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ABSTRACT

For decades, Landaus theory of phase transition has provided a successful classi-

fication for quantum and classical states of matter based on their symmetry broken

patterns, except for certain exotic quantum states such as the fractional quantum

Hall (FQH) effect. However, such exotic phenomena are crucial for a complete under-

standing of the nature. This thesis explores new physical principles emerging from

topology and topological states.

First, we use an example to demonstrate Landaus theory by studying a pair-

density wave system, where the symmetry-breaking paradigm is applicable. It turns

out that such a system exhibits the Kosterlitz-Thouless (KT) transition, a phase

transition driven by the proliferation of topological defects, i.e. vortex-antivortex

pairs. For topological systems, where symmetry broken pattern cannot be used as a

classification tool, we prove a theorem that two gapped systems with non-vanishing

ground-state overlap must be adiabatically connected, and thus are necessarily in the

same topological phase. This theorem provides a simple and generic approach to

classify topological band insulators/superconductors, without the needs to calculate

any known or yet-to-known topological indices. Once the overlap is found nonzero,

the two systems must be topologically identical. After presenting a generic proof,

the theorem is also verified through calculating the overlap for several milestone

topological band insulators and certain interacting systems.

Such an overlap technique is then generalized to (2 + 1)-D strongly-interacting

topological systems at fixed points, including both symmetry-protected topological

x



(SPT) states and intrinsic topological states like FQH. For interacting topological

states, the main challenge of utilizing wave-function overlaps to classify them lies in

the famous Anderson orthogonality catastrophe (AOC), which states that two differ-

ent many-body wave functions must have zero overlap in the thermodynamic limit.

In this thesis, we found that wave-function overlaps indeed carry critical information

about the topological nature of quantum states and this information can be extracted

from the finite-size scaling of the overlaps. In the finite-size scaling analysis, we found

a universal topological response term as a sub-leading contribution. This term de-

pends on both the central charge of the corresponding conformal field theory (CFT)

and the Euler characteristics of the underlying manifolds on which the system is de-

fined. This term reveals a fundamental connection between ground-state overlaps

and CFTs. In addition, surprisingly, the overlap between an intrinsic topological

state and a topologically trivial product state shows a decay faster than the exponen-

tial behavior expected via a typical AOC analysis. Such finite-size scaling behaviors

could be utilized to theoretically detect the gapless edge modes, and to distinguish the

topology of quantum states or serve as a signature of topological phase transitions.

Possible generalization to higher dimensions and generic non-fixed-point topological

systems is also discussed.
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CHAPTER I

Introduction

1.1 Translational symmetry and band theories

Symmetry lies on the root of physics. One most common symmetry in condensed

matter systems is the discrete translational symmetry, i.e., periodicity. In a material

without boundary, electrons feel the same random Coulomb potential from all other

electrons, as well as a periodic attractive interaction from all the ions. As we know,

the dispersion relation of a single free electron is quadratic in momentum,

E =
p2

2m
=

~2k2

2m
. (1.1)

The periodicity of the ion potential leads to a periodic dispersion relation for the

electrons (see Fig. 1.1). And interactions lift the degeneracy of such dispersion

relation on high symmetry points [1]. So periodicity and interaction together create

the bands in the energy dispersion of electronic systems. Actually, a comprehensive

theory based on symmetries has been developed to derive the dispersion of bands in

each lattice [2].
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Figure 1.1: (Left) Dispersion relation of free electrons; (Middle) Dispersion relation
of electrons in periodic potential; (Right) Interaction lifts the degeneracy.

Due to Pauli exclusion principle, each quantum state could only hold one electron

[1]. With all the states on different bands available, electrons in the condensed matter

system start to fill in from lowest energy to higher energy. Since in materials the

number of electrons is finite while the number of energy levels is infinite, there is

naturally an uppermost energy level that electrons could reach, called Fermi level.

Bands are filled below this level and empty above. If the Fermi level lies in the gap

between two bands, the material would be an insulator (at low temperature). The

reason is that electrons would need to overcome an energy gap to hop to a different

quantum state. But there is no extra energy for electrons to accomplish that at

low enough temperature (Superconductivity is out of our scope of discussion). So

their mobility in the material is restricted. This kind of materials does not conduct

electricity and hence becomes an insulator. Otherwise, if it crosses one or more of the

bands, the material is a metal because electrons close to the Fermi level could move to

the next state on the same band via paying infinitesimal energy penalty. This energy

might come from thermal fluctuations. Of course, if the energy gap is small enough,

we may define a semiconductor. When the temperature is high enough and electrons

have enough energy to overcome the energy gap, a semiconductor could be turned

into a (poor) conductor. Strictly speaking, a semiconductor is still an insulator since

the definitions are assuming no thermal fluctuations.

2



1.2 Symmetry and Landau theory for insulators

Besides band theories, symmetry is also the key to Landau theory of phase tran-

sitions [3–5]. In different phases of matter, electrons form different patterns. Each

pattern is invariant under certain symmetry groups. Some symmetry groups are sub-

groups of others. It was realized that the change of electron configuration patterns are

related to symmetry breaking. And a symmetry-breaking theory of phase transition

is thus formulated.

m

Φ

T > Tc

m

Φ

T ≲ Tc

m

Φ

T < Tc

Figure 1.2: Spontaneous symmetry breaking in Ising model. From left to right the
temperature is decreased gradually.

One simplest example is Ising magnets. At higher temperature the spins of elec-

trons point to random directions and the system has no net magnetic moment. In

this phase the Z2 spin-flip symmetry is conserved. At lower temperature, electron

spins are aligned and the system shows a macroscopic magnetic moment. There is

obviously no Z2 symmetry in the system anymore. So if we consider the procedure of

lowering the temperature, the system must undergo a phase transition where the Z2

symmetry is spontaneously broken (see Fig. 1.2). This behavior can be captured by

an order parameter, the magnetic moment m, and the Landau free energy Φ(m,T ).

Because the magnetic moment m is almost zero around the phase transition point,

the Landau free energy could be expanded as a Taylor series of m.

Φ(m,T ) = Φ(0, T ) +
1

2
a(T )m2 +

1

4
b(T )m4 + · · · . (1.2)
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The odd powers of m vanish because of the Z2 symmetry, that is, transforming m

to −m should not result in any change towards the total Landau free energy. The

ground state could be found by minimizing the Landau free energy. We truncate

the series to the fourth order since this is enough to illustrate the physics. But in

principle higher-order terms could exist, except that they might be irrelevant (in

renormalization group sense). To make sure the system is stable, the coefficient of

the highest order term should be positive. Here we require b(T ) > 0. Taking the

derivative of Φ(m,T ) with respect to m and setting it to 0 we find the value of m.

m =


0 if a(T ) ≥ 0

±
√
−a(T )
b(T )

if a(T ) < 0

(1.3)

Based on experimental values for the magnetization, the common choice of the co-

efficients are a(T ) = a0(T − Tc), b(T ) = b0 where a0, b0 are constants and Tc is the

critical temperature. Under this set of coefficients, the order parameter m is 0 when

T > Tc, and nonzero when T < Tc. There is clearly a phase transition at the critical

temperature Tc. To determine the order of the phase transition at T = Tc, we notice

that the second derivative of the free energy ∂2Φ(m,T )
∂T 2 is a continuous function of order

parameter m and the order parameter m is a continuous function of T . So ∂2Φ(m,T )
∂T 2 is

a continuous function of T in the ground state and the phase transition is continuous.

Since its discovery, Landau theory has been utilized to explain different kinds

of phase transitions. It has been extended to inhomogeneous systems with spatial

variations. By adding the term (∇ψ(x))2, one can construct the so-called Ginzburg-

Landau theory. Such a theory is still a mean-field theory. For systems with continuous

symmetry groups, fluctuations could be introduced to create new physics like spin

waves [6]. Even beyond the fluctuations are topological theories of defects and critical

phenomena described by conformal field theories (CFT’s) [7]. In summary, Landau

4



theory is the starting point to study phase transitions and it has been one important

pillar of condensed matter physics.

1.3 Beyond symmetry: the rise of topology

Landau’s paradigm of symmetry breaking has been successful in explaining phase

transitions in most experiments. However, in the experiments of quantum Hall effect

[8–12], there is no symmetry breaking in the transitions between states with different

Hall conductance. The study of such experiments has led to the theory of topological

orders [13–16].

Topological orders are categorized as symmetry-protected topological (SPT) order

and intrinsic topological order [17, 18]. Superficially, the distinction between these

two concepts lies in the role of symmetries in quantum phase transitions. Essentially,

it is the entanglement of the ground states that distinguishes them. SPT states are

short-range entangled while intrinsic topological states are long-range entangled. In

SPT systems, one can find a smooth path to adiabatically tune an SPT state to a

trivial product state. But during such a procedure the symmetries are garanteed to

be broken. If we preserve the symmetries, then it is not possible to find any path

adiabatically connecting SPT states and trivial product states. On the other hand,

there is no smooth path connecting systems with intrinsic topological orders and triv-

ial product states, no matter whether the symmetries are preserved or not. Therefore,

some authors [19] consider the intrinsic topological order as the true topological order

whereas the SPT order as symmetry-protected trivial order.

In other words, SPT states must be protected by certain symmetries. Local uni-

tary transformations [17] could transform SPT states to trivial product states. But

SPT phases are still different from conventional phases because no such transfor-

mation could be found while preserving the symmetries. Examples of SPT states

include Haldane chain [20–22], AKLT model [23] and topological insulators [24–38].

5



One of the most important experimental signatures of an SPT state would be local-

ized edge/surface modes. In (2 + 1)-D SPT systems, it has been shown [18, 39] that

gapless edge modes must exist in both bosonic and fermionic case. But in higher

dimensions, the surface states could be gapped either due to undergoing a symmetry

breaking or due to having intrinsic topological order.

Conversely, intrinsic topological states could not be connected with trivial product

states via any local unitary transformation [17, 18]. Symmetry is not required to

define topological orders. But it still has a role in such phases. With the presence

of symmetries, intrinsic topological orders could be enriched to even more diverse

phases. Typical intrinsic topological phases arise in strongly-correlated systems such

as quantum spin liquids [40–44] and fractional quantum Hall (FQH) states [9–11, 45–

47]. There are two defining signatures for intrinsic topological order. One is the

robust ground-state degeneracy depending on topology of the manifold where the

system lives on [15, 16]. The other is the quantized non-Abelian geometric phases of

the ground states.

The outburst in this field comes around the year of 2005 when Kane and Mele

proposed the time reversal topological insulator [24, 25]. Such topological Insulators

could be understood with simple band theories. After that, there has been many

efforts to classify topological orders [48–56]. Among them, group cohomology seems

to comprehensively classify SPT states. Along the same line, a classification for the

intrinsic topological phases is also quite fruitful. Now it has been clear that symmetry-

breaking paradigm is not the full story for phase transitions, but at most a half. In

topological world, there are equally abundant phases as in Landau symmetry-breaking

world.

1.4 Organization of this thesis

In this thesis, I will follow the same logic flow as in the introduction.

6



A Landau theory of pair density wave (PDW) state is constructed and investigated

in Chapter II. In that chapter, we will encounter an infinite order phase transition,

Kosterlitz-Thouless (KT) transition [57]. There we will pick up where we left in the

discussion of Landau theory and go beyond fluctuation to see the topological effect.

In Chapter III, a generic theorem is constructed and proved to show the connection

among adiabatic continuity, ground-state overlaps and topological phase transitions.

In Chapter IV, I will review the milestone topological band insulators in 1D, 2D

and 3D. And these will serve as examples to illustrate the overlap theorem in Chapter

III.

In Chapter V, the overlap calculation is extended to a large class of many-body

ground states in SPT systems and FQH systems. I will show that a topological

response term exists for the many-body overlaps.

Finally, in Chapter VI I will conclude this thesis and discuss some possible open

problems for future work.

All the chapters are self-contained and could be understood without relying on

other chapters too much.

7



CHAPTER II

Pair-density waves on lattices with 6-fold

rotational symmetry

2.1 Introduction

In this chapter, I will study the pair-density wave (PDW) systems on (stacked)

triangular lattices. I will start with constructing the Landau free energy via symme-

try considerations. Then I will map such PDW systems to the fully-frustrated XY

(FFXY) models. In this way, we could utilize all the literature on FFXY models to

understand the physics in PDW systems.

Throughout this procedure, Landau theory of symmetry breaking would be the

basis. We will also need to go beyond and do the renormalization group (RG) anal-

ysis to obtain the final phase diagram. Quite surprisingly, the 2D PDW system on

triangular lattice shows an Ising-type phase transition. Even more interestingly, a

KT transition beyond Landau symmetry breaking paradigm shows up.
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2.2 The Landau free energy

The order parameter of PDW in momentum space is

∆(k) =
∑
q

〈c†q↑c
†
k−q↓〉 (2.1)

It is clear that ∆(k)∗ 6= ∆(−k). So for the lattice with C6 rotational symmetry, there

should be 6 independent complex order parameters ∆1,∆2, . . . ,∆6 corresponding to

the vectors ki where i ∈ {1, 2, 3, 4, 5, 6}. Note that each ki could be obtained by

acting a group element in C6 on another kj.

If the momentum happens to be on the K,K ′ = −K points, then we are left

with two independent complex order parameters (because others could be obtained

by translating the momentum by a reciprocal lattice vector). The triangular lattice

has a D6 symmetry group. Since the two wave vectors still have residual D3 rotational

symmetry, the symmetry breaking pattern from high-temperature disordered phase to

low-temperature PDW phase is T×Z2×U(1), where T is the translational symmetry,

Z2 = D6/D3 is the inversion symmetry group and U(1) is the gauge symmetry that

leads to particle conservation.

There will be three constraints for the Landau free energy from these three de-

coupled broken symmetries. Here we only treat the sixth order terms as an example.

Suppose the powers of ∆1,∆
∗
1,∆2,∆

∗
2 are u, v, x, y respectively. Then we immediately

have u+ v + x+ y = 6. Translational symmetry gives the second constraint that the

total momentum should be 0 or equal to a reciprocal lattice vector due to transla-

tional symmetry. So u − v − x + y = 3n where n is an integer (actually n = 0,±2

in this case). The reason why the right-hand-side should be 3n is that the vector

K = (4π
3
, 0) and 3nK should be a reciprocal lattice vector. A third constraint is that

the number of c† and c should be the same for a single term in the Hamiltonian, i.e.

u − v + x − y = 0 due to U(1) gauge symmetry. Then solving the three equations
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one would get all the possible terms. Finally the sixth order terms would be all com-

binations of these permissible terms that are invariant under the point group D6 (or

inversion symmetry). In this way we find the Landau free energy to be

F =t(|∆1|2 + |∆2|2) + u1(|∆1|4 + |∆2|4) + u2|∆1|2|∆2|2 + v1(|∆1|6 + |∆2|6)

+ v2(|∆1|4|∆2|2 + |∆1|2|∆2|4) + v3|∆1|3|∆2|3 cos[3(φ1 − φ2)] + · · ·
(2.2)

2.3 Map to the FFXY models

Now we are in the position to solve this Landau theory. In both 2D and 3D, this

free energy turns out to be the same as the antiferromagnetic XY model on triangular

lattices, one of those fully-frustrated XY (FFXY) models [58, 59]. Hereafter we will

provide an argument for both dimensions.

This could easily be done with the help of the antiferromagnetic XY model on a

(stacked) triangular lattice (see GL theory construction in [60, 61]). The Hamiltonian

of this model is

H = J

xy∑
〈ij〉

si · sj − J ′
z∑
〈ij〉

si · sj, (2.3)

where J, J ′ > 0, si = (cos(θi), sin(θi)) is the planar vector spin on the xy plane and

〈ij〉 indicates the summation over nearest-neighbour spins along the xy plane or z

direction. This is essentially a 3D antiferromagnetic XY-model with ferromagnetic

interaction in the third direction. If J ′ = 0 then we are back to the 2D case. So

this model is appropriate for our purpose of illustrating the equivalence between our

PDW model and FFXY systems in both dimensions. The low energy modes could be

found by Fourier transformation, after which the Hamiltonian becomes

H =
∑
q

J(q)s(q) · s(−q), (2.4)

where J(q) = J [cos(qx) + 2 cos(qx/2) cos(
√

3qy/2)] − J ′ cos(qz). The eigenfunction

10



Figure 2.1: Ground state configuration of antiferromagnetic XY model on a triangular
lattice, the sign on each plaquette denotes the chirality

J(q) is minimized at two inequivalent momentum points (±4π/3, 0, 0) in the first

Brillouin zone [(±4π/3, 0) if J ′ = 0 or in 2D]. So the order parameters are 2 two-

component vectors φ = (φ1, φ2),ψ = (ψ1, ψ2) corresponding to the two inequivalent

wave-vectors. In fact, there is a correspondence between the order parameters in the

two systems.

∆1 ↔ φ1 + iφ2,

∆2 ↔ ψ1 + iψ2.

(2.5)

Now that the number of order parameters (4 real or 2 complex) are the same and

the wave vector responsible for the low energy modes are the same, the last thing

we need to check is that they share the same symmetry-breaking pattern. To this

end, we note that in the ground state the in-plane spin vectors exhibit a 120◦ angle

difference from each of their nearest neighbours. A typical ground-state configuration

is shown in Fig. 2.1 [62]. Other ground states could be obtained by globally rotating

the spins on each site or doing an inversion with any site being the inversion center

(but note that spins are internal degrees of freedom and will not change directions

after inverting the spatial degree of freedom). So besides the translational symmetry

T, the ground states break the point group symmetry D6 down to D3 and break the

internal spin rotational symmetry SO(2) completely. Since we know SO(2) ∼= U(1),

the broken symmetry here is T×Z2 ×U(1) where Z2 is the inversion symmetry (the

same symmetry-breaking pattern as in the FFXY literature except there Z2 represents
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chiral symmetry). Therefore this symmetry breaking pattern is exactly the same as

the PDW case and they should lie in the same universality class as well. Indeed,

the antiferromagnetic XY model on a triangular lattice shares the same Landau free

energy [61] with the PDW free energy in Eq. (2.2).

The analysis above is true for both vanishing and nonvanishing J ′ and thus applies

to both 2D and 3D systems. From the symmetry point of view, our PDW system is

equivalent to the thoroughly studied FFXY models. So we only need to review what

happens in FFXY models in order to understand our PDW systems.

2.4 Phase transitions and universality classes in FFXY mod-

els

In this section, I will study the FFXY models in both 2D and 3D based on

historical investigations.

2.4.1 2D case

In 2D, the FFXY model is just the anti-ferromagnetic XY model. And its Hamil-

tonian is given by

H = J
∑
〈ij〉

si · sj = J
∑
〈ij〉

cos(θi − θj) (2.6)

where J > 0 is the antiferromagnetic coupling between nearest neighbours on the

triangular lattice. A generalized model could be written as

H = −J
∑
〈ij〉

cos(θi − θj + Aij) (2.7)

where J > 0 and Aij is the bond angle such that the sum over all bonds on a plaquette

is a constant ∑
Aij = 2πf. (2.8)
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This model describes the high-capacitance-limit Josephson-junction array in the trans-

verse magnetic field B ([63] and references therein). The relation between B and f

is

f = BAP/Φ0 (2.9)

where AP is the plaquette area and Φ0 ≡ hc/(2e) is the flux quantum. Note that

when f = 1/2 the generalized model is clearly reduced to the fully frustrated XY

model defined initially. So the FFXY models on the triangular or square lattice could

be realized through coupled Josephson-junction arrays in a transverse magnetic field

[64, 65]. Actually the same free energy also describes helimagnets [60, 66, 67], the

phase transition of dipole-locked phase A of Helium-3 [68]. The following form of the

Landau free energy is more popular in the literature, especially for FFXY models on

(stacked) square lattice (see, for example, [60, 61, 66, 69–73]).

F =
1

2
{r0(a2 + b2) + u(a2 + b2)2 + v[(a · b)2 − a2b2]}, (2.10)

where a, b are the real two-component-vector order parameters. But after the trans-

formation

∆1 ↔
ax + by√

2
+ i

ay − bx√
2

,

∆2 ↔
ay + bx√

2
− iax − by√

2
,

(2.11)

it becomes

F =
1

2
[r0(|∆1|2 + |∆2|2) + (u− 1

4
v)(|∆1|4 + |∆2|4) + 2(u+

1

4
v)|∆1|2|∆2|2)]

=t∆2 + (u− 1

8
v)∆4 +

1

8
v∆4 cos(4θ),

(2.12)

where we have defined |∆1| = ∆ cos(θ), |∆2| = ∆ sin(θ) and θ ∈ [0, π/2]. Clearly this

is equivalent to what we wrote down for the PDW systems up to quartic order. We

will show that higher-order terms actually are irrelevant later on.
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To have a stable system, the coefficients of the quartic terms should satisfy

u > 0, 4u− v > 0. (2.13)

For the case v < 0, in order to minimize the free energy the order parameters

a, b tends to be (anti)parallel with each other. So the free energy describes the

normal continuous phase transition from the paramagnetic state to the sinusoidal

state [66, 72]. The transition point is at r0 = 0. In terms of PDW order parameters,

|∆1| = |∆2| = 1√
2
∆ in the low temperature phase. One can see there is no double

degeneracy for the ground state in this case since θ must be π/4. So there is also

no issue whether Z2 symmetry breaks first or U(1) gauge symmetry breaks first,

consistent with our expectation of a single continuous phase transition.

