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Abstract 
 

The preference for private vehicles over public transportation and physically active modes 

of transportation in urban areas poses important environmental and public health challenges. On-

road motor vehicles are a major source of urban air pollution such as particulate matter less than 

2.5 micrometers (PM2.5), oxides of nitrogen (NOx), carbon monoxide (CO), volatile organic 

compounds (VOC) and black carbon (BC), with important impacts on population health due to 

increased risks of mortality and adverse cardiovascular and respiratory endpoints. A reliance on 

on-road motor vehicles also impacts population health through noise, greenhouse gas emissions 

and reduced physical activity. Thus, there is a need for further epidemiologic research to more 

accurately characterize the links between on-road urban transportation and public health and to 

evaluate the public health benefits of transportation policies to support decision-making.  

To this end, this dissertation proposed an integrated approach. First, we characterized the 

influence of highway traffic emissions on primary PM2.5 and NOx concentrations generated by 

highway traffic in communities near highways using a dispersion model with fine-scale 

spatiotemporal variations of traffic volume and flow and compared these results to those of a 

model with more aggregated traffic data. Second, we evaluated the association between primary 

PM2.5, NOx and BC generated by highway traffic and daily mortality in near-road communities 

using a time-stratified case-crossover design. Third, we conducted a health impact assessment to 

quantify the air pollution and health benefits of urban transportation policies promoting electric 

vehicle use and replacement of short car trips with walking and bicycling. 

In the first aim, we found that spatiotemporal variations between and within highways in 



 xi 

traffic volume and flow are complex and not completely captured by traditional aggregated 

traffic metrics. For both sets of data, we observed  highly variable concentrations over space and 

time of primary PM2.5 and NOx generated by highway traffic in near-road communities. While 

modeled concentrations of these pollutants from the fine-scale data had largely similar spatial 

and temporal distributions as the aggregated data, we observed some areas with larger 

differences between the two sources of traffic data, especially in communities closest to highly 

congested highways. In our second aim, we found no conclusive evidence of increased mortality 

with higher daily concentrations of PM2.5, NOx and BC generated by highway traffic. However, 

there was suggestive evidence that greater short-term exposures to these air pollutants were 

associated with greater odds of respiratory mortality. Contrary to our hypothesis, we found 

reduced odds of cardiovascular and cerebrovascular mortality with higher levels of these air 

pollutants. For both outcomes, observed associations were stronger among those living closest to 

the highways. In the third aim, we found that transportation policy scenarios promoting cleaner 

vehicles and replacing car trips with walking and bicycling reduce NOx and PM2.5 concentrations 

as well as CO2 emissions as compared with a business as usual scenario. These policy 

interventions also reduce burden of mortality with fewer premature deaths in adults of the 

general population.  

From an exposure assessment and environmental epidemiology standpoint, this 

dissertation provides evidence that improvements are needed over standard exposure assessment 

approaches when characterizing near-road exposures to air pollution. Furthermore, from a 

decision-making perspective, this dissertation provides evidence that transportation policies may 

mitigate the population health burdens of motorized transportation.  
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Chapter 1  

Introduction  

 

Background  

Urban Transportation is a Major Source of Air Pollution in Communities 

Around the world, the number of motor vehicles is steadily increasing with population growth, 

increased urbanization, economic improvement and rapid urban sprawl. According to the Special 

Report by the Health Effect Institute, (1) the worldwide fleet exceeded 1 billion vehicles in 2002 

and it has been predicted that the number of motor vehicles will approach 50 million per year by 

2020. The predominance of private vehicles as our primary mode of transportation over public 

transportation and physically active modes of transportation poses important challenges to public 

health through a variety of mechanisms including physical inactivity and traffic injuries as well 

as environmental exposures to traffic-related pollutants and noise. (2)  

On-road traffic has been recognized as a major source of air pollution and is an 

increasingly important contributor to primary pollutants such as CO, NOx, VOC, BC and PM2.5. 

(1) The contribution of traffic to these pollutants is greater in major metropolitan areas, where it 

accounts for 47%, 33%, 20% and 12% of total CO, NOx, VOC and PM2.5 emissions in the U.S, 

respectively. (1) In addition, on-road traffic is also a major contributor to Green House Gases 

(GHG), approximately 28% of all emissions in the United States (3) and 23% worldwide. (1,2).  

In recent years, concerns regarding near-road exposure to poor air quality has increased 

since there are substantially higher concentrations of particles and other toxic pollutants within 
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hundreds of meters of major roads than is found at greater distances. (4) This has important 

implications given the high proportion of the population worldwide and in the United States that 

live, attend school or work near major roadways. According to data from the American Housing 

Survey, more than 11 million people in United States live within 150 meters of a major highway 

and up to 45% of people live within 300 meters from major highways in large urban areas, 

resulting in an increased risk of exposure to vehicle emissions and greater risk of health effects. 

(5,6) Moreover, environmental justice issues have been raised since studies in the United States 

have documented that minority racial and ethnic groups and low socioeconomic position 

population are more likely than white and high income populations to live near major roadways. 

(7–13) 

 

Links Between Traffic-Related Air Pollution and Health  

A growing body of scientific evidence has shown that both long (1,14–20) and short-term (21–

24) exposures to traffic-related air pollutants are associated with adverse health.  Documented 

health endpoints associated with traffic-related air pollutants include respiratory outcomes such 

as nonmalignant respiratory mortality, (17,22,24,25) diagnoses of asthma and respiratory 

symptoms, (26–33) lung function impairment, (34,35) and chronic obstructive pulmonary 

disease (COPD) (36,37) as well as adverse cardiovascular outcomes such as coronary heart 

disease, (CHD) (38) cardiovascular mortality, (15–20,39) higher left or right ventricular mass 

(40,41), acute myocardial infarction (42) and progression of subclinical atherosclerosis. (38,43–

45) These associations are hypothesized to occur via pulmonary and systemic oxidative stress 

and inflammation; autonomic nervous system imbalance; vascular changes and translocation of 

particles and their constituents into the circulation.  



 3 

Epidemiologic studies looking at the specific role of short-term exposures to on-road traffic 

emissions suggest that traffic exposure is an important trigger for clinical and subclinical disease. 

For example, acute non-fatal myocardial infarction have been linked with time spent in traffic, 

with higher population attributable fraction than conventional triggers such as physical exertion, 

alcohol and coffee. (46) Several small in-vehicle panel studies suggest that exposures can have 

very rapid effects on the human body. In one of these studies, Adar and colleagues found that 

changes in 5-minutes PM2.5 concentrations aboard a diesel bus were independently and 

statistically significant associated with decreased heart rate variability in nonsmoking seniors. 

(47) Similarly, studies measuring the health effects of commuting in private vehicles or public 

transportation found associations between traffic-related PM2.5, black carbon (BC) and time 

spent commuting with reduced heart rate variability (HRV), increased levels of markers of 

systematic and pulmonary inflammation (48,49) and increased risks of myocardial infarction. 

(50) Collectively, these findings suggest that traffic emissions may influence biological pathways 

that act at very short time scales yet large-scale population studies have generally lacked detailed 

exposure data with which to capture such short-term changes. 

Epidemiological and environmental justice studies also suggest that population exposures 

to traffic-generate air pollution and health outcomes are differentially distributed in the 

population. It has been recognized that socially disadvantaged population and minority ethnicity 

are more exposed to traffic-related pollution. Studies have further suggested that they may also 

be more susceptible to the health effects of this exposure. Both conditions might contribute to the 

race, ethnicity and socioeconomic disparities in premature mortality yet more research is needed 

to better understand these issues. (9) 
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Challenges to the Study of Traffic-Related Air Pollution  

Despite a large literature suggesting an association between exposure to traffic-related air 

pollutants and health outcomes, there are some limitations to our current understanding of these 

associations. Many of these limitations result from challenges in accurately capturing the full 

spatial and temporal variability of individual-level exposures to traffic-generated pollutants.  

One widely used approach is to investigate individual pollutants as tracers or markers of 

traffic (e.g., NOx, NO2, BC). These markers are not entirely unique to on-road traffic emissions, 

however, and are often correlated with pollutants from other sources over time due to the effect 

of meteorology. In addition, measurements of these indicator species are most often collected at 

fixed-site air quality monitors (AQS). This fails to account for any small-scale variations in 

traffic pollution because the small number of monitoring locations is typically insufficient to 

capture local spatial or spatiotemporal patterns.  

To overcome the issue of insufficient monitors, proximity to major roads has been 

frequently used as an indicator of long-term exposures to traffic. Inherent to this approach is an 

assumption that roadways of a certain classification all have the same emission patterns and 

impacts on the community. Additionally, it is assumed that the same roadway has the same 

traffic at all locations. Investigators typically fail to capture any local differences between 

roadways or within a given roadway due to small-scale variations in vehicle fleet and traffic 

volume that impact emissions. Similarly, the meteorological factors and topography that 

influence the dispersion of pollutants from roadways are also often ignored. Instead it is assumed 

that emission is the same at all locations and dispersion is the same in all directions. (51,52) As 

such, this approach may result in important exposure measurement error. (1,48,51,53)  

A more sophisticated approach as compared with those described above is the use of 
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spatial prediction models, including land use regression (LUR) and other interpolation models 

(universal kriging, inverse distance weighting, etc). (54–56) These approaches have been widely 

used in long-term studies and they account well for the small-scale spatial variation in traffic-

related air pollution. However, LUR and interpolation models also have some limitations. First, 

they do not typically incorporate temporal variations in traffic pollution useful for studying 

short-term health effects. Second, these models are empirical so their ability to accurately 

capture high local variations in traffic-related air pollution concentrations (at short distances such 

as tens of meters) is based on the richness of the underlying monitoring campaigns and precision 

of the geographic data used to support the predictions. Finally, since these models are designed 

to predict the total concentration of a pollutant, the output will only be source-specific if there 

are no other sources of the predicted components. (54)  

Dispersion-based air quality models combine emissions data and chemical and physical 

processes in the atmosphere to predict concentration of pollutants from specific sources. These 

models allow for the estimation of traffic-generated air pollution with a high spatial resolution at 

locations within hundreds of meters where the concentration gradient is the steepest. In addition, 

pollutants may be estimated with high temporal resolution such as hourly, daily, weekly as well 

as long-term. However, to accomplish predictions with high temporal and spatial resolution, 

input data with high spatial and temporal resolution is required but often not available. (52,57) 

In summary, gaps remain in our existing characterization of the exposure and health 

implications of on-road traffic emissions. Given that most epidemiological studies have been 

unable to account for the small-scale spatial and temporal variability of traffic-generated air 

pollution, exposure measurement error may be a problem for existing estimates of the health 

impacts of traffic.  
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Policies to Reduce Motorized Transportation  

In spite of the outstanding challenges to exposure assessment, there is an increased 

understanding that traffic-related air pollution likely impacts health. Thus, there is a growing 

interest in transportation policies that promote cleaner vehicles and alternatives to private motor 

vehicles. Greater use of active transportation could translate to substantial environmental and 

health benefits given that almost 28% and 41% of all car trips in the United States are less than 1 

mile (1.6 km) and 2 miles (3.2 km), respectively. These are distances that can be readily walked 

or bicycled by healthy individuals. (58) 

Health impact assessment (HIA) is a method to estimate the potential health consequences 

of non-health care interventions as a means to help decision-makers to understand the health 

implications of policies. (59,60) Most quantitative HIAs of the potential health impacts of 

transportation policies have found potential health benefits from policies to promote active 

transportation and reduce car trips, (58,67–69) but more research is needed to fully understand 

the impact of transportation policies on a range of different contexts and policy scenarios. 

Furthermore, most studies are needed to examine the impact of transportation scenarios on 

pollutants other than just the concentrations of PM2.5 and its consequent health effects since 

motor vehicle emissions contribute in a higher extent to concentrations of incomplete fuel 

combustion pollutants such as NOx. (60) Uncertainties also remain in the differences on the 

health impacts across groups in the population such age groups (younger and older adults) and 

sex. Thus, more scientific evidence is needed to guide the design of urban transportation policies 

to obtain the greatest public health benefits.  
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Dissertation Aims 

Taking into consideration the literature above, this dissertation proposes to add the current 

knowledge by leveraging a unique source of traffic data that is highly spatiotemporal resolved 

(every 5 minutes each ½ mile) to characterize the influence of highway traffic emissions on the 

health and air pollution exposures to near-road communities under current and possible future 

conditions. Specifically, we have the following three specific aims:  

 

Specific Aim 1 

To characterize the influence of highway traffic emissions on concentrations of primary NOx and 

PM2.5 in communities near highways using a dispersion model with fine-scale spatiotemporal 

variations of traffic volume and flow, and compare these concentrations with those generated 

using more aggregated traffic data. 

Specific Aim 2 

To investigate associations between exposure to primary PM2.5, NOx and black carbon generated 

by highway traffic and daily all non-accidental, respiratory cardiovascular and cerebrovascular 

mortality in near-road populations using an air quality model with highly-resolved traffic data.  

Hypothesis 2a: Short-term elevations in primary PM2.5, NOx and black carbon 

generated by highway traffic are associated with higher risk of all non-accidental, 

respiratory, cardiovascular and cerebrovascular mortality.  

Hypothesis 2b: Racial minorities, populations of low socioeconomic status and 

populations with comorbidities have a greater risk of all non-accidental, respiratory 

cardiovascular and cerebrovascular mortality associated with short-term variations of 

primary air pollutants generated by highway traffic as compared to non-Hispanic white, 
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populations of high socioeconomic status, and populations without comorbidities.  

Specific Aim 3 

To quantify the air pollution and health benefits of urban transportation policies promoting 

electric vehicle use and replacement of short car trips with walking and bicycling in Seattle, 

Washington.  

Hypothesis 3a: Transportation scenarios that promote electric vehicle use and increase 

walking and bicycling will reduce community levels of traffic-generated NOx and PM2.5 

as compared with a business as usual scenario. 

Hypothesis 3b: Transportation scenarios that promote electric vehicle use and increase 

walking and bicycling will reduce the population burden of mortality as compared with a 

business as usual scenario. 

 

The following chapters describe the methods and results for each dissertation aim. Chapter 2 

characterizes the influence of highway traffic emissions on concentrations of primary NOx and 

PM2.5 in communities near highways using a dispersion model with fine-scale spatiotemporal 

variations of traffic volume and flow, as compared with more aggregated traffic data (Aim 1). 

Chapter 3 investigates the association between exposures to primary PM2.5, NOx and black 

carbon generated by highway traffic and the risk of daily mortality in near-road populations. 

(Aim 2) Chapter 4 quantifies the air pollution and health benefits of urban transportation policies 

promoting electric vehicle use and replacement of short car trips with walking and bicycling 

(Aim 3). Chapter 5 presents a summary of the overall findings of this dissertation and discusses 

the implications of this work. I also highlight the strengths and limitations of this dissertation in 

Chapter 5 and discuss directions for future research. 
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Chapter 2  

Fine-Scale Spatiotemporal Variations in Traffic Volume and Flow and their Influence on 

Air Pollution Levels in Communities Near Highways 

Introduction 

Exposure to traffic-related air pollution remains a public health concern due to associations with 

increased risks of mortality and adverse cardiovascular and respiratory endpoints. (HEI, 2010) 

Concerns are especially great for communities living near to major highways since there are 

substantially higher concentrations of pollutants near roads (within hundreds of meters) than at 

greater distances. (1,2) This has important implications given that almost 45% of the United 

States population live within 300 meters from major highways in large urban areas. (2,3) Near-

road populations also include larger proportions of low income households and minority ethnic 

groups. (3–9)  

Accurately estimating exposures to traffic-related air pollutants is challenging due to the 

multiple factors determining both vehicle emissions and dispersion. (10–12) One of these factors 

is the variation of traffic by time and place, within and between highways. These variations 

likely influence the dispersion of traffic-related pollutants in nearby communities yet they have 

generally not been well studied and are typically not considered in epidemiologic studies due to 

the lack of spatiotemporally resolved traffic data. In fact, most epidemiologic studies of the 

health effects of short-term exposure to traffic-related air pollution have used the variation in 

measurements from air quality monitoring stations (AQS) to inform fluctuations in exposure to 

traffic-related air pollution. (13–17) However, existing monitoring networks are typically too 
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scarce and spatially disperse to capture any variation of traffic-related air pollution in the near-

road environment. 

Physically-based air quality models such as dispersion models have been recently 

considered as methods to overcome the challenges of assessing population exposures to traffic-

related air pollutants. (18–22) These models, such as the Research Line source dispersion model 

(RLINE), can predict air pollutants from traffic over a large area with high spatiotemporal 

resolution by combining emissions from on-road traffic volumes and flow with physical 

processes in the atmosphere due to meteorology. In fact, this approach has been recently used in 

environmental health studies to estimate exposure to traffic-generated air pollution in near road 

environments. (18–20,23–26) However, due to a paucity of spatiotemporally resolved traffic data 

and higher computational demands, researchers who have employed dispersion models in the 

past have generally used traffic data aggregated over time and space as inputs to these models. 

For example, they have used annual average daily traffic (AADT) estimated at a few permanent 

traffic recorders (PTR) on roadways throughout a study area along with temporal allocation 

factors (TAF) and national vehicle speeds to estimate traffic activity. (18,19,23,24,27–29) Yet, 

these aggregated traffic metrics might not completely capture differences in traffic emissions due 

to localized differences in traffic patterns by time and place, within and between highways.  

