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ABSTRACT

Recent advancement in random matrix theory is beneficial to challenging problems

in many disciplines of science and engineering. In another direction, these applications

motivate a lot of new questions in random matrix theory. In this thesis, we present

two applications of random matrix theory to statistical physics and machine learning.

The first part of this thesis is about the spherical Sherrington-Kirkpatrick (SSK)

model in statistical physics. The SSK model is defined by a random probability

measure on a high dimensional sphere. The probability measure involves the temper-

ature and a random Hamiltonian. We consider the simplest non-trivial case where

the Hamiltonian is a random symmetric quadratic form perturbed by a specific sym-

metric polynomial of degree one or two. It is interesting to consider the interaction

between the quadratic form and the perturbations. In particular, using the obvious

connection between random quadratic forms and random matrices, we study the free

energies and obtain the limiting law of their fluctuations as the dimension becomes

large.

The second part is devoted to an application of the random matrix theory in

machine learning. We develope Free component analysis (FCA) for unmixing signals

in the matrix form from their linear mixtures with little prior knowledge. The matrix

signals are modeled as samples of random matrices, which are further regarded as

non-commutative random variables. The counterpart of scalar probability for non-

commutative random variables is the free probability. Our principle of separation is

xiii



to maximize free independence between the unmixed signals. This is achieved in a

manner analogous to the independent component analysis (ICA) based method for

unmixing independent random variables from their additive mixtures. We describe

the theory, the various algorithms, and compare FCA to ICA. We show that FCA

performs comparably to, and often better than, ICA in every application, such as

image and speech unmixing, where ICA has been known to succeed.
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CHAPTER I

An overview of this thesis

This thesis consists of applications of random matrices in statistical physics and

machine learning.

The first part of this thesis, including Chapters II to V, is about spin glass models

in statistical physics. The spin glass models were first invented around the early 60s

in order to describe the behavior of magnetic alloys. Here, we present the results of

the fluctuations of the free energy of two specific spin glass models.

Chapter II is a brief historical review. We focus on the origin of spin glass and dis-

cuss the necessary background for a exposure of the spherical Sherrington-Kirkpatrick

(SSK) model, which is the model of our interest. Since the spin glass has evolved for 50

years with various branches, this introduction is not intended to be a comprehensive

one. A classical approach for free energy is presented in Appendix A.

Chapter III contains the necessary random matrices results. The object of our

interest is the behavior of eigenvalues of Wigner random matrices. We will start

with the famous Wigner semicircle law and then present more recent results: central

limit theorem of eigenvalues, eigenvalue rigidity, edge behavior, fluctuation of leading

eigenvalue for spiked Wigner matrice.

With the preparation in Chapter II and Chapter III, we present our contributions

in Chapter IV and Chapter V. In these two chapters, we consider the 2-spin SSK

1



model with Curie-Weiss (CW) interaction and external field respectively. Mathemati-

cally, CW interaction can be regarded as a deterministic quadratic perturbation while

the external field is linear. Depending on the temperature and the strength of the

perturbation,both models exhibit distinct behaviors in different domains (phases).

Our contribution is an systematic analysis of fluctuations of the free energy near

phase transition regimes using the steepest descent and the random matrix results.

The results in Chapter IV are published in a joint paper [15] with Baik and Lee. The

results in Chapter V will be a part of a new joint paper [11] with Baik and le Doussal.

The second part, consisting of Chapter VI and Chapter VII, considers the blind

source separation (BSS) problem in machine learning. The goal of the BSS problem

is to recover source signals from a set of mixed signals, with very little information

about the source signals or the mixing process. Here, we propose the a innovate BSS

algorithm called Free Component Analysis (FCA). FCA is a method for unmixing

mixtures of freely independent random variables. Random matrices play the role of

free random variables in this setting. In terms of applications, FCA is designed to

separate data whose components are matrices. For example, a typical application of

FCA is to separate images from their mixture. The results in Chapter VI will be

published in a joint paper with Nadakuditi [123].

In Chapter VI, we give a brief introduction about BSS and some known approaches

including Principal Component Analysis (PCA) and Independent component analysis

(ICA). Then we introduce FCA as a natural analog of ICA for non-commutative

random variables (e.g. random matrices). The probability framework of the non-

commutative random variables is called free probability, the intuition of which is

given in Chapter VI while a rigorous treatment is provided in Appendix B.1 and the

reference therein.

We present the framework of FCA in a thorough, systematic manner in Chapter

VII, which contains variations of FCA, recovery guarantee and rigorous proofs. It
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worth mentioning that most of the proofs are parallel to its counterpart in ICA,

but they are based on results from the free probability and asymptotic freeness of

random matrices. Some numerical simulations are also included where we test the

FCA algorithms in both theoretical and practical settings.
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CHAPTER II

Introduction of spin glass

This part of the thesis focuses on a specific spin glass model. In this chapter, we

make a historical presentation of the birth of the spin glass theory and the evolution

of the model in which we are interested. For a more general introduction of the spin

glass, interested readers are referred to [89, 33].

2.1 The origin of spin glass

The first uncommon experimental phenomenon of the spin glass was detected

around the 1960s. In the study of manganese(Mn)-copper(Cu) alloy, people observed

a cusp in the susceptibility at a critical temperature [49, 125]. In addition, other

physical observables including magnetization and specific heat demonstrated peculiar

properties in the low temperature regime. All these pieces of evidence indicated a

new magnetic phase, which was called ”spin-glass” phase later.

Above compelling phenomenon turned out to be the consequence of the follow-

ing two facts. First, instead of being allied in a regular pattern, the Mn ions in

the alloy are positioned randomly. (This analogy with the positional disorder of the

conventional glass gives rise to the term ”glass”.) Second, the interactions here is of

Ruderman-Kittel-Kasuya-Yosida (RKKY) type [124, 85]. Qualitatively, the interac-

tions are sinusoidal functions of distance between two Mn ions with quick oscillation.
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In other words, the interactions can be either ferromagnetic (force spins to orient in

same direction) or antiferromagnetic (force spins to orient in opposite directions) and

they are very sensitive to the (random) distances between ions.

Under the light of the above facts, it is reasonable to model the interactions as

random variables, which should take both positive and negative values. In the fol-

lowing, we review three models containing this idea in order of successively simplified

forms. The last model, SSK, will be the main objective of this part of the thesis.

2.2 Three spin glass models

2.2.1 The Edwards-Anderson model.

The famous Edwards-Anderson (EA) model was proposed by Edwards and An-

derson in 1975 [54, 53]. This model successfully recovered the cusp of susceptibility

qualitatively and was regarded as a milestone in the history of spin glass. Consider

spins that are arranged on a regular lattice, the Hamiltonian of the EA model is given

by

HEA(σ) :=
∑
i∼j

Jijσiσj, (2.1)

where N denotes the total number of spins, σ = (σ1, · · · , σN) ∈ {±1}N denotes the

Ising-type spin variables, and Jij stands for the interaction between spins at site i

and site j. Here, i ∼ j means that the sum only runs over i and j that are neighbors

in the lattice. That is, the EA model only considers nearest neighbor interactions.

This is natural due to the fact that the interactions between ions decay rapidly with

increasing distance.

The fundamental novelty of the EA model is that the interactions Jij’s are modeled

as i.i.d random variables. (Jij’s are considered to be i.i.d standard Gaussian in [54],

the specific distribution is not essential for the behavior of the system.) We may

call Jij disorders when we want to emphasize their randomness. Since the Jij can
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take either positive or negative values, there typically exists a loop on the lattice,

where the product of Jij are negative. Thus, even for a spin variable maximizing

the Hamiltonian, there are some pairs of spins making negative contributions. This

feature of spin glass is called frustration, which was first pointed out by Toulouse

[115].

Denote the inverse temperature by

β =
1

T
. (2.2)

Assuming that the interactions are constant on the time scale of the evolution of spin

variable, Edwards and Anderson studied the following quenched free energy:

FEA =
1

βN
logZEA, ZEA =

∑
σ∈{±1}N

eβHEA(σ,J), (2.3)

where ZEA denotes the partition function of the system. The associated Gibbs mea-

sure is given by

〈O〉 =
1

ZEA

∑
σ∈{±1}N

O(σ)eβH(σ) for any observable O. (2.4)

The spin variable with higher Hamiltonian is assigned with larger probability. Note

that the above Gibbs measure here is a random measure, it varies for different realiza-

tions of Jij. Consequently, the FEA is a random variable depending on all interactions.

However, when N is large, it is expected that the system with different realizations

of Jij share a similar behavior. Actually, we can divide the lattice into K small lat-

tice with 1 � K � N . Then, the free energy of the whole system is the average

of the free energy of each sub-system plus the interactions at the interfaces between

sub-systems. The later contribution is negligible when N → ∞. Therefore, by the
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central limit theorem,

E[FEA]− (E[FEA])2 → 0, as N →∞. (2.5)

Thus we call the free energy of EA model is self-averaging. The limiting free energy

FEA = limN→∞FEA is deterministic.

In order to get the limiting free energy, It is natural to consider mean of the free

energy and let N → ∞. Since Jij’s are assumed to be i.i.d Gaussian, it is tempting

to average the right-hand side of (2.3) directly. However, note that the formula of

FEA involves a logarithm, which will be applied to ZEA before averaging over the Jij.

This fact together with the neighboring interaction makes the evaluation of EFEA

and precise analysis of the EA model extremely difficult. The existence of the spin

glass phase for the EA model is only verified numerically at the moment [20, 4].

Nevertheless, features possessed by the EA model, such as frustration, i.i.d disorders,

and the quenched, self-averaging observables, are the distinctive characterizations of

spin glass models.

2.2.2 The Sherrington-Kirkpatrick model.

The Sherrington-Kirkpatrick (SK) model was proposed by Sherrington and Kirk-

patrick in 1975 [107]. Let J = (Jij)
N
i,j=1 be a real symmetric matrix where Jij, 1 ≤

i < j ≤ N , are independent random variables with mean 0 and variance 1. (The

diagonal elements is not essential here, one can assume Jii = 0 for i = 1, · · · , N .)

The Hamiltonian of 2-spin SK model is given by

HSK(σ) =
1

2
√
N

N∑
i,j=1

Jijσjσj, (2.6)

Here, the scaling factor N−1/2 is picked such that the free energy per spin is of O(1).

Note that instead of a lattice, the underlying graph of the SK model is fully connected.
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Thus it is regarded as a mean field version of EA model. The 2-spin model only takes

the interactions between pairs of spins into account. One can also consider the p-spin

generalization, whose Hamiltonian is given by

HSK =
1

p!N (p−1)/2

N∑
i1,··· ,ip=1

Ji1···ipσi1 · · ·σip . (2.7)

In particular, when p = 1, the vector (J1, · · · , JN)T plays the role of the external field.

More generally, people are interested in mixed p-spin SK model whose Hamiltonian

is a linear combination of above Hamiltonians for different p.

Given HSK defined as above, the free energy of the SK model is defined in the

same way as in (2.3). It turned out that the free energy FSK is again self-averaging,

even through SK is a mean-field model. That is Var[FSK] → 0 as N → 0 and

FSK = limN→∞FSK is non-random. The authors of [107] considered 2-spin SK model

where (Jij)i<j was assumed to be Gaussian. They calculated the FSK using the replica

method (see Appendix A.1). A critical temperature was found, below which the spin

glass phase presented. Their result was correct in the high temperature regime, while

exhibited a non-physical negative entropy in the low temperature regime. The failure

was a consequence of the ”replica symmetry” assumption [48, 27]. In 1980, the Parisi

proposed the idea of full replica symmetry breaking and conjectured the famous Parisi

formula [103] (see Appendix A.2). The Parisi formula described FSK for general

mixed p-spin model using a variational problem, and is valid for all temperature.

A rigorous proof was given 20 years later by Talagrand [113] for the case where

interaction random variables were Gaussian and only even p-spin interactions were

considered. The Parisi formula for the case including the odd p-spin (Gaussian)

interaction was later proved by Panchenko [100]. The universality of the FSK for

non-Gaussian interactions was proved by Carmona and Hu [32].

After getting the limiting free energys, which is the leading term of FSK asN →∞,
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it is also interesting to consider the next order fluctuations. Aizenman, Lebowtiz, and

Ruelle [1] showed that if the disorder random variables (Jij)i<j was assumed to be

Gaussian, then

N(FSK − FSK)⇒ 1

β
N (−1

2
α, α), (2.8)

where

FSK =
log 2

β
+
β

4
and α = −1

2
log(1− β2)− 1

2
β2. (2.9)

The similar result held for the non-Gaussian disorder case with a modification of α

[1]. The Gaussian fluctuations was also obtained in p-spin SK models for p ≥ 3 [25].

For the mixed p-spin SK model with the presence of the external field, the limiting

Gaussian distribution of the fluctuation was found in [37]. However, a limit theorem

for the fluctuations in the low temperature regime still remains an open question.

2.2.3 The Spherical Sherrington-Kirkpatrick model.

The spin variable of the SK model is Ising-type, i.e., the configuration space

consists of all vertices of a hypercube and is discrete. This stands as an obstacle in the

analysis of the SK model. Aiming to introduce a model easier for analysis, Kosterlitz,

Thouless and Jones proposed the spherical Sherrington-Kirkpartick (SSK) model [78].

The Hamiltonian of the SSK model is the same as the SK model (cf. (2.6)):

HSSK(σ) =
1

2
√
N

N∑
i,j=1

Jijσiσj. (2.10)

However, the spin variable is now supported on the sphere of radius
√
N :

σ ∈ SN−1 = {σ ∈ RN | ‖σ‖2 =
√
N}. (2.11)
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Thus, the free energy of the spherical model is given by

FSSK :=
1

Nβ
logZSSK, ZSSK :=

∫
σ∈SN−1

eβHSSK(σ)dw(σ), (2.12)

where dw(σ) denotes the normalized uniform measure on SN−1. Generally, people

are also interested in the SSK model with the external field and mixed p-spin SSK

models.

The pure 2-spin SSK was considered in [78]. Using a heuristic argument, the

authors of [78] obtained critical temperature Tc as well as the non-random limiting

free energy FSSK = limN→∞FSSK for all temperature. For the mixed p-spin SSK

model, the analogy of the Parisi formula was proposed by Crisanti and Sommers [47],

which was again rigorously proved by Talagrand [112] for the Gaussian disorders.

The universality of the limiting free energy for 2-spin SSK for general interactions are

shown by [63].

We summarize the known results regarding the limiting law of the fluctuations

of the free energy for SSK models. In the high temperature regime (T > Tc), the

fluctuations are of order O (N−1) and converge to a Gaussian distribution [12]. The

low temperature regime was considered in the same work. In this case, the authors of

[12] showed that the fluctuations are of order N−2/3 and established the Tracy-Widom

limiting distribution. For pure p-spin model with p ≥ 3, Subag and Zeitouni studied

free energy in the zero temperature, which is maxσ∈SN−1
HSSK(σ). They proved that

the fluctuations of the free energy are of order N−1 and the limiting law was Gumbel

[111]. This dichotomy between p = 2 and p ≥ 3 cases can be seen from the number

of the critical points of the system. For p = 2, the Hamiltonian HSSK(σ) posseses 2N

critical points corresponding to the eigenvectors of the disorder J = (Jij)
N
i,j=1. And in

the low temperature regime T ≤ Tc, the free energy is governed by the top eigenvalue

of J [12]. In contrast, when p ≥ 3, the number of the critical points is exponential in
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N and the free energy converges to the extreme of a Poisson point process [111].

The free energy of the 2-spin SSK model is the main objective of this thesis. From

now on, we omit the subscription SSK, the quantities and observables are associated

with the SSK model if without extra specification.

2.3 Outline of Chapter IV and V

As mentioned before, the limiting free energies of SK and SSK are given by the

Parisi formula and Crisanti-Sommers formula. However, the fluctuations of the free

energies, especially in the low temperature regime, are not well studied. Recently,

using new progress in the random matrix theory, the authors of [13, 12, 14] obtain

the fluctuations of the free energy of the 2-spin SSK model (and some variants) for

arbitrary temperature. Their approach relies on the quadratic form of the Hamilto-

nian and thus only applies to the 2-spin case. In this part of the thesis, we apply this

approach to the two other scenarios related to 2-spin SSK models.

2.3.1 Paramagnetic-Ferromagnetic phase transition for 2-spin SSK with

Curie-Weiss interaction

The Curie-Weiss (CW) interaction is defined by

HCW(σ) :=
θ

N

N∑
i,j=1

σiσj =
θ

N

(
N∑
i=1

σi

)2

. (2.13)

Here, θ is a real number which plays a role of the coupling constant. Adapt the

notation 1 = (1, · · · , 1)T , the Hamiltonian HCW(σ) is maximized when σ = ±1.

Thus, the CW interaction forces spins to orient to the same direction and thus is a

mean-field ferromagnetic interaction,
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Chapter IV considers the Hamiltonian given by

H(σ) = HSSK(σ) +HCW(σ) (2.14)

for HSSK(σ) defined as in (2.10). The behavior of the spherical spin system with

this Hamiltonian depends on the temperature and CW coupling strength. When θ is

small, the system resembles the pure 2-spin SSK model: there is critical temperature

Tc = 1 below which the spin glass phase presents (the high temperature regime is

called paramagnetic regime). When θ is large, the spin variables is pulled towards ±1

and the system falls into the ferromagnetic phase. The limiting free energy of this spin

system was obtained by Kosterlitz, Thouless, and Jones [78] through a non-rigorous

argument. This limiting free energy, as a function of T and θ, was piecewise analytic.

And a phase diagram (See Figure 2.1) was proposed accordingly. These results were

rigorously proved in 2017 [13]. In addition, the authors of [13] established the limiting

distributions of the fluctuations of the free energies in each regime. The order of the

fluctuations are N−2/3,N−1,N−1/2 and the limiting distributions are Tracy-Widom,

Gaussian, and Gaussian in the spin glass, paramagnetic regime, ferromagnetic regime,

respectively.

Note that the orders and the laws of the fluctuations are different between the

three phases, it is interesting to consider the phase transition and the near-critical

behavior. The transition between the spin-glass and ferromagnetic regimes has been

studied in [13]. Consider N -dependent θ as

θ = 1 + wN−2/3, for w ∈ R. (2.15)

Then the fluctuation of the free energy is of order N−2/3 and is governed by a family

of random variables TW1,w interpolating Gaussian distribution and Tracy-Widom

distribution [22]. In Chapter IV, we focus on the transitional regime between the
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Figure 2.1: Phase diagram for SSK+CW model. Here, β is the inverse temperature
and θ is the coupling constant.

ferromagnetic and paramagnetic regime and find the limiting law for the fluctuations.

The transition between the paramagnetic and spin glass regimes is still open.

2.3.2 2-spin SSK with external field

In Chapter V, we consider the 2-spin spherical model, whose Hamiltonian is

HSSK(σ) and plus a linear perturbation:

H(σ) = HSSK(σ) + h
N∑
i=1

Jiσi =
1

2
√
N

N∑
i,j=1

Jijσiσj + h
N∑
i=1

Jiσi. (2.16)

In the context of the spin glass, the vector (Ji)
N
i=1 plays the role of the external field

and h ∈ R stands for its strength. We focus on the case where (Ji)
N
i=1 is a standard

Gaussian vector, and (Jij)
N
i,j=1 belonging to GOE is independent from (Ji)

N
i=1.

Like in the case of SSK perturbed by CW, we are interested in the interplay be-

tween the SSK Hamiltonian and the external field. Note that
∑N

i=1 Jiσi is maximized

for σ orienting to the same direction as (Ji)
N
i=1. The spin variables will be pulled

towards (Ji)
N
i=1 when the external field presents. Actually, when h > 0, there is a

uniform formula of the limiting free energy for all temperature [78, 37]. Furthermore,

for any h, T > 0, we will show that the fluctuations of the free energies are of order
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N−1/2 and converge to a Gaussian distribution. These pieces of evidence indicate

that phase transition only occurs when h→ 0.

When h = 0, there are paramagnetic regime (T > 1) and spin glass regime

(T < 1). (See Figure 2.1 when h = 0 for the phase diagram for pure 2-spin SSK.)

The fluctuations of the free energy are of order N−1 and N−2/3 and the limiting distri-

butions are Gaussian and Tracy-Widom respectively. Therefore, the phase transitions

as h → 0 should be considered separately for the cases T > 1 and T < 1. Our main

contributions are the limiting theorems of fluctuations in these transitional regimes.

Due to the time limitation, the results in Chapter V are derived using heuristic

calculations. We believe that these results can be proved rigorously. With light modi-

fication, our approach also applies to the case where the external field is deterministic.

For the case where J = (Jij)
N
i,j=1 is a Wigner matrix, we expect similar results hold

given that the eigenvectors of J are delocalized.

2.3.3 Method

Here we outline the applications of the method from [13, 12, 14] to the above two

scenarios.

For the case of CW perturbation, we write the Hamiltonian (2.14) as

H(σ) = σT
(

1

2
√
N
J +

θ

N
11T

)
σ, (2.17)

Note that the above H(σ) is still a quadratic form with the random symmetric matrix

M = 1
2
√
N
J + θ

N
11T . The matrices of this type are called spiked Wigner matrices,

which is well-studied in the random matrix theory (see Section 3.5). On the other

hand, Kosterlitz, Thouless, and Jones [78] found an identity formulating the partition

function (see (2.12), which is a N -fold integral) as a single integral (see e.g. (4.42)),

whose integrand depends on the eigenvalues of M . Using the eigenvalue rigidity
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[77, 55], we apply the steepest descent to this single integral. As a result, the free

energy can be formulated as a function of eigenvalues. In the transitional regime

of our interest, it turns out that the fluctuations of the free energies are governed

by a combination of the fluctuations of the leading eigenvalue and the global linear

statistics. We show that the latter two fluctuations converges to a bivariate Gaussian

distribution jointly.

The story in the case of external field perturbation is quite similar. The main dif-

ference is that the single integral formulation of the partition function now involves

the eigenvectors of (Jij)
N
i,j=1. Since we assume that (Jij)

N
i,j=1 belongs to GOE, the

eigenvector matrix is uniformly distributed on the orthogonal group and is indepen-

dent of the eigenvalues. This fact together with the rigidity of the eigenvalues makes

an application of the steepest descent possible. Consequently, we write the free en-

ergies as functions of eigenvalues and eigenvectors of (Jij)
N
i,j=1, which lead us to the

limiting laws of the fluctuations. In particular, when temperature is low, we find that

the fluctuations in the transitional regime (as h→ 0) depend on the top eigenvalues

of (Jij)
N
i,j=1. Therefore, the corresponding limit theorem will be formulated using the

GOE Airy kernel point process.
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CHAPTER III

Random matrices preliminary

A random matrix is a matrix-valued random variable, that is, a matrix whose

entries are random variables. The study of the random matrix theory started from

the work of Wigner on the spectra of heavy atoms in physics in the 1950’s [122].

After decades of evolution, the random matrix is now a broad subject with applica-

tions in various areas including number theory, statistical physics, statistics, electrical

engineering and finance [28, 52, 2].

In this section, we collect some elementary results from the random matrix theory

that is necessary to present the spin glass results in this thesis. The goal is to

provide basic knowledge, the results being presented are not the strongest version

with minimum conditions. And the more specific and technical discussions are left

in the random matrix section in each chapter. Readers are referred to [86, 6, 2] for a

comprehensive introduction of the random matrix theory.

3.1 Law of large number

We first introduce the real Wigner matrix, which is the basic model in the random

matrix theory and main model considered in this thesis.

Definition III.1. Given two independent family of i.i.d centered, real-valued random
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variables {Jij}1≤i<j≤N and {Jii}Ni=1, such that E[J2
12] = 1 and

max{E[|J12|k],E[|J11|k]} < +∞ for all integer k ≥ 1. (3.1)

Consider the (symmetric) N ×N matrix M with entries

Mij = Mji =
1√
N
Jij for all 1 ≤ i ≤ j ≤ N . (3.2)

We call such a matrix M a Wigner matrix.

If J12 and J11 are both Gaussian random variables with variance 1 and 2 respec-

tively, then the M belongs to the Gaussian orthogonal ensemble (GOE), which will

be the matrix model considered in Chapter V.

Let λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of M , we define the empirical distri-

bution of the eigenvalues by

dσM(x) =
1

N

N∑
i=1

δ(x− λi). (3.3)

Note that the empirical distribution is a random measure depending on M . Wigner

made the following key observation: while entries of M fluctuated wildly from sample

to sample, the dσM concentrates around a deterministic measure. Actually, define

the semicircle law

dσscl(x) =

√
4− x2

2π
1x∈[−2,2]dx, (3.4)

we have the following theorem.

Theorem III.2 ([122]). If f(x) is a continuous and bounded function,

∫
f(x)dσM(x) =

1

N

N∑
i=1

f(λi)→
∫
f(x)dσscl(x) as N →∞. (3.5)

The convergence above is in probability.
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This theorem can be regarded as the start point of the random matrix theory.

Note that the asymptotic behaviors of empirical distributions of Wigner matrices

are independent of the distribution of the entries. The result of this kind is called

universality.

3.2 Linear Statistics

The Theorem III.2 describes the leading term of the linear statistics 1
N

∑N
i=1 f(λi).

Thus it is regarded as the analog of the law of large number for independent random

variables in the random matrix theory. This result is the first step in the study of the

behavior of the eigenvalue distribution of a random matrix ensemble. It is natural

to consider the central limit theorem for fluctuations of linear eigenvalue statistics

1
N

∑N
i=1 f(λi).

Theorem III.3 (Central limit theorem; [9]). Let f be an analytic function defined

in a open neighborhood of [−2, 2], then

N∑
i=1

f(λi)−N
∫
f(x)dσscl(x) (3.6)

converges in distribution to a Gaussian random variable N (M(f), V (f)) as N →∞.

Here M(f) and V (f) are explicit functionals depending on the fourth moments J12.

If λi are i.i.d random variables whose probability density function is given semi-

circle law, then by classical central limit theorem, 1√
N

(
∑N

i=1 f(λi)−N
∫
f(x)dσscl(x))

converges to a Gaussian distribution. Note that in Theorem III.3, the normalization

factor is 1 instead of N−1/2. This indicates that the eigenvalues are highly correlated.

As what we will see in the next subsection, the eigenvalues of Wigner matrices are

distributed in a way more rigid than the i.i.d random variables.

18



3.3 Eigenvalue rigidity

The law of large number (Theorem III.2) and the central limit theorem (Theorem

III.3) consider the global behavior of the eigenvalues. It is also interesting to consider

the local behavior.

By the semicircle law, the expectation of spacings between eigenvalues are of order

N−1 in the bulk and N−2/3 in the edge (due to the square root behavior of semicircle

law near ±2). On the other hand, define the classical locations of the eigenvalues λ̂k

by
2∫

λ̂k

dσscl(x) =
k − 1/2

N
. (3.7)

The locations λ̂k are basically N -quantile of the semicircle law. It turns out that the

distances between eigenvalues and the corresponding classical locations are within

scales slightly large than the expected spacing between eigenvalues.

Theorem III.4 (Rigidity of eigenvalues; [55]). Let λi be eigenvalues of a Wigner

matrix and λ̂i be the classical locations defined as above. Then for any ε,D > 0, there

exists a positive constant N0 ≥ 1 such that

max
i

P
(
|λi − λ̂i| ≥ (min{i, N − i+ 1})−1/3N−2/3+ε

)
≤ N−D (3.8)

for large enough N ≥ N0.

In particular, the largest eigenvalue λ1 is O(N−2/3+ε) away from 2 with high

probability for any small ε > 0. Similarly, the eigenvalues in the bulk are O(N−1+ε)

away from their classical locations with high probability. Note that if λi were i.i.d

random variables following the semicircle distribution, by an order statistics result, the

λi would typically fluctuate around the classical location with scale N−1/2. Therefore,

the eigenvalue rigidity indicates a strong correlation between eigenvalues. Actually,
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there is a strong repulsion between the eigenvalues. The neighboring eigenvalues

avoid getting too close to each other, thus the eigenvalue is sticking near the classical

location by this effect.

3.4 Edge Behaviors

As mentioned, the λi’s are associated with the energy levels of heavy atoms system.

This motivates the study of local distributions of the eigenvalues. In this section, we

state the results regarding the joint distribution of top eigenvalues for GOE.

Consider the rightmost eigenvalue λ1. By semicircle law and eigenvalue rigidity,

we expect that λ1 fluctuates around 2 in a scale of N−2/3. Actually, N2/3(λ1 − 2)

converges in distribution to Tracy-Widom GOE distribution TWGOE as N → ∞

[116]. Let Ai(x) denote the Airy function and q(s) be the solution of the Painléve

II differential determined by asymptotics q(s) ∼ Ai(s) as s → ∞, the cumulative

probability function of TWGOE is given by

lim
N→∞

P
(
N2/3(λ1 − 2) ≤ s

)
= exp

−1

2

∞∫
s

q(x) + (x− s)q2(x)dx

 . (3.9)

The above result is the k = 1 case of the following result considering the joint

distribution of top k eigenvalues. Denote the rescaled eigenvalues by ai = N2/3(λi−2)

for i = 1, · · · , N . Recall the GOE Airy kernel point process {αi}∞i=1, which is a Pfaffian

point process with a kernel built out of Ai(s) (see [58] for an explicit formula of the

kernel). In particular, α1 follows Tracy-Widom GOE distribution, i.e., a1 ⇒ α1 in

distribution. Actually, this is true for top k eigenvalues for any fixed k.

Theorem III.5. For any fixed k ∈ N, we have that

{ai}ki=1 ⇒ {αi}ki=1, as N →∞. (3.10)
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Here the convergence is in distribution.

These results also apply to the top eigenvalues from Wigner matrices [109]. A

similar discussion in the bulk of spectrum can be found in [86, 58].

3.5 Spiked Wigner matrices

In Chapter IV, we will study the spiked Wigner matrices M ′ given by

M ′ = M +
θ

N
11T , (3.11)

where M is a Wigner matrix, 1 = (1, · · · , 1)T and θ ∈ R denotes the strength of the

perturbation. As −M is still a Wigner matrix, we only consider the case where θ > 0.

The spiked random matrices (also called as deformed random matrices or Wigner

matrices with non-zero mean in the literature) were studied extensively in random

matrix theory [10, 57, 106, 13], which is motivated by the study of the empirical

covariance matrices with spiked covariance structure.

We first consider the global behavior of the spectrum for spiked Wigner matri-

ces. It is not difficult to show that the eigenvalues of M ′ and eigenvalues of M are

interlacing:

λN(M) ≤ λN(M ′) ≤ λN−1(M) ≤ λN−1(M ′) ≤ · · · ≤ λ1(M) ≤ λ1(M ′). (3.12)

Therefore, same as the Wigner matrix, the empirical distribution of M ′ converges to

the semicircle law. Furthermore, by the eigenvalue rigidity of Wigner matrix, λi(M
′)

is pinned around the classical location λ̂i for all i ≥ 2.

On the other hand, it is interesting to consider λ1 = λ1(M ′). It turned out that
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the behavior of λ1 depends on the strength of perturbation θ:


N2/3 (λ1 − 2)⇒ TWGOE if θ < 1,

N1/2
(
λ1 − θ − 1

θ

)
⇒ N (W3(θ−2 − θ−4), 2(1− θ−2)) if θ > 1,

(3.13)

where W3 = E[J3
12]. That is if θ is not large enough (i.e. θ < 1), then the influence

of the perturbation is negligible to the behavior of the top eigenvalue. For θ < 1, the

top eigenvalue is close to the 2 with order O(N−2/3+ε). In contrast, for θ > 1, the top

eigenvalue λ1 fluctuates around θ + 1/θ, which is O(1) away from 2. As N becomes

large, the fluctuation is of order N−1/2 and is governed by a Gaussian distribution

with explicit mean and variance. The transitional regime is θ = 1 + wN−1/3. It

was shown in [22] that N2/3(λ1 − 2) ⇒ TW1,w, where TW1,w is a family of random

variables interpolating TWGOE and Gaussian distribution.

There are also results for spiked Wigner matrices regarding the eigenvalue rigidity

and the central limit theorem for the linear statistics. Readers are referred to Chapter

IV for further discussion.
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CHAPTER IV

Ferromagnetic to paramagnetic transition in

spherical spin glass with Curie-Weiss interaction

4.1 Introduction

We consider a disordered system defined by random Gibbs measures whose Hamil-

tonian is the sum of a spin glass Hamiltonian and a ferromagnetic Hamiltonian. De-

pending on the strength of the coupling constant and the temperature, the system

may exhibit several phases in the large system limit. The chapter is concerned with

the fluctuations of the free energy near the boundary between two phases known as

ferromagnetic and paramagnetic regimes.

Consider the sum of the pure 2-spin spherical Sherrington-Kirkpatrick (SSK)

Hamiltonian and the Curie-Weiss (CW) Hamiltonian. We call this sum the SSK+CW

Hamiltonian. We denote the coupling constant by J and the inverse temperature by

β. We consider the random Gibbs measure with the SSK+CW Hamiltonian. The

focus of this chapter is on the free energy.

The limiting free energy was obtained non-rigorously by Kosterlitz, Thouless, and

Jones [78] in 1976. When J = 0, this formula is the explicit evaluation of the Crisanti–

Sommers formula [47] (which was proved rigorously by Talagrand [112]) in the case

of the pure 2-spin SSK. The Crisanti–Sommers formula is the spherical version of the
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Figure 4.1: Phase diagram for SSK+CW model. Here, β is the inverse temperature
and J is the coupling constant.

Parisi formula [103, 113]. The formula of Kosterlitz, Thouless, and Jones shows a

two-dimensional phase transition: see Figure 4.1. The three regimes are determined

by the condition that max{1, 1
2β
, J} is equal to 1 (spin glass regime), 1

2β
(paramagnetic

regime) or J (ferromagnetic regime). The limiting free energy is analytic with respect

to both β and J in each regime, but not on the boundary.

Recently, the authors of [13] showed that the result of Kosterlitz, Thouless, and

Jones is rigorous. Furthermore, the authors also evaluated the distribution of the

fluctuations of the free energy in each regime. (The case when J = 0 was obtained

earlier in [12].) The order of the fluctuations are N−2/3, N−1, N−1/2 and the limiting

distributions are Tracy-Widom, Gaussian, and Gaussian in the spin glass, paramag-

netic regime, ferromagnetic regime, respectively. In the same paper, the transition

between the spin glass regime and the ferromagnetic regime was also studied. How-

ever, the other two transitions and the triple point were left open. The goal of this

chapter is to describe the transition between the paramagnetic regime and and the

ferromagnetic regime.

Another system which combines a spin glass and a ferromagnetic model is the

SSK with an external field. The difference between the CW Hamiltonian and an

external field is that one is a quadratic function and the other is a linear function
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of the spin variables. These two models are related; see [36] for a one-sided inequal-

ity. For the spin glass with external field, the fluctuations of the free energy were

computed recently in [37, 38] when the coupling constant is positive (for both SSK

and SK (Sherrington-Kirkpatrick) cases with general spin interactions). However, the

transitions are not obtained except for certain large deviation results [61, 50]. One

of the interests of the SSK+CW model is that it is an easier model which can be

analyzed in detail in the transitional regimes.

4.1.1 Model

Let

SN−1 = {σ = (σ1, · · · , σN) ∈ RN : σ2
1 + · · ·+ σ2

N = N} (4.1)

be a sphere in RN of radius
√
N . Define the SSK+CW Hamiltonian by

HN(σ) = HSSK
N (σ) +HCW

N (σ), σ ∈ SN−1 (4.2)

where

HSSK
N (σ) =

1√
N

N∑
i,j=1

Aijσiσj, HCW
N (σ) =

J

N

N∑
i,j=1

σiσj =
J

N

(
N∑
i=1

σi

)2

. (4.3)

Here J is the coupling constant. The random coefficients Aij satisfy Aij = Aji and

Aij, i ≤ j, are independent centered random variables. We call Aij disorder variables.

The precise conditions are given in Definition IV.1 below. Note that as a function of

σ, HCW
N (σ) is large when the coordinates of σ have same sign. On the other hand,

the maximizers σ of HSSK
N (σ) depend highly on {Aij}.

With β > 0 representing the inverse temperature, the free energy and the partition
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function are defined by

FN =
1

N
logZN , ZN =

∫
SN−1

eβHN (σ)dωN(σ) (4.4)

where ωN is the normalized uniform measure on SN−1. Note that FN and ZN are

random variables since they depend on the disorder variables Aij. The free energy

and the partition function depend on the parameters β and J ,

FN = FN(β, J), ZN = ZN(β, J). (4.5)

Since the Curie-Weiss Hamiltonian is a quadratic function of the spin variable,

we can write the SSK+CW Hamiltonian as HN(σ) =
∑N

i,j=1Mijσiσj where Mij =

1√
N
Aij + J

N
are non-centered random variables. In terms of matrix notations,

HN(σ) = σTMσ, M =
1√
N
A+

J

N
11T (4.6)

with A = (Aij)1≤i,j≤N , 1 = (1, · · · , 1)T , M = (Mij)1≤i,j≤N , and σ = (σ1, · · · , σN)T .

The non-centered random symmetric matrix M is an example of a real Wigner matrix

perturbed by a deterministic finite rank matrix. Such matrices are often called spiked

random matrices. We will use the eigenvalues of spiked random matrices in our

analysis of the free energy.

We assume the following conditions on the disorder variables.

Definition IV.1 (Assumptions on disorder variables). Let Aij, i ≤ j, be independent

real random variables satisfying the following conditions:

◦ All moments of Aij are finite and E[Aij] = 0 for all i ≤ j.

◦ For all i < j, E[A2
ij] = 1, E[A3

ij] = W3, and E[A4
ij] = W4 for some constants

W3 ∈ R and W4 ≥ 0.
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◦ For all i, E[A2
ii] = w2 for a constant w2 ≥ 0.

Set Aij = Aji for i > j. Let A = (Aij)
N
i,j=1 and we call it a Wigner matrix (of zero

mean).

Definition IV.2 (Eigenvalues of non-zero mean Wigner matrices). Let M be the

N × N symmetric matrix defined in (4.6). We call it a Wigner matrix of non-zero

mean 1. Its eigenvalues are denoted by

λ1 ≥ λ2 ≥ · · · ≥ λN . (4.7)

We introduce the following terminology.

Definition IV.3 (High probability event). We say that an N -dependent event ΩN

holds with high probability if, for any given D > 0, there exists N0 > 0 such that

P(Ωc
N) ≤ N−D

for any N ≥ N0.

4.1.2 Previous results in each regime

We review the results on the fluctuations in each regime obtained in [13]. We state

two types of results: one in terms of the eigenvalues of M and the other in terms of

limiting distributions.

Set

J̃ := max{J, 1}. (4.8)

1In [13], the authors consider the case when the diagonal entries of M have mean J′

N and the

off-diagonal entries have mean J
N where J and J ′ are allowed to be different. However, in this case,

M = 1√
N

+ J
N 11T + J′−J

N I where I is the identity matrix. This only shifts all eigenvalues by a

deterministic small number. As we will see in Remark IV.7, it is not more general than the case
with J ′ = J .
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It was shown in [13] that the following holds with high probability. In both ferromag-

netic and the spin glass regimes (given by J̃ > 1
2β

), with any ε > 0,

FN = F̃N +

(
β − 1

2J̃

)(
λ1 − J̃ −

1

J̃

)
+O(N−1+ε). (4.9)

In the paramagnetic regime (given by J̃ < 1
2β

),

FN = F̃N −
1

2N

N∑
i=1

log

(
2β +

1

2β
− λi

)
+O(N−2+ε). (4.10)

Here, F̃N is a deterministic function of N, β, J . The above results show that the

fluctuations of FN are determined, to the leading order, by the top eigenvalue λ1 in

the ferromagnetic and spin glass regimes, while they are determined by all eigenvalues

in the paramagnetic regime.

