S., where up to half of the annual precipitation is produced 

by landfalling ARs (Dettinger et al. 2011). The snowpack produced at high elevations stores 

freshwater that then melts in the springtime and feeds rivers and reservoirs. Additionally, the rain 

at lower elevations can reduce or eliminate drought conditions across the agriculturally dense 

regions of California (Dettinger 2013; Swain et al. 2014; Eldardiry et al. 2019). However, 

extreme or consecutive AR events can lead to flooding, landslides, avalanches, and damage to 

local infrastructure (Ralph et al. 2019; White et al. 2019). These severe socio-economic impacts 

motivate continued research to understand the controls on precipitation from ARs interacting 

with mountains. 

Numerical weather prediction (NWP) models include microphysical parameterizations 

(MPs) that represent the small-scale behavior associated with the development of clouds and 

precipitation and their feedbacks on the atmosphere, which cannot be resolved directly by the 

model. Although many sources of uncertainty exist within NWP models, the research focus for 

this dissertation is on microphysics, as it is closely tied to precipitation in models and can be 

systematically varied. As MPs have become more complex, the number of “tunable” parameters 

representing particle characteristics, conversion thresholds, and processes has increased. These 
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parameters have values which contain inherent uncertainty and natural variability yet tend to be 

held constant within MPs. Changes in these parameters can affect cloud development and 

precipitation. For example, reducing the speed at which a snow particle falls can shift maximum 

snowfall from the windward to lee side of a mountain (Colle and Mass 2000). Orographic 

precipitation sensitivities to microphysical parameter perturbations can vary for different 

temperature and wind speed profiles, due to different processes being activated (i.e., warm rain 

versus ice), and changes to the total available condensate (Colle and Zeng 2004; Miglietta and 

Rotunno 2006). These previous sensitivity analysis studies were limited in their exploration of 

the parameter space, as they did not allow for any possible parameter covariation nor 

systematically explore the parameter ranges. Although Tushaus et al. (2015) explored the 

parameter space with the use of Bayesian inference, increasing our understanding of 

relationships between the environment and mountain shape parameters, they did not include the 

effects of ice processes and used a highly simplified moisture and wind profile. The research 

presented here builds on past work by including ice microphysical processes and parameters, 

allowing for far more realistic variability in the initial wind and thermodynamic profile, and 

applying statistical methods to allow the simultaneous perturbation of microphysical and 

environmental parameters and the inclusion of parameter uncertainty.  

Exploring the microphysical parameters and processes in conjunction with variations in 

environmental conditions will provide further information on the controls on the amount, 

location, and type of orographic precipitation. This dissertation greatly expands our knowledge 

of the controls on mountain precipitation by combining high fidelity experimental frameworks 
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with robust statistical sensitivity tools that have infrequently been applied to weather and climate 

fields.  

5.2 Objectives and Methodology 

  Chapter 2 explores the sensitivity of precipitation to perturbations in 15 parameters 

associated with warm-rain and ice processes, as well as conversion thresholds and hydrometeor 

characteristics, such as particle density and fallspeed. The microphysical sensitivities found in 

this study are then tested against different environments to understand the relationships between 

the upstream environment and the microphysical parameters. Chapter 3 further explores these 

microphysical parameters and includes environmental parameters to be perturbed simultaneously 

to determine which parameters are most influential to orographic precipitation. This study briefly 

explores the influence of these parameter perturbations to the production of frozen (snow and 

graupel) and liquid precipitation. Additional questions are explored with this study, associated 

with comparing the precipitation variability generated by only perturbing parameters within a 

single scheme to the variability from using different microphysical schemes. Chapter 4 uses the 

subset of most influential parameters to precipitation to answer the inverse question: given a 

distribution of precipitation rates over the mountain, which combinations of parameters could 

have produced these precipitation rates? The covariances between parameters and further 

analysis of the parameter sensitivities found in the previous studies is explored. A more in depth 

look into the microphysical and environmental parameter impacts on precipitation type is 

planned for the final manuscript to be submitted for peer review.  
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To answer the questions proposed in each study, we use an idealized model framework 

with the cloud-resolving CM1 model to run numerous two-dimensional experiments of moist, 

nearly neutral flow over a bell-shaped mountain. This type of atmospheric stability is 

characteristic of an atmospheric river, resulting in heavy precipitation over the upwind slopes 

and mountain peaks. Idealization provides an experimental environment focused on 

understanding the effects of model parameter and environmental parameter changes to 

precipitation through effects on the microphysical and thermodynamic-kinematic processes, i.e., 

processes such as cloud-radiation interactions, land surface effects, and boundary layer 

influences are neglected. The mountain is idealized as a bell-shaped or Gaussian mountain with 

mountain shape parameters representative of the Olympic Mountains (Chapter 2) and the Sierra 

Nevada and Cascade Mountains (Chapter 3 and 4). The upwind sounding used to initialize the 

model and continuously feed the upstream environment is guided by a sounding taken during an 

AR event on 13 Nov 2015 observed during the Olympic Mountains Experiment (OLYMPEX). 