In this study, we aimed to characterize the concentrations of oxides of nitrogen (NOx) and 

fine particulate matter (PM2.5) generated as primary pollutants by highway traffic (herein referred 

to as traffic-generated NOx and PM2.5) in communities near the most trafficked highways in the 

Central Puget Sound Region of Washington State using a line-source dispersion model. We 

further aimed to compare the concentrations predicted using a unique source of traffic data with 

fine-scale spatiotemporal variations of traffic volume and flow as compared with more 
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traditionally available traffic data aggregated over space and time. We conducted this research in 

the urban area of the Puget Sound in Washington State because it is one of the few regions in the 

United States that has highly spatiotemporally-resolved traffic data. 

 

Methods  

Figure 2.1 outlines our basic approach for predicting concentrations of traffic generated NOx and 

PM2.5 from highways in near-road communities in the Puget Sound (Figure 2.1). Briefly, we 

leveraged two sources of traffic activity data for the main highways in the Puget Sound (i.e., 

Interstates 5, 405 and 90, and State Routes 167 and 520) during the year of 2013: one with high 

spatiotemporally resolved traffic volume and vehicle speed data and a second with aggregated 

traffic volume and vehicle speed (e.g., AADT, TAF, and national vehicle speeds). We 

incorporated these data with the Motor Vehicle Emissions Simulator (MOVES, version 2014) 

(30) to generate hourly emission factors (grams/vehicle-mile) of NOx and PM2.5 from the Puget 

Sound highways. We then used the Research Line source dispersion model (RLINE v1.2) (20) to 

predict hourly concentrations of traffic-generated NOx and PM2.5 at 3,784 population-based 

receptors within 1 km from a highway.  Finally, we compared the spatial and temporal 

distribution of the traffic inputs and predicted concentrations between the two data sources. 

Below, we describe in more detail the three major components of this modeling framework. 

 

Receptor Locations: 

In preparation for our related epidemiology study, we estimated concentrations of traffic-

generated NOx and PM2.5 at the residential locations of all non-accidental mortalities that 

occurred within 1 kilometer of our targeted highways between 2009 and 2013. We also 
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generated concentration estimates at one and five regulatory monitoring stations in the Air 

Quality System (AQS) in the Central Puget Sound that sampled for reactive oxides of nitrogen 

(NOy) and PM2.5, respectively. Figure 2.2 displays the locations of all of our receptors. 

 

Traffic Data:  

We obtained fine-scale spatiotemporally resolved traffic volume and vehicle speeds available for 

each half-mile and every 5-minutes for each direction (i.e., North, South, East or West bounds) 

of the highways in the region from the Washington State Transportation Center at the University 

of Washington (TRAC-UW). These five highways are classified as National Functional Class 

(NFC) 11 (Urban Interstate) and 12 (Urban Other Freeway or State Routes). Induction loop 

detectors embedded in the pavement of these highways measure real-time traffic volume and 

vehicle speeds. The data undergo routine quality assurance screening by the TRAC-UW to 

ensure high data quality.  

For the aggregated traffic data, we obtained vehicle volumes from the Washington State 

Department of Transportation (WSDOT) as AADTs for each direction of the highways and 

collected at 20 PTRs distributed along the five highways (i.e., I-5: six, I-405: five, I-90: three, 

SR-167: three and SR-520: four). We obtained local TAFs estimated by month, day of week 

(weekday and weekend) and hour of day from the Washington State Department of Ecology. 

Due to the absence of aggregated local data for vehicle speeds, we obtained these data from the 

National Speed Survey for five time periods of the day (i.e., Off-peak-1 12:00 am-6:59 am; 

morning peak 7:00 am-8:59 am; mid-day 9:00 am-3:59 pm; afternoon peak 4:00 pm-6:59 pm and 

off-peak-2 7:00 pm-11:59 pm) (31)  
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For both sources of traffic data, we used fractions of vehicle class from the WSDOT 

collected at the PTRs. We mapped these vehicle classes to the six grouped Highway 

Performance Monitoring System classes (i.e., motorcycles, passenger cars, light-duty trucks, 

buses, single-unit trucks, multi-trailer trucks). (32) For the fine-scale traffic data, we calculated 

hourly traffic volume by vehicle class for each half-mile road segment and direction for all 8,670 

hours of 2013 by weighting our spatiotemporal traffic volumes by the vehicle class fractions. For 

the aggregated data, we estimated hourly traffic volume by vehicle class using the AADT and 

monthly, day-of-week and hour-of-day TAFs, and fleet mix for each roadway link between 

PTRs, both directions, and hours of 2013.   

We used data from the Tiger products of the US Census Bureau for the road network of 

our five targeted highways. 

 

On-Road Mobile Vehicle Emissions:  

For both fine-scale and aggregated traffic data, we generated hourly-resolved vehicle emissions 

factors (grams/vehicle-mile) of NOx and PM2.5 for each road segment using MOVES-2014. (30) 

In addition to the traffic information described above, we obtained MOVES input data for 2013 

including vehicle class and age distributions as well as the fuel formulation for the main county 

in the Central Puget Sound Region (i.e., King county). Additional MOVES inputs included 

monthly average local temperature and relative humidity, which we obtained from the Renton 

airport station operated by the National Oceanic and Atmospheric Administration. (NOAA: 

ftp://ftp.ncdc.noaa.gov/pub/data/noaa) 

Following the approach proposed by Cook et al. (33) and Snyder et al. (19) we ran 

MOVES at the county scale using rate-per-distance calculations of emission rates with hourly 
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aggregation. The emission rates for NOx and PM2.5 were generated for the running exhaust and 

evaporative emission processes for the unique combinations of 6 vehicle classes (MOVES 

vehicle classes were mapped to the six grouped HPMS classes), 16 vehicle speeds bins (ranging 

from 2.5 to 75+ mph), local ambient temperature and relative humidity (every 5 °F), and month. 

Since non-running emissions during extended idling are not related with highway driving we did 

not include this emission process in our calculations.(19,33) We did, however, include non-

exhaust emissions of PM2.5 such as tire wear and brake wear in our models.  

To obtain emissions by pollutant, road segment, highway direction, and hour of the year, 

we multiplied the hourly emission rates from MOVES for each pollutant by vehicle class, speed 

bin, month, and temperature with the hourly traffic volume by vehicle class, road segment, and 

direction. We performed these calculations for each of the two sources of traffic data described 

above, resulting in hourly, segment-by-segment emission factors for NOx and PM2.5 for the 

spatiotemporal and aggregated traffic datasets that accounted for local weather and traffic 

activity in each road segment and direction.  

 

Dispersion Modeling:  

We ran a modified version of the RLINE dispersion model (v1.2) to predict hourly 

concentrations of primary NOx and PM2.5 originating from vehicle emissions on the major 

highways at our 3,748 receptor locations. RLINE simulates primary, chemically inert pollutants 

for near-road dispersion without accounting for chemical transformations or deposition. (20) We 

implemented RLINE using the numerical integration method, an iteration limit of 1,000, an error 

limit of 0.001 and the beta algorithms for roadside noise barriers. To avoid running RLINE for 

each air pollutant, we used the unit emission rate (1 g/m/s) input approach (19) and then scaled 



 19 

the hourly RLINE outputs for the pollutant-specific emission factors from MOVES at each road 

segment.  

We obtained the hourly meteorological parameters needed for dispersion modeling from 

the Renton airport station. These data were processed through the AERMET program by the 

Puget Sound Clean Air Agency. AERMET estimates boundary layer parameters required for 

RLINE to model dispersion such as friction velocity (u*), convective velocity (w*), surface 

roughness height (z0), Monin-Obukhov length (L), moisture, albedo, cloud cover, and 

temperature. We selected the Renton airport as our primary source of data based on its location 

in our study region and because comparisons of wind profiles measured at other meteorological 

stations in the region showed similar behavior as that found at the Renton airport. 

 

Concentration Estimation:  

We aggregated the hourly-modeled concentrations of NOx and PM2.5 contributed by every road 

segment for each receptor location to obtain 24-hour and annual average concentrations.  

 

Data Analysis:  

We characterized the spatial and temporal distribution of traffic volumes and speeds as well as 

predicted concentrations of NOx and PM2.5 from highway traffic for the two sources of traffic 

data using descriptive statistics, Spearman correlation coefficients, box plots, cumulative density 

function graphics, and heat maps. We also compared the daily modeled concentration of NOx and 

PM2.5 with the observed concentrations at AQS monitoring sites. We made comparisons across 

the data sources for the entire period of study and by weekdays/weekends and distance to 

roadway. We also split the variation into a spatial component by evaluating only the annual 



 20 

average concentrations at different locations and a temporal component by focusing on 

differences in daily concentrations from an annual average. All analyses we conducted using 

Stata statistical software version 14.1 (Stata Corp) and ArcGIS version 10.1 (ESRI).  

Results 

Variation in Traffic Volume and Speed on Major Highways  

The section of the highways included in this study corresponds to 250 miles and 500 half-mile 

road segments with 8,760 hours of data (Figure 2.2). We found some differences in the daily 

average traffic volumes between the two sources of traffic data with higher traffic volumes in the 

fine-scale traffic data as compared with the aggregated data for all highways except for I-405. 

Volumes were also substantially more variable (1.5-3.5 times) for the fine-scale data than the 

aggregated data. (Table 2.1) For both sources of data, traffic volumes showed 20% higher annual 

average daily traffic volumes for weekdays as compared with weekends (Table 2.1) and 60% 

higher hourly average traffic volumes during morning and afternoon rush hours as compared to 

off-peak periods (Supplemental Table S2.1).    

As shown in the heat maps of Figure 2.3, traffic volumes differed by highway in both 

sources of data. Variations between-highways were evident even among roads classified within 

the same functional classification (i.e., Interstates or State Routes). For example, in the fine-scale 

data, I-5 had 40% higher weekday traffic volumes than I-405 and I-90 while, SR-167 had 16% 

higher volumes than SR-520. (Table 2.1) Similarly, the boxplots of hourly variation for each 

road segment along I-5 (Figure 2.3) show that volumes also varied by location within a highway.  

As expected, within-highway variations were more evident for the fine-scale traffic data with 

volumes every half-mile than for the aggregated volumes that are limited to the PTRs available 

on each highway (e.g., six PTRs on I-5). Coefficients of variation of daily traffic volumes across 
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road segments within a highway ranged from 22 to 32% for the fine-scale data and were slightly 

higher than the aggregated traffic data, which ranged from 12 to 27%. The fine-scale data 

captured more highly congested (> 300,000 daily vehicles) half-mile road segments, especially 

near the highly populated area of downtown Seattle. (Figure 2.3 and 2.4)  

Figure 2.3 also illustrates that vehicle speeds were also highly variable over time and 

space for the fine-scale traffic data. Temporal patterns of vehicle speed for the fine-scale traffic 

data showed the expected pattern of stop-and-go congestion during morning and afternoon peak 

hours. (Supplemental Figure S2.1) In addition, consistent with volume,  speed was especially 

impacted in the half-mile road segments  near the Seattle downtown area (mile posts 162-176 in 

Figure 2.5) as well as near the Seatac Airport in Renton south of the I-5/I-405 junction. For the 

aggregated traffic data there was no spatial or temporal variation in speed. The average speed for 

the two scenarios were similar, however, with the aggregated data at 70 mph for both weekdays 

and weekends and the fine-scale data at 63 mph and 68 mph for weekdays and weekends, 

respectively. 

 

Comparison of Modeled Traffic-Generated NOx and PM2.5 in Near-Road Communities and 

Measurements 

Table 2.2 compares modeled 24-hour average concentrations of traffic-generated NOx and PM2.5 

using the two sources of traffic data to the observed NOy and PM2.5 concentrations at the AQS 

monitoring sites. The modeled 24-hour average concentrations of traffic-generated NOx derived 

using both the fine-scale data and aggregated data were slightly higher than the observed 

concentrations of NOy. Modeled concentrations of traffic-generated PM2.5 obtained using the 

fine-scale data (range: 0.8 to 2.9 µg/m3) and aggregated data (range: 0.7 to 2.1 µg/m3) were 
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approximately 10 to 40% of concentrations of measured PM2.5, which represents contributions 

from both traffic and non-traffic sources (range: 4.9±2.9 to 9.5±5.7 µg/m3). Concentrations of 

traffic-generated PM2.5 predicted from RLINE were similar to the BC concentrations at the AQS 

monitors (observed: 0.96±0.8 and 1.2±0.9 µg/m3, modeled aggregate data: 0.7±1.0 and 1.2±1.3, 

modeled fine-scale 0.8±1.2 and 1.5±1.7), which is an indicator of particulate matter from traffic 

in the region. Even though concentrations of air pollutants measured at the AQS are not a perfect 

validation of our modeled contributions from highway traffic to concentrations of NOx and 

PM2.5, our modeled concentrations showed moderate (Rsp from 0.5 to  0.6) and low (Rsp: 0.3) to 

moderate (Rsp: 0.5) correlations with observed concentrations at the AQS, respectively.  

 

Spatial Variation of Traffic-Generated NOx and PM2.5 in Near-Road Communities 

At our receptor locations, mean modeled concentrations of traffic-generated NOx and PM2.5 were 

slightly higher for the fine-scale traffic data than the aggregated traffic data (Table 2.2) As 

shown in Figure 2.6 most (90%) of the receptor locations within 1,000 meters had concentrations 

of NOx and PM2.5 below 50 ppb and 2.5 µg/m3, respectively. Both models showed higher mean 

concentrations for receptors closer to highways, with 90% of receptors within 150 meters 

showing concentrations below 75 ppb for NOx and 5 µg/m3 for PM2.5. (Figure 2.6) For both input 

datasets, the highest concentrations were found for receptors within 50 m with significant 

reductions (i.e., ³ 50%) in the concentrations after 300 meters. (Supplemental Figure S2.2)  

Our modeled NOx and PM2.5 concentrations showed generally similar spatial distributions 

at the receptor locations on the annual average scale and tended to be greater for areas with more 

traffic and downwind of the highways for both sources of traffic input data (Figure 2.7). In fact, 

we observed high overall correlations between the modeled concentrations of NOx and PM2.5 
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obtained by each source of traffic input data at the receptor locations (Rsp NOx: 0.96 and PM2.5: 

0.96). (Table 2.2) However, there were some areas showing larger differences between the two 

sources of data. We found that  25% of our receptors had differences in concentrations between 

the two models that were larger than 5 ppb for NOx and 0.4 µg/m3 for PM2.5 (Figure 2.8). These 

differences were greater among receptors closer to the highways (i.e., < 150 m), with 25% of 

these near-road receptors having differences larger than 10 ppb and 0.8 µg/m3 for NOx and 

PM2.5, respectively. 

 

Temporal Variation of Traffic-Generated NOx and PM2.5 in Near-Road Communities 

We observed important spatial patterns in the temporal variability in NOx and PM2.5 

concentrations predicted using both sources of traffic input data. Figure 2.9 shows evidence of 

larger between-day standard deviations (SD) of NOx and PM2.5 for receptors within 150 m to 

highways and near to road segments with high traffic variation as compared to receptors further 

from highways or near lower trafficked road segments. These same areas also showed the 

greatest differences in estimated temporal variability between the two models with 25% of 

receptors within 150 m with differences on the between-day SD greater than 6 ppb of NOx and 

0.7 µg/m³ for PM2.5. (Figure 2.8) Both sources of traffic data capture well the temporal 

variability in concentrations.  

 

Discussion  

In this study, we characterized the influence of highway traffic emissions on traffic-generated 

NOx and PM2.5 concentrations in near-road communities using dispersion modeling and two 

sources of traffic data. A key finding of our work is that traffic volume and speed, and thus 
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traffic-generated air pollution concentrations in near road communities, vary significantly over 

across space and time. These variations in traffic volume, speed, and concentrations of traffic-

generated air pollution differ between different highways as well as within individual highways. 

Although traditional traffic input data that aggregates some of this information over space and 

time  captures much of this variability, fine-scale spatiotemporally resolved traffic data add to 

both temporal and spatial variability of air pollutants concentrations, especially in communities 

near highly congested highways. 

Our results showed that the variability in traffic patterns between and within highways 

was as much as 40% and 30% the mean levels of traffic, respectively, with some highways 

showing 40% greater traffic volume than highways within the same functional classification. In 

addition, traffic volumes in the fine-scale traffic data were between 1.5 and 3.5 times more 

variable than the aggregated traffic data. These results are consistent with a previous research 

showing that indicators of traffic flow differed between roadway types and showed different 

patterns between different sections of the same highway. (34,35) Some of the underlying factors 

that may explain differences in traffic between and within highways are the number of lanes and 

road intersections as well as population density and accessibility to employment centers. (36) 

This work adds to the literature by modeling traffic-generated air pollutants using 

spatiotemporally fine-scale detailed traffic data, which has been uncommon in the environmental 

health science literature to date due to the lack of available detailed traffic information. This 

allowed us to assess how predicted traffic-generated NOx and PM2.5 concentrations in near-road 

communities depend on the traffic input data source. Our results suggest that even though both 

the aggregated and fine-scale input traffic data produced similar spatial and temporal variability 

in concentrations of traffic-generated NOx and PM2.5 across receptors, there are often large 



 25 

spatial and temporal differences between the two sources of traffic data. Specifically, 25% of our 

receptors had differences in concentrations between the two sets of data (i.e., greater 

concentrations for the fine-scale data than the aggregated traffic data) greater than 5 ppb for NOx 

and 0.4 µg/m3 for PM2.5. Within 150 m from the highways these differences were twice as high 

with 25% of receptors with differences greater than 10 ppb and 0.8 µg/m3 for NOx and PM2.5, 

respectively. Receptors nearest highways also showed greater temporal differences in 

concentration between the two sources of traffic data (between-day SD: NOx >6 ppb and PM2.5 > 

0.7 µg/m³).  

