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ᾱ Coefficient for the Crank-Nicolson method
αf , αm, β̄, γ̄, ρ̄ Coefficients for the generalized-α method
βf ,βr Coefficient matrices in kriging
β Flow orientation angle
γ Transverse shear strain on the middle surface
γ Heat capacity ratio
δ Boundary layer thickness
δ,x Slope of boundary layer thickness distribution in stream-wise direction
ϵ Membrane strain of the shell
ϵ Error
ε Surface emissivity
ζ Damping, real part of the eigenvalue of an aerothermoelastic mode
ζM , ζK Coefficients for proportional damping
θ Inclination angle
ϑ, φ Coefficients in mesh interpolation scheme
κ, κ̄ Normal velocity of CFD mesh cell face, and its weighted average
κ Shear correction factor
λ̄F Nondimensional dynamic pressure
Λp,Λu Diagonal matrices in the Jacobians associated with fluid reduced-order

model
λ Bulk viscosity
λg, λp Eigenvalues of GEP and PEP, respectively
µ Mean of Gaussian distribution
µ Viscosity
ν, ν̄ Normal of CFD mesh cell face, and its weighted average
ν Poisson’s ratio
Ξ̄ Boundary layer similarity parameter
ξ Geometric scale
ρ Density
Σ,σ Covariance matrix of Gaussian distribution, and the vector of standard

deviations
σE In-plane stress of the shell
σ Standard deviation in Gaussian distribution
σb Stefan-Boltzmann constant
τE Transverse shear stress of the shell
τ Viscous stress tensor
υ Coefficient for exploitation-exploration balance
Φ Jacobian of a residual function
ϕ Residual vector
Φ, ϕ Cummulative and probabilistic density functions, respectively
χ Curvature strain on the middle surface
χ, χ̃ Moving and stationary CFD meshes, respectively

xx



Ψ Projection matrix whose columns are orthonormal
Ψ Gas specific energy
ψ Gas specific internal energy
ψx, ψy Rotational displacements in the shell
ω Frequency, imaginary part of the eigenvalue of an aerothermoelastic

mode

Subscripts

aw Quantities related to adiabatic wall
e Quantities at the edge of boundary layer
ext Quantities related to external loading
F Quantities related to the fluid solution
le Distance from leading edge
P Quantities related to the POD method
ref Quantities for reference
S Quantities related to the structural solution
T Quantities related to the thermal solution
w Quantities related to the wall boundary condition of the NS equations
∞ Quantities related to freestream
0 Quantities related to stagnation state

Superscripts

c Matrices and vectors for constraints in finite element formulation
E Estimated quantities
e Quantities related to a finite element
f Properties of the fluid
h Homogenized quantities
krg Quantities related to the kriging method
m Quantities related to the scaled model
n− 1, n, n+ 1 Quantities at time steps n− 1, n, n+ 1, respectively
p Quantities related to the prototype
pk Quantities related to the POD-kriging method
qs Quasi-steady components
s Properties of the solid
std Steady components
sur Quantities related to surrogate
u Unconstrained matrices and vectors in finite element formulation
uns Unsteady components

Others

□̂ Reference quantity for non-dimensionalization
□ Non-dimensional quantity
□′ Quantities related to turbulence

xxi



[□]i The ith component of a vector
O(□) On the order of a quantity
D□
Dt

Material derivative, defined in Eq. (2.2)

□̇ =
d□
dt

Time derivative

□̊ Derivative with respect to nondimensional time
||f || = (

∑
i f

2
i )

1/2 The l2 norm

xxii



ABSTRACT

In the past decade, there has been a strong interest in reusable air-breathing hypersonic

vehicles for in both civil and military applications. However, there are still the unresolved

technical challenges associated with this class of vehicles, and one of the challenges is

hypersonic aerothermoelasticity. Enhancing the understanding of the aerothermoelastic

behavior of hypersonic structures is the ultimate goal of this dissertation.

A computational framework is developed for efficient and accurate aerothermoelastic

simulation over extended flight time. The framework is accelerated using two novel tech-

niques. First, the fluid solver is accelerated using a reduced order model augmented with

a correction and scaling technique, which accounts for non-uniform temperature distribu-

tion, varying flight conditions, and geometric scales. Secondly, a tightly-coupled scheme

and linearized stability analysis are developed to enable near-real-time aerothermoelastic

simulation of extended flight time and automatic identification of aerothermoelastic insta-

bilities, respectively. The computational framework is applied to study the aeroelastic and

aerothermoelastic response of a generic skin panel. The effects of aspect ratio and bound-

ary layer thickness are found to have a significant influence on the critical flutter parameter

and the aerothermoelastic stability boundary, i.e. the time elapsed before the onset of struc-

tural failure. Furthermore, a proper combination of flow orientation angle and material

orientation can significantly extend the aerothermoelastic stability boundary.

Subsequently, an optimization framework is developed for generating hypersonic aerother-

moelastic scaling laws using a novel two-pronged approach, which combines the classical

dimensional analysis with augmentation from numerical simulations of the specific prob-

lem. From the comparison and adjustment of the full-scale prototype and the scaled model,

xxiii



the “numerical similarity solutions” are generated to replace the analytical similarity so-

lutions for refinement of the scaling laws. The search for an aerothermoelastically scaled

model is formulated as a multi-objective optimization problem, which is solved using a

surrogate-based optimization algorithm. The effectiveness of the two-pronged approach

is demonstrated by its application to the refined hypersonic aerothermoelastic scaling of a

composite skin panel configuration.

This study represents a substantial contribution toward an improved understanding of

the aeroelastic and aerothermoelastic behavior of hypersonic skin panels. The findings pro-

vide practical implication on the structural design of hypersonic vehicles. Furthermore, the

demonstration of the numerical scaling approach shows that it can be eventually applied to

testing various components of a hypersonic vehicle. It has the potential for saving consid-

erable funds in the development process of future hypersonic vehicles by replacing some

flight tests with wind tunnel experiments.
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CHAPTER 1

Introduction, Background and Objectives

1.1 Challenges in Air-Breathing Hypersonic Flight

Air-breathing hypersonic vehicles have the potential to revolutionize global transportation

by vastly reducing the traveling time between distant locations. The past decade has wit-

nessed strong, revived interest in reusable air-breathing hypersonic launch vehicles for low-

cost space exploration as well as rapid response to global military threats [7–11]. Typical

design of these vehicles is based on a lifting body configuration with small control surfaces,

and an integrated airframe-propulsion system [12–16]. Several examples are illustrated in

Fig. 1.1, including two flown experimental vehicles, NASA X-43 and Boeing X-51 Wa-

verider, as well as two conceptual vehicles, Lockheed Martin SR-72 and Boeing hypersonic

commercial jet (BHCJ).

While decades of intermittent research have been devoted to hypersonic flight, there are

still several unresolved technical challenges associated with this class of vehicles, including

propulsion technology, material science, and structural design and analysis [7–10, 12, 15,

16]. The outstanding challenges of modeling and testing in the structural aspect of air-

breathing hypersonic vehicles have been pointed out in the report on the national aerospace

plane (NASP) [17] in the 1980’s,

Because of the uncertainties ... in aerodynamic loads and heating, ... preci-

sion of computation and lack of ground test facilities to replicate thermal and
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structural flight loads, the current ability to meet the structural designers re-

quirements are marginal to non existent.

Over the past three decades, the aerospace industry has enjoyed technology advances in

computational and experimental capabilities. However, the development of air-breathing

hypersonic vehicles is still facing the challenges associated with the modeling and testing

of hypersonic structures.

(a) X-43 experimental vehicle ©NASA (b) X-51 Waverider ©Boeing

(c) SR-72 hypersonic vehicle ©Lockheed Martin (d) Hypersonic commercial jet ©Boeing

Figure 1.1: Example air-breathing hypersonic vehicles

The challenges in modeling stems from the multidisciplinary nature of air-breathing

hypersonic vehicles. The aerodynamic, structural and thermal responses are tightly cou-

pled and interact with the control and propulsion systems, as illustrated in Fig. 1.2. Due

to the high speeds, the vehicle is exposed to extreme aerothermodynamic environment in-

volving high aerodynamic loading and heating. The high heating rates lead to degradation
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of material properties. The thermal stresses introduced by the temperature gradients and

geometrical constraints affect structural integrity and cause structural instabilities, includ-

ing buckling and flutter. Therefore, successful design of air-breathing hypersonic vehicles

requires a combined multi-physics model where the disciplines of aerodynamics, structural

dynamics, and heat transfer are strongly coupled, producing a fluid-structural-thermal inter-

action (FSTI) problem, denoted by the term aerothermoelasticity. High-fidelity aerother-

moelastic simulation over extended time periods is a key ingredient for the stability and re-

liability analysis of hypersonic vehicles, especially for the accurate prediction of aerother-

moelastic stability boundary, i.e. the time elapsed before the onset of structural failure.

Figure 1.2: Aerothermoelasticity octahedron [1]

The major difficulties associated with the extended time aerothermoelastic analysis

are two-fold. The first difficulty is the inherently complex hypersonic flows, which in-

volves phenomena that are not present in supersonic conditions, including: dissociations,

chemically reacting flow, viscous interactions and elevated levels of aerodynamic heat flux

[18, 19]. A high-fidelity fluid solver based on computational fluid dynamics (CFD) is re-

quired for capturing the essential properties of the complex hypersonic flow physics. The
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second difficulty is the disparity of characteristic times of different physical domains. The

fluid characteristic time is several orders of magnitude smaller than the structural charac-

teristic time, and the structural characteristic time is several orders of magnitude smaller

than the thermal characteristic time [20]. The characteristic time disparity introduces the

complexity associated with the different coupling mechanisms between and within the un-

derlying aerothermal and aeroelastic subsystems [1, 8, 21].

The CFD-based transient aerothermoelastic simulation of an actual hypersonic flight

trajectory is intractable on commercial workstation computers having 10-20 processors

and has to be carried out on large-scale computer facilities. Assuming full availability

of a mid-size computer cluster having 103-104 processors, the typical computational cost

of a CFD solution per time step is 100-101s [2, 22]. The hypersonic flight may last for

103s, while the typical time step size of the CFD-based simulation is 10−3s due to the

requirement of numerical stability. As a result, the CFD-based transient aerothermoelastic

simulation corresponding to a vehicle trajectory would take 106 time steps and 106-107s,

i.e. several weeks or months, to finish on a typical large-scale computer facility. However,

it is impractical to employ large-scale computer facilities for the extensive number of high-

fidelity aerothermoelastic simulations that are required for the exploratory and parametric

design and analysis of the structural components of a hypersonic vehicle [7, 9, 23]. In

order to effectively incorporate the high-fidelity computational tools into the hypersonic

vehicle design, the computational cost of high-fidelity aerothermoelastic simulations has

to be reduced by at least four orders of magnitude, so that such simulations can be carried

out on typical workstation computers, instead of large-scale computer facilities. Possible

approaches to computational cost reduction include: (1) accelerating the fluid solver to

reduce computer time per time step, and (2) developing advanced computational schemes

to vastly increase the time step size.

Besides the challenges in modeling, the design of hypersonic vehicles is hindered by

the lack of hypersonic aerothermoelastic scaling laws (ASL) for aerothermoelastic testing.
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Aerothermoelastic testing implies the construction of a scaled down replica of the proto-

type vehicle and its direct insertion into a high-stagnation-temperature wind tunnel where

the aerothermoelastic model can be subjected to aerodynamic heating and airloads simul-

taneously. Once such scaling laws were available, the test data obtained on scaled models

could be extrapolated to full-size vehicles, resulting in a dramatic reduction in the cost of

hypersonic aerothermoelastic flight testing, as well as a shortened design cycle of hyper-

sonic vehicles. Work conducted on hypersonic vehicles in early 1960’s has resulted in a

landmark paper [24] where ASL were analytically derived to enable wind tunnel tests up to

M∞ ≤ 3.5 and T0 ≤ 1000◦F ≈ 811K. However, modern hypersonic vehicles are expected

to operate at much higher Mach numbers and in wider range of temperatures, as illustrated

in Fig. 1.3. Experimental vehicles such as the X-43 [13] and the X-51 [25] have flown over

Mach 4.5-6 at altitudes from 15 km to 33.5 km. The SR-72 is expected to cruise at Mach

6 at an altitude of 24.3 km [26]. The BHCJ is expected to cruise at Mach 5 at an altitude

of 27 km [27]. As a result, the range of aerothermoelastic testing has to be extended from

the high supersonic flow regime to the hypersonic flow regime M∞ ≤ 10 and T0 ≤ 3000K.

However, the study in the 1960’s has concluded that complete similarity is impossible to

achieve for scale ratios that differ from unity.

In addition to the lack of scaling laws, another issue associated with hypersonic aerother-

moelastic testing is the scarcity of appropriate wind tunnel facilities for the tests beyond the

high supersonic flow regime. An ideal wind tunnel has to meet three basic requirements:

(1) high stagnation pressure (p0 ≥ 0.5MPa), (2) high stagnation temperature (T0 ≥ 800K),

and (3) sufficiently long operating time period (at least on the order of minutes). The

first two requirements ensure the simultaneous reproduction of the hypersonic aerodynamic

loading and heating conditions and the third requirement ensures sufficient time for the de-

velopment of the thermal responses in the scaled model that is critical to aerothermoelastic

testing. Figure 1.4 illustrates the typical operational time period and stagnation tempera-

ture of different types wind tunnels [28, 29]. Only some of the blow-down and continuous
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wind tunnels can potentially satisfy the basic requirements of hypersonic aerothermoelastic

testing. Furthermore, two additional requirements are desirable: (1) the test section should

be sufficiently large to accomodate the scaled model; (2) the working fluid should be in-

ert gas, e.g. dry air or Nitrogen-Oxygen mixture, to avoid reactive products [29]. When

accounting for these requirements, there are only a limited number of wind tunnels that

can be potentially used for hypersonic aerothermoelastic testing [3, 29–31], as illustrated

in Fig. 1.5.

The goal of this study is to address the challenges in modeling and testing associated

with the aeroelastic and aerothermoelastic studies of representative hypersonic structures.

The objectives are (1) to develop an integrated computational framework for fast, high-

fidelity simulation of the aerothermoelastic response over extended time periods corre-

sponding to a vehicle trajectory, and (2) to apply the computational framework to develop

hypersonic ASL, so as to enable the wind tunnel testing of hypersonic structures.

Figure 1.3: Flight envelopes of typical supersonic and hypersonic vehicles
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Figure 1.4: Capabilities of various types of wind tunnels

Figure 1.5: Envelope of testing conditions of several wind tunnels
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1.2 Literature Review

1.2.1 Design and Analysis of Hypersonic Structures

In hypersonic flight, the vehicle operates in extreme and complex aerothermodynamic en-

vironment. The surface of the vehicle, particularly the skin panels that maintain the aero-

dynamic shape of the vehicle, are exposed to combined aerodynamic, thermal and acoustic

loads [7, 9]. Traditionally, the ablative thermal protection system (TPS) has been success-

fully applied to mitigate the thermal loads in hypersonic flight, e.g. for reentry capsules and

space shuttles [32, 33]. However, the ablative TPS is infeasible for air-breathing hypersonic

vehicles, as it increases the vehicle weight, reduces the effective payload, and decreases the

vehicle maintainability and reusability [34, 35].

The development of the NASP program has motived the concept of light-weight load-

carrying hot structures [36–38] as an alternative configuration for the skin panel on air-

breathing hypersonic vehicles. Some preliminary studies have been conducted on the de-

sign of such structures. In Refs. [39, 40], it was found that the corrugated panel is a

promising configuration for lightweight load carrying structure, which is capable of sus-

taining thermal expansion without developing high thermal stresses. In Refs. [41–43],

an integrated TPS based on a corrugated core sandwich panel was optimized for minimal

weight while satisfying both the structural and thermal load constraints.

The detailed structural design of hypersonic vehicles, especially the skin panels, are

discussed in Refs. [7, 9, 44], and the critical technology and knowledge gaps are identified.

In Ref. [44], through the review of four hypersonic programs (SR-71, NASP, Lockheed

Martin X-33, and DARPA Falcon project), it was concluded that coupled aerothermal and

structural design methodologies are critical to the detailed design of hypersonic vehicles. In

Ref. [7], a generic hypersonic vehicle was investigated and the limitations of existing anal-

ysis methodology were identified. It was found that the thermal analysis and CFD-based

load predictions have to be integrated into the design process of the structural components.
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Furthermore, in Ref. [9], four panels of a representative hypersonic cruise vehicle were

designed using the state-of-the-art methods and tools to verify structural response and life

predictive capabilities. It was found that, depending on the location, the panel design had

to consider different combinations of extreme environments, including aeroelastic loading,

material property change, thermally induced stress, mechanical and acoustical loading.

This implies that the accurate prediction of aeroelastic and aerothermoelastic behavior of

skin panels is critical to the systematic and comprehensive design of the skin panel struc-

ture.

The aeroelastic behavior of skin panels of high-speed vehicles have been studied ex-

tensively since late 1950s, as shown in a comprehensive review [45]. Early studies relied

on relatively simple models [46–50]: Galerkin methods based on von Karman plate theory

combined with piston theory (PT) [51, 52] or potential flow for the aerodynamic load-

ing [49, 50]. Later, more sophiscated models were employed in panel flutter studies. In

Refs. [53–55], finite-element-based structural models combined with piston theory were

employed to examine the effects of temperature increment as well as composite materials

on panel flutter. In Refs. [56, 57], Galerkin-based plate model combined with CFD-based

Euler and Navier-Stokes (NS) aerodynamics was employed to study panel flutter with em-

phasis on the thermal effect and the curvature effect. In Ref. [58], the aeroelastic stability

boundary of an internally pressurized circular cylindrical shell is studied using a structural

model based on the finite element (FE) method combined with PT aerodynamics. Finally,

CFD-based fluid-structure interaction (FSI) computational frameworks have also been de-

veloped and applied to panel flutter problems [59–61] and shock impingement problems

[62–65].

Fewer studies are devoted to the aerothermoelastic behavior of skin panels. In Refs.

[1, 66], an FSTI computational framework was developed using simplistic models: piston

theory for pressure, Eckert’s reference enthalpy method (EE) for heat flux [67], Galerkin-

based von Karman plate model, and heat conduction model using finite difference method.
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The framework was applied to study the aerothermoelastic behavior of a two-dimensional

(2D) skin panel, which is a very simplified version of a realistic hypersonic structure. In

Ref. [20], the framework was expanded using structural and thermal models based on the

FE method, and the framework was applied to study the impact of structural bounary condi-

tions and flight trajectories on the aerothermoelastic behavior of a three-dimensional (3D)

skin panel configuration based on the NASP. In Ref. [23], a high-fidelity CFD-based

computational framework was developed and employed to study the aerothermoelastic re-

sponse of a stiffened panel mounted on a notional hypersonic vehicle. The findings high-

light counter-intuitive aerothermoelastic deformation patterns caused by the local buckling

modes due to the presence of stiffeners.

The aeroelastic and aerothermoelastic studies discussed above have several limitations.

First, theoretical study has shown that significant differences exist in aeroelastic responses

of 2D and 3D panels [68]. The impact of aspect ratio on the aerothermoelastic response

has not been explored carefully. Second, theoretical and numerical studies have shown

that the boundary layer has significant impact on the aeroelastic panel response [49, 61].

However, the impact of boundary layer on the aerothermoelastic panel response is not well

understood. Finally, these studies focus primarily on the response of a flat isotropic panel

with edges aligned to flow direction. This does not necessarily represent actual operating

conditions. The direction of the flow rarely coincides with that of the panel edges and the

panel may not be isotropic due to the application of composite materials and stiffeners. The

effects of flow orientation angle and material orthotropicity can have considerable influence

on its dynamical behavior, as shown in Refs. [48, 55], but have never been examined using

a fully-coupled FTSI approach.

1.2.2 Fully-Coupled Analysis of Fluid-Structural-Thermal Interaction

A key component in the high-fidelity aeroelastic and aerothermoelastic analysis is the cou-

pling scheme for CFD and computational structural dynamics (CSD) [69–72]. The cou-
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pling is best addressed using a partitioned approach with loose-coupling [73–76]. In a

partitioned approach, the responses of different physical domains are computed by sepa-

rate solvers and coupling is achieved by exchanging boundary data at the interfaces of the

domains. A loosely-coupled (LC) scheme, which exchanges information between solvers

only once every time step, is computationally efficient and maintains accuracy and stability

of the multi-physics solution when carefully designed [75]. Furthermore, when there is

disparity in characteristic times of two physical domains, the subcycling approach can be

employed to enhance the computational efficiency of the loosely-coupled scheme by initi-

ating two solvers simultaneously and advancing one solver with a multiple of the time step

associated with the other solver [73].

For FSI problems, it was shown in Refs. [77, 78] that the energy transfer between

the fluid and structural solvers at their interface is essential for the numerical stability of

partitioned schemes. The “artificial energy”, which is the sum of the work done on the

structure by fluid and the work done on the fluid by structure, should be zero based on

physical considerations. However, due to the staggered implementation of the solvers, the

artificial energy can be non-zero in partitioned schemes, thus leading to spurious solutions

and numerical instability. Artificial energy is a measure of numerical error introduced by

the staggered schemes. With proper combination of estimators for aerodynamic loading

and structural displacement, the order of time accuracy of artificial energy and thus the

stability of the numerical solution can be improved [78]. An estimator can be a predictor

that extrapolates existing data to next time step, or a corrector that interpolates existing data

to previous time step.

The loosely-coupled partitioned scheme has been extended to aerothermoelastic anal-

ysis [20, 66, 79–82]. In Ref. [79], a serial staggered procedure was developed for FSTI

with trivial estimators, which pass the data between the solvers without extrapolation or

interpolation over the time steps. In Refs. [20, 66], while simple analytical aerothermo-

dynamic models were employed instead of a CFD solver, the importance of the coupling
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between deformation and aerodynamic heat flux for the aerothermoelastic response of a

panel is demonstrated. In Refs. [80–82], the transient aerothermoelastic problem was de-

composed into the aerothermal and aeroelastic subproblems, and the subcycling technique

was employed to enhance the computational efficiency of the staggered procedure. Three

different time steps were used for the fluid, structural, and thermal solvers. The subcycling

technique was applied in the coupling between fluid and structural solvers, and the cou-

pling between thermal and aeroelastic solvers. Furthermore, the loosely-coupled scheme

with subcycling was enhanced by using a combination of estimators, which improves the

time accuracy from first-order to second-order [80–82].

Nevertheless, the loosely-coupled scheme with subcycling for aerothermoelastic anal-

ysis has two defficiencies. One defficiency is that, the subcycling approach relies on the

quasi-steady assumption in hypersonic flow, which is not necessarily true. For example, in

the shock wave/boundary layer interaction on a compliant structure, the shock wave motion

introduces a dominant flow component with a frequency that is comparable to the structural

frequency [83, 84]. Therefore, a loosely-coupled scheme without subcycling is desirable

for obtaining general hypersonic aerothermoelastic responses. By extending the work done

on FSI problem in Ref. [78], it is possible to develop a theoretical analysis tool to guide the

design of a loosely-coupled scheme with improved time accuracy and numerical stability

for aerothermoelastic analysis.

The other defficiency of the loosely-coupled scheme is that the aeroelastic response has

to be resolved using a sufficiently small time step size that is typically one or two orders of

magnitude smaller than the aerothermal time step size. However, in an actual hypersonic

vehicle, the structural components have to be designed so as to avoid the onset of unstable

response that impact the aerothermoelastic stability boundary. When the aerothermoelastic

response is stable, the aeroelastic response is quasi-steady and driven by the thermal stress

due to the aerothermal response [23]. This aeroelastic response can be resolved using an

aerothermal time step size, instead of an aeroelastic time step size. Therefore, it is possible
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to design a specialized coupling scheme that is more efficient for quasi-steady aerother-

moelastic responses, in place of the general loosely-coupled scheme, to vastly improve the

efficiency of long-time-duration aerothermoelastic simulations.

Finally, another missing component in the high-fidelity aerothermoelastic analysis is an

approach for efficient and automatic identification of the aerothermoelastic stability bound-

ary. Some stability analysis methods are available for aeroelastic analysis [85], which are

divided into two categories, a priori and a posteriori methods. When a simple aerodynamic

model is employed, it is possible to use an a priori method, such as the p-method [85], to

determine the stability of an aeroelastic system by solving an eigenvalue problem, instead

of generating the transient aeroelastic responses. The a priori method has been applied to

the stability analysis of panel flutter response based on piston theory [54, 55]. However,

when a high-fidelity aerodynamic model is employed in the aeroelastic analysis, the only

practical choice is to use the a posteriori methods. The a posteriori methods are applied

after a period of transient aeroelastic response is generated, and the response is examined to

identify any aeroelastic instabilities. Typical a posteriori methods include the least-square

fit method [86], the auto regressive moving average (ARMA) method [87, 88], and system

identifications methods based on generalized aerodynamic loads and generalized degrees

of freedom [89]. The ARMA method developed in Ref. [87] has also been used in hyper-

sonic aeroelastic problems [1, 90]. For aerothermoelastic analysis, there is no available a

priori method for the identification of instabilities. In the conventional approach [81, 91],

the stability boundary is determined after the time domain simulation by examining the

response as in the a posteriori methods. For such cases, simulation has to be carried out

for adequate time, so that the solution includes both the stable (quasi-steady) and unstable

(oscillatory) structural responses. The onset of unstable response represents the aerother-

moelastic stability boundary during the postprocessing stage of the response obtained from

the simulation. By extending the p-method for aeroelastic stability analysis, it is possi-

ble to develop a new a priori method for the automatic identification of aerothermoelastic
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instabilities. Using the new method, the simulation is terminated upon the onset of insta-

bility, thus there is no need to continue the simulation into the unstable region, resulting in

significant saving of computer time.

1.2.3 Reduced Order Modeling for Hypersonic Aerothermodynamics

As discussed in Section 1.1, while high-fidelity aerothermoelastic simulation is required for

capturing the complex physics and multi-physical interactions of vehicle structures during

hypersonic flight, the direct CFD-based aerothermoelastic simulation over the time scale of

flight is intractable due to its high computational cost. A reduced order model (ROM) has

to be employed to accelerate the CFD-based fluid solver. The goal of the ROM is to provide

fast and accurate predictions of the responses of a high-dimensional dynamical system, i.e.

a full-order model, to a given set of input parameters. In the context of aerothermoelastic

simulation, the full-order model is the CFD-based fluid solver, which is typically a com-

plex computer code. The ROM techniques are divided into the intrusive and non-intrusive

methods, as described next.

The intrusive ROM method approximates the full-order model by reducing the number

of governing equations and unknowns. It requires the modification of the computer code for

the full-order model and hence the term “intrusive”. The intrusive model order reduction

is usually achieved through a projection process [92]. First, a small number of dominant

components of the full-order responses are identified and used as “basis vectors”. Next, the

solution to the full-order model is approximated using a linear combination of the basis vec-

tors. A typical approach for identifying the dominant components is the proper orthogonal

decomposition (POD) method [93, 94]. The intrusive ROM methods have been success-

fully applied to problems in aerodynamics [95, 96] and aeroelasticity [97, 98]. However,

the intrusive methods have two limitations. First, the numerical stability, accuracy, and con-

vergence of the intrusive ROM are not guaranteed in general. Remedies for this limitation

have been proposed, but they are not always effective [99, 100]. Second, the implementa-
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tion of an intrusive ROM requires extensive modifications of the original computer code,

which can be time-consuming or even infeasible. As a result, in the current study, the

intrusive methods are not used for the construction of the ROM for the CFD solver.

In the non-intrusive ROM approach, the full-order model is replaced by a parametrized,

black-box, function that is easy to compute. The parameters of the non-intrusive ROM

are determined from the so-called training data set that consists of collection of full-order

responses associated with different combinations of input parameters. The accuracy and

convergence of a non-intrusive ROM depends on the use of sufficient number of training

data samples provided for the ranges of parameters of interest. Common non-intrusive

ROM methods include surrogates [91, 101–103] and Volterra series [104]. The surrogates

approximate a full-order model by an interpolation model, such as radial basis functions,

neural networks, polynomial response surfaces, and kriging [105–107]. In the Volterra

series method, it is assumed that the response of any nonlinear system is exactly represented

by an infinite series expansion of convolution integrals of Volterra kernels, and the ROM is

represented by a truncated set of these kernels [104]. The Volterra series method is suitable

for problems with strong unsteadiness, but hypersonic aerothermodynamic responses are

typically quasi-steady. While the Volterra series method was applied to develop ROMs for

aerodynamics from the subsonic flow regime to the high supersonic flow regime [108, 109],

the surrogate-based methods are more commonly used for the reduced order modeling of

hypersonic aerothermodynamics.

In Ref. [110], the kriging method was used to model the static force coefficients on

a double-wedge typical section as a function of flight conditions and pitch angle. In a

follow-up study [91], a kriging surrogate was constructed to predict the pressure and heat

flux distributions on a 2D skin panel. The input to the surrogate consists of flight condi-

tions, structural modal coordinates and wall temperature distribution characterized using

a set of polynomials. The approach in Ref. [91] was combined with the POD method to

generate the fluid ROM of a control surface [103], where the pressure and heat flux distribu-
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tions were represented using the POD modes generated from the snapshots of CFD-based

solution. Note that the POD modes were used only for dimension reduction, not for the

projection of full-order models. The approach in Ref. [91] was also employed in the heat

flux prediction on a three-dimensional control surface [102], where the wall temperatue

distribution was characterized using POD modes of thermal response that were obtained

from precomputed coupled aerothermoelastic simulation results. In Ref. [111], the kriging

method was used to predict the boundary layer thickness on a deformed two-dimensional

skin panel, which was subsequently used to compute the pressure distribution on the panel

using the piston theory and the concept of effective shape [112].

As illustrated in the above studies [91, 102, 103], the ROM techniques have enabled

the acceleration of the fluid solver by a factor of 103-104, while retaining the accuracy

of a CFD solver. However, the fluid ROMs discussed in the above are limited by two

issues: characterization and generalization. First, the characterization issue is associated

with the representation of the wall temperature distribution. The polynomial thermal modes

[91, 103] are usually too simplistic and lack the accuracy required for nonuniform wall tem-

perature distribution present in an actual aerothermoelastic problem [113, 114]. The POD

thermal modes [102] yield accurate representation of the temperature distribution, but the

construction of such modes requires the use of expensive coupled aerothermoelastic analy-

sis. Second, the generalization issue is due to the fact that the fluid ROM is representative

of a particular geometrical configuration. This limitation precludes its generalization to

other geometrical configurations of interest. To conduct the aerothermoelastic analysis of

a series of geometrical configurations, one would need to build a different ROM for each

configuration of interest. Construction of multiple ROM’s incurs a heavy computational

burden for the sample generation of high-fidelity fluid solutions.

In Refs. [2, 113, 114], a two-stage fluid ROM was proposed in an attempt to resolve the

characterization issue. First, the heat flux distribution associated with uniform wall tem-

perature was generated using a kriging surrogate. Subsequently, the heat flux distribution
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was corrected by a pointwise model accounting for the discrepancy between the uniform

temperature and the actual non-uniform temperature distribution. The two-stage fluid ROM

produced accurate heat flux prediction associated with arbitrary wall temperature distribu-

tion, including the non-smooth distribution due to the presence of boundary layer transition

and shock wave/boundary layer interaction [114], as well as complex structural deforma-

tion [2]. However, this approach has two limitations. First, it relies on the tuning of empir-

ical coefficients that are dependent on flight conditions and geometrical configurations and

has to be curvefitted from CFD solutions. Second, the correction factors are computed by

solving an ordinary differential equation (ODE), which is computationally more expensive

than other fluid ROMs [91, 102, 103] and may introduce potential numerical instabilities

associated with the ODE solver. For the cases where the temperature distribution is ex-

pected to be smooth, it is possible to employ a simpler but more versatile correction model

that is free of empirical coefficients and ODE’s.

1.2.4 Scaling Laws for Aeroelastic and Aerothermoelastic Testing

The scaling laws characterize the proportionality relations between the parameters associ-

ated with a system and its length scale. The classical dimensional analysis for generating

scaling laws has been established as early as 1920’s [115, 116]. The idea central to the

classical dimensional analysis is best summarized using the Buckingham’s Π theorem. It

states that, the characteristics or properties of a system can be expressed through combina-

tions of various parameters so that each group is dimensionless [115]. Thus, any change in

scale does not affect the magnitudes of these quantities and the performance of a system

can be predicted from the results obtained on the performance of a similar system, but of

different size.

Scaling laws have played an important role in the study of aeroelasticity. The scaling

laws enable the construction of aeroelastically scaled wind tunnel models and allow one

to relate small-scale wind tunnel test results to the behavior of a full-scale vehicle. The

17



fundamentals of aeroelastic scaling methods are described in the last three chapters of the

classical textbook on aeroelasticity by Bisplinghoff et al. [117], which covers classical

aeroelastic model theory, model design and construction, and testing techniques. The topic

of aeroelastic scaling is further expanded in the AGARD Manual on Aeroelasticity [118]

with a provision of details on model construction and testing. The classical aeroelastic

scaling approach has been practiced extensively at the Transonic Dynamic Tunnel at NASA

Langley Research Center, which is a dedicated facility for testing aeroelastically scaled

models [119].

In Ref. [117], aeroelastic scaling laws are developed for linear structures by dimen-

sional analysis of the governing equations, which establishes the scaling parameters re-

quired for designing aeroelastically scaled models. Two key requirements for dynamic

aeroelastic testing are established by the authors. First, the aerodynamic shape should be

geometrically scaled, so as to achieve similitude in the aerodynamic response. Second, two

dimensionless parameters, nondimensional natural frequencies and mode shapes, have to

be matched in order to achieve similitude in the structural dynamic response. As pointed

out in Ref. [117], typical aeroelastic testing models do not have the same structural con-

figuration as the full-scale prototype. The structural configuration scaled according to an-

alytical scaling laws would either require materials having nonphysical properties or pose

prohibitive manufacturing specifications. One alternative is to redesign the internal struc-

ture of the scaled model such that its structural dimensionless parameters are consistent

with the full scale prototype.

In the last six decades, a considerable amount of research efforts have been devoted to

the development of aeroelastic scaling techniques, so as to enable the wind tunnel testing

of aeroelastic problems of increasing complexity.

Following the methodology in Ref. [117], approaches based on modal optimization

and stiffness matching have been developed to systematically generate scaled models for

linear aeroelastic problems [120–123]. In Refs. [120, 121], a two-step optimization ap-
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proach was developed for the dynamic aeroelastic scaling of a low-aspect-ratio wing. First,

the structure stiffness was matched by minimizing the differences in static deflections be-

tween the model and the prototype. Subsequently, the distribution of non-structural mass

was optimized to minimize the difference in mode shapes and match the reduced modal

frequencies. In Ref. [122], the two-step approach was compared with a one-step approach,

where the natural frequencies and mode shapes were optimized by simultaneously adjust-

ing the distribution of structural stiffnesses and nonstructural masses. It was concluded that

both approaches converged to an acceptable result for wind tunnel testing, but the one-step

approach was computationally more expensive. In Ref. [123], a multidisciplinary optimiza-

tion framework was employed to develop aeroleastically scaled model using the one-step

approach, which also accounted for the case where flow similarity cannot be achieved in

the wind tunnel.

The optimization approach has also been extended for nonlinear aeroelastic scaling

problems [124–126]. In Ref. [124], a nonlinear aeroelastic scaled model of a joined-wing

aircraft was developed. The structure was designed by simultaneously matching not only

the reduced natural frequencies and mode shapes, but also the nondimensionalized buck-

ling eigenvalue. The aeroelastic frequencies and damping of the resulting scaled model

matched well with the prototype throughout the flight conditions of interest. In Ref. [125],

the aeroelastic scaling of a highly flexible flying wing aircraft with large deformations and

prestress was considered. It was shown that nonlinear aeroelastically scaled models can

be obtained by the matching of a set of carefully selected similarity parameters, including

the Froude number. The scaled model demonstrated both linear and nonlinear aeroelas-

tic responses that agreed reasonably well with the full-scale prototype. In Ref. [126], an

aeroelastic scaling methodology was developed using a concept of equivalent static loads.

Nonlinear aeroelastically scaled models of a joined-wing configuration were developed by

matching vibration and buckling modes and eigenvalues, as well as the static structural re-

sponses. The new nonlinear scaled model was compared with a scaled model obtained by
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classic scaling methodology. The new model showed improved match in the nondimen-

sional deflections and reduced aeroelastic frequencies, but a loss of accuracy in the reduced

flutter speed.

Figure 1.6: Schematic illustration of the two-pronged approach

In parallel to the studies in aeroelastic scaling, scaling laws for aeroservoelasticity have

also been developed in the literature. In Ref. [127], an aeroservoelastic scaling procedure

for a transonic wind tunnel model was developed. The scaling laws were obtained through

the application of dimensional analysis the aeroelastic equations extended with the experi-

mental spring mounting system. Satisfactory agreement was achieved between the root loci

of the full size prototype and the scaled model. An innovative and more systematic scaling

methodology, called the two-pronged approach, was proposed for aeroservoelastic scal-

ing problems [128–131]. The two-pronged approach combines the classical dimensional

analysis with modern numerical simulation methods, as illustrated in Fig. 1.6. On the left-

hand branch, basic scaling requirements are established using dimensional analysis, in a

manner that resembles the classical procedure. On the right-hand branch, complete aeroe-

lastic/aeroservoelastic solutions for the prototype as well as the scaled model are obtained

using numerical simulation. From the comparison and adjustment of these two models, the

“numerical similarity solutions” are generated to replace the analytical similarity solutions
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for refinement of the scaling laws. The two-pronged approach has been applied to obtain

the scaling laws associated with active flutter suppression of a two-dimensional wing sec-

tion [128–130]. In Ref. [131], it was also demonstrated that aeroservoelastic scaling laws

for rotary-wing aircraft can be obtained in a manner similar to fixed-wing aircraft.

