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ABSTRACT

In the first chapter, I develop and estimate a novel dynamic model of the secondary

market trading of intangible assets in an environment where financial market frictions inter-

fere with firm investment. Intangible asset trading (IAT) not only serves as an alternative

means of financing but also reallocates investment opportunities to firms in better positions

to exploit them. Estimation of the model uncovers high trading frictions, but the option

to trade still leads to significant efficiency gains. These gains stem both from IAT’s direct

effect on relaxing firms’ financial constraints and especially from ex ante changes in firms’

expectations, which influence their investment choices. I also show that the impact of finan-

cial frictions depends largely on the ease with which firms can trade intangibles. Finally, I

present corroborating reduced-form evidence that firms sell a particular type of intangible

asset, patents, during times of financial distress and their financial conditions appear to

improve after these sales.

The second chapter is motivated by the phenomenon that sophisticated financial market

participants frequently choose to disclose private information to the public, which is incon-

sistent with most theories of speculative trading. In this paper, we propose and test a model

to bridge this gap. We show that when a speculator cares about both the short-term value of

her portfolio and her long-term profit, information disclosure is optimal: Public disclosure in

the form of a mixture of fundamental information and the speculator’s position induces com-

petitive dealership to revise prices in the direction of the speculator’s position. Using mutual

fund disclosure through newspaper articles, we find that when fund managers have stronger

estimated short-term incentives, the frequency of strategic non-anonymous disclosures about

stocks in their portfolios increases and those stocks’ liquidity improves, consistent with our

model.

In the third chapter, we quantify the impact of bank market power on the pass-through

of monetary policy to borrowers. To this end, we estimate a dynamic banking model in

which monetary tightening increases banks’ funding costs. Given their market power, banks

optimally choose how much of a rate increase to pass on to borrowers. In the model, banks

are subject to capital and reserve regulations, which also influence the degree of pass-through.

Compared with the conventional regulation-based channels, we find that in the two most

xi



recent decades, bank market power explains a significant portion of monetary transmission.

The quantitative effect is comparable in magnitude to the bank capital channel. In addition,

the market power channel interacts with the bank capital channel, and this interaction can

reverse the effect of monetary policy when the Federal Funds rate is low.

xii



CHAPTER I

Intangible Asset Reallocation and Financial Frictions

I.1 Introduction

It has long been recognized that financial frictions constrain firms’ ability to make profitable

investments (e.g., Fazzari et al., 1988). Such constraints are particularly restrictive for firms

that primarily hold intangible assets (Williamson, 1988; Hall, 2002). A less-studied aspect

of the financing of intangibles, however, is the trading of these assets in a secondary market.

For instance, Serrano (2010) shows that 13.5% of all granted patents are traded at least once

over their life cycle. How much does such trading affect economic efficiency in the presence of

financial frictions? This question is intriguing given the prominent role of intangible capital

in modern-day production (Nakamura, 2001; Belo et al., 2018). In this study, I investigate

this question by building and estimating a dynamic model on the financing, use, and trading

of intangible assets.

Several findings stand out. First, I find that intangible asset trading (IAT) by firms leads

to sizable efficiency gains. For instance, a 1% reduction in the trading cost of intangibles

increases the average firm value by 1.19%. Such efficiency improvement comes about via two

channels: IAT provides an alternative means to raise cash and also reallocates investment

options to firms in better financial positions to exercise them. In equilibrium, both channels

are further amplified through ex ante changes in firms’ expectations, which influence their

investment decisions.

Second, I find that the ease with which firms can trade their intangibles influences the

impact of financial frictions. For example, the financing cost elasticity of the value of the

1



average firm is 0.59% when the trading costs are 50% above their estimates, versus only 0.16%

when the trading costs are 50% below their estimates. This result adds to the literature

quantifying the effects of financial frictions, as previous studies typically do not explicitly

account for IAT. I show that financial frictions are costly only to the extent that firms cannot

circumvent inefficient cash reallocation by reallocating investment opportunities.

Trading in intangible assets differs from tangible asset trading in fundamental ways.

Tangibles can be easily pledged to raise outright financing, but physically relocating them

across firms may be costly. Intangible assets, on the other hand, are easy to transfer,

but the high uncertainty regarding their valuation renders their outright financing difficult

(Leland and Pyle, 1977). Thus, to the extent that a potential buyer may be better able to

evaluate an intangible asset than a financial institution, transferring the asset to a cash-rich

firm may be a more viable means of financing. Additionally, intangible assets often offer

rich investment opportunities (Lach and Schankerman, 1989), and hence their allocation is

crucial for economic growth.

In this paper, I model intangible assets as one-time options for the firm to make invest-

ments to improve future productivity. Investments require early-stage cash inputs, but the

financial market is imperfect. When short of cash, firms may abandon their intangibles,

which is inefficient given that there exist other firms thirsty for more investment opportuni-

ties. Alternatively, cash-constrained firms may sell some of their intangibles. In the model,

IAT enhances economic efficiency in two ways. First, it injects cash into the selling firm,

alleviating its financial constraints. Second, it reallocates investment options to firms with

more financial slack to undertake them. IAT, however, is also costly, reflecting real fric-

tions, such as adverse selection in the market for knowledge capital or search costs to find

counter-parties.

I estimate the model by matching a set of model-generated moments to their data coun-

terparts. Empirically, I examine one specific form of intangible asset, patents. Patents are

a natural laboratory because they are frequently traded (e.g., Serrano, 2010), and, unlike

2



most other intangible assets, their universal use across industries, as well as their established

metrics for evaluation (Hall et al., 2001; Kogan et al., 2017) facilitate a systematic study.

Accordingly, I construct a comprehensive sample of patent trading by U.S. public firms from

1980 to 2010. Estimation using this sample reveals that non-trivial costs are associated with

IAT. For instance, the fixed component of these costs amounts to 11.1% of the average firm’s

capital stock. Such estimates are consistent with evidence on the lack of depth in patent

markets (Hagiu and Yoffie, 2013).

I conduct several counterfactual experiments with my model. First, I find IAT is associ-

ated with considerable efficiency improvements. When cutting the trading costs by 1% from

their estimates, firms exercise 0.73% more investment options, and the losses due to costly

external financing decrease by 0.43%. Overall, the option to trade intangible assets obviates

19.4% of the need for costly financing and increases investment option utilization by 45.6%.

Interestingly, I find the direct effects of IAT are rather small; efficiency improvements accrue

because these direct effects are significantly amplified in equilibrium through ex ante changes

in firms’ expectations, as well as their investment choices. Two features of intangibles are

behind this result: investment in these assets is sensitive to cash availability but enhances

the productivity of extant capital stock. The amplification of efficiency improvements begins

with IAT allowing firms to undertake more investment projects and become more produc-

tive. Higher productivity puts firms in a better position to buffer expected future cash

shortfalls, which in turn incentivizes them to launch even more projects. This cycle leads to

an economically meaningful overall effect on firm value.

In another counterfactual experiment, I examine how financial frictions affect the value

of the average firm and the allocation efficiency of cash and investment options at different

levels of IAT costs. I find that the effects of financial frictions are largely dampened when

firms can trade their intangible assets with ease. This result is qualitatively intuitive, but it

is also quantitatively important.

These findings contribute to the recent debate on the effect of the patent market (US

3



Federal Trade Commission, 2011; Hochberg et al., 2018), where a key concern is that patent

sales may lead to excessive rent-seeking by means of litigation and holdup. My model points

to a beneficial aspect of patent trading and implies that policies aimed at facilitating intangi-

ble asset reallocation, such as mandating IAT price transparency, may stimulate innovating

activities by alleviating firms’ financial constraints.

Finally, I use the patent trading data to show corroborating, reduced-form evidence that

provides support for the model. In the cross-section, I find that patents tend to flow out of

financially unhealthy firms and into healthy ones: small (large) and low (high) cash holding

firms are on average net patent sellers (buyers). Patents also on average flow to firms with

smaller patent portfolios. In the time series, higher patent sales coincide with periods of low

cash holdings for small firms and firms without bond ratings. Large and rated firms, however,

do not exhibit such timing patterns. Additionally, patent sales are associated with signs of

improved financial conditions: R&D spending spikes following patent sales, but again only

in small and unrated firms.

To rule out the possibility that firms are simply looking to shed their unneeded patents, I

compare the sales of “core” and “peripheral” patents, based on their technological distances

to the firm’s patent portfolio. Consistent with the model, I find that core patent sales are

higher during periods of low cash holdings and are followed by stronger increases in R&D

spending compared to peripheral patent sales. Lastly, I show that the evidence above is

not the result of firms that specialize in patent development selling patents to firms that

specialize in patent commercialization.

This paper fits in the vast literature on financial frictions. For instance, evidence suggests

that firm investments depend on their cost of fundings (e.g., Fazzari et al., 1988; Whited,

1992). Financial frictions have been shown to hurt economic efficiency both empirically

(Midrigan and Xu, 2014) and theoretically (Jensen and Meckling, 1976; Myers, 1977; Myers

and Majluf, 1984). I examine a less investigated aspect of the financing of intangibles, that

is, their trading. I highlight that both the reallocation of intangible assets and cash can

4



affect the efficiency with which investment opportunities are funded and show that IAT is

quantitatively important.

Several studies examine the reallocation of physical capital. For instance, Eisfeldt and

Rampini (2006) find that the cost of reallocating capital is countercyclical while Eisfeldt

(2004) and Li et al. (2015) rationalize this cost on the basis of adverse selection in the used

capital market. In this paper, I examine the reallocation of intangible capital, which is

more susceptible to financial constraints but offers richer growth opportunities. IAT also

affects the cross-sectional allocation of firm productivity to a greater extent compared to the

trading of tangible assets. For instance, Eisfeldt and Rampini (2006, p. 370) assume that

“the productivity of a unit of [physical] capital is not embedded in the capital itself, but is

determined by who deploys it.”

Another strand of the literature looks into the trading of patents or intangible assets

in general. For instance, Serrano (2010) shows that patent trading depends on a number

of factors, such as their ages and citations. Akcigit et al. (2016) show that patent trading

narrows the technological distance between patents and the firms making use of them. Levine

(2017), in particular, studies the role of mergers and acquisitions as a means to reallocate

investment opportunities. The author develops a model where firms with more efficient

management, or stronger marketing, sales, or distribution channels acquire other firms for

their investment projects and show the model is able to reconcile many empirical patterns

of mergers and acquisitions. I, on the other hand, examine the interaction between IAT and

financial frictions, with a specific focus on the efficiency gains that stem from IAT improving

the allocation of investment opportunities and cash.

This paper also adds to the literature on the role of real frictions in shaping firms’ financial

decisions. Tserlukevich (2008) shows that irreversibility and fixed costs of investment may

lead to lumpy leverage adjustment. Bazdresch (2013) argues that non-convex financing

costs are quantitatively important to explain financing and investment via a model featuring

both financial and capital adjustment costs. In contrast to these models, the equilibrium
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framework in this paper allows me to track the endogenous flow of intangible assets among

a cross-section of firms.

A further related strand of the literature considers how asset trading frictions affect

firms’ access to outright financing. Benmelech (2008) shows that, in the nineteenth-century

railroad industry, asset salability was a significant determinant of debt maturity and the

amount of debt issued by firms. Hochberg et al. (2018) finds that thicker trading in the

secondary market for patents increases the likelihood that a start-up will receive a loan. In

this paper, I focus on a different aspect of asset trading, that is, the sales of intangibles as

a substitute for outright financing.

The rest of the paper proceeds as follows. In Section I.2, I describe the model and derive

the equilibrium properties of IAT and its implications for economic efficiency. I estimate

the model in a broad sample of patents in Section I.3. In Section I.4, I present several

counterfactual experiments designed to gauge the quantitative importance of IAT. In Section

I.5, I report several novel stylized facts regarding patent trading, which are consistent with

the model predictions. Concluding remarks are given in Section I.6.

I.2 The Model

In the model, intangible assets take the form of seeds, which are options to invest and

increase future productivity. A firm that is short of cash for an investment may turn to

external financing, which is more costly than internal cash given the presence of financial

frictions. As firms face different funding costs, an investment project may have positive net

present value (NPV) to one firm while having negative NPV to another. In this model, seed

trading improves efficiency in two ways: it injects cash into the financially constrained seller,

and it reallocates investment opportunities to firms in better financial positions to undertake

them.

I start by describing a typical firm’s production technology and investment. I then

introduce the firm’s financing sources and the market for seeds. I solve for the equilibrium

6



and then show key properties of the firm’s value and policy functions. I also provide some

remarks on the model’s micro-foundations.

I.2.1 Production and Project Development

In this model, I assume that time is discrete, and the horizon is infinite. The economy

consists of a unit mass of long-lived firms. Each period, a firm generates a before-tax output

(y) according to the production function:

y = f(ε, z), (1)

where z denotes the firm’s current productivity and ε is an idiosyncratic cash flow shock.

For notational convenience, I suppress the time subscript in the variables. Note that the

production function does not depend on the firm’s physical capital K. Throughout the

paper, I assume K = 1 is fixed for all firms and interpret variables as fractions of the firm’s

fixed physical capital stock if not noted otherwise. Abstracting away from physical capital

accumulation choices allows me to study the endogenous intangible asset reallocation while

keeping the model parsimonious.1 I also assume that f(·) is strictly increasing in both ε and

z and weakly concave in z.

One central component of this model is the productivity z, which firms can affect en-

dogenously by developing innovative projects. I define a project as a series of investments

that improve a firm’s ability to generate cash flows in the future. A project may start with

a crude business idea. Over time, as the firm devotes further managerial time, capital input,

research, or marketing efforts, the project becomes more mature and eventually turns into

productive capacity. I capture the life cycle pattern of a project with the following set of

assumptions.

1Adding physical capital accumulation to the model will likely increase the tension between project
development and financial frictions, as the firm with good investment opportunities must also direct resources
towards adjusting physical capital stock. Thus with costly physical capital adjustment, the benefits to IAT
will likely be more substantial.
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First, the fruition of a project is random. Each period, a project matures with probability

η (in other words, it takes on average 1
η

periods to develop a project). Second, projects form

a continuum. Hence, assuming fruitions are independent, a known fraction η of a firm’s

project portfolio will mature each period. Third, each unit measure of maturing projects

increases the firm’s productivity by ψ > 0. Lastly, in each period throughout the lifetime

of a project, the firm will incur a cost (R&D expense), which I normalize to one per unit

measure. Note a project is “ageless”; regardless of how long it has been around, it incurs the

same cost, has the same maturing probability, and will increase productivity by the same

amount.2

In the absence of new innovative projects, however, a firm’s productivity gradually de-

clines. This decline reflects the long-established notion of creative destruction (see, e.g.,

Aghion and Howitt, 1992; Klette and Kortum, 2004). For instance, a firm may suffer a loss

of market share when its competitors upgrade to newer and possibly superior production

techniques. Accordingly, I assume that every period, with a probability π, a firm loses a

fraction δ of its current productivity. From a technical perspective, this downward drift in z

makes the model stationary, as otherwise z would grow without bound.

Taken together, a firm’s productivity z follows a process as summarized below:

z′ = (1− δ × Iδ)z + ψηq, (2)

where q is the number of projects the firm chooses to develop, and Iδ is an indicator variable

that equals one with probability π and otherwise equals zero. In equation (2) as well as the

rest of this paper, I use variables with primes to denote values one period ahead.

2Project homogeneity and stochastic maturing allow me to economize on the model’s state space. Real-
world projects may differ in their prospects. For instance, projects that are further along in their development
may be more revolutionary. Such heterogeneity may lead to interesting dynamics, but I leave their exploration
to future works.
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I.2.2 Projects and Seeds

A firm must have an investment opportunity before starting a project. The Coca-Cola

Company can add a new flavor only if it has the recipe, and Pfizer develops and markets

drugs based on successful research protocols. In the model, I assume that to develop a

project, a firm must have what I call a “seed” (e.g., Jovanovic, 2009). A seed is a one-time

option to develop a project for one period. Accordingly, the number of projects a firm can

invest in is limited by the number of seeds it has, or, in other words,

q ≤ s, (3)

where s denotes the firm’s current seed stock.

Seeds are scarce. Each period, a firm’s seeds come from two sources. The first source is old

projects from the previous period. Since only a fraction of these projects mature, those that

survive can be further developed and are one part of the firm’s seed pool. The other source is

new seed inflows. Specifically, new seeds arrive at the beginning of each period, the quantity

of which is given by a random variable i ∈ [0,∞). i is distributed independently across both

firms and time. Formulating new seed arrival as exogenous captures the fortuitous nature

of business idea generation and R&D fruition. Note that because projects are ageless, the

option to continue an old project is no different from the option to start a new one. Thus,

I do not distinguish between the two sources and only track the total size of a firm’s seed

pool, which evolves according to:

s′ = (1− η)q + i′. (4)

Implicit in equation (4) is the assumption that all seeds are fleeting, one-time opportunities.

The only way to carry over a seed to the next period is to plant it today. Delaying investment

is not an option, as unplanted seeds (i.e., s− q) cannot be stored. This assumption, on the

9



one hand, reflects the reality that a business idea can be preempted if a firm does not make

a move promptly. On the other hand, it sharpens the tension between project development

and access to finance—when a firm falls short of funding, it does not have the luxury to wait

until it builds up a cash stock.3

I.2.3 Financing

A firm finances its expenditures in three ways: debt, equity, and retained earnings. Debt

takes the form of a short-term, riskless bond. Creditors charge the risk-free rate rf , and

there is no default. However, the firm’s borrowing capacities are bounded. The use of

limited, riskless debt is a stylized way to capture credit market frictions (e.g., DeAngelo

et al., 2011). For instance, in an environment where managers’ expertise is inalienable to

the firm’s operation and the firm cannot commit not to withdraw their human capital, then

lenders may demand collateral for secured lending (e.g., Hart and Moore, 1994). The firm’s

borrowing capacity is thus determined by the amount of physical capital it can pledge.

I model equity issuance as a rights offer to existing shareholders. As studying endogenous

equity frictions demands a far more complex model than necessary for my analysis, I assume

for simplicity that, for every dollar a firm raises, shareholders must pay 1 + λ dollars out of

their pockets. I interpret the parameter λ > 0 as transaction costs, such as the fees paid to

an investment banker, as well as other equity market frictions, such as the adverse selection

discount (Myers and Majluf, 1984). It is immediate that firms will never find it optimal to

issue equity and pay dividends at the same time. Hence the net payout, which I denote by

d, captures both dividends and equity issuances. That is, if d < 0, the firm collects cash

(in the amount |d|) from shareholders; otherwise the firm makes a distribution. From the

3Allowing seeds to be partially storable will not materially affect my analysis. One can interpret the seeds
in this model as the perishable part of a firm’s investment opportunities. The other, persistent part blends
into the firm’s daily operations and any ensuing cash flows will net out part of the firm’s fixed operating
costs.

10



shareholders’ perspective, their cash flow e is given by:

e =
(
1 + 1{d < 0} × λ

)
× d, (5)

where 1{·} is an indicator function that equals one if the term in curly brackets is true and

zero otherwise.

A firm can also retain earnings in the form of excess cash. I assume the firm invests all

its cash holdings in liquid, riskless securities, which earn return rf .

Note that in the model, creditors charge the same interest rate, rf , as firms earn on

their liquidity holdings. This construct implies that debt is equivalent to the negative of

cash. Accordingly, instead of tracking outstanding debt and liquidity holdings separately, I

collapse the two into one variable, the net cash holdings, defined as cash minus outstanding

debt. I denote by abeg and aend a firm’s net cash at the beginning and end of a period,

respectively. The firm’s borrowing constraint is expressed as:

aend ≥ a, (6)

where −a ∈ [0, 1] reflects the firm’s debt capacity.

I.2.4 Seed Trading

Seed (intangible asset) trading takes place in a centralized market where all firms are price

takers. I denote by p the price of a unit measure of seeds. This market opens every period

after the firm observes its shocks (ε, i, and Iδ), but before it starts developing projects or

making financing decisions. I summarize the sequence of events for a typical firm in Figure

1.

The centralized market assumption is no doubt a simplification of actual IAT. Real-

world intangible assets are vastly heterogeneous, and no single form of dominant market
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arrangement exists.4 I abstract from these complications but use the centralized market

construct to build in two features of seed trading key to my analysis. First, seeds flow out

of firms that attach lower values to them and into firms that attach higher values to them.

In this model, the value differentials arise primarily from variations in the firms’ financial

conditions. A financially constrained firm faces high funding costs and tends to become a

seed seller. Second, real frictions of various sorts may deter IAT, thereby interfering with

the efficient flow of seeds. My setting captures such inefficiency parsimoniously.

A number of frictions are known to underlie IAT. First, intellectual properties are difficult

to trade by their very nature. In his seminal paper, Arrow (1962) points out that the seller

must reveal information about the intellectual property in sufficient detail so the potential

buyer can assess its value. Yet once the buyer has acquired that knowledge, the seller has in

effect transferred the intellectual property to the buyer without any compensation.5 Second,

adjusting to new or unfamiliar technologies can be costly. For instance, Åstebro (2002)

studies technology adoption in the metalworking industry and finds there are non-trivial

fixed capital replacement costs and information acquisition costs. In another study, using a

small sample of 26 technology transfers within multinational firms, Teece (1977) shows that

the cost of transmitting and absorbing relevant knowledge is substantial, averaging 19% of

total project costs. Third, the vast diversity of intangible assets means that the market

for each specific one is thin. Finding a counterparty may, therefore, will likely require

4Taking patent trading as an example, historically, patent agents and lawyers performed the role of
intermediaries in facilitating transactions (Lamoreaux and Sokoloff, 1999); inventors seeking to sell could
also market their patents in the scientific and mechanical journals of the time. Nowadays, firms and inventors
trade patents via auctions, exchanges, and brokers (Serrano, 2018), online platforms (Akcigit et al., 2016),
as well as so-called “patent aggregators” (Hagiu and Yoffie, 2013). Some examples of patent brokers and
intermediaries are Inflexion Point, IPotential, Ocean Tomo, ICAP, and Intellectual Ventures (Serrano, 2018;
Hagiu and Yoffie, 2013).

5Legally imposed property rights can only partially mitigate the risk of expropriation. As Arrow (1962)
puts it, “there are obviously enormous difficulties in defining in any sharp way an item of information and
differentiating it from other similar sounding items.” Apart from legal protection, several other remedies
have been proposed to facilitate intellectual property trading. For instance, the seller may disclose partial
information to the potential buyer before negotiating a payment (Anton and Yao, 2002). Alternatively, the
seller may make a full disclosure, but if the buyer fails to pay “properly,” the seller may threaten to reveal
the intellectual property to the buyer’s competitor (Anton and Yao, 1994). These solutions, however, are
also partial and will unlikely fully eliminate the expropriation risk.
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effort (Hagiu and Yoffie, 2013; Hochberg et al., 2018). Fourth, as most intangible assets are

unique and complex, their owners may have insider information about their value, instigating

adverse selection risk in the intangible asset market. Lastly, complexity of the knowledge

system may add to patent trading costs. As a product is likely covered by a large number of

interdependent patents, potential buyers may not place much value on a given patent unless

it complements a portfolio they already own (Hagiu and Yoffie, 2013).

I model these frictions in a stylized fashion. I denote |∆s| as a firm’s trading volume.

The firm must incur a cost from participating seed trading that is given by:

χ(∆s) =

{
χ+(|∆s|) if |∆s| > 0,

0 otherwise.
(7)

I assume χ+(·) is non-negative, increasing, and weakly convex. Naturally, there is no cost

if the firm does not trade (|∆s| = 0). The function χ(·) is potentially discontinuous at zero

to accommodate any fixed trading cost. When taking the model to the data where multiple

trading venues may coexist, I interpret χ(·) as the cost of using the cheapest (combination)

of such venues.

Equation (7) implies that buying and selling seeds at the same time is never optimal.

Therefore, it is convenient to think of ∆s as net seed purchase, i.e., ∆s > 0 if the firm

buys and ∆s < 0 if the firm sells. Finally, with the option to trade, I modify the feasibility

constraint for the firm’s project development q as:

0 ≤ q ≤ s+ ∆s, (8)

that is, a firm may plant its own seeds, as well as those acquired in the market.
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I.2.5 Tax

I assume a firm’s operating and interest income is subject to taxation. Denoting by τ the

corporate tax rate, in each period t, the tax the firm pays is;

τ ×
[
yt + aend,t-1 × rf

]
. (9)

The terms in the brackets are operating profit/loss and interest income/expense, respectively.

Note that the tax rate τ applies to both positive and negative income. Implicit in this

equation is the assumption that the firm enjoys the full extent of tax carry-forwards and

carry-backs so that when income is negative, the firm receives a tax rebate.

Two remarks regarding interest taxation are in order. First, the fact that firms get rebates

on negative interest income is better known as the interest tax shield of debt. Absent the

borrowing constraint (equation (6)), firms would prefer to be entirely debt financed so as

to capture the tax rebates fully. Second, interest taxation also drives a wedge between the

firm’s discount rate and the rate it earns on free cash holdings. This wedge is essential as it

makes building buffer cash stocks costly. Otherwise, firms can easily shield themselves from

any funding shortfall by keeping a large savings account, in which case no firm will ever need

to tap external equity, and the financing cost λ becomes irrelevant.

I.2.6 Firm’s Problem and Equilibrium

I now describe the firm’s optimization problem in full. There are no aggregate shocks and

each firm bases its decisions on three idiosyncratic state variables: beginning-of-period net

cash holdings abeg, productivity z, and stock of seeds s. Each firm maximizes the discounted

future cash flow to its shareholders, taking as given the seed price p. I solve for a steady state

where p is constant over time. Denoting by v a firm’s beginning-of-period value function,
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the firm’s optimization problem can be formulated recursively as follows:

v(abeg, z, s) = max
d,q,∆s,aend

e+
1

1 + rf
Ev(a′beg, z

′, s′), (10)

subject to the budget constraint:

abeg − aend = d+ q + χ(∆s) + p∆s, (11)

the flow of funds condition (equation (5)), the transitions of net cash holdings:

a′beg = (1− τ)
[
f(ε′, z′) + aendrf

]
+ aend, (12)

productivity (equation (2)), and seed stock (equation (4)), the feasibility constraint (equation

(8)), and the borrowing constraint (equation (6)). In Proposition 1, I establish the key

properties of the value function v(·). Proofs of all propositions are in the Internet Appendix.

Proposition 1 Given the seed price p > 0, let Ω ⊂ R3 be the space of a firm’s state

variables. The following holds: (1) I can restrict attention to a compact state space Ω without

loss of generality, (2) there exists a unique solution v : Ω 7→ R to the firm’s problem, and

(3) v(·) is continuous and weakly increasing in all its arguments.

I define a stationary (industry) with two conditions. First, taking the seed price p as

given, all firms optimize. Second, let Γ be the invariant distribution of firm states (abeg, z, s)

under the transition probabilities induced by the firm’s endogenous policies (d, aend, q, and

∆s) and the exogenous shocks (i, ε, and Iδ). Then the market for seeds clears under Γ, that

is, ∫
∆s∗(abeg, z, s)dΓ = 0, (13)

where ∆s∗(·) is the optimal net seed purchase of a firm in the state (abeg, z, s).
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I.2.7 Firm Policies and Efficiency Implications of Seed Trading

I start with a proposition showing how optimal seed trading depends on a firm’s financial

condition.

Proposition 2 Denote by ∆s∗(abeg, z, s) and q∗(abeg, z, s) the optimal net seed trading and

project development policies when a firm is in the state (abeg, z, s), respectively. The following

holds: (1) without equity issuance cost (λ = 0), ∆s∗(abeg, z, s) and q∗(abeg, z, s) are indepen-

dent of abeg; and (2) with positive equity issuance cost (λ > 0), ∆s∗(abeg, z, s) and q∗(abeg, z, s)

increase monotonically in abeg when the borrowing constraint (equation (6)) binds.

Part (1) is straightforward. In the absence of equity issuance cost, cash may costlessly flow

into or out of firms (via dividends or issuances). Each firm is effectively its real operations,

plus a separate bank account. The firm makes its real decisions without regard to the balance

in that account.

Part (2) addresses the more interesting case where equity issuance is costly. Behind this

result is a simple intuition. When cash holdings (abeg) fall, funding real operations becomes

increasingly expensive. The firm responds by cutting its overall expenses. As seed purchase

and project development are complementary, both are reduced at the same time. Therefore,

both ∆s∗ and q∗ decrease in abeg. Accordingly, in this model, seeds on average flow from low

cash holding firms to high cash holding firms.

Figure 3 presents the numerically derived policy functions using estimated parameter

values. The solid lines are the policies of an individual firm, and the dashed lines are the

averages of the corresponding policies in the equilibrium. In Panels A and B, I plot the two

real policies—net seed purchase (∆s) and project development (q)—against the beginning-of-

period cash holdings (abeg). Confirming Proposition 2, both policies increase monotonically

with abeg.

Panels C and D in Figure 3 show the dependences of the two financial policies—net

payout (d) and end-of-period net cash savings (aend)—on abeg. The firm has a “target level”
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for aend, as shown by the flat part of the solid line in the right of Panel D. When cash is

plentiful (i.e., when abeg is sufficiently high), the firm pays out until aend is at the target.

Notice that at this aend, the borrowing constraint, equation (6), is slack: the firm does not

borrow more to reap tax benefits because it precautionarily preserves some debt capacity to

buffer against potential cash shortfalls.

As abeg drops, however, the firm no longer finds it optimal to maintain the target aend.

In the intermediate range in Panel D, aend decreases with a lower abeg, showing that the firm

taps into its preserved debt capacity to support operating expenses. Meanwhile, d remains

at zero, that is, the firm refrains from equity issuance. Intuitively, the firm resorts to debt

before equity as the latter is more costly.

When abeg continues to decrease, the firm eventually exhausts all debt capacity and begins

issuing equity. Equity issuance, however, does not always increase with lowering abeg: at some

point, the firm starts to substitute seed sales for equity (see Panel A) to save on the issuance

cost. This substitution does not happen earlier due to the fixed trading cost. Selling seeds

is only worthwhile when the issuance cost would otherwise be high enough.

Panels E and F present the dependences of net seed trading on the firm’s other two state

variables: productivity (z) and seed stock (s). Intuitively, more productive firms buy fewer

seeds as the return from project development is lower. Firms with more internal seeds also

acquire fewer from the market.

Proposition 3 below is intuitive and shows how seed trading affects economic efficiency.

Proposition 3 The value function v(·) decreases with seed trading costs. Specifically, let

χ1(∆s) and χ2(∆s) be two cost specifications, such that χ1(∆s) ≤ χ2(∆s). Then:

vχ1(abeg, z, s) ≥ vχ2(abeg, z, s), ∀(abeg, z, s) ∈ Ω, (14)

where vχ(·) denotes the firm’s value function under the trading cost specification χ(·).

Note that Proposition 3 is derived in a partial equilibrium, that is, in varying trading
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costs, I fix the price of seeds and consider how a single firm’s value function changes. To

see the effect of seed trading in a “general” equilibrium where seed price endogenously arises

from market clearing, I consider two specifications. In the first specification, all parame-

ters are estimated from the data and the seed price is solved endogenously. In the second

specification, I keep the seed price the same but set trading costs to infinity. As the second

specification is essentially one where trading is not allowed, seed price is irrelevant. Moving

from the second to the first specification hence captures the “general” equilibrium changes

induced by allowing firms to trade. Proposition 3 shows that, intuitively, efficiency improves.

The efficiency improvement comes about in a number of ways. First, selling seeds is an

alternative means to raise cash, which may alleviate the seller’s financial constraint. Second,

trading reallocates seeds to firms in better positions to invest. Consequently, some seeds that

otherwise would be abandoned are planted instead. Note that one primary reason why firms

differ in their willingness to exercise investment options is the variation in their funding costs.

Thus the conventional wisdom that financial frictions force firms to forgo their investment

options is less consequential when the option to trade exists.

I.2.8 Remarks on Model Micro-Foundations

In this subsection, I discuss several micro-foundations of the model and address potential

concerns about related model assumptions.

A. Financial Frictions and Trading Frictions

IAT alleviates financial constraints because, for some firms, selling intangibles (seeds)

for cash is less costly than raising external equity or debt. One might be concerned that

firms have difficulties selling their seeds for the same reasons they are financially constrained

in the first place. For instance, uncertainty regarding asset value prevents the pledging of

such assets as collateral, and at the same time depresses their selling prices. Similarly, if

an intangible asset has low redeployability, lenders may be reluctant to extend credit to the

firm (Shleifer and Vishny, 1992), and for the same reason, the firm may have a hard time
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finding a buyer.

I address this concern by providing several micro-founded reasons for why selling an

intangible asset can be less costly than financing with it. It is worth pointing out, though,

that my model works as long as a wedge exists between the financing and trading costs

for some firms. Hence it is the magnitude of the frictions, rather than the specific micro-

foundations, that matters for my quantitative analysis.

First, a firm may suffer from debt overhang (Myers, 1977). Such a firm may not be able

to raise external finance against their intangible assets as investors are concerned that any

ensuing proceeds will be used to pay back existing debt. The firm, however, can still sell the

asset at a “fair” price.

Second, to raise external financing is to sell a claim backed by all the firm’s assets, whereas

to sell an intangible asset is to sell a claim on the asset alone. Hence these two exercises

may be subject to different degrees of information discount. For instance, if a firm owns

other assets that are more uncertain in value than the focal one, selling the entire asset pool

(equity) would be more costly than selling the focal asset alone (Myers and Majluf, 1984;

Edmans and Mann, 2018).

Third, certain agency problems may prevent external financing, but would not affect the

sales of assets. For instance, if the manager of a firm has a tendency for empire building,

investors are unwilling to fund the firm’s investment for fear that the manager may waste

their cash. Selling an intangible asset is not subject to such concern because, unlike investors,

the buyer does not have a stake in the manager’s actions.

Fourth, a firm may also prefer selling an intangible asset to borrowing with it if the firm

cannot maintain stable cash flows to service the coupon repayment.

B. Physical Asset Sales and Intangible Asset Sales

In addition to selling intangibles, a firm can also sell physical assets to raise cash. More-

over, because physical assets are typically more liquid, it is likely they are sold before intan-

gibles. Although I do not explicitly model physical assets, such concern should not affect
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my analysis for the following reason. Compared to intangible assets, physical assets are less

uncertain in value and much easier to adjust and trade. Thus, one can interpret the cash

flows and liquidity buffers in the model as those that the firm obtains after having optimally

taken into account all physical capital considerations. In other words, physical capital, like

other flexible factors of production, are “maxed out” of the firm’s optimization problems,

given that the trade-offs underlying these choices are much smaller in magnitude compared

to the decisions regarding intangibles.

I.3 Estimation

In this section, I describe the sample construction and estimation procedures, discuss the

identification of model parameters, as well as present the estimation results.

I.3.1 Data and Sample Construction

Empirically, I examine patent trading. Patent trading is an ideal laboratory for my analysis

both conceptually and from a practical perspective. On the one hand, patents have limited

borrowing capacity (e.g., Hall, 2002) and provide firms with rich investment opportunities

(see Lach and Schankerman, 1989 and the references therein).6 On the other hand, patents

are frequently traded (e.g., Serrano, 2010), and, unlike most other intangible assets, they are

universally used across industries with established metrics for evaluation (Hall et al., 2001;

Kogan et al., 2017).

I obtain patent trading data from the United States Patent and Trademark Office (USPTO).

I then map the data to Compustat firms via a set of string matching algorithms. In the In-

6There is evidence that intangibles can sometimes be used as collaterals, but only to a limited extent.
For instance, Loumioti (2012) studies a sample of syndicated loans and finds that the probability a firm
will collateralize intangibles depends on borrower reputation and the redeployability of the pledged assets.
Moreover, it is difficult for lenders to diversify the associated credit risk and most lenders are reluctant to
invest in assets backed by intangibles. Mann (2018) shows that patents can be pledged as collaterals, and,
after shocks to creditor rights, patenting companies raise more debt and spend more on R&D. The fact that
R&D is responsive to patent collateralizability shows that, on the margin, firms are constrained by their
borrowing limits. In other words, the amount of debt issued against patents is insufficient for the desired
R&D expenses.

20



ternet Appendix, I describe this mapping procedure in detail. My sample spans from 1980

to 2010, during which time patent transaction data are both available from USPTO and can

be reliably mapped to GVKEYs. I also restrict the sample to firms that own at least one

patent. My final sample consists of 95,410 buy transactions and 49,148 sell transactions,

involving 7,612 firms and 450,838 utility patents.

To quantify patent trading, I compute the citation-weighted patent count. More specifi-

cally, I define Patent Purchase as:

Patent Purchase =
∑
j∈Pbuy

i,t

Cj

Ê
[
Ck

∣∣∣Yk = Yj, Tk = Tj

] , (15)

where Pbuy
i,t is the set of patents bought by firm i in quarter t. Cj is the number of times patent

j is cited, and Yj and Tj denote the patent’s grant year and technology class, respectively.7

The denominator, therefore, is the average number of citations received by all patents granted

in the same year and technology class as the focal patent j. This scaling scheme adjusts for

variations in citing intensities across both time and technology fields. By construction, the

scaled citation number has a mean of unity. I construct Patent Sales analogously and define

Net Patent Buy as:

Net Patent Buy = Patent Purchase− Patent Sales. (16)

To measure a firm’s Patent Stock, I accumulate all patents granted to or bought by the firm,

minus the patents sold or expired, with each term weighted by the adjusted citation numbers

as discussed above. All variable definitions are in Table 1.

I obtain equity issuance data from SDC Platinum and financial statement data from

Compustat. I define the data variables to be conceptually as close as possible to their model

counterparts. Capital stock is measured by total book assets (AT ). Before-tax profit is

defined as OIBDP. I define dividends as the sum of dividends (CDVC plus PDVC ) and

7I define technology classes using the one-digit technology classification established by Hall et al. (2001).
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equity repurchase (PRSTKPC ) less stock sales (SSTK ), and define equity issuance as the

proceeds from SDC. Net cash holdings is measured as cash and short-term investment (CHE )

less debt (DLC plus DLTT ). Project development expenditures are defined as R&D expenses

(XRD).

Panel A in Table 2 reports summary statistics of the sample. Patent trading is quite

common: the average firm owns 109 (citation-adjusted) patents and trades half a patent

per quarter. Patent trading is also lumpy—firms on average trade patents only once in

three years. Panel A also presents the same set of statistics for the Compustat universe.

As a result of my sample restriction to patent owners, the firms in my sample are larger,

more profitable, and more R&D intensive relative to the rest of Compustat firms. Panel B

reports the industry composition of my sample and the Compustat universe. It shows that

my sample is slightly more concentrated in high-tech industries, such as pharmaceutical,

computer and information technology, and precision instruments.

I.3.2 Model Parametrization

To estimate the model, I further parametrize the production function, trading costs, and

shock processes. First, let:

f(ε, z) ≡ (1 + ε)zα − cf , (17)

where α ∈ (0, 1) denotes the returns to scale of production capacities (z) and cf is the fixed

cost of operation. I assume the cash flow shock ε is uniformly distributed over the range

[−1, 1]. Second, I assume seed trading costs χ+(·) take the following form:

χ+(|∆s|) = χ0 + χ1|∆s|+ χ2|∆s|2, χj > 0, j = 0, 1, 2. (18)

This quadratic formulation captures, in a stylized fashion, the myriad frictions underlying

IAT, e.g., the costs of technology adoption, difficulties with finding a trading counterparty,

as well as adverse selection discounts due to uncertain asset qualities. Finally, I parametrize
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the new seed shock (i) as an exponential distribution, independent across both firms and

time. This assumption allows me to capture the seed generation process with a single pa-

rameter µi ≡ E(i). In the Internet Appendix, I motivate this assumption with the empirical

patent grant processes, which fit well with exponential distributions for the full sample and

subsamples sorted by firm sizes.

I.3.3 Estimation Procedure

The estimation proceeds in two steps. In the first step, to simplify computation, I choose a

subset of parameters outside the main model estimation. Table 3 reports these parameter

choices. I set the risk-free rate rf to 2.5%, the average Treasury bill rate during my sample

period. I also set the average technological depreciation rate, δ × π, to be 8% per annum,

which is consistent with the estimated depreciation rate of R&D capital and organization

capital in Grabowski and Mueller (1978) and McGrattan and Prescott (2010). I estimate

the equity issuance cost λ to be 5.24%, the average issuance fee paid per dollar raised

through outside equity in my sample. Next, note that because the only effect of the debt

capacity parameter a is to shift the firm’s cash holding levels, any choice of this parameter is

innocuous to the estimation as long as I do not directly match cash holdings (see the second

step below). Following the collateralizability estimate in DeAngelo et al. (2011), I set a to

be -0.72. Finally, I set the returns to scale parameter α to 0.5, as is commonly used in the

macro literature. For robustness, I also estimate the model with α = 0.75.

In the second step, I estimate the rest of the parameters—η, µi, π, χ0, χ1, χ2, ψ, and

cf—using the simulated method of moments (SMM). Specifically, this algorithm searches for

parameter values to “fit” an array of model-generated moments to their data counterparts.

