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Abstract

This dissertation concerns estimation and inference using partitioning-based least

squares estimators in nonparametric and semiparametric models.

Chapter II studies the large sample properties of partitioning-based estimators in

a standard nonparametric regression model. First, a general characterization of their

leading asymptotic bias is obtained, based on which several bias-corrected estimators

are proposed. Second, integrated mean squared error (IMSE) approximations for the

point estimator are established for principled tuning parameter selection. Third, point-

wise and uniform inference methods are developed with and without bias correction

techniques. In particular, the uniform inference results rely on novel uniform distri-

butional approximations for the undersmoothed and robust bias-corrected t-statistic

processes. In the univariate case, they require seemingly minimal rate restrictions and

improve on the approximation rates known in the literature.

Chapter III examines binscatter, a particular application of partitioning-based

methods to semiparametric partial linear models. An array of theoretical and practical

results is offered, including principled number of bins selection, confidence intervals and

bands, hypothesis tests for parametric and shape restrictions of the regression function,

and several other new methods applicable to canonical binscatter and higher-order

polynomial, covariate-adjusted, and smoothness-restricted extensions.

Chapter IV concerns the methodology for implementing these results. I first

discuss several commonly used basis expansions. Their leading approximation errors

are presented, which can be used for tuning parameter selection and bias-corrected

inference. Subsequently, I give a more detailed IMSE approximation for the special

case of a tensor-product partition. Using these results, I propose two data-driven

procedures (rule-of-thumb and direct plug-in) for tuning parameter selection. Finally,

an empirical example and simulation evidence are provided.
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Chapter I

Introduction

Nonparametric and semiparametric methods are important tools for researchers in

economics and many other disciplines. Compared to classical parametric approaches,

they allow for more flexible functional form assumptions. This dissertation focuses

on the popular class of partitioning-based least squares estimators, including splines,

piecewise polynomials, and compactly supported wavelets. Such methods have been

widely used in the study of treatment effects (Cattaneo and Farrell, 2011a), empirical

finance (Cattaneo, Crump, Farrell, and Schaumburg, 2019a), and binscatter analysis

(Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan, 2011), among many other

applications. From a theoretical perspective, they form the basis of many classical

nonparametric series methods (Newey, 1997; Belloni, Chernozhukov, Chetverikov, and

Kato, 2015; Chen, 2007) and relate to other modern machine learning techniques, such

as regression trees (Breiman, Friedman, Stone, and Olshen, 1984; Hastie, Tibshirani,

and Friedman, 2009) and trend filtering (Tibshirani, 2014).

The partitioning-based least squares methods are characterized by two features.

First, the support of covariates is partitioned into non-overlapping cells and a set

of local basis functions are constructed on top of the partition. Second, the final fit

is determined by a least squares regression using these bases. The key distinguish-

ing characteristic is that each basis function is nonzero on only a small, contiguous

set of cells of the partition. This contrasts with, for example, global polynomial

approximations.

This dissertation aims to offer valid, easy-to-implement estimation and inference

procedures using partitioning-based estimators in nonparametric and semiparametric

models. Chapter II, joint with Matias Cattaneo and Max Farrell, studies the large

sample properties of such estimators in a standard nonparametric regression setup.

First, we obtain a general characterization of their leading asymptotic bias, based on

which several bias-corrected estimators are proposed. Second, we establish integrated

mean squared error (IMSE) approximations for the point estimator, which can be

used for principled tuning parameter selection. Third, we develop pointwise inference
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methods based on undersmoothing and robust bias correction. Fourth, by employing

different coupling approaches, we develop uniform distributional approximations for

the undersmoothed and robust bias-corrected t-statistic processes and construct valid

confidence bands. In the univariate case, the uniform distributional approximations

require seemingly minimal rate restrictions and improve on the approximation rates

known in the literature.

Completely nonparametric models are subject to the curse of dimensionality when

there are multiple covariates, and semiparametric models are often employed in such

cases. Chapter III, joint with Matias Cattaneo, Richard Crump and Max Farrell,

focuses on binscatter, a very popular tool in applied microeconomics that can be

viewed as a semiparametric partial linear regression with a nonparametric component

estimated using partitioning-based methods. We offer several theoretical and practical

results that aid both in understanding current practices (i.e., their validity or lack

thereof) and in offering theory-based guidance for future applications. The main results

include principled number of bins selection, confidence intervals and bands, hypothesis

tests for parametric and shape restrictions of the regression function, and several other

new methods that are applicable to canonical binscatter and higher-order polynomial,

covariate-adjusted, and smoothness-restricted extensions. In particular, we highlight

important methodological problems related to covariate adjustment methods used in

current practice.

Chapter IV concerns several methodological issues related to the implementation

of these methods. First, I discuss three commonly used basis expansions. In particular,

the leading approximation errors are presented, which can be used for tuning param-

eter selection and bias-corrected inference. Second, I specialize the general IMSE

approximation given in Chapter II to a more detailed result for partitioning schemes

formed via tensor products of intervals, which is usually of more practical interest.

Third, using these results, I propose two data-driven procedures (rule-of-thumb and

direct plug-in) for tuning parameter selection. Finally, an empirical example and

simulation evidence are provided.

2



Chapter II

General Large Sample Properties

2.1 Introduction

This chapter studies the standard nonparametric regression setup, where {(yi,x′i), i =

1, . . . n} is a random sample from the model

yi = θ(xi) + εi, E[εi|xi] = 0, E[ε2
i |xi] = σ2(xi), (2.1)

for a scalar response yi and a d-vector of continuously distributed covariates

xi = (x1,i, . . . , xd,i)
′ with compact support X . The object of interest is the unknown

regression function θ(·) and its derivatives. We focus on general large sample properties

of partitioning-based, or locally-supported, series (linear sieve) least squares regression

estimators. These methods first partition the support of covariates, and then construct

a set of local basis functions on top of it, each of which is nonzero on only a small

number of cells of the partition. The final fit is determined by a least squares regression

using these bases. Concrete examples are splines, piecewise polynomials and compactly

supported wavelets. For this class of estimators, we develop novel bias approximations

and pointwise and uniform estimation and inference results, with and without bias

correction techniques.

A partitioning-based estimator is made precise by the partition of X and basis

expansion used. Let ∆ = {δl ⊂ X : 1 ≤ l ≤ κ̄} be a collection of κ̄ open and

disjoint sets, the closure of whose union is X (or, more generally, covers X ). δl is

restricted to be polyhedral, which allows for tensor products of (marginally-formed)

intervals as well as other popular partitioning shapes. Based on this partition, the

dictionary of K basis functions, each of order m (e.g., m = 4 for cubic splines) is

denoted by xi 7→ p(xi) := p(xi; ∆,m) = (p1(xi; ∆,m), · · · , pK(xi; ∆,m))′. For x ∈ X
and q = (q1, . . . , qd)

′ ∈ Zd+, the partial derivative ∂qθ(x) is estimated by least squares
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regression

∂̂qθ(x) = ∂qp(x)′β̂, β̂ ∈ arg min
b∈RK

n∑
i=1

(yi − p(x)′b)2, (2.2)

where ∂qθ(x) = ∂q1+···+qdθ(x)/∂q1x1 · · · ∂qdxd (and for boundary points defined from

the interior of X as usual), and θ(x) := ∂0θ(x).

The approximation power of this class of estimators comes from two user-specified

parameters: the granularity of the partition ∆ and the order m ∈ Z+ of the basis. The

choice m is often fixed in practice, and hence we regard ∆ as the tuning parameter for

this class of nonparametric estimators. Under the assumptions given later, κ̄→∞ as

the sample size n→∞, and the volume of each δl shrinks proportionally to hd, where

h = max{diam(δ) : δ ∈ ∆} serves as a universal measure of the granularity. Thus, as

κ̄→∞, hd vanishes at the same rate, and with each basis being supported only on a

finite number of cells, K diverges proportionally as well.

The first contribution, in Section 2.3, is a general characterization of the bias of

partitioning-based estimators, which is later used for robust bias corrected inference

and for tuning parameter selection. The generic bias approximation will be specialized

to splines, wavelets, and piecewise polynomials in Chapter IV, leading to novel bias

representations.

The second contribution, in Section 2.4, is a general integrated mean squared

error (IMSE) expansion for partitioning-based estimators. These results lead to IMSE-

optimal partitioning choices, and hence deliver IMSE-optimal point estimators of

the regression function and its derivatives. We show that the IMSE-optimal choice

of partition granularity obeys hIMSE � n−1/(2m+d), which translates to the familiar

KIMSE � n−d/(2m+d), and give a precise characterization of the leading constant. For

simple cases on tensor-product partitions, some results exist for splines (Agarwal and

Studden, 1980; Zhou, Shen, and Wolfe, 1998; Zhou and Wolfe, 2000) and piecewise

polynomials (Cattaneo and Farrell, 2013). In addition to generalizing these results

substantially (e.g., allowing for more general support and partitioning schemes), our

characterization for compactly supported wavelets (discussed in Chapter IV) appears

to be new.

The IMSE-optimal partition scheme, and consistent implementations thereof, can

not be used directly to form valid pointwise or uniform (in x ∈ X ) inference procedures.

From a nonparametric inference perspective, undersmoothing is a theoretically valid

approach (i.e., employing a finer partition than the IMSE-optimal one), but it is

difficult to implement in a principled way. Inspired by results proving that under-
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smoothing is never optimal relative to bias correction for kernel-based nonparametrics

(Calonico, Cattaneo, and Farrell, 2018b), we develop three robust bias-corrected infer-

ence procedures using our new bias characterizations of partitioning-based estimators.

These methods are more involved than their kernel-based counterparts, but are still

based on least-squares regression using partitioning-based estimation. Specifically,

we show that the conventional partitioning-based estimator ∂̂qθ(x) and the three

bias-corrected estimators we propose have a common structure, which we exploit to

obtain general pointwise and uniform distributional approximations under weak (some-

times minimal) conditions. These robust bias correction results for partitioning-based

estimators, both pointwise and uniform in x, appear to be new to the literature. They

are practically useful because they allow for mean squared error minimizing tuning

parameter choices (e.g., “rule-of-thumb”, “plug-in”, or “cross-validation” methods),

thus offering a data-driven method combining optimal point estimation and valid

inference, both employing the same partitioning scheme.

Section 2.5 establishes pointwise in x ∈ X distributional approximations for both

conventional and robust bias-corrected t-statistics based on partitioning-based estima-

tors. These pointwise distributional results are made uniform in Section 2.6, where

we establish a strong approximation for the whole t-statistic processes, indexed by

the point x ∈ X , covering both conventional and robust bias-corrected inference.

To illustrate, Section 2.6.3 constructs valid confidence bands for (derivatives of) the

regression function using our uniform distributional approximations. When compared

to the current literature, we obtain a strong approximation to the entire t-statistic

process under either weaker or seemingly minimal conditions on the tuning parameter

h (i.e., on K or κ̄), depending on the case under consideration.

Finally, Section 2.7 concludes. Appendix A gives proofs of our main results.

2.1.1 Related Literature

This paper contributes primarily to two literatures, nonparametric regression and

strong approximations. There is a vast literature on nonparametric regression, sum-

marized in many textbook treatments (e.g., Fan and Gijbels, 1996; Györfi, Kohler,

Krzyżak, and Walk, 2002; Wasserman, 2006; Horowitz, 2009; Ruppert, Wand, and

Carroll, 2009, and references therein). Of particular relevance are treatments of series

(linear sieve) methods in general, and while some results concerning partitioning-based

estimators exist, they are mainly limited to splines, wavelets, or piecewise polyno-

mials, considered separately (Newey, 1997; Huang, 1998; Zhou, Shen, and Wolfe,
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1998; Huang, 2003; Chen, 2007; Cattaneo and Farrell, 2013; Belloni, Chernozhukov,

Chetverikov, and Kato, 2015; Chen and Christensen, 2015; Belloni, Chernozhukov,

Chetverikov, and Fernandez-Val, 2018). Piecewise polynomial fits on partitions have a

long and ongoing tradition in statistics, dating at least to the regressogram of Tukey

(Tukey, 1961a), continuing through Stone (1982) (named local polynomial regres-

sion therein) and Györfi, Kohler, Krzyżak, and Walk (2002); Cattaneo and Farrell

(2013), and up to modern, data-driven partitioning techniques such as regression

trees (Breiman, Friedman, Stone, and Olshen, 1984; Hastie, Tibshirani, and Friedman,

2009), trend filtering (Tibshirani, 2014), and related methods (Zhang and Singer,

2010). Partitioning-based methods have also featured as inputs or preprocessing in

treatment effects (Cattaneo and Farrell, 2011a; Calonico, Cattaneo, and Titiunik,

2015), empirical finance (Cattaneo, Crump, Farrell, and Schaumburg, 2019b), “binscat-

ter” analysis (Cattaneo, Crump, Farrell, and Feng, 2019b), and other settings. The

bias corrections we develop for series estimation and uniform inference follow recent

work in kernel-based nonparametric inference (Calonico, Cattaneo, and Titiunik, 2014;

Calonico, Cattaneo, and Farrell, 2018b,a). Our coupling and strong approximation

results relate to early work discussed in Eggermont and LaRiccia (2009, Chapter 22)

and the more recent work in Chernozhukov, Lee, and Rosen (2013), Chernozhukov,

Chetverikov, and Kato (2014a,b, 2015, 2016) and Zhai (2018), as well as with the

results for series estimators in Belloni, Chernozhukov, Chetverikov, and Kato (2015)

and Belloni, Chernozhukov, Chetverikov, and Fernandez-Val (2018). See also Zaitsev

(2013) for a review on strong approximation methods, and background references.

Finally, see Hall and Horowitz (2013), and references therein, for related work on valid

confidence bands for (derivatives of) the regression function.

2.1.2 Notation

For a d-tuple q = (q1, . . . , qd) ∈ Zd+, define [q] =
∑d

j=1 qj, xq = xq11 x
q2
2 · · ·x

qd
d and

∂qθ(x) = ∂[q]θ(x)/∂xq11 . . . ∂xqdd . Unless explicitly stated otherwise, whenever x is a

boundary point of some closed set, the partial derivative is understood as the limit

with x ranging within it. Let 0 = (0, · · · , 0)′ be the length-d zero vector. We set

θ(x) := ∂0θ(x) and θ̂j(x) := ∂̂0θj(x) for j = 0, 1, 2, 3 and collect the covariates as

X = [x1, . . . ,xn]′. The tensor product or Kronecker product operator is ⊗. The

smallest integer greater than or equal to u is due. For two random variables X and Y ,

X =d Y denotes that they have the same probability law.

We use several norms. For a vector v = (v1, . . . , vM) ∈ RM , we write

6



‖v‖ = (
∑M

i=1 v
2
i )

1/2 and dim(v) = M . For a matrix A ∈ RM×N , ‖A‖ = maxi σi(A)

and ‖A‖∞ = max1≤i≤M
∑N

j=1 |aij| for operator norms induced by L2 and L∞ norms,

where σi(A) is the i-th singular value of A, and λmin(A) is the minimum eigenvalue

of A.

We use the usual empirical process notation:

En[g(xi)] =
1

n

n∑
i=1

g(xi), and Gn[g(xi)] =
1√
n

n∑
i=1

(g(xi)− E[g(xi)]).

For sequences of numbers or random variables: an . bn denotes that lim supn |an/bn| is
finite; an = OP(bn) denotes lim supε→∞ lim supn P[|an/bn| ≥ ε] = 0; an = o(bn) denotes

an/bn → 0; an = oP(bn) denotes an/bn →P 0, where →P is convergence in probability;

an � bn denotes an . bn and bn . an. Limits are taken as n → ∞ (and h → 0,

K →∞, when appropriate), unless stated otherwise.

Finally, throughout the paper, rn > 0 denotes a non-vanishing sequence and ν > 0

denotes a fixed constant used to characterize moment bounds.

2.2 Setup

We first make precise our setup and assumptions. Our first assumption restricts the

data generating process.

Assumption II.1 (Data Generating Process).

1. {(yi,x′i) : 1 ≤ i ≤ n} are i.i.d. satisfying (2.1), where xi has compact connected

support X ⊂ Rd and an absolutely continuous distribution function. The density

of xi, f(·), and the conditional variance of yi given xi, σ
2(·), are bounded away

from zero and continuous.

2. θ(·) is S-times continuously differentiable, for S > [q], and all ∂ςθ(·), [ς] = S,

are Hölder continuous with exponent % > 0.

The next two assumptions specify a set of high-level conditions on the partition

and basis: we require that the partition is “quasi-uniform” and the basis is “locally”

supported.

Assumption II.2 (Quasi-Uniform Partition). The ratio of the sizes of inscribed and

circumscribed balls of each δ ∈ ∆ is bounded away from zero uniformly in δ ∈ ∆, and

max{diam(δ) : δ ∈ ∆}
min{diam(δ) : δ ∈ ∆}

. 1,

7



where diam(δ) denotes the diameter of δ.

This condition implies that the size of each δ ∈ ∆ can be well characterized by the

diameter of δ and that we can use h = max{diam(δ) : δ ∈ ∆} as a universal measure

of mesh sizes of elements in ∆. In the univariate case, it reduces to a bounded mesh

ratio. A special case of a quasi-uniform partition is one formed via a tensor product

of univariate marginal partitions on each dimension of x ∈ X , with appropriately

chosen knot positions. If ∆ covers only strict subset of X , then our results hold on

that subset.

We focus on nonrandom partitions in this chapter. Data-dependent partitioning

could be accommodated by sample splitting: estimating the partition configuration in

one subsample and performing inference in the other. In this way, quite general parti-

tions can be used with our results, including data-driven methods such as regression

trees and other modern machine learning techniques. In fact, these modern methods

would typically generate non-tensor-product partitioning schemes. In general, treating

data-dependent partitioning would require non-trivial additional technical work and

further assumptions. We defer general discussion of this to future study, but we note

that Chapter III will provide formal results treating random partitions based empirical

quantiles, and some other specific results are also available in the literature (Breiman,

Friedman, Stone, and Olshen, 1984; Nobel, 1996; Calonico, Cattaneo, and Titiunik,

2015).

The second assumption on the partitioning-based estimators employs generalized

notions of stable local basis (Davydov, 2001) and active basis (Huang, 2003). We say

a function p(·) on X is active on δ ∈ ∆ if it is not identically zero on δ.

Assumption II.3 (Local Basis).

1. For each basis function pk, k = 1, . . . , K, the union of elements of ∆ on which

pk is active is a connected set, denoted by Hk. For all k = 1, . . . , K, both the

number of elements of Hk and the number of basis functions which are active on

Hk are bounded by a constant.

2. For any a = (a1, · · · , aK)′ ∈ RK,

a′
∫
Hk

p(x; ∆,m)p(x; ∆,m)′ dx a & a2
kh

d, k = 1, . . . , K.

3. For an integer ς ∈ [[q],m), for all ς, [ς] ≤ ς,

h−[ς] . inf
δ∈∆

inf
x∈clo(δ)

‖∂ςp(x; ∆,m)‖ ≤ sup
δ∈∆

sup
x∈clo(δ)

‖∂ςp(x; ∆,m)‖ . h−[ς]
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where clo(δ) is the closure of δ, and for [ς] = ς + 1,

sup
δ∈∆

sup
x∈clo(δ)

‖∂ςp(x; ∆,m)‖ . h−ς−1.

Assumption II.3 imposes conditions ensuring the stability of the L2 projection

operator onto the approximating space. Condition II.3(1) requires that each basis

function in p(x; ∆,m) be supported by a region consisting of a finite number of cells

in ∆. Therefore, as κ̄→∞ (and h→ 0), each element of ∆ shrinks and all the basis

functions are “locally supported” relative to the whole support of the data. Another

common assumption in least squares regression is that the regressors are not too

co-linear: the minimum eigenvalue of E[p(xi)p(xi)
′] is usually assumed to be bounded

away from zero. Since the local support condition in Assumption II.3(1) implies a

banded structure for this matrix, it suffices to require that the basis functions are

not too co-linear locally, as stated in Assumption II.3(2). These two assumptions are

very similar to Conditions A.2 and Conditions A.3 in the Appendix of Huang (2003),

and therefore they could also be used to establish theoretical results analogous to

those discussed in that appendix (those results are not explicitly needed in our paper

because our proofs are different). Finally, Assumption II.3(3) controls the magnitude

of the local basis in a uniform sense.

Assumptions II.2 and II.3 implicitly relate the number of approximating series

terms, the number of knots used and the maximum mesh size: K � κ̄ � h−d. By

restricting the growth rate of these tuning parameters, the least squares partitioning-

based estimator satisfying the above conditions is well-defined in large samples. We

next state a high-level requirement that gives explicit expression of the leading ap-

proximation error. For each x ∈ X , let δx be the element of ∆ whose closure contains

x and hx for the diameter of this δx.

Assumption II.4 (Approximation Error). For all ς satisfying [ς] ≤ ς, given in

Assumption II.3, there exists s∗ ∈ S∆,m, the linear span of p(x; ∆,m), and

Bm,ς(x) = −
∑
u∈Λm

∂uθ(x)hm−[ς]
x Bu,ς(x)

such that

sup
x∈X
|∂ςθ(x)− ∂ςs∗(x) + Bm,ς(x)| . hm+%−[ς] (2.3)
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and

sup
δ∈∆

sup
x1,x2∈clo(δ)

|Bu,ς(x1)−Bu,ς(x2)|
‖x1 − x2‖

. h−1 (2.4)

where Bu,ς(·) is a known function that is bounded uniformly over n, and Λm is a

multi-index set, which depends on the basis, with [u] = m for u ∈ Λm.

More common, nonspecific rate assumptions such as supx∈X |∂qθ(x)− ∂qs∗(x)| .
hm−[q] will not suffice for our bias correction and IMSE expansion results; (2.3) is

needed. The rate-only version is implied by our assumptions. The terms Bu,ς(·)
in Bm,ς(·) are known functions of the point x which depend on the particular par-

titioning scheme and bases used. The only unknowns in the approximation error

Bm,ς(·) are the higher-order derivatives of θ(·). In Chapter IV we verify this (and

the other assumptions) for splines, wavelets, and piecewise polynomials, including

explicit formulas for the leading error in (2.3) and give precise characterizations of

Λm. We assume sufficient smoothness exists to characterize these terms: see Calonico,

Cattaneo, and Farrell (2018b) for a discussion when smoothness constrains inference.

The function Bm,ς(·) is understood as the approximation error in L∞ norm, and is

not in general the misspecification (or smoothing) bias of a series estimator. In least

squares series regression settings, the leading smoothing bias is described by two terms

in general: Bm,ς(·) and the accompanying error from the linear projection of Bm,0(·)
onto S∆,m. We formalize this result in Lemma II.1 below. The second bias term is

often ignored in the literature because in several cases the leading approximation error

Bm,0(·) is approximately orthogonal to p(·) with respect to the Lebesgue measure,

that is, if

max
1≤k≤K

∫
Hk
pk(x; ∆,m)Bm,0(x) dx = o(hm+d), (2.5)

under Assumptions II.1–II.4. In some simple cases, (2.5) is automatically satisfied if

one constructs the leading error based on a basis representing the orthogonal com-

plement of S∆,m. When (2.5) holds, the leading term in L∞ approximation error

coincides with the leading misspecification (or smoothing) bias of a partitioning-based

series estimator. When a stronger quasi-uniformity condition holds (i.e., neighboring

cells are of the same size asymptotically), a sufficient condition for (2.5) is simply the

orthogonality between Bu,0(·) and p(·) in L2 with respect to the Lebesgue measure,

for all u ∈ Λm.

For general partitioning-based estimators this orthogonality need not hold. For

example, (2.5) is hard to verify when the partitioning employed is sufficiently uneven,
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as is usually the case when employing machine learning methods. All our main results

hold when this orthogonality fails, and importantly, our bias correction methods

and IMSE expansion explicitly account for the L2 projection of Bm,0(·) onto the

approximating space spanned by p(·).

2.3 Characterization and Correction of Bias

We now precisely characterize the bias of ∂̂qθ(x) under Assumptions II.1–II.4, but not

assuming (2.5). Then, using this result, we develop valid IMSE expansions and three

robust bias-corrected inference procedures. This section focuses on bias correction,

and Section 2.5 presents the associated robust Studentization adjustments for infer-

ence, following the ideas in Calonico, Cattaneo, and Farrell (2018b) for kernel-based

nonparametrics.

Given our assumptions, the estimator ∂̂qθ(x) of (2.2) can be written as

∂̂qθ0(x) := γ̂q,0(x)′En[Π0(xi)yi], (2.6)

where

γ̂q,0(x)′ := ∂qp(x)′En[p(xi)p(xi)
′]−1 and Π0(xi) := p(xi).

The subscript of “0” will differentiate this estimator from the bias-corrected versions

below. We first give a preliminary result.

Lemma II.1 (Conditional Bias). Let Assumptions II.1, II.2, II.3, and II.4 hold. If
logn
nhd

= o(1), then

E[∂̂qθ0(x)|X]− ∂qθ(x)

= γ̂q,0(x)′En[Π0(xi)θ(xi)]− ∂qθ(x) (2.7)

= Bm,q(x)− γ̂q,0(x)′En[Π0(xi)Bm,0(xi)] +OP(hm+%−[q]). (2.8)

The proof of this lemma generalizes an idea in Zhou, Shen, and Wolfe (1998, Theo-

rem 2.2) to handle partitioning-based series estimators beyond the specific example of

B-Splines on tensor-product partitions. The first component Bm,q(x) is the leading

term in the asymptotic error expansion and depends on the function space generated

by the series employed. The second component comes from the least squares regression,

and it can be interpreted as the projection of the leading approximation error onto

the space spanned by the basis employed. Because the approximating basis p(x) is
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locally supported (Assumption II.3), the orthogonality condition in (2.5), when it

holds, suffices to guarantee that the projection of leading error is of smaller order (such

as for B-splines on a tensor-product partition). In general the bias will be O(hm−[q])

and further, in finite samples both terms may be important even if (2.5) holds.

We consider three bias correction methods to remove the leading bias terms of

Lemma II.1. All three methods rely, in one way or another, on a higher order basis:

for some m̃ > m, let p̃(x) := p̃(x; ∆̃, m̃) be a basis of order m̃ defined on partition

∆̃ which has maximum mesh h̃. Objects accented with a tilde always pertain to

this secondary basis and partition for bias correction. In practice, a simple choice is

m̃ = m+ 1 and ∆̃ = ∆.

The first, and most obvious approach, is simply to use the higher order basis

in place of the original basis (c.f., Huang, 2003, Section 5.3). This is thus named

higher-order-basis bias correction and numbered as approach j = 1. In complete

parallel to (2.6) define

∂̂qθ1(x) := γ̂q,1(x)′En[Π1(xi)yi], (2.9)

where

γ̂q,1(x)′ := ∂qp̃(x)′En[p̃(xi)p̃(xi)
′]−1 and Π1(xi) := p̃(xi).

This approach can be viewed as a bias correction of the original point estimator

because, trivially, ∂̂qθ1(x) = ∂̂qθ0(x) − (∂̂qθ0(x) − ∂̂qθ1(x)). Valid inference based

on ∂̂qθ1(x) can be viewed as “undersmoothing” applied to the higher-order point

estimator, but is distinct from undersmoothing ∂̂qθ0(x) (i.e., using a finer partition ∆

and keeping the order fixed). Huang (2003) used this idea to remove the asymptotic

bias of splines estimators.

Our second approach makes use of the generic expression of the least squares bias

in (2.7). The unknown objects in this expression are θ and ∂qθ, both of which can

be estimated using the higher-order estimator (2.9). By plugging these into (2.7)

and subtracting the result from ∂̂qθ0(x), we obtain the least-squares bias correction,

numbered as approach 2:

∂̂qθ2(x) := ∂̂qθ0(x)−
(
γ̂q,0(x)′En[Π0(xi)θ̂1(xi)]− ∂̂qθ1(x)

)
(2.10)

:= γ̂q,2(x)′En[Π2(xi)yi]
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where

γ̂q,2(x)′ :=
(
γ̂q,0(x)′,−γ̂q,0(x)′En[p(xi)p̃(xi)

′]En[p̃(xi)p̃(xi)
′]−1 + γ̂q,1(x)′

)
and Π2(xi) := (p(xi)

′, p̃(xi)
′)
′
,

which is exactly of the same form as ∂̂qθ0(x) and ∂̂qθ1(x) (cf., (2.6) and (2.9)), except

for the change in γ̂q,j(x) and Πj(xi).

Finally, approach number 3 targets the leading terms identified in Equation (2.8).

We dub this approach plug-in bias correction, as it specifically estimates the leading

bias terms, in fixed-n form, of ∂̂qθ0(x) according to Assumption II.4. To be precise,

we employ the explicit plug-in bias estimator

B̂m,q(x) = −
∑
u∈Λm

(
∂uθ̂1(x)

)
hm−[q]

x Bu,q(x),

with [q] < m and Λm as in Assumption II.4, leading to

∂̂qθ3(x) := ∂̂qθ0(x)−
(
B̂m,q(x)− γ̂q,0(x)′En[Π0(xi)B̂m,0(xi)]

)
(2.11)

:= γ̂q,3(x)′En[Π3(xi)yi]

where

γ̂q,3(x)′ =
(
γ̂q,0(x)′,

∑
u∈Λm

{
γ̂u,1(x)′hm−[q]

x Bu,q(x)

− γ̂q,0(x)′En[p(xi)h
m
xi
Bu,0(xi)γ̂u,1(xi)

′]
})
,

and Π3(xi) := (p(xi)
′, p̃(xi)

′)
′
.

When the orthogonality condition (2.5) holds, the second correction term in ∂̂qθ3(x)

is asymptotically negligible relative to the first. However, in finite samples both terms

can be important, so we consider the general case.

Our results employing bias correction will require the following conditions on the

higher-order basis used for bias estimation.

Assumption II.5 (Bias Correction). The partition ∆̃ satisfies Assumption II.2, with

maximum mesh h̃ and the basis p̃(x; ∆̃, m̃) satisfies Assumptions II.3 and II.4 with

ς̃ = ς̃(m̃) ≥ m in place of ς. Let ρ := h/h̃, which obeys ρ→ ρ0 ∈ (0,∞). In addition,

for j = 3, either (i) p̃(x; ∆̃, m̃) spans a space containing the span of p(x; ∆,m), and

for all u ∈ Λm, ∂up(x; ∆,m) = 0; or (ii) both p(x; ∆,m) and p̃(x; ∆̃, m̃) reproduce

polynomials of degree [q].

In addition to removing the leading bias, the conditions in Assumption II.5 require
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that the asymptotic variance of bias-corrected estimators is properly bounded from

below in a uniform sense, which is critical for inference. Additional conditions are

required for plug-in bias correction (j = 3) due to the more complicated covariance

between ∂̂qθ0 and the estimated leading bias. Orthogonality properties due to the pro-

jection structure of the least squares bias correction (j = 2) removes these “covariance”

components in the variance of ∂̂qθ2. The natural choice of ∆̃ = ∆ and m̃ = m + 1

will satisfy this condition on intuitive conditions.

2.4 IMSE and Convergence Rates

We establish two main results related to the point estimator ∂̂qθ0(x). First, we obtain

valid IMSE expansions for the estimator, which also give as a by-product an estimate

of its L2 convergence rate. Second, we establish the uniform convergence rate of the

estimator.

2.4.1 IMSE-Optimal Point Estimation

We first give a very general IMSE approximation, which we will specialize in Chap-

ter IV to a more detailed result for the special case of a tensor-product partition.

These expansions are used to obtain optimal choices of partition size from a point

estimation perspective, which is important for implementation of partitioning-based

nonparametric estimation and inference.

