
 

 

Remote Acoustic Sensing of Vibrating Structures  

for Structural Health Monitoring 
 
 

by 

 

Tyler Flynn 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Mechanical Engineering) 

in the University of Michigan 

2019 

 

 

 

Doctoral Committee: 

 Professor David Dowling, Chair 

Assistant Professor Bogdan Popa 

Assistant Professor Serife Tol 

Professor Nickolas Vlahopoulos 

Professor Kon-Well Wang



 

 

 

 

 

Tyler J. Flynn 

tjayflyn@umich.edu 

t.jayflynn@gmail.com 

ORCID iD: 0000-0002-3126-5015 

 

 

© Tyler J. Flynn 2019 

  



ii 

 

 

Dedication 

The following document – and the efforts toward it – were made possible with the support 

of friends, family, and colleagues. This thesis is dedicated to them, and to you, the reader. 

 

 

 

 

  



iii 

 

 

Acknowledgements 

Many have played a role in supporting this thesis work – certainly more than can be 

enumerated here. Nevertheless, here is an earnest attempt: 

My advisor, Prof. David Dowling, was an indispensable resource. His exceptional research 

acumen, willingness to let me pursue interesting problems, and his much appreciated open-door 

policy were all instrumental in shaping the content, quality, and accuracy of this document. This 

thesis has been further revised and enriched with feedback received from my doctoral committee 

members, Asst. Prof. Bogdan Popa, Asst. Prof. Serife Tol, Prof. Nickolas Vlahopoulos, and former 

Department Chair, Prof. Kon-Well Wang. Discussions with Prof. Karl Grosh also yielded valuable 

structural acoustics insight and were much appreciated. 

Funding is, of course, a necessity in the research sciences. I am very thankful for the several 

organizations that deemed it prudent to support me financially throughout my graduate work. The 

U.S. Navy supported this work through multiple channels. Several of the projects I worked on –

along with a number of undergraduate and Master’s students I had the pleasure of working with – 

were motivated and funded through the Naval Engineering Education Consortium. I was also very 

fortunate to be awarded a National Defense Science and Engineering Graduate fellowship through 

the Office of Naval Research. I must also thank the numerous points of contact and project 

managers I have interacted with at the Carderock Naval Surface Warfare Center including Natasha 

Chang, Jonathan Forest, Jason Smoker, Alexi Titovich, and Kuangcheng Wu. I would also like to 

acknowledge the Acoustical Society of America for various travel subsidies allowing me to present 



iv 

 

my research all over the nation, and the University of Michigan Rackham Graduate School for 

funding various research related endeavors. 

 During my time at Michigan I have been lucky to participate in several student 

organizations and numerous extracurricular activities. From ice cream socials to weekend outreach 

workshops, the friends and colleagues I have worked with have truly been a pleasure. I appreciate 

the many Michigan students I served with as a part of the Mechanical Engineering Graduate 

Council, Michigan Acoustics, and the Graduate Student Advisory Committee, as well as those 

students from other universities that I served with on the Acoustical Society of America         

Student Council. 

Finally, I must thank my family and friends in Michigan, back in Kentucky, and elsewhere. 

Be it lengthy (and occasionally relevant) discourses with labmates, or holiday get-togethers with 

way too much food, or the music festivals where we definitely didn’t bring enough water – these 

experiences have made the last five years an amazing time. I am grateful my marvelous mother, 

Renee, for easily being my #1 fan – without her I would (literally and figuratively) never have 

been able to complete this journey. And finally, to my wonderful partner Hannah: I am so lucky 

to have met you (and Francis, Eugene, and Leo) along this journey. Your support means 

everything, and I can’t wait to begin our next chapter! 

  



v 

 

 

Table of Contents 
 

Dedication ....................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Figures .............................................................................................................................. viii 

List of Tables ............................................................................................................................... xix 

Abstract ......................................................................................................................................... xx 

Chapter I: Background & Introduction ........................................................................................... 1 

1.1  Background ...................................................................................................................... 1 

1.1.1  Vibroacoustic SHM .................................................................................................. 1 

1.1.2  Remote acoustic methods for SHM .......................................................................... 4 

1.2 On Remoteness ................................................................................................................. 8 

Chapter II: Methods and Tools ..................................................................................................... 11 

2.1 Array signal processing ....................................................................................................... 11 

2.1.1 Beamforming ................................................................................................................ 14 

2.1.2 Synthetic Time Reversal ............................................................................................... 29 

2.2 Experimental apparatus ....................................................................................................... 34 

2.2.1 Microphone array ......................................................................................................... 34 

2.2.2 Plate vibration rig ......................................................................................................... 37 

2.2.1 Laser Doppler vibrometer ............................................................................................. 40 

2.3 Finite element analysis ........................................................................................................ 42 

Chapter III: Detection of Damage ................................................................................................. 46 



vi 

 

3.1 Detection in reverberant environments .......................................................................... 46 

3.1.1 Experimental methods .................................................................................................. 49 

3.1.2 Array signal processing schemes .................................................................................. 53 

3.1.2 Results and analysis ...................................................................................................... 56 

3.2 Detection with stochastic input forcing .......................................................................... 65 

3.2.1 Experimental methods .................................................................................................. 68 

3.2.2 Detection metrics & procedure ..................................................................................... 72 

3.2.3 Results & analysis for detection of cuts ....................................................................... 76 

3.2.4 Summary and conclusions ............................................................................................ 87 

3.3 Detection of delamination in composite materials ......................................................... 90 

Chapter IV: Localization of Damage ............................................................................................ 95 

4.1 Introduction .................................................................................................................... 95 

4.2 1-D localization ............................................................................................................ 101 

4.2.1 One-dimensional Localization – Experiment ............................................................. 103 

4.3 2-D localization ............................................................................................................ 106 

4.3.1 Spectral Estimation Method ....................................................................................... 106 

4.3.2 Subarray averaging ..................................................................................................... 108 

4.3.3 Validation experiment ................................................................................................ 112 

4.3.4 Localizing damage in vibrating plates ........................................................................ 116 

4.3.5 Vibrational dependence of localization ...................................................................... 124 

4.3.6 Summary and conclusions .......................................................................................... 127 

4.4 Derivations for SEMCBR ................................................................................................. 128 

4.4.1 Effect of subarray averaging on source cross-spectra terms ...................................... 128 

4.4.2 Subarray averaging correction phase for non-farfield sources ................................... 129 

Chapter V: Classification of Damage ......................................................................................... 132 



vii 

 

5.1 Introduction ....................................................................................................................... 132 

5.2 Motivation for data-driven approaches ............................................................................. 133 

5.3 Classification methodology ............................................................................................... 134 

5.4 Simulation results .............................................................................................................. 142 

5.5 Experimental validation .................................................................................................... 149 

5.6 Conclusions ....................................................................................................................... 157 

Chapter VI: Summary & Conclusions ........................................................................................ 159 

6.1 Summary ........................................................................................................................... 159 

6.2 Conclusions ....................................................................................................................... 162 

References ................................................................................................................................... 167 

 

  



viii 

 

 

List of Figures 

Figure 1.1: Fundamental pillars of Structural Health Monitoring (SHM). .................................... 2 

Figure 2.1: Conventional beamformer output for two nearby planar sources (green dots, 

arriving from 10° and 13° at a 16-element ULA with 𝒌𝒅 = 𝝅 and 0 dB SNR). In 

the top figure, the two sources are completely correlated (coherent). In the bottom 

figure, the two sources are mutually incoherent (noise) using 100 snapshots. .......... 18 

Figure 2.2: MVDR output for two nearby planar sources (green dots, arriving from 10° and 

13° at a 16-element ULA with 𝒌𝒅 = 𝝅 and 0 dB SNR). In the top figure, the two 

sources are completely correlated (coherent). In the bottom figure, the two sources 

are mutually incoherent (noise) using 100 snapshots. ............................................... 20 

Figure 2.3: MUSIC output for two nearby planar sources (green dots, arriving from 10° and 

13° at a 16-element ULA with 𝒌𝒅 = 𝝅 and 0 dB SNR). In the top figure, the two 

sources are completely correlated (coherent). In the bottom figure, the two sources 

are mutually incoherent (noise) using 100 snapshots. ............................................... 21 

Figure 2.4: MIN-NORM output for two nearby planar sources (green dots, arriving from 10° 

and 13° at a 16-element ULA with 𝒌𝒅 = 𝝅 and 0 dB SNR). In the top figure, the 

two sources are completely correlated (coherent). In the bottom figure, the two 

sources are mutually incoherent (noise) using 100 snapshots. For uncorrelated 

source, MIN-NORM begins to show indications that two source are present. .......... 23 

Figure 2.5: MLE output (blue triangles) for two nearby planar sources (green dots, arriving 

from 10° and 13° at a 16-element ULA with 𝒌𝒅 = 𝝅 and 0 dB SNR). In the top 

figure, the two sources are completely correlated (coherent). In the bottom figure, 

the two sources are mutually incoherent (noise) using 100 snapshots. Note, the 

MLE beamformer is capable of localizing both sources, regardless of their 

coherence. However, this comes at the cost of a costly multivariable minimization 

task (a genetic algorithm was used to produce the results above). ............................ 25 



ix 

 

Figure 2.6: The convex optimization produce performed in SEM yields very sharp “peaks”, 

which successfully resolves the 3° separated incoherent sources (top), but fails for 

two coherent sources (bottom). .................................................................................. 27 

Figure 2.7: A two-dimensional error surface depicts the characteristic convex behavior of the 

SEM minimization. Above, only two dimensions are plotted (corresponding to the 

source strengths in the direction of Source 1 and Source 2, respectively). In this 

example Source 1 has an amplitude of 1 and Source 2 has an amplitude of 0.5, 

which is the location of the minima. .......................................................................... 28 

Figure 2.8: Simulation results comparing multiple signal estimation techniques applied to a 

multipath environment. In black, the top row shows the true source waveform (left) 

and magnitude Fourier transform (right). In red is shown the signal estimates using 

an incoherent average across the 15 receivers. In blue is shown signal estimates 

using a conventional beamformer to steer in the direction of a reference ray. The 

bottom green curves show the best signal estimates, using STR, with the same 

beamformer weights as the blue curves above. ......................................................... 34 

Figure 2.9: Linear array of 16 PCB 130E20 electret microphones used in this thesis. This 

horizontal configuration with 2-inch spacing was one of a multiple of array 

configurations available. ............................................................................................ 35 

Figure 2.10: 4x4 Cartesian array of PCB 130E20 electret microphones. The 4x4 was affixed 

to a 2-axis automated gantry for precision translation, allowing synthesis of larger 

arrays up to 8x8 elements in size. .............................................................................. 36 

Figure 2.11: Data flow schematic for the acoustic and vibroacoustic measurements reported in 

this thesis. ................................................................................................................... 37 

Figure 2.12: Exploded view of the plate vibration apparatus. The test plate is highlighted in 

light green. ................................................................................................................. 38 

Figure 2.13: The plate vibration rig and microphone array (left). A close-up of a mounted 1/16” 

aluminum plate is shown (top right). An electrodynamic shaker (bottom right) 

drives the system from the rigid base, thereby base-exciting the test plate. A force 

couple, in-line with the shaker, allows for simultaneous measurement of excitation 

forcing into the system. .............................................................................................. 39 

Figure 2.14: Schematic of the physical mechanisms behind a laser Doppler vibrometer. .......... 40 



x 

 

Figure 2.15: Laser doppler vibrometer setup. The single point OMS LP-01 LDV is mounted to 

a two-axis automated gantry with 46 x 46 cm area of motion, allowing for full 

surface scans of the test plate apparatus. ................................................................... 41 

Figure 2.16: Comparison of six select mode shapes of an undamaged 30x30x0.16 cm clamped 

aluminum plate, using finite element methods (ANSYS 15.0) (left), and from LDV 

measurements (right). The ~8% reduction in measured resonance frequencies is 

likely due to the modulus of elasticity of the cold-rolled aluminum plates being less 

that of bulk aluminum. ............................................................................................... 42 

Figure 2.17: Generic 4-node, 12 degree of freedom plate bending element................................ 44 

Figure 2.18: Benchmark test for MATLAB plate bending code against ANSYS Workbench 

15.0. The two methods are in good agreement, both in resonance peak locations 

and amplitudes. .......................................................................................................... 45 

Figure 2.19: Benchmark comparison of the harmonic response of a clamped plate at 874 Hz. 

The ANSYS Workbench 15.0 result (left) and the MATLAB code (right) agree 

quite well. ................................................................................................................... 45 

Figure 3.1: Schematic illustrating some of the common effects of damage on a generic 

frequency response function. The baseline (healthy) frequency response function is 

shown as a gray dashed line, while the nominally damaged frequency response 

function is in solid black. ........................................................................................... 46 

Figure 3.2: Experimental setup with plate apparatus and 15 receiver vertical array at 1m range 

in the test environment (left), detailed view of clamped plate system (top right), and 

7 lbf shaker providing base excitation of the plate (bottom right). ............................ 50 

Figure 3.3: Clamping configurations of the 30 x 30 x 0.16 cm aluminum plate for the three test 

cases and for the baseline. Blue circles represent fully engaged clamps and red 

circles represent fully disengaged clamps. The green plus sign (+) indicates the 

location of input forcing into the rigid base to which the test plate was clamped. .... 51 

Figure 3.4: SRR measurement procedure. An 8-second-duration source waveform a) was 

broadcast into the reverberant laboratory and recorded using a single receiver at the 

array center b) from which a matched filter output was computed c). The SRR is 

defined as the ratio of the energy of the signal (direct path) to all later arrivals d). .. 53 

file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359537
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359537
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359537


xi 

 

Figure 3.5: Comparisons of signal estimation methods for a source broadcasting a 1-4kHz 

linear chirp in a reverberant room. a,b) Reference measurement collected at 8 

inches from source with corresponding FT magnitude, c,d) single unprocessed 

receiver with 67.9% correlation to reference with FT magnitude, e,f) conventional 

spherical wave beamforming (SWBF) with 91.9% correlation with FT magnitude, 

and g,h) STR reconstruction showing 94.3% correlation with the reference 

measurement and its FT magnitude. .......................................................................... 56 

Figure 3.6: Example waterfall plot for the baseline measurement of plate radiation at 1 meter 

range due to an 8 second 100-2000 Hz base excitation. ............................................ 58 

Figure 3.7: Procedural flow chart for the statistical evaluation of structural health using time 

domain cross-correlation of acoustic signatures determined from baseline and test 

measurements. This can be extended to an arbitrary number of test cases. The three 

test cases shown in Figure 3.3Figure 3.3 were considered in this study. .................. 59 

Figure 3.8: a) Binned histograms of cross-correlation coefficients for the three test cases and 

for the baseline case using a single unprocessed receiver (#11). Solid and dashed 

curves are the Gaussian fits for each test case. b) A detailed view shows overlapping 

PDFs between the baseline and disengaged corner clamp cases resulting in limited 

detectability using no processing. .............................................................................. 60 

Figure 3.9: Left: Discrete, calculated points for the side-unclampled ROC curve. The solid line 

is the associated analytical fit. Right: Corresponding ROC curves for the three test 

cases using an unprocessed single receiver (#11) at a range of 1 meter. The black 

dashed line corresponds to the corner-unclamped case, whereas both the center-

unclamped and side-unclamped cases overlap top right corner, indicating good 

detection. .................................................................................................................... 61 

Figure 3.10: Cross-correlation histograms and corresponding ROC curves for an acoustic array 

at 1 meter range using no reconstruction (top), conventional SWBF (center), and 

STR (bottom). ............................................................................................................ 62 

Figure 3.11. ROC curves for test measurements collected at a range of 3 meters using a baseline 

collected at 0.2 meters away from the test measurements, a) using no signal 

reconstruction (receiver #11), b) using SWBF, and c) using STR. ........................... 65 



xii 

 

Figure 3.12: Experimental setup with plate apparatus and 15 receiver vertical line array (5.1 

cm spacing) in the test environment (left), top down view of a 30-cm square 

aluminum plate with a 38 mm cut (top right), and 30 N shaker providing base 

excitation to the plate (bottom right). [Color on-line]. .............................................. 70 

Figure 3.13: Effects of 38 mm cut on the (4,1) plate mode. The plate is base excited underneath 

at the green cross. The 38 mm cut exhibits localized changes in the mode shape in 

addition to shifting the resonant frequency. Similar results were found at other 

modes. ........................................................................................................................ 71 

Figure 3.14: Procedural flow chart for the statistical evaluation of structural health using a 

comparative metric between remote acoustic test and baseline measurements. This 

can be extended to an arbitrary number of test cases, though seven were considered 

in this study. ............................................................................................................... 74 

Figure 3.15: Acoustic FRF magnitudes (arbitrary units) for baseline, 13 mm cut, and 76 mm 

cut cases vs. frequency (Hz). Each FRF was computed using the center-most 

receiver output (receiver 9) with stochastic input forcing. A 5 Hz boxcar smoothing 

operation was applied in each case. ........................................................................... 78 

Figure 3.16: Detection histograms and fitted gaussian profiles from noisy input forcing using 

the (a) 𝚫𝑻𝑫 metric, (b) 𝚫𝑷𝑺𝑫 metric (middle), and (c) 𝚫𝑭𝑹𝑭 metric (bottom). 

Both x- and y-axis scales are equal in all three plots. Good separation between the 

gray-black histogram and the other histograms indicates good damage detection 

performance for the 𝚫𝑷𝑺𝑫 and 𝚫𝑭𝑹𝑭 metrics. Note that the horizontal axis range 

has been shifted in the top image to show the very low values of 𝚫𝑻𝑫 ~ 0.07......... 79 

Figure 3.17: Schematic showing the baseline offset used in to investigate detection robustness 

to multipath. ............................................................................................................... 81 

Figure 3.18: ROC curves for varying levels of baseline-recording offset (0, 51, and 102 mm) 

using a single receiver recording with no processing. It is clear that even for small 

amounts of geometric uncertainty, detection performance suffers greatly. 

Corresponding ROC curves were produced using STR to correct for geometric 

uncertainty, and in each case the ROC curves depicted essentially perfect detection, 

visually identical to the plot for 0 mm offset above. All ROC curves were computed 

using the 𝚫𝑷𝑺𝑫 detection metric............................................................................... 83 



xiii 

 

Figure 3.19: Input forcing correlations as a function of signal duration and PSD box-car 

smoothing filter width (in Hz). Mean correlations are shown as dark lines, with 

single standard deviation spread shown in lighter shades. The inclusion of PSD 

smoothing allows the target correlation of 0.99 to be achieved (dashed line). With 

5 Hz smoothing, a time duration of roughly 6 seconds is required – less than the 

8.5 seconds used in the experiments reported here. The ‘stairstep’ jumps occur 

when the time duration is increased such that an additional frequency bin falls 

within the smoothing window width, increasing the total number of bins being 

averaged. .................................................................................................................... 87 

Figure 3.20: Six layer biaxial-weave carbon fiber plate with no-delamination (left), six layer 

biaxial-weave carbon fiber plate with 3” square delamination in highlighted region 

(right), test coupon showing synthesized delamination (inset). ................................ 92 

Figure 3.21: Comparison of measured mode shapes for three vibrational plate modes. Fully 

laminated (baseline) carbon fiber plate (top) and carbon fiber plate with a 3” square 

delamination region, highlighted (bottom). ............................................................... 93 

Figure 3.22. Detection histograms for localized delamination. Schematic representations of the 

3” and 1” square delaminated regions are shown at the right-hand side of the plot. 

Good separation of the histograms indicates good detection performance for both 

the 3” and 1” delamination using remote acoustic sensing. ....................................... 94 

Figure 4.1: Schematic for implementation of subarray averaging on a uniform line array of 

receivers. .................................................................................................................. 100 

Figure 4.2: (Top) The beamformer output for two equal amplitude monopoles situated at -0.15 

and +0.30 m on an axis parallel to the line array, separated by 3 m. (Bottom) Same 

simulation, but the source at +0.30 m is reduced in amplitude by 50%. ................. 102 

Figure 4.3: SEMCBR results for the problem statement in Figure 4.2. Subtraction performance 

improves as the number of subarrays is increased. When 8 subarrays are used, the 

peak to sidelobe ratio exceeds 20 dB. ...................................................................... 103 

Figure 4.4: SEMCBR experimental validation for localization of a cut. ................................... 104 

Figure 4.5: Results for the SEMCBR localization of a cut on an aluminum plate. Plate and cut 

geometry are shown in a.) Part b) indicates the true location of the cut, along with 

SEMCBR estimates calculated at every 5 Hz across the bandwidth. Overlap in the 



xiv 

 

white circles (SEMCBR outputs, weighted by FFT magnitude at that frequency) 

indicate accurate localization. Localization results were ultimate binned into the 

histogram in part d) which shows only 0.5” error in the computed and actual cut 

locations (over a 24” search space). ......................................................................... 105 

Figure 4.6: Results for the SEMCBR for the same experiment as shown in Figure 4.5, but with 

the plate rotated by 90 degrees, placing the cut in a different location. The cut is 

again successfully localized using the 0-4000 Hz bandwidth; however, the 

uncertainty is somewhat greater than for the first case. ........................................... 105 

Figure 4.7: Schematic of a possible subarray configuration for a uniformly distributed 

Cartesian planar array. ............................................................................................. 108 

Figure 4.8: Cross-term factor for two sources separated by various incident angles with 15 

subarrays averaged. Points below the horizontal dashed line (𝜼𝒌𝒍 ≤ 0.2) indicate 

correspond to good localization performance. The vertical dashed line corresponds 

to 𝒌𝒅 = 𝝅, above which grating lobes may appear. ................................................ 110 

Figure 4.9: The effect of subarray smoothing on CSDM structure. Each case corresponds to 

three simulated farfield sources impinging on a 2D cartesian array (𝒌𝒅 = 𝝅 ). 

When all three sources are incoherent, the CSDM has a generally banded structure 

(top left), resulting in effective source mapping using SEM (bottom left). The same 

operation applied to three coherent sources (middle) fails, and the CSDM structure 

is of noticeably different character than for incoherent sources (due to cross terms). 

However, applying subarray averaging with 25 4x4 subarrays (right), the CSDM 

structure approaches that of the incoherent case and the source map (bottom right) 

is again accurate. ...................................................................................................... 111 

Figure 4.10: Experimental setup for the SEMCBR validation test showing the source-array 

geometry (left) and the 4x4 Cartesian array (above), used to emulate a full 8x8 

array. ........................................................................................................................ 112 

Figure 4.11: Localization of three coherent sources (𝒌𝒅 = 5.5) with conventional beamforming 

(left) and SEM (right) using a) 1 8x8 subarray (i.e. no averaging), b) 9 6x6 

subarrays, c) 25 4x4 subarrays, and d) 49 2x2 subarrays. ....................................... 114 

Figure 4.12: Localization of a small change in a sound field of three coherent sources using 

SEMCBR (top row) and conventional beamforming with a reference subtraction 

file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359572
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359573
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359573
file:///C:/Users/tjayflyn/Google%20Drive/Dowling%20Lab%20Documents/Defense%20Document/Defense%20Document%20%5bv13%5d.docx%23_Toc14359573


xv 

 

(bottom row). Three sources with equal amplitudes were recorded (a) then 

rerecorded, with one of the sources reduced in amplitude by 20% (indicated by a 

green dot in (b), (c), (d)). Experimental results for localization of the changed 

source are shown in (c) and agree well with simulation (d). For each figure, 

averaging of 25 4x4 subarrays across the full 8x8 array was used. ......................... 115 

Figure 4.13: Experimental apparatus for remote acoustic evaluation of vibrating 30 cm x 30 cm 

plates. The array plate configuration (left) is used to measure the acoustic response 

of damaged plates (top-right) that are base-excited with a 30 N electrodynamic 

shaker (bottom-right). .............................................................................................. 117 

Figure 4.14: Laser doppler vibrometer measurements of (4,1) vibrational modes of a 

30 x 30 x 0.16 cm aluminum plate undamaged (left) and with a 3.8 cm cut (right, 

indicated by the yellow arrow). In addition to modal changes, the damage also shifts 

the resonant frequency down by 1.5%. .................................................................... 118 

Figure 4.15: Acoustic power spectra for the baseline (top) and 3.8 cm edge-cut plate (bottom). 

Black curves signify the average spectra across all 64 receivers. The presence of 

the cut results in downward shifts of the resonant frequencies. Green dots, 

distributed about the peaks, indicate the frequency bins at which SEMCBR and 

conventional beamforming were computed. ............................................................ 119 

Figure 4.16: Remote acoustic localization of a 3.8 cm through cut near the plate edge using 

background subtraction with a conventional beamformer (a) and SEMCBR (b). 

Green lines indicate the true cut location and dashed-blue lines indicate the standard 

deviation spread of each method.............................................................................. 120 

Figure 4.17: Remote acoustic localization of a 3.8 cm through cut, center to the plate using 

background subtraction with a conventional beamformer (a) and SEMCBR (b). 

Green lines indicate the true cut location and dashed-blue lines indicate the standard 

deviation spread of each method.............................................................................. 121 

Figure 4.18: Remote acoustic localization of a partially unclamped plate using background 

subtraction with a conventional beamformer (a) and SEMCBR (b). Green lines 

indicate the nominal section of the perimeter that was unclamped and dashed-blue 

lines indicate the standard deviation spread of each method. .................................. 122 



xvi 

 

Figure 4.19: Remote acoustic localization of a partially delaminated carbon fiber plate (a) using 

background subtraction with a conventional beamformer (b) and SEMCBR (c). 

Green squares indicate the 7.5 x 7.5 cm delaminated region and dashed-blue lines 

indicate the spread of each method. ......................................................................... 124 

Figure 4.20: Subtraction of the baseline 2x2 vibrational mode from the cut mode yields a 

residual local to the cut, though other regions of the plate are also changed. ......... 125 

Figure 4.21: Averaging the vibrational residuals over all modes from 0-2000 Hz, yields an 

average vibrational coincident with the damage in the case of a cut (left), and 

slightly interior to the actual location of a fastener failure (right). .......................... 126 

Figure 4.22: Schematic for a spherical wave source impinging on a uniform line array. The 

distance of the source as seen by the 𝒎𝒕𝒉 element of the central (𝒑 = 𝟎) subarray 

is different than the distance seen by the 𝒎𝒕𝒉 element of the 𝒑 = 𝟐 subarray, 

resulting in a phase difference that must be accounted for. ..................................... 129 

Figure 5.1: FE model of a clamped, square aluminum plate showing: the forcing drive point 

(left), and the resulting frequency response of RMS displacement for the baseline 

(undamaged) plate (right). ....................................................................................... 136 

Figure 5.2: Example of a steady state mode shape (1000 Hz) in the presence of a 2 inch cut 

(left). Frequency responses of RMS displacement for all 50 cases of the smallest 

cut size (1 inch, red) and the largest cut size (3 inches, blue) (right). Baseline 

frequency responses are shown in black. ................................................................. 137 

Figure 5.3: Frequency response curves averaged over 50 simulations for each of the five cut 

length cases (from 1” cuts (red) to 3” cuts (blue)). The filled regions indicate ± 1 

standard deviation bounds. Increased damage severity not only results in greater 

variation from baseline, but also greater intra-class variation (larger spread). ........ 137 

Figure 5.4: Frequency response curves of RMS displacement for all 200 corrosion cases. The 

red lines indicate little corrosion (0.01% of material removed) and the blue lines 

indicate the greatest corrosion (around 1.6% removed). A schematic of the 

Gaussian spread of the corrosion thickness reduction is shown in the top right inset.

.................................................................................................................................. 138 

Figure 5.5: Illustrative example of the effects of severe fastener damage. At the left is the static 

displacement of the undamaged baseline plate due to point loading (at zero Hz). At 



xvii 

 

the top right is the displacement of the same plate with approximately 30% of the 

perimeter simply-supported (shown as red lines on the mesh). At the bottom right 

is the displacement for the same extent of damage, but modeled instead with the 

more extreme free boundary condition. ................................................................... 139 

Figure 5.6: RMS displacement frequency response for 200 cases of fastener failure-type 

damage (left). Red and blue curves correspond to simply-supported and free edge 

modeled damage, respectively. Meshes from four cases indicating the general 

extent of boundary failure damage (right). .............................................................. 139 

Figure 5.7: Example of dilational correlation function (bottom) between baseline (top) and 2-

inch cut case (middle). ............................................................................................. 141 

Figure 5.8: Feature space for the three damage classes using RMS displacement data. Colors 

increase from red to blue as damage severity (e.g. length of cut) increases. 

Qualitative decision boundaries are included for insight. ........................................ 142 

Figure 5.9: Partitioned feature space for six of the classification algorithms investigated. The 

correct classification rate of the test data is shown in the heading of each plot. With 

the exception of LDA, all methods resulted in >90% correct classification of the 

test data. ................................................................................................................... 145 

Figure 5.10: Hyperparameter sweeps for KNN (left) and SVM (right) classifiers. Classification 

performance was only subtly dependent on the hyperparameter values, with the 

optimal 𝑲 = 5 and the SVM hyperparameters ~1. ................................................... 147 

Figure 5.11: Remote acoustic classification results at various receiver positions relative to the 

plate. Results are shown for receiver ranges of 0.25 m (left), 1.0 m (center), and 10 

m (right). The lightest dots correspond to 83% CCR and the darkest points 

correspond to 98% CCR. The ‘comp CRR’ results are for random batches of 10 

composited receiver locations. ................................................................................. 148 

Figure 5.12: RMS deflection frequency response curves for the undamaged baseline plate 

(black) and a plate with a cut (red). The presence of the cut changes the peak shapes 

and locations, generally by shifting them to lower frequencies. The simulated 

response of the undamaged plate is shown via the dashed line, and is in nominal 

agreement with the measured responses. ................................................................. 149 



xviii 

 

Figure 5.13: Experimental test apparatus for the remote acoustic measurement of vibrating 

plates. The nominally clamped test plate (top right) is excited from below with an 

electrodynamic shaker (bottom right). An array of microphones (left) placed 

roughly 1 m from the plates were used to record radiated sound. ........................... 150 

Figure 5.14: Empirical results from the feature extraction procedure for various length cuts 

using remote acoustic measurements. An example of the dilation correlation 

between the baseline and 3” cut case are shown (left). The feature set corresponding 

the six empirical cut cases is superimposed over the simulated feature space 

corresponding to a single receiver in the same relative location as in the 

measurements (right). .............................................................................................. 151 

Figure 5.15: Dilation correlation feature extraction using a single remote acoustic receiver data 

at 3 meter range. At top left, is the baseline frequency response in black. Below, in 

red, are the frequency responses corresponding to a plate with a 0.5-3.0” cut. To 

the right are the corresponding dilation correlation curves, with the peak correlation 

value indicated with a colored marker, corresponding to Figure 5.14..................... 153 

Figure 5.16: Dilation correlation curves for the measured acoustic response of a vibrating plate 

with synthetic fastener failure. Schematics at the left indicate which clamp(s) were 

removed (red dots) and which clamps remained in place (blue dots). ..................... 154 

Figure 5.17: Acoustic response dilational correlation feature space, superimposed with 

experimental data points for cuts (large circles) and fastener failures (white 

squares). Both sets of experimental data agree well with the simulated training data.

