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ABSTRACT

Quality of life in urban areas is strongly linked to land use and land cover,

in part because green vegetation mitigates much of the negative consequences of

urbanization and population pressures. However, the green vegetation of urban

parks, forests, street trees, and landscaping is inequitably distributed in the urban

environment. The social and economic processes that give rise to these uneven

outcomes are not well-understood, while the rise in the availability of spatially ex-

plicit, fine-scale data on neighborhood conditions has created the conditions for an

empirically rich investigation into neighborhood socio-ecological change. This dis-

sertation assimilates new observations from different sources with new modes of

inquiry to address persistent knowledge gaps: the dependence of socio-ecological

relationships on scale and urban or metropolitan context; understanding the dura-

tion and significance of neighborhood improvement or decline; and the outstand-

ing need for comparative analyses and novel analytical techniques for comparing

neighborhood change between multiple metropolitan areas. Time-series satellite

remote sensing of 30 years of vegetation cover is combined with population and

housing market data to provide a comprehensive picture of the neighborhood envi-

ronmental quality, demographic composition, and housing stock conditions. Three

different metropolitan areas, Detroit, Los Angeles, and Seattle, are used to eluci-

date how our common assumptions of socio-ecological relations—and the under-

lying analytical approaches in which remote sensing plays a pivotal role—often

xi



fail to accurately capture the complexities and contradistinctions in the social and

economic drivers of neighborhood-level biophysical changes. Results indicate that

while population decline confounds conventional explanations for socio-economic

differences in environmental quality, neighborhood advantages and disadvantages

persist for multiple decades, with wealthier neighborhoods tending to resist cycli-

cal declines in the housing market and accrue yet higher home values while pre-

serving and increasing vegetated cover through irrigation and likely several policy

tools. Historical conditions, particularly racial residential segregation, also yield

surprising outcomes today, in some places reducing vegetation disparities and ex-

acerbating them in others, depending on metropolitan-level population pressures

and the balance of municipal political economies.
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CHAPTER I

Introduction

As urban populations increase world-wide, the resource demands and environmen-

tal externalities of cities have become more apparent and more pressing. The rela-

tive affluence of urban residents leads to their increased consumption (Rees, 2009,

Heinonen et al., 2011, Moran et al., 2018) and the concentration of economic ac-

tivities that makes cities attractive also generates considerable pollution streams,

disrupts energy and water balances, and alters biogeochemical cycling (Rees and

Wackernagel, 1996). But urbanization has undeniable advantages, as a denser ur-

ban form mitigates carbon emissions from two of the most energy-intensive compo-

nents of our modern economy: transportation and residential heating and cooling

(Dodman, 2009, Kennedy et al., 2015, Holian and Kahn, 2015). Cities are there-

fore sites of the biggest challenges but also the most promising opportunities for

sustainable transitions under global climate change (Solecki et al., 2013, Revi et al.,

2014, Brelsford et al., 2017). While cities cover less than 3% of global ice-free land,

they appropriate the land resources of a vast global hinterland, accounting for an

estimated 70% of global energy use and 78% of global carbon emissions (Grimm

et al., 2008, Seto and Ramankutty, 2016, Moran et al., 2018).

Local impacts of urbanization are often the most visible, however, and are

felt most acutely by urban residents. These impacts can be understood in terms of
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ecosystem services, the class of ecosystem functions which people and society uti-

lize to improve their economic conditions and quality of life (Breuste et al., 2013);

chief among these are foods and fibers, clean air, drinking water, and the intangi-

ble but no less important recreational, social, and psychological benefits of nature.

Ecosystem services depend on the integrity of ecosystems and particularly on ex-

changes between the atmosphere, hydrosphere, and the land surface (Crossman

et al., 2013). Urbanization and related processes disrupt ecosystem services, exac-

erbating a number of urban syndromes that have become a ubiquitous part of urban

living: air quality is impacted by the concentration of combustion activities (Nowak

et al., 2006), including cars; water quality in local streams and lakes is degraded

as an increase in pavement area concentrates the residual pollutants of the urban

environment in a new “urban stream” (Paul and Meyer, 2001, Walsh et al., 2005,

Alberti et al., 2007); and the increase in paved area and building mass has cre-

ated an “urban heat island,” where air temperatures noticeably increase with the

density of the built environment (Oke, 1982, Kalnay and Cai, 2003, Zhou et al.,

2004).

Despite the global urbanization trend, a variety of municipal population

growth and decline regimes are underway, and the study of urban sustainability is

complicated by the diverse trajectories of cities locked in a regional or global com-

petition for talent and investment. We lack an understanding of the functional

links between urban biophysical changes and diverging neighborhood fortunes

(Bettencourt, 2013) including demographic turnover, the re-location of employ-

ment centers, increasing poverty and social and economic isolation in the suburbs,

and changes in household financial burdens due to predatory, sub-prime mortgage

lending (Kaplan and Sommers, 2009, Immergluck, 2011, Schafran, 2013). Eco-
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nomic restructuring in former industrial areas in the U.S. and abroad have led

to declining populations and housing stocks, burdening these “shrinking” cities

with large areas of vacant land, crumbling infrastructure, and high service costs

(Martinez-Fernandez et al., 2012). This suggests that patterns of investment and

population change can be read from the urban landscape itself. Indeed, the link

between society and land surface conditions has already been established for night-

time lights which, mapped from earth-observing satellites, are strongly associated

with population size and gross domestic product (Doll and Muller, 2000, Doll,

2008, Henderson et al., 2012). To the extent that human activities alter the built

environment and urban ecology, studying these neighborhood biophysical changes

might help us to better understand how urban social and economic change drives

divergent outcomes in sustainability. And context is key: while some of the eco-

nomic consequences of vacancy and abandonment are similar to those of urban

sprawl, both resulting in a loss of municipal revenue (Berkman, 1956), the social

changes and the institutional conditions are very different (Galster, 2019).

Urban syndromes like the urban stream and urban heat island arise due to

changes in land cover, or in the biophysical conditions of the earth surface (Turner

II et al., 1995). The reciprocal relationship between humans and their urban

environment and the primacy of land in facilitating and mediating human-

environment interactions makes land-change science a powerful toolkit for in-

vestigating the ecological consequences of social and economic changes (Pick-

ett et al., 2011, Verburg et al., 2015). Urban green vegetation, in the form of lawns,

shrubs, and trees, plays a central role in regulating ecosystem services and mitigat-

ing urban syndromes (Pataki et al., 2011, Breuste et al., 2013, Garćıa Sánchez

et al., 2018) by directly intercepting air pollutant particles, filtering runoff from

3



the urban stream, and by shading or replacing impervious pavements. Though the

services provided by green vegetation vary with the type, quality, and ownership

(public or private green space), in general, greater vegetation density facilitates

a higher quality of life for urban residents and a healthier urban ecosystem. This

makes urban green space an important environmental amenity for urban residents;

it is package of social and economic benefits subject to the same political econ-

omy that determines who gets what, when, how, and why (Grove and Burch, 1997,

Locke and Baine, 2015). Too often, these benefits accrue to the residents that

already enjoy significant socio-economic advantages and any attempt to create a

more equitable arrangement of environmental amenities must reckon with trade-

offs of economic development and housing costs when considering urban green

space preservation or expansion (Wolch et al., 2014).

One implication of the social and economic determination of green space

amenities is that the spatial arrangement and timing of changes in vegetated cover

can serve as indicators of human activities and underlying socio-economic pro-

cesses: land is cleared for new housing or retail development, areas already devel-

oped undergo changes in land management or vegetation phenology over time,

and some areas are abandoned or redeveloped altogether (Wilson and Brown,

2014). By observing changes in urban land cover, we can draw inferences about

changing patterns of wealth, public and private investment, and residential occu-

pancy in cities—all of which influence neighborhood dynamics such as growth,

decline, infill, or urban renewal (Hoalst-Pullen et al., 2011).

This dissertation grapples with the challenge of understanding the so-

cial and economic changes that drive urban vegetation change in the hope of

informing both policies and models of how urban growth and decline affect
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the essential ecosystem services facilitated by green vegetation. It is presented

in three parts, Chapters II through IV, which are three stand-alone papers, each

with its own introduction. This section is intended to speak to their common aim—

understanding neighborhood socio-ecological change–and its merit, which I claim

is based, in part, on the essential benefits green vegetation provides to neighbor-

hood residents and how those benefits become more important as urban popula-

tions swell and climate change impacts exacerbate neighborhood inequalities. Yet,

it is not my belief that nature is in thrall to human society, nor that human society

and nature are separate; this false dichotomy should not be allowed to encour-

age a narrow, technocratic view of the ecosystem services that green vegetation

provides. Rather, green vegetation is one prominent marker of how well our res-

idential neighborhoods are designed to respond to and support human nature; a

marker of the intangible but essential natural-ness of cities.

1.1 Knowledge Gaps Addressed

With this value in mind, my dissertation seeks to understand both the social and

spatial distributions of green vegetation in residential landscapes and the neighborhood-

level social and economic drivers of change in these distributions change over time.

Ultimately, the objective of this research is to inform policy and planning related

to improving urban environmental quality. One example of how social equity is

considered in improving environmental quality comes from Haskell (2018), who

describes how the New York City Parks Department compares maps of asthma rates

to maps of their street tree canopy when considering new plantings. Because trees

are long-lived, take many years to reach maturity, and face high mortality rates in

urban areas, a better understanding of how social and economic change shapes a

5



neighborhood’s green vegetation can help with planning green interventions like

these (Boone et al., 2010).

To that end, my dissertation seeks to address three key knowledge gaps in

this area. One relates to the dearth of research on urban socio-ecological relations

in a context of population decline. As much of the research on neighborhood vege-

tation has been conducted in cities and neighborhoods where green vegetation, as

an environmental amenity, is highly valued (Hope et al., 2003, Mennis, 2006, Luck

et al., 2009), there is a well-established view that “trees grow on money” (Schwarz

et al., 2015). However, in declining neighborhoods, particularly in temperate cli-

mates where green vegetation is not water-limited, there is often a considerable

amount of volunteer vegetation that takes hold on parcels of abandoned or demol-

ished properties (Hollander, 2010, Nassauer and Raskin, 2014). In shrinking cities,

the rate of abandonment may be considerable enough that there is a clear land-

scape expression of neighborhood decline (Hoalst-Pullen et al., 2011, Deng and

Ma, 2015). How, then, do we explain this apparent paradox between the green

lawn landscapes of some of the wealthiest U.S. neighborhoods and the emerging

“urban prairie” (Gallagher, 2010) of declining neighborhoods? In Chapter II, the

growing Detroit Metropolitan Area and shrinking City of Detroit, at its core, are

contrasted to demonstrate how unevenness in neighborhood-level green vegeta-

tion does not always follow a pattern of socio-economic status.

The lack of research on uneven vegetation conditions between growing and

declining neighborhoods, along with inadequate data on neighborhood conditions

at fine time scales, has stymied any research into the relationship between dy-

namic socio-economic and biophysical changes in neighborhoods. This is the sec-

ond knowledge gap I address in this dissertation: if we can explain observed differ-
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ences between shrinking and growing neighborhoods, and if high socio-economic

status still predicts high vegetation density in stable or growing housing markets,

does continuous investment in a housing market make the neighborhood greener?

A number of studies have sought to detect the link between parcel-scale land-

management changes in declining housing markets (Minn et al., 2015, Deng and

Ma, 2015); still other studies have pointed to the externalities of a parcel’s de-

cline (Morckel, 2013, Whitaker and Fitzpatrick IV, 2013, Leonard and Murdoch,

2009, Leonard, 2012). These studies suggest that some dynamic link may exist

between neighborhood improvement or decline and visible biophysical changes,

allowing for some time lag. In Chapter III, I investigate whether such a lagged

relationship exists at the neighborhood scale between housing market conditions

and vegetation density for three different metropolitan areas: Detroit, Los Angeles,

and Seattle.

Finally, Chapter IV integrates the work of the first two chapters while ad-

dressing a third knowledge gap: how do the neighborhood-level social and eco-

nomic drivers of vegetation change compare between different metropolitan areas

with different historical contexts? There are multiple drivers that previous stud-

ies have implicated in the past production and on-going differentiation of uneven

neighborhood vegetation conditions; those repeatedly identified include density

and development gradients, socio-economic stratification or the “luxury” effect

(Hope et al., 2003), and the “ecology of prestige” (Grove et al., 2006, Troy et al.,

2007), which includes social contagion, norms, and reference group behavior. I

could find no prior studies that compared these theoretical drivers between differ-

ent cities or different historical or climatic contexts. In Chapter IV, I investigate

whether or not these drivers can be identified from a panel of neighborhood social,
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economic, and housing market conditions; I also compare the drivers that are in-

duced from the data, using a latent variable model, for their ability to explain both

vegetation context and change over the period 1990-2017 for the same three study

areas as before, Detroit, Los Angeles, and Seattle. These three metropolitan areas

differ in their population growth regimes but also in climate.

The results of Chapters II and III were instructive for the design of the re-

search in Chapter IV. Chapter II demonstrated that a neighborhood’s metropolitan

context is key to shaping the socio-ecological relationships between the neighbor-

hood’s residents and green vegetation density. Specifically, while socio-economic

status (SES) is not a reliable indicator of green vegetation density in declining

neighborhoods, housing market data do explain such variation between neigh-

borhoods and also variation over time. The ability to use different measures of

neighborhood conditions, whether from the Census or from housing market data,

is necessary in light of the results of Chapter III, which indicated that no single

metric for changing neighborhood conditions is sufficient to explain change in

its biophysical conditions. Moreover, Chapter III indicates that a neighborhood’s

advantages or disadvantages are persistent and overwhelmingly determine long-

term average vegetation conditions. The apparent persistence of neighborhood

(dis)advantages is also consistent with sporadic shocks or cyclical changes they

may experience (Galster et al., 2007), such as the 2007-2009 sub-prime mortgage

crisis. As Rosenthal and Ross (2015) noted, it takes multiple decades of observa-

tion before a sustained change in neighborhood fortunes can be observed and, as I

demonstrate in Chapter IV, this transition is subject to historical conditions which,

for many neighborhoods, can instead lead to path dependency.
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1.2 Epistemology

New empirical analyses of the social and economic determinants of uneven neigh-

borhood outcomes are needed in light of both historical technical limitations and

gaps in existing theory. Prior work on neighborhood change has relied on survey

data from the decennial U.S. Census, which limits our insight into neighborhood

conditions to 10-year intervals, with an unrealistic expectation of linear change

between survey years. In addition, although the theoretical developments in the

social sciences regarding neighborhoods have been substantial and varied, they do

not sufficiently describe how individual-level or household-level changes give rise

to meso-scale or neighborhood-level biophysical changes. How do residents affect

their environment? Much more attention has been paid to how the environment

affects residents (e.g., Wilson and Kelling, 1982, Lee et al., 1994, Sampson et al.,

2002), how residents influence one another’s environmental behaviors (e.g., Nas-

sauer et al., 2009), or to the changing resident population irrespective of their links

to the biophysical environment in which they live.

Conversely, in the land system sciences, those scholars concerned with land

changes have been reluctant to theorize, preferring descriptive or statistical assess-

ments of change consistent with a bottom-up or inductive approach to knowledge

generation (Turner II, 2018, personal communication). Still other analyses have

used simulation or agent-based models to test the bounds of available theories.

In between bare, statistical descriptions of urban change and a relevant “grand

narrative” of urban land change is middle-range theory, which has recently been

promoted by prominent scholars in the land system sciences as a way of advancing

our understanding of the drivers of land changes through “contextual generaliza-
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tions” of specific causal chains (Meyfroidt et al., 2018).

Consistent with middle-range theory, the approach in this dissertation is

to use statistical inference as a guide to identifying and understanding poten-

tially novel socio-ecological changes occurring in multiple study systems. This ex-

ploratory, data-driven effort seeks to clarify how socio-economic change gives rise

to biophysical changes at the neighborhood level, which necessitates large spatial

scales and long times series records. Central to the approach of this research is

the use of moderate-resolution, time-series satellite remote sensing of land-cover

change, which brings significant benefits including a synoptic view of metropolitan

landscape change over multiple decades (Wulder et al., 2012). Despite the limited

spatial resolution and the blurring of distinctions between different types of vege-

tation and their different qualities relevant to ecosystem services, the value of earth

observation for studies of landscape change, even in urban areas, has yet to be sur-

passed. Alternatives, including ground-level surveys or inventories generated from

small-area, high-resolution commercial photography, are costly and do not provide

the temporal coverage necessary to understand ecological change (Kennedy et al.,

2014) nor the spatial coverage necessary for comparative studies.

There are, however, real limits to our ability to infer social and economic

processes from observed physical changes and such inference is dependent on a

number of factors:

• The spatial scale and metropolitan context of the changes that are thought

to drive spatial variation in vegetated cover (Chapter 2);

• The historical trajectory and baseline conditions of a neighborhood under-

going socio-ecological change (Chapter 3);

• And the historical, structural conditions that led to the observed disparities
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in urban vegetated cover today (Chapter 4).

Complementing the remotely sensed data are measures of neighborhood

social and economic conditions. As discussed, the U.S. Census Bureau data are too

infrequently collected to be useful in describing dynamic neighborhood changes;

the spatial extent, too, is limited, in that they summarize over relatively large and

arbitrarily defined neighborhood boundaries. Housing market data, specifically

deed sale and tax assessor records, complement the U.S. Census data and provide

much higher spatial and temporal resolution, but they are comparatively sparse

descriptions of neighborhoods conditions. This research attempts to use the full

potential of all three data sources.
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CHAPTER II

Housing Market Activity is
Associated with Disparities in Urban
and Metropolitan Vegetation

N.B.: This chapter was published in 2018 as

Endsley, K.A., D.G. Brown, E. Bruch. 2018. “Housing market activity is associated

with disparities in urban and metropolitan vegetation.” Ecosystems 21(8):1593-

1607.

2.1 Introduction

Urban vegetation in the form of lawns, parks, and tree canopy cools neighbor-

hoods, reduces stormwater runoff, cleans the air, and improves quality of life for ur-

ban residents. Yet urban vegetation is often distributed unevenly among residents,

creating social disparities in access to these important benefits. In growing cities,

higher household income or wealth enables residents to choose larger lots, pur-

chase more extravagant landscaping, and live closer to green spaces, all of which

signal higher prestige and further segregate access to scarce urban greenery. On
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the other hand, cities with declining populations and investments typically expe-

rience housing abandonment and the breakdown of the built environment, which

in temperate climates often result in buildings covered or displaced by overgrown

shrubs, grasses, and trees. Because of these countervailing influences, we cannot

draw simple conclusions about the social and economic processes (for example,

income segregation, sorting by lot size, neighborhood turnover) that lead to social

disparities in urban vegetation without expanding the scope of cross-sectional stud-

ies of correlations between vegetation and income to include richer descriptions of

the social environment and its changes through time.

Our aim is to improve understanding of the link between spatial patterns of

urban vegetation and socio-economic change through new empirical work. First,

we improve on existing measures of social conditions. Although socio-economic

status (SES), particularly household income, has been shown repeatedly to relate

strongly to the spatial distribution of environmental amenities like trees and parks

(Patino and Duque, 2013, Schwarz et al., 2015), understanding the processes pro-

ducing these associations requires direct observation of neighborhood social and

economic conditions over time. However, decennial US Census or American Com-

munity Survey (ACS) data (commonly relied on for SES measures), although of

great value to the study of multi-decadal neighborhood changes, have limited use

for studies of gradual or highly dynamic neighborhood change due to their lack of

temporal granularity. Here, we test new measures of social conditions that better

characterize neighborhood biophysical conditions and can be linked to fine-scale,

continuous measures of vegetation change from remote sensing.

We also assess how the relationship between urban vegetation and SES

varies (1) across geographic scales and (2) between different urban contexts. Few

13



studies have pursued these questions despite the recognition of both within-city

and between-city differentiation in land management patterns (Pearsall and Christ-

man, 2012, Polsky et al., 2014). We question whether the findings from existing

studies of urban vegetation and SES in growing cities generalize to shrinking cities

(cities with declining population) or legacy cities (cites experiencing deindustrial-

ization or which experienced other severe economic restructuring). Although there

is reasonably good theory to describe the effects of neighborhood change and veg-

etation in places undergoing urban growth, the ecological consequences of urban

decline or revitalization in cities have received comparatively little attention (Groß-

mann et al., 2013). Even within a single city, neighborhood socio-ecological con-

ditions vary dramatically. We can hypothesize that, while well-established socio-

ecological relationships—in particular, that vegetation density increases monoton-

ically with SES measures—may hold at broad spatial scales, there is fine-scale het-

erogeneity that is masked in pooled, metropolitan-wide studies. As a result of

the aforementioned conceptual and technical limitations, our understanding of the

connection between vegetation and neighborhood conditions is tenuous, as is our

understanding of the factors that drive changes in this association over time.

In this paper, we compare SES patterns with new measures of social condi-

tions derived from real estate inventory data and other parcel-level sources: sale

prices, tax foreclosures, new housing construction, demolitions, and the balance

of construction and demolition. We expected that these more spatially, temporally,

and semantically refined measures of neighborhood housing markets would also

have stronger associations with the distribution of urban vegetation. We focused

on Detroit, Michigan, a city that figures prominently in the sparse literature avail-

able on urban vegetation and decline (Emmanuel, 1997, Ryznar and Wagner, 2001,
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Hoalst-Pullen et al., 2011), but with a metropolitan area that had yet to be exam-

ined under the same lens. Although both the City of Detroit and its surrounding

metropolitan area are shrinking (Figure 2.1), neighborhood conditions vary, with

some neighborhoods experiencing net growth and new suburban development. To

facilitate comparison with US Census measures, we investigated cross-sectional

models of Census districts in three time periods and at two scales: between the

City of Detroit and the wider metropolitan area, here defined as the three counties

that include or are adjacent to the City of Detroit (Wayne, Oakland, and Macomb

counties). We also investigated whether the new, property-level measures of social

conditions demonstrate a stronger association with vegetation change than Census

measures. Taken together, these contributions allow investigation of the mecha-

nisms that drive the association between vegetation and neighborhood conditions

and how those mechanisms might operate differently in different cities.

Our results demonstrate, first, that linear relationships between income or

home values and urban vegetation, though evident at a broad metropolitan scale,

do not explain recent patterns of vegetation density within the City of Detroit.

Second, we find that the housing market and demolition rate measures demon-

strate a stronger relationship with changes in vegetation density than correspond-

ing changes in US Census measures like income, which suggests they hold at least

as much interest for explaining the relationships between biophysical changes and

neighborhood change processes.

2.1.1 A Framework to Integrate Social and Biophysical Changes

Spatial variations in urban vegetated area have long been associated with such

social factors as population density, income, and prestige. In particular, home val-
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Figure 2.1: Population and housing totals taken from the US Census Bureau Decennial Census of
Population and Housing, filled in with totals from Social Explorer (SocialExplorer.com)
where necessary. Here, the Metro Area is defined as Wayne, Oakland, and Macomb
counties. Dashed curves indicate population totals and solid curves indicate housing
totals.
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ues and socio-economic status (SES) have consistently been associated with higher

vegetation densities (Patino and Duque, 2013) and a recent comparative study of

tree canopy cover in multiple US cities summarized this well-established relation-

ship as “trees grow on money” (Schwarz et al., 2015). This “ecology of luxury” has

prompted concerns about green space access for certain socio-economic and de-

mographic groups (Clarke and others 2013). The “ecology of prestige” (Grove and

others 2006, 2014), by contrast, explains unevenness in the spatial distribution of

urban vegetation as primarily due to differences in lifestyles or life stages between

households or neighborhoods. Because trees are long-lived and a neighborhood’s

income and demographic composition changes over time, a “legacy effect” on the

amount and type of urban vegetation has also been documented (Locke and Baine

2015). A long and precise time series record of neighborhood conditions, as of-

fered with the datasets used here, could allow for investigation of legacy effects in

the links between social and vegetation patterns in ways that are not possible with

Census data alone.

What SES measures like income fail to capture about neighborhood condi-

tions are the associated housing market conditions and their dynamics that more

directly reflect the value of properties that people occupy and manage. Income is

a highly mobile quantity; it can move with residents in and out of neighborhoods;

and its relationship with vegetation and the built environment is likely more com-

plex than previous studies have acknowledged (as noted by Grove et al., 2014)

High incomes facilitate high vegetation densities (for example, through larger par-

cel sizes, more extravagant lawns, and so on) but much of a neighborhood’s bio-

physical elements—building setbacks, street and sidewalk size and configuration,

street trees—are essentially fixed once they are laid down. Large setbacks, large
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parcel sizes, close proximity to urban parks, and a dense urban tree canopy are

all signals of wealth and prestige rather than those of incomes per se. Household

income is also inadequate in describing wealth, as there is substantial heterogene-

ity within neighborhoods and between households, for a fixed level of income,

in terms of the factors that determine wealth (including debts and generational

wealth) and which make wealth itself hard to measure. Home values, to the ex-

tent that they are accurately reflected in sale prices, convey information about the

physical condition of the housing stock, amenities and disamenities in the neigh-

borhood, the residents (in terms of what they can afford), as well as market signals

related to care and maintenance of properties.

