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Abstract 

 

Humans have been modifying the Earth’s land surface for millennia. In the last 300 years 

these changes have increase in intensity and spatial extent. In tropical regions these 

anthropogenic changes are dominated by the expansion of agriculture. This has led the majority 

of remaining tropical forests to exist as fragments embedded in a matrix of agricultural 

production. This production varies in type and diversity of crops and management practices, 

through which organisms must navigating through or surviving within the matrix. For this 

reason, understanding the effects of these agricultural landscapes on species dispersal is crucial 

in the development of successful conservation planning.  

The purpose of this dissertation was to explore the effects of varying coffee production 

management practices on the population structure and connectivity of tropical rodents. This 

study was conducted in the coffee growing region of Soconusco and the El Triunfo Biosphere 

Reserve in Chiapas, Mexico. We used genetic and landscape data to study the population 

structure and connectivity of two common rodent species, Heteromys desmarestianus goldmani 

and Peromysucs gymnotis, in this landscape.  

We found that levels of population connectivity and genetic diversity vary between the 

two sampled species, which is supported by their differences in ecological specialization. 

Heteromys in the coffee farms were characterized by subtle genetic structure, which correlates 

with high management intensity coffee production and high genetic diversity. On the other hand, 

P. gymnotis individuals showed no signal of population structure and lower degrees of genetic 

diversity. When comparing H. d. goldmani populations from the continuous forest (El Triunfo 

Biosphere Reserve) and the coffee production region we found similar levels of genetic diversity, 
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suggesting that high levels of migration and gene flow can be maintained in the coffee 

agroecosystem.  

This study highlights the potential of integrating molecular and landscape data to explore 

population connectivity of elusive species, such as terrestrial small mammals. It also shows the 

importance of studying the responses to environmental change for species with different levels of 

ecological specialization within a group, since these responses can vary. Additionally, it 

identifies coffee production as an important refuge for rodent species within anthropogenic 

landscapes. This work adds to the growing body of literature in landscape genetics by 

demonstrating that rodents can show population structure at small scales and that this structure 

can be driven by landscape factors linked to agricultural management. 
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Chapter 1 Landscape Drivers Of Connectivity For A Forest Rodent In A Coffee 

Agroecosystem 

 

1 Introduction 

The majority of landscapes are characterized by a highly heterogeneous structure. This 

structure is driven by natural (e.g., humidity, topography) or anthropogenic forces (e.g., 

agriculture, urbanization). From the point of view of an organism, some landscape characteristics 

will support the organism’s survival and reproduction, while others will restrict it. Areas that 

promote the survival and reproduction of organisms are known as habitat, while the matrix is the 

land in between habitable areas for a particular species, which usually encompasses most of the 

landscape (Perfecto et al. 2010). The metapopulation framework introduced by Levins (1969) 

helps us in the study of populations inhabiting these heterogeneous landscapes.  

Metapopulations consist of several subpopulations of an organism separated in space and 

with some probability of survival and migration from one subpopulation to another (Levins 

1969, Haski 1999). This movement can also be referred to as population connectivity. 

Maintaining high levels of population connectivity can allow individuals to locate new resources 

and prevent inbreeding depression (Olah et al. 2017). Among the many forces influencing 

dispersal is the quality of the landscape matrix (Vandermeer and Carvajal 2001). The matrix can 

vary in quality depending on the species in question and the land cover represented in the area 

(Perfecto et al. 2010). High quality matrices will promote species movement across the 
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landscape, while low-quality matrices will impede movement. Understanding the influence of 

matrix composition on population connectivity is of great importance in our current world where 

the landscape is increasingly fragmented due to human perturbations, such as agriculture which 

accounts for approximately half of the Earth’s land surface (Hooke et al. 2012). As a result, most 

tropical forests exist as fragments embedded in a matrix of agricultural production. Frequently, 

agriculture is viewed in opposition to biodiversity conservation (Perfecto and Vandermeer 2008). 

However, within the agricultural matrix we can find management practices that vary 

greatly in the level of intensification. Agricultural intensification is the transition from high crop 

diversity and low external inputs (e.g., organic or traditional production) to systems with a single 

crop species and increased use of external inputs (i.e., pesticides, herbicides; Perfecto et al. 

2010). Because of this variation in management, we do not expect all agricultural lands to 

influence species movement equally. Research has highlighted the important role traditional 

agriculture and agroecological production practices can play in the conservation of many taxa 

(Vandermeer and Perfecto 2007, Philpott et al. 2008) while also providing sustainable 

livelihoods for farmers (Altieri 1999, Perfecto and Vandermeer 2010). Few studies evaluate the 

effect of different management practices on species dispersal at a fine scale (for an example see 

Flores-Manzanero et al. 2018). By identifying which agricultural practices facilitate dispersal we 

can maintain productive landscapes while also preventing species extinctions. The agricultural 

matrix is an important part of the conservation landscape that can provide habitat for species and 

dispersal corridors between forested areas.  

 Studying the influence of agricultural practices on species requires measures of 

population connectivity. Direct measures of connectivity are difficult to obtain. They require 

following an individual’s movement through the landscape using mark-recapture, or telemetry 
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methods. While these methods provide detailed information on the movement of individuals, 

sample sizes are invariably limited and only a static snapshot of the movement is obtained, as 

recorded during the time of the study. Additionally, small and elusive species are difficult to 

include in this type of study.  

Landscape genetics, a field that incorporates population genetics, landscape ecology and 

spatial statistics to study the effect of landscape characteristics on populations provides an 

alternative to direct measures of population connectivity by using genetic distance (i.e., gene 

flow) between individuals or populations as a proxy for average dispersal and provides a 

measure of population connectivity that can go back several generations depending on the 

methods used. Using this genetic information, we can identify landscape variables that drive 

genetic patterns by methods such as resistance surface modelling (Spear et al. 2010). Landscape 

resistance models are created for each landscape variable of interest and these can be compared 

to the measures of genetic distance to determine which variables better explain the observed 

genetic pattern. The results are assumed to reveal which variables are promoting or impeding 

movement.  

This study explores the way in which different landscape characteristics result in genetic 

correlations among individuals and subpopulations of a small forest dwelling rodent, Heteromys 

desmarestianus goldmani, in order to understand how matrix quality, including connectivity, 

influences genetic structure in a landscape dominated by the coffee agroecosystem. Rodents are 

the most diverse group of mammals, playing a variety of ecological roles, such as seed 

dispersers, herbivores, predators, prey, disease vectors, and ecosystem engineers, both positive 

and negative. As members of diverse food webs (Dickman 1999) they are frequently thought to 

be key elements of ecosystems (Brown and Heske 1990, Davidson and Lightfoot 2006). Despite 
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this acknowledged importance, rodents are fairly understudied, especially in tropical systems 

(Chung and Corlett 2006). Although literature exists on general natural history (e.g., Fleming 

1983, Quintero and Sanchez-Cordero 1989), only a few studies are concerned with the influence 

of landscape features on these common species (but see Flores-Manzanero et al. 2018, Otero-

Jiménez et al. 2018). Recently, with the development of new molecular techniques, genetic data 

has been used to infer dispersal, facilitating the study of smaller species, such as rodents, for 

which data collection using direct methods (mark and recapture or telemetry) is more difficult.  

The spiny pocket mouse (Heteromys. desmarestianus goldmani) is a common forest 

dwelling rodent in southern Mexico and Central America. H. d. goldmani is a seed predator and 

important seed disperser in tropical forests (Fleming 1983). Despite being a commonly found 

species, we know very little about its population dynamics and dispersal. We collected 

population genetic data from microsatellite markers and land cover data derived from satellite 

images to identify potential landscape drivers influencing population connectivity. We expect 

physical and structural landscape variables, some of which are related to agricultural 

management, to have a significant effect on population connectivity. More specifically, we 

expect proximity to rivers or streams (i.e., riparian effect) and high canopy cover to promote 

dispersal of H. d. goldmani. These characteristics are likely to provide important resources 

needed to survive within the farms as well as protection from predators. They can also help to 

maintain temperature and humidity levels.   

2 Methods 

2. 1 Study Species 

The spiny pocket mouse, H. desmarestianus, is a rodent that inhabits moist forest habitats 

from southern Mexico to Panama (Fleming 1974). It is the most abundant small mammal in these 
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regions (Klinger 2007) and has a home range of 100 m2 (Fleming 1974), which is small for a 

terrestrial rodent. Studies conducted in Costa Rica have shown that the diet of H. desmarestianus 

mainly consists of palm nuts and other seeds (Fleming 1983), making this rodent an important 

seed disperser in tropical regions (DeMattia et al. 2004). Based on genetic and morphological 

data H. desmarestianus is considered a species complex of which, H. d. goldmani is a member 

(Rogers and Gonzalez 2010). Little is known about the population structure and dispersal pattern 

of this common species.  

2.2 Study Site 

Coffee production in Latin America represents an ideal system for studying the effects of 

different management practices. In this region, coffee is produced in a variety of ways that 

follow an intensification gradient (Fig. 1-1a). It is common to find several of these management 

practices represented in small areas. For this reason, we chose to do our study in the tropical 

montane region of Soconusco in Chiapas, Mexico (Fig. 1-1b). This area is dominated by coffee 

production that varies in management intensity, ranging from rustic to unshaded monocultures 

with forest patches scattered between them (Fig. 1-1c). Farms included in the study have been 

producing coffee for 60 to 100 years. Although management practices vary over time, these 

farms have had similar management practices for at least the past 20 years (Perfecto and 

Vandermeer 2002). 

2.3 Field Sampling 

H. d. goldmani samples were collected from 2012 to 2015. We used 136 samples 

previously collected in the region from 2012 to 2014 (Otero Jiménez et al. 2018) and added 29 

new samples from 2015 with the goal of reaching continuous sampling across the study site. Ear 

tissue samples from H. d. goldmani were collected from six sites: three forest fragments and 
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three coffee farms of various management levels that are adjacent to the forest fragments (Fig.1-

1c). Coffee farms were categorized by the level of management intensity (i.e., Low, Medium, 

and High) based on the Moguel and Toledo (1999) classification system (Fig. 1-1a). To facilitate 

continuous animal collection across this complex landscape we sampled an area of 

approximately 4 km x 2 km (Fig. 1-1c), by following roads and trails within the farms and the 

forest fragments, following the methodology of Otero Jimenez et al. 2018. Ear tissue samples 

were preserved in 20% DMSO buffer saturated with NaCl. Mice were captured using 22.9 cm x 

7.6 cm x 8.9 cm Sherman live traps.  Sex and GPS coordinates for each individual sample were 

recorded. Animals were handled in accordance with the University of Michigan’s Committee on 

Use and Care of Animals. 

2.4 Genetic Data 

DNA Extraction – In order to obtain genetic population data we extracted DNA from 165 adult 

and juvenile H. d. goldmani ear tissue samples within our sampling area. Genetic data were 

obtained using the 12 species specific microsatellite markers developed by Otero-Jiménez et al. 

2018 (HET1, HET4, HET23, HET27, HET32, HET34, HET37, HET42, HET41, HET46, 

HET56, HET57). All loci were polymorphic in all sampling locations. Loci were tested for the 

presence of scoring errors and null alleles using Micro-Checker (Van Oosterhout et al. 2004). 

We tested for deviations from Hardy-Weinberg equilibrium (HWE) and for linkage 

disequilibrium at all loci and collecting sites (e.g., coffee farms of different intensities and forest 

fragment) using Arlequin 3.5.1.3 (Excoffier and Lischer 2010). Bonferroni corrections were 

applied to determine significance of HWE and linkage results. We estimated relatedness (r) 

within and between sites to check that individuals sampled were not siblings. We calculated pair-

wise values of r for all individuals using GenAlEx (Peakall and Smouse 2012).  
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Isolation by Distance (IBD) – To assess the influence of geographic distance on the observed 

genetic structure we calculated isolation by distance (IBD). We measured the correlation 

between pairwise genetic distance of all sampled individuals using the individual measure of 

differentiation ar (Rousset 2000), and Euclidian distance using a simple Mantel test in Arlequin 

(Excoffier and Lischer 2010). In addition, we estimated a Mantel correlogram based on 100 m 

distance classes considering the home range reported for Heteromys (Fleming 1974). 

Significance was calculated using Spearman correlation based on 10,000 permutations. 

Eucledian distances were estimated in Genalex (Peakall and Smouse 2012) and genetic distances 

(ar) were estimated using Genepop (Raymond and Rousset 1995, Rousset 2008). 

  

Population Structure Analyses – The coffee agroecological landscape arrangement was expected 

to have some effect on the dispersal of the mice (Otero Jiménez et al. 2018). We estimated the 

number of genetic units (K) and the locations of breaks in gene flow that define these clusters 

using Geneland (Guillot et al. 2008), a Bayesian clustering method. The use of Bayesian 

clustering removes the limitation of a priori population assignment; it identifies genetic units 

based on multilocus genotype data by maximizing HWE and minimizing linkage disequilibrium 

(Manel et al. 2005; Latch et al. 2006). We used Geneland 4.0.3 (Guillot et al. 2005) to calculate 

the number of genetic units in our study. We used Geneland in this analysis because it has been 

shown to detect weak genetic structure in areas with gene flow (Safner et al. 2011). 

