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ABSTRACT

Given a smooth, complex projective variety X, one can associate to it numerical

invariants by taking holomorphic Euler characteristics of natural vector bundles on

the moduli spaces of stable maps to X. The study of these invariants is called

quantum K-theory. Since K-theory is closely related to representation theory, it is

natural to revisit quantum K-theory from the representation theoretic point of view.

One of the important concepts in representation theory is level. In this thesis, we

introduce the notion of level in quasimap theory and refer to it as the level structure.

This thesis consists of two parts. In the first part, we define level structures in

quasimap theory as certain determinant line bundles over moduli spaces of quasimaps.

By twisting with these determinant line bundles, we define K-theoretic quasimap in-

variants with level structure. An important case of this construction is quantum

K-theory with level structure. We study the basic properties of level structures and

show that quantum K-theory with level structure satisfies the same axioms as the

ordinary, i.e., Givental-Lee’s, quantum K-theory. In the genus-0 case, the invariants

are encoded in an important generating series: the J-function. We characterize the

values of the J-function in quantum K-theory with level structure. As an application

of this characterization, we prove a mirror theorem for toric varieties. One surprising
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finding is that the mirrors of some of the simplest examples are Ramanujan’s mock

theta functions.

In the second part, we study the Verlinde/Grassmannian correspondence, which

is a K-theoretic generalization of Witten’s result [82]. It relates the Verlinde algebra,

a representation theoretic object, with the quantum K-invariants of the Grassman-

nian with level structure. To prove this correspondence, an important observation is

that the Verlinde invariants and quantum K-invariants of the Grassmannian can be

defined using the same gauged linear sigma model but with different stability con-

ditions. In this thesis, we study the δ-stability condition, for δ ∈ Q+. In particular,

we construct the moduli spaces of δ-stable parabolic N -pairs and prove that they

are equipped with canonical perfect obstruction theories. Using virtual structure

sheaves, we define Verlinde type invariants over these moduli spaces and prove that

they do not change when we vary δ.
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CHAPTER I

Introduction

More than a decade ago, quantum K-theory was introduced by Givental and

Lee [28, 53] as the K-theoretic analog of quantum cohomology. Its recent revival

stems partially from a physical interpretation of quantum K-theory as a 3D-quantum

field theory in the 3-manifold of the form S1 × Σ (see [47, 48]). Because of this

mysterious physical connection, the B-model counterpart of quantum K-theory is

q-hypergeometric series, itself a classical subject. The above connection was re-

cently confirmed by Givental [34] as the mirror of the so-called J-function of the

permutation-equivariant quantum K-theory.

Classically, K-theory is more closely related to representation theory, comparing

to cohomology theory. It is natural to revisit quantum K-theory from the representa-

tion theoretic point of view. In fact, a variant of quantum K-theory was already stud-

ied by Aganagic, Okounkov, Smirnov and their collaborators [5, 6, 51, 60, 61, 63, 70]

in relation to quantum groups. One of the predominant features of representation

theory is the existence of an additional parameter called the level. A natural ques-
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tion is whether it is possible to extend the current version of quantum K-theory to

include this notion of level. The primary goal of this thesis is to answer this question

affirmatively in the context of quasimap theory. We first explain the motivation for

level structures in quantum K-theory. Then we characterize quantum K-theory with

level structure in genus zero. In the study of mirror symmetry of this new theory, we

see the surprising appearance of Ramanujan’s mock theta functions in some of the

simplest examples. After that, we give a generalization of Witten’s result relating

Verlinde numbers and quantum K-invariants of Grassmannians with level structures.

1.1 Motivation

Our motivating example is an old physical result of Witten [82] in the early ’90s

which relates the quantum cohomology ring of the Grassmannian to the Verlinde

algebra. Early explicit physical computations [27, 46, 80] indicate that they are

isomorphic as algebras, but have different pairings. In [82], Witten gave a conceptual

explanation of the isomorphism, by proposing an equivalence between the quantum

field theories which govern the Verlinde algebra and the quantum cohomology of

the Grassmannian. His physical derivation of the equivalence naturally leads to a

mathematical problem that these two objects are conceptually isomorphic (without

referring to the detailed computations). A great deal of work has been done by

Agnihotri [7], Marian-Oprea [55, 56, 57], and Belkale [10]. However, to the best of

our knowledge, a complete conceptual proof of the equivalence is missing.

Assuming a basic knowledge of quantum K-theory, a key and yet more or less
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trivial observation is that invariants of Verlinde algebras are K-theoretic invariants.

To be more precise, let X be a smooth projective variety. Suppose that Mg,k(X, β)

is the moduli space of stable maps to X. Quantum cohomology studies integrals of

the form ∫
[Mg,k(X,β)]vir

α,

where [Mg,k(X, β)]vir is the so-called virtual fundamental cycle and α is a “tautolog-

ical” cohomology class. In quantum K-theory, we replace the virtual fundamental

cycle by the virtual structure sheaf Ovir
Mg,k(X,β)

. We also replace the integral by the

holomorphic Euler characteristic

χ
(
Mg,k(X, β), E ⊗Ovir

Mg,k(X,β)

)
,

where E is some natural K-theory class on Mg,k(X, β). For the Verlinde algebra,

the relevant moduli space is the moduli space of semistable parabolic U(n)-bundles

U(n, d, λ) on a fixed genus g marked curve (C, p1, · · · , pk) with parabolic structure

at pi indexed by λpi . Here λ = (λp,1, . . . , λp,k) is the collection of insertions. Let l

be a non-negative integer. The parabolic structures λpi correspond to elements Vλpi

in the level-l Verlinde algebra Vl(U(n)). A new ingredient is a certain determinant

line bundle, denoted by det, over the moduli space U(n, d, λ). The level-l Verlinde

algebra calculates the holomorphic Euler characteristic

〈Vαλ1
, · · · , αλk〉

l,Verlinde
g,d = χ(U(n, d, λ), detl).

Based on the above description, the Verlinde algebra is clearly a K-theoretic

object, and we should compare it with the quantum K-theory of the Grassmannian
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with an appropriate notion of levels. Let BunG be the moduli stack of principal

bundle over curves. Let π : CBung,k → BunG be the universal curve and let P →

CBung,k be the universal principal bundle. Given a finite-dimensional representation

R of G, we consider the inverse determinant of cohomology

detR :=
(
detRπ∗(P×G R)

)−1
.

It is a line bundle over BunG. Suppose X = Z // G is a GIT quotient. Let Qε be

the moduli stack of ε-stable quasimaps to X = Z // G (see Section 2.2). Then there

is a natural forgetful morphism µ : Qε → BunG. We define the level-l determinant

line bundle as

DR,l = µ∗(detR)l.

We will often refer to DR,l as the level structure. In general, when X is a smooth

complex projective variety, but not a GIT quotient, one can still define determinant

line bundles over the moduli space of stable maps Mg,k(X, β) as follows. Let R be

a vector bundle over X. Let π : C → Mg,k(X, β) be the universal curve and let

ev : C → X be the universal evaluation map. We define the level-l determinant line

bundle as

Dl :=
(
detRπ∗(ev∗R)

)−l
.

This definition agrees with the previous one when X is a GIT quotient (see Definition

II.4 and Remark II.5).

With the above definition of the level-l determinant line bundle DR,l, we can

define the level-l quantum K-invariants and quasimap invariants by twisting with
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DR,l (see Chapter III). The ordinary quantum K-theory, i.e., Givental-Lee’s quantum

K-theory, corresponds to the case l = 0.

1.2 Mirror theorem and mock theta functions

One of the main results of this thesis is a toric mirror theorem for quantum

K-theory with level structure, in the same style as the recent work of Givental

[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

Let X be a smooth complex projective variety and let R be a vector bundle over

X. When X = Z // G is a GIT quotient, we assume R is of the form (Z × R) // G,

with R a finite-dimensional representation of G. By abuse of terminology, we refer

to the vector bundle R as the “representation” R. Let Q be the Novikov variables.

We fix a λ-algebra Λ which is equipped with Adams operations Ψi, i = 1, 2, . . . . Let

{φa} be a basis of K0(X) ⊗ Q and let {φa} be the dual basis with respect to the

twisted pairing

(u, v)R,l := χ
(
u⊗ v ⊗ (detR)−l

)
, where u, v ∈ K0(Z // G)⊗Q.

Let q be a formal variable and let t(q) be a Laurent polynomial in q with coefficients

in K0(X)⊗Q. The permutation-equivariant K-theoretic J-function J l
S∞(t(q), Q) of

level l and representation R is defined by

J R,l
S∞

(t(q), Q) := 1− q + t(q) +
∑
a

∑
β 6=0

Qβφa
〈

φa
1− qL

, t(L), . . . , t(L)

〉R,l,Sk
0,k+1,β

.

Here 〈 · 〉R,l,Sk0,k+1,β denotes the permutation-equivariant quantum K-invariants of level

l and L denote the cotangent line bundles. The J-function J R,l
S∞

can be viewed as
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elements in the loop space K defined by

K := [K0(X)⊗ C(q)]⊗ C[[Q]],

where C(q) denotes the field of complex rational functions in q. There is a natural

Lagrangian polarization K = K+ ⊕ K−, where K+ consists of Laurent polynomials

and K− consists of reduced rational functions regular at q = 0 and vanishing at

q =∞. We denote by LR,lS∞
the range of J R,l

S∞
, i.e.,

LR,lS∞
= ∪t(q)∈K+J

R,l
S∞

(t(q), Q) ⊂ K.

Due to the stacky structure of the moduli space of stable maps, the J-function

J R,l
S∞

(t(q), Q), as a function in q, has poles at roots of unity. The main technical tool

is a generalization of Givental-Tonita’s adelic characterization of points on the cone

LR,lS∞
with the presence of level structure, i.e., we describe the Laurent expansion

of J R,l
S∞

at each primitive root of unity in terms of certain twisted fake quantum

K-theory. The precise statement is rather technical, and we present it in Theorem

IV.5. When l = 0, the determinant line bundle DR,l is trivial, and we recover the

ordinary quantum K-theory. The adelic characterization of the cone in the ordinary

quantum K-theory was introduced in [41], and its generalization to the permutation-

equivariant theory is given in [31]. The proofs of all these results are based on

application of the virtual Kawasaki’s Riemann-Roch formula to moduli spaces of

stable maps (see Section 4.1).

Let LS∞ denote the range of the permutation-equivariant big J-function in or-

dinary quantum K-theory (i.e., with trivial level structure). As an application of
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Theorem IV.5, we prove that certain “determinantal ” modifications of points on

LS∞ lie on the cone LR,lS∞
of quantum K-theory of level l.

Theorem I.1. If

I =
∑

β∈Eff(X)

IβQ
β

lies on LS∞, then the point

IR,l :=
∑

β∈Eff(X)

IβQ
β
∏
i

(
L−βii q(βi+1)βi/2

)l
lies on the cone LR,lS∞

of permutation-equivariant quantum K-theory of level l. Here,

Eff(X) denotes the semigroup of effective curve classes on X, Li are the K-theoretic

Chern roots of R, and βi :=
∫
β
c1(Li).

In Theorem IV.17, we give explicit formulas for level-l (torus-equivariant) I-

functions of toric varieties. Moreover, we prove the following toric mirror theorem.

Theorem I.2. Assume that X is a smooth quasi-projective toric variety. The level-l

torus-equivariant I-function (1−q)IR,l of X lies on the cone LR,lS∞
in the permutation-

and torus-equivariant quantum K-theory of level l of X.

In the study of toric mirror theorems for quantum K-theory with level structure,

a remarkable phenomenon is the appearance of Ramanujan’s mock theta functions.

We first establish some notations. Denote the standard representation of G by St and

its dual by St∨. When G = C∗, any n-dimensional representation of G is determined

by a charge vector (a1, . . . , an) with ai ∈ Z: a C∗-action on Cn can be explicitly
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described by

λ · (x1, . . . , xn)→ (λa1x1, . . . , λ
anxn), where λ ∈ C∗.

In the following propositions, we consider GIT quotients Cn // C∗, and we refer to

the C∗-actions by their associated charge vectors.

Proposition I.3. Consider X = C // C∗ = [(C\0)/C∗], where the C∗-action is the

standard action by multiplication. The C∗-equivariant K-ring KC∗(X) is isomorphic

to the representation ring Repr(C∗). Let λ ∈ KC∗(X) be the equivariant parameter

corresponding to the standard representation. For the C∗-representations St and St∨,

we have the following explicit formulas of the equivariant small I-functions

ISt, l
X (q,Q) = 1 +

∑
n≥1

q
n(n−1)l

2

(1− λ−1q)(1− λ−1q2) · · · (1− λ−1qn)
Qn,

ISt∨, l
X (q,Q) = 1 +

∑
n≥1

q
n(n+1)l

2

(1− λ−1q)(1− λ−1q2) · · · (1− λ−1qn)
Qn,

By chosing certain specializations of the parameters, we obtain Ramanujan’s mock

theta functions of order 3

ISt, l=1
X (q2, Q)|λ=−1,Q=q = 1 +

∑
n≥1

qn
2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

ISt, l=1
X (q2, Q)|λ=q,Q=q = 1 +

∑
n≥1

qn
2

(1− q)(1− q3) · · · (1− q2n−1)
,

ISt, l=1
X (q2, Q)|λ=−q,Q=1 = 1 +

∑
n≥1

qn(n−1)

(1 + q)(1 + q3) · · · (1 + q2n−1)
,
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and Ramanujan’s mock theta functions of order 5

ISt, l=2
X (q,Q)|λ=−1,Q=q = 1 +

∑
n≥1

qn
2

(1 + q)(1 + q2) · · · (1 + qn)
,

ISt, l=2
X (q2, Q)|λ=q,Q=q2 = 1 +

∑
n≥1

q2n2

(1− q)(1− q3) · · · (1− q2n−1)
,

ISt∨, l=2
X (q,Q)|λ=−1,Q=1 = 1 +

∑
n≥1

qn(n+1)

(1 + q)(1 + q2) · · · (1 + qn)
,

ISt∨, l=2
X (q2, Q)|λ=q,Q=1 = 1 +

∑
n≥1

q2n2+2n

(1− q)(1− q3) · · · (1− q2n−1)
.

Proposition I.4. Let a1 and a2 be two positive integers which are coprime. We

consider the target Xa1,a2 = [(C2\0)/C∗] with charge vector (a1, a2) and a line bundle

p = [{(C2\0)×C}/C∗] with charge vector (a1, a2, 1). Let λ1 and λ2 be the equivariant

parameters. For the C∗-representations St and St∨, we have the following explicit

formulas of the equivariant small I-functions

ISt, l
Xa1,a2

(q,Q)

=1 +
∑
n≥1

pnlq
n(n−1)l

2

(1− pa1λ−1
1 q) · · · (1− pa1λ−1

1 qa1n)(1− pa2λ−1
2 q) · · · (1− pa2λ−1

2 qa2n)
Qn,

ISt∨, l
Xa1,a2

(q,Q)

=1 +
∑
n≥1

pnlq
n(n+1)l

2

(1− pa1λ−1
1 q) · · · (1− pa1λ−1

1 qa1n)(1− pa2λ−1
2 q) · · · (1− pa2λ−1

2 qa2n)
Qn.

By choosing (a1, a2) = (1, 1) and certain specializations of the parameters, we obtain

the following four Ramanujan’s mock theta functions of order 3:

ISt, l=2
X1,1

(q2, Q)|p=1,λ1=λ2=−1,Q=q = 1 +
∑
n≥1

qn
2

((1 + q)(1 + q2) · · · (1 + qn))2
,
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ISt, l=2
X1,1

(q,Q)|
p=1,λ1= 1+

√
3i

2
,λ2= 1−

√
3i

2
,Q=q

= 1 +
∑
n≥1

qn
2

(1− q + q2)(1− q2 + q4) · · · (1− qn + q2n)
,

1

(1− q)2
ISt∨, l=2
X1,1

(q2, Q)|p=1,λ1=λ2=q−1,Q=1 =
∑
n≥0

q2n2+2n

((1− q)(1− q3) · · · (1− q2n+1))2
,

1

(1 + q + q2)
ISt∨, l=2
X1,1

(q2, Q)|
p=1,λ1=−1+

√
3i

2
q−1,λ2=−1−

√
3i

2
q−1,Q=1

=
∑
n≥0

q2n2+2n

(1 + q + q2)(1 + q3 + q6) · · · (1 + q2n+1 + q4n+2)
.

Proposition I.5. Let a and b be two positive integers which are coprime. We con-

sider the target Xa,−b = [{(C\0)×C}/C∗] with charge vector (a,−b) and a line bundle

p = [{(C\0)×C×C}/C∗] with charge vector (a,−b, 1). Let λ and µ be the equivari-

ant parameters of the standard (C∗)2-action on Xa,−b. For the C∗-representation St,

we have the following explicit formula for the equivariant small I-function

ISt, l
Xa,−b

(q)

=1 +
∑
n≥1

(−1)bn
pnl−b

2nq
n(n−1)l−bn(bn−1)

2 µ−bn(1− pbµ)(1− pbµq) · · · (1− pbµqbn−1)

(1− paλ−1q)(1− paλ−1q2) · · · (1− paλ−1qan)
Qn.