Sale prices and other housing market variables therefore convey social,

economic, and biophysical conditions in changing neighborhoods. These mar-

ket variables are available on monthly or yearly intervals and can be tied to in-

dividual residential parcels. As high-resolution spatio-temporal data on neighbor-

hood conditions, they enable us to investigate dynamic neighborhood changes in

new ways and to link theories of neighborhood change to observed biophysical

changes (Hoalst-Pullen et al., 2011). Census measures will continue to play a role

in such studies, as it is not possible to understand the socio-ecological relations

of a neighborhood without understanding the wider urban context. The exact

socio-ecological relations in any one city may not generalize to others, particularly

across climatic and cultural gradients, but the differences within a city are just as

important as the differences between cities (Polsky et al., 2014). What these new

variables provide are the data needed to understand multi-scale, dynamic neigh-

borhood changes that may operate differently across neighborhoods and between

cities.
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2.2 Background and Study Area

Our study area, Detroit, Michigan, can be contextualized in a number of different

ways. Detroit can be seen as an extreme case of Rust Belt deindustrialization, a so-

called legacy city, or as part of a broader trend in shrinking cities across the USA.

These two characterizations refer to different pathways with similar physical out-

comes (for example, abandoned buildings, vacant lots, under-utilized infrastruc-

ture). They include different social and economic processes (Haase et al., 2014)

that commonly involve the migration of human capital, financial capital, and/or

economic opportunities from one neighborhood, city, region, or country to an-

other. Some scholars have framed this migration as movement from the city center

to the periphery, which is certainly true for much of Detroit’s history. Present-day

Detroit is also grappling with broader industrial and economic trends affecting the

automobile industry.

We refer to Detroit as a shrinking city as it is embedded in a regional and

state-wide context of population loss. The term “shrinking city” is favored here

because the mechanisms we identify are related to population and housing loss,

but also because the term refers to a widely recognized theme of research in the

USA and particularly in Europe, where some cities exhibit shrinkage due to demo-

graphic changes that are not necessarily implied in the characterization of legacy

cities. Our study is also multi-scalar, as measuring shrinkage itself is scale depen-

dent (Franklin, 2017). In shrinking cities, some neighborhoods may be stable or

growing, retaining their housing stock and maintaining or increasing home val-

ues, while others may be in decline, losing homeowners and even housing units

to abandonment and eventual demolition. Detroit’s decline can be traced to the
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relocation of manufacturing jobs in the mid-twentieth century to non-unionized

Sun Belt cities, along with pernicious economic racism (Sugrue, 1996). Though

centers of prestige in the urban core of Detroit were less affected, the recent sub-

prime mortgage crisis has exacerbated neighborhood destabilization within the city

while freezing or reversing growth in outlying suburban and exurban neighbor-

hoods (Wilson and Brown, 2014). Even in the surrounding suburbs, population

growth has stagnated for the past 40 years while housing development continued

apace (Figure 2.1), demonstrating that population loss and urban sprawl are not

mutually exclusive.

One of the most significant challenges for Detroit after the subprime mort-

gage crisis has been to identify where to maintain and improve its housing stock

and where to transition residential neighborhoods to alternative uses. Although

many of its residents have left, Detroit’s housing stock—an uncommonly large

number of detached, single-family homes—and much of its infrastructure remained

behind. The economic vulnerability of the less-socially mobile residents who re-

main translates into housing foreclosure and abandonment when they can no

longer afford to pay the mortgage or property taxes. Thus, Detroit’s chief prob-

lem is one of entropy: the city is saddled with deteriorating foreclosed or aban-

doned properties scattered across too large an area for so few people. Demolition

has been one of Detroit’s strategies for tackling this problem since the early 1970s

(Sternlieb et al., 1974). When a house is demolished, even if the foundation re-

mains or is capped, there is more space and light available for vegetation to grow.

Initially, vegetated area may be quite low, as the clearing of the parcel leaves areas

of bare soil that recover vegetation at variable rates and with varying levels of veg-

etation quality, depending on planting and maintenance. Vegetation changes are
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also expected for foreclosed properties as owners may invest more or less effort

in upkeep, depending on their capabilities and goals (Deng and Ma, 2015, Minn

et al., 2015).

2.3 Data and Methods

In this study, we refer to the tri-county area of Oakland, Macomb, and Wayne

counties as the “metropolitan area” and it forms the “metropolitan level” in our

models. We also include the cities of Hamtramck and Highland Park, which are

separate municipal entities surrounded by the City of Detroit proper, as part of the

“Detroit level” in our models. The spatial extent of the metropolitan level includes

that of the Detroit level.

2.3.1 Vegetation Abundance from Remote Sensing

Vegetated area was estimated from radiometrically and atmospherically corrected

surface reflectance (SR) images from Landsat 5 Thematic Mapper (TM) and Land-

sat 7 Enhanced Thematic Mapper Plus (ETM+). All “leaf-on” (summer-time) im-

ages matching a maximum cloud cover criterion (to facilitate interpretation of the

spectral mixture space) in the years 1990 (4 images), 2000 (8 images), and 2010

(9 images) were acquired from the US Geological Survey and analyzed using linear

spectral mixture analysis (LSMA). In this approach, the reflectance of any pixel in

the scene—assumed to be a mixture of multiple land-cover types—is modeled as a

linear combination of spectra from two or more “pure” surface materials, termed

endmembers. While multiple scattering can lead to nonlinear interactions between

endmembers for which LSMA is not suitable, this effect is widely thought to be

of minor importance, especially in urban settings (Small, 2003, Wu and Murray,
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2003). The result is a sub-pixel estimate of the vegetation abundance: the physical

amount of vegetation within a pixel.

To reduce computational complexity and to improve data quality by miti-

gating band-to-band correlation, the minimum noise fraction (MNF, a dimension-

reduction technique) is applied to the Landsat TM/ETM+ data prior to unmixing

with LSMA. Sub-pixel land cover was estimated as being some fractional combina-

tion of substrate (impervious surface or soil), vegetation, and photometric shade

(Small and Lu, 2006). A fully constrained least-squares (FCLS) inversion was con-

ducted in which the abundance estimates of each land-cover type are constrained

to be positive and to sum to one within each pixel. The abundance maps produced

for each date were then combined in annual, pixel-wise composites by taking the

median value for each abundance type. The median pixel-wise composite was

found to reduce the error, described below, more than other compositing methods.

Sub-pixel vegetation abundance was validated against high-resolution aerial

photographs in 2000 and 2010. In 1990, no high-resolution aerial photographs

could be obtained. For 2000, a series of color-infrared digital ortho-rectified quarter-

quad (DOQQ) images, taken in April of that year, were acquired from the USGS.

For 2010, natural-color DOQQ images, taken in July of that year, were also ac-

quired. 90-meter plots were randomly sampled where the available DOQQ images

intersected the study area. In each sample plot, the proportion of vegetated area

was estimated by manual interpretation. From the high-resolution DOQQ images,

a single analyst traced polygons of all vegetated areas or all non-vegetated areas

(depending on which required less drawing) within each 90-meter sample and di-

vided the result by the total area to estimate the vegetated (or non-vegetated) pro-

portion. The root-mean-squared error (RMSE) between the vegetation estimates
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manually derived and those from LSMA is used as an estimate of the error in veg-

etation abundance. For the 2000 composite image, the RMSE is 13.9%; in 2010,

it is 11.8%. These can be interpreted as the amount of area within each 90-meter

square plot by which LSMA under- or overestimates vegetation density.

2.3.2 Measures of Neighborhood Condition

Census data at the block-group level were acquired for 1990, 2000, and 2010. In

1990, data from the decennial US Census, Summary Tape File 3A were acquired

from the Inter-University Consortium for Political and Social Research (ICPSR,

1999). In 2000, comprehensive data from the decennial US Census were acquired

from SocialExplorer.com (2015). In 2010, because 2000 was the last year in which

the long-form decennial census was conducted, data from the 5-year American

Community Survey (ACS) in 2012, which represents an average of conditions from

2008 to 2012 (centered on 2010), were used in place of the 2010 decennial US

Census. The 2012 ACS data were also acquired from Social Explorer.

In each year, only the Census variables that are commonly available across

all three years were retained (namely, population density, age and sex structure,

racial group proportions, housing size distribution, type of heating, and poverty

rate). These measures, excluding median household income, then entered into a

factor analysis in each year and at both spatial extents in order to derive minimally

correlated factors to use as controls in the subsequent autoregression analyses.

Variance inflation factors calculated for the weighted least-squares (WLS) models

indicated no serious collinearity between Census factors and the additional con-

textual variables (county code, distance to central business district, and water-land

ratio) nor the treatment variables.
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Home sales, sale prices, notices of tax foreclosure, and year built were ob-

tained from tax assessor and deed sales data purchased from RealtyTrac (“Assessor,”

“Recorder,” and “Pre-Foreclosure” data in “DLP 3.0” format), a private company

specializing in real estate data. Property addresses were geocoded using ESRI’s

ArcGIS Address Locator and spatially joined to Census block-group boundaries. As

a measure for sale price, we used Census home values in 1990 but used deed sale

prices in 2000 and 2010. We confirmed that deed sale prices, summarized by Cen-

sus block group, have a very strong correspondence with home values measured by

the Census (Pearson’s correlations of 0.9 or higher). Sale prices in all years were

escalated for inflation to 2010 US Dollars (USD) using the unadjusted Consumer

Price Index (CPI) for housing for “all urban consumers” (Federal Reserve Bank of

St. Louis, 2016). Deed sales within “arm’s length” were removed from considera-

tion. Among the recorded foreclosure events, notices of default were filtered out,

leaving notices of tax sale as the primary identifier of a foreclosure event. Census

block groups where no sale or foreclosure is recorded in a given year are assumed

to have experienced none.

Demolitions in 2009 and 2010 were obtained from Data Driven Detroit,

which, in turn, acquired the data from the Michigan Department of Environmental

Quality’s National Emissions Standards for Hazardous Air Pollutants (NESHAP)

notification records (Data Driven Detroit, 2017). They are assumed to be a good

proxy for demolitions in Detroit because they are required for virtually all types of

structures, including residential homes demolished by the city. Although private

homeowners may demolish their own home without a NESHAP notification, such

a case is exceedingly rare. New housing starts were derived from the tax assessor

data as the year of construction. Along with foreclosures, demolitions, and the
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balance of demolition and construction, block groups that contained no record

were assumed to have experienced no event and all event totals were normalized

by the total housing according to the US Census, in each block group in each

year. Median home values from the 1990 decennial US Census was used in place

of missing sale price data for that year. All address-level data described in this

section were summarized at the block-group level in the R statistical computing

environment (version 3.4.0).

2.3.3 Spatial Errors Models and Rank Correlations
with Vegetation Change

We assumed and verified that spatial dependence is present in the vegetation den-

sity estimates at the Census block-group level. The forms of spatial dependence

tested in the spatial errors models were selected by examining empirical vari-

ograms of the response and treatment variables. Our approach is to treat spatial

dependence as a nuisance parameter (in a spatial errors model) rather than as a pa-

rameter of substantive interest (in a spatial lag model). This approach is justified

by Lagrange multiplier tests (Anselin, 2007) conducted on the income, income-

squared, and sale price models in all three years at both geographic extents, which

consistently indicated that the spatial errors model was a better fit than a spatial

lag formulation.

Because the spatial errors models use optimization in fitting, the covariates

must be on a similar scale. As such, we transformed the median household income,

median sale price, and the contextual variables outside the factor analysis (distance

to the central business district and water-land ratio) to standard scores (Z-scores).

The other treatment variables are all normalized by the number of housing units

and are therefore numerically small. For each treatment variable, we tested several
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different forms of spatial dependence. The resulting models were compared in a

multi-model inference using Akaike’s information criterion (AIC) as the goodness-

of-fit measure. Multiple testing was corrected for using Bonferroni correction. All

weighted least-squares (WLS) models were fit using the linear regression function

in R. All spatial errors models were fit in R using functions provided by the “spdep”

package.

There are two parts to the central analysis. First, we determined the as-

sociation between levels of vegetated area and neighborhood social conditions

and housing market conditions at the city and metropolitan scales, accounting for

neighborhood characteristics and spatial dependence. Second, we compared asso-

ciations between change in vegetated area and change in neighborhood social and

housing market conditions.

A central goal of the first analysis is to assess whether housing market vari-

ables, including data on the condition of the housing stock, better explain cross-

sectional variation in vegetated area than do SES measures from the US Census,

like household income. Before accounting for spatial dependence, the proportional

abundance of vegetated area (summarized by Census block group) was regressed

on each treatment variable, with 1- or 2-year lags as appropriate, using weighted

least squares (WLS) with the total number of housing units as weights. Because

of the importance of race in Detroit’s housing history, we later examined potential

disparities in green vegetation density between demographic groups by interpret-

ing the loadings of Census variables onto our contextual factors and the directions

and magnitudes of these effects.

To facilitate the calculation of change in Census statistics, the correlation

tests between the natural logarithm of greenness change index (GCI) and Cen-
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sus, real estate, or demolition measures were carried out at the Census tract level,

rather than block-group level (as block groups do not permit interannual com-

parisons). For this analysis, data from the 2000 decennial Census, described by

2000 Census tract boundaries, were cross walked to 2010 Census tract boundaries

using the tract correspondence tables developed by Logan et al. (2016). Then,

relevant Census measures in 2000 were subtracted from their 2010 counterparts.

Differencing the real estate and demolition data were achieved by summarizing

these address-level data by 2010 Census tract boundaries and then subtracting

aggregates in each year or calculating derivatives. Spearman’s rank correlation

(Spearman’s rho) was then calculated between log GCI and each variable of inter-

est. Confidence intervals for Spearman’s rho were calculated in R (version 3.4.0)

using Fisher’s z-transformation, available in the “mada” package in R.

2.4 Results

The initial WLS models demonstrated reasonably good fit to the data (adjusted

R2 values ≥ 0.56 at the metropolitan level) using only contextual factors, which

indicates a good baseline model (Table 2.1). Model fit is comparably lower at the

city level (adjusted R2 values ranging from 0.37 in 1990 to 0.25 in 2010). A list

of the treatment variables, their effect sizes, and significance, averaged across the

multiple SAR error models, can be found in Table 2.2.

2.4.1 Comparing Associations with Vegetated Area

Consistent with previous studies, our results indicate that sale prices and house-

hold incomes have strong, positive associations with vegetated area across neigh-
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Table 2.1: Model fits from WLS models with the same-year median household income treatment.
Here, the base model is the model with contextual variables only.

Geographic Scale Year Base Adj. R2 Adj. R2 with Income Improvement (%)

Detroit 1990 0.367 0.388 2.14%
Detroit 2000 0.327 0.346 1.96%
Detroit 2010 0.242 0.244 n.s.

Metropolitan Area 1990 0.637 0.682 4.46%
Metropolitan Area 2000 0.571 0.609 3.85%
Metropolitan Area 2010 0.560 0.578 1.76%

borhoods (Table 2.2). At the metropolitan scale, household income is a stronger

covariate than all other neighborhood measures in both 1990 and 2000. How-

ever, by 2010, models with contemporary or lagging sale prices performed best.

In the City of Detroit, the declining importance of income and sale price is more

pronounced: by 2010, neither household income nor sale prices are significant

predictors of vegetated area. Instead, demolition rates are the best predictors of

vegetated area in Detroit in 2010. Foreclosures and demolitions have often been

hypothesized to directly affect vegetation amount and characteristics at the parcel

scale in neighborhoods (Deng and Ma, 2015, Minn et al., 2015). We found that

neighborhood-scale foreclosure rates are a significant (negative) effect on vege-

tated area only at the metropolitan level. As expected, higher demolition rates in

Detroit (in 2010) are associated with higher vegetated area. Importantly, we find

that if neighborhoods that do not experience any demolition are left out of the

model, demolition rates have no association with vegetated area.
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Table 2.2: Minimum, maximum, and mean Z-scores of effect sizes along with maximum p-values for each relevant treatment among all SAR errors
models in the multi-model inference, organized by model geographic extent and year. The P values are marked as significant (*) if they
are less than the Bonferroni-corrected threshold of 0.05/m = 0.00625 where m is the number of tests.

Extent Year Treatment Minimum Z Mean Z Maximum Z Maximum p-value

Detroit 1990 Household Income 5.875 5.948 6.060 0.00000*
Detroit 1990 Household Income Sq. 6.346 6.391 6.435 0.00000*
Detroit 1990 Sale Price 8.505 8.781 9.048 0.00000*
Detroit 1990 Sale Price Sq. 7.680 7.832 8.102 0.00000*
Detroit 2000 2009-2010 Construction Rate -0.106 0.452 0.825 0.91549
Detroit 2000 Household Income 4.925 5.365 5.660 0.00000*
Detroit 2000 Household Income Sq. 5.032 5.485 5.743 0.00000*
Detroit 2000 Sale Price 2.796 3.069 3.551 0.00517*
Detroit 2000 Sale Price, 1-year Lag 2.622 2.948 3.437 0.00873
Detroit 2000 Sale Price, 1-year Lag Sq. 2.951 3.157 3.453 0.00317*
Detroit 2000 Sale Price, 2-year Lag 1.719 1.971 2.260 0.08567
Detroit 2000 Sale Price, 2-year Lag Sq. 1.847 2.159 2.391 0.06476
Detroit 2000 Sale Price Sq. 3.827 4.110 4.351 0.00013*
Detroit 2010 2008 Foreclosure Rate 0.982 1.057 1.313 0.32628
Detroit 2010 2009-2010 Construction Rate 0.002 0.143 0.344 0.99855
Detroit 2010 2009-2010 Demolition Rate 3.110 3.259 3.428 0.00187*
Detroit 2010 2009 Demolition Rate 0.316 0.532 0.743 0.75199
Detroit 2010 2009 Foreclosure Rate 1.531 1.705 1.837 0.12569
Detroit 2010 2010 Demolition Rate 3.329 3.443 3.569 0.00087*
Detroit 2010 2010 Foreclosure Rate -0.142 0.238 0.447 0.88702
Detroit 2010 Household Income 1.624 1.825 1.953 0.10440
Detroit 2010 Household Income Sq. 3.090 3.296 3.400 0.00200*
Detroit 2010 Net Change in Units -3.359 -3.215 -3.065 0.00218*
Detroit 2010 Pre-2007 Foreclosure Rate 0.932 1.460 1.726 0.35121
Detroit 2010 Sale Price -0.436 0.063 0.423 0.93870
Detroit 2010 Sale Price, 1-year Lag -1.107 -0.484 -0.246 0.80545
Detroit 2010 Sale Price, 1-year Lag Sq. -1.698 -0.991 -0.736 0.46198
Detroit 2010 Sale Price, 2-year Lag 1.119 1.440 1.692 0.26334
Detroit 2010 Sale Price, 2-year Lag Sq. 1.919 2.250 2.448 0.05505
Detroit 2010 Sale Price Sq. -1.467 -0.933 -0.541 0.58843
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Extent Year Treatment Minimum Z Mean Z Maximum Z Maximum p-value

Metro Area 1990 Household Income 15.783 16.488 17.761 0.00000*
Metro Area 1990 Household Income Sq. 12.552 13.331 14.623 0.00000*
Metro Area 1990 Sale Price 14.352 14.983 16.166 0.00000*
Metro Area 1990 Sale Price Sq. 9.379 10.038 11.206 0.00000*
Metro Area 2000 2009-2010 Construction Rate -0.900 -0.722 -0.584 0.55900
Metro Area 2000 Household Income 13.250 13.394 13.543 0.00000*
Metro Area 2000 Household Income Sq. 10.862 10.988 11.124 0.00000*
Metro Area 2000 Sale Price 9.160 9.284 9.504 0.00000*
Metro Area 2000 Sale Price, 1-year Lag 8.992 9.155 9.345 0.00000*
Metro Area 2000 Sale Price, 1-year Lag Sq. 8.038 8.173 8.280 0.00000*
Metro Area 2000 Sale Price, 2-year Lag 9.616 9.791 9.992 0.00000*
Metro Area 2000 Sale Price, 2-year Lag Sq. 8.982 9.118 9.262 0.00000*
Metro Area 2000 Sale Price Sq. 8.609 8.744 8.931 0.00000*
Metro Area 2010 2008 Foreclosure Rate 0.646 0.902 1.094 0.51832
Metro Area 2010 2009-2010 Construction Rate 0.461 0.546 0.647 0.64509
Metro Area 2010 2009 Foreclosure Rate -2.666 -2.368 -2.113 0.03460
Metro Area 2010 2010 Foreclosure Rate -3.738 -3.534 -3.426 0.00061*
Metro Area 2010 Household Income 8.430 8.664 8.997 0.00000*
Metro Area 2010 Household Income Sq. 7.798 8.068 8.301 0.00000*
Metro Area 2010 Pre-2007 Foreclosure Rate 2.587 2.752 2.881 0.00968
Metro Area 2010 Sale Price 9.245 9.558 9.882 0.00000*
Metro Area 2010 Sale Price, 1-year Lag 8.262 8.691 9.221 0.00000*
Metro Area 2010 Sale Price, 1-year Lag Sq. 6.110 6.521 7.011 0.00000*
Metro Area 2010 Sale Price, 2-year Lag 9.007 9.298 9.541 0.00000*
Metro Area 2010 Sale Price, 2-year Lag Sq. 8.563 8.772 8.872 0.00000*
Metro Area 2010 Sale Price Sq. 8.088 8.290 8.495 0.00000*
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We also fit models with a squared term for income or sale price (and lags)

to see whether both high and low extremes in income or price were associated

with high or low levels of vegetated area. Together with positive coefficients on the

linear terms, significant and positive coefficients on the squared terms of household

income and median sale price indicated that higher levels of vegetated area are,

indeed, found at both the highest and the lowest levels of household income or

sale price (Table 2.2). This quadratic relationship between income and vegetation

is found in every year at both spatial scales. However, while sale price, squared or

not, is consistently significant at the metropolitan scale, it is often not a significant

predictor of vegetated area in Detroit. This suggests that although sale prices reflect

broad patterns in vegetated area across the metropolitan area, local heterogeneity

in neighborhood conditions within the city, time-dependent processes related to

decline, or both can confound these broad trends.

We are interested in differences in effect sizes for the same model between

the two geographic levels, as these would suggest scale-dependent effects on veg-

etated area and call into question generalizations to the metropolitan scale drawn

from city-scale analyses. The average effects of household income and sale prices

are relatively constant across years at the metropolitan level (Figure 2.2). In De-

troit, however, the effect of income declines between 2000 and 2010 and the effect

of sale price, including a 1-year lag, consistently declines between 1990 and 2010.

This stark decline in effect size in Detroit is consistent with the aforementioned

declining model fit, for these variables, over time and may reflect a decoupling of

long-standing socio-ecological relationships as a city declines. At the metropolitan

scale, these relationships persist because the contrast between the city and suburbs

is so strong.
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Figure 2.2: Mean effect sizes and minimum/ maximum confidence intervals for household income and lagged sale price from the multiple-model
inference. Effect sizes are corrected for multiple testing with Bonferroni correction and can be interpreted as the change in the proportion
of a block group’s vegetated area for a one-standard-deviation increase in each treatment.
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To facilitate meaningful comparisons, effect sizes are converted to an amount

of vegetated area in acres (Figure 2.3), based on the average block-group size

in each year and each spatial extent. For example, in Detroit in 2010, a one-

standard-deviation increase in sale price is associated with 1.1-1.4 more acres of

vegetated area in the average block group. Because foreclosures, demolitions, and

new-construction-related treatments were not standardized, their effect sizes are

expressed as the result of one more foreclosure, one more demolition, or one new

housing unit than the average number in the average block group. Nonetheless,

the magnitudes of a single parcel change in the average neighborhood, in terms

of acreage of vegetated area, are only one order less than that of a one-standard-

deviation increase in sale price or median household income (Figure 2.3).

In general, Detroit neighborhoods with high vegetation density but low in-

comes or sale prices are characterized by a high density of vacant lots (empty

parcels where housing used to be) and high tree densities. High-vegetation, low-

income neighborhoods increase in number in Detroit over this period. In 2000

and 2010, high-vegetation, low-income neighborhoods are increasingly found on

the east side of Detroit. They generally have a high density of vacant lots but

some, like Elmwood Park, also include large urban green spaces. Conversely, low-

vegetation and high-value or high-income neighborhoods generally have intact

housing stock (very few vacant lots). From aerial photographs, these neighbor-

hoods appear to have slightly larger lot sizes, fewer trees, and intact housing stock.

At the metropolitan scale, these neighborhoods are almost exclusively character-

ized by adjacency to business parks and large retail centers.
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Figure 2.3: Range of average effect sizes across years on vegetated area, presented in terms of acres
of vegetation, holding all else constant. Effect sizes are averaged in each year from
across the multi-model inference. Acreage is calculated assuming the average block-
group size in each year for either Detroit or the metropolitan area. Only effects that
were consistently significant under all of the spatial dependence structures considered
are presented here. Solid circles (and positive acreage) represent a positive effect on
vegetated area; dashed circles (and negative acreage) represent a negative effect on
vegetated area.

2.4.2 Comparing Associations with Change in Vegetated Area

Finally, we compared measures of change in socio-economic status (from the Cen-

sus) with real estate and demolition records in regard to the strengths of their

relationships with change in vegetation (the greenness change index, GCI). We

calculated Spearman’s rank correlation coefficients between change in the natu-

ral logarithm of GCI and three classes of neighborhood-level data: socio-economic

measures differenced between the 2000 Census and 2012 American Community

Survey (ACS); US Environmental Protection Agency (EPA) National Emission Stan-

dards for Hazardous Air Pollutants (NESHAP) notifications of demolitions; and the

real estate inventory, including foreclosures and sale prices (Figure 2.4).