A limit theorem for FN follows if we use limit theorems for the eigenvalues of

random matrices. The relevant random matrices are Wigner matrices of non-zero

mean in (4.6). For such random matrices, the following is known [105, 29] (see [10]

for complex matrices):


N2/3 (λ1 − 2)⇒ TW1 if J < 1,

N1/2
(
λ1 − J − 1

J

)
⇒ N (W3(J−2 − J−4), 2(1− J−2)) if J > 1,

(4.11)

where the convergences are in distribution. Here TW1 denotes the GOE Tracy-Widom

distribution and N (a, b) denotes the Gaussian distribution of mean a and variance

b. The dichotomy is due to the effect of the non-zero mean; if J is not large enough

(i.e. J < 1), then the influence of the non-zero mean is negligible to contribute to

the fluctuations of the top eigenvalue. For J < 1, the top eigenvalue is close to the

second eigenvalue with order O(N−2/3+ε). But for J > 1, the difference of the top

eigenvalue and the second eigenvalue is of order O(1).
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On the other hand, the following is also known (see Theorem 1.6 of [13]): if a

function ϕ is smooth in an open interval containing the interval [−2, J̃ + J̃−1], then

N∑
i=1

ϕ(λi)−N
2∫

−2

ϕ(x)dσscl(x)⇒ N (f, a), dσscl(x) :=

√
4− x2

2π
dx, (4.12)

for some explicit constants f, a. This result is applicable to the paramagnetic regime.

Together, we have the following asymptotic results, which are minor corrections

of Theorem 1.4 of [13]:

(i) (Spin glass regime) If β > 1
2

and J < 1, then

1

β − 1
2

N2/3 (FN − F )⇒ TW1 . (4.13)

(ii) (Paramagnetic regime) If β < 1
2

and β < 1
2J

, then

N (FN − F )⇒ N (f1, α1) . (4.14)

(iii) (Ferromagnetic regime) If J > 1 and β > 1
2J

, then

√
N (FN − F )⇒ N (f ′2, α

′
2) . (4.15)

for some deterministic function F = F (β, J) and some explicit constants f1, α1, f ′2

and α′2 depending on β and J .

4.1.3 Results

We state the results on the transition between the paramagnetic regime and the

ferromagnetic regime. The boundary between these two regimes is given by the

equation 1
2β

= J with J > 1. In the transitional regime, the correct scaling turns out
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to be the following: let J > 1 be fixed and let β = βN be given by

2β =
1

J
+

B√
N

(4.16)

with fixed B ∈ R. The following is the first main result of this chapter. This relates

the free energy with the eigenvalues of M .

Theorem IV.4. Let β be given by (4.16). Then, for every 0 < ε < 1
8
,

FN = F̃N −
1

2N

N∑
i=2

g(λi) +
1

N
Q(χN) +O(N−3/2+4ε), χN :=

√
N(λ1 − J + J−1),

(4.17)

with high probability as N →∞, where

F̃N = β(J+J−1)−1

2
−1

2
log(2β)+

1

N

(
1

4
logN + log

β√
π

)
, g(z) := log(J+J−1−z).

(4.18)

Also,

Q(x) =
s(x)

2(s(x)− x)
− s(x)2

4(J2 − 1)
+

log(s(x)− x)

2
+ log I

(
(s(x)− x)2

J2 − 1

)
(4.19)

with

s(x) =
x−B(J2 − 1) +

√
(x+B(J2 − 1))2 + 4(J2 − 1)

2
(4.20)

and

I(α) =

∞∫
−∞

e−
α
4
t2+ it

2

√
1 + it

dt, (4.21)

where the square root denotes the principal branch.

The formula (4.17) shows a combined contribution from λ2, · · · , λN and a distin-

guished contribution from λ1. Compare the formula with (4.9) and (4.10).

Now we state a result analogous to (4.14) and (4.15). This follows if we have
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limit theorems for Q(χN) and
∑N

i=2 g(λi). From the second part of (4.11), Q(χN)

converges to an explicit function of a Gaussian random variable. On the other hand,∑N
i=2 g(λi) is different from

∑N
i=1 g(λi) by one term. It is not difficult to show that

removing one term does not affect the fluctuations much and the fluctuations are still

given by a Gaussian random variable similar to (4.12); see Theorem IV.6 in the next

section. In random matrix theory, these sums are known as partial linear statistic and

linear statistic, respectively. The main technical part of this chapter is to evaluate

the joint distribution of Q(χN) and
∑N

i=2 g(λi). We show that jointly they converge

in distribution to a bivariate Gaussian variable with an explicit covariance. See the

next section for the precise statement. These results are interesting on their own in

random matrix theory. Putting together, we obtain the following result.

Theorem IV.5. We have

N

(
FN −

1

4J2
− B

2J
√
N
− logN

4N
− B2J2

4N

)
⇒ G1 +Q(G2) (4.22)

in distribution as N →∞ where G1 and G2 are bivariate Gaussian random variables

with

E[G1] =
1

4
log(J2 − 1) +

w2 − 2

4J2
+
W4 − 3

8J4
+ log

1

2
√
πJ

, (4.23)

Var[G1] = −1

2
log(1− J−2) +

w2 − 2

4J2
+
W4 − 3

8J4
, (4.24)

E[G2] = W3(J−2 − J−4), Var[G2] = 2(1− J−2), (4.25)

and

Cov(G1,G2) =
W3(J−2 − J−4)

2
. (4.26)

Note that G1 and G2 do not depend on B. The function Q is defined in (4.19).

Note that if the third moment W3 of Aij with i 6= j is zero, then G1 and G2 are
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(a) pdf of Q(G2) (b) pdf of normalizedQ(G2)

Figure 4.2: (a) Probability density function of Q(G2) for B = −1, 0, 1, (b) Probability
density function of normalized Q(G2) resembles a Gaussian density as B → +∞.

independent Gaussians.

The above result is consistent with the results on ferromagnetic and paramgnatic

regimes if we let formally B → +∞ and B → −∞, respectively. One can show that

when B → +∞, Q(G2) dominates G1. Furthermore, while Q(G2) is not Gaussian,

upon proper normalization, it converges to a Gaussian as B → +∞. See Figure 4.2.

On the other hand, when B → −∞, the leading two terms of Q(G2) are constants

and the random part is smaller than G1. See Section 4.6 for details.

Let us comment on the other transitions in the phase digram in Figure 4.1. As

mentioned before, the transition between the spin glass and ferromagnetic regimes

was discussed in [13]. Note that (4.9) is valid in both regimes. It was shown that if we

let β > 1/2 be fixed and consider N -dependent J = 1+wN−1/3, then for each w ∈ R,

(4.9) still holds. Now, for such J , it was shown in [22] that N2/3(λ1 − 2) ⇒ TW1,w

where TW1,w is a one-parameter family of random variables interpolating TW and

Gaussian distributions. Hence, we obtain the fluctuations for the transitional regime.

On the other hand, the transition between the spin glass and paramagnetic regimes

is an open question. By matching the fluctuation scales in both regimes, we expect

that the critical scale is β = 1
2

+O(
√

logN
N1/3 ).
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4.1.4 Organization

The rest of the chapter is organized as follows. In Section 4.2, we first state new

results on random matrices. They are given in Theorem IV.6 (partial linear statistics)

and Theorem IV.8 (joint convergence). Using them, we derive Theorem IV.5 from

Theorem IV.4. In Section 4.3, we prove Theorem IV.4. In the next two sections,

we prove the random matrix results stated in Section 4.2; Theorem IV.6 in Section

4.4 and Theorem IV.8 in Section 4.5. In Section 4.6, we show that Theorem IV.5 is

consistent with the previous results on ferromagnetic and paramagnetic regimes.

4.2 Results on Wigner matrices with non-zero mean

In order to prove Theorem IV.5 from Theorem IV.4, we need some new results on

random matrices. We need (i) a limit theorem for partial linear statistics
∑N

i=2 g(λi)

and (ii) a joint convergence of the large eigenvalue and partial linear statistics. These

results are interesting on their own in random matrix theory. We state them here

and prove them in Section 4.4 and Section 4.5 below. Using these results, we prove

Theorem IV.5 in Subsection 4.2.3.

Recall that the N ×N symmetric matrix M is given by M = 1√
N
A+ J

N
11T where

A = (Aij) is a symmetric matrix with independent entries for i ≤ j satisfying the

conditions given in Definition IV.1 and 1 = (1, · · · , 1)T . The matrix M is called a

Wigner matrix with a non-zero mean J
N

. Recall that we assume

J > 1. (4.27)

The eigenvalues of M are denoted by λ1 ≥ · · · ≥ λN .

It is known that λ1 is close to J + J−1 with high probability and λ2, · · · , λN are

in a neighborhood of [−2, 2] with high probability. See Lemma IV.10 below for the

precise statement.

33



4.2.1 Partial linear statistics

A linear statistic is the sum of a function of the eigenvalues. The fluctuations

of linear statistics for Wigner matrices and other random matrix ensembles are of

central interest in the random matrix theory; see, for example, [76, 9, 83]. For Wigner

matrices with non-zero mean, the following result was obtained in Theorem 1.6 and

Remark 1.7 of [13]. Set

Ĵ = J + J−1. (4.28)

Let ϕ : R → R be a function which is analytic in an open neighborhood of [−2, Ĵ ]

and has compact support. Then, as N →∞, the random variable

NN(ϕ) :=
N∑
i=1

ϕ(λi)−N
2∫

−2

ϕ(x)dσscl(x)⇒ N (M(ϕ), V (ϕ)) (4.29)

where

M(ϕ) =
1

4
(ϕ(2) + ϕ(−2))− 3

2
τ0(ϕ)− J−1τ1(ϕ) + (w2 − 2)τ2(ϕ)

+ (W4 − 3)τ4(ϕ) + ϕ(Ĵ)−
∞∑
`=2

J−`τ`(ϕ),

V (ϕ) =(w2 − 2)τ1(ϕ)2 + (W4 − 3)τ2(ϕ)2 + 2
∞∑
`=1

`τ`(ϕ)2.

(4.30)

Here, W4 = E[A4
12], w2 = E[A2

11], and

τ`(ϕ) =
1

π

2∫
−2

ϕ(x)
T`(x/2)√

4− x2
dx =

1

2π

π∫
−π

ϕ(2 cos(θ)) cos(`θ)dθ, (4.31)

where T`(t) are the Chebyshev polynomials of the first kind.

We are interested in a partial linear statistic,
∑N

i=2 ϕ(λi). See [16, 97] for other

types of partial linear statistics. The partial linear static
∑N

i=2 ϕ(λi) is the linear
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statistic minus one term ϕ(λ1). Since λ1 → Ĵ in probability (see the second part of

(4.11)), by (4.29), Slutsky’s theorem [62] implies that

N∑
i=2

ϕ(λi)−N
2∫

−2

ϕ(x)dσscl(x)⇒ N (M(ϕ)− ϕ(Ĵ), V (ϕ)).

Since this follows from (4.29), this is true assuming that ϕ is analytic in an open

neighborhood of [−2, Ĵ ]. However, we are interested in the test function ϕ(x) =

g(x) = log(Ĵ −x) (see (4.17)). Since this function is not analytic at x = Ĵ , the above

simple argument does not apply. Nonetheless, if we adapt the proof of (4.29), one can

show that it is enough to assume that the test function is analytic in a neighborhood

of the interval [−2, 2], not of [−2, Ĵ ].

Theorem IV.6. Let J > 1. Then for every test function ϕ which is analytic in a

neighborhood of [−2, 2],

N (2)
N (ϕ) :=

N∑
i=2

ϕ(λi)−N
2∫

−2

ϕ(x)dσscl(x)⇒ N (M (2)(ϕ), V (2)(ϕ)) (4.32)

as N →∞ with

M (2)(ϕ) =
1

4
(ϕ(2) + ϕ(−2))− 3

2
τ0(ϕ)− J−1τ1(ϕ) + (w2 − 2)τ2(ϕ)

+ (W4 − 3)τ4(ϕ)−
∞∑
`=2

J−`τ`(ϕ),
(4.33)

and V (2)(ϕ) = V (ϕ) where V (ϕ) is defined in (4.30).

Note that

M (2)(ϕ) = M(ϕ)− ϕ(Ĵ) (4.34)

for ϕ analytic in a neighborhood of [−2, Ĵ ].

Remark IV.7. We comment on a case when the test function depends on N . Consider
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the function ϕN defined by

ϕN(x) = ϕ(x) +
φ(x)

N
+O(N−2)

uniformly for x in a neighborhood of [−2, 2] for analytic functions ϕ and φ. Define the

corresponding linear statistic N (2)
N (ϕN) =

∑N
i=2 ϕN(λi)−N

∫ 2

−2
ϕN(x)dσscl(x), then

N (2)
N (ϕN) =

N∑
i=2

ϕN(λi)−N
2∫

−2

ϕN(x)dσscl(x)

=N (2)
N (ϕ) +

1

N

(
N∑
i=2

φ(λi)−N
∫
φ(x)dσscl(x)

)
+O(

1

N
).

(4.35)

By Theorem IV.6, the second order term converges to zero in probability. Thus,

N (2)
N (ϕN) and N (2)

N (ϕ) converge to the same Gaussian distribution. The same ar-

gument also applies to full linear statistics; this is used in Remark IV.24 below.

Now, the claim in footnote1 (see Page 27) is verified by noting that ϕ(x + J ′−J
N

) =

ϕ(x) + ϕ′(x)(J ′−J)
N

+O(N−2).

4.2.2 Joint convergence of the largest eigenvalue and linear statistics

By Theorem IV.6 and the second part of (4.11), the partial linear statistic and the

largest eigenvalue each converge to Gaussian distributions individually. The following

theorem shows that they converge jointly to a bivariate Gaussian with an explicit

covariance.

Theorem IV.8. Let J > 1. Then for ϕ(x) which is analytic in a neighborhood of

[−2, 2], N (2)
N (ϕ) :=

∑N
i=2 ϕ(λi)−N

∫ 2

−2
ϕ(x)dσscl(x) and χN :=

√
N(λ1− Ĵ) converges

jointly in distribution to a bivariate Gaussian variable with mean

(M (2)(ϕ),W3(J−2 − J−4)) (4.36)
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and covariance  V (2)(ϕ) 2W3τ2(ϕ)(1− J−2)

2W3τ2(ϕ)(1− J−2) 2(1− J−2)

 . (4.37)

The proof of this theorem, given in Section 4.5, is the main technical part of

this chapter. We prove the theorem first for the Gaussian case, and then use an

interpolation argument.

4.2.3 Proof of Theorem IV.5

We now derive Theorem IV.5 from Theorem IV.4 using the results on the eigen-

values stated in the previous two subsections. The term Q(χN) converges to Q(G2) in

distribution from Theorem IV.8. Consider the rest. It was shown in [12, (A.5)] that

for g(z) = log(J + J−1 − z),

∫
g(z)dσscl(x) =

1

2J2
+ log J. (4.38)

Inserting 2β = J−1 + BN−1/2 and using the Taylor expansion log(1 + BJ√
N

) = BJ√
N
−

B2J2

2N
+O(N−3/2),

F̃N−
1

2

∫
g(z)dσscl(x) =

1

4J2
+

B

2J
√
N

+
logN

4N
+

1

N

[
B2J2

4
+ log

1

2
√
πJ

]
+O(N−3/2).

(4.39)

We can evaluate M (2)(g) defined as in (4.33) using [13, (2.7)] which evaluated the

M(h) with h(x) = log(2β + 1
2β
− x): (note that J ′ = J here)

M (2)(g) = lim
β→ 1

2J

(
M(h)− log(2β +

1

2β
− J − J−1)

)
= −1

2
log(J2−1)−w2 − 2

2J2
−W4 − 3

4J4
.

(4.40)
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The variance V (2)(g) = V (g), which is independent of J , is given by 4 times [12,

(3.13)] if we replace 2β by J−1:

V (2)(g) = −2 log(1− J−2) +
1

J2
(w2 − 2) +

1

2J4
(W4 − 3). (4.41)

For the covariance term, we have τ2(g) = − 1
2J2 from [12, (A.17)]. Hence, from

Theorem IV.6 and IV.8, we obtain the result.

4.3 Proof of Theorem IV.4

The proof follows the steps for the proof of the Theorem 1.5 of [13] for paramag-

netic and ferromagnetic regimes with necessary adjustments. The analysis is based

on applying a method of steepest-descent to a random integral. The location of the

critical point is important. In the transitional regime, the critical point is close to

the largest eigenvalue but not as close as the ferromagnetic case. On the other hand,

the critical point is away from the largest eigenvalue in the paramagnetic case. See

Subsection 4.3.2 below for details.

4.3.1 Preliminaries

The following formula is a simple result in [78].

Lemma IV.9 ([78]; also Lemma 1.3 of [12]). Let M be a real N × N symmetric

matrix with eigenvalue λ1 ≥ λ2 ≥ · · · ≥ λN . Then for fixed β > 0,

∫
SN−1

eβσ
TMσdωN(σ) = CN

γ+i∞∫
γ−i∞

e
N
2
G(z)dz, G(z) = 2βz− 1

N

N∑
i=1

log(z−λi), (4.42)

where γ is any constant satisfying γ > λ1, the integration contour is the vertical line
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from γ − i∞ to γ + i∞, the log function is defined in the principal branch, and

CN =
Γ(N/2)

2πi(Nβ)N/2−1
. (4.43)

Here Γ(z) denotes the Gamma function.

Let M be a Wigner matrix with non-zero mean as in (4.6). Then its eigenvalues

λi are random variables, and hence the above result gives a random integral represen-

tation of the partition function. In [13, 12], the above random integral was evaluated

using the method of steepest-descent for different choices of random matrices. The

key ingredient in controlling the error term is a precise estimate for the eigenvalues

which are obtained in the random matrix theory.

Lemma IV.10 (Rigidity of eigenvalues: Theorem 2.13 of [55] and Theorem 6.3 of

[77]). For each positive integer k ∈ [1, N ], set k̂ := min{k,N + 1− k}. Let γk be the

classical location defined by

∞∫
γk

dσscl(x) =
1

N

(
k − 1

2

)
. (4.44)

Then, for every 0 < ε < 1
2
,

|λk − γk| ≤ k̂−1/3N−2/3+ε (4.45)

for all k = 2, 3, · · · , N with high probability. Furthermore, for fixed J > 1, recall

Ĵ = J + J−1,

|λ1 − Ĵ | ≤ N−1/2+ε (4.46)

holds with high probability.

From the rigidity, it is easy to obtain the following law of large numbers for

eigenvalues.
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Corollary IV.11 (c.f. Lemma 5.1 of [12]). Fix δ > 0, let {fα}α∈I ⊂ C1[−2−δ, 2+δ]

be a family of monotonic increasing functions satisfying supα∈I maxx |fα(x)| ≤ C0

and supα∈I maxx |f ′α(x)| ≤ C1. Then, for every 0 < ε < 1,

sup
α∈I

∣∣∣∣∣∣ 1

N

N∑
i=2

fα(λi)−
2∫

−2

fα(x)dσscl(x)

∣∣∣∣∣∣ = O(N−1+ε) (4.47)

with high probability.

Proof. Let f = fα for some α ∈ I. The absolute value on the left hand-side is

bounded above by

∣∣∣∣∣ 1

N

N∑
i=2

f(λi)−
1

N

N∑
i=2

f(γi)

∣∣∣∣∣+

∣∣∣∣∣∣ 1

N

N∑
i=2

f(γi)−
2∫

−2

f(x)dσscl(x)

∣∣∣∣∣∣ . (4.48)

By Lemma IV.10,

∣∣∣∣∣ 1

N

N∑
i=2

(f(λi)− f(γi))

∣∣∣∣∣ ≤ max |f ′(x)|
N

N∑
i=2

|λi − γi| ≤
C0

N1−ε (4.49)

with high probability. On the other hand, set γ̂j by

2∫
γ̂j

dσscl(x) =
j

N
, j = 1, 2, · · · , N, (4.50)

and by convention γ̂0 = 2. As f(x) is a monotonic increasing function, for i =

2, 3, · · · , N − 1,

γ̂i∫
γ̂i+1

f(x)dσscl(x) ≤ 1

N
f(γi) ≤

γ̂i−2∫
γ̂i−1

f(x)dσscl(x). (4.51)
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Thus, ∣∣∣∣∣∣ 1

N

N∑
i=2

f(γi)−
2∫

−2

f(x)dσscl(x)

∣∣∣∣∣∣ ≤ 3 max |f(x)|
N

≤ 3C1

N
. (4.52)

Since the upper bounds are independent of f , we obtain the result.

4.3.2 Steepest-descent analysis

We now apply steepest descent analysis to the integral in Lemma 4.42. We deform

the contour to pass a critical point and show that the main contribution to the integral

comes from a small neighborhood of the critical point. For G(z) given in (4.42), it

is easy to check that all solutions of G′(z) = 0 are real-valued, and there is a unique

critical point γ which lies in the interval (λ1,∞) (see Lemma 4.1 of [13]).

Note that since G is random, the critical point is also random. For the paramag-

netic regime, it was shown in [13] that γ − λ1 = O(1) with high probability. In the

same paper, it was also shown that in the ferromagnetic regime, γ − λ1 = O(N−1+ε)

with high probability. The following lemma establishes a corresponding result for the

transitional regime; it shows that γ − λ1 = O(N−
1
2

+ε) with high probability.

Lemma IV.12 (Critical point). Recall that (see (4.16)) J > 1 is fixed and 2β =

2βN = 1
J

+ B√
N

with fixed B ∈ R. Then, for every 0 < ε < 1
4
,

γ = λ1 +
1

2
√
N

(
−χN −B(J2 − 1) +

√
(χN + (J2 − 1)B)2 + 4(J2 − 1)

)
+O(N−1+ε)

(4.53)

with high probability, where we set χN :=
√
N(λ1 − Ĵ).

Note that γ given above is larger than λ1 with high probability since the term in

the big parenthesis is positive.

Proof. Set

θ :=
−χN −B(J2 − 1) +

√
(χN + (J2 − 1)B)2 + 4(J2 − 1)

2
. (4.54)
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Note that θ > 0. By the rigidity of λ1, we have |χN | ≤ N
ε
4 and hence, θ ≤ N

ε
3 with

high probability. On the other hand, using −a+
√
a2 + b2 = b2√

a2+b2+a
,

θ =
2(J2 − 1)√

(J2 − 1)B + χN)2 + 4(J2 − 1) + ((J2 − 1)B + χN)
,

and hence θ ≥ CN−
ε
4 for some constant C > 0 with high probability. Hence,

N−
ε
3 ≤ θ ≤ N

ε
3 (4.55)

with high probability. Set

γ± := λ1 +
θ√
N
±N−1+ε. (4.56)

By the above properties of θ, we have γ± > λ1 with high probability. We will show

that G′(γ−) < 0 and G′(γ+) > 0 with high probability. Since G′(z) is a monotone

increasing function for real z in the interval (λ1,∞), this shows that γ− < γ < γ+

with high probability, proving the lemma.

Recall that λ1 → Ĵ in probability. Let us write

γ± = J +
1

J
+

φ√
N
±N−1+ε, φ := θ + χN (4.57)

where χN =
√
N(λ1 − Ĵ). Note that φ = O(N

ε
3 ) with high probability. Now, notice

that

G′(z) = 2β − 1

N

N∑
i=2

1

z − λi
− 1

N(z − λ1)
. (4.58)

We apply Corollary IV.11 to the family of functions { 1
z−x}z>2+c for some constant

c > 0 and obtain

G′(γ±) = 2β −
γ± −

√
γ2
± − 4

2
+O(N−1+ ε

3 )− 1

N(γ± − λ1)
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with high probability. By (4.57),

γ± −
√
γ2
± − 4

2
=

1

J
− 1

J2 − 1

(
φ√
N
±N−1+ε

)
+O(N−1+ 2ε

3 ).

By (4.56),

1

N(γ± − λ1)
=

1

θ
√
N

(
1∓ N−

1
2

+ε

θ
+O

(
N−1+2ε

θ2

))
.

Using the formula of 2β and the estimate (4.55) for 1
θ
, we find that

G′(γ±) =
1√
N

(
B +

φ

J2 − 1
− 1

θ

)
±
(

1

J2 − 1
+

1

θ2

)
N−1+ε +O(N−1+ 2ε

3 ) (4.59)

with high probability since 0 < ε < 1
4
. By the definition of θ, the leading term is

zero. The coefficient of the second term is positive. Hence we find that G′(γ−) < 0

and G′(γ+) > 0, and we obtain the lemma.

Then we have the following lemma.

Lemma IV.13. Set

s = sN :=
√
N(γ − J − J−1) and ∆ = ∆N :=

√
N(γ − λ1) = sN − χN . (4.60)

Then, for every ε > 0,

s =
χN −B(J2 − 1) +

√
(χN + (J2 − 1)B)2 + 4(J2 − 1)

2
+O(N−

1
2

+ε) (4.61)

with high probability. We also have

|s| ≤ N ε and N−ε ≤ ∆ ≤ N ε (4.62)

with high probability.

Proof. The previous lemma implies (4.61). The first part of (4.62) follows from the
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fact that χN = O(N ε) with high probability. The second part is the estimate (4.55)

in the proof of the previous lemma.

We also need the following lemma.

Lemma IV.14. For every 0 < ε < 1,

1

N

N∑
i=2

1

(γ − λi)2
=

1

J2 − 1
+O(N−1+ε) (4.63)

with high probability.

Proof. This follows from Corollary IV.11 applied to f(x) = 1
(γ−x)2 .

The following auxiliary lemma is used to estimate an error in the steepest descent

analysis.

Lemma IV.15. Define

Im(α) :=

∞∫
−∞

tm√
1 + it

e−
α
4
t2+ it

2 dt (4.64)

for non-negative integers m and α > 0, where the square root is the defined on the

principal branch. We set I(α) := I0(α); see (4.21). Then,

I(α) =

√
4π

α
(1 +O(α−1)) as α→ +∞, (4.65)

I(α) =

√
8π

e
(1 +O(α)) as α→ 0+, (4.66)

and for every m ≥ 0,

Im(α) is uniformly bounded for α ∈ (0,∞). (4.67)
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A particular consequence is that the derivative I′(α) = −1
4
I2(α) is uniformly bounded

for α > 0. Furthermore, I(α) > 0 for all α > 0.

Proof. Consider (4.65). Applying the method of steepest-descent to I(α) =
∫∞
−∞ g(t)eαh(t)dt

with h(z) = − z2

4
and g(z) = 1√

1+iz
e

iz
2 , we find that

I(α) =
eαh(zc)

√
α

[√
2π

|h′′(zc)|
g(zc) +O(α−1)

]
=

√
4π

α
(1 +O(α−1)) (4.68)

as α→ +∞. For Im(α), using
∫∞
−∞ y

me−αy
2
dy = O(α−(m+1)/2), we find that

Im(α) = O(α−
m+1

2 ) as α→ +∞. (4.69)

Consider the limit α→ 0+. After the change of the variables t = z/α,

I(α) =
e−

1
4α

√
α

∞∫
−∞

e−
(z−i)2

4α

√
α + iz

dz. (4.70)

The integrand is analytic in the complex plane minus the vertical line from iα to i∞.

Note that the saddle point is i and it is on the branch cut. We show that the main

contribution to the integral comes from the branch point z = iα. We deform the

contour so that it consists of the following four line segments: L1 from i−∞ to i on

the left half-plane, L2 from i to iα lying on the left of the branch cut, L3 from iα to

i lying on the right of the branch cut, and L4 from i to i +∞ lying on the right-half

plane. On L4, setting z = i +
√
αx,

∫
L4

e−
(z−i)2

4α

√
α + iz

dz =
√
α

∞∫
0

e−
x2

4√
α− 1 + i

√
αx

dx = O(
√
α) (4.71)

as α → 0. Similarly, the integral over L1 is also of the same order. On the other
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hand, setting z = iα + iy,

∫
L2∪L3

e−
(z−i)2

4α

√
α + iz

dz = 2

1−α∫
0

e
(α+y−1)2

4α

√
y

dy = 2e
(α−1)2

4α

1−α∫
0

e
y
2

+ y2−2y
4α

√
y

dy. (4.72)

The function y2 − 2y decreases as y increases from y = 0 to y = 1. Hence the main

contribution to the integral comes near the point y = 0. Using Watson’s lemma,

1−α∫
0

e
y
2

+ y2−2y
4α

√
y

dy = Γ(1/2)
√

2α(1 +O(α)). (4.73)

Combining together and using Γ(1/2) =
√
π, we obtain (4.66). For Im(α), the analysis

is same except that we use

1−α∫
0

(iα + iy)m
e
y
2

+ y2−2y
4α

√
y

dy = O(αm+1/2). (4.74)

Hence, we find that for m ≥ 0, Im(α) = O(1) as α → 0+. Together with (4.69), this

implies the uniform boundness of Im(α).

For the positiveness of I(α), we first write it as

I(α) =

∞∫
−∞

e−
α
4
t2+ i

2
(t−arctan t)

(1 + t2)1/4
dt = 2

∞∫
0

e−
α
4
t2

(1 + t2)1/4
cos

(
1

2
(t− arctan t)

)
dt. (4.75)

The function θ(t) = t− arctan t is monotone increasing. We use the inverse function,

t = t(θ), to change the variables and find that

I(α) = 2

∞∫
0

e−
α
4
t2 (1 + t2)3/4

t2
cos

(
θ

2

)
dθ, t = t(θ). (4.76)

Since e−
α
4
t(θ)2

is positive and monotone decreasing in θ, we obtain I(α) > 0 for every
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α > 0 if we show that (i)

π∫
0

(1 + t2)3/4

t2
cos

(
θ

2

)
dθ ≥ −

3π∫
π

(1 + t2)3/4

t2
cos

(
θ

2

)
dθ, (4.77)

and (ii)

(−1)k
(2k+1)π∫

(2k−1)π

(1 + t2)3/4

t2
cos

(
θ

2

)
dθ, k = 1, 2, 3, · · · , (4.78)

is decreasing in k. (i) can be verified numerically. On the other hand, (ii) follows

immediately from the fact (1 + t2)3/4/t2 is a decreasing function of t. This completes

the proof.

We now evaluate the integral in (4.42) using the steepest descent analysis.

Lemma IV.16. Fix J > 1 and let 2β = J−1 + BN−1/2. Consider G(z) defined in

(4.42). Then, for every 0 < ε < 1
8
,

γ+i∞∫
γ−i∞

e
N
2
G(z)dz =

i∆e
N
2
G(γ)

√
N

I(F ′′(γ)∆2)
(

1 +O(N−
1
2

+4ε)
)

(4.79)

with high probability, where

F (z) = 2βz − 1

N

N∑
i=2

log(z − λi)−
1

N
log(γ − λ1)− z − γ

N(γ − λ1)
(4.80)

and I(α) is defined in (4.21). Recall that ∆ =
√
N(γ − λ1) (see Lemma IV.13.)

Proof. We choose the γ, which defines the contour, as the critical point of G(z). The

path of steepest-descent is locally a vertical line near the critical point. It turns out

that, instead of using the path of steepest-descent, it is enough to proceed the analysis

using the straight line γ + iR globally. This choice was also made for the analysis in

the paramagnetic regime in [13].
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We first write, using the function F (z),

γ+i∞∫
γ−i∞

e
N
2
G(z)dz = e

N
2
G(γ)

γ+i∞∫
γ−i∞

e
N
2

(G(z)−F (z))+N
2

(F (z)−G(γ))dz. (4.81)

From the definitions of G(z) and F (z),

e
N
2

(G(z)−F (z)) =

√
γ − λ1

z − λ1

e
z−γ

2(γ−λ1) . (4.82)

Changing the variables z = γ + itN−1/2 and using the notation ∆ =
√
N(γ − λ1),

γ+i∞∫
γ−i∞

e
N
2
G(z)dz =

ie
N
2
G(γ)

√
N

∞∫
−∞

e
it

2∆√
1 + it

∆

e
N
2

(F (γ+itN−1/2)−G(γ))dt. (4.83)

It is easy to check that the part of the integral with |t| ≥ N ε is small. To show

this, we first note that

<
(
N

(
F (γ +

it√
N

)−G(γ)

))
= −<

N∑
i=2

log

(
γ − λi + itN−1/2

γ − λi

)
≤ −N − 1

2
log

(
1 +

c2t2

N

)

with high probability for some constant c > 0, since there is a constant c > 0 such

that c ≤ γ − λi ≤ 1
c

for all i = 2, · · · , N , with high probability. Hence,

∣∣∣∣∣∣
∞∫

Nε

e
it

2∆√
1 + it

∆

e
N
2

(F (γ+itN−1/2)−G(γ)dt

∣∣∣∣∣∣ ≤
∞∫

Nε

e
−N−1

2
log
(

1+ c2t2

N

)
dt

≤
N∫

Nε

e−
c2

8
N2ε

dt+

∞∫
N

1

(c2N−1t2)N/4
dt = O(e−N

ε

) +O(N−N/8)

(4.84)

with high probability.

Consider the part |t| ≤ N ε. Note that F (z) satisfies F (γ) = G(γ), F ′(γ) =

G′(γ) = 0, and for each m ≥ 2, F (m)(z) = O(1) uniformly for z in a small neighbor-
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hood of γ (by Corollary IV.11). For m = 2, by Lemma IV.14,

c1 ≤ F ′′(γ) ≤ c2 (4.85)

for some constants 0 < c1 < c2, uniformly in N . By Taylor expansion, for |t| ≤ N ε,

F (γ + itN−1/2)−G(γ) = −F
′′(γ)t2

2N
− iF ′′′(γ)t3

6N3/2
+O(N−2+4ε) (4.86)

and hence,

e
N
2

(F (γ+itN−1/2)−G(γ)) = e−
F ′′(γ)t2

4

(
1− iF ′′′(γ)t3

12N1/2
+O(N−1+6ε)

)
. (4.87)

Therefore,

Nε∫
−Nε

e
it

2∆√
1 + it

∆

e
N
2 (F (γ+itN−1/2)−G(γ))dt

=

∞∫
−∞

e
it

2∆√
1 + it

∆

e−
F ′′(γ)

4
t2dt− iF ′′′(γ)

12N1/2

∞∫
−∞

t3
e

it
2∆√

1 + it
∆

e−
F ′′(γ)

4
t2dt+O(N−1+6ε)

= ∆ I(F ′′(γ)∆2)− iF ′′′(γ)∆4

12N1/2
I3(F ′′(γ)∆2) +O(N−1+6ε).

(4.88)

By (4.85) and Lemma IV.13, c1N
−ε ≤ F ′′(γ)∆2 ≤ c2N

ε. Hence, Lemma IV.15 implies

that

I(F ′′(γ)∆2) ≥ cN−ε (4.89)

for some constant c > 0. Hence, using Lemma IV.13, Lemma IV.15, and the uniform

boundedness of F ′′′(γ), we find that (4.88) is equal to

∆ I(F ′′(γ)∆2)(1 +O(N−
1
2

+4ε)) (4.90)
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if 0 < ε < 1
8
. Thus, using (4.89) and Lemma IV.13 again, we conclude that

γ+i∞∫
γ−i∞

e
N
2
G(z)dz =

i∆e
N
2
G(γ)

√
N

I(F ′′(γ)∆2)(1 +O(N−1/2+4ε)). (4.91)

4.3.3 Proof of Theorem IV.4

Proof of Theorem IV.4. From Lemma IV.9 and Lemma IV.16, for every 0 < ε < 1
8
,

ZN = CN
i∆e

N
2
G(γ)

√
N

I(F ′′(γ)∆2)(1 +O(N−
1
2

+4ε)) (4.92)

with high probability. Using Stirling’s formula,

CN =
Γ(N/2)

2πi(Nβ)N/2−1
=

√
Nβ

i
√
π(2βe)N/2

(1 +O(N−1)), (4.93)

thus we find that FN = 1
N

logZN satisfies

FN =
1

2
(G(γ)−1−log(2β))+

1

N

(
log

(
β∆√
π

)
+ log I(F ′′(γ)∆2)

)
+O(N−

3
2

+4ε) (4.94)

with high probability.

Let us consider G(γ). Since γ and Ĵ = J + J−1 are away from λ2, · · · , λN with

high probability,

log(γ − λi) = log(Ĵ − λi)− log

(
1− γ − Ĵ

γ − λi

)

= log(Ĵ − λi) +
γ − Ĵ
γ − λi

+
(γ − Ĵ)2

2(γ − λi)2
+O(|γ − Ĵ |3)

(4.95)

for i = 2, · · · , N , where we also use that γ − Ĵ = O(N−
1
2

+ε) with high probability

(see Lemma IV.13). Then, using Lemma IV.14 and the fact that G′(γ) = 2β −
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1
N

∑N
i=1

1
γ−λi = 0,

1

N

N∑
i=2

log(γ − λi) =
1

N

N∑
i=2

log(Ĵ − λi) + 2β(γ − Ĵ)− γ − Ĵ
N(γ − λ1)

+
(γ − Ĵ)2

2(J2 − 1)
+O(N−

3
2

+3ε)

with high probability. Hence, from the formula of G(z) in (4.42),

G(γ) = 2βĴ − 1

N

N∑
i=2

log(Ĵ − λi)−
1

N
log(γ − λ1) +

γ − Ĵ
N(γ − λ1)

− (γ − Ĵ)2

2(J2 − 1)
+O(N−

3
2

+3ε)

= 2βĴ − 1

N

N∑
i=2

log(Ĵ − λi)−
1

N
log

(
∆√
N

)
+

sN
N∆

− s2
N

2N(J2 − 1)
+O(N−

3
2

+3ε)

using the notations sN =
√
N(γ − Ĵ) and ∆ =

√
N(γ − λ1) in Lemma IV.13. Thus,

FN =βĴ − 1

2
− 1

2
log(2β)− 1

2N

N∑
i=2

log(Ĵ − λi) +
1

4N
logN

+
1

N

(
sN
2∆
− s2

N

4(J2 − 1)
+

1

2
log ∆ + log

β√
π

+ log I(F ′′(γ)∆2)

)
+O(N−

3
2

+4ε).

(4.96)

To conclude Theorem IV.4, we use (i) the fact that ∆ = sN − χN , (ii) the asymp-

totic (4.61) of sN in terms of χN , (iii) the fact that F ′′(γ) = 1
J2−1

+O(N−1+ε) which

follows from Lemma IV.14, and (iv) the fact that I′(α) is uniformly bounded for α > 0

(see Lemma IV.15).

4.4 Partial linear statistics

This section is devoted to a proof of Theorem IV.6 on partial linear statistics.