Unsurprisingly, we found most of the differences in concentrations of both air pollutants 

between the two models in regions where there were highly variable vehicle density and stop-

and-go conditions during rush hours. Regions with highly variable traffic flow, such as near the 

highly-populated area of downtown Seattle, are presumably better captured by the fine-scale 

traffic data that capture variations over very short distances. In addition, we observed greater 

differences between the models downwind from roadways where RLINE is known to better 

predict concentrations. (37) Finally, the availability of variable vehicle speeds with our fine-scale 

data allowed us to capture the influence on PM2.5 concentrations of non-exhaust emissions such 

as brake and tire wear emissions characteristic of stop-and-go traffic conditions. This differs 

from the national speed data, which showed no temporal variation. (2,38,39) Although variations 

in traffic speed data allowed us to model non-exhaust emissions, the estimation of brake and tire 

wear emissions is highly complex due to the multiple factors influencing them (e.g., break and 

tire materials, break pad size, mass and temperatures, vehicle load, road conditions, driving 

behavior, etc.). Despite the fact that most of these factors are considered in MOVES, our 

modeled non-exhaust emissions might be still underestimated. Thus, we anticipate that the 
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differences found between the two sources of data due to stop-and-go traffic conditions, 

especially on PM2.5 concentrations could be larger than those found in this study 

Most previous studies using RLINE to model ambient air pollutant concentrations from 

on-road vehicle emissions have relied on traffic volume aggregated over space (i.e., AADT at a 

limited number of PTRs along a road) with federal or local TAF to account for the temporal 

variability of traffic volume across days and hours within a day as well as vehicle speeds derived 

from federal data or transportation demand models (TDM). (18,19,23,24,28,29) Those studies, 

like this one, showed the ability of RLINE to capture the spatial and temporal variability of air 

pollutants due to traffic emissions in the near-road environment. (23–25) Previous studies have 

argued, however, that aggregated traffic data may capture well the spatial variability of traffic 

activity and thus its influence on vehicle emissions and dispersion of traffic-generated air 

pollutants in communities near roadways. (19,24,25) However, our results suggest that this may 

not always be the case, especially among receptors living very close to roadways. Our results 

further show that the inclusion of local data may improve predictions of concentrations of traffic-

generated air pollutants in near road communities. This is supported by work by Batterman and 

colleagues who have shown that incorporating local TAF in air quality dispersion modeling 

explains almost all variation in traffic activity observed in an urban setting in the Detroit, 

Michigan metropolitan area. (12)  

Importantly, the incorporation of finer detailed traffic data did not significantly increase 

the computational demands in our air quality modeling. For the same number of receptors, there 

was only a 17% increase in the time of RLINE implementation and post-processing of modeled 

concentrations with the fine-scale traffic data. This suggests that the inclusion of detailed 

spatiotemporal traffic data, when available, may have benefits for both regulatory purposes and 
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epidemiologic studies. This may be especially true for areas with high variations in traffic 

patterns. From a regulatory standpoint, state implementation plans could identify areas where 

incorporating additional PTRs would allow to further capture high variations in traffic pattern to 

contribute and inform traffic regulations. For exposure assessment in epidemiologic studies of 

traffic-related air pollution, it may be that using more detailed traffic data will increase the 

variability of exposures and thus the power to detect associations. They may also reduce bias due 

to exposure measurement error. (40,41) While we did not quantify the impacts of the differences 

in exposure on health estimates in this paper, future analyses are underway using these data and a 

simulation study to assess the added benefit to health models estimates in terms of power and 

bias. 

In spite of the strengths of our approach, there are some limitations of this study. First, 

we focused this work on highway traffic and its contribution to concentrations of primary traffic-

generated NOx and PM2.5 in nearby communities. The trade-off of using finer resolved traffic 

data to capture greater spatiotemporal variability is that this is only plausible on a subset of the  

true roadway system. While this is likely not highly problematic for the very near road receptors 

that are the focus of this work, this may be an important omission for receptors further from 

major roads. Thus, future work would be needed to explore the community impacts of vehicles 

on non-highway roads (i.e., principal and minor arterials). In addition, having traffic recorders 

for each half-mile road segment is challenging for the quality assurance of the data. Despite, the 

fine-scale traffic data undergo quality assessment processes some weaknesses may remain that 

explain the differences in traffic volume between the two sources of data, especially for the State 

Route 520. 
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Second, RLINE’s performance is sensitive to many factors such as the model input data 

and assumptions regarding the impact of the local terrain. Unfortunately, there is no perfect 

validation dataset to confirm that our estimates of traffic-generated pollution were accurate. 

Nonetheless, the similarity in the magnitude of our modeled estimates of NOx to measured levels 

of NOy as well as moderate correlations (0.5 to 0.6) with these observed concentrations provide 

us with some reasonable reassurance that the model is working correctly even given the complex 

terrain of the Seattle area. Moreover, these correlations are within the range found in previous 

studies. (28) Although our predicted concentrations of PM2.5 were lower and less correlated with 

observed PM2.5, this is not unexpected since traffic is only one source of total PM2.5 in the urban 

environment. In fact, our modeled concentrations are at the expected fractions of the contribution 

from traffic to total PM2.5 ambient concentrations (~12%). (2) Theoretically, we anticipate strong 

performance of the model since we focus on concentrations within 1 km of the main highways as 

it has been shown that RLINE performs best for near-road receptors as opposed to further 

distances where atmospheric transformations and particles deposition, which are not captured by 

RLINE, play a more important role. (28,29)  

In conclusion, this study showed that spatiotemporal variations between and within 

highways in traffic patterns are complex and result in similarly complex spatiotemporal 

variations of air pollutant concentrations in near road communities. The use of dispersion 

modeling, even with aggregated input data, will capture a great deal of this variation. However, 

the use of fine-scale spatiotemporally resolved traffic input data adds to both the temporal and 

spatial variability of air pollutants concentrations in certain communities, especially those closest 

to highly congested highways and under certain applications would reduce exposure 

misclassification in epidemiologic studies.   
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Figure 2.1 Flow chart of the air quality modeling framework 

 

The dashed boxes represent input data, the ovals represent computational software and the rectangular elements represent output 
data. The input data represented in this flow chart corresponds to the aggregated traffic data. The main difference with the fine-
scale traffic data is that we used measured hourly traffic volume and vehicle speeds as opposed to the AADT, TAF and national 
vehicle speed used for the aggregated traffic data.    
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Figure 2.2 Study area including major roadways, receptor locations, and prevailing wind 
direction in the Central Puget Sound, WA 

 

Seattle

Renton	Airport
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Table 2.1 Annual average (SD) daily traffic volumes by traffic input data, highway and day of week 

Highway  Aggregate traffic data   Spatiotemporal traffic data 

Weekdays  Saturdays Sundays   Weekdays  Saturdays Sundays 

I-5 200,000 (±19,000) 176,000 (±18,000) 152,000 (±12,000)  210,000 (±62,000) 186,000 (±71,000) 171,000 (±58,000) 

I-405 175,000 (±26,000) 154,000 (±22,000) 133,000 (±19,000)  148,000 (±32,000) 132,000 (±40,000) 114,000 (±26,000) 

I-90 133,000 (±17,000) 117,000 (±14,000) 100,000 (±12,000)  150,000 (±42,000) 125,000 (±44,000) 115,000 (±33,000) 

SR-167 97,000 (±10,000)  86,000 (±8,000) 74,000 (±7,000)  133,000 (±26,000) 121,000 (±23,000) 96,000 (±23,000) 

SR-520 66,000 (±18,000) 54,000 (±16,000) 50,000 (±14,000)   114,000 (±25,000) 76,000 (±28,000) 66,000 (±18,000) 
             Note: For the aggregated traffic data the standard deviation (SD) was obtained by applying the TAFs by month, day of week and hour a day to the AADT reported  

             at the PTRs throughout the highways.    
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Figure 2.3. Spatiotemporal variation of traffic volume and vehicle speed by day of week and 
traffic input data (vehicle speed for the aggregate data shown blue line) for all road and for I-5 

 
Note: The map illustrates the mean volume and speed by location on all roads for weekdays and weekends separately. The box 
plots illustrate the within-road segment variability of traffic volumes and speed for all segments along I-5 (north and southbound 
combined). Mean speed for the aggregate traffic data is represented as blue line (mean weekday and weekends: 70 mph). Mean 
speed for fine-scale traffic data is represented as red line (mean weekday: 63 mph and mean weekend: 68 mph)   
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Figure 2.4 Distribution of the annual average daily traffic on weekdays by location on I-5  
 

 

 

B) Fine-scale traffic data A) Aggregate traffic data 
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Figure 2.5 Distribution of the annual average daily speed on weekdays by location on I-5 in the 
fine-scale traffic data 
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Table 2.2 Observed and modeled of daily mean (±SD) concentrations of NOx and PM2.5 at receptor locations and AQS monitoring stations 

by traffic input data 

Pollutant 

  Mean (SD)   Spearman Correlation 

  Observed Modeled 
aggregate 

Modeled 
fine-scale 

 
Observed 

vs. 
aggregate 

data 

Observed 
vs. fine-

scale data 

Modeled 
aggregate 
vs. fine-

scale data 
NOx (Noy), ppb  

   
 

   

Receptors within 1,000 m  --- 28.9 (±16.5) 30.8 (±19.9)  --- --- 0.96 

Receptors within 150 m  --- 52.3 (±29.5) 55.7 (±34.9)  --- --- 0.96 

EPA-AQS 530330080  20.5(±17.6) 24.4 (±25.8) 26.5 (±26.1)  0.56 0.52 --- 

PM2.5, µg/m3  
   

 
   

Receptors within 1,000 m  --- 1.5 (±0.9) 1.7 (±1.1)  --- --- 0.96 

Receptors within 150 m  --- 2.7 (±1.5) 3.1 (±1.9)  --- --- 0.96 

EPA-AQS 530330048  7.6 (±4.4) 2.1 (±2.0) 2.9 (±2.5)  0.29 0.33 --- 

EPA-AQS 530330057  9.5 (±5.7) 1.2 (±1.3) 1.5 (±1,7)  0.45 0.47 --- 

EPA-AQS 530330037  4.9 (±2.9) 1.4 (±1.5) 1.8 (±1.8)  0.51 0.51 --- 

EPA-AQS 530332004   8.2 (±5.1) 0.7 (±1.0) 0.8 (±1.2)   0.50 0.51 --- 

EPA-AQS 530610005   7.1 (±5.2) 1.1 (±1.4) 1.1 (±1.3)   0.45 0.45 --- 
Notes: In the Central Puget Sound, there are six AQS stations. Of those, one station (Beacon Hill AQS ID: 530330080) at 850 m from I-5 measures hourly Reactive Oxides of 
Nitrogen (NOy) and five measure PM2.5 (Olive Boren AQS ID: 530330048, Duwamish AQS ID: 5300330057, Bellevue AQS ID 530330037, Kent & Central AQS ID 530332004 
and Lynwood AQS ID: 530610005. Since, between 2007 and 2013 the monitoring of NO2 in the Puget Sound was replaced by monitoring of NOy (ie., NOy: Nitric Oxide (NO) + 
NO2 + other oxidized nitrogen species) as an indicator of NOx, we used the measured concentrations of NOy to compare our modeled NOx concentrations.
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Figure 2.6 Distribution of the annual average concentration of NOx and PM2.5 by input traffic data and distance from the highways 
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Figure 2.7 Spatial distribution of the annual average concentration of NOx and PM2.5 by input 
traffic data and difference in concentration 
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Figure 2.8 Distribution of the difference in modeled concentrations of NOx and PM2.5 between the two traffic input data by distance 
from the highways 

 



 39 

Figure 2.9 Spatial distribution of temporal variation (i.e., between-day standard deviations) of the 
daily concentration of NOx and PM2.5 over the year by traffic input data 
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Appendix 
Table S. 2.1 Hourly average (SD) traffic volumes for weekdays by traffic input data, highway and rush hours 

Highway  

 Aggregate traffic data  Fine-scale traffic data 

  
Morning rush 
hours (6:00-

8:59 AM) 

Afternoon rush 
hours (4:00-

6:59 PM) 

Off-peak (Mid-
day and Night)   

Morning rush 
hours (6:00-

8:59 AM) 

Afternoon rush 
hours (4:00-

6:59 PM) 

Off-peak (Mid-
day and Night) 

I-5  10,000 (± 3,000) 15,000 (± 1,000) 7,000 (± 4,000)  12,000 (± 4,000) 13,000 (± 3,000) 8,000 (± 5,000) 
I-405  9,000 (± 3,000) 13,000 (± 2,000) 6,000 (± 4,000)  8,000 (± 2,000) 9,000 (± 2,000) 5,000 (± 4,000) 
I-90  7,000 (± 2,000) 10,000 (± 1,000) 5,000 (± 3,000)  10,000 (± 3,000) 10,000 (± 3,000) 5,000 (± 4,000) 

SR-167  5,000 (± 2,000)  7,000 (± 700) 3,000 (± 2,000)  7,000 (± 2,000) 7,000 (± 1,000) 5,000 (± 3,000) 
SR-520   3,000 (± 1,000) 5,000 (± 1,000) 2,000 (± 2,000)   8,000 (± 2,000) 8,000 (± 2,000) 4,000 (± 3,000) 
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Figure S. 2.1 Average vehicle speed by hour and location on I-5 
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Figure S. 2.2 Spatial gradient of the annual average concentration of NOx and PM2.5 by traffic input data 
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Chapter 3  

Exposures to Primary PM2.5, NOx And Black Carbon Generated by Highway Traffic and 

the Risk of Daily Mortality in Near Road Communities: A Case-Crossover Study 

Introduction  

In urban areas, vehicle emissions are one of the main contributors to poor air quality. (1) Despite 

policies designed to control vehicle emissions, exposures to traffic-related air pollution continue 

to be associated with a broad range of acute and chronic health outcomes (1–9)  In fact, exposure 

to fine particle matter (PM2.5) from road transportation has been estimated to lead to more than 

180,000 premature deaths globally due to ischemic heart disease, stroke, lower respiratory 

infection, chronic obstructive pulmonary disease, and lung cancer. (10) This exposure has also 

been estimated to be responsible for more than 5 million of Disability Adjusted Life Years 

(DALY’s), which represent almost 0.2% of the total global burden of disease.  

Concentrations of traffic-related air pollutants are often the highest within hundreds of 

meters of highly trafficked roadways. (1,11) In the United States, more than 11 million people 

live within 150 meters from major highways (12) and up to 45% of people live within 300 

meters from major highways in large urban areas. (1) Within these buffers there is an 

overrepresentation of minority racial and ethnic groups and low-income populations. (13–18) 

Research has demonstrated that greater long-term exposures to air pollutants in the near-road 

environment put these populations at greater risk of chronic health outcomes. (2–4,19,20) 

Additionally, they likely experience more triggering of clinical and subclinical events due to 

short-term elevations in traffic-related air pollution. (21–23)  
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Disruptions to typical traffic patterns such as accidents, construction, or policing can 

impact traffic congestion and thus vehicle emissions in near road communities. In spite of these 

sources of variability, most epidemiological studies are ill equipped to capture these short-term 

fluctuations in exposure to traffic-related air pollution as they have largely relied on 

measurements from urban-scale air quality monitoring stations. (24–28) However, central 

monitoring stations are too scarce and spatially disperse to capture any small-scale variation of 

traffic-related air pollution in the near-road environment. Furthermore, traffic-related air 

pollutants captured by urban-scale monitoring stations are often correlated with regional and 

other local sources over time due to the effect of meteorology. This makes it more challenging to 

disentangle the specific contribution of vehicle emissions to near-road exposures to traffic-

related air pollution.  

Only one study to our knowledge has investigated the health impacts to near-road 

communities of short-term variations in traffic patterns assessed with high spatial and temporal 

resolution. (29) That work used a unique source of spatiotemporal traffic congestion measured 

each half-mile and every five-minutes on the five major highways in the Washington Puget 

Sound to examine associations with mortality. It found that greater traffic congestion levels were 

associated with increased risk of cerebrovascular and respiratory mortality for decedents adjacent 

to a highway. That study, however, only used an indicator for nearby traffic congestion and did 

not account for the influence of meteorology on the dispersion of traffic-related air pollutants in 

the nearby communities. We extend that study by leveraging a physically-based air quality 

model and high spatiotemporally resolved traffic volume and vehicle speed data. Specifically, we 

employ the Mobile Vehicle Emissions Simulator (MOVES), which allows for the estimation of 

primary air pollutants generated by traffic, along with the Research Line (RLINE) dispersion 
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model to estimate concentrations of traffic-generated air pollution with high temporal and spatial 

resolution. Ideally, this should allow us to disentangle the specific role of vehicle emission from 

other sources of air pollution.  