Overall, the measures derived from the demolition records and real estate

inventory have stronger bivariate correlations with log GCI than Census-derived
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statistics. One notable exception is the change in housing density, which has the

strongest relationship with log GCI for the City of Detroit and is a Census-derived

statistic. Most measures exhibit much weaker correlations at the metropolitan

level, which is likely due to the greater variation in neighborhood characteristics

at that scale. However, we observe stronger correlations at the metropolitan level

for housing increase (over the 2000 baseline), the change in the density of vacant

housing, the number of new housing starts, and the first derivative of new housing

starts. The foreclosure rates in any period are not strongly correlated, on their own,

with log GCI at the metropolitan level, even though contemporary foreclosures had

a consistent association with lower vegetation density at metropolitan scale in the

multi-model inference.

How do specific neighborhoods in our study area fare differently in this pe-

riod? We found that all neighborhoods in the study area increased in greenness, on

average, between 2000 and 2010. Our finding of metro-wide vegetation growth is

not surprising, as the construction rate in the City of Detroit is at this time is essen-

tially zero and outside of Detroit, lower-density development patterns lead natu-

rally toward vegetation growth and maintenance in a temperate climate. Changes

in household income were not found to be significantly associated with greenness

changes between 2000 and 2010 at any scale. Neighborhoods that experienced the

most foreclosures between 2003 and 2010 and had the lowest increase in green-

ness are exclusively in Detroit and its closest suburbs. In general, these suburban

neighborhoods are characterized by medium housing densities, high canopy cover,

and an intact housing stock. With the exception of one Morningside neighbor-

hood in Detroit, all of the City’s neighborhoods with high foreclosure rates and low

greenness change are located along the northern and eastern boundaries of Detroit
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Figure 2.4: Spearman’s rank correlations, shown with 95% confidence intervals, between log GCI
and three classes of neighborhood-level measures at the Census tract level. The 2012
ACS class includes socio-economic measures that were observed in the decennial 2000
and 2012 5-year ACS surveys and then differenced. The Real Estate Inventory class in-
cludes counts of foreclosures, the number of sales, the number of new housing starts, or
the change in median sale price. In general, these latter two classes have stronger cor-
relations with log GCI. EPA NESHAP notifications are not available at the metropolitan
level.
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and have very few, if any, vacant lots.

Areas where sale prices increased or only slightly decreased (top quartile

of home value change between 2000 and 2010, which includes both losses and

gains) and that also experienced the lowest increase in greenness (lowest quar-

tile of log GCI) include neighborhoods in Mexicantown in Detroit, Hamtramck,

and neighborhoods west and north of Highland Park. Conversely, areas where

sale prices increased or only slightly decreased and with the greatest increased

in greenness in Detroit between 2000 and 2010 include neighborhoods situated

relatively close to downtown Detroit and, with the exception of the Springwells

neighborhood (which includes a very large outdoor green space), with very high

vacant lot densities. Outside of Detroit, neighborhoods that maintained value and

increased in greenness are exurban neighborhoods in western and northern Oak-

land County; these feature very large lots mixed among golf courses and forested

wetlands. Previous research on exurban developments in southeast Michigan indi-

cate they increase in greenness over time—to the extent that they are carbon sinks

over the long-term—due to their large lot size and land management behaviors

(Visscher et al., 2014).

2.4.3 Demographics and Vegetated Area

In 1990, at the metropolitan scale, neighborhoods that scored high on the factor

associated with white and Asian populations (eigenvalue of 16.29) had higher veg-

etation densities (median model t-statistic of 4.0); this same factor was associated

with high single-family and owner-occupied housing and low poverty rates. In the

City of Detroit, high vegetation densities are associated with a very similar factor

(eigenvalue of 10.75) but these neighborhoods have mixed white and black pop-
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ulations; neighborhoods that scored high on the factor(s) associated with white

population proportion exclusively (eigenvalue of 2.18) or mixed white and Asian

populations (eigenvalue of 1.29) actually tend to have lower vegetation densities

in Detroit (t-statistics of -4.9 and -2.6, respectively). From this template in 1990

emerges a consistent, scale-dependent pattern in the associations of vegetation

density with white and black populations that persists in 2000 and 2010. The ex-

ample of 2010 proves the rule: high-black population neighborhoods in Detroit

have higher vegetation densities (eigenvalue of 8.87, t-statistic of 4.4), whereas

similar neighborhoods at metropolitan scale have lower vegetation densities (eigen-

value of 6.02, t-statistic of -8.7). Mixed white and Asian neighborhoods in Detroit

have lower vegetation densities (eigenvalue of 8.37, t-statistic of -2.8), whereas

similar neighborhoods at the metropolitan scale have higher vegetation densities

(eigenvalue of 15.48, t-statistic of 4.4). Because the metropolitan model extent

includes the City of Detroit, we might conclude that the unexpected (compared to

previous studies) negative association between high white population scores and

vegetation density is driven in large part by the pattern in Detroit. This pattern,

in turn, may reflect a spatial concentration of the majority-black City’s non-black

residents in the more dense and more central areas. It is also apparent that, un-

like socio-economic status, demographics are consistent in their associations with

vegetation density over this 20-year period.

2.5 Discussion and Conclusions

Understanding dynamic neighborhood change processes is important because they

influence how disparities in human health and well-being are created and enforced

through socio-ecological interactions. Increasingly precise spatial and temporal
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data are available to study these dynamics (Sampson et al., 2002). Incorporat-

ing new annual, parcel-level data from real estate inventories into studies of urban

socio-ecological disparities requires understanding how well these new measures of

social conditions compare to US Census data, which are well established for broad,

cross-sectional studies of neighborhood conditions. For these reasons, we com-

pared how well these different measures of neighborhood conditions and neigh-

borhood changes explain urban vegetation disparities across space and changes in

urban vegetation over time.

Our analysis focused on two questions: (1) How do well-established mea-

sures of socio-economic status (SES) compare in their associations with vegetated

area and vegetation change with new measures of social conditions focused on the

housing market? (2) How do these associations hold up in the context of a shrink-

ing metropolitan area and at multiple scales? We discuss the implications of our

findings below.

2.5.1 Parcel-level Measures Link Social and
Biophysical Conditions

Although household income often exhibits the strongest association with vegetated

area at the metropolitan level, home sale prices are a close second. Sale prices are

a good proxy for home values, which convey the physical condition of the housing

stock and its neighborhood. As owning a home is often a significant portion of

household equity in the USA, home values also convey some information about the

wealth of a neighborhood’s residents and could affect a homeowner’s interest in

investing in and maintaining the house and surrounding landscape. As such, home

sale prices are a strong link between neighborhood socio-economic and biophysical

conditions (Figure 2.3).
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Demolition rates (in the City of Detroit) and foreclosure rates (at the metropoli-

tan level) are also significant effects structuring vegetated area. Demolition has

been a policy instrument in Detroit since the early 1970s (Sternlieb et al., 1974),

used in neighborhoods with abandoned and deteriorated housing stock. We found

that demolitions are occurring in neighborhoods with higher levels of vegetation

and are associated with growth in vegetated area. Demolitions are therefore an-

other link between neighborhood social and biophysical conditions. When we ex-

amined specific neighborhoods, we found that those with an intact housing stock

(i.e., few, if any, vacant lots) tended to have low vegetation densities and high in-

comes, low vegetation growth (low increase in greenness), and high cumulative

foreclosure rates between 2000 and 2010. This implies that stable housing stock

is associated with high incomes and also that foreclosures in the Detroit area are

used strategically in areas where the housing stock has not declined to the point of

abandonment and demolition.

Comparing the associations of tax foreclosures with vegetation levels and

vegetation change, we found that tax foreclosures typically occur in low-vegetation

neighborhoods and also in neighborhoods with very little vegetation growth (in

this period). However, a bivariate correlation over this length of time says nothing

about whether foreclosures precede or follow vegetation change. It should be rec-

ognized that feedbacks in the urban socio-ecological system mean that many vari-

ables correlated with log GCI may be seen either as drivers of vegetation change

or as driven by vegetation change. Therefore, we do not make a distinction here

as to the direction of causality. In future studies, the high-frequency, parcel-level

data we have introduced here will be essential for discerning the processes driving

neighborhood vegetation change and the feedbacks involved.
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2.5.2 Socio-Ecological Relationships Differ Across Scales

Our results provide new evidence of scale-dependence in urban socio-ecological

relationships, highlighting important differences in the spatial patterns of vegeta-

tion between the City of Detroit and the wider metropolitan area. Although we

observed consistently positive and stable associations between vegetated area and

both higher incomes and higher home values across the metropolitan area, these

associations are inconsistent within the City of Detroit.

Why should the well-established, invariably positive and mutually reinforc-

ing relationship between SES and vegetated area, which persists at the metropoli-

tan scale, be different in the City of Detroit? In some ways, Detroit neighborhoods

are exceptional within the metropolitan area. Sale prices may be artificially lower

in Detroit than in neighborhoods right across the city line: for instance, the same

sharp discontinuities in prices can be seen across the southern and eastern bound-

aries that separate Detroit from neighboring municipalities.

We also find that the shape of the relationships of income and sale price with

vegetated area differs between scales. At the city level, vegetated area is highest in

both high-income and low-income areas (a quadratic relationship), whereas at the

metropolitan level, vegetated area generally only increases with income. This find-

ing comports with both the well-documented, mutually reinforcing relationship be-

tween social conditions and vegetation density (Patino and Duque, 2013) and the

observed trend of increasing vegetation in declining neighborhoods (Hoalst-Pullen

et al., 2011). In Detroit, this is clearly suggestive of the challenge in explain-

ing the processes establishing and maintaining disparities in urban vegetation—

simultaneously a luxury effect that can capitalize on larger lawns or nearby parks

and the effect of ambient, possibly unwanted, vegetation that appears with in-
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creasing abandonment and demolition rates. The latter effect is evident in the as-

sociation of neighborhoods that have high demolition rates with lower household

incomes.

With the increasing vacant land burden due to rising demolitions, high

incomes are not required to capitalize on more vegetated area, as in a classic

metropolitan growth scenario. Detroit’s land burden is higher than for similarly sit-

uated urban areas, and its disposition of vacant land is often considerably delayed

or prevented under the current law (Dewar, 2006). Tax foreclosure also operates

differently in Detroit than in surrounding municipalities and has systematically dis-

couraged the reuse of tax-foreclosed homes by would-be owner-occupants (Dewar

et al., 2014). There may also be less incentive to pursue mortgage foreclosures in

Detroit due to the real or perceived quality of the housing stock and the lower de-

mand for housing. At the metropolitan level, tax foreclosures are found to have a

negative association with vegetated area, yet they exhibit no significant association

with vegetated area in the City of Detroit.

This suggests that foreclosures are not consistently associated with certain

biophysical conditions in Detroit neighborhoods. Lawn management practices for

parcels in foreclosure have been thought to range from neglect (and overgrowth)

to conspicuous maintenance (frequent mowing and trimming to maintain attrac-

tiveness). Although these processes operate at the parcel level, where the effect of

neglect has been previously detected (Deng and Ma, 2015), our results suggest that

either: lawn management practices associated with foreclosure cannot be detected

at the neighborhood level; that both processes are operating and cancel out in the

aggregate; or that there are confounding effects on vegetated area associated with

other, unobserved processes. Many of these apparent idiosyncrasies may be found
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in other major cities, particularly shrinking cities, as property laws, the efficacy

of local institutions, and local housing market activity will always vary across the

metropolitan area.

2.5.3 Socio-Ecological Relationships May Change Over Time

There is also evidence in Detroit that income and home prices have declined as

correlates of vegetation density over time (Figure 2.2), such that we might expect

they no longer exhibit any relationship with vegetated area in the near future. By

2010, neighborhood demolition rates and the net change in housing are better

predictors of vegetated area in Detroit than household income or home sale prices.

This suggests that widely theorized, wealth-related processes for allocating urban

vegetation—the consumption of landscaping or larger lawns by private homeown-

ers, the development of public green spaces in wealthier areas—play a diminishing

role in shrinking cities. Though we only have demolitions data for the Census

year 2010, it is evident that more demolitions are strongly related to increased

vegetated area in Detroit neighborhoods.

This declining association between socio-economic status, as measured by

income or home value, and vegetated area in Detroit (Figure 2.2), is inconsis-

tent with the suggestion of Lowry et al. (2012) that the passage of time would

strengthen income-vegetation relationships. It can be understood, however, in the

context of a declining city like Detroit, where both population size and the ca-

pability to maintain residential land are declining. Urban neighborhoods can be

theorized as complex adaptive systems, characterized by feedback loops: home

value appraisals are based on recent sales nearby, low home values present a bar-

rier to accessing credit for home improvements, and municipal (dis)investment in

43



services is both a driver and a consequence of the available tax base. As social and

economic feedback loops break down due to population loss and declining invest-

ment, the reproduction of certain socio-ecological relationships will also inevitably

decline. This is more consistent with the hypothesis of Watmough et al. (2013) that

correlations between socio-economic status and land cover are weaker in rural ar-

eas because local population-and-environment links are more complex. Luck et al.

(2009) also suggested that socio-economic factors have less influence in less estab-

lished neighborhoods. In general, this result suggests that socio-economic status is

unreliable as a predictor of the vegetation distribution for all cities and all spatial

scales. In particular, relationships of vegetation patterns to socio-economic condi-

tion in declining cities and at the metropolitan scale may not be well-approximated

by studies of growing cities at the city scale. Additionally, it points to the need for

more spatially and temporally detailed investigations of neighborhood change that

can support process-based explanations of socio-ecological change in urban neigh-

borhoods. Such studies can be supported by the new measures presented here.
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CHAPTER III

Comparing Associations between
Residential Neighborhood Change
and Vegetation Growth across U.S.
Metropolitan Housing Markets

3.1 Introduction

Urban areas arise from multiple coordinated or competing social and economic

activities to satisfy human needs (Batty, 2008). The connection between these

activities and the local environment is clearly expressed through zoning, residen-

tial land management, and the siting of environmental amenities and disamenities

(Chowdhury et al., 2011). In the United States (U.S.), where a separation of land

uses has been the norm, there are clearly visible differences between urban lands

designated for residential, industrial, or commercial uses. This spatial separation

of urban land uses and associated differences in the types and amounts of land

cover (e.g., trees, lawn, pavement) have demonstrated, though inconsistent, asso-

ciations with neighborhood socio-economic status, household lifestyle or life stage,

education levels and racial composition, as well as the age of the housing stock and

residential vacancy rates (Grove et al., 2014, Schwarz et al., 2015, Endsley et al.,

2018).
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Similarly, the spatial arrangement and timing of changes in urban land

cover, such as in built area or vegetation cover, can serve as indicators of hu-

man activities and underlying socio-economic processes: land is cleared for new

housing or retail development, areas already developed exhibit changes in land

management or vegetation phenology over time, and some areas are abandoned

or redeveloped (Wilson and Brown, 2014). By observing changes in urban land

cover, we can draw inferences about changing patterns of wealth, public and pri-

vate investment, and residential occupancy in cities—all of which influence neigh-

borhood dynamics such as growth, decline, infill, or urban renewal (Hoalst-Pullen

et al., 2011). New information about neighborhood dynamics is critical for under-

standing the on-going spatial differentiation of housing conditions and quality of

life—particularly the quality of the urban residential environment and its sustain-

able development—in contemporary cities in the U.S.

Despite a wealth of hedonic pricing, environmental justice, and urban geog-

raphy studies that demonstrate strong associations between neighborhood socio-

economic and biophysical conditions, considerably less attention has been paid

to neighborhood change, particularly over multiple decades (Galster et al., 2007,

Williams et al., 2013, Delmelle, 2016), and to associations between socio-economic

change and biophysical change. Moreover, available socio-ecological theories on

the subject of neighborhood change, such as homophily, broken windows theory,

or “cues to care,” are concerned only with the changing demographic or socio-

economic profile of a neighborhood’s residents, not with the landscape or the built

environment. Such theories either fail to engage with the physical changes in

neighborhoods most relevant to urban sustainability (e.g., in vegetation condition,

in air and water quality) or are concerned with too small a scale to be generalizable
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across and between metropolitan areas.

Understanding the social and economic factors that give rise to certain

neighborhood biophysical changes is essential to bounding expectations for sus-

tainable residential development (Batty, 2008, Brelsford et al., 2017). The effect

of social and economic change on the amount of green vegetation should be of

particular interest, as vegetation provides numerous benefits to an urban popula-

tion. Trees and shrubs of urban parks and residential landscapes improve air and

water quality by directly intercepting air pollutants, delaying run-off from precip-

itation, and filtering run-off from the urban stream. Shade from trees can cool

buildings directly and, through evapotranspiration, reduce the urban heat island

effect. Urban green spaces also provide psychological and social benefits to resi-

dents, chiefly in the form of recreation opportunities but also through the passive

consumption of eye-pleasing, green views. For all of these reasons, urban trees in

the U.S. have been estimated to provide a $3.8 billion ecosystem service (Nowak

et al., 2006). The preferences of homeowners and retailers for a particular kind

of green space, turf grass lawns, have made it the top irrigated crop in the U.S. by

area (Milesi et al., 2005), despite the high water inputs required to maintain it and

the extensive urban sprawl it accompanies.

Thus, growing and maintaining urban vegetation is essential for sustainable

transitions in our residential landscapes (Ripplinger et al., 2017). Yet, over the

past several decades, metropolitan neighborhoods have been subject to dramatic

fluxes both in and out of residents and investment capital. In the U.S., this has

taken the form of capital flight and urban sprawl in the mid-twentieth century

and more recent reversals to this historic pattern in the forms of gentrification and

suburban poverty. How has neighborhood vegetation density changed with
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these reversals in neighborhood fortune? This study investigates the association

between neighborhood decline or improvement and change in vegetation density

over multiple decades and is concerned with the questions:

Q1. Can we distinguish between declining, stable, and improving neighbor-

hoods by their different land-cover change trajectories?

Q2. Do upward-transitioning (improving) or downward-transitioning (declin-

ing) neighborhoods tend to become greener or less green over time?

While satellite remote sensing has long been used to study urban land

changes related to development and environmental conditions, it is only recent

improvements in technology and new data policies that have made possible stud-

ies of land surface changes over multiple decades at fine spatial and temporal scales

(Chowdhury et al., 2011, Wulder et al., 2012). At the same time, new parcel-level

datasets are becoming available for neighborhood studies at fine spatial and tem-

poral scales, both through the curation and licensing of administrative records by

private companies (such as Attom Data Solutions or CoreLogic) and through the

publication of records obtained in processes such as Freedom of Information Act

(FOIA) requests. This study combines the long-term, continuous monitoring of

urban land cover from the Landsat program with high-resolution deed sale and

tax assessor records for three metropolitan areas across the U.S.: Detroit, MI; Los

Angeles, CA; and Seattle, WA. These three areas differ not only in the timing and

extent of their growth and development but also span different climate and precip-

itation regimes.
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3.1.1 A Conceptual Model of Continuous Neighborhood
Socio-Ecological Change

This study seeks to provide an empirical link between neighborhood socio-economic

change and vegetation change at neighborhood scale. It complements efforts by

demographers to identify common pathways of neighborhood or municipal change

(Delmelle, 2017, Franklin, 2017) and builds on previous land system science stud-

ies that use changes of the land surface and built environment to infer changing

patterns of wealth or development (Seto and Kaufmann, 2003, Weeks et al., 2007,

Robinson et al., 2009, Wilson and Brown, 2014). There are also important contri-

butions in neighborhood change from urban sociology, though few theories have

described a link specifically between social and physical changes. An “inextrica-

ble” and “developmental” link between physical disorder (e.g., graffiti, litter, aban-

donment) and social disorder (e.g., crime) originated in the eponymous “broken

windows” theory of Wilson and Kelling (1982) but has since been elaborated in

conceptual models of informal social control and seemingly invisible, collective ef-

forts by residents to impose both physical and social order in their neighborhoods

(Johansen et al., 2015). Crime is frequently the target of theories of neighborhood

change, and the deleterious filtering of neighborhood housing stock is seen as an-

other process of physical disorder that inevitably gives rise to social disorder and

crime (Hipp et al., 2018).

Urban vegetation plays a key role in these studies, for it has been taken

both as a sign of physical order and disorder. Again, informal social control is often

the aim of some neighborhood greening programs, particularly those that espouse

well-manicured turf grass lawns, which, at the opening of the twenty-first cen-

tury had become the top irrigated crop in the U.S. by area (Robbins, 2007, Polsky
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et al., 2014). In such landscapes, conspicuously maintained vegetation is one of

many “cues to care” (Nassauer et al., 2009) communicating social norms through

environmental indicators and is seen as part of maintaining order in communi-

ties (Troy et al., 2016). Yet, dense canopy and shrub cover have historically been

blamed for increasing crime rates because they purportedly give cover to crimi-

nals. More recent scholarship, particularly in disadvantaged neighborhoods where

signs of physical disorder are rampant, has found that high vegetation density is

typically associated with lower crime (Troy et al., 2012, 2016) and that deliberate

neighborhood greening on the part of residents directly catalyzes efforts to combat

crime (Sadler et al., 2017). Regardless of their conclusions, what all of these stud-

ies have in common is the premise that vegetation cover and social conditions are

inter-dependent.

The most extreme examples of coupled neighborhood socio-ecological change

from a U.S. metropolitan context come from declining neighborhoods in the “Rust

Belt” (Burkholder, 2012), which—due to a host of factors including economic

racism, systematic disinvestment, and deindustrialization—have seen significant

losses in the housing stock of many neighborhoods due to neglect, abandonment,

and demolition. Conversely, most studies of urban land-cover change have his-

torically been concerned with urban growth, i.e., the conversion of undeveloped

land into residential, commercial, or industrial buildings. Spatially differentiated

growth and decline occur simultaneously, and the flows of people and development

capital both into and out of neighborhoods are the social and economic changes

that are most strongly connected to land conversion (Smith et al., 2001). That

growth and decline are twin processes is evident in divergent metropolitan for-

tunes, where even in shrinking cities certain neighborhoods are hit much harder
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by an economic downturn than others (Couch et al., 2005, Hollander, 2010), and

where the housing stock itself becomes an instrument of speculative financial cap-

ital (Akers, 2017).

Although stocks and flows of human, financial, and social capital are im-

plicated in theories of change at neighborhood scale (Delmelle and Thill, 2014),

the aforementioned theoretical developments only implicate processes that oper-

ate on the small scale: from a single parcel to a single neighborhood block; they do

not readily generalize to describe socio-ecological changes that can be compared

across neighborhoods and between metropolitan areas. One theoretical model

of neighborhood change that has been adopted for the study of associated bio-

physical changes at neighborhood scale is Hoover and Vernon’s (1959) life cycle

model (Hoalst-Pullen et al., 2011), and this model has also been used as a start-

ing point for investigating long-term, sustained changes in neighborhood fortunes

(Delmelle, 2016). As Figure 3.1 illustrates, a certain amount of (unspecified) land-

cover change might be associated with the distinct phases of the neighborhood life

cycle; as the capital investment of a neighborhood (e.g., the value of the housing

stock) changes, lagged or leading land-cover changes can be observed. For exam-

ple, in the “thinning out” stage, a neighborhood’s loss of its housing stock (through

abandonment and demolition) may be accompanied by a net increase in pervi-

ous surface and vegetated covers (Endsley et al., 2018, Chapter II, this volume).

Recent work in Detroit has shown, similarly, that different rates of impervious sur-

face change can be attributed to different socio-economic conditions (Wilson and

Brown, 2014).

Thus, there are multiple pathways for neighborhood change to influence

vegetation change, as well as the reverse. In this study, the pathway expected
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Figure 3.1: A conceptual diagram showing the land-cover change (in absolute terms) potentially
associated with different phases of Hoover & Vernon’s (1959) neighborhood life cycle.

to predominate depends on the scale of the analysis. At neighborhood scale,

the flows of people and development capital between neighborhoods is expected

to change the balance of land cover over time. At parcel scale, it is price feedbacks

from green vegetation amenities that are expected to contribute (positively) to

change in home values. From this conceptual model and our knowledge of urban

socio-ecological systems, we can formulate a few hypotheses about coupled

vegetation and socio-economic changes in residential areas across the three

metropolitan areas of this study:

H1. In the arid climate of Los Angeles, as people and capital flow into improv-

ing neighborhoods and out of declining neighborhoods, human-vegetation

relations that sustain green vegetation density will strengthen in improv-

ing neighborhoods and weaken in declining neighborhoods. This will result

in lagged increases in vegetation density in improving neighborhoods and

lagged decreases in vegetation density in declining neighborhoods.
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H2. Conversely, in the temperate climates of Detroit and Seattle, the weaken-

ing of human-vegetation relations in declining neighborhoods will lead to

lagged increases in vegetation density that are either indistinguishable from

the lagged investments in vegetation growth of improving neighborhoods

or exceed the rates of vegetation growth in improving neighborhoods (i.e.,

vegetation growth will be faster in declining neighborhoods).

H3. Home values tend to appreciate just as vegetation tends to expand over

time. The amenity value of green vegetation will give rise to a positive asso-

ciation between increases in greenness and increases in price, except within

the City of Detroit, where a high degree of abandonment and demolition

has fundamentally changed the hedonic calculus with regards to green veg-

etation.