Using observations in the development of this idealized sounding provides additional complexity 

to the system, e.g., relative humidity and wind speed varies with height, that is not often found in 

sensitivity studies on orographic precipitation. To study the microphysical processes in the 

orographic system, we use the Morrison microphysics scheme with the rimed ice species set to 

graupel.  

 The methods used in this dissertation increase in complexity to build up our 

understanding of the physical relationships between parameters, as well as explore the core 

science question from different perspectives. Chapter 2 uses the commonly-used “one-at-a-time” 



 150 

(OAT) method, by which one parameter is perturbed for some discrete number of values within a 

realistic range while keeping the rest of the parameters constant. This method allows for a 

detailed understanding of how parameters physically (or unphysically) affected the surface 

precipitation over the mountain. The relative ease of this method allowed us to explore the effect 

of different environments on microphysical sensitivities and allowing for a manageable number 

of simulations to analyze. Because this method only perturbs one parameter at a time, it is 

limited in providing information on possible interactions between parameters. Simultaneously 

perturbing all parameters would be computationally expensive, thus we employed the Morris 

one-at-a-time (MOAT) method in Chapter 3. The research presented in Chapter 3 is the first of 

its kind to apply the MOAT method to the study of orographic precipitation. MOAT provided a 

statistically-robust way of determining which perturbed parameters led to the largest changes in 

surface precipitation. In addition, the multivariate perturbation capabilities of MOAT provided 

insight on the nonlinearity of these influential parameters. Finally, the parameter subset found in 

Chapter 4 was used with Bayesian inference method to answer a completely different set of 

questions. The Markov chain Monte Carlo (MCMC) algorithm performed a random walk around 

the 6-dimensional parameter space, effectively avoiding regions of lower probability and 

frequenting regions of higher probability, resulting in a joint parameter probability distribution 

that combines prior parameter information with model data. MCMC randomly samples values 

from the parameter space, avoiding areas with lower probability and frequenting areas of 

relatively higher probability, where the next proposed set of values only depends on the current 

location within the parameter space. This Bayesian framework has been applied to orographic 
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precipitation before (Tushaus et al. 2015), but the study presented in Chapter 4 uses a more 

realistic representation of the orographic precipitation system, including ice processes, and 

changes to both microphysics and environmental parameters. 

 In general, the different methods address similar questions associated with the sensitivity 

of orographic precipitation to microphysical and environmental parameter perturbations. The 

results from using OAT in Chapter 2 created the base knowledge of how these parameters 

physically affected the precipitation in the microphysics scheme, while using MOAT in Chapter 

3 provided a more robust analysis supporting the “more influential parameter” set found in 

Chapter 2. Applying MOAT allowed the statistically-robust screening of parameters that were 

not resulting in significant changes to precipitation, thus providing a smaller subset of parameters 

to be analyzed with the more complex MCMC method. The methods used in Chapter 2 and 3 use 

a forward model approach, exploring all possible parameter values and analyzing how the choice 

of parameter value impacts the precipitation outcome. The MCMC method applied in Chapter 4 

performs an inverse model approach, where a specific precipitation outcome is chosen and the 

parameter values that could have yielded that outcome are explored. There is no discrete set of 

values for the parameters, instead the MCMC method uses probability distributions for each 

parameter to quantify the uncertainty in the parameter values.  

5.3 Major Conclusions  

The major conclusions found from the three studies presented in this dissertation 

emphasized that, to first order, the upstream moisture content and upslope flow speeds determine 

the total amount of condensate that will develop over a mountain. These conditions are affected 
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by changes to relative humidity, temperature, and horizontal wind speed, which were shown to 

impact updraft speeds upwind, impact precipitable water amounts, wave dynamics downwind, 

and horizontal transport of condensate. The total amount of precipitation falling over a mountain 

is more sensitive to perturbations in environmental conditions than to microphysical parameter 

perturbations. Nevertheless, microphysical parameters, i.e., snow fallspeed coefficient, can result 

in changes to precipitation of similar magnitude to changes in relative humidity, but only over 

the upwind slope. This emphasizes that although the environmental conditions are mainly 

responsible for the initial development of condensate, both microphysical and environmental 

parameters can be as important to orographic precipitation uncertainty.  