.................................................................................................................................. 155 

Figure 5.18: Regression analysis for extracting cut length from classification features. The 

feature space (left) is populated with 250 simulated cut cases (small circles), in 

addition to 6 measured cut cases (large circles) spanning from 0.5-3.0 inches in 

half-inch increments. The 95% confidence interval of the linear fit is shown (right), 

which contains the six measured damage cases (black circles), indicating that 

extracting cut size (estimating damage severity) is feasible within the 0.5-3.0 cut 

length range. ............................................................................................................. 156 

 

  



xix 

 

 

List of Tables 

Table 3.1: Deficit area (DA) of the ROC curve for each test case at 1 m, 2 m, and 3 m array 

ranges. Results are compared using STR, SWBF, and no signal processing (i.e. 

using a single unprocessed receiver). Cases with the worst detection performance 

(DA > 0.1) are boxed in red. ...................................................................................... 63 

Table 3.2: Detection indices for each of the cases considered. Values highlighted in pink are 

low detection index values, 𝒅 < 1, which indicate poor detection performance. ...... 80 

Table 3.3: Deficit Area (DA) values for the associated ROC curves in Figure 3.18. Pink cells 

highlight DA > 0.1, which implies poor performance. Without multipath and 

reverberation compensation (left half of the table), detection performance is poor 

for moderate baseline offsets, while detection using STR was found to be robust in 

all cases. ..................................................................................................................... 84 

Table 3.4: Cost-benefit analysis table for the three detection metrics considered. A PSD based 

metric was determined the best compromise due to the performance improvements 

compared to time-domain cross-correlation, and the ease of measurement compared 

to FRF based metrics. If the input forcing is expected to be highly non-stationary 

FRF based methods may be necessary....................................................................... 90 

Table 5.1: Average Correct Classification Rate of each classifier investigated. The best 

performing classifiers are highlighted. .................................................................... 146 

 

 

  



xx 

 

 

Abstract 

 

Key words: structural acoustics, phased arrays, signal processing, vibration, remote sensing, 

structural health monitoring 

 

Acoustic radiation from a vibrating mechanical structure subject to narrow or 

broadband forcing is inherently dependent on the structure’s condition, material, geometry, 

and boundary conditions. In many applications – such as those in naval, automotive, and civil 

engineering – acoustic recordings of a structure of interest may be easily and affordably 

obtained using a remote passive receiver or an array of receivers. As a result, there is great 

value in structural health monitoring techniques that can yield insight into a structure’s 

condition using such conveniently accessible data sets, even though these methods bring forth 

the added complexity of acoustic propagation in the environment, source-receiver geometry, 

exogenous acoustic sources, etc. This dissertation details the development and evaluation of 

remote acoustic sensing techniques for the detection, localization, and classification of 

damage and/or mechanical changes in a vibrating structure. These techniques are based on 

comparisons of current test recordings with known baseline measurements in concert with 

both conventional and advanced array signal processing methods to achieve accurate and 

robust remote sensing performance. 

Results are divided primarily into three sections reflecting the three classical 

components of structural health monitoring: Detection, Localization, and Classification of 

damage or changes. An experimental apparatus was constructed for base excitation of 30-cm 

square plates, wherein various forms of mechanical changes (i.e. synthetic damage) were 

applied to plates of differing material properties and geometry in order to test and evaluate the 

proposed methods. Detection of synthesized damage including cuts, fastener faults, 
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delamination, and localized added mass are achieved via baseline comparisons of remote array 

recordings of the plates’ acoustic signatures. Cuts in metal plates as small as 1.3 cm and 

delamination areas of 6 cm2 in composite fiber plates are detectable with >99% certainty using 

remote acoustic measurements captured meters from the plates. The addition of a blind 

deconvolution algorithm is shown to improve robustness of the method in practical 

environments with considerable unknown reverberation, for signal-to-reverberation ratios as 

low as -13 dB. A method for localization of mechanical changes/damage is presented using 

an innovative array-based coherent background subtraction technique that combines an 

existing high-resolution beamforming method with an additional subarray averaging step, 

ultimately enabling localization of small changes from a distributed acoustic source. Results 

are presented for the localization of cuts, fastener faults, and delamination in non-compact 

vibrating plates. Finally, a data-driven method is presented for the classification of cuts, 

fastener faults, and corrosion in vibrating plates via remote acoustic recordings. Using Monte 

Carlo finite element simulated training data for various damage cases, several classification 

strategies are evaluated and compared. Damage classification rates in excess of 96% are 

achieved using simulated training data and these results are corroborated with actual acoustic 

recordings of damaged plates. 
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Chapter I: Background & Introduction 

 

1.1  Background 

1.1.1  Vibroacoustic SHM  

The presence of damage in a mechanical structure often changes its vibrational 

characteristics. For example, resonant frequencies may shift and mode shapes may be distorted 

in a damaged structure relative to a healthy counterpart [1, 2]. Damage may also affect structural 

integrity, stiffness, damping, and vibration-energy loss mechanisms such that resonant peak 

frequency locations, and widths may change. In severe cases, damage may even cause 

nonlinearities to arise. In 1969, Lifshitz & Rotem published one of the first articles motivating 

the use of vibroacoustic changes for damage detection (specifically the detection of 

reinforcement unbonding in composite materials) [3]. Since then, a litany of structural health 

monitoring (SHM) techniques have been developed which utilize measurable vibroacoustic 

changes to illuminate properties of potential faults in a mechanical system [4, 5, 6, 7]. The 

process of SHM is divided into four pillars [4, 8]: Detection – does damage exist?, Localization 

– if so, where in the structure?, Classification – what type of damage is it?, and Evaluation – 

how severe is the damage and what is the system prognosis? As implied in Figure 1.1, each 

pillar is necessary to obtain a complete picture of a structure’s health. Moreover, there generally 

also exists some amount of overlap in the quantification of the four pillars, the extent of which  
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Figure 1.1: Fundamental pillars of Structural Health Monitoring (SHM). 

 

depends heavily on application and approach. Understanding these relationships is key to fully 

recognizing the utility of a SHM technique for a given system. Since the implementation of 

guidelines for evaluation is highly specific to a given system and its application, the findings of 

the following thesis are generally limited to investigating the detection, localization, and 

classification capabilities of remote acoustic sensing. 

There exist many approaches for vibroacoustic-based SHM. Direct, discrete 

measurements of acceleration and strain are by far the most common data types for monitoring 

structural health [5]. These approaches have the benefit of simplicity and affordability, however 

they may ultimately require a large number of reliable long-life transducers for sufficient 

coverage of large robust structures. This, in turn, can make scalability challenging [9]. 

For structures immersed in a fluid medium, changes in vibrational behavior will result in 

alterations to radiated sound that can be passively measured [10, 11]. In acoustics, three popular 

methods applied toward SHM are nearfield acoustic holography [12, 13, 11], guided waves [14, 
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15], and acoustic emissions [16, 17]. Nearfield acoustic holography (NAH) leverages the 

evanescent wave field measured near a surface to image acoustic sources in a three-dimensional 

space. NAH is attractive because it allows for high resolution spatial reconstruction of vibrating 

surfaces. However, by definition, it requires nearfield measurements, and thusly is not remote 

(see Section 1.2), although it is non-contacting. Furthermore, many receivers (on the order of 

hundreds) are typically required to achieve desirable resolution of surface sources. Guided wave 

SHM involves using surface mounted transducers to excite and record Lamb or Rayleigh waves 

that travel through a structure. These structural waves, typically in the ultrasound range, scatter 

from structural defects and the time of flight characteristics of the scattered waves can be used 

to detect and localize the defects [18]. As with vibrational measurements, acoustic emissions 

techniques are not remote and require transducers mounted to the structure, proximal to any 

damage to be detected. Some studies have produced positive results using acoustic emissions 

techniques with air coupled ultrasonic transducers placed up to 25 mm from a vibrating surface 

[19]. Acoustic emission monitoring is similar to guided wave SHM, however instead of using 

an external excitation source, transient surface waves are generated via the rapid release of 

strain energy local to a defect. These localized emissions are then monitored using surface 

mounted receiving transducers, and damage can be evaluated by counting the number of times 

the emissions exceed some predetermined threshold [16]. Despite a number of practical 

applications for these methods, none of them is truly remote from the vibrating structure. The 

requirement that transducers be mounted on, in, or near the test structure presents operational 

challenges; installation may be difficult, in situ measurement could be infeasible, and 

transducers aging with a structure may exhibit their own health problems indistinguishable from 

actual damage in the structure of interest. Furthermore, neglecting these drawbacks, direct 
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contact of transducers and test structures requires physical coupling which can ultimately alter 

the behavior of the structure. 

  

1.1.2  Remote acoustic methods for SHM 

 Remote acoustic sensing of structural damage has been investigated in past studies, but 

to a lesser extent than the aforementioned contacting or nearfield techniques. For many years 

“tap” (or "gage") tests have been used, with various levels of rigor, to detect perceptible 

damage-induced changes in resonant frequencies of railway wheels and aeronautical structures 

[9]. Such gage tests, while essentially free to perform, suffer from variability depending on the 

intensity and location of the tap, the loading and mounting of the structure, and the skill and 

perceptiveness of the tester, among other factors. More rigorous approaches toward remote 

acoustic sensing of structural damage have been investigated for rotating systems, particularly 

regarding bearing health [13]. It is known that bearings, when nearing their end of life, 

sometimes exhibit characteristic “screeching” that can be detected with monitoring 

microphones. Time-frequency analysis of bearing sounds have been used to monitor and predict 

bearing failure, and similar studies have been done with full gearbox systems [20]. Ultimately, 

remote acoustic NDE requires accurate signal identification and robust processing which can 

be difficult in real-world environments due to unknown environmental factors like noise, 

propagation uncertainty, multipath propagation, and unknown reverberation [21]. Unknown 

reverberation and multipath present a particular difficulty as the desired vibration-induced 

signal becomes convolved with the acoustic environment's Green’s function which is generally 

unknown, and conventional techniques are, generally speaking, incapable of inverting this 

convolution to determine the original signal. And though truncation in the time domain is often 
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a means of sidestepping multipath for impulsive signals, this is infeasible for long duration 

structural excitation and signals, which is challenging since these types of excitation and signals 

are commonly of interest for passive NDE, necessitating additional signal processing methods 

to ensure robustness in such circumstances. 

The second goal of a remote structural health analysis is to determine where the potential 

damage is located, i.e. localization. Damage localization is typically treated as an inverse 

problem, wherein measured vibrational or acoustic data of some sort are used to infer damage 

location parameters [5]. Within the scope of contacting vibration-based SHM, localization is 

approached primarily in two fashions. If the system under investigation permits (i.e. if it is 

simple), then analytical or numerical models can be exploited in conjunction with sensor 

measurements to estimate defect locations. Though model-based methods have the convenience 

of relatively simple signal processing and predictability, their primary limitation is in the 

unavailability of practical models for real-world systems. This is further complicated since 

model accuracy for a system typically worsens with system age, which is precisely when 

accurate SHM is most needed. The second, and increasingly more common approach, involves 

solving an inverse scattering problem between propagating surface waves and the damage 

location. This can sometimes be done relatively easily using simple time-of-flight estimates and 

triangulation [14] although more advanced algorithms exist for improved performance [18]. 

Attacking the problem of localization with remote sensing typically necessitates the use 

of a receiver array to map an acoustic source level (i.e. energy) over the structural surface of 

the interest. This procedure may be performed when the structure is known to be healthy 

(baseline) and at some later time when the condition is unknown or of interest (or, perhaps 

known to be defective). In theory, differences between these two source level maps will 
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correspond to changes presumed to arise from damage. Several such methods have been 

proposed, using deconvolution-based approaches such as DAMAS [22], or variants of the 

classic CLEAN algorithm [23, 24]. Unfortunately, these methods are only accurate under the 

assumption that the modeled acoustic sources are all mutually incoherent (statistically 

uncorrelated). While such an assumption is permissible in certain aeroacoustic applications, it 

is too restrictive for the purposes of detecting small changes in an extended vibrating and 

radiating structure. This is because each the vibrationally active regions on a vibrating structure 

are intrinsically coherent, at any chosen frequency, due to the coupled and modal nature of the 

structural response. As such, an effective method for remote localization of damage must ensure 

that vibrational-source coherence is correctly treated, while also maintaining sufficiently high-

resolution to spatially resolve small structural-response changes. 

Damage classification, or damage identification, is another common structural health 

monitoring goal that is prominent in the literature. Classification is challenging because the 

exact form in which any particular type of damage will affect structural response is difficult to 

predict, especially when the type, severity, and location of the damage is not known a priori. 

Worse yet, different types of damage may affect structural response in very similar ways, 

making distinction between damage types even more challenging. For these reasons, damage 

classification is typically approached using statistical, data-driven methods, the most popular 

modern method being machine learning. Such data-driven methods apply pattern-recognition 

concepts to develop statistical models with simulated or measured damage scenarios spanning 

the range of potential damage cases. From these scenarios, data features are then extracted and 

analyzed using either regression analysis or group classification algorithms. At any rate, the 

ability to effectively classify structural damage is heavily dependent on the character of 
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available measurement data, the damage scenarios used for data-driven-method training, and 

the extracted features’ ability to discriminate damage types.  

Remote acoustic sensing for the classification structural damage has not been well-

explored in the literature. Some researchers have used remote microphone arrays to glean 

information about crank, piston, and clutch faults in motorcycle [25] and helicopter [26] 

transmissions. The use of machine learning has become somewhat common in the bearing 

community where it has been applied to acoustic signals for automated classification of various 

types of bearing faults [27, 28]. Vibrational and acoustic sensor data have also been combined 

for damage classification in composite plates [29]. The primary difference between using 

remote acoustic data, versus more conventional vibrational data (which is more extensively 

discussed in the literature [30, 31]), is the inclusion of the acoustic propagation in the local 

environment, and the increased difficulty of obtaining high-fidelity structural data. Fortunately, 

outside the realm of SHM, the use of remote acoustic measurements for classification has been 

applied to many problems including the automatic classification of road vehicles [32], 

agricultural sorting [33], and musical instruments [34]. These findings indicate that the 

extension of remote acoustic sensing to structural damage classification is feasible, although 

appropriate features and classification schemes must be considered to extract sufficient 

information from the available remotely recorded acoustic data. 

 Compositing these detection, localization, and classification goals together, a pathway 

is presented for structural health monitoring using remote acoustic sensing. As is described in 

this thesis, there are a number of challenges in using passive acoustic measurements for 

nondestructive evaluation; however, many of these concerns are addressed through the 

implementation of advanced signal processing methods. Still, the minimum detectable damage 
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size of a passive acoustic technique is generally larger than for active techniques (such as 

ultrasonic methods [19] or distributed vibrational sensors [7]). The benefit of remote acoustic 

SHM is, of course, that it is remote. The reduced cost of remote acoustic measurements and the 

lack of dependence on expensive, bespoke transducers, allows remote acoustic SHM methods 

to fill a gap in applications where other methods are impractical or even impossible.  

 

 

1.2 On Remoteness 

Remote sensing has been variously defined [35, 36, 37] and the term possesses different 

meanings in different contexts. One of the more concise definitions of remote sensing is 

provided by Fischer, et al. [38] 

 

“Remote sensing is … the art or science of telling something 

about an object without touching it.” 

 

This definition of remote sensing – and most others – qualifies “remote” as essentially 

being equivalent to “non-contacting”. In practice, however, there may be very significant 

differences between remote sensing methods which require some additional clarity and 

explanation. 
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Throughout this thesis the term “remote” is generally used to indicate that a 

measurement has been collected in the acoustic farfield of a radiating structure, or at least, at 

multiple acoustic wavelengths from the radiating structure. The acoustic farfield defines a 

region in which waveforms incident from some acoustic source of finite-extent appear to be 

locally planar (i.e. the wavefronts exhibit negligible curvature). The acoustic farfield stands in 

contrast to the acoustic nearfield, which is typically characterized by complex interference 

patterns due to energy propagating from separate regions of the source in different directions. 

For a single receiver, the farfield can be quantified by the Fraunhofer diffraction distance [39] 

 𝑅𝐹𝑟 ~ 𝐷2/𝜆 (1.1) 

where 𝐷 is the characteristic length scale of the source, and 𝜆 is the acoustic wavelength [40]. 

The constant of proportionality for 𝑅𝐹𝑟 varies from reference to reference, though a value of 

1/4 is perhaps most common [39]. When the receiver range 𝑅 is comfortably greater than 𝑅𝐹𝑟, 

the receiver is said to be in the source’s farfield. Intuitively, then the Fraunhofer diffraction 

distance is such that the difference in path length between opposing ends (or edges) of the 

source is significantly less than one wavelength (subsequently, 𝑅𝐹𝑟 is also a function of 

frequency). In applications where an array of multiple, spatially distributed acoustic receivers 

is used to record radiation from a sound source, the farfield is typically defined in terms of the 

characteristic length scale of the array, 𝐿 

 𝑅𝐹𝑟 ~ 𝐿2/𝜆 (1.2) 

 The methods outlined in Chapter 3 and Chapter 5 are applicable in the acoustic farfield 

as defined by (1.2). In essence, they were developed for applications necessitating that 

measurements be collected at great distances from a structure of interest. The techniques 
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described. and the results presented in Chapter 4, for the acoustic localization of structural 

damage, are somewhat more constrained. These techniques require an array proximal to a 

structure, such that different regions of the structure can be angularly resolved by the recording 

array. The strict limits are formulated in Chapter 4, but in general measurements can still be 

collected at ranges on the order of multiple source lengths, 𝐷. The techniques developed in this 

thesis for acoustical structural health monitoring are – in all senses of the word – remote, but 

do require the structure to vibrate with sufficient vigor to radiate sound. 
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Chapter II: Methods and Tools  

 

All techniques described in this thesis were developed in MATLAB with in-house 

written code. No commercial packages were used in generating any of the reported findings 

with the exception of the CVX convex optimization toolkit [41] for MATLAB (used throughout 

Chapter 4). The commercial ANSYS Workbench finite element analysis software was used to 

benchmark MATLAB code implemented in Chapter 5. 

2.1 Array signal processing 

Array signal processing encompasses a broad range of techniques used in the fields of 

acoustics [42, 43], radar [44, 45], medicine [46], astronomy [47], geophysics [48], 

communications [49], among others [50, 51]. At its most basic, array signal processing is 

measurement of a quantity of interest in both space and time to leverage more information or 

better performance than is achievable from sampling a single point in space. In applications this 

is typically done using a spatial distribution – or array – of sensors which record some state 

variable as a function of time (though in some applications arrays are synthesized from just a 

single sensor that is moved around a field [43]). Common applications of array signal 

processing include detection, localization, and tracking of targets, source identification, and 

estimation of environmental properties through measurement inversion techniques. 

In acoustics, microphones (for in-air measurements) and hydrophones (for aqueous 

measurements) are the sensors of choice, with the generic term receiver often used to specify 
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both. Typically, acoustic pressure 𝑝(𝑡) is recorded as a function of time at all receivers, with 

the 𝑝𝑗(𝑡) signifying the recording from the 𝑗𝑡ℎ receiver of an 𝑀-element array. In classical 

linear acoustics [52], the acoustic pressure at time 𝑡 and position vector 𝒙 obeys the wave 

equation 

 
𝜕2𝑝(𝒙, 𝑡)

𝜕𝑡2
− 𝑐2∇2𝑝(𝒙, 𝑡) = 𝑞(𝒙, 𝑡) (2.1) 

where 𝑐 signifies the speed of sound in the environment (which may depend on time and, more 

commonly, space) and 𝑞(𝒙, 𝑡) is some source pressure. In addition to satisfying (2.1), the 

acoustic pressure must also satisfy corresponding initial and boundary conditions to be fully 

defined. Solutions to (2.1) can be constructed for well-behaved 𝑞(𝒙, 𝑡) by leveraging the 

linearity of the wave-equation using a Green’s function, 𝘨(𝒙|𝒙0, 𝑡), which satisfies 

 
𝜕2𝘨(𝒙|𝒙0, 𝑡)

𝜕𝑡2
− 𝑐2∇2𝘨(𝒙|𝒙0, 𝑡) = 𝛿(𝒙 − 𝒙0)𝛿(𝑡) (2.2) 

where 𝛿(𝒙 − 𝒙0) and 𝛿(𝑡) are the Dirac delta functions, in addition to the initial and boundary 

conditions. Then, the solution of (2.1) is produced via a convolution operation [53] 

 𝑝(𝒙, 𝑡) = ∫ ∫ 𝘨(𝒙|𝒙0, 𝑡 − 𝜏)𝑞(𝒙0, 𝜏)𝑑𝜏𝑑𝒙
∞

−∞

∞

−∞

 (2.3) 

Often, however, analysis of acoustics problems begins by recasting (2.1) from the space-

time domain into to space-frequency domain via the Fourier transform pair 
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𝑃(𝒙, 𝜔) = ℱ(𝑝(𝒙, 𝑡)) ≡ ∫ 𝑝(𝒙, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

𝑝(𝒙, 𝑡) = ℱ−1(𝑃(𝒙, 𝜔)) ≡
1

2𝜋
∫ 𝑃(𝒙, 𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔

∞

−∞

 

(2.4a,b) 

yielding the Helmholtz equation 

 ∇2𝑃(𝒙, ω) + 𝑘2𝑃(𝒙, 𝜔) = −𝑄(𝒙, 𝜔) (2.5) 

where 𝜔 = 2𝜋𝑓 is the angular frequency and 𝑘 ≡ 𝜔/𝑐 = 2𝜋/𝜆 is the wavenumber. The 

Helmholtz formulation has the convenience of transforming the time convolution operation in 

(2.3) into an easier-to-implement multiplication due to the convolution theorem [53]. In the 

frequency domain the pressure is given by  

 𝑃(𝒙, ω) = ∫ 𝐺(𝒙|𝒙0, 𝜔)𝑄(𝒙, 𝜔)
∞

−∞

𝑑𝒙 (2.6) 

where 𝐺(𝒙|𝒙0, 𝜔) =  ℱ(𝘨(𝒙|𝒙0, 𝑡)) satisfies ∇2𝐺(𝒙|𝒙0, 𝜔)  + 𝑘2𝐺(𝒙|𝒙0, 𝜔) = −𝛿(𝒙 − 𝒙0). 

In practice, 𝐺(𝒙|𝒙0, 𝜔) is often a known or modeled function. One of the most fundamental 

Green’s functions corresponds to a source in an unbounded free-space (no surfaces) with 

uniform sound speed and is given by 

 𝐺(𝒙|𝒙0, ω) =
𝑒𝑖𝑘|𝒙−𝒙0|

4𝜋|𝒙 − 𝒙0|
 (2.7) 

If the sources are sufficiently far away from the array (‘sufficiently’ being defined as 𝐿2/4𝜆𝑅 ≪

1 where 𝐿 is the characteristic array length, 𝜆 the wavelength, and 𝑅 the source-to-array 

distance), the magnitude factor in the denominator of (2.7) may be neglected, and a Fraunhofer 

approximation [54] can be used for the phase. Rather than the sources emanating from points 
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in space they can then be treated as arriving from angles of inclination 𝜃 and azimuth 𝜙 with 

Green’s function 

 𝐺(𝒙|𝜃, 𝜙 ; ω) = 𝑒𝑖𝑘(𝑥 cos 𝜃 cos 𝜙  +  𝑦 cos 𝜃 sin 𝜙) (2.8) 

Further, in the case of uniform array geometry wherein the receivers are placed with equal 

spacing the Green’s function can be further reduced. A common design is the uniform line array 

(ULA), which consists of equally spaced receivers along a line. For a ULA with receiver 

spacing 𝑑, the position of the 𝑚𝑡ℎ receiver is 𝒙𝑚 = (0, (𝑚 − 1)𝑑), yielding a simplified 

Green’s function 

 𝐺(𝒙𝑚|𝜃; ω) = 𝑒𝑖𝑘(𝑚−1)𝑑cos𝜃 (2.9) 

It is notable that the ULA is only capable of resolving the angles of inclination, 𝜃, due to the 

axially symmetry of its linear geometry. 

If sufficient information is known about an environment, more complex Green’s 

function can be constructed, but in applications where the boundary conditions are complex, 

numerical methods such a rays [40], boundary elements [55], or parabolic equation techniques 

[56] are typically employed. 

 

2.1.1 Beamforming 

Beamforming is a method of focusing an array of receivers toward a particular point or 

direction. This is typically done to either apply a gain to signals impinging from a predetermined 

direction, or to determine from which directions signals have originated. Beamforming is often 

referred to as spatial filtering due to its mathematical duality to temporal filtering [44]. At its 
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core, beamforming exploits the measured phase between spatially separated receivers to induce 

constructive interference (i.e. positive gain) in directions where signals are arriving (or 

anticipated), and destructive interference (i.e. negative gain) where signals are not. 

Beamforming can be performed in either the time-domain or the frequency-domain. In 

acoustics, recorded signals are typically wideband, meaning that phase of the impinging signals 

varies significantly over the array length, or aperture (this is in contrast to narrowband signals, 

typically used in radar, where incident waveforms are typically modulated into a much higher 

carrier frequency [45]). As a result, it is generally more convenient to perform wideband 

beamforming in the frequency domain. Thus, for wideband signals, the output of an 𝑀-element 

receiver array consists of a data matrix �̂�(𝜔) whose rows are the Fourier transforms of the 𝑀 

sensor recordings. 

 �̂�(𝜔) = [�̂�1(𝜔)  �̂�2(𝜔) ⋯ �̂�𝑀(𝜔) ]𝑇  (2.10) 

A model for the array output can be constructed using the 𝐾 unknown source waveforms �̂�𝑘(𝜔) 

and arrival locations 𝜃𝑘 (note, 𝜃𝑘 may be an arrival angle, an (𝑥, 𝑦) coordinate pair, or some 

other location parameters), in addition the modeled Green’s functions 𝐺𝑚𝑘(𝜔) ≡ 𝐺(𝒙𝑚|𝒙𝑘, ω) 

and exogenous noise, �̂�𝑚(𝜔) 

 �̂�𝑚(𝜔)  =  ∑ 𝐺𝑚𝑘(𝜔)�̂�𝑘(𝜔)

𝐾

𝑘=1

 +  �̂�𝑚(𝜔) (2.11) 

which yields the vector representation of the array output  

 �̂�(𝜔) =  𝐆(𝜔)�̂�(𝜔) +  �̂�(𝜔) (2.12) 
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where the 𝑀 x 𝐾 matrix 𝐆(𝜔) is sometimes referred to as the propagation matrix or array 

manifold, the rows of �̂�(𝜔) are the Fourier transforms of the 𝐾 unknown source waveforms, 

and �̂�(𝜔) are the Fourier transforms of the additive noise at each of the 𝑀 receivers. Generally, 

the noise is treated as a zero-mean variable, uncorrelated at each receiver such that 

𝐸{�̂�𝑖(𝜔)�̂�𝑗
∗(𝜔)} = 𝜎2𝛿𝑖𝑗 where 𝜎2 is the a priori unknown noise variance (i.e. the ‘amplitude’ 

of the noise). The most common value for quantifying the noise magnitude in a measurement 

is the signal to noise ratio (SNR), reported in decibels 

 SNR ≡ 10 log (
𝜎2

|𝒔|2
) (2.13) 

In acoustics, SNRs above 15 dB are considered high (very little noise), whereas SNRs of -10 dB 

or below are considered to be significantly corrupted by noise. 

It will also be convenient to define the steering vector for a single look direction 𝑘 

 𝒈𝑘(𝜔) = [𝐺1𝑘(𝜔)  𝐺2𝑘(𝜔) ⋯ 𝐺𝑀𝑘(𝜔)]𝑇 (2.14) 

For example, in the case of a farfield uniform line array, recalling (2.9) the steering vector 

directing the array in the 𝜃𝑘 direction is 

 𝒈𝑘(𝜃𝑘; 𝜔) = [1   𝑒𝑖
𝜔
𝑐

𝑑cos𝜃𝑘   ⋯  𝑒𝑖
𝜔
𝑐

(𝑀−1)𝑑cos𝜃𝑘]
𝑇

 (2.15) 

 For beamforming operations, it is often convenient to define the cross-spectral density 

matrix (CSDM) which is the 𝑀 x 𝑀 complex matrix of cross-correlations between the receivers. 

 𝚪(ω) = 𝐸(�̂�(𝜔)�̂�𝐻(𝜔)) (2.16) 
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( )𝐻 indicates the conjugate transpose and the expectation operator 𝐸() indicate that the 

presence of noise (among other uncertainties), limits true evaluation of the CSDM. In practice, 

the CSDM can be better approximated by snapshot averaging, wherein the CSDM is computed 

for 𝑁 multiple measurements of �̂�(𝜔) 

 𝚪(ω) ≈
1

𝑁
∑ �̂�(𝜔) �̂�𝐻(𝜔)|𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝑖

𝑁

𝑖=1

 (2.17) 

 

2.1.1.1 Conventional Beamformer 

The simplest and most fundamental beamformer is the conventional beamformer (CBF) 

[57], also dubbed the Bartlett or delay-and-sum beamformer. As indicated by the latter of its 

names, the CBF picks a look direction, applies individual time delays to each receiver 

corresponding to the look direction and modeled Green’s function, then sums the delayed data. 

In the frequency domain, the time delay is achieved via multiplication with a complex weight 

vector  

 𝒘𝐶𝐵𝐹 =
𝒈𝑘

√𝒈𝑘
𝐻𝒈𝑘

 (2.18) 

where the subscript indicates the weight vector steers to the 𝑘𝑡ℎ source direction. The summed 

beamformer output is given by 

 𝑦(𝜔) = ∑ 𝑤𝑖
∗

𝑀

𝑖=1

(𝜔)�̂�𝑖(𝜔)  =  𝒘𝐻(𝜔)�̂�(𝜔) (2.19) 

The output power, being the real-valued function that is typically plotted against source 

location, is defined 
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 𝑃(𝜔) = |𝑦(𝜔)|2 = 𝒘𝐻�̂��̂�𝐻𝒘 = 𝒘𝐻𝚪𝒘 (2.20) 

where 𝚪 is the CSDM defined in (2.17). 

CBF enjoys frequent use due to its simplicity and robustness, but it suffers from poor 

resolution (i.e. the ability to distinguish two sources arriving from nearby locations), due to its 

large beamwidth. Since its inception, many more beamforming methods have been developed 

which improve on conventional beamforming in a variety of metrics. 

 

Figure 2.1: Conventional beamformer output for two nearby planar sources (green dots, arriving from 

10° and 13° at a 16-element ULA with 𝑘𝑑 = 𝜋 and 0 dB SNR). In the top figure, the two sources are 

completely uncorrelated (incoherent, e.g. noise) with CSDMs averaged over 100 snapshots. In the 

bottom figure, the two sources are fully correlated (coherent). 