The proof is a simple modification of [13] for the linear statistics of all eigenvalues,

which, in turn, follows the proof of [9, 8] for the case when the random matrix has

zero mean.
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4.4.1 Proof of Theorem IV.6

Recall Ĵ := J + J−1 denotes the classical location of the largest eigenvalue of

a Wigner matrix of non-zero mean. Fix (N -independent) constants a− < −2 and

2 < a+ < Ĵ . Let Γ be the rectangular contour whose vertices are (a− ± iv0) and

(a+ ± iv0) for some v0 ∈ (0, 1]. The contour is oriented counter-clockwise. For a test

function ϕ(x) which is analytic in a neighborhood of [−2, 2], we consider

N (2)
N (ϕ) :=

N∑
i=2

ϕ(λi)−N
∫
R

ϕ(x)dσscl(x)

=
N∑
i=2

1

2πi

∮
Γ

ϕ(z)

z − λi
dz − N

2πi

∫
R

∮
Γ

ϕ(z)

z − x
dzdσscl(x) = − 1

2πi

∮
Γ

ϕ(z)ξ
(2)
N dz,

(4.97)

where

ξ
(2)
N (z) :=

N∑
i=2

1

λi − z
−N

∫
R

1

x− z
dσscl(x). (4.98)

Decompose Γ into Γu ∪ Γd ∪ Γl ∪ Γr ∪ Γ0, where

Γu ={z = x+ iv0 : a− ≤ x ≤ a+}, (4.99)

Γd ={z = x− iv0 : a− ≤ x ≤ a+}, (4.100)

Γl ={z = a− + iy : N−δ ≤ |y| ≤ v0}, (4.101)

Γr ={z = a+ + iy : N−δ ≤ |y| ≤ v0}, (4.102)

Γ0 ={z = a− + iy : |y| < N−δ} ∪ {z = a+ + iy : |y| < N−δ} (4.103)

for some δ > 0. In the proof of Theorem 1.6 in [13], the authors showed that

ξN(z) :=
N∑
i=1

1

λi − z
−N

∫
R

1

x− z
dσscl(x) = ξ

(2)
N (z) +

1

λ1 − z
(4.104)
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converges weakly to a Gaussian process with mean b(z) = b(2)(z)+ 1

Ĵ−z and covariance

Γ(zi, zj) = Γ(2)(zi, zj) where b(2)(z) and Γ(2)(zi, zj) are given in the proposition below.

Since for each fixed z ∈ C+, 1
λ1−z →

1

Ĵ−z in probability (by Lemma IV.10), it is

natural to expect the following result for a partial sum.

Proposition IV.17. Let

s(z) =

∫
1

x− z
dσscl(x) =

−z +
√
z2 − 4

2
(4.105)

be the Stieltjes transform of the semicircle measure. Fix a constant c > 0 and a path

K ⊂ C+ such that =z > c for z ∈ K. Then the process {ξ(2)
N (z) : z ∈ K} converges

weakly to a Gaussian process with the mean

b(2)(z) =
s(z)2

1− s(z)2

(
− J

1 + Js(z)
+ (w2 − 1)s(z) + s′(z)s(z) + (W4 − 3)s(z)3

)
− 1

Ĵ − z
(4.106)

and the covariance matrix

Γ(2)(zi, zj) = s′(zi)s
′(zj)

(
(w2 − 2) + 2(W4 − 3)s(zi)s(zj) +

2

(1− s(zi)s(zj))2

)
.

(4.107)

Remark IV.18. Note that as z → Ĵ ,

s(z)2

1− s(z)2

J

1 + Js(z)
=

s′(z)
1
J

+ s(z)
=

1

z − Ĵ
+
s′′(Ĵ)

s′(Ĵ)
+O(z − Ĵ). (4.108)

Hence, b(2)(z) is analytic near Ĵ and thus analytic for z ∈ C \ [−2, 2].

In order to complete the proof of Theorem IV.6, we will prove the following lemma.

Lemma IV.19. Define the events

ΩN := {λ1 ≥ Ĵ −N−1/3, λ2 ≤ 2 +N−1/3} (4.109)
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which satisfies P(Ωc
N) < N−D for any fixed (large) D > 0. Then for some δ > 0,

lim
v0→0+

lim sup
N→∞

∫
Γ#

E |ξ(2)
N (z)1ΩN |2dz = 0, (4.110)

where Γ# can be Γr, Γl or Γ0.

From the explicit formulas (4.106) and (4.107), it is easy to check that

lim
v0→0+

∫
Γ#

E |ξ(2)(z)|2dz = 0. (4.111)

Proposition IV.17, Lemma IV.19 and (4.111) imply that N (2)
N (ϕ) converges in distri-

bution to a Gaussian random variable with the following mean and variance:

− 1

2πi

∮
Γ

ϕ(z)b(2)(z)dz,
1

(2πi)2

∮
Γ

∮
Γ

ϕ(z1)ϕ(z2)Γ(z1, z2)dz1dz2. (4.112)

It is direct to check that these are equal to M (2)(ϕ) and V (2)(ϕ) (see Section 4.2 in

[13]). We thus obtain Theorem IV.6.

4.4.2 Proof of Proposition IV.17

From Theorem 7.1 of [21], we need to show (i) the finite-dimensional convergence

of ξ
(2)
N (z) to a Gaussian vector with desired mean and variance, and (ii) the tightness

of ξ
(2)
N (z). We will base our proof on the corresponding properties of ξN(z) obtained

in [13]. Let us first recall the limit theorem for ξN(z).

Lemma IV.20 (Proposition 4.1 in [13]). Let s(z) and K defined in the same way

as in Proposition IV.17. Then, the process {ξN(z) : z ∈ K} converges weakly to a
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Gaussian process {ξ(z) : z ∈ K} with the mean

b(z) =
s(z)2

1− s(z)2

(
− J

1 + Js(z)
+ (w2 − 1)s(z) + s′(z)s(z) + (W4 − 3)s(z)3

)
(4.113)

and the covariance matrix

Γ(zi, zj) = s′(zi)s
′(zj)

(
(w2 − 2) + 2(W4 − 3)s(zi)s(zj) +

2

(1− s(zi)s(zj))2

)
.

(4.114)

Let z1, z2, · · · , zp are p distinct points in K. The above lemma implies that the

random vector (ξN(zi))
p
i=1 converges weakly to a p-dimensional Gaussian distribution

with the mean (b(zi))
p
i=1 and the covariance matrix Γ(zi, zj). Since the distance be-

tween K and λ1 is bounded below, 1
λ1−zi →

1

Ĵ−zi
in probability for i = 1, · · · , p. Hence,

by Slutsky’s theorem, (ξ
(2)
N (zi))

p
i=1 converges weakly to a p-dimensional Gaussian dis-

tribution vector with the mean (b(2)(zi))
p
i=1 and the covariance matrix Γ(2)(zi, zj),

where

b(2)(z) = b(z)− 1

Ĵ − z
, (4.115)

and Γ(2)(zi, zj) = Γ(zi, zj).

From Theorem 12.3 of [21], in order to show the tightness of a random process

(ζN(z))z∈K, it is sufficient to show that (i) (ζN(z))N is tight for a fixed z, and (ii) the

following Hölder condition holds: for some N -independent constant K > 0,

E |ζN(z1)− ζN(z2)|2 ≤ K|z1 − z2|2, z1, z2 ∈ K. (4.116)

In [13], the authors considered the random process ζN(z) := ξN(z) − E[ξN(z)], and

proved that it satisfies conditions (i) and (ii). Now, we consider ξ
(2)
N (z) := ζ

(2)
N +

E[ξN(z)], where ζ
(2)
N (z) := ζN(z) − 1

λ1−z . Since E[ξN(z)] converges, it is enough to

check that (ζ
(2)
N (z))N satisfies conditions (i) and (ii). Now for a fixed z, the tightness
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of (ζN(z))N and the boundedness of 1
λ1−z imply that (ζ

(2)
N (z))N is tight. On the other

hand, since ζN(z) satisfies the Hölder condition and =z ≥ c for z ∈ K,

E |ζ(2)
N (z1)− ζ(2)

N (z2)|2 ≤ 2E |ζN(z1)− ζN(z2)|2 + 2E
∣∣∣∣ 1

λ1 − z1

− 1

λ1 − z2

∣∣∣∣2
≤ 2K|z1 − z2|2 +

2|z1 − z2|2

c4
=

(
K +

2

c4

)
|z1 − z2|2.

(4.117)

Thus {ξ(2)
N (z), z ∈ K} is tight. This completes the proof of Proposition IV.17.

4.4.3 Proof of Lemma IV.19

For z ∈ Γ0, we notice that |ξ(2)
N 1ΩN | ≤ CN and then

∫
Γ0

E |ξ(2)
N 1ΩN |2 ≤ CN2−δ. (4.118)

Thus (4.110) holds for Γ0 with δ > 2. For Γr and Γl, it is sufficient to show

E |ξ(2)
N |2 < K for some N -independent constant K > 0. The authors in [13] showed2

that E |ξN(z)|2 < K. Hence, for z ∈ Γr,

|ξ(2)
N (z)1ΩN |2 ≤ 2|ξN(z)1ΩN |2 + 2

∣∣∣∣ 1

λ1 − z
1ΩN

∣∣∣∣2 . (4.119)

The lemma then follows from the fact that | 1
λ1−z1ΩN | is bounded.

4.5 Joint Distribution of χN and N (2)
N (ϕ)

As before, let A be a random symmetric matrix of size N whose entries are (up to

the symmetry condition) independent centered random variables satisfying Definition

IV.1. Let M = 1√
N
A + J

N
11T where J > 1. Let λ1 ≥ · · · ≥ λN be the eigenvalues of

M .

2Even though it is stated in Lemma 4.2 of [13] that the lemma holds for sufficiently small δ > 0,
the proof of it is valid for any δ > 0, and we use δ > 2 for our purpose.
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Let χN =
√
N(λ1 − Ĵ) denoting the rescaled largest eigenvalue. Given an an-

alytic function ϕ(x), recall the partial linear statistics N (2)
N (ϕ) =

∑N
i=2 ϕ(λi) −

N
∫ 2

−2
ϕ(x)dσscl(x). We saw in the previous sections that χN and N (2)

N (ϕ) converge

individually to Gaussian random variables. In this section, we consider the joint dis-

tribution and prove Theorem IV.8. In Subsection 4.5.1, we first prove Theorem IV.8

assuming that the disorder variables are Gaussian random variables. In Subsection

4.5.2, the general disorder variables are considered using an interpolation trick.

4.5.1 Asymptotic Independence for the GOE case

Let the off-diagonal entries of A be Gaussian random variables of variance 1 and

the diagonal entries be Gaussian random variables of variance 2. In random matrix

theory, the random symmetric matrix H = 1√
N
A is said to belong to the Gaussian

orthogonal ensemble (GOE). A special property of GOE, compared with general

random symmetric matrices, is that the probability measure of GOE is invariant

under orthogonal conjugations.

The following result is basically in [30].

Lemma IV.21. Let ( 1√
2
Aii, Aij, yi)1≤i<j≤N be i.i.d. standard Gaussian random vari-

ables. Let H = 1√
N
A with A = (Aij)1≤i,j≤N and let Y = 1√

N
(y1, · · · , yN)T . Define

G(z) = (H−zI)−1 for z ∈ C\[−2−δ, 2+δ], which is well defined with high probability

for fixed δ > 0. Then, for z ∈ R\[−2− δ, 2 + δ],

nN(z) :=
√
N(Y ∗G(z)Y − 1

N
Tr(G(z)))⇒ n(z) (4.120)

where n = n(z) := N
(

0, 2
∫ dσscl(x)

(x−z)2

)
is a Gaussian random variable.

Proof of Lemma IV.21. We follow the idea presented in [30]. By Theorem 5.2 of

[30], it is enough to check the following three conditions for G: (i) There exists an

N -independent constant a such that ‖G‖ ≤ a with high probability, (ii) 1
N

TrG2
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converges to a constant in probability, and (iii) 1
N

∑N
i=1G

2
ii converges to a constant

in probability. They follow from rigidity of eigenvalue (Lemma IV.10), law of large

numbers (Corollary IV.11), and local law (Theorem 2.9 of [55]), respectively.

We are now ready to prove the following property of GOE matrices.

Proposition IV.22. For H defined in Lemma IV.21, denote its eigenvalues by ρ1 ≥

ρ2 ≥ · · · ≥ ρN . For fixed k, consider a random vector (X1
N , X

2
N , · · · , Xk

N) whose entries

are real measurable functions of those eigenvalues, i.e., X i
N = X i

N(ρ1, ρ2, · · · , ρN) for

i = 1, 2, · · · , k. Suppose there is a random vector (X i)ki=1 such that (X i
N)ki=1 ⇒ (X i)ki=1

as N → ∞. Then for nN and n defined as in (4.120), (X1
N , X

2
N , · · · , Xk

N , nN) ⇒

(X1, X2 · · · , Xk, n), where n is independent from (X1, X2, · · · , Xk).

Proof. For the convergence, it is enough to show (i) (X1
N , X

2
N · · · , Xk

N , nN) is tight,

and (ii) convergence of characteristic function. The tightness follows from the tight-

ness of individual random vector (variable), which is a consequence of individual

convergence.

For (ii), consider the eigenvalue decompositionH = OPOT , where P = diag(ρ1, ρ2, · · · , ρN)

and O is an orthogonal matrix. Since the H is orthogonal invariant, P and O are

independent. Set X = OTY . Then X = 1√
N

(x1, · · · , xN) where x1, · · · , xN are i.i.d

standard Gaussian (X is also independent with P ).

Now, nN = Y ∗G(z)Y − 1
N

TrG(z) = 1
N

∑N
i=1

x2
i−1

ρi−z . Since E[etx
2
1 ] = 1√

1−2t
, we find

that for any t ∈ iR, the conditional expectation over X given P satisfies

EX
[
etnN

∣∣P ] = EX
[
e

t√
N

∑N
i=1

x2
i−1

ρi−z
∣∣P ] =

N∏
i=1

e
− 1

2
log(1− 2t√

N(ρi−z)
)− t√

N(ρi−z) .

Note that (X1
N , X

2
N , · · · , Xk

N) only depends on the eigenvalues, and hence it is inde-
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pendent of X. Thus, for any u1, u2, · · · , uk, t ∈ iR,

E
[
e
∑k
j=1 ujX

j
N+tnN

]
=E

[
e
∑k
j=1 ujX

j
N

N∏
i=1

e
− 1

2
log(1− 2t√

N(ρi−z)
)− t√

N(ρi−z2)

]
. (4.121)

Since −1
2

log(1− 2z)− z = z2 +O(z3) as z → 0, using Corollary IV.11,

N∏
i=1

e
− 1

2
log(1− 2t√

N(ρi−z)
)− t√

N(ρi−z) = e
1
N

∑N
i=1

t2

(ρi−z)2
+O(N−

1
2 )

= e
t2
∫

1
(x−z)2

dσscl(x)+O(N−
1
2 )

= E
[
etn(z)

]
eO(N−

1
2 )

(4.122)

with high probability. Denote this high probability event by ΩN . Then,

lim
N→∞

E
[
e
∑k
j=1 ujX

j
N+tnN

]
= lim

N→∞

(
E
[
e
∑k
j=1 ujX

j
N+tnN

∣∣ΩN

]
P(ΩN) + E

[
e
∑k
j=1 ujX

j
N+tnN

∣∣Ωc
N

]
P(Ωc

N)
)

=E
[
e
∑k
j=1 ujX

j
]
E
[
etn(z)

]
,

(4.123)

since t, u1, u2, · · · , uk ∈ iR and hence all exponents are pure imaginary. Note that the

characteristic function of (X1, · · · , Xk, n) is equal to the product of the characteristic

functions of individual random vector (variable). Thus n(z) is independent from

(X1, · · · , Xk). This completes the proof.

Corollary IV.23. Fix δ > 0, consider z1 ∈ C\R and z2 ∈ R\[−2− δ, 2 + δ]. Recall

s(z) defined in (4.105). Then (Tr(G(z1))−Ns(z1), nN(z2)) converges in distribution

to independent Gaussian random variables.

Proof. Note that Tr(G(z1)) − Ns(z1) is complex, we consider the random vector

(<(Tr(G(z1))−Ns(z1)),=(Tr(G(z1))−Ns(z1))). By Proposition IV.22, it is enough

to show that (<(Tr(G(z1))−N(s1)),=(Tr(G(z1))−Ns(z1)) converges to a Gaussian

random vector. Consider the expression z1 = E+ iη for ε, η ∈ R and η 6= 0. Recalling
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the definition of linear statistics NN(ϕ) defined in (4.29), we have

<(Tr(G(z1)−Ns(z1))) = NN(ϕr), ϕr(x) =
x− E

(x− E)2 + η2
,

and

=(Tr(G(z1)−Ns(z1)) = NN(ϕi), ϕi(x) =
η

(x− E)2 + η2
.

That is, they are both linear statistics. Then Corollary then follows from Theorem

1.1 of [9].

Remark IV.24. When we prove Theorem IV.8 for GOE, we use Proposition IV.22

and Corollary IV.23 with N -dependent zi. First, for a fixed z2 ∈ R\[−2 − δ, 2 + δ]

for some δ > 0, let z̃2 = z̃2(N) :=
√

N+1
N
z2. Using the exactly same argument in the

proof of Lemma IV.21, one can show nN(z̃2) ⇒ n(z2). Since the (4.122) still holds

for z̃2 and n(z2), the asymptotic independence in Proposition IV.22 is still valid, i.e.

(X1
N , X

2
N , · · · , Xk

N , nN(z̃2))⇒ (X1, X2 · · · , Xk, n(z2)),

where n(z2) is independent from (X1, X2, · · · , Xk). Second, for z1 ∈ C\R, consider

z̃1 = z̃1(N) :=
√

N+1
N
z1. Notice that

1

x− z̃1

=
1

x− z1

+
z1

2N(x− z1)2
+O(N−2).

Then, by the discussion in Remark IV.7, Tr(G(z̃1)) − Ns(z̃1) = NN( 1
x−z̃1 ) converges

to a Gaussian random variable. Now, putting together, for z̃1 and z̃2 defined as

above, (Tr(G(z̃1))−Ns(z̃1), nN(z̃2)) converge jointly to independent Gaussian random

variables.

We now prove Theorem IV.8 for the case where the disorder belongs to GOE.

Proof of Theorem IV.8 when A belongs to GOE. Recall that λi are the eigenvalues of
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M = 1√
N
A+ J

N
11T with A from the GOE. Since the means and variances follow from

[30] and Theorem IV.6, it is enough to prove the asymptotic independence of χN and

N (2)
N (ϕ). (Notice that that W3 = 0 for Gaussian Aij.) Now, for any analytic test

function ϕ, the partial linear statistics can be expressed as (see (4.98)) an integral of

ξ
(2)
N (z) =

N∑
i=2

1

λi − z
−N

∫
R

1

x− z
dσscl(x), z ∈ C\R. (4.124)

Then according to Lemma IV.19 and what follows, it is enough to prove that χN and

ξ
(2)
N (z) are asymptotically independent for fixed z ∈ C \ R. Let

ξN(z) = ξ
(2)
N (z) +

1

λ1 − z
= Tr(M − zI)−1 −Ns(z).

Since 1
λ1−z →

1

Ĵ−z in probability, it is enough to prove that χN and ξN(z) are asymp-

totically independent.

Since the GOE is orthogonal invariant, for every deterministic matrix U , the

eigenvalues of A + U have the same distribution as A + OUOT for any orthogonal

matrix O. Thus, we may consider the following equivalent model:

M =
1√
N
A+ diag(J, 0, · · · , 0). (4.125)

Following the proof of Theorem 2.2 in [30], we write

M =

A11√
N

+ J Y ∗

Y M̂

 . (4.126)

Since det(M − zI) = det(M̂ − zI)
(
A11√
N

+ J − z − Y ∗Ĝ(z)Y
)

with

Ĝ(z) := (M̂ − zIN−1)−1 = (
1√
N
Â− zIN−1)−1, (4.127)
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the largest eigenvalue of M satisfies

λ1 = J +
A11√
N
− Y ∗Ĝ(λ1)Y (4.128)

if λ1 is not an eigenvalue of M̂ , which holds with high probability. Using the resolvent

formula twice, we write

Ĝ(λ1) = Ĝ(Ĵ) + (Ĝ(λ1)− Ĝ(Ĵ)) = Ĝ(Ĵ) + (λ1 − Ĵ)Ĝ(λ1)Ĝ(Ĵ)

= Ĝ(Ĵ) + (λ1 − Ĵ)Ĝ(Ĵ)2 + (λ1 − Ĵ)2Ĝ(λ1)Ĝ(Ĵ)2.

Hence,

λ1 − Ĵ =
A11√
N
− 1

J
− Y ∗Ĝ(λ1)Y

=
A11√
N
− 1

J
− Y ∗Ĝ(Ĵ)Y + (λ1 − Ĵ)Y ∗Ĝ(Ĵ)2Y + (λ1 − Ĵ)2Y ∗Ĝ(λ1)Ĝ(Ĵ)2Y

with high probability. Moving all terms with factor λ1 − Ĵ to the left and taking it

out as a common factor, we arrive at

χN =
√
N(λ1 − Ĵ) =

A11 −
√
N( 1

J
+ Y ∗Ĝ(Ĵ)Y )

1 + Y ∗Ĝ(Ĵ)2Y + (λ1 − Ĵ)Y ∗Ĝ(λ1)Ĝ(Ĵ)2Y
(4.129)

with high probability.

Note that M̂ and Y satisfy the setting of Corollary IV.23 up to the scaling factor√
N
N−1

. Set

Ỹ =

√
N

N − 1
Y, G̃(z) =

(√ N

N − 1
M̂ − zIN−1

)−1
(4.130)

Then, Ỹ and G̃ satisfy the setting of Corollary IV.23, and

Y ∗Ĝ(Ĵ)Y =

√
N − 1

N
Ỹ ∗G̃(J̃)Ỹ , J̃ :=

√
N

N − 1
Ĵ . (4.131)
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Now, by Corollary IV.11,

1

N − 1
Tr(G̃(J̃)) = s(Ĵ) +O(N−1+ε) = − 1

J
+O(N−1+ε) (4.132)

with high probability. By Lemma IV.21, Corollary IV.11 and Lemma IV.10,

Y ∗Ĝ(Ĵ)2Y → 1

J2 − 1
, (λ1 − Ĵ)Y ∗Ĝ(λ1)Ĝ(Ĵ)2Y → 0 (4.133)

in probability. Using (4.133), (4.132) and denoting the denominator in (4.129) by D1,

we write

χN = D−1
1

(
A11 − ñN−1(J̃) +O(N−

1
2

+ε)
)
, (4.134)

where nN−1(J̃) =
√
N − 1(Ỹ ∗G̃(J̃)Ỹ − 1

N−1
Tr(G̃(J̃))) (see (4.120)) and D1 → J2

J2−1

in probability. Note that A11 and nN−1(J̃) are independent, the distribution of χN is

governed by their convolution.

We now turn to the linear statistic ξN(z). Using Schur complement of M with

block structure in (4.126), for any z ∈ C\R,

Tr(M − zI)−1 =(J +
A11√
N
− z − Y ∗Ĝ(z)Y )−1(1 + Y ∗Ĝ(z)2Y ) + Tr(Ĝ(z))

(4.135)

Using Lemma IV.21 and Lemma IV.11,

D2 = D2(N) :=
1 + Y ∗Ĝ(z)2Y

J + A11√
N
− z − Y ∗Ĝ(z)Y

→ 1 + s′(z)

J − z − s(z)

in probability. Then, by setting z̃ := z̃(N) =
√

N
N−1

z, we write

ξN(z) =Tr(M − zI)−1 −Ns(z) = D2 + TrĜ(z)−Ns(z) +O(N−
1
2

+ε)

=D2 −
s(z)

2
+
zs′(z)

2
+

√
N

N − 1

(
TrG̃(z̃)− (N − 1)s(z̃)

)
+O(N−

1
2

+ε).

(4.136)
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That is, the fluctuation of ξN(z) is govern by TrG̃(z̃)− (N−1)s(z̃). Now using Corol-

lary IV.23 and Remark IV.24, one can conclude that (TrG̃(z̃)− (N−1)s(z̃), nN−1(J̃))

converge to independent Gaussian random variables. Furthermore, A11 is independent

of both Y and M̂ . Thus by (4.134) and (4.136), (ξN(z), χN) converge to independent

random variables. Theorem IV.8 then follows.

4.5.2 Proof of Theorem IV.8 for general case

We prove Theorem IV.8 for general disorders, where the disorder matrix A is a

Wigner matrix and satisfies Definition IV.1. Unlike the GOE, Wigner matrices are

not orthogonal invariant, hence we cannot apply (4.125) where we replaced the rank-1

perturbation in M by a diagonal matrix. To overcome the difficulty, we use an inter-

polation method. It has been successfully applied in many works in random matrix

theory, where a given matrix and a reference matrix such as GOE are interpolated.

We refer to [83] for its application in the analysis of linear eigenvalue statistics.

Let V = 1√
N
A be a (normalized) Wigner matrix and V G be a (normalized) GOE

matrix independent from V . Define

H(t) = V cos t+ V G sin t (4.137)

so that H(0) = V and H(π
2
) = V G. Note that E[H2

ij] = 1
N

for i 6= j. Let

e =
1√
N

1T =
1√
N

(1, 1, . . . , 1)T ∈ RN (4.138)

and

M(t) = H(t) + JeeT , (4.139)

whose eigenvalues are denoted by λ1 ≥ λ2 ≥ · · · ≥ λN . Define the resolvents

G(z) = (M − zI)−1, Ĝ(z) = (H − zI)−1. (4.140)
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Here, we omit the dependence on t for the ease of notation. We note that G and Ĝ

are symmetric (not Hermitian). For any (small) fixed δ > 0, Ĝ(z) is well-defined for

z ∈ C \ [−2− δ, 2 + δ] with high probability.

For χN =
√
N(λ1 − Ĵ), we notice that

Ĝee(λ1) := 〈e, Ĝ(λ1)e〉 = − 1

J
(4.141)

with high probability. The claim holds since

0 = det(M − λ1I) = det(H − λ1I) det(I + JĜ(λ1)eeT )

= det(H − λ1I) det(I + JeT Ĝ(λ1)e) = det(H − λ1I)
(

1 + JĜee(λ1)
)

(4.142)

and λ1 is not an eigenvalue of H with high probability (See Lemma 6.1 of [77]).

Furthermore, by Taylor expansion,

− 1

J
= Ĝee(λ1) = Ĝee(Ĵ) + Ĝ′ee(Ĵ)(λ1 − Ĵ) +O(N−1+ε) (4.143)

with high probability, since |λ1 − Ĵ | = O(N−
1
2

+ε) and ‖Ĝ′′(z)‖ = O(1) with high

probability. From the isotropic local law, Theorem 2.2 of [77], we find that

Ĝee(Ĵ) = s(Ĵ) +O(N−
1
2

+ε), Ĝ′ee(Ĵ) = s′(Ĵ) +O(N−
1
2

+ε) (4.144)

with high probability. Thus, using Lemma IV.21,

χN =
√
N(λ1 − Ĵ) = −

√
N(J−1 + Ĝee(Ĵ))

s′(Ĵ)
+O(N−

1
2

+2ε) (4.145)

with high probability. That is, the behavior of χN is governed by the fluctuation of

Ĝee(Ĵ).
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To prove the Theorem IV.8, as in the Gaussian disorder case, it is enough to

show the convergence of the joint distribution of χN and the full linear statistics

ξN(z) = Tr(G(z)) − Ns(z) for fixed z ∈ C \ R. Under the light of (4.145), we set

out to calculate the following characteristic function involving ξN(z) and Ĝee(Ĵ).

Explicitly, for t1, t2, t3 ∈ iR and z = E + iη with E ∈ R and η > 0, we define

E
[
eP (t)

]
:= E

[
et1<ξN+t2=ξN+t3nN

]
, P (t) := t1<ξN(z) + t2=ξN(z) + t3nN ,

(4.146)

where

nN =
√
N

(
Ĝee(Ĵ) +

1

J

)
. (4.147)

Note that nN is real, the exponent P (t) is pure imaginary and thus |eP (t)| ≤ 1. For

our purpose, it is desired to estimate E[eP (0)]. At t = π
2
, the disorder H(π

2
) reduces

to the GOE case. From Subsection 4.5.1, χN and ξN are asymptotically independent

in the GOE case, then

lim
N→∞

E
[
eP (π

2
)
]

= E
[
et1<ξ+t2=ξ

]
· E
[
et3n
]

(4.148)

for some Gaussian random variables ξ, n with known mean and variance. Thus, it

only remains to estimate the t-derivative of E[eP (t)]. Here, we recall the following

identity for the derivative of the resolvent G. For i, j, a, b = 1, 2, · · · , N ,

∂

∂Mij

Gab = −βjk(GajGkb +GakGjb) (4.149)

with

βjk =


1 j 6= k,

1/2 j = k.

(4.150)

We note that the above identity also holds if one replace G by Ĝ. Thus for any fixed
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event Ω,

d

dt
E
[
eP (t)|Ω

]
= E

[∑
i≤j

dMij

dt

∂

∂Mij

eP (t)

∣∣∣∣∣Ω
]

=
∑
i,j

E

[(
Vij sin t− V G

ij cos t
)(

t1<
(
G2
)
ij

+ t2=
(
G2
)
ij

+
t3√
N

∑
p,q

ĜpiĜjq

)
eP (t)

∣∣∣Ω] .
(4.151)

The reason for the introduction of Ω will be revealed after the proof of Corollary

IV.27. The right hand side of (4.151) motivates us to apply the generalized Stein’s

lemma. More precisely, we will use Proposition 3.1 of [83] with a small modification

as follows:

Proposition IV.25. Given an event Ω, let X be a random variable such that E[|X|p+2|Ω] <

∞ for a certain non-negative integer p. Denote the conditional cumulants of X by

κl := κl(Ω), l = 1, . . . , p+ 1. Then for any function Φ : R→ C of the class Cp+1 with

bounded derivatives Φ(l), l = 1, . . . , p+ 1, we have

E[XΦ(X)|Ω] =

p∑
l=0

κl+1

l!
E[Φ(l)(X)|Ω] + εp, (4.152)

where the remainder term εp admits the bound

|εp| ≤ Cp E

|X|p+2

1 + max
1≤j≤p+1

 1∫
0

|Φ(p+1)(vX)|dv


p+2
j

∣∣∣∣∣Ω
 (4.153)

for some constant Cp that depends only on p.

Proof. We basically follow the proof of Proposition 3.1 of [83]. Let πp be the degree

p Taylor polynomial of Φ and let rp = Φ − πp. Then, as in the proof of Proposition

3.1 of [83],

E[Xπp(X)|Ω] =

p∑
j=0

κj+1

j!
E[π(j)

p (X)|Ω]. (4.154)
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Thus

∣∣∣∣∣E[XΦ(X)|Ω]−
p∑
l=0

κl+1

l!
E[Φ(l)(X)|Ω]

∣∣∣∣∣ ≤ |E[Xrp(X)|Ω]|+
p∑
l=0

|κl+1|
l!

∣∣E [r(l)
p (X)|Ω

]∣∣ .
(4.155)

Since

rp(X) =
Xp+1

p!

1∫
0

Φ(p+1)(vX)(1− v)pdv, (4.156)

by the estimate |κj| ≤ (2j)j E[|X|j|Ω] and Hölder’s inequality,

p∑
l=0

|κl+1|
l!

∣∣E [r(l)
p (X)|Ω

]∣∣ ≤ p∑
l=0

κl+1

l!(p− l)!
E

|X|p+1−l

1∫
0

|Φ(p+1)(vX)|dv
∣∣∣Ω


≤
p∑
l=0

(2l + 2)l+1

l!(p− l)!
E

|X|p+2

1 +

 1∫
0

|Φ(p+1)(vX)|dv


p+2
p+1−l

∣∣∣∣∣Ω
 .

(4.157)

As |E[Xrp|Ω]| can also be bounded by the right hand side of (4.157), the proof is

complete.

In order to apply Proposition IV.25 to (4.151), we need prior bounds of P (t) and

its derivatives to bound εp in (4.152). As we will see later, it is enough to bound Gij,

(G2)ij, Ĝij and
∑

p Ĝip. In the following, we are going to introduce a high probability

event Ω, on which we have the desired bounds.

With the trivial bound ‖G‖ ≤ 1
η

(recall that z = E + iη), we have that |Gij| ≤ 1
η

and |(G2)ij| ≤ ‖G2‖ ≤ 1
η2 . For Ĝij, we introduce the high probability event Ω1 =

{λ1 ≤ (2 + Ĵ)/2}. It is easy to check that ‖Ĝ‖1Ω1 ≤ 1

Ĵ−2
and thus

|Ĝij1Ω1| ≤
1

Ĵ − 2
, (4.158)

For
∑

p Ĝip, we recall the following concentration theorem for the quadratic function
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of Ĝ:

Proposition IV.26 (Theorem 2.3 and Remark 2.4 of [77]). Fix Σ ≥ 3. Set ϕ =

(logN)log logN . Then there exist constants C1 and C2 such that for any

E ∈ [Σ,−2− ϕC1N−
2
3 ] ∪ [2 + ϕC1N−

2
3 ,Σ],

and any η ∈ (0,Σ], and any deterministic v, w ∈ CN ,

|〈v, Ĝ(z)w〉 − s(z)〈v, w〉| ≤ ϕC2

√
=s(z)

Nη
‖v‖ ‖w‖ (4.159)

with high probability, uniformly on z = E + iη.

Let ei := (0, · · · , 1, · · · , 0). Noting that
∑N

p=1 Ĝpi =
√
N〈e, Ĝei〉, we can derive a

prior bound for
∑N

p=1 Ĝpi, which is summarized in the following Corollary.

Corollary IV.27. For any fixed E ∈ R\[−2, 2], the tail bound

|
∑
p

(Ĝ(E))pi| ≤ N ε (4.160)

holds simultaneously for i = 1, · · · , N with high probability. We also have that

|〈v, Ĝ(E)w〉 − s(E)〈v, w〉| ≤ ‖v‖ ‖w‖N−
1
2

+ε (4.161)

with high probability.

Proof. We first prove (4.161). Consider z = E+ iN−1/2. Using Proposition IV.26, we
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find there exists some C > 0 such that

〈v, Ĝ(E)w〉 − s(E)〈v, w〉| ≤ |〈v, (Ĝ(z)− Ĝ(E)w〉|+ |〈v, Ĝ(z)w〉 − s(z)〈v, w〉|

+ |s(z)− s(E)||〈v, w〉|

≤ CN−1/2 ‖v‖ ‖w‖+ CϕCN−
1
2 ‖v‖ ‖w‖+ CN−1/2.

(4.162)

Here we also use the fact that Ω1 holds with high probability. Since ϕ� N ε, (4.161)

then follows. The tail bound (4.160) can be obtained from (4.161) by setting v =
√
Ne

and w = ei.

Based on our discussion above, we are ready to introduce the high probability

event as promised. Set s1 := s(z), s′1 := s′(z) and s2 := s(Ĵ) = −J−1, the desired

high probability event Ω is the intersection of Ω1 and the following events:

Ω2 = {|
∑
p

(Ĝ(Ĵ))pi| ≤ N ε, ∀i = 1, · · · , N} ∩ {|Ĝee(Ĵ)− s2| ≤ N−
1
2

+ε}, (4.163)

Ω3 = {|Ĝij − δijs2| ≤ N−
1
2

+ε, ∀i, j = 1, · · · , N}, (4.164)

Ω4 = {|Gij − δijs1|, |(G2)ij − δijs′1| ≤ N−
1
2

+ε, ∀i, j = 1, · · · , N}, (4.165)

Ω5 = {|Vij|, |V G
ij |, |Mij| ≤ N−

1
2

+ε, ∀i, j = 1, · · · , N}. (4.166)

Here, by Corollary IV.27, Ω2 is a high probability event. The fact that Ω3 and Ω4 are

high probability events can be checked from Theorem 2.8 and Theorem 2.9 of [55]. It

is easy to check that Ω5 is a high probability event from the existence of all moments.

Furthermore, by the Lipshitz continuity of the resolvents Ĝ(z; t) w.r.t to t, we also

find that Ω holds uniformly on t with high probability.
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Applying Proposition IV.25 to Equation (4.151) conditioning on Ω, we claim

∑
i,j

E

[
Vij

(
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)
eP
∣∣∣Ω]

=
3∑
l=1

cosl t
∑
i,j

κ
Vij
l+1

l!
E

[(
∂

∂Mij

)l((
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)
eP

)∣∣∣Ω]

+O(N−
1
2

+ε)

(4.167)

where κ
Vij
l denotes the l-th cumulant of Vij. Here, it is justified to replace the condi-

tional cumulants by κ
Vij
l , since Ω is a high probability event.

To prove the claim, we begin by controlling the remainder term εp in (4.152). On

Ω, Gij, Ĝij and (G2)ij are O(1), and

N−
1
2

∑
p,q

ĜpiĜjq = N−
1
2

(∑
p

Ĝpi

)(∑
q

Ĝqj

)
= O(N−

1
2

+ε).

Thus, ∂
∂Mij

P = O(1) on Ω. From the resolvent identity and the definition of event

Ω, we find ‖G(z; vVij)−G(z;Vij)‖ = O(N−
1
2

+ε) for 0 ≤ v ≤ 1. Thus on Ω,

∂
∂Mij

P (t; vVij) = O(1) for 0 ≤ v ≤ 1. Furthermore, we notice that

∂

∂Mij

(G2)ij =
∂

∂Mij

∑
k

GkiGjk = −βij
(
2Gij(G

2)ij +Gii(G
2)jj +Gjj(G

2)ii
)
,

(4.168)

and

∂

∂Mij

∑
p

Ĝpi = −βij

(
Ĝji

∑
p

Ĝpi + Ĝii

∑
p

Ĝpj

)
. (4.169)

Thus we can obtain similar estimates for higher derivatives of P . Since V 5
ij =

O(N−
5
2

+5ε) on Ω5, we find that

|Vij|5

1 + max
1≤j≤5

 1∫
0

∣∣∣∣∣
(

∂

∂Mij

)5

P

∣∣∣∣∣ dv


5
j

 ≤ CN−
5
2

+Cε (4.170)
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on Ω. That is, ε3 ≤ CN−
5
2

+Cε, and after summing over i, j, the claim (4.167) is

proved.

We next consider the term in (4.151) containing V G. Noting that the cumulants

of order higher than 2 vanish for Gaussian random variables, it reduces to

∑
i,j

E

[
V G
ij

(
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)
eP
∣∣∣Ω]

=(sin t)
∑
i,j

κ
V Gij
2 E

[
∂

∂Mij

((
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)
eP

)∣∣∣Ω]+O(N−
1
2

+ε),

(4.171)

where κ
V Gij
2 denotes the second cumulant of V G

ij . We now put (4.167) and (4.171) into

(4.151) conditioning on Ω. This yields

d

dt
E
[
eP (t)

∣∣Ω] = (sin t)
3∑
l=1

(cosl t)Il − (cos t sin t)IG1 +O(N−
1
2

+ε), (4.172)

where we define

Il =
∑
i,j

κ
Vij
l+1

l!
E

[(
∂

∂Mij

)l((
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)
eP

)∣∣∣Ω]
(4.173)

and

IG1 =
∑
i,j

κ
V Gij
2 E

[
∂

∂Mij

((
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)
eP

)∣∣∣Ω] .
(4.174)

In the following, we will evaluate Il for l = 1, 2, 3 separately. We may omit the

conditioning on Ω for the ease of notation.
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4.5.2.1 Estimate for I1 − IG1

Since κ
V Gij
2 = κ

Vij
2 = 1

N
for i 6= j, we only need to consider the contribution from

the diagonal entries to I1 − IG1 . By the definition of I1 and IG1 ,

I1−IG1 =
∑
i

(κVii2 −κ
V Gii
2 )E

[
∂

∂Mii

((
t1<(G2)ii + t2=(G2)ii +

t3√
N

∑
p,q

ĜpiĜiq

)
eP

)]
.

(4.175)

From (4.169), we find that

t3√
N

∂

∂Mii

∑
p,q

ĜpiĜiq = O(N−
1
2

+ε).