For the case v > 0 describing the frustrated models [74, 75], it was shown by

M. Yosefen and E. Domany using the Polyakov 2 + ε expansion that all the terms

of order higher than four are irrelevant [60]. In this case, the FFXY model order

parameters a, b tends to be orthogonal to each other, hence also called “non-collinear

order” [66, 72, 76, 77]. In our PDW systems, it corresponds to ∆1 = ∆,∆2 = 0

or vice versa, i.e., θ = 0, π/2. So there is a double degeneracy of the ground state

due to Z2 symmetry breaking. The total broken symmetry, as we discussed above, is

T×Z2×U(1). The Z2 symmetry breaking can also be seen from the appearance of a

four-state clock term. The four-state clock model is known to be reducible to q = 2

Potts model (Ising model) [78] and this is valid for all lattices [79]. So such a term is

responsible for an Ising-type phase transition. The KT transition may happen before

or after the Ising symmetry breaking as we decrease the temperature. And it is also

equally possible that they happen at the same temperature and the fluctuation of ∆

serves as the trigger for the Ising transition. What’s more, the two transitions may

even be coupled to form a new universality class, where the possibility of first order
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transition is also not excluded. So it is a quite complicated but interesting system.

Such phase transition(s) and universality class(es) for breaking Z2 × U(1) sym-

metry in 2D was under debate for about three decades (see the review [70]). Now

there is a consensus [70, 80–87] that for the FFXY models with the same ground-

state degeneracy, antiferromagnetic XY model on a triangular lattice or FFXY model

on a square lattice [58, 59, 64] for example, the temperature for Z2 chiral symmetry

breaking is strictly higher than that for the U(1) symmetry breaking. And after some

controversy [70] it was shown that the phase transition for the Z2 symmetry breaking

is in the Ising universality class and that for the U(1) symmetry breaking in the 2D

XY universality class [57, 88, 89]. This two-phase-transition scenario is supported

by the argument based on the unbinding of kink-antikink pairs [85, 90]. The same

free energy could also describe a single first order phase transition upon tuning the

positive parameter v to be large enough [69–71] (see Fig. 2.2).

Figure 2.2: Possible phase diagrams for 2D quantum system exhibiting PDW order
in low temperature. γ represents some interaction parameter.

2.4.2 3D case

In 3D systems, the expression of Landau free energy turns out to be the same

as in 2D. Simple dimensional analysis suggests that terms beyond sixth order are all

irrelevant in 3D. For the sixth order, one can do a 4 − ε expansion [91] for generic
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models as below

F = t(|∆1|2 + |∆2|2) + u1(|∆1|4 + |∆2|4) + u2|∆1|2|∆2|2+

v1(|∆1|6 + |∆2|6) + v2(|∆1|4|∆2|2 + |∆1|2|∆2|4) + wn[(∆1∆∗2)n + h.c]

(2.14)

where n ≥ 3 is an integer. The RG equations for the quartic terms are

du1

dl
=εu1 − 20u2

1 + . . . ,

du2

dl
=εu2 − 4u2

2 − 16u1u2 + . . . ,

(2.15)

where we have omitted all higher order terms, including terms like tu1, tu2. The

argument is that for RG equations close to the Gaussian point, t = O(ε2) and any

coefficient u1, u2 multiplied by t would be of order O(ε3). So to the order of ε, the

fixed points are


u1 = 0,

u2 = 0,


u1 = 0,

u2 = ε
4
,


u1 = ε

20
,

u2 = 0,


u1 = ε

20
,

u2 = ε
20
.

(2.16)

The first fixed point is just the trivial Gaussian fixed point and others are the Wilson-

Fisher fixed pints.

The higher order terms have the following RG equations

dv1

dl
=(6− 2d)v1 − 8u2

1 − 96u1v1 − 4u2v2 − 336v2
1 + . . . ,

dv2

dl
=(6− 2d)v2 − 8u1u2 − 40u1v2 − 2u2

2 − 18u2v1

− 16u2v2 − 72v1v2 − 64v2
2 + . . . ,

dwn
dl

=(6− 2d)wn − 4n(n− 1)u1wn − 2n2u2wn

− 4n(n− 1)(n− 2)v1wn − 4n2(n− 1)v2wn + . . . .

(2.17)

Again we have omitted all the terms proportional to t since that will be at least of
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order O(ε3).

Now it is clear that when d = 3 the scaling dimensions of v1 and v2 are negative

after the fixed-point solutions being inserted into the RG equations. So those terms

are marginally irrelevant. The scaling dimension of the coefficient wn of the generic

coupling term can be read off from the RG equations as

(6− 2d)− 4n(n− 1)u1 − 2n2u2. (2.18)

Note that d = 4 − ε. Insert the u1, u2 values for different Wilson-Fisher fixed points

and extrapolate the scaling dimension to 3D (ε = 1). Then we find that the scal-

ing dimensions of the coupling terms are all negative for n ≥ 3 in our assumption.

Therefore all terms beyond quartic order are irrelevant. Of course this expansion to

first order is not reliable for ε = 1. But as we have analyzed the broken symmetry

does not contain a Z3 group, the three-state clock term should be irrelevant. Besides

the symmetry argument, one can also refer to a recent numerical result which shows

that the quartic order termination of the free energy produces the same conclusion

as the original microscopic model [92]. For a review on the phase transition of FFXY

models in 3D, see [73]. So we conclude the sixth order terms are indeed irrelevant

and the free energy in 3D is thus the same as the 2D case [Eq. (2.12)]. Therefore

we are led to the difficulty of understanding the intertwined order due to discrete Z2

symmetry breaking and the continuous U(1) symmetry breaking again.

For the non-frustrated case v < 0, it was pointed out that the system does not

have any fixed point [60, 66]. So it could only undergo a first order transition although

mean field analysis gives a continuous transition.

For the frustrated v > 0 case, similar to the 2D situation, the issue also continues

for more than three decades. Even in 2016, there is still a paper [77] trying to clarify

this point using functional renormalization groups.
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On the numerical side, consistent results have been shown by multiple groups

[62, 92–97]. It is fairly clear that there is a single first order transition from disordered

phase to the chiral noncollinear phase.

On the theoretical side, the 4 − ε renormalization-group studies [66, 73] on the

Ginzburg-Landau theory of N -component-spin generalizations show that there is one

critical number of components Nc, above which the system experiences a second

order phase transition and below which the transition is of first order. The three-loop

calculation shows that such a critical number is given by [98].

Nc = 21.80− 23.43ε+ 7.088ε2 +O(ε3). (2.19)

Even though the perturbative approach seems to give the same result (first order

transition) as numerics, the coefficients are not decreasing fast enough. A six-loop

calculation [99, 100] found a fixed point in contrast with the three-loop order result.

However, the critical exponents not only strongly depend on the perturbation series

resummation procedure [101] but are also incompatible with experiments [102]. So it

seems the fixed point is spurious. Then nonperturbative RG was utilized to find again

a first order transition [102–104]. Besides that, the authors also solved the problem

that the critical exponents seem to be non-universal. According to their result, the

RG flow is so slow at around the points describing stacked XY antiferromagnets and

helimagnets that the systems seem to exhibit a “pseudo”-critical behaviour.

So most evidences are showing that the phase transition in 3D FFXY systems (if

exists) should be first order.

2.5 Conclusions and implications for PDW systems

The discussion of FFXY models in previous section indicates that 2D systems

may show more interesting physics (see Fig. 2.2) while 3D systems most likely only
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exhibit first order transitions.

Imagine that we have a 2D PDW quantum system with 6-fold rotational symme-

try. Suppose the ground states fall on the K and K ′ = −K points in the hexagonal

first Brillouin zone. Then the phase diagram is very similar to the antiferromagnetic

XY model. There will be an intermediate phase with Ising order only and a low tem-

perature phase with both Ising order and XY order. If we could tune the interaction

terms in Eq. (2.2) through some parameter γ, then at zero temperature there will

only be a first order transition (see Fig. 2.2).

In experiments, one can stack a piece of 2D material on a conventional super-

conductor and utilize the proximity effect to realize such a PDW system. The 2D

material should be on a triangular lattice with D6 symmetry.
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CHAPTER III

Adiabatic continuity, wave-function overlap and

topological phase transitions

3.1 Introduction

In quantum many-body systems, quantum phase transitions are among the most

fascinating phenomena [105]. From the point of view of adiabatic continuity, a quan-

tum phase transition can be characterized by the absence of an adiabatic path be-

tween ground states of quantum systems. Consider two quantum many-body systems

in their ground states. If an adiabatic path can be constructed to smoothly deform

one system into the other without any singularity, these two quantum states can

be classified into the same quantum phase. On the other hand, if it is impossible

to adiabatically deform one quantum system into the other, without going through

some singular point (or some intermediate phase), these two quantum states belong

to different quantum phases of matter and the singular point, which arises when we

try to deform one system into the other, is a quantum phase transition point.

In general, quantum phase transitions can be largely classified into two categories,

Landau-type and topological, depending on the origin of the singularity. In the first

category, the two quantum phases separated by a quantum phase transition have

different symmetries, i.e. certain symmetry is broken spontaneously as we move across
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the phase boundary. Similar to a classical (thermal) phase transition, the difference

in symmetry implies that it is impossible for these two quantum states to smoothly

evolve into each other without undergoing a quantum phase transition. In the second

category, the two quantum phases have the same symmetry, but their ground-state

wave functions have different topological structures. For a gapped quantum system,

where a finite energy gap exists between the ground state and the excited ones, the

topology of the ground-state wave function cannot change in any adiabatic procedure

without closing the excitation gap. Thus, if the ground-state wave functions of two

gapped quantum systems have different topology, as we try to deform one into the

other, a singularity point must arise, at which the energy gap closes and the ground-

state wave function changes its topology. This singular point is known as a topological

phase transition. Such a topological transition can take place even in the absence of

interactions, e.g. in non-interacting band insulators [14, 54, 106–111].

In this chapter, we study adiabatic continuity between quantum states in gapped

quantum systems focusing on the following question: for two (arbitrary) quantum

states, how can we determine whether a gapped adiabatic path between these two states

exists or not? More precisely, we want to determine, for two quantum states |ψ1〉 and

|ψ2〉, whether it is possible or not to construct a gapped Hamiltonian H(α), where α

is some control parameter, such that as we tune the value of the control parameter α,

the ground state of the Hamiltonian changes smoothly from |ψ1〉 to |ψ2〉. It must be

emphasized that here we require the Hamiltonian remains gapped for this adiabatic

procedure, i.e., the energy gap between the ground and excited states never vanishes.

As discussed above, the answer to this question is of direct relevance to the study of

quantum phase transitions between gapped quantum systems, including topological

phase transitions.

For band-insulators, we find that regardless of the symmetry and microscopic

details, as long as the Bloch wave functions (of the valence bands) of two insulators

21



have finite wave function overlap, an adiabatic path can be constructed, connecting

the two insulators without closing the insulating gap. For the study of topological

band insulators, this conclusion implies that two band insulators with finite wave

function overlap must have the same topology, i.e, all topological indices take the

same value in the two insulators. This result also implies that for two insulators with

different topology, there must exist at least one momentum point in the Brillouin

zone, at which the Bloch waves in these two insulators are orthogonal to each other,

i.e. the wave functions have zero overlap.

This conclusion can be easily generalized to interacting systems, i.e., if two quan-

tum states have finite wave function overlap, regardless of microscopic details, a

gapped adiabatic path can be defined to connect these two states. However, as pointed

out below, this conclusion cannot be applied to study generic quantum many-body

systems and quantum phase transitions, due to the orthogonality catastrophe [112],

which says that in the thermodynamic limit, even for two quantum states in the

same quantum phase, the wave function overlap will vanish due to the infinite size

of the system. As a result, the wave function overlap, which is always zero in the

thermodynamic limit, doesn’t carry useful information about quantum phases and

adiabatic continuity. This is in sharp contrast to noninteracting systems, e.g. band

insulators discussed above, where we can utilize single-particle Bloch waves, which

do not suffer from the orthogonality catastrophe. We will try to extract more generic

information from the orthogonality catastrophe in next chapter. For this chapter, we

limit ourselves to certain interacting systems, including integer and fractional quan-

tum Hall systems [8, 9], and integer and fractional Chern insulators [14, 113–121],

utilizing various schemes, e.g., by studying systems with finite size or factorizing the

many-body wave function.

This chapter focuses on arguments and proofs. Examples will be provided in

next chapter. We study adiabatic continuity in band insulators in Sec. 3.2. Then
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in Sec. 3.3, we generalize the conclusion to interacting systems. In Sec. 3.4, we

study how to utilize this result to study quantum phase transitions in the presence

of interactions. Finally, we conclude the chapter by discussing possible implications

in experimental and numerical studies. Details about the calculations and proofs are

shown in Appendix A.

3.2 Band insulators

For band insulators, if we only focus on the qualitative properties, interactions

can often be ignored. Within the non-interacting approximation, the quantum wave

function of a band insulator is the (antisymmetrized) product of Bloch-wave states.

Because of momentum conservation, Bloch states with different momenta decouple

from one another. Therefore, we can examine wave function overlap at each momen-

tum point separately.

In this section, we focus on the non-interacting regime. First, we prove that

for two band insulators, the wave function overlap between the many-body ground

states factorizes into the product of (Bloch-wave function) overlaps at each momentum

point. Then, we will show that if the overlap remains finite for all momenta, the two

insulators are adiabatically connected, i.e. we can adiabatically deform the ground-

state wave function of one insulator into the other without closing the insulating gap

or breaking any symmetries.

This conclusion immediately implies that (a) if two band insulators belong to two

different quantum phases (i.e. it is impossible to deform one state into the other

without closing the insulating gap), there must exist (at least) one momentum point

k∗, at which the (Bloch-wave function) overlap between the two insulators vanishes,

and (b) if the Bloch wave functions of two band insulators have finite overlap at all

momenta, this two insulators must belong to the same quantum phase.

We start the discussion by considering insulators with only one valence band
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(Sec. 3.2.1). Then in Sec. 3.2.2, we will generalize the conclusions to generic cases

with multiple valence bands.

3.2.1 Insulators with one valence band

In this section, we considering two band insulators, dubbed insulator I and insu-

lator II, each of which has only one valence band. More generic situations (with more

than one valence bands) will be studied in the next section.

3.2.1.1 Wave function overlap

Within the non-interacting approximation, the many-body ground states of these

two insulators can be written as

|GI〉 =
∏
k

c†k |0〉 (3.1)

|GII〉 =
∏
k

d†k |0〉 (3.2)

where |GI〉 and |GII〉 are the (many-body) ground states of the two insulators respec-

tively. |0〉 represents the vacuum, i.e. the quantum state with no electrons. c†k (d†k) is

the creation operator which creates a particle in the Bloch state of the valence band

in insulator I (insulator II) at crystal momentum k.
∏

k represents the product over

all momenta in the Brillouin zone.

It is straightforward to verify that the overlap between the two ground states

factorizes as

| 〈GI|GII〉 | =
∏
k

|φ(k)| (3.3)
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where φ(k) is the overlap between Bloch waves at crystal momentum k

φ(k) = 〈0|ckd†k|0〉 (3.4)

In the language of first quantization, this Bloch-wave overlap is

φ(k) = 〈ψI(k)|ψII(k)〉 (3.5)

where

|ψI(k)〉 = c†k |0〉 (3.6)

|ψII(k)〉 = d†k |0〉 (3.7)

are the Bloch waves of the valence bands in insulators I and II respectively.

3.2.1.2 The adiabatic path between two insulators

Define a new Bloch state

|Ψ(k, α)〉 =
(1− α) |ψI(k)〉+ α φ(k)∗ |ψII(k)〉

N
, (3.8)

Here, |ψI(k)〉 and |ψII(k)〉 are the Bloch wave functions of the valence bands for

insulators I and II respectively [Eqs. (3.6) and (3.7)]. φ(k)∗ = 〈ψII(k)|ψI(k)〉 is the

complex conjugate of the overlap between the two Bloch states as defined in Eq. (3.5).

The control parameter α is a real number between 0 and 1. The denominator N is a

normalization factor,

N =
√

(1− α)2 + α(2− α)|φ(k)|2 (3.9)
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which enforces the normalization condition 〈Ψ(k, α)|Ψ(k, α)〉 = 1. It is easy to prove

that as long as the overlap is nonzero φ 6= 0, N is positive and thus the denominator

will not introduce any singularity.

When α = 0, the Bloch state defined above coincides with |ψI(k)〉, i.e. the Bloch

state for insulator I. At α = 1, the Bloch state becomes that of insulator II, up to an

unimportant phase factor,

|Ψ(k, α = 0)〉 = |ψI(k)〉 (3.10)

|Ψ(k, α = 1)〉 =
φ(k)∗

|φ(k)∗|
|ψII(k)〉 (3.11)

Therefore, by varying the parameter 0 ≤ α ≤ 1, Eq. (3.8) defines a path between the

two insulators.

As proved in Appendix A.2, if insulators I and II preserve certain symmetries

(e.g., the time-reversal symmetry, lattice symmetries or some internal symmetries),

the Bloch state |Ψ(k, α)〉 will preserve the same symmetry. In other words, the path

defined above preserves all necessary symmetries. This is very important for the study

of symmetry-protected topological states.

3.2.1.3 The insulating gap

Now, we explore one key problem for the study of adiabatic continuity: is it

possible to use the path defined in Eq. (3.8) to deform insulator I into insulator II

without closing the insulating gap?. The answer to this question is yes, as long as

the wave function overlap remains finite for all momenta, φ(k) 6= 0. To prove this

conclusion, we construct the following hermitian operator, which will serve as the

Hamiltonian for an insulator,

H(α) = −
∑
k

|Ψ(k, α)〉 〈Ψ(k, α)| . (3.12)
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This Hamiltonian has one control parameter 0 ≤ α ≤ 1. It has one flat band with

energy E = −1 and the Bloch wave for this band is |Ψ(k, α)〉. All other bands in the

system have energy E = 0. If we set the Fermi energy to be between −1 and 0, this

Hamiltonian defines a band insulator with one valence band. The band gap for this

insulator is 1.

When α = 0, the valence band has the same Bloch wave function as insulator I,

and for α = 1, the valence-band Bloch wave function coincides with that of insulator

II. For 0 < α < 1, the Hamiltonian defines an insulator with a finite insulating gap,

and the gap never closes. As a result, by varying the value of α, the Hamiltonian

shown in Eq. (3.12) defines an adiabatic path between the two insulators.

In the language of topological phase transitions, this observation implies that the

two band insulators must belong to the same quantum phase (i.e. have the same

topological indices), as long as the wave function overlap φ(k) remains finite for all

k. For two insulators with different topology (i.e. if some topological index takes

different values in the two insulators), there must be at least one momentum point,

at which the overlap vanishes.

3.2.1.4 The complex U(1) phase

In Eq. (3.8), we introduced a factor φ(k)∗ in the definition of |Ψ(k, α)〉. This factor

is necessary in order to preserve the U(1) phase symmetry, which is also known as

the U(1) gauge symmetry for band insulators [122]. In a band insulator, it is known

that if we multiply a U(1) phase to a Bloch wave function, the new wavefunciton

still describes the same Block state, i.e. |ψI(k)〉 and eiϕ |ψI(k)〉 describe the same

Bloch state in insulator I, where ϕ is an arbitrary U(1) phase. Similarly, |ψII(k)〉

and eiϕ
′ |ψII(k)〉 correspond to the same Bloch state in insulator II. In other words,

when we write down the Bloch states |ψI(k)〉 and |ψII(k)〉 for the insulators, there

is a freedom to choose an arbitrary phase factor for each of these states. In order
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to ensure that physical observables [e.g. the Hamiltonian H(α)] does not depend on

this arbitrary phase choice, the factor φ(k)∗ is necessary. It is straightforward to

verify that with the help of this factor, the Hamiltonian H(α) defined in Eq. (3.12)

is independent of the phase choice, i.e. it is invariant under the transformation

|ψI(k)〉 → eiϕ |ψI(k)〉 (3.13)

|ψII(k)〉 → eiϕ
′ |ψII(k)〉 (3.14)

In addition, as shown in Appendix A.2, this factor φ(k)∗ also help to ensure that

the adiabatic path preserves the same symmetries as insulators I and II.

3.2.2 Insulators with multiple bands

Now we consider band insulators with more than one valence bands.

3.2.2.1 Wave function overlap

For an insulator with N valence bands, in the non-interacting limit, the ground-

state wave function is

|GI〉 =
N∏
n=1

∏
k

c†n,k |0〉 (3.15)

Here, we follow the same convention as utilized in Eqs. (3.1) and (3.2), except that

the creation operators c†n,k now have one extra subindex n, which labels the valence

bands (n = 1, 2, . . . , N), and
∏N

n=1 represents the product for all occupied bands.

Consider another insulator with the same number of valence band, whose ground-

state wave function is

|GII〉 =
N∏
n=1

∏
k

d†n,k |0〉 (3.16)
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where d†n,k is the creation operator for the Bloch waves in this insulator. The quantum

overlap between the two ground states of these two insulators factorizes (similar to

the case with one valence band)

| 〈GI|GII〉 | =
∏
k

|φ(k)| (3.17)

where the Bloch-wave overlap at each momentum point is

φ(k) = 〈0|
N∏
n=1

cn,k

N∏
m=1

d†m,k|0〉 (3.18)

In the first-quantization language, φ(k) is the determinant of the overlap matrix F(k)

φ(k) = detF(k) (3.19)

where F(k) is an N ×N matrix with matrix elements

Fn,m(k) = 〈0|cn,kd†m,k|0〉 = 〈ψI
n(k)|ψII

m(k)〉 (3.20)

where

|ψI
n(k)〉 = c†n,k |0〉 (3.21)

|ψII
m(k)〉 = d†m,k |0〉 (3.22)

are the Bloch wave functions of the valence bands for insulators I and II respectively,

and the subindices n and m are band indices for valence bands in these two insulators.

