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ABSTRACT

The use and development of mobile interventions are experiencing rapid growth. Ideally, mo-

bile devices can be used to provide treatment/support whenever needed and to adapt treatment to

the context of the user. Just-In-time Adaptive Interventions (JITAIs) are composed of decision

rules that map a users context (e.g., user’s behaviors, location, current time, social activity, stress

and urges to smoke) to a treatment that is delivered to the user via the mobile device in near real-

time. Advancements in mobile health engineering and technology (e.g., passive stress sensing)

continue to bring us closer to being able to provide interventions in this way. However, a number

of important gaps in data science must be addressed before mobile devices can be used to deliver

on the promise of JITAIs. First, there is a need for experimental designs to collect data that can

be used to assess the effectiveness of the sequence of treatments delivered by a mobile device on

health outcomes in order to support the development of JITAIs. Second, there is a need for data-

driven methods to inform the construction of efficacious JITAIs. In the vast majority of currently

deployed JITAIs, the decision rules underpinning JITAIs are formulated using domain expertise

and clinical experience, with very limited use of data evidence.

In this dissertation, we make several contributions by tackling the above- mentioned data

science barriers to effective JITAI development in mobile health. First, we propose a micro-

randomized trial (MRT) design and develop the primary analysis for assessing the proximal causal

effect of treatments. In addition, we develop stratified micro-randomized trials for the setting where

there is a time-varying, discrete variable, and the primary analysis focuses on how the effective-

ness of interventions changes with this variable. We also develop a novel algorithm to design the

viii



randomization scheme for this setting when there is an average constraint on the number of times

interventions that should be sent in a certain time interval. Second, we develop a semi-parametric

model to estimate the long-term average of health outcomes that would accrue should a given JI-

TAI be followed. We derive the rate of convergence and the asymptotic normality of the proposed

estimator. Third, we develop an online learning algorithm that continuously learns and improves

the JITAI as the data is collected from the user. The proposed algorithm introduces a proxy of fu-

ture outcomes based on a dosage variable to capture the delayed effect of sending the interventions

due to the treatment burden.
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CHAPTER 1

Introduction

Due to recent advances in mobile technologies such as smartphone along with sophisticated wear-
able sensors, mobile health (mHealth) technologies are drawing much attention in the behavioral
health communities. For example, wearable sensors for detecting physical activity and physiolog-
ical states are now widely available. Modern smartphones could sense their users environment in
real time and mine data from their calendars, email, and other applications. This allows scientists
for the first time to not only unobtrusively collect real-time data, but also deliver interventions at
moments when they can most readily influence a persons behavior. The potential of mHealth in-
terventions may be best realized when they could adapt to individuals response and context, and
deliver effective intervention options at the right time and location, which gives rise to the concept
of Just-in-time Adaptive Intervention.

Just-In-Time Adaptive Interventions (JITAIs) aim to use real-time, either passively or actively
collected, information on the user to deliver the right intervention component at the right time and
location to optimally prevent negative health outcomes and promote the adoption and maintenance
of healthy behaviors. These could be operationalized via decision rules (or treatment policies)
which map the users context (weather, location, current time, social activity, stress, urges to smoke,
etc.) to intervention options delivered via a mobile device, specifying whether, when, and what
type of intervention should be provided. These treatment policies are being used to intervene in
physical activity, eating disorders, alcohol use, mental illness, obesity/weight management, and
other chronic disorders.

Despite the technological advances to realize JITAIs, there are barriers to the development of
effective JITAIs. First, researchers currently do not have the appropriate experimental design

to gather data/evidence to decide whether or not those mobile interventions have impact on users

healthy behaviors and to support the construction of JITAIs. Commonly used experimental designs
are not sufficient to support development of just-in-time interventions because they do not enable
researchers to determine empirically when a particular intervention component should be delivered
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and whether a just-in-time intervention that was delivered had the intended effect. Second, theres

a lack of data-based methods to inform the construction of efficacious evidence-based JITAIs. In
the applications of JITAIs mentioned earlier and throughout much of mobile health, the treatment
policies are formulated using domain expertise and clinical experience. Researchers have recently
argued that the extent to which our behavioral theories can guide the development of just-in-time
interventions is limited. In particular, although intervention components included in a JITAI are
often based on behavioral theories, with rare exceptions these theories are mature enough to specify
dynamics of human behavior to guide the design of the decision rules that precisely specify when
particular intervention components should be delivered in order to ensure the interventions have
the intended effects and optimize the long-term efficacy of the interventions.

In this dissertation, we make several contributions by tackling the above- mentioned data sci-
ence barriers to effective JITAI development in mobile health. The first contribution is on the

development of new experimental designs for testing the effectiveness of the mobile interventions.

In Chapter 2, we propose a micro-randomized trial design, where treatments are sequentially ran-
domized throughout the conduct of the study. We use the potential outcome framework to define
the causal treatment effect in this setting and propose a test statistics as well as a sample size cal-
culator to help scientists designing a micro-randomized trial. This work has been published in
Statistics in Medicine. [1]. In Chapter 3, we develop stratified micro-randomized Trial, a gener-
alization of micro-randomized trial for the setting where there is a time-varying, discrete variable,
and the scientific interest is to understand how the effectiveness of interventions changes with this
variable. This is joint work with Walter Dempsey and others and is currently under review for
Annals of Applied Statistics. The chapter 3 is adapted from the preprint version [2]. To design
stratified micro-randomized trials, it is crucial to ensure randomization occurs sufficiently enough
at each level of the time-varying variable. However, treatment burden consideration often imposes
a constraint on the number of times the intervention should be delivered. In Chapter 4, we develop
a novel algorithm that determines the randomization probability to satisfy the average constraint
and uniformly spread across time. This work has been published in Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT) [3].

The second contribution is that we develop a data analysis method to assess the quality of

JITAIs of interest, using data collected from the above-mentioned trial design. In Chapter 5,
we model the decision-making problem using Markov Decision Process framework and develop
a semi-parametric model to estimate the long-term average of the health outcomes that would
accrue should a given JITAI be followed. We use a flexible function class to model the relative
value function and derive asymptotic theory on the consistency and asymptotic normality of the

2



estimated average reward.
The third contribution is on developing an online Reinforcement Learning (RL) algorithm for

mobile health to continuously learn and improve the treatment policy embedded in the JITAI as the

data is collected from the person. Reinforcement Learning (RL) is an area of Machine Learning
in which an algorithm learns how to act optimally by continuously interacting with the unknown
environment. There are many existing online RL algorithms for automatic optimization of action
sequences in RL literature. However, many challenges remain that need to be carefully addressed
before RL can be usefully deployed to adapt and optimize mobile health interventions. One key
challenge arising in mobile health is that the RL algorithm should learn quickly. Most online
RL algorithms require the agent to interact many times with the environment prior to performing
well. This is impractical in mobile health applications as users can lose interest and disengage
quickly. On the other hand, the RL algorithm must adjust for long-term effects of current actions.
In mobile health, interventions often tend to have a positive effect on the immediate reward, but
likely produce a negative impact on future rewards due to user habituation and/or burden. To
address these two challenges, in Chapter 6, we develop an algorithm that mixes between Thompson
Sampling Bandit and full RL algorithm.
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CHAPTER 2

Micro-Randomized Trails

The use and development of mobile interventions are experiencing rapid growth. Mobile interven-
tions are used across the health fields and include treatments to improve HIV medication adherence
[4, 5], to increase activity [6], supplement counseling/pharmacotherapy in treatment for substance
use [7, 8], reinforce abstinence in addictions [9, 10] and to support recovery from alcohol depen-
dence [11, 12]. Mobile interventions for adherence to anti-retroviral therapy and smoking cessa-
tion have shown sufficient effectiveness and replicability in trials and have been recommended for
inclusion in health services [13].

However, as Nilsen et al. [14] state, “In fact, the development of mHealth technologies is
currently progressing at a much faster pace than the science to evaluate their validity and efficacy,
introducing the risk that ineffective or even potentially harmful or iatrogenic applications will be
implemented.”Indeed reviews, while reporting preliminary evidence of effectiveness, call for more
programmatic, data-based approaches to constructing mobile interventions [13, 15]. In particular,
these reviews call for research that focuses on data-informed development of these complex multi-
component interventions prior to their evaluation in standard randomized controlled trials. But
methods for using data to inform the design and evaluation of adaptive mobile interventions have
lagged behind the use and deployment of these interventions [14, 16, 17].

Many mobile interventions are designed to be “just-in-time” interventions, meaning that they
intend to provide treatments that help an individual make healthy decisions in the moment, such
as engaging in a desirable behavior (e.g., taking a medication on time) or effectively coping with
a stressful situation. As such, mobile interventions are often intended to have proximal, near-term
effects. A first approach toward developing data-based methods for evaluation of mobile health
interventions is to provide an experimental design for testing the proximal effects of the treatments.

In this chapter, we introduce micro-randomized trial design for this purpose. In a micro-
randomized trial, treatments are sequentially randomized throughout the conduct of the study, with
the result that each participant may be randomized at the hundreds or thousands of occasions at
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which a treatment might be provided. This repeated randomization of treatments under investiga-
tion enables causal modeling of each treatment’s time-varying proximal effect as well as modeling
of time-varying effect moderation. Thus, the micro-randomized trial can be seen as a first experi-
mental step in the development of effective mobile interventions that are composed of sequences of
treatments. We propose to size the trial to detect the proximal main effect of the treatments. This is
akin to the use of factorial designs for use in constructing multi-component interventions. In these
factorial designs [18, 19], a first analysis often involves testing if the main effect of each treatment
is equal to 0. This work is motivated by our collaboration on the HeartSteps mobile application for
increasing physical activity, which we will use to illustrate our discussion. In the following section,
we briefly introduce HeartSteps. In section 2.2 and 2.3, we introduce the micro-randomized trials
design and precisely define the proximal main effect of a treatment, using the language of potential
outcomes. We develop the test statistic for assessing the proximal effect of a treatment as well as
an associated sample size calculator in section 2.4 and 2.5. Next we provide simulation evaluation
of the sample size calculator. We end, in Section 2.7, with a discussion.

2.1 HeartSteps: Physical Activity Study

HeartSteps is a mobile health study focused on promoting physical activity among sedentary in-
dividuals. One of the intervention components in HeartSteps is suggestions for physical activity
which are tailored to the person’s current context. HeartSteps can deliver these suggestions at any
of the five time intervals during the day, which correspond roughly to morning commute, mid-
day, mid-afternoon, evening commute, and post-dinner times. When a suggestion is delivered, the
user’s phone plays a notification sound, vibrates and lights up, and the suggestion is displayed on
the lock screen of the phone. These suggestions encourage activity in the current context and are
intended to have an effect in the near future , e.g., getting a person to walk.

2.2 Micro-Randomized Trial

In general an individual’s longitudinal data, recorded via mobile devices that sense and provide
treatments, can be written as

{O0, O1, A1, O2, A2, . . . , Ot, At, . . . , OT , AT , OT+1}
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where, t indexes decision times, O0 is a vector of baseline information (gender, ethnicity, etc.) and
Ot(t ≥ 1) is information collected between time t − 1 and t (e.g., summary measures of recent
activity levels, engagement, and burden; day of week; weather; busyness indicated by smartphone
calendar, etc.). The treatment at time t is denoted by At; throughout this chapter we consider
binary options for the treatments (e.g., the treatment is on or off). The proximal response, denoted
by Yt+1, is a known function of {Ot, At, Ot+1}. Here we assume that the longitudinal data are
independent and identically distributed across N individuals. Note that this assumption would
be violated, if for example, some of the treatments are used to enhance social support between
individuals in the study.

In HeartSteps, data (Ot) is collected both passively via sensors and via participant self-report.
Each participant is provided a “Jawbone” band, worn at the wrist, which collects daily step count
and the amount of sleep the user had the previous night. Furthermore sensors on the phone are
used to collect a variety of information at each of the 5 time points during the day, including the
time-stamp, location, busyness of planned activities on the phone calendar and other activity on
the phone. Each evening, self-report data is collected including utility and burden ratings. The
proximal response, Yt+1, for activity suggestions is the step count collected in the next 30 minutes
following time t.

A decision time is a point in time at which—based on participant’s current state, past behavior,
or current context—treatment may need to be delivered. Decision times vary by the nature of the
intervention component. In HeartSteps, the decision times for activity suggestions are 5 times per
day over the 42 day study duration. For an alcohol-recovery application that provides an interven-
tion when an individual goes within 10 feet of a high risk location (e.g., a liquor store), decision
points might be every 1 minute, the frequency at which the application would get the person’s
current location and assess whether she is close to a high-risk location. In a long-term study of
an intervention for multiple health behaviors, the decision points might be weekly or monthly at
which times, decisions are made regarding whether to change the focus from one behavior (e.g.,
physical activity) to another (e.g., diet). Finally, in many studies there is an option for an individ-
ual to press a ”panic”button, indicating the need for help; for such interventions, decision times
correspond to times at which the panic button is pressed.

A micro-randomized trial is a trial in which at each decision time t, participants are random-
ized to a treatment option, denoted by At. Treatment options may correspond to whether or not a
treatment is provided at a decision time; for example in HeartSteps, whether or not the individual is
provided a lock-screen activity suggestion. Or treatment options may be alternative types of treat-
ment that can be provided at the same decision time; for example, a daily step goal treatment might
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have two options, a fixed 10,000-steps-a-day goal or an adaptive goal based on the user’s activity
level on the previous day. Considerations of treatment burden often imply that the randomization
will not be uniform. For example in HeartSteps, the randomization probability is 0.4, so that, if an
individual is always available, on average 2 lock-screen activity messages are delivered per day.

In designing, that is, determining the sample size for, a micro-randomized trial we focus on the
reduced longitudinal data

{I1, A1, Y2, I2, A2, Y3, . . . , It, At, Yt+1, . . . , IT , AT , YT+1}.

The variable, It is an “availability”indicator. The availability indicator is coded as It = 1 if the
individual is available for treatment and It = 0 otherwise. At some decision times feasibility,
ethics or burden considerations mean that the individual is unavailable for treatment and thus At
should not be delivered. Consider again HeartSteps: if sensors indicate that the individual is likely
driving a car or the individual is currently walking, then the lock-screen activity message should
not be sent. Other examples of when individuals are unavailable for treatment include: in the
alcohol recovery setting, an “warning”treatment would only be potentially provided when sensors
indicate that the individual is within 10 feet of a high risk location or a treatment might only be
provided if the individual reports a high level of craving. If the application has a panic button,
then only in an x second interval in which the panic button is pressed is it appropriate to provide
“panic button”treatments. Individuals may be unavailable for treatment by choice. For example,
the HeartSteps application permits the individual to turn off the lock-screen activity messages; this
option is considered critical to maintaining participant buy-in and engagement with HeartSteps.
After viewing the lock-screen activity message, the individual has the option of turning off the
lock-screen messages for 4 , 8 or 12 hours. After the specified time interval, the delivery of lock-
screen messages automatically turns on again. To summarize, the availability indicator at time t
is the indicator for the subpopulation at time t among which we are interested in assessing the
proximal main effect of the treatment; we are uninterested in assessing the proximal main effect of

a treatment among individuals for whom it is unethical to provide treatment or for whom it makes

no scientific sense to provide treatment or among those who refuse to be provided a treatment.

2.3 Proximal Main Effect of Treatment

As discussed above, treatments in mobile health interventions are often designed so as to have a
proximal effect (e.g., increase activity in near future, help an individual manage current cravings
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for drugs or food, take medications on schedule, etc.). As a result, a first question in developing
a mobile health intervention is whether the treatments have a proximal effect. Here we develop
sample size formulae that guarantee a stated power to detect the proximal effect of a treatment. In
particular we aim to test if the proximal main effect is zero.

To define the proximal main effect of a treatment, we use potential outcomes [20, 21, 22]. Our
use of potential outcome notation is slightly more complicated than usual because treatment can
only be provided when an individual is available. As a result, we index the potential outcomes
by decision rules that incorporate availability. In particular define d(a, i) for a ∈ {0, 1}, i ∈
{0, 1} by d(a, 0) =“unavailable-do nothing”and d(a, 1) = a. Then for each a1 ∈ A1 = {0, 1},
define D1(a1) = d(a1, I1). Then we denote the potential proximal responses following decision
time 1 by {Y D1(1)

2 , Y
D1(0)

2 } and denote the potential availability indicators at decision time 2 by
{ID1(1)

2 , I
D1(0)
2 }. Next for each ā2 = (a1, a2) with a1, a2 ∈ {0, 1}, define D2(ā2) = d(a2, I

D1(a1)
2 ).

Define D̄2(ā2) = (D1(a1), D2(ā2)). A potential proximal response following decision time 2 and
corresponding to ā2 is Y D̄2(ā2)

3 and a potential availability indicator at decision time 3 is ID̄2(ā2)
3 .

Similarly, for each āt = (a1, . . . , at) ∈ At = {(a1, . . . , at)
∣∣ai ∈ {0, 1}, i = 1, . . . , t}, define

Dt(āt) = d(at, I
D̄t−1(āt−1)
t ) and D̄t(āt) = (D1(a1), . . . , Dt(āt)). For each āt = (a1, . . . , at) ∈

At, the potential proximal response is Y D̄t−1(āt−1)
t (following decision time t − 1) and potential

availability indicator is ID̄t−1(āt−1)
t at decision time t.

We define the proximal main effect of a treatment at time t among available individuals by:

β(t) = E
[
Y
D̄t(Āt−1,1)
t+1 − Y D̄t(Āt−1,0)

t+1 | ID̄t−1(Āt−1)
t = 1

]
where the expectation is taken with respect to the distribution of the potential outcomes and ran-
domization in Āt−1. This proximal effect is conditional in that the effect of treatment at time t is
defined for only individuals available for treatment at time t, that is, ID̄t−1(Āt−1)

t = 1. This proximal
effect is a main effect in that the effect is marginal over any effects of Āt−1. The former conditional
aspect of the definition is related to the concept of viable or feasible dynamic treatment regimes
[23, 24] in which one assesses only the causal effect of treatments that can actually be provided.

Consider the proximal main effect, β(t), as t varies across time. β(t) may vary across time
for a variety of reasons. To see this consider the case of HeartSteps. Here β(t) might initially
increase with increasing t as participants learn and practice the activities suggested on the lock-
screen. For larger t one might expect to see decreasing or flat β(t) due to habituation (participants
begin to, at least partially, ignore the messages). This time variation in β(t) can be attributed to
both the immediate effect of a lock-screen activity message as well as interactions between the
past lock-screen activity messages and the present activity message; the time variation occurs at
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least partially due to the marginal character of β(t). Alternately the conditional definition of β(t)

means that the effect is only defined among the population of individuals who are available at
decision time t. Changes in this population may cause changes in β(t) across time. Again consider
HeartSteps. At earlier time points, participants may be highly engaged, yet have not developed
habits that in various ways increase their activity, thus most participants will be available. However
as time progresses, some participants may develop sufficiently positive activity habits or anticipate
activity suggestions, thus at later decision times these participants may be already active and thus
unavailable to receive a suggestion. Other participants may become increasing disengaged and
repeatedly turn off the lock-screen activity messages; these participants are also unavailable. Thus
as time progresses, β(t) may vary due to the subpopulation of participants among whom it is
appropriate to assess the effect of the lock-screen activity messages.

Our main objective in determining the sample size will be to assure sufficient power to detect
alternatives to the null hypothesis of no proximal main effect, H0 : β(t) = 0, t = 1, . . . T for a
trial with T decision points (if β(t) is nonzero then for the population available at decision time t,
there is a proximal effect). The proposed test will be focused on detecting smooth, i.e., continuous
in t, alternatives to this null hypothesis.

To express β(t) in terms of the observed data distribution, we assume consistency [21, 22].
This assumption is that for each t, the observed Yt and observed It equal the corresponding poten-
tial outcomes, Y D̄t−1(āt−1)

t , ID̄t−1(āt−1)
t whenever Āt−1 = āt−1. This assumption may be violated

if some of the treatments promote social linkages between participants, for example, to enhance
social/emotional support or to compete in mobile games. In these cases it would be more appro-
priate to additionally index each individual’s potential outcomes by other participants’ treatments.
The micro-randomization plus the consistency assumption implies that the proximal main effect of
treatment at time t among available individuals, β(t) can be written as,

β(t) = E
[
Y
D̄t(Āt−1,1)
t+1

∣∣ID̄t−1(Āt−1)
t = 1

]
− E

[
Y
D̄t(Āt−1,0)
t+1

∣∣ID̄t−1(Āt−1)
t = 1

]
= E

[
Y
D̄t(Āt−1,1)
t+1

∣∣ID̄t−1(Āt−1)
t = 1, At = 1

]
− E

[
Y
D̄t(Āt−1,0)
t+1

∣∣ID̄t−1(Āt−1)
t = 1, At = 0

]
= E

[
Y
D̄t(Āt)
t+1

∣∣ID̄t−1(Āt−1)
t = 1, At = 1

]
− E

[
Y
D̄t(Āt)
t+1

∣∣ID̄t−1(Āt−1)
t = 1, At = 0

]
= E[Yt+1|It = 1, At = 1]− E[Yt+1|It = 1, At = 0]

where the second equality follows from the randomization of the At’s and the last equality follows
from the consistency assumption.
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2.4 Test Statistic

Our sample size formula is based on a test statistic for use in testing H0 : β(t) = 0, t = 1, . . . T

against a scientifically plausible alternative. This alternative should be formed based on conversa-
tions with domain experts. Here we construct a test statistic to detect alternatives that are, at least
approximately, linear in a vector parameter, β, that is, alternatives of the form Z>t β, where the
p × 1 vector, Zt, is a function of t and covariates that are unaffected by treatment such as time of
day or day of week. In the case of HeartSteps, a plausible alternative is quadratic:

Z>t β =
(

1,
⌊t− 1

5

⌋
, (
⌊t− 1

5

⌋
)2
)
β (2.1)

where β = (β1, β2, β3)> (p = 3). Recall that in HeartSteps there are 5 decision times per day; b t−1
5
c

translates decision times t to days. This rather simplistic parametrization marginalizes across the
day and treats the weekends and weekdays similarly.

We propose to use the alternate, H1 : β(t) = Z>t β, t = 1, . . . , T to construct the test statistic.
We base the test statistic on the estimator of β in a least squares fit of a working model. A simple
working model based on the alternative is:

E[Yt+1|It = 1, At] = B>t α + (At − ρt)Z>t β (2.2)

over all t ∈ {1, . . . , T}, where ρt is the known randomization probability (Pr(At = 1) = ρt) and
the q × 1 vector Bt is a function of t and covariates that are unaffected by treatment such as time
of day or day of week. Note that At is centered by subtracting off the randomization probability;
thus the working model for α(t) = E[Yt+1|It = 1] is B>t α. The estimators α̂, β̂ minimize the
least squares error:

PN

{
T∑
t=1

It
(
Yt+1 −B>t α− (At − ρt)Z>t β

)2

}
(2.3)

where PN
{
f(X)

}
is defined as the average of f(X) over the sample.

Note that from a technical perspective, minimizing the least squares criterion, (2.3), is reminis-
cent of a GEE analysis [25] with identity link function and a working correlation matrix equal to
the identity. Thus it is natural to consider a non-identity working correlation matrix as is common
in GEE. This, however, is problematic from a causal inference perspective. To see this suppose that
the true conditional expectation is in fact E [Yt+1|It = 1, At] = B>t α

∗+(At−ρt)Z>t β∗, that is, the
causal parameter, β(t) is equal to Z>t β

∗. Further suppose that the working correlation matrix has
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off-diagonal elements and that we estimate β∗ by minimizing the weighted (by the inverse of the
working correlation matrix) least squares criterion. In this case the resulting estimating equations
include sums of terms such as It

(
Yt+1 −B>t α− (At − ρt)Z>t β

)
Is(As−ρt)Zs for t > s. Unfortu-

nately, both availability at time t, It, as well as Yt+1 may be affected by treatment in the past (in par-
ticular, As), thus absent strong assumptions E

[
It
(
Yt+1 −B>t α∗ − (At − ρt)Z>t β∗

)
Is(As − ρt)

]
is unlikely to be 0. Recall that a minimal condition for consistency of estimators of (α∗, β∗) is
that the estimating equations have expectation 0, thus absent further assumptions, the estimators
derived from the weighted least squares criterion are likely biased. Another possibility is to include
a time-varying variance term in the least squares criterion, that is the tth entry in (2.3) might be
weighted by σ−2

t . This would be useful in the data analysis, however for sample size calculations,
values of these variances are unlikely to be available. Thus for simplicity we use the unweighted
least squares criterion in (2.3).

Assume that the matrices Q =
∑T

t=1 E[It]ρt(1− ρt)ZtZ>t and
∑T

t=1 E[It]BtB
>
t are invertible.

The least squares estimators, α̂, β̂ are consistent estimators of

α̃ =

(
T∑
t=1

E[It]BtB
>
t

)−1 T∑
t=1

E[It]α(t)Bt (2.4)

and

β̃ =

(
T∑
t=1

E[It]ρt(1− ρt)ZtZ>t

)−1 T∑
t=1

E[It]ρt(1− ρt)β(t)Zt (2.5)

respectively. Furthermore if β(t) is in fact equal to Z>t β for some β, then Z>t β̃ = β(t). This is
the case even if E[Yt+1|It = 1] 6= B>t α̃. In the Appendix (Lemma 1), we prove these results and
also show that, under moment conditions,

√
N(β̂ − β̃) is asymptotically normal with mean 0 and

variance Σβ = Q−1WQ−1 where,

W = E

[( T∑
t=1

ε̃tIt(At − ρt)Zt
)
×
( T∑
t=1

ε̃tIt(At − ρt)Z>t
)]

and ε̃t = Yt+1−ItB>t α̃− (At−ρt)ItZ>t β̃. To test the null hypothesis H0 : β(t) = 0, t = 1, . . . , T ,
one can use a test statistic based on the alternative, e.g.,

Nβ̂>Σ̂−1
β β̂ (2.6)

where Σ̂β = Q̂−1Ŵ Q̂−1 and Q̂ and Ŵ are plug in estimators. Note that this test statistic re-
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sults from a GEE analysis with identity link function and a working correlation matrix equal to
the identity matrix for which sample size formulae have been developed [26]. We build on this
work as follows. As Tu et al. [26] discuss, under the null hypothesis the large sample distri-
bution of this statistic is a chi-squared with p degrees of freedom distribution. If N , the sample
size, is small, then, as recommended by Mancl and DeRouen [27], we make small adjustments
to improve the small sample approximation to the distribution of the test statistic. In particular,
they recommend adjusting Ŵ using the “hat” matrix; see the formulae for the adjusted Ŵ as well
as Q̂ in Appendix 2.8. Also in small sample settings, investigators commonly suggest that in-
stead of using a critical value based on the chi-squared distribution, a critical value based on the
t−distribution should be used [28]. As we are considering a simultaneous test for multiple pa-
rameters we form the critical value based on Hotelling’s T−squared distribution [29]. Hotelling’s
T−squared distribution is a multiple of the F distribution given by d1(d1+d2−1)

d2
Fd1,d2; here we use

d1 = p and d2 = N − q − p (recall q is the number of parameters in the nuisance parameter
vector, α); see the appendix for a rationale. In the following, the rejection region for the test of
H0 : β(t) = 0, t = 1, . . . T based on (2.6) is{

Nβ̂>Σ̂−1
β β̂ >

p(N − q − 1)

N − q − p
F−1
p,N−q−p (1− α0)

}
where α0 is the desired significance level.

2.5 Sample Size Formulae

As Tu et.al [26] have developed general sample size formulas in the GEE setting, here we focus
on considerations specific to the setting of micro-randomized trials. To size the study, we will
determine the sample size needed to detect the alternate, β(t) with:

H1 : β(t)/σ̄ = d(t), t = 1, . . . , T

where σ̄2 = (1/T )
∑T

t=1 E
[
Var
(
Yt+1

∣∣It = 1, At
)]

is the average variance and d(t) is a standard-
ized treatment effect. When N is large and H1 holds, Nβ̂ ′Σ̂−1

β β̂ is approximately distributed as a
noncentral chi-squared χ2

p(cN), where cN , the non-centrality parameter, satisfies cN = N(σ̄d̃)
′
Σ−1
β (σ̄d̃),

and d̃ =
(∑T

t=1 E[It]ρt(1− ρt)ZtZ>t
)−1∑T

t=1 E[It]ρt(1− ρt)d(t)Zt [26]. Note that d̃ = β̃/σ̄.
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Working Assumptions To derive the sample size formula, we use the form of the non-centrality
parameter of the limiting non-central chi-squared distribution, along with working assumptions.
The working assumptions are used to simplify the form of Σ−1

β . In particular, we make the follow-
ing working assumptions:

(a) E[Yt+1|It = 1] = B>t α, for some α ∈ Rq

(b) β(t) = Z>t β for some β ∈ Rp

(c) Var(Yt+1|It = 1, At) is constant in t and At

(d) E[ε̃tε̃s|It = 1, Is = 1, At, As] is constant in At, As.

where, as before, ε̃t = Yt+1− ItB>t α̃− (At− ρt)ItZ>t β̃. See appendix 2.8 (Lemma 2) for proof of
variance formulas under these working assumptions. The above working assumptions are some-
what simplistic but as will be seen below the resulting sample size formula is robust to moderate
violations. First, under these working assumptions the alternative hypothesis can be re-written as

H1 : β/σ̄ = d, (2.7)

where d is a p dimensional vector of standardized effects. Furthermore, Σβ is given by

Σβ = σ̄2

( T∑
t=1

E[It]ρt(1− ρt)ZtZ>t
)−1

,

and thus cN is given by

cN = Nd>
( T∑

t=1

E[It]ρt(1− ρt)ZtZ>t
)
d. (2.8)

To improve the small sample approximation, we use the multiple of the F -distribution as discussed
above. Thus the sample size, N , is found by solving

Fp,N−q−p;cN
(
F−1
p,N−q−p (1− α0)

)
= β0 (2.9)

where Fp,N−q−p;cN is the noncentral F distribution with noncentrality parameter, cN and 1− β0 is
the desired power. The inputs to this sample size formula are {Zt}Tt=1, a scientifically meaningful
value for d (see below for an illustration), the time-varying availability pattern, {E[It]}Tt=1, the
desired significance level, α0 and power, 1− β0.

13



Table 2.1: Illustrative sample sizes for
HeartSteps. The day of maximal treat-
ment effect is 29. The expected avail-
ability is constant in t.

d̄
E[It] 0.7 0.6 0.5 0.4

0.10 32 36 42 52
0.09 38 44 51 63
0.08 47 54 64 78
0.07 60 69 81 101
0.06 79 92 109 135
0.05 112 130 155 193

d̄ = (1/T )
∑T

t=1 Z
>
t d is the average

standardized treatment effect.

Now we describe how the information needed in the sample size formula might be obtained
when the alternative is quadratic (p = 3, (2.1)). In this case we first elicit the initial standard-
ized proximal main effect given by Z>1 β/σ̄ = β1/σ̄. Second we elicit the averaged across time,
standardized proximal main effect d̄ = 1

T

∑T
t=1 Z

>
t β/σ̄. Lastly we elicit the time at which the

proximal main effect is maximal, i.e. arg maxt Z
>
t β. These three quantities can then be used to

solve for d = (d1, d2, d3)>. For example, in HeartSteps, we might want to determine the sample
size to ensure 0.80 power when there is no initial treatment effect on the first day, and the maxi-
mum proximal main effect comes around day 29. We specify the expected availability, E[It] to be
constant in t and Zt is given by (2.1). Table 2.1 gives sample sizes for HeartSteps under a variety
of average standardized proximal main effects (d̄).

In the behavioral sciences a standardized effect size of 0.2 is considered small [30]. Thus given
the very small standardized effect sizes, the sample sizes given in Table 2.1 seem unbelievably
small. Two points are worth making in this regard. First the use of the alternative parametric
hypothesis (2.7) in forming the test statistic, implies that both between-subject as well as within-
subject contrasts in proximal responses are used to detect the alternative. To see this, note that if
we focused on only the first time point, t = 1, and tested H0 : β(1) = 0, then an appropriate test
would be a two-sample t-test based on the proximal response Y2, in which case the required sample
size would be much larger (akin to the sample size for a two arm randomized-controlled trial in
which 40% of the subjects are randomized to the treatment arm). This two-sample t-test uses only
between-subject contrasts in proximal response to test the hypothesis. The required sample size
would be even larger for a test of H0 : β(1) = 0, β(2) = 0 in which no relationship between β(1)
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and β(2) is assumed. Conversely the sample size would be smaller if one focused on detecting
alternatives to H0 : β(1) = 0, β(2) = 0 of the form H1 : β(1) = β(2) 6= 0. The use of the
alternative, β(1) = β(2) 6= 0, allows one to construct tests that use both between-subject as well
as within-subject contrasts in proximal responses. Our approach is in between these two extremes
in that we focus on detecting smooth, in t, alternatives to H0 : β(t) = 0 for all t. This permits
use of both within- as well as between-subject contrasts in proximal responses. The assumption
of a parsimonious alternative enables the use of smaller sample sizes. A second point is that, at
this time, there is no general understanding of how large the standardized effect size should be for
these ”in-the-moment” effects of a treatment. Thus these standardized effects may or may not be
considered small in future.

2.6 Simulations

We consider a variety of simulations with different generative models to evaluate the performance
of the sample size formulae. In the simulations presented here, we use the same setup as in Heart-
Steps; see Appendix 2.8 for simulations in other setups (Table 2.16 and 2.17). Specifically, the
duration of the study is 42 days and there are 5 decision times within each day (T = 210). The
randomization probability is 0.4, i.e. ρ = ρt = P (At = 1) = 0.4. The sample size formula is
given in (2.8) and (2.9). All simulations are based on 1,000 simulated data sets.

Throughout this section the inputs to this sample size formula are Zt =
(
1, b t−1

5
c, b t−1

5
c2
)>,

the time-varying availability pattern, τt = E[It], d, α0 = .05 and power, 1 − β0 = .80. The value
for the vector d is indirectly specified via (a) the time at which the maximal standardized proximal
main effect is achieved (arg maxt Z

>
t d), (b) the averaged across time, standardized proximal main

effect d̄ = 1
T

∑T
t=1 Z

>
t d and (c) no initial standardized proximal main effect (Z>1 d = d1 = 0). The

test statistic used to evaluate the sample size formula is given by (2.6) in which Bt and Zt are set
to
(
1, b t−1

5
c, b t−1

5
c2
)>.

