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ABSTRACT

In this thesis, we study two problems concerning the long time behavior of the two
dimensional water waves.

In the first project, we study the motion of the two dimensional inviscid incompressible,
infinite depth water waves with point vortices in the fluid. We show that the Taylor sign
condition —% > 0 can fail if the point vortices are sufficiently close to the free boundary,
so the water waves can be subject to the Taylor instability. Assuming the Taylor sign
condition, we prove that the water wave system with point vortices is locally wellposed in
Sobolev spaces. Moreover, we show that if the water waves is initially symmetric with a
certain symmetric vortex pair traveling downwards, then the free interface remains smooth
for a long time, and for initial data of size € « 1, the lifespan of the solution is at least

O(e7?).

In the second project, we rigorously justify the Peregrine soliton from the full water

1 _ _A0+2it)

Toaz) 18 an exact solution of the 1d

waves. The Peregrine soliton Q(x,t) = e(
focusing nonlinear schrodinger equation (NLS) iB; + B,, = —2|B|?B, having the feature
that it decays to e’ at the spatial and time infinities, and with a peak and troughs in a local
region. It is considered as a prototype of the rogue waves by the ocean waves community.
The 1D NLS is related to the full water wave system in the sense that asymptotically it is
the envelope equation for the full water waves. In this project, working in the framework
of water waves which decay non-tangentially, we give a rigorous justification of the NLS
from the full water waves equation in a regime that allows for the Peregrine soliton. As a

byproduct, we prove long time existence of solutions for the full water waves equation with

small initial data in space of the form H*(R) + H* (T), where s > 4,s' > s + 3.

vil



CHAPTER I

Introduction

1.1 Background

The two dimensional inviscid incompressible infinite depth water waves without surface

tension is described by the free boundary Euler equations (It’s called the water wave equa-

tions)
)

\

v +v-Vv=-VP—(0,1) on Qt), t=0
divv=0, curlv=uw, on Q(t), t=0

(1.1)
P =0, t=0

(1,v) is tangent to the free surface (¢, %(t)).

Here €(t) is the fluid region, with a free interface 3(t), such that ¥(¢) separates the fluid

region with density one from the air with density zero. v is the fluid velocity, and P is the

pressure. In the irrotational case, w = 0.

The Euler equations and its variants (notably, the Navier and Stokes equations) are the

basic models used by scientists to study the motion of fluids. To understand the evolution

of the fluid, it’s natural to study the fundamental questions of the existence, uniqueness,

regularity, stability, formation of singularity, and asymptotic behavior of solutions of the

water wave equations (1.1). Since the boundary is unknown and the momentum equation and

the boundary conditions are strongly nonlinear, the water wave equations (1.1) pose severe



challenges for both rigorous mathematical analysis and numerical simulation. Even without
the free boundaries, the closely related Millennium Prize Problem-the global regularity of
the Navier-Stokes equations, is still open.

Because of its physical importance and the great difficulty, the mathematical theory of
water waves has been a fascinating subject that has attracted the attention of scientists for
centuries. For early works, see Newton [48], Stokes[56], Levi-Civita[43], and G.I. Taylor [57].
Nalimov [47], Yosihara[74] and Craig [20] proved local well-posedness for 2d water waves
equation (1.79) for small initial data. In S. Wu’s breakthrough works [69][70], she proved

that for n > 2 the important strong Taylor sign condition

or

- =cy>0 1.2
on 1s(t) 0 (1.2)

always holds for the infinite depth water wave system (1.79), as long as the interface is
non-self-intersecting and smooth, and she proved that the initial value problem for (1.79)
is locally well-posed in H*(R),s > 4 without smallness assumption. Since then, a lot of
interesting local well-posedness results were obtaind, see for example [2], [5], [15], [17], [36],
[42], [44], [49], [54], [76]. Recently, almost global and global well-posedness for water waves
(1.79) under irrotational assumption have also been proved, see [71], [72], [29], [39], [1],
and see also [32] and [33]. More recently, there are strong interests in understanding the
singularities of water waves, see for example [41], [66], [67], [68]. For the formation of splash
singularities, see for example [11][12][18] [19] .

Note that most of the aforementioned works are done in irrotational setting. Also, the
aforementioned works assume that the fluid is at rest at spatial infinity. However, rotational
fluids are commonplace in nature, and there are many important water waves that are not
at rest at o0, so it’s necessary to relax the aforementioned assumptions, which is the goal of
the current thesis. My thesis consists of two projects. The first project concerns the long

time behavior of water waves with non-constant vorticity, more specifically, the long time



behavior of water waves with point vortices. The second project concerns water waves with
nonvanishing boundary behavior, in particular, the justification of the Peregrine soliton from

the full water waves.

1.1.1 Background of Project 1: Rotational water waves

Despite immense progress on Cauchy problem of irrotatoinal water waves, much less
rigorous mathematical analysis have been done for rotational water waves. For vorticity
w that is a smooth function, Iguchi, Tanaka, and Tani [37] proved the local wellposedness
of the free boundary problem for an incompressible ideal fluid in two space dimensions
without surface tension. Ogawa and Tani [49] generalized Iguchi, Tanaka, and Tani’s work
to the case with surface tension. In [50], Ogawa and Tani generalized the wellposedness
result to the finite depth case. In [15], Chritodoulou and Lindblad obtained a priori energy
estimates of n dimensional incompressible fluid, without assuming irrotationality condition
in a bounded domain without gravity. In particular, the authors introduce a geometrical
point of view, estimating quantities such as the second fundamental form and the velocity of
the free surface. For the same problem as in [15], H. Lindblad proved local wellposedness in
[44]. The local wellposedness of rotational 3d infinite depth, inviscid incompressible water
waves is proved by P. Zhang and Z. Zhang [76]. All the aforementioned existence results for
rotational water waves are locally in time, and under the assumption that the strong Taylor
sign condition holds.

Regarding the long time behavior, the only existing work is [34], in which Ifrim and
Tataru proved cubic lifespan for 2d inviscid incompressible infinite depth water waves when
the vorticity is a constant in the entire fluid domain. Assume the volocity field is (u,v).
Assume the vorticity is w = v, — u, = ¢, where ¢ is a constant, the main idea of [34] is to
replace the velocity field (u,v) by (u + cy,v), then the problem is reduced to irrotational
incompressible water waves, and from which the long time existence is proved. In [8], Bieri,

Miao, Shahshahani, and Wu prove cubic lifespan for the motion of a self-gravitating in-



compressible fluid in a bounded domain with free boundary for small initial data for the
irrotational case and for the case of constant vorticity. The case of constant vorticity is
reduced to the irrotational one by working in a rotating framework with constant angular
velocity.

Our goal in the first project is to understand the long time behavior of rotational water
waves with non-constant vorticity. For water waves with non-constant vorticity, there is no
obvious transformation to reduce the problem to the irrotational one, and the study of the
long time behavior of the full water waves with non-constant vorticity requires new ideas.

One way to handle the vorticity is to discretize and assume it takes the form w ~ Z;VZI (P8

where each ; is a bump centered at some point z; € €2(¢). A useful choice of functions 1); is
V;i(2) = X6 1,25 (2), Bs(zj) :=={2eR*: |z —z| <6}, § small.

Each Bjs(z;) is called a vortex patch, and A; is the strength of the vorticity near z;. This
approximation is particular relevant when the fluid is highly rotational in a few small localized
regions. A typical example is the water waves with submerged bodies. In this case, the
vorticity is generated by the submerged obstacles. If the obstacles are sufficiently small,

then we can assume the vorticity is supported at N distinct points, i.e.,
N
Wit =0) = > N\d. (). (1.3)
j=1

Each z; is called a point vortex, with strength ;. The point vortex z; generates a rotational

velocity field %z%z(t) Here, z = x + iy, z;(t) = ;(t) + iy;(¢), and R? is identified with
C,ie., (z,y) —z+ igj, and z——zj(t) represents the complex conjugate of z — z;(t).

The water waves with point vortices describe the motion of submerged bodies, and it’s
believed to give insight to the study of turbulence. We are interested in the following

question:



Question 1.1. If the interface of the water wave with point vortices is a small perturbation
of the horizontal line initially, will it remain a small perturbation for a very long time? And

how long will it remain small?

In the first project of this dissertation, we’ll give an affirmative answer to Question I.1.

See Theorem 1.10 for more detalils.

1.1.2 Background of Project 2: the Peregrine soliton

Another important research direction concerns the behavior of the water waves in various

asymptotic regimes, see for example [21][52][4]. The 1d cubic NLS
iUy + Ugy = —2|ul?u (1.4)

is relevant in the deep water regime. It is completely integrable, and has many exact solu-
tions. The 1d NLS is related to the full water wave system, in the sense that asymptotically
it is the envelope equation for the free interface of the water waves. If one performs multiscale
analysis to determine the modulation approximations to the solution of the finite or infinite
depth 2d water waves equations, i.e., a solution z(«,t) of the parametrized free interface

which is to the leading order a wave packet of the form
W(a,t) := a + eB(X,T)e!*** (¢ small, k,~ : constant), (1.5)

then B solves the 1d focusing cubic NLS. In infinite depth case, X = e(a+ %t), T = €%*t, and
v = vVk. So the envelope B is a profile that travels at the group velocity % = Z—Z determined
by the dispersion relation of the water wave equations on time scale O(¢~1), and evolves
according to the NLS on time scale O(e72).

This discovery was derived formally by Zakharov [75] for the infinite depth case, and by
Hasimoto and Ono [30] for the finite depth case. In [22], Craig, Sulem, and Sulem applied

modulation analysis to the finite depth 2D water wave equation, derived an approximate



solution of the form of a wave packet and showed that the modulation approximation satisfies
the 2D finite depth water wave equation to the leading order. In [53], Schneider and Wayne
justified the NLS as the modulation approximation for a quasilinear model that captures
some of the main features of the water wave equations.

The rigorous justification of the NLS for the full water waves was given by Totz and Wu
[63] in infinite depth case, and the justification in a canal of finite depth was proved by Diill,
Schneider and Wayne [25] . See also [35]. All of these works assume the data vanish at spatial
infinity. However, there are many important solitons of NLS that are neither periodic nor
vanishing at co. One such important example is the Peregrine soliton discovered by Peregrine
in 1983 [51], which is defined by

A4(1 + 2it)

t) = itl_—
Q,t) =" -

). (1.6)

Plug @ in (1.5), one observes that W a weakly oscillatory periodic wave at the time and
spatial infinity, but W has peaks and troughs at a local region. The Peregrine soliton is
important to the ocean waves because the feature of the corresponding wave packet W is
consistent with the qualitative description of a rogue wave in the ocean. We call the wave
packet corresponding to the Peregrine soliton just by the Peregrine soliton. Indeed, the
Peregrine soliton is conjectured to be one of the mechanisms for the formation of rogue waves
by the ocean waves community, see [55] for more details. In 2010, the Peregrine soliton was
observed in fibre optics [40], which shows that the Peregrine soliton is a nature phenomenon
rather than just a mathematical prediction! Stimulated by this discovery, there have been
a lot of efforts to produce the Peregrine solitons in other backgrounds, for example, in [13],
the authors carried out the first experiment to observe Peregrine-type breather solutions in
a water tank. These experiments suggest the Peregrine soliton is a plausible description of
the formation of rogue waves. So it’s desirable to have a mathematical theory to justify that

the Peregrine soliton can be developed in water waves. Since the motion of the water waves



is governed by the water wave equations, while the Peregrine soliton is an exact solution of

the NLS, we ask the following question:

Question 1.2. Is there any solution z(«,t) to the system (1.81) with its envelope looks like

the Peregrine soliton?

Since the leading order of the envelope of the wave packet W (a,t) = a+eB(X, T)e!kat7?)
evolves according to the NLS on time scale O(e?), in order to observe the evolution of the
wave packet, the observer must focus on the water waves on time scale O(e~?). So a more

precise formulation of Question 1.2 is as follows:

Question 1.3. Is there any solution z(«,t) to (1.81) such that

sup (2 =W, 2z =Wy, 2 —Wy)| = o(€)? (1.7)
1€[0,0(e~2)]

Here || - | denotes some norm.

Since B is neither periodic nor vanishing at oo, the framework in [63] or [25] cannot be
applied to justify the Peregrine soliton from the full water wave equations. In the second
project of this dissertation, we give an affirmative answer to Question 1.3. See Theorem 1.16

for more details.

1.2 Project 1: Settings, main results, and strategy

In this project, we investigate the two dimensional inviscid incompressible infinite depth
water wave system with point vortices in the fluid. This system arises in the study of
submerged bodies in a fluid (see for example [14],[24] and the references therein). It’s also
believed to give some insight into the problem of turbulence ([45], chap 4, §4.6). In idealized
situation, such water waves are described by assuming the vorticity is a Dirac delta measure,
i.e., the vorticity is given by w(-,t) = Z;V:I Aj0., 1) (+), where each z; € )(t), A; € R represents

the position and the strength of the j-th point vortex, respectively. It’s well-known that



. ?
each point vortex z; generates a velocity field ;\—;:( , which is purely rotational. We
z—z;(t

assume z;(0) # 2;(0), for j # k. Then the motion of the fluid is described by

( A

v +v-Vo=-VP—(0,1)

divv=0 > Q)

curl v=w = Zjvzl A0z () )
1

] Sz(t) = (v— %Z—sz(t)) e, (1.8)

L) eQt), j=1,.,N

(1,v) is tangent to the free surface (¢,3(t)).

Here, z = x + iy, z;(t) = x;(t) + iy;(1).
Formally, this system is obtained by neglecting the self-interaction of the point vortices:
intuitively, if we pretend that the velocity field v is well-defined at z = z;(t), then the motion

of the fluid particle z;(t) is given by

d At 1 At 1
dt / / 2T z — Zj(t) z=2; 2T z — Z](t) z=2z;
. L . : Nio A
We assume that the only singularities of v are at the point vortices, so v — #:(t)
Z—Zj
p 1 ) . .
is smooth, while %:(t) is not defined at z = z;. However, since the velocity field
z — Zj

i1 : : :
%: is purely rotational around z;(¢), it won’t move the center z;(t) at all,
z — z;(t) 1222
which means
d A1
—zi(t) = (v— L —u= .
dt ]( ) ( 2 z — z](t) z=2z;

For a rigorous justification of this derivation, see [45] (Theorem 4.1, 4.2, chapter 4) for the

fixed boundary case.



The system (1.8) has attracted a lot of attention from both mathematics and physics
communities, and there have been a lot of numerical study of the system (1.8). See for
example [23], [31], [27], [46], [61], [65] and the references therein for some numerical investi-
gations. However, the rigorous mathematical analysis for water waves with point vortices is
still missing.

1.2.1 Governing equation for the free boundary

It’s easy to see that the system (1.8) is completely determined by the free surface (),

the velocity and the acceleration along the free surface, and the position of the point vortices.

1.2.1.1 Lagrangian formulation

We parametrize the free surface by Lagrangian coordinates, i.e., let a be such that

zi(a,t) = v(z(a,t),t). (1.9)

We identify R? with the complex plane. With this identification, a point (x,y) is the same

as « + iy. Since P = 0 along X(t), we can write VP as —iaz,, where a = —%ﬁ is real
valued. So the momentum equation along the free boundary becomes
2y — 1020 = —I. (1.10)
N Aji

Note that the second and the third equation in (1.8) imply that v — >0 | ———u
2m(z — z(t)

) =

Ajt
v+ Zjvzl 2 —]Zz](t)) is holomorphic in Q(¢) with the value at the boundary ¥(¢) given by
y At
— N Aji
Zt + ijl W Assume that Zt + Z] 1 27T( (Og’t; — zj<t)) € L2(R) We know that
Aji

Zt+2

only if

=1 9 (2 (ax, £) ) is the boundary value of a holomorphic function in €(¢) if and
m(z(a,t) — 2

(I - %) (zt+2 ot _Zj(t))> — 0, (1.11)



where ) is the Hilbert transform associated with the curve z(a, ), i.e.,

8(a) = ~-po. Ji B (1.12)

So the system (1.8) is reduced to a system of equations for the free boundary coupled with

the dynamic equation for the motion of the point vortices:

-

Zip — 1QZq = —1
Aji
_ N Aji o
(I —9) (Zt + 201 m) =0.
Note that v can be recovered from (1.13). Indeed, we have
N , N ,
A\ji 1 28 Aji
0 + Y g = | 2 (a(8) + L )as. (114)

;1 oz — 2z(t))  2mi ) z—z(B)\" JZ_]I 2m(2(B) — z(t)

So the system (1.8) and the system (1.13) are equivalent.

1.2.1.2 The Riemann mapping formulation and the Taylor sign condition.

Let n be the outward unit normal to the fluid-air interface 3(¢). The quantity —g—i "
S(t

plays an important role in the study of water waves.
Definition I.4. (The Taylor sign condition and the strong Taylor sign condition)
(1) If —‘;—ﬁ “ > 0 pointwisely, then we say the Taylor sign condition holds.
n(t

(2) If there is some positive constant ¢y such that —‘2—1; o > ¢o > 0 pointwisely, then we
S(t

say the strong Taylor sign condition holds.

It is well known that when surface tension is neglected and the Taylor sign condition fails,

the motion of the water waves can be subject to the Taylor instability [6],[10],[58],[26],[73].
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For irrotational incompressible infinite depth water waves without surface tension, S. Wu
[69][70] shows that the strong Taylor sign condition always holds provided that the interface
is non self-intersecting and smooth.

For rotational water waves, by constructing explicit examples, we’ll show that the Taylor
sign condition can fail if the point vortices are sufficient close to the interface. We’ll also give
a criterion for the Taylor sign condition to hold. To calculate the important quantity —g—i,
we use the Riemann mapping formulation of the system (1.13), which we are to describe.

Let ®(-,t) : Q(t) — P_ be the Riemann mapping such that &, — 1 as z — . Let

h(a,t) == ®(z(a,t),t). Denote
Z(a,t) = zoh Y (a,t), b=hioh Dy := 0; + b0y, (1.15)

A= (ahy) o h™t. (1.16)

In Riemann mapping variables, the system (1.13) becomes

p
(D? —iAd,)Z = —i
At
d o (1) — (1 j
3 5zi(t) = (v 27 =2 o, (1.17)
- Ajt
I —H)(D:Z + ¥ : = 0.
(=PI S ey~ )
Here, H is the standard Hilbert transform which is defined by
Hf(0) = o [ L f(oas (118)
) == —p.o. — : :
il =
Denote
Ay = AlZ,2 (1.19)

11



Since —‘21: o = Z 7] it’s clear that the Taylor sign condition holds if and only if
S(t
A
f —— >0, 1.20
VAR (1.20)

and the strong Taylor sign condition holds if and only if

1
>0 1.21
aeR |Z | ’ ( )

1.2.2 The main results of Project 1

Our first result is a formula for the quantity A;, from which we show that Taylor sign
condition could fail if the point vortices are sufficient close to the interface. We also use this

formula to find a criterion for strong Taylor sign condition to hold.

N i 1

Let I be the holomorphic extension of z + 37" | o 2 (and) — 2(0)
2(o,t) — z

in the domain (t).

Theorem 1.5. Denote

G O)wht), = B(0),0) (1.22)
5o(t) = inf |Zaos )], Mol) = [F o 0)l (1.23)
. DY 5 5
fo 2L ) i o 05000, d() = min0) - (0
(1.24)

(1) (Formula for the Taylor sign condition ) We have

L (IDZ(ot) = DZBHP N ip 2;
A=l P ;? {a—wo)} (1.25)

(2) (Failure of the Taylor sign condition) Taylor sign condition could Fail if J[(t) is suffi-

crently small.

12



(3) (A criterion for strong Taylor sign condition) If

22 22 2 Mo\
_ 4 Z
di(t)38o  dr(t)*dp(t) dj(t)?

< B, (1.26)

then the strong Taylor sign condition holds.

Part (1) is proved in Corollary 11.20, part (2) is proved by examples from §2.3.3, §2.3.4,

and part (3) is proved in Proposition I1.25.

We obtain in our second result the locally wellposed in Sobolev spaces of the equation
(1.13), provided that the strong Taylor sign condition holds initially. Let H® represents the

Sobolev space H*(R), which is define as

beim |k lzmeP)EFOPds < o,

—o0

H'R) = {f e *(R): ||/l

Here, Ff(£) = {*, f(x)e ?™2¢dz is the Fourier transform of f. If s is a nonnegative integer,

then
5 2
£l < Do)\ 0aF)) - (1.27)
k=0
Decompose z; as
N oy
Aji 1
z(a,t) = h S N L 1.28
Z(a,t) = f+p,  where p Z ST P s (1.28)
7j=1
Note that p and p; are determined by z(«,t) and f.
e A discussion on the initial data Assume that the initial value for (1.13) is given by
&o(a) = z(a,t =0) — a, vo 1= z(t = 0), wop 1= zu(t = 0), (1.29)
and denote
ag = a(t = 0). (1.30)
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o, Vo, Wo, ag must satisfy

Wo — iao(aaéo + 1) = —’i, (131)
where aq is determined by
a0|6a§0+1] = |U)0+Z’ (132)
Vo satisfies
N 1
I —$9)tvg=— y —= , 1.33
( )% ]; m &) + o — 2;(0) (1.33)

where ) is the Hilbert transform associated with the curve z(a, 0) = & + a.

Denote
di(t) i= min {d(z,(),50)),  de(t) = min {d=(0).50))  (134)
i#]

Remark 1.6. d;(t) represents the distance of the point vortices to the free boundary, the "I’
means interface. dp(t) represents the distance among the point vortices, P’ means point

vortices.

Let 6 > 0. Let |D|° be defined by

FIDI°f(€) = (2rl€])° FF(€)- (1.35)

Theorem 1.7. (The local wellposedness) Assume s = 4. Assume (|D|/?&, vo, wy) € H® x

H*Y2 5 H?, satisfying (1.51), (1.52), (1.33), and

(H1) Strong Taylor sign assumption. There is some oy > 0 such that

inf a(a, 0)]|z4(a,t = 0)] = ap > 0. (1.36)

aeR

(H2) Chord-arc assumption. There are constants C1,Co > 0 such that

Cila — B| < |2(a,0) — 2(3,0)| < Cola — 3. (1.37)
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Then exists Ty > 0 such that (1.13) admits a unique solution

(|D|1/2(Z - a)aztvztt) € O([(),TO],HS X HS+1/2 X HS>,

Hs—1xHsxHs), dl(o)iladp(o)ilacla027a0; S, and

with Ty depends on ||(0a&o, vo, wo)|

inf inf a(a, 1) 2a(a, )] = ag/2.
te%gTO]igRa(a, )za(a, )| = ao/

Moreover, if T§ is the mazimal lifespan, then either T = oo, or T§ < o0, but

lim (0, 200) loormsms ey + sup (dr(8)™ + dp(t)™) = 0.

%
T-T5F— t—>TO*

or
tﬁlig*li igﬂga(a, t)]za(a, t)] <0,
or
— t) — t
sup a—p + sup ‘z(a, ) =280 _ 0.
a#B Z(Oé, t) - Z(ﬁa t) a#B o — B
0<t<T§ 0<t<T§

(1.38)

(1.39)

(1.40)

(1.41)

Remark 1.8. (H1) is the strong Taylor sign condition. By Theorem 1.5, the Taylor sign

condition (1.36) does not always hold. As was explained before, if surface tension is neglected

and Taylor sign condition fails, the motion of the water waves could be subject to the Taylor

instability. In order for the system (1.13) to be wellposed in Sobolev spaces, we need to

assume that the Taylor sign condition (1.36) to hold.

Our third result is concerned with the long time behavior of the water waves with point

vortices. We show that if the water wave is symmetric with a symmetric vortex pair traveling

downward initially, then the free interface remains smooth for a long time, and for initial

data satisfying
[(|DI"2(2(,0) = @), £ f2)]

HSXH5+1/2XH3 < € K 17
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the lifespan is at least dpe 2, for some g > 0. Define!

A~

dy(t) := n inf Im{z(a,t) — z;(t)}. (1.42)

7=1,2 aeR
We make the following assumptions:

(H3) Vortex pair assumption. Assume N = 2, i.e., there are two point vortices, with posi-

tions 21(t) = x1(t) +iyi(t)), 22(t) = xa(t) +iya(t), strength A1, Ao, respectively. Assume

further that z;(t) and z(f) are symmetric about the y-axis, i.e.,

r1(t) = —w2(t) = —2(t) <0, w(t) = va(t) :=y(t) <0,

and assume A\ = =Xy := A < 0.

(H4) Symmetry assumption. Assume that velocity field v = vy + vy satisfies: v; odd in z,

vy even in x, and the free boundary ¥(¢) is symmetric about the y-axis.

(H5) Smallness assumption. Assume that at ¢t = 0,

HsxHs+1/2xHs S €, )‘2 + ’)\l‘(O)’ < G,

[(ID["%€, f(t = 0), fi(t = 0))]

for some constant ¢y = cy(s). We can take ¢y = ((s+12)!)2.

(H6) Vortex-vortex interaction. Assume % > Me for some constant M » 1 (say, M =

2007).

(H7) Vortex-interface interaction. Assume d;(0) > 1. Assume |A| + z(0) < 1.

Remark 1.9. Assume (H3)-(H4) holds at ¢t = 0, then by the uniqueness of the solutions to

the system (1.8), (H3)-(H4) holds for all ¢ € [0, 7] when the solution exists.

1We use the notation d, 7 to distinguish it from d;. Please keep in mind that d, 1 is not the Fourier transform
of d[.
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Theorem 1.10 (Long time behavior). Let s > 4. Assume (H3)-(H7). There exists ¢y > 0
and &y > 0 such that for all 0 < € < €, the lifespan T§ of the solution to (1.8) satisfies

T§ = dpe 2. Moreover, there exists a constant Cy only depends on s such that

< Cye. (1.43)

sup
HsxHsT1/2xHs

te [07(506_2]

(DI (z(et) = a), £ 1), fil- 1)

Here, &g is an absolute constant independent of € and s.

Remark 1.11. If the initial data is sufficiently localized, then we can prove global wellposed-
ness and modified scattering. A brief discussion of the main idea will be given in §1.2.4. We
will give the full details of the proof in a forthcoming paper.

Remark 1.12. The assumption % > Me ensures that the point vortices travel downward at
t = 0. In the proof of Theorem 1.10, we will show that when % = Me, the velocity of the
point vortices is comparable to €, which is slow in some sense. Theorem 1.10 demonstrates
that even if the point vortices moves at an initial velocity as slow as Me, the water waves

still remain smooth and small for a long time.

Remark 1.13. Assumption (H7) implies that the strong Taylor sign condition holds initially.
The assumption JI(O) > 1 can be relaxed. To avoid getting into too many technical issues,
we simply assume c,l\I(O) > 1. The assumption || + 2(0) < 1 is not an essential assumption.

We assume this merely for convenience.
Remark 1.14. The assumptions (H5), (H6), (H7) do allow z(0) to be as small as we want.

So % can be very large.

A discussion on initial data. We need to show that initial data for this system satisfy the

assumptions of Theorem 1.10 exist. As before, denote

Sola) =z(a,0) —a, zp=a+¢&, vo=2z(a0), wy=zu(c,0).
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We need &, vy, wy satisfy (1.31), (1.32), and (1.33). We need also the symmetry condition
Re{vy} is odd in «, Im{ve} is even in «, Re{&o} is odd — Im{&y} is even. (1.44)

Denote the Hilbert transform associates to zo(«) by $. We'll use the following lemma.

Lemma I.15. Let Im{&y} be even, Re{&y} be odd. Let f = fi + ifs be such that fi is odd
and fy is even. Then Re{$)of} is odd and Im{$f} is even.

Proof. This is proved by direct calculation. O]

Given & be such that Re{} odd and Im{{} even, and given any real valued odd

function f, if we let vy be such that

1 2 ].

then by lemma 1.15, we have Re{vy} is odd and I'm{wvg} is even, and satisfying the compa-
tiability condition

(1 — $0) (Vo + ; %m) = 0. (1.46)

1.2.3 Strategy of proof

we illustrate the strategy of proving the main theorems in this subsection. The first two
theorems are more or less routine, while Theorem 1.10 requires some new idea of controlling

the motion of the point vortices.

1.2.3.1 The Taylor sign condition: proof of Theorem 1.5

We follow S. Wu's work [69] to calculate the Taylor sign condition. Using Riemann
variables, the momentum equation is written as (D? +iA0,)Z = i. Recall that A, := A|Z,|%.

Multiply (D? +iAd,)Z =i by Z,, apply I —H on both sides of the resulting equation, then
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take imaginary part. By using the facts

(I -H)(Z,—1) =0, (I—H)(DthLi& —) =0, (1.47)

we obtain

1 (|D:iZ(o,t) — D Z(B,1)|? NN Z, .
A = 1+%f o py ap—1m{ ; (- T Zj(t))2> (DiZ%(1))}.

Then use some tools from complex analysis, we obtain (1.25).

To construct examples for which the Taylor sign condition fails, we consider initially still
water waves with its motion purely generated by the point vortices. We are able to derive a
formula for A; in terms of the intensity and location of these point vortices, from which we

can see that Taylor sign condition could fail if the point voritces are close to the interface.

1.2.3.2 Local wellposedness:proof of Theorem 1.24

If there is no point vortices in the water waves, S. Wu observes that one can obtain
quasilinearization of the system (1.13) by taking one time derivative to the momentum
equation. It turns out that this is still true for water waves with point vortices: take d; on

both sides of (07 + iad,)z = i, we obtain
(02 +ia04) % = —i0;Zq. (1.48)

In (1.28), we decompose Z; as z; = f + p, where p = — ZN Ajt 1 7 A key observation

j=1 27 z(a,t)—z;(
is that (02 + iad,)p consists of lower order terms. Apply I — § on both sides of equation

(1.48), we obtain

—Z(I — Jr'))atza =01 + ga, (149)
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where

- Zta Zia 1 [ (zla,t) — 2(8,1)\2_
g1 = 2[%&5]2 + 2[%,5]2 - ( (o) — 2(3.1) ) Zipdp. (1.50)
%2i= 7 ; A ((z(oz, D—=0Or (et zj<t))3>' (1.51)

So a,z, is of lower order. The quasilinear system

P
(&3 + ia@a)ét = —iatéa
i 1

S () = (v— g—ﬂm) ems®) (1.52)

(R TR S S — )

=12 (o) — 55(0)

\

is of hyperbolic type as long as the Taylor sign condition a|z,| = ag > 0 holds. The local

wellposedness is obtained by energy method.

1.2.3.3 Long time behavior: proof of Theorem 1.10

To illustrate the idea of studying long time behavior, we begin with the following toy

model.

Toy model: Consider

Uy + |D|u = uf + p=2,m=2. (1.53)

(a+ i)™’

for some constant C' such that |C| < €. Define an energy

Eq(t) = Z f 0% uy (a, )2 + || D|V20%u)*do. (1.54)

k<s
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Then we have

d
ZB(t) E,(t) P2 4 e(1 4 [t))~m YD B (1), (1.55)

Assume F,(0) < €2. By the bootstrap argument, we can prove

Et) < e, Vit (1.56)

If the nonlinearity is at least cubic, i.e., p > 3, then the lifespan is at least e 2.

The water waves: If we can find 6, § ~ 2, such that (0? + |D|)0 = F(z,|D|z, zu) +

O( (aiit)m), where F' is at least cubic and m > 2, then use an argument similar to that for
the toy model, we expect cubic lifespan. Note that the nonlinearity of the quasilinear system
(1.52) is quadratic, so it does not directly lead to lifespan of order O(e~2). In the irrotational
cases, S. Wu[71] found that the fully nonlinear transform 6 := (I — $)(z — 2) satisfies
Jt)_zt(ﬁ7t)>2 =

z—Z)gdf = g.
) t) - Z(ﬁa t) ( g

(1.57)

, - i ’i ijoo z(a
(07 —ia0y)0 = 2[zt,f)za +57)Za]zto¢ + i) < 2

g is cubic, while a — 1 contains first order terms, so (6? + |D|)f contains quadratic terms,
which does not imply cubic lifespan. To resolve the problem, S. Wu considered change of
variables k : R — R. Shelet ( = zo0x™, b= r0r™ !, A= (ak,)or ' In new variables,

the system (1.13) is written as (with A\; = 0 for irrotational case)

(D? — iAd,)¢ = —i
(1.58)
(I - H)Dté_u = 07
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and (1.57) becomes

2 -1 _ 1 o1 1 *(Dil(a,t) — Di((B, 1) \? 7
(D; —iA0y)0ok™" = 2[DtC,H§a +H<_a]§aDt§+m JOO ( Clont) = COB.1) > (C—¢)pdp,
(1.59)
where
_ 1 ” s
Hf(a) = m,p.v.foo e (1.60)
She realized that there exists a change of variables x such that
(1= H)b = ~[Dg, W), (161
(1= H)(A—1) = i[ D¢, H] a“ftg LD H] Cac_ L (1.62)

So b, A—1 are quadratic. Using this, S. Wu was able to prove the almost global existence for

the irrotational water waves with small localized initial data. The method implies lifespan

of order O(e?) for nonlocalized data of size O(e) for irrotational water waves.

Assume there are point vortices in the fluid. We use S. Wu’s change of variables, by

taking x : R — R, satisfying that for ( = zo0 k™1,

(I —H)((—a)=0.

In new variables, by direct calculation, we have

(D? —iAd,)0 = G. + Gy,

(1.63)

(1.64)

where § = (I — H)(C — (), A= (aka) ok, b=k 0k, Dy = 0y 4+ bdy. Let §= for,

g =pok~t. We have




Gai= 2l M) E% — 2[5, 1L — g, )% — 4Dy (1.66)
e — ol g N
I=3h =D~ 2 ) g =0 o
L 0T Ca—1 L& A(Dilast) = (1)
(I-H)A —1+1[DtC,H]C—a+z[Dt2(,H] c —(I—’H)%jl ot —n0)
(1.68)

To control the acceleration D?¢, we consider 5 = (I — H)Dyf. We have
(D? —iAd,)6 = G, (1.69)

where

G =(I = H)(DG + i o n AT = H)(C = O)a) —2[DiC. H]

1 (DtC(Oé?t) — Di((8, 1)
C(Oé, t) o C(ﬁa t)

0aDF (I = H)(¢ = )
Co (1.70)

) 2sDul1 ~ H)(C ~ )

)

The difficulty:

(1) G, is cubic, while G consists of quadratic and first order terms. Gy is the contribution
from the point vortices. Similarly, b, A—1 contains first order terms due to the presence

of point vortices.

(2) Each term of G4 contains factors of the form > A oy for some k > 1. It’s

7=1 (¢(at)—2;(
possible that the point vortices travel upward and get closer and closer to the free

interface. In that case, G4 becomes very large.

(3) The strong interaction between the point vortices could excite the water waves and

make it significantly larger in a short time. Assume two point vortices z;(t) = —z +
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1y, 22(t) = x + iy, with strength A\; and A, respectively. Then the velocity of z; is

)\Zi = . )\12 —

Z = —m + F<Zl(t)7t)a g = 27_(_(22 — Zl) + F(22<t)’t)

Roughly speaking, if is large, then |Z;(t)] is large. Since

27r\z2 21|

s could be large as well. Therefore, small data theory does not directly

5 (%)) Ca
=1 271' m, which is

in general, |p;|
apply in such situation. Moreover, G contains the term Z

. See

even worse than p, if 2;(t) is

Remark 1.14.

(4) If the point vortices collide, after the collision, we cannot use the same system to
describe the motion of the fluid anymore, for the reason that the vorticity after the

collision is not the same as that before it, which violates the conservation of vorticity.

The idea: Intuitively, if each point vortices z;(t) moves away from the free boundary rapidly,

with the factor m decaying in time at least at a linear rate, then we could overcome
) J

the difficulties (1) and (2). We will show that this indeed is true if (H3)-(H6) holds initially.

To overcome the difficulty (3), we use Ay = —X\y from assumption (H3), and by direct

calculation, ||pt\ ms does not depend on Z, Z5, resolving difficulty (3). Also, although the

(2)?

term HZ i1 27r m could be large at time ¢ = 0, yet its long time effect remains
J Hs

small, i.e.,

. J' )2 1
J, 2o Glart) -z | =

Hs
for some constant C” which is independent of —~ (0) So we are able to overcome the difficulty
of large vortex-vortex interaction, provided that the point vortices keeps traveling away from

the free interface.
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However, the motion of point vortices interferes with the motion of the water waves,
it’s not obvious at all that why the point vortices should escape to the deep water (toward
y = —0). Indeed, in some cases, they can travel upwards toward the interface. Recall that

the velocity of z; is given by

G = (- L) (1.71)

The point vortices could interact with each other and with the water waves. In general, it’s
not always true that Im{z;(t)} <0 (i.e., travels downward).
In the following, we discuss how the number of point vortices, the sign of A;, and the

strength of |)\;| affect the motion of point vortices.