 Second order effects would be associated with changes to the freezing level, i.e., changes 

to the anchor surface potential temperature of the sounding. These temperature changes impact 

the dominant precipitation processes (warm- versus cold-rain), which can influence precipitation 

type, and indirectly affect the location where precipitation reaches the surface, i.e., different 

precipitation types will have different fallspeeds which can be transported by wind speeds 

differently. Overall, the most influential environmental parameters on precipitation rate were 

relative humidity (RH), horizontal wind speed (U), and surface potential temperature (θsfc). Some 

microphysics processes (e.g., rain accretion) influenced total condensation rates, thus illustrating 

the two-way connection between microphysics and thermodynamics-dynamics.  

 Once condensate formed in the model, the microphysics was then able to affect 

precipitation. For example, snow fallspeed coefficient cannot have an effect on snow if no snow 

forms in the first place. Perturbations to the microphysical parameters affected location of peak 
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precipitation rates. Parameters that directly or indirectly impact snow fallspeed induce a large 

sensitivity on the location of orographic precipitation. Perturbations to processes that affect the 

conversion of cloud water to precipitation resulted in different sensitivities to cloud 

development, orographic precipitation, and thermodynamics-dynamics, depending on where the 

cloud water is affected in the vertical. Overall, the most influential microphysical parameters to 

total precipitation were snow fallspeed coefficient (As), ice-cloud water collection efficiency 

(ECI), and rain accretion (WRA).  

 Strong relationships between microphysics and environmental conditions were found. 

Temperature regime tests showed a spatial variability of microphysical parameter sensitivities, 

due to changes to dominant precipitation process. For example, a lower freezing level would 

shift warm-rain processes farther upwind. Fewer microphysical parameters influenced 

precipitation in a faster wind speed environment due to a stronger dynamical forcing and 

different mountain-wave regime in a faster wind speed environment compared to a slower wind 

speed. A slower wind speed environment has similar mechanisms driving the microphysical 

sensitivities, but the precipitation responses to microphysics were weaker compared to the 

control environment. This was because weaker upslope flow resulted in weaker updrafts, which 

led to less available condensate for the microphysics parameters to act upon. Although 

microphysical parameter sensitivities changed with environment, As remained one of the most 

influential microphysics parameters regardless of environment. As was shown to have an inverse 

relationship with ECI, as both of these parameters are found in riming processes within the 

Morrison scheme. A positive relationship between As and U was found, as wind speeds would 
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need to increase in order to compensate for faster snowfall to yield the same precipitation rates; 

this relationship was strongest over the downwind slope. Additionally, different precipitation 

types can be influenced by different microphysical processes and parameters. More research is 

needed on this topic and will be continued from the research presented in Chapter 4.  

Finally, variations in precipitation rates caused by perturbations to microphysical 

parameters within the Morrison scheme were similar in magnitude to the variation found in a 

four-member ensemble using different microphysics schemes.  

Comparing the use of three different methodologies to answer the overarching question 

of how cloud processes and environmental conditions affect orographic precipitation from an 

atmospheric river, we can see that each method provides different information and there is no 

one perfect method to understand the parameter sensitivity in this system. OAT methods are 

most commonly used, as they are easy to apply, and the results provide information on the 

physical processes responsible for the changes in precipitation given the systematic parameter 

perturbations. Depending on how many parameters are tested and the number of parameters that 

are perturbed, the amount of data is a lot more manageable when compared to the use of MOAT 

and MCMC. The main limitation in using OAT to understand parameter sensitivities is that 

perturbations are performed with respect to constant values of the other parameters of interest. 

Given the results shown here, it is recommended that OAT methods be applied to future 

parameter sensitivity analysis before using more complex methods because the additional 

complexity can increase the amount of data produced, thus making it difficult to truly grasp the 

physical processes at play in the model. OAT perturbations will always have a place in 
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sensitivity analysis methods, but one must be careful to not overstate the results as they do not 

allow for possible nonlinear parameter interactions. Although the results presented in Chapter 3 

showed that MOAT found a similar set of parameters to be the most influential to orographic 

precipitation compared to using OAT in Chapter 2, the results from using MOAT provided 

additional information on how parameters’ impacts on precipitation can change given the values 

of other parameters. Although not described in Chapter 2, the results from MOAT can be further 

mined to understand how parameters affect precipitation, for example, do parameter 

perturbations lead to mostly increases/decreases in precipitation rates (monotonic changes) or 

can an increase and/or decrease in precipitation occur (nonmonotonic changes)? There is space 

for interesting and unique analysis to be performed using the standard deviation and mean of the 

distribution of elementary effects. In statistics, MOAT is considered a qualitative sensitivity 

analysis method, as it can screen out parameters that do not cause much change to a desired 

model output but cannot provide information on which parameter combinations work together to 

result in the largest change in precipitation. Most of the statistical literature recommends MOAT 

be used in conjunction with more complex methods, such as variance-based sensitivity analysis 

or MCMC.  