While scaling methodologies have been developed for aeroelastic problems with geo-

metric nonlinearities and active control systems, the scaling of aerothermoelastic problems

have been considered impossible in the literature. A few attempts have been made in the

past to incorporate heat transfer effects into the aeroelastic scaling laws, such as Refs.

[132, 133]. While scaling laws for hypersonic aerothermodynamics have been success-

fully established [19, 134, 135], only partial successes were achieved in the development

of hypersonic ASL [24, 136, 137]. The similarity parameters that need to be satisfied are

derived from the dimensional analysis of the general equations for stress, displacement and

temperature distribution of a body immersed in a hot, flowing gas. As discussed in the

previous section, these studies have come to the conclusion that, complete aerothermoelas-

tic similarity is impossible to achieve for scale ratios that differ from unity for hypersonic

Mach numbers and temperatures.

Lack of hypersonic ASL has resulted in the use of “restricted purpose” testing ap-

proaches and “incomplete” aerothermoelastic testing [24, 137]. Restricted purpose testing

implies a study of the aerothermoelastic problem assuming that the coupling between the

aerodynamic pressure, aerodynamic heating, heat conduction and stress-deflection phe-

nomena is weak. However, the fluid-thermal-structural interactions cannot be decoupled in

modern hypersonic vehicles since they are based on an integrated airframe-propulsion con-

cept, which enhances the interactions between the various components [138]. Incomplete

aerothermoelastic testing refers to the use of additional means, other than aerodynamics,

to provide loading or heating. This requires a priori knowledge of the loading and heat-

ing on the full-scale vehicle, as well as the ability to accurately apply these loads at the

appropriate locations as a function of time, which is difficult to achieve in practice. The
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barriers associated with hypersonic aerothermoelastic testing have been one of the factors

contributing to problems encountered during the development of air-breathing hypersonic

vehicles in the past, such as failures in flight as well as high temperature structural testing.

Recently, there is renewed interest in developing models for aerothermoelastic testing

in high supersonic and hypersonic wind tunnels [29, 139]. In these studies, scaled skin

panel models are designed with the aid of numerical simulation tools so as to obtain the

desired aerothermoelastic response in the wind tunnel. However, the primary goal of these

studies is not to achieve aerothermoelastic scaling. Instead, the goal is to develop skin panel

models that are quite flexible, such that the interaction between the high-speed flow and the

panel deformation becomes observable in the wind tunnel. However, response observed on

such wind tunnel models is not representative of the realistic aerothermoelastic response of

the skin panels on a hypersonic vehicle.

To summarize, success in the development of scaling laws for hypersonic aerother-

moelasticity has not been achieved yet. However, using the modern numerical simulation

tools, it is possible to employ the two-pronged approach [131] to generate refined scaling

laws that can be employed to develop aerothermoelastically scaled models for wind tunnel

testing.

1.3 Objectives

Based on the introduction and literature review, it is evident there are major challenges in

the modeling and testing of the aeroelastic and aerothermoelastic behavior of hypersonic

vehicles. On the modeling side, there is need for an efficient and versatile computational

approach for fast long-time-duration simulation of hypersonic aerothermoelasticity, a crit-

ical ingredient in the performance and reliability analysis of hypersonic vehicles. On the

testing side, the hypersonic ASL have been missing for decades, thus hypersonic aerother-

moelastic testing has been non-existent. This situation limits substantially our understand-
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ing of the aerothermoelastic behavior of hypersonic structures. This dissertation addresses

these challenges, by providing a major contribution towards solving these long-standing

problems. The specific goals of this dissertation are:

1. Development of efficient fully-coupled solvers for transient and quasi-steady hyper-

sonic aerothermoelastic simulation of the responses of a hypersonic configuration

over extended time duration corresponding to a hypersonic flight trajectory.

2. Examination of the aeroelastic and aerothermoelastic behavior of hypersonic skin

panels using high-fidelity simulation tools, with an emphasis on the effects of bound-

ary layer thickness, aspect ratio, flow orientation angle, and material orthotropicity.

3. Development of a two-pronged approach and demonstration of its capability to gen-

erate aerothermoelastically scaled models of a composite skin panel in hypersonic

flow that are suitable for testing under realistic wind tunnel conditions.

1.4 Key Novel Contributions

Accomplishment of the objectives stated above has resulted in several unique contributions

towards the modeling and testing of representative structures of hypersonic vehicles. The

contributions unique to this study are listed below:

1. Development of an integrated, modularized computational framework, hypersonic

aerothermoelasticity simulation environment (HYPATE), that combines finite-element-

based solvers for structural and thermal behavior with fluid solvers having multiple

levels of fidelities.

2. Construction of an efficient fluid ROM based on POD-kriging method and enhanced

by a novel approach for correction and scaling, which enables the extrapolation of a

ROM to different geometric scales, flight conditions and arbitrary wall temperature

distritbutions while reducing the number of input parameters.

3. A new tightly-coupled (TC) scheme for ROM-based aerothermoelastic simulation of
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a typical hypersonic structure over extended time periods, combined with a new a

priori stability analysis approach for the automatic identification of aerothermoelas-

tic instabilities.

4. A systematic dimensional analysis of the aerothermoelastic response of a modern

composite hypersonic structure.

5. A multi-objective optimization framework using the two-pronged approach that en-

ables the generation of refined ASL for the first time in the literature of hypersonic

aerothermoelasticity.

1.5 Outline of the Document

The dissertation is divided into 10 chapters. The motivations, literature review, and objec-

tives are given in Chapter 1.

Second, Chapters 2-5 present the computational framework for hypersonic aerother-

moelasticity, HYPATE. Chapter 2 provides a general discussion of the governing equations

for hypersonic flow and its dimensional anlaysis, as well as the modeling approaches for

hypersonic aerothermodynamics, including a CFD solver, analytical models, and a fluid

ROM enhanced by a correction and scaling technique. Chapters 3 and 4 describe the finite

element formulation and dimensional analysis of the structural and thermal problems, re-

spectively. Chapter 5 describes the solution procedure of the fully-coupled aerothermoelas-

tic analysis, highlighting loosely-coupled schemes for transient responses, tightly-coupled

schemes for quasi-steady responses, and a linearized stability analysis method for the iden-

tification of the onset of aerothermoelastic instability.

Next, Chapter 6 presents the two-pronged approach to generating the refined ASL,

which combines the classical dimensional analysis with modern computational framework.

Chapter 6 also provides an extensive description of multi-objective Bayesian optimiza-

tion algorithm that is employed to solve the optimization problem resulting from the two-
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pronged approach.

Subsequently, Chapters 7-9 present the major results of the dissertation. Chapter 7 pro-

vides the verification results for the computational framework, including the verification

of the enhanced fluid ROM, as well as aeroelastic and aerothermoelastic responses using

CFD-based and ROM-based fluid solvers. Chapter 8 presents the aerothermoelastic anal-

ysis results of a generic skin panel highlighting the effects of boundary layer thickness,

aspect ratio, flow orientation angle, and material orthotropicity. Chapter 9 presents the

scaling results of the two-pronged approach. It is applied to reproduce the aeroelastic scal-

ing laws associated with a heated panel and generate the refined ASL associated with a

composite panel.

Finally, Chapter 10 provides the conclusions and recommendations for future research.
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CHAPTER 2

Approaches to Modeling Hypersonic

Aerothermodynamics

A key component in the aerothermoelastic simulation is the fluid solver required for the pre-

diction of the aerodynamic and thermal loads acting on the hypersonic vehicle structure.

The fluid solver has to strike a balance between predictive accuracy and computational effi-

ciency. In this study, three fluid solvers having different levels of fidelity are developed and

used. A fluid solver based on analytical models (AM), such as piston theory and Eckert’s

reference method, is developed for the verification of fully-coupled aerothermoelastic sim-

ulation. The next level up is a ROM-based fluid solver having a higher fidelity, which is the

primary means for the reduction of computational cost in the hypersonic aerothermoelastic

simulation. The high-fidelity fluid solver is a CFD solver that is used to carry out the high-

fidelity aeroelastic and aerothermoelastic simulations and provide the data samples used

for the development of the ROM. This chapter describes (1) the governing equations for

hypersonic flow and its dimensional analysis, a requirement for the development of ASL

generated in the subsequent chapters, and (2) the detailed formulation of the three fluid

solvers employed in this study.
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2.1 Governing Equations

2.1.1 The Navier-Stokes Equations

The two principal aerodynamic quantities required for aerothermoelastic modeling are the

pressure and heat flux applied on the deforming structure by the external hypersonic flow.

The flow field is governed by the NS equations describing the conservation of mass, mo-

mentum, and energy for a compressible, viscous, heat-conducting ideal gas (pp. 266–272

of Ref. [19]),

Dρf

Dt
+ ρf∇ ·V = 0

ρf
DV

Dt
= −∇p+∇ · τ

ρf
DΨ

Dt
= −∇ · (kf∇T )−∇ · (pV) +∇ · (τ ·V)

(2.1a)

(2.1b)

(2.1c)

where the material derivative is

D

Dt
=

d

dt
+V ·∇ (2.2)

and the viscous stress tensor is

τ = µ(∇V +∇VT ) + λ(∇ ·V)I (2.3)

Employing Stokes hypothesis, the bulk viscosity λ is related to the viscosity µ by

λ = −2

3
µ (2.4)

To complete the system of equations, the specific energy Ψ, temperature T , pressure p,
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and density ρf are related using the equations of state for ideal gas,

p = ρfRT

Ψ = ψ +
1

2
V ·V

ψ(T ) = cv(T )T

cv(T ) =
cp(T )

γ(T )
=

R

γ(T )− 1

(2.5a)

(2.5b)

(2.5c)

(2.5d)

If the gas is calorically perfect, the specific heats are constant, and Eqs. (2.5c) and (2.5d)

becomes,
ψ = cvT

cv =
cp
γ

=
R

γ − 1

Finally, two sets of boundary conditions are imposed on the governing equations. For

free-stream condition,

∥V∥ = V∞, ρf = ρ∞, T = T∞ (2.6)

On the surface of the deforming structure, the velocity, temperature, and heat flux at the

solid-fluid boundary have to match,

V =
duw

dt

T = Tw

n · (kf∇T ) = n · (ks ·∇T s)

(2.7a)

(2.7b)

(2.7c)

28



2.1.2 Dimensional Analysis of the Fluid Problem

For hypersonic flow, the following nondimensional quantities are introduced to non-dimensionalize

the governing equations for the fluid problem Eqs. (2.1), (2.5)-(2.7),

x̄i =
xi

L̂
, t̄ =

t

t̂
, T̄ =

T

T̂F
, V =

V

V̂
, ρ̄f =

ρf

ρ̂f
, p̄ =

p

p̂

µ̄ =
µ

µ̂
, c̄fp =

cfp

ĉfp
, k̄f =

kf

k̂f

(2.8a)

(2.8b)

As suggested in Ref. [137], in hypersonic flow, it is more convenient to non-dimensionalize

the NS equations using the stagnation conditions, instead of the free-stream conditions,

because the following high-M∞ approximations are available at the stagnation point,

T0 ≈
V 2
∞

2cfp0fT
, fT =

∫ 1

0

c̄fpd

(
T

T0

)
p0 ≈

γ + 3

2(γ + 1)
ρ∞V

2
∞

(2.9a)

(2.9b)

The following quantities are chosen as the reference values,

V̂ = V∞, ρ̂f = ρ∞, p̂ = p0

µ̂ = µ0, ĉfp = cfp0, k̂f = kf0

(2.10a)

(2.10b)

Using Eqs. (2.8)-(2.10), Eq. (2.1) is non-dimensionalized as,

Dρ̄f

Dt̄
+ ρ̄f∇ ·V = 0

ρ̄f
DV

Dt̄
= − γ + 3

2(γ + 1)
∇p̄+ 1

Re0
∇ · τ̄

ρ̄f
DΨ̄

Dt̄
= − 1

2fTPr0Re0

T̂F
T0

∇ · (k̄f∇T̄ )

− γ + 3

2(γ + 1)
∇ · (p̄V) +

1

Re0
∇ · (τ̄ ·V)

(2.11a)

(2.11b)

(2.11c)
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where,

∇ = L̂∇ =

[
∂

∂x̄1
,
∂

∂x̄2
,
∂

∂x̄3

]
D

Dt̄
=
L̂

V̂

D

Dt
=

L̂

V∞t̂

d

dt̄
+V ·∇

τ̄ =
L̂

µ̂V̂
τ = µ̄

[
∇V +∇V

T − 2

3
(∇ ·V)I

]
Ψ̄ =

1

V̂ 2
Ψ =

1

2γfT

T̂F
T0
c̄fv T̄ +

1

2
V ·V

(2.12a)

(2.12b)

(2.12c)

(2.12d)

The boundary conditions are non-dimensionalized as,

V =
û

V̂ t̂

dūw

dt̄

T̄ = T̄w

k̂f

k̂s
n · (k̂f∇T̄ ) = n · (k̄s ·∇T̄w)

(2.13a)

(2.13b)

(2.13c)

where û is the reference amplitude of deflection.

The similarity parameters for the NS equations are identified from Eqs. (2.11)-(2.13),

V∞t̂

L̂
,
T̂F
T0

Re0 =
ρ∞V∞L̂

µ̂
,Pr0 =

ĉfp µ̂

k̂f
, γ

µ̄, c̄fp , k̄
f

ūw =
uw

û

(2.14a)

(2.14b)

(2.14c)

(2.14d)

In Eq. (2.14a), the first quantity defines the time scale of the fluid problem, and the second

quantity defines the reference temperature. The quantities in Eq. (2.14b) require similarity

in the flow properties. Note that the freestream Mach number M∞ does not appear and this

is a result of the Mach number independence principle in the hypersonic flow (pp. 107–111

of Ref. [19]). Equation (2.14c) requires the similarity in the gas properties as functions of

temperature. Finally, the geometric similarity between the model and prototype is required.
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The similarity parameters in Eq. (2.14) are rewritten for a slender body [134, 135],

where concept of boundary layer can be used. The slender body is characterized by a

small thickness ratio û

L̂
≪ 1, which is typical of a skin panel. Note that the thickness

distribution uw accounts for both the geometry and the deformation. With a few simplify-

ing assumptions for hypersonic flow and boundary layer, the similarity parameters for the

surface pressure and the heat flux on a slender body are [137],

V̂ t̂

L̂
,

T̂F
T0
, T̄w =

Tw

T̂F
, ūw

p̂L̂

γp∞M∞û
, Re0Pr0

k̂f V̂ 2

ˆ̇qĉfpL̂

Ξ̄ =
L̂2

û2
√

Re0
, B̄ = kBM

3
∞
d̂

L̂

Pr0, γ

(2.15a)

(2.15b)

(2.15c)

(2.15d)

Four new similarity parameters are introduced in Eqs. (2.15a)-(2.15d). The two quantities

in Eq. (2.15b) define the reference magnitudes of the pressure and the heat flux, respec-

tively. In Eq. (2.15c), Ξ̄ requires similarity in the boundary layer thickness. The parameter

Ξ̄ is important when the viscous interaction is strong, i.e. when the pressure distribution is

significantly modified by the boundary layer. The parameter B̄ is introduced to character-

ize the nose bluntness of the slender body, i.e. the sharpness of the leading edge, because

the pressure distribution on the slender body is sensitive to the geometry of the nose, or

the cross-section of the leading edge [24, 135]. In the parameter B̄, d̂ is the characteristic

radius of the nose, and kB is a constant that depends on the nose geometry.

Finally, note that a few simplifying assumptions, such as laminar flow and perfect gas

law, have been used when deriving the similarity parameters in Eq. (2.15) [24, 137]. There-

fore, when more complex effects are present in the fluid problem, e.g. turbulent boundary

layer and real gas effect, the similarity parameters in Eqs. (2.14) and (2.15) may not rep-

resent the correct scaling requirements for constructing a scaled model that satisfies hyper-
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sonic aerothermodynamic similarity.

2.2 Computational Fluid Dynamics

2.2.1 Compressible Reynolds-Averaged Navier-Stokes Equations

One approach to obtaining the aerodynamic pressure and heat flux on a deforming structure

in hypersonic flow is to numerically solve the NS equations using a CFD solver. There are

several CFD formulations representing different levels of fidelity: direct numerical simu-

lation (DNS), large eddy simulation (LES), and reynolds-averaged Navier Stokes (RANS)

simulation. The DNS and LES generate fluid solutions of very high fidelity that provide

high spatial and temporal resolution of the flow field. However, the computational costs of

DNS and LES are intractable for aerothermoelastic simulations of any significantly long

time duration [140]. The RANS simulation provides a less expensive alternative to DNS

and LES. In the RANS simulation, the flow is modelled by a time-averaged mean flow field,

plus additional time-dependent components accouting for the impact of the transient flow

fluctuations, i.e. turbulence, on the mean flow field. In the hypersonic aerothermoelastic

simulations, the fluid characteristic time is much smaller than the structural characteristic

time, and the structural response is of primary interest. The time-averaged fluid solution

from a RANS solver can provide sufficiently time accurate predictions of the pressure and

heat flux load for hypersonic aeroelastic and aerothermoelastic simulations [1, 21, 81, 90].

The RANS simulation consists of two components, the compressible RANS equations

and a turbulence model. The compressible RANS equations are transformed from the NS

equations using the Favre averaging method [141]. It contains variables characterizing the

mean flow field, as well as the flow fluctuations. A turbulence model is a set of additional

equations to provide closure to the compressible RANS equations by associating flow fluc-

tuation variables to the mean flow field variables. In this study, the Spalart-Allmaras (SA)

turbulence model [142] is employed for the RANS simulation. This turbulence model is
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considered a reasonable one-equation model for representing turbulent hypersonic flow

[143] and it has been employed in several past hypersonic aeroelastic studies in Refs.

[1, 90, 144].

The compressible RANS equations [141], in a form that is suitable for the SA turbu-

lence model, are as follows,

Dρf

Dt
+ ρf∇ ·V = 0

ρf
DV

Dt
= −∇p+∇ · (τ + τ ′)

ρf
D(Ψ + Ψ′)

Dt
= ∇ ·

[(
kf +

µ′cp
Pr′

)
∇T +

(
µ+

µ′

σ

)
∇E ′

]
−∇ · (pV) +∇ · [(τ + ρfτ ′) ·V]

(2.16a)

(2.16b)

(2.16c)

The variables ρf , V, Ψ, p, and T are the flow quantities associated with the mean flow

field. Several new variables are introduced to characterize the turbulent flow fluctuations,

including the Reynolds stress tensor τ ′, the turbulent kinetic energy Ψ′, turbulent eddy

viscosity µ′ and turbulent Prandtl number Pr′.

In the SA model [142, 143], the Reynolds stress tensor is expressed in a manner similar

to the viscous stress tensor Eq. (2.3),

−τ ′ = ν ′
[
∇V +∇VT − 2

3
(∇ ·V)I

]
(2.17)

where the kinematic eddy viscosity ν ′ is a new scalar variable that has to be solved via a

transport equation,

Dν∗

Dt
= cb1(1− ft2)S

∗ν∗ +
1

σ

[
∇ · ((ν + ν∗)∇ν∗) + cb2(∇ν∗)2

]
−
(
cw1fw − cb1

κ2
ft2

)(ν∗
d

)2

(2.18)
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where d is the distance from the closest wall surface, and

ν ′ = ν∗fv1, fv1 =
ξ3

ξ3 + c3v1
, ξ =

ν ′

ν

S∗ = S +
ν

κ2d2
fv2, S = ||∇V −∇VT ||, fv2 = 1− ξ

1 + ξfv1

fw = g

(
1 + c6w3

g6 + c6w3

) 1
6

, g = r[1 + cw2(r
5 − 1)], r = min

(
µ∗

S∗κ2d2
, 10

)
ft2 = ct3 exp(−ct4ξ4), cw1 =

cb1
κ2

+
1 + cb2
σ

(2.19a)

(2.19b)

(2.19c)

(2.19d)

The coefficients associated with the SA model are provided in Table 2.1. In addition,

the turbulent viscosity at the inflow boundary of the fluid domain is set to be five times of

the gas viscosity, so as to guarantee a fully-turbulent boundary layer.

Table 2.1: Coefficients in the SA turbulence model

σ κ cb1 cb2 cw2 cw3 cv1 ct3 ct4

2/3 0.41 0.1355 0.622 0.3 2.0 7.1 1.2 0.5

2.2.2 Arbitrary Lagrangian-Eulerian Formulation

For fully-coupled aerothermoelastic simulation, the geometry of the flow field changes due

to the structural deformation. Therefore, a dynamic mesh capability is required for the

RANS CFD solver. In the coupled simulation, the structural response results in the de-

formation of the fluid domain and hence the motion of the CFD mesh. The mesh motion

requires an appropriate implementation of an arbitrary Lagrangian-Eulerian (ALE) formu-

lation in the CFD solver [69]. The central problem in ALE formulation is the implemen-

tation of the geometric conservation law (GCL) condition, first proposed in Ref. [145] for

structured grids and finite difference schemes. The GCL states that a flow field initialized

with uniform distribution of flow states should remain unchanged during an unsteady CFD

solution where mesh motion is present. The violation of GCL degrades time accuracy of
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the solution [70]. Moreover, it is pointed out in Ref. [74] that, satisfying GCL is a nec-

essary and sufficient condition for a numerical scheme to preserve the stability of its fixed

grid counterpart. There are two approaches for correct implementation of GCL in an ALE

formulation. In the first approach, a source term is added to the fluid equation, so that GCL

is enforced when the equation is discretized, as shown in Refs. [71] and [72]. In the second

approach, a grid velocity is computed using a carefully designed interpolation scheme, as

proposed in Ref. [146]. In this study, the GCL is implemented using the mesh interpola-

tion scheme presented in Ref. [146] and modified in Ref. [147], which enables stable and

second-order time-accurate unsteady simulation involving mesh deformation.

The RANS equation with the ALE formulation [69] is written formally as,

∂Uw

∂t

∣∣∣∣
χ̃

+ U∇ · [Fc(w)− vgw] = U∇ ·Fd(w) + UFs(w) (2.20)

where Fc, Fd, Fs are the terms for convective flux, diffusive flux, and the source, respec-

tively.

vg =
∂χ

∂t

∣∣∣∣
χ̃

U =

∣∣∣∣∂χ∂χ̃
∣∣∣∣

(2.21)

(2.22)

The major difference between Eq. (2.20) and RANS equations for stationary mesh is the

inclusion of mesh velocity vg, which describes the motion of mesh χ relative to the refer-

ence frame χ̃. The mesh χ in the nth step is determined by the wall deformation uF , i.e.

χn = χ(un
F ).

Using the mesh interpolation scheme, Eq. (2.20) is discretized as,

3(Uw)n+1 − 4(Uw)n + (Uw)n−1

2∆t
+ Fc(w

n+1, ν̄, κ̄) = Fv(w
n+1, χn+1, u̇n+1

F ,Tn+1
w )

(2.23)

If the mesh is stationary, the convective flux term Fc can be computed using the mesh
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cell face normal ν̄ of the current mesh χn+1, and the normal velocity of the cell face κ̄ is

zero. When mesh motion is present, the quantities ν̄ and κ̄ have to be computed using the

weighted average of meshes from current and previous time steps.

ν̄ =
4∑

k=1

ϑkν(χ
(k))

κ̄ =
4∑

k=1

ϑkv
(k)
g ν(χ(k))

(2.24)

(2.25)

where ν maps the mesh to the cell surface normal, and

χ(k) = φn+1
k χn+1 + φn

kχ
n + φn−1

k χn−1

v(1)
g = v(2)

g =
χn+1 − χn

∆t
, v(3)

g = v(4)
g =

χn − χn−1

∆t

(2.26)

(2.27)

The following set of parameters is used to satisfy GCL and achieve second-order time

accuracy [146],

φn+1
1 = K1, φn

1 = K2, φn−1
1 = 0, φn+1

2 = K2, φn
2 = K1, φn−1

2 = 0,

φn+1
3 = 0, φn

3 = K1, φn−1
3 = K2, φn+1

4 = 0, φn
4 = K2, φn−1

4 = K1,

ϑ1 = ϑ2 =
3

4
, ϑ3 = ϑ4 = −1

4
, and K1 =

1

2

(
1 +

1√
3

)
, K2 =

1

2

(
1− 1√

3

)
In the viscous flux and the source terms Fv, no-slip condition has to be enforced to

match local velocity of the wall boundary u̇F . Instead of directly providing the boundary

velocity to the fluid solver, the velocity is interpolated from the current and the previous

meshes using a three-point backward differencing formula [148],

u̇n+1
F =

3un+1
F − 4un

F + un−1
F

2∆t
(2.28)

In this manner, only a single piece of information, the displacement, has to be transferred
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from the structural solver to the CFD solver at every time step, which is convenient in code

implementation.

The fluid solution w is solved using Eq. (2.23) and depends on the wall deformation

of the current and previous steps, and the wall temperature of the current step. The aero-

dynamic pressure p and heat flux q̇ on the deforming wall surface obtained from the fluid

solution are symbolically represented as,

q̇n+1 = q̇CFD(un+1
F ,un

F ,u
n−1
F ,Tn+1

w )

pn+1 = pCFD(un+1
F ,un

F ,u
n−1
F ,Tn+1

w )

(2.29a)

(2.29b)

2.2.3 Overview of the ADflow Code

The RANS CFD solver used in this study is based on the code Automatic Differentiation

flow (ADflow) [149, 150]. The ADflow solver is a multi-block solver for Euler, laminar

NS and RANS equations with steady, unsteady, and time-periodic temporal modes. The

ADflow code is Message Passing Interface compatible, allowing for massively parallel

computations on multiple CPU clusters. A finite volume numerical method combined with

the Roe flux scheme is employed to yield a second-order accurate spatial discretization. A

three-point backward difference formula is employed for second-order time-accurate un-

steady simulation. The CFD mesh is deformed according to the moving boundary using

an explicit computationally-efficient interpolation scheme. The discretized RANS equa-

tions are solved using the dual time-stepping approach, which is accelerated using the the

multigrid scheme and Newton-Krylov method.

The ADflow code is capable of accounting for both perfect gas and ideal gas models.

For stability bounary calculations, the differences between the predictions of the perfect

gas and ideal gas models are negligible [1]. Therefore, the perfect gas model is employed

for the flow field calculation due to its simplicity.

The ADflow solver has the restart capability, which is important for both steady/un-
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steady hypersonic simulations. In hypersonic regime, if the flow solution is initialized

uniformly using the free stream condition, the simulation takes thousands of iterations to

converge, i.e. to develop boundary layers and shock structures. When the solver is restarted,

the flow simulation is initialized with a converged flow solution. Therefore, the restarted

simulation is already nearly convergent, and the computational cost is reduced significantly.

Furthermore, when the solution is nearly convergent, the solver is numerically stable, so

that acceleration techniques, such as the Newton-Krylov method, can be applied to accel-

erate the convergence. The restart capability is used extensively for sample generation in

the fluid ROM, as will be presented in Section 2.4.5.

Finally, note that a RANS CFD solver generates a time-averaged flow solution and

therefore cannot capture the high-frequency pressure fluctuation due to turbulent boundary

layer (TBL), known as the TBL load [151]. As a result, the effect of TBL load is not

modeled in the current aerothermoelastic analysis framework.

2.3 Analytical Models

Analytical models provide pointwise analytical representation for the pressure and the heat

flux. This means that the fluid solution at a point only depends on the properties of the wall

boundary and the freestream at that point.

2.3.1 Pressure Distribution

2.3.1.1 Piston Theory

Piston theory is based on the simplification of Euler aerodynamics at the high Mach number

limit [51]. It became a popular analytical model for unsteady aerodynamic pressure pre-

diction [52], and has been employed for the flutter boundary calculation of a typical wing

section in hypersonic flow [90]. It outperformed other analytical models when compared

with the CFD-based solution.
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The formulation of the full-order piston theory is [52],

pPT (uF , u̇F ) = p∞

(
1 +

γ − 1

2
Mn

) 2γ
γ−1

− p∞ (2.30)

where the normal Mach number Mn is the Mach number associated with the flow velocity

component that is perpendicular to the deforming surface,

Mn =M∞uF,x +
u̇F
a∞

(2.31)

The PT is applicable to any geometric scale and flight conditions with M∞ >
√
2

[45, 52] and it is independent of the wall temperature. However, the formulation is only

applicable for Mn ≪ 1 [45, 52].

There are two variants of the PT, namely the first-order and third-order piston theory,

that are based on the Taylor series expansion of Eq. (2.30) [52, 110]

First-order PT: pPT1(uF , u̇F ) = γp∞Mn

Third-order PT: pPT3(uF , u̇F ) = γp∞Mn

[
1 +

1 + γ

4
Mn +

1 + γ

12
M2

n

] (2.32a)

(2.32b)

Both the first-order and third-order PT have been employed in the flutter boundary

calculation of hypersonic vehicle structures, such as the skin panel [45] and the control

surface [110]. However, in the current study, only the full-order PT Eq. (2.30) is employed

in the flutter boundary calculation, due to its simplicity in the mathematical formulation.

Equations (2.32a) and (2.32b) are introduced to assist the mathematical formulation of the

fluid ROM, which will be discussed in the next section.

2.3.1.2 Modified Piston Theory With Effective Shape

Another variation of piston theory that accounts for the presence of the boundary layer

utilizes the concept of effective shape [110, 112], where the normal displacement of the
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structure is augmented by the presence of the boundary layer, whose thickness changes

along the structure is

Mn =M∞(uF,x + δ,x) +
u̇F
a∞

(2.33)

The growth of 2D boundary layer can be characterized by the Cox-Crabtree (CC) for-

mulation [152] for compressible boundary layer on a flat panel,

δCC(c, Tw, x) =
γ − 1

γ + 1

(
δ∗∗(x) + δ∗(x)

Tw
T0

)
M2

∞C
m
w (2.34)

where c is the freestream condition, Cw = µ(Tw)T∞
µ∞Tw

is the Chapman-Rubesin coefficient,

and m is a coefficient depending on the momentum and displacement thicknesses δ∗∗(x)

and δ∗(x). For fully turbulent boundary layer [153],

δ∗∗(x) =
0.016

Remx
x, δ∗(x) =

0.020

Remx
x, m =

1

7
(2.35)

where the 1/7th power law velocity profile is assumed in the turbulent boundary layer.

The strip theory is employed to model the growth of 3D boundary layer in hypersonic

flow. It is assumed that the growth of the boundary layer along the freestream direction

is weakly affected by the variation of flow properties along the cross-flow direction [112].

Therefore, the growth of 3D boundary layer is characterized by applying the 2D CC for-

mulation Eq. (2.34) along the freestream flow direction,

δCC,3D(c, Tw, x, y) = δCC(c, Tw, cos βx+ sin βy) (2.36)

where β is the flow orientation angle.

40



2.3.1.3 Linearized Supersonic Theory

In supersonic flow regime,
√
2 ≤ M∞ ≤ 5, another approximation for inviscid pressure is

provided by linearized supersonic theory (LS) [46],

pLS(uF , u̇F ) =
γp∞M∞√
M2

∞ − 1

(
M∞uF,x +

M2
∞ − 2

M2
∞ − 1

u̇F
a∞

)
(2.37)

At the limit of high Mach number, i.e. M∞ ≫ 1,

M∞√
M2

∞ − 1
≈ 1,

M2
∞ − 2

M2
∞ − 1

≈ 1 (2.38)

Equation (2.37) reduces to the first-order piston theory Eq. (2.32a).

Same as the piston theory, the LS is only applicable whenM∞uF,x ≪ 1 and u̇F

a∞
≪ 1. In

this study, the LS is employed in the verification of the aeroelastic portion of the HYPATE

framework, which will be presented in Chap. 7.

2.3.2 Heat Flux Distribution

The aerodynamic heat flux is computed using Eckert’s reference enthalpy method [67]. The

method is based on a compressible bounary layer solution over a flat plate with uniform

wall temperature. The Eckert’s method has been widely employed in the aerodynamic

heat flux calculation in aerothermoelastic analysis [20, 66]. The formulation of Eckert’s

reference enthalpy method is

q̇EE(uF , Tw) = St(Tr)ρ(Tr)Ve[Haw(Tr)−H(Tw)] (2.39)

where the enthalpy H , air density ρ and Stanton number St are temperature dependent,
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St(T ) =
cf (T )

2Pr(T )2/3

Haw(T ) = H(Te) + Pr(T )rf
V 2
e

2

(2.40)

(2.41)

The recovery factor rf and the skin friction coefficient cf are,


rf = 1

3
, cf (T ) = 0.370[log10Re(T, xle)]

−2.584, for turbulent flow

rf = 1
2
, cf (T ) = 0.664Re(T, xle)

−0.5, for laminar flow

(2.42)

where Re(T, xle) =
ρ(T )Vexle

µ(T )
and xle is the distance from the leading edge. The reference

temperature Tr satisfies,

H(Tr) = H(Te) + 0.50[H(Tw)−H(Te)] + 0.22[Haw(Tr)−H(Te)] (2.43)

At the edge of the boundary layer, the pressure pe is assumed to be equal to the wall pres-

sure, which is computed using the piston theory Eq. (2.30). The other flow properties Te

and Ve satisfy,

Te
T∞

=

(
pe
p∞

) γ−1
γ

=
1 + γ−1

2
M2

∞

1 + γ−1
2
M2

e

, Ve =Me

√
γRTe (2.44)

2.4 Reduced Order Modeling

2.4.1 Modeling Strategies

The ROM techniques are applied to accelerate the CFD-based fluid solver in the HYPATE

framework. The fluid solver evaluates the pressure p and heat flux q̇ on the structural

surface given the surface deformation uF , surface velocity u̇F , wall temperature Tw and
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the flight condition c,

c = [M∞, p∞, T∞]T (2.45)

The ROM for the fluid solver is based on the assumption that the flow is quasi-steady.

The quasi-steady flow assumption is due to the disparity of characteristic times in a hyper-

sonic aerothermoelastic problem, and its justification is provided by an order-of-magnitude

analysis of the characteristic times [20], as presented next.

The characteristic time for the fluid response is determined by Eq. (2.14a),

tF =
L

M∞a∞
(2.46)

The characteristic time for the structural response is determined by the lowest natural

frequency,

tS =
1

f1
(2.47)

For a skin panel,

f1 = C

√
Eh2

ρsL4
(2.48)

where C ∼ 1 is a constant that depends on the Poisson’s ratio and the panel geometry.

The characteristic time for the structural response is determined by the Fourier number,

which characterizes how fast the thermal response reaches equilibrium [20, 154],

tT =
ρscsph

2

ks
(2.49)

For a typical metallic skin panel in hypersonic flow,

ρs ∼ 103kg/m3, ks ∼ 101W/mK, csp ∼ 102J/kgK, E ∼ 1011Pa,

L ∼ 1m, h ∼ 10−2m, M∞ ∼ 101, a∞ ∼ 102m/s
(2.50)
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Therefore, the orders of magnitude of the characteristic times are,

tF ∼ 10−3s, tS ∼ 10−2s, tT ∼ 1s (2.51)

The results in Eq. (2.51) lead to two approximations. First, since the thermal character-

istic time is much larger than the fluid and structural characteristic times, the surface heat

flux is assumed to be independent of any terms associated with time derivatives, including

structural velocity,

q̇(c,uF , u̇F ,Tw) = q̇(c,uF ,Tw) (2.52)

Second, the ratio between the fluid and structural characteristic times, i.e. the reduced

frequency, is a small parameter,

tF
tS

=
Lf1

M∞a∞
∼ 10−1 (2.53)

A small value of reduced frequency indicates that the aerodynamic pressure on the structure

is quasi-steady, i.e. the pressure is weakly coupled with structural velocity (pp. 251-281 of

[117]). The pressure distribution is decomposed into steady and unsteady components and

modeled separately.

p(c,uF , u̇F ,Tw) = pstd(c,uF ,Tw) + puns(c,uF , u̇F ) (2.54)

The steady pressure component pstd and the heat flux q̇ are modeled using the POD-

kriging method combined with the correction and scaling methodology, which will be de-

tailed in the following sections. The unsteady pressure component puns is referred to as the

unsteady correction and is evaluated using piston theory [101],

puns(uF , u̇F ) = pPT (uF , u̇F )− pPT (uF , u̇F = 0) (2.55)
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2.4.2 The POD-Kriging Method

In the POD-kriging method, a nonlinear interpolation model for the problem is constructed

from a set of data sample points D = {di,yi}Ns
i=1, where input vector d ∈ RNd and

output vector y ∈ RNy . In the context of a fluid ROM, the input vector typically con-

tains Nd = 10 ∼ 20 parameters characterizing c, uF and Tw. The optimal latin hyper-

cube (OLH) sampling method [155] is used to generate the uniformly and randomly dis-

tributed sample inputs in the parameter space of interest. The output vector can be either

the steady component of the pressure pstd or the heat flux q̇.