(1) For N = 1, the motion of the point vortex is hard to predict except for some special

cases.

(2) For N =2, A\; = Ay. The two point vortices is more likely to rotate about each other

and excite the fluid.

(3) N =2, A = —X2 = A > 0. In this case, the point vortices are more likely to move
upward and getting closer and closer to the interface and hence cause the Taylor sign

condition to fail.

IAl
|z1—22]

(4) N=2 )\ =-X =A<0and 2

- is relatively large (say, > €, where € is the

|
|z1—22]
size of the initial data), then the point vortices moving straight downward rapidly and

hence the term ——-1—— decays like t'.
z(at)—z;(t)

(5) N > 3. This is far beyond understood. Indeed, even for 2d Euler equations (fixed
boundary) with point vortices, the problem is still not fully understood. When N = 3,

the problem resembles the three-body problem .

(6) Vortex pairs. With 2N point vortices, denoted by {(z1, zi2}¥,. Let the corresponding

strength be A1, \jo, respectively. Assume A\ = —A;p < 0. Assume |z;7 — 2| iS

25



sufficiently small, while different pairs are sufficiently far away from each other. Then
the point vortices travel downward, at least for a short time. It’s likely that the factor
W decays linearly in time. So long time existence will not be a surprise. For

brevity, we consider only one vortex pair.

Therefore, from the above discussion, if we assume N = 2 and A\ = —\y < 0, we expect

that the point vortices keep traveling downward at a speed comparable to its initial speed,

hence
_ 1
[Clat) = 2()] 7 = O(———-), (1.72)
o+ 20 )t
and we can expect to have
2 ] 1
(D; —iAd,)0 = G. + O(—/\)
(a+1 |( ‘)t)
and
. ~ ~ . 1
(D} —iAd,)0 = (67 + | D|)0 + cubic + O(#
(a+1i (o)t)
hence
~ 1
(02 +|D|)0 = cubic + O(#)
(a +izgt)?

Similarly, at least formally, we have

1

0? + |D|)é = cubic + O(———————
(@ + D) el

From the discussion on the Toy model, we expect to prove lifespan of order O(e~?2) for small
nonlocalized data of size O(e).

Let’s summarize our previous discussion in a more precisely way as the following.

Step 1. Change of variables. Let x be the change of variables such that (I — H)({ — a) = 0,

where ¢ = zok™!. Then we derive the formula (1.97) for the quantity b and the formula
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

(1.98) for the quantity A — 1.

Nonlinear transform. Let § = o x™', 6 = D,0, where § = (I — H)(¢ — ¢). Then we

derive water wave equations (1.64)-(1.66) for # and water wave equations (1.69)-(1.70)

for o.

Bootstrap assumption. Assume that on [0, 7], we have

[Coe = Has < B¢, [

yeriz <56, Dl <5e ¥te[0,T],  (1.73)

where § = for™L.

Control the motion of z;(t). Under the bootstrap assumption (1.73), we show that for

any t € [0,77],
x(t)
< m < 2. (1.74)

In another words, the trajectory of the point vortices are almost parallel to each other.

N | —

Therefore, we obtain decay estimate

Al

zom(O)t)fl’ (1.75)

di(t)™t = (min inf |¢(a,t) — zj(t)|>_1 < (14

j=1,2 aeR

Energy estimates. Denote 6, = (I — H)d%0, o}, = (I — #)0%5. Define energy

1 1 N
E(t) = Z {fz|Dt9k|2+J2\Dt0k\2+2J9k0a9k+zjak6aak}. (1.76)

0<k<s

By energy estimates, use the time decay of m, we obtain control of D,f and
> J

D,5. As a consequence, by bootstrap argument, we show that 7% > Je2.

Change of variables back to lagrangian coordinates and completes the proof.
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1.2.4 A remark on global existence and modified scattering.

If the initial data is suffciently localized similar to those considered by lonescu & Pusateri
in [39] and Alazard & Delort in [1], then we expect to prove that the system (1.8) (or
equivalently, the system (1.13)) is globally wellposed and there is modified scattering. In
this subsection, we explain why this should be true.

Let’s consider localized initial data of size € (in weighted Sobolev spaces), with € small.
Let’s assume the assumptions (H3)-(H7) (The smallness assumption in Sobolev spaces is
replaced by smallness assumption in weighted Sobolev spaces). By Theorem 1.10, the system
(1.13) admits a unique solution on [0, de~2]. For ¢ € [0, de 2], the position of the point vortices
zj = xj + 1y; satisfies

W
207z (0)

<2, y(t) < (1.77)

Therefore, as long as the growth of the water waves (measured by (, — 1, f, f;) is slow, the
vortex pair will keep travelling downward at a speed comparable to its initial speed, and

therefore the effect of the point vortices will keep small for all time. Indeed, we have

| Galer )

for some absolute constant C” > 0 on any time [0, 7] on which the solution exists. From this

e dt < Cle, (1.78)

point of view, the vortex pair is a globally small perturbation of the irrotational flow. If the
initial data is sufficiently localized, then the effect from the vortex pair is also localized, and
a similar argument as in [39] or [1] will give global existence and modified scattering. We’ll

prove this in a forthcoming paper.
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1.3 Project 2: Settings, main results, and strategy

In Project 2, we aim to rigorously justify the Peregrine soliton from the full water waves.
We consider the two dimensional inviscid incompressible irrotational infinite depth water

waves without surface tension, which is described by the system (1.1) with w =0, i.e.,

-

v +v-Vo=-VP—(0,1) on Q(t), t=0
divv=0, curlv=0, on Q(t), t=0

X (1.79)
Pl =o, t=0

(1,v) is tangent to the free surface (¢, %(t)).

It implies from div v = 0 and curl v = 0 that v is holomoprhic in €(¢), so v is completely
determined by its boundary value on 3(t). Let the interface X(t) be given by z = z(a,t),

with v € R the Lagrangian coordinate, so that z;(«, t) = v(z(«, t),t), and v;+v-Vo “ = 2.
(¢

Because P(z(a,t),t) = 0, we can write VP o —iaz,, where a = —‘;—5@ is a real valued
function. So the momentum equation v, + v - Vv = —(0,1) — Vp along (¢) can be written
as

Zy — 102 = —1. (1.80)

Since Z; is the boundary value of v, the water wave equations (1.79) is equivalent to

2 — 1AZq = —1

(1.81)

Z; 15 holomorphic.

Here, by z, holomorphic, we mean that there is a holomorphic function ®(-,¢) on €(¢) such

that z;(a,t) = ®(z(a,t),1).
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In this project, we give an affirmative answer to Question 2°. Denote

1+ H :={f=1+g:g¢e H}. (1.82)

Notation. Denote T := [, 7].

Let f = fo + f1, where fo € H*™°(T), f; € H*(R), where sy > 3/2. Define

/]

xs =|fol

ooy T 1l oy - (1.83)

The main result of Project 2 is the following theorem, which gives a rigorous justification of

the NLS with nonzero boundary values at spatial infinity from the full water waves.

Theorem 1.16. Let My > 0, s =4 and T > 0 be given. And let k > 0 be a given integer 2,
B% € 1+ H*""(R). Denote by B(X,T) the solution of the NLS: 22'BT+M%/23XX+I€5/2|B|QB =
0 with initial data B(X,T = 0) = BY. Assume that B € C([0,T]; X*7). And assume
(W(a,t) = B(X,T)e*, where X = e(a + ﬁt), T = €, and ¢ = ka + Vkt. Then there

exists a constant ¢ = €g(k, s, Mo, |B® — 1| gs+7, T) > 0 such that for all € < ¢, there exists

initial data (z(+,0), z(+,0), zi(+,0)) to the water wave system (1.81) such that

H(ZOC(V O) - 17 Zt('? 0)7 Ztt('a O)) - E(aaC(l)(O)a atC(l)(O)a at?C(l) (0>)||X3—1/2><X3‘*'1/2><XS

<M063/2.

(1.84)

Moreover there exists a constant C = C(k, s, My, T, |B(0) — 1

gs+7) > 0 such that for all

initial data satisfying (1.84), the water waves system has a unique solution with

(204(‘71’-) - 172157 Ztt) € C([O,T€_2];XS_1/2 X Xs+1/2 X Xs)

2Indeed, we need only k > 0. However, if k # N, then e?*® ¢ H*([—7,7]), instead, it is in H*([0, 2?“])
For simplicity, we take k € N. The same argument applies directly to the cases that k # N
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satisfying

sup  [(Im{za — 1}, 21, 21) — e(Im{2aC M}, ¢, ¢

0<t<T e 2

2
Xs—1/2% Xs+1/2% X5 S 063/ y (185)

Remark 1.17. Theorem 1.16 gives rigorous justification of the NLS with nonzero boundary
values at o0 in Lagrangian coordinates. In (1.85), please note that we only justify the

modulation approximation for the imaginary part of z, — 1,, i.e.,

sup
te[0,Te2]

1 — (1 3/2
Im{z, — 1} — eIm{0,( }HkaSe . (1.86)

In Theorem II1.5 (See §3.10.2), we give a full justification of the Peregrine soliton from full

water waves in a different coordinates. We do not prove

sup

Re{za — 1} — eRe{&aC(l)}H < 2
te[0,7e2]

xs—1/2

in the Lagrangian coordinates because there is no good control of the change of variables on

time scale O(e2), please see Theorem II1.5 and Remark IT1.52 for the details.

Remark 1.18. Let B solves iBy + Bxx = —2|B|?B. Then

2

UX,T) := N

B(V8k32X,T)

solves 2iUr + 5 Uxx + k*2UUJ* = 0.

Applying Theorem 1.16 to U(X,0) = \/jﬁQ(\/ 8k3/2X,0) gives an affirmative answer to

Question I.3.

Remark 1.19. sq > 3/2 is of course not optimal. We take sy > 3/2 to avoid getting into too

many technical issues.
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1.3.1 Challenges of the problem and the strategy.
1.3.1.1 First difficulty: find a right class of water waves to work with.

Suppose B is the Peregrine soliton, then the wave packet W is nonvanishing. As a
consequence, in order to justify the Peregrine soliton from the full water waves, we need to
show that water waves with nonvanishing data of size O(e) exist on time scale O(¢72). In
3], Alazard, Burq, and Zuily proved local wellposedness of (1.79) with nonvanishing data
in Kato’s uniform local space HZ;(R). Their result implies that for initial data of size O(e),
the lifespan of the solution is at least of order O(e™!), which is not enough for justifying
the Peregrine soliton. Even though the long time existence has been well-known for periodic
waves and localized waves, to the author’s best of knowledge, for nonvanishing water waves,
no long time existence results with lifespan of the solution longer than the order of O(e™!)
exist, and the analytical tools developed for the vanishing or periodic data cannot be directly
used in this setting.

In order to prove long time existence of the water wave system, one needs to find a cubic
structure for the water wave equations. More precisely, we need to find some quantity 6 such
that 0,0 ~ z; and

(02 —iady)f = F, (1.87)

with F' consists of cubic and higher order nonlinearities. For water waves with data in Sobolev
spaces, there are two ways of doing this. The first one is the fully nonlinear transform
constructed by S. Wu. In [71], S. Wu considered 6 := (I — $)(z — z) and showed that
(02 —iad,)0 = cubic. Here,

afe) = [ T s (189

is the Hilbert transform associated with the free interface labeled by z(«, t). Using this fully

nonlinear transform, S. Wu was able to prove the almost global existence for the irrotational
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water waves with small localized initial data. The method implies lifespan of order O(e~?%)
for nonlocalized data of size O(¢) in Sobolev spaces. This nonlinear transform is also used
in [72][63][62][39]. See also [32][33] for similar ideas. The second way is to use the normal
form transformation to construct a cubic structure, see for example [1][39][64][38][7]. These
two methods work well for water waves with periodic data or with data in Sobolev spaces.
However, for nonvanishing water waves, such a cubic structure was unclear for both
methods. The first difficulty we confront is to find a right class of water waves that we can
work with. This class of water waves must be non-vanishing at spatial infinity along the
free interface. However, if the water waves have too many activities at infinity, then it’s not

obvious at all that why the water waves should exist for a long time.

1.3.1.2 The idea of resolving the first difficulty: water waves that decays non-

tangentially

Let B be the Peregrine soliton, then the wave packet W can be decomposed as

1+ ie*t i
e
1+ 4(er)? + 4(€%t)?

W =W+ Wy,  Wo=e%® W =a—e'" (1.89)

Note that W is periodic, Wi — a vanishes at infinity, therefore, we consider water waves
which is a superposition of periodic waves and waves which vanish at infinity. Moreover,
since Wy € C*(T), we can assume that the periodic waves has more regularity than the
localized waves. This motivates us to work in the function space X* := H*(R) + H***(T),
where sy > 3/2.

Key observation: Although the velocity v is nonvanishing along the free interface, however,
away from the free interface, v can vanish at spatial infinity. In other words, although the
water waves have a lot of activity at spatial infinity along the free interface, however, away
from the interface, the water waves can be at rest at infinity. This observation suggests that,

away from the free interface, the interaction between the periodic waves and the localized
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waves 1s weak.

To make the above discussion precise, we use the notion of decay nontangentially.

Definition 1.20 (Cone). Let zy € C. Let 6, € (0,7/2). Denote

Co,(20) 1= {Z ceC: Re(z — 20)

—’étan@o & Imzélmzo}.
Im(z — zp)

That is, Cy,(20) is the cone with vertex z; and angle 6.

Definition 1.21 (Decay nontangentially). Let ¢(z) be a function in Q(t). Let zg € C be a
fixed point. We say that ¢(z) — 0 nontangentially as z — oo if for any 0 < 6 < 7/2,
lim o(z) =0. (1.90)

2€Q(t)nCo; (20)
2| =00

Remark 1.22. Note that the definition above is invariant if we use different z;. As a conse-

quence, we choose zo = 0 and write Cy,(0) as Cp,.

Remark 1.23. If ¢ is a periodic function in Q(t), and

lim ¢(z) =0,

Imz——0

then ¢(z) decays nontangentially.

It turns out that the decay nontangentially is the right setting for nonvanishing water
waves. If we assume the velocity field v decays nontangentially, follow S. Wu’s method in
[71], at least formally (in BMO sense, because the Hilbert transform $ maps L* to BMO),

we can show that the quantity (I — $)(z — z) satisfies

(02 —iad,)(I — H)(z — 2) (1.91)

t) _ Zt(ﬂat) 2 > .
5 _Z(ﬁ’t)> (2 —2)sdf = g. (1.92)

11 1 ,
-2+ D et o | gu
Za  Za mi ) \ 2(a,
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Formally, g is cubic, while a — 1 contains first order terms, so (0Z + |D|)# contains quadratic

terms, which does not imply cubic lifespan. To resolve the problem, we follow S. Wu’s idea

and consider the change of variables x : R — R such that ( — « is boundary value of a

holomorphic function which decays nontangentially, where ¢ = zox~!. Denote b = x; 0 k™!,

A = (akq) o k71 In new variables, the system (1.81) is written as

(D? = iA2,)C = —i

(I —He)DiC =0,

and we have

(Df = iAda)(I = H)(¢ =€)

_ 1 -1 L (™ (Dl t) = Dig(B,8)\2, . =
— 2D HE +AZI0DG 1 [ ) -

Ca a T J o0

where

1 OO (s
Hef(a) = —po JOO L

Moreover, we have

(1= H)p = (D¢ 11,
(I —H)(A—1) =i[D,H] a"CDtC +i[D¢,H] C"‘C_ 1.

So b, A — 1 are quadratic. Therefore, at least formally, we have

(6 + DN = Hc)(¢ =€) = cubic.

1

(1.93)

(1.94)

(1.95)

(1.96)

(1.97)

(1.98)

(1.99)

If ¢ —a, D¢ decay® at spatial infinity or periodic, then use S. Wu’s method, we could prove

that (1.79) is wellposed on time scale O(e™?).

3In this paper, by a function f decays at oo, we mean that f € H*(R) for some s > 0, even though it

could be possible that lim,_,q f(z) does not exist.
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1.3.1.3 The second difficulty

If the water wave is nonvanishing, then it’s difficult to define an energy associated with
(1.94) which still preserves the cubic structure. Indeed, because 6 ¢ L(R) for any ¢ # oo,
we cannot estimate ¢ in H*(R). If we estimate 6 in W**(R), as is explained by Alazard,
Burq and Zuily in [3], there is loss of derivative in such spaces. One might try to estimate
6 in Kato’s uniform local Sobolev spaces as in [3]. Assume {x,} is a partition of unity of
R. One needs to consider the quantity x,0. It turns out that Py,0 has first and quadratic

nonlinearities, which are difficult to get rid of.

1.3.1.4 Idea of resolving the second difficulty

To resolve this problem, we note that if {, — 1 € X*, then ¢ can be decomposed uniquely

as

(=w+&, (1.100)
where w — « is periodic, and &; decays at spatial infinity. Let by and Ay be determined by

Wo — 1

(I —H,)bo = —[Dw, H,] — (1.101)
(=)0~ 1) = (D0 ) 2L 0P ) =P o)
where
H S = d 1.103
(@) = g [ wa(8) cot(5wla) —w(3) ()45, (1.103)
Denote D? := ¢; + byd,, then w satisfies
(DN)2w — iAgwy = —i. (1.104)

It has been well known that the periodic water waves with initial data of size O(¢) exists on

lifespan of order at least O(¢~2). So it suffices to control & and Dy — D?w on time scale

36



O(e?). In BMO sense, we have

((D?)? —iAg0s) (I — Hy)(w — @) = cubic, (1.105)

where H,, is the Hilbert transform associated with w, i.e.,

” wﬂ(ﬁ>t)

Hoflant) = p.v.% I et e AR (1.106)
Now consider the quantity
Ni= (T = He) (1= HO(C — ) = (T = Ho)(w — a)). (1.107)
Then A ~ &;. Moreover, we can prove that
(D? —iA0,)\ = cubic. (1.108)

Since A is in Sobolev space, we can use energy method to prove the following result:

N

Theorem 1.24. Let s = 4. Let |[(z4(-,0) — 1, 2(t = 0), z4(t = 0))] €.

Xs—1/2x Xs+1/2x X's
Assume z(t = 0) € Holn(2(0)). Then there ezists € = €o(s) > 0 sufficiently small and
a constant Cy; = C1(s) > 0 such that for all 0 < € < €, the water wave equations (1.81)
admit a unique solution (zo(-,t) — 1, 2:(-,1), zi(+, 1)) € C([0, Cre=2]; X*712 x X*+12 x X*).

Moreover,

sup  [[(za — 1, 21, 26) | xs1/2 ¢ xsr1/2 4 xs < Cl, (1.109)

0<t<Cre2

for some constant C' = C(s).

To our best knowledge, Theorem [.24 is the first long time existence for nonvanishing water
waves. More importantly, using this long time existence result, we are able to justify the NLS

from the full water waves in a regime that allows for Peregrine solitons, and prove Theorem
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I.16.

1.3.1.5 Rigorous justification of the Peregrine soliton from water waves .

We prove Theorem 1.16 through the following steps.

Step 1. Construction of approximate solution.

Let B be a solution to the NLS. Consider interface of the form
0
Clont) = a+ ) en¢™. (1.110)
n=1

By multiscale analysis, we can choose (™, n = 1,2,3 be such that () = B(X,T)e™

and ¢, ¢ depend on B and ¢ only. We define an approximate solution C~ to ¢ by

3
5::a+Ze"C("), (1.111)
n=1
then formally?,
- =0 (1112)

Similarly, we approximate D;(, D¢ by some appropriate functions th , Df& such that

1Dy — f?t5| = O<€4)= ’D?C - f?tfl = O<64)' (1.113)

Denote

T:ZC*C:T0+T1, (1114)

where r( is the periodic part of r, and r; decays at spatial infinity. Denote fg the periodic
part of ¢ — a. Denote
D=a+&, &Li=(-. (1.115)

4This is in co-norm sense, i.e., [¢ — {[ws» = O(e?). In X* norm, |¢ — (| xs = O(7/?)
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To rigorous justify the NLS from the water waves, we need to control the error r on time

scale O(e72).

Step 2.

Step 3.

Step 4.

A priori error estimates for the periodic part

For data of the form (3.38), we show that

((DY)? —iA¢04) (I — H,)ro = fourth order. (1.116)

So we can obtain

sup ||(Caro, Diro, (D})’r0)|
te[0,0(e72)]

Hs+so (T)XH3+SO+1/2(T)XH5+SO (T) < 063/2. (1117)

A priori error estimates for the vanishing part

Consider the quantity

pri= (1= HY{ (1 = HE = (1 = Ho)o) = (1 = HIE (1 = Ha)&) | (1118)

We remind the readers that H; and Hg are the Hilbert transforms associated with ¢

and @, respectively. We can show that p; ~ ry.

By exploring the structure of ¢, we show that
(D? —iA0,)py = fourth order. (1.119)
So we can obtain

sup ”(aarl7Dtrla Dfrl)‘
te[0,0(e=2)]

Ho@)x B @) <)) < O, (1.120)

In Step 1, we've constructed an approximate solution (¢, Di¢, D?¢) which exists on

time scale O(¢72). In Step 2 and Step 3, we obtain a priori bound on the energy for
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the remainder 7 on long time scale O(e~?). However, since ¢ does not in general satisfy
the water wave equations, the wave packet like data (C(0), D,C(0), D2¢)(0) cannot be
taken as the initial data of the water wave equations. Similar to that in [63], we
show that there is initial data for the water wave system that is within O(e*?) to
the wave packet (¢(0), D,C(0), D?C)(0). By long time existence of (1.93) with initial
data (04(¢ — ), Di¢, DC) of size € in X*® x X*t1/2 x X*  the solution of the system
(1.93) exists on time scale O(e2). The a priori bound on r gives the estimate of the
error between ¢ and the wave packet ¢ on the order O(¢¥/?2) for time on the O(e™2)
scale. The appropriate wave packet approximation to z is then obtained upon changing

coordinates back to the Lagrangian variable.

1.4 Outline of this thesis

1.4.1 Outline of Chapter 2

In §2.1, we introduce some basic notation and convention. Further notation and conven-
tion will be made throughout the paper if necessary. In §2.2 we will provide some analytical
tools that will be used in later sections. In §2.3, we give a systematic investigation of the
Taylor sign condition. We give examples that Taylor sign condition fails. We also give a suf-
ficient condition which implies the strong Taylor sign condition . In §2.4, we prove Theorem

[.24. In §2.5, we prove Theorem I.10.

1.4.2 Outline of Chapter 3

In §3.1, we introduce some basic notation and convention. Further notation and conven-
tion will be made throughout the paper if necessary. In §3.2 we will provide some analytical
tools and the basic definitions that will be used in later sections. In section §3.3, we sketch
a proof of long time existence of the periodic water waves system, which we will use in later

sections. In Section §3.4, we set up the water waves system with data in X* derive formula
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for the corresponding quantities, and then prove long time existence of water waves in the
function space X*. In Section §3.5, we formally derive NLS with non-vanishing boundary
value at oo from non-vanishing water waves system that we set up in Section §3.4, and obtain
an approximation §~ to water waves system. In Section §3.6, we derive governing equations
for 7y, then we show that 7y remains small on time scale O(¢~2). In Section §3.7, we derive
governing equations for r1, and define corresponding energies that could be used to control
norms of r{. In Section 3.8, we obtain a priori bounds of a list of quantities that appear in
the energy estimates, and in Section §3.9, we obtain energy estimates on time scale O(e2).
As a consequence of the energy estimates, we prove our Main Theorem 1.16 in Section §3.10.
In the appendix, we show that e~ cannot be the boundary value of a holomorphic function

in the region below the curve {w(a,t) = a + c(t)e*}.

41



CHAPTER II

Long time behavior of 2D water waves with point

vortices

2.1 Notation and convention

Throughout chapter, we assume that the velocity field |v(z,t)] — 0 as |z|] — o and
z(a,t) —a — 0 as |a| —> . We use C(Xy, X, ..., Xj) to denote a positive constant C
depends continuous on the parameters X7, ..., X;. Such constant C(Xj, ..., X)) could be
different even we use the same letter C'. The commutator [A, B] = AB — BA. Given a
function g(-,t) : R — R, the composition f(-,t) o g = f(g(-,t),t). For a function f(«,t)
along the free surface X(t), we say f is holomorphic in Q(t) if there is some holomorphic
function F': Q(t) — C such that f = F|sy). We identify the R* with the complex plane. A
point (z,y) is identified as x + iy. For a point z = x + iy, Z represents the complex conjugate

of z.

2.2 Preliminaries and basic analysis

Lemma II.1 (Sobolev embedding). Let s > 1/2. Let f € H*(R). Then f € L*, and

[flle < ClIf|

Hs,
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where C' = C(s). If s =1, we can take C' = 1.

2.2.1 Hilbert transform, layer potentials

Definition I1.2 (Hilbert transform). We define the Hilbert transform associates with a

curve z(a,t) as

af(e) = Ly [ BN (g 0as 2.)

The standard Hilbert transform is the one associated with z(a) = a, which is denoted by

e 2.2

It is well-known that the following holds:

Lemma I1.3. Let f € L*(R). Then f is the boundary value of a holomorphic function in
Q(t) if and only if (I —9H)f = 0. f is the boundary value of a holomorphic function in Q(t)°
if and only if (I +9)f =

Because of the singularity of the velocity at the point vortices, we don’t have (I—)z; = 0.
However, the following lemma asserts that Z; is almost holomorphic, in the sense that (I—$))z;

consists of lower order terms.

Lemma II.4 (Almost holomorphicity). We have

(I—$9)z = —%Z _z](t). (2.3)

7j=1

Proof. Since z,+ > Al 35 is the boundary value of a holomorphic function in Q(¢),

j=1 27(z(a, t) (¢

by lemma I1.3,

(I=9) (zt+2 z(a, t) —Z](t))> =0,

hence

(T=0)a == Q=950 A>Z S0 (24)
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Since WI*() is the boundary value of the holomorphic function ——= in (¢)¢, by lemma

I1.3 again, we have

1 2
U= G50 = 2ot 50 (25)

(2.4) together with (2.5) complete the proof of the lemma. O

Definition II.5 (Double layer potential).

8f(0) = po. f Re{~ LF(8)d (2.6)

i z(« t)—z(ﬂ, t)

Definition I1.6 (Adjoint of double layer potential).

i) ” 1 Za |28
/() i= p. f_oo Refe e e ()5 2.7)
Lemma I1.7. Let z(«) be a chord-arc curve such that
Bola = Bl < [z(2) = 2(B)| < Pila = B, YV a,BeR. (2.8)
Then we have
195112 < C(Bo, Bl f 22 (2.9)
1RS> < C(Bo, Bl f |- (2.10)
1R fll 2 < C(Bo, )| f] 2 (2.11)
17 £ 87| < CBo, B) IS 2 (2.12)
[(1 £ &) fllze < C(Bo, B1)| f 2. (2.13)

For proof, see for example [16], [60].
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2.2.2 Commutator estimates

Denote

n-Jl [[248 =20 psyas. (2.15)

We have the following comutator estimates, which can be found in [63], [71].

Lemma IL.8. (1) Assume each ~y; satisfies the chord-arc condition

Cojloa = Bl < Iy (@) = 25(B)] < Cy e — Bl (2.16)

Then both||S1(A, f)|l;2 and||S2(A, f)||,= are bounded by

J Xj“fHXO )

where one of the Xy, X1,...X,, is equal to L* and the rest are L*. The constant C depends
-1

n (| m,jzl,..,m

(2) Let s = 3 be given, and suppose chord-arc condition (3.33) holds for each v;, then

152(4,

”fHZ7

where for all j = 1,...,m, Y; = H*' or W2 and Z = H® or W 1*. The constant C

depends on ||O_O1 J=1,..,m.

/
7] " 1’
As a consequence of lemma II1.18, we have the following commutator estimates.

Lemma I1.9. Let k > 1. Assume z(«,t) satisfies chord-arc condition

Cila = Bl < |z(a,t) = 2(8, 1) < Cyla = f], (2.17)

45



and zo, — 1 € H*'. Then
o5 91r]| , < Clowflmr, (2.18)

where the constant C' = C(|zo — 1| gr-1,C1, Ca).

Proof. Use
k

2%, 5 Z [0a, 9]0

Then use induction to complete the proof. O

2.2.3 Some estimates involving point vortices

In this subsection we estimate some integrals involving the point vortices.

Lemma I1.10. Assume z(a,t) satisfies the same condition as in lemma I11.9. Let k > 1.

Then

- 1 —k+1
Lo EOEE G (2.19)

401

where C' = 4Cy ' + DT
0

Proof. We may assume that d;(t) = d(z;(¢), 2(0,1)).

© 1
Lo 50— B OF "

J( B—=(B,0)l<2ds (1) 125 (8) —
=T 4+ II.

1 1
d
z(8,t)[F B+ L(o t)—2(8,t)|=2d; (t) |Z'J( ) —z(B,1)

i

Denote

E = {8 ]2(0,8) — 2(8,1)] < 2d;(2)}.

Since

ColB = 0] < [2(8,1) — 2(0,1)],
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we have for § € F,
2

0

18— 0] < =-di(t).

)

Therefore
I <4Cytdp(t)~F .
For § € E°, use the chord-arc condition (2.17), we have

|2(B,t) — 2(0,t)| = %|B—0|. (2.20)

N | —

12(B,t) — 2(0,t) —d;(t)]| = |2(8,t) — 2(0,t)| — d;(t) =

Also, we have

Ch|B = 0] = |2(B,t) — 2(0,t)| = 2d;(¢t). (2.21)

So
2

81> &

dy(t) (2.22)
Therefore, for II, we have

2k 2k Ck—l
I <— 1B|7%dB = 2 !
C§ B> 2-ds (1) (k—1)Cf 2+t

40771

d t —k+1 —
I() (k_l)c(l)c—l

dr(t)=F 1.

]

Corollary II.11. Assume z(«,t) satisfies the same condition as in lemma I11.9. Given

m = 2, there exist C = (k + m)!C(Co, C1,||za — || gm-1) such that

1
(2(, ) = 2(t))*

< C(dp(t) Y2 4 dp(t)~FmH12) (2.23)

Hm

In particular, if d;(t) = 1, then we have

< Cdy(t)~F+12, (2.24)




2.2.4 Basic identities

Lemma I1.12. Assume z;,2, — 1 € CY([0,T]; H'(R)), f € C(R x [0,T]) and fo(a,t) — 0

as |a| — 0. We have

0091F [z 512 2.29
2 _ E @ . if zi(a,t) — 2(B8,) o
[atvﬁ]f _[Ztta ]Za + 2[ ] Za i ( Z(Ogt) . Z(ﬁ,t) ) fﬁ<57t>d6 (226)
[ada, H]f =[aza,ﬁ]£—°‘, 0 f = mﬁ (2.27)
2 _ _ & 1 z(a,t) — Zt(ﬁﬂf) 2
[at Zaaoc7~6]f _Q[Ztasj] Za 7TZ ( Z(Cl{,t) _ Z(ﬁ,t) ) fﬂ(ﬂ)t)dﬂ (228)
For proof, see [71].
Lemma I1.13. Let D; = 0; + bd,,, then
[D?,00) = =Di(ba)0a — baDifa — balaDy (2.29)
k—1
(D20 =Y [am (Diba)OE™ + 8™ (ba@" "™ Dy) + 0™ (ba[0da, OX™]) + Obadk ™D,
m=0 (230)
SN o ]
Proof. 1t’s easy to see that
k-1
[D7,05] = = 3 00 (Duba)0™ 4 07 (ba DuC™) + OboP0 Dy |
m=0
k—1

== 0 | (Db - B (badl T Dy) + O3 (ba[ba, 057™) + 000k Dy

0

+ 0 by [bO, b]af;—m—l]

3
I
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2.2.5 Preservation of symmetries.

The water waves with point vortices preserve the symmetry (H4). Such symmetry is

well-known if there is no point vortex.

Lemma I1.14 (Preservation of symmetries). Let (0) € R? be symmetric about x = 0. Let
Re{F} be odd in x, and Im{F} be even in x at time t = 0. Suppose the solution to the
system (1.8) exists on [0,Ty]. Then Re{F'} remains odd in x, and Im{F} remains even in

x for all t € [0, Tp].

This is the consequence of the uniqueness of the solutions to equation (1.8).

2.3 Taylor sign condition

In this section we give a systematic study of the Taylor sign condition. We derive the
formula (1.25), and then use this formula to show that the Taylor sign condition could fail
if the point vortices are sufficiently close to the free interface. We also obtain a criterion for

the Taylor sign condition to hold.

2.3.1 The Taylor sign condition in Riemann variables

Recall that z; + Zjvzl m is holomorphic, i.e., there is a holomorphic function
B j

F(z,t) in Q(t) such that

So we have

(2.31)




Note that

Aji
2m(z — zi(t)) le=2)

Akt
2z (t) — 2;(t)

z(t) = (v— (2.32)

k:k#j

Let ®(-,t) : Q(t) — P_ be the Riemann mapping such that &, — 1 as z — . Let

h(a,t) == ®(z(a,t),t). Denote !
Z(a,t) = zoh Y (a,t), b=hioh™, Dy := 0; + b0,, (2.33)

A= (ahy) o h™L. (2.34)
Use (2.31), apply h~! on both sides of z; + iaZ, = i, we obtain

N Ni(DyZ(a,t) — (1))

F,oZ(a,t)DiZ+F; 0 Z(a,t AZ, = 1. .
o dlea Do )+ ) g e AT 23
7j=1
Multiply by Z, on both sides of (2.35), and denote
Al = A’Za‘2,
we obtain
N NjiDZ Zy — Njizi () Za
F.oZZ,DZ + Fy0 ZZo+ ) = 1 Ay = iZ,. (2.36)

st 2n(Z (o, t) — 2;(t))?

Apply I — H on both sides of the above equation, then take imaginary parts, we obtain

A = 1_1m{(1_H)(onZZaDtZ) + (I—H)i

J=1

Ni(DiZ Z — % (t)Z >} (2.37)

2n(Z(a,t) = z(1))?

'In §2.5, we also use the notation A,b, D;. We’d like the readers to keep in mind that they are not the
same. In §2.5, A = (aky) ok L, b=rior™ L, Dy = 0 + Ky 0 K~ 10,.
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Note that

is holomorphic. So we have

N

(I ~H)F. 0 ZZoDiZ =[D 2, H)(0aDiZ — )
(2.38)

\jiZ

=02 81D Z = ) (D2 Bl ==

J=1

)

We know that

_ 2
—Im[D,Z,H|2,D, 7 2i f DiZ{et) = DZBOF 15 (2.39)
Vi

(= B)?

Also,

B \jiZq s Ni(D 22 — 35(1) Za)
Z[th’ H] 2n(Z (o, t) — zj(t))Q) +{ H)]Zl 2n(Z(a,t) — z;(t))?

o NiDZ 2 — 5(8) Za)
2wt -z T U H) ), 2 (Z(ast) — 2(t))?

(2.40)

o1



So we have

1 (|DiZ(o,t) — D Z(B, )]
i (a = B)?

- Im{ ; ;_7: (U — H) Z(a, t)Zi zj(t))2> (D2 — éf(t))}

g

(2.41)

L L [IDZtout) ~ Dz
1+ 27Tf (04_6)2 dﬂ
— i ﬁRe{ <([ — H) Za )(DtZ - Z(t))}
25r ) - 50 J

To get an estimate as sharp as possible for the Taylor sign condition, we’d like to get rid of
the Hilbert transform H in the formula above.
) . Z . .
It’s easy to see that, if Z = «a, then W(DtZ — 2;(t)) is boundary value of a

holomorphic function in P, , so

Za
(Z(a, 1) = 2(1))?

Za
(Z(a;t) = 2(t))?

(7-m) J(DiZ = 2(1)) = 2 (DiZ = %(1))

For the general case, we use the following lemma.