Results from Chapter 3 showed that the snow fallspeed coefficient experienced nonlinear 

parameter interactions, but it was the use of MCMC in Chapter 4 that robustly showed which 

parameters had a relationship with the snow fallspeed coefficient and what kind of relationship it 

was (e.g., positive or inverse). Additionally, MCMC methods are inherently different from OAT 

and MOAT since MCMC focuses on a specific model outcome and determines the possible 
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parameter values that could have produced it (inverse modeling), as opposed to focusing on all 

possible parameter values and seeing how they impact the model outcome (forward modeling). 

MCMC provides further information on parameter relationships that OAT and MOAT could not 

provide, as well as providing probabilistic information that could be used to sample from in an 

ensemble forecast setting or applied to inform data assimilation efforts (e.g., which parameters 

can lead to the largest changes in precipitation and what observations do we need to better 

quantify their uncertainty?) Additionally, MCMC produces a map of the joint PDF using Bayes’ 

theorem, and thus, can update the previously held belief of which parameter values can yield a 

specific model outcome given new information from model output (or observations), which is 

exactly what data assimilation does to improve a model forecast.  

5.4 Future Work  

Given the research performed in this dissertation, and the time available to complete said 

work, there remain various science questions to be explored and different directions that this 

research could be taken in. The following is a short list of ideas for future work. Some are more 

fleshed out than others, but all are important and interesting science questions that should be 

investigated. 

5.4.1 Increased Model Complexity  

The studies presented here focused on idealized modeling using a two-dimensional 

configuration, neglecting various additional physics parameterizations that may affect the 

system. One obvious next step would be to perform idealized studies on a three-dimensional 
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domain. This additional dimension would allow for testing of different flow regimes and 

stabilities, such as blocked flow deflected parallel to the mountain ridge or having flow travel 

around gaps in the terrain or an isolated mountain (such as the Olympic Mountains or 

mountainous islands). The level of realism could be incrementally added by having the upstream 

sounding be realistic and then the terrain, or vice versa.  

Although mountain slope and wind direction are important controlling factors to 

orographic precipitation, this dissertation assumes the winds are perpendicular to the mountain 

slope and that for the time-scale for a given event, the mountain shape does not change. 

Therefore, there is opportunity to continue research using these methods to understand the effect 

of wind direction and mountain slope. This would be especially important for consecutive ARs 

that may change direction or shift in latitude, thus possibly encountering different mountain 

slopes. This research could aid in quantifying precipitation uncertainty given the forecast 

uncertainty in the location of AR landfall.  

5.4.2 Case Studies and Ensemble Forecasting  

Real cases of AR events could be modeled using the Weather Research and Forecasting 

(WRF) model. The knowledge gained from these idealized studies can be applied to real cases to 

determine if incorporating uncertainty/variability in the microphysical and environmental 

parameters is beneficial to the resulting surface precipitation. A more forecast-oriented point of 

view could be taken with real cases, especially if multiple observations exist to compare the 

model output and determine any biases. Which parameters help improve the precipitation 

forecast? Given results from Chapter 4, observations could be used to constrain some of the 
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parameters, while others will need to be constrained by proxy observations. Determining which 

types of observations could be combined to provide information on different parameter and 

process uncertainties (e.g., rain accretion and ice-cloud water collection efficiency) could be its 

own research project.  

Current forecasting methods do not account for variability in many of the microphysical 

parameters, meaning forecasts may be misrepresenting the range of natural variability or may be 

biased in their representation of precipitation processes. To represent uncertainty from MPs, 

ensembles commonly use a multi-physics approach where different schemes are chosen for each 

ensemble member to increase the spread of uncertainty. Although multi-physics ensembles can 

increase ensemble spread, interpreting the results can be a challenge due to the nonlinearity of 

the NWP model. Results from Chapter 3 (Morales et al. 2019) demonstrated that for an idealized 

simulation of orographic precipitation over a two-dimensional mountain, randomly varying 

prescribed parameters within a single MP (multi-parameter approach) produced a standard 

variation of precipitation rate of similar magnitude to that from a multi-physics ensemble for 

different environments. Multi-parameter ensembles can allow for better interpretation of model 

results because these parameters are directly linked to processes or condensate characteristics 

within the model. Directly perturbing microphysical processes and parameters better represents 

the uncertainty, as different MPs tend to share common assumptions and formulations, making 

their behavior not entirely independent.  
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5.4.3 Stochastic Parameterization (and Ensemble Forecasting Continued)  