A chief advantage of the robust bias corrected inference methods that we develop

in the upcoming sections is that IMSE-optimal tuning parameters (and related choices

such as those obtained from cross-validation) are valid for inference, which is not the

case for the standard approach unless ad-hoc undersmoothing is used. This allows

researchers to combine an optimal estimate of the function, ∂̂qθ0(·) based on the IMSE-

optimal hIMSE � n−1/(2m+d), and its plug-in or cross-validation implementations thereof,

with inference based on the same tuning parameter choices (and hence employing the

same partitioning scheme).

Our first result holds for any partition ∆ satisfying Assumption II.2.

Theorem II.1 (IMSE). Let Assumptions II.1, II.2, II.3, and II.4 hold. If logn
nhd

= o(1),

then for a weighting function w(x) that is continuous and bounded away from zero on
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X , ∫
X
E[(∂̂qθ0(x)− ∂qθ(x))2|X]w(x) dx

=
1

n

(
V∆,q + oP(h−d−2[q])

)
+
(
B∆,q + oP(h2m−2[q])

)
where

V∆,q = trace
(
Σ0

∫
X
γq,0(x)γq,0(x)′w(x)dx

)
� h−d−2[q],

B∆,q =

∫
X

(
Bm,q(x)− γq,0(x)′E[p(xi)Bm,0(xi)]

)2

w(x)dx . h2m−2[q],

Σ0 := E[Π0(xi)Π0(xi)
′σ2(xi)], and γq,0(x)′ := ∂qp(x)′E[p(xi)p(xi)

′]−1.

This theorem shows that the leading term in the integrated (and pointwise) vari-

ance of ∂̂qθ0(x) is of order n−1h−d−2[q]. For the bias term, on the other hand, the

theorem only establishes an upper bound: to bound the bias component from below,

stronger conditions on the regression function would be needed. It is easy to see that

this rate bound is sharp in general.

The quantities V∆,q and B∆,q are nonrandom sequences depending on the parti-

tioning scheme ∆ in a complicated way, and need not converge as h→ 0. Nevertheless,

when the integrated squared bias does not vanish (B∆,q 6= 0), Theorem II.1 implies

that the IMSE-optimal mesh size hIMSE is proportional to n−1/(2m+d), or equivalently,

the IMSE-optimal number of series terms KIMSE � nd/(2m+d). Furthermore, because

the IMSE expansion is obtained for a given partition scheme, the result in Theorem

II.1 can be used to evaluate different partitioning schemes altogether, and to select

the “optimal” one in an IMSE sense. We can consider the optimization problem

min
∆∈D

{
1

n
V∆,q + B∆,q

}
as a way of selecting an “optimal” partitioning scheme among some class of partitioning

schemes D.

Theorem II.1 generalizes prior work substantially. Existing results cover only

special cases, such as piecewise polynomials (Cattaneo and Farrell, 2013) or splines

(Agarwal and Studden, 1980; Zhou, Shen, and Wolfe, 1998; Zhou and Wolfe, 2000) on

tensor-product partitions only, and often restricting to d = 1 or [q] = 0. To the best

of our knowledge, covering non-tensor-product partitions and other series functions

such as wavelets is new to the literature.

The leading constants at this level of generality is quite involved. To illustrate

15



the usefulness of this result in applications, we will consider the special case of a

tensor-product partition in Chapter IV.

2.4.2 Convergence Rates

Theorem II.1 immediately delivers the L2 convergence rate for the point estimator

∂̂qθ0(x). For completeness, we also establish its uniform convergence rate. Recall that

ν > 0.

Theorem II.2 (Convergence Rates). Let Assumptions II.1, II.2 and II.3 hold. As-

sume also that supx∈X |∂qθ(x)− ∂qs∗(x)| . hm−[q] with s∗ defined in Assumption II.4.

Then, if logn
nhd

= o(1),∫
X

(
∂̂qθ0(x)− ∂qθ(x)

)2

w(x) dx .P
1

nhd+2[q]
+ h2(m−[q])

If, in addition,

(i) supx∈X E[|εi|3 exp(|εi|)] <∞ and (logn)3

nhd
. 1, or

(ii) supx∈X E[|εi|2+ν ] <∞ and n
2

2+ν (logn)
2ν

4+2ν

nhd
. 1,

then

sup
x∈X

∣∣∣∂̂qθ0(x)− ∂qθ(x)
∣∣∣2 .P

log n

nhd+2[q]
+ h2(m−[q]).

This theorem shows that the partitioning-based estimators can attain the optimal

mean-square and uniform convergence rate (Stone, 1982) by proper choice of partition-

ing scheme, under our high-level assumptions. (The full force of Assumption II.4 is not

needed for this result.) Cattaneo and Farrell (2013) were the first to show existence of

a series estimator (in particular, piecewise polynomials) attaining the optimal uniform

convergence rate, a result that was later generalized to other series estimators in

Belloni, Chernozhukov, Chetverikov, and Kato (2015); Chen and Christensen (2015)

under various alternative high-level assumptions.

2.5 Pointwise Inference

We give pointwise inference based on classical undersmoothing and all three bias

correction methods. All four point estimators take the form

∂̂qθj(x) = γ̂q,j(x)′En[Πj(xi)yi],
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where j = 0 corresponds to the conventional partitioning estimator, and j = 1, 2, 3

refer to the three distinct bias correction strategies. Infeasible inference would be

based on the standardized t-statistics

Tj(x) =
∂̂qθj(x)− ∂qθ(x)√

Ωj(x)/n
, Ωj(x) = γq,j(x)′Σjγq,j(x),

where, for each j = 0, 1, 2, 3, γq,j(x) are defined as γ̂q,j in (2.6), (2.9), (2.10), and

(2.11), respectively, but with sample averages and other estimators replaced by their

population counterparts, and Σj := E[Πj(xi)Πj(xi)
′σ2(xi)]. These t-statistics are

infeasible, but they nonetheless capture the additional variability introduced by the

bias correction approach when j = 1, 2, 3, the key idea behind robust bias corrected

inference (Calonico, Cattaneo, and Titiunik, 2014; Calonico, Cattaneo, and Farrell,

2018b). We also discuss below Studentization, that is, replacing Ωj(x) with a consistent

estimator.

2.5.1 Distributional Approximation

The first result gives the limiting distribution of the standardized t-statistics Tj(x).

Theorem II.3 (Asymptotic Normality). Let Assumptions II.1, II.2, II.3, and II.4

hold. Assume supx∈X E[ε2
i1{|εi| > M}|xi = x] → 0 as M → ∞, and logn

nhd
= o(1).

Furthermore, for j = 0, assume nh2m+d = o(1); and for j = 1, 2, 3, assume Assumption

II.5 holds and nh2m+d . 1.

Then, for each j = 0, 1, 2, 3 and x ∈ X , supu∈R |P[Tj(x) ≤ u]−Φ(u)| = o(1), where

Φ(u) denotes the cumulative distribution function of N(0, 1).

This theorem gives a valid Gaussian approximation for the t-statistics Tj(x), point-

wise in x ∈ X . The regularity conditions imposed are extremely mild, and in perfect

quantitative agreement with those used in Belloni, Chernozhukov, Chetverikov, and

Kato (2015) for j = 0 (undersmoothing). For j = 1, 2, 3 (robust bias correction), the

result is new to the literature, and the restrictions are in perfect qualitative agree-

ment with those obtained in Calonico, Cattaneo, and Farrell (2018b) for kernel-based

nonparametrics.
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2.5.2 Implementation

To make the results in Theorem II.3 feasible, we replace Ωj(x) with a consistent

estimator. Specifically, we consider the four feasible t-statistics, j = 0, 1, 2, 3,

T̂j(x) =
∂̂qθj(x)− ∂qθ(x)√

Ω̂j(x)/n
, Ω̂j(x) = γ̂q,j(x)′Σ̂jγ̂q,j(x),

Σ̂j = En[Πj(xi)Πj(xi)
′ε̂2
i,j], ε̂i,j = yi − θ̂j(xi),

(2.12)

Once the basis functions and partitioning schemes are chosen, the statistic T̂j(x) is

readily implementable. The following theorem gives sufficient conditions for valid

pointwise inference.

Theorem II.4 (Variance Consistency). Let Assumptions II.1, II.2, II.3, and II.4

hold. If j = 1, 2, 3, also let Assumption II.5 hold. In addition, assume one of the

following holds:

(i) supx∈X E[|εi|2+ν ] <∞ and n
2

2+ν (logn)
2ν

4+2ν

nhd
= o(1), or

(ii) supx∈X E[|εi|3 exp(|εi|)] <∞ and (logn)3

nhd
= o(1).

Then, for each j = 0, 1, 2, 3, |Ω̂j(x)− Ωj(x)| = oP(h−d−2[q]).

This result together with Theorem II.3, delivers feasible inference. Valid

100(1 − α)%, α ∈ (0, 1), confidence intervals for ∂qθ(x) are formed in the usual

way: [
∂̂qθj(x)± Φ−1(1− α/2) ·

√
Ω̂j(x)/n

]
, j = 0, 1, 2, 3.

Importantly, for j = 1, 2, 3, the IMSE-optimal partitioning scheme choice derived in

Section 2.4 (or related methods like cross-validation) can be used directly, while for

j = 0 the partitioning has to be undersmoothed (i.e., made finer than the IMSE-

optimal choice) in order to obtain valid confidence intervals. See Calonico, Cattaneo,

and Farrell (2018b) for more discussion.

2.6 Uniform Inference

We next give a valid distributional approximation for the whole process {T̂j(x) : x ∈
X}, for each j = 0, 1, 2, 3. We establish this approximation using two distinct coupling

strategies. We then propose a simulation-based feasible implementation of the result.

We close by applying our results to construct valid confidence bands for ∂qθ(·).
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2.6.1 Strong Approximations

The stochastic processes {T̂j(x) : x ∈ X} are not asymptotically tight, and therefore

do not converge weakly in L∞(X ), where L∞(X ) denotes the set of all (uniformly)

bounded real functions on X equipped with uniform norm. Nevertheless, their finite

sample distribution can be approximated by carefully constructed Gaussian processes

(in a possibly enlarged probability space).

We first employ the following lemma to simplify the problem. Recall that rn is

some non-vanishing positive sequence and ν > 0.

Lemma II.2 (Hats Off). Let Assumptions II.1, II.2, II.3, and II.4 hold. Assume one

of the following holds:

(i) supx∈X E[|εi|2+ν |xi = x] <∞ and n
2

2+ν (logn)
2+2ν
2+ν

nhd
= o(r−2

n ); or

(ii) supx∈X E[|εi|3 exp(|εi|)|xi = x] <∞ and (logn)4

nhd
= o(r−2

n ).

Furthermore, if j = 0, assume nhd+2m = o(r−2
n ); and, if j = 1, 2, 3, assume Assumption

II.5 holds and nhd+2m+2% = o(r−2
n ). Then

sup
x∈X

∣∣∣T̂j(x)− tj(x)
∣∣∣ = oP(r−1

n ), tj(x) =
γq,j(x)′√

Ωj(x)
Gn[Πj(xi)εi].

Lemma II.2 requires that the estimation and sampling uncertainty of γ̂q,j and

Ω̂j(x), as well as the smoothing bias of ∂̂qθj(x), be negligible uniformly over x ∈ X . Its

proof relies on some new technical lemmas, but is otherwise standard. This technical

approximation step allows us to focus on developing a distributional approximation

for the infeasible stochastic processes {tj(x) : x ∈ X}, j = 0, 1, 2, 3. We make precise

our uniform distributional approximation in the following definition.

Definition II.1 (Strong Approximation). For each j = 0, 1, 2, 3, the law of the

stochastic process {tj(x),x ∈ X} is approximated by that of a Gaussian process

{Zj(x),x ∈ X} in L∞(X ) if the following condition holds: in a sufficiently rich proba-

bility space, there exists a copy t′j(·) of tj(·) and a standard Normal random vector

NKj ∼ N(0, IKj) with Kj = dim(Πj(x)) such that

sup
x∈X

∣∣∣t′j(x)− Zj(x)
∣∣∣ = oP(r−1

n ), Zj(x) =
γq,j(x)′Σ

1/2
j√

Ωj(x)
NKj .

This approximation is denoted by tj(·) =d Zj(·) + oP(r−1
n ) in L∞(X ).

This definition gives the precise meaning of uniform distributional approximation

of tj(·) by a Gaussian process Zj(·), and also provides the explicit characterization
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of such Gaussian process. We establish this strong approximation in two distinct

ways. For d = 1, we develop a novel two-step coupling approach based on the classical

Komlós-Major-Tusnády (KMT) construction (Komlós, Major, and Tusnády, 1975,

1976). For d > 1, however, our two-step coupling approach does not generalize easily,

and instead we apply an improved version of the classical Yurinskii construction

(Yurinskii, 1978). See Zaitsev (2013) for a recent review and background references on

strong approximation methods.

Unidimensional Regressor

Let d = 1. The following theorem gives a valid distributional approximation for the

process {T̂j(x) : x ∈ X} using the Gaussian process {Zj(x) : x ∈ X}, for j = 0, 1, 2, 3,

in the sense of Definition II.1.

Theorem II.5 (Strong Approximation: KMT). Let the assumptions and conditions

of Lemma II.2 hold with d = 1. If j = 2, 3, also assume (logn)3/2√
nh

= o(r−2
n ). Then, for

each j = 0, 1, 2, 3, tj(·) =d Zj(·)+oP(r−1
n ) in L∞(X ), where Zj(·) is given in Definition

II.1.

The proof of this result employs a two-step coupling approach:

Step 1. On a sufficiently rich probability space, there exists a copy t′j(·) of tj(·), and

an i.i.d. sequence {ζi : 1 ≤ i ≤ n} of standard Normal random variables, such

that

sup
x∈X

∣∣∣t′j(x)− zj(x)
∣∣∣ = oP(r−1

n ), zj(x) =
γq,j(x)′√

Ωj(x)
Gn[Πj(xi)σ(xi)ζi].

Step 2. On a sufficiently rich probability space, there exists a copy z′j(·) of zj(·),
and the standard Normal random vector NKj from Definition II.1 such that

z′j(·) =d Z̄j(·) conditional on X, where

Z̄j(x) =
γq,j(x)′Σ̄

1/2
j√

Ωj(x)
NKj , Σ̄j := En[Πj(xi)Πj(xi)

′σ2(xi)],

and

sup
x∈X

∣∣∣Z̄j(x)− Zj(x)
∣∣∣ = oP(r−1

n ).

These two steps summarize our strategy for constructing the unconditionally Gaus-

sian process {Zj(x), x ∈ X} approximating the distribution of the whole t-statistic
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processes {tj(x) : x ∈ X}: we first couple tj(·) to the process zj(·), which is Gaussian

only conditionally on X but not unconditionally (Step 1), and we then show that the

unconditionally Gaussian process Zj(·) approximates the distribution of zj(·) (Step 2).

To complete the first coupling step, we employ a version of the classical KMT

inequalities that applies to independent but non-identically distributed random vari-

ables (Sakhanenko, 1985, 1991). We do this because the processes {tj(x) : x ∈ X}
are characterized by a sum of independent but not identically distributed random

variables conditional on X. This part of our proof is inspired by, but is distinct from,

the one given in Eggermont and LaRiccia (2009, Chapter 22), where a conditional

strong approximation for smoothing splines is established.

The intermediate coupling result in Step 1 has the obvious drawback that the

process {zj(x) : x ∈ X} is Gaussian only conditionally on X but not unconditionally.

Step 2 addresses this shortcoming by establishing an unconditional coupling, that

is, approximating the distribution of the stochastic process zj(·) by that of the (un-

conditional) Gaussian process Zj(·). As shown in Appendix A, verifying the second

coupling step boils down to controlling the supremum of a Gaussian random vector of

increasing dimension, and in particular the crux is to prove precise (rate) control on∥∥Σ̄1/2
j −Σ

1/2
j

∥∥, j = 0, 1, 2, 3. Both Σ̄j and Σj are symmetric and positive semi -definite.

Further, for j = 0, 1, λmin(Σj) & hd for generic partitioning-based estimators under

our assumptions, and therefore we use the bound

‖A1/2
1 −A

1/2
2 ‖ ≤ λmin(A2)−1/2‖A1 −A2‖, (2.13)

which holds for symmetric positive semi-definite A1 and symmetric positive definite

A2 (Bhatia, 2013, Theorem X.3.8). Using this bound we obtain unconditional coupling

from conditional coupling without additional rate restrictions.

However, for j = 2, 3 the bound (2.13) cannot be used in general because p and p̃

are typically not linearly independent, and hence Σj will be singular. To circumvent

this problem, we employ the weaker bound (Bhatia, 2013, Theorem X.1.1): if A1 and

A2 are symmetric positive semi-definite matrices, then

‖A1/2
1 −A

1/2
2 ‖ ≤ ‖A1 −A2‖1/2. (2.14)

This bound can be used for any partitioning-based estimator, with or without bias

correction, at the cost of slowing the approximation error rate rn when constructing

the unconditional coupling, and hence leading to the stronger side rate condition as

shown in the Theorem II.5 below. When rn = 1, there is no rate penalty, while the

penalty is only in terms of log n terms when rn =
√

log n (as in Theorem II.8 further

21



below). Furthermore, for certain partitioning-based series estimators it is still possible

to use (2.13) even when j = 2, 3, as the following remark discusses.

Remark II.1 (Square-root Convergence and Improved Rates). The additional restric-

tion imposed in Theorem II.5 for j = 2, 3, that (log n)3/2/
√
nh = o(r−2

n ), can be

dropped in some special cases. For some bases it is possible to find a transformation

matrix Υ, with ‖Υ‖∞ . 1, and a basis p̌, which obeys Assumption II.3, such that

(p(·)′, p̃(·)′)′ = Υp̌(·). In other words, the two bases p and p̃ can be expressed in terms

of another basis p̌ without linear dependence. Then, a positive lower bound holds

for λmin(Σj), j = 2, 3, implying that the bound (2.13) can be used instead of (2.14).

For example, for piecewise polynomials and B-splines with equal knot placements

for p and p̃, a natural choice of p̌ is simply a higher-order polynomial basis on the

same partition. Since each function in p and p̌ is a polynomial on each δ ∈ ∆ and

nonzero on a fixed number of cells, the “local representation” condition ‖Υ‖∞ . 1

automatically holds.

The strong approximation results in Theorem II.5 for partitioning-based least

squares estimation appear to be new in the literature. An alternative unconditional

strong approximation for general series estimators is obtained by Belloni, Cher-

nozhukov, Chetverikov, and Kato (2015) for the case of undersmoothing inference

(j = 0). Their proof employs the classical Yurinskii’s coupling inequality that controls

the convergence rate of partial sums in terms of Euclidean norm, leading to the rate

restriction r6
nK

5/n → 0, up to log n terms, which does not depend on ν > 0. In

contrast, Theorem II.5 employs a (conditional) KMT-type coupling and then a second

(unconditional) coupling approximation, and make use of the banded structure of the

Gram matrix formed by local bases, to obtain weaker restrictions. Under bounded

polynomial moments, we require only r6
nK

3/n3ν/(2+ν) → 0, up to log n terms. For

example, when ν = 2 and rn =
√

log n this translates to K2/n→ 0, up to log n terms,

which is weaker than previous results in the literature. Under the sub-exponential

conditional moment restriction, the restriction can be relaxed all the way to K/n→ 0,

up to log n terms, which appears to be a minimal condition. This is for the entire

t-statistic process. In addition, Theorem II.5 gives novel strong approximation results

for robust bias-corrected t-statistic processes.

Remark II.2 (Strong Approximation: KMT for Haar Basis). Our two-step coupling

approach builds on the new coupling Lemma A.3, which appears to be hard to extend

to d > 1, except for the important special case the undersmoothed (j = 0) t-statistic

process {T̂0(x) : x ∈ X} constructed using Haar basis, which is a spline, wavelet and
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piecewise polynomial with m = 1. In this case, we establish t0(·) =d Z0(·) + oP(r−1
n )

in L∞(X ) for any d ≥ 1 under the same conditions of Lemma II.2.

Multidimensional Regressors

Let d ≥ 1. The method of proof employed to establish Theorem II.5 does not extend

easily to multivariate regressors (d > 1) in general. Therefore, we present an alternative

strong approximation result based on an improved version of the classical Yurinskii’s

coupling inequality, recently developed by Belloni, Chernozhukov, Chetverikov, and

Fernandez-Val (2018).

Theorem II.6 (Strong Approximation: Yurinskii). Let the assumptions and condi-

tions of Lemma II.2 hold. Furthermore, assume ν ≥ 1 and (logn)4

nh3d
= o(r−6

n ). Then, for

each j = 0, 1, 2, 3, tj(·) =d Zj(·)+oP(r−1
n ) in L∞(X ), where Zj(·) is given in Definition

II.1.

This strong approximation result does not have optimal (i.e. minimal) restrictions,

but nonetheless improves on previous results by exploiting the specific structure of the

partitioning-based estimators, while also allowing for any d ≥ 1. Specifically, the result

sets ν = 1 and requires r6
nK

3/n → 0, up to log n terms, regardless of the moment

restriction. While not optimal when ν > 3 (see Remark II.2 for a counterexample),

the result still improves on the condition r6
nK

5/n→ 0, up to log n terms, mentioned

previously. In addition, Theorem II.6 gives novel strong approximation results for

robust bias-corrected t-statistic processes and any d ≥ 1.

2.6.2 Implementation

We present a simple plug-in approach that gives a (feasible) approximation to the

infeasible standardized Gaussian processes {Zj(x) : x ∈ X}, in order to conduct

inference using the results in Theorem II.5 or Theorem II.6. The following definition

gives a precise description of how the approximation works.

Definition II.2 (Simulation-Based Strong Approximation). Let P∗[·] = P[·|y,X]

denote the probability operator conditional on the data. For each j = 0, 1, 2, 3, the

law of the Gaussian process {Zj(x) : x ∈ X} is approximated by a (feasible) Gaussian

process {Ẑj(x) : x ∈ X}, with known distribution conditional on the data (y,X), in

L∞(X ), if the following condition holds: on a sufficiently rich probability space there
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exists a copy Ẑ ′j(·) of Ẑj(·) such that Ẑ ′j(·) =d Zj(·) conditional on the data, and

P∗
[
sup
x∈X
|Ẑ ′j(x)− Zj(x)| ≥ ηr−1

n

]
= oP(1), ∀η > 0,

where, for a NKj ∼ N(0, IKj) with Kj = dim(Πj(x)),

Ẑj(x) =
γ̂q,j(x)′Σ̂

1/2
j√

Ω̂j(x)
NKj , x ∈ X , j = 0, 1, 2, 3.

This approximation is denoted by Ẑj(·) =d∗ Zj(·) + oP∗(r
−1
n ) in L∞(X ).

From a practical perspective, Definition II.2 implies that sampling from Ẑj(·),
conditional on the data, is possible and provides a valid distributional approximation

of Zj(·), for each j = 0, 1, 2, 3. The feasible process Ẑj(x) given in this definition relies

on a direct plug-in approach, where all the unknown quantities in Zj(·) are replaced

by consistent estimators; that is, using the estimators already used in the feasible

t-statistics. Resampling is done conditional on the data from a multivariate standard

Gaussian of dimension Kj, not n.

Theorem II.7 (Plug-in Approximation). Let the assumptions and conditions of

Lemma II.2 hold. Furthermore, for j = 2, 3:

(i) when supx∈X E[|εi|2+ν |xi = x] <∞, assume n
1

2+ν (logn)
4+3ν
4+2ν

√
nhd

= o(r−2
n ); or

(ii) when supx∈X E[|εi|3 exp(|εi|)|xi = x] <∞, assume (logn)5/2√
nhd

= o(r−2
n ).

Then, for each j = 0, 1, 2, 3, Ẑj(·) =d∗ Zj(·) + oP∗(r
−1
n ) in L∞(X ), where Ẑj(·) is given

in Definition II.2.

This result strengthens the rate condition for j = 2, 3 compared to Theorems II.5

(d = 1) and II.6 (d ≥ 1) only by logarithmic factors when rn =
√

log n. Moreover, if

the structure discussed in Remark II.1 holds, then this condition can be dropped.

2.6.3 Application: Confidence Bands

A natural application of Theorems II.5, II.6 and II.7 is to construct confidence bands for

the regression function or its derivatives. Specifically, for j = 0, 1, 2, 3 and α ∈ (0, 1),

we seek a quantile qj(α) such that

P
[
sup
x∈X
|T̂j(x)| ≤ qj(α)

]
= 1− α + o(1),
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which then can be used to construct uniform 100(1− α)-percent confidence bands for

∂qθ(x) of the form [
∂̂qθj(x)± qj(α)

√
Ω̂j(x)/n : x ∈ X

]
.

The following theorem establishes a valid distributional approximation for the

suprema of the t-statistic processes {T̂j(x) : x ∈ X} using Chernozhukov, Chetverikov,

and Kato (2014b, Lemma 2.4) to convert our strong approximation results into

convergence of distribution functions in terms of Kolmogorov distance.

Theorem II.8 (Confidence Bands). Let the conditions of Theorem II.5 or Theorem

II.6 hold with rn =
√

log n. If the corresponding conditions of Theorem II.7 hold for

each j = 0, 1, 2, 3, then

sup
u∈R

∣∣∣∣P [sup
x∈X
|T̂j(x)| ≤ u

]
− P∗

[
sup
x∈X
|Ẑj(x)| ≤ u

]∣∣∣∣ = oP(1).

Chernozhukov, Chetverikov, and Kato (2014a,b) recently showed that if one is only

interested in the supremum of an empirical process rather than the whole process, then

the sufficient conditions for distributional approximation could be weakened compared

to earlier literature. Their result applied Stein’s method for Normal approximation to

show that suprema of general empirical processes can be approximated by a sequence

of suprema of Gaussian processes, under the usual undersmoothing conditions (i.e.,

j = 0). They illustrate their general results by considering t-statistic processes for both

kernel-based and series-based nonparametric regression: Chernozhukov, Chetverikov,

and Kato (2014b, Remark 3.5) establishes a result analogous to Theorem II.8 under

the side rate condition K/n1−2/(2+ν) = o(1), up to log n terms (with q = 2 + ν in their

notation). In comparison, our result for j = 0 and d = 1 in Theorem II.8, under the

same moment conditions, requires exactly the same side condition, up to log n terms.

However, comparing Theorems II.5 and II.8 shows that the whole t-statistic process

for partitioning-based series estimators, and not just the suprema thereof, can be

approximated under the same weak conditions when d = 1. The same result holds for

sub-exponential moments, where the rate condition becomes minimal: K/n = o(1), up

to log n factors. We are able to achieve such sharp rate restrictions and approximation

rates only via the new two-step coupling approach mentioned above (see Lemma

A.3), and by exploiting the specific features of the estimator together with the help

of the key anti-concentration idea introduced by Chernozhukov, Chetverikov, and

Kato (2014b). In addition, Theorem II.8 gives new inference results for bias-corrected

estimators (j = 1, 2, 3).
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Finally, the strong approximation result for the entire t-statistic processes given in

Theorems II.5 and II.6, and related technical results given in Appendix A, can also be

used to construct other types of confidence bands for the regression function and its

derivatives; e.g., Genovese and Wasserman (2005, 2008). We do not elaborate further

on this to conserve space.

2.7 Conclusion

We presented new asymptotic results for partitioning-based least squares regression

estimators. The first main contribution gave a general IMSE expansion for the point

estimators. The second set of contributions were pointwise and uniform distributional

approximations, with and without robust bias correction, for t-statistic processes

indexed by x ∈ X , with improvements in rate restrictions and convergence rates. For

the case of d = 1, our uniform approximation results rely on a new coupling approach,

which delivered seemingly minimal rate restrictions.
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Chapter III

Partial Linear Models: Binscatter

3.1 Introduction

The previous chapter discusses partitioning-based estimators in a general nonpara-

metric regression setup. Such methods perform well when there are only a few

covariates. However, as the number of covariates increases, the dimensionality of an

approximation basis may grow rapidly, leading to poor finite sample performance of

completely nonparametric estimators. In such scenarios researchers often resort to

semiparametric methods for dimension reduction at the cost of stronger assumptions

on model specifications.

A commonly used semiparametric method in practice is partial linear regression.

If we follow the notation in Chapter II, this amounts to assuming that

θ(x) = µ(x1) + w′γ, x = (x1,w
′)′.

Researchers may be interested in the (nonparametric) mean relationship between

an outcome y and a scalar independent variable x1, where w is a vector of control

variables that enter the model linearly. With a little abuse of notation, we will simply

denote x1, the first variable in x, by x throughout this chapter.

The partial linear regression with the nonparametric component µ(x) estimated

using a piecewise constant basis is often referred to as binscatter, which is a flexible, yet

parsimonious way of visualizing and summarizing large data sets (Chetty and Szeidl,

2006; Chetty, Looney, and Kroft, 2009; Chetty, Friedman, Olsen, and Pistaferri, 2011;

Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan, 2011). This methodology

is also often used for informal (visual) evaluation of substantive hypotheses about

shape features of the unknown regression function such as linearity, monotonicity, or

concavity. Binscatter has gained immense popularity among empirical researchers

and policy makers, and is by now a leading component of the standard applied mi-

croeconomics toolkit. However, the remarkable proliferation of binscatter in empirical
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work has not been accompanied by the development of econometric results guiding

its correct use and providing valid statistical procedures. Current practice employing

binscatter is usually ad-hoc and undisciplined, which not only hampers replicability

across studies, but also has the potential of leading to incorrect empirical conclusions.

This chapter presents the first foundational study of binscatter. The general large

sample properties of partitioning-based estimators derived in Chapter II are applied to

binscatter, with new theoretical and practical issues resolved. Then we provide several

results which aid both in understanding the validity (or lack thereof) of current prac-

tices, and in offering principled guidance for future applications. To give a systematic

analysis of binscatter, we first recast it as a particular nonparametric estimator of

a regression function employing (possibly restricted) piecewise approximations in a

semi-linear regression context. Thus, our first main contribution is to set up an econo-

metrics framework to understand and analyze binscatter formally. This framework

allows us to obtain an array of theoretical and practical results for canonical binscatter

methods, and also to propose new complementary methods delivering more flexible

and smooth approximations of the regression function, which still respect the core

features of binscatter. The latter methods are particularly well suited for enhanced

graphical presentation of estimated regression functions and confidence bands, and for

formal testing of substantive hypotheses about the unknown regression function.

Furthermore, using our econometric framework, we highlight important method-

ological and theoretical problems with the covariate adjustment methods as commonly

employed in practice, and propose a new alternative approach that is more generally

valid and principled. To be more specific, we discuss the detrimental effects of the

widespread practice of first “residualizing” additional covariates and then constructing

the binscatter, and show how our proposed alternative covariate-adjusted binscatter

circumvents those problems.

The proposed econometric framework is then used to offer several new methodolog-

ical results for binscatter applications. Specifically, our second main contribution is to

develop a valid and optimal selector of the number of bins for binscatter implementa-

tion, which is constructed based on an integrated mean square error approximation.

Our proposed selector intuitively balances the bias and variance of binscatter, and

can contrast sharply with ad-hoc choices encountered in practice: always using 10

or 20 bins. The third main contribution of this paper is to provide valid confidence

intervals, confidence bands, and hypothesis testing procedures of both parametric

specifications and nonparametric shape restrictions of the unknown regression function.

These results not only give principled guidance for current empirical practice, but
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also offer new methods encoding informal (visual) assessments commonly found in

empirical papers using binscatter. The results in this chapter are obtained under

random sampling, but our work could be extended to clustered or grouped data with

some additional complications. We defer the discussion of this to future research.