The simulation results provided below illustrate that the sample size formula and associated test
statistic are robust. For convenience we summarize the results here. When the working assump-
tions hold, then under a variety of availability patterns, i.e., time-varying values for τt = E[It]

(see Figure 2.1) the desired Type I error and power are preserved. This is also the case when past
treatment impacts availability. Furthermore the sample size formula is robust to deviations from
the working assumptions, that is, provides the desired Type I error and power; this is true for a
variety of forms of the true proximal main effect of the treatment (see Figure 2.2), a variety of
distributions and correlation patterns for the errors, and dependence of Yt+1 on past treatment. In
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all cases the above robustness occurs as long as we provide an approximately true or conservative
value for the standardized effect, d and if we provide an approximately true or conservative (low)
value for the availability, E[It].

In our simulations, we note several areas in which the sample size formula is less robust to
the working assumption (c); this is when the error variance in Yt+1 varies depending on whether
treatment At = 1 or At = 0 or with time t. In particular, if the ratio of conditional variance
Var[Yt+1|It = 1, At = 1]/Var[Yt+1|It = 1, At = 0] < 1, then the power is reduced. Also if the
average variance, E[Var[Yt+1|It = 1, At]], varies greatly with time t, then the power is reduced.
See below for details. Lastly as would be expected for any sample size formula, using values of
the standardized effect size, d, or availability that are larger than the truth degrades the power of
the procedure.

Working Assumptions Underlying Sample Size Formula are True

First, we considered a variety of settings in which the working assumptions (a)-(d) hold and in
which the inputs to the sample size formula are correct (d is correct under the alternate hypoth-
esis and the time-varying availability E[It] is correct). Neither the working assumptions nor the
inputs to the sample size formula specify the error distribution, thus in the simulation we consider
5 distributions for the errors in the model for Yt+1 including independent normal, Student’s t and
exponential distributions as well as two autoregressive (AR) processes; all of these error patterns
satisfy σ̄2 = 1 (recall σ̄2 = (1/T )

∑T
t=1 E

[
Var
(
Yt+1

∣∣It = 1, At
)]

). Furthermore neither the work-
ing assumptions nor the inputs to the sample size formula specify the dependence of the availability
indicator, It on past treatment. Thus we consider settings in which the availability decreases as the
number of recent treatments increases. For brevity, we provide these standard results in the Ap-
pendix 2.8 (Tables 2.12, 2.13, 2.14 and 2.15). The results are generally quite good, with very few
Type I error rates significantly above .05 and power levels significantly below .80.

Working Assumptions Underlying Sample Size Formula are False

Second, we considered a variety of settings in which the working assumptions are false but the
inputs to the sample size formula are approximately correct as follows. Throughout σ̄2 = 1.

Working Assumption (a) is Violated. Suppose that the true E[Yt+1|It = 1] 6= Btα for any
α ∈ Rq. In particular, we consider the scenario in which there is a ”weekend” effect on Yt+1; see
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Figure 2.1: Availability Patterns. The x-axis is decision time point and y-axis is the expected
availability. Pattern 2 represents availability varying by day of the week with higher availability on
the weekends and lower mid-week. The average availability is 0.5 in all cases.

other scenario in Appendix 2.8. The data is generated as follows,

It
Ber∼
(
τt
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)Z>t d+ εt, if It = 1

where the conditional mean α(t) = B>t α + Wtθ. Wt is a binary variable: Wt = 1 if day of
the week is time t is a weekend day, and Wt = 0 if the day is a weekday. For simplicity, we
assume each subject starts on Monday, e.g., for k = 1, . . . , 6, Wi+35(k−1) = 0, when i = 1, . . . , 25,
Wi+35(k−1) = 1, when i = 26, . . . , 35 (recall that we assume in the simulation that there are 5
decision time points per day and the length of the study is 6 week). The values of {αi, i = 1, 2, 3}
are determined by setting α(1) = 2.5, arg maxt α(t) = T, (1/T )

∑T
t=1 α(t) − α(1) = 0.1. The

error terms {εt}Nt=1 are i.i.d. N(0, 1). The day of maximal proximal effect is 29. Additionally,
different values of the averaged standardized treatment effect and four patterns of availability as
shown in Figure 2.1 with average 0.5 and are considered. The type I error rate is not affected, thus
is omitted here. The simulated power is reported in Table 2.2; for more details see Table 2.19 in
Appendix 2.8.

Working Assumption (b) is Violated. Suppose that the true β(t) 6= Z>t β for any β. Instead the
vector of standardized effect, d, used in the sample size formula corresponds to the projection of
d(t), that is,

d =

(
T∑
t=1

E[It]ZtZ
>
t d

)−1 T∑
t=1

E[It]Ztd(t)
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Table 2.2: Simulated power when working as-
sumption (a) is violated. The patterns of avail-
ability are provided in Figure 2.1.

Availability Pattern
θ d̄ Pattern 1 Pattern 2 Pattern 3

0.5d̄
0.10 0.80 0.79 0.81
0.06 0.78 0.83 0.81

1d̄
0.10 0.79 0.78 0.78
0.06 0.78 0.79 0.79

1.5d̄
0.10 0.78 0.81 0.78
0.06 0.77 0.81 0.82

2d̄
0.10 0.78 0.79 0.79
0.06 0.81 0.79 0.78

θ is the coefficient of Wt in E[Yt+1|It = 1].
d̄ = (1/T )

∑T
t=1 Z

>
t d is the average standard-

ized treatment effect. Bold numbers are signifi-
cantly (at .05 level) greater lower than 0.80.

(recall d(t) = β(t)/σ̄ and ρt = ρ). The sample size formula is used with the correct availability
pattern, {E[It]}Tt=1. The data for each simulated subject is generated sequentially as follows. For
each time t,

It
Ber∼
(
τt
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)d(t) + εt, if It = 1

for the variety of d(t) = β(t)/σ̄ and E[It] patterns provided in Figure 2.2 and in Figure 2.1 re-
spectively. The average availability is 0.5. The error terms {εt}Tt=1 are generated as i.i.d. N(0, 1).
The conditional mean, E[Yt+1|It = 1] = α(t) is given by α(t) = α1 + α2b t−1

5
c+ α3b t−1

5
c2, where

α1 = 2.5, α2 = 0.727,α3 = −8.66×10−4 (so that (1/T )
∑

t α(t)−α(1) = 1, arg maxt α(t) = T ).
The simulated powers are provided in Table 2.3. In all cases the power is close to .80; this is

because all of the proximal main effect patterns in Figure 2.2 are sufficiently well approximated
by a quadratic in time. See Appendix 2.8 for other cases of d(t) and details (Figure 2.5 and Table
2.9).

Working Assumption (c) is Violated. Suppose that Var[Yt+1|It = 1, At] = Atσ
2
1t + (1−At)σ2

0t

where σ1t/σ0t 6= 1. The sample size formula is used with the correct pattern for {Z>t d, E[It]}Tt=1.
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Figure 2.2: Standardized Proximal Main Effects of Treatment, {d(t)}Tt=1: representing maintained
and severely degraded time-varying proximal treatment effects. The horizontal axis is the decision
time point. The vertical axis is the standardized treatment effect. The ”Max” in the titles refer to
the day of maximal proximal effect. The average standardized proximal effect is d̄ = 0.1 in all
plots.

Table 2.3: Simulated power when working assumption (b) is violated. The
shape of the standardized proximal effect and pattern for availability are pro-
vided in Figure 2.2 and 2.1 respectively. The sample sizes are given on the
right.

Shape of d(t)
d̄ Availability Pattern Max Maintained Degraded Sample Size

0.10

Pattern 1
15 0.78 0.79 43 39
29 0.80 0.79 38 38

Pattern 2
15 0.79 0.80 43 39
29 0.78 0.79 38 38

Pattern 3
15 0.81 0.77 45 41
29 0.81 0.78 37 39

0.06

Pattern 1
15 0.81 0.79 111 100
29 0.81 0.79 96 96

Pattern 2
15 0.79 0.81 112 100
29 0.79 0.80 96 96

Pattern 3
15 0.78 0.81 116 106
29 0.80 0.80 95 101

d̄ = (1/T )
∑T

t=1 Z
>
t d is the average standardized treatment effect. The

”Max” in the first row refers to the day of maximal proximal effect. Bold
numbers are significantly (at .05 level) lower than .80.
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Figure 2.3: Trend of σ̄t: For all trends, σ̄2
t is scaled so that (1/T )

∑T
t=1 σ̄

2
t = 1. In Trend 3,

the variance, σ̄2
t = E

[
V ar[Yt+1|It = 1, At]

]
peaks on weekends. In particular, σ̄7k+i = 0.8 for

i = 1, . . . , 5 and σ̄7k+i = 1.5 for i = 6, 7.

The data for each simulated subject is generated sequentially as follows. For each time t,

It
Ber∼
(
τt
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)Z>t d+ 1{At=1}σ1tεt + 1{At=0}σ0tεt, if It = 1

where the average across time standardized proximal main effect, d̄ = 1
T

∑T
t=1 Z

>
t d is 0.1 and

day of maximal effect is equal to 22 or 29. The function α(t) = E[Yt+1|It = 1] is as in the prior
simulation. The availability, τt = 0.5. The error terms {εt} follow a normal AR(1) process, e.g.,
εt = φεt−1 + vt with the variance of vt scaled so that Var[εt] = 1. Define σ̄2

t = E
[
Var[Yt+1|It =

1, At]
]

(= ρσ2
1t + (1− ρ)σ2

0t). Recall the average variance σ̄2 is given by (1/T )
∑T

t=1 σ̄
2
t . We

consider 3 time-varying trends for {σ̄t} together with different values of σ1t/σ0t; see Figure (2.3).
In each trend, σ̄2

t is scaled such that σ̄ = 1; thus the standardized proximal main effect in the
generative model is Z>t d. In all cases, the simulated type I error rates are close to .05 and thus the
table is omitted here (see Appendix 2.8, Table 2.10). The simulated power is given in Table 2.4.

In the case of σ1t < σ0t, the simulated powers are slightly larger than 0.8, while the simulated
powers are smaller than 0.8 in the case of σ1t > σ0t. The impact of σ̄t on the power depends on the
shape of treatment effect: when β(t) attains its maximum, more than halfway through the study,
at day 29, a increasing {σ̄t}, trend 1, lowers the power, while a decreasing {σ̄t}, trend 2, improves
the power. When β(t) attains a maximal effect midway through the study, either decreasing or
increasing {σ̄t} does not impact power. A large variation in σ̄t, e.g., trend 3, reduces the power in
all cases. The differing auto correlations of the errors, εt, do not affect power; see a more detailed
table in Appendix 2.8, Table 2.10.
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Table 2.4: Simulated power when working assumption (c) is violated,
σ1t 6= σ0t. The trends are provided in Figure 2.3. The availability
is 0.5. The average proximal main effect, d̄ = 0.1 and the day of
maximal effect is 22 or 29, and thus the associated sample sizes are
41 and 42.

Max = 22 (N = 41) Max = 29 (N = 42)
φ σ1t

σ0t
trend 1 trend 2 trend 3 trend 1 trend 2 trend 3

0.8 0.83 0.84 0.80 0.81 0.89 0.79
-0.6 1.0 0.79 0.80 0.75 0.74 0.85 0.70

1.2 0.76 0.76 0.71 0.72 0.81 0.70
0.8 0.85 0.82 0.79 0.81 0.88 0.78

0 1.0 0.79 0.81 0.74 0.77 0.86 0.72
1.2 0.77 0.77 0.71 0.70 0.83 0.70
0.8 0.83 0.83 0.81 0.77 0.87 0.77

0.6 1.0 0.76 0.79 0.75 0.73 0.85 0.77
1.2 0.78 0.77 0.73 0.72 0.82 0.69

φ is the parameter in AR(1) for {εt}Tt=1. “Max”is the day in which the
maximal proximal effect is attained. Bold numbers are significantly
(at .05 level) lower than .80.

Table 2.5: Simulated power when working assumption
(d) is false. The expected availability is 0.5, the average
proximal main effect d̄ = 0.1 and the maximal effect is
attained at day 29. The associated sample size is 42.

Parameters in It γ1

γ2 -0.1 -0.2 -0.3

-0.2 0.80 0.81 0.79
η1 = −0.1, η2 = −0.1 -0.5 0.79 0.81 0.80

-0.8 0.81 0.82 0.79
-0.2 0.78 0.82 0.79

η1 = −0.2, η2 = −0.1 -0.5 0.81 0.77 0.77
-0.8 0.81 0.79 0.78
-0.2 0.78 0.78 0.80

η1 = −0.1, η2 = −0.2 -0.5 0.80 0.79 0.78
-0.8 0.78 0.79 0.80

γ1 and γ2 are parameters for the cumulative treatments
in the model of Yt+1. η1 and η2 are parameters in the
model of It. Bold numbers are significantly (at .05
level) less than .80.
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Working Assumption (d) is Violated We violate assumption (d) by making both the availability
indicator, It and proximal response, Yt+1 depend on past treatment and past proximal responses.
The sample size formula is used with the correct value of {Z>t d,E[It]}Tt=1; in particular d is de-
termined by an average proximal main effect of d̄ = 0.1, day of maximal effect equal to 29
(d1 = 0, d2 = 9.64 × 10−3, d3 = −1.72 × 10−4) and with a constant availability pattern equal to
0.5. The data for each simulated subject is generated as follows. Denote the cumulative treatment
over last 24 hours by Ct =

∑5
j=1 At−jIt−j . In each time t,

It
Ber∼
(
τt + τtη1(Ct − E[Ct]) + τtη2 Trunc(

1

5

5∑
j=1

εt−j)
)
, At

Ber∼
(
ρ
)

Yt+1 = 1{It=0} (α0(t) + εt) +

1{It=1}
(
α(t) + γ1 [Ct − E[Ct|It = 1]] + (At − ρ)[Z>t d+ Z>t γ2(Ct − E[Ct|It = 1])] + σ∗εt

)
where {εt}Tt=1 are i.i.d N(0, 1) and Trunc(x) := x1|x|≤1 + sign(x)I|x|>1 (the truncation is used
to ensure that τt + τtη1(Ct − E[Ct]) + τtη2 Trunc(1

5

∑5
j=1 εt−j) ∈ [0, 1]). Again α(t) is as in

the prior simulation. σ∗ is calculated such that the average variance is equal to 1, e.g., σ̄ =
1
T

∑T
t=1 E[Var[Yt+1|It = 1, At]] = 1. Note that since Ct is centered in both the model for It as

well as in the model for Yt+1, the standardized proximal main effect is Z>t d and E[It] = τt = 0.5.
α0(t) is the conditional mean of Yt+1 when It = 0. The form of E[Yt+1|It = 0] is not essential:
only Ys+1 − E[Ys+1|Is = 0] is used to generate It. In the simulation, E[Ct|It = 1] and σ∗ are
calculated by Monte Carlo methods. As before, the simulated type I error are not affected; see
Table 2.7 in appendix 2.8. The simulated powers are provided in Table 2.5.

Some Practical Guidelines

Third, it is critical to use conservative values of d and availability E[It] in the sample size for-
mula. It is not surprising that the quality of the sample size formula depends on an accurate or
conservative values of the standardized effects, d, as this is the case for all sample size formu-
las. Additionally availability provides the number of decision points as which treatment might be
provided per individual and thus the sample size formula should be sensitive to availability. To
illustrate these points we consider two simulations in which the data is generated by

It
Ber∼
(
τt
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)Z>t d+ εt, if It = 1
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where the εt’s are i.i.d. standard normals and α(t) is as in the prior simulations. In the first
simulation, suppose the scientist provides the correct availability pattern, {E[It]}Tt=1, the correct
time at which the maximal standardized proximal main effect is achieved (arg maxt Z

>
t d) and the

correct initial standardized proximal main effect (Z>1 d = d1 = 0) but provides too low a value
of the averaged across time, standardized proximal main effect d̄ = 1

T

∑T
t=1 Z

>
t d. The simulated

power is provided in Appendix 2.8, Table 2.20. The degradation in power is pronounced as might
be expected.

In the second simulation, suppose the scientist provides the correct arg maxt Z
>
t d, correct

Z>1 d = d1 = 0, correct d̄ = 1
T

∑T
t=1 Z

>
t d and although the scientist’s time-varying pattern of

availability is correct, the magnitude is underestimated. The simulation result is in Appendix 2.8,
Table 2.21. Again the degradation in power is pronounced.

2.7 Discussion

In this chapter, we have introduced the use of micro-randomized trials in mobile health and have
provided an approach to determining the sample size. More sophisticated sample size procedures
might be entertained. Certainly it makes sense to include baseline information in the sample size
procedure, for example in HeartSteps, a natural baseline variable is baseline step count. The in-
clusion of baseline variables in Bt in the regression (2.2) is straightforward. An interesting gen-
eralization to the sample size procedure would allow scientists to include time-varying variables
(in Ot) as covariates in Bt in the regression (2.2). This might be a useful strategy for reducing the
error variance.

An alternate to the micro-randomized trial design is the single case design often used in the
behavioral sciences [31]. These trials usually only involve 1 to 13 participants [32] and the data
analyses focus on the examination of visual trends for each participant separately. For example,
during periods when a participant is on treatment the response might be generally higher than the
height of the response during the time periods in which the participant is off treatment. Dallery et
al. [33] provide an excellent overview of single case designs and their use for evaluating technology
based intervention. Their chapter illustrates the visual analyses that would be conducted on each
participant’s data. A critical assumption is that the effect of the treatment is only temporary (no
carry-over effect) so that each participant can act as his own control. We believe that in settings
in which treatments are expected to have sufficiently strong effects so as to overwhelm the within
person variability in response (thus a visual analysis can be compelling), these designs provide an
alternative to the micro-randomized trial design.
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Although this chapter has focused on determining the sample size to detect the proximal main
effect of a treatment with a given power, micro-randomized studies provide data for a variety of
interesting further analyses. For example, it is of some interest to model and understand the pre-
dictors of the time-varying availability indicator. In the case of HeartSteps we will know why the
participant is unavailable (driving a car, already active or has turned off the lock-screen messages)
so we will be able to consider each type of availability indicator. Other very interesting further
analyses include assessing interactions between treatments, At and context, Ot, past treatment
As, s < t on the proximal response, Yt+1. Also there is much interest in using this type of data
to construct “dynamic treatment regimes”; in this setting these are called Just-in-Time Adaptive
Interventions [16]. The sequential micro-randomizations enhance all of these analyses by reducing
causal confounding.

2.8 Appendix

A. Theoretical Results and Proofs

Lemma 1 (Least Squares Estimator). The least square estimators α̂, β̂ are consistent estimators

of α̃, β̃ in (2.4) and (2.5). In particular, if β(t) = Z>t β
∗ for some vector β∗, then β̃ = β∗. Under

moment conditions, we have
√
N(β̂ − β̃)→ N(0,Σβ), where the asymptotic variance Σβ is given

by Σβ = Q−1WQ−1 where Q =
∑T

t=1 E[It]ρt(1 − ρt)ZtZ
>
t , W = E

[∑T
t=1 ε̃tIt(At − ρt)Zt ×∑T

t=1 ε̃tIt(At − ρt)Z>t
]

and ε̃t = Yt+1 −B>t α̃− Z>t β̃(At − ρt).

Proof. It’s easy to see that the least square estimators satisfy

θ̂ = (α̂, β̂) =
(
PN

T∑
t=1

ItXtX
>
t

)−1(PN T∑
t=1

ItYt+1Xt

)
→
( T∑
t=1

E[ItXtX
>
t ]
)−1( T∑

t=1

E(ItYt+1Xt)
)

where X>t = (B>t , (At − ρt)Z>t ) ∈ R1×(p+q) is the covariate at time t. For each t,

E[ItYt+1Xt] =

(
E[ItYt+1]Bt

E[ItYt+1(At − ρt)]Zt

)
=

(
E[ItYt+1]Bt

ρt(1− ρt)E[It]β(t)Zt

)
,
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and

E[ItXtX
>
t ] =

(
E[It]BtB

>
t BtZ

>
t E[It(At − ρt)]

ZtB
>
t E[It(At − ρt)] ZtZ

>
t E[It(At − ρt)2]

)

=

(
E[It]BtB

>
t 0

0 E[It]ρt(1− ρt)ZtZ>t

)

so that

α̂→

(
T∑
t=1

E[It]BtB
>
t

)−1 T∑
t=1

E[ItYt+1]Bt =

(
T∑
t=1

E[It]BtB
>
t

)−1 T∑
t=1

E[It]α(t)Bt

β̂ →

(
T∑
t=1

ρt(1− ρt)E[It]ZtZ
>
t

)−1 T∑
t=1

E[ItYt+1(At − ρt)]Zt

=

(
T∑
t=1

ρt(1− ρt)E[It]ZtZ
>
t

)−1 T∑
t=1

E[It]ρt(1− ρt)β(t)Zt

as in (2.4) and (2.5). We can see that if β(t) = Z>t β
∗, then

( T∑
t=1

ρt(1− ρt)E[It]ZtZ
>
t

)−1
T∑
t=1

E[It]ρt(1− ρt)β(t)Zt

=
( T∑
t=1

ρt(1− ρt)E[It]ZtZ
>
t

)−1
T∑
t=1

E[It]ρt(1− ρt)ZtZ>t β∗ = β∗

This is true even if E[Yt+1|It = 1] 6= B>t α̃. We can easily see that,

√
N(θ̂ − θ̃) =

√
N

{(
PN

T∑
t=1

ItXtX
>
t

)−1
[(
PN

T∑
t=1

ItYt+1Xt

)
−
(
PN

T∑
t=1

ItXtX
>
t

)
θ̃
]}

=
√
N

{
E
[ T∑
t=1

ItXtX
>
t

]−1(PN T∑
t=1

Itε̃tXt

)}
+ op(1), (2.10)

where op(1) is a term that converges in probability to zero as N goes to infinity. By the definitions
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of α̃ and β̃, we have

E
[ T∑
t=1

Itε̃tXt

]
=

( ∑T
t=1 E[It]

(
α(t)−B>t α̃

)
Bt∑T

t=1 E[It]ρt(1− ρt)
(
β(t)− Z>t β̃

)
Zt

)
= 0

So that under moments conditions, we have
√
N(θ̂ − θ̃)→ N(0,Σθ), where Σθ is given by

Σθ = E
[ T∑
t=1

ItXtX
>
t

]−1E
[ T∑
t=1

Itε̃tXt ×
T∑
t=1

Itε̃tX
>
t

]
E
[ T∑
t=1

ItXtX
>
t

]−1
=

[
Σα Σαβ

Σ>αβ Σβ

]
.

In particular, β̂ satisfies
√
N(β̂ − β̃)→ N(0,Σβ) and Σβ = Q−1WQ−1 where

Q =
T∑
t=1

E[It]ρt(1− ρt)ZtZ>t , W = E
[ T∑
t=1

ε̃tIt(At − ρt)Zt ×
T∑
t=1

ε̃tIt(At − ρt)Z>t
]

Lemma 2 (Asymptotic Variance Under Working Assumptions). Assuming working assumptions

(2.5)-(2.5) are true, then under the alternative hypothesis H1 in (2.7), Σβ and cN are given by

Σβ = σ̄2

( T∑
t=1

E[It]ρt(1− ρt)ZtZ>t
)−1

,

cN = Nd>
( T∑

t=1

E[It]ρt(1− ρt)ZtZ>t
)
d.

Proof. Note that under assumptions (2.5) and (2.5), we have Z>t β̃ = β(t) and Var(Yt+1|It =

1, At) = σ̄ for each t, and d̃ = d. The middle term, W , in Σβ can be separated by two terms, e.g.,

W = E
[ T∑
t=1

ε̃tIt(At − ρt)Zt ×
T∑
t=1

ε̃tIt(At − ρt)Z>t
]

=
T∑
t=1

E
[
ε̃2t It(At − ρt)2

]
ZtZ

>
t +

T∑
i 6=j

E
[
ε̃iε̃jIiIj(Ai − ρi)(Aj − ρj)

]
ZiZ

>
j .

Under assumptions (2.5), (2.5) and (2.5), we have E[ε̃t|It = 1, At] = 0 and E
[
ε̃2t It(At − ρt)2

]
=

E[It]ρt(1− ρt)σ̄2. Furthermore, suppose i > j, then E
[
ε̃iε̃jIiIj(Ai − ρ)(Aj − ρ)

]
= E[IiIj(Aj −

ρ)(Ai − ρ)] × E[ε̃tε̃s|It = 1, Is = 1, At, As] = 0, because Ai |= {Ii, Ij, Aj} and the first term is 0.
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W is then given by

W = σ̄2

T∑
t=1

E[It]ρt(1− ρt)ZtZ>t ,

so that Σβ = σ̄2
(∑T

t=1 E[It]ρt(1− ρt)ZtZ>t
)−1 and

cN = N(σ̄d̃)>Σ−1
β (σ̄d̃) = Nd>

( T∑
t=1

E[It]ρt(1− ρt)ZtZ>t
)
d

Remark: Working assumption (d) can be replaced by assuming E[Yt+1|It = 1, At, Is = 1, As]−
E[Yt+1|It = 1, At] does not depend on At for any s < t, or some Markovian type of assumption,
e.g., Yt+1 |= {Ys+1, Is, As, s < t}|It, At. Either of them implies E

[
ε̃iε̃jIiIj(Ai− ρi)(Aj − ρj)

]
= 0,

so that Σβ and cN have the same simplified forms.

Rationale for multiple of F distribution The distribution of n(X̄−µ)>Σ̂−1(X̄−µ) constructed
from a random sample of size n of N(µ,Σ) random variables in which Σ̂ is the sample covariance
matrix follows a Hotelling’s T -squared distribution. The Hotelling’s T -squared distribution is a
multiple of the F distribution, d1(d1+d2−1)

d2
Fd1,d2 in which d1 is the dimension of µ, and d2 is the

sample size. Our sample sample approximation replaces d1 by p (the number of parameters in the
test statistic) and d2 by n− q − p (sample size minus number of nuisance parameters minus d1).

Formula for adjusted Ŵ and Q̂ Define a individual-specific residual vector ê as the T × 1

vector with tth entry êt = Yt+1 − ItB
>
t α̂ − It(At − ρt)Z

>
t β̂. For each individual define the

tth row of the T × (p + q) individual-specific matrix X by (ItB
>
t , It(At − ρt)Zt). Then define

H = X
[
PNX>X

]−1
X>. The matrix Q̂−1 is the lower right p×p block in the inverse of PNX>X;

the matrix Ŵ is the lower right p× p block in PN
[
XT (I −H)−1êê>(I −H)−1X

]
.

B. Further Simulations and Details

B1. Simulation Results When Working Assumptions are True

We conduct a variety of simulations in settings in which the working assumptions hold, the scientist
provides the correct pattern for the expected availability, τt = E[It] and under the alternate, the
standardized proximal main effect is d(t) = Z>t d. Here we will mainly focus on the setup where
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the duration of the study is 42 days and there are 5 decision times within each day, but similar
results can be obtained in different setups; see below. The randomization probability is 0.4, i.e.
ρ = ρt = P (At = 1) = 0.4. The sample size formula is given in (2.8) and (2.9). The test statistic
is given by (2.6) in which Bt and Zt equal to

(
1, b t−1

5
c, b t−1

5
c2
)>. All simulations are based on

1,000 simulated data sets. The significance level is 0.05 and the desired power is 80%.
In the first simulation, the data for each simulated subject is generated sequentially as follows.

For t = 1, . . . , T = 210, It, At and Yt+1 are generated by

It
Ber∼
(
τt
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)d(t) + εt, if It = 1

where d(t) = Z>t d and τt are same as in the sample size model. The conditional mean, E[Yt+1|It =

1] = α(t) is given by α(t) = α1 +α2b t−1
5
c+α3b t−1

5
c2, where α1 = 2.5, α2 = 0.727,α3 = −8.66×

10−4 (so that (1/T )
∑

t α(t)−α(1) = 1, arg maxt α(t) = T ). We consider 5 differing distributions
for the errors {εt}Tt=1: independent normal; independent (scaled) Student’s t distribution with 3
degrees of freedom; independent (centered) exponential distribution with λ = 1; a Gaussian AR(1)
process, e.g., εt = φεt−1 + vt, where vt is white noise with variance σ2

v such that Var(εt) = 1; and
lastly a Gaussian AR(5) process, e.g., εt = φ

5

∑5
j=1 εt−j + vt, where vt is white noise with variance

σ2
v such that Var(εt) = 1. In all cases the errors are scaled to have mean 0 and variance 1 (i.e.

E[εt|It = 1] = 0, Var[εt|At, It = 1] = 1). Additionally four availability patterns, e.g., time
varying values for τt = E[It], are considered; see Figure (2.1). The simulated type 1 error rate and
power when the duration of study is 42 days are reported in Table 2.12, 2.13, 2.14 and 2.15. The
simulation results in other setups, e.g., the length of the study is 4 week and 8 week, are reported
in Table 2.16 and 2.17. The associated sample sizes are given in Table 2.11.

Since neither the working assumptions nor the inputs to the sample size formula specify the
dependence of the availability indicator, It on past treatment. In the second simulation, we consider
the setting in which the availability decreases as the number of treatments provided in the recent
past increase. In particular, the data are generated as follows,

It
Ber∼
(
τt + η

5∑
j=1

(At−jIt−j − E[At−jIt−j])
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)d(t) + εt, if It = 1

Note that since we center
∑5

j=1At−jIt−j in the generative model of It, the expected availability is
τt. The specification of α(t), β(t) and εt are same as in the first simulation. The simulated type I
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error rate and power are reported Table 2.18.

B2. Further Details When Working Assumptions are False

Working Assumption (a) is Violated. Here we consider another setting in which the working
assumption (a) is violated, e.g., the underlying true E[Yt+1|It = 1] follows a non-quadratic form
(recall that Bt is given by

(
1, b t−1

5
c, b t−1

5
c2
)>). The data is generated as follows

It
Ber∼
(
τt
)
, At

Ber∼
(
ρ
)

Yt+1 = α(t) + (At − ρ)Z>t d+ εt, if It = 1

where α(t) = E[Yt+1|It = 1] is provided in Figure 2.4. For each case, α(t) satisfies α(1) = 2.5 and
(1/T )

∑T
t=1−α(1) = 0.1. The error terms {εt}Nt=1 are i.i.d N(0, 1). The day of maximal proximal

effect is assumed to be 29. Additionally, different values of averaged standardized treatment effect
and four patterns of availability in Figure 2.1 with average 0.5 are considered. The simulation
results are reported in Table 2.6.

Additional Simulation Results When Other Working Assumptions are False The main body
of the chapter reports part of the results when working assumptions (b), (c) and (d) are violated.
Additional simulation results are provided here. In particular, the simulation result is reported in
Table 2.9 when d(t) follows other non-quadratic forms, e.g., working assumption (b) is false; see
Figure 2.5. The simulated Type I error rate and power when working assumption (c) is false are
reported in Table 2.10. The simulated Type I error rate when working assumption (d) is violated is
reported in Table 2.7.

Simulation Results when d̄ and τ̄ are misspecified. As discussed in the chapter, the first sce-
nario considers the setting in which the scientist provides the correct availability pattern, {E[It]}Tt=1,
the correct time at which the maximal standardized proximal main effect is achieved, arg maxt Z

>
t d,

and the correct initial standardized proximal main effect, Z>1 d = d1 = 0, but provides too low a
value of the averaged across time, standardized proximal main effect d̄ = 1

T

∑T
t=1 Z

>
t d. The sim-

ulated power is provided in Table 2.20. In the second scenario, the scientist provides the correct
arg maxt Z

>
t d, correct Z>1 d = d1 = 0, correct d̄ = 1

T

∑T
t=1 Z

>
t d and although the scientist’s

time-varying pattern of availability is correct, the magnitude, e.g., the average availability, is un-
derestimated. The simulation result is in Table 2.21.
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Table 2.6: Simulated Type I error rate (%) and power (%) when working assumption (a) is violated. Scenario
2. The shapes of α(t) = E[Yt+1|It = 1] and patterns of availability are provided in Figure 2.4 and Figure 2.1.
The average availability is 0.5. The day of maximal proximal effect is 29. The associated sample size is given
in Table 2.11.

Availability Pattern
α(t) d̄ Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

Shape 1
0.10 3.6 4.3 4.7 4.5 77.4 80.2 76.2 75.9
0.08 5.9 3.8 4.1 3.4 79.7 80.1 78.9 80.6
0.06 4.6 5.7 4.2 6.5 78.7 76.3 78.3 79.9

Shape 2
0.10 4.8 4.8 4.4 4.1 79.2 79.1 78.5 79.7
0.08 3.9 5.4 4.8 4.3 77.7 80.4 76.8 80.9
0.06 5.1 5.5 3.4 4.9 78.3 79.4 79.8 80.2

Shape 3
0.10 5.1 3.5 4.3 4.4 79.1 79.4 75.6 78.0
0.08 4.6 5.0 6.2 3.8 78.3 78.1 79.1 78.1
0.06 4.8 4.4 5.4 4.2 78.0 78.3 79.8 77.7

d̄ = (1/T )
∑T

t=1 Z
>
t d is the average standardized treatment effect. Bold numbers are significantly (at .05

level) greater than .05 (for type I error rate) and lower than 0.80 (for power).

Table 2.7: Simulated Type I error rate (%) when work-
ing assumption (d) is violated. E[It] = 0.5. The prox-
imal effect Z>t d satisfies the average is 0.1 and day of
maximal effect is 29. N = 42.

Parameters in It
γ1

γ2 -0.1 -0.2 -0.3

-0.2 5.7 3.2 3.9
η1 = −0.1, η2 = −0.1 -0.5 3.2 4.2 4.9

-0.8 4.2 5.1 5.5

-0.2 5.4 3.8 3.9
η1 = −0.2, η2 = −0.1 -0.5 4.4 4.4 4.8

-0.8 4.7 4.3 4.6

-0.2 4.5 5.0 5.0
η1 = −0.1, η2 = −0.2 -0.5 4.9 3.8 6.0

-0.8 4.7 4.8 4.8

η1, η2 are parameters in generating It. γ1, γ2 are coef-
ficients in the model of Yt+1. All numbers in this table
are significantly (at .05 level) greater than .05.
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Table 2.8: Sample Sizes when working assumption (b) is violated. The vector of standardized effects sizes, d,
used in the sample size formula provides the projection of d(t). The sample size formula is used with the correct
availability pattern, {E[It]}Tt=1. The shape of the standardized proximal effect d(t) and pattern for availability
E[It] are provided in Figure 2.5 and in Figure (2.1). The significance level and desired power is 0.05 and 0.80.