Although multi-parameter ensembles include direct impacts on microphysical processes, 

they do not allow for spatial and temporal variations that may naturally occur. Stochastic 

parameterizations can add an additional level of realism to an ensemble by varying parameters 

spatially and temporally. Recent studies show these ensemble approaches can result in increased 

ensemble spread (Jankov et al. 2017, 2019), but more research needs to be done before these 

methods are applied operationally. We recommend future studies explore the application of 

stochastic parameterization to microphysical processes for orographic precipitation.  

The methods used in Jankov et al. (2019) can be adapted to an orographic precipitation 

system using the most influential parameters from Chapter 2 and the joint parameter probability 

distributions from Chapter 3. An ensemble could be created using the multi-physics approach as 

a control to compare with the SPP approach. Ensembles are typically generated by choosing 

different combinations of radiation, boundary layer, land surface, and microphysics schemes. 

Thus, results from the SPP method can be compared to the “control” multi-physics ensemble and 

determine if SPP can increase ensemble spread and improve the quantification of forecast 

uncertainty in orographic precipitation. Forecast skill can be determined through analysis of 

forecast bias, spread-error relationship, and various skill scores.  

5.4.4 Testing Additional Bulk Microphysical Schemes  

The Thompson-Eidhammer (2014) aerosol-aware scheme is used operationally and 

allows for perturbations to cloud condensation and ice nuclei in addition to microphysical 

parameters and processes. A list of parameters associated with warm-rain, ice, and mixed-phase 
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processes, parameter characteristics, conversion thresholds, and aerosol parameters can be 

determined and used with MOAT to screen out the most important parameters, and use MCMC 

to determine details of parameter relationships. Uncertainty ranges for some of these parameters 

could be obtained from observations during the CalWater projects (Fan et al. 2014; Ralph et al. 

2016; Neiman et al. 2016), which explored the influence of natural and anthropogenic aerosols 

on orographic precipitation during AR events.  

5.4.5 Cloud-Radiative Properties 

Although the results presented here focused on orographic precipitation, parameters such 

as WRA, ECI, and As also showed effects on the liquid and ice water paths (Morales et al. 2018). 

While cloud radiative effects are beyond the scope of this study, we suggest that future work 

should explore the impact of microphysical parameter perturbations on cloud optical properties 

and radiative transfer. The effects of radiation could be included to determine how perturbations 

to microphysical and environmental parameters influence outgoing longwave radiation. 

Additionally, parameters associated with radiation could be included to explore the impact of 

radiation parameterization on cloud development over mountains, for both non-convective 

(moist neutral or stable flows) and convective (unstable flow, diurnal effects) events.  

5.4.6 Convective Orographic Events 

Although moist, nearly neutral flow was the focus of this dissertation, other types of 

stability can be explored, such as convective instabilities from unstable flow near cold fronts or 

diurnally-forced orographic precipitation. The 2018 field campaign studying convective 
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initiation over topography in Argentina, the Remote Sensing of Electrification, Lightning, And 

Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO), took 

numerous measurements using ground observations, soundings, and radars. Data from this 

campaign could be used to determine a case study to which similar methods used in this 

dissertation could be applied. Idealized studies would be beneficial for an initial understanding of 

these complex storms that form in Argentina.  

5.4.7 Effective Environments for Cloud Seeding  

Given the capabilities of the MOAT method, and the resurgence of scientific interest in 

the effectiveness of anthropogenic cloud seeding, research could be proposed to investigate what 

type of environmental conditions are most suited for effective cloud seeding. Observations from 

a recent field project, the Seeded and Natural Orographic Wintertime Clouds: The Idaho 

Experiment (SNOWIE; Tessendorf et al. 2019) studying precipitation development during winter 

storms in Idaho and the influence of silver iodide on cloud seeding efforts could be used to 

determine case studies and compare observations to model output. 

5.4.8 Climate Change Effects 

In a warmer climate, how will the environmental conditions change for ARs? Will the 

low-level jet be faster or slower? Will there be more precipitable water available? Will the low-

level air be warmer, if so, how will this change the freezing level? A study by Minder et al. 