In particular, we have order 7 mock theta functions

ISt, l=3
X2,−1

(q,Q)|p=1,λ=1,µ=q,Q=−q2 = 1 +
∑
n≥1

qn
2

(1− qn+1) · · · (1− q2n)
,

q

1− q
ISt, l=3
X2,−1

(q,Q)|p=1,λ=q−1,µ=q,Q=−q4 =
∑
n≥1

qn
2

(1− qn) · · · (1− q2n−1)
,

1

1− q
ISt, l=3
X2,−1

(q,Q)|p=1,λ=q−1,µ=q,Q=−q3 =
∑
n≥1

qn
2−n

(1− qn) · · · (1− q2n−1)
.
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It is interesting that we can recover Ramanujan’s mock theta functions using only

very simple targets.

One of the attractive features of quantum K-theory is the appearance of q-

hypergeometric series as mirrors of K-theoretic J-functions. Recall the definition

of the q-Pochhammer symbol

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1) for n > 0,

and (a; q)0 := 1. A general q-hypergeometric series can be written as

rφs =
∑
n≥0

(α1; q)n · · · (αr; q)n
(β1; q)n · · · (βs; q)n

zn

(q; q)n
[(−1)nq

n(n−1)
2 ]1+s−r.

For the quantum K-theory of level 0, i.e, Givental-Lee’s quantum K-theory, we only

see special q-hypergeometric series of the form

∑
n≥0

(α1; q)n · · · (αr; q)n
(β1; q)n · · · (βs; q)n

zn

(q; q)n
.

The level structure naturally introduces the term

[(−1)nq
n(n−1)

2 ]1+s−r.

Proposition I.6. Consider the target X1,−1 := O(−1)⊕rPs−1 = [{(Cs\0)×Cr}/C∗] with

the charge vector (1, 1, · · · , 1,−1,−1, · · · ,−1). Let p = [{(Cs\0)×Cr×C}/C∗] be a

line bundle with charge vector (1, · · · , 1,−1, , · · · ,−1, 1). Let λ1, · · · , λs, µ1, · · · , µr

be the equivariant parameters of the standard (C∗)s+r-action on X1,−1. Then the
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equivariant small I-function has the following explicit form

ISt, l=1+s
X1,−1

(q)

=1 +
∑
n≥1

(−1)nr
r∏
i=1

(pµi)
−np(1+s)n (pµ1, q)n · · · (pµr; q)n

(pλ−1
1 q; q)n · · · (pλ−1

s q; q)n
Qn(q

n(n−1)
2 )1+s−r.

Hence we can recover the general q-hypergeometric series by setting p = 1, λ−1
i q =

βi, µj = αj, Q = (−1)1+sz
∏r

i=1 µi.

Recall that Gromov-Witten theory (of Calabi-Yau varieties) is related to quasi-

modular forms. Mock modular forms are another class of modular objects, which are

different from the quasi-modular forms. Yet, they share some common properties.

The above mirror theorems suggest an exciting possibility that the natural geometric

home of mock modular forms is quantum K-theory with non-trivial level structures.

1.3 Verlinde/Grassmannian correspondence

As mentioned in Section 1.1, Verlinde invariants are K-theoretic invariants in the

theory of semistable parabolic vector bundles. Hence they should be compared with

a version of quantum K-theoretic invariants of Grassmannians, instead of cohomo-

logical Gromov-Witten invariants. For this purpose, we introduce the level structure

to quantum K-theory mentioned in the previous section.

With the appropriate choice of the level structure in quantum K-theory, we formu-

late a K-theoretic version of Witten’s conjecture. We first introduce some notations.

Let l be a non-negative integer. Recall that as a vector space, the Verlinde alge-

bra Vl(gln(C)) of level l is spanned by a basis {Vλ}λ∈Pl , where λ = (λ1, . . . , λn)
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is a partition such that satisfies λ1 ≥ · · · ≥ λn ≥ 0. The set Pl consists of all

partitions λ with n parts such that λ1 ≤ l. There is a geometric construction of

the Verlinde numbers. Let C be a smooth curve of genus g, with k marked points

p1, . . . , pk. Let I = {p1, . . . , pk} be the set of marked points. We assign a partition

λp = (λp,1, . . . , λp,k) to each marked point p ∈ I. Let U(n, d, λ) denote the moduli

space of S-equivalence classes of parabolic vector bundles of rank n and degree d,

with parabolic type determined by the assignment λ = (λp)p∈I (see Definition VI.2).

There exists an ample line bundle Θλ, called the theta line bundle, over U(n, d, λ).

The GL Verlinde number with insertion λ is defined by

〈Vλp1 , . . . , Vλpk 〉
l,Verlinde
g,d := χ

(
U(n, d, λ),Θλ

)
.

We consider a variation of the quantum K-invariants defined in the previous

section. We choose one more marked point x0 ∈ C which is disjoint from the mark-

ings in I. Let MC(Gr(n,N), d) denote the graph space which is a moduli space

parametrizing families of tuples

(
(C ′, x′0, p

′
1, . . . , p

′
k), E, s, ϕ

)
,

with (C ′, x′0, p
′
1, . . . , p

′
k) a k+ 1-pointed nodal curve of genus g, E a locally free sheaf

of degree d on C ′, s a section of E ⊗ ONC′ satisfying a certain stability condition,

and ϕ : C ′ → C a morphism such that ϕ([C ′]) = [C], ϕ(x′0) = x0 and ϕ(p′i) = pi.

The stability condition on s ensures there are well-defined evaluation maps evi :

MC(Gr(n,N), d)→ Gr(n,N). Let S be the tautological vector bundle over Gr(n,N)
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and let E = S∨ be its dual. A partition λ ∈ Pl also determines a vector bundle Kλ(S)

on the Grassmannian Gr(n,N), for any N . Here, Kλ denotes the Weyl functor

associated to λ (see [81, §2.1]). By abuse of notation, we denote Kλ(S) by Vλ. Let

π : C → MC(Gr(n,N), d) be the projection map. Let E be the universal vector

bundle over the universal curve C. We define the following line bundle:

Dl := det(Ex′0)e ⊗
(
detRπ∗(E)

)−l
,

where e is an integer and Ex′0 is the restriction of E to the distinguished marked point

x0. Let e = l(1− g) + (ld− |λ|)/n, where |λ| =
∑

i,p λp,i. If e is an integer, we define

the quantum K-theory invariant of Gr(n,N) with insertions Vλp1 , . . . , Vλpk by

〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,Gr(n,n+l)
C,d

:= χ
(
MC(Gr(n,N), d),Ovir

MC(Gr(n,N),d)
⊗Dl ⊗ (⊗ki=1ev∗i Vpi)

)
,

where Ovir
MC(Gr(n,N),d)

is the virtual structure sheaf. If e is not an integer, the Verlinde

invariant is defined as zero.

We propose the following K-theoretic version of Witten’s conjecture:

Conjecture I.7 (Verlinde/Grassmannian Correspondence). Up to an explicit mir-

ror map, the GL Verlinde invariants 〈Vλp1 , . . . , Vλpk 〉
l,Verlinde
g,d can be identified with

the quantum K-invariants 〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,Gr(n,n+l)
C,d for d > n(g − 1) and

λp1 , . . . , λpk ∈ Pl.

In the spirit of Witten’s work, we prefer a non-computational proof of the above

conjecture. Also, to obtain the mirror map, we need a deep understanding of the
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geometry of the moduli spaces defining these two invariants.

Remark I.8. Witten’s original argument covers quantum cohomology which is a 2D

quantum field theory in physics. Quantum K-theory is thought to be a 3D quan-

tum field theory (see a physical derivation in [47]). In this sense, our version of

Verlinde/Grassmannian correspondence is new in physics. It would be interesting to

give a physical derivation.

Our approach is by following Witten’s strategy to lift the problem into the gauged

linear sigma model (GLSM) of the Grassmannian. The GLSM of the Grassmannian

depends on two stability parameters ε and δ (see the precise definitions in Section

5.1 and Section 6.2). The ε-stability concerns about the stability of sections of the

GLSM, while δ-stability concerns about the stability of bundles. When we vary ε or

δ, the moduli space undergoes a series of wall-crossings. When ε is sufficiently large

(denoted by ε = ∞), we recover quantum K-theory of the Grassmannian. When δ

is sufficiently close to zero (denoted by = 0+), we recover Verlinde’s theory.

In this thesis, we will only discuss δ-wall-crossings. We leave the study of ε-

wall-crossings for future research. For technical reasons (see Remark VI.30), we

require the partitions to be from a subset P′l ⊂ Pl consisting of all partitions λ

with n parts such that λ1 < l. For a generic value of δ ∈ Q+, we denote by

〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,δ,Gr(n,n+l)
C,d the δ-stable GLSM invariant with an ordinary in-

sertion det(E)e and parabolic insertions Vλp1 , . . . , Vλpk , where λpi ∈ P′l (see Definition

VI.44). When δ = 0+, the GLSM moduli space admits a morphism to U(n, d, λ).
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This morphism is generically a projective bundle, if d > n(g − 1) and the open

subset U s
C(n, d, λ) ⊂ UC(n, d, λ) of stable vector bundles is non-empty. Therefore, it

allows us to recover the GL Verlinde numbers from (δ = 0+)-stable parabolic GLSM

invariants. More precisely, we prove (see Theorem VI.46) the following

Theorem I.9. Suppose that d > n(g − 1), U s(n, d, λ) 6= ∅ and λpi ∈ P′l for i =

1, . . . , k. Then

〈Vλp1 , . . . , Vλpk 〉
l,Verlinde
g,d = 〈det(E)e|Vλp1 , . . . , Vλpk 〉

l,δ=0+,Gr(n,N)
C,d .

When n = 1, the moduli space of δ-stable parabolic GLSM data does not depend

on δ (see Remark VI.8). When n = 2, we analyze the geometric wall-crossing of the

δ-stable parabolic GLSM moduli spaces. This will allow us to prove the following

δ-wall-crossing result.

Theorem I.10. Assume n ≤ 2. Suppose that N ≥ n + l, d > 2g − 2 + k, and δ is

generic. Then,

〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,δ,Gr(n,N)
C,d

is independent of δ.

The higher rank δ-wall-crossing problem is much more complicated and we leave

it for future research.

Remark I.11. The material in this thesis is the result of collaborative work with

Yongbin Ruan, and appears also in the preprints [65] and [66].
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1.4 Outline

This thesis consists of two parts: in the first part, we develop the general theory of

lever structures in quasimap theory, and prove a toric mirror theorem; in the second

part, we focus on the case when targets are Grassmannians, and prove some δ-wall-

crossing results towards understanding the Verlinde/Grassmannian correspondence.

In Chapter II, we introduce the notion of level in the K-theoretic quasimap theory

and establish its main properties. In particular, we show that quantum K-theory

with level structure satisfies the same Kontsevich-Manin axioms as Givental-Lee’s

quantum K-theory.

In Chapter III We define the K-theoretic quasimap invariants with level structure

and their permutation-equivariant version. We introduce an important generating

series of genus zero invariants: the permuation-equivariant J-function.

In Chapter IV, we focus on the genus zero theory. The range of the permuation-

equivariant J-function is a cone in a certain infinite-dimensional symplectic vector

space. We characterize this cone of level l. As an application, we compute the K-

theoretic toric I-functions of level l, and prove a toric mirror theorem for quantum

K-theory with level structure. In the study of mirror symmetry of some of the

simplest examples, we see the surprising appearance of Ramanujan’s mock theta

functions.

In Chapter V, we study the Verlinde/Grassmannian correspondence. We intro-

duce the gauged linear sigma model (GLSM) of Grassmannians, and treat the case
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of rank 2 δ-wall-crossing in the absence of parabolic structures. We aim to give the

reader a general idea of the strategy.

In Chapter VI, we construct the moduli spaces of δ-stable parabolic GLSM/stable

pairs. When the degree is small, the moduli spaces are not smooth and this was

considered to be a major difficulty in the ’90s. With the modern technique of virtual

structure sheaves, we can define Verlinde-type invariants using these moduli spaces.

When the stability parameter δ is sufficiently small, we recover Verlinde invariants.

At the end, we prove the general δ-wall-crossing result in the rank 2 case.

1.5 Notation and conventions

We introduce some basic notations in K-theory. For a Deligne-Mumford stack

X, we denote by K0(X) the Grothendieck group of coherent sheaves on X and by

K0(X) the Grothendieck group of locally free sheaves on X.

For a flat morphism f : X → Y , we have the flat pullback f ∗ : K0(Y )→ K0(X).

For a proper morphism g : X → Y , we can define the proper pushforward f∗ :

K0(X)→ K0(Y ) by

[F ] 7→
∑
n

(−1)n[Rnf∗F ].

For a regular embedding i : X ↪→ Y and a cartesian diagram

X ′ Y ′

X Y
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one can define the Gysin pullback i! : K0(Y ′)→ K0(X ′) by

i![F ] =
∑
i

(−1)![TorYi (F,OX)],

where TorYi (F,OX) denotes the Tor sheaf.

Let E be a vector bundle. We define the K-theoretic Euler class of E by

λ−1(E∨) :=
∑
i

(−1)i ∧i E∨.

Throughout the paper, we consider the rational Grothendieck groups K0(X)Q :=

K0(X)⊗Q and K0(X)Q := K0(X)⊗Q.



CHAPTER II

Level structure and quasimap theory

2.1 Determinant line bundles

In this section, we briefly review the construction of determinant line bundles.

Let X be a Deligne-Mumford stack. Let E be a locally free, finitely generated OX

module. We define the determinant line bundle of E as

det(E) := ∧rank(E)E ,

where ∧i denotes the i-th wedge product. In general, let F• be a complex of coherent

sheaves on X which has a bounded locally free resolution, i.e., there exists a bounded

complex of locally free, finitely generated OX modules G• and a quasi-isomorphism

G• → F•.

We define the determinant line bundle associated to F• by

det(F•) := ⊗ndet(Gn)(−1)n .

We summarize some basic properties of this construction in the following propo-

sition.

20
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Proposition II.1. Let F be a complex of coherent sheaves which has a bounded

locally free resolution. Then

1. The construction of det(F•) does not depend on the locally free resolution.

2. For every short exact sequence of complexes of sheaves which have bounded lo-

cally free resolutions

0→ F• α−→ G• β−→ H• → 0,

we have a functorial isomorphism

i(α, β) : det(F•)⊗ det(H•) ∼−→ det(G•).

3. The operator det commutes with base change. To be more precise, for every

(representable) morphism of Deligne-Mumford stacks

g : X → Y ,

we have an isomorphism

det(Lg∗)
∼−→ g∗det.

In the case when X is a scheme, the above proposition is proved in [50]. Note

that these properties are preserved under flat base change. Therefore they hold for

stacks as well.

2.2 Level structure in quasimap theory

In this section, we first recall the quasimap theory for nonsingular GIT quotients

introduced in [19]. Then we define the level structure in this setting and discuss its

generalizations in orbifold quasimap theory.
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Let Z = Spec(A) be a complex affine algebraic variety in Cn and let G be a

reductive group acting on it. Let θ : G → C∗ be a character determining a G-

equivariant line bundle Lθ := Z × C. Let Zs(θ) and Zss(θ) be the stable and

semistable loci, respectively. Throughout the paper, we assume Zs(θ) = Zss(θ)

is nonsingular. Furthermore, we assume that G acts freely on Zs(θ). It follows

that the GIT quotient Z //θ G is nonsingular and quasi-projective. For simplicity,

we drop θ from the notation of the GIT quotient. The unstable locus is defined

as Zus := Z − Zs(θ). Recall that we can identify the G-equivariant Picard group

PicG(Z) with the Picard group Pic([Z/G]) of the quotient stack [Z/G] by sending

an G-equivariant line bundle L to [L/G]. Let β ∈ HomZ(PicG(Z),Z).

Definition II.2 ([19]). A quasimap is a tuple (C, p1, . . . , pk, P, s) where

• (C, p1, . . . , pk) is a connected, at most nodal, k-pointed projective curve of genus

g,

• P is a principal G-bundle on C,

• s is a section of the induced fiber bundle P ×G Z on C such that (P, s) is of

class β, i.e., the homomorphism

PicG(Z)→ Z, L→ degC(s∗(P ×G L)),

is equal to β.

We require that there are only finitely many base points, i.e., points p ∈ C such

that s(p) ∈ Zus. An element β ∈ HomZ(PicG(Z),Z) is called Lθ-effective if it can
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be represented as a finite sum of classes of quasimaps. We also refer to β as a curve

class. Denote by E the semigroup of Lθ-effective (curve) classes.

A quasimap (C, p1, . . . , pk, P, s) is called prestable if the base points are disjoint

from the nodes and marked points on C. Given a rational number ε > 0, a prestable

quasimap is called ε-stable if it satisfies the following conditions

1. ωC,log ⊗Lεθ is ample, where ωC,log := ωC
(∑k

i=1 pi
)

is the twisted dualizing sheaf

of C and

Lθ := u∗(P ×G Lθ) ∼= P ×G Cθ.