The POD-kriging interpolation model for the data set D is expressed as,

ypk(d) = ΨPy
krg(d) (2.56)

where the POD modes ΨP represents the dominant patterns in the output vectors, which

are extracted from the data set using the snapshot method [93],

yP = ΨT
Py, y ≈ ΨPyP (2.57)

The kriging method [107, 110] is used to construct a nonlinear interpolation model

between d and yP . The model is characterized by two terms,

ykrg(d) = βT
f f(d) + βT

r r(d) (2.58)

where f(d) is a regression function representing the global trend of the unknown function,

and r(d) is a correlation function representing the local deviation of the regression function

with respect to the actual sampled data. The mathematical details of the POD method and

the kriging are provided in Appendix A.
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The Jacobian of the POD-kriging model w.r.t. the input is,

∂ypk

∂d
= ΨP

∂ykrg

∂d
= ΨPβ

T
f

∂f

∂d
+ΨPβ

T
r

∂r

∂d
(2.59)

where the Jacobians of f and r w.r.t. d can be computed analytically from their definitions

Eq. (A.7).

2.4.3 Conventional ROM and Its Limitations

In previous studies [91, 102, 103], the steady component of the pressure pstd and the heat

flux q̇ are modeled using the POD-kriging method directly. An extensive list of input pa-

rameters has to be included in the POD-kriging models to account for a range of flight

conditions of interest, structural deformation and non-uniform wall temperature distribu-

tion. The flight conditions include NF parameters, such as M∞ and T∞. The structural

deformation and the wall temperature are represented using a linear combination of NS

structural modes and NT thermal modes, respectively,

uF = ΨSa

Tw = ΨTb

(2.60a)

(2.60b)

The conventional POD-kriging models are

pstd(c,uF ,Tw) = ppk(d)

q̇(c,uF ,Tw) = q̇pk(d)

(2.61a)

(2.61b)

where the input vector for this approach has (NF +NS +NT ) entries,

dT = [cT , aT ,bT ] = [cT ,uT
FΨS,T

T
wΨT ] (2.62)
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However, the conventional POD-kriging-based fluid ROM has three limitations. The

first two limitations are the issues of characterization and generalization, as discussed in

Section 1.2.3. The limitation in generalization is due to the a priori assumption on the

form of the wall temperature, such as simple polynomials [91, 103] and POD modes of a

low-fidelity thermal solution [102]. The simplifying assumption usually proves to be in-

accurate for the nonuniform wall temperature distribution in an actual aerothermoelastic

problem [113, 114]. The limitation in characterization is due to the fact that the model

is only suitable for a fixed geometrical configuration, since the sample data set is gener-

ated for a particular geometrical configuration. Finally, the third limitation is the curse of

dimensionality, caused by the numerous parameters needed for representing the flight con-

ditions and the wall temperature. The sample data for generating the model has to cover

the parameter space of interest. The requirement of coverage of the parameter space causes

the number of samples to grow exponentially with the number of entries in the ROM input

vector d, which would dramatically increase the computational cost for ROM generation.

Previous studies [114] have suggested a pointwise correction model for the heat flux,

which is based on a generalized Chapman–Rubesin solution for turbulent flow over a flat

surface. This approach predicts accurately the heat flux with respect to arbitrary tempera-

ture distributions, including the non-smooth distribution due to the presence of boundary

layer transition and shock wave/boundary layer interaction. However, this approach relies

on the tuning of empirical coefficients that depends on flight conditions and geometrical

configurations. For the cases considered in the current study, where the temperature dis-

tribution is expected to be smooth, a new correction model that does not rely on empirical

coefficients is developed. The new correction model is advantageous due to its simplicity

and analytical form. It can be conveniently implemented for engineering applications and

serves as an alternative to the more comprehensive but more complex pointwise correction

model proposed in Ref. [114].
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2.4.4 Scaled and Corrected Fluid ROM Formulation

A methodology for correction and scaling is developed to overcome the three limitations of

the conventional POD-kriging method, as indicated earlier. First, the POD-kriging models

for aerodynamic pressure and heat flux are generated for fixed reference flight conditions

cref , uniform wall temperature Tw and a fixed geometrical configuration with a character-

istic length Lref . Subsequently, the models are corrected to account for both non-uniform

temperature distribution and for extrapolation to different flow conditions or geometric

scale. The correction for a scaled configuration with a characteristic length L, an arbitrary

flight condition c and with an arbitrary non-uniform wall temperature distribution Tw has

the following form,

q̇(c,uF ,Tw;L) = f corq (q̇pk(d); c,uF ,Tw, ξ)

pstd(c,uF ,Tw;L) = f corp (ppk(d); c,uF ,Tw, ξ)

(2.63a)

(2.63b)

where ξ = Lref/L is the geometric scale ratio, and the subscripts q and p indicate the

correction factor for heat flux and pressure, respectively. The input vector of the POD-

kriging model for this approach is reduced to (NS + 1) entries:

dT = [ξaT , Tw] (2.64)

The correction is based on recognizing that, the analytical models, such as the piston

theory and the Eckert’s method, have been widely used in the aerothermoelastic analysis

and have generated physically meaningful results for engineering applications. The analyt-

ical models do not provide results with absolute accuracy comparable to the high-fidelity

CFD results. However, they capture the trends with respect to the input parameters with

sufficient accuracy. Therefore, the ratio of two analytical solutions, at two different states,

can be used as a correction factor.
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Utilizing this concept with Eckert’s reference enthalpy method, a pointwise correction

is yielded for heat flux,

[f corq (q̇pk; c,uF ,Tw, ξ)]i =
q̇EE(c, [uF ]i, [Tw]i)

q̇EE(cref , ξ[uF ]i, Tw)
[q̇pk]i (2.65)

The combination of piston theory and POD-kriging-based pressure suggests the follow-

ing correction,

[fPT
p (ppk; c,uF ,Tw, ξ)]i =

pPT (c, [uF ]i, [Tw]i)

pPT (cref , ξ[uF ]i, Tw)
[ppk]i (2.66)

Using the first-order piston theory Eq. (2.32a) and assuming that the heat capacity ratio γ

is constant, the correction Eq. (2.66) is simplified as,

[fPT
p (ppk; c,uF ,Tw, ξ)]i =

γp∞M∞[uF,x]i
γprefMref [uF,x]i

[ppk]i ≈
p∞M∞

prefMref

[ppk]i (2.67)

Equation (2.67) is denoted the PT correction.

A noteworthy aspect of piston theory is that it does not take account of the boundary

layer effect. An alternative correction for pressure is based on the modified piston theory

with effective shape, which accounts for the geometrical shape change due to the boundary

layer. Since the flow is inviscid outside the boundary layer, the piston theory is applied

to compute the pressure on the effective shape [110, 112]. Alternatively, if the surface

pressure is provided by the ROM, the slope of effective shape can be estimated using Eqs.

(2.30) and (2.33),

δPT
,x (ppk; cref , ξuF , Tw) =

2

(γ − 1)Mref

[(
1 +

ppk

pref

) γ−1
2γ

− 1

]
− uF,x (2.68)

The slope of the boundary layer δpk,x is associated with the geometrical configuration of

the reference ROM, and it is corrected to account for the changes in flight conditions and
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geometric scales using Eq. (2.34),

f cor
δ,x (p

pk; c, uF , Tw, ξ) = Rδδ
PT
,x (ppk) (2.69)

where Rδ is a correction factor based on the Cox-Crabtree formulation,

Rδ =
δCC
,x (c, x)

δCC
,x (cref , ξx)

(2.70)

Finally, the new pressure is computed using the modified PT with effective shape, Eqs.

(2.30) and (2.33),

[fBL
p (ppk; c,uF ,Tw, ξ)]i = p∞

[
1 +

γ − 1

2
M∞

(
[uF,x]i + f cor

δ,x ([p
pk]i)

)] 2γ
γ−1

− p∞

(2.71)

The correction based on the modified piston theory with effective shape is denoted as the

boundary layer (BL) correction. Combining Eqs. (2.68-2.71), the BL correction is formu-

lated as,

[fBL
p (ppk; c,uF ,Tw, ξ)]i = p∞

{
1 + (1−Rδ)

γ − 1

2
M∞[uF,x]i

+ Rδ
M∞

Mref

[(
1 +

[ppk]i
pref

) γ−1
2γ

− 1

]} 2γ
γ−1

− p∞ (2.72)

The corrections for pressure and heat flux take care of the discrepancy in the wall tem-

perature and flight conditions without introducing any empirical coefficients. Moreover,

the models account for the geometric scaling using a new parameter ξ. Such a correction is

important because it expands the applicability of the ROM to a wider range of applications,

and greatly reduces the cost for ROM generation by reducing the number of required input

parameters and resulting in the reduction of the number of samples.
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The final forms of the fluid ROM are represented by the following relations,

q̇(c,uF , u̇F ,Tw) = f corq (q̇pk(d); c,uF , ξ)

p(c,uF , u̇F ,Tw) = f corp (ppk(d); c,uF , ξ) + puns(c,uF , u̇F )

(2.73a)

(2.73b)

where f corp can be the PT correction fPT
p or the BL correction fBL

p .

For PT correction, the Jacobians of the pressure w.r.t. the displacement and the velocity

are determined analytically from Eqs. (2.55), (2.67) and (2.73b),

∂p

∂uF

=
p∞M∞

prefMref

∂ppk(d)

∂d

∂d

∂uF

∂p

∂u̇F

=
∂puns(c,uF , u̇F )

∂u̇F

(2.74a)

(2.74b)

For BL correction, the Jacobian of the pressure w.r.t. the velocity is the same as Eq.

(2.74b). The Jacobian of the pressure w.r.t. the displacement is determined analytically

using Eq. (2.72),

∂p

∂uF

= Λu

[
(1−Rδ)

γ − 1

2
p∞M∞

∂uF,x

∂uF

+Rδ
p∞M∞

prefMref

Λp
∂ppk(d)

∂d

∂d

∂uF

]
(2.75)

where Λu and Λp are diagonal matrices and their ith diagonal element are, respectively,

[Λu]ii =

[
1 +

γ − 1

2
M∞

(
[uF,x]i + f cor

δ,x ([p
pk]i)

)] γ+1
γ−1

[Λp]ii =

(
1 +

[ppk]i
pref

)−γ−1
2γ

− 1

(2.76a)

(2.76b)

2.4.5 Efficient ROM Sample Generation

Over 95% of the time for generating a fluid ROM is spent on the computation of the sample

fluid solutions. The smart ordering scheme accelerates the computation of the samples, and

reduces the computational cost of ROM generation by a factor of 2.
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The scheme utilizes the “restart” capability of the CFD solver. The fluid simulation

is initialized using a reference solution w∗, and converges to the actual solution w after a

certain number of iterations. When the reference solution is similar to the actual solution,

the solver converges in fewer iterations and requires less computer time. The smart ordering

scheme initializes a sample solution w using another sample solution w∗ that is the most

similar to w, so that the computational cost of w is minimized. The similarity between the

reference solution w∗ and the actual solution w is characterized by the “distance” between

the two fluid solutions.

The fluid solution depends on the flight conditions, structural deformation, and wall

temperature,

w = w(c,uF ,Tw) (2.77)

Assuming that the computational cost of the fluid solution is proportional to the differ-

ence between the reference and actual solutions, one has,

tCFD(w) ∝ ||w −w∗||

= ||w(c,uF ,Tw)−w(c∗,u∗
F ,T

∗
w)||

≤ C1||c− c∗||+ C2||uF − u∗
F ||+ C3||Tw −T∗

w|| (2.78)

where C1, C2, C3 are constants in the Taylor series expansion of w(c,uF ,Tw).

In the POD-kriging ROM, the structural deformation and wall temperature are rep-

resented using shape functions provided by Eqs. (2.60a)-(2.60b). Assuming the shape

functions are orthogonal and normalized,

||uF − u∗
F || = ∥ΨSa−ΨSa

∗∥ = ∥a− a∗∥

||Tw −T∗
w|| = ∥ΨTb−ΨTb

∗∥ = ∥b− b∗∥

(2.79)

(2.80)

Combining equations (2.78)-(2.80), the distance between two fluid solutions is defined
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as,

dCFD(w,w
∗) =

√√√√ NF∑
i=1

D1i(ci − c∗i )
2 +D2||a− a∗||+D3||b− b∗|| (2.81)

whereD1i, D2, D3 are empirical constants for nondimensionalization, so that the quantities

with different dimensions, such as the structural and thermal modal amplitudes a and b,

can be combined.

The total computational cost of computing the ROM samples D is proportional to the

sum of the distances between the fluid solutions and their reference solutions.

tCFD(D) ∝
Ns∑
i=1

dCFD(wi,w
∗
i ) (2.82)

The reference solution w∗
i can be a naive fluid solution w0 defined as one that represents

the flow field for the undeformed panel with uniform wall temperature. The naive fluid

solution is computed before the ROM generation. The reference solution can also be one

of the sample fluid solutions. The best reference solution w∗
i is the one that is the closest to

the ith sample wi, so that the computation cost of wi is minimized. In conventional ROM

generation, the samples are always restarted using the naive fluid solution w0.

The algorithm for smart ordering scheme is presented in Appendix B. The samples are

ordered such that:

1. The first sample solution is restarted using the naive fluid solution w0.

2. The reference solution for the jth sample wj is chosen to be the ith sample wi that

minimizes dCFD(wi,wj), and the sample wi is always computed before wj .

3. Multiple samples might use the same sample solution as reference solution.

The comparison of the computational cost using the conventional method and the smart

ordering scheme is given in Table 2.2. For simplicity, the fluid solution is described using

3 structural modes only, i.e. NF = 0, NS = 3, NT = 0. One hundred 3D solutions are

generated. Using smart ordering scheme, the sample generation is accelerated by a factor

of two, approximately.
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Table 2.2: Computational cost for sample generation

Conventional Smart ordering Acceleration

Euler 1.2 hrs 0.7 hrs 1.7

RANS 2 hrs 0.9 hrs 2.2
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CHAPTER 3

Structural Dynamic Model

In this chapter, the structural dynamic model is developed for an anisotropic doubly-curved

shallow shell, including the effects of transverse shear deformations, geometric nonlinear-

ity and thermal stress. Next, a dimensional analysis is applied to Hamilton’s principle to

identify the similarity parameters for the structural problem, which are required for the

development of ASL described in the following chapters. Finally, the finite element dis-

cretization of the structural dynamic equations is presented together with its solution.

3.1 Governing Equations

3.1.1 Basic Assumptions

The skin panel of a hypersonic vehicle may undergo moderate deflections [8, 49] in some

cases and the transverse shear effect is significant when employing composite materials for

construction [45]. Therefore, doubly-curved shallow shell equations with first-order shear

deformation theory (FSDT) and von Karman strain (pp. 621-626 of [156]) are used in the

current study. The assumptions made:

1. The panel is thin, i.e. the thickness-to-span ratio of the panel is less than 1/20 [157],

therefore FSDT is appropriate.

2. The curvature of the panel is shallow, i.e. the span-to-radius ratio of the panel is less

than 0.5 [157], therefore shallow shell theory is applicable.
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3. The panel undergoes moderate rotation with small strain, thus von Karman strain is

appropriate for representing the deformations.

4. No change in thickness due to external loading, i.e. total normal strain in thickness

direction is neglected.

5. Under non-uniform thermal loading, the traditional composite constitutive relation

with thermal strain can be used.

3.1.2 Kinematics and Constitutive Relations

The displacement field of the shell is characterized by five variables illustrated in Fig. 3.1:

the transverse displacementw, the in-plane displacement u, v of the middle surface, and the

rotation ψx, ψy w.r.t. the middle surface. For a doubly-curved shallow shell, the membrane

strain and the transverse shear strain by FSDT are (pp. 621-626 of [156]),

ϵ = [ϵxx, ϵyy, γxy]
T = ϵl + ϵnl + zχ

γ = [γxz, γyz]
T

(3.1a)

(3.1b)

where,

ϵl =


u,x +

w

Rx

v,y +
w

Ry

u,y + v,x

 , ϵnl =


1
2
w2

,x

1
2
w2

,y

w,xw,y

 , χ =


ψx,x

ψy,y

ψx,y + ψy,x

 , γ =

−
u

Rx

+ w,x + ψx

− v

Ry

+ w,y + ψy



(3.2)

The von Karman strain ϵnl is used to describe moderate shell deflections. Furthermore,

ϵ0 = ϵl + ϵnl is defined as the total membrane strain.
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Figure 3.1: Local curvilinear coordinate system (ξ1, ξ2, ζ) in doubly-curved shallow shell

of laminated composites

Consider the ith lamina in a laminated composite shell, which extends from hi to hi+1

in the thickness direction. The constitutive relation is,

σE = Qi(ϵ+ zχ−αi∆T ), τE = Giγ (3.3)

where,

σE =


σxx

σyy

σxy

 , Qi =


Qi

11 Qi
12 Qi

13

Qi
12 Qi

22 Qi
23

Qi
13 Qi

23 Qi
66

 , αi =


αi
xx

αi
yy

αi
xy

 (3.4)

and,

τE =

σyz
σxz

 , Gi =

Qi
44 Qi

45

Qi
45 Qi
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 (3.5)

where Qij are elastic constants, αi are thermal expansion coefficients of the ith lamina and

∆T is a temperature increment.

Assuming a known temperature distribution in the structure, integration of Eq. (3.3)

through the thickness produces the in-plane forces NE = [NEx, NEy, NExy]
T , moments
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ME = [MEx,MEy,MExy]
T and transverse shear forces TE = [TEy, TEx]

T .

(NE,ME,TE) =

∫ h/2

−h/2

(σE, zσE, τE)dz (3.6)

Since Qi and αi vary from layer to layer, the integration over [−h
2
, h
2
] has to be performed

in a piecewise manner. After the integration, one has,

NE

ME

 =

A B

B D


ϵ
χ

−

NT

MT


TE = Sγ

(3.7)

where, A,B,D are extensional, extension-bending and bending matrices, respectively, S

is transverse shear stiffness matrix, and NT ,MT are forces and moments due to thermal

effect.

(A,B,D) =

Nl∑
i=1

∫ hi+1

hi

(1, z, z2)Qidz

S = κ

(
Nl∑
i=1

∫ hi+1

hi

Gidz

)

(NT ,MT ) =

Nl∑
i=1

∫ hi+1

hi

(1, z)Qiαi∆Tdz

(3.8a)

(3.8b)

(3.8c)

Note that a shear correction factor κ is used in the calculation of S. The actual transverse

shear stress distribution across the thickness is non-uniform. For example, in homogeneous

beams and plates, the distribution is parabolic. However, the shear stress distribution is

assumed to be constant in FSDT. To correct this discrepancy, the transverse shear strain

energy predicted by FSDT is multiplied by a factor κ, so that the modified transverse shear

strain energy is equal to the actual transverse shear strain energy. In current study, κ = 5
6

(pp. 135-136 of [156]).

When the temperature is non-uniform and material properties are temperature-dependent,

and the integrations defining A,B,D,S,NT , and MT are approximated using Simpson’s
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rule. For example,

A =
N∑
i=1

∫ hi+1

hi

Qidz ≈
N∑
i=1

{
hi+1 − hi

6

[
Qi(hi) + 4Qi

(
hi + hi+1

2

)
+Qi(hi+1)

]}

(3.9)

where Qi(z) ≡ Qi(∆T (z)).

3.1.3 Hamilton’s Principle

Using constitutive relation Eq. (3.7), the strain energy U of the shell is,

U =
1

2

∫
A

(
ϵTNE + χTME + γTTE

)
dA (3.10)

The variation of the strain energy is,

δU =

∫
A

(
δϵTAϵ+ δϵTBχ+ δχTBϵ+ δχTDχ+ δγTSγ − 1

2
δϵTNT − 1

2
δχTMT

)
dA

(3.11)

The kinetic energy T of the shell is,

T =

∫
A

∫
h

1

2
ρs(x, T )

[
(u̇+ zψ̇x)

2 + (v̇ + zψ̇y)
2 + ẇ2

]
dzdA

=
1

2

∫
A

[
I1
(
u̇2 + v̇2 + ẇ2

)
+ 2I2

(
u̇ψ̇x + v̇ψ̇y

)
+ I3

(
ψ̇2
x + ψ̇2

y

)]
dA (3.12)

where,

Ik =

∫
h

ρs(x, T )zk−1 dz (3.13)
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The variation of the kinetic energy is,

δT =

∫
A

I1(δu̇u̇+ δv̇v̇ + δẇẇ) + I2(δu̇ψ̇x + δψ̇xu̇+ δv̇ψ̇y + δψ̇yv̇) + I3(δψ̇xψ̇x + δψ̇yψ̇y)dA

(3.14)

The distributed loading p(x, y) in the z-direction is considered in the aerothermoelastic

problem. The loading is provided either by the aerodynamic pressure pF , or other external

pressure loading pext. The virtual work done by p(x, y) per unit area is,

δW =

∫
A

p(x, y)δwdA (3.15)

Applying Hamilton’s principle to Eqs. (3.11) , (3.14) and (3.15),

0 =

∫ t2

t1

∫
A

(δT − δU + δW) dAdt (3.16)

yields the governing equations of the composite shell response associated with the variables

u, v, w, ψx, ψy. The boundary conditions are obtained by further manipulating Eq. (3.16)

using integration by parts. However, these governing equations are not of major interest

and not presented in detail. In this study, Eq. (3.16) is only used for dimensional analysis

and finite element formulation, as presented in the following.

3.1.4 Dimensional Analysis of the Structural Problem

The structural similarity parameters are derived by non-dimensionalizing the strain energy

and the kinetic energy associated with the composite shallow shell theory with FSDT and

geometric nonlinearity.
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The following nondimensional quantities are introduced,

(x̄, ȳ, R̄x, R̄y) =
(x, y, Rx, Ry)

L̂
, z̄ =

z

ĥ
, h̄(x, y) =

h(x, y)

ĥ
, t̄ =

t

t̂

(ū, v̄, w̄) =
(u, v, w)

ŵ
, (ψ̄x, ψ̄y) =

ŵ

L̂
(ψx, ψy), p̄(x, y) =

p(x, y)

p̂

(3.17a)

(3.17b)

The strain components ϵ, χ and γ are,

ϵ =
ŵ

L̂



(
∂ū

∂x̄
+

w̄

R̄x

)
+

1

2

ŵ

L̂

(
∂w̄

∂x̄

)2

(
∂v̄

∂ȳ
+

w̄

R̄y

)
+

1

2

ŵ

L̂

(
∂w̄

∂ȳ

)2

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)
+
ŵ

L̂

∂w̄

∂x̄

∂w̄

∂ȳ

 ≡ ŵ

L̂
ϵ

χ =
ŵ

L̂2


∂ψ̄x

∂x̄
∂ψ̄y

∂ȳ
∂ψ̄x

∂ȳ
+
∂ψ̄y

∂x̄

 ≡ ŵ

L̂2
χ

γ =
ŵ

L̂

−
ū

R̄x

+
∂w̄

∂x̄
+ ψ̄x

− v̄

R̄y

+
∂w̄

∂ȳ
+ ψ̄y

 ≡ ŵ

L̂
γ

(3.18a)

(3.18b)

(3.18c)

Using Eqs. (3.3-3.7), (3.18) and (3.11), the variation of the strain energy is,

δU =
D̂xxŵ

2

L̂4

∫
A

[
ÂxxL̂

2

D̂xx

δϵTAϵ+
B̂xxL̂

D̂xx

(
δϵTBχ+ δχTBϵ

)
+ δχTDχ

+
ŜxxL̂

2

D̂xx

δγTSγ − N̂TxL̂
3

D̂xxŵ

1

2
δϵTNT − M̂TxL̂

2

D̂xxŵ

1

2
δχTMT

]
dA

≡ D̂xxŵ
2

L̂4
δU (3.19)
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where,

A =
A

Âxx

, B =
B

B̂xx

, D =
D

D̂xx

, S =
S

Ŝxx

NT =
NT

N̂Tx

, MT =
MT

M̂Tx

(3.20)

The reference values are

(Âxx, B̂xx, D̂xx) =

∫
ĥ

(1, z, z2)Q11(x, T̂S)dz

Ŝxx = κ

∫
ĥ

G11(x, T̂S)dz

N̂Tx =

∫
ĥ

Q11(x, T̂S)α1(x, T̂S)dzT̂S

M̂Tx = N̂Txĥ

(3.21a)

(3.21b)

(3.21c)

(3.21d)

Using Eq. (3.11)), the variation of the kinetic energy is,

δT =
Îŵ2

t̂2

∫
A

[
Ī1
(
δ˚̄u˚̄u+ δ˚̄v˚̄v + δ ˚̄w˚̄w

)
+
ĥ

L̂
Ī2

(
δ˚̄u˚̄ψx + δ ˚̄ψx˚̄u+ δ˚̄v ˚̄ψy + δ ˚̄ψy˚̄v

)

+

(
ĥ

L̂

)2

Ī3

(
δ ˚̄ψx

˚̄ψx + δ ˚̄ψy
˚̄ψy

) dA

≡ Îŵ2

t̂2
δT (3.22)

where,

Īi =
Ii

Î ĥi−1
, Î =

∫
ĥ

ρs(x, T̂S) dz (3.23)

Using Eq. (3.15)), the virtual work done by transverse loading is,

δW = p̂ŵ

∫
A

p̄(x, y)δw̄dA

≡ p̂ŵδW (3.24)
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Combining Eqs. (3.19) , (3.22) and (3.24) with the Hamilton’s principle Eq. (3.16),

0 =

∫ t2

t1

∫
A

(
Îŵ2

t̂2
δT − D̂xxŵ

2

L̂4
δU + p̂ŵδW

)
dAdt

0 =

∫ t2

t1

∫
A

(
ÎL̂4

D̂xxt̂2
δT − δU +

p̂L̂4

D̂xxŵ
δW

)
dAdt (3.25)

The similarity parameters for the structural problem are identified from Eqs. (3.19), (3.22),

(3.24), and (3.25), as shown in the following,

ÎL̂4

D̂xxt̂2
, R̄x, R̄y

Ī1,
ĥĪ2

L̂
,

ĥ2Ī3

L̂2

A, B, D, S, NT , MT

ÂxxL̂
2

D̂xx

,
B̂xxL̂

D̂xx

,
ŜxxL̂

2

D̂xx

,
N̂TxL̂

3

D̂xxŵ
,

M̂TxL̂
2

D̂xxŵ

p̂L̂4

D̂xxŵ
, p̄,

ŵ

L̂

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)

In Eq. (3.26a), the first quantity defines the time scale of the structural problem, and the

next two quantities represent the similarity in the geometrical configuration. The quantities

in Eqs. (3.26b) and (3.26c) require similarity in material properties as functions of temper-

ature and spatial coordinates. Note that A, B and D are 3 × 3 symmetric matrices, S is a

2 × 2 symmetric matrix, and NT and MT are 3 × 1 vectors. Therefore, A, B and D each

contain 6 independent similarity parameters, while S, NT and MT each contain 3 inde-

pendent similarity parameters. The quantities in Eq. (3.26d) requires the similarity in the

ratios of various elastic properties. Finally, in Eq. (3.26e), the first two quantities require

the similarity in the distribution and the magnitude of the external loading. The quantity ŵ

L̂

requires the similarity in the magnitude of the nonlinear deformation. The reference struc-

tural temperature T̂S , which is contained in the definitions of Âxx, B̂xx, D̂xx, Ŝxx, N̂Tx,
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M̂Tx and Î , is determined from the consideration of the aerothermoelastic problem.

In the case of thin, isotropic, and homogeneous plate, the 41 similarity parameters in

Eq. (3.26) reduce to 13 parameters,

ÎL̂4

D̂xxt̂2

Ī1

Axx, Dxx, NTx, MTx, ν

ÂxxL̂
2

D̂xx

,
N̂TxL̂

3

D̂xxŵ
,

M̂TxL̂
2

D̂xxŵ

p̂L̂4

D̂xxŵ
, p̄,

ŵ

L̂

(3.27a)

(3.27b)

(3.27c)

(3.27d)

(3.27e)

The set of similarity parameters in Eq. (3.27) is equivalent to the classical results in Ref.

[24] if the reference value for the elastic portion of the in-plane force is defined as,

N̂ = Âxx
ŵ

L̂
(3.28)

3.2 Finite Element Formulation

In HYPATE, the shell element is implemented using the shallow shell equations given in

the energy principle represented by Eq. (3.16). The finite element is referred to as the

doubly-Curved shallow 9-noded shell element (DCS9). The nodes are shown in Fig. 3.2,

four at corners, four at midpoints and one at the center. The numbers enclosed by circles

are the nodes. Every node has five degrees of freedom (DOFs): three displacements and

two rotations. Second-order Lagrangian shape functions are used to interpolate the nodal

variables.
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Figure 3.2: The DCS9 element in parametric coordinates, GQ means Gaussian Quadrature

3.2.1 Element Matrices and Loading Vectors

For each element, the displacement field u(x, y) = [u, v, w, ψx, ψy]
T is interpolated by the

shape functions Ni and nodal values ue = [u1, v1, w1, ψx1, ψy1, · · · , u9, v9, w9, ψx9, ψy9]
T ,

u = L0u
e (3.29)

where,

L0 =


· · ·

Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

· · ·


, i = 1, · · · , 9 (3.30)
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and

Ni+3j−3 = fi(η)fj(ξ), i, j = 1, 2, 3

f1(x) =
1

2
x(x− 1)

f2(x) = 1− x2

f3(x) =
1

2
(1 + x)x

(3.31)

The strains are,

ϵl = L1u
e, ϵnl =

1

2
Lwu

e, χ = L2u
e, γ = L3u

e (3.32)

where,

L1 =

 · · ·

Ni,x 0 Ni

Rx
0 0

0 Ni,y
Ni

Ry
0 0

Ni,y Ni,x 0 0 0

· · ·



L2 =

 · · ·

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

· · ·



Lw =

 · · ·

0 0 w,xNi,x 0 0

0 0 w,yNi,y 0 0

0 0 w,yNi,x + w,xNi,y 0 0

· · ·


L3 =

 · · ·
0 −Ni

Ry
Ni,y 0 Ni

−Ni

Rx
0 Ni,x Ni 0

· · ·


From the variation of strain energy, Eq. (3.11), the stiffness matrices and thermal load-
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ing vector is obtained,

δU =

∫
A

(
δϵT0Aϵ+ δϵT0Bχ+ δχTBϵ0 + δχTDχ+ δγTSγ

)
dA−

∫
A

(
δϵT0NT + δχTMT

)
dA

≡ (δue)T {[Ke
L1 +Ke

L2 +Ke
N(u

e)]ue − Fe
T}

(3.33)
where,

Ke
L1 =

∫
A

(
LT

1AL1 + LT
1BL2 + LT

2BL1 + LT
2DL2

)
dA

Ke
L2 =

∫
A

(
LT

3 SL3

)
dA

Ke
N(u

e) =

∫
A

[
LT

1A

(
1

2
Lw

)
+ LT

wAL1 + LT
wA

(
1

2
Lw

)
+ LT

wBL2 + LT
2B

(
1

2
Lw

)]
dA

Fe
T =

∫
A

[
(LT

1 + LT
w)NT + LT

2MT

]
dA

(3.34a)

(3.34b)

(3.34c)

(3.34d)

The term Fe
T is thermal loading vector. The terms Ke

L1 and Ke
L2 correspond to the linear

part of the element stiffness matrix. Gaussian quadrature with selective reduced integration

scheme is used to evaluate the integrations associated with Ke
L1 and Ke

L2, as shown in

Fig. 3.2. For Ke
L1, a set of 3 × 3 Gaussian quadrature points is used (“full integration”);

for Ke
L2, a set of 2 × 2 Gaussian quadrature points is used (“reduced integration”). This

procedure avoids the “shear locking” problem in FE analysis (pp. 327-330 of [158]). The

term Ke
N(u

e) is the nonlinear part of the element stiffness matrix, which depends on the

nodal displacements of the element. Full integration is used for its numerical evaluation.

Combining the linear and nonlinear parts of the element stiffness matrix and loading
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vector yields the element stiffness matrix and internal force vector,

Ke(ue) = Ke
L1 +Ke

L2 +Ke
N(u

e) ≡ Ke
L +Ke

N(u
e)

Fe
I(u

e) = Ke(ue)ue − Fe
T

(3.35)

(3.36)

The consistent mass matrix required for dynamic modeling is obtained from the kinetic

energy T in Eq. (3.12),

T =
1

2
(ue)TMeue (3.37)

where Me is the element consistent mass matrix generated using the same shape functions

that were used for the element stiffness matrix evaluation,

Me = LT
0 I

eL0

Ie =



I1 0 0 I2 0

0 I1 0 0 I2

0 0 I1 0 0

I2 0 0 I3 0

0 I2 0 0 I3


(3.38)

Finally, distributed loading p(x, y) in the z-direction is considered. Using the virtual

work in Eq. (3.15), the element loading vector Fe
S in the z-direction is,

Fe
S =

∫
A

LT
0 [0, 0, p(x, y), 0, 0]

T dA (3.39)

3.2.2 Equations of Motion for the Structural Problem

The element stiffness and mass matrices and loading vectors are assembled into the linear

stiffness matrix KL, total mass matrix M, and unconstrained total internal and loading

vectors, Fu
I and Fu

S . Suppose Nb DOFs of the structure are constrained: the displacement
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of kith DOFs uki is set to be ukib , i = 1, 2, · · · , Nb. The penalty method is used to apply the

boundary conditions (pp. 143-146 of [159]) to obtain the total stiffness matrix and loading

vector,

FI(u) = Fu
I (u) +Kcu

FS = Fu
S + Fc

(3.40)

(3.41)

where,

[Kc]ij =

 α̃, i = j ∈ {1, 2, · · · , Nb}

0, else

[Fc]i =

 α̃uib, i ∈ {1, 2, · · · , Nb}

0, else

In practice, α̃ is set to be,

α̃ = α̃0max
i,j

([Ku]ij) (3.42)

where α̃0 is set to 106 to guarantee that α̃ is much larger than the largest entry in the

unconstrained stiffness matrix.

Using the total mass matrix and the total internal force and loading vectors, the equa-

tions of motion are,

Mü+Cu̇+ FI(u,T) = FS(u, u̇) (3.43)

The damping matrix C is introduced using the proportional damping approach [158],

C = ζMM+ ζKK (3.44)

where ζM introduces stronger damping on the low-frequency modes, while ζK introduces

stronger damping on the high-frequency modes.
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3.2.3 Solution of the Nonlinear Structural Problem

Several second-order time accurate numerical schemes are available for the temporal dis-

cretization of Eq. (3.43), including the Newmark-β scheme [160], the Hilber-Hughes-

Taylor scheme [161], and the generalized-α scheme [162]. The generalized-α scheme is

preferred over the other two schemes, because it allows for tunable energy dissipation of

high frequency responses, while minimizing the dissipation of low frequency responses

and maintaining second-order time accuracy.

Equation (3.43) is discretized in time using the generalized-α scheme [162],

RS(u
n+1) = Mün+1−αm +Cu̇n+1−αf + F

n+1−αf

I = F
n+1−αf

S (3.45)

where,

un+1 = un +∆tu̇n + (1− 2β̄)
∆t2

2
ün + β̄∆t2ün+1

u̇n+1 = u̇n + (1− γ̄)∆tün + γ̄∆tün+1

un+1−αf = (1− αf )u
n+1 + αfu

n

u̇n+1−αf = (1− αf )u̇
n+1 + αf u̇

n

ün+1−αm = (1− αm)ü
n+1 + αmü

n

F
n+1−αf

I = (1− αf )FI(u
n+1,Tn+1) + αfFI(u

n,Tn)

F
n+1−αf

S = (1− αf )FS(u
n+1, u̇n+1) + αfFS(u

n, u̇n)

The coefficients αf and αm are determined by a user-specified parameter ρ̄ ∈ [0, 1]. For

second-order time accuracy and unconditional stability (in the linear sense),

αf =
ρ̄

ρ̄+ 1
, αm =

2ρ̄− 1

ρ̄+ 1
, γ̄ =

1

2
− αm + αf , β̄ =

1

4
(1− αm + αf )

2

The parameter ρ̄ characterizes the numerical dissipation of the generalized-α scheme.

A lower value of ρ̄ means a higher decay rate for the high-frequency components of the

structural response [162]. A typical value of ρ̄ = 0.95 is chosen to obtain transient struc-
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tural response. When ρ̄ = 0, the quasi-steady structural response is obtained [163], where

ü and u̇ are negligible.

Equation (3.45) is solved using the Newton-Raphson algorithm with line search,

1. Start with solution from last time step un, maximum number of iterations Ni, toler-

ance ϵ

2. Set initial guess u0 = 0

3. Iteration for a maximum of Ni steps:

(a) Newton-Raphson step: Solve ∆u from

(
∂RS

∂ui
− ∂F

n+1−αf

S

∂ui

)
∆u = −(RS(u

i)− F
n+1−αf

S ) (3.46)

(b) Line search step: Find a scalar θ such that

θ = argminθ ||RS(u
i + θ∆u)− F

n+1−αf

S || (3.47)

(c) Update solution: ui+1 = ui + θ∆u

(d) If ||RS(u
i+1)− F

n+1−αf

S || < ϵ break, otherwise continue.

The computational considerations associated with the residual equation, Eq. (3.46), are

discussed in Section 5.4.4.

Assuming M and C are constant, the Jacobians in the Newton-Raphson algorithm Eq.