The Geneland analysis included 20 independent runs with 10 000 000 MCMC iterations 

and 10 000 thinning (i.e., saving results from one iteration every 10 000), while varying K from 

1 to 10. Correlated and null allele model options were activated and the potential error for spatial 
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coordinates was set at 10 m. We used default settings for all other parameters. Optimal K was 

inferred from the run with the greatest average likelihood. After determining the optimal number 

of subpopulations (K), a separate run was performed for the assignment of individuals. For these 

runs, K was set to the previously inferred optimal number of subpopulations, the run parameters 

were 5 000 000 MCMC and 5 000 thinning. We calculated the posterior probability of 

subpopulation membership for each pixel of the spatial domain (500 x 500 pixels) with a burn-in 

of 100 for the run with the highest posterior probability.  

For the genetic clusters identified by Geneland, we measured genetic diversity by 

quantifying observed heterozygosity (HO), expected heterozygosity (HE), fixation index (FIS) 

and allelic richness (AR) using GenAlEx (Peakall and Smouse 2012). To assess differences in 

genetic diversity between clusters we used values for each measure (i.e., FIS, HE, HO, AR) for 

each locus at each cluster. We conducted a bootstrapping analysis of the mean in R. To assess 

genetic differentiation between groups we calculated pairwise FST (Wright 1951) using Arlequin 

(Excoffier and Lischer 2010). 

2.5 Landscape Data  

Landscape variables – Within a 4 km long (E-W) by 2 km wide area (Fig. 1-1c), we tested the 

significance of 5 landscape features we hypothesized could influence resistance to dispersal: 1) 

tree cover (TC), 2) slope (S), 3) elevation (E), 4) riparian effect (RE), and 5) streams (STR; 

Table 1).  

Landscape features were quantified using products derived from aerial imagery (Google 

2015) and a 20 m resolution digital elevation model (DEM). Land cover was digitized manually 

using the heads-up digitizing method (Bolstad 2016) to map polygons of similar levels of tree 

cover discernable at a 1:2,000 scale. Land cover was classified into a ranking of increasing 
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apparent habitat quality: 1) no high vegetation cover (open), 2) sun coffee plantation (no tree 

cover), 3) 25% tree cover coffee plantation, 4) 50% tree cover coffee plantation, 5) 75% tree 

cover coffee plantation, and 6) 100% tree cover (Fig. 1-2). Slope and elevation layers were 

developed from the DEM using appropriate geoprocessing tools (Fig. 1-2). Streams were 

delineated from the DEM by calculating flow accumulation and classifying any cells above a 

value of 100 as a stream (Fig. 1-2). We created the riparian effect layer by calculating a 

Euclidean distance raster from stream locations, which we used to represent lower resistance 

with closer proximity to a stream (Fig. 1-2). Digitization and DEM raster processing was 

performed with ArcGIS 10.3.1 (ESRI, 2015). 

 

Resistance Surfaces – Each landscape variable layer was converted to a raster map representing 

the assumed resistance to movement of each variable to H. d. goldmani (Table 1-1, Fig. 1-2). 

These predictions of landscape effects on movement were based on the available natural history 

research of H. d. goldmani and other members of the Heteromys genus (Fleming 1974, Fleming 

1984, Martínez-Gallardo and Sánchez-Cordero 1993, Klinger 2007). Landscape surfaces were 

rescaled to the finest possible resolution (20 m x 20 m) to reflect the hypothetical perceived scale 

of resistance for H. d. goldmani. 

2.6 Landscape Genetic Analysis  

Most studies evaluating the effects of landscape resistance on genetic population 

connectivity rely on expert opinion to describe the relationship between landscape variables and 

species movement (Zeller et al. 2012). We used the method developed by Peterman et al. 2014 to 

optimize our resistance surfaces to address concerns of analysis based on expert opinion. For 

example, many studies using expert opinion to develop landscape resistance models treat expert 
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opinion as empirical data, when it is not, thus making it difficult to evaluate performance (Zeller 

et al. 2012). In general, it is difficult to describe accurately the ecological processes being 

modelled in resistance analyses, and even if the processes are known, there is no guarantee that 

they will have significant influence on gene flow (Peterman et al. 2018). Peterman et al.’s (2014) 

optimization approach relies on a genetic algorithm to explore the parameter space, which seeks 

to maximize the relationship between pairwise landscape resistance distances (i.e., landscape 

variables) and pairwise genetic distances without any a priori assumptions (Peterman et al. 

2018).  

The optimization was done using the R package ResistanceGA (Peterman et al. 2018). 

Landscape surfaces were optimized in two steps: (1) single resistance surface optimization, and 

(2) combined (i.e., multi-) surface optimization (Fig. 1-2).  

For the first step we optimized each landscape surface independently, using the 

commuteDistance function exploring resistance values up to 2,500 using an 8 neighbor joining 

scheme to measure connectivity (Fig. 1b). The commuteDistance function, which calculates the 

commute distance or the time it takes for an individual to move from point a to point b in a 

particular landscape (vanEtten 2017). Our dependent variable was genetic distance measured as 

ar (Rousset 2000) and our predictor variables were the landscape resistance values. For 

continuous landscape variables (i.e., slope, elevation and riparian effect) we tested 9 possible 

transformations for the resistance relationship between both variables (i.e., linear, 

monomolecular, reverse monomolecular, inverse monomolecular, inverse-reverse 

monomolecular, Ricker, reverse Ricker, inverse Ricker, inverse-reverse Ricker). Additionally, 

we included pair-wise geographic distance of samples as our null model. We conducted 3 

independent optimization runs for each of the landscape variables to ensure results were robust. 



 11 

The optimal resistance surface was identified using the Akaike Information Criterion (AIC), 

determined by a linear mixed effects model with a maximum likelihood population effects 

parameterization (MLPE; Peterman et al. 2018). We then conducted a bootstrap analysis in 

which 75% of the samples were randomly selected without replacement and each surface was fit 

to the subset of samples. For each subset of samples, the models’ average rank, average weight 

and percentage that a surface was selected (top rank) were calculated with 10 000 iterations. 

Before we continued to the second optimization step for combined surfaces, we conducted a 

Spearman coefficient correlation test in R between the top commute distance matrices of all 

optimized single surfaces that performed better than geographic distance alone. We selected 

variables that showed small to moderate correlation (p < 0.49), to avoid including correlated 

variables in the combined surface model.  

For the second optimization step we performed the combined surface optimization with 

surfaces that showed moderate to low correlation (Fig. 1-2). Parameters for the combined surface 

optimization were the same as for the first optimization step. Additionally, we performed 

bootstrap model selection using the same parameters as for the single surface optimization in 

order to obtain the average rank, average model weight and the top ranked model for individual 

and combined surfaces. Optimization R script was adapted from Flores-Manzareno et al. 2018 to 

conduct this analysis.  

3 Results 

3.1 Microsatellite Analysis 

We found evidence of linkage disequilibrium at one locus (HET-41) across multiple 

sampling sites. This locus was eliminated from the data set for all further analyses. Micro-

Checker found no evidence of scoring errors but did imply null alleles for locus HET-46 (P < 
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0.0001). All loci were polymorphic in all sampling locations. A total of 97 alleles were scored at 

11 loci in all H. d. goldmani samples with an average of 7 alleles per locus (range 3 – 13; Table 

A1-1).  Primer and locus information can be found in Otero Jiménez et al. 2018. Results for the 

Lynch and Ritland (1999) relatedness estimator show values of r < 0.5 within and between sites 

(Table A1-2) indicating samples were not taken from members of the same litter. 

3.2 Population Structure  

Results from genetic clustering analysis revealed 6 distinct genetic clusters (Fig. 1-3; 

Table A1-3). Individuals from each of the 3 forest fragments sampled were classified as distinct 

populations (Clusters 2, 4 and 5; Fig. 1-3). Individuals sampled in the low intensity coffee farm 

were clustered with individuals from the adjacent forest fragment (Cluster 4; Fig. 1-3). 

Individuals from the medium and high intensity coffee farms show a similar trend, i.e. 

individuals from localities close to the forest fragment cluster with forest individuals (Cluster 4) 

whereas individuals from localities further east or west of the forest fragment, constitute separate 

clusters (Clusters 1 and 3, Fig. 1-3). Additionally, we found two individuals from the high 

intensity coffee farm that were assigned to the medium intensity farm cluster (Cluster 1, Fig. 1-

3), suggesting that these might be early generation migrants. We also found a single individual 

assigned to its own cluster (Cluster 6). This individual could be a member of a different 

population to the South of the study site.  

For the genetic diversity and cluster differentiation analysis we removed Cluster 6, 

because it only has one individual. For the rest of the 5 Clusters we did not find any significant 

difference in genetic diversity measures between the clusters (i.e., FIS, HE, HO, AR; Fig. A1-6). 

Pair wise genetic differentiation (FST) between clusters was statistically significant with values 

ranging from 0.01 to 0.05 (Table 1-2). 
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3.3 Isolation by Distance 

Isolation by distance results show significant but weak positive correlation between 

genetic distance and geographic distance for all samples (Mantel r = 0.11, P = 0.002; Fig. A1-7).  

The mantel correlogram showed significant positive relationship between genetic and geographic 

distance for 4 distance classes < 500 m (Fig. A1-8; Table A1-4). Additionally, it identified 5 

distance classes with a weak but significant negative relationship (Fig. A1-8; Table A1-4), which 

we interpret as having no biological significance for the species. 

3.4 Landscape Genetic Analysis 

Model selection results show that the slope (S) resistance surface was the best-supported 

model (47.2% of the times based on 10,000 bootstrap replicates; Table 1-3). From all the 

transformations tested, Inverse-Reverse Ricker function was the best fit for our genetic distance 

data (Fig. 1-4a). The next best supported resistance surface was tree cover (TC) (38.2% of the 

times; Table 1-3). Additionally, the linear mixed effect model identified both variables (i.e., 

slope and cover) as significant predictors of genetic distance. Streams and elevation explained 

12.4% and 1.4% respectively, of the variation in genetic distance data than distance alone (Table 

1-3). Riparian effect had poor performance, being the only landscape model that explained less 

than distance alone (Table 1-3).  

 We tested for correlations between all layers, except riparian effect, using Spearman’s 

tau. All surfaces showed some degree of correlation between each other. Seven out of the 9 

showed strong (> 0.50 Spearman tau; Table A1-5) and 3 layer pairs showed evidence of 

moderate correlation (S + TC, S + STR, S + RE; Table A1-5). For the next optimization step, we 

chose to perform a combined surface optimization analysis with a single combined surface of 

slope and tree cover, along with all other single surface variables. Because tree cover (TC), 
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streams (STR) and riparian effect (RE) had strong correlations with each other we only created a 

single combined surface. The lower correlation between tree cover and slope could be explained 

by the differences in management practices between the medium and high intensity coffee farms. 

Steeper areas in the medium intensity coffee farm are more likely to be left unmanaged, while in 

the high intensity farm steeper areas are included in coffee production. The slope variable had a 

mean contribution to the model of 12.4% and tree cover of 9.8% (Table 1-4). Results showed the 

combined surface to be the best supported model at 69.1%, followed by slope and tree cover 

(Table 1-4). 

4 Discussion 

In this study we set out to investigate the effect of landscape variables on the population 

connectivity of the forest rodent H. d. goldmani in a coffee agroecosystem. The study region 

included different farms with varying management practices that range from low to high 

intensity of coffee production. A previous study found limited population structure in this coffee 

growing region for H. d. goldmani with patterns of gene flow not easily explained by geographic 

distance (Otero Jiménez et al. 2018). Given the small home range of H. d. goldmani (100 m2) 

compared to other rodent species (Fleming 1974), it is not surprising to find genetic structure at a 

small spatial scale as observed in Otero Jiménez et al. (2018). This study was designed to search 

for potential relationships between landscape features and the population connectivity patterns 

observed in Otero Jiménez et al. (2018).  Study results showed higher population connectivity 

between individuals sampled near and inside the central forest fragment, while connectivity 

between individuals sampled within the coffee plantation decreased with distance from the 

forest, generating separate genetic populations and suggesting an influence of management 

practices on connectivity (Otero Jiménez et al. 2018). 
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  In our efforts to detect the variables influencing the observed genetic structure and 

limited gene flow, we found a weak but significant increase in genetic differentiation with 

increasing geographic distance between individuals following Otero Jimenez et al. 2018. 

Previous studies have found a range of IBD responses in terrestrial rodent populations. Many 

studies have found weak or no relationship between genetic and geographic distance between 

individuals or populations (Chiappero et al. 2011, Gerlach and Musolf 2001, Flores-Manzanero 

et al. 2018), while others have found significant IBD (Nicolas et al. 2008, Berkman et al. 2018). 

However, these results are influenced by many variables including spatial scale of the study and 

dispersal capabilities of the studied species. It is expected that species with limited dispersal 

capability will show stronger signals of IBD (Wright 1943).  