Similarly, it can be checked that all terms in the right-hand side of (4.175) involving

Ĝ are O(N−
1
2

+ε). Collecting the terms of order 1 only, we obtain that

I1 − IG1 =
1

N

∑
i

(w2 − 2)E
[(

2t1<
(
(G2)iiGii

)
+ 2t2=

(
(G2)iiGii

)
+ (t1<(G2)ii + t2=(G2)ii)

2
)
eP
]

+O(N−
1
2

+ε).

(4.176)

Using the estimate |Gij − δijs1|, |(G2)ij − δijs′1| ≤ N−
1
2

+ε on Ω4, we conclude that

I1−IG1 = (w2−2)
(
2t1<(s′1s1) + 2t2=(s′1s1) + (t1<(s′1) + t2=(s′1))2

)
E
[
eP
]
+O(N−

1
2

+ε).

(4.177)

4.5.2.2 Estimate for I2

We decompose I2 into

I2 =
∑
i,j

W3

2N
3
2

E

[(
∂

∂Mij

)2
((

t1<(G2)ij + t2=(G2)ij +
t3√
N

∑
p,q

ĜpiĜjq

)
eP

)]

:= I2,0 + 2I1,1 + I0,2,

(4.178)
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where

Ir,2−r :=
∑
i,j

W3

2N
3
2

E
[(

∂

∂Mij

)r(
t1<(G2)ij + t2=(G2)ij +

t3√
N

∑
p,q

ĜpiĜjq

)

·
(

∂

∂Mij

)2−r

eP
]
.

(4.179)

We first consider the case i 6= j in the summand of Ir,2−r for r = 0, 1, 2. Recall

that all terms of O(N−
1
2

+ε) are negligible in the sense that they can be absorbed into

the error term in the right-hand side of (4.172).

• For I2,0, we note that the terms arising from the derivatives of the G2 are

negligible, which can be checked by following the argument in the proof of

Theorem 3.3 in [83], especially the estimate of T3 in (3.53) of [83]. For example,

one of such terms is bounded by

∣∣∣∣∣N− 3
2

∑
i,j

W3

2
E
[
t1<(GiiGjj(G

2)ij)e
P
]∣∣∣∣∣ ≤ C

η4
√
N
. (4.180)

To prove it, we consider a vector u = (G11, G22, . . . , GNN) and proceed as

∣∣∣∣∣∑
i,j

GiiGjj(G
2)ij

∣∣∣∣∣ =
∣∣〈u, G2u〉

∣∣ ≤ ‖G2‖‖u‖2 ≤ N‖G2‖‖G‖2 ≤ N

η4
.

On the other hand,

(
∂

∂Mij

)2

ĜpiĜjq = 6(ĜpiĜ
2
jiĜjq + ĜpjĜiiĜjiĜjq + ĜpiĜjiĜjjĜiq)

+ ĜiiĜjj(4ĜpiĜjq + 2ĜpjĜiq).

(4.181)

From the estimate |Ĝij − δijs2| ≤ N−
1
2

+ε on Ω3 the concentration of Ĝee on Ω2,
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we then claim that

I2,0 =
W3t3
2N2

∑
i,j

E

[
6ĜiiĜjj(

∑
p

Ĝpi)(
∑
q

Ĝqj)e
P

]
+O(N−

1
2

+ε)

=3W3t3s
2
2 E
[
Ĝ2

eee
P
]

+O(N−
1
2

+ε) = 3W3t3s
4
2 E[eP ] +O(N−

1
2

+ε).

(4.182)

All the other terms in I2,0 arising from
(

∂
∂Mij

)2∑
p,q ĜpiĜjq are negligible. One

of such terms is bounded by

∣∣∣∣∣W3t3
2N2

∑
i,j

E

[
(
∑
p

Ĝpj)ĜiiĜji(
∑
q

Ĝjq)e
P

]∣∣∣∣∣
≤ 2|W3||t3|

(Ĵ − 2)N
5
2
−3ε

∑
i,j

E
[
|eP |

]
= O(N−

1
2

+3ε)

(4.183)

where we use the definitions of Ω1, Ω2 and Ω3.

• For I1,1, the estimates for the negligible terms can be done by using the argument

similar to (4.183) and (4.180). The remaining O(1)-terms are

W3t3
N2

∑
i,j

E
[∑

p,q

ĜpiĜjq

(
t1<

(
Gii(G

2)jj +Gjj(G
2)ii
)

+ t2=
(
Gii(G

2)jj +Gjj(G
2)ii
) )
eP
]
.

Using the definitions of Ω2 and Ω4, we write

I1,1 = 2W3t3 (t1<(s1s
′
1) + t2=(s1s

′
1))E

[
Ĝ2

eee
P
]

+O(N−
1
2

+ε)

= 2W3t3 (t1<(s1s
′
1) + t2=(s1s

′
1)) s2

2 E
[
eP
]

+O(N−
1
2

+ε).

(4.184)

• For I0,2, from the same analysis as for I1,1,

I0,2 = 2W3t3 (t1<(s1s
′
1) + t2=(s1s

′
1)) s2

2 E
[
eP
]

+O(N−
1
2

+ε). (4.185)
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Again, the estimate can be done in a similar manner.

For the case i = j, since there are only N terms in the summation in I2, all terms

are negligible due to the priori bounds on ‖G‖ and
∑

p Ĝpi.

Collecting the terms in (4.182), (4.184), and (4.185), we get

∑
i,j

κ
Vij
3

2!
E

[(
∂

∂Mij

)2
((

t1<(G2)ij + t2=(G2)ij +
t3√
N

∑
p,q

ĜpiĜjq

)
eP

)]

=W3

[
3t3s

4
2 + 6t1t3<(s1s

′
1)(s2)2 + 6t2t3=(s1s

′
1)(s2)2

]
E
[
eP
]

+O(N−
1
2

+ε).

(4.186)

4.5.2.3 Estimate for I3

Note that any term in I3 involving Ĝ is negligible due to the extra N−
1
2 factor.

Estimating as in the previous subsection, we obtain that

I3 =
∑ κ

Vij
4

3!
E

[(
∂

∂Mij

)3
((

t1<(G2)ij + t2=(G2)ij +
t3√
N

∑
p,q

ĜpiĜjq

)
eP

)]

=− 4(W4 − 3)

[
t1<(s3

1s
′
1) + t2=(s3

1s
′
1) + (t1<(s1s

′
1) + t2=(s1s

′
1))

2

]
E
[
eP
]

+O(N−
1
2

+ε)

(4.187)

We remark that O(1)-terms in I3 contribute only to the corrections of linear statistics.

4.5.2.4 Proof of Theorem IV.8 for general case

Let

P̃ (t) =P (t)− (W2 − 2)(cos t)2

(
t1<(s′1s1) + t2=(s′1s1) +

1

2
(t1<(s′1) + t2=(s′1))

2

)
+W3(cos t)3

(
t3s

4
2 + 2t1t3<(s1s

′
1)s2

2 + 2t2t3=(s1s
′
1)s2

2

)
− (W4 − 3)(cos t)4

(
t1<(s3

1s
′
1) + t2=(s3

1s
′
1) + (t1<(s1s

′
1) + t2=(s1s

′
1))2
)
.

(4.188)
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Then, substituting (4.177), (4.186), and (4.187) into (4.167), we find that

d

dt
E[eP̃ |Ω] = O(N−

1
2

+ε), (4.189)

which implies that

E[eP̃ (0)|Ω] = E[eP̃ (π
2

)|Ω] +O(N−
1
2

+ε). (4.190)

Thus,

lim
N→∞

E
[
eP (0)

]
= lim

N→∞

(
E
[
eP (0)|Ω

]
P(Ω) + E

[
eP (0)|Ωc

]
P(Ωc)

)
=eP (0)−P̃ (0) lim

N→∞
E[eP̃ (0)|Ω] = eP (0)−P̃ (0) lim

N→∞
E[eP (π

2
)].

(4.191)

Here we use the fact that Ω holds with high probability and P̃ (π
2
) = P (π

2
). We can

now conclude that (<ξN(z),=ξN(z), nN) converges to a multivariate Gaussian vector

in distribution as N →∞. By direct calculation, we also find that

ξN(z)

nN

⇒ N

 b(z)

−W3s
4
2

 ,

 V (z1) −2W3s1s
′
1s

2
2

−2W3s1s
′
1s

2
2

2
J2(J2−1)


 (4.192)

with b(z) and V (z) are defined in Lemma IV.20. Now, using (4.145), we arrive at

ξN(z)

χN

⇒ N

 b(z)

W3

J2 (1− 1
J2 )

 ,

 V (z1) 2W3s1s
′
1(1− 1

J2 )

2W3s1s
′
1(1− 1

J2 ) 2(1− 1
J2 )


 .

(4.193)

Hence, the asymptotic Gaussianity of (N (2)
N (ϕ), χN) follows. For (4.36) and (4.37), the

mean and the variance of N (2)[ϕ] is given in Theorem IV.6. The limiting covariance

is given by

−2W3(1− 1

J2
)

∮
Γ

ϕ(z)s(z)s′(z)
dz

2πi
= 2W3(1− 1

J2
)τ1(ϕ). (4.194)
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where we use the change of variables z 7→ s mapping C \ [−2, 2] to the disk |s| < 1

with s + 1
s

= −z and (4.16) in [13]. This completes the proof of Theorem IV.8 for

general case.

4.6 Matching

In the transitional regime, we took 2β = 1
J

+ B√
N

. The ferromagnetic regime

and the paramagnetic regime correspond to the limiting cases 2β > J and 2β < J ,

respectively. In this section, we will consider formal limits B → ±∞ of the formula

given in the main result, Theorem IV.5, and check the consistency with the results

for ferromagnetic and paramagnetic regimes obtained in [13].

Theorem IV.5 states that the free energy FN is close to the random variable

F tran
N :=

1

4J2
+

B

2J
√
N

+
logN

4N
+
B2J2

4N
+

1

N
G1 +

1

N
Q(G2) (4.195)

in an appropriate sense. Here, (G1,G2) is a Gaussian vector independent of B. The

function Q(x) is given by (4.19). In ferromagnetic and paramagnetic regimes, [13]

shows that the free energy is close to

F ferro
N := β

(
J +

1

J

)
− 1

2
log(2βJ)− 1

4J2
− 1

2
+
β − 1

2J√
N
N (f ′2, α

′
2) (4.196)

and

Fpara
N := β2 +

1

N
N (f1, α1), (4.197)

respectively, where N (f, α) denotes a Gaussian distribution of mean f and variance

α. The parameters for the Gaussians are (see [13, (4)])

f ′2 = W3(J−2 − J−4),

α′2 = 2(1− J−2)

(4.198)
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and (see (1.11) and (1.12) of [13]; we set J ′ = J)

f1 =
1

4
log(1− 4β2) + β2(w2 − 2) + 2β4(W4 − 3)− 1

2
log(1− 2βJ),

α1 = −1

2
log(1− 4β2) + β2(w2 − 2) + 2β4(W4 − 3).

(4.199)

The function Q(x) in (4.195) is given by

Q(x) =
s(x)

2(s(x)− x)
− s(x)2

4(J2 − 1)
+

log(s(x)− x)

2
+ log I

(
(s(x)− x)2

J2 − 1

)
(4.200)

where (recall the formula (4.20))

s(x) =
x−B(J2 − 1) +

√
(x+B(J2 − 1))2 + 4(J2 − 1)

2
. (4.201)

From the formula, for x = O(1),

s(x) =


x+ 1

B
+O(B−2) as B → +∞,

−B(J2 − 1)− 1
B

+O(B−2) as B → −∞.

(4.202)

Note that since we set 2β = 1
J

+ B√
N

in the transitional regime, we regard B =

O(
√
N) when we take B → ±∞.

4.6.1 B → +∞

Using (4.202), we find that for x = O(1),

Q(x) =
Bx

2
+O(logB). (4.203)

Hence, since G1 does not depend on B, we see that as B = O(
√
N) with B > 0,

F tran
N =

1

4J2
+

B

2J
√
N

+
B2J2

4N
+

B

2N
G2 +O

(
logB

N

)
+O

(
logN

N

)
. (4.204)
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where O(f(B,N)) represents a random variable X such that the moments of X
f(B,N)

are all bounded by constants independent of B and N .

We compare the above formula with the ferromagnetic case (4.196). If we set

2β = 1
J

+ B√
N

, then

F ferro
N =

1

4J2
+

B

2J
√
N

+
B2J2

4N
+

B

2N
N (f ′2, α

′
2) +O(N−3/2). (4.205)

We note that (see (4.198) and (4.25)) the mean and variance are f ′2 = E[G2] and

α′2 = Var[G2]. The above formula of F tran
N is thus consistent with F ferro

N .

4.6.2 B → −∞

Consider (4.200). Recall that I(α) =
√

4π
α

(1 + O(α−1)) as α → +∞ from (4.65).

Hence, if x = O(1) and s(x)→∞, then

Q(x) = − s(x)2

4(J2 − 1)
+ log

√
4π(J2 − 1)

s(x)
+

1

2
+O

(
1

s(x)

)
. (4.206)

Using (4.202), we find that for x = O(1),

Q(x) = −B
2(J2 − 1)

4
+ log

√
4π

|B|
+O(B−1). (4.207)

Hence, the two leading terms of Q(G2) do not depend on G2. Therefore, for B =

O(
√
N) with B < 0,

F tran
N =

1

4

(
1

J
+

B√
N

)2

+
1

2N
log

(
4π
√
N

|B|

)
+

1

N
G1 +O

(
1

NB

)
. (4.208)

On the other hand, in the paramagnetic regime, if we set 2β = 1
J

+ B√
N

with
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B < 0, then the parameters in (4.199) satisfy (see (4.23))

f1 =
1

4
log(1− J−2) +

1

4J2
(w2 − 2) +

1

8J4
(W4 − 3)− 1

2
log

(
|B|J√
N

)
+O(N−1/2)

= E[G1] +
1

2
log

(
4π
√
N

|B|

)
+O(N−1/2)

(4.209)

and

α1 = −1

2
log(1−J−2) +

w2 − 2

4J2
+
W4 − 3

8J4
+O(N−1/2) = Var[G1] +O(N−1/2) (4.210)

Thus, if we set 2β = 1
J

+ B√
N

with B < 0, then

Fpara
N =

1

4

(
1

J
+

B√
N

)2

+
1

2N
log

(
4π
√
N

|B|

)
+

1

N
N (E[G1],Var[G1]) +O(N−3/2).

(4.211)

This is consistent with the formula of F tran
N .
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CHAPTER V

Spherical spin glass model with external field

5.1 Introduction

We consider a spin glass model in which the spin variable σ is in SN−1, the sphere

of radius
√
N in RN . Let M = (Mij)1≤i,j≤N is a disorder matrix given by a random

symmetric matrix from the Gaussian orthogonal ensemble (GOE). For i ≤ j, the

variables Mij are independent Gaussian random variables with variance 1
N

(1 + δij).

By the symmetry matrix condition, Mij = Mji for i > j. The external field is given by

the vector g = (g1, g2, · · · , gN)T which we assume to be a standard Gaussian vector.

The analysis of this chapter also applies to the case when g = (1, · · · , 1)T but we do

not give any details on this case. The strength of the external field is denoted by a

non-negative scalar h.

The 2-spin spherical Sherrington-Kirkpatrick (SSK) model with external field is

defined by the Hamiltonian

H(σ) =
1

2

N∑
i,j=1

Mijσiσj + h
N∑
i=1

giσi =
1

2
σTMσ + hgTσ (5.1)

for σ in the sphere SN−1. The associated Gibbs measure is

p(σ) =
1

ZN
eβH(σ) for σ ∈ SN−1 (5.2)
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where β = 1/T denotes the inverse temperature. The partition function and the free

energy are

ZN =

∫
SN−1

eβH(σ)dωN(σ) and FN =
1

Nβ
logZN , (5.3)

where ωN is the normalized uniform measure on SN−1. Since the disorder variables

Mij are random, the Gibbs measure is a random measure and the free energy FN is a

random variable. We are interested in the fluctuations of the free energy when h→ 0

in a critical way.

The free energy for the Hamiltonian above when h = 0 converges to a deterministic

value and this was computed by Kosterlitz, Thouless and Jones in [78]. The Hamilto-

nian above is the 2-spin case of more general spherical spin glass models which include

interactions between multiple spin coordinates. The limit of the free energy for the

general spherical spin glass models which also includes the external field is given by

the Crisanti-Sommers formula [47]. This formula is the spherical version of the Parisi

formula [103] for the spins in hypercubes. The Parisi formula and Crisanti-formula

are proved rigorously by Talagrand in [113, 112]. The result of Kosterlitz, Thouless

and Jones shows that when h = 0, there are two phases: the spin glass phase when

T < 1 and the paramagnetic phase when T > 1. On the other hand, they argued that

when h > 0, assuming that the external field is uniform, there is no phase transition.

The next order term of the free energy depends on the disorders and hence it

describes the fluctuations of the free energy. For h = 0 and T > 1, the fluctuation

term is of order N−1 and has the Gaussian distribution. This is proved for both

hypercube case [1, 60, 42] and the spherical case [12]. For h = 0 and T < 1, for the

Hamiltonian above, the fluctuation term is of order N−2/3 and has the GOE Tracy-

Widom distribution [12]. On the other hand, when h > 0, the fluctuation term is

of order N−1/2 and has the Gaussian distribution for all temperature in [37]. This

paper also obtained similar results for general spherical spin glass models and also
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the hypercube models.

It is interesting to consider the case when h → 0 scaled with N . When T = 0, a

large deviation result for the free energy was studied in the scaling h = O(N−1/6) in

[61]. This computation was proved rigorously in [50]. The paper [61] also considered

the number of local minima and maxima of the Hamiltonian when h = O(N−1/6) and

also h = O(N−1/2).

The purpose of this chapter is to study the case h → 0 systematically up to

the fluctuation term for the free energy. Our computation is based on a single inte-

gral representation of the partition function. The integrand of this integral contains

random terms, the disorder variables and the external field. This formula was first

observed by Kosterlitz, Thouless and Jones [78] and was used to evaluate the limiting

free energy. We adapt their analysis to compute the next order term. This is achieved

by utilizing the recent results of random matrix theory. The case when h = 0 was

obtained in [12] and here we extend it to the cases when h > 0 and h→ 0.

The computations in this chapter is not carried out in full rigor. Most of our com-

putataions involve an error term bounded with high probability and hence keeping

track of them in detail and full rigor is cumbersome. Instead, we focus on discover-

ing the limiting law fluctuations with a detailed and convincing computations. We

expect that the computations can be proved rigorously, where extra estimations of

eigenvalues of GOE may be required.

The method we use provides a unifying approach for the 2-spin SSK model with

external field. Unfortunately this method is restricted only to the 2-spin case since

we use a Gaussian integral to obtain a single integral representation for the partition

function.
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5.2 Single integral representations

The partition function is an N -fold integral over a sphere. Using the Laplace

transform and Gaussian integrations, Kosterlitz, Thouless and Jones showed in [78]

that this integral can be expressed as a single integral. We state this result and also

include its derivation here.

The following computation applies to an arbitrary fixed symmetric matrix M

and a vector g. Let λ1 ≥ · · · ≥ λN be the eigenvalues of the matrix M and let

ui be corresponding unit eigenvectors. The sign ambiguity of ui does not affect the

computations that follow. Let Λ = diag(λ1, λ2, · · · , λN) be a diagonal matrix and let

O = (u1, · · · ,uN) be an orthogonal matrix so that M = OΛOT . Let SN−1 be the

sphere of radius 1 in RN and let dΩN−1 be the surface area element on SN−1. Then,

using the changes of variables 1√
N
OTσ = x,

ZN =
1

|SN−1|

∫
SN−1

e
βN
2

∑N
i=1 λix

2
i+β
√
Nh

∑N
i=1 nixidΩN−1(x) (5.4)

where ni = (OTg)i = uTi g. Note that if g is a standard Gaussian random vector,

then (n1, · · · , nN) is also a standard Gaussian random vector. If, in addition, M is a

GOE matrix, then ni are independent of the eigenvalues. We may write

ZN =
1

|SN−1|
I

(
βN

2
, h
√

2β

)
where I(t, s) =

∫
SN−1

et
∑N
i=1 λix

2
i+s
√
t
∑N
i=1 nixidΩN−1(x).

(5.5)

We take the Laplace transform of J(t) = tN/2−1I(t, s). We find, making a simple

change of variables t = r2 and using Gaussian integrals, that the Laplace transform
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is equal to

L(z) =

∞∫
0

e−ztJ(t)dt = 2

∫
RN

e−
∑N
i=1(z−λi)y2

i+s
∑N
i=1 niyidNy = 2

N∏
i=1

e
s2n2

i
4(z−λi)

√
π

z − λi
(5.6)

for z satisfying z > λ1. We obtain a single integral formula of the partition function

by taking the inverse Laplace transform.

Using |SN−1| = 2πN/2

Γ(N/2)
, we arrive at the formula

ZN = CN

γ+i∞∫
γ−i∞

e
N
2
G(z)dz where CN =

Γ(N/2)

2πi(Nβ/2)N/2−1
(5.7)

and

G(z) = βz − 1

N

N∑
i=1

log(z − λi) +
h2β

N

N∑
i=1

n2
i

z − λi
with ni = (OTg)i = uTi g. (5.8)

Here, the integration is over the vertical line γ + iR where γ is an arbitrary constant

satisfying γ > λ1. Note that there is no ambiguity due to the choice of the sign of

the eigenvector since the formula depends only on n2
i .

In later sections, we evaluate the above integral asymptotically using the method

of steepest-descent. Consider

G ′(z) = β − 1

N

N∑
i=1

1

z − λi
− h2β

N

N∑
i=1

n2
i

(z − λi)2
. (5.9)

As a function of real variable z, it is an increasing function taking values from −∞ to

β as z moves from λ1 to ∞. Hence, there is a unique real number z > λ1 satisfying

G ′(z) = 0. We set γ in (5.7) to be this critical point. Using the fact that

CN =

√
Nβ

2i
√
π(βe)N/2

(1 +O(N−1)), (5.10)
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the free energy can be written as

FN =
1

2β
(G(γ)−1−log β)+

1

Nβ
log

 γ+i∞∫
γ−i∞

e
N
2

(G(z)−G(γ))dz

+
1

Nβ
log

(√
Nβ

2i
√
π

)
+O(N−2)

(5.11)

where O(N−2) is a constant which does not depend on M and g. The main task of

later sections is to find γ and evaluate G(γ).

5.3 Results from random matrices

In this section, we recall the random matrix results introduced in Chapter III and

record calculation for later purpose. Some extra random matrices results required is

also introduced here.

5.3.1 Notations

For two N -dependent random variables A := AN and B := BN , the notation

A = O (B) (5.12)

means that A ≤ B with high probability, i.e., for every ε,D > 0, there exists N0 > 0

such that for all N ≥ N0,

P(A ≥ BN ε) < N−D. (5.13)

The notation ' means an asymptotic expansion up to the terms indicated on the

right-hand side and the notation � denotes two sides are of the same order.

The convergence in distribution of a sequence of random variables XN to a random

variable X with respect to the disorder variables is denoted by XN ⇒ X. We also

use the notations
D
= and

D' to denote an equality and an asymptotic expansion in

distribution with respect to the disorder variables and the external field, respectively.
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Similarly, the notations
D
= and

D' denote an equality and an asymptotic expansion in

distribution with respect to the Gibbs measure, respectively.

5.3.2 Semicircle law

By Theorem III.2, the empirical distribution of eigenvalues of M converges to the

semicircle law [86]: for every continuous bounded function f(x),

1

N

N∑
i=1

f(λi)→
∫
f(x)dσscl(x) where dσscl(x) =

√
4− x2

2π
1x∈[−2,2]dx (5.14)

with probability 1 as N →∞.

We use the following functions later:

s0(z) =

∫
log(z − x)dσscl(x) and sk(z) =

∫
dσscl(x)

(z − x)k
for k = 1, 2, · · · , (5.15)

They are be evaluated explicitly as

s0(z) =
1

4
z(z −

√
z2 − 4) + log(z +

√
z2 − 4)− log 2− 1

2
,

s1(z) =
z −
√
z2 − 4

2
, s2(z) =

z −
√
z2 − 4

2
√
z2 − 4

, s3(z) =
1

(z2 − 4)3/2

(5.16)

for z not in the real interval [−2, 2].

5.3.3 Rigidity

Under the notation introduced in (5.12), the Theorem III.4 about eigenvalue rigid-

ity can be written as

|λk − λ̂k| ≤ (min{k,N + 1− k})−1/3O
(
N−2/3

)
(5.17)

uniformly for k = 1, 2, · · · , N , where k̂ := min{k,N + 1− k},
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5.3.4 Edge behavior

Recall the Theorem III.5, the the rescaled eigenvalues

ai = N2/3(λi − 2). (5.18)

converges to the GOE Airy kernel point process {αi}∞i=1 [116, 109]. The rightmost

point α1 of the GOE Airy kernel process has the GOE Tracy-Widom distribution

TWGOE,

a1 ⇒ α1
D
= TWGOE . (5.19)

The GOE Airy point process satisfies the asymptotic property that

αk ' −
(

3πk

2

)2/3

as k →∞. (5.20)

This asymptotic is due to the fact that the semicircle law is asymptotic to
√

2−x
π

dx as

x→ 2. The above formula and the rigidity imply that

ak � −k2/3 as k,N →∞ satisfying k ≤ N (5.21)

with high probability.

5.3.5 Central limit theorem of linear statistics

Theorem III.3 claims that

N∑
i=1

f(λi)−N
∫
f(x)dσscl(x) (5.22)
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converges to a Gaussian distribution without any scaling factor for continuous f(x).

We use the above result for f(x) = log(z − x) where real z > 2. Set (recall (5.16))

LN(z) :=
N∑
i=1

log(z − λi)−Ns0(z). (5.23)

In this case,

LN(z)⇒ N (M(z), V (z)) (5.24)

where (see Lemma A.1 in [12])

M(z) =
1

2
log

(
2
√
z2 − 4

z +
√
z2 − 4

)
, V (z) = 2 log

(
z +
√
z2 − 4

2
√
z2 − 4

)
. (5.25)

For later uses, we record that for 0 < β < 1,

M(β + β−1) =
1

2
log(1− β2), V (β + β−1) = −2 log(1− β2). (5.26)

In Subsubsection 5.4.1.2, we need to evaluate
∑N

i=1 log(z−λi) for z = 2+O(N−2/3).

Observe that

M(z) = O(log(z − 2)) and V (z) = O(log(z − 2)) as z → 2 (5.27)

and

s0(z) =
1

4
z(z−

√
z2 − 4)−1

2
+log

(
z +
√
z2 − 4

2

)
=

1

2
+(z−2)+O((z−2)3/2). (5.28)

Hence, a formal application (5.24) to this case implies that for z → 2 such that

|z − 2| ≥ N−d for some d > 0,

1

N

N∑
i=1

log (z − λi) = s0 (z)+O
(
N−1

)
=

1

2
+(z−2)+O

(
N−1

)
+O((z−2)3/2). (5.29)
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5.3.6 Special sums

For k = 1, 2, · · · , consider

1

N

N∑
i=2

1

(λ1 − λi)k
. (5.30)

Later we need an estimate for this quantity for k ≥ 2 and an asymptotic formula for

k = 1 as N →∞. The above quantity looks superficially close to the linear statistics

(5.22) with f(x) = 1
(λ1−x)k

with one term removed but the function f(x) is singular

at x = λ1. We note that if we replace f(x) by 1
(2−x)k

and use the semicircle law, we

obtain sk(2) which diverges for k ≥ 2. Hence, the result of the previous subsection

does not apply. However, using the asymptotic (5.21) of the scaled eigenvalues (5.18),

we find that

1

N

N∑
i=2

1

(λ1 − λi)k
= N2k/3−1

N∑
i=2

1

(a1 − ai)k
= O

(
N2k/3−1

)
for k ≥ 2. (5.31)

For k = 1, the sum of
∑N

i=2
1

a1−ai does not converge and hence (5.31) is not valid

in this case. However, we note that

2∫
−2

dσscl(x)

2− x
= s1(2) = 1. (5.32)

Indeed, it turned out that (5.30) with k = 1 converges to this value. For our purpose,

we also need the next fluctuation term. This was obtained recently in [80]. Landon

and Sosoe proved that

ΞN := N1/3

(
1

N

N∑
i=2

1

λ1 − λi
− 1

)
⇒ Ξ (5.33)

for a random variable Ξ as N →∞. The limiting random variable Ξ can be expressed
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in terms of the GOE Airy kernel point process as

Ξ = lim
n→∞

 n∑
i=2

1

α1 − αi
− 1

π

( 3πn
2 )

2/3∫
0

dx√
x

 (5.34)

where the limit exists almost surely. Landon and Sosoe used the result (5.33) to

describe the fluctuations of the overlap of two spins when h = 0 and T < 1. Their

analysis also uses an integral representation and a connection to random matrix theory

as in this chapter.

The idea behind the proof of (5.33) is the following. For a small δ > 0, let n be

the nearest integer of N δ. We write

ΞN =

 n∑
i=2

1

a1 − ai
−N1/3

2∫
λ̂n

dσscl(x)

2− x

+

 1

N2/3

N∑
i=n+1

1

λ1 − λi
−N1/3

λ̂n∫
−2

dσscl(x)

2− x

 .
(5.35)

By the rigidity of the eigenvalues, λ1− λi = 2− λ̂i +O
(
N−2/3

)
for all i ≥ 2. Hence,

1

N2/3

N∑
i=n+1

1

λ1 − λi
=

1

N2/3

N∑
i=n+1

1

2− λ̂i
+O

(
1

N4/3

N∑
i=n+1

1

(2− λ̂i)2

)
. (5.36)

From the definition, it is easy to check that 2−λ̂n � n2/3

N2/3 for all n = 1, · · · , N . Hence,

the error term satisfies

1

N4/3

N∑
i=n+1

1

(2− λ̂i)2
≤ C

∞∑
i=n+1

1

i4/3
(5.37)

for some positive constant C, and hence it converges to zero as N → ∞. Replacing

the sum of 1

2−λ̂i
in (5.36) by an integral using the semicircle law yields an error of

the same order. Therefore, the second bracket term in (5.35) converges to zero with

high probability. It remains to show that the integral in the first bracket term can be
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replaced by the integral

1

π

( 3πn
2 )

2/3∫
0

dx√
x
. (5.38)

This follows easily by recalling that n = [N δ] and noting that

dσscl(x) =

√
4− x2

2π
'
√

2− x
π

(5.39)

as x→ 2 and

N2/3
(

2− λ̂n
)
'
(

3πn

2

)2/3

(5.40)

as N →∞. This computation implies the result (5.33).

A consequence of (5.33) is that

1

N

N∑
i=2

1

λ1 − λi
= 1 +O

(
N−1/3

)
, (5.41)

a fact which we use several times in this chapter.

5.3.7 Weighted sums of independent random variables

Let ni denotes i.i.d standard normal random variable. In our setting, we have

ni = (OTg)i. Define

SN(z; k) :=
1√
N

N∑
i=1

n2
i − 1

(z − λ̂i)k
(5.42)

for k ≥ 1. By the central limit theorem and the definition of λ̂i,

SN(z; k)⇒ N (0, 2s2k(z)) (5.43)

as N →∞ for z > 2.
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In later sections, we need the asymptotic behavior of

1

N

N∑
i=1

n2
i

(z − λi)k
=

1

N

N∑
i=1

1

(z − λi)k
+

1

N

N∑
i=1

n2
i − 1

(z − λi)k
. (5.44)

Recall that ni’s and λi’s are independent of each other. Applying the central limit

theorem (5.22) for linear statistics for the first sum and using the rigidity of the

eigenvalues for the second sum, we find that

1

N

N∑
i=1

n2
i

(z − λi)k
= sk(z) +

SN(z; k)√
N

+O
(
N−1

)
(5.45)

for z > 2 and k ≥ 1.

5.3.8 Another special sums

We also need an estimate that

1

N

N∑
i=2

n2
i

(λ1 − λi)k
= N2k/3−1

N∑
i=1

n2
i

(a1 − ai)k
= O

(
N2k/3−1

)
. (5.46)

for k ≥ 2. This follows from the fact that the sum converges due to (5.21).

For k = 1,

N1/3

(
1

N

N∑
i=2

n2
i

λ1 − λi
− 1

)
⇒ lim

n→∞

 n∑
i=2

ν2
i

α1 − αi
− 1

π

( 3πn
2 )

2/3∫
0

dx√
x

 (5.47)

where νi are i.i.d Gaussian random variables with mean 0 and variance 1 independent

of the GOE Airy kernel point process αi. This follows from (5.33) and the fact that

∞∑
i=2

ν2
i − 1

α1 − αi
(5.48)

converges due to (5.20) and Kolmogorov’s three series theorem [51].
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5.4 Fluctuations of the free energy

We evaluate the fluctuations of the free energy when the external field strength

h ≥ 0 is fixed. We use the integral formula (5.11) as outlined in Subsection 5.2. For

the case when h = 0, this computation was done in [78] for the leading deterministic

term and in [12] for the fluctuation term using the same integral formula. For h > 0,

the fluctuations for the SK model were computed in [37] using a different method.

In this section, we review the computation of [12] for the case when h = 0 and also

give a new computation for the case when h > 0 using the integral formula. Our

result when h > 0 seems to be in agreement with the result of [37] assuming that

their result is also valid for the SSK model.

The integral formula (5.11) for the free energy involves the function (see (5.8))

G(z) = βz − 1

N

N∑
i=1

log(z − λi) +
h2β

N

N∑
i=1

n2
i

z − λi
where ni = (OTg)i. (5.49)

The point γ is the critical point of G(z) satisfying γ > λ1. The formula (5.11) also

involves an integral of e
N
2

(G(z)−G(γ)). Since G(z)−G(γ) = G(z)−G(γ)−G ′(γ)(z − γ),

the exponent can be written as

N(G(z)− G(γ)) = −
N∑
i=1

[
log(1 +

z − γ
γ − λi

)− z − γ
γ − λi

]
+ h2β

N∑
i=1

n2
i (z − γ)2

(z − λi)(γ − λi)2
.

(5.50)

This expression will also be used in the next two sections.

5.4.1 No external field: h = 0

5.4.1.1 High temperature regime: T > 1

When h = 0 and T > 1, we may write

G(z) = βz − s0(z)− LN(z)

N
(5.51)
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using the notation (5.23). From (5.24), we see that LN(z) = O (1). Hence, a per-

turbation argument implies that γ = γ0 + O (N−1) where γ0 is the critical point of

G0(z) = βz − s0(z). Solving the critical point equation G ′0(z) = 0 explicitly using the

formula (5.16) of s0(z), we obtain

γ0 := β + β−1. (5.52)

This solution exists only when T > 1 since we need a solution such that γ0 > 2 and

s′0(2) = s1(2) = 1. We can check from the perturbation argument that

G(γ) = G(γ0)− LN(γ0)

N
+O

(
N−2

)
=
β2

2
+ 1 + log β − LN(γ0)

N
+O

(
N−2

)
. (5.53)

The random variable LN(γ0) converges to a Gaussian distribution, whose mean and

the variance are given by (5.26).

In order to compute the integral term in (5.11), we use (5.50) with h = 0. Setting

z − γ = uN−1/2 with u = O(1) and using a Taylor approximation,

N(G(z)− G(γ)) =
1

2N

[
N∑
i=1

1

(γ − λi)2

]
u2 +O

(
N−1/2

)
=
s2(γ0)

2
u2 +O

(
N−1/2

)
(5.54)

where we used the semicircle law. Hence,

γ+i∞∫
γ−i∞

e
N
2

(G(z)−G(γ))dz = i

√
4π

Ns2(γ0)

(
1 +O

(
N−1/2

))
. (5.55)

It is direct to compute that s2(γ0) = β2/(1− β2).

In conclusion, from (5.11),

FN(T, 0) =
β

4
+

1

2βN

[
log(1− β2)− LN(γ0)

]
+O

(
N−3/2

)
. (5.56)
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Hence, the fluctuations of the free energy are of order N−1 and are governed by

LN(γ0). Using the fact that LN(γ0) converges to a Gaussian distribution (see (5.24)

and (5.26)) as N →∞, we find that

FN(T, 0)
D' 1

4T
+

T

2N
N (−α, 4α) for T > 1 (5.57)

where α = −1
2

log(1− T−2).

5.4.1.2 Low temperature regime: T < 1

When h = 0 and T < 1, it turned out that the critical point γ is λ1 + O (N−1).

We set γ = λ1 + sN−1 where s is to be determined. Separating out the term with

i = 1 and using (5.41), we find that

0 = G ′(γ) = β − 1

N

N∑
i=1

1

γ − λi
= β − 1− 1

s
+O

(
N−1/3

)
. (5.58)

Thus s = 1
β−1

+O
(
N−1/3

)
which is consistent with our assumption that s = O (1).

To evaluate G(γ), we use the result (5.29) for the sum of log functions and obtain

G(γ) = 2β − 1

2
+ (β − 1)(λ1 − 2) +O

(
N−1

)
. (5.59)

On the other hand, using (5.50) with z = γ + uN−1 for u = O(1),

N(G(z)− G(γ)) = − log
(

1 +
u

s

)
+
u

s
+O

(
N−1/3

)
, (5.60)

where only the term with i = 1 makes the main contribution. Thus, we obtain an

estimate
γ+i∞∫
γ−i∞

e
N
2

(G(z)−G(γ))dz � N−1. (5.61)
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Hence, from (5.11), when T < 1,

FN(T, 0) = 1− 3

4β
− log β

2β
+

1

2N2/3

(
1− 1

β

)
a1 +O

(
N−1

)
(5.62)

where a1 = N2/3(λ1 − 2) as in (5.18). The scaled largest eigenvalue a1 converges to

the GOE Tracy-Widom distribution (see (5.19)). Hence, the fluctuations of the free

energy are of order N−2/3 and are governed by the largest eigenvalue. This is to be

contrasted to the high temperature case in which the fluctuations are governed by all

eigenvalues. In conclusion, when h = 0,

FN(T, 0)
D' 1− 3T

4
+
T log T

2
+

1− T
2N2/3

TWGOE for T < 1. (5.63)

5.4.2 Positive external field: h > 0

When h > 0, we use (5.24) and (5.45) to write G(z) as

G(z) = βz − s0(z) + h2β

[
s1(z) +

1√
N
SN(z; 1)

]
+O

(
N−1

)
(5.64)

where SN(z; k) is defined in (5.42) which converges in distribution to N (0, 2s2k(z)).

By a perturbation argument, the critical point is given by

γ = γ0 +
γ1√
N

+O
(
N−1

)
. (5.65)

where γ0 is the critical point of G0(z) = βz − s0(z) + h2βs1(z). It is easy to check

that there is γ0 > 2 satisfying the equation

β − s1(γ0)− h2βs2(γ0) = 0. (5.66)
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We do not need the explicit formula of γ1 in this section but we record it here since

the formula is used in a later section;

γ1 =
h2βSN(γ0; 2)

s2(γ0) + 2h2βs3(γ0)
(5.67)

where we used the fact that d
dz
SN(z; 1) = −SN(z; 2).