The remainder of the paper proceeds as follows. Employing an empirical example

throughout, Section 3.2 gives a gentle introduction to binscatter, overviews and illus-

trates numerically our main methodological results, and discusses related literature.

This relatively long section is meant to be not only heuristic and empirically-driven, but

also self-contained in terms of reviewing the methodology and contributions offered by

our paper. On the other hand, the next three sections are more technical and precise:

Section 3.3 introduces and formalizes binscatter, starting with its canonical form, then

incorporating covariate-adjustment and within-bin higher-order polynomial fitting,

and culminating with a smooth version based on imposing continuity restrictions at

the boundaries of the bins; Section 3.4 gives formal results for empirical selection of

the number of bins used to implement binscatter; and Section 3.5 presents our main

theoretical results for estimation, inference, and graphical presentation, including

shape-related testing procedures of substantive interest. Finally, Section 3.6 concludes.

Appendix B collects all proofs.

3.2 Overview of Results

In this section we make clear what binned scatter plots are, how they are often used,

and how our results can aid empirical practice. The treatment here is informal, but

complete, drawing on the formal results presented in the upcoming (more technical)

sections. Before detailing our new tools, it is important to define what a binned scatter

plot is, and what it is not. See Chetty and Szeidl (2006, Figure 1) for one the very first

explicit appearances of a binned scatter plot in the applied microeconomics literature,

and see Chetty, Looney, and Kroft (2009), Chetty, Friedman, Olsen, and Pistaferri

(2011), and Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan (2011) for other

early papers using binscatter methods. In addition, see Stepner (2014) for a widely

used software implementation of canonical binscatter methods, and see Starr and

Goldfarb (2018) for a very recent heuristic overview of canonical binscatter.

We illustrate our methods using data from the American Community Survey. In

order to have full control on different features of the statistical model, this section

employs a simulated dataset based on a data generating process constructed using the
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real survey dataset. But, in Chapter IV we return to the original survey dataset to

illustrate our main recommendations for practice using the actual data. Appendix B

details how the simulated data was constructed.

The scatter plot itself is a classical tool for data visualization. It shows all the data

on two variables y and x, and allows a researcher to visualize not only the relationship

between y and x but also the variability, areas of high or low mass, and all other

features of their joint distribution. However, in the era of large sample sizes, scatter

plots are less useful. A scatter plot of a typical administrative data set with millions

of observations yields a solid black cloud, and in particular, obscures the underlying

relationship between y and x. This is where binning enters.

To construct a binned scatter plot one first divides the support of x into some

number of bins, denoted herein by J . In most cases, ad-hoc choices such as J = 10 or

20 are most predominant in practice, with bins themselves divided at the empirical

quantiles of observations of x (ignoring y), an approach we call quantile-spaced binning

(or partitioning) herein. Then a single dot is placed in the plot representing the mean

of y for the observations falling in each bin. The final plot consists of only these J

dots, usually depicted at the center of each quantile-spaced bin. Often added is the

regression line from a OLS fit to the underlying data. See Figure III.1. It is typical in

applications to “control” for covariates in both the regression line and the plot itself,

which as discussed below, requires additional care.

The question is: what aspect of the data is being visualized with a binned scatter

plot? This turns out to be not the data itself, but only the conditional expectation of y

given x; the regression function. A binned scatter plot is nothing more than the fitted

values of a particular nonparametric regression of y on x. This is not a disadvantage,

indeed, we view it as the reverse: starting from this insight we can deliver a host of

tools and results, both formal and visual, for binned scatter plots.

But it is nonetheless important to point out the limitations of what can be learned

from a binned scatter plot. The plot is not a visualization of the whole data set in any

meaningful way. That is, it is not at all analogous to a traditional scatter plot. Many

different data sets can give rise to identical binned scatter plots, as in Figure III.2. In

particular, the variance (of y given x) is entirely suppressed. Figure III.2 shows four

different data sets, with different amounts of variance and heteroskedasticity, which

nonetheless yield identical plots. This is not a new revelation, but it does seem to be

the source of some confusion in practice. Indeed, Chetty, Friedman, and Rockoff (2014,

p. 2650) note “that this binned scatter plot provides a nonparametric representation

of the conditional expectation function but does not show the underlying variance
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Figure III.1 The Basic Construction of a Binned Scatter Plot.

(a) Scatter and Binscatter Plots
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(b) Binscatter and Linear Fit

●

●

●

● ●
●

●

●

●

●

X

Y

● binscatter

linear fit

Notes. The data is divided into J = 10 bins according to the observed x. Within each bin a single
dot is plotted at the mean of y for observations falling in the bin. The final plot (b) consists of only
these J dots, and the fit from a least squares linear regression of y on x. Constructed using simulated
data described in Appendix B.

in the individual-level data.” To show the underlying variance from a large data set,

one can plot a small random sample of the data. For a large data set, this is perhaps

most akin to a traditional scatter plot. However, the sample may need to be small

enough as to render the conclusions unreliable, and further, given our results, this is

not necessary in most cases.

Turning back to how binscatter plots are constructed, in this paper we analyze

these plots from an econometric point of view. This allows us not only to formalize its

properties, but also develop new tools for empirical practice. These include a valid and

optimal choice for the number of bins, valid confidence intervals and bands reflecting

the true uncertainty in the data, and formal (and visual) assessment of substantive

hypotheses of interest, such as whether the relationship between y and x is monotonic,

or of a particular parametric form such as linear, or different between two groups.

Here we give only an introduction to these ideas; formal details are spelled out below.

The canonical nonparametric regression model is

yi = ϑ(xi) + εi, E[εi|xi] = 0, (3.1)

where (yi, xi), i = 1, 2, . . . , n, is random sample from (y, x). Notice that we introduce

another function ϑ(·), and reserve the notation µ(·) for the partial mean relation

between y and x with additional variables w controlled for. Here we are interested

in the function ϑ(x) and its properties. For example, we might like to know if it
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Figure III.2 Scatter and Binscatter Plots with Different Variability.

(a) Original Dataset
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(b) Dataset with More Variability
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(c) Dataset with Moderate Heteroskedasticity
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(d) Dataset with High Heteroskedasticity
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Notes. Four simulated different data sets, each with different variance of y given x, but identical
binned scatter plots. Constructed using simulated data described in Appendix B.

is (well-approximated by) a linear function, i.e. ϑ(x) = θ0 + xθ1, or quadratic, i.e.

ϑ(x) = θ0 + xθ1 + x2θ2. This is implicitly behind plots of the form of Figure III.1: we

want to assume that the linear approximation is sound enough that conclusions from

an OLS regression of y on x are useful for policy.

Binned scatter plots estimate the unknown regression function ϑ(x) by exploiting

the fact that ϑ(x1) ≈ ϑ(x2) if x1 ≈ x2. Broadly speaking, all nonparametric regression

exploits this same idea. For binscatter regressions, “x1 ≈ x2” is translated as being

in the same bin, and then further, the estimator sets ϑ̂(x) = ȳj for all x in the j-th

bin, j = 1, 2, . . . , J , where ȳj denotes the sample average of the yi’s with xi’s in that

j-th bin. This results in a piecewise constant estimate, as shown in Figure III.3. A

typical binned scatter plot shows only one point within each bin, but it is important

to observe that a binned scatter plot is equivalent to this piecewise constant fit,
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Figure III.3 The actual nonparametric estimator corresponding to a binned scatter plot.

(a) Binned Scatter Plot with Piecewise Constant Fit
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Notes. Constructed using simulated data described in Appendix B.

however unfamiliar it may look. As a way of contrast, a traditional kernel regression is

distinct almost everywhere from the canonical binscatter, coinciding for a very special

implementation and then only at J points: at the center of each bin and employing

the uniform kernel with bandwidth equal to half the block length both procedures

will yield the same fitted values, but only at these J points. To “fill in” the rest of

the regression curve, traditional kernel regression rolls out the window, implying new

bandwidths and associated new “bins”, distinct almost everywhere from those used to

form canonical binscatter.

Despite its appearance, piecewise constant fits over pre-determined quantile-spaced

bins is not a “bad” nonparametric estimation method in any sense, when implemented

properly it shares many favorable theoretical properties with more familiar methods

such as traditional kernel smoothing and, in fact, they are the building block for

popular spline approximations. Applying binning to regression problems dates back

at least to the regressogram of Tukey (1961b), and in nonparametric regression more

broadly it is known as partitioning regression (Györfi, Kohler, Krzyżak, and Walk,

2002; Cattaneo and Farrell, 2013; Cattaneo, Farrell, and Feng, 2018a). The use of

binned scatter plots in applied economics is most closely related to this strand of liter-

ature, and our theory below can be thought of as a generalization and complete formal

treatment of the regressogram. Binning has been applied in many other areas due to

its intuitive appeal and ease of implementation: in density estimation as the classical
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histogram; in program evaluation for subclassification (Cochran, 1968; Cattaneo and

Farrell, 2011b), and for visualization in regression discontinuity designs (Calonico,

Cattaneo, and Titiunik, 2015) and bunching designs (Kleven, 2016); in empirical

finance it is related to portfolio sorting (Fama, 1976; Cattaneo, Crump, Farrell, and

Schaumburg, 2019a); and in machine learning it is at the heart of regression trees and

similar methods (Friedman, 1977; Hastie, Tibshirani, and Friedman, 2009). We do

not address these other applied contexts directly here, as each is different enough to

require a separate analysis, but our results and tools can be adapted and exported to

those other settings.

This chapter offers three main methodological contributions to the understanding

and correct use of binscatter methods in applied microeconomics, which we summarize

and illustrate in the remaining of this overview section. In closing this section, we

also mention briefly some other contributions related to software and theory.

Contribution 1: Framework and Construction

Understanding binscatter requires formalizing it in a principled way. Thus, our first

contribution is to outline a framework that not only correctly incorporates additional

covariates, and gives the baseline for further extensions to clustered data, but also

permits us to introduce more flexible polynomial regression approximations within

bins as well as to incorporate smoothness restrictions across bins. These extensions

are particularly useful in applications because it is common for researchers both to

control for additional factors in their regression specifications and to prefer more

“smooth” global approximations and confidence bands, in combination with canonical

binscatter.

In Section 3.3, we first recast canonical binscatter as a very basic nonparametric

least squares regression procedure, and then extend it to incorporate additional co-

variate adjustments and several other features. Adjusting for additional covariates is

standard in applications, and to formalize it we extend model (3.1) to include a vector

of controls, w, as follows:

yi = µ(xi) + w′iγ + εi, E[εi|xi,wi] = 0, (3.2)

where (yi, xi,w
′
i), i = 1, 2, . . . , n, is random sample from (y, x,w). In this case the

object of interest, both visually and numerically, is the function µ(x). This regression

model, variously referred to as partially linear, semi-linear, or semiparametric, retains

the interpretation familiar from linear models of “the effect of x on y, controlling for

34



w”.

The regression model (3.2) justifies a particular way of covariate adjustment, which

is not the way encountered in practice: see Section 3.3.3 for a detail comparison and

discussion. In particular, if µ(x) is not linear, then standard Frisch-Waugh logic does

not apply: one cannot estimate (or binned scatter plot) the function µ(x) using the

residuals from least squares regressions of y on w and x on w. This highlights an

important methodological issue with most current applications of covariate-adjusted

binscatter, since it is often the case that practitioners first regress out the additional

covariates w and only after construct the binscatter based on the resulting residuals.

The latter approach, which differs from our proposed method for covariate-adjustment,

can lead to very different empirical findings. In this paper, we refer to the latter

approach as (canonical, covariate-adjusted) residualized binscatter.

We illustrate this issue of covariate adjustment numerically in Figure III.4. The

true regression function, µ(x), is depicted in solid grey, while the two approaches to

covariate-adjusted binscatter are presented in solid blue circles (ours) and solid red

squares (residualized binscatter). Our recommended method implements binscatter

via model (3.2), while residualized binscatter implements binscatter via model (3.1)

after replacing yi and xi by the residuals obtained from regressing yi on wi and

regressing xi on wi, respectively. As Figure III.4 clearly indicates, the two approaches

for covariate adjustment lead to quite different results if x and w are correlated. The

reason is simple: our approach is valid for model (3.2), while residualized binscatter

is invalid in general. Figure III.4(a) shows that residualized binscatter is unable

to correctly approximate the true function of interest µ(x), while our semi-linear

covariate-adjustment approach works well.

This numerical illustration relies on data generated as in model (3.2), but even

when the true regression function of yi given (xi,w
′
i) does not satisfy the semi-linear

structure, our approach to covariate adjustment retains a natural interpretation as

a “best” semi-linear approximation in mean square, just as it occurs with simple

least squares methods (e.g., Angrist and Pischke, 2008, for more discussion), while

residualized binscatter would be fundamentally misspecified and uninterpretable in

such case. To put this another way, in the case when the true µ(x) is nonlinear, the

conclusions reached from the currently dominant binscatter approach are incompatible

with the often-presented table of results from a regression of yi on xi and wi. While

such dominant approach is not completely “wrong” in all cases, it does not match how

the results are usually interpreted. See Section 3.3.3 for more technical details and

discussion on our recommended approach to covariate adjustment vis-á-vis residualized
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Figure III.4 Comparison of Covariate Adjustment Approaches.
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Notes. Two plots comparing semi-linear covariate-adjustment and residualized covariate adjustment
for binscatter. Plot (a) illustrates the biases introduced by residualization when there is non-zero
correlation between x and the other covariates w controlled for. Plot (b) shows that the residualiza-
tion biases are not present when x and w are independent, and the location of binscatter is adjusted:
see Section 3.3.3 for more details. Constructed using simulated data described in Appendix B.

binscatter.

In addition to incorporating covariate adjustments in an appropriate and inter-

pretable way, our proposed framework allows us to introduce new, related binscatter

procedures. In particular, we consider two useful extensions for empirical work: fitting

a p-th order polynomial regression within each bin and imposing s-th order smoothness

restrictions across bins, both with and without covariate adjustments. These general-

izations of binscatter are exhibited in Figure III.5. Increasing the polynomial order p

used within bins allows for a more “flexible” local approximation within each bin, while

increasing the smoothness order s forces the approximation to be smoother across

bins. Thus, the user-choices p and s control flexibility and smoothness from a local

and global perspectives, respectively. For example, if p = 1, then s = 1 corresponds

to piecewise linear fits that are forced to be connected at the bin’s boundaries: a

continuous but not differentiable global fit based on binscatter. This is illustrated

in Figure III.5(b). Of course, removing the smoothness constraint (s = 0) leads to

piecewise linear fits within bins (p = 1) that need not to agree at the bins’ boundaries:

Figure III.5(a). An example of within-bin quadratic fit (p = 2) without smoothness

constraints (s = 0) is given in Figure III.5(c), while imposing only continuity at the

bins’ edges (s = 1) for the quadratic case is depicted in Figure III.5(d). A within-bin

quadratic fit (p = 2) with continuously differentiable restrictions at bins’ boundaries

(s = 2) is not depicted to conserve space, but follows the same logic.
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Figure III.5 Binscatter Generalizations.
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Notes. Constructed using simulated data described in Appendix B.

This generalization of binscatter can be implemented with or without covariate

adjustment, as discussed in Section 3.3. It should be clear that canonical binscatter

corresponds to the specific choice p = s = 0 (Figure III.3), but one can consider more

or less smooth versions thereof by appropriate choice of s ≤ p. Another advantage

of considering p > 0 polynomial fits, with or without covariate adjustments and/or

smoothness restrictions, is that approximating the derivatives µ(v)(x) = dv

dxv
µ(x) is

enabled: estimating derivatives of the regression function µ(x) is crucial for testing

shape features such as monotonicity or concavity, as we discuss further below.

Employing our econometrics framework, we obtain an array of methodological

results for canonical binscatter and its generalizations, which we summarize and

illustrate next.
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Contribution 2: Valid and Optimal Number of Bins Selection

Implementing our standard binned scatter plot requires one choice: the number of

bins to be used, J . Given a choice of J , the position of the bins is set by the empirical

quantiles of x, via the quantile-spaced binning used in all applications. Because the

bin positions are determined by estimated quantiles, the random binning structure

underlying binscatter introduces some additional technical issues. Nevertheless, in

Section 3.4, we employ our formalization of binscatter to view the choice of J as that

of a tuning parameter in nonparametric estimation, just as a bandwidth is the tuning

parameter in kernel regression. As such, it reflects a bias/variance trade-off: as J

increases the bias decreases but the variability of the estimator increases. This is

depicted in Figure III.6.

Our second main contribution is to give a precise choice of the number of quantiles

J that trades off bias and variance in a valid and optimal way. Specifically, we study

the asymptotic properties of the integrated mean square error (IMSE) of binscatter and

its generalizations, and show that an IMSE-optimal choice of J is always proportional

to n
1

2p+3 , up to rounding to the closest integer, where recall p denotes the order of

polynomial fit within each bin. For example, if a constant fit is used (i.e., the canonical

binscatter), as in Figure III.3, then the optimal choice of number of bins is J ∝ n1/3.

The role of covariate adjustment, smoothness restrictions across bins, and other related

features of binscatter, show up only through the constant of proportionality in the

optimal rule for J . For implementation, we make the optimal choice of J , including

its constant, fully data-driven and automatic, and readily available for empirical work

in our companion software.

Most of the current binscatter applications employ an ad-hoc number of bins,

usually J = 10 or J = 20. There is no a priori reason why these choices would be

valid: these ad-hoc choices can be “too” small to account for a non-linear relationship

µ(x) (i.e., too much misspecification bias), leading to incorrect empirical conclusions.

Furthermore, even when “too” large, there is no a priori reason why they would be

optimal in terms of the usual bias-variance trade-off. Depending on the underlying

unknown features of the data, such an arbitrary choice of J could be “too small”

or “too large”, leading to graphical and formal procedures with invalid or at least

unreliable statistical properties. Section 3.4 presents our formal approach to this

problem, where we rely on an objective measure (IMSE) to select in a data-driven

way the number of bins J to use in each application of binscatter.

38



Figure III.6 Number of Bins (J).

(a) p = 0, s = 0, J = 10
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Notes. The plots illustrate the potential effects on binscatter of choosing the number of bins J too
small vis-á-vis in an IMSE-optimal way. Constructed using simulated data described in Appendix B.

Contribution 3: Confidence Bands and Valid Inference

Armed with an IMSE-optimal estimator of the regression function we now turn to

inference. Binned scatter plots are often used in applications to guide subsequent

regression analyses, essentially as a visual specification check. A second common

usage is to visually assess economically meaningful properties such as monotonicity

or concavity. Our results allow for a valid assessment, both visually and formally, of

these questions, as well as faithful display of the variability in the outcome y in the

underlying data set. None of these are possible with a traditional scatter plot nor are

currently available in the literature for binscatter and its generalizations.

The first, most intuitive display of these results is a confidence band. One may,

for each bin j = 1, 2, . . . , J , place a standard confidence interval around the sample

mean µ̂(x) = ȳj. However, this is not a correct visualization of the uncertainty about

µ(x) in the data set, and as such, can not be used to assess hypotheses of interest.

For example, just because one cannot fit a line through all these intervals does not

allow a researcher to conclude that µ(x) is nonlinear. A confidence band is the tool

required here, which naturally generalizes the idea of confidence interval.

Loosely speaking, a band is simply a confidence “interval” for a function, and

like a traditional confidence interval, it is given by the area between two “endpoint”

functions, say µ̂U(x) and µ̂L(x). We may then make statements analogous to those

for usual confidence intervals. For example, if this band does not contain a line (or

quadratic function), then we say that at level α we reject the null hypothesis that

39



Figure III.7 Confidence Intervals and Confidence Bands.
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(b) p = 2 and s = 2
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(c) p = 0 and s = 0
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(d) p = 2 and s = 2
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Notes. Constructed using simulated data described in Appendix B.

µ(x) is linear (or quadratic). Visually, the size of the band reflects the uncertainty

in the data, both in terms of overall uncertainty and any heteroskedasticity patterns.

Figure III.7 shows a confidence bands for the same four data sets as in Figure III.2,

and we see that the size and shape of the band reflects the underlying data.

We can use confidence bands, and associated statistical procedures, to test for a

variety of substantive hypotheses, both for guiding further analysis and for economic

meaning directly. Figure III.8 shows two examples: the left plot shows a rejection of

linearity while the right plot indicates statistically significant group differences. Given

the left result, a researcher may consider nonlinear regression modeling in the empirical

analysis. Given the right plot, we conclude that the different relationship between

y and x is different between the two groups shown, which may be of substantive

interest in its own right. This is a nonparametric analogue of testing the significance
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of the interaction between x and a group dummy in a linear model. In this paper, we

formalize this kind of test, which we refer to as parametric specification testing because

a particular parametric specification for µ(x), namely the linear-in-parameters model

µ(x) = θ0 + θ1x is contrasted against the binscatter approximation of µ(x). Of course,

we can test for any given parametric functional form for µ(x), including examples

such as the Probit model µ(x) = Φ(θ0 + θ1x) or the log-linear model µ(x) = eθ0+θ1x.

Visually, we cannot reject a certain functional form if the confidence band contains a

function of that type. Numerically, we can give a precise p-value for such a test.

Heuristically, our formal parametric specification testing approach is based on com-

paring the maximal empirical deviation between binscatter and the desired parametric

specification for µ(x). If the parametric specification is correct, then there should no

deviation beyond what is explained by random sampling for all evaluation points x;

hence the connection with the confidence band for µ(x). The first three rows of Table

III.1 illustrate our approach numerically.

In addition to parametric specification testing, we also develop graphical and formal

testing procedures for nonparametric shape restrictions of µ(x). Prime examples of

such tests include negativity, monotonicity or concavity of µ(x), and their reciprocals

positivity and convexity, or course. Graphically, this can be tested as before: using

Figure III.8 again we can assess whether µ(x) is “likely” to be monotonic, concave or

positive, say. Formally, we can test all these features as a one-sided hypothesis test on

µ(x) or its derivatives. To be more precise, negativity means µ(x) ≤ 0, monotonicity

means µ(1)(x) ≤ 0, and concavity means µ(2)(x) ≤ 0. The second three rows of Table

III.1 illustrate our approach to shape restriction testing numerically.

Table III.1 Formal Testing of Substantive Hypothesis.

Half Support (n = 482) Full Support (n = 1000)

Test Statistic P-value J Test Statistic P-value J

Parametric Specification

Constant 21.761 0.000 37 22.680 0 50

Linear 8.968 0.000 37 20.433 0 50

Quadratic 4.478 0.000 37 44.650 0 50

Shape Restrictions

Negativity 187.185 0.000 37 188.414 0 50

Decreasingness 0.339 0.996 6 6.149 0 11

Concavity 6.009 0.000 3 8.976 0 5

Notes. Constructed using simulated data described in Appendix B.
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Figure III.8 Graphical Testing of Substantive Hypotheses.

(a) Linear Regression Fit vs. Binscatter
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Notes. Constructed using simulated data described in Appendix B.

Figure III.9 Graphical Representation of Parametric Specification Testing

(a) Half Support of x
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Precise results for estimation and inference, including regularity conditions and

other technicalities, are summarized in Section 3.5.

Other Contributions: Software and Technicalities

Stepner (2014) gives an introduction to a very popular Stata software package imple-

menting binscatter. This package implements canonical binscatter and residualized

(covariate-adjusted) binscatter. Accompanying this chapter, we provide new software

packages in Stata and R, which improve on current software implementations in several

directions. First, we implement polynomial fits within bins and smoothness restrictions

across bins for binscatter, and hence consider estimation and inference for both the

regression function and its derivatives. Second, we implement fully data-driven selec-

tions of J , the number of bins, reflecting the features of the underlying data. Third, we

implement covariate adjustments as discussed above, avoiding residualization, which

leads to valid and interpretable methods for practice. Fourth, we implement valid

distributional approximations leading to confidence intervals, confidence bands, and a

wide range of parametric specification and nonparametric shape restriction hypothesis

tests. Cattaneo, Crump, Farrell, and Feng (2019a) discusses all the details concerning

our accompanying software and further illustrates it.

Finally, while not the focus on our paper, it is fair to underscore that studying

in full generality standard empirical practice using binscatter forced us to develop

new technical results that may be of independent interest. Our theoretical work is

connected to the literature on nonparametric series estimation because binscatter is a

partitioning-based nonparametric least squares estimator (e.g., Belloni, Chernozhukov,

Chetverikov, and Kato, 2015; Belloni, Chernozhukov, Chetverikov, and Fernandez-Val,

2019; Cattaneo and Farrell, 2013; Cattaneo, Farrell, and Feng, 2018a, and references

therein), and to the literature on partially linear semiparametric regression because of

the way we incorporate covariate adjustments (e.g., Cattaneo, Jansson, and Newey,

2018a,b, and references therein). However, available technical results can not be used

to analyze binscatter because it is implemented with a quantile-spaced binning, an

example of random partitioning, generated by estimated quantiles.

As a consequence, our theoretical work necessarily relies on new results concerning

non-/semi-parametric partitioning-based estimation on quantile-spaced (data-driven)

partitions, which may be of independent interest. To be specific, we establish three

main set of new theoretical results. First, we formally handle quantile-spaced (ran-

dom) partitions underlying binscatter by resorting to appropriate empirical process
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techniques, substantially extending the results in Nobel (1996). Second, we obtain a

general characterization of a linear map between piecewise polynomials and B-splines

and give several technical results for it, properly accounting for quantile-spaced binning.

Third, we develop a new strong approximation approach for the supremum of the

t-statistic process building on ideas related to uniform distributional approximations of

the supremum of stochastic process in Chernozhukov, Chetverikov, and Kato (2014a,b)

and on the conditional coupling lemma used in Chapter II (Lemma A.3). Since this

chapter is purposely practical, we relegate most discussions on our underlying technical

work to Appendix B, unless it is strictly necessary for practical implementation or

methodological interpretation of binscatter.

3.3 Formalizing Binscatter

We now begin our formal econometric-theoretical treatment of binscatter. Canonical

binscatter builds on the standard regression model (3.1), and is constructed employing

a quantile-spaced, disjoint partitioning of the support of xi based on the observed data.

To be precise, J disjoint intervals are constructed employing the empirical quantiles

of xi, leading to the partitioning scheme ∆̂ = {B̂1, . . . , B̂J}, where

B̂j =


[
x(1), x(bn/Jc)

)
if j = 1[

x(bn(j−1)/Jc), x(bnj/Jc)
)

if j = 2, 3, . . . , J − 1[
x(bn(J−1)/Jc), x(n)

]
if j = J

,

x(i) denotes the i-th order statistic of the sample {x1, x2, . . . , xn}, b·c is the floor

operator, and J < n. Each estimated bin B̂j contains roughly the same number of

observations Nj =
∑n

i=1 1B̂j(xi), where 1A(x) = 1(x ∈ A) with 1(·) denoting the

indicator function. It follows that units are binned according to their rank in the xi

dimension.

Given the quantile-spaced partitioning scheme ∆̂ for a choice of total number of

bins J , the canonical binscatter estimator is

ϑ̂(x) = b̂(x)′β̂, β̂ = arg min
β∈RJ

n∑
i=1

(yi − b̂(xi)
′β)2, (3.3)

where

b̂(x) =
[
1B̂1(x) 1B̂2(x) · · · 1B̂J (x)

]′
,
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is the binscatter basis given by a J-dimensional vector of orthogonal dummy variables,

that is, the j-th component of b̂(x) records whether the evaluation point x belongs

to the j-th bin in the partition ∆̂. Therefore, canonical binscatter can be expressed

as the collection of J sample averages of the response variable yi, one for each bin

B̂j: ȳj = 1
Nj

∑n
i=1 1B̂j(xi)yi for j = 1, 2, . . . , J . As illustrated in Section 3.2, empirical

work employing canonical binscatter typically plots these binned sample averages

along with some other estimate of the regression function ϑ(x).

3.3.1 Polynomial and Covariate Adjustments

We investigate the properties of binscatter in more generality. First, we allow for a

more flexible polynomial regression approximation within each bin B̂j forming the

partitioning scheme ∆̂, and thus expand the binscatter basis to allow for p-th order

polynomial fits within each bin. For a choice of p = 0, 1, 2, . . . , we redefine

b̂(x) =
[
1B̂1(x) 1B̂2(x) · · · 1B̂J (x)

]′
⊗
[

1 x · · · xp
]′
,

where now the binscatter basis is of dimension (p+ 1)J . Setting p = 0 restores canon-

ical binscatter. This generalization allows us to consider two important extensions

of binscatter: (i) estimating derivatives of ϑ(·), and (ii) incorporating smoothness

restrictions across bins. Both will be very useful in Section 3.5 when we develop novel

smooth confidence band estimators and formal hypothesis tests for shape restrictions.

Our second generalization of binscatter concerns covariate adjustment. As discussed

in Section 3.2, we allow for additive separable covariate regression-based adjustment.

Given the quantile-spaced partitioning scheme already introduced and a choice of

p-th order polynomial approximation within bin, our proposed covariate-adjusted

binscatter estimator is

µ̂(v)(x) = b̂(v)(x)′β̂,

[
β̂

γ̂

]
= arg min

β,γ

n∑
i=1

(yi − b̂(xi)
′β −w′iγ)2, v ≤ p, (3.4)

using the standard notation g(v)(x) = dvg(x)/dxv for a function g(x) and g(x) =

g(0)(x). The partially linear structure of model (3.2) naturally justifies our way of

covariate adjustment, and sharply contrasts with the most common approach based

on least squares residualization. See Section 3.3.3 below for more details. Note that

with additional control variables w, the estimand now is µ(·) rather than ϑ(·). We

focus our analysis in the following mostly on µ(·).
The generalized binscatter (3.4) reduces to the canonical binscatter (3.3) when
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p = 0 = v and γ = 0d, in which case µ̂(x) = µ̂(0)(x) becomes an step function (Figure

III.3) reporting the sample averages ȳj according to whether x ∈ B̂j, j = 1, 2, . . . , J .

The generalized binscatter µ̂(v)(x) is useful to formalize commonly used empirical

procedures based on binscatter, and to develop new binscatter-based estimation and

inference procedures with better theoretical and practical properties.

3.3.2 Smoothness Restrictions

The binscatter estimator µ̂(v)(x) retains the main features of canonical binscatter:

estimation is conducted using only information within each (estimated) bin forming

the quantile-spaced partition of the support of xi. It follows that µ̂(x) is discontinuous

at the boundaries of the J bins forming the partition ∆̂; see Figure III.5. For some

empirical analyses, both graphical and formal, researchers prefer a smoother binscatter

of µ(·), where the fits within each bin are constrained so that the final estimator

exhibits some overall smoothness over the support of xi. In this section we further

generalize binscatter to provide such an alternative.

Given the quantile-spaced partitioning scheme, a smooth binscatter is the p-th

order polynomial, s-times continuously differentiable, covariate-adjusted estimator

given by

µ̂(v)(x) = b̂(v)
s (x)′β̂,

[
β̂

γ̂

]
= arg min

β,γ

n∑
i=1

(yi− b̂s(xi)
′β−w′iγ)2, s ≤ p, (3.5)

where b̂s(x) = T̂sb̂(x) with T̂s being a [(p+ 1)J − (J −1)s]× (p+ 1)J matrix of linear

restrictions ensuring that the (s − 1)-th derivative of µ̂(x) = µ̂(0)(x) is continuous.