(2011) showed there could be a compensating effect of warming temperatures to the deflection 

of the snow line towards the mountain. As the atmospheric profile becomes warmer, the melting 
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layer depth increases and the cooling effect from this phase change can lead to a “dipping” of the 

snow line and freezing level towards the mountain, resulting in cooler temperatures where the 

snow line deflects downward.  

With a warming climate, will the large-scale circulations change such that more AR 

events make landfall over the West Coast during winter? What about summer ARs? Would the 

AR events be stronger, i.e., contain more integrated water vapor or occur for a longer period of 

time? Would there be a shift in location/orientation of the AR with topography? Would there be 

more consecutive ARs?  

Hydrometeorological studies have shown a warmer climate will change the source of 

streamflow from snow to mostly rain (Harrell et al. 2018). How will a warmer climate affect the 

microphysical processes occurring in orographic clouds? Will the “seeder-feeder” (upper-level 

ice cloud “seeds” low-level orographic cloud through snowfall, thus enhance precipitation 

upwind) mechanism be reduced or enhanced? How will that impact the surface precipitation and 

timing of the peak stream discharge? How will that affect the available snowpack?  

5.5 Applications 

The orographic precipitation sensitivities to microphysical parameter perturbations found 

in Chapter 2 have implications to forecasting and water and hazard management. Our results 

show microphysical parameter perturbations have a strong influence on where precipitation falls, 

thus influencing which water basins may receive precipitation over a mountainous region. 

Evaluation of parameter sensitivity is important for ensemble forecasting and data assimilation, 

as generation of ensembles increasingly relies on perturbations to model physics as well as initial 
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conditions (Berner et al. 2017). It is generally not computationally feasible to perturb every 

parameter in the full set of model parameterization schemes, thus using the small subset of 

parameters found in Chapter 3 could be applied.  

The MultiPhys experiment in Chapter 3 showed that variations in precipitation rates 

caused by perturbations to microphysical parameters within the Morrison scheme was similar in 

magnitude to the variation found in a four-member ensemble using different microphysics 

schemes. A common method to account for uncertainty in the representation of microphysics in 

numerical weather prediction is to create ensembles where each member uses a different 

combination of physics schemes, including microphysics (e.g., Eckel and Mass 2005; Xue et al. 

2009; Schwartz et al. 2010; Clark et al. 2011; Johnson and Wang 2012, 2013). The results 

presented herein hint that similar variability can be achieved by varying parameters within a 

single scheme for orographic precipitation cases, particularly when the choice of most influential 

parameters to vary is informed by statistical analysis as in our study using the MOAT method. 

Multi-parameter ensembles are potentially advantageous because physical interpretation of 

differences among ensemble members is straightforward, unlike for multi-physics scheme 

ensembles in which numerous processes and parameters are represented differently among 

schemes. Observational studies have shown a systematic overprediction of orographic 

precipitation during cold wintertime storms, i.e., storms whose freezing level exists below the 

average mountain height (Lin et al. 2013). This positive model bias is thought to be related to the 

representation of ice processes within bulk microphysics schemes and thermodynamic/dynamic 

processes that can affect these processes (Lin et al. 2013). Thus, including microphysical 



 164 

parameters in ensemble forecasting through stochastic parameterization may lead to an 

improvement in these model biases. 

The joint posterior probability distributions produced by MCMC were used to understand 

relationships between parameters, precipitation sensitivity to changes in parameters, and 

uniqueness of model solutions. This information can be applied to ensemble forecasting to help 

determine which parameters should be included and perturbed in the ensemble. Understanding 

any parameter co-variabilities is important for model development and forecasting. ARs occur 

worldwide, and thus, results from this study can have global applications to orographic 

precipitation. Additionally, moist neutral flow conditions are not restricted to AR events; these 

atmospheric conditions can be found within the inner regions of a hurricane (Houze 2010), 

which often make landfall near mountainous regions in the southeastern US and over 

mountainous islands in the Caribbean.  