 

2.1.1.2 MVDR 

 The Minimum Variance Distortionless Response (MVDR) beamformer, also called 

Capon’s beamformer [58], is a variant of CBF which can give better source resolution. To do 
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this, the weights applied in MVDR are optimized such that the power is minimized, but the gain 

in the look direction is constrained to unity (the maximum) 

 
min

𝒘
𝑃(𝒘) 

subject to 𝒘𝐻𝑮𝒌 

(2.21) 

where 𝑮𝒌 = [𝑮1𝑘 𝑮2𝑘 ⋯ 𝑮𝑀𝑘]𝑇 is the steering vector pointing the array in the 𝑘𝑡ℎ direction. 

This optimization yield a unique steering vector 

 𝒘𝑀𝑉𝐷𝑅 =
𝚪−1𝒈𝑘

𝒈𝑘
𝐻𝚪−1𝒈𝑘

 (2.22) 

that, when plugged into (2.20) yields the MVDR ‘spectrum’ 

 𝑃𝑀𝑉𝐷𝑅(𝜔) =
1

𝒈𝑘
𝐻𝚪−1𝒈𝑘

 (2.23) 

which can be computed directly over all possible source locations/directions of interest. MVDR 

benefits from better resolution than CBF, due its use of the measured data to adaptively suppress 

interference, but it suffers when incoming sources are coherent (i.e. sources impinging from 

different directions are shifted/scaled multiples of one another), and when the CSDM is nearly 

singular (such as in a very low noise environment with fewer than 𝑀 sources). 
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Figure 2.2: MVDR output for two nearby planar sources (green dots, arriving from 10° and 13° at a 16-

element ULA with 𝑘𝑑 = 𝜋 and 0 dB SNR). In the top figure, the two sources are uncorrelated noise 

using 100 snapshots. In the bottom figure, the two sources are fully correlated. 

 

2.1.1.3 MUSIC 

 The Multiple Signal Classification [59] (MUSIC) beamformer is the most popular of a 

class of algorithms known as subspace methods. These methods are based on eigenvalue 

decomposition of the CSDM and subsequent partitioning of the eigenvectors into a signal 

subspace 𝐔𝑠 of rank 𝐾, and a noise subspace 𝐔𝑛 of rank 𝑀 − 𝐾, where eigenvectors of 𝐔𝑠 

correspond to the largest 𝐾 eigenvalues of the CSDM. The subspace partitioning requires either 

a priori knowledge of the number of sources, 𝐾, though in low noise environments 𝐾 may be 

estimated by the number of ‘non-small’ eigenvalues. In either case, once 𝐔𝑛 can be computed, 

the ‘pseudospectrum’ for MUSIC is given by [59] 

 𝑃𝑀𝑈𝑆𝐼𝐶(𝜔) =
𝒈𝑘

𝐻𝒈𝑘

𝒈𝑘
𝐻𝐔𝑛𝒈𝑘

 (2.24) 
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 𝑃𝑀𝑈𝑆𝐼𝐶  typically features very sharp peaks at the true arrival directions, with better 

resolution than CBF and MVDR. This behavior is intuitively explained by considering (2.11); 

the steering vectors 𝒈𝑘 corresponding to the true source directions are in the signal subspace 

𝐔𝑠. It follows that the denominator, 𝒈𝑘
𝐻𝐔𝑛𝒈𝑘, must be very small for those 𝒈𝑘 not in the noise 

subspace, resulting in the sharp peaks. 

 MUSIC is very common in the literature, due to its high resolution for what is a 

computationally cheap eigenvalue decomposition. However, similarly to MVDR, MUSIC 

suffers when coherent signals are present. This is due to a degeneracy in the signal subspace 

eigenvectors, resulting in 𝑟𝑎𝑛𝑘(𝐔𝑠) < 𝐾. Some techniques do exist for circumventing this 

limitation, including subarray smoothing [60], which is discussed further in Chapter 4. 

 

Figure 2.3: MUSIC output for two nearby planar sources (green dots, arriving from 10° and 13° at a 16-

element ULA with 𝑘𝑑 = 𝜋 and 0 dB SNR). In the top figure, the two sources are uncorrelated noise 

using 100 snapshots. In the bottom figure, the two sources are fully correlated. 
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2.1.1.4 MIN-NORM 

 The MIN-NORM algorithm is a variant of MUSIC and part of a class of methods known 

as weighted MUSIC beamformers. These beamformers possess pseudospectra of the form 

 𝑃𝑊𝑀(𝜔) =
𝒈𝑘

𝐻𝒈𝑘

𝒈𝑘
𝐻𝐔𝑛𝐖𝐔𝑛𝒈𝑘

 (2.25) 

where  𝐖 is a matrix of weights selected to improve upon MUSIC in some respect. In the case 

of MIN-NORM, 𝐖 takes the form [61] 

 𝐖 = [

1 0
0 0

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 0

] (2.26) 

This choice of 𝐖 essentially has the effect of reducing the noise subspace to the single noise 

eigenvector with the smallest eigenvector, ultimately yielding a smaller inner product in the 

denominator of (2.25) and, subsequently, peaks that are somewhat sharper than MUSIC. 

Despite its moderate benefits, MIN-NORM also features the same difficulties of rank 

deficiency as MUSIC is the case of coherent sources, and likewise exhibits poor performance 

in cases of multipath or mutually correlated sources. 
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Figure 2.4: MIN-NORM output for two nearby planar sources (green dots, arriving from 10° and 13° at 

a 16-element ULA with 𝑘𝑑 = 𝜋 and 0 dB SNR). In the top figure, the two sources are uncorrelated noise 

using 100 snapshots. In the bottom figure, the two sources are fully correlated. For uncorrelated sources 

(top), MIN-NORM begins to indicate that two source are present. 

 

 

2.1.1.5 MLE 

The Maximum Likelihood Estimator (MLE) beamformer leverages the parametric 

model in (2.12) along with the statistical concept of joint probabilities between receiver 

recordings, to reduce beamforming to a multivariable optimization problem [44]. Referring 

back to (2.12), presuming that the exogenous noise term �̂�(𝜔) is normally distributed with zero-

mean and a priori unknown standard deviation 𝜎, then the probability of obtaining a particular 

measurement �̂�(𝜔) takes the form of a 𝑀-variate gaussian distribution  

 Prob(�̂�(𝜔)) =
1

(𝜋𝜎2)𝑀
𝑒‖�̂�(𝜔)−𝐆(𝜔)�̂�(𝜔)‖/𝜎2

 (2.27) 
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which is dependent on several unknown quantities, including the signal waveforms �̂�(𝜔), the 

noise amplitude 𝜎2, and the source directions 𝜽, which we ultimately would like to know. The 

crux of MLE is that the statistically best estimate of these parameters maximizes (2.35). An 

equivalent objective, is to minimize the negative log-likelihood (e.g. the logarithm of (2.35)). 

This is equivalent to minimizing the function 

 𝑙(𝜽, �̂�(𝜔), 𝜎2) = 𝑀 log 𝜎2 +
1

𝜎2𝑁
∑‖�̂�(𝜔) − 𝐆(𝜔)�̂�(𝜔)‖

𝑁

𝑖=1

 (2.28) 

over its arguments. It can be shown [62] that the best estimate for the unknown source locations 

is given via the optimization 

 𝜽𝒆𝒔𝒕 = arg {min
𝜃

Tr{(𝐈 − 𝐆(𝐆𝐻𝐆)−1𝐆𝐻)𝚪}} (2.29) 

where, again, 𝐆(𝜔, 𝜽), contains the model information (Green’s functions) for the possible 

source locations, and 𝚪(ω) is the measured CSDM. 

 The MLE beamformer has two useful properties. First, with sufficient number of 

snapshots (samples) it converges to the theoretical lower bound (the Cramer-Rao Lower Bound) 

for uncertainty in 𝜽𝒆𝒔𝒕 [62]. Second, the MLE formulation is insensitive to mutually coherent 

sources, as is shown in Figure 2.5. Despite its in-some-sense optimal performance, the MLE 

beamformer has a few drawbacks that has limited its use in the remote acoustic sensing 

literature. The primary difficulty is that the minimization in (2.37) is costly. The cost function 

is not well behaved, including large shallow canyons that seize up convergence for common 

gradient decent approaches. Other optimization techniques, such as genetic algorithms and 
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particle methods, can yield better results, but the computational complexity becomes very large 

as a greater number of sources are considered. 

 A secondary challenge of the MLE beamformer, is that the number of sources must 

either be known a priori, or the beamformer must multiple times for all different possible 

numbers of sources. One method for estimating the number of sources is to determine how 

many “large” eigenvalues exist in the decomposition of the CSDM. This approach, however, 

suffers at low SNRs and also for coherent sources (where the eigenvectors are degenerate, 

resulting in fewer ‘large’ eigenvalues than actual sources). Computational costs increase further 

when multiple frequencies (i.e. broadband sources) are considered, in which case the MLE 

would be computed at each desired frequency bin. Nevertheless, when it is applicable, the MLE 

beamformer can be an effective tool for localization and signal identification. 

 

Figure 2.5: MLE output (blue triangles) for two nearby planar sources (green dots, arriving from 10° 

and 13° at a 16-element ULA with 𝑘𝑑 = 𝜋 and 0 dB SNR). In the top figure, the two sources are 

uncorrelated noise using 100 snapshots. In the bottom figure, the two sources are fully correlated. Note, 

the MLE beamformer is capable of localizing both sources, regardless of their coherence. However, this 

comes at the cost of a computationally demanding multivariable minimization task (a genetic algorithm 

was used to produce the results above). 
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2.1.1.6 SEM 

 The Spectral Estimation Method (SEM) is a more recent beamformer that can achieve 

high-resolution localization of sources via a convex optimization [63]. SEM utilizes the 

structure of the CSDM from (2.16)  

 𝚪(ω) = 𝐸(�̂�(𝜔)�̂�𝐻(𝜔)) =  𝐆�̂��̂�𝐻𝐆𝑯 (2.30) 

the matrix �̂��̂�𝐻 is named the source cross-spectral density matrix and its elements consist of the 

frequency domain cross-correlations of the source signals. In practice �̂��̂�𝐻 is not known, since 

the source waveforms �̂�(𝜔) are generally unknown. However, if all the sources can be assumed 

mutually incoherent (a reasonable assumption for noisy sources such as a turbulent flow field) 

then the source cross-spectral density matrix can be reduced to 

 𝐸(�̂�(𝜔)�̂�𝐻(𝜔)) =  𝐸 (�̂�𝑖(𝜔)�̂�𝑗
𝐻(𝜔)) = �̂�𝑖(𝜔)�̂�𝑗

𝐻(𝜔)𝛿𝑖𝑗 = 𝑆𝑖(𝜔) (2.31) 

where 𝛿𝑖𝑗 is the Kronecker delta function and 𝑆𝑖 is the power spectrum of the 𝑖𝑡ℎ source which 

is a positive definite quantity. In other words, for mutually incoherent sources,  �̂��̂�𝐻 reduces to 

a matrix with only diagonal components which represent the a priori unknown, but positive 

definite source strengths of the 𝐾 sources. 

 The objective of SEM is then to discretize the domain of all possible source locations, 

then perform the minimization 
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min
𝑆𝑘

(|𝚪𝑚,𝑛
𝑚𝑒𝑎𝑠(𝜔) − ∑ 𝐺𝑚,𝑘𝑆𝑘𝐺𝑛,𝑘

∗

𝐾

𝑙

|

2

) 

such that      𝑆𝑘 > 0 

(2.32) 

yielding an estimate 𝑆𝑘 for the source strength at all discretized locations. Given the positivity 

constraint on 𝑆𝑘, (2.32) is a convex optimization problem, meaning that at any point in the 

search space, the gradient of the cost function points in the direction of a single global 

minimum. This is convenient because many methods have recently been developed for quickly 

solving convex optimization problems [64, 65, 41]. The result of minimizing (2.32) is an 

estimate of source strength that features nearly discrete peaks at, or very near, the true source 

locations as shown in Figure 2.6.  

 

Figure 2.6: The convex optimization produce performed in SEM yields very sharp “peaks”, which 

successfully resolves the 3° separated incoherent sources (top), but fails for two coherent sources 

(bottom). 
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 The convex behavior of SEM is illustrated in Figure 2.7. A two-dimensional surface plots 

the error |𝚪𝑚,𝑛
𝑚𝑒𝑎𝑠(𝜔) − ∑ 𝐺𝑚,𝑘𝑆𝑘𝐺𝑛,𝑘

∗𝐾
𝑙 | as a function of the source strength in the direction of 

Source 1, and the source strength in the direction of Source 2. The strength of Source 1 was set 

to unity, while the strength of Source 2 was set to 0.5. It is clear that the minimum (which is a 

global minimum for positive source strengths) is coincident with source strengths of 1 and 0.5, 

respectively. In practice, the locations of the sources are not known in advance, so the domain 

of possible source locations is discretized into 𝐽 bins. Then, SEM involves a 𝐽-dimensional 

convex minimization. Throughout this thesis, the CVX toolbox [41] for MATLAB is used to 

solve these convex problems in which the dimensionality 𝐽 runs anywhere from ~100 for one-

dimensional localization problems, to ~10,000 for two-dimensional localization problems. To 

speed up performance, the proprietary Gurobi solver [66] was implemented within the CVX 

toolbox. 

 

 

 

 

 

  

Figure 2.7: A two-dimensional error surface depicts the characteristic convex behavior of the SEM 

minimization. Above, only two dimensions are plotted (corresponding to the source strengths in the 

direction of Source 1 and Source 2, respectively). In this example Source 1 has an amplitude of 1 and 

Source 2 has an amplitude of 0.5, which is the location of the minima. 
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 It must be noted that the benefits of SEM are still limited to sources which are mutually 

incoherent. In Chapter 4, it is shown that by exploiting translational symmetry in certain array 

geometries, SEM (as well as MUSIC and MIN-NORM) can be extended to applications 

involving numerous highly, and even perfectly, correlated sources. 

 

 

2.1.2 Synthetic Time Reversal 

Signal estimation is another common application of array signal processing. Source 

identification is the process of estimating the true waveforms of one or more broadcast sources 

in a propagation environment and it is an important task wireless communications both in air 

[49] and underwater [67]. A common problem encountered is these fields is that of a single 

source arriving at a receiver array from multiple directions at multiple times due to reflections 

from surfaces [21] or from refraction [68]. This effect is known as multipath due to the multiple 

propagation paths connecting the source to the receiver array. Multipath is particularly 

challenging because the multiple arrivals may interfere, distorting the recorded signal, and the 

arrivals are, by definition, fully correlated, which introduces additional challenges. Multipath 

may be problematic even when only a single reflection in present, for instance, when making 

underwater recordings near the ocean surface. In the other limit, when hundreds or even 

thousands of paths impinge upon the receiving array, multipath is often termed reverberation. 

Reverberation is a household phenomenon, characterized by a diffuse field of sound where the 

model of individual arrivals is traded for a statistical framework [40]. In certain scenarios, 
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acoustic recordings in a reflecting environment can be considered as the sum of several early-

time, individual arrivals (multipath), followed by a longer duration of diffuse reverberation. 

Signal estimation in the presence of multipath may be improved when with the use array 

signal processing. If an 𝑀-element array is used to capture the individual receiver recordings 

𝑟𝑚(𝑡), where 𝑚 serves as the receiver index, then the simplest scheme for estimating the true 

broadcast signal 𝑠(𝑡) is an incoherent average of the recordings 

 𝑠𝑖𝑛𝑐𝑜ℎ(𝑡) = ∑ 𝑟𝑚(𝑡)

𝑀

𝑚=1

 (2.33) 

Unfortunately, this average in no way accounts for the environmental effects, and is usually 

ineffective at improving the signal estimate (however, (2.33) may help suppress incoherent 

noise effects). If the incoherent average is performed in the frequency domain 

 �̂�𝑖𝑛𝑐𝑜ℎ(𝜔) = ∑ �̂�𝑚(𝜔)

𝑀

𝑚=1

 (2.34) 

Recalling (2.11) (and neglecting the noise term), �̂�𝑚 = 𝐺𝑚𝑘�̂� where 𝐺𝑚𝑘 is the unknown 

Green’s function from the source to the 𝑚𝑡ℎ receiver, accounting for multipath. It follows from 

(2.34)  

 �̂�𝑖𝑛𝑐𝑜ℎ(𝜔) = ∑ 𝐺𝑚𝑘(𝜔)�̂�(𝜔)

𝑀

𝑚=1

= �̂�(𝜔) ∑ 𝐺𝑚𝑘(𝜔)

𝑀

𝑚=1

 (2.35) 

For �̂�𝑖𝑛𝑐𝑜ℎ(𝜔) to accurately approximate the true source waveform (up to a time-delay and 

normalization constant), then ∑ 𝐺𝑚𝑘(𝜔)𝑀
𝑚=1  must be proportional to 𝑒𝑖𝑎𝜔, for some real 
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constant 𝑎. Unfortunately, this condition is generally not met and as such, �̂�𝑖𝑛𝑐𝑜ℎ(𝜔) is typically 

a poor estimator of �̂�(𝜔). 

 The beamforming techniques discussed in Section 2.1.1 can also be beneficial for source 

estimation. Using a beamformer of choice to first determine the various source-to-array paths, 

the array can be steered in the direction of one of these paths, effectively applying a negative 

gain to all other (interfering) paths. The beamformed estimate of the source signal is 

 �̂�𝐵𝐹(𝜔) = 𝒘𝐻(𝜃𝑚; 𝜔)�̂�(𝜔) (2.36) 

where 𝒘𝐻(𝜃𝑚; 𝜔) are the beamformed weights used to steer in the direction of the 𝜃𝑚 path 

(where 𝜃𝑚 may be an angle, set of angles, spatial coordinates, etc.). In practice, conventional 

beamforming is a common beamformer for this practice, due to its robustness to coherent effect. 

 Synthetic Time Reversal (STR) is a technique for signal estimation in shallow water 

channels where significant amounts of multipath are present due to reflection from the sea 

surface and the seafloor [69]. STR is specifically a method of blind deconvolution: 

deconvolution in that the impulse response of the water channel is deconvolved from the 

receiver recordings 𝑟𝑚(𝑡) to approximate 𝑠(𝑡), and blind because this operation is done with 

no prior knowledge of the channel’s impulse response or the signal waveform. 

 STR accomplishes blind deconvolution by first estimating the 𝑀 source-to-receiver 

Green’s functions, 𝐺𝑚𝑘(𝜔), then using these to estimated Green’s functions to deconvolve each 

receiver output. Mathematically, the STR estimate of the source signal is [70] 
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�̂�𝑆𝑇𝑅(𝜔) = ∑ �̃�𝑚𝑘
∗ (𝜔)�̂�𝑚(𝜔)

𝑀

𝑚=1

 

                                     = ∑ {
�̂�𝑚(𝜔)𝑒−𝑖𝛼(𝜔)

√∑ |�̂�𝑚(𝜔)|2𝑀
𝑙=1

}

∗

�̂�𝑚(𝜔)

𝑀

𝑚=1

 

(2.37) 

where 𝛼(𝜔) is a phase correction factor of the form 

 𝛼(𝜔) = arg ( ∑ 𝑤𝑚(𝜔)�̂�𝑚(𝜔)

𝑀

𝑚=1

) (2.38) 

 If the weights 𝑤𝑚(𝜔) can be chosen such that arg(∑ 𝑤𝑚(𝜔)𝐺𝑚𝑘(𝜔)𝑀
𝑚=1 ) is, at most, 

linear in 𝜔, then 𝑠𝑆𝑇𝑅(𝑡) will be equivalent to 𝑠(𝑡) up to an arbitrary time shift and 

normalization constant (meaning that STR is insufficient for determining source range).  It can 

be shown [71] that the beamformer weights from (2.18) are sufficient to satisfy this condition. 

 Though other blind deconvolution techniques exist [72] [73], STR is particularly 

convenient because it requires essentially no more processing than a typical beamforming 

computation. To showcase the performance of STR, a simulation was performed wherein five 

plane waves impinged upon a 15-element uniform line array (𝑑 = 22.4 cm) from 6.7°, 16.3°, –

12.3°, –23.3°, and 26.8° with time delays of 0, 5, 10, 20, and 25 ms and relative amplitudes of 

0.9, 1.2, 0.5, 0.2, and 0.6, respectively (these values were not arbitrary, rather they are based on 

the CAPEX09 dataset taken in Lake Washington off the coast of Seattle [70, 74]). The true 

signal waveform, broadcast along each path, was a linear chirp from 0-5000 Hz, with a 

0.1 second duration. The chirps frequency content of the chirps were enveloped such that the 

frequencies 2100, 2800, and 3700 Hz were bandpassed (effectively mimicking the response of 

a system with resonances centered at these three frequencies). 
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 Figure 2.8 compares the performance of the three aforementioned signal estimation 

methods for the simulated multipath scenario detailed above. The top row shows the true signal 

waveform in both the time and frequency domains. The second row shows the estimated signal 

waveform using a rudimentary incoherent average across the 15 receivers. The second 

resonance is split in the time domain waveform, and the magnitude of the Fourier transform 

indicates that much of the energy at the higher frequencies has been lost through interference. 

The third row showcases the estimated signal waveform using the CBF weights to steer in the 

direction of the reference ray. Though beamforming does a better job at reconstructing the 

signal, it is clear from the Fourier transform that interference effects are still present in the 

estimate. Finally, the last row shows the signal waveform estimate using STR. The time-domain 

reconstruction is very close to the actual broadcast signal (the normalized cross-correlation is 

98%), and the frequency-domain plot indicates that STR yield the best estimate of the signal 

energy as a function of frequency. 

 These simulation results are promising for structural health monitoring applications 

because the availability of an accurate estimate of a true signal waveform is necessary for 

detecting small changes in said waveform (changes that might be due to damage). STR provides 

a computationally affordable method of signal estimation that can be leveraged to improve 

robustness of acoustic techniques in reverberant environments. 
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Figure 2.8: Simulation results comparing multiple signal estimation techniques applied to a multipath 

environment. In black, the top row shows the true source waveform (left) and magnitude Fourier 

transform (right). In red is shown the signal estimates using an incoherent average across the 15 

receivers. In blue is shown signal estimates using a conventional beamformer to steer in the direction of 

a reference ray. The bottom green curves show the best signal estimates, using STR, with the same 

beamformer weights as the blue curves above. 

 

 

2.2 Experimental apparatus 

 The following experimental tools were frequently used to test and validate the methods 

developed in this thesis and as such it is beneficial to describe them here. 

2.2.1 Microphone array 

16 PCB 130E20 electret microphones were used to collect all acoustic measurements in 

this thesis, unless otherwise stated. Each microphone was calibrated to flat frequency response 

(±2 dB), from 20-20,000 kHz. The microphones were used in a variety of array geometries, the 
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most common being a 2-inch spaced linear array mounted either vertically or horizontally, as 

shown in Figure 2.9. 

 

Figure 2.9: Linear array of 16 PCB 130E20 electret microphones used in this thesis. This horizontal 

configuration with 2-inch spacing was one of a multiple of array configurations available. 

 

For two-dimensional source localization (see Chapter 4, Section 3), the microphones 

were configured in a Cartesian planar geometry, shown in Figure 2.10. For several experiments, 

a planar array of greater size than 4x4 was required. To accomplish this, the base 4x4 array was 

affixed to a two-axis automated gantry and used to take an acoustic measurement. The 4x4 array 

was then translated in the x-axis and used to take a second, nominally identical acoustic 

measurement. This was repeated two more times for a total of four 4x4 measurements, and the 

resulting data were ‘stitched’ to synthesize a single 8x8 array measurement. This stitching 

procedure was found to be effective for acoustic signals reproducible from trial-to-trial, such as 

deterministic chirps and sinusoids.  
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Figure 2.10: 4x4 Cartesian array of PCB 130E20 electret microphones. The 4x4 was affixed to a 2-axis 

automated gantry for precision translation, allowing synthesis of larger arrays up to 8x8 elements in 

size. 

 

 Figure 2.11 provides the schematic data flow used in all reported acoustic and 

vibroacoustic measurements in this document. A computer was used to forward output/drive 

signals to a National Instruments PXIe-6368 DAQ. These signals were converted to usable 

voltages which were then forwarded to and a source. The two primary sources included home 

audio speakers for acoustic tests and a plate vibration apparatus (see Section 2.2.2 Plate 

vibration rig) for vibroacoustic tests. Acoustic responses from the source(s) were 

simultaneously captured at the aforementioned microphone receiver arrays. The microphone 

outputs were then passed through a signal conditioner, a set of Krohn-Hite 3364 analog 

bandpass filters, routing back to the DAQ for final storage in the computer. Each individual 

microphone was calibrated to ±2 dB within their 20-20,000 Hz operating band [75]. The 

microphones also exhibit a nearly omnidirectional response within the operating band, and so 

individual receiver transfer function were neglected (assumed unity) for all subsequent array 

processing methods. 
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Figure 2.11: Data flow schematic for the acoustic and vibroacoustic measurements reported in this 

thesis. 

 

2.2.2 Plate vibration rig 

An apparatus was designed and built for controlled, precise, and repeatable vibration of 

clamped square plates. This plate vibration rig consists of a rigid MIC-6 aluminum base, on 

which plates of nominal size 15” x 15” could be clamped. A 1/8” steel flange above the test 

plates allowed for continuous, distributed clamping along the plate perimeter, with the clamping 

force applied from 16 over-center toggle clamps evenly distributed around the plate. Each 

toggle clamp was rated for a clamping force of approximately 200 lbs. A schematic of the plate 

vibration rig is shown in Figure 2.12. The effective vibrating region of the clamped plates is 

12” x 12”. 
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Figure 2.12: Exploded view of the plate vibration apparatus. The test plate is highlighted in light green. 

 

Eye bolts mounted into each corner of the MIC-6 base allowed the system to be 

suspended from four bungee cords. A Modal Shop K2007E01 series electrodynamic shaker was 

used to drive the rigid base from below, shown at the bottom right of Figure 2.13. The energy 

input from the shaker base-excited the clamped test plates, exciting many vibrational modes 

without requiring direct connection with the plate. The shaker was rated for a nominal load limit 

of 7 lbf, and an operational bandwidth of DC-9000 Hz. A PCB 208C03 force couple, in-line 

with the shaker, was used to simultaneously record input forcing, so that frequency response 

functions of various outputs could later be computed. The geometry of the system was selected 

to generate several dozen vibrational plate modes of a 1/16” aluminum (or steel) plate within 

the 100-2000 Hz frequency band. The corresponding coincidence frequency [10] is 



39 

 

approximately 4500 Hz, though lower frequency modes still radiate significantly into the 

farfield. Throughout this thesis, however, several different plate thicknesses, materials, and 

excitation bandwidths have been investigated. The modularity of the system also enabled the 

controlled application of real and synthetic damage, as plates could either be quickly exchanged 

by toggling the clamps, or by simply applying damage to plates already mounted into the rig. 

 

 

Figure 2.13: The plate vibration rig and microphone array (left). A close-up of a mounted 1/16” 

aluminum plate is shown (top right). An electrodynamic shaker (bottom right) drives the system from 

the rigid base, thereby base-exciting the test plate. A force couple, in-line with the shaker, allows for 

simultaneous measurement of excitation forcing into the system. 
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2.2.1 Laser Doppler vibrometer 

An OMS LP-01 single-point laser Doppler vibrometer (LDV) was used to measure plate 

deflection as a function of frequency, material, condition, excitation, etc. The LDV provided 

non-contacting insight into the vibrational response of the various test plates, which 

complimented and informed subsequent acoustic measurements. As depicted in Figure 2.14, 

the LDV operational theory exploits the Doppler shift that a moving structure applies to a near-

IR laser beam. Isolating this effect allows for the direct measurement of plate velocity at the 

inspection point (and in the direction of the laser), which may then be integrated to determine 

plate displacement. Additional displacement frequency response functions can be computed 

with simultaneous measurement of the input forcing, obtained via the in-line force couple. 

 

 

Figure 2.14: Schematic of the physical mechanisms behind a laser Doppler vibrometer. 

 

 To achieve two-dimensional measurements of plate velocity, displacement, 

acceleration, etc., the single-point LDV was mounted to an automated two-axis gantry. This 

allowed the LDV to raster along the plate, collecting an ensemble of point measurements which 

were later stitched into two-dimensional plots. Figure 2.15 shows an image of the scanning 

LDV system, facing down toward the vibrating plate rig. Figure 2.16 compares LDV measured 

mode shapes of a 12 x 12 x 1/16 inch aluminum plate against finite element simulations using 
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ANSYS Workbench. Very good agreement is exhibited in mode shape, and modal frequencies 

for the measured plate were found to be approximately 8% below what is predicted using finite 

elements or analytical techniques [76]. It is likely that this slight reduction in the modal 

frequencies is due to the aluminum plate materials being cold-rolled (thereby altering its 

stiffness properties from that of bulk aluminum, which was used in simulation), and also 

possibly due to the toggle clamps not providing a perfectly clamped boundary, potentially 

making the effective size of the plate slight larger than the presumed 12 x 12 inches. 

 

 

Figure 2.15: Laser Doppler 

vibrometer setup. The single 

point OMS LP-01 LDV is 

mounted to a two-axis automated 

gantry with 46 x 46 cm area of 

motion, allowing for full surface 

scans of the test plate apparatus. 
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Figure 2.16: Comparison of six select mode shapes of an undamaged 30x30x0.16 cm clamped aluminum 

plate, using finite element methods (ANSYS 15.0) (left), and from LDV measurements (right). The ~8% 

reduction in measured resonance frequencies is likely due to the modulus of elasticity of the cold-rolled 

aluminum plates being less that of bulk aluminum. 

 

 

2.3 Finite element analysis 

To better predict vibroacoustic results, validate measurements, and design various 

experimental apparatus, finite element methods were used to numerically model the structural 

responses of plates. A plate bending finite element analysis (FEA) was developed in MATLAB 

to allow for better data flow and user-control than proprietary software packages.  

Following is a brief description of the finite element formulation for plate bending. For 

thin isotropic plates of thickness ℎ, elastic modulus 𝐸, Poisson’s ratio 𝜈, and areal density 𝜌, 

undergoing transverse motion with no damping, the governing partial differential equation 

(using Kirchhoff-Love theory) is [76]: 
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 𝐷 (
𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) − 𝜌�̈� =  𝑞(𝑥, 𝑦) (2.39) 

where 𝐷 = 𝐸ℎ3/12(1 − 𝜈2) is the plate flexural rigidity, 𝑞(𝑥, 𝑦) is the prescribed transverse 

pressure loading, and 𝑤(𝑥, 𝑦) is the unknown transverse displacement. Boundary conditions 

must also be prescribed at the plate boundary, with the most common forms being ‘clamped’ 

(prescribed zero displacement and zero slope), ‘simply-supported’ (prescribed zero 

displacement and zero moment), and ‘free’ (prescribed zero moment and zero shear). Closed 

form analytical solutions are generally only available for simple geometries and boundary 

conditions; for rectangular plates this requires at least two opposing edges be fully simply-

supported [76]. 