We emphasize that the overlap matrix F(k) is a function of the crystal momentum

k. However, to simplify the formulas, in this chapter we will use F to represent the

matrix without showing explicitly that this matrix is a function of k.
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3.2.2.2 The adiabatic path

In this section, we will assume that the overlap between the two insulators, i.e.

φ(k) defined in Eq. (3.18), is finite for all momentum points, and then defines an

adiabatic path between the two insulators.

According to Eq. (3.19), φ(k) 6= 0 implies that the overlap matrix F [Eq. (3.20)]

has a nonzero determinant. As shown in Appendix A.1.2, because FF † is a hermitian

matrix, we can find a unitary matrix U , which diagonalizes FF †, i.e. UFF †U † is a

diagonal matrix. Utilizing the matrices F and U , we can define N quantum states

|Ψl(k, α)〉 =
(1− α) U∗l,n |ψI

n(k)〉+ α U∗l,nF∗nm |ψII
m(k)〉

Nl
, (3.23)

where ∗ represents complex conjugate; 0 ≤ α ≤ 1 is a control parameter and the

subindex l = 1, 2, . . . , N . In this chapter, we adopt the Einstein summation conven-

tion. Unless claimed otherwise, repeated band indices will be summed over, and this

sum only goes over all valence bands with band indicies between 1 and N , while con-

duction bands (with band indices larger than N) will not be included in the sum. The

denominator Nl is the normalization factor, which ensures that the quantum state

is properly normalized, 〈ΨlΨl〉 = 1, and the valule of this normalization function is

shown in Eq (A.19). In the Appendix A.1.4, we proved that this normalization factor

Nl never reaches zero, as long as the overlap is nonzero φ(k) 6= 0, which ensures that

Eq. (3.23) is singularity free.

We will prove in the next section that as long as the overlap φ(k) remains finite,

the states defined in Eq. (3.23) are orthonormal

〈Ψl(k, α)|Ψl′(k, α)〉 = δl,l′ (3.24)

As a result, we can design an insulator with N valence bands and utilize these or-
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thonormal states as the Bloch states of the valence bands, and this insulator will serve

as an adiabatic path between insulators I and II. Here, we define the Hamiltonian of

this insulator

H(α) = −
N∑
l=1

∑
k

|Ψl(k, α)〉 〈Ψl(k, α)| (3.25)

Because |Ψl(k, α)〉 are orthonormal for l = 1, 2, . . . , N , it is straightforward to verify

that |Ψl(k, α)〉 are eigenstates of the Hamiltonian with eigenenergy E = −1, and all

other single-particle states orthogonal to |Ψl(k, α)〉 have eigenenergy E = 0, i.e., this

Hamiltonian has N (flat) energy bands with energy E = −1 and all other energy

bands have energy E = 0. If the Fermi energy is between −1 and 0, this Hamiltonian

defines a band insulator with band gap ∆ = 1, and |Ψl(k, α)〉 are the Bloch waves

of the valence bands. As will be shown in the next section, for α = 0 (α = 1),

the ground-state wave function of this insulator coincides with that of insulator I

(insulator II). And thus H(α) defines an adiabatic path between the two insulators.

3.2.2.3 Proof for the adiabatic path

In this section, we prove the conclusions presented in Sec. 3.2.2.2. We will

first prove that the quantum states defined in Eq. (3.23) are indeed orthonormal,

i.e., 〈Ψl(k, α)|Ψl′(k, α)〉 = δl,l′ Then, we will show that the Hamiltonian defined in

Eq. (3.25) is the Hamiltonian for an insulator with N valence bands, and we will

further prove that for α = 0 (α = 1), the ground state recovers that of the insulator

I (II).

It turns out that it is easier to present the proof using the language of second

quantization, so here we will reformulate the same Bloch states and the Hamiltonian

utilizing creation/annihilation operators defined in Eqs. (3.15) and (3.16), i.e. the cre-

ation operator c†n,k (d†m,k) adds one electron to the nth (mth) valence band of insulator
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I (II) at crystal momentum k. Since electrons are fermions, the creation/annihilation

operators satisfy the canonical anticommutation relation

{cn,k, c†n′,k′} = δn,n′δk,k′ (3.26)

{dm,k, d†m′,k′} = δm,m′δk,k′ (3.27)

where δ is the Kronecker delta. For the anticommutators between c’s and d’s, it is

straightforward to prove that

{cn,k, d†m,k′} = Fn,mδk,k′ (3.28)

{dm,k, c†n,k′} = F∗n,mδk,k′ (3.29)

and all other anticommutators vanish(See Appendix A.1.1 for details).

Utilizing these creation and annihilation operators, as well as the matrices F and

U defined in Sec 3.2.2.2, we can define creation operators

a†l,k =
(1− α) U∗l,nc

†
n,k + α U∗l,nF∗nmd

†
m,k

Nl
, (3.30)

Here, repeated indices are summed over, the same as in Eq. (3.23). It is straightfor-

ward to verify that this creation operator creates the Bloch state |Ψl(k, α)〉 defined

in Eq. (3.23), i.e. |Ψl(k, α)〉 = a†l,k |0〉. In Appendix A.1.3, we proved that as long as

the overlap φ(k) is nonzero, these a†l,k operators, and the corresponding annihilation

operators, satisfies canonical anticommutation relations

{al,k, a†l′,k} = δl.l′ (3.31)

The anticommutation relation implies that the quantum states defined in Eq. (3.23)
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are orthonormal, because

δl,l′ = 〈0|{al,k, a†l′,k}|0〉 = 〈Ψl(k, α)|Ψl′(k, α)〉 (3.32)

Now we examine the Hamiltonian defined in Eq.(3.25) and rewrite it in the second-

quantization language

H(α) = −
N∑
l=1

∑
k

a†l,kal,k (3.33)

Along with the anticommutation relation [Eq. (3.31)], it is easy to verify that this

Hamiltonian describes a band insulator with N valence bands. a†l,k are the creation

operators for the Bloch states in the valence bands (l = 1, 2, . . . , N). All the valence

bands in this insulator have energy −1, while the conduction bands have energy 0.

Here, we set the Fermi energy into the band gap, i.e., between −1 and 0. For any

values of 0 ≤ α ≤ 1, the insulating gap never closes and the value remains 1.

For α = 0, we know from Eq. (3.30) that

a†l,k = U∗l,nc
†
n,k (3.34)

Because U is an unitary matrix (i.e. U∗l,nUl,n′ = δn,n′), the Hamiltonian at α = 0 is

H(α = 0) = −
N∑
n=1

∑
k

c†n,kcn,k (3.35)

Therefore, the ground state is identical to that of insulator I, i.e., all Bloch states

created by c†n,k for n = 1, 2, . . . , N are occupied.

For α = 1, Eq. (3.30) implies that

a†l,k =
1

Nl
U∗l,nF∗n,md

†
m,k. (3.36)
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Thus the Hamiltonian becomes

H(α = 1) = −
∑
k

F∗n,mU∗l,nUl,n′Fn′,m′
N 2
l

d†m,kdm′,k (3.37)

As proved in Appendix A.1.2,

F∗n,mU∗l,nUl,n′Fn′,m′
N 2
l

= δm,m′ (3.38)

and thus this Hamiltonian can be simplified

H(α = 1) = −
N∑
m=1

∑
k

d†m,kdm,k. (3.39)

The ground state for this Hamiltonian coincides with that of the insulator II, i.e., all

Bloch states created by d†m,k for m = 1, 2, . . . , N are occupied.

3.2.2.4 Insulators with different numbers of valence bands

Consider two insulators with different numbers of valence bands. It is easy to real-

ize that these two insulators are not adiabatically connected, because it is impossible

to change the number of valence bands in a band insulator without closing the band

gap.

At the same time , we know that the overlap function also vanishes. Utilizing the

overlap function defined in Eq. (3.18), we know that

φ(k) = 〈0|
N∏
n=1

cn,k

N ′∏
m=1

d†m,k|0〉 (3.40)

where N and N ′ are the number of valence bands for the two insulators respectively.

It is transparent that φ(k) = 0, if N 6= N ′.

In summary, for two insulators with different numbers of valence bands, the two
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insulators are not adiabatically connected, and the wave function overlap is zero.

3.2.3 Symmetry-protected topological states

As have been mentioned above and proved in Appendix A.2, if insulators I and

II preserves certain symmetry, the adiabatic path that we defined will preserve the

same symmetry. This property is very important for the study of symmetry-protected

topological states, where the topological index can only be defined in the presence of

certain symmetries. There, when we discuss about adiabatic paths that connect two

quantum states, we must ensure that the symmetry that are utilized to define the

topological index is preserved along the path. And the adiabatic path that we con-

structed above indeed preserves the symmetry, as long as the symmetry is preserved

in insulators I and II.

3.2.4 Insulators with different lattice structures

In the previous sections, we assumed that the two insulators (I and II) have

the same Brillouin zone, and thus we can use the same momentum points in both

insulators to calculate the wave function overlap. This assumption is not necessary,

and all the conclusions above can be generalized, even if two insulators have different

lattice structures, and thus different Brillouin zones.

This is because topology of a band insulator remains invariant as we adiabatically

deform the lattice structure (For certain topological states, e.g. topological crystalline

insulators [111], the symmetry of the underlying lattice plays an essential role in the

definition of the topological structure. There, as long as the deformation of the lattice

structure preserves the essential symmetry, the topological structure also remains

invariant). Thus, we can deform adiabatically the crystal structure of one insulator

into the structure of the other insulator, and then all the conclusions above can be

generalized.
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Finally, we emphasize that the adiabatic deformation discussed here is not unique.

Instead, there exists a vast number of different paths to deform the crystal structure.

As long as the deformation is adiabatic, our conclusion will remain the same.

In next chapter, we will provide one example to compare the Bloch waves in two

insulators with different lattice structures.

3.2.5 Adiabatic band flattening

Above, we defined a Hamiltonian with flat bands to demonstrate the adiabatic

continuity. This band structure (with flat bands) is different from that of a real insu-

lator, where the energy bands are in general not flat and not degenerate. However, for

the study of adiabatic continuity and/or topological phase transitions, this difference

doesn’t play any essential role. This is because in an arbitrary band insulator, we can

adiabatically flatten all the bands and adjust the energy of each band without chang-

ing the Bloch wave functions. The adiabatic flattening of energy bands are widely

utilized in the study of topological insulator/superconductors, and it is known that

topological properties remain invariant as we flatten the bands in a band insulator,

as long as the band gap remains open (See for example Refs. [54] and [109]).

3.3 Interacting systems

In the presence of interactions, we can no longer utilize single-particle (Bloch)

states to characterize the ground state of a many quantum system. However, we

can prove a similar theorem for generic quantum systems, which reveals a universal

relation between adiabatic continuity and the wave function overlap.

Theorem III.1. For any two quantum states with nonzero overlap, i.e., |ψ〉 and |ψ′〉

with 〈ψ|ψ′〉 6= 0, a Hamiltonian H(λ) can be defined, such that by turning the control

parameter λ, the ground state of the Hamiltontian evolves adiabatically from |ψ〉 to
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|ψ′〉. During this adiabatic procedure, the energy gap between the ground and excited

states remains finite.

It must be emphasized that although this theorem shares some similarities with

what was discussed above for band insulators (and the proof is along the same line

of thinking as will be shown below), this theorem is fundamentally different from the

conclusions shown in the previous section. This theorem covers a wider range of sys-

tems (interacting and non-interacting), but it is a weaker statement in comparison to

what we have proved in the previous section for band insulators. For noninteracting

band insulators, we showed that the adiabatic path can be achieved using a non-

interacting Hamiltonian. But for more general situations considered in the theorem

above, the Hamiltonian that describes the adiabatic path may contain interactions,

i.e., we have to enlarge the scope of Hamiltonians in order to construct the adiabatic

path for generic systems. Proving that two states are connected by a non-interacting

Hamiltonian is a stronger statement than proving that they are connected by a Hamil-

tonian, without the non-interacting constraint. Another way to see this difference is

by examining the adiabatic path. As will be shown below, the Hamiltonian that we

constructed to prove this theorem contains interactions. Even in the non-interacting

limit, in general, it will not recover the non-interacting Hamiltonian utilized in the

previous section.

In this section, we prove this theorem, and its implications for quantum phase

transitions will be discussed in the next section. As will be shown in the next section,

for topological phase transitions, there exist major differences between interacting

and non-interacting systems. In particular, in the presence of strong interactions,

the connection between our theorem and quantum phase transitions becomes much

more complicated in comparison to non-interacting systems discussed in the previous

section. As a result, we can only apply this theorem for the study of certain interacting

topological systems.
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3.3.1 Adiabatic path connecting two quantum states

Consider two quantum states |ψ〉 and |ψ′〉. Here |ψ〉 and |ψ′〉 are generic quantum

states, instead of single-particle states. We can define overlap between the two states

as

φ = 〈ψ|ψ′〉 (3.41)

Define a new quantum state

|Ψ(α)〉 =
(1− α) |ψ〉+ α φ∗ |ψ′〉

N
, (3.42)

where 0 ≤ α ≤ 1 is a real number between 0 and 1 and φ∗ is the complex conjugate

of the wave function overlap. The denominator N is a normalization factor,

N =
√

(1− α)2 + α(2− α)|φ|2 (3.43)

which ensures the normalization condition 〈Ψ(α)|Ψ(α)〉 = 1. Utilizing this wave

function, we can define a hermitian quantum operator

H(α) = − |Ψ(α)〉 〈Ψ(α)| , (3.44)

and this quantum operator will serve as our Hamiltonian.

If H(α) is a Hamiltonian and α is a control parameter, the energy spectrum of

the system can be figured out immediately. The ground state of the system is |Ψ(α)〉

with eigen-energy −1

H(α) |Ψ(α)〉 = − |Ψ(α)〉 〈Ψ(α)|Ψ(α)〉 = − |Ψ(α)〉 , (3.45)

All other eigenstates of H have eigenenergy 0, which are the excited states. In other
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words, this Hamiltonian defines a gapped system with a unique ground state, while

all the excited states are separated by an energy gap.

When α = 0, the ground state is |Ψ(0)〉 = |ψ〉. At α = 1, the ground state is

|Ψ(1)〉 = |ψ′〉. For 0 < α < 1, the energy gap between the ground and excited states

always remain finite (∆ = 1), and thus as we tune α from 0 to 1, it offers an adiabatic

path to deform (adiabatically) a quantum state |ψ〉 into a different quantum state

|ψ′〉 without closing the excitation gap.

For quantum phase transitions, the existence of such an adiabatic path implies

that |ψ〉 and |ψ′〉 belongs to the same quantum phase, i.e. we can go from one to the

other without going through a quantum phase transition. This conclusion remains

valid as long as the overlap remains finite 〈ψ|ψ′〉 6= 0.

As shown in Appendix A.2, this adiabatic path preserves the same symmetry as

|ψ〉 and |ψ′〉.

3.3.2 U(1) phase symmetry

In Eq. (3.42), a factor φ∗ = 〈ψ|ψ′〉 is introduced in the definition of |Ψ(α)〉. This

factor is necessary in order to preserve the U(1) phase symmetry. Because the proof

is in strong analogy to the non-interacting case discussed discussed in Sec. 3.2.1.4,

here we will not repeat the analysis, and it is straightforward to verify that with the

help of this 〈ψ′|ψ〉 factor, the Hamiltonian H(α) defined in Eq. (3.45) is independent

of the phase choice, i.e. H(α) is invariant under the transformation

|ψ〉 → eiφ |ψ〉 (3.46)

|ψ′〉 → eiφ
′ |ψ′〉 . (3.47)
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3.4 Applications to quantum phase transitions

For the study of quantum phase transitions, this theorem has two immediate

implications: (1) if two quantum states belong to two different quantum phases, i.e.

it is impossible to go from one to the other adiabatically without going through a

quantum phase transition point, the overlap between the two quantum wave functions

must be strictly zero, i.e. the two wave function must be orthogonal to each other;

and (2) if two quantum states have finite overlap, they must belong to the same

quantum phase, i.e., one can turn a state into the other adiabatically without going

through a quantum phase transition.

This observation enforces a strong constraint on quantum wave functions in dif-

ferent quantum phases. However, before we can apply this knowledge to the study

of quantum phase transitions, one challenge has to be resolved, the orthogonality

catastrophe. Based on the orthogonality theorem from Anderson, in the thermody-

namic limit, the overlap between two different quantum wave functions shall vanish

due to the infinite degrees of freedom [112]. To utilize the theorem discussed above

to study quantum phase transitions, it is necessary to find a way to distinguish zero

overlap caused by Anderson’s orthogonality theorem and zero overlap caused by the

absence of an adiabatic path. In general, there are three ways to taken care of the

orthogonality catastrophe:

• Utilizing another zero to cancel the zero induced by the orthogonality theorem.

One technique that can achieve this objective is the strange correlator as shown

in Ref. [123].

• Separate an infinite system into smaller subsystems with finite degrees of free-

dom, and then investigate the overlap in each subsystem, which doesn’t suf-

fer from the orthogonality catastrophe. This technique is applicable for non-

interacting systems and certain interacting systems.
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• Study finite-size systems and then extrapolate to the infinite-size limit via finite

size scaling. This last approach is directly relevant to numerical studies.

In next chapter, we will give some examples to demonstrate the second and the third

techniques.

3.5 Discussion

In this chapter, we explored the relation between wave function overlap and adi-

abatic continuity in (non-interacting) band insulators and interacting quantum sys-

tems. Our results can be utilized to simplify certain problems in the study of topolog-

ical states. For example, in the study of band insulators, a large number of topological

indices have been defined (e.g. the Chern number, the Z2 topological index, the mir-

ror Chern number, the spin Chern number, the Hopf index), and more topological

indices can be defined, if we enforce additional symmetries (e.g. space-group symme-

tries). As a result, to fully determine the topological property of an insulator becomes

a nontrivial task. In principle, it is necessary to compute all these topological indices

in order to achieve such an objective. The conclusions reported in this chapter offer

an alternative approach. Instead of trying to compute all known topological indices,

one can utilize some known insulators as reference systems, whose wave functions and

topological properties are well understood. If the Bloch wave of a new insulator has

nonzero overlap with some reference insulator, we immediately know the topological

properties of this new insulator, which must be identical to the reference insulator.

If the new insulator has zero Bloch-wave function overlap with all known reference

insulators, then this insulator might be a new topological state, and it requires further

investigation to understand its topological structure.

It is worthwhile to notice that a nonzero wave-function overlap is a sufficient

condition for topologically equivalence, but it is not necessary. For example, two
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topologically equivalent states may accidentally have wave-functions that are orthog-

onal to each other. Such an accidental vanishing wave function overlap is typically not

stable and will be removed by small perturbations, while the topologically-protected

zero wave-function overlap is stable and cannot be removed.

For interacting systems, our theorem can be easily generalized. However, it cannot

be applied to generic interacting systems because of the orthogonality catastrophe.

On the other hand, in the study of interacting topological states, many numerical

methods can only handle finite-size systems (e.g. exact diagonalization or density

matrix renormalization group). There, our conclusions will not suffer from the or-

thogonality catastrophe, and thus could benefit some of the numerical investigations.

This point will be further illustrated in next two chapters.

Above, we proved that if we have two insulators with different topology, there

must exist (at least) one momentum point, at which the overlap of the wave function

vanishes. The vanishing overlap has direct experimental implications, if we consider

tunneling between these two insulators, i.e. the vanishing wave function overlap

can prohibit tunneling between the two insulators at certain momentum point. In

Ref. [124], it is shown that this is indeed the case when one studies tunneling between

Chern insulators and conventional insulators, and between time-reversal invariant

topological insulators and conventional insulators. Our results suggest that similar

physics could be generalized for more generic topological states.
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CHAPTER IV

Examples on the overlap theorem

4.1 Introduction

In last chapter, we proved a theorem to find an adiabatic path between two topo-

logically equivalent band insulators. Our main result is that, if the overlap of two

bands is non-zero in the whole first Brillouin zone (1BZ) then these two bands are

topologically equivalent or adiabatically connected. In other words, topologically

different bands must produce 0 overlap at some momentum in 1BZ. As an appli-

cation, this conclusion could be used to find signatures of quantum phase tran-

sition, since two topologically different insulators must have no adiabatic path in

between. For band insulators, the experimental implications of our theorem are

also immediate. By Fermi’s golden rule, it is clear the transition rate between

topologically different bands vanishes at some momentum and the correspondent

modes are protected from hybridization by topology. To get a better intuition for

this result, recall that distance for two quantum states |u(k)〉 , |v(k)〉 is defined by

D(k) = arccos(| 〈v(k)|u(k)〉 |). So our result just means that topologically different

bands are separated by maxk∈1BZ D(k) = π/2, the largest possible quantum distance.