A perturbation argument implies that

G(γ) = βγ0 − s0(γ0) + h2βs1(γ0) +
h2β√
N
SN(γ0; 1) +O

(
N−1

)
. (5.68)

The integral term in (5.11) can be evaluated in the same manner as in 5.4.1.1

using the fact that γ0 > 2. We do not need the exact formula; we only need an

estimate and obtain
γ+i∞∫
γ−i∞

e
N
2

(G(z)−G(γ))dz � N−1/2. (5.69)

In conclusion, for h > 0 and T > 0,

FN(T, h) =

[
γ0

2
− s0(γ0)

2β
+
h2s1(γ0)

2
− 1 + log β

2β

]
+
h2SN(γ0; 1)

2
√
N

+O
(
N−1 logN

)
(5.70)

where SN(z; k) is defined in (5.43). This implies that the fluctuations of the free

energy are of order N−1/2 and they are governed by the inner products ni of the

eigenvectors and the external field. By (5.43), SN(γ0; 1)⇒ N (0, 2s2(γ0)). Hence,

FN(T, h)
D' F (T, h) +

h2

2
√
N
N (0, 2s2(γ0)) for T > 0 and h > 0 (5.71)

where

F (T, h) =
γ0

2
− Ts0(γ0)

2
− T − T log T

2
+
h2s1(γ0)

2
(5.72)
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and γ0 > 2 denotes the unique solution of

1− Ts1(γ0)− h2s2(γ0) = 0. (5.73)

This result shows that for h > 0, there is no phase transition between the low and

the high temperature regimes, as indicated in [78].

The fluctuations of the free energy of SK model with h > 0 was computed in [37]

when g = 1 The approach of [37] can be extended to SSK models as well and implies

that
√
N (FN(T, h)− E[F (T, h)]) converges in distribution to the centered Gaussian

distribution as N →∞ with variance

h4β4(1− q0)4

2(1− β2(1− q0))
, (5.74)

where q0 solves the equation

β2q0 + h2β2 =
q0

(1− q0)2
. (5.75)

Our result (5.71) above is for the SSK model when g is a Gaussian vector. One can

also compute the case when g = 1 using the same method with some extra work.

In this case the variance of the limiting Gaussian distribution changes from h4

2
s2(γ0)

to h4

2
(s2(γ0) − (s1(γ0))2). It is not immediate clear that this formula is same as the

(5.74). However, we expect that these two formulas are equal. This was confirmed

by numerical evaluations for three different values of (T, h).

5.4.3 Comparison between h > 0 and h = 0 cases

In the previous two subsections, we considered three different cases: (a) h = 0

and T < 1, (b) h = 0 and T > 1, and (c) h > 0. The order of the fluctuations are

N−1, N−2/3, and N−1/2, respectively. The fluctuations are governed by all eigenvalues
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(via a linear statistic) for (a), the top eigenvalue for (b), and a combination of the

external field and the eigenvectors for (c). The limiting distributions are the Gaus-

sian distribution, the GOE Tracy-Widom distribution, and the Gaussian distribution,

respectively. Using the results obtained above, we now try to find the transitional

scaling of h → 0 by matching the order of the fluctuations when h > 0 and when

h = 0. We need to consider the high temperature case and the low temperature case

separately.

Consider the case when T > 1. When h > 0, the variance of the limiting Gaussian

distribution is h4

2
s2(γ0) where γ0 solves the equation 1 − Ts1(γ0) − h2s2(γ0) = 0. If

we set h = 0, the equation becomes 1− Ts1(γ0) = 0. Since T > 1, there is a solution

given by T + 1
T

. Hence, by a perturbation argument, γ0 = T + 1
T

+ O(h2) as h→ 0.

Therefore, the fluctuations of the free energy are of order
h2
√
s2(γ0)
√
N

= O( h2
√
N

). On the

other hand, when h = 0, the fluctuations are of order O(N−1) (see (5.57)). These

two terms, h2
√
N

and N−1 are of same order if h = O(N−1/4).

We now consider the case when T < 1. As before, we consider the limit as h→ 0

of the algebraic equation 1 − Ts1(γ0) − h2s2(γ0) = 0 which determines the variance

of the fluctuations when h > 0. In this case, we expect that γ0(h) → 2. From the

formulas (5.16), it is easy to see that, as z → 2,

s2(z) =
1

2
√
z − 2

+O(1) and s1(z) = 1 +O(
√
z − 2). (5.76)

Hence, the algebraic equation becomes

1− T − h2

2
√
γ0 − 2

+O(h2) +O(
√
γ0 − 2) = 0 (5.77)

and we find that

γ0(h) = 2 +
h4

4(1− T )2
+O(h6). (5.78)
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This implies that the fluctuations of the free energy are of order
h2
√
s2(γ0)
√
N

= O( h√
N

).

On the other hand, when h = 0, the fluctuations are of order O(N−2/3) (see (5.63)).

The terms h√
N

and N−2/3 are of same order if h = O(N−1/6).

Summarizing, a formal computation suggests that the transitional scalings are

h = O(N−1/4) for T < 1,

h = O(N−1/6) for T > 1.

(5.79)

In next two sections, we compute the fluctuations of the free energy in the above

transitional regimes.

5.5 Transition of the free energy in the high temperature

regime

5.5.1 Result

Assume that T > 1 and we set

h = HN−1/4 (5.80)

for fixed H > 0. In this case, using the notations (5.23) and (5.42) and results (5.24)

and (5.45),

G(z) = βz − s0(z)− LN(z)

N
+
H2β√
N

[
s1(z) +

SN(z; 1)√
N

]
+O

(
N−3/2

)
. (5.81)

Recall that the terms LN(z) and SN(z; 1) are O (1). Applying a perturbation argu-

ment to the function

G(z) = βz − s0(z) +
H2β√
N
s1(z) +

1

N

[
H2βSN(z; 1)− LN(z)

]
+O

(
N−3/2

)
, (5.82)
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we find, using the explicit formulas of s0(z) and s1(z), that

γ = γ0 +
γ1√
N

+O
(
N−1

)
with γ0 = β + β−1 and γ1 = H2β, (5.83)

and

G(γ) =
β2

2
+ 1 + log β +

H2β2

√
N

+
1

N

[
− H4β4

2(1− β2)
+H2βSN(γ0; 1)− LN(γ0)

]
+O

(
N−3/2

)
.

(5.84)

One can also check that the integral in the formula (5.11) can be evaluated by the

same manner as in the case of h = 0 and T > 1, and the formula (5.55) still holds.

From the above calculations, we find that for h > 0 and T > 1,

FN(T, h) =
β

4
+
H2β

2
√
N

+
1

2βN

[
log(1− β2)− H4β4

2(1− β2)
+H2βSN(γ0; 1)− LN(γ0)

]
+O

(
N−3/2

)
.

(5.85)

The random variables SN(γ0; 1) and LN(γ0) both converge to Gaussian distributions.

Since SN(γ0; 1) depends only on ni’s and LN(γ0) depends only on λi, these two random

variables are independent. Therefore,

FN(T, h)
D'
[

1

4T
+

H2

2T
√
N

]
+

T

2N
N (−α, 4α) for T > 1 and h = HN−1/4, (5.86)

where

α =
H4

2T 2(T 2 − 1)
− 1

2
log(1− T−2). (5.87)

5.5.2 Comparison with h = 0 and h > 0 cases

If we set H = 0 in (5.86), we recover the result (5.57) for the case when h = 0.
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We now consier the limit H → ∞. We formally set H = hN1/4 in (5.86) with h

fixed and N large. The formula (5.87) becomes

α =
h4N

2T 2(T 2 − 1)
+O(1). (5.88)

Hence, the right hand side of (5.86) becomes

1

4T
+
h2

2T
− h4

4T (T 2 − 1)
+

h2√
2N(T 2 − 1)

N (0, 1) (5.89)

up to terms of orders N−1 or N−1H−2. We compare this with the formal limit h→ 0

of the result obtained for the case when h > 0. The result (5.71) involves the solution

γ0 of the equation 1−Ts1(γ0)−h2s2(γ0) = 0. A perturbation argument implies that

γ0 =

(
T +

1

T

)
+
h2

T
+O(h4) (5.90)

since 1−Ts1(γ0) = 0 has a solution when T > 1. Hence, a direct computation shows

that (5.72) becomes, as h→ 0,

F (T, h) =
1

2T
+
h2

2T
− h4

4T (T 2 − 1)
+O(h6) (5.91)

and (5.71) becomes

F (T, h) +
h2√

2N(T 2 − 1)
N (0, 1) (5.92)

up to terms of orders h6 or h4N−1/2. This formula is same as (5.89).
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5.6 Transition of the free energy in the low temperature

regime

5.6.1 Result

Assume that T < 1 and we set

h = HN−1/6 (5.93)

for fixed H > 0. In this case, (5.8) becomes

G(z) = βz − 1

N

N∑
i=1

log(z − λi) +
H2β

N4/3

N∑
i=1

n2
i

z − λi
. (5.94)

Recall the notation (5.18) for the scaled eigenvalues, ai = N2/3(λi−2). We need to find

the critical point γ > λ1 satisfying G ′(γ) = 0. When h = 0, we had γ = λ1 +O (N−1).

In the transitional scaling h = HN−1/6, we use the ansatz

γ = λ1 + sN−2/3 (5.95)

with s = O (1) to be determined. Using (5.41), the critical point equation becomes

0 = β − 1−H2β
N∑
i=1

n2
i

(s+ a1 − ai)2
+O

(
N−1/3

)
. (5.96)

Note that since ai � i2/3 as i→∞ (see (5.21)), the series

N∑
i=1

n2
i

(s+ a1 − ai)k
(5.97)

converges with high probability as N → ∞ for k ≥ 2. Therefore, there is a solution

s > 0 of the equation (5.96).
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We now insert γ = λ1 + sN−2/3 into (5.94). By (5.29), the sum involving the log

function becomes

1

N

N∑
i=1

log(γ − λi) =
1

2
+N−2/3(a1 + s) +O

(
N−1

)
. (5.98)

The other sum is equal to

H2β

N2/3

N∑
i=1

n2
i

a1 + s− ai
=
H2β

N2/3

(
N1/3 + EN(s)

)
(5.99)

where

EN(s) := N1/3

[
1

N

N∑
i=1

n2
i

λ1 + sN−2/3 − λi
− 1

]
=

N∑
i=1

n2
i

s+ a1 − ai
−N1/3. (5.100)

This term is O (1) by (5.47). Using this notation, we obtain

G(γ) =

[
2β − 1

2
+
H2β

N1/3

]
+

1

N2/3

[
(β − 1)(a1 + s) +H2βEN(s)

]
+O

(
N−1

)
(5.101)

where s solves (5.96).

The formula for the free energy in (5.11) also involves an integral. Setting z−γ =

uN−5/6 with u = O(1) in (5.50), we have

N(G(z)− G(γ)) =
H2βu2

2

N∑
i=1

n2
i

(s+ a1 − ai)3
+O

(
N−1/3

)
, (5.102)

and hence
γ+i∞∫
γ−i∞

e
N
2

(G(z)−G(γ))dz � N−5/6. (5.103)

106



Therefore, we find that

FN =

[
1− 3

4β
− log β

2β
+

H2

2N1/3

]
+

(β − 1)(a1 + s) +H2βEN(s)

2βN2/3
+O

(
N−1 logN

)
(5.104)

where s solves the equation (5.96) and EN(s) is defined in (5.100). This implies that

the order of fluctuations is N−2/3, which is same as the h = 0 case. The fluctuations

are governed by all eigenvalues and ni’s. In conclusion,

FN(T, h) ' F (T, h) +
F̃(T, h)

N2/3
for h = HN−1/6 and T < 1 (5.105)

where the leading term is

F (T, h) = 1− 3T

4
+
T log T

2
+
h2

2
(5.106)

and the fluctuation term F̃(T, h) is given as follows. The equation (5.96) for s ap-

pearing in (5.104) may be replaced by the equation for ς given by

1− T = H2

∞∑
i=1

ν2
i

(ς + α1 − αi)2
for ς > 0 (5.107)

where αi are the GOE Airy kernel point process and νi are independent standard

Gaussian random variables. (Recall that ni = (OTg)i are independent standard

Gaussian random variables for i = 1, · · · , N .) The term EN(s) in (5.104) may be

replaced by (cf. (5.47))

E(ς) := lim
n→∞

 n∑
i=1

ν2
i

ς + α1 − αi
− 1

π

( 3πn
2 )

2/3∫
0

dx√
x

 . (5.108)

Hence, we have

F̃(β, h)
D
=

1

2
(1− T )(ς + α1) +

H2E(ς)

2
. (5.109)
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5.6.2 Comparison with the case when h = 0

We show that (5.105) agrees with (5.63) when H → 0. The leading term satisfies

F (T, h) = 1− 3T

4
+
T log T

2
+

H2

2N1/3
= F (T, 0) +O(

H2

N1/3
). (5.110)

For the fluctuation term, we first look for the solution ς of (5.107) as H → 0 of the

form

ς = yH with y > 0. (5.111)

In this case, the equation becomes 1− T =
ν2
1

y2 +O(H2) whose solution is given by

y =
|ν1|√
1− T

+O(H2). (5.112)

Inserting ς = yH into (5.108), we find that

E(ς) =
ν2

1

yH
+ lim

n→∞

 n∑
i=2

ν2
i

yH + α1 − αi
− 1

π

( 3πn
2 )

2/3∫
0

dx√
x

 = O
(

1

H

)
. (5.113)

Therefore,

F̃(T, h) =
1

2
(1− T )(ς + α1) +

H2E(ς)

2
=

1− T
2

α1 +O (H) . (5.114)

The term 1−T
2
α1 is exactly the fluctuation term F̃(β, 0) in (5.63).

5.6.3 Comparison with the case when h > 0

We show that the formal limit of (5.105) as H →∞ is consistent with the formal

limit of (5.71) as h→ 0.
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5.6.3.1 Formal limit of (5.71) as h→ 0

The formula involves γ0 > 2 which solves the equation

1− Ts1(γ0)− h2s2(γ0) = 0. (5.115)

If we set h = 0, there is no solution γ0 > 2 since T < 1. However as h → 0, γ0 is

given by (see (5.78))

γ0 = 2 +
h4

4(1− T )2
+O(h6). (5.116)

Hence, the leading term (5.72) becomes

F (T, h) = 1− 3T

4
+
T log T

2
+
h2

2
− h4

8(1− T )
+O(h6). (5.117)

The fluctuation term has the Gaussian distribution with mean zero and variance

h4s2(γ0)
2

= h2(T−1)
2

+ O(h4). Hence, the formal asymptotic of the case when h > 0 as

h→ 0 is given by

FN '
[
1− 3T

4
+
T log T

2
+
h2

2
− h4

8(1− T )

]
+

1√
N
N
(

0,
h2(1− T )

2

)
(5.118)

up to the terms of orders h6 and h3N−1/2.

5.6.3.2 Formal limit of (5.105) as H →∞

We first determine the solution ς of the equation (5.107),

1− T
H2

=
∞∑
i=1

ν2
i

(ς + α1 − αi)2
(5.119)

when H →∞. Since the right-hand side is a decreasing function of ς and it converges

to zero as ς → ∞, the solution ς → ∞ as H → ∞. We evaluate the asymptotic of

the right-hand side in this limit. From αi ' −
(

3πi
2

)2/3
for large i (see (5.20)), we find

109



using the Riemann sum approximation of an integral that for every k ≥ 2,

∞∑
i=1

1

(ς + α1 − αi)k
' 1

ςk−3/2

∞∫
0

dy(
1 + (3πy

2
)2/3
)k =

Γ(k − 3/2)

2
√
πΓ(k)ςk−3/2

(5.120)

as ς → ∞. In particular, when k = 2, the right hand side of the above equation is

equal to 1
2
√
ς

and the equation (5.119) becomes

1− T
H2

=
1

2
√
ς

+
∞∑
i=1

ν2
i − 1

(ς + α1 − αi)2
+O

(
ς−3/2

)
(5.121)

where the error term comes from (5.120) with k = 3. Since the conditional variance

satisfies

Var

[
∞∑
i=1

ν2
i − 1

(ς + α1 − αi)2

∣∣∣∣αi
]

=
∞∑
i=1

2

(ς + α1 − αi)4
= O

(
ς−

5
2

)
(5.122)

using (5.120) with k = 4, we expect that

∞∑
i=1

ν2
i − 1

(ς + α1 − αi)2
= O

(
ς−5/4

)
, (5.123)

which is larger than the error O
(
ς−

3
2

)
in (5.121). Hence, the solution is given by

ς ' ς0 +O (H) with ς0 =
H4

4(1− T )2
. (5.124)

Even though it is not needed, we can also compute the next term and find that

ς ' ς0 +
H6

2(1− T )3

N∑
i=1

ν2
i − 1

(ς0 + α1 − αi)2
. (5.125)

Now we consider the asymptotic of E(ς) defined in (5.108) as ς → ∞. We write
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it as

E(ς) =
∞∑
i=1

ν2
i − 1

ς + α1 − αi
+ lim

n→∞

 n∑
i=1

1

ς + α1 − αi
−

( 3πn
2 )

2/3∫
0

√
xdx

π(ς + x)


+

1

π

∞∫
0

( √
x

ς + x
− 1√

x

)
dx.

(5.126)

The last term is equal to −ς1/2 by evaluating the integral directly. The second term

is the difference between a Riemann sum and a Riemann integral. This difference is

of the same order as
∑∞

i=1
1

(ς+α1−αi)2 which was shown to be of order ς−1/2 in (5.120).

We will see that this term is smaller than the first term which will be shown to be of

order ς−1/4. Consider the first term. Its convergence is warranted by the Kolmogorov

three series theorem. We evaluate its behavior as ς →∞ by considering the moment

generating function: for any fixed ξ, as ς →∞,

E
[
e
ξ
∑∞
i=1

ν2
i −1

ς+α1−αi

∣∣∣{αi}] =
∞∏
i=1

e
− ξ
ς+α1−αi

− 1
2

log(1− 2ξ
ς−α1−αi

)
= e

∑∞
i=1

ξ2

(ς+α1−αi)2
+O
(∑∞

i=1
1

(ς+α1−αi)3

)
(5.127)

Using (5.120), we find that

E
[
e
ξ
∑∞
i=1

ν2
i −1

ς+α1−αi

∣∣∣{αi}] = exp

(
ξ2

2ς1/2
+O

(
ς−3/2

))
. (5.128)

Since the leading term does not depend on αi, we conclude that

ς1/4

∞∑
i=1

ν2
i − 1

ς + α1 − αi
⇒ N (0, 1) (5.129)

as ς →∞. This shows that the first term of (5.126) is of order ς−1/4 and converges to
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a standard Gaussian random variable as ς →∞. Therefore, we find that as ς →∞,

E(ς)
D
= −ς1/2 + ς−1/4N (0, 1) +O

(
ς−1/2

)
. (5.130)

By (5.124) and (5.130), the term F̃(β, h) with h = HN−1/6 in (5.109) becomes,

as H →∞,

F̃(T, h)
D
=

1

2
(1− T )(ς + α1) +

H2E
2

D' − H4

8(1− T )
+H

√
1− T

2
N (0, 1) . (5.131)

Combining with (5.106), and replacing H by hN1/6, we find that the formal asymp-

totic of (5.105) as H →∞ is given by

FN
D' 1− 3T

4
+
T log T

2
+
h2

2
− h4

8(1− T )
+

h

N1/2

√
1− T

2
N (0, 1) . (5.132)

This agrees with (5.118).
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CHAPTER VI

Introduction of free component analysis

Consider the following scenario: there is a group of people talking simultaneously

at a cocktail party. Given microphones recording mixed sounds, we want to separate

the speeches of each individual. This cocktail problem [39], together with other

situations of practical interest, can be formulated as


z1

...

zm


︸ ︷︷ ︸

=:z

=

[
a1 · · · as

]
︸ ︷︷ ︸

=:A


x1

...

xn


︸ ︷︷ ︸

=:x

, (6.1)

where x = [x1, · · · , xn]T with xi representing the source signals (eg. the speech of

each person in cocktail party problem). In this context, z = [z1, · · · , zm]T containing

the signals observed (eg. the record in cocktail party problem). Also, the matrix

A, which is called the mixing matrix, represents the linear transfer matrix between

sources and observations.

The blind source separation (BSS) studies how to identify the mixing matrix and

recover the underlying signals with limited prior knowledge; most of the information is

merely the observations. Due to the lack of information and underdeterminancy of the

problem, the idea of BSS is to impose conditions certain principles to the underlying

mixing matrix and source signals. The ideal principles should characterize the source
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signals and narrow the set of possible solutions.

There are two main approaches of BSS. The idea of the first approaches is to im-

pose structural constraints (eg. nonnegative matrix factorization [98, 81]). The second

approach adapts a probabilistic and information-theoretic point of view. For exam-

ple, the recovered signals by the principal component analysis (PCA) or independent

component analysis (ICA) are maximally uncorrelated or independent respectively.

For a comprehensive introduction of BSS as well as a historical review, interested

readers are referred to [44].

In this chapter, we present a method for unmixing matrix signals in a way analo-

gous to ICA.

6.1 From PCA to ICA via cumulants

Principal component analysis (PCA) [104] is a widely used dimensionality reduc-

tion technique in statistical machine learning. The principal components learned

by PCA are the directions that maximize the variance, subject to a set of orthog-

onality constraints. Mathematically speaking, given a (centered) data matrix Y =[
y1 . . . ys

]T
, the i-th principal component is the solution to the manifold opti-

mization problem

wpca
i = arg max

||w||2=1

variance(wTY ) subject to w ⊥ wpca
1 , . . . ,wpca

i−1. (6.2)

The variance or the second cumulant [45] of a random variable x is defined as

c2(x) = variance(x) := E[x2]− (E[x])2 (6.3)

Substituting (6.3) into (6.2) allows us to cast PCA as a maximization of the second
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cumulant:

wpca
i = arg max

||w||2=1

c2(wTY ) subject to w ⊥ wpca
1 , . . . ,wpca

i−1. (6.4)

Independent component analysis (ICA) [43, 73] is a dimensionality reduction tech-

nique that is obtained by replacing (in our notation) c2(·) on the right hand side of

(6.4) by the fourth cumulant c4(·), thereby yielding the optimization problem

wica
i = arg max

||w||2=1

|c4(wTY )| subject to w ⊥ wica
1 , . . . ,wica

i−1. (6.5)

The fourth cumulant c4(·) of a scalar random variable x is equivalent to its kurtosis

[40, 45], and when E[x] = 0 it is given by [108, Eq. (6)]

c4(x) = kurtosis(x) := E[x4]− 3
(
E[x2]

)2
. (6.6)

We refer to the formulation in (6.5) as kurtosis, or c4-ICA in short. Replacing c4(·) on

the right hand side of (6.5) with the cj(·) for integer j ≥ 3 yields cj-ICA. There are

other formulations of ICA involving different objective functions, such as for example

any non-quadratic, well-behaving even function as in [69, 68]; see [43] for a discussion

on other such contrast functions.
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6.2 Known result: ICA unmixes mixtures of independent

random variables

Suppose we are given a multivariate vector z modeled as


z1

...

zs


︸ ︷︷ ︸

=:z

=

[
a1 · · · as

]
︸ ︷︷ ︸

=:A


x1

...

xs


︸ ︷︷ ︸

=:x

, (6.7)

where A is a non-singular s × s mixing matrix and x is a vector of independent

scalar-valued random variables. Assume, without loss of generality, that E[x] = 0

and E[xxT ] = I. Let A = UΣV T be the singular value decomposition (SVD) of the

mixing matrix. Then, we have that

Czz := E[zzT ] = AE[xxT ]AT = AAT = UΣ2UT .

The whitened vector y = C
−1/2
zz z has identity covariance and can be rewritten in

terms of the SVD of A as

y = C−1/2
zz z = UΣ−1UTUΣV Tx =

(
UV T

)︸ ︷︷ ︸
=:Q

x. (6.8)

Note that Q = UV T in (6.8) is an orthogonal matrix, because U and V are or-

thogonal matrices derived from the SVD of A. Equation (6.8) thus reveals that the

whitened vector y is related to the latent independent random variables that we wish

to unmix via an orthogonal transformation. If we can estimate Q from y, we can

unmix the independent random variables by computing Ŵ Ty provided Ŵ = QPS

where P is a permutation matrix and S is a diagonal matrix with ±1 as diagonal

elements.
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It is a remarkable fact [43, 73] that, generically, for y modeled as in (6.8), c4-ICA

as in (6.5) returns Wica such that W T
icay unmixes the mixed independent random

variables. Thus ICA can be viewed as a procedure for unmixing sums of independent

random variables from each other.

The caveat of c4-ICA is that no more than one of the independent random variables

is Gaussian, and that the random variables do not all have a kurtosis identically equal

to zero. The latter condition rules out the use of ck-ICA for odd k > 2 because the

cumulants of a symmetric random variable are identically equal to zero, so that we

would not be able to unmix a large class of random variables.

Replacing c4-ICA with ck-ICA for even k > 4 would still not allow us to unmix

more than one Gaussian random variable: this is a fundamental limit of ICA [43,

Section 2]. Cardoso [31] discusses aspects related to the use of higher order contrast

functions for ICA while Chen and Bickel [35] address the important issue of the

statistical efficiency of ICA estimators in the presence of limited samples. In practice,

c4-ICA or kurtosis based ICA is often used for its simplicity.

6.3 Our contribution: From ICA to FCA via free cumulants

Free probability theory is a mathematical theory developed by Voiculescu [118,

119, 120, 121] that is a counterpart of scalar (or classical) probability theory, except

that the random variables are non-commutative in a manner that scalar random

variables are not. In free probability theory, “freeness” or free independence is the

analogue of the classical notion of independence.

We begin by placing ourselves in an abstract setting with a (unital) algebra X

of non-commutative random variables that is equipped with a linear functional ϕ :

X → C. The important point here is that functional ϕ(·) plays the same role as the

expectation operator E[·] in classical probability theory. The critical difference comes

from non-commutative nature of the underlying probability space in free probability
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as we illustrate next1.

Suppose x1 and x2 are classically independent random variables. Then the their

mixed moment satisfies

E[(x1x2)3] = E[x3
1x

3
2] = E[x3

1] · E[x3
2],

since x1x2x1x2x1x2 = x3
1x

3
2 because x1 and x2 are scalar random variables and are

hence commutative. In contrast, even when x1 and x2 are freely independent, the

mixed moments

ϕ[(x1x2)3] = ϕ[x1x2x1x2x1x2] 6= ϕ(x3
1) · ϕ(x3

2),

since x1x2x1x2x1x2 6= x3
1x

3
2 whenever x1 and x2 are assumed to be non-commutative.

Free probability, via free independence, provides a recipe for computing such mixed

moments of freely independent random variables in a manner that is analogous to but

different from classical probability theory. For our purpose here, there is a notion of

free cumulants κ(·) for integer m which exhibit the same properties as the classical

cumulants (see Theorem B.7 and (B.13) in Appendix B.1.2). This allows us to cast

FCA analogous to the ICA in (6.5) as a fourth free cumulant maximization problem

of the form

wfca
i = arg max

||w||2=1

|κ4(wTy)| subject to w ⊥ wfca
1 , . . . ,wfca

i−1, (6.9)

where κ4(·) is the fourth free cumulant. We can similarly formulate κm-FCA for

m ≥ 3 as we did for ICA.

This is also where we depart from ICA in another crucial sense. We can model the

random variables as self-adjoint (or symmetric) or non-self adjoint (or rectangular/non-

1See Appendix B.1 for a self-contained introduction to free probability and how it differs from
classical probability.
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symmetric) and gives us self-adjoint and rectangular variants of FCA, respectively.

[118] developed free probability theory for self-adjoint random variables; [19] extended

it to rectangular random variables.

In the self-adjoint setting κ4(·) is given by (7.3) while in the non-self adjoint (or

rectangular, in a sense we shall shortly see) setting κ4(·) is given by (7.4)

The development and analysis of algorithms for self-adjoint and rectangular FCA

is the main contribution of this paper.

6.4 Our main finding: FCA unmixes mixtures of free random

variables

If we whiten the vector z as in (6.8) with the covariance matrix defined via the

ϕ(·) operator as in Definition VII.11, then we show that κ4-FCA, just as c4-ICA,

returns Wfca = QPS (see Theorem VII.4), and thus W T
fcay unmixes the mixed free

random variables.

The caveat of κ4-FCA, analogous to the c4-ICA algorithm, is that no more than one

of the free random variables can be the free probabilistic equivalent of the classical

Gaussian random variable, and that the random variables do not all have a free

kurtosis equal to zero. In the self-adjoint setting, the free analog of the Gaussian

is the free semi-circular element [65] while in the rectangular setting, it is the free

Poison element [19].

Just as for ICA, the condition that the free kurtosis of the free random variables

cannot all equal to zero rules out the use of κm-FCA for odd valued m ≥ 3 in the

self-adjoint setting, because the free cumulants of a symmetric free random variable

are identically equal to zero and so we would not be able to unmix a large class of free

random variables with symmetric distribution. On the other hand, for rectangular

free random variable, cumulants odd orders are zeros by default (see [18, (b), pp. 6]).
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We will prove that just as in the ICA setting, replacing κ4-FCA with κm-FCA

for even valued m ≥ 4 would still not allow us to unmix more than one Gaussian

analog free random variable: this is a fundamental limit of FCA. Thus FCA fails

whenever we have more than one free Gaussian analogs mixed together. This is the

fundamental limit of FCA.

The free semi-circular element in the self-adjoint setting, and the Poisson element

in the rectangular case, are the only non-commutative random variables with higher

order kurtosis equal to zero, analogous to the Gaussian in the scalar setting. Thus,

we might say that FCA finds directions that maximize deviation from the semi-

circularity (or Poissonity) when the random variables are self-adjoint (or rectangular,

respectively).

We also develop an algorithm for FCA based on the maximization of the free

entropy for both the self-adjoint [118, 65] and rectangular settings [18], and show

that FCA successfully unmixes free random variables in a similar way. Table 6.1

summarizes our results.

Table 6.1: FCA algorithms and their limits.

self-adjoint
FCA

(free kurtosis)

self-adjoint
FCA

(free entropy)

rect. FCA
(free rect.
kurtosis)

rec FCA
(free rect.
entropy)

Recovery
Guarantee Theorem VII.4 Theorem VII.8 Theorem VII.4 Theorem VII.8

Identifiability
Condition

At most one
component
with κ4 = 0

At most one
free semicircular

element

At most one
component
with κ4 = 0

At most one
free Poisson

element
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6.5 Insight: FCA unmixes mixtures of (asymptotically) free

random matrices

Voiculescu [117, 90] showed that symmetric random matrices are good models

for asymptotically free self-adjoint random variables (also see Appendix B.1.4.1).

The non-commutativity comes in because matrix multiplication is non-commutative.

Benaych-Georges [19] showed that rectangular random matrices are good models for

asymptotically free rectangular random variables (also see Appendix B.1.4.2).

In the self-adjoint setting, Voiculescu showed that random matricesX1 andX2 are

asymptotically free wheneverX1 andX2 are independent of each other if one, or both,

of the random matrices have isotropically random (or Haar distributed) eigenvectors.

In the non self-adjoint or rectangular setting, Benaych-Georges showed analogous that

rectangular random matrix X1 and X2 are free whenever they are independent of

each other and if the singular vectors of one or both of the random matrices are Haar

distributed. Since these pioneering works, many authors have relaxed the conditions

and broadened the class of random matrices that we now know to be asymptotically

free – see, for example the work of [84] and [5]. We can thus consider the matrix

mixing model 
Z1

...

Zs


︸ ︷︷ ︸

=:Z

=


a11I . . . a1sI

... . . .
...

as1I . . . assI


︸ ︷︷ ︸

=:A⊗I


X1

...

Xs


︸ ︷︷ ︸

=:X

, (6.10)

When the matrices X1, . . . ,Xs ∈ RN×N are symmetric or Hermitian, then we

are in the self-adjoint setting. Voiculescu [117] showed that the appropriate linear

function ϕ(·) is exactly the normalized trace function. That is,

ϕ(Xi) = lim
N

1

N
Tr(Xi) (6.11)
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and

ϕ(XiXj) = lim
N

1

N
Tr(XiXj). (6.12)

Replacing this with their sample analogs gives us a concrete algorithm for self-adjoint

FCA; see Algorithm 1 and Algorithm 2.

When the matrices X1, . . . ,Xs ∈ RN×M are rectangular, we are in the non self-

adjoint setting [19]. Then. the appropriate pair of the linear functionals ϕ1(·) and

ϕ2(·) are exactly the normalized trace functions in RN×N and RM×M :

ϕ1(XiX
H
j ) = lim

N

1

N
Tr(XiX

H
j ) (6.13)

and

ϕ2(XH
i Xj) = lim

M

1

M
Tr(XH

i Xj). (6.14)

Thus we expect that asymptotically, FCA should unmix asymptotically free ran-

dom matrices. In the setting where the random matrices are large but finite, we

expect FCA to approximately unmix the asymptotically free random matrices, with

some non-zero but small unmixing error, analogous to the finite sample unmixing

performance of ICA [75, 59, 7]. We will use numerical simulations to demonstrate

that FCA can near perfectly unmix mixtures of large, finite sized (asymptotically

free) matrices - see Sections 7.2.1 and 7.2.2.

6.6 Insight: FCA can be applied wherever ICA has been

applied

ICA has been successfully applied to image unmixing, audio separation and wave-

form unmixing problem [82, 91]. Here we show that FCA can be successfully applied

wherever ICA has succeeded, including in settings where there are seemingly no ma-

trices in sight.
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(a) Panda (b) Mixed Image1 (c) Image1 via ICA (d) Image1 via FCA

(e) Hedgehog (f) Mixed Image2 (g) Image2 via ICA (h) Image2 via FCA

Figure 6.1: An experiment in image separation using ICA and FCA. Note that sub-
plots (c), (g) (unmixed images via ICA) and (d), (h) (unmixed images via FCA) both
recover (a), (e) respectively. Here, A = [

√
2,
√

2;−
√

2,
√

2]/2 in (6.10). The error of
ICA is 6.08× 10−2 while the error of FCA is 2.69× 10−2. See (7.32) for the definition
of the error.

Figure 6.1 showcases the successful use of FCA for unmixing mixed images. This

is a natural place to apply FCA because (grayscale) images are matrices. Applying

ICA to unmix the images involves vectorizing the images, and treating them as mixed

scalar random variables in a way that ignores the spatial matrix information that FCA

uses. Perhaps it is therefore not surprising that FCA outperforms ICA.

What is surprising is that the images in Figure 6.1 are not textbook examples of

asymptotically free random matrices. By this we mean that would not have predicted

that the panda and hedgehog matrices are free according to the definition in Appendix

B.1. One might even argue that they are not really random matrices. And yet, FCA

unmixes them as though they are free. For this and many, many other examples of

mixed natural images. It is as though matrices in the wild are free-er than we might

initially fear they are not. We hope that experiments with FCA and computational

reasoning on its unexpected successes can guide free probabilists looking to expand

the class of matrix models for which freeness holds.

Figures 6.2 and 6.3 show examples where we are trying to unmix mixed deter-
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(a) Square wave (b) Mixed wave1 (c) Wave1 via ICA (d) Wave1 via FCA

(e) Sawtooth wave (f) Mixed wave2 (g) Wave2 via ICA (h) Wave2 via FCA

Figure 6.2: An experiment in waveform separation using ICA and FCA. Note that
subplots (c), (g) (unmixed waves via ICA) and (d), (h) (unmixed waves via FCA)
both recover (a), (e). Visually, FCA performs better in this experiment. In this
simulation, A = [

√
2,
√

2;−
√

2,
√

2]/2 in (6.10). The errors for ICA and FCA are
9.95× 10−2 and 6.66× 10−2 respectively.

ministic waveforms and audio signals respectively. ICA is known to succeed in these

examples, and it is natural to apply ICA here since the latent variables are scalar

valued. FCA seems unnatural because there are no matrices in sight, let alone mixed

matrices!

The surprising insight is that if we compute the spectrogram of the mixed signals,

then the matrix mixing model in (6.10) is with respect to the spectrogram matrices

of the mixed signals: we can use FCA to unmix the signals! Here, FCA on the spec-

trogram embdedding outperforms ICA. We might compute other matrix embeddings

(say via the short time wavelet transform) and apply FCA there. We do not (yet)

have a theory to predict which embedding would lead to better unmixing; nonetheless,

the important point is that by embedding scalar valued signals as matrices, we can

apply FCA wherever ICA has been applied, and that we can also possibly get better

(or worse – see Figure 7.6) unmixing performance by varying the matrix embedding.

Figure 6.5 summarizes our worldview on this and our sense that there is a theory

waiting to be fully revealed on the relation between non-asymptotic recovery of mixed

variables and a to-be-defined notion of distance to the various notions of freeness and

independence that can provide a principled way to reason about whether ICA or FCA

will better unmix the mixed variables.
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(h) Audio 2 via FCA

Figure 6.3: An experiment in audios separation via ICA and FCA: Note that subplots
(c), (g) (unmixed audio signals via ICA) and (d), (h) (unmixed audio signals via FCA)
both recover (a), (e). In this experiment, A = [

√
2,
√

2;−
√

2,
√

2]/2 in (6.10). The
errors for ICA and FCA are 1.47× 10−2 and 1.79× 10−2 respectively.

6.7 Surprising insight: FCA often better unmixes random

variables than ICA

In the examples in Figures 6.1 and 6.3, FCA did better than ICA in a quantitative

sense. Figure 6.4 shows a setting where we are unmixing two mixed images and where

one of the images corresponds to a Gaussian random matrix. In this setting, FCA

performs better than ICA in a visually perceptible way. We have observed that FCA

usually does at least as well as ICA and often better.

In a similar setting, we replace the locust image by a matrix UDV T in SVD

form, where U , V are Discrete Cosine Transformation (DCT) matrices and D is a

diagonal matrix (see Section 7.2.2). This matrix model enables us to increase the

dimension and compare the asymptotic behavior of ICA and FCA. Our numerical

simulations show that κ4-FCA and c4-ICA perform similarly. However, we observe

that free entropy based FCA significantly outperforms ICA (see Figure 7.4) at the

cost of increased computational complexity, since estimating the free entropy involves

eigenvalue (or singular value) computation, which are of order O(N3).
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(a) Original Image (b) Mixed Image 1 (c) Image via ICA (d) Image via
FCA

(e) Gaussian
Noise

(f) Mixed Image 2 (g) Image via ICA
(zoom in)

(h) Image via
FCA (zoom in)

Figure 6.4: An experiment in image denoising via ICA and (kurtosis-based) FCA:
Comparing (g) and (f), we observe that FCA does a better job then ICA in this
experiment. Here A = [

√
2,
√

2;−
√

2,
√

2]/2 in (6.10). The variance of whitened
Gaussian noise is set to equal the empirical variance of original image.

6.8 Organization

The remainder of the paper is organized as follows. We will develop FCA for

self-adjoint and rectangular non-commutative random variables (corresponding to

self-adjoint and rectangular random matrices) in Section 7.1 by describing the objec-

tive functions whose maximization, analogous to the ICA setting, leads to successful

unmixing of the ’free’ components from their additive mixture. Then we describe

FCA based algorithms for factorizing data matrices in Section 7.1.6. We illustrate

our theorems and ability of FCA to successfully unmix real-world images using nu-

merical simulation in Section 7.2. We present some concluding remarks and highlight

some open problems in Section 7.3

A self-contained introduction to the free probability is given in Section B.1.2

and B.1.3 for self-adjoint and rectangular random variables respectively. We build

the connection between non-commutative random variables and random matrices in
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Independence

Rectangular FreenessSelf-Adjoint Freeness

(X
(1)
1 , X

(1)
2 )

(X
(2)
1 , X

(2)
2 )

Figure 6.5: We can regard ICA and FCA with various embedding as ”projections”
onto corresponding manifolds. Here, the gray surface denotes the manifold of indepen-
dent pairs. The red and blue surfaces stand for self-adjoint free pairs and rectangular
free pairs respectively. In order to achieve the best performance, one shall pick the
projection into the closest manifold. For example, if the latent data is (X

(1)
1 , X

(1)
2 ),

then rectangular FCA should have the best performance when separating them from
the additive mixture. In contrast, for the underlying data (X

(2)
1 , X

(2)
2 ), one should

pick ICA.