3.1.2 Defining Metropolitan Neighborhood Change

While monthly to annual observations of neighborhood vegetation conditions can

be obtained through satellite remote sensing, measures of population and housing

changes are difficult to obtain at a similar frequency. The U.S. Census Bureau pro-

vides a wealth of information on neighborhood conditions, but only every 5 to 10

years. This necessitates the use of unconventional datasets. This study uses deed

sale and tax assessor records, which provide information on changes in neighbor-

hood home values at a monthly or annual rate, and defines the median price-per-

square foot of housing as a proxy for the condition of a neighborhood’s housing

stock condition. Normalized for the built area of the house, it is expected that,

while prices do respond to demand for housing, differences in the rate of change

of home values across a metropolitan area will reflect changes in local demand.
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As current and prospective home-buyers are likely to be more socially mobile, it is

assumed that they will respond to the condition of the housing stock, in addition

to location characteristics, when making a choice to buy housing. Furthermore,

since Frederick Law Olmstead first noted that properties adjacent to New York’s

Central Park appreciated faster than others farther away (Herrick, 1939), it has

become widely established through hedonic pricing studies that home values are

strongly associated with vegetation cover as one of many locational attributes of

housing stock (Geoghegan, 2002, Irwin, 2002). This study investigates whether

or not growth in vegetation cover, as a locational attribute, is also associated with

change in home values.

3.2 Data and Methods

To test the hypotheses laid out and more generally detect an association between

continuous neighborhood socio-economic and vegetation changes: 1) Unsuper-

vised clustering methods are used to derive a data-driven neighborhood change

typology that can be compared to vegetation change outcomes (i.e., is there a re-

lationship between neighborhood change typology and vegetation change?); 2)

A formal, spatially explicit, repeat-sales model is developed to test whether lo-

cal changes in residential sale prices can be explained, in part, by local changes

in greenness. Part 1 addresses question Q1 and tests hypotheses H1 and H2 by

examining correlations between lagged price and greenness trends across canoni-

cal neighborhood change types. Part 2 addresses question Q2 and hypothesis H3,

assuming that upward-transitioning and downward-transitioning neighborhoods

increase and decrease in sale value, respectively.
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3.2.1 Study Areas

The metropolitan areas featured in this study were chosen for a variety of rea-

sons. Detroit, MI is perhaps the most severe example of a “legacy” or “shrink-

ing” city in the U.S.; despite growing to almost 2 million people by 1950, it has

since lost more than half of its peak population and the unusually high density of

single-family homes within its borders has dwindled considerably due to abandon-

ment and demolition. Los Angeles, CA, in contrast, has grown steadily throughout

its history and, due to natural physical barriers and municipal fragmentation in

the twentieth century, has a higher development density than Detroit. It is also

an arid, precipitation-limited climate, where green, photosynthetic vegetation is

scarce. The City of Los Angeles has grown much more slowly in recent years than

in its past but Seattle, WA, which experienced a downturn in population 40 years

ago, is today one of the fastest growing major U.S. cities.

Climate differences between these areas are salient to the motivation and

analysis of this research. While Los Angeles receives less than half an inch of

rainfall during a typical northern hemisphere summer, Seattle typically gets 3 or

more inches and Detroit more than 9 inches of rainfall in the same season, accord-

ing to the National Oceanic and Atmospheric Administration’s 1981-2010 climate

normals. The cities are much more similar in temperature, with Los Angeles and

Detroit ranging from a summertime minimum of about 62 degrees F to 81 degrees

F; Seattle is slightly cooler, ranging from 56 to 74 degrees F.

In this study, I consider not just the urban core but the wider metropolitan

area. While any urban system boundary definition is somewhat subjective, this

choice allows us to consider a full urban-to-rural gradient around each city and

therefore includes a wide range of parcel sizes and housing characteristics. In Los
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Angeles and Seattle, I examine neighborhoods within the Metropolitan Statistical

Areas (MSAs), as defined by the U.S. Census Bureau; due to a lack of deed record

coverage in part of the Detroit-Warren-Dearborn MSA, I use the “tri-county” area of

Wayne, Macomb, and Oakland counties as Detroit’s “metropolitan area,” instead.

The Detroit metropolitan area does span a similar range of development to the

Seattle and Los Angeles MSAs and also contains the vast majority of the housing

stock in the wider Detroit-Warren-Dearborn MSA.

Neighborhoods are widely understood to be socially constructed units whose

boundaries vary with the multiple subjective viewpoints of residents and scholars

(Lee et al., 1994). Administrative units and Census enumeration districts are com-

monly used but result in neighborhoods with a considerable range of sizes and

shapes that may bias landscape measures obtained in those areas. Here, the un-

derlying deed sales are point-level data, which gives us the flexibility to define

neighborhood boundaries in a rigorous way; although, ultimately, it is no less ar-

bitrary than the majority of population enumeration districts that have been pro-

posed. I chose to define neighborhoods on a regular grid, with a grid spacing

chosen so as to minimize the spatial autocorrelation between neighborhoods. This

boundary definition proceeds from plotting the semivariogram of individual home

sale values. As expected, the distance over which home sale values are correlated

differs between metropolitan areas according to their relative development densi-

ties. I chose a 1-km grid spacing for the Los Angeles MSA, 1.5-km for the Seattle

MSA, and 2-km for the Detroit metropolitan area.
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3.2.2 Median Value of Neighborhood Housing Stock

Data on neighborhood median home values, new construction, and tax foreclo-

sures are obtained from deed sale and tax assessor records collected and licensed

by CoreLogic, Inc., based on the administrative records that are publicly available

through the various municipal and county offices of each study area. Home values

are defined based on eligible residential property sales rather than assessed val-

ues, as the latter are often subjective and based on inconsistent valuation criteria

(Correll et al., 1978). Eligible property sales are defined as “arm’s-length” sales,

i.e., sales where both parties (buyer and seller) are resolved to obtain the best deal

possible because they are not related by blood or marriage and the property’s tax or

mortgage status is not in question. To this end, certain deed types associated with

next-of-kin transfers, foreclosure, or repossession by the lender were excluded.

Suspect deed types are evaluated with respect to the norms for each metropolitan

area; for instance, quit-claims are likely to represent foreclosures in the Detroit

housing market but are a more general form for conveying real estate in the West-

ern U.S. In addition, I disregard sales in the top and bottom 0.1% of adjusted price

in each market as well as those sales which are flagged as foreclosures or non-arm’s

length sales by CoreLogic’s proprietary methods. These flags correspond well with

other indicators of foreclosures and non-arm’s length sales, such as the deed type.

Sale prices were adjusted for inflation to 2010 U.S. dollars (USD) using the unad-

justed Consumer Price Index (CPI) for housing for “all urban consumers” (Federal

Reserve Bank of St. Louis, 2016). To account for differences in the structural

characteristics of housing, I calculate home values as price-per-square foot of built

area, which also somewhat normalizes the distribution of housing prices; a long

right tail or right skew in the distribution of price-per-square foot is still found in
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some markets.

Where estimates of median home value summarized at the neighborhood

level are needed for analysis, I used ordinary kriging to interpolate missing neigh-

borhood price-year observations. This essentially provides an optimal weighted av-

erage of neighborhood median value based on estimates in surrounding neighbor-

hoods (McCluskey et al., 2000). An exponential model of spatial dependence was

used, which is common in housing studies (e.g., Hoshino and Kuriyama, 2010),

although there was little difference in the cross-validation statistics between an ex-

ponential, spherical, or Gaussian model. Neighborhoods in which there was not

a single price-year observation during the study period were not interpolated and

were dropped from further consideration.

3.2.3 Remote Sensing Measures of Vegetation Cover

Ideally, we want to derive a physically based measure of vegetation cover, i.e.,

the amount of land that is covered by vegetation, from a long satellite time series

record. The Landsat program’s Thematic Mapper (TM) and Enhanced Thematic

Mapper Plus (ETM+), together, provide a continuous time series record of earth

surface changes from 1985 to 2015 and later. These sensors provide, at 30-meter

spatial resolution, visible, near-infrared, and short-wave infrared measurements

every 8 to 16 days.

As a proxy for vegetation cover, I use the modified soil-adjusted vegetation

index, MSAVI, as presented in Equation 3.1, where R and NIR refer to the red

and near-infrared reflectance bands (Qi et al., 1994). MSAVI is an improvement

upon other “greenness” indices such as the normalized difference vegetation index

(NDVI), which is affected by background contamination, particularly soil bright-
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ness and color (Bannari et al., 1995, Fensholt et al., 2006); these issues are more

pronounced in sparsely vegetated areas, such as semi-arid Los Angeles. MSAVI

is therefore a better index for comparison between the Los Angeles MSA and the

temperate areas of Seattle and Detroit (Rondeaux et al., 1996). MSAVI also has

a linear relationship with sub-pixel vegetation fraction—the fractional amount of

area covered by green vegetation (Qi et al., 1994).

(3.1) MSAVI =
2 NIR + 1 − [(2 NIR + 1)2 − 8(NIR − R)]

1
2

2

All eligible Landsat 5 TM and Landsat 7 ETM+ images from 1995 to 2015

are used in deriving greenness (MSAVI) estimates. Table 1 lists the considerations

for eligibility in each metropolitan area. For all areas, only a single Landsat path

is used to prevent look-angle differences across estimates for a single ground reso-

lution cell. In addition, only Tier 1 surface reflectance (SR) images with less than

40% land cloud cover are considered. In each image, areas of cloud, cloud shadow,

and water are masked using the provided quality assessment band produced by the

USGS CFMask protocol. Finally, to account of variations in scene-specific bright-

ness over time than can occur due to variations in cloud cover, each image is rel-

atively radiometrically normalized to the annual Landsat 7 ETM+ SR composite

with the highest dynamic range (Hall et al., 1991). Due to the superior radiomet-

ric calibration properties the Landsat 7 ETM+ sensor, only ETM+ SR composites

are considered for the reference image.

To automate the relative radiometric normalization, “bright” and “dark”

pseudo-invariant features are found by first calculating the multi-temporal variance

across all images in the study period (1995-2015). Those areas below an empir-
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ically selected variance threshold are considered as potential rectification targets.

The “tasseled cap” transform (Kauth and Thomas, 1976) is then used to project

these pixels into their “brightness” and “greenness” coordinates (Crist and Kauth,

1986). Those pixels with a brightness below the 1st percentile are then used as

“dark” targets while those with a brightness above the 95th percentile are consid-

ered “bright” targets. Both bright and dark targets are also required to fall below

the 20th percentile of greenness. For some scenes, there are too few dark targets

that meet this criterion. For these scenes, the threshold is raised to the 50th per-

centile of greenness. With these targets, relative normalization is performed as

described by Hall et al. (1991). Following relative normalization, in theory, the

Landsat 5 TM SR values are projected onto the ETM+ SR scale.

Finally, images are seasonally composited (once per year in Detroit, twice

per year in Seattle and Los Angeles MSAs) so as to facilitate comparison with an

annual panel on neighborhood conditions. Compositing does sacrifice important

information on phenology but does reduce the noise, as well, and has been found

to provide more accurate and more conservative estimates of greenness trends

(Forkel et al., 2013). Compositing is done a little differently in each metro area.

While in Detroit, the warm and wet seasons coincide with the northern hemisphere

summer (May through September), the Los Angeles and Seattle MSAs are situated

along the Pacific coast and have disjoint warm and wet seasons (Table 3.1). In both

areas, based on a cursory examination of precipitation and temperature normals, I

have decided to composite the images in separate “cool, wet” (November through

April) and “warm, dry” (May through September) seasons. This ensures that we

have a chance to measure vegetation signals of residential landscape change that

would otherwise be limited by either temperature or precipitation.
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After examining the MSAVI time series produced through both median-value

and maximum-value compositing and with versus without radiometric normaliza-

tion, it was apparent that maximum-value, non-normalized composites produce

the most consistent estimates of greenness over time. This was based on an anal-

ysis of the variation in MSAVI over the study period in pseudo-invariant forested

areas near Detroit. These areas were identified from the National Land Cover

Dataset (NLCD) product (Wickham et al., 2014) in multiple years and from high-

resolution imagery as mature forest stands with no disturbance and no appreciable

change in vigor or leaf-area index over the 20-year period. A plot of greenness

in these “stable” areas should therefore show little variation (Figure 3.2); indeed,

the greenness is mostly flat over time, except when the scene count is low at the

beginning and end of the time series, when only one Landsat platform is available.

Figure 2 also shows that radiometric normalization does little to improve the over-

all consistency of the estimates and is actually worse when scene counts are low.

In other words, we may be underestimating seasonal maximum MSAVI when few

images are available.

For some analyses, long-term greenness trends were smoothed using a zero-

phase digital filter with finite impulse response (FIR). The filter computes a moving

average, but unlike a simple moving average, the filter is designed so that no phase

offset is induced in the smoothed data, which is critical to accurate interpretation

of the time series. Gustafsson’s (1996) method for padding the time series is used

to ensure that the start and end points are also smoothed appropriately.
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Figure 3.2: Average greenness (MSAVI) in pseudo-invariant or “stable” forested areas of Detroit,
with and without radiometric normalization (top) shown with the count of Landsat 5
TM and Landsat 7 ETM+ scenes (bottom). In the top image, vertical lines show the
20th to 80th percentile range.
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Table 3.1: Selection criteria and processing details for Landsat image time series in each of the
three study areas.

Detroit Metro Low Angeles MSA Seattle MSA

WRS2 Path, Rows Path 20, Rows 30 and
31

Path 41, Rows 36 and
37

Path 46, Rows 26-28

Scene Critera L1TP or L1GT SR im-
ages with <40% land
cloud cover

L1TP or L1GT SR im-
ages with ¡40% land
cloud cover

L1TP or L1GT SR im-
ages with ¡40% land
cloud cover

Compositing One “leaf-on” season,
May 1 - September 30

“Dry” season (May 1 -
October 31) and “Wet”
season (November 1
to April 30)

“Warm, Dry” season
(May 1 - October 31)
and “Cool, Wet” sea-
son (November 1 to
April 30)

Other Criteria Areas with >25% cul-
tivated area consistent
in 2001, 2006, and
2010 NLCD years are
masked

Areas above 518 me-
ters (1700 ft) masked
in the wet season

Areas above 457 me-
ters (1500 ft) masked
in the wet season;
above 1500 meters
(4921 ft) in the dry
season

Total No. of
Individual Images

265 416 in wet season;
550 in dry

109 in cool-wet sea-
son, 196 in warm-dry

3.2.4 Defining Neighborhood Change Typologies

The housing markets in the Detroit, Los Angeles, and Seattle metropolitan areas

show strikingly similar trends in home values across neighborhoods (Figure 3.3).

Despite wide variation in the mean value over time—the gulf between the most

prestigious, high-value suburban neighborhoods and older, often denser neigh-

borhoods with declining housing stock and low housing demand—almost every

neighborhood sees an increase in sale prices during the housing boom and a sub-

sequent, steep decline in home sale prices. And yet, static differences between

low-value and high-value neighborhoods persist over time. When neighborhood

price curves are standardized within neighborhoods, such that a Z-score or stan-

dard score is obtained in each year, differences in baselines are largely eliminated,

as each neighborhood’s price curve now varies around its long-term mean. A princi-

63



pal components analysis (PCA) conducted on this standardized panel reveals load-

ings profiles that seem to emphasize changes common to all the neighborhoods: a

secular trend in increasing prices over time (in the Los Angeles MSA) and a spike

in values associated with the peak of the recent housing boom, along with delayed

or earlier spikes.

As an a priori definition of neighborhood decline or improvement would de-

pend on population and housing data that are not available at this time scale, this

similarity in neighborhood value trends over time presents a challenge for identify-

ing canonical neighborhood change sub-types that may correspond with vegetation

change. Thus, an empirical approach to induce canonical groups in the home price

time series is used to discover neighborhood groups with similar temporal patterns

of change. Here, I use two approaches with a similar underlying premise: loca-

tional advantages and disadvantages in a booming regional housing market

will result in slight differences in the timing of peak home value appreciation.

The two approaches differ in whether or not they allow these differences in timing

to impact the clusters that are formed, i.e., whether or not they consider timing to

be important.

The first technique, whole time-series clustering with a dynamic time warp-

ing (DTW) distance function (Aghabozorgi et al., 2015), does not consider dif-

ferences in timing; it does not assume that neighborhood price time series are

aligned, which provides a flexible approach to clustering on similar attributes that

don’t occur at the same time index. Second, I used change-point detection to iden-

tify the timing of the peak of the housing boom and the start of the recovery for a

neighborhood with the aim of clustering neighborhoods on the duration and tim-

ing of their response to the business cycle. In the first approach, the neighborhood
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Figure 3.3: Time profiles of neighborhood median home sale prices, as price-per-square foot of
built housing, over time, for the Detroit Metro, Los Angeles MSA, and Seattle MSA
neighborhoods. Each neighborhood’s price curve, in blue, is top-coded at the 98.5
percentile. The yellow line is a generalized additive model smoother fit across all
neighborhoods. We see that, despite considerable volatility in price, every neighbor-
hood experiences the boom and bust in prices associated with the recent sub-prime
mortgage crisis.
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change typology (as an alternative to “decline” or “improvement”) is discovered by

the clustering algorithm; in the second, the year of the peak of the housing boom

or the year of the recovery is used as the typology.

The second clustering approach used requires change-point detection; each

neighborhood’s price trajectory is differenced with a lag of 1 year, i.e., the last

year’s price is subtracted from the current year’s price for all years. This differenc-

ing results in a number of change points—time points where the change in price

crosses the zero line; these correspond to the peaks and troughs of a price trajec-

tory. In addition, the price and greenness time series of different neighborhoods

can be aligned by their peak years, which provides a way to test whether green-

ness change and housing market growth are synchronized. Prior to change-point

detection, the price trajectories are smoothed to make it easier for local maxima

and minima (peaks and troughs) to be detected in the presence of noise. In a

price time series based on deed sale records, “noise” refers to volatility—sales that

are considerably above or below what would commonly be considered the market

price for the local neighborhood. Apparent volatility may also arise due to the ar-

bitrary neighborhood boundaries used: dissimilar housing units may be grouped

together. As with the long-term greenness trends, a zero-phase digital FIR filter is

used to smooth the price trajectories. After experimenting with different window

sizes, a moving window of 4 years was used for smoothing.

3.2.5 Testing Price and Vegetation Associations

In addressing question Q2, I examined whether price changes in each metropoli-

tan area could be explained by changes in greenness. There are reasons to believe

that changes in home sale prices and changes in vegetation density or vigor drive
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one another, i.e., that their relationship is bi-directional. In asking what effect

neighborhood improvement or decline (in price terms) has on vegetation, we are

essentially inverting a classical hedonic valuation of a unit change in an environ-

mental amenity. The repeat-sales model described by Harding et al. (2009) was

developed in response to the shortcomings of cross-sectional hedonic models, chief

of which is omitted variable bias. The repeat-sales model corrects for this bias

through differencing consecutive sales of each property. By using only repeat sales

of the same property, we control for property-level differences in, e.g., the size of

the property, the number of bedrooms or bathrooms, they style of the architecture,

and numerous other housing characteristics that don’t vary over time but have a

significant impact on price. Han (2014) updates this approach by also weighting a

property’s sale by the inverse of the length of time elapsed since the last sale.

When there are more than two time periods, it is not easy to extend a panel

model like the repeat-sales model to consider spatial autocorrelation and other

violations of the assumption of independent and identically distributed (or “spher-

ical”) random errors because each subject (property) is represented more than

once in the data. One must also make a substantive decision as to whether a

first-difference or fixed-effects approach more accurately describes the relationship

between the dependent and independent variables. However, when only two time

periods are observed, the fixed-effects and first-difference models are equivalent

(Halaby, 2004), and we are able to control for omitted variable bias with either

approach. By taking the first-difference approach, it is easy to extend the model

to allow for non-spherical errors or lagged predictors, as the design matrix for

this model is structurally identical to that of a cross-sectional (non-longitudinal)

approach.
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As it is well-established that spatial dependence in housing prices exists, I

extend the repeat-sales model by relaxing the assumption of independent observa-

tions, using a spatial auto-regressive framework, and testing whether lagged pre-

dictors, correlated errors, or a combination of the two produces a superior fit to the

data. Specifically, I consider three possible model formulations: a spatially lagged

dependent variable (i.e., sale price spillovers) model, spatial errors model, and the

combination of the two (the spatially autoregressive moving average, SARMA);

this approach has precedent in hedonic models of non-structural housing charac-

teristics (for instance, Cohen and Coughlin, 2008). While a model with spatially

lagged price (dependent variable) and greenness (independent variable) is more

consistent with our conceptual model and prior work in hedonic modeling of home

values, Lagrange multiplier tests indicated that a spatial errors (alone) model pro-

vided a better fit to the data. In addition, technical limitations in the best available

software for spatial modeling made it impossible to calculate the adjusted effect

sizes in the lag models (so-called “impact measures”). Thus, a spatial errors model

was used. As for the connectivity allowed between “close” parcels, while row-

standardized spatial weights matrices are often used in studies of non-market val-

uation of environmental amenities (e.g., Cohen and Coughlin, 2008), these weight-

ing schemes tend to emphasize sparsely-connected spatial units; I used, instead, a

variance-stabilizing scheme (Tiefelsdorf et al., 1999), which puts a similar weight

on parcels whether they have rich or sparse connections. Spatial dependence was

defined based on proximity, with the cut-off for spatial dependence being chosen

from a semivariogram plot of the change-in-price residuals (after Bivand et al.,

2013).
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(3.2)

[∆Price]i = λW [∆Price] + (∆Xi)β(1) +W (∆Xi)β(2) + t∗i + εi

εi ∼ N(0, σ2)

t∗i =
∑

j∈(b0,b1,... )

 ti − j, ti ≥ j

0, ti < j

It should also be noted that no model formulation—whether with lagged de-

pendent or independent variables, with non-spherical errors, or some combination—

succeeded in eliminating residual spatial autocorrelation. Because of this persistent

residual spatial autocorrelation, and because a small number of different spatial

connectivities thought to model this autocorrelation were tested, the level for sig-

nificance is raised from α = 0.05 to α = 0.05/6 (for 3 model types and 2 connectiv-

ities), resulting in approximate 99.5% confidence intervals on the point estimates.

In all three metropolitan areas, the majority of sales are repeat sales, i.e.,

most sales are for properties that have sold at least once before. To reduce the

computational complexity and allow the spatial models to converge, a small sample

of repeat sales was taken in each study area. In the Los Angeles and Seattle MSAs,

a 1% sample of properties with repeat sales is taken, corresponding to 17,000 and

14,000 properties, respectively. For consistency, in the Detroit Metro area, a similar

number of properties was sampled, 13,000, however, because this study area is

smaller, this number corresponds to an approximate 5% sample. For each randomly

sampled property, 2 sales were randomly selected within the period 1995-2015.

The dependent variable in the repeat sales model, then, is the percentage change

from the first sale to the second sale. The dates of these sales were used to join

the contemporary greenness time series, which was also first-differenced, i.e., the

change in greenness is the change between the greenness at the time of the first
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sale and the greenness at the time of the second sale.

3.3 Results

3.3.1 Greenness Trends and Canonical Neighborhood Change
Typologies

Both of the clustering approaches used to discover canonical neighborhood change

types, DTW and change-point detection, yielded insight into the dynamics of res-

idential home values and, in particular, the uneven nature of growth and decline

both within and across metropolitan areas. However, neither approach yielded

neighborhood groups that had any interesting association with vegetation change.

DTW clustering produced clusters that predominantly differ in the average value

of the housing stock over time: neighborhoods are clustered together by how ex-

pensive they are. When the cluster membership is mapped across the metropolitan

area, very reasonable housing sub-markets can be identified, such as in Figure 3.4,

the map for Detroit, where the housing sub-markets of the Cities of Detroit and

Pontiac can be clearly seen as part of cluster 4, which corresponds to the lowest-

value housing cluster time series, as shown in Figure 3.5; again, we can see that

each cluster is stratified by its average value over time, that every cluster experi-

ences a housing boom and bust, and also, more interestingly, that some clusters

experience a larger recovery in value than others.

To eliminate the effect of baseline, average-value differences across clusters,

we can standardize the housing price trajectories by scaling the price for a given

neighborhood at any time to a Z-score, based on that neighborhood’s long-term

price, as shown in Equation 3.3, where y is the price for neighborhood i at time

t. This has the effect of shifting the curves up and down on the vertical axis un-

til the overlay one another, diminishing this chief source of variation. In the Los
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Figure 3.4: Map of the locations of each cluster’s member neighborhoods in the Detroit metropoli-
tan area; the City of Detroit is outlined in black.

71



Angeles and Seattle MSAs, standardizing the curves also highlights their second

greatest source of variation: the magnitude of the recovery. The sorting of Los

Angeles MSA clusters by average value is preserved in this standardization: the

highest-value cluster has the highest recovery, the second-highest value cluster the

second-highest recovery, and so on. In Seattle, sorting is not preserved, but the

same neighborhoods, those of Seattle and Bellevue, appear in the highest-value

cluster (non-standardized clustering) and the highest-recovery cluster (standard-

ized clustering). In Detroit, no price trajectory medoid shows signs of a recovery,

which may indicate few neighborhoods experience a recovery.