Our result above was generalized to the following cases.

a) Multi-band ground states. Considering the fact that creation and annihila-

tion operators for Fermions subject to anticommutation relation, we write the ground
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states with n-band degeneracy using creation operators as a†1(k)a†2(k) . . . a†n(k) |0〉 and

b†1(k)b†2(k) . . . b†n(k) |0〉, where |0〉 is the vacuum state. The overlap of these two ground

states was shown to be

φ(k) := det(〈vi(k)|uj(k)〉) = det(F). (4.1)

where F is the overlap matrix with each entry shown in the above equation. Then

the result above shows that topological difference in multiband ground states implies

0-determinant of the n× n overlap matrix 〈vi(k)|uj(k)〉 at some momentum.

b) Beyond band insulators. P. W. Anderson [112] pointed out that the overlap

between ground states of a Fermionic system and the system with finite-range scat-

tering potential tends to vanish as the system size approaches infinity, which is called

Anderson Orthogonality Catastrophe (AOC). Being generic for infinite-size systems,

vanishing of overlap has nothing to do with topology of the many-body ground states.

However, for finite-size systems twisted boundary conditions [125] could be introduced

to interpret topological properties of some interacting systems. A second case that

our result could apply is when the system could be divided into small systems. Then

the orthogonality catastrophe is gone. Even for those systems that do not fall into

these two categories, analytic or numerical results for finite-size scaling could still

provide us a lot of information about quantum phases. Details will be discussed in

next chapter.

In this chapter, we will provide examples on various systems, including single

valence-band systems, multi-valence-band systems and interacting systems. Examples

on systems with different symmetries are also considered.

44



4.2 Band insulators with the same symmetry

In this section, we consider several well-known topological indices and correspond-

ing band insulators to verify our results above. These models range from one dimen-

sion (1D) to three dimensions (3D).

4.2.1 Berry phase and Su-Schrieffer-Heeger model

4.2.1.1 Review

Su-Schrieffer-Heeger (SSH) model [126], proposed as a theoretical model for poly-

acetylene, is a 1D chain with two different bonds. Suppose the couplings for these

bonds are t1 and t2 (t1 6= t2). Then the Hamiltonian is:

H =
∑
i

(t1a
†
ibi−1 + t2a

†
ibi) + h.c., (4.2)

where the summation is over each unit cell containing site ai and site bi.

After Fourier transform, the Bloch Hamiltonian can be put into a 2× 2 matrix in

momentum space:

H = Hxσx +Hyσy, (4.3)

where σx and σy are Pauli matrices and if a is lattice constant,

Hx = t1 cos(ka) + t2,

Hy = t1 sin(ka).

(4.4)

It is straightforward to find the band gap to be 2|t1− t2| and this model describes an

insulator. Recall that Berry connection is defined by

Aµ(k) = −i 〈u(k)|∂µ|u(k)〉 , (4.5)
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where ∂µ = ∂
∂kµ

and |u(k)〉 is the ground state of this model. Since SSH model is 1D,

here Berry connection only has one component. And the Berry flux
∮

1BZ
dkA(k) can

be easily calculated to be π if t1 > t2 and 0 if t1 < t2. Intuitively, consider the 2D

parameter space formed by Hx and Hy. From the equations above,

(Hx − t2)2 +H2
y = t21, (4.6)

which is a circle with radius t1 centered at (t2, 0) in the parameter space, i.e., (Hx,Hy)-

plane. In such a plane, the origin represents zero-Hamiltonian and therefore is sin-

gular. Rigorously, the Berry flux is calculated to be π if this circle surrounds origin

(t1 > t2) and 0 otherwise (t1 < t2). Therefore it seems there exists a “magnetic

monopole” at the origin of (Hx,Hy)-plane. In general, the Berry flux could be an

integer multiple of π. And whenever such a multiple is nonzero, the system is topo-

logical.

4.2.1.2 Twisting of ground state

In this part, we will use twisting due to Berry phase to show that the overlap of

two topologically distinct ground states must be 0 at some momentum.

Define θk ∈ [0, π] and φk ∈ [0, 2π) such that

cos

(
θk
2

)
eiφk = 〈v(k)|u(k)〉 , (4.7)

where |u(k)〉 , |v(k)〉 are two topologically distinct ground states. Here θ is always

well-defined since the absolute value of the overlap is always in the region [0, 1]. If

φ is not well-defined, meaning that no single-valued φ could be specified from the

above relation, then the overlap must be 0. So we are done with our argument. So

without loss of generality, we should assume that there is no singular point where

either θ or φ is not well-defined. Then we could prove by contradiction that there
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exists at least one momentum point such that the overlap above is zero. Notice that

the 1BZ of SSH model is topologically a circle and going around this circle would give

rise to an extra Berry flux π to the topological band (t1 > t2 case) and Berry flux 0

to the trivial band (t1 < t2 case). On the one hand, since |u(k)〉 , |v(k)〉 belongs to

two topologically different bands, the overlap would get an extra phase ±π (signature

determined by which band is topological); On the other hand, the overlap before and

after winding arround the 1BZ should be the same (by periodicity of the 1D Brillouin

zone).

〈v(k)|u(k)〉 = 〈v(k + T )|u(k + T )〉

⇒ cos

(
θk
2

)
eiφk = cos

(
θk
2

)
eiφke±πi

⇒ cos

(
θk
2

)
= 0

⇒〈v(k)|u(k)〉 = 0.

(4.8)

So there must be one point in the 1BZ where the overlap vanishes.

4.2.2 Chern number and Chern insulators

In this part, we will review the Chern insulators (also dubbed as quantum Hall

insulators) and then study the overlap between two topologically different Chern

insulators.

4.2.2.1 Quantum Hall insulator: Haldane’s model

Here we utilize the model of Haldane [14] to demonstrate the physics. As pointed

out by Haldane, for a honeycomb lattice, the Dirac band-touching point can be gapped

by two different methods: (1) introducing a magnetic flux pattern, which breaks

the time-reversal symmetry or (2) introducing a staggered potential, which breaks

the degeneracy between the two sublattices. At half-filling, these two approaches
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result in two different insulators with different topology, a topologically nontrivial

Chern insulator and a topologically trivial conventional insulator. Haldane’s model on

honeycomb lattice [14] is a simple 2D model for Chern insulators exhibiting quantum

Hall effect without Landau levels. The Hamiltonian is given by

H = −t1
∑
〈i,j〉

a†ibj − t2
∑
〈〈i,j〉〉

(a†iaje
iφ + b†ibje

−iφ) + h.c. (4.9)

where t1, t2 are the nearest-neighbor and next-nearest-neighbor hopping strength re-

spectively. After Fourier transform, one can show that the Hamiltonian kernel is a

2× 2-matrix:

HHaldane = h · σ (4.10)

where

h1 = −t1

[
cos(kya) + 2 cos

(√
3

2
kxa

)
cos

(
kya

2

)]
, (4.11)

h2 = t1

[
sin(kya)− 2 cos

(√
3

2
kxa

)
sin

(
kya

2

)]
, (4.12)

h3 = µ− 2t2 sin(φ)

[
sin(
√

3kxa)− sin

(√
3

2
kxa

)
cos

(
3

2
kya

)]
(4.13)

Then based on Berry connection mentioned in the last section, one can calculate

the Abelian Berry curvature:

Ωµν = (dA)µν = ∂µAν − ∂νAµ. (4.14)

Finally, the integral of Ω over the whole 1BZ gives the Chern number 1 for this specific

model when µ < 3
√

3t2 sin(φ) and this shows that Haldane’s model is a topological

insulator and chiral edge states exist.
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4.2.2.2 General consideration for Chern insulators

In general, the minimal Hamiltonian for a Chern insulator is given by a 2 × 2

matrix H = h · σ (h being normalized). Suppose |uI(k)〉 , |uII(k)〉 are ground states

of this Hamiltonian in different gauge and they are smooth in region I and II of Fig.

4.1 respectively. Under gauge transformation,

|uII(k)〉 = eiφ(k) |uI(k)〉 ⇒ AII = AI + dφ(k) (4.15)

Figure 4.1: 1BZ of 2D systems: γ is a contour with counterclockwise orientation

Now we can calculate the Chern number as a winding number [127]:

C =
1

2π

∫
1BZ

Ω =
1

2π

∫
I

Ω +

∫
II

Ω


Stokes’ Theorem−−−−−−−−−→ 1

2π

∫
γ

AI +

∫
−γ

AII

 = − 1

2π

∫
γ

dφ(k).

(4.16)

We have known from the definition of Chern number (C = 1
2π

∫
1BZ

Ω− 1
2π

∫
∂(1BZ)

A)

that Chern number is the obstruction of Stokes’ theorem. Now notice here 1
2π

∫
γ
AI =

1
2π

∫
γ
AII +C. We thus conclude that whenever C 6= 0 there exists singularity for wave

functions in both gauge in 1BZ. Similar argument will be of essential importance when

we try to verify the overlap theorem for Z2 topological insulators in next section.

In fact, one can also calculate the Berry curvature directly using the ground state
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(lower-energy eigenstate of H)

|u〉 =
1

2|h|(|h| − h3)

h3 − |h|

h1 + ih2

 =
1

2(1− h3)

 h3 − 1

h1 + ih2


Ωµν =

1

2
εijk∂µhi∂νhjhk.

(4.17)

So the Chern number can also be written as

C =
1

2π

∫
1BZ

Ω =
1

4π

∫
1BZ

dk2(∂kxh× ∂kyh) · h. (4.18)

This is exactly the degree of the map h : 1BZ → S2. So Chern number is just the

number of times that the unit vector h wraps the 2-sphere. With this interpretation,

we will be able to analyze Chern insulators in general in the next section.

4.2.2.3 0-overlap of topologically different ground states

As discussed in Yang’s paper [124], the existence of vanishing overlap in 1BZ is

only due to topology and breaking discrete rotational symmetry would not give rise

to a different conclusion. To obtain a clear intuition and rigorous proof, we define an

explicit map from 1BZ (a torus T 2) to a sphere (S2) parameterized by polar angle θk

and azimuth angle φk. θk ∈ [0, π], φk ∈ [0, 2π) are determined by:

cos

(
θk
2

)
eiφk = 〈v(k)|u(k)〉 , (4.19)

where |u(k)〉 and |v(k)〉 are in general two quantum states taken from two bands

with different topology (In the situation of Ref. [124] they are the “to-be-hybridized”

surface mode and bulk mode at the same momentum k in 1BZ). If these two bands

are not orthogonal everywhere, then the degree of this map (how many times the
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image wraps S2) is exactly the Chern number difference ∆C of these two bands.

∆C =
1

4π

∫
1BZ

dkxdky(∂kxn× ∂kyn) · n (4.20)

where n = (sin θk cosφk, sin θk sinφk, cos θk).

Notice that the overlap vanishes if and only if θk = π, i.e. if and only if the image

of this map contains the south pole of S2. Therefore if the two bands have Chern

number difference ∆C the overlap vanishes |∆C|+2n times (where n is a non-negative

integer). That is, there are ∆C + 2n surface modes protected from hybridizing with

bulk states. This calculation also provides another way to calculate Chern number: if

choosing |v(k)〉 to be independent of k (completely trivial), then degree of this map

is just the Chern number of |u(k)〉.

Following our general argument above, the image wraps S2 exactly 2n ± 1 times

(n > 0) if one band is taken from Haldane’s model [14] (Chern number ±1) and

the other band is trivial. To verify this numerically, we choose the parameters in

Haldane’s model as a = 1, φ = π/2, µ = 0, t1 = 3.5, t2 = 1 for the topologically non-

trivial system, and a = 1, µ = 7.5, t1 = 1, t2 = 0 for the trivial one. Utilizing these two

topologically different insulators, we can compute the overlap between Bloch states

in their valence bands, i.e., φ(k) defined above. As shown in Fig. 4.2, this overlap

vanishes at the K point and reaches 1 at K ′ point, in agreement with our conclusions

above. Also, the degree of the map defined above is calculated to be 1 up to 10−3

accuracy in our calculation. So in this specific model, K point and K ′ point are

mapped to the south and north pole of S2 respectively.
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Figure 4.2: The absolute value of the Bloch-wave function overlap in Haldane’s model.
Here, we examined two insulating states in the model of Haldane with different Chern
numbers (+1 and 0). Utlizing the Bloch waves of the valence bands in the two
insulators, we computed the wave function overlap φ(k) and plotted its absolution
value as a function of the crystal momentum kx and ky. As shown in the figure, the
overlap vanishes at certain momentum point, which happens to be the K point for
this model.

4.2.3 Time-reversal (TR) invariant topological insulators

In this part, we give an example for systems with multiple valence bands.

4.2.3.1 Quantum spin Hall insulator (QSHI): Kane-Mele model [24, 25]

We start by reviewing some of the features of Kane-Mele model based on the

graphene honeycomb lattice. Without spin-mixing (Rashba coupling) terms, the

Hamiltonian is just two copies of Haldane’s model discussed in the last section and
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thus gives rise to chiral edge states for spin up and down.

HKM = H0 +HR,

H0 = t1
∑
〈i,j〉,σ

a†i,σbj,σ − t2
∑
〈〈i,j〉〉,σ

(a†i,σaj,σe
iφ + b†i,σbj,σe

−iφ) + h.c.

Fourier Transform−−−−−−−−−−→ H0 = d1I2×2 ⊗ σ1 + d31I2×2 ⊗ σ2 + µI2×2 ⊗ σ3 + d12σ3 ⊗ σ3

=

HHaldane
↑ 0

0 HHaldane
↓

 ,

HR = −iλR
∑
〈i,j〉

a†i,σ(s× d)bj,σ + h.c.

Fourier Transform−−−−−−−−−−→ HR = d53σ1 ⊗ σ1 + d43σ2 ⊗ σ1 + d5σ1 ⊗ σ2 + d4σ2 ⊗ σ2

(4.21)

where HR is the Rashba spin-mixing term and

d1 = −t1

[
cos(kya) + 2 cos

(√
3

2
kxa

)
cos

(
kya

2

)]
, (4.22)

d31 = t1

[
sin(kya)− 2 cos

(√
3

2
kxa

)
sin

(
kya

2

)]
, (4.23)

d12 = −2t2 sin(φ)

[
sin(
√

3kxa)− sin

(√
3

2
kxa

)
cos

(
3

2
kya

)]
, (4.24)

d53 = −λRa

[
sin(kya) + sin

(
kya

2

)
cos

(√
3

2
kxa

)]
, (4.25)

d43 =
√

3λRa cos

(
kya

2

)
sin

(√
3

2
kxa

)
, (4.26)

d5 = −λRa

[
cos(kya)− cos

(
kya

2

)
cos

(√
3

2
kxa

)]
, (4.27)

d4 =
√

3λRa sin

(
kya

2

)
sin

(√
3

2
kxa

)
. (4.28)

Although Kane-Mele model with Rashba term breaks sz conservation the TR

symmetry is preserved: [Θ,H] = 0, where the TR operator Θ = e−iπsy/~K = −σyK
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for spin-1
2

particle. So if |u〉 is an eigenstate of H with energy E, one can show

Θ |u〉 and |u〉 are two degenerate and orthogonal states (Kramer’s theorem). By this

theorem, one concludes that small Rashba coupling wouldn’t split the degeneracy of

the edge state pairs on the TR-invariant momenta. To understand this type of system,

Kane and Mele defined a Z2 invariant using zeroes of P (k) = Pf[〈um(k)|Θ|un(k)〉]:

I =
1

2πi

∮
C

dk · ∇k log[P (k) + iδ] (mod 2) (4.29)

where C is the contour surrounding half of 1BZ. By Poincare-Hopf theorem, the

zeroes of vector field P (k) must form “particle-antiparticle” pairs so that the indices

of this vector field add up to 0 ( Euler characteristic of 2-torus), that is, the pfaffian

possess even number of zeroes with opposite phases that can annihilate each other

when two of such zeroes meet. Due to TR-symmetry of the system, at least one pair

of such zeroes must meet at TR-invariant point if I is odd. But it could be shown that

pfaffian at these points can never be 0 [108]. Thus odd I corresponds to topologically

nontrivial insulators.

Another equivalent definition of Z2 index was provided by Fu and Kane [128] using

the TR polarization Pθ = P I − P II where P s = 1
2π

∫ π
−π dkA

s(k) for s = I, II. There

they defined it to be

ν = Pθ(T/2)− Pθ(0) (mod 2), or

(−1)ν =
4∏
i=1

√
det[w(Γi)]

Pf[w(Γi)]
,

(4.30)

where the unitary matrix w(k) = 〈um(−k)|Θ|un(k)〉 and Γi’s are the TR-invariant

momenta in 1BZ. This second expresion can be easily generalized to 3D case, which

will be considered in the end of this subsection.

54



4.2.3.2 Numerical verification for explicit QSHI models

TR-invariant topological insulators are characterized by Z2 invariant as defined in

Ref. [24] and [27]. In such a system, quantum states at k and −k are actually related

by TR symmetry [24]: |ui(−k)〉 = Θ |ui(k)〉 (i is the label of bands). In this part, we

calculate the overlaps for ground states with two famous models for QSHI, Bernevig-

Hughes-Zhang (BHZ) model for HgTe quantum well [31] and Kane-Mele (KM) model

based on graphene [24, 25]. In both models, two bands are degenerate in general due

to TR symmetry. So by the analysis above, our overlap matrix becomes:

〈v1(k)|u1(k)〉 〈v1(k)|u2(k)〉

〈v2(k)|u1(k)〉 〈v2(k)|u2(k)〉

 , (4.31)

where u, v represents topologically non-trivial and topologically trivial bands respec-

tively as usual.

BHZ model and KM model without Rashba term are just two copies of Chern

insulators. In this case, spin Chern number is well-defined. The overlap matrix is

diagonal and diagonal entries give us ±1 as the Chern number difference similar to

the case in the last section. So following the argument for Chern insulators we would

get overlap 0 at some momentum in 1BZ, as verified by numerical results in Fig. 4.3.

In our calculation, we used the Hamiltonians for BHZ model as the following,

HBHZ = sin(kx)σ3⊗σ1 +sin(ky)I2×2⊗σ1 +[2+m−cos(kx)−cos(ky)]I2×2⊗σ3, (4.32)

where σi’s are the Pauli matrices and we used the parameter m = ±1 to obtain

the two topologically distinct systems. And the parameters for KM model is chosen

to be a = 1, t1 = 3, t2 = 1, µ = 0, λR = 0 for topologically nontrivial system and

a = 1, t1 = 1, t2 = 0.2, µ = 7.5, λR = 0 for the topologically trivial one.
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(a) BHZ model (b) KM model

Figure 4.3: Two copies of Chern insulators: absolute value for determinant

By changing the numerical value of λR to 0.1 for both systems, we introduce the

Rashba term to destroy spin Chern number. Now spin Chern number is ill-defined

and we only have Z2 invariant to classify these insulators. However, our determinant

calculation still gives similar results as the model without Rashba term (see Fig. 4.4).

Further calculation with broken C3 symmetry also shows 0 determinant as long as the

two systems are topologically distinct. In the next section we will show analytically

that this is again due to the topological difference between the two ground-state band

pairs.

Figure 4.4: Adding Rashba term for KM model: absolute value for determinant
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4.2.3.3 Analytical consideration

Z2 invariant in TR-invariant topological insulators could be understood as an

obstruction for Stokes’ Theorem [128]. In Ref. [128] Fu and Kane enforced the “time

reversal constraint” in 2D TR invariant system

|u2(−kx,−ky)〉 = Θ |u1(kx, ky)〉

|u1(−kx,−ky〉 = −Θ |u2(kx, ky)〉 .
(4.33)

Figure 4.5: Figure for 1BZ, horizontal and vertical axes are kx, ky

On patches A and B, |u1(kx, ky)〉A and |u2(kx, ky)〉B are wave functions satisfying

these conditions. But |u1(kx, ky)〉B is not smooth in A due to the non-trivial Z2

invariant. On the common boundary of region A and B they are related by a U(2)

transition matrix T

|um(kx, ky)〉B = Tmn |un(kx, ky)〉A (4.34)

With this transition matrix, the authors defined a Z2 invariant (even for trivial insu-
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lators and odd for non-trivial ones)

D =
1

2πi

∮
∂τ

dl · tr(T †∇T ). (4.35)

D is also the winding number of the map det(T ) : ∂τ → S1 due to the following

reason. In general we have T = exp(itµσµ) with tµ ∈ R. The winding number of this

map is

w =
1

2πi

∮
∂τ

dl · det(T )∗∇ det(T )

=
1

2πi

∮
∂τ

dl · [exp(tr lnT )]∗∇ exp(tr lnT )

=
1

2πi

∮
∂τ

dl ·∇ tr(lnT )

=
1

2πi

∮
∂τ

dl · tr∇(itµσµ)

=
1

2π

∮
∂τ

dl · 2∇t0

=
1

2πi

∮
∂τ

dl · tr(T †∇T )

=D.

(4.36)

Suppose a Kramer pair |u1(kx, ky)〉 , |u2(kx, ky)〉 is the ground state of a topologi-

cally nontrivial TR-invariant system and another Kramer pair |v1(kx, ky)〉 , |v2(kx, ky)〉

is the ground state of another trivial TR-invariant system. The overlap of ground
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states on the boundary ∂τ is

φB(kx, ky) = det(F)

:= det

〈v1(kx, ky)|u1(kx, ky)〉B 〈v1(kx, ky)|u2(kx, ky)〉B
〈v2(kx, ky)|u1(kx, ky)〉B 〈v2(kx, ky)|u2(kx, ky)〉B


= det


〈v1(kx, ky)|u1(kx, ky)〉A 〈v1(kx, ky)|u2(kx, ky)〉A
〈v2(kx, ky)|u1(kx, ky)〉A 〈v2(kx, ky)|u2(kx, ky)〉A


T11 T21

T12 T22




=φA(kx, ky) det(T )

(4.37)

where we used equation 4.34 for the gauge transformation. We now show that the

overlap φ(kx, ky) must vanish at some point in region τ . Suppose φ(kx, ky) 6= 0 along

∂τ (otherwise we are done). Define a mapN (kx, ky) = φ(kx, ky)/|φ(kx, ky)| : ∂τ → S1.