We then moved to examine other potential landscape variables that could be influencing 

these patterns. We generated resistances surfaces for 5 landscape variables (i.e., slope, elevation, 

streams, riparian effect and tree cover). We optimized the resistance surfaces of each using 

genetic distance information. These results showed that, from the variables sampled, slope is the 

one with the strongest influence on genetic distance, followed by tree cover. Not surprisingly, a 

combined surface of the two variables was the best model to explain the observed genetic 

structure. We found that our results are supported by studies done on other mammal species, 

where slope was an important predictor for richness and density (Russo et al. 2016, Carver 2010, 

Keeley et al. 2016). Additionally, tree cover or canopy cover has been identified as an important 

component to promote movement and species richness of terrestrial rodents (Caudill and Rice 

2016, Santos-Filho et al. 2012, Lomolino and Perault 2001) and other groups (birds; Martensen 

et al. 2012, amphibians; Popescu and Hunter 2011). 
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As mentioned in the results, the permeability of areas with higher slopes can vary in the 

landscape with the level of management intensity. We found that intermediate slopes (i.e., 30 to 

40% slope) had the lowest levels of resistance for Heteromys with increasing resistance at the 

two extremes. This could be due to the fact that flat (low slope) areas are used for coffee 

production and the mice are not able to move as easily through this landscape. However, as slope 

increases, harvesting and management of coffee is more difficult and the land is not as intensely 

managed, creating a better environment for the mice until it reaches a certain threshold where it 

becomes too steep for mice to move readily. However, these patterns have to be further studied 

to identify the relationship between slope and other landscape variables that may influence 

connectivity. 

The best model of the tree cover surface showed that intermediate levels of tree cover (50 

- 75%) are the most permeable for Heteromys, followed by high tree cover (> 75%). Areas with 

25% tree cover were classified with the highest resistance (Fig. A1-9). Surprisingly, open areas 

and sun coffee, which are the smallest percentage of cover type in the area (Fig. A1-9), were 

classified with low resistance values. This could be due to the absence of samples in those areas, 

which could make them irrelevant in the resistance calculations since no individuals would have 

connectivity paths that cross these regions. The Caudill and Rice (2016) study on rodent 

diversity in a similar coffee system highlighted the importance of canopy cover for rodent 

species richness and density. These results along with our findings suggest that tree cover is 

essential for maintaining rodent population connectivity in agroecosystems.  

We expected riparian effect to be one of the main variables explaining the observed 

genetic structure. Our results showed the opposite trend, with this variable performing the worst 

from all those analyzed. Because this measure was based on flow accumulation calculated from a 
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digital elevation model (DEM), it might not adequately reflect the desired patterns of riparian 

effect or account for variation in management along streams across farms with different 

production practices.  Instead, our results show the streams resistance surface as one of the top 3 

models, where the top model showed streams to have low resistance to movement of Heteromys, 

suggesting the influence of streams on Heteromys population connectivity.  

In summary, our results show that H. d. goldmani population connectivity and structure is 

influence by landscape variables, more than by geographic distance. This was shown by our IBD 

calculations and the resistance surface models. Our study had several limitations that could have 

influenced the strength of the patterns observed. One of these limitations was sampling; we 

worked within active coffee farms and in a highly mountainous region where certain areas were 

inaccessible for trapping, thus limiting our capacity for continuous sampling. In addition, 

sampling in areas with little to no tree cover resulted in no trap success. Secondly, our landscape 

data were limited in grain by the resolution of the satellite images and the digital elevation model 

used, which was 20 m x 20 m at its finest. Studies have demonstrated the importance of spatial 

scale in determining the relationship between landscape variables and population structure 

(Zeller et al. 2012, Oyler-McCance et al. 2013). Scaling of the resistance surfaces must reflect 

the scale at which the study species utilizes the environment. Since our project examined rodent 

populations a finer resolution would have been preferable, however, because 20 m is still smaller 

than the estimated home range of Heteromys, this analysis has provided some valuable insight. 

We hope that with technological advancements collecting these data at finer scales will become 

more affordable and accessible in the near future. We expect that with finer scale data we will 

find stronger relationships between the landscape variables analyzed and the genetic structure of 

Heteromys. Finally, while population structure and connectivity are influenced by many 
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variables, we limited our study to five of these variables and there are many others that could be 

included and potentially have a stronger influence. For example, humidity has been explored as 

an important variable in small mammal studies (Flores-Manzanero et al. 2018) and could be an 

important measure for H. d. goldmani because this is a forest dwelling rodent.  

 This study highlights the potential of integrating molecular and landscape data to explore 

population connectivity of elusive species, such as terrestrial small mammals. Tropical rodents 

play an important role in the ecosystem and their conservation is important for the maintenance 

of other species (Fischer et al. 2011).  From the literature we know that some small mammals are 

being negatively impacted by fragmentation, land cover and habitat loss (Blois et al. 2010). 

Recent studies evaluating the responses of terrestrial rodents to land cover changes and 

fragmentation have shown that responses vary among species depending on their diet and habitat 

preferences (e.g., Fischer et al. 2011, Passamani and Fernandez 2010). However, studies 

evaluating the genetic structure and population connectivity of tropical small mammals are 

lacking in the scientific literature (but see Flores-Manzanero et al. 2018, Otero Jiménez et al. 

2018, Balkenhol et al. 2013). Even rarer are studies that address the effects of the matrix 

composition on the connectivity of populations. Our study adds to this growing body of 

literature, showing that rodents can show population structure at small scales and that this 

structure can be driven by landscape factors linked to agricultural management.  

5 Conclusions 

This study provides an example of how genetic and landscape data can be used to study 

population connectivity in agricultural systems at a small scale. In addition, the findings add 

important insights to the literature on tropical rodents and their responses to anthropogenic land 

use changes. Our results highlight how agricultural production (e.g., tree cover) can be managed 
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to promote and even sustain rodent populations, thus emphasizing the potential role agriculture 

can play in maintaining biodiversity and connectivity in tropical landscapes.  
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6 Tables 

Table 1-1 Expected H. d. goldmani resistance to movement for each landscape variable. 

Landscape Variable 
Variable 

Type 
Expected Resistance 

Euclidean Distance  Isolation by distance. Greater resistance when further 

apart 

Elevation  Continuous 
Greater resistance as you move away from the optimal 

elevation  

Slope Continuous Greater resistance as the percent slope increases 

Riparian Effect Continuous Greater resistance further from stream edge 

Tree Cover Categorical Greater resistance with lower tree cover 

Streams Categorical Streams as barriers to movement 
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Table 1-2 Results for genetic differentiation (FST) between genetic clusters identified by 

Geneland analysis. Cluster 6 was not included in this analysis because only a single sample was 

assigned to this cluster. 

  1 2 3 4 5 

 

Cluster 

Medium-

Intensity 

Coffee 

East 

Forest 

Fragment 

High-

Intensity 

Coffee 

Central 

Forest 

Fragment 

West 

Forest 

Fragment 

1 

Medium-Intensity 

Coffee 0     

2 East Forest Fragment  0.0425 0    

3 High-Intensity Coffee 0.0208 0.0241 0   

4 Central Forest Fragment 0.0241 0.0461 0.0193 0  

5 West Forest Fragment 0.0291 0.0319 0.0196 0.0256 0 
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Table 1-3 Model selection results for the generalized linear mixed ‐effects models optimized on genetic distance (ar) for H. d. 

goldmani. K is the number of parameters for each model. 

Surface K  Equation AIC 

Average 

Weight 

Average 

rank Top Model % 

Slope 4 

Inverse-Reverse 

Ricker -13067 0.358 2.333 43.05 

Tree Cover 7 NA -13067.15 0.282 2.363 33.75 

Streams 3 NA -13064.23 0.133 3.520 11.71 

Riparian Effect 4 Ricker -13063.53 0.115 3.997 10.49 

Elevation 4 Monomolecular -13064.07 0.075 3.931 0.88 

Distance 2 NA -13062.35 0.035 4.857 0.12 
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Table 1-4 Model selection results for both individual and composite surfaces for H. d. goldmani. 

Surface K  Equation AIC 

Average 

Weight 

Average 

rank 

Top 

Model 

% Variables  

Combined  10 NA -13072.51 0.353 1.971 45.51 

Slope and Tree 

Cover 

Slope 4 Inverse-Reverse Ricker -13069.23 0.218 3.015 21.76 Slope 

Tree Cover 7 NA -13069.43 0.165 3.125 13.55 Cover 

Streams 3 NA -13066.4 0.098 4.370 9.23 Streams 

Elevation 4 Monomolecular -13066.32 0.049 4.851 0.57 Elevation 

Riparian Effect 4 Ricker -13065.68 0.090 4.874 9.33 Riparian Effect 

Distance 2 NA -13064.55 0.026 5.795 0.05 Distance 
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7 Figures 

 
 

Figure 1-1 Coffee management intensification diagram and map of study area. (a) Diagram of 

coffee management intensification (based on Moguel and Toledo 1999) and (b, c) map of study 

region; b) shows the location of our study site within the state of Chiapas, MX 
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Figure 1-2 Flowchart of landscape data extraction (top, gray background) for the creation of 

resistance surfaces for each landscape variable and resistance surface optimization (bottom, 

white background). 
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Figure 1-3 Geneland clustering results for H. d. goldmani. Each circle represents a sampled 

individual and each color a different cluster membership. 
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Figure 1-4 Response curves for (a) slope, (b) elevation and (c) riparian effect of single surface 

optimization using genetic distance for H. d. goldmani. Bars along the plots represent the 

distribution of resistance values. 
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Chapter 2 Population Connectivity Of A Generalist And A Specialist Rodent Species 

Across An Agricultural Intensification Gradient In A Coffee Agroecosystem 

 

1 Introduction  

Humans have been driving landscape changes for millennia. In the past 300 years 

technological developments have allowed humans to radically alter landscapes at a faster rate 

and at a much larger spatial scale than before (Ellis et al. 2013). Currently it has been estimated 

that 50-75% of the Earth’s land surfaces have been transformed by humans (Ellis and 

Ramankutty 2008, Hooke et al. 2012). Species, populations and individuals are impacted by 

these changing environments, which in turn can affect the composition of ecological 

communities. In the tropics most of these land transformations have been for the expansion of 

agricultural production (FAO 2016). This agricultural production varies greatly in crop type, 

crop diversity, and management intensity, where the latter can range from high crop diversity 

and low external inputs (e.g., organic or traditional production) to systems with a single crop 

species and increased use of external inputs (i.e., pesticides, herbicides; Perfecto et al. 2010). 

Human driven landscape transformations (e.g., agriculture) are non-random processes that serve 

as a filter, favoring species, populations, and communities that can survive in modified 

ecosystems (Smart et al. 2006). 

Ecologist have used the specialist-generalist continuum to study species responses to 

rapid environmental change. These categories are tightly linked to the ecological niche concept 

(Hutchinson 1957) and are mainly a reflection of the resource utilization capacity of individuals 
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(Devictor et al. 2010). A specialist species is considered to have a narrower niche, utilizing few 

resources and benefiting from homogeneous environments. On the other hand, a generalist 

species has a broader niche, utilizing many different resources and benefiting from 

heterogeneous environments. Based on these definitions we expect that in stable homogeneous 

environments specialist would thrive if they can effectively exploit the resources present. 

However, in changing environments generalist species are expected to persist and perform much 

better since they are able to utilize a range of resources. This tradeoff is known as the “jack of all 

trades master of none” scenario (MacArthur 1972). The specialist-generalist continuum has been 

a useful tool when evaluating how species responses to landscape changes vary depending on 

their ecological specialization.  

Studies have found changes in ecological communities’ local diversity and species turn-

over following anthropogenic landscape changes (Olden 2006). Research has shown patterns of 

specialist species loss and increase of generalist species abundance as human land uses intensify 

(butterflies: Börschig et al. 2013, birds: Jetz et al. 2007, plants: Helm et al. 2005). Several studies 

have recorded functional homogenization of communities due to these changes, which can lead 

to the loss of ecosystem services (Clavel et al. 2010). However, most of these studies focus on 

species composition and density, and do not evaluate the population level responses of specialist 

and generalist species to changing landscapes. Studies evaluating the dispersal and population 

structure of species can provide valuable insight and serve as a guide for conservation 

management.  

Technological advances and the reduction in cost of molecular analysis has allowed 

researchers to evaluate species population connectivity and dispersal, indirectly as a measure of 
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gene flow (Manel et al. 2013). This has expanded the research possibilities and made the study of 

non-model and elusive organisms easier.  