The goal of FEA is to reduce the complex governing PDE into a finite system of linear 

equations of the form 

 𝐌�̈� + 𝐂�̇� + 𝐊𝐝 = 𝐟 (2.40) 

where 𝐝 is a vector of generalized displacements, 𝐌 is the system’s global mass matrix, 𝐂 is 

the global damping matrix, 𝐊 is the global stiffness matrix, and 𝐟 is a vector of generalized 

forces acting on generalized displacements. In this thesis, plates were modeled using simple 4-

node quadrilateral elements. Only transverse plate bending was considered (no in-plane 

stresses), and as such, each node possessed three degrees of freedom (DOF): transverse 

displacement, x-axis rotation, and y-axis rotation. In total, each element possessed 12 DOF, 

depicted in Figure 2.17. 
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Figure 2.17: Generic 4-node, 12 degree of freedom plate bending element. 

 

 Derivations for the quadrilateral bending element mass and stiffness matrices, 𝐦 and 𝐤 

along with the applied load vector 𝐟, can be found in numerous undergraduate and graduate 

finite element method texts [77, 78, 79]. Simply put, since each element contains 12 DOF, any 

polynomial with 12 undetermined coefficients can be used to model the transverse displacement 

𝑤(𝑥, 𝑦) within the element. In this work displacement takes the form 

 

𝑤(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑥𝑦 + 𝑎6𝑦2 + 𝑎7𝑥3

+ 𝑎8𝑥2𝑦 + 𝑎9𝑥𝑦2 + 𝑎10𝑦3 + 𝑎11𝑥3𝑦 + 𝑎12𝑥𝑦3 

(2.41) 

It is noted that this polynomial is not complete to fourth order, but this selection of terms 

generally yields the best performance for plate bending problems [77]. 

 To ensure that the plate bending FE code was performing properly a benchmark test 

was conducted against ANSYS Workbench 15.0. Both programs were used to model the center-

plate displacement for a 12 x 12 x 1/16 inch clamped aluminum plate, with an loss factor 

applied loss factor 𝜂 = 0.008, such that 𝐸 → 𝐸(1 + 𝑖𝜂). In both scenarios the plate was 

harmonically excited with a uniform pressure of 14.5 psi from 0-2000 Hz. The displacement 
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curves from both programs are plotted in Figure 2.18. Similarly, a comparison of predicted 

modal responses at 874 Hz is provided in Figure 2.19. Both programs are in good agreement, 

within the 0-2000 Hz bandwidth. Additional finite element results for plates with various types 

and severities of damage are reported in Chapter 5.  

 

Figure 2.18: Benchmark test for MATLAB plate bending code against ANSYS Workbench 15.0. The 

two methods are in good agreement, both in resonance peak locations and amplitudes. 

 

Figure 2.19: Benchmark comparison of the harmonic response of a clamped plate at 874 Hz. The 

ANSYS Workbench 15.0 result (left) and the MATLAB code (right) agree quite well.  
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Chapter III: Detection of Damage 

 

3.1 Detection in reverberant environments  

The presence of damage in a mechanical structure often changes its vibrational 

characteristics. For example, resonant frequencies may shift, and mode shapes may be distorted 

in a damaged structure relative to a healthy counterpart [1,2]. Damage may also affect structural 

stiffness, damping, and vibration-energy loss mechanisms, so resonant peak widths may 

change, and nonlinearities may even arise. A schematic example of some common effects of 

damage on a structure’s frequency response is shown below in Figure 3.1. 

 

 

Figure 3.1: Schematic illustrating some of the common effects of damage on a generic frequency 

response function. The baseline (healthy) frequency response function is shown as a gray dashed line, 

while the nominally damaged frequency response function is in solid black. 
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For structures immersed in a fluid medium, such changes in vibrational behavior will 

result in alterations to radiated sound that can be passively measured [3]. Several nondestructive 

evaluation (NDE) techniques exist which utilize measurable vibroacoustic changes for defect 

detection [4-6]. Many studies have investigated use of discrete measurements of acceleration 

and strain to monitor structural health. These approaches have the benefit of simplicity and 

affordability, however they may ultimately require large numbers of transducers for sufficient 

coverage for large structures which can make scalability challenging. In acoustics, two popular 

methods of NDE are nearfield acoustic holography [7,8] and acoustic emissions [9,10]. 

Nearfield acoustic holography (NAH) leverages the evanescent wave field measured near a 

surface to image acoustic sources in a three-dimensional space. NAH is attractive because it 

allows for high resolution spatial reconstruction of vibrating surfaces. However, by definition, 

it requires nearfield measurements, and thusly is not remote, although it is non-contacting. 

Furthermore, many receivers (more than 100) are typically required for good results. Acoustic 

emissions involve using surface mounted transducers to excite and record Lamb or Rayleigh 

waves that travel through a structure. These structural waves, typically in the ultrasound range, 

scatter from structural defects and the time of flight characteristics of the scattered waves can 

be used to detect and localize the defects. As with vibrational measurements, acoustic emissions 

techniques are not remote and require transducers mounted to the structure, proximal to any 

damage to be detected. Some studies have produced positive results using acoustic emissions 

techniques with air coupled ultrasonic transducers placed up to 25 mm from a vibrating surface 

[11]. Such measurements are non-contacting, but they are not remote measurements. For each 

of these methods the requirement of transducers being in or near the test structure presents 

operational challenges; installation may be difficult, in situ measurement could be infeasible, 
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and transducers aging with a structure may exhibit their own health problems indistinguishable 

from actual damage in the structure of interest. Furthermore, neglecting these drawbacks, direct 

contact of transducers and test structures requires physical coupling which can alter the 

behavior of the structure. 

 Remote acoustic sensing of structural damage has been investigated in past studies, but 

to a lesser extent than the aforementioned techniques. For many years “tap” (aka "gage") tests 

have been used, with various levels of rigor, to detect perceptible damage-induced changes in 

resonant frequencies of railway wheels and aeronautical structures [12]. Such gage tests, while 

essentially free to perform, suffer from variability depending on the level and location of the 

tap, the loading and mounting of the structure, and, of course, the skill and perceptiveness of 

the tester. More rigorous approaches toward remote acoustic sensing of structural damage have 

been investigated for rotating systems, particularly regarding bearing health [8]. It is known 

that bearings, when nearing their end of life, sometimes exhibit characteristic “screeching” that 

can be detected with monitoring microphones. Time-frequency analysis of bearing sounds have 

been used to monitor and predict bearing failure, and similar studies have been done with full 

gearbox systems [13]. Ultimately, remote acoustic NDE requires accurate signal identification 

which can be difficult in real-world environments due to unknown environmental factors like 

noise, propagation uncertainty, and multipath and reverberation [14]. Reverberation and 

multipath presents a particular difficulty as the desired broadcast signal becomes convolved 

with the acoustic environment's Green’s function which is generally unknown, and 

conventional techniques are incapable of inverting this convolution to determine the original 

signal. And, though truncation in the time domain is often a means of sidestepping multipath 
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for impulsive signals, this is infeasible for long duration signals and such signals are commonly 

of interest for passive NDE. 

 In this paper, remote acoustic array measurements of sound radiated by a vibrating plate 

structure in a reverberant environment are used in concert with array signal processing 

techniques to detect small mechanical changes to the mounting of the vibrating plate. 

Measurements were conducted in a laboratory setting which provided a suitable unknown 

reverberant environment. To accurately identify the acoustic signature of the plate structure in 

the presence of strong reverberation, array recordings are blindly deconvolved using synthetic 

time reversal [15,16]. With this reconstruction technique, a baseline comparison approach is 

employed for detection of mechanical changes, using time domain cross correlations as a 

quantitative metric. The performance of the technique for varying levels of artificially imposed 

defects is analyzed using statistical classification techniques and results are presented using 

conventional receiver operating characteristic (ROC) curves. 

 

3.1.1 Experimental methods 

The primary experimental set up used throughout this thesis is shown in Figure 3.2. The 

radiating test structure consists of a 30 x 30 x 0.3 cm square aluminum plate clamped along all 

sides to a nominally-rigid aluminum base by 16 toggle clamps with nominally identical loading. 

The plate and its base are suspended 43 cm above the laboratory floor via elastic cables. The 

plate's nominally-rigid test base is directly coupled to a 30-N electrodynamic shaker through a 

force coupler. Eight-second duration linear frequency sweeps from 100-2000 Hz were created 

on a computer and sent through a digital-to-analog converter to the shaker to excite vibrations 

of the test plate. The shaker was connected directly to the thick aluminum base onto which the 
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plate was clamped. This base-excitation configuration enabled sufficient excitation of all 

vibrational modes within the excitation bandwidth, without requiring direct coupling to the 

plate. The vibrating plate's resulting acoustic signature was then radiated into the laboratory 

environment and recorded with a vertical array of 15 5.08-cm-spaced microphones placed 1.0, 

2.0, or 3.0 meters from the vibrating plate. The microphone-array signals were then conditioned, 

band-passed filtered between 50 and 5,000 Hz, passed through a DAQ system, sampled at 20 

kHz per channel, and stored on a laboratory computer system for later analysis. The bandwidth 

of the input forcing was chosen to encompass approximately the first dozen vibrational modes 

of the test plate. 

 

 

Figure 3.2: Experimental setup with plate apparatus and 15 receiver vertical array at 1m range in the test 

environment (left), detailed view of clamped plate system (top right), and 7 lbf shaker providing base 

excitation of the plate (bottom right). 
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The first type of artificial damage was a boundary-type defect. This was achieved by 

disengaging one or more clamps at the plate edge to mimic a fastener or weld failure. As shown 

in Figure 3.3, three test cases were investigated: unclamping an entire side, unclamping a single 

clamp near the middle of a plate edge, and unclamping a single clamp near the plate corner. 

Acoustic measurements of the fully-clamped plate served as the baseline data against which the 

test cases were compared to detect the presence of the mechanical changes.  

 

 

Figure 3.3: Clamping configurations of the 30 x 30 x 0.16 cm aluminum plate for 

the three test cases and for the baseline. Blue circles represent fully engaged clamps 

and red circles represent fully disengaged clamps. The green plus sign (+) indicates 

the location of input forcing into the rigid base to which the test plate was clamped. 

 

The test environment consisted of an acoustically-untreated laboratory with 

approximately 50-m2 of floor area, a ceramic tile floor, painted cinder-block walls, a painted 
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cement ceiling, a variety of furniture and equipment, and numerous utility fixtures which 

together provided a complex and reverberant environment with a 𝑇60 reverberation time of 

about 0.5 sec. For these experiments, the amount of reverberation was quantified by the signal-

to-reverberation ratio (SRR) defined by 

 

 𝑆𝑅𝑅 ≡ 10 log10 (
𝑆𝐸Direct

𝑆𝐸Reverb
) (3.1) 

 

where SEDirect and SEReverb are the signal energies carried by the direct plate-to-array path and 

all other plate-to-array paths, respectively. The SRR is a function of plate position in the room 

(fixed for all measurements) and the receiving array location. For each array location, the SRR 

was measured by temporarily replacing the plate apparatus with a small loudspeaker that 

broadcast an 8-second-duration 100-2000 Hz linear chirp that was recorded by a single receiver 

at the array center. A separate reference measurement of this loudspeaker broadcast signal 

allowed for matched filtering of the recorded broadcast to reveal the laboratory environment's 

impulse response, h(t), in the signal bandwidth. This additional filtering step, detailed in Figure 

3.4, was required because the broadcast signal was far longer than the reverberation time of the 

test environment, so temporal truncation and/or windowing could not be used to isolate the 

direct path signal. However, the direct path arrival was always clearly evident in ℎ(𝑡); thus, 

SEDirect and SEReverb were calculated from the time integrals of ℎ2(𝑡) for the first arrival and for 

all subsequent arrivals, respectively. The measured SRR values at plate-to-array distances of 

1.0, 2.0, and 3.0 meters were –7, –11, and –13 dB, respectively.  
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Figure 3.4: SRR measurement procedure. An 8-second-duration source waveform 

a) was broadcast into the reverberant laboratory and recorded using a single receiver 

at the array center b) from which a matched filter output was computed c). The SRR 

is defined as the ratio of the energy of the signal (direct path) to all later arrivals d). 

 

3.1.2 Array signal processing schemes 

Though the vibrating plate generally does not radiate sound omnidirectionally, for 

simplicity it was treated as a remote point source with a unique time domain signature 𝑠(𝑡). 

Three different techniques were used to quantify the vibrating plate’s time-domain acoustic 

signature, s(t), from each experimental trial. The first and simplest technique was to use the 

recorded time history, 𝑟𝑚(𝑡), from a single receiver (𝑚 = 11) without additional processing, i.e. 

𝑠1(𝑡) = 𝑟11(𝑡). The second technique was conventional time-domain beamforming using all 15 

𝑟𝑚(𝑡) to produce a single beamformed time-domain signature, 𝑠𝐵𝐹(𝑡). For this effort, the 

steering direction was determined from the recorded data and typically pointed from the array 

center to the plate's center. The third technique was STR applied to the array recordings to 
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recover a reverberation-suppressed time-domain signature, 𝑠𝑆𝑇𝑅(𝑡). Here, the STR reference 

direction was the same as the beamforming steering direction. Results from these three 

techniques are provided and compared in the next section to show how damage detection 

robustness may be improved with better suppression of the effects of reverberation.  

Conventional time-domain beamforming is a simple technique for fully or partially 

isolating the sound that arrives at a receiving array from a particular look direction or location 

[44]. It was implemented using all 𝑀 = 15 𝑟𝑚(𝑡) to produce 𝑠𝐵𝐹(𝑡), the Fourier transform pair 

of �̂�𝐵𝐹(𝜔), defined in Equation (3.2). The weighting vectors 𝑤𝑚(𝜔) are computed using the 

typical spherical wave approach of searching through a range of possible (𝑥, 𝑦) source 

locations, applying the predicted location-dependent phase shifts to each frequency-domain 

receiver recording �̂�𝑚(𝜔), then calculating the magnitude of the sum of the phased responses. 

𝑤𝑚(𝜔) is then defined as the vector of phases corresponding to the potential source location 

which yields the largest magnitude output. 

 

 �̂�𝐵𝐹(𝜔) =  ∑ 𝑤𝑚(𝜔)�̂�𝑚(𝜔)

𝑀

𝑚=1

 (3.2) 

 

Synthetic time reversal (STR) is a blind deconvolution technique developed for 

estimating source-broadcast waveforms from array recordings made after the source signal has 

been corrupted by propagation through an unknown reverberant environment. STR was first 

proposed for multi-mode underwater sound channels [69], but it has also been successfully 

applied in multiple-ray-path environments [70]. A more detailed description of STR is given in 

Section 2.1.2 Synthetic Time Reversal. STR is used here as a more sophisticated means of 
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reverberation suppression than conventional beamforming. Effectively, STR uses only the 

recorded array waveforms and beamformer weights Wj(ω) to estimate impulse responses for 

each of the receivers. These impulse responses can then be used to synthetically time-reverse 

or back-propagate the array recordings to their source location, yielding an estimate, 𝑠𝑆𝑇𝑅(𝑡), 

of the source's original signal. Equation (3.3) provides the final formula for computing the 

Fourier transform of 𝑠𝑆𝑇𝑅(𝑡), �̂�𝑆𝑇𝑅(𝜔), using the same receiver recordings and weighting 

vectors applied in Equation (3.2). 

 

 �̂�𝐵𝐹(𝜔) =  ∑ {
�̂�𝑚(𝜔)𝑒−𝑖 arg(∑ 𝑤𝑙(𝜔)�̂�𝑙(𝜔)𝑀

𝑙=1 )

√∑ |�̂�𝑘(𝜔)|2𝑀
𝑘=1

 }

∗

�̂�𝑚(𝜔)

𝑀

𝑚=1

 (3.3) 

  

Sample results for the three signal processing techniques are provided in Figure 3.5 for the 

acoustic signature of a small loudspeaker broadcasting a 1-second-duration 1.0-to-4.0 kHz chirp 

that was recorded with the 15-microphone array in the reverberant laboratory environment. The 

panels on the left side of  Figure 3.5 show time-domain waveforms while the panels on the right 

side of the figure show the Fourier transform amplitudes of the various waveforms. Figure 3.5 

a) and b) show the reference waveform measured by a single microphone when the loudspeaker-

to-microphone distance is 20 cm and the effects of reverberation are nearly negligible. Figure 

3.5 c) and d) show the single-microphone acoustic signature, 𝑠𝑠𝑖𝑛𝑔𝑙𝑒(𝑡), when the loudspeaker-

to-microphone distance is 3.0 m. Here, the effects of reverberation are more prevalent, and the 

cross correlation of this signal with the reference signal is 67.9%. Figure 3.5 e) and f) show the 

conventionally-beamformed acoustic signature, 𝑠𝐵𝐹(𝑡), when the loudspeaker-to-array-center 

distance is 3.0 m. Here, the effects of reverberation are partially suppressed compared to the 
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single microphone result, and the cross correlation of this signal with reference signal is higher: 

91.9%. Figure 3.5g) and h) show the STR signature, 𝑠𝑆𝑇𝑅(𝑡), when the loudspeaker-to-array-

center distance is again 3.0 m. Here, the effects of reverberation are better suppressed than when 

conventional beamforming is used, and the cross correlation of this signal with the reference 

signal is even higher: 94.3%. These results show that array-based measurements processed with 

the blind deconvolution algorithm best suppress the detrimental effects of reverberation. 

Furthermore, these results for a three-dimensional reverberant environment are in agreement 

with previous findings for STR in a two-dimensional water channel [70]. 

 

 

Figure 3.5: Comparisons of signal estimation methods for a source broadcasting a 1-4kHz linear chirp 

in a reverberant room. a,b) Reference measurement collected at 8 inches from source with corresponding 

FT magnitude, c,d) single unprocessed receiver with 67.9% correlation to reference with FT magnitude, 

e,f) conventional spherical wave beamforming (SWBF) with 91.9% correlation with FT magnitude, and 

g,h) STR reconstruction showing 94.3% correlation with the reference measurement and its FT 

magnitude. 

 

3.1.2 Results and analysis 

Detection of mechanical changes in the test plate was accomplished using the statistics 

of time domain cross correlations between remote array-measured acoustic signatures of the 
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vibrating plate for a given test case and known baseline measurements. Figure 3.6 shows a 

sample set of array recordings, 𝑟𝑚(𝑡) for 1 ≤ j ≤ 15, for one baseline experiment. Here, the first 

and fifteenth microphones are 86 cm and 163 cm from the laboratory floor, respectively. The 

temporal variations in signal amplitude are primarily caused by the driving frequency moving 

through radiating vibration modes of the plate. The differences in signal envelope between 

microphones are caused by non-uniform radiation from the various plate modes and by spatial 

variations in the reverberant field. The experiment was repeated eight times (a batch) for one 

fully-clamped-plate baseline test, one fully-clamped defect-free test (essentially a null test that 

is equivalent to the baseline), and each of three partially-unclamped-plate test cases for a total 

of five batches (40 experiments). These five batches of measurements were collected at the 

plate-center-to-array-center ranges of 1.0, 2.0 and 3.0 m. Thus, the complete experimental data 

set included results from 120 experiments. Defect detection results for single-receiver, 

conventionally beamformed, and STR acoustic signatures are provided here to show how the 

detrimental effects of reverberation can be mitigated. 
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Figure 3.6: Example waterfall plot for the baseline measurement of plate radiation at 1 

meter range due to an 8 second 100-2000 Hz base excitation. 

 

The binary detection test considered here was accomplished statistically using the 

procedure shown in Figure 3.7 and described here. This method effectively captures and 

quantifies changes in the acoustic signature caused by frequency shifting of the plate's modes, 

changes in the plate's radiation pattern, and sound generated locally from the plate's defect. For 

each signal-reconstruction technique (single receiver, conventional beamforming, and STR), 

every pair-wise combination of reconstructed signals was cross-correlated between one of the 

baseline batches and the three test case batches plus the other baseline batch. This ultimately 

yielded four sets of 64 cross correlation coefficients (one set for each baseline-to-test case, and 

one for the baseline-to-baseline case). These 64 correlation coefficient samples were then 

binned into histograms and used to statistically quantify detection performance. To reduce the 

effect of statistical fluctuations, Gaussians (mean 𝜇, standard deviation 𝜎) were fit to each of 

the four histograms.  
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Figure 3.7: Procedural flow chart for the statistical evaluation of structural health using time 

domain cross-correlation of acoustic signatures determined from baseline and test 

measurements. This can be extended to an arbitrary number of test cases. The three test 

cases shown in Figure 3.3 were considered in this study. 

 

A set of sample histograms of correlation coefficients for a single receiver (no. 11) at 1 

meter range is shown in Figure 3.8. The histograms of cross correlations for an entire side 

unclamped and for one near-middle clamp undone are centered at 0.54 and 0.75, respectively, 

and are fully distinguished from the other test and baseline cases. Thus, the presence of such 

mechanical changes is readily detected with a single receiver. However, the histograms of cross 

correlations for one near-corner clamp undone and for the second baseline batch are 

overlapping. Therefore, these two conditions cannot be fully distinguished using a single 

receiver. 

A common technique for quantitatively evaluating such a binary detector is to plot the 

calculated probability of true detection P𝐷 versus the probability of false alarm P𝐹𝐴 for a given 

set of measurements with a priori known baseline and non-baseline groups. Both P𝐷 and P𝐹𝐴 

are plotted as a function of the user defined detection metric, in this case the cross-correlation 

with the first baseline, such that measured cross correlation values above and below the 

detection metric are labeled detection and not-detection, respectively. The locus of such points 
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is called a receiver operating characteristic (ROC) curve and, provided a sufficient number of 

samples are collected, the ROC curve allows the user to select an appropriate detection metric 

threshold, typically based on some predefined cost function of type I (false positive) and type 

II (false negative) errors [80]. Additionally, assuming the detection metric is normally 

distributed and sampled sufficiently to estimate (fit) the parent distribution of both the baseline 

and non-baseline case, P𝐷 and P𝐹𝐴 for the corresponding “fitted” ROC curve can be shown to 

be 

 𝑃𝐷 =
1

2
erfc (

1

√2𝜎𝑡𝑒𝑠𝑡

 (𝑇 − |𝜇𝑏𝑎𝑠𝑒 − 𝜇𝑡𝑒𝑠𝑡|)) (3.4) 

 

 𝑃𝐹𝐴 =
1

2
erfc (

𝑇

√2𝜎𝑏𝑎𝑠𝑒

 ) (3.5) 

where erfc(𝑥) is the complementary error function, 𝜇𝑏𝑎𝑠𝑒 and 𝜇𝑡𝑒𝑠𝑡 are the baseline and test-

case means, 𝜎𝑏𝑎𝑠𝑒 and 𝜎𝑡𝑒𝑠𝑡 are the baseline and test-case standard deviations, and T is the 

variable detection threshold which parameterizes the curve 

 

 

Figure 3.8: a) Binned histograms of cross-correlation coefficients for the three test cases and for the 

baseline case using a single unprocessed receiver (#11). Solid and dashed curves are the Gaussian fits 

for each test case. b) A detailed view shows overlapping PDFs between the baseline and disengaged 

corner clamp cases resulting in limited detectability using no processing. 
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It is evident from Figure 3.8 that the full side unclamped and the disengaged near-center 

clamp test cases are easily distinguished from the baseline. However, the single disengaged 

near-corner clamp case is significantly more difficult to distinguish from the baseline. It follows 

that the probability of making a type I (false alarm) error is far greater, given a desired minimum 

rate of type II (missed detection) errors. This result is exemplified in Figure 3.9 which shows 

the corresponding fitted ROC curves for the test cases binned in Figure 3.8.  

 

            

Figure 3.9: Left: Discrete, calculated points for the side-unclampled ROC curve. The solid line is the 

associated analytical fit. Right: Corresponding ROC curves for the three test cases using an unprocessed 

single receiver (#11) at a range of 1 meter. The black dashed line corresponds to the corner-unclamped 

case, whereas both the center-unclamped and side-unclamped cases overlap top right corner, indicating 

good detection. 

 

Using the same array recordings at 1 meter range, the detection process was repeated, 

but this time using STR to construct the acoustic signature of the plate. Conventional spherical 

wave beamforming (SWBF) was also used for comparison. Figure 3.10 shows that, with STR, 

there is substantially more separation between the correlation coefficients even though they are 
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lower. This is reflected in the ROC curves which are located optimally in the upper left corner 

of the detection domain, meaning that very high rates of accurate detection are possible for 

negligible rates of false alarm. Conventional SWBF, on the other hand, does not perform as 

well as STR, and actually performs worse than simply using an unprocessed receiver. 

 

 

Figure 3.10: Cross-correlation histograms and corresponding ROC curves for an acoustic 

array at 1 meter range using no reconstruction (top), conventional SWBF (center), and STR 

(bottom). 

 

ROC curves can be further compacted into a single scalar value by computing the deficit 

area (DA) between the actual ROC curve and the ideal ROC curve (a vertical line at P𝐹𝐴 = 0 

and a horizontal line at P𝐷 = 1). Assuming the associated costs of type I and type II errors are 
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the same between tests, the DA provides a convenient, compact comparison metric between 

classifiers with low value of DA being best. The largest possible DA is 1/2 and this corresponds 

the dashed diagonal line (sometimes referred to as the coin-flipping line) shown in the right-

side panels of Figure 3.10. DA values from the current experiments are tabulated in Table 3.1 

for all three clamping configurations, at the three plate-array ranges, using a single receiver, 

conventional SWBF, and STR. The full side unclamped test case was essentially perfectly 

detectible by all techniques regardless of range or reverberation correction. The single 

disengaged clamp near the plate-side's center was also nicely detectable, but at larger ranges it 

was found to be slightly less so. The near-corner unclamped case was not well detected using 

either SWBF or a single unprocessed receiver, particularly at ranges of more than 1 meter. 

However, using STR, even the unclamped corner case was detected almost perfectly for all 

three plate-array ranges. 

 

Table 3.1: Deficit area (DA) of the ROC curve for each test case at 1 m, 2 m, and 3 m 

array ranges. Results are compared using STR, SWBF, and no signal processing (i.e. 

using a single unprocessed receiver). Cases with the worst detection performance (DA > 

0.1) are boxed in red. 

 

 

Noting that it is often difficult to place a test structure in exactly the same location or 

orientation that it had been in for a baseline recording, an additional experiment was conducted 

by recording the test measurements with the array at 3 meters from the plate (SRR = –13 dB), 

Range SRR Full Side Center Corner Full Side Center Corner Full Side Center Corner

1 m -7 dB 0.00 0.00 0.10 0.00 0.00 0.33 0.00 0.00 2.5e-12

2 m -11 dB 0.00 3.1e-15 0.19 0.00 5.9e-3 0.41 0.00 2.2e-16 2.2e-16

3 m -13 dB 0.00 2.4e-16 0.45 0.00 3.7e-3 0.38 0.00 0.00 6.6e-12

Unprocessed Receiver Conventional Beamforming Synthetic Time Reversal
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with only the first batch of baseline measurements recorded at the same range but with a 0.2 m 

shift perpendicular to the original plate-array direction. In this scenario, geometric 

discrepancies can cause significant differences in the array recordings, even between the two 

baseline batches, due to the reverberant characteristics of the laboratory. With this change in 

baseline location, detection performance was significantly reduced using both the unprocessed 

single receiver and conventional SWBF methods as is shown in Figure 3.11. Here, neither the 

disengaged near-corner clamp case nor the disengaged near-center clamp case were well 

detected, and even in the case of the fully unclamped side, the unprocessed single receiver was 

beginning to struggle. On the other hand, with the additional step of STR reconstruction, all test 

cases were well detected with DA < 0.03. This result agrees with the expectation that STR 

yields an estimate of the broadcast signal that is more independent of the environment's 

reverberant propagation, so its results are thereby less sensitive to changes in the receiving array 

location. Without such a reconstruction step, differences between test and baseline 

measurements are indeed found, however these differences are not the result of changes in the 

test structure but are instead primarily dependent on changes in the acoustic connections 

between source and receivers in the reverberant environment which leads to a higher rate of 

false alarm. 
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Figure 3.11. ROC curves for test measurements collected at a range of 3 meters using a baseline collected 

at 0.2 meters away from the test measurements, a) using no signal reconstruction (receiver #11), b) using 

SWBF, and c) using STR. 

 

3.2 Detection with stochastic input forcing  

 When a mechanical structure is damaged or otherwise mechanically changed, its 

vibrational characteristics are altered [1, 30]. If the structure resides in a fluid medium, such 

alterations in vibratory behavior result in changes to the sound radiated by the structure [10]. 

Thus, even at remote distances, recordings of this radiated sound can be used to detect and 

assess mechanical changes of the structure. Moreover, if baseline measurements of a known 

healthy structure can be collected, subsequent test measurements may be compared to these 

baseline recordings for the purposes of structural health monitoring.  

Such remote acoustic detection provides certain benefits over contacting or near-

contacting methods of damage detection such as vibration monitoring [5, 6, 7], guided wave 

testing [14, 15], acoustic emissions [16, 17], and nearfield acoustic holography [11, 12]. The 

drawbacks associated with requiring transducers to be near or in contact with a test structure 

can include: transducer installation difficulties, infeasibility of in-situ measurements, 

monitoring and replacement of aging and failing transducers, and unexpected effects of physical 
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coupling between transducers and test structures. However, fully remote acoustic monitoring 

circumvents many of these issues while also allowing a single (more-easily maintained) 

receiver array to be used for monitoring multiple independent systems. 

Sound radiated from a vibrating structure that is recorded remotely depends on the 

vibratory forcing applied to the structure, the structure’s frequency response function, and the 

characteristics of the acoustic propagation between the structure and the receiver. A primary 

impediment to remote acoustic sensing in real acoustic environments is the required 

discrimination between changes in the structure’s frequency response and those resulting from 

changes in the other two factors (vibratory forcing, and structure-to-receiver propagation). Such 

a task may be difficult because of unknown vibratory forcing and environmental factors 

including noise, environmental uncertainty, and multipath propagation [67].  

For a linear dynamic system, the recorded response in the frequency domain can be 

modeled as the product of the input forcing signal(s), the system response, and the source-to-

receiver transfer function for the acoustic environment. Thus, the desired detection and 

identification of changes in the system response may be masked by changes in the input forcing 

or acoustic transfer function. As a result, some a priori knowledge of the input forcing must be 

available in order to accurately ascribe detected changes to actual structural changes. 