τ̄ = 0.5 τ̄ = 0.7
Availability Shape of d(t)

d̄ Pattern Max
Maintained

Slightly
Degraded

Severely
Degraded

Maintained
Slightly

Degraded
Severely

Degraded

0.10

15 43 41 39 32 31 29
Pattern 1 22 43 41 40 33 31 30

29 38 37 38 29 28 29
15 43 41 39 33 31 30

Pattern 2 22 43 42 40 33 31 30
29 38 37 38 29 28 29
15 45 43 41 33 32 31

Pattern 3 22 44 43 42 33 32 31
29 37 38 39 28 28 29
15 42 39 37 32 30 28

Pattern 4 22 44 41 39 33 31 30
29 39 38 38 29 28 28

0.08

15 65 61 58 48 45 43
Pattern 1 22 65 62 60 48 46 44

29 56 55 56 42 41 42
15 65 61 59 48 45 43

Pattern 2 22 65 62 60 48 46 44
29 56 55 56 42 41 42
15 67 64 62 49 47 45

Pattern 3 22 66 64 63 48 47 46
29 56 56 59 41 41 43
15 63 59 55 47 44 41

Pattern 4 22 65 61 58 48 45 43
29 58 56 56 43 41 41

0.06

15 111 105 100 81 76 73
Pattern 1 22 112 106 103 81 77 75

29 96 94 96 70 69 70
15 112 105 100 81 77 73

Pattern 2 22 112 106 103 81 77 75
29 96 94 96 70 68 70
15 116 111 106 83 79 76

Pattern 3 22 114 110 108 82 79 78
29 95 96 101 69 69 72
15 108 100 94 79 74 70

Pattern 4 22 112 105 99 81 76 73
29 100 95 95 72 69 70
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Table 2.9: Simulated power (%) when working assumption (b) is violated. The shape of the standardized prox-
imal effect, d(t) = β(t)/σ̄ and pattern for availability, E[It] are provided in Figure 2.5 and in Figure (2.1). The
corresponding sample sizes are given in Table 2.8.

τ̄ = 0.5 τ̄ = 0.7
Availability Shape of d(t)

d̄ Pattern Max
Maintained

Slightly
Degraded

Severely
Degraded

Maintained
Slightly

Degraded
Severely

Degraded

0.10

15 78.4 78.8 78.6 79.1 80.1 77.6
Pattern 1 22 80.4 79.5 81.2 80.0 76.9 77.9

29 80.4 79.2 78.9 77.3 76.8 81.1
15 78.6 79.9 79.9 80.1 80.4 81.3

Pattern 2 22 78.3 81.2 78.8 79.2 80.8 80.5
29 77.9 80.8 79.3 78.1 77.7 82.2
15 81.0 79.7 77.4 77.9 80.9 77.6

Pattern 3 22 78.9 79.1 80.0 79.7 79.4 75.9
29 80.9 77.5 77.7 80.6 79.2 78.5
15 79.7 79.5 77.9 79.5 81.7 78.0

Pattern 4 22 78.9 77.9 80.4 82.2 78.9 78.8
29 77.9 79.7 79.0 78.0 80.2 80.8

0.08

15 80.5 79.5 78.6 80.6 79.2 78.7
Pattern 1 22 78.9 78.7 78.8 78.9 80.7 80.3

29 76.6 78.0 78.3 80.9 78.6 80.4
15 81.0 79.3 78.7 82.0 80.5 80.1

Pattern 2 22 82.4 80.6 80.0 78.0 79.6 79.4
29 79.2 76.9 81.9 78.3 78.8 79.7
15 78.2 81.6 80.9 79.1 79.2 77.5

Pattern 3 22 80.9 79.5 78.6 79.2 78.3 81.4
29 80.4 79.3 77.5 77.9 80.2 82.3
15 79.4 79.4 78.1 78.6 77.4 78.8

Pattern 4 22 81.3 78.4 78.4 80.6 79.4 80.4
29 79.9 79.3 79.8 79.5 79.7 81.2

0.06

15 81.2 80.5 79.0 77.8 78.7 79.6
Pattern 1 22 80.0 81.7 79.8 80.7 80.5 80.2

29 81.2 78.7 79.2 81.2 79.7 80.1
15 78.7 77.5 81.4 80.7 81.0 80.7

Pattern 2 22 80.6 81.8 79.2 80.3 81.6 80.2
29 78.5 80.2 80.0 77.7 78.1 78.0
15 78.1 80.0 80.9 79.7 79.3 78.8

Pattern 3 22 81.2 80.2 80.0 78.3 82.2 81.1
29 79.6 81.6 79.8 80.2 81.6 76.9
15 78.2 79.8 78.9 79.5 77.3 79.2

Pattern 4 22 79.2 81.1 79.4 76.8 79.2 80.4
29 79.9 78.5 79.8 80.1 78.9 81.8
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Table 2.10: Simulated Type I error rate (%) and power (%) when working assumption (c) is
violated. The trends of σ̄t are provided in Figure 2.3. The standardized average effect is 0.1.
E[It] = 0.5. The associated sample sizes are 41, 42 when the day of maximal effect is 22, 29.

Max = 22 Max = 29
φ in AR(1) σ1t

σ0t
const. trend 1 trend 2 trend 3 const. trend 1 trend 2 trend 3

0.8 4.1 4.3 3.3 5.4 4.7 4.9 2.8 4.1
-0.6 1.0 4.6 5.0 4.0 4.4 4.4 4.8 4.2 4.3

1.2 3.8 4.5 5.2 5.5 4.3 4.1 4.5 3.8

0.8 5.2 4.7 4.0 3.4 5.4 4.9 6.2 4.5
-0.3 1.0 4.9 4.5 4.5 4.3 5.2 5.1 4.0 3.7

1.2 5.4 4.6 4.1 3.8 3.7 5.2 4.3 5.0

0.8 4.8 4.0 4.1 3.9 4.7 5.2 3.7 4.2
0 1.0 5.4 4.0 5.8 3.9 4.1 4.0 5.9 5.7

1.2 4.4 4.9 5.0 4.6 3.7 4.8 4.4 4.9

0.8 5.3 4.4 4.7 3.2 4.6 5.4 5.6 4.1
0.3 1.0 5.5 4.0 3.4 3.7 5.0 4.6 4.0 3.6

1.2 3.8 4.5 4.5 4.8 4.5 5.0 6.2 4.3

0.8 5.5 3.9 5.3 3.8 3.3 3.5 5.1 4.2
0.6 1.0 4.0 3.7 5.2 5.1 4.8 5.1 5.0 4.7

1.2 4.5 5.1 4.6 4.9 4.5 4.4 4.7 4.8

0.8 82.8 82.7 83.7 79.9 83.6 80.6 88.7 79.2
-0.6 1.0 81.1 79.1 79.9 74.8 77.7 74.3 84.8 70.4

1.2 76.6 76.3 76.3 70.6 77.6 72.0 80.7 70.4
0.8 83.0 83.0 86.0 80.3 82.7 79.2 87.9 78.0

-0.3 1.0 77.6 81.4 80.7 74.9 79.1 74.5 86.0 73.7
1.2 78.2 76.9 77.3 73.4 74.4 71.2 81.0 70.7
0.8 84.6 84.6 82.1 79.0 81.8 81.5 88.0 78.0

0 1.0 80.1 78.6 80.9 73.6 77.7 76.5 86.1 71.8
1.2 76.0 76.7 77.4 70.6 74.5 69.9 83.4 69.6
0.8 83.6 79.7 84.6 79.7 82.1 81.7 88.2 75.7

0.3 1.0 81.5 82.4 82.3 73.9 79.5 74.6 85.1 71.5
1.2 74.8 76.6 78.2 71.1 75.5 71.1 82.5 70.1
0.8 81.4 83.1 83.5 80.5 83.1 77.1 86.6 76.9

0.6 1.0 80.7 76.4 79.0 74.8 80.4 73.4 84.7 76.8
1.2 77.0 77.5 77.0 73.5 74.4 72.5 81.6 69.4

φ is the parameter in AR(1) process for {εt}Tt=1. Bold numbers are significantly(at .05 level)
greater than .05 (for type I error)and less than 0.80 (for power).
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Table 2.11: Sample Sizes when the proximal treatment effect satisfies d(t) = Z>t d. The
significance level is 0.05. The desired power is 0.80.

Duration of Study
Availability

Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

4-week

Pattern 1
15 59 89 154 43 65 112
22 60 91 158 44 66 114
29 58 87 152 43 64 110

Pattern 2
15 59 89 154 43 65 112
22 60 92 159 44 67 115
29 58 89 154 43 64 111

Pattern 3
15 59 90 157 44 66 113
22 63 96 167 46 69 119
29 62 94 163 45 67 115

Pattern 4
15 59 89 155 43 65 112
22 57 86 150 43 64 110
29 54 82 142 41 61 105

6-week

Pattern 1
22 41 61 105 31 45 76
29 42 64 109 32 47 79
36 41 62 106 31 45 77

Pattern 2
22 41 61 105 31 45 76
29 43 64 110 32 47 80
36 42 62 107 31 46 77

Pattern 3
22 42 62 106 31 46 77
29 44 66 114 33 48 82
36 43 65 112 32 47 80

Pattern 4
22 41 62 106 31 45 77
29 41 62 106 31 46 78
36 40 59 101 30 44 74

8-week

Pattern 1
29 32 47 80 25 35 58
36 33 49 84 26 37 61
43 33 48 82 25 36 60

Pattern 2
29 32 47 80 25 35 58
36 34 49 84 26 37 61
43 33 49 82 25 36 60

Pattern 3
29 33 48 82 25 36 59
36 35 51 87 26 38 63
43 34 50 86 26 37 62

Pattern 4
29 33 48 81 25 36 59
36 33 49 83 25 36 61
43 32 47 80 25 35 59
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Table 2.12: Simulated Type I error rate (%) when working assumptions are true.
Duration of the study is 6-week. The associated sample size is given in Table 2.11.

Error Term
Availability

Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

i.i.d.
Normal

Pattern 1
22 3.8 4.5 4.9 4.6 5.3 4.8
29 4.7 6.0 4.6 4.0 3.2 5.0
36 5.0 5.4 4.9 4.3 4.8 4.6

Pattern 2
22 4.8 4.1 4.8 4.4 3.5 4.1
29 4.3 6.2 3.2 4.6 4.2 4.2
36 4.5 4.8 5.2 4.5 3.5 5.4

Pattern 3
22 4.7 4.5 6.3 4.4 4.9 4.9
29 4.1 5.1 4.6 4.3 6.0 5.6
36 4.7 4.4 4.6 4.1 5.1 4.4

Pattern 4
22 5.4 3.5 4.5 4.8 4.7 5.0
29 5.2 4.5 4.5 5.0 5.0 5.1
36 3.8 4.1 5.4 4.7 5.0 5.9

i.i.d. t dist. Pattern 1
22 4.3 4.4 3.2 4.1 4.1 5.2
29 5.0 3.8 3.2 3.7 4.2 6.3
36 4.3 4.5 4.0 5.0 5.7 5.4

i.i.d. Exp. Pattern 1
22 4.5 4.6 4.4 3.7 7.1 3.1
29 4.5 4.6 4.2 4.5 4.5 4.7
36 2.7 4.8 4.8 3.9 3.7 3.4

“Max”is the day in which the maximal proximal effect is attained. τ̄ =

(1/T )
∑T

t=1 E[It] is the average availability. φ is the parameter for AR(1) and
AR(5) process. Bold numbers are significantly(at .05 level) greater than .05.
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Table 2.13: Simulated Type I error rate (%) when working assumptions are true.
Duration of the study is 6-week. The associated sample size is given in Table 2.11.

Error Term
Availability

Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

AR(1)
φ = −0.6 Pattern 1

22 4.3 5.3 4.6 3.8 4.2 4.0
29 4.6 5.4 5.1 4.0 4.4 4.3
36 4.7 4.0 4.0 4.1 4.2 3.9

AR(1)
φ = −0.3 Pattern 1

22 5.8 3.4 4.4 3.3 4.0 5.4
29 4.9 4.7 4.6 5.5 5.5 4.5
36 4.0 4.7 4.4 4.9 5.0 4.7

AR(1)
φ = 0.3 Pattern 1

22 4.6 4.6 4.9 4.3 5.4 4.1
29 4.8 5.3 4.1 4.3 4.2 5.2
36 3.6 3.9 4.9 4.8 4.9 4.9

AR(1)
φ = 0.6 Pattern 1

22 4.4 5.1 4.9 3.6 5.2 3.7
29 3.7 4.9 4.6 4.5 4.3 5.8
36 4.4 6.7 5.2 5.6 3.6 5.1

AR(5)
φ = −0.6 Pattern 1

22 4.4 4.7 5.1 4.2 4.5 5.5
29 4.3 5.1 4.3 3.2 3.5 4.2
36 5.3 4.5 6.1 4.2 4.6 5.4

AR(5)
φ = −0.3 Pattern 1

22 3.7 4.4 6.0 5.0 4.5 3.5
29 4.4 4.7 5.2 5.3 4.5 5.0
36 4.5 5.0 5.1 4.1 5.3 4.8

AR(5)
φ = 0.3 Pattern 1

22 5.3 4.3 5.7 4.8 4.1 4.3
29 3.9 4.8 4.1 4.0 4.3 4.9
36 4.2 5.5 5.1 3.6 4.5 3.6

AR(5)
φ = 0.6 Pattern 1

22 5.1 4.5 4.0 4.5 3.8 5.2
29 5.2 4.8 4.5 2.9 5.3 4.4
36 4.1 3.6 4.6 3.9 4.4 4.9

“Max”is the day in which the maximal proximal effect is attained. τ̄ =

(1/T )
∑T

t=1 E[It] is the average availability. φ is the parameter for AR(1) and
AR(5) process. Bold numbers are significantly(at .05 level) greater than .05.
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Table 2.14: Simulated power (%) when working assumptions are true. Duration of
the study is 6-week. The associated sample size is given in Table 2.11

Error Term
Availability

Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

i.i.d.
Normal

Pattern 1
22 80.9 80.0 81.0 78.7 77.5 80.7
29 78.4 80.6 77.8 80.6 78.7 79.0
36 80.2 80.0 79.6 79.4 80.2 77.0

Pattern 2
22 80.3 78.1 78.8 80.6 79.6 79.8
29 80.3 79.1 80.2 77.4 79.9 79.9
36 76.8 79.3 80.2 78.5 78.4 80.0

Pattern 3
22 83.5 81.5 77.7 78.5 81.3 78.7
29 77.9 79.1 78.5 77.8 78.8 79.0
36 77.3 78.1 79.8 79.8 79.9 79.1

Pattern 4
22 77.2 79.7 81.8 80.2 79.0 78.8
29 80.1 78.8 80.3 79.4 80.6 80.1
36 80.5 79.4 80.0 78.9 79.9 78.1

i.i.d. t dist. Pattern 1
22 80.4 81.9 81.0 79.7 79.4 80.7
29 81.7 82.2 82.2 79.1 82.3 77.3
36 80.8 78.8 79.5 81.8 81.6 79.9

i.i.d. Exp. Pattern 1
22 81.0 81.6 79.7 77.2 80.1 80.2
29 80.6 82.4 80.3 79.0 79.8 80.3
36 82.1 79.8 80.8 79.8 79.5 80.3

“Max”is the day in which the maximal proximal effect is attained. τ̄ =

(1/T )
∑T

t=1 E[It] is the average availability. φ is the parameter for AR(1) and AR(5)
process. Bold numbers are significantly(at .05 level) less than .80.

37



Table 2.15: Simulated power (%) when working assumptions are true. Duration
of the study is 6-week. The associated sample size is given in Table 2.11

Error Term
Availability

Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

AR(1)
φ = −0.6 Pattern 1

22 78.5 80.3 78.5 82.3 79.8 80.3
29 78.7 80.8 80.0 77.1 79.5 77.9
36 77.7 80.3 80.2 78.2 77.4 83.6

AR(1)
φ = −0.3 Pattern 1

22 77.9 79.0 79.6 80.0 77.8 80.4
29 77.9 79.1 80.0 79.0 78.0 78.4
36 78.1 81.2 80.2 80.7 80.9 78.4

AR(1)
φ = 0.3 Pattern 1

22 80.2 78.5 80.8 80.5 79.6 82.6
29 78.0 80.0 80.0 78.0 79.4 80.1
36 77.6 82.5 80.6 77.0 78.9 82.0

AR(1)
φ = 0.6 Pattern 1

22 80.4 79.8 79.5 80.7 79.5 82.0
29 78.9 81.5 79.3 79.5 81.3 79.5
36 79.5 78.4 78.8 80.1 77.9 77.8

AR(5)
φ = −0.6 Pattern 1

22 79.9 79.4 80.0 78.7 79.2 79.4
29 80.0 78.3 79.1 76.8 79.6 79.3
36 80.5 80.0 79.2 80.1 78.0 80.4

AR(5)
φ = −0.3 Pattern 1

22 79.2 80.4 81.9 81.3 77.7 79.1
29 80.0 82.3 80.5 80.5 82.2 79.2
36 75.9 78.7 79.3 79.0 79.4 79.9

AR(5)
φ = 0.3 Pattern 1

22 79.4 80.8 79.8 79.5 77.3 81.2
29 78.0 79.2 79.2 79.2 80.5 78.4
36 78.3 79.1 78.1 80.7 80.5 79.5

AR(5)
φ = 0.6 Pattern 1

22 80.2 77.9 80.3 78.6 78.4 80.3
29 76.9 79.3 80.2 79.1 80.6 80.5
36 78.7 84.0 80.1 78.8 79.3 78.8

“Max”is the day in which the maximal proximal effect is attained. τ̄ =

(1/T )
∑T

t=1 E[It] is the average availability. φ is the parameter for AR(1) and
AR(5) process. Bold numbers are significantly(at .05 level) less than .80.
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Table 2.16: Simulated type 1 error rate (%) when the duration of study is 4-week and 8-week.
Error terms follow i.i.d. N(0,1). The associated sample size is given in Table 2.11.

Study Duration Availability Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

4-week

Pattern 1
15 4.1 4.7 6.3 5.3 5.5 5.6
22 5.2 4.4 4.7 3.1 4.7 4.4
29 5.7 5.5 5.6 4.3 4.2 4.2

Pattern 2
15 4.8 4.8 5.0 5.0 5.2 5.3
22 5.1 5.2 4.7 3.7 4.2 3.7
29 5.6 5.1 4.2 4.2 4.9 4.4

Pattern 3
15 4.7 5.0 4.6 6.1 5.3 5.1
22 4.9 4.0 6.6 4.2 3.8 4.1
29 4.7 4.3 5.1 4.6 5.8 3.5

Pattern 4
15 4.9 4.6 4.8 3.0 5.9 3.8
22 3.5 5.1 4.5 5.2 3.8 6.0
29 4.4 6.4 4.7 4.4 4.3 4.7

8-week

Pattern 1
29 4.1 4.6 4.0 5.3 5.0 5.9
36 3.3 4.7 6.5 4.6 5.4 4.3
43 3.2 5.1 5.2 5.0 3.4 5.0

Pattern 2
29 3.9 5.0 4.5 4.2 3.7 4.1
36 3.8 4.6 4.9 4.5 3.4 5.2
43 3.9 5.4 5.0 3.4 3.8 5.0

Pattern 3
29 4.6 4.2 3.7 5.2 4.1 4.0
36 4.3 5.1 6.1 4.6 5.0 4.6
43 4.6 6.0 4.1 5.0 4.9 4.0

Pattern 4
29 4.5 5.2 2.9 3.6 5.3 4.4
36 4.5 5.2 3.7 2.7 3.7 4.7
43 4.2 7.1 4.9 4.4 4.5 4.8

“Max”is the day in which the maximal proximal effect is attained. τ̄ = (1/T )
∑T

t=1 E[It] is
the average availability. Bold numbers are significantly(at .05 level) greater than .05 (for type
I error)and less than 0.80 (for power).
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Table 2.17: Simulated power (%) when the duration of study is 4-week and 8-week. Error
terms follow i.i.d. N(0,1). The associated sample size is given in Table 2.11.

Study Duration Availability Pattern Max
τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06

4 week

Pattern 1
15 80.4 79.0 78.5 79.6 82.8 80.3
22 78.8 78.7 80.7 78.7 79.2 80.0
29 76.2 80.6 80.1 81.3 80.1 79.1

Pattern 2
15 82.4 77.8 77.2 75.9 80.0 78.9
22 77.2 80.3 81.5 75.8 80.7 82.0
29 80.1 79.3 80.1 78.0 77.7 76.9

Pattern 3
15 79.3 79.8 79.2 79.1 76.5 80.8
22 80.0 80.0 79.0 79.0 80.2 81.8
29 79.4 80.7 79.3 80.4 79.6 79.2

Pattern 4
15 82.6 78.3 79.2 80.5 80.0 79.5
22 80.4 80.7 79.3 79.1 78.5 79.2
29 78.4 79.2 78.5 79.6 79.2 80.5

8 week

Pattern 1
29 79.7 77.3 76.4 79.1 82.2 79.6
36 78.8 78.6 81.5 80.3 78.2 79.6
43 80.4 77.8 78.7 79.1 80.3 80.1

Pattern 2
29 79.3 81.1 79.8 78.7 79.7 80.2
36 81.2 78.5 79.0 81.3 80.8 78.2
43 80.3 81.5 77.5 75.1 78.8 78.1

Pattern 3
29 80.1 79.0 77.1 78.2 80.4 78.8
36 79.5 79.9 79.6 80.0 80.8 79.6
43 80.5 79.5 79.6 79.4 79.4 80.2

Pattern 4
29 82.1 79.7 80.7 79.7 79.0 78.4
36 77.8 78.2 80.1 77.9 76.9 79.5
43 79.6 78.5 78.1 79.4 80.6 79.5

“Max”is the day in which the maximal proximal effect is attained. τ̄ = (1/T )
∑T

t=1 E[It] is
the average availability. Bold numbers are significantly(at .05 level) greater than .05 (for type
I error)and less than 0.80 (for power).
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Table 2.18: Simulated Type I error rate (%) and power (%) when the availability indicator, It depends on the recent
past treatments with η = −0.2. The expected availability is constant in t and equal to 0.5. Duration of study is 42
days. The associated sample size is given in Table 2.11.

Error Term Max
τ̄ = 0.5 τ̄= 0.7 τ̄ = 0.5 τ̄ = 0.7

Average Proximal Effect
0.10 0.08 0.06 0.10 0.08 0.06 0.10 0.08 0.06 0.10 0.08 0.06

AR(1)
φ = −0.6

22 4.8 5.4 4.5 3.4 5.8 3.7 81.5 78.0 79.4 81.7 77.9 80.7
29 4.7 4.4 4.2 4.0 4.9 4.6 79.4 80.9 80.7 78.2 79.2 79.7
36 4.3 5.3 4.4 4.2 3.9 5.5 79.5 81.5 79.8 80.2 79.2 80.7

AR(1)
φ = −0.3

22 4.7 3.8 4.4 3.5 4.4 4.6 78.7 81.2 80.3 80.9 77.9 78.5
29 3.8 4.0 4.9 3.5 5.0 4.4 80.1 79.5 81.2 77.3 79.5 77.1
36 2.7 5.7 4.0 3.3 4.7 5.2 76.8 80.4 79.9 78.8 79.5 79.4

AR(1)
φ = 0.3

22 4.8 4.1 4.4 5.0 5.4 3.6 83.0 79.8 79.4 81.3 78.9 79.2
29 4.9 4.6 5.0 4.4 5.5 5.6 79.5 80.3 82.2 78.5 80.7 77.6
36 4.9 4.9 4.2 3.3 4.5 4.8 80.0 78.9 79.5 81.7 79.4 79.6

AR(1)
φ = 0.6

22 4.5 5.1 4.7 4.3 4.6 4.0 80.3 78.9 81.1 81.2 81.5 77.9
29 3.4 4.5 5.1 4.4 4.3 4.6 79.3 76.2 79.4 81.3 80.6 79.4
36 4.8 4.3 4.2 4.1 4.5 4.5 77.5 80.5 80.9 76.7 80.0 79.7

AR(5)
φ = −0.6

22 4.8 4.6 4.3 3.7 4.7 3.5 81.9 81.4 81.6 79.8 78.3 78.9
29 6.5 4.1 4.5 3.3 4.5 4.8 77.5 79.9 79.8 79.9 79.3 79.3
36 3.5 5.7 4.4 4.6 4.7 5.7 77.8 80.8 78.6 77.9 79.2 81.7

AR(5)
φ = −0.3

22 4.3 4.9 4.0 4.3 5.6 5.0 77.7 81.8 80.0 80.1 80.3 81.1
29 3.9 4.0 5.0 3.2 5.7 5.1 80.0 80.9 80.3 80.6 80.3 77.8
36 4.0 3.6 4.7 4.8 4.8 3.2 79.0 80.4 80.8 80.1 79.0 76.5

AR(5)
φ = 0.3

22 3.5 4.9 5.0 4.1 3.8 4.1 77.4 82.9 78.5 80.6 81.4 80.2
29 4.6 6.1 4.7 4.7 4.1 4.1 78.7 82.0 78.0 81.4 76.5 81.3
36 5.1 4.4 4.0 3.2 3.9 4.7 79.7 81.8 78.6 79.1 77.4 79.0

AR(5)
φ = 0.6

22 5.0 4.6 4.3 4.0 4.0 5.5 80.5 79.4 82.5 79.2 81.1 81.0
29 5.6 4.3 6.9 5.6 3.4 3.1 78.3 80.0 80.5 80.8 80.4 78.4
36 4.8 4.8 4.8 3.5 3.7 5.5 78.2 80.5 80.3 77.6 80.5 79.1

“Max”is the day in which the maximal proximal effect is attained. τ̄ = (1/T )
∑T

t=1 E[It] is the average availabil-
ity. φ is the parameter for AR(1) and AR(5) process. Bold numbers are significantly(at .05 level) greater than .05
and less than 0.80.
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Table 2.19: Simulated type I error rate (%) and power (%) when working assumption (a) is violated.
Scenario 1. The average availability is 0.5. The day of maximal proximal effect is 29.

θ d̄
Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.5d̄
0.10 5.5 4.6 4.2 5.1 79.7 79.4 80.5 80.1
0.08 5.1 4.4 5.4 4.6 80.4 78.9 80.4 78.7
0.06 4.1 5.5 4.6 4.3 77.5 82.7 81.0 81.0

d̄
0.10 4.8 4.3 3.7 4.1 79.3 78.3 77.8 79.4
0.08 5.4 4.9 4.6 5.5 78.8 79.3 78.0 80.6
0.06 4.4 3.5 5.1 4.6 78.4 79.3 79.0 80.4

1.5d̄
0.10 4.4 4.1 4.4 4.8 78.3 80.5 78.4 79.9
0.08 5.0 4.3 4.3 3.9 80.5 79.7 78.7 81.9
0.06 4.0 5.1 5.5 5.6 77.2 80.8 81.6 80.3

2d̄
0.10 4.1 3.8 5.0 5.5 77.7 78.8 79.0 78.4
0.08 4.0 5.0 3.7 5.7 79.3 81.5 79.1 79.4
0.06 4.9 4.3 5.2 5.3 80.8 79.0 77.5 80.9

d̄ = (1/T )
∑T

t=1 Z
>
t d is the average proximal effect. θ is the coefficient of Wt in E[Yt+1|It = 1]. Bold

numbers are significantly (at .05 level) greater than .05 (for type I error) and lower than 0.80 (for power).
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Figure 2.4: Conditional expectation of proximal response, E[Yt+1|It = 1]. The horizontal axis is
the decision time point. The vertical axis is E[Yt+1|It = 1].
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Figure 2.5: Proximal Main Effects of Treatment, {d(t)}Tt=1: representing maintained, slightly de-
graded and severely degraded time-varying treatment effects. The horizontal axis is the decision
time point. The vertical axis is the standardized treatment effect. The ”Max” in the title refers to
the day of maximal effect. The average standardized proximal effect is 0.1 in all plots.
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Table 2.20: Degradation in power when average proximal main effect is
underestimated. The day of maximal treatment effect is attained at day 29
and the average availability is 0.5 in all cases. The associated sample sizes
for each value of average treatment effect are provided in first column.

d̄ in Sample
Size Formula

True d̄
Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.10 (N = 42)

0.098 76.2 78.9 77.6 78.6
0.096 75.1 74.6 78.8 74.0
0.094 73.7 70.7 75.4 73.4
0.092 71.5 71.6 73.2 71.6
0.090 68.9 68.4 69.6 67.3
0.088 65.4 65.6 66.1 65.7
0.086 66.4 67.9 65.2 66.7
0.084 62.3 63.4 63.0 59.6
0.082 60.0 60.2 60.5 58.2
0.080 58.9 59.8 57.8 61.4

0.08(N = 64)

0.078 78.2 80.2 76.8 75.8
0.076 77.3 76.7 76.2 75.4
0.074 73.1 72.2 71.2 71.4
0.072 70.7 71.0 69.4 68.2
0.070 68.2 66.0 65.2 66.1
0.068 65.5 64.3 64.6 65.7
0.066 62.8 62.3 61.8 59.4
0.064 61.9 58.5 59.5 62.1
0.062 53.9 52.6 57.0 56.9
0.060 54.6 51.1 54.8 53.4

0.06(N = 109)

0.058 75.6 76.9 74.0 78.1
0.056 73.9 73.1 73.1 72.7
0.054 68.6 71.1 69.3 68.5
0.052 65.4 69.4 63.6 66.8
0.050 61.0 62.8 64.1 63.2
0.048 57.4 58.6 56.4 56.1
0.046 53.6 53.4 52.9 54.8
0.044 52.0 48.9 50.1 53.0
0.042 45.7 43.9 44.9 46.4
0.040 40.4 42.2 42.3 42.7

44



Table 2.21: Degradation in power when average availability is underestimated. The day
of maximal treatment effect is attained at day 29 and the average proximal main effect
is 0.1 in all cases. The associated sample sizes are given in first column.

(1/T )
∑T

t=1 τt in True Availability Pattern
Sample Size Formula (1/T )

∑T
t=1 τt Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.5 (N = 42)

0.048 76.4 81.7 76.0 78.2
0.046 73.9 75.5 73.6 75.8
0.044 70.6 72.1 71.0 71.7
0.042 70.8 70.6 74.2 70.3
0.040 70.3 69.2 65.7 68.6
0.038 66.0 66.8 67.8 67.0
0.036 64.0 62.5 62.4 62.9
0.034 60.8 61.3 59.4 63.9
0.032 56.4 59.2 54.7 59.8
0.030 51.4 53.1 51.9 54.5

0.7 (N = 32)

0.068 79.5 76.1 79.1 75.0
0.066 77.3 75.7 74.0 76.4
0.064 74.5 74.7 73.5 77.1
0.062 73.2 73.0 75.1 72.5
0.060 69.8 70.5 73.5 72.5
0.058 71.0 69.6 71.3 67.3
0.056 68.8 70.3 66.6 64.0
0.054 68.1 65.8 65.3 68.6
0.052 62.4 64.9 65.6 62.9
0.050 60.6 63.3 62.8 61.4

45



CHAPTER 3

Stratified Micro-Randomized Trails

Recent advances in mobile technologies have generated increased scientific interest in the use and
development of Just-in-Time Adaptive Interventions (JITAIs) in mobile health. Wearable devices
and/or smartphones can be used to unobtrusively collect data from users in real time, such as
busyness, location, weather, step count and heart rate [34, 35, 36]. The JITAI involves treatments
that are delivered via notifications on a smartphone or a wearable and which are designed to help
users make healthy decisions to effectively manage their health and health behaviors. To be most
effective in influencing health, the combination of both the right treatment and the right delivery
time is likely critical [36]. Scientists are increasingly interested in designing mobile interventions
in which treatments can be delivered to the user at the risk times, such as when the individual is
stressed [37], anxious, or disengaging, and furthermore, in understanding whether it is useful to
trigger delivery of treatments at these times.

In this chapter, we introduce stratified micro-randomized trial (sMRT) design, as a generaliza-
tion or micro-randomized trial design in Chapter 2.2. This is motivated by our collaboration on
the design of Sense2Stop, a mobile health smoking cessation study currently underway. In this
study, participants are trained in stress reduction exercises prior to their smoking quit date. Apps
that can be used to guide the participant through the exercises are installed on a study-provided
phone. These apps can be accessed at any time by a participant. However, a common problem
is that at the very times at which practicing these exercises might be most useful, participants do
not do so. The scientific team is most interested in understanding whether reminders to practice
stress-reduction exercises will be useful in reducing/preventing further stress if the reminders are
delivered at stressful times. Thus, some reminders are to occur at times when the participant is
classified as stressed (stress times) and the remaining at times the participant is not classified as
stressed (not-stress times). A primary goal of this study is to assess whether the reminders result in
a reduction/prevention of stress over the subsequent hour and how the effect differs between stress
and non-stress times.
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In the following section, we introduce Sense2Stop. Next, we introduce the stratified micro-
randomized trial (sMRT) and discuss how sMRT generalizes the micro-randomized trial. We then
define the causal treatment effect and construct a test statistic for assessing the treatment effect.
Subsequently, we develop a simulation-based method for determining the sample size.

3.1 Sense2Stop: Smoking Cessation Study

Sense2Stop is a mobile health intervention study beginning on each participant’s smoking quit day.
This study includes a 10-day post-smoking-quit phase in which participant may receive reminders
to practice self-regulation exercises installed on the smart phone [38]. These exercises are designed
to help users manage their stress as stress is a risk factor for relapse to smoking. Participants wear
both an AutoSense chest band [39] as well as bands on each wrist for 10 hours per day. Sensors in
the chestband and wristband measure various physiological responses and body movements to ro-
bustly assess physiological stress. A online pattern-mining algorithm uses the resulting sensor data
to construct binary time-varying stress classification at each minute of sensor wearing throughout
the entire day [34].