2. εl(x) ≤ 1 for every point x in C where

l(x) := lengthx
(
coker(u∗J )→ OC

)
.

Here J is the ideal sheaf of the closed subscheme P ×G Zus of P ×G Z.

LetQεg,k(Z//G, β) = {(C, p1, . . . , pk, P, s)} be the moduli stack of ε-stable quasimaps.

It is shown in [19] that this stack is a separated Deligne-Mumford stack of finite type

and it is proper over the affine quotient Z/affG := Spec(AG). When Z has only

local complete intersection singularities, the ε-stable quasimap space Qεg,k(Z // G, β)

admits a canonical perfect obstruction theory.

Remark II.3. There are two extreme chambers for the stability parameter ε.

1. (ε = ∞)-stable quasimaps. One can check that when (g, k) 6= (0, 0) and ε >

1, the quasimap space Qεg,k(Z // G, β) is isomorphic to the moduli space of
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stable maps Mg,k(Z // G, β). When (g, k) = (0, 0), the same holds with ε > 2.

Therefore when ε is sufficiently large, we denote the ε-stable quasimap space by

Q∞g,k(Z // G, β) =Mg,k(Z // G, β)

and refer to it as the (ε =∞)-theory.

2. (ε = 0+)-stable quasimaps. Fix β ∈ E. For each ε ∈ (0, 1
β(Lθ)

], the ε-stability is

equivalent to the condition that the underlying curve C of a quasimap does not

have rational tails and on each rational bridge, the line bundle Lθ has strictly

positive degree. Since we need to consider different β at the same time, we

reformulate the stability condition as

ωC,log ⊗ Lεθ is ample for all ε ∈ Q>0.

Quasimaps which satisfy the above stability condition are referred to as (ε =

0+)-stable quasimaps.

To define the level structure, we introduce some notation first. Let Mg,k be the

algebraic stack of pre-stable nodal curves and BunG be the relative moduli stack

BunG
φ−→Mg,k

of principal G-bundles on the fibers of the universal curve Cg,k → Mg,k. The mor-

phism φ is smooth. There is a forgetful morphism which forgets the section s

Qεg,k(Z // G, β)
µ−→ BunG
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Let π̃ : CBung,k → Bung,k be the universal curve which is the pullback of Cg,k along

φ. Let P̃ → CBung,k be the universal principal G-bundle. We denote by π : Cg,k →

Qεg,k(Z // G, β) the universal curve on the quasimap space. Let P → Cg,k be the

universal principal bundle given by the pullback of P̃→ CBung,k .

Definition II.4. Given a finite-dimensional representation R of G, we define the

level-l determinant line bundle over Qεg,k(Z // G, β) as

(2.1) DR,l :=
(
detRπ∗(P ×G R)

)−l
.1

Alternatively, one can define DR,l to be the pullback via µ of the determinant line

bundle
(
detRπ∗(P̃×G R)

)−l
on Bung,k.

Remark II.5. The definition mentioned in the introduction is the second one. It

is conceptually better in the sense that it does not depend on the different moduli

spaces over Bung,k. In our case, these moduli spaces are the ε-stable quasimap spaces

Qεg,k(Z //G, β) for different ε. However, Bung,k is an Artin stack, and it is technically

more difficult to work with it. Formally, we will use the first definition as the working

definition.

Remark II.6. Note that in Definition II.4, the bundle P ×G R is the pullback of

the vector bundle [Z × R/G] → [Z/G] along the evaluation map to the quotient

stack [Z/G]. Therefore, given a vector bundle R on X, we can use (2.1) to define

a determinant line bundle over the moduli space of stable maps Mg,k(X, β), even

1According to [19, §6.2], Rπ∗(P ×G R) has a two-term locally free resolution. Therefore, we can take the deter-
minant of this complex.
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when X is not a GIT quotient. To be more precise, let π : C → Mg,k(X, β) be the

universal curve and let ev : C → X be the universal evaluation map. We define the

level-l determinant line bundle as

DR,l :=
(
detRπ∗(ev∗R)

)−l
.

We will often abuse the notation by referring to the vector bundle R as the “repre-

sentation” R.

The above construction can be easily generalized to orbifold quasimap theory. To

be more precise, suppose the target can be written as [Zs/G]. Now, we do not assume

G acts freely on the stable locus Zs(θ). Therefore [Zs/G] is in general a Deligne-

Mumford stack. The quasimap theory for such orbifold GIT targets is established

in [15]. According to [15, Section 2.4.5], we still have universal curves and universal

principal G-bundles over moduli spaces of ε-stable orbifold quasimaps. Therefore the

level-l determinant line bundle can still be defined using (2.1).

2.3 Properties of level structure in quasimap theory

In this section, we study the level-l determinant line bundle in the case β = 0 and

its pullbacks along some natural morphisms between moduli spaces of quasimaps. An

important property of the level structureDR,l is that it splits “correctly” among nodal

strata (see Proposition II.9). In the following discussion, we assume X = Z // G is a

GIT quotient so that moduli spaces of quasimaps are defined. When X is a smooth

projective variety, but not a GIT quotient, the same results hold for determinant
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line bundles defined in Remark II.6. In fact, the arguments used in the proofs are

identical for both cases.

2.3.1 Mapping to a point

Assume that β = 0. Then any quasimap is a constant map and the morphism

Qεg,k(X, 0)
stab×ev−−−−→M g,k ×X

is an isomorphism. Here stab : Qεg,k(X, 0) → M g,k denotes the stabilization mor-

phism of source curves of quasimaps, and ev : Qεg,k(X, 0)→ X denotes the constant

evaluation morphism. Let P be the principal G-bundle Zs → X = Z // G.

Lemma II.7. The universal bundle P over the universal curve C = Cg,k×X is equal

to π∗2(P ), where Cg,k is the universal curve over M g,k and π2 : Cg,k ×X → X is the

second projection.

Proof. In general, there is an evaluation map from the universal curve C to the

quotient stack [Z/G] and P is the pullback of P along this map. The lemma follows

from the observation that the evaluation map is given by the second projection π2

in this case.

Corollary II.8. Let R := P ×G R be the associated vector bundle on X and let

π : Cg,k →M g,k be the canonical morphism. We have

DR,l = (∧rk(R)g(R1π∗OCg,k �R)
)l ⊗ ( ∧rk(R) R

)−l
.
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Proof. By Lemma II.7, we have P ×G R = π∗2(R). Therefore the pushforward

Rπ∗(π
∗
2(R)) is equal to OMg,k

� R − R1π∗OCg,k � R via the projection formula.

Note that rk(R1π∗OCg,k) = g.

2.3.2 Cutting edges

For i = 1, 2, we denote by evki : Qεg,kki (X, βi) → X the evaluation morphism at

the last marking. Consider the cartesian diagram

Qεg,k1
(X, β1)×X Qεg,k2

(X, β2) Qεg,k1
(X, β1)×Qεg,k2

(X, β2)

X X ×X,

Φ

evk1
×evk2

∆

where ∆ is the diagonal embedding of X. Let C and C ′ denote the universal curves

over Qεg,k1
(X, β1) ×X Qεg,k2

(X, β2) and Qεg,k1
(X, β1) × Qεg,k2

(X, β2), respectively. Let

P and P ′ be the universal principal G-bundles over C and C ′, respectively. We

can define level structures DR,lQεg,k1
(X,β1)×Qεg,k2

(X,β2) = DR,lQεg,k1
(X,β1) � D

R,l
Qεg,k2

(X,β2) and

DR,lQεg,k1
(X,β1)×XQεg,k2

(X,β2) using (2.1). The following proposition shows that the level

structure splits “correctly” among nodal strata.

Proposition II.9. Let x : Qεg,k1
(X, β1) ×X Qεg,k2

(X, β2) → C be the section corre-

sponding to the node. Then we have

(2.2) Φ∗
(
DR,lQεg,k1

(X,β1)�D
R,l
Qεg,k2

(X,β2)

)
= DR,lQεg,k1

(X,β1)×XQεg,k2
(X,β2)⊗det

(
x∗(P×GR)

)−l
.

Proof. Consider the following commutative diagram

Φ∗C ′ C

Qεg,k1
(X, β1)×X Qεg,k2

(X, β2).

p

π′
π
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Notice that C is obtained by gluing along two sections of marked points of Φ∗C ′. For

any locally free sheaf F on C, we have a short exact sequence (the normalization

exact sequence)

0→ F → p∗p
∗F → x∗x

∗F → 0.

It induces the following natural isomorphism

(2.3) det(Rπ∗(p∗p
∗F))−1 ∼= det(Rπ∗(F))−1 ⊗ det(Rπ∗(x∗x

∗F))−1.

Note that

det(Rπ∗(p∗p
∗F))−1 = det(Rπ′∗(p

∗F))−1 and det(Rπ∗(x∗x
∗F))−1 = det(x∗F)−1.

Now take F = P ×G R and F ′ = P ′ ×G R. Finally, the lemma follows from the fact

that p∗F ∼= Φ∗F ′, equation (2.3), and cohomology and base change.

2.3.3 Contractions

Fix g1, g2 and k1, k2 such that g = g1 + g2 and k = k1 + k2. We denote the basic

gluing maps by

r : M g1,k1+1 ×M g2,k2+1 →M g,k,

q : M g−1,k+2 →M g,k.

Let k′ be a non-negative integer. Let k′ = (k′1, . . . , k
′
m+1) and β = (β1, . . . , βm+1) be

partitions of k′ and β, respectively. For simplicity, we denote by Qεm,k′,β the fiber

product

Qεg1,k1+k′1+1(X, β1)×XQε0,2+k′3
(X, β3)×X . . .Qε0,2+k′m+1

(X, βm+1)︸ ︷︷ ︸
m−1 factors

×XQεg2,k2+k′2+1(X, β2)
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Let st : Qεg,k+k′(X, β)→M g,k be the morphism defined by forgetting the (quasi)map

and the last k′ markings, then stabilizing the source curve. Consider the following

commutative diagram.

⊔
Qεm,k′,β Qεg,k+k′(X, β)

M g1,k1+1 ×M g2,k2+1 M g,k

t rm,k′,β

st

r

Here the disjoint union is over partitions of the set of k′ marked points of size k′,

and partitions β of β. The above commutative diagram induces a morphism

Ψm :
⊔
Qεm,k′,β →

(
M g1,k1+1 ×M g2,k2+1

)
×Mg,k

Qεg,k+k′(X, β).

Using the same argument as in the proof of [53, Proposition 11], one can show that

the virtual structure sheaves satisfy

∑
m

(−1)m+1Ψm∗
∑
k′,β

Ovir
Qε
m,k′,β

= r!Ovir
Qε
g,k+k′ (X,β).

Let Cg,k+k′ and Cm,k′,β be the universal curves on Qεg,k+k′(X, β) and Qεm,k′,β, respec-

tively. Let Pg,k+k′ and Pm,k′,β be the corresponding universal principal G-bundles.

The level structures DR,lQε
g,k+k′ (X,β) and DR,lQε

m,k′,β
can be defined using (2.1). To prove

that quantum K-theory with level structure satisfies the same axioms as Givental-

Lee’s quantum K-theory, we need the following proposition.

Proposition II.10. We have

DR,lQε
m,k′,β

= (rm,k′,β)∗DR,lQε
g,k+k′ (X,β).
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Proof. The proposition follows from the following cartesian diagram and cohomology

and base change.

Cm,k′,β Cg,k+k′

Qεm,k′,β Qεg,k+k′(X, β)
rm,k′,β

2.4 K-theoretic field theory

In [53], Lee proved that ordinary quantum K-theory satisfies certain Konservich-

Manin axioms. If a theory satisfies those axioms, we refer to it as a K-theoretic field

theory. We show that quantum K-theory with level structure is also a K-theoretic

field theory.

LetMg,k be the moduli stack of k-pointed stable curves of genus g. It is a smooth

Deligne-Mumford stack of dimension 3g− 3 + k. Moreover, the stackMg,k has reso-

lution property (see, for example, [2]). Therefore, the two K-groups K0(Mg,k) and

K0(Mg,k) are isomorphic. We denote them by K(Mg,k). Since Mg,k has nontrivial

stacky structure, its K-group is not isomorphic to its cohomology. Instead, we have

K(Mg,k)⊗ C ∼= H∗(IMg,k,C),

where IMg,k is the inertia stack of Mg,k. It would be a very interesting problem to

study the ”tautological K-ring”.

Recall that there are several canonical morphisms between different moduli spaces

of curves.
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Forgetful Morphism: Let

π :Mg,k+1 →Mg,k

be the morphism forgetting the last marked point. Here, we assume that 2g −

2 + k > 0. Furthermore, π is isomorphic to the universal curve.

Gluing tree: Let

ρtree :Mg1,k1+1 ×Mg2,k2+1 →Mg1+g2,k1+k2

be the morphism induced from gluing the last marked point of the first curve

and the first marked point of the second curve.

Gluing loop: Let

ρloop : M g,k+2 →M g+1,k

be the morphism induced from gluing the last two marked points.

Suppose H is a finite-dimensional Q-vector space with a non-degenerate pairing

〈 , 〉 : H ×H → Q[[Q]]. Once and for all, we choose a basis φα, α = 1, · · · , dimH.

Denote the metric by ηµν := 〈φµ, φν〉 and its inverse matrix by ηµν .

Definition II.11. A K-theoretic field theory is a collection of Q-linear maps

Ωg,k : H⊗k → K(M g,k)Q[[Q]]

satisfying the following properties:

C1. The element Ωg,k is Sk-equivariant, where the action of the symmetric group Sk

permutes both the copies of H and the marked points of M g,k.
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C2. Let g = g1 + g2 and k = k1 + k2. Then Ωg,n satisfies the splitting property

ρ∗treeΩg,k(a1, a2, . . . , ak)(2.4)

=
∑
µ,ν

Ωg1,k1+1(a1, . . ., ak1 , φµ) ηµνΩg2,k2+1(φν , ak1+1, . . . , ak)

for any a1, . . . , ak ∈ H.

C3. We require

(2.5) ρ∗loop Ωg,k(a1, a2, . . . , ak) =
∑
µ,ν

Ωg−1,k+2 (a1, a2, . . . , an, φµ, φν) η
µν

for any a1, . . . , ak ∈ H.

Example II.12. Suppose that X is a smooth projective variety. Denote by E the

semigroup of effective curve classes in H2(X,Z). Let Mg,k(X, β) denote the moduli

space of stable maps to X of degree β. Lee constructed in [53] a virtual structure

sheave Ovir
Mg,k(X,β)

. Let H = K(X)Q. Define the so-called quantized metric

〈a1, a2〉 =
∑
β∈E

Qβχ
(
M0,2(X, β),Ovir

M0,2(X,β)
⊗ ev∗1(a1)⊗ ev∗2(a2)

)
.

When d = 0, we obtain the Mukai pairing χ(X, a1 ⊗ a2). Let

st :Mg,k(X, β)→M g,k

be the stabilization morphism defined by forgetting the map and then stabilizing the

source curve. Define

Ωg,k(a1, · · · , ak) =
∑
β∈E

Qβst∗
(
Ovir
Mg,k(X,β)

⊗
( k⊗
i=1

ev∗i (ai)
))
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for a1, . . . , ak ∈ H.

According to [53, §4.3], we have the following theorem.

Theorem II.13. Ωg,k defines a K-theoretic field theory with the quantized metric

〈·, ·〉.

Similar to the case of cohomological field theories, we can define the shifted K-

theoretic field theories. However, there is more than one definition of the shift. Here,

we focus on two of them: the ordinary shift and the symmetrized shift. Suppose

t =
∑

i tiQ
i is a formal power series, where ti ∈ H for all i. Let

ftm : M g,k+m →M g,k

be the forgetful morphism which forgets the last m marked points.

1. We define the ordinary shift of Ωg,k by

Ωt
g,k(a1, · · · , ak) :=

∑
m≥0

1

m!
ftm∗ Ωg,k+m(a1, · · · , ak, t, · · · t)

for a1, . . . , ak ∈ H. Again, according to [53, §4.3], Ωt
g,k forms a K-theoretic field

theory with the shifted metric

〈a1, a2〉t

:=
∑

β∈E,m≥0

Qd 1

m!
χ
(
M0,2+m(X, β),Ovir

M0,2+m(X,β)
⊗ ev∗1(a1)⊗ ev∗2(a2)⊗

2+m⊗
i=3

ev∗i (t)
)
.

2. We define the symmetrized shift of Ωg,k as follows. Note that

Ovir
Mg,k(X,β)

⊗
k⊗
i=1

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)



35

is Sm-equivariant. Therefore, it descends to a K-theory class on the stack

M0,k+m(X, β)/Sm, where Sm acts on M0,k+m(X, β) by permuting the last m

markings. By abuse of notation, we still denote the stabilization morphism by

st :Mg,k+m(X, β)/Sm →M g,k+m/Sm.

The forgetful morphism ftm factors through the following morphism:

ftSm : M g,k+m/Sm →M g,k.