127



Section B.1.4
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CHAPTER VII

Free component analysis: main result, simulation

and proof

7.1 Main result: Recovery guarantees for FCA

7.1.1 Setup and assumptions under an orthogonal mixing model

7.1.1.1 The self-adjoint setting

Given a probability space (X , ϕ), let x1, . . . , xs be s self-adjoint and free random

variables (see Appendix B.1.2). Let y denote the vector which contains as its elements

the various additive mixtures of x1, . . . , xs. We model y as


y1

...

ys


︸ ︷︷ ︸

=:y

=

[
q1 · · · qs

]
︸ ︷︷ ︸

=:Q


x1

...

xs


︸ ︷︷ ︸

=:x

, (7.1)

where Q is a s× s orthogonal matrix.

For self-adjoint FCA, we assume that the variables xi are centered and have unit

variance, i.e. for i = 1, · · · , s, we have that ϕ(xi) = 0 and that ϕ(x2
i ) = 1 .
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7.1.1.2 The non self-adjoint setting

Given a (ρ1, ρ2)-rectangular probability space (X , p1, p2, ϕ1, ϕ2) – (see Appendix

B.1.3) – we consider a setup similar to that in (7.1) where we model y as

y = Qx, (7.2)

where Q is an s × s orthogonal matrix. We assume that for i = 1, · · · , s, xi, yi are

rectangular random variables (i.e., xi, yi ∈ X12 := p1Xp2) and ϕ1(xix
∗
i ) = 1. Note

that ϕ(xi) = 0 by default. The fundamental assumption is now that (xi)
s
i=1 are free

with amalgamation over the linear span of p1 and p2. We will simply say that (xi)
s
i=1

are free if there is no ambiguity.

7.1.2 Free kurtosis based FCA

The free kurtosis of a centered self-adjoint random variable x ∈ X is defined as

κ4(x) = ϕ(x4)− 2ϕ(x2)2. (7.3)

The rectangular free kurtosis of a rectangular random variable x ∈ X12 is defined as

κ4(x) = ϕ1((xx∗)2)−
(

1 +
ϕ(p1)

ϕ(p2)

)
(ϕ1(xx∗))2 . (7.4)

We now state a result on the largest free component

Theorem VII.1 (Largest free component). Assume x and y are related either via

(7.1) in the self-adjoint setting or via (7.2) in the non self-adjoint setting. Suppose,

additionally, without of loss of generality, that

|κ4(x1)| ≥ |κ4(x2)| ≥ · · · ≥ |κ4(xs)| > 0. (7.5)
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Let w(1) denote the solution of the manifold optimization problem

w(1) = arg max
w

∣∣κ4(wTy)
∣∣ subject to ‖w‖ = 1 (7.6)

(a) Suppose

|κ4(x1)| > |κ4(x2)| > · · · > |κ4(xs)| > 0. (7.7)

Then

w(1) = ± q1 (7.8)

(b) Suppose there is an integer r ∈ [2..s], such that

|κ4(x1)| = · · · = |κ4(xr)| > |κ4(xr+1)| ≥ · · · ≥ |κ4(xs)| > 0. (7.9)

Then

w(1) ∈ {± q1, . . . ,± qr}. (7.10)

Remark VII.2. (b) of the above theorem considers the case where there are multiple

indexes corresponding to the largest absolute kurtosis. In contrast to the princi-

pal component analysis, the maximizers of (7.6) (and also of (7.10)) only contains

corresponding columns of Q, and not their general linear combinations. This is a

consequence of that we are using the fourth order statistics of random variables.

Theorem VII.3 (The k-th largest free component). Assume that x and y are re-

lated as in Theorem VII.1. Let w(k) denote the solution to the manifold optimization

problem

w(k) = arg max
w

∣∣κ4(wTy)
∣∣ subject to ‖w‖ = 1,w ⊥ w(1), · · · ,w(k−1) (7.11)
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Suppose

|κ4(x1)| > |κ4(x2)| > · · · > |κ4(xs)| > 0.

Then

w(k) = ± qk. (7.12)

Theorem VII.4 (Principal free components). Assume that x and y are related as

in Theorem VII.1. Let O(s) denote the set of s×s orthogonal matrices, and consider

the manifold optimization problem

max
W

s∑
i=1

∣∣κ4

(
[W Ty]i

)∣∣ subject to W ∈ O(s), (7.13)

where [W Ty]i denotes the i-th element of W Ty. Suppose that

|κ4(x1)| > |κ4(x2)| > · · · > |κ4(xs)| > 0.

Then W is an optimum if and only if :

W = QPS, (7.14)

for some P and S where where P is a permutation matrix and S is a diagonal

matrix with ±1 as diagonal elements.

Remark VII.5. Above theorems still hold if there is at one components with zero free

kurtosis.

7.1.2.1 Higher-order free cumulant based FCA

Remark VII.6. It can be shown that above theorems still hold with κ4(·) replaced by

any κ2m(·), for m ≥ 3.
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Remark VII.7. The maximizer of (7.13) is not guaranteed to recover Q when there

are multiple components of x with zero free kurtosis. In this case, one may try to use

optimization problem based on κ2m(·), m ≥ 3. However, the semicircle elements (for

the self-adjoint case; see Appendix B.1.2.4) and the Poisson elements (for the non

self-adjoint case; see Appendix B.1.3.4) have all vanishing free cumulants of order

higher than 2. In Theorem VII.9, we will prove that Q can be recovered if and only

if x contains at most one semicircular element or free Poissonian element for the

self-adjoint or non self-adjoint settings, respectively.

7.1.2.2 Free-entropy based FCA

The free entropy χ(a1, · · · , an) (see Sections B.1.2.3 and B.1.3.3 for the definitions

in the self-adjoint and non self-adjoint settings) of a tuple of free random variables

encodes the dependence between the variables ai. Analogous to the scalar setting, the

free entropy is maximized when the random variables are freely independent. Thus

we can pose FCA as an entropy maximization problem as stated next.

Theorem VII.8 (FCA based on free entropy). Assume that x and y are related as

in Theorem VII.1 and at most one component of x is semicircular in the self-adjoint

setting or a free Poisson in the non-self adjoint setting. Let O(s) denote the set of

s× s orthogonal matrices. Suppose that

χ(xi) > −∞ for i = 1, · · · , s.

Consider the manifold optimization problem

max
W

s∑
i=1

−χ
(
[W Ty]i

)
subject to W ∈ O(s), (7.15)

where [W Ty]i denotes the i-th element of W Ty. Then W is an optimum if and only
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if:

W = QPS, (7.16)

for some P and S where P is a permutation matrix and S is a diagonal matrix with

±1 as diagonal elements.

7.1.2.3 FCA identifiability condition

In the self-adjoint setting c4-FCA will fail when x contains semicircular elements

because free semi-circular elements have a free kurtosis identically equal to zero.

Moreover, suppose x = (x1, x2)T where xi are free semicircular elements with ϕ(xi) =

0 and ϕ(x2
i ) = 1. Then, it can be shown that for any Q ∈ O(2), the components of

Qx are still free semicircular elements. Therefore, if there are more two components

are semicircular elements, it is impossible to identify Q with the mere knowledge of

free independence between the components of x. The analog of this holds for the non

self-adjoint setting as well.

We now state an FCA identiability condition based on this observation.

Theorem VII.9 (Identifiability Condition). Consider x and y and Q ∈ O(s) such

that x and y are related as in Theorem VII.1. Assume x has free elements. Assume

that at most one component of x is semicircular in the self-adjoint setting or free

Poisson in the non self-adjoint setting.

Now, if there is a W ∈ O(s) such that W Ty has free components, then

W = QPS. (7.17)

for some P and S where P is a permutation matrix and S is a diagonal matrix with

±1 as diagonal elements. That is, W can be obtained by permuting the columns of

Q with possible sign flips and vice versa.

Remark VII.10 (Weakness of FCA condition relative to ICA). Note that the FCA
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identifiability condition is weaker than the corresponding condition for ICA [43, The-

orem 10, pp. 294]. The ICA condition is a consequence of scalar Cramérs Lemma

[43, Lemma 9, pp. 294] and a Lemma of Marcinkiewicz-Dugue [43, Lemma 10, pp.

294]. Since the analog of Cramérs Lemma in the free probability does not hold [41],

the identifiability condition is correspondingly weaker.

7.1.3 Setup and assumptions under a non-orthogonal mixing model

7.1.3.1 The self-adjoint setting

Given a probability space (X , ϕ), let x1, . . . , xs be s self-adjoint and free random

variables. Let x be a vector of free, but not necessarily centered random variables.

Then the variable x̃i defined as

x̃i = xi − ϕ(xi) 1X︸ ︷︷ ︸
=:xi

,

is centered since ϕ(x̃i) = 0. Substituting xi = x̃i +ϕ(xi) in (6.7) we obtain the mixed

model 
z1

...

zs


︸ ︷︷ ︸

=:z

=

[
a1 · · · as

]
︸ ︷︷ ︸

=:A


x̃1 + x1

...

x̃s + xs


︸ ︷︷ ︸

=:x̃+x

= Ax̃+Ax, (7.18)

In this general, non-orthogonal mixing setup, we assume, without loss of generality,

that ϕ(x̃2
i ) = 1 and covariance Cxx = I, where the covariance matrix Cxx is defined

as following.

Definition VII.11 (Covariance matrix of self-adjoint random variables). Let

z =

[
z1 . . . zs

]T
be a vector of self-adjoint random variables. The covariance Czz
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matrix of z is the s× s matrix given by:

[Czz]ij = ϕ (z̃iz̃j) for i, j = 1, . . . , s, (7.19)

where z̃i is the centered random variable

z̃i = zi − ϕ(zi)1X .

7.1.3.2 The non self-adjoint setting

Given a rectangular probability space (X , p1, p2, ϕ1, ϕ2), let x1, . . . , xs be s self-

adjoint and free random variables. We assume that z is modeled as in (7.18). In

the non self-adjoint setting, the variables are centered by construction – we assume

additionally that for all xi ∈ X12, ϕ1(xix
∗
i ) = 1 and covariance Cxx = I, where the

covariance matrix Cxx is defined as following.

Definition VII.12 (Covariance matrix of non self-adjoint random variables). For

an arbitrary random vector zT =

[
z1 . . . zs

]
of rectangular random variables from

X12, note that ϕ(zi) = 0 by default, the covariance matrix of z is defined by a s × s

matrix Czz where

[Czz]ij = ϕ1

(
ziz
∗
j

)
. (7.20)

7.1.4 Unmixing mixed free random variables using FCA

We first establish some properties of the covariance matrices thus computed.

Proposition VII.13. The covariance matrix as in Definitions VII.11 and VII.12 is

positive semi-definite.

For the covariance of z satisfying (7.18), we have the following stronger result.

Proposition VII.14. The vector of mixed variables z modeled as in (7.18) has co-

variance Czz that is real and positive definite.
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This proposition allows us to formulate FCA on the whitened vector and prove a

recovery results as stated next.

Theorem VII.15. Assume x and z are related as in (6.7). Let A = UΣV T be the

singular value decomposition of A. Consider the manifold optimization problem

max
W

s∑
i=1

κ4

(
[W Ty]i

)
subject to W ∈ O(s), (7.21)

where y is the whitened and centered vector given by:

y = C−
1/2

zz z̃, (7.22)

where C
−1/2
zz = UΣ−1UT is the inverse of the square root of the covariance matrix

Czz and z is the centered vector whose i-th element is given by

z̃i = zi − ϕ(zi)1X .

Suppose that

|κ4(x1)| > |κ4(x2)| > · · · > |κ4(xs)| > 0.

Then W is an optimum if and only if:

W =
(
UV T

)
PS, (7.23)

for some P and S where where P is a permutation matrix and S is a diagonal

matrix with ±1 as diagonal elements.

Proof. It suffices to observe via (6.8) that

y =
(
UV T

)
x̃. (7.24)
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The matrix UV T is an orthogonal matrix because U and V are orthogonal ma-

trices and so we can recover UV T from the stated manifold optimization problem

via an application of Theorem VII.4.

Theorem VII.16. Suppose x and z are related as in Theorem VII.15. Let A =

UΣV T be the singular value decomposition of A. Also suppose at most one elements

of x is semicircular in the self-adjoint setting and free Poissionian in the non self-

adjoint setting and that

χ(xi) > −∞ for i = 1, · · · , s. (7.25)

Consider the manifold optimization problem

max
W

s∑
i=1

−χ
(
[W Ty]i

)
subject to W ∈ O(s), (7.26)

where y is the whitened and centered vector given by (7.22).

Then W is an optimum if and only if:

W =
(
UV T

)
PS, (7.27)

where P is a permutation matrix and S is a diagonal matrix with ±1 diagonal

elements.

Proof. The proof is exactly same as the the proof of the Theorem VII.15, except for

our application of Theorem VII.8 to (7.24) instead of Theorem VII.4.

Corollary VII.17 (Unmixing via FCA). Suppose x and z are related as in Theorem

VII.15 and that the xi’s satisfy the conditions in Theorem VII.15 and VII.16. Let

Wopt denote an optimum of the optimization problem in (7.21) or (7.26). Consider
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the factorization

z = Â x̂, (7.28)

where

Â = C
1/2
zz Wopt, (7.29a)

and

x̂ = Â−1z. (7.29b)

Then Â = APS for some P is a permutation matrix and S is a diagonal matrix

with ±1 diagonal elements. Therefore, x̂ recovers x up to permutation and sign flips.

Proof. As C
1/2
zz = UΣ−1UT , given an optimum W satisfying W =

(
UV T

)
PS,

C
1/2
zzW = UΣV TPS = APS. (7.30)

That is, we recover mixing matrix A up to column permutation and column sign

flips. This completes the proof.

7.1.5 Overdetermined and underdetermined FCA

We now consider same model as in (6.10) for the settings where the mixing matrix

A is rectangular. In the over-determined setting where A is a p × s mixing matrix

with p > s. Then it can be shown that FCA applied to y = Σ−1
s U

T
s z will unmix

the free random variables. Here Us is a p × s matrix and Σs is an s × s diagonal

matrix of the singular values of A. These matrices can obtained by using eigenvalue

decomposition Czz = UsΣsΣ
T
sU

T
s .

In the under-determined setting where p < s, then FCA cannot be used to unmix

the free random variables just as ICA cannot either.
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7.1.6 Unmixing mixtures of matrices using FCA

The multiplication of matrices are non-commutative, therefore we can consider

the mixing model in (6.10) where X1, . . . ,Xs are finite dimensional (asymptotically)

free self-adjoint or rectangular matrices (see Definitions B.16 and B.17). The goal is

to unmix X1, . . . ,Xs from their additive mixtures Z1, . . . ,Zs.

Corollary VII.17 provides a recipe for unmixing the mixture of matrices by factor-

izing Z into the matricial analog of (7.28). In the matricial setting, this is equivalent

to factorizing Z = (Â ⊗ IN)X̂. We shall refer to this factorization of an array of

matrices as Free Component Factorization (FCF).

To compute Â in FCF as prescribed by Corollary VII.17 we must compute the

matricial analog Y of y in (7.22). This involves first computing the matricial s × s

covariance matrix analog as in Algorithm 1 where we have replaced the ϕ(·) and

ϕ1(·) in the self-adjoint and the rectangular settings with their matricial analogs as

in (6.11) and (6.13), respectively.

Having computed the whited array of matrices Y we can compute the matrix Â

via Algorithm 2 where the dot operator is as defined next.

Definition VII.18 (Dot operator). Let Y = [Y1, · · · ,Ys]T be an array of matrices

where Yi ∈ RN×M . Let a function F : RN×M 7→ R, we have that

F.(Y ) :=


F (Y1)

...

F (Ys)

 . (7.31)
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Algorithm 1 Free whitening for random matrices

Input: Z = [Z1, · · · ,Zs]
T where Zi are N ×M matrices. M = N if Zi are self-

adjoint.

1. Compute Z = [Z1, · · · ,Zs]
T , where

Zi =

 1
N

Tr(Zi)IN if Zi are self-adjoint,

mean(vec(Zi))× ones(N,M) if Zi are rectangular.

2. Compute Z̃ = Z − Z and s × s empirical covariance matrix C where for i, j =

1, . . . , s:

Cij =
1

N
Tr(Z̃iZ̃

H
j ).

3. Compute eigen-decomposition , C = UΣ2UT .

4. Compute Y = ((UΣ−1UT )⊗ IN)Z̃.

5. return: Y ,Σ, and U .

Algorithm 2 Free Component Factorization (FCF) of an array of matrices

Input: Array of matrices Z = [Z1, · · · ,Zs]
T where Zi are N × M matrices. 1.

Compute Y ,Σ,U by applying Algorithm 1 to Z.

2. Compute 1

Ŵ = arg min
W∈O(n)

s∑
i=1

|F̂ .
(
W̃ TY

)
|, where W̃ = W ⊗ IN .

3. Compute Â = UΣUTŴ and X̂ = (Â−1 ⊗ IN)Z.

4. Sort components of X̂ by magnitude of F̂ (·)

5. Permute the columns of Â such that Z = (Â⊗ IN)X̂.

6. return: Â and X̂

1Here F̂ (·) is either the (self-adjoint or rectangular) free kurtosis, the free entropy or a higher
(than fourth) order (even valued) free cumulant. See Table 7.1.
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7.1.7 Numerical algorithms for Free Component Factorization

The manifold optimization problem in FCF can be solved using a gradient descent

with retraction method [24, 92].

Theorem VII.19 (Gradient of the objective function; ). Let Y = [Y1, · · · ,Ys] and

W = [w1, · · · ,ws] ∈ Rs×s. Suppose

W̃ = W ⊗ IN ,

Then the gradient

∂Wk`

s∑
i=1

F̂ .
(
W̃ TY

)
,

depends on whether Y is an array of self-adjoint or rectangular matrices.

Suppose F̂ (·) is chosen to be free kurtosis or free entropy for the self-adjoint or

rectangular setting as in Table 7.1, then the gradient is given by the corresponding

expression in Table 7.2 where

X` = w̃T
` Y ,

and w̃` = w` ⊗ IN .

Armed with these gradients we can compute the free component factorization of

an array of matrices using numerical solvers for manifold optimization, such as for

example the manopt [24] package (for MATLAB) or the Optim.jl [92] package for Julia.

Our software implemntation via the FCA.jl package [94] does precisely this.
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Table 7.1: Formulas for F̂ (·) in Algorithm 2. Here X is either a self-adjoint or a
rectangular matrix.

self-adjoint FCF rectangular FCF

free
kurtosis

F̂ (X) = − |κ̂4(X)| , where

κ̂4(X) =
1

N
Tr(X4)

− 2

[
1

N
Tr(X2)

]2

F̂ (X) = − |κ̂4(X)| , where

κ̂4(X) =
1

N
Tr((XXH)2)

−
(

1 +
N

M

)[
1

N
Tr(XXH)

]2

free
entropy

F̂ (X) = χ̂(X), where

χ̂(X) =
∑
i 6=j

log |λi − λj|
N(N − 1)

λi are eigenvalues of X

Set α =
N

N +M
and β =

M

N +M
,

F̂ (X) = χ(X), where

χ̂(X) =
α2

N(N − 1)

∑
i 6=j

log |λi − λj|

+
(β − α)α

N

N∑
i=1

log λi

λi are the eigenvalues of XXH

7.2 Numerical Simulations

We will now validate the unmixing performance of FCA on additive mixtures

on random matrices and compare the unmixing performance with that of ICA. To

that end, we first define a permutation invariant unmixing error metric that is also

invariant to scaling and sign ambiguities.

Definition VII.20 (Unmixing Error Metric). Let A be the mixing matrix in (6.10)

and Â be an estimate of the mixing matrix. The scaling and permutation invariant

unmixing error is defined as

E(A, Â) = min
D∈D,P∈Π

||PDÂ−1A− I||F , (7.32)

where D denotes the set of non-singular diagonal matrices and Π denotes the set of
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Table 7.2: Euclidean gradients for the setting in Theorem VII.19

self-adjoint FCF rectangular FCF

free
kurtosis

∂Wk`

s∑
i=1

F̂ .
(
W̃ TY

)
=

−sign(κ̂4(X`))×

[
4

N
Tr(YkX

3
` )

− 8

N2
Tr(X2

` ) Tr(YkX`)

]

∂Wk`

s∑
i=1

F̂ .
(
W̃ TY

)
= −sign(κ̂4(X`))

×

[
4

N
Tr(YkX

H
` X`X

H
` )−

(
1 +

N

M

)
4

N2
Tr(X`X

H
` ) Tr(YkX

H
` )

]

free
entropy

Let λ
(`)
i and v

(`)
i be the X`’s

eigenvalues and eigenvectors

∂Wk`

s∑
i=1

F̂ .
(
W̃ TY

)
=

∑
i 6=j

∂Wk`
λ
(`)
i − ∂Wk`

λ
(`)
j

N(N − 1)(λ
(`)
i − λ

(`)
j )

with ∂Wk`
λ
(`)
i = (v

(`)
i )HYkv

(`)
i

Let λ
(`)
i and v

(`)
i be the eigenvalues

and eigenvectors of X`X
H
` .

∂Wk`

s∑
i=1

F̂ .
(
W̃ TY

)
=

α2

N(N − 1)

∑
i 6=j

∂Wk`
λ
(`)
i − ∂Wk`

λ
(`)
j

λ
(`)
i − λ

(`)
j

+
(β − α)α

N

N∑
i=1

∂Wk`
λ`i

λ
(`)
i

with ∂Wk`
λ
(`)
i = (v

(`)
i )H(YkX

H
`

+X`Y
H
k )v

(`)
i .
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(square) permutation matrices.

We shall utilize this metric to compare FCA and ICA in what follows.

7.2.1 Unmixing of self-adjoint matrices using self-adjoint FCA

We now verify Theorems VII.15, VII.16 and Corollary VII.17 by showing that

self-adjoint FCA can successfully, while not perfectly, unmix mixtures of self-adjoint

matrices.

LetG1 ∈ RN×N andG2 ∈ RN×M be two independent Gaussian matrices composed

of i.i.d. N (0, 1) entries. Define

X1 =
G1 +GT

1√
2N

and X2 =
G2G

T
2

M
. (7.33)

The matrices X1,X2 are self-adjoint by construction, and their eigen-spectra are

displayed in Figures 7.1a and 7.1e respectively. In the parlance of random matrix

theory [52], X1 is a matrix drawn from the Gaussian orthogonal ensemble (GOE) and

its limiting eigen-distribution obeys the semi-circle distribution, while X2 is a matrix

drawn from Laguerre orthogonal ensemble (LOE) and its limiting eigen-distribution

obeys the Marčenko-Pastur distribution.

We now mix the matrices as in (6.10) for a non-singular

A =

 0.5 0.5

−0.5 0.6

 .
The eigen-spectra of the mixed matrices Z1 and Z2 are plotted in Figures 7.1b and

7.1f.

The distributions of X1 and X2 are orthogonally invariant, and according to the

discussion following Definition B.16, X1 and X2 are asymptotically free. Moreover,

only one matrix (X1) has a limiting eigen-distribution that converges to that of an
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(a) X1 (b) Z1 (c) X̂1 via
kurtosis-based
FCA

(d) X̂1 via
entropy-based
FCA

(e) X2 (f) Z2 (g) X̂2 via
kurtosis-based
FCA

(h) X̂2 via
entropy-based
FCA

Figure 7.1: An experiment in the separation of self-adjoint matrices. The mixing
matrix A = [0.5, 0.5;−0.5, 0.6], N = 800,M = 1600. The average errors over 200
trials are 8.67× 10−3 for kurtosis-based FCF and 6.44× 10−3 for entropy-based FCF.

abstract free semicircular element. Hence, we can apply self-adjoint FCA to factorize

Z =

[
Z1 Z2

]T
using Algorithm 2 and obtain estimates Â, X̂1 and X̂2 which should

be good estimates of A, X1 and X2 respectively.

Figures 7.1c and 7.1g display the eigen-spectra of the matrices X̂1 and X̂2 re-

turned by self-adjoint free kurtosis-based FCA. Comparing Figures 7.1c, 7.1g and

7.1a, 7.1e reveals that free kurtosis-based self-adjoint FCA successfully unmixes the

mixed matrices well. Figures 7.1d and 7.1h show that free entropy based self-adjoint

FCA successfully unmixes the mixed matrices. Both free kurtosis and free entropy

based unmixing have comparably small but not zero error, which we compute over

200 Monte-Carlo realizations. This is expected since the matrices are asymptotically

free and the simulations are with finite dimensional matrices.
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7.2.2 Unmixing of rectangular matrices with rectangular FCA

We now show that the rectangular FCA can successfully, while not perfectly,

unmix mixtures of rectangular matrices. To that end, we let X2 be an N × M

Gaussian matrix with i.i.d. N (0, 1/M) entries and set X1 = UDV T where

U(i, j) =
2

N
sin [

π

2N
(i+ 1)(2j + 1)] for 1 ≤ i, j ≤ N

V (i, j) =
2

M
cos [

π

2M
i(2j + 1)] for 1 ≤ i, j ≤M,

so that U and V thus constructed are orthogonal matrices. We pick a ‘nice’ function

f(z) and set the diagonal matrix D ∈ RN×M such that D(i, i) = f((i−1/2)/N)), i =

1, · · · , N.

The singular value spectra of X1 and X2 are plotted in Figures 7.2a and 7.2e. As

before, we mix the matrices as in (6.10). Figures 7.2b and 7.2f display the singular

value spectra of Z1 and Z2.

We now note that the singular value distributions of X1 and X2 converge to a

non-random limit and that the distribution of X2 is bi-orthogonally invariant. Thus,

following the discussion after Definition (B.17), X1 and X2 are asymptotically free.

Moreover, only X2 has a limiting distribution which converges to that of an abstract

free Poisson rectangular element.

Hence, we can apply rectangular FCA to factorize Z =

[
Z1 Z2

]T
using Algo-

rithm 2 and obtain estimates Â, X̂1 and X̂2 which should be good estimates of A,

X1 and X2 respectively.

Figures 7.2c and 7.2g display the eigen-spectra of the matrices X̂1 and X̂2 re-

turned by rectangular free kurtosis-based FCA. Comparing Figures 7.2c, 7.2g and

7.2a, 7.2e reveals that rectangular free kurtosis-based FCA successfully unmixes the

mixed matrices well. Figures 7.1d and 7.1h show that rectangular free entropy based

FCA successfully unmixes the mixed matrices. Both free kurtosis and free entropy
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(a) X1 (b) Z1 (c) X̂1 via
kurtosis-based
FCA

(d) X̂1 via
entropy-based
FCA

(e) X2 (f) Z2 (g) X̂2 via
kurtosis-based
FCA

(h) X̂2 via
entropy-based
FCA

Figure 7.2: An experiment in the separation of rectangular random matrices. In this
simulation, A = [0.5, 0.5;−0.5, 0.6], N = 800,M = 1000 and f(x) = (x − 1)4. The
average errors over 200 trials are 1.55× 10−3 for kurtosis-based FCF and 8.81× 10−4

for entropy-based FCF.

based unmixing have comparably small but not zero error, which we compute over

200 Monte-Carlo realizations. This is expected since the matrices are asymptotically

free but the simulations are with finite dimensional matrices.

7.2.3 Unmixing mixed images using rectangular FCA

We now consider the problem of unmixing mixed images. Grayscale images can

be viewed as matrices so rectangular FCA can be used to separate the mixed images.

We can also apply ICA to unmix the images via reshaping images to vectors and

we shall compare the unmixing performance of FCA with that of ICA. Algorithm 9

in Appendix B.3 describes the independent component factorization (ICF) mirroring

the language we used for FCF.

We set X1 to be the grayscale image of the locust in Figure 6.4a. The matrix X2
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is a Gaussian random matrix of the same size as X1 with i.i.d. zero mean, uniform

variance entries as depicted in Figure 6.4e. We mix the matrices following (6.10) and

display the mixed images in Figures 6.4b and 6.4f.

Next, we apply (rectangular) free kurtosis based FCA to the mixed images Z =

[Z1,Z2]T and display the unmixed image that is closes to that of the locust in Figure

6.4d. The unmixed image obtained by using (classical) kurtosis based ICA is displayed

in Figure 6.4c. Both methods return unmixed images that are close to the original

image of the locust. A closer inspection of Figures 6.4d 6.4c reveals that FCA better

unmixes the images than ICA as illustrated in Figures 6.4h and 6.4g. Quantitatively

speaking, when averaged over 200 Monte-Carlo realizations of the noise, we find that

the denoising error for kurtosis-based FCF is 5.35× 10−3 while the error for kurtosis-

based ICF is 2.42×10−1, thereby illustrating the superiority of FCF over ICF for this

task.

To gain additional insight on the improved unmixing performance of FCA relative

to ICA for this example, we investigate the landscape of their respective objective

functions. To that end we first note that the mixing matrix

A =
1

2

√2
√

2
√

2 −
√

2

 ,
is orthogonal and so we can recast the spherical manifold optimization problem un-

derlying FCA and ICA as a 1-D optimization problem in polar coordinates. In other

words, we can parameterize the optimization problem in (6.5) and (6.9) in terms of

w := wθ =

[
cos(θ) sin(θ)

]T
. Similarly, optimization (7.15) can be parameterized

with

W = [cos(θ) sin(θ);− sin(θ), cos(θ)]T . We compute and display the landscape of the

objective functions corresponding to maximization of the classical kurtosis |c4(θ)|,

free kurtosis |κ4(θ)| and the free entropy E(θ) for θ ∈ [0, 2π] in Figures 7.3a, 7.3b and
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7.3c, respectively.

The dashed red line in these figures corresponds to the ground truth freely in-

dependent component direction associated with θ1 = π/4 associated with the first

column of the mixing matrix A; the other direction (not displayed) is orthogonal and

corresponds to the second column of A and is associated with θ2 = 3π/4.

Figures 7.3b and 7.3c, reveal that |κ(θ)| and E(θ) are maximized at angles θ very

close to θ1 = π/4. In contrast, Figure 7.3a reveals that |c(θ)| is maximized at an

angle θ further away from θ1 than is the case for the FCA algorithms. This is why

FCA better unmixes the images than ICA.

There is a more interesting story in these plots. Figure 7.3b shows that the |κ(θ2)|

for θ2 = 3π/4 is very close to zero, as expected because X2 is a Gaussian random

matrix and in the large matrix limit the free rectangular kurtosis of its free counterpart

is identically zero. The classical kurtosis of a Gaussian random variable is also zero.

A closer inspection reveals that the classical kurtosis of the locust image is also close

to zero (the scale of the polar plot initially obscures this fact!) while its free kurtosis

is significantly greater than zero (or that of X2).

The fact that the locust image X1 and the Gaussian image X2 have a higher

“contrast” in their free kurtosis relative to their classic kurtosis is why FCA does

better at unmixing them than ICA. Figure 6.5 captures this perspective and suggests

a direction for future research in more precisely defining how the “contrasts” between

the scalar (or ICA) and matrix (or FCA) embeddings affects the realized unmixing

performance.

7.2.4 Unmixing performance of free kurtosis vs free entropy FCA vs ICA

We now compare the performance of FCF and ICF as a function of the dimen-

sionality of the system, since the errors in FCF and ICF are both governed by the

deviation from some limiting large sample quantities (or large matrix size). Here,
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(a) Polar graph of |c(θ)|
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(b) Polar graph of |κ(θ)|
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(c) Polar graph of E(θ)

Figure 7.3: (a) Polar graph of c(θ) (b) Polar graph of κ(θ) (c) Polar graph of E(θ).
The red dashed lines stand for the direction of 45◦. Note that the directions of
maximum of κ(θ) and E(θ) agree with the red line well, while the maximum of c(θ) is
off. Because of the randomness of Gaussian noise, for different trials, the polar graph
of ICA will vary. However, the polar graphs of FCA are relatively stable.

we adopt the same setup as in Section 7.2.2 with whitened X1 and X2 matrics and

A = [
√

2,
√

2;−
√

2,
√

2]/2. We increase N,M in a fixed ratio, and obtain an estimate

of the unmixing matrix using kurtosis based FCA, entropy based FCA, kurtosis based

ICA and entropy based ICA and compute the unmixing error over 200 Monte-Carlo

realizations.

Figures 7.4a and 7.4c show that free kurtosis based FCA and kurtosis based ICA

realize similar unmixing performance. However, Figures 7.4b and 7.4d show that free

entropy based FCA has a lower error than entropy based ICA, even while both have

errors that decay at the same rate.

7.2.5 Unmixing mixed waveforms using rectangular FCA

Let x1 and x2 denote two vectors representing the audio signals whose waveforms

are displayed in Figures 6.3a and 6.3e, respectively. Their mixture produces signals

whose waveforms are displayed in Figures 6.3b and 6.3f, respectively. This is the

famous cocktail party problem [64] and ICA is known to succeed in unmixing the

mixed signals. Figures 6.3c and 6.3g confirm that it does.
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(d) Errorica/Errorfca for Entropy method

Figure 7.4: (a) Averaged (over 200 trials) errors of kurtosis based FCA and ICA
for increasing dimension. (b) Averaged error of entropy based FCA and ICA for
increasing dimension. (c) CDF of Errorfca/Errorica for the kurtosis-based method.
(d) cdf of Errorfca/Errorica for the entropy-based method. All methods appear to have
a convergence rate of N−1. In this simulation, we set N/M = 0.8 and f(x) = (x−1)4.
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In this setting the mixed waveforms are modeled as


zT1
...

zTs

 = A


xT1
...

xTs

 . (7.34)

There is no matrix in sight in (7.34), so we can seemingly not apply FCA directly.

The key insight is that we are at liberty to design a linear matrix embedding

operatorM : x ∈ Rn 7→X ∈ FM×N for some integer M and N . A simple example is

by reshaping the n = MN vector into an M ×N matrix. Here linearity implies that

for any scalars α and β we have that

M(αx+ βy) = αM(x) + βM(y).

Then as a consequence of the linearity of the embedding operator we have that


M(z1)T

...

M(zs)
T

 = (A⊗ IN)


M(x1)T

...

M(xs)
T

 (7.35)

so that it fits (6.10) and we can apply FCA to estimate the mixing matrix and thus

unmix the mixed waveforms.

For the cocktail party problem we used a (complex-valued) spectrogram embed-

ding, as described in Algorithm 7, and computed the mixed (complex-valued) spec-

trogram matrices Z1 and Z2 displayed in Figure 7.5. Since the mixing matrix is

real-valued we modified the FCA algorithms slightly by whitening using only real

part of the covariance matrix.

Figures 6.3d and 6.3h show that FCA on the complex-valued spectrogram ma-

trices successfully unmixes the complex-valued spectograms of the latent waveforms.
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(a) X1
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(b) Z1
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(c) X̂1 via FCA with
spectrogram embed-
ding
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(d) X2
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(e) Z2
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(f) X̂2 via FCA with
spectrogram embed-
ding

Figure 7.5: The spectrogram of signals. For the spectrogram, we adapt the Hamming
window of 250 samples, the number of overlapped samples is 125, the number of DFT
points is 256.

Figure 6.2 shows that FCA succeeds in unmixing the waveforms and that FCA better

unmixes the waveforms than ICA. Figure 7.6 illustrates a setting where ICA does

better.

These experiments illustrate our general point that FCA can be used wherever

ICA has been used and that they perform comparably well. The key step is embedding

a vector waveform as a matrix in a way that preserves the mixing model. We used

the spectrogram embedding here – other linear embeddings could be used as well.

Determining the optimal embedding so we can reason about why FCA does better

than ICA for the setup in Figure 6.2 but does not for the setup in Figure 7.6 is a

natural next question.
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(a) Cosine wave (b) Mixed wave1 (c) Wave1 via ICF (d) Wave1 via FCA

(e) Square wave (f) Mixed wave2 (g) Wave2 via ICA (h) Wave2 via FCA

Figure 7.6: An experiment in waveform separation using ICA and FCA. Note that
subplots (c), (g) (unmixed waves via ICA) and (d), (h) (unmixed waves via FCA)
both recover (a), (e). In this simulation, A = [

√
2,
√

2;−
√

2,
√

2]/2 in (6.10). The
errors for ICA and FCA are 7.70× 10−5 and 1.36× 10−2 respectively. .

7.2.6 Unmixing rectangular matrices using self-adjoint FCA and more

We can take this embedding idea even further by embedding mixed rectangular

matrices modeled as (7.34) and embedding them as self-adjoint matrices as described

in Algorithm 6 and then using self-adjoint FCA to unmix them. Or, we may even

embed rectangular matrices into another rectangular matrix with a different number

of rows and columns as described in Algorithm 6. Determining the right matricial

embedding adds another aspect to the question of optimal embedding selection as in

Figure 6.5.

7.3 Conclusions and Open Problems

We have developed free component analysis as a non-commutative analog of inde-

pendent component analysis. We proved that when certain identifiability conditions

are met then mixtures of self-adjoint and rectangular variants can be unmixed us-

ing self-adjoint and non self-adjoint/rectangular FCA. We developed an algorithm

for umixing mixtures of matrices based on FCA and demonstrated how FCA can

be used to unmix images (viewed as matrices), speech signals and waveforms (when

embedded as spectrogram matrices) and images where it initially fails (via FCA on

a free subset of the mixed images).
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7.3.1 Open Problems

We now list some directions for future research. These include developing a non-

linear extension of FCA analogous to non-linear ICA [56, 26, 67, 72, 3, 74], a fast

algorithm for FCA analogous to fast ICA [70, 35, 96] and algorithms for sparse FCA

analogous to sparse ICA [44, 23].

A more general line of inquiry is related to the so-called one-unit learning work in

ICA. In ICA, it is known that instead of maximizing the kurtosis, we can equivalently

maximize a large class of so-called contrast functions G(·) of the form [69, Equation

(2)]

JG(w) = Ex[G(wTx)]− Eγ[G(γ)],

where G(·) is non-quadratic well-behaving even function and γ is a standardized

Gaussian random variable. Developing the analog of this theory for the self-adjoint

and rectangular FCA settings will allow for a finer study of the statistical efficiency

of the FCA algorithms in the finite matrix setting akin to the work by Arora et al. [7]

and facilitate the development of asymptotically consistent and statistically efficient

estimators akin to the work by Chen and Bickel [35].

Our simulations showed that free entropy based FCA outperformed free kurtosis

based FCA (see Figure 7.4d). Computing the free entropy is computationally more

expensive than computing the free kurtosis. In ICA, the mutual information is ap-

proximated via a cumulant expansion [43, Section 3.1, pp. 295]. Developing a rapidly

converging approximation to free entropy in terms of the free cumulants that con-

verges faster than the approximation in [90, Exercise 5, pp. 190] would lead a faster

FCA that we expect to be statistically more efficient than free kurtosis based FCA.
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7.3.2 Open Problem: Using FCA to construct new matrix models for

freeness

We can use the ICA to decompose small patches of an image into linear indepen-

dent combinations of ICA basis vectors that can be learned from the data via the ICA

factorization [66, 17]. Figure 7.7a displays the 36 ICA bases patches thus obtained by

reshaping into 6× 6 matrices the 36 ICA bases vectors corresponding to each of the

columns of the 36× 36 Wica matrix obtained by an kurtosis based ICA factorization

of the 6× 6 patches of the panda image in Figure 6.1a.