Lemma I1.15. Let z; € Q(t). Then

(I — H)Z(a,tl) " cl(OzQ— w) cr = (@71, (wo), wo = P(z0,1). (2.42)

Proof. Note that Z(a,t) = ®~(a,t). So Z(a,t)—z is the boundary value of ®~!(z,t)—z in
the lower half plane. Since ®~! is 1-1 and onto, ®7!(z,t) — 2 has a unique zero wy := ®(2),

SO ! - has a exactly one pole of multiplicity one. For z near wg, we have

Z(a,t)—z

O (2, t) — 20 = c1(z — wp) + 2 cn(z —wo)", where ¢; = (7). (wo) # 0. (2.43)

n=2
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Therefore, we have 7 i)f — L__ js holomorphic in P_, and hence
a,t)—zp c1(a—wo)

U= H)(Z(a,tl) —z ala 1— w)) ="

Since is holomorphic in P, , we obtain

1
c1(a—wo)

([*H)Z(a,tl) — 2 - (I*H)cl(al—wo) - cl(az—wo)'

Corollary 11.16. We have

Lo, _ _ 1
R T R | e P ) R 1y
2
TG0 - 85 0)

Corollary I1.17. We have

B 1 (|DiZ(a,t) — D Z(B,1)]? ipY D Z — %

where

93
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(2.47)
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y 1
2.3.2 A formula for A; when Z(a,t) =, D,Z = Z;V=1 %:(t)
a— Zzj

If the point vortices are very close to the interface, then Taylor sign condition can fail. To

N )\ji 1

S Zi_—= __ Since
=1 21 a—2z;(t)

see this, we study the special case when Z(«,t) = a and D;Z(a,t) = >,

the integral term of the formula (2.47) is nonlocal, in order to obtain a more convenient form

of (2.47), we use residue theorem to calculate this integral. We’ll use the following formula.

Lemma I1.18. Let wy,wy € P_. Then

© 1 271
dB = 2.49
Lo B=u)B-m" ~ T—w (2.49)

1

Proof. w3 is the only residue of = ) in P,. By residue Theorem,

(B—w1)(B-m2)
0 :
[ e
[
As a consequence, we have
Corollary II.19. Assume Z(a,t) = a, DiZ = Zjvzl %W;(t). We have
1 D.Z - D7 2 AiA 1 '
%J | D; (oz,(zz - 5;2 (8,1)] 4 = K%LN (;ﬁ)’; o zj)mﬁi - (2.50)
Proof. We have
DZ(a,t) — D,(B,t) = i % fo (2.51)

2 (a—2) (8- 2)

o4



So we have

‘DtZ(a,t) — Dy(B,1) ‘2 _ ‘i A 1 2
oy QD] P ey
. (2.52)
_ Z Aj Ak 1
j=1k=1 (2m)? (a — 2i) (B — zj) (o — zi) (B — 2i)
Apply lemma II.18, we have
foo 1 a5 — 1 27
—o (@ = 2;)(B — zj)(a — 2)(6 — 2&) (a—z)(a—2) %~ %
So we have
| D Z ( ZB P, Aj Ak 1 271
2r f )2 v 1<j,2k<N (2m)? (v —zj) (@ —21) % — %
. )\]/\,1€ 1 7
1<j,2k<N (2m)? (a0 —zj) (o — z5) 2k = %
O

y 1
Corollary I1.20. Assume Z(a,t) = o, D7 = Z;VZI %:(t) Then
o — ZzZj

A =1+ Z “k L i% {a_—;;;} (2.53)

1<y, k<N — ) —z) % — % o

In the following two subsections, we use Corollary I1.20 to construct examples for which

the Taylor sign condition fails.

2.3.3 One point vortex: An example that the Taylor condition fails

oP

We have the following characterization. Recall that Al 7 = o

Proposition I1.21. Assume that at time t, the interface is %(t) = R, the fluid velocity is

o(eyt) = 21

:@)7 i.e., it is generated by a single point vortex z(t) := x(t) + iy(t). Then
z— Z21
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1) If 2% < E, strong Taylor sign condition holds. We have
ly] 3
nf Aoy >1- X 2 (2.54)
in at) 21— —— : :
ack 82 |y|®

2) If 2 > ﬁ, Taylor sign condition fails, i.e., there exists a € R such that A;(a,t) < 0.
PR R

3) /\—23 = E, "Degenerate Taylor sign condition’ holds, i.e.,
WP T3 g

Aj(a,t) >0, YV a#x(t); and Ai(z(t),t) = 0. (2.55)

Remark 11.22. The quantity % is a measurement of the interface-vortex interaction. A is the

intensity of the point vortex, and |y| is the distance from the point vortex to the interface.

Proof. Note that
Z(t) = 0.

So we have

a— z(t))?

S -l
A

1 Al
Re{ (v — z(t))? 27T0z—z1(t)} (2:56)

Ny
C2m2 o — 2 ()4

Therefore, by Corollary I1.20, we have

A2 1 i A2 Y

Ai(a,t) =1+ — + .
s t) Am? oo — |2 =20y 27% |a — 2z (¢)|*

Without loss of generality, we can assume x = 0. Setting 0,A4;(c,t) = 0, it’s easy to see

o6



that A;(a,t) admits a unique local minimum at o = x = 0. Moreover, it’s easy to see that

lim A(a,t) = 1. (2.57)

a—+o0

Therefore, inf,cg A(a,t) < 0 if and only if 4;(0,¢) < 0.

We have

221 221 32 1
A0 8) =12 g A2 2
1(0,1) 82 g3 * 272 43 872 |y|?

If 25 < 82 then A(a,1) = A(0,) > 0. Tf 25 > 52 then A4(0,1) < 0. If 25 = 5= then

A1(0,t) = 0, and for a # 0, A;(a,t) > A1(0,¢) = 0. O

2.3.4 Two point vortices: Another example that Taylor sign condition fails

We show that if the point vortices are too close to the interface, then the Taylor sign
condition fails.

P
Assume that Z(«a,t) = a. Assume D7 = 23:1 %:
a—z(t

iy(t), 22(t) = =(t) + iy(t), with z(¢) > 0, y(t) < 0, and A\; = —A9 := A. Let’s calculate
Aq(0,1).

. Assume z(t) = —z(t) +

We have
2
1 _
PN L W

o AT a—zi(t) 2T (o= z(t)(a — 22(1))

Since z; — 29 = —2u,
AN x
D, Z(0,t) = —
t (07 ) T 1'2 + y2

At a = 0, we have

Z ﬁ 1 é dxyi

T (0=2(t)* 7 (z*+y?)?

o7



So
Ao N Adayi AN2x%y (2.58)

;i 1
_ D7) = 2 A _
Z 12(0) T2 +y?w (2 +y?)? w2 (2? +y?)3

j=1
We have
-Xi 1 i1
= — = ——.
! 2m 21 — 29 4wz
) A1 Al
g = —— = ——,
2" o 2z — 21 4rmx
So we have
2 L, 2 . . 9
Zﬁ;z(t)zﬁl A1 _ Ao A dayi _ Ay
Pl (0—2;)2™ A x Pl (0—2;)2  Adrew (22 + y?)? w2 (22 4+ y?)?’
So we have

- 3 & e ; — Z; = M
el Gamp (D400 ~ 500} = St

On the other hand, we have

A\ 1 i

1<§<2 (277-)2 (0 - ZJ)<O - Zk) Z_k‘ - Z]
N1 N1 X1 g N1

_—— — —+ — _— — — — —_ — —
42 ’21’2 21— %1 42 |ZQ|2 Z9 — 29 42 Z1R9 29 — %1 472 2921 %1 — R2

211 A2 1
S Pl ”Re{@—@_ims}
211 A2 3 — 322y
Tim a2yl At (a2 )
_ A2 xt + Ba?y?
A2 Jy|(a® + )

o8



Therefore, by Corollary I1.20, we have

A2 at o+ ba?y? N2y(3z% — y?)
Am? lyl(e® + 92 w2 + )
A2 a2t 5ay? — 1222y + 4yt
4n? ly[(2? + y?)?

A2 a4 Ayt — TP

a2 |yl(2? + y?)?

Al((),t) :1 +

—1+ (2.59)

So we have

Proposition I1.23. Assume that at time t, the interface is %(t) = R, the fluid velocity is

G 1
v(z,t) = 32 ’\JZ:(, where A\; = —Xg 1= \. Assume

j=1 21 ‘
j
21 (t) = —x + 1y, 29(t) = ¢ +1iy, where x>0,y <D0.

If
A2 ot 4 Ayt — TP

1 <0 2.60
faE e ep 20

then Taylor sign condition fails.
Corollary I1.24. Under the assumption of Proposition I11.23, if |z| = |y| and % > 1672,

then the strong Taylor sign condition fails.

2.3.5 A criterion that implies the strong Taylor sign condition

If the vortex-vortex, vortex-interface interaction is weak, then the Taylor sign condition

holds. Let’s recall that we denote F' by
N | .
_ A 1

We have the following.

29



Proposition I1.25. Assume inf,cg |Zo| = Bo, |F|c = Mo. Denote

- DY . -
A =: M, d;(t) := min inf |o — ®(2;(2))], dp(t) = min|z;(t) — 2zx(t)].

™ 1<j<N aeR Jj#k

If

22 . A2 +2M05\
2d;(t)38y  2d;(t)2dp(t)  d;(t)?

then the strong Taylor sign condition holds.

< Po, (2.62)

Proof. Use formula

j (a— WO)

N N DiZ—%
For >0 Re{cg)(a_wg)2 }, we have

N . N
. D, 7 — APV
|5 Mef PE=20 | 2 (10,21 + ) o~ 2z

T 1<j<N

Since Z(a) = & («), we have 9,9 '(a) = Z, and 9,9 () is the boundary value of
(®71),. Note that (®7'), never vanishes. By maximum modules principle of holomorphic

functions (apply to ﬁ);

3] = [@7).(@()] = inf | Z,] > . (264
Since
Z(,t) = z(t) = 7 (a,t) = D7 (w]) = D71 (2) (@ — ) (2.65)

for some 2’ € P_, so we have

|Z(a,t) = 2(t)] = fola — wi- (2.66)
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Therefore,

ST A
DZ S F + J — + ~
D2 < 1P+ D g = Mot s
similarly,
N ~
A 1 _ A
50| = |F+ 312 < My 22 G g,
= 2T 2(t) — z(t) 2 2dp(t)
So we obtain
Yo D7 — A \ \
| > ZRe] ——— [ <f;! (M + + M, )
]21 & {Cg)(a_wj)Q} ’ dr(t) 1(t)Bo 2dp(t)
<5 \2 P QMOX)
~ 0 ~ .

If (2.62) holds, then

i% {L}|<1

(o — wi)?

Then A; > 0, so strong Taylor sign condition holds.

O

In particular, if Z, ~ 1, d;(t) 2 1, My « 1, and |A| « 1, then the strong Taylor sign

condition holds.

2.4 Local wellposedness: proof of Theorem 1.24

In this section we prove Theorem 1.24, i.e., prove local wellposedness of water waves

with general N point vortices. As was explained in the introduction, our strategy is to

quasilinearize the system (1.13) by taking one time derivative of the momentum equation

(0 +iad,)z = i, and then obtain a closed energy estimate.
Recall that we assume
inf a(a, 0)|z4 (e, 0)| = ap > 0.

aeR
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Cila — B| < |z2(a,0) — 2(8,0)| < Calae — B). (2.68)
Let Ty = 0, we make the following a priori assumptions:

. . Q) 1
f inf >, sCla—pl< - < 20y — B, (2.
ot infale,Dlza(et)] = 55 GGl = Bl < (e, 0) - 2(8,0)] < 2Cola — B, (2.69)

and

sup [ 2u(, )| g < 2|wol g1 (2.70)
te[0,T0]

Without loss of generality, we assume Ty < 1.

Remark 11.26. The a priori assumptions (2.69) and (2.70) hold at t = 0. For 0 < t < Tq,
(2.69) and (2.70) will be justified by a bootstrap argument.
2.4.1 Velocity and acceleration of the point vortices.

For water waves with point vortices, the motion of the point vortices affects the dynamics
of the water waves in a fundamental way, so we need to have a good understanding of the

velocity and acceleration of the point vortices. We decompose the velocity field v as
N
0(z,t) = F(z,t) = Y “L————. (2.71)

So F'is holomorphic in (¢). We have the following estimate for the velocity and acceleration

of the point vortices.

Lemma I1.27. Assume that the assumptions of Theorem 1.2 hold, and assume the a priori

assumptions (2.69) and (2.70). Then

14 (0)] + 12 ()] < C(N A, | 2] 12, |z, di(8) 7, dp(2) 7, Ch). (2.72)
where
Amaz = 122}5\[ Al (2.73)



and C : (Ry U {0})® - Ry U {0} is a polynomial with positive coefficients.
Proof. The main tool is the maximum principle of holomorphic functions.

Estimate z;: By (I1.27), we have

Nji
z = z(t)

Akt
= Y 2 F(5(1) |
=50 Sk 27(25(1) — 2k(2)) T EED) (274)

N i 1
j=1 27 )
2o, t) — 2(1))

Note that F is an anti-holomorphic function with boundary value z;— >

by maximum principle, we have

N o\ .
_ Al 1
[F(z(0), )] <IFC O oy = |2t — 2L 5 (2.75)
Y Lm0 )
By Triangle inequality, we obtain
. A il Ay
2] <lzefloo + — | + S —
,; 27 (z;(t) — zi(1)) B kz_jl 2rz(a, t) — z(t) B (2.76)

<|ze| g + NApaz(dp(t) ™+ dr (1)),

Estimate Z;(#): Take time derivative of both sides of Z;(t) = >3, ﬁ—i—ﬁ(zj(ﬂ, t),
X Zj —Z,

we obtain

. _ )\klm E (2 2 Fo(
Z(t) = k%;j 2 (e (0) = 2 (0)? + FL(z5(1),1)2(t) + Fi(z(t), 1) (2.77)

The boundary value of F, is

z NN
F — _ ta_ J
(el 1), ) = TG Fe A

Zo o o

1
(2(a,t) = 2(8)*

(2.78)
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So

|F.(2( 1), 8)] <l 2tall + Nnaadi ()2 (2.79)

@ {loo

The boundary value of F; is
OuF(z(c, 1), t
Fi(x(0).6) =P (sfa ), 1) - A0
N  \ji
~a,(z +§]M —) - Pl X b e,

\ 21 z(o, t) — z;(t) 2o ‘ (2.80)

=2t — - . - —Z + —
o 2m (2(at) = 2()? za - 2w (2(ant) = 2(1)?
By maximum principle
N . . _ N .
B At 2 — () Ztor il 2
[Feloo =||2ee — ), 5= : -t ), o=
” ]; ™ (2(a,t) = 2(1)?  za ;1 ™ (2(a,t) — z(1))?
00]
<zetllos + Nztaloo| = I2eloo + NAmazlzeloodr (8) 7 + NAao|25(8) 11 (£) 72
@ {loo
By a priori assumption (2.69), for smooth free interface, we have
Cy
inf = —. 2.81
inf |2a (v, )] 5 (2.81)

Substitute the estimate from the previous lemma for z;(¢), use Sobolev embedding | f|» <

£, we have

. _ _ _ 2
£50] <N a0zl + N (dp() ™+ dr(0)7 )} + {lzalln + Gl el
+ Npazl zel a1 dr ()™ + Nae (|| 26 1 + N A oo (dp(t) ™ + d;(t)‘l))dl(t)‘Q}

{ i+ NAaald() 4 Q) ) e + NAmaads()))

(2.82)

(Here, the first bracket is the estimate for — >}, H the second bracket is the
Yy Z]

64



estimate for F,Z;(t), and the third bracket is the estimate for Fy(z;(t),t)).

In abbreviate form, we write the estimate for z;(¢), Z;(¢) as

1250 + 12,0 < C(NNmaa, |2t 2, [ 22t di ()7, dp(8) ™, Ch). (2.83)

2.4.2 Quasilinearization.

Take time derivative on both sides of z;; + 1az, = 7, let ©u = z;. We obtain

——|2a] = ¢ 2.84
|Ztt+i|at|z ’ g ( )

Uy + 1AUy = —1A1Zq = —

To show that a;z, is of lower order, we apply I — §) on both sides of (2.84). Then we have

—i(I — 9)azq = (I — 9H)(uy + iau,)
(2.85)

=[0? + a0y, H]u + (07 + iads)(I — H)u.

By lemma I1.12,

[0 + ialq, Hu = 2[Ztt,f)]2t_a Zita 1 (zt(oz,t) —z(8,t)

Za Za e

By lemma I1.4, we have

(@2 + iad)(I — H)u = —
(2.87)

>1|~.
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By (2.83),

1250 + 12,0 < C(NNmaas |26 2. [ 2t di ()7 dp (8) 7, Ch). (2.88)

We rewrite —i(I — $)aiz, as

—i(I — H)aiZa = g1 + 9o, (2.89)
where
. Zta Zita 1 zi(a,t) — z(B,t)\2_
g1 = 2z, DI 4 2z, 97— ( et 255 ) %,5dB. (2.90)
i, 2mti—E L (m—5(1)
%= XM —50P Ean— 507 (291)

Multiply both sides of (III.11) by if2; and take real parts, we obtain,

120,

|24

(I + 8)ar|za| = Re(7—= (01 + 92)), (2.92)

where
l Za ‘25(67{;”
i |za| 2(a) — 2(B)

& f(a) = po. JRe{ - }f(ﬁ)dﬂ. (2.93)

Both ¢g; and g, are lower order terms.
Assuming the a priori assumptions (2.69) and (2.70), for 0 < ¢t < Ty, ({ + £*) is invertible

on L*(X), so we have

124
) za] = (I+ﬁ*)_1{Re(m(91 +g2))}. (2.94)
By Lemma III.13, we have
124
laza|ms < Clli— (g1 + g2)|| (2.95)
Z&’ Hs

for C' depends on Cy, Cy, and ||z, — 1]

Hs—1.

66



So (2.84) can be written as

Uu,
Uy + a|zon— = g,
Za

where
124 . _ .
nzﬁ, alza| = |2 + 14| = |u + 1,
and
= (4 &) R 01+ 90)}
IETER] |Zal
Denote 2
Oa
A= alz,), D:=—=.
o

Let k e N. Apply 0% on both sides of (2.96), we have

(O%u)y + An&i(a—au) = 0% — [0%, An]Du.
z

«

We have
[0F, An]Du = Z Com kO™ (An) 05~ Doy,
m=1
where
k!
Cmk = m!(k —m)!

So we obtain

r

07 0ku + Anoh 2y = gy,

A = alz,|
{
_ iza _ i
D= ol = Taerl

gr = 0kg — Zm L Cm kO™ (An) k=™ Du.

2This A here is not the same as that in §2.3 and §2.5.
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2.4.3 Energy estimates.

Decompose u = f + p as in (1.28). Let s € N. With quasilinearization (2.102), we define

the energy F(t) as

|Z | —2k+1
2 {f = \@ﬁut|2da+ReJn\za|Dk“kafda}

alza|

Note that f is holomorphic in Q(t), so is D™ f, for any integer m >

Re Jn|za|Dk“kafda — Refiaapkfmf — (VD f12dady >

Q(t)

So the energy FE is positive.

0. So we have

(2.103)

We can bound u; by the energy E. Assume the bootstrap assumptions (2.69) and (2.70),

since al|z,| = |z + 1|, we have

(I|Za| ‘Ztt| + 1 HzttHLoo + ]_ ||ZttHH1 + 1 < 2Hw0|

(2.104)

Without loss of generality, we assume Cy > 1. By the definition of £ and the definition

of T, for t € [0,T], we have

SUPqer @2

S : fa “ —2k+1
E(t) = Z J infac |2l 108wy (a, ) P da
k=0

s 2%t1
>Z @@—kaut (o, ) Pda

2”11)0’ Hs + 1

(202) —2s+1
/2”11)0HH5 +1

|22 (-, )|

So we have
(2]woll s + 1)
He = (2C5)—s+1/2

22 (-5 2)] E(t)".
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Let

E(t) :== max E(1). (2.109)
T€[0,t]
Note that
d — d [ 2o, Oa —
—ReJn|za|Dk+1fD’fdez = —Re &|za|—Dkakfda
dt dt |24 Zo,
d _
=Re— Jz’&aDk fDkf
¢ (2.110)

d - N - N
:Rea{ f 100 D" uDkFu — J 10 D uDkp — Ji&akaDku + f zaakaka}

d
Z=R€—<Il + IQ + [3 + [4)

dt
Note that
i by
P _%gm (2.111)
So we have
_ i Aila = 4(0)
() = 2m J; (z(a,t) — 2;(1))? (2.112)
Observe that
m 1 B (—1)™m!
D z(ont) — z(t)  (2(a,t) — 2 (t))m D’ (2.113)
vr : e L. (2.114)

(2l 1) = 2(1)*  (z(a,t) = z(t))™*?
Therefore, for k > 2, by lemma I1.10 and the a priori assumptions (2.69) and (2.70), we

have

HkaHLQmLOO + HaakaHL%Lw + HatkaHLQmLOO + HataakaHL%Lw < é? (2.115)

for some

é = é(Hzﬁ”OOa Hzt”L27 Hztt||L27 d[<t>_17 dP(t)_17 N)\maxa Cl? 02)

We can take C' to be a polynomial with positive coefficients.
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We need to estimate | D¥ul| ;2 as well. Note that for 0 <t < Ty < 1,

t
12e(t) | s <|vollms + f zu(, 7Yl < lvolms +t sup |zu(t = 7)|ms
0 s T€[0,t]
Clwollas + )2 1) (2.116)
<volms + (2C5)—5+1/2 E(t)
<C(HUO|H57 wo‘ Hs, Cg,g(t>>
Similarly, we have
||Za<t) - 1|H5*1 < C’(H3a§0|H571, Hvo‘ Hs, U}[)’Hs, Cg,g(t)) (2117)
Therefore, under the a priori assumption (2.69), using that D* = (f—z)k, we have
||DkUHL2 < C'(||5a§0| Hs—1, Hvo‘ Hs, w0| Hs, CQ,S(t))7 (2118)

for some polynomial C' with positive coefficients.

From (2.115), integration by parts if necessary, we see that

d
ReE(IQ + I3+ L) < C(||0aol o1, |vol a5, [wol zrs, £, dr(t) ™, dp(t) ™, NAmaa, C1, Ca)
For ]1,
Re% fi(?aDkuDku = Re ifaaﬁtDkuDku + 0y D*ud, DFu
—2Re f 100 D*ud, DFu.
We have
OuD*u = lakD 1&’“—11(91) F, 2.119
a U—Zg_la U+?a (Z)a u+ g, ( )
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where F}, consists of lower order terms. We have

| Fell < C(10a&0l

Hs-1, ||U0\ Hs, w0|

We have also that

1 1
o1 (=)o,D
il (Za) u .

C(Haagoan—la ”UOHHSJ ”wOHH“’? g@)? dl<t)717 dP(t>717 N)\ma:va Ch 02)

Similarly, we write

1
8tDku = Z—kﬁtagu + - 0k 16}( )Ua + Gk,

[e% a Ra

where Gy, consists of lower order terms, and

1Grllar < C( 0ol s, |vol s

Note that
(/th

@’Oi_l@tz(;l = —

Hk7

O{

where H;, consists of lower order terms. So we can obtain

ak lat( )

Za Za

L2

C(HaafouHs—la ”UOHHsa ”w0”H57 g@)? dl<t)717 dP(t>717 N)\ma:va 017 02)

Therefore, from the above estimates, we have

_ 1
2Re J 100 D*1u0, DFu =2Re J i @iDuTkataﬁu + errory,
z

OA o

1
=2Re Za akDu&t&ku + errory,

2l 2?17

1
=2Re J — Du&tﬁku + errory,

|Z |2k1 «
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wOHHS75(t>7 dl(t)717 dP(t)ila N)\mama Cl; CQ)

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)
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where

- 1 _
error, =2Re J 10y DFu0, D¥u — 2Re f n————0% Dud,oku

2k—1 "o
& (2.126)

<O(”6a50| Hs, g(t)7 dl(t)_la dP(t)_1> N)\maxa 017 02)

Hs—1, ||Uo\ Hs, wo|

Observe that

E 5 —2k+1 —2k+1
4E _ Z { f (’Za’ _> | 0%y | + 2R6J|Z2’T(82utt)§§ut + %Refmzam’““fbk‘fda

dt k=0 a|zoc| t d
s |Zoé|f2k+1 Lo |Za|—2k+1 N 1 .
k—o{f< (I|Za| >t| QUt| ef a|za| ( autt) Ut efn—’ZaPk_l dudioiu
+ errork}
s | 24|21 i 2|2 .
- Z { f ( alz ‘_>t\5aut|2 + 2R€J—a‘z | {(%Utt) + a|zaynaaDu}a§ut n errork}
k=0 o o
- s |Za|_2k+1 H R |Za|_2k+1 =
= k _a
kZ_:o a\za\ t‘ Ut| + e —a\za\ groius + errory
||/ |zal 7 20| 2+ .
< 2o )| NPauelze +2 lgelz2 0k 2 + error,
alzal /s [7al
k=0 & w o .

(2.127)

It’s easy to obtain the estimate that

lgkllz2 < C((|0atol e, E),dr(t) ™Y, dp(t) ™Y Npaz, C1, Cay ), (2.128)

Hs-1, HUO\HS, w0|

and

|Za|f2k

a

_l’_

0

(=)
a t

<C([[0abol

, (2.129)
Hsag(t)a dl(t)_la dP(t)_la N)\ma:w Cla 027 CYO)

Hs—1, HU0| Hs, wo\
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Then we obtain

dE

% < Hsyg(t)vdf(t)_ladp(t)_laN)\mam7017027a0) (2130)

C ([l

’LUQ‘

Hs-1, Hvo| Hs,

For some polynomial C' with positive coefficients. So we obtain

E(t) < E(0)

t
+ f C(Haa&]HHs_la HU0| Hs, onHs75(7'>, dl(T)ilu dP(T)fl, N>\maa:; Cl, 027 Oéo)dS-
0

(2.131)

Note that £(0) = £(0). Take supy<r<¢, we obtain

(2.132)
Hs, 5(7—)7 dI(T)ila dP(T>717 N/\maata Cla CQ? OZO)dT.

Hs,y wo‘

t
n f C(|ntol ot 0]
0

Growth of dp(t)~!,d;(t)™'. To obtain a closed energy estimate, we need also to control

the growth of dp(t)~! and d;(t)~'. Recall that dp(t) = min;.x{|z;(t) — zx(t)|}, so we have

1

dp(t)™ = 1<r]r;a}€>iNm. (2.133)
Note that
d L) _|E0 = 20) - (G0 = 2() . »
il =20 = e 45(6) = 2()ldy ()2

Use (2.83), and control ||z g2, || z4] g1 by £, we obtain

%dp( )71 < C(NXpaw, dp(t) ™, E,dr (1)1, C1, Co, ap). (2.134)
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To estimate £d;(t)~", we estimate 4|z;(t) — z(a, t)|~'. We have

st = st = [ BRI =) i) - sfdrt

|2j(t) = 2(a, )?

Since |4d; ()7 < maxi<j<n sup, | 2|2 (t) —z(a, t)] 7], use (2.83), and control | 2|2, 2]

by £, we obtain

%dl( )7L < O(NAmazs dp(t) 1, £, dr ()71, C1, Cs, ). (2.135)

Combine (2.132), (2.134), (2.135), we obtain

%(dp(t)—l +d(t) "+ 8(t)) <C, (2.136)

where

¢ = C(|a&l

w1 ool e, [wol s, E(8), dr(t) ™, dp(t) ™", N Amaz, C1, Ca, o) (2.137)

is a polynomial with positive coefficients (the coefficients are absolute constants which do

not depend on Nz, dp(0)71,dr(0)71, €, Cy, Cy, g, |0aol

-1, ||Voll s, |wollgrs). So we can

use bootstrap argument to obtain closed energy estimates.

Lemma I1.28. Assume the assumptions of Theorem 1.24. There exists Ty depends on
NAmaz: dp(0)~, di(0)~", [[(0ao, vo, wo)|
0<t<Ty,

go-tegsxpss €(0),C1,Co, 00,5 such that for all

-

E) +dpt)t +dr(t)™ < 2(E(0) + dp(0)~! + dy(0)7h),

< 2| wol

Hztt(',t) Hs,
4

Ula - B| < |z(a,t) — 2(B, )] < 20y — B

(2.138)

kinfoée]R a(a, t)|za| = %ozo.
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Proof. Let Ty to be determined. Define
T :={T€0,T0] : (2.69) and (2.70) hold for all 0 <t < T'} (2.139)

By continuity, 7 is closed. Moreover, since 0 € T, we have T # J. Let T' € T. Then (2.136)
holds on [0,7"]. So we have

dp(t)™" +di(#) + E1) <dp(0)™" +dr(0)7 + £(0) + f Cdr, (2.140)

where C'is given by (2.137). Since C'is a polynomial with positive coefficients, by taking Tj
sufficiently small, T; depends only on NApue, dp(0)71, dr(0)™1 [|(Caos Vo, o) || jro—t s prs x s
£(0),C1, Cy, g, s, we have

E@)+dpt) " +di(t)" < =(£(0) + dp(0)~" + dr(0)7H). (2.141)

DN o

For t € [0,T], we have £(t) < 2£(0), so we have by (2.108),

. 1/2
< \/§<2HWOHH +1) 5(0)1/2 = M. (2.142)

Hztt('a t)| Hs X (202)73+1/2

Use 2, t) = z(-,0) + Sé 2 (¢, 7)dT, we have

25 2)]

we < |z, 0)]

Hs + TOMl = MQ. (2143)
Use z4(,t) — 1 = 24(+,0) — 1 + §} 27a(-, 7)d7, we obtain

[2a (1) = 1]

Hs—1 < Haafo‘ Hs—1 + ToMQ = Mg, (2144)

and

t
[za( 1) — za(+,0)|lo < f |ztallodT < ToMs. (2.145)
0
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By choosing Tj sufficiently small, we have

3 3

sup HzOé('wt)HOO < §Hza(70)”oo < 5027 (2146)
te[0,T7]
and
inf inf |z0(0, )] > 2|2a(a,0)| > 2C (2.147)
ielor] ek o\ Z 3lEel GBI = g '

Therefore, since |z(a, t) — 2(8,1)| = [2a(7,t)(a — B)| for some 7 between o and 3, we have
2 3

Multiply both sides of the equation (07 + iad,)u = —ia;z, by 4, and integrate in «, then

take real parts, we have

1d
ST f lug|*de = Re{ —ijauaﬂtda —ijatéaﬂtda}. (2.149)

For 0 <t < T, we have

. _ . _ Uq
‘ — @Jauautda — @Jatzautdoz‘ <|alzal| o — ||z + [|aza| L2 |we| 2 (2.150)
a |12
<C’(HUJOHIJ“’?]\[M]\/[27]\4—376(17C’27040)- (2151)
Similarly,

d
%HUtH?{l < C(H’LU0| Hs, Ml, Mg, Mg, Cl, CQ, ao). (2152)

So we have for 0 <t < T,

2 2 td 2 2

e (-5 )3 = [lue(, 0) |5 +L ol ) dr < Jue(, 0) g + ToC. (2.153)
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By choosing Tj sufficiently small, we have for 0 <t < T,

3
s ) < e 0) 7

Since a|zq| = |z + 1|, we have
ia|z | _ (Ztt + Z) © 2ttt _ (Ztt + Z) : (’i&Zta + iatza)
dt “ ’Ztt +Z‘ ’Ztt +Z‘

Using (2.155), it’s easy to obtain
lalzal(-,t) — alzal(:, 0) ] < ToC.

By choosing Tj sufficiently small, we have for 0 <t < T,

1
Ha‘za‘('at) - CL‘ZQK-,O)HOO < gO&o.

So we have for

2
inf inf a|z,|(a,t) = —ap.
te[0,T] ceR 3

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

Combining (2.148), (2.154), and (2.158), together with continuity of these quantities, there

must exist 6 > 0 such that for 0 <t < T + 9,

1
§C’1|a—ﬁ| < |Z(Q{,t) _Z(ﬁ7t)| < 2|Oé_5|’

e ) < 2w, 0) [,

. 1
> ~ay.
Inf alz|(e, 1) > Sa

(2.159)

So [0,T + 6) < T) and therefore T = [0, Ty], provided that Ty is sufficiently small, and Tj

depends Only on N)\ma:w dP(O)717 d[(o)ila H(aagv Vo, wO)‘

7

Hs—1xHsxHs» E(O)’ 017 027 Qp, S.



2.4.4 Proof of Theorem 1.24.

Uniqueness is obtained by a similar argument as the energy estimate above. For local
existence, one can use iteration method. We refer the readers to S. Wu's works [69][70] for
details of this iteration scheme. Moreover, if we let Tjj be the maximal lifespan, then either

Ty = oo, or T < o0, but

lim [ (24, 2e0) oo ey + sUp (di(8) ™! + dp(t) ™) = 0. (2.160)
T-Ty — t—>TSl<
or
lim inf a(a,t)|zq(a,t)] <0, (2.161)
t—>T6k— aeR
or
t) — t —
sup Hat) = 2(5,) + sup ‘ a—p = 0. (2.162)
a#f a — B a#f3 Z(Oé, t) - 2(6’ t)
0<t<T§ 0<t<T§

2.5 Long time behavior for small data
In this section we prove Theorem I.10.

2.5.1 Derivation of the cubic structure.

As was explained in the introduction, the main difficulty of studying long time behavior
of the system (1.13) is to find a cubic structure for this system. In [71], S. Wu uses 6 :=

(I —$)(z — z) and shows that (02 — iad,)0 is cubic for the irrotational case. We use the
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same 6 here. Using lemma [1.12,

(02 —iady)f = (I — H)(? —iad,)(z — Z) — [0? — iaby, H](z — 2)

_ _ . M 1 zi(a,t) — z(B,1) _
2([ ﬁ)@tzt 2[2},5’3] P + o J( ( ) (B,t) ) ( Z)ﬂdﬁ

- s Oazt 1 [ rzlont) —z(B,0)\2,

=~ 201~ 9)z — 27, 9) T + ( O ) (2 — 2)5dB
Decompose z; = f + p as before, with p = _Z?=1 %m Since (I — $)p = 2p, we
have

—20/(I = 9)z = =20,(1 — H)p = — 4px,

and

DR S SR SN
_2[Zt7~6] Za - 2[.]07*6] Za 2[ 755] Za 2[.][.7“6] Za 2[ 7‘6] 24
Since f is holomorphic, we have [f,ﬁ]f—z = 0, and hence [f,j;)]g—z =0, so
-~
—2[f755]z— = —2[f, 5’)—+55 ]fa, (2.163)

which is cubic. So we obtain

- S S B Y N () Bt ) AC
(62 — iada)0 = — 2, % Zg— 2]f+m.f< (agzw))( s oo
) LA T ) L
Denote
il 1 Zt(O‘?t)_zt(B?t) 2 .
Af S+ [ (AT G- e
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Oaf 17 w10aD  or 10D
Cef 2[f,5§]z—p - 2[p,ﬁ]z—p — 4p;. (2.166)

ZOé « «

9a = —2[p, 9]
To control zy, we consider the quantity
o= (I-9)00=(1-9H)(I—9H)(z—2).

We have

(07 —iady)0i(I — 9)(2 — 2) =04(07 — ia0s)(I — H)(z — 2) +ia, (I — H)(z — 2))a
(2.167)

=09 + 10:((I = H)(z = 2))a-

Here, g = g. + g4. Use lemma I1.12 |

(02 —iad,)o = (I — H)(0? —iad,)0,(I — H)(z — 2) — [07 — iadu, H]0,(I — H)(z — 2)
0. 02(I — 9H)(2 — 2)

= = 9)(0g +ia((I = H)(z = 2))a) = 2[21, 9]

Zo
L[ rzlat) — z(B,t)\2 _
= | Gl ) (U= 9)( = 2))ds
=01+ g2 + gs.

(2.168)

Remark 11.29. We have

g1 =(I = 9)0ige + (I = $)0ga + (I — H)ia(I — H)(z — Z)a

(2.169)

=011 + g12 + J13.

Note that g;; and g3 are obvious cubic or enjoy nice time decay. As one can see later, g, is
cubic as well. Since a;Z, consists of quadratic nonlinearities and terms with sufficiently fast
time decay, as long as the point vortices move away from the interface at a speed which has
a positive lower bound, so (07 —iad,)(I —$)0;(I — $)(z — z) consists of cubic or higher order

nonlinearities, or nonlinearities with rapid time decay, as long as the point vortices move
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away from the interface rapidly.

