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Abstract 

 

Construction is one of the most hazardous industries with high non-fatal injuries because it 

involves physically demanding tasks performed in an unstructured and dynamic environment. 

Work-related musculoskeletal disorders (WMSDs) are the major cause of non-fatal injuries. 

Various methods, such as self-report, observation, and direct measurement, are used for 

assessing the risk level of WMSDs by quantifying the ergonomic risk factors (e.g., posture, 

repetition, and force). However, they are either time consuming or error-prone (e.g., self-report 

and observation) or invasive (e.g., direct measurement).  

 The recent advancement of computer vision allows for rapid, accurate, and non-invasive 

motion capture only using ordinary cameras. Key challenges remain for applying to assess jobs’ 

ergonomic risks: 1) long-lasting occlusion in a construction site creates an obstacle to enforcing 

kinematic and temporal consistency between frames to estimate posture’s frequency and 

repetition; 2) as a critical risk factor for ergonomic risk assessment, force is very challenging to 

non-invasively estimate, which hinders field applications; and 3) little effort has been made for 

comprehensive ergonomic risk assessment.  

 These knowledge gaps were addressed by three research objectives: 1) develop and 

validate a video-based human motion capture framework to quantify ergonomic risk factors of 

posture and its repetition by extracting continuous 2D/3D human model with enforced kinematic 

and temporal consistency; 2) develop and validate a video-based hand push force estimation 

framework; and  3) apply the risk factors estimated by videos to comprehensive ergonomic risk 

assessment tools including postural and biomechanical analysis. 



 x 

 Results yielded around 11.6 and 7.5 degrees of joint angle estimation error for 2D and 3D 

motion captures, respectively, despite prevalent occlusions. Also, resultant frequency and 

duration comparison with experienced ergonomists’ observation demonstrates a great potential to 

robustly quantify jobs’ ergonomic risk factors of posture and repetition. Lab-based testing shows 

an accurate peak force occurrence time and peak force magnitude estimation, suggesting a 

potential to quantify critical variables of push force exertion only from videos. By applying the 

collected risk factors comprehensively to several ergonomic risk assessment tools, it 

demonstrates a promising level of risk assessment accuracy compared with expert observation 

and sensor-based measurement. The proposed video-based motion capture and force estimation 

frameworks for comprehensive ergonomic risk assessment are expected to greatly reduce the 

time and effort of on-site data collection and increase the number of evaluated jobs with higher 

frequency thereby providing a better opportunity to understand and control WMSDs.  
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Chapter 1 Introduction 
 

1.1 Background 

Construction is a labor-intensive industry, requiring labor force as one of the major resources in 

projects. In the U.S., 11.2 million employees worked in the construction industry, which 

accounted for about 7% of the overall U.S. workforce in 2018 (BLS 2018). From an economic 

perspective, labor cost also often forms 33-50% of the total project cost in construction (Hanna et 

al., 2001; Siriwardana and Ruwanpura, 2012). In this regard, efficient planning, monitoring, and 

controlling of the onsite employees’ performance is key to the success of construction projects. 

Particularly, the non-fatal injury rate of construction workers has still ranked as the fourth-

highest among U.S. industries (BLS 2015a; BLS 2015b).  

Construction workers are frequently exposed to forceful and repetitive exertions with 

awkward postures, which leads to work-related musculoskeletal disorders (WMSDs) (Boschman 

et al. 2012; Everett 1999). WMSDs are a major cause of non-fatal injuries across industries.  The 

rate of WMSDs in construction is 25% higher than the rate for all other industries combined in 

2013 (BLS 2014).  

In contrast to many occupational diseases that develop from specific hazardous agents, 

most WMSDs are found to be multifactorial and are the results of exposure to concurrent risk 

factors (Van Der Beek & Frings Dressen 1998). Scientific research studies have investigated the 

level of risk to develop WMSDs by identifying the associations between quantified exposure to 

various risk factors and the incidence or prevalence of WMSDs (Bernard 1997). Based on the 
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findings, ergonomic principles could be proposed by providing specific measures of exposure to 

risk factors to prevent or limit the risks (Ringleberg & Voskamp 1996). The well accepted 

primary risk factors include, but are not limited to, awkward postures, repetition (frequency and 

duration), and exerted force (NIOSH 2014). 

To control WMSDs, ergonomic evaluation methods are widely applied in research and 

practice to evaluate the jobs regarding quantified exposure to risk factors.  The methods fall into 

three major categories of self-reports, observational methods, and direct measurement (David 

2005).  

Self-reports from workers include diaries, interviews, and questionnaires where the 

subjects report relevant information. The content mainly includes symptoms such as pain located 

in a specific body part as well as postural discomfort. Self-Estimated exposure to risk factors and 

demographic information could also be collected. Examples of questionnaires include, but are 

not limited to, Nordic Musculoskeletal Questionnaires (Cheraghi et al. 2018; Kuorinka et al. 

1987; Saha et al. 2017), Borg Rating of Perceived Exertion (RPE) Scale (Borg 1990; Jebelli and 

Lee 2019), and Job Requirements and Physical Demands Survey (JRPDS). Self-reports have 

been widely applied mainly due to their simplicity. Despite their accessibility, such methods lack 

objectivity and remain error-prone.      

Observational-based methods consist of simpler observational techniques (David 2005), 

or pen and paper-based observational methods (Beheshti et al. 2016), and advanced 

observational techniques (David 2005). Simpler observational techniques usually require an 

expert to observe and record the exposure to risk factors in real-time by following a pre-defined 

check-list based on an ergonomic risk assessment tool, such as Rapid Entire Body Assessment 

(REBA), Rapid Upper Limb Assessment (RULA), and Ovako Working Posture Assessment 
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System (OWAS). These tools generally require information about exposure to primary risk 

factors, including posture, repetition, and force. Based on the required level of detail, the input 

data could be as rough as “back straight” vs. “back bent” as in OWAS, or as detailed as “trunk 

bending forward within 0° - 20°” vs. “trunk bending forward within 20° - 60°” as in REBA and 

RULA. Advanced observational techniques enable the utilization of a video recording device, so 

the observer can playback and pause the video to observe multiple body parts simultaneously. 

Without the real-time constraint, a goniometer can be used to measure the body joint angles on a 

paused video (Fransson-Hall et al. 1995), and even a body-attached marker for location tracking 

to estimate rough velocity and acceleration from videos (Mahyuddin et al. 2011). These methods 

do not attach sensors to the human body and collect data. For additional information on these 

techniques, please see the systematic review in David (2005). Observation-based methods 

provide more subjective and accurate data than self-report but still, remain time-consuming and 

error-prone. 

With the advancement of sensing technology, a wide range of more direct measurement 

methods was developed, with sensors attached directly to the human body (David 2005). Sensing 

technology has gained extensive attention due to its accuracy, objectiveness, and versatility, 

compared with self-report and observation-based methods. Acceleration-based sensors were a 

commonly used type mounted on the subjects’ key body part to analyze the risk factors 

concerned. Yan et al. (2017) augmented personal protective equipment (PPE) by mounting 

inertial measurement units (IMUs) on the worker’s head and trunk, and measured both body 

parts’ postures in angles including flexion, lateral, and axial. Nath et al. (2017) measured the 

trunk and shoulder flexion by mounting smartphones on the subject’s waist and arm, 

respectively. To directly obtain joint angle measurements for ergonomic evaluation, Alwasel et 
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al. (2011) applied magneto-resistive sensors to evaluate the shoulder posture. To collect the full-

body postures simultaneously, commercial human motion capture devices, such as IMU (Cho et 

al. 2018) and optical marker-based system, e.g. VICONTM, OptoTrakTM, and QualysisTM 

(Alwasel 2017; Han and Lee 2013; Seo 2016) were explored. Apart from posture, force exertion 

was also measured or estimated. Jahanbanifar and Akhavian (2019) predicted the subject’s hand 

push force from acceleration data collected by a smartphone that affixed on the arm. Jacobs and 

Ferris (2015) applied pressure sensors on subjects’ shoe insoles to measure the ground reaction 

force. With the static or continuous force profile with directional information, the biomechanical 

analysis could be conducted to estimate the internal loads on major body joints. Direct 

measurement can collect high-quality data but has the drawback of being invasive and not very 

time-saving considering the device setup and testing. 

The three types of methods: 1) self-report, 2) observation, and 3) direct measurement, are 

listed in order of increasing accuracy of the data collected from and invasiveness to the worker 

being evaluated (David 2005). While observation-based methods are more applied to evaluate 

on-going work for its moderate invasiveness, direct measurement is mainly used on closely 

assessing simulated jobs in a controlled environment due to its high accuracy. In practice, there 

remains a lack of a non-invasive yet rapid and accurate tool to evaluate ergonomic risks of on-

site construction workers’ jobs. 

 

1.2 Remote Sensing-Based Ergonomic Risk Assessment 

Aiming at a non-invasive yet rapid and accurate ergonomic risk assessment tool for on-site 

application, remote-sensing technologies were explored, towards collecting data as a body-

attached sensor can, and quantify the risk factors as an observation-based tool requires. 
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Range and image/video sensors are the primary remote sensing devices to capture human 

motion coded from the location of major body joints (Wang et al. 2015). Time-of-flight 3D 

sensors generate the point cloud of a given scene. With a proper segmentation of the subject 

from the background, human skeleton or posture could be extracted with proper algorithm or 

software (Diraco et al. 2013). The stereo camera also provides point cloud data similar to time-

of-flight 3D sensors by commercialized software, e.g., Bumblebee XB3TM (Seo et al. 2017; 

Starbuck et al. 2014). To mitigate the demand for expertise in algorithm development, the RGB-

D sensor, Microsoft Kinect (Redmond, Washington), was applied to extract and visualize a 

human skeleton in user-friendly software. It can collect the subject’s joints location by 

converting the directly measured depth from the particular image pixel to the corresponding 

point in the 3D scene (Wang et al. 2015).  It further provides pixel color, thus including 

appearance information compared to pure 3D sensors. With the publicly available software 

development kit (SDK), a human skeleton in 20 joints could be extracted and visualized, and 

easily estimate needed risk factors in an ergonomic risk assessment tool e.g. OWS (Diego-Mas 

and Alcaide-Marzal 2014; Dzeng et al. 2017; Seo 2016) or for customized risk factor analysis of 

postures (Ray and Teizer 2012; Seo et al. 2017). As the RGB-D sensor can only be operated in 

an indoor environment and possesses a limited range of 4 meters (Seo et al. 2017), however, its 

on-site deployment on an outdoor construction site is not feasible.  

In pursuit of rapid and non-invasive remote sensing technology with on-site accessibility, 

camera-based approaches augmented by computer vision algorithm attracted noticeable research 

efforts in recent years. The major challenge for camera-based approaches focuses on their 

robustness under various viewpoints, illumination, and occlusion condition, which relies on an 

advanced computer vision algorithm to handle and generate quality data to quantify ergonomic 
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risk factors. There are two categories of methods to quantify human motion from 2D 

images/videos for worker’s postural analysis. 

 One type of methods is to directly estimate the posture categories from an image or 

video frame. The most detailed data that an observation-based ergonomic risk assessment tool 

requires is posture categories, by partitioning a body joint angle’s range (e.g., shoulder) into 

several categories of certain increments (e.g., <30). It does not necessitate estimating the 

accurate numerical angle value, thus many studies apply machine learning algorithms to train a 

posture classifier and directly recognize the posture categories of each body joint from an image. 

Some earlier studies (Gong et al. 2011; Liu et al. 2016) showed promising potential of such 

methods by recognizing postures associated with the performed tasks (e.g., traveling, 

transporting, and ladder-climbing) including posture with ergonomic risk (e.g., bending and 

squat-lifting). Inspired by such ideas, Seo et al. (2016) extracted human silhouette from videos 

and recognized among several common postures including back-bending, arm-reaching, and 

knee-bending, defined by an ergonomic risk assessment tool (OWAS). This study suggested the 

potential to automate the assessment tool to supplement human observation. Instead of 

recognizing postures of different body parts, Greene et al. (2019) further recognized among 

different lower-limb postures: squatting, stooping and standing, by extracting partitioning 

information from the human silhouette. The other type of methods first captures human motion 

in an articulated model with explicit information such as joint locations in Cartesian coordinate. 

Subsequently, such information could be used to calculate body joint angles and then be 

converted to common posture categories as a key input of assessment tools. Liu et al. (2017) 

demonstrated the potential for 2D human motion capture of on-site construction workers with 

smartphone video. To mitigate the distortion brought from 2D video, Yan et al. (2017b) 
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developed a view-invariant feature with 2D human motion capture to classify postures following 

the ergonomic evaluation tool, i.e. OWAS. (Dai and Ning (2013) estimated 3D human motion 

from the monocular camera by known information of the camera’s location and pose. Yu et al. 

(2019) introduced the study that captured 3D human motion from monocular/2D images and 

automated posture classification following assessment tool (i.e. REBA). The stated limitation of 

this study was the lack of quantifying the repetition, which is a major risk factor for assessment 

tools. In addition, the human model was trained from images with single subject thus hard to 

generalize to the general population with diverse stature.  

Comparing with posture recognition, fewer studies explored the potential to estimate 

force exertion non-invasively. Gaddam et al. (2016) demonstrated the potential of estimating 

ground reaction force from the spine’s frame-wise location collected by RGB-D sensor 

(Microsoft Kinect). Pham et al. (2015) used the same sensor to estimate hand contact force by 

capturing the hand pose. To apply ubiquitous visual sensing device, Sartison et al. (2018) 

developed a machine learning-based approach to estimate finger grip force from RGB frame 

sequence with visual markers on fingers. These studies showed the potential of estimating force 

from visual and motion data, but only focused on a single body part. To address this issue and 

explore the potential to generalize to every individual body joint and various tasks, Pham et al. 

(2018) demonstrated the feasibility of estimating hand contact force of multiple tasks from 

whole-body motion data captured from IMU sensors. The method was developed for arbitrary 

body joints and tasks which showed great potential to estimate hand forces for construction tasks 

that involve whole-body movement. A thrilling question arises whether human motion data 

captured from a video could generate hand force estimation that most ergonomic risk assessment 

tools require as a key input. 
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1.3 Knowledge Gaps 

Summarized from existing studies, monocular camera-based approaches are promising for on-

site ergonomic evaluation of being rapid, non-invasive, and effort-saving. However, as it relies 

on advanced computer vision and machine learning algorithm to extract quality and versatile 

input for accurate and comprehensive ergonomic risk assessment, there remain several key issues 

to be addressed. 

First, there lacks an approach to estimate the repetition of posture. The repetition of a 

posture is expressed by the frequency (number of occurrences) and duration that a specific body 

joint angle (e.g., shoulder angle) falls into a pre-defined range (e.g., 30 - 60). The knowledge 

gap of estimating the repetition of postures from videos, however, would not be easily addressed 

by independently capturing the human model in a frame-wise manner, as the estimated postures 

may not be accurate enough to reserve temporal smoothness between consecutive frames, 

especially under frequent self- and external occlusions in an unstructured and dynamic 

construction site. 

Second, there lacks a vision-based force estimation approach for non-invasive assessment 

of forceful exposure. Exerted force was demonstrated viable to be estimated from 3D motion 

data collected by body-attached devices. The motion data has a full degree of freedom (DOF) 

that can generate all needed kinematic parameters of the human body to formulate the physics-

based equations and optimization process. However, vision-based motion capture uses a 

simplified human model with less DOF. For example, a forearm’s axial rotation motion can be 

captured by sensors attached to its surface, while a vision-based approach cannot as represented 

by a non-volumetric line segment. Fewer DOF results in an insufficient number of kinematic 

parameters to formulate equations. Consequently, this knowledge gap could be further expressed 
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as: the potential of estimating hand force with the simplified human model of reduced DOF via 

vision-based motion capture has not been explored. 

Further, little effort has been made to apply the collected comprehensive risk factors (i.e., 

posture, repetition, and force) to quantify risk factors in ergonomic risk assessment tools. This is 

mainly because existing efforts tried to address a limited number of pieces in vision-based 

ergonomic risks assessment (e.g., frame-by-frame motion capture). The proposed motion capture 

framework in this thesis explicitly estimates body joint location and use it to calculate the joint 

angle and quantify required risk factors (i.e., posture, repetition, and force) for ergonomic risk 

assessment tools. Among angle-based postural analysis tools like REBA, only posture was 

quantified while repetition was not incorporated. Little attempt was made for distance-based 

postural analysis tools like NIOSH Lifting Equation and Snook’s Tables, for which posture is 

estimated from body joint location. Biomechanical analysis that requires continuous whole-body 

joint angle and tri-axial hand force was not explored with vision-based motion and force data 

collection. All of them are widely used in practice, which will a great benefit from the proposed 

vision-based framework. 

  

1.4 Research Objectives and Approaches 

To address the aforementioned issues, this research proposes a video-based approach (e.g., 

smartphone’s built-in camera) with developed human motion capture and a hand push/pull force 

estimation framework to enable automated ergonomic risk assessment for on-site construction 

jobs. Specifically, several research objectives are identified, as listed below. The corresponding 

approaches are briefly described following each objective. 
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1.  Develop and validate a video-based human motion capture framework to 

quantify ergonomic risk factors of posture and its repetition by extracting continuous 

2D/3D human model with enforced kinematic and temporal consistency while handling 

long-lasting occlusion in a construction site.  

The proposed framework addresses the first knowledge gap, by developing a video-based 

motion capture framework with two major modules. The first module leverages the state-of-the-

art 2D/3D human pose estimation method for still images and obtains initial motion data 

independently in a frame-wise manner. It is followed by an optimization module embedding 

kinematic constraints between adjacent joints and temporal constraints between consecutive 

frames. The constraints are developed from anthropometry data and knowledge about human 

motion (e.g., range of arms reach). Further, the human pose estimation models (2D and 3D) are 

trained with large dataset incorporating a diversity of subject’s stature, appearance, and 

surroundings. It enables the model to handle subject variation and occlusion.  In addition, as the 

framework is designed specifically for ergonomic risk factor estimation, the joint angle and body 

part length are directly constrained, instead of only joint locations which were commonly applied 

in the computer vision community. A 2D-based framework is developed as an initial step. 

Subsequently, the framework replaces the 2D pose estimation module with a 3D approach and 

optimization module with one incorporating corresponding modification for 3D motion data. 

To validate the proposed framework for 2D human motion capture, body joint location 

and angle estimation accuracy are evaluated against human annotation on in-field videos 

captured for 10 construction jobs. The framework with 3D motion capture was validated 

regarding body joint angle estimation accuracy that is evaluated by a marker-based motion 

capture system in a simulated lab setting. 
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2. Propose a hand push/pull force estimation framework with the simplified human 

model of reduced DOF via the proposed video-based 3D human motion capture. The lifting 

and lowering tasks were widely studied as the exerted hand force could be assumed as the 

object’s load weight (Fings-Dresen et al. 2000). Tasks like pushing and pulling, which are also 

prevalent in construction jobsites, usually rely on the direct measurement of force with a 

specialized device. To test the feasibility of estimating hand force for these tasks, a video-based 

hand force estimation framework was proposed to evaluate tasks without prior knowledge about 

the force exertion. As the hand force cannot be directly calculated from motion due to its 

indeterminacy issue, this research proposes a two-module framework that first calculates the 

physically plausible hand force from whole-body motion and then estimates actual exertion with 

an artificial neural network. The 3D human motion data captured from proposed video-based 

approach has reduced DOF with an insufficient number of kinematic parameters. This research 

formulates the physics-based equations and optimization process with limited parameters and 

shows the potential of estimating push/pull force with simplified human model. 

To validate the force estimation framework, lab testing of hand push force estimation 

from video-based 3D motion data capture was conducted with its accuracy evaluated against 

force measured by a body-attached force transducer. 