We can similarly use FCA to decompose the patches of an image into “as free as

possible” matrices. Figure 7.7c shows the 36 free patch bases obtained by displaying

the matricial elements of the Xfca array of matrices of the panda image. Each sub-

image in the panda is a linear combination of these free patches.

The patch FCA versus patch ICA bases vectors for the hedgehog image in Figure

6.1e are shown in Figures 7.7d and 7.7b. Comparing the ICA bases vectors in Figure

7.7a to the FCA patch bases reveals that the ICA bases contain diagonal elements

whereas the FCA bases are more checkerboard like and are even reminiscent of the

2D- DCT matrix. The ICA patch bases seem to depend on the image much more

strongly than the FCA patch bases. Both the FCA and ICA patch bases are more

structured than we might have expected.

Since FCA worked in unmixing the panda and hedgehog images and since each

of these images is composed of a linear combination of FCA extracted free patches,

this suggests a way of constructing not-so-random matrix models from random linear

combinations of not-so-random (sub) matrices that are asymptotically free. This line

of inquiry would complement the recent work [5, 34, 84] in developing not-as-random

matrix models that are asymptotically free.

FCA can serve as a valuable computational tool for reasoning and formulating

mathematically plausible conjectures about matricial freeness in not-so-random ma-
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(a) Patch ICA on panda patches. (b) Patch ICA on hedgehog patches.

(c) Patch FCA on panda patches. (d) Patch FCA on hedgehog patches.

Figure 7.7: Patch bases obtained via an ICA (top row) or FCA (bottom row) factor-
ization of 6× 6 patches of the panda and the hedgehog images from Figures 6.1a and
6.1e respectively.

trices.

7.3.3 Open Problem: Improving FCA by “more free” sub-matrix selec-

tion

FCA (and ICA) do not always succeed in unmixing images. See, for example

Figure 7.8 where applying FCA to the mixed images does not produce a good estimate

of the mixing matrix. In Figure 7.9, we show how we can better estimate the mixing

matrix by applying FCA to sub-matrices instead. In this example, we can reason
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that FCA on the whole matrix fails because the in-alignment faces make the matrices

“less free“ whereas the sub-matrices are “more free”.

We can formalize this idea further by examining how random or not-random the

left and right singular vectors of the matrices are. Asymptotically free matrices have

left and right singular vectors that are isotropically random relative to each other.

Hence, if V1 and V2 are N ×N right singular vectors of two matrices and if V1 and

V2 are independent and isotropically random, then we expect the entries of V T
1 ∗ V2

to be delocalized and having the values of order N−1/2. We can employ a similar

argument for the left singular vectors.

We can use this as a heuristic for quantifying how close-to-free two matrices we

are trying to unmix are.

For the panda and hedgehog images in Figure 6.1, we can see from Figures 7.10c

and 7.10d that the right and left singular vectors respectively are more uniform and

so we might FCA to succeed as it indeed did.

In contrast, for the matrices in the Figure 7.8, the right and left singular vectors

of the matrices in Figures 7.10a and 7.10b respectively are not that uniform and so

we might expect FCA to fail as it did.

The sub-matrices on which we applied FCA in Figure 7.9 are “more free” than

the matrices in Figure 7.8 and so FCA worked better in the former case than in the

latter. ICA similarly fails as FCA when applied to the whole matrices and similarly

succeeds when applied to the sub-matrices.

New algorithmic methods for identifying “more (freely) independent” sub-matrices

to improve the unmixing performance of FCA (and ICA) would be invaluable in

applications where practitioners have applied FCA (or ICA) and given up because it

seemingly did not succeed. Such methods would help make FCA, and ICA, (even)

great(er) (again)!
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(a) X1 (b) Z1 (c) X̂1 via FCA

(d) X2 (e) Z2 (f) X̂2 via FCA

Figure 7.8: An Application of FCA to images not so free. The mixing matrix is
A = [

√
2,
√

2;−
√

2,
√

2]/2

7.4 Proof of Proposition VII.13 and VII.14

We proof Proposition VII.13 and VII.14 for the covariance matrix for rectangular

case. The self-adjoint case can be proved with straightforward modification.

7.4.1 Proof of Proposition VII.13

By Remark 1.2 of [95], for any random variable a, ϕ(a∗) = ϕ(a). Thus,

[Czz]ij = ϕ1(z̃iz̃∗j )

= ϕ1((z̃iz̃
∗
j )
∗)

= ϕ1(z̃j z̃
∗
i ) = [Czz]ji.

(7.36)
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(a) Sub matrix of Z1 (b) X̂1 by FCF (c) Full unmixed image 1

(d) Sub matrix of Z2 (e) X̂2 by FCF (f) Full unmixed image 2

Figure 7.9: Application of FCA to sub images gives better results. The mixing matrix
is A = [

√
2,
√

2;−
√

2,
√

2]/2

Therefore, Czz is Hermitian.

We turn to show that [Czz] is positive semi-definite. Actually, as ϕ is a linear

functional, for any column vector α = [α1, · · · , αs],

αCzzα
H = ϕ((

s∑
i=1

αiz̃i)(
s∑
i=1

αiz̃i)
∗) ≥ 0 (7.37)

where we used that ϕ(·) is positive. This completes the proof.

7.4.2 Proof of Proposition VII.14

Since z = Ax and Cxx = I,

Czz = ACxxA
H = AAH .
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(a) (b)

(c) (d)

Figure 7.10: Normalized square of inner products between: (a) left singular vectors
of Figure 7.8a and 7.8d, (b) right singular vectors of Figure 7.8d and 7.8a, (c) left
singular vectors of Figure 6.1a and 6.1e, (d) right singular vectors of Figure 6.1a and
6.1e. We observe that inner product between the right singular vectors of Figure 7.8d
and 7.8a (corresponding to (b)) are clearly not uniform.

Note that we assume thatA is real and non-singular,Czz is real and positive-definite.

7.5 Proofs of the main results

7.5.1 Proof of Theorem VII.1

In order to prove Theorem VII.1, we first recall the following lemma of free cu-

mulants.

Lemma VII.21. Given a probability space (X , ϕ), recall the free cumulants for a

single random variable κm(a) defined in (B.12). We have

(i) (Free additivity, Proposition 12.3 in [95]) For any m ≥ 1, if a and b are freely
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independent random variables, then

κm(a+ b) = κm(a) + κm(b). (7.38)

(2) For any m ≥ 1, α ∈ C and a ∈ X , we have that

κm(αa) = αmκm(a). (7.39)

This immediately follows from the multilinearity of free cumulants (see (B.9)).

The above lemma is still valid with κm(·) denoting rectangular free kurtosis defined

in (B.20). The analogy of (7.38) for rectangluar free kurtosis follows from equation

(10) in [19]. The analogy of (7.39) is a direct result of (B.19).

We are ready to prove the Theorem VII.1.

7.5.1.1 Proof of Theorem VII.1 (a)

Set g = QTw, then w = Qg. As x and y are related via (7.1), we have that

wTy = wTQx = (QTw)Tx = gTx. (7.40)

Adapt the notation g = (g1, · · · , gs)T . Note that xi are freely independent, then using

(7.38), we have that

κ4(gTx) = κ4

(
s∑
i=1

gixi

)
=

s∑
i=1

κ4(gixi). (7.41)

By (7.39), κ4(gixi) = g4
i κ4(xi) for i = 1, · · · , s, thus the above equation becomes

κ4(gTx) =
s∑
i=1

g4
i κ4(xi). (7.42)
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Combining (7.40) and (7.42), we get

∣∣κ4(wTy)
∣∣ =

∣∣∣∣∣
s∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ . (7.43)

When w runs over all unit vectors, g = QTw also runs over all unit vectors.

Therefore, if w(1) is a maximizer of (7.6), then w(1) = Qg(1) where g(1) is a maximizer

of

max
g∈Rs, ‖u‖=1

∣∣∣∣∣
s∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ . (7.44)

Thus in order to prove (a), it is equivalent to show that g(1) is maximizer of (7.44) if

and only if g(1) ∈ {(±1, 0, · · · , 0)T}.

For any unit vector u, since |gi| ≤ 1, we have that

s∑
i=1

g4
i ≤

s∑
i=1

g2
i = 1. (7.45)

Note that the equality holds if and only if there is a index i such that gi ∈ {±1} (thus

gj = 0 for all j 6= i). Then using (7.5) and (7.45),

∣∣∣∣∣
s∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ ≤
s∑
i=1

g4
i |κ4(xi)|

≤
s∑
i=1

g4
i |κ4(x1)|

≤ |κ4(x1)|.

(7.46)

On the other hand, for g = (±1, 0, · · · , 0)T , it can be checked that all equalities

equalities in (7.46) hold. Thus

max
g∈Rs, ‖g‖=1

∣∣∣∣∣
s∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ = |κ4(x1)| (7.47)

and g(1) is a maximizer of (7.44) if g(1) ∈ {(±1, 0, · · · , 0)T}.
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For the other direction, if g(1) is maximizer of (7.44), then the second equality in

(7.46) holds for g = g(1). That is,

0 =
s∑
i=1

(g
(1)
i )4 (|κ4(xi)| − |κ4(x1)|) . (7.48)

Due to (7.7), |κ4(xi)| − |κ4(x1)| < 0 for i = 2, · · · , s. Thus (7.48) implies g
(1)
i = 0 for

i = 2, · · · , s. Since g(1) is a unit vector, g(1) ∈ {(±1, 0, · · · , 0)T}. This completes the

proof.

7.5.1.2 Proof of Theorem VII.1 (b)

In the proof of (a), the arguments upto (7.48) only rely on properties of free

kurtosis κ(·) and condition (7.5). Thus (7.44), (7.46), (7.47) and (7.48) also apply in

the setting of (b). Thus in order to prove (b), it is equivalent to show that u(1) is a

maximizer of (7.44) if and only if

(i) g
(1)
i = 0 for i = r + 1, · · · , s,

(ii) there is an index i such that g
(1)
i ∈ {±1}.

The backward direction can be checking directly using |κ4(x1)| = · · · = |κ4(xr)|.

We now prove the forward direction. If g(1) maximizes (7.44), then it satisfies

(7.48). By (7.9), |κ4(xi)| − |κ4(x1)| = 0 for i = 1, · · · , r and |κ4(xi)| − |κ4(x1)| < 0

for i = r+ 1, · · · , s. (i) then follows. On the other hand, as |κ4(x1)| = · · · = |κ4(xr)|,

enforcing the third equality in (7.46) implies

r∑
i=1

(g
(1)
i )4 = 1. (7.49)

By the observation below (7.45), this indicates indicates (ii). This completes the

proof.
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7.5.2 Proof of Theorem VII.3

Set g = QTw, we use the notation g = [g1, · · · , gs]T . As w(i) ∈ {±Qi} for

i = 1, · · · , k − 1,

‖w‖ = 1,w ⊥ w(1), · · · ,w(k−1) ⇐⇒ ‖g‖ = 1, g1 = · · · = gk−1 = 0. (7.50)

Using (7.43), if w(k) is a maximizer of (7.11), then w(k) = Qg(k) where g(k) is a

maximizer of

max
g∈Rs, ‖g‖=1

g1=···=gk−1=0

∣∣∣∣∣
n∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ . (7.51)

Thus in order to prove (a), it is equivalent to show that g(k) = (g
(k)
1 , · · · , g(k)

s )T is

maximizer of (7.51) if and only if g
(k)
k ∈ {±1} (thus g

(k)
j = 0 for j 6= k).

As we are maximizing over unit vector g such that g1 = · · · = gk−1 = 0, again

using (7.5) and (7.45) ∣∣∣∣∣
s∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ =

∣∣∣∣∣
s∑
i=k

g4
i κ4(xi)

∣∣∣∣∣
≤

s∑
i=k

g4
i |κ4(xi)|

≤
s∑
i=k

g4
i |κ4(xk)|

≤ |κ4(xk)|.

(7.52)

For g with gk ∈ {±1}, it can be checked that all equalities in (7.52) hold. Thus

max
g∈Rs, ‖g‖=1

g1=···=gk−1=0

∣∣∣∣∣
s∑
i=1

g4
i κ4(xi)

∣∣∣∣∣ = |κ4(xk)|, (7.53)

and g(k) is a maximizer if g
(k)
k ∈ {±1}.

For the other direction, if g(k) is a maximizer of (7.51), all equalities in (7.52) hold
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with g = g(k). In particular, the third equality in (7.52) implies

0 =
s∑
i=k

(g
(k)
i )4 (|κ4(xi)| − |κ4(xk)|) . (7.54)

Due to (7.7), |κ4(xi)| − |κ4(xk)| < 0 for i = k + 1, · · · , n. Thus (7.54) implies that

g
(k)
i = 0 for i = k + 1, · · · , s. Since g(k) is a unit vector, g

(k)
k ∈ {±1}. This completes

the proof.

7.5.3 Proof of Theorem VII.4

7.5.3.1 Proof of Theorem VII.4 (a)

We prove (a) by showing that

max
W∈O(s)

s∑
i=1

∣∣κ4

(
(W Ty)i

)∣∣ =
s∑
i=1

|κ4(xi)| (7.55)

and W = Q reaches the maximum. Set G = QTW ∈ O(s). As x and y are related

via (7.1),

W Ty = W TQx

= (QTW )x

= GTx.

(7.56)

Adapt the notation G = (gij)
s
i,j=1. Then for all i = 1, · · · , n, (W Ty)i = (GTx)i =∑s

j=1 gjixj. Together with (7.38) and (7.39), for any i = 1, · · · , s, we have that

κ4((W Ty)i) =κ4

(
s∑
j=1

gjixj

)

=
s∑
j=1

κ4 (gjixj)

=
s∑
j=1

g4
jiκ4(xj).

(7.57)
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Apply triangular inequality to above equation, we get

∣∣κ4((W Ty)i)
∣∣ ≤ s∑

j=1

g4
ji |κ4 (xj)| . (7.58)

Note that (gj1, · · · , gjn)T is a unit vector, by (7.45),
∑s

j=1 g
4
ji ≤ 1. Then summing

(7.58) over i = 1, · · · , n, we obtain that

s∑
i=1

∣∣κ4((W Ty)i)
∣∣ ≤ s∑

i=1

s∑
j=1

g4
ij |κ4 (xj)|

=
s∑
j=1

(
s∑
i=1

g4
ji

)
|κ4(xj)|

≤
s∑
j=1

|κ4(xj)|.

(7.59)

Actually, for W = Q, QTy = QTQx = x, thus

s∑
i=1

∣∣κ4((QTy)i)
∣∣ =

s∑
i=1

|κ4(xi)|. (7.60)

Equations (7.60) and (7.59) together imply (7.55). Then by (7.60), Q is a maximizer

of (7.13).

7.5.3.2 Proof of Theorem VII.4 (b)

We first introduce several notations. For a permutation matrix P = (pji)
s
i,j=1,

there is a associate permutation σ such that pσ(i)i = 1 and pji = 0 for all i = 1, · · · , s

and j 6= σ(i). For a signature matrix S, we denote its i-th diagonal elements by Si.

Now for any P and S, under the light of (7.55), it is desired to show that
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∑s
i=1

∣∣κ4

(
((QPS)Ty)i

)∣∣ =
∑s

i=1 |κ4(xi)|. As x and y satisfy (7.1), we have

(QPS)Ty =STP TQTy

=STP Tx

=(S1xσ(1), · · · , Ssxσ(s))
T .

(7.61)

As Si ∈ {±1}, by (7.39)

κ4(Sixσ(i)) = S4
i κ4(xσ(i)) = κ4(xσ(i)). (7.62)

Combining (7.61) and (7.62) together, we obtain that

s∑
i=1

∣∣κ4

(
((QPS)Ty)i

)∣∣ =
s∑
i=1

∣∣κ4(Sixσ(i))
∣∣

=
s∑
i=1

|κ4(xσ(i))|

=
s∑
i=1

|κ4(xi)|.

(7.63)

This completes the proof of (b).

7.5.3.3 Proof of Theorem VII.4 (c)

By (b), any matrix Ŵ of the form Ŵ = QPS is a maximizer. For the other

direction, we want to show that any maximizer Ŵ can be written in the this form.

Actually, if Ŵ is a maximizer, we consider (ĝij)
s
i,j=1 = Ĝ = QTŴ . The thrid

equality of (7.59) holds with gij = ĝij. That is,

s∑
j=1

(
s∑
i=1

ĝ4
ji

)
|κ4(xj)| =

s∑
j=1

|κ4(xj)|. (7.64)

Since all the components of x has non-zero free kurtosis and
∑s

i=1 ĝ
4
ji ≤ 1 for j =
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1, · · · , s, (7.64) is equivalent to

s∑
i=1

ĝ4
ji = 1, for j = 1, · · · , n. (7.65)

By the observation below (7.45), for each j, there is a i such that ĝji ∈ {±1} while

ĝjk = 0 for k 6= i. That is, each column of Ĝ has exactly one non-zero entry. By

Proposition VII.25, Ĝ ∈ Osp and thus Ĝ = PS for some permutation matrix P and

signature matrix S. Now, recall that Ŵ = QĜ, we have that Ŵ = QPS. This

completes the proof.

7.5.4 Proof of Theorem VII.8

Here, we recall two propositions of free entropy which will be handful in the proof.

Proposition VII.22. Let x = (x1, · · · , xs)T where xi are self-adjoint non-commutative

random variables. Then for any Q = (qij)
s
i,j=1 ∈ O(s), then

χ ((Qx)1, · · · , (Qx)s) = χ(x1, · · · , xs). (7.66)

That is, the free entropy is invariant under the orthogonal transformation.

Proof. This proposition is a special case of a general result. For any matrixA ∈ Rn×n,

we actually have that (see Corollary 6.3.2 in [65]),

χ ((Ax)1, · · · , (Ax)s) = χ(x1, · · · , xs) + log | detA|. (7.67)

Now, for Q ∈ O(s), QTQ = I, thus

(detQ)2 = detQT detQ = det(QTQ) = det I = 1. (7.68)

That is, | detQ| = 1 and thus log | detQ| = 0. Now, set A = Q in (7.67), we obtain
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(7.66).

Proposition VII.23. Let x1, · · · , xs be self-adjoint non-commutative random vari-

able, then

χ(x1, · · · , xs) ≤
s∑
i=1

χ(xi). (7.69)

Further assume that χ(xi) > −∞ for i = 1, · · · , n, then the above equality holds if

and only if x1, · · · , xs are freely independent.

Proof. The proof for the inequality can be found in Proposition 6.1.1 in [65]. The

equivalence between the equality and freely independence is Theorem 6.4.1 in [65].

Proposition VII.22 also holds with χ(·) denoting the rectangular free entropy. This

can be proved using Proposition 5.8 of [18]. On the other hand, Theorem 5.7 and

Corollary 5.16 in [18] together prove the analogy Proposition VII.23 for rectangular

free entropy χ(·).

7.5.4.1 Proof of Theorem VII.8 (a)

Set Z = QTW . As x and y are related via (7.1), W Ty = (QZ)TQx = ZTx.

Then by (7.69),

s∑
i=1

χ
(
(W Ty)i

)
=

s∑
i=1

χ
(
(ZTx)i

)
≥ χ

(
(ZTx)1, · · · , (ZTx)s

)
. (7.70)

On the other hand, note that Z is an orthogonal matrix, then by (7.66),

χ
(
(ZTx)1, · · · , (ZTx)s

)
= χ (x1, · · · , xs) (7.71)

Combining (7.70) and (7.71) together, we obtain that, for any W ∈ O(s),

s∑
i=1

χ
(
(W Ty)i

)
≥ χ (x1, · · · , xs) (7.72)
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Now consider W = Q. As QTy = QTQx = x, we have that

s∑
i=1

χ
(
(QTy)i

)
=

s∑
i=1

χ (xi) . (7.73)

On the other hand, as xi are freely independent, then by Proposition VII.23,

s∑
i=1

χ(xi) = χ(x1, · · · , xs). (7.74)

Then (7.73) becomes
s∑
i=1

χ
(
(QTy)i

)
= χ (x1, · · · , xs) . (7.75)

Equations (7.75) and (7.72) together indicate

min
W∈O(s)

s∑
i=1

χ
(
(W Ty)i

)
= χ (x1, · · · , xs) (7.76)

and Q is a maximizer of (7.15).

7.5.4.2 Proof of Theorem VII.8 (b)

Adapt the notations introduced in the proof of Theorem VII.4 (b). For any

permutation matrix P associate with permutation σ and signature matrix S =

diag(S1, · · · , Ss), we have that (see (7.61))

(QPS)Ty = (S1xσ(1), · · · , Ssxσ(n))
T . (7.77)

Thus
s∑
i=1

χ
(
((QPS)Ty)i

)
=

s∑
i=1

χ(Sixσ(i)). (7.78)
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As Si ∈ {±1} can be regard as 1-by-1 orthogonal matrices, then the 1-dimensional

verision of (7.67) yields

χ(Sixσ(i)) = χ(xσ(i)), for i = 1, · · · , n. (7.79)

Then (7.78) becomes
s∑
i=1

χ
(
((QPS)Ty)i

)
=

s∑
i=1

χ(xi). (7.80)

Under the light of (7.76), QPS is a maximizer of (7.15).

7.5.4.3 Proof of Theorem VII.8 (c)

By (b), any matrix Ŵ of the form Ŵ = QPS is a maximizer. For the other

direction, it is enough to show that, any maximizer Ŵ of (7.15) can be written in the

form Ŵ = QPS for some permutation matrix P and signature matrix S. Actually,

if Ŵ maximize (7.15), then by (7.76),

s∑
i=1

χ
(

(Ŵ Ty)i

)
= χ (x1, · · · , xs) (7.81)

Since Ŵ TQ is a orthogonal matrix, then by (7.66) and (7.1),

χ (x1, · · · , xs) = χ
(

(Ŵ TQx)1, · · · , (Ŵ TQx)s

)
= χ

(
(Ŵ Ty)1, · · · , (Ŵ Ty)s

) (7.82)

Then (7.81) becomes

s∑
i=1

χ
(

(Ŵ Ty)i

)
= χ

(
(Ŵ Ty)1, · · · , (Ŵ Ty)s

)
(7.83)

By Proposition VII.23, the above equation indicates that Ŵ Ty has freely independent

components. As we assume that x has at most one semi-circular element, Theorem
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VII.9 implies that Ŵ = QPS for some permutation matrix P and signature matrix

S. This completes the proof.

7.5.5 Proof of Theorem VII.9

Definition VII.24. We denote all matrix of size s × s which are product of a per-

mutation matrix and a signature matrix by

Ops = Ops(s) := {PS | P is a permutation matrix, S is a signature matrix}.

(7.84)

Let O := O(s) denotes the sets of orthogonal matrix of size s × s. Note that any

permutation matrix P and signature matrix S belong to O. Furthermore, it can be

checked that Ops is a subgroup of O.

We first prove two propositions of Ops. An orthogonal matrix must contain at

least one nonzero entry in each column (and each row). On the other hand, the matrix

belonging to Ops has exactly one nonzero entry in each column (and each row). The

following proposition states that this characterizes the matrices contained in Ops.

Proposition VII.25. Fix a positive integer s ≥ 1, Q ∈ O(s) has exactly one non-

zero entry in each column if and only if Q ∈ Ops(s).

Proof. If Q ∈ Ops, then Q = PS for some permutation matrix P and signature

matrix S. Thus it follows that Q has exactly one non-zero entry in each column.

For the other direction, consider an arbitrary Q ∈ O(s) with exactly one non-zero

entry in each column. Note that Q has totally n non-zero entries. As Q is non-

singular, it also has exactly one non-zero entry in each row. As a result, there exists

a permutation matrix P such that P TQ is a diagonal matrix.

On the other hand, note that (P TQ)T (P TQ) = QTQ = I, P TQ is a diagonal

orthogonal matrix. Thus the diagonal entries of P TQ are either +1 or −1. Then
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there exists a signature matrix S such that P TQ = S. That is equivalent to Q =

PS ∈ Ops. This completes the proof.

By above proposition, for any Q ∈ O\Ops, there must be a column with more

than one non-zero entry. For the later purpose, we prove a stronger result.

Proposition VII.26. Given any s ≥ 2, consider matrixQ = (qij)
s
i,j=1 ∈ O(s)\Ops(s).

Then there is a 2×2 submatrix of Q with all 4 entries non-zero. Explicitly, there exist

i, j, k, ` ∈ {1, · · · , n} (i 6= j, k 6= `) such that all qik, qi`, qjk, and qj` are non-zero.

Proof. We first make the following observation. Two orthogonal vectors either share 0

or more than 2 positions for non-zero entries. Actually, consider any u = (u1, · · · , us)T

and v = (v1, · · · , vs)T such that u and v are orthogonal. Assume that there is exactly

one index k such that both uk and vk are non-zero, then

uTv =
s∑
i=1

uivi = ukvk 6= 0. (7.85)

This contradicts the fact that uTv = 0.

Now we are ready to prove the proposition. Denote i-th columns of Q by Qi, for

i = 1, · · · , s. Note that the {Qi}si=1 form an orthonormal basis. AsQ ∈ O(s)\Ops(s),

there must be a column containing more than two non-zero entries. Without lose of

generality, assume it is Q1. If all Q2, · · · ,Qs share 0 positions of non-zero entry with

Q1, then {Qi}si=2 span a linear space of dimension less than n− 2. This contradicts

with the fact that {Qi}si=2 span a linear space of dimension s − 1. Thus there must

exist a j ∈ {2, · · · , s} such that Q1 and Qj share at least one positions for non-zero

entry. By the observation we made in the last paragraph, Q1 and Qj then share at

least two positions of non-zero entry. This completes the proof.

Corollary VII.27. Fix a positive integer n ≥ 2 and a Q ∈ O(s)\Ops(s). There
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exists indexes i, j, k, ` ∈ [1, .., s] (i 6= j and k 6= `), such that for any m ≥ 3,

qm−1
ik qjk 6= 0, and qm−1

i` qj` 6= 0. (7.86)

In particular, if s = 2, then for any m ≥ 3,

qm−1
11 q21 6= 0, and qm−1

12 q22 6= 0. (7.87)

Theorem VII.9 can be obtained as a corollary of the following lemma.

Lemma VII.28. Fix a s ≥ 2, let x = (x1, x2, · · · , xs)T and y = (y1, y2, · · · , ys)T be

two random vectors such that y = Qx, where Q ∈ O(s). Assume (xi)
s
i=1 are freely

independent. Now if (yi)
s
i=1 are freely independent, then at least one of the following

happens:

(i) Q ∈ Ops(s).

(ii) There are at least two components of x are semicircular (or Poisson in the non

self-adjoint setting).

We first show that Theorem VII.9 follows from Lemma VII.28.

Proof of Theorem VII.9. As x and y satisfy (7.1), x = (QTW )W Ty. Now, by

assumption, x and W Ty have free components. Then according to Lemma VII.28,

there are two possibilities: (i) QTW ∈ Ops or (ii) x has at least two semicircular

components. As (ii) has been excluded, (i) shall happens. That is, there exist a

permutation matrix P and a signature matrix S such that QTW = PS, i.e., W =

QPS.

Proof of Lemma VII.28. If Q ∈ Ops(s), then the components of y are exactly the

components of x with different order and possible sign change. It is not surprising

that yi are freely independent. In the following, we assume that Q ∈ O(s)\Ops(s),
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and x,y has free components, the goal is to show that x has at least two semicircular

elements.

We start with the case where n = 2. Then it is desired to show x1 and x2 are

both semicircular elements. Recall the Definition B.8 for the semicircular element, it

is enough to show κm(xi) ≡ 0 for all m ≥ 3 and i = 1, 2.

Fix m ≥ 3, we consider the mixed cumulants of y1, y2 of the specific form

κm(y1, · · · , y1, y2, yp) for p = 1, 2. As y1, y2 are free-independent, these cumulants

satisfies the condition of Theorem B.7 by noting that i(1) = 1 6= i(m− 1) = 2. Thus

these mixed cumulants vanishes, i.e.,

κm(y1, · · · , y1, y2, yp) = 0 for p = 1, 2. (7.88)

On the other hand, as (yi)
2
i=1 are linear combinations of (xi)

2
i=1, using multi-

linearity of κm(·) (see (B.9)), we will express κm(y1, · · · , y1, y2, yp) as linear combina-

tions of κm(xi) (recall the notation (B.12)). Adapt the notation Q = (qij)
2
i,j=1, then

yi =
∑2

j=1 qijxj. We first derive the expression for κm(y1, · · · , y1, y2, y1) (i.e., p = 1),

κm(y1, · · · , y1, y2, y1) = κm

(
2∑
j=1

q1jxj, · · · ,
2∑
j=1

q1jxj,
2∑
j=1

q2jxj,
2∑
j=1

q1jxj

)
. (7.89)

Apply (B.9) to the right hand side of (7.89) to expand the first variable,

κm(y1, · · · , y1, y2, y1) =
2∑

j1=1

q1j1κm

(
xj1 ,

2∑
j=1

q1jxj, · · · ,
2∑
j=1

q1jxj,

2∑
j=1

q2jxj,

2∑
j=1

q1jxj

)
.

(7.90)

Again apply (B.9) for the second variable, we obtain that

κm(y1, · · · , y1, y2, y1) =
2∑

j1=1

2∑
j2=1

q1j1q1j2κm

(
xj1 , xj2 , · · · ,

2∑
j=1

q1jxj,

2∑
j=1

q2jxj,

2∑
j=1

q1jxj

)
.

(7.91)
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Repeat applying (B.9) for the rest n− 2 variables, we arrive at

κm(y1, · · · , y1, y2, y1) =
2∑

j1=1

· · ·
2∑

jn=1

(
s−2∏
`=1

q1j`

)
q2js−1q1jsκm(xj1 , · · · , xjs). (7.92)

There are totally 2s terms in above summation. Note that x1 and x2 are free in-

dependent. Then by Theorem B.7, most of these cumulants vanish. For exam-

ple, κs(x1, x2, · · ·x2) = 0 where j1 = 1 6= j2 = 2. Consequently, there are only

two terms corresponding to the choices of indexes j1 = j2 = · · · = js = 1 and

j1 = j2 = · · · = js = 2 survive. Thus using the notation (B.12), (7.92) can be written

as

κm(y1, · · · , y1, y2, y1) = qm−2
11 q21q11κm(x1) + qm−2

12 q22q12κm(x2). (7.93)

Combining (7.93) with (7.88), we obtain that

qm−2
11 q21q11κm(x1) + qm−2

12 q22q12κm(x2) = 0. (7.94)

Repeat (7.88) to (7.94) for κm(y1, · · · , y1, y2, y2) (i.e., p = 2), we find that

qm−2
11 q21q21κm(x1) + qm−2

12 q22q22κm(x2) = 0. (7.95)

Writing (7.94) and (7.95) in the matrix form, we obtain that

qm−2
11 q21q11 qm−2

12 q22q12

qm−2
12 q21q21 qm−2

12 q22q22


κm(x1)

κm(x2)

 =

q11 q12

q21 q22


qm−2

11 q21 0

0 qm−2
12 q22


κm(x1)

κm(x2)

 = ~0

(7.96)

We actually get a linear equation system for κm(x1) and κm(x2). Note that Q =
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(qij)
2
i=1 is an orthogonal matrix and thus is invertible. Thus (7.96) is equivalent to

qm−2
11 q21 0

0 qm−2
12 q22


κm(x1)

κm(x2)

 = ~0. (7.97)

Now, as Q ∈ O(2)\Ops(2), then by (7.87), above linear equation system has a

unique solution, κm(xi) = 0, i = 1, 2. Note that this holds for all m ≥ 3. Then by

Definition B.8, we conclude that xi for i = 1, 2 are semicircular element (or Poisson

element in non self-adjoint setting). This conclude the proof for n = 2.

For general n ≥ 2. As Q ∈ O\Ops, by Corollary VII.27, there exist i, j, k, ` (i 6= j

and k 6= `) such that (7.86) holds. We will show that xk, x` are semicircular elements.

For fixed m ≥ 3, we consider the vanishing mixed cumulants

κm(yi, · · · , yi, yj, yp) = 0 for p = 1, · · · , s. (7.98)

Use relation yi =
∑s

j=1 qijxj and multilinearity of κm, we can repeat (7.88) to (7.94)

for each κm(yi, · · · , yi, yj, yp) and get

qm−1
i1 qj1qp1κm(x1) + · · ·+ qm−1

is qjsqpsκm(xs) = 0, for p = 1, · · · , s. (7.99)

Write above equations in the matrix form:


q11 · · · q1s

...
. . .

...

qs1 · · · qss



qm−2
i1 qj1

. . .

qm−2
is qjs



κm(x1)

...

κm(xs)

 = ~0. (7.100)

Again, Q = (qij)
s
i=1 is invertible and qm−1

ik qjk 6= 0 (see (7.86)), thus κm(xk) = 0. For

the same reason, κm(x`) = 0. As these hold for all m ≥ 3, xk, x` are semicircular

elements.
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Remark VII.29. We remark that for each s ≥ 2, there are case there are exactly two

semicircular elements. Consider the x with x1 and x2 are semicircular elements (or

Poisson element in non self-adjoint setting), let the mixing matrix Q be the following:

Q =



cos θ − sin θ

sin θ cos θ

1

. . .

1


. (7.101)

As mentioned, (Qx)1 and (Qx)2 are sill free semicircular elements. Also x3, · · · , xs

remains unchanged. Thus Qx still has free components.

Not that in the self-adjoint case, identifiability condition (Theorem VII.9) was

proved using Corollary VII.27 and Theorem B.7. We can prove Theorem (e) using

the same proof with Theorem B.7 replaced by Theorem B.14.

7.6 Proof of Theorem VII.19

Lemma VII.30. Given Y = [Y1, · · · ,Ys]T ∈ CNs×N with Yi ∈ CN×N are Hermitian

matrices and a vector w = [w1, · · · , ws] ∈ Rs. For

X = w̃TY , with w̃ = w ⊗ IN ,

we recall the empirical free kurtosis

κ̂4(X) =
1

N
Tr(X4)− 2

[
1

N
Tr(X2)

]2

.
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Then we have that

∂κ̂4(X)

∂wk
=

4

N
Tr(YiX

3)− 8

N2
Tr(X2) Tr(YiX). (7.102)

Proof. As Tr(·) is a linear function of entries of input matrix,

∂κ̂4(X)

∂wk
=

1

N
Tr

(
∂X4

wk

)
− 4

N2
Tr(X2) Tr

(
∂X2

∂wk

)
. (7.103)

Note that

X = w̃TY = w1Y1 + · · ·+ wsYs,

thus, for any k = 1, · · · , s,
∂X

∂wk
= Yk. (7.104)

Therefore,

∂X4

∂wk
= YkX

3 +XYkX
2 +X2YkX +X3Yk. (7.105)

Using Tr(AB) = Tr(BA), we find that

Tr(YkX
3) = Tr(XYkX

2) = Tr(X2YkX) = Tr(X3Yk)

and thus

Tr

(
∂X4

wk

)
= 4 Tr(YkX

3). (7.106)

Repeat (7.105) to (7.106) for Tr
(
∂X2

∂wk

)
, we get that

Tr

(
∂X2

∂wk

)
= 2 Tr(YkX). (7.107)

Plug (7.106) and (7.107) into (7.103), we obtain (7.102).
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Lemma VII.31. Given Y = [Y1, · · · ,Ys]T ∈ CNs×N with Yi ∈ CN×N are Hermitian

matrices and a vector w = [w1, · · · , ws] ∈ Rs. For

X = w̃TY , with w̃ = w ⊗ IN ,

with eigenvalues λi and corresponding eigenvectors vi, we recall the empirical free

entropy

χ̂(X) =
1

N(N − 1)

∑
i 6=j

log |λi − λj|.

Then we have that

∂χ̂(X)

∂wk
=

1

N(N − 1)

∑
i 6=j

∂wkλi − ∂wkλj
λi − λj

(7.108)

with ∂wkλi = vTi Ykvi.

Proof. Equation (7.108) is obtained by directly taking derivative. The fact that

∂wkλi = vTi Ykvi follows from (7.104) and perturbation theory of eigenvalues [87].

Proof of Theorem VII.19. We first prove part (a). Set X = [X1, · · · ,Xs] = W̃ TY ,

then
s∑
i=1

∣∣∣κ̂4.
(
W̃ TY

)∣∣∣ =
s∑
i=1

|κ̂4 (Xi)|

As only X` explicitly depends on Wk`,

∂Wk`

s∑
i=1

∣∣∣κ̂4.
(
W̃ TY

)∣∣∣ = ∂Wk`
|κ̂4 (X`)| . (7.109)

Further notice that X` = w̃T
` Y with w` = [W1`, · · · ,Ws`]

T , thus

∂Wk`
|κ̂4 (X`)| = sign(κ̂4 (X`)) · ∂Wk`

κ̂4 (X`)

= sign(κ̂4 (X`))

(
4

N
Tr(YkX

3
` )− 8

N2
Tr(X2

` ) Tr(YkX`)

)
,

(7.110)
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where we used Lemma VII.30 for the last equality. Then (a) is proved by plugging

(7.110) into (7.109). The part (b) can be proved in a similar manner by repeating

the process from (7.109) to (7.110), where we replace |κ̂4(·)| with χ(·) and Lemma

VII.30 by Lemma VII.31.

We omit the details of the proofs of (c) and (d) since these are straightforward

modifications of the proofs of Lemma VII.30, VII.31 and parts (a) and (b).
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APPENDIX A

Replica method and replica symmetry breaking

The replica method is a popular, however non-rigorous trick in statistical physics.

Together with the ”replica symmetry breaking”, the replica method successfully pre-

dicts the correct results in the spin glass theory and motivates the famous Parisi

formula. Therefore, we present a brief discussion of the replica method and replica

symmetry breaking even though they are not involved in the main content of this

thesis.

A.1 Replica method for p-spin SSK model

We mainly follow the calculation in [79]. The applications of replica method

to mixed p-spin SK and SSK can be carried out in a similar manner. Recall the

Hamiltonian of SSK model H(σ) defined as in (2.10). For simplicity, we assume

that the entries of the real symmetric random matrix J = (Jij)
N
i,j=1 are independent

Gaussian random variables with variance (1 + δij)/N . Here δij denotes the Kronecker

delta function. Recall that the free energy and the partition function of SSK model

are given by (cf. (2.12))

F :=
1

Nβ
logZ, Z :=

∫
σ∈SN−1

eβH(σ)dw(σ). (A.1)
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The goal is to calculate the non-random limit F = limN→∞F . Note that the free

energy of SSK is self-averaging thus it is enough to evaluate limN→∞ EF . On the

other hand, the formula of F involves a log function, which is inconvenient for taking

the expectation. The idea of replica method is the following simple identity: log x =

limn→0
xn−1
n

. That is, the log function can be written as a limit of moments. We

write

F = lim
N→∞

EF = lim
N→∞

1

Nβ
lim
n→0

EZn − 1

n
. (A.2)

We now calculate EZn for integer n ≥ 1. Denoting n replica of σ by σ(1), · · · , σ(n)

and using Jij = Jji, we find that

EZn =

∫ n∏
`=1

dw(σ(`))
∏
i≤j

√
N

2π
dJij exp

[
− NJij

2(1 + δij)
+ βJij

n∑
`=1

σ
(`)
i σ

(`)
j

]

=

∫ n∏
`=1

exp

Nβ2

4

n∑
k,`=1

(
1

N

N∑
i=1

σ
(k)
i σ

(`)
i

)2
 . (A.3)

The replicas are introduced to eliminate the coupling between (Jij)
N
i,j=1. This works

due to the assumption that Jij are Gaussian.