The level of fit is determined by the following objective function:

Π(Θ) = −
[
g(Θ)− ĝ

]′
Ξ̂
[
g(Θ)− ĝ

]
, (19)
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where Θ is the set of parameters, g(·) is a vector of simulated moments derived from solving

the model at Θ, ĝ denotes the corresponding moments in the data, and Ξ̂ is a positive semi-

definite matrix that assigns weights to the moments. In general, the closer g(Θ) is to ĝ, the

greater is Π(Θ), and the better the model fits the data. An optimal weighting scheme is

given by:

Ξ̂ =
1

N

[
ˆvar(ĝ)

]−1

. (20)

Intuitively, Ξ̂ places greater weights on more precisely estimated moments.

Identifying the model by maximizing equation (20) requires choosing a set of informative

moments. Intuitively, the function g(Θ) should exhibit enough variation that it can be used

to back out a unique parameter combination Θ̂ that matches the data moments most closely.

I hence choose moments regarding firm R&D, profitability, and patent trading as the model

has clear and strong implications on these policies. In particular, I include in ĝ the mean

and variance of R&D expenses, the mean and variance of profit, patent trading frequency,

mean patent trading volume, the variance of net patent trading, the correlation between

patent trading and leverage, the correlation between patent trading and patent stock, and

the correlation between R&D and leverage. I scale R&D expenses and profit by firm sizes

and scale patent trading by the mean patent stock.

Figure 4 shows several key moment-parameter relations. In general, every moment to

some extent affects all parameter estimates, but some parameter-moment dependences are

stronger and more informative. In Panel A, I show that with a higher maturing rate η, the

returns from investing in projects improve; thus both average R&D and profit increase. η

also affects trading, as shown in Panel B. On the one hand, a faster project maturing rate

induces more frequent trading—with greater η, a firm needs to replace a larger proportion

of its seed stock each period, which creates a stronger demand should there be a low inflow

of new seeds. On the other hand, the mean seed-stock-weighted trading volume is non-

monotonic, resulting from the simultaneous increases in trading and seed stocks. Panel

C illustrates the effects of varying µi, the average per-period inflow of new seeds. Not
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surprisingly, with stronger inflows, firms develop more projects, and R&D goes up. Trading

frequency, however, is hump-shaped in µi. Intuitively, when µi is low, a larger seed inflow

increases the number available for trading, while when µi is high, most firms already have

more seeds than they can plant, reducing the need for trading. Panel D illustrates changes

in π, the probability of productivity depreciation. Because I fix the average depreciation

rate, π× δ, a smaller π implies that depreciations are of greater magnitudes, which increases

the variation of marginal seed value and hence the volatility of trading. At the same time,

with greater depreciation magnitudes, R&D comoves more strongly with leverage. Following

large productivity losses, firms seek to develop more projects and end up taking on more

debt. Panels E, F, and G show how seed trading depends on its costs. As expected, trading

frequency, volume, and volatility decrease in the fixed, linear, and quadratic components of

the trading costs, respectively. All three components also tend to suppress the correlation

between patent trading and firm leverages. Panel H shows, when maturing projects boost

firm productivity by more (i.e., larger ψ), both average R&D and profitability increase.

Finally, as shown in Panel I, a larger fixed cost of operation cf pushes the firm closer to

its borrowing constraints, suppressing project development and shrinking the correlation

between R&D expenses and leverage. Not surprisingly, a higher fixed cost also hurts the

firm’s profit.

I.3.4 Estimation Results

Table 4 reports the estimation results with the return-to-scale parameter α set at 0.50.

Overall, the model exhibits good fit. All the first moments—mean R&D expenses, profits,

and patent trading frequency and volume—match their data counterparts closely. However,

the model generates higher (absolute) correlations and lower variances compared to the data.

In the model, because all the firm’s policies are driven by three shocks, ε, Iδ, and i, these

policies are more correlated but less volatile compared to when firms base their decisions on

a variety of complex contingencies, as is the case in the data.
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Table 4 reveals that non-trivial costs are associated with IAT. Recall that the trading

costs have fixed, linear, and quadratic components. To explain the lumpiness of patent

trading in the data, the estimate of the fixed cost χ0 is as high as 11% of capital. The

firm also incurs a marginal cost for each additional patent they trade, as captured by the

parameter χ1. Given the simulated seed stock E(s) = 0.0644, the estimate of χ1 translates

into a marginal cost equivalent to 0.135% of capital if the firm were to trade an additional

1% of its patents. On top of the linear part χ1, the estimate of χ2 shows that this marginal

cost is also slightly increasing in the trading volume. For instance, if the firm were to sell all

its patents, then the last (unit measure of) patent sold costs more than the first one by an

amount equivalent to 0.69% of capital.

Table 5 reports the estimation results when setting α = 0.75. Compared with Table 4,

both the estimated fixed operating cost cf and the probability of technological depreciation π

change significantly, but the trading cost parameters are mostly unaffected; the χ2 estimate

differs from the α = 0.5 case, but under either specification, its economic magnitude is small.

I.4 Counterfactual Experiments

In this section, I conduct a number of counterfactual experiments to gauge the quantitative

importance of IAT. In Subsection I.4.1, I examine how the firm, both in its normal state and

when its financial condition is poor, optimally responds to emerging investment opportuni-

ties. In Subsection I.4.2, I quantify the direct and indirect efficiency gains due to IAT. The

direct gain results from the ex post option to trade seeds, and the indirect gain accrues as

IAT affects the firm’s ex ante decisions in equilibrium. Finally, in Subsection I.4.3, I examine

how IAT influences the impact of financial frictions.

I.4.1 Firm Impulse Responses to Seed Shocks

I next examine how a firm responds to seed shocks that make new investment opportunities

available to the firm. Two cases are considered: shocks during normal times and shocks
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during periods of financial difficulties.

Figure 5 shows the firm’s impulse response functions. I start with a firm in its “steady

state,” that is, the firm has been receiving median-level seed and cash shocks, i and ε,

respectively, and its productivity depreciation has been constant at the mean rate, π× δ, for

a long time. At time zero, however, the firm is hit with a large and positive seed shock. In

Panel A, this seed shock arrives alone, whereas, in Panel B, it arrives with a simultaneous

negative cash shock. All shocks are one-time occurrences. I track the firm’s cash holdings,

net payout, seed trading, project development, as well as productivity afterward.

Panel A shows that, when investment opportunities present themselves during normal

times, the firm is able to exploit it by investing in more projects. Debt (or internal cash) is

used to fund these investments since it is the least expensive form of financing. Accordingly,

net cash holdings decline while equity issuance remains zero. The firm refrains from trading

seeds as doing so is costly. Lastly, productivity increases due to the newly developed projects.

If at the same time as the seed shock there is a large operating loss, then the firm’s

preserved debt capacity is insufficient to both roll over its old debt and invest in new projects.

As shown in Panel B, the firm resorts to external equity financing after hitting the borrowing

constraint, which raises its marginal financing cost. Developing more projects is no longer

worthwhile at this point. Instead, the firm responds to the seed shock by selling these seeds.

The sale of these seeds is appealing despite the high trading costs because the proceeds allow

the firm to cut back on its otherwise costly equity issuance. Note that even though the firm

is not able to exercise the new investment opportunities, the sale of the seeds provides other

firms with opportunities to improve their productivities.

Figure 5 shows during normal times, the firm will behave as if the option to trade seeds

does not exist; the high costs of trading deter the firm from exercising this option. However,

this option is valuable when the firm is financially constrained as it reduces the otherwise

high financing costs. In the simulated equilibrium distribution, I find that 93.7% of the

sellers have binding borrowing constraints or would have binding constraints were they not

27



to sell. These firms account for 97.6% of the traded seeds.

I.4.2 The Direct and Indirect Effects of Seed Trading

I quantify the efficiency gains of IAT in this subsection. These gains may stem directly from

the ex post options to substitute seed sales for outright financing or to acquire seeds from

the market. IAT may also improve economic efficiency indirectly through ex ante changes in

the firm’s expectations and hence its investment choices as the direct effects ripple through

the equilibrium.

I decompose the direct and indirect effects of seed trading as follows. First, I compute

their combined effects by comparing two model specifications: a with-trade specification and

a ceteris paribus without-trade specification, where seed trading is not allowed. Second, to

isolate the direct effects, I need to turn off any equilibrium feedback and ex ante changes

in firm behaviors. To that end, I consider an interim specification, in which I force the

firm’s project development and borrowing policies, q and aend, to be the same as those in the

without-trade specification. As q and aend are the only two policies that affect a firm’s future

states, in this interim specification, both the equilibrium distribution and firm expectations

are anchored to the without-trade specification. However, I allow the firm residual discretion

over how to obtain the seeds and finance their project development.8, 9 Therefore, differences

between the without-trade and interim specifications reflect the direct effects of seed trading;

the indirect effects are the differences between the combined and direct effects.

I compute the direct and indirect effects of IAT for a range of trading costs and present

the results in Figure 6. The x-axis is the number of multiples of the trading cost estimates.

In other words, x = 1 is the benchmark case where all parameters are set to their estimates

in Table 4, and, when moving along the x-axis, I vary the trading cost parameters, χ0, χ1,

and χ2, while fixing other parameters. The y-axis is constructed as the percentage changes

8In solving the interim specification, I set the seed price to be the same as in the with-trade specification.
9Another efficiency improvement comes from the decreasing returns to scale of z, which lead to differential

marginal seed values across firms. This improvement is likely small given that the trading volume is small
relative to the average seed stock.
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in efficiency measures due to either the direct, indirect, or combined effects as fractions of

their without-trade-specification levels. I consider three such measures: the average number

of planted seeds, the average losses due to costly external financing, and the average firm

value.

I highlight two aspects of Figure 6. First, IAT has sizable efficiency implications. Starting

from the benchmark case, a 1% local reduction in trading costs obviates 0.43% of the need

for costly external financing and increases the number of planted seeds by 0.73%. Overall,

the option to trade reduces external financing losses by 19.4%, induces firms to plant 45.6%

more seeds, and more than doubles the average firm value compared to the without-trade

specification. Second, while the direct effects are rather small, the indirect effects account

for almost all of the economic efficiency improvements. The intuition of this result is as

follows. In my sample as well as in the model, the average trading volume amounts to about

only 2% of the average seed stock; hence, the direct effects of such trading are limited. In

equilibrium, however, these effects are amplified through a chain of changes. When the firm

knows it has the option to sell seeds when it is financially constrained, it is willing to take

on more investments ex ante. Also, since projects are long-term, increases in planted seeds

today yield more investment options in the future. As the firm becomes more productive,

it is in a better position to buffer adverse cash shocks, which provides an incentive to plant

even more seeds. This cycle then repeats itself. Note that behind this chain reaction are

two distinguishing features of intangibles assets: investments in these assets are sensitive to

cash availability and they future firm productivity.

In light of the substantial gains from IAT, it is worthwhile to consider policies that facil-

itate intangible asset reallocation. One potential policy is to enforce information disclosures

regarding intangibles, which should alleviate adverse selection risk in the market. Similarly,

mandating the price transparency of IAT may stimulate future trading, as prices provide

benchmarks to evaluate analogous assets. Alternatively, creating or subsidizing transaction

venues (such as online patent trading platforms) may help reduce the search frictions. The
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findings in this subsection also contribute to the recent debate on the effect of patent trading

on innovative activities. As illustrated in Hagiu and Yoffie (2013) and Hochberg et al. (2018),

patent sales may stifle innovation if these intellectual properties are reallocated to nonprac-

ticing entities, commonly known as patent trolls, that extract rents through litigation and

holdup. Such aspect of patent trading has been a major concern for policy makers. My

results, on ther hand, point to another, beneficial aspect of patent trading, which provides

important information for relevant policy designs.

I.4.3 IAT and the Efficiency Losses from Financial Frictions

In this subsection, I examine how IAT impacts the effects of financial frictions on economic

efficiency. To measure the effects of financial frictions, I compute the financing cost elasticity

of several efficiency measures, namely, the average firm value, E[v−abeg], the average marginal

value of net cash holdings, E[ ∂v
∂abeg

], which captures how restrictive the borrowing constraint,

equation (6), is, and the percentage value loss to seed misallocation, Ls. While the first term

reflects the overall effect of financial frictions on firm value, the last two terms measure the

efficiencies with which cash and seeds are allocated in the economy, respectively. I define the

value loss to seed misallocation as:

Ls = 1−
∫ [
v(abeg, z, s)− abeg

]
dΓ∫ [

v(abeg, z, s∗)− abeg
]
dΓ
, (21)

where Γ is the equilibrium distribution of firm states (abeg, z, s). s
∗ = s∗(abeg, z) is the socially

optimal seed stock, defined as:

s∗(abeg, z) = arg max
s̃ s.t.

∫
s̃dΓ=

∫
sdΓ

∫ [
v(abeg, z, s̃)− abeg

]
dΓ. (22)

Ls captures the loss in value relative to the benchmark where, given the distribution of

(abeg, z), seeds are redistributed optimally across firms.

I next examine how the financing cost elasticities of the efficiency measures vary with
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the trading costs, χj, j = 0, 1, 2. The results of this counterfactual experiment are plotted

as solid lines in Figure 7. The x-axis corresponds to the number of multiples of the trading

costs’ estimates. For example, if x = 1, χ0, χ1, and χ2 are equal to their estimated values,

whereas if x = 1.5, they are 50% above these values.

Figure 7 reflects the intuition that both external financing and seed trading enhance the

match between investment opportunities and the funding needed to implement them. Lower

trading costs dampen the effects of financial frictions on all three measures of economic

efficiency, i.e., E[v − abeg], E[ ∂v
∂abeg

], and Ls. This dampening result is also quantitatively

large. For instance, a 1% increase in the equity issuance cost decreases the average firm

value by 0.59% when the trading costs are 50% above their estimates, versus by only 0.16%

when the trading costs are 50% below their estimates.

These results have important implications for studying financial frictions, which, as my

findings show, affect economic efficiency in tandem with IAT frictions. Therefore, to evaluate

the impact of financial frictions, it is essential to account for the possibility that firms may

reallocate their investment options. Since this aspect is not considered in many studies on

financial frictions, my results call for caution when interpreting their conclusions.

Finally, lower financial frictions should also dampen the effects of trading frictions in

a symmetric way. Accordingly, the dashed lines in Figure 7, which are analogous to the

solid lines, show how the trading cost elasticity of economic efficiency varies with the degree

of financial frictions. Consistent with intuition, trading costs are less consequential when

external financing is more viable.

I.5 Stylized Patterns of Patent Trading

In this section, I provide corroborating evidence for my model by examining the trading

patterns of patents. Many features of my patent trading sample are consistent with firms

utilizing patent trading to get around financial difficulties.
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I.5.1 Patent Trading in the Cross-section

I examine patent flows in the cross-section. Specifically, I examine how patent trading

depends on a firm’s financial state. I report the results in Table 6. To construct the table,

in each year, I sort the cross-section of firms into five quintiles using lagged capital stock

and then sort firms in each quintile into another five quintiles using lagged (capital-scaled)

net cash holdings. Panel A reports the average (assets-scaled) net patent purchases in each

of the resulting 25 subsamples. A clear pattern emerges when moving along each row of the

panel: after controlling for firm sizes, net patent purchases increase with net cash holdings. I

further decompose net patent purchases into average trading frequency and the net quantity

per trade, which I report in Panels B and C, respectively. This decomposition shows that,

in each size quintile, firms with higher cash holdings trade more often and purchase more

patents per trade. Taken together, patents appear to flow from cash-poor to cash-rich firms

in the cross-section. Notice also that larger firms and firms with more abundant cash holdings

trade more frequently, consistent with the existence of fixed trading costs.

To construct Table 7, I sort the sample first by size and then by patent stock. This table

shows that, for any given size, firms that have a larger patent portfolio spend more on R&D

and trade their patents more often. These firms are also net patent sellers, consistent with

the existence of decreasing returns to scale in owning patents.

I.5.2 Patent Trading in Time Series

This subsection presents patent trading patterns in the time series. I first sort each firm’s

time series into five bins by lagged cash holdings. I then pool firm-quarters in each bin and

compute the average Net Patent Sales, defined as the negative of Net Patent Buy (equation

(16)). I consider four subsamples: large, small, rated, and unrated firms. Large (small) firms

are firms with capital stocks above (below) the sample median. Rated firms are those that

ever receive bond ratings from Standard & Poor’s during the sample period; I group the rest
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as unrated. For each panel of Figure 8, I plot the average Net Patent Sales by cash holding

bins in one subsample. I find that large and rated firms exhibit no discernible changes

in net patent trading with a reduction in cash holdings, while the net sales of small and

unrated firms exhibit economically and statistically significant increases. The panels show

that patent sales concentrate at times of low liquidity holdings and in firms with limited

access to external finance, which is consistent with such firms seeking alternative funding to

mitigate their financial difficulties.

In the Internet Appendix, I compare the timings of patent sales and equity issuances and

find a strong similarity. Both concentrate when the cash holdings of firms are low and in

small and unrated firms.

I.5.3 Patent Trading and R&D

I further examine whether patent sales mitigate firms’ financial difficulties, that is, whether

by selling some patents, the firm is able to implement other or future R&D projects. I first

open a four-year event window bracketing each patent-sale quarter. I then track the average

(assets scaled) R&D expenses during the four-year period for small, large, unrated, and rated

firms. Figure 9 shows that, for small and unrated firms, patent sales are clear turning points.

Before them, R&D decreases over time, but this trend reverses immediately after the event

quarter. The post-event increase in R&D is also steady during the following two-year period.

In contrast, large and rated firms see no such pattern; R&D changes only mildly throughout

the event window.

In the model, seed trading opens the possibility that some firms can acquire and utilize

otherwise-abandoned seeds. Consistent with this model mechanism, in unreported tests,

I find that R&D also increases following patent purchases. Additionally, in the Internet

Appendix, I compare R&D trends around patent sales and equity issuances. I again find

strong similarities between them. In both cases, R&D increases significantly after the event

quarter for small and unrated firms, but not for large and rated firms.
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I.5.4 What Patents Do Firms Sell

Firms may trade patents for technological reasons. For instance, Akcigit et al. (2016) show

that firms tend to buy patents that are closely related to their primary field of operation (core

patents, for short) and sell the less related ones (peripheral patents). I examine if patent

trading in my sample is driven by this technological motive. I define core and peripheral

patent sales using the “technological distance” between the patents sold and the firm’s

patent portfolio; core (peripheral) patent sales are those whose technological distance is

below (above) the sample median.10

Panels A and B of Figure 12 show R&D expenses around patent-sale quarters for core-

and peripheral-patent sales, respectively. These two panels show that the increases in R&D

are stronger after the sales of core patents. I next sort each firm’s time series into five bins by

its lagged (assets scaled) cash holdings and plot the average net sales of core and peripheral

patents in each cash-holding bin in Panels C and D, respectively. As can be seen, compared

to peripheral patents, firms have a stronger tendency to sell core patents during periods of

financial difficulties.

Taken together, contrary to the technology-driven motive, when firms are in poor financial

conditions, it is the core patents that they will sell; additionally, R&D also improves more

after the sales of core patents.

10I measure the technological distance between two sets of patents: the patents being sold and the portfolio
of all patents owned by the seller. To construct this distance measure, I use a two-step procedure. First, I

measure the technological distance between two patent classes TX and TY as dT (TX , TY ) = 1− #(TX∩TY )
#(TX∪TY )

(see Akcigit et al., 2016), where the numerator is the number of patents that cite both classes TX and TY ,
and the denominator is the number of patents citing at least one of the two classes. Second, I compute
the technological distance between two arbitrary sets of patents as ν′1ΩT ν2. The vector νj denotes the
technology-class composition of patent set j, i.e., the Xth element of νj is the fraction of patents in the set
j that belongs to the class TX . Accordingly, νj ’s number of elements equals the total number of technology
classes, and its elements sum to unity. ΩT is a square matrix with the numbers of elements in both dimensions
equal to the number of technology classes. Element (X,Y ) of ΩT is the pairwise distance dT (TX , TY ).
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I.5.5 An Alternative Explanation

I have shown that firms in poor financial conditions more often sell patents and that their

financial conditions subsequently improve. I also show these patterns to be more pronounced

for small and unrated firms. These findings suggest that firms utilize seed trading to mitigate

financial difficulties, yet they may also be consistent with an alternative explanation where

some firms specialize in early-stage R&D and patent development. Under this alternative

explanation, what appears to be financially-driven patent sales may actually reflect such

firms’ operation cycles. For instance, after an extensive R&D process, such a firm is granted

a patent and is in the position to sell it. Cash holdings are depleted before the sale due

to past expenditures. At the same time, the sale proceeds would allow the firm to initiate

another round of patent development, giving rise to R&D patterns consistent with those in

Figure 9. Moreover, given their specialization, these firms are likely small and unrated.

I examine the alternative explanation using a set of tests. For ease of exposition, I refer

to this specialization-based hypothesis as H0 and my primary, finance-based hypothesis as

H1.

A. Patent Sales and Past Shocks

I first explore a key difference between H0 and H1. Under H1, patent sales are unintended

outcomes. The firm is “forced” to sell its patents after experiencing a sequence of bad shocks

that expose it to potential financial difficulties. In contrast, H0 implies that the firm always

plans to sell the patents. Hence, unlike H1, patent sales do not follow bad shocks. If anything,

they should follow positive shocks, which indicate good research progress. To distinguish H1

from H0, I test the dependence of the patent sale frequency on past shocks, which I measure

using a firm’s past stock returns:

1{∆si,t < 0} = β0 + β1

12∑
h=1

ri,t−h + β2ai,t−1 + β3ai,t−1 ×
12∑
h=1

ri,t−h + νi,t, (23)
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where 1{∆si,t < 0} is an indicator variable that equals one if firm i sells patents in month t,

ri,t is the firm’s stock return in month t, and ai,t−1 is the firm’s net cash holdings as of the

end of the latest quarter.

Table 8 reports the regression results. Column (1) reveals that a greater tendency to sell

patents follows sequences of bad shocks (β̂1 < 0). Column (2) shows that this tendency is

especially strong when cash holdings are low (β̂3 < 0). Column (3) shows that the first order

effect of past shocks on patent sales remains negative and significant when a firm fixed effect

is included. These results suggest that patent sales are unplanned choices made only in re-

sponse to adverse realizations, favoring H1. When I measure past shocks using risk-adjusted

returns based on CAPM (Columns (4)–(6)) and Fama-French three-factor models (Columns

(7)–(9)), I find that adjusting for risk does not qualitatively affect the regression results.

B. Timing of Patent Sales After Patent Grants

H0 confounds H1 because, for firms specializing in developing patents, patent grants

follow research expenditures but precede patent sales. Thus, it appears that patent sales

come after periods of decreasing cash holdings. To test H1 against H0, I examine the timing

of patent sales after the patents are granted. H0 provides no prediction on such timing—a

patent sale takes place at a random point at which the firm finds a buyer. In contrast, H1

implies patent sales coincide with poor financial conditions regardless of whether the patents

have been granted. Hence I track the patent owners’ net cash holdings between patent grants

and their eventual sales (See Figure 13). It is evident that conditioning on patent grants,

sales still take place when cash holdings are low, consistent with H1.

In summary, the evidence suggests that it is unlikely that firms specializing in patent

development drive my empirical findings.
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I.6 Conclusion

In this paper, I study and quantify the efficiency implications of intangible asset trading in

the presence of financial frictions. As is well understood, financial frictions interfere with the

market’s ability to direct cash to firms with good investment options. Much less studied is

the reallocation of the investment options themselves, which takes place through intangible

asset trading. An efficient market for investment options obviates the need for external

financing and therefore dampens the effects of financing frictions. Since existing studies of

financial frictions typically do not allow for the explicit IAT, it is important to know whether

such an omission would affect the interpretations of their findings.

I show that the answer to this question is yes. By building and estimating a dynamic

model on the use, finance, and trading of intangible assets, I find that, despite high trading

costs, the option to trade leads to sizable reductions in the financing costs and improvements

in firms’ ability to utilize investment options. Interestingly, the direct effects of IAT are

rather small; the efficiency improvements accrue because these direct effects are significantly

amplified in equilibrium through ex ante changes in firms’ expectations and investment

choices. Additionally, I show that the implications of high financial frictions are materially

different in environments featuring high and low trading costs. Therefore, not accounting

for IAT may substantially affect the conclusions about financial frictions. Finally, I provide

corroborating evidence of patent trading that is consistent with my model predictions. For

instance, patents flow from firms with poor financial conditions to financially healthy firms,

and R&D spending increases after patent sales.

This paper implies that policies that facilitate IAT, such as enforcing information dis-

closures regarding intangibles or mandating price transparency of IAT, may improve firm

productivity and economic efficiency. My findings also contribute to the recent debate on

the effect of patent trading on innovative activities.
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CHAPTER II

Speculation with Information Disclosure

II.1 Introduction

Private information is valuable. Much research in financial economics over the last three

decades illustrates both its benefits to speculators and its impact on financial market qual-

ity through their trading activity. For instance, Kyle (1985) shows that speculators trade

cautiously (and anonymously) with private information to minimize its disclosure to less

informed market participants. Importantly, in this model and many others, since specu-

lators’ trading profits monotonically depend on their informational advantage, protecting

information leakage ensures maximal extraction of the rent of being informed.

Yet in reality, we also observe speculators strategically and publicly giving away their

supposedly valuable information. These disclosures may take a variety of forms. Portfolio

managers share perspectives on their covered firms through media interviews or public com-

mentaries; activist investors have their opinions posted through Twitter feeds or blogs; etc.

In a recent paper, Ljungqvist and Qian (2016) document an interesting phenomenon whereby

some boutique hedge fund managers reveal evidence of questionable business activities by

possibly overvalued firm—which they have gone through considerable trouble (and incurred

great costs) to discover. Barring irrationality, this suggests that (cautious) non-anonymous

disclosure of private information may indeed be optimal. For instance, Ljungqvist and Qian

(2016) suggest that these hedge funds’ voluntary disclosures may minimize the noise trader

risk they face when taking short positions in those troubled firms (e.g., De Long et al. 1990;

Kovbasyuk and Pagano 2015). Intuitively, for fear that market prices may further deviate
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from (poor) fundamentals, therefore forcing them to liquidate prematurely, fund managers

disclose some private information to expedite convergence of prices to fundamentals.

The goal of this paper is to shed further light on the strategic disclosure of information

in financial markets. Using a model of speculative trading based on Kyle (1985), we show

that if an informed speculator’s objective function includes not only long-term profit but

also the short-term value of her portfolio, public (i.e., non-anonymous) disclosure of private

information may naturally arise. This short-term objective captures parsimoniously a variety

of forms of short-termism among sophisticated market participants: a hedge fund manager

with a short position may be concerned about forced liquidation because of a sharp drop in

portfolio value (as in Ljungqvist and Qian 2016); a mutual fund manager may care about her

fund’s NAV, upon which her compensation is often contingent; financial derivatives holders

have their gains or losses hinge on the price movements of the underlying asset before the

expiration date; liquidity constraint or risk-aversion in general can also lead to concerns

over short-term values. A recent literature on “portfolio pumping” examines the impact of

similar incentives for speculators on their trading activity and resulting market outcomes.

For instance, Bhattacharyya and Nanda (2013) argue that fund managers may “pump” the

short-term value of their portfolios by trading “excessively” in the direction of their initial

holdings—i.e., away from what is warranted by long-term profit maximization. Consequently,

equilibrium prices are distorted in the short term, the more so the larger weight the fund

manager places on her short-term NAV or when she has a larger initial position. We refer

to this pumping strategy as “pumping by trading” (PBT).

In our model, we show that public disclosure of private information is an additional

tool to achieve portfolio pumping. A sophisticated speculator may optimally reveal private

information about her holdings and asset fundamentals at the same time, but in a mixed

fashion. Unable to distinguish between the two, uninformed market participants (market-

makers) may revise their priors about asset fundamentals in response to such disclosures

when clearing the market. Accordingly, short-term equilibrium prices are pumped in the
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direction of the speculator’s holdings. We refer to this pumping strategy as “pumping by

disclosing” (PBD).

PBT hurts the speculator’s long-term profit as she deviates from her long-term profit-

maximizing strategy. When available, PBD reduces the adverse effects of PBT by limiting the

equilibrium extent of “excessive” trading. Disclosure, however, is also costly, as it compro-

mises the speculator’s informational advantage, which in turn deteriorates the speculator’s

long-term profits. Nonetheless, we show that, in equilibrium, the benefits from alleviating

PBT and boosting the speculator’s short-term value always outweigh the costs of compro-

mising her informational advantage. Strategic disclosure, therefore, optimally arises in our

model.

PBD has important, original implications for our understanding of the determinants of

financial market quality. Disclosure has two opposite effects on market liquidity. On the

one hand, as more private information is revealed, market-makers face less adverse selection

risk and so lower the price impact of order flow, increasing market depth. On the other

hand, as speculators refrain from PBT, a larger fraction of the aggregate order flow is driven

by information-based trading, decreasing market depth. We show that when disclosure is

optimal, the former effect dominates the latter such that PBD improves market liquidity.

We further show that with optimal disclosure, equilibrium prices are more informative (and

at the same time more volatile) in the sense that they reflect a larger proportion of specula-

tors’ private information, even though speculators trade more cautiously with their private

information and aggregate order flow carries less fundamental information.

Our empirical analysis provides support for the model’s implications. Our model suggests

that strategic disclosure may be commonplace: Given a reasonably low cost, any partly-

short-term-oriented speculator should find it optimal to disclose. Anecdotal evidence broadly

supports this implication. For instance, portfolio managers “talk their book”, i.e., discuss

their positions in order to create or reduce interest and therefore promote buyers or sellers of
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the securities.11 Yet, with the noteworthy exception of Ljungqvist and Qian (2016), empirical

evidence on this issue remains scarce. To that end, we focus on strategic non-anonymous

disclosures made by mutual fund families through three major newspapers: the Wall Street

Journal, the Financial Times and the New York Times. We then show that likely stronger

short-term incentives of mutual fund managers are associated with increased occurrence of

strategic disclosures and greater liquidity improvement for the disclosure targets, especially

when more suitable to such strategic disclosures by virtue of their greater fundamental

uncertainty, consistent with our model.

Overall, our novel insights on the determinants and non-trivial externalities of strategic

disclosure contribute to a recent theoretical literature on the disclosure activity of sophisti-

cated market participants.

Kovbasyuk and Pagano (2015) argue that when uninformed investors have limited at-

tention, price-taking arbitrageurs in several undervalued assets may optimally choose to

overweight and advertise their private payoff information about only one such asset to ex-

pedite convergence to fundamentals. When studying bilateral transactions with imperfect

competition, Glode et al. (2017) also show that a privately informed agent facing a coun-

terparty endowed with market power may find it optimal to voluntarily disclose his ex post

verifiable information in order to mitigate the counterparty’s inefficient screening, leading

to socially efficient trade. However, Han and Yang (2013) postulate that social communica-

tion may hinder information production and worsen market efficiency by enabling traders to

free-ride on better informed friends or prices, while Liu (2017) finds that optimal disclosure

of private long-lived information by a reputable short-horizon investor to uninformed long-

horizon followers (but not to market makers) may lower prior informed trading intensity

and equilibrium price informativeness. Relatedly, in a model of “cheap talk” (Crawford and

11This phenomenon has received ample coverage in the media. See, for instance, “Every-
body Talks Their Book, Everybody” on Abnormal Returns, available at http://abnormalreturns.

com/2010/02/18/everybody-talks-their-book-everybody/, or “New Investing Strategy: Talk Your
Book” on BloombergView, available at https://www.bloomberg.com/view/articles/2014-03-07/

new-investing-strategy-talk-your-book.
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Sobel 1982), Schmidt (2018) argues that anonymous price-taking “rumormongers” may find

truthful information sharing attractive when short-term oriented, while choosing to lie when

long-term oriented. Others investigate the notion that firm managers have discretion to dis-

close information that investors do not observe (e.g., Shin 2003; Goto et al. 2009; Hertzberg

2017) or whether they should be required to do so when selling risky assets (e.g., Kurlat and

Veldkamp 2015).

Relative to these studies, the focus of our theory is on the interaction between speculators’

strategic trading and strategic public disclosure of private information about asset payoffs

and endowments to competitive dealership, and its novel implications for the process of price

formation in the affected markets. Our accompanying empirical evidence is both suggestively

supportive of these implications and (to our knowledge) novel to the literature on mutual

fund management (e.g., surveyed in Elton and Gruber 2013).

The rest of the paper proceeds as follows. Section II.2 introduces our model and derives

its implications. Section II.3 describes our data sources, while Section II.4 presents the

empirical results. We conclude in Section II.5.

II.2 The Theory

In this section, we show how strategic disclosure may naturally arise in a standard Kyle

(1985) setting, in contrast with the conventional wisdom in market micro-structure that

information leakage hurts speculation. As we show, the key ingredient leading up to this

result is that speculators face a trade-off between maximization of long-term profit and short-

term portfolio value. As we discuss next, this stylized trade-off captures parsimoniously a

variety of real-life conflicting incentives for sophisticated financial market participants.

We begin by describing a baseline model of speculative trading based on Kyle (1985) and

Bhattacharyya and Nanda (2013), which gives rise to PBT. Next, we enrich this model by

allowing for informative disclosure and derive novel implications of PBD for the equilibrium

quality of the affected market. All proofs are in the Appendix.
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II.2.1 The Baseline Model

Our basic setting is a batched-order market as in Kyle (1985), with three dates, t = 0, 1 and

2, and one risky asset. At date t = 2, the payoff of the risky asset—a normally distributed

random variable v with mean P0 and variance σ2
v—is realized. Three types of risk neutral

market participants populate the economy: An informed trader (the speculator or “specu-

lative sector”), competitive market makers (or “market making sector”, MM), and liquidity

traders. The structure of the economy and the decision processes leading up to order flow

and prices are common knowledge among all market participants.

At date t = 0, the speculator privately observes the liquidation value of the risky asset

(v), as well as receives an initial endowment (e) of the risky asset, also unobservable to all

others. Throughout this paper, we use the terms “initial position”, “initial endowment”

and “initial holding” interchangeably, all referring to the speculator’s position in the risky

asset before the model’s single round of trading. Individual allocations are endogenous in

a number of models (see, e.g., Back and Zender 1993, among others). This paper takes as

given the level of information asymmetry (regarding both endowments and fundamentals)

to study the speculator’s strategic behavior thereafter. Hence, as in Bhattacharyya and

Nanda (2013), we parsimoniously assume that e is normally distributed with E[e] = ē and

Var
(
e
)

= σ2
e , as well as independent of v (Cov

(
v, e
)

= 0). Relaxing these assumptions

such that the speculator’s private fundamental information is noisy and/or correlated with

her endowment (Cov
(
v, e
)
6= 0) would complicate the analysis without affecting its main

insights (see also Pasquariello 2003, Chapter 1; Pasquariello and Vega 2009).

At date t = 1, both the speculator and liquidity traders submit market orders, x and z,

respectively, to the MM, where z ∼ N(0, σ2
z) is independent of all other random variables.

The MM observes the aggregate order flow ω = x + z and sets the equilibrium price P1 =

P1(ω) that clears the market.

The departure we take from Kyle (1985) lies in the speculator’s objective function. In

43



Kyle (1985) as well as many other theoretical studies of price formation, long-term profit

maximization is the sole objective of the speculator. In reality, however, many sophisticated

market participants are found to be short-term oriented, or at least partly so. For instance,

mutual fund managers are compensated on the basis of the funds’ current net asset value

(NAV; see, e.g., Warner and Wu 2011). A fund’s recent performance is crucial to its com-

petition for fund flows (e.g., see Ippolito 1992; Sirri and Tufano 1998; Brown et al. 1996) as

well as the success of its fund managers in the job market (see, e.g., Chevalier and Ellison

1999). Short-term performance also concerns activist investors as many of them choose to

exit from their block holdings after carrying out interventions in a firm (e.g., Becht et al.

2017 find activist hedge funds’ holding period spans an average of 1.7 years; likewise, Brav

et al. 2008 estimate the median holding period to be above 1 year); the firm’s valuation at

the time of the exit would therefore largely affect the return to the activist investors.12 More

broadly, any speculator plagued by liquidity constraints (see Ljungqvist and Qian 2016, and

references therein), professional money manager facing relatively short expected tenure due

to mobility and turnover (as in Dow and Gorton 1994; Goldman and Slezak 2003), or investor

preferring early resolution of uncertainty (e.g., under Epstein and Zin 1989 preferences) may

wish all or part of her investment to pay off early. Lastly, the short-term performance of

an asset may be relevant to investors holding both the asset and options on it. Following

Pasquariello and Vega (2009) and Bhattacharyya and Nanda (2013), we capture these short-

term incentives parsimoniously by assuming that the speculator’s value function is separable

in her short-term (i.e., date t = 1) value W1 = e(P1 − P0), and long-term (i.e., date t = 2)

profit W2 = x(v − P1), such that:

W = γW1 + (1− γ)W2, (24)

where γ ∈ [0, 1] can be interpreted as the speculator’s rate of substitution between short-

12Accordingly, Greenwood and Schor (2009) associate abnormal returns surrounding hedge funds’ an-
nouncements of activist intentions about a target to their ability to induce a takeover for that target.
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and long-term objectives.13 Finally, at date t = 2, the risky asset is liquidated at price v.

Consistent with Kyle (1985), we define a Bayesian Nash Equilibrium of this economy as

a trading strategy x(v, e) and a pricing rule P1(ω), such that the following conditions are

satisfied:

1. Utility Maximization: x(v, e) = arg max E
[
W |v, e

]
;

2. Semi-strong form market efficiency: P1 = E
[
v|ω
]
.

The following proposition characterizes the unique linear equilibrium of this economy.

Proposition 4 (Baseline, Bhattacharyya and Nanda 2013) The unique equilibrium in

linear strategies of this economy is characterized by the speculator’s demand strategy

x∗(v, e) = βē+
v − P0

2λ∗
+
β

2
(e− ē), (25)

and the MM’s pricing rule

P1 = P0 + λ∗(ω − βē), (26)

where

λ∗ =
σv

2(β2 σ
2
e

4
+ σ2

z)
1
2

, (27)

and

β =
γ

1− γ
. (28)

In this model, β captures the relative importance the speculator attaches to her short-term

objective (W1). When β = 0, the speculator reduces to a long-term profit maximizer and

the ensuing equilibrium to the one in Kyle (1985): xk = v−P0

2λk
and λk = σv

2σz
. As β increases,

13Specifically, Pasquariello and Vega (2009) and Bhattacharyya and Nanda (2013) assume the speculator’s
objective function to be separable in her portfolio’s short-term (t = 1) and long-term (t = 2) net asset
value (NAV, or wealth), i.e., U = γ ×NAVt=1 + (1− γ)×NAVt=2, where NAVt=1 = NAVt=0 + e(P1 − P0),
NAVt=2 = NAVt=0+e(v−P0)+x(v−P1), and NAVt=0 is her initial (t = 0) NAV. The reduced-form objective
function of Eq. (24) is then derived by removing from U those terms in NAVt=1 and NAVt=2 that are not
affected by (hence do not affect) the speculator’s decision process, i.e., W = U −NAVt=0− (1− γ)e(v−P0).
This simplification is only for economy of notation and has no bearing on our analysis.
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the speculator’s trading strategy deviates from long-term profit maximization (x∗ 6= xk) to

pump up/down the equilibrium price in the direction of her initial position in the risky asset

(Cov
(
P1, e

)
= 1

2
λ∗βσ2

e > 0), a behavior that we call portfolio pumping by trading (PBT). In

particular, PBT improves market liquidity (λ∗ < λk) by alleviating market makers’ adverse

selection risk. Further insights on PBT can be found in Pasquariello and Vega (2009) and

Bhattacharyya and Nanda (2013).14

II.2.2 Equilibrium with Disclosure

We now extend the baseline model of Section II.2.1 by allowing the speculator to publicly

disclose information before trading and clearing.

Sophisticated market participants often make public announcements on asset fundamen-

tals in a variety of forms. For instance, Ljungqvist and Qian (2016) document that some

small hedge funds, after spending considerable resources to discover that a target firm is

overpriced, not only take short positions in that firm but also publicly disclose that infor-

mation in detailed reports (e.g. alluding the target firm of fabricating accounting figures or

inflating productive capacity). Other disclosures are less aggressive. For instance, portfolio

managers and financial analysts often make media appearances (on such outlets as CNBC,

WSJ, etc.) discussing recent corporate events or market outlook. These talks may allow the

involved speculator to reveal her private knowledge of asset fundamentals.