Fortunately, this requirement is often admissible in many practical applications, as discussed 

below. In this paper, two input forcing cases are considered, one where the frequency content 

and phase of the input forcing is held constant, and one where only the frequency content of 

the input forcing is held constant (i.e. bandlimited noise). Effects of the character of the input 

forcing on detection performance are analyzed for three separate detection strategies. 
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Attention, then, must also be given to the acoustic transfer function of the environment 

which is generally unknown. Though there are numerous types of propagation effects, signal 

corruption from unknown and variable multipath presents a particularly difficult challenge for 

three reasons: 1) it is not readily suppressed with multiple measurements, 2) the Green’s 

function for a typical three-dimensional testing environment with multiple reflecting surfaces 

is generally unknown and may vary over sufficiently long time periods [81], and 3) multipath 

propagation can be very sensitive to even small changes (fractions of an acoustic wavelength) 

in receiver-to-source geometry [82], which is problematic when comparing test recordings to 

baseline measurements which may have been collected days, months, or even years earlier. In 

this paper, the problem of unknown multipath is tackled using the synthetic time reversal (STR) 

blind-deconvolution algorithm [70] which requires no information about the acoustic 

environment or the source waveform. STR leverages the acoustic field directionality deduced 

from transducer array recordings to estimate the true broadcast waveform in the absence of 

multipath interference.  

Even with corrections for variations in the vibratory-excitation waveform and for the 

environment’s unknown multipath characteristics, the task of comparing test data to baseline 

recordings and detecting changes remains. A recent study yielded successful detection of 

clamping changes using time-domain cross-correlations between test and baseline signatures 

for a vibrating plate undergoing repeatable swept-frequency excitations [83]. However, in 

many, if not most, applications, the input forcing to a system is not perfectly repeatable and 

does not exhibit the convenient characteristics of a frequency sweep. For large and/or complex 

systems with many load paths and multiple sources of vibration (for example a ship with a large 

engine, secondary machinery, and hydrodynamic loading), the total vibratory loading is 
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complicated and can often result in radiated sound more closely resembling broadband noise 

than a deterministic signal such as a frequency sweep [84, 85]. As such, it is desirable that an 

acoustic detection method for structural health monitoring provides accurate detection 

performance, even if the input forcing (and resulting response) is stochastic.  

 Herein, cuts of various lengths in a vibrating plate are detected using remote acoustic 

array-recorded data collected in an unknown reverberant environment. The STR blind 

deconvolution algorithm is used to estimate the plate’s radiated acoustic signature in this 

reverberant environment. Three detection metrics – time-domain cross-correlations, power 

spectrum comparisons, and frequency response function comparisons – are then used to 

quantitatively compare baseline radiated sound recordings from healthy vibrating plates to 

equivalent recordings from potentially changed (or damaged) plates. Detection performance is 

compared between the three metrics for both stochastic and frequency-sweep forcing. 

Performance robustness to source-array geometry changes in the reverberant environment is 

also addressed. Thus, the work reported here extends the prior results involving boundary-

clamping changes and frequency-sweep forcing [83] to cuts in the vibrating plate, random 

structural excitation, and additional detection metrics. 

 

3.2.1 Experimental methods 

The experimental work was completed in an ordinary laboratory without acoustic wall or 

ceiling treatments. Figure 3.12 shows the apparatus. The acoustically radiating test structure 

consists of a 30 cm x 30 cm x 1.6 mm aluminum plate clamped along all sides to a nominally-

rigid aluminum mounting base (top right of Figure 3.12). For deterministic excitation, eight-

second-duration linear frequency sweeps from 100 to 2000 Hz were created on a computer and 
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sent through a PXIe-6368 DAQ (National Instruments, Austin, TX) to a K2007E01 series 

electrodynamic shaker (The Modal Shop, Cincinnati, OH) providing input forcing to the plate’s 

mounting base (bottom right of Figure 3.12). For stochastic excitation, eight seconds of 100-to-

2000-Hz band-limited noise were input via the shaker to the same drive point. The actual input 

forcing, 𝑓(𝑡), delivered to the mounting base was recorded at the drive point using a 208C03 

inline force transducer (PCB, Depew, NY) (see Fig. 1.) and was used for one of the detection 

metrics. Sound from the resulting plate vibration radiated into the laboratory environment and 

was recorded using a 15-element vertical array with d = 5.1 cm spacing between the 130E20 

microphones (PCB) for a total aperture of L = 71.1 cm (𝑘𝑑 ≈  1.0, 𝑘𝐿 ≈13 for a nominal center 

frequency of 1000 Hz and a sound speed of 344 m/s). The distance from the plate’s center to 

the array’s center was 132 cm, as shown at the left of Figure 3.12. The array element recordings, 

𝑟𝑗(𝑡), were analog band-passed filtered between 50 Hz and 5 kHz, digitized at a 50 kHz sample 

rate per channel with the same DAQ system, and stored on the laboratory computer for 

subsequent processing. The input forcing bandwidth was chosen to encompass approximately 

the first dozen vibrational modes of the test plate. 
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Figure 3.12: Experimental setup with plate apparatus and 15 receiver 

vertical line array (5.1 cm spacing) in the test environment (left), top down 

view of a 30-cm square aluminum plate with a 38 mm cut (top right), and 

30 N shaker providing base excitation to the plate (bottom right). [Color 

on-line]. 

 

The test plate was mechanically changed by introducing cuts perpendicular to an edge of 

the plate (see upper right panel of Fig. 1). Seven test cases were considered: no cut 

(baseline/healthy), and six cut lengths ranging from 13 mm to 76 mm in 13 mm increments 

(±2 mm cut-length uncertainty). Figure 3.13 shows an example of the effects of a 38 mm cut 

on the vibrational response of the plate for the (1,4) plate vibration mode, measured using an 

LP-01 laser Doppler vibrometer (LDV) (OMS Corporation, Laguna Hills, CA). The (1,4) mode 

exhibits changes in the vibratory mode shape localized near the cut in addition to the global 

effect of a reduced resonant frequency, both of which aid in acoustic detection. Such vibrational 

changes are expected for cuts on a resonating structure [5]. 
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Figure 3.13: Effects of 38 mm cut on the (4,1) plate mode. The plate is base excited underneath at the 

green cross. The 38 mm cut exhibits localized changes in the mode shape in addition to shifting the 

resonant frequency. Similar results were found at other modes. 

 

Acoustic measurements were made in a roughly 50 sq-m laboratory which provided a 

reverberant environment with a T60 time of approximately 0.5 sec. The extent of reverberation 

is quantified by the signal-to-reverberation ratio (SRR) defined by 

 

 𝑆𝑅𝑅 ≡ 10 log10 (
𝑆𝐸Direct

𝑆𝐸Reverb
) (3.6) 

where SEDirect and SEReverb are the signal energies that travelled between the plate and the array 

on the direct path and all-other paths, respectively. SRR depends on the relative source-

receiver-room geometry and was estimated to be –7 dB for the geometry described above (i.e. 

multipath signal energy was five times greater than direct path signal energy). The measurement 

of SRR was accomplished by substituting a small loudspeaker for the plate apparatus and 
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broadcasting a known 0.1-to-2 kHz bandwidth signal which was then matched filtered to 

identify direct and subsequent arrival paths, times, and amplitudes [83]. 

To correct the recorded signals for multipath interference the synthetic time reversal 

(STR) blind-deconvolution algorithm [69] was applied to the recorded array data. Using only 

the array recordings and known receiver locations, STR provides estimates of the source-to-

receiver impulse responses and the original signal waveform broadcast from the source. In 

particular, the Fourier transform of the STR-estimated signal waveform is [70] 

 �̂�𝑒𝑠𝑡(𝜔) =  ∑ {
�̂�𝑚(𝜔)𝑒−𝑖 arg(∑ 𝑤𝑙(𝜔)�̂�𝑙(𝜔)𝑀

𝑙=1 )

√∑ |�̂�𝑘(𝜔)|2𝑀
𝑘=1

 }

∗

�̂�𝑚(𝜔)

𝑀

𝑚=1

 (3.7) 

where 𝑀 is the number of receivers, �̂�𝑚(𝜔) is Fourier transform of the 𝑚𝑡ℎ microphone’s 

recording 𝑟𝑚(𝑡) , and 𝑤𝑙(𝜔) is a weighting vector, identical to that which would steer a 

conventional beamformer in the direction of maximum gain, typically along the direct path 

between the source and the array. For its benefit, STR requires no more information (and 

negligibly more computation) than that of classical delay-and-sum beamforming. For the 

purposes of this study, STR collapses the 15 microphone recordings to a single signal from 

which the multipath propagation characteristics of the source-to-array geometry and the 

laboratory environment have been at least partially removed, as recommended in a prior remote 

structural health monitoring study [83]. 

 

3.2.2 Detection metrics & procedure 

Using STR-reconstructed signals for baseline and test cases, three metrics were 

considered for detecting structural changes. A sample of each detection metric was generated 



73 

 

from one test measurement and one baseline measurement, resulting in a scalar value between 

0 and 1. To statistically evaluate detection performance batches of sixteen acoustic array 

measurements were collected for: the defect-free baseline case, a second defect-free test case 

(zero length cut), and six additional test cases, one for each non-trivial cut length, for a total of 

eight batches (128 individual experiments). For each of the seven test batches, every pair-wise 

combination of STR-reconstructed signals was compared to those from the baseline batch using 

the three metrics outlined below. Here, results for the baseline and zero-length-cut batches serve 

to quantify the outcome for the null hypothesis for damage detection and are necessary for 

statistical evaluation of detection performance for the six non-zero-length-cut cases. This 

procedure yielded seven sets of 16 x 16 = 256 metric samples for each of the three detection 

metrics. These samples were binned into histograms, fitted to Gaussian distributions, and used 

to statistically quantify detection performance. This whole procedure was completed once for 

stochastic noise input forcing and once for frequency-sweep input forcing. In total, 

15 x 16 x 8 x 2 = 3,840 total receiver measurements were collected for this effort. A flowchart 

of the detection procedure is provided in Figure 3.14. 
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Figure 3.14: Procedural flow chart for the statistical evaluation of structural health using a comparative 

metric between remote acoustic test and baseline measurements. This can be extended to an arbitrary 

number of test cases, though seven were considered in this study. 

 

Three detection metrics, denoted by Δ, were considered in this study, each possessing its 

own strengths and weaknesses. The first detection metric is the time domain cross correlation 

coefficient between baseline, 𝑏(𝑡), and test, 𝑠(𝑡), measurements, and is defined by 

 
Δ𝑇𝐷 = max

𝜏

∫ 𝑏(𝑡)𝑠(𝑡 + 𝜏)𝑑𝑡
∞

−∞

√∫ 𝑏(𝑡)2𝑑𝑡
∞

−∞
√∫ 𝑠(𝑡)2𝑑𝑡

∞

−∞

 . 
(3.8) 

Here, 𝑏(𝑡) and 𝑠(𝑡) were typically obtained from an inverse Fourier transform of Equation 

(3.7), and Δ𝑇𝐷 of ±1 specifies perfect correlation and anti-correlation between 𝑏(𝑡) and 𝑠(𝑡), 

respectively, while Δ𝑇𝐷 near zero indicates little or no correlation between 𝑏(𝑡) and 𝑠(𝑡). 

Although this metric is relatively easy to interpret, it provides low (near-zero) values between 

the baseline and all test cases when the vibratory forcing is unmeasured and random.  



75 

 

The second detection metric is the zero-shifted cross correlation coefficient between the 

power spectral density (PSD) of the baseline and test measurements and is defined by: 

 Δ𝑃𝑆𝐷 =
∫ |�̂�(𝜔)|

2
|�̂�(𝜔)|2𝑑𝜔

∞

−∞

√∫ |�̂�(𝜔)|
4

𝑑𝜔
∞

−∞
√∫ |�̂�(𝜔)|4𝑑𝜔

∞

−∞

 . (3.9) 

where �̂�(𝜔) and �̂�(𝜔) are the Fourier transforms of 𝑏(𝑡) and 𝑠(𝑡), respectively, and were 

typically obtained directly from (3.7). This metric is bounded between zero and unity, with 

Δ𝑃𝑆𝐷-values near unity indicating a close match between the PSD of the baseline and test 

measurements. Given that changes in stiffness or mass distribution due to damage in a structure 

are likely to result in changes in frequency response [4], and that such changes are often 

captured in the power spectrum of a signal, then a decline in Δ𝑃𝑆𝐷 away from unity should 

indicate the existence of structural change(s). In addition, this metric is less dependent on the 

waveform of the vibratory forcing and achieves near-unity values for all baseline and zero-

length-cut test comparisons in this study. However, all integrands in (3.9) are positive definite, 

so Δ𝑃𝑆𝐷-values are always positive, even when 𝑏(𝑡) and 𝑠(𝑡) are uncorrelated (Δ𝑇𝐷 = 0). Thus, 

the overall dynamic range of Δ𝑃𝑆𝐷 may be small. And, Δ𝑃𝑆𝐷 is only a reliable metric when the 

frequency dependence of the vibratory forcing is consistent between test and baseline 

measurements. To achieve sufficient similarity of the PSDs, each measured spectrum is 

smoothed using a boxcar average with a 5 Hz window before the Δ𝑃𝑆𝐷 metrics are computed. 

The selection of a 5 Hz smoothing window for the 8.5 second measurements is further discussed 

in Section 3.2.3b Conditions for Input Forcing Repeatability.  
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 The third detection metric is the zero-shifted cross correlation coefficient between 

acoustic frequency response functions (FRFs) from test and baseline measurements, and is 

defined by 

 
Δ𝐹𝑅𝐹 =

∫ 𝐹𝑅𝐹𝑏(𝜔) ∙ 𝐹𝑅𝐹𝑠
∗(𝜔)𝑑𝜔

∞

−∞

√∫ 𝐹𝑅𝐹𝑏
2(𝜔)𝑑𝜔

∞

−∞
√∫ 𝐹𝑅𝐹𝑠

2(𝜔)𝑑𝜔
∞

−∞

 
(3.10) 

where  

 𝐹𝑅𝐹𝑏(𝜔) ≡  
�̂�(𝜔)

𝑓(𝜔)
   and   𝐹𝑅𝐹𝑠(𝜔) ≡  

�̂�(𝜔)

𝑓(𝜔)
 (3.11a,b) 

are the FRFs computed for the baseline and test measurements, respectively, and 𝑓(𝜔) is the 

Fourier transform of the vibratory forcing function 𝑓(𝑡). FRFs are convenient functions as they 

contain the same beneficial structural frequency-response information as the power spectra. 

However, unlike the PSD of 𝑏(𝑡) or 𝑠(𝑡), they are independent of variations in the input forcing, 

in the absence of noise when 𝑓(𝜔) is non-zero in the bandwidth of interest. However, use of 

FRFs and (3.10) requires knowledge of 𝑓(𝑡) that may not be available in many structural health 

monitoring applications. As with the Δ𝑃𝑆𝐷 metric, the measured FRFs are smoothed with a 5 Hz 

width boxcar average before computing Δ𝐹𝑅𝐹. 

 

3.2.3 Results & analysis for detection of cuts 

Following the procedure outlined in Figure 3.14, cut detection, and its dependence on cut 

length, was determined for both stochastic input forcing and deterministic frequency-sweep 

input forcing.  Here the detectability of the 13 to 76 mm cuts was determined by binning the 
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computed baseline-to-test metrics into histograms, fitting a Gaussian distribution (with mean 

𝜇, and standard deviation 𝜎), and comparing this baseline-to-test distribution with the 

equivalent baseline-to-zero-length-cut distribution. The resulting histograms and Gaussian fits 

for stochastic input forcing are shown in the three parts of Figure 3.16. for the three metrics 

Δ𝑇𝐷 (a), Δ𝑃𝑆𝐷 (b), and Δ𝐹𝑅𝐹 (c) for seven different test cases (one for zero cut length and six for 

non-zero cut lengths). In all three parts of Figure 3.16, the jagged curves are the measured 

histograms while the smooth bell-shaped curves are fitted Gaussian distributions. Here, 

horizontal and vertical axes have been adjusted in each panel to best portray measured 

distributions. 

Using the data shown in Figure 3.15, the detection performance of the each metric can be 

assessed by considering the overlap of the baseline-to-zero-length-cut distribution, which is 

shown in black and presents the statistics of ‘nothing to detect’, with the various baseline-to-

non-zero-length-cut distributions, which are shown in colors and present the statistics of 

‘something to detect’. In practice, an operator would use data like these to select a threshold for 

the chosen detection metric; measured metrics below that threshold would correspond to the 

presence of damage, and metrics above the threshold would correspond to no damage. For 

example, using the Δ𝑃𝑆𝐷 metric (Figure 3.16b), an operator may select a threshold value for the 

PSD inner product between an unknown signature and baseline signature to be just above 0.98. 

Since the histograms are well separated, this threshold would yield a high probability that any 

measured Δ𝑃𝑆𝐷 below 0.98 is likely due to a mechanical change, at least for damage severity 

equal to or greater than a 13 mm cut. 
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Figure 3.15: Acoustic FRF magnitudes (arbitrary units) for baseline, 13 mm cut, and 76 mm cut cases 

vs. frequency (Hz). Each FRF was computed using the center-most receiver output (receiver 9) with 

stochastic input forcing. A 5 Hz boxcar smoothing operation was applied in each case. 

 

With this in mind, some observations on detection performance can be easily inferred 

from Figure 3.16. Firstly, the Δ𝑇𝐷 metric completely fails in the presence of stochastic input 

forcing. In this case, the average of all Δ𝑇𝐷 values is approximately 0.07 and with little or no 

separation of the various distributions by cut length. This is not a surprising result; cross-

correlation between two signals is highly-dependent on the similarity of their phase structure. 

In the case of noisy input forcing, the phase structure of the forcing is effectively random, 

resulting in random phases for the acoustic measurements and very low cross-correlations. 

Detection metrics in the time domain (essentially all of which require some knowledge of the 

underlying phase structure [7]) are unsuccessful when applied to stochastically forced systems. 

In comparison, the use of frequency domain metrics Δ𝑃𝑆𝐷 and Δ𝐹𝑅𝐹 both exhibit very good 

detection performance (good separation between baseline-to-zero-length-cut distributions and 

those of baseline-to-non-zero-length-cut distributions). These two metrics, in contrast to Δ𝑇𝐷, 

rely only on magnitudes in the frequency domain thereby making them independent to the 

random phases associated with stochastic forcing.  
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Figure 3.16: Detection histograms and fitted gaussian profiles from noisy input forcing using the (a) 

Δ𝑇𝐷 metric, (b) Δ𝑃𝑆𝐷 metric (middle), and (c) Δ𝐹𝑅𝐹 metric (bottom). Both x- and y-axis scales are equal 

in all three plots. Good separation between the gray-black histogram and the other histograms indicates 

good damage detection performance for the Δ𝑃𝑆𝐷 and Δ𝐹𝑅𝐹 metrics. Note that the horizontal axis range 

has been shifted in the top image to show the very low values of Δ𝑇𝐷 ~ 0.07. 

 

For comparison, detection performance was also investigated using repeatable frequency 

sweep input forcing over the same 0.1-to-2 kHz bandwidth. The corresponding detection 

histograms are similar to those in Figure 3.16 (and therefore not shown) except that the Δ𝑇𝐷 

metric performed much better due to the repeated phase structure between successive 

experiments.  

The detection histograms shown in Figure 3.16 can be further quantified using a detection 

index, 𝑑, for each cut length, defined as the ratio of the difference in the means between 

baseline-to-zero-length-cut (hereafter denoted ‘baseline’) and baseline-to-non-zero-length-cut 
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(hereafter denoted ‘test’) histograms, and the geometric-mean standard deviation of the two 

distributions [80]. Explicitly, 𝑑 is given by 

 𝑑 =
𝜇𝑏 − 𝜇𝑠

√𝜎𝑏𝜎𝑠 
 (3.12) 

where 𝜇𝑏 and 𝜇𝑠 are the means of the fitted-Gaussian distributions and 𝜎𝑏 , 𝜎𝑠 are the respective 

standard deviations. Intuitively, the detection index is a scalar indicator of how well separated 

a test histogram is from the baseline histogram. Values of 𝑑 ≫ 1 indicate that the histograms 

are well separated, i.e. detection performance is good. Detection indices are tabulated Table 3.2 

for each cut length and each metric investigated. It is clear that while Δ𝑇𝐷 is an insufficient 

metric for stochastic forcing, it performs comparably to Δ𝑃𝑆𝐷 in the case of repeatable frequency 

sweep forcing. Regardless of forcing character, Δ𝐹𝑅𝐹 performed the best of all three metrics due 

to very low standard deviation of in the resulting histograms; though the cost of these gains is 

the necessity of direct knowledge of the input forcing, which may be unobtainable in many 

applications. 

 

 

Table 3.2: Detection indices for each of the cases considered. Values 

highlighted in pink are low detection index values, 𝑑 < 1, which indicate 

poor detection performance.  

 

TD PSD FRF TD PSD FRF

7.8 9.4 39.8 -0.052 7.1 37.0

8.7 10.7 47.3 0.046 8.2 41.3

15.3 13.1 52.7 0.098 12.6 47.6

22.5 14.1 81.1 -0.085 12.1 61.0

81.0 19.5 101.1 0.21 28.0 93.3

80.8 32.4 144.1 0.71 34.5 104.3

Frequency Sweep Forcing Noise Forcing
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3.2.3a Robustness to Multipath Variation 

All results above were obtained using the STR algorithm to correct for unknown multipath 

in the reverberant laboratory (SRR = -7 dB). However, unlike the tests above, a structure of 

interest may not be in the exact same position for baseline and test measurements that are 

separated by days, weeks, months, or even longer. In reality, uncertainties in the source-receiver 

geometry will exist and these uncertainties can be detrimental in a reverberant environment 

[81]. In an effort to quantify the robustness of the proposed remote acoustic detection method 

to geometric uncertainties, two additional sets of baseline array recordings were collected with 

the array shifted laterally from its nominal position by 51 mm and 102 mm (angular shifts of 

roughly 3° and 5°, respectively, see Figure 3.17). Calculation of the detection metrics was again 

performed as described in Figure 3.14, however with the offset baseline recordings in place of 

the ‘ideal’ baseline recordings.  

  

Figure 3.17: Schematic showing the baseline offset used in to 

investigate detection robustness to multipath. 

 

Figure 3.18 shows detection results using the Δ𝑃𝑆𝐷 metric for three levels of baseline 

offset using random forcing, obtained using no signal reconstruction by directly processing the 
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recording from the arbitrarily selected 12th receiver, and by using STR. Detection performance 

is depicted via Receiver Operating Characteristic (ROC) curves which are a common tool used 

for evaluating binary detection schemes [80]. For each length of cut, the ROC curve is the locus 

of points specifying the probability of false alarm (undesired, on the horizontal axis) and the 

probability of true detection (desired, on the vertical axis) as the detection threshold is changed. 

ROC curves exhibiting good detection performance reach the top left corner (high probability 

of detection for low probability of false alarm), while those from poor detectors fall closer to 

the dashed diagonal. Though the unprocessed case performed very well when the source-array 

geometry was identical between baseline and test measurements (i.e. 0 mm offset), it shows 

signs of weakness with only 51 mm of offset and fails in detecting all but the most severe level 

of damage when the baseline is offset by 102 mm. For comparison, corresponding ROC curves 

were also produced using signals reconstructed with STR to correct for multipath due to the 

applied geometric errors. For each level of offset, detection with STR was essentially perfect 

resulting in ideal ROC curves as shown on the bottom left of Figure 3.18. The observed 

performance improvements indicate both the importance of considering multipath interference 

and the robustness of the proposed method to changes in it. Since STR applied to the 15-element 

array resulted in optimal detection, an important question is then: how many receivers are 

necessary for this performance? To address this question, the entire detection procedure using 

STR was run again; however, a reduced number of receivers 𝑁 were used in the computations 

(receiver spacing was maintained at 51 mm). Results of this analysis are shown in the bottom 

half of Figure 3.18 for the 13 and 38 mm cut cases, at both the 51 and 102 mm array offset 

distances. In each case it was discovered that a 𝑁 = 4 element array was necessary for 

effectively perfect detection, but for 𝑁 < 4 detection performance was somewhat reduced, 
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ultimately approaching (but still beating) the performance of using a single unprocessed 

receiver. These results are logical outcomes of the fact that STR requires array weights 

(typically derived from a beamforming operation [70]), and sufficient array resolution to 

distinguish signal arrival directions for success. However, the estimation of such weights and 

the resolution of signal arrival directions is worsened as the number of receivers – and 

subsequent array length – are reduced. 

 

  

 

Figure 3.18: ROC curves for varying levels of baseline-recording offset (0, 51, and 102 mm) using a 

single receiver recording with no processing. It is clear that even for small amounts of geometric 

uncertainty, detection performance suffers greatly. Corresponding ROC curves were produced using 

STR to correct for geometric uncertainty, and in each case the ROC curves depicted essentially perfect 

detection, visually identical to the plot for 0 mm offset above. All ROC curves were computed using the 

Δ𝑃𝑆𝐷 detection metric. 
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It is common to reduce ROC curve results like those shown in Figure 3.18 to single scalar 

values for ease of comparison [86]. One such value is the Deficit Area (DA) which is the 

integral of the area between a given ROC curve, and the line corresponding to an ideal 

probability of detection of 1. An ideal detector exhibits a DA of 0, while a very poor detector 

exhibits a DA of roughly 0.5 (statistically equivalent to coin flipping). DA values corresponding 

to the ROC curves in Figure 3.18 are provided in Table 3.3. It is evident that without processing 

the receiver recordings to account for the presence of multipath, the remote acoustic detection 

method is highly sensitive to geometric variations. Fortunately, the inclusion of the blind-

deconvolution algorithm yields negligible performance impact for all cases tested. 

 

 

Table 3.3: Deficit Area (DA) values for the associated ROC curves in Figure 3.18. Pink cells 

highlight DA > 0.1, which implies poor performance. Without multipath and reverberation 

compensation (left half of the table), detection performance is poor for moderate baseline 

offsets, while detection using STR was found to be robust in all cases. 

 

 

 

0 51 102 0 51 102

0.02 0.41 0.52 0 0 0.0004

0.0002 0.12 0.26 0 0 0

0 0.04 0.22 0 0 0

0 0.03 0.38 0 0 0

0 0.01 0.27 0 0 0

0 0 0 0 0 0
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3.2.3b Conditions for Input Forcing Repeatability 

 

For the presented baseline comparison techniques to be successful, certain information 

about the input forcing must be known. If a direct measurement of the input forcing is 

unavailable, a sufficient condition for accurate comparison is that the PSD of the input forcing 

is identical – or at least sufficiently constant – throughout successive measurements. Input 

forcing repeatability can be quantified by computing the pairwise PSD correlation coefficients 

(Eq. (3.9) from a batch of successive input forcing measurements, then computing the mean of 

this set. This mean PSD input forcing correlation serves as a ceiling for the acoustic correlations 

discussed in Section 3.2.3a Robustness to Multipath Variation. As such, a sufficient value for 

the mean input forcing correlation should exceed the maximum correlation derived from the 

acoustic data. For example, from the baseline Δ𝑃𝑆𝐷 histograms shown in Fig. 4b), an acceptable 

mean input forcing correlation should exceed roughly 0.99. 

The PSD of noisy signals in general do not exhibit correlations of ~0.99, though 

smoothing of the PSDs can increase the correlations to such values. The implicit tradeoff is that 

too much smoothing erases valuable spectral structure which discriminates the presence of 

damage (and the resulting radiated sound changes) from the lack thereof. The goal then is to 

determine experimental parameters which allow smoothing of the statistically random 

variations associated with a noise excitation, without discarding the bias variations in the 

acoustic recordings associated with changes in structural health. 

To quantify the influence of smoothing and input-excitation consistency, a brief analysis 

was performed to ensure input forcing was sufficiently repeatable in the above experiments. A 

batch of 16 noisy input forcing measurements (100-2000 Hz bandlimited, 8.5 second durations) 
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were processed into PSDs then pairwise correlated and averaged. The time-domain signals were 

then slightly truncated and the mean correlation was again computed, and so on, until the signals 

were reduced to 0 seconds in duration. This process was then repeated with the inclusion of a 

boxcar smoothing operation applied to the PSDs pre-correlation. Boxcar windows of 2, 5, 10, 

and 20 Hz were investigated. Figure 3.19 shows the mean input correlations as a function of 

signal duration and smoothing window width. It is evident that if no smoothing is applied, 

correlations are less than 0.8, well below the 0.99 required for detection as per Figure 3.16b. 

However, the inclusion of smoothing allows the 0.99 target to be achieved, and with a 5 Hz 

smoothing window, a sample duration of approximately 6 seconds is required (see inset panel 

in Figure 3.19). Acceptably high mean correlation values may be achieved with even shorter 

time durations; however, the fine structure of the PSDs – which are important for distinguishing 

damage – may be lost, reducing detection performance. A compromise of a 5 Hz smoothing 

window with 8.5 second signals was used for the results presented throughout this paper, though 

optimal settings would in general be application dependent. 
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Figure 3.19: Input forcing correlations as a function of signal duration and PSD box-car 

smoothing filter width (in Hz). Mean correlations are shown as dark lines, with single standard 

deviation spread shown in lighter shades. The inclusion of PSD smoothing allows the target 

correlation of 0.99 to be achieved (dashed line). With 5 Hz smoothing, a time duration of 

roughly 6 seconds is required – less than the 8.5 seconds used in the experiments reported here. 

The ‘stairstep’ jumps occur when the time duration is increased such that an additional 

frequency bin falls within the smoothing window width, increasing the total number of bins 

being averaged. 

 

3.2.4 Summary and conclusions 

An investigation has been conducted to determine if remote acoustic sensing with an array 

of 15 microphones is a viable method for detecting cuts with lengths from 13 mm to 76 mm in 

a vibrating base-excited, clamped 30-cm-by-30-cm-by-1.6-mm plate in an unknown 

reverberant environment at a signal-to-reverberation ratio of –7 dB when baseline recordings 

of the uncut plate are available. Results were collected for six different cut lengths, for 
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deterministic and random vibratory excitation in a 100-Hz-to-2-kHz bandwidth, and for three 

different detection metrics: time-domain (TD), power-spectral-density (PSD), and frequency-

response-function (FRF) cross-correlations. The vibratory forcing excited acoustic radiation 

from several plate-vibration modes. The collected detection results come from thousands of 

microphone recordings and are based on using synthetic time reversal (STR) to reduce the 15-

microphone-array recordings to a single signal that is at least partially corrected for 

reverberation-induced signal distortion. Additional tests that included plate-to-array 

geometrical changes confirmed the utility of STR for this application. Detection results are 

presented in terms of the detection index, ROC curves, and ROC-curve deficit area. 

This research effort leads to four conclusions. First, when array recordings can be made 

and baseline recordings are available, then remote acoustic detection of cuts as small as 13 mm 

in a 30-cm-square plate is possible in an environment with significant unknown multipath 

propagation and reverberation. The approach followed here has also been found effective for 

detecting boundary-clamping defects [17] with repeatable frequency-sweep excitation. The 

present work extends that detection success to plate cuts and to both repeatable and noisy (not 

repeatable) vibratory excitation. Second, when the vibratory excitation is not repeatable, the TD 

cross-correlation detection metric fails. Although this conclusion might be readily anticipated 

from the wealth of prior work in the structural health monitoring realm, it is stated here for 

completeness. The remote acoustic techniques utilized here do not overcome this limitation. 