We define the symmetrized shift of Ωg,k by

ΩS∞,t
g,k (a1, · · · , ak) :=

∑
β∈E,m≥0

QdftSm∗ st∗
(
Ovir
Mg,k+m(X,β)

⊗
⊗

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)
)

and the symmetrized paring by

〈a1, a2〉S∞t

:=
∑

β∈E,m≥0

Qdχ
(
M0,2+m(X, β)/Sm,Ovir

M0,2+m(X,β)
⊗ ev∗1(a1)⊗ ev∗2(a2)⊗

2+m⊗
i=3

ev∗i (t)
)
.

Proposition II.14. ΩS∞,t
g,k forms a K-theoretic field theory with the pairing 〈·, ·〉S∞t .

Proof. Axiom C1 is obviously satisfied. The splitting properties in axioms C2 and

C3 follow essentially from the properties of virtual structure sheaves proved in [53,

§3]. We sketch the proof of the splitting property (2.4). The proof of the splitting

property (2.5) is similar.

The key property of virtual structure sheaves that we need to prove (2.4) is dis-

cussed in Section 2.3.3. We recall the setup in the quantum K-theory here. Let
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m = (m0, . . . ,ms) and β = (β0, . . . , βs) be two (s+1)-tuples of non-negative integers

such that
∑

imi = m and
∑

i βi = β. Let Ms,m,β denote the following stack

Mg1,k1+1+m0(X, β0)×XM0,2+m1(X, β1)×X . . .M0,2+ms−1(X, βs−1)︸ ︷︷ ︸
m−1 factors

×XMg2,k2+1+ms(X, βs),

Consider the following commutative diagram

(2.6)

∐
Ms,m,β Mg,k+m(X, β)

M g1,k1+1 ×M g2,k2+1 M g,k
ρtree

where the disjoint union is over all s ≥ 1, partitions of the set of m markings of size m,

and partitions β of β. The horizontal arrows in (2.6) are given by boundary maps and

the vertical arrows are compositions of stabilization morphisms and forgetful mor-

phisms. LetM denote the fiber product (M g1,k1+1×M g2,k2+1)×Mg,k
Mg,k+m(X, β).

The commutative diagram (2.6) induces a morphism

Ψs :
∐
s≥1

Ms →M.

According to [53, Proposition 11], we have

(2.7)
∑
s

(−1)s+1Ψs∗
∑
m,β

Ovir
Ms,m,β

= ρ!
tree(Ovir

Mg,k+m(X,β)
).

Note that the virtual structure sheaves Ovir
Ms,m,β

and Ovir
Mg,k+m(X,β)

are Sm-equivariant.

Hence, (2.7) can be viewed as an equality over M/Sm. Consider the following com-
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mutative diagram.

(2.8)

(∐
Ms,m,β

)
/Sm M/Sm Mg,k+m(X, β)/Sm

M g1,k1+1 ×M g2,k2+1 M g,k

Φs

π′′
π′ π

ρtree

Then

ρ∗treeπ∗
(
Ovir
Mg,k+m(X,β)

⊗
k⊗
i=1

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)
)

=π′∗ρ
!
tree

(
Ovir
Mg,k+m(X,β)

⊗
k⊗
i=1

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)
)

=
∑
s

(−1)s+1π′∗Ψs∗
(∑
m,β

Ovir
Ms,m,β

⊗
k⊗
i=1

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)
)

=
∑
s

(−1)s+1π′′∗
(∑
m,β

Ovir
Ms,m,β

⊗
k⊗
i=1

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)
)
.

It is easy to see that we have the isomorphism:(∐
Ms,m,β

)
/Sm ∼=

∐(
Ms,m,β/(Sm0 × . . . Sms)

)
,

where the disjoint union of the LHS is over all s ≥ 1, partitions of the set of m

markings of size m, and partitions β of β, while the disjoint union of the RHS is

over all s ≥ 1, partitions m of m, and partitions β of β. The splitting property (2.4)

follows from the above computation and the cutting edges axiom of virtual structure

sheaves (see [53, Proposition 7]).

Example II.15. Suppose that X = V // G is a GIT quotient, where V is an affine

variety with at most l.c.i. singularities and G is a complex reductive group. We
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assume that the stable locus V s coincides the semistable locus V ss. Let Qεg,k(X, β)

be the moduli space of ε-stable quasimaps discussed in Section 2.2. Let Ovir denote

the virtual structure sheaf of Qεg,k(X, β). Given a finite-dimensional representation

R of G and an integer l, one can define the level structure DR,l by formula (2.1).

Let st : Qεg,k(X, β)→M g,k be the stabilization morphism. We define

ΩS∞,R,l,t,ε
g,k (a1, · · · , ak) :=

∑
β∈E,m≥0

QdftSm∗ st∗
(
Ovir ⊗DR,l ⊗

k⊗
i=1

ev∗i (ai)⊗
k+m⊗
i=k+1

ev∗i (t)
)

and the level-l quantized metric by

〈a1, a2〉S∞,E,l,εt

:=
∑

β∈E,m≥0

Qdχ
(
Qε0,2+m(X, β)/Sm,Ovir ⊗DR,l ⊗ ev∗1(a1)⊗ ev∗2(a2)⊗

2+m⊗
i=3

ev∗i (t)
)
.

We often omit R from the notation if there is no confusion.

The following theorem follows from the same argument as in Proposition II.14

and the splitting property of DR,l proved in Proposition II.9.

Theorem II.16. ΩS∞,R,l,t,ε
g,k defines a K-theoretic field theory with the pairing 〈·, ·〉S∞,R,l,εt .

Remark II.17. Suppose X is a smooth projective variety which is not necessarily a

GIT quotient. Given a vector bundle R over X, we can still define a determinant

line bundle DR,l over the moduli space Mg,k(X, β) of stable maps by Remark II.6.

Then Theorem II.16 still holds for level structures defined in this way.



CHAPTER III

Quantum K-invariants with level structure

3.1 K-theoretic quasimap invariants with level structure

In this section, we first briefly recall Givental-Lee’s quantum K-theory. Then we

define K-theoretic quasimap invariants with level structure.

The quantum K-theory or K-theoretic Gromov-Witten theory was introduced by

Givental-Lee [28, 53]. Let X be a smooth projective variety and let Mg,k(X, β) be

the moduli space of stable maps to X. The moduli space is known to be a proper

Deligne-Mumford stack (see for example [9]). In particular, for any coherent sheaf

E on Mg,k(X, β), we can consider its K-theoretic pushforward to the point SpecC,

i.e., we can take its Euler characteristic

χ(E) =
∑
i

(−1)ihi(E),

where hi(E) := dimCH
i(Mg,k(X, β), E).

From the perfect obstruction theory, Lee [53] constructed a virtual structure sheaf

Ovir ∈ K0(Mg,k(X, β)), where K0(Mg,k(X, β)) denotes the Grothendieck group of

39
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coherent sheaves on Mg,k(X, β). The virtual structure sheaf Ovir has the following

properties:

1. If the obstruction sheaf is trivial and hence Mg,k(X, β) is smooth, then Ovir is

the structure sheaf of Mg,k(X, β).

2. If the obstruction sheaf Obs is locally free, then Ovir =
∑

i(−1)i ∧i Obs∨. Here

∧i Obs∨ denotes the i-th wedge product of the dual of the obstruction bundle.

Since we assume X to be smooth, the Grothendieck group of locally free sheaves

on X, denoted by K0(X), is isomorphic to the Grothendieck group of coherent

sheaves K0(X). We denote both of them by K(X). Suppose that Ei are K-theory

elements in K(X) and let Li denote the i-th cotangent line bundles. The K-theoretic

Gromov-Witten invariants are defined by

〈
E1L

l1
1 , . . . , EkL

lk
k

〉
g,k,β

= χ
(
Mg,k(X, β),

∏
i

ev∗iEi ⊗ L
li
i ⊗Ovir

)
,

where evi :Mg,k(X, β)→ X are the evaluation morphisms at the i-th marking. Note

that K-theoretic Gromov-Witten invariants, or quantum K-invariants, are closely

related to K-theoretic field theories discussed in Section 2.4. In fact, we obtain

quantum K-invariants by taking the holomorphic Euler characteristic of the coho-

mological field theory Ωg,k discussed in Example III.3.

Let E ⊂ H2(X,Z) be the semigroup generated by effective curve classes on X.

We define the quantum K-potential of genus 0 by

F(t, Q) :=
1

2
(t, t) +

∞∑
k=0

∑
β∈E

Qβ

k!
〈t, . . . , t〉0,k,β,
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where t ∈ K(X)Q := K(X) ⊗ Q and (t, t) := χ(t ⊗ t) is the Mukai pairing. Let

φ0 = OX , φ1, φ2 . . . be a basis of K(X)Q. One can define the “quantized” pairing on

K(X)Q by

((φi, φj)) := Fij = ∂ti∂tjF(t, Q).

In the following discussion, we assume X can be represented as a GIT quotient

Z // G. As mentioned before, the moduli space of stable maps Mg,k(Z // G, β) can

be identified with Qεg,k(Z // G, β) for large ε. According to [19], for general ε, the

ε-stable quasimap space Qεg,k(Z // G, β) is proper and it admits a two-term perfect

obstruction theory, assuming Z has only lci singularities. Hence by the result in [53],

one can construct a virtual structure sheaf Ovir on Qεg,k(Z // G, β).

Definition III.1. The K-theoretic quasimap invariants of level l are defined by

〈
E1L

l1
1 , . . . , EkL

lk
k

〉Z//G,R,l,ε
g,k,β

= χ
(
Qεg,k(Z // G, β),

∏
i

ev∗iEi ⊗ L
li
i ⊗Ovir ⊗DR,l

)
∈ Z,

where Ei ∈ K(Z // G)⊗Q.

We shall usually suppress Z // G from the notation if there is no confusion. Note

that these invariants are all integers.

3.2 Quasimap graph space and J R,l,ε-function

In this section, we first recall the definition and properties of the ε-stable quasimap

graph space. Then we define an important generating series J R,l,ε of K-theoretic

quasimap invariants of level l.



42

Given a rational number ε > 0, the quasimap graph space, denoted by QGεg,k(Z //

G, β), is introduced in [19]. It is the moduli space of the tuples

((C, x1, . . . xk), P, u, ϕ),

where ((C, x1, . . . xk), P, u) is a prestable quasimap, satisfying εl(x) < 1 for every

point x on C, and the new data ϕ is a degree 1 morphism from C to P1. The curve

C has a unique rational component C0 such that ϕ|C0 : C0 → P1 is an isomorphism

and the complement C/C0 is contracted by ϕ. The ampleness condition imposed on

the tuples is modified to:

ωC\C0
(
∑

xi +
∑

yj)⊗ Lεθ is ample,

where xi are marked points on C \ C0 and yi are the nodes C \ C0 ∩C0. It is shown

in [19] that the quasimap graph space is also a separated Deligne-Mumford stack

which is proper over the affine quotient. Moreover, when Z has only lci singularities,

the canonical obstruction theory on the graph space is perfect. Similarly, we can

define the level-l determinant line bundle DR,lQG on QGεg,k(Z//G, β) using the universal

principal G-bundles over its universal curve.

There is a natural C∗-action on the graph spaces. Let [x0, x1] be homogeneous

coordinates on P1, and set 0 := [1, 0] and ∞ := [0, 1]. We consider the standard

C∗-action on P1:

(3.1) t · [x0, x1] = [tx0, x1], ∀t ∈ C∗.
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It induces an action on the ε-stable quasimap graph spaceQGεg,k(Z//G, β) by rescaling

the parametrized rational component. According to [18, §4.1], the C∗-fixed locus can

be described as

(QGεg,k(Z // G, β))C
∗

=
∐

F g1,k1,β1

g2,k2,β2
,

where the disjoint union is over all possible splittings

g = g1 + g2, k = k1 + k2, β = β1 + β2,

with gi, ki ≥ 0 and βi effective. In the stable cases, an ε-stable parametrized quasimap

((C, x1, . . . , xk), P, u, ϕ) ∈ F g1,k1,β1

g2,k2,β2
is obtained by gluing two ε-stable quasimaps of

types (g1, k1, β1) and (g2, k2, β2) to a constant map P1 → p ∈ Z // G at 0 and ∞,

respectively. Therefore, the component F g1,k1,β1

g2,k2,β2
is isomorphic to the fiber product

Qεg1,k1+•(Z // G, β1)×Z//G Qεg2,k2+•(Z // G, β2)

over the evaluation maps at the special marked points •. When one of the components

at 0 or ∞ is unstable, we use the following conventions.

1. For the unstable cases (g1, k1, β1) = (0, 0, 0) or (0, 1, 0) (and likewise for (g2, k2, β2)),

we define

Qε0,0+•(Z // G, 0) := Z // G, Qε0,1+•(Z // G, 0) := Z // G, ev• = IdZ//G.

2. For the unstable cases (g1, k1, β1) = (0, 0, β1) with β1 6= 0 and ε ≤ 1
β1(Lθ)

, we

denote by

Q0,0+•(Z // G, β1)0
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the moduli space of quasimaps (C = P1, P, u) such that u(x) ∈ P ×G Zs for

x 6= 0 ∈ P1 and 0 ∈ P1 is a base point of length β1(Lθ). Similarly, we define

Q0,0+•(Z //G, β2)∞ to be the moduli space of quasimaps whose only base point

is of length β2(Lθ) and located at ∞. Using these definitions we have

F g,k,β1

0,0,β2

∼= Qεg,k+•(Z // G, β1)×Z//G Q0,0+•(Z // G, β2)∞

for k ≥ 1 and ε ≤ 1
β2(Lθ)

. Similarly we have

F 0,0,β1

g,k,β2

∼= Q0,0+•(Z // G, β1)0 ×Z//G Qεg,k+•(Z // G, β2)

for k ≥ 1 and ε ≤ 1
β1(Lθ)

. When g = k = 0 and ε ≤ min{ 1
β1(Lθ)

, 1
β2(Lθ)

}, we have

F 0,0,β1

0,0,β2

∼= Q0,0+•(Z // G, β1)0 ×Z//G Q0,0+•(Z // G, β2)∞.

We denote by R the vector bundle Z ×G R→ [Z/G] and its restriction to Z //G.

We define the twisted pairing on K(Z // G)Q by

(3.2) (u, v)R,l := χ
(
u⊗ v ⊗ (detR)−l

)
, where u, v ∈ K(Z // G)Q.

Let {φa} be a basis of K(Z // G)Q and let {φa} be the dual basis with respect to

the above twisted pairing (·, ·)R,l. Let t =
∑

i t
iφi ∈ K(Z // G)Q. We define the

J R,l,ε-function of level l to be

(3.3) J R,l,ε(t, Q) = 1− q + t+
∑
a

∑
(k,β)6=(0,0),(1,0)

Qβ

k!
φa
〈

φa
1− qL

, t, . . . , t

〉R,l,ε
0,k+1,β

.1

1In Ciocan-Fontanine-Kim’s convention, the J-function starts at 1. The definition given here agrees with Givental’s
convention in which the J-function starts at the dilaton shift 1− q.
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In the above summation, the quasimap moduli spaces are empty when k = 0, β 6=

0, β(Lθ) ≤ 1/ε, and the unstable terms are defined by C∗-localization on the graph

space QGε0,0(Z //G, β). To be more precise, we consider the fixed point locus F0,β :=

Q0,0+•(Z // G, β)0 of the C∗-action. The unstable terms in (3.3) are defined to be

(1− q)
∑
a

∑
β 6=0, β(Lθ)≤1/ε

Qβχ

(
F0,β,Ovir

F0,β
⊗ ev∗(φa)⊗

(
trC∗DR,l

trC∗ ∧∗ N∨F0,β

))
φa.

where NF0,β
is the virtual normal bundle of the fixed locus F0,β in QGε0,0(Z // G, β)

and ∧∗N∨F0,β
:=
∑

i(−1)i∧iN∨F0
is the K-theoretic Euler class of NF0,β

. Here the trace

of a C∗-equivariant bundle V , when restricted to the fixed point locus, is a virtual

bundle defined by the eigenspace decomposition with respect to the C∗-action, i.e.,

we have

trC∗(V ) :=
∑
i

qi V (i),

where t ∈ C∗ acts on V (i) as multiplication by ti.

For 1 < ε ≤ ∞, i.e., the (ε =∞)-theory, (3.3) defines J -function in the quantum

K-theory of level l. In this case, we use 〈·〉R,l,∞ or simply 〈·〉R,l to denote quantum

K-invariants of level l. Following Givental-Tonita [41], we introduce the symplectic

loop space formalism. Recall that E denotes the semigroup of Lθ-effective curve

classes on Z //θ G. The Novikov ring C[[Q]] is defined as

C[[Q]] := {
∑
β∈E

cβQβ|cβ ∈ C}.

Here the completion is taken with respect to the m-adic topology, where m denotes
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the maximal ideal generated by nonzero elements of E. We define the loop space as

K := [K(Z // G)⊗ C(q)]⊗ C[[Q]],

where C(q) is the field of complex rational functions in q. By viewing the elements

in C(q) ⊗ C[[Q]] as the coefficients, we extend the twisted pairing (·, ·)R,l to K via

linearity. There is a natural symplectic form Ω on K defined by

(3.4) Ω(f, g) := [Resq=0 + Resq=∞](f(q), g(q−1))R,l
dq

q
, where f, q ∈ K.