When s = 0, T̂0 = I(p+1)J , the identity matrix of dimension (p+ 1)J , and therefore

no restrictions are imposed: b̂(x) = b̂0(x), as given in the previous subsection. Conse-

quently, if s = 0, we obtain the binscatter µ̂(x), which is not a continuous function

estimate. On the other hand, p ≥ s implies that a least squares p-th order polynomial

fit is constructed within each bin B̂j , in which case setting s = 1 forces these fits to be

connected at the boundaries of adjacent bins, s = 2 forces these fits to be connected

and continuously differentiable at the boundaries of adjacent bins, and so on, for

s = 3, 4, . . . , p. This is the formalization leading to Figure III.5.

Enforcing smoothness for binscatter boils down to incorporating restrictions on

the binscatter basis. The resulting constrained basis, b̂s(x), corresponds to a choice of

spline basis for approximation of µ(·), with estimated quantile-spaced knots according

to the partition ∆̂. In this paper, we employ T̂s leading to B-splines, which tend
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to have very good finite sample properties, but other choices are of course possible.

Smooth binscatter (3.5) reduces to binscatter (3.4) when s = 0, and therefore the

former is a strict generalization of latter and hence, in particular, of the canonical

binscatter (3.3).

3.3.3 Comparison to the Canonical Residualized Binscatter

Current widespread empirical practice for covariate adjustment of binscatter proceeds

by first regressing out the covariates wi, and then applying canonical binscatter on

the residualized variables of interest. To be precise, standard practice applies (3.3)

upon replacing yi by yi − w̃′iδ̂y.w̃ and xi by xi − w̃′iδ̂x.w̃, where w̃i = (1,w′i)
′, and δ̂y.w̃

and δ̂x.w̃ denote the OLS coefficients obtained from regressing y on w and x on w,

respectively, with each regression including a constant term. This is the default (and

only) implementation of covariate adjustment in standard binscatter software widely

used in practice (Stepner, 2014).

Under mild assumptions, the estimators δ̂y.w̃ and δ̂x.w̃ are consistent for δy.w̃ =

E[w̃iw̃
′
i]
−1E[w̃iyi] and δx.w̃ = E[w̃iw̃

′
i]
−1E[w̃ixi], respectively. As it is customary in

applied work, w̃′δy.w̃ and w̃′δx.w̃ can be interpreted as a “best” linear approxima-

tion to E[y|w] and E[x|w], respectively. It can be argued that, under non-trivial

assumptions, the residualized binscatter approximates the conditional expectation

E[y− w̃′δy.w̃|x− w̃′δx.w̃], a parameter that is quite difficult to interpret. Consequently,

as illustrated in Figure III.4, residualized binscatter does not consistently estimate µ(x)

in model (3.2), nor E[yi|xi] in general. Under additional restrictive assumptions, the

probability limit of residualized binscatter does have some interpretation when model

(3.2) holds: if x and w are uncorrelated, then δx.w̃ = (E[x],0′)′, and the residualized

binscatter procedure consistently estimates

E[y − w̃′δy.w̃|x− E[x]] = µ(x)− E[y] + E
[
w|x− E[x]

]′
(γ − δ̌y.w̃),

where δ̌y.w̃ = E[(wi−E[wi])w
′
i]
−1E[(wi−E[wi])yi]. This estimand is clearly not equal

to µ(x) unless additional assumptions hold.

When model (3.2) is misspecified for E[y|x,w], the probability limit of both resid-

ualized binscatter and our recommended covariate-adjusted binscatter changes. In

the case of residualized binscatter, the probability limit becomes quite difficult to

interpret and relate to any meaningful “partial effect” of x on y. On the other hand,

our approach to covariate adjustment retains the usual interpretation of standard

semiparametric semi-linear models, where the true unknown “long” conditional expec-
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tation E[y|x,w] is approximated by the closest model µ(x) + w′γ in a mean square

error sense. See Angrist and Pischke (2008) for further discussion on the interpretation

of (semi-)linear least squares approximations, and its uses in applied work.

For the reasons above, we recommend to covariate-adjust binscatter by incorporat-

ing covariates in an additively separable way, as in (3.5), and not via residualization

as currently done in most empirical applications.

3.4 Implementing Binscatter

Binscatter is readily implementable once the number of bins J is chosen, for any

polynomial order p, level of smoothness constrain s ≤ p, and derivative of interest

v ≤ p. Therefore, for implementation purposes, we discuss first a valid and optimal

choice of J based on minimizing the IMSE of binscatter as a point estimator of

µ(v)(x) in model (3.2), given the researchers’ choice of p, s, and v. This IMSE-optimal

selection procedure can be viewed as a special case of applying the general results

given in Chapter II, Section 2.4, with the randomness of quantile-based partitions

appropriately treated. We defer the more detailed discussion of IMSE expansion and

the corresponding implementation procedures to Chapter IV.

The following basic assumption is the only one used throughout this chapter.

Assumption III.1. The sample (yi, xi,w
′
i), i = 1, 2, . . . , n, is i.i.d and satisfies

model (3.2). Further, the covariate xi has a continuous density function f(x) bounded

away from zero on the support X , E[V[wi|xi]] > 0, σ2(x) = E[ε2i |xi = x] is con-

tinuous and bounded away from zero, and E[‖wi‖4|xi = x], E[|εi|4|xi = x] and

E[|εi|2|xi = x,wi = w] are uniformly bounded. Finally, µ(x) and E[wi|xi = x]

are (p+ q + 1)-times continuously differentiable form some q ≥ 1.

This assumption is not minimal, but is nonetheless mild because it imposes stan-

dard conditions in classical regression settings. When the covariates wi are not

adjusted for in the binscatter, all statements involving these covariates in Assumption

III.1 can be ignored.

To select the number of bins J forming the quantile-spaced partition ∆̂ used by bin-

scatter, we proposed to minimize an approximation to the density-weighted integrated

mean square error of the estimator µ̂(v)(x). Letting ≈P denote an approximation in

probability, we show that∫ (
µ̂(v)(x)− µ(v)(x)

)2

f(x)dx ≈P
J1+2v

n
Vn(p, s, v) + J−2(p+1−v)Bn(p, s, v)
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where these two terms capture the asymptotic variance and (squared) bias of bin-

scatter, respectively, as a function of the polynomial order used (p), the desired

derivative to be approximated (v), and the level of smoothness imposed across bins

(s). Both quantities are fully characterized in Chapter IV, where they are shown

to be non-random functions of the sample size n, at this level of generality. The

variance Vn(p, s, v), depending on σ2(x) and f(x), is bounded and bounded away from

zero under minimal assumptions, while the (squared) bias Bn(p, s, v), depending on

µ(p+1)(x) and f(x), is generally bounded and bounded away from zero. Our precise

characterization of Vn(p, s, v) and Bn(p, s, v) is useful to approximate them in practice

for implementation purposes. Furthermore, we show that Vn(p, 0, v)→ V (p, 0, v) and

Bn(p, 0, v)→ B(p, 0, v), where V (p, 0, v) and B(p, 0, v) are cumbersome quantities

in general. However, for special leading cases, the variance and (squared) bias take

very simple forms: V (0, 0, 0) = E[σ2(xi)] and B(0, 0, 0) = 1
12
E
[(µ(1)(xi)

f(xi)

)2]
, which

corresponds to canonical binscatter (p = v = s = 0).

The main takeaway is that the IMSE of binscatter naturally depends on the squared

bias and variance of the estimator, and these factors can be balanced out in order to

select the IMSE-optimal number of bins to use in applications. The following theorem

summarizes this result.

Theorem III.1 (IMSE-Optimal Binscatter). Let Assumption III.1 hold, 0 ≤ v, s ≤ p,

and J log(J)/n→ 0 and nJ−4p−5 → 0. Then, the IMSE-optimal number of bins for

implementing binscatter is

JIMSE =

⌈(
2(p− v + 1)Bn(p, s, v)

(1 + 2v)Vn(p, s, v)

) 1
2p+3

n
1

2p+3

⌉
,

where d·e denotes the ceiling operator.

This theorem gives the optimal choice of J for the general class of binscatter

considered in this paper, that is, allowing for higher-order polynomial fits within bins

and imposing smooth restrictions on the fits across bins, with or without covariate

adjustment, when the main object of interest is possibly a derivative of the unknown

function µ(·). This additional versatility will be useful in upcoming sections when con-

structing formal statistical testing procedures based on binscatter derivative estimates.

In particular, the optimal number of bins for the canonical binscatter is obtained

when p = v = s = 0.

As discussed in Section 3.2, most common practice set s = 0 first, in which the

size of the partition is chosen without smoothness restrictions, even if later those

restrictions are imposed and used for constructing smoother regression estimates and
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confidence bands. An important result emerging from Theorem III.1 is that this

approach is justified in large samples because the optimal number of bins for any

0 ≤ s ≤ p is proportional to n
1

2p+3 , and therefore choosing J with or without imposing

smoothness restrictions leads to an IMSE rate optimal binscatter —only the constant

of proportionality changes slightly depending on the s chosen.

3.5 Using Binscatter

Our generalized binscatter estimator µ̂(v)(x), with 0 ≤ p and 0 ≤ v, s ≤ p, is con-

structed to approximate the function µ(v)(x) in model (3.2), which captures the v-th

derivative partial effect of x on y, after controlling for w. Viewed as a semi-/non-

parametric estimator, binscatter can be implemented in a valid and IMSE-optimal way

by setting J = JIMSE (Theorem III.1) when forming the bins partitioning the support

of x.

In this section we employ binscatter for three main purposes. First, we discuss

valid and optimal graphical presentation of the regression function and its derivatives.

Second, we offer valid confidence intervals and bands for µ(v)(x). Finally, we develop

valid hypothesis tests for parametric specification and nonparametric shape restrictions

of µ(v)(x). All the results discussed in this section are formalizations of the procedures

already illustrated in Section 3.2.

3.5.1 Graphical Presentation

We proved that the binscatter estimator µ̂(v)(x), implemented with J = JIMSE as in

Theorem III.1, is an IMSE-optimal point estimator of µ(v)(x). Furthermore, we also

show there that binscatter can achieve the fastest uniform rate of convergence. These

results highlight some of the good statistical properties of binscatter, and justify its

use for depicting an approximation to the unknown function µ(x).

In Section 3.2, we illustrated several of the resulting binned scatter plots, all

constructed using µ̂(v)(x) for appropriate choice of polynomial order within bin (p),

smoothness level (s), and derivative of interest (v). To describe how these plots

are constructed, let b̄j denote the center of the j-th quantile-spaced bin B̂j, where

j = 1, 2, . . . , J . Then, the dots in the binned scatter plot correspond to µ̂(b̄j) for

any choice of 0 ≤ v, s ≤ p. In Figure III.5 we illustrated the effects of varying s and

p by plotting µ̂(x) as a function of x. When s = 0, the resulting estimator µ̂(x) is
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discontinuous at the bins’ edges, while when s > 0 it is at least continuous.

In constructing a binned scatter plot, it may be convenient to report more than

one estimate of µ(x) over the same quantile-spaced bins. For example, researchers can

report a collection of “dots” using µ̂(b̄j), j = 1, 2, . . . , J , with p = s = 0 (canonical

binscatter), and a “line” representing a smoother estimate such as µ̂(x), x ∈ X , with

p = s = 3 (cubic B-spline).

Finally, while not graphically illustrated in Section 3.2, derivative estimates can

also lead to powerful and useful binned scatter plots. Specifically, in some applications

researchers may be interested in an “average marginal effect” of x on y, possibly

controlling for other factors w, which is naturally captured by µ(1)(x). Such a quantity

is of interest in many different setups, ranging from reduced form latent variable

models to structural non-separable models. Furthermore, derivatives of µ(x) are of

interest in testing for substantive hypotheses such as marginal diminishing returns.

We formalize these latter ideas further below.

3.5.2 Pointwise Inference and Confidence Intervals

We turn now to confidence interval and confidence band estimators based on binscatter.

The Studentized t-statistic is

T̂p(x) =
µ̂(v)(x)− µ(v)(x)√

Ω̂(x)/n
, 0 ≤ v, s ≤ p,

where the binscatter variance estimator is

Ω̂(x) = b̂(v)
s (x)′Q̂−1Σ̂Q̂−1b̂(v)

s (x),

Q̂ =
1

n

n∑
i=1

b̂s(xi)b̂s(xi)
′, Σ̂ =

1

n

n∑
i=1

b̂s(xi)b̂s(xi)
′(yi − b̂s(xi)

′β̂ −w′iγ̂)2.

Lemma III.1 (Distributional Approximation: Pointwise). Let Assumption III.1 hold,

0 ≤ v, s ≤ p, and J2 log2(J)/n→ 0 and nJ−2p−3 → 0. Then,

sup
u∈R

∣∣∣P[T̂p(x) ≤ u
]
− Φ(u)

∣∣∣→ 0, for each x ∈ X ,

where Φ(u) denotes the distribution function of a standard normal random variable.

Lemma III.1 can be used to form asymptotically valid confidence intervals for

µ(v)(x), pointwise in x ∈ X , provided the misspecification error introduced by binscat-

ter is removed from the distributional approximation. Specifically, for a choice p, the
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confidence intervals take the form:

Îp(x) =
[
µ̂(v)(x)± c ·

√
Ω̂(x)/n

]
, 0 ≤ v, s ≤ p,

where c denotes a choice of quantile (e.g., c ≈ 1.96 for a 95% Gaussian confidence

intervals). However, employing an IMSE-optimal binscatter (e.g., Theorem III.1)

introduces a first-order misspecification error leading to invalidity of these confidence

intervals. To address this problem, we rely on a simple application of robust bias

correction (Calonico, Cattaneo, and Titiunik, 2014; Calonico, Cattaneo, and Farrell,

2018b; Cattaneo, Farrell, and Feng, 2018a) to form valid confidence intervals based on

IMSE-optimal binscatter, that is, without altering the partitioning scheme ∆̂ used.

Our proposed robust bias-corrected binscatter confidence intervals are constructed

as follows. First, for a given choice of p, we select the number of bins in ∆̂ according

to Theorem III.1, and construct the binscatter accordingly. Then, we employ the

confidence interval Îp+q(x) with c = Φ−1(1−α/2). The following theorem summarizes

this approach.

Theorem III.2 (Confidence Intervals). For given p, suppose the conditions in Lemma

III.1 hold and J = JIMSE. If c = Φ−1(1− α/2), then

P
[
µ(v)(x) ∈ Îp+q(x)

]
→ 1− α, for all x ∈ X .

The confidence intervals constructed in the above theorem are based on an IMSE-

optimal implementation of binscatter and robust bias correction. They were illustrated

in Figure III.7 as individual vertical segments inside the shaded bands, which are

discussed in the next subsection.

3.5.3 Uniform Inference and Confidence Bands

In many empirical applications of binscatter, the goal is to conduct inference uniformly

over x ∈ X as opposed to pointwise as in the previous section. Examples include

reporting confidence bands for µ(x) and its derivatives, as well as testing for linearity,

monotonicity, concavity, or other shape features of µ(v)(x). This section applies a

formal approach for uniform inference employing binscatter and its generalizations,

and constructs valid confidence bands based on binscatter and its generalizations. In

the following subsections, we employ these uniform inference results to develop asymp-

totically valid testing procedures for parametric model specification and nonparametric

shape restrictions.
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Our approach to uniform inference extends the work on strong approximations in

Chapter II to allow for estimated quantile-spaced partitioning ∆̂, as commonly used

in binscatter settings, which requires non-trivial additional technical work. In fact, it

is not possible to obtain a valid strong approximation for the entire stochastic process

{T̂p(x) : x ∈ X}, as done in Chapter II, because uniformity fundamentally fails when

the partitioning scheme is random: see Appendix B for details. Inspired by the work

in Chernozhukov, Chetverikov, and Kato (2014a,b), our approach circumvents this

technical hurdle by retaining the randomness introduced by ∆̂, and focusing instead

on the specific functional of interest (i.e., suprema).

In this section we apply these results to construct valid robust bias-corrected

confidence bands for µ(v)(x), while in the next two upcoming sections we employ them

to develop valid testing procedures. For a choice of p, 0 ≤ v, s ≤ p, and quantile-spaced

partition size J , we define{
Îp+q(x) : x ∈ X

}
with c = inf

{
c ∈ R+ : P

[
sup
x∈X

∣∣T̂p+q(x)
∣∣ ≤ c

]
≥ 1− α

}
.

By construction, this band covers the entire function µ(v)(x) with probability 1− α.

The main drawback in the construction above, however, is that the quantiles c are

unknown because the finite sample distribution of supx∈X
∣∣T̂p+q(x)

∣∣ is unknown. Our

strong approximation results allow us to approximate this distribution by resampling

from a Gaussian vector of length (p + q + 1)J − (J − 1)s. To be more precise, let

NK be a K-dimensional standard normal random vector, and define the following

(conditional) Gaussian process:

Ẑp(x) =
b̂(v)(x)′Q̂−1Σ̂−1/2√

Ω̂(x)/n
N(p+1)J−(J−1)s, x ∈ X , 0 ≤ v, s ≤ p. (3.6)

We show that the distribution of supx∈X
∣∣T̂p(x)

∣∣ is well approximated by that of

supx∈X
∣∣Ẑp(x)

∣∣, conditional on the data D = {(yi, xi,w′i) : i = 1, 2, . . . , n}. This result

implies that the quantiles used to construct confidence bands can be approximated by

resampling from the normal random vectors N(p+1)J−(J−1)s, keeping the data D fixed.

We make this approach precise in the following theorem.

Lemma III.2 (Distributional Approximation: Supremum). Let Assumption III.1

hold, 0 ≤ v, s ≤ p, and J2 log6(J)/n→ 0 and nJ−2p−3 log J → 0. Then,

sup
u∈R

∣∣∣P[ sup
x∈X
|T̂p(x)| ≤ u

]
− P

[
sup
x∈X
|Ẑp(x)| ≤ u

∣∣∣D]∣∣∣→P 0.

where →P denotes convergence in probability.
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Putting the above together, we have the following main result for robust bias-

corrected confidence bands.

Theorem III.3 (Confidence Bands). For given p, suppose the conditions in Lemma

III.2 hold and J = JIMSE. If c = inf
{
c ∈ R+ : P

[
supx∈X

∣∣Ẑp+q(x)
∣∣ ≤ c

∣∣ D
]
≥ 1− α

}
,

then

P
[
µ(v)(x) ∈ Îp+q(x), for all x ∈ X

]
→ 1− α.

This theorem offers a valid confidence bands construction for µ(v)(·), which relies

on resampling from a particular random variable: supx∈X |Ẑp+q(x)|, conditional on the

original data. In practice, this supremum is replaced by a maximum over a fine grid

of evaluation points, and each realization of Ẑp+q(x) is obtained by resampling from

the standard normal random vector N(p+q+1)J−(J−1)s and then computing Ẑp+q(x) as

in (3.6), where all other quantities are fixed and known given the original data. As a

consequence, the quantile c is actually estimated conditional on D. Further details

on implementation are given in our companion software package (Cattaneo, Crump,

Farrell, and Feng, 2019a).

3.5.4 Testing Parametric Specifications

Binscatter is often used to heuristically assess different types of shape features of the

unknown regression function and its derivatives. In this section, we provide a rigorous

formalization of one such kind of hypothesis tests: parametric specifications of µ(v)(x).

In the next section, we discuss another type of shape-related hypothesis test: testing

for nonparametric features such as monotonicity or concavity of µ(v)(x).

One type of informal analysis commonly encountered in empirical work concerns

comparing the binscatter µ̂(v)(x) relative to some parametric fit. For example, µ̂(x)

can be compared to ȳ = 1
n

∑n
i=1 yi to assess whether there is a relationship between

yi and xi or, more formally, whether µ(x) is a constant function. Similarly, it is

common to see binscatter used to assess whether there is a linear or perhaps quadratic

relationship, that is, whether µ(x) = θ0 + xθ1 or perhaps µ(x) = θ0 + xθ1 + x2θ2

for some unknown coefficients θ = (θ0, θ1, θ2)′. More generally, researchers are often

interested in assessing formally whether µ(x) = m(x,θ) for some m(·) known up to a

finite parameter θ, which can be estimated using the available data. We formalize

this class of hypothesis tests as follows: for a choice of v and function m(v)(x,θ) with
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θ ∈ Θ ⊆ Rdθ , the null and alternative hypotheses are

Ḧ0 : sup
x∈X

∣∣∣µ(v)(x)−m(v)(x,θ)
∣∣∣ = 0, for some θ ∈ Θ, vs.

ḦA : sup
x∈X

∣∣∣µ(v)(x)−m(v)(x,θ)
∣∣∣ > 0, for all θ ∈ Θ.

As is evident from its formulation, this testing problem can be implemented using

test statistics involving the supremum of (derivatives of) binscatter, with or without

employing higher-order polynomials, imposing smoothness restrictions, or adjusting

for additional covariates. Crucially, in all cases it is required to approximate the

quantiles of the finite sample distribution of such statistics, which can be done in a

similar fashion as discussed above for constructing confidence bands.

Since θ is unknown and not set by the null hypothesis, we construct a feasible

testing procedure by assuming that there exists an estimator θ̂ that consistently

estimates θ under the null hypothesis (correct parametric specification), and that is

“well behaved” under the alternative hypothesis (parametric misspecification). See

Theorem III.4 below for precise restrictions. Then, we consider the following test

statistic

T̈p(x) =
µ̂(v)(x)−m(v)(x, θ̂)√

Ω̂(x)/n
, 0 ≤ v, s ≤ p,

leading to the hypothesis test:

Reject Ḧ0 if and only if sup
x∈X
|T̈p(x)| ≥ c, (3.7)

for an appropriate choice of critical value c to control false rejections (Type I error).

The following theorem gives the remaining details, and makes the hypothesis

testing procedure (3.7) feasible.

Theorem III.4 (Hypothesis Testing: Parametric Specification). Let Assumption

III.1 hold. For given p, and 0 ≤ v, s ≤ p, set J = JIMSE and c = inf
{
c ∈ R+ :

P
[

supx∈X |Ẑp+q(x)| ≤ c
∣∣ D
]
≥ 1− α

}
.

Under Ḧ0, if supx∈X |m(v)(x, θ̂)− µ(v)(x)| = OP(n−1/2), then

lim
n→∞

P
[

sup
x∈X

∣∣T̈p+q(x)
∣∣ > c

]
= α.

Under ḦA, if there exists some θ̄ such that supx∈X |m(v)(x, θ̂) − m(v)(x, θ̄)| =
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OP(n−1/2), then

lim
n→∞

P
[

sup
x∈X

∣∣T̈p+q(x)
∣∣ > c

]
= 1.

This theorem formalizes a very intuitive idea: if the confidence band for µ(v)(x)

does not contain entirely the parametric fit considered, then such parametric fit is

inconsistent with the data, i.e., should be rejected. Formally, this leads to the hy-

pothesis testing procedure (3.7), which relies on a proper (simulated) critical value.

The condition supx∈X |m(v)(x, θ̂) − µ(v)(x)| = OP(n−1/2) under the null hypothesis

is very mild: it states that the unknown parameters entering the parametric spec-

ification µ(x) = m(x,θ) is
√
n-estimable, provided some mild regularity holds for

the known regression function m(x,θ). For example, a simple sufficient condition is
√
n(θ̂ − θ) = OP(1) and m(x,θ) continuous in x and continuously differentiable in θ.

Most standard parametric models in applied microeconomics satisfy such conditions,

including linear and non-linear regression models, discrete choice models (Probit or

Logit), censored and truncation models, and many more.

In practice, it is natural to combine the formal hypothesis test emerging from

Theorem III.4 with a binned scatter plot that includes a binscatter confidence band

and a line representing the parametric fit. Section 2 illustrated this with Table III.1

and Figure III.8.

Remark III.1 (Other Metrics). The parametric specification test in (3.7) is based on

the maximum discrepancy between the fit of the hypothesized parametric model for

µ(x) and the nonparametric binscatter approximation. Some practitioners, however,

may prefer to assess the discrepancy by means of an alternative metric, such as the

mean square difference between the parametric and nonparametric fits. Our theoretical

results given in the appendix are general enough to accommodate such alternative

comparisons, but we do not discuss them here only to conserve space.

3.5.5 Testing Shape Restrictions

The hypothesis test (3.7) concerns parametric specification testing for a choice of

m(x,θ), but it can also be used to conduct certain nonparametric shape restriction

testing. For example, if the function µ(x) is constant, then µ(1)(x) = 0 for all x ∈ X ,

which can be implemented using Theorem III.4 upon setting m(·) = 0 and v = 1, for

any p ≥ 1 and 0 ≤ s ≤ p. Similarly, linearity or other related nonparametric shape

restrictions can be tested for via the results in Theorem III.4, for appropriate choice of

v. The common feature in all cases is that the null hypothesis of interest is two-sided.
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There are, however, other important nonparametric shape restriction hypotheses

about µ(x) that correspond to one-sided null hypothesis, and thus cannot be imple-

mented using Theorem III.4. For example, negativity, monotonicity and concavity

of µ(x) all correspond to formal statements of the form µ(x) ≤ 0, µ(1)(x) ≤ 0 and

µ(2)(x) ≤ 0, respectively. Thus, in this section we also study the following class of

hypothesis tests: for a choice of v, the null and alternative hypotheses are

Ḣ0 : sup
x∈X

µ(v)(x) ≤ 0, vs. ḢA : sup
x∈X

µ(v)(x) > 0.

These hypotheses highlight the importance of extending binscatter to derivative esti-

mation, which necessarily requires considering p ≥ v > 0, with or without smoothness

restrictions or covariate adjustments. In other words, considering higher-order poly-

nomial fits within bins is not a spurious generalization of binscatter, but rather a

fundamental input for implementing the above nonparametric shape-related hypothesis

tests.

To make our hypothesis testing procedures precise, we employ the following feasible,

Studentized statistic:

Ṫp(x) =
µ̂(v)(x)√
Ω̂(x)/n

, x ∈ X , 0 ≤ v, s ≤ p

leading to the hypothesis test:

Reject Ḣ0 if and only if sup
x∈X

Ṫp(x) ≥ c, (3.8)

for an appropriate choice of critical value c to control false rejections (Type I error). Of

course, the other one-sided hypothesis tests are constructed in the obvious symmetric

way.

Theorem III.5 (Hypothesis Testing: Nonparametric Shape Restriction). Let As-

sumption III.1 hold. For given p, and 0 ≤ v, s ≤ p, set J = JIMSE and c = inf
{
c ∈

R+ : P
[

supx∈X Ẑp+q(x) ≤ c
∣∣ D
]
≥ 1− α

}
.

Under Ḣ0, then

lim
n→∞

P
[

sup
x∈X

Ṫp+q(x) > c
]
≤ α.

Under ḢA, then

lim
n→∞

P
[

sup
x∈X

Ṫp+q(x) > c
]

= 1.

This theorem shows that the hypothesis testing procedure (3.8) is valid. Because
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of its one-sided nature, the test is conservative in general. Further, because it relies

on a supremum-type statistic, this nonparametric shape restriction test also employs

a simulated critical value, just like those used in the previous sections to construct

confidence bands or to conduct parametric specification testing. Theorem III.5 corre-

sponds to the one-sided “left” hypothesis test, but of course the analogous theorem

“to the right” also holds. Our software implementation allows for all three possibilities:

one-sided (left or right) and two-sided hypothesis testing. See Cattaneo, Crump,

Farrell, and Feng (2019a) for more details.

Remark III.2 (Two-Sample Nonparametric Testing). Our results can also be extended

to handle nonparametric testing about features of µ(x) for two or more groups. For

example, assuming that two (sub-)samples are available, our methods can be used

to test the null hypothesis: H0 : µ1(x) = µ2(x) for all x ∈ X , where µ1(x) and µ2(x)

denote the µ(x) function in our framework for two distinct (sub-)samples. Such a

hypothesis test can be formally implemented using a uniform measure of discrepancy,

as we used above, or some other metric (see Remark III.1). Our theoretical results

given in Appendix B are general enough to accomodate this extension, which we plan

to undertake in upcoming work.

3.6 Conclusion

We introduced a general econometrics framework to understand binscatter, a very

popular methodology for approximating the conditional expectation function in ap-

plied microeconomics. Our framework leads to a variety of new methodological (and

theoretical) results for the canonical binscatter, including novel smooth and/or polyno-

mial approximation approaches, principled covariate adjustment implementation, and

valid inference and hypothesis testing methods. In particular, we highlight important

problems with the way covariate adjustment is currently done in practice via current

popular software implementations (Stepner, 2014).

In addition to providing the first foundational methodological study of binscat-

ter and extensions thereof, we also offer new accompanying Stata and R software

implementing all our results (Cattaneo, Crump, Farrell, and Feng, 2019a).
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Chapter IV

Implementation Methodology and
Numerical Evidence

4.1 Introduction

Chapter II and III provide an array of theoretical results for partitioning-based es-

timators in nonparametric and semiparametric models. In practice it is crucial for

researchers to select tuning parameters and conduct corresponding estimation and

inference in a principled way. As illustrated by our theory, one could select a tuning

parameter that minimizes integrated mean squared error (IMSE), and then proceed

to valid inference relying on various bias correction strategies proposed in Chapter

II. This chapter aims at offering more detailed implementation methodology for this

practice.

First, we discuss several popular basis choices, including splines, piecewise poly-

nomials and wavelets, in Section 4.2. In particular, the expressions of their leading

asymptotic errors are presented, which form the basis of our tuning parameter selection

and bias correction methods. To show the usefulness of our theory, other high level

conditions specified in Chapter II are verified as well.

Second, we derive a more explicit IMSE approximation for tensor-product parti-

tions in Section 4.3. The result given in Theorem II.1 is stated at a very high level

of generality, allowing for both tensor-product and non-tensor-product partitioning

schemes. The whole partition plays the role of a tuning parameter, rendering the

selection procedure still difficult to implement. In this chapter we will specialize it to

a more detailed result for partitions formed via tensor products of intervals, where

the tuning parameter reduces to a vector of partitioning knots. Under additional

regularity conditions, we give explicit limiting constants in IMSE approximation which

can be estimated consistently in practice. Similar results exist in literature only for

some particular basis choices, e.g. splines (Agarwal and Studden, 1980) and piecewise

polynomials (Cattaneo and Farrell, 2013). Our results are stated under a set of
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high-level conditions, covering these examples as special cases, and for compactly

supported wavelets, our results appear to be new to literature.

Given the IMSE approximation and bias characterization, we propose in Section

4.4 two data-driven procedures (rule-of-thumb and direct plug-in) for tuning parameter

selection, which are implemented in companion software packages lspartition in R

and binsreg in R and STATA.

In Section 4.5 we illustrate our methods using an empirical example, offering a list

of practical recommendations. Finally, Section 4.6 provides Monte Carlo evidence.

Notation

Throughout this chapter, we focus on the setup of Chapter II, and all notation used in

the following is understood accordingly, if no special explanation. Moreover, we will

assume the support of the regressors is of tensor product form, and then each dimension

of X is partitioned marginally into intervals and ∆ is the tensor product of these

intervals. Let X` = [x`, x`] be the support of covariate ` = 1, 2, . . . , d and partition this

into κ` disjoint subintervals defined by {x` = t`,0 < t`,1 < · · · < t`,κ`−1 < t`,κ` = x`}.
If this partition of X` is ∆`, then a complete partition of X can be formed by tensor

products of the one-dimensional partitions: ∆ = ⊗d`=1∆`, with κ = (κ1, κ2, . . . , κd)
′

subintervals in each dimension of xi and κ̄ = κ1κ1 · · ·κd. A generic cell of this partition

is a rectangle

δl1...ld = {x : t`,l` < x` < t`,l`+1, 0 ≤ l` ≤ κ` − 1 and 1 ≤ ` ≤ d}. (4.1)

Given this setup, Assumption II.2 can be verified by choosing the knot posi-

tions/configuration appropriately, often dividing X` uniformly or by empirical quantiles.