Our objective was to improve our understanding of the health impacts of air pollution 

generated by highway traffic in populations living in close proximity to highways. Specifically, 

we investigated whether short-term variations in primary PM2.5, NOx and black carbon (BC) 

generated by highway traffic (herein referred to as primary traffic-generated PM2.5, NOx and BC) 

were associated with an increased risk of mortality among the general population living near 

these major highways as well as among different racial, ethnic and socioeconomic groups. 

 

Methods  

Study design 

We conducted a time-stratified case-crossover study to quantify the association between short-

term variations in primary traffic-generated PM2.5, NOx and BC, and non-accidental, 

cardiovascular, respiratory and cerebrovascular mortality among individuals living within 1 km 

of all highways in the Central Puget Sound region of Washington State between 2009 and 2013 

(Figure 3.1). In a case-crossover study, each individual acts as their own control, thus 

minimizing potential confounding by measured and unmeasured time-independent covariates at 

the individual-level. (31) Following the methodological literature, we compared exposures to 

primary traffic-generated PM2.5, NOx and BC in deceased subjects immediately prior to the time 

of death (case period) to their own exposures during control periods selected from all days within 

the same month as the case period, matched by day of week. For instance, if a death occurred on 

a Monday in February 2010 then the control days for that death were all other Mondays in 
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February 2010 before and after the case period. This approach prevents bias due to long-term 

temporal trends, time-independent confounding, and overlap bias. (32–34)  

This study was reviewed and approved by the Institutional Review Board of the 

University of Michigan.  

 

Outcome ascertainment  

We included all non-accidental deaths in the Puget Sound among persons living within 1 km of 

our highways of interest between 2009 and 2013. We identified cases using death certificates from 

the Washington Department of Health (WADOH) with underlying causes of death derived from 

The International Classification of Disease 10th revisions as all non-accidental mortality (ICD10: 

A00-R99), respiratory diseases (ICD-10: J00-J98), cardiovascular disease (CVD) (ICD10: I01-

I52, I60-I69), and cerebrovascular disease (ICD-10: I60-I69). We included death certificates from 

individuals with a valid date of death and residential addresses geocoded by the WSDOH. In-

patients, hospice deaths, and cases with undefined place of death were excluded from this analysis 

because residential address may not accurately reflect exposures for these patients during both 

their case and control periods.  

 

Exposure assessment  

The exposure assessment approach used in this study was described in detail in Chapter 2. 

Briefly, we incorporated highly resolve spatiotemporal traffic volume and speed data available 

each half-mile and every 5-mintues for all highways (I-5, I-405, I-90, SR-167 and SR-520) in the 

Puget Sound from the Transportation Center of the University of Washington (TRAC-UW) into 

the Research Line Source Dispersion Model (RLINE, v1.2) (30) to predict hourly concentrations 
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of primary traffic-generated PM2.5, NOx and BC at each decedent’s residential address. RLINE is 

a line-source dispersion model developed for the U.S. Environmental Protection Agency to 

model near-road exposure with high temporal and spatial resolution. (30) The concentrations of 

primary, chemically inert air pollutants originating from roadways are found by approximating 

the line as a series of point sources, where the contribution of every point source along the line is 

computed with the Gaussian steady-state plume formulation. 

In our modelling, we followed the approach proposed by Cook et al (35) and Snyder et al. 

(36) Specifically, we used measured hourly traffic volume and vehicle speed for each half-mile 

road-segment along with information on local distributions of the vehicle fleet, age distribution, 

miles traveled and fuel types from the Washington State Department of Transportation 

(WSDOT). Using these input data and the Motor Vehicle Emissions Simulator (MOVES, version 

2014) (37), we generated hourly PM2.5, NOx and BC emission factors (grams/vehicle-mile) for 

each road segment. Because each direction of these highways showed different traffic patterns 

across space and time, we modeled emissions factors for each direction uniquely. Then, using the 

numerical integration of RLINE and the beta algorithm for roadside noise barriers, we predicted 

hourly concentrations of primary traffic-generated PM2.5, NOx and BC originating from all half-

mile road-segments at each residential address of the deceased subjects. The hourly 

meteorological parameters used by RLINE (i.e., friction velocity-u*, convective velocity-w*, 

surface roughness height-z0, Monin-Obukhov length-L, moisture, albedo, cloud cover, and 

temperature) were obtained from the Puget Sound Clean Air Agency (PSCAA) from the 

meteorological station at the Renton Airport and processed with AERMET. Additionally, the 

roadway network data were obtained from US Census TIGER/Line Shapefiles and manipulated 

in ArcGIS, version 10.1 (ESRI).  
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Using the hourly-modeled concentration of primary traffic-generated PM2.5, NOx and BC 

from all of the highways at each residential address, we calculated 1, 6, 12, 24, and 48-hour 

moving averages of the pollutants concentration based on time of death. We defined the average 

concentrations of traffic-generated pollution during the 24-hours before each case and control 

periods as our primary exposure.  

 

Covariates  

Time-dependent covariates are of primary interest for a case-crossover design, while time-

invariant factors are matched on by design. Thus, we obtained temperature, relative humidity, 

dew point and rain from the weather station at the Renton airport to control for confounding for 

daily meteorology. (NOAA: ftp://ftp.ncdc.noaa.gov/pub/data/noaa) We also obtained weekly 

cases of influenza validated by laboratory tests from outpatient surveillance data from the State 

of Washington. (38) Additionally, to control for potential confounding by holidays, we included 

in our models a dummy variable for New Year’s Day, Memorial Day, Independence Day, Labor 

Day, Thanksgiving and Christmas as well as 2 days before and after each holiday. In secondary 

analyses, we explored other notable days such as Super Bowl Sunday. We also used PM2.5 

concentrations measured at five EPA Air Quality Monitoring Stations (AQS) in our study area 

(Figure 3.1) to account for potential confounding by other regional sources of pollution. In an 

attempt to isolate pollution from regional sources from emissions from the studied highways, we 

calculated the residuals from a regression of predicted concentrations from the highways of 

interest at each AQS station and measured levels. We then averaged these hourly residuals across 

all AQS monitoring stations and estimated 24-hour moving averages of PM2.5 background 

concentrations for each case and control period. In sensitivity analyses we also explored using 
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unadjusted averages from the AQS monitors as an indicator of background levels of pollution.   

Although in a case-crossover study confounding by time-independent covariates is 

controlled for by design, we were interested in evaluating effect modification by covariates at the 

individual and neighborhood level. Therefore, we extracted information on age, race/ethnicity, 

and education from the death certificates. Following the approach described by Diez-Roux et al 

(39), we also created a composite score of neighborhood disadvantage for each decedent address 

(NDS) by combining census variables from the American Community Survey (2009-2013) 

representing domains of wealth/income and race/ethnicity for each census tract (i.e., median 

annual household income; log median value of occupied housing units; percentage of adults who 

completed college; percentage of persons in managerial or professional education; percentage of 

non-Hispanic whites; percentage of non-Hispanic blacks, etc.) Finally, we created an indicator of 

comorbidity for individuals with diabetes mellitus (ICD10: E10 and E11), overweight/obesity 

(ICD10: E66), hypertension (ICD10: I10-I16) or respiratory disease in the contributory, but not 

underlying, causes of death.  

 

Data analysis  

We calculated summary statistics to describe the distribution of causes of death, individual and 

neighborhood-level socio-demographic characteristics, and within-person variations in 

meteorology, PM2.5 background concentrations, and concentrations of primary traffic-generated 

PM2.5, NOx and BC during the case and control periods. We performed conditional logistic 

regression stratifying on each cause of death to assess whether short-term variations in primary 

traffic-generated PM2.5, NOx and BC at the residential address are associated with higher odds of 

non-accidental, cardiovascular, cerebrovascular and respiratory mortality. We estimated odds 
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ratios (ORs) and their 95% confidence intervals (95% CI) for the association of each exposure 

and cause of death associated with one interquartile range (IQR) increase in the 24-hour moving 

average (lag 01) of the modeled concentrations of primary traffic-generated PM2.5, NOx and BC. 

In all analyses, we controlled for the 24-hour moving average of ambient temperature and 

relative humidity prior to each case and control period using natural cubic splines. We selected 3 

degree of freedom and knots at 90th percentile of temperature and relative humidity for most 

causes of death to minimize the Akaike Information Criterion (AIC). For cardiovascular 

mortality, however, based on AIC an additional knot at the 10th percentile of temperature was 

also included. We controlled for the 24-hour moving average of PM2.5 background 

concentrations based on time of death in all models as a linear variable. Weekly influenza counts 

were also included in all models using natural cubic splines with 2 degree of freedom. Public 

holidays were entered in the models as a dichotomous variable.  

In secondary analyses, we assessed whether persons who were older, non-white, of low 

socioeconomic status (SES) (based on individual and neighborhood-level SES) or with 

comorbidities have a greater risk of non-accidental, respiratory, cardiovascular and 

cerebrovascular mortality associated with short-term increments of primary traffic-generated 

PM2.5, NOx and BC. To test these hypotheses, we included interaction terms with each pollutant 

in our regression models. We categorized age as <75 and ³75 years and, due to a small sample 

size for some race and ethnic groups, we dichotomized race/ethnicity as non-Hispanic white and 

non-white (i.e., African-American, Hispanic, Asian, Native Americans, Hawaiian, other Pacific 

Islander). ). Individual-level SES was based on educational attainment and categorized as 

college, graduate degree or some college or technical school, high school or GED,  and less than 
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high school. Neighborhood-level SES was categorized according to quartiles as high (-20.5 to 

0.10), middle (0.10 to 5.04), and low disadvantage (5.04 to 19.2). 

 In sensitivity analysis, we examined associations with exposures to primary traffic-

generated PM2.5, NOx, and BC at 1, 6, 12 and 48-hour moving averages before death. We 

examined the robustness of our estimated associations to the use of different approaches to 

obtain PM2.5 background concentrations. We also assessed effect modification by time, rain, and 

season. Since RLINE performs better for flat roadways without different elevations in terrain or 

surrounding buildings, we also assessed whether or not differences in elevation between 

segments of the highways and the receptors location influenced our estimations. Finally, we 

evaluated the association of our main outcomes and PM2.5 concentrations measured at the AQS 

monitors in the region. Data management was performed in Stata statistical software version 

14.1 (Stata Corp) and ArcGIS version 10.1 (ESRI). All statistical analyses were performed in R 

statistical software, version 3.1.1. 

 

Results  

Between 2009 and 2013 there were 15,659 deaths due to non-accidental causes in the Central 

Puget Sound among persons living within 1 km from our five major highways. Among these 

deaths 5,780 (36%) were excluded for occurring as in-patients at a hospital, hospice, or 

undefined place and 50 (0.3%) were excluded due to incomplete data to obtain the 24-hours 

moving average of modeled concentrations of traffic-generated air pollutants. Thus, we had 

9,829 (63%) deaths that met our inclusion criteria (Table 3.1). Of those, 8, 33, and 5% had 

respiratory, cardiovascular, and cerebrovascular listed as the underlying cause of death, 

respectively. Decedents were predominantly non-Hispanic whites (82%) and female (54%) with 
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a mean age of 79 (±15) years and college or some college as their maximum level of education 

attainment (50%). On average decedents resided in neighborhoods with more than 27% of adults 

who completed college, 46% employed in management, business, or science occupations, 

$66,000 (±26,000) median household incomes, and less than 6% unemployed. Neighborhoods 

were also predominantly white (59%). (Table 3.2) Among decedents within 1km of a highway, 

2,867 (29%) lived within 300 meters of a highway. These individuals showed similar 

distributions of individual and neighborhood-level sociodemographic characteristics. 

Table 3.3 shows the distribution of exposure to traffic-generated air pollutants and time 

varying covariates between case and control periods by cause of death. Among all decedents 

residing within 1 km from major highway there were no differences between case and control 

periods in mean exposures to primary traffic-generated PM2.5, NOx and BC from neighboring 

highways in the 24-hours before death (PM2.5: 1.7 µg/m3, NOx: 26.4 ppb and BC: 0.7 µg/m3). 

Similarly, no differences were found between case and control periods among decedents within 

300 meters from highways though concentrations were consistently higher among these 

individuals than those living further away (Case vs. Control:  PM2.5: 2.4 vs. 2.5 µg/m3; NOx: 37.5 

vs. 38.1 ppb; BC: 1.0 µg/m3 vs. 1.0 µg/m3). Among decedents of cardiovascular and 

cerebrovascular mortality, concentrations of air pollutants for the control periods were slightly 

higher than case periods and these differences were more pronounced among decedents within 

300 meters. There were no differences between case and control periods for any decedents on 

mean PM2.5 background concentrations, temperature, relative humidity and laboratory confirmed 

cases of influenza. 

After adjusting for time varying covariates and background PM2.5 concentrations, we 

found no evidence of associations between all non-accidental mortality and exposure to primary 
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traffic-generated PM2.5, NOx and BC from nearby highways among residents within 1 km from a 

highway (Table 3.4). However, after stratifying by cause of death, we found between a 2 and 3% 

higher odds of respiratory mortality for each IQR increase in 24-hour average traffic-generated 

pollution levels from nearby highways before time of death although this finding could not be 

distinguished from no association. Conversely, an inverse association was found for 

cardiovascular mortality, with lower odds of cardiovascular mortality for each IQR increase in 

the 24-hours average of primary traffic-generated air pollutants before time of death (PM2.5 and 

NOx ORs: 0.96, 95% CI: 0.91-0.99 and BC: 0.95, 95%CI: 0.91-1.00). Stronger, but less precise, 

associations were also found for cerebrovascular mortality with lower odds of death found 

associated with higher exposures to traffic-generated pollution levels (PM2.5, NOx and BC ORs: 

0.92, 95% CI: 0.81-1.03).  

As shown in Table 3.4, stronger associations were found among residents within 300 m 

of a highway, with higher odds of increased respiratory mortality (PM2.5: 1.12, 95% CI: 0.98-

1.27; NOx: 1.13, 95% CI: 0.98-1.29; BC: 1.09, 95% CI: 0.97-1.26) and lower odds of 

cardiovascular (PM2.5 and BC: 0.93, 95% CI: 0.87-0.99; NOx: 0.92 95% CI: 0.86-0.98), and 

cerebrovascular mortality (PM2.5: 0.79, 95% CI: 0.64-0.97, NOx and BC: 0.78, 95% CI: 0.64-

0.96) with greater exposures to primary traffic-generated pollutants from nearby highways.  

Sensitivity analyses (Supplemental Table S. 3.1) showed similar results with different 

time windows of exposure (i.e., 1, 6, 12 and 48-hour moving averages) as those found for the 24-

hour moving average. Similarly, all associations were robust to alternate approaches to adjust for 

PM2.5 background concentrations and excluding decedents residing near to elevated road-

segments relative to the land surface. We also did not find an association between our main 

outcomes of interest and ambient concentrations of PM2.5 at AQS monitors in the region (ORs 
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ranging from: 0.98 to 0.99, 95% CIs 0.89 to 0.97 – 1.03 to 1.12). Similarly, we found no 

evidence of effect modification by time, rain and season.  

As shown in Table 3.5, we found no evidence of effect modification of our main 

associations of interest by comorbidity or sociodemographic characteristics.  

 

Discussion  

In this study, we incorporated highly resolved spatiotemporal traffic data into a dispersion model 

to estimate exposure to investigate associations between mortality and short-term exposures to 

primary traffic-generated air pollutants in communities near highly trafficked highways in the 

Puget Sound, Washington State. We found no conclusive evidence of an increased risk of 

mortality associated with short-term exposures to primary PM2.5, NOx and BC generated by 

highway traffic. However, we observed some suggestive evidence that greater short-term 

exposures to primary PM2.5, NOx and BC generated by highway traffic was associated with 

higher odds of respiratory mortality, with a stronger association for residents nearest to the 

highways. In contrast, and contrary to our hypothesis, we found reduced odds of cardiovascular 

and cerebrovascular mortality associated with higher levels of these primary traffic-generated air 

pollutants with stronger associations among those living closest to the highways. To our 

knowledge this is the first epidemiological study that estimated highly spatially and temporally 

resolved concentrations of primary traffic-generated air pollutants to better understand the short-

term health impacts of exposures on the near-road communities.  

Our observed associations for respiratory mortality for decedents within 1 km of 

highways (OR: 1.02, 95% CI: 0.94 to 1.11) are consistent with previous research showing 

positive associations with short-term exposure to traffic-related air pollutants such as NO2 and 
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BC, with some studies showing a stronger association for respiratory mortality than for all non-

accidental and cardiovascular mortality. (40–43). Additionally, the stronger associations we 

found for decedents within 300 m from a highway (OR: 1.12, 95% CI: 0.98 to 1.27) are of 

similar magnitude as those found in studies linking an increased risk of respiratory 

hospitalization and emergency department visits with 10 µg/m3 increase in PM2.5 that are in the 

range of 1-8%. (43)  

This is not the first study to find limited associations between short-term exposures to 

ambient air pollutants and mortality in the Seattle area. Sullivan and colleagues (44) found no 

association between ambient PM2.5 at 3 AQS monitors in the region with primary cardiac arrest. 