Third, when the vibratory excitation is not repeatable, both PSD and FRF cross-correlations 

metrics can be successful with FRF-based detection being the better of the two. However, FRF-

based detection requires measurement or knowledge of the vibratory excitation waveform and 

might therefore be more difficult to implement. By comparison, the PSD metric merely requires 
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the vibratory excitation’s PSD to have the same frequency dependence during the baseline and 

test measurements; the actual excitation waveforms can differ. And fourth, geometrical 

robustness attributed to use of STR in the prior boundary-clamping-defect study persists in the 

current findings even though the current work primarily involves random (not repeatable) 

structural excitation. This conclusion is promising for remote detection applications in fully or 

partially enclosed environments, where boundary reflections and echoes are common, and the 

time elapsed between the collection of baseline and test recordings is long enough so that the 

source-to-receiver geometry and environmental characteristics are likely to have varied because 

the original (baseline) experimental configuration is only approximately known or cannot be 

precisely duplicated.  

Though the FRF metric outperformed the PSD metric, they were both fully effective for 

detecting cuts of the severity investigated, even with noisy input excitation. Though FRF 

detection methods would be expected to outperform PSD methods in general, they come with 

the cost of requiring some information about the input excitation. This could either be measured 

directly, or estimated via some model or known parameters (e.g. knowledge of the speed of a 

ship may allow one to infer the rate and loads due to the engines). Further, requiring 

measurement of the input excitation is the antithesis of this remote acoustic SHM endeavor. 

Benefits and drawbacks of the tested metrics are organized in Table 3.4. Due its adequate 

performance and lack of a requirement to know input forcing, the PSD metric was chosen as 

the best metric to apply in general. Nevertheless, there are certain to exist scenarios where other 

metrics – or perhaps functions of multiple metrics – may be needed. One immediate such 

example in that of completely nonstationary noisy inputs, wherein the PSD of the noise is a 
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reasonably fast function of time such that the PSD metric would be unsuited to make 

appropriate comparisons between baseline and test cases. 

  

Table 3.4: Cost-benefit analysis table for the three detection metrics considered. A PSD based metric 

was determined the best compromise due to the performance improvements compared to time-domain 

cross-correlation, and the ease of measurement compared to FRF based metrics. If the input forcing is 

expected to be highly non-stationary FRF based methods may be necessary. 

 

3.3 Detection of delamination in composite materials  

 Composite materials are becoming more accessible, affordable, and ubiquitous in many 

engineering applications due to their high strength-to-weight ratios, improved stealth 

characteristics, and ability to conform to complex geometries [87]. One of the most common 

types of composite materials in use today are fiber-reinforced composite laminates [88]. Fiber-

reinforced laminates consist of multiple layers – or lamina – of woven fiber (sometimes woven 

directionally, other times randomly) which are bonded (or laminated) using a matrix material, 

typical epoxy resin. Depending on the relative ordering and orientation of the fiber layers, 

various directionally dependent stiffnesses may be obtained in a laminate depending on design 

requirements. Despite these benefits, a major concern for the accelerated implementation of 



91 

 

fiber-reinforced composites is the problem of delamination [89]. Delamination occurs when 

adjacent fiber layers become unbonded, creating a region of low-stiffness which is prone to 

spreading and may ultimately lead to catastrophic system failure. One of the challenges of 

detecting delamination is that it is typically visually obstructed due to being one or more layers 

below the surface. As such, the vast majority of detection strategies for delamination in the 

literature utilize contacting vibration-based methods discussed in Section 1.1.1, such as guided 

wave methods [15] and accelerometer measurements of changes in modal characteristics [89].  

There are few, if any, results in the literature for remote acoustic detection of delamination. 

 The motivation for investigating remote acoustic detection of delamination is twofold: 

1.) delamination is an additional failure mode of interest to test, and 2.) since the fabrication of 

composite plates leads to inherent structural uncertainties, such an experiment provides insight 

into the performance of the technique when used with non-ideal baseline measurements. Four 

12”x12”x0.06” composite plates were fabricated using a common vacuum bagging method [90] 

with biaxial weave carbon fiber sheets and epoxy resin. Each plate consisted of 6 layers of 

carbon fiber, each with the principle fiber directions running parallel with the two square axes. 

The number of layers per plate was selected such that the modal density (in frequency) of the 

composite plates would be comparable to that of the previously tested aluminum plates. Two 

of the four plates were a fully bonded in a typical fashion, one of which served as the baseline 

plate and the other as the known healthy plate, each with nominally identical vibroacoustic 

properties. Of the remaining two plates, thin layers of aluminum foil were carefully placed 

between the medial layers during the layup process, as to prevent bonding within a localized 

region, thereby approximating delamination. One test plate featured a 3” square delaminated 
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region, shown in Figure 3.20, and the final test plate featured a 1” square delaminated region 

(centered at the same location as the 3” square region of the third plate). 

Figure 3.20: Six layer biaxial-weave carbon fiber plate with no-delamination (left), six layer biaxial-

weave carbon fiber plate with 3” square delamination in highlighted region (right), test coupon showing 

synthesized delamination (inset). 

 

Effectively the same methodology outlined in Figure 3.7 was applied for the 

delamination detection tests. 0.1-2 kHz 8-second linearly swept chirps were used to excite the 

plate and the acoustic response was recorded with a 15-element vertical microphone array with 

2” spacing. Based on the results presented in Section 3.2 Detection with stochastic input 

forcing, comparisons between Power Spectral Densities were used to quantify changes in plate 

response. In addition to acoustic measurements, vibrational measurements were collected with 

an LDV to provide insight into mode shape changes due to the presence of delamination. 

Comparisons of measured mode shapes for delaminated and fully laminated plates are provided 

in Figure 3.21. The presence of delamination has some visually discernable effect on the lower 

plate modes, but it is not extreme. Note that the (4,2) mode of the baseline plate switched to a 
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(2,4) mode with delamination. In addition to slight changes in the mode shapes, significant 

changes in the modal frequencies was also observed in the LDV measurements. The presence 

of the 3” square delamination region reduced resonance frequencies by roughly 2-4% for the 

modes inspected, which is agrees with the qualitative prediction of delamination behaving as a 

localized reduction in stiffness. 

 

Figure 3.21: Comparison of measured mode shapes for three vibrational plate modes. Fully laminated 

(baseline) carbon fiber plate (top) and carbon fiber plate with a 3” square delamination region, 

highlighted (bottom). 

 

Detection results are quantified as before, using detection histograms of the PSD metric 

between the test plates and the baseline plate. From Figure 3.22 it is clear that both the 3” and 

1” delamination regions are easily distinguishable, based on their separation from the 

baseline-to-known healthy plate histogram. Further, the 3” delaminated region was noticeably 

“easier” to detect (i.e. greater separation distance) than the 1” delaminated region, which is to 
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be expected as it is roughly 9 times greater in severity. An additional red histogram, shown in      

Figure 3.22, indicates the result of taping two 1” square pieces of aluminum foil to the top and 

bottom of the known healthy plate. This was done to verify that the results of the delamination 

detection were not due the added mass of the aluminum foil (but rather the reduction in stiffness 

associated with unbonding). Though some separation is present between the added foil case and 

the baseline case (which could indicate an ability to detect small localized changes in mass due 

to the foil), the stark difference between the red and gold histograms implies that the observed 

change in power spectral response for the 1” square delaminated plate (compared to the 

baseline) was likely not due to the added mass of the foil. These results indicate that remote 

acoustic sensing is feasible for detecting the presence delamination in composite plates, even 

when imperfections due to fabrication errors exist in the baseline and healthy plates. 

 

Figure 3.22. Detection histograms for localized delamination. Schematic representations of the 3” and 

1” square delaminated regions are shown at the right-hand side of the plot. Good separation of the 

histograms indicates good detection performance for both the 3” and 1” delamination using remote 

acoustic sensing. 
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Chapter IV: Localization of Damage 

 

4.1 Introduction 

 There are few examples of remote acoustic sensing used explicitly for damage 

localization in the literature. Nearfield Acoustic Holography has seen application in damage 

localization [12], however since it is inherently nearfield it does not practically fall under the 

umbrella of remote acoustic. Remote measurements of bearing noise have been used to estimate 

where on a system (even where on a single bearing) a fault may be located [91], however this 

is due primarily to the simple geometry of bearings which lend themselves well to models. For 

remote localization in systems wherein a priori models are either unavailable or infeasible, 

beamforming with a receiver array is a potential recourse. However, beamforming with the 

intent of localizing small changes in a vibrating body is a difficult task for the following two 

reasons:  

 

1.) Small defects should result in small changes to the radiated acoustic field. In 

essence, for reasonably small damage the goal is to beamform accurately enough to 

detect a change over a small spatial extent. This is further complicated due to the spatial 

filtering effect of a beamformer, any finite-size array exhibits an aperture function (in 

some cases referred to as a Point Spread Function) that will convolve itself with the 



96 

 

source field [52], effectively smearing out the small (desired) changes with the rest of 

the large (undesired) background field. This then calls for the use of a high resolution 

beamformer, of which there are fortunately many [44]. 

 

2.) The majority of the acoustic radiation emanating from the structure of interest is 

both undesired and coherent. This is because distributed structures – like a plate – are 

phase-locked, meaning different regions will generally oscillate in or out-of-phase, 

albeit at different amplitudes. This coherent field, heretofore referred to as a Coherent 

Background causes mathematical problems for most of the common high resolution 

high resolution beamformers such as MUSIC [59] and MVDR [92]. 

 

One common method for mitigating the first of these effects is to implement a 

beamformer deconvolution algorithm such as CLEAN [23], or DAMAS [22]. Both CLEAN 

and DAMAS/DAMAS2 are iterative computational techniques which aim to reconstruct the 

‘true’ non-smeared source field by successively removing smeared peaks and replacing them 

by sharp ‘true’ peaks. CLEAN – which originally came out of the astronomy community for 

‘cleaning up’ telescope images [93] – has found moderate application in acoustics, but the two 

main drawbacks of deconvolution algorithms like these are that they require accurate 

knowledge of the array’s aperture function, and they can suffer in noisy environments [22]. 

For the second challenge, associated with the coherent background field, a technique 

sometimes referred to as spatial smoothing (but in this document referred to as subarray 

averaging) has been shown to partially circumvent the coherence issue with certain high 
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resolution beamformers [60]. Subarray averaging is an operation which can be applied directly 

to uniformly spaced line arrays, wherein the array is segmented into smaller, overlapping 

subarrays, then these subarrays are used to produce a modified cross spectral matrix (CSM) 

which is simply the average of the CSMs over all subarrays. A schematic of this procedure is 

shown in Figure 4.1. Mathematically, this is justified in the case of MUSIC by constructing a 

new CSM which has full rank (unlike the original CSM which features at least two degenerate 

eigenvectors when two or more coherent sources are present) [60]. 

Another somewhat newer high-resolution beamformer, titled the Spectral Estimation 

Method (SEM), has certain properties making it useful for this problem. SEM, introduced by 

[63] is a CSM based beamformer which implements a convex optimization for the minimization 

of the L2-normed difference of a measured CSM and a modeled CSM. The result of this 

approach is a somewhat robust beamformer with very high resolution, due to the optimization 

step. An additional benefit of SEM is that, due to the way it is formulated, it can also be 

extended to reject noise from spatially distributed background noise sources, so long as the 

noise power spectral density is time invariant and a reference measurement solely of the noise 

is available. Blacodon titled this extension to SEM, SEM with Additive Noise (SEMWAN) 

[94]. It is crucial to note, however, that SEMWAN is only directly applicable when applied to 

background noise sources, i.e. unwanted sound sources that are mutually incoherent. Out of the 

box, SEMWAN does not apply to coherent acoustic backgrounds. 

 Let 𝑟𝑚(𝑡) be the time domain recording at the 𝑚𝑡ℎ receiver with Fourier transform 

denoted �̂�𝑚(𝜔). By definition, the cross spectral density matrix (CSDM), Γ(𝜔) is given 
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 Γmn(ω) ≡  �̂�𝑚(𝜔)�̂�𝑛
∗(𝜔) (4.1) 

It is also known that the recording �̂�𝑚(𝜔) is related to the acoustic sources and the 

environmental Green’s function  

 �̂�𝑚(𝜔) = ∑ 𝐺𝑚, 𝑘(𝜔)�̂�𝑘(𝜔)

𝐾

𝑘

 (4.2) 

where �̂�𝑘(𝜔) is one of the 𝐾 unknown source waveforms, 𝑘 is simply an index standing in for 

a potential source location, and 𝐺𝑚, 𝑘(𝜔) is the Green’s function from location 𝑘 to location 𝑚. 

Then, Γ(𝜔) can be expressed in terms of Green’s functions and the unknown source waveforms. 

 Γ𝑚𝑛(𝜔) = (∑ 𝐺𝑚,𝑘�̂�𝑘

𝐾

𝑘

) (∑ 𝐺𝑛,𝑙
∗ �̂�𝑙

∗

𝐾

𝑙

) = ∑ ∑ 𝐺𝑚,𝑘�̂�𝑘�̂�𝑙
∗𝐺𝑛,𝑙

∗

𝐾

𝑙

𝐾

𝑘

  (4.3) 

If the source waveforms are assumed to be incoherent then, by definition, 

 𝐸{ �̂�𝑘�̂�𝑙
∗ } =  �̂�𝑘�̂�𝑙

∗𝛿𝑖𝑘 = �̂�𝑘�̂�𝑘
∗ ≡ 𝑆𝑘  (4.4) 

where 𝐸{∙} is the expectation value operator, and 𝑆𝑘 is the positive semi-definite, real-valued 

power spectrum density (PSD) of �̂�𝑘(𝜔), or in other words, the spatial distribution of the 

sources, which we desire. Then 

  Γ𝑚𝑛(𝜔) = ∑ 𝐺𝑚,𝑘𝑆𝑘𝐺𝑛,𝑘
∗

𝐾

𝑘

  (4.5) 

If a reasonable estimate can be made for the Green’s function (i.e. free-field, plane wave, etc.), 

then, provided some measured CSDM, 𝛤𝑚,𝑛
𝑚𝑒𝑎𝑠(𝜔) is available, 𝑆𝑘 can be estimated by 

minimizing the following L2-norm.  
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  min
𝑆𝑘

(|Γ𝑚,𝑛
𝑚𝑒𝑎𝑠(𝜔) − ∑ 𝐺𝑚,𝑘𝑆𝑘𝐺𝑛,𝑘

∗

𝐾

𝑙

|

2

)  (4.6) 

This specific optimization problem is convex for positive definite 𝑆𝑘. It can be performed in 

MATLAB using any of a number of toolboxes or third-party software, such as the popular CVX 

package (used throughout this chapter) [41]. Further, through this formulation it is immediately 

evident that, provided a reference measurement of a static noise field is available, say Γ𝑚,𝑛
𝑟𝑒𝑓(𝜔), 

then the noise field can effectively be subtracted out in the CSDM domain, allowing for 

significant SNR improvements if localization of signals buried in noise is the goal. This is 

effectively the form of SEMWAN 

  min
𝑆𝑘

(|Γ𝑚,𝑛
𝑚𝑒𝑎𝑠(𝜔) − Γ𝑚,𝑛

𝑟𝑒𝑓(𝜔) − ∑ 𝐺𝑚,𝑘𝑆𝑘𝐺𝑛,𝑘
∗

𝐾

𝑙

|

2

)  (4.7) 

Refocusing on the original goal of localization, this technique cannot be immediately 

extended for the subtraction of the coherent background, exactly because for coherent sources 

 𝐸{ �̂�𝑘�̂�𝑙
∗ }  ≠  𝑆𝑘  (4.8) 

Instead we can exploit subarray averaging. Subarray averaging is the process of segmenting the 

array into smaller, overlapping subarrays, then using these subarrays to produce a modified 
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CSDM which is simply the average of the subarray CSDMs. Figure 4.1 shows a schematic of 

the subarray averaging procedure. 

 

Figure 4.1: Schematic for implementation of subarray 

averaging on a uniform line array of receivers. 

 

It can be exactly shown for plane waves impinging on a uniform line array, that, for an 

array dividing into 𝑃 subarrays the, averaged CSDM Γ𝑚,𝑛
𝑎𝑣𝑔

 is such that 

 lim
𝑃→∞

Γ𝑚,𝑛
𝑎𝑣𝑔

= ∑ 𝐺𝑚,𝑘𝑆𝑘𝐺𝑛,𝑘
∗

𝐾

𝑘

  (4.9) 

which is exactly the form of the CSDM for mutually incoherent sources in Equation (4.5). This 

subarray averaging approach now allows for the application of SEMWAN, but with references 

of coherent backgrounds instead of incoherent noise backgrounds. As such this extension is 

referred to as SEM with Coherent Background Removal (SEMCBR). SEMCBR can also be 

shown to work with spherical, nearfield Green’s functions. In practice, the performance of 

SEMCBR depends on several parameters, some of which are user selected, such as the number 
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of subarrays to divide the full array into. It is also worth noting that while more subarrays 

increase the number of averaged CSDMs, thus better cancelling the coherent cross terms as 

shown in Equation (4.9), the benefits do not continue indefinitely. This is because as the number 

of subarrays increases, the length – or aperture size – of each subarray decreases, thereby 

decreasing resolution [52]. There is indeed a ‘sweet spot’ for the number of subarrays to apply.  

The following sections detail the use of SEMCBR for the localization of damage in 

vibrating square plates, first using a one-dimensional uniform line array of 15 receivers, then 

using a two-dimensional planar Cartesian array of 64 receivers. 

 

4.2 1-D localization 

A proof of concept simulation was done to showcase the capabilities of SEMCBR. In 

this simulation, two sources were placed on a line collinear to a 15-element uniform linear array 

at a range of 60 receiver spacings (3 m). The lateral coordinate of one source was located at -

0.15 m from array center, and the other source was located at +0.30 m. The spherically radiating 

sources are such that the wavenumber (k = 2𝜋/𝜆) multiplied by the receiver spacing was 3. The 

baseline condition consisted of both sources emitting with equal amplitude. For the ‘damaged’ 

condition, the +0.30 m source was reduced in amplitude by 50%. Beamformer outputs showing 

the baseline and damaged conditions are shown at the top and bottom of Figure 4.2. 
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Figure 4.2: (Top) The beamformer output for two equal amplitude monopoles situated at -

0.15 and +0.30 m on an axis parallel to the line array, separated by 3 m. (Bottom) Same 

simulation, but the source at +0.30 m is reduced in amplitude by 50%.  

 

Figure 4.3 details the results of SEMCBR for increasing numbers of subarrays. It is clear 

that with no subarray averaging (effectively using the full array) the background subtraction 

fails. With four subarrays, performance improves and for eight subarrays, the peak is highly 

accurate with a peak-to-sidelobe ratio of greater than 20 dB, thus validating the method. 
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Figure 4.3: SEMCBR results for the problem statement in Figure 4.2. Subtraction performance improves 

as the number of subarrays is increased. When 8 subarrays are used, the peak to sidelobe ratio exceeds 

20 dB. 

 

4.2.1 One-dimensional Localization – Experiment 

SEMCBR was tested experimentally on vibrating plates featuring through cuts of 

various length made with a band saw. A 1.5” cut was placed into a 12 x 12 x 1/16” cm aluminum 

plate which was clamped into the plate vibration apparatus detailed above. A uniform linear 

array of 15 microphones with 1” receiver spacing was placed parallel to the plane of the plate, 

9.5” above the cut, as shown in Figure 4.4. For comparison, comparable NAH experiments have 

applied standoff distances of less than 1 inch [12, 95]. A one-dimensionally constrained 

spherical wave Green’s function was implemented such that the beamformer would search for 

the ‘acoustic change’ just over the line-of-interrogation, shown in magenta in Figure 4.4. 

Acoustic measurements of 0.1-4 kHz input chirps were collected for both a baseline, 

not-cut plate, in addition to the plate with a 1.5” cut. SEMCBR with P = 10 subarrays was run 

for each 5 Hz increment across the 0.1-4 kHz bandwidth. Results of the analysis are shown in 

Figure 4.5. The colormap in the background of Figure 4.5b is simply the conventionally 

beamformed source mapping which indicates the vibrationally active frequency bands as well 
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as some of the spatial character of the various plate modes near the line-of-interrogation. At 

each inspection frequency (in 5 Hz intervals) the output of the SEMCBR algorithm was 

computed, multiplied by the linear value of the FFT magnitude in Figure 4.5c (such that 

localizations in vibrationally active bands are weighted more that localizations in inactive 

bands) and finally binned into the histogram shown in Figure 4.5d. The final declaration for the 

cut location is determined from the maximum value of the histogram, which only exhibited 

~0.5” error, and this is considered a successful proof of concept. The experiment was repeated 

with the plate rotated by 90° such that the cut was in line with a more active region of the plate. 

These results, shown in Figure 4.6, are very similar. The cut is again successfully located, on 

average, by leveraging many measurements throughout the bandwidth. The distribution is, 

however, more spread than the first experiment, indicating greater uncertainty. This is likely 

due to the change in relative position of the array (see the left side of Figure 4.6), which picks 

up a greater amount of sound from the highly-active center of the plate, effectively drowning 

out the small change due to the cut. 

 

Figure 4.4: SEMCBR experimental validation for localization of a cut. 
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Figure 4.5: Results for the SEMCBR localization of a cut on an aluminum plate. Plate and cut geometry 

are shown in a.) Part b) indicates the true location of the cut, along with SEMCBR estimates calculated 

at every 5 Hz across the bandwidth. Overlap in the white circles (SEMCBR outputs, weighted by FFT 

magnitude at that frequency) indicate accurate localization. Localization results were ultimate binned 

into the histogram in part d) which shows only 0.5” error in the computed and actual cut locations (over 

a 24” search space). 

 

 

 

Figure 4.6: Results for the SEMCBR for the same experiment as shown in Figure 4.5, but with the plate 

rotated by 90 degrees, placing the cut in a different location. The cut is again successfully localized 

using the 0-4000 Hz bandwidth; however, the uncertainty is somewhat greater than for the first case. 
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4.3 2-D localization 

 Two-dimensional maps of acoustic energy are generally more informative than one-

dimensional maps. Not only can a greater extent of a structure be investigated using a two-

dimensional map, but interpretation of the results is more straight-forward. Fortunately, the 

mathematical formulation for 1-D SEMCBR can be readily extended to 2-D, provided a 

Cartesian array of two-dimensional extent is available. 

 

4.3.1 Spectral Estimation Method 

Given an 𝑀 element array with receiver locations 𝒙𝑚impinged upon by 𝐾 monopole 

sources, each represented by generic time signatures 𝑠𝑖(𝑡), the Fourier transform of the 

measured signal at each receiver (in the absence of noise) is modelled as 

�̂�𝑚(𝜔) = ∑ �̂�𝑚,𝑖(𝜔)�̂�𝑖(𝜔)

𝐾

𝑖

 (4.10) 

where �̂�𝑚,𝑖(𝜔) denotes an appropriate Green’s function from the 𝑖𝑡ℎ source to receiver location 

𝒙𝑚. The goal of acoustic localization is to estimate the signal energies 𝑆𝑖(𝜔) = |�̂�𝑖(𝜔)|2 

originating from each potential source location within some domain. To do this, typically a 

cross spectral density matrix (CSDM) Γ(𝜔) is computed, consisting of cross-correlations 

between measured receiver data  

Γ𝑚𝑛
𝑚𝑒𝑎𝑠(𝜔)  = �̂�𝑚(𝜔)�̂�𝑛

∗(𝜔) (4.11) 

If the measured signals obey the form described in Equation (4.10), then 𝛤(𝜔) may be 

modelled as 
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Γ𝑚𝑛
𝑚𝑜𝑑 = ∑ �̂�𝑚,𝑖�̂�𝑖�̂�𝑗

∗�̂�𝑛,𝑗
∗

𝐾

𝑖,𝑗=1

 (4.12) 

where the explicit dependence on 𝜔 is omitted for brevity. In scenarios where the monopole 

source are mutually incoherent, E{�̂�𝑖�̂�𝑗
∗} = 𝑆𝑖𝛿𝑖𝑗, and the modelled CSDM can be reduced to 

𝐸{Γ𝑚𝑛
𝑚𝑜𝑑} = ∑ �̂�𝑚,𝑖𝑆𝑖�̂�𝑛,𝑖

∗

𝐾

𝑖=1

 (4.13) 

which is achieved in practice by averaging CSDMs over a sufficient number of snapshots. 𝑆𝑖 

can then be solved for via minimization of the difference between the modelled and measured 

cross spectral density matrices, i.e. 

min
𝑆𝑖

∑ |Γ𝑚𝑛
𝑚𝑒𝑎𝑠  −  ∑ �̂�𝑚,𝑖𝑆𝑖�̂�𝑛,𝑖

∗

𝐾

𝑖=1

|

2𝑀

𝑚,𝑛=1

 (4.14) 

with the constraint that 𝑆𝑖 ≥ 0. This method is known as the spectral estimation method (SEM) 

and can yield very high-resolution estimates for incoherent sources. Further, Equation (4.14) 

has an additional convenience in that any available reference measurements �̂�𝑚
𝑟𝑒𝑓(𝜔) of a noisy 

background can be subtracted before the minimization procedure, i.e. 

min
𝑆𝑖

∑ |Γ𝑚𝑛
𝑚𝑒𝑎𝑠 − Γ𝑚𝑛

𝑟𝑒𝑓
 −  ∑ �̂�𝑚,𝑖𝑆𝑖�̂�𝑛,𝑖

∗

𝐾

𝑖=1

|

2𝑀

𝑚,𝑛=1

 (4.15) 

for Γ𝑚𝑛
𝑟𝑒𝑓

= �̂�𝑚
𝑟𝑒𝑓(𝜔)�̂�𝑛

𝑟𝑒𝑓 ∗(𝜔). This modified technique, titled SEM with additive noise 

(SEMWAN) then allows for high-resolution localization of noisy signals amid a much louder 
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noise background. However, in many applications the assumption of mutually coherent sources 

is not valid, and in these situations the performance of SEMWAN expectedly suffers. 

 

4.3.2 Subarray averaging 

To extend the above high-resolution localization approach to problems involving coherent 

sources, we implement a technique known as subarray averaging, which has been previously 

used to improve the performance of the MUSIC algorithm for coherent sources. Subarray 

averaging is a four-part procedure consisting of 1) dividing a regularly patterned array into 

smaller, possibly overlapping subarrays, 2) computing a measured CSDM for each subarray, 3) 

averaging each of these CSDMs to form a ‘smoothed’ CSDM which can then be 4) used as an 

input into a beamforming method of choice. Figure 4.7 is a schematic representation of a 5x5 

Cartesian receiver array divided into 3x3 subarrays. 

  

Figure 4.7: Schematic of a possible subarray configuration for a 

uniformly distributed Cartesian planar array. 
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The purpose of subarray averaging is to produce a surrogate CSDM with beneficial 

properties, i.e. one with a form identical to Equation (4.13). Equivalently stated, subarray 

averaging eliminates the terms in Equation (4.12) for which 𝑖 ≠ 𝑗, forcing the CSDM for a 

general distribution of coherent sources to approach that of a system of mutually incoherent 

sources. In the case of a uniform line array with far-field sources, the subarray averaged CSDM 

Γ̅𝑚𝑛 can be shown to be (Appendix A) 

Γ̅𝑚𝑛 = ∑ 𝑒𝑖
𝜔
𝑐

𝑑(𝑚 sin 𝜃𝑘−𝑛 sin 𝜃𝑙)
�̂�𝑘�̂�𝑙

∗

𝐾

𝑘,𝑙=1

𝜂𝑘𝑙 (4.16) 

for receiver spacing 𝑑, sound speed 𝑐, and incident arrival angles 𝜃𝑘. The cross-term factor 𝜂𝑘𝑙 

is a function of 𝑃 that is small for 𝑘 ≠ 𝑙 and unity for 𝑘 = 𝑙. Explicitly, 

𝜂𝑘𝑙 =
sin (

𝜔𝑑
2𝑐 𝑃(sin 𝜃𝑘 − sin 𝜃𝑙))

sin (
𝜔𝑑
2𝑐 (sin 𝜃𝑘 − sin 𝜃𝑙))

 (4.17) 

Figure 4.8 contains plots of 𝜂𝑘𝑙 for two sources separated by various incident angles averaged 

over 15 subarrays. Points below the horizontal dashed line indicate values of 𝜂𝑘𝑙 ≤ 0.2 wherein 

subarray averaging has been found to perform well. The vertical dashed line marks the 𝑘𝑑 =

𝜔𝑑/𝑐 = 𝜋 boundary, above which aliasing becomes a concern. Increased source separation has 

the effect of averaging out the cross terms more quickly, thereby requiring fewer subarrays for 

accurate localization of coherent sources. Closer sources require either more subarrays or higher 

frequencies to successfully mitigate cross-terms than for more separated sources. Further, for 

𝑘 = 𝑙, the source separation can be thought of as zero, and thus the cross-term factor is unity, 

as expected. 
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Figure 4.8: Cross-term factor for two sources separated by various incident angles with 15 subarrays 

averaged. Points below the horizontal dashed line (𝜂𝑘𝑙 ≤ 0.2) indicate correspond to good localization 

performance. The vertical dashed line corresponds to 𝑘𝑑 = 𝜋, above which grating lobes may appear. 

 

Subarray averaging can be immediately extended to sources that are not in the farfield, provided 

some geometric constraints are satisfied. In the case of a uniform line array, if the sources can 

be assumed to all lie approximately along a line parallel to the array separated by a priori known 

distance 𝐷, then the appropriate CSDM computation then becomes a weighted average over 

subarray CSDMs (Appendix B) 

Γ̅𝑚𝑛 =
1

𝑃
∑ 𝑒−𝑖

𝜔
𝑐

𝑑
𝐷

(𝑦𝑚−𝑦𝑛)(𝑝−1)

𝑃

𝑝=1

Γ𝑚𝑛
𝑝

 (4.18) 

where 𝑦𝑚 is the vertical coordinate of the 𝑚𝑡ℎ receiver. Intuitively, the weighting is due to the 

fact that each subarray has a different center coordinate relative to the acoustic sources, and the 

resulting phase differences must be taken into account. The weights themselves are only 

functions of known geometry and are easily implemented into the subarray averaging method. 

Extension of the method to 2D Cartesian planar arrays is also straightforward, however 

subarrays then take the form of squares or rectangles. 
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 Since subarray averaging is used to generate a surrogate CSDM of the form Equation 

(4.13), it is worth emphasizing that the benefits of the SEMWAN formulation are simply 

extended to coherent source cases when subarray averaging is used. Namely, the same 

minimization procedure can be used to solve for the source powers 𝑆𝑖, and coherent 

backgrounds can be directly subtracted out using reference recordings (Equation (4.15)). These 

combination of these two steps, henceforth referred to as SEMCBR (Spectral Estimation 

Method with Coherent Background Subtraction), enables the localization of even small changes 

in an otherwise loud, distributed backdrop of coherent sources. 