Importantly, however, these disclosures may reveal information not only about asset

fundamentals, but also the speculator’s own stake in that asset. To begin with, U.S. law

mandates that the speculator be explicit about the conflict of interest in her disclosures

such that the reader or audience should realize that the speculator stands to gain once her

14Pasquariello and Vega (2009) and Bhattacharyya and Nanda (2013) also find these insights to be
unaffected by allowing for a discrete number of either heterogeneously informed (hence, less aggressively
competing) or homogeneously informed (hence, more aggressively competing) speculators, respectively, yet
at the cost of greater analytical complexity relative to the baseline model. Accordingly, in this study we
concentrate on the trading and disclosure activity of a single speculator (or speculative sector, as in our
accompanying empirical analysis of the mutual fund industry), and leave the investigation of competition in
disclosure for future research.
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suggestions are followed.15

Even without conflict of interest, investors may rationally perceive public disclosures by

speculators as tainted. After all, a speculator may be inclined, if she holds a long (short)

position in an asset, to use her disclosures about that asset to induce investors to buy (sell)

it. Current regulations, albeit stringent, may leave the information provider sufficient wig-

gling room for toning her message. The speculator may, for instance, disclose evidence with

selective emphasis, but without crossing the line between truthful revealing and misrepre-

sentation. Consequently, upon seeing a strongly negatively-toned disclosure about an asset

by a speculator, a reader has every reason to suspect that the speculator is intentionally

tilting her tone and that she is likely to hold a short position in that asset.16

Lastly, information on asset fundamentals and speculator’s holdings are likely indistin-

guishable to an uninformed investor. On the one hand, any bias in a speculator’s disclosure

about asset fundamentals will likely depend on the speculator’s stake in that asset. On

the other hand, speculators are often not entirely transparent about their holdings. Many

studies find that institutional investors attempt to disguise their portfolio holdings, e.g., by

window dressing, to reduce the leakage of potentially valuable proprietary information (e.g.,

Lakonishok et al. 1991; Musto 1999; Agarwal et al. 2013; Shi 2017).17 How much the spec-

15The Securities Exchange Commission (SEC) imposes fiduciary duty on financial advisors, which is made
enforceable by Section 206 of the U.S Investment Advisers Act of 1940. Under the Act, an adviser has an
affirmative obligation of utmost good faith and full and fair disclosure of all facts material to the client’s
engagement of the adviser to its clients. This is particularly pertinent whenever the adviser is faced with a
conflict—or potential conflict—of interest with a client. The SEC has stated that the adviser must disclose
all material facts regarding the conflict such that the client can make an informed decision whether to enter
into or continue an advisory relationship with the adviser. Additionally, the Act also applies to prospective
clients. The SEC has adopted rule 206(4)–1, prohibiting any registered adviser from using any advertisement
(that includes notice through radio or television) that contains any untrue statement of material facts or is
otherwise misleading. Accordingly, Ljungqvist and Qian (2016, p. 1989) note that each of the stock reports
prepared by boutique hedge funds in their sample “prominently discloses that the arb[itrageur] has a short
position in the target stock.”

16Relatedly, Banerjee et al. (2016) show that in an investment game in which two players endowed with
noisy private fundamental information have an incentive to coordinate, both the sender and the receiver
may prefer strategic communication—in the form of only partially informative cheap-talk—to the sender’s
commitment to perfect disclosure.

17For instance, Shi (2017) shows that the mandatory disclosure of hedge funds’ positions via Form 13F
filings may reveal valuable private information by leading both to a subsequent drop in their performance
and to an increase in its correlation with their competitors.
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ulators hide their positions may in turn depend on the fundamental information they want

to keep private.

In short, speculators’ disclosures are likely to reflect both their private fundamental

information and their unobservable holdings; accordingly, uninformed market participants

are likely to view any public disclosure by speculators as a function of both their private

fundamental information and their unobservable holdings. We capture parsimoniously this

observation in the model by assuming that the speculator has the option to publicly disclose

a signal s that is a convex combination of e and v:

s(v, e) = δe+ (1− δ)v, (29)

where the publicly known coefficient δ ∈ [0, 1] represents the extent to which the signal is

informative about speculators’ holdings (e) versus asset fundamentals (v). The speculator

may freely choose which δ to use, but she must commit to disclosing the resulting signal (s)

at the chosen δ before observing e and v. Eq. (29) is a parsimonious characterization of

the speculator’s reporting strategy. More detailed discussions about the plausibility of this

assumption is in Section II.2.5.

Specifically, we model the strategic disclosure of the signal s of Eq. (29) in our setting

by introducing a date t = −1, in which the speculator can choose either (1) to do nothing

and proceed to date t = 0 (yielding the baseline equilibrium of Proposition 4), or (2) to

commit to the following reporting strategy: She first chooses and commits to a particular

δ at t = −1; then, at t = 0 (or at any subsequent time before the market clearing price

P1 is set), after observing v and e, she discloses the resulting signal s(v, e) to the public.

Each reporting strategy thus corresponds to a choice of the weight δ. When the speculator

commits to disclose, the ensuing model has a unique equilibrium in linear strategies, in which

the price schedule is a linear function of the signal and the order flow and the speculator’s

trading strategy is linear in the asset’s liquidation value, initial position, and the signal.
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Proposition 5 (Equilibrium with Disclosure) If the speculator chooses to send a signal

s of Eq. (29) with publicly known weight δ (PBD), the ensuing linear equilibrium of the

economy is characterized by the speculator’s demand strategy

x∗(v, e) =
β

2
(e+ē)+

v − P0

2λ1

− λ2

2λ1

(s−s̄) = βē+
βλ1 − δλ2

2λ1

(e−ē)+1− (1− δ)λ2

2λ1

(v−P0), (30)

and the MM’s pricing rule

P1 = P0 + λ1(ω − ω̄) + λ2(s− s̄), (31)

where

λ1 =
1√

α2β2 + 4σ
2
z

σ2
v

+ 4α2 σ
2
z

σ2
e

> 0, (32)

λ2 = −λ1

δ
(β − 4λ1σ

2
z

( 1
α
− βλ1)σ2

e

), (33)

and

α =
1− δ
δ

. (34)

The coefficients λ1 and λ2 represent the equilibrium price impact of the order flow and

public signal, respectively. In particular, it can be shown that for any δ such that disclosure

is ex ante optimal (as discussed next), λ2 > 0.18 Accordingly, relative to the baseline

equilibrium and for any given level of market liquidity λ′, the speculator trades “less” both

on private fundamental information (1−(1−δ)λ2
2λ′

< 1
2λ′

) and her endowment (βλ
′−δλ2
2λ′

< β
2
).

Intuitively, because the signal partly resolves fundamental uncertainty, information-based

trading is less profitable; this captures the “cost” of PBD. However, PBD both alleviates

the need for PBT and makes it less effective (by improving market depth, i.e., lowering λ1).

As we show shortly, the former effect of PBD translates into a reduction in long-term profit,

18Ceteris paribus for other model parameters, there exist some ex ante suboptimally “high” δ coefficients
such that λ2 < 0, as in those circumstances the MM uses the resulting disclosed signal s of Eq. (29) to learn
mostly about e and so offset any effect of PBT on P1 via the aggregate order flow.
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whereas the latter yields an increase in long-term profit because of the reduced scale of PBT.

The MM incorporates the signal’s information content about fundamentals in the market

clearing price of Eq. (31). However, since the MM is unable to disentangle the signal’s

fundamental-related component and endowment-related component, both components have

a positive impact on the equilibrium price. The fact that the signal moves prices in the

direction of the endowment is especially desirable to a speculator who is at least partly

short-term-oriented. The equilibrium price is high/low exactly when a high/low price is

desirable—i.e., when her initial holdings of the asset are large (e > ē)/small (e < ē).

As we noted earlier, the equilibrium in Proposition 5 is conditional on the speculator

committing to disclose a signal s. We now discuss when such a commitment is optimal. As

we show in the following proposition, there always exist suitable choices of signal weight δ,

at which committing to disclosure is ex ante optimal.

Proposition 6 (Optimality of Disclosure) Let D be the indicator variable for disclo-

sure: D = 1 if the speculator commits to sending signal s(v, e) and D = 0 otherwise. The

following results hold:

1. The ex ante (t = −1) expected value function to the speculator of committing to sending

a signal with weight δ is given by

E
[
W
∣∣D = 1, δ

]
= (1− γ)λ1σ

2
z

1 + αβλ1

1− αβλ1

, (35)

where λ1 is defined in Eq. (32).

2. The ex ante (t = −1) expected value function to the speculator of not disclosing a signal

is given by

E
[
W
∣∣D = 0

]
=

1− γ
4λ∗

(σ2
v + β2λ∗2σ2

e), (36)

where λ∗ is defined in Eq. (27).
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3. Disclosing is incentive compatible. Let δ∗ be the optimal signal weight with disclosure:

δ∗ = arg max
δ

E
[
W
∣∣D = 1, δ

]
, (37)

then δ∗ ∈ (0, 1) and

E
[
W
∣∣D = 1, δ∗

]
> E

[
W
∣∣D = 0

]
, ∀σ2

v > 0, σ2
e > 0, σ2

z > 0, γ > 0. (38)

The intuition for this result is that even with disclosure, the speculator can still replicate

the equilibrium outcome in the baseline model by carefully choosing the signal weight δ.

If the speculator sends a signal with no information content above and beyond that of the

aggregate order flow, then such a signal is redundant and the equilibrium reduces to the

baseline equilibrium. It can be shown that such a redundant signal is one with the weight

δ̂ = 1

1+λ∗β
σ2e
σ2v

∈ (0, 1) for any β > 0, where λ∗ is given by Eq. (27).19 Thus the action set

of the speculator in the signaling equilibrium of Proposition 5 is δ ∈ [0, 1] versus δ ∈ {δ̂},

which is effectively her action set in the baseline equilibrium of Proposition 4. With a strictly

larger action set, optimality of disclosure follows.

It might be counterintuitive that it is suboptimal for the speculator not to disclose.

It is an established notion that (more) private information yields (more) trading profit.

For instance, in Kyle (1985), the greater her informational advantage, the more profit the

speculator could reap from trading. Releasing a signal of her private information is thus

tantamount to (at least partly) giving away expected trading profits. Accordingly, most

19Specifically, under δ̂, the MM’s two sources of information are: (a) The order flow ω − ω̄ = 1
2λ∗ (v −

P0) + εω, where εω = β
2 (e− ē) + z, is the noise about fundamentals; and (b) the (scaled) signal s−s̄

2δ̂λ∗2β
σ2e
σ2v

=

1
2λ∗ (v−P0)+εs, where εs = εω+η with η =

2σ2
z

βσ2
e
(e− ē)−z. Since εω, η and v−P0 are mutually independent,

the signal is just the order flow plus uninformative noise. This implies that v ⊥ s|ω, i.e., that given the

order flow, a signal with weight δ̂ is redundant in learning about asset fundamentals. Thus, λ1 = λ∗, λ2 = 0,
and the equilibrium reduces to the baseline equilibrium of Proposition 4. Accordingly, when β = γ = 0, the
above economy reduces to Kyle (1985) such that the long-term profit maximizing speculator is indifferent to

her endowment shock e and both the optimal and redundant signals fully reveal it to the MM (δ∗ = δ̂ = 1).
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existing models in the micro-structure literature do not leave room for voluntary disclosure.

In our model, however, the speculator is not a pure long-term profit maximizer. The loss

of long-term profit caused by information revelation is compensated by gains in the short-

term value of her portfolio; and the gains outweigh the losses—as shown in Proposition 6.

By incorporating short-termism in the speculator’s objective function, our model has the

potential to explain the frequently observed voluntary disclosures in financial markets.

The following example may shed further light on the intuition behind Proposition 6.

Assume that a speculator has the intention to “pump” price by disclosing a signal. In

order for that signal to have any price impact, it must contain at least some fundamental

information. Intuitively, any signal containing only information about the endowment e and

possibly some noise ε would not affect the MM’s fundamental priors while also reducing ex

post uncertainty about e and so making any PBT by the speculator less effective (see also

Bhattacharyya and Nanda 2013). Thus, in general, the signal should be a function of v

and possibly some noise ε. If the speculator follows a “näıve” strategy by setting ε to be

purely random noise, such a disclosure would move prices in the desired direction only when

the speculator’s endowment shock happens to be in the same direction as the fundamental

shock; otherwise the signal may backfire. The net effect of such a signal is that the speculator

obtains no short-term gain on average but only lower long-term profits due to a compromised

informational advantage.20

Consider now a disclosure strategy that sets ε ∝ e. Since from a Bayesian perspective,

how the noise is constructed is irrelevant to the inference of v, a signal with ε ∝ e has the

same impact on the MM’s fundamental priors as a signal with purely random noise (given

the same noise variance). But now the signal has an added benefit of leading the MM to

interpret, e.g., a “large” endowment shock as a high fundamental shock, potentially leading

to a “large” price change. Note that when ε = 1
α
e, this is effectively the signal in Eq. (29).

20Accordingly, the disclosure of two separate such signals for e and v, respectively, would cost the specu-
lator both short-term gains and long-term profits. A formal proof of these arguments in our setting for the
class of linear signals s = e+ ε and/or s = v + ε is available in Section 1 of the Internet Appendix.
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Hence, pumping by disclosing is most effective exactly when the speculator cares most about

it—when her endowment is “large.”

II.2.3 Pumping by Trading and Pumping by Disclosing

In order to achieve her short-term objective, the speculator may either trade “excessively”

in the direction of her initial endowment (PBT) or disclose a mixed signal (PBD). Our

earlier discussion suggests that the speculator optimally uses both tools in equilibrium. In

this section, we isolate the two tools and examine separately their effect on the speculator’s

short-term and long-term objectives (W1 and W2, respectively).

To that end, it is useful to take a closer look at the process by which information is

used by the MM and the speculator. In the signaling equilibrium of Proposition 5, the

MM receives the signal and the order flow simultaneously (Eq. (31)). Alternatively, one

could think of the MM as separately absorbing the information in two steps. First, the MM

observes the signal and updates his priors about v and e. Second, the MM observes the

order flow, and, together with his updated priors, sets the price. One could also think of the

speculator as acting in two steps. First, she observes v and e, discloses the signal according

to Eq. (29), and forms belief about the MM’s updated priors. Second, she trades in the

updated information environment.

While both approaches yield the same equilibrium outcomes, the two-step approach al-

lows for a more intuitive interpretation: The first step involves no trading and the second

step represents a baseline equilibrium without disclosure. This helps isolate the effects of

PBT and PBD.

II.2.3.1 A Two-step Formulation of the Signaling Equilibrium

We begin by formally describing an alternative approach to construct the signaling equilib-

rium of Proposition 5. Consider a two-stage game. In the first stage, the speculator privately

observes v and e and then announces her signal s of Eq. (29) at a predetermined weight
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δ. In the second stage, trading takes place at the realized market clearing price P1 (as the

baseline equilibrium).

We consider the Perfect Bayesian Equilibrium of this two-stage game. Note that with the

ex ante commitment to disclose and a predetermined signal weight, no optional action occurs

in the first step: Nature draws v and e, publicly reports s, the speculator observes v and e

directly and the MM updates her priors about v and e according to s. Thus we only need

to study the equilibrium in the second step. We start with the information environment in

the continuation game after Nature’s draw - the common prior in the second step. Since the

speculator is fully informed, the updated common prior is the MM’s perceived distribution

of (v, e) conditional on s:

(
v

e

)
|s ∼ N

[(
ṽ

ẽ

)
,

(
σ̃2
v −σ̃vσ̃e

−σ̃vσ̃e σ̃2
e

)]
(39)

where

ṽ(v, e) = P0 +
(1− δ)σ2

v

δ2σ2
e + (1− δ)2σ2

v

(s− s̄) (40)

ẽ(v, e) = ē+
δσ2

e

δ2σ2
e + (1− δ)2σ2

v

(
s− s̄

)
(41)

σ̃2
v(v, e) =

δ2σ2
vσ

2
e

δ2σ2
e + (1− δ)2σ2

v

(42)

and

σ̃2
e(v, e) =

(1− δ)2σ2
vσ

2
e

δ2σ2
e + (1− δ)2σ2

v

(43)

Proposition 4 can be applied to fully characterize the second stage equilibrium by replac-

ing the prior distribution with the updated posteriors of Eqs. (39) to (43). The entire game

is therefore a set of baseline equilibriums, one for each realization of (v, e). Our next result

shows that this two-stage approach yields the same equilibrium outcome as the single-stage

signaling equilibrium.

Proposition 7 (Equivalence) The Perfect Bayesian Equilibrium of the two-step game is

54



identical to the single-step signaling equilibrium: For any realization of v, e, and z, the

speculator submits the same market order, and the MM sets the same price.

This two-step approach emphasizes the role of disclosure as reshaping the information

environment before trading and clearing. Effectively, price is formed in two steps: First,

information in the signal is incorporated in the form of the MM’s updated posteriors about

v and e; second, information in the order flow is incorporated through trading. This is a

convenient result as it allows to separate the effects of PBT and PBD on the equilibrium.

II.2.3.2 Decomposing the Effects of PBD

Following the two-step approach, we decompose the speculator’s ex ante expected value

function in equilibrium as:

E
[
W |D = 1, δ

]
= E

[ Short-term︷ ︸︸ ︷
γe(ṽ − P0) |D = 1, δ

]︸ ︷︷ ︸
Signaling (first stage)

+ E
[ Short-term︷ ︸︸ ︷
γe(P1 − ṽ) +

Long-term︷ ︸︸ ︷
(1− γ)x(v − P1)

∣∣s,D = 1, δ
]︸ ︷︷ ︸

Trading (second stage)

(44)

(see also Eq. (138)).21 Only trading can generate long-term profit, whereas both disclosure

and trading serve to the speculator’s short-term objective. The signal firstly shifts the price

via updating the MM’s inference of v; then this inference (and the market clearing price)

is further affected by the speculator’s trading in the aggregate order flow. The effect of the

signal persists through the trading stage, as it shifts the prior mean of the MM’s valuation.

By construction, the signal positively depends on both v and e. The first dependence means

that the MM adjusts his inference (ṽ) of v upward on seeing a positive signal, whereas the

21In particular, the speculator’s ex ante expectation of W , i.e., given her date t = −1 information set, is
given by

E
[
W |D = 1, δ

]
= E

{
E
[
W |s,D = 1, δ

]∣∣D = 1, δ
}

= E
{

E
[
γe(ṽ − P0)|s,D = 1, δ

]∣∣D = 1, δ
}

+ E
{

E
[
γe(P1 − ṽ) + (1− γ)x(v − P1)

∣∣s,D = 1, δ
]∣∣D = 1, δ

}
,

where, in the last line, the inner expectation in the first term drops because of the law of iterated expectations
while the outer expectation in the second term drops because the expected value function conditional on the
information set (s,D = 1, δ) is independent of s.
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second dependence means that a positive endowment shock e leads to a positive signal. This

feature serves to the speculator’s short-term objective as it implies a positive correlation

between e and ṽ (Cov
(
e, ṽ
)

= (1−δ)δσ2
vσ

2
e

δ2σ2
e+(1−δ)2σ2

v
).

Table 9 decomposes the speculator’s ex ante expected value function by PBT and PBD

and their contributions to her long-term and short-term objectives. Comparing each com-

ponent of the value function under disclosure (D = 1) versus no disclosure (D = 0) reveals

that: (1) The direct effect (first step) of PBD is a boost to the speculator’s short-term

objective (1
2
γσ̃vσ̃e) but there is no direct effect on the long-term objective; (2) PBD allows

the speculator to optimally cut back on her PBT such that the effect of PBT on her short-

term objective is reduced (γβ
2
λ∗σ2

e >
γβ
2
λ1σ̃e

2);22 (3) PBD has two opposing effects on the

speculator’s long-term objective: First, the signal gives away part of the speculator’s private

information about v; second, less PBT means less information leakage about v by the order

flow; the net effect is a loss in long-term profit, as reflected by the improved price impact

((1− γ)λ1σ
2
z < (1− γ)λ∗σ2

z).
23

Proposition 6 shows that, after aggregating these effects, the speculator’s value function

is improved by PBD.

II.2.4 Equilibrium Properties and Comparative Statics

A. Comparative Statics

22We show in Corollary 1 next that λ1 < λ∗ in equilibrium.
23Note that since the equilibrium price is semi-strong form efficient, the speculator’s expected long-term

profit is just noise traders’ loss, and therefore depends solely on the price impact λ. Using Eqs. (39) to (43),
the expression for price impact with disclosure (λ1 in Eq. (32)) can be rewritten as:

λ1 =
σ̃v

2
√

(β2 )2σ̃2
e + σ2

z

.

Intuitively, the numerators and denominators of both the above expression and the one for price impact
without disclosure (λ∗ of Eq. (27)) reflect the amount of information and non-information-based trading,
respectively. With PBD, there is less information-based trading as the signal compromises the speculator’s
informational advantage, improving the price impact and reducing the speculator’s profit. However, with
PBD, non-information-based trading (PBT) is also reduced; this leads to the opposite effects on price impact
and long-term profit. The net effect is that the speculator loses long-term profit.
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The optimal signal weight (δ∗) depends on the model’s primitives. There is, unfortu-

nately, no analytically tractable solution for δ∗. Therefore, we derive its comparative statics

(and some of the properties of the ensuing equilibrium) numerically. We begin with Fig-

ure 15, where we plot δ∗ as a function of γ—the relative importance of the speculator’s

short-term objective—for different combinations of such primitives as σ2
v , σ

2
e and σ2

z . For

all combinations, optimal signal weight decreases monotonically in γ. Intuitively, when δ is

smaller, the signal becomes more informative about v, leading to a larger loss of the specu-

lator’s informational advantage and long-term profit. Of course, if the speculator only cared

about the long run (γ = 0), she would choose never to disclose valuable private information

(i.e., δ = 1). On the other hand, when the speculator values the short run (γ > 0), she

wants the signal to have a large price impact; thus she needs the signal to be informative

about both v and e. It can be shown that a δ = σv
σe+σv

induces the largest price impact of

the signal in the direction of the speculator’s endowment; in other words, this is the signal

weight the speculator would choose if she cared only about the short-run.24 Correspondingly,

as γ increases, the optimal choice of δ decreases from 1 to σv
σe+σv

.

Figures 16 and 17 plot δ∗ against σ2
v and σ2

e , for different choices of γ while holding

all other parameters fixed. These plots show that the optimal choice of δ increases in σ2
v

but decreases in σ2
e . There are two forces driving this result. First, as noted earlier, the

direct effect of PBD is maximized at δ = σv
σe+σv

, which is increasing in σ2
v and decreasing

in σ2
e , since in those circumstances so is the ex ante effectiveness of PBD at updating the

MM’s priors about v toward e. For example, as σ2
e decreases, so do the MM’s ex ante

uncertainty about the speculator’s endowment and its comovement with his fundamental

posteriors (Cov
(
ṽ, e
)
); hence, the speculator has to disclose more of e in the signal s to sway

those posteriors in the direction of her short-term objective (see, e.g., Eq. (44) and Table 9).

Second, since the indirect effect of disclosure involves reduction in long-term profit, a larger

24Note that Cov
(
ṽ, e
)

=
δ(1−δ)σ2

vσ
2
e

δ2σ2
e+(1−δ)2σ2

v
, which is maximized at δ = σv

σv+σe
. Note also that when the

speculator cares only about the short-run, order flow would have zero price impact as the speculator’s trades
would have no information content. Thus only the signal can move the price and her short-run value would
be given by E

[
γe(ṽ − P0)

]
= γ Cov

(
ṽ, e
)
, implying that optimal δ is σv

σv+σe
.
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δ means a smaller weight on v, and therefore a smaller information loss. Thus the speculator

optimally increases δ when the cost of information loss is larger, i.e., when σ2
v is large.

Conclusion 1 The optimal signal weight δ∗ increases in σ2
v, decreases in σ2

e , and decreases

in γ.

We turn next to the size of disclosure gains. In particular, we examine how large a cost

to disclosure would a speculator be willing to bear while still preferring PBD. Such a cost

can be thought of as the opportunity cost to the manager of spending time in a TV studio,

of composing and publishing a report, or the monetary cost of making an advertisement. For

simplicity, we assume this cost to be a fixed amount c paid by the speculator if she commits

to send a signal at t = −1.

Proposition 6 suggests that disclosure is always optimal when it is costless. Given a fixed

cost c to disclose, we ask the following questions: For what range of γ would the speculator

still find it optimal to disclose? How does this range depend on the information environment

(σ2
v and σ2

e)?

To answer these questions, let

Iγ(c, σ2
v , σ

2
e , σ

2
z) = {γ ∈ [0, 1]|max

δ
E
[
W |D = 1, δ

]
− c > E

[
W |D = 0

]
}.

Intuitively, Iγ is the set of γ such that the speculator prefers costly disclosure to no disclosure

ex ante. Figures 18 and 19 then plot the relation between Iγ and σ2
v and σ2

e , respectively.

The two dashed lines represent upper and lower bounds of Iγ, while the solid line represents

the width of the interval [inf Iγ, sup Iγ]. Note that the direct effect of PBD is to boost the

short-term objective by γ Cov
(
e, ṽ
)

= γ δ∗(1−δ∗)σ2
vσ

2
e

δ∗2σ2
e+(1−δ∗)2σ2

v
, suggesting that the direct gains to

disclose is increasing in both σ2
v and σ2

e . This is consistent with Figures 18 and 19. Intuitively,

both larger σ2
v and larger σ2

e increase the scope of the speculator’s value function (i.e., short-

termism and pumping become more important for it), and therefore can support a larger

range of γ for a given fixed disclosure cost c.
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Conclusion 2 (sup Iγ − inf Iγ) is decreasing in c, increasing in σ2
v and increasing in σ2

e .

B. Disclosure and Market Liquidity

We now turn to the effect of PBD on market liquidity. As a benchmark, consider first the

effect of a public signal of v on the equilibrium depth of an economy where the speculator

maximizes exclusively her long-term profit (γ = 0). Intuitively, any signal of v would reduce

the uncertainty about the asset’s payoff, hence lowering adverse selection risk and equilibrium

price impact (e.g., Pasquariello and Vega 2007; Kahraman and Pachare 2017)—the more so

the greater is the initial uncertainty about v. Next, consider the effect of PBT alone on

market liquidity, PBT also lowers equilibrium price impact since it induces the speculator to

deviate from long-term profit maximization to increase the short-term value of her portfolio—

the more so the greater is endowment uncertainty (Bhattacharyya and Nanda 2013).25 The

release of a signal may not only alleviate information asymmetry about v but also reduce

uncertainty about e (and PBT), leading to opposing effects on liquidity. Accordingly, we

show that disclosing can either increase or decrease the price impact depending on the signal

weight δ; yet, price impact is always smaller if PBD is ex ante optimal. Equivalently, the

effect of s on fundamental uncertainty prevails upon its effect on endowment uncertainty.

Corollary 1 (1) λ1 increases with δ; (2) λ1 < λ∗ if and only if δ < δ̂, where δ̂ is given by

Eq. (143); (3) In particular, if δ is such that E
[
W |D = 1, δ

]
> E

[
W |D = 0

]
, then λ1 < λ∗.

Figure 22 plots equilibrium price impact in the baseline (λ∗, dashed line, left axis) and

signaling economies (λ1, dotted line), as well as their positive difference (λ∗ − λ1 solid line,

right axis) with respect to ex ante fundamental uncertainty σ2
v , in correspondence with

different combinations of γ, σ2
e , and σ2

z , as well as optimal signal weight δ∗. In all graphs

and in both economies, equilibrium price impact is increasing in fundamental uncertainty

(as in Kyle 1985), since so is the accompanying adverse selection risk faced by the dealership

sector when clearing the market. Accordingly, in those circumstances, strategic disclosure

25Accordingly, the speculator becomes in effect a partial noise trader.
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yields an increasing improvement in equilibrium market depth, (i.e., a greater λ∗ − λ1 > 0),

since it mitigates such risk more than the decreasing weight of the speculator’s increasingly

valuable private fundamental information in her signal (i.e., greater δ∗ in s of Eq. (29); see

Figure 16) worsens it. We summarize these observations as follows.

Conclusion 3 The liquidity improvement from optimal disclosure (i.e., λ∗ − λ1 > 0) is

increasing in the asset’s fundamental uncertainty σ2
v.

C. Price Efficiency

Our last result concerns price informativeness. We show that the equilibrium price is

more efficient in the presence of PBD. Intuitively, to the extent that the signal conveys

information regarding asset fundamentals, one would expect that a greater proportion of the

speculator’s private information will be incorporated into prices; this is indeed the case when

a signal is optimally disclosed, as summarized in the following corollary.

Corollary 2 Denote by Var
(
v|P1, D = 0

)
the portion of the speculator’s private information

that is not incorporated into prices in the baseline PBT equilibrium of Proposition 4, and

by Var
(
v|P1, D = 1, s(δ)

)
the portion of unincorporated information when the speculator

sends a signal with weight δ. (1) Var
(
v|P1, D = 0

)
= 1

2
σ2
v. (2) In the second step, less

than half of the speculator’s remaining private fundamental information is impounded into

the price: Var
(
v|P1, D = 1, s(δ)

)
> 1

2
σ̃2
v. (3) Var

(
v|P1, D = 1, s(δ)

)
increases with δ. (4)

Var
(
v|P1, D = 1, s(δ)

)
≤ (<)1

2
σ2
v if δ is such that the speculator ex ante (strictly) prefers

disclosure to no disclosure, or equivalently, if E
[
W |D = 1, δ

]
≥ (>) E

[
W |D = 0

]
.

Corollary 2 implies that, in the presence of PBD, the equilibrium price incorporates more

of the speculator’s private information, despite her more cautious trading activity (and less

informative order flow).

In Kyle (1985), there is an equivalence between the volatility of price and the amount of

private information being impounded.26 This equivalence is preserved under both the PBT

26To see this, note that σ2
v = Var

(
E
[
v|P1, D

])
+ E

[
Var

(
v|P1, D

)]
, where we can drop the outer expec-
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and PBD equilibriums:.

Var
(
P1|D

)
= σ2

v − Var
(
v|P1, D

)
, (45)

where σ2
v − Var

(
v|P1, D

)
measures the amount of information incorporated into the price.

Therefore optimal PBD implies both greater price informativeness and greater price volatil-

ity.

II.2.5 Discussion of Model Assumptions

In delivering our theoretical results, we made two important assumptions: (1) The speculator

commits not to deviate, on observing her private information, from her disclosing strategy

(which is determined ex ante) and (2) the speculator’s signal is a convex combination of

endowment (e) and fundamentals (v).

In our model, it is crucial that the speculator commits both to disclose and to a predeter-

mined form of disclosure. Were the speculator not bound to disclose exactly s = δe+(1−δ)v

ex post, she would have a strong incentive to deviate—given the significant gains from signal

manipulation when the MM takes the signal at its face value. We discuss the plausibility of

these two assumptions below.

On the theoretical side, most existing models in the information transmission literature

rely on some commitment by the sender. For instance, Grossman and Stiglitz (1980) and

Verrecchia (1982), when modeling economies in which market participants endogenously

become informed by acquiring a signal, abstract from the information producer’s problem in

that each of them not only takes as a given that such a signal is the true fundamental up to an

independent noise term but also does not observe it until after making the decision to acquire

it. Admati and Pfleiderer (1988) study how an informed party sells information to the rest of

the market in a model in which the seller can choose signal precision but not signal form and

is bounded away from manipulation. Our paper closely resembles Admati and Pfleiderer’s

tation because Var
(
v|P1, D

)
is constant across all realization of P1 and s, and E

[
v|P1, D

]
= P1 because the

equilibrium price is semi-strong form efficient.
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(1988) setting in that the informed agent not only transfers her private information, but also

trades on her own account. Our paper is also closely related to Kamenica and Gentzkow

(2011), in which an information sender is granted the ability to commit to both the form of

the signal and truthful revelation of the signal. Kamenica and Gentzkow (2011) derive in

their setting the optimal signal that would induce the receiver to take the most favorable

actions to the sender. Our model adds to their setting an additional level of complication in

that the speculator (the sender) can not only communicate information (disclose a signal),

but also take action herself (trade directly on information).

On the empirical side, we note that, in financial markets, ex post deviation often entails

large penalties. As we argue, either one of the following costs may serve as a commitment

device to deter deviation.

The first one is reputation cost. Although our model is a static one, a real-world

speculator—be it a fund manager, venture capitalist, or specialist company—is most likely a

repeated player. As reputation is generally believed to be of vital importance for any type of

financial institution, the gains from “deviation” must be traded-off against the cost of rep-

utation damage when the speculator decides what signal to provide. Therefore, insofar as

those gains are not unbounded, reputation concerns arguably constrain the extent to which

the speculator may deviate from the committed (agreed-upon) signal disclosure process.27

Accordingly, Ljungqvist and Qian (2016) find that disclosures by hedge funds with better

reputation (e.g., as acquired via prior such disclosures) have a greater impact on the prices

of the disclosed stocks.

A second commitment device is financial regulation. Regulators often impose and en-

27For instance, one could apply the Folk Theorem to a repeated version of our model where (1) on the
equilibrium path, the signaling equilibrium is reached in every stage and (2) once mis-reporting is detected
at any time, the players switch to the baseline equilibrium in all subsequent stages. There is only one caveat:
In our model, the one-shot gain from deviating could be arbitrarily large. Therefore, one must modify the
stage equilibrium to fit in the Folk Theorem framework. One possible modification is as follows. Let s and
s̄ be two threshold values of the signal. If the signal is realized such that s ≤ s ≤ s̄ the same equilibrium is
reached in the ensuing subgame as before. On the other hand, if s is realized such that s < s or s > s̄, then
the MM will suspect that manipulation is in play and refuse to update his beliefs. Therefore, the ensuing
continuation game proceeds with the same common prior as the original one.
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force stringent rules regarding disclosure made by fund managers and other key market

participants. For instance, in regulating disclosure of financial asset fundamentals, the U.S.

Investment Advisor Act of 1940 requires that an advisor has an obligation of “full and fair

disclosure of all facts material to the client’s engagement of the advisor to its clients, as

well as a duty to avoid misleading them.” In addition, the SEC prohibits any advisor from

“using any advertisement that contains any untrue statement of material fact or is otherwise

misleading.” Similarly, in regulating any disclosure about a speculator’s holdings, the SEC

mandates that investment advisors with discretion over $100 million must file a Form 13(F)

on a quarterly basis containing her positions in detail. Although the SEC gives hedge funds

the option of delaying reporting on the basis of confidentiality, this confidential treatment is

neither trivial nor guaranteed (Agarwal et al. 2013).

Since violating these regulations entail possibly significant punishment ranging from fines

to imprisonment, regulations leave the fund manager with little flexibility in her choice of

disclosure. In the context of our model, this means the signal weight δ is effectively imposed

(or restricted) by the regulators. If the speculator optimally chooses to disclose, she is

constrained by regulation to stick to pre-specified signal weights.

Interestingly, this also implies that under some regulatorily imposed signal weights, a

speculator may not find it optimal to disclose. Regulation in effect puts the speculators

through a screening process; only those who happen to have the right σ2
v and σ2

e choose to

be vocal. To illustrate this observation, Figure 21 plots the speculator’s value function in

the signaling (solid line) and baseline (dashed line) equilibriums as functions of signal weight

δ. Figure 21 shows that, although for the optimal δ releasing a signal is always better than

staying silent, there is only a narrow range of δ for which the speculator prefers the signaling

equilibrium to the baseline equilibrium. For some speculators, the regulatorily imposed δ

may be out of that range.
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II.3 Data and Sample Selection

Our model argues that a speculator who cares about the short-term value of her holdings may

voluntarily disclose some of her private information. Consistent with our model, Ljungqvist

and Qian (2016) show that small hedge fund managers make public their findings about

problematic firms after taking large short positions in those companies. Anecdotally, activist

investors such as Carl Icahn or Bill Ackman frequently communicate their perspectives to the

public through media interviews, Twitter feeds or blogs.28 Our theory suggests that the use

of strategic public disclosure may be even more widespread than what currently reported in

the literature, especially among (at least partly) short-term oriented sophisticated financial

market participants.

Accordingly, we set to test our model by studying the effect of all voluntary non-

anonymous disclosures by mutual funds in the Wall Street Journal (WSJ), the Financial

Times (FT), and the New York Times (NYT) on the U.S. stock market. Four observa-

tions motivate our choice. First, mutual funds arguably are among the most sophisticated

financial market participants (e.g., Wermers 2000; Huang et al. 2011; Kacperczyk et al.

2008). Second, many studies show that mutual fund managers are subject to short-term

concerns. For instance, numerous papers find that mutual fund flows are sensitive to past

performance (e.g., Ippolito 1992; Sirri and Tufano 1998; Del Guercio and Tkac 2002). Ad-

ditionally, mutual fund managers exhibit tournament-like behavior (e.g., Brown et al. 1996;

Chevalier and Ellison 1999; Chen et al. 2017), consistent with short-term objectives. Third,

the large reader base of those three newspapers and their broad coverage of the financial

sector grants speculators broad access to investors at large, consistent with our model’s no-

tion of the disclosed signal being common knowledge. Fourth, newspaper disclosures leave

traceable records, and mutual funds are required by law to regularly report their portfolio

compositions; both ensure adequate availability of data to test our theory.29

28See, for instance, “Carl Icahn Takes ‘Large’ Apple Stake” on CNN Money, available at http://money.
cnn.com/2013/08/13/technology/mobile/carl-icahn-apple/.

29Investigating strategic disclosure and trading by hedge funds is significantly more challenging in light
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II.3.1 Data and Identification Criteria

A. Mutual Fund Holding Data

Our sample spans from 2005 to 2014. We obtain mutual fund holdings data from the

CRSP mutual fund database. The database provides portfolio compositions, including both

long and short positions, of all open-end mutual funds in the United States. Holdings data

is available at the monthly frequency. We use only quarter-end-month data as reporting of

portfolio composition is only mandatory quarterly; non-quarter-end month data is missing

for most funds. Our theory focuses on strategic disclosures by an active, privately informed

speculative sector about assets with non-trivial fundamental uncertainty. Accordingly, we

exclude from our sample all index funds, ETFs (given their overwhelmingly passive man-

agement style), and fixed income funds. CRSP provides holdings data at the portfolio level.

For our tests, however, we consolidate all data to the fund holding company level for two

reasons. First, our empirical study involves linking a speculator’s disclosure behavior to her

incentives to disclose and (as we observe next) most disclosures are only identifiable at the

fund holding company level.30 Second, it is plausible that funds within the same family

may coordinate their disclosing strategy to serve the same family-level objective. The fund

holding family, therefore, fits more closely with our notion of a sophisticated speculator in

the model. We also collect from CRSP the names of all portfolio managers who have worked

at each of the fund holding families during our sample period.31

For each quarter, we consider as potential disclosure targets all firms that are in the

S&P 1500 universe as of the end of the previous quarter. Those firms are the largest in the

U.S. stock market, hence presumably the most likely subject of financial media coverage.

of severe data limitations on their managers’ identity and portfolio holdings. Accordingly, the unreported
analysis of a much smaller sample of hedge funds with viable such data yields qualitatively similar, yet noisier
inference.

30For example, it is much more likely for a news article to report a quote from “a portfolio manager with
T. Rowe Price” rather than a quote from “a portfolio manager at T. Rowe Price Blue Chip Growth Fund.”

31CRSP reports fund manager names with varying levels of precision. For the majority of fund managers,
CRSP reports their first and last names; sometimes all first, middle and last names are available; sometimes
CRSP either only reports the last name or states that the fund is “team-managed.”
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We exclude all financial companies, as most of them are often also classified as speculators

in our mutual fund sample. We obtain firm-level balance sheet information from Compustat.

B. Mutual Fund Disclosure Data

Our disclosure data comes from two sources. We obtain WSJ articles from ABI/INFORM

and FT and NYT articles from LexisNexis. For each newspaper, we obtain all articles

published between 2005 and 2014. We then drop articles that are published in a non-business-

related section, letters from readers, or corrections. We parse the news by paragraph to filter

out strategic disclosures. Specifically, a paragraph is defined as a (potentially) strategic

public disclosure by fund holding company j about target firm i if either one of the following

criteria is met:

1. Both names of the target company i and the fund management company j are found.

Investment banks are frequently covered in the media together with other firms for

reasons unrelated to strategic information disclosure (equity/bond underwriting, mar-

ket making, mergers/acquisitions, rating assignments, etc.). To avoid confounding

our analysis, we exclude investment banks (e.g., Goldman Sachs, Merrill Lynch, Wells

Fargo, etc.) from fund management companies, unless one of the following is true:

� Key words such as “analyst”, “portfolio manager”, or “strategist” appear in the

same sentence as the mention of the fund holding company;

� Key words such as “securities”, “holdings” or “asset management”—which in-

dicate that the disclosure may come from a non-investment banking branch of

financial institution j—closely follow the mention of the fund management com-

pany (i.e., with no more than one word in between);

� Name (first name followed by last name) of a portfolio manager associated with

fund holding company j is also found in the same paragraph.

2. The name of the target company i is found and either one of the following is true:
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� All first, middle, and last names of any portfolio manager at fund holding company

j are found;

� First and last names of any portfolio manager at fund holding company j are

found, and, in the same sentence, there are such key words as “analyst”, “portfolio

manager”, etc.

Importantly, in applying these screenings, we do not separately search for information

disclosures about fundamentals (v) versus the speculator’s endowment (e), since, as noted

earlier, the two are likely indistinguishable. Plausibly, speculators may provide information

to the media with selective emphasis. Upon seeing a disclosure about fundamentals, a reader

may rationally infer that the information provider has such a position that she stands to

gain if her disclosure is impounded into the price. Second, as sophisticated investors choose

their positions endogenously, information about their positions is also likely to be suggestive

about fundamentals.