Zhou and colleagues found no association with all-cause, cardiovascular and respiratory 

mortality in the warm season (April-September) using PM2.5 concentrations at one AQS station 

in Seattle (i.e., Beacon Hill). However, in that study significant associations for the three 

outcomes were found for the cold season (October-March). (45) Similar to our findings for 

primary traffic-generated air pollution, we did not find evidence of an association between 

exposure to ambient concentrations of PM2.5 measured at the AQS monitors and our main 

outcomes of interest among all decedents.  

Associations counter to our hypotheses were found for cardiovascular and 

cerebrovascular mortality, with higher levels of primary traffic-generated PM2.5, NOx and BC 

associated with lower odds of mortality for these specific causes. These reduced odds were even 

stronger for residents in the near proximity to the highways. These findings differ from most 

previous research that have consistently linked short-term exposure to traffic-related air pollution 

and cardiovascular and cerebrovascular mortality. (26,27,46) as well as controlled human 

exposure and toxicological studies, which have linked these exposures to subclinical changes in 
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health such as heart rate variability (HRV), (47–50) blood coagulation markers, and vasomotor 

function. (48,49) Only a few investigations have found similar results to ours, showing a slightly 

reduced risk of mortality associated with exposure to higher levels of specific markers of air 

pollution from traffic. (51–53)  

Possible explanations for our counter-to-hypothesized findings for cardiovascular and 

cerebrovascular mortality are competing risks or unmeasured confounders. For example, 

research has suggested that traffic-generated noise levels decrease but air pollution levels 

increase at low vehicle speeds such as during traffic congestion. (54) Hence, it might be that our 

findings for decreased cardiovascular and cerebrovascular mortality with increased traffic-

generated air pollution may be confounded by noise. This hypothesis is consistent with our 

findings given that we would expect negative confounding for cardiovascular, cerebrovascular, 

and total mortality but not with respiratory mortality, which has not been linked to traffic noise 

Unfortunately, data on time-varying ambient noise was not available to be included in our 

analysis. Similarly, ozone concentrations decrease with increased NOx concentrations but  

explanation is less consistent with negative confounding for cardiovascular but not respiratory 

mortality, which is more strongly associated with ozone. Unfortunately, RLINE does not model 

secondary pollutants such as ozone to test this hypothesis. 

Interestingly, we did not observe that socioeconomic  factors modify the association 

between exposure to primary traffic-generated air pollutants and mortality. Additionally, we did 

not find that individual-level factors such as age, comorbidities (i.e., hypertension, diabetes 

mellitus, overweight/obesity) modify the association between exposure to primary traffic-

generated PM2.5, NOx and BC and mortality. This differs from findings of some (28) but not all 

studies. (27,55,56) Unlike our study, however, most studies of traffic-related air pollution that 
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have identified significant effect modification by socioeconomic characteristics have found that 

more deprived populations often live closer to roads whereas we found slight greater proportion 

of wealthier individuals and neighborhoods closer to highways. (57–60)  

There are some limitations of our study. Although our modeling approach allowed us to 

estimate exposure to primary traffic-generated air pollution with high temporal and spatial 

resolution, all models inherently have errors. Specifically, the performance of a dispersion model 

like RLINE is sensitive to the accuracy of the model input data such as meteorology, traffic 

activity, and emissions inventories. (61) In general, we expect our data to be strong, however, a 

known limitation of RLINE is that it does not model the influence of different elevations in 

terrain or surrounding buildings on the dispersion of air pollutants. This might be expected to be 

important in Seattle. However, this factor did not appear to influence our estimations, since after 

excluding decedents who resided near to elevated road segments relative to the land surface, we 

did not find changes in the observed associations. Moreover, in the region there is vegetation 

along some segments of the five highways included in this study.  Several studies have shown a 

significant reduction in traffic-generated air pollutants behind a roadside vegetation barrier. (62–

65) Although the current RLINE formulation allows us to model solid noise barriers, there is no 

feature to model the effect of near-road vegetation on dispersion of traffic-generated air 

pollutants. It may be that the presence of barriers reduces the impacts of traffic-related exposures 

on health. Another possible limitation is in regards to meteorology. Previous research has shown 

that RLINE predictions might be sensitive to the selection of the meteorological inputs. (61) 

While we used the information from one weather station to represent meteorological conditions 

in the region and its influence on dispersion of traffic-generated air pollutants, our analysis of 

other meteorological stations in the region showed similar wind profiles and meteorological 
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parameters as those from Renton airport station that would support the consistency of our 

modeled concentrations. In all cases, we would expect that any exposure measurement error 

from these causes or others should be non-differential based on the case-crossover design, such 

that the result will likely underestimate any true association. (66,67)  

Another limitation of our study is that we did not have data on ambient noise for the 

study area to account for this confounding in our regression analysis. While several studies have 

demonstrated that confounding between noise and air pollution is often not of great significance 

(68), we cannot eliminate the possibility that confounding is important in this near road 

environment. We also did not have information on the exact location before death or on the 

control days. Several conditions of this study, however, may strengthen our confidence in the 

assumption that our modeled concentration of air pollutants at the residential address may reflect 

relevant exposure levels before death. First, most adults in the US spend a great majority of their 

time (69%) in a residence (69) and those who were near death likely spend more time at home 

than others. In addition, we excluded in-patient and hospice deaths for whom residential address 

may not accurately reflect exposure for case or control periods. Finally, despite the fact that we 

had enough power (i.e., 80%) to detect a minimum OR of 1.025 for total non-accidental 

mortality, we were not fully powered to detect associations with our cause-specific outcomes. 

Similarly, due to few cases we could not evaluate associations with more specific causes of 

mortality such as asthma, chronic obstructive pulmonary disease, myocardial infarction, and 

ischemic stroke, which have all been strongly associated with exposure to ambient air pollution. 

(1,70–72) 

Despite these limitations, this study has important strengths. The primary contribution of 

this work is our exposure assessment approach. Instead of using regional monitoring stations or 
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even aggregated traffic data (e.g. Annual Average Daily Traffic-AADT) across time and space as 

most studies have done, we used a dispersion-based air quality model to capture the influence of 

localized differences in traffic patterns on the ambient concentrations of traffic generated air 

pollutants in near-road populations. Even more importantly, our use of local fleet mix data along 

with fine-scale traffic activity data allowed us to generate a spatiotemporally resolved emissions 

inventory at half-mile and hourly resolution. Since such contributions have been shown to 

improve the accuracy of modeled concentrations of PM2.5, BC, (36) and NOx, we expect reduced 

measurement error. (61,73) Additionally, our detailed vehicle speed data allowed us to capture 

the influence of complex traffic patterns such as stop-and-go congestion and short-term traffic 

jams. This allowed us to disentangle the contribution of exposure to traffic in a way that cannot 

be achieved with the use of more conventional, aggregated metrics of exposure.  

The use of our improved exposure assessment approach seemed to be an important 

addition. This was especially true for the cerebrovascular deaths, which had previously been 

shown to be positively associated with the number of congested minute-kilometers near a 

decedent’s home in our previous work but not in this study (29). On the other hand, our findings 

for all non-accidental, cardiovascular and respiratory mortality are consistent with previous work 

conducted by Pedde M., et al, 2017 in that we found no association for all non-accidental 

mortality and higher odds of respiratory mortality associated with greater levels of traffic 

congestion, with a dose-response relationship with distance from the highways. They also found 

reduced odds of cardiovascular mortality associated with higher congested minute-kilometers, 

especially among residents adjacent to a highway (within 150 or 300). Inconsistent results for 

cerebrovascular mortality between the two studies likely is due to the influence of meteorology 

and other physical factors determining dispersion of vehicle emissions as we observed low 
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correlations between our two exposures estimates, especially among cerebrovascular deaths (Rsp: 

0.24).  

In conclusion, this study found no conclusive evidence of an increased risk of mortality 

associated with exposure to primary PM2.5, NOx and BC generated by highway traffic in near-

road populations. Although there were some suggestive stronger associations of greater odds of 

respiratory mortality with higher concentrations of traffic-generated air pollutants among 

population in close proximity to the highways, we observed unexpectedly reduced odds of 

mortality with greater exposure for cardiovascular and cerebrovascular mortality. This study 

provides insight of the use a novel approach to estimate the near-road exposure to traffic-

generated air pollution.  
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Figure 3.1 Study area and decedents living near major highways in the Puget Sound area, 
Washington state over the study period (2009-2013). 

 

Figure 3.1 shows the study area (Puget Sound). Our five major highways are shown as red lines and other roads as dark gray lines. 
Decedent locations within 1 km of our highways are shown as green dots and the air quality monitoring stations where we obtained 
background PM2.5 concentrations as blue dots. The prevailing wind direction came from Southeast and South-southeast. 
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Table 3.1 Causes of death and individual-level sociodemographic characteristics for decedents near major highways in the Puget 
Sound Region, Washington State, 2009-2013 

Causes of mortality and individual-
level sociodemographic 
characteristics  

  All subjects within 1,000 
meters   

Subjects within 300 
meters 

  n = 9,829   n = 2,867 
  N %  N % 

Causes of mortality  
     

All-cause non-accidental   9,829 100  2,867 100 
Respiratory  737 7.5  193 6.7 

Cardiovascular  3,235 32.9  972 33.9 
Cerebrovascular  479 4.9  134 4.7 

       
Individual-level sociodemographic 
characteristics  

  
Mean (±SD) or N (%) 

Age (years)   78.9 (±14.9)  80 (±14.8) 

Sex       
Female  5,286 53.8  1,622 56.6 

Male  4,543 46.2  1,245 43.4 
Race/ethnicity  

     
Non-Hispanic white  8,043 81.8  2,367 82.5 

Non-white  1,768 18  496 17.3 
Unknown  18 0.2  4 0.1 

Education       
≥Some college, technical school  4,877 49.6  1,493 52 

High school diploma  3,436 34.9  971 33.9 
Less than high school  1,255 12.8  337 11.8 

Unknown  261 2.7  66 2.3 
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Table 3.2 Neighborhood-level sociodemographic characteristics for decedents near major highways in the Puget Sound Region, 
Washington State, 2009-2013 

Neighborhood-level 
sociodemographic characteristics  

 All subjects within 1,000 
meters 

 Subjects within 300 meters 

 n = 9,829   n = 2,867 

  Mean (SD)  or Median (IQR) 

Percentage adult residents who 
completed high school  

 17.8 8.3  17 8 

Percentage adult residents who 
completed college  

 27.4 10.3  28.4 10.6 

Percentage employed residents with 
executive, managerial occupations 

 45.7 16.6  47.3 16 

Median value of housing units (in 
thousand dollars) 

 335 (266 - 436)  338 (274 - 436) 

Median Household incomes (in 
thousand dollars) 

 61 (48 - 83)  60 (48 - 83) 

Percentage household with interest, 
dividend, or rental income 

 29.5 11.7  30.3 11.2 

Percentage non-Hispanic white  59.2 16.9  60.9 6 
Percentage non-Hispanic black  7.4 7.8  6.9 7.3 

Percentage Hispanic   9.3 6.7  8.6 6 
Percentage residents over 16 years of 

age unemployed 
 5.7 2.4  5.4 2.6 

Percentage below poverty level   13.7 9.3   13.9 9.8 
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Table 3.3 Descriptive statistics for concentrations of traffic-generated air pollutants by cause of death and time-varying covariates for 
decedents near major highways in the Puget Sound Region, Washington State, 2009-2013 

Pollutant and cause of death 
  

All decedents within 1,000 meters 
n = 9,829   

Decedents within 300 meters 
n = 2,867 

  Case Control  
Within-

person SDa   Case Control  
Within-

person SDa 

PM2.5, µg/m3         
All non-accidental   1.7 1.7 (±1.1)  2.4 2.5 (±1.5) 

Respiratory  1.6 1.6 (±1.1)  2.4 2.2 (±1.4) 
Cardiovascular  1.6 1.7 (±1.1)  2.3 2.5 (±1.5) 

Cerebrovascular  1.6 1.6 (±1.1)  2.0 2.4 (±1.5) 
NOx, ppb         

All non-accidental   26.3 26.4 (±17.1)  37.5 38.1 (±23.1) 
Respiratory  25.4 24.8 (±16.2)  38.0 33.4 (±21.4) 

Cardiovascular  25.6 26.5 (±17.1)  35.6 38.5 (±23.1) 
Cerebrovascular  24.4 25.7 (±16.9)  31.2 38.0 (±22.7) 

         
Black Carbon, µg/m3         

All non-accidental   0.7 0.7 (±0.5)  1.0 1.0 (±0.6) 

Respiratory  0.7 0.7 (±0.4)  1.0 0.9 (±0.6) 

Cardiovascular  0.7 0.7 (±0.5)  1.0 1.0 (±0.6) 

Cerebrovascular   0.6 0.7 (±0.5)   0.8 1.0 (±0.6) 
         

Time-Varying Covariates                  

PM2.5 background, µg/m3  6.4 6.4 (±2.8)     
Temperature, Fahrenheit   52.3 52.3 (±4.4)     
Relative humidity, %  68.7 68.9 (±9.3)     
Weekly cases of influenza   80.0 79.3 (±28.6)         

                                       a Standard deviation calculated as the within-person variability and averaged across all subjects   
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Table 3.4 Association between an IQR increase in traffic-generated PM2.5, NOx and BC and specific-causes of mortality (OR, 95% CI) 
among all decedents, by distance from highways 

                                                    Pollutant*       

  PM2.5  NOx  BC 

    ORa 95% CI    ORa 95% CI   ORa 95% CI  

Association with modeled concentrations  

All decedents within 1,000 m           
All non-accidental   0.99 (0.97- 1.01)  0.99 (0.97 - 1.02)  0.99 (0.97 - 1.01)  

Respiratory  1.02 (0.94 - 1.11)  1.03 (0.94 - 1.13)  1.02 (0.94 - 1.12) 

Cardiovascular   0.96 (0.91 - 0.99)  0.96 (0.91 - 0.99)  0.95 (0.91 - 1.00) 

Cerebrovascular  0.92 (0.81 -1.03)  0.92 (0.81 - 1.03)  0.92 (0.82 - 1.03) 

Decedents within 300 m           
All non-accidental   0.99 (0.95 - 1.02)  0.99 (0.95 - 1.02)  0.98 (0.95 - 1.02) 

Respiratory  1.12 (0.98 - 1.27)  1.13 (0.98 - 1.29)  1.09 (0.97 - 1.26) 

Cardiovascular   0.93 (0.87 - 0.99)  0.92 (0.86 - 0.98)  0.93 (0.87 - 0.99) 

Cerebrovascular   0.79 (0.64 - 0.97)   0.78 (0.63 - 0.96)   0.78 (0.64 - 0.95) 
*IQR: PM2.5: 1.7, NOx: 26.4 ppb and BC: 0.7 µg/m3  
a Adjusted by temperature, relative humidity, influenza, holidays, rain and PM2.5 background concentrations 
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Table 3.5 Association between an IQR increase in traffic-generated PM2.5, and specific-causes of mortality by different racial, ethnic, 
and socioeconomic groups. 