Then the winding number for this map is given as

W =
1

2π

∮
∂τ

dl · N ∗(kx, ky)∇N (kx, ky). (4.38)

So using equation (4) and the fact T ∈ U(2),

WB =
1

2π

∮
∂τ

dl · N ∗B(kx, ky)∇NB(kx, ky)

=
1

2π

∮
∂τ

dl · [NA(kx, ky) det(T )]∗∇ [NA(kx, ky) det(T )]

=
1

2π

∮
∂τ

dl · [det(T )∗ det(T )] [N ∗A(kx, ky)∇NA(kx, ky)] +

1

2π

∮
∂τ

dl · [N ∗A(kx, ky)NA(kx, ky)] [det(T )∗∇ det(T )]

=
1

2π

∮
∂τ

dl · N ∗A(kx, ky)∇NA(kx, ky) +
1

2π

∮
∂τ

dl · det(T )∗∇ det(T )

=WA +D

(4.39)
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Here WB −WA = D is an odd integer and can not be gauged away as mentioned in

Ref. [128]. So there must be a singularity (|φ(kx, ky)| = 0) inside τ .

The argument above is easily generalized to 3D case. In 3D TR-invariant topolog-

ical insulators, there are 8 TR-invariant momenta, denoted by Γi=(n1n2n3) = (n1b1 +

n2b2+n3b3)/2 with nj = 0, 1. The 16 phases of 3D TR-invariant topological insulators

are characterized by 4 Z2 indices ν0; (ν1, ν2, ν3) [26], where (ν1, ν2, ν3) can be regarded

as Miller indices for the 8 elements mod 2 reciprocal lattice Gν =
∑

i νibi. Clearly,

these indices are equivalent to the 6 2D Z2 indices

ν0 + ν1 ν0 + ν2 ν0 + ν3

ν1 ν2 ν3

 (mod

2), where the first row represents Z2 indices for planes kx = 0, ky = 0, kz = 0 respec-

tively while the second row for planes kx = π, ky = π, kz = π. Under this construction,

we can easily see that if two Kramer pairs (bands in 3D) are topologically different,

then at least one correspondent νµ differs. Consequently, at least 2 out of the 6 planes

have different 2D topological indices for these Kramer pairs. Now the argument for

2D case applies to these planes in k-space.

4.3 Overlap of bands with different symmetries

In this section, we provide an example to show that the generic zero overlap is

indeed due to different topology instead of different symmetries. We take the same

Hamiltonian for Kane-Mele model as in Ref. [124]

HKM = d1I2×2 ⊗ τ1 + d2I2×2 ⊗ τ2 + d3σ3 ⊗ τ3;

d1 = −t1[1 + cos(k1) + cos(k2)];

d2 = −t1[sin(k1) + sin(k2)];

d3 = −2t2 sin(φ)[sin(k1)− sin(k2)− sin(k1 − k2)];

(4.40)
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where k1 = 1
2
kx +

√
3

2
ky, k2 = −1

2
kx +

√
3

2
ky, σi and τi represent spin and valley

respectively and t1, t2 are nearest neighbor and next nearest neighbor hopping strengh,

φ is the phase change along with next nearest neighbor hopping. The first Brillouin

zone can be chosen to be a rhombus formed by reciprocal lattice vectors 4π√
3
(
√

3
2
,±1

2
).

The Bernevig-Hughes-Zhang model [31] we used is given by

HBHZ = sin(kx)σ3⊗τ1 +sin(ky)I2×2⊗τ2 +[2−m−cos(kx)−cos(ky)]I2×2⊗τ3. (4.41)

And the first Brillouin zone is a square region (−π, π]× (−π, π].

We choose t1 = 3, t2 = 1, φ = π/2 for KM model and m = 1 for BHZ model

so that their ground states share the same spin Chern number. Then the overlap

(determinant) can be calculated pointwise through a map KM → BHZ : (x, y) 7→

(−π + 1
2
x +

√
3

2
y,−π + 1

2
x −

√
3

2
y). The final density plot in the first Brillouin zone

of BHZ model is shown below, from which we clearly see no vanishing determinant

(despite different lattice symmetries of these two models).

Figure 4.6: Absolute value of determinant for the two ground states of KM and BHZ
models
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4.4 Application to interacting systems

To show that our theorem applies for interacting systems despite Anderson’s or-

thogonality catastrophe, here we provide two examples.

4.4.1 Quantum Hall and Chern insulators

For certain topological states, the topological structure is well defined for both

finite and infinite systems. The most well-known example of this type is the integer

and fractional quantum Hall systems, as well as the integer and fraction Chern insula-

tors, where the topological index can be computed using twisted boundary conditions

for both finite-size and infinite systems [125].

4.4.1.1 Definition of topological indices for a finite-size system

Consider a finite-size two-dimensional many-body systems with size Lx ×Ly. We

enforce a twisted boundary condition for the many body wave function

ψ(. . . , xi + Lx, yi, . . .) = eiϕxψ(. . . , xi, yi, . . .) (4.42)

ψ(. . . , xi, yi + Ly, . . .) = eiϕyψ(. . . , xi, yi, . . .) (4.43)

where ψ is the many-body wave function, while xi and yi are the x and y cooridnates

of the ith particle. ϕx and ϕy are two phase factors. For ϕx = ϕy = 0 (ϕx = ϕy = π),

it recovers the periodic (antiperiodic) boundary conditions. For other values of ϕx

and ϕy, it is known as the twisted boundary conditions.

We can find the ground state of a quantum system under twisted boundary con-

ductions |ψ(ϕx, ϕy)〉. In general, the ground-state wave function depends on the
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values of ϕx and ϕy. For a gapped system, we can define the following integral

C =

2π∫
0

dϕx

2π∫
0

dϕy
〈∂ϕxψ|∂ϕyψ〉 − 〈∂ϕyψ|∂ϕxψ〉

2πi
(4.44)

As pointed out in Ref. [125], this integral is a topological invariant, i.e. the first

Chern number, regardless of the size of the system. In the thermodynamic limit, this

topological index coincides with the Hall conductivity [125]. Because the definition

utilizes many-body wave functions (without using single-particle Bloch waves), it is

applicable for both interacting and non-interacting systems. In the non-interacting

limit, it recovers the Chern number computed using single-particle Bloch waves [13].

It is also worthwhile to mention that it is straightforward to generalize this defini-

tion to fractional quantum Hall systems (fractional Chern insulators). Once topolog-

ical degeneracy is taken into account, the integral shown above produces fractional

values, i.e. the fractional Hall conductivity [129].

4.4.1.2 Wave function overlap and topological index

Consider a 2D finite-size system with Hamiltonian H1 and another 2D system

with the same size but a different Hamiltonian H2. Here, we allow the Hamiltonians

to contain interactions, and we assume that the ground states are gapped for both

Hamiltonians (for any twisted boundary conditions). We can find the many-body

ground states for the two Hamiltonians under twisted boundary condition |ψ1(ϕx, ϕy)〉

and |ψ2(ϕx, ϕy)〉 respectively. Using Eq. (4.44), one can compute the Chern number

for the ground states of both Hamiltonians.

Here, we ask the following question: if the ground states of the two Hamiltonians

have different Chern numbers, what is the wave function overlap between the two

insulators, 〈ψ1(ϕx, ϕy)|ψ2(ϕx, ϕy)〉. Because we have set the system-size to be finite,

the wave function overlap does not suffer from the orthogonality catastrophe, and
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thus we can directly apply the theorem proved above.

Because the two ground states have different topological index, it is impossible

to adiabatically deform one state into the other without closing the excitation gap

(between the ground state and the first excited state). This implies that no matter

how we tries to deform H1 into H2, adiabatically, the excitation gap must close for

at least one set of ϕx and ϕy. Utilizing the theorem proved above, this implies

that we can find at least one set of ϕx and ϕy, the wave function overlap vanishes

〈ψ1(ϕx, ϕy)|ψ2(ϕx, ϕy)〉 = 0. Otherwise, an adiabatic path will exist, which is in

contradiction to the assumption that the two states have different Chern numbers.

Now we consider the opposite situation, where 〈ψ1(ϕx, ϕy)|ψ2(ϕx, ϕy)〉 6= 0 for all

possible values of ϕx and ϕy. Utilizing the theorem shown above, for any twisted

boundary condition, we can construct an adiabatic path between these two quantum

states without closing the gap. As a result, the two states must have the same Chern

number.

4.4.1.3 Topological phase transitions in interacting systems

Now we study a topological phase transitions in a 2D interacting system. Con-

sidering a Hamiltonian H(α), where α is a control parameter. We assume that by

tuning the control parameter α, the system undergoes a topological phase transition,

where the Chern number changes its value, i.e., the Hamiltonian has a gapped ground

state for both α > αC and α < αC , but the ground state has different Chern numbers

for α > αC and α < αC . Here again, we consider a finite-size system, although one

can take the thermodynamic limit later via finite size scaling. As shown above and

pointed out in Ref. [130], even for finite size systems, the Chern number and the

topological phase transition is well-defined.

The ground-state wave function of this Hamiltonian, |ψα(ϕx, ϕy)〉 depends on the

value of the control parameter α, as well as the phases of the twisted boundary
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conditions ϕx and ϕy. We can compute the wave function overlap for the ground

state at different values of α,

φα1,α2(ϕx, ϕy) = 〈ψα1(ϕx, ϕy)|ψα2(ϕx, ϕy)〉 (4.45)

The conclusions that we proved above indicate immediately that if this overlap never

vanishes for any ϕx and ϕy, H(α1) and H(α2) describe states in the same quantum

phase, i.e. α1 > αC and α2 > αC , or α1 < αC and α2 < αC .

Similarly, if we compute the overlap for two wave functions from two different

topological phases, (e.g., α1 > αC and α2 < αC), then this overlap must vanish for

some values of ϕx and ϕy. A special case of this type has been shown in Ref. [131],

where α1 and α2 are very close to the transition point, i.e. α1 = αC+ε and α2 = αC−ε

where ε is a very small positive number. There, the vanishing wave function overlap

results in a singularity (i.e. an Dirac δ-function) in the fidelity matrix [132–134], which

can be used to pin-point the topological phase transition in a finite-size interacting

system. The results shown above generalize the same conclusion for any values of

α1 > αC and α2 < αC , close or far away from the topological transition point.

4.4.2 Factorized wave function overlap in certain interacting systems

In general, a many-body ground-state wave function of an interacting system

cannot be factorized as the product of single-particle (or few-particle) wave functions,

in contrast to non-interacting systems discussed in Sec. 3.2. However, for certain

interacting systems, such a factorization could happen, which offers us another way

to avoid the orthogonality catastrophe in the study of wave function overlap.

Here we consider a (AA-stacked) bilayer Kane-Mele model as studied in Ref. [135].

For each layer, we have a non-interacting Kane-Mele model (on a honeycomb lattice),

which describes a Z2 topological insulator. Between the layers, an interlayer antifer-
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romagnetic spin-spin interaction is introduced between interlayer nearest neighbors.

In this model, because the z-component of the spin is conserved, the insulating

ground state is characterized by an integer-valued topological index, known as the

spin Chern number. In the non-interacting limit, the topological index is +2, i.e., the

system is topologically nontrivial. Because there is no interaction, the ground state

factorizes as the antisymmetrized product of Bloch states

|ψI〉 =
∏
k

c†t,kd
†
t,kc
†
b,kd

†
b,k |0〉 (4.46)

where c†t,k and d†t,k are the creation operators for the two valence band in the top layer.

Here, the top layer is a non-interacting Kane-Mele model, which has two valence bands

(taking into account the spin degrees of freedom). The other two creation operators

c†b,k and d†b,k are for the bottom layer, which is identical to the top layer.

When the interlayer antiferromagnetic coupling is infinitely strong, electrons be-

tween the two layers form singlet pairs (i.e., dimers). At half-filling, the dimers fill

up the whole system, and electrons can no longer move, i.e. the system becomes a

topologically trivial insulator with spin Chern number 0. Here, the ground-state wave

function is

|ψII〉 =
∏
i

(a†t,i,↑a
†
b,i,↓ − a

†
t,i,↓a

†
b,i,↑)(b

†
t,i,↑b

†
b,i,↓ − b

†
t,i,↓b

†
b,i,↑) |0〉

Here, a† and b† are the creation operator for the A and B sublattices of the honeycomb

lattice respectively. The subindices t and b represent the top and bottom layers, and

i is the index for unit cells. ↑ and ↓ are spin indices (spin up and down). Here,

a†t,i,↑a
†
b,i,↓ − a

†
t,i,↓a

†
b,i,↑ and b†t,i,↑b

†
b,i,↓ − b

†
t,i,↓b

†
b,i,↑ create spin singlets (dimers) in the A

and B sites of the ith unit cell.

Because the non-interacting limit and the strong-coupling limit have different

topological indices (+2 and 0), a topological phase transition must arise as the anti-
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ferromagnetic coupling strength increases. This transition was observed and studied

using quantum Monte Carlo simulations [135].

Here, we focus on the non-interacting limit and the infinite-coupling limit. As

shown above, in both cases, the ground states are product states. With periodic

boundary conditions, the number of momentum points in a Brillouin zone coincides

with the number of unit cells in the real space. Thus, we can define a one-to-one

mapping between the unit cell index i and crystal momentum k

i→ k = ki (4.47)

Utilizing this mapping, the wave function overlap between |ψI〉 and |ψII〉 can be

factorized

|φ| = | 〈ψI |ψII〉 | =
∏
i

|φi| (4.48)

where

φi = 〈0|db,kicb,kidt,kict,ki(a
†
t,i,↑a

†
b,i,↓ − a

†
t,i,↓a

†
b,i,↑)

(b†t,i,↑b
†
b,i,↓ − b

†
t,i,↓b

†
b,i,↑)|0〉 (4.49)

Here, for each i, this overlap only involves four creation (annihilation) operators, and

thus φi doesn’t suffer from the orthogonality catastrophe. Because the two regimes

(non-interacting and infinite-interaction) have ground states with different topology,

we expect at least one i, at which φi vanishes. This is indeed the case for the model

considered here.
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4.5 Conclusion

In this chapter, we explored a variety of models to verify our overlap theorem.

These models range from 1D to 3D, from band insulators to certain interacting sys-

tems, from systems with the same lattice symmetry to those with distinct symmetries.

Specifically, we show that although Anderson orthogonality catastrophe prohibits

overlaps to give more information to topological phase transitions in infinite systems,

there are certain interacting systems in which the overlap theorem still works. In

next chapter, we will try to attack generic interacting systems by showing that more

information could be extracted from finite-size scaling.
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CHAPTER V

Anderson orthogonality catastrophe in 2 + 1-D

topological systems

5.1 Introduction

Ground states of condensed matter systems encode the information of quantum

phases. Topological insulators, for example, are defined through the calculation of

certain topological invariants [14, 24–27, 31, 128] based on ground states. There has

been many efforts trying to understand such information in the ground-state wave

functions. In particular, the ground-state overlaps have been utilized to investigate

geometric entanglement [136–138] and (topological) quantum phase transitions [131,

132, 139–142]. Among those efforts, our previous work [139] has proven that two

insulators lie in the same topological phase if their single-particle ground-state overlap

does not vanish in the first Brillouin zone.

However, many-body ground-state overlaps in the thermodynamic limit are al-

ways 0 due to Anderson orthogonality catastrophe [112]. At first glance, it seems

no information could be extracted from the wave-function overlap. But we learned

in first-year calculus that functions could approach 0 in different order under certain

limit condition. Thus, it is expected that more information could be generated from

the finite-size scaling of overlaps. For the impurity problem, Anderson first showed a
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power law decay for the overlap,

〈Ψ|Ψ′〉 ∼ N−ε, (5.1)

where N is the number of electrons and ε > 0. For two generic wave functions, if the

overlap on each lattice site differs by a finite amount then one would naively expect

the many-body wave-function overlap exhibit an exponential decay.

In this chapter, we focus on the study of (2 + 1)-D topological states which in-

cludes both symmetry-protected topological (SPT) states and intrinsic topological

states. SPT systems are adiabatically connected with trivial product states under

local unitary transformation [18, 39]. However, there is no such a smooth path con-

necting nontrivial SPT states and product states if the symmetries are preserved.

Such systems in (2 + 1)-D must have gapless surface/edge modes [18, 39]. In higher

dimensions, these boundary modes could also be gapped. But the ground state on the

boundary must be degenerate if the essential symmetries are spontaneously broken

there [18, 39]. In the following, we will exploit the ideal ground-state wave function

for (2 + 1)-D fixed-point SPT systems (in renormalization-group sense) to prove the

existence of a topological response term in ground-state overlaps. Then we will verify

it with the example of Z2-protected Ising paramagnetic topological systems [143]. We

show that the overlap of generic fixed-point SPT states has a universal sub-leading

terms depending on the Euler characteristic of the manifold the systems live on. Such

a topological response term is an analogue of the corrections of entanglement entropy

and free energy in (1 + 1)-D critical systems. Indeed, we find the coefficient of the

topological response term is related to the central charge of an underlying CFT. Sim-

ilar behavior is seen in systems with intrinsic topological order. More surprisingly,

we find an overlap decaying faster than exponential in the case of fractional quantum

Hall (FQH) systems. We will end with some open questions.
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5.2 Physical Intuition

In this section, we will provide an intuitive argument that will serve as a basic

physical picture for the rigorous calculations in later sections.

The imaginary time evolution of an arbitrary state could be written as

|final〉 = T
(
e−

∫ β
0 H(τ)dτ

)
|initial〉 (5.2)

up to a normalization factor. Here T is the time-ordering operator, the initial state

is an arbitrary state at time 0 and it evolves within time β to the final state. Denote

the eigenvalues and eigenstates of such a system as Ei and |i〉 respectively. |i〉’s form

a complete set of basis vectors in the wave-function space. So any initial state could

be written as a linear combination of |i〉’s,

|initial〉 =
∑
i

αi |i〉 , (5.3)

where αi’s are finite constants. Insert this equation to Eq. (5.2), we get

|final〉 =
∑
i

αie
−

∫ β
0 Eidτ |i〉 (5.4)

It becomes obvious that in the infinite-time/zero-temperature limit β → ∞, coeffi-

cients of all excited states are suppressed exponentially to 0. In other words, if the

initial state contains some component from the ground states, then the final state

must be a linear combination of degenerate ground states under long-time evolution.

In the case the ground state is non-degenerate, we have reached the unique ground

state in this calculation. This is consistent with the fact that when the temperature

is 0, quantum systems reside in their ground states.

Once the ground states are obtained, we could calculate the ground-state overlaps.

Similar to the argument by You et al. [123], here we only give an intuitive argument.
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Figure 5.1: (a) |ΨI〉 , |ΨII〉 are obtained from the infinite-time evolution of arbitrary
states from +∞ and −∞ under the path integral of system I and II respectively. The
overlap describes the interface τ = 0. (b) Rotate the combined system by 90◦. The
interface becomes x = 0 which is a CFT.

In the following sections, we will prove it through rigorous formulation for a large

variety of fixed-point topological systems. Consider two (almost) arbitrary states

evolving under the Hamiltonian of systems I and II from τ = +∞ and τ = −∞ to

τ = 0 respectively. Since the components of excited states in the two initial states are

exponentially suppressed during the evolution, the final states at τ = 0+ and τ = 0−

are the ground states 〈ΨI| , |ΨII〉 of system I and system II respectively (Fig. 5.1(a)).

So the overlap 〈ΨI|ΨII〉 describes the theory on the interface τ = 0. Rotating such a

system by 90◦, the imaginary-time interface at τ = 0 becomes a spatial interface at

x = 0 (Fig. 5.1(b)). So as long as the interface at x = 0 is gapless (which is true

for any (2 + 1)-D SPT systems) and described by some CFT, the corresponding wave

function overlap would be related to a critical theory.

Indeed, we will show later case by case that the overlaps can be interpreted as

partition function Z of certain CFT. For a generic CFT, Cardy [144] shows that the
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free energy scales as

F = − ln(Z) = αN + β
√
N − χc

12
ln(N) +O(1). (5.5)

In this expression, the N term comes from the contribution of bulk, the
√
N term

from the boundary contribution. The coefficient of ln(N) correction depends on the

Euler characteristic χ of the manifold M where the system lives on and the central

charge c of the underlying CFT. Following this key expression for scaling, we conclude

that ln(〈ΨI|ΨII〉) contains the topological response term χc
12

ln(N) as we expected.

5.3 Bosonic SPT

In this section, we will give a more rigorous derivation for (2 + 1)-D fixed-point

bosonic SPT systems. It was shown that a large number of (2 + 1)-D SPT states

could be described by continuous nonlinear σ models with topological θ terms [145].

For example, in spin systems with SO(3) rotational symmetry, the action is given by

S =

∫
dτd2x

(
1

2ρ
tr(∂µg

†∂µg) + i
θ

2π2

εµνλ

6

1

8
tr[(g−1∂µg)(g−1∂νg)(g−1∂λg)]

)
(5.6)

where g(x, t) is a group element in SO(3) and θ = 2πk with k ∈ Z. A more complete

classification of bosonic SPT can be achieved through group cohomology [18, 146],

which could be loosely considered as a discrete version for the topological field theories

mentioned above. In the group cohomology construction, the partition function for

fixed-point systems are required to be 1. This will be one of the essential requirements

when we work with the discrete space-time path integrals in the following.
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5.3.1 Warm-up: Ground States of (1 + 1)-D Fixed Points

As we have seen in Section 5.2, theories in continuous space-time can find their

ground-state wave function by infinite-time evolution of (almost) arbitrary states.