Small mammals comprise approximately 40% of all mammal species and play many 

important ecological roles such as seed and fungi spore dispersers, predators, prey and grazers 

(Lidicker et al. 1975, Keesing 2000, Maclean et al. 2011). However, they are usually overlooked 

in the scientific literature, as many are small non-charismatic species (Amori and Gippolotti 

2000). Some studies have found a low abundance or elimination of specialist species with 

increased fragmentation and agricultural intensity (Bali et al. 2007; Pardini et al. 2009). In this 

study we wish to add to the existing literature on tropical rodents by comparing the responses of 

Heteromys desmarestianus goldmani and Peromyscus gymnotis populations to agricultural 

management practices. H. d. goldmani has been classified as a forest dwelling specialist with a 

diet that consist mostly of seeds (Fleming 1974). P. gymnotis has been described as a habitat and 

diet generalist like most of the other species in this genus (Vázquez and Reid 2016). It is found 

in a range of habitat types and has a varied diet consisting of plants and insects (Vázquez and 

Reid 2016).  

In this study we use genetic and landscape data to answer two main questions; (1) Will 

the patterns of population connectivity of H. d. goldmani (a specialist) and P. gymnotis (a 

generalist) differ? (2) Which landscape variables, if any, are promoting or impeding connectivity 

in these species? We expect H. d. goldmani to have stronger limitations to population 

connectivity when compared to P. gymnotis. We expect patterns of connectivity for H. d. 

goldmani to be mostly explained by landscape characteristics related to agricultural management 

intensification, while patterns for P. gymnotis would mostly be explained via isolation by 

distance.  



 39 

2 Methods 

2.1. Study System and Sampling  

2.1.1 Study site 

Coffee production in Latin America represents an ideal system for studying the effects of 

different management practices. In this region, coffee is produced in a variety of ways that 

follow an intensification gradient (Fig. 1-1). It is common to find several of these management 

practices represented in small areas. For this reason, we chose to do our study in the tropical 

montane region of Soconusco in Chiapas, Mexico (Fig. 1-1). This area is dominated by coffee 

production that varies in management intensity, ranging from rustic to unshaded monocultures 

with forest patches scattered between them (Fig. 1-1). Farms included in the study have been 

producing coffee for 60 to 100 years. Although management practices vary over time, these 

farms have had similar management practices for at least the past 20 years (Perfecto and 

Vandermeer 2002). 

2.1.2 Study species 

Small mammals have been shown to be negatively affected by human-driven landscape 

modifications (Umetsu and Pardini 2007, Gibson et al. 2013, Woinarski et al. 2010). Additionally, 

due to their short generation time, changes in their genetic structure can be perceived more rapidly. 

These characteristics make small mammals an ideal group in which to study the effects of 

anthropogenic landscape changes. Understanding their responses to agricultural management and 

fragmentation is also important because they are members of tropical ecosystems, serving 

important functional roles as seed dispersers, predators, and prey. In addition, they influence plant 
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structure by driving vegetation complexity and diversity through dispersal (Daily et al. 2003, 

Avenant 2011, Young et al 2015).  

We sampled two of the most common species of small mammal in the study region. In this 

study we worked with Heteromys desmarestianus goldmani, Goldman’s spiny pocket mouse, 

which is part of the larger H. desmarestianus species complex. H. d. goldmani are forest habitat 

and diet specialist with a home range of 100 m2 (Fleming 1974). H. desmarestianus is the most 

common forest rodent in its range that extends from southern Mexico to Panama. The naked-ear 

deer mouse (Peromyscus gymnotis) is a generalist rodent that occurs in forests, grasslands, and 

coffee plantations in southern Mexico and Nicaragua (Vázquez and Reid 2016). Its home range is 

unknown, but closely related species have home ranges between 2800-4800 m2 (Scheibe 1984). 

Little is known about the population structure and dispersal pattern of either species.  

2.1.3 Field Sampling 

H. d. goldmani and P. gymnotis samples were collected from 2012 to 2017. Ear tissue 

samples from H. d. goldmani and P. gymnotis were collected from six sites: three forest 

fragments and three coffee farms of various management levels that are adjacent to the forest 

fragments (Fig. 1-1). To facilitate continuous animal collection across this complex landscape we 

sampled an area of approximately 4 km x 2 km (Fig. 1-1), by following roads and trails within 

the farms and the forest fragments, following the methodology of Otero Jiménez et al. 2018. Ear 

tissue samples were preserved in 20% DMSO buffer saturated with NaCl. Mice were captured 

using 22.9 cm x 7.6 cm x 8.9 cm Sherman live traps.  Species, sex, life stage and GPS 

coordinates for each individual sample were recorded. Animals were handled in accordance with 

the University of Michigan’s Committee on Use and Care of Animals. 



 41 

2.2. Genetic Data 

2.2.1 SNP library preparation  

Genomic DNA was extracted from ear tissue samples using the Qiagen DNeasy blood 

and tissue kit following the manufacture’s protocol (Qiagen Inc.) and eluted in water. DNA 

libraries were constructed using a triple enzyme RADseq (3RAD) protocol (Glenn et al. 2017). 

We digested approximately 100 ng of DNA from each individual with ClaI, BamHI, and MspI 

restriction enzymes. We ligated all fragments to internal adapters with indexing tags of 5-8 

nucleotides. A reduced cycle PCR and the standard Illumina adapter ligation protocol using Kapa 

LTP library preparation kits (Kapa Biosystems, Wilmington, MA) were used to construct full-

length libraries. Samples were indexed using iTru5 and iTru7 primers (Glenn et al. 2016) and 

pooled. We used Pippin Prep (Sage Science, Beverly, MA) to size-select for fragments between 

473 bp and 578 bp. We sequenced 56 H. d goldmani and 52 P. gymnotis individuals in separate 

(i.e., each species) 150bp pair-end Illumina HiSeq 4000 lanes at the University of Michigan 

DNA Sequencing Core.  

2.2.2 SNP calling and filtering 

First, we checked for adapter contamination and quality using FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Next, we used the 

process_radtags script from Stacks 2.1 (Catchen et al. 2013) to identify reads from each 

individual in the sequence data and trim all reads to 120 bp. Then we assembled denovo 

sequences for each species following the 6 step Stacks 2.1 pipeline (Catchen t al. 2013): (1) 

ustacks builds the SNP loci for each individual, (2) cstacks then creates a catalog of loci for all 

samples, (3) sstacks matches loci from individuals to the catalog. All these steps are done for 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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each read separately. (4) Next, the tsv2bam script was used to pull together the pair-end reads 

associated with each SNP and orient the data by locus. (5) The gtsacks program assembled and 

merged paired-end contigs and called variant sites in each sample. (6) Finally, we generated data 

sets for each species using the population program. These data sets contained only SNPs that 

were (1) found in >75% of the samples (r = 0.75); (2) had a minor allele frequency  5% 

(min_maf = 0.05); (3) had moderate heterozygosity  0.8; and (4) retained only a single SNP per 

RADtag (Catchen et al. 2013). 

 The generated datasets were further filtered for over clustering using VCFtools 

(Daneceket al. 2011). We removed sites with a total depth > 2500 and retained sites with a mean 

depth between 10 and 40. We verified that individuals were genotyped at  95 % of all loci. The 

remaining loci for each species were used for the subsequent analysis. 

2.2.3 Population genomic analysis 

2.2.3.1 Genetic Diversity  

We calculated genome wide diversity by measuring expected heterozygosity (HE), 

observed heterozygosity (HO), nucleotide diversity (π), and inbreeding coefficient (FIS) for each 

species separately for the filtered SNP library using the population function in Stacks 

2.1 (Catchen et al. 2013).  

2.2.3.2 Isolation by distance  

To assess the influence of geographic distance on the genetic structure we calculated 

isolation-by-distance (IBD). We estimated pairwise Euclidean and genetic distances in Genalex 
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(Peakall and Smouse 2012). Next, we measured the correlation between pairwise genetic 

distance of all sampled individuals, and Euclidian distance using a simple Mantel test in R (R 

Core Team, 2018). In addition, we estimated a Mantel correlogram based on 100 m distance 

classes and calculated significance using Spearman correlation based on 10,000 permutations 

using the ecodist R package. These analyses were done for each species separately.  

2.2.3.3 Clustering 

We conducted population structure analysis using the SNPs retained after filtering across 

all samples. This included a Bayesian clustering analysis using both fastSTRUCTURE v1.0 (Raj 

et al. 2014) and TESS3 R package (Caye et al. 2016) for samples of each species separately. The 

admixture model of fastSTRUCTURE assumes that each individual has some proportion of 

ancestry originating from a number (K) of gene pools, which is reflected in the inferred ancestry 

coefficients (Q value). We also applied the logistic prior to the model which allows us to detect 

more subtle signals of genetic structure. TESS3 acts under similar assumptions but the model 

incorporates the geographic distance between samples, and thus it is able to detect weaker 

population structure. In both cases, we tested values of K ranging between 1-10, with 20 

replicate runs per K. For fastSTRUCTURE, optimal K was chosen using a combination of the 

‘chooseK’ script, and cross validation error, and for TESS3, we used cross entropy scores to 

determine the optimal K value. Individual ancestry coefficients were plotted using distruct for 

fastSTRUCTURE results and were plotted in R for the TESS3 results. We used geographic 

location information and the inferred ancestry coefficient for each individual for the best 

supported K to generate the population membership maps in ArcGIS. Individuals with Q > 0.8 

for any given cluster were assigned to that cluster, all other individuals were considered 
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admixed. If population structure was found we calculated genetic diversity measures using the 

population function in Stacks (Catchen et al. 2013) to compare values between clusters.  

2.3. Landscape Analysis  

2.3.1 Landscape Data  

Landscape variables – Within a 4 km long (E-W) by 2 km wide area (Fig. 1c), we tested the 

significance of 5 landscape features we hypothesized could influence resistance to dispersal: 1) 

tree cover (TC), 2) slope (S), 3) elevation (E), 4) riparian effect (RE), and 5) streams (STR; 

Table 2-1).  

Landscape features were quantified using products derived from aerial imagery (Google 

2015) and a 20 m resolution digital elevation model (DEM). Land cover was digitized manually 

using the heads-up digitizing method (Bolstad 2016) to map polygons of similar levels of tree 

cover discernable at a 1:2,000 scale. Land cover was classified into a ranking of increasing 

apparent habitat quality: 1) no high vegetation cover (open), 2) sun coffee plantation (no tree 

cover), 3) 25% tree cover coffee plantation, 4) 50% tree cover coffee plantation, 5) 75% tree 

cover coffee plantation, and 6) 100% tree cover (Fig. 1-2). Slope and elevation layers were 

developed from the DEM using appropriate geoprocessing tools (Fig. 1-2). Streams were 

delineated from the DEM by calculating flow accumulation and classifying any cells above a 

value of 100 as a stream (Fig. 1-2). We created the riparian effect layer by calculating a 

Euclidean distance raster from stream locations, which we used to represent lower resistance 

with closer proximity to a stream (Fig. 1-2). Digitization and DEM raster processing were 

performed with ArcGIS 10.3.1 (ESRI, 2015). 
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2.3.2 Resistance Surfaces 

Each landscape variable layer was converted to a raster map representing the assumed 

resistance to movement of each variable to H. d. goldmani and P. gymnotis (Table 2-1, Fig. 1-2). 

These predictions of landscape effects on movement were based on the available natural history 

research of both study species and of other members of the Heteromys and Peromyscus genera 

(Heteromys: Fleming 1984, Martínez-Gallardo and Sánchez-Cordero 1993; Peromyscus: Orrock 

et al. 2003, Fuller et al. 2006). Landscape surfaces were rescaled to the finest possible resolution 

(20 m x 20 m) to reflect the hypothetical perceived scale of resistance for both rodent species. 

2.4. Landscape Genetic Analysis  

Most studies evaluating the effects of landscape resistance on genetic population 

connectivity rely on expert opinion to describe the relationship between landscape variables and 

species movement (Zeller et al. 2012). We used the method developed by Peterman et al. (2014) 

to optimize our resistance surfaces to address concerns of analysis based on expert opinion. For 

example, many studies using expert opinion to develop landscape resistance models treat expert 

opinion as empirical data, when it is not, thus making it difficult to evaluate performance (Zeller 

et al. 2012). In general, it is difficult to describe accurately the ecological processes being 

modelled in resistance analyses, and even if the processes are known, there is no guarantee that 

they will have significant influence on gene flow (Peterman et al. 2018). Peterman et al.’s (2014) 

optimization approach relies on a genetic algorithm to explore the parameter space, which seeks 

to maximize the relationship between pairwise landscape resistance distances (i.e., landscape 

variables) and pairwise genetic distances without any a priori assumptions (Peterman et al. 

2018).  
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The optimization was done using the R package ResistanceGA (Peterman et al. 2018). 

Landscape surfaces were optimized in two steps for H. d. goldmani and P. gymnotis separately: 

(1) single resistance surface optimization, and (2) combined (i.e., multi-) surface optimization 

(Fig. 1-2).  