(3.3) Z(i, t) =
y(i, t) − ȳi
σy(i)

None of the clusters induced in any metropolitan area displayed any varia-

tion with greenness change. However, the Los Angeles MSA clusters, with or with-

out standardization, do vary with greenness levels, specifically with the long-term

maximum MSAVI. As Figure 3.6 shows, Los Angeles neighborhoods with higher av-

erage values (and higher value recovery) have higher greenness, on average; in the

wet season, the highest-value neighborhoods have a median greenness 2.5 times

higher than that of the lowest-value neighborhoods. Again, sorting is preserved:

the next highest-value neighborhoods have the next-highest average greenness,

and so on. A Tukey’s honestly significant differences (HSD) test, which corrects for

multiple testing across all pair-wise differences in means, indicates that each clus-

ter’s mean greenness is significantly different from all others (p-value << 0.001)

The second approach used to discover a canonical neighborhood change ty-

pology, change-point detection, produced neighborhoods organized by the year of
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Figure 3.5: Average price trajectory curves or “medoids” of each DTW cluster for metropolitan
Detroit; cluster numbers V1, V2, etc. correspond to cluster numbers in Figure 3.4.

their peak in the housing boom or the year in which they started to recover after

the housing bust. A plot of the change points detected in each metropolitan area

can be seen in Figure 3.7. The change points detected for the Detroit Metro re-

gion are limited compared to Seattle and Los Angeles as Detroit deed sales data

are not reliable prior to 1995; this effectively truncates the detection of the start

of the housing boom. However, the peak of the housing boom and the start of

the recovery are well-defined across each metropolitan area and interesting inter-

metropolitan patterns are apparent. While Seattle and Los Angeles MSA neighbor-

hoods generally reach their peak value in 2006-2007, Detroit Metro neighborhoods

peak much earlier and with wider variation, anywhere from 2001 to 2006. This

is, in part, because the price trajectories for Detroit Metro neighborhoods reach a

plateau; prices are generally stable for 2-4 years after reaching the peak, prior to

the housing bust. The narrow distribution of both start and peak years of the Los

Angeles MSA housing boom are indicative of that area’s generally steep increase in

housing prices. Conversely, Seattle MSA neighborhoods have a wide distribution of

starting years, indicative of that area’s long and steady appreciation in housing val-
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Figure 3.6: Long-term maximum MSAVI varies across clusters in the Los Angeles MSA, shown here
for non-standardized DTW clustering.

ues; while many neighborhoods start growing after the early-1990s recession (the

prior business cycle), many have seen steady appreciation since 1985 (the earliest

year with available data).

As with the clusters defined by DTW distance, however, there was not a

strong association between greenness trends and the timing of business cycles. In

metropolitan Detroit, neighborhoods that initiated their housing boom later (2001

or later) generally experienced much more positive greenness trends than other

neighborhoods in that study area. Examining these neighborhoods on a map re-

veals that they are generally neighborhoods located within the City of Detroit and

in outlying suburban or exurban areas, i.e., areas where housing densities or low

(in the City of Detroit, this is due to thinning of the housing stock). In the Seattle

MSA, neighborhoods that peak later (2008 or 2009) generally have more nega-

tive greenness trends in the wet season than other neighborhoods. However, these

neighborhoods are widely dispersed, with no particular spatial patterns.

Robust trends fit to the neighborhood-specific housing booms, based on the
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Table 3.2: Model fits from WLS models with the same-year median household income treatment.
Here, the base model is the model with contextual variables only.

Appreciation rate during housing
boom (approx. 1995-2005)

Depreciation rate during housing
bust (approx. 2000-2009)

Detroit Metro 5.5% -9.2%
Los Angeles MSA 39.0% -9.3%
Seattle MSA 16.6% -6.5%

change-point analysis, were analyzed to see if greenness trends might be synchro-

nized with the local housing market, e.g., in the concomitant patterns of land devel-

opment. The robust trends calculated provide annual rates of growth and decline

that can be summarized across metropolitan areas (Table 3.2).

3.3.2 Parcel-Level Repeat-Sale Associations with
Greenness Change

In order to implement the repeat sales model in a spatially explicit framework, it

was first necessary to model the effect of time on change in repeat sale price (the

dependent variable). Although including sale-year or sale-month factors would

allow for a flexible, non-linear response of price to time, such factors were not

compatible with the spatially explicit repeat sales model (they cannot be manually

time-demeaned). Therefore, a time plot of repeat-sale prices in each month was

examined in order to select change points for a piece-wise linear approximation

of the business cycle. This time profile analysis revealed patterns very similar to

those seen in Figure 3.3, i.e., sale prices exhibited the characteristic boom-bust

business cycle of the wider housing market. In each study area, two change points

were used, one to describe the peak of the housing boom and one to describe the

trough of the housing bust. Using a baseline, ordinary least squares (OLS) model

with time covariates only, adjusted R-squared values revealed that the piece-wise

linear approximation was a fair substitute for the more flexible, sale-year and sale-
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Figure 3.7: Change points detected for each metropolitan area: the start of the housing boom
(when prices first began to rise), the peak of the housing boom (when the highest price
is reached), and the start of the recovery (when prices begin to rise after the housing
bust).
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Table 3.3: Adjusted R-squared values from the OLS estimation of the repeat-sales model using
either sale-year and sale-month factors or a piece-wise linear approximation.

Sale-Year & Sale-Month Factors:
Adjusted R2

Piece-wise Linear
Approximation: Adjusted R2

Detroit Metro 0.403 0.398
Los Angeles MSA 0.318 0.283
Seattle MSA 0.091 0.074

month factors model (Table 3.3), with decreases in goodness-of-fit not exceeding

3.5%. In the Detroit Metro and Los Angeles MSA models, the overall goodness-of-

fit is satisfactory, with time covariates, alone, explaining between 30-40% of the

variation in change in repeat sale prices. It is not clear why the Seattle MSA model

has a poor fit to the time series; the time profile shows a similarly strong business

cycle. However, as noted, Seattle MSA neighborhoods have been appreciating for

a much longer time period than in the other two study areas.

The effect of change in greenness on change in price was estimated for sales

occurring during the housing bust or at any other time; the latter effect is estimated

as an interaction with a housing-bust indicator variable. Unlike the unsupervised

clustering and change-point detection work described earlier, here, the housing

bust is defined in the same way for all study areas. Repeat sales that occur dur-

ing or after December 2007 are considered to be sales during or after the housing

bust; this is based on the National Bureau of Economic Research’s timing of busi-

ness cycles (NBER, 2019). However, because the timing of the recovery, if any, is

extremely different between neighborhoods and metropolitan areas, no attempt to

define “business as usual” after the housing bust is made.

The point estimates and approximate 99.5% confidence intervals for the ef-

fect of change in greenness on change in price is presented in Figure 3.8. The

effect of an increase in the average maximum MSAVI (greenness) by 0.1 points
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within a 100-m or 500-m radius is shown; this value corresponds to a moderately

large, though realistic, increase in greenness (MSAVI typically ranges from 0.1 to

0.5 across these study areas). First, we can see that repeat sales during the housing

bust do not differ markedly from those that occurred outside of the housing bust,

except for those sales in the City of Detroit. These sales, which are few in number

(hence, the large confidence intervals), vary widely in the estimated effect of in-

creasing greenness on change in price, an effect which appears to be positive and

significant except for sales during the housing bust.

Given the uncertainty in the underlying data and the residual spatial auto-

correlation, it seems that the effect of an increase in greenness on change in price

is insignificant in every metropolitan area at every season or time period except

for the Detroit Metro area, where it is a moderately large, positive effect. In the

Detroit Metro area, an increase in greenness within a 100-m or 500-m radius is

estimated to contribute to an increase in sale price ranging from 10-25%. In the

Seattle MSA, there is essentially no relationship between change in greenness and

change in price. In the Los Angeles MSA, the relationship is only evident during the

cool and wet season (northern hemisphere winter) where, except during the hous-

ing bust, it provides a sale price premium comparable to that seen in the Detroit

Metro area, between 5% and 30%.
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Figure 3.8: From the spatially explicit repeat sales model, point estimates and approximate 99.5% confidence intervals for the effect of change in
greenness on change in price are shown for each metropolitan area. The bottom row shows these for properties with a repeat sale that
occurred during the housing bust; the top row shows these for properties that sold at any other time.
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3.4 Discussion and Conclusions

3.4.1 Greenness Trends and Neighborhood Improvement
or Decline

Regarding my hypotheses, the clustering approaches, dynamic time warping and

change-point detection did not yield any insight into differences in vegetation

(greenness) change. However, they do lend weak support to both H1 and H2 when

differences in vegetation (greenness) levels are examined. Specifically, the strong

correspondence between average home values, recovery in price, and aver-

age greenness levels in Los Angeles MSA neighborhoods suggests that green

vegetation is a strong signal of socio-economic status in this water-limited

environment (H1). In concordance with H1 and H2, we do not see this corre-

spondence in Seattle MSA or Detroit metropolitan neighborhoods, where green

vegetation is not water-limited and, particularly in the case of the City of Detroit,

where green vegetation may be found in abundance in less affluent and less pres-

tigious neighborhoods (Endsley et al., 2018, Chapter II, this volume). The socio-

ecological significance of green vegetation may also be more visible in semi-arid

Los Angeles MSA neighborhoods because the region is currently undergoing se-

vere water stress, as indicated by the decline in dry-season greenness over the last

10 years.

There is apparently no association between price trends and greenness change,

allowing for up to 2-year lags, and it seems that vegetation trends, alone, do not

tell us much about changing neighborhood fortunes (Q1). The greenness time

series may be of limited value in such an analysis due to high uncertainty, low

spatial resolution, inter-annual process noise, or some combination of these fac-

tors. The uncertainty in the greenness time series is inherent in the problem of
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trying to estimate gradual, continuous change in surface vegetation with a remote

sensing-derived time series. While studies of deforestation or land-use change are

typically marked by sudden and dramatic land conversions, which lead to sharply

defined changes in surface reflectance, vegetation change in residential landscapes

that is thought to be indicative of social and economic processes (e.g., changes in

lawn maintenance, landscaping, or changes in individual housing units) are much

harder to accurately detect using moderate resolution datasets such as the 30-m

Landsat data in this study. The 30-year, interannual greenness records pro-

duced in this study reveal wide variation between neighborhoods over time;

it is possible this wide variation is due to time-invariant neighborhood differ-

ences in average greenness that is estimated, in each year, with an uncertainty

that is larger than the signal of neighborhood socio-ecological change we are

trying to detect. While finer spatial resolution—which may lead to useful distinc-

tions between vegetation types and private versus public land ownership—could

be obtained with different platforms, including commercial satellite imagery, the

record of observation in these platforms is currently not long enough to be useful

in a multi-decadal study such as this one.

When examined separately, the price trends and greenness trends do offer

interesting insight into each metropolitan area. The 30-year greenness trends of

the Detroit Metro and Seattle MSA areas, both temperate with high available wa-

ter throughout the year, reveal no long-term change in average greenness. In Los

Angeles MSA neighborhoods, both the wet-season and dry-season greenness show

recent declines. The wet-season (November-April) greenness in the Los Angeles

area appears to have been in slight decline from 1995 to 2015. The dry-season

(May-October) greenness shows even steeper, more recent declines, with the av-
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erage maximum dry-season MSAVI declining by about 28% between 1998 and

2015 and by about 24% between 2011 and 2015, alone. These recent declines in

metro-wide average greenness correspond to severe recent droughts in the area,

particularly in year 2014.

The price trend analysis—again, though not revealing of any interesting

associations with vegetation or greenness trends—does provide insight into the

different housing market dynamics. The average home value appreciations in the

Detroit Metro, Los Angeles MSA, and Seattle MSA housing markets, based on ro-

bust trend analysis, showed wide variation, ranging from 5.5% to 39.0% (Table

3.2). The high mean rate of growth in the Los Angeles MSA is largely due to

spectacular growth in downtown and Hollywood and new growth in northern Los

Angeles County east of Lancaster. The comparatively anemic growth rate of De-

troit Metro neighborhoods is seen in the typically slow rate of growth of its high-

population suburbs; it is actually new exurban development and speculation in

southeast municipal Detroit that is leading growth rates in that area. Conversely,

the rates of decline were more homogeneous across the metropolitan areas, rang-

ing from -6.5% to -9.3%. A narrower range of annual depreciation rates may be

reflective of a nation-wide, coordinated decline in value. This would be expected

due to the widespread attention the sub-prime mortgage crisis received, however,

with only three metropolitan areas included in this analysis, this is merely specu-

lative.

3.4.2 Greenness Change and Change in Repeat Sale Prices

The neighborhood-level analysis just described may suffer from some serious tech-

nical limitations. The greenness time series may be too noisy, the underlying signal
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of gradual vegetation change subsumed by the uncertainty that is inherent in the

coarse spatial resolution and that is introduced through further spatial and tempo-

ral aggregation. Does a parcel-scale analysis reveal any association with between

greenness change and changes in price? The results from the spatially explicit re-

peat sales models are mixed, but it seems that, in general, areas with rising home

values may be getting greener (Q2).

A consistent, significant, and positive association between parcel-level green-

ness change and change in sale price was found for Detroit Metro properties as a

whole; this association did not persist for properties within the City of Detroit dur-

ing the housing bust, which was partially consistent with our hypothesis that home

values will grow with green space, except when that green space is already excep-

tionally abundant due to neighborhood decline (H3). Among Los Angeles MSA

properties, a similar, positive association was found only during the cool and wet

season and also did not persist for sales during the housing bust. Seattle MSA

properties exhibited no association between changes in parcel-level greenness and

in sale price for sales at any time. These inter-metropolitan differences were un-

expected and do not cleave along the climatic or economic divisions that were

hypothesized to affect residential socio-ecological relations (H1, H2). The failure

to detect an association during the housing bust is unsurprising given that sales

during the housing bust are almost certainly artificially low, i.e., negative changes

in price, relative to the previous sale price. If an increase in ambient greenness

does lead to an increase in sale price through feedbacks in the valuation of envi-

ronmental amenities, then this driving relationship would be confounded by the

steep discount applied to prices for sales during the housing bust. However, this

driving relationship is not strongly evident for sales that did not occur during the
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housing bust, given that it is only seen for Detroit Metro properties and for Los

Angeles MSA properties during the cool-wet season.

The significance of cool-wet season vegetation for Los Angeles MSA prop-

erties is surprising; we expected dry season vegetation to display a stronger rela-

tionship with social and economic conditions because irrigation is more likely to be

used at that time. The cool-wet season signal suggests that growth in precipitation-

limited natural vegetation, that which is not planted or managed by residents, is

implicated in the appreciation of home values in this area. Indeed, natural vegeta-

tion is found in abundance at higher elevation on the margins of the Los Angeles

neighborhoods that experienced the steepest gains in value during the housing

boom. These neighborhoods also have the highest overall greenness levels in the

Los Angeles MSA (Figure 3.6). It is surprising, however, that an irrigation signal

was not detected as a significant price-greenness association during the warm and

dry season.

It is interesting that the model from the Detroit Metro area most unam-

biguously affirms an association between greenness change and change in price,

given that this study was inspired by prior work in that study area (Endsley et al.,

2018, Chapter II, this volume) and that the area is so different from the other two

metropolitan areas, Seattle and Los Angeles. Metropolitan Detroit is comparatively

small and predominantly composed of the medium- to low-density housing devel-

opments characteristic of suburban and exurban U.S. landscapes. The properties

sampled in metropolitan Detroit might then constitute an unusually salient sample

of parcels with a high degree of green, vegetated cover in close proximity, likely

in the form of lawns, parks, and tree canopy. An improvement on the repeat sales

model in this study might therefore include additional data on the type of parcel
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that is sold. While the first-difference approach used here controls for parcel char-

acteristics that do not change over time, there may be important sub-groups in the

population repeat-sale parcels that need to be acknowledged, e.g., detached single-

family homes versus condominiums. In particular, controlling for homeownership

rates seems critical, as areas with low homeownership rates likely have weaker

price-greenness associations due to, among other factors, split incentives between

landlords and renters.

Many time-varying neighborhood conditions that could be measured were

not included in the parcel-level analysis due to structural inconsistencies in the

data, however, these may have immense value for understanding the dynamic evo-

lution of individual parcels or neighborhoods. These include the new construction

rate, foreclosure rate, and school closings. More generally, an improvement to this

analysis should more explicitly investigate the causal pathways between social and

economic changes at the parcel or neighborhood scale and corresponding growth

or decline in vegetated cover. If price feedbacks from environmental amenities do

exist, there are many potential confounders that could be masking this relationship

in addition to housing stock heterogeneity and low homeownership rates. The fine

spatial scale of the repeat-sales analysis builds on a well-established foundation of

non-market valuation. Future studies may benefit from combining such an analy-

sis with the insights of ethnographic studies that can identify household-level and

neighborhood-level drivers of change in vegetated cover which were not accounted

for here and are not strongly correlated with home values.
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3.4.3 Neighborhood Persistence and Change

In addition to the technical challenges raised above, it must also be acknowledged

that our definition and proxy for neighborhood change may be inadequate. The

apparent lack of association between changes in neighborhood home values and

greenness may simply be because home values are not a reliable metric for the

wider neighborhood social and economic conditions we wish to measure. In this

study, home values were chosen as a proxy because they are easily and consistently

obtained across multiple metropolitan areas. It is assumed that home values, in ad-

dition to representing the characteristics of the house (e.g., number of bedrooms,

quality of construction), represent environmental amenities indicative of wider,

neighborhood-level conditions. Indeed, multiple hedonic pricing studies bear out

a strong association between home value and contemporary neighborhood green-

ness. This study, too, reproduces the static associations between average neigh-

borhood home values and average neighborhood greenness (Figure 3.6). Neigh-

borhood change, however, is multi-dimensional; some aspects of change may have

stronger effects on neighborhood vegetation cover than others and some aspects of

change may not be implicated in vegetation change at all.

Because of the durability of the housing stock, long sweeps of time are likely

necessary in order to observe a sustained change in neighborhood fortunes (Rosen-

thal and Ross, 2015) and it is possible that the 20-year time series of home values

used in this study is not sufficiently long. The lack of an association between lagged

trends or anomalies in greenness and home values casts doubt on whether flows of

population and capital between neighborhoods are evident in land change trends.

Instead, the static associations between home values and average greenness in the

Los Angeles and Detroit metropolitan areas and, in particular, in the three-way as-
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sociation between the strength of the recovery, the overall housing value, and the

average greenness in Los Angeles neighborhoods, suggest that neighborhoods have

persistent advantages and disadvantages that prime them for accelerated growth

or decline.

Thus, it seems that these advantages and disadvantages strongly determine

the biophysical outcomes of neighborhoods, specifically which neighborhoods en-

joy the multiple benefits of green vegetation. As Pulido (2004) noted, Los Angeles

neighborhoods are “constellations of opportunities;” the higher-value neighbor-

hoods are greener, appreciate more in home values, and recover more value after a

crisis. The persistence of neighborhood (dis)advantages over time is not inconsis-

tent with sporadic shocks or cyclical changes (Galster et al., 2007), including the

recent sub-prime mortgage crisis. We do not know, however, the extent to which

different neighborhood baselines lead to path dependence (Rosenthal and Ross,

2015), nor whether there are similar, self-stabilizing dynamics in green vegetation

density.
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CHAPTER IV

A Comparison of the Factors Driving
Change in Neighborhood Green
Vegetation across U.S. Metropolitan
Areas

4.1 Introduction

Green vegetation in residential landscapes mitigates many of the environmental

consequences associated with urbanization. Vegetation cover—in the form of trees,

lawns, and gardens, on public or private property—facilitates clean air and water,

recreation opportunities, and relief from rising urban air temperatures, yet these

ecosystem services are not shared equally by urban residents (Talarchek, 1990, Lo

and Faber, 1997, Heynen et al., 2006). This uneven nature of urban vegetation

and ecosystem services has long been understood to arise from urban form and

residents’ different capabilities to create and claim urban green space (Heynen and

Lindsey, 2003, Mennis, 2006), particularly through street trees, public parks, and

larger parcel sizes. Though less attention has been paid to the dynamics of change

in green vegetation in residential landscapes than to the different quantities and

qualities between neighborhoods, pressing questions of how to improve the equi-

table facilitation of urban ecosystem services through neighborhood green space
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(Wolch et al., 2014) require a better understanding of how changes in the resident

population and in housing conditions drive changes in green vegetation.

Recently, scholars of the social and economic drivers of vegetation change

have converged on the idea that the distribution of vegetated cover in residential

landscapes is determined by a few broad factors (Giner et al., 2013): gradients

of population or development density in the built environment determine how

much area is available for green vegetation; economic stratification (or the “luxury

effect,” as described by Hope et al., 2003) drives differences in both public and

private investment in landscaping and the urban tree canopy; and social stratifica-

tion or “prestige” factors (Grove et al., 2006, Troy et al., 2007), related to lifestyles

and life stages, describe how residents’ preferences and decisions about landscap-

ing depend on their household size, the presence of children, or whether they feel

compelled to keep up with neighborhood norms. Some syntheses see social and

economic stratification as a single, broad set of mechanisms arising from household

preferences and a wider political economy: households communicate social norms

through landscape-level “cues to care” (Nassauer et al., 2009); socially mobile res-

idents can capitalize on public green spaces and larger lot sizes in deciding where

to live; and wealthier residents can afford extravagant landscaping and potentially

costly irrigation to maintain private green spaces (Locke and Grove, 2016, Chuang

et al., 2017). But if we separate the effects of income and wealth from those of

reference group behavior and social contagion, we can identify three factors: den-

sity, luxury, prestige; this three-factor model (density, luxury, prestige) has been

repeatedly used to explain the spatial distribution of green vegetation in numerous

study areas, primarily in the continental United States (U.S.).

To date, the studies that have informed the three-factor model have gener-
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ally examined only one or two factors in a specific place and/or at a specific time

(Chuang et al., 2017). Other studies tend to imagine two of the tiers, economic

stratification and social stratification, as competing, rather than complementary,

narratives (Grove et al., 2014). Social stratification or prestige certainly plays a

role in explaining neighborhood-level variation in green vegetation; many stud-

ies note that measures of lifestyle or life stage (e.g., family formation, education,

type of employment) better explain spatial variation in neighborhood- and par-

ticularly parcel-level vegetation than socio-economic status (Grove et al., 2014,

Visscher et al., 2014). Of course, there are many contemporary studies that point

to economic stratification or the “luxury effect” as the dominant organizing prin-

ciple of urban vegetation disparities (Clarke et al., 2013, Li et al., 2015, Schwarz

et al., 2015, Steenberg et al., 2015). Yet it also seems likely that differences in

vegetation ownership and qualities—between public and private green space and

between tree canopy and other parcel-level green vegetation—are more directly

related to an ecology of prestige, or to social contagion and residents’ lifestyles

(Heynen et al., 2006). One limitation of prior work on the analysis of prestige

and lifestyle factors in the U.S. has been the repeated reliance of such studies on a

single proprietary dataset, namely the Claritas Potential Rating Index for Zipcode

Markets (PRIZM) dataset, which suggests that prestige hasn’t been explicitly op-

erationalized for future study. It begs the question: can the the three factors of

density, luxury, and prestige not be identified directly from resident profiles and

neighborhood conditions? These data limitations notwithstanding, the mixed evi-

dence in the literature indicates that luxury effects (e.g., landscaping, investment)

and prestige (e.g., lawn-care behaviors, housing setbacks) both partially explain

neighborhood-level vegetation differences and change.
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The three-factor model also raises questions about parts of socio-ecological

theory that may be left behind. In particular, though studies of uneven neigh-

borhood greenness have also identified that both time lags and legacy factors are

important (Bigsby et al., 2014, Locke and Baine, 2015, Grove et al., 2018), they

are often ignored by researchers looking to explain present-day vegetation dispar-

ities. Yet, certain spatial patterns in the built environment may signal a legacy

of disinvestment, economic racism, and land-use legacies such as environmental

contamination from polluting industries or brownfields. There are several method-

ological and data availability challenges to adequately incorporating time lags in

socio-ecological research; yet neighborhood legacies, often persisting through the

current day, can be measured in a variety of ways, reflecting how disinvestment,

racism, and a spatial fix for undesirable industrial activity are intertwined (Wyly

et al., 2004). Extensive demolition (Endsley et al., 2018, Chapter II, this volume)

or targeted redevelopment (Wilson and Brown, 2014) are two examples where

neighborhood legacies yield specific processes that shape neighborhood-level veg-

etation changes. In the U.S., neighborhoods have also been differentially improved

or harmed by the introduction of building codes and also by Progressive-era so-

cial movements to promote the general welfare through the development of urban

parks. The on-going legacies of racially targeted disinvestment or speculation in

neighborhood housing markets, including foreclosure, may also be related to veg-

etation change (Deng and Ma, 2015, Minn et al., 2015).

This study responds to an outstanding need for comparative analyses of

how the effects of density, luxury, or prestige drive vegetation change in different

urban contexts (Chowdhury et al., 2011, Jenerette et al., 2013), exemplified by the

sometimes surprising results from studies of cities differentiated by their climate
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(Ripplinger et al., 2017) or demographic changes (Endsley et al., 2018, Chapter

II, this volume). Comparative studies can also generate synergistic or counterfac-

tual examples, enabling new theories. Most salient to the discussion of urban green

space is the observation that while growing cities often have insufficient green veg-

etation due to population pressure, shrinking cities, at least in temperate climates,

often have an abundance (Herrmann et al., 2016); identifying common drivers of

disparate outcomes in growing versus shrinking cities could inform place-specific

policy interventions.

While case studies at or within the city or neighborhood scales proceed

from well-contextualized observations (e.g., Heynen et al., 2006), metropolitan-

scale or cross-metropolitan comparative studies require an approach that scales

well and is still interpretable. Here, I use a data-driven approach to describing

the common factors of neighborhood social and economic variation over the past

27 years for three metropolitan areas diversified by their climate and population

growth regimes: the Detroit Metropolitan Area and the Los Angeles and Seattle

Metropolitan Statistical Areas (MSAs). These factors are compared to the well-

documented structural factors of density, luxury, and prestige, in their ability to

explain change in neighborhood-level vegetated cover. As I will demonstrate, this

comparative, statistical approach still requires attention to the historical context

and neighborhood legacies that shape relations between population, housing, and

vegetation.