Table 10 reports, for each newspaper, the number of articles so identified as disclosures,

as well as the number of articles that are in business-related and non-business-related sec-

tions; plots of the total and relative number of these disclosures over our sample period are

in Figure 23. Out of the 675,452 articles published in business-related sections of WSJ, FT,

and NYT, 11,550 are identified as strategic non-anonymous disclosures between 2005 and

2014, amounting to a plausible and relatively stable 1.7% of their total business coverage.

Visual inspection of the identified articles shows that they capture the notion of “strategic

disclosure” with reasonable accuracy. Table 11 reports four such paragraphs as examples.

C. Liquidity

We use stock price and trading data to compute a measure that is both commonly used in

the literature and broadly consistent with the notion of Kyle’s (1985) lambda in the model:

Amihud’s (2002) price impact. For stock i on day t, it is computed as a rolling average of
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daily price impact:

Amihudi,t =
1

90

t−1∑
h=t−90

|ri,h|
voli,h

, (46)

where ri,h is the return of stock i on day h and voli,h is the dollar volume of trading of stock

i on day h, obtained by multiplying the number of shares traded by the closing price on that

day.

D. Sample Construction and Summary Statistics

The goal of our empirical analysis is to investigate the determinants and liquidity exter-

nalities of the aforementioned potentially strategic disclosures by U.S. stock mutual funds

between 2005 and 2014. To that end, we merge and filter the firm- and fund-quarter level

samples of disclosures, illiquidity, and holdings detailed above in three steps. First, given

the preponderance of zeros in the otherwise large raw disclosure and holding samples, we

restrict our attention to firm-fund-quarter level observations for which we observe non-zero

disclosures, non-zero holdings, or both. Second, we then remove firms that are never dis-

closed about and funds that never disclose over our sample period. Third, we also exclude,

in each quarter, the fund with the largest holdings in a firm—both to minimize the effect of

any resulting and potentially non-strategic media access and attention on our measures of

firm-fund and firm-level disclosure as well as to mitigate the potentially idiosyncratic impact

of extreme such positions on the holding-based, firm-fund and firm-level proxies for short-

termism described next; the ensuing inference is unaffected by this exclusion. These criteria

yield a final sample of 85,240 firm-fund-quarter level observations for our analysis. Table 12

provides summary statistics for this sample. All reported variables are winsorized at the 2%

and 98% levels to further remove extreme realizations. Panel (A) of Table 12 summarizes

the sample at holding company-quarter level. Each statistic is reported for the full sample,

and for each of the five subsamples for which we restrict the number of disclosures made

by the holding company in a quarter to be equal to zero or at least 1, 5, 10 or 15 over the

sample period 2005-2014. Disclosing fund holding companies tend to be larger in size and
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hold less of their assets in equity and cash but more in bonds. There appears to be little

variation in the funds’ expense ratios.

Summary statistics at the firm-quarter and firm-fund-quarter levels are in Panels (B) and

(C) of Table 12, respectively, for the full sample as well as for subsamples defined by the

number of strategic disclosures associated with firm-quarters over 2005-2014. On average,

disclosure targets tend to be larger in size and hold more intangible assets. There is, however,

no clear pattern in firm-level stock market liquidity and return volatility across disclosure

subsamples.32

II.4 Empirical Results

II.4.1 Strategic Disclosure and Incentives to Disclose

Our theory implies that PBD is optimal for any at least partially short-term oriented specu-

lator. Empirically, we argue that, ceteris paribus, fund holding families with stronger short-

term incentives disclose more often. The reason is two-fold. First, relative to long-term profit

maximizers (γ = 0) who do not find it optimal to disclose, those with short-term incentives

(γ > 0) clearly disclose more often (e.g., ceteris paribus for repeated private information ar-

rival). Second, even among partially short-term oriented financial market participants, some

may not find the gains from PBD large enough to justify the cost of doing so. Consequently,

we should observe more disclosures being made by those who, ceteris paribus, may benefit

more from it—i.e., those who have a stronger short-term orientation (larger γ).33

32Because large numbers of disclosures are rare, the winsorized number of disclosures made about a firm
in each quarter is capped at 5 throughout all subsamples in Panel (B). Accordingly, we do not winsorize
the number of disclosures at the firm-fund-quarter level in Panel (C), since that number is zero in most
firm-fund-quarters.

33Note that in our model, the gains from PBD are not monotonic in γ. Figures 18 and 19 suggest that ex
ante disclosure gains first increase but then decrease as γ increases. Intuitively, as the speculator places less
weight on her long-term profit (when γ grows larger), she is less concerned about the cost of PBT; thus she
can achieve her short-term objective efficiently enough by PBT alone. As a result, PBD is less valuable to
the speculator when γ is sufficiently large. For our empirical tests, however, we ignore the decreasing portion
of the gains from PBD (as a function of γ) because a so-behaving speculator would have to trade aggressively
to take advantage of PBT. Such overt PBT is, however, unfeasible over our sample period (2005–2014) due
to the sharp increase in investor attention and SEC enforcement about portfolio pumping since 2001 (e.g.,
Gallagher et al. 2009; SEC 2014; Duong and Meschke 2016). With PBT constrained by regulation, it is

69



We construct two proxies for a fund’s short-termism.34 Our first measure (denoted as

γ̂1
j,t) captures a fund’s flow-return sensitivity. As discussed earlier, an important reason

mutual funds value their short-term performance is the competition for fund flows (Ippolito

1992; Sirri and Tufano 1998; Chevalier and Ellison 1997). Flow-performance sensitivity

reflects the extent to which such competition matters to a fund manager. Additionally, limits

to arbitrage also induce short-term concerns (Shleifer and Vishny 1997)—the significance

of which arguably depends on a fund’s flow-performance sensitivity as well. Accordingly,

we argue that funds with greater flow-return sensitivity may be more responsive to their

portfolio’s short-term valuation. We compute flow-return sensitivity for each fund holding

company j in each quarter-end month t in two steps. First, we estimate the following rolling

regression of fund flows on contemporaneous and lagged fund returns—for each individual

fund k under holding company j—using monthly fund return and flow data over the past

year (i.e., from month m = t− 11 to m = t):

Flowk,m = αk,t +
2∑

h=0

ζhk,tRetk,m−h + εm,t, (47)

where Flowk,m are fund inflows or outflows, and Retk,m−h are fund portfolio returns.35 Sec-

ond, we sum the resulting contemporaneous and lagged estimates of fund-specific flow-

performance sensitivity:

ζ̂k,t = ζ̂0
k,t + ζ̂1

k,t + ζ̂2
k,t. (48)

plausible that speculators would turn to PBD as a substitute, and the more so the more short-term oriented
they are. Consequently, it is plausible that the gains from PBD are increasing for the entire feasible range
of γ.

34Since our empirical tests aggregate fund information to the fund holding company level, throughout this
section we use the terms “fund”, “fund holding family/company” and “fund manager” interchangeably—all
referring to a fund holding company and its management team. We also use the terms “short-termism”,
“incentives to disclose/PBD” and “short-term incentives” interchangeably—all referring to the empirical
counterpart of our model parameter γ.

35So-estimated fund-specific flow-performance sensitivity from time-series data allows us to quantify each
fund’s potential return to PBT and PBD (i.e., the relative importance of short-termism, γ, in the speculator’s
value function of Eq. (24)). In the literature on fund flow-performance dependence, this relation is instead
typically established in the cross-section (Sirri and Tufano 1998; Gruber 1996), and is found to be strongest
among top-performing funds (Sirri and Tufano 1998; Chevalier and Ellison 1997). Unreported tests proxying
for flow-performance sensitivity using dummy variables for top-performers in the cross-section of mutual funds
based on past performances yield qualitatively similar results as those reported in this paper. Our analysis
is also robust to using CAPM- or Fama-French three factor-adjusted returns—instead of raw returns—as
measures of fund performance.
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for each fund k at each quarter-end month t. We then define our first measure of short-

termism from these estimates as the NAV-weighted average of ζ̂k,t across all individual funds

k under holding family j.

Our second measure of a fund’s incentives to disclose (γ̂2
i,j,t) exploits the deviation of

a fund’s portfolio composition from the market portfolio. Practitioners typically evaluate

fund managers by benchmarking their returns to, e.g., the market portfolio. Additionally,

PBD in a stock may improve a fund’s performance relative to the market only if that fund’s

percentage holdings in that stock differ from those of the market portfolio; hence the greater

is that difference, the more “pivotal” is that stock for the fund’s pumping activity. Similarly,

a fund manager competing for fund flows would only benefit from PBD in a stock if her

percentage holdings in that stock differ from her competitors’ holdings. We use that stock’s

market share as a proxy for its benchmark holdings. To compute γ̂2
i,j,t, let Hf

i,j,t be fund j’s

percentage holdings of firm i as of the end of quarter t:36

Hf
i,j,t =

Market Value of Firm i Shares Held by Fund j at the End of Quarter t

Market Value of All S&P 1500 Shares Held by Fund j at the End of Quarter t
, (49)

and let Hm
i,t be firm i’s representation in the S&P 1500 universe:

Hm
i,t =

Firm i’s Market Capitalization at the End of Quarter t

Market Capitalization of the S&P 1500 Universe at the End of Quarter t
; (50)

then we define γ̂2
i,j,t as:

γ̂2
i,j,t =


Hf
i,j,t/H

m
i,t, if Hf

i,j,t > Hm
i,t,

Hm
i,t/H

f
i,j,t, otherwise.

(51)

Importantly, γ̂2
i,j,t does not distinguish the direction of the deviation in a fund’s portfolio

holdings—e.g., a percentage position in firm i that is 50% less than the market portfolio

results in the same γ̂2
i,j,t as one that is twice the market’s share. In our model, it is the

intensity of speculative short-termism (γ) to affect both the equilibrium extent of PBD and

equilibrium price formation; the specific content of any resulting pre-committed strategic

36In a few instances, funds hold short stock positions yielding Hf
i,j,t < 0. Eliminating these positions from

our sample does not affect our empirical analysis.
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disclosure (e.g., its “direction”) depends on specific, unobservable realizations of fundamental

(v) and endowment (e) shocks. Therefore, both γ̂1
j,t and γ̂2

i,j,t measure exclusively a fund’s

unsigned incentives to disclose.

Summary statistics for γ̂1
j,t and γ̂2

i,j,t are in Panel (A) and Panel (C) of Table 12. Fund-flow

sensitivity across fund families is non-trivial—e.g., an average standardized change in fund

flows of about 0.42 in response to a cumulative one standard deviation shock in current and

past fund performance. However, no clear pattern of fund flow-return sensitivity emerges

across subsamples of different disclosure intensities. Disclosing funds, however, tend to have

larger deviations in their portfolio holdings compared to non-disclosing funds.

To test the dependence of strategic disclosure on mutual fund manager short-termism,

we estimate the following OLS model at the firm-fund-quarter level:

#Discli,j,t = β0 + β1γ̂
s
(i,)j,t + β2#Discl−i,j,t + β3#Discli,−j,t + δy + δq + εi,j,t, s = 1, 2 (52)

where #Discli,j,t is the number of articles in WSJ, FT and NYT identified as strategic

disclosures about firm i by fund j during quarter t. All variables in our empirical analysis

are standardized to adjust for differences in scale within and across variables and to facilitate

the interpretation of the corresponding coefficients of interest; our inference is unaffected by

this normalization.

Eq. (52) allows us (1) to test if funds with stronger short-term incentives disclose more

frequently, as well as (2) to test if stocks that are more “pivotal” to fund managers become

disclosure targets more often. Both (1) and (2) imply that β1 > 0. Some fund managers

may make more frequent media appearances for reasons unrelated to PBD (e.g., stronger

media connections); we control for this possibility by including #Discl−i,j,t, the number of

disclosures made by fund j about all firms except firm i during quarter t; this variable also

controls for any fund-level characteristics that induce the fund to disclose about all firms.

Some firms may become disclosure targets for reasons unrelated to PBD; for instance, a firm

may become more newsworthy in correspondence with important, newsworthy corporate

events—e.g., CEO turnover or merger talks. To control for this possibility, we also include
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#Discli,−j,t, the number of disclosures made about firm i by all funds except fund j during

quarter t.37 This variable also captures firm-level characteristics that may make a stock

more newsworthy to all funds. We further include year fixed effects (δy) and quarter fixed

effects (δq) to control for macroeconomic trends as well as seasonality in disclosure patterns

(e.g., around quarterly earnings releases). Lastly, to avoid the confounding effects caused by

media-initiated disclosures, we exclude, for each firm in each quarter, funds with the largest

holdings in that firm’s stock from the analysis.38

We report estimates of Eq. (52) for both γ̂1
j,t and γ̂2

i,j,t in Columns (1) and (5), respec-

tively, of Table 14. Consistent with our model, in both cases β̂1 is positive and statistically

significant—i.e., stronger short-term incentives are associated with higher frequency of dis-

closures. When proxying for short-termism with γ̂2
i,j,t, this effect is also economically large—

e.g., a one standard deviation increase in short-term incentives corresponds to a more than

22% standard deviation increase in the number of strategic public disclosures—amounting to

more than 0.13 additional firm-fund-quarter level disclosures (versus an unconditional mean

of 0.2 and median of zero in Panel C of Table 12). Estimates of β1 are smaller for γ̂1
j,t. Since

γ̂1
j,t is a fund-quarter level variable, its effect on disclosure may be subsumed by the control

variable #Discl−i,j,t.

Next, we investigate whether the effect of short-termism on disclosure is more pronounced

for subsets of firms whose characteristics may render PBD about them more effective. These

tests may enhance our interpretation of the identified disclosures as PBD. We explore three

such firm-level characteristics: size, tangibility and return volatility. Intuitively, stock prices

may be more sensitive to information disclosure when the issuing firms are smaller, more

intangible, or display greater fundamental uncertainty.39 Plausibly, sophisticated fund man-

37Accordingly, in unreported analysis the ensuing inference is qualitatively unaffected by the inclusion of
one-way firm or fund or two-way firm-fund fixed effects.

38Journalists often contact financial practitioners—typically one of the largest shareholders—for comments
when reporting about a firm. Because such reporting involves both the speculator and the firm, it is likely
picked up by our screening algorithm but may not represent a strategic disclosure.

39For instance, under the two-step formulation of the signaling equilibrium in Section II.2.3.1, the revision
in MM’s prior is larger in correspondence to the release of a signal when fundamental uncertainty σ2

v is larger,
as shown by Eq. (40).
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agers may also have greater informational advantage about firms with these characteristics

(larger σ2
v), making (costly) PBD optimal for a larger number of funds (Figure 18). To

examine these effects, we amend the baseline regression of Eq. (52) as follows:

#Discli,j,t = β0 + β1γ̂
s
(i,)j,t + β2Suiti,t + β3γ̂

s
(i,)j,t × Suiti,t (53)

+ β4#Discl−i,j,t + β5#Discli,−j,t + δy + δq + εi,j,t, s = 1, 2,

where Suiti,t is the inverse of firm size (Sizei,t), firm intangibility (Intani,t), or return volatility

(Stdev(Ret)i,t). Precise definitions of all variables are in Table 13. Since larger realizations

of Suiti,t are associated with greater potential gains from PBD, rendering the firms more

“suitable” as disclosure targets. we expect that the interaction term β3 > 0 for all specifica-

tions.

We report estimates of Eq. (53) for γ̂1
j,t and γ̂2

i,j,t in Columns (2) to (4) and (6) to (8)

of Table 14, respectively.40 As conjectured, β̂3 is positive under all specifications and, as

earlier, these estimates are statistically significant when γ̂2
i,j,t is used, yet not for γ̂1

j,t. As

noted above, this may be due to γ̂1
j,t not being firm-specific and so being subsumed by the

control variable #Discl−i,j,t in Eq. (53). The economic significance of these estimates vary

depending on the characteristic under examination. For instance, Columns (6) to (8) show

that the effect of short-termism on disclosure is 5% to 40% stronger if the “suitability” of

a firm—measured by size, tangibility, or return volatility—is one standard deviation larger

than its mean.41

II.4.2 Strategic Disclosure and Liquidity

A. Baseline Regression: Liquidity Effect of Disclosure

40In these regressions, we use two-way clustering at the firm and fund levels to account for heteroscedas-
ticity and within firm-fund serial correlation (e.g., Petersen 2009). Standard errors clustered at either the
firm or the fund level do not meaningfully affect our inference.

41Since all variables are standardized in Table 14, β̂1 measures the effect of short-termism on disclosure
at mean Suiti,t, while β̂1 + β̂3 measures such effect when Suiti,t is one standard deviation above its mean.
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Our model implies that in the presence of optimal PBD (δ∗), market liquidity of the

affected asset improves relative to the baseline scenario when only PBT is used (Corollary

1). Thus, we test for the effect of strategic disclosure on the liquidity of the target stock.

To that end, we consolidate our sample to firm-quarter level and estimate the following OLS

model:

∆log(Amihudi,t) = β0 +β1∆log(#Discli,t)+β2∆log(#Discl−i,t)+δ′∆ log(Xi,t)+δy +δq + εi,t (54)

where ∆log(Amihud)i,t is the log change (from the previous to the current quarter) in Ami-

hud’s (2002) liquidity measure of firm i’s shares, ∆log(#Discl)i,t is the log change in the

number of disclosures made (by all sample funds) about firm i, and ∆ log(Xi,t) is a vector

of log changes in several firm-level control variables including firm size, intangibility, price

level, return volatility, and the number of disclosures made about all firms except firm i.

First-difference regressions alleviate potential non-stationarity biases due to persistence in

firms’ level illiquidity (e.g., an average AR(1) coefficient of 0.73 across the funds in our sam-

ple; Hamilton 1994). Limitations on data availability (e.g., of measures of short-termism,

discussed next) preclude a comprehensive higher-frequency analysis of the liquidity external-

ities of PBD; nonetheless, the estimation of Eq. (54) and its extensions via an event-study

methodology at the daily frequency yields qualitatively similar yet noisier inference; see, e.g.,

Tables IA-1 and IA-2 of the Internet Appendix. We also include log changes in #Discl−i,t,

the number of disclosures made about all firms except firm i, to control for the possibly

contemporaneous release of market-level news. Lastly, we include year fixed effects (δy) and

quarter fixed effects (δq) to control for long-term trends and seasonality.

The coefficient of interest is β1. Since Eq. (54) is in (log) changes, its estimation is

immune from any time-invariant (omitted) factor that may affect both levels of disclosure

and liquidity. Our model predicts β1 < 0: ceteris paribus, an increase in the number of

strategic public disclosures should be associated with an improvement in the liquidity of

the disclosure target’s shares. We report estimates of Eq. (54) in Column (1) of Table

75



15.42 Consistent with our model, estimated β1 is negative and statistically significant. The

economic magnitude of this effect, however, is quite small—e.g., a one standard deviation

increase in disclosure changes only translates into less than 1% standard deviation increase

in liquidity improvement. The lack of economic significance may be due to several reasons.

First, strategic disclosure is only one of the many factors influencing stock liquidity (e.g.,

shocks to ownership structure, equity issuance, changes in credit rating, earnings announce-

ments, institutional trading, changes in trading platforms and specialist companies, etc.),

all of which may cause variation in liquidity that mute the effect of PBD. Second, extant

literature suggests that the positive effect of any public news on financial market quality in

general, and liquidity in particular, is both conceptually ambiguous (e.g., Kyle 1985 versus

Kim and Verrecchia 1994, 1997) and usually difficult to capture in the data (see, e.g., Green

2004; Pasquariello and Vega 2007).43 Third, our sample is made of firms in the S&P 1500

universe, all of which are well-established, highly liquid companies, and thus may be the

least suitable targets for PBD. The evidence in Ljungqvist and Qian (2016) suggests that

more intense PBD may take place—with more pronounced effects—in smaller, more opaque

and possibly private firms, for which liquidity is significantly lower and market depth and

fund holding data are not readily available. Lastly, newspapers are only one of the venues

through which a fund manager may disclose information. Thus, our measure of disclosure

may not fully capture the true intensity of PBD, subjecting Eq. (54) to attenuation bias.

B. Liquidity Effect of Disclosure and Short-term Incentives

As noted earlier, information disclosures in general—not just strategic ones (PBD)—

may resolve fundamental uncertainty and thus improve liquidity, or otherwise affect both.

To distinguish the specific effect of PBD from that of any fundamental information disclosure

42In this and all subsequent regressions, robust standard errors are clustered at the firm level.
43For instance, the availability of public fundamental information in a Kyle (1985) setting would improve

equilibrium market depth by lowering market makers’ perceived uncertainty about asset payoff (e.g., λ1 is
increasing in σ2

v in Eq. (32); see also Pasquariello and Vega 2007). However, Kim and Verrecchia (1994,
1997) argue that the release of public information may instead increase adverse selection risk and worsen
liquidity if it leads to greater information heterogeneity among sophisticated market participants.
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on price formation, we test if the estimated liquidity improvement in correspondence with

the “potentially strategic” disclosures in our sample is greater when a firm is more “pivotal”

to the funds’ short-term objectives. 44To that end, we amend Eq. (54) as follows:

∆log(Amihudi,t) = β0 + β1γ̂i,t + β2∆log(#Discli,t) + β3∆log(#Discli,t)× γ̂i,t (55)

+ β4∆log(#Discl−i,t) + δ′∆log(Xi,t) + δy + δq + εi,t,

where our “pivotal” measures γ̂i,t are meant to capture how well revelation of private infor-

mation about a firm lines up with mutual funds’ short-term incentives. Specifically, since

our tests on liquidity are conducted at firm-quarter level, γ̂i,t are constructed in two steps to

capture the “pivotalness” of firm i to the short-term objective of the mutual fund sector as

a whole, not any individual fund. In what follows, we focus on our proxy based on fund-flow

performance γ̂1
i,t.

45 First, we compute a weighted average flow-performance sensitivity across

all mutual funds with non-zero holdings in firm i:

γ̂1
i,t =

1∑
j |Shri,j,t|

∑
j

|Shri,j,t| × γ̂1
j,t, (56)

where Shri,j,t is the number of firm i shares held by fund j at the end of quarter t, and γ̂1
j,t

is defined in Eq. (48). Since γ̂1
j,t is weighted by the fund’s shareholdings, γ̂1

i,t effectively

measures the average flow-return sensitivity across firm i’s (mutual fund) shareholders.46

44In the model with PBT and PBD of Section II.2.2, this is generally the case in equilibrium, except
when endowment uncertainty (σ2

e , unobservable by the econometrician) is “large.” For instance, we show
in Figure 22 that the improvement in liquidity from PBD, λ∗ − λ1 (solid line, right axis), is increasing in
γ when σ2

e = 0.5 but decreasing in gamma when σ2
e = 2. Intuitively, ceteris paribus, a more short-term

oriented speculator (higher γ) is willing to disclose more private fundamental information in her signal to
pump the equilibrium price in the direction of her endowment e (e.g., lower δ∗ in Figure 15), alleviating MM’s
adverse selection risk more relative to the baseline economy with PBT of Section II.2.1 (greater λ∗−λ1 > 0).
However, such a signal continues to reveal private endowment information as well (i.e., δ∗ > 0 in Figure 15),
mitigating more the otherwise larger negative impact of more intense PBT on equilibrium market depth in
the baseline economy (see, e.g., Proposition 4 and Eq. (43); lower λ∗ − λ1 > 0). The former effect generally
prevails on the latter unless σ2

e is high.
45Estimates using γ̂2

i,t, which is based on deviation of the mutual fund sector’s portfolio holdings from the
market portfolio, yield quantitatively similar inference, as discussed later in this section.

46Absolute share holdings in Eq. (56) allow us to account for the few instances in which funds hold short
stock positions; our inference is unaffected by either the removal of these positions from our sample or the use
of signed share holdings. In unreported tests, we also consider an alternative weighting scheme in computing
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Then, we define γ̂1
i,t as

γ̂1
i,t = log(1 + γ̂1

i,t), (57)

where the log transformation is to facilitate the interpretation of the corresponding coeffi-

cients of interest in Eq. (55); the ensuing inference is robust to this transformation. Esti-

mates of Eq. (55) are in Column (3) of Table 15: The coefficient of interest β̂3 is negative,

statistically significant, and economically non-trivial (albeit small, in line with the aforemen-

tioned prior literature). Intuitively, and consistent with our interpretation of the disclosures

in our sample being due to PBD, the negative relationship between liquidity and firm-level

strategic disclosures is stronger when such disclosures align more with the funds’ short-term

objectives; for instance, the liquidity improvement accompanying those disclosures is up to

two times larger in correspondence with a one standard deviation increase in measured short-

termism from its mean (amounting to 3% of samplewide firm-quarter illiquidity variation).47

C. Liquidity Effect of Disclosure, Short-term Incentives and Firm Characteristics

To provide further evidence for PBD, we also explore whether the aforementioned liq-

uidity effects are stronger when certain firm characteristics may make PBD more effective.

As before, we focus on three firm characteristics (Suiti,t)—size, intangibility, and stock re-

turn volatility—capturing the extent of firm-level fundamental uncertainty. According to

our model (e.g., see Conclusion 3), the greater is such fundamental uncertainty about an

asset (i.e., the higher is σ2
v), the greater is the improvement in its liquidity stemming from

the speculator’s strategic disclosure.48 We amend Eq. (55) to include Suiti,t as an additional

γ̂1
i,t: γ̂

1
i,t = 1∑

j |H
f
i,j,t−Hmi,t|

∑
j |H

f
i,j,t − Hm

i,t| × γ̂1
j,t, where Hf

i,j,t and Hm
i,t are defined as in Eqs. (49) and

(50), respectively. This scheme puts larger weights on funds whose holdings in firm i differ more from the
market. As these funds are more likely to benefit from PBD in terms of their performance relative to the
market, their short-term incentives (i.e., their flow-return sensitivity) are more likely to affect the gains from
revealing private information about firm i. This alternative measure yields similar inference.

47Accordingly, Ljungqvist and Qian (2016) find that daily estimates of Amihud’s (2002) illiquidity measure
for target firms drop and remain persistently low for more than a trading month following the release of
detailed negative information about those firms by the boutique short-selling hedge funds in their sample.

48Accordingly, in the model with PBT and PBD of Section II.2.2, the aforementioned relation between
λ∗ − λ1 and γ is more pronounced when MM’s adverse selection risk is more severe (higher σ2

v ; see, e.g.,
Figure 15).
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interaction term, each time reflecting (the log difference of) one of these firm characteristics:

∆log(Amihudi,t) = β0 + β1γ̂i,t + β2Suiti,t + β3γ̂i,t × Suiti,t + β4∆log(#Discli,t) (58)

+ β5∆log(#Discli,t)× γ̂i,t + β6∆log(#Discli,t)× Suiti,t

+ β7∆log(#Discli,t)× γ̂i,t × Suiti,t + β8∆log(#Discl−i,t) + δ′∆log(Xi,t) + δy + δq + εi,t.

These estimates are in Columns (6) to (8) of Table 15. Estimated β̂4, β̂5, β̂6 and β̂7 are

negative and both economically and statistically significant in most specifications, e.g., sug-

gesting that the liquidity improvement associated with strategic non-anonymous disclosures

about a firm is at least three times as large (β̂4 + β̂5 versus β̂4 in Eq. (58), amounting to

almost 3% of samplewide firm-quarter illiquidity variation) when mutual funds holding that

firm’s stocks have stronger short-term incentives, and, in those circumstances, up to more

than three times as large (β̂4 + β̂5 + β̂6 + β̂7 versus β̂4 + β̂5, i.e., for as much as nearly 8% of

total illiquidity variation) when PBD about that firm is likely more effective. This evidence

is consistent with the model’s notion that sophisticated speculators may use PBD to achieve

their short-term objectives and, when they do so, the stock market liquidity of the target

firm may improve.

D. Liquidity Effects of PBT and PBD

We note in Section II.2.4.B that PBT may also improve the liquidity of the affected

stock. As PBD and PBT are correlated, we need to control for PBT in testing for the effect

of strategic disclosures on liquidity. As a first step, we examine the effect of PBT alone on

liquidity through the following regression:

∆log(Amihudi,t) = β0 + β1γ̂i,t + β2∆log(Tradingi,t) + β3∆log(Tradingi,t)× γ̂i,t (59)

+ δ′∆log(Xi,t) + δy + δq + εi,t,
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where ∆log(Trading)i,t is the log change in aggregate percentage trading in firm i by all

sample mutual funds, i.e., relative to its shares outstanding.

The baseline model implies that β2 < 0 (see Proposition 4). However, the intensity of

mutual fund trading may capture not only PBT but also speculative trading in the usual

sense (Kyle 1985), which has the opposite effect on liquidity. The sign of β3 is also ambiguous.

Intuitively, in equilibrium, the speculator optimally employs both PBT and PBD to achieve

her short-term objective. A stronger short-term objective (larger γ) has two opposing effects

on the scale of PBT. First, it increases PBT, as it “pumps up” her short-term portfolio value.

Second, stronger short-term incentives also induce the speculator to more aggressive PBD

as a partial substitute for costly PBT (in terms of loss of long-term profit from speculative

trading).

Estimates of Eq. (59) are in columns (2) and (4) of Table 15. Consistent with models of

trading based on Kyle (1985), β̂2 is always positive and statistically significant, indicating

that the first-order effect of potentially informative trading dominates the mitigating effect of

PBT on price impact. Interestingly, the interaction of trading intensity and short-termism is

also positive: β̂3 > 0 in column (4). This suggests that the aforementioned substitution effect

between PBD and PBT dominates any portfolio pumping effect of PBT alone on illiquidity,

consistent both with our model and the increasingly strict SEC enforcement of regulation

prohibiting pumping by trading over our sample period.

Next, we examine the effect of PBT on the relationship between PBD and stock market

liquidity. We do so by amending Eq. (58) to include mutual funds’ trading as well as its
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interactions with short-term incentives and the relevant firm characteristics as follows:

∆log(Amihudi,t) = β0 + β1γ̂i,t + β2∆log(#Discli,t) + β3∆log(#Discli,t)× γ̂i,t (60)

+ β4∆log(#Discli,t)× Suiti,t + β5∆log(#Discli,t)× γ̂i,t × Suiti,t + β6∆log(#Discl−i,t)

+ β7∆log(Tradingi,t) + β8∆log(Tradingi,t)× γ̂i,t + β9∆log(Tradingi,t)× Suiti,t

+ β10∆log(Tradingi,t)× γ̂i,t × Suiti,t + β11Suiti,t + β12γ̂i,t × Suiti,t

+ δ′∆log(Xi,t) + δy + δq + εi,t

The signs, statistical significance and economic magnitude of the resulting estimates—in

Columns (12) to (14) of Table 15—are very similar to those in Columns (6) to (8). Thus,

the effect of funds’ strategic disclosure on liquidity is robust to controlling for their strategic

trading behavior. For example, relative to the case where both funds’ short-term incentives

(γ̂1
i,t) and firms’ “suitability” as disclosure targets (Suiti,t) are held at their means, the liq-

uidity improvement associated with fund disclosures is between two and five times larger in

correspondence with a one standard deviation increase in short-term incentives alone (β̂2+β̂3

versus β̂2 in Eq. (60), amounting to more than 2% of samplewide firm-quarter illiquidity

variation), and between seven and fourteen times larger in correspondence with a one stan-

dard deviation increase in both γ̂1
i,t and Suiti,t (β̂2 + β̂3 + β̂4 + β̂5 versus β̂2 in Eq. (60), i.e.,

for up to 6% of total illiquidity variation).

E. Alternative Measure of Short-term Incentives

Lastly, we consider an alternative proxy for mutual funds’ short-term incentives based

on γ̂2
i,j,t of Section II.4.1. Specifically, and consistent with Eq. (57), we construct γ̂2

i,t as the

percentage deviation in the mutual fund sector’s holdings of firm i from the market:

γ̂2
i,t =


log(

Hf
i,t

Hm
i,t

), if Hf
i,t > Hm

i,t,

log(
Hm
i,t

Hf
i,t

), otherwise,

(61)
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where Hf
i,t = Aggregate Holdings of Firm i by All Sample Funds at the End of Quarter t

Aggregate Holdings of All S&P 1500 Firms by All Sample Funds at the End of Quarter t
and Hm

i,t =

Market Cap. of Firm i at the End of Quarter t
Total Market Cap. of All S&P 1500 Firms at the End of Quarter t

.

We then run all of the tests in Table 15 using γ̂2
i,t instead of γ̂1

i,t. These estimates, in

Table 16, yield qualitatively and quantitatively similar inference. For instance, Column (1)

of Table 16 indicates that more disclosures about a firm are accompanied by an improvement

in the liquidity of its stock; according to Column (3), this effect is more pronounced when

mutual funds are taking larger bets in a firm (i.e., have stronger short-term incentives to

PBD)—e.g., about two times larger in correspondence with a one standard deviation increase

in γ̂2
i,t relative to its mean (amounting to more than 3% of samplewide firm-quarter illiquidity

variation). Columns (6) to (8) further show that such effect is even stronger if a firm is a more

“suitable” disclosure target—for example, increasing by up to two times (β̂4 + β̂5 + β̂6 + β̂7

versus β̂4 + β̂5 in Eq. (60), i.e., for more than 6% of total illiquidity variation) when Suiti,t

is one standard deviation larger than its mean.

II.5 Conclusions

In this paper, we model and provide evidence of sophisticated speculators’ strategic public

disclosure of private information. First we develop a model of strategic speculation based

on Kyle (1985) and show that when a speculator is (at least partially) short-term oriented,

voluntary disclosure of private information is optimal. We model disclosure as a signal that

depends positively on two pieces of a speculator’s private information—asset fundamentals

and her initial endowment in that asset. Intuitively, a positive (negative) endowment shock

leads to a more positive (negative) signal realization, which, in turn, may be interpreted by

uninformed market participants—the market makers—as a positive (negative) fundamental

shock, resulting in equilibrium price changes in the same direction as the endowment shock.

Thus, strategic disclosure yields a positive correlation between a speculator’s initial endow-

ment in an asset and its short-term price, boosting her portfolio value and her overall value

function. Additionally, we show that strategic disclosure has important implications for the

82



affected market. In particular, relative to the non-disclosure case, market depth increases

and prices are more efficient, as the adverse selection risk faced by the dealership sector is

mitigated.

We provide supportive empirical evidence in the context of the U.S. mutual fund indus-

try. We find that funds’ stronger short-term incentives are associated with more frequent

non-anonymous disclosures—a pattern that is most pronounced for target firm-level char-

acteristics (namely small size, intangibility, and high return volatility) that likely make

strategic disclosure more effective. We also find that (1) these disclosures in target firms

are accompanied by liquidity improvements of their stocks and (2) this effect is stronger if

the disclosure target is more “pivotal” to the funds’ short-term objectives, and is even more

so if once again the disclosure is likely more effective—such as when firm-level fundamental

uncertainty is greater, consistent with our model.

Overall, our novel analysis has the potential to bridge the gap between the conventional

wisdom that information is valuable only if kept private and the not uncommon observation

that sophisticated financial market participants voluntarily, non-anonymously, and possi-

bly strategically disclose information to the public. These insights are important both for

academics’ and practitioners’ understanding of the process of price formation in financial

markets in the presence of information asymmetry as well as for policy-makers’ efforts at

regulating the availability of information in those markets.
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CHAPTER III

Bank Market Power and Monetary Policy Transmission: Evidence from a

Structural Estimation

III.1 Introduction

We examine the quantitative importance of bank market power as a transmission mechanism

for monetary policy. This question rests against a backdrop of traditional theories and

analysis of monetary policy transmission that largely focus on the impact of regulatory

constraints on bank lending (e.g. Bernanke and Blinder, 1988; Kashyap and Stein, 1995).

Indeed, the banking industry is often assumed to be perfectly competitive, leaving only

regulatory frictions, such as reserve or capital requirements, as a channel through which

monetary policy affects loan supply. However, recent research suggests that the industrial

organization of the banking sector may also play a role in the transmission of monetary

policy (Drechsler et al., 2017; Scharfstein and Sunderam, 2016). While important, this

newer literature has been qualitative in nature, leaving open the question of the relative

importance of traditional versus market-power channels for the transmission of monetary

policy.

Our paper tries to fill this void by constructing and estimating a dynamic banking model

with three important frictions: regulatory constraints, financial frictions, and imperfect com-

petition. The estimation allows our data on commercial banks to discipline the model pa-

rameters and thus expose the relative magnitude of these three frictions. We find that

regulatory frictions restricting bank capital and bank market power both play an important

role in monetary policy transmission, while reserve requirements are unimportant. In terms
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of magnitude, the effect of bank market power is comparable in magnitude to that of bank

capital. We also find an interesting interaction between different monetary policy trans-

mission channels. Specifically, we show that bank capital regulation interacts with market

power and reverses the sign of monetary policy when the Federal Funds rate is very low. We

estimate that when the Federal Funds rate is below 2.27%, further cuts in the policy rates

can be contractionary. Moreover, we find external validation of this reversal rate by showing

in a simple regression framework that the relation between bank capital and interest rates

switches sign at approximately this interest rate.

An understanding of the intuition behind these results requires a deeper description of

the model. In the economy, banks act as intermediaries between borrowers and depositors.

The lending decision is dynamic because deposits are short-term, while loans are long-term.

Monetary tightening enters the picture by increasing banks’ funding costs in the deposit

market. Because they are not price takers in the deposit and loan market, banks choose how

much of a rate increase to pass on to borrowers. The degree of pass-through is influenced by

the tightness of regulatory constraints, the degree of financial frictions, and the intensity of

competition.

These frictions in our model map into three monetary policy transmission channels em-

phasized in the literature. The first is the bank reserve channel in which a high Federal

Funds rate raises the opportunity cost of holding reserves (Bernanke and Blinder, 1988;

Kashyap and Stein, 1995) and thus contracts deposit creation. The second is the bank cap-

ital channel in which a rise in the Federal Funds rate exacerbates banks’ natural maturity

mismatch, thereby lowering bank capital and, consequently, the capacity to lend (Bolton and

Freixas, 2000; Van den Heuvel, 2002; Brunnermeier and Sannikov, 2016). The third is the

market power channel emphasized by Drechsler et al. (2017) and Scharfstein and Sunderam

(2016). Intuitively, after a rate increase, cash becomes less attractive to households relative

to deposits. Monopolistically competitive banks can exploit this extra deposit demand by

charging higher spreads on deposits. In equilibrium, total deposits fall because households
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substitute risk-free bonds for deposits. Because banks then need to fund marginal lending

in the more expensive debt market, lending contracts.

To gauge the quantitative importance of these transmission channels, we estimate our

model using a panel of U.S. commercial banks. Our estimation combines methods used in

the industrial organization literature (Berry et al., 1995; Nevo, 2001) with those used in the

corporate finance literature (Hennessy and Whited, 2005; Bazdresch et al., 2018). As a first

step, we use the demand estimation techniques from industrial organization to obtain the

elasticities of substitution in the deposit and loan markets. We then plug these estimates into

our model, and use simulated method of moments to obtain estimates of parameters that

quantify financial frictions and operating costs. The sequential use of these two techniques

is a methodological advance that allows us to consider a rich equilibrium model that would

otherwise be intractable to estimate.

To obtain our results on the relative importance of each transmission channel, we then use

these parameter estimates to simulate counterfactual experiments in which we subtract each

channel from the model one at a time. These counterfactuals also produce our interesting

result that rate cuts can be contractionary when rates are already low. Low interest rates

depress bank profits by reducing bank market power in the deposit market, as cash becomes

less unattractive to households. Lower profits then tighten the capital constraint and result

in less lending. This result sheds light on the sluggish bank lending growth post crisis,

as an ultra-low rate policy can unintentionally reduce bank profitability, and consequently

constrain banks’ capacity to lend. Overall, our results suggest that Federal Reserve actions

can have complicated effects on bank lending depending on the level of policy rates, the

amount of bank capital, and the industrial organization of the banking sector.

Our paper contributes to the literature studying the role of banks in transmitting mon-

etary policy. It is the first to estimate a structural dynamic banking model to quantify

various transmission channels.49 Prior to our work, little has been known about the relative

49Xiao (2018) also uses a structural approach, but the main focus is on shadow banks.
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importance of different transmission channels, as this type of quantitative exercise is difficult

to undertake using reduced form methods.

Second, prior literature usually studies each transmission channel separately, but little is

known about the interactions between different channels. Thus, an important contribution

of this paper is to provide a unified framework to study these interactions. For example,

Drechsler et al. (2017) and Scharfstein and Sunderam (2016) study the market power in

the deposit market and loan market separately. We show that the relative importance of

the two markets depends on the level of the Federal Funds rate. The deposit market is

more important when the Federal Funds rate is low, while the loan market becomes more

important when the Federal Funds rate is high. Brunnermeier and Koby (2016) put forth the

theoretical possibility that monetary policy can switch sign at a certain threshold referred

to as a “reversal rate.” Our paper provides an empirical estimation of this threshold.

Third, our paper is related to the literature on external financial frictions. Largely focused

on industrial firms, this literature shows that financial frictions significantly affect corporate

policies such as investment, cash holding, and dividend payout. We show that banks also face

significant financial frictions despite their regular participation in the capital markets. This

last result supports the arguments in Kashyap and Stein (1995) that banks’ high external

financing costs can influence the quantity of bank lending.