The methods applied here (MOAT and MCMC) can be used to explore the sensitivity of 

liquid, ice, and supercooled water path, and outgoing longwave/shortwave radiation to changes 

in microphysics, aerosol, and environmental conditions in a statistically robust and 

computationally efficient manner. Results can then be applied to climate studies of cloud-

radiative transfer, and aircraft icing and solar energy prediction. The parameter sensitivity 

analysis performed in this dissertation can also help future field campaigns focus on observing 

key processes to better constrain their uncertainty and improve our understanding.  
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Appendix. Cloud Number Concentration Tests  

 

Cloud number concentrations represent the number of cloud water droplets that will 

develop within a cubic centimeter of air. In the Morrison scheme, as well as many other bulk 

schemes that do not include aerosols, changes to the cloud number concentration (Nc) are a 

proxy for changes to cloud condensation nuclei (CCN). It assumed that the value for Nc 

represents the number of “activated” CCN in a cubic centimeter of air once saturation is reached, 

through cooling or an increase of moisture content. A study by Saleeby et al. (2009) suggested 

that increased concentrations of aerosols acting as CCN could lead to a suppressing effect, i.e., 

less precipitation, and a delaying effect, precipitation initiation is delayed in time, on 

precipitation. Therefore, it is hypothesized that increased number concentrations for cloud 

droplets will lead to smaller cloud droplets, which will require more time to grow large enough 

to precipitate. Lower values of number concentrations will cause larger cloud droplets to form, as 

more water vapor will be available to condense on fewer cloud droplets, leading to faster rain 

initiation.  

CM1 model simulations were performed using the control upstream sounding and 

mountain geometry used in Chapter 3 (M19). The simulation was run for 20 hours and results 

focus on temporal averages from hours 6-20, when the system is quasi-stable, and the cloud and 

precipitation development and wind flow are generally constant. The results were analyzed for 

six regions on the bell-shaped mountain, three upwind and three downwind (see Chapter 2). The 

goal of these experiments was to explore the sensitivity of orographic precipitation from a moist 
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neutral environment to changes in Nc. This work was first performed by Christine Soh, a summer 

intern in the Pre-College Internship Program at NCAR in 2015 but used a different upstream 

environment. Five values of Nc were tested: 50 cm-3, 200 cm-3, 400 cm-3, 550 cm-3, and 750 cm-3. 

This range of values represent clean maritime air on the low end to relatively clean continental 

air on the high end (Rogers and Yau 1989), i.e. a truly polluted air mass could be upwards of 

2000 cm-3 and was not tested. The number of cloud water droplets available can influence warm-

rain processes, such as autoconversion (cloud self-collection converted to rain) and rain accretion 

(cloud water collection by rain drops), and ice processes, such as riming (collection of 

supercooled droplets by ice) and the Wegner-Bergeron-Findeisen process. The value used in the 

microphysical and environmental parameter sensitivity studies in Chapters 2, 3, and 4 was 200 

cm-3 (default value), thus this value will be treated as the control and its results will be compared 

to those for the other four Nc values.  

Hovmöller diagrams for the control simulation using Nc=200 cm-3 show an initial 

maximum where snow, rain, and graupel develop simultaneously (Figure A.1). After the initial 

maximum, the highest total precipitation rates occur over the upwind top and downwind top, 

with liquid precipitation seemingly forming through warm-rain processes upwind, and melting of 

frozen precipitation over the downwind top region (Figure A.1a,b). The frozen precipitation is 

continuous and approximately centered over the mountain peak (Figure A.1c).  
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Figure A.1 Hovmöller diagrams of (a) total (liquid+frozen), (b) liquid, and (c) frozen 

precipitation rates (mm/hr) for the control simulation using a cloud number concentration of 200 

cm-3.  

 

Comparing the total precipitation rates for the control simulation to the experiments with 

different values of Nc show that for the lowest Nc value an increase in precipitation rates occurs 

early in the simulation and a positive bias is found farther upwind compared to the control 

(Figure A.2a). For about the first half of the simulation, results between the control and Nc = 400 

cm-3 are not too different, but later into the simulation the differences increase and the total 

precipitation shifts toward the upwind slope (Figure A.2b). Results for Nc = 550 cm-3 and 750 

cm-3 show similar differences in total precipitation rate compared to the control (Figure A.2c,d). 

In general, as the number concentration of cloud water droplets is increased, precipitation 

formation is seemingly delayed and a lot less precipitation occurs over the upwind foothills.  
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Figure A.2 Hovmöller diagrams of differences in total precipitation rate (mm hr-1) between (a) 

50 cm-3, (b) 400 cm-3, (c) 550 cm-3, and (d) 750 cm-3 and the control (200 cm-3).  

 

 Focusing on frozen precipitation rates, which include snow and graupel reaching the 

surface, shows small differences (max ~1.2 mm hr-1) between the control and the Nc experiments 

(Figure A.3). For the small value of Nc less frozen precipitation occurs over the upwind top, with 

more frozen precipitation developing after hour 15 over the downwind top region (Figure A.3a). 

As for the larger values of Nc, there exist three time periods with differences in frozen 
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precipitation: hours 1-5, hours 12-15, and hours 18-20 (Figure A.3b,c,d). The second period has 

a wider spatial extent and relatively larger frozen precipitation differences.  