With respect to Ω, there is a Lagrangian polarization K = K+ ⊕K−, where

K+ = [K(Z // G)⊗ C[q, q−1]]⊗ C[[Q]] and K− = {f ∈ K|f(0) 6=∞, f(∞) = 0}.

As before, let {φa} be a basis of K(Z // G)Q and let {φa} be the dual basis with

respect to the twisted pairing (·, ·)R,l. Let t(q) =
∑

i,j t
i
jφiq

j ∈ K+ be an arbitrary

Laurent polynomial. We define the big J -function of level l to be the function

J R,l(t(q), Q) : K+ → K given by

J R,l(t(q), Q) = 1− q+ t(q) +
∑
a

∑
(k,β)6=(0,0),(1,0)

Qβ

k!
φa
〈

φa
1− qL

, t(L), . . . , t(L)

〉R,l,∞
0,k+1,β

.

Define the genus-0 K-theoretic descendant potential of level l by

(3.5) FR,l(t, Q) :=
∑
k,β

Qβ

k!
〈t(L), . . . , t(L)〉R,l,∞0,k,β .

We can identify the cotangent bundle T ∗K+ with the symplectic loop space K via the

Lagrangian polarization and the dilaton shift f → f + (1− q). Then J R,l coincides

with the differential of the descendant potential up to the dilaton shift, i.e., we have

J R,l = 1− q + t(q) + dtFR,l(t, Q).



47

In the case l = 0, the above fact is proved in [41, §2]. The same argument works for

arbitrary l.

For (ε = 0+)-stable quasimap theory, the definition (3.3) gives the I-function of

level l of Z // G:

IR,l(t, Q) := J R,l,0+(t, Q)/(1− q)

= 1 +
t

1− q
+
∑
a

∑
β 6=0

Qβχ

(
F0,β,Ovir

F0,β
⊗ ev∗(φa)⊗

(
trC∗DR,l

trC∗ ∧∗ N∨F0,β

))
φa

+
∑
a

∑
k≥1,(k,β)6=(1,0)

Qβ

k!
φa
〈

φa
(1− q)(1− qL)

, t, . . . , t

〉R,l,ε=0+

0,k+1,β

,

where t ∈ K(Z // G)Q.

3.3 Permutation-equivariant quasimap K-theory with level structure

Givental [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] introduced the permutation-

equivariant quantum K-theory, which takes into account the Sn-action on the moduli

spaces of stable maps by permuting the marked points. The definition can be easily

generalized to incorporate the level structure.

Let Λ be a λ-algebra, i.e. an algebra over Q equipped with abstract Adams

operations Ψk, k = 1, 2, . . . . Here Ψk : Λ→ Λ are ring homomorphisms which satisfy

ΨrΨs = Ψrs and Ψ1 = id. We often assume that Λ includes the Novikov variables,

the algebra of symmetric polynomials in a given number of variables, and the torus

equivariant K-ring of a point. We also assume that Λ has a maximal ideal Λ+ and
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is equipped with the Λ+-adic topology. For example, we can choose

Λ = Q[[N1, N2, . . . ]][[Q]][Λ±0 , . . . ,Λ
±
N ],

where Ni are the Newton polynomials (in infinitely or finitely many variables) and

Q denotes the Novikov variable(s). The parameters Λi denote the torus-equivariant

parameters. The Adams operations Ψr act on Nm and Q by Ψr(Nm) = Nrm and

Ψr(Qβ) = Qrβ, respectively. We assume their actions on the torus-equivariant pa-

rameters are trivial.

Similar to the “ordinary” quasimap K-theory with level structure, we define the

loop space by

K := [K(Z // G)⊗ Λ]⊗ C(q).

As before, it is equipped with a symplectic form defined by (3.4), and it has a

Lagrangian polarization

K = K+ ⊕K−,

where K+ is the subspace of Laurent polynomials in q and K− is the subspace of

reduced rational functions which are regular at q = 0 and vanish at q =∞.

Consider the natural Sk-action on the quasimap moduli space Qεg,k(Z // G, β) by

permuting the k marked points. Notice that the virtual structure sheaf OQεg,k(Z//G,β)

and the determinant line bundle DR,l are invariant under this action. Therefore we

have the following Sk-module

[
t(L), . . . , t(L)

]
g,k,β

:=
∑
m

(−1)mHm
(
Ovir
Qεg,k(Z//G,β) ⊗DR,l ⊗ki=1 t(Li)

)
,
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for t(q) ∈ K+.

Definition III.2. The correlators of the permutation-equivariant quasimapK-theory

of level l are defined by

〈
t(L), . . . , t(L)

〉R,l,ε,Sk
g,k,β

:= π∗
(
Ovir
Qεg,k(Z//G,β) ⊗DR,l ⊗ki=1 t(Li)

)
,

where π∗ is the K-theoretic pushforward along the projection

π :
[
Qεg,k(Z // G, β)/Sk

]
→ [pt].

Remark III.3. When the λ-algebra Λ is chosen to be Z[[Q]], we refer to the invariants

as the symmetrized invariants. The pushforward map in Definition III.2 carries

information only about the dimensions of the Sk-invariant parts of sheaf cohomology[
t(L), . . . , t(L)

]
g,k,β

. We refer to [37, Example 4] for more details.

For the permutation-equivariant quasimap K-theory, we also consider the J ε-

function, and define the cone LS∞ to be the range of the J∞-function.

Definition III.4. The permutation-equivariant K-theoretic J ε-function of Z //G of

level l is defined by

(3.6)

J R,l,ε
S∞

(t(q), Q) := 1−q+t(q)+
∑
a

∑
(k,β)6=(0,0),(1,0)

Qβ

〈
φa

1− qL
, t(L), . . . , t(L)

〉R,l,ε,Sk
0,k+1,β

φa,

where the unstable terms in the summation are the same as those in (3.3).

Note that in the above definition of permutation-equivariant J-function, we do

not need to divide each term by k!.
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Definition III.5. We define the Givental’s cone LR,lS∞
as the range of J R,l,∞

S∞
, i.e.,

LR,lS∞
:=

⋃
t(q)∈K+

J R,l,∞
S∞

(t(q), Q) ⊂ K.

Remark III.6. In the ordinary, i.e. permutation-non-equivariant, quantum K-theory,

the range of the J -function is a cone which coincides with the differential of the

descendant potential (up to the dilaton shift). Therefore the range of the ordinary

K-theoretic J -function is a Lagrangian cone in the loop space K. However, in

the permutation-equivariant theory, it is explained in [35] that the cone LR,lS∞
is not

Lagrangian.

3.4 The level structure in equivariant quasimap theory and orbifold
quasimap theory

When Z // G is not proper, one can still define the equivariant quasimap invari-

ants if Z // G has an additional torus action such that the the fixed point loci in

the quasimap moduli spaces are proper. It is explained in [19, §6.3] how to define

cohomological quasimap invariants via virtual localization. Similarly, one can define

equivariant K-theoretic quasimap invariants (with level structure) for noncompact

GIT targets using the K-theoretic virtual localization formula (see [64, §3.2]). With

this understood, we define the J R,l,ε-function of equivariant K-theoretic quasimap

invariants of level l using (3.3). Its permutation-equivariant generalization is straight-

forward.

If we do not assume G acts freely on the stable locus Zs, then the target X :=

[Zs/G] is naturally an orbifold. For such orbifold GIT targets, a quasimap is a tuple
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((C, x1, . . . , xk), [u]) where (C, x1, . . . , xk) is a k-pointed, genus g twisted curve (see

[4, §4]) and [u] is a representable morphism from (C, x1, . . . , xk) to X. We refer

the reader to [15, §2.3] for the details of the ε-stability imposed on those tuples.

We denote by Qεg,k(X, β) the moduli stack of ε-stable quasimaps to the orbifold X.

It is shown in [15, Theorem 2.7] that this moduli stack is Deligne-Mumford and

proper over the affine quotient. Furthermore if Z only has l.c.i. singularties, then

Qεg,k(X, β) has a canonical perfect obstruction theory. Let C → Qεg,k(X, β) be the

universal curve. The universal principal G-bundle P → C is defined as the pullback

of the principal G-bundle Z → [Z/G] via the universal morphism [u] : C → [Z/G].

In the orbifold setting, we can still define the level-l determinant line bundle DR,l

using (2.1).

According to [15, §2.5.1], there are natural evaluation morphisms

evi : Qεg,k(X, β)→ ĪµX,
(
(C, x1, . . . , xk), [u]

)
7→ [u]|xi , for i = 1, . . . , k.

Here ĪµX denotes the rigidified cyclotomic inertia stack of X which parameterizes

representable maps from gerbes banded by finite cyclic groups to X. Let Li be the

universal cotangent line bundle whose fiber at ((C, x1 . . . , xk), [u]) is the cotangent

space of the coarse curve C of C at the i-th marked point xi. For non-negative integers

li and classes Ei ∈ K0(ĪµX) ⊗ Q, we define the K-theoretic quasimap invariants of

level l as

〈
E1L

l1
1 , . . . , EkL

lk
k

〉X,R,l,ε
g,k,β

= χ
(
Qεg,k(X, β),

∏
i

ev∗iEi ⊗ L
li
i ⊗Ovir ⊗DR,l

)
.
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When ε = ∞ and l = 0, this definition recovers the K-theoretic Gromov-Witten

invariants of X defined in [78].

In the orbifold setting, one can still define the quasimap graph space QGεg,k(X, β)

(see [15, §2.5.3]). The definition of the determinant line bundle DR,l over the graph

space is straightforward. We choose a basis {φa} of K0(ĪµX)⊗Q. Let {φa} be the

dual basis with respect to the twisted pairing (·, ·)R,l on K0(ĪµX)⊗Q given by

(u, v)R,l := χ
(
ĪµX, u⊗ ῑ∗v ⊗ det−l(ĪµR)

)
.

Here ῑ is the involution induced by (x, g) 7→ (x, g−1) and ĪµR is a vector bundle over

ĪµX such that the fiber over (x,H), with H ⊂ Aut x, is the H-fixed subspace of Rx.

With all the notations understood, it is straightforward to adapt the definition of

cohomological orbifold quasimap J ε-function [15, Definition 3.1] to the (permutation-

equivariant) K-theoretic setting.



CHAPTER IV

Characterization of genus-0 theory, mirror theorem, and
mock theta functions

4.1 Adelic Characterization in quantum K-theory with level structure

In this section, we focus on quantum K-theory, i.e., (ε = ∞)-quasimap theory.

We first recall the (virtual) Lefschetz-Kawasaki’s Riemann-Roch formula. This is

the main tool in analyzing the poles of the J-function. We give an adelic character-

ization of points on the cone LR,lS∞
in Theorem IV.5. As an application of the adelic

characterization, we prove that certain “determinantal ” modifications of points on

the cone LS∞ of level 0 lie on the cone LR,lS∞
of level l. This result will be used

in the proof of the toric mirror theorem in Section 4.2. We assume in this section

that X is a smooth projective variety which is not necessarily a GIT quotient. The

determinant line bundle DR,l is defined as in Remark II.6.

4.1.1 Virtual Lefschetz-Kawasaki’s Riemann-Roch formula

To understand the poles of the generating series of the permutation-equivariant

quantum K-invariants, we recall the Lefschetz-Kawasaki’s Riemann-Roch formula in

53
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[38].

Let h be a finite order automorphism of a holomorphic orbibundle E over a com-

pact smooth orbifoldM. The (super)trace of h on the sheaf cohomology H∗(M, E)

can be computed as an integral over the h-fixed point locus IMh in the inertia

orbifold IM:

(4.1)

trhH
∗(M, E) = χfake

(
IMh,

trh̃E

trh̃ ∧∗ N∨IMh

)
:=

∫
[IMh]

td(TIMh) ch

(
trh̃E

trh̃ ∧∗ N∨IMh

)
.

We explain the ingredients of this formula as follows. By definition, we can choose

an atlas of local charts U → U/G(x) of M. The local description of the inertia

orbifold IM near x ∈ M is given by [
∐

g∈G(x) U
g/G(x)], where U g ⊂ U denotes the

fixed point locus of g. The automorphism h can be lifted to an automorphism h̃

of the chart U g. We denote by (U g)h̃ the fixed point locus of h̃ in U g. Then the

local description of the orbifold IMh is given by [
∐

g(U
g)h̃/G(x)]. We refer to the

connected components of IMh as Kawasaki strata. Near a point (x, [g]) ∈ IMh, the

tangent and normal orbiford bundles TIMh and NIMh are identified with the tangent

bundle and normal bundle to (U g)h̃ in U , respectively. In the denominator of the

right side of (4.1), ∧∗N∨
IMh :=

∑
i≥0(−1)i ∧i N∨

IMh is the K-theoretic Euler class of

the normal bundle NIMh . The trace bundle trh̃ F is the virtual orbifold bundle:

trh̃ F :=
∑
λ

λFλ,

where Fλ are the eigen-bundles of h corresponding to the eigenvalues λ. Finally, td

and ch denote the Todd class and Chern character.
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By choosing h to be the identity map, we obtain the Kawasaki’s Riemann-Roch

formula [49] from (4.1):

(4.2) χ(M, E) = χfake
(
IM,

trg E

trg ∧∗ N∨IM

)
.

WhenM is no longer smooth, Tonita [76] proved a virtual Kawasaki’s formula: under

the assumption that M has a perfect obstruction theory and admits an embedding

into a smooth orbifold which has the resolution property, Kawasaki’s formula still

holds true if we replace the structure sheaves, tangent, and normal bundles in the

formula by their virtual counterparts. According to [2], the moduli stacks of stable

maps to smooth projective varieties satisfy the assumptions of Tonita’s theorem. In

the next subsection, we apply the virtual Kawasaki’s Riemann-Roch (KRR) formula

to Mg,k(X, β)/Sk to study the poles of the J-function.

4.1.2 Adelic characterization

In this subsection, we first recall the adelic characterization [31] of the cone LS∞

in the level-0 permutation-equivariant quantum K-theory. Then we generalize it to

describe points on the cone LR,lS∞
of level l.

The level-0 case

In the level-0 case, i.e., Givental-Lee’s quantumK-theory, the permutation-equivariant

invariants are defined as

〈t(L), . . . , t(L)〉Skg,k,β := χ
(
Mg,k(X, β)/Sk,Ovir

Mg,k(X,β)
⊗ki=1 t(Li)

)
,
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where t(q) is a Laurent polynomial in q with coefficients in K0(X) ⊗ Q. This is a

special case of Definition III.2 with ε sufficiently large and l = 0. The J-function is

defined as

JS∞(t(q), Q) := 1−q+t(q)+
∑
a

∑
(k,β)6=(0,0),(1,0)

Qβ

〈
φa

1− qL
, t(L), . . . , t(L)

〉Sk
0,k+1,β

φa.

Here {φa} and {φa} are basis of K0(X)⊗Q dual with respect to the Mukai pairing

(φa, φb) := χ(φa ⊗ φb).

Recall the definition of the loop space K from Section 3.2:

K := [K0(X)⊗ C(q)]⊗ C[[Q]].

With respect to the symplectic form (3.4) with l = 0, there is a Lagrangian polariza-

tion K = K+ ⊕K−, where K+ consists of Laurent polynomials in q and K− consists

of reduced rational functions in q. The Givental’s cone LS∞ ⊂ K is defined as the

image of JS∞ : K+ → K.

To study the poles of the series JS∞(q), we apply the virtual KRR formula to the

stackMg,k+1(X, β)/Sk, where the symmetric group acts on the last k markings. By

the virtual KRR formula, each term in the J-function can be written as a summations

of fake Euler characteristics over the Kawasaki strata. Note that the Kawasaki strata

parametrize stable maps with prescribed automorphisms, i.e., equivalence classes of

pairs (C, f, h), where (C, f) is a stable map to X and h is an automorphism of the

map. Here, h is allowed to permute the last k markings, but it has to preserve the
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first marking (with the insertion 1/(1− qL)). Denote by η the eigenvalue of h on the

cotangent line to the curve at the first marking.

There are two types of Kawasaki strata. Over the Kawasaki strata with η = 1,

the input trh(1/(1−qL)) in the fake Euler characteristics becomes 1/(1−qL̄), where

1− L̄ is nilpotent. From the finite expansion

1

1− qL̄
=
∑
i≥0

qi(L̄− 1)i

(1− q)i+1
,

we see that the contributions to the J-function from the Kawasaki strata with η = 1

have poles at q = 1.

Over the Kawasaki strata where η 6= 1 is a primitive m-th root of unity, the

insertion trh(1/(1−qL)) in the fake Euler characteristics becomes 1/(1−qηL̄), where

1− L̄ is nilpotent. By considering the finite expansion

1

1− qηL̄
=
∑
i≥0

(qη)i(L̄− 1)i

(1− qη)i+1
,

we see that they contribute terms with possible poles at the root of unity η−1 to the

J-function. We refer the reader to [31] for a nice diagram cataloging all the strata.

For each primitive m-th root of unity η, we denote by JS∞(t)(η) the Laurent

expansion of the J-function in 1− qη and regard it as an element in the loop space

of power Q-series with vector Laurent series in 1− qη as coefficients:

Kη := K0(X)

[
1

1− qη
, 1− qη

]]
⊗ C[[Q]].