 

Figure 4.9: The effect of subarray smoothing on CSDM structure. Each case corresponds to three 

simulated farfield sources impinging on a 2D cartesian array (𝑘𝑑 = 𝜋 ). When all three sources are 

incoherent, the CSDM has a generally banded structure (top left), resulting in effective source mapping 

using SEM (bottom left). The same operation applied to three coherent sources (middle) fails, and the 

CSDM structure is of noticeably different character than for incoherent sources (due to cross terms). 

However, applying subarray averaging with 25 4x4 subarrays (right), the CSDM structure approaches 

that of the incoherent case and the source map (bottom right) is again accurate. 
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4.3.3 Validation experiment 

A simple proof-of-concept experiment was conducted to validate SEMCBR. An 8x8 

Cartesian array of PCB 130E20 microphones (Depew, NY) with 6 cm uniform spacing was 

placed parallel to the floor of an untreated laboratory. Gaussian enveloped sinusoids were 

broadcast from three home-audio speakers on the floor 1.2 m below the array, pointed upward 

toward the receivers as shown in Figure 4.10. The three sources simultaneously broadcast 𝑓 = 

5000 Hz pulses (𝑘𝑑 = 2𝜋𝑓𝑑/𝑐 = 5.5) with 0.1 s durations. As only 16 microphones were 

available, measurements from an 8x8 array were generated by stitching together recordings 

from a smaller, shifted 4x4 array (see Figure 4.10). For precision, the array was translated 

between runs via a two-axis motorized gantry with 0.1 mm precision. Microphone recordings 

were collected using a PXIe-6368 DAQ (National Instruments, Austin, TX) at a 50 kHz 

simultaneous sampling rate. 

 

 

Figure 4.10: Experimental setup 

for the SEMCBR validation test 

showing the source-array 

geometry (left) and the 4x4 

Cartesian array (above), used to 

emulate a full 8x8 array. 
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The source locations were estimated using both SEM and a conventional delay-and-sum 

beamformer (CBF) for comparison. In both cases, a spherical wave Green’s function, 

𝐺𝑘𝑚(𝜔) = 𝑒𝑖
𝜔

𝑐
𝑅𝑘𝑚/𝑅𝑘𝑚 was used to model the nominally monopole, non-farfield sources (in 

actuality, the Fraunhofer number was 𝐿2/2𝜆𝑅 ~1.1, given array length 𝐿 and wavelength 𝜆). 

The outputs of SEM are the estimated source strengths as a function of 𝑥 and 𝑦 (Equation 

(4.14)), while the CBF output is given by [44] 

BFconv(𝑥, 𝑦) = 𝑎𝐻(𝑥, 𝑦) Γ𝑚𝑛
𝑚𝑒𝑎𝑠(𝜔)𝑎(𝑥, 𝑦) (4.19) 

where 𝑎(𝑥, 𝑦)  =  [𝐺1𝑘 𝐺2𝑘 … 𝐺𝑀𝑘]𝑇, 𝑘 serves as an indexing variable for the gridded (𝑥,𝑦) 

coordinates which must be searched over, and (∙)𝐻 represents the conjugate transpose. 

Figure 4.11 shows the localization results of the two techniques as a function of number 

of subarrays averaged. While CBF can reasonably distinguish the sources when the full 8x8 

array is used, its resolution degrades as the array is divided into subarrays, due primarily to the 

aperture reduction. On the other hand, SEM performs only moderately well when the full 8x8 

array is used, and performs best when 25 4x4 subarrays are averaged, localizing all three point 

sources precisely. This improvement in accuracy supports the notion that the subarray 

averaging procedure reduces the effects of the source covariance cross-terms that otherwise 

degrade the performance of SEM.  
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Figure 4.11: Localization of three coherent sources (𝒌𝒅 = 5.5) with conventional beamforming (left) 

and SEM (right) using a) 1 8x8 subarray (i.e. no averaging), b) 9 6x6 subarrays, c) 25 4x4 subarrays, 

and d) 49 2x2 subarrays. 

 

Having shown the benefit of subarray averaging for highly resolved localization of 

coherent sources, attention was turned to the coherent background subtraction problem; namely, 

extending SEM to SEMCBR. To test SEMCBR, another set of acoustic measurement were 

collected, nominally identical to the previously detailed three-source setup, however one of the 

sources was decreased in amplitude by 20% (the other two sources remaining unchanged). Both 

localization methods were repeated, this time with the addition of the CSDM subtraction step 

of Equation (4.15) where Γ𝑚𝑒𝑎𝑠 serves as the CSDM of the original data, and Γ𝑟𝑒𝑓as the CSDM 

of the data with a reduced source. 25 subarrays of 4x4 receivers were averaged to generate the 

CSDMs for the results shown in Figure 4.12. SEMCBR successfully localized the small 

reduction in amplitude of the changed source with high precision (Figure 4.12c). Though 
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several spurious points were resolved from directions other than the changed source, these 

peaks were more than 8 dB below the maximum. Conventional beamforming was also generally 

successful in estimating the direction of the changed source; however, it suffers from a much 

larger lobe width in addition to a broad sidelobe only 3 dB below the main lobe. Further, both 

results agree with simulation using identical parameters, shown in Figure 4.12d, further 

validating that SEMCBR is capable of localizing a small change in a loud, coherent sound field, 

with high precision. 

 

Figure 4.12: Localization of a small change in a sound field of three coherent sources using SEMCBR 

(top row) and conventional beamforming with a reference subtraction (bottom row). Three sources with 

equal amplitudes were recorded (a) then rerecorded, with one of the sources reduced in amplitude by 

20% (indicated by a green dot in (b), (c), (d)). Experimental results for localization of the changed source 

are shown in (c) and agree well with simulation (d). For each figure, averaging of 25 4x4 subarrays 

across the full 8x8 array was used. 
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4.3.4 Localizing damage in vibrating plates 

Having outlined and established the SEMCBR method, several experiments were 

conducted to apply the method toward the structural health monitoring of vibrating plates. An 

experimental apparatus, shown at the left of Figure 4.13, was used to clamp 30 cm x 30 

cm plates to a nominally-rigid aluminum mounting base. The plates were then base-excited 

with frequency-swept input forcing from 100 to 6000 Hz, generated by a K2007E01 series 

electrodynamic shaker (The Modal Shop, Cincinnati, OH) attached to the plate’s mounting base 

(see Figure 4.13, bottom right). The acoustic response of the plates was recorded with the same 

array configuration detailed in Section 4.3.3 (𝑘𝑑 = 3.2 for the 3 kHz center frequency), using 

the same PXIe-6368 DAQ sampling at 50 kHz. The distance from plate center to array center 

was 1 m. The input forcing bandwidth was chosen to encompass approximately the first dozen 

unique vibrational modes of the test plates. In all following results, size 4x4 subarrays were 

averaged over the full 8x8 array to mitigate coherent cross terms. 
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Figure 4.13: Experimental apparatus for remote acoustic evaluation of vibrating 30 cm x 

30 cm plates. The array plate configuration (left) is used to measure the acoustic response 

of damaged plates (top-right) that are base-excited with a 30 N electrodynamic shaker 

(bottom-right). 

 

4.3.4.a   Cuts in an aluminum plate 

The first damage case consists of through cuts in a 30 x 30 x 0.16 cm aluminum plate. A 

3.8 cm cut was made perpendicular to the edge of the plate with a Dremel tool. The presence 

of the cut affects the plate’s vibroacoustic response, both via changes in mode shape and 

through (downward) shifts in resonant frequencies. Figure 4.14 showcases laser Doppler 

vibrometer measurements of the effect of the edge cut on the vibrational response of the plate 

at its (4,1) mode. Though the spatial structure of the mode is similar along the majority of the 

plate’s surface, a localized change in vibrational behavior is observed near the cut, and similar 
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behavior is present in other modes. It is these vibrational – and subsequent acoustical – changes 

near the damage that present an opportunity for remote acoustic localization. 

 

 

Figure 4.14: Laser Doppler vibrometer measurements of (4,1) vibrational modes of a 30 x 30 x 0.16 cm 

aluminum plate undamaged (left) and with a 3.8 cm cut (right, indicated by the yellow arrow). In 

addition to modal changes, the damage also shifts the resonant frequency down by 1.5%. 

 

 SEMCBR was performed for plate data using the same procedure discussed in Section 

4.3.3. Referring to Equation (4.15), the cut-plate data were used to construct Γ𝑚𝑒𝑎𝑠, while the 

healthy-plate data were used for Γ𝑟𝑒𝑓. SEMCBR and conventional beamforming, as stated, are 

applied to a single frequency bin of the CSDMs. This yields a single localization estimate which 

can be trivially extended to multiple frequencies throughout the bandwidth of the recorded 

signals. Averaging localization estimates over multiple frequencies serves to improve 

performance since more information (in this case, more modes) are being incorporated. 

However, computing all available frequency bins quickly becomes computationally intensive 

for conventional beamforming and especially SEMCBR, which requires a convex optimization. 

Instead, frequencies were selected by first identifying the resonances of the array data, then 
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selecting frequencies distributed around these high-energy regions. This helps to avoid 

processing data in modally ‘inactive’ frequency bands that offer little information. Figure 4.15 

shows the frequency power spectra for all 64 receivers in for both healthy and damaged plates. 

Average spectra for each plate are also plotted and comparison between the two curves shows 

moderate-but-noticeable downshifting of the resonances due to the 3.8 cm cut. A peak finding 

algorithm was used to identify 11 resonance peaks within the bandwidth, and for each peak 11 

frequency bins were selected with uniform 5 Hz spacing yielding a total of 121 frequency bins 

to process. 

 

Figure 4.15: Acoustic power spectra for the baseline (top) and 3.8 cm edge-cut plate (bottom). Black 

curves signify the average spectra across all 64 receivers. The presence of the cut results in downward 

shifts of the resonant frequencies. Green dots, distributed about the peaks, indicate the frequency bins 

at which SEMCBR and conventional beamforming were computed. 

 

 The bandwidth-averaged damage localization results for a 3.8 cm edge cut are shown in 

Figure 4.16. Though both conventional beamforming and SEMCBR are distributed around the 
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cut, SEMCBR features a much tighter grouping than conventional beamforming. The resolution 

of each method was quantified by comparing the 1-standard deviation spread of each method, 

about the centroid. For the conventional beamformer output, this corresponds to   

20 log (𝑒−
1

2) = −4.3 dB and for SEMCBR, the weighted RMS spread of the source level map 

was used. The spread contours are depicted as dashed blue lines in Figure 4.16. For the 3.8 cm 

cut, the spread of the conventional beamforming method was found to be approximately 20 cm, 

or roughly 2/3 the plate length. SEMCBR, however, exhibits a spread of approximately 3 cm, 

approximately equal to the actual cut length. In other words, SEMCBR achieves a resolution 

over 6 times greater than that of conventional methods, though both methods do point in the 

correct location of the cut. 

 

  

Figure 4.16: Remote acoustic localization of a 3.8 cm through cut near the plate edge using background 

subtraction with a conventional beamformer (a) and SEMCBR (b). Green lines indicate the true cut 

location and dashed-blue lines indicate the standard deviation spread of each method. 
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 An additional cut test was conducted for a cut made interior to the plate. In this case a 

3.8 cm horizontal cut was made in the upper left quadrant of the plate. The same procedure was 

used, including frequency bandwidth averaging over 121 frequency bins. Conventional 

beamforming and SEMCBR results are compared in Figure 4.17. Again, while both SEMCBR 

and conventional beamforming are centered about the cut, the SEMCBR estimates of the 

changed source energy are much more tightly distributed (by a factor of ~6) around the 3.8 cm 

cut. 

 

Figure 4.17: Remote acoustic localization of a 3.8 cm through cut, center to the plate using background 

subtraction with a conventional beamformer (a) and SEMCBR (b). Green lines indicate the true cut 

location and dashed-blue lines indicate the standard deviation spread of each method. 

 

4.3.4.b   Changes in boundary condition of an aluminum plate 

Another common form of damage in many plate-like structures is weld or fastener faults 

[96]. Either the failure of a weld or the loss of a fastener can result in significant changes to the 

boundary conditions of a structure, thereby altering its vibroacoustic response [97]. To 

approximate this effect experimentally, a single clamp was released from the nominally 
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clamped 30 x 30 x 0.16 cm aluminum plate. A baseline recording of the fully clamped plate 

was collected, then a second recording was collected after releasing a clamp located near the 

center of one side of the plate. Using the same procedure as in Section 4.3.4a, acoustic 

localization of the unclamped region was performed, with a comparison of conventional 

beamforming and SEMCBR shown in Figure 4.18. As with the cut cases, both methods pointed 

in the direction of the released clamp. Conventional beamforming performed roughly 

equivalent as with the cuts, however SEMCBR featured a significantly less tight set of source 

estimates (though still a factor of 5 smaller spread than conventional). A proposed explanation 

for this result is that the change in the boundary conditions results in a more distributed change 

to the vibrational mode shapes than for the cuts. In this case, SEMCBR is still localizing the 

change in the acoustic source (which are associated with changes in the vibrational response), 

though the extent of these changes is less localized than the unclamped region. 

 

   

Figure 4.18: Remote acoustic localization of a partially unclamped plate using background subtraction 

with a conventional beamformer (a) and SEMCBR (b). Green lines indicate the nominally unclamped 

section of the perimeter and dashed-blue lines indicate the standard deviation spread of each method. 
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4.3.4.c   Changes in boundary condition of an aluminum plate 

A final test was conducted to determine the localizability of delamination in a composite 

plate. Composite materials, and in particular composite laminates, have become increasingly 

popular in both industrial and consumer applications over the last several decades due to their 

high strength-to-weight ratios [98]. Composite laminates are a subset of composite materials 

that consist of multiple layers of fiber laminae (often woven), encased in a resin matrix. Lamina 

material and orientation, weave patterns, and numbers of layers all serve as design parameter 

to allow specific structural constraints such as yield strength and rigidity to be achieved with 

modest mass. However, when the bonding matrix between layers detaches, an effect commonly 

titled delamination, a significant reduction in material strength may occur [99]. Delamination, 

being a subsurface effect, is also usually non-visual, meaning that effective detection and 

localization strategies are desirable to treat delamination damage before it can grow. 

Two carbon fiber composite plates were constructed using a conventional vacuum 

bagging process [100]. Each plate consisted of 6-layers of bi-axial weave carbon fiber, encased 

in resin, with the principle fiber direction running parallel to the square axes. The number of 

layers was chosen to approximately match the rigidity of aluminum to achieve a similar modal 

density in the excitation bandwidth. In the damaged plate, thin 7.5 x 7.5 cm layers of aluminum 

foil were carefully placed between the medial layers during the layup process, as to prevent 

bonding within a localized region, thereby approximating partial delamination. After curing 

and trimming, both composite plates were nominally 0.3 x 0.3 x 0.15 cm in size. 

Both the baseline and partially delaminated plates were tested akin to the previous 

sections Results are provided in Figure 4.19; as was seen with the cut and unclamping test, both 

methods successfully localize around the delaminated region, however SEMCBR yielded a 
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spread of approximately 12 cm, in comparison to the conventional beamformer spread of 

23 cm. These results are promising because, as is seen in Figure 4.19a, there is no apparent 

visual indication of the delaminated region. 

 

Figure 4.19: Remote acoustic localization of a partially delaminated carbon fiber plate (a) using 

background subtraction with a conventional beamformer (b) and SEMCBR (c). Green squares indicate 

the 7.5 x 7.5 cm delaminated region and dashed-blue lines indicate the spread of each method. 

 

4.3.5 Vibrational dependence of localization 

It must be noted that, though the goal of SEMCBR in the previous section was to localize 

the damage site, in actuality it is only the vibrational change due to the damage that is being 

localized. In theory, the vibrational change in a structure is localized at or near the damage site, 

and so they are effectively equivalent. In particular, the localization of fastener failure 

(boundary damage) shown in Figure 4.18 did not point at the edge, but rather slightly inward 

toward the plate center. This is sensible because the boundary, where the change is located, is 

not vibrationally active, and thereby casts no sound. However, the region of the plate near the 

unclamped edge is vibrationally active, as well as changed relative to baseline, explaining the 

achieved results. 
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This is illustrated in Figure 4.20 using simulated plate response. The baseline plate 

response at 450 Hz (shown at center) exhibits the expected 2x2 mode, while a 3-inch-cut plate 

(left) vibrates with a similar, but slightly difference mode shape. The difference of the two mode 

shapes yields a “residual” that is maximized near the cut, but is also non-zero at other regions 

of the plate. However, by averaging this vibrational residual over the 0-2000 Hz frequency 

band, the average difference is clearly localized to the cut, shown at the left of Figure 4.21. A 

similar analysis was performed for a boundary-type defect, shown at the right if Figure 4.21. 

As expected, boundary damage results in vibrational changes localized not at the damage, but 

rather near to the damage (since the boundary itself does not vibrate). 

 

Figure 4.20: Subtraction of the baseline 2x2 vibrational mode from the cut mode yields a residual local 

to the cut, though other regions of the plate are also changed. 
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Figure 4.21: Averaging the vibrational residuals over all modes from 0-2000 Hz, yields an average 

vibrational coincident with the damage in the case of a cut (left), and slightly interior to the actual 

location of a fastener failure (right). 

 

 From Figure 4.21 it can be seen that the simulated average vibrational change agrees 

well with the measured acoustic localization results shown in Figure 4.17 and Figure 4.18. This 

indicates that SEMCBR does indeed localize the vibrational change rather than the damage 

itself. For more complex structures it may be possible that the vibrational changes due to the 

damage are not localized to the damage itself, and in this scenario SEMCBR may be inadequate 

for damage localization. However, in the case of the square, vibrating plate, the average 

vibrational change was consistently coincident (or nearly coincident) with the each of the 

damage type investigate. 
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4.3.6 Summary and conclusions 

 The Spectral Estimation Method with Coherent Background Removal (SEMCBR) was 

presented for the high-resolution acoustic localization small changes in a coherent field. 

SEMCBR is an extension of the existing the Spectral Estimation Method with Additive Noise 

[101], by incorporating a subarray averaging step before the CSDM subtraction. This allows 

for a small change in an otherwise loud and complex coherent acoustic field to be isolated and 

localized, provided a background measurement of the field, without the change, is available. 

SEMCBR was validated first using a planar Cartesian 8x8 array to successfully localize a 20% 

decrement in the amplitude one of three coherent sources, using a 4x4 subarray averaging step. 

Comparisons to conventional beamforming (with CSDM subtraction) showed a significant 

improvement in source resolution for SEMCBR.  

SEMCBR was then employed for the localization of damage in 30 x 30 cm base-excited 

plates, again using a 4x4 subarray averaging step. Using SEMCBR and conventional 

beamforming (with CSDM subtraction), through-cuts and partial unclamping of aluminum 

plates were successfully localized. Delamination of a carbon-fiber composite plate was also 

achieved. In all cases, conventional beamforming was generally successful in pointing toward 

the correct damage sites, however the beams were not well resolved, with spreads on the order 

of the plate length for all tests. Comparatively, SEMCBR was found to achieve roughly a factor 

of 6 increase in damage resolution, yielding a better estimate of the spatial extent of the damage. 

In addition to its applicability to for structural health monitoring, SEMCBR could also provide 

a useful tool to the underwater acoustics community, where multipath is a common concern, or 

in radar applications to counteract jammers and coherent interferers. 
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4.4 Derivations for SEMCBR 

4.4.1 Effect of subarray averaging on source cross-spectra terms 

 In the case of a uniform line array with receiver spacing 𝑑, divided into 𝑃 subarrays, the 

𝑚𝑡ℎ receiver output of the 𝑝𝑡ℎ subarray (where, 𝑝 represents the subarray increment from the 

centermost subarray) is 

�̂�𝑚
𝑝(𝜔) = ∑ 𝑒𝑖

𝜔
𝑐

𝑑(𝑚+𝑝) sin 𝜃𝑘�̂�𝑘(𝜔)

𝐾

𝑘=1

 (4.20) 

where the far-field assumption has been made for the 𝐾 sources arriving from incident angles 

𝜃𝑘 and 𝑐 is sound speed. The resulting averaged CSDM is then 
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 (4.22) 

The summation term over the 𝑃 subarrays is analogous to that derived for the beampattern of a 

finite uniform line array and may be shown to be [102]  
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4.4.2 Subarray averaging correction phase for non-farfield sources 

 When subarray smoothing is used to localize non-farfield sources, a phase correction 

must be applied to each subarray CSDM. These phases counteract the effect of shifting the 

center location of each subarray relative to the non-planar incident sources (i.e. the global 

position of each subarray must be considered when localizing proximal sources). Consider the 

case shown in Figure 4.22, wherein a spherical-wave source impinges on an 𝑀-element ULA.  

 

 

Figure 4.22: Schematic for a spherical wave source impinging on a uniform line 

array. The distance of the source as seen by the 𝒎𝒕𝒉 element of the central (𝒑 = 𝟎) 

subarray is different than the distance seen by the 𝒎𝒕𝒉 element of the 𝒑 = 𝟐 

subarray, resulting in a phase difference that must be accounted for. 

 

The distance 𝑅𝑚𝑘 from the source at 𝑦𝑘 to the 𝑚𝑡ℎ receiver of the center-most subarray 

(centered at the origin of the source plane) is given by 𝑅𝑚𝑘 = √(𝑦𝑚 − 𝑦𝑘)2 + 𝐷2. Setting 𝑅𝑚𝑘
𝑝

 

as the distance from the source to the 𝑚𝑡ℎ receiver of the 𝑝𝑡ℎ subarray, and noting, for a ULA 
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with receiver spacing 𝑑, 𝑦𝑚
𝑝 = 𝑦𝑚 + (𝑝 − 1)𝑑, the difference in source distance as seen 

between the two subarrays is 

𝑅𝑚𝑘
𝑝 − 𝑅𝑚𝑘 ≡ Δ𝑅𝑚𝑘

𝑝

= √(𝑦𝑚 + (𝑝 − 1)𝑑 − 𝑦𝑘)2 + 𝐷2 − √(𝑦𝑚 − 𝑦𝑘)2 + 𝐷2 

(4.24) 

Making the assumption 𝐷 ≫ |𝑦𝑚 − 𝑦𝑘| (which is less restrictive than assuming the sources are 

properly in the farfield) we can truncate the Taylor expansion for the roots yielding 
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at first glance it appears any correction involving this term is stymied by the unknown source 

location(s) 𝑦𝑘. However, the modeled CSDM follows the form 𝛤𝑚𝑛 = �̂�𝑚,𝑖�̂�𝑖�̂�𝑗
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∗  and, for 

spherical wave sources this yields a phasor of the form exp (𝑖𝜔/𝑐(𝑅𝑚𝑘 − 𝑅𝑛𝑘) ). Considering 

the 𝑝𝑡ℎ subarray, this phasor can be expanded into 
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where the exp (−𝑖𝜔/𝑐(Δ𝑅𝑚𝑘
𝑝

− Δ𝑅𝑛𝑘
𝑝

)) is the ‘shifting’ we aim to correct for, for each subarray. 

Fortunately we find 

Δ𝑅𝑚𝑘
𝑝 − Δ𝑅𝑛𝑘

𝑝 ≈
𝑑

𝐷
(𝑝 − 1)(𝑦𝑚 − 𝑦𝑛) (4.27) 

which is independent of the unknown source location(s). Therefore, in computing the subarray 

averaged CSDM for non-farfield sources, a correction phase of 
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Γ𝑚𝑛
𝑝 →  Γ𝑚𝑛

𝑝  𝑒𝑖
𝜔
𝑐

𝑑
𝐷

(𝑝−1)(𝑦𝑚−𝑦𝑛)
 (4.28) 

must be applied to the elements of each subarray CSDM. This formulation is easily extended 

to 2D Cartesian arrays,  

Γ𝑚𝑛
𝑝 →  Γ𝑚𝑛

𝑝  𝑒𝑖
𝜔
𝑐𝐷

(𝑑𝑥(𝑝𝑥−1)(𝑥𝑚−𝑥𝑛) + 𝑑𝑦(𝑝𝑦−1)(𝑦𝑚−𝑦𝑛))
 (4.29) 

where 𝑑𝑥 , 𝑑𝑦 correspond to the x- and y-direction receiver spacings, and 𝑝𝑥 , 𝑝𝑦 correspond to 

the subarray increments of the 𝑝𝑡ℎ subarray along the x- and y-directions, respectively. It is also 

worth noting while the derivation above was restricted to 𝐷 ≫ |𝑦𝑚 − 𝑦𝑘| (essentially requiring 

sources be significantly more distant from the array than they are spread parallel to the array), 

stable localization results were achieved even for 𝐷 ~ |𝑦𝑚 − 𝑦𝑘|.  
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Chapter V: Classification of Damage 

 

5.1 Introduction 

Vibrating structures are common in numerous applications and when such a structure is 

in contact with a fluid (e.g. air or water) these vibrations commonly result in radiated sound 

[10]. As discussed in previous chapters, knowledge of the vibroacoustic behavior of a structure 

is useful for remotely interfacing with it in situ, and for performing diagnostics (e.g. how has 

the acoustic signature changed and what does that tell us?). For the purposes of structural 

health monitoring, these vibroacoustic changes may be effective indicators of structural damage 

[4, 7], which, having been identified, can be accommodated or repaired. This chapter 

investigates the feasibility of using data-driven approaches for classifying multiple types of 

damage in vibrating plates using vibrational and/or remote acoustic measurements. More 

specifically, many finite element simulations of damaged plates were used to train classifiers 

and subsequently distinguish damage types based solely on changes to acoustic (and/or 

displacement) frequency response functions, with ‘changes’ quantified relative to an a priori 

known healthy baseline structural response. With this data-driven approach, classification 

between modeled cut, corrosion, and fastener failure (i.e. weld) -type damage to square plates 

was performed, yielding correct classification rates in excess of 96% using modeled acoustic 

responses. Experimental data support the simulated findings. 
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5.2 Motivation for data-driven approaches 

 The process of structural health monitoring (SHM) for damage inspection is typically 

divided into four steps: Detection (is damage present?), Localization (if so, where?), 

Classification (what type of damage, and how severe?), and Evaluation/Treatment (what is the 

prognosis or next step(s)?) [4]. Chapters 3 and 4 detailed several methods for the first two of 

these steps – detection and localization – in regard to cuts, fastener failures, and delamination 

in vibrating plates using remote acoustic sensing methods. In this chapter, the third step of 

SHM, damage classification is tackled, again with an emphasis on remote acoustic methods. 

 Damage classification is often a challenging task due to the many ways in which a 

system can become damaged. Because damage typically manifests itself in complex changes to 

the system’s vibroacoustic behavior, the exact form in which any particular type of damage will 

affect structural response is difficult to predict. Though in theory a given type of damage will 

yield a deterministic change to some output response (e.g. a frequency response curve), in 

practice, solving such an inverse problem is infeasible because the location and severity of the 

damage are typically unknowns, and the accuracy of any structural vibration model will be 

limited. Even when the localization techniques described in the previous chapter are applied, 

the search space of possible damage configurations may be unmanageably large and the needed 

model accuracy may be out of reach. Furthermore, applying analytical models becomes even 

more challenging when the type of damage is a priori unknown and when structural models 

become more complex, and potentially less accurate. 

 In lieu of appropriate analytical or computational models, the damage classification task 

is often approached using data-driven methods [30]. Data-driven methods are appealing 

because the difficulties of solving potentially-intractable inverse problems is replaced with the 



134 

 

more achievable task of generating training data for a ‘damaged’ system [5, 103]. With training 

data in hand, any of a number of common classification approaches can be implemented, with 

the number of assignable damage classes (or types) dependent on the number of damage classes 

included in the training data set. 

 

5.3 Classification methodology 

 The canonical clamped, square vibrating plate was selected as the system of interest. 

This simple structure was chosen 1) for ease of modeling, 2) to avoid unnecessary complexities 

associated with more complicated structures while maintaining some level of practical 

application, and 3) because an experimental setup for monitoring vibrating plates was 

previously developed (see Section 2.2 Experimental apparatus), allowing for empirical 

validation of the simulation results. In this investigation, three distinct damage classes were 

considered for the vibrating plate: cuts, corrosion, and fastener failures (e.g. weld/bolt failures). 

The data-driven damage classification method discussed in this report consists of the 

following four steps: 

1) Generate Data – ‘damaged’ plate datasets were generated using Monte Carlo finite 

element simulations for the three damage cases. For each damage case, 200-250 

simulations were run, varying the location, severity (size), and type of damage present. 

To model acoustic responses, the plate was treated as existing in an infinite baffle and 

the Rayleigh integral [40] was evaluated at user-selected receiver locations. See Section 

2.3 Finite element analysis for more information about the modeling process.  
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2) Feature Extraction – comparisons between the damaged-plate frequency responses 

and the baseline-plate frequency response were used as features (i.e. inputs fed into a 

classifier which are ultimately used to distinguish between different damage classes) for 

classification. Specifically, a dilational correlation [104] was applied to each damage 

case, quantifying how ‘deformed’ and ‘stretched’ each test-case frequency response 

function is compared the baseline case. 

3) Training Classifier – 70% of the generated data was used to train a classification 

scheme based on the extracted features. Several classification schemes were 

implemented, included K Nearest Neighbors (KNN) [103]., Support Vector Machines 

(SVM) [105], Neural Nets (NN) [106], and others [107, 108]. 

4) Testing Classifier – The remaining 30% of data was used to test the performance of the 

trained classifier, quantified using the Correct Classification Rate (CCR), defined as the 

percent of test data samples that were successfully classified to their true damage type. 

To obtain an average value for the CCR (and to avoid lucky/unlucky partitionings of 

training/test data), steps 3 and 4 were performed 50 times for each classifier, with 

random permutations of training/test data selected each time. The average CCR of these 

50 partitionings is reported. 

 

Figure 5.1 shows the finite element mesh for the clamped, square aluminum plate, which 

is driven at an arbitrary, but consistent, location throughout all simulations. Also included is a 

frequency response curve for the RMS displacement of the plate from 0 to 2000 Hz. Ultimately, 

it is the changes to this frequency response curve that were quantified and subsequently utilized 
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for damage classification (or in other words, each type of damage affects the plate’s frequency 

response in complex – but distinguishable – ways). 

 

Figure 5.1: FE model of a clamped, square aluminum plate showing: the forcing drive point (left), and 

the resulting frequency response of RMS displacement for the baseline (undamaged) plate (right). 

 

 Three types, or classes, of damage were considered: cuts, corrosion, and boundary 

failures. The first of these, cuts, was modeled by assuming straight through-cuts wherein the 

length, center, and angle of the cuts were randomly varied throughout 250 training cases. 50 

cases each were computed for cuts of 8%, 12%, 16%, 20%, and 24% of the plate side length 

(12 in). Figure 5.2 gives an example of a vibrational mode shape in the presence of a large 

through-cut, alongside 50 RMS displacement frequency response for the smallest and largest 

cut test cases. It is notable that changes to the RMS frequency response are both more extreme 

and more complex at higher frequencies (especially for frequencies above 1 kHz). Figure 5.3 

shows the averaged frequency response curves for the 50 simulations for each of the five 

difference cut lengths. It is notable that increased damage severity (in this case, increased cut 

length) results not only in greater frequency response variation relative to baseline, but also 

greater intra-class variation (i.e. variation between all simulation of a 3” cut). 
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Figure 5.2: Example of a steady state mode shape (1000 Hz) in the presence of a 2 inch cut (left). 