For the first step we optimized each landscape surface independently, using the 

commuteDistance function exploring resistance values up to 2,500 using an 8 neighbor joining 

scheme to measure connectivity. The commuteDistance function, which calculates the commute 

distance or the time it takes for an individual to move from point a to point b in a particular 

landscape (vanEtten 2017). Our dependent variable was genetic distance and our predictor 

variables were the landscape resistance values. For continuous landscape variables (i.e., slope, 

elevation and riparian effect) we tested 9 possible transformations for the resistance relationship 

between both variables (i.e., linear, monomolecular, reverse monomolecular, inverse 

monomolecular, inverse-reverse monomolecular, Ricker, reverse Ricker, inverse Ricker, inverse-

reverse Ricker). Additionally, we included pair-wise geographic distance of samples as our null 

model. We conducted 3 independent optimization runs for each of the landscape variables to 

ensure results were robust. The optimal resistance surface was identified using the Akaike 

Information Criterion (AIC), determined by a linear mixed effects model with a maximum 

likelihood population effects parameterization (MLPE; Peterman et al. 2018). We then 

conducted a bootstrap analysis in which 75% of the samples were randomly selected without 

replacement and each surface was fit to the subset of samples. For each subset of samples, the 

models’ average rank, average weight and percentage that a surface was selected (top rank) were 

calculated with 10 000 iterations. 
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Before we continued to the second optimization step for combined surfaces, we 

conducted a Spearman coefficient correlation test in R between the top commute distance 

matrices of all optimized single surfaces that performed better than geographic distance alone. 

We selected variables that showed small to moderate correlation (p ≤ 0.49), to avoid including 

correlated variables in the combined surface model.  

For the second optimization step we performed the combined surface optimization with 

surfaces that showed moderate to low correlation (Fig. 1-2). Parameters for the combined surface 

optimization were the same as for the first optimization step. Additionally, we performed 

bootstrap model selection using the same parameters as for the single surface optimization in 

order to obtain the average rank, average model weight and the top ranked model for individual 

and combined surfaces. Optimization R script was adapted from Flores-Manzareno et al. (2018) 

to conduct this analysis.  

3 Results 

3.1. Sequencing and genotyping  

We obtained data from 56 H. d. goldmani individuals and 52 P. gymnotis. Sequencing 

yielded an average of 500 million reads for each species, 9770 and 5587 SNPs after filtering H. 

d. goldmani and P. gymnotis respectively, with a mean coverage of 30X (range = 10-40X).  

3.2. Genetic diversity  

Results for genetic diversity measures show significant differences between species (Fig. 

2-1, Table 2-2). H. d. goldmani had higher expected and observed heterozygosity when 

compared to P. gymnotis (Fig. 2-1a, b, Table 2-2). Nucleotide diversity was also higher for H. d. 
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goldmani than for P. gymnotis (Fig. 2-1c, Table 2-2). We found that the inbreeding coefficient 

(FIS) did not vary significantly between species, but P. gymnotis has a slightly higher FIS (Fig. 2-

1d, Table 2-2).  

3.3. Isolation by distance  

We did not find a significant correlation between genetic and geographic distance in 

either of the study species when including all samples (i.e., distance classes). Mantel tests for 

isolation by distance for both species were not statistically significant for H. d. goldmani or 

P.gymnotis (Mantel r = 0.105, Mantel r = -0.128, p-value > 0.1, respectively; Table 2-2). For H. 

d. goldmani the Mantel correlogram showed a significant positive signal for IBD at distances < 

300 m (Fig. 2-2a). However, P. gymnotis did not show significant IBD at any distance class (Fig. 

2-2b)  

3.4. Clustering  

We analyzed population structure using two different Bayesian methods, 

fastSTRUCTURE (Raj et al. 2014) and TESS3 (Cave et al. 2012). Results for both methods 

yielded similar patterns of structure for both species. For H. d. goldmani fastSTRUCTURE 

results supported the presence of 1 to 3 clusters (K), while TESS3 showed support for K of 1 or 

2, with K = 2 having a slightly lower cross-entropy score than K = 1, representing a higher 

likelihood (Fig. 2-3). We evaluated the plotted individual cluster membership for each of the 

potential best supported K values for each method (Fig. 2-4a). For fastSTRUCTURE the K = 2 

included a ghost cluster, and all individuals were assigned to a single cluster, and so we did not 

include the plot. The results show an overlapping pattern across both methods for the assignment 
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of 2 clusters (Fig. 2-4a, b). The first cluster is composed of all individuals in the high, medium 

and low intensity coffee farms, and individuals from the middle forest fragment (Fig. 2-4c). The 

second cluster is composed of individuals sampled in the eastern forest fragment at the border of 

the high intensity coffee farm. To further explore the differentiation between clusters we 

compared the genetic diversity measures for each cluster and found no significant differences 

(Fig. 2-4d). Only nucleotide diversity was significantly different between clusters, but this 

difference is small (Fig. 2-4d). These results suggest subtle population structure in H. d. 

goldmani. 

P. gymnotis fastSTRUCTURE analysis showed support for K = 1 - 4, while the TESS 

results identified K = 1 as the optimal K (Fig. 2-5a). When plotting the individual clusters 

assignments, we also found the presence of ghost clusters at all K values for fastSTRUCTURE 

(Fig. 2-5b). Assignment of individuals for K = 3 and K = 4 showed no spatial pattern. Because 

the two clustering methods do not show similar clustering patterns, results suggest that there is 

no detectable genetic structure within our sample of Peromyscus. Individuals assigned to 

different clusters in fastSTRUCTURE could indicate recent dispersal events. 

3.5. Landscape genetics  

Model selection results for H. d. goldmani and P. gymnotis show that slope (S) and 

elevation (E) resistance surfaces were the best-supported models based on 10,000 bootstrap 

replicates (Table 2-3). Elevation was the best supported surface for H. d. goldmani (top model 

75% of the time; Table 2-3) and slope was the best supported surface for P. gymnotis (77% of 

the time; Table 2-3).  
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Results show that for H. d. goldmani all optimized surfaces, except for streams (STR), 

ranked higher than the geographic distance surface (Table 2-3). This finding supports the non-

significant IBD results for H. d. goldmani showing that geographic distance does not have a 

strong influence in maintaining population connectivity. Elevation (75%) and slope (19%) were 

the two best supported surfaces, followed by tree cover (1.98%) and riparian effect (1.68%; 

Table 2-3). We found that for P. gymnotis only slope (77%) and elevation (19%) ranked higher 

than the distance surface (2.3%; Table 2-3). This suggests that the measured landscape variables 

related to agricultural production (e.g., tree cover and riparian effect), as well as geographic 

distance, have little influence on Peromyscus population connectivity. 

 The resistance patterns for each optimized surface varied between species (Fig. 2-6). The 

optimized slope surface for H. d. goldmani showed a range of low resistance values between 30-

40% slope (Fig. 2-6a), while the pattern for P. gymnotis was the opposite with 30-40% slope 

representing the highest resistance in the optimized surface (Fig. 2-6b). For the elevation 

optimized surface H. d. goldmani showed a pattern of lower resistance values at elevations of 

700-800 m. Additionally, the highest assigned resistance values for elevation was of  

approximately 200 at elevations outside of 800 m (Fig. 2-6c), which are lower than the highest 

assigned values for the Peromyscus elevation surface (Fig. 2-6d). The optimized elevation 

surface for P. gymnotis had low resistance values at a broader elevation range, from 900-1100 m, 

and much higher resistance values outside of 800 m for Heteromys (lower elevation: 400 

resistance value, higher elevation: 800 resistance value; Fig. 2-6d). These results demonstrate 

how the same variables are important for the population connectivity of both species, but the 

direction of this response differs.  
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 Tree cover and riparian effect were the two landscape surfaces tested that are directly 

influenced by management practices. Low intensity coffee management practices allow for 

higher tree cover in the farms and less management and production around water bodies, like 

streams and ravines. For the generalist species, P. gymnotis, tree cover was the lowest ranked 

surface when trying to explain genetic structure (Table 2-3) suggesting that Peromyscus 

population connectivity can be maintained at varying levels of cover. On the other hand, for H. d. 

goldmani, the specialist species, tree cover ranked as the third top model, suggesting that tree 

cover could be influencing connectivity. The resulting optimized tree cover surface for each 

species showed opposite patterns (Fig. 2-6). Heteromys shows tree cover > 50% to have the 

lowest resistance to connectivity with values any lower than 50% showing high resistance (Fig. 

2-6). For Peromyscus, the resistance values have less variation showing areas of 0-100% tree 

cover having relatively low resistance values (Fig. 2-6).  

 We tested for correlations between all optimized landscape surfaces using Spearman’s 

tau for each species. For Heteromys all surfaces showed some degree of correlation between 

each other (Table 2-4). Only one surface pair (i.e., slope and riparian effect) of the 15 pairs 

showed moderate correlation (0.3 Spearman tau), all other surface pairs showed strong 

correlations (> 0.5 Spearman tau; Table 2-4). In the subsequent optimization step we created 

only a single combined surface with slope and riparian effect, the two variables that showed 

lower degree of correlation. For Peromyscus we found more variation in degree of correlation 

between pairs (Table 2-4). The two variable pairs that showed no correlation included: (1) 

streams and tree cover, and (2) riparian effect and streams. Because all variables except slope 

and elevation ranked lower than geographic distance for Peromyscus we only modeled a single 

combined surface using elevation and slope.  
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Results from the combined surface optimization for Heteromys showed the combined 

surface to be the third best supported model at 10% (Table 2-5), after slope (15%) and elevation 

(72%; Table 2-5). For Peromyscus the combined surface also ranked third, being the top model 

0.5% of the time (Table 2-5) while slope (78%) and elevation (17%) continued to be the top two 

models. 

4 Discussion  

As part of the ecosystem humans have and will continue to modify the Earth’s 

environment. Agricultural production, both its expansion and intensification, is one of the most 

significant drivers of anthropogenic change. Agriculture’s effect on ecosystems can range from 

maintaining most of the ecological community structure, to homogenization and species turn-

over. It is important to study species responses to different production schemes in order to 

identify management and production practices that will maintain productive agricultural 

landscapes that sustain biodiversity and maintain ecosystem services. Additionally, we know that 

species level of specialization in resources and habitat requirements affect their responses to 

environmental changes. This study explored the population connectivity of two rodent species, 

with varying levels of ecological specialization, within a coffee agroecosystem composed of 

farms varying in management practices.  

Using genetic and landscape data we sought to answer these two questions: (1) Do 

patterns of population connectivity of H. d. goldmani (a specialist) and P. gymnotis (a generalist) 

differ? (2) Which landscape variables, if any, are promoting or impeding connectivity in these 

species? We found different patterns of population connectivity and responses to landscape 

changes in each species. 
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Patterns of population connectivity 

The presence of genetic structure in H. d. goldmani, suggests that there are limitations to 

population connectivity. Geographic distance had a weak but significant correlation with genetic 

distance but at small distance classes (< 300 m). The two genetic clusters identified were 

separated by high intensity coffee productions (i.e., sun coffee). These results suggest that this 

coffee production scheme may serve as a barrier to movement and decrease population 

connectivity of H. d. goldmani.  In contrast, we found P. gymnotis individuals-maintained 

population connectivity supported by the absence of population structure based on the genetic 

data, and no significant role of geographic distance. These results differed from our expectations, 

since we predicted IBD to be the main contributor to the generalist species population structure. 

Studies have found strong patterns of isolation by distance in temperate regions for Peromyscus 

species (Moscarella et al. 2019, Howell et al. 2017). Studies on P. leucopus revealed IBD across 

the great lakes region (Moscarella et al. 2019), and in agricultural landscapes at distances > 1800 

m (Howell et al. 2017). However, these studies were conducted at larger spatial scales and it is 

possible that our study area was not large enough to capture the influence of IBD on P. gymnotis. 

For forest specialist species, studies have found similar patterns of IBD as those reported 

here (Otero Jiménez et al. 2018, Cobo-Simon et al. 2018). Cobo-Simon et al. (2018) reported that 

specialist species (H. desmarestianus and P. mexicanus) showed weak and non-significant 

patterns of IBD, but significant genetic or population structure in a tropical forest reserve in 

Central America. The influence of isolation by distance is overpowered by the effects of the 

landscape on population structure.  
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Genetic diversity also differed between species. H. d. goldmani showed higher levels of 

heterozygosity and nucleotide diversity when compared to P. gymnotis. Small isolated 

populations are expected to have low levels of genetic diversity and high levels of inbreeding 

(Melbourne and Hastings 2008) which can threaten long-term population survival. If coffee 

production was having this effect on Heteromys we would have expected lower genetic diversity 

than what we observed. One possibility to explain this pattern is the presence of Heteromys 

genetic structure observed. However, this is unlikely since both genetic clusters were found to 

have similar levels of genetic diversity. These findings suggest that despite the genetic structure 

found, there is strong gene flow between Heteromys individuals in the coffee agroecosystem. 

The lower values of genetic diversity for Peromyscus did not support our predictions, since we 

expected high gene flow and population connectivity, and high genetic diversity. These patterns 

could be driven by many different factors, such as competitive exclusion or a recent colonization 

event.  

Landscape influences on population connectivity 

Our results showed that, out of the 5 landscape characteristics evaluated, elevation and 

slope were the most correlated with the patterns of population connectivity in both species. 