Now we have to deal with the coupling between replicas. Adapt the notation

Q = (Qk`)
n
k,`=1, and write (A.3) as

EZn =

∫ k∏
`=1

dw(σ(`))

∫ n∏
k,`

dQijδ(Qij −
1

N

N∑
i=1

σ
(k)
i σ

(`)
i ) exp

[
Nβ2

4

n∑
k,`

Q2
k`

]
. (A.4)

where δ(x) denotes the Dirac delta function. That is, the nontrivial contribution

comes from

Qk` =
1

N

N∑
i=1

σ
(k)
i σ

(`)
i . (A.5)

Note that Qk` measures the similarity between replicas σ(k) and σ(`). By the spherical

constrain, 0 ≤ Qk` ≤ 1 and Qkk = 1 for k, ` = 1, · · · , n. Changing the order of
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integration and noting

∫ k∏
i=1

dw(σ(`))
n∏
k,`

δ(Qk` −
1

N

N∑
i=1

σ
(k)
i σ

(`)
i ) ≈ (detQ)−N/2, (A.6)

we find

EZn ≈
∫

dQeNS(Q), (A.7)

where

S(Q) =
β2

4

n∑
k,`=1

Q2
k` +

1

2
log det(Q). (A.8)

Here comes the first risky assumption of the replica method. The calculation

leading to (A.7) is only valid for integer n ≥ 1. However, we will assume that (A.7)

holds for all n→ 0 and thus (A.2) implies

F = lim
N→∞

lim
n→0

1

nNβ

(∫
dQeNS(Q) − 1

)
. (A.9)

It is tempting to apply the steepest descent analysis to the integral. However, the

limit n → 0 has to be taken first. Besides, S(Q) depends on n implicitly. In order

to avoid these difficulties, we make the second risky assumption that the two limits

in (A.9) is exchangeable. Then, an application of steepest descent analysis to (A.9)

yields

F = lim
n→0

1

nβ
maxS(Q). (A.10)

Here, we note that that the above optimization problem only makes sense for n ≥ 1

is an integer. As the diagonal elements of Q are fixed to be 1, there are n(n − 1)/2

variables, we are actually optimizing over a negative number of variables number as

n→ 0.

Aware of this mathematical weirdness, we optimize S(Q) for n ≥ 1 and naively
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take the n→ 0 limit of the maximum. Note that for arbitrary matrix M ,

∂

∂Mk`

log detM = (M−1)k`. (A.11)

Therefore, if Q̂ = argmaxQS(Q), then Q̂k` satisfies

0 =
∂S

∂Qk`

∣∣∣∣
Q=Q̂

=
β2p

4
Q̂p−1
k` +

1

2
(Q̂−1)k` for all k 6= `. (A.12)

The above equation involves the inverse of Q̂ and is not easy to solve. Mimicking

what Sherrington and Kirkpatrick did in [107], we assume a replica symmetry (RS)

form for Q̂. That is, all replicas are assumed to be equivalent, which implies that the

overlaps Q̂k` ≡ q0 for k 6= `, i.e.,

Q̂k` = q0I + (1− q0)δk`. (A.13)

For Q̂ with above structure, one can check that

(Q̂−1)k` =
1

1− q0

δk` −
q0

(1− q0)[1 + (n− 1)q0]
. (A.14)

Then the equation (A.12), in the limit of n→ 0, becomes

β2p

4
qp−1

0 − q0

2(1− q0)2
= 0. (A.15)

We first discuss the 2-spin case. When T > 1 (β < 1), equation (A.15) has a

unique solution q0 = 0. On the other hand, when T < 1 (β > 1), the equation (A.15)

possesses two solutions 0 and 1 − 1
β
. Since, the replicas will be frozen at direction

maximizing the Hamiltonian when T = 0, we expect that q0 → 1 as T → 0. Therefore,

we take q0 = 1 − 1
β

for T < 1. Observe that there a critical temperature Tc = 1.
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Plugging the above q0 back to (A.10), we obtain that

F =


1

4T
if T > 1,

1− 3T
4

+ T log T
2

if T < 1.

(A.16)

This formula of limiting free energy agrees with the one obtained from the Parisi

formula, which indicates that the RS assumption is valid for 2-spin SSK model.

We now consider the cases where p ≥ 3. There exists a critical temperature Tc

such that the equation (A.15) behaves differently between T > Tc and T < Tc. In the

high temperature (T > Tc), the equation (A.15) possesses a unique solution q0 = 0.

And plugging q0 = 0 into (A.10) yields the correct limiting free energy. On the other

hand, there is a pair of nonzero solutions appear when T < Tc. We select the solution

increases with decreasing T . However, the limiting free energies associated with this

nonzero solution does not agree with the result from the Parisi formula. Furthermore,

it exhibits an unphysical negative entropy [107, 89] when T < T0 for some temperature

T0 < Tc. From the point of view of steepest descent, ”replica symmetric” solutions

are unstable when T < Tc [47]; the Hessian of S(Q) at Q̂ has a negative eigenvalue.

All these indicate our RS scheme is incorrect in the low temperature regime. As we

will see in the next section, for p ≥ 3, Q̂ in the low temperature should be of a ”replica

symmetry breaking” (RSB) form.

There are efforts to validate the replica method for SK and SSK models [89, 114].

However a fully rigorous justification is still open. At the moment, we can regard it

as a powerful predictive tool.

A.2 Replica symmetry breaking and Parisi formula

In the last section, we found that the RS scheme is insufficient and a RSB solution

was necessary when we consider p-spin SSK models for p ≥ 3 in the low temperature
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regime. The simplest possible structure of RSB is the following. The n replicas are

divided into groups of size m1 (thus there are around n/m1 groups in total). Then

it is assumed that the overlaps between replicas from the same group are uniform,

whose value is denoted by q1 satisfying 0 ≤ q1 ≤ 1. On the other hand, the overlaps

between replicas from the distinct groups are also uniform and the value is assumed

to be q0 satisfying 0 ≤ q0 ≤ q1. This ansatz is called 1RSB scheme (see Figure A.1

for corresponding Q̂).

Plugging Q̂ with the 1RSB structure into (A.10) and taking the limit n → 0

carefully (again we are optimizing over a negative number of variables), we find that

the corresponding limiting free energy F1RSB satisfies

F1RSB =
β[1 + (m1 − 1)qp1 −m1q

p
0]

4
+

log[m1(q1 − q0) + (1− q1)]

2m1β

+
(m1 − 1) log(1− q1)

2m1β
+

q0

m1β(q1 − q0) + (1− q1)
.

(A.17)

The explicit values of m1, q1 and q0 is defined by the equation systems ∂m1F1RSB = 0,

∂q1F1RSB = 0 and ∂q0F1RSB = 0 and the constraints 0 ≤ m1, q1 ≤ 1 and 0 ≤ q0 ≤ q1.

Here, m1 stands for the probability that a overlap is equal to q1 when it is uniformly

sampled from all pairs of the replicas. It turned out, for pure p-spin SSK models,

the F1RSB is stable (the eigenvalues of Hessian are all positive) and agrees with the

limiting free energy given by the Parisi formula [47].

However, for p-spin SK and mixed p-spin SSK, the above 1RSB scheme does not

lead to the correct limiting free energy; the S(Q) is unstable at the Q̂ with 1RSB

structure and F1RSB is inconsistent with the Parisi formula. Nevertheless, 1RSB

scheme is better in terms of the entropy. It only exhibits negative entropy when

T < T1 for some T1 < T0. This suggests that further symmetry breaking need to be

introduced based on 1RSB scheme, which is exactly what Parisi did in his series of

work towards the Parisi formula [101, 102, 103, 89]. Parisi divided each group (of
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1 q0

. . .

q0 1

→



1 q1
. . .

q1 1

q0

q0

1 q1
. . .

q1 1


→



1 q2

q2 1
q1

q1
1 q2

q2 1

q0

q0

1 q2

q2 1
q1

q1
1 q2

q2 1



Figure A.1: Matrices Q̂ corresponding to the ”replica symmetry” ansatz and the first
two RSB ansatzs. The first matrix represents Q̂ for the ”replica symmetry” ansatz.
The second and third matrices are Q̂ for the 1RSB and 2RSB scheme respectively. In
this diagram, we divide every groups into two subgroups (m1 = n/2 and m2 = m1/2).
In each step, we further breaking matrices on the diagonal into smaller sub matrices
while off-diagonal matrices remain unchanged.

size m1) in 1RSB schme into subgroups of size m2. Similar to assumptions made

in symmetry braeking from RS to 1RSB, it is assumed that the overlap between

replicas within the same subgroups are some constant q2 ≥ q1, while other overlaps

remained unchanged. The resulting ansatz is called 2RSB scheme. The Q̂ of 2RSB

scheme is plotted in Figure A.1 and we denote the associated limiting free energy by

F2RSB. While F2RSB does not agree with the Parisi formula, it is associated with a

better entropy, which becomes negative at even lower temperatures than 1RSB and

replica symmetry schemes. This motivated Parisi to continue perform the symmetry

breaking based on 2RSB scheme. Actually, Parisi proposed that the process could

be iterated infinite times . The limiting ansatz was called full RSB scheme or Parisi

ansatz, which is the structure of replicas behind the Parisi formula.

In the full RSB scheme, the replicas are organized in a hierarchical way (see Figure

A.2), which is called ultrametric [88, 99]. For mixed p-spin SK and SSK models, full

RSB scheme is necessary: any finite step RSB fails to describe the system. Therefore,

complicated energy landscapes are expected for these models.
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Figure A.2: Full RSB scheme. Left panel: the overlap between replicas α and β is q1,
which corresponds to the first common level containing both α and β. Right panel:
replicas are divided into subsets iteratively. Figure from [93].
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APPENDIX B

Free probability, matrix embeddings and

independent component analysis
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B.1 What is freeness of random variables?

The goal of this section is to introduce the freeness of non-commutative random

variable. We first discuss the independence (freeness) in the context of the scalar

probability, free probability for self-adjoint (non-commutative) random variables and

free probability for rectangular (non-commutative) random variables respectively. We

focus on the the behavior of (free) cumulants and (free) entropy of independent (free)

random variables, which are the basis ICA (FCA). The connection between in inde-

pendent random matrices and free random variables is given at the end.

For a detailed introduction of free probability, readers are referred to [95, 65, 90]

B.1.1 Prologue: What is independence of commuting random variables?

Here, we briefly review the statistic independence in scalar probability. We state

the behavior of cumulants and entropy of independent random variables, which are

the basis of ICA. In the end, we discuss the unique role the Gaussian random variables

play in ICA.

B.1.1.1 Mixed moments point of view

Let I denotes an index set, and (xi)i∈I denote random variables. They are inde-

pendent if for any n ∈ N and m1, · · · ,mn ≥ 0,

E[xm1

i(1) · · · x
mn
i(n)] = E[xm1

i(1)] · · ·E[xmni(n)].

if i(j) ∈ I, j = 1, · · ·n are all distinct. An alternative definition is that for any

polynomials P1, · · ·Pn of one variables,

E[P1(xi(1)) · · ·Pn(xi(n))] = 0 (B.1)
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if E[Pj(xi(j))] = 0 for all j = 1, · · · , n and i(j) ∈ I, j = 1, · · ·n are all distinct.

B.1.1.2 Cumulants – kurtosis and higher order – independent additivity

The (joint) cumulants of n random variables a1, · · · , ak is defined by

cn(a1, · · · , an) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

[∏
i∈B

ai

]
, (B.2)

where π runs through all partitions of {1, · · · ,m}, B runs through all blocks of

partition π. Equivalently, {cm}m≥1 is defined through

E(x1 · · ·xn) =
∑
π

∏
B∈π

c|B|(ai : i ∈ B) (B.3)

The reason that ICA adapts an optimization problem involving cumulants is the

following property: if (xi)i∈I are independent, then for any n ∈ N

cn(xi(1), · · · , xi(n)) = 0 (B.4)

whenever there exists 1 ≤ `, k ≤ n with i(`) 6= i(k). That is, any cumulants involving

two (or more) independent random variables is zero. Adapt the notation

cn(x) := cn(x, · · · , x).

A quick consequence of (B.4) is that for independent x1 and x2.

cn(x1 + x2) = cn(x1) + cn(x2). (B.5)
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B.1.1.3 Entropy – independent additivity

For random variables a1, · · · , an with joint distribution f(a1, · · · , an), the (joint)

entropy is defined by [46]

h(a1, · · · , an) = −
∫
f(α1, . . . , αn) log f(α1, · · · , αn)dα1 · · · dαn. (B.6)

The joint entropy of a set of variables is less than or equal to the sum of the

individual entropies of the variables in the set,

h(a1, · · · , an) ≤ h(a1) + · · ·+ h(an). (B.7)

In particular, the equality in (B.7) holds if and only if a1, · · · , an are independent.

Therefore, the entropy is regard a measure of indepenedence and thus can be used in

ICA.

B.1.1.4 Why Gaussians cannot be unmixed? Gaussians have zero higher

order cumulants

In ICA, the optimization problem people used finds the independent direction by

maximizing the kurtosis (fourth cumulant). However, all cumulants of order larger

than 2 for Gaussian random variables vanish. Thus ICA fails to unmix Gaussian

random variables. ICA based on the entropy also fails to unmix Gaussian random

variables, as nontrivial mixtures of independent Gaussian random variables can still

be independent Gaussian. On the other hand, it was shown that this is the only

case where ICA does not work [43]. The result of this kind is called identifiability

condition.
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B.1.2 Freeness of self-adjoint random variables

We first introduce the definition of probability space for non-commutative random

variables. The start point is the an unital algebra of non-commutative variables.

Definition B.1. Let X be a vector space over C equipped with product · : X ×X 7→

X . Denote the vector space addition by +, we call X an algebra if for all a, b, c ∈ X

and α ∈ C,

1. a(bc) = (ab)c,

2. a(b+ c) = ab+ ac,

3. α(ab) = (αa)b = a(αb).

We call X a unital algebra if there is a unital element 1X such that, for all a ∈ X

a = a1X = 1Xa. (B.8)

An algebra X is called a ∗-algebra if it is also endowed with an antilinear ∗-operation

X 3 a 7→ a∗ ∈ X , such that (αa)∗ = ᾱa∗, (a∗)∗ = a and (ab)∗ = b∗a∗ for all α ∈ C,

a, b ∈ X .

Note that ab = ba does not necessarily hold for general a, b ∈ X , i.e., they are

non-commutative.

Definition B.2. A (non-commutative) ∗-probability space (X , ϕ) consists of a unital

∗-algebra and a linear functional ϕ : X → C, which serves as the ’expectation’. with

We also require that ϕ satisfies

(i) (positive). ϕ(aa∗) ≥ 0 for all a ∈ X .

(ii) (tracial). ϕ(ab) = ϕ(ba) for all a, b ∈ X .

(iii) ϕ(1X ) = 1.
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The elements a ∈ X are called non-commutative random variables. (We may omit the

word non-commutative if there is no ambiguity.) Given a series of random variables

x1, · · · , xk ∈ X , for any choice of n ∈ N, i(1), · · · , i(n) ∈ [1..k] and ε1, · · · , εn ∈ {1, ∗},

ϕ(xε1i(1) · · ·x
εn
i(n)) is a mixed moment of {xi}ki=1. The collection of all moments is called

the joint distribution of x1, · · · , xk.

The moments of general random variables can be complex-valued; self-adjoint

random variables, which are defined in a minute, necessarily have real-valued moments

and will be the object of our study.

Definition B.3. Let (X , ϕ) be a non-commutative probability space, a element a ∈ X

is self-adjoint if a = a∗. In particular, the moments of self-adjoint elements are real

(see Remark 1.2 in [95]).

The counterpart of independence in free probability is freely independence or

simply free. We now consider the freeness of self-adjoint random variables from

various perspectives as in Section B.1.1.

B.1.2.1 Mixed moments point of view

The following official definition of freeness should be compared with (B.1).

Definition B.4. Let (X , ϕ) be a non-commutative probability space and fix a positive

integer n ≥ 1.

For each i ∈ I, let Xi ⊂ X be a unital subalgebra. The subalgebras (Xi)i∈I are

called freely independent (or simply free), if for all k ≥ 1

ϕ(x1 · · ·xk) = 0

whenever ϕ(xj) = 0 for all j = 1, · · · , k, and neighboring elements are from diffierent

subalgebras, i.e. xj ∈ Xi(j), i(1) 6= i(2), i(2) 6= i(3), · · · , i(k − 1) 6= i(k).
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In particular, a series of elements (xi)i∈I are called free if the subalgebras generated

by xi and x∗i are free.

B.1.2.2 Free cumulants – free additivity

The analog of cumulants for non-commutative random variables is called free

cumulants, which was proposed by Roland Speicher [110, 95].

Definition B.5. Given a ∗-probability space (X , ϕ), the free cumulants refer to a

family of multilinear functionals {κm : Xm 7→ C}m≥1. Here, the multilinearity means

that κm is linear in one variable when others hold constant, i.e., for any α, β ∈ C and

a, b ∈ X ,

κm(· · · , αa+ βb, · · · ) = ακm(· · · , a, · · · ) + βκm(· · · , b, · · · ). (B.9)

Explicitly, for a1, · · · , an ∈ X , their mixed free cumulant is defined through (cf.

(B.3))

ϕ(a1 · · · an) =
∑

π∈NC(n)

∏
B∈π

κ|B|(ai : i ∈ B) (B.10)

where NC(n) denotes the non-crossing partition of [1..n]. Equivalently (cf. (B.2)),

κn(a1, · · · , an) =
∑

π∈NC(n)

µ(π,1n)
∑
B∈π

ϕ

[∏
i∈B

ai

]
, (B.11)

where µ is the Möbius function on NC(n).

Example B.6. We have that

κ1(a1) = ϕ(a1),

κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2),

κ3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)

− ϕ(a2)ϕ(a1a3)− ϕ(a3)ϕ(a1a2) + 2ϕ(a1)ϕ(a2)ϕ(a3).
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Recall that in the scalar probability, mixed cumulants of independent random

variables vanish (see (B.4)). The same holds for the free cumulants in the free prob-

ability.

Theorem B.7 (Theorem 11.16 of [95]). Let (X , ϕ) be a

non-commutative probability space with associate free cumulants (κ`)`∈N. Consider

random variables (xi)i∈I , assume that they are freely independent. Then for all n ≥ 2,

and i(1), · · · , i(n) ∈ I, we have κn(ai(1), · · · , ai(n)) = 0 whenever there exist 1 ≤ l, k ≤

n with i(l) 6= i(k).

Consequently, set

κm(a) := κm(a, a, · · · , a), (B.12)

we have that for a, b ∈ X that are free independent,

κm(a+ b) = κm(a) + κm(b) ∀m ∈ N. (B.13)

The above equation should be compared with (B.5).

B.1.2.3 Free entropy – free additivity

For non-commutative random variables, the free entropy χ was introduced by

Voiculescu [118, 119, 121]. The formulation of free entropy is rather complicated

and out of main naretive, readers are referred to Section 6 of [65] for a detailed

introduction.

The free entropy shares the similar property with the scalar entropy. We have

that (cf. (B.7))

χ(a1, · · · , an) ≤ χ(a1) + · · ·+ χ(an). (B.14)

Again the equality in (B.14) holds if and only if a1, · · · , an are freely independent (see

Proposition VII.23).
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B.1.2.4 Analogy of Gaussian random variables in free probability: the

free semi-circular element

The analogy of Gaussian random variable in a ∗-probability space is semicircular

element. Recall that the Gaussian random variable is characterized by vanishing

cumulants of order higher than 2, the semicircular elements can be defined in a

similar manner.

Definition B.8. Given a ∗-probability space (X , ϕ), we call a random variable a ∈ X

a semicircular element if

κm(a) ≡ 0, for m ≥ 3, (B.15)

and κ2(a) > 0 (such that a is not constant).

B.1.3 Freeness of non self-adjoint random variables

We brief introduce the mathematical preliminaries for rectangular probability

space. For a detailed introduction, the readers are refered to [19, 18]

Consider a ∗-probablity space (X , ϕ) with p1, p2 of non-zero self-adjoint projectors

(i.e. ∀i, p2
i = pi) which are pairwise orthogonal (i.e. ∀i 6= j, pipj = 0), and such that

p1 + p2 = 1X . Then any element a ∈ X can be represented in the following block

form

a =

a11 a12

a21 a22

 , (B.16)

where ∀i, j = 1, 2, aij = piapj and we define Xij := piXpj. Note that Xii is a

subalgebra, and we equip it with the functional ϕk = 1
ρk
ϕ|Xkk , where ρk := ϕ(pk).

The functionals ϕi, i = 1, 2 are tracial in the sense that ϕk(pk) = 1 and for all i, j,

x ∈ Xij, y ∈ Xji,

ρiϕi(xy) = ρjϕj(yx). (B.17)

Definition B.9. Such a family (X , p1, p2, ϕ1, ϕ2) is called a (ρ1, ρ2)-rectangular prob-
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ability space. We call a ∈ X12 rectangular random variable.

Remark B.10. If a is a rectangular element, then in the matrix decomposition (B.16),

only a12 is non-zero. Later in Section B.1.4.2, we will model rectangular matrices by

embedding them into a12 of rectangular random variables.

For such a rectangular probability space, the linear span of p1, p2 is denoted by

D. Then D is subalgebra of finite dimension. Define the ED(a) =
∑2

i=1 ϕ(aii)pi. It

can be checked that ED(1X ) = 1X and ∀(d, a, d′) ∈ D×X ×D, ED(dad′) = dED(a)d′.

The map ED(·) is regarded as the conditional expectation from X to D.

We now consider the freeness in rectangular probability space.

B.1.3.1 Mixed moments point of view

The following definition of freeness should be compared with (B.1) and Definition

B.4.

Definition B.11. Given a rectangular probability space and subalgebra D with the

corresponding conditional expectation ED. A family (Xi)i∈I of subalgebras containing

D is said to be free with amalgamation over D (we simply use the word free when

there is no ambiguity) if for all k ≥ 1

ED(x1 · · ·xk) = 0 (B.18)

whenever ED(xj) = 0 for all j = 1, · · · , k, and neighboring elements are from dif-

ferent subalgebras, i.e., xj ∈ Xi(j), i(1) 6= i(2), i(2) 6= i(3), · · · , i(k − 1) 6= i(k). In

particular, a family of rectangular random variables {xi}i∈I (i ∈ I) are called free if

the subalgebras generated by D, ai, and a∗i are free.

B.1.3.2 Rectangular free cumulants – free additivity

The free cumulants are also defined for rectangular probability space [19, 18].
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Definition B.12 (Analogy of cumulant in rectangular probability space). Given a

(ρ1, ρ2)-probability space (X , p1, p2, ϕ1, ϕ2), for any n ≥ 1, we denote n-th tensor

product over D of X by X⊗Dm . We recall a family of linear functions {κm : X⊗Dm 7→

C}m≥1 introduced in [19] (which are denoted as c(1) in [19]). By linearity, we mean

that for m ≥ 1 and any a, b ∈ X and a, b ∈ C,

κm(· · · ⊗ (αa+ βb)⊗ · · · ) = ακm(· · · ⊗ a⊗ · · · ) + βκm(· · · ⊗ b⊗ · · · ). (B.19)

For convenience, we call {κm} rectangular free kurtosis (or kurtosis when there is no

ambiguity). For each m ≥ 1 and any rectangular random variable a, we put

κ2m(a) := κ2m(a⊗ a∗ ⊗ · · · ⊗ a⊗ a∗). (B.20)

We consider consider the even order as odd order cumulants vanishes for all rectan-

gular elements.

Remark B.13. In [19, 18], the free cumulants refer to a family of linear functions be-

tween X⊗Dn and D. The cumulants we introduced here are their coefficient functions

of p1.

The following vanishing lemma holds for the rectangular cumulants defined as in

above.

Theorem B.14 (Vanishing of mixed cumulants). A family (xi)i∈I of elements in X

is free with amalgamation over D if and only if for all n ≥ 2, and i(1), · · · , i(n) ∈ I,

we have κn(xi(1)⊗ · · · ⊗ xi(n)) = 0 whenever there exists 1 ≤ l, k ≤ n with i(l) 6= i(k).

Therefore, for any a, b ∈ X12 that are free,

κ2m(a+ b) = κ2m(a) + κ2m(b), ∀m ∈ N.
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B.1.3.3 Rectangular free entropy – free additivity

The free entropy χ for rectangular free probability space are introduced in [18].

Let a1, · · · , an denotes rectangular random variables, we have that

χ(a1, · · · , an) ≤ χ(a1) + · · ·+ χ(an). (B.21)

And the equality in (B.21) holds if and only if a1, · · · , an are free (See Corollary 5.16

in [18]).

B.1.3.4 Analogy of Gaussian random variables in rectangular free prob-

ability: the free Poisson element

Definition B.15. Given an rectangular probability space (X , ϕ). An rectangular

random variable a ∈ X12 is a free Poisson element if

κ2m(a) ≡ 0, for m ≥ 2. (B.22)

B.1.4 When are random matrices free?

Here, we describe the modelization of independent random matrices as free random

variables and the explicit formulas of free kurtosis and entropy as functions of the

input matrices.

B.1.4.1 Symmetric random matrix

Given a N > 0, we consider the algebra consists of all the real N × N matrices

over scalar random variables L2(Σ, P ):

X = MN(L2(Σ, P )) (B.23)
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and the functional ϕ on it is

ϕ(X) =
1

N
E[Tr(X)]. (B.24)

Denote the matrix transpose with complex conjugate by ∗. Then (X , ϕ) is a ∗-

probability space.

We recall the following definition of asymptotic freely independence [95]

Definition B.16 (Asymptotic independence). Let, for each N ∈ N, (XN , ϕN) be

a non-commutative probability space. Let I be an index set and consider for each

i ∈ I and each N ∈ N random variables ai(N) ∈ XN . We say that {ai(N)}i∈I are

asymptotically free (N →∞), if (ai(N))i∈I converges in distribution towards (ai)i∈I

for some random variables ai ∈ X (i ∈ I) in some non-commutative probability space

(X , ϕ) and if the limits (ai)i∈I are free in (X , ϕ).

A pair of symmetric (Hermitian) random matrices with isotropically random eigen-

vectors that are independent of the eigenvalues (and each other) are asymptotically

free [95].

Given the ∗-probability space (X , ϕ(·)) defined as above. Recall the free kurtosis

defined in (7.3). Thus for a self-adjoint random matrix X ∈ X with ϕ(X) = 0, the

free kurtosis is explicitly given by

κ4(X) =
1

N
E[Tr(X4)]− 2

(
1

N
E[Tr(X2)]

)2

. (B.25)

Also, denote the eigenvalues density function of X by µ(x), free entropy is defined by

[65]

χ(X) =

∫ ∫
log |x− y|dµ(x)dµ(y). (B.26)

For a large class of random matrices X, the free kurtosis and entropy concentrates

around a deterministic value when N is large. For example, if X is a Wigner matrix
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or Wishart matrix, then Var[κ4(X)] → 0 and Var[χ(X)] → 0 as N → ∞. Thus

single sample gives us an accurate empirical estimate. Given an sample of a random

matrix X with Tr(X) = 0, the empirical free kurtosis is

κ̂4(X) =
1

N
Tr(X4)− 2

(
1

N
Tr(X2)]

)2

. (B.27)

Also, the empirical free entropy of X is given by

χ̂(X) =
1

N(N − 1)

∑
i 6=j

log |λi − λj|, (B.28)

where λi denotes the eigenvalue of X.

B.1.4.2 Rectangular random matrix

Consider rectangular random matrix of size N ×M , and assume that N ≤M . In

[19], the author embeded N ×M matrix into top right block of a (N +M)× (N +M)

”extension matrix”. The algebra of all (N+M)× (N+M) random matrices together

with this block structure structure is defined as an rectangular probability space

(MN+M(L2(Σ,P)), diag(IN , 0M), diag(0N , IM), 1
N

Tr, 1
M

Tr) [19].

We recall the following definition of asymptotic freely independence in rectangular

probability space [18].

Definition B.17 (Asymptotic freely independence). Let, for each N ∈ N,

(XN , p1(N), p2(N), ϕ1,N , ϕ2,N) be a (ρ1,N , ρ2,N)-rectangular probability space such that

(ρ1,N , ρ2,N)→ (ρ1, ρ2), N →∞.

Let I be an index set and consider for each i ∈ I and each N ∈ N random variables

ai(N) ∈ XN . We say that {ai(N)}i∈I are asymptotically free (N →∞), if (ai(N))i∈I

converges in D-distribution towards (ai)i∈I for some random variables ai ∈ X (i ∈ I)
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in some (ρ1, ρ2)-probability space (X , p1, p2, ϕ1, ϕ2) and if the limits (ai)i∈I are free

in (X , ϕ).

And independent bi-unitary invariant rectangular random matrices with converg-

ing singular law are asymptotically freely independent [19, 18].

Following (7.4), the free kurtosis for a single N ×M random matrices X is given

by

κ4(X) =
1

N
E[Tr((XXH)2)]− (1 +

N

M
)

(
1

N
E[Tr((XXH))]

)2

. (B.29)

Denote the probability density function of eigenvalues ofXXH by µ(x), set α = N
N+M

and β = M
N+M

, the free entropy is given by [18]

χ(X) = α2

∫ ∫
log |x− y|dµ(x)dµ(y) + (β − α)α

∫
log xdµ(x). (B.30)

Again, empirical statistics over a single sample of large dimension give an accurate

estimate of limit value. Given a realization of rectangular random matrixX ∈ RN×M ,

the empirical free kurtosis is given by

κ̂4(X) =
1

N
Tr((XXH)2)− (1 +

N

M
)

(
1

N
Tr(XXH)

)2

. (B.31)

The empirical free entropy is given by

χ̂(X) =
α2

N(N − 1)

∑
i 6=j

log |λi − λj|+
(β − α)α

N

N∑
i=1

log λi, (B.32)

where λi denote the eigenvalue of XXH .

B.2 Matrix Embeddings

One restriction of ICA is that it only operates on vector-valued components (see

Section B.3). In contrast, FCF applies to data whose matrix-valued components
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that can be of arbitrary dimensions. Thus, one can embed components into new

dimensions potentially obtain a better performance with FCA. In this section, we list

several matrix embedding algorithms.

For Z = [Z1, · · · ,ZN ]T where the Zi are rectangular matrices, Algorithm 3 em-

beds Zi in the upper diagonal parts of a N ′ × N ′ self-adjoint matrices. In practice,

the target dimension N ′ should be picked such that there no loss of information while

also avoiding too many artificial zeros. To embed Zi into rectangular matrices of

other dimensions, we introduce Algorithm 5. Putting the above embeddings and ap-

propriate FCF algorithms together, we get Algorithm 4 and Algorithm 6. One easily

state the analogs of the above algorithms for data containing self-adjoint matrices;

for the sake of brevity, we omit them here.

If the Zi are vectors, one can use the spectrogram to embed them into matrices.

The spectrogram of a vector is the alignment of the discrete Fourier transform of a

sliding window. The outcome is a complex rectangular matrix to which we can apply

rectangular FCFs. This is summarized in Algorithm 7.

Algorithm 3 Symmetric Embedding

Input: Z = [Z1, · · · ,ZN ]T where Zi ∈ CN×M .

Input: Target dimension N ′ ×N ′.

1. Draw S uniformly from all subsets of {1, · · · , N
′(N ′−1)

2
} with size N ′(N ′−1)

2
−NM .

2. for i = 1, · · · , s

3. Construct z′ ∈ R
N′(N′−1)

2 by setting z′[S] = 0 and z′[Sc] = vec(Zi).

4. Fill the upper diagonal part of zero matrix Z ′ ∈ CN ′×N ′ by setting (Z ′ij)j>i = z′.

5. Construct self-adjoint matrix Z ′i = Z ′ + (Z ′)H .

6. end for

7. return: Z ′ = [Z ′1, · · · ,Z ′s]T .
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Algorithm 4 Symmetric Embedding FCF

Input: Z = [Z1, · · · ,ZN ]T ∈ CsN×M where Zi ∈ CN×M .

Input: Target dimension N ′ such that N ′(N ′−1)
2

≥ NM .

1. Apply Algorithm 3 to Z and find Z ′.

2. Apply Algorithm 2 to Z ′ and find estimated mixing matrix Â.

3. Compute X̂ = (Â−1 ⊗ IN)Z such that Z = (Â⊗ IN)X̂.

4. return: Â and X̂.

Algorithm 5 Rectangular Embedding

Input: Z = [Z1, · · · ,ZN ]T ∈ CsN×M where Zi ∈ CN×M .

Input: Target dimension N ′ and M ′ such that N ′M ′ ≥ NM .

1. Draw S uniformly from all subsets of {1, · · · , N ′M ′} with size N ′M ′ −NM .

2. for i = 1, · · · , s

4. Construct z′ ∈ RN ′M ′ by setting z′[S] = 0 and z′[Sc] = vec(Zi).

5. Reshape z′ to Z ′i ∈ CN ′×M ′ .

6. end for

7. return: Return Z ′ = [Z ′1, · · · ,Z ′s]T

Algorithm 6 Rectangular Embedding FCF

Input: Z = [Z1, · · · ,ZN ]T ∈ CsN×M where Zi ∈ CN×M .

Input: Target dimension N ′ and M ′ such that N ′M ′ ≥ NM

1. Apply Algorithm 5 to Z and get Z ′.

2. Apply Algorithm 2 to Z ′ = [Z ′1, · · · ,Z ′N ]T and get the estimated mixing matrix

Â.

3. Compute X̂ = (Â−1 ⊗ IN)Z such that Z = (Â⊗ IN)X̂.

4. return: Â and X̂.

209



Algorithm 7 Spectrogrm Embedding FCF

Input: Z = [Z1, · · · ,ZN ]T ∈ Cs×N where Zi ∈ C1×N .

Input: Necessary parameters for spectrogram

1. For each Zi, for i = 1, · · · , s, compute the spectrogram Z ′i.

2. Apply Algorithm 2 to Z ′ = [Z ′1, · · · ,Z ′N ]T and get the estimated mixing matrix

Â.

3. Compute X̂ = (Â−1 ⊗ IN)Z such that Z = (Â⊗ IN)X̂.

4. return: Â and X̂.
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B.3 Independent Component Factorization

We would like to numerically compare FCA with ICA, and begin by providing

a summary of the ICA algorithm. Given data whose components are rectangular

matrices, we first vectorize them and then apply ICA. We once again perform a

whitening process (see Algorithm 8) and solve an optimization problem.

Here, we present Algorithm 9 whose optimization problem is based on the em-

pirical (scalar) kurtosis ĉ4(·) or the empirical (scalar) negentropy Ê(·). We call

them kurtosis-based ICF and entropy-based ICF respectively. Given a centered and

whitened vector x ∈ RT , its empirical kurtosis ĉ4(x) can be expressed as

ĉ4(x) =
1

T

T∑
i=1

x4
i − 3

(
1

T

T∑
i=1

x2
i

)2

. (B.33)

The negentropy E(x) is defined as

E(x) = h(gx)− h(x), (B.34)

where h(x) denotes the entropy of random variable x (see (B.6)) and gx denote the

Gaussian random variable with the same mean and variance as x. It is used as

a measure of distance to normality. The empirical negentropy Ê(x) involves the

empirical distribution of x, which is computationally difficult. Fortunately, it can

also be expressed as a infinite sum of cumulants. Thus in practice, Ê(x) can be

approximated by a finite truncation of that sum [43, Theorem 14 and (3.2) pp. 295].

In the simulation of this paper, we adapt the following approximation (see Section

5 of [71]):

Ê(x) =
1

12

(
1

T

T∑
i=1

x3
i

)2

+
1

48
ĉ4(x) = also cumulants (B.35)
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Algorithm 8 Reshape and whitening

Input: Z = [Z1, · · · ,ZN ]T ∈ CsN×M where Zi ∈ CN×M .

1. For z = [z1, · · · , zs]T , where zi = vec(Zi), Compute µz = mean(z, 2) and z̃ =

z − µz1TNM .

3. Compute C = 1
NM
z̃z̃H and the eigenvalue decomposition <C = UΣ2UT .

4. Compute y = UΣ−1UT z̃.

5. return: y,Σ,U .

Algorithm 9 Prototypical ICF

Input: Z = [Z1, · · · ,Zn]T ∈ CsN×M where Zi ∈ CN×M

1. Compute y,Σ,U by applying Algorithm 8 to Z.

2. Compute

Ŵ = arg min
W∈O(n)

∑
F̂ .
(
W Ty

)
,

where F̂ (·) is equal to −|ĉ4(·)| for kurtosis-based ICF or −Ê(·) for entropy-based ICF.

3. Compute Â = UΣUTŴ and X̂ = (Â−1 ⊗ IN)Z.

4. Sorting components of X̂ by kurtosis or entropy. Permute the columns of Â

correspondingly.

5. return: Â and X̂.
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Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-
Gaviro, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripic-
cione, and D. Yllanes. Static versus dynamic heterogeneities in the d = 3
Edwards-Anderson-Ising spin glass. Phys. Rev. Lett., 105:177202, Oct 2010.

[5] Greg W Anderson and Brendan Farrell. Asymptotically liberating sequences of
random unitary matrices. Advances in Mathematics, 255:381–413, 2014.

[6] Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to
random matrices, volume 118. Cambridge university press, 2010.

[7] Sanjeev Arora, Rong Ge, Ankur Moitra, and Sushant Sachdeva. Provable ica
with unknown gaussian noise, with implications for gaussian mixtures and au-
toencoders. In Advances in Neural Information Processing Systems, pages 2375–
2383, 2012.

[8] Zhidong Bai and Jack W. Silverstein. Spectral analysis of large dimensional
random matrices. Springer Series in Statistics. Springer, New York, second
edition, 2010.

[9] Zhidong Bai and Jun Yao. On the convergence of the spectral empirical process
of Wigner matrices. Bernoulli, 11(6):1059–1092, 2005.

[10] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of
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eigenvalues of deformations of Wigner matrices. Ann. Inst. Henri Poincaré
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eigenvalues of finite rank deformation of large Wigner matrices: convergence
and nonuniversality of the fluctuations. Ann. Probab., 37(1):1–47, 2009.

[31] Jean-François Cardoso. High-order contrasts for independent component anal-
ysis. Neural computation, 11(1):157–192, 1999.

[32] Philippe Carmona and Yueyun Hu. Universality in Sherrington–Kirkpatrick’s
spin glass model. In Annales de l’Institut Henri Poincare (B) Probability and
Statistics, volume 42, pages 215–222. Elsevier, 2006.

[33] Tommaso Castellani and Andrea Cavagna. Spin-glass theory for pedestrians.
Journal of Statistical Mechanics: Theory and Experiment, 2005(05):P05012,
2005.

[34] Guillaume Cébron, Antoine Dahlqvist, and Camille Male. Universal construc-
tions for spaces of traffics. arXiv preprint arXiv:1601.00168, 2016.

[35] Aiyou Chen and Peter J. Bickel. Efficient independent component analysis. The
Annals of Statistics, 34(6):2825–2855, 2006.

[36] Wei-Kuo Chen. On the mixed even-spin Sherrington-Kirkpatrick model with
ferromagnetic interaction. Ann. Inst. Henri Poincaré Probab. Stat., 50(1):63–
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