3. Apply the collected risk factors such as posture, repetition, and force to 

ergonomic risk assessment tools. To address the third knowledge gap based on how the 

previous two were addressed, this research evaluates the estimation accuracy of risk factors and 

overall risk in 4 different tools:  1) An angle-based postural analysis tool (e.g., REBA) that 

requires posture and its repetition. With the proposed 2D motion capture framework, this 

research validates REBA-defined posture’s frequency and duration estimation compared with 27 
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ergonomists’ observation in a lab testing, against body-attached IMU-based motion capture 

system as the baseline. 2) A distance-based manual material handling (MMH) assessment tool 

(e.g., Snook’s Tables) that requires the horizontal distance from the hands to the front of the 

body and vertical distance of hands’ displacement. Snook’s Tables is commonly applied due to 

its simplicity and insensitivity to input data incremental changes. The parameters needed for 

Snook’s Tables are estimated from 10 different lifting tasks with 3D motion capture in a field 

condition and validated against tapeline measurement for distance-related variables. 3) A 

distance and 3D angle-based MMH assessment tool (e.g., NIOSH Lifting Equation) that require 

similar risk factors with Snook’s Tables with further precision and additive risk factors. Hands’ 

horizontal and vertical distance from ankles, and hands’ vertical travel distance are needed and 

be precise to inch. Additionally, the asymmetric angle is required, indicating the level of trunk 

twisting during a lifting, which should be 3D. NIOSH Lifting Equation is believed to be more 

conducive than Snook’s Table as it requires more data (e.g., 3D asymmetric angle) with higher 

precision, but sensitive to input data variation (Russell et al. 2007). Similar validation protocol 

with that in 3) is applied to validate the estimated risk factors, except that estimated asymmetric 

angle is evaluated against manual observation. Further, as 3D motion data is shared for these two 

tools, the sensitivities of input variables, with different levels of precision, to the overall risk will 

be discussed. Laboratory-based testing is conducted with a subject performing pushing tasks. 

The risk level of the lower back is validated against that calculated from motion data collected by 

marker-based system and force data by a hand-attached force transducer. 
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1.5 Structure of the Dissertation 

This dissertation is a compilation of studies to achieve the proposed research objectives. It 

consists of 7 chapters that Chapter 2 and 3 address the first knowledge gap, and Chapter 5 

addresses the second while Chapter 4 and 6 address the third.  Following is the list of the brief 

description of the chapters. 

Chapter 1: Introduction. This chapter covers the background and motivation, current 

approaches, knowledge gaps, and research objectives with proposed approaches.  

Chapter 2: Video-based 2D Human Motion Capture for Posture and Repetition 

Estimation. This chapter introduces a proposed framework to capture continuous 2D human 

motion from a video and demonstrates its robustness in quantifying ergonomic risk factors of 

posture and repetition. 2D body joint location and angle estimation accuracy are validated by 

manual annotation on images for on-site construction jobs. 

Chapter 3: Video-based 3D Human Motion Capture for Posture and Repetition 

Estimation. This chapter adopts the framework from the prior chapter with modification to 

incorporate 3D human motion capture with corresponding modification. 3D body joint angle 

estimation accuracy is validated by marker-based motion capture system for lab-based simulated 

tasks. 

Chapter 4: Applications of Video-based Human Motion Capture on Ergonomic 

Postural Analysis. This chapter consists of 3 parts. First, the feasibility of application in an 

angle-based postural analysis tool (REBA) is demonstrated. The estimation of frequency and 

duration for REBA-defined postures via the proposed 2D approach and specialists’ observation 

are compared against that calculated from body-attached IMU-based motion capture system in a 

simulated lab testing. Second, the feasibility of application in a distance-based postural analysis 
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part from a risk evaluation tool (NIOSH Lifting Equation) is demonstrated with the proposed 3D 

approach. Field testing was conducted using tapeline measurement to collect distance-related 

variables. Additionally, the application to another distance-based tool (Snook’s Tables) is also 

demonstrated in the same field condition. 

Chapter 5: Video-based Hand Push/Pull Force Estimation. This chapter introduces the 

proposed hand force estimation framework from captured whole-body human motion data via a 

video recording. Lab testing was conducted to demonstrate the feasibility of estimating hand 

push force with video-based 3D motion capture. The estimated tri-axial force was evaluated 

against that collected from a 6 DOF force transducer attached to the hand. 

Chapter 6:  Application of 3D Motion Capture and Force Estimation in Biomechanical 

Analysis. This chapter validates the effectiveness of estimated hand push force by comparing the 

biomechanical analysis result from the video-based approach and directly measured hand push 

force from a force transducer and motion data from a marker-based motion capture system. 

Chapter 7: Conclusions and Recommendations. This chapter provides a summary of the 

conclusions that can be drawn from the studies. Several recommendations for future research 

derived from this dissertation are also provided. 
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Chapter 2 Video-Based 2D Human Motion Capture for Posture and 

Repetition Estimation 
 

2.1 Introduction 

To assess the overall ergonomic risk of a job, an ergonomic risk assessment tool first identifies 

and quantifies the risk factors (e.g., posture, repetition, and force). Posture is commonly 

represented by a specific range of joint angle for a body joint (e.g., 20°- 60° of shoulder angle). 

Repetition, on the other hand, is represented by the frequency and duration of specific posture. 

Duration is straightforward to quantify, as to sum up the number of time frames where the 

posture concerned is identified. The frequency can be the number of occurrences of one posture 

per unit time in tools like REBA and RULA, or one posture for a specific period in tools like 

Snook’s Table. Estimating frequency is essentially identifying each occurrence of posture.  

Compared with the significant amount of studies focusing on automated posture 

recognition, frequency estimation, for quantifying repetition, is much less studied in non-

invasive and effort-saving remote sensing-based approaches. While routinely given by manual 

input in other industries, including manufacturing, automated frequency estimation is vital for 

on-site application in construction. Specifically, construction jobs are much less cyclical and 

have larger variation between cycles, compared with industries like manufacturing. As remote 

sensing-based technologies, especially with ordinary cameras, relies on an algorithm to estimate 

measurements, the ability to quantify posture and its repetition for such approaches is vital for 

assessing ergonomic risk for on-site construction jobs.  
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  On the other hand, the unstructured and dynamic environment in a construction site 

brings in various challenges to accurately estimate posture and repetition. For posture 

recognition, construction jobs have apparent bias and large variation in appearance compared 

with common human pose datasets collected from daily activities. Construction jobs require 

wearing personal protective equipment (PPE) that impose bias of appearance especially on body 

joints such as hands (with gloves), head (with hardhat) and trunk (with reflective vest). The 

variation of appearance focuses on the interaction with various tools and materials. Additionally, 

frequent occlusion creates a challenge to estimate the body joint location. For a camera-based 

approach, the ability to recognize posture needs to handle the appearance variation resulting from 

the site condition. For repetition estimation, the challenge focuses on that little effort was made 

to automate the quantification, prior to discussing the frequent, long-lasting occlusion that 

creates a further challenge for the algorithm to handle. 

With the advancement of deep learning in the recent years, studies have shown the 

human pose estimator trained from daily activity images but on a large scale (e.g., 40K images in 

MPII human pose dataset) has a potential to yield reasonable result on images taken from a 

construction site. Liu et al. (2017) demonstrated the potential of applying a state-of-the-art 

convolutional neural network-based 2D human pose estimator trained from 40K images 

collected from daily activities, directly to video frames of 2 actual construction jobs with feasible 

accuracy on estimating body joint location. Yan et al. (2017) showcased several images from 

construction sites with super-imposed 2D skeleton captured by a convolutional neural network. 

Though without sufficient validation of the captured motion data for posture recognition, 

potential has been shown on a small number of static images. 
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While most studies still measure frequency and duration manually (Bao et al. 2006), a 

few studies made attempts to estimate the posture frequency from continuous human motion 

captured from videos. The key to estimate frequency is to identify the start and end time frame of 

the event concerned. By assuming the reliable quality of collected motion data, Chen et al. 

(2013) identified the time frames where the velocity of the wrist’s pixel location reached its local 

minima and labeled them the start/end point of a job cycle. Akkas et al. (2017) advanced the 

frequency estimation method by introducing machine learning algorithms and use the first cycle 

to train the estimator, without assuming perfect motion data. While these methods were tested to 

be feasible for cyclical jobs that provide some prior knowledge about the motion pattern, they 

would not be a feasible alternative for construction jobs, which are dynamic and have 

significantly fewer cyclical movements and larger variation between cycles due to an 

unstructured and dynamic environment. To identify the frequency of a posture, the key is to 

identify the time frame when a joint angle value enters or exits the boundary of a given range. 

The challenge then focuses on the robustness of frame-wise angle estimation, while reserving its 

temporal consistency across frames. 

Given recent advancements in human pose estimation algorithms in the computer vision 

community, angle estimation accuracy does not pose an excessive challenge to researchers. 

Temporal consistency, however, appears to be much less studied, especially for videos from 

construction jobsites glutted with severe and long-duration occlusions. To the best of my 

knowledge, this challenge still remains unsolved. 
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2.2 Literature Review 

Most studies addressing human motion capture on video frame sequences, essentially address 

two problems: spatial consistency within a frame and temporal consistency between frames. This 

section reviews the existing literature and has three major focal points: an explanation of the 

overarching framework to enforce temporal consistency while handling long-lasting occlusion, 

which is then followed by a review of its two key modules for spatial and temporal consistency 

respectively. 

 

Framework of Human Pose Estimation on Video 

As most of the studies for general human motion capture application favors to work towards 

real-time pose estimation, they process a video from the first to its next, without assuming the 

availability of frames after the one under processing (Achilles et al. 2016; Xiao and Zhu 2018; 

Yang et al. 2005). Consequently, the most commonly applied framework is detection-and-

tracking-based approaches that estimate one current frame at a time, based on the estimated 

human pose estimated in the past frames (Dabral et al. 2018; Girdhar et al. 2018; Gkioxari et al. 

2016). This type of methods incorporates two modules: detection module to enforce spatial 

consistency between body joint location within a frame and tracking module for temporal 

consistency between frames.  

Among a smaller number of studies that assume availability of future frames (i.e., 

formulate the problem as offline human pose tracking in videos), a two-stage scheme is 

commonly applied in which the first module generates a frame-wise estimation of human pose 

independently on every frame and the second utilized global optimization to modify the body 

joint location by enforcing temporal constraints (Baradel et al. 2017). However, most of the 
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studies focused on addressing short-term occlusion/imprecision for 3 - 20 frames (Achilles et al. 

2016; Fabbri et al. 2018; Gkioxari et al. 2016; Zhang and Shah 2015). For a normal video taken 

at 30 frames per second (fps), 20 frames represented less than one second, which is not sufficient 

for the long occlusion duration of videos captured from construction sites. 

Among methods dealing with human pose estimation in videos with a specific focus on 

long-lasting occlusion handling, studies about offline videos were reviewed. Yang et al. (2005) 

first recognized the object’s state of being before, during, or after occlusion, and then decided its 

location by assuming it during occlusion was similar to that during non-occluded states. This 

assumption might be valid, given the application scenario of human location tracking in a 

surveillance video. However, it is not viable for locating body joints with frequent movements. 

Similarly, Liang et al. (2018) detected the frames with occlusion, and then recovered the 

occluded object’s trajectory based on the occluding object. If occluded by its container, the 

trajectory would align with the detected container while otherwise remaining still. Given the 

complex interaction between construction workers and related tools/materials, this assumption 

would be difficult to generalize. Kobayashi et al. (2018) applied the two-stage detection-and-

correction scheme on human pose estimation and corrected the occluded body joints’ location by 

assuming a linear translation between consecutive frames. While this scheme initially appeared 

promising, the linear translation assumption would not work beyond its 3-frame short sequence. 

The proposed method adopts the two-stage detection-and-correction scheme, while the detection 

and correction modules are developed differently according to the literature review on possible 

methods for two modules, respectively, as further explained below. 
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Frame-wise Human Pose Estimation 

Convolution neural network (CNN or ConvNet) has attracted much attention in the computer 

vision domain, for its impressive performance on a range of visual tasks (Tompson et al. 2015; 

Zeiler and Fergus 2014), such as human pose estimation. CNN-based approaches share the 

advantage that there is no need to develop or select hand-crafted features, which saves significant 

human effort to explore. On the powerful computing resource developed recently, i.e., graphical 

processing unit (GPU), a huge-scale dataset could be trained and equip the model with strong 

ability to generalize across datasets.  

Among the CNN-based approaches for 2D human pose estimation, early work (Toshev 

and Szegedy 2014) formulated the pose estimation as a regression problem (Papandreou et al. 

2017) and directly estimate the coordinates of joint locations regarding image pixel. Later work 

found it more advantageous to generate joints location confidence map, and then calculate the 

optimal joints locations by finding the confidence maxima (Jain et al. 2014; Newell et al. 2016; 

Tompson et al. 2015). 

Based on the widely accepted finding from the computer vision domain, the literature 

review focused on this genre of methods. The existing 2D human pose estimation work falls into 

either of two sub-categories: top-down or bottom-up approach (Papandreou et al. 2017). The top-

down approach assumed only a single person presented in the image and bounded by a known 

rectangle (i.e., “bounding box”). Subsequently, body joints associated with the subject were 

localized within the box. The bottom-up approach assumed an unknown number of people 

appearing in the image and localized all body joints first. Then, the association between body 

joints and their subjects were identified. There remains no final conclusion of which category 

generally outperforms the other (Papandreou et al. 2017). However, top-down approaches are 
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more promising for on-site ergonomic evaluation for two major reasons: 1) it should be safe to 

assume single person presence for ergonomic evaluation as an observer tends to focus on one 

subject at a time and maximize the human figure in the recorded video to capture the most 

details; and 2) localizing body joints before identifying their association with the subject might 

be risky for construction jobs. For example, construction workers’ hands are usually covered 

with gloves and co-occur with tools or materials. As the appearance of such joints is remarkably 

different from the dataset trained for the human pose estimator, localizing the joints first is 

expected to be challenging. 

Based on the literature review and subjective hypothesis, preliminary testing was 

conducted by comparing the performance of representative methods from top-down and bottom-

up approaches. The testing result suggests the top-down methods work better for the sample 

dataset from on-site conditions. The state-of-the-art method of the category of top-down 

approaches (Newell et al. 2016) was selected as a major module in this research. Additionally, as 

multi-person presence is possible in construction sites, to adopt a top-down approach that 

assumes a single person’s presence, a human location module is added prior to pose estimation 

module. 

 

Detection and Optimization of Occluded/Misdetected Joints 

Regarding the detection of occluded or misdetected joints that need correction, a literature 

review was also conducted. Most of the approach focused on developing kinematic (or 

anatomical) and temporal constraints to evaluate the quality of raw detection (Kobayashi et al. 

2018): 
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1) Confidence of joint location. As a general output from 2D human pose estimation 

methods, the confidence value of each joint suggests the quality of location estimation. From the 

empirical evaluation, occluded or misdetected joints usually come with a low confidence level.  

2) Joints translation between frames. Despite that the joint location was estimated in 2D 

image’s pixel coordinates, the projected translation (change of location) between two 

consecutive time frames would be small, given a normal video captured at 30 fps. 

3) Change in bone length between frames. A single joint’s (e.g., wrist) translation may 

result from movements of all linked ones (e.g., shoulder) and cannot be constrained too tightly. 

The constraint on the change of bone length (e.g., forearm) could work as a supplement to better 

focus on the quality of joints concerned (e.g., wrist/elbow). 

As these ideas focused on the robustness of joints’ location estimation, this research 

added several more to constrain the joint angles directly, as ergonomic risk assessment focus on 

the estimation of body joint angle. In addition, as anthropometry data provides a statistical 

foundation for human figure measurement (e.g., bone length ratio of the major population), 

relevant data was also included in this work. 

 

2.3 Method 

A two-stage detection-and-correction scheme was adopted for the proposed video-based 2D 

human motion capture approach. The detection phase was implemented by a top-down 2D 

human pose estimation module. To incorporate the fast advancement of the pose estimation in 

the computer vision community, the proposed framework considered it a replaceable module and 

aligned the rest modules with its common interface. The subsequent correction phase was 

formulated as an optimization module by enforcing kinematic and temporal constraints. As the 
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selected top-down pose estimator assumed a known bounding box around the human, an 

additional human localization module was developed prior to the human pose estimation module. 

The structure could be illustrated by the proposed framework, as shown in Figure 2.1. 

The human localization and the human pose estimation modules were adopted from 

existing work and could be replaced with more advanced methods. The selected algorithms will 

be briefly explained but with specific emphasis on necessary modification about the integration 

interface. The optimization module was the original work of this research and will be discussed 

in detail. 

 

2.3.1 Human Localization 

As the prior module to human pose estimation, a human localization module was developed to 

generate a bounding box within which all the body joints should present. In the computer vision 

community, this problem was addressed by object detection methods. Modern object detectors 

built with convolutional neural networks perform remarkably well in detecting a spectrum of 

objects, including humans. As the existing object detection methods detect all the humans in still 

images, the modification was included attempting to track the targeted worker throughout the 

frame sequence. A pipeline was developed as the human localization module (Figure 2.2) by 

Figure 2.1 Framework of Video-based 2D Human Motion Capture 
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enforcing temporal constraints between the bounding box locations across frames and only retain 

the targeted worker. 

 

Working as the core algorithm of object detection, Faster R-CNN (Ren et al. 2015), 

which enables the detection of 20 different categories of objects, including humans, is selected. 

Faster R-CNN performs the task in two steps. First, some regions are proposed by a deep fully 

connected convolutional neural network. The regions, each with an “objectness score” (Ren et al. 

2015), are image patches where the target is of probable presence with the score quantifying the 

confidence. In the second step, a Fast R-CNN (Girshick 2015) detector gives the eventual 

bounding box of the target from provided regions. 

The algorithm originally reserves a detected bounding box for every human. To filter out 

irrelevant humans other than the worker of interest, a conditional statement is added. If multiple 

humans are detected, the conditional statement would be proved, and the worker of interest 

would be reserved. Specifically, to distinguish the worker of interest from the rest, a simple 

temporal constraint is applied, which favors the bounding box closer to the worker detected in 

the preceding frame while. As for the starting frame, this statement favors the worker with a 

bounding box closer to the image center. 

The human localization module aims to generate the smallest bounding box of the target. 

In practice, specific body joints might be excluded from the boundary. The human pose 

estimation algorithm, however, needs a conservative estimate of the human bounding box where 

Figure 2.2 Pipeline of Human Localization 
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every joint must be included. To address this practical issue, it is worth mentioning that in this 

study, the bounding box from the human detection algorithm is expanded by 50% about its width 

and height to include every joint. 

 

2.3.2 Human Pose Estimation 

Human pose estimation is a fundamental module in the proposed framework. The CNN-based 

algorithm (Newell et al., 2016) with state-of-the-art accuracy was selected as a representative of 

its kind. Other similar approaches could also work as alternatives for this module in the 

framework. The applied algorithm, Stacked Hourglass Networks (Newell et al., 2016), is 

comprised of multiple hourglass-like network modules (Figure 2.3). Each hourglass-like network 

has a symmetric architecture that processes the image in a fine-to-coarse (high resolution to low 

resolution) and then coarse-to-fine fashion. Going through multiple such modules (e.g., 8) 

enables the model to learn the image appearance of body joints both locally and globally. It is 

claimed that this network architecture plays an essential role in realizing optimal performance. 

The other major source that contributes to the performance lies in the strategy of regularizing the 

model in the midway by adding a loss function between two consecutive hourglass networks that 

work as an intermediate supervision process. The direct output is a set of heatmaps, each 

showing the confidence distribution of an individual joint’s presence regarding each pixel 

location. The visualized output connects each joint’s location to form a skeleton, and the joint 

location is the pixel with maximum confidence value in the corresponding heatmap. 
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2.3.3 Optimization 

Similar to Kobayashi et al. (2018), Liang et al. (2018), and Yang et al. (2005), this research 

addresses the long-duration occlusion handling issue by firstly separate the video to phases of 

before, during, and after occlusion. This is referred to as the “detection” phase. Subsequently, the 

“correction” phase is introduced to recover the occluded joints’ locations. 

 

Detection Phase in Detection-and-Correction Scheme 

Similar to Kobayashi et al. (2018), the detection phase is implemented by checking a series of 

rules. With a violation of any rule, the joint would be labeled as occluded/misdetected joint. To 

formulate this process in an algorithm, every joint in a frame is assigned with a “state.”  

Initialized as “reliable,” whenever considered to be occluded/misdetected the state would be 

updated to “unreliable” and would expect a correction in the later phase. Upon the completion of 

Figure 2.3 2D Human Pose Estimation 
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the detection phase on all the joints throughout frames, the correction phase would be conducted 

and all the corrected joints’ states would turn to “reliable” (Figure 2.4). 

 

The set of rules for occluded/misdetected joints detection are listed below, while sharing 

the first three with Kobayashi et al. (2018) and including several additional ones proposed 

originally on behalf of ergonomic risk assessment. 

1) Confidence of joint location. With some preliminary analysis, high confidence of joint 

location estimation is strongly correlated with the fact if the joint is correctly detected. Different 

from Kobayashi et al. (2018), this rule is enforced more strictly that the high confidence should 

hold for a number of consecutive frames, instead of one. As being free of occlusion should not 

last longer than one frame, this modification is introduced to eliminate occasional success of 

joint location estimation. 

2) Joints’ translation between frames. The projected translation of a joint between 

consecutive frames should not be too large. Data-driven parameters are learned from the training 

dataset. Every joint has its specific range of movement so the parameters are joint-specific. 