III.2 Data

Our main data set is the Consolidated Reports of Condition and Income, generally referred

to as the Call Reports. This data set provides quarterly bank-level balance sheet information

for U.S. commercial banks, including deposit and loan amounts, interest income and expense,

loan maturities, salary expenses, and fixed-asset related expenses. We merge the Call Reports

with the FDIC Summary of Deposits, which provides branch-level information for each bank

since 1994 at an annual frequency. We follow Egan et al. (2017) by excluding banks with

fewer than ten domestic branches. This filter eliminates foreign banks with few U.S. branches
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and tiny local banks. The resulting sample period is 1994–2017.

Our analysis requires data from several further sources. First, we retrieve publicly listed

bank returns from CRSP. We link the stock returns to bank concentration measures using the

link table provided by the Federal Reserve Bank of New York. We obtain bank industry stock

returns from Kenneth French’s website. We collect the Federal Open Market Committee

meeting dates from the FOMC Meeting calendar. Finally, we obtain the following time

series from FRED (Federal Reserve Economic Data): NBER recession dates, the effective

Federal Funds rate, the two-year and five-year Treasury yields, the aggregate amount of

corporate bonds issued by U.S. firms, and the aggregate amount of cash, Treasury bonds,

and money-market mutual funds held by households.

Table 17 provides summary statistics for this sample, which we use for our demand

estimation. The first two lines report the mean, standard deviation, and several percentiles

of bank market shares in both the deposit and loan markets. We define the entire United

States as a unified market to compute these shares, with the total size of the deposit market

defined as the sum of deposits, cash, and Treasury securities held by all U.S. households.

The total size of the loan market is defined as the sum of bank loans and corporate bonds

borrowed by U.S. firms. Interestingly, mean market shares in both the loan and deposit

markets lie near the 90th percentile, indicating a very skewed distribution of market shares

in which a few large banks dominate the market.

The next two lines report summary statistics for deposit and loan rates, which we impute

by dividing total deposit interest expense by total deposits and total interest income by total

loans. The next two lines report summary statistics for two non-rate bank characteristics

used in the estimation: the number of branches and the number of employees per branch.

While we see little variation in the number of employees per branch, we see both high

variance and skewness in the number of branches per bank. The skewness is consistent with

the skewness in market shares, as the number of branches is highly correlated with bank size.

Lastly, we report summary statistics for the two supply shifters we use in our estimation:
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salaries and fixed asset expenses (Ho and Ishii, 2011). Fixed asset expenses include all non-

interest expenses stemming from use of premises, equipment, furniture, and fixtures. We

scale both supply shifters by total assets.

III.3 Stylized Facts

To motivate our study of the relative importance of various monetary policy transmission

channels, we first examine the relation between bank equity returns and monetary policy

shocks. The conventional wisdom from the traditional transmission channels is that high

interest rate monetary policy should have a negative impact on bank capital. Specifically,

the bank capital channel predicts that because bank-loan maturity exceeds deposit maturity,

an increase in interest rates reduces the value of assets more than the value of liabilities, so

bank equity falls. The bank reserve channel predicts that a high Fed Funds rate increases

the opportunity cost of holding reserves because reserves bear no interests. Therefore, a high

interest rate leads to less deposit taking and less lending, which lowers banks’ profits and

consequently, bank capital.

We verify this prediction by regressing bank equity returns on the change in the two-year

Treasury yield on Federal Open Market Committee (FOMC) meeting days. We focus on

FOMC days following Hanson and Stein (2015), who use daily changes in the two-year Trea-

sury yield surrounding FOMC meetings to measure monetary policy shifts. The advantage

of examining the two-year Treasury yield instead of the Federal Funds rate is that the former

captures the effects of “forward guidance” in the FOMC announcement, which has become

increasingly important in recent years (Hanson and Stein, 2015).50 The identifying assump-

tion is that unexpected changes in interest rates in a one-day window surrounding scheduled

Federal Reserve announcements arise from news about monetary policy. While our sample

period runs from 1994 to 2017, we exclude the burst of dot-com bubble (2000–2001) and the

subprime financial crisis (2007–2009) because in these crisis times, monetary policy can be

50We also use 1-year Treasury yield and the results are robust.
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strongly influenced by the stock market rather than by inflation or economic growth (Cieslak

and Vissing-Jorgensen, 2017).

Table 18 reports the regression estimates. We find the conventional wisdom is generally

true when the startling level of the Fed Funds rate is above 2%. As shown in the regression

in column 1, an increase in the short-term interest rates reduces bank equity value. However,

we find that the negative relation between interest rates and bank equity reverse sign if the

starting level of the Fed Funds rates are below 2%. As shown in column 2, an increase in

the two-year Treasury yield is associated with positive significant returns for bank equity.

In other words, the market expects that an increase in interest rates leads to an increase

in bank capital. This low-interest-rate result stands in contrast to the conventional wisdom

that monetary tightening reduces bank capital. This result is not driven by a steepening of

the term structure, as we control for the change in the five-year term spread over two-year

Treasury, where we pick the five-year spread to match the average maturity of bank loans

in our sample, which is five years. As shown in Figure 24, the contrast between the results

in Columns 1 and 2 can be seen in a simple scatter plot of bank industry excess returns

against the change in the two-year Treasury yield. Moreover, in the Online Appendix, we

examine returns for all 49 Fama-French industries. We find that the banking industry is

the only industry exhibiting a switch from a negative interest sensitivity to positive interest

sensitivity in the low interest environment. In summary, we find that monetary policy has

a nonmonotonic effect on bank capital. When the Federal Funds rate is high, the relation

between the short-term rates and bank capital seems be to negative, but when the Federal

Funds rate is low, this relation becomes negative. As far as we know, this paper is the first

to document this empirical relation.

To delve into the mechanism behind this basic result, we estimate a non-parametric

relationship between the Fed Funds rates and the average deposit spread of the U.S. banks.

The deposit spread is defined the difference between the Fed Funds rates and the deposit

rates, which measures the price that banks charge for their depository services. One would
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expect a constant deposit spread that equals marginal costs of providing depository services

if there is no market power or other frictions. However, we find a positive relation between

the deposit spread and the Fed Funds rate, which becomes even stronger when the Fed

Funds rate is close to zero. In other words, banks are able to charge higher prices for their

depository services when the Fed raises interest rates. This pattern is consistent with the

idea that banks have market power as suggested by Drechsler et al. (2017). In presence

of market power, high Fed Funds rate allows banks to raise the markups above marginal

costs because an important outside option for depositors, cash, becomes more costly to hold.

Therefore, banks make more profits in the deposit market when the Fed raises short-term

rates. This effect is particular strong when the Fed Funds rate is close to zero when banks

face intense competition from cash.

To verify this explanation, in Columns 3 and 4 of Table 18, we interact the change in the

interest rate with a measure of bank market power, the Herfindahl-Hirschman index of the

local deposit market in which the bank operates, where we define a local deposit market as

a Metropolitan Statistical Area (MSAs). If a bank operates in several MSAs, the bank-level

HHI is the weighted average of local HHIs, weighted by the deposits of the bank in the local

market. We find that when the Federal Funds rate is below 2%, banks with greater market

power in the deposit market experienced larger positive returns.

This evidence provides a possible explanation on the sluggish lending growth in the recent

economy recovery. Figure 26 plots average U.S. bank loan-to-deposit ratios following the five

recessions from 1973 to 2017. The loan-to-deposit ratio usually falls when a recession starts,

as both loan demand and supply fall. In the first three recessions during this period, the

loan-to-deposit ratio recovered three to four years after the start of the recession. However,

the recoveries after the 2001 and 2008 recessions are notably slower. The loan-to-deposit

ratio took six to seven years to recover after the 2001 recession, and this ratio still has not

yet recovered 10 years after the 2008 recession. This sluggishness is surprising given that
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both recessions ended within two years.51

Although many factors such as regulatory changes could be driving the lengthy recovery

in bank lending, one feature that these two episodes share is protracted periods in which

the Federal Reserve lowered short term interest rates to near zero. As such, loose monetary

policy is a possible culprit. As argued above, extreme low short-term rates may depress

banks’ profitability and slow down the capital accumulation. Since banks want to maintain

certain level of capital ratio, a lower capital accumulation will constrain the lending growth.52

III.4 Model

While the facts documented in the previous section point to interesting interactions between

bank capital, bank, competition and interest rates, this time-series evidence cannot help

us understand the various mechanisms that drive these patterns in the data. To move in

this direction, we next consider an infinite-horizon, equilibrium model with three sectors:

households, firms, and banks. Banks act as intermediaries between households and firms

by taking short-term deposits from households and providing long-term loans to firms. We

model the households and firms as solving straightforward static discrete choice problems in

which they choose from a variety of saving and financing vehicles. The richness of the model

lies in the banking sector, as a variety of frictions imply that monetary policy affects the

amount of intermediation that banks provide. These frictions are important because in a

frictionless world where bank loans and bonds are perfect substitutes, bond market interest

rates summarize monetary policy and banks are simply pass-through entities. However, if

bank loans and bonds are imperfect substitutes (Bernanke and Blinder, 1988), the supply of

bank loans matters for monetary policy in its own right.

Since Bernanke and Blinder (1988), researchers have identified many frictions that affect

51One concern with the results in Figure 26 is that they may be driven largely by an increase in the
denominator—deposits. To address this concern, in the Online Appendix, we plot the amount of loans
following the onset of each recession and the result still holds.

52In the Online Appendix further separate banks into two groups according to their capital ratios. We find
that banks with below-median capital ratios experience much lower loan growth following the recession. The
gap between poorly-capitalized and well-capitalized banks is particularly large in 2001 and 2008 recessions.
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monetary transmission through banks. Our model incorporates the following prominent

channels featured in the literature. First, access to non-deposit external financing is more

costly than taking deposits. This friction implies that shocks to the quantity of deposits

are transmitted to the supply of bank loans, as banks cannot costlessly replace deposits

with non-reservable borrowing. Second, competition in the deposit and loan markets is

imperfect. With market power, banks strategically choose deposit and loan rates to maximize

their profits. This profit maximizing behavior, in turn, determines how monetary policy

transmits through the banking system. Third, banks are subject to reserve regulation and

capital regulation. Reserve regulation links the opportunity cost of taking deposits to the

prevailing Federal Funds. Capital regulation incentivizes banks to optimize their loan supply

intertemporally with an eye to preserving excess equity capital as a buffer against future

capital inadequacy.

III.4.1 Households

At each time t, the economy contains Wt households, each of which is endowed with one

dollar. Hereafter, we drop the time subscript for convenience, so aggregate household wealth

is then W . Households choose among the following investment options for their endowments:

cash, corporate bonds, and bank deposits, where the deposits of each individual bank con-

stitute a differentiated product. If we index each option by j, the households’ choice set is

given by Ad = {0, 1, . . . , J, J + 1}, with option 0 representing cash, option J + 1 represent-

ing short-term bonds, and options 1, . . . , J representing deposits in each bank. We further

assume that each depositor can choose only one option. This one-dollar, one-option assump-

tion is without loss of generality. For example, we can interpret this setting as if households

make multiple discrete choices for each dollar that they have, and the probability of choosing

each of the options can be interpreted as portfolio weights.

Each option is characterized by a yield, rdj , and a quality value, qdj . The yield on cash

is 0, and the yield on bonds is the Federal Funds rate, f . qdj captures the convenience of
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option j to a depositor. For a bank, qdj can reflect the bank’s number of branches or the

number of employees per branch. For the other options, qdj can capture the ease with which

the household can use the option as a medium of transaction. We assume qdj varies only with

banks and not with households, so different households cannot ascribe a different quality

value to the same option. We allow households to belong to a finite set of types, indexed by

i ∈ 1, 2, . . . , I. A household’s utility from choosing option j is given by ui,j = αdi r
d
j +qdj + εdi,j,

where αdi is the yield sensitivity and εdi,j is a relationship specific shock for the choice of option

j by household i. We assume εdi,j follows a generalized extreme value distribution with

a cumulative distribution function given by F (ε) = exp (− exp (−ε)). This distributional

assumption is standard in the structural industrial organization literature and allows for a

closed-form solution for the consumer’s probability of making each choice.

The decision of each household is then to choose the best option to maximize its utility:

max
j∈Ad

ui,j = αdi r
d
j + qdj + εdi,j. (62)

The solution to (62) implies that the demand for the deposits of bank j is given by the

following formula:

sdj
(
rdj
)

=
I∑
i=1

µdi
exp

(
αdi r

d
j + qdj

)∑
m∈Ad exp

(
αdi r

d
m + qdm

) , (63)

where µdi is the fraction of total wealth (W ) held by households of type i. The quantity of

deposits is then given by the market share multiplied by total wealth, Dj = sdjW .

III.4.2 Firms

There are K firms, each of which wants to borrow one dollar, so aggregate borrowing demand

is K. Firms can borrow by issuing long-term bonds or taking out bank loans. We assume

that each individual bank is a differentiated lender, where this assumption is motivated by

such factors as geographic location or industry expertise. Letting each option be indexed

by j, the firms’ choice set is given by Al = {0, 1, . . . , J, J + 1}, where option 0 represents
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bonds, option 1, . . . , J represents loans from each bank, and option J+1 is the option not to

borrow at all.53 Each option is characterized by a lending rate, rlj, and a vector of product

characteristics, xlj. As above, these characteristics can include the number of branches or

employees per branch.

For tractability, we assume that both bonds and bank loans have the following repayment

schedule. Each period the firm has to pay back a fraction, µ, of its outstanding debt, where

µ includes both interest accrued over the last period, as well as some amortized principal.

For instance, if the firm borrow a nominal value of one dollar, the repayment stream, starting

in the next period, is µ, (1 − µ)µ, (1 − µ)2µ, . . .. Accordingly, all firm debt has an average

maturity of 1
µ

periods. This construction saves us from having to track the entire age

distribution of a bank’s loan portfolio. Thus, a sufficient statistic for the future repayment

schedule is just the total amount outstanding.

We assume that the interest rate on the long-term bond (f̄t) is set according to:

∞∑
n=0

µ(1− µ)n

(1 + f̄t)n+1
=

µ

1 + ft
+Et

[
∞∑
n=1

µ(1− µ)n∏n
m=0(1 + ft+m)

]
(64)

Put differently, f̄t is the fixed rate that produces the bond’s fair present value when used to

discount the bond’s cash flows. Fair present value, in turn, is simply this expected value of

this cash flow stream discounted at the (non-constant) Federal Funds rate, ft. Each of the

firm’s financing option’s is characterized by a rate, rlj, and a quality value, qlj, which reflects

the effort a firm must exert to borrow via option j. In case of a bank loan, qlj can include

the number of branches or the number of employees per branch. In the case of the corporate

bond, qlj can capture the cost of hiring an underwriter. We assume qlj varies only with banks

and not with firms, where, as in the case of the households, we allow firms to belong to a

finite set of types, indexed by i ∈ 1, 2, . . . , I.

The profit for firm i from choosing option j is given by πi,j = αlir
l
j + qlj + εli,j, where αli is

53Our index choices recycle the notation i to index firms and j to index the firm’s borrowing options.

95



the yield sensitivity, and εli,j is an idiosyncratic relationship shock when a firm i borrows from

bank j. We assume εli,j follows a generalized extreme value distribution with a cumulative

distribution function F (ε) = exp (− exp (−ε)). Each firm’s decision is to choose the best

option to maximize its profit, as follows:

max
j∈Al

πi,j = αlir
l
j + qlj + εli,j. (65)

The solution to (65) implies that the demand for the loans of bank j is given by:

slj
(
rlj
)

=
I∑
i=1

µli
exp

(
αlir

l
j + qlj

)∑
m∈Al exp

(
αlir

l
m + qlm

) , (66)

where µli is the fraction of type i firms. Loan quantity is given by the market share multiplied

by the total market size, Bj = sljK.

III.4.3 The Banking Sector

Given the Federal Funds rate, ft, each bank simultaneously sets its deposit rate, rdj,t, and its

loan rate rlj,t, thereby implicitly choosing the quantities of deposits to take from households

and credit to extend to firms. For example, given each bank j’s choice of rdj,t, households solve

their utility maximization problem described above, which yields the quantity of deposits

supplied to bank j, Dj(r
d
j,t). Similarly, given each bank j’s choice of rlj,t, firms solve their

profit maximization problem, which yields the quantity of loans borrowed from bank j,

Bj(r
l
j,t). To simplify notation, in what follows, we suppress the dependence of loans and

deposits on the relevant interest rates, denoting them simply as Dt and Bt.

This lending activity involves a maturity transformation. Let Li,t denote the amount of

loans that the bank currently holds. In each period, as in the case of bonds, a fraction, µ, of

a bank’s outstanding loans matures, with principle plus interest payments equal to µ× Li,t.

This assumption about long-term loans captures a traditional maturity transformation role
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for banks, in which they convert one-period deposits into long-term bank loans with maturity

1
µ
. As noted above, banks can also issue new loans with an annualized interest rate of rlj,t.

The new loans, once issued, have the same maturity structure as the existing ones, with

a fraction µB(rlj,t) becoming due each year. As such, a bank’s outstanding loans evolve

according to:

Lj,t+1 = (1− µ)(Lj,t +Bj,t), (67)

We assume that a random fraction of loans, δt ∈ [0, 1], falls delinquent in each period,

with delinquency occurring when a loan comes due but the borrower fails to pay. Although

we assume that delinquent payments are written off by the bank, with charge-offs equal

to µLt × δt, defaulting on a payment in one period does not exonerate the borrower from

payments in future periods. Therefore, delinquency does not affect the evolution of loans in

(67).

We denote by P (Bj,t, r
l
j,t) the amount bank j extends to firms. Fair pricing implies that

this quantity is simply the discounted the payment stream at the constant loan rate rlj,t:

P (Bj,t, r
l
j,t) =

∞∑
m=0

(1− µ)mµBj,t

(1 + rlj,t)
m+1

=
µ

rlj,t + µ
Bj,t (68)

Notice that if the loan rate rj,t is set to 0, then equation (68) simplifies to P (Bi,t, r
l
i,t) = Bi,t,

showing that the amount the bank gives to firms at the present period simply equals the

sum of all future payments. If µ is set to one, then debt has a maturity of one year, and the

interest income from lending is Bj,t − Pj,t =
rlj,t

1+rlj,t
Bj,t ≈ rlj,tBj,t.

We summarize the rest of the bank’s activities in the balance sheet given in Table 19,

where we suppress the subscript for bank identity, j, for convenience. Here, we see that

the banks assets consist of existing plus new loans, reserves, and holdings of government

securities. Its liabilities consist of deposits, borrowing not subject to reserve requirements.

The difference is then bank equity. We now go through these items in detail.

In each period, the bank can rely on deposits or internal retained earnings to finance
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its new loans, Bt. When the supply of funds falls short of loan demand, the bank can also

borrow via non-reservable securities, Nt. A typical example of non-reservable borrowing is

large denomination CDs. As argued by Kashyap and Stein (1995), because non-reservable

borrowing is not insured by FDIC deposit insurance, purchasers of this debt must concern

themselves with the default risk of the issuing bank. These considerations make the marginal

cost of non-reservable borrowing an increasing function of the amount raised, and motivate

our next assumption, which is that non-reservable borrowing incurs a quadratic financing

cost beyond the prevailing Federal Funds rate, as follows:

ΦN(Nt) = φNN2
t . (69)

This assumption embodies two important frictions, the first of which is deposit insurance.

Because a large fraction of deposits are insured, depositors are willing to accept a rate of

interest that does not reflect default risk. The second friction is deadweight default losses,

which affect the rate of return on non-reservable securities, which are subject to bank default

risk.

Banks also incur operating costs, such as rents and wages. We assume that costs are

linear in the amount of deposits:

Φd(Dt) = φdDt. (70)

Similarly, we also assume that lending activity itself incurs separate costs, such as the labor

input necessary to screen loans or maintain client relationships. Again, we assume a linear

functional form as follows:

Φl(Bt) = φlBt. (71)

If the total supply of funds exceeds the demand from the lending market, the bank

can invest in government securities, Gt, where the return is the Federal Funds rate, ft.

The bank’s holdings of loans, government securities, deposits, reserves, and non-reservable
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borrowing must satisfy the standard condition that assets equal liabilities plus equity:

Lt + P (Bt, rt) +Rt +Gt = Dt +Nt + Et, (72)

where Rt denotes bank reserves and Et is the bank’s begin-of-period book equity. Et itself

evolves according to:

Et+1 = Et + Πt × (1− τ)− Ct (73)

where τ denote the linear tax rate, and Πt is the bank’s total operating profit from its deposit

taking, security investments, and lending decisions. This identity ends up being a central

ingredient in the model, as it links bank competition, which is reflected in profits, with bank

capital regulation.

The profits in (73) are in turn given by:

Πt = Bt − P (Bt, r
l
t)−Dt × rdt +Gt × ft − Φl(Bt)− Φd(Dt)− ΦN(Nt)− µLt × δt. (74)

Finally, Ct in equation (73) represents the cash dividends distributed to the bank’s share-

holders. We assume that a bank can only increase its inside equity via retained earnings,

that is, there is no new equity issuance, so:

Ct ≥ 0 ∀t. (75)

This constraint reflects a bank’s limited liability, which prevents it from obtaining any ex-

ternal equity financing from shareholders. This constraint represents an important friction

because in its absence, banks could always raise equity capital to fund any shortfall in the

loanable funds market. This activity would disconnect banks’ deposit taking decisions from

their lending decisions, so changes in the Federal Funds rate would not have an impact on

lending. Equation (75) implies that model cannot capture the equity issuances we see in

the data. However, given that banks’ equity issuances are both tiny and rare, we view this
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drawback of our model as minor.

We now introduce the capital requirement and the reserve requirement:

Et+1 ≥ κ× Lt+1 (76)

Rt ≥ θ ×D (77)

Equation (76) implies that the bank’s book equity at the beginning of the next period has

to be no smaller than a fraction, κ, of the loans outstanding. Equation (77) is the bank’s

reserve requirement, which says that the bank has to keep θ of its deposits in a non-interest

bearing account with the central bank. Zero interest on reserves implies that the bank has

no incentive to hold excess reserve, so equation (77) holds with equality.

To close the model, we assume that the law of motion for the bank loan charge-offs and

the Federal Funds rate is given by:

 ln δt+1

ln ft+1

 =

 ρδ ρδf

0 ρf

 ·
 ln δt

ln ft

+

 σδ 0

0 σf

 · N2, (78)

where N2 stands for the density function of a standard bi-variant normal distribution.

III.4.4 Bank’s problem and equilibrium

Figure 27 summarizes the sequence of events in a typical time period. The bank enters

the period and observes the Federal Funds rate, ft, and the realization of the default frac-

tion, δt. At that point, it takes the corresponding charge-offs. Next, banks interact with

households and firms by setting the loan and deposit spreads, receiving the corresponding

amount of deposits from households, and extending the corresponding amount of loans to

firms. Depending on the extent of these activities, the banks adjust their reserves, holdings

of government securities, and non-reservable borrowing. Finally, at the end of the period,

a fraction µ of the loans matures, and banks collect profits and distribute dividends to
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shareholders.

As discussed above, loan and deposit demand depend on the rates put forth by all banks

in the economy. Accordingly, when each bank chooses its own deposit and loan rates (rdt and

rlt), as well as its non-reservable borrowings (Nt), and investment in government securities

(Gt), it rationally takes into account the choices made by other banks in both the current

and future periods. As such, all of a bank’s optimal choices depend on the composition of

the banking sector, that is, the cross-sectional distribution of bank states, which we denote

by Γt. Letting P Γ denote the probability law governing the evolution of Γt, we can express

the evolution of Γt as:

Γt+1 = P Γ(Γt). (79)

Every period, after observing the Federal Funds rate (ft) and the random fraction of

defaulted loans (δt), the banks choose the optimal policy to maximize its discounted cash

dividends to shareholders:

V (ft, δt, Lt, Et
∣∣Γt) = max

{rlt,rdt ,Gt,Nt,Rt}

{
Ct +

1

1 + γ
EV (ft+1, δt+1, Lt+1, Et+1

∣∣Γt+1)

}
(80)

s.t. (69), (70), (71), (72), (73), (79),

where γ is the bank’s discount factor.

We define equilibrium in this economy as follows.

Definition 1 A stationary equilibrium occurs when:

1. All banks solve the problem given by (80), taking as given the other banks’ choices of
loan and deposit rates.

2. All households and firms maximize their utilities given the list of rates put forth by
banks.

3. Each period, the deposit and loan markets clear.

4. The probability law governing the evolution of the industry, P Γ, is consistent with
banks’ optimal choices.
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One of the state variables for bank’s problem (Γt) is an object whose dimension depends

on the number of banks in the economy. This dimensionality poses a challenge for numerically

solving the banks’ problem. To simplify the model solution, we follow Krusell and Smith

(1998) by considering a low-dimensional approximation of Γt. Specifically, we postulate

that all information about Γt relevant to banks’ optimization can be summarized by the

contemporaneous Federal Funds rate (ft). Accordingly, we define the equilibrium “average”

loan and deposit rates r̄lt(ft) and r̄dt (ft), respectively) as,

exp(αdi r̄
d
t + qdi ) ≡ E

[
exp(αdi r

d + qdi )
]
, (81)

and

exp(αlir̄
l
t + qli) ≡ E

[
exp(αlir

l + qli)
]
. (82)

With a reasonably large number of banks, r̄lt(ft) and r̄dt (ft) approximately summarizes the

choices of other banks, thereby allowing each bank to derive its deposit and loan demand

functions. In solving the model, we ensure that r̄lt(ft) and r̄dt (ft) are consistent with equilib-

rium bank choices by iterating over their values until convergence. As r̄lt(ft) and r̄dt (ft) are

functions of ft only, we drop Γt from banks’ value functions in (80).

III.4.5 Monetary policy transmission

In this section, we use a simplified version of the model to illustrate the key transmission

mechanisms.

A. Frictionless benchmark

First, we examine how the economy behaves in a frictionless benchmark model. By

frictionless, we mean a simplified version of our model with the following five features: (1) the

bank has no market power in either the deposit or the loan market, i.e., the deposit and loan

demand elasticities are infinite; (2) there are no frictions related to non-reservable borrowing;
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(3) the bank faces no capital requirement, κ = 0; (4) there is no reserve requirement, θ = 0;

and (5) there is no maturity transformation. These features imply that the bank’s problem

can be viewed as a static problem.

In this static frictionless model, banks choose deposit rates, rd, and loan rates, r, to

maximize one-period profits

Π = max
{rl,rd}

rlB
(
rl
)
− rdD

(
rd
)
− φlB

(
rl
)
− φdD

(
rd
)
− f

(
B
(
rl
)
−D

(
rd
))
. (83)

When deposits fall short of loans, the bank can make up any funding shortfall, B − D,

with non-reservable borrowing at a cost equal to the Federal Funds rate, f . There are no

additional financing costs associated with non-reservable borrowing. When there are excess

deposits, the bank can invest any this surplus, D−B, in government securities and earn the

Federal Funds rate, f .54 In the absence of a balance sheet friction, the bank can optimize

its choices for deposit and loan amounts (B and D) separately.

The optimal lending rates are given by the Federal Funds rate plus the marginal cost and

the markup:

rl = f + φl +

(
−B

′

B

)−1

,

and the optimal deposit rates are given by the Federal Funds rate minus the marginal cost

and the markup:

rd = f − φd −
(
D′

D

)−1

.

When there is perfect competition among banks, the demand elasticities, −B′

B
and D′

D
, become

infinite and the markups converge to zero. Deposit and lending rates converge to the Federal

Funds rate minus or plus the marginal cost, as follows:

rd → f − φd, rl → f + φl (84)

54In reality, the Federal Funds rate is slightly higher than the risk-free Treasury yield because of the
default risk of the bank. However, we assume there is no default by the bank, so these two rates are equal.
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Under the frictionless benchmark, banks function as the bond market, passing through the

interest rate changes to the exact same degree.

B. Imperfect competition

When competition is imperfect, market power creates a wedge between the Federal Funds

rate and the rates at which banks borrow and lend. Monetary policy can affect the market

power of banks by influencing the attractiveness of bank deposits or loans relative to other

outside options available to households or firms.

In the model, bank deposits face competition from both bonds and cash. Investors get

higher returns from investing in bonds but endure low liquidity. On the contrary, cash

holdings offer high liquidity but zero return. Bank deposits are somewhere in between,

offering investors both liquidity and some non-zero return. When the interest rate is high,

the opportunity cost of holding cash increases and investors move out of cash and into bank

deposits and bonds. Consequently, banks enjoy an outward shift in their deposit demand

function and they can charge larger markup on deposits (e.g., Drechsler et al., 2017), so:

∂
(
D′

D

)−1

∂f
> 0. (85)

In the lending market, an increase in the Federal Funds rate makes bank loans less

attractive to firms relative to the outside option of not borrowing. Therefore, total lending

shrinks and banks optimally lower the markups they on loans to mitigate the effect of lower

lending demand.

∂
(
−B′

B

)−1

∂f
< 0 (86)

C. Balance sheet frictions

In the frictionless benchmark, the deposit market and loan market are entirely separable
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because the bank can costlessly use non-reservable borrowing and government securities as

buffers. Now consider the case in which banks face balance sheet frictions, so they incur

additional costs when using non-reservable borrowing. In this case, the banks’ optimization

problem becomes:

Π = max
{rl,rd}

rlB
(
rl
)
− rdD

(
rd
)
− φlB

(
rl
)
− φdD

(
rd
)
− f

(
B
(
rl
)
−D

(
rd
))
− Φ(N),

where Φ(N) is the cost of non-reservable borrowing or investing excess funding and N =

B −D is the funding imbalance. In the presence of balance sheet frictions, the bank cannot

costlessly replace any lost deposits with wholesale borrowing. Therefore, shocks to deposits

will be transmitted to loans.

D. Reserve requirement

Now consider the case in which banks face reserve regulation that requires that for ev-

ery dollar of deposits, the bank needs to keep a fraction, θ, of these deposits as reserves.

Assuming that the interest on reserves is zero, banks’ optimization becomes

Π = max
{rl,rd}

rlB
(
rl
)
− rdD

(
rd
)
− φlB

(
rl
)
− φdD

(
rd
)
− f

(
B
(
rl
)

+R−D
(
rd
))

s.t. R ≥ θD
(
rd
)

Because the interest rate on reserves is zero, the reserve constraint is binding. We can solve

for the optimal deposit rate as

rd = f − φd −
(
D′

D

)−1

− θf. (87)

Here we see that higher Federal Funds rates increase the opportunity cost of holding reserves,

θf , which lowers deposit rates. Lower deposit rates, in turn, reduce the quantity of deposits

and optimal supply of loans.

105



E. Capital regulation

Now consider the case in which banks face capital regulation that requires bank capital

to exceed a certain fraction of bank assets. In this case, the banks’ optimization problem

becomes:

Π = max
{rl,rd}

rlB
(
rl
)
− rdD

(
rd
)
− φlB

(
rl
)
− φdD

(
rd
)
− f

(
B
(
rl
)
−D

(
rd
))
,

s.t. E0 + (1− τc)Π ≥ κB
(
rl
)
.

In the presence of capital regulation, shocks to bank capital affect lending capacity. One way

that monetary policy affects bank capital is through maturity mismatch. Because deposits

are short-term, an increase in the Federal Funds rate raises the rate that the bank has to pay

on all deposits. However, loans are long-term, so only a fraction of loans matures, with the

remaining outstanding loans commanding a lower rate. Hence, an increase in the Federal

Funds rate temporarily reduces bank capital and tightens the bank capital constraint in

equation (76).

Another way that monetary policy affects bank capital is through market power. When

the Federal Funds rate increases, bank profits from the deposit market increase, as the

competition from cash lessens, but bank profits from the loan market decrease as borrowers

are less willing to borrow at higher rates. The effect from the deposit market is likely to

dominate the loan market effect when rates are very low, and especially, when rates are near

the zero lower bound, leading to a tighter capital constraint in this region.

III.5 Estimation

III.5.1 Estimation procedure

We divide the estimation procedure into two stages. In the first stage, we estimate the

demand elasticities and liquidity values for deposits and loans following Berry et al. (1995).
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In the second stage, we estimate the remaining parameters describing banks’ balance sheet

frictions using simulated method of moments (SMM).

We first parameterize the quality of each option as a function of characteristics, qkj =

βkxj + ξkj , k = d, l, where xj is a vector of bank characteristics that includes the number of

branches, the number of employees per branch, banks fixed effects, and time fixed effects. ξkj

is an unobservable demand shock associated with product j. Next, we allow for heterogeneity

in rate sensitivity in the deposit market, so each individual depositor’s rate sensitivity can

be written as a mean rate sensitivity and a deviation from the mean, αi = α + σαvi, where

vi follows a uniform distribution. We assume the sensitivity to non-rate characteristics is

homogeneous across both borrowers and depositors. Taken together, the demand functions

for bank deposits and loans are characterized by the preference parameters,
(
αk, βk, σkα

)
,

where k = d, l. For simplicity, we drop the superscript indicating the deposit or loan

market in the following discussion.

We use the methods from Berry et al. (1995) to estimate the demand parameters, Θ =

(α, β, σα). First, we divide the parameters into linear parameters, (α, β), and non-linear

parameters, σα. Second, for a given value of σα, there is a relation between mean utility,

E [uij] = uj = αrj + βxj + ξj, and the observed market share, s0, given by s (u|σα) = s0,

where s (.) is the market share, which is defined by equations (63) and (66). Third, we

solve for the implicit function, s−1 (.), using the nested fixed-point algorithm described in

Nevo (2001). Fourth, using this implicit function, we can solve for the unobservable demand

shocks as functions of the observable market share and the demand parameters, as follows:

ξ (Θ) = s−1 (s0|σα)− (αrj + βxj)

A key challenge in identifying the demand parameters is the natural correlation between

deposit rates and unobservable demand shocks, ξj. Following the industrial organization

literature (Nevo, 2001), we use a set of supply shifters, cj, as instrumental variables. Our

107



particular instruments are bank salaries and non-interest expenses related to the use of fixed

assets. Our identifying assumption is that these supply shifters are orthogonal to unobserv-

able demand shocks and thus shift the supply curve along the demand curve, allowing us to

trace out the slope of the demand curve.

Formally, define Z = [x, c], where x is a vector of bank characteristics and c is a vector

of supply shifters. The moment condition for this estimation is the orthogonality condition

between the unobservable demand shocks, ξj and the exogenous variables, zj, as follows:

E [ξjzj] = 0.

Define W as a consistent estimate of E [Z ′ξξ′Z]. The GMM estimator of the demand pa-

rameters is then given by:

Θ̂ = arg min
Θ
ξ (Θ)′ Z ′W−1Zξ (Θ) .

The data used for the deposit demand estimation include each bank’s deposit market

share, the proportions of cash and bonds in the household portfolio, non-rate bank charac-

teristics such as the number of branches and the number of employees per branch, and each

bank’s deposit rate, where we use a weighted average of deposit rates for different types of

deposits, where the weights are the relative quantities of each deposit type. We also include

bank and time fixed effects. The data used for the loan demand estimation include loan

market shares for each bank, the corporate bonds market share, each bank’s lending rate,

and any non-rate characteristics.

We then plug the first-stage estimates of the deposit and loan demand functions into our

model of the banking sector in Section III.4.3 for the second stage SMM estimation. For

this stage, we have to make one further simplification. Our data contain a large number of

very small banks. This feature of the data poses a challenge because solving a model with a

number of banks equal to the number of banks in our data would intractable. Therefore, we
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solve for an equilibrium with Ĵ ex ante symmetric representative banks, where the number

of representative banks Ĵ is calibrated to match the HHI in the data. Because the size

distribution has a heavy left tail, this approach substantially reduces the number of banks in

the model while keeping the market concentration similar to that in the data. An alternative

approach is to limit the sample to the largest banks. Our results are robust to the alternative

approach.

Next, because we have a large number of non-rate bank characteristics that enter linearly

in the utility function, we summarize these non-rate characteristics with a composite index

that we interpret as “quality.” For simplicity, we assume quality is the same for all the

representative banks. The quality value can be calculated as follows:55

q̂ = log

(
1

Ĵ

J∑
j=1

exp(xjβ̂)

)
. (88)

With the quality value in hand, we parameterize the deposit and loan demand functions as:

Dj(r
d
j |f) =

I∑
i=1

µdi
exp

(
(α̂d + σ̂dαvi)r

d
j + q̂dj

)∑
m∈A exp

(
(α̂d + σ̂d

αd
vi)rdm + q̂dm

)W (89)

Bj(r
l
j|f) =

I∑
i=1

µli
exp

(
(α̂l + σ̂lαvi)r

l
j + q̂lj

)∑
m∈A exp

(
(α̂l + σ̂l

αl
vi)rlm + q̂lm

)K, (90)

in which α̂ and σ̂α are the mean and standard deviation of the deposit or loan rate sensi-

tivities, which are estimated from the first stage. Correspondingly, vi and µi, i = 1, 2, . . . , I

are a discrete approximation of a uniform distribution, and qj is the quality value associated

with option j ∈ 0, 1, . . . , J + 1. In the deposit market, we normalize the quality value of

cash to zero, and we denote by qdd and qdb the quality values of bank deposits and short-term

bonds, respectively. In the loan market, we normalize the quality of bonds to zero, and we

55Alternatively, we can directly use the characteristics of the N largest banks in the data and ignore the
smaller banks. This alternative approach biases the HHI in the model upwards, but the magnitude of the
bias becomes quite small if N is larger than 10. The small bias occurs because the 10 largest banks in the
United States account for a disproportionately large market share, so ignoring the small banks has a limited
impact on the market equilibrium in the national market.
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denote by qll and qln the quality values of loans and not borrowing, respectively. Note that

the quality value of not borrowing cannot be estimated from the demand estimation because

we do not observe its share. Therefore, we relegate this parameter to SMM.

The final plug-in problem consists of inserting (89) and (90) into the definition of bank

profits given by (74) before solving and simulating the bank model for the SMM estimation.

This plug-in problem operationalizes the notion that banks set deposit and loan rates facing

the demand for deposits and loans, banks set deposit and loans rates. It is important to

note that, the pricing decision is dynamic because deposits are short-term, while loans are

long-term.

In the second stage, we estimate five additional parameters using simulated method of

moments (SMM), which chooses parameter values that minimize the distance between the

moments generated by the model and their analogs in the data. We use eight moments

to identify the remaining five model parameters. Parameter identification in SMM requires

choosing moments whose predicted values are sensitive to the model’s underlying parameters.

Our identification strategy ensures that there is a unique parameter vector that makes the

model fit the data as closely as possible.

First, we use banks’ average non-reservable borrowing as a fraction of their deposits to

identify the cost of holding non-reservables (φN). Intuitively, larger financing costs induce

banks to finance loans mainly through deposits, and less via borrowing. Next, we use the

average deposit and loan spreads to identify banks’ marginal costs of generating deposits (φd)

and servicing loans (φl). Deposit spreads are defined as the difference between the Federal

Funds rate and deposit rates, while loan spreads are the difference between loan rates and

Treasury yields matched by maturity. In our model, banks with market power optimally

choose to pass a fraction of their operating costs onto the depositors and borrowers. Hence,

higher operating costs lead to monotonically higher spreads that banks charge in the deposit

and lending markets. In addition, banks’ market power also determines the fraction of banks’

marginal costs that get passed onto customers. Market power depends critically the Federal
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Funds rate, as the attractiveness to households of alternative investments, as such cash

and long-term bonds, changes with the Federal Funds rate. Therefore, we also include the

correlation between the Federal Funds rate and both loan and deposit spreads to ensure that

our model captures this important mechanism. Next, we use banks’ average dividend yield to

identify the discount rate, γ. Intuitively, a high discount rate makes the banks impatient, so

they pay out a larger fraction of their profit to shareholders instead of retaining it to finance

future business. Finally, to identify the value of firms’ outside option of not borrowing,

qln, we include banks’ average loan to deposit ratio and the sensitivity of total corporate

borrowing to the Federal Funds rate. These two moments suit this purpose because when

the outside option becomes less valuable, its market share remains low regardless of the

current Federal Funds rate. Thus, the sensitivity of the aggregate corporate borrowing to

the Federal Funds rate should fall as qln falls. In addition, a high loan-to-deposit ratio should

be inversely related to qln because when aggregate borrowing from the corporate sector is

high, bank loans face proportionally higher demands.