3.2 Stratified Micro-Randomized Trial

Recall that an individual’s longitudinal data, recorded via mobile devices that sense and provide
treatments, can be written as

{O0, O1, A1, O2, A2, . . . , Ot, At, . . . , OT , AT , OT+1}

where t indexes decision times,O0 is a vector of baseline information andOt(t ≥ 1) is information
collected between time t−1 and t. The treatment at time t is denoted byAt; throughout this chapter
we consider binary options for the treatments. In Sense2Stop, the decision time t is every minute
during a 10 hour day over a period of 10 days and At = 1 if at decision t, the participant is
prompted to practice stress-reduction exercises and At = 0 otherwise.

Similar to the micro-randomized trial (MRT) introduced in Chapter 2, the treatment in the
stratified micro-randomized trial (sMRT) is randomized at each decision time. sMRT is a gener-
alization of MRT to accommodate stratification. In particular, the decision times are divided into
strata and the randomization occurs separately by strata. The primary rationale for the stratification
is to ensure a sufficient number of decision times at which treatment is provided and is not provided
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within one or within each of the strata. In particular, some strata occur more rarely and thus to en-
sure sufficient treatment exposure and non-exposure within each strata, we stratify randomization.
For example, in Sense2Stop there are two strata: minutes at which a participant is classified as
stressed and minutes at which the participant is not classified as stressed. Participants are expected
to experience much fewer minutes of stress than non-stress minutes per day. The stratification vari-
able at time t is denoted by Xt ∈ X , included in the observation Ot. In Sense2Stop, X = {0, 1}:
Xt = 1 indicates that at the decision time t the participant is classified as stressed and Xt = 0

otherwise.
At some decision times, feasibility and ethics considerations imply that the participant is un-

available for treatment. For example, if sensors indicate that the user might be driving a car [34],
then the message should not be sent; that is, the user is unavailable for treatment. The observation,
Ot, includes an availability indicator It to capture this information; that is, It = 1 if the individual
is “available” for treatment and It = 0 otherwise. In Sense2Stop, if a participant receives a treat-
ment reminder, then for the next 60 minutes the participant is considered unavailable for further
treatment. Furthermore in many settings the risk variable is defined using an interval of time. In
Sense2Stop, the classification algorithm produces a smoothed probability of physiological stress
across the minutes with an episodic pattern in which the probability increases, then decreases then
increases and so on across the minutes. An episode is defined by the beginning of a positive trend
interval and peaks at the end of a positive-trend interval followed by the start of a negative-trend
interval. To ensure the required sensitivity and specificity the algorithm only attempt to make
a classification right after the peak of an episode. Thus a participant can only be available for
treatment in the minute after the peak of an episode.

Let Ht = {O0, O1, A1, . . . , At−1, Ot} be the history of past treatments up time t − 1 and
observation up to time t. In sMRT, the treatment At is randomized with probability πt = Pr(A1 =

1|Ht). In the case where the participant is currently unavailable It = 0, the probability is set to 0,
e.g., πt = 0. Note that unlike in MRT, here the randomization probability πt = Pr(At = 1|Ht) is
allowed to depend on the stratification variable Xt to ensure we have enough treatments provided
at each of strata. Furthermore, consideration of treatment burden often implies a constraint on
the total number of treatments provided over certain time interval (e.g., in a day). Such “budget”
constraint might result in a randomization probability that depends on the entire observed history,
e.g., the number of provided treatments and the number of stress minutes in the current day. For
example in Sense2Stop, the scientific team aims to provide an average of 1.5 reminders per day at
stress times and not-stress times. In Chapter 4, we will discuss how to design the randomization
probability to achieve the budget constraint by utilizing a forecasting function. Throughout we
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assume the randomization probability πt = Pr(At = 1|Ht) is known of history Ht. For ease of
notation, denote the decision rule by πt(a|ht) = Pr(At = a|Ht = ht)

The mobile interventions are often designed to have proximal, near-term effects measured by
certain proximal response variable. Typically the proximal response at time t is defined as a known
function of {Ot, At, Ot+1} and does not depend on the treatment at the next decision time, e.g.,
At+1. However, in the case where the decision times are dense in time (e.g., every minute), the
proximal response might need to be defined over a subsequent time window. To distinguish be-
tween these two cases, we denote the proximal response at time t following the treatment At by
Yt,∆, a known function of {Ot, At, Ot+1, At+1, . . . , Ot+∆−1, At+∆−1, Ot+∆} over the subsequent
time window of size ∆. Note that when ∆ > 1, the proximal response could be impacted future
treatments. In Sense2Stop, the proximal response is the fraction of minutes classified as stress in
the following one hour window, e.g., Yt,∆ = ∆−1

∑∆
s=1 1Xt+s=1 with ∆ = 60.

3.3 Proximal Main Effect of Treatment

In Section 2.3, Chapter 2, we defined the proximal effect of treatment when the proximal re-
sponse is only a function of {Ot, At, Ot+1}, e.g. ∆ = 1. As discussed, when the size of time
window ∆ > 1, the proximal outcome for time t can be impacted by future treatments, e.g.,
{At+1, . . . , At+∆−1}, and thus the definition of proximal treatment effect involves careful examina-
tion of the distribution of future treatments. Below we define the proximal main effect of treatment
using potential outcome framework [20, 21, 22].

Recall that the treatment can only be provided when the participant is unavailable and thus
we need to index the potential outcome by decision rule. Recall in Section 2.3, we define d(a, i)

for a ∈ {0, 1}, i ∈ {0, 1} by d(a, 0) =“unavailable-do nothing”and d(a, 1) = a. Then for each
a1 ∈ {0, 1}, define D1(a1) = d(a1, I1). Then we denote the potential availability indicators at
decision time 2 by ID1(a1)

2 = I
d(a1,I1)
2 . Next for each ā2 = (a1, a2) with a1, a2 ∈ {0, 1}, define

D2(ā2) = d(a2, I
D1(a1)
2 ) and D̄2(ā2) = (D1(a1), D2(ā2)). The potential availability indicator at

decision time 3 is ID̄2(ā2)
3 . Similarly, for each āt = (a1, . . . , at), define Dt(āt) = d(at, I

D̄t−1(āt−1)
t )

and the sequence of decision rule up to time t, D̄t(āt) = (D1(a1), . . . , Dt(āt)).
Now, the potential stratification variable at time t is then given by {XD̄t−1(āt−1)

t }. Recall that
the proximal response Yt,∆ is a function of {Ot, At, Ot+1, At+1, . . . , Ot+∆−1, At+∆−1, Ot+∆} and
thus the potential proximal response is Y D̄t+∆−1(āt+∆−1)

t,∆ . In this chapter, we consider the proximal
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effect of treatment defined by

β(t, x) = E
[
Y
D̄t+∆−1(Āt−1,1, 0∆−1)
t,∆ | ID̄t−1(Āt−1)

t = 1, X
D̄t−1(Āt−1)
t = x

]
− E

[
Y
D̄t+∆−1(Āt−1,0, 0∆−1)
t,∆ | ID̄t−1(Āt−1)

t = 1, X
D̄t−1(Āt−1)
t = x

]
where the expectation is taken with respect to the distribution of the potential outcomes and ran-
domization in Āt−1 according to the randomization probabilities {πs = Pr(As = 1|Hs), s ≤ t−1}
and the future treatments in the potential proximal response are both set to 0∆−1 = (0, . . . , 0) ∈
R∆−1. Note that, similar to the proximal treatment effect defined in Section 2.3, the above prox-
imal effect is conditional in that the effect of treatment at time t is defined for only individuals
available for treatment at time t, that is, ID̄t−1(Āt−1)

t = 1 and the stratification variable at the level
x, XD̄t−1(Āt−1)

t = x. This proximal effect is a main effect in that the effect is marginal over any
effects of previous treatment Āt−1.

Here we set the future treatments (at+1, . . . , at+∆−1) = 0∆−1 in assessing the proximal treat-
ment effect at time t. In Sense2Stop, the corresponding proximal effect can be interpreted as the

effect on the fraction of time stressed in the next hour of (a) providing a reminder at time t to

practice stress-reduction exercises and no reminders within the next hour versus (b) no reminder

at time t as well as within the next hour. Other choice of future treatments is possible depending
on the application and can be easily generalized to the stochastic case, i.e., the future treatments
are selected according to some pre-specified decision rules. In particular, one can assume the fu-
ture treatments are selected by the same randomization probabilities that select the treatments in
the study as considered in [40]; similar to how we handle the distribution of previous treatments.
However, this could be probabilistic if the randomization probability heavily depends on the cur-
rent treatment. For example in Sense2Stop, the participant is unavailable in the next one hour after
a reminder is sent. That is, the randomization probabilities for future treatments are all 0 when
At = 1. This is very different comparing to the case when At = 0 so the proximal effect defined
in this way is problematic. For the rest of chapter, we only consider the case where the future
treatments are set to 0, but the generalization is straightforward.

Next, we express the proximal treatment effect β(t, x) in terms of the observable data distribu-
tion. The expression is more complicated than in Section 2.4 in standard MRT due to the fact that
(1) the randomization probability might depend on the entire history and (2) the proximal effect
is defined by setting future ∆ − 1 treatments to 0, while in the observed data the treatments are
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randomized. Assuming the consistency assumption [21, 22], the micro-randomization implies that

β(t, x) = E
[
E[WtYt,∆ |Ht, At = 1]− E[WtYt,∆ |Ht, At = 0] | It = 1, Xt = x

]
where the weightWt =

∏∆−1
j=1

1{At+j=0}

1−πt+j and πj = Pr(Aj = 1|Hj) is the randomization probability.
To see this, note that for a ∈ {0, 1},

E
[
Y
D̄t+∆−1(Āt−1,a, 0∆−1)
t,∆ | ID̄t−1(Āt−1)

t = 1, X
D̄t−1(Āt−1)
t

]
= E

[
E
[
Y
D̄t+∆−1(Āt−1,a, 0∆−1)
t,∆ |Ht(Āt−1)

]
| ID̄t−1(Āt−1)
t = 1, X

D̄t−1(Āt−1)
t

]
= E

[
E
[
Y
D̄t+∆−1(Āt−1,a, 0∆−1)
t,∆ |Ht

]
| It = 1, Xt

]
= E

[
E
[
Y
D̄t+∆−1(Āt−1,a, 0∆−1)
t,∆ |Ht, At = a

]
| It = 1, Xt

]
= E

[
E
[
Y
D̄t+∆−1(Āt, 0∆−1)
t,∆ |Ht, At = a

]
| It = 1, Xt

]
where the second equality follows from the consistency assumption and the third equality follows
from the randomization of At. On the other hand, the inside conditional expectation can be re-
written using importance weights:

E
[
Y
D̄t+∆−1(Āt, 0∆−1)
t,∆ |Ht, At

]
= E

[
E
[
Y
D̄t+∆−1(Āt, 0∆−1)
t,∆ |Ht+1

]
|Ht, At

]
= E

[
E
[1{At+1=0}

1− πt+1

Y
D̄t+∆−1(Āt, 0∆−1)
t,∆ |Ht+1

]
|Ht, At

]
= E

[
E
[1{At+1=0}

1− πt+1

Y
D̄t+∆−1(Āt+1, 0∆−2)
t,∆ |Ht+1

]
|Ht, At

]
= · · ·

= E
[
E
[ t+∆−1∏
j=t+1

1{Aj=0}

1− πj
Y
D̄t+∆−1(Āt+∆−1)
t,∆ |Ht+∆−1

]
|Ht, At

]
= E

[
WtYt,∆ |Ht, At

]
where in the last equality we use the consistency assumption.

3.4 Test Statistic and Sample Size Calculation

Our sample size formula is based on a test statistic for use in testing

H0 : β(t, x) = 0, t = 1, . . . T, x ∈ X
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against a scientifically plausible alternative. Similar to the test statistics developed in MRTs in
Section 2.4, here we also develop the test statistics for use in testing H0 against alternatives of the
linear form ft(x)>β, where ft(x) ∈ Rp, is a feature vector of t and stratification variable x.

We base the test statistic on the estimator of β in a weighted least squares fit of a working
model. In particular, define the q × 1 vector Bt = gt(Ht), where gt is a function of the current
history Ht (including the stratification variable Xt) that are predictive of the proximal response.
Define the q × 1 vector Zt = ft(Xt). Let π̃t(a|x) be a pseudo decision rule depending only on
the stratification variable, that is, π̃t(a|x) ∈ [0, 1] and

∑
a π̃t(a|x) = 1 for each x ∈ X , and let

π̃t = π̃t(1|Xt). The estimator (α̂, β̂) minimizes the weighted least squared objective function with
centered treatments:

PN

{
T∑
t=1

ItWt
π̃(At|Xt)

πt(At|Ht)

(
Yt+∆ −B>t α− (At − π̃t)Z>t β

)2

}
(3.1)

Recall the first weight is given byWt =
∏∆−1

j=1

1{At+j=0}

1−πt+j . The use ofWt is to adjust the discrepancy
between the selection of future treatments in the study and in the definition of proximal treatment
effect. The use of second weight π̃(At|Xt)

πt(At|Ht) , motivated by [40], allows the consistent estimate of
treatment when the proximal treatment effect model is correctly specified, e.g., β(t, x) = ft(x)>β

for some β ∈ Rp even when the working modelB>t α for E[WtYt+∆|Ht] is mis-specified. Similar to
the least squared estimator presented in Section 2.4, the action-centering, e.g., At − π̃t, guarantees
that even when the treatment effect model is wrongly specified, the estimator β̂ converges to

β̃ =

(
E
[ T∑
t=1

Itπ̃t(1− π̃t)ZtZ>t
])−1

E
[ T∑
t=1

Itπ̃t(1− π̃t)β(t,Xt)Zt
]

(3.2)

Note that β̃(t, x) = ft(x)>β̃ is the weighted L2 projection of the proximal treatment effect onto
the linear space spanned by ft(x). Similarly, one can show that α̂ converges to α̃:

α̃ =

(
E
[ T∑
t=1

ItBtB
>
t

])−1

E
[ T∑
t=1

It
(∑

a

π̃(a|Xt)E[WtYt+∆|Ht, At = a]
)
Bt

]
Furthermore, the weighted least squares estimators β̂, under moment and invertibility conditions,
satisfies that

√
N(β̂ − β̃) is asymptotically normal with mean 0 and variance Σβ = Q−1WQ−1
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where Q = E
[∑T

t=1 Itπ̃t(1− π̃t)ZtZ>t
]
,

W = E

[( T∑
t=1

ε̃tItWt
π̃(At|Xt)

πt(At|Ht)
(At − π̃t)Zt

)
×
( T∑
t=1

ε̃tItWt
π̃(At|Xt)

πt(At|Ht)
(At − ρt)Z>t

)]

and ε̃t = Yt+∆−B>t α̃− (At− π̃t)Z>t β̃. Using the small sample adjustment as discussed in Section
2.4, the rejection region for the test of H0 is then{

Nβ̂>Σ̂−1
β β̂ >

p(N − q − 1)

N − q − p
F−1
p,N−q−p (1− α0)

}
(3.3)

where Σ̂−1
β is the sandwich estimator and α0 is the significance level. The proof of this result is

similar to Lemma 1 in Chapter 2 and thus omitted here.
To determine the sample size for sMRT, we aim to calculate the smallest sample size needed to

detect an alternate β(t, x) with a given power (1− β0) at a given significance level (α0). When N
is large and H1 holds, Nβ̂ ′Σ̂−1

β β̂ is approximately distributed as a noncentral chi-squared χ2
p(cN)

[26], where the non-centrality parameter cN = Nβ̃>Σ−1
β β̃ and β̃ = Q−1WQ−1 is defined in (3.2).

With the access to cN , the desired sample size can be found according to (2.9). Unfortunately,
calculation of noncentrality parameter, cN in sMRT is non-trivial due to the fact the randomization
probability depends on the stratification variable or even the entire history. In order to find an
analytic form of the noncentrality parameters, one need to impose certain strong assumption on
the distribution of the stratification variable besides the working assumptions presented in Section
2.5. As such, we below propose a three-step simulation-based sample size calculator.

In the first step, information elicited from the scientist is used to formulate a generative model
and calculate, via Monte-Carlo integration, γc = β̃>Σ−1

β β̃ in the non-centrality parameter. The
resulting value, γ̂c, is plugged in to equation 2.9 to solve for an initial sample size N̂0. In the second
step, we use a binary search algorithm to search over a neighborhood of N̂0; in our simulations,
we found the binary search quickly resulted in a solution. For each sample size N required by
the binary search algorithm, K samples each of N simulated participants are run. Within each
simulation, the rejection region for the test is given by equation (3.3) at the specified significance
level. The average number of rejected null hypotheses across the K simulations is the estimated
power for the sample size N . The sample size is the minimal N with estimated power above the
pre-specified threshold 1− β0. In the last, third, step we conduct a variety of simulations to assess
the robustness of the sample size calculator to any assumptions and to make adjustments to ensure
robustness.
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CHAPTER 4

Determining Treatment Timing Under Average
Constraint

The Just-In-Time Adaptive Interventions (JITAIs) involves treatments which are designed to help
users make healthy decisions in the moment. To be most effective in influencing health, the com-
bination of both the right treatment and right delivery time is likely critical [36]. Many predic-
tion/detection algorithms have been developed in order to provide potential delivery times. For
example, physiological measurements collected from wearable sensors can be used to detect phys-
iological stress [39]. Impending negative mood or detections of current negative mood [41] and
detections of risky locations [42, 43] are additional examples of risk predictions/detections. Alter-
natively, the algorithms may detect times of potential receptivity or interruptibility [44].

Scientists are increasingly interested in designing mobile interventions in which treatments can
be delivered to the user at these times. For example, in smoking cessation, we might aim to deliver
a reminder to practice stress management skills when the user is detected to be stressed in order
to limit potential relapse. Depending on the user and the day, there may be many such times.
However, it is well understood that delivering too many treatments can cause undue user burden
[45], possibly leading to app disengagement. Furthermore, repeatedly providing similar treatments
may lead to habituation, where users begin to pay less attention to each subsequent treatment,
decreasing its effectiveness [36, 46]. Thus, scientists often impose constraints on the number
of times the mobile device should deliver treatments. Consider, for instance, the HeartSteps V1
physical activity study [47, 48, 49] in which activity suggestions are delivered to the user’s phone.
In this study, considerations of burden and habituation led to the constraint that, on average, three
activity suggestion messages would be delivered per day. In the planned next version of HeartSteps
– referred to as HeartSteps V2 throughout – one of the treatment components is an anti-sedentary
message. Here, the scientific team aims to provide an average of 1.5 anti-sedentary messages per
day at sedentary times.
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Here, times at which treatment may be provided are referred to as risk times. Ideally, it is best
to deliver the treatments uniformly across the risk times so as to randomly sample the full variety
of contexts in which risk times occur. Uniform sampling benefits the study design in two ways:
first, uncertainty in when the treatments are delivered can reduce user habituation [46]; second,
the uniform sampling of risk times enhances the ability of data analyses to learn if and in which
contexts there is a causal effect of the treatment.

In this chapter we develop a “Sequential Risk Time Sampling” (SeqRTS) algorithm that both
satisfies the desired constraint on the total number of treatments in a given time interval and spreads
these treatments uniformly across all risk times. The SeqRTS algorithm combines forecasts of the
remaining number of risk times within future blocks of time with a sequential algorithm that, at
each risk time, provides a probability for triggering delivery of treatment. The proposed algorithm
can be used to design the randomization scheme for interventions in stratified micro-randomized

trials design in Chapter 3
This work is motivated by our collaboration on two mHealth studies – a smoking cessation

trial currently in the field, Sense2Stop [35, 50], and in planning the next version of a physical
activity trial, HeartSteps V2 [48]. In both cases, the approach developed here is currently being
used or will be used to sample risk times to provide treatment. In both of the motivating studies, a
primary goal is to learn if and in which contexts there is a causal effect of the treatment in altering
health behaviors. In HeartSteps V2, for example, one goal is to determine if the anti-sedentary
messages are effective at times the user is detected to be sedentary and how this effectiveness
might be impacted by current context. In the smoking cessation study, Sense2Stop, one goal is to
learn whether the reminders to practice stress management skills are effective at times the user is
detected to be stressed.

4.1 Related work

A natural approach to developing a method to meet the constraints and deliver treatments uniformly
across risk times is to build on methods from the ecological momentary assessment (EMA) [51,
52, 53, 54, 55, 56] literature. Recall an EMA is a self-report collected via a mobile device as the
user goes about his/her life [51, 56]. However, due to the high user burden imposed by frequent
requests for self-reports, scientists often set a budget for the number of EMA requests within a
day. Indeed, a higher average EMA response rate is observed in nonclinical studies when users are
prompted for self-report fewer times per day [57]. In addition, usually scientists aim to uniformly
spread out the EMA data collection across the day so that the self report answers more accurately
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reflect the user’s mood/behaviors in different contexts throughout the day.
A classical approach for timing the EMA is to split each day into some number of blocks, say

K, and assign each block with certain number of treatments to achieve the constraint [52, 53, 54].
In a recovery support services study [52], for example, the day was split intoK = 5 blocks. Within
each block, a time was uniformly sampled and an EMA was delivered via the mobile device to
the user at the sampled time. This method achieves the budget constraint exactly of five EMA
messages every day. Of course, the number of messages can be randomized. For instance, if we
want to achieve an average of 3 messages per day and we keep the 5 blocks from the prior example,
then we can send a message with probability 3/5 = 0.6 in each block. If a block is selected for a
message then the time at which the EMA message is sent is sampled uniformly within the block.

Rathbun et al. [55] consider alternative approaches to sending EMA. They sample times at
which to send EMA according to a Poisson process with intensity λt(Ht) = limδ→0 δ

−1E[N [t, t+

δ)|Ht], where N [a, b) is the number of EMA sent within the time interval [a, b) and Ht denotes
history of all the EMA times before time t. One option they consider for the intensity is λt(Ht) =

exp(α+ β(t− ρN [0, t))) for some β, ρ > 0. This intensity self-corrects when the system has sent
more EMA than was desired. That is, if N [0, t), the number of EMA sent prior to time t, goes
well-above the target t/ρ then the probability of sending an EMA is decreased.

However, these methods were not developed to deliver treatment. The method developed in this
paper generalizes ideas from the above methods to the setting in which EMA messages are only to
be sent at risk times and in addition, we do not know how many risk times will occur within any
block of time. We will see that, when there is high variability in the number of risk times within
the block, the SeqRTS algorithm outperforms simple extensions of the block sampling approach
in achieving the desired average number of treatments and in spreading the treatments uniformly
across risk times. We will also see that this performance depends on the forecast quality.

In the next section, we introduce notation for the longitudinal data collected from wearable
devices. Next, in section 4.2, we introduce the SeqRTS algorithm. We discuss each tuning pa-
rameter, what it controls, and how to set their values. We evaluate the performance of the SeqRTS
algorithm in two mHealth studies – the Minnesota smoking study and HeartSteps V1. Studying
performance on the Minnesota study informs expected performance in Sense2Stop. We end with
a discussion of limitations and suggestions regarding practical implementation in future studies.
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4.2 Sequential Risk Time Sampling Algorithm

Data and Notation

We recall that the user’s longitudinal data recorded via mobile devices can be written as

{O0, O1, A1, O2, . . . , Ot, At, Ot+1, . . . }

where t indexes regularly-spaced times (e.g., every minute, five-minutes, thirty-minutes, hour,
etc.); O0 contains the baseline information; the observation Ot (t ≥ 1) is the vector of sensed and
self-report observations collected between time t−1 and t; andAt is the treatment at time t. Choice
of time-scale is usually determined by the frequency with which the risk detections can be made. In
the smoking cessation study, the temporal frequency is set to every minute; in the physical activity
study, the frequency is every five minutes. For simplicity, we consider binary treatment, i.e.,At = 1

if treatment is delivered, At = 0 otherwise. Denote by Ht = {O0, O1, A1, O2, . . . , At−1, Ot} the
observation history up to time t as well as the treatment history at all times up to, but not including,
time t.

The observations, Ot, include a variable that indicates risk, Xt. For example, in the physical
activity study, described below, Xt = 1 if the user’s wristband tracker records less than 150 steps
in the past 40 minutes (i.e., user is sedentary) and Xt = 0 otherwise. The activity suggestion
messages are designed to be delivered when the user is sedentary, e.g., when Xt = 1. A risk

time is a time t at which the user is detected to be at risk. In the physical activity study, “at risk”
implies Xt = 1; however, in other studies, multiple levels of risk may exist. In the smoking
cessation study, for example, Xt = 1 (i.e., time is not classified as stressed) and Xt = 2 (time is
classified as stressed) are two levels of risk. Write Xt = 0 to denote the user is not at risk, and
Xt = x ∈ {1, . . . ,X} > 0 to denote the user is at risk level x at time t (i.e., a risk time at level x).
The risk variable at time t, Xt, is contained in Ht.

At some risk times, however, feasibility and ethics considerations imply that the individual is
unavailable for treatment. For example, if sensors indicate that the user might be driving a car [34],
then the message should not be sent; that is, the user is unavailable for treatment. The observation,
Ot, includes an availability indicator It to capture this information; that is, It = 1 if the individual
is “available” for treatment and It = 0 otherwise. An available time is a time t at which the user is
available for treatment, i.e., when It = 1. The availability indicator at time t, It, is contained inHt.
An available risk time is a time t at which the user is available for treatment and at risk. Finally,
times t such that Xt = x > 0 and It = 1 are referred to as available risk times at level x.
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Algorithm

As mentioned above, the proposed sequential risk time sampling (SeqRTS) algorithm generalizes
blocking as well as the use of a sequential algorithm from the EMA literature. For simplicity,
assume that each day is split into K time blocks, i.e., T = ∪Kk=1Bk and denote the size of each
block |Bk| = T . The following method can be easily generalized to allow for different numbers of
blocks per day or differently sized blocks depending on the time of day. Suppose there are multiple
levels of risk indexed by x ∈ {1, . . . ,X}. And suppose that each day, an average of N∗x available
risk times at level x are to be sampled for treatment delivery (At = 1). Mathematically, the average
constraint can be written as

E
[∑
t∈T

At1{Xt=x,It=1}

]
= N∗x (4.1)

for each value of x. Note the expectation is over the distribution of available risk times at level x
within a given day. Furthermore, a secondary goal is to deliver treatment uniformly over available
risk times at every level x such that the above constraint is satisfied. Operationally, the goal is
to design a probability to assign treatment or, equivalently, a probability that is used to sample
available risk times at level x.

Intuitively, at each available risk time in a block, SeqRTS calculates the number of remain-
ing available risk times to be sampled for treatment in the block and divides this by the expected
number of available risk times remaining in the block. The formula of randomization probability
presented below is derived by iteratively taking the conditional expectation given the current his-
tory of (4.1); see Appendix 4.5 for the detailed derivation. Below we first introduce the algorithm
and provide the intuition and then discuss the inputs required by the algorithm. Suppose time t is
an available risk time in the k-th time block at level x for a user. Then, SeqRTS delivers treatment
with probability

πt = πt(Ht) = φε

(
Nx,k − Ct,λ(x)

1 + g(x |Ht)

)
, (4.2)

where

1. Nx,k ≥ 0 (i.e., the block budget) is a tuning parameter. Roughly speaking,Nx,k is the average
number of treatments delivered in block k at level x. So

∑K
k=1 Nx,k ≈ N∗x .

2. λ ∈ [0, 1] is a tuning parameter and Ct,λ(x) denotes a soft version of number of treatments
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that have been triggered so far in current block at the risk level x; that is,

Ct,λ(x) =
∑

s∈Bk,s≤t−1

1{Is=1,Xs=x}
(
λt−sAs + (1− λt−s)πs

)
. (4.3)

Ct,1(x) (i.e., setting λ = 1) equals the exact number of treatments that have been triggered
so far in the current block at risk level x. Ct,0(x) (i.e., setting λ = 0) equals the sum of
probabilities of triggering treatment at previous available risk times at level x in the current
block. The former uses the observed history. The latter uses the “expected” history. The
choice of λ ∈ [0, 1] smoothly adjusts between these extremes. As will be seen below, the
tuning parameter λ controls the variability in sampling the risk times.

3. g(x|Ht) denotes a forecast of the number of available risk times at risk level x left in the
current block, i.e.,

∑
s∈Bk,s≥t+1 1{Is=1,Xs=x}, given the observed history up to time t, Ht.

4. φε(x) = x1{x∈[εL,εU ]} + εU1{x>εU} + εL1{x<εL} denotes a truncation function with pre-
specified upper and lower limits ε = {εL, εU}. The truncation function ensures the output
value stays within [εL, εU ] (i.e., bounded away from 0 and 1) to allow for causal inference
with the collected data. This truncation function is intended as a last resort as generally Nx,k

and λ, when well tuned, will ensure that the fraction in (4.2) is bounded away from 0 and 1.

To recap, the numerator in (4.2) takes the block budget Nx,k for level x and subtracts the amount
that has been “used” by time t (i.e., Ct,λ(x)); this is, roughly speaking, the number of remaining
times to be sampled for treatment in the block where the user will be available and at risk level x.
This “remaining budget” is then divided evenly among the expected number of available risk times
at level x remaining in the block (i.e., 1 + g(x |Ht)). Algorithm 1 provides pseudocode for the
SeqRTS algorithm at a particular risk time t.

In general, we aim to sample times for treatment with probabilities bounded away from 0 and
1; this enhances our ability to learn the casual effect of the treatment and how this causal effect
is impacted by the user’s context. However, if εL = 0, εU = 1 and λ = 1, then it is possible,
given the history, for a time at which the user is available and at risk level x to be sampled for
treatment with zero probability. This is because the numerator becomes zero whenever the past
number of treatments in the current block equals the targetNx,k. Additionally, for certain histories,
the probability of sending treatment can be one. Consider a toy example with a perfect forecast,
the block is a day and every day has five available risk times. Suppose the goal is to achieve an
average of one treatment per day. Then if λ = 1, once a treatment within the block is provided,
the probability of treatment at any future available risk time in the day is zero. Or if no treatment
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ALGORITHM 1: SeqRTS algorithm applied at a risk time t
Input: Current block budgets: {Nx,k}x=1,...,X . Tuning parameter: λ. Current history: Ht, which contains

current risk and availability (Xt, It). Forecasting Method: g(x|h). Bounds: ε = (εL, εU )
Output: Current treatment At and treatment probability πt
Set x← Xt

if It = 0 then
Set πt = 0 and At = 0

end
else

Compute Ct,λ(x) via (4.3)
Compute g(x|Ht) for given forecasting method

Set πt = φε

(
Nx,k−Ct,λ(x)

1+g(x|Ht)

)
Draw At ∼ Bern(πt)

end
return {πt, At}

has been provided in the first four risk times, then the probability of sending treatment at the fifth
risk time becomes 1. To avoid these settings we select λ < 1 and, in addition, we employ the
truncation function, φε, with εL > 0 and εU < 1. Furthermore, if λ = 0, the algorithm, because it
does not take into account past treatments but only the probabilities of past treatments, may sample
many more or much fewer risk times than desired. Consider the toy example once more, in which
the block is an entire day. Then if λ = 0, the average number of treatments per day is equal to
1 as desired, but on 19% of the days, the user will receive more than 3 treatments. For studies
where treatment may cause high undue user burden, this might be considered to be excessive. In
Sense2Stop, for instance, an excessive number of treatments at times classified as “Stressed” may
only exacerbate stress. Tuning of λ guards against the likelihood of over-treating at these times.
See section 4.5 for a more complex example of this trade-off.

When the scientific team believes the variation in the number of treatments under λ = 0 is too
high, one could choose a non-zero λ to reduce the variation. Additionally, the use of discounted
weights λt−s, instead of a fixed, time-invariant weight, is to help spread out the treatments, as the
probability of sending treatments would decrease if a treatment was delivered in the recent past
and such impact would be weaken as time goes on (discounted by the length of separation t − s).
This is similar to the use of the self-correcting process in the point-process sampling method for
EMA discussed in section 4.1.

A key difference between the SeqRTS algorithm and the block sampling method discussed in
section 4.1 is the use of forecast, g(x|Ht). Essentially, we replace the crude estimate of the average
number risk times per block by time-varying forecasts of the remaining risk times at risk level x
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within the block. These forecasts allow us to use user-specific time varying covariates and baseline
characteristics to account for the potentially high variability in the number of risk times and in
how the risk times are spread out within a block and thus better achieve the average constraint and
uniformly spread out the treatments across the risk times.

Selecting Tuning Parameters SeqRTS requires selection of blocks, the construction of the fore-
casts (g(x|Ht)) and the tuning parameters λ and N = {Nx,k, x = 1, . . . ,X , k = 1, . . . , K}. We
assume that the blocks and bounds ε have been selected. Because there are a variety of high qual-
ity prediction/forecasting methods available, here we focus on tuning of λ and N . See below for
comments on the selection of the number of blocks as well as the prediction method. The TUNE
algorthim is given in Algorithm 2.

Training data is used to tune λ and N . This training data must include all of the features needed
by the forecasting method as well as the risk Xt and availability It variables. Here, our training
data is from similar studies to Sense2Stop for which the same sensing suites are deployed – the
Minnesota smoking study.

As previously discussed, the value of Nx,k controls the total number of treatments in the k-
th block. When there is more than one time block in a day (i.e. K > 1), in order to choose
an appropriate value of Nx,k we first construct a target average number of treatments for each
block, denoted by N∗x,k, by splitting the overall daily constraint N∗x into K time blocks such that
N∗x =

∑K
k=1 N

∗
x,k. Here we use N∗x,k = N∗x/K.

To tune the parameters (λ,N ), we use (4.2) to determine the probability πt to generate an At
at each available risk time. This is done for each block in each day in the training data, 1000 times.
We then compute the average number of treatments in the k-th block at each level x (across all
days and the 1000 runs of the algorithm) and denote the averages by Fx,k(λ,N ). For each λ in
a grid, we search for the optimal tuning value of Nx,k, such that the computed average number
of treatments is equal to the target constraint N∗x,k; more precisely, we minimize the objective
function J(N ) =

∑K
k=1

∑X
x=1(N∗x,k − Fx,k(λ,N ))2. The remaining problem is how to tune λ.