Moreover, let δx be a subrectangle in ∆ containing x, and bx be the vector collect-

ing the interval lengths of δx (see Assumption IV.1 below). tLx denotes the start point

of δx. For ` = 1, . . . , d, for a generic cell δl1...ld as in (4.1), we write b`,l` = t`,l`+1 − t`,l` ,
l` = 0, . . . , κ` − 1, b` = max0≤l`≤κ`−1 b`,l` and b = max1≤`≤d b` (b � h by Assumption

II.2). Finally, � denotes the entrywise division operator (Hadamard division), and

q! = q1! · · · qd!

4.2 Several Basis Choices

This section discusses several examples of basis expansions that are commonly used

in practice, including B-splines, wavelets and piecewise polynomials (i.e., generalized

60



regressogram). We illustrate how Assumptions II.3, II.4, II.5 and the orthogonal-

ity condition (2.5) are verified for these basis choices. In particular, their leading

approximation errors are presented.

4.2.1 B-Splines

A univariate spline is a piecewise polynomial satisfying certain smoothness constraints.

For some integer m` ≥ 2, let S∆`,m` be the set of splines of order m` with univariate

partition ∆`. Then

S∆`,m` =
{
s ∈ Cm`−2(X`) : s(x) is a polynomial of degree (m` − 1)

on each subinterval [t`,l` , t`,l`+1]
}
,

and hence S∆`,m` is a vector space and can be spanned by many equivalent representing

bases. B-splines as a local basis are well studied in literature and enjoy many nice

properties. The detailed construction of B-splines can be found in many textbooks,

e.g., Schumaker (2007), and is omitted here to conserve space.

We focus on tensor-product polynomial splines of order m = (m1, . . . ,md) with

partition ∆, which are formed by a tensor product of univariate B-splines:

S∆,m = ⊗d`=1S∆`,m` = span{pl1(x1)pl2(x2) · · · pld(xd)}
K1,...,Kd
l1=1,...,ld=1.

Each collection of basis functions {pl`(x`)}
K`
l`=1 forms the univariate B-spline basis of

order m` for dimension `, ` = 1, . . . d. We have a total of K =
∏d

`=1K` basis functions.

The order of univariate basis could vary across dimensions, but for simplicity we

assume that m1 = · · · = md = m.

The following lemma shows that Assumptions II.3 and II.4 hold for B-splines.

Lemma IV.1 (B-Splines Estimators). Let p(x) be a tensor-product B-Spline basis

of order m, and suppose Assumptions II.1 and II.2 hold with m ≤ S. Then:

1. p(x) satisfies Assumption II.3.

2. If, in addition,

max
0≤l`≤κ`−2

|b`,l`+1 − b`,l` | = O(b1+%), ` = 1, . . . , d, (4.2)

then Assumption II.4 holds with ς = m− 1 and

Bm,ς(x) = −
∑
u∈Λm

∂uθ(x)h
m−[ς]
x

(u− ς)!
bu−ςx

h
m−[ς]
x

BS
u−ς

(
(x− tLx)� bx

)
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where Λm = {u ∈ Zd+ : [u] = m, and u` = m for some 1 ≤ ` ≤ d} and BS
u(x) is

the product of univariate Bernoulli polynomials; that is, BS
u(x) :=

∏d
`=1Bu`(x`)

with Bu`(·) being the u`-th Bernoulli polynomial and BS
u(·) = 0 if u contains

negative elements. Furthermore, Equation (2.5) holds.

3. Let p̃(x) be a tensor-product B-Spline basis of order m̃ > m on the same partition

∆, and assume m̃ ≤ S. Then Assumption II.5 is satisfied.

Equation (4.2) gives a precise definition of the strong quasi-uniform condition on

the partition scheme. Assumption II.2 requires that the volumes of all cells vanish at

the same rate but allows for any constant proportionality between neighboring cells.

Presently, cells are further restricted to be of the same volume asymptotically, and

further, a specific rate is required that is related to the smoothness of θ(·). Note that,

for example, equally spaced knots satisfy this conditional trivially. For other schemes,

additional work may be needed. Under (4.2), Barrow and Smith (1978) obtained an

expression for the leading asymptotic error of univariate splines, which was later used

by Zhou, Shen, and Wolfe (1998) and Zhou and Wolfe (2000), among others. Lemma

IV.1 extends previous results to the multi-dimensional case, in addition to showing

that the high-level conditions in Assumption II.3 and II.4 hold for B-Splines.

4.2.2 Wavelets

Our results apply to compactly supported wavelets, such as Cohen-Daubechies-Vial

wavelets (Cohen, Daubechies, and Vial, 1993). For more background details see

Meyer (1995); Härdle, Kerkyacharian, Picard, and Tsybakov (2012); Chui (2016), and

references therein.

Specifically, let {φsn,l, l ∈ Lsn} be a collection of (compactly supported) father

wavelet functions at resolution level sn, where Lsn denotes some properly defined

index set. We employ a tensor-product (father) wavelet basis

p(x) := ⊗d`=12−sn/2φsn(x`) (4.3)

where φsn is a vector containing all functions in {φsn,l, l ∈ Lsn}. The resolution level

sn plays the role of the tuning parameter for wavelets. As n→∞, sn →∞, and it is

linked with the mesh width by b = 2−sn .

As the next lemma shows, this large class of orthogonal wavelet bases satisfies our

assumptions.
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Lemma IV.2 (Wavelets Estimators). Let φ and ψ be a scaling function and a wavelet

function of degree m− 1 with q + 1 continuous derivatives, p(x) be the tensor prod-

uct orthogonal (father) wavelet basis of degree m − 1 generated by φ, and suppose

Assumption II.1 holds with m ≤ S.

1. p(x) satisfies Assumption II.3.

2. Assumption II.4 holds with ς = q and

Bm,ς(x) = −
∑
u∈Λm

∂uθ(x)hm−[ς]

u!

bm−[ς]

hm−[ς]
BW
u,ς(x/b)

where Λm = {u ∈ Zd+ : [u] = m, and u` = m for some 1 ≤ ` ≤ d} and

BW
u,ς(x) =

∑
s≥0 ∂

ςξu,s(x) converges uniformly, with ξu,s(·) being a linear com-

bination of products of univariate father wavelet φ and the mother wavelet

ψ; its exact form is notationally cumbersome and is given in Equation (C.3).

Furthermore, Equation (2.5) holds.

3. Let φ̃ be a scaling function of degree m̃− 1 with m+ 1 continuous derivatives for

some m̃ > m, p̃(x) be the tensor-product orthogonal wavelet basis generated by φ̃

having the same resolution level as p(x), and assume m̃ ≤ S. Then Assumption

II.5 is satisfied.

In addition to verifying our high-level conditions for wavelets, this result gives a

novel asymptotic error expansion for multidimensional compactly supported wavelets.

Our derivation employs the ideas in Sweldens and Piessens (1994) and exploits the

tensor-product structure of these bases.

4.2.3 Generalized Regressograms

The generalized regressogram is distinguished from splines in that (i) each polynomial

is supported on exactly one cell, and relatedly (ii) no continuity is assumed between

cells. Specifically, for some fixed integer m ∈ Z+, let r(x`) = (1, x`, . . . , x
m−1
` )′ denote

a vector of powers up to degree m− 1. To extend it to a multidimensional basis, we

take the tensor product of r(x`), denoted by a column vector R(x). The total order of

such a basis is not fixed, and its behavior is more similar to tensor-product B-splines.

Following Cattaneo and Farrell (2013, and references therein), we exclude all terms

with degree greater than m− 1 in R(x). Hence the remaining elements in R(x) are

given by xα = xα1
1 · · ·x

αd
d for a unique d-tuple α such that [α] ≤ m − 1. Then we
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“localize” this basis by restricting it to a particular subrectangle δl1···ld . Specifically,

we write pl1...ld(x) = 1δl1...ld (x)R(x), where 1δl1...ld (x) is equal to 1 if x ∈ δl1...ld and 0

otherwise. Finally, we rotate the basis by centering each basis function at the start

point of the corresponding cell and scale it by interval lengths.

The following lemma shows that Assumptions II.3 and II.4 hold for generalized

regressograms.

Lemma IV.3 (Generalized Regressograms). Let p(x) be the rotated piecewise polyno-

mial basis of degree m−1 based on Legendre polynomials, and suppose that Assumptions

II.1 and II.2 hold with m ≤ S. Then,

1. p(x) satisfies Assumption II.3.

2. Assumption II.4 holds with ς = m− 1 and

Bm,ς(x) = −
∑
u∈Λm

∂uθ(x)h
m−[ς]
x

(u− ς)!
bu−ςx

h
m−[ς]
x

BP
u−ς

(
(x− tLx)� bx

)
,

where Λm = {u : [u] = m} and

BP
u(x) :=

d∏
`=1

(
2u`
u`

)−1

Pu`(x`),

with Pu`(·) being the u`-th shifted Legendre polynomial orthogonal on [0, 1], and

BP
u(·) = 0 if u contains negative elements. Furthermore, Equation (2.5) holds.

3. Let p̃(x) be a piecewise polynomial basis of degree m̃− 1 on the same partition

∆ for some m̃ > m, and assume m̃ ≤ S. Then Assumption II.5 is satisfied.

The leading asymptotic error obtained in Lemma IV.3 differs from the one in

Cattaneo and Farrell (2013) because it is expressed in terms of orthogonal polynomials.

Here we employ Legendre polynomials, P̄m(x), that are orthogonal with respect to

the Lebesgue measure on [−1, 1], and then shift them to Pm(x) = P̄m(2x− 1). Thus

the shifted Legendre polynomials are orthogonal on [0, 1].

4.3 IMSE: Tensor-Product Partitions

Theorem II.1 gives a general IMSE approximation where leading constants rely on the

whole partition ∆. To illustrate the usefulness of this result in applications, we study

the special case of a tensor-product partition where the tuning parameter ∆ reduces to
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a vector of partitioning knots κ = (κ1, . . . , κd)
′, where κ` is the number of subintervals

used for the `-th covariate. We further assume that ∆ and p(·) obey the following

regularity conditions, so that the limiting constants in the IMSE approximation can

be characterized.

Assumption IV.1 (Regularity for Asymptotic IMSE). Suppose that X = ⊗d`=1X` ⊂
Rd, which is normalized to [0, 1]d without loss of generality, and ∆ is a tensor-product

partition. For x ∈ [0, 1]d, denote δx = {t`,lx ≤ x` ≤ t`,lx+1, 1 ≤ ` ≤ d}, where lx < κ`.

Let bx = (bx,1, . . . , bx,d) collect the interval lengths bx,` = |t`,lx+1 − t`,lx |. In addition:

1. For ` = 1, . . . , d, supx∈[0,1]d |bx,` − κ−1
` g`(x)−1| = o(κ−1

` ), where g`(·) is bounded

away from zero and continuous.

2. For all δ ∈ ∆ and u1,u2 ∈ Λm, there exist constants ηu1,u2,q such that∫
δ

h
2m−2[q]
x

bu1+u2−2q
x

Bu1,q(x)Bu2,q(x) dx = ηu1,u2,q vol(δ)

where vol(δ) denotes the volume of δ.

3. There exists a set of points {τk}Kk=1 such that τk ∈ supp(pk(·)) for each

k = 1, . . . , K, and {τk}Kk=1 can be assigned into J + J̆ < ∞ groups such

that {τs,ks}Ksks=1, s = 1, . . . , J + J̆ ,
∑J+J̆

s=1 Ks = K, and the following con-

ditions hold: (i) For all 1 ≤ s ≤ J , {δτs,ks}
Ks
ks=1 are pairwise disjoint and

vol
(
[0, 1]d \

⋃Ks
ks=1 δτs,ks

)
= o(1); and (ii) for all J + 1 ≤ s ≤ J + J̆ ,

vol
(⋃Ks

ks=1 δτs,ks
)

= o(1).

Part (1) slightly strengthens the quasi-uniform condition imposed in Assumption

II.2, but allows for quite general transformations of the knot location. Part (2) ensures

that the local integral of the product between any two Bu,q(·) for u ∈ Λm, which

depend on the basis but not θ(x), is proportional to the volume of the cell. The

scaling factor is due to the use of the lengths of intervals on each axis (denoted by bx)

to characterize the approximation error for a tensor-product partition, instead of the

more general diameter used in Section 2.2. Finally, part (3) describes how the supports

of the basis functions cover the whole support of data. Specifically, it requires that the

approximating basis p can be divided into J + J̆ groups. The supports of functions

in each of the first J groups constitute “almost” complete covers of X . In contrast,

the supports of functions in other groups are negligible in terms of volume. In such a

case, we refer to J as the number of complete covers generated by the supports of

basis functions. For tensor product B-splines (with simple knots) and wavelets, each
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subrectangle in ∆ can be associated with one basis function in p and the supports

of the remaining functions are asymptotically negligible in terms of volume. Thus,

J = 1 in these two examples. For piecewise polynomials of total order m, within each

subrectangle the unknown function is approximated by a multivariate polynomial

of degree m − 1, and thus J =
(
d+m−1
m−1

)
. This condition is used to ensure that the

summation over the number of basis functions converges to a well-defined integral as

K � h−d →∞.

We then have the following result for θ̂0(x).

Theorem IV.1 (Asymptotic IMSE). Suppose that the conditions in Theorem II.1

and Assumption IV.1 hold. Then, for [q] = 0,

Vκ,0 =
( d∏
`=1

κ`

)
V0 + o(h−d), V0 = J

∫
[0,1]d

σ2(x)

f(x)

( d∏
`=1

g`(x)
)
w(x) dx,

and, provided that (2.5) holds,

Bκ,0 =
∑

u1,u2∈Λm

κ−(u1+u2)Bu1,u2,0 + o(h2m),

Bu1,u2,0 = ηu1,u2,0

∫
[0,1]d

∂u1θ(x)∂u2θ(x)

g(x)u1+u2
w(x)dx.

The bias approximation requires the approximate orthogonality condition (2.5)

which is satisfied by B-splines, wavelets, and piecewise polynomials. It appears to be

an open question whether Vκ,q and Bκ,q converge to a well-defined limit when general

basis functions are considered. Cattaneo and Farrell (2013) showed convergence to

well defined limits for piecewise polynomials, but their result is not easy to extend to

cover other basis functions without imposing q = 0 and the approximate orthogonality

condition (2.5). This is why Theorem IV.1 only considers q = 0 (i.e., the IMSE of

θ̂0(x)) and imposes condition (2.5).

Theorem IV.1 justifies the IMSE-optimal choice of number of knots:

κIMSE,0 = arg min
κ∈Zd++

{
1

n

( d∏
`=1

κ`

)
V0 +

∑
u1,u2∈Λm

κ−(u1+u2)Bu1,u2,0

}
,

and, in particular, when the same number of knots is used in all margins,

κIMSE,0 =

⌈(
2m
∑
u1,u2∈Λm

Bu1,u2,0

dV0

) 1
2m+d

n
1

2m+d

⌉
Data-driven versions of this IMSE-optimal choice, and extensions to derivative
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estimation, are discussed in Section 4.4 and fully implemented in our companion

general-purpose R package lspartition (Cattaneo, Farrell, and Feng, 2018b).

4.4 Tuning Parameter Selection

In this section, we discuss implementation details about choosing the IMSE-optimal

tuning parameters. We restrict our attention to tensor-product partitions with the

same number of knots used in every dimension. Thus the tuning parameter reduces

to a scalar κ which denotes the number of subintervals used in every dimension. We

offer two approaches: rule-of-thumb (ROT) and direct plug-in (DPI).

4.4.1 Rule-of-Thumb Choice

The rule-of-thumb choice is based on the special case considered in Theorem IV.1.

Specifically, we assume q = 0 and knots are evenly spaced. The implementation steps

are summarized as follows.

• Preliminary regression. Implement a preliminary regression using a global

polynomial of degree (m+ 2), and denote this estimate of θ(·) by θ̂pre(·).

• Bias constant. Let the weighting function w(x) be the density function of xi.

Use the preliminary regression coefficients to obtain an estimate of the mth

derivatives of θ(·), i.e., ∂̂uθ(·) = ∂uθ̂pre(·), for each u ∈ Λm. Then an estimate

of the bias constant is

B̂u1,u2,0 = ηu1,u2,0 ×
1

n

n∑
i=1

∂̂u1θ(xi)∂̂u2θ(xi).

• Variance constant. Implement another regression of y2
i on xi using global poly-

nomials of degree (m + 2), and thus an estimate of E[y2
i |xi = x] is obtained.

Combining it with θ̂pre(·), we obtain an estimate of conditional variance function,

denoted by σ̂2(·), since σ2(x) = E[y2
i |xi = x]− (E[yi|xi = x])2. Then an estimate

of the variance constant is

V̂0 =

 1
n

∑n
i=1 σ̂

2(xi) for splines and wavelets,(
d+m−1
m−1

)
× 1

n

∑n
i=1 σ̂

2(xi) for piecewise polynomial.
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• Rule-of-thumb κ̂ROT. Using the above results, a simple rule-of-thumb choice of κ

is

κ̂ROT =

⌈(
2(m− [q])

∑
u1,u2∈Λm

B̂u1,u2,0

(d+ 2[q])V̂0

) 1
2m+d

n
1

2m+d

⌉
.

Clearly, this choice of κ is derived based on many strong assumptions, but it

still has the correct rate (� n
1

2m+d ) in other cases.

Remark IV.1. The above procedure assumes q = 0, since a general limiting variance

constant similar to that given in Theorem IV.1 is still unavailable for other cases.

However, for piecewise polynomials, limiting variance and bias constants are available

for any m and q given a partition scheme studied in Theorem IV.1. See Cattaneo and

Farrell (2013) and Cattaneo, Crump, Farrell, and Feng (2019b) for more discussion.

4.4.2 Direct Plug-in Choice

Assume that the weighting function w(x) is equal to the density function of xi. We

propose a direct-plug-in (DPI) procedure summarized in the following steps.

• Preliminary choice of κ: Implement the rule-of-thumb procedure to obtain κ̂ROT.

• Preliminary regression. Given the user-specified basis (splines, wavelets, or

piecewise polynomials), knot placement scheme (“uniform” or “quantile”) and

rule-of-thumb choice κ̂ROT, implement a series regression of order (m + 1) to

obtain derivative estimates for every u ∈ Λm. Denote this preliminary estimate

by ∂̂uθpre(·).

• Bias constant. Construct an estimate B̂m,q(·) of the leading error Bm,q(·) simply

by replacing ∂uθ(·) by ∂̂uθpre(·). B̂m,0(·) can be obtained similarly. Then we

use the pre-asymptotic version of conditional bias to estimate the bias constant:

B̂κ,q =
1

n

n∑
i=1

(
B̂m,q(xi)− γ̂q,0(x)′En[Π0(xi)B̂m,0(xi)]

)2

.

• Variance constant. Implement a series regression of order m using κ̂rot, and then

use the pre-asymptotic version of conditional variance to obtain an estimate of

variance constant. Specifically, we have

V̂κ,q =
1

n

n∑
i=1

γ̂q,0(x)′Σ̂0γ̂q,0(x), Σ̂0 = En[Π0(xi)Π0(xi)
′ε̂2
i,0]
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where ε̂i,0’s are regression residuals. Different weighting schemes for residu-

als may be used, leading to various “heteroskedasticity-consistent” variance

estimates.

• Direct plug-in κ̂. Collecting all these results, a direct plug-in choice of κ is

κ̂DPI =

⌈(
2(m− [q])κ

2(m−[q])
ROT B̂κ,q

(d+ 2[q])κ
−(d+2[q])
ROT V̂κ,q

) 1
2m+d

n
1

2m+d

⌉
.

Remark IV.2. The above DPI procedure relies on an explicit expression of leading

asymptotic bias. Note that in Chapter III we discuss binscatter estimation with

smoothness restrictions, which can be viewed as least squares estimators based on

B-splines with knots of certain multiplicities (see Schumaker, 2007, Definition 4.1).

The bias representation for B-splines with simple knots given in Lemma IV.1 does

not immediately apply to other cases. Nevertheless, a spline basis with simple knots

leads to the smoothest estimate of the regression function, given the order of basis.

Removing some smoothness restrictions only enlarges the underlying approximation

space. Hence the particular spline function resulting in the leading error given in

Lemma IV.1 still forms a valid L∞ approximation of the regression function, though

it is not the best one. From the theoretical perspective, the main cost of employing

this sub-optimal L∞-approximation is that the orthogonality condition (2.5) fails.

However, as emphasized previously, our IMSE approximation given in Theorem II.1

does not rely on (2.5). Thus, the suggested DPI procedure is still feasible for piecewise

polynomials with any smoothness restrictions, provided that they do not degenerate to

global polynomials. This approach has been applied to binning selection for binscatter

regressions in the companion software package Binsreg.

4.5 Empirical Example

In this section we illustrate our methods using an empirical example, with a list of

recommendations offered for practitioners. We will focus on generalized binscatter

methods discussed in Chapter III, which relies on piecewise polynomial and B-spline

bases. Recall that in this context J denotes the number of bins and µ(·) is the function

to be estimated (mean relationship between y and x with w controlled for). p, s and

v denote the degree of polynomial, the number of smoothness restrictions and the

derivative order respectively.
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The real dataset is obtained from the American Community Survey (ACS) using

the 5-year survey estimates (2013-2017). All analyses are performed at the zip code

tabulation area level for the United States (excluding Puerto Rico), with the data

downloaded from the Census Bureau website: https://factfinder.census.gov/

faces/nav/jsf/pages/programs.xhtml?program=acs.

The outcome variable is the Gini index, and the independent variable of interest is

median household income (dollars in thousands). Such relationship will reflect how

inequality varies across regions of different income levels.

For graphical presentation we recommend the following:

Step 1. Use IMSE-optimal canonical binscatter to depict data, with covariate ad-

justment and accounting for clustered data as appropriate. Formally, set

p = s = v = 0 and J = JIMSE (Theorem II.1), and then plot µ̂(b̄j) as “dots”,

where b̄j denotes the center of the j-th quantile-spaced bin (Section 3.5),

j = 1, 2, . . . , J .

Step 2. On the same quantile-spaced partition determined by JIMSE in Step 1, con-

struct a cubic B-spline for flexible approximation of µ(x), with covariate

adjustment and accounting for clustered data as appropriate. Formally, set

p = 3, s = 3 and v = 0, and then plot µ̂(x) as a solid line.

Step 3. Under the baseline configuration in Steps 1 and 2, confidence bands can be

constructed on the same quantile-spaced partitioning and for the same cubic

B-spline choices using the simulated quantiles (Lemma III.2). These bands

can be plotted directly on top of the “dots” from Step 1 and the solid line

from Step 2.

This approach is illustrated in Figure IV.1. When we apply controls, the control

variables are (i) percentage of residents with a high school degree, (ii) percentage of

residents with a bachelor’s degree, (iii) median age of residents, (iv) percentage of

residents without health insurance, and (v) the local unemployment rate. All control

variables are also observed at the zip code tabulation area level. Plot (a) shows that

their relationship is nonlinear and unstable, while it becomes monotonically decreasing

when the control variables are added, as shown in Plot (b).
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Figure IV.1 Gini Index versus Household Income.

(a) No Controls
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Notes. Data are obtained from the American Community Survey (ACS) using the 5-year survey
estimates (2013-2017).

For formal testing of substantive features of µ(x) we recommend the following:

Step 1. Use IMSE-optimal cubic B-spline to approximate the function µ(x), with

covariate adjustment and accounting for clustered data as appropriate. Specif-

ically, set p = 3 and s = 3, and J = JIMSE (Theorem II.1), for v = 0, 1, 2

(see Section 3.5 for details). For v > 2, use p = 3 + v and s = 3 + v, and

J = JIMSE (Theorem II.1).

Step 2. Conduct formal hypothesis testing procedures using Theorem III.4 and

Theorem III.5, as appropriate, with q = 1.

This approach is illustrated in Table IV.1. Specifically, the results indicate that

the relation between the Gini index and household income, controlling for covariates,

is nonlinear, but can be modelled well by a quadratic polynomial. Moreover, the hy-

potheses of monotonicity and convexity are also supported. In this empirical example,

positivity holds by construction, but the test is nonetheless included for completeness.

4.6 Simulations

Finally, we conducted a Monte Carlo investigation of the finite sample performance of

our methods. We considered three univariate (d = 1), two bivariate (d = 2) and two

trivariate (d = 3) models, but only summarize one univariate design here for brevity.

71



Table IV.1 Testing of Substantive Hypothesis.

Test Statistic P-value J

Parametric Specification

Constant 17.665 0.000 21

Linear 6.152 0.000 21

Quadratic 1.947 0.268 21

Shape Restrictions

Positivity 9.666 1.000 21

Decreasingness −0.634 1.000 9

Convexity −1.678 0.420 5

Notes. A set of control variables are added. The number of bins is IMSE-optimal, selected based on
a fully data-driven procedure.

Complete results and details are available in the online supplemental appendix to

Cattaneo, Farrell, and Feng (2018a). All numerical results were obtained using our

companion R package lspartition (Cattaneo, Farrell, and Feng, 2018b).

We set θ(x) = sin(πx−π/2)/(1+2(2x−1)2(sign(2x−1)+1)), with sign(·) denoting

the sign function. We generate samples {(yi, xi) : i = 1, . . . , n} from yi = θ(xi) + εi,

where xi ∼ U[0, 1] and εi ∼ N(0, 1), independent of each other. We consider 5, 000

simulated datasets with n = 1, 000 each time. Results based on splines and wavelets

are presented. Specifically, we use linear splines or Daubechies (father) wavelets of

order 2 (m = 2) to form the point estimator θ̂0(x), and quadratic splines or Daubechies

wavelets of order 3 (m̃ = 3) for bias correction, on the same evenly spaced partitioning

scheme for point estimation and bias correction (∆ = ∆̃).

The results are presented in Table IV.2. Column “RMSE” reports (simulated)

root mean squared error for point estimators, while the columns “CR” and “AL”

report coverage rate and average interval length of pointwise 95% nominal confidence

intervals at x = 0.5. The columns under “Uniform” present uniform inference results,

including the uniform coverage rate (UCR) and the average width (AW) of the 95%

nominal confidence band. For B-splines, we employ either the infeasible IMSE-optimal

size choice (κIMSE), a rule-of-thumb estimate (κ̂ROT), or a direct plug-in estimate (κ̂DPI).

For wavelets, the tuning parameter is instead the resolution level (resp., sIMSE, ŝROT, or

ŝDPI), which is the logarithm of the number of subintervals (to base 2). Finally, the

table reports all four (estimation and) inference methods discussed in this dissertation,

indexed by j = 0, 1, 2, 3. Due to the lack of smoothness of low-order wavelet bases,

plug-in bias correction (j = 3) is practically cumbersome and hence not implemented.
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All the numerical findings are consistent with our theoretical results. To briefly

summarize: robust bias-correction seems to perform quite well, always delivering

close-to-correct coverage, both pointwise and uniformly. The improvement is less

pronounced for wavelets since the number of basis increases rapidly with the resolution.

However, if the underlying model is highly nonlinear, bias correction does make a

difference. In addition, the numerical performance of our rule-of-thumb (ROT) and

direct plug-in (DPI) knot selection procedures for tensor-product partitions worked

well in this simulation study.
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Table IV.2 Simulation Evidence

(a) B-Splines (m = 2, m̃ = 3, ∆ = ∆̃, Evenly Spaced Partition)

Pointwise Uniform

κ RMSE CR AL UCR AW

j = 0

κIMSE 3.0 0.046 91.5 0.328 79.7 0.384

κ̂ROT 4.9 0.009 94.6 0.317 92.2 0.469

κ̂DPI 5.1 0.007 94.4 0.318 91.4 0.478

j = 1

κIMSE 3.0 0.003 94.8 0.226 93.9 0.426

κ̂ROT 4.9 0.006 95.0 0.298 93.7 0.506

κ̂DPI 5.1 0.006 95.1 0.306 93.4 0.514

j = 2

κIMSE 3.0 0.004 94.7 0.268 94.1 0.443

κ̂ROT 4.9 0.003 95.0 0.336 93.8 0.536

κ̂DPI 5.1 0.003 94.9 0.342 93.3 0.546

j = 3

κIMSE 3.0 0.034 92.7 0.321 89.0 0.413

κ̂ROT 4.9 0.006 94.8 0.328 93.6 0.499

κ̂DPI 5.1 0.005 94.3 0.331 93.0 0.509

(b) Wavelets (m = 2, m̃ = 3, ∆ = ∆̃, Evenly Spaced Partition)

Pointwise Uniform

s RMSE CR AL UCR AW

j = 0

sIMSE 3.0 0.001 94.1 0.497 90.9 0.509

ŝROT 2.4 0.001 94.1 0.497 90.9 0.509

ŝDPI 2.9 0.001 94.0 0.501 90.8 0.514

j = 1

sIMSE 3.0 0.037 93.6 0.450 89.9 0.504

ŝROT 2.4 0.037 93.6 0.450 89.9 0.504

ŝDPI 2.9 0.035 93.8 0.455 89.7 0.510

j = 2

sIMSE 3.0 0.007 94.1 0.533 91.4 0.576

ŝROT 2.4 0.007 94.1 0.533 91.4 0.576

ŝDPI 2.9 0.007 94.1 0.538 91.3 0.581

Notes:
(i) Pointwise = pointwise inference at x = 0.5, Uniform = uniform inference.
(ii) RMSE = root MSE of point estimator, CR = coverage rate of 95% nominal confidence intervals,
AL = average interval length of 95% nominal confidence intervals.
(iii) UCR = uniform coverage rate of 95% nominal confidence band, AW = average width of 95%
nominal confidence band.
(iv) κIMSE (sIMSE) = infeasible IMSE-optimal number of intervals (resolution level), κ̂ROT (ŝROT) =
feasible rule-of-thumb (ROT) implementation of κIMSE (sIMSE), κ̂DPI (ŝDPI) = feasible direct plug-in
(DPI) implementation of κIMSE (sIMSE).
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Chapter V

Conclusion

This dissertation studies estimation and inference using partitioning-based least squares

estimators in nonparametric and semiparametric models. An array of theoretical and

practical results is presented, including bias approximations, integrated mean squared

error (IMSE) expansions, and pointwise and uniform distributional approximations.

In particular, these results can be used to construct valid pointwise confidence in-

tervals and uniform confidence bands, allowing for mean squared error minimizing

tuning parameter choices. A special focus is put on binscatter, a particular class of

partitioning-based estimators in semiparametric models. We provide novel smooth

and/or polynomial approximation approaches, principled covariate adjustment and

number of bins selection, and valid inference and hypothesis testing methods.

A number of important extensions are left for future work. This dissertation

focuses on cross-sectional data only. Extending the theory presented here to time

series and panel data models seems like a promising avenue. Furthermore, another

important question of both theoretical and practical interest is whether this work can

be extended to scenarios in which a general data-dependent partition is employed.

Chapter III considers a very special case: the partitioning knots are empirical quantiles

of an independent variable. Such partitions are determined by covariates only, and

under weak regularity conditions, the quasi-uniformity condition specified in Chapter

II is satisfied. However, many modern machine learning techniques, like regression

trees, construct data-dependent partitions in more convoluted ways, leading to further

technical complications and probable violation of the quasi-uniformity assumption. A

systematic approach to regularizing partitions, combined with sample splitting, may

be needed in such cases.
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Appendix A

Proof for Chapter II

The proofs for Chapter II rely on a collection of technical results, which are sum-

marized in the following lemma. Let Q̂m = En[p(xi)p(xi)
′], Q̂m̃ = En[p̃(xi)p̃(xi)

′],

Qm = E[p(xi)p(xi)
′], and Qm̃ = E[p̃(xi)p̃(xi)

′]. C,C1, C2, . . . are universal constants.