2.5.2 Change of coordinates.

Note that (a — 1)8, involves quadratic nonlinearities, which does not directly lead to
cubic lifespan. To resolve the problem, we use the diffeomorphism x : R — R such that { —a
is holomorphic, where ( = zox~!. This x was used in [71][63] for the irrotational case. Here
we need to derive the formulae for b and A for the case with point vortices. Let W be the

holomorphic function on Q(t) such that

(—a=Vol.
We denote
Dy =z ok, A= (aky) o K1, b=k, 0ok L
Then
Kt =bok. (2.170)

Suppose we know b, then we can recover k by solving the ODE (2.170).

Recall that in (1.28), we decompose z; as z; = f + p. We denote

S:fon_l, q:pon_l. (2.171)

Since f is the boundary value of the holomorphic function F' on §(t), we have

$(a,t) = F(¢{(a, 1), 1), (2.172)

In new variables, the water wave system (1.13) can be written as
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\ji
2t = (v — 5y)
< - (2.173)
_ Aji
(I =)D + X1 s d=my) = O

(I -H)((—a)=0.

\

Here, H is the Hilbert transform associates with (, i.e.

Lo Cs(B 1)
Mf(0) = —p .J_OO T B 1B, (2.174)

To show that (2.173) is a closed system, we need to derive formula for b and A in terms of
the new variable. Once we have shown that this is a closed system, and prove wellposedness
for this system, then in turn, this justifies the existence of such change of variable x~!.

Moreover, if we let €, be sufficiently small, then in new variables, we have at t = 0,

3
[ID12(¢(0,0) = @) +IFC Ol gerns +1DFC,0) e < Se. (2.175)
2.5.2.1 Formula for the quantities b and D;b
Note that
i< by
Di=Fol(——)Y — 2 X\ ==\ =)\ (2.176)
27 321 C(a,t) — 2(t)
Also, D,( can be written as
Di( =Dy(( —a) +b=Dy(Vco(+ P 0(+b. (2.177)
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By (2.176) and (2.177), we have

i< by
Fog—%zsztCW<o<+@tog+b. (2.178)

j=1

Apply I — H on both sides of the above equation, use the fact that

(I-H) W, 0(=0, (I-HFol(=0 Wol-= C@g‘l,

we obtain

(2.179)

J

=1 ig A

— —[Di¢,H L Y
(D¢ A WZ

where we've used the fact that Wl—z(t) is boundary value of a holomorphic function in
) J

Q(t)¢, so
EETY) (2.180)
Clast) — z(t)  C(a,t) — z(t) '

So b is quadratic plus terms with sufficient rapid time decay, as long as z;(t) moves away

from the interface rapidly.
We need a formula for Db as well. Use (I — H)b = —[DtC,H]E‘Z—;l — %25:1 m,

change of variables, we get

(I —9)bok =—|z,9]

1 4 & :
D) N (2.181)
7"- .
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So we have

(I — )b o i =[z, 5] 5&‘?; 5 L] - 1 [Zt,ﬁ];t_:
| Gl e - LR A
(2.182)
Changing coordinates by precomposing with =1, we obtain
(1= 20D (D6 % (D 1= - (pg 7P
o L[ (Pt DU ) a3 MOS0

j=1

(2.183)

So Dyb is quadratic plus terms with sufficient rapid time decay, as long as z;(t) moves away

from the interface rapidly.

2.5.3 The quantity A

Since 0,8 = 0o F({(c,t),t) = F, 0 (4, we have

O
FroC= Q—S (2.184)
Use D2( +iA(, = i. We have
_ _ i 2 A\
DiC=Di(DiC) = DiF o C = 5-Dy ) :

Jj=1

= (o t) = 2(t)

(2.185)
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Also,

iACy = 1A +iA0,(( — a) = iA+iA{ Vo =iA+ (D} +i)Veo(. (2.186)

So we have

D08 D) = 50)
iA =i — D22 A zw; it =2 (D} +1i)Wc o (. (2.187)

Apply I —H on both sides of (2.187), use the fact that (I — H)f—;‘ =0, —H)¥:0( =0,

we obtain

0 =)A= DI DR (g Y P

(2.188)

So we obtain

(I —H)A -1 + z'[DtC,”H]ag—f D2, ] C"‘CZ L) D) f;f(to)‘ 1) j(t))f)).

(2.189)

So A — 1 is quadratic plus terms with rapid time decay, as long as the point vortices move

away from the interface with a speed that has a positive lower bound.
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2.5.4 The quantity % o™

We need a formula for % o ! as well. Use (IIL.11) and (2.90), (2.91), then change of

variables, we obtain

(I - ’H)% ok AG,
aaDtE . aané _ DtC(a> t) - DtC(ﬁ
o e | ((ant) —C(B.1)
I, (2D +i— 3y (DG 5()
™ ; A ((C(m t) — 2;(t))? Q(C(a, t) — zj(t)>3>

—2i[ D¢, H] ’t))2<Dt< JsdB(9.190)

1

So % o™ is quadratic plus terms with rapid time decay, as long as the point vortices move

away from the interface with a speed that has a positive lower bound.

2.5.5 Cubic structure in new variables

Denote

0:=(I-H)(C—-C), &:=I—H)Db. (2.191)

We sum up the calculations above, which show that (D? —iAd,)0 and (D? — iAd,)& consist
of cubic terms and terms with rapid time decay, as long as the point vortices move away

from the interface rapidly. Recall that ¢ = po k™!, so ¢ is given by

2
)\jZ 1
I N A — 2.192
= 21 C(a, t) — 2z(t) ( )
We have

(D? —iAd,)0 = G
(2.193)

(D2 —iAd,)6 = G

where G = G, + G4, with




and

DI —H)(¢ — )

G =(I =MD+ o AL = H)(C~ O))a) = 2ADiC. H]

1 Di(a,t) — Di((B, 1)
=i C(ont) = C(B,1)

Ca

) 201~ H)(C - b

2.5.5.1 Evolution equation for higher order derivatives

Apply 0% on both sides of (2.358), we have

(D? —iAd,)0) = GY

(D} —iAd,)or = GY,

where for 0 < k < s,

0, = (I —H)"0, o, =1 —H)s.

GY = (I —H)(0"G + [D? — iAd,, 0%10) — [D? — iAd., H]d"6,

and

¢ = (I —H)(EG + [D? —iAd,, ")5) — [D? —iAd,, H]k6G.

2.5.6 Energy functional

Define
1 _
EZ = JZ’DtQkP + 101,001 dcx.

By Wu’s basic energy lemma (lemma 4.1, [71]), we have

1at

d 2 -
EEZ = JzReDteka - ZZ @) I€71|Dt0k|2
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Define

1 _
E,g = JZ|DtO'k|2 + 10L0,01dcy. (2203)
Then we have
d o 2 = 1 At 1 2
EE]C = ZR@DtUka — ZZ oK |Dt0k| (2204)
Define
Z E! + EY). (2.205)

2.5.7 The bootstrap assumption and some preliminary estimates

To obtain a priori energy estimates, we make the following bootstrap assumption: Let

Ty = 0, we assume

[Ca = Uas < 3¢, ||

5e,  Vitel0,Tp) (2.206)

Hs+1/2 < 56,

Remark 11.30. The assumptions of Theorem 1.10 imply that the bootstrap assumption holds
at Tg = 0.

As a consequence of (2.206), we have

Lemma I1.31 (Chord-arc condition). Assume the assumptions of Theorem 1.10 holds. As-

sume also the bootstrap assumption (2.206), we have

(1 —56)|a — 8] < |¢(a,t) — ¢(B,t)| < (14 5e)|a— ], V t e [0, Ty (2.207)
Proof.
Cla,t) = C(B,1)| = [ = B+ (Cla, ) — @) = (C(B, 1) — B)]. (2.208)
Note that
Cla,t) —a = (C(B,1) = B)| < [[Ca — ool = B] < 5e|ar — f]. (2.209)

So the conclusion follows by Triangle inequality.
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]

Lemma I1.32. Assume the assumptions of Theorem [.10 hold. Assume also the bootstrap

assumption (2.206), we have for e sufficiently small,

1E (1) | ey < 5,

16 (- t) | e @)y < 6,
|ReF(x + iy, t)| < 6e|z],
|Fy] 2 () < B,
| Fecl Loy < 10,
1Fye ]| 2= o) < 10e.

Proof. For (2.210), by maximum principle, we have

IF L=y = [ Flese) = [8@#)]eo < 5e.

By bootstrap assumption (2.206), for e sufficiently small, we have

O (i, t)
Ca

Bl _ e _
Gl =1

[Fe(Ca 1), )]0 =

~
o0
By maximum principle, we have

[EC (s )=y < [Fe(C(as 1), D)o < Be.

Note that
Di§(a,t) = DyF(C(a, t),t) = Fy o ¢+ Di(Fr o (.
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(2.213)
(2.214)

(2.215)

(2.216)
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So we have for € sufficiently small (say, e < 1/36),

HFt(g(a t)’ t)‘

ms < | DS

s + || Dy

e < 5e + Ge(6e) < Ge. (2.220)

By Sobolev embedding and maximum principle, we have

[E2 G 0) e ey < 1F(Clas 8), 8)[ e < [[Fy o (i < Be. (2.221)

Use the fact that ReF is odd, and the estimate || F¢|z1 < 6e, we have

|ReF(x +iy,t)| = |ReF(x + iy, t) — ReF(0 + iy, t)| < ||F¢|oo|z| < 6e|z|.

Note that
aOl COéOé
Fee(Clavt),t) = (?)2F<<(oz,t) t) = CQ&W v (2.222)
For € sufficiently small, by maximum principle, we have
ao 1 He
e Bl € g s + 150 5 < s 2 se < 10e

faer €3

foer C2 (1 —5¢)? (1= 5¢)

(2.223)

Maximum principle implies || Fye|| o)) < [|Fic|re(oo)- Since Fie(((a, t),t) = w’

by (2.219), we have

aaFt 7t 7t 1
| Fic o ¢| 10 =’ (o, 8),7) < 0aF (€, ), )| ol —
Ca L®© COL 0
[P, t) = DiCFe o (|| Ci < 10¢,

[]

Assume the bootstrap assumption (2.206), we can obtain control of various characteristics
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of the point vortices.

((s+12)1)2
((s+7)NH)2 -

Convention. We use K, to denote a constant that depends on s. We’ll use K, ~
K can be different at different places, up to an absolute multiplicity constant. We also use

C to represent an absolute constant.

We’ll need the following lemma. Similar versions of this lemma have been appeared in

71).

Lemma I1.33. Assume the bootstrap assumption (2.206), let f,h be real functions. Assume

(I —H)hi, =g or (I —H)h=g.

Then we have for any t € [0, Ty],
|A]

e < 2||g] e (2.224)

We’ll use the following estimate a lot.

Lemma I1.34. Assume the assumptions of Theorem [.10 hold. Assume also the bootstrap

assumption (2.206), and assume a priori that d;(t) =1, 3 < % <2,Vte|0,Ty]. Then

we have Y t € [0, Tp],

lglms < K edi ()72, (2.225)
2\ )i 1
v e < K Yed; ()72 (2.226)
j; 21 (o, t) — 24(t))?
HS
Proof. We prove (2.225). The proof of (2.226) is similar . Let s be a positive integer, we
have
PR Sl I 75 o - S
R ot
S 4] 1% L e - 50
i _ N _ :
Denote fj(a,t) 1= Ea—ij(t)’ g = ((a,t). Then Em = fi(g(a,t),t). By chain rule
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for composite functions, we have

ohi(g =iZ esntnea] ] (39)")

where the second summation is over all non-negative integers (ki, ..., k,,) such that

Zznzl ki =k
Z?:l lkl =n.
So we have
n S 2 k . alag ki
%q—22< (Zﬁafj( Og)]_[<l—,)
k=1 j=1 1=1
Note that

S O_QM (—1)*k!
(200 = 2 o (et — (0

j=

(1R & 2 — 2
Rz ;0 (Cla,t) = 21 ()M (Cla, t) — 2zo(t)) !

use z; — 25 = 2x(t), similar to the proof of lemma I1.10, we have

2
dokfit)og| < 100(k + 1)!A\a(t)|dy(t) >,

L2

Therefore,

n ky
<3 e L | ka0

L2
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For | = 1, we bound ¢',g by 1 + 5¢. For [ > 2, we bound ||@,g||,c by 5¢. We choose € small so

that (1 + 5¢)® < 2. We bound (k + 1)! by (n + 1)!. Use the assumption z(¢) < 2z(0). Use

H glf < T +56)" < (1+5¢)°, (2.233)
=1 j=1
we obtain
n C (1 + 5e .
EEEIDY (kl) 5 H x (100(k + 1)l Az(8)|d; (£) =) (2.234)
k=1 =1
<4005 (n)|\|z(0)(n + 1)!d1(t)‘3/2, (2.235)
where

= i > k:1 5 ﬁ (2.236)

=1

is called the bell number. We can bound S(n) by
S(n) < nl. (2.237)

So we have

107q[ L2 < 400|Az(0)|n!(n + 1)!d,(t) %2, (2.238)

Therefore,

(Z |0 C]HL?) (2.239)

<< Z (400 Az (0)|n!(n + 1)ld; (t)™ 2)2) v (2.240)
<400((s + 2))*| Az (0)|dr(t) 2 (2.241)
<K edi ()72, (2.242)

O
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Corollary I1.35. Assume the assumptions of Theorem 1.10 hold and assume the bootstrap

<20 <2 Vtel0,Ty]. Then

assumption (2.206), and assume a priori that d;(t) = 1, =0

1
2
we have

sup || Di(|
te[0,T]

ue <66, ¥ ie[0, Tyl (2.243)

Corollary I1.36. Assume the assumptions of Theorem 1.10 hold and assume the bootstrap

assumption (2.206), and assume a priori that d;(t) =1, 3 < % <2,Vte|0,Tp]. Then

we have

bl s < O+ K Yedr(1)72%, ¥ te[0,Ty). (2.244)

for some absolute constant C > 0.

Proof.

B _ Ea —1 o i : #
(] H)b [DtgaH] Ca T jz_]l C(a, t) — Zj(t) '

By lemma I1.9 and lemma I1.34, we have

Ca_l
Ca

(1 = )|

[DtC7 H]

e <

Hs 7j=1 s

<Ceé + K ed;(£)%2.

So we have

0]l < Cé® + K ed ()72, (2.245)
O

< 2 <2 V¢ e0,Ty] will be

Remark 11.37. Again, the a priori assumption d;(t) > 1, =(0)

1
2

justified by a bootstrap argument.

We need to estimate Z; and Z; in a more precise way rather than using the rough estimates
in lemma I1.27. Let’s first derive the estimate for z;, then we use this estimate to control

x(t) over time. We use the control of x(t) to estimate Z;.
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Lemma 11.38. Assume the assumptions of Theorem I.10 and the bootstrap assumption

(2.206), and assume a priori that d;(t) > 1, 3 < % <2,V te[0,Ty]. Then we have

sup |21 (t) — 22(t)| < 10e. (2.246)
tE[O,To]
50 — — | <5 (2.247)
sup |z;(t) — < be. :
ey 0 dme(D)
sup |2 — #5] < 6|A|e + 120€%x(t). (2.248)
te[0,T0]
Proof. Note that
. Aot _ i _
= ——— 4+ F(z,t) = F(z,t). 2.249
Similarly,
i _
Sy = F(z,t
) 47Tx<t) + (Z27 )

By lemma I1.32, we have

51(6) = 22(0)] = [F(21,t) — F(za,0)] < 2| F | 1(any < 10e,

and
. Al _
We have
D P ] )
cj = <47m,(t)) 247T:U(t)F( (1), t) + (F(2(),1))7,

By mean value theorem, bootstrap assumption (2.206), lemma I1.32, we have

[F(21(t),1)* = Fz2(t),1)%] =|(F(21(8), 1) + F(22(t), 1)) Fe (T + iy (t), 1) (21(t) — 22(1))]
<120€%z(t).
(2.251)
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Here, Z € (0, z(t)).

By (2.212) of lemma I1.32, we have

8 = ] =l s (Fa(0.8) = Fa).) + P (0.6 = a1
:]%R@F(zl(t), ) + F(z(1), 82 — F(z(t), 1)
<SR a0) + [P (0,0~ (a0,

<6|A|e + 120€%x(t).

]

Another consequence of the bootstrap assumption (2.206) is the following description of

the motion of the point vortices, which is the key control of this paper.

Proposition I1.39 (key control). Assume the assumptions of Theorem I.10 and assume the

bootstrap assumption (2.206), we have

x(t)

<—2<2 0<t<T 2.252
(0) 0 (2.252)

DN | —

Proof. 1t suffices to prove the case that z(t) is increasing on 0 < ¢ < Tj. The case that z(t)
is decreasing follows in a similar way, and other cases are controlled by these two cases.
Denote

L
207z (0)’

1 _ () > A
S< <2, di(t) =1
2 o i) " 20m2(0)

z(0)
(2.253)
Let’s assume F = Fy + iFy, where Fj, F, are real (we remind the readers that F' is the

holomorphic extension of f. Recall also the notations that z1(t) = —xz(t) + iy(t), 22(t) =
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x(t) + iy(t), x(t) > 0,y(t) < 0). From the proof of lemma I1.38, we have

a(t) = F(a(t) 1) + 3 =t = Fla) - 55 2250
5(t) = F(a(t),) + 3 =t = Fla(t) — 205
So we have
i0) = ~Faealt).0) - 7o (2.25%)
By maximum principle and the bootstrap assumption (2.206), we have
[F2(22(1), 1) < [F(2(1), 0)] < [F(8) |2y = [5(5 )o@ < 5e. (2.256)

For M relatively large (we take M = 2007), at ¢t = 0, we have %(lo) > 200 — 50¢. So we

have
N oy
4rz(0) —  40mz(0)

7(0) = —F3(22(0),0) (2.257)

So 0 € T and therefore 7 # (J. Clearly, by the definition of T, since y(t), z(t) and c?](t) are
continuous, so 7T is closed in [0,Ty]. To prove T = [0, Tp], it suffices to prove that if (2.253)
holds on [0, 7] with T' < Tp, then there exists § > 0 such that (2.253) holds on [T, T + 0).
Let T eT.
By (2.254), we have &(t) = ReF(z(t),t). Use (2.212) of lemma I1.32, use the fact that

ReF' is odd, by mean value theorem, we have
z(t) = ReF(z(t),t) — ReF(0 + 1y(t),t) = Re F.(T + iy(t),t)x(t), (2.258)

for some 7 € (0, x(t)).

Since

Flet) - 2% f %S(ﬁ,t)dﬁ. (2.259)
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So we have V ¢ € [0, Tp],

1 Cs

GFE) = = | Tt De

F(8,t)dg. (2.260)

By Cauchy-Schwartz inequality and lemma I1.10, we have

~ . 1 1 v
0. F (& + iy(t), 1)) <%<J Fram —aEarY) 161 8l (2.261)

<Ced; ()72, Vite[0,Ty),

for some absolute constant C' > 0. By direct calculation, we can see that C' < 2. So we

obtain
() < 2edy (t)"2x(t). (2.262)
So we have
d . xz(t) A Al N
—In L < 2d, (1) PPe < 2(1 4+ —— 1) te[0,7]. 2.2
Then we have for all ¢ € [0,T7],
x(t) <x(0)exp{2e Jt(l + ¢7)_3/Qd7}
b 0 207z(0)
207z (0)
<2(0 2.264
x( )exp{ € o } ( )
<x(0)e*mom = e32(0) < ;m(O).
By the continuity of x(t), there exists 6 > 0 such that
t
sup t) < 2. (2.265)

te[0,T+6) z(0)



Next we show that by choosing § > 0 smaller if necessary, we have

A > A
_ di(t) =1
20mz(0)’ i) =1+

t Vitel0,T+9). (2.266)

y(t) < 2072(0) "

Proof of (2.266): By the definition of 7, the bootstrap assumption (2.206), and the fact

that % > 2007e, we have

A Al

: |
1) < be — < - ) Vtel0,T]. 2.267
§lt) <5e= 2@ S T T0ma(0) €l0.7] (2.267)
By Fundamental theorem of calculus, we have
t
y(t) = y(0) + f y(T)dT. (2.268)
0

We have

t

Clont) — () =C(a,0) — 2(0) + j 2(C ) — 2(7))dr

=((a,0) — 2z;(0) + Lt D.((a, T)dT — Jt b(a, 7)0aC (v, T)dT — J z;(T)dr

0 0

(2.269)
So we have
t t
Im{C(a,t) — z(t)} zfm{C(oz,O) —2z;(0) — f ,éj(T)dT} + ImJ D.((a, T)dT
, 0 0 (2.270)
—J b(a, T)Im{0aC(cv, T)}drT.
0
By Sobolev embedding lemma II.1 and the bootstrap assumption, we have
t
U DTC(Oé,T)dT‘ <6et, Vtelo,T). (2.271)
0
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By Corollary I1.36 and Sobolev embedding, we have
t
‘ f b(ar, 7)0aC (e, T)dr| < (CE* + K ted () 73%)(1 + 5e)t < (C® + K[ te)t. (2.272)
0

Note that Im{¢(a,0) — 2;(0)} > C/Z\](O) > 1, —Im{z;(1)} = 10%‘(0) > 0, so we have for all

te (0,71,

Im{((a,t) — z(t)} >(ifelﬂf{jm{<(a’ 0) —z;(0)} + ( AL _ 6e — (Ce* + K, 'e))t

N 107z (0) (2.273)
=1 L.
¥ 18r2(0)
So we have
C/Z\[(t) = min inf Im{{(a,t) — z;(t)} = 1 + A t Vitel0,T]. (2.274)
j=1,2 aeR ’ ’ 187z (0) ’

By (2.267), (2.274), the continuity of J[(t), and the continuity of y/(t), choosing § > 0 smaller

if necessary, we have (2.266).

Since T is both closed and open as a subspace of [0, T], so we must have

T = [0, Tq], (2.275)
which concludes the proof of the lemma. O
Because
dr(t) = min inf |((a, t) — 2(t)] > di(t),

we have the following estimate.

Corollary I1.40 (Decay estimate). Assume the assumptions of Theorem 1.10 and assume
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the bootstrap assumption (2.206), we have ¥ t € [0, Tp],

Al

dit)"t < (1+ 20m2(0)

)=t

We need to estimate z; and z; — 2, as well.

(2.276)

Convention: From now on, if the domain of ¢ is not specified, we assume ¢ € [0,Ty] by

default.

Lemma I1.41. Assume the assumptions of Theorem 1.10 and assume the bootstrap assump-

tion (2.206), we have V¥ t € [0, Ty,

G|

12;(t)] < 10e + ——e.

(t)
) y 2 S|
1Z1(t) — Z2(t)| < 220€°x(t) + €(20x(t) + —)
Proof. Take time derivative of (2.249), we have

£50) = ey + Rl (00050) + B0,

We have 2/(t) = ReF'(z(t),t). By lemma I1.32, we have

[Fe(z(0): O < TG D)= < [Fe(Clast), ) oo < Ge.

By Sobolev embedding and lemma I1.32, we have

[EL (5 Dlle oy < [F(C(e ), )] e < [[Fy o Cllan < Ge.
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Apply lemma I1.32 again, we have

|ReF(z;(t),t)| < 6ex(t).

So we obtain

. M| ReF (z;,1)| .
550 <ot (Pl 10 + 1P )
6| Ae Al
< 6 6e) + 6
Tra() T O gy T0) + O
<SP o,
mx(t)

Here, we assume ¢ sufficiently small such that 36¢ < 4e. We have

|21(8) — Z2(t)]
=|Fe(z1(t), 1) 21(t) + Fo(21(t), 1) — F(oa(t), ) 2a(t) — Fi(z2(t),1)]

<|Fp(21(t), 1) — Fe(za(t), )]|20(0)] + [Fe(22(2), D)[|21 — 22| + [Fi(21,t) — Fi(22,1)]

<[ Fecllolzr = zof |21 (8)] + [Fe(22(t), || F(21(t), 1) — F(22(t), t)] + [(ReF )il e @y lz1 — 22l

By lemma I1.32,

|Feelloo < 10,

and

1 Ficllze (@) < 10€.

Since ReF; is odd in x and ImF; is even in x, by mean value theorem, we have

|Fi(z1,t) — Fy(z9,t)| =2|ReFy(z2,t) — ReFy(0,y,t)|z = 2|ReFi.(Z,y,t)|z(t)

L2\ Fic| Loy (t) < 20ex(t).
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for some 7 € (0, x(t)).

So we obtain

|21(t) — Za(2)|

<10€(2x(t>)(47r|;\|(t) + 5€) + (6€)20ex(t) + (10€)2z(t) (2.286)
=220z (t) + €(20x(t) + #).
O

Zj Zj

j=1 27r (C(at) i (1)?

Next, we estimate the quantity HZ the quantity HZ

. These quantltles arise from the energy estimates.
HS

% 2
and the quantity HZJ o W)zj(t))2

Lemma I1.42. Assume the assumptions of Theorem I.10 and assume the bootstrap assump-

tion (2.206). Then we have

2 . .
)\jZ Zj -1 |/\| -5
- < K7'e—2ld(1)7%? + O, 2.287
2 r ) — 507 ORI (2250
Hs
Proof. Replace z; by
i _
t) = F t),t
Z]( ) 47rx(t) + (Z]( )a )
We have
At z 2\ o At 1
J J Ama(t) I J
- = > = + F(z(t),t -
2o ot 5P~ o @at) - 5@7 LA L
Ni(F'(21(t),t) — F(z2(t), 1)) 1
2m (Cla, 1) — 22(t))
By lemma I1.34 (and use the proof of lemma 11.34 to estimate the term H 1@(15))2 ’ Y ),
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x(t)

A
<K_leld1(t)_5/2 + K_IEQd[(t)_5/2 + K;1€2d[(t)_3/2.
Z

Here, we use lemma I1.32 to estimate

‘F(Zl(f)» t) — F(z(t),t)
x(t)

‘ < 12,

and we use the proof of lemma I1.34 to estimate

< K_léd[(t)_g/g.

S

H (¢(a, ?)xftlz(t)ﬁ

HS

2\ B

j=1 gm by (2287)

Hs

Since d;(t) = 1, we simply estimate HZ

— K Yed; (1) + K Yed; ()% (5€) + ‘F<Z1(t)’t)xzt)F(Z2(t>7t) m (¢(a :) — 29(1))?

Hs

(2.288)

(2.289)

]

Lemma 11.43. Assume the assumptions of Theorem 1.10 and assume the bootstrap assump-

tion (2.206). Then we have

ZM (Zj)z < K12 + K¢ |)‘| d;(t)*5/2.
™

297 (¢ t) — 2 (D) TT)
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Proof.

2

Y

7j=1

We have
)\i(,él)Q
I| = 2x(t
11 = | 20
_.|_
and

1 1

{(é(a, t) = z1(t)*(Ca, t) = z(t)  (Clont) = 21(8))*(Ca, t) — 22(2)?)

)\2

i

-2
21:_

16722(t)?

+ s P00 + (P, 0)*

Use the proof of lemma I1.34, it’s easy to see that

we have

1

(Cla,t) = 21(1))*(Cex, ) — 22(1))

1

(Cla,t) = 21 ()2 (e 1) — 2(2)?)

1

(Ca, 1) = 21(8))(C(a, t) — 2(1)%)

Use the assumption that A? + [Az(0)] <

‘ < ((s + 6)))2d; (1)~ 7? (2.291)
< ((s 4 6)1)2d, (1)~ 72 (2.292)
< ((s + 6)1)2d, (t)"7? (2.293)

e +12),)26 and the fact that $x(0) < z(t) < 2z(0),

|/\|$() N A 2 2 -7

I < 2 2d, ()77

1] (Gomatey * Zne 2 BN+ 6% ()
<K;'Ed(t)7? + K gy

x(0)
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By lemma I1.38, we have

2m (Cla,t) = 22(t))?
_MI(6IAJe + 120(1))

HS

2
<K7'eéd;(t) =2

Here, we use the assumption

((s +6))2d;(t) >

1
A2 + |/\CC(0)| < (g€, Co = m (2294)
So we we have
2
Aji (%) 1.2 1 A -5
= < KJ'é + Kte——d; ()2,
2o Cart) - 507 FORAY
HS
O

Lemma I1.44. Assume the assumptions of Theorem 1.10 and assume the bootstrap assump-

tion (2.206). Then we have

2 Aji Z; L .
;g(é(a,t) —50F| < KJledi ()7 (2.295)
Proof. We have
Aji %
j; 2 (C(a 1) — 2(1))? »
2 )\ji?,:l(t) 1 )\i(él(t) o éQ(t)) 1 3
< J; 2 (Ca,t) — z(t))? - +‘ o GE SO P I+ 1I.
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By the proof of lemma I1.34 and by lemma I1.41, we have

HS

) 2\ )i 1
I <|Z ()] ; 2 (C(a,t) — Zj(t))2|

<(10e+ DRI (s + 0))Pds(0) >

By lemma I1.34 and lemma I1.41, we have

1 <) 5001
<(220%(t) + e(201(t) + @)) (s + 6))2ds (£) "

<KI1ed; (1),

Here, we’ve used the fact that A\? + |\z(0)| < me. So we obtain

2 .
2 %: (C(a t)zi eoel K'ed (1)~ (2.296)
j=1 ) j

HS

2.5.8 Estimates for quantities involved in the energy estimates.

In this subsection, we derive estimates for various quantities that show up in energy

estimates.
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2.5.8.1 Control |0,0]g- by [¢a — 1

HS.

Lemma I1.45. Assume the assumptions of Theorem 1.10 and assume the assumption (2.206),

for 1 <k <s+1, we have

|050 — 205 (¢ — 1)] 12 < C€”. (2.297)

Proof. Since (I —H)(¢ — ) =0, we have (I + H)(¢ — a) = 2(¢ — ). Therefore,

kO =05 (1 —H)(¢( = () = (I = H)(¢ — )
=0a(I +H—(H+H))(¢~a)

=205 (Ca = 1) = Qa(H + H))(C — a).

It’s easy to obtain that for 1 < k < s+ 1,

FH+H)(C - a) L <Cl - 13, < Ce. (2.298)

So we have
k0 — 2051 (¢, - 1) L < Cé. (2.299)
So we obtain (3.376). O

Corollary I1.46. Assume the assumptions of Theorem I.10 and the bootstrap assumption
(2.206), we have

00| < 1le, (2.300)

Hs

s and || D, |

+ With || DZ(]|

HS

2.5.8.2 Compare HDté

| with | D
HS

We need to show that D,0 and D,¢ are equivalent in certain sense. We have the following:
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Lemma I1.47. Assume the assumptions of Theorem I.10 and a priori assumption (2.206),

we have

HDté Y. q)H < e, (2.301)

Hs+1/2

| D6 — 4(Dy§ — Dyg)|

e < CE (2.302)

Proof. Recall that D;¢ = § + g, where (I — H)T =0, (I + H)q = 0. So we have

We have

DG =D,(1 ~H)(C &) = (1~ (D&~ DE) — [D¢, 1] =9

Ca
~ o.(C=C
-G+ - 0) - (D¢ 2
« . _ (2.303)
~(+H)F+ (5 + H)g - (1 + R)DG — 20— (D¢ 1)
_ _ o,(C—C
~2§ — 20— (W + H)Dc — [Dic. W 2=
It’s easy to obtain that under a priori assumption (2.206),
_ o, (C—C
H—(’H CH)DC - [DiC, ’H]% < Ce|DiClyonrs < C, (2.304)
o Hs+1/2
for some absolute constant C' > 0.
By triangle inequality,
. } o.(C=C
|pé-2G-a . <|-0t+mwpic - D=2
H Coo || presase (2.305)
<Cé.

So we obtain (2.301).
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By (2.303), use

(I-H)F=25—(H+H)3  (I—H)qg=2q (2.306)

we have

D& =Di(I = H)Difl = DI = H){2§ — 24— (M + H)DiC —~ [Di¢, M) Mc - @}

_ _ 0,(C —C _ _
=4D,§ — 4Dvq + Dy(I — H){ — (H 4+ H)Di(¢ — [Di¢, H] (CC O} — Dy(H +H)S.
(2.307)
Therefore,
|Di& = 4(DiF = Di) || . (2:308)
i} 0, (C — _
— D1 - 'H){ —(H + H)DiC — [DyC,H] (i O} ~D,H +H)F (2.309)
(0% Hs
<Cé. (2.310)
m
Corollary 11.48. Assume the bootstrap assumption (2.206), we have
‘ Dl L <lle D], <21 (2.311)
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2.5.8.3 Estimate the quantity % o™,

Recall that

(I — 'H)% or AL,
a

00D C )
2D A & r (@.t) — C(B,1)

_%Z; <2D2C+2 07z 5 (D¢ — %(1))? )

=2i[D?(, H]

(Cla,t) = 2(0)2 (Cle 1) = 2(1))°

By lemma I1.9, the a priori assumption (2.206), we have

aaDtE

2i[ D}¢, H] C

Hs

daD}C

2D H] =5

< O D¢ s ||D Cllas < Cé.

HS

) (D:)sds| < Il < OG5

Hs

aaDtZE 1 f(Dtg(oz,t)DtC(ﬁat))z(DtE)ﬁdﬁ

< C| D | gs | DiC | s < Cé€2.

< Cé.
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(2.315)
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By lemma I1.42, we have

3 Ni 2D i 4
& Ca 507 | X @ - 507 N (2:319)
<12e K Yed; ()77 < K7'e2d (1) 2.
By lemma I1.43 and lemma I1.44, we have
1< A% I A2(3(0)?2
%2 atj—z O %Z(g(ojt)iz(t))?»
7 s 1 ’ ! s (2.320)
<Kv—le |>‘| d](t) 5/2—|-K 1 2d ( ) 5/2
* o x(0)
So we obtain
Qg 147 2 -1 |)‘| —5/2
I—H)— A, < K, e——=d;(t . 2.321
H( H)a ok A » Ce” + K| Ex(O) (1) (2.321)
By lemma I1.33 and Sobolev embedding, we have
“orTl| <ce K—leﬂdf(t)—m. (2.322)
a " * z(0)
2.5.8.4 Estimate the quantity A.
Recall that
a8 o Ca—1 Lo A(Diglant) = 2(1))
I —H)A=1+iD,H|— +1|D;¢,H I—H)— :
J=#) (DG U=+ DI = = (1= M5 2 e 1= )2
(2.323)
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By lemma I1.9, lemma I1.34, lemma I1.42, we have

| =H)(A=1)] ms + [ Di¢]

Ca_l‘

ne <[ DiC|

3

HS HS

So we have

|A

HS‘

||Mm

e < Cé? + K ed (1) 752

Clat) = Zg (1))

(2.324)

Corollary I1.49. Assume the assumptions of Theorem 1.10 and assume the bootstrap as-

sumption 2.206. For e sufficiently small, we have

inf Ao 1) > 1% Vi e [0, To]. (2.325)
sup Ao, t) < %, vt e [0,Tp). (2.326)
aeR
2.5.8.5 Estimate the quantity D;b.
Recall that
Oab o — 0aDiC
(1= H)Db =D HIE ~ (D, H]Cg - (D¢ 2
1 [ /D, t) — DC(B,0)\2, = i o A(DiC = %(1))
o) Clan=aan ) @D -4+ e —or
(2.327)
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By lemma I1.9, lemma I1.34, lemma 11.42, estimate (2.245), we have

(T — H)Dibl
Oub W —1 OaDiC
<|ipic | +|lipzc. 2 +|[Duc, 2y =22
. o | o |
2

L [/ Dlat) - DC(B.) )
i) Caai=an ) @en -

3’2 D¢ — (1))
™= (C(a,t) — 2(t))?

H
<C|DoC|lm=[bllr+ + CIDFC 5 1Ga — L s + CIDeC s

2 )\ z]
&7 - 507 -

<Ce(Ce® + K 'ed; (1)) + O + K;le2dz(t>*5/2 + K ed (1) + O

+ CIDeC s 6o — s

+ ”DtCH Z Oé t _ Zj(t))2

<Ce + K Yed;(t)~2.