(3.46) are,

∂RS(u)

∂u
= Km + (1− αf )

∂Fn+1
I

∂u

∂F
n+1−αf

S

∂u
= (1− αf )

[
∂Fn+1

S

∂u
+

γ̄

β̄∆t

∂Fn+1
S

∂u̇

] (3.48a)

(3.48b)

where

Km =
1− αm

β̄∆t2
M+

γ̄(1− αf )

β̄∆t
C (3.49)

To obtain the explicit forms that are suitable for programming, the Jacobians associated
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with FI and FS in Eq. (3.48) need further elaboration. Note that FI and FS are linear

combinations of their element counterparts. Therefore one can calculate Jacobians of the

element force vectors and assemble them to obtain the Jacobians of the assembled system.

For the internal force vector of an element,

∂Fe
I

∂ue
= Ke(ue) +

∂Ke
N(u

e)

∂ue
ue − ∂Fe

T (u
e)

∂ue
(3.50)

The first term in Eq. (3.50) is given by Eq. (3.35). The second term is written explicitly as,

∂Ke
N(u

e)

∂ue
ue =

[
∂Ke

N(u
e)

∂u1
ue ∂Ke

N(u
e)

∂v1
ue ∂Ke

N(u
e)

∂w1

ue ∂Ke
N(u

e)

∂ψx1

ue ∂Ke
N(u

e)

∂ψy1

ue · · ·
]

(3.51)

Nonlinear terms in Eq. (3.51) are only associated with wi, therefore the derivatives of

Ke
N(u

e) w.r.t. ui, vi, ψxi, ψyi are zero. Derivatives of Ke
N(u

e) w.r.t. wi are,

∂Ke
N(u

e)

∂wi

ue =

∫
A

∂

∂wi

[
LT

1A

(
1

2
Lw

)
+ LT

wAL1 + LT
wA

(
1

2
Lw

)
+ LT

wBL2 + LT
2B

(
1

2
Lw

)]
ue dA

=

∫
A

[(
LT

1A+ LT
wA+ LT

2B
)
Lw1 + LT

w2NE

]
dA (3.52)

where,

Lw1 =
∂

∂wi

Lwu
e = [Ni,xw,x, Ni,yw,y, Ni,yw,x +Ni,xw,y]

T

Lw2 =
∂

∂wi

Lw =


0 0 Ni,xN1,x 0 0

0 0 Ni,yN1,y 0 0

0 0 Ni,yN1,x +Ni,xN1,y 0 0

· · ·



(3.53a)

(3.53b)

For the last term in Eq. (3.50), using Eq. (3.34d) and noting that only derivatives w.r.t.
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wi are nonzero,

∂Fe
T

∂wi

=
∂

∂wi

[∫
A

(LT
1 + LT

w)NT + LT
2MT dA

]
=

∫
A

∂

∂wi

LT
wNT dA

=

∫
A

LT
w2NT dA

(3.54)

The Jacobian of the element loading vector is,

∂Fe
S(u

e)

∂ue
=

[
∂Fe

S(u
e)

∂u1

∂Fe
S(u

e)

∂v1

∂Fe
S(u

e)

∂w1

∂Fe
S(u

e)

∂ψx1

∂Fe
S(u

e)

∂ψy1

· · ·
]

(3.55)

When the loading vector is independent of displacement, for example, p(x, y) = const in

Eq. (3.39), the Jacobian is zero. Otherwise, the Jacobian has to be evaluated explicitly.
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CHAPTER 4

Heat Conduction Model

In this chapter, the governing equation for the heat conduction in a shallow composite shell

is developed. Next, a dimensional analysis is applied to the heat conduction equations to

identify the thermal similarity parameters, which are required for the development of ASL

in the following chapters. Finally, the Galerkin’s approach is employed to develop the

nonlinear finite element formulation of the thermal problem accounting for temperature-

dependent material properties.

4.1 Governing Equations

4.1.1 Heat Conduction in Shallow Shells

For the formulation of the heat conduction equation, following assumptions are made:

1. The panel is thin, i.e. the thickness-to-span ratio of the panel is less than 1/20 [157].

2. The curved structure is shallow, i.e. the span-to-radius ratio of the panel is less than

0.5 [157].

3. The panel remains shallow during moderate deflections.
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Using the Fourier’s law [164], the heat conduction equation in a solid body ΩT is,

ρscsp(x, T )Ṫ −∇ · (ks(x, T ) ·∇T ) = 0 in ΩT

−n ·ks(x, T ) ·∇T = q̇bc(x, T, t) on Γq

T (x) = Tbc(x) on ΓT

T (x)|t=0 = Tini(x) in ΩT

(4.1a)

(4.1b)

(4.1c)

(4.1d)

where Γq and ΓT represent boundaries where heat flux and temperature are prescribed,

respectively. In the formulation Eq. (4.1), the density, thermal capacity and conductivity are

inhomogenous and temperature dependent. The surface heat flux q̇bc is due to aerodynamic

heating q̇F and other heat sources q̇ext, such as radiation.

For a composite shell, the material is oriented along the curved surface, and the thermal

conductivity matrix ks is defined in a curvilinear coordinate system ξ1ξ2ζ , as shown in Fig.

4.1,

ks =


kξ1ξ1 kξ1ξ2 0

kξ2ξ1 kξ2ξ2 0

0 0 kζζ

 (4.2)

The gradient operator ∇ associated with the ξ1ξ2ζ coordinate system is,

∇ =

[
1

A1

∂

∂ξ1
,
1

A2

∂

∂ξ2
,
∂

∂ζ

]
(4.3)

where,

A1 = 1 +
ζ

R1

, A2 = 1 +
ζ

R2

(4.4)

Since the shell is thin and shallow,

A1 ≈ 1, A2 ≈ 1 (4.5)
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Furthermore, by assuming that the derivatives of temperature w.r.t. ξ1, ξ2, ζ are the same as

derivatives w.r.t. x, y, z, the gradient operator simplifies as,

∇ ≈
[
∂

∂x
,
∂

∂y
,
∂

∂z

]
(4.6)

Figure 4.1: A differential volume in the ξ1ξ2ζ coordinate system

The analysis described above implies:

1. The shell curvatures have very little effect on the thermal solution, i.e. a thin shallow

shell can be approximated by a thin flat plate.

2. The constitutive relations in the xyz coordinate system can be approximated by those

in the ξ1ξ2ζ coordinate system.

Conclusion 1 can be extended to a more general case. Since the shell remains shallow under

moderate deflection, shell deformation has very little effect on thermal solution. Therefore,

thermal solution of a moderately-deformed thin shallow shell can be approximated by that

of an undeformed thin flat plate.
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4.1.2 Dimensional Analysis of the Thermal Problem

The governing equation for the thermal problem, Eq. (4.1), is non-dimensionalized by

introducing the following nondimensional quantities,

x̄i =
xi

L̂i

, t̄ =
t

t̂
, T̄ =

T

T̂T
, ¯̇qbc =

q̇bc
ˆ̇q

k̄s =
ks

k̂s
, ρ̄sc̄sp =

ρscsp
ρ̂sĉsp

(4.7a)

(4.7b)

Equation (4.1) is non-dimensionalized as,

ρ̂sĉspL̂
2
3

k̂st̂
ρ̄sc̄sp(x̄, T )

˚̄T −∇ · (k̄s(x̄, T ) ·∇T̄ ) = 0 in ΩT

−n · k̄s(x̄, T ) ·∇T̄ =
ˆ̇qL̂3

k̂sT̂T
¯̇qbc(x̄, T, t) on Γq

T (x) = Tbc(x) on ΓT

T̄ (x̄)|t=0 = T̄ini(x̄) in ΩT

(4.8a)

(4.8b)

(4.8c)

(4.8d)

where,

∇ =

(
L̂3

L̂1

∂

∂x̄1
,
L̂3

L̂2

∂

∂x̄2
,
∂

∂x̄3

)
(4.9)

The similarity parameters for the thermal problem are identified from Eqs. (4.8),

Fo =
k̂st̂

ρ̂sĉspL̂
2
3

, Bi =
ˆ̇qL̂3

k̂sT̂T
,

L̂3

L̂1

,
L̂3

L̂2

ρ̄sc̄sp, k̄s, T̄ini, ¯̇qbc

(4.10a)

(4.10b)

In Eq. (4.10a), the first quantity is the Fourier number, a dimensionless time represent-

ing the ratio between the rate of heat conduction to the rate of energy stored by capacitance

[20, 38]. It defines the time scale of the thermal problem. The second quantity is the Biot

number that characterizes the heat transfer resistance of the body. The quantities L̂3

L̂1
and L̂3

L̂2

require the similarity in geometrical configuration. In Eq. (4.10b), the first two quantities
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require the similarity in the material properties as functions of temperature and spatial co-

ordinates. Note that k̄s is a 3× 3 symmetric matrix, and contains 6 independent similarity

parameters. The last two quantities define the distribution of initial temperature field and

the heat flux, respectively.

For heat transfer in a composite shell structure, one can choose L̂1 = L̂2 = L̂ as the

length scale of the shell and L̂3 = ĥ as the thickness of the shell, simplifying the similarity

parameters in Eq. (4.10),

Fo =
k̂st̂

ρ̂sĉspĥ
2
, Bi =

ˆ̇qĥ

k̂sT̂T
,

ĥ

L̂

ρ̄sc̄sp, k̄s, T̄ini, ¯̇qbc

(4.11a)

(4.11b)

For a composite shell, the reference values for ρscsp and ks are defined as,

ρ̂sĉsp =

∫
ĥ

ρs(x, T̂T )c
s
p(x, T̂T )dz

k̂s =

(∫
ĥ

dz

ks11(x, T̂T )

)−1

ĥ

(4.12a)

(4.12b)

where ks11 is the first element of ks, and the reference thermal temperature T̂T will be

determined by the dimensional analysis of the aerothermoelastic problem.

4.2 Finite Element Formulation

Several methods have been developed to simplify the FE modeling of heat transfer in com-

posite shells [165]. These methods include first-order thermal lamination theory [166],

layer-wise thermal lamination theory (LTLT) [167], and the method of homogenization

[168]. The FE based on thermal lamination theory are shell elements that use ad hoc

assumptions for the temperature distribution to simplify the heat transfer problem. The

method of homogenization replaces the anisotropic thermal properties of the composite
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shell with effective homogeneous thermal properties, so as to avoid modeling heat conduc-

tion layer by layer. To accurately capture the through-thickness temperature distribution

and minimize computational cost, the LTLT method is employed in the current study.

In the LTLT based shell element, the nodes are distributed over the shell middle surface.

The temperatures Ti at interfaces between the layers are unknowns at the node, as shown in

Fig. 4.2. The through-the-thickness temperature distribution is approximated by piecewise

linear interpolation for the unknowns. In Fig. 4.2, the gray dashed line is the middle surface

of the shell.

In HYPATE, the LTLT based shell element is implemented using a solid element, which

is referred to as the heat transfer in shallow shell element (HTSH). As illustrated in Fig. 4.3,

the HTSH element is an 8-noded element with first-order Lagrangian shape function. The

nodes are labelled by numbers enclosed by circles. Every node has one unknown, namely

the temperature. A series of cells are stacked in the thickness direction, each representing

one layer. Thus, the through-the-thickness temperature distribution is approximated by

piecewise linear interpolation, as required by the LTLT based shell element.

Figure 4.2: The LTLT based shell element using piecewise linear interpolation
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Figure 4.3: The HTSH element

4.2.1 Galerkin Formulation of the Governing Equation

Using Galerkin’s method [169], multiply the governing equation by a shape function N

and integrate by parts,

∫
V

N
[
ρscspṪ −∇ · (ks ·∇T )

]
dV = 0∫

V

NρscspṪ dV +

∫
V

∇N · (ks ·∇T ) dV =

∫
Γq

N(−q̇bc) dΓq (4.13)

where the differential volume is approximated using Eq. (4.5),

dV = A1A2dξ1dξ2dζ ≈ dxdydz (4.14)
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Using Eqs. (4.6) and (4.14), the terms in Eq. (4.13) are simplified as,

∫
V

NρscspṪ dV ≈
∫
V

NρscspṪdxdydz

∫
V

∇N · (ks ·∇T ) dV ≈
∫
V

[
∂N

∂x

∂N

∂y

∂N

∂z

]
ks



∂T

∂x

∂T

∂y

∂N

∂z


dxdydz

(4.15)

(4.16)

4.2.2 Element Matrices and Loading Vectors

For each element, the temperature field is interpolated by shape functions Ni, i = 1, · · · , 8

and nodal values Te = [T1, T2, · · · , T8]T ,

T (x) = [N1, N2, · · · , N8]T
e ≡ L4T

e (4.17)

The shape functions are,

Ni+2j+4k−6 = fi(η1)fj(η2)fk(η3), i, j, k = 1, 2 (4.18)

where, f1(η) = 1
2
(1− η), f2(η) = 1

2
(1 + η).

The temperature gradient is,

[
∂T

∂x
,
∂T

∂y
,
∂T

∂z

]T
= L5T

e (4.19)

where,

L5 =


N1,x N2,x · · · N8,x

N1,y N2,y · · · N8,y

N1,z N2,z · · · N8,z

 (4.20)
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From Eqs. (4.15) and (4.16) are discretized as,

∫
V

NρscspṪ dV ≈
{∫

V

NρscspL4dxdydz

}
Ṫe∫

V

∇N · (ks ·∇T ) dV ≈
{∫

V

[
∂N

∂x

∂N

∂y

∂N

∂z

]
ksL5dxdydz

}
Te

(4.21)

(4.22)

Replacing N using Ni, i = 1, · · · , 8, the element heat capacity matrix Ke
T , thermal

conductivity matrix Ce
T , and the loading vector Qe

T are obtained,

Ke
T =

∫
V

LT
5 k

sL5 dV

Ce
T =

∫
V

LT
4 ρ

scspL4 dV

Qe
T =

∫
Ωq

LT
4 (−q̇) dΩq

(4.23a)

(4.23b)

(4.23c)

where,

q̇ =


Q, Constant heat flux

hc(T − Taw), Convection

εσb(T
4 − T 4

rad), Radiation

(4.24)

The volume integrations in Eqs. (4.23a) and (4.23b) are evaluated using 2×2×2 Gaussian

quadratures, while the surface integration in Eq. (4.23c) is evaluated using 2× 2 Gaussian

quadratures.

4.2.3 Equations of Motion for the Thermal Problem

The thermal conductivity and heat capacity matrices and loading vectors of the individual

elements are assembled into unconstrained total thermal conductivity matrix Ku
T , total heat

capacity matrix CT , unconstrained total loading vector Qu
T , and total temperature vector

T. Note that both KT and CT are nonlinear when the material properties are temperature

dependent.
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The governing equations for heat transfer problem are,

CT (T)Ṫ+Ku
T (T)T = Qu

T (T) (4.25)

Next, the temperature boundary condition has to be enforced on ΓT , i.e. on Nb nodes

where the temperature is prescribed,

Ti = Tbi, i ∈ {1, 2, · · · , Nb} (4.26)

Equation (4.25) is modified using the penalty method (pp. 459–478 of Ref. [158]),

CT (T)Ṫ+KT (T)T = QT (T) (4.27)

where KT = Ku
T +Kc

T and QT = Qu
T +Qc

T . The penalty terms Kc
T and Qc

T are,

[Kc
T ]ij =

 α̃, i = j ∈ {1, 2, · · · , Nb}

0, else

[Qc
T ]i =

 α̃Tbc, i ∈ {1, 2, · · · , Nb}

0, else

4.2.4 Solution of the Nonlinear Thermal Problem

Equation (4.27) is discretized in the time domain using the Crank-Nicolson scheme for

second-order time accuracy (pp. 490–522 of Ref. [158]). The Newton-Raphson method is

used to solve the resulting nonlinear equations.

Let Tα = (1− ᾱ)Tn + ᾱTn+1,

RT (T
n+1) = CT (T

α)
Tn+1 −Tn

∆t
+KT (T

α)Tα = QT (T
α) (4.28)
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For unconditional stability, let ᾱ = 1
2

in the calculation. However, this guarantees uncondi-

tional stability in linear systems; and in the nonlinear case, numerical instability may still

occur.

Similar to the structural problem, Eq. (4.28) is solved using Newton-Raphson method

with line search, which requires the solution of a series of linear systems,

(
∂RT (T

i)

∂Ti
− ∂QT (T

α)

∂Ti

)
∆T = −[RT (T

i)−QT (T
α)] (4.29)

where Ti is the solution Tn+1 at the ith iteration.

The Jacobians of the residual and the loading vector are,

∂RT (T
n+1)

∂Tn+1
=

ᾱ

∆t

∂CT (T
α)

∂Tα
∆T︸ ︷︷ ︸

Term 1

+
1

∆t
CT (T

α)

+ ᾱ
∂KT (T

α)

∂Tα
Tα︸ ︷︷ ︸

Term 2

+ᾱKT (T
α)

∂QT (T
α)

∂Tn+1
= ᾱ

∂QT (T
α)

∂Tα

(4.30a)

(4.30b)

where ∆T = Tn+1 −Tn.

To obtain the explicit forms that are suitable for programming, the two terms identified

by curved brackets in Eq. (4.30a) and the term in Eq. (4.30b) are clarified next. Note that

CT , KT , and QT are linear combinations of element heat capacity and thermal conductiv-

ity matrices and loading vector, respectively. So one can calculate derivatives of element

matrices and loading vector and assemble them to obtain the three terms in Eq. (4.30a). In
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each element,

∂Ce
T

∂Tα
∆T =

[
· · · ∂Ce

T

∂Tα
i

∆T · · ·
]
,

∂Ce
T

∂Tα
i

=

∫
V

LT
1

∂ρscsp
∂T α

i

L1 dV

∂Ke
T

∂Tα
Tα =

[
· · · ∂Ke

T

∂T α
i

Tα · · ·
]
,

∂Ke
T

∂T α
i

=

∫
V

LT
2

∂ks

∂T αi
L2 dV

∂Qe
T

∂Tα
=

[
· · · ∂Qe

T

∂T α
i

· · ·
]
,

∂Qe
T

∂T α
i

=

∫
Ω

LT
1

(
− ∂q̇

∂Tα
i

)
L1 dΓ

(4.31a)

(4.31b)

(4.31c)

The derivative of q̇ depends on the type of heat flux,

∂q̇

∂Tα
i

=


0, Constant heat flux

hc, Convection

4εσb(T
α
i )

3, Radiation

(4.32)
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CHAPTER 5

Fully-Coupled Aerothermoelastic Analysis

5.1 Overview of the HYPATE Framework

The HYPATE computational framework is developed for numerical simulation of aerother-

moelastic responses using fluid solvers having different levels of fidelity. The code struc-

ture of the framework is shown in Fig. 5.1. The framework employs a partitioned approach

using a loosely-coupled or a tightly-coupled scheme. Individual solvers are developed to

compute the fluid, thermal and structural responses, as described in Chaps. 2-4. The cou-

pling is achieved by exchanging boundary data at the interfaces of the physical domains.

Moreover, a solver based on linearized stability analysis (LSA) is developed as an exten-

sion of the p-method commonly used in aeroelasticity [85]. The LSA is used to examine the

stability of the deformed structure at every time step, so as to detect the onset of aerother-

moelastic instability.

In the following sections, the various components of the HYPATE framework are de-

scribed, including the information exchange between the solvers, the coupling schemes for

transient and quasi-steady aerothermoelastic responses, and the LSA solver for the identi-

fication of aerothermoelastic instability.
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Figure 5.1: Code structure of the HYPATE framework

5.2 Exchange of Information Between the Physical Do-

mains

At the fluid-solid boundary, the discretizations used for the solid and the fluid surfaces

are usually mismatched. The nodes of fluid mesh are denser when compared to those of

the solid mesh. Therefore, appropriate interpolation schemes are required for effective

information exchange between the two domains. The displacements u and the temperature

T are interpolated from the solid to the fluid mesh using a mortar element scheme [76]. The

aerodynamic loading p and heat flux q̇ are interpolated from the fluid to the solid mesh

using the quadrature projection scheme [170]. The combination of the mortar element

and the quadrature projection scheme guarantees the conservation of the load and energy

transfer at the fluid-solid boundary, a necessary requirement for the numerical stability of

the coupled solver [76]. The interpolation schemes are expressed as linear transformations,
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FS = HSFp

QT = HTF q̇

uF = HFSu

Tw = HFTT

(5.1a)

(5.1b)

(5.1c)

(5.1d)

The transformation matrices in Eqs. (5.1a)-(5.1d) only need to be computed once, when

the spatial discretization of the solid and the fluid domains is provided.

5.3 Transient Response

In Ref. [75], a theoretical framework for determining the time accuracy of a coupling

scheme for FSI problems was developed. The framework is based on a three-field formula-

tion. The formulation includes fluid domain, solid domain, and fluid-mesh-motion domain,

and a pseudo-elastodynamic method is used to deform the mesh when solid boundaries

move. In the current study, the framework is generalized for time accuracy analysis of a

coupling scheme for FSTI problems.

As pointed out in section I, the numerical stability of a coupling scheme for FSI prob-

lems can be improved by a proper combination of estimators, i.e. predictors and correctors.

The choice of estimators is facilitated by the energy balance analysis. In Ref. [77], the

difference between the fluid work and the sum of kinetic energy and strain energy in an

undamped system is examined by conducting numerical studies. The difference should

equal the initial total energy when the artificial energy of the coupling scheme is zero. The

method can be conveniently implemented numerically. However, it cannot be used to de-

termine the order of time accuracy of the artificial energy. In Ref. [78], the energy balance

analysis relies on the assumption of harmonic aeroelastic response, i.e. both structural and

fluid responses are harmonic. The time accuracy of the artificial energy per period, which is

defined as energy accuracy in Ref. [78], is analytically determined for the various coupling
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schemes. However, the validity of the energy accuracy defined in this manner is limited to

cases where the aeroelastic responses are harmonic. In the current study, a modified energy

balance analysis is developed to quantify the energy accuracy. In this analysis framework,

energy accuracy is defined as the time accuracy of the artificial energy per time step, so that

energy accuracy of a coupling scheme can be determined analytically and is applicable to

arbitrary aeroelastic responses.

Next, two typical loosely-coupled schemes for aerothermoelastic simulation are de-

scribed. Subsequently, the framework proposed in Ref. [75] is modified to analyze the

time accuracy of a loosely-coupled scheme. The modified energy balance analysis is de-

veloped to examine numerical stability of coupling schemes with different combinations

of estimators. The first scheme is adapted from the scheme in Ref. [81] by removing the

subcycling procedure, which will be referred to as the S1 scheme. The second scheme is

the serial staggered procedure in Ref. [79] extended with a set of non-trivial estimators,

which will be referred to as the S2 scheme.

5.3.1 Loosely-Coupled Schemes

In a typical aerothermoelastic coupling scheme [81], the solvers are initiated at the same

physical time t. As the calculations commence, a series of operations are performed to

advance the coupled system to next time step.

The coupling procedure of S1 scheme is, as illustrated in Fig. 5.2,

1. The thermal step:

(a) Heat flux from the fluid solver is extrapolated and passed to the thermal solver,

q̇n+1/2,E =
3

2
q̇n − 1

2
q̇n−1 (5.2)

(b) The thermal solution T is updated to step n+ 1.

2. The aeroelastic step:
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(a) The thermal solution is passed to the fluid solver and the structural solver.

(b) The pressure from fluid solver is extrapolated and passed to the structural solver,

pn+1,E = 2pn − pn−1 (5.3)

(c) The structural solution u is updated to step n+ 1.

(d) The displacement from the structural solver is passed to the the fluid solver,

un+1,E = un+1 (5.4)

(e) The fluid solutions p and q̇ are updated to step n+ 1.

3. Above steps are repeated until the end of the simulation.

The procedure for S2 scheme is illustrated in Fig. 5.3. The thermal step of the S2

scheme is the same as the S1 scheme, but the aeroelastic step is modified,

(2a) The thermal solution is passed to the fluid solver and the structural solver.

(2b) The displacement from the structural solver is extrapolated and passed to the fluid

solver,

un+1,E = un +∆t

(
3

2
u̇n − 1

2
u̇n−1

)
(5.5)

(2c) The fluid solutions p and q̇ are updated to step n+ 1.

(2d) The pressure from fluid solver is passed to the structural solver,

pn+1,E = pn+1 (5.6)

(2e) The structural solution u is updated to step n+ 1.

For both aeroelastic schemes, a starting procedure is needed. In the current study,
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following procedure is employed [80],

u̇1 = u̇0 +∆tü0

u1 = u0 +∆tu̇0 +
1

2
∆t2ü0

(5.7a)

(5.7b)

Subsequently the pressure and the heat flux at step 1 is calculated using u1 and u̇1. The

same starting procedure is used for both schemes so that their time accuracy can be com-

pared on the same basis.

Figure 5.2: Schematic outline of the S1 scheme

Figure 5.3: Schematic outline of the S2 scheme
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5.3.2 Time Accuracy Analysis of Coupling Schemes

In the aeroelastic simulations, the fluid and structural solvers constructed using second-

order time accurate schemes may not exhibit the same order of time accuracy in a loosely-

coupled scheme [75]. The approach from Ref. [75] is adapted to determine the conditions

under which the loosely-coupled scheme is second-order time accurate for aerothermoelas-

tic simulations.

5.3.2.1 Fluid Solver

The fluid solution is represented symbolically in the form of Eqs. (2.29b) and (2.29a). In

the loosely-coupled scheme, the pressure and the heat flux are represented as,

pn+1 = p(un+1,E
F ,un,E

F ,un−1,E
F ,Tn+1

w )

q̇n+1 = q̇(un+1,E
F ,un,E

F ,un−1,E
F ,Tn+1

w )

(5.8a)

(5.8b)

where the displacements uw are provided by an estimator from the structural solver. Com-

pared to Eq. (2.29b), the error in the pressure due to estimation in Eq. (5.8a) is

ϵp = ||p(un+1,E
F ,un,E

F ,un−1,E
F ,Tn+1

w )− p(un+1
F ,un

F ,u
n−1
F ,Tn+1

w )||

= O(||
1∑

k=−1

∂p

∂un+k
F

(un+k,E
F − un+k

F )||)

= O(
1∑

k=−1

|| ∂p

∂un+k
F

||||un+k,E
F − un+k

F ||)

=
1∑

k=−1

O(||un+k,E − un+k||) (5.9)
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where Taylor series expansion is employed to estimate the order of ϵp [75]. Using the same

approach, the error in the heat flux due to estimation is,

ϵq̇ = ||q̇(un+1,E
F ,un,E

F ,un−1,E
F ,Tn+1

w )− q̇(un+1
F ,un

F ,u
n−1
F ,Tn+1

w )||

=
1∑

k=−1

O(||un+k,E − un+k||) (5.10)

When O(||un+k,E −un+k||) = O(∆t2), i.e. displacement estimator is at least second-order

time-accurate, the time accuracy of the fluid solver in the coupled scheme is preserved.

Note that the wall temperature at time step n+1 is passed to fluid solver without estimation.

As long as the thermal solution is second-order time-accurate, it would not effect the time

accuracy of the fluid solution.

5.3.2.2 Structural Solver

From Eq. (3.43), the governing equation for structural domain is,

Mün+1 +Cu̇n+1 + FI(u
n+1,Tn+1) = Fn+1

S (5.11)

In coupled system, the loading is provided by the fluid solver via an estimator, such that

Fn+1
S = HSFp

n+1 ≈ HSFp
n+1,E (5.12)

The discretization error is,

ϵS = ϵt + ϵf (5.13)

where ϵt is the error associated with the discretization in time domain by the generalized-

α scheme, which is second-order time accurate ϵt = O(∆t2). The term ϵf is the error
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associated with loading estimation,

ϵf = O(||pn+1,E − pn+1||)

The total error due to discretization in the coupled scheme is,

ϵS = O(||pn+1,E − pn+1||) +O(∆t2) (5.14)

Therefore when the pressure estimator is at least second-order time-accurate, the structural

solution in the coupled scheme remains second-order time-accurate. Similar to the fluid so-

lution, the temperature is passed to the structural solver without estimation and the thermal

solution does not effect the time-accuracy of the structural solution.

5.3.2.3 Thermal Solver

From Eq. (4.27), the governing equation for thermal domain is,

CT (T
n+1/2)Ṫn+1/2 +KT (T

n+1/2)Tn+1/2 = Q
n+1/2
T (5.15)

In coupled system, the heat flux q̇
n+1/2
T is provided by the fluid solver via an estimator,

such that,

Q
n+1/2
T = HTF q̇

n+1/2 ≈ HTF q̇
n+1/2,E (5.16)

The discretization error is,

ϵT = ϵt + ϵq (5.17)

where ϵt is the error associated with Crank-Nicolson scheme, which is second-order time

accurate ϵt = O(∆t2), and ϵq is the error associated with heat flux estimation,

ϵq = O(||q̇n+1/2,E − q̇n+1/2||)
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The total error due to discretization in the coupled scheme is,

ϵT = O(||q̇n+1/2,E − q̇n+1/2||) +O(∆t2) (5.18)

Therefore as long as the heat flux estimator is at least second-order time-accurate, the

thermal solver in coupled scheme remains second-order time-accurate.

5.3.2.4 Summary

Based on above discussion, the loosely coupled scheme for aerothermoelastic simulation is

second-order time-accurate when,

1. The individual fluid, structural and thermal solvers are second-order time-accurate.

2. The displacement, force and heat flux estimators are second-order time-accurate.

Note that the aerothermoelastic coupling procedures using S1 and S2 schemes both produce

second-order time-accurate solutions.

5.3.3 Energy Balance Analysis of Coupling Schemes

The aeroelastic portion of the loosely-coupled schemes is further characterized using an

energy balance analysis. Using the definitions from Ref. [78], in a structural solver using

the generalized-α scheme, which is a variant of the midpoint rule, the work done on the

structure by the fluid δES is,

δES =
1

2
(Fn+1,E

S + Fn,E
S )T (un+1 − un) =

1

2
(pn+1,E + pn,E)THT

SF (u
n+1 − un) (5.19)

and the work done on the fluid by the structure δEF in a second-order time-accurate fluid

solver is,

δEF = −1

2
(pn+1 + pn)THT

SF (u
n+1,E − un,E) (5.20)
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The artificial energy δE over one time step is,

δE = δES + δEF (5.21)

It is evident that the artificial energy is non-zero unless

pn+1,E = pn+1, un+1,E = un+1 (5.22)

However, in loosely-coupled schemes, the values of un+1 and pn+1 are unknown at the

same time and either un+1 or pn+1 is approximated. Therefore, in loosely-coupled schemes,

artificial energy accumulates at each time step, resulting in error accumulation and eventual

numerical instability.

The artificial energy can be quantified by its order of time accuracy. Use the combina-

tion of estimators in the S1 scheme as example,

pn+1,E = 2pn − pn−1

un+1,E = un+1

Expand δE in Taylor series at the nth time step,

δE =
1

2
(pn +

1

2
pn−1 − 1

2
pn−2)THT

SF (u
n+1 − un)

− 1

2
(pn+1 + pn)THT

SF (u
n+1 − un)

≈ −(p̈n)THT
SF u̇

n∆t3 = O(∆t3) (5.23)

Therefore, the artificial energy in the S1 scheme is third-order time-accurate. For simplic-

ity, we refer to a scheme as pth-order energy-accurate when its artificial energy per time

step is pth-order time-accurate.
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On the other hand, if the estimators in the S2 scheme are used,

pn+1,E = pn+1

un+1,E = un +∆t

(
3

2
u̇n − 1

2
u̇n−1

)

The S2 scheme is fourth-order energy-accurate with

δE ≈ 5

12
(pn)THT

SFu
(4),n∆t4 = O(∆t4) (5.24)

which is one-order higher than that of the S1 scheme.

5.4 Quasi-Steady Response

The loosely-coupled scheme is developed for transient aerothermoelastic response and is

suitable for both CFD-based and ROM-based simulations. However, the CFD-based fluid

solver requires solving partial differential equations, i.e. the RANS equations, while the

ROM-based fluid solver generates the aerodynamic pressure and heat flux by evaluating an-

alytical expressions and does not require the solution of any differential equations. There-

fore, it is possible to develop a coupling scheme for the ROM-based simulations that is

more efficient than the loosely-coupled scheme.

5.4.1 Decomposition of Transient Aerothermoelastic Response

The governing equations for the ROM-based aerothermoelastic response are derived from

the fluid ROM formulation Eq. (2.73), the equations of motion for structural and thermal

responses Eqs. (3.43) and (4.27), and the interface conditions Eqs. (5.1a)-(5.1d). These

seven equations are simplified into two equations in the following procedure.

First, the structural displacement u and body temperature T are transformed to the

surface deformation and wall temperature in the fluid domain using Eqs. (5.1c) and (5.1d),
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respectively, so as to obtain the pressure and heat flux from the fluid ROM Eq. (2.73),

q̇ = q̇(uF ,Tw) = q̇(HFSu,HFTT)

p = p(uF , u̇F ,Tw) = p(HFSu,HFSu̇,HFTT)

(5.25a)

(5.25b)

Next, using Eq. (5.1b), the aerodynamic heat flux q̇ in Eq. (5.25a) is transformed to the

external heat flux vector in the governing equation for thermal response Eq. (4.27),

CT (T)Ṫ+QI(T) = QT = HTF q̇ (5.26)

Similarly, using Eq. (5.1a), the aerodynamic pressure p in Eq. (5.25b) is transformed to

the external loading vector in the governing equation for structural response Eq. (3.43),

Mü+Cu̇+ FI(u,T) = FS = HSFp (5.27)

The governing equations for the ROM-based aerothermoelastic response are obtained

by combining Eqs. (5.26) and (5.27),

 CT (T)Ṫ+QI(T) = QT (u,T)

Mü+Cu̇+ FI(u,T) = FS(u, u̇,T)

(5.28a)

(5.28b)

Equations (5.28a) and (5.28b) represent the aerothermal and the aeroelastic subproblems

of the ROM-based aerothermoelastic analysis, respectively.

The time scales for the aerothermal and aeroelatic subproblems are given by the thermal

and structural characteristic times, respectively. From Eqs. (2.47), (2.49), and (2.51),

tAT = tT =
ρscsph

2

ks
∼ 1s

tAE = tS = C

√
ρsL4

Eh2
∼ 10−2s

(5.29a)

(5.29b)
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The fluid characteristic time no longer exists in the ROM-based aerothermoelastic response,

due to the quasi-steady flow assumption employed in the fluid ROM formulation. It should

be noted that, when the loosely-coupled scheme is employed to solve Eq. (5.28), the time

step size has to be a fraction of tAE to resolve the transient aerothermoelastic response.

The disparity in the characteristic time scales tAT and tAE allows the decomposition of

the transient aerothermoelastic response into the quasi-steady and unsteady components,

T = Tqs +Tuns, u = uqs + uuns (5.30)

The quasi-steady aerothermoelastic response (Tqs,uqs) satisfies,

CT (T
qs)Ṫqs +QI(T

qs) = QT (u
qs,Tqs)

FI(u
qs,Tqs) = FS(u

qs, 0,Tqs)

(5.31a)

(5.31b)

The variation of the quasi-steady components is negligible on the aeroelastic time scale.

Therefore Tuns ≈ 0 and the unsteady structural response uuns satisfies,

Müuns +Cu̇uns + FI(u
qs + uuns,Tqs) = FS(u

qs + uuns, u̇uns,Tqs) (5.32)

Equations (5.31a)-(5.31b) represent the quasi-steady aerothermoelastic response con-

sisting of the heat conduction process in the structure combined with the static aeroelastic

deformation. Equation (5.32) represents the unsteady aeroelastic response due to the aero-

dynamic loading and the temperature distribution Tqs that is constant on the aeroelastic

time scale. Using Tikhonov’s Theorem [171, 172] it can be shown that the unsteady com-

ponents in Eq. (5.30) are negligible, i.e. Tuns ≈ 0 and uuns ≈ 0, as long as the unsteady

structural response uuns is stable. A response is considered stable, if all the oscillatory

components in the response decay in time.

The conclusion from Tikhonov’s Theorem has two implications. First, to obtain the
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aerothermoelastic response over extended time periods, one can solve Eq. (5.31) using a

time step size ∆t ∼ tAT , instead of solving Eq. (5.28) using a time step size ∆t ∼ tAE .

Neglecting the unsteady aerothermoelastic response (Tuns,uuns) will result in a relative

error of O( tAE

tAT
) ∼ O(10−2), which is negligible as long as the aerothermoelastic response

governed by Eq. (5.28) is stable. Second, the stability of the aerothermoelastic response is

determined by the stability of the unsteady structural response uuns governed by Eq. (5.32).

Furthermore, the quasi-steady approximation of the aerothermoelastic response is invalid

if the unsteady response uuns becomes unstable.

5.4.2 Linearized Stability Analysis

The stability of the unsteady response uuns, governed by Eq. (5.32), is determined by

solving the eigenvalue problem represented by Eq. (5.33),

[λ2pM+ λp(C−CA) + (K−KA)]u = 0 (5.33)

where

K =
∂FI(u

qs + uuns,Tqs)

∂uuns
, KA =

∂FS(u
qs + uuns, u̇uns,Tqs)

∂uuns
,

CA =
∂FS(u

qs + uuns, u̇uns,Tqs)

∂u̇uns

(5.34)

The aerodynamic matrices CA and KA are usually asymmetric, so (C−CA) and (K−KA)

are asymmetric as well.

Equation (5.33) is a polynomial eigenvalue problem (PEP), where the eigenvalues al-

ways appear as complex conjugate pairs (λp1, λp2). The PEP formulation can be simplified

for computational efficiency by employing two additional assumptions:

(1) There is no viscous damping, i.e. C = 0.