Recall that we aim to select a value of λ < 1 so as to ensure the sampling probabilities lie in (0, 1).
However small values of λ can potentially result in too much variance in the number of treatments
(e.g. sampled risk times) across days. Our approach, as part of the scientific team, is to decide
what level of daily variation in treatments is tolerable and use this to tune λ. That is, we specify
a probability, p, and a range [l, u] so that the probability of total treatments within a given range
[l, u], i.e., Pr(l ≤

∑
t∈T At1{It=1,Xt=x} ≤ u) ≥ p for each level of risk x ∈ {1, . . . ,X}. For

each value of λ, the training data to estimate this probability under the optimal, tuned N . Then
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ALGORITHM 2: TUNE: finds tuning parameters for SeqRTS using training data

Input: Block budgets: {N∗x,k}; Person-day risk and availability trajectories {(Xi,t, Ii,t)}n,Ti=1,t=1.
Forecasting method g(x|h). Bounds ε = {εL, εU}. Grids Gλ and GN for λ and N . Treatment
range [l, u] and lower-bound probability p

Output: Tuning parameters: (λopt,N opt)
for (λ,N) ∈ Gλ ×GN do

for i← 1 to n do
for j ← 1 to 1000 do

Initialize H0 = ∅;πi,0 = 0;Ai,0 = 0
for t ∈ T do

Set Hi,t = {Hi,t−1, πi,t−1, Ai,t−1, Xi,t, Ii,t}
Set {πi,t, Ai,t} ← SeqRTS with inputs (N , λ), Hi,t, g(x|h), and ε

end
Store ith person-day, jth iteration history output as Hi,j(λ,N)

end
end
for x = 1, . . . ,X and k = 1, . . . ,K do

Compute Fx,k(λ,N) using {Hi,j(λ,N)}n,1000
i=1,j=1

end
end
for λ ∈ Gλ do

Set N̂(λ) = arg minN∈GN

∑K
k=1

∑X
x=1(N∗x,k − Fx,k(λ,N))2

Compute P̂λ,x: empirical estimate of Pr(l ≤
∑

t∈T At1{It=1,Xt=x} ≤ u) using
{Hi,j(λ, N̂(λ))}n,1000

i=1,j=1 for each x = 1, . . . ,X
end
Set λopt = min

{
λ ∈ Gλ such that P̂λ,x ≥ p for all x = 1, . . . ,X

}
Set N opt = N̂(λopt)
return (λopt,N opt)

the smallest λ that achieves the above inequality is selected. For example, besides providing on
average 2 notifications per day, we might want to ensure that the probability of sending 1 to 3
notifications is at least p = 0.95 (e.g., l = 1, u = 3). In Appendix 4.5, we use a toy example to
illustrate the selection of tuning parameters.

Recall that the forecast (g(x|Ht)) predicts the number of remaining available risk times at risk
level x in the current time block. As pointed out earlier, the quality of the forecast determine the
ability of SeqRTS in spreading out the treatments uniformly across the risk times at risk level x.
Note that the size of time block also affects the forecast quality since the forecast needs to look
more into the future if the size of the block is big. However, the block lengths should not be too
short as then there will be blocks with no risk times. We suggest using a block length that is short,
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Figure 4.1: Flowchart for studying performance of the SeqRTS algorithm. In step 1, study data is
split into training and test data. In step 2, TUNE is used to construct all tuning parameters and fit
parameters for a chosen forecasting method. In Step 3, a person-day is extracted from the test data.
In Step 4, SeqRTS is applied sequentially. The blue point indicates that time t is an available risk
time at level x for the user; the prior red and gray points indicate past available risk times at level x.
Prior points in red indicate treatment was provided. Combining this information with the forecast
of 5 future available times at risk level x, SeqRTS is applied using the given tuning parameters and
forecasting method to construct the probability of treatment at time t. In step 5, summaries of the
performance on test data are aggregated using cross-validation. summaries for Method 1).

yet ensures that with high probability there will be at least Nx/K risk times at risk level x.
As the main focus of this work is on discussing the timing of treatment problem and the use of

(4.2) along with how best to select the tuning parameters, we assumed that a method for forecasting
is given. In practice, one can use the study data to both choose the tuning parameters and build the
forecasts; we do this below. There are a number of existing methods for prediction and forecasting
for the time-series, e.g., exponential smoothing and ARIMA model; see [58] for a review. In the
Sense2stop example, we use forecasts obtained by Poisson regression.

Cross Validation Using Study Data The TUNE algorithm (2) selects tuning parameters using
a training dataset. In both examples below, prior real mHealth studies exist that can be used for
constructing training datasets and assessing performance via cross validation. Figure 4.1 visualizes
the sequence of actions to perform cross validation and assess performance. In both examples, a
fraction of the person-days from the study data is used as the training data, while the remainder
is used as the test data (Step 1). The TUNE algorithm is applied to the training data to obtain
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tuning parameters (i.e., Step 2). A particular person-day is extracted from the test data (i.e., Step
3). Then the SeqRTS algorithm is applied to test data (i.e., Step 4) to generate multiple treatment
sequences; in our examples, 1000 treatment sequences are generated. Step 5 is cross validation
to build performance summaries. This procedure outputs performance summaries for a particular
chosen forecasting model. Therefore, the procedure must be run again for each proposed forecast-
ing model. Alternatively, Step 1 could split the data by person rather than person-days; however,
in these studies the resulting performance summaries are very similar.

4.3 Simulation

Here the SeqRTS algorithm is contrasted with a natural extension of the blocking method used in
standard EMA setting. This extension considers the setting in which only risk times should be
sampled for treatment and in which there is an average constraint on the number of treatments.
This natural extension is a good comparator to our proposal because it is a simple extension that
may achieve the desired soft constraint and uniformity across risk times.

To describe the extended version of block sampling method suppose there is only one level of
risk (i.e., Xt ∈ {0, 1}) and the goal is to send treatment only at risk times (i.e., when Xt = 1). As
in the standard blocking design, first construct K blocks of time within each day. If the average
number of treatments per day isN , then in each block the goal is to provide an average of n = N/K

treatments. Suppose prior scientific knowledge and/or data from a prior study is used to estimate
the number of expected risk times within each block, denoted by Mk for the k-th block. The
number of blocks, K, would be chosen based on prior data and scientific rationale so that one
can expect more risk times per block than the desired average number of treatments per block
(i.e.,Mk > n). Then at each risk time within each block, a treatment is sent with probability n/Mk.
This “extended EMA blocking method” implicitly assumes that risk times are spread uniformly
within blocks and that there is little between-user variability in the number of risk times per block.

Two metrics are used to compare SeqRTS with the above block sampling method. The first
metric is graphical and the second metric uses a divergence function to assess divergence from
uniform sampling of risk times for treatment. Recall that a training set is used to build the forecasts
method as well as the select tuning parameters. These two metrics will be evaluated on a test data
set. See Figure 4.1 for the cross validation procedure. Given the forecasts and selected tuning
parameters, user-day trajectories within the test data are used to generate 1,000 treatment sequences
(sequences of At’s) per user-day. Each At is generated with the probability given by (4.2).

In the first, graphical metric, the 1000 generated treatment sequences are used to compute
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the total number of treatments provided per day. The average over these treatment sequences is
used to compute the average number of treatments per user-day. A box-plot across all user-day
combinations of this average number of treatments summarizes performance. It is expected that
the mean and median to agree with desired number of treatments per day, N∗x . Methods with low
variability around this mean are preferable. For the physical activity study, HeartSteps V1, for
each user we compute the average of these user-day averages (i.e., average across days per user).
A box-plot summarizes performance and highlights across-user variability in performance.

The second metric again uses the 1, 000 treatment sequences and computes the fraction of time
treated per risk time at risk x for each day d. As treatment can only be provided at risk times, we
extract these times out to construct the vector p̂u,d,x (i.e., fraction of time treated for user u on day d
at risk level x). Let Nu,d,x be the number of risk times for user u on day d at risk x. Recall one of
the goals for this algorithm is uniformity across risk times. To assess whether this goal is achieved
we use the Kullback-Leibler divergence measure – a measure of “how one probability distribution
diverges from a second, expected probability distribution” [59]. To assess uniformity, the second,
“expected probability distribution” is the targeted uniform probability distribution across the true
risk times. That is, knowing Nu,d,x and the budget Nx, treatment should be provided marginally
at each available risk time at level x with probability Nx/Nu,d,x. Therefore, the Kullback-Leibler
divergence measured is between the sampling probabilities achieved by SeqRTS, e.g. p̂u,d,x and
the targeted uniform probabilities, Nx/Nu,d,x; that is,

1

Nu,d,x

Nu,d,x∑
i=1

(N∗x/Nu,d,x) log

(
p̂u,d,x,i

N∗x/Nu,d,x

)

where p̂u,d,x,i is sampling probability for the ith risk time for user u on day d at risk level x vec-
tor p̂u,d,x. A box-plot of this quantity across user-days (all (u, d)’s) summarizes performance.
Smaller Kullback-Leiber divergence indicates that the sampling is closer to uniform sampling and
low overall variability indicates the sampling of risk times is closer to uniform for all user-days.

In the following, we first introduce the Minnesota smoking study which is used to design
Sense2Stop, and evaluate and compare the performance of proposed algorithm, SeqRTS, with
Extended Block Sampling method.

Minnesota Smoking Study

To design Sense2Stop, data from a smoking cessation study [35, 60] (here on called the “Min-

nesota smoking study”) is used to construct forecasts, tune the parameters, and assess expected
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performance. The Minnesota dataset is a no treatment, smoking study. Sensor data collected from
wearable devices (e.g., the electrocardiogram (ECG) and respiration data) are used to produce an
online, time-varying stress likelihood for each minute [34]. Next, a Moving Average Convergence
Divergence approach (MACD) is adopted to locate an episode based on the time-series of stress
likelihood; the episode consists of the start (the trend in stress likelihood changes from decreasing
(−) to increasing, (+), the peak (from + to −) and end time (from − to +). At the peak time, a
classification of the episode is made; we set Xt = 2 if the classification is “Stress”, Xt = 1 if “Not
Stress” and Xt = 0 is “Unknown”(when too much of the sensor data used for stress classification
is missing or is of low quality due to sensor detachment or intermittent loosening); see [35] for
details.

The dataset is restricted to user-days for which the duration of a day is at least 12 hours. Each
user-day is truncated to 12 hours. This results in 54 user-days of 12 hours each. Three-fold cross
validation is used to construct the training and test sets and assess performance. Specifically, user-
days of the Minnesota dataset are randomly divided into three approximately equal subsets of
user-day’s data. Two subsets are used as the training set and the remaining one subset as the test
set. This is repeated 2 further times to allow each subset to play the role of a test set. This reflects
the procedure outlined in Figure 4.1.

Sense2Stop: Smoking Cessation Study

The performance assessment on the Minnesota smoking study informs expected performance in
Sense2Stop [35, 50], an mHealth smoking cessation study currently underway; this study includes
a 10-day post-smoking-quit phase in which users may receive a reminder to practice self-regulation
exercises installed on the smart phone [38]. These exercises are designed to help users manage their
stress as stress is a risk factor for relapse to smoking. Time frequency is every minute during a 12-
hour day (T = 720). Sensor data collected from wearable devices matches the Minnesota smoking
study (e.g., the same suite of sensors are worn), and the time-varying stress likelihood for each
minute is computed in the same manner.

Availability It is set to 0 except for the peak time; furthermore, even at peak times, It = 0 if
a treatment was provided within the prior hour or if self-report assessments (randomly assigned
in each of 4-hour window) were requested from the user in the prior 10 minutes. Availability is
similarly encoded in the study of the performance of the SeqRTS algorithm using the Minnesota
study. Treatment at time t, At, is an indicator of whether a reminder is delivered at a time t (e.g.,
1 = “deliver reminder” and 0 = “no reminder”). The goal is to provide, on average, 1 treatment at
“Stress” and 1.5 treatments at “Not Stress” times per day, and no treatment if “Unknown;” that is,
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N∗2 = 1, N∗1 = 1.5 and N∗0 = 0.

SeqRTS To design SeqRTS, the training set is used to build the forecasts for both the stress
and non-stress episodes. There is a single block per day (i.e. K = 1) and thus, forecasts of the
number of available stressed and non-stress episodes in the remaining of the day are required.
Forecasts are built separately for stress and non-stress. Specifically, a Poisson regression is first fit
using the training set with the outcome being the count of future ”Stress” or “Not Stress” episodes
and the input features: the remaining time of the day, the numbers of “Stress ”, “Not Stress” and
the “Unknown” episodes so far in the day and the indicator of lapse. To account for availability,
these forecasts are further discounted by a constant (i.e. a guess of the fraction of future avail-
able stress/non-stress episodes). Bounds are set to εL = 0.01 and εU = 0.99. Next as described
in subsection 4.2, the training data is used to select the tuning parameters λ and N using Algo-
rithm 2—that is, for each λ, the parameters N are chosen to achieve the average constraints (an
average of 1, 1.5 treatments per day at stressed, non-stress times respectively) and then the value
of λ is chosen such that the probability of receiving at least 1 to at most 5 treatments (across both
stress and non-stress episodes) in a day is at least 0.95.

Extended Block Sampling Here, the block sampling approach used in EMA setting to handle
the risk setting with average constraints is adapted and used as a comparison to SeqRTS. As is
customary with EMA, the 12-hour day is split into three four-hour blocks. Three-fold cross vali-
dation is applied as above using the procedure outlined in Figure 4.1. Using the training set, the
average numbers of “Stress” episodes within each block in the training set are calculated and then
discounted by a constant (to account for availability) to form an estimate of the number of avail-
able stress episodes in each block. Denote these numbers by M1,M2,M3. This results in the block
sampling method where, in each block, available stress times are randomly selected for treatment
with probability (1/3)/Mk in the k-th block at the “Stress” times (recall the goal is to send on
average 1 treatment at “Stress” times). The same procedure is applied to “Not Stress” times.

Comparison of SeqRTS and Extended Block Sampling To compare SeqRTS with Extended
Block Sampling, we use the test subset of the Minnesota data set. Since the Minnesota data set
does not include all sources of un-availability, to more accurately represent availability as it oc-
curs in Sense2Stop, we also generate the random self-report assessments (three times per day and
randomly selected in each four-block block) and take into account availability constraints; here
these are that the reminder messages can occur only after 10 or more minutes following a random
self-report assessments and only after 60 or more minutes following a prior reminder message.
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Using SeqRTS, we generate 1,000 treatment sequences for each real user-day in the test set. We
also use Extended Block Sampling to generate 1,000 treatment sequences for each real user-day
in the test set. For each user-day, we compute the average number of treatments at “Stress” and
“Not stress” episodes and the percentage of sending 1 to 5 total treatments in a day over the 1,000
treatment sequences for both block sampling and the sequential sampling method. Recall we use 3-
fold CV to train then test, thus the results are averaged over the 3 test sets. The results are shown in
Figure 4.2 and Table 4.1. Recall that our goal is to achieve on average 1.5 reminders at “Not stress”
and 1 reminder at “Stress” times and to ensure that with at least 0.95 probability of at least 1 and
no more than 5 treatments are provided during the day. SeqRTS meets the desired desired average
constraints; the average numbers of treatments at stress and not-stress over all user-days of 1.004
and 1.521. The block sampling method performs similarly in terms of the number of treatments at
stress and not-stress times (0.912 and 1.426); however, SeqRTS is able to significantly reduce the
variation of the average treatments across all 54 user-days in the test sets. For the “Stress” case,
the standard deviations of the average treatments across user-days is 0.557 and 0.364 for extended
block sampling and SeqRTS, respectively. For the “Not stress” case, the standard deviations are
given by 0.612 and 0.298. The large variation of the average number of treatments for extended
block sampling is due to the high variation of number of “Stress” and “Not Stress” times in each
block, shown in Table 4.2. SeqRTS allows us to better achieve the average constraint across the
user-days.

Table 4.1: Three-fold cross validation results of Extended Block Sampling (BS) and proposed
Sequential Risk Times Sampling (SeqRTS): average number of treatments at “Stress” and “Not
stress” times and the percentage of sending 1 to 5 total treatments achieved in each user-day across
the 1,000 treatment sequences.

Min 1st Qu. Median Mean 3rd Qu. Max.
# Treatments at NS (BS) 0.203 1.132 1.411 1.426 1.854 2.917

# Treatments at NS (SeqRTS) 0.275 1.454 1.601 1.521 1.713 1.830
# Treatments at S (BS) 0.172 0.451 0.766 0.912 1.317 2.225

# Treatments at S (SeqRTS) 0.245 0.797 1.037 1.004 1.240 1.705
Prob. of 1-5 Treatments (BS) 0.401 0.902 0.939 0.910 0.961 0.976

Prob. of 1-5 Treatments (SeqRTS) 0.785 0.929 0.947 0.948 0.958 0.991

Additionally extended block sampling produces high variance in the total number of treatments
in a day (across the stress and non-stress times). The overall percentage of sending at least 1 and
no more than 5 treatments in the blocking method is 0.910. SeqRTS controls this probability via
the use of λ: the overall percentage is 0.948 as desired. The variations across the user-days is also
significantly smaller (see Figure 4.2).
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Figure 4.2: Three-fold cross validation results of Block Sampling and Sequential Risk Times Sam-
pling (SeqRTS) algorithms. The average number of treatments at stress and not-stress episodes
and the percentage of sending 1 to 5 total treatments achieved by each user-day in 1,000 runs.

Table 4.2: Summary statistics of the number of “Stress” and “Not Stress” times in each block.
MAD: mean absolute deviation.

Not Stress Stress
Block 1 Block 2 Block 3 Block 1 Block 2 Block 3

Mean 8.98 8.37 7.52 1.65 1.59 1.74
MAD 3.91 4.35 3.48 1.51 1.30 1.65
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Figure 4.3: Three-fold cross validation results of Block Sampling and Sequential Risk Times Sam-
pling (SeqRTS) algorithms. The average KL divergence at stress and not-stress episodes by each
user-day in 1,000 runs.

As discussed in the beginning of this section, we assess whether a method achieves uniform
sampling across risk times via the average KL divergence. The results are provided in Figure
4.3. We see that SeqRTS achieves smaller average KL over all user-days in the case of “Stress”
times comparing with extended block sampling (i.e. more uniform distribution of treatment across
“Stress” times), but larger in the “Not Stress” times. The latter is mainly due to the quality of the
estimated forecast. This can be seen as follows. We run SeqRTS replacing the forecast of future
stress and non-stress episodes by the weighted average of the estimated forecast from the model
and the oracle (i.e. the true number of the future “Stress” and “Not Stress” episodes). As we can
see in Figure 4.4, the average KL can be significantly reduced comparing with extended block
sampling when we have high quality forecasts. The results of average number of treatments and
variation in the total treatments are similar using these hypothetical forecasts and thus are omitted.

4.4 Conclusion and Future Work

In this chapter, we have proposed a new approach to design the timing of just-in-time treatments
when there is a soft constraint on the number of treatments per day. We have illustrated how
one selects tuning parameters so as to achieve the constraint, yet maintain an acceptable level
of variance in number of treatments delivered. If there is within- and between-user variation in
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Figure 4.4: Three-fold cross validation results of Block Sampling (BS) and Sequential Risk Times
Sampling algorithms (SeqRTS(w)) method using hypothetical forecasts : the average KL diver-
gence at “Stress” and “Not Stress” episodes by each user-day in 1,000 runs. w is the proportion of
the estimated forecasts in the constructing the hypothetical forecasts used in SeqRTS

the risk pattern and this variability is well explained by (time-varying) covariates, then the use
of forecasts based on these time-varying covariates allows SeqRTS to sample risk times with a
uniform distribution thus providing data that allows scientists to learn if and in which contexts the
treatment is effective. Extended block sampling achieves uniform sampling of the risk times when
there is minimal within- and between-user variation in the risk pattern.

We foresee several opportunities for future work. First, viewing SeqRTS as a warm-start, one
could update the tuning parameters and the forecasts as information accumulates on a user dur-
ing the study. This personalization might occur by making the tuning parameters person-specific.
Second, depending on the amount of training data, a variety of forecasting algorithms might be
considered including deep learning algorithms, such as the Long Short Term Memory algorithm;
these methods would facilitate the investigation of how to combine/fuse multiple data streams
(stress, location, eating, etc.) in forecasts and thus enable prediction of more complex risk vari-
ables. Finally, there it would be of interesting to develop a version of the SeqRST algorithm that
includes assumptions about non-zero treatment effects.

4.5 Appendix

A. Derivation of Randomization Probabilities

Here we provide a brief discussion of how the randomization probability formulation πt = πt(Ht)

in (4.2) is motivated and derived. For simplicity, below we consider deriving the probability to
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satisify the average budget constraint for a single time block with T decision time point, e.g.,
E
[∑T

t=1 At1{Xt=x,It=1}
]

= N∗x . We start by re-writing LHS of equation: for arbitrary λt ∈ [0, 1],

E
[ T∑
t=1

At1{Xt=x,It=1}
]

= E
[ T∑
t=1

(
λtAt + (1− λt)πt(Ht)

)
1{Xt=x,It=1}

]
A natural goal here is to find πs = πs(Hs) for s ∈ {1, . . . , T} such that for each x ∈ [k],

N∗x ≈ E
[ T∑
t=1

(
λtAt + (1− λt)πt(Ht)

)
1{Xt=x,It=1} |Hs

]
=

s−1∑
t=1

(λtAt + (1− λt)πt(Ht))1{Xt=x,It=1} + πs(Hs) + E
[ T∑
t=s+1

πt(Ht)1{Xt=x,It=1} |Hs

]
The first term is known given the current history Hs. On the other hand, at the decision time s, we
do not have access to future randomization probabilities, i.e. πt(Ht) under Xt = x and It = 1 for
t ≥ s + 1, which appears in the last term above. As such, we pretend πt(Ht) = πs(Hs) whenever
It = 1, that is, we use the exact same randomization probabilities for future time available risk
points, and obtain πs = πs(Hs) by solving:

Nx =
s−1∑
t=1

(λtAt + (1− λt)πt(Ht))1{Xt=x,It=1} + πs(Hs) + E
[ T∑
t=s+1

πs(Hs)1{Xt=x,It=1} |Hs

]
This implies

πs(Hs) =
Nx −

∑s−1
t=1 [λtAt + (1− λt)πt(Ht)]1{Xt=x,It=1}

1 + E
[∑T

t=s+1 1{Xt=x,It=1} |Hs

]
Note that in the denominator E[

∑T
t=s+1 1{Xt=x,It=1} |Hs] is the forecast of the number of available

risk times at risk level x. By choosing λt = λs−t and restricting the probability within [εL, εU ], we
obtain the randomization probability formula (4.2).

B. Toy Example

Below we use a toy example to illustrate how the tuning parameters (N , λ) and the forecasts
impact the performance of the SeqRTS algorithm and illustrate the selection of tuning parameters.
For simplicity, consider the case where the user is always available for treatment (i.e., It = 1)
and the risk variable is binary, Xt ∈ {0, 1}. Temporal frequency is every fifteen minutes and we
consider providing treatments in a 10-hour day (T = 40). In this toy example, there is a single
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level of risk (i.e., Xt = 1) and a single whole day block for simplicity (i.e. K = 1). The risk
variables {X1, . . . , XT} are generated i.i.d. with probability 0.5. The goal is to provide on average
3 treatments per day (i.e., N∗0 = 0 and N∗1 = 3) at risk times. The training dataset is 100 randomly
generated user-days.

A series of three simulations illustrate the performance of the SeqRTS. The first simulation (S1)
illustrates how the tuning parameters impact the average number of daily treatments. Algorithm
performance is evaluated with tuning parameters N1,1 ∈ {2.95, 3, 3.05, 3.1} := GN and λ ∈
{0, 0.1, . . . , 0.9} := Gλ using the test set. In the second simulation (S2), the value of N1,1 is tuned
(using training set) so as to achieve the average constraint under each λ. In both S1 and S2, the
forecasts are correct in expectation, e.g. g(1|Ht) = 0.5(T − t).

The simulation results of both (S1) and (S2) are provided in Figure 4.5. The left graph in this
figure illustrates N1,1 together with the choice of λ control the total number of notifications. The
appropriate value of N1,1 to achieve the average constraint (i.e., 3 in this toy example) depends on
the value of λ. For example, when λ = 0, N1,1 needs to be greater than 3, whereas in the case of
λ = 0.8, the appropriate choice of N1,1 is less than 3. After properly choosing N1,1 for each λ, the
right graph in Figure 4.5 shows that incorporating λ allows the algorithm to control the variability
in number of treatments yet achieve the average constraint. The y-axis is the probability that the
number of treatments sent lies between 1 and 5.

The last simulation (S3) illustrates the impact of an inaccurate forecasting method on SeqRTS.
A class of forecasts indexed by a constant τ are considered, i.e., g(1|Ht) = (T − t)τ . For each
forecast, the tuning parameter λ is chosen using training set to be the smallest one over the grid set
{0, 0.05, · · · , 0.95}, such that with at least 0.95 probability the number of treatments sent lies in
the range of 1 to 5. Here, the parameter N1,1 is tuned for each λ as in S2. In all cases, N1,1 can be
tuned to achieve the average constraint of 3, and λ tuned to achieve at least 0.95 probability that
the number of treatments sent lies in the range of 1 to 5. However, as shown in Figure 4.5, the
more inaccurate the forecast (i.e. τ far from 0.5), the less uniform the distribution of treatments
assigned across hour blocks (note the times when Xt = 1 are uniformly distributed across time in
this toy example).

73



●

●
●

●

●

● ●
●

●

●

0.0 0.2 0.4 0.6 0.8

2.
90

2.
95

3.
00

3.
05

3.
10

lambda

A
ve

ra
ge

 D
ai

ly
 T

re
at

m
en

ts

●

●

● ●

●

●

● ●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

tilde N = 2.95
tilde N = 3.0
tilde N = 3.05
tilde N = 3.1 ●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8
0.

90
0.

92
0.

94
0.

96
0.

98
1.

00
lambda

P
ro

ba
bi

lit
y

●

●

●

●

●

●

●

●

●
●

2 4 6 8 10

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Hour Block

A
ve

ra
ge

 N
um

be
r 

of
 T

re
at

m
en

ts

●
●

●
●

●
●

●
●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

tau=0.3
tau=0.4
tau=0.5
tau=0.6
tau=0.7

Figure 4.5: Simulation results of toy example. Top Left: the average number of daily treatments
under different values of λ (x-axis) and N1,1 (in color) in (S1). Top Right: the probability that the
number of treatments sent ranges between 1-5 treatments in (S2) Here N1,1 is tuned for each λ.
Note, from the range of the y-axis that the probability ranges from 0.89 to 1.00 in this example.
Bottom: Average number of treatments triggered in each hour block in testing data set in (S3).
Solid lines = “forecast”; dashed line = “oracle”
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CHAPTER 5

Inference of Long-Term Average Outcome

5.1 Introduction

With the recent evolution of mobile health technologies, health scientists are increasingly interested
in developing Just-In-Time Adaptive Interventions (JITAIs), typically delivered via a notification
on the mobile device and designed to help the user prevent negative health outcomes and promote
the adoption and maintenance of healthy behaviors. JITAIs can be operationalized by a sequence
of decision rules (e.g., treatment policies) that takes the users current context as input and specifies
whether and what type of an intervention should be provided at the moment.

However, the vast majority of current deployed JITAIs are theory-guided; the decision rules
underpinning JITAIs are formulated using domain expertise and clinical experience, with very
limited use of data evidence. This approach is unlikely to achieve the full potential of JITAIs,
since most of the current behavior theories and empirical evidence fail to specify the dynamics of
human behavior at a level that is sufficient enough to be able to personalize the interventions in the
best way possible, and more importantly, to optimize the long-term efficacy of the interventions as
a whole.

In this chapter, we take a step toward developing a data-based approach to inform the construc-
tion of efficacious JITAIs. In particular, we develop a batch data analysis method for estimating
the average of the long-term positive health outcomes (i.e., reward) that would accrue should a
given JITAI (i.e., the target policy) be followed. Furthermore, we develop the inferential procedure
to construct the confidence intervals for the estimates. The method can also be used to contrast
multiple JITAIs by comparing the long-term average outcomes. The method uses a training data,
collected under a possibly different policy, called behavioral policy. This is the setting where the
data is collected from Micro-randomized trials in which the treatments are randomly selected and is
different from the treatment policy of scientific interest. In Reinforcement Learning (RL) literature
this is also called the off-policy evaluation problem.
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The proposed method is developed in the Markov Decision Process (MDP), a common frame-
work used in RL. We use the average reward criteria in the infinite-horizon setting. Another com-
monly used criterion in the infinite horizon is the discounted reward setting. Most of RL litera-
ture consider the discounted reward setting. There are mainly two different types of approaches:
model-free and model-based approach. In the latter, the estimate of the value function is done by
first building a system dynamic model. In the model-free method, which is the method we con-
sider in this work, a function class is deployed to estimate the value function based on the so-called
Bellman equation. One of the first approaches in the model-free, batch policy evaluation problem
is called Least Square Temporal Difference (LSTD), first published in [61]. In the original LSTD,
a linear model is used to approximate the value function. There are many analysis for LSTD, for
example in [62, 63, 64, 65] and many variants of LSTD in the literature. More recently, in [66] a
regularized version of LSTD was proposed and the statistical property was studied. More specifi-
cally, they used a non-parametric model to estimate the value function and derive the convergence
rate when training data consists of i.i.d. samples. Our proposed approach is similar to [66], but we
extend it to the multiple trajectories in average reward setting and relax one of the key assumptions
in their method. More importantly, we develop the semi-parametric inference of the estimated
average reward. Another closely related work is [67], in which they developed “V-learning” in the
discounted reward setting for off-policy learning in mobile health. For each target policy, they pro-
posed to learn the average of the discounted value and developed a regularized estimating equation
to estimate the value function using a parametric model. In contrast, here we consider the long-
term average reward of the target policy and develop a semi-parametric method where the relative
value function is viewed as the nuisance parameter.

In the following section, we introduce Markov Decision Process and the average reward cri-
terion. In Section 5.3 we introduced the proposed estimator. The main theoretical results are
presented in Section 5.4. We also develop three important generalizations of the proposed method
in Section 5.5. We end with a discussion of future work in Section 5.6.

5.2 Markov Decision Process

We model the sequential decision making process as a Markov Decision Process (MDP). Consider

{S1, A1, S2, A2, S3, . . . , St, At, St+1, . . . },
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where t indexes the decision time, St ∈ S is the state variable and At ∈ A is the action selected
at time t. We assume the action space is finite and the data-generating process is Markovian, e.g.,
for t ≥ 1, St+1 ⊥ {S1, A1, . . . , St−1, At−1} | {St, At}, and time-invariant. Let P(X ) denote the
class of distribution on X . Denote the transition kernel by P : S × A → P(S) so that P (·|s, a)

is the distribution of next state given the current state-action pair (s, a). Denote by p(s′|s, a) the
transition density with respect to some reference measure on S (e.g., counting measure when S is
discrete). The reward is defined as a known function of the tuple (St, At, St+1) at each time t and
denoted by Rt+1 = R(St, At, St+1). We also use r(s, a) to denote the conditional expectation of
reward given state and action, i.e., r(s, a) = E[Rt+1|St = s, At = a].

A policy π : S → P(A) is a mapping that takes the state as input and outputs a probability
distribution on the action spaceA. Let π(a|s) be the probability of selecting action a given state s.
In this paper, we evaluate the policy using the long-term average reward. Specifically, the average
reward of a policy π is defined as

ηπ(s) = lim
T→∞

Eπ

[
1

T

T∑
t=1

R(St, At, St+1)
∣∣∣S1 = s

]
(5.1)

where the expectation, Eπ, is taken over the trajectory {S1, A1, S2, . . . , ST , AT , ST+1} in which
the actions {At}t≥1 are selected according to the policy π with the starting state S1 = s, that is,
the likelihood in the expectation is given by 1{S1=s}

∏T
t=1 π(At|St)p(St+1 |St, At). Note that the

policy π induces a Markov Chain with transition kernel P π(·|s) =
∑

a π(a|s)P (·|s, a).
Suppose for now the state space S is finite. It is well known [68] that when the induced markov

chain P π is irreducible and aperiodic, the average reward defined in (5.1) is independent of the
initial state, i.e.,

ηπ(s) = ηπ =

∫
S

∑
a

π(a|s)r(s, a)dπ(s)ds (5.2)

where dπ(s) is the density of the stationary distribution (the existence is guaranteed by irreducibil-
ity and aperiodicity). Furthermore, we can define the relative value function Qπ

Qπ(s, a) = Eπ

[
∞∑
t=1

(R(St, At, St+1)− ηπ)
∣∣∣S1 = s, A1 = a

]
(5.3)

It is easy to verify by definition that (ηπ, Qπ) is the solution of Bellman (Policy Evaluation) equa-
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tion (also known as Poisson equation), given as follows: for all (s, a) ∈ S ×A

Eπ[Rt+1 +Q(St+1, At+1) |St = s, At = a] = η +Q(s, a). (5.4)

Bellman equation uniquely identifies the average reward and identifies the value function Qπ up
to a constant. That is, the set of solution of (5.4) is given by {(ηπ, Q) : Q = Qπ + c1, c ∈
R,1(s, a) = 1}. See [68] for details. The above results can be generalized to general state space,
e.g., S ⊂ Rd, with more involved conditions on the transition kernel P π, analogous to irreducibility
and aperiodic in the finite state case; see Chapter 7 in [69]. The key requirement for the proposed
method presented in Section 5.3 is that the average reward is a constant and can be uniquely
identified by solving Bellman equation (5.4). We will consider the generalization that allows the
average reward to depend on a time-invariant state in Section 5.5.

5.3 Off-Policy Evaluation

We consider the setting where we have access to a training data with n independent, identically
distributed trajectories:

Dn = {Si1, Ai1, Si2, . . . , SiT , AiT , SiT+1}ni=1.

We assume the length of trajectory, T , is non-random and identical for each trajectory for simplic-
ity. Each trajectory D = {S1, A1, S2, . . . , ST+1} is assumed to follow a MDP in which the actions
selected according some behavioral policy πb, i.e., At ∼ πb(· |Ht) where Ht = {S1, A1, . . . , St}
is the history collected up to decision time t. In what follows, the expectation E without the
subscript is assumed taken with respect to the distribution of the trajectory D with the actions
selected by the behavioral policy πb. Let νt be the marginal distribution of the state-action pair
{St, At} in the training data (e.g., the previous actions are selected according to behavior policy
πb) and let ν̄T be the average distribution across T decision times, e.g., ν̄T = (1/T )

∑T
t=1 νt. De-

note by dt and d̄T the density (mass) function of νt and ν̄T . For any function of state and action
f(s, a) and distribution ν, denote the L2 norm by ‖f‖2

ν =
∫
f 2(s, a)dν(s, a). Note that we have

‖f‖2
ν̄T

= E[(1/T )
∑T

t=1 f
2(St, At)].