Similarly, after we discretize the space-time, the fixed-point ground states of different

SPT phases could be represented through discretized version of space-time evolution

of states. For the sake of simplicity, we give an example of a (1 + 1)-D bosonic

SPT sytem with onsite symmetry G (see Fig. 5.2). In the discrete space-time or

triangulation of space-time, group cohomology theory assigns one group element g ∈

G to each vertex and a phase factor ν (dubbed cocycle) to the simplex (a triangle in

(1 + 1)-D and a tetrahedron in (2 + 1)-D).

Figure 5.2: For simplicity, we only illustrate the graphic representation of the fixed
point wave function in (1+1)-D where M is topologically a circle instead of a sphere in
the main text. (Left) The time evolution of an arbitrary state from the point ∗ to the
boundary ∂Σ = M would produce the ground state |Ψ〉 of the corresponding theory.
(Right) The Hermitian conjugate 〈Ψ| can be obtained through a mirror reflection of
the state |Ψ〉 except the orientation of each simplex is reversed. And such a state could
be considered as some arbitrary wave function evolves from the point # backward in
time to the boundary M .

Intuitively, the fixed-point ground state of such a system is given by the time

evolution of an arbitrary state from vertex ∗ to the boundary (123). Mathematically,

the combinations of {g1, g2, g3} on the boundary forms an orthogonal set of basis

vectors in the wave-function space. The ground-state amplitude over the basis vector
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|{g1, g2, g3}〉 is given by

Ψ({g1, g2, g3}) =
1

|G|
∑
g∗∈G

ν−1
2 (g∗, g1, g2)ν−1

2 (g∗, g2, g3)ν2(g∗, g1, g3), (5.7)

where |G| is the order of group G, ν2(gi, gj, gk) is the 2-cocycle associated with triangle

(ijk) and its exponent ±1 is determined through the orientation of the triangle (ijk).

Each ν could be considered as the discrete version of the action amplitude e−S where

S is the fixed-point action of the topological system. The Hermitian conjugate of this

state is represented as the mirror image of the triangulation on the left panel in Fig.

5.2 except the time-evolution arrows reversed. Its wave-function amplitude over the

basis |{g1, g2, g3}〉 is

Ψ†({g1, g2, g3}) =
1

|G|
∑
g#∈G

ν2(g1, g2, g#)ν2(g2, g3, g#)ν−1
2 (g1, g3, g#). (5.8)

Pictorially, the overlap 〈Ψ|Ψ〉 = tr(ΨΨ†) is the gluing of two (1 + 1)-D manifolds [39]

sharing the same boundary (123). This is mathematically represented as

〈Ψ|Ψ〉 =
1

|G|3
∑

g1,g2,g3

Ψ({g1, g2, g3})Ψ†({g1, g2, g3}) (5.9)

where the third power of |G| is due to the fact that there are in total 3 vertices on the

gluing boundary. For this specific (1 + 1)-D case, the resulting manifold is a sphere

with the vertex g∗ representing negative infinite time and g# representing positive

infinite time. Plugging in the expressions of Ψ and Ψ†, we immediately realize that

〈Ψ|Ψ〉 is exactly the discrete version of a path integral. Since the path integral of

fixed-point topological field theories over closed manifolds [18] are required to be 1,

we obtain 〈Ψ|Ψ〉 = 1, consistent with the normality of quantum states. In fact, this

result could also be trivially derived from the more basic branching rules [18], which

we omit here.
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5.3.2 Ground-state Overlaps of (2 + 1)-D Fixed Points

Now consider a bosonic SPT system with on-site symmetry G defined on 2-

dimensional closed manifold M . Including the time direction, the ground state would

be defined on a (2 + 1)-D manifold Σ with boundary ∂Σ = M . Pick an arbitrary

point ∗ inside Σ and connect it with all the vertices on M . In this way we have built

a triangulation of the (2 + 1)-D manifold (see Fig. 5.3). One example for such a

manifold Σ is a solid 2-sphere and its boundary M is a hollow 2-sphere. But it could

be much more general. The ground-state wave function could be considered as the

time evolution of an arbitrary state from any point ∗ inside of Σ to its boundary M .

Explicitly, the fixed-point wave-function amplitude is given by

Ψ({gi}M) =
1

|G|
∑
g∗∈G

∏
(∗ijk)∈Σ

ν
s∗ijk
3 (g∗, gi, gj, gk). (5.10)

Here ν
s∗ijk
3 (g∗, gi, gj, gk) corresponds to the action amplitude e−

∫
(∗ijk) d

2xdτL[g(x,τ)] on

a single simplex (∗ijk) and s∗ijk = ±1 depends on the orientation of the simplex.

The summation |G|−1
∑

g∗∈G is understood as
∫
dgi over the group manifold if G is

a continuous group. We also denoted Σ as the discrete (2 + 1)-D complex whose

boundary is M and inside of Σ there is only one more vertex ∗. In order for the

action S to exhibit a quantized topological θ-term, one essential constraint on the

three-cocycle ν3(gi, gj, gk, gl) ∈ H3[G,UT (1)] is that on closed (2 + 1)-D manifolds,

e−S({gi}) =
∏

(ijkl)

ν
sijkl
3 (gi, gj, gk, gl) = 1. (5.11)

The above wave function can be considered as a state on M evolved from ∗. All

excited states are exponentially suppressed. So such a wave function is the ground

state. And its Hermitian conjugate is the state defined on the mirror reflection Σ̃

(similar to the (1 + 1)-D case in Fig. 5.2). Therefore calculating the inner product
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Figure 5.3: One part of a triangulation of (2 + 1)-D manifold. The red arrows point
from a point inside of Σ to points on the boundary M and the black arrows form
a triangulation of M . Together they form a triangulation of the (2 + 1)-D manifold
Σ. Associated with vertices are group elements g. Triangle [ijk] has positive orienta-
tion while its adjacent triangles have negative orientation. The orientation of other
triangles could be derived easily from this convention.

of these two states is equivalent to gluing Σ and Σ̃ together along M [39]. Similarly,

the overlap of two distinct SPT states |ΨI〉 , |ΨII〉 is a gluing with mismatches of the

3-cocycle ν3,

〈ΨI
M |ΨII

M〉 =
1

|G|N+2

∑
{all g on Σ̃∪Σ}∏

(∗ijk)

(νI
3)−s∗ijk(g∗, gi, gj, gk)

∏
(ijk#)

(νII
3 )sijk#(gi, gj, gk, g#)

(5.12)

where N is the number of vertices on M and thus N+2 is the total number of vertices

including ∗ and #. Σ̃ ∪ Σ becomes a (2 + 1)-D closed manifold after the gluing and

the orientation has been taken care of by the sign-flip of s∗ijk. Those 3-cocycles

satisfying Eq. (5.11) cancel out. Finally one side of the mirror is occupied by trivial

cocycles ν3(g∗, gi, gj, gk) = 1 and the other side is occupied by the difference of the

topological θ-terms for system I and II. On the boundary M the discrete version of

the topological θ-term reduces to the Wess-Zumino-Witten (WZW) theory [147–150].

So the final expression for the overlap calculation is identical to a partition function

Z of a conformal field theory (CFT) described by WZW action.

As mentioned above, the scaling behavior of generic (1 + 1)-D CFT is known to

77



follow Eq. (5.5). In our case the contribution from the
√
N boundary term is 0 since

M is a closed manifold without boundary. Therefore the finite-size scaling of the

overlap follows

ln 〈ΨI|ΨII〉 = −αN +
χc

12
lnN +O(1). (5.13)

The ground states are derived for generic (2 + 1)-D fixed-point bosonic SPT systems.

So this result is also generic in the same realm. In (2 + 1)-D, SPT systems are

guaranteed to have gapless modes in the space-direction interface and the edge modes

are described by some CFT. This is consistent with our argument in the physical

intuition section.

5.3.3 An Example on Bosonic SPT

As an example for our result above, we consider the two Ising-paramagnetic sys-

tems I and II as described by Levin and Gu [143]. The ground state of system I is

the superposition of all states with different spin configurations. Each spin configura-

tion corresponds to one domain wall (DW) configuration. So we could represent the

ground state by the superposition of DW configurations,

|ΨI〉 =
1√
N

∑
{s1,...,sN}

|l DW’s〉 (5.14)

where the normalization factor N =
∑
{s1,...,sN} 1l = 2N is the total number of spin

configurations. This wave function is clearly topologically trivial since it can be

rewritten as direct product of the spin triplet state (|↓i〉 + |↑i〉)/
√

2 on each lattice

site i. And system II is a Z2 SPT system. The ground-state wave function is the

same superposition as system I except a factor (−1)l in front of each spin configuration

where l is the number of DW’s

|ΨII〉 =
1√
N

∑
{s1,...,sN}

(−1)l |l DW’s〉 (5.15)
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Since states with different spin configurations are mutually orthogonal, the overlap

of the normalized wave functions |ΨI〉 , |ΨII〉 is

〈ΨI|ΨII〉 =

∑
{s1,...,sN}(−1)l

N
=
ZO(n)|x=1,n=−1

N /2

ZO(n) =
∑

DW config.

xLnl
(5.16)

where the factor 2 in the denominator is due to the fact that each domain wall

configuration corresponds to two different spin configurations. We recognize that

the numerator ZO(n) is the partition function of the classical O(n)-loop model and

x = 1, n = −1 lies in the critical region [151] with central charge c = −7 [151–153]

(see Appendix B.1). So the finite-size scaling of the numerator follows from Eq. (5.5)

with c = −7. The denominator N /2 in Eq. (5.16) only modifies the non-universal

coefficient α. Therefore the scaling of − ln 〈ΨI|ΨII〉 is the same as Eq. (5.13).

5.4 Fermionic SPT

Similar to bosonic SPT, a large class of fermionic SPT phases could be classified

using a (special) group supercohomology theory [39]. In this chapter, we only focus

on (2 + 1)-D systems where gapless edge states exist.

5.4.1 Ground-state Wave Functions

The fermionic SPT ground-state wave functions could be constructed in the same

way as the bosonic SPT. Suppose the fermionic system with full symmetry Gf is

defined on a closed 2-dimensional manifold M . The bosonic part of the symmetry

is Gf = G/Zf2 where Zf2 is the fermion-number-parity symmetry. We can extend

the hollow 2-dimensional manifold M to solid (2 + 1)-D manifold Σ with boundary

∂Σ = M . Triangulate M and assign a group element g ∈ Gb to each vertex (see Fig.

5.3). Following the same physical intuition as the bosonic case, we can then write
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down the ground state as the time evolution of arbitrary state from the point ∗ inside

Σ to the boundary M .

In the bosonic SPT systems, a single tetrahedron with vertices 0, 1, 2, 3 is de-

noted as (0123). We assigned a pure phase (3-cocycle) νs01233 (g0, g1, g2, g3) where s0123

depends the orientation of the tetrahedron (0123). Here, each tetrahedron is associ-

ated with a Grassmann tensor. Comparing with the (d+ 1)-D bosonic SPT, the new

ingredient is to multiply a Grassmann number for each d-simplex. In our interested

case of (2 + 1)-D, this means adding a Grassmann number on each triangular face of

the tetrahedron. Such a Grassmann tensor in positive oriented tetrahedron is given

by

V+
3 (g0, g1, g2, g3) =ν+

3 (g0, g1, g2, g3)θ
n2(g1,g2,g3)
123

θ
n2(g0,g1,g3)
013 θ̄

n2(g0,g2,g3)
023 θ̄

n2(g0,g1,g2)
012

(5.17)

where ν+
3 (g0, g1, g2, g3) = (−1)m1(g0,g2)ν3(g0, g1, g2, g3) with m1(g0, g2) = 0, 1. The or-

dering of Grassmann number θ is naturally inherited from the ordering of the missing

indices 0, 2, 4, . . . and the ordering of θ̄ is from the missing indices 1, 3, 5, . . . . The

exponent n2(gi, gj, gk) = 0, 1 satisfies

3∑
i=0

n2(g0, . . . , ĝi, . . . , g3) = even, (5.18)

so that the total Grassmann number is even. There is also a relation between n2’s

and m1’s,

n2(g1, g2, g3) = m1(g2, g3) +m1(g1, g3) +m1(g1, g2) mod 2. (5.19)

Such a construction of the sign conventions will be essential in calculating the fermionic

path integral in the following.

For a corresponding negatively oriented tetrahedron [see Fig. 5.4(b)], the general

rule to write down the Grassmann tensor is to reverse the order of θ’s and θ̄’s, and
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Figure 5.4: Two branched simplexes with opposite orientations. (Left) A simplex
with positive orientation; (Right) A simplex with negative orientation.

then switch θ with θ̄ so that θ’s are in front of θ̄’s. As an example, the Grassmann

tensor after reversing the orientation of the above tetrahedron (0123) would be

V−3 (g0, g1, g2, g3) =ν−3 (g0, g1, g2, g3)θ
n2(g0,g1,g2)
012

θ
n2(g0,g2,g3)
023 θ̄

n2(g0,g1,g3)
013 θ̄

n2(g1,g2,g3)
123 ,

(5.20)

where ν−3 (g0, g1, g2, g3) = (−1)m1(g1,g3)/ν3(g0, g1, g2, g3).

With each tetrahedron assigned with a Grassmann tensor defined above, we can

write down the partition function in terms of fermionic path integral as

Z =
1

|Gb|
∑
g∗

∫
in(Σ)

∏
(∗ijk)

Vsijk3 (g∗, gi, gj, gk) (5.21)

where ∗ is the vertex inside the manifold Σ and (∗ijk) is the 3-simplexes (tetrahe-

drons) in the triangulation of Σ. in(Σ) means inside Σ but not on the boundary M ,

i.e.,
∫

in(Σ)
is a shorthand notation for integral over all Grassmann variables inside Σ

(up to a sign factor). Explicitly,

∫
in(Σ)

=

∫ ∏
[∗ij]

dθ
n2(g∗,gi,gj)
∗ij dθ̄

n2(g∗,gi,gj)
∗ij

∏
{∗i}

(−1)m1(g∗,gi)

(5.22)

where the product
∏
{∗i} is over all the edges {∗i} connecting the inside vertex ∗ and

vertices i on the boundary M . Similar to the bosonic case, the fixed-point ground
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state for the fermionic SPT system is

Ψ({gi}, {θijk}, {θ̄ijk})

=
1

|Gb|
∑
g∗

∫
in(Σ)

∏
(∗ijk)

Vsijk3 (g∗, gi, gj, gk)

=

∫ ∏
[∗ij]

dθ
n2(g∗,gi,gj)
∗ij dθ̄

n2(g∗,gi,gj)
∗ij

∏
5

ν−1
3 (g∗, gi, gj, gk)

∏
4

ν3(g∗, gi, gj, gk)

∏
5

θ
n2(g∗,gi,gj)
∗ij θ

n2(g∗,gj ,gk)
∗jk θ̄

n2(g∗,gi,gk)
∗ik θ̄

n2(gi,gj ,gk)
ijk

∏
4

θ
n2(gi,gj ,gk)
ijk θ

n2(g∗,gi,gk)
∗ik θ̄

n2(g∗,gj ,gk)
∗jk θ̄

n2(g∗,gi,gj)
∗ij

(5.23)

where in the second line we omitted a sign factor [39] which does not influence the

overlap calculation.
∏

[∗ij] is the product over all the edges on the triangulation of

M , 4 represents positively oriented triangles and 5 represents negatively oriented

triangles.

To write down the Hermitian conjugate of the ground-state wave function de-

scribed above, we need to first understand its triangulation and configuration. Sim-

ilar to the bosonic case, we could take the mirror image of the triangulation for the

original system. Denote the mirror image of Σ as Σ̃ and the point inside Σ̃ as #. Then

reverse the arrow between the point # and all of the vertices on M̃ so that all arrows

point to #. This new configuration has the same interpretation as time evolution of

arbitrary initial state from +∞ to 0. The resulting wave function corresponds to the
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Hermitian conjugate of Ψ. Mathematically,

Ψ†({gi}, {θijk}, {θ̄ijk})

=

∫ ∏
[ij#]

dθ
n2(gi,gj ,g#)

ij# dθ̄
n2(gi,gj ,g#)

ij#

∏
4

ν−1
3 (gi, gj, gk, g#)

∏
5

ν3(gi, gj, gk, g#)

∏
4

θ
n2(gi,gj ,g#)

ij# θ
n2(gj ,gk,g#)

jk# θ̄
n2(gi,gk,g#)

ik# θ̄
n2(gi,gj ,gk)
ijk

∏
5

θ
n2(gi,gj ,gk)
ijk θ

n2(gi,gk,g#)

ik# θ̄
n2(gj ,gk,g#)

jk# θ̄
n2(gi,gj ,g#)

ij# .

(5.24)

Here 4,5 represent negatively and positively oriented triangles in the mirror image

M̃ respectively, exactly opposite to the formula in the Ψ configuration.

5.4.2 Overlaps between Fermionic SPT Ground States

Calculating the overlap of Ψ and its Hermitian conjugate is equivalent to gluing

the (2 + 1)-D complexes Σ and Σ̃ over their common boundary M (or the mirror

image M̃)[39]. In general, the overlap of two ground states |ΨI〉 , |ΨII〉 is defined as

〈ΨI|ΨII〉 = tr
(
ΨII(ΨI)†

)
=

1

|Gb|N+2

∑
{all g on Σ∪Σ̃}

∫
M

 ∫
in(Σ̃)

∏
[ijk]

(V II
3 )sijk

∫
in(Σ)

∏
[ijk]

(V I
3)sijk

 (5.25)

where N is the number of lattice sites on the manifold M , |Gb| is the order of group

Gb, and M = Σ∩ Σ̃ is the common boundary of Σ and Σ̃. In this equation, we follow

the shorthand notation defined in Eq. (5.22).

Similar to the bosonic case, the overlap of Ψ with its Hermitian conjugate is a

fermionic path integral over a closed manifold Σ∪ Σ̃ and expected to be 1. Indeed, it

was explicitly shown by Gu and Wen [39] that on any (2 + 1)-D closed manifold the
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partition function reduces to

∫
V+

3 (g0, g1, g2, g3)V−3 (g0, g1, g2, g3) = 1 (5.26)

where
∫

represents the integration over all Grassmann variables up to a sign factor.

This result naturally leads to 〈Ψ|Ψ〉 = 1, consistent with the normality of quantum

states.

From the construction of Grassmann tensors we clearly see that the sign factors

n2’s and m1’s only depend on the symmetry Gf and triangulation. The only factor

encoding the topological theory is the cocycles ν3. So if we have two different SPT

phases defined on the same manifold M , the Grassmann integral part of the overlap

〈ΨI|ΨII〉 would be the same as calculating 〈ΨI|ΨI〉 or 〈ΨII|ΨII〉, and thus contributes

1 to the path integral. This was also pointed out by Gu and Wen [39]. They found

that on the closed manifolds the integrals over Grassmann tensor give rise to complex

numbers e−S. So according to their results all the integrals over Grassmann numbers

should also contribute 1, consistent with our analysis. After canceling out all the

Grassmann numbers, the fermionic path integral 〈ΨI|ΨII〉 leads to the same bosonic

path integral expression as in the Bosonic case [Eq. (5.12)]. Therefore the same

argument leads to a WZW theory defined on the boundary M . So the amplitude of

the overlap is again of the form

ln 〈ΨI|ΨII〉 = −αN +
χc

12
lnN +O(1). (5.27)

5.5 Intrinsic Topological Orders

In this section, we use the famous FQH states to show that the term χc/12 ln(N)

still exists in the scaling of ground-state overlaps. Besides that, we also find a leading

term decaying faster than exponential. This is quite surprising since traditional view
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would expect exponential decay as leading term. In the following we will show the

rigorous calculation.

5.5.1 FQH Wave Functions on Disks

FQH states have been well-known to exhibit intrinsic topological order [15]. Among

these states, 1/m filling FQH states can be described by Laughlin wave functions [45],

which are given on the disk as

ΨII
D =

1√
Zd

∏
i<j

(zi − zj)me−
∑
k
|zk|

2

4 (5.28)

where Zd is the normalization factor on the disk

Zd =

R∫
0

d2z1 · · ·
R∫

0

d2zNe
− 1

2

∑
i |zi|2

∏
i<j

|zi − zj|2m. (5.29)

Due to rotational symmetry, the many-body angular momentum J = mN(N −

1)/2 is a good quantum number and wave functions with different filling or particle

number live in distinct Hilbert space. The meaningful overlaps should be calculated

between Laughlin wave functions and topologically trivial wave functions with the

same particle number, filling factor, and hence the same angular momentum (5.28).

To find such a trivial wave function, we note that Laughlin wave functions can be

expanded to a series of Slater determinants Dλ [154].

ΨII
D =

1

Zd

∑
λ

aλDλ,

Dλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

zλ11 zλ21 · · · zλN1

zλ12 zλ22 · · · zλN2

...
...