Identifying common factors of neighborhood change and how they vary be-

tween urban contexts is also an important goal of demographers, urban planners,

and social scientists engaged in studying residential populations and urban places

(Abel and White, 2015, Hochstenbach and van Gent, 2015). As recent studies
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demonstrate, empirical patterns of neighborhood change can be used both to vali-

date theories of change but also to spur questions and identify gaps in understand-

ing (e.g. Delmelle, 2016). The objectives of this study respond to two outstand-

ing questions about the social and economic drivers of neighborhood vegetation

change:

Q1. How do the patterns of social and economic change discovered in Census

and housing market data correspond to those of density, luxury, and pres-

tige, which are theorized to have created uneven neighborhood vegetation

conditions?

Q2. How do these ongoing social and economic changes relate to change in

vegetated cover and vigor at neighborhood scale in different metropolitan

areas?

Q3. How do historical legacies confound or complicate this data-driven approach

to understanding relationships between contemporary neighborhood social

or economic changes and vegetation change?

4.2 Data and Methods

I use neighborhood-level social and economic variables to identify common factors

of neighborhood change and how they relate to observed patterns of vegetation

change. Tract-level data from the U.S. Census Bureau are combined with housing

market data and pooled together in four periods: 1990, 2000, 2010, and 2015. The

common factors—possibly including density, luxury, and prestige—are modeled as

latent variables and are induced directly from a panel of inter-related measures of

neighborhood conditions. Finally, the relationships between change in these latent

variables and change in vegetation conditions are estimated using mixed models
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developed separately for each metropolitan area.

4.2.1 Study Areas

The cities of Detroit, Los Angeles, and Seattle and their surrounding communities

are illustrative of three broad patterns in other U.S. metropolitan areas. Detroit,

with its shrinking core and growing suburbs, reflects the historic decentralization

of U.S. cities and ongoing population decline. Seattle, in stark contrast, is grow-

ing rapidly, in large part due to growth in its economies of scale and in a young,

working population that increasingly desires density and its corresponding urban

amenities. Los Angeles, too, is growing, but must of its development in the last

decade of the twentieth century follows that of other Sunbelt cities, accommo-

dating population growth with a much smaller rise in housing costs than Seattle.

Though the specific insights about social and economic changes in these cities are

most relevant to other U.S. cities, the methodology used to investigate the socio-

ecological relations of these cities is certainly transferable to metropolitan areas

world-wide.

In Los Angeles and Seattle, the U.S. Census Bureau’s defined metropolitan

statistical area (MSA) is used. In Detroit, the study area encompasses only Wayne,

Oakland, and Macomb counties, but this spans an entire urban-to-rural gradient

and contains the vast majority of its population and structures. The three study

areas differ importantly in their climatic conditions. The Los Angeles MSA is warm

and arid: mean May-through-July precipitation over the period 1981-2010 was

0.33 inches for the city of Los Angeles but 4.2 and 14.2 inches for Seattle and

Detroit, respectively (NOAA, 2019). Average temperatures were more similar for

this same period, ranging from 60.7 F in Seattle to 66.4 F in Los Angeles.
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In all study areas, tracts that contained a significant amount of cultivated

(agricultural) lands were excluded from the analysis (Figure 4.1). This determi-

nation was made by identifying areas that were classified as “cultivated” in all

three available years of the National Land Cover Dataset (NLCD): 2001, 2006, and

2011; tracts with a large amount of land consistently classified as cultivated were

removed. The thresholds for removal were determined empirically for each metro

area, judging by the number of tracts removed and the spatial pattern created. In

the Detroit Metro study area, tracts with more than 11% of their area cultivated

were excluded. In the Los Angeles and Seattle MSAs, the thresholds were 1.3%

and 6.0%. In the Seattle MSA, tracts with considerable National Forest or National

Park area were also removed; this led to the exclusion of a small number of large-

area tracts in the east of the MSA. Finally, in the Los Angeles MSA, because a small

number of tracts in southeast Orange County were located on a separate Landsat

path from the rest, these tracts were excluded.

Neighborhood Social and Economic Indicators

Measures of social and economic conditions by Census tract were taken from the

decennial U.S. Census in 1990, 2000, and 2010 as well as from the American Com-

munity Survey (ACS) 5-year summaries in 2012 and 2017. The 5-year summaries

average conditions over 2008-2012 and 2012-2017 and they can be considered

as describing neighborhood conditions in a window that is centered on 2010 and

2015, respectively. I selected any social and economic measures that have been

found to significantly co-vary with vegetation in prior studies of neighborhood so-

cial, economic, and vegetation relations. Mennis (2006), Luck et al. (2009), and

Patino and Duque (2013), in particular, include tables of the relevant variables that
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have repeatedly been implicated in such studies; our list is presented in Table 4.1,

along with the source of the data.

Most of the decennial Census and ACS variables were obtained from the U.S.

Census Bureau through Social Explorer (SocialExplorer.com). Median household

income was obtained, unadjusted from the IPUMS National Historical Geographic

Information System or NHGIS (Manson et al., 2018) and is adjusted for inflation

to 2015 USD using the harmonized, seasonally unadjusted CPI for all items. All

population and housing unit counts were converted to percentages relative to ap-

propriate totals. The count of persons having attained a graduate degree varies

between Census years; later years enumerate separate counts of professional, mas-

ter’s, and doctoral degrees, all of which are lumped together as graduate degrees

for consistency. Similarly, the 65-and-over age distribution is obtained by summing

multiple age bins.

In addition to the self-identified population shares of white, black, Asian,

or Hispanic residents, I include measures of racial and ethnic segregation: black-

white unevenness and Hispanic/ Non-Hispanic unevenness. These measures are

related to the dissimilarity index or DI (White, 1983), but are calculated slightly

differently. Whereas the DI drifts over time with the changing metropolitan racial

or ethnic composition, this measure of unevenness—which can be interpreted as

the proportion of the population that would have to move into or out of a neigh-

borhood to achieve two-group racial or ethnic parity—is insensitive to changes in

the overall population sizes over time as it depends only on the relative shares of

each group within a single neighborhood. Equation 4.1 shows how unevenness is

calculated for any two groups, P1 and P2.
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Figure 4.1: The three study areas, shown at approximate scale, in UTM projection. From top-left,
clockwise: Los Angeles MSA (UTM 11N), Seattle MSA (UTM 10N), Detroit Metro (UTM
17N). The counties that make up each metropolitan area or MSA are outlined in black.
Census tracts that were dropped from each study region’s panel, due to considerable
cultivated or National Forest area, or which otherwise had missing data, are filled in
with black.
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Table 4.1: Measured variables of neighborhood conditions and their sources.

Variable Data Source

Population density Decennial U.S. Census; Social Explorer
Housing density Decennial U.S. Census; Social Explorer
Population 17 years of age and under Decennial U.S. Census; Social Explorer
Population 65 years of age and over Decennial U.S. Census; Social Explorer
Population self-identified as white alone Decennial U.S. Census and ACS; Social Explorer
Population self-identified as black alone Decennial U.S. Census and ACS; Social Explorer
Population self-identified as Asian alone Decennial U.S. Census and ACS; Social Explorer
Population self-identified as Hispanic Decennial U.S. Census; Social Explorer
Persons married Decennial U.S. Census and ACS; Social Explorer
Persons attained a Bachelor’s degree Decennial U.S. Census and ACS; Social Explorer
Persons attained a Graduate degree Decennial U.S. Census and ACS; Social Explorer
Owner-occupied housing rate Decennial U.S. Census; Social Explorer
Vacant housing rate Decennial U.S. Census; Social Explorer
Median household income (2015 USD) Decennial U.S. Census and ACS, Social Explorer and

IPUMS NHGIS
Median home value (2010 USD) Decennial U.S. Census and ACS, Social Explorer and

IPUMS NHGIS
Median sale price (2010 USD) Deed sales, CoreLogic Inc.
New housing starts/ construction Tax assessor’s records, CoreLogic Inc.
2-year mortgage foreclosure rate Deed sales, CoreLogic Inc.
Cumulative mortgage foreclosure rate Deed sales, CoreLogic Inc.
Share of housing that is single-family Tax assessor’s records, CoreLogic Inc.
Median year built Tax assessor’s records, CoreLogic Inc.
Median parcel size Tax assessor’s records, CoreLogic Inc.
black-white unevenness Decennial U.S. Census; Social Explorer
Hispanic/ Non-Hispanic unevenness Decennial U.S. Census; Social Explorer
Elevation (meters) USGS National Elevation Dataset
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(4.1) Unevenness(P1, P2) =
1

2

∣∣∣∣ P1∑
Pi

− P2∑
Pi

∣∣∣∣

Housing Market Measures of Neighborhood Change

Median sale price-per-square foot is obtained in most years from the deed sale

records of qualified residential properties, obtained from CoreLogic, Inc. However,

in 1990, about half of Detroit Metro Census tracts do not have a recorded sale.

In addition to median sale price, multiple imputation is used to recover missing

neighborhood-year observations of median year built, median household income,

and median parcel size in all metro-area panels. The approach used is imple-

mented in the Amelia II software (Honaker and King, 2011) for the R statistical

computing environment. Prior to imputation, all variables, including those with no

missingness and those for which some missingness is tolerated, are transformed,

as needed, so that all variables are approximately normally distributed. Over-

imputation diagnostics and a comparison of the kernel density estimates of the

distributions of observed versus imputed values indicated the imputed values were

a very good match.

The percentage of missing tract-year observations for any of the four im-

puted variables was no higher than 3.3% in any study area, except for median sale

price in the Detroit Metro area (16.1%). Median sale price-per-square foot in these

tracts is computed using multiple imputation based on the other panel variables

but also on the median home value as estimated by the 1990 Census, which is in-

terpolated to 2010 Census tract boundaries using the population and area weights

established by Logan et al. (2016). The interpolated 1990 home values are used

solely for multiple imputation. Prior to imputation, the 1990 home value estimates
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are adjusted for inflation to 2010 USD using the unadjusted CPI-U (for all urban

consumers) for housing from the Federal Reserve Bank of St. Louis. Missing data

were imputed separately in each year for each study area. The mean value across

30 imputed estimates was used to replace missing values in each case for only

the median sale price, median year built, median household income, and median

parcel size variables.

Green Vegetation

Most prior studies of neighborhood vegetation patterns have relied on greenness

indices (e.g., Mennis, 2006, Jenerette et al., 2013, Deng and Ma, 2015) such as the

normalized difference vegetation index (NDVI). These proxies for green vegetation

have the advantages that they are easy and fast to compute and generally compa-

rable throughout a study area. However, as mere proxies of green vegetation,

they are difficult to interpret as a modeled outcome of social or economic change

and are frequently biased in certain climatic settings. NDVI, in particular, and re-

lated greenness indices, are affected by background contamination, particularly

soil brightness and color (Fensholt et al., 2006); these issues are more pronounced

in sparsely vegetated areas, such as semi-arid Los Angeles.

I employ a physically based measure of a neighborhood’s green vegetated

area derived from linear spectral mixture analysis (LSMA) of Landsat 5 Thematic

Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) surface re-

flectance (SR). LSMA is particularly well-suited to urban studies because of the

problem of mixed pixels in moderate resolution satellite imagery, i.e., the tendency

for a single pixel to contain multiple different ground covers, due to the relatively

large size of Landsat pixels compared to that of ground features. Landsat SR data
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were obtained from the U.S. Geological Survey (USGS) EROS Science Processing

Architecture (ESPA) along with pixel-level quality assessment (QA) data. In each

study area, a determination of the “leaf-on” or green leaf-cover season was made

based on climatic data. In the Detroit Metro and Seattle MSA areas, in particular,

seasonal snow cover is present for part of the year. The Los Angeles and Seattle

MSAs are situated along the Pacific coast and have separate warm and wet seasons.

In the Los Angeles MSA, this separation can lead to different signals of green vege-

tation in wet versus dry seasons. However, to facilitate comparison across all study

areas, we used only Landsat images in the months of May through September,

inclusive.

All Tier 1 Landsat 5 TM and Landsat 7 ETM+ images with less than 60%

land cloud cover, in these months, were utilized, though some images were thrown

out due to haze and clouds that could not be masked based on the flags in the QA

band. Landsat 8 OLI data were not used, although they are available for part of

the study period, as the OLI sensor characteristics are quite different from TM and

ETM+. Only images in a single World Reference System 2 (WRS2) path were used

in each study area to avoid error that may be introduced from different look angles

in overlapping paths. Finally, to account of variations in scene-specific brightness

over time than can occur due to variations in atmospheric conditions and cloud

cover not otherwise corrected for or masked, each image in a study area’s time se-

ries is relatively radiometrically normalized using the approach described by Hall

et al. (1991), where the metro-specific reference image is selected for having the

highest dynamic range in either 2000 or 2010. Each radiometrically normalized

image was unmixed using a fully constrained least-squares approach identical to

that described by Endsley et al. (2018, Chapter II, this volume); the final vegeta-
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tion abundance images were composited annually at the pixel level into a single

image representing the median summer-time vegetation density. Validation of this

approach in previous work by the author indicates that vegetated area is estimated

with ±11.8 − 13.9% root mean squared error (Endsley et al., 2018).

4.2.2 Modeling Latent Social and Economic Variables

In evaluating the contribution of social and economic change to vegetation change,

then, we are confronted with a suite of neighborhood social and economic condi-

tions that vary over time and space and cannot be evaluated independently from

one another. Certain neighborhood change processes may only be detected, out-

side of the lived experience of residents, as subtle shifts in neighborhood income,

age, or racial or ethnic composition (as with gentrification, e.g., Abel and White,

2015) or in the combined movement of these indicators along with housing mar-

ket measures (Smith, 1987). Yet, common variation in indicators of neighborhood

conditions may reveal the social and economic factors driving neighborhood dif-

ferentiation. These common factors may then be modeled as latent variables (Pett

et al., 2003) which influence or are constituted by a number of inter-related mea-

sured variables (Fabrigar and Wegener, 2012), such as neighborhood conditions

measured during the decennial U.S. Census.

Based on initial assessments of the correlation structure of the combined

Census and housing market data panel, for a single metropolitan area in all years,

a confirmatory factor analysis (CFA) was conducted to model the latent variables

that were represented by the pooled neighborhood indicators. The CFA model was

implemented as a structural equation model and fit using the lavaan library in

the R statistical computing environment (Rosseel, 2012). The CFA model was con-
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strained such that both the loadings and the intercepts of the measured Census

and housing market variables are the same in every year of the study panel (1990,

2000, 2010, 2015). This establishes strong invariance, i.e., that any two neigh-

borhoods with the same score on one of the latent variables will have the same

expected values in the measured variables in every year (Beaujean, 2014) and can

therefore be meaningfully compared across the years.

Between 4 and 6 latent factors were considered, based on an examination

of screeplots (Fabrigar and Wegener, 2012) from the principal components analy-

sis but also from different oblique rotations of the initial factors. All factors were

allowed to have non-zero covariance, i.e., they were not constrained to be indepen-

dent of or orthogonal to one another; allowing correlation between factors may re-

sult in a more realistic model of neighborhood, as, for example, age structure is not

necessarily independent of education levels. Some of the measured variables listed

in Table 4.1 had to be dropped because their co-variation was too difficult to model

in a particular metropolitan area. Sometimes, more than one stable CFA model was

found, typically by exchanging one measured variable for another moderately cor-

related variable. The comparative fit index (Beaujean, 2014) and residual error

metrics were used to determine which model was a better fit to the variance struc-

ture overall. In both the Seattle MSA and the Detroit Metro models, in order to

achieve a stable solution, the intercepts for white population share were allowed to

vary between years. All other measured variable intercepts and all loadings were

constrained to be identical across years in each metropolitan area’s model.
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4.2.3 Modeling the Context and Drivers of Vegetation Change

It is essential, in evaluating the social and economic drivers of neighborhood veg-

etation change, to understand the context in which these changes occur. Thus, the

statistical model developed in this study is one that simultaneously estimates both a

contextual effect and a within-neighborhood effect of common social and economic

factors on vegetated cover. This is achieved with a mixed-effects model commonly

known as the within-between (WB) random effects model (Allison, 2009), shown

in Equation 4.2. Specifically, the contextual effect, βB for a given variable, say,

household income, on a neighborhood’s vegetation density, yit, is the effect of a

neighborhood’s long-term mean household income; it is a between-neighborhood

effect. The within-neighborhood effect, βW , in this example, is the effect that a

growth in income in the average neighborhood would have in changing vegetation

density.

(4.2)
yit = β0 +

(
Xit − X̄i

)
βW + X̄i βB + γi + εit

γi ∼ N
(
0, σ2

γ

)
The within estimates, βW , are identical to those of a classic fixed effects

(FE) estimator (Allison, 2009) and therefore do not suffer from the bias intro-

duced by a random effects model when the random effects assumption is unjus-

tified. In Equation 4.2, γi is the random neighborhood intercept term. The WB

random effects model is fit in the R statistical computing environment with the

lme4 library using restricted maximum likelihood (REML). Statistical significance

at the 99% confidence level is calculated using Sattherthwaite’s approximation of

p-values (Kuznetsova et al., 2017), which have been shown to achieve the correct
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Type-I error rates for mixed models when REML is used (Luke, 2017).

In each metropolitan area (modeled separately), both contextual effects

and within effects of each common factor from the CFA were initially considered.

In addition, certain metro-area models included additional variables that directly

represent well-identified neighborhood change processes, such as segregation or

between-group unevenness (Equation 4.1), the construction rate (in all three study

areas), and the mortgage foreclosure rate (in Los Angeles MSA, only, for lack of

complete data in the others). As previous studies point to the exceptional socio-

ecological relations of the City of Detroit (Hoalst-Pullen et al., 2011, Endsley et al.,

2018), in the Detroit Metro model, a dummy variable for City neighborhoods is

interacted with most of the covariates.

Finally, both contextual and within effects for key climate variables were

added: the current and one-year lagged total summer precipitation and the mean

July temperature for the given year. These variables were aggregated within Cen-

sus tracts each study year from data provided by Oregon State University’s PRISM

Climate Group (Daly et al., 2004). To estimate these variables within Census tracts,

the average value was estimated after resampling the original 2.5 arc-minute data

to 90-meter spatial resolution. Multicollinearity was assessed by calculating vari-

ance inflation factor (VIF) scores from an ordinary least squares (OLS) model that

reproduces the mean structure of the WB random effects model.

4.3 Results

4.3.1 Common Factors of Neighborhood Change

Though factor invariance between metropolitan areas was not pursued or inves-

tigated, the common factors identified (Table 4.2) are remarkably similar across
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all three study areas; they also compare very well with other studies that have re-

duced the dimensionality of similar data panels (Abel and White, 2015, Delmelle,

2016, Chuang et al., 2017). F1 is interpreted as “Residential stability” in the sense

of twentieth-century U.S. housing market norms: low housing densities, the ideal

of home-ownership (as opposed to renting), and the ideal of the single-family,

detached house are represented in the positive loadings on these conditions in

all three metropolitan areas. In addition, high marriage rates and high incomes

are also determined by F1. This suggests that home-ownership, long seen as a

financial vehicle for building equity and inter-generational wealth, is strongly as-

sociated with certain housing characteristics but also with certain socio-economic

advantages, namely marriage and high household incomes.
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Table 4.2: Empirical factors from the confirmatory factor analysis (CFA) and their loadings for each metropolitan area.

Factor interpretation Loadings: Detroit Metro Loadings: Los Angeles MSA Loadings: Seattle MSA

F1: Residential stability Owner-occupied rate (1.00),
Marriage rate (0.34), Under-17
rate (0.22), Single-family rate
(0.13), Housing density (-0.10),
Household income (0.10)

Owner-occupied rate (1.00),
Single-family rate (0.22),
Housing density (-0.19),
Vacancy (-0.19), Marriage rate
(0.19), Over-65 rate (0.14),
Household income (0.09)

Owner-occupied rate (1.00),
Housing density (-0.70),
Marriage rate (0.35),
Single-family rate (0.24),
Vacancy (0.11), Household
income (0.11), Median year
built (0.10)

F2: Relative black-white
population share

Black pop. proportion (1.00),
White pop. proportion (-0.80),
Vacancy rate (0.20), Under-17
rate (0.08), Year built (-0.03),
Marriage rate (-0.02),
Single-family rate (-0.01)

White pop. proportion (-1.24),
Black pop. proportion (1.00),
Marriage rate (-0.19), Home
sale price (-0.03)

Black pop. proportion (1.00),
White pop. proportion (-0.68)

F3: Economic advantage of
child-less “Creative Class”

Graduate degree attainment
(1.37), Bachelor’s degree
attainment (1.00), Under-17
rate (-0.18), Household income
(0.05)

Graduate degree attainment
(1.43), Bachelor’s degree
attainment (1.00), Household
income (0.09), Home sale price
(0.07)

Graduate degree attainment
(1.39), Bachelor’s degree
attainment (1.00), Under-17
rate (-0.52), Owner-occupied
rate (0.46), Household income
(0.17)

F4: Hispanic residents Hispanic pop. proportion (1.00) (No stable solution) Hispanic pop. proportion (1.00)
F5: Families with children Asian pop. proportion (1.00),

Owner-occupied rate (-0.35),
white pop. proportion (0.11),
Marriage rate (0.09)

Under-17 rate (1.00), Marriage
rate (0.45), Over-65 rate (-0.28)

Housing density (1.01),
Under-17 rate (1.00), Vacancy
rate (-0.88), Marriage rate
(0.41)
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F2 is strongly related to the shares of self-identified white and black resi-

dents. As such, neighborhoods that score high on F2 are generally highly segre-

gated, majority-black neighborhoods; over time, a neighborhood’s increasing F2

score could indicate a majority-white neighborhood that is integrating. This is

inevitable where either some white residents are displaced by incoming black resi-

dents or black in-migration is higher than white in-migration. In Detroit Metro and

Los Angeles MSA neighborhoods, related loadings on high vacancy rates, low mar-

riage rates, and an older housing stock indicate that economic disenfranchisement

is associated with black residential segregation.

F3 can be understood as the effect of the “creative class,” as described by

Florida (2002). In all three metropolitan areas, this factor determines high lev-

els of post-secondary education and high household incomes; the latter follows

from the higher wages demanded by higher levels of education. In Seattle and

Detroit neighborhoods, childlessness also loads onto this factor, as highly educated

working professionals in these neighborhoods may have delayed or opted-out of

child-rearing. Creative class households enjoy related socio-economic advantages,

including higher home values and higher rates of homeownership.

F4, which loads onto only one variable, is essentially the proportion of His-

panic residents or, over time, the growth in the neighborhood’s Hispanic popula-

tion. No stable CFA model for any metropolitan area allowed any other variable

to be co-determined by this factor. The instability of the Hispanic population pro-

portion variable may be due to potentially high estimation errors in the 2017 ACS

5-year sample; this variable in the 2017 survey in the Detroit metropolitan area

shows significant and unrealistic negative spatial autocorrelation across Census

tracts, a pattern that is considerably different from the previous three decennial
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surveys. If not due to error, then the Hispanic population proportion variable may

have a particular set of covariances that we have not been able to reproduce with

the current model structure.

F5 is the most heterogeneous factor between the metropolitan areas and

not really comparable between study areas. F5 is commonly associated with a

high under-17 rate and a high marriage rate, indicating that family formation is a

distinct factor of neighborhood-level variation. However, stable solutions for the

variance structure also had to contend with the influence of the Asian population

share variable, which was highly correlated with the first three factors in each study

area, particularly in Detroit, where this factor contributed to substantial variance

inflation in the regression model. In the Seattle and Los Angeles MSA areas, the

factor represents all families with children.

4.3.2 Trends in Green Vegetation Density

Figures 4.2, 4.3, and 4.4 shows robust linear trends of vegetation density over the

1990, 2000, 2010, and 2015 annual vegetation composites in each area. In gen-

eral, most neighborhoods are getting greener in the temperate climates of the De-

troit and Seattle metropolitan areas. In particular, vegetation trends within the City

of Detroit are consistent with the “greening of Detroit” observed in previous studies

(Ryznar and Wagner, 2001, Hoalst-Pullen et al., 2011); we observed strong growth

in vegetation on the east and northeast sides of the City of Detroit, likely due to

extensive abandonment and demolition in those neighborhoods (Endsley et al.,

2018, Chapter II, this volume). In the Seattle MSA, almost every Census tract has

experienced growth in green vegetation since 1990, consistent with changing land

uses due to deindustrialization (Abel and White, 2015), but none more so than
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those within the “Emerald City” of Seattle (outlined in black in Figure 4.4). The

lush, moderate-density, single-family home neighborhoods of north Seattle, includ-

ing the Woodland Park and Green Lake areas, have seen the strongest growth in

vegetation. In contrast to these temperate regions where water is generally in high

availability, semi-arid Los Angeles MSA neighborhoods have generally lost vegeta-

tion cover since 1990. Neighborhoods at higher elevations, such as in the Malibu

and Bel Air Hills or Verdugo Mountains, have moderately increased in green cover,

likely because there is more tree cover in these areas (McPherson et al., 2011) and

wealthier neighborhoods in these areas invest more in irrigation of landscaping

(Clarke et al., 2013, Mini et al., 2014, Clarke and Jenerette, 2015). The overall

decline in warm-season green vegetation cover elsewhere in the Los Angeles MSA

is likely due to rising temperatures and more frequent drought conditions; indeed,

from 2006 through 2010, single-family water use in L.A. declined steadily along

with the greenness of irrigated residential lands from 2006 through 2010 (Mini

et al., 2014).
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Figure 4.2: Robust vegetation change trends for the
Detroit Metro area, summarized by 2010
Census tracts. The City of Detroit is out-
lined in black.