 
Figure A.3 Same as Figure A.2, except for frozen precipitation rates (mm hr-1).  

 

 Spatially averaging the total precipitation rates over the six locations on the mountain 

show that for all simulations the peak precipitation rates occur on the upwind top (Figure A.4a). 

Over the upwind foothills the small Nc experiment has the larger precipitation rates, 

demonstrating that this experiment develops total precipitation earlier. This may be because 
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larger cloud droplets develop, which can grow faster through collision-coalescence within the 

warm region (above freezing) of the cloud. Over the upwind top, the small Nc experiment had 

much less total precipitation rates compared to the other Nc experiments. Over the downwind 

regions there are less differences between the experiments, mainly because there is either less 

precipitation produced there (downwind slope and foothills). In general, the four larger Nc 

experiments produce similar total precipitation amounts, with a larger spread between the 

experiments over the upwind slope (Figure A.4a).  

 Analyzing the frozen and liquid precipitation rates separately, the results show a larger 

spread in the precipitation rates over the upwind slope and top for liquid precipitation than frozen 

precipitation (Figure A.4b).  These results are not surprising, as changing the cloud droplet 

amounts should directly impact the development of liquid precipitation. The ranges of Nc tested 

do not show a substantial change to the frozen precipitation, except for the lowest Nc value of 50 

cm-3 (Figure A.4c).  
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Figure A.4 Precipitation rate (mm hr-1) temporally-averaged over hours 6-20 and spatially-

averaged over six regions over the mountain for (a) total precipitation, (b) liquid precipitation, 

and (c) frozen precipitation. Each line represents a different value of cloud water number 

concentration: 750 cm-3 (purple, dash-dot-dot line), 550 cm-3 (red, dash-dot line), 400 cm-3 

(orange, dotted line), 200 cm-3 (green, solid line), and 50 cm-3 (blue, dashed line).  

 

The results from the different Nc or CCN ensemble (DiffCCN) are compared to those 

from Chapter 3 (Morales et al. 2019), i.e., precipitation changes due to microphysical and 

(a) (b) 

(c) 
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environmental parameter (MP_ENV) and microphysics-only (MultiParam) perturbations using 

the MOAT method, to determine if perturbations to CCN result in relatively similar changes to 

orographic precipitation. Overall, CCN perturbations over the range explored in this study 

impact the mean value of precipitation rates, especially over the mountain top, more than 

perturbations in microphysics or microphysics and environment (Figure A.5a). The addition of 

environmental parameters actually the average precipitation rate values over US, UT, and DT, 

compared to only perturbing the microphysical parameters (Figure A.5a). Although the 

precipitation rates are larger on average, the standard deviation of the DiffCCN ensemble is 

much smaller compared to that of MP_ENV and MultiParam, especially over UT, DT, and DS 

(Figure A.5b). The addition of environmental parameters is shown to actually increase the 

standard deviation in the ensemble, with the largest differences occurring over UF and DT 

(Figure A.5b). Given these locations and the results from Chapter 3 and 4, it is hypothesized that 

these changes are due to horizontal wind speed perturbations.  
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Figure A.5 (a) Average precipitation rates and (b) standard deviation values for the CCN 

ensemble (DiffCCN, solid blue line), MP_ENV ensemble from Chapter 3 (dot-dashed gray line), 

and MultiParam ensemble from Chapter 3 (dotted green line) over the six mountain regions.  

 

To summarize, changing the number concentration of cloud droplets showed a delay in 

the precipitation initiation as Nc values were increased. Changes to Nc affected liquid 

precipitation at the surface more so than frozen precipitation. Since both warm-rain and ice-

processes can lead to liquid precipitation, more analysis is needed to understand the influence of 

Nc to the formation of snow and graupel. Perturbations to the Nc values can result in larger 

average changes to the liquid precipitation over the mountain top, but the precipitation values are 

generally similar between ensemble members in DiffCCN (smaller standard deviation of 

ensemble).  

It would be useful to explore any differences in microphysical process rates in the 

vertical, to determine where exactly these Nc effects are most important. A more thorough 

(b) (a) 
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analysis of frozen precipitation processes would help to better explore the possible connection 

between CCN and riming. An examination of the vertical cross-sections for each simulation 

would be useful to further understand the precipitation results. These results also motivate the 

testing of higher Nc values, as well as testing of the Thompson-Eidhammer (2014) aerosol-aware 

scheme – this scheme would allow for the testing of the impact of the ice nuclei concentration to 

orographic precipitation.  
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