However, the relationship between each species and the variables were markedly different, 

highlighting the ecological differences between these species. Our results show that H. d. 

goldmani connectivity is higher at a lower elevation and over a narrower range than that of P. 

gymnotis despite their overlapping elevation range (H. desmarestianus 200-2400 m; P. gymnotis 

0-1700 m Reid 2009). This pattern could be explained by the fact that the sampled high intensity 

farm is located at the highest elevation in the study area (900-1100 m). Peromyscus is able to 
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thrive in this environment while H. d. goldmani is restricted to areas with lower management 

intensification that are coincidentally located at lower elevations. Another interesting pattern 

found is that P. gymnotis population connectivity is correlated with lower percent slope (20%), 

when compared to that of H. d. goldmani (30-40%). We believe that this could also be driven by 

coffee production practices, where flatter areas tend to be more densely planted and managed 

than steeper areas. For this reason, Heteromys might move through steeper landscapes and avoid 

intense production areas with low cover. This is supported by our findings where areas with 

higher tree cover promote connectivity of H. d. goldmani. These results can suggest the presence 

of competitive exclusion of Peromyscus from the forested areas in the coffee agroecosystem.  

Studies evaluating the effect of agricultural practices on small mammal populations show 

varying responses (Pardini et al. 2004, Arce-Peña et al. 2019, White et al. 2012). Most studies 

show a general pattern of agricultural intensification increasing the density and presence of a few 

generalist species (White et al. 2012, Silva et al. 2005), while specialist species decrease with 

surrounding landscape intensification and reduced forest (Arce-Peña et al 2019, Silva et al. 

2005), lowering species richness in high intensity agricultural areas. These patterns support our 

findings of higher population connectivity for P. gymnotis, the generalist species, and its lack of 

response to the agricultural landscape features measured in this study. Few studies exist that 

evaluate the effect of agricultural landscape on rodent population connectivity. One of these 

studies conducted in a temperate region found that larger landscape features, such as roads and 

rivers, are barriers to connectivity for Peromyscus leucopus, a generalist species (Howell et al. 

2017). The effects of agriculture on the population connectivity of specialist rodents has mostly 

been studied in a binary habitat-non habitat context. These studies have evaluated the influences 

of forest fragment size, edges and distance to other fragments on connectivity, and show that 
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smaller, isolated fragments increase population differentiation (Balkenhol et al. 2013, Arce-Peña 

et al. 2019). H. d. goldmani population structure in our study supports the patterns found in these 

studies, since the agricultural matrix is reducing connectivity.  

This study highlights the impact agricultural management practices can have on 

population connectivity. However, one of the main limitations to this type of study, specifically 

in tropical regions, is the availability of landscape data and the spatial grain at which it is 

collected. Future studies would benefit from collecting microclimatic data and other measures 

that can create a better profile of the low, medium and high intensity farms at a level that is 

relevant to rodents, as done by Flores-Manzanero et al (2018). This information could provide 

greater insights into the relationships between and among elevation, slope, and management, and 

their relative effect on the patterns observed. We also were limited by a small sample size in this 

study. Increasing the sampling size might reveal other patterns that we were not able to detect. 

We hope that as technology progresses and sequencing becomes more accessible this will no 

longer be a limitation in the near future.  

It has been well established that human dominated environments reduce animal 

movement and connectivity (Tucker et al. 2018). In this study we explored rodent population 

connectivity within a coffee production landscape composed of farms with varying management 

practices. The study species, H. d. goldmani and P. gymnotis are able to survive within the coffee 

agricultural matrix. Peromyscus, the generalist species, maintains connectivity in this landscape 

while, H. d. goldmani, a forest specialist, shows signs of reduced connectivity that appears to be 

driven by increase in management intensification (e.g., reduced tree cover). However, genetic 

diversity patterns suggest that H. d. goldmani is able to migrate through the landscape 



 57 

maintaining high levels of genetic diversity, while P. gymnotis has lower levels of genetic 

diversity despite the absence of genetic structure. More research is needed to understand the 

drivers of these patterns. These differences in response highlight the importance of sampling 

species representative of varying degrees of ecological specialization when studying the effects 

of environmental change. This is especially important for sustainability and conservation 

management planning. We hope that our study serves as an example of the potential that genetic 

and landscape data have to inform agricultural and conservation management practices. Small 

mammals are key components of all ecosystems and can be used as a measure of ecosystem 

health. This study provides novel information about tropical rodent populations that can 

potentially be used in future studies to measure the success of agricultural and conservation 

practices in maintaining connectivity. 
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5 Tables 

Table 2-1 Expected H. d. goldmani and P. gymnotis resistance to movement for each landscape 

variable. We expect Heteromys to show stronger responses to all variables when compared to 

Peromyscus 

Landscape Variable 
Variable 

Type 
Expected Resistance 

Euclidean Distance  Isolation by distance. Greater resistance when further 

apart 

Elevation  Continuous 
Greater resistance as you move away from the optimal 

elevation  

Slope Continuous Greater resistance as the percent slope increases 

Riparian Effect Continuous Greater resistance further from stream edge 

Tree Cover Categorical Greater resistance with lower tree cover 

Streams Categorical Streams as barriers to movement 

 

Table 2-2 Number of samples, number of SNP markers, genetic diversity measures and IBD 

correlation for H. d. goldmani and P. gymnotis. Values in parenthesis are the standard error. 

 Species 

  Heteromys Peromyscus 

Samples 56 52 

SNPs 9770 5587 

Observed Heterozygosity 0.24712 (± 0.0014) 0.11159 (± 0.0016) 

Expected Heterozygosity 0.27534 (± 0.0013) 0.14159 (± 0.0019) 

Inbreeding Coefficient 0.1092 (± 0.053) 0.15562 (± 0.054) 

Nucleotide diversity  0.27815 (± 0.0013) 0.14325 (± 0.0019) 

Isolation-by-Distance 0.105 (p > 0.1) -0.128 (p > 0.1) 
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Table 2-3 Model selection results for the generalized linear mixed ‐effects models optimized on genetic distance for (top) H. d. 

goldmani and (bottom) P. gymnotis. K is the number of parameters for each model. 

 

 

 

 

 

 

Surface K Equation AIC 

Average 

Weight 

Average 

Rank 

Top Model 

% 

Slope 4 Reverse Ricker 6369.144 0.72520118 1.6714 77.57 

Elevation 4 Inverse-Reverse Ricker 6375.327 0.10132819 2.8754 18.77 

Distance 2 NA 6375.829 0.0541534 3.2369 2.49 

Streams 3 NA 6375.913 0.04662508 3.7551 0.33 

Riparian Effect 4 Inverse Ricker 6376.015 0.04637222 3.9836 0.71 

Tree Cover 7 NA 6377.277 0.02631992 5.4776 0.13 

 

 

 

Surface K Equation AIC 
Average 

Weight 

Average 

Rank 

Top Model 

% 

Elevation 4 Inverse Ricker 9604.4 0.687 1.40 75.19 

Slope 4 Inverse-Reverse Ricker 9611.2 0.195 2.62 19.77 

Tree Cover 7 NA 9612.8 0.047 3.42 1.97 

Riparian Effect 4 Monomolecular 9616.9 0.027 4.51 1.68 

Distance 2 NA 9617.8 0.021 5.01 0.77 

Streams 3 NA 9615.9 0.023 4.05 0.62 
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Table 2-4 Spearman correlation results for all pairs of resistance surfaces and strength of 

correlation for (top) H. d goldmani and (bottom) P. gymnotis. Slope (S), tree cover (TC), 

elevation (E), riparian effect (RE), and streams (STR). 

 

 

Surfaces 

Spearman 

rho P Correlation 

STR + RE -0.0235 0.24 No Correlation 

TC + STR 0.0172 0.39 No Correlation 

TC + E 0.0424 0.04 Low 

S + E 0.0903 7.62E-06 Low 

E + RE 0.2178 < 2.2e-16 Moderate 

S + RE 0.2344 < 2.2e-16 Moderate 

TC + RE 0.3306 < 2.2e-16 Moderate 

E + STR 0.3330 < 2.2e-16 Moderate 

TC + D 0.3355 < 2.2e-16 Moderate 

RE + D 0.4380 < 2.2e-16 High 

S + TC 0.5126 < 2.2e-16 High 

E + D 0.5275 < 2.2e-16 High 

S + D 0.5608 < 2.2e-16 High 

S + STR 0.5707 < 2.2e-16 High 

STR + D 0.6581 < 2.2e-16 High 

 

Surfaces 

Spearman 

rho P Correlation 

S + RE 0.338 < 2.2e-16 Moderate 

S + E 0.515 < 2.2e-16 High 

S + STR 0.536 < 2.2e-16 High 

S + D 0.565 < 2.2e-16 High 

S + TC 0.586 < 2.2e-16 High 

RE + E 0.605 < 2.2e-16 High 

TC + RE 0.660 < 2.2e-16 High 

E + STR 0.675 < 2.2e-16 High 

E + D 0.708 < 2.2e-16 High 

TC + STR 0.769 < 2.2e-16 High 

TC + D 0.815 < 2.2e-16 High 

RE + D 0.865 < 2.2e-16 High 

TC + E 0.866 < 2.2e-16 High 

STR + RE 0.917 < 2.2e-16 High 

STR + D 0.964 < 2.2e-16 High 
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Table 2-5 . Model selection results for both individual and composite surfaces for (top) H. d. goldmani and (bottom) P. gymnotis 

 

 

 

 

Surface K Equation AIC 

Average 

Weight 

Average 

Rank 

Top 

Model % Surfaces 

Elevation 4 Inverse Ricker 9604.4 0.628 1.64 71.65 Elevation 

Slope 4 Inverse-Reverse Ricker 9611.1 0.145 3.28 15.07 Slope 

Combined 7 NA 9609.8 0.132 2.54 9.06 Slope and Riparian Effect 

Tree Cover 7 NA 9612.8 0.037 4.15 1.59 Tree Cover 

Riparian Effect 4 Monomolecular 9616.8 0.022 5.46 1.38 Riparian Effect 

Distance 2 NA 9617.7 0.017 5.96 0.67 Distance 

Streams 3 NA 9615.9 0.019 4.98 0.58 Streams 

Surface K Equation AIC 

Average 

Weight 

Average 

Rank 

Top Model 

% Surfaces 

Slope 4 Reverse Ricker 6369.2 0.7132 1.67 78.08 Slope 

Elevation 4 Inverse-Reverse Ricker 6375.5 0.0902 3.46 17.41 Elevation 

Combined 7 NA 6375.2 0.0388 3.49 0.48 Slope and Elevation 

Distance 2 NA 6376.0 0.0492 3.91 2.78 Distance 

Streams  3 NA 6376.1 0.0424 4.43 0.25 Streams  

Riparian Effect 4 Inverse Ricker 6376.2 0.0420 4.70 0.82 Riparian Effect 

Tree Cover 7 NA 6377.4 0.0241 6.33 0.18 Tree Cover 
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6 Figures 

 

Figure 2-1 Genetic diversity measures for H. d. goldmani (blue) and P. gymnotis (red). Mean and standard error for each measure are 

included. 
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Figure 2-2 Mantel correlogram for geographic (Euclidian) and genetic distances calculated at 100 m distance classes for H. d. 

goldmani (blue) and P. gymnotis (red). Significant values (p < 0.05) are shown in black.
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Figure 2-3 Mean cross-entropy measures across all 10 replicates for each K value for Heteromys 

and Peromysc
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Figure 2-4 Clustering results for H. d. goldmani individuals. (a) fastSTRUCTURE individual assignments for K=3, and (b) for TESS 

K=2. (c) Map of individual cluster assignments for H. d. goldmani. (d) Genetic diversity measures for H. d. goldmani clusters. For 

individual cluster assignment, each bar represents an individual and colors represent the proportion membership to each cluster.
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Figure 2-5 P. gymnotis individual assignments for (a) fastSTRUCTURE K=3, and (b) K = 4. (c) Map of P. gymnotis individuals. For 

individual cluster assignment, each bar represents an individual and colors represent the proportion membership to each cluster 
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Figure 2-6 Heteromys (left) and Peromyscus (right) response curves for (a, b) elevation, (c, d) 

slope and (e, f) riparian effect of single surface optimization using genetic distance for each 

species. Bars along the plots represent the distribution of resistance values 
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Figure 2-7 Raster map surfaces for tree cover: a) original input surface for ResistanceGA, b) 

resulting ResistanceGA surface for the best model of tree cover based on genetic distance for H. 

d. goldmani, and c) best model of tree cover for P. gymnotis 
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Chapter 3 Comparing The Population Structure Of A Forest Dwelling Rodent (Heteromys 

desmarestianus goldmani) In A Coffee Production Region And A Continuous Forest 

 

1 Introduction 

 Tropical forests, the most biodiverse terrestrial ecosystems on the planet, are being 

transformed by human activities. The expansion and intensification of agriculture is one of the 

largest threats to these ecosystems (FAO 2016). This has led most tropical forests to exist as 

fragments embedded within a matrix of agricultural land uses (Perfecto et al. 2010). Organisms 

that previously existed within these continuous forests, now must learn to navigate through an 

agricultural environment in order to maintain their populations. For this reason, it is important to 

understand species’ responses to these landscape changes in order to develop accurate 

conservation and management strategies. However, the influence of agricultural landscapes on 

tropical species is poorly understood and this lack knowledge limits our ability to implement 

successful strategies.  