(2) The aerodynamic damping is negligible, due to the quasi-steadiness of the aerodynamic

loading, implying CA = 0.
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With these assumptions, (C−CA) = 0, and Eq. (5.33) simplifies to,

[λ2pM+ (K−KA)]u = 0, or (K−KA)u = λgMu (5.35)

where λg = −λ2p. Equation (5.35) represents the generalized eigenvalue problem (GEP)

used in structural dynamics. Since (K − KA) is asymmetric, Eq. (5.35) yields complex

eigenvalues. In Ref. [173], it was shown that the approximation (C − CA) = 0 does not

produce a discernible change in the eigenvalues. Therefore, the GEP formulation is used

for the linearized stability analysis.

The GEP is solved using the Krylov-Schur algorithm. The Krylov-Schur algorithm is

an iterative procedure for finding a limited number of the largest eigenvalues, and thus it is

an efficient algorithm for large-scale problems [174, 175]. The Krylov-Schur algorithm can

be combined with the spectral transformation (pp. 582–600 of Ref. [158]), so as to produce

the smallest eigenvalues representing the first few structural modes of interest. The spectral

transformation implies the solution of Eq. (5.36) instead of Eq. (5.35),


(K−KA)x = Mu(

1

λg

)
u = x

(5.36a)

(5.36b)

The computational considerations associated with the linear system Eq. (5.36a) are dis-

cussed in Section 5.4.4.

The real and imaginary parts of the eigenvalue are defined as the damping and frequency

of the corresponding aerothermoelastic mode, respectively,

ζ = Re(λp), ω = Im(λp) (5.37)

Both the damping ζ and the frequency ω have the same unit of radian/second.

The structure is stable when ζ < 0. Moreover, two types of instability can be identified
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based on the properties of eigenvalues, shown in Table 5.1. When the eigenvalue has a

positive real part and a nonzero imaginary part, the corresponding aerothermoelastic mode

represents flutter instability that is driven by the aerodynamic loading. When the eigenvalue

is positive real, the corresponding aerothermoelastic mode represents divergence, caused

by the thermal force in the structure.

ζ < 0, ω ̸= 0 Stable
ζ = 0, ω ̸= 0 Neutrally stable
ζ > 0, ω ̸= 0 Unstable (flutter)

ω = 0 Unstable (divergence)

Table 5.1: Stability criteria for the linearized stability analysis

5.4.3 Tightly-Coupled Scheme

A tightly-coupled scheme is developed to obtain the quasi-steady aerothermoelastic re-

sponse governed by Eq. (5.31). In the aeroelastic solver of the tightly-coupled scheme,

at every time step, the fluid and structural solvers exchange information repeatedly until

both solvers converge. The tightly-coupled scheme has higher computational cost com-

pared to the loosely-coupled scheme for each time step. However, time step size of the

tightly-coupled scheme is determined by the largest characteristic time and it retains the

numerical stability of solution at a larger time step size. Note that the tightly-coupled

scheme is limited due to the fact that it only works when the aerothermoelastic response

is stable and quasi-steady. Therefore, at the end of each time step, LSA is employed to

check the stability of the coupled system. If the aerothermoelastic instability is detected

at several consecutive time steps, the aerothermoelastic stability boundary is reached and

the simulation should be either terminated or switched to transient simulation using the

loosely-coupled scheme.
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Figure 5.4: Tightly-coupled scheme for quasi-steady aerothermoelastic response

The procedure for the tightly-coupled scheme is illustrated in Fig. 5.4. The aerothermal

steps of the loosely-coupled and tightly-coupled schemes are the same. However, a modi-

fied aeroelastic step and a new stability step are introduced to the tightly-coupled scheme.

1. Stability step:

(a) The thermal solution Tn and the structural solution un are passed to the stability

solver.

(b) The stability of the aerothermoelastic response is checked using LSA.

(c) If the structure is stable, continue to the next step, otherwise terminate the sim-

ulation or switch to loosely-coupled scheme.

2. Aerothermal step:

(a) Heat flux from the fluid solver is extrapolated using Eq. (5.2)

(b) The thermal solution T is updated to step n + 1, with heat flux Q
n+ 1

2
T =

HTFq
n+ 1

2
,E

3. Aeroelastic step:

(a) The thermal solution is passed to the fluid solver using Eq. (5.1b) and the

structural solver.
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(b) The fluid and the structural solutions are simultaneously updated to step n + 1

by solving Eqs. (5.28b) and (5.25b).

4. Above steps are repeated until the simulation is completed.

5.4.4 Computational Considerations

In the loosely-coupled scheme, the aerodynamic loading is provided by an external vector

and is independent of the structural displacement and velocity. Therefore, in the Newton-

Raphson step of the structural solver, an equation of the following form has to be solved,

Φx = ϕ (5.38)

where the residual Jacobian Φ contains the mass and stiffness matrices only and these are

sparse and symmetric. A sparse linear system like Eq. (5.38) can be solved efficiently using

a direct solver, such as the MUMPS package [176] (MUltifrontal Massively Parallel Sparse

direct Solver). The solution procedure of a direct solver [177] is shown in the following,

1. Given a N ×N symmetric matrix Φ, residual vector ϕ.

2. Cholesky factorization with a computational cost of at most O(N2)

Φ = LΦL
T
Φ (5.39)

3. Forward substitution with a computational cost ofO(N): Solve an intermediate vari-

able y

LΦy = ϕ (5.40)

4. Back substitution with a computational cost of O(N): Solve the final solution

LT
Φx = y (5.41)

104



When Φ is sparse, overall computational cost is at most O(N2).

However, a numerical difficulty raises in the tightly-coupled scheme and the linearized

stability analysis. It is due to the inclusion of the aerodynamic Jacobian in the Newton-

Raphson step and the spectral transform of the eigenvalue solver. In both cases, an equation

of the following form has to be solved,

(Φ−ΦA)x = ϕ, ΦA = KA +
∂u̇

∂u
CA (5.42)

Without loss of generality, Eq. (5.42) is examined for the case where CA = 0. Using Eqs.

(2.57), (2.60a) and (5.25b), the aerodynamic Jacobian ΦA is simpilified as

ΦA = HSF
∂p

∂uF

HFS = (HSFΨP )
∂p

∂uF

(ΨSHFS) ≡ Ψ̃PΦkrgΨ̃
T

S (5.43)

where Ψ̃P ∈ RN×NP contains NP aerodynamic POD modes, Ψ̃S ∈ RN×NS contains NS

structural modes, and Φkrg ∈ RNP×NS is the Jacobian obtained from the kriging model.

The computational cost of ΦA is O(N2), since NP , NS ≪ N . Moreover, the full Jacobian

(Φ−ΦA) becomes dense and asymmetric. The direct solver for Eq. (5.42) would have to

utilize the LU factorization and the overall computational cost would be O(N3), which is

undesirable for problems with over 1000 DOFs.

Therefore, it is necessary to replace the direct solver with an iterative solver that uti-

lizes algorithms such as preconditioned generalized minimal residual method (PGMRES)

[178]. The advantage of an iterative solver is that it replaces the expensive computation and

factorization of ΦA by cheap matrix-vector multiplication of computational cost O(N),

(Φ−ΦA)x = Φx− Ψ̃PΦkrgΨ̃
T

Sx (5.44)

Note that Φ is a sparse matrix so the computational cost of multiplication Φx is O(N)

instead of O(N2). For the PGMRES solver, it is also necessary to provide the iterative
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solver with a preconditioner P that approximates the full Jacobian (Φ − ΦA), so as to

accelerate the convergence of the algorithm. In the current study, P is set to Φ. The

solution procedure of the PGMRES algorithm applied to Eq. (5.42) is shown below,

1. Given symmetric matrix Φ, residual vector ϕ, matrices Ψ̃P , Φkrg and Ψ̃S , maximum

number of iterations Ni, tolerance ϵ

2. Choose Φ as the preconditioner and set initial guess x(0)

3. Cholesky factorization, at most O(N2): Φ = LΦL
T
Φ

4. PGMRES iterations for maximum Ni steps:

(a) Compute matrix-vector product y = (Φ−ΦA)x using Eq. (5.44) with compu-

tational cost O(N).

(b) Solve the preconditioned error e(i) using forward and back substitution with

computational cost O(N),

LΦL
T
Φe

(i) = ϕ− y (5.45)

(c) Update the solution x(i) with the error e(i) using the GMRES procedure with

computational cost O(N).

(d) If ||(Φ−ΦA)x− ϕ|| < ϵ, break, otherwise continue.

The algorithm typically requires only a few dozens of iteration for the solution to converge,

therefore the overall computational cost of solving Eq. (5.42) is reduced from O(N3) to at

most O(N2).
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CHAPTER 6

Refined Aerothermoelastic Scaling Laws

This chapter presents the development of analytical and refined ASL. First, classical dimen-

sional analysis is employed to derive the analytical similarity parameters for the aerother-

moelastic response of a modern composite hypersonic structure. Next, the conflicts in the

analytical aerothermoelastic scaling are identified and possible solutions to these conflicts

are discussed. Subsequently, a novel two-pronged approach is presented for the refinement

of hypersonic ASL, which is formulated as a multi-objective optimization problem. Fi-

nally, the solution strategy for the optimization problem associated with the two-pronged

approach is discussed.

6.1 Analytical Approach Revisited

6.1.1 Dimensional Analysis of the Aerothermoelastic Problem

The aerothermoelastic response of a hypersonic skin panel consists of the aeroelastic and

aerothermal responses. The aeroelastic response is represented by the structural deforma-

tion and aerodynamic pressure distribution, while the aerothermal response is represented

by the structural temperature and the aerodynamic heat flux distribution. This study fo-

cuses on the behavior of a typical structural component in hypersonic flow. Therefore, in

the rest of this chapter, the similarity in aerothermoelastic response refers to the similarity

in the time history of the structural deformation and temperature.
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From Eqs. (2.15), (3.26) and (4.11), the similarity parameters for the aerothermoelastic

response of a skin panel are,

Geometry :
ĥ

L̂
, h̄,

d̂

L̂

Time : Fo,
ÎL̂4

D̂xxt̂2
,

V̂ t̂

L̂

Coupling :


λ̄F , BiF ,

ûw

L̂
,
Tw

T̂S
,
T̂T

T̂S
,
T0

T̂S
,
T̂F

T̂S

p̄F , ¯̇qF , ūw, T̄w, T̄

Thermal :


Biext =

ˆ̇qextĥ

k̂sT̂T
, ¯̇qext

ρ̄sc̄sp, k̄
s

Structural :


ÂxxL̂

2

D̂xx

,
B̂xxL̂

D̂xx

,
ŜxxL̂

2

D̂xx

,
N̂TxL̂

2

D̂xx

,
M̂TxL̂

D̂xx

, λ̄ext =
p̂extL̂

3

D̂xx

, p̄ext

A, B, D, S, NT , MT , Ī1, Ī2, Ī3

Fluid :

 M∞
ĥ

L̂
, Re0

Pr0, γ

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

(6.1f)

where,

λ̄F =
γp∞M∞L̂

3

D̂xx

BiF =
k̂f

k̂s
Re0Pr0

V̂ 2

ĉfp T̂T

(6.2a)

(6.2b)

Equation (6.1a) requires the geometric similarity between the model and the prototype,

which is easy to satisfy. In Eq. (6.1b), the three quantities provide conflicting requirements

for the time scale, which can be reconciled depending on the type of problem. For ex-

ample, to simulate long-term quasi-steady aerothermoelastic response, the first parameter

representing the thermal characteristic time should be used to define the time scale, and the

other two can be ignored.
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Equation (6.1c) provides a group of similarity parameters related to the aerothermoe-

lastic coupling. In the first row, the first parameter λ̄F is the nondimensional dynamic

pressure, representing the ratio of aerodynamic pressure and the bending stiffness. The

second parameter BiF is the Biot number associated with the aerodynamic heat flux. The

third parameter defines the magnitude of surface deformation, which is important when the

panel undergoes moderate deformations. The last four parameters provide the requirements

for the reference temperatures in the thermal, structural and fluid problems. The second row

represents the requirements for the similarity in the distributions of the aerodynamic pres-

sure and heat flux, surface deformation, wall temperature and body temperature. These

requirements are automatically satisfied if all other similarity requirements are satisfied.

The parameters in Eqs. (6.1d)-(6.1f) are the similarity requirements for the individual

disciplines. In each group, the second row represents the similarity requirements for mate-

rial properties as a function of temperature. These requirements are approximately satisfied

if the functions representing the temperature dependency of the material properties have a

similar form. One example is the case where the material properties of the model and the

prototype are proportional to the power of temperature T η over the temperature range of

interest, where the exponent η is curve-fitted from the material data [24]. The similarity re-

quirements for the temperature-dependent material properties are approximately satisfied,

if the difference between the values of η associated with the model and the prototype are

sufficiently small.

In Eq. (6.1d), the first parameter, which requires the similarity in the initial temperature

distribution, is easy to satisfy. The next two parameters represent the magnitude and dis-

tribution of the heat flux due to external heat source, which will be discussed later in this

chapter. In Eq. (6.1e), first five parameters provide the similarity requirements in various

stiffness constants. The parameters associated with B̂xx, Ŝxx and M̂Tx may be ignored if

the panel is orthotropic and sufficiently thin. The last two parameters, which define the

magnitude and distribution of the externally-applied loading, will be discussed later. In Eq.
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(6.1f), the first parameter may be disregarded due to Mach number independence principle.

The second parameter, the Reynolds number, governs the growth of the boundary layer and

thus the distribution of pressure and heat flux.

Based on the preceeding discussion, for long-term quasi-steady aerothermoelastic re-

sponse of skin panel, the similarity parameters in Eq. (6.1) are reduced and replaced by a

simplified set given by Eqs. (6.3a)-(6.3d),

Fo

ĥ

L̂
, h̄, λ̄F , BiF , Re0,

ÂxxL̂
2

D̂xx

,
N̂TxL̂

2

D̂xx

Tw

T̂S
,
T̂T

T̂S
,
T0

T̂S
,
T̂F

T̂S

Biext, ¯̇qext, λ̄ext, p̄ext

(6.3a)

(6.3b)

(6.3c)

(6.3d)

6.1.2 Limitations of Complete Aerothermoelastic Scaling

The complete aerothermoelastic scaling requires that (1) all the similarity parameters in

Eqs. (6.3b) and (6.3c) should be satisfied, and (2) the external loading and heating in Eq.

(6.3d) is zero. Complete aerothermoelastic scaling cannot be achieved due to the conflict

between the similarity requirements for the aeroelastic and the aerothermal responses, or

specifically, structural stiffness and aerodynamic heating.

First, the quantities Âxx, N̂Tx, and D̂xx are functions of the reference structural tem-

perature T̂S . Therefore, from the similarity parameters ÂxxL̂2

D̂xx
and N̂TxL̂

2

D̂xx
, T̂S is determined.

Next, the quantities λ̄F , Re0, and BiF are functions of the flow conditions p∞, M∞ and

T∞. Therefore, the flow conditions that satisfies aeroelastic similarity is determined from

the combination of T̂S and parameters λ̄F , Re0 and T0

T̂S
. However, a different set of flow

conditions p∞, M∞ and T∞ that satisfies aerothermal similarity is determined from the

combination of T̂S and parameters λ̄F , BiF and T̂T

T̂S
. In general, the two sets of flow condi-

tions are not the same and thus complete aerothermoelastic scaling fails.
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6.1.3 Strategies for Refined Aerothermoelastic Scaling

The previous discussion has shown that it is impossible to develop a scaled model that sat-

isfies all the aerothermoelastic similarity parameters in Eq. (6.1) or Eq. (6.3). However,

various ad hoc assumptions have been introduced to facilitate the analytical derivation of

the similarity parameters. Some complex but important factors in the aerothermoelastic

problem have been ignored, including the turbulence and real gas effect in the fluid prob-

lem, geometric nonlinearity in the structural problem and the material nonlinearity in the

structural and thermal problems. Therefore, while the similarity parameters derived us-

ing the classical approach provide useful information about aerothermoelastic scaling, they

fail to accurately represent the requirements for constructing aerothermoelastically scaled

models.

A refined aerothermoelastic scaling approach is developed in this study to reconcile the

conflict that arises in conventional aerothermoelastic scaling, thus overcoming the limita-

tions of the classical scaling approach. Instead of satisfying the aerothermoelastic similarity

parameters, the scaled model is constructed by satisfying the similarity in the aerothermoe-

lastic response, i.e. minimize the differences between the nondimensional aerothermoelas-

tic responses of the prototype and the model. The aerothermoelastic responses generated

using numerical simulation take account of all the complex factors that are ignored in the

classical approach.

Two strategies can be employed in refined aerothermoelastic scaling:

1. Parameter relaxation: the scaled model is constructed so as to achieve approximate

similarity in the aerothermoelastic responses, while matching a partial set of the

aerothermoelastic similarity parameters between the prototype and the model, so as

to produce the best fit agreement for all the aerothermoelastic similarity parameters.

2. Incomplete testing: represents a situation where external loading and heating is in-

troduced in the wind tunnel test to compensate for the differences in the similarity

parameters λ̄F ,BiF associated with the prototype and the model.
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Both strategies are difficult to apply to the construction of the scaled model if the clas-

sical approach is used alone. However, the two strategies can be combined with the two-

pronged approach to enable systematic model adjustment with the objective of achieving

aerothermoelastic similarity. The process of model adjustment can be formulated as an

optimization problem. The design variables are selected to correspond to the most impor-

tant parameters needed for the refined simulation, and these design variables differ from

those employed when generating the model based on classical similarity. Eventually, the

numerical scaling law for the specialized cases can be obtained without recourse to the

ad hoc assumptions used in the classical approach. Thus, the difficulties associated with

hypersonic aerothermoelastic testing are resolved.

The selection of the design variables is problem-dependent. Typically, the design vari-

ables should include the freestream flow conditions in the wind tunnel, which cannot be

determined using the classical approach due to the conflict between the aeroelastic and

aerothermal similarity requirements. For a skin panel configuration, the design variables

should also include the geometrical parameters of the scaled model, such as the panel

thickness and the side length. The classical approach requires all the geometrical param-

eters to scale uniformly using the same scaling factor. However, it could be advantageous

to scale the geometrical parameters using different scaling factors so as to achieve a better

agreement between the nondimentional aerothermoelastic response of the prototype and

the model [173].

6.2 Two-Pronged Approach for Refined Scaling Laws

6.2.1 Objectives

The two-pronged approach combines the classical dimensional analysis and the numerical

simulation method to systematically adjust the wind tunel model properties so as to enable

hypersonic aerothermoelastic testing. For a generic configuration, the adjustment process
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is formulated as a constrained optimization problem that searches for a wind tunnel setup

whose aerothermoelastic response could represent that of the full-scale prototype to the

largest extent possible. The aerothermoelastic responses of the prototype and the model

are computed using the HYPATE framework. The simulated aerothermoelastic response of

the prototype is a time history of deformation and body temperature. The similarity of the

solutions is measured using two objective functions, representing the differences between

the nondimensional solutions to be minimized. For the deformation and temperature, the

objective functions are defined, respectively, as:

Ju(d; {um
i }) =

√√√√ Nt∑
i=1

∥∥∥∥ΨT
u

(
um
i

ûm
− up

i

ûp

)∥∥∥∥2

JT (d; {Tm
i }) =

√√√√ Nt∑
i=1

∥∥∥∥ΨT
T

(
Tm

i

T̂m
− Tp

i

T̂ p

)∥∥∥∥2
(6.4a)

(6.4b)

where d is the vector of design variables. The projection matrices Ψu and ΨT converts the

full aerothermoelastic responses to the quantities of interest, such as the modal components

of the deformation and temperature.

The objectives are meaningful only when the differences between the nondimensional

solutions are computed at the same nondimensional time. The matching of the nondimen-

sional time is guaranteed by using the same nondimensional time step size for the prototype

and the model. In other words, the time step size of the model ∆tm should be determined

from the time step size of the prototype ∆tp by keeping one of the similarity parameters in

Eq. (6.1b) constant. For example, for the case of long-term quasi-steady aerothermoelastic

response, given ∆tp, the time step size ∆tm should be determined such that the Fourier

numbers of the model and the prototype are the same,

[k̂s]m∆tm

[ρ̂sĉsp]
m(ĥm)2

=
[k̂s]p∆tp

[ρ̂sĉsp]
p(ĥp)2

⇒ ∆tm =
[k̂s]p[ρ̂sĉsp]

m

[k̂s]m[ρ̂sĉsp]
p

(
ĥm

ĥp

)2

∆tp (6.5)
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Table 6.1: Design variables for the optimization problem

Group Design variables Type Lower limits Upper limits

Flow conditions
M∞ Disc. N/A
p0, T0 Cont. Wind tunnel

Geometry L̂, Lle, θ Cont. Manufacture Wind tunnel

Composite layup
Q,α,ks, csp Disc. N/A

h Cont. Manufacture Wind tunnel

External loading
pext Cont. Wind tunnel
Trad Cont. Wind tunnel
ε Cont. 0 1

Temperatures
T̂T , T̂S Cont. Arbitrary
Tw Cont. Wind tunnel

6.2.2 Design Variables and Constraints

For the case of skin panel, the design variables describing the full-scale prototype and

the wind tunnel test model are summarized in Table 6.1. Note that external loading is

introduced by pext and external heating is introduced by radiant heating specified by the

radiation temperature Trad and the surface emissivity ε [179]. Not all of the variables in the

wind tunnel setup are continuous. First, in most hypersonic wind tunnels, the freestream

flow conditions are given as constant, or can be selected from a very limited number of dis-

crete options provided by using different nozzle configurations. Second, due to high loads

and temperatures during aerothermoelastic testing, there are only a limited number of op-

tions for material properties, i.e. elastic constants Q, thermal expansion coefficients α and

thermal properties ks and csp. Nevertheless, some wind tunnels do have the capability to

adjust the stagnation temperature and pressure continuously [31]. Moverover, a continous

range of post-shock flow conditions can be achieved by adjusting the geometrical inclina-

tion angle θ of the panel. Furthermore, the thickness of each lamina may be adjusted to

tune the structural and thermal properties of the model. Finally, it is assumed that a conti-

nous range of the surface emissivity ε can be achieved by applying different coating to the

surface of the scaled model, so as to adjust the magnitude of the radiative heat flux acting

on the model.
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Based on preceeding discussion, the design variables are divided into two groups,

dc = [p0, T0, L̂, Lle, θ,h, pext, Trad, ε, T̂T , T̂S, Tw]

dd = [M∞,Q,α,k
s, csp]

(6.6a)

(6.6b)

where dc and dd are the vectors of the continuous and discrete design variables, respec-

tively.

The design variables have to satisfy two sets of constraints, the equality and the inequal-

ity ones. The equality constraints are due to the requirement that the similarity parameters

of the model and the prototype should be equal. When the parameter relaxation or incom-

plete testing strategy is employed, not all similarity parameters in Eqs. (6.3b) and (6.3c)

are used as equality constraints. For example, the heat flux parameter BiF is excluded from

the equality constraints if external heating is provided. The inequality constraints are due

to practical limits and the factors characterizing the lower and upper limits of the inequal-

ity constraints are summarized in the last two columns of Table 6.1. The lower and upper

limits of the geometrical quantities are determined by the limitations in model manufacture

and the size of the wind tunnel, respectively. The feasible ranges of external loading and

temperature are determined by the capabilities of the wind tunnel facility.

6.2.3 Formulation of Optimization Problem

Combining Eqs. (6.4) and (6.6), the two-pronged approach for refined scaling law is for-

mulated as a constrained multi-objective optimization (MO) problem,

Minimize J(dc,dd) = [Ju(dc,dd), JT (dc,dd)]

Subject to cE(dc,dd) = 0

cI(dc,dd) ≤ 0

(6.7a)

(6.7b)

(6.7c)
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where Eqs. (6.7b) and (6.7c) represent the equality and inequality constraints, respectively.

The optimization problem Eq. (6.7) is a mixed-integer optimization problem that is difficult

to solve, due to the presence of both continuous and discrete design variables. However,

since there is only a limited number of feasible values for the discrete design variables,

the full problem Eq. (6.7) can be solved by an exhaustive search on all feasible values for

dd. For each possible set of dd, the optimal solution is found by solving the continuous

optimization problem w.r.t. dc,

Minimize J(d) = [Ju(d), JT (d)]

Subject to cE(d) = 0

cI(d) ≤ 0

(6.8a)

(6.8b)

(6.8c)

where the subscript c of dc is dropped for convenience.

6.3 Solution Strategies for the MO Problem

An MO problem typically has multiple solutions. Each solution of an MO problem is Pareto

optimal, meaning that one objective cannot be decreased without increasing the other ob-

jectives. The set of all the Pareto optimal solutions is called the Pareto front F . A typical

pareto front for a two-objective optimization problem is illustrated in Fig. 6.1. The gray

shaded area represents the solution space, which is the set of all possible combinations of

the objective values. At points A and D, the objectives Ju and JT achieve the minimum

possible values in the solution space, respectively. The Pareto front is the subset of the

boundary of the solution space between points A and D, represented by solid black curves.

Note that the continuity of the Pareto front is not a requirement. In Fig. 6.1, Point B rep-

resents a combination of objectives in the solution space that is better than any point on

the gray curve BC. As a result, the Pareto front is disconnected and consists of only the

curves AB and CD, and not the curve BC. While multiple solutions are possible, the ulti-

116



mate goal is to identify one optimal solution from the Pareto front, referred to as the design

point in the following discussion. The design point represents a wind tunnel configuration

that minimizes the differences in the nondimensional aerothermoelastic responses of the

prototype and the model.

Figure 6.1: Illustration of a typical Pareto front of a two-objective problem

An additional challenge associated with the MO problem Eq. (6.8) is the expensive

computational cost of the objectives, due to the aerothermoelastic simulation over the ex-

tended flight time. To solve the MO problem within a practical amount of time, the number

of evaluations of the objectives has to be limited during optimization. As a result, there are

two limitations on the optimization algorithm: (1) The design space cannot be explored by

carrying out numerous direct evaluation of the objectives; (2) The derivative of the objec-

tives w.r.t. design variables cannot be computed using the finite difference approach. To

overcome the two limitations, the surrogate-based optimization (SBO) is employed in the

current study [107]. Using the SBO algorithm, two approaches are employed to find the de-
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sign point associated with the MO problem. The indirect approach produces a Pareto set F ,

i.e. a set of Pareto optimal solutions, that is representative of the Pareto front F . The design

point has to be selected from the Pareto set manually by the user. The direct approach does

not produce a Pareto set. Instead, it only generates one Pareto optimal solution, identified

as the design point.

In the rest of this section, the general procedure of the SBO algorithm is provided

first. Next, the direct and indirect approaches using the SBO algorithm are presented and

compared. Finally, the implementation details of the optimization algorithms are discussed.

6.3.1 Surrogate-Based Optimization

The SBO algorithms contain two key ingredients, a surrogate model and an acquisition

function. The surrogate model is employed to approximate the expensive objectives. Since

the surrogate is computationally efficient, it allows the fast evaluation of approximated ob-

jectives as well as its derivative w.r.t. the design variables. The acquisition function is a

criterion for selecting the points in the design space that is potentially a solution to the opti-

mization problem. It is designed to take into account two ingredients, namely exploration,

i.e. sampling from areas of high uncertainty, and exploitation, i.e. sampling from areas

likely to improve the objectives. A typical SBO algorithm contains the following steps,

1. Set the number of initial samples Ns, number of iterations Ni.

2. Generate initial sample points {di}Ns
i=1 in the design space using a sampling approach,

e.g. the OLH method.

3. Generate a sample data set D = {(di,Ji, cEi, cIi)}Ns
i=1 by evaluating the objectives

and constraints Ji, cEi, cIi at the initial sample points.

4. Inner optimization for a maximum of Ni iterations:

(a) Generate surrogates Jsur(d), csurE (d), csurI (d) for the objectives and constraints

using the sample data set D.

(b) Find the candidate point d∗ by solving an optimization problem that consists of
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the surrogates and acquisition function.

(c) Evaluate the objective and constraint functions J∗
i , c

∗
Ei, c

∗
Ii at the candidate point

d∗.

(d) Update the surrogate using the sample data set augmented with the candidate

solution D∗ = D ∪ {(d∗,J∗, c∗E, c
∗
I)}.

(e) Break if convergence criteria is met, otherwise continue.

The SBO algorithms are classified in two categories: the one-shot approach and the

updating approach [106]. The one-shot approach only excutes the inner optimization step

once. The candidate solution is accepted as the final solution regardless of the differences

between the surrogate and the objectives at the candidate point. The one-shot approach

might fail if the design space is not well represented by the sample data set and the uncer-

tainty of the surrogate at the candidate point is high. In the updating approach, the inner

optimization is executed until convergence or when the computational budget is exceeded.

While the updating approach does not guarantee finding the global optimum point, it usu-

ally produces a better solution than the one-shot approach [106, 180]. In this thesis, the

updating approach is employed.

Several surrogate models have been employed in SBO algorithms, including response

surfaces [181], radial basis function method [182], and the kriging method [106, 180, 183].

The kriging method, or the Gaussian process regression model [105], is employed for SBO

in this thesis, because it has a clear statistical interpretation that is beneficial in the con-

struction of acquisition functions. The prediction of the kriging model at a candidate point

d∗ follows a joint Gaussian probability distribution,

J∗ = Jsur(d∗) ∼ N (µ(d∗),Σ(d∗)) (6.9)

where µ is the predicted values of objectives and Σ is the covariance matrix quantifying

the uncertainty of the prediction. The objectives are assumed to be independent and thus
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Σ is a diagonal matrix. The standard deviations associated with the predicted values are

denoted as σ.

Note that the updating SBO algorithms using kriging method appear in the literature un-

der multiple names, such as efficient global optimization (EGO) [180, 183] and Bayesian

optimization (BO) [184, 185]. Throughout the rest of the thesis, the updating SBO algo-

rithms is referred to as “Bayesian optimization”, due to its statistical interpretation.

6.3.2 Multi-Objective Optimization Using the BO Algorithm

6.3.2.1 Direct Approach

In the direct approach, the MO problem is reformulated as a single-objective optimization

(SO) problem and the design point is found by solving the SO problem only once,

Minimize Js(d) = S(J(d))

Subject to cE(d) = 0

cI(d) ≤ 0

(6.10a)

(6.10b)

(6.10c)

where a function S(J) is introduced to combine the vector of objectives into a scalar ob-

jective, typically using a weighted metric (WM) method. For the MO problem Eq. (6.8),

the objectives Ju and JT are combined as,

Sg(J) = [(cuJu)
g + (cTJT )

g]1/g (6.11)

where g ∈ [1,∞] and 0 ≤ cu, cT ≤ 1. The weights cu, cT are determined empirically and

more emphasis is placed on the objective with the larger weight.

Two special cases of WM method are illustrated in Figs. 6.2(a) and 6.2(b). The first

special case is the WM method with g = 1, which is equivalent to the weighted sum (WS)
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method [186],

S1(J) = cuJu + cTJT (6.12)

A Pareto optimal solution found by the WS method is illustrated by the point E in Fig.

6.2(a). The contours of the combined objective S1(J) are a family of straight lines of slope

− cu
cT

. The WS method finds the point at which the contour of S1 is tangent to the Pareto

front and the contour does not intersect with the rest of the solution space. However, the

WS method can only find points on a partial set of a non-convex Pareto front. At point F

of the Pareto front in Fig. 6.2(a), it is impossible to find a contour of S1 at F that does not

intersect with the solution space.

The second special case is the WM method with g = ∞, where the objectives are

combined as,

S∞(J) = max(cuJu, cTJT ) (6.13)

The WM method with g = ∞ is capable of finding all the Pareto points on the Pareto front

and its geometrical interpretation is provided in Fig. 6.2(b). The contours of the combined

objective S∞(J) are a family of rectangles whose diagonals have a slope of cT
cu

. The WM

method with g = ∞ finds the point that is the only intersection between a contour of S∞

and the solution space. The point is either the tangent point between the contour and the

Pareto front, such as point B, or the corner point of the contour, such as point F .

While the WM method is employed for finding one Pareto optimal solution in the cur-

rent study, it can also be used to generate a Pareto set by solving a series of SO problems

associated with different combinations of weights [186]. However, this approach is in-

efficient because solving each SO problem requires generating a considerable amount of

sample data in BO algorithm. Furthermore, the Pareto set may not be representative of the

Pareto front. A uniform distribtuion of weights c = [cu, cT ] typically does not result in a

uniformly distributed Pareto set [187].
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(a) Weighted metric with g = 1 (b) Weighted metric with g = ∞

Figure 6.2: Illustration of two typical WM methods

Surveys of acquisition functions for SO problems can be found in, for example, Refs.

[183] and [188]. There are three basic acquisition functions: (1) probability of improve-

ment (PoI) [189], (2) expected improvement (EI) [184, 190], (3) lower confidence bound

(LCB) [191]. The formulation of these acquisition functions is presented next.

Probability of Improvement The PoI acquisition function is defined as the probability

of the new design point d∗ that represents a better value of the objective J∗ when compared

to the minimum objective in the sample data set Jmin = min Ji.

CPoI(d
∗) = P (J∗ ≤ Jmin) = 1− Φ(z0) (6.14)

where z0 = Jmin−µ
σ

and Φ is the cummulative distribution function of a standard Gaussian

distribution. The gradient of CPoI w.r.t. d is,

∂CPoI

∂d
=

1

σ
ϕ(z0)

(
∂µ

∂d
+ z0

∂σ

∂d

)
(6.15)
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where ϕ is the probability density function, and the computation of ∂µ
∂d

and ∂σ
∂d

are provided

by Eqs. (A.8a) and (A.8b).

Expected Improvement The EI acquisition function is defined as the expectation of the

improvement in the objective at the new design point. In the literature, EI has been general-

ized to include user-specified parameters that control the exploitation-exploration trade-off.

The generalized EI is written as [190],

CEI(d
∗) = E[I(d∗)] (6.16)

where υ ≥ 0 and g ≥ 1 are the user-specified parameters, and

I(d) = max(0, (Jmin − Jsur(d)− υσ(d))g) (6.17)

A larger g or υ will put more weight on the exploration. The classical form of EI is obtained

with υ = 0 and g = 1. When υ > 0 and g = 1, the EI is equivalent to the weighted EI

function developed in Ref. [106]. When υ = 0 and g = 0, EI reduces to PoI. For a kriging

model, the closed-form expression is available for CEI . For the case g = 1,

CEI(d
∗) =

∫ ∞

0

IP (Jsur = Jmin − υσ − I)dI

=

 σ[zΦ(z) + ϕ(z)], σ > 0

0, σ = 0

(6.18)

(6.19)

where z = Jmin−υσ−µ
σ

. The gradient of CEI w.r.t. d is,

∂CEI

∂d
= −∂µ

∂d
Φ(z) +

∂σ

∂d
[ϕ(z)− υΦ(z)] (6.20)
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Lower Confidence Bound The LCB acquisition function is defined using the LCB con-

cept of a Gaussian probability distribution,

CLCB(d
∗) = µ(d∗)− υσ(d∗) (6.21)

where the probability of Jsur < CLCB is a constant controlled by the user-specified param-

eter υ > 0. A larger υ will put more weight on the exploration. The gradient of CLCB w.r.t.

d is,

∂CLCB

∂d
=
∂µ

∂d
− υ

∂σ

∂d
(6.22)

The PoI acquisition function is purely exploitation, which is undesirable for global

optimization. The EI and LCB acquisition functions are high when J∗ approaches the

optimum point, or the uncertainty of J∗ is high. Therefore, both CEI and CLCB achieve a

balance between exploitation and exploration. The LCB function is smoother than the EI

function and thus more favorable for the inner optimization of the BO algorithm. Therefore,

the LCB function is employed in the current study.

Finally, note that the exploitation-exploration trade-off of EI and LCB functions can be

further tuned by a cooling scheme. In the cooling scheme, the optimization starts with a

large user-specified parameter υ for more exploration and gradually decreases the parame-

ter to focus on exploitation. However, the effect of this scheme is controversial [183, 192],

and not employed in the study.

6.3.2.2 Indirect Approach

In the indirect approach, the original MO problem formulation Eq. (6.8) is retained. The

acquisition functions suitable for multiple objectives are developed, so that each inner op-

timization step of the BO algorithm produces one Pareto optimal solution of the MO prob-

lem. The optimization algorithm generates a Pareto set and the user needs to select one of

the Pareto optimal solutions as the final design point.
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The PoI, EI and LCB acquisition functions for SO problems have been extended to MO

problems using the concept of hypervolume H [193–195]. Figure 6.3 illustrates the hy-

pervolume associated with a two-objective problem. Initially, the Pareto set F1 consists of

three Pareto optimal solutions labelled by the blue dots. All the points in the purple shaded

region are worse than one or more solutions in F1 and better than a reference solution la-

belled by a green square on the top right corner of Fig. 6.3. The area of the purple shaded

region is defined as the hypervolume associated with the Pareto set F1. A new Pareto set

F2 is generated by augmenting F1 with a new solution J∗. The hypervolume associated

with F2 is larger than F1 due to the additional area introduced by J∗, as represented by the

gray rectangle. The area of the gray rectangle is defined as the hypervolume indicator IH,

which quantifies the improvement of a Pareto set due to a new solution J∗.

Figure 6.3: Illustration of the hypervolume indicator

Given a Pareto set F and a new solution J∗, the hypervolume indicator is written as,

IH(J
∗;F) = H(F ∪ {J∗})−H(F) (6.23)
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When a new solution J∗ fails to improve the existing Pareto set F , the hypervolume indi-

cator associated with J∗ is zero,

H(F ∪ {J∗}) = H(F) ⇒ IH(J
∗;F) = 0 (6.24)

which means no improvement to F is introduced by the new solution. The MO counter-

parts of the PoI, EI and LCB acquisition functions are defined based on the hypervolume

indicator as presented in the following.