Subgroup  All non-accidental   Respiratory  Cardiovascular  Cerebrovascular 

OR 95% CI  
P-

value   OR 95% CI  
P-

value   OR 95% CI  
P-

value   OR 95% CI  
P-

value 

Age                
<75 years 0.97 (0.93-1.01) 

0.284  1.09 (0.93-1.26) 
0.32 

 0.90 (0.83-0.98) 
0.138  0.74 (0.49-1.13) 

0.289 
≧75 years 1.00 (0.97-1.03)  0.99 (0.88-1.11)  0.97 (0.93-1.02)  0.93 (0.82-1.05) 

       
  

  
 

   
 

Comorbidity       
  

  
 

   
 

Yes 1.00 (0.96-1.05) 
0.576  1.08 (0.94-1.24) 

0.324 
 0.97 (0.89-1.06) 

0.773  0.91 (0.74-1.12) 
0.986 

No 0.99 (0.96-1.01)  0.99 (0.88-1.11)  0.95 (0.91-1.00)  0.91 (0.79-1.06) 

       
     

 
   

Education       
  

  
 

   
 

College or some college 0.99 (0.96-1.03) 
0.926 

 1.03 (0.90-1.18) 
0.562 

 0.95 (0.89-1.02) 
0.257 

 0.88 (0.74-1.04) 
0.562 High school diploma 0.99 (0.95-1.03)  1.02 (0.88-1.17)  0.99 (0.92-1.06)  1.01 (0.82-1.25) 

Less than high school 0.99 (0.93-1.06)  0.88 (0.65-1.17)  0.87 (0.76-1.00)  0.88 (0.66-1.19) 

       
  

  
 

   
 

Race       
  

  
 

   
 

Non-Hispanic white 0.98 (0.95-1.01) 0.099  1.05 (0.95-1.17) 0.399 
 0.94 (0.94-0.99) 0.086  0.92 (0.81-1.05) 0.779 

Non-white 1.03 (0.98-1.08)  0.87 (0.87-1.10)  1.02 (1.02-1.09)  0.89 (0.68-1.15) 

       
  

  
 

   
 

Neighborhood 
deprivation  score       

  
  

 
   

 

Low  0.99 (0.94-1.06) 

0.985 
 1.14 (0.91-1.43) 

0.375 

 1.01 (0.91-1.12) 

0.409 
 0.86 (0.67-1.10) 

0.781 Middle  0.99 (0.95-1.03)  1.06 (0.91-1.23)  0.95 (0.89-1.02)  0.96 (0.78-1.18) 

High  0.99 (0.95-1.03)   0.97 (0.85-1.09)   0.94 (0.88-1.01)   0.91 (0.76-1.08) 
c Adjusted by temperature, relative humidity, influenza, holidays and PM2.5 background concentrations    
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Appendix  
Table S. 3.1 Association between an IQR increase in traffic-generated PM2.5, and specific-causes of mortality (OR, 95% CI) among all 

decedents by time window of exposure and distance from highways 

    Moving averages for PM2.5 * 

  1-hour  6-hour  12-hours  48-hours 

    ORa 95% CI    ORa 95% CI   ORa 95% CI   ORa 95% CI  
All decedents within 1,000 

m              
All non-accidental   0.99 (0.99-1.00)  0.99 (0.99-1.01)  0.99 (0.98-1.01)  0.98 (0.96-1.00) 

Respiratory  1.01 (0.99-1.02)  1.02 (0.98-1.05)  0.99 (0.94-1.04)  0.95 (0.87-1.02) 
Cardiovascular   0.98 (0.98-1.00)  0.99 (0.96-1.01)  0.97 (0.93-1.00)  0.96 (0.91-1.01) 

Cerebrovascular  0.97 (0.95-1.00)  0.99 (0.97-1.01)  0.94 (0.88-1.01)  0.99 (0.92-1.06) 

Decedents within 300 m              
All non-accidental   1.00 (0.99-1.00)  1.00 (0.99-1.01)  0.99 (0.98-1.01)  0.99 (0.96-1.02) 

Respiratory  1.01 (0.98-1.03)  1.04 (0.98-1.10)  1.03 (0.95-1.11)  0.99 (0.89-1.13) 

Cardiovascular   0.99 (0.98-1.01)  0.98 (0.95-1.02)  0.95 (0.89-0.99)  0.94 (0.87-1.01) 

Cerebrovascular   0.94 (0.88-1.00)   0.99 (0.97-1.01)   0.89 (0.77-1.05)   0.95 (0.83-1.09) 
*IQR: PM2.5: 1.7;  
a Adjusted by temperature, relative humidity, influenza, holidays, rain and PM2.5 background concentrations 
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Chapter 4  

Air Pollution and Health Benefits from Cleaner Vehicles and Increased Active 

Transportation: A Health Impact Assessment Approach for Seattle, WA 

Introduction 

A reliance on private vehicles over public transportation and physically active modes of 

transportation poses several important challenges to public health. For example, motorized road 

transportation impacts environmental quality through air pollution and greenhouse gas 

emissions. (1) In fact, air pollution from motorized road transportation has been estimated to 

cause 184,000 deaths globally, which represents 0.3% of deaths from all causes. (2) Motorized 

road transportation has been also identified as the eighth-leading risk factor of global health lost. 

(2) In the United States, where more than three-quarters of the population drives alone during 

their commutes and less than 3% walk or bicycle as a means of transportation (3), air pollution 

from roadway motor vehicles has been estimated to cause 53,000 premature deaths. (4) Hence, in 

recent years there has been a growing interest in designing transportation policies that promote 

cleaner vehicles and alternatives to private motor vehicle use. (1)  

In the United States motorized road transportation is an important contributor to 

emissions of primary air pollutants. (5) In Chapter 2, we have shown that these emissions result 

in exposures to traffic air pollutants in communities within hundreds of meters from major roads.  

This has important implications for public health since nearly 45% of the United States 

population lives within 300 meters of major roads in urban areas where the concentration of 
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traffic-related air pollutants is the highest. (5,6) Hence, there has been an emphasis on improving 

vehicle technology to reduce on-road vehicle emissions. 

Active modes of transportation such as walking and bicycling have also been identified 

as a strategy to reduce on-road vehicle emissions from private motor vehicle use. (1) Given that 

in the United States almost 41% of all car trips are less than 2 miles (3.2 km), a distance that is 

typically walked or biked in European cities, (7) replacing these short car trips with active 

transportation could translate to substantial environmental health benefits in the United States 

population. (8–10) In addition to lowering vehicle emissions, this may have important health 

benefits due to physical activity since studies have found that 32% of the United States 

population is fully physically inactive. (11) Such inactivity puts the population at higher risk of 

chronic conditions such as ischemic heart disease, ischemic stroke, diabetes, colon cancer, and 

breast cancer. (1,12,13)  

Health impact assessment (HIA) has become an approach that uses and array of data 

sources, analytic methods, and inputs from stakeholders to ensure that public health is taken into 

consideration in policy decisions such as those related to transportation. (14–17) Past studies 

from Europe have used HIA to show that shifting private car use to walking and bicycling should 

translate into positive net health benefits by reducing all-cause mortality and chronic diseases. 

(18–33) Although several HIA studies of the transportation sector have been conducted in the 

United States, few have focused on evaluating the health benefits of promoting active 

transportation, reducing car trips, and increasing electric vehicle (EV) use. (8–10,34–37) 

Although these studies have also found potential health benefits from transportation policies, 

more research is needed to fully understand the impact of transportation policies across a range 

of different locations, populations, and policy scenarios. Furthermore, studies are needed that 



 78 

examine the impact of transportation scenarios on pollutants other than just PM2.5 since motor 

vehicle emissions contribute a larger fraction of pollutants such as NOx, which leads to ozone, a 

wide spread problem.  Finally, questions remain regarding the air pollution and health benefits 

resulting from an increased use of cleaner vehicles such as EVs as opposed to an exclusive shift 

in active modes of transportation. Collectively, this scientific evidence can be used to guide the 

design of urban transportation policies that have the greatest public health benefits. 

In this study, we utilize some key components of the HIA framework to quantify the air 

pollution (PM2.5 and NOx) and health benefits of urban transportation policies that promote 

electric vehicle use and replacement of short car trips with walking and bicycling. We compare 

these interventions to a business as usual scenario (BAU). Changes in CO2 emissions due to the 

transportation scenarios were also examined. We evaluated these policies in the urban area of 

Seattle, Washington since regional and local agencies have committed resources for 

transportation plans to increase active transportation and improve infrastructure to support EVs 

use. In this HIA, we used a dispersion-based air quality modeling to predict exposures in 2035 

under our three different policy scenarios. We also estimated changes in physical activity due to 

walking and bicycling.   

 

Methods 

Study design 

A complete HIA begins with the evaluation of the need for an evaluation in the screening phase.  

This is followed by the  identification of the target population and stakeholders, health effects, 

pathways of interest,  and methods during a scoping phase. Then, investigators model changes in 

exposure and health effects and propose alternatives to minimize adverse health effects  in the 
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assessment phase and recommendations phase, respectively. Finally, communicating results and 

recommendations to decision-makers and monitoring the implementations of these 

recommendations occurs during the reporting and monitoring phases. (17) In this study, we 

constrained the scope to the assessment phase of the HIA framework.  However, by basing our 

transportation policy scenarios on the well-defined Washington Transportation Plan 2035 (WTP-

2035) (38) and the Drive Clean Seattle Strategy (39) we relied upon previously conducted 

screening and scoping work conducted by the Seattle Office of Sustainability and Environment. 

(39) 

The conceptual basis of the HIA model that we used in this study is the comparative risk 

assessment (CRA) model proposed by the World Health Organization, in which a change in the 

disease burden is estimated from a shift in the exposure distribution from a baseline scenario to 

an alternative scenario. (40) This study followed the approaches proposed by Woodcock J., et al; 

de-Nazelle, A., et al; and Rojas-Rueda D., et al. (1,18,26). Specifically, we predicted 

concentrations of primary PM2.5 and NOx from on-road vehicle emissions and estimated the 

amount of physical activity experienced by the population of Seattle in 2035 under three 

different urban transportation policy scenarios. We then compared estimates of mortality from 

all-causes and specific causes (i.e., cardiovascular, stroke and respiratory) for the Seattle 

population under scenarios using more EVs and active transportation as compared to a BAU 

case. 

 

Scenarios of urban transportation  

To inform the potential impacts of a range of realistic policies, we examined the air pollution, 

physical activity, and health impacts of three transportation policy scenarios on the population of 



 80 

Seattle in 2035. These scenarios were based at least in part on the Washington Transportation 

Plan 2035 (WTP-2035) (38) and the Drive Clean Seattle Strategy from the Seattle Office of 

Sustainability and Environment. (39) For all scenarios we used traffic conditions in 2010 in 

Seattle reported by the WSDOT and projected them to 2035 (38,41).   

Under the first scenario, the BAU, we used the forecast of overall motor vehicle usage 

from the Washington State Department of Transportation, which projects that the vehicles miles 

traveled (VMT) in Washington for 2035 will increase 19%, concurrent with the projected trends 

in population growth and economic improvement for the area . (38,41) As the base case, we 

assumed no additional efforts to increase the percentage of electric vehicles in the fleet since 

2010 nor any changes in the percentage of trips using active modes of transport. In Scenario 2, 

we assumed the same vehicles miles traveled (VMT) and active transportation as the BAU but 

assumed that by 2035 35% of the gasoline passenger cars and light duty tracks will be replaced 

by EVs. In Scenario 3, we assumed the same improvements in the vehicle fleet technology as 

described in Scenario2 but also assumed that 50% of car trips less than 1.5 miles (2.4 km) will be 

replaced by walking and 50% of car trips between 1.5 and 5 miles (2.4 - 5.6 km) will be replaced 

by bicycling. For all scenarios, including the BAU, we assumed improved fuel economy for the 

fleet based on the Joint National Standards (2017-2025) of the USEPA and the National 

Highway Traffic Safety Administration. (42)(43) These standards, which were developed to 

reduce green-house-gases (GHG) emissions and improve fuel economy of passenger cars and 

light duty trucks, are the most recent available standards for motor vehicles.  

 

Estimation of changes in concentrations of air pollution  

To quantify differences in concentrations of primary PM2.5 and NOx from traffic as well as CO2 
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emissions for each scenario, we conducted dispersion-based air quality modeling using an 

approach that we have used previously for modeling current day conditions in the Central Puget 

Sound Region and has been described in detail elsewhere. (Chapter 2). Broadly, we used the 

Motor Vehicle Emissions Simulator (MOVES, version 2014)(44) and the Research Line-Source 

Dispersion Model (RLINE v1.2) (45) with inputs representing conditions for each transportation 

scenario. We then predicted concentrations of NOx and PM2.5 at receptor locations throughout 

Seattle urban area. These locations were randomly selected from residential parcels in each 

census tract to reflect a population-weighted exposure.   

As inputs to our air quality models and to represent conditions in 2035, we used EPA 

projections on the vehicle fleet mix distribution and fuel formulations for King County in 2035. 

(MOVES, user-guide) Next, we scaled up the traffic volumes (i.e., Annual Average Daily 

Traffic-AADT) in 2010 for all minor and principal arterials and major highways (I-5, I-405, I-90, 

SR-520 and SR-167) from the Seattle Department of Transportation (SDOT) by 19% based on 

population growth and the WSDOT VMT forecast in Washington for 2035. We assumed that 

vehicle speeds did not change from 2010. For both Scenarios 2 and 3, we replaced 35% of 

gasoline passenger cars and light duty tracks by electric vehicles. In Scenario 3, we further 

reduced the VMT on principal and minor arterials by 50% for all car trips less than 5 miles using 

information on  origins and destinations of car trips in Seattle from the Puget Sound Travel 

Survey. (46) Data of the geography of the road network for minor and principal arterials in 

Seattle was obtained from the SDOT (http://data-

seattlecitygis.opendata.arcgis.com/datasets/seattle-streets) For major highways, we used the 

geography from the Tiger products of the US Census Bureau. 
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 Using these projected input data by scenario and MOVES, we generated hourly emission 

factors (grams/vehicle-mile) for NOx, PM2.5 and CO2 for the roadways of interest. Then, we 

combined these emission factors with local meteorology using the numerical integration of 

RLINE to model hourly concentrations of primary NOx and PM2.5 under each scenario at our 

receptor locations. Since there is no meteorological data for the future, we used the conditions 

measured in 2010 at the Renton Airport station operated by the National Oceanic and 

Atmospheric Administration (NOAA) (ftp://ftp.ncdc.noaa.gov/pub/data/noaa) as a year with 

typical conditions. Since we are estimating changes on air pollution on the annual average scale 

we anticipate using data for a typical year will not affect our estimated air pollutant 

concentrations. These data were processed through the AERMET program by the Puget Sound 

Clean Air Agency.  

To compare pollution levels across scenarios, we calculated annual concentrations for 

each scenario at all receptor locations for each scenario and estimated a percentage change as 

compared to the BAU scenario. For inclusion in our health analyses, we averaged pollutant 

concentrations of all receptor locations within census tracts and weighted these estimates by the 

age and sex distribution of the population by census tract to develop a population-weighted 

annual average concentration for each scenario. We selected census tracts as our unit of 

aggregation since this is an area from the U.S Census Bureau where estimations of health 

outcomes and traffic air pollution can be made accurately. (47) This assumes that people living 

within the census-block experience the same air pollution level. We further assumed that non-

traffic related sources of PM2.5 and NOx were constant across scenarios.  

 

Estimation of changes in physical activity 
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We used data from the Puget Sound Travel Survey (46) to estimate age- and sex-specific travel 

distances by mode of active transportation for the BAU scenario. To convert distances walked or 

bicycled into travel times we used the mean and standard deviations of age- and sex-specific 

walking and bicycling speeds from published studies. (18,48) Then shifting 50% of short car tips 

to active transportation we obtained mean travel time distributions by distance, age, and sex for 

walking and bicycling in Scenario 3. These travel time distributions were converted into 

distributions of metabolic equivalents (METs) using tabulated data for specific activities and 

speeds (i.e., 6.8 METs are assigned to bicycling to/from work at a self-selected pace and 3.5 

METs for walking at a moderate pace). (49,50) We used the geometric mean of MET hours per 

week as the summary statistic by age and sex groups and as the measure of exposure to physical 

activity due to active transportation given the log-normal distribution of these data.  

Because the relationship between physical activity and all-cause and cardiovascular 

mortality is curvilinear with the greatest benefits for moving from low to moderate levels of 

activity, (51,52) we added our estimates of physical activity from active transportation to data for 

non-transportation related physical activity. Specifically, we calculated the geometric mean and 

standard deviation of the sum of weekly minutes of leisure-time moderate and vigorous physical 

activity plus occupational physical activity by age and sex for the West Region from the National 

Health Interview Survey for the Center of Disease Control and Prevention and converted these 

into METs (h)/week. (49,53) We assumed that the non-transportation related physical activity 

was constant across all scenarios.  

 

Estimation of projected health impacts for each transportation scenario 

We quantified the projected health impacts for all non-accidental, cardiovascular or 
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cardiopulmonary mortality in adults of the general population attributable to changes in air 

pollution between the BAU and each alternate transportation scenario. To quantify the health 

effects attributable to changes in physical activity from active transportation, we examined all-

cause and cardiovascular mortality. These outcomes were selected based on the best evidence 

available in the scientific literature. (5,54–57) For physical activity we focused on adults less 

than 65 years of the general population because we expected that this group would be the most 

likely to adopt active transport over driving for short trips. 

 We estimated the Population Attributable Fraction (PAF) to reflect the fraction of the 

deaths in a population that are due to the exposure. This calculation includes the concentration-

response function expressed as risk ratios (RRs), and the population distribution of exposure 

under the BAU scenario and the policy scenarios. (58) To translate the obtained PAFs into 

mortality burdens, we multiplied the PAFs by projected Seattle mortality rates by age, sex, and 

cause and summed across all strata by specific cause. To project Seattle mortality rates for 2035, 

we adjusted the specific mortality rates of 2010 to the projected age and sex structure of the 

population in the region for 2035 based on projection from the Center for Disease Control and 

Prevention (https://wonder.cdc.gov/population.html). Since in this study we focused only on the 

health and not economic impacts of our transportation scenarios we did not include any 

discounting. (9,18,40). 

Although previous studies conducted in the Seattle area have quantified associations 

between exposure to traffic-related air pollution and mortality, we used exposure-response 

functions derived from a wider body of scientific literature, which is considered a better practice 

for this type of evaluation. In particular, for the health impacts of PM2.5, we used the exposure-

response functions from the reanalysis of the Harvard six cities and the American Cancer Society 
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Study (ACS). (59–62) Because less scientific literature is available for NOx, we used exposure-

response functions from a recent publication of the ACS study recommended in the EPA’s 

Integrated Science Assessment for Oxides of Nitrogen. (55,63) To avoid double counting, we 

used reported associations of PM2.5 adjusted by NO2 and NO2 adjusted by PM2.5. To translate our 

NOx modeled concentrations to NO2 we applied a ratio of 0.75 (NO2/NOx) based on previous 

findings in the study area (Chapter 2). We assumed a linear concentration-response function for 

the association of exposure to NO2 and PM2.5 with our health endpoints since concentrations in 

this area are within a range where most epidemiological studies have not identified a threshold 

concentration below which ambient air pollutants do not have an effect on health. (64) 

For associations between physical activity (METs) and all-cause mortality, we used the 

exposure-response function derived from the meta-analysis conducted by Woodcock et al. (57). 