State State

UnreliableReliable

Condition 1

Frame # [0,n] ∪ [n+m, N]

Joint (i) 
Frame # [n+1, n+m-1]

Joint (i) 

Condition 2

Optimization

State

Optimized

Figure 2.4 State Update Scheme for Optimization 
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3) Bone length ratio maximum. Despite that bone length suffered from distortion when 

projected from 3D space to 2D images, the maximum bone length would not be unpredictable. In 

the field of ergonomics, anthropometric measurements were well-studied with accessible data. 

Such data could provide a quantity like maximum forearm length ratio regarding the subject’s 

height/stature for the 95th percentile of the male population. An example of the data source is 

CAESAR anthropometric database. 

4) Joint angle maximum. The maximum angle of some joints comes with a natural limit. 

For example, the elbow angle could not be less than ~30° even bent to its extreme. Such data 

could also be accessible in an anthropometric measurement dataset. 

 

Correction Phase in Detection-and-Correction Scheme 

The most relevant research (Kobayashi et al. 2018) only addresses the correction phase across 

three adjacent frames, assuming non-successive frames with the same occluded/misdetected 

joints. As this assumption would not hold in the target application, this research develops a novel 

method regarding the correction phase. Firstly, the two shoulder and two hip joints were 

considered as “root” joints, and would be corrected before optimizing other joints. They would 

then perform as foundations for localizing others. 

According to the configuration of the occluded/misdetected joint and its adjacent ones, 

there are two configuration-conditioned scenarios: 1) end joint is occluded/misdetected 

(equivalently, with an “unreliable” state). This includes two scenarios if there is a connecting 

joint (e.g., elbow) between the root (e.g., shoulder) and the end joint (e.g., wrist), in terms of the 

connecting joint’s state; and 2) end joint is well detected while the connecting joint was not. For 

the former, tree-structured optimization is deployed at the direction of the root, connecting, and 
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then end joint. However, as for the latter, this method would not be feasible if both the root and 

end joints’ locations are known. In this case, inverse kinematics is introduced to estimate the 

connecting joint’s location and solved by the Jacobian inverse technique.  

As ergonomic evaluation focuses on the joint angle instead of its location, this research 

directly optimizes the joint angle, which is noticeably distinct from other works. Specifically, all 

the joints’ location data was converted from cartesian coordinates to polar coordinates, expressed 

by bone length and joint angle following the kinematic model. 

 

2.4 Field Testing 

To test the feasibility of the proposed approach, field testing is conducted in a construction 

jobsite. The primary purpose of the testing is to examine whether the proposed method is 

applicable in a jobsite to handle the occlusion and generate robust human motion data for 

postural analysis in ergonomic risk assessment tools. To fulfill this objective, the joint angle is 

used for the validation metric to reflect the feasibility for automating assessment tools. 

 

2.4.1 Testing Condition and Tasks 

The testbed was sponsored by Power Construction, and 10 male construction workers 

participated in this study with written consent. Each construction worker performed a different 

task for several cycles. To have a balanced video length across subjects, roughly a 10 seconds 

video clip (~300 frames) for each subject was selected to validate the approach. All the subjects 

were asked to keep the personal protective equipment (PPE) and tools in order to reflect the 

usual appearance of body joints in the videos. Most tasks showed very typical challenges in 

terms of body joint localization, such as long-duration occlusion and potential interference from 
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adherent tools and materials. A sample of cropped video frames reflecting the jobs are shown in 

Figure 2.5.  

 

The ground truth was provided by manual annotation of all 16 body joints in every frame 

with a developed tool in MATLAB®. The human annotators were asked to click on the center of 

body joints with a visualized cursor, and the software recorded the pixel location of the click to 

obtain the optimal data quality. 

 

2.4.2 Evaluation Metrics 

This testing attempted to validate the human motion capture performance against the manually 

annotated body joints regarding both location and angle. 

As for the evaluation metric for joints location, standard Percentage of Correct Keypoints 

with head size as acceptance threshold (PCKh) (Andriluka et al. 2014) is selected, which is 

widely accepted in the computer vision community. PCKh quantifies the percentage of body 

joints that is correctly located within a normalized distance of the ground truth location by a 

Figure 2.5 Examples of Raw Video Frames for 2D Human Motion Capture 
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fraction of the head size. For example, PCKh@0.5, which 

is used in this testing, indicates that half (0.5) of the head 

size is the allowed distance between the estimated location 

and the annotated one. Illustration about whether a joint is 

referred to as correctly detected is shown in Figure 2.6. 

Regarding the evaluation metric for joints angle, a 

typical frame-wise mean absolute error and its standard 

deviation were selected to reflect the feasibility to estimate 

joints angle. 

 

2.4.3 Testing Results 

Accuracy of Joint Location Estimation 

Examples of the estimated 2D human skeleton are shown in Figure 2.8. As for the quantitative 

result, Table 2.2 shows the accuracy of body joints location estimation regarding individual body 

joint and task, expressed by the 

evaluation metric PCKh@0.5. To 

summarize the accuracy statistics, 

body joints’ locations generated from 

the proposed 2D human motion 

capture framework achieve an 

accuracy of 83.2% on average of the 

10 tasks across all body joints. To 

further analyze how occlusion affects the 

Figure 2.6 Illustration for Evaluation 

Metric: PCKh 

Figure 2.7 PCKh of Different Body Joints 
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accuracy, we excluded the occluded body joints. The accuracy of non-occluded body joints is 

86.9% on average. 

Table 2.1 Accuracy of 2D Joint Location Estimation 

 

To show the accuracy in terms of the normalized distance from the annotated joint 

location, the PCKh score is illustrated in Figure 2.7.The horizontal coordinate shows the PCKh 

normalized distance threshold (e.g., 0.5 indicates 0.5 x head size) while the vertical coordinate 

represents the proportion of joints that are predicted to lie within a corresponding threshold. 

Given one point along the curve, we can interpret the number of joints “correctly” identified 

(vertical coordinate) in terms of its normalized distance from the ground truth location 

(horizontal coordinate). In other words, the sooner the curve reaches the desired magnitude of the 

detection rate, the better its accuracy. Specifically, the resulting figure shows that ankle and head 

are best detected while the wrist and elbow had the lowest accuracy level. 

Task Head Shoulder Elbow Wrist Hip Knee Ankle Total 

Carrying Lumber 96.0 82.2 79.8 57.7 91.1 91.2 92.9 84.4 

Carrying Frame 99.8 99.5 70.3 57.1 86.8 73.9 78.1 80.8 

Dumping Materials 94.7 89.3 87.4 66.7 81.9 71.3 81.2 81.8 

Carrying Plywood 75.9 86.7 74.8 56.0 81.7 92.2 94.6 80.3 

Stacking Lumber 95.0 69.5 95.5 85.6 83.6 64.1 81.9 82.2 

Pushing Cart 100.0 97.2 92.0 85.1 86.2 95.8 96.4 93.3 

Shoveling 100.0 97.5 100.0 95.7 95.1 95.7 100.0 97.7 

Climbing Ladder 95.6 82.2 87.2 81.6 73.4 86.6 54.2 80.1 

Hammering 100.0 90.7 92.9 82.8 85.1 99.4 98.4 92.7 

Kneeling 98.2 98.2 69.9 53.7 34.7 71.3 59.7 69.4 

All Joints 94.3 88.2 83.5 69.6 79.6 83.9 83.2 83.2 

Visible Joints 94.2 96.0 94.2 78.0 78.1 85.9 85.6 86.9 
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Accuracy of Joint Angle Estimation 

Table 2.2 shows the accuracy of 2D joint angle estimation across tasks and body joints, 

expressed by the mean absolute error (MAE) and its standard deviation (STD.). To summarize 

the result, the average absolute difference between the vision-based approach and the manual 

annotation is 11.6°, with a standard deviation of 13.6°. 

 

2.5 Discussion 

The 2D joint location estimation accuracy is evaluated regarding all the joints first and then only 

visible joints that are free of occlusion. The accuracy of both scenarios is illustrated in Figure 

2.9. In the way the data is visualized, the larger the “difference from visible joints” is, the less 

occluded body joints are corrected located. In the collected videos from the construction site, 

most of the jobs were captured from a side-view or diagonal-view. Head is defined as the top of 

one’s head so it is rarely occluded in the videos. All the rest body joints have left and right of its 

Figure 2.8 Examples of Estimated 2D Human Pose 
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kind, and are vulnerable to occlusion on one of either side. Considering the actual proportion of 

occluded body joints, the illustrated accuracy difference from all joints to visible/non-occluded 

body joints is less than or around 10% and is a small value. This small amount of difference 

suggested that the proposed method has a good ability to infer the occluded body joint locations. 

Table 2.2 Accuracy of 2D Joint Angle Estimation 

 

Performance comparison is conducted between the proposed method on the collected 

image set from a construction site and the state-of-the-art 2D human pose estimation method 

(Zhang et al. 2019) on the benchmark MPII Human Pose Dataset built by daily activity images 

(Figure 2.10). The average difference between these two scenarios is within 10% and is 

considered to be promising regarding the algorithm’s ability of generalization. Among all the 

Task Metric 

Body Joint 

Left 

Shoulder 

Right 

Shoulder 

Left 

Elbow 

Right 

Elbow 
Back Neck 

Left 

Knee 

Right 

Knee 
Mean 

Carrying 

Lumber 

MAE 8.0 9.2 12.4 14.5 3.3 9.3 7.3 7.9 9.0 

STD. 7.7 9.0 13.7 16.5 3.6 7.0 6.5 9.6 10.5 

Carrying 

Frame 

MAE 25.8 5.1 17.9 5.9 3.6 7.1 9.8 9.8 10.6 

STD. 31.8 3.5 21.7 4.7 3.0 4.4 11.6 7.8 16.3 

Dumping 

Materials 

MAE 8.0 5.9 4.7 9.3 5.3 6.8 20.2 9.5 8.7 

STD. 7.7 6.0 4.7 12.8 5.9 4.7 24.2 8.6 12.1 

Carrying 

Plywood 

MAE 5.7 32.8 5.9 44.8 3.8 15.4 5.1 10.6 15.5 

STD. 5.2 32.3 5.8 41.7 2.6 7.2 4.7 10.6 24.1 

Stacking 

Lumber 

MAE 22.2 30.8 12.0 11.1 17.9 19.7 14.7 15.5 18.0 

STD. 11.6 17.3 10.7 7.7 11.2 7.9 10.5 13.9 13.2 

Cart 

Pushing 

MAE 4.6 7.9 4.8 14.9 4.2 13.5 6.6 8.0 8.0 

STD. 3.4 6.3 5.4 10.8 3.4 6.1 5.1 8.1 7.5 

Shoveling 
MAE 18.5 17.4 6.2 5.6 21.1 8.3 4.2 3.5 10.6 

STD. 19.3 16.4 5.5 5.4 19.0 4.6 4.6 2.6 13.5 

Ladder 

Climbing 

MAE 12.6 5.8 14.3 5.9 4.2 5.2 19.0 16.1 10.4 

STD. 9.9 4.4 9.8 3.8 2.9 3.7 11.8 13.1 10.0 

Hammering 
MAE 23.6 16.5 12.2 5.6 19.7 7.2 7.8 4.9 12.2 

STD. 12.7 12.7 12.6 4.6 12.9 4.6 6.1 5.4 12.7 

Kneeling 
MAE 14.6 6.0 26.4 5.6 5.4 12.8 16.1 13.5 13.2 

STD. 11.7 4.5 13.9 13.9 5.2 7.1 14.8 11.0 15.7 

All 
MAE 14.4 13.8 11.7 14.0 8.8 10.5 11.1 10.0 11.6 

STD. 12.1 11.3 11.4 14.7 7.0 5.7 10.0 9.1 13.6 
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body joints concerned, the wrist has the largest discrepancy of almost 20%. This aligns well with 

the aforementioned hypothesis that construction jobs are expected to have huge bias and 

variation in hands’ appearance due to continuous interaction with tools and materials. From the 

testing result, it is observed that for the three carrying tasks (i.e., carrying lumber, scaffold, and 

plywood) have their wrist localization accuracy consistently below 60%. The impact imposed by 

the contacting materials seems to be apparent. Similarly, the second to the largest such difference 

is related to the hip joint. Based on the observation on the visualized 2D skeleton on the test 

images, it is found that the detected hip joint positions are usually around the subjects’ waist 

instead of the hips. It is reasonable if the manual annotation in MPII dataset regarding hip 

location has a bias from how that in collected dataset of construction frames are annotated. Also, 

the impact by being attributed to the fact the construction workers usually wear a tool belt on 

their waist, and the hanging tools may affect the appearance around the hips. 

94.3 88.2 83.5
69.6

79.6 83.9 83.2 83.2

0.1 7.8 10.7

8.4
1.5

2.0 2.4 3.7

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Head Shoulder Elbow Wrist Hip Knee Ankle Total

PCKh@0.5 of 2D Joint Location Estimation

All Joints Diff. from Visible Joints

Figure 2.9 Accuracy for 2D Body Joint Location: All Joints VS. Visible Joints 
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Apart from the joint location, the angle estimation accuracy is also evaluated. Figure 2.11 

shows the overall accuracy of 2D joint angle estimation error across the jobs regarding individual 

body joint. Considering the subjects have continuous movement, the angle estimation accuracy 

shows a promising performance for the on-site application. As the ground truth data is provided 

by manual annotation of joint location expressed in image pixel, the proposed method has a 

comparable estimation with human observation. Among the body joints, back has the highest 

accuracy of 8.8 difference. As the back angle is determined by mid-point of shoulders and mid-

point of hips and that shoulder has a very high (88.2%) localization accuracy, the seemingly low 

localization accuracy of the hip does not have a large impact on the estimation of back angle. 

 

In the field test, a major failure case appears in knee angle estimation. As shown in Table 

2.2, the two jobs involving kneeling postures (i.e., ladder climbing and kneeling) have large 

angle estimation error (i.e., 16-19 degrees) given little occlusion. This result correlates well with 

the joint location accuracy as shown in Table 2.1, that these two jobs have the lowest accuracy 

regarding the location of three joints (i.e., hip, knee, and ankle) that determine the knee angle. It 

suggests that the widely used 2D human pose datasets (e.g., MPII) collected mainly from daily 
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Figure 2.10 Accuracy of 2D Body Joint Location: Construction Dataset VS. Daily Activity Dataset  
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activities may involve insufficient kneeling or similar workplace postures. Supplementary data 

collection and model fine-tuning with domain-specific context may enhance the framework’s 

capability in motion capture. 

 

2.6 Conclusion 

In this chapter, this study proposed a video-based 2D human motion capture framework to 

estimate primary risk factors (i.e., posture and repetition) in ergonomic assessment tools. To 

address the knowledge gap that enforcing kinematic and temporal consistency across video 

frames under long-lasting occlusion is the key to enable accurate posture and repetition 

(frequency and duration) estimation, a convolutional neural network-based 2D human motion 

capture framework is proposed. The framework mainly consists of a frame-wise 2D human pose 

estimation module that applies the state-of-the-art algorithm and a novel optimization module 

that detects and correct occluded/misdetected joint location based on kinematic and temporal 

constraints. The pose estimation module is replaceable to incorporate continuous advancement in 

the computer vision community. The optimization module leverages the confidence level of pose 

Figure 2.11 Accuracy of 2D Joint Angle Estimation Regarding Body Joints 
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estimation and anthropometry data based on an extensive statistical analysis of human motion in 

the workplace. In addition, the joint location correction step in optimization is innovatively 

designed for ergonomic risk assessment that enforces a linear change of joint angle and projected 

bone length, instead of the joint location that most studies focus on for a general purpose. 

To test the feasibility of the proposed approach, a field test was conducted with ten male 

construction workers who have different anthropometry. From the testing results, it was found 

that the proposed framework can provide robust body joint localization with 83.2% of accuracy 

in PCKh@0.5, and joint angle estimation with 11.6 of error compared with manual annotation. 

This result indicates the potential of the proposed framework to enforce temporal smoothness 

across frames regarding body joint angles and viable to estimate posture and repetition for 

ergonomic risk assessment. 

From the test, issues are also identified as potential study in the future. By comparing 

with the performance of the state-of-the-art algorithm on benchmark dataset with images 

collected from daily activity, it is found that wrist localization has significantly lower accuracy 

of 19.2%. It may indicate the apparent bias and variation of hand appearance of construction jobs 

impose a noteworthy impact on the pose estimation’s ability of generalization regarding wrist. 

As the human pose estimation performance largely depends on the training dataset, the low 

accuracy of wrist localization suggests the need for extensive training images collected from a 

construction site, especially including a large variation on hands appearance. It is also found that 

even the hip has low accuracy in localization, the issue may not be significant as the estimation 

accuracy of back angle, which directly relies on hip location, is very high (8.8 average error). 

By examining the estimated hip location visualized on images, it is found that the hip location is 

close to that of the waist. It indicates that the hip location has a large discrepancy in its vertical 
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coordinate but trivial in horizontal coordinate. For the purpose of ergonomic risk assessment, this 

issue may be ignored. 

Despite that the framework needs to be further tested on a larger scale and to address 

remaining limitations such as training with the additional construction-focused dataset and 

enhancing occlusion handling ability, the proposed framework has great potential for on-site risk 

factor estimation in ergonomic risk assessment tools. 
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Chapter 3 Video-Based 3D Human Motion Capture for Posture and 

Repetition Estimation 

 

 

3.1 Introduction 

The preceding chapter introduced a 2D human motion capture framework to estimate posture 

and repetition data, which are primary risk factors for ergonomic risk assessment tools such as 

REBA, RULA, and OWAS. An estimated 2D joint angle on images is projected from 3D space 

and is sufficient for many assessment tools that either only need a rough posture category instead 

of numerical angle value, or a projected angle on the sagittal plane that can align with image 

plane given a good camera angle. There are, however, tools that require specific values of angles 

that cannot be approximated by being projected onto the image plane, such as the twisting angles 

of the trunk. NIOSH lifting equation (Waters et al. 1994) is one of the examples where such an 

angle (i.e., “asymmetric angle”) is needed to evaluate the ergonomic risk of lifting tasks. Some 

assessment tools further require the distinction between abduction/adduction and 

flexion/extension, regarding the limb’s pose that also cannot be addressed by 2D projected 

angles. 2D human motion capture does not have the capacity to handle such scenarios. 

Apart from specific types of angles, tools that require distance-related measurements also 

find 2D human motion inapplicable. Such measurements include, but are not limited to, hands’ 

distance from the body or ground. Specifically, NIOSH lifting equation requires the hands’ 

horizontal distance from the ankles, and vertical distance from the ground, and vertical lifting 
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distance (Waters et al. 1994). Snook tables require hands’ horizontal distance from the front of 

the body and vertical lifting distance (Snook and Ciriello 1991).  

Beyond postural analysis that evaluates an overall risk level of jobs, biomechanical 

analysis is favored to estimate individual internal joints’ exerted loads when joint location and 

external force exertion data are accessible. Among the spectrum of biomechanical models, some 

are static models (Chaffin and Baker 1970; Garg and Chaffin 1975; Martin and Chaffin 2007) 

that only require body joint location for static postures. The limitation of these models is the 

ignorance of inertial loads exerted on body parts due to dynamic postures. Dynamic 

biomechanical models (Marras and Sommerich 1991), can handle this scenario by utilizing 

joints’ velocity and acceleration. As the velocity and acceleration require true-to-scale (e.g., in 

m/s), measurement of kinetics data, thus necessitates the motion data in 3D space. 

The invasiveness and high cost of 3D human motion capture system are the major 

obstacles to collect such data in the workplace. To address these issues, some studies applied 

human motion modeling software, which provided a human model (Li et al. 2017, 2019). With 

relatively light manual effort required to manipulate the human model, it animates the expected 

motion under realistic movement constraints. 

 To eliminate the human modeling effort, automated motion capture approaches with 

economical devices were explored. They mainly focused on image sensors such as RGB-D 

sensor, stereovision camera, and multiple cameras. The performance evaluation comparing these 

methods were also conducted (Seo et al. 2017). Given the capability of the existing motion 

capture approaches, Seo (2016) investigated the expected motion data quality level to automate 

biomechanical analysis on lifting tasks. It was concluded that 10° of error in joint angle 

estimation is the maximum to obtain reliable biomechanical analysis result. Among the three 
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approaches under comparison, RGB-D sensor achieved the joint angle estimation accuracy of 

less than 10° error, while stereovision camera and multiple camera approach did not. Given 

RGB-D sensor was not applicable in an outdoor environment, which is a normal condition in 

construction, there is still a need to develop an economical method to capture quality human 

motion data for biomechanical analysis. 