In mobile health applications, the action At is the treatment or intervention option and the
states St contains the time-varying contextual information (e.g. stress, location, busyness in the
calendar) and summary of historical data up to and including time t (e.g. summary of previous
physical activity). Let π be some target policy, possibly different from the behavior policy πb

in the training data. Throughout we only consider the target policy that is Markovian (i.e., only
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depends on the current state) and time-invariant (i.e. the mapping does not vary with time). Our
goal is to learn ηπ, the average reward of the target policy. We assume the target policy satisfies
the following.

Assumption 1. The average reward of the target policy π is independent of state and satisfies

(5.2) and (ηπ, Qπ) is the unique solution of Bellman equation (5.4) up to a constant for Qπ. The

stationary distribution of induced transition kernel P π exists and the density is denoted by dπ(s).

Note that the Assumption 1 prevents us from including time-invariant states, e.g., participant’s
demographic information. We will consider this extension in Section 5.5. We consider a model-
free approach to estimate the average reward based on Bellman equations (5.4). Recall that Under
Assumption 1, Bellman equations can only identify the value function up to a constant. As the
focus of this paper is to estimate the average reward, we only need to estimate one specific version
of value function. We define the shifted value function. Given a specific state-action pair (s∗, a∗),
denote by Q̃π(s, a) = Qπ(s, a) − Qπ(s∗, a∗) the shifted value function. Obviously the shifted
value function Q̃π(s∗, a∗) = 0 and Q̃π(s1, a1) − Q̃π(s2, a2) = Qπ(s1, a1) − Qπ(s2, a2), e.g., the
difference in the value remains the same. By restricting the function class s.t., Q(s∗, a∗) = 0, the
solution of Bellman equations (5.4) is unique and given by (ηπ, Q̃π).

In the following, we use Q to denote a vector space of functions on the state-action space
S × A such that Q(s∗, a∗) = 0 for all Q ∈ Q, in which we will assume Q̃π ∈ Q. Motivated
from the Bellman equation, we introduce the Bellman error operator E with respect to the target
policy π. For any (η,Q) ∈ R × Q, define the temporal difference error δ(S,A, S ′, R; η,Q) =

R +
∑

a′ π(a′|S ′)Q(S ′, a′)− η −Q(S,A) and

E(s, a; η,Q) = E[δ(St, At, St+1, Rt+1; η,Q) |St = s, At = a] (5.5)

Note that the Bellman error is not necessarily in the function space R ⊕ Q. To see this, plugging
E[Rt+1 +

∑
a′ π(a′|St+1)Q̃π(St+1, a

′)− ηπ − Q̃π(St, At)|St = s, At = a] = 0 implies that

E(s, a; η,Q) = E[Rt+1 +
∑
a′

π(a′|St+1)Q(St+1, a
′)− η −Q(s, a) |St = s, At = a]

=(ηπ − η) + (Q̃π −Q)(s, a)− E[
∑
a′

π(a′|St+1)(Q̃π −Q)(St+1, a
′)|St = s, At = a]

Depending on the complexity of the transition kernel, the last term unlikely stays in Q for every
Q ∈ Q. Because of this, we introduce another linear function class G to form a surrogate Bellman
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error operator EG , defined as

EG : (η,Q)→ EG(·, ·; η,Q) = argmin
g∈G

E
[
(1/T )

T∑
t=1

(E(St, At; η,Q)− g(St, At))
2
]

(5.6)

We now construct the partially penalized estimator for (ηπ, Q̃π). In what follows, for ease of
notation we use Q̂n to denote the estimates of Q̃π, the shifted value function. For an arbitrary
function f , let Pnf(Ht) = (1/n)

∑n
i=1 f(H i

t) be the empirical mean over the training data Dn.
The partially penalized estimator is found by minimizing the mean squared estimated Bellman
error plus a penalty term on the value function:

(η̂n, Q̂n) = argmin
(η,Q)∈R×Q

Pn

[
1

T

T∑
t=1

Ê2
n(St, At; η,Q)

]
+ λnJ

2
1 (Q) (5.7)

where J1 : Q → R+ is the regularizer, λn is a tuning parameter and Ên(·, ·; η,Q) is an estimator
of the surrogate Bellman error operator EG(·, ·; η,Q) defined in (5.6). Specifically, for all (η,Q) ∈
R × Q, Ên(·, ·; η,Q) ∈ G is a function of state-action pair in the class G that minimizes the least
squared error with a penalty:

Ên(·, ·; η,Q) = argmin
g∈G

Pn

[
1

T

T∑
t=1

(
δt(η,Q)− g(St, At)

)2

]
+ µnJ

2
2 (g) (5.8)

where δt(η,Q) = δ(St, At, St+1, Rt+1; η,Q). Similar to J1 and λn, J2 : G → R+ is a regularizer
on the function space G and µn is tuning parameter. The penalty term λnJ

2
1 (Q) is used to balance

between the model fitting, i.e. the squared estimated Bellman error and the complexity of the value
function, measured by J1(Q). Similarly, µnJ2

2 (g) is used to control the overfitting in estimating
the Bellman error when the space G is complex. In the case where the function space is k-th
order Sobolev space, the regularizer is typically defined by the k-th order derivative to capture the
smoothness of function. In the case where the function space is Reproducing Kernel Hilbert Space
(RKHS), the regularizer is the endowed norm. In Appendix 5.7, we provide a closed-form solution
of the estimator when both Q and G are RKHSs.

Linear Approximation and L2 Regularization In what follows we explain the estimator when
using linear approximations. Consider a feature vector φ(s, a) ∈ Rp such that q(s∗, a∗) = 0 and
g(s, a) ∈ Rq. Define Q = {φ(·, ·)>q : q ∈ Rp} and G = {g(·, ·)>θ : θ ∈ Rq}. Consider the
standard L2 regularization (e.g. the ridge penalty), ‖q‖2

2 and ‖θ‖2
2. In this case, the estimator (5.7)
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can be found by

(η̂n, q̂n) = argminη,q Pn
[ 1

T

T∑
t=1

δt(η, q)g(St, At)
]>
MPn

[ 1

T

T∑
t=1

δt(η, q)g(St, At)
]

+ λn‖q‖2
2

where M = (Σ̂n + µnIq)
−1Σ̂n(Σ̂n + µnIq)

−1 and Σ̂n = Pn[(1/T )
∑T

t=1 g(St, At)g(St, At)
>]. We

see that the estimator can be viewed as regularized estimating equation that solves

Pn
[ 1

T

T∑
t=1

δt(η, q)g(St, At)
]

= 0q+1

In [67], they consider the in the discounted reward setting and developed a similar regularized
estimating equation with a non-random matrix M . In addition, they construct the feature vector
g(·, ·) by taking the derivative of the value function. Transferring into the average reward setting,
this implies the choice of g(s, a) = (1, φ(s, a))>.

5.4 Theoretical Results

In this section, we derive the global rate of convergence for the (η̂n, Q̂n) in (5.7) and derive the
asymptotic distribution of η̂n. We make the following assumptions.

Assumption 2. The reward function is bounded: R(s, a, s′) ≤ Rmax for all (s, a, s′) tuple. The

shifted value function is bounded: |Q̃π(s)| ≤ Qmax for all s ∈ S.

The bounded reward is mainly to simplify the proof and can be easily relaxed to the sub-
Gaussian case, e.g. the error Rt+1 − r(St, At) is sub-Gaussian. The boundedness assumption of
the value function can be ensured by assuming certain smoothness assumption on the transition
distribution [70] or assuming geometric convergence to the stationary distribution (see [69]).

Assumption 3. The function class Q satisfies that

(i) Q(s∗, a∗) = 0 and ‖Q‖∞ ≤ Qmax for all Q ∈ Q,

(ii) Q̃π ∈ Q, where Q̃π = Qπ −Qπ(s∗, a∗) is the shifted value function.

Assumption 4. The function class G satisfies that

(i) ‖g‖∞ ≤ Gmax and

(ii) κ = inf
{
‖EG(·, ·; η,Q)‖ν̄T : ‖E(·, ·; η,Q)‖ν̄T = 1, η ∈ R, Q ∈ Q

}
> 0
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The correct modeling of Q̃π in (ii) of Assumption 3 is reasonable when Q is rich enough.
The result in Theorem 1 can be generalized to allow the approximation error e.g., when Q̃π /∈ Q.
However the asymptotic inference of the average reward requires the correct modeling of the value
function and thus we assume it throughout for simplicity. The boundedness assumption of Q is
only used to simplify the proof. A truncation argument can be used to avoid this assumption. Recall
that for a state-action function f(s, a), the norm ‖f‖2

ν̄T
= E[(1/T )

∑T
t=1 f

2(St, At)]. The value of
κ ∈ [0, 1] measures the quality of how well the function class G approximates the Bellman error for
all (η,Q) in which η ∈ R and Q ∈ Q. A strictly positive value of κ ensures we have a consistent
estimate (ηπ, Q̃π). Note that unlike in [66], here we do not assume E(·, ·; η,Q) is modeled correctly
by G for every (η,Q). In fact, in this case we have κ = 1. Note that EG(ηπ, Q̃π) = 0. The condition
of a strict positive value of κ ensures the estimator (5.7) based on minimizing projected Bellman
error onto the space G is able to identify the true parameters (ηπ, Q̃π). This is similar to the
eigenvalue condition (Assumption 5) in [67].

Assumption 5. (i) The regularization functional J1 and J2 are pseudo norms and induced by the

inner products J1(·, ·) and J2(·, ·), respectively. (ii) For all (η,Q) ∈ R × Q, there exists two

constants C1, C2 such that J2(EG(·, ·; η,Q)) ≤ C1 + C2J1(Q)

The inner product is sufficient to derive the asymptotic distribution of
√
n(η̂n − ηπ). This

is satisfied for most common function class, for example RKHS and Sobolev space. The upper
bound of J2(EG(η,Q)) is realistic when the transition model is sufficiently smooth; see [66] for an
example of MDP satisfying this condition.

Assumption 6. LetQM = {Q ∈ Q : J1(Q) ≤M} and GM = {g ∈ G : J2(g) ≤M}. There exists

some constants C and α ∈ (0, 1) such that for any ε,M > 0,

max
(

logN∞(ε,GM), logN∞(ε,QM)
)
≤ C

(
M

ε

)2α

The sup-norm entropy conditions are satisfied for most common function class, e.g., Sobolev
space and various RKHS; see [71, 72, 73, 74]. Here we use a common α ∈ (0, 1) for both Q and
G to simply the proof.

Theorem 1 (Global Convergence Rate). Suppose Assumption 1-6 hold. Let (η̂n, Q̂n) be the esti-

mator defined in (5.7). Then, for the tuning parameters (λn, µn) satisfying (i) µn = OP (λn) and

(ii) µ−1
n = OP (n−1/(1+α)), we have

∥∥E(·, ·; η̂n, Q̂n)
∥∥2

ν̄T
= OP (λn), J1(Q̂n) = OP (1).
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Remark. In Lemma 5, we will show that up to a constant |η̂n − ηπ| . ‖E(·, ·; η̂n, Q̂n)‖2
ν̄T

and thus
when λn = oP (1) we see that η̂n is consistent estimate of ηπ. On the other hand, we show that
‖( I − Pπ)(Q̂n − Qπ)‖ν̄T . ‖E(·, ·; η̂n, Q̂n)‖ν̄T where Pπ is the conditional expectation operator
PπQ(s, a) = E[

∑
a′ π(a′|St+1)Q(St+1, a

′)|St = a,At = a] and I is the identity operator. Al-
though the main focus of this work is on the inference of average reward parameter, under suitable
contraction assumptions on the transition kernel (see [75] for a similar analysis in discounted re-
ward setting), one can relate this to the estimation error of the value function ‖Q̂n − Q̃π‖ν̄T (recall
that we can only estimate the value function up to a universal constant and thus Q̃π is used here).
When the tuning parameters are chosen optimally, i.e., λn � µn and λn � n−1/(1+α), we have
‖E(·, ·; η̂n, Q̂n)‖2

ν̄T
= OP (n−1/(1+α)).

See the proof in Appendix 5.7. In what follows, we focus on the asymptotic of the estimator of
average reward. In particular, we show that under certain assumptions the estimates η̂n from (5.7)
is
√
n consistent when the tuning parameters are chosen appropriately and derive the asymptotic

distribution. Recall dπ(s) is the density of stationary distribution of the states under the target
policy π and d̄T (s, a) is the density of ν̄T , the distribution of the states-action pair averaged across
T decision times. We introduce some additional notations. Let dπ(s, a) = π(a|s)dπ(s) be the
stationary distribution of state-action under policy π. We define eπ(s, a) by

eπ(s, a) =
dπ(s, a)/d̄T (s, a)∫

(dπ(s, a)/d̄T (s, a))dπ(s, a)dsda
(5.9)

Note that eπ is a scaled version of an importance weight dπ(s, a)/d̄T (s, a). The denominator is the
expectation of the important weight under the stationary distribution and it is greater than 1:∫

dπ(s, a)

d̄T (s, a)
dπ(s, a)dsda =

∫ [
dπ(s, a)

d̄T (s, a)

]2

d̄T (s, a)dsda

= E
[
(1/T )

T∑
t=1

(dπ(St, At)/d̄T (St, At))
2
]

= Var
[
(1/T )

T∑
t=1

(dπ(St, At)/d̄T (St, At))
2
]

+ 1

where in the last equality the variance is with respect to the distribution of state-action under the be-
havioral policy in the training set and we use the fact that E[(1/T )

∑T
t=1 d

π(St, At)/d̄T (St, At)] =

1 The definition of eπ is motivated by the least favorable direction in regression problems [71, 72].
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Specifically, the use of importance weight, dπ(s, a)/d̄T (s, a) in eπ implies that for all function Q

E
[
(1/T )

T∑
t=1

(
Q(St, At)−

∑
a′

π(a′|St+1)Q(St+1, a
′)
)
eπ(St, At)

]
= 0 (5.10)

Next, we introduce qπ(s, a) = Eπ[
∑∞

t=1(1 − eπ(St, At)) |S1 = s, A1 = a]. Note that qπ has
a similar structure to the value function in (5.3) and is well-defined as the long term average of
(1 − eπ) is zero due to the denominator in eπ, i.e.,

∫
eπ(s, a)dπ(s, a)dsda = 1. The construction

of qπ allows us to rewrite 1− eπ(s, a) as the following:

1− eπ(s, a) = qπ(s, a)− E
[∑

a′

π(St+1, a
′)qπ(St+1, a

′) |St = s, At = a
]

(5.11)

Assumption 7. The shifted function q̃π ∈ Q and eπ ∈ G, where q̃π = qπ − qπ(s∗, a∗).

Similar to the partially linear regression setting, the condition q̃π ∈ Q is imposed to control the
bias of η̂n, caused by penalization on the nonparametric component, e.g., Q̂n. In addition, we also
require eπ is smooth enough (e.g., eπ ∈ G) to control the bias due to not knowing the conditional
expectation Eπ[qπ(St+1, At+1) |St = s, At = a].

Theorem 2 (Asymptotic Normality). Suppose the conditions in Theorem 1 hold. In addition, sup-

pose Assumptions 7 holds and λn = oP (n−1/2), the estimates η̂n defined in (5.8) is
√
n-consistency

and asymptotic Normal:
√
n(η̂n − ηπ)⇒ N(0, σ2), where

σ2 = Var

(
1

T

T∑
t=1

dπ(St, At)

d̄T (St, At)

(
Rt+1 +

∑
a′

Qπ(St+1, a
′)− ηπ −Qπ(St, At)

))

From Theorem 2, we see the variance in estimating the average reward parameter ηπ depends
on the importance weight between the stationary distribution of state-action pair induced by the
target policy and the average state-action distribution in the training data. The closer of these two
distributions implies a smaller variance of estimating the average reward. In the special case where
the target policy is same as the behavior policy (i.e., on-policy evaluation) and the states in the
training data follows the stationary distribution (e.g., when the length of trajectory is sufficiently
large), one should expect to see the smallest variance. Although here we only focus on the asymp-
totic property of η̂n for large n (n is the number of i.i.d. trajectories), one can see that increasing
length of trajectory, T reduces the variance, as inside of the variance is an average over T decision
time points.
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To construct the confidence interval of η̂n, we need to the asymptotic variance σ2. This can
be done by plugging in (η̂n, Q̂n) and an estimate of the importance weight For simplicity, denote
the importance weight by wπ(s, a) = dπ(s, a)/d̄T (s, a). Taking expectation on both side of (5.9)
implies wπ(s, a) = eπ(s, a)/E[(1/T )

∑T
t=1 e

π(St, At)]. Denote the estimates of eπ by ên. We
can then estimate wπ(s, a) by ên(s, a)/Pn[(1/T )

∑T
t=1 ên(St, At)]. Motivated by the orthogonality

(5.10), we estimate eπ by ĝn(q̂n), where

q̂n = argmin
q∈Q

Pn[(1/T )
T∑
t=1

ĝ2
n(St, At; q)] + λnJ

2
1 (q)

q ∈ Q, ĝn(·, ·; q) = argmin
g∈G

Pn[(1/T )
T∑
t=1

(
U(St, At, St+1; q)− g(St, At)

)2
] + µnJ

2
2 (g)

and U(s, a, s′; q) = 1 − q(s, a) +
∑

a′ π(a′|a)q(s′, a′). It is easy to verify that this is a consistent
estimates of σ2 under the assumptions listed in Theorem 2. In Appendix 5.7, we provide a closed-
form solution of the estimates asymptotic variance when Q and G are RKHSs.

5.5 Extensions

In this section, we first develop two generalizations of previous results. We first generalize the
policy evaluation of a single policy to a class of policies and derive the asymptotic of the estimated
average rewards. We then consider the setting where there is a time-invariant state and the average
reward of the target policy depends on the time-variant state. We end with a discussion on how to
build the estimates based on the state-only function when the behavior policy is known.

Policy evaluation of multiple policies

Let Π be a class of target policies. The policy class can be a finite collection of policies of interest
or a class of policy parameterized by some parameters. Denote by η̂πn the estimated average reward
of policy π ∈ Π from (5.7). Assume the entropy integral is finite:

∫∞
0

(logN∞(ε,Π)1/2dε <∞. In
addition, suppose for all policy π ∈ Π, the Assumption 1-8 are satisfied and supπ∈Π J1(Qπ) <∞.
The proof of Theorem 1 and 2 can be easily extended to hold simultaneously for all policy π ∈ Π

using the finite entropy integral and we can show that the estimated average reward converges in
distribution to a Gaussian process indexed by the policy. In particular, we have

√
n(η̂πn − ηπ) ⇒

G(π) in l∞(Π), where G is mean zero Gaussian process indexed by π with covariance function
E[(1/T 2)

∑T
t=1 δ

π1
t w

π1
t δ

π2
t w

π2
t ] for π1, π2 ∈ Π. Here δπt = Rt+1 +

∑
a′ π(a′|St+1)Qπ(St+1, a

′) −
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ηπ −Qπ(St.At) and wπt = wπ(St, At) = dπ(St, At)/d̄T (St, At).
This result can be used to compare two policies. For example, we can form a confidence

interval of (ηπ1 − ηπ2), the difference of the average reward. On the other hand, consider a policy
class parameterized by β in a compact set B for binary action, e.g., πβ(1|s) = exp(β>f(s))/(1 +

exp(β>f(s))). Using the result above, we can form a (1 − α)% simultaneous confidence band
{η̂πβn ± n−1/2zα : β ∈ B} for the average reward where the quantile zα is determined such that
Pr(supβ∈B |G(πβ)| ≤ zα) = 1− α

Incorporating time-invariant states

In mobile health application, often the baseline demographic information, e.g., gender and occu-
pation are collected. However including time-invariant information into the states would violate
Assumption 1. In the followings, we extend the previous result by incorporating the baseline in-
formation. Let St = (Z,Xt) where Z ∈ Z is the time-invariant baseline information and Xt ∈ X
is the time-varying variables. We consider a target policy π : S → P(A). Note that the input of
the target policy can depend on the baseline.

We generalize Assumption 1 with respect to the target policy π as follows. We assume that
for all z ∈ Z , the induced markov chain on X by target policy π with the transition density
p(x′|x, a) =

∑
a π(a|x, z)p(x′|x, a, z) is irreducible and aperiodic for all z ∈ Z . The density of

stationary distribution exists for each z ∈ Z is denoted by dπ(x|z). Under this assumption, the
average reward defined in (5.1) can be shown to be a function of baseline variable z only, i.e.,
ηπ(s) = ηπ(z) and the value function can be identified up to a function of z by solving Bellman
equation:

Eπ[Rt+1 +Q(St+1, At+1) |St = s, At = a] = η(z) +Q(s, a). (5.12)

Furthermore, we assume that the average reward, as a function of z, follows a linear model, i.e.,
ηπ(z) = f(z)>βπ where f(z) is a feature vector of length p. Similar to the estimator presented
in Section 5.3, we can estimate βπ, as well as the shifted value function Q̃π(s, a) = Qπ(s, a) −
Qπ((z, x∗), a∗) for some reference time-varying state x∗ and action a∗, by

(β̂n, Q̂n) = argmin
(β,Q)∈Rp×Q

Pn

[
1

T

T∑
t=1

Ê2
n(St, At; β,Q)

]
+ λnJ

2
1 (Q) (5.13)
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where the state-action function Ên(·, ·β,Q) is given by

Ên(·, ·; β,Q) = argmin
g∈G

Pn

[
1

T

T∑
t=1

(
δt(β,Q)− g(St, At)

)2

]
+ µnJ

2
2 (g) (5.14)

where δt(β,Q) = Rt+1 +
∑

a′ π(a′|St+1)Q(St+1, a
′) − f(Z)>β − Q(St, At) is the temporal dif-

ference error. The global rate of convergence of the estimator (β̂n, Q̂n) can be shown similarly as
in the proof of Theorem 1 and thus skipped here. To derive the asymptotic of β̂n, the definition of
eπ in (5.9) can be generalized as follow. For s = (z, x), define the vector

eπ(s, a) = (eπ1 (s, a), . . . , eπp (s, a))> =
dπ(x, a|z)/d̄T (x, a|z)∫

(dπ(x, a|z)/d̄T (x, a|z))dπ(x, a|z)dxda
f(z) ∈ Rp

where dπ(x, a|z) = π(a|x, z)dπ(x|z) is the density of stationary distribution of the time-varying
states and action given the baseline z with respect to the target policy π and similarly d̄T (x, a|z) is
the density of the average distribution of time-varying states and action of the trajectory D given
the baseline z. Under the similar set of conditions in Theorem 2, it can be shown that

√
n(β̂n − βπ)⇒ N(0, U−1V U−>)

where U = E[
∑T

t=1 e
π(St, At)f(Z)>] and V = Var[

∑T
t=1 δ

π
t e

π(St, At)] with the temporal differ-
ence error δπt = Rt+1 +

∑
a′ π(a′|St+1)Qπ(St+1, a

′)− f(Z)>βπ −Qπ(St, At).
Similar to the estimate of asymptotic variance in Section 5.4, we can form a sandwich esti-

mator, Û−1V̂ Û−>. Firstly, estimate eπ by ên = (ĝn,1(q̂n,1), . . . , ĝn,p(q̂n,p))
>, where ĝn,k(·, ·; q) =

argming∈G Pn[ 1
T

∑T
t=1(fk(Z)−q(St, At)+

∑
a′ π(a′|St+1)q(St+1, a

′)−g(St, At))
2]+µnJ

2
2 (g) and

q̂n,k = argminq∈Q Pn[(1/T )
∑T

t=1 ĝ
2
n,k(St, At; q)] + λnJ

2
1 (q). Then we estimate U and V by

Û = Pn[
T∑
t=1

ên(St, At)f(Z)>], V̂ = Pn[
( T∑
t=1

δ̂tên(St, At)
)( T∑

t=1

δ̂tên(St, At)
)>

]

where δ̂t is the plug-in estimates. In Appendix 5.7, we provide closed-form formula of (β̂n, Q̂n, ên)

when using RKHS.

Estimating state value function

So far we’ve only considered estimating the average reward ηπ through the state-action value func-
tionQπ(s, a). And note that the method does not require access to the behavior policy that chooses

87



the actions in the training set. In the case where the behavior policy is known (for example the data
is collected from Micro-randomized trial), one can build a similar estimator based on state-only
value function V π(s) =

∑
a π(a|s)Qπ(s, a) by using the importance weight.

In this case, similar to Assumption 1, Bellman Equation for the state value function becomes
Eπ[Rt+1 + V (St+1) |St = s] = η + V (s) for all s. Note that the expectation in the RHS is taken
under At ∼ π(·|St). Consider two classes of function of state V and G with regularizer J1, J2.
Similar to the estimator presented in (5.7), we can estimate (ηπ, Ṽ π) by

(η̂n, V̂n) = argmin
(η,V )∈R×V

Pn
[ 1

T

T∑
t=1

Ê2
n(St; η, V )

]
+ λnJ

2
1 (V )

∀(η, V ), Ên(·; η, V ) = argmin
g∈G

Pn
[ 1

T

T∑
t=1

π(At|St)
πb(At|Ht)

(
δt(η, V )− g(St)

)2]
+ µnJ

2
2 (g)

where δt(η, V ) = Rt+1 + V (St+1) − η − V (St+1). Theorem 1 and 2 can be extended to this
estimator under similar assumptions. In particular,

√
n(η̂n − ηπ)⇒ N(0, σ2) and σ2 is given by

σ2 = Var
[ 1

T

T∑
t=1

(
π(At|St)
πb(At|Ht)

)(
dπ(St)

d̄T (St)

)(
Rt+1 + V π(St+1)− ηπ − V π(St)

)]
where dπ and d̄T is the density of the stationary distribution and average state distribution in the
trajectoryD, respectively. The advantage of this approach is that we only need to estimate the state
value function, which is an average of the state-action value function and thus one can expect it
reducing variance. When behavior policy is very different from target policy, the variance might
become larger. Further investigation of this trade-off is left for future work.

5.6 Discussion

In this work, we developed a flexible method to estimate the long-term average outcome for a given
treatment policy. The method uses a non-parametric function class to model the value function
and we developed the asymptotic property of the estimated average reward. In mobile health
application, one big challenge is the non-stationarity due to unobserved aspects of the current
context (e.g., the engagement and/or burden). For example, the mapping from states to reward
is likely to be different over time. It will be interesting to generalize the current framework of
long-term average reward to the non-stationary setting. Alternatively, one can consider evaluating
the treatment policy in the indefinite horizon setting where there is an absorbing state (akin to
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the user stop using the mobile app) and consider estimating the total rewards till the absorbing
state is reached. While evaluating a given treatment policy or a class of treatment policies1 is
an important first step towards developing efficient JITAIs, it is crucial to develop methods for
estimating the optimal policy, which leads to the largest positive health behavior outcomes, as well
as the inferential method for assessing the usefulness of certain states in the optimal treatment
policy.

5.7 Appendix

A. Computation of Estimator and Asymptotic Variance

Below, we derive the closed-form solution of the estimators as well as the asymptotic variance
whenQ and G are both Reproducing Kernel Hilbert Space (RKHS). We consider the general setting
discussed in Section 5.5 where there is time-invariant information in the state and the average
reward is modeled as f(z)>β for some feature vector f . The case where there is no time-invariant
state can be covered by setting f = 1. Without loss of generality, we denote the training data simply
by D = {Zh, Xh, Ah, X

′
h, Ri}Ni=1 where h indexes the tuple of transition sample with baseline in

the training set, Zh is the corresponding baseline, Xh and X ′h is the current and next time-varying
state and Rh is the reward. Let Uh = (Zh, Xh, Ah) be the state-action pair, S ′h = (Zh, X

′
h) and

U ′h = (Zh, Xh, Ah, X
′
h).

It is more common to form the RKHS for the function of state. Suppose the kernel function
for the state function is given by k0(s1, s2), s1, s2 ∈ S . To incorporate the action (assume binary
below), one can define k((s1, a1), (s2, a2)) = 1{a1=a2}k(s1, s2). That is, we model each arm sepa-
rately with eachQ(·, a) in the RKHS with kernel k0. Alternatively, one can also model the baseline
value Q(s, 0) and the difference, i.e., Q(s, 1) − Q(s, 0) with two kernels k0, k1. In this case, one
can define the kernel by k((s1, a1), (s2, a2)) = k0(s1, s2) + 1{a1=a2=1}k1(s1, s2).

Suppose the kernel function for Q and G are given by k(·, ·), l(·, ·). Denote the inner prod-
uct by 〈·, ·〉Q and 〈·, ·〉G , respectively. Recall that we need to restrict the function space Q such
that Q((z, x∗), a∗) = 0 for all Q ∈ Q. For an arbitrary kernel function k0 on S × A, we can
always transform it into k such that this assumption is satisfied. In particular, define k(U1, U2) =

k0(U1, U2) − k0((Z1, x
∗, a∗), U2) − k0(U1, (Z2, x

∗, a∗)) + k0((Z1, x
∗, a∗), (Z2, x

∗, a∗)). It can be
seen that the induced RKHS by k satisfies the condition.

Note that the minimizer (5.14) is a regression problem. And it is well known that the solution
is given by Ên(η,Q) =

∑N
h=1 l(Ui, )̇θh(η,Q) where θ(η,Q) = (L + µIN)−1δN(η,Q), where
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lU = l(U, ·), µ = µnN and δN(η,Q) = (δ(U ′h; η,Q)) is the vector of TD error. In addition, each
TD error can be written as δ(U ′; β,Q) = R− f(Z)>β − 〈Q, k̃U ′〉G where

k̃U ′(·) = k(U, ·)−
∑
a′

π(a′|S ′)k((S ′, a′), ·) ∈ Q

We show that the solution of (5.13) must stay in the linear span: {
∑N

h=1 αhk̃U ′h(·) : αh ∈ R, h =

1, . . . , N}. To see this, suppose Q = Q0 + ∆ where Q0 =
∑N

h=1 αhk̃U ′h and ∆ ∈ Q satisfies
〈∆, k̃U ′h〉Q = 0 for all h = 1, . . . , N . For the first term in (5.13), denoted by L(β,Q), we have
L(β,Q) = L(β,Q0), using the fact that each TD error is unchanged by adding ∆. And the second
term, we have ‖Q‖2

Q = ‖Q0‖2
Q + ‖∆‖2

Q due to the orthogonality of ∆. Thus the minimizer must
have ∆ = 0. Using this finite representer property, we can find (β̂, α̂) by

(β̂, α̂) = argmin
β∈Rp,α∈RN

(RN − Fβ − K̃α)>M(RN − Fβ − K̃α) + λα>K̃α

where RN = (Rh)
N
h=1, K̃ = (〈k̃U ′h , k̃U ′k〉Q)Nk,h=1, M = (L + µIN)−1L2(L + µIN)−1, F =

(f(Zh))
N
h=1 and λ = λnN . Note that we have K̃[h, k] can be calculated by

〈k̃U ′h , k̃U ′k〉Q = k(Uh, Uk)−
∑
a′

π(a′|S ′h)k((S ′h, a
′), Uk)−

∑
a′

π(a′|S ′k)k((S ′k, a
′), Uh)

+
∑
a′h

∑
a′k

π(a′h|S ′h)π(a′k|S ′k)k((S ′h, a
′
h), (S

′
k, a
′
k))

Taking derivative implies (β̂, α̂) solves

F>MFβ = F>M(RN − K̃α)

(MK̃ + λIN)α = M(Rn − Fβ)

Similarly, we can find the closed-form solution of ê = (êk)
p
k=1. For each k, êk =

∑N
h=1 θhl(Uh, ·)

where θ = (θh)
N
h=1 = (L + µIN)−1(Fk − K̃α̂) and α̂ solves (MK̃ + λIN)α = MFk. Here Fk is

the k-the column of F .

B. Proof of Theorem 1 and 2

In the following, for simplicity we use E(η,Q) to denote the state-action function E(·, ·; η,Q) and
similar for EG(η,Q), Ên(η,Q).
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Proof of Theorem 1. By the definition of κ in Assumption 4,

‖E(η̂n, Q̂n)‖2
ν̄T
≤ 1

κ2
‖EG(η̂n, Q̂n)‖2

ν̄T
≤ 2

κ2

(
‖EG(η̂n, Q̂n)− Ên(η̂n, Q̂n)‖2

ν̄T
+ ‖Ên(η̂n, Q̂n)‖2

ν̄T

)
The second term is bounded by Lemma 4. We focus on the first term. From Lemma 3, with
probability 1− δ, for some constant c1 the first term

‖Ên(η̂n, Q̂n)− EG(η̂n, Q̂n)‖2
ν̄T

≤ c1(1 + J2
1 (Q̂n) + J2

2 (EG(η̂n, Q̂n)) + log(1/δ))µn

Using Assumption 5 with the constants C1, C2, we have

‖Ên(η̂n, Q̂n)− EG(η̂n, Q̂n)‖2
ν̄T
≤ c1(1 + 2C2

1 + (1 + 2C2
2)J2

1 (Q̂n) + log(1/δ))µn (5.15)

To bound J2
1 (Q̂n), the optimizing property of the estimators (η̂n, Q̂n) in (5.7) and Lemma 3 imply

that

λnJ
2
1 (Q̂n) ≤ Pn

[
1

T

T∑
t=1

Ê2
n(St, At; η̂n, Q̂n)

]
+ λnJ

2
1 (Q̂n)

≤ Pn

[
1

T

T∑
t=1

Ê2
n(St, At; η

π, Q̃π)

]
+ λnJ

2
1 (Q̃π)

≤ Pn

[
1

T

T∑
t=1

(Ên(St, At; η
π, Q̃π)− EG(St, At; ηπ, Q̃π))2

]
+ λnJ

2
1 (Q̃π)

≤ c1(1 + J2
1 (Q̃π) + log(1/δ))µn + λnJ

2
1 (Q̃π)

Since µn = OP (λn), we have J2
1 (Q̂n) ≤ c2(1 + J2

1 (Q̃π) + log(1/δ)) for some constant c2. Com-
bining with (5.15) gives ‖Ên(η̂n, Q̂n)− EG(η̂n, Q̂n)‖2

ν̄T
≤ c(δ)µn for some c(δ) > 0.