For associations of physical activity (METs) with cardiovascular mortality we used the meta-

analysis by Hammer et al. (65) Since the exposure-response function between physical activity 

and all-cause and cardiovascular mortality is non-linear, we used a 0.25 power transformation of 

total physical activity with all-cause mortality and a 0.5 power transformation with 

cardiovascular mortality following recommendations by Woodcock et al. (23,57) 

 

Modeling and sensitivity analysis 

We quantified the heath impacts of air pollution and physical activity for our three scenarios as 

described above using Stata statistical software version 15.1 (Stata Corp). We also included 

uncertainty analyses around the parameter estimates using Monte Carlo simulations, allowing for 

the estimation of confidence intervals based on 95% of the model runs (CI 95%). Using the a 

lognormal distribution of the annual average concentrations of PM2.5 and NO2 as well as physical 
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activity, we generated exposure levels and exposure-response functions in 10,000 simulations for 

a random sample of 10,000 subjects. Then, from these simulated runs we obtained the 95% 

confidence intervals for our estimations.  

Finally, we ran sensitivity analyses to evaluate the robustness of our results, including the 

consideration of different concentration-response functions for PM2.5 such as those reported in 

the EPA’s Integrated Science Assessment for PM. (66) For active transportation, we performed 

sensitivity analysis using a linear exposure-response function between transportation-related 

physical activity and mortality. We also evaluated shorter travel times for our scenario with 

active transportation. 

 

Results 

As shown in Table 4.1, both proposed transportation intervention scenarios (Scenarios 2 and 3) 

resulted in an overall reduction in the emissions of NOx and PM2.5. Under Scenario 2, there was 

an 8% in NOx and 11% reduction in PM2.5 while under Scenario 3 there was 9% reduction in 

NOx and a 19% reduction in PM2.5 as compared with the BAU scenario. Moreover, we estimated 

that Scenario 2 and Scenario 3 would result in reductions in atmospheric CO2 emissions from on-

road traffic by 26% and 30%, respectively as compared with the BAU. We also estimated that 

switching to EV would reduce the mean annual average concentrations of NOx and PM2.5 from 

on-road traffic at receptors across the Seattle urban area by an average of 0.27 ppb (10.9%) and 

0.04 µg/m3 (8.6%), respectively, as compared to the BAU scenario. Adding a shift of 50% of car 

trips less than 1.5 miles to walking and 1.5 to 5 miles to bicycling increased reductions in NOx 

and PM2.5 to 0.32 ppb (12.8%) and 0.08 µg/m3 (18.2%) as compared to the BAU. 

As shown in Table 4.2, shifting 50% of short car trips to active transportation would 
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increase the daily average transport-related walking and bicycling times from 7.7 and 2.0 

minutes in the BAU scenario to 13.9 and 21.4 minutes under Scenario 3, respectively. In 

addition, the mean distance traveled per trip for walking and bicycling would increase from an 

average of 0.7 and 0.3 miles to 0.6 and 2.8 miles, respectively. (Table 4.2).  

As for the health benefits, our results indicate that the transportation intervention scenarios 

would reduce adverse health outcomes associated with exposure to NOx and PM2.5 in the adult 

population of the Seattle urban area. (Table 4.3) Specifically, we estimated that for an adult 

population of 691,000 inhabitants, reductions in NOx from on-road traffic would result in  10 

(95% CI: -1, 21) and 11 (95% CI: -1, 25) fewer premature deaths per year for all non-accidental 

mortality in Scenario 2 and Scenario 3, respectively, as compared with the BAU. These NOx 

reductions would also prevent 4 (95% CI: -2, 10) and 5 (95% CI: -2, 11) premature deaths per 

year for cardiovascular mortality in Scenario 2 and Scenario 3, respectively, as compared with 

the BAU. Fewer health benefits were estimated for reductions in PM2.5 from on-road traffic, with 

1 (95% CI: -1,3) and 2 (95% CI: -2, 5) premature deaths avoided for all non-accidental mortality 

for Scenario 2 and Scenario 3 as compared to the BAU, respectively. These predicted reductions 

in all non-accidental premature mortality were primarily driven by reductions in 

cardiopulmonary deaths for both scenarios. (Table 4.3) 

We also found that increments in physical activity due to switching to active transportation 

in Scenario 3 had large contributions to health. As shown in Table 4.3, increasing active 

transportation would result in 49 (95% CI: 19-71) premature deaths avoided per year for all-

cause mortality, of which 21 (95% CI: 9-25) were attributable to reductions in cardiovascular 

mortality.  

Overall, the total health gains estimated for Scenario 3, which includes active 



 88 

transportation were 62 (95% CI: 28-84) avoided deaths as compared with 11 (95% CI: 0-22) 

fewer premature deaths from the Scenario 2.  

In sensitivity analyses, we found that our results were largely robust to different 

concentration-response functions for air pollution. In particular, using different concentration-

response functions for PM2.5 resulted in premature death estimates for all-cause non-accidental 

mortality that were within the range of our initial findings (e.g.; 1-2 prevented deaths for 

Scenario 2 and 2-4 prevented deaths for Scenario 3). For physical activity, we found that our 

results were more sensitive to the exposure-response function. In particular, using a linear 

exposure-response function for walking and bicycling related-physical activity resulted in overall 

benefits that were up to 3 times greater than those we estimated using a non-linear exposure-

response function (e.g.; avoided deaths for all-cause mortality in Scenario 3: 153, 95% CI: 83-

176). In addition, assuming shorter travel times, especially for bicycling (e.g.; 11 minutes and a 

distance of 1.6 miles) resulted in smaller health benefits (avoided premature deaths: 32, 95% CI: 

19-45) though these values were within the range of our results assuming longer travel times. 

 

Discussion  

Our results showed that transportation interventions scenarios, based largely on policies 

proposed by local authorities, would translate to sizeable health benefits in the general 

population of Seattle, Washington. We estimated that switching 35% of all gasoline cars and 

passenger trucks to electric engines and shifting 50% of car trips less than 5 miles to walking and 

bicycling would result in 62 fewer premature deaths each year. While these estimates included 

13 fewer deaths due to reduced exposure to NOx and PM2.5 from traffic, the vast majority of the 

health benefits of these transportation policies are due to the increased physical activity of 
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walking and bicycling for active transportation.  

Overall, the 62 avoided premature deaths for all-cause mortality associated with our 

transportation scenarios have a public health impact that is  roughly equivalent to a 6% increase 

in the prevalence of those quitting smoking within five years. According to the study by Messer 

K et al, this is consistent with cessation rates for smoking with an average of 6.7% of adults in 

the United States having quit smoking for 6 months or longer. (67) In addition to local health 

benefits, these transportation scenarios demonstrated their contribution to achieving local goals 

to reduce carbon emissions, with approximately 30% less CO2 emissions under both scenarios, 

which are obtained mainly by switching to EV. 

Our results are consistent with previous research that documented health benefits of 

replacing car use by active transportation and reducing vehicle emissions. Similar to our results, 

most of these studies found larger health benefits of increased physical activity as compared to 

improved air quality. (8–10,18,19,26–28,34–36,68) Comparing our results to those of Grabow et 

al, who conducted a HIA in 11 metropolitan areas of the Midwestern United States, we found 

very similar reductions in PM2.5 for shifting 50% of short car trips to active transportation. We 

found reductions of 0.04 µg/m3 in PM2.5 attributable to removing these short trips in comparison 

to their findings of reductions between 0.01-0.05 µg/m3. They also reported reductions in the 

daily maximum 8 hours of O3 of 0.05-0.23 ppm. In terms of their finding of health benefits, for a 

population of 31.3 million people in the Midwestern region, Grabow M et al found declines in 

all-cause mortality due to less air pollution exposure and increased physical activity due to 

bicycling of about 1,295 fewer deaths per year. (8) Even larger estimates were reported by the 

study by Maizlish N et al for the San Francisco Bay area where they found overall net health 

benefits of 2,413 avoided premature deaths per year due to reduced PM2.5 exposure and increase 
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physical activity due to active transportation among a population of 7.1 million. (9) Although we 

found somewhat smaller benefits for PM2.5 than the Maizlish study after adjusting for population 

size, this might be explained by our use of concentration-response functions of PM2.5 and NO2 

adjusted by co-pollutants to avoid double counting whereas older studies used estimates from 

single pollutant studies. Other possible explanations for differences in the estimated health 

benefits across studies might be the assumptions used such as the percentage of car trips replaced 

by active transportation, inclusion or not of cleaner vehicles, as well as the amount of physical 

activity assumed under the different scenarios. 

Another contribution of this work is that we newly quantified the impacts of transportation 

policies on reducing population exposure to NOx. This is important since we found greater health 

benefits of reduced exposure to NOx than those found for PM2.5. One potential explanation for 

this finding is that transportation policies have greater impacts on air pollutants more tightly 

related with traffic emissions such as NOx, for which 33% of total emissions are contributed by 

on-road motor vehicles as compared with PM2.5 for which traffic emissions only contribute to 

12% of the total emissions. (5)  

One important note on our findings is that our health benefit estimates for air pollution 

used concentration-response functions for the United States derived from the American Cancer 

Study. However, previous epidemiological studies conducted in the Seattle region have found 

largely inconsistent results for the association between exposures to air pollution and mortality. 

(69–71) If these previous associations reflect the true conditions in Seattle, we would expect that 

the health benefits of the interventions evaluated in this study would be smaller than reported 

here. However, given that we found that the health impacts were mainly due to the active 

transportation and physical activity component of the transportation policies, our results still 
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suggest important benefits from the transportation policies evaluated.  

Another note of importance is that we assumed that EVs do not generate tailpipe emissions 

and thus have a reduced contribution to community exposures to air pollution. Yet, while EVs do 

not directly burn fossil fuels to power their engines, the electricity used to power those engines is 

often derived from coal or other polluting sources. In fact, one analysis from 2014 documented 

that the overall population burden of air pollutants from EVs was only lower than gasoline 

vehicles when clean sources of energy were used. (72) Since greater efforts have been placed on 

renewable sources of energy, however, a more recent analysis has estimated that the air pollution 

impacts of EVs in the future will be 60% lower than the EVs driven today. (73) This report 

similarly noted that in spite of the fact that manufacturing of EVs has been associated with 

higher GHG emissions than conventional gasoline-powered vehicles, (74) the excess 

manufacturing emissions for EVs are usually compensated by cleaner emissions from driving 

after 6 to 16 months. (73) Thus provided that clean energy sources continue to replace their 

dirtier counterparts for electricity generation, EVs will continue to provide population health 

benefits although individuals near the power plants may have some additional burden.  

Another issue of note is that the transportation policies proposed in this study would 

require infrastructure investments to facilitate access to charging technology and support 

pedestrians and bicycle traffic. Nonetheless, the resulting health benefits may outweigh the costs 

of such as policies. For instance, the Seattle master plan for bicycles projected that the addition 

of nearly 100 miles of protected bicycle lanes, 250 miles of neighborhood greenways, and 

bicycle parking facilities would cost to the city of Seattle nearly $72.6 million for the first five 

years (2017-2021). (75) In contrast, health cost savings of around $212 millions has been 

estimated from a similar active transportation scenario for cities in the Midwestern Unite States 
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with similar population density as Seattle. (8) Thus, the potential health care saving from 

avoiding premature mortality could cover the cost of adding bicycle and pedestrian 

infrastructure. In fact, the intervention scenarios assessed in this study are highly feasible since 

Seattle has experienced an increasing trend in EV ownership as well as active transportation, 

with an increase of almost 350%, 48%, and 38% for EV sales, bicyclists, and pedestrians in the 

last 6 years, respectively. (39,76)  

As with all studies, our work is not without limitations. For one, we did not assess all 

transportation-related exposures and outcomes. Specifically, we did not assess any adverse 

outcomes due to increased exposure to air pollutants for those walking or bicycling next to busy 

roadways, or any changes in the risk of traffic injuries. As such, our net health benefits could be 

overestimated. Most previous studies, however, have found that the health benefits of physical 

activity have far exceeded the adverse health impacts of walking and bicycling next to air 

polluting traffic so this impact may be minimal. (31,32,77) Moreover, previous studies have 

found that the total net health benefits of promoting active transportation outweigh the adverse 

effects of traffic injuries. (9,10,19,26) In contrast, we may have underestimated our health 

benefits by not including secondary pollutants such as O3 or secondary aerosol particles formed 

in the atmosphere in our modeling. Another possible limitation of this study is that the EPA 

projections for fuel formulations and vehicle fleet distribution for 2035 may be overly optimistic. 

These projections followed the EPA Tier 3 for Motor Vehicle Emissions and Fuel Standards (78) 

as well as the Final Rule to Further Reduce GHGE and Improve Fuel Economy for Model Years 

2017 to 2025 for Light-Duty Vehicles. (43) In sensitivity analyses where we modeled vehicle 

emissions using 2020 data, we found that vehicle emissions rates in 2035 represent 

approximately 32% of 2020 emissions rates. Thus, if by 2035 there is not compliance with the 
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current EPA and NHTSA light-duty vehicle GHG emissions and fuel economy regulations our 

modeled concentrations of PM2.5 and NOx for 2035 will be underestimated. However, we do not 

expect this to influence our health benefits estimates since we assumed the same standards across 

our transportation scenarios and focused on differences in concentration between each 

intervention scenario and the BAU scenario. Finally, we note that the health benefits associated 

with transportation interventions are expected to occur gradually over time (79) and we assessed 

the benefits at 2035 assuming that active transportation and physical activity took place in 

previous years of implementation. 

Despite these limitations, this study has important strengths. The primary contribution of 

this work is our air quality modeling approach. Instead of assuming uniform reductions of VMT 

due to shifting car trips to active transportation, as most studies have done, we used information 

on the census tracts of origin and destination of all car trips in Seattle from the Puget Sound 

Travel Survey. (46) In addition, by using receptors locations throughout the city in our dispersion 

model, we were able to estimate changes in exposures that would happen throughout the city. 

Finally, as was mentioned above a strength of this study was the quantification of the impacts of 

transportation policies on reducing population exposure to NOx since most previous studies have 

focused on PM2.5. 

In conclusion, this study demonstrated that moving towards cleaner vehicles and active 

transportation can help to improve not only air quality in urban areas but also reduce burden of 

disease and improve population health. Most health benefits were the result of increased physical 

activity due to increased active transportation though the use of cleaner vehicles was important 

for greenhouse gases emissions. 
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Table 4.1 Modeled daily vehicle miles of travelled, annual average concentration of NOx and PM2.5 and CO2 emissions by 
transportation scenario 

Variable   Scenario 1: BAU    Scenario 2: 
Electric vehicles    

Scenario 3: Electric 
vehicles and active 

transportation  
Daily Vehicle Miles of Traveled  11,602,000  11,602,000  10,536,000  

Percent reduction from BAU  
  0.0  9.2  

Emissions  
NOx  

     
 

Emissions, tons/yeara  372.2  342.6  337.5  
Percent reduction from BAU  

  7.9  9.3  
PM2.5        

Emissions, tons/yeara  29.8  26.6  24.1  
Percent reduction from BAU  

  10.7  19.3  
Atmospheric CO2        

Emissions, thousands of tons/yeara  1,068.7  793.4  744.1  
Percent reduction from BAU  

  25.7  30.2  
Concentrations  
NOx, ppb        

Mean concentration (SD)   2.5 (1.2)  2.2 (1.1)  2.2 (1.1)  
Mean reduction from BAU (SD)     0.3 (0.1)  0.3 (0.2)  

Percent reduction from BAU  
 

 10.9  12.9  
PM2.5, !g/m3        

Mean concentration (SD)   0.4 (0.2)  0.4 (0.2)  0.4 (0.2)  
Mean reduction from BAU (SD)   

 
 0.04 (0.02)  0.08 (0.04)  

Percent reduction from BAU        9.3   18.6  
                                               aMetric tons 
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Table 4.2 Baseline data and modeled travel times and distances for active transportation 

Variable Scenario 1: BAU  
Scenario 3: Electric vehicles 

and active transportation 

Mean daily travel times* 
(SD), minutes      

Walk 7.7 (5.5) 13.9 (4.2) 
Bicycle 2.0 (5.2) 21.4  (8.2) 

Mean distance traveled, 
miles    

Walk 0.4 0.6 
Bicycle 0.3 2.8 

Average speed, MPH     
Walk 2.8 2.8 

Bicycle 7.9 7.9 
                 *Geometric mean of weekly physical activity  
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Table 4.3 Estimated reductions in mortality per year among adults of the general population from 
reduced exposure to NOx, PM2.5 and increased physical activity due to transportation intervention 

scenarios as compared with the BAU scenario 

Health benefits   
Scenario 2: 

Electric vehicles   
  

Scenario 3: Electric 
vehicles and active 

transportation 

Air pollution     

NO2, ppba     

Change in concentrationb (SD)  0.21 (0.10)   0.24 (0.12) 
Premature deaths avoided     

All non-accidental  10 (-1, 21)  11 (-1, 25) 
Cardiovascular   4 (-2, 10)  5 (-2, 11) 

PM2.5, μg/m3      

Change in concentrationb (SD)  0.04 (0.02)  0.08 (0.04) 
Premature deaths avoided     

All non-accidental  1 (-1, 3)  2 (-2, 7) 
Cardiopulmonary  1 (0, 3)  3  (0, 6) 

Total air pollution  11 (0, 22)  13 (1, 28) 
          

Physical Activity  
Minutes increased in physical 
activityc 

   25 

Premature deaths avoided     

 All-cause     49 (19, 71) 
Cardiovascular     21 (9, 25) 

     

Total deaths avoided         

Air pollution and physical 
activity  

11 (0, 22)  62 (28, 84) 

          
aNO2 concentrations were obtained applying a ratio of 0.75 to NOx concentrations, bMean reduction in the annual average 
concentration of NOx (ppb) or PM2.5 (µg/m3) in each intervention transportation scenario as compared with the BAU across 
census tracts. c Mean increased minutes in physical activity per person. Population of adults and the expected mortality rate for all 
non-accidental mortality in Seattle adults for 2035 are 691,000 inhabitants and 644.3/100,000, respectively. Similarly, the 
population of adults 18-64 years and mortality rate for all-cause mortality (i.e., including injuries) are 540,000 inhabitants and 
233.4/100,000, respectively.  
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Chapter 5  

Discussion 

Summary and implications of main findings 

This dissertation aimed to better understand the exposure and health impacts of the complex 

spatiotemporal variations in motor-vehicle traffic patterns on near-road communities and 

consider how policies might be used to minimize exposures and improve health. From an 

exposure assessment and environmental epidemiology standpoint, it provides evidence that 

improvements are needed over standard approaches when assessing near-road exposures to air 

pollution. Furthermore, from a decision-making perspective this dissertation provides evidence 

that transportation policies may mitigate the population health burdens of motorized 

transportation.  