Lemma A.1. Let Assumptions II.1, II.2, II.3, and II.5 hold. If logn
nhd

= o(1), then,

(i) ‖Q̂m −Qm‖ .P h
d

√
log n

nhd
, ‖Q̂m −Qm‖∞ .P h

d

√
log n

nhd
;

(ii) ‖Q̂m‖ .P h
d, ‖Q̂−1

m ‖∞ .P h
−d;

(iii) sup
x∈X
‖γq,j(x)′‖∞ . h−d−[q], sup

x∈X
‖γ̂q,j(x)′ − γq,j(x)′‖∞ . h−d−[q]

√
log n

nhd
,

inf
x∈X
‖γq,j(x)′‖ & h−d−[q] for each j = 0, 1, 2, 3;

(iv) sup
x∈X

Ωj(x) . h−d−2[q], inf
x∈X

Ωj(x) & h−d−2[q] for each j = 0, 1, 2, 3.

Proof. See Section SA-10 of the supplemental appendix to Cattaneo, Farrell, and

Feng (2018a).

Notice that the results for Q̂m and Qm also hold for Q̂m̃ and Qm̃ under Assumption

II.5.

Proof of Lemma II.1. For s∗ in Assumption II.4,

E[∂̂qθ0(x)|X]− ∂qθ(x)

= Bm,q(x) + γ̂q,0(x)′En[p(xi)(θ(xi)− s∗(xi))] +O(hm+%−[q])

= Bm,q(x)− γ̂q,0(x)′En [p(xi)Bm,0(xi)] +O(hm+%−[q])

+ γ̂q,0(x)′En
[
p(xi)(θ(xi)− s∗(xi) + Bm,0(xi))

]
.

By Assumption II.3 and II.4, ‖E[p(xi)(θ(xi)− s∗(xi) + Bm,0(xi))‖∞ .P h
m+%+d. Also,

‖Gn[p(xi)(θ(xi)− s∗(xi) + Bm,0(xi))‖∞ .P h
m+%+ d

2

√
log n by Bernstein’s inequality.

Then, by Lemma A.1, the last term in the above expansion is OP(hm+%−[q]).
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Proof of Theorem II.1. Regarding the integrated conditional variance,∫
X
V[∂̂qθ0(x)|X]w(x) dx

=
1

n
trace

[
Σ0

∫
X
γq,0(x)γq,0(x)′w(x) dx

]
+ oP

( 1

nhd+2[q]

)
.P

1

nhd
trace

[ ∫
X
∂qp(x)∂qp(x)′w(x)dx

]
.

1

nhd+2[q]

where the second line holds by Lemma A.1, the third by Trace Inequality, the continu-

ity of w(·) and Lemma A.1. Since σ2(·) and w(·) are bounded away from zero, the

other side of the bound follows similarly.

Regarding the integrated squared bias, we have∫
X

(
E[∂̂qθ0(x)|X]− ∂qθ(x)

)2

w(x)dx

=

∫
X

Bm,q(x)2w(x)dx +

∫
X

(
γq,0(x)′E[p(xi)Bm,0(xi)]

)2

w(x)dx

− 2

∫
X

Bm,q(x)γq,0(x)′E[p(xi)Bm,0(xi)]w(x)dx + oP(h2m−2[q])

= : B1 + B2 − 2B3 + oP(h2m−2[q]). (A.1)

Let hδ be the diameter of δ and t∗δ be an arbitrary point in δ. Then

B1 =
∑

u1,u2∈Λm

∑
δ∈∆

∫
δ

[
h

2m−2[q]
δ ∂u1θ(t∗δ)∂

u2θ(t∗δ)Bu1,q(x)Bu2,q(x)
]
w(t∗δ)dx

+ o(h2m−2[q])

=
∑

u1,u2∈Λm

∑
δ∈∆

{
h

2m−2[q]
δ ∂u1θ(t∗δ)∂

u2θ(t∗δ)w(t∗δ)

∫
δ

Bu1,q(x)Bu2,q(x)dx
}

+ o(h2m−2[q]),

where the second line holds by the continuity of ∂u1θ(·), ∂u2θ(·) and w(·), and by

Assumption II.2 and II.4, B1 . h2m−2[q]. The other two terms can be bounded

similarly.

To prove Theorem II.2, the following lemma is needed:

Lemma A.2 (Linearization). Let Assumptions II.1–II.5 hold. if logn
nhd

= o(1), then for
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each x ∈ X , for each j = 0, 1, 2, 3,

∂̂qθj(x)− ∂qθ(x) = γq,j(x)′En[Πj(xi)εi] +R1n,q(x) +R2n,q(x), where

R1n,q(x) := (γ̂q,j(x)− γq,j(x)′)En[Πj(xi)εi] .P

√
log n

nhd+[q]
,

R2n,q(x) := E[∂̂qθj(x)|X]− ∂qθ(x) .P h
m−[q].

For j = 1, 2, 3, R2n,q(x) .P h
m+%−[q].

If, in addition, one of the following holds:

(i) E[|εi|2+ν ] <∞ for some ν > 0, and n
2

2+ν (logn)
2ν

4+2ν

nhd
. 1; or

(ii) E[|εi|3 exp(|εi|)] <∞, and (logn)3

nhd
. 1.

Then, supx∈X |R1n,q(x)| .P
logn
nhd+[q] =: R̄1n,q. For j = 0, supx∈X |R2n,q(x)| .P

hm−[q] =: R̄2n,q, and for j = 1, 2, 3, supx∈X |R2n,q(x)| .P h
m+%−[q] =: R̄2n,q.

Proof. For j = 0, 1, the results directly follow from Assumption II.5, Lemma

II.1 and Belloni, Chernozhukov, Chetverikov, and Kato (2015, Lemma 4.1). For

j = 2, 3, conditional on X, R1n,q(x) has mean zero, and V[R1n,q(x)|X] . 1
n
‖γ̂q,j(x)′−

γq,j(x)′‖2‖E[Πj(xi)Πj(xi)
′]‖ .P log n/(n2h2d+2[q]) by Lemma A.1. Then by Cheby-

shev’s inequality, R1n,q(x) .P
√

log n/(nhd+[q]).

Regarding the conditional bias R2n,q(x), for j = 2, by construction,

E[∂̂qθ2(x)|X]− ∂qθ(x) =
(
E[∂̂qθ1(x)|X]− ∂qθ(x)

)
− ∂qp(x)′Q̂−1

m En[p(xi)Bm̃,0(xi)]

=OP(hm+%−[q])− ∂qp(x)′Q̂−1
m En[p(xi)Bm̃,0(xi)]

where Bm̃,0(xi) = E[θ̂1(xi)|X] − θ(xi) is the conditional bias of θ̂1(xi) and the last

line follows from Lemma II.1. Then it follows from Lemma A.1 and II.1 that the

conditional bias of ∂̂qθ2(x) is OP(hm+%−[q]).

Next, for j = 3, using Lemma II.1, we have

E[∂̂qθ3(x)|X]− ∂qθ(x)

=
∑
u∈Λm

hm−[q]
x Bu,q(x)E

[
∂̂uθ1(x)− ∂uθ(x)|X

]
+

∂qp(x)′Q̂−1
m En

[
p(xi)

(
E[B̂m,0(xi)|X]−Bm,0(xi)

)]
+OP(hm+%−[q])

= ∂qp(x)′Q̂−1
m En

[
p(xi)

(
E[B̂m,0(xi)|X]−Bm,0(xi)

)]
+OP(hm+%−[q])

where B̂m,0(x) = −
∑
u∈Λm

(
∂̂qθ1(x)

)
hmx Bu,q(x), and the last line follows from As-

sumption II.4, II.5 and Lemma II.1. Also by Lemma II.1 and the fact that Bu,0(·) is
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bounded, supx∈X |E[B̂m,0(x)|X]−Bm,0(x)| .P h
m+%. The desired result immediately

follows by using the similar argument for j = 2.

Now, suppose that the additional conditions in (i) hold. We first bound

supx∈X |R1n,q(x)| for j = 0, 1, 2, 3. To simplify notation, we write Πj(xi) =

(π1(xi), . . . , πKj(xi)
′ where Kj = dim(Πj(·)). We will truncate the errors by an

increasing sequence of constants {ϑn : n ≥ 1} such that ϑn �
√
nhd/ log n. Let

Hik = πk(xi)(εi1{|εi| ≤ ϑn} − E[εi1{|εi| ≤ ϑn|xi}]) and Tik = πk(xi)(εi1{|εi| >
ϑn} − E[εi1{|εi| > ϑn|xi}]). Regarding the truncated term, it follows from the

truncation strategy, Assumption II.3 and II.5 that |Hik| ≤ ϑn and E[H2
ik] . hd.

By Bernstein’s inequality, max1≤k≤Kj |En[Hik]| .P h
d
√

log n/(nhd). It immediately

follows from Lemma A.1 that

sup
x∈X

∣∣∣(γ̂q,j(x)′ − γq,j(x)′)En[Πj(xi)(εi1{|εi| ≤ ϑn} − E[εi1{|εi| ≤ ϑn|xi}])]
∣∣∣

.P h
−[q]−d

√
log n/(nhd)hd

√
log n/(nhd) = h−[q] log n/(nhd).

Regarding the tails, let Kji(x) := (γ̂q,j(x)′ − γq,j(x)′)Πj(xi). By Lemma A.1

and Assumption II.3, we have supx∈X |Kji(x)| .P h
−d−[q]

√
log n/(nhd). Let An(M)

denote the event on which supx∈X |Kji(x)| ≤Mh−d−[q]
√

log n/(nhd) for some M > 0,

and 1An(M) be an indicator function of An(M). Then by Markov’s inequality, for

t > 0,

P
(

sup
x∈X

∣∣∣En[1An(M)Kji(εi1{|εi| > ϑn} − E[εi1{|εi| > ϑn|xi}])]
∣∣∣ > t log n

nhd+[q]

)
.
Mh−d−[q]

√
log n/(nhd)E[|εi|1{|εi| > ϑn}]
th−[q] log n/(nhd)

≤ M
√
n

t
√
hd log n

E[|εi|2+ν ]

ϑ1+ν
n

which is arbitrarily small for t/M large enough by the additional moment condition

specified in the lemma and the rate restriction. Since P(An(M)c) = o(1) as M →∞,

simply let t = M2 and M →∞, then the desired conclusion immediately follows.

The bound on supx∈X |R2n,q(x)| follows from Lemma II.1 and Assumption II.4.

Finally, the proof under condition (ii) is similar except that we let ϑn = log n in

the proof for R1n,q(x).

Proof of Theorem II.2. Regarding the L2 convergence, using Lemma II.1,∫
X

(
∂̂qθ0(x)− ∂qθ(x)

)2)
w(x)dx

=
(
En[Π0(xi)εi]

′
)(∫

X
γ̂q,0(x)γ̂q,0(x)′w(x)dx

)(
En[Π0(xi)εi]

)
+OP(h2(m−[q])).

80



The uniform bound on the conditional bias does not require explicit expression of lead-

ing approximation error. Then by Lemma A.1, we have
∫
X γ̂q,0(x)γ̂q,0(x)′w(x)dx .P

h−d−2[q]. Also, E[‖En[Π0(xi)εi]‖2] . E[Π0(xi)
′Π0(xi)/n] . 1/n. The desired L2

convergence rate follows.

Regarding the uniform convergence, consider the case when the conditions of

Lemma A.2 hold. We use the same truncation strategy as used in the proof of Lemma

A.2. Specifically, separate εi into

εi1{|εi| ≤ ϑn} − E[εi1{|εi| ≤ ϑn}|xi] and εi1{|εi| > ϑn} − E[εi1{|εi| > ϑn}|xi]

where ϑn �
√
nhd/ log n. The remaining argument is similar.

Proof of Theorem II.3. By Lemma A.2, for each j = 0, 1, 2, 3,

∂̂qθj(x)− ∂qθ(x) = γq,j(x)′En[Πj(xi)εi] +OP

(√log n

nhd+[q]

)
+OP(hm−[q]).

For j = 1, 2, 3, the last term is OP(hm+%−[q]). Under the rate restriction given in the

theorem, it suffices to show that the first term satisfies Lindeberg’s condition. Clearly,

V
[
γq,j(x)′√

Ωj(x)
Gn[Πj(xi)εi]

]
= 1. Let ani =

γq,j(x)′Πj(xi)√
Ωj(x)

. For all t > 0,

En[E[a2
niε

2
i1{|aniεi/

√
n| > t}]] ≤ E[a2

ni] sup
x∈X

E
[
ε2
i1{|εi| > t

√
n/|ani|}

∣∣∣xi = x
]

. sup
x∈X

E
[
ε2
i1{|εi| > t

√
n/|ani|}

∣∣∣xi = x
]

where the last line follows from Lemma A.1. Since |ani| . h−
d
2 and logn

nhd
= o(1),

√
n/|ani| → ∞ as n→∞, and the last line goes to 0 as n→∞.

Proof of Theorem II.4. Suppose that the conditions in (i) holds. In light of

Lemma A.1, it suffices to show ‖Σ̂j − Σj‖ = oP(hd). Notice that Σ̂j − Σj =

En[(ε̂2
i,j − ε2

i )Πj(xi)Πj(xi)
′] + En[ε2

iΠj(xi)Πj(xi)
′]−Σj.

To control the second term, let Lj(xi) := W
−1/2
j Πj(xi) be the normalized ba-

sis where Wj = Qm for j = 0, Wj = Qm̃ for j = 1 and Wj = diag{Qm,Qm̃}
for j = 2, 3. Introduce a sequence of positive numbers: M2

n � K1+1/νn1/(2+ν)

(logn)1/(2+ν)
,

and write Hj(xi) = ε2
iLj(xi)Lj(xi)

′1{‖ε2
iLj(xi)Lj(xi)

′‖ ≤ M2
n}, and Tj(xi) =

ε2
iLj(xi)Lj(xi)

′1{‖ε2
iLj(xi)Lj(xi)

′‖ > M2
n}. Regarding the truncated term, by

construction, ‖Hj(xi)‖ ≤ M2
n. By Triangle Inequality and Jensen’s inequality,
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‖Hj(xi)− E[Hj(xi)]‖ ≤ 2M2
n. In addition, by Assumption II.1,

E[(Hj(xi)− E[Hj(xi)])
2] ≤M2

nE[ε2
iLj(xi)Lj(xi)

′1{‖ε2
iLj(xi)Lj(xi)

′‖ ≤M2
n}]

.M2
nE[Lj(xi)Lj(xi)

′]

where the inequalities are in the sense of semi-definite matrices. Hence, ‖E[(Hj(xi)−
E[Hj(xi)])

2]‖ .M2
n. Let ϑ2

n = (log n)
ν

2+ν /(n
ν

2+ν hd). By an inequality of Tropp (2012)

for independent matrices, we have for all t > 0,

P[‖En(Hj(xi)− E[Hj(xi)])‖ > ϑnt] ≤ exp
{

log n
(

1− ϑ2
nnt

2/2

M2
n log n(1 + ϑnt/3)

)}
where M2

n log nϑ−2
n n−1 � (log n)

1
2+ν /(n

1
2+ν hd/ν) = o(1) and ϑn = o(1). Hence, we have

‖En(Hj(xi)− E[Hj(xi)])‖ .P ϑn = oP(1).

Regarding the tails, by Lemma A.1, ‖Tj(xi)‖ . h−dε2
i1{ε2

i & M2
nh

d}. Then, by

Triangle inequality and Jensen’s inequality,

E[‖En(Tj(xi)− E[Tj(xi)])‖] .
2h−d(1+ν/2)E[|εi|2+ν1{|εi| &Mn

√
hd}]

Mν
n

. ϑn.

By Markov’s inequality, ‖En(Tj(xi)− E[Tj(xi)])‖ .P ϑn. Since ‖W1/2
j ‖ . hd/2 and

‖W−1/2
j ‖ . h−d/2, we conclude that ‖En[Πj(xi)Πj(xi)

′ε2
i ]−Σj‖ .P h

dϑn = oP(hd).

On the other hand, note that

‖En[(ε̂2
i,j − ε2

i )Πj(xi)Πj(xi)
′]‖

≤ max
1≤i≤n

|θ(xi)− θ̂j(xi)|2‖En[Πj(xi)Πj(xi)
′]‖

+ max
1≤i≤n

|θ(xi)− θ̂j(xi)|
(
‖En[Πj(xi)Πj(xi)

′]‖+ ‖En[Πj(xi)Πj(xi)
′ε2
i ]‖
)

where the last line follows from the fact that 2|a| ≤ 1 + a2. By Lemma A.1, Theorem

SA-4.1 in the online appendix to Cattaneo, Farrell, and Feng (2018a), max1≤i≤n |θ(xi)−
θ̂j(xi)| = oP(1), ‖En[Πj(xi)Πj(xi)

′]‖ .P h
d and ‖En[Πj(xi)Πj(xi)

′ε2
i ]‖ .P h

d. Thus,

we conclude that ‖Σ̂j − Σj‖ = oP(hd). The proof under the conditions in (ii) is

similar.

Proof of Lemma II.2. First, suppose that the conditions in (i) hold. In Theorem

SA-4.2 of the online appendix to Cattaneo, Farrell, and Feng (2018a), we establish that

supx∈X
∣∣Ω̂0(x)− Ω0(x)

∣∣ .P n
− 1

2h−
3d
2
−2[q]

[
(log n)

1
2 + n

1
2+ν (log n)

ν
4+2ν +

√
nh

d
2

+m
]

and,

for j = 1, 2, 3, supx∈X
∣∣Ω̂j(x) − Ωj(x)

∣∣ .P n
− 1

2h−
3d
2
−2[q]

[
(log n)

1
2 + n

1
2+ν (log n)

ν
4+2ν +
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√
nh

d
2

+m+%
]
. Then, for j = 0, 1, 2, 3,

sup
x∈X

∣∣∣∣∣ ∂̂qθj(x)− ∂qθ(x)

Ω
1/2
j (x)/

√
n

− ∂̂qθj(x)− ∂qθ(x)

Ω̂
1/2
j (x)/

√
n

∣∣∣∣∣
≤ sup

x∈X

√
n
∣∣∂̂qθj(x)− ∂qθ(x)

∣∣∣∣Ω̂j(x)− Ωj(x)
∣∣

Ω
1/2
j (x)Ω̂j(x) + Ωj(x)Ω̂

1/2
j (x)

.P
√
nh3d/2+3[q] sup

x∈X

∣∣∂̂qθj(x)− ∂qθ(x)
∣∣ sup

x∈X

∣∣Ω̂j(x)− Ωj(x)
∣∣ = oP(r−1

n ),

where the result follows from Lemma A.1, Theorem SA-4.1 in Cattaneo, Farrell, and

Feng (2018a), the uniform convergence rate of Ω̂j(x), and the rate conditions imposed.

The result under the conditions in (ii) follows similarly.

Proof of Theorem II.5. We first prove the following general lemma. Let TVX (g(·))
denote the total variation of g(·) on X ⊆ R.

Lemma A.3 (Kernel-Based KMT Coupling). Suppose {(xi, εi) : 1 ≤ i ≤ n} are i.i.d.,

with xi ∈ X ⊆ R and σ2
i := σ2(xi) = E[ε2

i |xi]. Let {A(x) := Gn[K (x, xi)εi], x ∈ X}
be a stochastic process with K (·, ·) : R×R 7→ R an n-varying kernel function possibly

depending on X. Assume one of the following holds:

(i) supx∈X E[|εi|2+ν |xi = x] <∞, for some ν > 0, and

sup
x∈X

max
1≤i≤n

|K (x, xi)| = oP(r−1
n n−

1
2+ν

+ 1
2 ),

sup
x∈X

TVX (K (x, ·)) = o(r−1
n n−

1
2+ν

+ 1
2 ); or

(ii) supx∈X E[|εi|3 exp(|εi|)|xi = x] <∞ and

sup
x∈X

max
1≤i≤n

|K (x, xi)| = oP(r−1
n (log n)−1

√
n),

sup
x∈X

TVX (K (x, ·)) = o(r−1
n (log n)−1

√
n).

Then, on a sufficiently rich probability space, there exists a copy A′(·) of A(·), and

an i.i.d. sequence {ζi : 1 ≤ i ≤ n} of standard Normal random variables such that

A(x) =d Gn

[
K (x, xi)σiζi

]
+ oP(r−1

n ) in L∞(X ).

Proof. Suppose the conditions in (i) hold. Let {x(i) : 1 ≤ i ≤ n} be the order

statistics of {xi : 1 ≤ i ≤ n}, such that x(1) ≤ x(2) ≤ · · · ≤ x(n), which also induces

the concomitants {ε[i] : 1 ≤ i ≤ n} and {σ2
[i] = σ2(x(i)) : 1 ≤ i ≤ n}. Conditional on

X, {ε[i] : 1 ≤ i ≤ n} is still an independent mean zero sequence with V[ε[i]|X] = σ2
[i].
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By Sakhanenko (1991, Corollary 5), there exists a sequence of i.i.d standard nor-

mal random variables {ζ[i] : 1 ≤ i ≤ n} such that max1≤l≤n |Sl,n| .P n
1

2+ν , where

Sl,n :=
∑l

i=1(ε[i] − σ[i]ζ[i]). Then, using summation by parts,

sup
x∈X

∣∣∣ n∑
i=1

K (x, x(i))(ε[i] − σ[i]ζ[i])
∣∣∣

= sup
x∈X

∣∣∣K (x, x(n))Sn,n −
n−1∑
i=1

Si,n
(
K (x, x(i+1))−K (x, x(i))

) ∣∣∣
≤
(

sup
x∈X

max
1≤i≤n

|K (x, xi)|+ sup
x∈X

n−1∑
i=1

∣∣∣K (x, x(i+1))−K (x, x(i))
∣∣∣) max

1≤l≤n
|Sl,n|.

Note that
∑n−1

i=1

∣∣K (x, x(i+1))−K (x, x(i))
∣∣ ≤ TVX (K (x, ·)). Thus, under the condi-

tions given in (i), A(x) =d Gn[K (x, xi)σiζi] + oP(r−1
n ).

When condition (ii) holds, the proof is the same except that under the stronger

moment restriction, max1≤l≤n |Sl,n| .P log n by Sakhanenko (1985, Theorem 1).

To prove Theorem II.5, for each j = 0, 1, 2, 3, let K (x, u) = γq,j(x)′Πj(u)/
√

Ωj(x)

and observe that supx∈X supu∈X |K (x, u)| . h−d/2, by Lemma A.1, and the uniform

bound on the total variation of K (x, u) can also be verified easily. Alternatively,

simply note that

∣∣ n−1∑
i=1

Si,n
(
K (x, x(i+1))−K (x, x(i))

) ∣∣
≤
∥∥ γq,j(x)′√

Ωj(x)

∥∥
∞

∥∥ n−1∑
i=1

Si,n(Πj(x(i+1))−Πj(x(i)))
∥∥
∞.

By Assumption II.3 and Lemma A.1, supx∈X ‖γq,j(x)′/
√

Ωj(x)‖∞ . h−d/2. Also,

write the lth element of Πj(·) as πj,l(·). Then, max1≤l≤Kj
∣∣∑n−1

i=1

(
πj,l(x(i+1)) −

πj,l(x(i))
)
Sl,n
∣∣ ≤ max1≤l≤Kj

∑n−1
i=1

∣∣πj,l(x(i+1))− πj,l(x(i))
∣∣max1≤`≤n

∣∣S`,n∣∣. By Assump-

tion II.3 and II.5, max1≤l≤Kj
∑n−1

i=1 |πj,l(x(i+1))− πj,l(x(i))| . 1. Thus, using Lemma

A.3, under the corresponding moment conditions and rate restrictions, there exists inde-

pendent standard normal {ζi : 1 ≤ i ≤ n} such that Gn[K (x, xi)εi] =d zj(x)+oP(r−1
n ).

To finish the proof Theorem II.5, note that

zj(x) =d|X
γq,j(x)′√

Ωj(x)
Σ

1/2
j NKj +

γq,j(x)′√
Ωj(x)

(
Σ̄

1/2
j −Σ

1/2
j

)
NKj

where NKj is a Kj-dimensional standard normal vector (independent of X) and

“=d|X” denotes that two processes have the same conditional distribution given X.
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Regarding the second term, by Gaussian Maximal Inequality (see Chernozhukov, Lee,

and Rosen, 2013, Lemma 13), E
[∥∥(Σ̄1/2

j −Σ
1/2
j

)
NKj

∥∥
∞

∣∣X] . √log n
∥∥Σ̄1/2

j −Σ
1/2
j

∥∥.

By the same argument used in the proof of Cattaneo, Farrell, and Feng (2018a,

Lemma SA-2.1),
∥∥Σ̄j − Σj

∥∥ .P h
d(log n/(nhd))1/2. Then, by Bhatia (2013, Theo-

rem X.1.1),
∥∥Σ̄1/2

j − Σ
1/2
j

∥∥ .P h
d/2(log n/(nhd))1/4. For j = 0, 1, a sharper bound

is available: by Bhatia (2013, Theorem X.3.8) and Lemma A.1, ‖Σ̄1/2
j − Σ

1/2
j ‖ ≤

λmin(Σj)
−1/2‖Σ̄j −Σj‖ .P h

d/2
√

log n/(nhd). Thus, combining these results,

E
[

sup
x∈X

∣∣∣ γq,j(x)′√
Ωj(x)

(
Σ̄

1
2
j −Σ

1
2
j

)
NKj

∣∣∣ ∣∣∣X] .P h
− d

2

√
log n

∥∥Σ̄ 1
2
j −Σ

1
2
j

∥∥ = oP(r−1
n )

where the last equality holds by the additional rate restriction given in the theorem

(for j = 0, 1, no additional restriction is needed). The results follow from Markov

inequality and Dominated Convergence Theorem.

Proof of Theorem II.6. It suffices to verify the conditions in Lemma 39 of Belloni,

Chernozhukov, Chetverikov, and Fernandez-Val (2018). For j = 0, 1, 2, 3, define

ξi = 1√
n
Πj(xi)εi. Hence, {ξi : 1 ≤ i ≤ n} is an i.i.d. sequence of Kj-dimensional

random vectors, and
∑n

i=1 E[‖ξi‖2‖ξi‖∞] = E
[∥∥Πj(xi)εi

∥∥2∥∥Πj(xi)εi
∥∥
∞

]
/
√
n . n−1/2

using Assumption II.3, the moment condition imposed in the theorem, and Lemma

A.1. On the other hand, let {gi : 1 ≤ i ≤ n} be a sequence of independent Gaussian

vectors with mean zero and variance 1
n
Σj. Then, by properties of Gaussian ran-

dom variables and Lemma A.1, (E[‖gi‖2
∞])1/2 .

√
log(n)/n, and

∑n
i=1(E[‖gi‖4])1/2 .

trace
(∑n

i=1 E[ξiξ
′
i]
)
. 1. Thus, Ln :=

∑n
i=1 E[‖ξi‖2‖ξi‖∞] +

∑n
i=1 E[‖gi‖2‖gi‖∞] .√

log(n)
n

. Then, there exists a Kj-dimensional normal vector NKj with variance equal

to Σj such that for any t > 0,

P
(∥∥∥ n∑

i=1

ξi −NKj

∥∥∥
∞
>

3h
d
2 t

rn

)
≤ min

τ≥0

(
2P(‖Z‖∞ > τ) +

r3
nLnτ

2

h
3d
2 t3

)
.
r3
n(log n)

3
2

√
nh3dt3

where Z is a Kj-dimensional standard Gaussian vector, and the second inequal-

ity follows by setting τ = C
√

log n for a sufficiently large C > 0. Using

supx∈X ‖γq,j(x)′/
√

Ωj(x)‖∞ . h−d/2 again, the result follows.

Proof of Theorem II.7. For each j = 0, 1, 2, 3,

Ẑj(x)− Zj(x) =
( γ̂q,j(x)

Ω̂
1/2
j (x)

− γq,j(x)′

Ω
1/2
j (x)

)
Σ̂

1
2
j NKj +

γq,j(x)′√
Ωj(x)

[Σ̂
1
2
j −Σ

1
2
j ]NKj .

Conditional on the data, each term in the above is a mean-zero Gaussian process. The

desired results can be obtained by applying Gaussian maximal inequality to each term
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as in the proof of Lemma A.3.

Proof of Theorem II.8. In view of Theorem II.5 and II.6, there exists a sequence of

constants ηn such that ηn = o(1) and P(| supx∈X |T̂j(x)| − supx∈X |Zj(x)|| > ηn/rn) =

o(1). Therefore, for any u ∈ R,

P
[

sup
x∈X
|T̂j(x)| ≤ u

]
≤ P

[{
sup
x∈X
|T̂j(x)| ≤ u

}
∩
{∣∣∣ sup

x∈X
|T̂j(x)| − sup

x∈X
|Zj(x)|

∣∣∣ ≤ ηn/rn

}]
+ P

[{∣∣∣ sup
x∈X
|T̂j(x)| − sup

x∈X
|Zj(x)|

∣∣∣ > ηn/rn

}]
≤ P

[
sup
x∈X
|Zj(x)| ≤ u+ ηn/rn

]
+ o(1)

≤ P
[
sup
x∈X
|Zj(x)| ≤ u

]
+ Cr−1

n ηnE[sup
x∈X
|Zj(x)|] + o(1)

for some constant C > 0 where the last line holds by the Anti-Concentration Inequal-

ity due to Chernozhukov, Chetverikov, and Kato (2014b). By Gaussian maximal

inequality, E[supx∈X |Zj(x)|] .
√

log n. Since we assume rn =
√

log n, the two terms

on the far right of the last line is o(1) and do not depend on u. The reverse of

the inequality follows similarly, and we conclude that supu∈R
∣∣P[ supx∈X |T̂j(x)| ≤

u
]
− P

[
supx∈X |Zj(x)| ≤ u

]∣∣ = o(1). On the other hand, by Theorem II.7, Ẑj(·) is

approximated by the same Gaussian process conditional on the data. Thus, using the

same argument given above, the result follows.
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Appendix B

Proof for Chapter III

Notation

We introduce more notation for this appendix. We employ standard empirical process

notation: En[g(xi)] = 1
n

∑n
i=1 g(xi), and Gn[g(xi)] = 1√

n

∑n
i=1(g(xi) − E[g(xi)]). In

addition, we employ the notion of covering number extensively in the proofs. Specifi-

cally, given a measurable space (S,S) and a suitably measurable class of functions G
mapping S to R equipped with a measurable envelop function Ḡ(z) ≥ supg∈G |g(z)|.
The covering number of N(G, L2(Q), ε) is the minimal number of L2(Q)-balls of radius

ε needed to cover G. The covering number of G relative to the envelop is denoted as

N(G, L2(Q), ε‖Ḡ‖Q,2).

Given the partition ∆̂ described in Chapter III, redefine b̂(x) as a standardized

rotated basis for convenience of analysis. Specifically, for each α = 0, . . . , p, and

j = 1, . . . , J , the polynomial basis of degree α supported on B̂j is rotated and rescaled:

1B̂j(x)xα 7→
√
J · 1B̂j(x)

(x− x(b(j−1)n/Jc)

ĥj

)α
,

where ĥj = x(bjn/Jc) − x(b(j−1)n/Jc).