By lemma I1.33, we have
Db s < C* + K edp(t) 72 (2.328)

2.5.8.6 Estimate |G|py-.

Recall that G = G. + Gy, with

o[~ 1 _ 1 = 1 DtC(Oé,t) - Dt((ﬁ,t) 2 5 L
Gor= 23 U +H—Ea]sa+—m f ( (et 5.5 ) (C—C)gdf i= G +Gra. (2.329)
0.3 0.7 87
Gq = —2[q, H]_C - 2[7, 7'[]—< —2[g, H]_C —4Dyq := Gg1 + Ga2 + Gas + Gaa. (2.330)

We rewrite G, as

055 (B,t)dp. (2.331)

™

a4 f (D3 (. t) = DiF(8,1)) Im{¢(a, t) = ¢(B, 1)}
i [l t) — C(B, P
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By lemma I1.9, we have

|Gl e < Cé€,

s < O[]

Ca_]-‘

3

Hs Hs

for some constant C' depends on s only. Similarly,

|Geal e < O,

Coa*1|

2
Hs

e < O Di(]

By lemma I1.9, we have

|Garl e < K71ed (1)~

Hs + HGd2|

ns < Cldq|

&

HS

Similarly,

|G as| e < Kedr(t) T,

ns < Cldq|

Use

by lemma I1.42, lemma I1.34, we have

2 A 2 A%
o . <4|D, ) j 4 J<j
(Gl <D<l |35 ey =z | S s 5P

Hs Hs
A
<C€2d1(t)_5/2 + Ks_lﬁ%d](t)_w?

So we obtain

A
g < 08 + KN4 (1) + K el gy (1)o7,

G o
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As a consequence,

I(I —H) e < O + K71e2d ()22 + K J(AO’) dy ()~ (2.337)
2.5.8.7 Estimate |(I — H)[D? — iAd,, %10)| 2.

By lemma I1.13, we have
(D2, 016 Z [ )G 4 g7 (b 05D, + O (ba[bOw, 5™8) + Oba kD0

+ b [b0a, 000 )]

The quantity |07 (D;be)d% 8] 2. For 0

<m<k—1k<s, we have

|02 (Diba) 0" 0] 12 < | Deballrm |06 (2.338)
Since D;b, = 0,Dib + bb,, we have
| Deballzrm <10 Dbl + [babl e < [ Deblars + (6] 7
<CE 4 K Yedp(t) ™2 + (C + K ed; (1) 73/%)?
<Cé® + Ks_led[(t)_5/2.
and since £k —m > 1, by Corollary I1.46, we have
|0a " 0llms < 11, (2.339)
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we obtain

10m (Diba) 5 ™0) 12 < | Dibol|ars | 000 s < Ce + K 1e2d, (1) %2 (2.340)

HS

The quantity 8;”(ba6§_th9~). Similar to the previous case, we have for 0 < m < k—1,k < s,

and assume bootstrap assumption (2.206),

10 (60" "™ D,0) | 12 < |ba| g1 | Def] s < C® + K ey ()52, (2.341)

The quantity 07 (ba[b0s, 8%10). We have for 0 < m < k — 1,k < s, and assume bootstrap

assumption (2.206),

107 (b [bOa, @7™10) |12 < Clbal go—||b]l s ]|0a a1 < CE°. (2.342)
The quantity %”baag_thé. We have for 0 <m <k —1,k < s,
10T D00 ™ D,0 12 < Cbal o1 | Db e < Ce® + K 1e2d (1)~ (2.343)

The quantity 07ba[b0n, 0]0% ™ 10. We have for 0 < m < k — 1,k < s,

0™ b [bOa, 000X ™10 12 < CJb| He < CE. (2.344)

oYl

2
Hs

So we obtain

I[D2,510] 2 < C'é® + K Cedy(t) 2. (2.345)

The quantity ||[iAd,, 6§]§ |22 Use similar argument, we obtain

I[iA8a, 0510] 12 < O + K7\e2d; (t)™2. (2.346)
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So we obtain

I(I = H)[D2 — iAda, 3%10) |12 < O + K1Cd; (1) %2 (2.347)

2.5.8.8 Estimate |[D? —iAd,, H]%0] 2

Note that by identity (3.384),

[D? —iAdy, H]0%0 = 2[DiC, H]

05050d3 (2.348)

00k 1 (ot = o.0y:
C(B,t

Ca e

Clearly, for k < s, and assume (2.206), we have

< Cé. (2.349)

L2

i) o

e Estimate |[[D:(, H] aaci,’zé”m‘

kg ~
[D:(, H] aacaae is not obvious cubic. However, since 0%f is almost anti-holomorphic, and

D, = § + ¢, with § anti-holomorphic and ¢ decays rapidly in time as long as the point
vortices move away from the free interface rapidly, we expect this quantity consists of cubic

terms and quadratic terms which decay rapidly. To see this, decompose
k. 1 ky L kj
0.0 = 5([ —H)50 + 5([ + H)2%0.
Note that for & > 1,

(I +H)EO =(1 + H)OE(I —H) (¢ —C) = —[25, H]o

k-1 k—m—17

0

- _ Z ¢ — 177.[]80@—,
g Ca
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By lemma I1.9 and lemma I1.45,

(I +H)0k0] 12 < C|l¢a — 1] e[| 0af o1 < C€°. (2.350)
Therefore, by lemma I1.9, we have
Oa3(I +H)050 s
[D:C, H] C < Ce. (2.351)
e 12

Oat(I—H)0kE
5( )04 as

We rewrite [Dy(, H] -

0ot (I —H)0k0

Dt7
(D, H] A

Qa(I —H)ek0 0ak(I —H)k0

1 1
2[5(1 + H)DtC,H] C + [5([ - H)Dte,H] C 2 = I+ 1II.
Clearly, II = 0. Since
1 1 1 _

Use lemma I1.9, lemma I1.34, and similar to the estimate of |G| gs in §2.5.8.6, we have

1 Ot (I —H)0%0
[§(I+H)é, H] l C Y <O gl 1060 e < K'e2d; (8)72. (2.353)
« L2

It’s easy to obtain

|(H + H)B]| . < C€. (2.354)
So we obtain
- Oas(I —H)O%0
H[(’H +H)S, H] 2 : ) < Cé. (2.355)
(0% Hs
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Therefore,

H(I ~H)[D? — iAd,, H]0

< 3H[D§ — iAd., M0

’ < CS KN (1) 2 (2.356)
L

2.5.8.9 Estimate for HGZ

Ls®

Collect the estimates from (2.337), (2.347), (2.356), we obtain

. . R\
HG2HL2 < O+ KI'd(t)2 + K 16%@@) 512, (2.357)

2.5.9 Estimate H(I —H)oEG

L2
Recall that
0o DF(I —H)(C — )
Co (2.358)

G =(I = H)(DG + i o k7 AT = H)(C = O))a) —2ADiC. H]

i Di((a,t) — Di((B,t)
v 5 ) e =c6.0

) (DT~ H)(C — 0))od5

2.5.9.1 Estimate || D,G||

D,G is given by

DG = (0;g9) o k™.
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g = gc +gd7 and

1

@&:@{—ﬂfﬁl+giy;+_J(me—awx

(e - 2)0a5)

mi) Gl =20
S+ S -2+ ]fta
g ot oo
 pscaed®eol Gencsr
g <zt§z ii—z;?;m v
So we have
D,G. = —2[D,3, HCa + HC 18 — 2[3, 7-[(—& + ’Hca]ﬁ DT
- % |Gty - 550 (D { 2] 25,0105
+E DKat Dggt{ mc ) @%&$:§§3?3@_©M
+%~(Q§“? (“go)wg &owﬂ
Recall that
o= 2091 217 91 ofp 5Py, (2.359)
So
oar= =292 [ (09 = o) T
~21f )2 - 2 [ (L1 s s
2 (B
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So we have

N _ acth§ 2 q_(aﬂ t) — q_(ﬂa t) =
DGo = =20 )28 - = [ (D 4L 2555,
B ~ aath . 3 -@(O&, t) _ §</67t _
208 M1~ = | (D — e ) a8 08 .
anfaDiq 2 glast) —q(B, D)\,
- 2[Q7H] Ca - E (DtC(Oé, t) — C(ﬁu t))aﬁQ(67t)dﬁ
—4D%q.

D,G. is cubic, we have

ID:Gell g <CoIDel el G = Ul Il gz + 110 I DeCllza +IDeCll e | DECH pillGa = Ll e
DIk I = Ul + [DeCln)

<Cé.
DG consists of cubic terms or terms with rapid time decay. By (2.335), we have
| Dyqll e < CE2dp(t) ™2 + K ed(t) 2. (2.361)

Note that D;G4 + 4D?q is at least quadratic. Use lemma I1.9, lemma I1.34, and similar to

the estimate of | Gg1]| s in §2.5.8.6, we obtain

| DiGq + 4D} ||, < C€* + K edr(t) 2. (2.362)

Note that
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Use lemma I1.42, lemma I1.43, lemma [1.44, we have

_ _ A _
[4D2q|| . < C€ + K di(t) ™7 + K 16%@@) 32, (2.364)
Then we have
A
DGl e < Ce® + K e2dr(t) ™2 + K;le%df(t)_g/z. (2.365)
X

Therefore,

AL

I = H)DGl < OF + K707 + K e

d(t)=%2. (2.366)

2.5.9.2  Estimate [2[D,¢, #] 222

The way that we estimate for this quantity is the same as that for [D,(, ’;’-[]a 2%0  We

obtain
. r
2[Di(, H] GaDi(T = H)(6 = ¢) < CE + K'éd(t) 32 (2.367)
Ca .
So we obtain
H(I - H)&QGHL2 <O+ K71d (1) %2 + K;le%df(t)—?’/?. (2.368)

2.5.9.3 Estimate [D? —iA0,, H]0%5

Use

)) ak+1 (8,1)d5

(D2 — A2, M)k (D¢, o0 L[ (Diclet) - Dtcw),t

Ca i C(a’ t) - C(ﬂat
2211 + [2.
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Clearly,

|B2flz2 < CIDCIe 5] e < C. (2.369)
Note that
Ou Dy 0% G 0a0% D6 Ou| Dy, 050
(D¢ ) DT ¢ DT ¢ gy P el
Ca Ca Ca
The second term [D;(, H]a"[[)g%m& is cubic, it’s easy to obtain
o[ Ds, 010
[DtC,H]M < Cé. (2.370)
o |,

The way that we estimate for this quantity is the same as that for [D,(, H] aacage. We obtain

k ~
aOpD _ _
[Dg,%]m—ta <O + K7 1éd;(t) 2. (2.371)
Gl
So we obtain
H[Df —iAd., MG \LQ < O+ KLed,(t) ™2, (2.372)

2.5.9.4 Estimate ||(I — H)[D} —iAd,, 5] |,

(I — H)[D? —iAd,, *]0)

The way that we estimate this quantity is the same as that for

2

We obtain
H(I — H)[D} —iAda, 8@]&HL2 <O+ K7'ed (1)~ (2.373)
2.5.9.5 Estimate for HG‘,ZHLQ.
Collect the estimates from (2.366), (2.368), (2.372), (2.373), we obtain
A
G|, < Ce + K 'e2dr(t) ™2 + Ksle%dl(t)?’/?. (2.374)
T
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2.5.10 A priori energy estimates

We derive energy estimates in this subsection. We’ll prove the following.

Proposition II.50. Assume the assumptions of Theorem 1.10, assume the bootstrap as-

sumption (2.206), we have for all t € [0,Tp],

d _ _ 19 A _
—E&(t) < Ce* + K dr(t) ™2 + Kt ——~d(t) ™2 2.375
G50 < O K (07 4 K S (2375)
Proof. From (2.202) and (2.204), we have
d d A, "
Egs(t) = EkZO(Ek + EY)
> 2 — 1 2 — 1
- Z (JZReDtﬁsz — JZ% o kDb |* + JZReDtang — JZ% S /171|Dt0k|2>
k=0
(2.376)
By Corollary 11.48, we have
ID0) s < 11e, || Dy ge < 21e. (2.377)
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By Corollary 11.49, (2.322), (2.357), (2.374), we have

- 1 1 a
H< (2= 1D.0 9” e Dby
<2 () 1oastiafet], |55 ow | pmei
1 1 a
”HZ 016l + 5] % on| nos)
Z <4 x 11e(Ce + K7 'ed (1) ™2 + Ks_leﬁdf(t)_‘r’/z)
= z(0)
x (O + K;! W di(t)7%) x (11€)?
“2(0)
+4 x 21e(Ce + K7ed (1) ™2 + K1 ’( ’) ()73
A
+4 x (Ce + Ksle%dl(t)wz) X (216)2)
<Ce* + K7'eld (1) ™2 + K;lé—w dy(t)~2.
z(0)
Here, we simply bound H%HOO by % O]

Before we use the bootstrap argument to complete the proof of Theorem [.10, we need to

).

Hs

2
show that the energy & is equivalent to 4(‘ D, ‘ +| D5 |3 + \D[l/QG
He

+H|D’1/2

Lemma I1.51. Assume the assumptions of Theorem 1.10, and assume the bootstrap assump-

tion (2.206). Then we have

D6 +H]D|1/29 < Cé. (2.378)

e

)

H H S

Proof. Recall that
g = 8 l\DtekP + 0,0 0rda + 1!Dtak!2 +ioR0aopda ¢, (2.379)
A A

k=0

where
O, = (I —H)"0, o= I —H)G, 0:=T—-H)(C=C), 6:=T—-H)DBH. (2.380)
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It’s easy to obtain that

[A—1|ps < Ce.
So
55 = Z { J‘Dt6k|2 + i&k(?adea + f ‘Dt0k|2 + iUkaadeOé} + O(ES).
k=0
We have
O = 0" (I —H)O + [0F, H]0 = 20%6 + [0, H]6.
So we have

| Dby — 205010 ‘ < HDt[a{;,H]éH +2||[D,2k]| | < ce
1,2 1,2 .2
Similarly, we have
HDtak —20kDs|| < ce
L2
Therefore,
5 ~112 2
| 3 J(\Dtem 4 |Dyoy|?)da — 4( athQHLZ +|etp,5 ]LZ)) < Cé.
k=0

Decompose 0 as

6 = %(I+H)9~+ 1(I—H)é

[\

Note that since 6 = (I — H)(¢ — ¢), it’s easy to obtain

1
H|D|1/2§(I +H)I|| < Cé.

Hs

Then we have
2

H‘|Dyl/2é H\DW%([—H)@ < Cé.

‘HS Hs
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Note that

}_A

o5 -

2 s
1 ~
_ k
= 2_0J0a§(I—H)9 13- H)dda

Use the fact that

(I —H)A =20 + (H — H)6,

and use
~IDIY3( e,
we obtain
”zekaaekda — 4|\a§yD|1/2§\|ig‘ < Cé.
Similarly,

_ 2
‘Jiakﬁaakda — a|D|1/2(~T‘ ,
L

By (2.384), (2.385), (2.393), and (2.394), we obtain

2 ~112
tog| | +|atiprea|  +|atipres
L L2

"Dyf

g, —42{

Corollary 11.52. Assume the assumptions of Theorem I1.10, then

E,(0) < 1762

2
H < Cé.
L2

(2.390)

(2.391)

(2.392)

(2.393)

(2.394)

(2.395)

(2.396)

Proposition 11.53. Assume the assumptions of Theorem I.10, there exists 6 > 0 such that

I1Co — 1z e [0, 8¢

< 5e, | 5]

Hs+1/2 S 56,

Indeed, we can choose § to be an absolute constant.
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Proof. Let 6 > 0 to be determined. Let

e < be, |5

T = {T e[0,6¢72:  [Ca—1]

At t = 0, we have
IS

Hs+1/2 + ||Dt3||Hs <

€.

DN o

To obtain estimate of |[(, — 1||gs, use D?¢ — iA(, = —i, we have

D¢ —i(A-1)
1A

Coa_lz

We have D2¢ = D;§ + D;q, and

We have

Use (2.324), we obtain

[Cal:,0) = 1

e < | DiS(-,0)]

Therefore, 0 € T, so T # . Since |, — 1

Sl presrrz, | DS

Hs,

2 -1
e+ Ce” + K e < 2e.

e < 5e, | DF|H® <5e, Vite [o,T]}

(2.398)

(2.399)

(2.400)

(2.401)

(2.402)

gs are continuous in ¢, we

have T is closed. To prove T = [0, ¢ 2], it suffices to prove that if Ty < de2, then there

exists ¢ > 0 such that [0, Ty +¢) < T.
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Assume Ty € T and assume Ty < de 2. By Proposition I1.50, we have for any ¢, < Tp,

to d
Es(to) =E(0) +J — & (t)dt
o dt
to )\
<17€ + J (Ce' + K edr(t)™? + K8162—|(0|)d1(t)5/2)dt
0 x
<172 + CeMy + Kt fto((l + Al t)_l)g/th
° 0 207z:(0)
g A Al
KlQ,_f 14— 4 13/th
RSO L T @)
<176 + Ce'Ty + Ksle?’% + K, '€e.
Since % > Me, we have
K81€3$|/\0|) <K'S(M) el = KMl < %62‘

Since Ty < de 2, if we choose 6 < C~!, then

Cel'Ty < €.

Therefore we have

sup &,(t) < 19¢%.
tG[O,To]

By lemma II.51, we obtain

4y {H&’;DtéHQ + o5 D5 | + 05| D207 + Hag\DP/?&Hiz} <&+ Ce® <206

k=0

So we have

| DBl ez + | De6 e + [|DIV?0] - < 5e,
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By lemma I1.47, we obtain

I3

1 ~
Hs+1/2 < Ks_lﬁ + §HDt0‘ gst12 < €.

Lo _
| DS mrs < ZHDtUHHS + K le < 2.

Since ¢ — « is holomorphic, we have

O=I-H)((—)=UT-H)(C—a)=2(—a)—(H+H)(—a)

It’s easy to obtain

= [IDI"*(H + H)(¢ ~ o]

HS

Jlo12((5 - 26 - )

By (2.404), we obtain

2[DIY2(¢ — )| < || DI"20] s + C€® < Ge.
So we have
[Ip12¢—a)|| < 3e
Hs
To obtain control of |, — 1||y+, again we use
1= D¢ —‘i(A— 1).
1A
It’s easy to obtain
1Co = g < |Di3 s + C€® + K 'e < 3.

By continuity, we can choose ¢ > 0 sufficiently small such that

[Ga — 1]

Hs < 56, HS{HH3+1/2 < 56, ‘|Dt3‘|HS < 56, Vte [O,To + C)
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So we must have T = [0, de 2], for some absolute constant ¢ > 0.

2.5.11 Change of variables back to lagrangian coordinates

Next, we need to change of variables back to system (1.13). So we need to control x on

time interval [0, de2]. We have

ke =bok

So we have

Recall that

So we have

(I - H)ba = [Ca;fH]b — (9a[Dt§,’H] Ca —1 + % 2 /\jCa

G A - 50

Clearly,
=
| [gaa%]b_aa[DtC7H]< < 062,
e |,
and
: AjGa ~1 —5/2
= < K, dg(t €,
szl (€l 1) — 2(t))? » 1)

for some absolute constant C' > 0. By lemma I1.33, we have

lballgn < C€ + KM di(8) .

By Sobolev embedding, we have

150 © K|, = 1Pall,y <lballg < Ce® + Kt (1) .
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It’s easy to obtain that
|ka(-,0) = 1], < Ce. (2.422)

So we obtain

t
Kol t) — Ro(a, 0) —f Rar(o, T)dT (2.423)
0
t
= f ba 0 K(a, T)Ko(a, T)dT. (2.424)
0
Let §; > 0 be a constant to be determined.
9 1
Tii= {Te (0,012 sup ol 1) = kol 0)l0 < 15 } (2.425)

te[0,T]

In particular, if ¢ € 77, then for e sufficiently small, we have % < Ko < g. Also, 77 is closed.

For T € Ty, we have for any t € [0, 77,

t

Rala,t) — ko(a, 0)‘ <J <C€2 + K;ldI(T)"E’/Qe) dr (2.426)
0
< f(ce? + K71+ ¢)_5/2e)d7' (2.427)
b s 207z(0) '
2 2
<o+ 2002 (2.428)
Al 3
<Cé? . 2.42
Ce't + 15K, ( 9)
Here we’ve used the assumption x%‘) > 2007e. Choose §; = %. Then we have
1
sup ||ka(-,t) — Kal-, 0)|l, < 20" (2.430)
te[0,T7]

Therefore, 77 is open in [0, §;¢7 2], we must have T; = [0, §1¢2].

Let dp := min{d, 0 }. Since k, = % on [0, doe 2], we can change of variables back to lagrangian

coordinates and conclude the proof of Theorem I.10.
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CHAPTER III

Justification of the Peregrine soliton from the full

water waves

3.1 Notation and convention

Assume f a function on boundary of Q(t¢). By saying f holomorpihc, we mean f is
boundary value of a holomorhpic function in Q(t). Let h € L2 (R), if h is neither periodic
nor vanishing at spatial infinity, then we say that h is nonvanishing.

We use C(Xj, Xs, ..., X§) to denote a positive constant C' depends continuous on the
parameters X1, ..., Xx. Throughout this paper, such constant C'(Xj, ..., Xj) could be different
even we use the same letter C. The commutator [A, B] = AB — BA. Given a function
g(,t) : R — R, the composition f(-,t) o g := f(g(-,t),t). We identify the R? with the
complex plane. A point (z,y) is identified as x + iy. For a point z = = + iy, Z represents the

complex conjugate of z.

3.2 Preliminaries

In this section, we define the class of holomorphic functions that are considered in this
paper, and define the function spaces, norms involved. Also, we collect the preliminary
analytical tools such as double layer potential theory, commutator estimates and some basic

identities.
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3.2.1 Two classes of holomorphic functions
We define two classes of holomorphic functions.
(1) Bounded holomorphic functions which decays nontangentially,
(2) Periodic holomorphic functions which approaches 0 as y — —o0.

Periodic holomorphic functions are used to explore the periodic water waves system, while
bounded holomorphic functions which decays non-tangentially is a good setting for water

waves with initial data of the form X®. For convenience, we introduce the following notation.
Definition III.1. Denote

Holn (2(1)) = = {F(, t) : Q(t) — C bounded holomorphic, decays nontangentially in Q(t)}

(3.1)
Denote

Holp(Q°(t)) := {qﬁ(-,t) :Q°(t) — C bounded, holomorphic, 27 periodic in Q°(¢),
(3.2)

lim ¢(z,t) = 0}.

Imz——0

Remark T1.2. Let f € L2 (R). If f = ® o for some ® € Holy(Q(t)), then we say f €
Holpn (21)).

3.2.2 Fourier transform

In this subsection we define the Fourier transform on R and on T := [—m, 7].

Definition ITI.3. Let f € L*(R), then we Fourier transform of f as

fior = | swe s
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Let g € L?(T). Then define Fourier transform of f on T, still denoted by §:

1

(€)= 5- | gta)e .

3.2.3 Function spaces
In this subsection, we define some function spaces that we’ll use in this paper.

Definition III.4. (1) Let s > 0, we define

o]

HY(R) = {f € I*(R) - j (1 + [2meP) | F(O)2de < oo},

—00

and we define the norm ||-|| ;. by

- f (1 + [20€[2)°|F(€)Pe.

—00

/1

(2) We define

H(T) := {f € LX(T) : Y (1+m*)|f(m)[* < o},

meZ

and we define the norm

Heny = 0 (L m?) ()]

meZ

If]

(3) Let J =R or T. Without loss of generality, assume s > 0 is an integer. Define

W () i={f € L?(J) = Y 100 fll ooy < -
m=0

Define the norm

1 ooy o= D, 100 Fll pon -
m=0

We’ll use the following Sobolev embedding a lot.
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Lemma IIL.5. (1) If s > 1/2, and f € H*(R), then f € L*, and

11l ooy < C )£

Ho(R) *

2)Ifs>1/2, and f € H*(T), then f € L*, and
(2) If /2, f (T), f ,

1Al ooy < Cs)I1F]

He(T) *

Definition IT1.6. Let s > 0. Let sy > 3/2 be fixed. Define

X*:={f=fo+fi: fre H(R), foe H(T)}. (3-3)

Associate X° with the norm

£l xs =11 fol

weso(ry L f1ll sy - (3.4)

Lemma II1.7. Let s = 0. Then X?® is a Banach space.

Remark 111.8. Let f € X*. The decomposition f = fo+ fi for fo € H*"*(T) and f; € H*(R)
is unique.

3.2.4 Hilbert transform and double layer potential

Let ( = ((a,t) be a chord-arc for every fixed time t, we denote the Hilbert transform

associated with ¢ by Hc, i.e.,

Hos(a)i= Zpo [ s (3.5)

—00 g(aat) - g(ﬁvt)

Remark I11.9. We'll also use the notation H,, Hg, Hg in this paper, represents Hilbert trans-
form associated with w,gt ,w, respectively. We denote H the Hilbert transform associated

with ((a) = a.
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The double layer potential operator I associated with ( is given by

Kef(@) = po. fo L % yp)dp. (3.6)

@D - B

The adjoint of the double layer potential operator Kf associated with ¢ is defined by

ctto) g [ e L 1o
Kif(a) = po. JOO Re{ 71 |Ca] C(at, 1) — C(B, )

yf(B)dp. (3.7)

For periodic functions, we use also the following version of Hilbert transform. Let I'()
be a chord-arc, I'(t) = {w(a,t) : a € R}, where w — « is periodic. Let Q°(¢) be the region

below the curve I'(¢). Define the periodic Hilbert transform associated with I" as

1

My (@) = g | wa(B)cotl5wlan t) —w(3,0)1(8)d5, (3.5)

Remark 111.10. Please note the difference between H,, ad H,.

The corresponding double layer potential operator K, is given by

of(@) 1= po [ Rels-wn(® ot wlart) ~w(B.0)M (). (39

T 2mi
The corresponding adjoint KCJ of K, is given by

1 w,

Kpf(a) = p.o. LRG{———W(BN Cot(l(W(Oé, t) —w(B,1)))}f(B)ds. (3.10)

270 |wa | 2

3.2.4.1 Characterization of holomorphic functions

For holomorphic functions which decay nontangentially, we have the following description.

Lemma II1.11. Let f € Holp(2(t)). Then Hcf is defined and

(L =H)f =0.

138



Proof. This is a consequence of Cauchy’s theorem. [

We have the following well-known characterization of periodic holomorphic functions.

Lemma II1.12. Assume f € L*(T). Then f € Holp(Q°(t)) if and only if

([ - Hp)f = 0.

We’ll use the following boundedness of Hilbert transform and double layer potential
operators. Suppose that (,w exist on [0,Ty] for some constant Ty > 0, and satisfy the

following chord-arc condition: There exist constants «y, 5o, a, ) such that for all t € [0, Tp],

agla — B < [¢(a,t) = C(B, )] < fola — B, (3.11)
and
apla — B] < Jw(a,t) —w(B,1)] < Bola — Bl (3.12)

Lemma II1.13. Assume ((a,t),w(a,t) satisfy (3.11) and (3.12), respectively. Then there

exist constants Cy; = Cy(ap, By) and Cy = Csy(ayg, By) such that

”HCf”Lz(R) S CleHLZ(]R) . (3.13)
HHPme(T) < O2||f||L2(T)- (3.14)
H([ - K()ilfHLQ(R) < CleHLQ(R) . (315)
H(I - ’Cp)ilf”/y(qr) < C2||f||L2(1r) . (3.16)
| =K1, . < Gl (3.17)
T = K3 Fllesce) < Coll (3.18)

Proof. See for example Chapter 4 of [59] for the case on L?(R). The case on L*(T) can be

139



proved in a similar way. O]

Remark 111.14. Because we consider smooth and small solution, indeed we have for real

function f, for w such that w — o small, an easy calculation gives

111

< el f]

Hs(T H(T)

From this, the boundedness of (I — /C,)~! follows immediately.

3.2.5 Some basic identities

For convenience, we record a variant of Lemma II.12 here. The differences between
Lemma II.12 and Lemma III.15 are: First, Lemma II.12 is in lagrangian coordinates, while
Lemma III.15 is in another coordinates. Second, Lemma III.15 holds not only for functions
vanishing at oo, but also for functions in X*. Nevertheless, the proof of the two lemmas are

the same.

Lemma II1.15. Let Ty > 0 be fized. Assume Di(,(, — 1 € CH[0,To]; X1), f e X2 We

have

(D0 HlF =101 He) (3.19)
[D?, Hlf =[D3<,5§]% +2[DiC, Hel aQCth (3.20)
1" Dl(a,t) — Di((B, 1)
— Lo( St —cp. ) A (3.21)
[Aaa’Hﬁ]f _[ACOUHC]%7 aaHCf = CaH(% (322)
Ou Dy 1 (™ D(a,t) — D((B,
D%~ id0n 1l =210 =0 - [ (2= B g5 0ds (2

For proof, see [71].

We also need some commutator identities for periodic functions.
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Lemma IIL.16. Let Ty > 0 be fized. Assume that f e C?,([0,Tp] x T). We have

00yl = i Hy 122 (3.2

(900, Hpl f = [gwa,“rtp]i—z, V ge LP(T). (3.25)

CRTATEYRRARS (3.26)

(D2, Hf = (Do, 122 (3.27)

(D2 117 =[(D) ) 2 120, 7, .
g T(sfr?( o <(ﬁ>)>>> Tad5. |

[(D})? — iAodu, Hyp f =2[D$W,Hp]% - ﬁf (Sm< ((j()&_ Diw g))))f fsdB. (3.29)

Proof. Note that

My (@) = = = | Galogsin(G(w(a) ~ w(8))f(3)dp

:l, log sin(%(w(a) —w(p)))fs(B)dp.

T J

Using this, we obtain (3.24). (3.25) is proved exactly the same way. (3.26) is prove similarly.
(3.27) is a direct consequence of (3.25) and (3.26).

To prove (3.28), by changing of variable, it suffices to prove

0%, M, f

= [atzw> %p]

3.30
Jo | oy gt~ L wi(@) (3.50)

— 2
Wa Wo  A4mi (Sln(g(w( ) — fadp.

wi(6)
w(ﬁ)))>
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(3.30) is a direct consequence of (3.26) and the following identity:

[at27Hp]f = at[at’Hp]f + [ath]atf-

Remark 111.17. The identities in lemma 111.15 and lemma I11.16 hold true in BMO sense.

3.2.6 Basic commutator estimates

We’ll need to use the commutator estimates which we’ve used in Chapter 2. For the

reader’s convenience, we record them in the following. Let m > 1 be an integer. Define

a) — A;(B) f(B)
ST = J“%a 7 70(@) 7000

dg. (3.31)

() ](B)
0= 114 (1= fo (3.32)

We have the following comutator estimates, which can be found in [63], [71].

Proposition II1.18. (1) Assume each ; satisfies the chord-arc condition

Cojla = B| < |vi(a) = v(B)| < Cuila — B, (3.33)

where Cy j,Cy; are positive constants and Cy; < Cy;,1 < j < m. Then both||Si(A, f)] ;-
and || So(A, f)| ;2 are bounded by

1,

o1,
j=1 ’

where one of the Xo, X1, ...X,, is equal to L* and the rest are L*. The constant C depends
—1
n || Jj=1..m

Lm
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(2) Let s = 3 be given, and suppose chord-arc condition (3.33) holds for each ~y;, assume

v, — 1€ H* . then

[152(4, ||f||z,
where for all j = 1,...,m, Y; = H*' or W2 and Z = H® or W 1*. The constant C
depends on VJ — 1‘ Jj=1,...,m.
Hs—1
Let m > 1 be integer. Define
~ fa
Si(f,9) = [g,Hp]w—- (3.34)
5 - — A;(B)
So(A, f =J 1 fa(B)dp. 3.35
2(4, /) THsm% at) w(B,1)) 5(8) (3:35)

We have

Proposition I11.19. Assume w satisfies the chord-arc condition (3.12). Then

|:cs g>HHSm < Oz 91 (3.36)
|54, N i (3.37)

)

where the constant C' depends on HwaHHs_l(T) J=1,..,m.
Proof. This can be derived from Proposition III.18. O

3.3 Water wave system in periodic setting

In this section, we use S. Wu’s method (see ([71], [72]) to give a sketch of proof of long
time existence of water wave system in periodic setting. Long time existence of periodic
water waves is not new, the methods in [71][39][1][32] all imply cubic lifespan for 2d gravity

water waves with small initial data. We use S. Wu'’s method to sketch the proof here because
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we need to bound the quantities such as by, Ag, w — a, DYw, (D?)?*w on time scale O(e?) in
later sections, and also because we need to use this method to prove the remainder term rg
remains small for sufficiently long times. Solution of this periodic water waves system has
the same boundary values at spatial infinity as a water waves system whose initial data is
assumed to be in X°.
3.3.1 Notation

Recall that DY = 0; + bydy, for some function by. D; = 0; + bd,. 2°(t) be the region
bounded above by the graph w.

3.3.2 Set up of the periodic water waves system

Consider the periodic water waves system

(D)2 — iAgda)w = —i

(3.38)
w0 — a, D% € Holp(20(t)).
Let kg : R — R be a diffeomorphism given by
(lio)t = b() O K. (339)

Then the change of coordinates a — ko(«) brings the system (3.38) back to Lagrangian

coordinates, namely, with (aglako) 0 kgt = Ao, we have

(W oK)y — 1aglaw © Ko = —i

(3.40)
(WoFo)e € Holp(Q0(t)).
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Take 0, on both sides of the above equation, we get :

(ao)t

(02 —iag0y)(w o ko) = i(ag)iaw © Ko = 1apWy O K. (3.41)

Qo

Precomposing with #;' on both sides of the above equation, we obtain,

((D})? = iAoba) Diw = o0 Ko Aowa. (3.42)

Qo

Similar to the derivation of formula for b, A, % o k™" in [71], we can derive formula

for by, Ao, % o Ky 1 We give the details for the derivation of formula for by,. Formula for

Ay, % kg ! follow in a similar way.

3.3.3 Formula for b

We have

Wo — 1

(I —Hp)bo = —[Dfw, H,) (3.43)

Wq,
Proof. By assumption, w — a = $o(w(a,t),t), Diw = Vo(w(a,t),t), where $g, ¥ € Holp.

We have

D?(IJ :(8,5 + boaa)(a) - Oé) + b[)
(3.44)

=DYw(®g),, 0w + (Pg); 0w + by.

Note that D%, (®g); o w € Holp, we have
(I H)D@ =0, (I~ Hy)(®)ow =0

Also note that
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Apply I —H, on both sides of (3.44), we have

D, — 1
(I —H,)bo = (I —H,)Ddw

Wa w

O
3.3.4 Formula for A
. We—1 O (Do
(1= #,)(Ag — 1) = i1(DF) e 1) 2L 4 s[(D o, ) 2 (3.45)
3.3.5 Formula for % oKy
We have
) ~ a — aaDO(D é’a DO 2(;)
—i(I —H,) (Aowa((a(;)t) o ") =2[(Df)w, 1y + 2[ D %p](w—t)
o o 3.46
1 ( Diw(a) — Dyw(B) )25,3D0wd6. 40
i Jp \sin(3(w(a) —w(B))) '

3.3.6 Local well-posedness

(3.38) is a fully nonlinear system. To prove local well-posedness, one way is to quasilin-
earize this system. In [69], S. Wu showed that for water waves which vanish at infinity, one
can quasilinearize (3.38) by just taking one derivative in time. For periodic case, we have
quasilinearization

((DY)? — iAgfa) DPw = il%% 0 kg,

ao

(3.47)
D& € Holp(Q0(1)).

By formula (3.43), (3.45) together with Proposition I11.19, the system (3.47) is a quasilinear
system. So the local well-posedness can be obtained similar to the work of S. Wu[69]. We

omit the details and state the result as follows:
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Theorem III.1 (local well-posedness). Let s > 4. Assume that w(0), DYw(0), (DY)?*w(0)

satify the compatiability condition, i.e., @(0) — a, D% (0) € Holp(2°(0)), and

0a(0) — 0o DY (0)

(1 = Hp)(A0(0) — 1) = i[(D7) % (0), Hp] s 4 D0 (0), Hp] 5 L

Assume (Oqw(0) — 1, D%w(0), (D?)?w(0)) € H*(T) x H**Y/2(T) x H*(T). Then there is T > 0
depending on the norm of the initial data such that the water waves system (3.38) has a

unique solution w = w(a,t) fort €[0,T], satisfying
(wa(t) — 1, DYw(t), (DY)?w(t)) € C([0,T); H*(T) x H**(T) x H*(T)). (3.48)

Moreover, if T 1S the supremum over all such times T', then either T, = 0, or The: <

0, but
O o _
or
w(a,t)*w(ﬁ,t) Oé*ﬁ
sup —+ sup = 00, 3.50
0 B R0 e S R) (350
or
lim inf Ag(a, t)|wa (e, t)] < 0. (3.51)

1 Tmas a€R

3.3.7 Long time behavior

We use S. Wu'’s method ([71]) to study the long time behavior of periodic water waves with
small initial data. Consider the quantity 6y := (I —Hp)(w—&) and &y := DI —Hp)(w—@).