Frequency responses of RMS displacement for all 50 cases of the smallest cut size (1 inch, red) and the 

largest cut size (3 inches, blue) (right). Baseline frequency responses are shown in black. 

 

 

Figure 5.3: Frequency response curves averaged over 50 simulations for each of the five cut length cases 

(from 1” cuts (red) to 3” cuts (blue)). The filled regions indicate ± 1 standard deviation bounds. Increased 

damage severity not only results in greater variation from baseline, but also greater intra-class variation 

(larger spread). 

 

Corrosion was modeled via a smooth but spatially-varying reduction in thickness of the 

plate. This phenomenological approach to corrosion modeling is common in the literature [109, 
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110]. More specifically, corrosion was modeled as a Gaussian reduction in thickness, 

parameterized by a center-point (the location of greatest thickness reduction), an amplitude, and 

a spread size (e.g. the standard deviation of the corrosion region, equal in all directions). 200 

simulations were run for various corrosion cases, the severity of each case quantified by the 

percentage of plate material removed which ranged from 0.01% to 1.6% across all cases. Figure 

5.4 shows the RMS displacement frequency response curves for all 200 corrosion simulations. 

Comparing against Figure 5.2, it is apparent that the corrosion causes a more subtle 

‘compression’ effect on the frequency response relative to baseline. 

 

Figure 5.4: Frequency response curves of RMS displacement for all 200 corrosion cases. The red lines 

indicate little corrosion (0.01% of material removed) and the blue lines indicate the greatest corrosion 

(around 1.6% removed). A schematic of the Gaussian spread of the corrosion thickness reduction is 

shown in the top right inset. 

 

 Fastener failures, such as broken bolts and weld failures, were modeled as a localized 

change in the plate boundary conditions. Specifically, for each of 200 cases, a small fraction of 

the nominally-clamped perimeter was modified to be either simply-supported or free. The 

location and extent of this damaged-boundary region was randomized over the 200 samples, 

with half assigned to simply-supported and half assigned to free type constraints. The effects 
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of fastener damage can be very noticeable, especially near the plate’s edges as shown in Figure 

5.5 (note that the extent of damage shown here is illustrative and much greater than what was 

applied in the training data). Figure 5.6 displays the RMS displacement frequency response 

curves for the 200 simply-supported and free type boundary condition changes. 

  

Figure 5.5: Illustrative example of the effects of severe fastener damage. At the left is the static 

displacement of the undamaged baseline plate due to point loading (at zero Hz). At the top right is the 

displacement of the same plate with approximately 30% of the perimeter simply-supported (shown as 

red lines on the mesh). At the bottom right is the displacement for the same extent of damage, but 

modeled instead with the more extreme free boundary condition. 

 

 

Figure 5.6: RMS displacement frequency response for 200 cases of fastener failure-type damage (left). 

Red and blue curves correspond to simply-supported and free edge modeled damage, respectively. 

Meshes from four cases indicating the general extent of boundary failure damage (right). 
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 In order to train a classifier on the damaged data sets, meaningful features must be 

extracted from the frequency response curves. On one hand, there is no shortage of potential 

features that may be used to train a classifier [e.g. maximum value of the frequency responses, 

kurtosis of the frequency responses over the bandwidth, absolute (L1) difference between test 

case and baseline frequency responses], though an ideal feature set is one that maximizes the 

inter-class variation in the feature space (to better separate/distinguish between classes) while 

minimizing the number of features (to avoid overfitting, especially when the size of the training 

data set is limited) [103]. The features used in this study were extracted using the dilational 

correlation function [104] 

 𝐷𝑥𝑦(𝜆) =
∫ 𝑥(𝜆𝑓) 𝑦(𝑓) 𝑑𝑓

√∫ 𝑥2(𝑓)𝑑𝑓 ∫ 𝑦2(𝑓)𝑑𝑓
 (5.1) 

 The dilational correlation is analogous to the more conventional cross correlation, 

except the shifting property is exchanged for a stretching/scaling factor, 𝜆. For each test case, 

the dilation correlation is computed between the log frequency response of that case and the log 

frequency response of the baseline plate. For each computation, two features are extracted, the 

maximum value of 𝐷𝑥𝑦 and the corresponding stretch factor 𝜆𝑚𝑎𝑥 at that maximum. Intuitively, 

the dilational correlation quantifies how similar a damaged plate frequency response curve is 

to a stretched or compressed version of the baseline frequency response curve. For instance, in 

the case of uniform thickness reduction it can be shown analytically that the frequency response 

curve is has a constant scaling compared to a full-thickness baseline (all peaks shift downward 

in frequency by equivalent ratios). In this scenario, the maximum dilation correlation would be 

almost exactly 1, and the value of 𝜆𝑚𝑎𝑥 would be dependent on the magnitude of the thickness 

reduction. As is seen in Figure 5.2 and Figure 5.6, cut and boundary failure-type damage clearly 



141 

 

do not result in scaled versions of the baseline frequency response, and it is the goal of the 

extracted dilational correlation features to identify and distinguish trends in how the damage 

affects the frequency response curves for the various damage classes. Figure 5.7 shows an 

example of the dilational correlation output between a damage case and baseline. 

 

Figure 5.7: Example of dilational correlation function (bottom) 

between baseline (top) and 2-inch cut case (middle). 

 

 Finally, to investigate the feasibility of utilizing remote acoustic measurements of plate 

response, the plate was treated as existing in an infinite baffle and a Rayleigh integral was 

computed to estimate the acoustic amplitude response at particular receiver points in the 3D 
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field above the plate. The propagation medium was treated as air and fluid loading and damping 

effects were neglected in the analysis. 

  

5.4 Simulation results 

 Figure 5.8 showcases the 2D feature space for the three damage cases considered. The 

features were extracted using the RMS displacement frequency responses, so no acoustic 

coupling is considered in Figure 5.8 (rather, in practice, the RMS displacement on the surface 

of the plate would need to be measured across the frequency band).  Even by visual inspection, 

there is clear 

 

Figure 5.8: Feature space for the three damage classes using RMS displacement 

data. Colors increase from red to blue as damage severity (e.g. length of cut) 

increases. Qualitative decision boundaries are included for insight. 
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separation between the three damage classes. To quantify how well the data can be classified, 

an classification strategy must be selected. Myriad popular classification algorithms exist, many 

of which are easily implemented with a standard MATLAB package. The algorithms 

investigated in this study include: 

• K Nearest Neighbors (KNN) – Points in the feature space are classified by popular vote 

of the ‘closest’ neighboring 𝐾 points. For this study, 𝐾 = 5, though this hyperparameter 

can be tuned to the data [103]. 

• Discriminant Analysis – The classes are assumed to be normally distributed, and 

boundaries are derived minimizing an L2-norm. Linear Discriminant Analysis (LDA) 

and Quadratic Discriminant Analysis (QDA) fit linear and quadratic boundaries, 

respectively [107].  

• Decision Trees (DT) – Decision boundaries are determined via iterative perpendicular 

partitioning of the feature space [108]. 

• Support Vector Machines (SVM) – Straight lines which maximize the margin of 

separation between classes are solved for, typically with better performance than LDA 

among other methods [105]. The use of kernel functions enables the feature space to be 

mapped (and later remapped) allowing for good separation with nonlinear boundaries. 

The kernel function considered here include linear (the unitary kernel function), 

polynomial, and radial basis function (RBF, sometimes referred to as a Gaussian kernel 

function). SVMs also typically feature one hyperparameter which can be tuned to the 

data (for instance, the spread of the RBF kernel) [111] . 

• Neural Networks (NN) – A network of weight functions are tuned to training data to 

output a classification probability for later test data points (the class with the greatest 



144 

 

probability being assigned) [106]. The NN architecture used herein is shallow, meaning 

it features only a single hidden layer of nodes. The number of nodes in the hidden layer 

serves as a hyperparameter that can be tuned to the data, although 10 nodes were used 

in this analysis to avoid overfitting to the training data.  

Figure 5.9 shows partitioned feature spaces for six of the classification strategies 

employed. The classifiers were trained with 70% of the generated data, then evaluated with 

the remaining 30% of test data. The Correct Classification Rate (CCR) is defined as the 

percentage of all of the test data that were correctly assigned to the correct damage type. 

Generally, all of the methods showed good performance, with the possible exception of 

LDA (which is expected since discriminant analysis is based on the errant assumption that 

the classes are normally distributed in the feature space). The more adaptable classifiers 

tend to perform very well, with CCRs above 96%. 
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Figure 5.9: Partitioned feature space for six of the classification algorithms investigated. The correct 

classification rate of the test data is shown in the heading of each plot. With the exception of LDA, all 

methods resulted in >90% correct classification of the test data. 
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The training-then-test sequence was performed a total of 50 times for each classifier, 

with random permutations of training/test data, and the mean of each resulting CCR was 

computed to avoid outlying samples. The average classification performance of each classifier 

investigated, using RMS displacement data, are displayed in Table 5.1. The four best 

performing classifiers were determined to be KNN, Polynomial SVM, Radial Basis Function 

(RBF) SVM, and NN. 

Table 5.1: Average Correct Classification Rate of each classifier 

investigated. The best performing classifiers are highlighted. 

  

 As previously mentioned, some of the classifiers listed in Table 5.1 possess 

hyperparameters, which are, in essence, additional user-defined ‘knobs’ that affect classifier 

performance. Intuitively, hyperparameters allow a user to ‘tune’ a classifier to maximize class 

separation without overfitting to the training data [103]. Hyperparameter sweeps were 

performed to optimize the hyperparameters and achieve optimal CCR. Figure 5.10 shows the 

hyperparameter sweeps for the K-Nearest Neighbor and Support Vector Machine classifiers. 

The CCR was only moderately dependent on values of 𝐾 ranging from 1 to 20, with best 

performance for 𝐾 = 5. For each of the SVM classifiers, the optimal hyperparameter value was 
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found to be approximately unity for linear, polynomial, and RBF kernels and polynomial-SVM 

generally outperformed linear and RBF SVMs, albeit slightly. 

 

Figure 5.10: Hyperparameter sweeps for KNN (left) and SVM (right) classifiers. Classification 

performance was only subtly dependent on the hyperparameter values, with the optimal 𝐾 = 5 and the 

SVM hyperparameters ~1.  

 

It is important to note that, up to this point, all classification results have been predicated 

on knowing the RMS displacement of the plate as a function of frequency, which necessitates 

vibrational measurements over the entire surface of the plate. In practice such a measurement 

is likely challenging and/or expensive, or even impossible. A simpler, more obtainable 

measurement is that of a single acoustic receiver at some distance from the vibrating structure. 

To test the utility of an acoustic approach, a Rayleigh integral was used to model the acoustic 

response of the many test cases, and the subsequent frequency responses were computed for 74 

receiver locations equispaced on a hemisphere centered at the plate. For each receiver location, 

the following classification approach was performed using a KNN (𝐾 = 5) classifier, and the 
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average CCR is plotted for each receiver location in Figure 5.11, for receiver ranges of 0.25 m 

(nearfield), 1.0 m, and 10 m (farfield). 

 

Figure 5.11: Remote acoustic classification results at various receiver positions relative to the plate. 

Results are shown for receiver ranges of 0.25 m (left), 1.0 m (center), and 10 m (right). The lightest dots 

correspond to 83% CCR and the darkest points correspond to 98% CCR. The ‘comp CRR’ results are 

for random batches of 10 composited receiver locations. 

 

 Referencing Figure 5.11, two results are immediate; on average, a remote acoustic 

receiver performs slightly worse that the RMS displacement measurements (CCR ~ 93% vs 

CCR ~98%), and there is no easily identifiable spatial trend for the CCR across the receiver 

locations. In general, it appears that any single, arbitrary receiver location is likely to perform 

worse that using RMS displacement data, with particularly disadvantageous receiver locations 

yielding CCR ~ 84% (at a range of 10 m). However, when data from a batch of receiver 

locations is used to train the classifier, performance is found to increase. Particularly, several 

random batches of 10 receiver locations were used to train the classifier, resulting in a 

composite CCR that was found to consistently perform above 96%, close to that achievable 



149 

 

with displacement data. This shows promise that by using several random receiver locations, 

robust and accurate classification is achievable with remote acoustic measurements. 

 

5.5 Experimental validation 

An experimental test apparatus, shown in Figure 5.13, was used to validate the simulated 

results. A clamped 12”x12”x1/16” aluminum plate was base-excited from below by an 

electrodynamic shaker outputting a 16 second linear-swept chirp from 100-2000 Hz. A laser 

Doppler vibrometer was used to measure the RMS deflection of the plate as a function of 

excitation frequency from 100-2000 Hz. This was done for two cases, the undamaged baseline 

plate, and a plate with a 3.8 cm (12.5% plate length) cut perpendicular to one of the sides of the 

plate. The RMS deflection curves are shown in Figure 5.12. The presence of the cut noticeably 

alters the frequency response, generally shifting the resonance peaks to lower frequencies. The 

measured response of the undamaged plate also agrees well with the simulated behavior within 

the excitation band 

 

Figure 5.12: RMS deflection frequency response curves for the undamaged baseline plate 

(black) and a plate with a cut (red). The presence of the cut changes the peak shapes and locations, 
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generally by shifting them to lower frequencies. The simulated response of the undamaged plate is 

shown via the dashed line, and is in nominal agreement with the measured responses.   

Sound cast from the plate was measured at the center receiver of a 15-element uniform 

line array at a range of 1 m and height of 0.4 m relative to plate center. The response of a 

healthy, undamaged (baseline) plate was first measured at the receiver. Then damage was added 

in the form of a 0.5” cut extending from one side of the plate and new acoustic measurements 

were taken. This procedure was repeated five more times, increasing the cut length in half inch 

increments to a maximum length of 3.0”. The top right inset of Figure 5.13 shows the test plate 

with a 1.5” through cut. In total, six damage cases and one baseline case were investigated. 

 

 

Figure 5.13: Experimental test apparatus for the remote acoustic measurement of vibrating plates. The 

nominally clamped test plate (top right) is excited from below with an electrodynamic shaker (bottom 

right). An array of microphones (left) placed roughly 1 m from the plates were used to record radiated 

sound. 
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The magnitude frequency responses of the acoustic measurements were computed for 

the cut and baseline cases. Features were extracted using the same dilation correlation approach 

previously discussed, correlating each cut case with the single baseline case. A 1 Hz smoothing 

window (16 samples) was applied to the frequency response data to reduce fluctuations (1 Hz 

was selected based on the 1 Hz sampling resolution of the simulated data).  

 

 

Figure 5.14: Empirical results from the feature extraction procedure for various length cuts using remote 

acoustic measurements. An example of the dilation correlation between the baseline and 3” cut case are 

shown (left). The feature set corresponding the six empirical cut cases is superimposed over the 

simulated feature space corresponding to a single receiver in the same relative location as in the 

measurements (right). 

 

 Figure 5.14 shows an example dilation correlation curve between measured baseline 

plate, and the same plate with a 3” cut. It is notable that, both in simulation and experiment, 

dilation correlation values are generally lower for acoustic data than for RMS displacement 
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data. The extracted feature set for all six measured cut cases is also provided in Figure 5.14, 

superimposed onto the feature space derived from the simulated acoustic response data at a 

theoretical receiver with the same geometry. The measured cases fall well within the grouping 

of cut cases, indicating good agreement between simulation and measurement. Further, the 

color of the circular markers (for both simulated and measured cases) corresponds to the cut 

length (e.g. 1.0” cut cases are red, 2.0” cut cases are green), and again, good agreement can be 

seen between simulated and measured cut cases in regards to the effect of cut length. Additional 

dilational correlation curves for other cut lengths are included in Figure 5.15 
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Figure 5.15: Dilation correlation feature extraction using a single remote acoustic receiver data at 3 

meter range. At top left, is the baseline frequency response in black. Below, in red, are the frequency 

responses corresponding to a plate with a 0.5-3.0” cut. To the right are the corresponding dilation 

correlation curves, with the peak correlation value indicated with a colored marker, corresponding to 

Figure 5.14. 
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Additional acoustic measurements were conducted for various levels of fastener failure 

damage. Fastener failures were experimentally approximated by releasing one or more of the 

sixteen toggle clamps seen in Figure 5.13. Three cases were considered in order of increasing 

severity: 1) a single toggle clamp removed at a corner, 2) a single toggle clamp removed in the 

middle of a side, and 3) an entire side of four toggle clamps is removed. Acoustic recordings 

were collected at a 3 m range from the plate. The dilational correlation curves for these three 

cases are shown in Figure 5.16. A 1 Hz smoothing window was applied to the frequency 

response curves. 

 

Figure 5.16: Dilation correlation curves for the measured acoustic response of a vibrating plate with 

synthetic fastener failure. Schematics at the left indicate which clamp(s) were removed (red dots) and 

which clamps remained in place (blue dots). 
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Figure 5.17 shows the complete feature space including experimental results for both 

cuts and fastener-failures (unclamping). Even with a limited number of experimental data 

points, it is clear that the empirical results agree well with the simulated cases, overlapping 

strongly with their respective groups. These results are promising for applications involving 

more complex structures or more realistically modeled damage, assuming that sufficiently 

accurate finite element models are available for both. 

 

 

Figure 5.17: Acoustic response dilational correlation feature space, superimposed with experimental 

data points for cuts (large circles) and fastener failures (white squares). Both sets of experimental data 

agree well with the simulated training data. 
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 With a populated feature space, and promising overlap between experimental and 

measured acoustic data, an preliminary attempt was made at extending the classification method 

to address the question of damage severity, specifically “given this recorded change in the 

acoustic frequency response relative to baseline, what is estimated length of a classified cut?”. 

To address this question, which encroaches on the Evaluation component of SHM outlined in 

Figure 1.1, a regression analysis was performed the 2D feature space, using all of the 250 

simulated cut cases, with dilation and maximum dilation correlation serving as the two inputs, 

and cut length serving as the regression output. Using Bayesian Linear Regression [112], a 

model was fit to the training data, along with associated uncertainty. Figure 5.18 shows the 95% 

confidence interval (±2 standard deviations) of the fitted model which contains the six measured 

damage cases (0.5-3.0 inch cuts, with 0.5 inch intervals). 

 

Figure 5.18: Regression analysis for extracting cut length from classification features. The feature space 

(left) is populated with 250 simulated cut cases (small circles), in addition to 6 measured cut cases (large 

circles) spanning from 0.5-3.0 inches in half-inch increments. The 95% confidence interval of the linear 

fit is shown (right), which contains the six measured damage cases (black circles), indicating that 

extracting cut size (estimating damage severity) is feasible within the 0.5-3.0 cut length range.  
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Notably, cut cases were only simulated for cut sizes down to 1.0 inch, so the 0.5 inch 

measured case is actually an extrapolation from the training data. Similar regression results 

were achieved with the use of nonlinear parametric fits, SVM regression, and neural nets. These 

results are promising, but the current 2D feature space is likely insufficient for accurate and 

precise estimation of damage severity (i.e. estimation with low uncertainty). This is die to the 

significant amount of overlap between the distinct damage cases, particularly for small damage 

severity (the color overlap at the left of Figure 5.18). Improved classification features, along 

with a broader range of simulated damage severity, would likely serve to improve the estimation 

of damage severity using remote acoustic measurements. 

 

 

5.6 Conclusions 

 A feasibility study was conducted for the remote acoustic classification of damage in 

vibrating plates. Three classes of damage were investigated – cuts, corrosion, and boundary 

failures – and vibroacoustic data, generated from Monte Carlo finite element simulations for 

each class of damage, was used to train and evaluate classifiers. Features input into the 

classifiers were extracted using a dilational correlation between the frequency responses of each 

damage case and a ‘healthy’ simulated baseline case. When purely vibrational data were 

considered (i.e. RMS displacement of the plate vs frequency), test data were classified with 

roughly 97% accuracy using easily implementable KNN, SVM, and NN classification 

strategies. When remote acoustic data were used, classification rates were generally lower 

(~93%) and dependent on receiver location, with no clear trend as to which locations are 
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optimal. However, it was found that training with data from roughly 10 randomly placed 

receivers was sufficient for robust classification rates of 96%, commensurate with that achieved 

using more difficult-to-obtain displacement data. Preliminary experiments with various length 

cuts and amounts of unclamping in a 12”x12”x1/16” aluminum plate agreed well with 

simulations, which is promising for the applicability of data-driven damage classification 

methods. 
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Chapter VI: Summary & Conclusions 

 

6.1 Summary 

 Damage in structures is often detrimental to their longevity, performance, and safety; 

and proper monitoring of damage is of extreme importance in many fields. Fortunately, the 

presence of damage generally results in measurable changes to a structure’s vibroacoustic 

behavior which can be exploited for structural health monitoring (SHM). Though many 

methods exist for SHM the vast majority necessitate either: 1) that the structure is outfitted with 

dedicated sensors which serve to continuously monitor the structure actively or passively, or 2) 

a secondary system is employed which scans/interfaces with the structure, typically in close 

proximity. The drawback of the first set of methods is that dedicated sensors may be costly, 

they may interfere with the functionality or couple with the structure itself, and, for decades-

long structural lifetimes, it may be challenging to distinguish faults in the structure from faults 

in the sensors. Drawbacks of the second set of methods, using deployable scanning systems, is 

that these systems also generally require close proximity to a test structure which may be 

difficult, time consuming, or costly to accomplish in situ. 

 In this thesis, an assortment of techniques was developed for remote acoustic sensing of 

structural changes (damage) in the canonical structure of a vibrating plate. Passive remote 

acoustic sensing (i.e. listening) for changes in a structure’s acoustic response, can be performed 

at a distance with a relatively simple array of acoustic transducers that can be maintained 
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independently of the test structure. These beneficial properties could serve to reduce 

maintenance costs and increase measurement feasibility and reliability. For example, the use of 

a hydrophone array could be used to monitor sound radiated from a vessel leaving, then later 

returning, to a harbor; and significant changes to the acoustic signature of said vessel could be 

used to generate an alert recommending inspection and/or maintenance. However, remote 

acoustic methods are accompanied by some difficulties including complexities associated with 

acoustic propagation (e.g. multipath and reverberation), exogenous sources of noise, and the a 

priori-unknown sensitivity of the radiated acoustic field to structural damage. This thesis 

addresses these topics and is chapter-by-chapter summarized in the following paragraphs. 

 Chapter 2 details the methods and tools used throughout this thesis. Several array signal 

processing methods are outlined, which are used throughout later chapters. The experimental 

tools including the test apparatus, various sensors, and data acquisition devices are described. 

A discussion of the finite element techniques and acoustic coupling models used for simulating 

the vibroacoustic behaviors of damaged plates is also included. 

 Chapter 3 discusses the detection of damage in vibrating plates. A baseline-comparison 

method using remote receiver measurements is used to detect damage with statistically-

quantified certainty. Of primary interest is the effectiveness of various detection metrics, the 

dependence on the character of the input forcing, and robustness to geometric error (i.e. receiver 

placement error) in unknown reverberant environments. 

 Chapter 4 discusses the localization of damage in vibrating plates. A high-resolution 

acoustic beamformer was developed (as an extension to an existing beamformer) to localize 

small changes in an otherwise loud, coherent acoustic field via a baseline subtraction. This 
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technique is evaluated through simulation and experiment and is applied for the localization of 

several damage types on actual plates. 

 Chapter 5 discusses the classification of damage in vibrating plates. A data-driven 

approach is used for the classification of various damage types using Monte Carlo finite element 

simulations of damaged plates as training data. Physics-based features sensitive to the different 

damage types are exploited for classification, and classification performance is investigated for 

different classification schemes. Additional comparisons between vibration-based 

classification and acoustic-based classification are also included. 

 Though the scope of this thesis was limited to the remote acoustic monitoring of 

vibrating square plates, the underlying techniques can theoretically be generalized to more 

specific, practical structures. As none of the methods summarized above are inherently model-

based, they should be extendable to other structures provided: 1) the structures repeatably 

radiate sound while in operation, 2) the presence of damage affects the vibroacoustic behavior, 

and 3) the frequency bandwidth of the vibration encompasses several structural modes. 

Fortunately these constraints are met in a number of real-world systems. For instance, naval 

ships and submarines are known to possess measureable and consistent acoustic signatures 

[113, 114], and, due to the plate-like nature of their hulls, the vibroacoustic behaviors of these 

structures are sensitive to damage. Moreover, these structures radiate sound from <10 Hz, well 

into the kiloHertz regime, exciting many modes. Though testing and validation experiments 

would need to be performed for these and other structures, the scaling-up of these methods is 

likely feasible. 
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6.2 Conclusions 

This thesis work has yielded the following unique conclusions relevant for remote acoustic 

sensing of structural health: 

 

6.1 – Remote acoustic structural health monitoring can be studied with a modular test 

apparatus for broadband base-excitation of a 0.30-m-by-0.30-m square plate with 

clamped edges. 

 Detailed in Section 2.2.2 Plate vibration rig and depicted in Figure 2.13, an experimental 

apparatus was constructed to investigate the vibrational and acoustic effects of various 

forms of damage on square plates. With the use of microphone arrays (Figure 2.9) and a 

laser Doppler vibrometer (Figure 2.15), precise measurements of changes in vibrational 

modes and the acoustic radiated signature were measured for several damage cases of 

common interest. Some of these findings include the localized vibrational effects of cuts 

on an aluminum plate (Figure 4.14), and delamination in a carbon fiber composite plate 

(Figure 3.21). 

 

6.2 – Physically synthesized damage to a square vibrating plate, including through cuts, 

fastener failures, and delamination, can be remotely detected. 

 Using the detection procedure detailed in Figure 3.14, remote acoustic detection of 

damage in vibrating plates was achieved by statistically comparing baseline (healthy) 

recorded measurements with potentailly damaged plate measurements. Several metrics 
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were investigated to quantify similarity-to-baseline, and the most well-rounded metric 

was found to be a correlation of power spectra (see Table 3.4). This procedure, shown to 

be effective for both deterministic and stochastic input forcing, was used to detect cuts as 

small as 1.3 cm in a 30-cm-square aluminum plate with greater than 99% probablity of 

detection and less than 1% probabilityof false alarm (see Figure 3.16 and Section 3.2.3 

Results & analysis for detection of cuts). Similar findings were reported for synthesized 

fasterner/boundary failures (Section 3.1.2 Results and analysis) and delamination in 

composite plates (Section 3.3 Detection of delamination in composite materials). In the 

case of negligible reverberation (and/or perfectly repeatable source-receiver geometry 

between baseline and test measurements), greater than 99% detection was achievable 

using only a single acoustic receiver. 

 

6.3 – Remote acoustic detection of damage can be made more robust in reverberant 

environments by incorporating a blind deconvolution step into the detection procedure. 

 Unprocessed recordings made in reverberant environments were found to be corrupted by 

multipath propagation, leading to poor detection performance even for slight changes in 

source-to-receiver geometry (or in the environmental geometry) between baseline and test 

measurements. Implementation of the Synthetic Time Reversal (STR) algorithm (Section 

2.1.2 Synthetic Time Reversal) for blind deconvolution was found to significantly 

improve the robustness of the remote acoustic detection procedure. For a receiver array 

3 meters from the plate, a 108 mm shift of the array between baseline and test 

measurements resulted in poor detection performance of a 1.3 cm cut on par with a 50/50 
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coin flip (see Figure 3.18). With STR, the probability of detection for the same cut was 

improved to greater than 99%. Furthermore, it was found that as few as four equispaced 

receivers were required for STR to be effective (see Figure 3.18). 

 

6.4 – A method was developed for constructing composite plates with known built-in 

delamination and such delamination is remotely detectable using the techniques 

described in the prior two conclusions. 

 A method of synthesizing delamination in composite carbon fiber plates was presented 

(Section 3.3 Detection of delamination in composite materials) and remote acoustic 

detection of this damage was achieved for delamination patch sizes as small as 

2.5 x 2.5 cm in a 30 cm square plate. Delamination-type damage is of particular 

noteworthiness because it is both common and visually indetectable since if occurs below 

a structure’s surface. 

 

6.5 – An existing method of high-resolution acoustic beamforming originally limited to 

incoherent acoustic source can be extended to distributed (spatially extended) coherent 

acoustic sources. 

 A pre-existing acoustic high-resolution beamformer that was developed for use with 

incoherent noise-like sources was extended in applicability to coherent sources by 

implementing a subarray averaging step into the formulation (see Section 4.3.2 Subarray 

averaging). In addition to the structural health monitoring applications discussed herein, 
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this contribution is relevant in fields of study where source localization is plagued by 

coherent effects, such as multipath in underwater acoustic scenarios, or 

jamming/interference in radar applications. 

 

6.6 – High-resolution localization of small changes in a distributed coherent acoustic source 

is possible using a novel technique, the Spectral Estimation Method with Coherent 

Background Removal (SEMCBR), developed here for this purpose. 

 SEMCBR was developed and tested; it combines the beamformer of Conclusion 6.5 with 

an additional baseline subtraction step, allowing for the localization of small acoustic 

changes in an otherwise loud spatially-extended coherent sound source. This method was 

evaluated through simulation and experiment (see Figure 4.12 and Section 4.3.3 

Validation experiment) and could be potentially relevant for applications involving the 

detection or localization of small changes in machines, automobiles, loudspeakers, etc. 

 

6.7 –Synthesized damage including through cuts, fastener failures, and delamination in 

broadband excited plates can be localized with the SEMCBR method, described in 

Conclusion 6.6, with improved resolution compared to the conventional method. 

 Using a baseline subtraction technique for a localization of small changes in the response 

of various damaged plates, cuts (Figure 4.17), fastener failures (Figure 4.18), and 

delamination (Figure 4.19) were all successfully localized using SEMCBR. In all cases 
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SEMCBR yielded better resolution, and a more robust localization output than 

conventional methods. 

 

6.8 – Simulation-based data-driven damage classification using vibration signatures and/or 

remote acoustic measurements is possible for vibroacoustic systems. 

Using Monte Carlo finite element simulations of a system with randomized, labeled 

damage, various classifiers were trained and evaluated based on the modeled vibrational 

or acoustic sensor responses. A physically-meaningful feature set (defined in Section 5.3 

Classification methodology) was implemented which yielded 97% correct classification 

rates of simulated cut, corrosion, and fastener failure damage types. Results indicate that 

direct vibrational measurements yield better classification performance than remote 

acoustic measurements, however, when multiple acoustic receivers (i.e. an array) is used, 

the classification performance is nearly equal for both techniques. Additionally, 

comparisons between measured recordings of cut plates showed good agreement with 

simulated outcomes (Figure 5.14). 
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