The contributions from the untwisted sector ofMg,k(X, β)/Sk in the virtual KRR

formula are called the fake K-theoretic Gromov-Witten (GW) invariants. More
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precisely, they are defined by

〈t(L), . . . , t(L)〉fake0,k,β :=

∫
[M0,k(X,β)]vir

k∏
i=1

ch(t(Li)) Td(T vir),

where [Mg,k(X, β)]vir is the virtual fundamental class of the moduli space and T vir

is the virtual tangent bundle of Mg,k(X, β). We define the J-function in the fake

quantum K-theory by

Jfake : K1
+ → K1,

Jfake(t(q), Q) := 1− q + t(q) +
∑
a

∑
(k,β)6=(0,0),(1,0)

Qβ

k!
φa
〈

φa
1− qL

, t(L), . . . , t(L)

〉fake
0,k+1,β

.

Here the input t(q) belongs to

K1
+ := K0(X)[[1− q]]⊗ C[[Q]].

Denote by Lfake ⊂ K1 the range of the series Jfake. The negative space K1
− of the

polarization is spanned by φaqk/(1 − q)k+1, a = 1, . . . , dimK0(X)Q, k = 0, 1, . . . .

The input t(q) of Jfake can be obtained from the projection of Jfake to K1
+ along

K1
−.

In [31], Givental gives the following adelic characterization of the values of JS∞(t):

Theorem IV.1 ([31]). The values of JS∞(t) are characterized by the following re-

quirements:

1. JS∞(t) has possible poles only at 0, ∞, and roots of unity;

2. JS∞(t)(1) lies on Lfake;
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3. for every primitive root of unity η of order m 6= 1,

JS∞(t)(η)(q
1/m/η) ∈

√
λ−1(T∨X)

λ−1(ΨmT∨X)

× exp
∑
i≥1

(
ΨiT∨X

i(1− η−iqi/m)
− ΨimT∨X
i(1− qim)

)
Tm
(
JS∞(t)(1)

)
,

where Ψm is the m-th Adams operation on K0(X)Q which acts on line bundles

as L 7→ Lm, λ−1(E∨) =
∑

i(−1)i∧iE∨ is the K-theoretic Euler class of a vector

bundle E, and Tm(f) is the space described in Definition IV.2 below.

We recall the following definition from [77].

Definition IV.2. Let f be a point on Lfake and let T (f) be the tangent space to

Lfake at f , considered as the image of a map S(q,Q) : K1
+ → K. We extend the

Adams operations from K0(X)Q to K1 by Ψm(q) = qm and Ψm(Q) = Qm. Let Ψ
1
m

be the inverse of Ψm, acting as q 7→ q1/m and Q→ Q1/m. We define the space Tm(f)

to be the image of the conjugate of S(q,Q):

Ψm ◦ S(q,Q) ◦Ψ
1
m : K1

+ → K1.

Remark IV.3. As explained in [77, Remark 5.6], the explicit operator in condition

(3) of Theorem IV.1 can be written as a composition �η�−1
m . The definitions of the

operators �η and �m are given in Proposition IV.10.

The general case of level l

Let R be a vector bundle over X. According to Remark II.6, the level structure

DR,l is defined as

DR,l =
(
detRk,β

)−l
,
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where Rk,β := Rπ∗(ev∗R) is the index bundle, π : C → Mg,k(X, β) is the universal

curve, and ev : C → X is the universal evaluation morphism. To state the adelic

characterization theorem of the cone LR,lS∞
in the permutation-equivariant quantum

K-theory with level structure, we introduce the fake invariants of level l

〈t(L), . . . , t(L)〉fake,R,l0,k,β :=

∫
[M0,k(X,β)]vir

k∏
i=1

ch(t(Li)) Td(T vir) ch(DR,l),

and the fake J-function of level l

J R,l
fake(t(q), Q) := 1−q+t(q)+

∑
a

∑
(k,β)6=(0,0),(1,0)

Qβ

k!
φa
〈

φa
1− qL

, t(L), . . . , t(L)

〉fake,R,l
0,k+1,β

.

Here {φa} is the dual basis of {φa} with respect to the twisted pairing

(u, v)R,l = χ(u⊗ v ⊗ (detR)−l).

Denote by LR,lfake ⊂ K1 the range of the series J R,l
fake. Based on the relationship [29]

between gravitational descendants and ancestors of fake quantum K-theory, one can

show that LR,lfake is an overruled Lagrangian cone. We refer the reader to [41, §3] for

more details.

Convention IV.4. We will consider various twisted theories, in which the pairings

are usually different. In particular, the dual bases {φa} which appear in the defini-

tions of various J-functions may not be the same. To relate J-functions in different

theories, we need to regard them as elements of the same loop space. This is achieved
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by rescaling the elements in loop spaces. For example, there is a rescaling map

(
K1, ( , )R,l

)
→
(
K1, ( , )

)
,

E 7→ E ⊗ (detR)−l/2,

which identifies the loop space in fake quantum K-theory of level l with that in fake

quantum K-theory of level 0.

One of our main results is the following adelic characterization of values of the

big J-function in quantum K-theory of level l, generalizing Theorem IV.1.

Theorem IV.5. The values of J R,l
S∞

(t) are characterized by the following require-

ments:

1. J R,l
S∞

(t) has possible poles only at 0, ∞, and roots of unity;

2. J R,l
S∞

(t)(1) lies on LR,lfake;

3. for every primitive root of unity η of order m 6= 1,

J R,l
S∞

(t)(η)(q
1/m/η) ∈

√
λ−1(T∨X)

λ−1(ΨmT∨X)

× exp
∑
i≥1

(
ΨiT∨X

i(1− η−iqi/m)
− ΨimT∨X
i(1− qim)

)
T R,lm

(
J R,l
S∞

(t)(1)

)
,

where the space T R,lm (f) is defined as in Definition IV.2 but starting with a point

f ∈ LR,lfake.

The proof of Theorem IV.5

We follow the proofs of [41] and [77]. The first requirement in Theorem IV.5 is

obviously satisfied. For the second condition, we apply the virtual KRR formula
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to the J-function. Let T̃(q) be the sum of t(q) and all contributions in J R,l
S∞

(t)

which are regular at q = 1. According to Proposition II.9, the level structure DR,l

splits “correctly” over nodal strata. With this understood, the following proposition

follows from an argument identical to the one given in [77, Proposition 5.2].

Proposition IV.6. We have

J R,l
S∞

(t(q))(1) = J R,l
fake(T̃(q))

as elements in K1. In particular, it shows that J R,l
S∞

(t)(1) lies on the cone LR,lfake.

Before we move on to prove the third condition in Theorem IV.5, we characterize

the cone LR,lfake of fake quantum K-theory of level l in terms of the cone Lfake of level

0. This characterization will be needed later in the proof of Theorem IV.5.

Note that the fake quantumK-theory is a version of twisted cohomological Gromov-

Witten theory. The machinery of twisted cohomological Gromov-Witten invariants

was introduced in [22], and generalized in various directions in [75, 79]. Let H be

the loop space of the cohomological GW theory of X

H := Heven(X,C)[z−1, z]][[Q]].

It is equipped with a natural symplectic form ΩH on H given by

ΩH

(
f ,g
)

= Resz=0

(
f(−z),g(z)

)
dz,

where the pairing ( , ) is the Poincaré pairing. With respect to ΩH , there is a La-

grangian polarization H = H+ ⊕H−, where

H+ := Heven(X,C)[[z]][[Q]], H− :=
1

z
Heven(X,C)[z−1][[Q]].
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Inside H, one can define an overruled Lagrangian cone LH by the image of the

cohomological big J-function. Since we will not use the explicit description of LH in

this paper, we refer the reader to [22] for the basic definitions in the cohomological

GW theory.

Convention IV.7. Throughout this subsection, we identifyK1 withH via the Chern

character

qch : K1 → H,

E 7→ ch(E), q 7→ ez.

Hence K-theoretic insertions (e.g., φa and L) in the correlators of twisted coho-

mological theories should be understood as their Chern characters (e.g., chφa and

chL).

By definition, the fake quantum K-invariants are obtained from the cohomological

invariants by inserting the Todd class Td(T vir) of the virtual tangent bundle T vir.

According to [20], the virtual tangent bundle can be written as

(4.3) T vir = π∗(ev∗TX − 1)− π∗(L∨k+1 − 1)− (π∗i∗OZ)∨

in K0(M0,k(X, β)). Here, i : Z → C is the embedding of the nodal locus. The three

parts correspond respectively to: (i) deformations of maps to X of a fixed source

curve, (ii) deformations of complex structure and configuration of markings, and

(iii) smoothing the nodes.
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It is proved in [21] that the cone Lfake (of level 0) is given explicitly in terms of

LH :

qch(Lfake) = ∆LH ,

where the loop group transformation ∆ is the Euler-Maclaurin asymptotics of the

infinite product

∆ ∼
∏

Chern roots x of TX

∞∏
r=1

x− rz
1− e−x+rz

.

Here, ∆ acts on H by the pointwise multiplication, and it is determined only by the

Todd class of the first summand in the expression of T vir. The second and third

summands in (4.3) are respectively responsible for the changes of the dilaton shifts

and the polarizations between H and K1. We refer to [20] for the details.

The fake quantum K-invariants of level l are obtained from those of level 0 by

inserting one more class ch(DR,l). Its effect on the Lagrangian cone is described in

the following proposition.

Proposition IV.8. Under the identification z = log q, we have the following identity

LR,lfake = exp

(
− l
(

ch2R
z

))
Lfake

in the loop space
(
K1, ( , )

)
.

Proof. Recall that the level structure DR,l is defined as a certain power of the deter-

minant of the index bundle Rk,β = Rπ∗(ev∗R). Note that

(4.4) ch(DR,l) = exp
(
− l · ch1(Rk,β)

)
.
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According to [22], the cone of a theory twisted by a general multiplicative character-

istic class of the form

exp
(∑
i≥0

si chi(Rk,β)
)

is obtained from the cone of the untwisted theory by applying the operator

exp

( ∑
m,i≥0

s2m−1+i
B2m

(2m)!
chi(R) · z2m−1

)
.

Here the Bernoulli numbers B2m are defined by

t

1− e−t
= 1 +

t

2
+
∑
m≥1

B2m

(2m)!
t2m,

and the operator acts on H by the pointwise multiplication. For the twisting class

(4.4), we have s1 = −l and si = 0 if i 6= 1. By applying the above result, we obtain

the corresponding loop group transformation:

exp

(
− l
(

ch2(R)

z
+

ch0(R) · z
12

))
.

Note that the cone Lfake, being overruled, is invariant under multiplication by func-

tions of z. Therefore, we can ignore the second summand in the exponent of the

above operator.

Now let us prove the third condition in Theorem IV.5. Let η 6= 1 be a primitive

root of unity of order m. The Kawasaki strata inMg,k+1(X, β)/Sk which contribute

terms with poles at q = η−1 to the J-function are called the stem spaces in [41]. We

give a brief description of stem spaces here, and we refer the reader to [41, §8] for

more details. Let (C ′, f, h) be a point in these strata. Consider the unique maximal
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subcurve C+ ⊂ C ′ containing the first marking where the m-th power hm acts as

the identity. Here we also require that the nodes between components in C+ are

balanced, i.e., we require the eigenvalues of h on the two branches of a node in C+

are inverse to each other. Hence the subcurve C+ is a chain of P1, on which h acts as

multiplication by η. There are only two smooth points on C+ which are fixed by h:

the first marking on the first component, and one more on the last component. The

second point is called the butt in [41]. The butt can be a regular point, a marking,

or a node in C ′. The automorphism h acts on the cotangent space at the butt by

η−1. The other marked points and unbalanced nodes on C+ are cyclically permuted

by h. We denote by C the quotient of C+ by the Zm-symmetry generated by h.

The quotient curve C together with the induced quotient stable map is called a stem

in [41]. Note that a stem curve can carry unramified marked points, coming from

symmetric configurations of m-tuples of markings on the cover, or nodes, coming

from m-tuples of symmetric nodes on the cover, where further components of C ′,

cyclically permuted by h, are attached.

One of the key observations in [41] is that the data (C+, C, f) also represents a

stable map to the orbifold X/Zm = X × BZm in the sense of [14] and [3]. There-

fore, the contributions with poles at q = η−1 in the KRR formula for the J-function

can be expressed as cohomological integrals over the moduli space of stable maps to

X×BZm, twisted by the Todd classes of the traces of the virtual tangent and normal

bundles of the Kawasaki strata, and the Chern class of the trace of the level structure
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DR,l. To be more precise, we introduce some notations first. Let MX,β

0,k+2(η) denote

the stem space. It parametrizes stems of degree β, which are quotient maps by the

Zm-symmetry generated by g. Here g acts by η and η−1 on the cotangent lines at the

first and last markings of the covering curve, respectively. The only markings on the

covering curve fixed by h are the first and last markings. Note that the stem space

is a Kawasaki stratum in M0,mk+2(X,mβ). According to [41, Proposition 5], the

stem spaceMX,β

0,k+2(η) is isomorphic to the moduli spaceMX/Zm,β
0,k+2 (g, 1, . . . , 1, g−1) of

stable maps to the orbifold X/Zm. Here, the sequence (g, 1, . . . , 1, g−1) indicates the

sectors where the evaluation maps land. We also consider the stem spaceMX,β

0,k+1(η)

parametrizing stems whose butts are regular points. Similarly, we have an isomor-

phism between MX,β

0,k+1(η) and MX/Zm,β
0,k+1 (g, 1, . . . , 1).

For simplicity, we denote the stem space MX,β

0,k+1(η) by M. Modelling on the

contributions in the virtual KRR formula applied to the stack Mg,k+1(X, β)/Sk, we

define the correlators in the stem theory of level l by〈
φ

1− qL1/m
, t(L), . . . , t(L)

〉stem,R,l
0,k+1,β

:=

∫
[M]vir

td(TM)ch

(
ev∗1 φ ·

∏k
i=2 ev∗i t(Li) · trg DR,l(

1− qL1/m
1

)
· trg

(
∧∗ N∨M

) )
.

Here [M]vir is the virtual fundamental class of the moduli spaceMX/Zm,β
0,k+1 (g, 1, . . . , 1)

of stable maps to X/Zm, and TM and NM are, respectively, the virtual tangent and

normal bundles to M, considered as a Kawasaki stratum in M0,mk+1(X,mβ). The

line bundle L1 is formed by the cotangent spaces of stem curves at the first markings,

while L
1/m
1 corresponds to the cotangent line bundle of the covering curves (see [41,

§7] for the explanation). From the definition, we see that the stem theory of level l
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is a type of twisted cohomological GW theory of X ×BZm.

Before we investigate the stem theory further, let us recall some basic facts about

the GW theory of the orbifold X × BZm. In this case, the Lagrangian cone of the

cohomological GW theory of X ×BZm is the product of m copies of the Lagrangian

cone of the GW theory of X. It lies inside the product of m copies of the Fock space

H. We refer to each copy of the Lagrangian cone as a sector. These sectors are

labeled by elements of Zm = {1, g, . . . , gm−1}.

The following proposition relates the Laurent expansion of J R,l
S∞

(t) at q = η−1 to

generating series in stem theory.

Proposition IV.9. Let δt(q) be the contributions in J R,l
S∞

(t) which are regular at

q = η−1, i.e., δt(q) = 1−q+t(q)+ t̃(q), where t̃(q) is the sum of all the contributions

from Kawasaki strata MX,β

0,k+1(ξ) with ξ 6= η. Then

J R,l
S∞

(t)(η) = δt(q)+
∑
a

∑
(k,β)6=(0,0)

Qmβ

k!
φa
〈

φa
1− qηL1/m

,T(L), . . . ,T(L), δt(L1/m/η)

〉stem,R,l
0,k+2,β

,

where

1. the evaluation morphisms at the marked points land in the twisted sector of BZm

labeled by the sequence (g, 1, . . . , 1, g−1),

2. T(L) = Ψm T̃(L), where Ψm acts on cotangent line bundles L 7→ Lm, elements

of K0(X)Q, and Novikov variables Qβ 7→ Qmβ,

3. T̃(q) is the input point of J R,l
S∞

(t)(1), i.e., it is determined by

1− q + T̃(q) =
(
J R,l
S∞

(t)(1)

)
+
.
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where (· · · )+ denotes the projection along K1
− to K1

+.

Proof. Proposition II.9 shows that the determinant line bundleDR,l factorizes “nicely”

over nodal strata. With this in mind, the argument of [41, Proposition 2] applies here

with one slight change: when determining T̃(q), we do not impose the same condition

t(q) = 0 as in [41, Proposition 2]. This is because in the permutation-equivariant

theory, we are allowed to permute marked points.