In summary, to evaluate the risk factor of posture that relies on more detailed motion data 

(e.g., twisting, flexion/extension, abduction/adduction) or biomechanical analysis that need true-

to-scale 3D joint location and even kinetics data such as velocity and acceleration, a 3D human 

motion capture approach is needed. Specifically, the expected approach should achieve a joint 

angle estimation accuracy of within 10 error while reserving temporal smoothness for repetition 

estimation. 

 

3.2 Literature Review 

Among the major non-invasive imaging sensors applicable for outdoor deployment, stereovision 

camera and multiple camera approaches share a common limitation of relying on 3D 

reconstruction from multiple lenses. This process makes it sensitive to the variation of 

illumination condition and occlusions. With the remarkable progress of 3D human pose 

estimation from a monocular image made in computer vision domain recently, this study aims to 

apply a 3D human pose estimation method for still images, and integrate it with the proposed 

two-stage detection-and-correction scheme with needed modification to achieve 3D human 

motion capture on video sequences captured from construction sites. 
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Frame-wise human pose estimation 

3D human pose estimation from the monocular/single 2D image is a severely ill-posed problem 

because a projected joint location can represent infinite possible locations in a 3D space 

(Sarafianos et al. 2016). It is also ill-conditioned as a small error in projected joint location 

estimation, which would result in a much greater error in a 3D space (Sarafianos et al. 2016). 

However, as training such a pose estimator requires a large amount of ground truth data, 

including 3D human motion and corresponding images. Compared with 2D human pose 

estimation that only requires manual annotation of the projected joint location on the images, 3D 

human pose estimation is much costlier. To achieve advanced performance, a noteworthy 

amount of research was conducted focusing on training an effective and generalizable pose 

estimator with a minimum amount of data or data collection effort. 

Rogez and Schmid (2016) augmented the training dataset by developing an image-based 

synthesis engine. With identical human motion data, multiple synthetic images were generated 

with different appearances and backgrounds. Chen et al. (2016) augmented the training dataset 

by generating avatars with 3D human motion. By changing the appearance (e.g., clothing) of 

avatars and generating 2D images from diverse view angles, the model was more generalizable 

to different appearance and camera view. As the 3D human pose datasets do not include external 

occlusion (contrary to occlusion of one’s other body parts), some studies also augment the 

dataset by synthesizing noises, e.g., image patch to partially occlude the subject (Sárándi et al. 

2018). 

Besides training dataset augmentation, another idea was to utilize dual-source training 

data. One is an image captured from lab condition with accurate 3D human motion data from a 

multiple camera system. Examples of such datasets are CMU Motion Capture Dataset and 
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Human3.6M Dataset (Ionescu et al. 2014). The other source is 2D images taken in the wild with 

the manual annotated 2D human pose, such as MPII Human Pose Dataset. Due to the much 

higher cost of collecting 3D pose, annotated 2D pose dataset comes on a much larger scale. 

Yasin et al. (2015) learned the mapping between 3D poses and its 2D projection in the training 

phase. In the testing phase, 2D pose would be estimated first with the model trained from the 

massive annotated dataset. The most similar 3D pose was then retrieved with the learned 

mapping between 2D and 3D poses, and it was refined to obtain the final pose. Zhou et al. (2017) 

proposed a framework that imposes weakly supervision on a 2D annotated pose by only 

enforcing the bone length symmetry of the left and right body parts, and 2D joints’ projection 

loss. 

 

Detection of occluded/misdetected joints 

There were many constraints explored in the 3D human pose estimation area. Many of them 

were carefully reviewed and considered for application in this study, while some of them could 

be modified to better fit into the target application. 

1) Confidence of joint location’s 2D projection. 3D human pose estimation is usually 

regressed from the estimated 2D location from the image. It only comes with a confidence level 

for the location’s 2D projection, rather than that of 3D space. Simo-Serra et al. (2012) used the 

confidence of joint location’s 2D projection for evaluating the quality of the estimated 3D pose. 

2) Bone length constancy. As 3D human motion capture estimates the joint’s location in 

3D space, bone length constancy was widely utilized to find the occluded/misdetected joint, and 

also to enforce a reasonable correction process to recover problematic initial estimation (Gupta et 

al. 2008; Ramakrishna et al. 2012). As it was found to be intractable to enforce length constancy 
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on each individual bone (Ramakrishna et al. 2012), studies generally only constrain a constant 

sum of bone length for all parts.  

3) Bone length ratio. It was constrained according to anthropometry data. As the 

estimated 3D human pose came from a monocular image lacking scaling information, the 

individual’s stature was not considered, and the bone length proportions were only counted as 

identical across individuals (Wang et al. 2014). This constraint could be modified to fit for 

ergonomic evaluation by incorporating the individual’s stature and specific anthropometry data 

from authorized datasets. 

4) Joint angle maximum. Radwan et al. (2013) identified the possible range of motion 

from the training dataset and enforced joint angles to be smaller than the maximum. 

Many other ideas were also explored. For example, the appearance of symmetric body 

parts (e.g., left and right wrists) was constrained to be similar (Gupta et al. 2008). This was not 

considered feasible to apply in the construction site as workers frequently interact with different 

tools or materials and usually do not have a similar appearance on symmetric body joints. 

 

Correction of occluded/misdetected joints 

Following the detection of occluded/misdetected joints, correction of the problematic joint 

location is naturally different from that for 2D human motion, as the increase of the human 

pose’s dimensionality. 

 In 2D space, the orientation of a limb can be parameterized by one angle (e.g., the angle 

between the vector and one of the axes). Thus, if the orientation of a limb is known at the start 

and end positions, while given the condition of linear joint angle interpolation, its orientations in 
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the intervening frames are straightforward to obtain.  However, it becomes challenging in 3D 

space as it requires more than one angle to define a limb’s orientation. 

There are three systems to parameterize the orientation, in the area of computer graphics: 

1) Euler angles; 2) quaternions; and 3) exponential map (Du et al. 2016). For human pose 

modeling, Euler angles are widely applied to represent a joint orientation, but not suitable to 

calculate the intervening states between the start and end states. The reasons include its gimbal 

lock and singularities issues. Quaternions have a long history of being applied for representing 

the rotation of joint (Du et al. 2016; Lu and Dai 2018; Urtasun and Fua 2004), and the unit 

quaternions are free of gimbal lock, thus in this study, the quaternions were selected and 

normalized to achieve this property. An exponential map is essentially a re-parameterization of 

quaternions, so it has similar properties with quaternions. 

 

3.3 Method 

3.3.1 Frame-wise 3D Human Pose Estimation 

To maximize the pose estimator’s ability to generalize with minimum training data or dataset 

augment effort, the major ideas could be summarized as: 1) synthesize training data, mainly 2D 

images with the different appearance or introducing occlusion; 2) utilize 2D training data with 

only manually annotated 2D poses. The second approach was adopted in this study due to the 

corresponding major update of the network architecture, while the first approach could be 

adopted upon this basis. 

Among the studies utilizing the second approach, the weakly supervised method (Zhou et 

al. 2017) was selected as the frame-wise 3D human pose estimation module. This method trained 

the pose estimation network from both data sources of Human3.6M (2D image with 3D motion 
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data from lab setting) and MPII (2D image with 2D motion data “in the wild”). The network 

imposed strong supervision for 3D motion data source by directly enforcing the estimated 3D 

joints location to be the same as that of ground truth motion data. In contrast, weak supervision 

was applied for 2D motion data source by only enforcing bone length symmetry between left and 

corresponding right parts as no 3D ground truth motion data was available. It was also selected 

because the pose estimation network was built upon the 2D pose estimator (Newell et al. 2016) 

this study applied in Chapter 2. Because of its demonstrated feasibility to work for the target 

application, this study inherited the network architecture to expect a similar level of 

performance. 

 

3.3.2 Optimization 

Optimization module of the proposed 3D human motion capture framework was inherited from 

the 2D motion capture framework and also consists of two phases that form the detection-and-

correction scheme. 

 

Detection Phase in Detection-and-Correction Scheme 

To identify the before, during, and after occlusion frame segment, most of the rules applied in 

the proposed 2D motion capture framework was adopted in the 3D framework. The major 

change was adding bone length consistency as an additional constraint. The inherited rules were 

modified accordingly as follows: 

1) Confidence of joint location’s 2D projection. Low confidence of joint location’s 2D 

projection suggests a high probability of occlusion or misdetection. A misdetected joint naturally 
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expects re-evaluation of location in 3D space. An occluded joint may be estimated correctly 

regarding location, but deserves further evaluation based on other constraints. 

2) Bone length constancy. While it was found to be intractable to enforce length 

constancy on each individual bone when estimating the joints location in 3D space (Ramakrishna 

et al. 2012), it is not necessary to enforce this rule strictly to obtain a feasible level of accuracy to 

estimate posture and repetition. Thus this study only constrained the bone length to lie within ±

10% of the median of the values throughout the frame sequence. Mean value was not used to 

prevent the impact of outliers. 

3) Bone length ratio. 

4) Joint angle maximum.  

5) Joint location translation between frames. 

The threshold values applied for 3) – 5) are either from anthropometric measurement 

datasets (e.g., CAESAR) or calculated from the training dataset.  

 

Correction Phase in Detection-and-Correction Scheme 

Given the correctly detected poses at the start and end frame of the occluded/misdetected 

segment, the intervening poses were recovered by spherical linear interpolation, abbreviated as 

Slerp, represented by a unit quaternion. Quaternion is expressed by a four-element vector as q = 

[w, x, y, z]. Before interpolation, the first step is to convert the 3D joint angle, or axis angle, to 

quaternion. The 3D joint angle is the angle value between the vector of two body parts’ axes, v1 

and v2, in 3D space. Supposing the axis angle is , then the conversion equation to quaternion 

can be expressed by: 
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𝑤 = cos⁡(
𝛼
2)

[𝑥, 𝑦, 𝑧] = ⁡
𝑣1 × 𝑣2
|𝑣1 × 𝑣2|

 

Two unit quaternions q0 and q1 would be obtained at the start and end positions of the 

interpolation. To calculate the quaternions of in-between frames, the “distance”  between the 

quaternions of the start and end positions was first derived by: 

θ = arccos
dot(𝑞0, 𝑞1)

|𝑞0||𝑞1|
 

Supposing t is the time-frame index, and t[0,1], the quaternion of an intervening frame can be 

calculated as: 

q(t) = 𝑆𝑙𝑒𝑟𝑝(𝑡, 𝑞0, 𝑞1) = ⁡
𝑞0sin⁡((1 − 𝑡)θ) + 𝑞1sin⁡(tθ)

sin⁡(𝜃)
 

Quaternions were then converted to the joint location of all intervening frames, given the parent 

joint (adjacent joint closer to the body center) location expressed by Cartesian coordinates 

[x,y,z]: 

joint⁡locationchild = 𝑞 × 𝑗𝑜𝑖𝑛𝑡⁡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑝𝑎𝑟𝑒𝑛𝑡 × 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒(𝑞) 

 

3.4 Laboratory Testing 

To test the feasibility of the proposed approach, laboratory testing was conducted in this study. 

To the best of my knowledge, there is no validated motion capture system that can provide 

ground truth for 3D human motion in a construction jobsite. As aforementioned in the 

introductory section of this chapter, Seo (2016) suggested the expected quality of 3D motion data 

captured in the lab condition is ±10° in joint angle estimation. This study aimed to test if the 

proposed approach could achieve the expected level of accuracy. 
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3.4.1 Testing Conditions 

For this test, pushing task was selected for estimating the posture. The cart to be pushed was very 

heavy that it takes around 80 N initial force to move the cart. This heavy pushing naturally made 

the subject to involve dynamicity all major body joint angles, including shoulder, elbow, back, 

knee, and neck. 

10 subjects participated in this test to provide a diversity of stature and the joint angles’ 

configuration. The subjects’ height ranges from 160 to 190 cm. As they pushed the same cart, 

subjects had to drive their body parts differently, by presenting with different joint angles, to 

perform the pushing with identical hand height. The range of motion (i.e., range of joint angle) 

for primary body joints are: 0°-120° for shoulders, 0°-120° for elbows, 0°-90° for back, 0°-60° 

for neck, and 0°-90° for knees. 

To demonstrate the advantage of 3D human motion capture regarding estimating joint 

angle at a non-sideview perspective, the smartphone camera was located at a diagonal view to 

the right side of the subject. To provide the ground truth for the estimated motion data, optical 

marker-based motion capture system (OptoTrakTM, Northen Digital, Inc., Waterloo, Canada) was 

set up for this test. The system provides the 3D location of each body-attached marker, and the 

joint angle was calculated from the vector connecting two adjacent markers. As the markers 

could only be attached at the joint’s surface and the vision-based approach estimates the joint 

center location, the adjacent markers’ locations were carefully adjusted to best align with the 

limb’s rotational axis. The testing layout and an example frame are illustrated in Figure 3.1. 
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3.4.2 Evaluation Metric 

The proposed vision-based approach generates the 3D human skeleton in the camera coordinate 

system. The location of a body joint is expressed in the unit of the pixel. The skeleton 

constructed by the motion capture system’s marker locations is expressed in the unit of 

millimeter. The discrepancy between the coordinate system of two approaches makes it 

challenging and unfair to compare the joints location estimation without any assumption. As 

ergonomic evaluation does not require absolute joint locations, this study only validates the joint 

angle estimation. As for some ergonomic evaluation tools require, relative joint locations (e.g., 

horizontal distance between hand and body) will be evaluated in Chapter 4. 

 To evaluate the joint angle estimation accuracy, frame-wise mean absolute error (MAE) 

and its standard deviation (STD.) was used, which is the same measurement with that of the 

relevant study (Seo 2016) suggesting the expected accuracy. 

 

Figure 3.1 Testing Layout of 3D Human Motion Capture 
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Table 3.1 Accuracy of 3D Joint Angle Estimation 

Subject 

ID 
Metric 

Joint Angle Estimation Error (Unit: degree) 

Left 

Shoul

der 

Right 

Shoul

der 

Left 

Elbow 

Right 

Elbow 
Back Neck 

Left 

Knee 

Right 

Knee 

Mean 

(all 

joints) 

Mean 

(visible/ 

right) 

1 
MAE 12.1 8.9 15.9 7.7 6.0 4.4 23.1 8.4 10.9 7.1 

STD. 7.7 8.0 9.9 7.0 3.4 2.6 7.8 5.6 9.0 5.3 

2 
MAE 7.1 5.7 10.4 10.9 7.3 7.6 10.5 6.5 8.1 7.6 

STD. 5.5 4.0 7.6 12.7 5.0 6.2 7.1 4.8 7.4 6.5 

3 
MAE 8.1 7.6 10.9 6.3 8.8 4.6 10.3 8.7 8.2 7.2 

STD. 5.8 6.3 8.5 4.9 3.9 5.8 6.0 5.2 5.8 5.2 

4 
MAE 8.8 8.1 18.2 11.3 6.2 5.5 10.0 6.8 9.7 7.6 

STD. 7.0 8.6 15.0 8.0 4.6 4.0 7.4 3.4 9.3 5.7 

5 
MAE 8.0 6.2 14.9 7.5 6.8 8.0 11.0 11.9 9.2 8.1 

STD. 5.4 3.7 12.7 7.1 3.7 5.7 6.9 7.5 7.7 5.5 

6 
MAE 8.8 5.3 17.4 9.3 13.8 8.6 18.9 9.0 11.0 9.2 

STD. 5.5 4.5 10.9 6.6 8.2 6.9 8.6 6.2 8.6 6.5 

7 
MAE 14.0 4.5 17.8 6.7 6.6 6.9 18.5 4.6 9.5 5.9 

STD. 7.7 3.2 14.9 5.7 3.8 5.7 5.9 2.8 8.9 4.2 

8 
MAE 12.2 12.6 16.2 12.2 1.9 4.5 6.5 6.5 9.9 7.5 

STD. 9.8 6.5 15.6 10.9 1.5 3.9 3.9 3.2 9.5 5.2 

9 
MAE 10.7 8.2 12.1 7.5 6.0 6.7 12.8 11.9 9.3 8.1 

STD. 6.7 7.0 9.8 7.7 4.7 7.7 8.3 10.7 8.0 7.6 

10 
MAE 15.7 7.6 15.0 6.5 9.6 4.8 5.7 3.8 8.3 6.5 

STD. 8.2 4.1 10.2 5.5 4.7 4.2 4.0 3.1 7.1 4.3 

All 
MAE 10.6 7.5 14.9 8.6 7.3 6.2 12.7 7.8 9.4 7.5 

STD. 6.9 5.6 11.5 7.6 4.3 5.3 6.6 5.3 8.1 5.6 

Figure 3.2 Accuracy of 3D Joint Angle Estimation 
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3.4.3 Testing Result 

To have a quantitative analysis of the proposed approach’s accuracy on 3D joint angle 

estimation, the absolute error of estimated angles regarding each of the 10 subjects and 8 joints 

are listed in Table 3.1. Including all the subjects and body joints, the overall angle estimation 

error is 9.3 with a standard deviation of 8.0. To exclude the impact of occluded body joints, the 

accuracy of visible joint angles is calculated additionally. With the exclusion, the overall angle 

error is reduced to 8.1 with a standard deviation of 7.6. The body joints are specified as the left 

or right side of its type to show the discrepancy of accuracy between the visible side (right) and 

the partially occluded side (left). 

 

3.5 Discussion 

The mean absolute error of each body joint’s angle estimation is summarized and visualized in 

Figure 3.2. Given the camera is placed at a diagonal-view from a subject’s right, the right side of 

body parts are generally visible while the left side suffers a higher level of occlusion. This is 

shown consistently in the angle estimation error between within the left and right joints of a kind 

(e.g., left and right shoulders). For example, left shoulder commonly has a higher angle error 

than right shoulder, and this pattern is showing in the tests of almost every subject. In terms of 

body joint, back and neck have the lowest estimation error. This is reasonable as the related body 

parts are not on the limbs that are susceptible to occlusion and dynamic movements with 

variations. In contrast, the angles related to limbs have much larger estimation errors. Among the 

three types of such angles (i.e., shoulder, elbow and knee), the elbow has the largest error, 

followed by knee and subsequently the shoulder. Elbow angle directly relates to the three active 

joints: shoulder, elbow, and wrist. Thus its accuracy is vulnerable to any of these error sources. 
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Similarly, knee angle is a counterpart of the elbow in the lower limbs. It has a smaller error in 

this test, may because the cart pushing task has a more rapid and larger range of movements on 

upper limbs than lower limbs. Shoulder angle is defined by two vectors: arm vector calculated 

from elbow and shoulder, and back vector determined by both shoulders and hips. Apparently, 

the back vector is rather stable compared with limbs. Thus the error source of shoulder angle is 

less than that of the elbow and knee. 

 

3.6 Conclusion 

In this chapter, the proposed motion capture framework is enhanced with modification to capture 

3D human motion data from a video to estimate primary risk factors (i.e., posture and repetition) 

in ergonomic assessment tools. Apart from the addressed knowledge gaps in the preceding 

chapter, this study focuses on applying a 3D human pose estimation algorithm that has a strong 

ability of generalization to handle the cluttered condition in construction sites. Additionally, 

necessary modifications are needed to address the 3D motion data’s higher dimensionality and 

intrinsic constraints (i.e., bone length constancy) compared with the 2D framework. To address 

these issues, a weakly supervised approach was applied, which can utilize both lab-based 3D 

training data and in-the-wild 2D data. It demonstrated a strong ability of generalization to 

capture well frame-wise 3D human pose in the simulated lab environment which has a cluttered 

background and frequent interaction with and occlusion by the contacting cart. The optimization 

module leverages the bone length constancy constraint for the 3D human model. The higher 

dimensionality issue is addressed by developing a modified body joint trajectory interpolation 

process to enforce the linear incremental change of joint angle across frames, which is designed 

for ergonomic risk assessment. 
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To test the feasibility of the proposed approach, a lab test was conducted with ten 

subjects with different anthropometry. From the testing results, it was found that the proposed 

framework can provide robust body joint angle estimation with 9.4 of error compared with 

angles calculated from marker-based motion capture system (OptoTrak). This result indicates the 

potential of the proposed framework to enforce temporal smoothness across frames regarding 

body joint angles and viable to estimate posture and repetition for ergonomic risk assessment. 

From the test, issues are also identified for potential study in the future. The accuracy 

discrepancy between the visible and occluded joint is large, which indicates a limited ability to 

infer the occluded joint’s location in 3D space. It is a reasonable issue given the extra dimension 

to infer and the limitation on the training dataset’s scale. Further research is expected to address 

it. Additionally, body joints with a rapid and large range of motion are vulnerable to angle 

estimation error. It suggests a need for further study on the joint-conditioned body part 

movement with solid analysis to modify the proposed framework. 