Given the random partition ∆̂, we will use the notation E∆̂[·] to denote that the

expectation is taken with the partition ∆̂ understood as fixed. To further simplify

notation, we let {τ̂0 ≤ τ̂1 ≤ · · · ≤ τ̂J} denote the empirical quantile sequence employed

by ∆̂. Accordingly, let {τ0 ≤ · · · ≤ τJ} be the population quantile sequence, i.e.,

τj = F−1(j/J) for 0 ≤ j ≤ J . Then ∆ = {B1, . . . ,BJ} denotes the partition based on

population quantiles, i.e.,

Bj =


[
τ0, τ1

)
if j = 1[

τj−1, τj
)

if j = 2, 3, . . . , J − 1[
τJ−1, τJ

]
if j = J

.

Let hj = F−1(j/J)− F−1((j − 1)/J) be the width of Bj. bs(x) denotes the (smooth)
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binscatter basis based on the nonrandom partition ∆. Moreover, xi’s are collected in

a matrix X = [x1, . . . , xn]′, all the data are collected in D = {(yi, xi,w′i) : 1 ≤ i ≤ n}.
We sometimes write bs(x; ∆̄) = (bs,1(x; ∆̄), . . . , bs,Ks(x; ∆̄))′ to emphasize a binscat-

ter basis is constructed based on a particular partition ∆̄. Clearly, b̂s(x) = bs(x; ∆̂)

and bs(x) = bs(x; ∆).

The following expression of the coefficient estimators, also known as “backfitting”

in statistics literature, will be convenient for theoretical analysis:

β̂ = (B′B)−1B′(Y −Wγ̂), γ̂ = (W′MBW)−1(W′MBY)

where Y = (y1, . . . , yn)′, B = (b̂s(x1), . . . , b̂s(xn))′, W = (w1, . . . ,wn)′, MB =

In −B(B′B)−1B′. It is well known that the least squares estimator provides a best

linear approximation to the target function. For any given partition ∆̄, the population

least squares estimator is defined as

βµ(∆̄) := arg min
β

E[(µ(xi)− bs(xi; ∆̄)′β)2].

Accordingly, rµ(x; ∆̄) = µ(x)− bs(x; ∆̄)′βµ(∆̄) denotes the L2 approximation error.

We let β̂µ := βµ(∆̂), βµ := βµ(∆), r̂µ(x) := rµ(x; ∆̂) and rµ(x) := rµ(x; ∆).

In addition, we introduce the following matrices:

Q̂ := Q̂(∆̂) := En[b̂s(xi)b̂s(xi)
′], Q := Q(∆) := E[bs(xi)bs(xi)

′],

Σ̂ := Σ̂(∆̂) := En[b̂s(xi)b̂s(xi)
′(yi − b̂s(xi)

′β̂ −w′iγ̂)2],

Σ̄ := Σ̄(∆̂) := En
[
E
[
b̂s(xi)b̂s(xi)

′ε2i

∣∣∣X]], Σ := Σ(∆) := E
[
bs(xi)bs(xi)

′ε2i

]
,

Ω̄(x) := Ω̄(x; ∆̂) := b̂(v)
s (x)′Q̂−1Σ̄Q̂−1b̂(v)

s (x), and

Ω(x) := Ω(x; ∆̂) := b̂(v)
s (x)′Q−1ΣQ−1b̂(v)

s (x).

All quantities with ̂ or ¯ depend on the random partition ∆̂, and those without any

accents are nonrandom with the only exception of Ω(x), where the basis b̂
(v)
s (x) still

depends on ∆̂.

Finally, we let f̄ = supx∈X f(x) and f = infx∈X f(x), and for any partition ∆̄ with

J bins, we let hj(∆̄) denote the length of the jth bin in ∆̄. Then, we introduce a

family of partitions:

Π =
{

∆̄ :
max1≤j≤J hj(∆̄)

min1≤j≤J hj(∆̄)
≤ 3f̄

f

}
. (B.1)

Intuitively, if a partition belongs to Π, then the lengths of its bins do not differ “too”

much, a property usually referred to as quasi-uniformity in approximation theory.
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Our first lemma shows that a quantile-spaced partition possesses this property with

probability approaching one.

Preliminary Lemmas

We first prepare some preliminary lemmas. The detailed proofs can be found in the

online appendix to Cattaneo, Crump, Farrell, and Feng (2019a).

Lemma B.1. Under Assumption III.1, if J log J
n

= o(1) and logn
J

= o(1), then

(i) max
1≤j≤J

|ĥj − hj| .P J
−1
√
J log J/n,

∆̂ ∈ Π with probability approaching one;

(ii) ‖T̂s‖∞ .P 1, ‖T̂s‖ .P 1,

‖T̂s −Ts‖∞ .P
√
J log J/n, ‖T̂s −Ts‖ .P

√
J log J/n;

(iii) sup
x∈X
‖b̂(v)

s (x)‖0 ≤ (p+ 1)2, sup
x∈X
‖b̂(v)

s (x)‖ .P J
1
2

+v;

(iv) 1 . λmin(Q) ≤ λmax(Q) . 1, ‖Q̂−Q‖ .P
√
J log J/n,

‖Q̂−1‖∞ .P 1, ‖Q̂−1 −Q−1‖∞ .P
√
J log J/n;

(v) J1+2v .P inf
x∈X

Ω̄(x) ≤ sup
x∈X

Ω̄(x) .P J
1+2v,

J1+2v . inf
x∈X

Ω(x) ≤ sup
x∈X

Ω(x) . J1+2v;

(vi) sup
x∈X
|b̂(v)
s (x)′β̂µ − µ(v)(x)| .P J

−p−1+v,

sup
x∈X
|b̂(v)
s (x)′Q̂−1En[b̂s(xi)r̂µ(xi)]| .P J

−p−1+v
√
J log J/n.

Proof. The detailed proofs of these results are available in Section SA-6.1, SA-6.2,

SA-6.3, SA-6.4, SA-6.5, and SA-6.6 of the online appendix to Cattaneo, Crump, Farrell,

and Feng (2019b). Here we only provide the proof for (iii) and (iv).

The sparsity of the basis follows by construction. The upper bound on the maxi-

mum eigenvalue of Q follows from part (i) and (ii). Also, in view of part (i), the lower

bound on the minimum eigenvalue of Q follows from Schumaker (2007, Theorem 4.41),

by which the minimum eigenvalue of Q/J (the scaling factor dropped) is bounded by

min1≤j≤J hj up to some universal constant. To show the bound on ‖b̂(v)
s (x)‖, notice

that when s = 0, for any x ∈ X and any j = 1, . . . , J(p+ 1), 0 ≤ b̂0,j(x) ≤
√
J . Define

ϕj,α(x) as

ϕj,α(x) =
√
J · 1B̂j(x)

(x− τ̂j−1

ĥj

)α
, 1 ≤ α ≤ p, 1 ≤ j ≤ J.
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Since

ϕ
(v)
j,α =

√
Jα(α− 1) · · · (α− v + 1)ĥ−vj 1B̂j(x)

(x− τ̂j−1

ĥj

)α−v
.
√
Jĥ−vj ,

the bound on ‖b̂(v)
s (x)‖ simply follows from part (i) and (ii).

Now, we prove the convergence of Q̂. In view of part (ii), it suffices to show the con-

vergence of Q̂ when s = 0, i.e., ‖En[b̂0(xi)b̂0(xi)
′]− E[b0(xi)b0(xi)

′]‖ .P
√
J log J/n.

By part (i), with probability approach 1, ∆̂ ranges within the family of partitions Π.

Let An denote the event on which ∆̂ ∈ Π. Thus, P(Acn) = o(1). On An,∥∥∥En[b̂0(xi)b̂0(xi)
′]− E∆̂[b̂0(xi)b̂0(xi)

′]
∥∥∥

≤ sup
∆̄∈Π

∥∥∥En[b0(xi; ∆̄)b0(xi; ∆̄)′]− E[b0(xi; ∆̄)b0(xi; ∆̄)′]
∥∥∥.

By the relation between matrix norms, the right-hand-side of the above inequality is

further bounded by

sup
∆̄∈Π

∥∥∥En[b0(xi; ∆̄)b0(xi; ∆̄)′]− E[b0(xi; ∆̄)b0(xi; ∆̄)′]
∥∥∥
∞
.

Let akl be a generic (k, l)th entry of the matrix inside the matrix norm, i.e.,

|akl| =
∣∣∣En[b0,k(xi; ∆̄)b0,l(xi; ∆̄)′]− E

[
b0,k(xi; ∆̄)b0,l(xi; ∆̄)′

]∣∣∣
Clearly, if b0,k(· ; ∆̄) and b0,l(· ; ∆̄) are basis functions with different supports, akl is

zero. Now define the following function class

G =
{
x 7→ b0,k(x; ∆̄)b0,l(x; ∆̄) : 1 ≤ k, l ≤ J(p+ 1), ∆̄ ∈ Π

}
.

For such a class, supg∈G |g|∞ . J and supg∈G V[g] ≤ supg∈G E[g2] . J where the

second result follows from the fact that the supports of b0,k(·; ∆̄) and b0,l(·; ∆̄) shrink

at the rate of J−1. In addition, each function in G is simply a dilation and translation

of a polynomial function supported on [0, 1], plus a zero function, and the number of

polynomial degree is finite. Then, by Proposition 3.6.12 of Giné and Nickl (2016), the

collection G of such functions is of VC type, i.e., there exists some constant Cz and

z > 6 such that

N(G, L2(Q), ε‖Ḡ‖L2(Q)) ≤
(Cz
ε

)2z

,

for ε small enough where we take Ḡ = CJ for some constant C > 0 large enough.
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Theorem 6.1 of Belloni, Chernozhukov, Chetverikov, and Kato (2015),

E
[

sup
g∈G

∣∣∣ n∑
i=1

g(xi)−
n∑
i=1

E[g(xi)]
∣∣∣] .√nJ log J + J log J,

implying that

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)− E[g(xi)]
∣∣∣ .P

√
J log J/n.

Since any row or column of the matrix (akl) only contains a finite number of nonzero

entries, only depending on p, the above result suffices to show that∥∥∥En[b̂0(xi)b̂0(xi)
′]− E∆̂[b̂0(xi)b̂0(xi)

′]
∥∥∥ .P

√
J log J/n.

Next, let αkl denote the (k, l)th entry of E∆̂

[
b̂0(xi)b̂0(xi)

′
]
/J−E

[
b0(xi)b0(xi)

′
]
/J ,

where by dividing them by J we drop the normalizing constant for notational simplicity.

By definition, it is either equal to zero, or can be rewritten as

αkl =

∫
B̂j

(x− τ̂j
ĥj

)`
f(x)dx−

∫
B̂j

(x− τj
hj

)`
f(x)dx

=ĥj

∫ 1

0

z`f(zĥj + τ̂j)dz − hj
∫ 1

0

z`f(zhj + τj)dz

=(ĥj − hj)
∫ 1

0

z`f(zĥj + τ̂j)dz + hj

∫ 1

0

z`
(
f(zĥj + τ̂j)− f(zhj + τj)

)
dz (B.2)

for some 1 ≤ j ≤ J and 0 ≤ ` ≤ 2p. By Assumption III.1 and Lemma SA2 of Calonico,

Cattaneo, and Titiunik (2015), max1≤j≤J f(τ̂j) . 1 and max1≤j≤J |ĥj − hj| .P

J−1
√
J log J/n. Also, Lemma SA2 of Calonico, Cattaneo, and Titiunik (2015) implies

that

sup
z∈[0,1]

max
1≤j≤J

|τ̂j + zĥj − (τj + zhj)| .P
√
J log J/n.

Since f(·) is uniformly continuous on X , the second term in (B.2) is also

OP(J−1
√
J log J/n). Again, using the sparsity structure of the matrix [αkl], the

above result suffices to show that ‖E∆̂[b̂0(xi)b̂0(xi)
′]−Q‖ .P

√
J log J/n.

Given the above fact, it follows that ‖Q̂−1‖ .P 1. Notice that Q̂ and Q are banded

matrices with finite band width. Then the bounds on ‖Q̂‖∞ and ‖Q̂−1 −Q−1‖∞ hold

by Theorem 2.2 of Demko (1977). This completes the proof.

Lemma B.2 (Uniform Convergence: Variance). Suppose that Assumption III.1 holds.
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If J2 log J
n

= o(1) and logn
J

= o(1), then

sup
x∈X
|b̂(v)
s (x)′Q̂−1En[bs(xi)εi]| . Jv

√
J log J/n.

Proof. By Lemma B.1, supx∈X ‖b̂(v)(x)′‖∞ .P J
1/2+v, ‖Q̂−1‖∞ .P 1 and ‖T̂s‖∞ .P 1.

Define a function class

G =
{

(x1, ε1) 7→ b0,l(x1; ∆̄)ε1 : 1 ≤ l ≤ J(p+ 1), ∆̄ ∈ Π
}
.

Then, supg∈G |g| .
√
J |ε1|, and hence take an envelop Ḡ = C

√
J |ε1| for some C large

enough. Moreover, supg∈G V[g] . 1 and, as in the proof of Lemma B.1, G is of VC-type.

By Proposition 6.1 of Belloni, Chernozhukov, Chetverikov, and Kato (2015),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi, εi)
∣∣∣ .P

√
log J

n
+
J log J

n
.

√
log J

n
,

and the desired result follows.

Let {an : n ≥ 1} be a sequence of non-vanishing constants, which will be used later

to characterize the strong approximation rate. The next theorem shows that under

certain conditions the estimation of γ does not impact the asymptotic inference on

the nonparametric component.

Lemma B.3 (Covariate Adjustment). Suppose that Assumption III.1 holds. If
J log J
n

= o(1), an√
J

= o(1), an
√
nJ−2p− 5

2 = o(1), then

‖γ̂ − γ‖ = oP(a−1
n

√
J/n), ‖b̂(v)

s (x)′Q̂−1En[b̂s(xi)w
′
i]‖∞ .P J

v for each x ∈ X .

If, in addition, J2 log J
n

. 1, then supx∈X ‖b̂
(v)
s (x)′Q̂−1En[b̂s(xi)w

′
i]‖∞ .P J

v.

Proof. This result follows from Lemma SA-1, Lemma SA-2 of Cattaneo, Jansson,

and Newey (2018b), Lemma 2 of Cattaneo, Jansson, and Newey (2018a) and Lemma

B.1. See more details in Section SA-6.8 of the online appendix to Cattaneo, Crump,

Farrell, and Feng (2019b).

Using the previous results, the next lemma constructs the rate of uniform conver-

gence for binscatter estimators.

Lemma B.4 (Uniform Convergence). Suppose that Assumption III.1 holds. If
√
nJ−2p− 5

2 = o(1) and J2 log J
n

. 1, then

sup
x∈X
|µ̂(v)(x)− µ(v)(x)| .P J

v
√
J log J/n+ J−p−1+v
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Proof. Noticing that

µ̂(v)(x)− µ(v)(x) =b̂(v)
s (x)′Q̂−1En[b̂s(xi)εi] + b̂(v)

s (x)′Q̂−1En[b̂s(xi)r̂µ(xi)]+(
b̂(v)
s (x)′β̂µ − µ(v)(x)

)
− b̂(v)

s (x)′Q̂−1En[b̂s(xi)w
′
i](γ̂ − γ).

(B.3)

Then the result follows by Lemma B.1, B.2 and B.3.

The last lemma shows that the proposed variance estimator is consistent.

Lemma B.5 (Variance Estimate). Suppose that Assumption III.1 holds. If J2(log J)2

n
=

o(1) and
√
nJ−2p− 5

2 = o(1), then∥∥∥Σ̂−Σ
∥∥∥ .P J

−p−1 +
√
J log J/n1/2,

sup
x∈X
|Ω̂(x)− Ω(x)| .P J

1+2v
(
J−p−1 +

√
J log J/n1/2

)
.

Proof. Since ε̂i := yi− b̂s(xi)
′β̂−w′iγ̂ = εi + µ(xi)− b̂s(xi)

′β̂−w′i(γ̂ − γ) =: εi + ui,

we can write

En[b̂s(xi)b̂s(xi)
′ε̂2i ]− E[bs(xi)bs(xi)

′σ2(xi)]

=En[b̂s(xi)b̂s(xi)
′u2
i ] + 2En[b̂s(xi)b̂s(xi)

′uiεi] + En[b̂s(xi)b̂s(xi)
′(ε2i − σ2(xi))]

+
(
En[b̂s(xi)b̂s(xi)

′σ2(xi)]− E
[
bs(xi)bs(xi)

′σ2(xi)
])

=:V1 + V2 + V3 + V4.

Now we bound each term in the following.

Step 1: For V1, we further write ui = (µ(xi)− b̂s(xi)
′β̂)−w′i(γ̂ −γ) =: ui1− ui2.

Then V1 = En[b̂s(xi)b̂s(xi)
′(u2

i1 + u2
i2 − 2ui1ui2)] =: V11 + V12 − V13. Since

‖2En[b̂s(xi)b̂s(xi)
′ui1ui2]‖ ≤ ‖En[b̂s(xi)b̂s(xi)

′(u2
i1 + u2

i2)]‖, it suffices to bound V11

and V12. For V11,

‖V11‖ ≤ max
1≤i≤n

|ui1|2
∥∥∥En[b̂s(xi)b̂s(xi)

′]
∥∥∥ .P

J log J

n
+ J−2(p+1)

where the last inequality holds by Lemma B.1 and B.4. On the other hand,

‖V12‖ =
∥∥∥En[b̂s(xi)b̂s(xi)′( d∑

`

w2
i`(γ̂` − γ`)2 +

∑
`6=`′

wi`wi`′(γ̂` − γ)(γ̂`′ − γ`′)
)]∥∥∥

.
∥∥∥En[b̂s(xi)b̂s(xi)′( d∑

`

w2
i`(γ̂` − γ`)2

)]∥∥∥
by CR-inequality. By Lemma B.3, ‖γ̂ − γ‖2 = oP(J/n). Then it suffices to show that

for every ` = 1, . . . , d, ‖En[b̂s(xi)b̂s(xi)
′w2

i`]‖ .P 1. Under the conditions given in the
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theorem, this bound can be established using the argument that will be given in Step

3 and 4.

Step 2: For V2, we have V2 = 2En[b̂s(xi)b̂s(xi)
′εi(ui1−ui2)] =: V21−V22. Then,

‖V21‖ ≤ max
1≤i≤n

|ui1|(‖En[b̂s(xi)b̂s(xi)
′]‖+‖En[b̂s(xi)b̂s(xi)

′ε2i ]‖) .P

√
J log J

n
+J−p−1

where the last step follows from Lemma B.1 and the result given in the next

step. In addition, ‖V22‖ = ‖2En[b̂s(xi)b̂s(xi)
′εi
∑d

`=1wi`(γ̂` − γ`)]‖. Then, since

‖2En[b̂s(xi)b̂s(xi)
′εiwi`]‖ ≤ ‖En[b̂s(xi)b̂s(xi)

′(ε2i +w2
i`)]‖, the result can be established

using the strategy given in the next step.

Step 3: For V3, in view of Lemma B.1, it suffices to show that

sup
∆̄∈Π

∥∥∥En[b0(xi; ∆̄)b0(xi; ∆̄)′(ε2i − σ2(xi))]
∥∥∥ .P

√
J log J/n1/2.

For notational simplicity, we write ηi = ε2i −σ2(xi), η
−
i = ηi1(|ηi| ≤M)−E[ηi1(|ηi| ≤

M)|xi], η+
i = ηi1(|ηi| > M) − E[ηi1(|ηi| > M)|xi] for some M > 0 to be specified

later. Since E[ηi|xi] = 0, ηi = η−i + η+
i . Then define a function class

G =
{

(x1, η1) 7→ b0,l(x1; ∆̄)b0,k(x1; ∆̄)η1 : 1 ≤ l ≤ J(p+ 1), 1 ≤ k ≤ J(p+ 1), ∆̄ ∈ Π
}
.

Then for g ∈ G,
∑n

i=1 g(x1, η1) =
∑n

i=1 g(x1, η
+
1 ) +

∑n
i=1 g(x1, η

−
1 ).

Now, for the truncated piece, we have supg∈G |g(x1, η
−
1 )| . JM , and

sup
g∈G

V[g(x1, η
−
1 )] . sup

x∈X
E[η2

1|x1 = x] sup
∆̄∈Π

sup
1≤l,k≤J(p+1)

E[b2
0,l(x1; ∆̄)b2

0,k(x1; ∆̄)]

. JM sup
x∈X

E
[
|η1|
∣∣∣xi = x

]
. JM.

The VC condition holds by the same argument given in the proof of Lemma B.1. Then

using Proposition 6.2 of Belloni, Chernozhukov, Chetverikov, and Kato (2015),

E
[

sup
g∈G

∣∣∣En[g(xi, η
−
i )]
∣∣∣] .√JM log(JM)

n
+
JM log(JM)

n
.

Regarding the tail, we apply Theorem 2.14.1 of van der vaart and Wellner (1996)
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and obtain

E
[

sup
g∈G

∣∣∣En[g(xi, η
+
i )]
∣∣∣] . 1√

n
J
√

log JE
[√

En[|η+
i |2]
]

≤ 1√
n
J
√

log J(E[ max
1≤i≤n

|η+
i |])1/2(E[En[|η+

i |])1/2

.
J
√

log J√
n
· n

1
4

M1/2

where the second line follows from Cauchy-Schwarz inequality and the third line uses

the fact that

E[ max
1≤i≤n

|η+
i |] . E[ max

1≤i≤n
ε2i ] . n1/2, and

E[En[|η+
i |]] ≤ E[|η1|+|] .

E[|ε|4]

M
.

Then the desired result follows simply by setting M = J and the sparsity of the basis.

Step 4: For V4, since by Assumption III.1, supx∈X E[ε2i |xi = x] . 1. Then, by

the same argument given in the proof of Lemma B.1,

sup
∆̄∈Π

∥∥∥En[bs(xi; ∆̄)bs(xi; ∆̄)′σ2(xi)]− E
[
bs(xi; ∆̄)bs(xi; ∆̄)′ε2i

]∥∥∥ .P
√
J log J/n

and ∥∥∥E∆̂

[
b̂s(xi)b̂s(xi)

′ε2i

]
− E

[
bs(xi)bs(xi)

′ε2i

]∥∥∥ .P
√
J log J/n.

Then the proof is complete.

Main Proofs

Proof of Theorem III.1. This result follows from Theorem II.1, Lemma B.1, Lemma

B.3 and Lemma IV.3. See Section SA-6.11 of the supplemental appendix to Cattaneo,

Crump, Farrell, and Feng (2019b) for more details.

Proof of Lemma III.1. Let Ω̄(x)−1/2b̂
(v)
s (x)′Q̂−1Gn[b̂s(xi)εi] =: Gn[aiεi]. Condi-

tional on X, it is a mean zero sequence independent over i with variance equal to 1.

Then by Berry-Esseen inequality,

sup
u∈R

∣∣∣P(Gn[aiεi] ≤ u|X)− Φ(u)
∣∣∣ ≤ min

(
1,

∑n
i=1 E[|aiεi|3|X]

n3/2

)
.
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Now, using Lemma B.1,

1

n3/2

n∑
i=1

E
[
|aiεi|3

∣∣∣X]
. Ω̄(x)−3/2 1

n3/2

n∑
i=1

|b̂(v)
s (x)′Q̂−1b̂s(xi)|3

≤ Ω̄(x)−3/2 supx∈X supz∈X |b̂
(v)
s (x)′Q̂−1b̂s(z)|

n3/2

n∑
i=1

|b̂(v)
s (x)′Q̂−1b̂s(xi)|2

.P
1

J3/2+3v
· J

1+v

√
n
· J1+2v → 0

since J/n = o(1). By Lemma B.5, the above weak convergence still holds if Ω̄(x) is

replaced by Ω̂(x). Now, the desired result follows by Lemma B.1 and B.3.

Proof of Theorem III.2. The result follows by Lemma III.1 and the rate restric-

tions.

Proof of Lemma III.2. Define Zp(x) = b̂0(x)′T′sQ
−1Σ1/2√

Ω(x)
NKs where NKs is Ks-

dimensional standard normal vector defined on a sufficiently enriched probability

space. Since we aim at distributional approximation, NKs could represent different

normal vectors and should be understood in context. The proof is divided into several

steps.

Step 1: Note that

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ(v)(x)√
Ω̂(x)/n

− µ̂(v)(x)− µ(v)(x)√
Ω(x)/n

∣∣∣∣
≤ sup

x∈X

∣∣∣∣ µ̂(v)(x)− µ(v)(x)√
Ω(x)/n

∣∣∣∣ sup
x∈X

∣∣∣∣Ω̂(x)1/2 − Ω(x)1/2

Ω̂(x)1/2

∣∣∣∣
.P

(√
log J +

√
nJ−p−1−1/2

)(
J−p−1 +

√
J log J

n1/2

)
where the last step uses Lemma B.1 and B.4. Then, in view of Lemma B.1, B.3 and

B.5 and the rate restriction given in the lemma, we have

sup
x∈X

∣∣∣ µ̂(v)(x)− µ(x)√
Ω̂(x)/n

− b̂s(x)′Q̂−1√
Ω(x)

Gn[b̂s(xi)εi]
∣∣∣ = oP(1/

√
log J).

Step 2: Write K (x, xi) = Ω(x)−1/2b̂
(v)
s (x)′Q̂−1bs(xi). Using Lemma A.3 given

in Appendix A, it follows that for any η > 0, P
(

supx∈X |Gn[K (x, xi)(εi − σiζi)]| >

η/
√

log J |X
)

= oP(1), where σ2
i = σ2(xi). Since Gn[b̂(xi)ζiσi] =d|X N(0, Σ̄) (=d|X
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denotes “equal in distribution conditional on X”), the above steps construct the

following approximating process: Z̄p(x) := b̂(v)(x)′Q̂−1√
Ω(x)

Σ̄1/2NKs .

Step 3: Since supx∈X |Z̄p(x) − Zp(x)| ≤ supx∈X

∣∣∣ b̂(v)(x)′(Q̂−1−Q−1)√
Ω(x)

Σ̄1/2NKs

∣∣∣ +

supx∈X

∣∣∣ b̂(v)(x)′Q−1√
Ω(x)

(
Σ̄1/2−Σ1/2

)
NKs

∣∣∣+supx∈X

∣∣∣ b̂(v)
0 (x)′(T̂s−Ts)Q−1√

Ω(x)
Σ1/2NKs

∣∣∣, where each

term on the right-hand-side is a mean-zero Gaussian process conditional on X. Using

Lemma B.1, Theorem X.3.8 of Bhatia (2013) and applying Gaussian Maximal Inequal-

ity (see Chernozhukov, Lee, and Rosen, 2013, Lemma 13) as in the proof of Theorem

II.5, we have E
[

supx∈X |Z̄p(x)−Zp(x)|
∣∣∣X] .P

√
log J(‖Σ̄1/2−Σ1/2‖+‖Q̂−1−Q−1‖+

‖T̂s −Ts‖) = oP(1/
√

log J).

Step 4: It follows from the same argument as given in Step 3 that on a properly

enriched probability space, there exists Ks-dimensional standard normal vector NKs in-

dependent of D such that for any η > 0, P
[

supx∈X |Ẑp(x)−Zp(x)| > η√
log J

∣∣∣D] = oP(1).

Step 5: Using the similar argument as in the proof of Theorem II.8, we have

sup
u∈R

∣∣∣P( sup
x∈X
|T̂p(x)| ≤ u

)
− P

(
sup
x∈X
|Zp(x)| ≤ u

)∣∣∣ = o(1),

and

sup
u∈R

∣∣∣P( sup
x∈X
|Ẑp(x)| ≤ u

∣∣∣X)− P
(

sup
x∈X
|Zp(x)| ≤ u

∣∣∣X)∣∣∣ = oP(1).

Then it remains to show that

sup
u∈R

∣∣∣P( sup
x∈X
|Zp(x)| ≤ u

)
− P

(
sup
x∈X
|Zp(x)| ≤ u|X

)∣∣∣ = oP(1). (B.4)

We can write Zp(x) =
b̂
(v)
0 (x)′√

b̂
(v)
0 (x)′Vb̂

(v)
0 (x)

N̆Ks where V = T′sQ
−1ΣQ−1Ts and N̆Ks :=

T′sQ
−1Σ1/2NKs is a Ks-dimensional normal random vector. Importantly, by this

construction, N̆Ks and V do not depend on ∆̂ and x, and they are only determined

by the deterministic partition ∆.

Now, first consider v = 0. For any two partitions ∆1,∆2 ∈ Π, for any x ∈ X ,

there exists x̌ ∈ X such that b
(v)
0 (x; ∆1) = b

(v)
0 (x̌; ∆2), and vice versa. There-

fore, the following two events are equivalent: {ω : supx∈X |Zp(x; ∆1)| ≤ u} =

{ω : supx∈X |Zp(x; ∆2)| ≤ u} for any u. Thus, E
[
P
(

supx∈X |Zp(x)| ≤ u
∣∣∣X)] =

P
(

supx∈X |Zp(x)| ≤ u
∣∣∣X). Then for v = 0, the desired result follows.

For v > 0, simply notice that b̂
(v)
0 (x) = T̂vb̂0(x) for some transformation matrix

T̂v. Clearly, T̂v takes a similar structure as T̂s: each row and each column only have a

finite number of nonzeros. Each nonzero element is simply ĥ−vj up to some constants.
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Using the argument given in the proof of Lemma SA-2.2 of Cattaneo, Crump, Farrell,

and Feng (2019b), ‖T̂v − Tv‖ .
√
J log J/n where Tv is the population analogue (ĥj

replaced by hj). Repeating the argument given in Step 3 and 4, we can replace T̂v in

Zp(x) by Tv without affecting the approximation rate. Then the desired result follows

by repeating the argument given for v = 0 above.

We introduce some notation for the following proofs. Let η1,n = o(1), η2,n = o(1)

and η3,n = o(1) be sequences of vanishing constants. Moreover, let An be a sequence

of diverging constants such that
√

log JAn ≤
√

n
J1+2v .

Proof of Theorem III.3. Given J = JIMSE � n
1

2p+3 , the rate restrictions required in

Theorem III.2 are satisfied. Then,

P
[
sup
x∈X
|T̂p+q(x)| ≤ c

]
≤ P

[
sup
x∈X
|Zp+q(x)| ≤ c + η1,n/

√
log J

]
+ o(1)

≤ P
[
sup
x∈X
|Zp+q(x)| ≤ c0(1− α + η3,n) +

η1,n + η2,n√
log J

]
+ o(1)

≤ P
[
sup
x∈X
|Zp+q(x)| ≤ c0(1− α + η3,n)

]
+ o(1)→ 1− α,

where c0(1 − α + η3,n) denotes the (1 − α + η3,n)-quantile of supx∈X |Zp+q(x)|, the

second follows by Lemma A.1 of Belloni, Chernozhukov, Chetverikov, and Kato (2015),

and the third by Anti-Concentration Inequality in Chernozhukov, Chetverikov, and

Kato (2014b). The other side of the bound follows similarly.