Proposition IV.9 shows that the Laurent expansion J R,l
S∞

(t)(η) of the J-function

around q = η−1 can be identified with a tangent vector to the cone of stem theory

of level l:

δJ st,R,l(δt,T′) := δt(q1/m)

+
∑
a

∑
(k,β)6=(0,0)

Qβ

k!
φa
〈

φa
1− q1/mL1/m

,T′(L), . . . ,T′(L), δt(L1/m)

〉stem,R,l
0,k+2,β

,

after replacing qη with q1/m and Qβ with Qmβ (but not in δt). Here the input point

T′(q) is obtained from T(q) by replacing Qβ with Qβ/m, and it belongs to the sector

labeled by 1. The tangent vector δJ st,R,l(δt,T) belongs to the sector labeled by g−1.

Now let us study the stem theory of level l using the formalism of twisted cohomo-

logical GW theory of X × BZm. It follows from the definition that the stem theory

of level l is obtained from the untwisted cohomological Gromov-Witten theory of

X/BZm by twisting the following classes:

(4.5) td(TM)/ch
(
trg
(
∧∗ N∨M

))
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and

(4.6) ch
(
trg DR,l

)
.

The trace in the first twisting class (4.5) is computed in [41, §8], and the effects

of this twisting class on the Lagrangian cone and the genus zero potential of the

untwisted theory are also studied in [41, §8]. We summarize them in the following

proposition.

Proposition IV.10 ([41]). The effects of the twisting class (4.5) on the Lagrangian

cone and the genus zero potential of the untwisted theory are described as follows:

(i) The sectors labeled by 1 and g−1 are rotated by the operators �m and �η, respec-

tively. These two operators are the Euler-Maclaurin asymptotics of the infinite

products

�m ∼
∏
i

(√
xi

1− e−mxi

∞∏
r=1

xi − rz
1− e−mxi+rmz

)
,

�η ∼
∏
i

(√
xi

1− e−xi

∞∏
r=1

xi − rz
1− η−re−xi+rz/m

)
,

where xi are the Chern roots of the tangent bundle TX .

(ii) The dilaton shift changes from −z to 1− qm.

(iii) There are changes of polarizations of symplectic loop spaces. More precisely, in

the sector labeled by 1, the negative space of the polarization is spanned by

φaΨm(qk/(1− q)k+1),



71

whereas in the sector labeled by g−1, it is spanned by

φaqk/m/(1− q1/m)k+1.

We compute the second twisting class (4.6), and describe its effect on the La-

grangian cone. Let p be the universal family of stem curves. By abuse of notation,

we still use ev to denote the universal evaluation morphism from the universal family

of quotient curves to X/Zm. Let Cηi be the topologically trivial line bundle on X/Zm

on which g acts as multiplication by ηi. According to a simple argument in [77], the

trace of the index bundle Rπ∗(ev∗R) can be expressed as

trg
(
Rπ∗(ev∗R)

)
=

m−1∑
i=0

ηiRp∗(ev∗R⊗ Cηi).

For simplicity, we denote Rp∗(ev∗R⊗ Cηi) by R̄i. Then we have

ch trg DR,l = ch

(
det

m−1∑
i=0

ηi R̄i

)−l
= ch

(m−1∏
i=0

(
ηi
)ch0 R̄i

m−1∏
i=0

det R̄i

)−l
=

m−1∏
i=0

exp

(
− l
(
i log(η) ch0 R̄i + ch1 R̄i

))
(4.7)

Proposition IV.11. Twisting by the class (4.6) rotates the sector labeled by the

identity of the Lagrangian cone of X ×BZm by

Dm := exp

(
−ml

(
ch2R
z

))
The sector labeled by g−1 is rotated by the same operator Dm.
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Proof. The proof is based on the orbifold quantum Riemann-Roch theorem developed

in [79]. Let E be an orbifold vector bundle over X×BZm. Consider a general twisting

class

exp

(∑
j≥0

sj chj p∗
(
ev∗E

))
.

According to [79, Theorem 1], it corresponds to the rotation by the following operator

exp

(∑
j≥0

sj

(∑
n≥0

(An)j+1−nz
n−1

n!
+

chj E
(0)

2

))
.

Here An is an operator which acts on all sectors. The restriction (An)|X,gi of An to

the sector labeled by gi is defined by

(An)|(X,gi) =
m−1∑
r=0

Bn

( r
m

)
chE

(r)
i ,

where E
(r)
i (respectively E(0)) is the subbundle of the restriction of E to (X, gi) on

which gi acts with eigenvalue e2πir/m (respectively 1). The notation (An)j denotes

the degree j component of the operator An. The Bernoulli polynomials are defined

by ∑
n≥0

Bn(x)
tn

n!
=

tetx

et − 1
.

In our case, the twisting class is given by (4.7). Let D̃η,i denote the symplectic

transformations corresponding to the i-th factor of the twisting class (4.7), restricted

to (X, g−1). For each i ∈ {0, . . . ,m− 1}, the operator An in the definition of D̃η,i is

given by

(An)|(X,g−1) = Bn

( i
k

)
chR.
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By the orbifold quantum Riemann-Roch theorem, the operator D̃η,i equals

exp

(
−l log(η)

(
ch1R
z

+B1

( i
m

)
ch0R

)
−l
(

ch2R
z

+B1(
i

m
) ch1R+

B2(i/m) ch0R
2

z

)
−lch1R

2

)
Let D̃η =

∏m−1
i=0 D̃η,i. To simplify the expression of D̃η, we use the fact that n log(η) =

0 if n is an integer divisible by m. Keeping this in mind, we obtain

D̃η = exp

(
− l
(
m ch2R

z
+

ch0R
12m

z +
ch0R

6
log(η)

))
.

Note that the factor exp(−l(z ch0R/(12m) + log(η) ch0R/6)) in D̃η is a scalar z-

series and thus it preserves the overruled Lagrangian cone. We can drop it and obtain

the operator Dm.

For the sector labeled by the identity, we denote by D̃m,i the restriction of the

operator corresponding to the i-th factor of the twisting class (4.7). It is easy to

check that

(An)|(X,1) = Bn(0) chR,

and the operator D̃m,i equals

exp

(
− il log(η)

(
ch1R
z

)
−ml

(
ch2R
z

+
ch0R

12
z

))
.

Let D̃m =
∏m−1

i=0 D̃m,i. Again by using the fact that n log(η) = 0 if m|n, we can

simplify the operator D̃m to

exp

(
−ml

(
ch2R
z

+
ch0R

12
z

))
.

We can drop the second term in the exponent because it is a constant z-series.
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The above discussion can be summarized in the following proposition.

Proposition IV.12. qch δJ st,R,l(δt,T) lies in the tangent space

�η�
−1
m

(
TItw �mDm LH

)
to the cone of the stem theory of level l at a certain point Itw. The input T satisfies

qch
(
1− qm + T(q)

)
=
[
Itw
]

+
,

where [· · · ]+ denotes the projection along the negative space of the polarization of the

sector labeled by 1.

Proof. The argument of [77, Proposition 5.8] applies here. We briefly explain the

relation between the application point Itw and the input T. Note that the application

point Itw lies on the Lagrangian of the stem theory of level l in the sector labeled by

1. According to Proposition IV.10 (ii), the new dilaton shift is 1− qm. This explains

the equality in the proposition.

To prove the third condition in Theorem IV.5, we need to identify TItw�mDmLH

with Tm
(
JS∞(t)(1)

)
. We first show that

Proposition IV.13.

qch−1
(
�mDm LH

)
= Ψ̃mLR,lfake.

Here, the Adams operation Ψ̃m acts on K-theory classes of X and q by Ψm(q) = qm,

but not on the Novikov variables Q.
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Proof. It is proved in [41, Proposition 9] that qch−1(�m LH) = ΨmLfake. In that

proof, one needs to extend the action of the Adams operator Ψm on cohomology

classes via the Chern isomorphism:

ch
(
Ψm(ch−1 a)

)
= mdeg(a)/2a.

By Proposition IV.8, we have LR,lfake = D1Lfake. We conclude the proof by noticing

that Ψm(D1) = Dm.

Let T̃(q) be the input point of J R,l
fake(T̃(q)) determined by

1− q + T̃(q) =
(
J R,l
S∞

(t)(1)

)
+
.

where (· · · )+ denotes the projection along K1
− to K1

+. Let T′(q) be the input point

of Itw such that

(4.8) Ψ̃m
(
J R,l
fake(T̃(q))

)
= Itw

(
T′(q)

)
.

We claim that Ψ̃m(T̃(q)) = T′(q). This equality holds because according to Propo-

sition IV.10 and Proposition IV.13, the operation Ψ̃m : K1 → K1 identifies the cone

LR,lfake with the cone �mDm LH , the polarization of the fake quantum K-theory with

the polarization in the sector labeled by 1 of the stem theory, and the old dilaton

shift 1 − q with the new one 1 − qm. Therefore Ψ̃m must also map the input point

T̃(q) of the fake J-function to the input point T′(q) of Itw. Recall from Proposition

IV.9 that we have Ψm(T̃(q)) = T(q). Then it follows from the definitions of Ψm and

Ψ̃m that T′(q) is obtained from T(q) by replacing Qβ with Qβ/m.
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By differentiate the relation (4.8), we get

Ψ̃m

(
f(q) +

∑ Qβ

k!
φa
〈

φa
1− qL

, T̃(L), . . . , T̃(L), f(L)

〉fake,R,l
0,k+2,β

)
= Ψ̃mf(q) +

∑ Qβ

k!
Ψ̃mφa

〈
Ψ̃mφa

1− qmLm
,T′(L), . . . ,T′(L), Ψ̃mf(L)

〉stem,R,l
0,k+2,β

.

The RHS is a tangent vector in TItw�mDmLH along the direction of δt′ := Ψ̃mf(q).

The LHS becomes Ψm ◦S(q,Q) ◦Ψ1/m(δt′) after we replace Qβ with Qmβ (including

such a change in T̃ but excluding it in f(q)). This concludes the proof of Theorem

IV.5.

Remark IV.14. When the target X is an orbifold, the adelic characterization of points

on the cone L of the ordinary, i.e., permutation-non-equivariant, quantum K-theory

is developed in [78]. In this case, the Lagrangian cone L has different sectors, and

each sector corresponds to a connected component of the rigidified inertia stack ĪµX.

Let f : C → X be an orbifold stable map. Here C is an orbifold curve with possible

orbifold structures at the marked points and nodes. Let f : C → X be the map

between coarse moduli spaces. There is a short exact sequence

1→ K → Aut(f)→ Aut(f)→ 1.

The kernel K consists of automorphisms of C → X that fix C → X. These auto-

morphisms are referred to as “ghost automorphisms” in [1], and they arise from the

stacky nodes of the source curve.

To analyze poles of K-theoretic J-functions in the orbifold setting, we still apply

the virtual KRR formula to the moduli space of orbifold stable maps. In this case,
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there are extra contributions from twisted sectors corresponding to ghost automor-

phisms. The key observation in [78] is that once we add the appropriate contributions

from ghost automorphisms in the definition of fake K-theoretic GW invariants, the

formalism of adelic characterizations carries over to the orbifold setting. We refer the

reader to [78, Definition 3.1] for the precise definition of fake K-theoretic invariants

and [78, Theorem 4.1] for the adelic characterization in the orbifold and permutation-

non-equivariant setting. We only mention that if we restrict to the untwisted sector

of the cone L, the main theorem in [78] specializes to Theorem IV.1.

The generalization of [78, Theorem 4.1] to the permutation-equivariant setting is

straightforward: we only need to change the application point of the tangent space in

[78, Definition 4.3] from J1(0) to the Laurent expansion (JS∞(t))1 of the J-function

at q = 1. Since the determinant line bundle splits “correctly” among nodal strata,

we can also generalize [78, Theorem 4.1] to permutation-equivariant quantum K-

theory with level structure. In this paper, we focus on recovering examples of mock

theta functions. For this purpose, we only need to consider the untwisted sector of

Lagrangian cones of orbifold targets. Once we make this restriction, the statement

of the adelic characterization is the same as in Theorem IV.5.

4.1.3 Determinantal modification

In this subsection, we use the adelic characterization to prove Theorem I.1 which

gives us a way to obtain points on LR,lS∞
by making certain “determinantal” modifi-

cations to points on the level-0 cone LS∞ .
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Let us restate Theorem I.1.

Theorem IV.15. If

I =
∑

β∈Eff(X)

IβQ
β

lies on LS∞, then the point

IR,l :=
∑

β∈Eff(X)

IβQ
β
∏
i

(
L−βii q(βi+1)βi/2

)l
lies on the cone LR,lS∞

of permutation-equivariant quantum K-theory of level l. Here,

Eff(X) denotes the semigroup of effective curve classes on X, Li are the K-theoretic

Chern roots of R, and βi :=
∫
β
c1(Li).

Proof. Suppose I =
∑

β∈Eff(X) IβQ
β is a point on LS∞ . Let IR,l be its “determi-

nantal” modification
∑

β IβQ
β
∏

i

(
L−βii qβi(βi−1)/2

)l
. According to Convention IV.4,

we compare different cones in the same loop spare K1. In particular, LR,lfake and the

tangent space in Theorem IV.5 are viewed as subspaces of K1. Therefore, to show

IR,l lies on LR,l∞ , we need to work with the series after the rescaling

ĨR,l := (detR)−l/2IR,l.

We denote by I(η) and ĨR,l(η) the Laurent expansions of I and ĨR,l in 1− qη, respec-

tively. Let Q1, . . . , Qn be the Novikov variables. Let pi be the degree 2 cohomology

classes corresponding to Qi, and let Pi = e−pi ∈ K0(X). We denote by Li the

K-theoretic Chern roots of R. In other words, we have chLi = eli , where li are

cohomological Chern roots of R. We write li as a linear function fi(p1, . . . , pn) in

terms of the basis p1, . . . , pn.
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It is clear that ĨR,l satisfies the first condition in Theorem IV.5. Now, we check

the second condition. It follows from the Lemma in the proof of [22, Theorem 2]

that the operator

Φ :=
n∏
i=1

exp

(
l

((
fi(pj − zQj∂Qj)

)2

2z
+
fi
(
pj − zQj∂Qj

)
2

))
preserves Lfake. Define dj = 〈c1(pj), β〉 to be the components of the degree β. By a

simple computation, one can show that

Φ(Qβ) =
n∏
i=1

exp

(
l

((
fi(pj − zdj)

)2

2z
+
fi
(
pj − zdj

)
2

))
Qβ

= exp

(
l

(
ch2R

2z
+

ch1R
2

))
Qβ

·
n∏
i=1

exp

(
l

((
fi(pj − zdj)

)2

2z
+
fi
(
pj − zdj

)
2

))
exp

(
− l
(

ch2R
2z

+
ch1R

2

))
= exp

(
l

(
ch2R
z

+
ch1R

2

))
Qβ
∏
i

(
L−βii qβi(βi−1)/2

)l
,

It follows that

(4.9) Φ
(
Q · I(1)

)
/Q = exp

(
l
(
ch2R/z

))
ĨR,l(1) ,

where Q :=
∏
Qi. Since the LHS lies on Lfake, we conclude that the Laurent

expansion of ĨR,l at q = 1 lies on the cone LR,lfake = exp
(
− l
(
ch2R/z

))
Lfake.

Now we check the third condition. Suppose the tangent space to Lfake at I(1) is

given as the image of a map

S(q,Q) : K1
+ → K1.
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Then by (4.9), the tangent space to LR,lfake at ĨR,l(1) is given as the image of a map

S ′(q,Q) = exp

(
− l
(

ch2R
z

))
Φ ◦ S(q,Q) : K1

+ → K1.

Here we use the fact that the Novikov variables are contained in the λ-algebra and

hence they preserve tangent spaces.

Recall from Definition IV.2 that the space Tm(I(1)) is defined as the image of a

map

Ψm ◦ S(q,Q) ◦Ψ1/m : K1
+ → K1.

Then T R,lm (ĨR,l(1) ) is given as the image of

Ψm ◦ S ′(q,Q) ◦Ψ1/m = Ψm ◦ exp

(
− l
(

ch2R
z

))
Φ ◦ S(q,Q) ◦Ψ1/m

= exp

(
−ml

(
ch2R
z

))
Ψm ◦ Φ ◦ S(q,Q) ◦Ψ1/m

= Dm Φm
(
Ψm ◦ S(q,Q) ◦Ψ1/m

)
,

where Φm := Ψm(Φ) is given as follows

Ψm(Φ) =
n∏
i=1

exp

(
l

((
fi(mpj − zQj∂Qj)

)2

2mz
+
fi
(
mpj − zQj∂Qj

)
2

))
.

Here we use the fact that the Adams operation Ψm acts on the degree two classes z

and pj as multiplication by m, and its action on the differential operator zQj∂Qj is

trivial1. This shows that T R,lm (ĨR,l(1) ) = DmΦm
(
Tm(I(1))

)
.

By the assumption, we have

I(η)(q
1/m/η) ∈ �η�

−1
m Tm(I(1)).