Despite that the framework needs to be further tested on a larger scale dataset, regarding 

joint localization accuracy, and ideally a real construction site, and to address remaining 

limitations such as training with additional construction-focused dataset and enhancing occlusion 

handling ability, the proposed framework has great potential for on-site risk factor estimation in 

ergonomic risk assessment tools. 
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Chapter 4 Applications of Video-Based Human Motion Capture on 

Ergonomic Postural Analysis 
 

 

4.1 Introduction 

The preceding chapters demonstrated the feasibility of the proposed method in estimating frame-

wise body joint angles for posture estimation in ergonomic risk assessment. However, it remains 

unclear how the methods perform in estimating the risk factors required by various tools (e.g., 

posture’s occurrence, frequency, and duration) as well as how the performance would affect the 

final ergonomic risk level calculation. To answer this question, I select 3 of the most popular 

postural analysis tools for ergonomic risk assessment: 1) REBA (Rapid Entire Body 

Assessment); 2) Snook’s Tables and 3) NIOSH Lifting Equation.  

REBA is selected because it focuses on estimating an overall full-body risk level (1-15) 

with major posture input of joint angle values, and the frequency and duration of the postures’ 

occurrence. It is referred to as an angle-based postural analysis tool. This study showed the 

feasibility of the proposed 2D motion capture in estimating these input data directly for 

calculating the risk level, by comparing its performance with 27 experienced human observers. 

Some tools rely on distance-based measurements rather than joint angles, such as 

Snook’s Tables requiring horizontal and vertical distance between the hands and the front of the 

body or the ground. The horizontal or vertical distance is different from the 3D distance, which is 

rather a distance either projected to the ground plan (horizontal distance) or projected to the 

normal vector of the ground plane (vertical distance). For example, “hand distance” is, in fact, a 
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horizontal distance that is projected to the ground level from the 3D distance between the mid-

point of the hands and the front of the body. 

Lastly, NIOSH Lifting Equation requires a set of distance-based measurements similar to 

that of Snook’s Tables. Additionally, it also requires an angle-based measurement, asymmetric 

angle representing the trunk’s twisting angle. As such, it is a mixture of distance- and angle-

based measurements. 

As the distance-based and asymmetric angle require 3D human motion data to estimate, 

the proposed 3D motion capture method is applied to Snook’s Tables and NIOSH Lifting 

Equation. To provide a baseline of risk factors estimation, a tapeline measurement of distance-

based variables and observed asymmetric angle are used to evaluate the accuracy of proposed 

video-based motion capture for these representative ergonomic risk assessment tools. As the 

measurements do not require full-body joint angle that requires a complex motion capture system 

to provide ground truth data, this testing was able to be conducted on a real construction job-site 

with construction workers’ material handling tasks.  

 

4.2 REBA (Rapid Entire Body Assessment) 

4.1.1 REBA 

Among the postural analysis tools for ergonomic evaluation, REBA has been widely applied 

since it focuses on full-body assessment and provides a dense 15-level scoring for the job. Many 

tools do not provide such a dense overall scoring mechanism because the input posture data 

needs to be detailed enough to generate a wide spectrum of combinations. Tools usually only 

require qualitative posture data input, (e.g., whether back-bending happens) as it is time-

consuming to collect quantitative data, (e.g., whether the back-bending angle lies between 20° - 
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60°). The proposed approach was aimed to provide such detailed data to facilitate tools like 

REBA for a detailed understanding of a job’s ergonomic risk level.  

 

4.1.2 Method 

The proposed 2D human motion capture method provides frame-wise joints’ location in image 

pixel. The joint angle can be calculated from the vector formed by the adjacent joints’ locations. 

This approach has the advantage of being widely adapted to various joint-angle based postural 

analysis tools. On the other hand, its performance largely correlates to the camera’s view angle 

to mitigate the distortion effect brought to the joint angle projected from 3D space onto the 2D 

image. 

If the postural analysis tool is pre-defined and only requires categorical posture data as 

input, such as REBA, an additive module could be suggested to mitigate the distortion effect. 

The proposed module is a supervised machine learning algorithm called K-Nearest Neighbor. 

This module takes in a vector of numerical values as “feature,” such as all the joint angles of the 

human model in a video frame as used in this study. The training data is Human3.6M that 

includes 2D images of subjects performing various postures and provides 2D and 3D joints 

location. The 2D joints location data was converted to 2D joint angles as feature vectors, and the 

3D joints location data was converted to REBA posture code as labels. The testing data is 

similarly converted to feature vectors and labels. By retrieving the “closest” set of training data 

to testing data in the high dimensional feature space and the mode of their labels, the training 

data is assigned with the same label. 

This study demonstrated the performance of proposed 2D human motion capture alone 

and with the additive machine learning module, for estimating posture and repetition data in 
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REBA. The proposed 2D motion capture method alone was referred to as “vision-2D,” and it, 

along with the machine learning module was referred to as “vision-2D + ML” for the rest of this 

chapter. 

 

4.1.3 Testing Condition 

In this test, one male subject was selected to perform a sequence of common and ergonomically 

awkward postures in a lab condition. Two 72-second videos were taken of a subject interacting 

with items on a table and the floor, involving typical postures for ergonomic evaluation such as 

back-bending, arm-reaching, etc. The subject performed essentially the same movements in both 

videos, with one video taken closer to the side-view and the other closer to the diagonal view. 

Different camera views aimed to help analyze how they impact the evaluation result, for both the 

vision-based method and manual observation. The sample snapshots of both videos are shown in 

Figure 4.1. The subject was wearing an IMU-based motion capture system (Perception Neuron®, 

Noitom, Miami, USA) that extracted the frame-wise 3D skeleton and derived the frequency and 

repetition for all postures to work as the baseline. 

 

The proposed “vision-2D” and “vision-2D + ML” were used to process the testing 

videos, and this study analyzed the subject’s posture for each frame of the video and calculated 

Figure 4.1 Snapshots of Test Videos for Performance Evaluation on REBA 
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the repetition expressed by frequency. As a human could not estimate frame-wise posture, the 

testing protocol selected frequency and duration of each posture as the target measurement. 

According to REBA, the selected postures are listed in Table 4.1. Given the test videos, the 

proposed method and the participating specialists were supposed to estimate the frequency and 

duration of all the 12 postures listed in the table. 

Table 4.1 Selected Postures for Performance Evaluation on REBA 

 Posture 

Joint Safe Cautious Hazardous 

Back < 20° ≥ 20°, < 60° ≥ 60° 

Neck < 10° ≥ 10°, < 20° ≥ 20° 

Shoulder < 45° ≥ 45°, < 90° ≥ 90° 

Knee < 30° ≥ 30°, < 60° ≥ 60° 

 

The experience of the 27 participating professionals ranged from 3 months to 27 years.  

These specialists were also identified by their status: 1) ergonomic Interns (lowest level of 

proficiency); 2) AEP - Associate Ergonomics Professionals (middle level of proficiency); and 3) 

CPE - Certified Professional Ergonomist (highest level of proficiency). The detailed information 

of each specialist is listed in Table 4.2. 

The specialists were asked to fill in a spreadsheet with the observed posture and 

repetition data. Following is the description of how they recorded observations into the data 

collection form (Table 4.2). The data in the form is for explanation purposes only. While 

watching the video, the specialist identified the first instance of the back-bending angle between 

20 and 60 degrees and recorded its duration as 15 seconds.  The specialist then identified a 

second instance of the back-bending angle between 20 and 60 degrees and recorded its duration 
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as 12 seconds. The total frequency would be the total number of occurrences regarding each 

posture, and the duration would be the sum of duration for all instances. 

 

Table 4.2 Information on Participating Ergonomists for Performance Evaluation 

ID Status Experience* 

S1 Intern 7 months 

S5 AEP 1 year 6 months 

S7 CPE 17 years 

S8 CPE 11 years 

S9 AEP 2 years 

S10 CPE 15 years 

S11 CPE 10 years 

S12 CPE 6 years 

S13 AEP 5 months 

S14 CPE 20 years 

S15 CPE 17 years 

S16 CPE 18 years 

S17 CPE 6 years 

S18 CPE 13 years 

S19 AEP 2 years 6 months 

S20 CPE 27 years 

S21 CPE 6 years 6 months 

S22 CPE 10 years 

S23 AEP 3 years 

S24 Intern 3 months 

S25 Intern 3 months 

S26 Intern 3 months 

S27 CPE 3 years 

S28 AEP 2 years 6 months 

S29 CPE 9 years 

S30 AEP 10 years 

S31 CPE 6 years 

Average 7 years 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

< 20° 27 18 23 14 19

≥ 20°, < 60° 15 12 11 17 10

≥ 60° 22 21 20 5 4

Back

Total evaluation time:        

Duration (Unit: sec)

Figure 4.2 Example of Data Collection Form for Specialists 
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 The specialists were allowed to playback the videos with no constraints. After collecting 

the estimated frequency and duration from both the proposed methods and specialists, the 

estimation accuracy was expressed by frequency error and duration error calculated as follows: 

1) Frequency error (# of miscounts) = |baseline frequency – estimated frequency| 

2) Duration error (mean absolute deviation in seconds) = |baseline duration – estimated 

duration| 

Additionally, the evaluation time was also collected from specialists or recorded from the 

proposed methods. 

 

4.1.4 Testing Result 

This study showed the accuracy comparison of frequency and duration estimation by proposed 

“vision-2D” and “vision-2D + ML” and specialists’ observation. Table 4.3 and Table 4.4 showed 

the result comparison on “video1” (side-view), regarding frequency and duration, respectively. 

Similarly, Table 4.5 and Table 4.6 showed the result comparison on “video2” (diagonal-view). Each 

table was sorted showing the specialist that had the least errors at the top.  The last row in each 

table showed the average errors by the body joint.  The column headings represent each body part 

and its posture: N_C is neck-cautious (10<=Flexion<20), N_H is neck_hazardous (>20 Flexion), 

SL_C is left shoulder_cautious (45<=Flexion<90), etc. Detailed meaning of each column heading 

can be found below: 

N_C: neck_cautious; N_H: neck_hazardous; 

SL_C: shoulder-left_cautious; SL_H: shoulder-left_hazardous; 

SR_C: shoulder-right_cautious; SR_H: arm-right_hazardous; 

B_C: back_cautious; B_H: back_hazardous; 

KL_C: knee-left_cautious; KL_H: knee-left_hazardous; 

KR_C: knee-right_cautious; KR_H: knee-right_hazardous. 



 63 

 

 

 

N_C N_H SL_C SL_H SR_C SR_H B_C B_H KL_C KL_H KR_C KR_H

S1 1.47 2.27 1.57 1.13 4.00 0.83 6.50 3.47 7.47 8.37 9.03 8.37 4.54

S5 10.53 12.73 0.43 0.87 2.00 0.83 6.50 1.53 8.47 8.37 10.03 8.37 5.89

S7 9.53 11.27 3.57 1.87 0.00 0.17 6.50 0.47 7.47 8.37 9.03 8.37 5.55

S8 8.53 5.27 3.43 0.13 1.00 0.83 5.50 1.47 8.47 8.37 10.03 8.37 5.12

S9 2.53 7.73 2.57 0.13 1.00 0.83 6.50 0.47 12.47 8.37 14.03 8.37 5.42

S10 12.53 4.73 3.43 1.13 0.00 0.83 10.50 3.47 6.47 8.37 8.03 8.37 5.66

S11 9.53 17.73 1.57 2.13 12.00 3.83 3.50 2.53 3.53 8.37 1.97 8.37 6.26

S12 0.53 13.27 5.43 2.13 0.00 2.83 9.50 1.47 10.47 8.37 12.03 8.37 6.20

S13 11.53 4.73 1.43 1.87 1.00 5.17 7.50 1.47 9.47 8.37 11.03 8.37 5.99

S14 0.53 15.27 1.43 2.87 2.00 3.17 8.50 1.53 6.47 8.37 8.03 8.37 5.54

S15 12.53 9.73 5.57 3.13 6.00 7.83 5.50 0.47 4.47 8.37 6.03 8.37 6.50

S16 9.53 10.73 1.57 2.87 7.00 2.17 8.50 3.53 11.47 8.37 13.03 8.37 7.26

S17 7.53 3.77 2.07 0.13 1.00 1.17 6.00 0.53 5.97 4.37 10.53 8.37 4.29

S18 2.53 2.27 2.43 4.13 1.00 5.83 9.50 6.47 9.47 8.37 11.03 8.37 5.95

S19 1.47 9.73 8.57 0.13 10.00 2.17 3.50 1.47 13.47 8.37 15.03 8.37 6.86

S20 6.53 2.27 8.43 2.87 5.00 1.17 1.50 0.47 3.53 8.37 1.97 8.37 4.21

S21 11.53 1.27 5.93 2.37 1.00 2.67 1.00 0.47 10.47 8.37 8.03 8.37 5.12

S22 5.53 5.27 11.57 11.87 22.00 0.83 3.50 3.47 5.47 8.37 7.03 8.37 7.77

S23 10.53 7.27 9.57 1.87 19.00 9.17 4.50 2.53 9.47 8.37 6.03 8.37 8.06

S24 6.53 1.73 0.43 0.13 4.00 0.17 0.50 3.47 8.47 8.37 10.03 8.37 4.35

S25 0.47 2.27 2.43 2.13 3.00 1.83 4.50 5.47 6.47 8.37 8.03 8.37 4.44

S26 10.53 13.73 8.43 5.87 5.00 1.83 3.50 1.47 8.47 8.37 5.03 8.37 6.72

S27 5.47 3.73 20.57 0.13 44.00 0.83 11.50 2.53 8.47 8.37 8.03 8.37 10.17

S28 8.53 5.27 2.57 3.87 8.00 0.83 6.50 5.47 10.47 8.37 11.03 8.37 6.61

S29 4.53 2.27 6.57 11.13 14.00 0.17 1.50 1.47 3.53 3.63 1.97 3.63 4.53

S30 13.53 1.27 3.43 7.87 1.00 11.83 7.50 7.53 5.47 8.37 7.03 8.37 6.93

S31 2.53 10.73 15.57 11.13 16.00 10.83 0.50 0.47 11.47 8.37 13.03 8.37 9.08

Vision-2D 9.23 21.00 6.57 0.53 1.67 4.13 1.20 6.00 3.53 8.37 1.97 8.37 6.05

Vision-2D + ML 11.27 4.07 2.40 3.63 4.20 0.20 5.40 4.23 7.97 3.27 8.80 3.27 4.89

Vision-2D 9.23 21.00 6.57 0.53 1.67 4.13 1.20 6.00 3.53 8.37 1.97 8.37 6.05

Vision-2D + ML 11.27 4.07 2.40 3.63 4.20 0.20 5.40 4.23 7.97 3.27 8.80 3.27 4.89

Specialists 7.16 7.36 5.16 3.11 6.75 2.93 5.42 2.60 7.89 7.89 8.52 8.03 6.07

Subject
Duration Error (|Ground Truth - Estimation|, Unit: Sec) Average

Error

N_C N_H SL_C SL_H SR_C SR_H B_C B_H KL_C KL_H KR_C KR_H

S1 2 6 4 0 2 0 2 0 0 1 1 1 1.58

S5 1 4 0 0 0 0 1 0 0 1 1 1 0.75

S7 2 2 1 0 1 0 1 0 2 1 3 1 1.17

S8 2 4 1 0 1 1 3 1 0 1 1 1 1.33

S9 0 2 1 1 1 1 3 0 0 1 1 1 1.00

S10 3 1 0 1 0 1 0 1 0 1 1 1 0.83

S11 1 2 4 1 4 1 5 0 0 1 1 1 1.75

S12 2 3 2 0 0 2 4 1 1 1 2 1 1.58

S13 1 4 1 0 1 0 1 0 0 1 1 1 0.92

S14 3 8 1 0 0 0 1 1 2 1 3 1 1.75

S15 3 2 0 1 3 2 1 0 0 1 1 1 1.25

S16 1 4 2 0 1 0 4 0 0 1 1 1 1.25

S17 2 5 1 2 0 0 2 2 1 1 3 1 1.67

S18 2 8 3 0 1 2 3 2 0 1 1 1 2.00

S19 4 2 1 1 1 0 1 0 0 1 1 1 1.08

S20 4 2 5 1 4 1 3 1 4 1 5 1 2.67

S21 0 5 3 0 2 0 2 1 2 1 3 1 1.67

S22 3 5 3 5 10 2 2 1 1 1 2 1 3.00

S23 3 10 1 1 1 1 2 1 1 1 2 1 2.08

S24 3 4 2 0 2 0 3 2 0 1 1 1 1.58

S25 1 5 2 2 3 3 2 1 0 1 1 1 1.83

S26 2 3 3 0 1 1 2 1 0 1 1 1 1.33

S27 0 2 2 2 8 1 0 0 1 1 1 1 1.58

S28 2 5 2 4 2 5 2 2 0 1 1 1 2.25

S29 0 2 0 0 1 1 0 0 4 3 5 3 1.58

S30 0 3 2 4 0 5 0 1 0 1 1 1 1.50

S31 0 5 3 3 4 5 0 0 0 1 1 1 1.92

Vision-2D 0 0 0 2 1 1 0 2 4 1 2 1 1.17

Vision-2D + ML 0 1 0 0 0 0 0 0 0 0 2 0 0.25

Vision-2D 0 0 0 2 1 1 0 2 4 1 2 1 1.17

Vision-2D + ML 0 1 0 0 0 0 0 0 0 0 2 0 0.25

Specialists 1.62 3.76 1.72 1.07 1.90 1.24 1.72 0.72 0.79 1.03 1.72 1.03 1.53

Frequency Error (|Ground Truth - Estimation|, Unit: # Occurrence) Average

Error
Subject

Table 4.3 Performance Comparison of Frequency Estimation on REBA: Video1 (side-view) 

Table 4.4 Performance Comparison of Duration Estimation on REBA: Video1 (side-view) 
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N_C N_H SL_C SL_H SR_C SR_H B_C B_H KL_C KL_H KR_C KR_H