III.5.2 Estimation Results

Table 20 presents the point estimates for the 22 model parameters. In Panel A, we start with

the parameters that we can directly quantify in the data. Specifically, we set the corporate

tax rate to its statutory rate of 35%. Capital regulation stipulates that banks keep no less

than 6% of their loans as book equity. Reserve regulation requires a 10% reserve ratio for

transaction deposits, 1% for saving deposits, and 0% otherwise. In our model, we only

have one type of deposit, so our estimate of the deposit ratio is a weighted average of these

three requirements, where the weights are the shares of a particular type of deposit in total

deposits. We model the Federal Funds rate and the bank-level loan default rate as log AR(1)

processes, and we directly calculate their means, standard deviations, and autocorrelations

from the data. Finally, we set the maturity of loans in our model to average loan maturity

in the data, which is approximately five years.
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Panel B in Table 20 presents the demand parameters from the first stage BLP estima-

tion.56 Not surprisingly, we find that depositors react favorably to high deposit rates while

borrowers react negatively to high loan rates. Both yield sensitivities are precisely esti-

mated, and the economic magnitudes are significant as well. A 1% increase in the deposit

rate increases the market share of a bank by approximately 0.8%, while a 1% increase in

the loan rates decreases bank market share by 0.9%. We also find that depositors exhibit

significant dispersion in their rate sensitivity. Finally, we estimate depositors’ and borrow-

ers’ sensitivities to non-rate bank characteristics such as the number of branches and the

number of employees per branch. The estimates are also both statistically and economically

significant. A 1% increase in the number of branches increases bank market share by 0.868%

in the deposit market and 1.117% in the loan market. In comparison, the sensitivity to

the number of employees per branch is smaller. A 1% increase in the number of employees

per branch increases bank market share by 0.587% in the deposit market and 0.694% in

the lending market. Using these estimates combined with bank and time fixed effects, we

can calculate the implied quality parameter using (88), which we plug into the second-stage

SMM estimation.

Panel C in Table 20 presents the balance sheet parameters from our second stage SMM

estimation. We find that banks have a subjective discount rate of 5%, which is only slightly

higher than the average Federal Funds rate observed in the data. Given the discount rate,

banks pay out 2.6% of their equity value as dividends. We also find the cost of non-reservable

borrowing both statistically and economically significant. At the average amount of non-

reservable borrowing (30%), a marginal dollar of non-reservable borrowing costs the bank

0.6 cents above the cost implied by the prevailing Federal Funds rate. Note that the average

deposit spread is 0.8%. Because banks equate the marginal costs of their funding sources,

these numbers imply the marginal cost of expanding deposit averages 1.4%, suggesting a

large role for deposit market power.57 This result implies that banks cannot easily replace

56Detailed estimation results are presented in Table 22.
57The marginal cost of non-reservable borrowing is ∂Φ

∂N = 2φNN = 2× 0.05× 0.3 = 0.03.
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deposits with other funding sources. Therefore, shocks to bank deposits are likely to be

transmitted to bank lending. Finally, we find that banks incur a 0.7% cost of maintaining

deposits and a 0.9% cost of servicing their outstanding loans.

Table 21 compares the empirical and model-implied moments. The model is able to

match closely the banks’ market shares, average spreads, and the sensitivity of the Federal

Funds rate to the deposit spread. In both the data and the model, banks borrow non-

reservable securities, which amount to 30% of their total deposit intake. The spread that

banks charge in the deposit market is significantly lower than the spread they receive in the

loan market. This result arises because as the Federal Funds rate approaches zero, bank

deposits face increasing competition from cash. Thus, banks market power falls and deposit

spreads become compressed. A 1% decrease in the Federal Funds rate decreases the deposit

spread by 30 basis points. However, as the Federal Funds rate falls lower, loan demand rises.

A 1% decrease in the Federal Funds rate increases loan spreads by 25 basis points. These

results are consistent with our intuition and the data.

III.6 Counterfactuals

III.6.1 Decomposing Monetary Policy Transmission

Now we examine the quantitative forces that shape the relation between monetary policy,

as embodied in changes in the Federal Funds rate, and aggregate bank lending. To this end,

we start with the baseline model in row (1) of Table 23, where we see that on average in our

model, a one percent change in the Federal Funds rate translates into a 3.88% decrease in

aggregate lending. In the column labeled “Aggregate Lending,” we have normalized lending

to 100% for this baseline case.

We proceed by eliminating the banks’ local market power and the regulatory constraints

one by one to examine the cumulative effect of removing these frictions. As such, we analyze

how the absence of each model ingredient influences aggregate lending in the economy and

the transmission of the Federal Reserve’s monetary policy.
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Row (2) presents the results from a version of the model without a reserve requirement.

The nearly identical results imply that the reserve regulation has a minimal effect on banks’

lending decisions.

In row (3), we remove from the model banks’ market power in the deposit market.

In this case, banks receive a fixed lump-sum profit equal to their oligopolist profit in the

baseline case, and they use marginal cost pricing for deposit-intake decisions. Namely, they

set the deposit rate equal to the Federal Funds rate minus the bank’s marginal cost of

servicing deposits, and they take as many deposits as depositors offer, given that deposit

rate. If deposit market power is in place, when the Federal Funds rate increases, banks enjoy

higher market power in the deposit market because consumers place less value on cash as

an investment option. Put differently, the competitiveness of cash relative to deposits falls.

Banks react by charging higher deposit spreads and consequently lowering the amount of

deposit intake. Banks’ lending decisions partially echo this decline in deposit in-take because

when the amount of lending exceeds deposits, banks need to use expensive non-reservable

borrowing to finance their loans. Thus, the bank’s market power, combined with the non-

reservable borrowing cost, contribute to a negative relation between banks’ lending and the

Federal Funds rate. Our results confirm this intuition. Once we eliminate market power in

the deposit market, bank lending becomes less sensitive to change in the Federal Funds rate.

A 1% increase in the Federal Funds rate causes a 2.57% decrease in aggregate lending. This

sensitivity is 30% smaller than the 3.81% sensitivity observed in the baseline case. Finally,

this result is important in that it highlights the interconnectedness of banks’ deposit taking

and lending businesses. Banks’ market power in the deposit market gets passed on to the

loan market and contributes to the sensitivity of bank lending to the Federal Funds rate.

Does the above result imply that bank market power plays a quantitative important

monetary policy transmission, relative to other candidate transmission mechanisms? To

answer this question, we compare the magnitudes in line (3) to the effects of relaxing the

capital requirement, the results of which are in line (4). We find that without a capital
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requirement, the sensitivity of bank loans to the Federal Funds rate drops sharply, with a

change in the Federal Funds rate translating almost one-to-one into a change in bank loans.

A comparison of the results in lines (3) and (4) shows that the capital requirement enhances

monetary policy transmission by 1.62% (2.57%− 0.95%). This effect is roughly 25% larger

than the effect of deposit market power. Of course, this 1.62% magnitude captures both the

effects of the capital requirement itself and also of its interaction with bank market power.

More specifically, when the Federal Funds rate goes up, bank capital takes a hit because of

the maturity mismatch. The profit resulting from bank’s market power also changes, thus

interacting with the capital requirement.

Finally, we turn to banks’ market power in the lending market. Our results show that

having market power in the lending market has a large impact on the quantity of aggregate

lending. The magnitude is consistent with the sizable spread that banks charge. In both

the data and our baseline model, banks charge an average loan spread of 2.7%, which is

significantly higher than the expected default cost plus the marginal cost of servicing loans.

Once the banks switch to marginal cost pricing, the aggregate amount of lending in the

economy goes up by 34%, from 128% of the baseline to 193% of the baseline. At the same

time, removing banks’ loan market power also makes the aggregate quantity of loans more

sensitive to the Federal Funds rate. This sensitivity goes up from −0.95% in the case in

which loan market power is present to −1.38% in the case in which banks use marginal cost

pricing in both the deposit and loan markets.

III.6.2 Reversal Rate

In our previous analysis, we did not break down the effects of changes in the Federal Funds

rate as a function of the rate level. We now turn to this question in Figure 28, which shows

the amount of bank lending for different levels of the Federal Funds rate. Overall, and as

expected, there is a negative relationship between the Federal Funds rate and the amount

of lending. However, the negative relation is reversed in the region where the Federal Funds
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rate is close to zero.

To understand this pattern, we also plot in Figure 28 the level of bank capital and the

optimal amount of bank lending in a world with no capital requirements. We find that

aggregate bank capital in the economy is inversely U-shaped. When the Federal Funds rate

is above the 2.27% threshold, an increase in the Federal Funds rate has the usual effect of

tightening lending. However, when the Federal Funds rate is below the 2.27% threshold, an

increase in the Federal Funds rate actually has the opposite effect of expanding lending. We

call the region in which the Federal Funds rate is below 2.27% a “reversal rate” environment.

The pattern in bank capital is central to answering the question of why monetary policy,

as embodied in changes in the Federal Funds rate, has opposite signs on the two sides of

the threshold. To understand this connection, note that optimal lending is the smaller of

two quantities: desired lending and feasible lending. The former is the optimal amount of

lending in the absence of a capital requirement, and the latter is maximal lending permitted

by bank’s equity capital. In equilibrium, desired lending is always decreasing in the Federal

Funds rate, as high funding costs deter firms from borrowing. Hence, in high-rate regions,

the capital requirement is slack, and the actual quantity of lending is the desired amount.

On the other hand, when the Federal Funds rate is low, desired lending exceeds that allowed

by the bank’s equity. Thus, the capital requirement binds, and the actual lending tracks

the bank’s equity capital, which increases in the Federal Funds rate. Figure 28 confirms this

intuition. When the Federal Funds rate is above 2.27%, actual lending and desired lending

closely track each other, whereas when the Federal Funds rate is below this threshold, actual

lending falls short of the desired quantity.

The excess of desired over capital-constrained lending makes sense given firms’ equi-

librium high demand for loans in a low interest rate environment. However, the question

remains of the forces behind the positive relation between bank equity and the Federal Funds

rate when the latter is low. This result stems from the relative magnitudes of profits from

lending and deposit taking. First, changes in the Federal Funds rate have opposite effects
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on bank profits in the deposit and lending markets. When the Federal Funds rate is high,

holding cash is highly unattractive from the depositors’ point of view, and banks face consis-

tent weak competition from cash in the deposit market. Hence, bank profit from the deposit

market increases in the Federal Funds rate. In contrast, bank profit from lending decreases

in the Federal Funds rate, as higher funding costs makes the firms’ outside option of not

investing more appealing. Our parameter estimates imply that when the Federal Funds rate

is low, the effect on profits from the deposit market dominate the effects from the lending

market. Thus, an increase in the Federal Funds rate leads to higher bank profits, which in

turn feed into the equity capital base, as banks find it optimal to shore up capital to deflect

future financing costs by not paying out all of their profits to shareholders.

To understand more fully the dynamic response of bank lending to monetary policy

shocks, in Figure 29, we simulate the response of bank lending to a shock to the Federal

Funds rate. The economy starts at time zero in an initial steady state with the Federal

Funds rate equal to the inflection point of 2.27%. At time one, the Federal Funds rate either

increases or decreases by two standard deviations, and it stays at that level afterwards until

the economy reaches a new steady state. Each variable in the graph is scaled by its level in

the old steady state, that is, when the Federal Funds rate is 2.27%.

The top panel depicts the response to an increase in the Federal Funds rate. In this case,

banks faces less competition from households’ demand for cash in the deposit market. Thus,

they can behave more like monopolists by charging higher spreads and cutting the amount of

deposits. Lower deposit intake increases the banks’ marginal cost of lending because when

their lending exceeds their capital plus deposit intake, they must turn to the market for

non-reservable borrowing, in which they face increasing marginal external financing costs. A

positive shock to the Federal Funds rate also increases the cost of capital in corporate sector,

making firms more likely to switch to the outside option of not borrowing. Both effects

shrink the amount of lending. Because deposits have shorter duration than loans, deposits

drop sharply and converge almost instantaneously to the new steady state. Non-reservable
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borrowing increases to fill the gap between deposits and loans. In contrast, loan quantity

first overshoots and then reverts slowly back to the new steady state. Intuitively, the bank’s

equity takes a hit with a positive shock to the Federal Funds rate because of the maturity

mismatch on its balance sheet. It takes time for the bank to restore its capital stock by

retaining profits. Loan quantity converges even more slowly as the bank only replaces a

fraction, µ, of its long-term loans each period.

The bottom panel depicts the response to a decrease in the Federal Funds rate. As it

approaches the zero lower bound, banks face increasingly intense competition from cash in

the deposit market. As a result, the spread that banks can charge in the deposit market is

squeezed, leading to a sharp drop in banks’ profits. Given the high persistence in the Federal

Funds rate, this lower profit translates into slower retained earnings accumulation over time

and leads to decreased bank capital. In the new steady state, banks take large deposits

in the deposit market, which can support increased lending. However, banks cannot lend

more because their capital requirements tighten in the extremely low Federal Funds rate

environment. Because total lending decreases, the banks face less of a need to seek external

financing, and they use less non-reservable borrowing. As before, loan quantity initially

overshoots because the longer maturity of bank loans induces a temporary relaxation in the

capital requirement.

It is interesting to note that in the two graphs in Figure 29, the loan amount decreases

when the Federal Funds rate changes in either direction. Although the loan amount moves

in the same direction, the driving force is different in the two cases. When the Federal Funds

rate increases, loans fall because higher spreads in the deposit market discourage households

from making deposits. Banks turn to non-reservable borrowing to fund loans, and because

of increasing costs in this market, the amount of lending is highly dependent on the quantity

of deposits. Instead, when the Federal Funds rate decreases, the loan amount decreases

because of the binding capital requirement, which in turn echoes changes in the banks’

profit accumulation. The distinct driving forces underlying the above two plots are also
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reflected by the differential trends in banks’ deposit quantity and non-reservable borrowing.

III.6.3 Heterogeneous Monetary Transmission across Regions

There are significant cross-region variations in banking market concentration in the U.S.

In 2017, the 10th percentile MSA has 2 banks while the 90th MSA has 238 banks. Such

variations in market concentration may rise to heterogeneous monetary transmission across

regions.

The effect of market concentration on monetary transmission may be quite complicated

because of two opposing forces. On one hand, Drechsler et al. (2017) argue that an increase in

market concentration in the deposit market enhances monetary transmission. On the other

hand, Scharfstein and Sunderam (2016) argue that an increase in market concentration in

the loan market dampens monetary transmission. The net effect of these two forces, however,

is unclear.

Our structural model is able to speak to this issue. In Table 24, we consider three

scenarios with different level of market concentration. We first calculate the overall effect of

monetary policy for each scenario and then decompose the overall effect by each channel of

transmission. There are two takeaways from this table. First, when market concentration

increases, monetary policy transmission becomes stronger because the enhancing effect of

the deposit market dominates the dampening effect from the lending market. Second, when

the market becomes more concentrated, the bank capital channel becomes weaker because

banks are able to charge higher spreads in both the deposit and the lending markets, which

makes capital regulation less binding.

III.6.4 Heterogeneous Monetary Transmission across Banks

Monetary transmission may also be heterogeneous across banks. Kashyap and Stein (1995)

find that the impact of monetary policy on lending is stronger for small banks. They suggest

that small banks are not able to frictionlessly raise wholesale funding to replace deposits.
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Therefore, shocks to deposits from monetary tightening are more likely to be transmitted to

the supply of bank loans. However, Kashyap and Stein (1995) face a major challenge which

is they do not directly measure the cost of external financing. They only have the size of

the bank as a proxy which may affect many other things at the same time. This opens up

alternative interpretations of their results. For instance, some may argue that small banks

lend to small firms, whose credit demand is more cyclical. Therefore, the larger sensitivity

of smaller bank lending is driven by the demand side rather than the financing friction in

the supply side.

Our structural model sheds light on this issue because we are able to directly estimate

the cost of external financing for each type of banks. Specifically, we re-estimate the balance

sheet parameters for large and small banks separately using the data moments for each

subsample. The results are reported in Table 25. We find that the largest difference between

large versus small banks lies in their external financing cost. Note that we do not use bank

size to estimate this parameter. Instead, this parameter is identified off the fraction of assets

financed by nonreservables. This additional data moment lends support to the Kashyap

and Stein (1995) argument that large and small banks mainly differ in the dimension of

external financing costs. In addition, in the simulation exercise, we are also able to hold

the loan demand constant to isolate the effect of the financing friction, which is hard to do

with reduced-form approaches. Overall, we find that lending in small banks is more sensitive

to the FFR. This is consistent with the hypothesis proposed by Kashyap and Stein (1995)

that different external financing costs across large and small banks leads to heterogeneous

transmission of monetary policy to credit supply.

III.7 Conclusion

The U.S. banking sector has experienced an enormous amount of consolidation. The market

share of the top five banks has increased from less than 15% in the 1990s to over 45% as of

2017. This consolidation begs the question of whether bank market power has a quantita-
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tively important effect on the transmission of monetary policy. We study this question by

formulating and estimating a dynamic banking model with regulatory constraints, financial

frictions, and imperfect competition. This unified framework is useful because it allows us

to gauge the relative importance of different monetary policy transmission channels.

In our counterfactuals, we show that the channel related to reserve requirements has

minor quantitative importance. In contrast, we find that channels related to bank capital

requirements and to market power are very important. We also find an interesting interaction

between the market power channel and the bank capital channel. If the Federal Funds rate

is low, depressing it further can actually contract bank lending, as the drop in bank profits

in the deposit market has a negative impact on bank capital. Lastly, we show that financial

frictions on banks’ balance sheet play an important role in transmitting shocks from bank

deposits to bank loans.

Our work contributes to the historical debate between the “money view” and the “lending

view” of banking monetary policy transmission (Romer and Romer, 1990; Kashyap and Stein,

1995). The “money view” postulates that the quantity of deposits matters for economic

activity as a medium of exchange and that monetary policy influences deposit quantity

through bank reserves. While our results do not negate the premise that the quantity of

deposits matters, we show that the channel through which monetary policy affects bank

deposits is increasingly through the market power channel rather than the reserve channel,

at least after the 1990s.

An alternative view of monetary transmission is the “lending view”, which rests on the

idea that monetary policy also has a separate effect on the supply of loans by influencing the

quantity of deposits. Romer and Romer (1990) argue that the “lending view” is unlikely to

be important because banks can always easily replace deposits with external financing. In

contrast, Kashyap and Stein (1995) argues that the banks can face costly external financing.

Our study sheds new light on this debate, as the structural estimation approach allows us

to infer the degree of the bank financing costs from the relative size of their non-reservable
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borrowing and deposit taking. We find the magnitude of this cost is economically significant

and frictions related to bank balance sheets play an important role in the transmission of

monetary policy.
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TABLES AND FIGURES

Table 1: Variable and Parameter Definitions

Variable Model Counterpart Construction from Compustat Items

Capital Stock K Total assets (AT )

Profit
(
y − q − χ(∆s)

)
×K Operating income before depreciation (OIBDP)

Net Dividends d×K Cash dividends on common stock (CDVC ) + cash dividends on pre-
ferred/preference stock (PDVC ) + purchase of common stock (PRSTKCC,
if non-missing) + Purchase of Preferred/Preference Stock (PRSTKPC, if non-
missing) − sale of common and preferred stock (SSTK, if non-missing)

Net Cash Holdings abeg ×K Cash and short-term investments (CHE ) − debt in current liabilities (DLC )
− long-term debt (DLTT )

Leverage max{−abeg, 0} The negative part of capital scaled net cash holdings.

Tobin’s Q v − abeg Market value of equity less net cash holdings, divided by capital stock.

R&D Expenses q ×K Research and Development Expenses (XRD)

Patent Stock s×K Patent stock is computed by cumulating patent grants, expirations, purchases
and sales. Each patent is weighted by its adjusted citations, which is the
number of citations divided by average number of citations received by all
patents granted in the same year and technology class. Specifically, I define:

Pat. Stock =

( ∑
j∈Qgrant

i,t

−
∑

j∈Qexpire
i,t

+
∑
j∈Qbuy

i,t

−
∑
j∈Qsell

i,t

)
Cj

Ê
[
Ck

∣∣∣Yk = Yj, Tk = Tj

] ,
where Qgrant

i,t , Qexpire
i,t , Qbuy

i,t , and Qsell
i,t denote the set of patents granted, expired,

bought, and sold up until quarter t. Yj and Tj are the grant year and technology
class of patent j, and Cj is the patent’s citation count.

Patent Purchase max{∆s, 0} ×K The citation-weighted number of patents bought, where I adjust citations
in the same way as when I compute Patent Stock. Specifically, I define
Patent Purchase =

∑
j∈Pbuy

i,t

Cj

Ê
[
Ck

∣∣∣Yk=Yj ,Tk=Tj

] , where Pbuy
i,t is the set of patents

bought by firm i in quarter t.

Patent Sales max{−∆s, 0} ×K Defined analogously as Patent Puchase.

Patent Trade (Net Buy) ∆s×K Patents Purchase − Patents Sales

Trade Volume 1
2
|∆s| ×K 1

2

[
Patents Purchase + Patents Sales

]
Parameters

rf The risk-free rate δ Productivity depreciation rate π Productivity depreciation probability

τ Corporate tax rate λ Equity issuance cost −a Debt capacity

η Project maturing rate µi Mean seed inflow χj Trading costs, j = 0, 1, 2

ψ Productivity improvement per unit of maturing projects cf Fixed cost of operation
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Table 2: Summary Statistics

This table reports key summary statistics and the industry composition of the sample and the Compustat
universe. The sample spans 1980–2010 and contains all firms that own at least one patent during this period.
Panel A reports summary statistics at the firm-quarter level. All variable definitions are in Table 1. Panel
B reports the fraction of firms in each SIC sector. I also include industries (at the 3-digit SIC code level)
with pronounced differences in their representations in the sample and the Compustat universe.

Sample Compustat Universe

Variable
Mean

Percentiles
#OBS Mean

Percentiles
#OBS25 50 75 25 50 75

Panel A: Summary Statistics

Assets 1.470 0.026 0.119 0.672 395,437 0.864 0.015 0.077 0.406 793,113
Net Buy 0.018 0.000 0.000 0.000 395,437 0.009 0.000 0.000 0.000 793,113
Trading Volume 0.458 0.000 0.000 0.000 395,437 0.228 0.000 0.000 0.000 793,113
R&D/Assets 0.017 0.000 0.000 0.017 395,209 0.012 0.000 0.000 0.000 791,559
Equity Iss./Assets 0.007 0.000 0.000 0.000 395,209 0.006 0.000 0.000 0.000 791,559
Net Cash/Assets -0.050 -0.292 -0.098 0.174 394,680 -0.112 -0.345 -0.135 0.120 790,457
Payout/Assets 0.001 0.000 0.000 0.000 793,113 0.002 0.000 0.000 0.000 793,113
Profit/Assets 0.006 -0.000 0.029 0.049 321,313 0.000 -0.007 0.026 0.047 653,033
Patent Stock 108.944 0.000 4.342 32.401 395,437 54.318 0.000 0.000 4.291 793,113
1{Trading Volume 6= 0} 0.053 395,437 0.027 793,113
1{Equity Iss. 6= 0} 0.012 395,209 0.011 791,559
1{Payout 6= 0} 0.292 330,613 0.248 673,777
Net Buy

∣∣Trade 6= 0 0.337 -2.818 0.203 3.525 21,075 0.337 -2.818 0.203 3.525 21,075
Equity Iss.

∣∣Equity Iss.6= 0 0.627 0.112 0.313 0.744 4,557 0.561 0.110 0.280 0.655 8,983
Payout

∣∣Payout 6= 0 0.007 0.002 0.004 0.008 96,581 0.009 0.002 0.004 0.009 167,409

Panel B: Industry Composition

Agriculture, Forestry, Fishing 0.003 0.005
Mining 0.028 0.124

Gold & silver ores 0.003 0.022
Crude petroleum & natural gas 0.011 0.062

Construction 0.008 0.014
Manufacturing 0.719 0.441

Drugs 0.099 0.053
Compute & office equipments 0.050 0.027
Communications equipments 0.038 0.022
Elec. components & accessories 0.053 0.027
Lab apparatus etc. 0.037 0.018
Surgical, medical, & dental instr. 0.066 0.031

Transportation, Public Utilities 0.033 0.079
Telephone communications 0.012 0.023

Wholesale Trade 0.025 0.045
Retail Trade 0.020 0.072

Eating & drinking places 0.004 0.017
Services 0.163 0.221
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Table 3: Parameters Estimated Outside the Main Model Estimation

This table reports parameters estimated outside the main model estimation.

Parameter Value Data Moment Used for Estimation

rf 0.025 The average U.S. Treasury Bill rate from 1980 to 2010, adjusted to
annual frequency.

δ × π 0.080 The estimated depreciation rate of R&D capital and organization cap-
ital in Grabowski and Mueller (1978) and McGrattan and Prescott
(2010).

τ 0.350 US corporate tax rate.

λ 0.052 Average issuance fee per dollar raised through equity.

a -0.720 Estimated upper bound on debt ratio from DeAngelo et al. (2011).
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Table 4: SMM Estimation Results with α = 0.50

This table reports the estimation results. Panel A contains the sample moments and the corresponding
moments simulated from the model solution. Panel B reports the parameter estimates with standard errors
in parentheses. I set α = 0.50; the other parameters that I set outside the main model estimation are in
Table 3.

Panel A: Moments

Data Mmt. Siml. Mmt.

Mean capital scaled R&D expense E(q −∆s) 0.0699 0.0669
Variance of capital scaled R&D expenses V(q −∆s) 0.0112 0.0057
Corr. b/w capital scaled R&D expenses and leverage Corr(q −∆s,max{−abeg, 0}) 0.0649 0.1771
Mean capital scaled profit E(y − q − χ(∆s)) 0.0252 0.0278
Variance of capital scaled profit V(y − q − χ(∆s)) 0.0418 0.0162
Patent Trading Frequency E(1{∆s 6= 0}) 0.2133 0.2288
Patent trading volume/patent stock E( 1

2
|∆s|)/E(s) 0.0182 0.0220

Variance of net patent purchase/patent stock squared V(∆s)/E(s)2 0.1900 0.0372
Corr. b/w net patent purchase and leverage Corr(∆s,max{−abeg, 0}) -0.0118 -0.0553
Corr. b/w net patent purchase and patent stock Corr(∆s, s) -0.0396 -0.0879

Panel B: Parameter Estimates

η µi π χ0 χ1 χ2 ψ cf
0.2767 0.0330 0.1712 0.1110 2.1057 1.6950 0.7004 0.1759

(0.0012) (0.0002) (0.0062) (0.0009) (0.207) (0.0134) (0.0057) (0.0010)
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Table 5: SMM Estimation Results with α = 0.75

This table reports the estimation results. Panel A contains the sample moments and the corresponding
moments simulated from the model solution. Panel B reports the parameter estimates with standard errors
in parentheses. I set α = 0.75; the other parameters that I set outside the main model estimation are in
Table 3.

Panel A: Moments

Data Mmt. Siml. Mmt.

Mean capital scaled R&D expense E(q −∆s) 0.0699 0.0657
Variance of capital scaled R&D expenses V(q −∆s) 0.0112 0.0089
Corr. b/w capital scaled R&D expenses and leverage Corr(q −∆s,max{−abeg, 0}) 0.0649 0.2051
Mean capital scaled profit E(y − q − χ(∆s)) 0.0252 0.0286
Variance of capital scaled profit V(y − q − χ(∆s)) 0.0418 0.0264
Patent Trading Frequency E(1{∆s 6= 0}) 0.2133 0.1932
Patent trading volume/patent stock E( 1

2
|∆s|)/E(s) 0.0182 0.0237

Variance of net patent purchase/patent stock squared V(∆s)/E(s)2 0.1900 0.0306
Corr. b/w net patent purchase and leverage Corr(∆s,max{−abeg, 0}) -0.0118 -0.0095
Corr. b/w net patent purchase and patent stock Corr(∆s, s) -0.0396 0.0246

Panel B: Parameter Estimates

η µi π χ0 χ1 χ2 ψ cf
0.2520 0.0391 0.0839 0.1407 2.3709 0.4819 1.0398 0.0689

(0.0001) (0.0001) (0.0003) (0.0001) (0.0003) (0.0021) (0.0001) (0.0798)
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Table 6: Patent Trading and R&D in Subsamples Sorted by Firm Sizes and Net Cash Holdings

This table shows patent trading and R&D patterns by subsamples. In each year, I first sort all sample firms
into five quintiles based on book assets. Next, I sort each quintile into yet another five quintiles by book-
assets-scaled net cash holdings. For each of the resulting 25 subsamples, I compute four statistics as follows.
Panel A reports the average book-assets-scaled net patent purchase. Net patent purchase is constructed by
aggregating the firm’s signed trades in the quarter, where each trade is weighted by its adjusted citation count.
Panel B reports the frequency of patent trading, defined as Ê(1{Trade}). The dummy variable 1{Trade}
equals one if a firm buys or sells at least one patent in the quarter. Panel C reports the average book-assets-
scaled net patent purchase conditioning on that the firm trades. Finally, Panel D reports book-assets-scaled
R&D expenses.

Net Cash/Assets

Low 2 3 4 High All Low 2 3 4 High All

Assets Panel A: Net Buy/Assets Panel C: Net Buy/Assets
∣∣1{Trade}=1

Small -1.232 -1.312 -0.618 0.512 0.399 -0.450 -94.390 -101.440 -50.004 36.402 29.496 -34.158

(0.596) (0.500) (0.536) (0.545) (0.551) (0.244) (45.321) (38.106) (43.357) (38.773) (40.837) (18.523)

2 -0.322 0.033 0.630* 1.061*** 1.023*** 0.484*** -20.622 1.746 32.256* 47.508*** 47.232*** 24.648***

(0.341) (0.325) (0.355) (0.346) (0.368) (0.155) (21.865) (16.935) (18.136) (15.323) (16.833) (7.879)

3 0.029 0.309* 1.064*** 0.375 0.495** 0.454*** 1.260 11.250* 32.857*** 11.069 14.390** 14.928***

(0.205) (0.181) (0.212) (0.228) (0.196) (0.091) (8.649) (6.572) (6.419) (6.730) (5.661) (3.000)

4 0.079 -0.152 0.104 0.342* 0.426*** 0.159** 2.270 -3.049 1.835 6.171* 7.334*** 3.120**

(0.100) (0.175) (0.149) (0.188) (0.151) (0.069) (2.876) (3.511) (2.621) (3.396) (2.599) (1.364)

Large -0.020 -0.066 -0.000 0.048 0.218*** 0.036 -0.232 -0.491 -0.002 0.277 1.166*** 0.237

(0.068) (0.068) (0.068) (0.092) (0.078) (0.033) (0.780) (0.505) (0.392) (0.524) (0.416) (0.221)

All -0.292 -0.237 0.236* 0.468*** 0.512*** 0.137** -8.374 -4.845 4.007* 7.765*** 8.140*** 2.573**

(0.145) (0.130) (0.139) (0.143) (0.142) (0.062) (4.156) (2.659) (2.361) (2.374) (2.258) (1.175)

Assets Panel B: 1{Trade} Panel D: R&D/Assets

Small 0.013*** 0.012*** 0.012*** 0.014*** 0.013*** 0.016*** 0.040*** 0.020*** 0.029*** 0.040*** 0.059*** 0.038***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 0.015*** 0.019*** 0.019*** 0.022*** 0.021*** 0.019*** 0.009*** 0.012*** 0.019*** 0.031*** 0.046*** 0.023***

(0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 0.023*** 0.027*** 0.032*** 0.033*** 0.034*** 0.030*** 0.004*** 0.006*** 0.011*** 0.018*** 0.028*** 0.013***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

4 0.034*** 0.050*** 0.057*** 0.055*** 0.058*** 0.051*** 0.002*** 0.003*** 0.004*** 0.007*** 0.017*** 0.007***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Large 0.087*** 0.135*** 0.174*** 0.175*** 0.187*** 0.152*** 0.001*** 0.002*** 0.003*** 0.004*** 0.011*** 0.004***

(0.002) (0.002) (0.003) (0.003) (0.003) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

All 0.034*** 0.048*** 0.059*** 0.060*** 0.062*** 0.053*** 0.011*** 0.009*** 0.013*** 0.020*** 0.032*** 0.017***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 7: Patent Trading and R&D in Subsamples Sorted by Firm Sizes and Patent Stocks

This table shows patent trading and R&D patterns by subsamples. In each year, I first sort all sample firms
into five quintiles based on book assets. Next, I sort each quintile into yet another five quintiles by book-
assets-scaled patent stocks. Patent stock is computed by accumulating the firm’s patent grants, expirations,
and transactions, where each patent is weighted by its adjusted citation count. For each of the resulting 25
subsamples, I compute four statistics as follows. Panel A reports the average book-assets-scaled net patent
purchase. Net patent purchase is constructed by aggregating the firm’s signed trades in the quarter, where
each trade is weighted by its adjusted citation count. Panel B reports the frequency of patent trading, defined
as Ê(1{Trade}). The dummy variable 1{Trade} equals one if a firm buys or sells at least one patent in the
quarter. Panel C reports the average book-assets-scaled net patent purchase conditioning on that the firm
trades. Finally, Panel D reports book-assets-scaled R&D expenses.

Patent Stock

Low 2 3 4 High All Low 2 3 4 High All

Assets Panel A: Net Buy/Assets Panel C: Net Buy/Assets
∣∣1{Trade}=1

Small 0.144 0.796 0.422 -1.096 -1.956 -0.450 11.946 85.480 38.426 -84.648 -107.477 -34.158

(0.363) (0.692) (0.403) (0.513) (0.755) (0.244) (30.159) (73.872) (36.713) (39.289) (41.094) (18.523)

2 1.093*** 0.713*** 0.764*** 0.751*** -1.140 0.484*** 89.868*** 61.838*** 50.166*** 35.569*** -29.902 24.648***

(0.233) (0.242) (0.223) (0.288) (0.571) (0.155) (18.497) (19.922) (14.358) (13.559) (14.948) (7.879)

3 0.500*** 0.097 0.403*** 0.503*** 0.615* 0.454*** 38.881*** 8.760 19.089*** 13.355*** 8.870* 14.928***

(0.111) (0.097) (0.137) (0.187) (0.362) (0.091) (8.354) (8.697) (6.444) (4.941) (5.222) (3.000)

4 0.280** 0.144** 0.165*** 0.189 -0.008 0.159** 17.702** 10.689** 4.826*** 2.699 -0.069 3.120**

(0.115) (0.073) (0.059) (0.172) (0.259) (0.069) (7.235) (5.356) (1.713) (2.462) (2.118) (1.364)

Large 0.143** 0.045* 0.015 0.011 -0.039 0.036 7.888** 1.389* 0.144 0.046 -0.110 0.237

(0.064) (0.026) (0.043) (0.067) (0.131) (0.033) (3.515) (0.812) (0.397) (0.271) (0.368) (0.221)

All 0.444*** 0.225*** 0.350*** 0.072 -0.505 0.137** 32.351*** 12.099*** 8.822*** 0.927 -4.178 2.573**

(0.118) (0.064) (0.085) (0.128) (0.210) (0.062) (8.616) (3.445) (2.149) (1.650) (1.743) (1.175)

Assets Panel B: 1{Trade} Panel D: R&D/Assets

Small 0.012*** 0.009*** 0.010*** 0.012*** 0.018*** 0.016*** 0.034*** 0.033*** 0.035*** 0.036*** 0.050*** 0.038***

(0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

2 0.012*** 0.011*** 0.015*** 0.021*** 0.038*** 0.019*** 0.018*** 0.021*** 0.023*** 0.026*** 0.031*** 0.023***

(0.000) (0.001) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 0.012*** 0.011*** 0.021*** 0.037*** 0.069*** 0.030*** 0.010*** 0.008*** 0.012*** 0.016*** 0.020*** 0.013***

(0.000) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

4 0.015*** 0.013*** 0.034*** 0.070*** 0.122*** 0.051*** 0.003*** 0.002*** 0.006*** 0.009*** 0.013*** 0.007***

(0.000) (0.001) (0.001) (0.002) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Large 0.018*** 0.032*** 0.109*** 0.248*** 0.356*** 0.152*** 0.000*** 0.001*** 0.003*** 0.006*** 0.010*** 0.004***

(0.001) (0.001) (0.002) (0.003) (0.003) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

All 0.013*** 0.018*** 0.039*** 0.078*** 0.120*** 0.053*** 0.016*** 0.008*** 0.015*** 0.019*** 0.025*** 0.017***

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 9: Decomposition of Speculator’s Ex Ante Expected Value Function

Actions Short-term Objective Long-term Objective
D=0 D=1 D=0 D=1

Stage 1 PBD 0 1
2
γσ̃vσ̃e 0 0

Stage 2 PBT γβ
2
λ∗σ2

e
γβ
2
λ1σ̃e

2 (1− γ)λ∗σ2
z (1− γ)λ1σ

2
z
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Table 10: Summary Statistics of WSJ/NYT/FT Data

This table summarizes our disclosure data. Our sample spans from 2005 to 2014 and covers all articles
published in the Wall Street Journal, the Financial Times and the New York Times. To identify a strategic
disclosure, we apply the following criteria: An article is defined to be a disclosure made by fund holding
company j about target firm i, if there exists a paragraph in it such that either one of the following is
satisfied.

1. Both names of the target company i and the fund management company j are found. Because in-
vestment banks are frequently covered in the media together with other firms for reasons unrelated
to strategic information disclosure (equity/bond underwriting, grading assignments, etc.), to avoid
confounding our analysis, we exclude investment banks (e.g. Goldman Sachs, Merrill Lynch, Wells
Fargo, etc.) from fund management companies, unless (i) key words such as “analyst”, “portfolio
manager” or “strategist” appear in the same sentence as the mention of the fund holding company;
(ii) key words such as “securities”, “holdings” or “asset management”, which indicates the disclosure
comes from a non-investment banking branch of j, closely follow the mention of the fund management
company (with no more than one word in between); or (iii) name (first name followed by last name)
of a portfolio manager associated with fund holding company j is also found in the same paragraph.

2. The name of the target company i is found and either (i) all first, middle, and last names of any
portfolio manager at fund holding company j is found, or (ii) first and last names of any portfolio
manager at fund holding company j is found, and, in the same sentence, there is key word such as
“analyst”, “portfolio manager”, etc.

For each of the three newspapers, we count separately the number of articles which we identify as disclosures,
which we do not identify as disclosures but are published in a business-related section, and which are
published in a non-business-related section such as leisure, art or food.

# Articles

FT NYT WSJ All
Disclosures 3,531 2,886 5,133 11,550
Business Related 189,472 133,191 352,789 675,452
Business Unrelated 405,769 872,169 4,678 1,282,616
All 595,275 1,005,363 357,476 1,958,114
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Table 11: Examples of Identified Disclosures

This table lists sample paragraphs—one for each newspaper—with which a journal article is identified as a
strategic disclosure using our screening techniques.

Time Warner’s Cable Plan Is Attracting Bargain Hunters
Julia Angwin

The Wall Street Journal, Mar. 3rd, 2005

Time Warner plans to pay for Adelphia partly by issuing stock in the new Time Warner cable
company. “I’m not the biggest cable bull in the world, but I’m positive on the speculated deal
terms,” said Henry Ellenbogen, an analyst with T. Rowe Price, which owned a 1.2% stake in Time
Warner as of Dec. 31, according to FactSet Research. Mr. Ellenbogen believes the new cable stock
likely would trade at a higher multiple than Time Warner shares do currently, indicating that it
would be fast-growing. It would “showcase the growth and quality of cable operation and show that
Time Warner’s high-quality, albeit moderate-growth, media assets trade at a significant discount
to their peers,” he said.

How Often to Trade? It’s Tricky for Funds, Too
Norm Alster

The New York Times, Jan. 8th, 2012

But even low-turnover funds can be tempted by the bargains created in sharp downturns. “The
volatility provides an opportunity to enter stocks that the market may have unduly punished,” said
Aram Green, one of four portfolio managers of the Legg Mason ClearBridge Mid Cap Growth fund.
Though generally slow to turn over its portfolio, the fund managers did some selective nibbling
during recent market sell-offs. One buy was F5 Networks, a computer networking company whose
stock peaked above $140 early last year, but by August had dipped below $70. The fund stepped in,
and the stock has since rebounded.

Reed Krakoff Seals $50M Buyout
Elizabeth Paton

The Financial Times, Sept. 3rd, 2013

Henry Ellenbogen, portfolio manager at T Rowe Price, a mutual fund that has invested in US luxury
retail companies such as Tory Burch and Michael Kors, said: “We have an extremely strong record
in the sector and see this business as a future force to be reckoned with on a global scale.”