...
...

zλ1N zλ2N · · · zλNN

∣∣∣∣∣∣∣∣∣∣∣∣∣
exp

(
−

N∑
i=1

|zi|2

4

) (5.30)
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where λ = (λ1, λ2, . . . , λN) is the partition of J = mN(N − 1)/2. Each term Dλ

in the expansion is a topologically trivial direct-product state with the same filling

fraction and particle number as the original Laughlin wave function. And all of Dλ’s

constructed in this way are mutually orthogonal (see Appendix B.2). We choose the

Slater determinant Dλ(1) with λ(1) = (m(N −1),m(N −2), . . . , 0) as the topologically

trivial wave function since its coefficient aλ(1) = 1. So the normalized trivial wave

function is

ΨI
D =

1

Z
(1)
d

Dλ(1) ,

Z
(1)
d =

R∫
0

d2z1 · · ·
R∫

0

d2zNe
− 1

2

∑
i |zi|2

∏
i<j

|zmi − zmj |2.
(5.31)

Then the overlap of ΨI
D and ΨII

D is

〈ΨI
D|ΨII

D〉 =

∑
λ aλ 〈Dλ(1)|Dλ〉√

Z
(1)
d Zd

=

√
Z

(1)
d

Zd
=

√
A(N)Z

(1)
d

ZD
. (5.32)

where the denominator ZD = A(N)Zd is the partition function of the one component

plasma (OCP, see Appendix B.3). And the prefactor A(N) (see Appendix B.3) comes

from the ideal gas partition function, the background-background interaction and the

constant part of particle-background interaction

A(N) =
1

N !

(
πmM

h2

)N
LmNe

3mN2

4 (2mN)−
mN2

2 . (5.33)

where L is an arbitrary length scale, M is the mass of each charged particle and

h is the Planck constant. Here we have also converted the disk radius R into the

particle number N since the particle density is fixed at n = N/(πR2) ≡ 1/(2πm) in

the plasma analogy [45].

The OCP can be considered as a critical system with central charge c = −1 [155–

158]. So according to Eq. (5.5) the finite-size scaling of the partition function ZD on

86



a disk is

lnZD = −αDN − βD
√
N − 1

12
lnN +O(1) (5.34)

where we used χ = 1 for the disk. Following the method of Caillol [159], Z
(1)
d in the

numerator could be solved exactly by expanding the polynomial into a summation

of monomials and then transforming the integral to polar coordinates. Integrating

out the angular part of each coordinate we find that all terms with nonzero phases

vanish.

Z
(1)
d =(2π)NN !

N∏
i=1

R∫
0

ridri

N∏
j=1

r
m(j−1)
j e−

1
2

∑
k r

2
i

=(2π)N2
m(N−1)N

2

N∏
j=1

[m(j − 1)]!N !Z
(1)
bdry

Z
(1)
bdry =

N∏
i=1

 1

[m(i− 1)]!

mN∫
0

dxie
−xix

m(i−1)
i


(5.35)

where we made the coordinate transformation xi = r2
i /2. Those terms in Z

(1)
bdry are

close to 1 if i is small. So the only terms that contribute dramatically to Z
(1)
bdry are

those i’s of order
√
N or greater. Then the following asymptotic formula holds [160]

1

[m(i− 1)]!

mN∫
0

dxie
−xix

m(i−1)
i

=
1

2

[
1 + erf

(
m(N − i+ 1)√

2mN

)]
+O

(
1√
N

) (5.36)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. Replacing the summation over i by

an integral over y = m(N − i+ 1)/
√

2mN , we find lnZ
(1)
bdry scales as

√
N

lnZ
(1)
bdry =

√
2N

m

∞∫
0

dy ln

(
1 + erf(y)

2

)
+O(1). (5.37)

The terms with factorials could be evaluated through converting the summations
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into integrals using Euler-Maclaurin formula (see Appendix B.4). Putting every term

together, the finite-size scaling for the overlap is

ln 〈ΨI
D|ΨII

D〉 = −aN lnN − αN − β
√
N + γ lnN +O(1) (5.38)

where a = m−1
4
, α = 1

4
[(m− 1)(lnm− 1) +m ln 2− 3 ln(2π)− 2 ln(mMπ

h2
)− 2αD], β =

−1
2
[
√

2
m

∫∞
0
dy ln(1+erf(y)

2
) + βD], γ = (m−1)2

24m
.

5.5.2 FQH Wave Functions on 2-spheres

To show the effect of the topology, we also calculated the overlap on a sphere.

Similar to the disk case, the N -particle Laughlin wave functions on the sphere can

also be decomposed into Slater determinants Sλ. And we choose the trivial wave

function as the one with λ(1) = (m(N − 1),m(N − 2), . . . , 0).

ΨII
S2 =

1

Zs

∏
i<j

(uivj − ujvi)m

=
1

Zs

N∏
k=1

u
m(N−1)
k

∏
i<j

(
vj
uj
− vi
ui

)m
=

1

Zs

∑
λ

bλSλ,

ΨI
S2 =

1

Z
(1)
s

Sλ(1) =
1

Z
(1)
s

N∏
k=1

u
m(N−1)
k

∏
i<j

[(
vj
uj

)m
−
(
vi
ui

)m]
,

(5.39)

where ui = cos
(
θi
2

)
eiφi/2, vi = sin

(
θi
2

)
e−iφi/2 are the spinor coordinates. And the

normalization factors are

Zs =

∫
dΩ1 · · · dΩN

∏
k

|uk|2m(N−1)
∏
i<j

∣∣∣∣vjuj − vi
ui

∣∣∣∣2m ,
Z(1)
s =

∫
dΩ1 · · · dΩN

∏
k

|uk|2m(N−1)

∏
i<j

∣∣∣∣(vjuj
)m
−
(
vi
ui

)m∣∣∣∣2 .
(5.40)
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The same argument as in the disk case shows

〈ΨI
S2|ΨII

S2〉 =

√
Z

(1)
s

Zs
=

√
B(N)Z

(1)
s

ZS2

,

ZS2 =B(N)Zs,

B(N) =
1

N !

(
mMπ

h2

)N (
L

2

)mN (
mN

2

) (2−m)N
2

emN
2/2

(5.41)

where B(N) (see Appendix B.5) comes from the partition function of N -particle ideal

gas, background-background interaction, the constant part of particle-background

interaction and the radius dependence of the integral in the partition function of the

OCP.

As in the disk case, the denominator ZS2 is the partition function of the OCP on

a sphere and scales as

lnZS2 = −αS2N − 1

6
lnN +O(1) (5.42)

where we used χ = 2 for spheres. And the
√
N term vanishes because spheres do not

have boundaries.

To evaluate Z
(1)
s in the numerator, we follow Alastuey and Jancovici [161] to

change variables ri = tan
(
θi
2

)
or sin θidθi = 4ridri

(1+r2i )2
. Then the integral is over the

plane (with no boundaries) defined by the polar coordinates (ri, φi). Again, the only

terms contributing to the integral are those terms with vanishing polar angles.

Z(1)
s =N !(2π)N

∏
i

∫
4r

2m(i−1)+1
i dri

(1 + r2
i )
m(N−1)+2

=N !(4π)N
∏
i

[m(i− 1)]![m(N − i)]!
[m(N − 1) + 1]!

(5.43)

Taking the logarithm of both sides and then using Euler-Maclaurin formula to convert

the summation to integral (see Appendix B.6), we find the scaling of the overlap to
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be

ln 〈ΨI
S2|ΨII

S2〉 = −aN lnN − αN + γ lnN +O(1) (5.44)

where a = m−1
4
, α = 1

4
[(m− 1)[ln(2m)− 2]− 2m lnL− 2 ln(mMπ

h2
)− 2αS2 ], γ = (m−1)2

12m

and the boundary term
√
N vanishes explicitly.

Comparing the results for disks and spheres, we find that the leading order coef-

ficients for both cases are the same a = (m − 1)/4. Such a term indicates a faster

decay than typical Anderson orthogonality catastrophe. The coefficient of lnN is

proportional to the Euler characteristic of the manifold where the system is defined.

This term stems from the critical behavior of the classical OCP and thus is consistent

with our physical intuition pictured in the introduction section.

5.6 Conclusion

In this chapter, we calculated the finite-size scaling of overlaps of topologically

different states through mapping the overlaps to partition functions of critical systems.

For generic (2 + 1)-D topologically different states, including both SPT states and

intrinsic topological states, the fixed-point ground-state overlaps exhibit a universal

sub-leading term χc
12

lnN depending on the topology of the manifold on which the

system lives. Such a universal topological response term relies on the gapless edge

state on the interface of different topological systems, as described in Fig. 5.1. In

(2 + 1)-D, SPT systems are known to have gapless edge modes described by some

CFT. So we conclude that the topological response term always exists for (2 + 1)-D

SPT systems at fixed-points.

In the case of intrinsic topological order, we calculate the overlaps between the fa-

mous Laughlin states and corresponding product states. We find that the same topo-

logical response term still exists and it is also related to a critical system, i.e., OCP

system. In this overlap calculation, we also notice a leading-order scaling −m−1
4
N lnN
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which decays faster than the expected exponential in typical Anderson orthogonality

catastrophe. Its coefficient only depends on which Laughlin state participates in the

overlap calculation. Such a behavior may be used as a signature for topological phase

transitions between topologically ordered FQH states and trivial states.
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CHAPTER VI

Conclusion and outlook

6.1 Conclusions

Landau theory of phase transition is quite successful and generic for many systems.

But since the appearance of KT transition and quantum Hall effect, this paradigm

is challenged. After decades’ efforts of many experts, it has become clear that Lan-

dau paradigm accounts only symmetry part of physics. One more pillar for modern

condensed matter physics is found to be topology.

In this thesis, I proposed a PDW system using Landau theory which could poten-

tially be realized in experiments. There an infinite order KT transition appears and

we are naturally led to the field of topology. Then I developed the overlap technique

to investigate topological phase transitions. For generic topological band insulators,

a theorem is formulated to make the connection among adiabatic continuity, ground-

state overlaps and topological phase transitions. Based on the same technique, I

explored generic fixed-point SPT systems and Laughlin states in (2 + 1)-D. There

a generic topological response term related to certain CFT is discovered. For the

overlaps between Laughlin wave functions and trivial product states, I also find a

leading term decaying faster than exponential. These finite-size scaling behaviors

could potentially become a signature for distinguishing different topological systems.
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6.2 Outlook

There are several most accessible open questions that I would like to point out.

These could serve as a guide for future directions.

SPT systems in (2 + 1)-D are shown to have gapless edge modes [18, 39]. More

specifically, if the system is at its fixed point, the edge modes are described by some

CFT. In the overlap calculation of Chapter V, the topological response term χc/12

exists for such systems. The central charge c indicates that there is another CFT

associated with the two systems in the time-direction interface (see Fig. 5.1). And

this CFT oftentimes appears to be non-unitary. It has been clear to us that this CFT

from the overlap calculation is different from the CFT on the space-direction interface

between the two systems. But it seems to appear when gapless edge modes exist on

the space-direction interface of the two systems. We conjecture that the two CFT’s

are related in some way. Maybe the Wick rotation of a CFT in the time direction

interface becomes the CFT on the interface of space direction.

Our calculation also assumes the SPT systems are at their fixed pints. Only in

this way could we write down the exact wave functions. And such a constraint also

guarantees that the gapless edge modes are described by some CFT. Our conjecture

is that the topological response term still exists even if the SPT systems are not at

fixed points. To verify this point, we need to understand how to write down the wave

function (theoretically or numerically), and then prove that gapless edge modes are

always described by some CFT.

In higher dimensions, the boundaries of SPT systems may also be gapped by

symmetry breaking or due to intrinsic surface topological order [162–166]. In such

systems, the overlap can not have lnN correction. But there might be other universal

terms such as a constant term similar to the topological entanglement entropy [167,

168].

My calculation for the overlaps between Laughlin states and product state has
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confirmed the existence of topological response term in intrinsic topological systems.

we may conjecture that the topological response term persists for any intrinsic topo-

logical systems with gapless edge modes. But there is still another question. There

would typically be ground state degeneracy in systems with intrinsic topological order.

How should we construct the overlap between ground states?

We will leave these open questions as future work.
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APPENDIX A

Adiabatic continuity, wave-function overlap and

topological phase transitions

A.1 Insulators with more than one valence bands

In this section, we present proofs for conclusions discussed in Sec. 3.2.2.

A.1.1 anticommutators for the c and d operators

We first prove the Eqs. (3.28) and (3.29). In general, creation operators c†n and d†m

are connected by the following unitary transformation and the inverse tranformation

is

d†m,k =
+∞∑
n=1

〈0|cn,kd†m,k|0〉 c
†
n,k (A.1)

c†n,k =
+∞∑
m=1

〈0|dm,kc†n,k|0〉 d
†
m,k (A.2)

We emphasize that in these two equatinos, the band indices n and m are summed

over all bands (conduction and valence). Utilizing Eq. (A.1), it is straighforward to
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verify that

{cn,k, d†m,k′} =
+∞∑
n′=1

〈0|cn′,k′d†m,k′ |0〉 {cn,k, c
†
n′,k′
}

=
+∞∑
n′=1

Fn′,mδn,n′δk,k′ = Fn,mδk,k′ (A.3)

Similarily, using Eq. (A.2), we have

{dm,k, c†n,k′} =
+∞∑
m′=1

〈0|dm′,k′c†n,k′ |0〉 {dm,k, d
†
m′,k′
}

=
+∞∑
m′=1

F∗nm′δm,m′δk,k′ = F∗n,mδk,k′ (A.4)

A.1.2 the F and U matrices

In this section, we prove some properties for the F and U matrices.

A.1.2.1 the existence of the U matrix

First, we prove the existence of the U matrix. In the main text, we assumed that

U is a unitary matrix, which diagonalizes the matrix FF †, i.e. UFF †U † is a diagonal

matrix. To prove that such a U indeed exists, we just need to show that FF † is a

hermitian matrix, because we know that any hermitian matrices can be diagonlized

by some unitary matrices. Here, we compute directly the hermitian conjugate of

FF †,

(FF †)† = (F †)†F † = FF † (A.5)
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which indeed recovers itself, i.e. it is a hermitian matrix. As a result, there must

exist some unitary matrix U , such that

Ul,nFn,mF∗n′,mU∗l′,n′ = λlδl,l′ (A.6)

where λl are the eigenvalues of the matrix FF †.

A.1.2.2 λl > 0

Now, we will prove that the eigenvalues λl are positive, as long as detF 6= 0,

which will be used later in Sec A.1.4 when we prove that the normalizaiton factor is

singularity free. We first prove that FF † is semi-postive definite (i.e. all eigenvalues

are non-negative), regardless of the value of detF . Then, we will further prove that

if detF 6= 0, the matrix FF † is positive-definite (i.e. all eigenvalues are are positive).

Assuming that w is an arbitrary row vector composed by N complex numbers,

and w† is the conjugate (column) vector composed by its complex conjugates.

wFF †w† = wF(wF)† ≥ 0 (A.7)

Because this result holds for any w, FF † is semi-postive defiinte, and thus its eigen-

values are non-negative.

If detF 6= 0, det(FF †) = | detF|2 6= 0. Because the determinant of a hermi-

tian matrix equals to the product of all eigenvalues, this implies that none of the

eigenvalues of the matrix FF † is zero. Thus, this matrix is positive definite and all

eigenvalues are positive.
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A.1.2.3
F∗n,mU∗l,nUl,n′Fn′,m′

N 2
l

= δm,m′

Now we prove that at α = 1,
F∗n,mU∗l,nUl,n′Fn′,m′

N 2
l

= δm,m′ , which was utilzed to

simplify Eq. (3.37) in the main text. First, we rewrite Eq. (A.6) in a matrix form

UFF †U † = D (A.8)

where D is a diagonal matrix

Dl,l′ = λlδl,l′ (A.9)

where λl’s are the l-th eigenvalue of the FF † matrix. We compute the matrix inverse

for both sides of Eq. A.8. Because U is a unitary matrix, U−1 = U † and thus

U(F †)−1F−1U † = D−1 (A.10)

And thus

F †U †[U(F †)−1F−1U †]UF = F †U †D−1UF (A.11)

If we simplify this equation, we find that

I = F †U †D−1UF (A.12)

where I is the identity matrix. If we write down the components for these matrices,

we get

δm,m′ = F∗n,mU∗l,nD−1
l,l′Ul′,n′Fn′,m′ (A.13)
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Utilzing Eq. (A.9), it is easy to realize that the inverse of the diangonal matrix D is

D−1
l,l′ = λ−1

l δl,l′ (A.14)

As shown in Eq. (A.19), at α = 1, λ−1
l = 1/N 2

l , and thus we have

δm,m′ = F∗n,mU∗l,n
δl,l′

N 2
l

Ul′,n′Fn′,m′ =
F∗n,mU∗l,nUl,n′Fn′,m′

N 2
l

. (A.15)

A.1.3 anticommutators

Now, we compute the anticommutators for a and a†,

{al,k, a†l′,k′} =
(1− α)2

|Nl|2
Ul,nU∗l′,n′{cn,k, c

†
n′,k′
}+

(1− α)α

|Nl|2
Ul,nU∗l′,n′F∗n′,m′{cn,k, d

†
m′,k′
}

+
(1− α)α

|Nl|2
Ul,nFn,mU∗l′,n′{dm,k, c

†
n′,k′
} (A.16)

+
α2

|Nl|2
Ul,nFn,mU∗l′,n′F∗n′,m′{dm,k, d

†
m′,k′
}

=
(1− α)2

|Nl|2
Ul,nU∗l′,n′δn,n′δk,k′ +

(1− α)α

|Nl|2
Ul,nU∗l′,n′F∗n′,m′Fn,m′δk,k′

+
(1− α)α

|Nl|2
Ul,nFn,mU∗l′,n′F∗n′,mδk,k′ +

α2

|Nl|2
Ul,nFn,mU∗l′,n′F∗n′,m′δm,m′δk,k′

=
(1− α)2

|Nl|2
Ul,nU∗l′,nδk,k′ +

α(2− α)

|Nl|2
Ul,nFn,mF∗n′,mU∗l′,n′δk,k′ (A.17)

Because U is a unitary matrix, Ul,nU∗l′,n = δl,l′ . For the second term, we have

proved in Eq. (A.6) that Ul,nFn,mF∗n′,mU∗l′,n′ = λlδl,l′ , where λl is the lth eigenvalue of

the matrix FF †. As a result,

{al,k, a†l′,k′} =
(1− α)2 + α(2− α)λl

|Nl|2
δl,l′δk,k′ (A.18)
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If we set the nomralizaiton factor

Nl =
√

(1− α)2 + α(2− α)λl (A.19)

the canonical anticommutation relation is proved

{al,k, a†l′,k′} = δl,l′δk,k′ . (A.20)

A.1.4 singularity free normalization factor

In this section, we prove that the normalization factor defined in Eq. (A.19) is

free of singularity.

As shown in Eq. (A.18), the key purpose of introducing the normalization factor

is to set the prefactor in front of the Kronecker deltas to unity, i.e.

(1− α)2 + α(2− α)λl
|Nl|2

= 1 (A.21)

To achieve such an objective without singularity, it is important to show that the

numerator (1− α)2 + α(2− α)λl never reaches zero.

In Sec. A.1.2, we have proved that as long as the overlap function is nonzero, λl is

postive. For a positive λl and 0 ≤ α ≤ 1, it is easy to verify that (1−α)2+α(2−α)λl >

0. Thus the normalization condition is singularity free.

A.2 Symmetry of the adiabatic path

In this section, we prove that for two quantum states with finite wave function

overlap, the adiabatic path defined in the main text preserves all the symmetries of

the two quantum states.
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A.2.1 interacting systems

We start by examining the symmetry of the adiabatic path defined in Eq. (3.44).

Here, we consider unitary symmetries, but all the conclusions can be easily generalized

to antiunitary symmetries. In quantum mechanics, a symmetry of a quantum state

implies that the wave function must remain invariant under certain transformation

(e.g. translation, space inversion, etc) up to some possible U(1) phase factor

|ψ〉 → eiϕ |ψ〉 (A.22)

|ψ′〉 → eiϕ
′ |ψ′〉 (A.23)

If these relations hold for |ψ〉 and |ψ′〉, it is straightforward to prove that under the

same transformation, the wave function defined in Eq. (3.42) transforms as

|Ψ(α)〉 → eiϕ |Ψ(α)〉 (A.24)

the same as the state |ψ〉. The corresponding bra vector transforms as

〈Ψ(α)| → e−iϕ 〈Ψ(α)| (A.25)

where the complex phase takes the opposite sign. As a result, the Hamiltonian defined

in Eq. (3.44) is invariant under this transformation, because the phase factors from the

bra and ket vectors cancel each other, i.e. the Hamiltonian preserves this symmetry.