S1 11.57 8.80 3.94 0.92 1.15 1.79 5.20 4.91 3.40 5.13 2.80 5.13 4.56

S5 0.43 16.20 3.94 1.92 3.15 2.29 5.20 4.91 1.40 5.13 0.80 5.13 4.21

S7 1.43 10.20 0.06 0.08 1.15 0.79 0.80 0.09 4.60 5.13 5.20 5.13 2.89

S8 2.43 11.80 2.94 0.08 0.15 2.79 2.20 0.91 3.40 5.13 2.80 5.13 3.31

S9 8.57 2.20 2.94 4.92 0.15 3.79 9.80 3.91 7.40 5.13 4.80 5.13 4.90

S10 2.43 4.20 2.06 6.92 3.85 6.79 1.20 6.91 1.40 5.13 0.80 5.13 3.90

S11 2.57 17.20 8.94 0.08 6.85 1.79 8.80 3.91 3.40 5.13 2.80 5.13 5.55

S12 0.43 1.20 6.94 3.92 2.15 6.79 4.20 2.91 4.60 5.13 5.20 5.13 4.05

S13 2.57 1.20 5.94 0.92 4.15 0.79 4.20 3.91 2.40 5.13 1.80 5.13 3.18

S14 16.57 14.80 2.94 0.92 0.85 2.21 2.20 2.91 4.60 5.13 5.20 5.13 5.29

S15 1.43 11.20 1.94 5.92 1.85 2.79 2.20 3.09 0.40 5.13 0.20 5.13 3.44

S16 7.57 4.20 4.94 3.08 2.85 1.21 10.20 6.09 5.40 5.13 4.80 5.13 5.05

S17 6.57 6.80 3.94 0.42 3.15 2.79 6.80 6.91 5.40 5.13 5.20 2.87 4.67

S18 13.57 14.80 5.94 3.92 1.15 7.79 2.20 8.91 2.40 5.13 1.80 5.13 6.06

S19 4.43 2.20 5.06 6.08 5.85 4.21 1.20 1.09 6.40 5.13 5.80 5.13 4.38

S20 4.43 6.20 10.94 7.08 8.15 1.21 5.20 7.91 11.60 5.13 12.20 5.13 7.10

S21 6.07 7.80 1.44 3.08 6.85 3.71 5.70 1.41 2.60 5.13 3.20 5.13 4.34

S22 5.57 1.80 12.06 2.92 18.85 7.79 2.80 6.91 2.60 5.13 3.20 5.13 6.23

S23 3.57 20.80 8.06 9.08 9.85 7.21 7.80 0.09 5.40 5.13 4.80 5.13 7.24

S24 2.43 3.80 2.94 0.08 4.85 3.21 0.20 5.91 5.40 5.13 3.80 5.13 3.57

S25 4.57 4.80 3.94 5.08 3.15 6.79 2.20 8.91 2.40 5.13 1.80 5.13 4.49

S26 2.57 11.20 2.94 1.08 0.85 0.21 2.80 2.91 4.40 5.13 2.80 5.13 3.50

S27 2.57 0.20 19.06 3.08 27.85 2.79 1.80 11.09 3.60 5.13 2.80 5.13 7.09

S28 3.57 6.80 17.06 14.92 20.85 15.79 6.80 7.91 2.40 5.13 1.80 5.13 9.01

S29 3.57 8.20 3.06 2.92 4.85 3.79 4.80 2.09 11.60 8.87 12.20 8.87 6.24

S30 0.57 2.80 7.94 14.92 0.15 14.79 0.80 1.09 4.40 5.13 3.80 5.13 5.13

S31 7.57 2.20 22.06 13.92 24.85 15.79 4.80 4.09 6.40 5.13 5.80 5.13 9.81

Vision-2D 0.70 17.40 2.97 11.52 5.08 7.09 2.17 6.61 11.60 5.13 3.63 5.13 6.59

Vision-2D + ML 0.16 1.47 0.11 0.15 0.05 0.16 0.10 0.21 0.10 0.03 1.43 0.03 0.33

Vision-2D 0.70 17.40 2.97 11.52 5.08 7.09 2.17 6.61 11.60 5.13 3.63 5.13 6.59

Vision-2D + ML 0.16 1.47 0.11 0.15 0.05 0.16 0.10 0.21 0.10 0.03 1.43 0.03 0.33

Specialists 4.50 7.67 6.10 4.48 6.02 4.79 3.94 4.43 4.52 5.08 3.91 5.01 5.04

Subject
Duration Error (|Ground Truth - Estimation|, Unit: Sec) Average

Error

N_C N_H SL_C SL_H SR_C SR_H B_C B_H KL_C KL_H KR_C KR_H

S1 1 4 1 0 1 0 2 0 2 3 1 3 1.50

S5 1 1 1 1 2 1 1 1 2 3 1 3 1.50

S7 2 5 1 1 0 3 2 0 2 3 1 3 1.92

S8 1 3 0 1 0 2 2 2 2 3 1 3 1.67

S9 1 0 1 0 2 0 1 0 2 3 1 3 1.17

S10 3 1 2 1 0 3 3 0 2 3 1 3 1.83

S11 0 1 1 1 4 0 4 0 1 3 2 3 1.67

S12 2 7 3 0 0 2 3 0 2 3 1 3 2.17

S13 2 0 1 1 0 1 1 1 2 3 1 3 1.33

S14 1 8 1 1 1 2 2 0 1 3 0 3 1.92

S15 3 0 1 1 2 2 1 0 2 3 1 3 1.58

S16 2 0 1 0 1 3 3 1 2 3 1 3 1.67

S17 1 3 2 1 0 1 3 0 2 2 1 3 1.58

S18 1 3 2 1 1 4 4 3 2 3 1 3 2.33

S19 0 3 1 0 1 0 2 0 3 3 2 3 1.50

S20 2 3 5 1 4 3 1 1 1 3 2 3 2.42

S21 4 2 4 1 0 3 1 1 2 3 0 3 2.00

S22 3 1 8 6 11 3 1 0 1 3 0 3 3.33

S23 3 6 3 1 1 1 3 0 2 3 0 3 2.17

S24 0 1 2 1 0 3 2 0 2 3 1 3 1.50

S25 1 5 3 1 0 3 2 0 2 3 1 3 2.00

S26 3 0 5 1 1 2 2 0 2 3 0 3 1.83

S27 0 2 5 1 11 1 2 1 2 3 1 3 2.67

S28 2 4 1 0 0 2 3 3 3 3 1 3 2.08

S29 1 3 1 4 2 3 0 0 1 0 2 0 1.42

S30 4 3 2 3 2 6 4 0 1 3 0 3 2.58

S31 0 1 0 4 0 6 0 0 2 3 1 3 1.67

Vision-2D 1 7 3 1 1 2 2 2 1 3 2 3 2.33

Vision-2D + ML 1 3 0 0 1 2 1 0 3 2 1 2 1.33

Vision-2D 1 7 3 1 1 2 2 2 1 3 2 3 2.33

Vision-2D + ML 1 3 0 0 1 2 1 0 3 2 1 2 1.33

Specialists 1.59 2.76 2.10 1.21 1.69 2.21 2.00 0.55 1.86 2.83 0.97 2.86 1.89

Subject
Frequency Error (|Ground Truth - Estimation|, Unit: Sec) Average

Error

Table 4.5 Performance Comparison of Frequency Estimation on REBA: Video2 (diagonal-view) 

Table 4.6 Performance Comparison of Duration Estimation on REBA: Video2 (diagonal-view) 
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The summarized frequency and duration estimation accuracy with comparison was 

shown in Figure 4.3. Without the machine learning (“ML”) module, the proposed 2D human 

motion capture method (“Vision-2D”) presented a comparable estimation accuracy on frequency 

and duration for REBA postures. With the machine learning module, the overall estimation error 

drops significantly from specialists’ observation. Also, similar to the human observation’s 

correctness regarding the camera’s view angle, vision-based approaches showed a higher 

estimation accuracy on the side-view video than the diagonal-view video. 

 

4.2 Snook’s Tables 

4.2.1 Summary of Snook’s Tables 

Snook’s Tables (Snook and Ciriello 1991), sometimes referred as “Snook’s Lifting 

Recommendation” or “Liberty Mutual Manual Materials Handling Tables,” were developed to 

evaluate manual materials handling tasks including lifting, lowering, pushing, pulling and 

carrying. It consists of a series of tables regarding each of the 5 tasks and different genders of the 

participating subjects. Snook’s Tables for lifting tasks require several input variables as listed 

below: 
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Figure 4.3 Performance Comparison of Frequency and Duration on REBA 



 66 

1) Hand distance. The hand distance is defined as the horizontal distance between the 

mid-point of the hands to the front of the body. Snook’s Tables does not require numerical value, 

but only categorical data that which value it is closer to 7, 10, 15 inches. 

2) Lifting distance. Lifting distance is the vertical distance between the origin and 

destination of the evaluated lift, and also comes with categorical data. The three key values taken 

as the mean of the three categories are 10, 20, 30 inches. 

3) Hand location at the origin. It is the vertical distance between the mid-point of the 

hands and the ground when the lifting task starts. There are three categories: below knuckle 

height; between knuckle and shoulder height; above shoulder height. 

 4) Frequency. The frequency is quantified as one lift happening in every specific period. 

A value can be selected from 15 sec., 30 sec., 1 hour, 5 hours, and 8 hours. 

 5) Object weight. This is the only variable that needs numerical value in lb. 

With these 4 variables, a population percentage (%) output would be calculated based on the 

research. The population percentage indicates the percentage of the population from a given 

gender could safely perform the evaluated task. Thus, the higher the risk, the less the population 

percentage would be. 

 

4.2.2 Method 

According to the required input data for Liberty Mutual Tables, distance-based measurements 

are required with true-to-scale values (e.g., in inch). However, the proposed 3D motion capture 

method estimated the 3D canonical human model from the monocular camera only generated the 

location expressed in the camera’s coordinate system and does not directly provide data with a 

unit of inch or centimeter. To address this issue, this study introduced a human model scaling 
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step to scale the canonical human model to individualized human model by scaling with the 

subject’s height, as shown in Figure 4.4 (left). 

 

Another challenge is that the required distance should be projected to the horizontal or 

vertical direction while the projection direction remains unknown. To address this issue, either 

the camera should be assumed to be leveled throughout the video recording or the camera’s real-

time pose is known to estimate the horizontal or vertical direction. To enable a free-moving 

camera during video recording, the second scenario was explored. The proposed solution was to 

extract the real-time gravity direction from the smartphone while using the built-in camera to 

record the video. With the gravity direction provided, it was converted to the camera’s 

coordinate system that aligns with the one used by the 3D human motion capture. Then this 

converted direction, called normal vector’s direction, was used to project the hands’ location on 

and calculate the vertical location and vertical travel distance. As for the horizontal location, the 

ground plane was extracted from the orthogonal plane of the normal vector. The horizontal 

Figure 4.4 3D Human Model Scaling (left) and World Coordinate Rectification (right) 
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location was calculated by projecting the hands’ location onto the ground plane. Figure 4.4 

(right) illustrated this step with a lifting task. 

 

 

The overall procedure was summarized in Figure 4.5. With 2D image/video captured 

from a monocular camera, a canonical 3D skeleton is estimated by the 3D human motion capture 

framework introduced in Chapter 3. With user input of the subject’s height, the skeleton is then 

scaled to an individualized skeleton with joint location expressed in the unit of the height 

information. If the gravity direction of the moving camera was recorded, the 3D skeleton is 

Figure 4.5 Pipeline of Assessing Lifting Tasks with Snook's Tables 

Figure 4.6 Examples of Recorded Lifting Tasks 
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rectified to align with the world coordinate of 3D space. Except for the object’s load and 

frequency that needs to be manually input, major task variables and final risk level expressed as 

population percentage could be estimated. 

 

Table 4.7 Performance Comparison of Task Variables Estimation for Snook's Tables 

  Hand 

Distance 

(in.) 

Lifting 

Distance 

(in.) 

Population 

Percentage 

(%)   

Est. 15 30 59 

Meas. 15 30 59 

Diff. 0 0 0 

Est. 15 30 59 

Meas. 15 30 59 

Diff. 0 0 0 

Est. 15 20 62 

Meas. 15 20 62 

Diff. 0 0 0 

Est. 15 30 59 

Meas. 15 30 59 

Diff. 0 0 0 

Est. 15 20 62 

Meas. 15 30 59 

Diff. 0 1 1 

Est. 10 20 81 

Meas. 15 30 59 

Diff. 1 1 1 

Est. 15 10 72 

Meas. 15 10 72 

Diff. 0 0 0 

Est. 15 30 59 

Meas. 15 30 59 

Diff. 0 0 0 

Est. 15 30 59 

Meas. 15 30 59 

Diff. 0 0 0 

Est. 15 30 59 

Meas. 15 30 59 

Diff. 0 0 0 

# 

Misdetection 
1 2 2 

% 

Misdetection 
10% 20% 20% 



 70 

4.2.1 Testing Condition 

The testbed was sponsored by Power Construction, and 10 male construction workers 

participated in this study with written consent. Each construction worker performed a different 

lifting task for several cycles. One cycle from each subject was selected to validate the approach. 

All the subjects were asked to keep the personal protective equipment (PPE) and tools to reflect 

the usual appearance of body joints in the videos. Additionally, the tasks covered a wide range of 

different variables’ values, such as hands’ height at origin can be as low as a ground level to 

around the waist level, along with various camera angle. All the subjects were asked to lift real 

objects, and occlusion was naturally introduced to reflect the real site’s condition. A sample of 

cropped video frames reflecting the jobs are shown in Figure 4.6. The ground truth data was 

provided by how a manual observer would evaluation a lifting task, including using tapeline to 

measure distance related variables and observation for an asymmetric angle. The variables that 

cannot be automatically estimated by the proposed method were assumed to be known, including 

the subject’s height, object’s weight, and frequency. 

 

4.3.2 Testing Result 

Table 4.7 shows the accuracy of using the proposed video-based 3D motion capture to estimate 

the major task variables (i.e., hand distance, lifting distance) and the final risk level of population 

percentage. The task variable, hand location at the origin, is also estimated and measured. As this 

task variable is estimated to be correct for all the 10 lifting tasks, it is not included in the table for 

comparison. For the three measurements under comparison, estimation by the proposed method 

is referred to as “Est.”, Ground truth data by a tapeline measurement is referred to as “Meas.”. 

As the task variables are categorical, the difference between estimation and measurement is 
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represented by a digit “0” for correct estimation (no difference) and “1” for incorrect estimation 

(with a difference). In summary, the second to the last row in the table shows the number of 

incorrect estimations, named by “# misdetection.” It is followed by the percentage of tasks with 

incorrectness for the variable concerned. From the test result, most of the variables are correctly 

categorized. Specifically, 90% of tasks have a correct estimation of hand distance, and 80% of 

tasks have a correct estimation of lifting distance. As an overall accuracy, 80% of tasks are 

estimated correctly on the risk level or population percentage. 

 

4.3 NIOSH Lifting Equation 

4.3.1 Summary of NIOSH Lifting Equation 

NIOSH Lifting Equation was developed and widely applied to evaluate lifting tasks in manual 

materials handling. To use this tool, the observer needs to identify the origin and destination of 

the lifting. Usually, the time frames when the handled object leaves and arrives at the designated 

location, respectively. At both time frames, several input data need to be collected (Waters et al. 

1994): 

1) Horizontal hand location. The horizontal distance from the mid-point of the hands to 

the mid-point of the ankles. 

Figure 4.7 Example of Lifting Task and Captured Motion Data 
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2) Vertical hand location. The vertical distance from the mid-point of the hands to the 

ground. 

3) Vertical travel distance. The vertical displacement of mid-point of the hands between 

the origin and destination. 

4) Asymmetric angle. The twisting angle of the trunk, or the angle of symmetry between 

the mid-plane of the body and the direction of lift (Berlin and Adams 2017). 

5) Frequency and duration of lifting. 

6) Coupling. The goodness of how the subject handles the object (e.g., with or without 

handles). 

Each of the 6 variables’ value was converted to a decimal between 0-1 as a multiplier 

(HM, VM, DM, AM, FM, CM), by retrieving the data from the given table (Waters et al. 1994). 

The higher the risk each variable correlates with, the smaller the multiplier. The product of all 6 

multipliers is also a decimal between 0-1. 

 It was assumed that the maximum weight load could be lifting for the majority of healthy 

people under the best possible lifting circumstance, for up to 8-hour shift, is 23 kg or 50 lb. A 

load constant “LC” is multiplied to the product of all multipliers to obtain a principal product of 

NIOSH Lifting Equation, Recommended Weight Limit (RWL): 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑⁡𝑊𝑒𝑖𝑔ℎ𝑡⁡𝐿𝑖𝑚𝑖𝑡⁡(𝑅𝑊𝐿) = 𝐿𝐶 × 𝐻𝑀 × 𝑉𝑀 × 𝐷𝑀 × 𝐴𝑀 × 𝐹𝑀 × 𝐶𝑀⁡ 

 This output variable suggests the highest weight could be lifted under given workplace 

condition. To further suggest the injury risk of lifting an actual weight, other than the suggested 

highest weight, Lifting Index (LI) can be calculated from the lifted object’s weight and RWL by: 

𝐿𝑖𝑓𝑡𝑖𝑛𝑔⁡𝐼𝑛𝑑𝑒𝑥⁡(𝐿𝐼) =
𝐿𝑜𝑎𝑑⁡𝑊𝑒𝑖𝑔ℎ𝑡⁡(𝐿)

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑⁡𝑊𝑒𝑖𝑔ℎ𝑡⁡𝐿𝑖𝑚𝑖𝑡⁡(𝑅𝑊𝐿)
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If Lifting Index is larger than 1.0, the job is considered to have high risk and needs to be 

modified. Otherwise, the job has a nominal risk. 

 

4.3.2 Method 

The estimation for task variables of NIOSH Lifting Equation is mostly similar to that for 

Snook’s Tables. The pipeline (Figure 4.8)is then inherited with modification on the required task 

variables and the lifting index as the evaluated risk level. 

 The major difference of NIOSH Lifting Equation from Snook’s Tables regarding the task 

variables is the additional angle-based measurement, asymmetric angle. This angle value is 

quantified by the trunk’s twisting angle at both the origin and destination of the lift. Since the 

asymmetric angle is challenging to estimate through manual observation, it is specifically 

evaluated in this study to demonstrate the feasibility of the proposed approach in such a tool. 

 The testing condition is similar to that of Section 4.2 and is not described again. 

 

 

 

Figure 4.8 Pipeline of Assessing Lifting Tasks with NIOSH Lifting Equation 
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Table 4.8 Performance Comparison of Task Variables Estimation on NIOSH Lifting Equation 

 Hand Location (in.) Vertical 

Travel 

Distance 

(in.) 

Asymmetric Angle 

(°) Lifting 

Index 

 Origin Destination 

  Horizontal Vertical Horizontal Vertical Origin Destination 

Est. 17.3 8.5 19.0 43.5 35.0 3.8 2.0 1.43 

Meas. 15.0 3.0 15.0 38.0 35.0 0.0 0.0 1.48 

Diff. 

(%) 
2.3 5.5 4.0 5.5 0.0 3.8 2.0 3.4% 

Est. 3.7 5.1 12.9 47.9 42.7 23.4 85.9 1.40 

Meas. 4.2 3.0 14.0 48.0 45.0 45.0 90.0 1.40 

Diff. 

(%) 
0.5 2.1 1.1 0.1 2.3 21.6 4.1 0.0% 

Est. 6.2 22.2 17.4 40.5 18.3 25.2 0.5 1.21 

Meas. 8.3 24.0 15.0 42.0 18.0 0.0 0.0 1.04 

Diff. 

(%) 
2.3 5.5 4.0 5.5 0.3 3.8 2.0 16.3% 

Est. 9.2 3.5 21.8 33.3 29.8 3.8 5.7 1.52 

Meas. 9.0 3.0 20.0 34.0 31.0 0.0 0.0 1.38 

Diff. 

(%) 
2.3 5.5 4.0 5.5 1.2 3.8 2.0 10.1% 

Est. 24.1 23.7 21.8 40.3 16.6 3.1 75.6 1.97 

Meas. 24.0 33.5 24.0 43.0 9.5 0.0 90.0 2.20 

Diff. 

(%) 
2.3 5.5 4.0 5.5 7.1 3.8 2.0 10.5% 

Est. 12.1 21.7 11.5 39.5 17.8 4.8 5.6 0.84 

Meas. 14.0 25.0 14.0 36.0 11.0 0.0 0.0 0.88 

Diff. 

(%) 
2.3 5.5 4.0 5.5 6.8 3.8 2.0 4.5% 

Est. 14.1 23.9 17.1 38.3 14.4 5.8 2.3 1.14 

Meas. 19.0 29.0 22.0 43.0 14.0 0.0 0.0 1.51 

Diff. 

(%) 
2.3 5.5 4.0 5.5 0.4 3.8 2.0 24.5% 

Est. 10.3 1.8 12.7 39.5 37.7 1.7 5.2 0.94 

Meas. 13.0 3.0 13.0 33.5 30.5 0.0 0.0 1.09 

Diff. 

(%) 
2.3 5.5 4.0 5.5 7.2 3.8 2.0 13.8% 

Est. 14.3 10.1 24.7 42.0 32.0 6.6 5.2 1.85 

Meas. 16.5 3.0 22.0 33.3 30.3 0.0 0.0 1.51 

Diff. 

(%) 
2.3 5.5 4.0 5.5 1.7 3.8 2.0 22.5% 

Est. 10.2 1.0 25.2 42.0 41.0 12.5 17.2 1.98 

Meas. 8.3 3.0 24.5 42.9 39.9 0.0 30.0 2.04 

Diff. 

(%) 
2.3 5.5 4.0 5.5 1.1 3.8 2.0 2.9% 

Mean 

Diff. 
2.1 5.2 3.7 5.0 2.8 5.6 2.2 10.9% 
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4.3.3 Testing Result 

The performance of task variables estimation for NIOSH Lifting Equation is shown in Table 4.8. 

The proposed video-based 3D motion capture approach with rectification and scaling modules, 

achieve an overall accuracy of lifting index estimation with an error of 10.9%.  From the 

estimation accuracy of individual task variables, distance-based measurements have a mean 

absolute error of around or within 5 inches for each variable. The asymmetric angle estimation 

has an accuracy of fewer than 10 degrees and at maximum 21.6 degrees for a specific task. 

 

4.3.4 Discussion 

NIOSH Lifting Equation partitions the value of task variables too much smaller intervals (i.e., 

one inch), compared with a rough categorical range in Snook’s Tables. The result of NIOSH 

Lifting Equation should give more detailed information about the performance of the proposed 

motion capture approach in ergonomic risk factors quantification for on-site lifting jobs. 

As the overall accuracy in NIOSH Lifting Equation estimation is similar to that in 

Snook’s Tables, it is promising to claim the robustness of the 3D human motion capture method 

for on-site application. As for the individual task variables, it seems to yield conflicting 

conclusion with that in the preceding section that vertical travel distance is most vulnerable to 

error, as it has a mean difference of only 2.8 inches. However, the problematic task which has an 

excessive error in the lifting distance estimation in Snook’s Tables also has the maximum 

estimation difference in NIOSH Lifting Equation. It is averaged out as the task variable is 

provided in numerical value, instead of a categorical one. 
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4.4 Conclusion 

To apply the proposed 2D and 3D human motion capture approach in risk factors estimation for 

ergonomic risk assessment, this study applied the approach with a specific modification 

regarding three types of assessment tools and used a representative tool from each type to 

demonstrate the potential. 