Investors Question the Track Record of US Media
Aline van Duyn

The Financial Times, Aug. 8th, 2005

Larry Haverty, portfolio manager at Gabell & Co, which owns Time Warner shares, said: “In-
creasing leverage is not sensible in an environment in which interest rates can go up and given the
uncertainties in the media sector, such as growing competition from the internet.”
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Table 12: Summary Statistics of Sample Firms and Fund Holding Companies

This table provides summary statistics for our sample firms and fund holding companies. Panel (A) sum-
marizes the sample at holding company-quarter level. The first three rows (Equity, Bond and Cash) report
the holding companies’ asset allocation—measured as percentage holdings—in three (non-exhaustive) broad
asset classes. NAV measures the combined net asset values of all funds managed by a holding company.
Expense Ratio is the sum of 12b-1 fees and operating expenses, expressed as a percentage of a fund’s net
asset value and averaged (weighted by each individual fund’s NAV) across all funds under the same hold-
ing company. γ̂1

j,t is a measure of a holding company j’s overall flow-return sensitivity. To obtain γ̂1
j,t, we

first estimate the following rolling regressions (Eq. (47)) for each fund k under holding company j at each
quarter-end t using monthly fund return and flow data in the past year (i.e., m = t− 11, t− 10, ..., t):

Flowk,m = αk,t +

2∑
h=0

ζhk,tRetk,m−h + εm,t. (47)

where Flowk,m are fund inflows or outflows, and Retk,m−h are fund portfolio returns. We sum the resulting
coefficients ζ0

k,t, ζ
1
k,t and ζ2

k,t to obtain the flow-return sensitivity for each fund k at each quarter-end month

t. γ̂1
j,t is then defined as the NAV weighted average flow-return sensitivity of all funds managed by holding

company j at month t. #Disclosures is the number of disclosures made by the fund holding company
about all sample firms during a quarter. Age is defined as the NAV weighted average of each of the holding
company’s individual fund’s age (number of days since the first time a fund is offered). Panel (B) summarizes
the sample at firm-quarter level. We report the sample firms’ market capitalization, Amihud’s (2002) measure
of illiquidity, number of disclosures made about a firm by all sample funds during a quarter, stock volatility
Stdev(Ret) (measured as the annualized standard deviation of daily stock return in the quarter), and asset
intangibility (measured as intangible assets as a percentage of total assets). Panel (C) summarizes the sample
at firm-fund-quarter level. #Disclosures is the number of strategic disclosures made by a fund holding
company about a firm in the current quarter. γ̂2

i,j,t is the deviation of a fund’s percentage holdings of a firm

from the benchmark. To get γ̂2
i,j,t, we first define Hf

i,j,t = Vt(Holding Company j’s Holdings of Firm i)
Vt(Holding Company j’s Holdings of All S&P 1500 Firms)

and let Hm
i,t = Vt(Firm i)

Vt(All S&P 1500 Firms) ; we then compute (Eq. (51))

γ̂2
i,j,t =

{
Hf
i,j,t/H

m
i,t, if Hf

i,j,t > Hm
i,t,

Hm
i,t/H

f
i,j,t, Otherwise.

(51)

For each of the characteristics, we report its mean and median in the full sample, and in each of the five
subsamples characterized by the number of strategic disclosures. All variables are winsorized at the 2% and
98% levels, with the sole exception of the number of disclosures at the firm-fund-quarter level in Panel (C).
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Table 12 Continued

Mean Median

Full #Discl Full #Discl

Sample = 0 ≥ 1 ≥ 5 ≥ 10 ≥ 15 Sample = 0 ≥ 1 ≥ 5 ≥ 10 ≥ 15

Panel (A) Fund-Quarter Level

Equity (% ) 72.2 73.1 69.5 65.4 64.8 65.0 76.5 78.3 72.9 70.2 69.4 69.4
Bond (% ) 5.3 4.7 7.1 8.0 8.1 7.9 0.0 0.0 0.0 0.2 1.1 1.5
Cash (% ) 4.3 4.5 3.6 3.3 3.2 3.3 3.0 3.1 2.8 2.8 2.9 2.9
NAV ($B) 0.928 0.624 1.852 3.076 3.360 3.474 0.146 0.109 0.653 2.233 2.662 2.820
Expense Ratio (% ) 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.1 1.1 1.1 1.1
γ̂1j,t 0.428 0.466 0.311 0.286 0.311 0.305 0.121 0.127 0.107 0.116 0.124 0.110
# Disclosures 1.0 0.0 4.2 11.4 15.2 16.8 0 0 2 11 17 17
Age (Days) 3,111.3 3,174.5 2,919.3 2,950.7 2,929.4 2,960.8 2,992.5 3,032.6 2,900.7 3,017.2 3,059.7 3,056.8
Observations 10,932 8,226 2,706 709 401 270 10,932 8,226 2,706 709 401 270

Panel (B) Firm-Quarter Level

Market Cap ($B) 13.362 8.988 30.726 63.035 83.546 94.148 3.966 3.277 12.342 59.109 117.485 117.485
Amihud 1.678 1.837 1.047 1.200 2.527 4.517 0.329 0.418 0.105 0.028 0.017 0.015
# Disclosures 0.4 0.0 2.0 5.0 5.0 5.0 0 0 1 5 5 5
Stdev(Ret) (%) 35.4 35.7 34.3 32.7 37.4 43.0 30.0 30.5 27.8 24.4 25.3 31.3
Intangibility (%) 22.5 22.2 23.6 25.4 28.1 33.0 16.9 16.6 18.0 17.8 17.6 21.8
Observations 28,094 22,441 5,653 666 168 57 28,094 22,441 5,653 666 168 57

Panel (C) Firm-Fund-Quarter Level

γ̂2i,j,t 48.6 41.7 91.8 96.2 91.5 67.8 6.5 5.0 130.6 130.6 130.6 70.8
# Disclosures 0.2 0.0 1.3 7.1 13.8 20.0 0 0 1 6 12 18.5
Observations 85,240 73,472 11,768 198 29 8 85,240 73,472 11,768 198 29 8
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Table 13: Variable Definitions

Variable Interpretation/Construction

Key Variables Used in Testing the Effect of Short-termism on Disclosures

γ̂1
j,t For each fund k managed by holding company j and each quarter-end month t, we first estimate the following

regressions over a rolling twelve-month window: Flowk,m = αk,t +
∑2
h=0 ζ

h
k,tRetk,m−h + εk,m, where Flowk,m

and Retk,m are monthly fund flows and returns, respectively. Each regression is estimated over twelve months

of data, i.e., m = t − 11, t − 10, ..., t. We next define ζ̂k,t = ζ̂0
j,t + ζ̂1

j,t + ζ̂2
j,t. Lastly, we compute γ̂1

j,t as the

NAV-weighted average of those ζ̂k,t across all funds k under holding company j in quarter-end month t.

γ̂2
i,j,t γ̂2

i,j,t =

{
Hf
i,j,t/H

m
i,t, if Hf

i,j,t > Hm
i,t,

Hm
i,t/H

f
i,j,t, Otherwise

, where Hf
i,j,t and Hm

i,t are defined in (49) and (50), respectively.

#Discli,j,t Number of disclosures made by fund j about firm i during quarter t.

#Discl−i,j,t Number of disclosures made by fund j about all firms except firm i during quarter t.

#Discli,−j,t Number of disclosures made by all funds except fund j about firm i during quarter t.

Key Variables Used in Testing the Effect of PBT/PBD on Liquidity

Amihudi,t Amihud’s (2002) measure of liquidity. For each firm i and quarter t, Amihudi,t is computed as

1

Nt

∑
d

|ri,d|
Dvoli,d

where ri,d and Dvoli,d denote, respectively, daily return and dollar trading volume for firm i shares on day d.
The sum is taken over all trading days d in quarter t, with a total of Nt days.

γ̂1
i,t γ̂1

i,t = log(1 + 1∑
j Shri,j,t

∑
j Shri,j,t × γ̂1

j,t), where Shri,j,t is the number of firm i shares held by fund j at the

end of quarter t.

γ̂2
i,t γ̂2

i,t =

log(
Hfi,t
Hmi,t

), if Hf
i,t > Hm

i,t,

log(
Hmi,t

Hfi,t
), Otherwise

, whereHf
i,t = Value of Firm i Shares Held by All Sample Funds at the End of Quarter t

Value of S&P 1500 Firms Held by All Sample Funds at the End of Quarter t

and Hm
i,t = Market Cap. of Firm i at the End of Quarter t

Market Cap. of All S&P 1500 Firms at the End of Quarter t .

#Discli,t Number of disclosures made by all sample funds about firm i during quarter t.

#Discl−i,t Number of disclosures made by all sample funds about all firms except firm i during quarter t.

Tradingi,t Percentage trading by all sample mutual funds, defined as: Tradingi,t =
|Shri,t−Shri,t−1|

ShrOuti,t−1
, where Shri,t is the total

number of shares held by all sample mutual funds at the end of quarter t and ShrOuti,t is firm i’s number of
shares outstanding as of the end of quarter t.

Control and Conditioning Variables

Sizei,t Market capitalization of firm i as of the end of quarter t.

Intani,t Intani,t = Firm i’s Intangible Asset at the End of Quarter t
Firm i’s Total Asset at the End of Quarter t .

Stdev(Ret)i,t Standard deviation of firm i’s stock return computed using daily return data in quarter t.

Pricei,t Firm i’s average price computed using daily closing price in quarter t.

136



Table 14: Strategic Disclosure and Short-termism

This table reports test results on the effect of short-termism on mutual fund disclosures. We estimate, in
part or in full, the following regression model of Eq. (53):

#Discli,j,t =β0 + β1γ̂
s
(i,)j,t + β2Suiti,t + β3γ̂i,j,t × Suiti,t + β4#Discl−i,j,t (53)

+ β5#Discli,−j,t + δq + δy + εi,j,t, s = 1, 2,

where #Discli,j,t is the number of disclosures made by fund holding company j about firm i during quarter
t (as defined in Section II.3.1) and γ̂1

j,t measures the flow return sensitivity of fund holding company j.

To obtain γ̂1
j,t, we first estimate the following rolling regressions (Eq. (47)) for each fund k under holding

company j at each quarter-end t using monthly fund return and flow data in the past year (i.e., m =
t− 11, t− 10, ..., t):

Flowk,m = αk,t +

2∑
h=0

ζhk,tRetk,m−h + εm,t. (47)

where Flowk,t are fund inflows or outflows, and Retk,t are fund portfolio returns. We next sum the resulting
coefficients ζ0

k,t, ζ
1
k,t and ζ2

k,t to obtain flow-return sensitivity for each fund k at each quarter-end month t.

We then define γ̂1
j,t as the NAV-weighted average flow-return sensitivity of all funds k managed by holding

company j at month t. γ̂2
i,j,t measures the “pivotalness” of a position (firm) i to a fund holding company

j at the end of quarter t as the deviation of j’s percentage holding of i from the market’s. That is, define

Hf
i,j,t = Vt(Fund j’s Holdings of Firm i)

Vt(Fund j’s Holdings of All S&P 1500 Firms) and let Hm
i,t = Vt(Firm i)

Vt(All S&P 1500 Firms) ; then define (Eq. (51))

γ̂2
i,j,t =

{
Hf
i,j,t/H

m
i,t, if Hf

i,j,t > Hm
i,t,

Hm
i,t/H

f
i,j,t, Otherwise.

(51)

Suiti,t, the conditioning variable, is defined in Table 13 as either the inverse of firm size (measured as market
capitalization, Sizei,t), intangibility (proportion of intangible asset of total asset, Intani,t), or standard
deviation of stock i’s past returns (Stdev(Ret)i,t)—as indicated in the bottom row of this table. #Discl−i,j,t
is the number of disclosures made by fund j about all S&P 1500 firms except firm i during quarter t;
#Discli,−j,t is the number of disclosures about firm i made by all sample funds except fund j. For each
quarter and each firm, we exclude the largest holder fund from the regressions. In all specifications, we
include year fixed effects (δy) and quarter fixed effects (δq). All variables are winsorized at the 2% and 98%
levels and standardized. Standard errors in parentheses are heteroscedasticity-robust and two-way clustered
by firm-fund.
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Table 14 Continued

(1) (2) (3) (4) (5) (6) (7) (8)
LHS Var. #Discli,j,t

γ̂1= Flow-Return Sensitivity γ̂2=Pivotal

γ̂ 0.015*** 0.010** 0.015*** 0.013** 0.222*** 0.205*** 0.222*** 0.218***
(0.006) (0.005) (0.006) (0.006) (0.008) (0.006) (0.008) (0.008)

Suiti,t 0.118*** 0.019*** 0.069*** 0.041*** 0.009 0.035***
(0.018) (0.007) (0.010) (0.011) (0.006) (0.008)

γ̂ × Suiti,t 0.013 0.005 0.004 0.082*** 0.012* 0.042***
(0.012) (0.005) (0.007) (0.014) (0.007) (0.008)

#Discl−i,j,t 0.225*** 0.221*** 0.225*** 0.223*** 0.217*** 0.214*** 0.217*** 0.216***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

#Discli,−j,t 0.103*** 0.117*** 0.103*** 0.107*** 0.108*** 0.111*** 0.107*** 0.108***
(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Constant -0.029** -0.044*** -0.028** -0.010 -0.053*** -0.075*** -0.053*** -0.047***
(0.013) (0.012) (0.013) (0.014) (0.012) (0.011) (0.012) (0.013)

Observations 85,240 85,240 85,240 85,240 85,240 85,240 85,240 85,240
R-squared 0.064 0.078 0.065 0.068 0.109 0.122 0.110 0.113

Suiti,t 1/Sizei,t Intani,t Stdev(Ret)i,t 1/Sizei,t Intani,t Stdev(Ret)i,t
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Table 15: PBT, PBD and Market Liquidity with γ̂1
i,t

This table reports test results on the effect of PBT and PBD on market liquidity. In each specification, we
test—in part or in full—the following regression model of Eq. (60):

∆log(Amihudi,t) =β0 + β1γ̂
1
i,t + β2Suiti,t + β3γ̂

1
i,t × Suiti,t + β4∆log(#Discli,t) + β5∆log(#Discli,t)× γ̂1

i,t

(60)

+ β6∆log(#Discli,t)× Suiti,t + β7∆log(#Discli,t)× γ̂1
i,t × Suiti,t + β8∆log(Tradingi,t)

+ β9∆log(Tradingi,t)× γ̂1
i,t + β10∆log(Tradingi,t)× Suiti,t

+ β11∆log(Tradingi,t)× γ̂1
i,t × Suiti,t + δ′∆log(Xi,t) + δy + δq + εi,t.

The sample we use to test this model is constructed at firm-quarter level, as indexed by i and t, respectively.
∆log(Amihudi,t) measures the log change in Amihud’s (2002) liquidity. γ̂1

i,t is a proxy for funds’ incentives
to disclose about stock i in quarter t (short-termism) and is constructed as follows. In each quarter, we
construct each holding company j’s flow-return sensitivity—labeled γ̂1

j,t—by first estimating, for each fund
k under the holding company, a rolling regression of its fund flows on its contemporaneous as well as past
fund returns (Eq. (47)) and then computing ζ̂k,t as the sum of the resulting contemporaneous and lagged
estimates of flow-performance sensitivity coefficients (Eq. (48)). We then define γ̂1

j,t as the NAV-weighted

average ζ̂k,t of all funds k managed by holding company j at quarter t. For each stock i in each quarter t, we
then compute a weighted average of γ̂1

j,t across all holding companies with non-zero holdings in that stock
using the absolute value of the corresponding number of its shares held as weights. We denote this weighted
average by γ̂1

i,t (Eq. (56)):

γ̂1
i,t =

1∑
j |Shri,j,t|

∑
j

|Shri,j,t| × γ̂1
j,t. (56)

We then define γ̂1
i,t as log(1 + γ̂1

i,t). ∆log(#Discli,t) is the log change in the number of disclosures about
firm i from quarter t − 1 to quarter t. ∆log(Tradingi,t) is the log change in the percentage trading by all

sample mutual funds; percentage trading is defined as Tradingi,t =
|Shri,t−Shri,t−1|

ShrOuti,t−1
, where Shri,t is the total

number of shares held by all sample funds at the end of quarter t and ShrOuti,t is firm i’s number of shares
outstanding as of the end of quarter t. Suiti,t, the conditioning variable, is defined in Table 13 as the log
change in either the inverse of firm size (measured as market capitalization, Sizei,t), intangibility (proportion
of intangible asset of total asset, Intani,t), or standard deviation of stock i’s past returns (Stdev(Ret)i,t)—as
indicated in the bottom row of this table. In all specifications, we include in the control vector ∆ log(Xi,t) the
following variables: The log change in firm size, intangibility, and stock return volatility—whenever either
is not also used as a measure of a firm’s suitability (Suiti,t); the log change in its average price level; and
∆log(#Discl−i,t), the log change in the number of disclosures made about all firms except firm i, whenever
∆log(#Discli,t) is also included. In all specifications, we include year fixed effects (δy) and quarter fixed
effects (δq). All variables are winsorized at the 2% and 98% levels and standardized. Standard errors in
parentheses are heteroscedasticity-robust and clustered by firm.
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Table 15 Continued

(1) (2) (3) (4) (5)
LHS Var. ∆log(Amihud)

γ̂1 0.027*** 0.024*** 0.022***
(0.009) (0.008) (0.008)

∆log(#Discl) -0.008* -0.010** -0.009*
(0.005) (0.005) (0.005)

∆log(#Discl)× γ̂1 -0.020** -0.018**
(0.009) (0.008)

∆log(Trading) 0.023** 0.015* 0.013
(0.009) (0.009) (0.009)

∆log(Trading)× γ̂1 0.023*** 0.019**
(0.008) (0.008)

Observations 28,094 28,094 28,094 28,094 28,094
R-squared 0.514 0.513 0.515 0.514 0.516

(6) (7) (8) (9) (10) (11) (12) (13) (14)
LHS Var. ∆log(Amihud)

γ̂1 -0.014** 0.026*** 0.022*** -0.011** 0.021*** 0.010* -0.011** 0.020*** 0.009*
(0.006) (0.009) (0.007) (0.005) (0.008) (0.005) (0.005) (0.007) (0.005)

Suiti,t 0.326*** -0.001 -0.025 0.347*** -0.005 -0.051** 0.345*** -0.006 -0.052**
(0.043) (0.005) (0.022) (0.047) (0.005) (0.020) (0.048) (0.005) (0.021)

γ̂1 × Suiti,t -0.005 0.013 0.046*** -0.000 0.008 0.010 -0.002 0.006 0.002
(0.011) (0.009) (0.015) (0.008) (0.007) (0.009) (0.008) (0.007) (0.009)

∆log(#Discl) -0.001 -0.009** -0.008** -0.002 -0.007* -0.005*
(0.003) (0.004) (0.003) (0.003) (0.004) (0.003)

∆log(#Discl)× γ̂1 -0.008** -0.018*** -0.016*** -0.009** -0.017*** -0.012**
(0.004) (0.006) (0.005) (0.004) (0.006) (0.005)

∆log(#Discl)× Suiti,t -0.002 -0.011 -0.017** -0.002 -0.009 -0.012*
(0.005) (0.007) (0.007) (0.005) (0.006) (0.006)

∆log(#Discl)× γ̂1 × Suiti,t -0.016*** -0.029*** -0.036*** -0.016*** -0.027** -0.028***
(0.006) (0.011) (0.009) (0.006) (0.011) (0.008)

∆log(Trading) -0.009* 0.013 0.014* -0.011** 0.011 0.012
(0.005) (0.009) (0.008) (0.005) (0.009) (0.008)

∆log(Trading)× γ̂1 -0.009* 0.021*** 0.022*** -0.013*** 0.017** 0.018***
(0.005) (0.007) (0.006) (0.005) (0.007) (0.006)

∆log(Trading)× Suiti,t 0.005 -0.001 0.063*** 0.007 -0.002 0.061***
(0.005) (0.007) (0.019) (0.005) (0.007) (0.019)

∆log(Trading)× γ̂1 × Suiti,t -0.010 0.023*** 0.052*** -0.011 0.020** 0.049***
(0.009) (0.009) (0.013) (0.009) (0.008) (0.012)

Observations 28,094 28,094 28,094 28,094 28,094 28,094 28,094 28,094 28,094
R-squared 0.543 0.517 0.521 0.541 0.515 0.525 0.544 0.518 0.528

Suiti,t(∆log) 1/Sizei,t Intani,t Stdev(Ret)i,t 1/Sizei,t Intani,t Stdev(Ret)i,t 1/Sizei,t Intani,t Stdev(Ret)i,t
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Table 16: PBT, PBD and Market Liquidity with γ̂2
i,t

This table reports test results on the effect of PBT and PBD on market liquidity. In each specification, we
test—in part or in full—the following regression model of Eq. (60):

∆log(Amihudi,t) =β0 + β1γ̂
2
i,t + β2Suiti,t + β3γ̂

2
i,t × Suiti,t + β4∆log(#Discli,t) + β5∆log(#Discli,t)× γ̂2

i,t

(60)

+ β6∆log(#Discli,t)× Suiti,t + β7∆log(#Discli,t)× γ̂2
i,t × Suiti,t + β8∆log(Tradingi,t)

+ β9∆log(Tradingi,t)× γ̂2
i,t + β10∆log(Tradingi,t)× Suiti,t

+ β11∆log(Tradingi,t)× γ̂2
i,t × Suiti,t + δ′∆log(Xi,t) + δy + δq + εi,t.

The sample we use to test this model is constructed at firm-quarter level, as indexed by i and t, re-
spectively. ∆log(Amihudi,t) measures the log change in Amihud’s (2002) liquidity. γ̂2

i,t is a proxy for a
fund’s incentives to disclose (short-termism) and is constructed as follows. For each firm i in each quar-
ter t, we define γ̂2

i,t as the deviation of the mutual fund sector’s holdings of firm i from firm i’s mar-

ket share. Specifically, let Hf
i,t = Value of Firm i Shares Held by All Sample Funds at the End of Quarter t

Value of All S&P 1500 Firms Held by All Sample Funds at the End of Quarter t and let

Hm
i,t = Market Cap. of Firm i at the End of Quarter t

Market Cap. of All S&P 1500 Firms at the End of Quarter t , then define (Eq. (61))

γ̂2
i,t =

log(
Hfi,t
Hmi,t

), if Hf
i,t > Hm

i,t,

log(
Hmi,t

Hfi,t
), Otherwise.

(61)

∆log(#Discli,t) is the log change in the number of disclosures about firm i from quarter t− 1 to quarter t.
∆log(Tradingi,t) is the log change in the percentage trading by all sample mutual funds; percentage trading

is defined as Tradingi,t =
|Shri,t−Shri,t−1|

ShrOuti,t−1
, where Shri,t is the total number of shares held by all sample funds

at the end of quarter t and ShrOuti,t is firm i’s number of shares outstanding as of the end of quarter
t. Suiti,t, the conditioning variable, is defined in Table 13 as the log change in either the inverse of firm
size (measured as market capitalization, Sizei,t), intangibility (proportion of intangible asset of total asset,
Intani,t), or standard deviation of stock i’s past returns (Stdev(Ret)i,t)—as indicated in the bottom row of
this table. In all specifications, we include in the control vector ∆ log(Xi,t) the following variables: The log
change in firm size, intangibility, and stock return volatility—whenever either is not also used as a measure
of a firm’s suitability (Suiti,t); the log change in its average price level; and ∆log(#Discl−i,t), the log change
in the number of disclosures made about all firms except firm i, whenever ∆log(#Discli,t) is also included. In
all specifications, we include year fixed effects (δy) and quarter fixed effects (δq). All variables are winsorized
at the 2% and 98% levels and standardized. Standard errors in parentheses are heteroscedasticity-robust
and clustered by firm.
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Table 16 Continued

(1) (2) (3) (4) (5)
LHS Var. ∆log(Amihud)

γ̂2 0.036** 0.028** 0.027**
(0.015) (0.012) (0.012)

∆log(#Discl) -0.008* -0.011** -0.010*
(0.005) (0.005) (0.005)

∆log(#Discl)× γ̂2 -0.021** -0.019**
(0.009) (0.009)

∆log(Trading) 0.023** 0.010 0.008
(0.009) (0.006) (0.006)

∆log(Trading)× γ̂2 0.035*** 0.031***
(0.009) (0.009)

Observations 28,094 28,094 28,094 28,094 28,094
R-squared 0.514 0.513 0.516 0.515 0.517

(6) (7) (8) (9) (10) (11) (12) (13) (14)
LHS Var. ∆log(Amihud)

γ̂2 -0.023*** 0.035** 0.028** -0.021*** 0.026** 0.007 -0.021*** 0.025** 0.007
(0.005) (0.015) (0.011) (0.005) (0.012) (0.006) (0.005) (0.012) (0.007)

Suiti,t 0.304*** -0.002 -0.046*** 0.303*** -0.006 -0.073*** 0.300*** -0.007* -0.076***
(0.039) (0.006) (0.018) (0.038) (0.005) (0.015) (0.040) (0.004) (0.015)

γ̂2 × Suiti,t 0.020*** 0.009 0.085*** 0.020*** 0.002 0.031*** 0.019*** 0.000 0.028***
(0.006) (0.010) (0.020) (0.006) (0.008) (0.008) (0.006) (0.008) (0.009)

∆log(#Discl) -0.003 -0.008** -0.008** -0.003 -0.007* -0.006**
(0.003) (0.004) (0.003) (0.003) (0.004) (0.003)

∆log(#Discl)× γ̂2 -0.011*** -0.019*** -0.015*** -0.012*** -0.017*** -0.013***
(0.004) (0.006) (0.005) (0.004) (0.006) (0.005)

∆log(#Discl)× Suiti,t -0.001 -0.009 -0.011** -0.001 -0.008 -0.009
(0.005) (0.006) (0.006) (0.005) (0.006) (0.005)

∆log(#Discl)× γ̂2 × Suiti,t -0.013** -0.027*** -0.028*** -0.012** -0.026*** -0.022***
(0.006) (0.010) (0.008) (0.006) (0.010) (0.007)

∆log(Trading) -0.009* 0.009 0.008 -0.010** 0.007 0.006
(0.005) (0.006) (0.005) (0.005) (0.006) (0.005)

∆log(Trading)× γ̂2 -0.003 0.034*** 0.030*** -0.007* 0.030*** 0.026***
(0.004) (0.009) (0.006) (0.004) (0.010) (0.006)

∆log(Trading)× Suiti,t -0.001 -0.001 0.032*** 0.001 -0.002 0.032***
(0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

∆log(Trading)× γ̂2 × Suiti,t 0.006 0.018** 0.072*** 0.006 0.015* 0.069***
(0.005) (0.009) (0.011) (0.005) (0.008) (0.011)

Observations 28,094 28,094 28,094 28,094 28,094 28,094 28,094 28,094 28,094
R-squared 0.544 0.517 0.526 0.541 0.516 0.532 0.544 0.519 0.535

Suiti,t(∆log) 1/Sizei,t Intani,t Stdev(Ret)i,t 1/Sizei,t Intani,t Stdev(Ret)i,t 1/Sizei,t Intani,t Stdev(Ret)i,t
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Table 17: Summary Statistics

This table reports summary statistics of the sample for BLP estimation. The sample period is from 1994
to 2017. Deposit share and loan share are computed taking the entire United States as a unified market.
The total size of the deposit market is defined as the sum of deposits, cash, and bonds held by all the U.S.
households. The total size of the loan market is defined as the sum of bank loans and corporate bonds
issued by the U.S. firms. Deposit and loan rates are imputed using the interest expense and income from
Call report. Expense of fixed assets and salary are scaled by total assets. Deposit share, loan share, deposit
rates, loan rates, expense of fixed assets and salary are reported in percentage. The data is from Call report
and FDIC Summary of Deposits.

mean sd p10 p25 p50 p75 p90

Deposit Share 0.086 0.535 0.004 0.005 0.010 0.024 0.088

Loan Share 0.028 0.160 0.001 0.001 0.002 0.006 0.027

Deposit Rates 1.774 1.275 0.117 0.562 1.667 2.883 3.546

Loan Rates 6.521 1.629 4.416 5.269 6.383 7.813 8.682

# of Branches 80.963 342.600 12.000 14.000 20.000 40.000 115.000

# Employees per Branch 17.443 16.131 9.063 11.015 13.905 18.571 26.533

Expenses of Fixed Assets 0.458 0.153 0.271 0.342 0.437 0.564 0.729

Salary 1.683 0.451 1.065 1.343 1.634 1.990 2.493
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Table 18: Monetary Policy Shocks and Bank Equity Returns on FOMC Days

This table reports the estimates of the relation between bank equity returns and monetary policy shocks on
FOMC Days. Monetary shocks are measured by the daily change in the two-year Treasury yield on FOMC
days. HHI is the the Herfindahl-Hirschman index of the local deposit market in which the bank operates.
A local deposit market is defined as a Metropolitan Statistical Area (MSAs). If a bank operates in several
MSAs, the bank-level HHI is the weighted average of local HHI, weighted by the deposits of the bank in the
local market. The sample includes all publicly traded U.S. banks from 1994 to 2017. We exclude observations
during the burst of dot-com bubble (2000-2001) and the subprime financial crisis (2007-2009). The standard
errors are clustered by time.

(1) (2) (3) (4)
FFR > 2% FFR ≤ 2% FFR > 2% FFR ≤ 2%

∆ 2-year Yield -1.292∗∗ 2.202∗∗ -0.639 -1.393
[0.615] [0.879] [0.653] [0.852]

HHI*∆ 2-year Yield -0.134 0.562∗∗∗

[0.145] [0.153]

∆ Term Spread -0.634 2.336∗ -0.667 1.827
[1.265] [1.350] [1.257] [1.293]

Market Return 0.297∗∗∗ 0.730∗∗∗ 0.295∗∗∗ 0.733∗∗∗

[0.072] [0.070] [0.071] [0.070]
Observations 27,257 33,805 27,257 33,805
Adj, R-squared 0.015 0.123 0.016 0.125
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Table 19: Bank Balance Sheet

This table illustrates the balance sheet of a typical bank at the beginning of the period.

Assets Liabilities

Existing loans Lt Deposits Dt

New loans P
(
Bt, r

l
t

)
Non-reservable borrowings Nt

Reserves Rt Equity Et
Government securities Gt

Total Assets Lt + P
(
Bt, r

l
t

)
+Rt +Gt Total Liabilities and Equity Dt +Nt + Et
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Table 20: Parameter Estimates

This table reports the model parameter estimates. Panel A presents results for parameters that represent
statutory rates. Panel B presents results from parameters that can be calculated as simple averages or by
simple regression methods. Panel C presents results from parameters estimated via BLP. Panel C presents
results from parameters estimated via SMM.

Statutory Parameters

τc Corporate tax rate 0.35

θ The reserve ratio 0.022

κ The capital ratio 0.06

Parameters Estimated Separately

µ Average loan maturity 5

f̄ Log Federal Funds rate mean 0.60

σf Log Federal Funds rate variance 0.65

ρf Log Federal Funds rate persistence 0.91

δ̄ Log loan chargeoffs mean -0.89

σδ Log loan chargeoffs variance 1.24

ρδ Log loan chargeoffs persistence 0.50

Ĵ Number of representative banks 14

Parameters Estimated via BLP

αd Depositors’ sensitivity to deposit rates 0.80 [0.16]

σαd The dispersion of depositors’ sensitivity to deposit rates 1.58 [0.44]

αl Borrowers’ sensitivity to loan rates -0.90 [0.16]

qdd Convenience of holding deposits 0.95 [0.19]

qdb Convenience of holding bonds -0.10 [0.16]

qll Convenience of borrowing through loans -0.10 [0.59]

Parameters Estimated via SMM

γ Banks’ discount rate 0.052

φN Cost function of non-reservable borrowing 0.010

φd Bank’s cost of taking deposits 0.007

φl Bank’s cost of servicing loans 0.009

qln The value of firms’ outside option -6.493
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Table 21: Moment Conditions

This table reports the moment conditions in the simulated method of moment (SMM) estimation.

Actual Moment Simulated Moment

Dividend yield 2.53% 2.64%

Non-reservable borrowing share 30% 30.8%

Deposit spread 1.46% 1.66%

Loan spread 2.78% 2.77%

Loan/Deposit Ratio 0.96 0.978

Corporate Borrowing-FFR Sensitivity -0.50 -0.562

Deposit spread - FFR sensitivity 0.30 0.285

Loan spread - FFR sensitivity -0.25 -0.241
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Table 22: Demand Estimation

This table reports the estimated parameters of the deposit and loan demand. The first column reports
parameters of deposit demand. The second column reports parameters of loan demand. Yield sensitivity (α)
refers to the average sensitivity of the depositors (firms) to deposit rates (loan rates). Log No. of Branches
(β1) refers the sensitivity of the depositors (firms) to log number of branches that each bank has. Log No. of
Employees (β1) refers the sensitivity of the depositors (firms) to log number of employees per branch. Yield
sensitivity (σα) refers to the dispersion in the sensitivity of the depositors to deposit rates (the dispersion
is set to 0 for firms). The sample includes all the U.S. commercial banks from 1994 to 2017 with domestic
branches higher than 10. The data is from the Call report and the Summary of Deposits.

Deposit Loan

Yield sensitivity (α) 0.800*** -0.904***
[0.158] [0.163]

Log number of branches (β1) 0.868*** 1.117***
[0.009] [0.000]

Log number of employees (β2) 0.587*** 0.694***
[0.016] [0.031]

Yield sensitivity dispersion (σα) 1.579***
[0.439]

Sector F.E. Y Y
Time F.E. Y Y
Observations 15575 15575
Adj. Rsq 0.982 0.867
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Table 23: Determinants of Monetary Policy Transmission

This table depicts a series of counterfactual experiments in which we examine the cumulative effect of
removing frictions from our model on two important quantities. The first is the sensitivity of loans to the
Federal Funds rate (FFR), and the second is the aggregate amount of borrowing, which is normalized to
100% in the baseline case. Each line of the table presents the results from eliminating the corresponding
friction.

Sensitivity of Loans to FFR (∆(l)
∆f

) Aggregate Bank Loans

(1) Baseline −3.88% 100%

(2) − Reserve Regulation −3.81% 101%

(3) − Deposit Market Power −2.57% 118%

(4) − Capital Constraint −0.95% 128%

(5) − Loan Market Power −1.38% 193%
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Table 24: High versus Low Market Concentration

This table illustrates how the monetary policy transmission is influenced by different frictions under three
economic regimes: high bank concentration, median bank concentration, and low bank concentration. Bank
concentration is measured by the number of competing banks, N , in the local market. Monetary policy
transmission is captured by the sensitivity of loans to the Federal Funds rate (FFR). Each line of the table
presents the results from eliminating the corresponding friction.

Concentration

Low, N = 200 Median, N = 14 High, N = 2

(1) Baseline -3.52% -3.88% -5.21%

(2) − Deposit Market Power -3.18% -2.57% -3.27%

(3) − Capital Constraint -0.96% -0.95% -0.93%

(4) − Loan Market Power -1.35% -1.38% -1.59%
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Table 25: Large versus Small Banks

This table presents the parameter estimates and the degree of monetary policy transmission in subsamples
of large and small banks. φd and φl are banks’ marginal costs of intaking deposits and servicing loans, re-
spectively, and φN is the quadratic cost of borrowing non-reservables. The last column reports the sensitivity
of loans to the Federal Funds rate (FFR), which is a measure of monetary policy transmission. Standard
errors clustered at the firm level are in parentheses under the parameter estimates.

Parameters Estimates Sensitivity of Loans to FFR(∆(l)
∆f

)

γ qln φN φd φl

Full Sample 0.052 -6.439 0.004 0.008 0.006 -2.48

Big Banks 0.052 -6.439 0.004 0.008 0.005 -2.31

Small Banks 0.052 -6.439 0.003 0.009 0.012 -3.24
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Figure 1: Sequence of Events for a Typical Firm

The firm produces with

existing productivity zt.

Cash flow shock εt is

realized and the firm col-

lects output y = f(εt, zt).

With prob. π, the firm’s

productivity declines by

a fraction δ.

New seeds in the amount

of it arrive. Size of the

firm’s seed stock adds up

to st = (1− η)qt−1 + it.

Seed trading takes place.

The firm chooses the

amount of projects (qt)

to develop.

The firm pays dividend

or raises equity, and

chooses its new debt

level.

A fraction η of projects

(qt) matures. Firm’s

productivity becomes

zt+1 = (1− δIδ)zt + ψηqt.

Figure 1 shows the sequence of events in a typical time period t for a typical firm.
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Figure 2: Empirical and Fitted Distributions of Quarterly Patent Grants

This figure plots the empirical and fitted distributions of quarterly patent grants. The empirical distribution
is estimated non-parametrically. I measure the quarterly patent grant as the citation-weighted number of
patents issued to firm i in quarter t:

ngi,t =
∑

j∈Qgrant
i,t

Cj

Ê
[
Ck

∣∣∣Yk = Yj , Tk = Tj

] ,
where Qgrant

i,d is the set of patents issued to firm i in quarter t, Cj is the number of citations received by

Patent j, and Ê
[
Ck

∣∣∣Yk = Yj , Tk = Tj

]
is the average number of citations received by all patents granted in

the same year and in the same technology field as patent j. The solid lines are the kernel density estimations
of ngi,t, and the dashed lines are the fitted exponential distributions. The three panels show the quarterly
patent grant distributions for the full sample, small firms and large firms, respectively. Small (large) firms
are defined as those with capital stocks below (above) the sample median.
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Figure 3: Numerical Policy Functions

This figure presents the numerical policy functions. Panels A and B show the dependences of the real
policies, net seed purchase ∆s and the number of projects developed q, on the beginning-of-period net cash
holdings, abeg. Panels C and D are the firm’s financial policies, net payout d and end-of-period savings aend.
Panels E and F show how net seed purchase ∆s varies with the firm’s other two state variables, current
productivity z and seed stock s. In all figures, the solid lines are the policy functions of an individual firm;
when moving along the x-axis, one state variable is varied while the others are fixed. The dashed lines are
the equilibrium averages of the policies conditioning on the state variable in the x-axis.
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Figure 4: Comparative Statics

This figure presents several comparative statics. In each plot, one parameter is varied while the others are
held fixed at their estimated values.
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Figure 5: Firm Impulse Responses to Seed and Cash Shocks

This figure shows the firm’s impulse responses to seed and cash shocks. Before time zero, the firm is fed with
a long sequence of median seed and cash flow shocks, i and ε, respectively, and the productivity depreciation
rate is at its average level, π× δ. At time zero, the firm becomes subject to large one-time shocks. In Panel
A, the firm receives a large, positive seed inflow, while in Panel B, the firm experiences a large, positive seed
inflow plus a large operating loss. Each panel shows how cash holdings, net payout, productivity, net seed
purchase, and the number of developed projects evolve in response to the shocks.
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Figure 6: The Direct and Indirect Effects of Seed Trading

This figure shows the decomposition of IAT gains into direct and indirect effects for a range of trading
costs. The x-axis is the number of multiples of trading costs. That is, x = 1 is the benchmark case where
all parameters are estimated from the data; when moving along the x-axis, the trading cost parameters, χ0,
χ1, and χ2, vary but all other parameters are unchanged. The y-axis is the percentage changes in efficiency
measures relative to the without-trade specification. Three efficiency measures are considered: the average
number of planted seeds (Panel A), the average losses due to costly external financing (Panel B), and the
average firm value (Panel C). The direct effects are plotted in dashed lines against the left scale, while the
indirect effects are plotted as solid lines against the right scale. Reported in annotations are the local trading
cost elasticities of the efficiency measures computed at the benchmark parameter levels.
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Figure 7: Costs of Seed Trading and the Efficiency Losses to Financial Frictions

This figure shows the issuance cost, λ, and trading cost, χj , j = 0, 1, 2, elasticity of three equilibrium
efficiency measures, namely, the average firm value, E[v − abeg], the average marginal value of net cash
holdings, E[ ∂v

∂abeg
], and the value loss to seed misallocatio, Ls. Ls is defined as:

Ls = 1−
∫ [
v(abeg, z, s)− abeg

]
dΓ∫ [

v(abeg, z, s∗)− abeg
]
dΓ
, (21)

where Γ is the equilibrium distribution of firm states (abeg, z, s) and s∗ = s∗(abeg, z) is the socially optimal
seed stock, defined as:

s∗(abeg, z) = arg max
s̃ s.t.

∫
s̃dΓ=

∫
sdΓ

∫ [
v(abeg, z, s̃)− abeg

]
dΓ.

The solid lines show the dependences of the issuance cost elasticities on the trading costs, and the dashed
lines show the dependence of the trading cost elasticities on the issuance cost. The x-axis corresponds to
multiples of these costs’ estimates. For instance, when the trading cost multiple is equal to 0.5, the values
on the solid lines are the issuance cost elasticities if χ0, χ1, and χ2 are half of their estimates.
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Figure 8: Timing of Patent Sales

This figure shows the timing of patent sales in terms of firms’ cash holdings. Each firm’s time series is sorted
into five bins by lagged cash holdings. Panels A, B, C, and D show the average net patent sales in each bin.
The solid lines are the mean values, and the dashed lines enclose the 95% confidence intervals. Small/large
firms are firms with book assets below/above the sample median. Rated firms are those that ever receive a
bond rating from Standard & Poor’s during the sample period; the rest are grouped as unrated. Net patent
sale, nsi,t, is defined as:

nsi,t =
[ ∑
j∈Qsi,t

Cj

Ê
[
Ck
∣∣Yk = Yj , Tk = Tj

] − ∑
j∈Qbi,t

Cj

Ê
[
Ck
∣∣Yk = Yj , Tk = Tj

]]/K̄i,

where K̄i is firm i’s average book assets, Qb
i,t and Qs

i,t are the sets of patents firm i buys and sells in quarter
t, respectively, Cj is the number of citations received by patent j, and Yj and Tj denote the grant year and
technology class of patent j, respectively.
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Figure 9: Firm R&D around Patent Sales

This figure shows firms’ R&D expenses in two-year horizons before and after patent sales. Specifically, for
each quarter t in which firm i sells patents, I define the demeaned R&D as:

rddemeaned
i,h =

RDi,t+h

Ki,t−1
− 1

17

8∑
l=−8

RDi,t+l

Ki,t−1
, h = −8,−7, ..., 8.