Figure 4.3: Robust vegetation change trends for the Los Angeles MSA,
summarized by 2010 Census tracts.
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4.3.3 Within-Between Random Effects Model

In the Detroit Metro within-between (WB) random effects model, inclusion of com-

mon factor F5 led to severe multicollinearity with multiple other factors and so was

dropped from the model. Likewise, the contextual effects that were interacted with

the City-of-Detroit dummy variable had very high VIF scores in the OLS model and

were subsequently dropped. In all models, black-white unevenness was highly cor-

related with F2 and had to be dropped. In the Seattle MSA model, F1 and F5 are

highly correlated, so two separate models were estimated for Seattle MSA neigh-

borhoods, exchanging F1 for F5 and vice-versa.

Robustness checks included visual interpretation of the residuals for het-

eroscedasticity and spatial autocorrelation. A plot of the model residuals against

the fitted values showed no apparent deviation from constant variance across the

domain. Spatial autocorrelation was assessed by calculating the distance from each

Census tract’s centroid to the central business district (CBD) of each metropolitan

area. A generalized additive model smoother fit to the residuals plotted by distance

to the CBD showed an almost completely flat relationship, i.e., no dependence on

distance to the CBD.

In all three study areas, high long-term neighborhood stability (F1) is a

context for high vegetation density (Table 4.3) In the Seattle MSA, both residen-

tial stability (F1) and the presence of families with children (F5) are contexts for

greener neighborhoods; though modeled separately, they are both strong effects

on long-term vegetation cover. In the Los Angeles MSA, creative class enclaves

(F3) are also typically greener, whereas these same neighborhoods in the Seattle

MSA are typically less green, controlling for families with children. In the Detroit

Metro model, a surprising result (given the tendency for high vegetation density
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Figure 4.4: Robust vegetation change trends for the Seattle MSA, summarized by 2010 Census
tracts.
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to follow high socio-economic status) is that neighborhoods with a high share of

black residents and their associated economic disenfranchisement (F2) have high

vegetation densities, net of residential stability.

The factors driving change in vegetation density (Table 4.4) seem to be very

different between metropolitan areas. Although declines in residential stability

(F1) are significant drivers of vegetation growth within the City of Detroit (not the

wider Metro Area) and in the Los Angeles MSA, this effect is a weaker driver of

vegetated cover loss in the Seattle MSA. Increasing black population proportions in

the Seattle MSA and in suburban Detroit neighborhoods is a significant driver of

vegetation loss, but this kind of change has no significant effect on vegetated cover

in the Los Angeles MSA. The significant driving effects of growth in the creative

class (F3) in the Los Angeles and Seattle MSAs, but not in the Detroit Metro area,

may be due to the greater concentration of highly educated people in those areas,

relative to Detroit. However, the concentration of these highly educated, high-

income populations seem to have differing effects; in the Los Angeles MSA model,

growth in F3 drives growth in vegetation cover, whereas in the Seattle MSA model,

growth in F3 drives loss in vegetation cover. Growth in families with children (F5)

also has a different effect: it is a driver of vegetation loss in the Los Angeles MSA

but of gain in the Seattle MSA. In the Los Angeles MSA, where we have additional

data on mortgage foreclosures unavailable in the other study areas, we see that an

increase in the 2-year mortgage foreclosure rate is the strongest driver of growth

in vegetation density in that area.
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Table 4.3: Contextual effects, and standard errors in parentheses, estimated by the within-between random effects model. Response variable is pro-
portion of neighborhood area (ranging from 0 to 1) that is vegetated. Foreclosure and construction rates are the number of events normal-
ized by the total housing units. Satterthwaite approximate p-values denoted: *** p-value < 0.0001; ** p-value < 0.001; * p-value < 0.01.

Covariate Detroit Metro
Los Angeles
MSA

Seattle MSA
(with F1)

Seattle MSA
(with F5)

Climate: Annual Precipitation (mm) -0.00114
(0.00021)***

0.00221
(0.00024)***

0.00036
(0.00006)***

0.00044
(0.00007)***

Climate: July Mean Temperature (deg C) -0.09803
(0.00694)***

0.00239
(0.00128)

0.00071
(0.00759)

0.00346
(0.00774)

Construction Rate 0.20807
(0.16436)

-0.09049
(0.02748)*

-0.06129
(0.07589)

-0.04663
(0.07737)

Elevation (by 100m) 0.00656
(0.00116)***

F1: Residential stability 0.05163
(0.00330)***

0.03990
(0.00190)***

0.09843
(0.00385)***

F2: Relative Black-White population share 0.01490
(0.00152)***

0.01386
(0.00440)*

0.01062
(0.00397)*

-0.01402
(0.00386)**

F3: Economic advantage of child-less “Creative Class” 0.00367
(0.00400)

0.02159
(0.00229)***

0.01901
(0.00799)

-0.05362
(0.00806)***

F4: Hispanic residents -0.00745
(0.00230)*

-0.00166
(0.00845)

-0.02864
(0.00839)**

F5: Families with children -0.01152
(0.00452)

0.19665
(0.00799)***

Hispanic/Non-Hispanic Unevenness 0.05022
(0.01093)***

Median Price-per-Square Foot ($100s) 0.00142
(0.00082)

-0.01096
(0.00257)***

-0.01159
(0.00262)***

Mortgage Foreclosure Rate -1.07708
(0.27010)***
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Table 4.4: Within effects, and standard errors in parentheses, estimated by the within-between random effects model. Response variable is proportion
of neighborhood area (ranging from 0 to 1) that is vegetated. Foreclosure and construction rates are the number of events normalized by
the total housing units. Satterthwaite approximate p-values denoted: *** p-value < 0.0001; ** p-value < 0.001; * p-value < 0.01.

Covariate Detroit Metro
Los Angeles
MSA

Seattle MSA
(with F1)

Seattle MSA
(with F5)

Climate: Annual Precipitation (mm) 0.00060
(0.00001)***

0.00114
(0.00003)***

-0.00004
(0.00001)*

-0.00003
(0.00001)

Climate: July Mean Temperature (deg C) 0.00244
(0.00054)***

-0.00155
(0.00042)**

-0.00056
(0.00070)

-0.00086
(0.00069)

Construction Rate -0.02455
(0.02548)

-0.03557
(0.00375)***

0.01261
(0.01191)

0.00954
(0.01174)

. . . (within City of Detroit) -0.07865
(0.83142)

F1: Residential stability -0.00133
(0.00233)

-0.01340
(0.00102)***

0.01061
(0.00364)*

. . . (within City of Detroit) -0.01067
(0.00298)**

F2: Relative Black-White population share -0.00435
(0.00118)**

-0.00201
(0.00135)

-0.01623
(0.00171)***

-0.01921
(0.00166)***

. . . (within City of Detroit) 0.00609
(0.00182)**

F3: Economic advantage of child-less “Creative Class” -0.00043
(0.00304)

0.00970
(0.00112)***

-0.01389
(0.00426)*

-0.02906
(0.00498)***

. . . (within City of Detroit) 0.00325
(0.00364)

F4: Hispanic residents 0.00142
(0.00104)

-0.00515
(0.00225)

-0.00678
(0.00217)*

. . . (within City of Detroit) -0.00269
(0.00126)

F5: Families with children -0.01122
(0.00145)***

0.03911
(0.00616)***

Hispanic/Non-Hispanic Unevenness -0.04189
(0.00482)***
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Covariate Detroit Metro
Los Angeles
MSA

Seattle MSA
(with F1)

Seattle MSA
(with F5)

Median Price-per-Square Foot ($100s) 0.00074
(0.00012)***

0.00055
(0.00041)

0.00039
(0.00041)

Mortgage Foreclosure Rate 0.76683
(0.03489)***
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4.4 Discussion

4.4.1 Neighborhood Change Trends

The social and economic trends of these three metropolitan areas include changes

common across U.S. communities: declining marriage rates, filtering of the post-

war suburban housing stock, and the rise of a highly educated urban elite. Part

of the decline in residential stability (F1) can be attributed to nation-wide de-

clines in marriage rates and family formation (Cohn et al., 2011) as well as in

inflation-adjusted incomes. The recent decline of post-war inner-ring suburbs is

well-documented (Molina, 2016) and is seen in all three metropolitan areas of this

study. Neighborhood scores on F3, enclaves of the creative class, have generally

increased in the Los Angeles and Seattle MSAs, reflecting an increase in degree

credentials for many city-dwelling Americans.

While residential stability has declined, the share of black residents has gen-

erally increased in most neighborhoods, though this rising integration is spatially

uneven within each metropolitan area. In Detroit, this reflects both neighborhood

segregation and integration, as more socially mobile black residents migrate out-

ward from the margins of the City of Detroit and into inner-suburban neighbor-

hoods and southern Macomb County. Detroit-area neighborhoods with the fastest

growth in the F2 score are in Redford (west of Detroit) and Eastpointe (northeast

of Detroit); in nearby Warren, MI, black residents accounted for less than 1% of the

population in 1990 but over 18% in 2017, according to the U.S. Census Bureau.

F1 and F2 scores are generally anti-correlated in each study area, as white house-

holds with greater inter-generational wealth are more likely to own their home

than black households.
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As in the other study areas, residential stability (F1) in the Seattle MSA

has generally declined, yet the spatial pattern here is more striking. In the cities

of Seattle, Redmond, and Renton, residential stability has been maintained or in-

creased; it has declined everywhere else. Also striking is the pattern of change in

relative black-white population share (F2) and in the Hispanic population share

(F4); in the cities of Seattle and Tacoma, neighborhood scores on these factors

have declined while they have risen almost everywhere else (Figure 4.5). In the

Los Angeles MSA, areas of high long-term residential stability (F1) are spatially

disjoint from the areas of highest growth in mortgage foreclosures.

4.4.2 Correspondence of Common Factors to the Literature

There does not appear to be a one-to-one mapping between the empirically derived

common factors and density, luxury, or prestige. F1, residential stability, does cor-

respond closely to the theorized luxury effect, which impacts vegetation through

a set of related neighborhood conditions that create opportunities for greening,

including single-family homeownership and parcel size (Giner et al., 2013), and

that preserve neighborhood green space through potentially costly irrigation, par-

ticularly in arid regions (Jenerette et al., 2013), or through political advocacy for

green space or zoning codes. As Chuang et al. (2017) also noted in Baltimore, long-

term stability of a neighborhood, in wealth terms, predicts higher green vegetation

density.

The socio-economic advantage of a rising creative class (F3) is consistent

with elements of both luxury and prestige. Highly educated, high-income house-

holds have more resources to spend to capitalize on urban green space (Heynen

et al., 2006) but their education may also predispose them towards certain socially
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Figure 4.5: Map of trends in neighborhood F2 scores across the Seattle MSA; increasing trends can
be interpreted as a rise in the black share of residents and therefore, given a majority-
white baseline, of increasing integration. The City of Seattle is outlined in black.
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learned lawn and tree management behaviors (Clarke et al., 2013). This combina-

tion of processes, implicating both an ecology of luxury and an ecology of prestige,

is apparent in the marginal effect of F3 when F1 is or is not controlled for: when

a context of residential stability (F1) is controlled for, marginally highly educated

neighborhoods are greener; without residential stability (F1) controlled for, the

marginal effect of a highly educated population is less-green neighborhoods (Ta-

ble 4.4). The latter might reflect a tendency for highly educated households to

live in denser neighborhoods with more amenities but less green space; in these

neighborhoods, they may be more likely to rent and are yet unmarried.

Families with children (F5) also implicates luxury, lifestyle, and life stage:

marriage rates have recently declined at a much faster rate for lower-income groups

(Pew Research Center, 2010, Cohn et al., 2011). This may explain why the contex-

tual effects of F1 and F5 mask one another; higher-income, more highly educated

individuals have a stronger inclination and capability to get married and raise chil-

dren. Married families have been thought to prefer lower housing densities, where

there is more green space available for children to play and housing units are

large enough to accommodate growth in the family (Boone et al., 2009, Giner

et al., 2013). However, in the Seattle MSA, families with children occupy higher

housing densities, and this may account for the different contextual and within ef-

fects of this factor compared to the Los Angeles MSA. More generally, the different

measured variables influenced by this factor (F5) limit cross-metropolitan compar-

ison. The more comparable demographic factors, F2 and F4, do not correspond

with prevailing theories about structural effects on urban vegetation (e.g., density,

luxury, prestige); however, they do suggest that populations facing economic dis-

enfranchisement or public disinvestment in neighborhood conditions—legacies of
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discrimination or segregation—do experience changes in neighborhood greenness

regardless of neighborhood socio-economic status. Indeed, neighborhoods with

a greater long-term Hispanic population share are less green overall in all three

metropolitan areas (this is not obvious for the Los Angeles MSA from Table 4.4,

but the positive effect of Hispanic/ Non-Hispanic unevenness seems to arise from

greener majority Non-Hispanic neighborhoods). In Seattle MSA neighborhoods,

controlling for the presence of children with families, growth in the Hispanic popu-

lation seems to drive losses in green vegetation. As Heynen et al. (2006) suggested,

this could be a result of this group’s rapid growth (and concomitant growth in the

built environment), their lawn management behaviors, or public disinvestment in

the tree canopy of majority-Hispanic neighborhoods.

4.4.3 Drivers of Vegetation Change

Climatic Drivers

The measure of vegetation density in this study is influenced mostly by visible veg-

etated cover area or the leaf-area index but also by plant vigor; both are sensitive

to temperature and available water during the growing season. Water availability

and temperature during the growing season are the two primary constraints on

green vegetation’s productivity in these study areas. Neighborhood green vegeta-

tion in the Los Angeles MSA is clearly limited by water availability (Tables 4.3 and

4.4), which is not the case for Detroit Metro and Seattle MSA neighborhoods.

Temperatures have a weaker association with levels of and change in veg-

etated cover. With the exception of Detroit Metro neighborhoods, mean July tem-

peratures have no effect on long-term vegetated cover. In the Los Angeles MSA,

an increase in mean July temperatures of 1 deg C drives a decline in percent veg-
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etated area of 1.5 points, but there is no apparent effect of rising temperatures

on vegetated cover in Seattle MSA neighborhoods. The Detroit area appears to

be quite different in the effect of temperature on vegetated cover (Tables 4.3 and

4.4). However, it should be noted that the temperature gradient across the Detroit

Metro area is very small and has the same spatial pattern as building density in

the region. Thus, the estimated size of the contextual effect of mean July tempera-

tures in Detroit Metro neighborhoods (9.8 percentage points of vegetated area per

1 deg C increase in temperature) is likely inflated by this urban-to-rural develop-

ment gradient. The range of temperatures along this gradient is only about 1 deg

C. Unlike the Los Angeles and Detroit areas, Seattle MSA neighborhoods exhibit no

significant relationship between vegetated cover and temperature and the effects

of water availability are virtually zero. It appears that vegetated cover in Seattle-

area neighborhoods is limited neither by water nor temperature, likely because the

region enjoys moderate temperatures and ample water availability throughout the

year.

Detroit Metropolitan Area

Within the City of Detroit, a decline in residential stability (F1) is the greatest

driver of vegetation growth, and this can be understood as the effect of the joint

processes of neighborhood decline: declining single-family owner-occupancy, mar-

riage rates, and incomes due to extensive out-migration has led to the thinning-out

of neighborhoods and the replacement of the built environment with pervious and

vegetated cover (Endsley et al., 2018, Chapter II, this volume). Change in residen-

tial stability does not drive vegetation change outside of the City, however, indicat-

ing that the suburbs’ rising housing densities and sharply declining homeowner-
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ship rates since 2000 have not yet made a measurable difference in neighborhood

greenness. Indeed, most neighborhoods in the Detroit area have become greener

over the past 25 years even as the number of housing units has increased, suggest-

ing that, at least since the mid-2000s, the dominant form of new development has

been infill, which is likely taken up more by renters than owners.

At metropolitan scale, rising black-white integration drives a loss in vege-

tation density, likely due to population pressures. However, the driving direction

here may be reversed, as integration has proceeded in certain neighborhoods, pre-

viously denied to black households, that are more built-up and less green than

some suburban black enclaves. The suburban cities of Southfield and Warren serve

as excellent examples; the former is a majority-black city characterized by lush,

low-density, single-family neighborhoods while the latter is a majority-white city

with extensive commercial and industrial development, including two General Mo-

tors plants and multiple rail lines. Both cities have been in transition for some time

(Zenk et al., 2005); Southfield’s black residents increased from a tract-level median

of 23% of residents in 1990 to 73% by 2017. Although we might expect South-

field’s lower housing density to lead to housing affordability for black residents in

southeast Michigan, the city’s median home value in 1990 was 12% lower than

the Metro-area median home value at the time; in 2017, it was 30% lower. Rel-

ative affordability may have been one driver of black in-migration to Southfield,

but socially mobile, aspiring black homeowners also likely faced few attractive al-

ternatives for places to live, and may have been disinclined or discouraged from

moving to nearby Warren, where black residents were fewer than 1% of the city’s

population in 1990.

Thus, residential segregation and housing market discrimination may have
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Figure 4.6: Plot of vegetation density, in any year, against a neighborhood’s self-identified black
population share, in each quartile of residential stability (F1), for the cities of Warren
and Southfield. Linear trend line with 95% confidence interval is plotted.
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in fact driven black residents away from more developed, industrialized centers in

the Detroit metropolitan region, like Warren (Downey, 2005). Indeed, a recent

review of the literature reveals that green space inequities related to race or eth-

nicity are more visible in less segregated areas (Watkins and Gerrish, 2018). This

explains the otherwise surprising result that a neighborhood context characterized

by a large black population and high residential segregation also has a high veg-

etation density (Table 4.3 and Figure 4.6), not just in the vacant neighborhoods

of Detroit but across the metropolitan area. In Warren, too, the neighborhoods

in 2010 and 2015 with the greatest shares of black residents are greener (top-

left panel of Figure 4.6); these are located at the border with the City of Detroit

at 8 Mile Road and include parks and extensive urban tree canopy that has been

well-preserved, though a couple of derelict structures have been demolished, as

well. However, as a neighborhood’s F2 score increases, vegetated cover declines

(Table 4.4), even in majority-black Southfield. Because an increase in F2 reflects

not only an increase in the black share of residents but of associated economic dis-

advantages, we might suspect that a model of concentrated disadvantage predicts

a decline in green vegetation. From aerial photographs, however, it is apparent

that the rapidly integrating neighborhoods of Warren near 8 Mile Road which, in

addition to their proximity to the City of Detroit also contain the least expensive

housing stock of Warren, have preserved extensive tree canopy over the past 20

years. Thus, it seems more likely that either redevelopment or filtering of subur-

ban neighborhoods leads to changes in residents or in their preferences, willingness

to pay, or political power pursuant to advocating for and maintaining urban tree

canopy.
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Los Angeles MSA

In Los Angeles MSA neighborhoods, though a context of high residential stability

(F1) is associated with high vegetation density (Table 4.3), the model indicates

that further growth in residential stability as well as construction are driving losses

in green vegetation (Table 4.4). This is consistent with Lee et al. (2017), who

observed that the expansion and redevelopment of single-family homes was driv-

ing a loss in urban tree canopy; specifically, they found that single-family homes

in the area have been rebuilt larger since 2000, despite the need for more dense,

higher-occupancy development. In addition to housing expansion, change atti-

tudes towards trees as they grow may also explain tree removal by home-owners

(Conway, 2016).

The Los Angeles area also has a large number of highly educated, high-

income residents, like other cosmopolitan metropolises world-wide. These resi-

dents are found in and seem to contribute toward greener neighborhoods. Indeed,

a map of the two highest quintiles of the long-term average F3 score corresponds

exactly to the greenest neighborhoods of the Los Angeles MSA: all of the high-

elevation neighborhoods as well as Santa Monica and Los Alamitos. These neigh-

borhoods have extensive urban parks but also seem to have maintained a high

density of urban trees throughout the study period. Conversely, families with chil-

dren (F5), already in relatively green areas such as the Santa Monica Hills, Central

L.A., and Pasadena, seem to be driving losses in green vegetation, which could be

explained either by the aforementioned increase in hardscaping (Lee et al., 2017)

or by shifting preferences in this group toward less water-demanding, more xeric

landscaping (Larson et al., 2017).

The strong effect of mortgage foreclosures on green vegetation requires fur-
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ther analysis. While a comparison of maps of simple linear trends shows a strong

anti-correlation between areas of the highest growth in foreclosure rates and ar-

eas of least decline in greenness, the data indicate that when neighborhoods have

above-average foreclosure rates they tend to have above-average greenness. This

suggests some possible responses to widespread foreclosure in an arid climate;

1) Owner-occupants of nearby properties are pursuing a landscaping and irriga-

tion strategy on their own property that boosts greenness in an effort to offset

any visible decline in foreclosed properties; 2) Landlords and other investors in

foreclosed properties in these areas may be pursuing a rehabilitation or holding

strategy (Molina, 2016) by maintaining a property’s ornamental vegetation; or 3)

Properties in mortgage foreclosure defer the housing additions described by Lee

et al. (2017) and therefore retain more tree canopy cover during high foreclosure

periods.

Seattle MSA

With the exception of a few neighborhoods north of Northgate, City of Seattle

neighborhoods have lost black residents (falling F2 scores), with an average de-

cline in the tract-level black share of residents of 2.4 percentage points over 1990-

2017. Over this period, City of Seattle neighborhoods, particularly in north Seat-

tle, south of Northgate, and central Tacoma neighborhoods along Nisqually Reach,

have become both whiter (in residents) and greener (in vegetation). Abel and

White (2015) identify gentrification as one of the primary drivers of Seattle’s de-

mographic change over this period, and in north Seattle this is characterized by

replacement or an increase in younger, higher-income households, both as renters

but also as homeowners; their ability to pay is consistent with the large increase in
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housing costs in these neighborhoods.

While an increase in greenness is shared by most Seattle MSA neighbor-

hoods, there is a spatial correspondence between the areas of fastest vegetation

growth and the areas of fastest decline in the black share of residents (or, equiv-

alently, fastest growth in the white share of residents; see Figure 4.5). From an

examination of aerial photographs, these Seattle and Tacoma neighborhoods seem

to have preserved a maturing urban tree canopy; on some parcels, new trees have

been planted and all visible trees seem to have grown over this 27-year period.

Conversely, outside Seattle and Tacoma, in integrating cities like Kent (71% white

alone in 2000, 52% by 2017), there is extensive new housing and retail develop-

ment. This is consistent with the pattern of new development observed at the urban

fringe, despite the Seattle area’s urban growth boundary that was implemented in

1990 (Morrill, 2008).

Increasing F3 scores are a sign of neighborhoods in transition or under gen-

trification, and it is no surprise that growth in this factor is strong for neighbor-

hoods along Puget Sound both in Seattle and Tacoma. This growth in the cre-

ative class (F3) seems to be driving a decline in green vegetation, even in wealthy

suburbs like Mill Creek and its environs, where a growing population is inducing

new housing development that has replaced much of the forested areas near the

Garhart Reservoir. Lake Stevens, WA is another example, where a growth rate of

over 300% between 2000 and 2010 has led to extensive infill on former agricul-

tural lands. Bonney Lake, WA has also seen extensive tract-home development in

formerly forested areas east of the Puyallup River. An additional consideration is

that new housing developments have always been motivated by a desire to attract

high-income buyers (Smith, 1987), which may also explain high F3 scores in these
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areas.

Given that communities with an increasing black share (increasing F2 scores)

have also seen extensive development, we can surmise that in the face of popu-

lation pressure, the neighborhoods that have best defended against development

have created conditions, possibly rising housing costs, that are less desirable for mi-

nority residents. This has shifted both the balance of new development and racial

integration to the suburbs. Similarly, where families with children (F5) have grown

or declined the least, in the City of Seattle and east of the I-405 freeway near Belle-

vue and Redmond, we see low-density neighborhoods with extensive tree canopy

cover that have completely avoided redevelopment for the past 27 years.

4.5 Conclusions

The conceptual aim of this study was to evaluate how empirically defined fac-

tors of neighborhood social and economic change compare to those identified in

the prior literature in their ability to explain vegetation change in three different

metropolitan contexts. There is a related methodological aim, as well; compar-

ative metropolitan-scale studies require an approach amenable to large popula-

tions and which remains interpretable. However, the surprising and sometimes

counter-intuitive statistical results evident in this study (such as the high green-

ness of majority-black neighborhoods in Detroit’s inner suburbs) also indicate that

knowledge of historical context is key to correctly interpreting the sociospatial pat-

terns of neighborhood-level vegetation change. When limited time or data avail-

ability prohibit a more grounded study of the factors driving vegetation change, the

statistical approach used in this study can effectively point the researcher where to

look within the metropolitan frame and its high-dimensional panel of changing
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neighborhood conditions.

The statistical model used presents an alternative description to the three-

factor model of how social and economic conditions shape neighborhood vege-

tation conditions. The empirical factors of this study are more nuanced and im-

plicitly acknowledge the interdependence of (and correlations between) density,

luxury, and prestige. Comparing three different metropolitan areas, I find evidence

of broad trends consistent with the luxury effect. In all three study areas, residen-

tial stability (high owner-occupancy and marriage rates) creates a context of high

green vegetation density. Married families with children are highly correlated with

residential stability but exhibit a more complex relationship with neighborhood

vegetation, possibly because the neighborhood change processes related to their

life stage are better observed at finer spatial scales.