A.2.2 band insulators with one valence band

Now we consider band insulators with one valence band, i.e. the Hamiltonian

Eq. (3.12). Again, we consider unitary symmetries, but all the conclusions can be

easily generalized to antiunitary symmetries. Assume that insulators I and II preserve

some symmetry.
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Under the symmetry transformation, we assume that the momentum points is

transformed as

k→ k′. (A.26)

and the Bloch waves transform according to certain unitary matrices. Because the

insulator is invariant under the transformation, this unitary matrix will not mix con-

duction and valence bands. Since we have only a single valence band, the Bloch

waves of the valence band can only change by a phase shift under this symmetry

transformation

|ψI(k)〉 → eiϕ(k) |ψI(k)〉 (A.27)

Because the insulator is invariant under this transformation, we know that eiϕ(k) |ψI(k)〉

must be identical to the Bloch wave of the valence band at k′

|ψI(k)〉 → |ψI(k′)〉 = eiϕ(k) |ψI(k)〉 (A.28)

For insulator II, the wave function satisfies the same relation, but the phase factor

could be different

|ψII(k)〉 → |ψII(k′)〉 = eiϕ
′(k) |ψII(k)〉 . (A.29)

As a result, the overlap function must satisfy

φ(k′) = ei(ϕ
′−ϕ)φ(k) (A.30)
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It is easy to verify that for the Bloch state |Ψ(k, α)〉 defined in Eq. (3.8), we have

|Ψ(k, α)〉 → |Ψ(k′, α)〉 = eiϕ(k) |Ψ(k, α)〉 (A.31)

the same as |ψI〉. And thus the Hamiltonian that we defined for the adiabatic path

[Eq. (3.12)] remains invariant, i.e., it preserves the symmetry

H(α)→ H(α) (A.32)

A.2.3 band insulators with more than one valence bands

In this section, we consider more generic band insulators with multiple valence

bands. Assume that insulators I and II preserve some unitary symmetry and under

the symmetry transformation the momentum points transform as

k→ k′. (A.33)

Because insulator I preserves the symmetry, under the symmetry transformation,

Bloch waves of the valence bands must satisfy,

|ψI
n(k)〉 → |ψI

n(k′)〉 = U I
n,n′(k) |ψI

n′(k)〉 (A.34)

where U I(k) is some unitary matrix that describe the transformation of the Bloch

waves under the symmetry transformation. For insulator II, if the same symmetry is

preserved, the wave function is transformed in a similar way, but the unitary matrix

could be different

|ψII
m(k)〉 → |ψII

m(k′)〉 = U II
m,m′(k) |ψII

m′(k)〉 (A.35)
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As a result, the overlap matrix Fn,m = 〈ψI
n|ψII

m〉 satisfies

Fk′ = (U I
k)∗Fk(U II

k )T (A.36)

where ∗ and T stands for complex conjugate and transpose respectively. Here, we

write the momentum as a subindex to simplify the formula (same below).

As a result, we know that

Fk′F †k′ = (U I
k)∗FkF †k(U I

k)T (A.37)

In the main text, we defined a U matrix at each momentum point to diagonalize the

FF † matrix. The relation above implies that

Uk′ = Uk(U I
k)T (A.38)

up to some unimportant gauge choice.

Utilizing Eqs. (A.36) and (A.38), we can verify easily that for the valence-band

Bloch states defined in Eq (3.23), |Ψ(k, α)〉 = |Ψ(k′, α)〉 up to a gauge choice. Thus,

the insulator that we defined as the adiabatic path preserves the correct symmetry.
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APPENDIX B

Finite-size scaling of ground-state overlaps beyond

Anderson orthogonality catastrophe

B.1 Central charge of the critical O(n)-loop model

The partition function of the O(n)-loop model on the honeycomb lattice is

ZO(n) =
∑

DW config.

xLnl (B.1)

for general values of x and n ∈ [−2, 2]. The critical line of this model is xc =[
2 + (2− n)1/2

]−1/2
[169]. For x > xc which contains the point x = 1, n = −1, this

loop model is also critical [151]. And the central charges of both cases are given by

[151, 152]

c = 1− 6(g − 1)2

g
(B.2)

where g is defined by n = −2 cos(πg). The branches g ∈ [0, 1] and g ∈ [1, 2] correspond

to x > xc and x = xc systems respectively. The central charge for x = 1, n = −1

is found through Eq. (B.2) by setting g = 1/3, which leads to c = −7 (numerically

verified in Blöte et al [153]).
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Actually, the denominator N /2 of the overlap (5.16) of the main text can also be

considered trivially as a critical O(n)-loop model at x = 1, n = 1. Then the same

formula gives c = 0, implying no logarithmic term correction in the “free energy”.

This is consistent with N /2 = 2N−1 we got from direct counting.

B.2 Slater determinants from Laughlin wave-function expan-

sion are mutually orthogonal

A typical Slater determinant in the expansion of Laughlin wave functions is as

follows,

Dλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

zλ11 zλ21 · · · zλN1

zλ12 zλ22 · · · zλN2

...
...

...
...

zλ1N zλ2N · · · zλ
N

N

∣∣∣∣∣∣∣∣∣∣∣∣∣
exp

(
−

N∑
i=1

|zi|2

4

)

=
∑
σ∈SN

sgn(σ)z
σ(λ1)
1 z

σ(λ2)
2 · · · zσ(λN )

N e−
1
4

∑
i r

2
i

(B.3)

where λ = (λ1, λ2, . . . , λN) is a partition of J = mN(N − 1)/2. Another partition

µ 6= λ corresponds to a different Slater determinant in the expansion. Their inner

product is given by
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∫ N∏
i=1

dziD(1)
λ Dµ

=

∫ N∏
i=1

dzi

 ∑
σλ∈SN

sgn(σλ)(z
∗
1)σλ(λ1)(z∗2)σλ(λ2) · · · (z∗N)σλ(λN )e−

1
4

∑
i r

2
i


 ∑
σµ∈SN

sgn(σµ)z
σµ(µ1)
1 z

σµ(µ2)
2 · · · zσµ(µN )

N e−
1
4

∑
i r

2
i


=

∫ N∏
i=1

(ridridφi) sgn(σλσµ)r
σλ(λ1)+σµ(µ1)
1 r

σλ(λ2)+σµ(µ2)
2 · · · rσλ(λN )+σµ(µN )

N

ei(σµ(µ1)−σλ(λ1))φ1ei(σµ(µ2)−σλ(λ2))φ2 · · · ei(σµ(µN )−σλ(λN ))φN e−
1
2

∑
i r

2
i

(B.4)

Clearly, the integral over polar angles vanishes unless σµ(µi) − σλ(λi) = 0 for all

i ∈ {1, 2, . . . , N}. But if this condition is true, then λ = µ which contradicts with

our assumption that λ and µ are different partitions of J = mN(N − 1). Therefore

the integral must vanish and all the Slater determinants in the expansion of Laughlin

wave functions are mutually orthogonal.

B.3 One component plasma on a disk

This section is based on Sari et al [170].

One component plasma (OCP) on a disk consists of N identical particles with

charge e and a neutralizing background with uniform charge distribution. The Hamil-

tonian is H = T + V where

T =
N∑
i=1

p2
i

2M
(B.5)

is the kinetic term and the potential term V consists of background-background in-

108



teraction, particle-background interaction and particle-particle interaction.

V = Vbb + Vpb + Vpp

=− e2n2

2

∫
d2zd2w ln

∣∣∣∣z − wL
∣∣∣∣+ e2n

∑
i

∫
d2w ln

∣∣∣∣w − ziL

∣∣∣∣
− e2

2

∑
i 6=j

ln

∣∣∣∣zi − zjL

∣∣∣∣
(B.6)

where L is an arbitrary length scale.

After the integration and using the relation n = N/(πR2) we find

Vbb =− e2N2

2

[
ln

(
R

L

)
− 1

4

]
,

Vpb =
e2N

2

∑
i

[
2 ln

(
R

L

)
− 1 +

(ri
R

)2
]

=
e2N2

2

[
2 ln

(
R

L

)
− 1

]
− e2N

2

∑
i

(ri
R

)2

.

(B.7)

So

V =− e2N2

2

[
3

4
− ln

(
R

L

)]
+
e2N

2

∑
i

(ri
R

)2

− e2

2

∑
i 6=j

ln

∣∣∣∣zi − zjL

∣∣∣∣ . (B.8)

Then the canonical partition function could be calculated by

Z = tr(e−βH). (B.9)

The kinetic term T =
∑

i p
2
i /(2M) contributes as the partition function of ideal gas.

Integrate out the momenta first and we obtain

1

N !

∏
i

∫
d2zid

2pi
h2

exp

(
−β p2

i

2M

)
=

1

N !

(
2Mπ

βh2

)N∏
i

∫
d2zi

(B.10)
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where we leave the integral over particle positions untouched because the potential

part of the plasma depends on positions.

To relate OCP partition function with Laughlin wave function, we assume the

particle density n = 1
2πm

, electric charge e = m and β = 1/(kBT ) = 2/m. Then the

partition function ZD of the OCP on a disk is

ZD ≡A(N)Zd

A(N) =
LmN

N !
e

3mN2

4 (2mN)−mN
2/2

(
mπM

h2

)N
Zd =

∫
d2z1 · · ·

∫
d2zNe

− 1
2

∑
i r

2
i

∏
i<j

|zi − zj|2m

(B.11)

where Zd is exactly the normalization factor of Laughlin wave function and A(N) is

the prefactor independent of the integral.

B.4 Scaling of A(N)Z
(1)
d in the disk case

To obtain the scaling of A(N)Z
(1)
d in the numerator of the overlap function (5.32)

in the main text, the only difficulty comes from the evaluation of
∏N

i=1[m(i − 1)]!.

We first take logarithm of this term to convert it to a summation
∑N

i=1 ln[m(i− 1)]!

and then use Euler-Maclaurin formula to change the summation to an integral with

a controlled error term. The Euler-Maclaurin formula reads

n∑
i=m+1

f(i) =

n∫
m

f(x)dx+

p∑
k=1

Bk

k!
(f (k−1)(n)− f (k−1)(m))

+ higher order error terms

(B.12)

where Bk is the k-th Bernoulli number and the error term depends on which term p

we stop the expansion. For our purpose, knowing B1 = 1
2
, B2 = 1

6
is enough.

But before we can finish the calculation, ln[m(i−1)]! must be evaluated first using
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Stirling’s formula (or Euler-Maclaurin formula)

f(i) = ln[m(i− 1)]!

=m(i− 1) ln[m(i− 1)]−m(i− 1) +
1

2
ln[m(i− 1)]

+
1

2
ln(2π) +

1

12m(i− 1)
+ · · ·

(B.13)

Taking the derivative of this equation we find

df(i)

di
= m ln[m(i− 1)] +

1

2(i− 1)
+ · · · . (B.14)

Plug these into the Euler-Maclaurin formula, we find

N∑
i=1

ln[m(i− 1)]!− ln[m!]

=

N∫
i=2

{
m(i− 1) ln[m(i− 1)]−m(i− 1) +

1

2
ln[m(i− 1)] +

1

2
ln(2π) +

1

12m(i− 1)

}

+
1

2

{
m(N − 1) ln[m(N − 1)]−m(N − 1) +

1

2
ln[m(N − 1)]− ln[m!]

}
+

1

12
{m ln[m(N − 1)]−m lnm}+O(1)

=− m

2
N2 lnN +

2m lnm− 3m

4
N2 − m− 1

2
N lnN − 1

2
[(m− 1)(lnm− 1)− ln(2π)]N

+
m2 − 3m+ 1

12m
lnN +O(1).

(B.15)

Then it is an easy calculation to find the scaling of the overlap as in the main

text.
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B.5 One component plasma on a sphere

Similar to the OCP on a disk, the Hamiltonian of the OCP on a sphere consists

of a kinetic term K =
∑N

i=1 p
2
i /(2M) and potential term U coming from background-

background interaction, particle-background interaction and particle-particle interac-

tion. In the following, the distance between two points on the sphere are calculated

by embedding the sphere into a 3D Euclidean space.

U =Ubb + Upb + Upp

Ubb =− e2n2

2

∫
R2dΩxR

2dΩy ln

∣∣∣∣x− yL
∣∣∣∣

=− e2N2

4

[
2 ln

(
2R

L

)
− 1

]
Upb =e2n

∑
i

∫
R2dΩx ln

∣∣∣∣xi − xL

∣∣∣∣
=
e2N2

2

[
2 ln

(
2R

L

)
− 1

]
Upp =− e2

∑
i<j

ln

∣∣∣∣xi − xjL

∣∣∣∣
=− e2

∑
i<j

ln

∣∣∣∣2RL (uivj − ujvi)
∣∣∣∣

(B.16)

where u = cos θ
2
eiφ/2, v = sin θ

2
e−iφ/2.

In the Laughlin plasma analogy, β = 2/m and e = m,n = 1/(2πm). So the
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partition function (including the ideal gas part) is

ZS2 = tr[e−β(K+U)] =
emN

2/2

N !

(
mMπ

h2

)N (
L

2R

)mN2

∫
R2dΩ1 · · ·R2dΩN

∏
i<j

[
2R

L
|uivj − ujvi|

]2m

=
emN

2/2

N !

(
mMπ

h2

)N (
L

2

)mN (
mN

2

) (2−m)N
2

∫
dΩ1 · · · dΩN

N∏
k=1

|uk|2m(N−1)
∏
i<j

∣∣∣∣ vjuj − vi
ui

∣∣∣∣2m
(B.17)

Then we recognize that the integral part is the normalization factor Zs of Laughlin

wave functions and the prefactor is B(N).

B.6 Scaling of B(N)Z
(1)
s in the sphere case

In the main text, the scaling of factorial part of Z
(1)
s in Eq. (5.43) is the only

difficulty for finding the scaling of B(N)Z
(1)
s in the overlap (5.41).

lnZ(1)
s = lnN ! +N ln(4π)+

N∑
i=1

{ln[m(i− 1)]! + ln[m(N − i)]!− ln[m(N − 1) + 1]!}
(B.18)

As described in the disk case, the factorials can be approximated using the Stirling’s

formula

lnN ! = N lnN −N +
1

2
lnN +

1

2
ln(2π) +

1

12N
+ · · · . (B.19)

And the summation could be converted to integral using the Euler-Maclaurin formula

Eq.(B.12) where f(i) is now defined as follows,
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f(i) = ln[m(i− 1)]! + ln[m(N − i)]!

=

{
m(i− 1) ln[m(i− 1)]−m(i− 1) +

1

2
ln[m(i− 1)] +

1

2
ln(2π) +

1

12m(i− 1)

}
+{

m(N − i) ln[m(N − i)]−m(N − i) +
1

2
ln[m(N − i)] +

1

2
ln(2π) +

1

12m(N − i)

}
.

(B.20)

And its derivative is

df(i)

di
= m ln[m(i− 1)] +

1

2(i− 1)
−m ln[m(N − i)] + · · · . (B.21)

Plug these into the Euler-Maclaurin formula, we find the summation part of Eq.

(B.18)

N∑
i=1

{ln[m(i− 1)]! + ln[m(N − i)]!− ln[m(N − 1) + 1]!}

=
N∑
i=1

f(i)−N{[m(N − 1) + 1] ln[m(N − 1) + 1]− [m(N − 1) + 1]+

1

2
ln[m(N − 1) + 1] +

1

2
ln(2π) +

1

12[m(N − 1) + 1]
}+O(1)

=− m

2
N2 − 1

2
N lnN +

1

2
[2(m− 1) + ln(2π)]N +

m2 − 3m+ 1

6m
lnN +O(1).

(B.22)

Inserting this result in the expression of B(N)Z
(1)
s one can easily find the overlap

scaling as Eq. (5.44) in the main text.

B.7 Further calculations for Laughlin states

B.7.1 Question 1

Which terms in the finite-size scaling would change if we replace exp(−1
4
r2) in ΨI

by exp(−C
4
r2) where C is an arbitrary number?
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Answer:

We will have an extra term N2 and the coefficients of N,
√
N will be modified.

Nothing will be changed for N lnN and lnN terms.

Detail of calculation:

Denote the modified trivial wave function (un-normalized) as

D̃λ(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

z
m(N−1)
1 z

m(N−2)
1 · · · 1

z
m(N−1)
2 z

m(N−2)
2 · · · 1

...
...

...
...

z
m(N−1)
N z

m(N−2)
N · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
exp

(
−

N∑
i=1

C|zi|2

4

)
(B.23)

Then the overlap is

〈Ψ̃I |ΨII〉 =

∑
i ai 〈D̃λ(1)|Di〉√

Z̃
(1)
d Zd

=
〈D̃λ(1)|Di〉√
Z̃

(1)
d Zd

(B.24)

where Z̃
(1)
d is the normalization factor for the wave function of system I. Following the

same argument as in the main text, the terms that contribute to Z̃
(1)
d and 〈D̃λ(1)|Di〉

115



are those with zero phase for each particle coordinate zi in the integrand.

Z̃
(1)
d = (2π)N

R∫
0

r1dr1· · ·
R∫

0

rNdrN exp

(
−C

2

∑
i

r2
i

) ∑
σ∈SN

r0
σ(1)r

m
σ(2) . . . r

m(N−1)
σ(N)

=(2π)NN !

R∫
0

r1dr1· · ·
R∫

0

rNdrN exp

(
−C

2

∑
i

r2
i

)
r0

1r
2m
2 . . . r

2m(N−1)
N

=(2π)NN !2
m(N−1)N

2

N∏
i=1

mN∫
0

dxie
−Cxix

m(i−1)
i

=(2π)N2
m(N−1)N

2

N∏
j=1

[m(j − 1)]!N !
N∏
i=1

 1

[m(i− 1)]!

CmN∫
0

dyie
−yiy

m(i−1)
i


C−mN

2/2+(m−2)N/2

(B.25)

where we used the change of variables xi = r2
i /2 and yi = Cxi in the last two steps

respectively. By comparing the the calculation of Z
(1)
d we realize that the only change

is the factor C−mN
2/2+(m−2)N/2 (which only contributes to the N2, N terms) and the

integral limit CmN (which only contributes to the boundary term
√
N).

Similarly, the numerator is calculated as follows.

〈D̃λ(1)|Di〉 = (2π)N
R∫

0

r1dr1· · ·
R∫

0

rNdrN exp

(
−1 + C

4

∑
i

r2
i

) ∑
σ∈SN

r0
σ(1)r

m
σ(2) . . . r

m(N−1)
σ(N)

=(2π)NN !

R∫
0

r1dr1· · ·
R∫

0

rNdrN exp

(
−1 + C

4

∑
i

r2
i

)
r0

1r
2m
2 . . . r

2m(N−1)
N

=(2π)NN !2
m(N−1)N

2

N∏
i=1

mN∫
0

dxie
−(1+C)xi/2x

m(i−1)
i

=(2π)N2
m(N−1)N

2

N∏
j=1

[m(j − 1)]!N !
N∏
i=1

 1

[m(i− 1)]!

(1+C)mN/2∫
0

dyie
−yiy

m(i−1)
i


(

1 + C

2

)−mN2/2+(m−2)N/2

(B.26)
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Again, the only change to the numerator is also the terms related to N2, N and
√
N .

Therefore we obtained a N2 term and modified N,
√
N terms, but didn’t change

those terms related to N lnN, lnN .

B.7.2 Question 2

Are the logarithmic terms really universal for all choices of Slater determinant as

the trivial wave function? Can the scaling be higher order, N2 for example?

Answer:

No. In general, both N lnN and lnN terms vary as we choose different Slater

determinants. But as in the main text, the coefficient of lnN term is proportional

to the Euler characteristic of the real space manifold. So it is only universal in the

topological sense.

Yes, the scaling could be of order N2. It was proven that the lower bound of the

overlap scaling is power law with some negative exponent. But no upper bound has

been found in the literature. So there is no contradiction even if N2 exists.

Calculation detail:

Here we give an example for m = 3 in the overlap calculation. Choose λ′ =

(2N − 2, 2N − 3, . . . , N − 1) instead of λ(1) as in the main text. The corresponding

Slater determinant in the expansion is

Dλ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

z2N−2
1 z2N−3

1 · · · zN−1
1

z2N−2
2 z2N−3

2 · · · zN−1
2

...
...

...
...

z2N−2
N z2N−3

N · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣
exp

(
−

N∑
i=1

|zi|2

4

)
(B.27)

It has been shown in equation (55) of [154] that the coefficient of such a term is
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aλ′ = (−1)[N/2](2N − 1)!!. So the overlap is

| 〈ΨI |ΨII〉 | =

∣∣∣∣∣∣
∑

i ai 〈Dλ′ |Di〉√
Z̃

(1)
d Zd

∣∣∣∣∣∣ = |aλ′|

√
Z

(1)
d

Zd
=

√
a2
λ′A(N)Z

(1)
d

ZD
(B.28)

where ZD = A(N)Zd and A(N) is the same as that in the main text. The same

argument as before gives the non-zero contribution to Z
(1)
d as

Z
(1)
d = (2π)N

R∫
0

r1dr1· · ·
R∫

0

rNdrN exp

(
−1

2

∑
i

r2
i

) ∑
σ∈SN

r
2(N−1)
σ(1) r2N

σ(2) . . . r
2(2N−2)
σ(N)

=(2π)NN !

R∫
0

r1dr1· · ·
R∫

0

rNdrN exp

(
−1

2

∑
i

r2
i

)
r

2(N−1)
1 r2N

2 . . . r
2(2N−2)
N

=(2π)NN !23N(N−1)/2

N∏
i=1

3N∫
0

dxie
−xixN+i−2

i

=(2π)N23N(N−1)/2

N∏
j=1

[N + j − 2)]!N !
N∏
i=1

 1

[N + i− 2)]!

3N∫
0

dxie
−xixN+i−2

i


(B.29)

where the last product with integral inside only contributes to the boundary term
√
N in the finite-size scaling. The factorials could be evaluated by Euler-Maclaurin

formula as in previous discussion. Ignoring the boundary term contribution, it can

be shown that the logarithm of the numerator a2
λ′A(N)Z

(1)
d is

ln[a2
λ′A(N)Z

(1)
d ] =

(
−3

2
ln 3 + ln 4

)
N2 +N lnN +

(
ln

(
3π5/2M

h2

)
− 1

)
N +O(1),

(B.30)

which produces a higher order N2 term. And if the coefficients of N lnN, lnN were

universal, then they should be −1, 1
12

respectively (consider the numerator part only

since the denominators are the same for this example and the calculation in the main

text). But the coefficients are 1, 0 in the above expression. So they are not universal

when we change the trivial wave function ΨI .
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However, the dependence of lnN term on the topology of real space manifold

should be valid. That would be the only “universal” part.
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