One can show that

(3.52)

0
' +1/2(T) ¥ | Diw|

Hs'(T)» ||00| H'+1/2(T) *

O‘~H .~ |[Oaw — 1
H='(T)
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Apply lemma II1.16, we obtain

((DD)? — iAg)by

1 — 10, Ddw 1 Ddw(a) — DYw () \?2 _
_ 0 . . a~t - t t o
= 2D My 4 Hy ) T(Sin(g(w(a —wﬁ)))) Os(w — @)dB  (3.53)
::G07
and
((DY)? —iA90.)G0 = DGy + [(D})? — iAgBa, D16 (3.54)
Note that
[(D%)? — i4y0., D16y = i( (QO)t) o kg 1 AgOabo, (3.55)

Qo

which is cubic. So we can prove long time existence. We state the result as follows.

Theorem II1.2 (Long time existence). Let s’ = 6. Let w(0), Ddw(0), (D?)*w(0) satisfy the
compatibility condition as in Theorem III.1. There exists € = €y(s’) > 0 such that for all
€ < €, if

[(2aw(0) — 1, D}w(0), (D})*w(0))]

<
HY (T)x H'+1/2(T)x 7 (T) S &

then there ezists a positive constant Cy = Co(s') such that the solution to (3.38) exists on

[0, Coe?], and

sup || (Gaw(t) — 1, Diw(t), (Df)*w(t))]
te[0,Coe—2]

H (T)x B +1/2(Tyx B (1) S 26

As a consequence, use formula (3.43), (3.45), (3.46), and use lemma II1.13, we obtain

bounds for by, Ay, (C;(;)t oKyt

Corollary I11.20. With the assumptions in Theorem II1.2, there exists C' > 0 independent
of € and w such that for all t € [0, Coe™?],

(@) s

10 oy + 1 A0(t) = 1] © K

< Cé. (3.56)

HS' (T) + ‘
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In particular, by Sobolev embedding, we have

(ao) 5 Kal
Qo

< Cé. (3.57)

Wslfl,oo(’]l‘)

[0(t) oy + 1408) — Llg-songe +\

Proof. For (3.56), take real part of equations (3.43), (3.45), and (3.46), respectively, then
use (3.18). For (3.57), use lemma II1.5 and (3.56). O

Another consequence is the following.

Corollary II1.21. The quantities H, (o — «), H,DYw, ,Hwa):,_;l and Hwa‘*D?w are well-

defined, and
(I —Hy)(w—a)=0. (3.58)
(I —H,)D% = 0. (3.59)
(I - Hw)@“w_ L o (3.60)
0_
(I Hw)a"‘ft” ~0. (3.61)

Proof. The functions @ —a, 2a=1 D%, % are in Holp(Q°(t)). Then the corollary follows

Wa

from lemma II1.11. O

Remark 111.22. Note that in the above corollary, the Hilbert transform is defined by

(7 s
Hoflo) = —po. | == (3.

For a bounded smooth function f, H,f does not always define an L* function. In such

cases, H,, f is interpreted in BMO sense.

Notation Denote

P = D? —iAd,, Po := (DV)? —iAyo,.
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3.4 Water waves system with data in X*

We consider long time existence of non-vanishing water waves system with data of the
form X* := H*(R)+ H*(T). This is a natural generalization of the current known long time
existence results for water waves. Moreover, if we restrict ourselves to smooth water waves,
then this class of water waves has included many physically relevant situations.

Let (w, D%w, (D?)?*w) be the solution to the periodic water wave system in the previous
section. We consider the class of solutions of water wave system with boundary values w(«, t)

at a = +0o0, i.e., we consider

r

(D? — iA0,)C = —i

( —a, D¢ e Holy(Qt))
4 (3.62)

limy—t0(¢ —w) =0

limg 40 (Di¢ — Dw) = 0.

Recall that D; = 0; + b0,. b and A cannot be arbitrary. Instead, they are determined by the

water wave system and the constraint that ¢ — a, D,¢ € Hola(Q(t)). Denote

6_ Q= ®(C(avt)7t)7 Dtc_ = \I’(C(Oé,t),t),

where ®, U € Hola (€2(t)).

! etc. The derivation

In the following subsections, we derive formula for b, A and % o k™~
is almost the same as that in [71], except that we are dealing with functions which are not

necessarily vanishing at oo, and that the formula might hold only in BMO sense.

3.4.1 Formula for b and b,

éa_l

Ca’ (3.63)

(I = He)b = —[Di(, He]
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and
Opw — 1

Wa

([ - Hw)bo = _[D?bme] (3.64)

Proof. We have

Ea_l

Di( =b+ P00+ D(Pcol=b+ P 0+ D 1§

Since D, ®;, ®c € Har(2(t)), if we apply (I — H¢) on both sides of the above equation and

use lemma II1.11, we have

=
0 =(1 — Hb+ (I — Ho)Di -
Ea —1
=(I —H)b+ [DiC, He] o
So we have!
Eoz —1
(I = He)b = —[Di¢, He] o (3.65)
So we obtain (3.63). Use completely the same proof, we have
Oaw — 1
(I = Ha)bo = ~[DPbo, Ha] ==—. (3.66)
So we obtain (3.64). O
3.4.2 Formula for A
Use the water wave system, we have D2( + iA(, = i. Note that
_ _ 0aDiC
D?C:DtDtC:Dt\DOCZ\IthC‘{‘DtC\PCOC \IJCZ( CtC (367)

INote that Heb and H, by are defined as BMO functions. Moreover, Heb — Ho,bo € H*(R). Similar
properties hold for other quantities such as A, Ag.
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_ _ Co—1 Fo
1AC, = 1A +1A0,(C — a) = iA +iA(, Cac =iA+ (D¢ + i)co‘c (3.68)
Since Wy, 52:1 € Holyr, by lemma III.11, we have
C_a —1
(I=H)Weo( =0,  (I=H)¥o(=0, (I—-H) = 0. (3.69)

Ca

Apply (I —H,) on both sides of D¢ +iA(, = i, use (3.67), (3.68), and (3.69), we have

(I- HC)Dt(aaftC + (I = He)i(A—1)+ (I - ’HC)DECC"‘C_ S (3.70)
Use (3.69) again, we can write (3.70) in commutator form:
(I~ H) (A~ 1) = i[ D¢, H] a“CD DR H — (3.71)

Use completely the same argument, we get a nonlocal version of formula for Ay:

0o DY@ o — 1

(I —H,)(Ag— 1) =i[Ddw, H,] - +4[(DY)w, H,] o (3.72)
Remark 111.23. Formula (3.71) implies that A — 1 is quadratic.
3.4.3 Formula for % ox~! and U‘;—(;)t oKy
Apply D, on both sides of (D? +iA40,)¢ = i, we have
(D2 +iAd,)DyC = —i% o k1 AG,. (3.73)
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Apply (I — H¢) on both sides of (3.73), use (I — H¢)Dy( = 0, we have

—i(I - HC)% o kT AC,

=(I = H)(Dff +iA0a) DiC

_ (3.74)
=[D} + iAda, Hc]DiC
—9[ 2 0aDiC 2(D, 0aD}¢ 1 Dy((ar) — Di((B) 2&’ D,CdB.
[ tC?HC] Ca + [ C?HC] Coz i < C(Oé) _C(6> ) B C 6
So we have
(I - Hc)( "ok Al
_2i[D2C.H,] 0aDiC 2D H ]a D2<*1J<Dt<(a)—Dt<(ﬁ)>26 DEd (3.75)
G A IR
Use the same argument, we get nonlocal version of formula for (ao) o kg
(I — Hw)(<20)t o kgt Agwa) =2i[(DY)*w, Hw]a f? + 2i[Dw, H ]a <f?)2@
0 o «
(3.76)
L [ (Diw(a) — Diw(B)\2, o
i ISroEr ek
3.4.4 Formula for b — by
Write b = by + by. By (3.63), (3.64), we have
(7 = He)b = (1 = Hobo = = [P He =) (Co = 1) + (DR 1@ — 1)
So we obtain
0 o — 0 1 1. -
(I =He)(b—bo) = = [DiC — Dyw, H] = [Diw, He— = Ho—](Ca — 1)
Ca o Wa (3.77)

- [D?w,'wa—](&)a — (He — He)bo.

«
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3.4.5 Formula for % o P I

We have

1-Hae ont - Gk o]

(1 = Ho) (AL, (%) o k1) = (I = Ha) (Ao (%) ory) (3.78)
+ (He — M) (Aowa ( (Zoo)t> o n51>.

3.4.6 Formula for D.b;

The idea of deriving formula for D;b; is the same as that for b;: find formula for D;b
and D?by and then consider their difference. The derivation of formula for Db and D?b,

are similar to that in S. Wu's paper (See Proposition 2.7 of [71]). We record the formula as

follows.
(1 —H(;)Dtb:[Dtg,%dM— (D2, He] a<_1 -
« @ 3.79
1 [ /Di(a) ~ DC(AN? -
oo e ) @ -y

For the periodic part, we have

(I — H,)DPby <[ DV, 1,722 = Di%) _rpoyz, gy 1% =1
x ( D?M(oz)ga— wa(ﬁ)>2(@ . 1);;“ (3.80)
i w(a) — w(p) 5 .
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Subtract (3.80) from (3.79) , we have

(I —H¢)Diby

=(I —H¢)Dib — (I — Hy) Dby + (He — He) Dby — (I — He)b10abo
00 (2b — Dy(C) 0 (2by — DY)

_ o
_[DtC’%C] ] Ca [thva] Ca
-0 M2 D
1 (D) = DiC(B)\?, = 1 [ (Djw(a) — Diw(B)\2
— (I —H¢)b10ubo.
(3.81)
3.4.7 Formula for A — Ay
By (3.71) and (3.72), we have
T2 o —1 012 Wa — 1
(I_HC)(A_AO) :Z[DtC7HC] C _Z[(Dt) 7Hw] W
+i[DiC, He] a“fté — i[D0w, H,,] a“fg “ (3.82)

Now we have formula for by, D;b, A;. So that we have a quasilinear system. It’s not difficult
to obtain local well-posedness of this quasilinear system. We omit the details and focus on

the long time existence.

3.4.8 A discussion on long time existence

In order to prove long time well-posedness, one idea is to find some quantity ¢ with

D0 ~ D,(, such that

PO = cubic.
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In [71], S. Wu take 6 = (I —H¢)(¢ — «) and show that P consists of cubic and higher order
terms. For water waves that is neither periodic nor vanishing at spatial infinity, if we take
0 = (I —H¢)(¢ — ), then PO is still cubic, at least in BMO sense. As was explained in the
introduction, since 6 is not in any L?*(R) based spaces, it’s difficult to associate P = cubic
with an appropriate energy which still preserves this cubic structure.

Note however that, given any compatible initial data (¢(c,0), Di((a,0), DZ¢(c,0)) be
such that

(0al(a,0) — 1, D¢ (a,0), D?¢(r,0)) € X* x X525 X%,

by Theorem 1.2, w(a,t), Ddw(a,t), (DY)*w(a,t) exists on time scale O(e72), so we need
only to consider long time existence for & := ( — w and Dy&;: and it’s advantageous to do
so, because & (a,t) and D& («, t) vanish as o — o0, while ¢ — o and D,( oscillate at 0. It
turns out that P (I — H¢)&; consists of cubic and higher order nonlinearities. So we are able

to prove long time existence in our situation.
3.4.9 Governing equation for &

3.4.9.1 P(I—H)( - )

In [71], the key ingredients that S. Wu derived P(I — H,)({ — «) are:

(I —H)D:C =0, (I—-H)(—a)=0, U—Hagglza PC = —i. (3.83)

In our situation, (3.83) is still true, despite that we have non-vanishing water waves at oo.

Use the same derivation as in [71], we have

P =H)(C — )

Yasc-Qas (3.8)

1 _ 1 D, - Dy
= — Q[DtC/HgC—a + He f ( (o) ¢(B)

1
A B Py s i)

=,
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Similarly,

Po(l — Hy)(w — «)

1 _ 1] 1 (®° /DO — DO

Wa o T J—o0

)Qaﬁ(w —&)dB  (3.85)

Z=G0.

3.4.9.2 An equivalent quantity of ¢

Denote

A= (I —H)(C—a)— (I —H,)(w—a). (3.86)

The reason we consider this quantity is that at least formally, we have known P (I—H,)(¢ —()
and Py(I —H,,)(w—w) consist of cubic and higher order terms. So the quantity P (I —H,)({—

() —Po(I —H,)(w — ) is at least cubic. Moreover, P — Py is quadratic. So P is cubic.
Note that A might not be holomorphic in €(¢). To avoid loss of derivatives, we consider
the quantity
0 := (I —He)A (3.87)

First we derive water waves equation for P\, and then we derive P(I — H¢)A. Direct

calculation gives

D} — (D))* =D} — DD} + D,D}) — (D})*
:Dt<b16a) + blaaDg (388>

=(D;b1)0q + b1 D0y + b10,D?.
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Then we have

PA=P( —Hc)(C —a) = Po(I = Ha)(w — o) +
= _Q[DtgaHC

(P—Po)(f—’H)( —a)
<+H<C]6Dt<‘+2[D%H + He ]aDO

i Dy((a, t) — DiC(B,1) =
T ( C(a,t) —¢(B, 1) ) (= CJpdh (3.89)
L [ (Dw(a,t) — Diw(B,t)\2 .
-— ( oo d) (5.0 ) (w—@)pdf

+ Dib10o(I — Hy)(w — a) + b1 D00 (I — He)(w — )

a

+ 010, DY(I — Hy)(w — ) —iA10, (I — Hy,)(w — a).

So P consists of cubic and higher order nonlinearities. Note that

PO =P(I — Hc)A

(3.90)
=(I — H)PA — [P, He ]\
We have
OuDiA 1 rDi((a) — Di((B) )2
[P HIN 2D H] =5 = ( (=5 ) ds2d8. (3.91)
Note that
A=l =H)([( —w) + (Ho —He)(w — )
=(I —H)é + (Ho — He)(w — @) (3.92)

2=)\1 + )\2.

A\g is quadratic, so [Dy(, H ]a Dt’\Q is cubic. \; is holomorphic in Q(#)¢, so [D( ﬂcg]a D\
is cubic. So

Oa DX _ O Di A 1 — 1
[Dt(,%g] Ct L _[DtC:HC] Et ! + [DtC,HCC— + Hcg—]aal)t}\l
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is cubic.

3.4.10 Governing equation for D,6.

The nonlinearities P(I —H,)D,6 contains a term of the form D?b;, which loses derivatives

in energy estimates. So we consider the quantity

o = (I = HDAL = H)(C — ) — DI —Ho)(w — )]

Denote

X 1= Di(I = H) (¢ — a) = DJ(I — Ho)(w — ).

Remark 111.24. If we replace o by x, then we’ll lose one derivative in the energy estimates.
The advantage of (I —H,) acting on x is that (I + H¢)o = 0, so (I +H)0ao = —[0a, Helo,

which prevents losing one derivative.

We have

PDA(I - H)(C —a)
—DiP(I ~ H)(C — a) + [P, D(I — H)(C — )

—D,G + [P, DJ(I — He)(C — a).

And we have

PoDY (I — H,)(w — @)
=D{Po(I = Ho,) + [Po, D}I(I = Ha)(w — )

=D)Gy + [Po, D}](I = Hy)(w — ).
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So we have

Px =PDy(I —H) (¢ — a) — PoDY(I — Hy)(w — o)

+ (P —Po)DY(I — Ho)(w — )

(3.93)
=D,G — D)Gy + (P —Po)D{(I — Hy)(w — @)
+ [P, DI = He)(C = @) = [Po, DY) — Ha)(w — @)
We have
Po = (I —-H)Px— [P, Hclx
B JaDix _ i Di((ar) — Di((B)\?
[P. A =21Di¢, ) X f ( e ) 2sxas. (3.94)

Use the same argument as we did for 2[D;(, ’Hg]aac%, we can show that 2[D,(, HC]% is

indeed cubic.

3.4.11 Long time existence

With previous preparations, use standard energy method (similar to those in [71], [63]),
we can complete the proof of Theorem 1.24. A minor modification of the argument in §3.7

-83.9 also gives a proof of Theorem 1.24. We omit the details of the proof here.

Remark 111.25. In our set up, we need the periodic solution w to have %—F more derivatives
than the decaying part & . This requirement is of course not optimal. However, it’s enough

for us to justify the Peregrine soliton from the full water waves.

Remark 111.26. Theorem 1.24 can be interpreted as: Periodic water wave system is stable
under Sobolev perturbation (note that this perturbation is indeed not small relative to the

periodic part).
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3.5 Multiscale analysis and the derivation of NLS from full water

waves equation

Our goal of this section is to formally derive the NLS from full water waves, which is
similar to that in ([63]), except that the water waves we are considering do not vanish at

infinity. The method we use to derive the NLS is the multiscale analysis. Let
ap =, oq:i=e€q, to:=t, t;:=¢€t, ty:=¢t. (3.95)
Assume that ¢ — a, D,¢ € Hol(2(t)). Assume ( can be expanded as a power series of €, i.e.,

C=a+ Y ¢, (3.96)
n=1
We assume (V) is wave packet like, i.e., (V) = B(ay, to, t1,t2)e’®, where ¢ = ka +~t for some
constants k,y > 0. We don’t assume B € H*(R). Instead, we assume B = By + By, with
By = By(t) independent of «, and By € H*(R).
Because ¢ — a is holomorphic, the leading order of { — o must be close to a holomorphic

function. If By = 0, we the following result:

Lemma II1.27 (Propositioin 3.1 in [63]). Let f = g(ea)e™**, with g € H**™(R), k # 0 and

s,m =0 be given, assume € < 1 and g € H*"™(R). Then

1
€" 2

(I — sgn(k))H)f| o

me®) S C gl 7+ (®)

for some constant C' = C(s).
If f is oscillating at oo, we have the following.

Lemma II1.28. Let ¢ be a constant and assume f = ce™** + g(ea)e™**, with g € H*T™(R),
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k #0 and s,m = 0 be given. Assume € < 1. Then

-

m—

€ 2
1T = sgn(R)E)f |l ey < O lglsreem ).
for some constant C' = C(s).
Proof. For k # 0, we have
(I — sgn(k)H)e ™" = 0. (3.97)

Therefore, by lemma I11.27, we have

mfl

<0t
H(R) k™

(I — H) f|| praw) = H(] — H)g(ea)e e

||g‘ Hs+’m(R). (398)

[]

Now we are ready to carry out asymptotic expansion and derive the focusing NLS. As in

[63], we use the following equation to perform multiscale analysis.

(D} = i40,)(I = He)(¢ =€) = —2DiC, e + Her0aDig

Ca
o L[ (o) = D)

, ) (3.99)
=) e ) Be-aas=c

So we need to expand every quantity/operator as asymptotic series in €. These have been

done in ([63]). We expand b, A, G as
b= Y™, A= AN G =) G, (3.100)
n=0 n=0 n=0

Since b and A — 1 are quadratic and G is cubic, we have

O —pD = AD =G, =Gy =0, AO =1, (3.101)
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Expand H¢ = Ho + ), €"Hy. Then

Hof(a) =Hf (),
Hy f(a) =[¢", Ho)a, f, (3.102)

o ) =160, Holfo, + 62, Hylfao = [0, Hole fo + 5160 160, HOJIE, f

See §3.1 in [63] for the derivation of Hy, H; and Hs.

3.5.1 O(1) hierarchy

This simply gives
A =1.

3.5.2 ¢ hierarchy

We have
(@2, — i) (I — Hy)CO = 0.
Since ¢V = B(ay, to, t1,12)e’?, by Lemma I11.28, we have
(I — Ho)¢W = 2¢M + O(e%). (3.103)

So we have

(5, = i0ay )¢ = O(€").

Then we get ((V = B(ay, ty,ty)e!** ) with v? = k. We simply choose v = vk, as what

we expected.
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3.5.3 €2 level

We need
(61520 - iaao)<l - HO)C(2) = _(2atoat1 - iaa1)(l - HO)C(I) + (atZO - iaao)ch(l)‘
Note that

(0F, = i0ag ) HAC! =(8F, = i0ay)[C"Y), HolOa, Be™
=ik(0F, — i0a,)[CV, I + Hy)Be'

=0(e*).
To avoid secular terms, we choose (V) such that
(204901, — 10y )(I — Ho)CW = 0.

This is equivalent to
1
Bt1 - gBal = O

So we choose B = B(X,T), with X = a; + %tl = e(a + %t), T =ty = €t. Note that

1 _ 0y

2y~ ok’

To choose (@, we use (I —H)({ —a) = 0.

so B travels at the group velocity.

(I = Ho)(® =H (W = [¢W, Ho)0a, ¢
= —ik[¢"W, Ho] Be™™
=ik[¢W, T — Hy]Be™™

— — ik(I — Hy)| B
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We choose

(¥ = ST+ H)|BP + Z| Bl = (I + Ho)(|B* = | Bo|*) + ik| Bo|*.
Note that
1k

(I — Hy)(® = *5(1 — Ho)(I — Ho)(|B|? — | Bo|?) — ik(I — Ho)|Bo|* = —ik(I — Hy)|B|.

3.5.4 ¢ level

First, we need to expand b =Y, _, €"b™. Since (I — H)b = —[D(, H] 5‘2;1 is quadratic,

we have b(® = p() = 0. For by, we have

(I — Ho)b® = — [0,,¢"), Hy] 0oy CV
i i (3.104)
= — yk[¢W, Hl¢W = yk[¢W, T — Hyl¢W = —yk(I — Hy)|B|*

Since b is real, we have

b@ = —yk|BJ%.

We need also to expand A =3, A Clearly, A® = 1, and A® = 0. We have
(I o HO)A(Q) = Z[8§0§(1)7 HO]aocoé(l) + i[atoc(l)a HO]aaoétoi(l) = 0.

Since A® is real, we have A® = 0.

Use exactly the same calculation as in ([63]), we obtain

Gs = 2k B| B|*e™.
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Then for O(€®) terms, we have

() = i0a0) (I = Ho)(®) = = (07, — i0ag)(—HM)C? = (07, — i0a) (—H®)¢W
- (Qatoah - iaal)(l - HO)g(Q) - (Qatoatl - iaoq)(_H(l))C(l)
— (20191 + 0% + 2690100 ) (I — Hp)CW + G
= — (20415 + 07 + 20204, 000 ) (I — Ho)C"W + 2k B| B|*e™®

— — 2y(2iBr — v Bxx + k*yB|B|?)e™,

" 2 .
where v = ZT;/ = —4]%3/2. To avoid secular growth, we choose B such that

2iBr — v Bxx + k*yB|B|* = 0.
So B solves the focusing cubic NLS. So we have

(07, — i0ag) (I — Ho)C® = 0.

From (I —H¢)(( — ) = 0, we have

(I — H(])E(?») —HM® 4 g@cW
=[¢W, Hol0anC® + [¢®), Ho)0ao ¢ + [¢, Ho0n, ¢V
— 161, HoJau 0, + 51, 6, Hol)Z, T
=(I — Hy)BBx — k*Be' (I + Hy)|B|* + k*Be' Hy| BJ?

= — k*B|B|*¢" + (I — Hy)BBx.

We choose

1 . _ A 1 =
¢® = —§k2B|B|26_Z¢ + 5(.7 + Ho)(BBx).
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So we have an approximated solution

5 . 1
 =a + eB(X,T)e + 62{%(1 + Ho)(|BI? = |Bo?) + z’k|B0|2}

1 1 (3.105)
+ 63{ — §k2B|B|2€7i¢ + 5([ + Ho)(BBX)}
To find b3, we have
(I — Ho)bs
= [&t0<(2)7 Ho]aaoc_(l) - [5151((1)7 Ho]ﬁaoé(l) - [%C(l)a Hl]aaoé(l)
- [&toc(1)7 Ho]amé(l) - [étoc(l)a Ho]éaoE(Q) - [%C@)a HU]aaoé(l)(_aaog(l))
_ 1- _ )
=iv(I + Hy)(BBx — §BBX) — 2ik*B|B|*e™".
So we have
_ 1. _ .
bs = Re{iv(I + Hy)(BBx — §BBX) — 2ik*B|B?e™"?}. (3.106)
We decompose 5 into vanishing part and periodic part:
Ci=a+&+6&, @i=a+&. (3.107)
where
- . k
& =eBic + @ (I + Hy)(|BP - |Bo)
(3.108)
3 Loominpe 7 2\ —ip L 3
+{ = SR(BIBJ = Bol Bo[)e™™ + S(I + Ho)(BBx) }.

~ ~ ~ , 1 _ )

& =C — & — a = eBye' + ik| By|*€® — §€3k2BO|B0|2672¢. (3.109)
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So & — a is periodic. Also, we decompose b as by + by, where

-~ _ 1 -
by = — wk(|BI? — |Bol) + 63{ Re{iw(l + Ho)(BBx — 5 BBx)

(3.110)
— 2ik*(B|BJ? - BOIBOF)e’M}.
by = —€%| Bo|* + €3 Re{—2ik?By| By|?¢~*}. (3.111)
So by € H*, and by is periodic. We choose A as
Ai=A® 1AW 1 243 = 1,
Notation. Denote )
5 = C - Q,
§o=w—a, & =&~ <o,
o =W — W,
\ ™ :gl_glabt:: at—i_gaom (3112)
DY = 0, + byOa,
P = D? —iAd,,
750 = (DS)Q - iAoaa.
And recall that the leading order (™) is
¢V = Be = ¢V + ¢,
where B = By + By solves NLS, By is a constant, and By € H**"(R).
¢ =Be, V=B, V=B, (3.113)

Because B scales like €2 in t, in order to observe the modulation of the amplitute, the

168



solution ¢ must exist on time interval whose length scales like €72, i.e., we must have long

time existence for the water waves system.

3.5.5 Well posedness of NLS

Theorem II1.3. Let s = 1. There exists eg = eo(||B1(0)]

ms) > 0 such that the cauchy

problem

iB; + By, = —2|B|?B,

(3.114)
B(0) = By(0) + B1(0) = 1+ f,  Bi(0) € H*(R).
is locally well-posed on [0, eg], and satisfies
1B e msmy < CUIBLO) s w))- (3.115)

For a proof, see for example [28].

Remark 111.29. The global well-posedness of (3.114) for B;(0) € H*(R) is still open, due
to the lack of coercive conservation law. In [9], D. Bilman and P.D. Miller presented a
more robust version of the inverse scattering transform that admits the Peregrine solution
in particular and all L'(R) perturbations of the background more generally. Therefore, for

a large class of initial data, (3.114) admits global solutions.

In the following sections, we obtain energy estimates for the remainder terms rg, rq, respec-
tively. With good energy estimates on the remainder terms, we are able to prove existence of

solutions to full water wave equations whose leading term modulated according to the NLS.

3.6 Energy estimate I: r

Because formally, ¢ — ¢ = O(e*), limaio(¢ —w) = 0, and w — a periodic, we have

(@, D%, by, Ag) approximate (3.38) with error O(e*), at least formally.

In this section, we obtain a priori energy estimates for the remainder ry. The idea is the
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same as that in [63]: use the facts that Py(I —H,)& = cubic and &, D@, by, Ay approximates
w, D%, by, Ay up to €, respectively, we derive water wave equations for a quantity which is

equivalent to ry. With these equations, we can then obtain energy estimates for ry on time

scale €2,

Remark 111.30. As before, we use the periodic Hilbert transform. The nonlocal Hilbert

transform H,, is used when we estimate the error term ry.

First, let’s derive water wave equation for rg.

3.6.1 Governing equation for r

We have

((D})? — iAg0a)(I = H,p)ro

. - 1 _ 1
=((DY)? — iAg0s) (I — Hy)w — 2[DYw, pr— + pr—]aaD?w

1 Dw(a,t) — DVw(B,t) \2 .
<sin<%<w<a,t>—w<ﬁ,t>>>> o= @)ds

47 T

We split G as G = Gy + G2 + Gs + G4, where

G1 = ((DY)? — iAg0s)(I — Hp)@ — ((D9)? —iAgdn) (I — H,p)i. (3.116)

1 1 . -1 g
Gy 1= —2[DVw, pr— + Hp@—]aapgw +2[D%, 7—[%— +H,

«

16DV, (3.117)

§:xl| —
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and

G . (il((w(fy) 200 w0 - a)3has .
- <sm< o) DG 6 - a0
and
Go +=(D)? — iAoda) (I ~ Hy)is — 2 DY, Fy= + Hy =10, DY
0 S0~ , : 3.119
o [ (e DD G gysas Y

3.6.2 Governing equation for D) (I — H,)rg

We need to derive an equation to control D%ry as well. We consider instead the quantity
00 i= (I = Hy){ DI = Hy)(w — @) = DI = Hy)(@ = )},

We have

((DY)? = iAgda)(I = Hp) DI = Hy)(w — @)
— [(D")? = iAg0a, H ]DO([ —H,)(w— )

+ (1 = H,p) (D)) — iAofa) D) (I — Hy)(w — )

R 2 u U AR (3120

L D?w(a) — D?”(ﬁ)
47m'f (sin(ﬂ(w(a) —w(f)))

+ (I = Hp)[(DY)? — iAgu, DO)(I — H,)(w — ) + (I —H,)DYG.

) 2sD21 —#,)(w(8) — B)d8
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And we have

((D})? = iAoa)(I — Hy) DY(I = H,) (@ — )
=~ [(D})? = iAo, Hy] DY(I = H,) (@ — )

+ (I = H,)((D))? = iA400a) DY (I = H,) (@ — @)

A MONOT 9y ~
oD H,] 0a DY D} (I . H,) (0 — )

L[ (Diele) —DEels)

sin(3 (w(@) — w(d)))
(1= H,)(DY)? — iAp2) DI —Hy)(@ — )
0. DPDNI — H,)(@ — a)

Wa

b Ddw(a) — D% () 2( 507 N (6
47i L (sin(g(w(a) —w(ﬁ)))) DI —H,)(@ = B)(B)dp

+ (I = Hy)(D7)? = i4o0a) DY(I = H,) (@ — )

) esDY1 —7)(@ — 5)(8)d8

Ami Jp

= —2[D%, H,]

+ (I — Hp) (D)2 — iAgdy — (D)2 + iAg0,) DY(I — H,) (% — a).

Use (3.120) and (3.121), we have

((DY)? — iAg0, )09 = fourth order.

(3.121)

(3.122)

Use alsmost the derivation and the estimates as that in N. Totz and S. Wu’s work ([63]), we

obtain the following theorem.

Theorem II1.4. Let s > 6. Let T be given as in Theorem 1.16. Let @, by, Ay be given as in

Section 5. There is compatible initial data

(w(0), Djw(0), (Dy)*w(0))
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to water waves system (3.38) such that

<Cé,  (3.123)

| o 0) = 1. DR(0), (D)(0)) — (@0 — 1. DYa(1). (D2(0))|

where H*(T) := H*(T) x H¥+Y2(T) x H¥(T). Moreover, for all such initial data, there is

a a unique solution (w, Ddw, by, Ag) to (3.38) on time interval [0, Te 2] such that

sup

< CeP (3.124)
te[0,Te2]

(wa = 1, DYw(t), (D})w(t) — (@ — 1, DY (t), (151?)2@@))’

Hs'(T)

Also, there is some constant C = C(s') such that

sp (oo =], 40 = A
te[0,Te—2] H#(T)

+HDSb0 - DSEOH ) <cem. (3.125)
Hs'(T) H5'(T)

/ +HD$bO - D%OH ) <cé. (3126)
Wws'—1,0 Ws'—1,00

sop (oo =B, 40— 4]
te[0,Te2] W= 1o

3.7 Governing equation for r

In this section, we derive a governing equation for the remainder term r;. Because we
need to obtain long time energy estimates for the error term (we’ll prove that the error term
r1 has norm 0(63/ %) in Sobolev space), the nonlinearities of the equations governing r; has
to be at least of fourth order. Since (D? — iAd,)r; is not obviously fourth order, we find

some equivalent quantity of 1 and consider its water wave equation.

3.7.1 Governing equation for r;

Recall that
ANi= (I —H)E— (I —Hy)éo.
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We have shown that P\ consists of cubic and higher order nonlinearities. Define

A= (I =He)§ — (I —Ha)éo-
Because A approximates A to O(e?), we expect
PA=0(), and P —X) = O(eh).

Also, as we can see later, A — \ is equivalent to r; in appropriate sense. So it’s natural to
consider P(X\ — A). However, A — X is not the boundary value of a holomorhpic function
in Q(t)°. There is the trouble of losing derivatives in energy estimates if we use A — A. To

resolve this problem, we consider the quantity p; define by

pri= (I —H)A—N). (3.127)

Then p; is holomorphic in Q(¢)°.

We show that Pp; consists of fourth and higher order terms. The idea is to take advantage
of the facts that P[(I — H¢)(¢ — ) — (I —H,)(w — )] is approximated by P[(I — "HC)(E —
a) — (I —Hgz)(@ — )] to O(e*), so their difference would be of order O(e?).

To be precise, because ,b approximate ¢,b to the order of O(€*), we have (5, D.(C,b, A)
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satisfy (3.89) to the order of O(¢?), i.e.,

(D} = iAd)[(I = He) (¢ —a) = (I = Ha)(@ — a)]
— —2[DyC, HE% + ’Hggi]aa[)tf +2[DV&, H,, Ly “r‘t%i]aa[)t%
1 [ (Dilla,t) = DC(Bt)\2 x =
ra) Coan—amg ) €
1 DV (o, t) — DV&(B, 1)
o ( (o, t) —
I

|€*R|

Oa(I —Hgz)(@ — a) + 'R,
where €'R is a known function (in terms of B(X,T)) which satisfies

s S Cel?.

which is in terms of B(X,T) and ¢, and satisfies the estimate
So we have

€'R1, €' R,). It might represent different quantities. However, it always represents a quantity

IR

Hs+7

Remark 111.31. Throughout this paper, we’ll use the notation e*R frequently (and sometimes

< Ce2,

5
= Z le.

(Df —iAGa)(A = A) = P[(I = Ho)(C — @) = (I = Ho)(w — a)]
=PI = HI(( —a) = (I = Ha)(@ — )]
+ (P =P)[(I =He)(C —a) — (I = Ha)(@ — )]

(3.128)
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where

1 _ 1
]6aDt§ + 2[D$w, wa— + wa—]ﬁaD?w

« e

1 ~ 1
Rll - — 2[DtC,HCC_ + HCT

1 Ddw(a,t) — DYw(B,t)\2 _
B EJ( w(a,t) —w(f,t) ) (w— Mdﬁ}
(1 [ (Ddlat) - DLBN - -
(=] Clan—gon ) 0
1 ((D)o(a,t) = DY(B,)\2, . =
_E“ (o t) — (3. )@= a)as},
and
Ri3 =Dib100(I — Hy)(w — @) + b1 Di0f (I — Hy)(w — )
A DbdulI ~ Ha) (@ — ) + BiDidn(l — Ha)(@ — )},
and
Ris =b10,DY(I — Hy)(w — ) —iA104(I — Hy)(w — a)
510D = H)(@ — @) — iA12a(] — Ha)(@ — @),
and
R15 =R
Denote R and Rq7 as follows:
OaDi(X — N)

Rig = —2[Di(, He]| ———,
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and

Ry — %J (Dtggg - ?(tg)(ﬁ))Qaﬁ(A ~ N)dB. (3.135)

Then by (3.128), lemma II1.15, we have
Por =P(I = H)(A = A) = (I = H)P(A = X) = [P, Hel(A =)
5 (3.136)
:([ — 7‘[4) Z Rim + Rig + Rar.

m=1
Note that R and Rq7 are not obvious fourth order, so we need to explore the cancellations
hidden behind when we estimate these terms.
3.7.2 Governing equation for time evolution of r,

We need to control D;r; as well. Denote
5 i= Dy(I — H)(C — @) = DRI — Ho)(w — ).

We know that P consists of cubic and higher order terms. Denote

0 1= Di(I = H)(C — o) = DY = Ha) (@ — ).

Then because P4 approximates Pd to O(e?), and P—P = O(e?), we expect P(6—8) = O(e*).
However, 6 — 4 is not holomorphic in ()¢, which would lose derivatives in energy estimates.

So we consider the quantity oy := (I — H)¢)(0 — 9).