Hypervolume PoI The hypervolume probability of improvement (HVPoI) acquisition

function is developed in Ref. [195], as the hypervolume counterpart of the PoI function. It

is defined as follows,

CHV PoI(d) =

∫
I(J;F)P (Jsur = J)dJ (6.25)

where F is the Pareto set of the current iteration, and

I(J;F) =

 1, if IH(J;F) > 0

0, otherwise
(6.26)

Hypervolume EI The hypervolume expected improvement (HVEI) acquisition function

is initially proposed under the name “S-metric expected improvement” in Refs. [187, 196]

as an extension of the EI acqusition function of SO problems. The formulation is straight-

forward by replacing the improvement function in Eq. (6.18) with the hypervolume indi-

cator,

CHV EI(d) =

∫
IH(J;F)P (Jsur = J)dJ (6.27)

Hypervolume LCB The hypervolume lower confidence bound (HVLCB) acquisition

function is initially proposed in Ref. [194] as an extension of the LCB acqusition func-
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tion of SO problems. It was shown to outperform other popular MO algorithms, such

as ParEGO [186], NSGA-II [197] and SPEA-2 [198]. This method is easy to implement

and has been widely used. Assuming the Pareto set of the current iteration is F , the HV

counterpart of the LCB function is defined as follows,

CHV LCB(d
∗) =


IH(J0;F), if IH(J;F) > 0

min
J∈F

∥J− J0∥ , otherwise
(6.28)

where J0 = µ(d∗)− υσ(d∗).

Similar to the discussion in the direct approach, the HVLCB function is employed

for the indirect approach due to its smoothness and the exploitation-exploration trade-off

property.

6.3.2.3 Comparison of the Direct and Indirect Approaches

The comparison between the direct and indirect approaches is illustrated in Fig. 6.4. In the

direct approach, the MO problem is reformulated as an SO problem and the design point

is found by solving the SO problem only once. The direct approach is employed when

there is sufficient preference information on the objectives, i.e. the knowledge about the

relative importance of the objectives. The preference information provides the criterion for

selecting the weights for objective combination as in Eq. (6.11). When the MO problem

has objectives with limited user knownledge and the weights for objective combination

cannot be determined easily, the indirect approach is employed to explore the design space

associated with the MO problem. The indirect approach produces a set of representative

Pareto optimal solutions and the user needs to manually pick one solution as the design

point. In general, the direct approach is preferred whenever it is applicable, because the

direct approach only requires solving one optimization problem and generally takes fewer

iterations to converge when compared to the indirect approach.
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Figure 6.4: Illustration of direct and indirect approaches for solving the MO problem

6.3.3 Implementation Details

In the current study, both the direct and indirect approaches for the MO problems are im-

plemented in a Python library, multi-objective Bayesian optimization (MOBO), that is de-

veloped at the University of Michigan. For the SO problem associated with the direct

approach, BO algorithms employing PoI, EI, LCB acquisition functions are implemented.

For the indirect approach, BO algorithms employing HVPoI and HVLCB acquisition func-

tions are implemented. The kriging model is generated using the scikit-learn library [199].

No matter which surrogate model and acquisition function are used, eventually the

BO algorithm boils down to a series of non-convex subproblems in the inner optimization

step. It is hard to find the global optimum of a non-convex function. One choice is to use

global optimization algorithms, such as the DIviding RECTangules (DIRECT) algorithm
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[200]. Another choice is to apply local optimization algorithms, especially the gradient-

based algorithms, with multiple starts. In practice, multiple restarts usually result in a good

global sub-optimal point that is sufficient for the engineering purposes. Therefore, in the

current study, the inner optimization step of the BO algorithm is solved using a gradient-

based algorithm, Sequential Least-SQuares Programming (SLSQP), implemented in the

SciPy library [201] with multiple starts. The initial starting points are generated using the

OLH method at the beginning of every inner optimization step.
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CHAPTER 7

Verification Results for the HYPATE

Computational Framework

7.1 Results for Aerothermodynamic Solutions

The CFD solver based on ADflow has been verified extensively in the literature [149, 150].

This section will focus on the verification of the ROM-based fluid solver enhanced by the

correction and scaling technique.

7.1.1 Case Description

For verification, a 2D panel configuration is considered, as shown in Fig. 7.1. The panel

is simply supported at its leading and trailing edges, and its properties are: a = 1m, h =

0.0025m and Lle = 1m.

The CFD mesh for the 2D panel is shown in Fig. 7.2. The fluid domain is discretized

using structured mesh. It consists of 170 points in the x-direction (65 of which are on the

panel itself) and 105 points normal to the plate. The wall-normal spacing is ∆z/a = 10−5

for a sufficient resolution of the boundary layer.
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Figure 7.1: Geometrical configuration of a 2D panel

Figure 7.2: Computational grid of a 2D panel for the CFD solver

7.1.2 Generation of the Fluid ROM

Two ROMs are generated, in both cases, the panel deformation is characterized by six

sinusoidal modes,

uF (x)/h =
6∑

i=1

ai sin

[
iπ

(
x

a
+

1

2

)]
(7.1)

The distinction between the two ROMs is due to different wall temperature models. In

the first ROM, denoted ROM/Poly, the wall temperature is characterized by a third-order

polynomial,

Tw(x) = (b1 + b2x+ b3x
2 + b4x

3)× 103K (7.2)
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In the second ROM, denoted ROM/Avr, the wall temperature of the panel is uniform,

Tw(x) = b1 × 103K (7.3)

The ranges of the parameters in the sample CFD solutions are listed in Table 7.1. The

sample parameters are generated using the OLH sampling method. For ROM/Poly, after the

parameter sampling, the parameters b1, b2, b3, b4 are scaled to ensure that the temperature

distributions given by Eq. (7.2) stay within the range of [200, 900]K.

the following procedure is used to scale the parameters b1, b2, b3, b4, to ensure that the

temperature distributions given by Eq. (7.2) stay within the range of [200, 900]K.

bnew1 = (b1 − Tw,min)
Tmax − Tmin

Tw,max − Tw,min

+ Tmin

bnewi = bi
Tmax − Tmin

Tw,max − Tw,min

, i = 2, 3, 4

(7.4)

(7.5)

where Tw,max = min(900K,max(Tw(x))) and Tw,min = max(200K,min(Tw(x))).

Three sets of sample CFD solutions are generated. The first two data sets are for ROM

generation and verification, which consists of the CFD solutions at the reference flow con-

dition M∞ = 6 and H = 25km. For the ROM generation, 1100 and 500 samples are

generated for ROM/Poly and ROM/Avr, respectively. For the verification of ROM conver-

gence, 100 samples are generated for each ROM. The third data set is generated for the

verification of ROM correction and scaling technique. The data set consists of 3× 15× 30

sample CFD solutions, representing 3 geometric scales ξ = 1, 2, 4 and 15 flight conditions

as a combination of Mach numbers M∞ = 4, 5, 6, 7, 8 and altitudes H = 20, 25, 30km.

The deformation is characterized using the first three sinusoidal modes, while the wall

temperature is characterized using three modes,

Tw(x) = [b1 + b2x+ b5 sin(2πx)]× 103K (7.6)
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Note that wall temperature distribution includes a non-polynomial mode that is not present

in the data set for ROM generation. Thirty combinations of panel deformation and temper-

ature distribution are sampled from the ranges specified in Table 7.1.

Table 7.1: Ranges of sample parameters in the 2D ROM

Data sets 1, 2
Data set 3

ROM/Poly ROM/Avr

a1 [−6, 6] [−6, 6] [−6, 6]

a2 [−2, 2] [−2, 2] [−2, 2]

a3 [−2, 2] [−2, 2] [−2, 2]

a4 [−2, 2] [−2, 2] N/A

a5 [−1.5, 1.5] [−1.5, 1.5] N/A

a6 [−1.5, 1.5] [−1.5, 1.5] N/A

b1 [0.2, 0.9] [0.2, 0.9] [0.2, 0.9]

b2 [−2, 2] N/A [−0.3, 0.3]

b3 [−5, 5] N/A N/A

b4 [−5, 5] N/A N/A

b5 N/A N/A [−0.3, 0.3]

The convergence of ROM/Poly and ROM/Avr is examined in Fig. 7.3. The ROMs

are used to predict the pressure and the heat flux distributions in the second data set. The

differences between the ROM prediction and the CFD solution are characterized using the

normalized root-mean-squared error (NRMSE),

NRMSE =

√
1
L

∫ L

0
(yCFD − yROM)2dx

max(yCFD)−min(yCFD)
(7.7)

The convergence of the average NRMSE is shown in Fig. 7.3. For the pressure distribution,

both ROMs achieve convergence using 200 samples with the average NRMSE less than 1%.
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For the heat flux distribution, ROM/Avr converges with 200 samples, which is one fifth of

the number of samples that are necessary for the convergence of ROM/Poly. The difference

in the convergence rate is expected, as the polynomial temperature distribution introduces

variations in the heat flux distribution, which requires more input parameters and thus more

samples for ROM/Poly to converge.

Figure 7.3: The NRMSE of the test cases

7.1.3 The ROM-Based Fluid Solutions

The capability of the ROM correction and scaling technique is demonstrated using a sam-

ple from data set 3. The panel deformation and the temperature distribution in the sample

are illustrated in Fig. 7.4. The ROM results are presented in Fig. 7.5 for three cases ordered

in increasing complexity. In the first case, the ROM/Poly and ROM/Avr results are com-

pared against the CFD results for the reference flight conditions M∞ = 6, H = 25km. In

ROM/Poly, the temperature distribution is curve-fitted using a third-order polynomial. In

ROM/Avr, the correction for non-uniform wall temperature is achieved using the BL cor-

rection. The ROM/Avr produces accurate predictions with an error of 1.1% in the pressure

distribution and 7.0% in the heat flux distribution. Furthermore, the errors of the ROM/Avr
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results are less than half of that of the ROM/Poly results. In the second case, compared

to the first case, the flight conditions are changed to M∞ = 7, H = 30km. The surface

pressure and the heat flux decrease due to the decrease in the freestream pressure. The

ROM correction captures the trend well, with an error of 2.3% in pressure and an error of

6.6% in the heat flux. In the third case, the flight conditions are identical to those in the

second case, while the geometrical configuration is scaled with a factor of ξ = 4. Despite

the moderate deviations in both the flight conditions and geometric scales, the corrected

and scaled ROM results produce an error of 6.0% in the pressure distribution and 11.1% in

the heat flux distributions, which are sufficient for engineering applications.

Finally, the PT and BL corrections for the ROM are compared in Figs. 7.6(a) and 7.6(b).

The ROM results generated using the PT and BL corrections are denoted ROM/PT and

ROM/BL, respectively. Figure 7.6(a) illustrates the distributions of the average NRMSE

in the pressure for the flight conditions and geometric scales considered in data set 3. The

NRMSE increases as the conditions deviate from the reference values. The BL correction

results in lower NRMSE when compared to the PT correction in most of the cases. The

difference is expected, since the BL correction takes into account the boundary layer effect

that is ignored in the PT correction. Figure 7.6(b) illustrates the distributions of the average

NRMSE for the heat flux. The distribution of the NRMSE follows a trend similar to the

pressure. The NRMSE increases as the conditions deviate from the reference values. How-

ever, a better pressure correction in ROM/BL does not necessarily produce better correction

in the heat flux. The discrepancy is attributed to the limitations in the analytical model for

the heat flux correction. In general, given a ROM for M∞ = 6, H = 25km, both PT and

BL corrections provide a good correction for the pressure and the heat flux in the range of

M∞ = 5− 7, H = 20− 30km and ξ = 1− 4 with an error of less than 10%. In particular,

the BL correction is more accurate for pressure prediction, while the PT correction is more

accurate for heat flux prediction.
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Figure 7.4: Distributions of deflection and temperature in the sample

Figure 7.5: Correction and scaling of the ROM solution
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(a) Pressure

(b) Heat flux

Figure 7.6: Distribution of average NRMSE of the ROM/BL and ROM/PT solutions
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7.2 Results for Aeroelastic Response

In this section, the aeroelastic portion of the HYPATE framework is verified. First, the

CFD-based solutions are verified against computational and experimental results from lit-

erature. Next, the correctness and accuracy of the fluid ROM is illustrated by verifying the

ROM-based aeroelastic solutions against the CFD-based solutions. Finally, the capability

of the LSA method to predict the aeroelastic flutter boundary of a skin panel is demon-

strated.

7.2.1 The CFD-Based Aeroelastic Solutions

7.2.1.1 Case Description

The configuration considered for 3D panel flutter is taken from Ref. [61], where a RANS-

based tightly-coupled aeroelastic computational framework was developed and applied to

panel flutter analysis over a range of M∞ = 1.1 − 2.4. The panel configuration is based

on the panel flutter test in Ref. [4] for M∞ = 1.05 − 1.4 and Re = 4 × 106. The

geometrical parameters and material properties of the panel are shown in Table 7.2. The

panel is clamped along its four edges. The natural frequencies of the panel agree well with

data from literature, as shown in Table 7.3. The number in the bracket indicates the error

with respect to the analytical values obtained from Ref. [4]. The natural frequencies in the

current study are slightly higher than the analytical values, with errors less than 0.5%. In

Ref. [61], a finite difference formulation was employed, which resulted in lower natural

frequencies. The thickness of the boundary layer on the panel is controlled by the length

Lle of the rigid wall in front of the panel. A larger value of Lle results in a thicker boundary

layer.
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Table 7.2: Properties for the 3D panel configuration [4]

a b h ρs E ν

9in 18in 0.0401in 110.0 lb/ft3 5.6Mpsi 0.35

Table 7.3: Natural frequencies of the panel

Mode No. Analytical, Hz [4] Hashimoto, Hz [61] Current, Hz

1 109.7 108.1 (1.46%) 110.0 (0.27%)

2 142.0 138.2 (2.68%) 142.4 (0.28%)

3 199.8 191.7 (4.05%) 200.3 (0.25%)

4 282.6 267.9 (5.20%) 283.4 (0.28%)

5 285.5 278.4 (2.49%) 286.4 (0.32%)

The computational model for the 3D panel is shown in Fig. 7.7. In the structural

mesh, the panel is discretized using 10 elements in streamwise direction and 20 in spanwise

direction. In the fluid mesh, the panel has 33 grid points in streamwise direction and 65 in

spanwise direction. The y+ value of the mesh is kept under 1.0 for adequate resolution of

the boundary layer. The value of Lle is fixed, so that the boundary layer thickness at x = 0

is δ/a = 0.1 at M∞ = 2.4.

The simulation is initialized as follows. First, a steady solution is obtained for the un-

deformed panel. The resulting pressure distribution due to boundary layer is applied below

the panel as the cavity pressure, which is fixed throughout the simulation. As discussed in

Ref. [49] pp. 43–45, a high cavity pressure results in the static deformation of the panel

and increases the critical flutter dynamic pressure. Using the pressure distribution over the

undeformed panel eliminates the static deformation of the panel, and thus the effect of the

cavity pressure. To initiate the unsteady flutter computation, a perturbation in deformation

is imposed on the panel at the first time step. The perturbed deformation is obtained by ap-

plying a small uniform load in z direction and it is removed after the unsteady simulation
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is initiated.

Figure 7.7: Geometrical configuration of a rectangular panel

7.2.1.2 Aeroelastic Flutter Boundary

The flutter boundary of the panel is shown in Fig. 7.8. The Euler and RANS results

are shifted upward by approximately 5%, compared with the data from Ref. [61]. The

Euler and LS results agree well with each other. The error could be due to the fact that

the structure used in current study is slightly stiffer than that in the reference. A stiffer

panel is expected to have higher flutter boundary. For the RANS results, another source

of error is the boundary layer. The values of δ/a in the reference and current study do not

match exactly. The difference in boundary layer thickness may result in the shift of flutter

boundary.

The RANS and Euler results in Fig. 7.8 indicate that in high supersonic flow (M∞ ≥

2.0), the turbulent boundary layer stabilizes the panel and could increase the flutter bound-

ary by over 20%. This trend was also confirmed by Ref. [61]. It is worth noting that, in low

supersonic flow, the effect of the turbulent boundary layer is less pronounced. In Ref. [60],

it was found that, at M∞ = 1.2, the flutter boundary with turbulent flow is in agreement

with the results from the inviscid flow.
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Figure 7.8: Flutter boundary for M∞ = 1.6− 2.4

7.2.2 The ROM-Based Aeroelastic Solutions

7.2.2.1 Case Description

A square panel configuration shown in Fig. 7.9 is considered. To enable a similar boundary

layer thickness at an arbitrary flow orientation angle, an O-grid mesh is generated for the

fluid domain in the computational model, as shown in Fig. 7.9. The distance of center

of the panel to the inflow boundary is invariant, so the same boundary layer thickness on

the panel is maintained for any orientation angle. In the fluid mesh, the panel has 41 grid

points in both x- and y-directions and 73 grid points normal to the panel. The wall-normal

spacing is ∆z/a = 10−6 for a sufficient resolution of the boundary layer.

The aeroelastic responses at β = 30◦ are examined for two cases: (1) M∞ = 6.0,

H = 20km, λ = 10000, (2) M∞ = 5.0, H = 25km, λ = 8000. The panel temperature

is uniformly 300K and fixed. In both cases, the panel is dynamically unstable and a small

perturbation to the panel develops into a limit cycle oscillation (LCO).

141



Figure 7.9: Geometrical configuration of the square panel with arbitrary flow orientation

angles

Figure 7.10: O-grid mesh for the fluid domain

7.2.2.2 Generation of the fluid ROM

Two fluid ROMs were generated for different flow orientation angles (β = 0, 30◦) for the

flight condition M∞ = 6.0, H = 20km. The wall temperature of the panel is uniform and

ranges from 250K to 350K. The panel deformation is characterized using 12 sinusoidal

142



Table 7.4: Nondimensionalized maximum modal amplitudes for the 3D ROMs

Amplitudes a11 a12 a13 a21 a22 a23 a31 a32 a33 a41 a42 a43
β = 0◦ 6 N/A 2 2 N/A 1.5 1.5 N/A 1.0 1.0 N/A 0.5
β = 30◦ 6 0.75 0.75 1.25 0.35 0.35 1.25 0.3 0.3 0.25 0.25 0.25

modes,

uF (x, y)/h =
4∑

i=1

3∑
j=1

aij sin(iπx/a) sin(jπy/b) (7.8)

In the ROM for β = 30◦, all 12 modes are used; while in the ROM for β = 0◦, only

the 8 modes that are symmetric about the streamwise centerline are used. The maximum

modal amplitudes in the samples are listed in Table 7.4. In this section and the rest of the

paper, the BL correction is used for scaling the ROM results to different flight conditions

and geometric scales.

7.2.2.3 Aeroelastic Response

In the following results, the structural response is plotted against the nondimensional time

t̄ = V∞t
a

, and the power spectral density (PSD) is plotted against the reduced frequency, or

the Strouhal number, St = ωa
V∞

.

For the first case the flow conditions are identical to those used for the CFD samples

from which the fluid ROM was generated. In Fig. 7.11(a), the time responses from the

complete CFD and ROM solutions are in agreement and generate similar LCO amplitudes.

The modal amplitudes of the structural responses after the panel enters LCO range are

shown in Fig. 7.11(b). The CFD and the ROM results show a similar distribution of

modal amplitudes. The 1st, 2nd and 4th sinusoidal modes dominate the structural response.

The PSD of the LCO portion of the structural response is illustrated in Fig. 7.11(c). The

ROM solution accurately captures the primary frequency component of the CFD solution

at St = 0.0913 and approximates the secondary frequency component at St = 0.279 with

an error of 4.0%.
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(a) Deflection at x = 0.75a, y = 0 (b) Amplitudes of sinusoidal modes

(c) PSD of the LCO response

Figure 7.11: Aeroelastic response at M∞ = 6, H = 20km

The aeroelastic responses for the second case are shown in Figs. 7.12(a)-7.12(c). For

this case the flow conditions are different from those used for the CFD samples from which

the fluid ROM was generated. The ROM-based solution agrees well with the CFD-based

solution both in the time response and the modal amplitudes. The ROM solution captures

the frequency components of the CFD solution at St = 0.0684 and St = 0.208 with errors

of 3.6% and 6.3%, respectively.

In-plane loads are not considered since the objective is to verify the ROM-based solu-

tions. It is important to note that axial and thermal loads producing panel buckling have an
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important effect on panel flutter resulting in LCO’s that are not harmonic and can become

aperiodic [49]. The combination of LCO and buckling represent conditions beyond the

onset of instability. This is a topic worth further investigation in the future.

(a) Deflection at x = 0.75a, y = 0 (b) Amplitudes of sinusoidal modes

(c) PSD of the LCO response

Figure 7.12: Aeroelastic response at M∞ = 5, H = 25km

7.2.3 Linearized Stability Analysis of Panel Flutter Problem

7.2.3.1 Case Description

The geometrical configuration is a simply supported square panel that is similar to the case

shown in Fig. 7.7. The geometrical parameters are a/h = 500 and a/b = 1. The material
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properties are ν = 0.3 and α = 1.2 × 10−6/K. The mass ratio µF = 5.355 × 10−4.

The aerodynamic loads are obtained using the piston theory. Two cases with different

temperature increments are considered: (1) ∆T = Tcr, (2) ∆T = 2Tcr.

The first set of results are obtained directly from temporal responses of the panel, as

shown in Fig. 7.13. The amplitudes of LCO are computed at a series of dynamic pressures.

At each dynamic pressure, the aeroelastic simulation is run for 5000 time steps so that the

time response enters a stable state or a LCO state. The results are compared with those

from Refs. [47, 57].

Figure 7.13: The LCO curves of the square panel

In general, the results from current study agree well with those from literature. The

flutter points predicted by HYPATE are λ̄F = 344.0 for ∆T = Tcr and λ̄F = 191.1 for

∆T = 2Tcr. Compared with the literature results, the errors are less than 1%. More-

over, the case ∆T = 2Tcr provides an illustration of three typical types of panel response

[50]. The panel response is controlled by two types of forces, i.e. the thermally-induced

inplane compressive force and the aerodynamic force. When the dynamic pressure is low

(λ̄F < 183.5), the aerodynamic force is weaker than the compressive force and type I re-

sponse occurs: The panel is thermally buckled but dynamically stable, as illustrated in Fig.
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7.14(a). As the dynamic pressure increases (183.5 < λ̄F < 191.1), The two forces are both

moderate and type II response occurs: The panel is stabilized and has zero LCO amplitude,

as illustrated in Fig. 7.14(b). After the flutter point (λ̄F > 191.1), the aerodynamic force

becomes stronger than the compressive force and the panel enters the LCO state.

(a) Type I response at λ̄F = 172.0 (b) Type II response at λ̄F = 187.3

Figure 7.14: Typical panel responses before flutter when ∆T = 2Tcr

The second set of results is obtained from the LSA using the PEP and GEP formula-

tions. The frequencies ω and dampings ζ of the first six aeroelastic modes are computed at

a series of dynamic pressures. The first two modes are found to be the source of instability

and the higher modes are stable. By the definitions in Eq. (5.37), the frequency and damp-

ing have the same unit of radian/second, and therefore they are nondimensionalized by the

natural frequency ωo of the first structural mode of the unheated panel.

ω̄ =
ω

ωo

, ζ̄ =
ζ

ωo

(7.9)
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(a) Case 1: ∆T = Tcr (b) Case 2: ∆T = 2Tcr

Figure 7.15: Linearized stability analysis results (PEP v.s. GEP)

Figure 7.15(a) illustrates the LSA results for the first case (∆T = Tcr). The frequen-

cies of the two modes coalesce as the dynamic pressure increases. When the frequencies

coalesce, the damping of one of the modes becomes positive, and the other becomes neg-

ative, indicating a flutter-type instability. The flutter point is λ̄F = 343.3, within 1% error

compared with results from time-domain analysis.

Figure 7.15(b) illustrates the LSA results for the second case (∆T = 2Tcr). The flutter

point is λ̄F = 190.9, where the damping becomes positive. Furthermore, the LSA results

capture the two types of panel response before the flutter point. When λ̄F < 183.4, mode

1 has zero frequency and positive damping, indicating that the panel has divergence-type

instability, which corresponds to the type I response in the time-domain analysis. When

183.4 < λ̄F < 190.9, the modes have negative damping and the panel is stable, which

corresponds to the type II response.

In Figs. 7.15(a) and 7.15(b), the PEP and GEP formulations produce almost identical

results. The maximum error in the frequencies is less than 0.1%. Compared with PEP

results, the damping computed by GEP is “shifted” upward by a small amount, typically 1%

of the reference frequency. The shift in damping is caused by neglecting the aerodynamic

damping matrix due to the quasi-steady assumption. The changes in the flutter points due to
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the shift are negligible. The comparison between PEP and GEP results justifies the quasi-

steady assumption in the hypersonic flow regime. Also, the results indicate that the positive

damping in flutter-type instablity is mainly introduced by the aerodynamic stiffness matrix.

7.3 Results for Aerothermoelastic Response

7.3.1 Case Description

The structural configuration is a 2D skin panel, as shown in Fig. 7.1. The panel is simply

supported at the leading and trailing edges. The geometrical parameters are h = 2.5mm,

a = 1m, and Lle = 1m. The panel is made of Al7075 and the material properties are

temperature dependent. The properties at initial temperature (T = 300K) are shown in

Table 7.5.

Table 7.5: Material properties for the 2D aerothermoelastic case [5]

ρs E ν α ks csp

2768.1kg/m3 72.86GPa 0.325 2.236× 10−5/K 132.05W/mK 850.99J/kgK

7.3.2 The CFD-Based Aerothermoelastic Response

The benchmark case is based on Ref. [202], where the aerothermoelastic response is gen-

erated using analytical models for aerodynamic pressure and heat flux. It is suitable for the

verification of the aerothermoelastic solution and the accuracy of the coupling schemes.

The flight conditions are M∞ = 4.0, p∞ = 2087.2Pa, and T∞ = 266.7K.

7.3.2.1 Comparison of Coupling Schemes

Two sets of coupled solutions are generated using the S1 and S2 schemes, respectively, as

shown in Fig. 7.16. In an actual hypersonic vehicle, the panel has to be designed so as to

avoid any unstable behavior. Therefore, the responses up to the onset of aerothermoelastic

149



instability, indicating the stability boundary of the panel that has to be avoided in actual

vehicle design, are presented in Fig. 7.16.

Figure 7.16: Aerothermoelastic response of the 2D panel for M∞ = 4.0, p∞ =

2087.2Pa, T∞ = 266.7K

The results from the two schemes are almost identical. In the structural response,

the mid-panel displacement is nondimensionalized by thickness. The panel undergoes a

thermally-driven response, which causes the panel to deform into the flow. Near t = 2.1s,

aerothermoelastic instability in the form of snap-through occurs, and the panel deforms out

of the flow. The average pressure on the panel surface gradually increases as the panel de-

forms into the flow. Sufficiently large pressure causes the snap-through of the panel, which
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in turn causes the sudden drop of the pressure itself. The heat flux gradually decreases as

the panel heats up. The fluid, structural, and thermal solutions from HYPATE agree well

with those from Ref. [202] up to the onset of the instability, and therefore verifies the

correctness of the aerothermoelastic solution in the HYPATE framework.

7.3.2.2 Time Accuracy Analysis of Coupling Schemes

Next, the time accuracy of the coupling schemes is verified using the same benchmark case.

To obtain the order of time accuracy, a series of aerothermoelastic simulations are con-

ducted for 2.048 seconds using multiple time step sizes ∆ti = 0.05× 2ims (i = 1, · · · , 8).

The error is defined as the normalized difference between the solutions of two consecutive

time step sizes,

ϵi = ||f(∆ti+1)− f(∆ti)||/ϵref = O(∆tp) (7.10)

where f(∆ti) is a numerical solution generated using time step size ∆ti, and the conver-

gence rate p is the order of time accuracy. The normalization factor ϵref is the difference

between the solutions of ∆t7 and ∆t8 obtained by the S1 scheme,

ϵref = ||fS1(∆t8)− fS1(∆t7)|| (7.11)

The factor ϵref is chosen so that the errors of S1 scheme at the largest time step size are

non-dimensionalized to be unity.

The convergence rates of displacement, temperature, aerodynamic pressure and heat

flux are shown in Fig. 7.17. The results agree with theoretical prediction and the fluid,

structural, and thermal solutions all display second-order time accuracy. While the two

schemes have the same order of time accuracy, the S2 scheme has lower error in the nu-

merical solution compared with that of S1 scheme. In particular, using the same time step

size, the errors of the displacement, pressure, and heat flux of the S2 scheme are approxi-

mately one order of magnitude smaller than those of the S1 scheme. That indicates the S2
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scheme converges at a larger time step compared with the S1 scheme. The faster conver-

gence of the S2 scheme is attributed to its higher order energy accuracy, that smaller error

is introduced into the numerical solution at every time step. This illustrates the superiority

of the S2 scheme over the S1 scheme in terms of accuracy and convergence rate. One can

therefore speculate that the S2 scheme may produce more accurate results for long-time-

scale simulations than the S1 scheme. In the rest of this thesis, the S2 scheme is used as

the loosely-coupled scheme for transient aerothermoelastic simulations.

Figure 7.17: Convergence rate of the S1 and S2 schemes
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7.3.3 The ROM-Based Aerothermoelastic Response

The ROM-based aerothermoelastic solutions are verified against the CFD-based solutions.

The fluid ROM developed in Section 7.1.2 is employed. The aerothermoelastic responses

are generated for two cases: (1) M∞ = 7.0, H = 20km, ξ = 1, 4; (2) M∞ = 5.0, H =

30km, ξ = 1, 4. Note that the flight conditions differ from the reference conditions of the

ROM. In each case, the ROM-based transient and quasi-steady solutions are compared with

the CFD-based transient solution. The transient and quasi-steady solutions are generated

with time step sizes of 2.5ms and 25ms, respectively.

Figure 7.18: Structural response for M∞ = 7.0, H = 20km

The results for case 1 are shown in Figs. 7.18-7.19. Figure 7.18 illustrates the structural

response. The panel starts to flutter within 0.1s after the simulation starts for both cases of

ξ = 1 and ξ = 4. The time responses of structural displacement from the CFD and transient

ROM solutions agree well with each other up to the onset of flutter. The onset of flutter

is identified by the quasi-steady ROM solution at the second time step and two more time

steps are carried out before the simulation is terminated. The eigenvalue solution from the

quasi-steady ROM-based response is shown in Fig. 7.19. The values of the frequency and
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the damping are nondimensionalized by the natural frequency of the first structural mode.

At the first time step, the damping of an aeroelastic mode becomes positive, indicating a

flutter-type instability.

Figure 7.19: Eigenvalue solution on the complex plane for M∞ = 7.0, H = 20km

The results for case 2 are shown in Figs. 7.20-7.21. Figure 7.20 illustrates the structural

and thermal responses. The panel undergoes a thermally-driven response, which causes

the panel to deform into the flow. The ROM-based transient and quasi-steady solutions

agree with each other. In the case for ξ = 4, the panel deforms faster than that in the CFD

solution. At the end of the simulation, the ROM-based response is 5% larger than the CFD-

based response. The discrepancy is due to the difference in thermal solutions. Compared

with the CFD solution, the heat flux in the ROM solution is 10% higher, producing a

faster increase in the panel temperature, and larger thermal force in the structure, causing

a larger deformation. The eigenvalue solution is shown in Fig. 7.21. The frequencies of

all aeroelastic modes are positive and the dampings are zero, indicating that the panel stays

stable throughout the simulation.
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Figure 7.20: Structural and thermal responses for M∞ = 5.0, H = 30km

The results for cases 1 and 2 demonstrate: (1) the transient aerothermoelastic response

is approximated well by the quasi-steady response before the onset of instability, and (2) the

aerothermoelastic responses at different flight conditions and geometric scales can be gen-

erated using the same ROM using the correction and scaling technique. Furthermore, the

quasi-steady aerothermoelastic response is generated efficiently using the tightly-coupled

scheme with a time step size that is ten times larger than that in a conventional loosely-

coupled scheme. The onset of aerothermoelastic instability is accurately captured by the

linearized stability analysis.
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Figure 7.21: Eigenvalue solution for M∞ = 5.0, H = 30km
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CHAPTER 8

Results for Aerothermoelastic Behavior of Skin

Panels

The HYPATE framework is used to examine the aerothermoelastic behavior of hypersonic

skin panels so as to emphasize several important effects that have not been studied in detail

by using a fully-coupled FSTI approach. First, the CFD-based aerothermoelastic simula-

tion is employed to examine the effects of boundary layer thickness and aspect ratio on

the responses of 2D and 3D panel configurations. Next, the ROM-based aerothermoelastic

simulation is employed to examine the effects of flow orientation angle and material or-

thotropicity on the response of stiffened panel configurations, that may be used in practice

on hypersonic vehicles that are currently in the design stages at various organizations.

8.1 Effect of Boundary Layer Thickness

8.1.1 Case Description

The effect of boundary layer thickness is examined using a 2D panel configuration, illus-

trated in Fig. 8.1. The flight condition is M∞ = 4.0, p∞ = 2087.2Pa, and T∞ = 266.7K

that corresponds to Re = 2.1× 106. The boundary layer thickness on the panel is modified

by adjusting wall length Lle in front of the panel. The four cases considered are shown in

Table 8.1, so as to identify the influence of the boundary layer.
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Table 8.1: Boundary layer thickness in the four cases

Case Lle/a δ/a

1 0.5 0.01

2 1.0 0.02

3 1.5 0.03

4 7.0 0.1

Figure 8.1: Geometrical configuration of a 2D panel for examining effect of boundary layer

thickness

8.1.2 Aerothermoelastic Response

The aerothermoelastic responses of the 2D panel with different boundary layer thicknesses

are shown in Fig. 8.2. The onset of aerothermoelastic instability is shown in Table 8.2.

In the RANS result for δ/a = 0.01, only the first 0.2 seconds of the panel response are

presented, as the instability occurs immediately after the start of the simulation. The AM

results correlate qualitatively well with the RANS results in cases 2 and 3, as the panel

deforms into the flow and becomes unstable when snap-through occurs. However, the AM

results fail to capture the immediate onset of instability in case 1 as well as the absence of

instability in case 4.
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Table 8.2: Time of onset for aerothermoelastic instability

Case δ/a RANS AM

1 0.01 0.13s 1.98s

2 0.02 1.38s 2.02s

3 0.03 2.64s 2.04s

4 0.1 N/A 2.26s

Figure 8.2: Effect of boundary layer thickness on the aerothermoelastic response of a 2D

panel

The onset of snap-through type instability is controlled by two competing factors, the
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temperature increase and the aerodynamic pressure. The increase in temperature causes

the panel to deform into the flow, driving the panel away from snap-through. The pressure

reduces the deflection, and causes snap-through when it is sufficiently large. Substantial

differences exist in the temperature increase and the pressure between the RANS and AM

results. The temperature increase is determined by the heat flux. As the boundary layer

thickness δ/a increases from 0.01 to 0.1, the average heat flux drops by 30% in both the

AM and RANS results. However, the drop in the heat flux in the AM results does not

produce a dramatic change in the onset of the instability that is comparable to that is evident

in the RANS results. Therefore, the difference between AM and RANS results is mainly

due to the mismatch in the pressure distribution. This effect is due to the boundary layer

that is neglected in the piston theory results.

The boundary layer effect on the pressure is illustrated in Figs. 8.3 and 8.4. Figure

8.3 depicts the pressure distributions over a panel with a prescribed deformation, so as to

demonstrate the differences in the AM-based and RANS-based pressure distributions,

uF/h = 3 cos(πx/a), x/a ∈ [−0.5, 0.5] (8.1)

The AM result, which represents the inviscid pressure distribution, is provided by third-

order piston theory, Eq. (2.32b). The inviscid pressure distribution is characterized by

pPT3(x)

p∞
= −γK1 sin(πx/a) +

γ(γ + 1)

4
K2

1 sin(πx/a)
2

− γ(γ + 1)

12
K3

1 sin(πx/a)
3

= −γK1 sin(πx/a)︸ ︷︷ ︸
First order term

+K2 cos(πx/a) + · · ·︸ ︷︷ ︸
Higher-order terms

(8.2)

where K1 = 3πM∞
h
a
∼ 10−1 and K2 = O(K2

1). Equation (8.2) represents a qualitative

analysis based on first-order piston theory, given by the first term of Eq. (8.2), and it is
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linear in terms of (uF,x/h). However, this pressure distribution is modified by the additional

“higher order terms” in Eq. (8.2). Note that the detailed Fourier series expansion of the

higher-order terms are not given in detail. Therefore, the inviscid pressure distribution is

dominated by the first term in Eq. (8.2) that is proportional to the slope of the deformed

panel. The higher order nonlinear terms modify the dominant term by less than 5%.

The presence of boundary layer modifies the pressure distribution on the panel, as il-

lustrated by Fig. 8.3, which shows the results for four different boundary layer thicknesses.

Increasing the boundary layer thickness (δ/a) shifts the point where cp = 0 towards the

trailing edge. This trend can be approximated by a modified form of Eq. (8.2) given by

p(x) ≈ pI cos(πx/a) + pO sin(πx/a) (8.3)

which distinguishes between in-phase and out-of-phase components of the pressure, as

explained next.