Lemma 3. Let EG(η,Q) be the surroage Bellman error operator defined in (5.6). Let Ên(η,Q) be

the estimated surrogate Bellman error in (5.5) with tuning parameter µn. Suppose Assumptions 2,

3,4 and 6 hold. Then with probability at least 1 − δ, the followings hold up to some constant for

all η ∈ [−Rmax, Rmax] and Q ∈ Q:

‖Ên(η,Q)− EG(η,Q)‖2
ν̄T

. µn(J2
1 (Q) + J2

2 (EG(η,Q))) +
1

nµαn
+

1

n
+

log(1/δ)

n
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J2
2 (Ên(η,Q)) . J2

1 (Q) + J2
2 (EG(η,Q)) +

1

nµ
(α+1)
n

+
1

nµn
+

log(1/δ)

nµn

‖Ên(η,Q)− EG(η,Q)‖2
n . µnJ

2
1 (Q) + µnJ

2
2 (EG(η,Q)) +

1

nµαn
+

1

n
+

log(1/δ)

n

where ‖g‖2
n = Pn[1/T

∑T
t=1 g

2(St, At)] is the empirical 2-norm. As a result when µ−1
n = OP (n

1
1+α ),

with probability at least 1− δ, for all (η,Q)

‖Ên(η,Q)− EG(η,Q)‖2
ν̄T

. (1 + J2
1 (Q) + J2

2 (EG(η,Q)) + log(1/δ))µn

J2(Ên(η,Q)) . J1(Q) + J2(EG(η,Q)) +
√

log(1/δ)

‖Ên(η,Q)− EG(η,Q)‖2
n . (1 + J2

1 (Q) + J2
2 (EG(η,Q)) + log(1/δ))µn

Proof of Lemma 3. For simplicity, let δt(η,Q) = δ(St, At, Rt+1, St+1; η,Q) be the temporal dif-
ference error at time t with respect to (η,Q). We start with decomposing the error ‖Ên(η,Q) −
EG(η,Q)‖2

ν̄T
:

‖Ên(η,Q)− EG(η,Q)‖2
ν̄T

= (1/T )
T∑
t=1

E[(Ên(St, At; η,Q)− EG(St, At; η,Q))2]

= (1/T )
T∑
t=1

E[(Ên(St, At; η,Q)− δt(η,Q) + δt(η,Q)− EG(St, At; η,Q))2]

= (1/T )
T∑
t=1

E[(δt(η,Q)− Ên(St, At; η,Q))2] + (1/T )
T∑
t=1

E[(δt(η,Q)− EG(St, At; η,Q))2]

+ (2/T )
T∑
t=1

E[(Ên(St; η,Q)− δt(η,Q))(δt(η,Q)− EG(St, At; η,Q))]

Since
∑T

t=1 E[(E(St, At; η,Q)−EG(St, At; η,Q))g(St, At)] = 0 for all g ∈ G due to the optimizing
property of EG in (5.6), we have

T∑
t=1

E[(Ên(St; η,Q)− EG(St, At; η,Q) + EG(St, At; η,Q)− δt(η,Q))(δt(η,Q)− EG(St, At; η,Q))]

=
T∑
t=1

E[(EG(St, At; η,Q)− δt(η,Q))(δt(η,Q)− EG(St, At; η,Q))]
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= −2
T∑
t=1

E[(δt(η,Q)− EG(St, At; η,Q))2]

Thus we have

‖Ên(η,Q)− EG(η,Q)‖2
ν̄T

= E

[
1

T

T∑
t=1

(δt(η,Q)− Ên(St; η,Q))2 − (δt(η,Q)− EG(St, At; η,Q))2

]

For g1, g2 ∈ G, η ∈ R, Q ∈ Q, define the function of trajectory D = {S1, A1, . . . , ST+1}

f(g1, g2, η, Q) : D 7→ 1

T

T∑
t=1

(δt(η,Q)− g1(St, At))
2 − (δt(η,Q)− g2(St, At))

2

and J2(g1, g2, V ) = J2
2 (g1) + (2/3)J2

2 (g2) + (2/3)J2
1 (Q). Let ‖g‖2

n = Pn[1/T
∑T

t=1 g
2(St, At)].

With these notations, we have

‖Ên(η,Q)− EG(η,Q)‖2
ν̄T

+ ‖Ên(η,Q)− EG(η,Q)‖2
n + µnJ

2
2 (Ên(η,Q))

= Pf(Ên(η,Q), EG(η,Q), η, Q) + Pnf(Ên(η,Q), EG(η,Q), η, Q) + µnJ
2
2 (Ên(η,Q))

= I1(η,Q) + I2(η,Q)

where I1(η,Q) = 3(Pnf(Ên(η,Q), EG(η,Q), η, Q)+µnJ
2(Ên(η,Q), EG(η,Q), V )) and I2(η,Q) =

(Pn + P )f(Ên(η,Q), EG(η,Q), η, Q) + µnJ
2
2 (Ên(η,Q))− I1(η,Q).

For the first term, the optimizing property of Ên(η,Q) implies that

(1/3)I1(η,Q) = Pnf(Ên(η,Q), EG(η,Q), η, Q) + µnJ
2(Ên(η,Q), EG(η,Q), V )

= Pn
[
(1/T )

T∑
t=1

(δt(η,Q)− Ên(St; η,Q))2 − (δt(η,Q)− EG(St, At; η,Q))2
]

+ µnJ
2
2 (Ên(η,Q)) + (2/3)µnJ

2
2 (EG(η,Q)) + (2/3)µnJ

2
1 (Q)

= [Pn
[
(1/T )

T∑
t=1

(δt(η,Q)− Ên(St; η,Q))2
]

+ µnJ
2(Ên(η,Q))]

− Pn
[
(1/T )

T∑
t=1

(δt(η,Q)− EG(St, At; η,Q))2
]

+ (2/3)µnJ
2
2 (EG(η,Q)) + (2/3)µnJ

2
1 (Q)

≤ (5/3)µnJ
2
2 (EG(η,Q)) + (2/3)µnJ

2
1 (Q)

Thus, I1(η,Q) ≤ 5µnJ
2
2 (EG(η,Q)) + 2µnJ

2
1 (Q) holds for all (η,Q).
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Next, to obtain the uniform bound of I2(η,Q) over all η,Q, we apply the peeling device to-
gether with the exponential inequality of the relative deviation of the empirical process developed,
Theorem 19.3 in [74]. This is similar to the proof of Lemma 15 in . Rewrite I2(η,Q) as

I2(η,Q) = (Pn + P )f(Ên(η,Q), EG(η,Q), η, Q) + µnJ
2
2 (Ên(η,Q))

− 3(Pnf(Ên(η,Q), EG(η,Q), η, Q) + µnJ
2(Ên(η,Q), EG(η,Q), V ))

= 2(P − Pn)f(Ên(η,Q), EG(η,Q), η, Q)− Pf(Ên(η,Q), EG(η,Q), η, Q)

− 2µn(J2
2 (Ên(η,Q)) + J2

2 (EG(η,Q)) + J2
1 (Q))

Define the interval B = [−Rmax, Rmax]. Fix some t > 0.

Pr (∃(η,Q) ∈ B ×Q, I2(η,Q) > t)

=
∞∑
l=0

Pr
(
∃(η,Q) ∈ B ×Q, 2µn[J2

2 (Ên(η,Q)) + J2
2 (EG(η,Q)) + J2

1 (Q)] ∈ [2lt1{l 6=0}, 2
l+1t),

2(P − Pn)f(Ên(η,Q), EG(η,Q), η, Q) > Pf(Ên(η,Q), EG(η,Q), η, Q)

+ 2µn[J2
2 (Ên(η,Q)) + J2

2 (EG(η,Q)) + J2
1 (Q)] + t

)
≤

∞∑
l=0

Pr
(
∃(η,Q) ∈ B ×Q, 2µn[J2

2 (Ên(η,Q)) + J2
2 (EG(η,Q)) + J2

1 (Q)] ≤ 2l+1t,

2(P − Pn)f(Ên(η,Q), EG(η,Q), η, Q) > Pf(Ên(η,Q), EG(η,Q), η, Q) + 2lt
)

≤
∞∑
l=0

Pr

(
sup
f∈Fl

(P − Pn)f(D)

Pf(D) + 2lt
>

1

2

)

where Fl = {f(g, EG(η,Q), η, Q) : J2
2 (g) ≤ 2lt

µn
, J2

2 (EG(η,Q)) ≤ 2lt
µn
, J2

1 (Q) ≤ 2lt
µn
, η ∈ B}. Next

we verify the conditions in Theorem 19.3 in [74] with F = Fl, ε = 1/2 and η = 2l+1t to get an
exponential inequality for each term in the summation, similar to the proof of Lemma 4 below. The
(A1) and (A2) assumptions are easy to verify using Assumptions 2, 3 and 4. There exists some
K1, K2 (depending on πmin, Rmax, Qmax) such that ‖f‖∞ ≤ K1 and E[f(D)2] ≤ K2E[f(D)].
To ensure the assumption A3 holds for every l, we just need to ensure t > c1n

−1 for some
constant c1(K1, K2). Using the entropy condition, it can be shown that logN (u,Fl, ‖ · ‖n) ≤
c2

(
2lt
µn

)α
log
(

4Rmax+u
u

)
u−2α for some constant c2 depending on Rmax, Qmax and the constant in

Assumption 6. Thus the condition A4 is satisfied for every l by choosing t ≥ c3(nµαn)−1. There-
fore,

Pr (∃(η,Q) ∈ B ×Q, I2(η,Q) > t) ≤ C1 exp(−C2nt)
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By choosing t ≥ c4[(nµαn)−1 + n−1 + log(1/δ)
n

], we can see that

I2(η,Q) ≤ c4[(nµαn)−1 + n−1 +
log(1/δ)

n
]

holds for all η,Q with probability at least 1− δ.

Lemma 4. Suppose the conditions in Lemma 3 and Assumptions 3, 5 hold. Let (η̂n, Q̂n) be the

estimator in (5.7) and Ên(η,Q) be the estimated Bellman error operator in (5.8). With the tuning

parameters such that µn = OP (λn) and µ−1
n = Op(n

1/(1+α)), there exists some constant c(δ) such

that the following holds with probability 1− δ

‖Ên(η̂n, Q̂n)‖2
ν̄T

. c(δ)λn

Pn
[
1/T

T∑
t=1

Ê2
n(St, At; η̂n, Q̂n)

]
≤ c(δ)λn

Proof of Lemma 4. Fix some δ > 0. For ease of notation, define a function

f(g) : D → 1

T

T∑
t=1

g(St, At)
2

for g ∈ G. Let ‖g‖2
n = Pn[1/T

∑T
t=1 g

2(St, At)]. Then

‖Ên(η̂n, Q̂n)‖2
ν̄T

+ ‖Ên(η̂n, Q̂n)‖2
n = (P + Pn)f(Ên(η̂n, Q̂n)) = In,1 + In,2

where In,1 = 3(Pnf(Ên(η̂n, Q̂n)) + (2/3)λnJ
2
1 (Q̂n)) and In,2 = (Pn + P )f(Ên(η̂n, Q̂n))− In,1.

Without loss of generality, we assume the average reward estimates η̂n ∈ [−Rmax, Rmax] (oth-
erwise a truncation argument can be applied). For the first term, Assumption 3, the optimizing
property (5.7) and the in-sample error bound in Lemma 3 with the constant C imply that under the
choice of (µn, λn) specified in the condition, the following holds with probability at least 1− δ/2
for some constant c0 > 0

In,1 ≤ 3Pnf(Ên(ηπ, Q̃π)) + 2λnJ
2
1 (Q̃π)

= 3Pn
[
(1/T )

T∑
t=1

Ê2
n(St, At; η

π, Q̃π)
]

+ 2λnJ
2
1 (Q̃π)
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= 3Pn
[
(1/T )

T∑
t=1

(Ên(St, At; η
π, Q̃π)− EG(St, At; ηπ, Q̃π))2

]
+ 2λnJ

2
1 (Q̃π)

≤ 3C(1 + J2
1 (Q̃π) + log(1/δ))µn + 2λnJ

2
1 (Q̃π) ≤ c0(1 + log(1/δ))λn

For the second term,

In,2 = (Pn + P )f(Ên(η̂n, Q̂n))− 3(Pnf(Ên(η̂n, Q̂n)) + (2/3)λnJ
2
1 (Q̂n))

= 2(P − Pn)f(Ên(η̂n, Q̂n))− Pf(Ên(η̂n, Q̂n))− 2λnJ
2
1 (Q̂n)

Recall from Lemma 3 that with probability 1 − δ/4, for all (η,Q), J2(Ên(η,Q)) ≤ c0(J1(Q) +

J2(EG(η,Q)) +
√

log(4/δ)) for some constant c0 when µn = OP (n−1/(1+α)). Combining with
Assumption 5, for some constant c1 (depending c0 and C1, C2 in Assumption 5), we have Pr(E) >

1− δ/4, where the event E is given by

E = {J2(Ên(η̂n, Q̂n)) ≤ c1(1 + J1(Q̂n) +
√

log(4/δ))}

Now we have Pr(In,2 > t) ≤ Pr(In,2 > t,E) + δ/4 and we bound the first term using peeling
device on 2λnJ

2
1 (Q̂n) in In,2; similar as in the proof of Lemma 3. In particular,

Pr(In,2 > t,E)

=
∞∑
l=0

Pr
(
In,2 > t, 2λnJ

2
1 (Q̂n) ∈ [2lt1{t6=0}, 2

l+1t), E
)

=
∞∑
l=0

Pr
(
2(P − Pn)f(Ên(η̂n, Q̂n)) > Pf(Ên(η̂n, Q̂n)) + 2λnJ

2
1 (Q̂n) + t,

2λnJ
2
1 (Q̂n) ∈ [2lt1{t6=0}, 2

l+1t), J2(Ên(η̂n, Q̂n)) ≤ c1(1 + J1(Q̂n) +
√

log(4/δ))
)

≤
∞∑
l=0

Pr
(
2(P − Pn)f(Ên(η̂n, Q̂n)) > Pf(Ên(η̂n, Q̂n)) + 2lt1{t6=0} + t,

2λnJ
2
1 (Q̂n) ≤ 2l+1t, J2(Ên(η̂n, Q̂n)) ≤ c1(1 +

√
(2lt)/λn +

√
log(4/δ))

)
≤

∞∑
l=0

Pr
(
2(P − Pn)f(Ên(η̂n, Q̂n)) > Pf(Ên(η̂n, Q̂n)) + 2lt,

J2(Ên(η̂n, Q̂n)) ≤ c1(1 +
√

(2lt)/λn +
√

log(4/δ))
)

≤
∞∑
l=0

Pr

(
sup
f∈Fl

(P − Pn)f(D)

Pf(D) + 2lt
>

1

2

)
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where Fl = {f(g) : J2(g) ≤ c1(1 +
√

(2lt)/λn +
√

log(4/δ)), g ∈ G}. In what follows we verify
the conditions in Theorem 19.3 in [74] with F = Fl, ε = 1/2 and η = 2lt to get an exponential
inequality for each term in the summation.

(A1) |f(g)(D)| = | 1
T

∑T
t=1 g(St, At)

2| ≤ G2
max. We set K1 = G2

max.

(A2) Pf 2(g) ≤ G2
maxPf(g). We set K2 = G2

max

(A3) the condition
√
nε
√

1− ε√η ≥ 288 max{2K1,
√

2K2} becomes

√
n(1/2)3/22(l+1)/2

√
t ≥ 288 max{2G2

max,
√

2Gmax}

So this holds for all l ≥ 0 as long as
√
n(1/2)3/2

√
2
√
t ≥ 288 max{2G2

max,
√

2Gmax}, i.e.,
t ≥ c2/n for some constant c2.

(A4) We first obtain an upper boundN2(u,Fl,D1, . . . ,Dn) for all possible realization of trajecto-
ries. Firstly, for two g1, g2

1

n

n∑
i=1

[f(g1)(Di)− f(g2)(Di)]2 ≤ 4G2
max‖g1 − g2‖2

n,T

where the norm ‖g‖2
n,T = 1

nT

∑n
i=1

∑T
t=1 g

2(Si,t). Thus applying Assumption 6 implies that
for some constant c3, the metric entropy for each l is bounded by

logN2(u,Fl,D1, . . . ,Dn)

≤ logN2

(
u

2Gmax

, {g : J2(g) ≤ c1(1 +
√

(2lt)/λn +
√

log(4/δ)), g ∈ G}, {Si,t, Ai,t}N,Ti,t=1

)
≤ C

(
c1(1 +

√
(2lt)/λn +

√
log(4/δ))

u/(2Gmax)

)2α

≤ c3

(
1 +

(
2lt

λn

)α
+ logα(4/δ)

)
u−2α

where C in the second last inequality is the constant specified in Assumption 6 Now we just
need to ensure for all x ≥ η/8 = 2lt/8 and l ≥ 0:

√
n(1/2)2x

96
√

2 · 2G2
max

≥
∫ √x

0

√
c3

(
1 +

(
2lt

λn

)α
+ logα(4/δ)

)1/2

u−αdu

Note that
∫ √x

0
u−αdu = x

1−α
2 . The above equality is equivalent with he following for some
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constant c4 (free of l, λn, n)

c4

√
nx

1+α
2 ≥

(
1 +

(
2lt

λn

)α
+ logα(4/δ)

)1/2

Since (a+ b)1/2 ≤
√
a+
√
b and LHS is increasing function of x, it’s enough to ensure

c4

√
n(2lt/8)

1+α
2 ≥ 1

c4

√
n(2lt/8)

1+α
2 ≥

(
2lt

λn

)α/2
c4

√
n(2lt/8)

1+α
2 ≥ (log(4/δ))α/2

hold for all l ≥ 0. The above is satisfied for all l by choosing large enough t. For example,
the first one holds t ≥ c5n

−1/(1+α) where c5 = 8(1+α)/c2
4. Similarly, we can verify that the

second and third conditions holds if t ≥ c5
nλαn

and t ≥ c5(log(4/δ))αn−1/(1+α). In summary,
we select t s.t.

t ≥ c5(1 + (log(4/δ))α)n−1/(1+α) + c5(nλαn)−1

We can now apply Theorem 19.3 in [74] for each l-th term. For some constant c6, c7 depending
on Gmax we have

Pr(In,2 > t,E) ≤
∞∑
l=0

Pr

(
sup
f∈Fl

(P − Pn)f(D)

Pf(D) + 2lt
>

1

2

)
≤ c6 exp(−c7nt)

Solving c6 exp(−c7nt) < δ/4, we get t ≥ log(4c6/δ)
nc7

. Combining this with the conditions on t in
(A3) and (A4) implies that with probability 1− δ/2,

In,2 ≤
c2

n
+
c5(1 + (log(4/δ))α)

n1/(1+α)
+

c5

nλαn
+

log(4c6/δ)

nc7

With the choice of tuning parameters (λn, µn) specified in the condition , we have (nλαn)−1 and
(1/n)1/(1+α) = OP (λn) and thus In,2 ≤ c(δ)λn for some constant c(δ). Combining with the bound
on In,1, we obtain the desired result.

Lemma 5. Suppose Assumption 1 holds. Then, for all (η,Q) ∈ R × Q, we have |η − ηπ| .
‖E(η,Q)‖ν̄T and ‖Q− Q̃π‖ . ‖E(η,Q)‖ν̄T
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Proof of Lemma 5. Note that

E(s, a; η,Q) = E[Rt+1 +
∑
a′

π(a′|St+1)Q(St+1, a
′)− η −Q(s, a) |St = s, At = a]

= (ηπ − η) + (Q̃π −Q)(s, a)− Pπ(Q̃π −Q)(s, a)

= (ηπ − η)eπ(s, a) + (ηπ − η)uπ(s, a) + (Q̃π −Q)(s, a)− Pπ(Q̃π −Q)(s, a)

= (ηπ − η)eπ(s, a) + (ηπ − η)(qπ(s, a)− Pπqπ(s, a)) + (Q̃π −Q)(s, a)− Pπ(Q̃π −Q)(s, a)

= (ηπ − η)eπ(s, a) + h(s, a)− Pπh(s, a)

where h = Q̃π −Q+ (ηπ − η)qπ. Using (5.10), we have

‖E(η,Q)‖2
ν̄T

= (η − ηπ)2‖eπ‖2
ν̄T

+ ‖h‖2
ν̄T

We have |η − ηπ| ≤ ‖eπ‖−1
ν̄T ‖E(η,Q)‖. On the other hand, we have

‖( I − Pπ)(Q−Qπ)‖ν̄T
= ‖Q− PπQ+ η1− r + (r + PπQπ −Qπ − 1ηπ)− η1 + ηπ1‖ν̄T
= ‖ − E(η,Q)− η1 + ηπ1‖ν̄T
≤ ‖E(η,Q)‖ν̄T + |ηπ − η| ≤ (1 + ‖eπ‖−1

ν̄T
)‖E(η,Q)‖ν̄T

Proof of Theorem 2. Let the objective function in (5.7) be Ln(η,Q):

Ln(η,Q) = Pn
[
(1/T )

T∑
t=1

Ê2
n(St, At; η,Q)

]
+ λnJ

2
1 (Q)

Recall the definition of q̃π in Assumption 7. Note that we assume q̃π ∈ Q. Consider

d

dt
Ln(η − t, Q+ tq̃π)|t=0

=
d

dt
Pn
[
(1/T )

T∑
t=1

Ê2
n(St, At; η − t, Q+ tq̃π)

]
+ λnJ

2
1 (Q+ tq̃π)|t=0

= 2Pn
[
(1/T )

T∑
t=1

Ên(St, At; η,Q)× d

dt
Ên(St, At; η − t, Q+ tq̃π)|t=0

]
+ 2λnJ1(Q, q̃π)
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Using the optimizing property (5.8), we can show that d
dt
Ên(s, a; η − t, Q + tq̃π)|t=0 = ên(s, a)

where ên solves

ên = argmin
g∈G

Pn
[ 1

T

T∑
t=1

(1− q̃π(S,A) +
∑
a′

π(a′|S ′)q̃π(S ′, a′)− g(St, At))
2
]

+ µnJ
2
2 (g) (5.16)

See the derivation below. From (5.11), ên can be viewed as an estimator of eπ = 1 − uπ. Since
(η̂n, Q̂n) = argminη,Q Ln(η,Q), we have d

dt
Ln(η̂n − t, Q̂n + tq̃π)

∣∣
t=0

= 0, that is

0 = Pn
[
(1/T )

T∑
t=1

Ên(St, At; η̂n, Q̂n)ên(St, At)
]

+ λnJ1(Q̂n, q̃
π) (5.17)

From Theorem 1, we have J1(Q̂n) = OP (1) and thus the second term λnJ1(Q̂n, q̃
π) = OP (n−1/2)

since λn = oP (n−1/2). For the first term,

Pn
[ 1

T

T∑
t=1

Ên(St, At; η̂n, Q̂n)ên(St, At)
]

= Pn
[ 1

T

T∑
t=1

Ên(St, At; η̂n, Q̂n)eπ(St, At)
]

+ Pn
[ 1

T

T∑
t=1

Ên(St, At; η̂n, Q̂n)(ên − eπ)(St, At)
]

Since eπ ∈ G and the tuning parameter satisfies µ−1
n = OP (n−1/(1+α)), applying the same argument

as in Lemma 3 implies that ‖ên− eπ‖2
n = OP (µn). In Lemma 4, we have shown ‖Ên(η̂n, Q̂n)‖2

n =

OP (λn). Note µn = OP (λn) and λn = oP (n−1/2), so that µn = oP (n−1/2). By Cauchy inequality,
Pn
[
(1/T )

∑T
t=1 Ên(St, At; η̂n, Q̂n)(ên − eπ)(St, At)

]
= oP (n−1/2).

On the other hand, since eπ ∈ G, the optimizing property in (5.8) gives

Pn
[
(1/T )

T∑
t=1

Ên(St, At; η̂n, Q̂n)eπ(St, At)
]

= Pn
[
(1/T )

T∑
t=1

δt(η̂n, Q̂n)eπ(St, At)
]
− 2µnJ2(Ên(η̂n, Q̂n), eπ)

where we use the notation for the temporal difference error at time t, i.e.,

δt(η,Q) = δ(St, At, St+1, Rt+1; η,Q)

Note that Lemma 3 implies that J2(Ên(η̂n, Q̂n)) = OP (1) since µ−1
n = OP (n1/(1+α)). Thus the
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second term of above µnJ2(Ên(η̂n, Q̂n), eπ) = oP (n−1/2). Finally we consider the first term.
Plugging-in the the true tempera difference error, we have

Pn
[
(1/T )

T∑
t=1

δt(η̂n, Q̂n)eπ(St, At)
]

= Pn
[
(1/T )

T∑
t=1

(δt(η
π, Q̃π) + (δt(η̂n, Q̂n)− δt(ηπ, Q̃π))eπ(St, At)

]
= Pn

[
(1/T )

T∑
t=1

δt(η
π, Qπ)eπ(St, At)

]
− (η̂n − ηπ)Pn

[
(1/T )

T∑
t=1

eπ(St, At)
]

+ Rem

where the last term is given by

Rem = Pn
[
(1/T )

T∑
t=1

[(Q̃π − Q̂n)(St, At)−
∑
a′

π(a′|St+1)(Q̃π − Q̂n)(St+1, a
′)]eπ(St, At)

]
For Q ∈ Q, define

f(Q) : D → 1

T

T∑
t=1

[Q(St, At)−
∑
a′

π(a′|St+1)Q(St+1, a
′)]eπ(St, At)

Note that we can write Pf(Q) = 1
T

∑T
t=1 E[h(St, At)e

π(St, At)] where h(s, a) = Q(s, a) −∑
a′ E[π(a′|St+1)Q(St+1, a

′)|St = a,At = a] is mean 0 under stationary distribution. Using the
orthogonality (5.10), we have Pf(Q) = 0 and thus Rem = −

√
n(Gnf(Q̂n) − Gnf(Q̃π)). Note

that J1(Q̂n) = OP (1) and the sup-norm metric condition (6) implies that the bracket entropy inte-
gral of the function classF = {f(Q) : Q ∈ Q, J(Q) ≤M} is finite for allM . Using Assumptions
3 and 7 and Lemma 5, we have

P (f(Q̂n)− f(Q̃π))2 ≤ G2
max(1 + 4Q2

max)‖( I − Pπ)(Q̂n − Q̃π)‖2
ν̄T

≤ G2
max(1 + 4Q2

max)(1 + ‖eπ‖−1
ν̄T

)‖E(η̂n, Q̂n)‖ν̄T

where I is the identity operator and recall that PπQ(s, a) = E[
∑

a′ π(a′|St+1)Q(St+1, a
′)|St =

a,At = a]. Since ‖E(η̂n, Q̂n)‖ν̄T = OP (λn) = oP (1), we conclude that P (f(Q̂n) − f(Q̃π))2 =

oP (1). The asymptotic equicontinuity (Theorem 19.5 in [71]) implies that |Gnf(Q̂n)−Gnf(Q̃π)| =
oP (1) and thus Rem = oP (n−1/2).
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Summarizing above and plugging into (5.17), we have shown that

(η̂n − ηπ)Pn
[
(1/T )

T∑
t=1

eπ(St, At)
]

= Pn
[
(1/T )

T∑
t=1

δt(η
π, Qπ)eπ(St, At)

]
+ oP (n−1/2)

Note that Pn(1/T )
∑T

t=1 e
π(St, At) = 1/τπ + oP (1) and wπ = τπeπ. We then have

√
n(η̂n − ηπ) = Gn

[
(1/T )

T∑
t=1

δt(St, At; η
π, Qπ)wπ(St, At)

]
+ oP (1)

Derivation of Equation (5.16) . Note that for all g ∈ G, Ên(η,Q) satisfies

Pn
[
(1/T )

T∑
t=1

(
δ(St, At, St+1, Rt+1; η,Q)− Ên(St, At; η,Q)

)
g(St, At)

]
= µnJ2(g, Ên(η,Q))

Now for all t and g ∈ G, we have

Pn
[
(1/T )

T∑
t=1

[δ(St, At, St+1, Rt+1; η̂n − t, Q̂n + tq̃π)− Ên(St, At; η̂n − t, Q̂n + tq̃π)]g(St, At)
]

= µnJ2(g, Ên(η̂n − t, Q̂n + tq̃π))

Taking derivative w.r.t. t at t = 0 of above gives

Pn
[ 1

T

T∑
t=1

[1− q̃π(St, At) +
∑
a′

π(a′|St+1)q̃π(St+1, a
′)− ên(St, At)]g(St, At)

]
= µnJ2(g, ên)

where we use the fact that

d

dt
δ(S,A, S ′, R; η̂n − t, Q̂n + tq̃π) = 1− q̃π(S,A) +

∑
a′

π(a′|S ′)q̃π(S ′, a′)

And thus we can see that ên solves

ên = argmin
g∈G

Pn
[ 1

T

T∑
t=1

[1− q̃π(St, At) +
∑
a′

π(a′|S+1)q̃π(St+1, a
′)− g(St, At)]

2
]

+ µnJ
2
2 (g)
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CHAPTER 6

Personalized HeartSteps: A Reinforcement Learning
Algorithm for Optimizing Physical Activity

6.1 Introduction

With the recent evolution of mobile health technologies, health scientists are increasingly inter-
ested in delivering interventions via notifications on the mobile device at the moments when they
can most readily help the user prevent negative health outcomes and promote the adoption and
maintenance of healthy behaviors. The type and timing of the mobile health interventions should
ideally adapt to the real-time collected user’s context, e.g., the time of the day, the location, cur-
rent activity, and stress level. This gives rise to the concept of a just-in-time adaptive intervention
(JITAI) [36]. Operationally, JITAI includes a sequence of decision rules (e.g., treatment policies)
that takes the user’s current context as input and specifies whether and what type of an intervention
should be provided at the moment. In practice, the interventions included in a JITAI are often
based on behavioral theories. However, these theories are currently not mature enough to precisely
specify which particular intervention and when it should be delivered in order to ensure the inter-
ventions have the intended effects and optimize the long-term efficacy of the interventions. As a
result, there is much interest in how best to use data to design JITAIs.

In this chapter, we develop a Reinforcement Learning (RL) algorithm to continuously learn
and improve the treatment policy in the JITAI as the data is collected from the user. This work is
motivated by our collaboration on a physical activity mobile health study, called HeartSteps V2.
The HeartSteps V2 RL algorithm will be used to decide, five times per day, whether to deliver a
context-tailored activity suggestion.

The remainder of the chapter is organized as follows. We first describe HeartSteps, including
HeartSteps V1, and the future planned study, HeartSteps V2. We then briefly discuss some RL
background and identify key challenges in applying RL to optimize JITAI treatment policies in
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mobile health. Existing mobile health studies that utilized RL are reviewed, as well as related RL
algorithms. We then describe the proposed HeartSteps V2 RL algorithm, the implementation, and
evaluation of this algorithm using a generative model built on HeartSteps V1 data. We close with
a discussion of future work.

6.2 HeartSteps V1 and V2: Physical Activity Mobile Health
Study

In the upcoming HeartSteps V2, a 90-day physical activity study, patients with blood pressure in
the stage 1 hypertension range (120-130 systolic) will be provided a Fitbit tracker and a mobile
phone application on the phone designed to help them improve their physical activity. One of
the interventions in HeartSteps V2 is the contextually tailored activity suggestion that may be
delivered at any of the five user-specified times during each day. These five times are roughly
separated by 2.5 hours, corresponding to the user’s morning commute, mid-day, mid-afternoon,
evening commute, and post-dinner times. The content of the suggestion is designed to encourage
activity in the current context and thus the suggestions are intended to impact near time physical
activity. The RL algorithm developed in this chapter will be used to determine at each time whether
to send the activity suggestion.

In order to design HeartSteps V2, our team conducted HeartSteps V1, which is a 42-day phys-
ical activity study involving 37 healthy sedentary adults [1, 47, 48, 49]. In HeartSteps V1 whether
to provide a tailored activity suggestion were randomized at each of the 5 times per day with a
constant probability of 0.30. The data collected from HeartSteps V1 is used in this chapter to
(1) inform the design of RL algorithm for HeartSteps V2 (e.g., selecting the variables that are
predictive of future step counts as well as the efficacy of the activity suggestion and form a prior
distribution) and (2) to create a simulation environment (e.g., the generative model) in order to
design/evaluate the RL algorithm. See sections 6.5 and 6.6.

6.3 Challenges to Applying Reinforcement Learning in mHealth

Reinforcement Learning (RL) is an area of Machine Learning in which an algorithm learns how
to act optimally by continuously interacting with the unknown environment: observe the current
state, perform the action and receive the reward, with the goal of learning the best sequence of
actions (i.e. the policy) to maximize the total rewards. For example, in the case of HeartSteps, the
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state is a set of features of the user’s current and past context, the actions are whether to deliver
an activity suggestion and the reward is a function of near time physical activity. The fundamental
challenge in RL is the trade-off between exploitation (e.g., taking the action that appears the best
given data observed so far) and exploration (e.g., gathering information to infer the best action).
RL has seen rapid development in recent years and shown remarkable success across many fields,
e.g., video games, chess-playing, and robotic control. However, many challenges remain that need
to be carefully addressed before RL can be usefully deployed to adapt and optimize mobile health
interventions. Below we discuss some of these challenges.

First, the RL algorithm should learn quickly. Most online RL algorithms require the agent to
interact many times with the environment prior to performing well. This is impractical in mobile
health applications as users can lose interest and disengage quickly. We want to ensure that the RL
algorithm performs well sufficiently fast.

Second, the RL algorithm must accommodate noisy data. Because mobile health interventions
are provided in uncontrolled, in situ complex environments both context information, as well as
rewards, can be very noisy. For example, step count data collected from the wrist band is noisy
due to a variety of confounds including incidental hand movements. Additionally, the sensors do
not detect the entire context of the user; non-sensed aspects of the current context act as sources of
variance. Such high noise settings typically require even more interactions with the environment
to learn the optimal policy. Both the first and second challenges result in the need to trade off
between bias and variance when designing the RL algorithm.

Third, the RL algorithm should accommodate some non-stationarity. Due to unobserved as-
pects of the current context (e.g., engagement or burden), observed human behavior often exhibits
non-stationarity over longer periods of time, e.g., the mapping from context to reward will likely
change slowly. For example, in HeartSteps V1 treatment effects decrease with the time the user is
in the study[47].