 For an angle-based postural analysis tool (e.g., REBA), 2D human motion capture is 

sufficient to estimate the joint angle given a proper camera view angle, such as a side view. The 

joint angle is calculated directly from the detected 2D joint location regarding image pixel. To 

mitigate the distortion brought by imperfect camera view angle, a supervised classification 

module is developed for assessment tools that only require categorical value for risk factors. The 

lab-based test yielded a comparable performance of raw 2D human motion capture with average 

professionals’ observation. Further, with the additional classification module, the accuracy of 

frequency and duration estimation of the video-based approach is much higher than the 

professionals’ observation. It suggests a great potential to apply the proposed 2D human motion 

capture framework in estimating posture and repetition for angle-based postural analysis. 

 Rather than angle-based, an ergonomic risk assessment tool that relies on distance-based 

measurements (e.g., vertical hand location from the ground) such as Snook’s Tables, can apply 

the developed 3D human motion capture approach to estimate the task variables. As the raw 3D 

motion data does not reflect true-to-scale location or distance measurement, a human model 

scaling and rectification module is developed given the subject’s height and camera’s pose. With 

the true-to-scale 3D human skeleton, the required distance-based measurements were evaluated 

by a tapeline measurement on 10 workers’ lifting tasks in a construction site. With categorical 

task variables for Snook’s Tables, 80% of the tasks have a correct estimation of all the three 
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distance-based measurements. The result demonstrated a feasible application of the proposed 3D 

motion capture approach to distance-based postural analysis on a real job-site. 

 NIOSH Lifting Equation is a widely used tool that needs both distance- and angle-based 

(i.e., asymmetric angle) measurements. The proposed 3D human motion capture approach is 

applied and validated by a tapeline measurement for distance-based variables and human 

observation for the angle variable. The field test was conducted with 10 lifting tasks each 

performed by a construction worker. The result shows an accuracy of within 5.2 inches distance 

estimation error, within 10 degrees angle estimation error and 10.9% lifting index estimation 

deviation. It demonstrates the proposed approach is robust enough to not only properly estimate 

the risk factors’ rough range (for categorical input) and also accurate value (for numerical input), 

given a realistic job-site condition. 
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Chapter 5 Vision-Based Hand Push Force Estimation from 3D Motion 

Capture  
 

 

 

5.1 Introduction 

Apart from posture and repetition, force is considered among the most impactful ergonomic risk 

factors to evaluate jobs. Many observation-based methods require external force exerted on the 

body part. Among them, several posture-based methods ask for a categorical value of force. For 

example, OWAS asks if the exerted force lies in one of the following three ranges: 0 - 10 kg, 10-

20 kg, and >20 kg. REBA requires similar data with slightly different ranges: 0-11 lb., 11-22 lb., 

and >22 lb. Biomechanics-based methods, which impose more emphasis on the force, needs a 

numerical value of external force. For example, NIOSH Lifting Equation takes the object’s 

weight for evaluating lifting tasks. Similarly, Snook’s Tables require the lifted/lowered object’s 

weight for lifting/lowering tasks while initiated/sustained force for pushing/pulling/carrying 

tasks. 

Some methods only require the object’s weight to calculate the risk level are 

straightforward (e.g., NIOSH Lifting Equation). However, some methods like Snook’s Tables 

that try to capture more complex interaction with the environment (e.g., pushing tasks) are 

challenging to estimate the force exertion. In practice, force sensors are applied to measure the 

exposure level directly. For example, a force gauge was attached between the object (e.g., the 

cart) and the contacting body part (e.g., hand) to measure how much hand push force was exerted 
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when pushing a cart. Electromyography (EMG) sensors can be attached to body parts (e.g., back) 

to measure muscle force exerted on the specific body segment. 

In addition to observation-based methods that only take advantage of a static external 

load for a complete task, biomechanical analysis requires vectorized external force data for every 

time-frame. Specifically, biomechanical models were developed to analyze force exerted on 

internal body joints (e.g., elbow and shoulder) from known force exertion on external body joints 

(e.g., hand) and the whole-body posture (all body joints’ locations). Biomechanical analysis 

requires pair-wise whole-body postures and force exertion. Force data collection becomes rather 

challenging as it needs to be time frame-specific. 

Force sensors for continuous data collection include force transducers and pressure 

sensors. A force transducer usually measures tri-axial forces and moments that come with 3 or 6 

degrees of freedom. A pressure sensor presents as a capacitive thin-film sensing grid and could 

be mounted on a various contact surface, even wrapped around a grip handle (Welcome et al. 

2004). A pressure sensor generates pressure distribution in a mesh-grid with numerical values for 

each grid and can provide the center of pressure. However, it does not give the direction of force 

or moments and could be inapplicable for biomechanical analysis. 

Regardless of the pros and cons of various force sensors against one another, shared 

drawbacks include being invasive and cost-prohibitive for on-site application. Yu et al. (2019a) 

applied smart insoles to collect ground reaction force exerted on both feet. It significantly 

reduced the level of invasiveness from the aforementioned body attached force sensors, but still 

could not avoid the interference from sensors setup for in-field deployment. As Wang et al. 

(2015) argued, there lacks a non-invasive approach to measure force exertion for ergonomic 

evaluation.  
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5.2 Literature Review 

Non-invasive Force Estimation 

To estimate the exerted force using a non-invasive approach, some studies beyond the field of 

ergonomics explored the potential of applying vision-based methods. Gaddam et al. (2016) 

demonstrated the potential of estimating ground reaction force from the spine’s frame-wise 

location collected by RGB-D sensor (Microsoft Kinect). Pham et al. (2015) used the same sensor 

to estimate hand contact force by capturing the hand pose and forming a physics-based 

reconstruction module followed by an optimization module with an artificial neural network. To 

apply ubiquitous visual sensing device, Sartison et al. (2018) developed a machine learning-

based approach to estimate finger grip force from an RGB frame sequence with visual markers 

on fingers. These studies showed a potential of estimating force from visual and motion data, but 

only focused on a single body part. Such potential to be generalized to whole-body and various 

tasks remain unknown.   

Pham et al. (2018) demonstrated the feasibility of estimating hand contact force of 

multiple tasks from whole-body motion data captured from IMU sensors. It inherited the two-

stage scheme from their previous work that estimate required force to perform the task by 

applying physics-based reconstruction module to motion data, and recurrent neural network 

(RNN) to estimate the actual exerted force. Jahanbanifar and Akhavian (2019) also showed the 

potential of using an artificial neural network to estimate hand push force directly from the 

wrist’s motion data collected by accelerometers. 

These studies suggested the feasibility of estimating force on a single body part from 

visual data and force involving whole-body movement from reliable motion data. However, it 

still remains a question if the force (e.g., hand push force) could be estimated from motion data 



 81 

extracted from visual frame sequence. Motion data captured from a commercial system comes in 

a comprehensive human model. For example, Pham et al. (2018) applied a human model with 22 

joints connected by rigid body part model. A full number of joints can describe the human 

motion accurately, and rigid body part model enables the modeling part’s rotation. However, 

motion data captured from images/videos come in a much simpler human model (e.g., 16 joints 

from the majority work in the computer vision community). Modeling human with fewer joints 

may suffer from inaccurate motion data (e.g., spine is modeled by a straight-line segment instead 

of a series of short connected line segments). In addition, vision-based human modeling that uses 

a line to represent each limb thus cannot model the body part’s rotation. 

As force reconstruction from comprehensive human modeling assumes motion data with 

full degrees of freedom, the essential challenge breaks down to the question if a simplified 

human model extracted from images can be converted to a compatible one with whole-body 

physics-based equations to reconstruct the required force. 

  

Kinematic Model for Force Estimation 

Multibody system (MBS) modeling serves as the most popular way to represent the 

biomechanical behavior of the human body (Raison 2009). This study modeled the human body 

with the tree-like structure, instead of the constrained structure as it only considered joint force, 

excluding muscle force. To represent the kinematics for force reconstruction, generalized 

coordinate was used as it can unambiguously describe the MBS configuration, including position 

and orientation. There is no agreed way to define the generalized coordinate and bi-directional 

conversion between Cartesian coordinate (or natural coordinate defined by the captured motion 

data) and generalized coordinate. 
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 The generalized coordinate of a rigid part with 6 degrees of freedom (DOF) in 3D space 

consists of 6 elements, 3 representing position and 3 for orientation. The 3 position components 

are usually expressed in a Cartesian coordinate. The 3 orientation components are commonly 

expressed by Euler angles, quaternions, or exponential map for a robotic system (Liu and Sumit 

2011). The parameters may have intuitive meaning in the specific applications but do not apply 

in human motion modeling. For example, Euler angles express a joint angle (between two 

connected links) by three angle parameters that the joint angle can be achieved by rotating the 

link about three orthogonal axes at these three angles successively. This is achievable by a 

programmable robotic system but remains challenging to parameterize in modeling human 

motion explicitly.  

 In biomechanics, segment coordinate systems were well developed to model human 

motion incorporating the intuitive meaning of parameters (Doriot and Chèze 2004; Dumas et al. 

2007; Dumas and Chèze 2007). The most widely accepted one is Joint Coordinate System (JCS) 

recommended by the International Society of Biomechanics (ISB) (Merico et al. 2002). It defines 

the origin of the coordinate system at the proximal point of a body part and aligns one axis with 

the rotation axis of the part. As JCS still relies on the rigid volumetric body part, it cannot be 

fully adopted in this study that a body part is represented with a non-volumetric line. It lacks a 

kinematic model that incorporates the advantages of JCS with intuitive biomechanical 

parameters and works with simplified vision-based human model. 

 

5.3 Method 

Inspired by Pham et al. (2018), this study proposed a two-stage force estimation framework with 

a prior additive module to convert vision-based human motion data to an innovative kinematic 
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model (Figure 5.1). This conversion module facilitates force reconstruction with physics-based 

equations and the following neural network-based force optimization. 

 

5.3.1 Kinematic Model for Force Estimation 

Among generalized coordinates that can represent a rigid body’s configuration unambiguously, 

there are absolute coordinates, relative coordinates, and natural coordinates to select from. A 

joint angle in biomechanical analysis can be broken down to three postural angles (i.e., 

flexion/extension, abduction/adduction, and axial rotation (NIOSH 2014)]. These angles are 

defined as relative angles from the parent or proximal body part. To incorporate this intuitive 

meaning of angles, the relative coordinate approach was selected and used the three postural 

angles to represent the rotation of a body part, following Zatsiorsky and Zaciorskij (2002). As for 

the other 3 position components in a coordinate, the body part’s proximal point was defined as 

the origin of the coordinate system, following most of such models developed in the 

biomechanics field. 

It needs three postural angles to represent a rigid volumetric body part, with 3 DOF. 

However, for the simplified vision-based human model, it represents link-shape parts by non-

volumetric lines and cannot express axial rotation, would have a smaller number of DOF. An 

upper limb was taken as an example to show how the simplified model was defined while 

assigning the center of the pelvis as the root joint of the whole body. Following the way 

Figure 5.1 Framework of Force Estimation from Vision-based Human Motion Capture 
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Zatsiorsky and Zaciorskij (2002) representing the rotation matrix of a rigid body with the product 

of three rotation matrix about the postural angles, the rotation matrix can be calculated by 

R = [
cos  −𝑠𝑖𝑛 0
𝑠𝑖𝑛 𝑐𝑜𝑠 0
0 0 1

] , R = [
1 0 0
0 𝑐𝑜𝑠 −𝑠𝑖𝑛
0 𝑠𝑖𝑛 𝑐𝑜𝑠

] , R = [
cos 0 𝑠𝑖𝑛
0 1 0

−𝑠𝑖𝑛 0 𝑐𝑜𝑠
] 

𝑅 =⁡RRR = [

𝑐𝑜𝑠𝑐𝑜𝑠− 𝑠𝑖𝑛𝑠𝑖𝑛𝑠𝑖𝑛 𝑠𝑖𝑛𝑠𝑖𝑛 − 𝑠𝑖𝑛𝑠𝑖𝑛𝑐𝑜𝑠 −𝑠𝑖𝑛𝑐𝑜𝑠
−𝑐𝑜𝑠𝑠𝑖𝑛 𝑐𝑜𝑠𝑐𝑜𝑠 𝑠𝑖𝑛

𝑠𝑖𝑛𝑐𝑜𝑠 + 𝑐𝑜𝑠𝑠𝑖𝑛𝑐𝑜𝑠 𝑠𝑖𝑛𝑠𝑖𝑛− 𝑐𝑜𝑠𝑐𝑜𝑠𝑐𝑜𝑠 𝑐𝑜𝑠𝑐𝑜𝑠
] 

where  is flexion/extension,  is abduction/adduction, and  is axial rotation. 

The advantage of this coordinate system is not only that it is parameterized by the three 

intuitive postural angles. Additionally, it is also very flexible for simplified human motion data. 

As the loss of DOF could only be axial rotation, the kinematics model could be easily modified 

by removing some of the R from the rotation matrix R. In the converted kinematic model for 

this study, the hip has 3 DOF and its rotation matrix 𝑅ℎ𝑖𝑝 =⁡RRR, the shoulder has 3 DOF 

and 𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 =⁡RRR, and elbow has only 1 DOF (flexion/extension) and  𝑅𝑒𝑙𝑏𝑜𝑤 =⁡R. 

With the defined number of postural angles for each joint, the generalized coordinate of 

the whole-body system can be represented by concatenating the postural angles. With the 

translational terms, the transformation matrix could be formulated by combining rotation and 

translation matrix. With the transformation matrix, the Jacobian matrix J could be represented by 

V = ⁡ [
𝑣
𝜔
] = ⁡ [

𝐽𝑣
𝐽𝜔
] 𝑞̇ = J𝑞̇ 

where v is the linear velocity of a joint and  is the angular velocity of a joint, and 𝑞̇ is the 

generalized velocity. Up to this step, the relationship between the Cartesian coordinate of body 

joints and the generalized coordinate q is formulated and can proceed to force reconstruction 

using physics-based equations. 
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5.3.2 Physics-based Force Reconstruction 

According to Liu and Sumit (2011) that directly applying Newton’s second law on a complex 

articulated rigid body system, therefore, Lagrange’s equations derived from D’Alembert’s 

principle were used to describe the dynamics of motion. 

The primary equation this section applied is equations of motion in vector form: 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇) = 𝑄 

where M(q) is the mass matrix, 𝑞̈ is the generalized acceleration, 𝐶(𝑞, 𝑞̇) is the Coriolis and 

centrifugal term, and Q is the vector of generalized forces. 

 Using the transformation from the Cartesian coordinate to the generalized coordinate, 

equations of motion could be formulated as: 

(𝐽𝑇𝑀𝑐𝐽)𝑞̈ + (𝐽𝑇𝑀𝑐𝐽̇ + ⁡ 𝐽𝑇[𝜔̃]𝑀𝑐𝐽)𝑞̇ = ⁡ 𝐽𝑣
𝑇𝑓 + 𝐽𝑤

𝑇𝜏 

This equation is essentially identical with the prior one, and thus the mass matrix, Coriolis and 

centrifugal term, as well as the generalized forces can be represented as: 

𝑀(𝑞) = 𝐽𝑇𝑀𝑐𝐽⁡

𝐶(𝑞, 𝑞̇) = ⁡ (𝐽𝑇𝑀𝑐𝐽̇ + ⁡ 𝐽𝑇[𝜔̃]𝑀𝑐𝐽)𝑞̇

𝑄 = ⁡ 𝐽𝑣𝑇𝑓 + 𝐽𝑤𝑇𝜏

 

Detailed information about representing Mc, Jv, J etc. could refer to Liu and Sumit (2011). 

 

5.3.3 Force Optimization  

Physics-based equations could only model the “physically plausible” distribution of  force (Pham 

et al. 2018) while there remains a gap to estimate the actual force due to its issue of 

indeterminacy. It is also intuitive to sense this issue that one can usually impose a larger force 

even if the same body movements were allowed. To address this issue, this study followed the 

idea from Pham et al. (2018) to apply an artificial neural network, to learn the latent mapping 
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between motion data with reconstructed force to actual forces. Among different types of neural 

networks, recurrent neural network (RNN) was selected as it effectively incorporates temporal 

information behind time-series data like the studied dynamic forces. 

It was explained that to apply RNN, motion data and reconstructed forces were encoded 

to feature vectors for every time-frame. The encoding method could not be adopted due to the 

aforementioned issue that the existing literature modeled the human kinematics in a more 

complex manner, and the simplified vision-based human model lacks specific motion data 

representation to replicate the validated approach. Therefore, a compatible feature extraction 

method and corresponding RNN structure were devised to encode the motion data that can feed 

the network along with the reconstructed force. 

The feature vector for every image frame incorporated the reconstructed external forces 

and torques exerted on the contacting hand, and both grounded feet. Motion data was also 

included in the feature vectors. This study focused on push force as it is a prevalent task with 

high exposure to ergonomic risk while its estimation relies on instrumentation (Seo 2016). 

Consequently, the motion data extracted as the feature was the wrist’s location of the primary 

hand (e.g., right hand) performing the pushing task. 

 The RNN structure consisted of four layers: long short-term memory (LSTM) layer, fully 

connected layer, dropout layer, and another fully connected layer Figure 5.2. LSTM is a type of 

RNN, and a common such unit is composed of a cell, an input gate, an output gat and a forget 

gate. The cell is where “memory” is stored, and the three gates are “regulators” that control the 

flow of information depends on its feasibility to be reserved. LSTM was found to work well on 

processing time-series data while learning the latent temporal pattern. 
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5.4 Lab Testing 

To test the feasibility of the proposed approach, lab testing was conducted. With the subject 

simulating a task of pushing a cart, vision-based force estimation was validated against the actual 

force exerted on the subject’s hand collected by a 6 DOF force transducer.  

 

5.4.1 Testing Condition 

The same testing condition with that in Chapter 3 was applied in this study, as shown in Figure 

5.3. In addition to the motion data collected from the marker-based system (OptoTrakTM, 

Northern Digital, Inc., Waterloo, Canada), this study also recorded hand push force and ground 

reaction forces.  

Figure 5.2 Recurrent Neural Network Structure for Force Optimization 
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To collect the hand push force including both magnitude and direction, 6 DOF force 

transducer (model Mini45, ATI Industrial Automation, Inc., Apex, USA) was selected which 

provided tri-axis force and tri-axis torque. The force transducer was attached to the subject’s 

right hand with specific instructions to impose the pushing force directly on it. As the subjects 

wore a glove outside the force transducer, it was torn before the pushing to eliminate the impact 

of any contact, e.g., support from the glove. Ground reaction forces exerted on both feet were 

recorded with two 6 DOF force plates (model AccuGait Optimized, Advanced Mechanical 

Technology, Inc., Watertown, USA). 

 

5 subjects participated in this test to provide a diversity of stature and ways of pushing. 

The subjects’ height ranges from 160 to 190 cm. As they pushed the same cart, subjects had to 

drive their body parts differently by presenting with diverse body motion and different hand push 

force regarding both magnitude and direction. Collectively 14 cycles of pushing tasks were 

Figure 5.3 Test Setup for Force Estimation 
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performed, with completely free of hand contact with the cart between each cycle to eliminate 

the impact of inertia accumulated from the prior cycles. 

 

5.4.2 Measure of Accuracy 

Every cycle of an evaluated pushing task starts from the subject’s natural standing pose, through 

the forceful exertion during pushing, until returning to a next standing pose. Identifying the time 

frame a forceful exertion happens and its peak magnitude are critical information for ergonomic 

risk assessment. The peak force can be used to analyze the severity of the exertion, while the 

time of an exertion’s occurrence helps identify the combined impact from co-occurred forceful 

exertion and awkward posture. 

 To facilitate the analysis, the testing videos are trimmed into individual cycles of pushing 

tasks. The peak force and its time frame are identified and compared. Given the frame rate of the 

videos as 30 fps, the time of peak force is calculated from the frame index divided by the frame 

rate. In the testing tasks, tri-axial force is collected from both the proposed approach and the 

force transducer. As the only the force component orthogonal to the contacting surface has a 

noteworthy magnitude of value, the force estimation focuses on this component that is most 

critical to evaluate a pushing task. 