The varying effects of change in these patterns of neighborhood variation on

green vegetation are partially explained by differences in metropolitan context and

in historical legacies, particularly legacies of racial residential segregation. Racial

segregation and integration are twin processes that strongly correspond to changes

in neighborhood vegetation because they involve large shifts in the metropolitan

population. In the Detroit Metro area, even discounting the highly segregated City

of Detroit, a legacy of housing discrimination created surprisingly green neigh-

borhoods for black suburban residents; the slow erosion of that legacy through

integration is reducing disparities in vegetation in the inner suburbs. Conversely,

a concentration of white residents in the cities of Seattle and Tacoma is benefiting

from, and perhaps aiding in, the preservation of single-family homes and urban

tree canopy at the cost of increasing development pressure elsewhere. Although

most Seattle-area neighborhoods have become greener since 1990, the unrealized
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gains of neighborhoods outside Seattle and Tacoma can be explained by their in-

creased population pressures and new housing development. Both within and

around Seattle, the most socially vulnerable residents are still disproportionately

exposed to polluting industries, as well (Abel and White, 2015).

Over the past 27 years, an interaction between residential preferences (e.g.,

for or against tree canopy and for detached, single-family homes) and population

pressures have shaped the socio-spatial distribution of green vegetation in U.S.

metropolitan areas. Though a panel of three study areas is hardly definitive, the

comparisons between these metropolitan areas has compelling implications for en-

vironmental justice (EJ) studies. I hypothesize that the uneven distribution of en-

vironmental amenities arises differently under a regime of population growth than

one of decline. Specifically, in rapidly growing cities like Seattle and Los Ange-

les, the most economically and socially advantaged residents are able to capitalize,

even to hoard, environmental amenities such as parks and greener neighborhoods.

But in stable or declining areas, like the City of Detroit and its stable metropolitan

population, it is primarily historical legacies that shape the socio-spatial distribu-

tion of environmental amenities, sometimes in ways that are counter-intuitive to

EJ scholarship (Grove et al., 2018).

This study’s data-driven approach is primarily limited by the spatial scale

and collection frequency of the Census Bureau datasets. But the spectral and spatial

resolutions of the Landsat satellite data platform also limit our ability to describe

neighborhood biophysical conditions in more detail than aggregate green vegeta-

tion density. While the multi-decadal legacy of Landsat is key to a neighborhood-

scale analysis, long periods of separation between study periods may be required to

overcome the high uncertainty associated with gradual neighborhood biophysical
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changes. As they are defined by differences from the mean, the effects of change

in social or economic conditions on vegetation are likely to be relatively small.

Where fine-scale data on vegetation type and quality, in addition to public versus

private ownership, can be combined with data on neighborhood conditions at a

similar scale, this methodological approach looks very promising as a way of syn-

thesizing disparate patterns of social and economic change and discovering their

relationship to the biophysical changes that ultimately drive long-term differences

in neighborhood environmental quality.
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CHAPTER V

Conclusion

Our tacit understanding of neighborhood socio-ecological change based on statisti-

cal patterns between socio-economic status and land cover belies a complexity that

is multi-scalar, sensitive to initial conditions, and dependent on the metropolitan

and climatic contexts. This complexity has not been acknowledged in much of the

research on the drivers of uneven environmental amenities, such as green space,

in urban areas. Statistical pattern-based approaches to studying neighborhood-

level change are common. Some of the shortcomings of theses approaches, which

served as the inspiration for this dissertation, can be addressed with better data (by

“pixelizing” rich and accurate social or economic datasets, e.g. Geoghegan et al.,

1998): more semantically refined data at smaller spatial scales (e.g., household-

or parcel-level) and collected with greater frequency (e.g., monthly or annually).

Spatial scale is chief among the technical limitations of my dissertation. Yet some

of the limitations are conceptual, particularly related to the measurement of neigh-

borhood social and economic conditions, the definition of the neighborhood, and

our conceptualization of neighborhood change. Here, I describe these limitations

in detail and make recommendations for future work on the social and economic

drivers of neighborhood vegetation change, with the aim of informing the equitable

provision of ecosystem services for as many residents as possible. Despite these real
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limitations, I also summarize the important contributions of this dissertation to the

literature and, separately, to our practical understanding of metropolitan popula-

tion change and its effect on neighborhood green vegetation.

5.1 Contributions to the Literature on
Socio-Ecological Change

In the first paper of my dissertation, Chapter II in this volume, I worked with an in-

terdisciplinary group of faculty wrestling with the problem of understanding neigh-

borhood change. Part of the inspiration for our approach came from both scholarly

studies working to infer social and economic conditions based on satellite views of

urban or rural landscapes (e.g., Weeks et al., 2007, Stow et al., 2013) as well as pri-

vate companies tracking stocks or corporate valuations against retail parking lot car

densities or the heights of crude oil storage drums. Night-time lights data, too, due

to their strong correlations with urban form and the built environment, were be-

ing regularly used to validate macro-economic assessments of regional or national

wealth (e.g., Elvidge et al., 2007, Henderson et al., 2012, Pinkovskiy and Sala-i

Martin, 2014) in a “Census from heaven” (Sutton et al., 2001). These black-box,

statistical learning approaches required no grounded theory to deliver “insights”

into the relationships between urban form or biophysical conditions and the social

or economic conditions that demographers and social scientists are keenly inter-

ested in observing.

Yet it soon became clear that these approaches don’t allow us to identify

the mechanisms of socio-ecological change. Decades of scholarly work on the topic

had already gone far to elucidate the connection between metropolitan populations

and their environment. Whether these approaches originated in econometrics and
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hedonic price models, in planning or environmental justice, the general consensus

was that neighborhood-level variation in green vegetation was largely explained by

a positive association with socio-economic status (Heynen and Lindsey, 2003, Hey-

nen et al., 2006, Mennis, 2006) due to the capitalization of urban green space and

lawn landscapes by wealthier home-owners with the political power to maintain

and advocate for public parks and tree canopy; and with preferences informed by

the behavior of similar home-owners in their neighborhood. We investigated the

limitations of this association in explaining neighborhood-level variation in vegeta-

tion density in metropolitan Detroit, where extensive thinning of the housing stock

due abandonment and demolition has created an “urban prairie” (Gallagher, 2010)

in what should be the region’s dense urban core.

We found that neighborhood median sale price was a good indicator of a

neighborhood’s socio-economic status (SES) and hypothesized that it was also a

good proxy for the condition of the housing stock, more generally. Moreover, the

positive, mutually reinforcing relationship between green vegetation and SES did

not hold up for neighborhoods in the City of Detroit. In some ways, Detroit is

exceptional; an abundance of single-family homes built during the Fordist era has

gradually disappeared as economic racism and capital flight precipitated severe

population loss. Yet Detroit serves as an example of how the “luxury effect” (Hope

et al., 2003) on green vegetation (the ability of wealthier or higher-income house-

holds and neighborhoods to move into or to buy a greener environment) is fun-

damentally dependent on context; there may be other metropolitan contexts or

conditions under which this otherwise well-established relationship is confounded.

Chapter II indicated that socio-ecological relations, such as the luxury

effect, depend on the social and economic context. In growing cities, these re-
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lations may strengthen over time as the urban landscape is continuously modified

and the spatial distribution of environmental amenities is reinforced along gra-

dients of socio-economic status (luxury), home-owner preferences (prestige), or

land-use demands (Lowry et al., 2012). In cities with declining populations, how-

ever, socio-ecological relations may decline in strength (Hoalst-Pullen et al., 2011);

the links between the remaining population and its environment have either be-

come more complex (Watmough et al., 2013) and therefore harder to identify or

have broken down such that human influences on the landscape are no longer re-

inforced, as in a newly constructed or emerging neighborhood (Luck et al., 2009).

Indeed, we found that the effect of SES on neighborhood green vegetation sub-

stantially weakened over time in the City of Detroit, such that by 2010, there is no

luxury effect; it persists at the metropolitan scale, but not for the City of Detroit.

Chapter II also proved the utility of housing market data, specifically

deed sale and tax assessor records, for tracking neighborhood biophysical

conditions; the successful use of these data and the finding that socio-ecological

relations differ for declining neighborhoods led to the notion that flows of

people and investment capital might affect neighborhood biophysical condi-

tions. This led to my investigation in Chapter III of housing market dynamics and

whether these flows, quantified by an inter-annual panel of neighborhood median

home values, were associated with continuous changes in neighborhood vegetation

density. The data-driven approach of Chapter III failed to detect any association

between housing market and vegetation dynamics in the Detroit, Los Angeles, and

Seattle metropolitan areas. Despite our intuition that home values are a good proxy

for neighborhood conditions (based on Chapter II), it is clear that as a single mea-

sure, they are not at all sufficient to understand neighborhood biophysical change,
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even over long time periods. This is, in large part, because of the strong influence

of baseline conditions.

Chapter III indicates that neighborhood (dis)advantage is persistent,

and the biophysical conditions are overwhelmingly dependent on the struc-

tural conditions that gave rise to uneven neighborhood outcomes. We did

not observe a transformation in any neighborhood’s fortunes: low-value neighbor-

hoods maintained low home values while high-value neighborhoods, particularly

in the Seattle and Los Angeles Metropolitan Statistical Areas (MSAs), continued

to appreciate in value. As Pulido (2004) noted, Los Angeles neighborhoods are

“constellations of opportunities;” the higher-value neighborhoods are greener, ap-

preciate more in home values, and recover more value after a crisis (such as the

sub-prime mortgage crisis in 2006-2007). The differences between metropolitan

areas are also stark and indicate that population pressures—along with the con-

test for talent and growth—drive further differentiation both between and within

metropolitan areas.

Chapter IV reinforces the idea that information about the historical, so-

cial, and economic context is essential to understanding divergent outcomes

between and within metropolitan areas. For instance, the effect of change in

residential stability (change in single-family home-ownership rates, marriage rates,

housing density, and income) on neighborhood green vegetation differs based on

the historical and present-day actions of homeowners. In the City of Detroit, a

widespread decline in residential stability is driving growth in green vegetation as

single-family homes are abandoned and eventually demolished. In the Los Angeles

MSA, maintenance of residential stability seems to encourage housing additions

and expansion that reduce the area of green vegetation, though recent drought
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conditions may also be to blame. In the Seattle MSA, it is homeowners’ defense

of a neighborhood’s tree canopy and low-density, single-family housing stock that

is apparently necessary for preserving green space in the face of a fast-growing

metropolitan population; residents in these Seattle and Tacoma neighborhoods

have found a spatial fix in the suburbs, which have absorbed much of the metro-

area population growth.

Chapter IV therefore casts doubt on the idea of generalizable links be-

tween population or economic growth and vegetation change and critiques

the prevailing theory of socio-ecological relations in general. I compared the

key factors of neighborhood variation induced in neighborhood panel data with

the well-documented effects of density, luxury, and prestige. Luxury and prestige,

in particular, are not orthogonal dimensions of neighborhood variation or change

when measured in terms of the neighborhood characteristics and resident popula-

tion. Rather, they are highly correlated neighborhood-level factors arising due to

shared processes at both the neighborhood and household levels, including migra-

tion and turnover, investment in landscaping or irrigation, changing home-owner

preferences, and changes in public investment in green space, with or without

neighborhood advocacy in a wider political economy. Though they remain use-

ful for describing the effects of population changes on green vegetation, the story

is incomplete without consideration of historical or legacy effects that give rise to

uneven green space allocated among different demographic groups.

Finally, Chapter IV makes an important contribution toward our under-

standing of the relationship between urban green spaces and racial identity,

an area of substantial controversy (Watkins and Gerrish, 2018). Scholars have

struggled with identifying the different contributions to neighborhood green space
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from income or wealth inequality versus racial segregation; racial discrimination

in housing and employment, along with other social ills, cause these factors to be

correlated. In many areas, the correlation between income segregation and racial

segregation is so high that, when aggregate socio-economic advantage is controlled

for, differences along racial lines can be identified in metropolitan areas with his-

toric (e.g., Detroit) or on-going racial segregation (e.g., Seattle), which is also

where the correlations between residential stability and segregation are highest

(Table 5.1). The correlation is strong in all three study areas, and one of the most

surprising results of Chapter IV—insofar as the empirical factors can be compared

between different metro areas—is that predominantly black neighborhoods (scor-

ing high on factor F2) are greener than predominantly white neighborhoods (scor-

ing low on factor F2) with equal residential stability. In the Seattle MSA, it is clear

that when residential stability is not controlled, predominantly black neighbor-

hoods are less green (Table 4.3). Though the technical approach of Chapter IV per-

mits identification of this marginal difference between neighborhoods with higher

black or higher white shares of residents, the specific reason for this difference

must be located in a close reading of local context, aided by grounded knowledge.

In Detroit, it was studies by environmental justice scholars (e.g., Downey, 2005)

that pointed to an idiosyncratic history of residential segregation and more recent

neighborhood integration as the reason why “black neighborhoods” are greener

than similarly situated “white neighborhoods.” What the models of Chapter IV also

make clear is that rising integration can mitigate these disparities, as in the Detroit

area while rising segregation will exacerbate them, as in the Seattle area (Table

4.4).
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Table 5.1: Correlations (standardized covariances) between residential stability (F1) and black-
white segregation (F2), based on the confirmatory factor analysis (CFA), in each
metropolitan area.

Study Area Year F1 & F2 Correlation

Detroit Metro 1990 -0.744
2000 -0.730
2010 -0.736
2015 -0.775

Los Angeles MSA 1990 -0.580
2000 -0.495
2010 -0.446
2015 -0.508

Seattle MSA 1990 -0.668
2000 -0.618
2010 -0.544
2015 -0.456

5.2 Contributions to Policy on and Planning of
Neighborhood Green Space

An important lesson from this dissertation for the planning of equitable green space

provision in cities is that the social and economic determinants of uneven green

space vary between different metropolitan areas. Chapter IV, in particular, contains

several observations as to how these determinants vary between the Detroit, Los

Angeles, and Seattle metropolitan areas. While both the Los Angeles and Seattle

metropolitan areas have experienced steady population growth over the period

1990-2017, the consequences of that growth for neighborhood green space are

very different. Neighborhoods throughout the Los Angeles MSA neighborhoods

have seen growth in highly educated residents; while it is not clear how much

is due to new residents versus new credentials for existing residents, the growth

in the so-called creative class (Florida, 2002) promotes growth in greenness in

the Los Angeles area. In the Seattle MSA, however, growth in the creative class

is almost certainly a result of in-migration—due to the growth in local economic
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opportunities associated with the internet and new technologies—and is associated

with a loss in neighborhood green space, clearly as a result of the soaring demand

for housing for this group.

There is an interesting lesson in contrasting the Seattle and Detroit metropoli-

tan areas, as well. Detroit bears the legacy of egregious racial residential segrega-

tion and capital flight, having transitioned from 16% black alone to 83% black

between 1950 and 2010, according to the U.S. Census Bureau. By comparison,

Seattle transitioned from about 3% black in 1950, to 10% black in 1990; the self-

identified black share of the population then contracted to 8% by 2010. Both urban

core areas are, in some ways, greener than their suburbs. In Seattle, this is be-

cause the majority-white neighborhoods have preserved a single-family housing

stock and dense street tree canopy. In Detroit, this is because the majority-black

neighborhoods, unable to stem the tide of population loss and disinvestment in

the housing stock, have lost much of the built environment due to abandonment

and demolition, with volunteer shrubs and trees filling in the empty spaces. The

different processes that gave rise to these superficially similar outcomes speak to

the relative power and influence of the respective demographic groups.

Changes in the Seattle area highlight the need for city planning to explicitly

consider green space provision in the face of on-going urbanization. Neighbor-

hoods in the cities of Seattle and Tacoma seem especially resistant to redevelop-

ment and have preserved a dense street tree canopy. Median home values in Seattle

and Tacoma are not very different from the rest of the MSA, according to the 2017

American Community Survey (ACS); housing is expensive everywhere and yet the

development these neighborhoods avoid has been shifted to the suburbs. More-

over, the increasing white segregation of the cities of Seattle and Tacoma (11.4%
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black alone in 1990 to 9.9% in 2017) pose a challenge not just for policies to pro-

mote a well-integrated and pluralistic society but also for the goal of joint economic

and environmental equity.

It’s not just growing areas that need to pay attention to equitable green

space provision. In Seattle MSA and Los Angeles MSA neighborhoods, socio-

economic status (SES) still largely determines access to neighborhood green ameni-

ties. This isn’t the case in Detroit-area neighborhoods, but the high residential mo-

bility of highly educated, wealthy Americans today suggests that the green neigh-

borhoods of Detroit’s inner suburbs—where a significant number of black residents

reside and which are relatively close to the City of Detroit’s stadiums, restaurants,

and other amenities—could become sites of displacement and turnover in the near

future. Either the greenness of these relatively low-cost neighborhoods is under-

valued or there are other local conditions that have discouraged the in-migration

of high-income, high-mobility outsiders (Smith, 1987). This also raises the ques-

tion of whether recent trends in integration of Metro Detroit’s inner suburbs can

be attributed more to the migration of black households than of white households.

As Chapter III indicated, neighborhood advantages and disadvantages are

remarkably persistent. Growing cities like the core cities of Los Angeles and Seat-

tle, have the uncommon opportunity to promote positive and sustainable neighbor-

hood transitions by capitalizing on the influx of socially mobile residents (Delmelle,

2015, Hochstenbach and van Gent, 2015). And yet, these areas have, so far, failed

to spread the benefits of this investment equitably (Abel and White, 2015). This is

harder still for cities across metropolitan Detroit, which under a changing climate

must transition a durable urban environment that does not foster as much green

space as it should (nor the right kind of green space), in some areas, despite com-
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paratively anemic growth in the tax base. In any metropolitan area, the ultimate

consequence of attention to sustainability without attention to equity (Dale and

Newman, 2009) is that unsustainable land development, transportation, and en-

ergy use patterns in the suburbs and exurbs will continue as metropolitan residents

seek higher environmental quality without sacrificing economic opportunities and

cultural amenities.

5.3 Limitations and Needed Improvements

One of the strengths of this dissertation is its synthesis of multiple data sources:

satellite remote sensing of vegetation, Census measures of neighborhood compo-

sition, deed sales, tax assessor records, and climate re-analysis data. However,

these different sources are not equally reliable and their different spatial scales

and collection intervals have required me to make compromises in the modeling of

neighborhood socio-ecological change.

In particular, the satellite remote sensing data are limited in their spatial

resolution and in the accuracy with which they allow us to estimate green veg-

etation. Although the Landsat TM/ETM+ legacy, spanning 35 years as of this

writing, offers unprecedented long-term observation of metropolitan landscapes,

the ground resolution is 30 by 30 meters, roughly the inside area of a baseball

diamond. Within a pixel of this size we might find multiple parcels, multiples

houses and multiple households within them. The sub-pixel approach of linear

spectral mixture analysis (LSMA) allows us to estimate the area of that pixel that

contains green vegetation, and this approach has high internal consistency and

is based on a physical-theoretical model of the satellite sensor’s integration of re-

flected light data. However, it also has high uncertainty, with an estimated error of
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±11.8 − 13.9% of pixel area in these papers. This error rate is improved by spatial

aggregation to the neighborhood scale and long baselines between images (5-10

years) improves our confidence in model estimates based on these measures.

There is no substitute for the Landsat program’s long record of observation.

Nonetheless, alternative approaches to estimating change over shorter periods are

becoming available. High-resolution aerial and satellite photography, combined

with supervised statistical learning approaches like maximum likelihood or random

forest, is likely to provide superior accuracy. While the class labeling accuracy of

these approaches could be improved, image segmentation can further enhance the

overall accuracy of land-cover estimation in urban areas by enforcing rules about

the shapes and sizes of ground areas determined to be, e.g., impervious surface ver-

sus green tree canopy. High-resolution data are costly, however, and prohibitively

expensive for a comparative study that aims to cover multiple metropolitan areas

over multiple decades.

Higher spatial resolution will necessarily improve the accuracy of neighborhood-

level aggregations; even if the accuracy rate isn’t improved, the absolute amount

of vegetated area that is over- or under-estimated will be smaller. Thus, a key rec-

ommendation for future neighborhood-level studies is to utilize higher-resolution

data where possible, even if the data will only be aggregated. The effect of scale is

not limited to its influence on overall accuracy of vegetated cover area, however;

it also potentially impacts our ability to describe vegetation type and quality. High-

resolution images therefore also permit a semantic refinement of green vegetation

into classes like tree canopy, shrub, and lawn cover, which is not possible using

LSMA with moderate-resolution imagery.

The semantic refinement of green vegetation permitted by approaches with
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higher spatial resolution is key to unravelling some of the complexity of residential

socio-ecological relations. Though multiple lines of evidence point to this complex-

ity, it is generally unacknowledged in my work and that of many prior scholars:

there are differences between landscaping choices in the front yard versus back

yard (Pham et al., 2013) and between the drivers of investment in public and pri-

vate green spaces (Grove et al., 2006, Pham et al., 2012); the durability of the built

environment and the long life of urban trees indicates that temporal lags between

socio-economic and biophysical conditions need to be explicitly modeled (Locke

and Baine, 2015). The potential benefits to my dissertation of a more semantically

refined estimate of green vegetation are considerable. In Chapter II, differentiat-

ing between tree canopy cover and other green vegetation would have helped to

determine the impacts on ecosystem services (given the relative levels of provision

offered by different vegetation types) of abandonment and demolition. In Chapter

IV, differentiating between public and private green space would have helped to

discriminate between the effects of aggregate population pressures (i.e., new de-

velopment) and changes in the preferences and practices of a neighborhood’s res-

idents, based on changing neighborhood profiles. How and why property changes

hands is also key to understanding socio-ecological changes. The observation that

population growth in the creative class is driving extensive new development in the

Seattle MSA, for instance, would be more policy-relevant if we could distinguish

between new development of forests and riparian areas from that of infill.

5.3.1 Future Studies of Neighborhood Socio-Ecological Change

As Geoghegan et al. (1998) observed two decades ago, the chief challenge for

modeling neighborhood change processes has been to overcome the differences

146



in data characteristics and their relevance for questions of social and ecological

changes, which were previously seen as a separate but are now clearly inter-

dependent; what is required is not simply the integration of diverse datasets but a

model that selectively and functionally incorporates the relevant household-level,

neighborhood-level, and governance-level drivers of both sudden and gradual bio-

physical change. Observations of neighborhood social, housing, and biophysical

conditions at higher spatial and semantic resolution might fundamentally change

some of the conclusions in this dissertation and the wider literature on neighbor-

hood socio-ecological change. Nevertheless, moderate-scale remote sensing data

on neighborhood-level conditions have a role to play in verifying neighborhood-

level theories and in enriching case histories. Contrasting Chapters II and IV makes

this clear: Based on decades of formal or informal observations of the changes

underway in Detroit’s residential landscapes, we understood that neighborhood

decline, housing abandonment, and ultimately demolition were steps in the pri-

mary causal chain through which Detroit neighborhoods were transformed. Con-

sequently, we included a key indicator for this process, the demolition rate, in our

model.

Some theories or case histories may require key indicators to be measured

that are not available through well-known, publicly available datasets like the U.S.

Census decennial surveys. Future interdisciplinary studies may therefore benefit

from the participation of sociologists, demographers, and others who are familiar

with richer, alternative data sources. Two examples are the Los Angeles Family

and Neighborhood Survey (LAFANS) and the Project on Human Development in

Chicago Neighborhoods (PHDCN).

LAFANS contains, among other indicators, “careful” observations of the
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“physical and social characteristics” of communities as small as a single Census

block (Peterson et al., 2007). These observations include a rich set of descriptors

directly related to hypothesized mechanisms of resident’s behaviors influencing

their environment, including descriptions of the physical order of a neighborhood,

which are relevant both to “broken windows” theory (Wilson and Kelling, 1982)

and “cues to care” (Nassauer et al., 2009) and are therefore an opportunity to

formally link neighborhood sociological theory with the literature on landscape

design. In addition, the LAFANS observations describe the housing stock in detail,

including the type of housing, the number and arrangement of units (e.g., duplex,

low-rise versus high-rise), and local amenities including parks and types of retail

services. Despite this rich set of indicators, the LAFANS data are only available for

Los Angeles-area neighborhoods; they do not allow for comparison against other

cities and the metropolitan and climatic contexts are fixed.

The LAFANS data could, however, be compared in some aspects to the

PHDCN data, which are fixed on Chicago neighborhoods. The PHDCN dataset

aims to provide “a detailed look at the environments in which...social behaviors

[such as juvenile delinquency, adult crime, substance abuse, and violence] take

place” (ICPSR, 2019). Both the “community surveys” and the “systematic social

observations” (SOS) offer opportunities similar to LAFANS to study informal so-

cial control and social cohesion which, again, are very relevant to theories about

neighborhood-level processes and residential behaviors that affect environmental

quality. Both datasets therefore provide a rich opportunity to formally specify and

test hypotheses related to ecologies of luxury and prestige.

These examples, LAFANS and PHDCN, underscore a final point about the

nature of quantitative studies of neighborhood socio-ecological change, particu-
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larly when disparate sources from multiple metropolitan areas are needed: the

collection, management, cleaning, and analysis of data require tremendous effort.

To the extent that my analysis routines are re-useable and reporducible, I have

already made them available on the internet throught Github. It is my hope that

future scholars of neighborhood change may find the following resources useful.

• Python library I created for calculating sub-pixel vegetated area from Land-

sat surface reflectance: https://github.com/arthur-e/unmixing

• Google Earth Engine scripts for creating radiometrically normalized time se-

ries of modified soil-adjusted vegetation index (MSAVI): https://github.com/

arthur-e/ee-python-notebooks/

• Utilities, with examples, for subsetting, cleaning, and managing parcel-level

data like that provided by CoreLogic: https://github.com/arthur-e/parcel-

analysis
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