Fourth, the RL algorithm must adjust for longer-term effects of current actions. In mobile
health interventions often tend to have a positive effect on the immediate reward, but likely produce
a negative impact on future rewards due to user habituation and/or burden [45, 46]. As such, the
optimal treatment policy can only be identified by looking far into the future, e.g., using a long
planning horizon in RL. It’s been shown that, in both practice and theory, larger discount rates lead
to slower learning rates.

Lastly, the RL algorithm should select actions so that after the study is over, secondary data

analyses are feasible. This is particularly the case for experimental trials involving clinical pop-
ulations. In these settings, an interdisciplinary team is required to design the intervention and to
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conduct the experimental trial. As a result, multiple stakeholders will want to analyze the resulting
data in a large variety of ways. Thus, for example, off-policy learning and causal inference, as well
as other more standard statistical analyses, must be feasible after study end.

6.4 Related Work

Existing RL-based Mobile Health Studies There are a few existing mobile health studies in
which RL methods are applied to adapt the individual’s intervention in real time. Here we only fo-
cus on the setting where the treatment policy is not pre-specified, but instead continuously learned
and improved as more data is collected.

In [76], an RL system was deployed to choose the different types of daily suggestions to encour-
age physical activity in patients with diabetes in a 26-week study. They used the Softmax strategy
to optimize the intervention in the so-called Contextual Bandit setting, e.g., the action (daily sug-
gestion) is chosen with the goal to maximize the immediate reward (increased step count). Paredes
et al. [77] developed PopTherapy, an RL system to choose among 10 types of stress management
strategies when the participant requests an intervention in the mobile app. A Contextual Bandit al-
gorithm, called Upper Confidence Bound (UCB), was applied in their RL system. A recent weight
loss study is reported in [78], in which one of three types of interventions is chosen twice a week
over a 12-week period. Their RL system features an explicit separation between exploration and
exploitation, e.g., 10 decision times are predetermined for exploration (e.g., randomly selecting
the interventions at each decision time) and the rest of 14 decision times for exploitation (e.g.,
choosing the best intervention that maximizes the designed reward based on the history). In My-
Behavior [79], a smartphone app that delivered personalized interventions for promoting physical
activity and dietary health, used EXP3, a multi-arm bandit algorithm (e.g., context-free) to select
the interventions. While the RL methods in the aforementioned studies aim to select actions so as
to optimize the immediate reward, in a recent physical study reported in [80], the RL system at the
end of every week uses the participant’s historical daily step count data to estimate the dynamic
system for the daily step count and use it to infer the optimal daily step goals for the next 7 days,
with the goal to maximize the minimal number of step counts taken in the next week.

The challenges listed in section 6.3 motivate us to generalize the above RL algorithms in par-
ticular directions. First, the use of a Bayesian RL algorithm will allow us to include prior evidence
to accelerate learning on each user. Second, we will trade off bias with variance by using a low
dimensional linear model for the part of the reward function corresponding to the treatment ef-
fect. Third, we will use a modeling approach that increases the robustness of the RL algorithm
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to reward function misspecification as it is unlikely that the model used to approximate the re-
ward function will be correct (due to the dimension and complexity of the context information and
potential non-stationarity). It is been empirically shown in RL literature that the performance of
standard RL algorithms are quite sensitive to the model for the reward function [81, 82, 83]. Third,
the RL algorithm should accommodate delayed habituation and burden effects. Among the above
algorithms, only the algorithm used in [80] attempts to optimize rewards over a time period longer
than the immediate time step. It turns out that there is a bias-variance trade-off when designing
how long into the future the RL should attempt to optimize rewards. That is, only focusing on
maximizing the immediate rewards speeds the learning rate (e.g., due to lower estimation vari-
ance) compared with a full RL algorithm that attempts to maximize over a longer time horizon.
However, an RL algorithm focused on optimizing the immediate reward might end up sending too
many treatments due to the fourth mentioned challenge (i.e. the treatment tends to have a positive
effect on immediate reward and negative effects on future rewards) and lead to poorer overall per-
formance (akin to bias) than the algorithm that attempts to optimize over a longer time horizon to
account for treatment burden and disengagement. Lastly, it is critical that the RL algorithm select
actions with probabilities bounded away from 0 and 1 to ensure off-policy analyses and minimize
assumptions needed to conduct causal inference. Both [77] and [80] use algorithms that select the
action deterministically based on the history, and [78] incorporate a pure exploitation phase. It’s
known that action selection probabilities close to 0 or 1 cause the instability (i.e., high variance) in
batch data analysis that uses importance weights, e.g., in the off-policy evaluation [84, 85]

Related RL Algorithms At a high level, our proposed algorithm includes three main compo-
nents: (1) actions are selected probabilistically based on Thompson Sampling (TS), (2) action-
centering is used in the model for the reward function and (3) a proxy for future rewards is used to
capture the potential negative future impact of sending treatments. Below we briefly discuss how
each of these components is related to existing RL algorithms.

Thompson Sampling (TS) is a general algorithmic idea that uses a Bayesian paradigm to trade
off between exploration and exploitation. In the standard TS algorithm, the action at each decision
time is selected according to the posterior probability of this action being optimal given the current
history. TS-based algorithms have been shown to enjoy not only strong theoretical performance
guarantees but strong empirical performance in many problems when compared to other state-of-
the-art methods, such as UCB [86, 87, 88]. In addition, prior knowledge can be easily incorporated
in the TS based algorithm, through the use of a prior distribution on the parameters.

We use the idea of action-centering in modeling the reward. The motivation is to protect the
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algorithm from a misspecified model for the “baseline” reward function (e.g., in HeartSteps ex-
ample with binary actions, the baseline reward function is the expected number of future 30-min
step count given the current state and no activity suggestion ). The idea of action-centering in
RL was first explored in [89] and recently improved in [90]. In both works, the RL algorithm is
theoretically guaranteed to learn the optimal action under no assumption about the baseline reward
generating process (e.g., the baseline reward function can be non-stationary). However, neither of
these methods attempts to reduce the noise in the reward. We generalize the action centering for
use in higher variance, non-stationary reward settings.

To capture the potential negative impact of treatment on future rewards, we introduce a “dosage”
variable based on the history of past treatments. A similar formulation of “dosage” was explored
in a recent unpublished manuscript [83] where they developed a bandit algorithm, called ROGUE
(Reducing or Gaining Unknown Efficacy) Bandits. They use the “dosage” idea to accommodate
settings in which an (unknown) dosage variable causes non-stationarity in the reward function. Our
use of dosage, on the other hand, is to form a proxy of the future rewards, in order to mimic a full
RL setting (as opposed to the bandit setting) but managing variance. We construct a proxy of the
future rewards (proxy value) under a low dimensional proxy MDP model. The model-based RL
approach is well studied in the RL literature, for example in TS-based algorithms in [91, 92, 93].
In these work, the algorithm uses a model for the transition function from current state and action
to the next state. Instead, the proposed algorithm in this chapter only uses the proxy MDP model
to provide a low variance proxy for the longer term impact of actions on future rewards.

6.5 Reinforcement Learning Algorithm in HeartSteps V2

In this section, we discuss the design of the RL algorithm in HeartStep V2; this algorithm deter-
mines whether to send the activity suggestion at each decision time. We first detail the underlying
RL framework by specifying each component in our setting, i.e. the decision time, action, states,
and reward, and formally introduce our proposed RL algorithm.

Reinforcement Learning Framework

Let the participant’s longitudinal data recorded via mobile device be the sequence

{S1, A1, R1, S2, A2, R2, . . . , St, At, Rt, · · · }
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Here t indexes decision time. In HeartSteps V1, as in the planned HeartSteps V2, there are five
decision times each day. We also use (l, d) to refer the l-th time decision time on study day d.
For example, (l, d) = (5, 3) refers to the 5-th time in day 3, which corresponds to time t =

5(d − 1) + l = 15. At is the action or treatment at time t. The treatment is binary, i.e. At = 1

if an activity suggestion is delivered and At = 0 otherwise. Rt is the immediate reward collected
after action At. In HeartSteps, the reward is the log transformation of the step count collected
30 minutes after the decision time. St is the state vector at decision time t. We decompose the
state vector as St = {It, Zt, Xt}. It is used to indicate times at which only At = 0 is feasible
and/or ethical. For example, if sensors indicate that the participant might be driving a car, then
the suggestion should not be sent; that is, the participant is unavailable for treatment (It = 0).
Zt denotes features used to represent the current context at time t. In HeartSteps, these features
include current location, the prior 30-minute step count, yesterday’s daily step count, the current
temperature, as well as the measures of how active the participant has been around the current
decision time over the last week. Lastly, Xt is the “dosage” variable that captures our proxy for the
treatment burden, defined based on the participant’s treatment history. In contrast to HeartSteps
V1, in HeartSteps V2, an additional intervention component, i.e., an anti-sedentary suggestion
will sometimes be delivered when the participant is sedentary. As the anti-sedentary suggestion,
in addition to the activity suggestions, can cause the burden, it is included in defining the dosage
variable. Specifically, denote by Et the event that an activity suggestion is sent at decision time
t − 1 (e.g., At−1 = 0) and any anti-sedentary suggestion is sent between time t − 1 and t. The
dosage at the moment is constructed by first multiplying the previous dosage variable by λ ∈ (0, 1)

and incrementing it by 1 if any messages were sent to the user since last decision time. Specifically,
starting with the initial value X1 = 0, the dosage at time t + 1 is defined as Xt+1 = λXt + 1Et+1 .
Based on the data analysis result from HeartSteps V1, we choose λ = 0.9; see section 6.5 for how
this value is selected.

At each decision time, the RL algorithm selects the action based on each participant’s current
history (e.g., the past states, actions, and rewards), with the goal to optimize the total rewards dur-
ing the process. The proposed algorithm is stochastic, that is, the algorithm will output a probabil-
ity to select an action. Denote the history up to the end of day d byHd = {St,k, At,k, Rt,k}1≤t≤5,1≤k≤d.
The RL algorithm consists two components: (1) the nightly update, e.g., Hd−1 7→ {(µd,Σd), ηd}
where (µd,Σd) denote parameters in the posterior distribution for the reward and ηd proxies the de-
layed effect on future rewards, both calculated at the end of the previous day (see below for more
details), and (2) the probability πl,d, to select the action (e.g., Al,d is sampled from a Bernoulli
distribution with probability πl,d). See Figure 3 for the pseudo code of the proposed HeartSteps V2
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RL algorithm.

ALGORITHM 3: HeartSteps V2 RL Algorithm
Input: feature vectors f(s) and g(s), prior distributions N(µα0 ,Σα0) and N(µβ,Σβ), variance of noise

σ2. discount rate λ in dosage, discount rate in proxy value γ, updating weight in proxy value w,
weight of delayed effect in action selection ξ, clipped probability ε0 and ε1.

Initialize X1,1 ← 1, µ1 ← µβ , Σ1 ← Σβ

for day d = 1, 2, . . . , 90 do
for time slot l = 1, 2, . . . , 5 do

Check the participant’s availability Il,d
Check event El,d and calculate Xl,d based on the previous dosage and event El,d
Observe the context variable Zl,d
Form the state, Sl,d = {Il,d, Zl,d, Xl,d}
if available (Il,d = 1) then

Calculate πl,d (6.2), based on {(µd,Σd), ηd}
Sample Al,d from a Bernoulli distribution with probability πl,d
Send the activity message if Al,d = 1. Otherwise, do nothing

end
else

Do nothing
end

end
Calculate the posterior distribution µd+1,Σd+1 based on the model (6.3)
Calculate the proxy delayed effect ηd+1 in 6.5

end

Action Selection

The reward function is given by rt(s, a) = E[Rt |St = s, At = a, It = 1]. The action selection
developed here is based on a linear working model for the treatment effect:

rt(s, 1)− rt(s, 0) = f(s)>β (6.1)

where the feature vector, f(s), is selected based on the domain science as well as on data analyses
using HeartSteps V1; see section 6.5 for the discussion of how the features are selected. At the l-th
decison time on day d, availability is ascertained (i.e. Il,d = 1). Then for Sl,d = s and Xl,d = x,
the action, a = 1 is selected with probability

Pr
{
f(s)>β > ξ · ηd(x); β ∼N (µd,Σd)

}

110



where the random variable β, follows a Normal distribution N (µd,Σd), e.g., the posterior dis-
tribution of the parameters, obtained at the end of previous day. The term ηd(Xl,d) proxies the
long-term, negative effect of delivering the activity suggestion at the moment given the current
dosage level Xl,d (see the detailed formulation of ηd in section 6.5) and ξ > 0 controls the rela-
tive importance of maximizing the future rewards in the current action selection, compared to the
immediate rewards. Note that when ξ = 0, we recover the bandit formulation, e.g., the action is
selected to maximize the immediate rewards, ignoring any impact in the future. When ξ > 0, the
action selection aims to balance between the immediate effect and the delayed effect. The selection
of ξ is discussed in section 6.5. The probability of sending an activity suggestion, πl,d (for It = 1,
Sl,d = s, Xl,d = x) is a clipped version of the above:

πl,d = φ
(
Pr
{
f(s)>β > ξ · ηd(x); β ∼N (µd,Σd)

})
. (6.2)

The clipping function is φ(π) = min(1− ε0,max(π, ε1)) ∈ [ε1, 1− ε0] This restricts the random-
ization probability of sending nothing and of sending an activity suggestion to be at least ε0 and ε1,
respectively. The probability clipping enables off-policy data analyses after the study is over and,
furthermore, ensures that the RL algorithm will continue to explore and learn, instead of locking
itself into a particular policy. In HeartSteps V2, ε0 = 0.2 and ε1 = 0.1.

Nightly Updates

The posterior distribution of β for the immediate treatment effect and the proxy for the delayed
effect are updated at the end of each day. Operationally, the nightly update is a mapping: Hd 7→
{(µd+1,Σd+1), ηd+1}, that takes the current history up to day d as the input and outputs the posterior
distribution and proxy of delayed effect, which are used in the action selection in the following day
(i.e. during day d+ 1). We discuss each of them in turn.

Posterior Update of Immediate Treatment Effect We use the following linear Bayesian regres-
sion “working model” for the reward to derive the posterior distribution for the treatment effect:

Rt = g(St)
>α0 + πtf(St)

>α1 + (At − πt)f(St)
>β + N (0, σ2), if It = 1 (6.3)

so that the working model for the baseline reward (i.e., a = 0)

rt(s, 0) = g(s)>α. (6.4)

111



The baseline feature vector g(s) is selected based on the domain science and data analyses using
HeartSteps V1; see section 6.5 for a discussion. The use of πt in (6.3) is unusual but provides a
number of advantages as follows. Consider the action-centered term, (At − πt), in the working
model (6.3). As long as the treatment effect model (6.1) is correctly specified, the estimator of
β based on the model (6.3) is guaranteed to be unbiased even when the baseline reward model
(6.4) is incorrect [40], for example, due to the non-linearity in g(s) or non-stationarity (α changes
over time). That is, through the use of action centering, we achieve the robustness against mis-
specification of the approximate baseline model, (6.4). The rationale of including the term πtf(St)

in the Bayesian regression working model (6.3) is to capture the time-varying aspect of the main
effect due to the action-centered term (e.g., πt is continuously updated during the study). Omitting
this term would reduce the number of parameters in the model but we have found that in experi-
ments the inclusion of πtf(St) reduces the variance of the treatment effect estimates and thus speed
the learning. Second, in the case where the treatment effect model (6.1) is incorrect, for example,
the treatment effect is non-linear in f(St) or is time non-stationary (with time-varying β), it can
be shown [40] that the Bayesian regression provides a linear approximation to the treatment effect.
When the action is not centered, the treatment effect estimates may not converge to any useful
approximation at all, which could lead to bad performance in selecting the action.

The Bayesian model requires prior distributions on α0, α1 and β. Here the priors are indepen-
dent and given by α0 ∼ N (µα0 ,Σα0), α1 ∼ N (µβ,Σβ), β ∼ N (µβ,Σβ). Because the priors are
Gaussian and the error in (6.3) is Gaussian, the posterior distribution of β given the current history
Hd is also a Gaussian, denoted by N (µd+1,Σd+1). See in section 6.5 for a discussion of how the
prior is constructed using HeartStep V1 data.

Proxy Delayed Effect on Future Rewards The proxy is formed based on a simple Markov
Decision Process (MDP) for the states St = (Zt, It, Xt), in which we make the following working
assumptions:

(S1) the context {Zt} is i.i.d. with distribution F ,

(S2) the availability {It} is i.i.d. with probability pavail

(S3) the dosage variable {Xt} makes transitions according to τ(x′|x, a)

(S4) the expected reward given state and action is time-stationary, denoted by r(s, a).

We use this simple MDP to capture the delayed effect on the future rewards of sending the treat-
ment. Note that in this model, the action only impacts the future rewards through the dosage since
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the context are assumed independent of the actions and this allows us to form an estimate of de-
layed effect of treatment based on the current dosage. We assume the context and availability are
both i.i.d. across time to reduce the variance of estimating the delayed effect as we do not need to
estimate the transition model for the context and availability.

We first discuss how each component in the simple MDP are constructed. Given the history up
to the end of day d, Hd, we set (1) the average prior availability is pavail = 1

5d

∑d,5
k,l=1 Il,k, (2) the

empirical distribution on {Zl,k} is F (·) = 1
5d

∑d,5
k,l=1 δZl,k(·) where δz(·) is the Dirac measure, and

(3) the reward function at available decision times is r(s, a) = g(s)>α̂0 +af(s)>β̂ where α̂0, β̂ are
the posterior means based on the model 6.3. The mean reward at unavailable decision times has the
same form but with posterior means from a similar linear Bayesian regression using the unavailable
time points in Hd. To complete the description of the MDP, we need to specify the transition
model, τ(x′|x, a) for the dosage variable {Xt}. Recall that the dosage variable is defined at the
beginning of section 6.5. Let psed be the probability of delivering any anti-sedentary suggestions
between decision times given no activity suggestion was sent at the previous decision time. We
set psed = 0.3 based on the planned scheduling of anti-sedentary suggestions (an average of 1.5
anti-sedentary suggestion uniformly distributed in a 12-hour time window during the day). Then
τ(x′|x, a) is given by τ(x′|x, 1) = 1{x′=λx+1}, τ(x′|x, 0) = psed1{x′=λx+1} + (1 − psed)1{x′=λx}.
Recall from section 6.5 that λ = 0.9.

We formulate the proxy of delayed effect based on the above constructed MDP as follows.
Consider an arbitrary policy π that chooses the action π(s) at the state S = (Z, I,X) if available
(i.e., I = 1) and chooses action 0 otherwise. Recall the state-action value function for policy π
under discount rate γ:

Qπ(s, a) = Eπ
[
R1 + γR2 + γ2R3 + . . . | S1 = s, A1 = a

]
where the subscript π means the actions (A2, A3, . . . ) are selected according to the policy π. We
will break Qπ into two parts: Qπ(s, a) = r(s, a) + γHπ(x, a) where r(s, a) is the expected reward
in (S4) andHπ(x, a) = Eπ[R2+γR3+γ2R4+. . . |S1 = s, A1 = a] is the sum of future discounted
rewards (future value for short) which excludes the first, immediate reward (R1) and is only a
function of x under the working assumptions (S1) and (S2). Note that the difference Hπ(x, 1) −
Hπ(x, 0) measures the impact of sending treatment at dosage x onto the future rewards when the
future actions are selected by the policy π. To select the policy, we choose the one that maximizes
the future value while restricting to the policy that only depends on the dosage and availability.
Specifically, let H∗(x, a) = max{Hπ(x, a) : π : X × {0, 1} → A, π(x, 0) = 0, ∀x ∈ X}. It can
be shown that H∗ is given by H∗(x, a) =

∑
x′ τ(x′|x, a)(pavailU

∗
1 (x′) + (1− pavail)U

∗
0 (x′)), where
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U∗0 and U∗1 solves the following equation for all x ∈ X :

U1(x) = max
a

{
r1(x, a) + γ

∑
x′

τ(x′|x, a)(pavailU1(x′) + (1− pavail)U0(x′))
}

U0(x) = r0(x) + γ
∑
x′

τ(x′|x, 0)(pavailU1(x′) + (1− pavailU0(x′)),

where r0 and r1(x, a) are the marginal reward function (e.g., marginal in the sense that it only
depends on the dosage variable) given by

r0(x) =

∫
r((z, 0, x), 0)dF (z), r1(x, a) =

∫
r((z, 1, x), a)dF (z)

Finally, the proxy for the delayed effect is calculated by

ηd+1(x) = (1− γ)[Hd+1(x, 0)−Hd+1(x, 1)] (6.5)

where Hd+1 = (1−w)Hinit +wH∗ is the weighted average between the estimate H∗ and the initial
function Hinit calculated based on only data from HeartSteps V1. The selection of the discount rate
γ and the weight w will be discussed in section 6.5. This delayed effect is the average difference
between the average future value between sending nothing vs. an activity suggestion. The use of
(1−γ) is to standardize the sum of the discounted rewards e.g., Hd+1(x, a) is, on average, the sum
of undiscounted (1− γ)−1 number of rewards.

Choosing Inputs

We review the inputs required by HeartSteps V2 RL algorithm and discuss how each is selected
based on the data from HeartSteps V1. The list of required inputs can be found in Figure 3.

First, the scientific team decided ε0 = 0.2 and ε1 = 0.1 in the probability clipping to ensure
enough exploration, e.g. forcing the RL algorithm continuously explore without locking into a
deterministic policy. As mentioned in section 6.5, we define the dosage in the form of Xt+1 =

λXt+1Et+1 (recall this variable is used to form the proxy for the delayed effect (6.2). Generalized
Estimating Equations’ (GEE) analysis [94] was conducted using HeartStep V1 data for a variety
values of λ. When λ is relatively large the dosage significantly impacts the effect of the message
on the subsequent 30 minute step count. The scientific team selected λ = 0.9.

In the nightly posterior updates of treatment effect estimates, the working model (6.3) requires
the features vectors, f(s) and g(s) in (6.1) and (6.4) , the variance of the noise, σ2 and the prior
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distribution, N (µα0 ,Σα0) and N (µβ,Σβ). We discuss how to choose them using HeartSteps V1
data in the followings.

First, most of the features are selected based on the GEE results using HeartSteps V1 data.
For example, we found that although the 30-minute step count prior to the decision is highly
predictive of the rewards (e.g., 30 minute step count after the decision), it is not significant in
terms of predicting the treatment effect. Therefore, the prior 30-minute step count is included in
the baseline features g(s), but not in the feature vector f(s) for treatment effect. A measure of how
participant engages with the mobile app is planned to include in both g(s) and f(s). This variable
was not collected in HeartSteps V1. The scientific team believes this variable likely interacts with
the treatment and thus decide to include into the features. The features in the feature vector f(s)

(6.1) are dosage, location and the variation level of step count 60 minutes around the current time
slot in past 7 days. These features along with the prior 30-minute step count, yesterday’s total step
count and current temperature are included in the baseline feature vector, g(s).

Second, about the variance of the noise σ2. Although σ2 can be learned on the fly, e.g., the
residual variance by fitting the model using the data collected from the participant, to ensure the
stability of the algorithm (e.g., the step count can be highly noisy), we set the variance parameter
using the data from HeartSteps V1, that is, σ2 is not updated during the study.

Third, the prior is constructed based on the analysis result in HeartSteps V1. Specifically, we
first conduct Generalized Estimating Equations’ (GEE) regression analyses [94], using all partici-
pants’ data in HeartStep V1 and assess the significance of each feature. To form the prior variance,
on each participant we fit a separate GEE linear regression model and calculated the standard devi-
ations of the point estimates across the 37 participant models. We formed the prior mean and prior
standard deviation as follows: (1) For the features that are significant in the GEE analysis using
all participants’ data, we set the prior mean to be the point estimate from this analysis; we set the
prior standard deviation to the standard deviation across participant models from the participant
specific GEE analyses. (2) For the features that are not significant, we set the corresponding prior
mean to be zero and shrink the standard deviation by half. Σα0 ,Σβ are diagonal matrices with
the above prior variances on the diagonals. The same procedure is applied to form the prior mean
and variance for the reward model at the unavailable times, used in the proxy value updates. The
rationale of setting the mean to zero and shrinking the standard deviation for the non-significant
features is to ensure the stability of the algorithm: unless during the HeartSteps V2 study there is
strong evidence or signal detected from the participant, these features only have minimal impact
on the selection of actions.

The estimates of proxy delayed effect, e.g., ηd+1, requires the initial proxy value estimates
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Hinit. To calculate Hinit we use the same procedure as described in the section 6.5 to calculate H∗,
except that the empirical probability of being available, the empirical distribution of contexts and
the reward function are constructed only using HeartSteps V1 data.

Three remaining parameters in the HeartSteps V2 RL algorithm need to be specified: the dis-
count rate γ, the updating weight parameter w (both part of the proxy MDP in section 6.5), and
the weight parameter ξ in the action selection (6.2). For simplicity, we call them as “tuning pa-
rameters” in the rest of the chapter and we will discuss how to select these parameters in the next
section.

Selecting Tuning Parameters The tuning parameters, e.g., (w, ξ, γ), are chosen based on a
simulation-based procedure: we build a simulation environment (e.g., the data generative model)
based on HeartSteps V1 data, apply the algorithm as shown in Figure 3 and then choose the set of
parameters that maximizes the total simulated rewards.

We create the simulation environment as follows. Recall that HeartSteps V1 is a 42-day study.
For each participant’s data in HeartSteps V1, we first fit a person-specific regression model with the
feature vector g(s) and g(S)and obtain the residuals {ε̃t}210

t=1 for all decision times (e.g. 42 × 5 =

210). We extract the 42-day sequence of the context, availability, residual, {Zt, It, ε̃t}210
t=1. To

mimic the HeartSteps V2 study, we extend the sequence to be of 90 days by concatenating (90-
42) randomly sampled days’ data from the 42-day data in HeartSteps V1. Denote the extended
sequence by {Zt, It, ε̃t}450

t=1. Note that the sequence is created for all participants (e.g., we have
37 sequences of context-availability-residuals; recall that there are 37 participants in HeartSteps
V1 study). In the simulation, the actions are selected by the RL algorithm and the dosage is
generated according to the definition in section 6.5 by randomly distributing the anti-sedentary
messages. Now we specify how to generate the rewards. To this end, we use all participants’ data
and fit a population regression model with the linear feature vectors f(s) and g(s). Denote the
corresponding estimates by α̃ and β̃. Given the current state St = {Zt, It, Xt} and action At ,
the reward is generated by Rt = g(St)

>α̃ + Atf(St)
>β̃ + ε̃t. This gives essentially 37 generative

models, indexed by the participant.
For each given set of tuning parameters (w, ξ, γ), we run the RL algorithm, as displayed in

Figure 3, 128 times for each participant’s generative model (i.e., a total of 37 × 128 times) with
the rest of the inputs specified according to the procedure in the beginning of section 6.5. The
average of the total rewards that are collected in each run is calculated. We use a grid search, e.g.
w ∈ {0, 0.25, 0.5, 0.75, 1}, γ ∈ {0, 0.5, 0.8, 0.9, 0.95}, and ξ ∈ {0, 0.01, 0.05, 0.1, 0.15, 0.2}, to
select the ones that maximize the average total rewards.
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6.6 Simulation Study

We conduct a simulation study to inform the expected performance of the planned HeartSteps
V2 RL algorithm and compare with the standard linear Thompson Sampling bandit algorithm, by
using HeartSteps V1 data. To this end, we split the data into three folds; each fold contains about
12 participants’ data. In each of the three iterations, two of the three folds are used as “training set”
and the remaining one fold is used as “testing set”. We use the training set to select the inputs (e.g.,
the prior distribution) and the tuning parameters, (γ, w, ξ) in the algorithm, as described in section
6.5. We then use the testing set to create a “testing” simulation environment (this is to distinguish
with the simulation environment for selecting the tuning parameters based on the training set) and
apply the algorithm with the selected inputs and tunning parameters to select the action. The testing
environment is created as described in section 6.5 but using the testing set. For each participant
in the testing set, the RL algorithm is re-run 128 times and the average of total collected rewards
is calculated. As a comparison, we also implement a standard Thompson Sampling (TS) bandit
algorithm with the same probability constraint (e.g., restricting the randomization probabilities of
selecting action when available to be within [0.1, 0.8]). The inputs to TS bandit, e.g., the prior
distribution and the variance parameter are selected by the same procedure described in section 6.5
by using the training dataset.

The same procedure is repeated three times, that is, in each iteration, two folds of data is used to
choose the inputs for both HeartSteps RL algorithm and the TS bandit algorithm, and the remaining
one fold is used to test the performance. Each participant is assigned to the testing set once and the
difference of average total rewards (averaged over 128 runs) is calculated. The simulation results
are shown in Figure 6.1. The average improvement of the proposed algorithm over TS bandit, in
terms of total rewards over 90 days, is about 21.28 with standard devision 6.85. Note that in the
generative models, the immediate treatment effects roughly ranges from 0 to 0.5 (depending on the
state). The average improvement of 21.28 is significant.

6.7 Conclusion and Future Work

In this chapter, we developed a Reinforcement Learning algorithm for use in HeartSteps V2. Pre-
liminary validation of the algorithm demonstrates good performance over a standard Thompson
Sampling bandit algorithm in synthetic experiments. After HeartSteps V2 is completed, the data
will be used to further assess the performance and utility of the algorithm.

We foresee some opportunities for future work. First, our proposed algorithm learns the treat-
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Figure 6.1: Three-fold cross validation result of HeartSteps V2 RL algorithm and Thompson Sam-
pling bandit algorithm. The y-axis is the difference of average total rewards achieved by HeartSteps
V2 RL and Thompson Sampling bandit algorithm.

ment policy separately for each participant (e.g. fully personalized). If the participants in the
study are similar enough, pooling information from other participants (either currently still in the
study or already having finished the study) can speed learning and achieve better performance,
especially for those entering the study later. Second, the current algorithm takes into account
the delayed effect of treatment by using a pre-defined “dosage variable” capturing the burden. It
would be interesting to develop a version in which more sophisticated measures of burden as well
as engagement, for example via a latent state model, is used to approximate the delayed effect.
Finally, it would be also interesting to investigate how to incorporate the variance in the estimation
of the delayed effect in the action selection and investigate theoretically how to best trade-off the
exploration and exploitation.
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[46] Dimitrijević, M., Faganel, J., Gregorić, M., Nathan, P., and Trontelj, J., “Habituation: effects
of regular and stochastic stimulation,” Journal of Neurology, Neurosurgery & Psychiatry,
Vol. 35, No. 2, 1972, pp. 234–242.

[47] Klasnja, P., Smith, S., Seewald, N. J., Lee, A., Hall, K., Luers, B., Hekler, E. B., and Mur-
phy, S. A., “Efficacy of Contextually Tailored Suggestions for Physical Activity: A Micro-
randomized Optimization Trial of HeartSteps,” Annals of Behavioral Medicine, 2018.

[48] Klasnja, P., Hekler, E., Shiffman, S., Boruvka, A., Almirall, D., Tewari, A., and Murphy,
S., “Micro-randomized trials: An experimental design for developing just-in-time adaptive
interventions.” Health Psychology, Vol. 34, No. S, 2015, pp. 1220.

[49] Dempsey, W., Liao, P., Nahun-Shani, P. K. I., and Murphy, S., “Randomised trials for the
Fitbit generation,” Significance, Vol. 12, No. 6, 2015, pp. 20–23.

[50] Dempsey, W., Liao, P., and Murphy, S., “Sample size calculations for stratified micro-
randomised trials in mHealth,” Submitted.

[51] Shiffman, S., Stone, A. A., and Hufford, M. R., “Ecological momentary assessment,” Annu.
Rev. Clin. Psychol., Vol. 4, 2008, pp. 1–32.

[52] Scott, C. K., Dennis, M. L., Gustafson, D., and Johnson, K., “A pilot study of the feasibil-
ity and potential effectiveness of using smartphones to provide recovery support,” Drug &
Alcohol Dependence, Vol. 171, 2017, pp. e185.

[53] Scott, C., Dennis, M., and Gustafson, D., “Using smartphones to decrease substance use via
self-monitoring and recovery support: study protocol for a randomized control trial.” Trials,
Vol. 18, No. 1, 2017, pp. 374.

[54] Dennis, M., Scott, C. K., Funk, R. R., and Nicholson, L., “A pilot study to examine the
feasibility and potential effectiveness of using smartphones to provide recovery support for
adolescents,” Substance abuse, Vol. 36, No. 4, 2015, pp. 486–492.

[55] Rathbun, S., Song, X., Neustfiter, B., and Shiffman, S., “Survival analysis with time-varying
covariates measured at random times by design.” J R Stat Soc Ser C Appl. Stat., Vol. 62,
No. 3, 2012, pp. 419–434.

[56] Stone, A., Shiffman, S., Atienza, A., and Nebeling, L., The science of real-time data capture:
Self-reports in health research, Oxford University Press, 2007.

123



[57] Wen, C., Schneider, S., Stone, A., and Spruijt-Metz, D., “Compliance With Mobile Ecolog-
ical Momentary Assessment Protocols in Children and Adolescents: A Systematic Review
and Meta-Analysis,” J Med Internet Res, Vol. 19, No. 4, 2017, pp. e132.

[58] De Gooijer, J. G. and Hyndman, R. J., “25 years of time series forecasting,” International
journal of forecasting, Vol. 22, No. 3, 2006, pp. 443–473.

[59] Wikipedia, “KullbackLeibler divergence — Wikipedia, The Free Encyclopedia,” http://
en.wikipedia.org/wiki/KullbackLeibler_divergence, 2018, [Online; ac-
cessed 26-July-2018].

[60] Saleheen, N., Ali, A., Hossain, S., Sarker, H., Chatterjee, S., Marlin, B., Ertin, E., al’Absi, M.,
and Kumar, S., “puffMarker: A Multi-sensor Approach for Pinpointing the Timing of First
Lapse in Smoking Cessation,” Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp ’15, ACM, New York, NY, USA, 2015,
pp. 999–1010.

[61] Bradtke, S. J., Barto, A. G., and Kaelbling, P., “Linear least-squares algorithms for temporal
difference learning,” Machine Learning, 1996, pp. 22–33.
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