Figure 5.4 Examples of Force Profile: Estimation VS. Ground Truth 
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5.4.3 Testing Result 

Figure 5.4 shows several examples of the estimated force profile from the proposed video-based 

approach against the ground truth data collected from the force transducer. Table 5.1 shows the 

comparison of force estimation between the proposed method and the force transducer, regarding 

the time frame of peak force and its magnitude. In summary, within a cycle with an average 

duration of 3.8 seconds, the mean absolute error in time estimation of peak force occurrence is 

0.3 seconds, taking 7.9% of the total duration. The peak force magnitude estimation has a mean 

error of 9.5 N, taking 23.6% of the average magnitude. 

Table 5.1 Performance Comparison of Force Estimation 

Cycle 

ID 

Time Frame of Peak Force (Sec.) Magnitude of Peak Force (N) 

Estimation 
Ground 

Truth 
Diff. Estimation 

Ground 

Truth 
Diff. 

1 2.2 2.1 0.1 29.4 33.9 4.6 

2 1.9 1.6 0.3 33.0 46.1 13.1 

3 3.3 4.0 0.7 47.7 33.9 13.9 

4 4.3 4.5 0.2 34.7 44.6 9.9 

5 4.5 4.8 0.3 27.5 34.8 7.3 

6 4.6 5.4 0.8 12.7 18.3 5.6 

7 5.0 5.1 0.1 29.3 27.0 2.3 

8 5.7 5.6 0.1 14.0 24.9 10.9 

9 2.5 2.4 0.1 67.5 80.2 12.7 

10 2.6 2.7 0.1 69.3 48.7 20.6 

11 2.8 2.7 0.1 57.0 42.9 14.1 

12 2.9 2.9 0.0 69.1 59.6 9.6 

13 5.1 4.9 0.2 34.8 39.8 4.9 

14 5.1 3.9 1.2 33.5 30.4 3.1 

Mean 3.8 3.8 0.3 40.0 40.3 9.5 

STD. 1.3 1.3 0.4 19.1 15.7 5.2 

 

Bland-Altman plot is a graphical method to show the agreement between two methods, 

especially if one of them is a reference or “golden standard” method. In this test, the force data 

collected from the force transducer is considered as the reference, and the agreement between it 
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and the force estimation by the proposed video-based method is explored. Bland-Altman plot is 

used to display the mean difference between the two methods plotted against the average of the 

two, as shown in Figure 5.5. In the left figure, the assay measurement is the time frame of the 

peak force, and in the right figure, the measurement is the magnitude of the peak force. For the 

time frame of the peak force, the middle horizontal line is close to zero which suggests little 

evidence of systematic bias of the proposed method compared to the reference one. The higher 

and lower horizontal lines show the upper and lower bounds of “limit of agreement” and displays 

the range of difference of future measurements with a 95% confidence level. It can be interpreted 

that for 95% of the time, the future estimation of the time frame of the peak force by the video-

based approach should have an error of less than 0.92 seconds. Similarly, from the right figure, it 

is suggested that the peak force magnitude estimation of the video-based approach has little 

evidence of systematic bias and the future estimation should have less than 21N of error 

compared to the force transducer. Although these two numbers are significantly larger than the 

average error calculated from the test, less than a one-second error in peak force’s occurrence 

time is considered to be highly accurate. The error of peak force magnitude estimation of 21N 

may seem large and will be further analyzed  regarding its impact on the accuracy of 

biomechanical analysis. 

 

5.5 Conclusion 

In this chapter, this study proposed a continuous tri-axial hand push force estimation framework 

from the 3D human motion data captured by the video-based approach. To address the 

knowledge gap of estimating the hand push force with a simplified human motion model of 

reduced DOF, compared with that from a body-attached motion capture system with full DOF, a 
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kinematic model is developed that can estimate the force data yet with intuitive biomechanical 

parameters. Subsequently, physics-based plausible force is estimated by equations of motion. It 

is followed by a recurrent neural network to estimate the actual force exertion by addressing the 

indeterminacy issue of force with motion data only. 

 

Lab testing was conducted to demonstrate the feasibility of estimating hand push force 

with the video-based 3D motion capture. The ground truth data for the validation is provided by 

a 6 DOF force transducer attached to the subjects’ hand. The test yields an error of 0.3 (7.9%) 

seconds in time frame estimation of peak force’s occurrence and a peak force estimation error of 

9.5N (23.6%). With the Bland-Altman plot, it is interpreted that the peak force occurrence time 

estimation does not present apparent systematic bias from the data collected by the force 

transducer and expect an error of within 0.92 seconds for future estimation with 95% confidence 

level. The peak force magnitude quantification does not embed a systematic bias and can expect 

an accuracy level of within 21N difference in a future test. The peak force occurrence time and 

magnitude are critical measurements for biomechanical analysis to evaluate the ergonomic risk 

Figure 5.5 Bland-Altman Plot of Estimation and Groundtruth Agreement on Force Estimation 
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level of individual body joint. The test result shows a great potential to estimate hand push force 

with an ordinary camera to quantify the force exertion for ergonomic risk assessment.  
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Chapter 6  Application of 3D Motion Capture and Force Estimation in 

Biomechanical Analysis 
 

 

6.1 Introduction 

To obtain a quantitative measurement of risk level, regarding individual body joints, 

biomechanical analysis is used to estimate the internal load exerted on each body joint. The 

required input data for such analysis primarily focuses on human motion data expressed by 

whole-body joint location or angle, along with external force with its magnitude and direction. 

As being costly to collect such data, biomechanical analysis is commonly applied with the direct 

measurement as the data collection approach. The major type of sensors involved include, but are 

not limited to, motion data capture system (e.g., optical marker-based, accelerometer-based) and 

force data collection devices (e.g., force gauge, load cell, pressure mat).  

Many studies in construction have demonstrated how biomechanical analysis can help 

improve the occupation. Seo et al. (2014) developed an application to leverage a commonly used 

human motion data format (.bvh), especially applied by an RGB-D sensor (Microsoft Kinect), 

converted into a compatible input format for the two most prevalent biomechanical analysis 

software, and evaluated a simulated masonry work’s joint moments on L5/S1 (an intervertebral 

disc between the fifth lumbar and first sacral vertebra), knees and elbows. Golabchi et al. (2015) 

used a human motion modeling tool (3ds Max) to collect motion data for biomechanical 

simulation in workplace design, aiming to prevent the designed job’s excessive exposure to 

ergonomic risks. Yu et al. (2019) developed computer vision-based 3D human motion capture 
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method with smart insoles to collect posture and force data simultaneously, and conduct a 

biomechanical analysis of simulated tasks (i.e., brick lifting, rebar tying, and plastering). These 

studies also suggested an emphasis on the data collection process, especially human motion and 

external force data.  

Seo (2016) suggested that, to conduct biomechanical analysis with a reliable accuracy of 

10% error, the motion data should achieve an accuracy of joint angle estimation to be less than 

10 of error. Despite that the proposed 3D human motion capture approach in a preceding 

chapter (Chapter 3) is demonstrated to acheve this level of accuracy regarding joint angle 

estimation, it remains unknown how the additive error in estimated force data could 

simultaneously impact the biomechanical analysis result. This study aims to explore this question 

by applying the video-based motion and force data collection approach in biomechanical 

analysis. 

 

6.2 Computerized Biomechanical Analysis Tools 

Among the spectrum of biomechanical models, some are static models (Chaffin and Baker 1970; 

Garg and Chaffin 1975; Martin and Chaffin 2007) that only require body joints locations for 

static postures. The limitation of these models is the ignorance of inertial loads exerted on body 

parts due to dynamic postures. Dynamic biomechanical models (Marras and Sommerich 1991), 

can handle this scenario by utilizing joints’ velocity and acceleration. As the velocity and 

acceleration require true-to-scale measurement (e.g., in m/s), thus necessitates the motion data in 

3D space. 

 3D SSPPTM (Three-Dimensional Static Strength Prediction ProgramTM) is a widely used 

software for static biomechanical analysis, with its GUI shown in Figure 6.1. It utilizes frame-
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wise static human posture without considering the velocity, acceleration, and their impact. Its 

major strength is the ability to not only quantify the exerted internal loads on the individual joint, 

but also a quantitative risk level of a joint by comparing the forceful exertion with the relevant 

human capacity (NIOSH 1981). 

 

Apart from whole-body motion data expressed by joint location, external contacting force 

data exerted on hands is the other key input. As 3D SSPPTM models the human in 3D space, the 

force’s magnitude and direction are both needed and can be visualized by a red arrow contacting 

the animated subject’s hand. The direction of force is expressed by a tri-axial variable with three 

components aligned with the three orthogonal axes. 

The proposed posture and force data collection approach is developed for dynamic 

biomechanical analysis that requires a frame-wise data stream to estimate velocity and 

acceleration. Due to the motion data format’s accuracy issue of OpenSim, this study selects the 

Figure 6.1 Screenshot of Biomechanical Analysis Tool 3D SSPPTM 
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static biomechanical analysis tool 3D SSPPTM to validate the impact of input risk factors data on 

the output analysis result. 

 

6.3 Method 

To utilize 3D SSPPTM to conduct an automated biomechanical analysis with available 3D human 

motion data and tri-axial forces exerted on the hands, there are mainly three steps to perform: 1) 

Identify the conversion rule of 3D coordinate system from motion and force data to that used in 

3D SSPPTM. 2) Convert motion and force data to the required input data format. 3) Generate a 

batch file to run the biomechanical analysis process on a frame sequence automatically. 

To minimize the effort of identifying how to convert the motion and force data to the 

coordinate system used by 3D SSPPTM, this study deliberately defined a 3D coordinate system 

that all the devices’ coordinate systems share its axes directions (Figure 6.2). The conversion 

between the coordinate system becomes effort-saving to only focus on the correct indexing of an 

axis’s label and its positive direction. 

3D SSPPTM has three acceptable formats of motion data for biomechanical analysis. The 

three formats are LOC, SLOC, and LLOC file, with a descending complexity of the required 

types of motion data. For example, both LOC and SLOC require a grip center apart from wrist 

location, that the 3D motion data from the proposed video-based approach does not provide. 

Therefore, the LLOC file is selected, but it does not allow the assignment of elbow and knee 

locations, which could only be generated by the embedded posture prediction feature. 

3D SSPPTM is a static biomechanical analysis tool and does not automatically run the 

biomechanical analysis process on the video frames successively. Thus, a batch file needs to be 
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generated to program the automatic triggering of the analysis process while exporting the 

summary report frame by frame. 

 

6.4 Lab Testing 

The setting is inherited from that for the preceding Chapter 5. Four cycles of pushing tasks of a 

male subject are used for the test. This subject has an overall joint angle estimation accuracy 

almost identical to the average value across the 10 participating subjects and is believed to be 

representative for a preliminary study. 

A primary output of biomechanical analysis in SSPPTM is 3D low back compression 

(unit: lb.). As the elbow and knee locations are predicted and highly unreliable, the estimated 

load on joints from limbs may not be reflecting the performance. Thus, the low back 

compression is selected as the estimation variable to evaluate the performance. 

Figure 6.2 Coordinate Systems Involved for Biomechanical Analysis 
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Following the force estimation, the measures of accuracy include time frame difference 

of peak compression’s occurrence, the corresponding peak magnitude, and mean absolute error 

of frame-wise compression’s magnitude. Between the two assay methods, the reference 

measurement is 3D low back compression estimation from 3D SSPP with hand push force 

collected by the force transducer and the 3D motion data collected by the marker-based motion 

capture system (OptoTrak). The other assay method is the proposed one, and the measurement is 

3D low back compression estimation generated from video-based hand push force and 3D 

human motion data capture. 

 

6.5 Testing Result 

Table 6.1 shows the low back compression estimation between the biomechanical analysis result 

generated by video-based force estimation and that by force data collected from the force 

transducer. The test results yield an average of 0.2 seconds (6.4%) in peak compression 

occurrence time on the low back, and a 121.2lb (12.6%) mean absolute difference on peak 

compression’s magnitude. 

 The accuracy of peak compression occurrence time and magnitude are both around 

12.5%, but the standard deviation has a much smaller scale of around 5%. This suggests a 

systematic bias in the estimation but with very high precision. Given the 3D human motion data 

from the video-based approach has a joint angle estimation error of slightly less than 10 degrees, 

the biomechanical analysis result is not too sensitive to the combined errors from both force and 

motion data. Based on the findings, a future research thrust could be suggested to explore the 

root cause of the systematic bias of the low back compression, which might further improve the 

biomechanical analysis accuracy. 
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Table 6.1 Accuracy of Biomechanical Analysis on Low Back Compression Estimation 

Cycle 

ID 

Time Frame of Peak Compression 

(Sec.) 
Magnitude of Peak Compression (lb.) 

Estimation 
Ground 

Truth 
Diff. % Diff. Estimation 

Ground 

Truth 
Diff. % Diff. 

1 2.1 1.8 0.3 14.5% 926.7 1064.2 137.5 12.9% 

2 2.6 2.8 0.2 6.0% 877.3 939.0 61.7 6.6% 

3 2.2 2.8 0.6 20.2% 715.6 871.7 156.1 17.9% 

4 2.5 2.8 0.2 8.4% 827.4 956.8 129.4 13.5% 

Mean 2.4 2.5 0.3 12.3% 836.8 957.9 121.2 12.6% 

STD. 0.2 0.5 0.2 6.4% 90.4 79.8 41.2 4.7% 

 

6.6 Conclusion 

Biomechanical analysis is a highly comprehensive ergonomic risk assessment approach. It 

utilizes whole-body 3D human motion data and external force data and can quantify the internal 

force and torque exerted on the individual body joint and its risk level. This study demonstrates 

the feasibility of using both hand push force and 3D human motion data extracted from an 

ordinary video to conduct biomechanical analysis. To validate the performance of such a non-

invasive, rapid, and economical approach, laboratory-based testing is conducted. A commonly 

used biomechanical analysis software 3D SSPPTM is applied to perform the analysis from 

provided input of force and motion data. As the primary measurement generated from the 

software, 3D low back compression is used to represent biomechanical analysis result for 

validation purpose. In the validation, a marker-based motion capture system (OptoTrakTM) 

provides ground truth motion data, and a hand-attached 6 DOF force transducer provides tri-axial 

ground truth force data. 
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 The biomechanical analysis result suggests that the proposed approach can estimate the 

peak compression occurrence time with 0.3 seconds’ error and peak compression with 12.6% 

mean error. The standard deviation of the three measurements are significantly smaller (i.e., 

~5%) and suggests a rather high precision in the estimation. 

This study demonstrated a great potential of video-based biomechanical analysis that 

evaluates internal load and the risk level of individual body joints with 3D human motion capture 

and force estimation with an ordinary camera. 
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Chapter 7 Conclusion and Recommendation 
 

 

7.1 Summary of Research  

This research effort started with the following overarching research goals: 1) to provide a rapid, 

non-invasive and accurate human motion capture approach that estimates the risk factors of 

posture and repetition for ergonomic risk assessment of on-site construction jobs; 2) to provide a 

non-invasive and non-contact hand force estimation approach to quantify forceful exertion which 

is critical to ergonomic risk assessment; 3) to apply the collected motion and force data for 

comprehensive ergonomic risk assessment including postural analysis that focuses on posture 

data and biomechanical analysis that requires pair-wise posture and force data. 

Considering these goals, the research had these three more specific research objectives: 

1) to develop and validate a video-based human motion capture framework to quantify 

ergonomic risk factors of posture and its repetition by extracting continuous 2D/3D human 

model with enforced kinematic and temporal consistency while handling long-lasting occlusion 

in construction sites; 2) to propose a hand push/pull force estimation framework with simplified 

human model of reduced DOF via the proposed video-based 3D human motion capture; and 3) to 

apply the collected risk factors such as posture, repetition, and force to ergonomic risk 

assessment tools. 

To achieve these research objectives, five inter-related studies were conducted. A 

summary of these studies’ results and implications are as follows.  
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1. Video-based 2D Human Motion Capture for Posture and Repetition Estimation: 

This study introduces a proposed framework to capture continuous 2D human motion from a 

video and demonstrates its robustness in quantifying the ergonomic risk factors of posture and 

repetition. 2D body joint location and angle estimation accuracy are validated by manual 

annotation on images for on-site construction jobs, with 83.2% joint location is correctly 

estimated and 11.6 joint angle error across body joint and 10 tasks. 

This result supports the potential of the developed motion capture framework with the 

ability to enforce kinematic and temporal consistency to estimate the key risk factors of posture 

and repetition (frequency and duration) for ergonomic risk assessment while handling long-

lasting occlusion in a construction site.  

2. Video-based 3D Human Motion Capture for Posture and Repetition Estimation: 

This study adopts the framework from the prior chapter with modification to incorporate 3D 

human motion capture. 3D body joint angle estimation accuracy is validated by marker-based 

motion capture system for lab-based simulated tasks. The results showed that the collected 

motion data with less than 10 of error in body angles. The result shows the ability to capture 

detailed information about human motion compared to the 2D approach (e.g., measuring trunk 

twisting angle). Additionally, based on the previous study’s suggestion that such an accuracy 

level of motion data could yield a reliable biomechanical analysis result with less than 10% error. 

The proposed approach demonstrated great potential for reliable biomechanical analysis with 

video-based 3D motion capture. 

3. Applications of Video-based Human Motion Capture on Ergonomic Postural 

Analysis: This study shows the feasibility of the motion data capture approach in three types of 

postural analysis tools requiring quantified risk factors of angle-based, distance-based and a 
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mixture of both. Three tools from each category are selected. The estimation of frequency and 

duration for an angle-based postural analysis tool (REBA) achieved comparable accuracy with 

the average performance of 27 ergonomists’ observation with significantly less evaluation time. 

The estimation of risk level for a distance-based analysis tool (Snook’s Tables) from categorical 

risk factor estimation yields 80% of 10 on-site jobs correctly evaluated compared to analysis 

result from the tapeline-based measurement. The estimation of risk level for an angle- and 

distance-based analysis tool (NIOSH Lifting Equation) achieved a mean absolute error of 10.9% 

in the estimated score compared with tapeline and observation-based measurement for 10 on-site 

lifting jobs. The results collectively exhibit the immense potential to apply the proposed motion 

data capture approach for on-site postural analysis to evaluate the ergonomic risks of 

construction jobs. 

4. Video-based Hand Push Force Estimation: This study introduces the proposed hand 

push force estimation framework from captured whole-body human motion data via a video 

recording. Lab testing was conducted to demonstrate the feasibility of estimating hand push force 

with video-based 3D motion capture. The estimated force has a peak force estimation error of 

9.5N (23.6%) and its occurrence time estimation error of 0.3 seconds, validated by a 6 DOF 

force transducer attached to the hand. The result shows a possibility to estimate hand push force 

with an ordinary camera to quantify the force exertion for ergonomic risk assessment. Further, 

biomechacnial analysis is conducted using the 3D motion and force captured from video. The 

result, 3D low back compression, is compared with that from the sensor-based approach. The 

result shows a potential to perform biomechanical analysis with the proposed video-based 3D 

motion and force estimation approach.  
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7.2 Future Research  

While this work has extended the potential of a video-based comprehensive data 

collection approach for on-site ergonomic risk assessment, many methodological and technical 

challenges remain which warrants further attention in future research efforts. A few such 

questions are listed below.  

1. How can the video-based 2D human motion capture framework achieve a higher 

accuracy level in construction sites similar to that of the state-of-the-art performance on image 

dataset collected from daily activities? 

2. How can the video-based 3D human motion capture framework better infer an 

occluded body joint location?  

3. How can we increase the level of automation in ergonomic risk assessment through the 

quantification of extended types of risk factors, such as the hand posture including grip?  

4. How to estimate force exertion of tasks other than pushing and pulling with the 

proposed force estimation framework, such as carrying? As for the on-site deployment, 

especially the motion capture approach, there are several questions and corresponding 

recommendation for future study to work on:1. How to improve the processing speed of motion 

capture approach? The most time-consuming module, a human pose estimation algorithm, 

applied from the computer vision domain, is designed to handle a high level of diversity in daily 

activities with complex neural network structure. Jobs from a construction site do not have such 

diversity in postures and appearance and may not require a similarly complex network structure 

to handle. An engineering effort could be devoted to simplify the network structure by 

identifying the most impactful layers and the minimum number of nodes. With a simplified 

network, the processing speed can be significantly reduced for an on-site application. 
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2. How to utilize the on-site ambient cameras for motion capture (e.g., surveillance 

camera)? This research uses videos taking from an observer’s view, which might incur extra cost 

for data collection, compared with utilizing ambient cameras under operation on the jobsites.  

The major engineering effort required is replacing the human pose estimation module with one 

where the pose estimation model is trained from images collected by ambient cameras whose 

view angle is significantly different from an observer.  
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