Rodents are an important part of tropical ecosystems but are sparsely represented in the 

scientific literature on conservation management. They represent 40% of all mammalian 

diversity and since 1992 more than 40 species and 12 new genera have been discovered (Amori 

and Gippoliti 2003). Additionally, they play important roles in food webs as prey and as 

predators of invertebrates, fungi, seeds and other vegetation (King 1985, Correa and Roa 2005). 

Rodents are also seed (Vieira et al. 2003, Galetti et al. 2015) and mycorrhizal fungi dispersers 

(Janos et al. 1995), and thus are important in promoting tree regeneration (Michel et al. 2007). 
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Many of the roles rodents play in ecosystems have been identified as critical and non-

ecologically redundant (Amori and Gippoliti 2003, Andersen et al. 2018). For these reasons, it is 

important to understand the responses of rodent populations to human modified landscapes. 

 Despite their large role in ecosystem function, tropical rodents are not well studied, and 

conservation initiatives are biased to more charismatic mammal groups and species (Amori and 

Gippoliti 2003). This could be due to the fact that some rodent species benefit from human 

disturbance, either by the increase in resource availability or the elimination of predator species 

(Arce-Peña et al. 2019). However, available research has found that not all rodent species are 

equally resilient to disturbances, and many species can be impacted by habitat loss and 

fragmentation (Umetsu and Pardini 2007, Gibson et al. 2013, Woinarski et al. 2010). This is 

especially alarming since 40% of all rodent genera are monotypic, and phylogenetic diversity 

could be lost at a rapid rate (Amori and Gippoliti 2003). Additionally, rodents have the highest 

extinction rate among mammals, representing 50-52% of all extinctions in the past 500 years 

(Amori and Gippoliti 2003).  

 Our study aims to understand the effects of habitat fragmentation and agricultural 

management on the population structure of a common forest rodent Heteromys desmarestianus 

goldmani. Development of new and affordable molecular methods have allowed researchers to 

explore population effects on small or elusive species. We take advantage of these new methods 

to calculate the level of population connectivity, through measures of gene flow, for the species. 

We sampled H. d. goldmani in both a continuous forest and a coffee production region, 

composed of forest fragments embedded within a matrix of varying coffee production 

management practices. We compared the genetic structure of H. d. goldmani between the two 



 80 

locations in order to gain a better understanding of the effects of coffee agriculture development 

and fragmentation on the species. We expect that H. d. goldmani individuals in the continuous 

forest will have stronger population connectivity, higher gene flow and lower population 

structure, when compared to individuals in the area of coffee production.  

2 Materials and Methods 

2.1 Study System and Sampling  

2.1.1 Study sites 

Coffee production in Latin America supplies most of the coffee consumed worldwide 

(FAO 2015). In this region coffee is produced in a variety of ways that follow an intensification 

gradient, ranging from rustic coffee production (e.g., coffee grown in the understory of tropical 

forest) to sun coffee (Moguel and Toledo 1999; Fig. 3-1b, d). It is common to find several of 

these management practices represented in small areas. For this reason, we chose to do our study 

in the tropical montane region of Soconusco in Chiapas, Mexico (Fig. 3-1b, d). This area is 

dominated by coffee production that varies in management intensity (Fig. 3-1). Farms included 

in the study have been producing coffee for 60 to 100 years. Although management practices 

vary over time, these farms have had similar management practices for at least the past 20 years 

(Perfecto and Vandermeer 2002). 

El Triunfo Biosphere Reserve, in the state of Chiapas, Mexico, is one of the largest 

remaining contiguous forests in the country (Fig. 3-1a, b). El Triunfo Biosphere Reserve was the 

first to enroll in the Man and the Biosphere program from UNESCO in 1993. It is located in the 

Sierra Madre mountain range in southern Mexico and is considered the most diverse cloud forest 

in the country. The reserve has a total area of 119,177 ha, from which 20% is part of the nucleus 
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zone which is divided into 5 polygons distributed across the reserve and surrounded by a buffer 

zone that includes agricultural and residential land uses (Martinez-Melendez et al. 2009). Our 

research was conducted in the nucleus polygon I (Fig. 3-1b, c). This reserve is the closest 

continuous forest to the coffee production area included in the study and serves as a good 

comparison with respect to elevation, temperature, rainfall, and geographical region. The reserve 

is an ideal area to conduct research on the dynamics of populations in their natural environment. 

2.1.2 Study species 

Despite their important role in tropical ecosystems, little is known about rodent 

population structure and connectivity and the effect of human modified landscape on these 

species. In this study we worked with Goldman’s spiny pocket mouse, H. d. goldmani, a rodent 

that inhabits moist forest habitats from southern Mexico to Panama (Fleming 1974). It is the 

most abundant forest rodent in these regions (Klinger 2007) and has a home range of 100 m2 

(Fleming 1974), which is small for a terrestrial rodent. Studies conducted in Costa Rica have 

shown that the diet of H. desmarestianus mainly consists of palm nuts and other seeds (Fleming 

1983), making this rodent an important seed disperser in tropical regions (DeMattia et al. 2004).  

2.1.3 Field Sampling 

H. d. goldmani samples were collected from 2012 to 2017 in the coffee production study 

site and March-April 2018 in the forest reserve (i.e., El Triunfo Biosphere Reserve). In the coffee 

production sites, ear tissue samples were collected from six sites: three forest fragments and 

three coffee farms of various management levels that are adjacent to the forest fragments (Fig.3-

1). To facilitate continuous animal collection across this complex landscape we followed roads 

and trails within the farms and the forest fragments, following the methodology of Otero Jiménez 
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et al. 2018. A similar method was followed at the forest reserve, where we collected ear tissue 

samples from mice collected along monitoring trails in the reserve. In both sites we sampled an 

area of approximately 4 km x 2 km (Fig. 3-1c, d), 

Ear tissue samples were preserved in 20% DMSO buffer saturated with NaCl. Mice were 

captured using 22.9 cm x 7.6 cm x 8.9 cm Sherman live traps.  Species, sex, life stage and GPS 

coordinates for each individual sample were recorded. Animals were handled in accordance with 

the University of Michigan’s Committee on Use and Care of Animals. 

2.2 Genetic Data 

2.2.1 SNP library preparation  

Genomic DNA was extracted from ear tissue samples using the Qiagen DNeasy blood 

and tissue kit following the manufacture’s protocol (Qiagen Inc.) and eluted in water. DNA 

libraries were constructed using a triple enzyme RADseq (3RAD) protocol (Glenn et al. 2017). 

We digested approximately 100 ng of DNA from each individual with ClaI, BamHI, and MspI 

restriction enzymes. We ligated all fragments to internal adapters with indexing tags of 5-8 

nucleotides. A reduced cycle PCR and the standard Illumina adapter ligation protocol using Kapa 

LTP library preparation kits (Kapa Biosystems, Wilmington, MA) were used to construct full-

length libraries. Samples were indexed using iTru5 and iTru7 primers (Glenn et al. 2016) and 

pooled. We used Pippin Prep (Sage Science, Beverly, MA) to size-select for fragments between 

473 bp and 578 bp. We sequenced 56 H. d. goldmani individuals from the coffee farms and 32 

individuals from the forest reserve in separate (i.e., each site) 150bp pair-end Illumina HiSeq 

4000 lanes at the University of Michigan DNA Sequencing Core.  
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2.2.2 SNP calling and filtering 

First, we checked for adapter contamination and quality using FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Next, we used the 

process_radtags script from Stacks 2.1 (Catchen et al. 2013) to identify reads from each 

individual in the sequence data and to trim all reads to 120 bp. Then we assembled denovo 

sequences for each study site (i.e., coffee production and forest reserve) following the 6 step 

Stacks 2.1 pipeline (Catchen et al. 2013): (1) ustacks builds the SNP loci for each individual, (2) 

cstacks then creates a catalog of loci for all samples, (3) sstacks matches loci from individuals to 

the catalog. All these steps are done for each read separately. (4) Next, the tsv2bam script was 

used to pull together the pair-end reads associated with each SNP and orient the data by locus. 

(5) The gtsacks program assembled and merged paired-end contigs, and called variant sites in 

each sample. ((6) Finally, we generated data sets for each species using the population program. 

These data sets contained only SNPs that were (1) found in >75% of the samples (r = 0.75); (2) 

had a minor allele frequency  5% (min_maf = 0.05); (3) had moderate heterozygosity  0.8; and 

(4) retained only a single SNP per RADtag (Catchen et al. 2013). 

 The generated datasets were further filtered for over-clustering using VCFtools (Danecek 

et al. 2011). We removed sites with a total depth > 2500 and retained sites that had a mean depth 

between 10 and 40. We verified that individuals were genotyped at  95 % of all loci. The 

remaining loci for each species were used for the subsequent analysis. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.2.3 Population genomic analysis 

2.2.3.1 Genetic Diversity  

We calculated the genome wide diversity by measuring expected heterozygosity (HE), 

observed heterozygosity (HO), nucleotide diversity (π), and inbreeding coefficient (FIS) for each 

population separately for the filtered SNP library using the population function in Stacks 

2.1 (Catchen et al. 2013).  

2.2.3.2 Isolation by distance  

To assess the influence of geographic distance on the genetic structure we calculated 

isolation-by-distance (IBD). We estimated pairwise Euclidean and genetic distances in Genalex 

(Peakall and Smouse 2012). Next, we measured the correlation between pairwise genetic 

distance of all sampled individuals, and Euclidian distance using a simple Mantel test in R (R 

Core Team, 2018). In addition, we estimated a Mantel correlogram based on 100 m distance 

classes and calculated significance using Spearman correlation based on 10,000 permutations 

using the ecodist R package. These analyses were done for each study site.  

2.2.3.3 Clustering 

We conducted population structure analysis using the SNPs retained after filtering across 

all samples. Bayesian clustering analysis using both fastSTRUCTURE v1.0 (Raj et al. 2014) and 

TESS3 R package (Caye et al. 2016) for samples of each species separately. The admixture 

model of fastSTRUCTURE assumes that each individual has some proportion of ancestry 

originating from a number (K) of gene pools, which is reflected in the inferred ancestry 

coefficients (Q value). We also applied the logistic prior to the model which allows us to detect 
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more subtle signals of genetic structure. TESS3 acts under similar assumptions but the model 

incorporates the geographic distance between samples, and thus it is able to detect weaker 

population structure. In both cases, we tested values of K ranging between 1-10, with 20 

replicate runs per K. For fastSTRUCTURE, optimal K was chosen using a combination of the 

‘chooseK’ script, and cross validation error, and for TESS3, we used cross entropy scores to 

determine optimal K value. Individual ancestry coefficients were plotted using distruct for 

fastSTRUCTURE results and for the TESS3 results were plotted in R. We used geographic 

location information and the inferred ancestry coefficient for each individual for the best 

supported K to generate the population membership maps in ArcGIS. Individuals with Q > 0.8 

for any given cluster were assigned to that cluster, all other individuals were considered 

admixed.  

3 Results  

3.1 Sequencing and genotyping  

We obtained data from all H. d. goldmani samples, 32 from the forest reserve and 56 

from the coffee production site. Sequencing yielded an average of 493 million reads for each site 

and 2416 and 9770, after filtering,  for the forest and coffee production sites, respectively (Table 

3-1), with a mean coverage of 30X (range = 10-40X). 

3.2 Genetic Diversity 

Results for genetic diversity measures show significant differences between sampling 

sites (Fig. 3-2, Table 3-1). We observed slightly higher nucleotide diversity, expected and 

observed heterozygosity for H. d. goldmani samples from the forest reserve than from those in 
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the coffee production (Fig. 3-2, Table 3-1). Measures for the inbreeding coefficient (FIS) were 

similar between both sampling sites suggesting the same levels of inbreeding in both locations.  

3.3 Isolation by distance 

We did not find significant patterns of isolation-by-distance for H. d. goldmani in any of 

our study sites when including all samples. Mantel r values were not significant for the forest 

reserve (Mantel r = 0.065, p > 0.1; Table 3-1) or coffee production (Mantel r = 0.105, p > 0.1; 

Table 3-1). Results for the Mantel correlogram for IBD at different distance classes show a 

similar pattern for both of the study sites. We found significant positive correlations between 

genetic and geographic distance at shorter distance classes (0-300m) for both sampling sites (Fig. 

3-1), with the correlation being slightly stronger in the forest reserve. This analysis also revealed 

some differences in the IBD patterns for H. d. goldmani between sites. For example, we found a 

significant positive correlation at the 900 m distance class that was not identified in the coffee 

production samples (Fig. 3-1).  