The pressure component pI is proportional to the deformation and thus referred to as

in-phase component. The pressure component pO is proportional to the slope of the defor-

mation and is referred to as out-of-phase component. In the RANS results, the boundary

layer modifies the pressure distribution and produces a stronger in-phase pressure compo-

nent when compared to the AM results. The values of pI and pO can be curve-fitted from

the pressure distribution using Eq. 8.3. The impact of boundary layer effect on the pressure

distribution is characterized by the force ratio

kF = |pI/pO| (8.4)

The legend in Fig. 8.3 provides the values of kF associated with each boundary layer

thickness, so as to quantify the effect of boundary layer thickness on the force ratio. When

the boundary layer effect is absent, such as the AM case, the out-of-phase component
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dominates the pressure distribution and force ratio is close to zero. Note that the force

ratio in the AM case is nonzero due to the in-phase pressure component associated with the

higher-order terms in the third-order piston theory, Eq. (2.30), producing a nonzero term.

In the RANS case, the boundary layer introduces a stronger in-phase pressure component,

which results in force ratios that are larger than those in the AM case.

Figure 8.4 illustrates the dependence of the force ratio on the increase in average tem-

perature during aerothermoelastic response. The force ratio increases from 0.3 to 0.7 in

cases 2-4 for the RANS results, and from 0.2 to 0.5 for the AM results. In case 1 for the

RANS results, the force ratio increases rapidly and exceeds 4.0 at the start of the simula-

tion. The results indicate that the force ratio depends on two factors. First, for both the

AM and the RANS cases, larger thermally-driven structural deformation produces a larger

force ratio. Second, in the RANS cases, the growth rate of the force ratio increases as the

boundary layer thickness decreases. This trend is not present in the AM case, due to the

absence of boundary layer.

Figure 8.3: Effect of boundary layer thickness on pressure distribution for M∞ = 4.0,

p∞ = 2087.2Pa, and T∞ = 266.7K with the fixed panel deformation given by Eq. (8.1)

162



Figure 8.4: Variation in force ratio with different boundary layer thicknesses in the

aerothermoelastic response of the 2D panel

8.1.3 A Simplified Model for Aerothermoelastic Stability

The LSA method is not applicable for determining the aerothermoelastic stability of a re-

sponse generated by a CFD-based simulation. In this section, a simplified model represent-

ing the static thermoelastic response of a 2D panel is developed in order to capture the on-

set of its aerothermoelastic instability. The structural response of the simplified model only

depends on the prescribed body temperature and pressure. The distributions of prescribed

body temperature and pressure resemble the thermal and fluid solutions of the aerothermoe-

lastic response. By decoupling the structural response from the thermal and fluid responses,

the simplified model is used to examine the impact of average temperature increase and the

force ratio of the pressure distribution on the aerothermoelastic stability of a 2D panel.

In the simplified model, the panel is simply-supported at its two ends and heated to a

temperature that has a uniform distribution in the x-direction,

T (x, z) = Tw +∆T + kzz (8.5)
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where ∆T and kz are the average temperature increase and the temperature gradient along

the thickness direction, respectively. The gradient is fixed to be kz = 120K/m, which is

a typical value in the aerothermoelastic responses obtained in the previous section. Due to

the temperature gradient, the panel deforms upward as ∆T increases.

A pressure distribution with a fixed force ratio is applied on the panel,

p(x) = kFpO cos(πx/a) + pO sin(πx/a) (8.6)

where kFpO corresponds to the magnitude of the in-phase pressure component. The center

of pressure is xcp = a
πkF

, which is inversely proportional to kF . The total force due to the

pressure distribution is Ftot =
2a
π
kFpO. The pressure reduces the deflection of the panel.

For each combination of ∆T and kF , there is a critical value of the out-of-phase pres-

sure component, at which snap-through occurs and the panel deforms downward,

pO = pcr(∆T, kF ) (8.7)

For given ∆T and kF , the critical pressure pcr is found by a grid search over a range of pO.

Figure 8.5 illustrates the cases for kF = 0.3 and 0.7 at ∆T = 10K. For the case kF = 0.3,

the snap-through occurs at pcr = 332Pa, or Ftot = 63.41N/m. For the case kF = 0.7, the

snap-through occurs at pcr = 213Pa, or Ftot = 94.92N/m. As the force ratio increases, i.e.

the center of pressure moves closer to the center of the panel, a larger total force is required

to cause the snap-through. The net effect is that, the critical pressure decreases as the force

ratio increases.
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Figure 8.5: Snap-through of a 2D panel with a temperature increase of 10K and a pressure

distribution given by Eq. (8.6)

The aerothermoelastic response of the 2D panel is emulated by the static thermoelastic

response of the simplified model using the following approach. First, for each time step

of the aerothermoelastic response, the average temperature increase ∆T , the force ratio kF

and the out-of-phase pressure component pO associated with the thermal and fluid solutions

are computed. The quantities ∆T , kF , and pO define the magnitudes of the prescribed

distributions of the body temperature and pressure in the the static thermoelastic response.

Next, for each combination of ∆T and kF , a critical pressure pcr is computed using the

simplified model Eq. (8.7). The snap-through type of aerothermoelastic instability of the

2D panel is expected to occur at the time step when the out-of-phase pressure component

pO exceeds pcr.

The results for aerothermoelastic stability analysis using the simplified model are pre-

sented in Figs. 8.6 and 8.7. The AM cases are shown in Fig. 8.6. The solid lines represent

the out-of-phase pressure component versus the average temperature increase. The dot-

dashed lines represent the critical pressure of the simplified model with a fixed kF versus the

average temperature increase, which serves as an indicator of the stability of the aerother-

165



moelastic model. When the out-of-phase pressure component exceeds the critical pressure

(i.e. above the dot-dashed line) the instability occurs. At the beginning of the aerothermoe-

lastic simulation, kF = 0.2. The out-of-phase pressure component in the aerothermoelastic

response is below the critical pressure associated with kF = 0.2 in the simplified static

thermoelastic model. As the structure deforms due to increased temperature, kF increases

and the critical pressure decreases. Towards the onset of aerothermoelastic instability, kF

approaches 0.5. The instability occurs when the out-of-phase pressure component in the

aerothermoelastic response reaches the critical pressure associated with kF = 0.5 in the

simplified static thermoelastic model.

Figure 8.6: Out-of-phase pressure component from the AM-based aerothermoelastic results

and the critical pressure from the static thermoelastic model

The RANS cases are shown in Figs. 8.7(a) and 8.7(b). The results of cases 2 and 3,

shown in Fig. 8.7(a), are similar to the AM results. Both the force ratio and the out-of-phase

component increase with the temperature. The out-of-phase component reaches the critical

pressure for kF = 0.7 when the instability occurs. The results for cases 1 and 4 are shown

in Fig. 8.7(b). For case 1, the force ratio reaches 4.0 shortly after the start of the simulation.

The out-of-phase component exceeds the critical pressure for kF = 4.0, indicating the onset
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of instability. For case 4, the force ratio is lower than 0.6 throughout the simulation, and the

out-of-phase component never exceeds the critical pressure for kF = 0.6. For kF < 0.6,

pcr is even higher, and as a result, the panel remains stable in case 4.

(a) Cases 2 and 3

(b) Cases 1 and 4

Figure 8.7: Out-of-phase pressure component from the RANS-based aerothermoelastic

results and the critical pressure from the static thermoelastic model

The analysis outlined above shows that the simplified model is useful for capturing the

onset of the aerothermoelastic instability of the 2D panel, as well as explaining the differ-
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ences between the aerothermoelastic responses of the AM and RANS cases. Specifically,

three conclusions can be drawn from above discussion:

1. The aerothermoelastic instability that occurred in the 2D panel case is a snap-through

of a heated structure. As the panel deforms due to the thermal stress, the force ratio of

the pressure distribution increases, indicating that the snap-through type of instability

is more likely to occur.

2. Increasing the boundary layer thickness suppresses the growth rate of the force ratio

and delays the onset of snap-through. A sufficiently thick boundary layer stabilizes

the panel.

3. An inviscid aerodynamic model such as the piston theory, which does not account for

the boundary layer effect, is inaccurate for capturing the onset of aerothermoelastic

instability, since it fails to capture the magnitude and the growth rate of the force

ratio during the structural deformation.

8.2 Effect of Aspect Ratio

8.2.1 Case Description

The 2D panel is the same as the configuration in the previous section, as illustrated in Fig.

8.1. The 3D panel configuration is obtained by adding the third dimension to the 2D panel,

resulting in a rectangular panel, illustrated in Fig. 8.8. The 2D and 3D panels share the

same material properties, as shown in Table 7.5, and are both simply-supported along the

edges. The flight conditions are M∞ = 4.0, p∞ = 2087.2Pa, and T∞ = 266.7K, which

corresponds to Re = 2.1× 106.
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Figure 8.8: Geometrical configuration of a 3D panel for examining effect of aspect ratio

8.2.2 Aerothermoelastic response

The aerothermoelastic response of the 2D and 3D panels with δ/a = 0.02 is depicted in

Fig. 8.9. For comparison with the 2D case, the deformation, pressure, temperature and

heat flux of the 3D cases are provided by the data extracted at the centerline y = 0. In the

2D and 3D cases, the AM results correlate qualitatively with the RANS results. Like the

2D case, the 3D panel deforms into the flow due to aerodynamic heating. However, the

2D panel becomes unstable within 2.5s, while the 3D panel remains stable up to the end of

simulation, t =5.0s.

Further analysis of the structural deformation reveals fundamental differences between

the 2D and 3D results, as shown in Fig. 8.10. The first two sinusoidal modal components

are plotted as a function of the temperature. The two structural modes for the 3D case are,

uFi(x, y) = sin

[
iπ

(
x

a
+

1

2

)]
cos
(πy
b

)
, i = 1, 2 (8.8)

When the increase in the temperature is less than 1.4K, the modal components of 2D

169



and 3D results agree, indicating effect of the aspect ratio is negligible. When the temper-

ature increase exceeds 1.4K, the amplitude of the second structural mode in the 3D case

is much smaller than that for the 2D case. This change is due to the thermal stress in the

spanwise direction in the 3D panel, which results in higher spanwise sinusoidal modes that

are absent in the 2D case. When the new structual mode emerges, the pressure distribution

becomes fundamentally different from that of the 2D case, as shown in Figs. 8.11 and 8.12.

The in-phase pressure component in the 3D case grows much slower than that in the 2D

case. As a consequence, the force ratio in 3D case drops from 0.5 to a value of 0.2, which

is over 60% lower than that in the 2D case.

Figure 8.9: Aerothermoelastic responses of the 2D and 3D panels with δ/a = 0.02
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The structural stability is characterized by extending the static thermoelastic model to

the 3D case. The temperature increase is the same as Eq. (8.5). The pressure distribution

remains the same as Eq. (8.6), that is based on assuming that the pressure remains uniform

in the spanwise direction. The assumption results in larger total load on the panel than

that corresponding to the actual aerothermoelastic response, which implies that the critical

pressure computed in this manner is conservative. The comparison between the out-of-

phase pressure and the critical pressure is depicted in Fig. 8.13. Throughout the whole

simulation, the out-of-phase pressure is far below the critical value, indicating the panel is

stable.

Figure 8.10: Modal responses of the 2D and

3D panels

Figure 8.11: Pressure components of the 2D

and 3D panels
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Figure 8.12: Variation in force ratio in the

2D and 3D results

Figure 8.13: Critical pressure in the 3D

RANS results

8.3 Combined Effects of Flow Orientation and Orthotrop-

icity

8.3.1 Case Description

The panel configuration is adapted from the stiffened skin panel of a generic hypersonic

vehicle studied in Ref. [2], as illustrated by Fig. 8.14. The panel is assumed to be square.

Its dimensions are 1m× 1m and it is simply supported along its edges. The panel is a thin

metal sheet having a thickness of 1.5 mm reinforced by stiffeners having a height of 12 mm.

The geometry of the stiffeners is illustrated in Fig. 8.15 and can be varied according to the

parameters listed in Table 8.3. To examine the effect of panel orthotropicity, three types of

stiffener configurations are considered, as shown in Fig. 8.15. In the first case, the metal

sheet is stiffened by an orthogrid. The orthogrid has evenly spaced stiffeners distributed in

both x- and y-directions. In the second and third cases, the stiffeners are evenly distributed

either in x- or y-direction, respectively. The sheet and stiffeners are made from Inconel

718. The material properties are temperature dependent, with a the maximum service (MS)
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temperature is TMS = 1200◦F (1195K) [9]. Using a safety factor of 1.4, it is assumed that

the material starts to fail at Tmax = TMS/1.4 ≈ 850K. The material properties at room

temperature (T = 300K) are shown in Table 8.4 [6]. The emissivity of the upper surface

is assumed to be 0.85, and the bottom and the sides of the panel are insulated.

Figure 8.14: Stiffened panel configuration studied in Ref. [2]

(a) Case 1 (b) Case 2 (c) Case 3

Figure 8.15: Bottom view of the stiffened panel
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Table 8.3: Geometrical parameters of the stiffeners

Case t1 l1 t2 l2

1 2 mm 60 mm 2 mm 60 mm

2 4 mm 60 mm 0 mm N/A

3 0 mm N/A 4 mm 60 mm

Table 8.4: Material properties of Inconel 718 at T = 300K [6]

ρs E ν α ks csp

8220kg/m3 204.0GPa 0.29 1.237× 10−5/K 11.71W/mK 418.4J/kgK

8.3.2 Computational Models

8.3.2.1 Fluid Model

Three flow orientation angles are considered β = 0, 15◦, 30◦. For the case of β = 15◦, 30◦,

the first 9 structural modes are used for ROM generation,

uF (x)/h =
3∑

i=1

3∑
j=1

aij sin

[
iπ

(
x

a
+

1

2

)]
sin

[
jπ

(
y

b
+

1

2

)]
(8.9)

In the case for β = 0◦, the structural response is symmetric about the centerline of the

panel in the x-direction. Therefore, the 3 asymmetric modes in Eq. (8.9) are ignored, i.e.

a2j = 0, j = 1, 2, 3, and the remaining 6 symmetric modes are used for generating the

ROM. The ranges of modal coordinates in the ROM samples are shown in Table 8.5. For

all the ROM samples, the temperature is uniform with a range of [200K, 1000K] and the

flight conditions are M∞ = 6.0 and H = 25km. For the case of β = 0◦, 500 samples

are generated for ROM training and 100 samples for ROM verification. The convergence

plot is shown in Fig. 8.16. The ROM achieves convergence using 400 samples with the

average NRMSE less than 0.5% for both the pressure and heat flux distributions. For the
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Table 8.5: The ranges of sample parameters in the 3D ROM

β 0◦ 15◦ 30◦

a11 [−0.5, 4.0] [−0.5, 4.0] [−0.5, 4.0]
a12 N/A [−0.5, 0.5] [−0.5, 0.5]
a13 [−0.35, 0.35] [−0.5, 0.5] [−0.5, 0.5]
a21 [−0.75, 0.75] [−0.75, 0.75] [−0.75, 0.75]
a22 N/A [−0.3, 0.3] [−0.3, 0.3]
a23 [−0.35, 0.35] [−0.3, 0.3] [−0.3, 0.3]
a31 [−0.75, 0.75] [−0.75, 0.75] [−0.75, 0.75]
a32 N/A [−0.3, 0.3] [−0.3, 0.3]
a33 [−0.3, 0.3] [−0.3, 0.3] [−0.3, 0.3]

cases of β = 15◦, 30◦, 900 samples are generated for ROM training and 100 samples for

ROM verification. The ROMs converge using 800 samples with the average NRMSE less

than 1.5% for both the pressure and heat flux distributions.

Figure 8.16: Convergence of the ROMs for the 3D panel

8.3.2.2 Structural Model

The thermal and structural properties of the orthogrid are incorporated in the model us-

ing the homogenization approach. Thus, the stiffeners can be treated as a homogenous
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orthotropic layer in the composite panel analysis, as illustrated by Fig. 8.17. The homoge-

nized layer is evenly divided into five laminae and the through-the-thickness distributions

of temperature and thermal stress are resolved by a piecewise quadratic function using the

finite element approach based on the layer-wise thermal lamination theory presented in

Chapter 4.

The relation between the material properties of the stiffener and the homogenized layer

are obtained in the following [203],

ρh = c3ρ, chp = cp,

Eh
i = ciE, νh3i = ν, Gh

3i = ciG, khi = cik, i = 1, 2

Eh
3 = c3E, νh12 = 0, Gh

12 = 0, kh3 = c3k

αh
j = α, j = 1, 2, 3

(8.10)

where,

c1 =
t1

t1 + l2
, c2 =

t2
t2 + l1

, c3 = c1 + c2 (8.11)

The orthotropicity of the homogenized layer is characterized by the ratio R12 =
E1

E2
. When

R12 = 1, the layer is isotropic. When R12 = 0, E1 = 0, and the panel is stiffened only in

the y-direction. When R12 = ∞, E2 = 0, i.e. the panel is stiffened only in the x-direction.

One of the objectives of the current study is to examine the impact of orthotropicity on

the aerothermoelastic response of a skin panel. Therefore, homogenization of stiffeners is

a simple and effective approach to obtaining orthotropic material properties with tunable

parameters, such as stiffener properties and geometry. A thermally-loaded stiffened panel

is known to have nonlinear behavior, such as local buckling, that cannot be captured by

the homogenization approach [23]. To capture these nonlinear behaviors, a finite element

analysis of the detailed stiffened panel structure has to be employed. However, this is not

within the scope of the current study.
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Figure 8.17: Homogenization of stiffeners

8.3.3 Typical Aerothermoelastic Response

First, the aerothermoelastic response for β = 30◦, R12 = ∞, M∞ = 6.0, H = 25km is

examined. The response is divided into two stages: (1) the transient response in t = 0 ∼ 5s

with a time step size of ∆t = 0.001s, and the quasi-steady response in t = 5 ∼ 100s with

a time step size of ∆t = 0.2s.

8.3.3.1 Initial Transient Response

In the first stage, an unsteady heat conduction process occurs in the panel, as illustrated

in Fig. 8.18a. The surface temperature of the panel increase rapidly due to aerodynamic

heating while the temperature at the bottom of the panel is almost constant due to the low

thermal conductivity of the stiffener layer. Different rates of temperature elevation in the

thickness direction result in a rapid increase in the temperature gradient in the through-the-

thickness direction of the panel, leading to a strong thermal force that drives the unsteady

structural response.

The nondimensional center deflection of the panel is illustrated in Fig. 8.18b and four

snapshots of the panel deformation are illustrated in Fig. 8.19. Initially, the panel is ther-

mally buckled and the center portion of the panel deforms out of the flow. Due to the

material orthotropicity, the deformation in the spanwise direction experiences a wavy pat-

tern that is more noticeable than that in the streamwise direction. After a snap-through

occurring at t = 1.28s, the entire panel deforms into the flow and the structural response
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becomes quasi-steady. The snap-through results in a sudden change in both the aerody-

namic heating and loading, as illustrated in Figs. 8.18c and 8.18d.

Figure 8.18: Transient aerothermoelastic response for β = 30◦, R12 = ∞

Figure 8.19: Comparison of streamwise and spanwise deflections at four time steps
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8.3.3.2 Long-Term Quasi-Steady Response

The thermal and structural responses of the panel are shown in Fig. 8.20. In Figs. 8.20a

and 8.20c, the heating rate decreases as the temperature increases, because the convective

heating and radiative cooling at the upper surface approaches equilibrium. Initially, the

upper surface temperature increases at a higher rate than the lower surface temperature due

to the low thermal conductivity of the stiffener layer. The temperature difference between

the upper and lower surfaces decreases as the upper surface temperature approaches equi-

librium. Note that the average temperature remains below Tmax of the material throughout

the entire simulation. In Fig. 8.20b, the panel continues to deform into the flow due to

aerodynamic heating and the deformation slows down as the panel approaches equilibrium

temperature. The average pressure on the panel surface gradually increases as the panel

deforms into the flow, as shown in Fig. 8.20d.

Figure 8.20: Quasi-steady aerothermoelastic response for β = 30◦, R12 = ∞
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The panel undergoes non-smooth deformation at three time steps, as indicated by the

dashed red lines in Fig. 8.20b. The stability of the panel is examined using the LSA method,

shown in Fig. 8.21. During most of the simulation, the frequencies of the aeroelastic modes

are positive and the dampings remain zero, indicating that the panel is dynamically stable.

At the three time steps associated with the non-smooth deformation, the frequency of the

first mode becomes zero and the damping becomes positive. Therefore, the non-smooth

deformation is a result of divergence, or snap-through.

Figure 8.21: Eigenvalues of linearized stability analysis

Further analysis indicates that snap-through is a local instability that does not cause a

deterioration in the aerothermoelastic stability of the panel. The snap-through at t = 38.2s

is examined further. The transient aerothermoelastic simulation is restarted using the quasi-

steady aerothermoelastic solutions before the onset of snap-through. The transient and

quasi-steady structural responses of the panel during the snap-through are compared in

Fig. 8.22(a). The snap-through at t = 38.3s triggers oscillation in the panel. However,
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amplitudes of the oscillation are decreasing, indicating that the panel is dynamically stable.

The average trend of the transient response is well captured by the quasi-steady response.

The location of the snap-through is illustrated in Fig. 8.22(b). Unlike the snap-through at

t = 1.28s during the initial response, which occurs on the entire panel, the snap-through at

t = 38.2s occurs locally in Quadrant 1 of the panel (see Fig. 7.9 for definition of quadrants).

The localized snap-through does not result in a divergence or flutter type of instability.

(a) Transient and quasi-steady responses

(b) Comparison of quasi-steady deformation

Figure 8.22: Snap-through during t = 38.0s− 38.6s
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8.3.4 Aerothermoelastic Stability Boundary

Next, the effect of flow orientation angle and orthotropicity on the aerothermoelastic sta-

bility boundary is examined for β = 0◦, 15◦, 30◦, and R12 = 0, 1,∞ at flight conditions

M∞ = 6, H = 25km.

Account for material degradation with temperature, the aerothermoelastic stability bound-

ary of the generic skin panel is defined as the time when the panel becomes dynamically

unstable or the percentage of failed region exceeds 25%. The failed region is the region on

the upper surface of the panel where the surface temperature exceeds the temperature of

material failure Tmax = 850K. For all the cases, the panel fails due to material degradation.

Localized snap-through does occur during the aerothermoelastic response, but it does not

trigger unstable response of the panel.

8.3.4.1 Effect of Flow Orientation Angle

The aerothermoelastic response of an isotropic panel (R12 = 1) at different flow orientation

angles β = 0◦, 15◦, 30◦ are compared in Figs. 8.23-8.24. Figure 8.23 depicts the percentage

of failed region on the surface of the panel for β = 0◦, 15◦, 30◦. The panel reaches the

temperature of material failure first in the case for β = 0◦ at t = 50s. As β increases, the

panel stays below the temperature of material failure for a longer time. However, at larger

β, the area of failed region grows faster, reducing the aerothermoelastic stability boundary.

At the end of the simulation, over 35% of the panel failed in the case for β = 30◦, which is

over 5% larger than that in the other two cases.

The aerothermoelastic responses of the skin panel are further examined in Fig. 8.24 at

t = 80s, where the white contours in Fig. 8.24(b) illustrate the failed regions due to material

degradation. In Fig. 8.24(a), the shape and amplitude of structural deformations in the three

cases are similar. However, in Figs. 8.24(b) and 8.24(c), the heat flux distributions of the

three cases, and thus the surface temperature distributions, are significantly different due to

the varying flow orientation angles.
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When β = 0◦, the distributions of heat flux and surface temperature are symmetric

about the x-axis. The aerodynamic heating is the most severe in Quadrants 2 and 3, i.e. the

windward side of the panel. As a result, two temperature peaks of equal magnitude occur

in Quadrants 2 and 3. The entire Quadrants 1 and 4 of the panel are on the leeward side

and the temperature stays below Tmax. Increasing β to 15◦ results in stronger heat flux in

Quadrant 2 of the panel. The distorted heat flux distribution leads to different amplitudes of

the temperature peaks, as well as increased failed region areas in Quadrant 2. At β = 30◦,

the Quadrants 2 and 3 as well as Quadrant 1 of the panel are on the windward side of

the panel and exposed to strong aerodynamic heating. The modified heat flux distribution

results in a new failed region in Quadrant 1 and thereby increasing total failed region area

of the panel.

To summarize, the structural deformation is insensitive to the change in flow orientation

angle. However, at larger flow orientation angles, an increased portion of the panel is ex-

posed to the approaching hypersonic flow. The increased exposure leads to stronger aero-

dynamic heating and higher surface temperature, and causes a reduction in the aerother-

moelastic stability boundary of the panel.

Figure 8.23: Percentage of upper surface area of failed region when β = 0◦
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(a) Structural deformation

(b) Surface temperature

(c) Heat flux

Figure 8.24: Comparison of aerothermoelastic responses for R12 = 1.0 at t = 80s

8.3.4.2 Effect of Material Orthotropicity

The aerothermoelastic responses at β = 0◦ of three panels of different material layups

(R12 = 0, 1,∞) are compared in Figs. 8.25-8.26. Figure 8.25 illustrates the percentage of
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failed region on the surface of the panel for R12 = 0, 1,∞. The failure is initiated first in

the case for R12 = 0 at t = 48s. The initiation time of material failure is delayed as R12

increases. However, at larger R12, the area of failed region grows faster, resulting in the

reduction of aerothermoelastic stability boundary.

Figure 8.25: Percentage of upper surface area of failed region when R12 = 1

The aerothermoelastic response of the skin panel is examined further in Fig. 8.26, at

t = 80s. The surface temperature distributions for all the three cases have a similar trend,

illustrated in Fig. 8.26(a). The surface temperature distribution is symmetric about the

x-axis, and two temperature peaks of equal magnitude occur in Quadrants 2 and 3 of the

panel. The entire Quadrants 1 and 4 are on the leeward side and the temperature stays

below Tmax. While the temperature distributions for the three cases are similar, different

values of R12 result in significant differences in the structural deformation, as illustrated in

Fig. 8.26(b). When R12 = 1, i.e. the panel is isotropic, the elevated temperature results

in similar corrugation patterns in the x- and y-directions. When R12 = 0, the stiffness

is maximized in the y-direction while the stiffness in the x-direction is almost negligible,

resulting in a corrugation pattern with more waviness in the x-direction than in the y-

direction. When R12 = ∞, on opposed to the case for R12 = 0, a wavy corrugation pattern
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occurs in the y-direction due to the negligible stiffness in this direction.

(a) Surface temperature

(b) Structural deformation

(c) Heat flux

Figure 8.26: Comparison of aerothermoelastic responses for β = 0◦ at t = 80s

The different wavy corrugation patterns in the structural deformation result in different

distributions of heat flux for the three cases, as illustrated in Fig. 8.26(c). For R12 = 0, 1,
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the regions of high heat flux are concentrated near the two temperature peaks in Quadrants

2 and 3 of the panel. However, in the case for R12 = ∞, the wavy corrugation pattern

in y-direction results in a region of high heat flux on the windward side of the panel that

spans from Quadrant 2 to 3. The larger region of high heat flux results in faster increase

of structural temperature and thus reduces the aerothermoelastic stability boundary of the

panel.

8.3.4.3 Combined Effect of Flow Orientation Angle and Material Orthotropicity

The aerothermoelastic responses at β = 0◦, 15◦, 30◦ are compared for the panels having

different values of R12. The percentage of failed region on the surface of the panel for all

the nine cases are compared in Fig. 8.27. Recall that the results for R12 = 1 have been

presented in Fig. 8.23, however they are included again in Fig. 8.27 for comparison.

Figure 8.27: Percentage of upper surface area of failed region for combinations of β and

R12

The similar trend between the cases for R12 = 0, 1,∞ up to the aerothermoelastic sta-

bility boundary indicates that the differences between the results for β = 0◦, 15◦, 30◦ can

be explained using the mechanism described in Section 8.3.4.1: The increased exposure to

approaching flow at larger β leads to stronger aerodynamic heating on the windward side
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of the panel and thus the decreased aerothermoelastic stability boundary. The quantitative

differences between the results for R12 = 0, 1,∞ are attributed to the effect of orthotrop-

icity, as discussed in Section 8.3.4.2. A lower value of R12 results in earlier initiation of

material failure, but extends the aerothermoelastic stability boundary.

(a) Structural deformation

(b) Surface temperature

Figure 8.28: Comparison of aerothermoelastic responses for β = 30◦ at t = 80s

In the cases for R12 = 0, 1, the final failed region for β = 30◦ is approximately 30%

larger than the failed regions for β = 0◦, 15◦. However, there is a distinctive trend of

the result for β = 30◦ and R12 = ∞ that the final failed region is approximately the

same as the failed region for β = 15◦. The distinctive result is explained by the com-

bined effect of flow orientation angle and orthotropicity. The structural deformations and

temperature distributions at t = 80s for (β = 0◦, R12 = ∞), (β = 30◦, R12 = 1) and

(β = 30◦, R12 = ∞) are compared in Fig. 8.28. Compared with the structural deforma-
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tion for (β = 0◦, R12 = ∞), a snap-through has occurred in the structural deformation for

(β = 30◦, R12 = ∞), that significantly reduces the windward area in Quadrant 1 of the

panel that is exposed to the approaching hypersonic flow. Comparing the temperature dis-

tributions for (β = 30◦, R12 = 1) and (β = 30◦, R12 = ∞), the decrease in the exposure

area reduces the total heat load experienced by the panel and eliminates the temperature

peak in Quadrant 1, which leads to the reduction of failed region on the panel.

8.4 Reduction of Computational Cost

The reduction in computer time due to the fluid ROM in the previous section is illustrated in

Table 8.6. The computational costs are measured on a Dell® Precision 7000 Workstation

using 5 Intel® Xeon X5650 2.67GHz processors.

For aerothermoelastic simulation, four cases are considered:

1. The CFD-based transient response using the LC scheme with ∆t = 1ms.

2. The ROM-based transient response using the LC scheme with ∆t = 1ms.

3. The ROM-based quasi-steady response using the TC scheme and the direct linear

solver with ∆t = 0.2s.

4. The ROM-based quasi-steady response using the TC scheme and the iterative linear

solver with ∆t = 0.2s.

The time step sizes for transient and quasi-steady responses are chosen based on the aeroe-

lastic and aerothermal chracteristic times, respectively. It is impossible to complete the

CFD-based transient aerothermoelastic solution for 100s on a workstation computer within

a reasonable amount of time. Therefore, the computational cost of the CFD-based solution

is estimated using the computational cost of the CFD-based simulation for 2s on the same

workstation computer.

In case 2, the fluid solver is accelerated by the ROM by three orders of magnitude,

resulting in a total reduction of computer time by a factor of ∼200. In case 3, the number
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of time steps is reduced by a factor of 200 due to the increase in the time step size. How-

ever, due to the introduction of the stability solver and tightly-coupled structural solver, the

computational cost per time step is increased by a factor of ∼20. Compared to case 2, the

net reduction of computer time in case 3 is by a factor of less than 20. In case 4, using the

more efficient iterative linear solver, the structural and stability solvers are accelerated by a

factor of ∼8. As a result, compared to the CFD-based solution in case 1, the computational

cost is reduced from several months to a few minutes and near-real-time aerothermoelastic

simulation is enabled by the ROM-based tightly-coupled solver.

Table 8.6: Comparison of computational cost in aerothermoelastic simulation (* means

extrapolation)

CFD, LC ROM, LC
ROM, TC

Direct Iterative

∆t 1ms 1ms 0.2s 0.2s

Fluid 72s 30ms 33ms 33ms

Structural 145ms 145ms 1156ms 148ms

Thermal 134ms 134ms 187ms 187ms

Stability N/A N/A 1951ms 256ms

Cost 83.7 days* 8.58 hours 27.7 minutes 5.20 minutes

Acceleration 1 2.34×102 4.35×103 2.32×104
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CHAPTER 9

Aerothermoelastic Scaling of Skin Panels

In this chapter, the effectiveness of two-pronged approach for generating numerical scal-

ing laws is demonstrated using two cases. In the first case, the two-pronged approach is

employed to generate the numerical scaling laws for the transient aeroelastic response of

a uniformly heated panel. The aeroelastic case represents a simplified aerothermoelastic

problem, for which the analytical scaling laws exist. The first case serves as a sanity check

to demonstrate that the two-pronged approach can reproduce the analytical scaling laws via

numerical optimization. In the second case, the two-pronged approach is used to develop

aerothermoelastically scaled models for a generic panel representing skin of a hypersonic

vehicle. This case illustrates the capability for generating numerical hypersonic ASL when

considering wind tunnel and manufacturing constraints.

9.1 Scaling of Transient Aeroelastic Response

9.1.1 Problem Description

The “prototype” configuration is illustrated in Fig. 9.1. It consists of a simply-supported

square panel with side length of 1 m and thickness of 2 mm. The flight conditions of

the prototype are M∞ = 6.0 and p∞ = 104Pa. The flow is aligned with the panel, i.e.

the flow orientation angle is zero. Initially, the panel is uniformly heated up by ∆T =

1K ≈ 2.425Tcr. The aerodynamics is assumed to be inviscid and full-order piston theory,
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Eq. (2.30), is sufficient for the aeroelastic simulation. The simulation of the prototype is

carried out using a time step size of 0.001s to capture the transient aeroelastic response of

the panel. The prototype and model panels are made of two different materials Inconel

718 and Ti 6242, respectively, which makes the scaling problem more challenging. The

material properties are assumed to be temperature independent and equal to the values at

room temperature (T = 300K) as provided in Table 9.1. It is also assumed that the Mach

numbers and heat capacity ratios associated with the prototype and the model are the same.

Figure 9.1: Geometrical configuration of a square panel for aeroelastic scaling

Table 9.1: Material properties of Inconel 718 and Ti 6242 for aeroelastic scaling

Material ρs, kg/m3 E, GPa ν α, ×10−5/K ks, W/mK csp, J/kgK

Inconel 718 [6] 8220 204.0 0.29 1.237 11.71 418.4

Ti 6242 [204] 4540 114.3 0.32 0.6975 6.937 459.4
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9.1.2 Aeroelastic Scaling Laws

9.1.2.1 Analytical Similarity Parameters

Analytical aeroelastic scaling laws exist for a uniformly-heated thin isotropic plate with

piston theory aerodynamics, involving the similarity parameters (pp. 85-88 of Ref. [49]),

ĥ

L̂
, λ̄F ,

∆T̂ N̂TxL̂
2

D̂xx

ÎL̂4

D̂xxt̂2

(9.1a)

(9.1b)

When the dimension of the scaled model Lm is given, the geometric scale ratio ξ = Lp

Lm ,

and the panel thickness, freestream pressure, and temperature increment associated with the

scaled model are determined using Eq. (9.1a) as follows,

hm =
1

ξ
hp

pm∞ = ξ3
D̂m

xx
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pp∞
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D̂m

xx

D̂p
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The scaling factor for time is determined using Eq. (9.1b),

∆tm =
1

ξ2

√
D̂p

xx

D̂m
xx

Îm

Îp
∆tp (9.3)

9.1.2.2 Numerical Scaling by Optimization

The numerical scaling laws of the aeroelastic problem are generated by finding the scaled

models for different geometric scales. For each geometric scale, the model configuration

is found by solving an SO problem. The objective is the difference between the nondimen-
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sional structural responses of the prototype and the model, as in Eq. (6.4a),

Ju(d; {um
i }) =

√√√√ 100∑
i=1

∥∥∥∥um
i

ûm
− up

i

ûp

∥∥∥∥2 (9.4)

Note that in Eq. (9.4), the objective is computed based on the first 100 time steps of

simulation, which corresponds to the first oscillation period of the aeroelastic response.

The number of time steps is sufficiently large, so that the numerical result captures the

characteristics of the aeroelastic responses associated with different model configurations.

The number of time steps is also sufficiently small, so as to reduce the computational cost

of sample generation in the BO algorithm.

An aeroelastically scaled model should result in a difference of zero, Ju = 0. The time

step size for the aeroelastic simulation of the model is determined using Eq. (9.3). The time

step size is the only quantity in the numerical scaling approach that is determined using an

analytical similarity parameter.

The design variables include the thickness h, freestream pressure p∞, and tempera-

ture increment ∆T associated with the model. The constraints of the design variables are

summarized in Table 9.2.

The SO problem is solved using the BO algorithm. The optimizer employs the LCB

acquisition function with υ = 1.0. The optimization is initialized with 10 samples and run

for 300 iterations. In the inner optimization loop, the acquisition function is minimized

using a gradient-based solver with multiple starts.

Table 9.2: Constraints of the design variables for the aeroelastically scaled model

Design variables h (mm) p∞ (kPa) ∆T (K)

Range [0.2, 1.2] [3.0, 11.0] [0.5, 4.5]
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9.1.3 Numerical Scaling Results

The scaled models are generated for three different geometric scales, ξ = 2, 3, 4. In each

case, the convergence history is illustrated in Fig. 9.2, and the optimizer successfully con-

verges within 300 iterations.

The nondimensional aeroelastic responses of the prototype and the models are com-

pared in Fig. 9.3. In the first 100 time steps, the responses are used for the numerical

scaling with the objective Eq. (9.4), and the responses of the scaled models match very

well with the prototype response with errors less than 4%. For the responses beyond the

first 100 time steps, the model and prototype responses still match reasonably well, espe-

cially the frequency and amplitude of the oscillation. The similarity parameters associated

with the prototype and the scaled models are almost identical, as shown in Table 9.3. Fi-

nally, the scaling of the design variables are compared in Fig. 9.4. It is clear that the

two-pronged approach has successfully generated the numerical scaling laws that recover

the analytical scaling laws for the aeroelastic problem considered in this section.