In Chapter 2, we estimated air quality modeling results using a source of fine-scale 

spatiotemporally resolved traffic activity data as compared with more aggregated traffic data on 

concentrations of pollutants in near road communities. We found that highly variable traffic 

volumes and speeds across space and time result in similarly complex spatiotemporal variations 

of air pollutant concentrations in near-road communities. These variations in traffic volumes, 

vehicle speed, and air pollutant concentrations differ between different highways as well as 

within individual highways. Even though some of these variations were well captured by 

traditional aggregated traffic input data, the use of fine-scale scale traffic data adds to the ability 

of the air quality modeling to capture greater temporal and spatial variability of air pollutant 

concentrations, especially in communities closest to highly congested highways. 
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The results in Chapter 2 represent important contributions of this study to the scientific 

literature. In contrast to prior work, we modeled concentrations of air pollution from highway 

traffic using fine-scale spatiotemporally detailed traffic data, which has been uncommon in the 

environmental health science literature due to the lack of available detailed traffic information. 

(12–15) Although previous studies have argued that aggregated traffic data over space and time 

may adequately capture the variability of vehicle emissions and air pollutant concentrations, 

(12,16) we provided strong evidence of large differences in concentrations between the two 

sources of traffic data over space and time, especially for communities closest to highways and 

among those with more complex traffic patterns. This highlights the benefits of using more 

detailed traffic information, especially since using fine-scale spatio-temporal input data only 

increased the computational demands of our model by 17% as compared to the aggregate data. 

As such, our study brings the attention of the scientific community to the importance of 

considering the fine-scale spatiotemporal complexities in traffic patterns and its influence on 

predicted population exposures to air pollution from highway traffic. Although future research is 

needed to test this hypothesis, our exposure assessment approach may potentially reduce 

measurement error and thus minimize bias in epidemiology analyses and increase the power to 

identify associations. From a regulatory standpoint, our study also brings attention to the 

importance of improving traffic monitoring to inform traffic regulation.  

In Chapter 3, we built upon the work in Chapter 2 by using our models with highly 

resolved spatiotemporal traffic data in an epidemiological study of associations between air 

pollutants from highway traffic (PM2.5 and NOx) and daily mortality in communities near highly 

trafficked highways. Results of this work indicated no conclusive evidence of an increased risk 

of mortality associated with short-term exposures to air pollutants generated by highway traffic. 
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However, there was some suggestive evidence that greater short-term exposures to these air 

pollutants were associated with greater odds of respiratory mortality, with stronger associations 

for residents nearest to the highways. Contrary to our hypothesis, however, we found reduced 

odds of cardiovascular and cerebrovascular mortality with higher levels of these air pollutants, 

again with stronger associations among those living closest to the highways. We hypothesized 

that competing risks or unmeasured confounding by traffic noise may explain these counter-to-

hypothesis findings.  

On the other hand, we also did not find any association of our main outcomes of interest 

with ambient concentrations of PM2.5 at AQS monitors. In addition, the fact is that this is not the 

first study to find limited associations between exposures to ambient air pollutants and mortality 

in the region. This raises the question as to if there are individual or context-level conditions in 

this region that may play a role in reducing the risk of this population against the harmful effects 

of exposure to air pollution. While we did not find evidence that individual and neighborhood-

level SES or comorbidities modified our studied associations, additional research could explore 

other factors such as diet, health behaviors, and the built environment, among others, that might 

balance the risks of air pollution. If such modifiers did exist, they could contribute to further 

understanding of the pathways between exposure to air pollutants and health outcomes as well as 

to provide lights on possible interventions to reduce the risk of mortality associated with air 

pollution in other populations. 

Despite our lack of conclusive results, this study has implications for the scientific 

literature. The primary contribution of this work is our modeling approach to assess population 

exposure to air pollutants from highway traffic. Unlike most studies that have used data from 

regional monitoring stations or aggregated traffic data across space and time, we used highly 
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resolved traffic data along with a dispersion model to estimate spatiotemporally resolved 

exposures to air pollutants generated by highway traffic in communities near highways. This 

exposure assessment approach allowed us to disentangle the contribution of exposure from 

traffic from other sources in a way that cannot be achieved with the use of more conventional, 

aggregated metrics of exposure such as those obtained from air quality monitoring stations 

(AQS). This is important since our modeled concentrations of air pollutants from highway traffic 

were only moderately correlated with measurements at AQS monitors in the region.  

Given the larger literature suggesting important health implications of population 

exposure to air pollutants from traffic as well as the multiple pathways whereby transportation 

may affect population health, in Chapter 4, we assessed the health benefits of urban 

transportation policies scenarios designed to reduce on-road vehicle emissions and increase 

active transportation. Specifically, we looked at the adoption of electric vehicles (EVs) and 

replacement of short car trips with walking and bicycling as compared with a business as usual 

scenario (BAU) for 2035. Results indicated that transportations scenarios promoting EVs and 

walking and bicycling would result in declines of vehicle miles of travelled from private car use, 

lower concentrations of primary traffic-generated air pollutants (PM2.5 and NOx) in the 

community, as well as reduced CO2 vehicle emissions as compared with a BAU scenario. 

Replacing short car trips with walking and bicycling would also increase  physical activity levels 

in adults of the general population. Collectively, these reductions would result in fewer 

premature deaths per year in adults of the general population. Since most health benefits found in 

this study were the result of increased physical activity due to increased active transportation, 

transportation policies focused on promoting active transportation and discouraging private 

vehicle use are likely most efficient at achieving public health goals. 
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While our findings are not new, an important contribution of this study is our air quality 

modeling approach. Most previous studies have assumed a uniform reduction of vehicle miles of 

traveled (VMT) due to shifting car trips to active transportation across a study area. (17–19) In 

contrast, in our evaluation we used local information on travel patterns and traffic flow across the 

city allowing us to estimate with spatial resolution localized changes in air pollutant 

concentrations across scenarios. This approach could help to further estimate whether or not the 

impacts of transportation policies are homogenously distributed across the city and by 

characteristics of the neighborhoods and the population in future work.  

Another important contribution of this study is that this is one of the few papers to look at 

the health impacts transportation policies promoting active transportation in the United States. 

Most previous studies have been done in the context of European countries (17,18,20–23) with 

baseline rates of walking and bicycling that are much higher than in the United States, where 

76.6% of the population drives alone to commute and only 2.8% and 0.6% walk or bicycle, 

respectively. (24) Hence, interventions promoting changes in transportation behaviors, if 

successful, could result in greater environmental and health gains in the United States context. 

As such, this study provides some insights to inform the decision-making of the transportation 

sector about integrated and realistic transportation policies that could be implemented to help in 

air pollution control, reductions in green-house-gases emissions, and improvements to public 

health. Moreover, this study provides information on how transportation policies that encourage 

active transportation could also help to achieve weekly physical activity goals such as those 

proposed by the World Health Organizations. (25)  

Collectively the results of this dissertation highlight the potential environmental and 

health implications of motor vehicles in communities. In particular, this dissertation shows 
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evidence that traffic volumes and flows, and thus vehicle emissions, vary dramatically across 

locations and times resulting in similar highly spatiotemporal variable air pollutant 

concentrations in communities near highways. However, most traffic activity monitoring of 

urban settings in the United States do not capture most of this temporal and spatial variability. 

Given that we demonstrate that there is a range in the spatiotemporal variability of traffic by 

location, state implementation plans could identify areas where incorporating additional traffic 

monitors would be beneficial to capture high variations in traffic patterns or inform traffic 

regulations. Our results suggest that such monitoring could have the highest value in sections of 

highways with high traffic density in highly populated areas. Furthermore, this dissertation 

suggests that some improvements may be needed in environmental health and epidemiologic 

studies when assessing population exposure to traffic-generated air pollutants to account for 

highly variable traffic patterns. Finally, this dissertation illustrates that transportation policies 

may help to control air pollution exposures, mitigate climate change and improve population 

health. Our results support, that given the high predominance of on-road motorized 

transportation in the United States, even small changes towards active transportation could 

translate to large benefits on the population burden of disease. 

 

Strengths and limitations  

This dissertation has several strengths. First and foremost, we used novel traffic volume and 

speed data highly spatiotemporally resolved. These data were available for each half-mile and 

every 5-minutes for each direction of the major highways in our study region, which is unique in 

the exposure science and environmental epidemiology literature due to lack of available 

information with such characteristics. Having leveraged these traffic data with the mobile source 
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vehicle emissions simulator (MOVES) and a dispersion-based air quality model (RLINE), we 

were able to model ambient concentrations of air pollutants generated by highway traffic with 

high spatial and temporal resolution. The contribution of these data in modeling population 

exposures to air pollution generated by highway traffic was evident especially for communities 

living very close to highly congested highways.  

Another strength of this dissertation and linked to our novel traffic data is our dispersion-

based air quality modeling approach. (12,26) In particular, by combining our detailed traffic 

activity data with MOVES, we developed hourly emission rates for key traffic-generated 

pollutants for individual half-mile road segments across highways in our study area. Then, by 

combining these segment-by-segment emissions factors with meteorology in the Research-line 

source dispersion model (RLINE) we estimated near-road exposures to air pollutants generated 

by highway traffic across our study area while accounting for localized differences in traffic and, 

small-scale variations in vehicle emissions. By intersecting traffic activity with emissions and 

resultant pollutant levels, we could disentangle the contributions from traffic to other sources of 

air pollution for our epidemiologic and health impact assessment (HIA) analyses. This approach 

also allowed us to predict concentrations under hypothetical future scenarios. In summary, this 

air quality modeling approach was the overarching  resource for this dissertation that allowed us 

to contribute to different disciplines in public health such as exposure science, epidemiology and 

risk assessment and to further understand the environmental and health impacts of urban 

transportation. 

In spite of the strengths of this dissertation, there are some limitations. First, we focused 

this work (Chapters 2 and 3) exclusively on highway traffic and its contribution to concentrations 

of air pollutants in nearby communities. Future work might be needed to explore if our findings 
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hold for the impacts of non-highway roads such as principal and minor arterials that also may 

have important contributions in ambient concentrations of air pollutant from traffic. Second, 

despite the strengths of our modeling approach, RLINE is a model that inherently has errors and 

its performance is sensitive to many factors such as the model input data and assumptions 

regarding the impact of the local terrain. Despite there is not a perfect validation dataset to 

confirm that our estimates of traffic-generated pollution were accurate, we anticipate our 

estimates will be strong since we focus on concentrations within 1 km of the main highways 

where RLINE has been shown to perform best. In addition, our modeled concentrations showed 

generally strong correlations with observations at AQS monitors. Similarly, differences in terrain 

did not appear to influence our observed associations, since we did not find changes in health 

estimations after accounting for different elevations in our sensitivity analyses. Third, we were 

able to capture only primary air pollutants concentrations generated by highway traffic, since 

RLINE does not model chemical reactions in the atmosphere. Thus, we could not estimate 

concentrations of secondary pollutants such as NO2, ozone or aerosols. Nor were we able to 

assess the impacts of traffic noise and ozone, which may confound our analysis in Chapter 3 or 

act as additional potential pathways between urban transportation and health benefits in Chapter 

4. Fourth, given the nature of the data that we had for our association analysis in Chapter 3 (i.e., 

cases only via death certificates), we were only able to analyze short-term associations between 

exposures to air pollutants from highway traffic and mortality rather than associations with long-

term exposures. Finally, in our HIA we did not quantify additional transport-related risks such as 

traffic injuries. 

 

Future directions  
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There are several directions for future research that I could pursue to expand our understanding 

of the relationship between on-road urban transportation and public health. First, we had 

hypothesized that having rich spatiotemporal traffic activity data to model concentrations of 

traffic-generated air pollutants with high temporal and spatial resolution would likely decrease 

exposure measurement error and thus bias in health model estimates. We also anticipated that 

these highly variable data would also increase variability of exposure estimates and thus the 

power to detect associations as compared with the use of typical aggregate measures. However, 

we did not test these hypotheses explicitly as part of this dissertation. Therefore, we plan future 

analyses to conduct a simulation study to assess the added benefit in terms of power and bias of 

both short and long-term health risk estimates that may result from using fine-scale traffic data as 

compared to other more traditional measures of exposures. For instance, in the analysis of the 

short-term risk estimates, we could compare our finely resolved air pollutant concentrations with 

the modeled concentrations obtained from the aggregate traffic data as well as with fluctuations 

of observations at the nearest AQS monitors. For the long-term risk estimates, we could add to 

the previous comparisons exposures derived from an inverse distance weighting of levels from 

the AQS monitors. A simulation approach will be a key component of this future research since 

this method involve repeated random sampling from probability distributions (i.e., Binomial, 

Poisson, etc.) to evaluate the performance and accuracy of a variety of methods with regard to a 

known truth, while allowing us to estimate measures of accuracy (e.g., power, bias, mean 

squared error and coverage of the estimates of interest). (30) We could also potentially evaluate 

the importance of these impacts within different subsets of the population to identify for whom 

these data are most important. Similarly, our future work could explore if there are demographic 
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and socioeconomic disparities in exposure to traffic-generated air pollution in near-road 

communities to expand our knowledge of environmental justice issues in the region. 

Our future work might also be focused on replicating the methods that we used in 

Chapter 3 in other regions of the country where there is traffic data of similar fine-scale temporal 

and spatial resolution as the data used in this study. For instance, in California there are data with 

high spatiotemporal resolution that to our knowledge have not been used yet in epidemiologic 

analysis. This replication could help us to explore if the lack of conclusive evidence of an 

association with traffic-generated pollution from highways and mortality in near road 

communities in our study was due to our specific region or because there is no association with 

exposure to primary air pollutants from traffic. Moreover, we could obtain other datasets that 

have information on both cases and controls in order to explore the long-term health effects of 

our traffic-generated air pollution concentrations in near road communities.  

As for evaluation studies of the health benefits of transportations policies, we could 

imagine exploring the socioeconomic or race/ethnicity disparities in exposures changes and the 

population health impacts from the transportation policies. These are likely important factors that 

need to be further understood to propose more solid and equitable transportation policies. 

Moreover, additional research may be needed to identify how transportation policies may 

produce unintended negative effects on certain areas. For instance if the addition of sidewalks or 

bicycling lanes result in displaced traffic to other areas. Future work could also expand on 

additional pathways between transportation policies and health impacts by including analyses of 

traffic injuries as well as personal exposures to traffic-generated air pollution among people 

changing behavior towards active modes of transportation. In summary, there is a broad range of 

potential fields of research in this area of transportation policies and public health.  
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Conclusions  

This dissertation showed that spatiotemporal variations between and within highways in traffic 

patterns are complex and result in similarly complex spatiotemporal variations of air pollutant 

concentrations in near road communities. The use of fine-scale spatiotemporally resolved traffic 

input data allow for enhanced characterization of the temporal and spatial variability of air 

pollutants concentrations in certain communities, especially those closest to highly congested 

highways. These data further allowed us to investigate potential associations between short-term 

exposures to traffic-generated pollutants from highways and mortality in near road communities 

using existing data. We were also able to project future benefits to the broader community of 

transportation policies that reduce long-term exposures to traffic-generated pollutants from 

switches to cleaner vehicles and more active transportation. While we did not find conclusive 

evidence of an increased risk of mortality associated with short-term exposures to air pollutants 

generated by highways traffic in near-road communities, we project that transportation 

interventions oriented towards cleaner vehicles and more active transportation would improve air 

quality and reduce mortality over the long-term, while also reducing green-house gases 

emissions 
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