3.4 Clustering  

We analyzed population structure using two different Bayesian methods, 

fastSTRUCTURE (Raj et al. 2014) and TESS3 (Cave et al. 2012). Results for both methods 

yielded similar patterns of structure for H. d. goldmani from both sites. For the forest reserve 

samples fastSTRUCTURE results supported the presence of 1 to 6 clusters (K), while TESS3 

showed support for K = 1 having the lowest cross-entropy value (Fig. 3-4). When plotting the 

individual cluster assignments for fastSTRUCTURE we noticed that K values from 3-6 had the 

presence of ghost clusters (i.e., no individuals assigned to these clusters). We could not identify 

any spatial pattern to individual assignments for K 2 to 6 (Fig. 3-5a), thus we interpret K=1 as 
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being the best supported number of clusters. These results suggest that there is a high degree of 

connectivity in H. d. goldmani across the forest reserve. 

Results for H. desmarestianus samples from the coffee farms showed signals of subtle 

genetic structure. Results from fastSTRUCTURE supported the presence of 2 to 8 clusters (K), 

while TESS3 showed support for K of 1 or 2, with K = 2 having a slightly lower cross-entropy 

score than K = 1, representing a higher likelihood (Fig. 3-4). We plotted individual cluster 

membership for each of the potential best supported K values for each method (Fig. 3-5b, c). For 

fastSTRUCTURE we found the presence of ghost clusters in all K values except for K = 2 and K 

= 3 (Fig. 3-5b). Patterns of individual assignment are maintained through different K values, 

highlighting the differentiation of 2 clusters. These results overlap with the pattern found in the 

TESS K=2 individual assignment (Fig. 3-5c). For this reason, we interpreted K=2 as being the 

supported number of clusters for H. d. goldmani samples in the coffee farms. For both methods 

the first cluster is composed of all individuals in the high, medium, and low intensity coffee 

farms, and individuals from the middle forest fragment (Fig. 3-6). The second cluster is 

composed of individuals sampled in the eastern forest fragment at the border of the high intensity 

coffee farm (Fig. 3-5d). These results suggest subtle population structure in H. d. goldmani 

within the coffee agroecosystem.   

4. Discussion  

 The aim of this study was to compare the population structure of the common forest 

rodent (H. d. goldmani) between a continuous forest (El Triunfo Biosphere Reserve) and a coffee 

agroecosystem. We used molecular and geographic data to infer patterns of population 

connectivity and structure. Our results showed subtle reduction in population connectivity of H. 
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d. goldmani in the coffee farms when compared to the continuous forest. Our results suggest the 

coffee agroecological landscape sampled is able to maintain H. d. goldmani populations and high 

degrees of genetic diversity.  

 Our results showed higher heterozygosity and nucleotide diversity for the H. d. goldmani 

forest population, when compared to individuals in the coffee farms. Although significant these 

differences represented only a slight difference, suggesting that the coffee agroecosystem is 

capable of supporting Heteromys migration and thus genetic diversity. Despite our best efforts to 

sample across the coffee production landscape, we did not capture Heteromys individuals in 

large regions of the high intensity coffee farm, especially on the east side of the study area. 

Based on these observations we believe that the success of Heteromys populations in this 

landscapes is due to the fact that the high intensity coffee production farm sampled is surrounded 

by forest fragments and lower intensity coffee production which could be serving as source 

populations, thus minimizing the negative effect of this intensified agricultural practice on 

Heteromys. 

 We found that there is a subtle signal of population structure in H. d. goldmani samples 

from the coffee farms. These results support our initial predictions where we expected 

Heteromys individuals in the coffee agroecosystem to show higher levels of genetic structure 

than those found in the forest reserve. The pattern of the genetic clustering suggest that the high 

intensity coffee production could be impeding movement of individuals on the eastern side of the 

coffee production site. However, we found similar levels of genetic diversity between the forest 

and coffee farm Heteromys. This suggests that the barriers to connectivity in the coffee 

agroecosystem are not enough to significantly impede migration.  
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 Our results support other patterns found in the literature for Heteromys desmarestianus. 

Our literature search yielded a single study that explored the population structure of Heteromys 

in agricultural systems (Otero Jimenez et al. 2018). This study used microsatellite markers and 

found stronger patterns of genetic structure within the same coffee production region (Otero 

Jimenez et al. 2018). This stronger population structure could be due to the difference in genetic 

markers used, and that in this case, microsatellite markers are more informative than the SNP 

markers.  A study exploring rodent diversity identified coffee agroecosystems as an important 

refuge for this group within the agricultural landscape (Caudill and Rice 2016). Caudill and Rice 

(2016) found H. desmarestianus in forest fragments and coffee farms of varying management 

and identified vegetation cover as an important factor in driving rodent diversity and density. 

These findings support the results observed in our study where Heteromys was present in all 3 

types of farms and seemed to have limited connectivity in high intensity coffee farms with lower 

tree cover. Arce-Peña et al. (2019) explored the changes in population density of several rodent 

species, including H. desmarestianus, in forest fragments and found increases in density of 

Heteromys in the forest fragment but decreases in the buffer zones around the forest. These 

results indicate that H. desmarestianus is susceptible to landscape changes, and supports Caudill 

and Rice (2016) and our findings suggesting that coffee agroecosystems can support healthy 

populations of this species.  

 This study has generated novel data on the population structure of Heteromys species in 

its natural environment, a continuous tropical forest. Other studies had evaluated the genetic 

diversity and structure of H. desmarestianus in fragmented landscapes (Arce-Peña et al. 2019, 

Otero Jimenez et al. 2018), but the interpretation of the results from these studies was limited 

since there was no information on the structure of ‘undisturbed’ H. desmarestianus populations. 
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Results from this study provide baseline data on the structure of a forest rodent species in a 

continuous forest. Genetic data can help in the development of conservation and agricultural 

management, and H. desmarestianus could be used as a landscape connectivity indicator species 

since it is common in forested landscapes across its range. We hope that this study will 

encourage others to investigate the population structure of different species within their natural 

habitats in order to increase our understanding of environmental changes on populations.  
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5 Tables 

Table 3-1 Number of samples, number of SNP markers, genetic diversity measures and IBD 

correlation for H. d. goldmani forest and coffee production samples. Values in parenthesis are 

the standard error. 

 Study Site 

  Forest Coffee Farms 

Samples 32 56 

SNPs 2416 9770 

Observed Heterozygosity 0.277 (± 0.003) 0.247 (± 0.001) 

Expected Heterozygosity 0.302 (± 0.003) 0.275 (± 0.001) 

Inbreeding Coefficient 0.105 (± 0.03) 0.109 (± 0.05) 

Nucleotide diversity  0.307 (± 0.003) 0.278 (± 0.001) 

Isolation-by-Distance 0.065 (p = 0.156) 0.105 (p = 0.131) 
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6 Figures 

 

Figure 3-1 Map of sampling sites. (a) Location of Chiapas, Mexico, red dot represents to location of the study sites within the state. 

(b) Study sites: El Triunfo Biosphere reserve and the coffee production site (tan). (c) Forest reserve sampling site (Nucleus Zone 1). 

(d) Coffee production region. 
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Figure 3-2 Mean values of genetic diversity measures and their standard error values for Heteromys forest reserve samples (green) 

and coffee production samples (tan). 
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Figure 3-3 Isolation-by-distance Mantel correlogram results for H. d. goldmani (green, top) 

forest and (tan) coffee production samples. Filled black dots represent statistically significant 

correlations (p = < 0.05) between genetic and geographic distance. 
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Figure 3-4 Mean cross-entropy results for TESS across all 10 replicates for each cluster (K) 

value for H. d. goldmani in the forest reserve and coffee farms.
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Figure 3-5 Genetic clustering results for H.d goldmani samples from the forest and coffee farms. Each column represents an 

individual and the colors represent the proportion of membership to a particular cluster. (a) fastSTRUCTURE results for K = 2 to 6 for 

the for the forest samples. Samples are arranged from north (left) to south (right) (see Fig.3-1c). (b) fastSTRUCTURE results for K = 

2 to 8, and (c) TESS results for K=2 for coffee farm samples. Samples are arranged from west (left) to east (right) (see Fig. 3-1d). 

(a) (b)

(c)
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Figure 3-6 Map showing cluster (K) membership of H. d. goldmani individuals sampled in the coffee farms, based on 

fastSTRUCTURE K=2 individual assignment results. 
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Appendix 

 

Appendix 1 

Tables 

Appendix 1 1 Genetic diversity of H. d. goldmani by locus. Na = Number of Alleles; Ne = Number of effective alleles; Ho = observed 

heterozygosity; uHe = unbiased Heterozygosity; FIS = Fixation index 

 

 

 

 

 

 

 HET-1 HET-4 HET-27 HET-23 HET-32 HET-34 HET-37 HET-41 HET-42 HET-46 HET-57 

N 162 164 165 163 164 163 164 165 161 157 164 

Na 14 8 11 7 6 11 9 5 7 11 12 

Ne 5.426 4.394 3.835 2.925 3.465 8.065 4.246 2.656 3.840 7.566 7.057 

Ho 0.667 0.640 0.642 0.644 0.671 0.791 0.811 0.309 0.764 0.707 0.799 

uHe 0.818 0.775 0.741 0.660 0.714 0.879 0.767 0.625 0.742 0.871 0.861 

Fis 0.183 0.171 0.131 0.021 0.057 0.097 -0.061 0.504 -0.033 0.185 0.069 
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Appendix 1 2 Relatedness (Lynch & Ritland, 1999) estimator between Heteromys samples 

Number of pairs 13530 

Sum -40.785 

Mean -0.003 

Median -0.013 

Standard Deviation 0.059 

Standard Error 0.001 

Min -0.174 

Max 0.478 
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Appendix 1 3 Geneland results for optimal number of genetic clusters (K) of H. d. goldmani. 

Run  

Number of 

Populations  

Percentage 

(%) 

Average 

Log (P) 

19 6.0 31.4 -2599 

16 6.0 30.0 -2618 

8 6.0 30.0 -2622 

12 6.0 32.4 -2636 

17 6.0 31.6 -2643 

18 6.0 32.2 -2649 

7 6.0 30.1 -2660 

4 6.0 30.0 -2660 

13 6.0 34.7 -2661 

6 6.0 30.5 -2665 

10 6.0 32.1 -2666 

20 6.0 33.8 -2668 

11 6.0 30.0 -2674 

1 6.0 31.4 -2680 

14 6.0 34.1 -2684 

2 6.0 31.2 -2688 

9 6.0 32.3 -2691 

15 6.0 32.9 -2694 

5 6.0 33.1 -2700 

3 6.0 32.5 -2716 
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Appendix 1 4 Mantel correlogram r and p-values for geographic (Euclidian) and genetic (ar) 

distances calculated at 100m distance classes for H. d. goldmani. Asterisk identify distance 

classes with significant correlations (P < 0.05). 

Distance 

(m) 
Mantel r 

Significance                 

(p-value <0.05) 

100 0.078 * 

200 0.063 * 

300 0.041 * 

400 0.026  

500 0.028 * 

600 -0.008  

700 -0.019  

800 -0.027  

900 -0.033 * 

1000 -0.039 * 

1100 -0.008  

1200 -0.021  

1300 -0.001  

1400 -0.008  

1500 -0.003  

1600 -0.019  

1700 0.010  

1800 0.007  

1900 -0.017  

2000 -0.057 * 

2100 -0.041 * 

2200 -0.009  

2300 -0.026  

2400 -0.010  

2500 -0.009  

2600 -0.019  

2700 0.000  

2800 -0.020  
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2900 -0.040 * 

3000 -0.014  

3100 -0.008  

3200 0.000  

3300 0.000  

3400 -0.006  

3500 0.005  
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Appendix 1 5 Spearman correlation results for all pairs of resistance surfaces and strength of 

correlation. Slope (S), tree cover (TC), elevation (E), riparian effect (RE), and streams (STR). 

 

Layers 

Spearman 

rs  p Correlation 

S + TC 0.491 2.20E-16 Moderate 

S + STR  0.533 2.20E-16 Moderate 

S + RE  0.597 2.20E-16 Moderate/ Strong 

S + E 0.603 2.20E-16 Strong 

TC + STR 0.730 2.20E-16 Strong 

E + STR 0.817 2.20E-16 Strong 

TC + RE 0.821 2.20E-16 Strong 

TC + E  0.858 2.20E-16 Strong 

STR + RE 0.887 2.20E-16 Strong 

E + RE  0.908 2.20E-16 Strong 
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Figures 

Appendix 1 6 Genetic diversity measures per genetic cluster identified by Geneland. Bars 

represent the 95% confidence interval. 
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Appendix 1 7 Isolation by distance for all samples of H. d. goldmani. Each diamond represents a 

pair of individuals. 
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Appendix 1 8 Mantel correlogram for geographic (Euclidian) and genetic (ar) distances 

calculated at 100 m distance classes for H. d. goldmani. Significant values (p < 0.05) are shown 

in black. Their corresponding Mantel r values are in Table A 1-4. 
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Appendix 1 9 Raster map surfaces for tree cover: a) original input surface for ResistanceGA, 

and b) resulting ResistanceGA surface for the best model of tree cover based on genetic distance 

of Heteromys samples. 

 

(a)

(b)
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