By direct calculation, we have

P§ =D,G — DGy + (P — Po) DY (I — Hy)(w — )
(3.137)
+ [P, DJ(I = He)(C — @) = [Po. DI = Ho)(w — ).
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and

Po =DyG — DGy + (P —Po)DY(I — Hy)(@ — a) + €'R

o ] o (3.138)
+ [P, DI = He)(C — a) — [Po, DI — Hz) (@ — )
So we have
P(6 —6) =P —Po + (P —P)d + 'R
=D,G — DGy — D,G + DYGy + (P — Po) DI — H,,)(w — )
— (P —Po)DY(I — @) (@ — @) + [P, DyJ(I — H) (¢ — o)
o ) (3.139)
— [Po, DI — M) (w — @) = [P, DeJ(I = H)(C — o)
+ [Po, DYJ(I — Hp)(@ — @) + 'R
:=81.
Then &; is fourth order. So we have
Poy =P(I — Hc) (6 —0)
=(I = H)P(6 — 6) — [P, H](6 — )
aaDt((s . 5) (3140)

:([ — 7—[4)81 - 2[DtC7HC] C

I R

We use equations (3.136) and (3.140) to study the evolution of r;. A first step is to construct
an appropriate energy which controls certain norm of r;, and then show that this control

exists for a sufficiently long time.

3.7.3 Construction of energy

In this subsection, we construct energy for the water wave equations (3.136) and (3.140).

The energy is essentially the same as the energy used by S. Wu in [71] and the energy by N.
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Totz and S. Wu in [63].

First, let’s recall again the basic energy estimates by S. Wu([71]):

Lemma IT1.32 (Basic lemma, Lemma 4.1 in [71]). Let © satisfies the equation

(D? —iAd,)0 = G

and © 1s smooth and decays fast at infinity. Let

1 _
Fo(t) = szt@(a,t)ﬁ +i0(a, 1)2.6(a, t)da. (3.141)
Then
dEy B 1 a -1 2
el JA Re(D;0G) T O | D:O|"da. (3.142)

Moreover, if © is the boundary value of a holomorphic function in Q(t)¢, then

f i00,0da = — fi@@a@da > 0. (3.143)

Notations: Denote

= "1, o™ = 07y (3.144)

Because p§”) and a%”) are not necessarily holomorphic in Q(t)¢, if we decompose them as

1 1 n n n
2(1 Ho)pt + 5L+ Ho)py” 1= 0" + Ry
) (3.145)
o =5 (1~ H)ol” + 5(1+ Ho)ot = WY + 817
and define
1 n . n T(n
Eu(t) 1= | 1Dk + 00,8 da. (3.146)
1
Flt) = J Z|Dta§”)|2 +io\ 0,5\ da. (3.147)
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Define the energy as

S

E(t) == D (Ealt) + Fult)). (3.148)

n=0
By lemma II1.32, each &, is positive. o} might not be holomorphic in Q(t)¢. However, we’ll

show that it is still essentially positive. We’ll show that this energy controls || Dy || s +

1(71)al

Hs:

3.7.4 Evolution of &, and F,

To show that 7 remains small (in the sense of some appropriate norm), we need to show
that the energy &£ remains small for a long time. So we need to analyze the evolution of &,

and F,,. Note that

(D} — iAd,) " =0n(D? — iAda)py + [D} — iAda, O2]p1
5
=0n(I = M) > Ram + 0n(Rag + Raz) + [Df — iAd,, 0h]py (3.149)
m=1

::Cl,’m

Similarly, we derive governing equation for a§”) = 0'c;. We have

(D? — iAdy)0\™ =0"(D? — iAd, )0y + [D? — iAdy, 0oy

(3.150)
:202,71,-
By basic lemma I11.32, equations (3.149) and (3.150), we have
d 2 n) A 1 a — n
JEalt) = f T Re(DepCr) — o w™! Dl Pda
(3.151)

,n

+2Im f R, + 0,6Ma, R + o RMa,RM
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And

d __, 2 n) 5 lLa _ n
E}—nl(t) :JZ Re(Dyo; )C2,n) - Zi oK 1]Dt0£ )|2da. (3.152)

3.8 Bound for some quantities

In this section, we obtain bounds for the quantities which will be used in the energy
estimates in next section. We bound these quantities in terms of an auxiliary quantity FE,

which is essentially equivalent to the energy &;.

3.8.1 An auxiliary quantity for the energy functional and an a priori assumption

The energy functional & is not very convenient in the energy estimates, so we introduce

the quantity

EY? = ||Dyr1| e +11(r1)all s +||Dir] e - (3.153)
Let Ty > 0, we make the following a priori assumption
sup E, ()2 <e. (3.154)
tE[O,To]
Remark 111.33. We'll eventually show that on time scale €2, £ < € and
E (t) < C(€ + 77, (3.155)
therefore,
sup Fi(t) < %2, (3.156)

te[0,T0]
which is much better than (3.154). Since this a priori assumption is easy to justify by a

bootstrap argument, we won'’t provide the details for this justification.

We’ll control % in terms of E and ¢, then we can obtain energy estimates on a lifespan
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of lengh O(e™2). For this purpose, we control the quantities appear in the energy estimates
in terms of F, and e.

Convention. In this and the next section, if not specified, then
0 <t < min{Tp, Te %}

and the bootstrap assumption (3.154) holds. Here, T is the same as that in Theorem 1.16.

3.8.1.1 Consequence of the a priori assumption

Lemma I11.34. Assume the bootstrap assumption (3.154). We have
|Ca — 1rer0 < Ce. (3.157)
Proof. We have
Ca=1=(r1+70+C)a—1=(r1)a+t a1+ (r0)a)-

So we have

6o = gsesie <N allacrer +|ro+ & =1, < Ce (3158)

We’ll need to use Lemma I1.33. For convenience, we record it as follows.

Lemma I11.35. Assume the bootstrap assumption (3.154), let f, h be real functions. Assume
(I —He)hin =g or (I —He)h =g.

Then we have for any t € [0, Ty],
IR

e < 2|9l (3.159)
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3.8.1.2 The equivalence of p; and

Lemma I11.36. Assume the a priori assumption (3.154). We have

10a(pr = 2r) e < OB+ %), [ Dilpr = 2r1) |l gosre < C(eBY? + €¥%). (3.160)
Proof. We have X := (I — H)(¢ —a) — (I — Hy)(w —a), and X := (I — Hg)(f —a)— (I -
Hz) (0 — @). Recall that py := (I — H¢)(A — ). So we have

Oapr =Ca(l = H)(A = X).
We have
A — 5\ :([ - Hg)’f‘l + (Hw - /HC)(M — Oé) + (HE - HC)(é - Oé) — (/Ha, - Hg)((:) — a). (3161)
Denote
7= (Mo —He)(w — ) + (He = H)(C — ) — (Ho — Ho) (@ — ). (3.162)
So we have
Oapr =0a(l — H)A = X) (3.163)
=00(I —He)( —He)r1r + 0a(L — He)F (3.164)
:26a(l — H()Tl + 6a(1 — HC)’? (3165)
:26ar1 — é’a(l + Hg)m + 8a(I — Hc)’? (3166)
We are aiming to prove that
|=0a(1 + He)rr + 0all — H)A| . < CeEY? + CE2. (3.167)
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For ||0a(1 + HC)T1HH57 we have

(I + HC)"’l I(H_C-i- 7'14)7’1 + (I —H_C)T’l.

The kernal of H_g + H¢ is of order one, so it’s easy to obtain that

aa(H_C + HC)Tl

< CeEY2,
Hs

Decompose

n=(-a)-(C-a)-(@-a)+@-a).

Use (I — He)(¢C—a) =0, (I = H,)(w— ) =0, we have

(I =He)r == (I =H)(C —a) + (I = H)@ —a) + (H — Ho)(w — )

=~ (I =H)(C —a) + (I = H)(@ — a) + (H¢ = Ho)(w — @)
By the construction of f and @, we have

(I-H)(—a)=0(e"),  (I-H,)(@—a)=0().

Therefore,
Ol —H)(C — a) — ou(l — H) (@ — a)‘ L <Can
Since
lo = @llyece = lI7ollyece < C€,
and

10a(C = W)l < Ce?,
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we have

H(’}—[_C—’}—[_w)(w ~o)|  <cén (3.176)
So we obtain
10a(pr = 2r1) o < CleBY? + 7). (3.177)
Use similar argument, we have
IDy(p1 — 21| gyosse < C(eEY? 4 €/2). (3.178)
O

Corollary II1.37. Assume the a priori assumption (3.154), we have

Hs < CE, ||Dtp1|

[0api| e < Ce. (3.179)

3.8.2 Bound ZNJ, Z~)1, by and b; — l~)1

From the definition of b and by, we have

HbH <Ce, (3.180)
WS,OO
and
bi|| <O (3.181)
Hs
It’s not difficult to bound ||b1]| ;. by Ce*?, and therefore ||by — b < Ce*?. However, it
Hs
turns out that we need a bound better than C'e¥/? for the quantity ||by — 51
H
Because by approximates by to the order of O(e?), we have
T I LS S 1,z
(I =H)b = — [Di{ — Dyw, He]>—~— — [Dy@0, He= — ’Hwa—]((a —1)
Ga Ca a (3.182)
. 1. = -
— [D?CD,H@@—] (51)a - (,Hé - H@)bo + E4R,



where €*R is a function of b; such that ||e*B]|gsi7 < €7/2.

To derive a formula for b, — by, we subtract (3.77) from (3.182). In order to explore the
cancellation relations and obtain good estimates, we group the similar terms together (the

terminology ’similar’ should be clear in the context). We obtain the following

(I —H) (b —br) = (I — He)by — (I — He)by — (He — He)b

Coa_l N o~

= — [Di¢ — Djw, H] ot [Di¢ — DY, He] ; = B,
DPwo, Het — Ho (G — 1) + [P0, Hoa — Ha ] (o — 1 .— B

— [Dyw, CC_a_ ww_a]@a_ ) + Dy, Cé_a_ ww_a]@a_ ) = D2
- [thaﬁww—](él)a + [Dt%%w@—](&)a = By
— (H¢ —Ha)bo + (He — Ha)bo = By
+ 'R ‘= B
(M~ Hob B,

To estimate By, we write B; as

By = — [Di{ — Djw — D + D?@HC]&&C_ !
+ [Dtg_ D?@7ch~i - HC%](&& - 1)
1

- [DtCN — D?@’HEC |70

22311 + Blg + Blg.
The terms consist of B; are ’similar’. The advantages of writing By in this form are:
e Each By;(j = 1,2,3) contains a factor which is in H* ( therefore L? estimate is possible).

e Each By; contains a factor which explores the cancellation relations between the exact

solution and the approximation.

186



3.8.2.1 Estimate || B|

HS

To estimate B;;, we rewrite the quantity

D¢ — D%w — D¢ + D%
:<Dt - Dt)C + Dt(C - @ - (Dg - DS)W - D?(W - @)
=(b = b)Ca + Dy — (by — bo)wa — Dr¢

:(bl - El)Coa + (bO - EO)(C@ - wa) + (f)t - D?)TO + Dtrl

) ) ' ) (3.183)
=(by — b1)Ca + (bg — b9)0ué1 + b10a1o + (Dy — Dy)r1 + Dyry
=(by — Bl)Coc + (bo — Bo)aa& + Blaaro —(b— 5)5(17“1 + Dy
=(by — Bl)((a —(r1)a) + (bo — Bo)aagl + 51(7”0)04 + Dyry
=(by — Bl)(&a + (r0)a) + (bo — EO)aozgl + l;l(TO)a + Dyry.
Use proposition I11.18 and estimate (3.158) for (, — 1, we have
| Buall g
gCH(bl — Bl)(éa + (To)a) + (bo — 50)6051 + El(TO)a + DtrlHHS“CO[ — 1||WS—1’OC
<=l oo, [ N -,

+||DtT1’

o ) 6o = Tlhpoaoe

<C< bl_gl +€3/2+E51/2>€.
Hs

Here, we have used (see Theorem I11.4)

i)l < 063/2, ||(TO)QHW§—1,CH < 062, Hbo — IN)()HWS,OO < 062.

Hs
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3.8.2.2 Estimate || Bs|

Hs*

For Bi,, we write
Di( - D?@ :(Dt - f),?)f + 15?(5— w) = b10.C + D%L

Then by proposition II1.18, we have

| Bi2] (—w

e =|| D€ = DI 6o = Ulyeorie

-

<|’61605+D?él| ga_ 1||Ws—1,oo|‘<-—(z)||Ws—l,oo

Hs
(3.184)
<C€3/2 | ‘Ca — ]_‘ |stl,w

<Ce2.

3.8.2.3 Estimate || B3|

Use proposition II1.18, we have

o 1.
| Bl grs =||[016a + D?&,Hg?]?“a

Hs

<O|fprca + D& || . lewrs|

e+ C||prla + DPE| 10arollperic )

<CeBEY? 4+ &2,
Here, we’'ve used the estimates

[b1|lz= < O, | DY |weee < Ce, [ Qarollwe-re < Ce®, | DYE;|

e < Ce'?. (3.185)

So we have

1]

+ CeBY? + O, (3.186)
HS
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Use the same argument, we show that

| Ba|| e < Ce®* + CeEY2.

| Bs|| ;o < Ce®? + CeEY2.

| Ball e < Ce™* + CeEBY2.

For Bs, it’s trivially that

1Bl - < Ce™2.

And
| Bs|| s < C®* + CEY2,

By lemma III.35, we have

Lemma I11.38. Assume the a priori assumption (3.154), then we have

Proof. From the estimates for B;,j = 1, ..., m, we have

< Ce
Hs

bl—l;l‘

‘bl _

+ C? 4+ CeEY2.
Hs
For e small such that C'e < 1, we have

bl

< CP? 4 CeEY.
Hs
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Corollary 111.39. Under the assumptions of lemma 111.38, we have

[b1] s < C¥20 (1Bl ypocrn < CE2 (3.194)

Corollary 111.40. Under the assumptions of lemma I11.38, we have

[ DeCllyye-1.00 < Cle. (3.195)

Proof. We write D,( as

D¢ =Dyry + Dyro + Dté

o o (3.196)
=Dyr1 + D% + (b — bo)8aro + DiC + (b — 0)04C.
So we have

D¢l yysr0 < Ce + CEY? < Cee. (3.197)
O

3.8.3 Bound D;b; and D, (b, — b;)

From the definition of D;by, it’s easy to obtain that
’ Db <ce”, HDJ)1 < Ceé. (3.198)
Hs W s,

To estimate Dy (b — 51), we need to derive a formula for D;(b; — 131) Since Dy (b — 51) is

real, it suffices to estimate (I — H)Dy(by — by). We have

(I = H)Du(br — b0) =((I = H) Dby — (I~ M) Diby)

+ (HC — H§>Dtl~71 — (I - HC)(bl - 51)8a51.

For (I —H,)D;by, we have a formula given by (3.81). Since by, by, C, & approximate by, by, ¢, w
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to the order O(e?), respectively, we have the following formula for (I — Hf)Dtglz

(06 =) (Dt ) =PI (D2 e (D e
L [ (Dilla) =~ Dil(B)\2 2 L [ (DPs(e) =~ DYw(B)\2 -
o] (e ™) G® - | (=g @u) ~ s
+ (He — Ha)DPbo — (I — He)bidabo + €'R,
(3.199)
where 'R satisfies ||¢?R||gs+7 < Ce™2. So we have
N 6
(I =H)Di(by = by) = Y Fo.
m=1
where each F), are given as follows:
0a(2b—DiC) =+ o 0a(2b— DiC
Fy =[DtC7Hc]% - [DtCﬂg]M
o - o (3.200)
DV, ) PP C_ D) | 1pos, 1) 8a(2bo§— Do)
S (DR 4 (DD, Ml — (D)0, )
(3.201
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1 (/D) = DCBN = oy gvga L[ (Dil(@) = DB\ 5 o
= | (P ) @ - | (PRE =25 7) G~ s
L [ (Dw(a) — Diw(B)\2, 1 DY@ (ar) — DYas(B)\2, =
R f ( (@) —w(B) ) (@s(8) =15+ — f ( 5e) —507) ) (@s(8) ~ 1)as
(3.202)
Fy = (He — Ho)DPbo — (Mg — Ha) DYby. (3.203)
Fs = —(I = H)bidabo + (I — Hg)bidabo. (3.204)
Fs = 'R (3.205)
3.8.3.1 Estimate || F1]| ..
We write Fj as
Fy =[Di6 = Di& HeZ10u(2b = D) + (D, e - Hg%]ﬁa(% - Do)
+ D, Hgéi]aa@(b 5 — (D¢ - D))
{[D% — DY, M )ou2by — DJD) + [DY, M — Haz]6a(2bo — DY)
+ D03, Ha 102ty — o) — (Do — DY)}
~{(Di¢ - Dié. H%]aa(zb D) — [DPw — DY, wai]aa(zbo - D))
- - 1 1 - - 1 1
DM = He)on(2 = DO = [DYo, Mo = Ha 100 (2 — Do) |
e Hggi]aa@(b B~ (D&~ Di0)) — (DY, Ha=16ul2(bo — ) — (DY — DY)}

I=F11 + F12 + F13.
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The estimates for Fi;, Fio and Fi3 are similar, so we give the details of F; only. We rewrite

F11 as

EJ%DA—DJ—Uﬁw—D%%H%ﬂ%@U—QO

~ 1 1
+ [D?w_Dg(D?%CC_ _/wa_]aa(Qb_Dt<> (3 206)

100200 — b) — (DiC — DY)

+ [Dw — DY, Ho—

=Fiq + Fig + Fis.

For F111, use (3183),

Di¢ — Di¢ - (Djw — f)?@) = (b1 = b1)(Ca + (ro)a) + b1(ro)a + Diry. (3.207)
Use (3.197), (3.192), and Corollary II1.39, we have

| F1a

s iCHDtC — Di( — (Djw — D?@)HHSH%_ DtéHWs%Oc

<H(b1 —b1)(Ca + (10)a) + bi(r0)a + Dy

2b—D C_ s—1,00
el e (3.208)

<C<(65/2 + eESl/Q) + €% 4 Esl/2>e

<Ce? + CeEY2.

For Fi15 and Fii3, use proposition I11.18, (3.192), (II1.39), (3.197), it’s easy to obtain the
estimate

| Firz] e < O + CeEBY2, (3.209)

e 1 Fs

So we obtain the estimate

| Fuill e < Ce¥? + CeEY2. (3.210)

Estimates for Fio, Fi3 are similar to that of Fj;, we obtain

| Fioll o + || Fisll o < Ce¥? 4+ CeEY2. (3.211)
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So we have

|Fy|| e < Ce? + CeEY2. (3.212)

3.8.3.2 Estimate || 3] 4.

We rewrite F;, as

Fy, = [DX — D¥. H%J@a 1) - [, H% - Hfgi]@a _1) - [P, Hggi]aa@ -

+ (D) — (D)0, Mo 1(@0 — 1)+ (D)0, o~ — Ho =)@ — 1)

Wa Wa

m=1
(3.213)
where
o = (DI~ DRI G = 1)+ (DY — (DR Mo (@a = 1) (3214)
Fop = —[D2C, He — Mo ](Co — 1) 4 [(DO)20, Hoo — Hor|(@a— 1) (3.215)
22 — tSH CCa Cfa e t 5 wa UJ(I) a .
P = ~DR M JouC = O+ (D00, Mo ) o = ). (3.216)

The estimates for Fyy, Foy, Fo3 are similar, so we give the details of estimates of F3; only. We

rewrite Fy; as

3
Fy = Z Foim, (3.217)
m=1
where
Fan = ~[D = D — (DI + (D% M =G~ ). (3.218)
Foip = —[(DY)*w — (DS)QQ,’HC% — wai](fa —1). (3.219)
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Foiz = —[(D))*w — (DY) *w, Ho—1(Co — @a)- (3.220)
To estimate Fyq, we rewrite D2¢ — D?¢ — (D9)2w + (DY) as
Di¢ — Di¢ — (D})’w + (D))’
=D} (& +w) = D} (& + @) — (D)) ’w + (D))’
(3.221)
=D6 + (Df — (D))*)w — Dié — ((D7)* — (D))

=Dfri+ (D} = D})é + (D} — (D))" )w — ((D})* = (D))

Lemma I11.41. Assume the a priori assumption (3.154). We have

|0z - D2)é,

D = DDl + [ (D~ (DR

A (3.222)

<C€5/2 + Ce Dt(bl — 61)

Hs

where

C = C(|D)w|

Hs’(’]l‘))
for s > s+ %

Proof. We have

D; — (D})? = Dy(D; — Df) + (D; — D;) D}
=Dy(b— b0)@u + (b — bo)2uD}

:(Dtbl)aa + letaa + blﬁan.
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So we have

[(D} = (D7)*)w|

HS

<[|(Deby) Gaw]

s + Hblé’aDtOw‘

HS

<|| Dby | Oa DY

Wallws.o +b1] 0|70

Hs wa”ws,oo +||b1| Hs Hs

arelWallypece 11011z (| @a DY [ 70

<|[Dios =8| Iwallece + || Dibr ]| sl + 1] i

<0 4 CEHDt(bl — Bl)‘

HS

We decompose D? — (D?)? and (D?)? — (D?)? in a similar way. With these decompositions,

the lemma follows easily. m

By (3.221), lemma III.41, and proposition I11.18, we have

| Fonr|| s < Ce(€¥? + || Di(by — by) L) S Ce? + CE||Di(by — by) . (3.223)
The estimates for Fy19, F513 are the same and we obtain
||F212| Hs +||F213| s S Ced/? + Cé? Dt(bl - ?)1) e (3.224)
So we obtain
Fo||ye < Ce? + Ce?||Dy(by — by 3.225
H e
Similarly, we have
| Fal o < C€? 4+ CeEY? + CE*||Dy(by — by) . (3.226)
| Fasl o < C€? + CeEY? + CE||Dy(by — by) (3.227)
HS
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So we obtain

|Fy|l e < Ce? + CeEY? + CE||Dy(by — by) . (3.228)
Similar to the estimates for F} and F5, we obtain
I Fsll e + 1 Eall e + 15l e + 11 Foll e < C€? + CeEY? + C€*||Dy(by — by) . (3.229)
So we obtain
HDt(bl - 61)‘ < CEP? 4 CeEV? + Ce2HDt(b1 - Bl)) (3.230)
Hs Hs
Therefore,
HDt(bl )| < et ceB? < cé. (3.231)
HS
Since
HD@H :HD,J)I +hoab| < Hml\ 1Bl e aaélH < Ce, (3.232)
HS HS HS Hs
we obtain
| Dby || s < O (3.233)

3.8.4 Bound A; — 1211
can be bounded by Ce2+CeEy”.
HS

Indeed, recall that /Nll = 0. We show that HA1 — fll’

Since A, satisfies the formula (3.82) for A; up to O(e?), we have

(= He) (A = dg) =il M — (D)%, Ha]
“[Dt@?iz]aap iy ,H@]a‘f 4 (3.234)
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Subtract (3.234) from (3.82), we obtain the following formula for A; — A;. We group similar

terms together and write it in the following manner:

(I —H) (AL — Ay) = (I = H)AL = (I = He) Ay + (He — He) Ay

. Ca_l T1N2 < goc_l . (Da_]- ~ ~ woc_l
~{iDiCH> - D Hel = — (Do =2 — LD Hal = }
, 0uDiC =~ 0uDiC 0,D%G .~ - 0.D%
+ {Z[DtC,%C] Cat —i[ D¢, He] Z L i[Dw, H,] w: +i[ DY, Hy | (IJ: }

{0 = (A0 — 1) = (Mg = He) (Ao — 1)}

Note that we can estimate K; in exactly the same way as we did for the quantity Fb;1, and
we obtain estimate

K| e < O + CeEY2, (3.235)

K, can be estimated the same way as we did for the quantity F}, and we obtain

e

e < C™? 4 CeEBY2. (3.236)
Estimates for K3, K4 and Kj5 are straight forward , we have

|| K| e < C? 4 CeEBY2. (3.237)

s K|

g TG

So we obtain

[CEERIE]

< Ce? 4 CeBY, (3.238)
Hs
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Therefore,

HA1 _ A

S Ce? + CeBY?. (3.239)

Corollary 111.42. We have
1AL e < CE¥2. (3.240)

Corollary II1.43. Assume the a priori assumption (3.154), then

1
inf inf A(a,t) > -, sup sup A(a,t) < 2. 3.241
te[0,Tp] aeR ( ) 2 te[O,go] oae]g ( ) ( )

Proof. We have A = Ay + A;. By Theorem II1.2, || 4y — 1|, < Ce®. By Corollary II1.42,

|A]], < C€¥2. Therefore, for e sufficiently small, we have (3.241). O

Definition 1I1.44. Denote L by the quantity

L =[P, D (I = H)(C — @) = [Po, D] = Ha)(w — @)
(3.242)

— [P, DJ(I = He)(C = a) + [Po, DII(I = Ha) (@ — a)

This quantity arises in the energy estimates in the next section, so we need also to bound

it in terms of E, and e.

3.8.5 Bound L

We know that:

[P, DJ(I = He)(C — ) = (%) 0 K ViAOL(I — He)(C — o), (3.243)

at

where <E> o k! is given by

(I —H,) (Afa (%) o m) —2i[ D¢, H] a“CDtC + 2[DiC, H]

« Ga (3.244)

) (ng - Z%C)(ﬁ))Qaﬁth (B)d§.

™

aD}¢
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Similarly, we have

[Po, DYI(I = Ho)(w — @) = ((200)'5) o ki Aol — Ho)(w — ), (3.245)
where (%00”) o kg is given by
(I —-Ho,) (Ao@a<(z(;)t) o /Qal> =2i[(DY)?w, H] aaf?@ + 2i[D%w, H] aaffg_ ( |
0,y . 0 , « 3.246
[ (PO =D s ds.

For brevity, denote
v= (D) ont w= (K)o

a Qo
Let ¢ be the approximation of 1 to the order O(€*), and o the approximation of 1 to the

order O(e*). We have formula for (I — "HC)& and (I — Hgz)o:

(1= o) (A6u) 2012, 1) 22 1 2if D¢, 7y
LoD o Bl (3.247)
[P PY abiis + R,
and
(1~ 92) (Auato) 2015075, =22 1 i Do, 3y L2
1 (/D% . PGB 2 o (3.248)
T f ( tiEZ; :a}(t;))(ﬁ)) 05 DY (B)dS + €' R,
where
H€4R1 — €4R2HH5 < 67/2,
Denote

0=(I-H)(C~a), b=(I-H)w—a), O={I-H)((~a), b=(I-Has)@~0).
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Then
L = 1000 — 1000 — 100000 + V00ubo.

We rewrite L in the following form:

L =(¥) —10) 0l + 100a(0 — 0p) — (1/; - io)aaé — 100a(0 — o)
=(1) — 10)0a(0 — é) + (Y — 1o — (zﬁ - @Eo))&aé
+ (o — 150)504(9 — ) + @Zoaa(e — 0 — (é — éo))

=01+ Lo+ L3+ Ly.

The advantage of writing L in this form is that, each L; can be written in the form L; = yz,
where y € H®, and z = 21 + 25, where z; € H®, and z, € W*®. Note that we cannot estimate

z directly in W% because z; might lose one derivative.

3.8.5.1 Estimate L.

First we estimate 8 — 6. We have
0—0=(I—-H)r+ (He—H)(( - a).

Let Hf be the adjoint of H, i.e.,

Hsz = —CQHZa.
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Then

%w—éy41—ﬁpm+4%f—ﬂp@;—m

=L =H)(r1)a + (1 ”Hg)(ro)

CalC(e) — Gal¢(@) = C(8) =
= (@ <a>—§<ﬁ>> (G = 1)ap
(- H<><> (1 - H<><m>
)

_|_
(r)a(C(@) = C(B) = Cal(r1)a — (11)p) , =

= ( -

7T @ -y D

1 [ (ro)a(C(@) = C(8) = Cal(ro)a = (ro)s) (= 1y,
o | o e

=21+ Ly + Iy + Zy.
We have Z; := (I —Hf)(r1)a, 50
121l e < CEY2.
For Z3, use proposition III1.18, we obtain
1Zs]l 7. < CeB,”.
Use the fact that ||0q7o||wse < C€?, it’s straightforward to prove that

||ZQ + Z4||Ws,oo < 062.
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Next we estiamte 1) — vy, we consider (I — H¢) (¥ — 1) AC,. Note that

(I = He)ACath — (I = Ha) Ao@atho
=(I = He) At — (I = He)Alatbo + (I = He) Alatho — (I = He) Awathy

+ (I — He)Awarbo — (I — He) Aowatho + (I — He) Aoy — (I — Hy,) Agrbg
=(I = H)Ala(t = o) + (I = H) A(€1)at)

+ (I = He)Arwa) + (Ho — He) Ao@atho.

So we have

(I=H ) Aot — tho) = (I — He) Al — (I — Ho,) Ag@atho
- {(1 —HOAE) ot + (I — He) Aroath + (He, — HC)AO%%}

For (I —H¢)Alath — (I — Hy) Agiwatdo, subtract (3.246) from (3.244), and then group similar

terms. We have estimated terms of these kinds before, so we omitt the details. We have

H (I — H)AG) — (I — H)ALW|| < C(32 + eBY2). (3.249)

‘Hs

Since v, ¥ and A; are quadratic, it’s easy to show that

(7 = H)AG)D + (1 = H) Arats + (M = Ho) Aozat

< O (3.250)
Hs

Combined the above estimates, we obtain

1% = ol lmr+ <CII(I = H) AGa(¥) — o) |

<C(eEM? 4+ &%),

(3.251)
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So we have

| L] ys < C(eEY? + &) (EYV? + %) < C(¢7? + ¢E,). (3.252)

The quantities Lo, L3 and L, can be estimated in similar manner, and obtain

| Lo e S O(? 1 €R,). (3.253)

s +IILs]

gs L4l

So we have

|L||gs < C(€7% + €Ey). (3.254)

3.9 Energy estimates

In Section 3.7, we derive equations governing the evolution of r; and D;ry, respectively,
and define energy for these quantities. In Section 3.8, we obtain aproiri bounds for some

quantities which will be used in energy estimates. In this section, we will obtain bounds for

the energy &;. For this purpose, we estimate the quantity appear in ddg;, and bound ddg; in
terms of E, and e. Then we obtain
d&s 2 3/2 , 2 72 1/2 5
o S C(E; +eE)*+ B+ €'“EJ* +¢€). (3.255)
Then we show that FE is essentially controlled by &:
EY? < C(E + 7). (3.256)
(3.255) and (3.256) will together give the bound
& <cCé (3.257)

on time scale e 2.
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3.9.1 Estimate (I — H¢)Rn

It suffices to estimate R;. Recall that

Ri1 = [DtC HC + ”H,C—](? D¢ + 2[D0w H,— + Hw - ](3 DO
Ca C Wa
i T (3.258)

First, we rewrite [ := —2[D,(, Hgi + ﬁg%]@aDtC + 2[Dfw, Ho, - -+ Ho— -]0, Djw as

I =—2[Dy — Ddw, HCC +He— ]a Dy

Ca

; 1 1
— Q[D?%HC? + Hg“: - Hw_ - HwT]aaDtC
a ¢ Wa Wa (3.259)

1 1
— Z[D?W,wa— + HwT]ﬁaDgél

e} «

1211 + Ig + 13.

And we rewrite IT := —2[D,(, Mt + %ngi]aabtf + 2[D0w, Ho L + HioZ10.D06 as

1
¢ o o (3.260)

=[[1+][2+[]3
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3.9.1.1 Estimate |[[; + II,|

HS

We have

L 1 1
L+ II; =—2[D — Dw — (D¢ — D?&)),’I-I,CC— + ’Hgg—]aaptg

S S 11
= 2D~ D Mo + Hep - (Hgg—a 4 H%—a)]a&Dtg
9D - D, ”HE% n sqggi]aawtc ~ i)
=N + Ay + As.
Denote
h:= D, — Dw — (Dté— D?@)
We have
[hﬂ% ; %Céi]aaDtc
2 (Im{¢(a) = ¢(B)}(h(a) — h(B))
__ 2 d8.
T R sy
Use (3.183),

Dtg — Dté — (D?u} — D?(Z)) = (bl — Bl)(éoc + (TO)a) + bl(TO)a + DtT’l,

(3.261)

(3.262)

and proposition II1.18, lemmma II1.38, corollary I11.39, lemma II1.34, corollary II1.40, we

have

1 _ 1
H[h,wg—%gc—]aaac <l g0 Gl s 1Dl

Hs

<C (&2 + EV?)é

<C(e"? + EEM?).
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So we obtain

|A1] e < C(e? + EEY? + B, + E?). (3.264)

A5 is a singular integral of the form Sy(A, f), whose kernel is at least of order two. Note

that

Hth ~ D ‘H — HDt& +hida| < HDté b < e (3.265)
By proposition II1.18, lemma I11.34, corollary II1.40, we have
1Aell e <€D = D [imic = O Go= ol D
Hs Ws—1,0 Ws—1,0 (3266)
<CE2.
The same argument gives
|As||s < C(€72 + EEY?). (3.267)
So we obtain
|1 + I || s < C(e"? + E1/?). (3.268)

We estimate I, + I, and I3 + Il in the same way as we did for Iy + II;, and obtain

Iy + Il e + |13 + IT 5] ;o < C(€7% + EEY?), (3.269)

So we obtain
I+ IT||,;. < C(€7? + EEY?). (3.270)

So we obtain
(I = He)Rurl|lms < C(€7* + EEY?). (3.271)
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3.9.2 Estimate (I — H;)R12

The way we estimate R is similar to that of Ry;. Recall that

mota ] (i) €0

—¢(B,1)
1 Do%w(a,t) — DPw(3,t)\2 _
_EJ ( f"EO"t;_‘*’fﬁzg >> (o =ann} (3.272)
[ ey
] Ry @ )

The idea is again to decompose ¢ = w + & + 1 and D, = D? + b,0, to explore the cancella-
tions, and then use Proposition III.18 to obtain appropriate estimates. For example, in the

decomposition we’ll obtain terms like

o 1 Dt’f’l(Oé,t) —Dtrl(ﬁ,t) 2 _
'R121 L= E f < <(a7t) — C(57t) > (C - C)Bdﬁ.

Then we have

IR 121 Dyt |lyyrecso T Colyyracr o0 < CEEEV2. (3.273)

Hs <C||Dt7“1|

HS

Other terms can be estimated in a similar way, and we obtain

IRzl e < C(€7% + EEY?). (3.274)

3.9.3 Estimate R;3

Recall that

Riz =Dib10n(I — Hy)(w — @) + b1 D00 (I — Hy)(w — @)
(3.275)
- {Dtélaa(f CHN @ — @) + b1 Dion(I — M) (@ — a)}
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We provide the detail for the estimate of

Dib10,(I — Hy,)(w — @) — Dib10o(I — H)(w — ).

The estimate for by D;0,(I — He)(w — @) — by D;0,(I — Hg)(& — @) can be obtained in the

same way. We have

Dib10,(I — Hy)(w — ) — Dib10o(I — Hg)(w — @)
=Dy(by — b1)0u(I — Hy)(w — @) + (by — b1)Pab10a(I — He)(w — a)
+ D10 (Ha — Ho)(w — @) 4+ Dyby0a(I — He)(w — @)

I:Jl + JQ + J3 + J4.

By Theorem II1.2, Sobolev embedding, and (3.231), we have

1]

. =HDt(b1 b))l — Ho)(w — oz)’

Hs

<HDt(b1 — i)l)

o 1 5,00
oo = 1l
<C(? + eEY?)e
<C(e"? + EEM?).
By Theorem II1.2, Sobolev embedding, and corollary I11.39, we have
Oabr

| J2] by — by

Hs < Ws,ooHaa(I - Hw)(w - Oé)l‘Ws’oo

Hs

<Ce2.
Estimates for J3, J; are similar. So we obtain So we have

(1 = He)Ras)

o) S C(e"? + EBYV?).
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3.9.4 Estimate (I — H;)Ru4

Write R4 as
Ris = Ris1 + Risz,

where

R141 = blé’aD?(I — Hw)(w — Oé) — Blﬁa[)?(f — Hw)(@ — Oé),

and

Rigp = —iA10.(I — Hy)(w — @) + iA10,(1 — Hg) (@ — a).

Estimates for these two terms are straightforward, we obtain

(1 = He)Rua)

o) S C(e"? + EBYV?).

3.9.5 Estimate RIG

Recall that )
OaDi(A — )
Ca '

daDi(A=X)
Ca

RIG = _2[DtC7 HC]

To obtain better estimates, we explore the fact that

Write R as

Rl(; = — 2[DtCa HC + Hé]w Ca

=Rie1 + Riee.