Finally, the results also show that the BO algorithm is effective in finding the global

minimum of the non-convex optimization problem associated with the two-pronged ap-

proach. As an example, the contour of Ju w.r.t. variables p∞ and ∆T for the case ξ = 4

is illustrated in Fig. 9.5. The distribution of the objective Ju is highly non-convex. While

the global minimum of Ju is achieved at the point that corresponds to an aeroelastically

scaled model, there are multiple local minima that can lead to incorrectly scaled models.

Nevertheless, the BO algorithm is able to avoid the local minima and identify the global

minimum successfully.
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Table 9.3: Optimization results for different geometric scales

Parameters ĥ

L̂
λ̄F

∆TN̂TxL̂
2

D̂xx

Prototype 0.002 566.07 47.882

ξ = 2 0.00201 (0.379%) 566.85 (0.137%) 47.581 (0.629%)

ξ = 3 0.00200 (0.167%) 561.38 (0.829%) 47.759 (0.257%)

ξ = 4 0.00200 (0.166%) 566.69 (0.109%) 47.671 (0.439%)

(a) ξ = 2 (b) ξ = 3

(c) ξ = 4

Figure 9.2: Convergence history of the cases for ξ = 2, 3, 4
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Figure 9.3: Nondimensional aeroelastic responses of the prototype and the scaled models

Figure 9.4: Comparison of analytical and numerical scaling
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Figure 9.5: Contour of Ju at h = 0.5mm for the case ξ = 4

9.2 Scaling of Quasi-Steady Aerothermoelastic Response

9.2.1 Problem Description

9.2.1.1 Panel Configuration

The “prototype” configuration is illustrated in Fig. 9.6. The case consists of a simply-

supported square panel with side length of 1m and front rigid wall length of 1m. The flow

is aligned with the panel, i.e. the flow orientation angle is zero. The layup of the panel

is shown in Table 9.4, which resembles the honeycomb sandwich panel used in Ref. [9].

It is assumed that (1) honeycomb cell is hexagonal, so the material properties of the hon-

eycomb core are isotropic in the x and y directions; (2) the honeycomb core carries only

the shear stress and transfers the load between the upper and lower surfaces through shear

deformation. The effective transverse shear modulus is computed using the analytical rela-

tion provided in Ref. [203]. The thermal properties of the honeycomb is obtained using the
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Swann-Pittman relation [205]. The effective thermal conductivity increases with tempera-

ture due to the radiative heat transfer. The emissivity of the upper surface is assumed to be

0.85. The “model” panel is a square isotropic panel made of Ti 6242. The material prop-

erties of both the prototype and the model are temperature dependent and the properties at

room temperature (T = 300K) are provided in Table 9.5.

Figure 9.6: Geometrical configuration of a square panel for aerothermoelastic scaling

The objective of the scaling is to determine the geometrical dimensions of the model

panel, as well as the experimental conditions of the wind tunnel, so that the aerothermoe-

lastic response of the model in the wind tunnel is similar to the aerothermoelastic response

of the prototype at a given flight condition. The error of the structural response Ju is quan-

tified by the difference in the deflection at the center of the panel nondimensionalized by

the thickness. The error of the thermal response JT is quantified by the difference in the

average body temperature nondimensionalized by the stagnation temperature. The duration

of the response of the prototype is 160s and the initial temperature of the prototype is 300K.

The fluid ROM for the prototype panel configuration has been developed in Section 8.3,

and it is employed in the numerical aerothermoelastic simulation of the prototype and the

model. The ROM was generated for flight conditions M∞ = 6.0 and H = 25km. When
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combined with the correction and scaling technique, the ROM can be used to predict the

aerodynamic loading and heating at different conditions for a flight envelope covering the

range of 5.0 ≤M∞ ≤ 7.0 and 20 ≤ H ≤ 30km on the prototype as well as the model with

a geometric scale 2 ≤ ξ ≤ 5.

Table 9.4: Layup of the prototype panel

Component Material Thickness

Upper sheet Inconel 718 1 mm

Honeycomb core Inconel 718 16 mm

Lower sheet Inconel 718 1 mm

Table 9.5: Material properties of Inconel 718 and Ti 6242 at T = 300K

Material ρs, kg/m3 E, GPa ν α, ×10−5/K ks, W/mK csp, J/kgK

Inconel 718 [6] 8220 204.0 0.29 1.237 11.71 418.4

Ti 6242 [204] 4540 114.3 0.32 0.6975 6.937 459.4

9.2.1.2 Wind Tunnel Conditions

Several wind tunnels that are suitable for hypersonic aerothermoelastic testing are illus-

trated in Fig. 1.5. Among these wind tunnels, the hypersonic tunnel facility (HTF) at

NASA Glenn Research Center is of interest [3, 31]. The HTF is a free-jet blow-down

wind tunnel that is capable of simulating the flight conditions at multiple Mach numbers,

M∞ = 5, 6, 7, which are representative of the flight envelope of interest, as illustrated in

Fig. 9.7. The test conditions at different Mach numbers are achieved using three nozzle

configurations, all of which have an exit diameter of 42in ≈ 1.07m. The dimensions of the

test section are 42in× 10ft ≈ 1.07m× 3.05m.

The constraints representing the operating envelope of the HTF are necessary for the

optimization problem associated with refined aerothermoelastic scaling. However, the data
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defining the exact operating envelope of the HTF is unavailable in the open literature. The

only public data available is the upper and lower limits of the stagnation temperature and

pressure of the operating envelope at M∞ = 5, 6, 7 [3, 31]. Therefore, in the current study,

three sets of “realistic” wind tunnel conditions are synthesized based on the available HTF

data in public [3, 31], illustrated in Fig. 9.8 and listed in Table 9.6. Additionally, a set of

“ideal” wind tunnel conditions is assumed based on the flight condition of 5 ≤ M∞ ≤ 7

and 20km ≤ H ≤ 30km, which encompasses the ranges of the three sets of “realistic”

wind tunnel conditions. For each set of the conditions, the Mach number is fixed and it

is assumed that an arbitrary combination of the stagnation temperature and pressure in the

given range is attainable.

Another constraining factor for the aerothermoelastic test is the operation time of the

wind tunnel. In the quasi-steady aerothermoelastic problem, the scaling in time is deter-

mined by the Fourier number, as required by Eq. (6.3a),

tm =
1

ξ2
[k̂s]p

[ρ̂sĉsp]
p

[ρ̂sĉsp]
m

[k̂s]m
tp (9.5)

It means that the time duration of the the scaled test is inversely proportional to the square

of the geometric scale ξ. When the time duration of the quasi-steady aerothermoelastic

response is 160s, and the geometric scale ranges from 2 to 5, the time duration of the the

scaled test is expected to be less than 40s. The operation time of the HTF depends on the

test condition and ranges from 42s to 294s. Therefore, it is assumed that the wind tunnel

can operate for sufficient time length so as to accommodate the aerothermoelastic test of

any model with geometric scales of 2 ≤ ξ ≤ 5. In other words, no constraint is needed

for the time duration of the scaled test in the optimization problem associated with refined

aerothermoelastic scaling.

201



Figure 9.7: Operating envelope of the HTF (Figure 1 of Ref. [3])

Figure 9.8: Envelopes of the HTF test conditions and typical hypersonic flight conditions
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Table 9.6: Wind tunnel conditions

M∞ p0 (MPa) T0 (K)

Ideal [5, 7] [0.27579, 86.184466] [416.483, 2500.0]

Realistic

WT5 5 [0.4860804, 2.82685] [1222.22, 1344.44]

WT6 6 [0.992845, 8.273709] [1647.22, 1838.89]

WT7 7 [2.96475, 8.273709] [2127.778, 2500.0]

9.2.1.3 Design Variables and Constraints

The design variables considered for the scaling of the skin panel, as well as their con-

straints, are summarized in Table 9.7. These design variables are selected from Table 6.1.

The design variables consist of the wind tunnel conditions, geometrical parameters of the

model, and the parameters for an external radiative heater. The constraints for the wind

tunnel conditions have been provided in Table 9.6. In the constraints for the geometrical

parameters, the upper limits are determined by the size of the wind tunnel test section and

the lower limits are determined by the manufacturing constraints. The radiative heating is

assumed to enable the discussion of the incomplete testing strategy. It is assumed that the

radiation temperature Trad is constant throughout the test and the surface emissivity of the

model ε is uniformly distributed. The model is assumed to be aligned with the flow, so the

inclination angle θ is zero. The model is built of a single material, Ti 6242, so the material

properties are fixed and there is only one design variable h representing the thickness of

the panel.

When parameter relaxation strategy is employed, only the similarity parameters in Eqs.

(6.3a) and (6.3c) are imposed as equality constraints, and the matching of the similarity

parameters in Eq. (6.3b) is not required. Equation (6.3a) defines the scaling of the time
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Table 9.7: Design variables for the scaled model and their constraints

M∞, p0, T0 L (m) Lle (m) h (m) ε Trad (K)
See Table 9.6 [0.1, 0.5] [0.1, 2.0] [0.001, 0.01] [0.5, 1.0] [300.0, 2500.0]

step size during the simulation,

∆tm =
1

ξ2
[k̂s]p

[ρ̂sĉsp]
p

[ρ̂sĉsp]
m

[k̂s]m
∆tp (9.6)

Assuming T̂ p
T = T̂ p

S = T̂ p
w and T̂ p

F = T p
∞ for the prototype, Eq. (6.3c) implies the fol-

lowing equality constraints on the design variables associated with reference temperatures,

T̂m
T = T̂m

S = T̂m
w , T̂m

F = Tm
∞ ,

Tm
w

Tm
∞

=
T p
w

T p
∞

(9.7)

9.2.2 Scaling With Ideal Wind Tunnel Conditions

First, the feasibility of numerical aerothermoelastic scaling is explored by generating scaled

models for different geometric scales with ideal wind tunnel conditions. The flight condi-

tions of the prototype are M∞ = 6.0 and H = 25km. The parameter relaxation strategy

is used and the design variables include M∞, p0, T0, Lle, h. Four different geometric scales

are considered: ξ = 2, 3, 4, 5. For each case, 20 samples are generated to initialize the SBO

algorithm and 50 iterations are conducted during the optimization.

The Pareto fronts for the four cases are shown in Fig. 9.9. The results show that,

reducing the error of one of responses would result in a rapid increase in the error of the

other response. Thus it illustrates the failure of the classical aerothermoelastic scaling.

Nevertheless, for each geometric scale, it is possible to find a model configuration that

satisfies approximately the aerothermoelastic similarity, as indicated by the solid points in

Fig. 9.9. These points are assumed to be the final design points. The responses associated

with these design points are shown in Figs. 9.10 and 9.11. In all the cases, the errors in the
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aerothermoelastic responses are less than 10%.

The values of the design variables are listed in Table 9.8 and illustrated in Fig. 9.12.

Figure 9.12 illustrates the differing scaling requirements of the geometrical variables h and

Lle. The numerical scaling of the panel thickness h agrees with the analytical scaling re-

quirements represented by the blue dashed line. However, the variable Lle increases as the

panel dimension decreases, which is vastly different from the analytical scaling require-

ments. The scaling of Lle obtained numerically represents a refinement of the analytical

scaling relation. Table 9.8 illustrates the activation of constraints at the design points. The

constraints of h and Lle are active for the cases ξ = 2 and ξ = 3, respectively, due to

the limitation in the size of the test section. Using the classical scaling approach, it is

inconvenient to develop a scaled model that accounts for the inequality constraints. That

is because, for the classical approach the scaling requirements are determined by the ana-

lytical similarity parameters. However, the derivation of these similarity parameters does

not involve any inequality constraints. Nevertheless, the inequality constraints are treated

efficiently using the two-pronged approach. A scaled model that satisfies all the constraints

is obtained by the refined and systematic adjustment using the optimization process of the

two-pronged approach.

To summarize, the results in this section show that it is possible to achieve refined

ASL under ideal wind tunnel conditions using the two-pronged approach. Furthermore,

the results obtained illustrate the advantages of the two-pronged approach over the classi-

cal scaling approach. First, the two-pronged approach can generate the requirements for

aerothermoelastic scaling by refining the scaling requirements represented by the analyti-

cal similarity parameters. Second, the two-pronged approach can account for the inequality

constraints representing the limitations of the wind tunnel and manufacturing capabilities,

which cannot be treated efficiently using the classical approach.
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Figure 9.9: Pareto fronts for different geometric scales

Figure 9.10: Comparison of nondimensional structural responses
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Figure 9.11: Comparison of nondimensional thermal responses

Figure 9.12: Analytical and numerical scaling of geometrical variables
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Table 9.8: Design points for different geometric scales

Design variables ξ = 2 ξ = 3 ξ = 4 ξ = 5

M∞ 6.841e+00 5.653e+00 5.407e+00 6.250e+00

p0 (MPa) 6.476e+01 3.916e+01 3.858e+01 7.330e+01

T0 (K) 2.280e+03 1.868e+03 2.130e+03 2.187e+03

Lle (m) 1.812e+00 2.000e+00 3.516e-01 1.950e-01

h (m) 1.000e-02 5.971e-03 4.317e-03 4.150e-03

9.2.3 Scaling With Realistic Wind Tunnel Conditions

Next, the scaling of the prototype is conducted with realistic wind tunnel conditions. The

flight conditions of the prototype are M∞ = 6.0 and H = 25km and the wind tunnel con-

ditions WT5, WT6 and WT7 from Table 9.6 are used. Two cases are considered. For Case

1, pure parameter relaxation strategy is used and the design variables are p0, T0, L, Lle, h.

For Case 2, combined strategy of parameter relaxation and incomplete testing is used and

the design variables are p0, T0, L, Lle, h, ε, Trad. For both cases, 20 samples are generated

to initialize the SBO algorithm and 50 iterations are conducted for the optimization.

The Pareto fronts of the two cases are shown in Fig. 9.13. For Case 1, the two-pronged

approach failed to find any good solution that have low errors in the structural and thermal

responses for any realistic wind tunnel conditions. For Case 2, it is possible to find con-

figurations that can satisfy approximately the aerothermoelastic similarity for all the three

wind tunnel conditions. The differences between the two cases are explained by examining

the design points in Tables 9.9-9.10. All the design points in Case 1 have reached the upper

limit of p0 for the realistic wind tunnel conditions, which is less than 10% of the maximum

p0 in the ideal wind tunnel conditions. As illustrated in Fig. 9.14, the low value of p0 leads

to insufficient heating on the model and produces a slow increase in the average temper-

ature as well as the center deflection. The problem in Case 1 is resolved in Case 2 with
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Table 9.9: Design points for realistic wind tunnel conditions in Case 1

Design variables WT5 WT6 WT7
p0 (MPa) 2.827e+00 8.274e+00 8.274e+00
T0 (K) 1.267e+03 1.664e+03 2.317e+03
L (m) 5.000e-01 5.000e-01 5.000e-01
Lle (m) 7.601e-01 6.270e-01 6.419e-01
h (m) 7.034e-03 8.794e-03 1.000e-02

Table 9.10: Design points for realistic wind tunnel conditions in Case 2

Design variables WT5 WT6 WT7
p0 (MPa) 4.861e-01 9.928e-01 6.543e+00
T0 (K) 1.222e+03 1.821e+03 2.220e+03
L (m) 5.000e-01 4.480e-01 4.448e-01
Lle (m) 2.000e+00 1.761e+00 1.717e+00
h (m) 7.500e-03 7.798e-03 8.210e-03
ε 5.000e-01 1.000e+00 1.000e+00

Trad (K) 1.621e+03 1.492e+03 1.548e+03

the introduction of the external heating, which compensates for the low heating rate in the

realistic wind tunnel conditions.

The comparison between Cases 1 and 2 shows that, using parameter relaxation and in-

complete testing, the two-pronged approach can be used to generate aerothermoelastically

scaled models with restrictive constraints of realistic wind tunnel conditions. However, it

should be emphasized that achieving small errors in the structural and thermal responses

is progressively more difficult as the Mach number decreases. When M∞ = 5, the design

point has most of the constraints active, indicating that the constraints imposed by the wind

tunnel conditions WT5 are not suitable for the flight condition considered in the current

problem.
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Figure 9.13: Pareto fronts for Cases 1 and 2

(a) Nondimensional structural response (b) Nondimensional thermal response

Figure 9.14: Comparison of prototype and model responses in Cases 1 and 2 for wind

tunnel condition WT7.

9.2.4 Scaling for Multiple Flight Conditions in the Same Wind Tunnel

Finally, the two-pronged approach is used to generate scaled models for aerothermoelas-

tic testing associated with different flight conditions using the same set of wind tunnel

conditions. A range of flight conditions is considered: M∞ = 5.0, 5.5, 6.0, 6.5, 7.0 and

H = 20, 22, 25, 28, 30km. The wind tunnel condition WT7 in Table 9.6 is assumed. The
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design variables are p0, T0, L, Lle, h, ε, Trad, which are the same as those in the previous

problem. However, in this problem, instead of solving the MO problem for each flight

condition, an SO problem is solved for a combined objective function,

Js =
√
J2
u + J2

T (9.8)

Solving SO problems requires fewer samples of numerical aerothermoelastic responses

and thus saves a considerable amount of computer time. The SO problems are solved in a

sequential manner. The first SO problem is initialized using 20 samples and 20 iterations

are conducted. The next SO problems are solved using 20 iterations with the initial samples

recycled from the previous SO problems.

The errors associated with different flight conditions are listed in Table 9.11. For all

but five flight conditions, it is possible to find configurations that can approximately satisfy

the aerothermoelastic similarity with errors of less than 5%. The errors exceed 5% in two

cases: (1) high Mach number (M∞ = 6.5, 7.0) and low altitude (H = 20km) and (2) low

Mach number (M∞ = 5.0, 5.5) and high altitude (H = 28, 30km).

Next, three typical cases are examined: (1) M∞ = 7.0, H = 20km, (Js = 5.22%), (2)

M∞ = 6.0, H = 22km, (Js = 1.50%), (3) M∞ = 5.0, H = 30km, (Js = 9.98%). Figure

9.15 illustrates the structural deformation and temperature distribution along the centerline

at nondimensional times t = 30, 90, 160. For all the cases, aerothermoelastic similarity is

achieved approximately. However, the temperature distribution of the prototype is more

non-uniform than the model, because the heat sources on the model include both aerody-

namic heating and external heating due to radiation. While the aerodynamic heating is

stronger near the leading edge of the panel, the radiative heating is almost uniform over

the panel. This produces a relatively uniform temperature distribution on the model. The

temperature distribution becomes more non-uniform as the Mach number increases and

the altitude decreases, because the aerodynamic heating becomes stronger at higher Mach
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number and higher freestream pressure, i.e. lower altitude. As discussed in the previous

chapter, in the long-term quasi-steady aerothermoelastic response, the panel deformation

is mainly caused by the thermal effect. The maximum deflection of the panel increases as

the average temperature increases and the location of the maximum deflection of the panel

is closer to the leading edge when the temperature distribution is more non-uniform.

Among the three sets of flight conditions considered, the second one is a typical case

where aerothermoelastic similarity is achieved approximately. The temperature distribu-

tion of the prototype is not highly non-uniform, so that the maximum deflections of the

prototype and the model occur approximately at the center of the panel. The average tem-

peratures of the prototype and the model are similar, resulting in similar amplitudes of

structural deformation and smaller errors in the structural response. On the other hand,

the first set of flight conditions represents a case where the aerodynamic heating is too

strong and produces a highly non-uniform temperature distribution that causes the loca-

tion of maximum deflection of the prototype to move from the center towards the leading

edge. The mismatch in the shape of panel deflection produces an increased error in the

nondimensional structural response. The third set of flight conditions represents the case

where the aerodynamic heating is weak but the external heating is insufficient to accurately

control the average temperature of the model. The mismatch in the average temperatures

of the model and the prototype leads to the error in the magnitude of panel deflection and

the increased error of structural response.

Within the current optimization framework, the sources of errors in the first and the third

cases can be minimized or eliminated by refined adjustment of the model. For the first case,

the distribution of the radiation temperature of the radiative heater can be optimized, so as

to tune the distribution of the radiative heat flux to resemble the non-uniform distribution of

the aerodynamic heat flux. Furthermore, the objective functions Ju and JT can be modified

to include the structural and thermal modal coordinates so as to ensure the matching of

the distributions of deformation and temperature. For the third case, the time variation of
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the radiation temperature during the wind tunnel test can be optimized, so as to accurately

control the average temperature and thus the deformation of the panel.

Table 9.11: Errors in aerothermoelastic responses of differernt flight conditions (in %)

H = 20km H = 22km H = 25km H = 28km H = 30km

M∞ = 5.0 4.82 4.41 3.69 7.20 9.98

M∞ = 5.5 3.40 2.95 3.34 4.51 5.47

M∞ = 6.0 2.75 1.50 4.52 3.2 4.13

M∞ = 6.5 6.16 2.15 3.24 2.25 2.81

M∞ = 7.0 5.22 3.58 2.43 5.17 2.01

Figure 9.15: Nondimensional structural and thermal responses of selected cases
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CHAPTER 10

Conclusions and Recommendations for Future

Research

This dissertation has addressed the outstanding challenges associated with the aeroelas-

tic and aerothermoelastic analysis of hypersonic structures. The primary objectives were:

(1) enhancing our understanding of the aeroelastic and aerothermoelastic behavior of hy-

personic structures by conducting a computational study, and (2) development of a new

methodology for generating refined hypersonic ASL that are suitable for wind tunnel test-

ing. The principal novel contributions of this dissertation are two-fold. First, an in-

tegrated computational framework HYPATE was developed to enable rapid long-time-

duration aerothermoelastic simulation of hypersonic structures. Two novel approaches

have been incorporated to accelerate the HYPATE framework: a fluid ROM enhanced

using a correction and scaling technique, and a new computational approach combining

a tightly-coupled scheme with linearized stability analysis. Second, a new, two-pronged

approach to aerothermoelastic scaling is developed. It combines the classical scaling ap-

proach with augmentation from numerical simulations of the specific problem based on

a constrained optimization formulation. In the optimization formulation, the strategies of

parameter relaxation and incomplete testing are incorporated to assist the refinement of

hypersonic aerothermoelastic scaling.

The aerothermoelastic analysis results highlight the impact of the effects of boundary

layer thickness, aspect ratio, flow orientation angle, and material orthotropicity on the be-
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havior of skin panels in hypersonic flow. The findings provide practical insight on the

structural design of hypersonic vehicles. The new two-pronged approach was applied to

the aerothermoelastic scaling of a skin panel in hypersonic flow. The aerothermoelastic

similarity between the prototype and the scaled model was successfully obtained using

a systematic optimization approach, which accounts for realistic constraints of the wind

tunnel and manufacturing.

10.1 Conclusions

The results presented in this dissertation provide significant insight into the aeroelastic and

aerothermoelastic behavior of panel in hypersonic flow and enhance our understanding of

this complex multiphysics problem. The principal conclusions and contributions of this

dissertation are summarized below:

1. The transient aerothermoelastic response is approximated well by the quasi-steady

response generated using the tightly-coupled scheme with a time step size that is two

orders of magnitude larger than those employed in the conventional loosely-coupled

schemes.

2. The linearized stability analysis serves as an effective tool for the identification of

aerothermoelastic instability. The LSA is capable of capturing flutter-type instabili-

ties that results in unstable oscillatory response, as well as snap-through-type insta-

bility that does not necessarily develop into unstable response of the entire panel.

3. The correction and scaling technique developed was effective in improving the flex-

ibility of a fluid ROM by accounting for both non-uniform temperature distribution

and extrapolation to different flow conditions and geometric scales. The formulation

does not rely on any specific forms of the ROM and thus can be applied to ROMs

employing alternative methods that are different from POD-kriging.

4. The combination of the fluid ROM and the tightly-coupled scheme enables fast, high-
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fidelity aerothermoelastic simulation that can be carried out on a typical worksta-

tion computer in near-real-time, instead of on a large-scale computing facility using

weeks or months.

5. For aeroelastic stability and response in high supersonic, turbulent flow (M∞ = 4.0),

increasing boundary layer thickness has a beneficial effect on the flutter amplitude

and a stabilizing effect on the panel by postponing the onset of instability. Failure

to include the aspect ratio effect in the aeroelastic simulation may lead to erroneous

predictions of the critical flutter parameter of a panel.

6. For the aerothermoelastic case, the snap-through type of instability is controlled by

the force ratio, i.e. the ratio between the in-phase and out-of-phase components of

the pressure distribution. The force ratio increases as the structure deforms due to

temperature increase. The growth rate of the force ratio is higher when the boundary

layer is thinner. As the force ratio increases, a lower value of out-of-phase pressure

component is required to cause the snap-through.

7. For the aerothermoelastic case, the boundary layer does not necessarily stabilize the

panel in contrast to the aeroelastic case. A sufficiently thin boundary layer can lead

to high force ratio and the immediate onset of aerothermoelastic instability.

8. The aerothermoelastic response is sensitive to the boundary layer thickness. Further-

more, 2D panel models are not suitable for capturing the intricate nonlinear behavior

present in 3D panels. Failure to include the boundary layer effect or the aspect ratio

effect in the aerothermoelastic simulation may lead to erroneous predictions of the

instability of a panel.

9. The flow orientation angle alters the regions of a panel exposed to hypersonic flow,

leading to significant changes in the heat flux distribution, and thus the temperature

distribution. Increasing the flow orientation angle from 0◦ to 30◦ can reduce the

aerothermoelastic stability boundary by 10%.

10. The material orthotropicity alters the thermoelastic deformation of a panel, resulting
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in modified distributions of heat flux and temperature. In addition, the combined

effect of flow orientation angle and orthotropicity can result in nonlinear behavior of

the panel, such as localized snap-through, that can influence the aerothermoelastic

stability boundary.

11. When the wind tunnel is capable of simulating flight conditions with sufficiently high

stagnation temperature and stagnation pressure, the aerothermoelastic scaling can

be achieved using a parameter relaxation strategy. An aerothermoelastically scaled

model is constructed by matching a partial set of the aerothermoelastic similarity

parameters between the prototype and the model.

12. When the wind tunnel is limited and cannot provide high stagnation temperature or

stagnation pressure, aerothermoelastic similarity can be still achieved by combining

parameter relaxation with incomplete testing. Thus external loading and heating

is introduced to compensate for the insufficient aerodynamic loading and heating

capability of the wind tunnel.

13. Using one set of wind tunnel conditions, i.e. in the same wind tunnel, it is possible

to adjust the scaled model in a refined manner, so as to conduct hypersonic aerother-

moelastic testing for a range of flight conditions that are representative of the flight

envelope of a hypersonic vehicle.

10.2 Recommendations for Future Research

This is a pioneering study that represents the first-ever effort to develop numerical ASL

for hypersonic structures. The demonstration of the numerical scaling approach shows

that it can be eventually applied to testing various components of a hypersonic vehicle.

Furthermore, the approach can be also used to map aerothermoelastic results obtained in

a scaled test on an actual vehicle to a vehicle having different geometric size. Therefore,

it has the potential for saving considerable funds in the development process of future
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hypersonic vehicles by replacing some flight tests with wind tunnel experiments.

However, the complexity of aerothermoelastic problem still has several facets that re-

quire additional work. In fact, it has just opened up a new area that requires the joint of

the computational and experimental work to produce practical and reliable results. On the

computational side, high-fidelity simulation should be carried out to assist the design of

the scaled models for wind tunnel testing. The model design would require detailed mod-

eling of the imperfections of the testing environment in the wind tunnel, such as structural

boundary conditions, wind tunnel turbulence and wall interference effects, and imperfect

radiative heating and cooling. On the experimental side, relevant testing and measure-

ment techniques, such as simultaneous temperature and displacement measurement meth-

ods with high spatial and temporal resolutions [139], should be developed so as to conduct

actual aerothermoelastic testing in a wind tunnel.

The ultimate goals of scaled aerothermoelastic testing is to predict the performance and

reliability of structural components on a full-scale hypersonic vehicle. Such experimental

results will also be an important source for data validation and uncertainty quantification

of the computational tools. Two types of uncertainty have been defined for hypersonic

aerothermoelastic problems: aleatory and epistemic uncertainty [1]. Aleatory uncertainty

refers to variability inherent to input variables, e.g. uncertainty in atmospheric properties.

Epistemic uncertainty encompasses uncertainty inherent to the modeling assumptions per-

taining to a given analysis, e.g. the simplification introduced by the fluid ROM. While a

systematic approach for the quantification of aleatory uncertainty has been developed for

hypersonic aerothermoelasticity using surrogate-based stochastic collocation method [1],

there are limited studies devoted to the quantification of epistemic uncertainty in aerother-

moelastic analysis, especially when ROMs are employed. Strategies and computational

tools have to be developed for the robust design of hypersonic vehicles that account for the

model uncertainties.

The extensive numerical analysis and forth-coming experimental results can greatly
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enhance the understanding of aerothermoelastic behavior of hypersonic structures, which

can produce a paradigm shift in the structural design of hypersonic vehicles. The traditional

hypersonic structures are relatively stiff and heavy, because they are designed to avoid any

possible instabilities during hypersonic flight. The heavy structural weight represents a

significant payload and performance penalty on the vehicle. In this dissertation, the study

on the aerothermoelastic behavior of the skin panel indicates that, it is possible to optimize

the stiffness distribution of the skin panel with respect to the flow orientation, and exploit

some benign aerothermoelastic instabilities, such as local snap-through, so as to improve

the aerothermoelastic stability boundary of hypersonic vehicle structural components.

Finally, a natural extension of this work is to consider the aerothermoelastic analy-

sis that incorporates more complex flow physics, e.g. acoustic radiation of turbulent flow

and shock wave/boundary layer interaction [63, 64]. These problems may involve shock-

dominated flow that requires high spatiotemporal resolution, panel deformations containing

a wide spectrum of structural modes, and highly nonlinear wall temperature distributions.

To tackle these problems, the first step is to resolve complex flow phenomena using higher-

fidelity tools such as LES. Next, more versatile fluid ROMs need be developed to capture

the highly nonlinear and stochastic dynamics in the complex flow physics. It would be

ideal to have a fluid ROM, or an approximate fluid solver, that can accurately predict the

pressure and heat flux distributions on an arbitrary geometrical configuration with arbitrary

structural deformations and temperature distributions. Once such a fluid solver is avail-

able, it can accelerate and enhance the aerothermoelastic design and analysis of hypersonic

structures.
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APPENDIX A

Kriging and Proper Orthogonal Decomposition

A.1 Kriging model

The key assumption of kriging method is that two sample points that are close to each

other in the parameter space have similar errors. This assumption is feasible for an un-

known black-box function defined by deterministic computer simulations, since no sources

of random error exists in the sample data set [105, 107].

It suffices to consider kriging model for a function with vector input and scalar output.

For a function with vector output, a kriging model can be constructed for each dimension

of the output. With a given sample data set D = {xi, yi}mi=1, the kriging interpolation is

characterized by a global approximation f corrected using local deviations Z,

y(x) = f(x) + Z(x) (A.1)

The global approximation f is a regression function representing the global trend of the

unknown function,

f(x) = f(x)Tβf =

q∑
i=1

βfifi(x) (A.2)

In practice, the basis functions f(x) = [f1(x), · · · , fq(x)] are polynomials up to second-

order. When the basis function is zeroth-order, i.e. the global trend is a constant value,

the kriging model is usually referred to as “ordinary kriging”. Ordinary kriging has been
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applied widely in engineering designs, such as Ref. [106]. Linear and quadratic basis

functions have been used in kriging models for fluid ROMs, such as Refs. [101, 102]. The

results show that kriging model with quadratic basis functions generates more accurate

results than the one with linear basis functions.

The local deviation Z is assumed to resemble the behavior of a Gaussian process with

zero mean and variance of σ2
krg. Using a correlation function r(xi,xj), the covariance

between two sample points is,

cov[Z(xi,xj)] = σ2
krgr(xi,xj) (A.3)

The correlation function measures the “closeness” between two points: The function value

decreases as ||xi − xj|| increases. A typical choice of the correlation function is the Gaus-

sian kernel,

r(xi,xj) = exp
[
−(xi − xj)

TΘ(xi − xj)
]

(A.4)

where Θ is typically a diagonal matrix characterizing the strength of correlation.

The kriging prediction of the black-box function at an input x follows a Gaussian dis-

tribution,

ykrg ∼ N (µ(x), σ2(x)) (A.5)

The predictive mean µ and variance σ2 are, respectively,

µ(x) = βT
f f(x) + βT

r r(x)

σ2 = σ2
krg[1 + t(x)T (FTR−1F)−1t(x)− r(x)TR−1r(x)]

(A.6a)

(A.6b)
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where,

[F]ij = fi(xj)

[R]ij = r(xi,xj)

βr = R−1(y − Fβf )

r(x) = [R(x,x1), · · · , R(x,xm)]
T

t(x) = FTR−1r(x)− f(x)

(A.7a)

(A.7b)

(A.7c)

(A.7d)

(A.7e)

The variance provides a quantification of the error in kriging prediction. A lower vari-

ance corresponds to a more confident prediction of the black-box function.

Finally, the gradients of the mean and variance w.r.t. to the input variables are,

∂µ

∂x
= βT

f

∂f

∂x
+ βT

r R
−1 ∂r

∂x
∂σ2

∂x
= 2σ2

krg

[
t(x)T (FTR−1F)−1 ∂t

∂x
− r(x)TR−1 ∂r

∂x

] (A.8a)

(A.8b)

where the gradients of f , r, and t w.r.t. x can be computed analytically from Eq. (A.7).

A.2 Proper Orthogonal Decomposition

The POD method has been used for dimension reduction problems [93, 104]. It provides

a means to reproduce the behavior of a full-order system using a lower-order model, and

thus significantly reduces computational cost. The low-order model is constructed from a

few “POD modes”, which represent the dominating patterns in the responses of a full-order

system. Reference [93] is the first study to apply POD in fluid problems. Reference [104]

provides a detailed description of the POD method in general.

For fluid dynamics, the POD modes are usually constructed using the snapshot method

[93]. Consider a sample data set of full-order solutions {yi}Ns
i=1, the snapshot matrix is,

SP = [y1, · · · ,yNs ] (A.9)
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Take the singular value decomposition (SVD) of the snapshot matrix,

SP = U∆VT (A.10)

where U and V are orthonormal matrices, whose columns are the left and right singular

vectors of SP , respectively. The matrix ∆ is diagonal, and the nonzero entries are singular

values of SP in decreasing order.

Let the first Np left singular vectors be the POD modes,

ΨP = [u1, · · · ,uNp ] (A.11)

The snapshot matrix is approximated by projection onto the space spanned by ΨP ,

SP ≈ ΨPΨ
T
PSP (A.12)

A full-order solution y and its POD components yP are related by POD transformation,

yP = ΨT
Py, y ≈ ΨPyP (A.13)

The relative error of approximation is,

ϵPOD =

∥∥SP −ΨPΨ
T
PSP

∥∥
∥SP∥

=

(∑Ns

i=NP+1 σ
2
i∑Ns

i=1 σ
2
i

)1/2

(A.14)

For the POD approximation, the number of POD modesNP is chosen such that the approx-

imation error ϵPOD of the snapshot matrix is less than 0.5%. In the problems considered in

this study, NP < 50 ≪ Ns ∼ 1000, and therefore the POD is an effective approach for the

dimension reduction of a full-order system.
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APPENDIX B

Smart Ordering Scheme for Efficient Sample

Generation

The smart ordering scheme presented in the following is developed for the parallel gener-

ation of Ns samples using NC groups of CPUs. Each group of CPUs are used to compute

a group of Ns

NC
samples. That means, NC samples are computed in parallel. In each group,

the samples are carefully ordered to satisfy the requirements proposed in Section 2.4.5, so

as to reduce the total computational cost for sample generation.

The parallel sample generation is beneficial since a typical parallelized CFD solver

does not have perfect linear scalablility. That means, more than N CPUs have to be used to

accelerate the computation of a CFD sample by a factor of N . As a result, in terms of total

computational cost, it is more efficient to generate as many samples as possible in parallel

with fewer CPUs, instead of using as many CPUs as possible to generate one sample at a

time.

The procedure of the smart ordering scheme is presented in the following,

1. Use OLH sampling to generateNs samples. An example dataset with two parameters

is shown in Fig. B.1(a). The star indicates the parameter combination for naive flow

solution w0, e.g. the flow solution associated with an undeformed skin panel.

2. Create the k-Nearest-Neighbour (kNN) graph [206] from the samples, as illustrated

in Fig. B.1(b). The samples are represented by the vertices of the graph. Each sample

is connected to its k nearest neighbours, which are its candidate reference solutions.
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The distance between two samples is defined using Eq. (2.81). The number k is

chosen such that the graph is fully connected.

3. Divide the samples into nC equal-sized groups using standard graph partition algo-

rithm from the METIS package [207], as illustrated in Fig. B.1(c).

4. Generate the minimum spanning tree (MST) for each group of samples, represented

by a subgraph. In the MST, the graph is fully connected, but some samples are

disconnected to each other, such that the sum of the distances between the connected

samples are minimized.

5. Starting from the naive flow solution w0, determine the reference solution for each

sample. The dependency is represented using arrows in Fig. B.1(d). The sample at

the tail of the arrow is the reference solution for the sample at the head of the arrow.
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(a) Sample data set (b) The kNN graph of the data set

(c) Partition of the kNN graph (d) The MST’s of the subgraphs

Figure B.1: Illustration of the smart ordering scheme
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