Proof of Theorem III.4. Note that under Ḧ0,

sup
x∈X
|T̈p(x)| ≤ sup

x∈X

∣∣∣∣ µ̂(v)(x)− µ(v)(x)√
Ω̂(x)/n

∣∣∣∣+ sup
x∈X

∣∣∣∣µ(v)(x)−m(v)(x; θ̂)√
Ω̂(x)/n

∣∣∣∣.
Therefore,

P
[

sup
x∈X
|T̈p(x)| > c

]
≤ P

[
sup
x∈X
|T̂p(x)| > c− sup

x∈X

∣∣∣∣µ(v)(x)−m(v)(x; θ̂)√
Ω̂(x)/n

∣∣∣∣]

≤P
[

sup
x∈X
|Zp(x)| > c− η1,n√

log J
− sup

x∈X

∣∣∣∣µ(v)(x)−m(v)(x; θ̂)√
Ω̂(x)/n

∣∣∣∣]+ o(1)

≤P
[

sup
x∈X
|Zp(x)| > c0(1− α− η3,n)− η1,n + η2,n√

log J
−

sup
x∈X

∣∣∣∣µ(v)(x)−m(v)(x, θ̂)√
Ω̂(x)/n

∣∣∣∣]+ o(1)
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≤P
[

sup
x∈X
|Zp(x)| > c0(1− α− η3,n)

]
+ o(1)

=α + o(1)

where c0(1 − α − η3,n) denotes the (1 − α − η3,n)-quantile of supx∈X |Zp(x)|, the

second inequality holds by Lemma III.2, the third by Lemma A.1 of Belloni,

Chernozhukov, Chetverikov, and Kato (2015), the fourth by the condition that

supx∈X
∣∣µ(v)(x)−m(v)(x,θ̂)√

Ω̂(x)/n

∣∣ = oP( 1√
log J

) and Anti-Concentration Inequality in Cher-

nozhukov, Chetverikov, and Kato (2014b). The other side of the bound follows

similarly.

On the other hand, under ḦA,

P
[

sup
x∈X
|T̈p(x)| > c

]
≥P
[

sup
x∈X
|T̂p(x)| ≤ sup

x∈X

∣∣∣∣µ(v)(x)−m(v)(x, θ̄)√
Ω̂(x)/n

+
m(v)(x, θ̄)−m(v)(x, θ̂)√

Ω̂(x)/n

∣∣∣∣− c

]
− o(1)

≥P
[

sup
x∈X
|Zp(x)| ≤

√
log JAn − η1,n/

√
log J

]
− o(1)

≥ 1− o(1).

where the second line holds by Lemma B.1, Lemma B.5, Lemma A.1 of Belloni,

Chernozhukov, Chetverikov, and Kato (2015) and Jv
√
J log J/n = o(1), the third by

definition of An and Lemma III.2, and the last by Concentration Inequality given in

Lemma 12 of Chernozhukov, Lee, and Rosen (2013).

Proof of Theorem III.5. The proof is similar to that for Theorem III.4, and omitted

here. See Section SA-6.19 of Cattaneo, Crump, Farrell, and Feng (2019b) for more

details.

Simulated Dataset

Section 3.2 uses a simulated dataset to illustrate our main methods. The data gener-

ating process is constructed based on the real survey dataset on the Gini index and

household income. Specifically, we set the sample size n = 1, 000, and the indepen-

dent variable of interest xi ∼ beta(2, 4) where beta(2, 4) is beta distribution with

parameters 2 and 4. The regression function of interest is

µ(x) = 24x4 − 98.8x3 + 112.4x2 − 44.4x+ 3.6.
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The basic model for the outcome variable y is constructed as

yi = µ(xi) + wi + εi, εi ∼ N(0, 0.52), wi ∼ U(−1, 1)

where N(0, 0.52) is the normal distribution with mean 0 and variance 0.52 and U(−1, 1)

is the uniform distribution over [−1, 1]. xi, wi and εi are independent of each other.

The basic model is modified in several scenarios. In the discussion of data variabil-

ity and heteroskedasticity, we change the conditional variance of εi. In the discussion

of covariate adjustment, we allow the dependence between xi and wi. In that case,

wi = 3(x− 0.5) + U(−0.5, 0.5) where the errors are independent of xi.
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Appendix C

Proof for Chapter IV

Proof of Lemma IV.1.

(1) Assumption II.3(1) directly follows from the construction of tensor-product

B-splines. Assumption II.3(2) follows from Schumaker (2007, Theorem 12.5).

To prove Assumption II.3(3), notice that given univariate B-splines {pl`(x`)}
K`
l`=1,

there exists a universal constant C > 0 such that for any ς` ≤ m, δ ∈ ∆,

supx`∈clo(δ)

∣∣dς`pl`(x`)/dxς`` ∣∣ . h−ς` . Since there are only a fixed number of nonzero

elements in p, we have for [ς] ≤ m, supδ∈∆ supx∈clo(δ) ‖∂ςp(x)‖ . h−[ς]. To derive

the other side of the bound, notice that the proof of Zhou and Wolfe (2000, Lemma

5.4) shows that for a univariate B-spline basis p̆`(x`) := (p̆1(x`), · · · , p̆K`(x`))′, for

any ς` ≤ m− 1, x` ∈ X`,
∥∥∥dς`p̆`(x`)/dxς`` ∥∥∥ & h−ς` . Since for any x`, there are only m

nonzero elements in p̆`(x`), this suffices to show that for any x` ∈ X`, there exists

some p̆l`(x`) such that
∣∣∣dς`pl`(x`)/dxς`` ∣∣∣ & h−ς` . Then the direct lower bound directly

follows from the construction of tensor-product B-splines.

(2) The proof of orthogonality between the constructed leading error and B-splines

can be found in Barrow and Smith (1978). Regarding the bias expansion, we first

consider ς = 0. Noticing that

Bm,0(x) = −
d∑
`=1

∂mθ(tLx)

∂xm`

bm`,l`
m!

Bm

(x` − t`,l`
b`,l`

)
+O(hm+%) for x ∈ δl1...ld

where Bm(·) is the mth Bernoulli polynomial, we only need to work with the first term

on the RHS, denoted by B̄m(x). By construction, B̄m(x) is continuous on the interior

of each subrectangle δl1...ld , and the discontinuity only takes place at boundaries of

subrectangles. Let J0 denote the magnitude of jump of B̄m(x). By Assumption II.1,

J0 is also the jump of θ̄ := θ + B̄m. We first check the magnitude of the jump as

Barrow and Smith (1978) did in their proof. We introduce the following notation:

i. τ := (τ1, · · · , τd) is a point on the boundary of a generic rectangle δl1...ld ;

ii. τ− := (τ−1 , · · · , τ−d ) and τ+ := (τ+
1 , · · · , τ+

d ) are two points close to τ but
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belong to two different subrectangles δ−l1...ld := {x : t−`,l` ≤ x` < t−`,l`+1} and

δ+
l1...ld

:= {x : t+`,l` ≤ x` < t+`,l`+1};

iii. tL− and tL+ are the starting points of δ−l1...ld and δ+
l1...ld

;

iv. (b1,−, · · · , bd,−) and (b1,+, · · · , bd,+) are the corresponding mesh widths of δ−l1...ld
and δ+

l1...ld
;

v. Ξ := {` : τ−` − τ` and τ+
` − τ` differ in signs}.

In words, the index set Ξ indicates the directions in which we cross boundaries

when we move from τ−` to τ+
` . To further simplify notation, we write θ̄(τ−) :=

limx→τ ,x∈δ−l1...ld
θ̄(x) and θ̄(τ+) := limx→τ ,x∈δ+l1...ld

θ̄(x). Then we have

J0 = |θ̄(τ+)− θ̄(τ−)| =
∣∣∣B̄m(τ+)− B̄m(τ−))

∣∣∣
=
∑
`∈Ξ

(Bm(0)|/m!)
∣∣∣∂mθ(tL+)

∂xm`
bm`,+ −

∂mθ(tL−)

∂xm`
bm`,−

∣∣∣
=
∑
`∈Ξ

(Bm(0)|/m!)
∣∣∣(∂mθ(tL+)

∂xm`
−
∂mθ(tL−)

∂xm`

)
bm`,+ +

∂mθ(tL−)

∂xm`
(bm`,+ − bm`,−)

∣∣∣
≤
∑
`∈Ξ

(Bm(0)|/m!)
[
O(hm+%) + Chm−1|b`,+ − b`,−|

]
≤
∑
`∈Ξ

(Bm(0)|/m!)
[
O(hm+%) + Chm−1O(h1+%)

]
where the fourth line follows from Assumption II.1 and the last line follows from the

stronger quasi-uniformity condition given in the Lemma. This suffices to show that

J0 is O(hm+%).

Then we mimic the proof strategy used in Schumaker (2007, Theorem 12.7). By

Schumaker (2007, Theorem 12.6), we can construct a bounded linear operator L [·]
mapping L1(X ) onto S∆,m with L [s] = s for all s ∈ S∆,m. Specifically, L [·] is defined

as

L [θ](x) :=

K1∑
l1=1

· · ·
Kd∑
ld=1

(ψl1...ldθ)pl1...ld(x)

where {ψl1...ld}
K1,...,Kd
l1=1,...,ld=1 is a dual basis defined as Schumaker (2007, Equation 12.24).

By multi-dimensional Taylor expansion, there exists a polynomial ϕl1...ld such that

‖θ̄−ϕl1...ld‖L∞(δl1...ld ) . hm+%, and the degree of ϕl1...ld is no greater than m− 1. Since
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L reproduces polynomials, we have

‖θ̄ −L [θ̄]‖L∞(δl1...ld ) ≤ ‖θ̄ − ϕl1...ld‖L∞(δl1...ld ) + ‖L [θ̄ − ϕl1...ld ]‖L∞(δl1...ld )

≤ C‖θ̄ − ϕl1...ld‖L∞(δl1...ld ) . hm+%.

With the jump of θ̄ along boundaries taken account of, the approximation error of L [θ̄]

is still O(hm+%). Evaluate the L∞ norm on all subrectangles, and then we conclude

that there exists some s∗ ∈ S∆,m such that ‖θ + B̄m − s∗‖L∞(X ) . hm+%.

For other ς, we only need to show that the desired result holds for s∗ = L [θ̄]. By

construction of L ,

|∂ς(L [θ̄])| ≤
m+κ1∑
l1=1

· · ·
m+κd∑
ld=1

|ψl1...ld θ̄||∂ςpl1...ld(x)| ≤ Ch−[ς]‖θ̄‖L∞(δl1...ld ) (C.1)

where the last line follows from (Schumaker, 2007, Theorem 12.5). Then we have

‖∂ςθ + ∂ςB̄m − ∂ς(L [θ̄])‖L∞(δl1...ld )

≤ ‖∂ςθ + ∂ςB∗m − ∂ςϕl1...ld‖L∞(δl1...ld ) + ‖∂ς(L [θ̄ − ϕl1...ld ])‖L∞(δl1...ld )

≤ O(hm+%−[ς]) + Ch−[ς]‖θ̄ − ϕl1...ld‖L∞(δl1...ld ) . hm+%−[ς]

where the second inequality follows from Taylor expansion and Equation (C.1). By

the similar argument for J0, the jump of ∂ςB̄m is O(hm+%−[ς]).

(3) By construction of p̃, ρ = 1. It follows from the same argument in part (1) and

(2) that p̃ satisfies Assumption II.3 and II.4. Finally, by definition of tensor-product

splines, both p and p̃ reproduce polynomials of degree no greater than m− 1. Then

the proof is complete.

Proof of Lemma IV.2.

(1) Assumption II.3(1) directly follows from the fact that the father wavelet is

compactly supported and {φsl} is generated by translation and dilation. Assumption

II.1(2) follows from the fact that {φsl} is an orthonormal basis with respect to the

Lebesgue measure. For Assumption II.3(3), notice that

dς`φ(2sx` − l`)
dxς``

= 2sς`
dς`φ(z)

dzς`

∣∣∣
z=2sx`−l`

= b−ς`
dς`φ(z)

dzς`

∣∣∣
z=2sx`−l`

.

Since the wavelet basis reproduces polynomials of degree no greater than m− 1 and φ

is assumed to have q + 1 continuous derivatives, the desired bounds follow.

(2) We follow the same strategy used in Sweldens and Piessens (1994), and extend

their proof to the multidimensional case. First, we denote by V `
s the closure of the
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level-s subspace spanned by {φsl(x`)} and W `
s the orthogonal complement of V `

s in

V `
s+1. Then we write Vs := ⊗d`=1V

`
s for the space spanned by the tensor-product level-s

father wavelets, and Ws as the orthogonal complement of Vs in Vs+1. We use the

following fact: Ws = ⊕2d−1
i=1 Ws,i where ⊕ denotes “direct sum”, and each Ws,i takes

the following form: Ws,i = ⊗d`=1Z
`
s. Each Z`

s is either V `
s or W `

s , but {Z`
s}d`=1 cannot

be identical to {V `
s }d`=1. There are in total (2d − 1) such subspaces. Accordingly, a

typical element in a basis vector of Ws can be written as

ψ̄slα(x) =
d∏
`=1

[α`φsl`(x`) + (1− α`)ψsl`(x`)]

where l = (l1, . . . , ld) and α` = 0 or 1, but α = (α1, . . . , αd) 6= (1, . . . , 1). Then it

directly follows from the properties of wavelet basis that for ψ̄slα, s ≥ m,

〈xς , ψ̄slα(x)〉 :=

∫
X

xςψ̄slα(x)dx = 0, for ς such that [ς] ≤ m, ς` 6= m ∀`. (C.2)

Denote by Ls[·] the orthogonal projection operator onto Ws. Then the approxi-

mation error of the tensor-product wavelet space Vsn can be written as

∞∑
s=sn

Ls[θ](x) =
∞∑
s=sn

∑
α

∑
l

〈θ(x̌), ψ̄slα(x̌)〉ψ̄slα(x)

=
∞∑
s=sn

∑
α

∑
l

〈 ∑
[ς]≤m

∂ςθ(x)
(x̌− x)ς

ς!
+ ϑn(x̌,x), ψ̄slα(x̌)

〉
ψ̄slα(x)

where ϑn(x̌,x) . ‖x̌− x‖m+%, and the inner product in the above equations are taken

with respect to x̌ in terms of Lebesgue measure. It follows from Assumption II.1 and

Assumption II.3 that

sup
x∈X

∣∣∣∣∣
∞∑
s=sn

∑
α

∑
l

〈
ϑn(x̌,x), ψ̄slα(x̌)

〉
ψ̄slα(x)

∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣
∞∑
s=sn

( b

2s−sn

)m+%∑
α

∑
l

〈
ϑn(x̌,x)2s(m+%), ψ̄slα(x̌)

〉
ψ̄slα(x)

∣∣∣∣∣ . bm+%.

Recall that b = 2−sn .

Regarding the leading terms

∞∑
s=sn

∑
α

∑
l

〈 ∑
[ς]≤m

∂ςθ(x)
(x̌− x)ς

ς!
, ψ̄slα(x̌)

〉
ψ̄slα(x),

it is clear that the coefficients of the wavelet basis can be viewed as a linear combination
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of the inner products of monomials and the mother wavelets themselves, and thus by

Equation (C.2) the leading error is of order bm and can be characterized as

Bm,0(x) = −
∑
u∈Λm

bm

u!
∂uθ(x)BW

u,0(x/b).

BW
u,0 is referred to as “monowavelet” in Sweldens and Piessens (1994). Here we extend

it to the multidimensional case. Specifically, define a mapping

ϕ : Λm → {1, . . . , d}

u 7→ `

such that ϕ(u)th element of u is nonzero. We denote l−` := (l1, . . . , l`−1, l`+1, . . . , ld)

and L−`s :=
{

l−` : l`′ ∈ Ls, j′ = {1, · · · , d} \ {`}
}

. Then define

$u,s(x) =
∑

lϕ(u)∈Ls

∑
l−ϕ(u)∈L

−ϕ(u)
s

cmψ(2sxϕ(u) − lϕ(u))
∏

`=1,...d
` 6=ϕ(u)

φ(2sx` − l`),

where cm :=
∫ 1

0
xmψ(x) dx. Then BW

u,0(·) can be expressed as

BW
u,0(x) =

∞∑
s=0

2−sm$u,s(x) =:
∞∑
s=0

ξu,s(x). (C.3)

Moreover, since the series in Equation (C.3) converges uniformly and for s ≥ sn, $∗u,s(x)

is orthogonal to the tensor-product wavelet basis p with respect to the Lebesgue

measure, it follows from Dominated Convergence Theorem that the approximate

orthogonality condition holds.

For other ς, let

Bm,ς(x) = −
∑
u∈Λm

bm−[ς]

u!
∂uθ(x)BW

u,ς(x/b)

where BW
u,ς(x) = ∂ςBW

u,0(x). By assumption that for ς such that [ς] ≤ ς, ∂ςφ and

∂ςψ are continuously differentiable, we have
∑∞

s=0 2−sm∂ς$u,s(x) converge uniformly,

and hence we can interchange the differentiation and infinite summation. Therefore,

BW
u,ς(·) is well defined and continuously differentiable. Then the lipschitz condition on

BW
u,ς(·) in Assumption II.4 holds.

Let s∗ be the orthogonal projection of θ onto Vsn . To complete the proof of part
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(2), it suffices to show ‖∂ςθ − ∂ςs∗ + Bm,ς‖L∞(X ) . bm+%−[ς]. For a given sn,

∞∑
s=sn

∑
α

∑
l

〈θ(x̌), ψ̄slα(x̌)〉∂ςψ̄slα(x)

=
∞∑
s=sn

∑
α

∑
l

〈 ∑
[u]≤m

∂uθ(x)
(x̌− x)u

u!
+ ϑn(x̌,x), ψ̄slα(x̌)

〉
∂ςψ̄slα(x)

= bm−[ς]

∞∑
s=sn

2[ς](sn−s)

2m(s−sn)

∑
α

∑
l

2sd

2−sm

〈 ∑
[u]≤m

∂uθ(x)
(x̌− x)u

u!
+ ϑn(x̌,x),

2−sd/2ψ̄slα(x̌)
〉
∂ς
(

2−sd/2ψ̄slα(x)
)

By changing variables, the vanishing moments of the wavelet function and the fact

that geometric series converges, the last line uniformly converges to the ςth derivative

of the approximation error of Vsn , Bm,ς(·) is the leading error and the remainder

behaves like O(bm+%−[ς]).

(3) By construction of p̃, ρ = 1. It follows from the same argument as that for

part (1) and (2) that p̃ satisfies Assumption II.3 and II.4. Finally, both p and p̃

reproduce polynomials of degree no greater than m− 1. Thus Assumption II.5 holds.

The proof is complete.

Proof of Lemma IV.3.

(1) By construction, each basis function pk(x) is supported on one subrectangle

only, and there are only a fixed number of pk(x)’s which are not identically zero

on each subrectangle. Thus Assumption II.3(1) is satisfied. In addition, given one

particular subrectangle δl1...ld , store all basis functions supported on δl1...ld in a vector

pl1...ld . By Cattaneo and Farrell (2013, Lemma A.3),

Ql1...ld := E[pl1...ld(xi)pl1...ld(xi)
′] � Idim(R(·))

where Idim(R(·)) is an identity matrix of size dim(R(·)).
∫
δl1...ld

pl1...ld(x)pl1...ld(x)′ dx is

a finite-dimensional matrix with the minimum eigenvalue bounded from below by Chd

for some C > 0. Hence for any a ∈ Rdim(R(·)),

a′
∫
δl1...ld

pl1...ld(x)pl1...ld(x)′ dx a ≥ Chda′a

which suffices to show Assumption II.3(2).

To show Assumption II.3(3), simply notice that given any x ∈ X , there are only a
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fixed number of nonzero elements in ∂qp(x), and for any k = 1, . . . , K,

sup
δ∈∆

sup
x∈clo(δ)

|∂ςpk(x)| . h−[ς] max
[α]=m−1

α!

(α− ς)!
.

Moreover, for any x ∈ X , there exists some pk in p such that for [ς] ≤ m − 1,

|∂ςpk(x)| & h−[ς].

(2) The result directly follows from the proofs of Lemma A.2 and Theorem 3 in

Cattaneo and Farrell (2013). The only difference here is that we use shifted Legendre

polynomials to re-express the approximating function s∗(x) = p(x)′β∗ and the leading

error. Clearly, β∗ is just a linear combination of coefficients of power series basis

defined in their paper. The orthogonality between approximating basis and leading

error directly follows from the property of Legendre polynomials and the fact that

every basis function is locally supported on only one cell.

(3) By construction of p̃, ρ = 1. It follows from the same argument as that for

part (1) and (2) that p̃ satisfies Assumption II.3 and II.4. Finally, when the degree

of piecewise polynomials is increased, p̃ spans a larger space containing the span of

p, and both bases reproduce polynomials of degree no greater than m − 1. Thus

Assumption II.5 holds.

Proof of Theorem IV.1.

For the integrated variance, define an operator MMM (·): MMM (φ) :=
∫
X p(x)p(x)′φ(x)dx.

Then,∫
X
V[θ̂0(x)|X]w(x)dx =

1

n
trace

[
MMM (f)−1MMM (σ2f)MMM (f)−1MMM (w)

]
+ oP

( 1

nhd+2[q]

)
.

Let τk be an arbitrary point in supp(pk), for k = 1, . . . , K. Define another operator

generating K ×K diagonal matrix: DDD(φ) := diag{φ(τ1), φ(τ2), · · · , φ(τK)}. Then we

can write

MMM (φ) = MMM (1)DDD(φ)− EEE (φ) (C.4)

where EEE (φ) can be viewed as errors defined by Eq. (C.4). Then it directly follows that

MMM (f)−1MMM (σ2f) = [I−UUU (f)]−1[DDD(f)−1DDD(σ2f)−LLL (f, σ2f)] and

MMM (f)−1MMM (w) = [I−UUU (f)]−1[DDD(f)−1MMM (1)−1MMM (1)DDD(w)−LLL (f, w)]
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where

UUU (φ) := DDD(φ)−1MMM (1)−1EEE (φ),

LLL (φ, ϕ) := DDD(φ)−1MMM (1)−1EEE (ϕ)

The number of nonzeros on any row or any column of EEE (φ) is bounded by some con-

stant. It may take a multi-layer banded structure when we rectangularize the partition

and arrange the ordering of basis functions properly. If supp(pk)∩ supp(pl) 6= ∅, then

by Assumption II.3 and the continuity of f , the (k, l)th element of MMM (f) can be

approximated as follows:∫
X
pk(x)pl(x)f(x)dx = f(τk)

∫
X
pk(x)pl(x)dx + o(hd) (C.5)

Moreover, since X is compact, f is uniformly continuous. Thus we have

‖EEE (f)‖1 = o(hd), ‖EEE (f)‖∞ = o(hd), and then ‖EEE (f)‖ = o(hd). Since ‖DDD(f)−1‖ . 1

and ‖MMM (1)−1‖ . h−d, we conclude ‖UUU (f)‖ = o(1). For K large enough, we can make

‖UUU (f)‖ < 1, and thus [I −UUU (f)]−1 = I + UUU (f) + UUU (f)2 + · · · = I + WWW (f) where

WWW (f) :=
∑∞

l=1 UUU (f)l. Now we can write

trace
[
MMM (f)−1MMM (σ2f)MMM (f)−1MMM (w)

]
= trace

[(
I + WWW (f)

)(
DDD(f)−1DDD(σ2f)−LLL (f, σ2f)

)(
I + WWW (f)

)
×
(
DDD(f)−1MMM (1)−1MMM (1)DDD(w)−LLL (f, w)

)]
= trace

[(
DDD(f)−1DDD(σ2f) + E1

)(
DDD(f)−1DDD(w) + E2

)]
= trace

[
DDD(f)−1DDD(σ2f)DDD(f)−1DDD(w) + E1DDD(f)−1DDD(w) + DDD(f)−1DDD(σ2f)E2 + E1E2

]
where E1 = −LLL (f, σ2f) + WWW (f)DDD(f)−1DDD(σ2f) − WWW (f)LLL (f, σ2f) and E2 =

−LLL (f, w) + WWW (f)DDD(f)−1DDD(w) −WWW (f)LLL (f, w). By assumptions in the theorem,

vol(δx) =
∏d

`=1 bx,` =
∏d

`=1 κ
−1
` g`(x)−1 + o(hd). Hence

trace
[
DDD(f)−1DDD(σ2f)DDD(f)−1DDD(w)

]
=

d∏
`=1

κ` trace
[
DDD(f)−1DDD(σ2f)DDD(f)−1DDD(w)DDD

( d∏
`=1

g`

)
DDD
( d∏
`=1

g`

)−1
d∏
`=1

κ−1
`

]
=

d∏
`=1

κ`

(
K∑
k=1

[σ2(τk)w(τk)

f(τk)

d∏
`=1

g`(τk)
]

vol(δτk)

)
+ o(

d∏
`=1

κ`)

=
d∏
`=1

κ` × J
∫
X

σ2(x)w(x)

f(x)

d∏
`=1

g`(x) dx + o(
d∏
`=1

κ`)
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It directly follows from the same argument as that in the proof of Agarwal and Studden

(1980, Theorem 6.1) that the trace of the remaining terms is o(κ1).

For the integrated squared bias, consider the three leading terms B1, B2 and B3 as

defined in Equation (A.1). Since the approximate orthogonality condition holds, both

B2 and B3 are of smaller order and the leading term in the integrated squared bias

reduces to B1 only. For B1, notice that by assumption of the theorem,

Bm,q(x) = −
∑
u∈Λm

∂uθ(x)
( d∏
`=1

κ−u`+q`` g`(x)−u`+q`
)
b−u+q

x hm−[q]
x Bm,q(x) + o(hm−[q]).

Recall that κ = (κ1, . . . , κd) and define g(x) := (g1(x), . . . , gd(x)). Given the above

fact and using the same notation as in the proof of Theorem II.1, we have

B1 =
∑

u1,u2∈Λm

∫
X

[
∂u1θ(x)∂u2θ(x)h

2m−2[q]
x Bu1,q(x)Bu2,q(x)

κu1+u2−2qg(x)u1+u2−2qbu1+u2−2q
x

]
w(x)dx + o(h2m−2[q])

=
∑

u1,u2∈Λm

κ−(u1+u2−2q)

(∑
δ∈∆

[
∂u1g(t∗δ)∂

u2g(t∗δ)w(t∗δ)

g(t∗δ)
u1+u2−2q

]

×
[
h

2m−2[q]
x

bu1+u2−2q
x

∫
δ

Bu1,q(x)Bu2,q(x)dx
])

+ o(h2m−2[q])

=
∑

u1,u2,∈Λm

κ−(u1+u2−2q)ηu1,u2,q

∫
X

∂u1θ(x)∂u2θ(x)w(x)

g(x)u1+u2−2q
dx + o(h2m−2[q])

where the last line follows from the integrability of ∂u1θ(x)∂u2θ(x)w(x)/g(x)u1+u2−2q

over X .
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Komlós, J., P. Major, and G. Tusnády (1975): “An approximation of partial
sums of independent RV’-s, and the sample DF. I,” Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete, 32(1-2), 111–131.

(1976): “An approximation of partial sums of independent RV’s, and the
sample DF. II,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
34(1), 33–58.

Meyer, Y. (1995): Wavelets and Operators. Cambridge university press.

114



Newey, W. K. (1997): “Convergence Rates and Asymptotic Normality for Series
Estimators,” Journal of Econometrics, 79(1), 147–168.

Nobel, A. (1996): “Histogram Regression Estimation Using Data-Dependent Parti-
tions,” Annals of Statistics, 24(3), 1084–1105.

Ruppert, D., M. P. Wand, and R. Carroll (2009): Semiparametric Regression.
Cambridge University Press, New York.

Sakhanenko, A. (1985): “Convergence Rate in the Invariance Principle for Non-
identically Distributed Variables with Exponential Moments,” Advances in Proba-
bility Theory: Limit Theorems for Sums of Random Variables, pp. 2–73.

(1991): “On the Accuracy of Normal Approximation in the Invariance
Principle,” Siberian Advances in Mathematics, 1, 58–91.

Schumaker, L. (2007): Spline Functions: Basic Theory. Cambridge University
Press.

Starr, E., and B. Goldfarb (2018): “A Binned Scatterplot is Worth a Hundred
Regressions: Diffusing a Simple Tool to Make Empirical Research Easier and Better,”
SSRN Working paper No. 3257345.

Stepner, M. (2014): “Binned Scatterplots: Introducing -binscatter- and Exploring
its Applications,” 2014 Stata Conference 4, Stata Users Group.

Stone, C. J. (1982): “Optimal Global Rates of Convergence for Nonparametric
Regression,” Annals of Statistics, 10(4), 1040–1053.

Sweldens, W., and R. Piessens (1994): “Asymptotic error expansion of wavelet
approximations of smooth functions II,” Numerische Mathematik, 68(3), 377–401.

Tibshirani, R. J. (2014): “Adaptive Piecewise Polynomial Estimation via Trend
Filtering,” The Annals of Statistics, 42(1), 285–323.

Tropp, J. A. (2012): “User-friendly tail bounds for sums of random matrices,”
Foundations of computational mathematics, 12(4), 389–434.

Tukey, J. W. (1961a): “Curves As Parameters, and Touch Estimation,” in Fourth
Berkeley Symposium on Mathematical Statistics and Probability, ed. by J. Neyman,
vol. 1, pp. 681–694.

(1961b): “Curves As Parameters, and Touch Estimation,” in Fourth Berkeley
Symposium on Mathematical Statistics and Probability, ed. by J. Neyman, vol. 1,
pp. 681–694.

van der vaart, A., and J. Wellner (1996): Weak Convergence and Empirical
Processes: With Application to Statistics. Springer.

115



Wasserman, L. (2006): All of Nonparametric Statistics. Springer Science & Business
Media.

Yurinskii, V. V. (1978): “On the error of the Gaussian approximation for convolu-
tions,” Theory of Probability & Its Applications, 22(2), 236–247.

Zaitsev, A. Y. (2013): “The Accuracy of Strong Gaussian Approximation for Sums
of Independent Random Vectors,” Russian Mathematical Surveys, 68(4), 721–761.

Zhai, A. (2018): “A High-Dimensional CLT in W2 Distance with Near Optimal
Convergence Rate,” Theoretical Probability and Related Fields, forthcoming.

Zhang, H., and B. H. Singer (2010): Recursive Partitioning and Applications.
Springer.

Zhou, S., X. Shen, and D. Wolfe (1998): “Local Asymptotics for Regression
Splines and Confidence Regions,” Annals of Statistics, 26(5), 1760–1782.

Zhou, S., and D. A. Wolfe (2000): “On Derivative Estimation in Spline Regression,”
Statistica Sinica, 10(1), 93–108.

116


	Title
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Abstract
	Chapter Introduction
	Chapter General Large Sample Properties
	Introduction
	Related Literature
	Notation

	Setup
	Characterization and Correction of Bias
	IMSE and Convergence Rates
	IMSE-Optimal Point Estimation
	Convergence Rates

	Pointwise Inference
	Distributional Approximation
	Implementation

	Uniform Inference
	Strong Approximations
	Implementation
	Application: Confidence Bands

	Conclusion

	Chapter Partial Linear Models: Binscatter
	Introduction
	Overview of Results
	Formalizing Binscatter
	Polynomial and Covariate Adjustments
	Smoothness Restrictions
	Comparison to the Canonical Residualized Binscatter

	Implementing Binscatter
	Using Binscatter
	Graphical Presentation
	Pointwise Inference and Confidence Intervals
	Uniform Inference and Confidence Bands
	Testing Parametric Specifications
	Testing Shape Restrictions

	Conclusion

	Chapter Implementation Methodology and Numerical Evidence
	Introduction
	Several Basis Choices
	B-Splines
	Wavelets
	Generalized Regressograms

	IMSE: Tensor-Product Partitions
	Tuning Parameter Selection
	Rule-of-Thumb Choice
	Direct Plug-in Choice

	Empirical Example
	Simulations

	Chapter Conclusion
	 Proof for Chapter II
	 Proof for Chapter III
	 Proof for Chapter IV
	Bibliography