RDi,t+h is firm i’s annualized R&D expense in quarter t + h, and Ki,t−1 is the firm’s book assets in the
quarter before patent sales. I compute the average of rddemeaned

i,h for each h = −8,−7, ..., 8, and I consider four
subsamples—small, large, rated, and unrated firms. Small/large firms are firms with book assets below/above
the median value of the quarter before the patent sales. Rated firms are those that ever receive a bond rating
from S&P during the sample period; I group the rest as unrated. In the plots below, the solid lines are the
means of rddemeaned

i,h and the dashed lines enclose its 95% confidence interval.
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Figure 10: Timing of Equity Issuances

This figure shows the timing of equity issuances in terms of firms’ cash holdings. I sort each firm’s time
series into five quintiles by cash holdings. I then pool together the firm-quarters in each quintile and compute
the mean issuances. In the plots below, the solid lines are the mean values, and the dashed lines enclose the
95% confidence intervals. I consider four subsamples: small, large, rated, and unrated firms. Small/large
firms are firms with book assets below/above the sample median. Rated firms are those that ever receive a
bond rating from S&P during the sample period; I group the rest as unrated. Equity issuance is defined as
total proceeds divided by the firm’s book assets.
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Figure 11: Firm R&D around Equity Issuances

This figure plots firm’s R&D expenses in two-year horizons before and after equity issuances. Specifically,
for each quarter t in which firm i issues equity, I define the demeaned R&D as:

rddemeaned
i,h =

RDi,t+h

Ki,t−1
− 1

17

8∑
l=−8

RDi,t+l

Ki,t−1
, h = −8,−7, ..., 8.

RDi,t+h is firm i’s annualized R&D expense in quarter t + h, and Ki,t−1 is the firm’s book assets in the
quarter before the issuance. I compute the average of rddemeaned

i,h for each h = −8,−7, ..., 8, and I consider
four subsamples—small, large, rated, and unrated firms. Small/large firms are firms with book assets
below/above the median value of the quarter before the patent sales. Rated firms are those that ever receive
a bond rating from S&P during the sample period; I group the rest as unrated. In the plots below, the solid
lines are the means of rddemeaned

i,h and the dashed lines enclose the 95% confidence interval.
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Figure 12: Technological Distance and Patent Sales

This figure shows firms’ R&D expenses around sales of core and peripheral patents and the timing of these
patent sales. Core (peripheral) patent trades are those that involve patents whose technological distance
from the firms’ patent portfolio is below (above) the sample median. Panels A and B show firms’ R&D
expenses around core and peripheral patent sales, where quarter 0 is the quarter with patent sales. R&D
expenses, rddemeaned

i,h , is defined as:

rddemeaned
i,h =

RDi,t+h

Ki,t−1
− 1

17

8∑
l=−8

RDi,t+l

Ki,t−1
, h = −8,−7, ..., 8.

In Panels C and D, each firm’s time series is sorted into five quintiles based on its lagged net cash holdings.
The panels show the firms’ net patent sales in each bin. Net patent sale, nsi,t, is defined as:

nsi,t =
[ ∑
j∈Qsi,t

Cj

Ê
[
Ck
∣∣Yk = Yj , Tk = Tj

] − ∑
j∈Qbi,t

Cj

Ê
[
Ck
∣∣Yk = Yj , Tk = Tj

]]/K̄i,

where K̄i is firm i’s average book assets, Qb
i,t and Qs

i,t are the sets of patents firm i buys and sells in quarter
t, respectively, Cj is the number of citations received by patent j, and Yj and Tj denote the grant year and
technology class of patent j, respectively. In all panels, the solid lines are the mean values and the dashed
lines show the 95% confidence intervals.
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Figure 13: Patent Owners’ Net Cash Holdings throughout Patent Lifetimes

This figure shows firms’ (book-assets-scaled) net cash holdings from the time they buy or are issued a
patent till the time they eventually sell the patent (quarter 0). Four subsamples are considered: large,
small, rated, and unrated firms. The solid lines are the average net cash holdings and the dashed lines
enclose its 95% confidence interval.
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Figure 14: Time Line

The speculator chooses whether

to commit to sending a sig-

nal and, if she does, publicly

announces the signal weight δ.

Risky asset’s payoff v and the

speculator’s initial position e are

privately observed by the specu-

lator. If the speculator has com-

mitted to disclose at t = −1, the

signal s = δe + (1 − δ)v is publicly

announced.

The speculator and noise

traders submit their market

orders, x and z, respectively.

MM sets price upon observing

aggregate order flow ω = x+ z.

The risky asset is

liquidated at v per

share.

t = −1 t = 0 t = 1 t = 2

This figure depicts the time line of the baseline model (starting from date t = 0) and
the signaling model (starting from date t = −1).
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Figure 24: Monetary Policy Shocks and Bank Equity Returns

This figure provides the scatter plot of the bank industry excess returns against the daily change in two-year
Treasury yield on FOMC days from 1994 to 2017. The excess return is defined as the different between bank
industry index return and the market return. The sample of the upper panel is when the Federal Funds rate
is above 2% and the sample of the lower panel is when the Federal Funds rate is below 2%. We exclude
observations during the burst of dot-com bubble (2000-2001) and the subprime financial crisis (2007-2009)
because the stock returns are extremely volatile. The bank industry stock returns are retrieved from Kenneth
French’s website and the two-year Treasury yield is retrieved from FRED database of the Federal Reserve
Bank of St. Louis.
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Figure 25: The Average Deposit Spread and the Fed Funds Rates

This figure plots the non-parametric relationship between the Fed Funds rate and the average deposit spread
of U.S. banks. The sample is from 1985 to 2017. The data frequency is quarterly. The deposit spread is
constructed using the Call report and the Fed Funds rate is retrieved from FRED database of the Federal
Reserve Bank of St. Louis.
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Figure 26: Loan-to-Deposit Ratios for U.S. Banks

This figure plots the loan-to-deposit ratio of U.S. banks after the start of five recessions from 1973 to 2017.
The x-axis is the month since the start of recession and the y-axis the loan-to-deposit ratio. We normalize
the ratio in month 0 to 1. We plot the path of the ratio until the ratio recovers to the pre-recession level.
The data is retrieved from FRED database of the Federal Reserve Bank of St. Louis.
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Figure 27: Timeline within a Period

This figure plots the loan-to-deposit ratio of U.S. banks after the start of five recessions from 1973 to 2017.
The x-axis is the month since the start of recession and the y-axis the loan-to-deposit ratio. We normalize
the ratio in month 0 to 1. We plot the path of the ratio until the ratio recovers to the pre-recession level.
The data is retrieved from FRED database of the Federal Reserve Bank of St. Louis.
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Figure 28: Fed Funds Rate and Bank Characteristics

This figure illustrates how bank capital and optimal lending vary with the Fed Funds rate. Banks’ optimal
lending is calculated under two alternative cases: the baseline line where banks are subject to the capital
regulation and an alternative unconstrained case where the capital regulation is removed. The Fed Funds
rate is on the x-axis; bank characteristics, scaled by their respective steady state values (when the Fed funds
rate is 0.02), is on the y-axis.
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Figure 29: Impulse Response to Fed Funds Rate Shocks

This figure illustrates banks’ impulse response to Fed fund rate shocks. The economy starts at Year 0 when
it is in the old steady state with the FFR equal to 0.02; In Year 1, the FFR either increases or decreases
by two standard deviations, and it stays at that level afterwards until the economy reaches the new steady
state. Each variable in the graph is scaled by the level in the old steady state (when FFR = 0.02).
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Appendix A: Proofs of Propositions

Proof of Proposition 1

The outline of the proof is as follows. First, by applying Theorem 9.2 of Stokey and Lucas (1989),
I show that the fixed point of the Bellman Equation (10) is the solution to the sequential problem
where the firm’s objective is to maximizes its discounted future cash flows. Next, I apply Blackwell’s
Theorem to show that the operator defined by equation (10) is a contraction mapping. Contraction
mapping implies that the fixed point to equation (10) is unique, provided that the payoff function
is bounded and the state space is compact, so the set of legitimate value functions forms a complete
metric space. This proof proceeds in two steps. First, I consider a modified problem where I restrict
the state variables to a compact space. Second, I show this restriction is without loss of generality.

Firm’s Problem Confined to a Compact State Space

I define the operator T associated with the firm’s problem as:

Tg(abeg, z, s) = max
aend,q,∆s

F (abeg, z, s, aend, q,∆s) +
1

1 + rf
Eg(a′beg, z

′, s′), (91)

where
F (abeg, z, s, aend, q,∆s) = d

[
1 + λ1{d < 0}

]
, (92)

d = abeg − aend − q − p∆s− χ(∆s), (93)

0 ≤ q ≤ s+ ∆s, (94)

aend ≥ a (95)

a′beg = (1− τ)
[
f(ε′, z′) + aendrf

]
+ aend, (96)

z′ = (1− δ × Iδ)z + ψηq (97)

s′ = (1− η)q + i′. (98)

The operator E(·) is taken over realizations of ε′, i′, and I ′δ. Since all three shocks are i.i.d., E(·)
satisfies the Feller property. I consider the value range of the firm’s state and policy variables.
Note that z and s have natural lower bounds of zero. Additionally, abeg is bounded from below
due to the borrowing constraint and the facts that z and ε′ are bounded from below and that the
function F (·) is continuous. For now, I impose the assumption that both abeg and s are bounded
from above. The upper bound on s then implies an upper bound on z. In addition, the fact
that abeg, z and s are bounded implies that the choice variables aend, q and ∆s are also bounded.
Accordingly, let Ω ⊂ [inf abeg, sup abeg]× [inf z, sup z]× [inf s, sup s] be the compact state space, and
let Φ(abeg, z, s) ⊂ [inf aend, sup aend]× [inf q, sup q]× [inf ∆s, sup ∆s] be the compact choice set given
state (abeg, z, s). I partition the choice set as follows:

Φ1 = Φ(abeg, z, s) ∩
{
|∆s| > 0

}
, (99)

and
Φ0 = Φ(abeg, z, s) ∩

{
|∆s| = 0

}
. (100)
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The operator T can thus be rewritten as:

Tg(abeg, z, s) = max
{
T 1g(abeg, z, s), T

0g(abeg, z, s)
}
, (101)

where:

T jg(abeg, z, s) = max
{aend,q,∆s}∈Φj

F (abeg, z, s, aend, q,∆s) +
1

1 + rf
Eg(a′beg, z

′, s′), j ∈ {0, 1}. (102)

Because F (.) is continuous in each subset Φj , j ∈ {0, 1}, Φj , j ∈ {0, 1} is compact, and the
operator E(·) has the Feller property, for any continuous and bounded function g, T j , j ∈ {0, 1} is
continuous and bounded by the Theorem of the Maximum. It then follows from equation (101) that
Tg is also continuous and bounded. Therefore, T maps continuous bounded functions to continuous
bounded functions.

Next I apply Blackwell’s Theorem for contraction mapping. Applying the Theorem requires
establishing two conditions: the monotonicity condition and the discounting condition. Let g1 ≤ g2

be two continuous bounded functions. Then:

Tg1(abeg, z, s) = F (abeg, z, s, a
∗
end, q

∗,∆s∗) + Eg1(a′beg, z
′, s′)

≤ F (abeg, z, s, a
∗
end, q

∗,∆s∗) + Eg2(a′beg, z
′, s′)

≤ Tg2(abeg, z, s),

where:

(a∗end, q
∗,∆s∗) = arg max

aend,q,∆s
F (abeg, z, s, aend, q,∆s) +

1

1 + rf
Eg1(a′beg, z

′, s′), (103)

are the optimal policies under g1. It then follows that Tg1 ≤ Tg2. This establishes the monotonicity
condition. Next, it is straight forward that for any c > 0, there is T (g + c) = Tg + c

1+rf
. This

establishes the discounting condition. Therefore, Blackwell’s Theorem implies T is a contraction
mapping. It follows that there is a unique fixed point v to the operator T , which by Theorem 9.2
of Stokey and Lucas (1989) is also the solution to the firm’s sequential problem.

To show that v as defined in equation (10) is monotonic in abeg, z and s, let g(abeg, z, s) be any
bounded continuous and weakly increasing function. Let abeg,2 ≥ abeg,1, z2 ≥ z1, and q2 ≥ q1 be
two sets of state variables, and let a∗end,1, s

∗
1,∆s

∗
1 be the optimal policies for the state (abeg,1, z1, q1).

Then:

Tg(abeg,1, z1, q1) = F (abeg,1, z1, q1, a
∗
end,1, q

∗
1,∆s

∗
1) +

1

1 + rf
E
[
g
∣∣z1, a

∗
end,1, q

∗
1,∆s

∗
1

]
≤ F (abeg,2, z2, q2, a

∗
end,1, q

∗
1,∆s

∗
1) +

1

1 + rf
E
[
g
∣∣z1, a

∗
end,1, q

∗
1,∆s

∗
1

]
≤ F (abeg,2, z2, q2, a

∗
end,1, q

∗
1,∆s

∗
1) +

1

1 + rf
E
[
g
∣∣z2, a

∗
end,1, q

∗
1,∆s

∗
1

]
≤ Tg(abeg,2, z2, q2).

The first inequality follows from the fact that F is increasing in its first three arguments and the
fact that Φ(abeg,1, z1, q1) ⊂ Φ(abeg,2, z2, q2), i.e., any feasible choice in the state (abeg,1, z1, q1) is
also feasible in the state (abeg,2, z2, q2). The second inequality obtains because g is monotonically
increasing, and therefore:

g(a′beg,1, z
′
1, q
′
1) ≤ g(a′beg,2, z

′
2, q
′
2), (104)
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for any realization of ε′, i′ and I ′δ, where:

a′beg,j = (1−τ)
[
f(ε′, z′j)+a∗end,1rf

]
+a∗end,1, z

′
j = (1−δ×Iδ)zj+ψηq∗1, s

′ = (1−η)q∗1 +i′, j ∈ {1, 2}.
(105)

The last inequality holds by definition of a maximum. Therefore, T maps from the set of monotonic
functions into itself. Because the space of weakly monotonic, bounded and continuous functions
is a complete metric space, by Corollary 1 to Theorem 3.2 of Stokey and Lucas (1989), the fixed
point of the operator T is monotonically increasing.

The Original Problem

To show that the problem restricted to a compact state space is equivalent to the original problem,
it suffices to show that the firm’s optimal choice of aend and ∆s are bounded, and therefore the
arbitrary upper bounds for abeg and s are slack. The proof proceeds as follows.

First, suppose all the fixed costs are turned off, that is, χ0 = 0. By applying Corollary 1 to
Theorem 3.2 of Stokey and Lucas (1989), it can be shown that the fixed point of T is weakly
concave. Denote this fixed point by v̄. Second, it is straight forward to show that v ≤ v̄. Since v
is bounded above by a concave function, it is never optimal to choose arbitrarily large ∆s. Finally,
the firm would never choose arbitrarily large amount of savings (aend) due to the corporate tax on
cash holdings.

Proof of Proposition 2

Proof of Part 1

Without equity issuance cost, the operator T associated with the firm’s problem is given by equation
(91)–(98), with λ = 0. In particular,

F (abeg, z, s, aend, q,∆s) = abeg − aend − q − p∆s− χ(∆s), (106)

where the function F (·) is given by equation (92). Denote by v0(·) the firm’s value function in the
absence of issuance cost. For any z, s and abeg,1 6= abeg,2, let a∗end,j , q

∗
j and ∆s∗j be the firm’s policy

functions in the state (abeg,j , z, s), j = 1, 2. There is:

v0(abeg,1, z, s) = F (abeg,1, z, s, a
∗
end,1, q

∗
1,∆s

∗
1) +

1

1 + rf
Ev(a′beg,1, z

′
1, q
′
1) (107)

= abeg,1 − abeg,2 + F (abeg,2, z, s, a
∗
end,1, q

∗
1,∆s

∗
1) +

1

1 + rf
Ev(a′beg,1, z

′
1, q
′
1)

≤ abeg,1 − abeg,2 + F (abeg,2, z, s, a
∗
end,2, q

∗
2,∆s

∗
2) +

1

1 + rf
Ev(a′beg,2, z

′
2, q
′
2)

= abeg,1 − abeg,2 + v0(abeg,2, z, s),

where a′beg,j = (1− τ)
[
f(ε′, z′j)+a∗end,jrf

]
+a∗end,j , z

′
j = (1− Iδ× δ)z+ψηq∗j , and q′j = (1−η)q∗j + i′,

j = 1, 2. The second line follows from the fact that F (·) is linear in abeg, the third line follows from
the fact that a∗end,2, q∗2 and ∆s∗2 are the optimal policies in the state (abeg,2, z, s), and the last line
follows from the definition of an optimal policy. As the choices of abeg,1 and abeg,2 are arbitrary,
there is also:

v0(abeg,2, z, s) ≤ abeg,2 − abeg,1 + v0(abeg,1, z, s). (108)

equations (107) and (108) imply:

v0(abeg,1, z, s) = (abeg,1 − abeg,2) + v0(abeg,2, z, s). (109)

184



Because the choices of abeg,1, abeg,2, z, and s are arbitrary. There is:

v0(abeg, z, s) = abeg + v0(0, z, s) ≡ abeg + u(z, s). (110)

Since

(a∗end,∆s
∗, q∗) = arg max

aend,∆s,q
F (abeg, z, s, aend, q,∆s) +

1

1 + rf

[
aend + u(z′, s′)

]
(111)

= arg max
aend,∆s,q

−q − p∆s− χ(∆s)−
rf

1 + rf
aend +

1

1 + rf
u(z′, s′),

it follows immediately that a∗end = a, and ∆s∗ and q∗ are independent of the state abeg.

Proof of Part 2

Step 1: For any given choice q, define the lowest cost of obtaining q, via either in-house R&D,
project trading or both, as:

c(q) = min
∆s

q + χ(∆s) + p∆s, (112)

such that
0 ≤ q ≤ s+ ∆s. (113)

It is straight forward to show that:

∆s∗(q) =

{
arg max−s+q≤∆s<0

{
− p∆s− χ(∆s)

}
if q < s,

q − s if q ≥ s.
(114)

Define
∆̂s = arg max

∆s

{
− p∆s− χ+(∆s)

}
. (115)

Given that χ(∆s) = 1{∆s 6= 0}χ+(|∆s|) and that χ+(·) is increasing and non-negative, ∆̂s so
defined is unique. Additionally, there is:

arg max
−s+q≤∆s<0

{
− p∆s− χ(∆s)

}
= min{max{∆̂s, q − s}, 0}, (116)

which monotonically increases with q. It then follows from equation (114) that ∆s∗(q) increases in
q and is unique. Next, I show that c(q) also increases in q. For any q1 < q2, let ∆s∗1 = ∆s∗(q1) and
∆s∗2 = ∆s∗(q2), then:

c(q1) = q1 + χ(∆s∗1) + p∆s∗1 ≤ q1 + χ(∆s∗2) + p∆s∗2 < q2 + χ(∆s∗2) + p∆s∗2 = c(q2), (117)

where the first inequality follows from the definition of a minimum and the fact that 0 ≤ q1 < q2 ≤
s+ ∆s∗2.

Step 2: For any aend and q, define the firm’s end-of-period continuation value as:

u(aend, z, q) =
1

1 + rf
Ev(a′beg, z

′, s′), (118)

where:

a′beg = (1− τ)
[
f(ε′, z′) + aendrf

]
+ aend, z

′ = (1− δIδ)z + ψηq, s′ = (1− η)q + i′. (119)
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Step 3: Consider how a constrained firm’s optimal project trading depends on its beginning-of-
period net cash holdings. In particular, for any abeg,1 < abeg,2, z, s such that the borrowing
constraint binds (i.e., aend = a), let q∗j and d∗j be the firm’s optimal policy in state (abeg,j , z, s),
j = 1, 2. Define the function e(·) as:

e(d) = (1 + λ1{d < 0})× d. (120)

Using c(·) as defined in equation (112), the firm’s problem can be stated as:

v(abeg,j , z, s) = max
q
e
(
abeg,j − a− c(q)

)
+ u(a, z, q), j = 1, 2. (121)

Let the optimizers be q∗1 and q∗2 for abeg,1 and abeg,2, respectively. By definition of a maximum,
there is:

e
(
abeg,1 − a− c(q∗1)

)
+ u(a, z, q∗1) > e

(
abeg,1 − a− c(q∗2)

)
+ u(a, z, q∗2), (122)

and
e
(
abeg,2 − a− c(q∗2)

)
+ u(a, z, q∗2) > e

(
abeg,2 − a− c(q∗1)

)
+ u(a, z, q∗1). (123)

Adding the two inequalities, there is:

e
[
abeg,1 − a− c(q∗1)

]
− e
[
abeg,1 − a− c(q∗2)

]
> e
[
abeg,2 − a− c(q∗1)

]
− e
[
abeg,2 − a− c(q∗2)

]
. (124)

Because the function e(·) satisfy ∂2

∂d2
e(d) ≥ 0, it must be that q∗2 ≥ q∗1. Hence q∗ weakly increases

in abeg. It then follows from ∆s∗(q) being strictly increasing that the optimal net trading volume
∆s∗ is weakly increasing in the firm’s beginning-of-period net cash holdings abeg.

Proof of Proposition 3

Define the flow function as:

Fχ(abeg, z, s, aend, q) = e
[
abeg − aend − c(q)

]
, (125)

where the functions c(·) and e(·) are defined by equations (112) and (120), respectively. The
superscript χ denotes the transaction cost function χ(∆s). It is straight forward to show that for
any χ1 ≤ χ2, there is Fχ1(abeg, z, s, aend, q) ≥ Fχ2(abeg, z, s, aend, q). Let vχ(abeg,0, z0, q0) be the
firm’s value function, where, again, I use the superscript χ to emphasize the dependence of the
value function on the transaction cost function χ(∆s). There is:

vχ(abeg,0, z0, q0) = E

[ ∞∑
t=0

( 1

1 + rf

)t
Fχ(abeg,t, zt, qt, a

χ
end,t, q

χ
t )

]
. (126)

aχend,t and qχt , t = 0, 1, ... denote the firm’s optimal policies under transaction cost specification χ.
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It follows immediately that:

vχ2(abeg,0, z0, q0) = E

[ ∞∑
t=0

( 1

1 + rf

)t
Fχ2(abeg,t, zt, qt, a

χ2

end,t, q
χ2
t )

]
(127)

≤ E
[ ∞∑
t=0

( 1

1 + rf

)t
Fχ1(abeg,t, zt, qt, a

χ2

end,t, q
χ2
t )

]

≤ E
[ ∞∑
t=0

( 1

1 + rf

)t
Fχ1(abeg,t, zt, qt, a

χ1

end,t, q
χ1
t )

]
= vχ1(abeg,0, z0, q0).

This proves that vχ(·) decreases with χ, for any state (abeg, z, s).

Proof of Proposition 5

Conjecture that MM’s pricing strategy takes the following form:

P1 = P0 + λ1(ω − ω̄) + λ2(s− s̄). (128)

After observing v and e, the speculator’s expected date t = 1 price is

E
[
P1|v, e,D = 1, δ

]
= P0 + λ1(x− x̄) + λ2(s− s̄). (129)

Plug this into her objective function:

E
[
W |v, e,D = 1, δ

]
= γe[λ1(x− x̄) +λ2(s− s̄)] + (1− γ)[x(v−P0−λ1(x− x̄)−λ2(s− s̄))]. (130)

This leads to the first order condition:

∂

∂x
E
[
W |v, e,D = 1, δ

]
= γeλ1 + (1− γ)[v − P0 + λ1x̄− λ2(s− s̄)− 2λ1x] = 0. (131)

Thus, defining β = γ
1−γ , there is

x∗(e, v) = βē+
βλ1 − δλ2

2λ1
(e− ē) +

1− (1− δ)λ2

2λ1
(v − P0). (132)

The equilibrium is a fixed point: If the speculator optimizes with respect to the conjectured pricing
rule (128) and MM makes inferences (according to the Bayesian rule) based on the speculator’s op-
timization, then MM’s expected liquidation value must be consistent with the conjectured pricing
rule, i.e.,

P1 = E
[
v|s, ω,D = 1, δ

]
. (133)

With normality, the conditional expectation can be expressed as

E
[
v|s, ω,D = 1, δ

]
= P0 + σ2

v

[
1− δ

1− (1− δ)λ2

]′
×A−1 ×

[
s− s̄

2λ1(ω − ω̄)

]
, (134)
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where A =[
δ2σ2

e + (1− δ)2σ2
v δ(βλ1 − δλ2)σ2

e + (1− δ)(1− (1− δ)λ2)σ2
v

δ(βλ1 − δλ2)σ2
e + (1− δ)(1− (1− δ)λ2)σ2

v (βλ1 − δλ2)2σ2
e + (1− (1− δ)λ2)2σ2

v + 4λ2
1σ

2
z

]
.

(135)
Jointly solving Eq. (128) and Eq. (134) leads to

λ1 =
1√

α2β2 + 4σ
2
z
σ2
v

+ 4α2 σ
2
z
σ2
e

, (136)

and

λ2 = −λ1

δ
(β − 4λ1σ

2
z

( 1
α − βλ1)σ2

e

). (137)

Proof of Proposition 6

Proof of Part 1
In an equilibrium with disclosure, the speculator’s ex ante expected value function is (e.g., Grossman
and Stiglitz 1980; Vives 2008, Chapter 4)

E
{

E
[
W |v, e,D = 1, δ

]}
= E

[
W |D = 1, δ

]
(138)

=γ E
[
(P1 − P0)e|D = 1, δ

]
+ (1− γ) E

[
x∗(v − P1)|D = 1, δ

]
,

by the law of iterated expectations. Substituting x∗ and P1 of Eqs. (30) and (31) into Eq. (138)
and simplifying leads to

E
[
W
∣∣D = 1, δ

]
= (1− γ)λ1σ

2
z

1 + αβλ1

1− αβλ1
, (139)

where λ1 is given by Eq. (32).

Proof of Part 2
In a baseline equilibrium, the speculator’s ex ante expected value function is

E
{

E
[
W |v, e,D = 0

]}
= E

[
W |D = 0

]
(140)

=γ E
[
(P1 − P0)e|D = 0

]
+ (1− γ) E

[
x∗(v − P1)|D = 0

]
,

by the law of iterated expectations. Substituting x∗ and P1 of Eqs. (25) and (26) into Eq. (140)
and simplifying leads to

E
[
W |D = 0

]
=

1− γ
4λ∗

(
σ2
v + β2λ∗2σ2

e

)
, (141)

where λ∗ is given by Eq. (27).

Proof of Part 3
To establish weak inequality, it suffices to show that there exist a signal weight δ̂ such that

E
[
W |D = 1, δ̂

]
= E

[
W |D = 0

]
. (142)

Consider the following candidate:

δ̂ =
1

1 + α̂
, (143)
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where

α̂ = λ∗β
σ2
e

σ2
v

= β

√
σ2
v

β2σ2
e + 4σ2

z

σ2
e

σ2
v

. (144)

Substituting the expression for α̂ into Eq. (35) and (36) establishes equality between the specula-
tor’s ex ante expected value function in the baseline and signaling equilibria.

To establish strict inequality, differentiate the speculator’s ex ante expected value function in
a signaling equilibrium with respect to the signal weight and evaluate the resulting derivative at δ̂.
This gives

∂ E
[
W |D = 1, δ

]
∂δ

∣∣∣∣
δ=δ̂

= −(1− γ)σ2
z

α̂

δ̂2
λ3

1

1 + αβλ1

1− αβλ1
(β2 + 4

σ2
z

σ2
e

)
2σ2

z

2σ2
z + β2σ2

e

< 0. (145)

Since the derivative is strictly less than zero, setting the signal weight to be slightly below the value
δ̂ increases the speculator’s ex ante expected value function to be strictly above that in the baseline
equilibrium.

Proof of Proposition 7

For some realization (v, e, z), denote by x∗(v, e, z) and x∗∗(v, e, z) the speculator’s trading strategies
in the signaling equilibrium of the one-step game (SE) and the Perfect Bayesian Equilibrium of the
two-step game (PBE), respectively. Additionally, denote by P ∗1 (v, e, z) and P ∗∗1 (v, e, z) MM’s cor-
responding pricing rules. The two equilibria are equivalent if and only if (1) x∗(v, e, z) = x∗∗(v, e, z)
and (2) P ∗1 (v, e, z) = P ∗∗1 (v, e, z).

Proof of Part 1
By construction, the speculator’s trading strategy in PBE is the baseline trading strategy with
MM’s information set updated to reflect the information content of the signal. Thus Eq. (25)
implies

x∗∗ =
β

2
(e+ ẽ) +

v − ṽ
2λ̃

, (146)

where λ̃ =
√

σ̃2
v

β2σ̃2
e+4σ2

z
is the price impact derived from Eq. (27). By substituting Eq. (42) and

(43) for σ̃2
v and σ̃2

e in Eq. (146), we get
λ̃ = λ1. (147)

Intuitively, for SE and PBE to be equivalent, they must induce the same price impact.
Finally, in Eq. (146), replace ṽ and ẽ by the right hand sides of Eq. (40) and (41), respectively,

and use the fact that λ̃ = λ1. There is

x∗∗(v, e, z) =
v − P0

2λ1
+
β

2
(e+ ē) +

1

2δ
[β − 4λ1

1
α − λ1β

σ2
z

σ2
e

](s− s̄) = x∗(v, e, z). (148)

The last equality follows from Eq. (25) and the fact that 1
2δ [β − 4λ1

1
α
−λ1β

σ2
z
σ2
e
] = − λ2

2λ1
, as implied by

Eq. (33).

Proof of Part 2
The equilibrium pricing rule in PBE is the baseline pricing rule, where MM’s information set is
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updated to reflect the information content of the signal. By Eq. (26),

P ∗∗1 (v, e, z) = ṽ + λ̃(ω − ω̃), (149)

where ω̃ = x̃ = βẽ. Substituting Eq. (40) and (41) for ṽ and ẽ, respectively, and using the fact
that λ1 = λ̃, there is

P ∗∗1 (v, e, z) = P0 + λ1(ω − ω̄)− λ1

δ
[β − 4λ1

1
α − λ1β

σ2
z

σ2
e

](s− s̄). (150)

Lastly, substituting in Eq. (33) yields P ∗∗1 (v, e, z) = P ∗1 (v, e, z).

Proof of Corollary 1

Proof of Part 1
Note that λ1 = λ̃ = σ̃v

2
√
β2σ̃2

e+σ2
z

. Thus Eq. (42) and (43), along with the facts that σ̃2
v increases

with δ and that σ̃2
e decreases with δ imply that λ1 is increasing in δ.

Proof of Part 2
If the speculator commits to the signal weight δ = δ̂ (Eq. (143)), it is straight forward to show that
the price impact in the signaling equilibrium equates the price impact in the baseline equilibrium—
λ1 = λ∗. It then follows immediately from Part 1 of Corollary (1) that Part 2 holds.

Proof of Part 3
We first consider a necessary condition for δ such that the speculator is better-off by committing to
disclose a signal. Differentiating the speculator’s ex ante expected value function E

[
W |D = 1, δ

]
with respect to δ, there is

∂ E
[
W |D = 1, δ

]
∂δ

= (1− γ)σ2
z

2α

δ2
λ3

1

1 + αβλ1

1− αβλ1

[
− 4β

α

σ2
z

σ2
v

λ1

1− α2β2λ2
1

+
1

2
(β2 + 4

σ2
z

σ2
e

)

]
, (151)

where α = 1−δ
δ is given by Eq. (34). Since (1 − γ)σ2

z
2α
δ2
λ3

1
1+αβλ1
1−αβλ1 > 0, the sign of

∂ E
[
W |D=1,δ

]
∂δ

depends on the sign of the terms in the brackets on the right hand side of Eq. (151). These terms
can be rewritten as

− 4β

α

σ2
z

σ2
v

λ1

1− α2β2λ2
1

+
1

2
(β2 + 4

σ2
z

σ2
e

) = −4β
σ2
z

σ2
v

1

αλ1[4σ
2
z
σ2
v

+ 4α2 σ
2
z
σ2
e
]

+
1

2
(β2 + 4

σ2
z

σ2
e

). (152)

It is straight forward to see that the expression (152) increases in α (both αλ1 and 4σ
2
u
σ2
v

+ 4α2 σ
2
u
σ2
z

increase in α) and thus decreases in δ. It then follows that the speculator’s ex ante expected value
function E

[
W |D = 1, δ

]
is either monotonic or first increasing and then decreasing in δ.

Note that, from the proof of Proposition 6, there is
∂ E
[
W |D=1,δ

]
∂δ

∣∣∣∣
δ=δ̂

< 0. Additionally, letting

δ̌ = σv
σv+σe

< δ̂, it can be shown that,
∂ E
[
W |D=1,δ

]
∂δ

∣∣∣∣
δ=δ̌

≥ 0. It then follows that E
[
W |D = 1, δ

]
is

first increasing and then decreasing in δ. Furthermore, because E
[
W |D = 1, δ̂

]
= E

[
W |D = 0

]
,

a necessary condition for the speculator to be better-off with disclosure is that the signal weight
satisfy δ ≤ δ̂. Because λ1 = λ∗ when the speculator commits to disclose with signal weight δ = δ̂,
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λ1 < λ∗ if and only if δ < δ̂. Therefore, λ1 < λ∗ whenever the signal weight δ is such that the
speculator is better-off by disclosing a signal.

Proof of Corollary 2

Define φ as the fraction of the speculator’s private information that gets impounded into the price:

Var
(
v|P1

)
= (1− φ2)σ2

v . (153)

Relax the assumption that v and e are independent and let ρ be their correlation coefficient—
ρ = Corr

(
v, e
)
. In a baseline equilibrium, there is

Var
(
v|P1

)
=

(
1

2λσv + β
2ρσe

)2
1

4λ2
σ2
v + β2

4 σ
2
e + β

2λρσvσe + σ2
z

. (154)

Proof of Part 1
In a baseline game with ρ = 0,

φ2 =
1

4λ2
σ2
v

1
4λ2

σ2
v + β2

4 σ
2
e + σ2

z

=
1

2
. (155)

The second equality follows from Eq. (27).

Proof of Part 2
After the revelation of a signal, define ρ̃ as the fraction of the speculator’s remaining private fun-
damental information that gets impounded into the price, i.e.,

Var
(
v|P1, s

)
= (1− φ̃2)σ̃2

v . (156)

An expression of φ̃ can be obtained by replacing σ2
v and σ2

e by σ̃2
v and σ̃2

e , respectively, in Eq. (155)
and setting ρ = −1 (conditional on observing s = δe+(1−δ)v, MM can back out either e or v from
knowing the other, implying a perfect correlation between the two). Some simplification leads to

1− φ̃2 =
1(√β2

4
σ̃2
e
σ2
z

+ 1− β
2
σ̃e
σz

)2
+ 1

. (157)

Since √
β2

4

σ̃2
e

σ2
z

+ 1− β

2

σ̃e
σz

=
1√

β2

4
σ̃2
e
σ2
z

+ 1 + β
2
σ̃e
σz

< 1,

there is 1 − φ̃2 > 1
2—the equilibrium price only incorporates less than half of the speculator’s re-

maining private fundamental information.

Proof of Part 3
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From Eq. (156) and (157), there is

Var
(
v|P1, s

)
=

σ̃2
v√

β2

4
σ̃2
e
σ2
z

+ 1 + β
2
σ̃e
σz

. (158)

Since a larger δ increases σ̃2
v and decreases σ̃2

e , Var
(
v|P1, s

)
increases in δ.

Proof of Part 4
Evaluating Eq. (158) at δ = δ̂ (δ̂ is defined by Eq. (143)) leads to

Var
(
v|P1, s

)∣∣
δ=δ̂

=
1

2
. (159)

From the proof of Proposition 1, for the speculator to be better-off from disclosure, it must be
that δ < δ̂. Because Var

(
v|P1, s

)
increases in δ, this implies Var

(
v|P1, s

)
< 1

2 when the signal is
voluntarily disclosed.
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Appendix B: Patent Trading Sample Construction Details

In this section, I describe how I construct the sample, and, in particular, how I map patent trans-
action records to Compustat GVKEYs. Many steps of the mapping algorithm are analogous to
those adopted by Hall et al. (2001), Bowen III (2016), Ma (2016), and Kogan et al. (2017).

The primary data used in the paper are from the Patent Assignment Dataset (PAD) man-
aged by the U.S. Patent and Trademark Office (USPTO). PAD contains all assignments recorded
with the USPTO from 1980 to present, totaling about 6 million records, pertaining to about 10
million patents.1 For each record, the dataset contains the names of the assignors (the existing
owners/sellers) and assignees (the recipients/buyers), patent numbers and application numbers for
each of the assigned patents, and the execution date as well as the recording date of the assignment.

In addition to the PAD data, I also obtain patent grant information from the NBER Patent
Data Project (henceforth the NBER data) and an extensive dataset (henceforth the KPSS data)
prepared by Kogan et al. (2017). Both datasets provide patent citation information and identifiers
of firms to which patents are initially granted. The NBER data covers patents issued between
1963 and 2006; the KPSS data has broader coverage, spanning 1926 to 2010. I also obtain patent
inventor information from the coauthorship network dataset (henceforth the HBS data) established
by Li et al. (2014).

Patent assignments acknowledge the transfer by a party of the rights, title, and interest in a
patent or bundle of patents, but not all assignments are transactions. Other assignment types in-
clude licensing, patents pledged of or released from collaterals, mergers and employer assignments.2

Thus the first step is to exclude non-transaction records. The conveyance type information provided
by PAD allows me to drop some but not all of these records.3 Importantly, the conveyance type
cannot identify all employer assignments and licensing records. I follow Serrano (2010) to further
eliminate likely employer assignments and licensing records. Specifically, I flag a record as employer
assignment if (i) the assignment involves a single patent, a single assignor, and a single assignee,
and (ii) the assignment record date precedes the patent grant date, the assignor name matches the
inventor name (from the HBS data), or the assignee name matches the name to which the patent
is granted (from NBER data). I flag a record as a license if the assignment description contains the
word “license,” “licensing,” “lease,” or “leasing.” About 0.52 million transactions involving 1.24
million utility patents survive these steps.

Apart from names, PAD does not provide identifying information for assignors and assignees.
To link these names to Compustat GVKEYs, I adopt a string matching algorithm, as outlined by
the steps below:

1It is worth noting that recordings of patent assignment with the USPTO are not mandatory. However,
according to Marco et al. (2015), failure to record an assignment renders it void against any subsequent
purchaser or mortgagee. Theoretically, if an assignment goes unrecorded, the assignor may sell the patent
to a subsequent purchaser, and the latter assignment, if recorded, will take priority in case of a litigation.
This risk of double sales provides incentives for interest parties to register the patent reassignment with the
USPTO.

2Employer assignments refer to the first within-firm transfer of a patent from inventing employees to
their employers. They account for about 82% of PAD assignment records (Marco et al., 2015).

3Patent leasing/licensing may be considered as a form of patent transfer. I exclude licensing in this
study as they are generally not publicly recorded. As discussed in Serrano (2018), only patent licenses of
significant value and involving publicly traded firms are filed with the USPTO.
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1. I clean assignor and assignee names for spelling errors. Because the same assigner/assignee
tend to show up repeatedly in the vicinity of each other, I cross-check each name with its 100
closest neighbors in the data. Specifically, for each name A, if there exists another name B
in its vicinity that is both close to A (in terms of the Levenshtein string distance) and has a
greater number of occurrence in the neighborhood.4 Then I replace A with B.

2. I standardize firm names using the STATA procedure made available by Wasi et al. (2015).

3. I link standardized assignor and assignee names to two firm name-identifier dictionaries.
The first dictionary makes use of the employer assignment records previous discarded. Each
employer assignment record contains a firm name as reported with the USPTO. Additionally,
I know the identity of the firm because, by definition of employer assignment, this is the firm
to which the patent is initially granted to. I, therefore, can obtain their identifiers from
the two patent grant data (the NBER and KPSS data). The second dictionary is a list of
firm names and name variants provided by the SEC. These names are identified by their
CIK numbers, which can, in turn, be mapped to GVKEYs. I standardize names in both
dictionaries as before. Finally, I match USPTO assignor and assignee names to names in the
two dictionaries, I accept two types of matches. The first is exact and almost exact matches;
these are name strings with a Levenshtein distance no greater than 10% of the average length
of the two strings. The second is a fuzzy match, where I use the inverse-frequency match
algorithm employed by the NBER data.5

Through these steps, I am able to match 95,410 buys and 49,148 sells, involving 7,612 firms and
450,838 utility patents. The number of buys exceeds sells because a larger proportion of patent
sellers are individuals, and therefore are not picked up by the matching algorithms.

4The Levenshtein distance is the minimum number of single-character edits (insertions, deletions or
substitutions) required to change one string into the other. Intuitively, it is a metric of dissimilarity between
two strings sequences.

5The algorithm assigns scores to shared words in two strings based on their frequency of appearance in
the NBER dataset. Less frequent words receive higher scores. For example, the word “Nike” gets a score of
2.04 while the word “American” only gets 0.03. The algorithm identifies a match when the matching score
of two strings exceeds a certain threshold. Perl codes for the algorithm is made available by Jim Bessen at
https://sites.google.com/site/patentdataproject/Home/posts/Name-matching-tool.
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