It’s easy to see that

[Ris1]l e < C(€7 + E€E?).
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(3.279)

(3.280)

(3.281)

is almot holomorphic in (¢)°.
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To estimate Rig0, we write

OaDy(A — )\) Lol HC)Dtga Dt(A—X)

« [0}

R162 = — QDtC(] Hg)

:=Ris21 + Rieae.

Note that

A=A =1 = (= a) = (1 = Ho)(w = a) = (I = H)(C = a) = (I = Ha)(@ — )

=(I = H)r1 + (Mo — H)(w — @) + (He = H)(( — @) — (Ha — He) (@ — a).

The last three terms are quadratic, and it’s quite easy to see that they are bounded in H*
by

eBM? 4 &2,

So to bound Rig21, it suffices to bound —2D,((I — ’HC)M We have

Ca
— Ou(I —H)Dyr _ OalDiG, H %0
(1 - g SRR (g gy T S
(I — ’HC)M satisfies the estimate
OaTl
(1_7__[5 )aa[DtgaHC] Ca < CEE;/Q
: Ca e
And
_ 0 ([—HC)Dﬂ”l
I—-H =
( ¢) .
O (I + Hg)Dyr _ On(He + He)Dyr
B e ) e
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Note that the first term is zero, while the second term satisfies desired estimates. So we have

ﬁa ([ — HC)Dtrl

: < C(eEY? 4 €72,

HS

7m0

We can estimate ||Rig22|| s in a similar way. So we obtain

IRl < C(€7% + EEY?). (3.283)
3.9.6 Estimate R
It’s easy to obtain estimate
IRzl 2 < C(€7% + EEY?). (3.284)
Since | R1s| . < €7/2, we obtain
5
(I=H) Y R+ Rig+Rar| < C(7” +€EY). (3.285)
=1 e
3.9.7 Estimate [D? —iAd,, 0"]p
We have
= > 0D} — 1A, Aaldy 1
m=1
= > 0 (Di[ Dy, 0] + [ D1, 0] Di + iA0a)0n ™ 1 (3.286)
m=1
= = ) O Dy(bafa)n " pr = D O Dy oy i Y 00T Aadl 1
m=1 m=1 m=1
=K + Ky + K3.
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To estimate K, we use

_ (3.287)
}S o (0777 Dybo 07 py 4 b, 9 D, py ),
where
(n—m)!
Comg = = (3.288)
jt(n —m—j)
Write Diby = 0o Db — (bo)?. If m > 1, then use (3.231), corollary I11.39, we have
O I Db 0 pr || <|| 00T Dibg || 0T py ||
L2 oe
<(ba or I D|| By (3.289)
o6}
<CEEV2.
Similarly, we have
‘ag—"%ﬁbaaglaaQVH) | <CEBY, (3.290)

If m =1 and j = 0, then we cannot simply estimate 0"~ *D;b, in L®, because if n = s,

we’ll lose derivatives. To avoid loss of derivatives, we decompose
Dyb = Dyby + b1daby + Do = Dy(by — by) + Diby + b100(bo + by) + DPbg.

Then for n > 3, by corollary II1.37, Theorem III.2, corollary I11.39, we have

[0ap105 Dib|| 12

~ [ (@Dt — B + 22Dy + 20r2u oy + o) + (DI

<HDt(b1 — 61)

- aprll e ol B b0 aprlle +12ap | DFl
<CEEY2,

(3.291)
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The quantity 07! (b,)?d,p1 can be estimated similarly, and we obtain
0871 (ba)?Cupr| . < CEEY>. (3.292)

So we have

‘ o IDbL || < CEEYR, (3.203)
L
We use same argument to obtain
|z ivaeipizp)| | < cery®. (3.294)
L
So we obtain
| K12 < CEEY2 (3.295)
Estimate K5, K3 in a similar way, we obtain
1Ky + Ksl|,» < C(€7% + €EY?). (3.296)
So we have
|[D} — iAbq, 02]p1l|,» < C(€7 + EEY?). (3.297)
So we obtain estimate for Cy ,,: for 0 <n <s,
[Cinl| . < C(e72 + EEV?). (3.298)

3.9.8 Estimate /(I — H)S

In this subsection we obtain estimate for the quantity 07 (1 — H¢)S;. Since

Oall = H)S1 = (I = He) g8y — [0, HelSh,
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it suffices to estimate J/S;.

Recall that

Sy =D,G — DGy — D,G + DGy + (P — Py)Di(I — Hy)(w — )

— (P =Po)DY(I — &) (& — o) + €'R.

3.9.8.1 Estimate ‘

DG — DGy — D,G + Dg@OHH

We have

1 _ 1 1 _ 1
D,G = —2[D¢, Hcg— - %gg—]aaDtc — 2[Dt<,H<€— + Hc?]aanC

2 [ (D) — DiC(B)
=11 (o >—<<@>

o
-] L aspgisas

L4 J C() DtC(ﬁ))( i¢(a) — DIC(B))
m (C(e) = €(5))?

DY 3 Dc(8)as

) 2D (5)d5

(3.299)

0 Im ((B)dp3

2 DtC(O‘)_
= Gy

¢(B)
4 /Dy (a) — Dy
_%f ( ((a)

¢(B)\?
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And

1 1
DGy = — 2[(DY)?w, wa— + wa—]aapgw

« «

—2[D0wH 0. (D)

Oé

" % <D wEa:t; - w(ﬁ,(g’t))QaﬂD?ww’t)dﬁ
% f S D?W(B)))( P ) O Im{w(B)}dB  (3.300)

(wla) —w(p))?
t)

e | D% (ar, t) — DVw(B,t)|? 0,
T (W(a,t) —@(B,1))2 OpDyw(B,t)dp

* J(Dt:Ezg :ffwg’t)) 05 Im{D%w (5, t)}dp
4 D% (a,t) — DPw(B,t)\2 .

o f < wla,t) —w(B,t) > 0 Im{w (8, ) }dp

D,G and DYGy are given similarly: For D,G, replace D, by D, and replance ¢ by ¢ in (3.299).
For DYGl, replace D? by D?, and replace w by @ in (3.300).

e Estimate the quantity

1 Lo~ 1 1 ~
?]@QDtC +2[DZC, 'Héé— + Hgg—a]aaDtC
1

+2[(D)) 2w, Ho— + H,, ]a D% — 2[(D))2w, Hy— +Hw: 10.D%

« « Ol wa

1 _
S = — 2[D§C,HCC_ + HC
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Rewrite Sy; as

~ - 1 _ 1
Su :_Z[DEC_DEQHCQT+H<<—_]ao<DtC =S
Y T T L CYRL N VIS _
DI Hep + oz (’HC = Ea>]aaptg .~ Sy
o~ 1 _ 1 ~ o~
- Q[D'?C’Hfé_ + Hfg_]aa(DtC — Di() == Sii3
~ 1 _ 1
+2[(D})*w — (D)6, Ho— + Hu—]0aDiw = S
~ i . 1 _ 1 1 _ 1
+ 2[(D?)2W7wa_a + Hw@_a - (H&)(D_a + H&;@_OC)]&QD?W = 5115
~ 1 _ 1 -
+ 2[(D?>2(I), H‘D(D_ + H@@—]ﬁa(Dgw - D?(:J) = 5116-

We give details of estimate of S11; + Si14 only, the estimates for Sy1o + S115 and Si13 + St

are similar. Write Sq11 + St14 as

. 1 1
Sit + St = — 2[DF¢ — D¢ — ((DY)*w — (D?>2W)7HCC— + HC?]aaDtC

oD (et st (L L

2DV = (DR e+ He = (Mo + o )10aDiC
~ 1 -1

- 2[<Dt0)2w - (D?)Q(:},wa— + Hw@_]aa(DtC - D?W)

«

:=M1 + M2 + Mg.

To estimate M, we use (3.221)

D;¢ = DI — (DY)’w + (D)’
(3.301)
=Diry + (D} = D))é + (D} = (DP)*)w — ((D)* = (DF)?)w

Denote

q:= (D} = D& + (D} — (D))" )w — ((D})* = (D})?)w.
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We have the rough estimate

lll e < C(E + €72).

Decompose D;( as
Dy = Dyry + DVw + byjwa + Diéy + (b — D)0s65.

Then M; can be written as

1 _ 1
M1 = — Q[Dtg’f’l,HC? + HCC——

[0}

10a(Dyr1 4 biws + (b — [;)aaél)

1 _ 1
— 2[Dt2T1,H§4T + ch——

o

10a(D}w + Dté)

1 1
- 2[617H<<— + HCE_

«

100 (Dyry + byw, + (b — B)aaél)
1 _ 1] o
— 2[q7 HQC— + Hg?]aa(D?w + thl)

I=M11 + M12 + M13 + M14.
For My, we have

HMHHHS <C||D1527“1| Dt7’1 +b1wa+ (b—l;)aagl

ars HMCall o1

Hs

<CeEV2(EM? 4 &)

<CEEY2.
For M5, we have

[ M| g <C||Dfry] DYw + D&,

ars Mol o1

27101/2
< CEEY2
W,
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For M3, we have

|| M5

e < Cllg|

Jm¢a||ws,1,wHDtr1+b1wa+(b—5)aa§1H <CEEY?.  (3.312)
HS

HS
For M4, we have

| M4

e < Cllg]

T — HD,?w + Dt&HWN < CEEV?, (3.313)

So we have

| M|y <CEEY2. (3.314)

M, and M3 can be estimated similarly, we obtain

| Ma| s + | Ms]| e < CEEY2 72, (3.315)
So we have
15111 + St1al s < C(GzEsl/Q + 67/2). (3.316)
Similarly,
|S112 + S115] s < C(EQESUQ + 67/2). (3.317)
|S113 + Stell s < C(EQESV2 + 67/2). (3.318)
So we have
ISl e < C(EEY? + €72). (3.319)

We can estimate other quantities in D,G — DGy — D,G + DG similarly, and obtain
HDtG ~ DGy — DG+ DSGOH < C(EEM? + T2, (3.320)
HS
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3.9.8.2 Estimate H(P — P DI — Ho)(w — ) — (P — Po) DI — @)(& — oz)‘

We have

(P —Po) DI = Ho)(w — @) — (P = Po) DY(I — &) (@ — )

=(P — Py =P+ Po) DI~ Ho)(w — ) + (P = Po)[Dull — Ho)w — @) = YT —&)(@ — )]

Z=U1 + UQ.
(3.321)
U, is a known function, it’s easy to obtain that
|Us]| o < CE72, (3.322)
The operator
P —Po—P +Po = Dib18g + b10D) — Dib10g — b10,DY
=(b1 = b1)0a + Dy(br — b1)0a + (b1 — b1)0a DY + 0100 (by — ).
Then it’s easy to obtain
U || s < C(e72 + EEY?). (3.323)
So we have
[P =P DAL = H)w = @) = (B = P)DYUI - &)@~ a)|
= (3.324)
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3.9.8.3 Estimate L

We have obtained estimate for the quantity L in the previous section, we have

(I =H)(¢ —a) = (I = Hu)(w—a) = (I =H)( — ) + (I = Ha)(@ — a)

(3.325)
<C(€7 + 2B,
Therefore
1078, < C(e7? + EEY?). (3.326)
So we have
[on(I = He)S1],. < C(€7% + EEL). (3.327)

3.9.9 Estimate [D? —iAd,, 0"]oy
The way we estimate this term is similar to that of [D? — iAd,, 0" |p;. We omitt the
details. We have
|[D} —iAd, 0201 ,,. < C(e7? + E€EL?). (3.328)

3.9.10 Estimate H—Q[ DuCH] aapégs_s)‘

HS

Estimates of this quantity similar to that of Rig, we have

1 ¢ (DiC(@)-Dec(8) ) :
ES( ¢()—¢(B) )aﬁ(5_5)d5

OaDi(0 — 6)

_Q[DtC7HC] C

<C(€7% + EEY?). (3.329)

Hs

3.9.11 Estimate

HS

Estimates of this quantity similar to that of Ry7, we have

<C(e"* + EEY?). (3.330)

HS

L (Rl = DN 55— yas

i ¢lar) = ¢(B)

221



Sum up these estimates

Lemma II1.45. We have

[Canll,. =||Pot”

[ =‘ L, <O+ B, (3.331)

3.9.12 Estimate the quantity % o'

By (3.75), lemma I11.35, corollary I11.43, it’s easy to obtain

Qy _
Lokt

< ¥ 4 eBY2 (3.332)
a

Lo

3.9.13 Estimate R\"

Recall that
R = S+ He)p" = 5+ M),

So we have

n L.
Ry =50+ Ho)p — 5100, Help
n 1 N n—m a;npl
=50l + H)(I =H)A = A) = 5 DG — LM ¢
m=1 @

Decompose (o — 1 = (71)a + (r0)a + (o — 1. We estimate (1), in H*(R) while estimate

(r0)a + (o — 1 in W*®. By Proposition III.18,

Rl D W R RTA K
L m=1 gOé L2
p 3.333
<0(||(r1)a| Hs + (To)a + Coe - 1HWS-,OO ) ||aap1| Hs ( )

<C(EY? + ¢)E}2.
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We need also to bound (7t73§”). We have

1 - on—m agénpl

-5 §=: OCa — 1, He] :

1 om amo
- §: o= m{ [0aCe, He] Z’” +[Co— 1, H] act’“

(€a@) - GB)Ga) - D)
o f Q= s

Write ¢; = D; — bd,,, then use Proposition II1.18 to obtain desired estimates. For example,

the term 07 ™[0, Dy(, 7‘[(]

O P1
Ca
gH&x(-Dtg - D?w)Hanl + ||aOéD1[5)w||Wn71,oo ||p1||H"

0o "[0aDiC, M)

L2

<C(E, + eEY? 4 €72),

Similar argument gives

C(E, 4 €EY? + /7). (3.334)

o,R™ S

So we have

J oRMoRMdo < C(E? + €EY? + @B, + ¢PEM? 4 &%), (3.335)

3.9.14 Estimate ¢\"

Recall that
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We use the rough estimate for (bl ") for n < s, apply Lemma II1.36, we have

(n) 1 nil P
aa¢1 :i ([ - HC)aa P1— [CO& - 177—[(] C
(3.336)
<[|Caprl grn
<C(EY? + &),
3.9.15 Estimate {d,0" R
If we use (3.334) and (3.336), then
f 2t R <o [Jomy (3.337)
<C(EYV? 4+ &€2)(E, + eBEY? + /%) (3.338)
<C(E*? + €Y, (3.339)

which is not good enough. So we need to explore the cancellation between ¢§n) and Gthn)
We have
ORMW =Z0,(I + H )R
0, R™
Ca

l\:>|>—t N)I»—*

==+ Hc)atR1 + [, H]

For the second term, we have

n 2R
[0, 1% <2+ (B2 1 2

«

<C(eE3? + E@E, + *EY?),
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For the first term, note that

n 1 7 1 o
0t = 51 = H)Z 1 = S[G = L .

We have

HS

f [Go = LH]OZ pr(1 + He) R daw <C[Ga = Ulyyomr.z 1 Fapr]

<Ce(EY? + &) (E, + eEY? 4 €7?)

<C(eE3? 4+ E@E, + €PEV? 4 ).

We have

J (I = 1) py (1 + Ho) R M dar

_ f (I —H )M pi(I — He)o R da + f(f — M) o (e + He )R daw

We have

f(] — H)OM oy (He + He) R da

<Hag+1p1 HLQH‘lmgOéHWS—I,oc

athn) L2

<Ce(EY? + &%)(E, + eBEY? + €72)

<C(eE3? + E@F, + €?EY? 4 &).
By Cauchy integral formula, we have

j (I = H) pu(I = HOAGRMCadar = 0
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So we have

[ = #0200l = HORTde = (1= Moz 11 = H)ORT (1 = Gdar (3350

<llosonllallce = Uhyere| 2R, (3:351)
<Ce(EYV? 4 &/%)(E, + eBEY? + €7?) (3.352)
<C(eE*? + @F, + €?EY? 4 &), (3.353)
So we obtain
g,
— S C(E? + ¢E3? + E@E, + €2EV? 4 ). (3.354)
The estimate of % is almost the same, and we obtain
dFy,
Z < C(eE3? 4 @B, + €2EV? + &°). (3.355)
Combine (3.354) and (3.355), we obtain
dé€,
il < C(eE*? + @B, + €PEY? + 6. (3.356)

3.9.16 Control E, in terms of &,

To obtain bound on the energy &;, it’s remaining to bound E; in terms of &;. First, we

make the following reamrk.

Lemma I11.46. We have for n < s,

fa%n)ﬁaain)doz > —C(e + ES/QESI/Q +eB, + ES/Q).
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Proof. We decompose o™ = 0™ 4+ 8™ agin (3.145). So we have

J o\ 0,0\ do = J v{o, 0 da + Js{%asfmda + fxp%as{")da + J SM o, v da

=W 4+ Wy + W3 + Wy

By lemma III.32, we have W; > 0. Similar to the estimate for Rgn) and ¢§”), we have

0o S™ < C(E, + eEY? 4 /7).

HS

< C(EY? 4+ &%),
HS

Jw”

The lemma follows directly from the above three equations.

s and [|0,7|

3.9.16.1 Bound || D}r]| e

ps Y [[Dir]

First we derive equation governing D?r;. We have by water waves equation

D} ¢ =iA(, — 1, (DY)’w = iAgwy — i

DX = iAly —i+ €'Ry, (D)0 = idgda® — i + €' Ro.

where

“64R1—64R2| < Ce?,

Hs+7

So we have

DtQC - (D?)Zw - (DtQE - (D?)2C‘D> = iACa - iAOWa - (iAEa _ Z'A’Zloa}a) + error,

with

e < CEV2

||error|
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We write left hand side of (3.361) as

LHS of (3.361) =D;& + (D} — (D)*)w — (Dfé1 + (D} — (DY)*)@)

=D}ri + (D} = D})éi + (D} — (D)*)w + (D} — (D7)?)0.

Split A = Ag + Ay, A = Ay + A;. We write the right hand side of (3.361) as (omitt the *

term)

RHS of (3.361) =iA(a + iAg0als — (1A1C, + 1 Ag0aér)

. . . . (3.363)
=1(A; — A1) + 1A10,7 + i(Ag — Ap)0al1 + 1Ag0aT1.
By (3.361), (3.362), and (3.363), we obtain
D?ry =i(Ay — Ay)Co + 141047 + i(Ag — Ag)0als + iAgOary 5.360
(D~ D& + (D}~ (D)) + (D7 — (D)) |
By (3.239), decompose (o = (71)a + (T0)a + Ca, it’s easy to obtain
Hz’(Al — G| < OHA1 ~ Al <cerscen (3.365)
By corollary I11.42, we have
1141001 || s <ALl gollOarll o < €72 (3.366)
By (3.126) and Sobolev embedding, we have
e P s (3.367
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Obviously,
‘ ’ ZA() Oarl

< HAOHWWHam e < C0art e (3.368)

By lemma II1.41 and (3.231), we have

<O, (3.369)

|0 = Dp)é + (D2 — (DY) + (D}~ (D)3

Recall that A; = 0. So iA;0,r = 0.

Use (3.364), together with (3.365)-(3.369), and recall that E/? := ||0,r] e H D] s +
| D7r1]| ., we obtain
| DEr1| e <Clldari]l e + CeEY? + €2 (3.370)
<C(|0arill gs + | Der1l s) + CeHDfrl‘ s Ce?, (3.371)
Therefore, for e sufficiently small, we have
|DE7||pe < CUartll e + 1 Derall e + €72). (3.372)
Now we are ready to bound F; by &;.
Lemma 111.47. We have
10ar1|l s + 1 Der1 |l s < C(EVZ + €¥2). (3.373)
Proof. Step 1. Show that
D71l e < C(eEY? 4+ By + €2 +||Dipill ) (3.374)
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See the proof of lemma III.36.

Step 2. Show that

C(|Dior]] s + eEsl/2 + 65/2>.

1071)a

Use the fact that 7, is almost holomorphic, similar to the argument in step 1, we have

C(|(T = He)(r1)al

[(r)all s < gs T EESI/2 + 65/2). (3.375)

To bound H(I — H()(Tl)a|

in terms of || Dyo1]| 7 plus an error term, consider

HS
U = iAC, — iAowa — iAC, + i Ao@a.

Use the fact that A = Ay = 1, we have on one hand,

U =i(Co — wWa — Co + @a) + i(A—1)Ca — i(Ag — Dwa — (A — 1) + i(Ag — 1)ia

=i(r1)a + (A — Ag)wy + (A — 1)&,.

So
.+ C(eBY? + B, + 7). (3.376)

<||(1 = He)

(T = He)(r1)al| 4

On the other hand, use water wave equations
(Df —iAda)C = =i, ((D})* —iAeda) = —i,
and the fact that C~ ,w are good approximations:

(D? —idd,) = —i+ 'R, ((D?)? —idpds)d = —i + €' Ry,
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with

641}% - 647§/0‘

< €2,
HS
Denote 'R = 'R — €*Ry. So we have
U =D — (D%)w — DX + (D?)’0 + 'R

=Dy(Dy¢ — D%w — Dy¢ + D) + (b — bo)daDPw + (b — by)daDiC

— (b—by)0aD% + €'R.

We have
H(b —50)aD% + (b — bo)daDiC — (b — bo)2u D0
e (3.377)
<C(eEM? 4 &),
Denote
Uerror = (b= bg)0aD%w + (b — by)0a Dyl — (b — by)0a DG + €*R.
We have

(I = H)U =(I — He)Dy(Di¢ — D2w — DiC + DY) + (I — H)Uepror

=Dy(I — H) (D¢ — DPw — D¢ + D2&) (3.378)
0a(Dy¢ — D% — Dy¢ + DO%)
Ca

+ [DtC? HC] + (I - HC>Uerror-

Because we want to get estiamtes in terms of Doy, we rewrite (I—H,)(Dy(—D%w—Dy(+ DY)
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as

(I = He)(Di¢ = Djw — Dyl + Dj)

=(I = H¢)(Di€ — D& — Di€ + D + b — by — b — by)

=(I = He)Dié — (I — Ho)DPéo — (I — He)Dil + (I — Ha) D6 (3.379)
+ (He = Ho) DYéo + (He — He)é — (He — Ha) Do + (1 — He) (b —bo — b — bo)

=(6—08) + Vi + Va,

where
Vii= (He — o) DY + (He — He)€ — (He — Ha) DYS,
and
Vo i= (I —He)(b— by — b —by).
We have
D VAl s + 1| DiVal| s < C(eEY? + E, + €9/7). (3.380)

Combine (3.378), (3.379), and (3.380), use the fact that
§—0 = oy + error,
where the H*® norm of the error is controlled by C(eE, + E; + €/2. We obtain

(1 —H)U|

e = Dol + C(eEY? + €77) (3.381)
Combine (3.375), (3.376) and (3.381), we have

10r1)al

e < C(I Doy || e + eBY? 4 €77). (3.382)
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Step 3. Control || D;o |

pre and [ Depy || . by Es.

By corollary I11.43 and lemma I11.46, we have

1Dl e + 1 Deprllye < 26 + C(E + 2B + ey + EJ?).

Combine (3.374) and (3.382), we obtain

EYV? < C(E, + eEY? + /7).

So we obtian

EYV2 < C(E + 7).

Combine (3.356) and (3.384), we obtain

d€&

dtsmw%%+8&+¢%+éy

By bootstrap argument, we obtain

(3.383)

(3.384)

(3.385)

Proposition II1.48. Let s, k, B(0), B(X,T), My, ¢V and T be given as in Theorem I.16.

Let €y be given. Suppose E,(0) = Mye®. Then there exists a probably smaller ey depends on

k:787 T’ MO?HB(O) - 1|

E(t) < Ce, for some constant C = C(k, s, My, T, |B(0) — 1||gs+7).

3.10 Justification of the NLS from full water waves

s+ 80 that for all 0 < e < ¢ and 0 <t < min{Ty, Te 2}, we have

In this section, we show that for non-vanishing wave packet-like data, the solution to the

water wave system exists on the O(e™2) time scale, and is well-approximated by the wave
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packet whose modulation evolves according the the 1d focusing NLS. Let’s summarize what

we have done so far:

1. Use the NLS to construct approximate solutions to the full water waves. Let B be
a solution to 1d focusing NLS. We show that there is an approximate solution C~ =
o+ eCW 4 (@ 4 ¢4 to the water waves system on time scale O(¢~2) such that

(M = Be.

2. A priori energy estimate of error term. We show that if (¢, D;(, D() is a solution

to water waves system, with approximation (¢, D;(, D*(C), then the remainder term

ri=(— C~ satisfies some good energy estimates on time scale O(e?).

In the next subsection, we show that there exists initial data ({y, vo, wp) such that (o —a and

7y are holomorphic, and (Cy, vy, wo) — (C(0), DyC(0), D2C(0)) = O(€%/2) in appropriate sense.

3.10.1 Construction of appropriate initial data

In this subsection, we construct initial data to the water waves system which is close to

the approximation (¢, D;(, D?C). To be precise, we need

(I-1) o — o, Dyo € Holpr(92(0)), which is equivalent to

(I —He)(Go—a)=0, (I —"Hg)Di((0) =0.

(I-2) (o = w(0) + &1(0), such that

(I —H,)(@(0) — ) =0, (I —H,)DYw(0) = 0.

(I-3) The distance between w(0) and @(0) is small:

HW(O) - (’D(O)st’+l,oc < 062.
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HD?w(O) - DS@(O)H < Ce.

Ws'so0

And the distance between &; and él is also small:

< Ce¥2.
H(R)

2al&(0) — E(0))]

HD@(O) . Dtgl(())( < O,

HS+1/2(R)

(I-4) Ap(0), (DY)?w(0), DYw(0) satisfy the following compatibility condition

(I —H,)(Ao(0) —1) = i[(D})?w(0), ’Hp]%zo_)1 +z‘[D?w(0),Hp]a“af;—°(DO()o>. (3.386)
(I-5) A(0), D?¢(0), DyC(0) satisfy the following compatibility condition
(I =M )(A(0) = 1) = i[DEC(O),Hgo]C‘g L z’[Dtg(O),%C(o)]a"DC;f(m (3.387)

In the following lemma, we show that initial data satisfy (I-1)-(I-5) exist.

Lemma II1.49. For sufficiently small eg > 0, there ezist w(0), ((0) = (o such that for all
€ < €y, (11)-(I5) hold.

To prove lemma I11.49, we first prove the following.

Lemma ITL1.50. Let &y = a 4+ ew® + 2w® + w® be such that the w® = coe*™ for some
constant ¢y, and W@, w® e W+L*2(T). Then there exists w(0) be such that w(0) — « is
periodic with period 2m,

”CU(O) - C‘DHWS’+1,OC(T) < 062,

and w(0) — a = $o(w(a,0)), where Oy is holomorphic in the domain bounded above by the
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curve w(0), satisfying

lim  ®o(2) = 0.

Imz——00

In the appendix, we show that if we define I' := {a + ce*® : o € R} and Q° the

domain which is below I, then ce™* is not holomorphic in Q°. So we cannot simply take

w(0) = a + cete,

Lemma II1.50 is a direct consequence of the following lemma.

Lemma ITL1.51. Let s’ = 0 and € = 0 be fized. There exists g = €y(s’) > 0 be sufficiently
small such that for all ¢ with 0 < € < €, there emists w such that w — a € W¥%(T),
satisfying

O—oa=ce ™, (3.388)

and

< Cé, (3.389)

Ws’+1,oo(']1‘)

for some constant C' = C(s') > 0.

Proof. We prove the lemma by iteration. It suffices to prove the case that s’ = 0. Let
wp := a and define

W

Wpe1 = @+ ce

Then w; = a + ée**. We have

oo:‘c|:€'
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Then we have

e—i(wl —wo) . 1 H

ez = il =lel[e||_|
0

0
(—iwr — wp))"*
=€l 2, k!
k=1
o0
loos — woll
<ellor - wol, Y
n=1 :
Z k-1 Z k-1
<éllwr — wo — < €llwr — wo| YR
el P (k=1
<2ellwr — woll, -
From this, we have also that
lwa = all,, <lwz = willy, +llwr — e, < e+ 26
We claim that
n
lwn — o, <€+ > (20)", (3.390)
=2
and
llwn — w1, < 2€]|wn—1 — wWn—2||, - (3.391)
Indeed,

—i(wn—1—a)

|wni1 — wnllo =]c\”e‘iae OOHe—i(Wn—%—l) _ 1H

o0}
2¢ ||wn — wnle];o_l
<ee™[|wn — wnil, Y o
k=1 ’
(26)k—1

<ee lwn — wa1ll,, D < e0*flwn — wao ., €™

k=1

(k- 1)!

<2€||wn — wn-1lly, -
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So the induction hypothesis is verified, and the claim follows. So

lon = wnall,, < (26)".

There exists & € L such that

wp, —a — &.

It’s easy to show that & € W*+1(T) and w, —a — & in W**1°(T). Moreover, if we denote

w =& + a, we have

ezk’a < 062.
Ws/+1,00

Hw — o — C
So the proof of Lemma II1.51 and hence Lemma II1.50 is completed. O]

With lemma II1.50, we can prove lemma I11.49.

Proof of lemma II1.49. Given ¢ and & given by (3.107)-(3.109), by Lemma II1.50, there exists
wo with wo—a € W*+1%(T) such that wy—a = By(0)e ™0 and||wy — a — BO(O)eemHWS,Hw <

C(s)e?. By Lemma III.11, we have
(I = Hoo ) (@0 — @) = Bo(0)(I — Hoy, o™ = 0. (3.392)

We want to find (y such that
(I~ He) (G — @) = 0, (3.393)

Write
Co = wo + &1(0).

We want

&(0) — &(0) = O(*?). (3.394)
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We simply write & (0) as & and & (0) as &. By (3.393), we expect that
Go—a=(I+He)f, (3.399)

for some function f. By (3.394), we expect that f should be closed to €. Tt’s easy to see

that we can take

l =
f= 5(51 +wp — ).
Denote &y := wy — a. Recall that (I — H,,)wo = 0, so we have
1 o
5(1 + Hwo)go = 50'
So we have

1 = 1 _
(] + HCU)f 25(1 + HCO)& + 5(1 + %Co)fo
1 = 1 _ i
:i(I + HCo)gl + 5(1 + HWO)&) + (%Co - Hwo>§0
1 = _ _
25(1 + He ) + &o + (Hey — Huo)éo
So (3.395) is equivalent to

&1 = 5(—7 + Heo )& + (Hey — Ha ) o (3.396)

(3.396) can be solved by iteration: let go = 0, zp = «. Assume g, has been constructed,

define z, = g, + wo. Then define g, by
_ 1 = _
In+1 = 5([ + Hzn)gl + (Hzn - Hwo)go-

Then it’s easy to prove that {g,} defines a Cauchy sequence in H**7(R), given that &, €

H*(R). See lemma 5.1 of [63] for example.
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Use the same argument, we can show that D,((0) € Holy, and (1), (2), (3) hold. (4) and

(5) can be proved similarly.

3.10.2 Long time well-posedness

By energy estimates in the previous section and the initial data constructed above, we

can prove the following theorem.

Theorem IIL.5. Let My, s, k, B(0), T be given as in Theorem 1.16. Denote the B(X,T)
the solution of (3.114) with initial data B(0), and let Cl(l) be defined as in (3.113). Then
there is €g = €o(k, s, My,||B1(0)]

Hs+7(R) ,T) > 0 so that for e < €, there exists compatible

initial data ((oy,vo, wo) to water waves system such that

(Co, vo, wo) = (wo + £1(0), Djwo + (v1)o, (D)?wo + (w1)o),

where (wg, DYwo, (D})*wy) is a compatible initial data for periodic water waves sytem (3.38),

satisfying

(Qusc, Dfcn, (DF)wn) — e(0us" (0), 066(0), 33¢((0)

HS (T)x H' +1/2(T) x H¥' (T) (3397)

2
<M0€,

| 0u(0). ()0, (w)o) = e(@a{V(0), 2¢{" (0), G2¢( 0)

Hsx Hs+t1/2x Hs (3398)
<M063/2,

and for all such initial data, there exists a possibly smaller ey > 0 such that the water waves
system has a unique solution (a,t) with (0,(¢ — ), Di¢, D?¢) € C([0, Te 2]; X® x X5+1/2 x

X?) satisfying

sup
0<t<Te 2

(Galt) = 1, D), DEC(1) — el (1), 6" ¢

<Ce? (3.399)
XsxXst1/2x Xs
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for some constant C' = C(k, s, My, T,||B(0) — 1]

Hs+7> .

In particular, if we take B to be the Peregrine soliton, then we justify the Peregrine

soliton from the full water waves.

3.10.3 Rigorous justification of the Peregrine soliton in Lagrangian coordinates

Let’s change of variables back the our more familiar lagrangian coordinates. We have
k¢ = b(k). This gives a smooth function x : R — R. Taking ko smaller if necessary, it’s easy
to show that

|Kallyprsro = 1/2, ¥V te[0,Te 2. (3.400)

So k is a diffeomorphism. Let z = ¢ o k, a be such that (ak,) o k~! = A, we obtain water
waves equation (1.81), which is in Lagrangian coordinates. We can then obtain estimates

for the remainder term in Lagrangian coordinates.

Remark 111.52. In Lagrangian coordinates, (, — 1 becomes z, — k,. S0 we have

Zo — 1 = 2o — Ko + (Ko — 1). (3.401)

We have
yoore S €72 (3.402)

sup ||z — Kal
te[0,Te2]

1/2 on time scale O(e~2). So we are

However, it seems that ||k, — 1|| -1z can be as large as €
unable to rigorously justify the modulation approximation for Re{z, — 1}. Please see [63]

for more details.
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APPENDIX A

Holomorphicity of plane waves

Let ((a) = a + ce** a € R, ¢ is a small constant, k > 0, for simplicity, assume k is an

integer. Let
[:={({(a): aeR}.

Then I' is a graph. Let €2, be the region above I', and 2_ the region below I'. On one hand,
it’ easy to prove that

Lemma A.1. a, e=* and ¢** are holomorphic in € .

On the other hand, we’ll show that e”*® cannot be boundary value of a bounded holo-

morphic function in Q_.
Lemma A.2. Ifc # 0, then e*® cannot be boundary value of a holomorphic function in Q_.

Proof. If e’** is boundary value of a holomorphic function in _, then e**¢ is entire, and so
« is entire. Assume a = ®(((a)), ® entire. Let ¥(¢) = ¢ + ce*e. Then VU is entire, and

U(a) = ¢(a). So we have
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Vod and ®o U are entire, we must have Wo®(z) = 2, PoU(z) = z. So ¥ and P are inverse
of each other.

If ¢ # 0, then the function z + ce’** has an essential singularity at oo because ce?** does.
ikz

By Picard’s theorem, z + ce'™* attains all values in C infinitely many times with at most

one exception. Suppose 2 is this exception, i.e., z + ce?** = z, has finitely many solutions

(possibly none). But then z + ce?** = 2y + 27 has infinitely many solutions. Then

tk(z—2m)

=2+ ce™ =2 = z—21+ce = 2p.

So z + ce™** = z, has infinitely many solutions, a contradiction.
In particular, z + ce’** = 0 has infinitely many solutions. So ¥ is not invertible, contra-

diction. []

Lemma A.3. If e=** is boundary value of a holomorphic function in Q_, then e™** is also

holomorphic in €)_.

Proof. Let e=** = G(¢()), where G is holomorphic in 2_. Then the zeros of G is a discrete

set, which we denote by S. We’ll show that S = . Since ( = a + ce™*®, we have

C C
e—ika B

a=¢(a) -

DefineH(¢) := ¢ — ﬁ, ( € 2_. Then H has boundary value a. So « is boundary value of

G
a meromorphic function in €2_, with poles at S.

Note that e~**(¢(@) has boundary values e~ and e~*#(9) is holomorphic in Q_\S, by
uniqueness extension of holomorphic functions, we must have e~*#(©) = G(¢) on Q_\S.

If S # &, then take zp € S. Then since G(zy) is defined, zy must be a removable

—ikH () - However, since z, is a pole of H((), so 2, is an essential singularity

singularity of e
of e~ ™*H(Q) 3 contradiction. So S = .

So we conclude that « is holomorphic in Q_, and so e*** is holomorphic in Q_. m
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Corollary A.4. e * cannot be the boundary value of a holomorphic function in Q_ if

c# 0.
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