1This is because Ψm(zQj∂Qj) = mzQmj ∂Q
m
j = zQj∂Qj .
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Then

ĨR,l(η) (q1/m/η) =
∑
β

(Iβ)(η)(q
1/m/η)Qβ

∏
i

(
L−βii q(βi+1)βi/(2m)η−(βi+1)βi/2

)l
= exp

(
−ml

(
ch2R
z

))(
Φ(Q · I(η))

)
(q1/m/η)/Q.(4.10)

By an elementary computation using the fact that m · log(η) = 0, one can show

that for any series f in q and Q, we have

(4.11)
(
Φ(f)

)(
q1/m/η

)
= ΦmDηf(q1/m/η),

where the operator Dη is defined by

Dη =
n∏
i=1

exp

(
l

(
−fi
(
log(η)(Qj∂Qj)

2
)
+
fi
(
log(η)Qj∂Qj

)
2

−m− 1

m

fi
(
mpj − zQj∂Qj

)
2

))
.

Here the substitution q 7→ q1/m/η corresponds to the change z 7→ z/m − log(η) in

the expression of Φ.

It follows from (4.11) that (4.10) equals

(4.12)
(
DmΦmDη

(
Q · Iη(q1/m/η)

))
/Q ∈ DmΦmDη�η�

−1
m Tm(I(1)).

Since all the operators above have constant coefficients (i.e. independent of Q), they

commute. We claim that Dη preserves Tm(I(1)). This is because by definition, we

have

DηTm(I(1)) = DηΨm ◦ S(q,Q) ◦Ψ1/mK1
+.

Let

Dη,1 =
n∏
i=1

exp
(
l
(
− fi

(
log(η)(Qj∂Qj)

2
)

+ fi
(
log(η)Qj∂Qj

)
/2
))
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and

Dη,2 =
n∏
i=1

exp
(
l
(
− (m− 1)fi

(
mpj − zQj∂Qj

)
/(2m)

))
be the two factors of Dη. Then it is easy to check that the first factor Dη,1 commutes

with Ψm ◦ S(q,Q) ◦ Ψ1/m, and hence preserves Tm(I(1)). The second factor Dη,2

satisfies the commutation relation:

Dη,2Ψm = Ψm

n∏
i=1

exp
(
l
(
− (m− 1)fi

(
pj − zQj∂Qj

)
/(2m)

))
.

According to [41, Corollary 1], the second operator on the RHS preserves the tangent

space S(q,Q) ◦ Ψ1/mK1
+. Therefore we have shown that the space Tm(I(1)) is Dη-

invariant.

We can further simplify the space on the RHS of (4.12) as follows

DmΦmDη�η�
−1
m Tm(I(1)) = DmΦm�η�

−1
m DηTm(I(1))

= DmΦm�η�
−1
m Tm(I(1))

= DmΦm�η�
−1
m (Φm)−1D−1

m (T R,lm (ĨR,l(1) ))

= �η�
−1
m (T R,lm (ĨR,l(1) )).

This concludes the proof.

Remark IV.16. Suppose the target is an orbifold. As explained in Remark IV.14, the

adelic characterization of points on the untwisted sector of the Lagrangian cone of

X is the same as the one given in Theorem IV.5. Using the same proof as above, we
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can show that if I is a point on the untwisted sector of LS∞ , then the determinantal

modification IR,l lies on the untwisted sector of LR,lS∞
.

4.2 Toric mirror theorem and mock theta functions

In this subsection, we first explicitly compute the (torus-equivariant) small I-

functions with level structures for toric varieties, using quasimap graph spaces. Then

we use torus localization to prove a toric mirror theorem (Theorem I.2), following

Givental [33]. In the study of quantum K-theory with non-trivial level structures, a

remarkable phenomenon is the appearance of Ramanujan’s mock theta functions.

Let M ∼= Zn be a n-dimensional lattice and let N be its dual lattice. For every

complete nonsingular fan Σ ⊂ NR, we can associate a n-dimensional smooth pro-

jective variety XΣ. We denote by Σ(1) the set of 1-dimensional cones in Σ. Let

m = |Σ(1)|. Each ρ ∈ Σ(1) determines a Weil divisor Dρ on XΣ and the Picard

group of XΣ is determined by the following short exact sequence:

(4.13) 0→M → ZΣ(1) → Pic(XΣ)→ 0.

Here the inclusion is defined by m 7→
∑

ρ〈m, ρ〉Dρ. Now let us describe the quo-

tient construction of XΣ. Since Pic(XΣ) is torsion free, we choose an integral basis

{L1, . . . , Ls} of it, where s = m−n. Then the inclusion map in (4.13) is given by an

integral s× n matrix Q = (Qaρ) which is called the charge matrix of XΣ. Applying

Hom(−,C∗) to the exact sequence (4.13), we get an exact sequence.

1→ G→ (C∗)Σ(1) → N ⊗ C∗ → 1,
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where G := Hom(Pic(XΣ),C∗) ∼= (C∗)s. The first map in the above short exact

sequence defines the following G-action on CΣ(1)

(4.14) t · (zρ1 , . . . , zρm) =

( s∏
a=1

t
Qaρ1
a zρ1 , . . . ,

s∏
a=1

tQaρma zρm

)
,

where t = (t1, . . . , ts) ∈ (C∗)s. By choosing an appropriate linearization of the trivial

line bundle on CΣ(1) (see e.g., [23], Chapter 12), the semistable and stable loci are

equal. We denote this linearized trivial line bundle by LΣ and the stable loci by

U(Σ). Let zρ be the coordinates in CΣ(1). We define a subvarity

Z(Σ) = {(zρ) ∈ CΣ(1)|
∏
ρ 6⊂σ

zρ = 0, σ ∈ Σ}.

Then we have

U(Σ) = CΣ(1)\Z(Σ).

The toric variety XΣ is the geometric quotient U(Σ)/G. Let P be the principal G-

bundle CΣ(1) → [CΣ(1)/G]. Let πi : G→ C∗ be the projection to the i-th component

and let Rj be the characters given by t = (t1, . . . , ts) →
∏s

a=1 t
Qaρj
a for 1 ≤ j ≤ m.

Then the line bundles Li and O(−Dρj) are the restrictions of the associated line

bundles of P with the characters πi and Rj, respectively, to XΣ.

Note that XΣ admits a Tm := (C∗)Σ(1)-action. We denote by Pi and Uρ the

Tm-equivariant line bundles corresponding to Li and O(Dρ), respectively. In the

Tm-equivariant K-group K0
Tm(XΣ)⊗Q, we have the following multiplicative relation:

Uρ =
s∏
i=1

P
⊗Qiρ
i Λ−1

ρ ,
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where Λρ are the generators of Repr(Tm) corresponding to the projection to the

component labeled by ρ.

Now let us compute the (Tm-equivariant) small I-function of XΣ with level struc-

tures, using the quasimap graph space. Let β ∈ HomZ(PicG(CΣ(1)),Z) be an LΣ-

effective class. According to [17, Lemma 3.1.8], a point in the quasimap graph space

QGε=0+
0,k (XΣ, β) is specified by the following data

((C, p1, . . . , pk), {Pi|i = 1, . . . , s}, {uρ}ρ∈Σ(1), ϕ),

where

• (C, p1, . . . , ps) is a connected, at most nodal, curve of genus 0 and pi are distinct

nonsingular points of C,

• Pi are line bundles on C of degree fi := β(Li),

• uρ ∈ Γ(C,Lρ), where Lρ is defined by

Lρ := ⊗si=1P
⊗Qiρ
i ,

• ϕ : C → P1 is a regular map such that ϕ∗[C] = [P1].

The stability conditions are discussed in Section 3.2. In the case when (g, k) =

(0, 0), we have C ∼= P1 and Pi ∼= OP1(fi). The line bundles Lρ are isomorphic

to OP1(
∑s

i=1 fiQiρ) = OP1(βρ), where βρ := β(O(Dρ)). Therefore, a point on

QGε=0+
0,0 (XΣ, β) is specified by sections {uρ ∈ Γ(P1,OP1(βρ))|ρ ∈ Σ(1)}. We choose

coordinates [x0, x1] on P1 and consider the standard action C∗-action defined by (3.1).
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Let F0 be the distinguished fixed point locus parametrizing quasimaps whose degrees

are concentrated only at 0. According to [17, §7.2], we have the identification

F0
∼=

⋂
{ρ|βρ<0}

Dρ ⊂ XΣ

(zρ x
βρ
0 )→ (zρ),(4.15)

where (zρ) are the coordinates on XΣ.

Let R be a character of G = (C∗)s defined by t · z =
∏s

i=1 t
ri
i z where ri ∈ Z.

Recall that the small I-function of XΣ of level l and representation R is defined by

IR,l(q) = 1 +
∑
a

∑
β 6=0

Qβχ

(
F0, ev∗(φa)⊗

(
trC∗DR,l

trC∗ ∧∗
(
Nvir
F0/QG

)∨))φa,
It is not difficult to check that under the identification (4.15), we can identify the

virtual normal bundle Nvir
F0/QG

in K0(F0) with

(4.16) Nvir
F0/QG

=
∑

{ρ|βρ>0}

βρ∑
i=1

O(Dρ)|F0 ⊗ C−i −
∑

{ρ|βρ<0}

βρ−1∑
i=1

O(Dρ)|F0 ⊗ Ci,

where Ca denotes the representation of C∗ on C with weight a ∈ Z. Let P be the

universal principal G-bundle on F0×P1 ⊂ XΣ×P1. Then the associated line bundle

P×GR can be identified with ⊗si=1L
ri
i ⊗OP1(βR), where βR :=

∑s
i=1 rifi. We denote

the line bundle ⊗si=1L
ri
i by R. Let π : F0×P1 → F0 be the projection. When βR ≥ 0,

we have

DR,l = det−lRπ∗(R⊗OP1(βR))

= det−l(R⊗R0π∗(OP1(βR)))

= R−l(βR+1) ⊗ ClβR(βR+1)/2.(4.17)
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When βR < 0, a similar calculation shows that we have the same formula DR,l =

R−l(βR+1) ⊗ ClβR(βR+1)/2.

We give the explicit formulas of the (torus-equivariant) small I-functions of toric

varieties in the following proposition.

Proposition IV.17. The small I-function of a toric variety XΣ of level l and char-

acter R is given by

IR,l(q) = 1 +
∑

β∈Eff(X)

QβR−lβR qlβR(βR+1)/2
∏

ρ∈Σ(1)

∏0
j=−∞(1−O(−Dρ)q

j)∏βρ
j=−∞(1−O(−Dρ)qj)

,

and its equivariant version is given by

IR,l,eq(q) = 1 +
∑

β∈Eff(X)

Qβ R̃−lβR qlβR(βR+1)/2
∏

ρ∈Σ(1)

∏0
j=−∞(1− Uρ qj)∏βρ
j=−∞(1− Uρ qj)

.

Here R := ⊗si=1Li
ri is the line bundle associated to the character R, and R̃ =

⊗si=1Pi
ri and Uρ are the equivariant line bundles corresponding to R and O(−Dρ),

respectively.

Proof. The proposition follows easily from (4.16) and (4.17). Note that one factor

R−l in (4.17) disappears due to the change of pairings (see Convention IV.4).

By extending Givental’s localization argument in [33] to the setting with level

structure, we prove a toric mirror theorem. Now let us restate Theorem I.2.

Theorem IV.18. Assume that XΣ is a smooth quasi-projective toric variety. Let

IR,l,eq(q) be the level-l torus-equivariant small I-function given in Proposition IV.17.

Then the series (1 − q)IR,l,eq(q) lies on the cone LR,l,eqS∞
in the symmetrized torus-

equivariant quantum K-theory of level l of XΣ.
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Proof. For simplicity, we denote by I the I-function IR,l,eq of XΣ. Let {φα}α∈XTm
Σ

be

the fixed point basis of K0
Tm(XΣ) and let {φα} be the dual basis with respect to the

pairing (3.2). For each fixed point α, we denote by J(α) ⊂ Σ(1) the cardinality-s

subset such that α equals the intersection ∩ρ/∈J(α)Dρ. Write I =
∑

α I
(α)φα. We

denote by Uρ(α) and R(α) the restrictions of Uρ and R to the fixed point α, re-

spectively. For ρ ∈ J(α), we have Uρ(α) = 1. Hence I(α) can be explicitly written

as

I(α)(q) = 1 +
∑

β∈Eff′(XΣ)

QβR(α)−lβR qlβR(βR+1)/2∏
ρ∈J(α)

∏βρ
j=1(1− qj)

∏
ρ/∈J(α)

∏0
j=−∞(1− Uρ(α) qj)∏βρ
j=−∞(1− Uρ(α) qj)

.

Here Eff′(XΣ) denotes the semigroup of effective curve classes β such that βρ ≥ 0.

The terms with βρ < 0 disappear because there is a factor (1−q0) in the numerators.

We first observe that for the point target, the cone Lpt,R,lS∞
of level l coincides

with the cone Lpt∞ of level 0. This is because in the case of the point target, the

determinant line bundle DR,l is always topologically trivial (with possible equivariant

weights). Combining this observation with the fact that the level structure DR,l splits

“nicely” among nodal strata, we can extend the argument in [30] to prove that a point

f =
∑

α f
(α)φα lies on LR,l,eqS∞

if and only iff the following are satisfied:

1. When expanded as meromorphic functions with poles only at roots of unity,

f (α) lie on the cone LptS∞ in the permutation-equivariant quantum K-theory of

the point target space.

2. Away from q = 0, ∞, and roots of unity, f (α) may have at most simple poles at

q = Uρ(α)−1/m, ρ /∈ J(α), m = 1, 2, . . . , for generic values of Λ1, . . . ,Λm. The
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residues satisfy the following recursion relations

Resq=Uρ(α)−1/mf (α)(q)
dq

q
= −φ

αQmdαρ

Cαρ(m)
f (ρ)
(
Uρ(α)−1/m

)
.

Here Cαρ(m) = λ−1(TpM0,2(XΣ,mdαρ)) ·
(
R(α)−md

R
αρ qmd

R
αρ(mdRαρ+1)/2

)l
, where

(a) Tp denotes the virtual tangent space to the moduli space at the point p

represented by the m-multiple cover of the one-dimensional orbit connecting

α and ρ. The explicit formula of the equivariant weights of the K-theoretic

Euler class λ−1(Tp) is given in [33].

(b) dαρ denotes the degree of the one-dimensional orbit connecting α and ρ.

(c) dRαρ := 〈dαρ, c1(R)〉.

We want to show that (1 − q)I satisfies (1) and (2). It is proved in the main

theorem2 of [33] that the series

Ĩ(α) = 1 +
∑

β∈Eff′(XΣ)

Qβ∏
ρ∈J(α)

∏βρ
j=1(1− qj)

∏
ρ/∈J(α)

∏0
j=−∞(1− Uρ(α) qj)∏βρ
j=−∞(1− Uρ(α) qj)

represents a value of J pt
S∞

(t(q), Q)/(1 − q), i.e., (1 − q)Ĩ(α) lies on the cone LptS∞ .

Note that I(α) is obtained from Ĩ(α) by a “determinantal” modification. Therefore,

it follows from Theorem I.1 that (1− q)I(α) lies on Lpt,R,lS∞
= LptS∞ .

To prove (1−q)I(α) satisfies the second condition, we rewriteR(α)−lβR qlβR(βR+1)/2

as

(4.18)

∏βR
j=−∞

(
R(α)−1 qj

)l∏0
j=−∞

(
R(α)−1 qj

)l .
2In [33], the I-function is defined to sum over all β ∈ Zm. However, the same argument works if we restrict the

summation to curve classes in the semigroup Eff(XΣ).
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Note that for all j, we have R(α) = R(β)λ−d
R
αρ , where λ = Uρ(α). Hence at q =

λ−1/m,

R(α)−1qj = R(β)−1 qj−md
R
αρ .

The formula (4.18) is equivalent to

R(α)−mld
R
αρ qmld

R
αρ(mdRαρ+1)/2

∏βR−mdRαρ
j=−∞

(
R(β)−1 qj

)l∏0
j=−∞

(
R(β)−1 qj

)l
at q = λ−1/m. Combing the above equivalence with the result on page 10 of [33], we

obtain

(1− q)I(α)(q) =
Qmdαρ

1− qmλ
φα

Cαρ(m)
(1− q)I(ρ)(q),

which is equivalent to the residue formula in Condition (2).

Since I is defined over the λ-algebra Z[Λ±1 , . . . ,Λ
±
m][[Q]], it takes value in the

symmetrized theory (see Remark III.3).

When XΣ is projective, we may pass to the non-equivariant limit in Theorem

IV.18 to obtain

Corollary IV.19. When XΣ is a smooth projective toric variety, the level-l small

I-function IR,l given in Proposition IV.17 lies on the cone LR,lS∞
in the symmetrized

quantum K-theory of level l.

We denote by St and St∨ the standard representation and its dual representation

of C∗. As corollaries of Theorem IV.17, we give proofs for Proposition I.3-I.5 and

I.6.
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Proof of Proposition I.3. Let the target be X = (C\0)/C∗ where the action is the

standard action. Then the Proposition follows directly from the Theorem IV.17.

Proof of Proposition I.4. Let the target be Xa1,a2 = (C2\{(0, 0)})/C∗ with charge

vector (a1, a2). As mentioned in Remark IV.14 and Remark IV.16, we only con-

sider the untwisted component of the orbifold I-function and its formula is given by

Theorem IV.17.

Proof of Proposition I.5. For positive integers a, b, we consider Xa,−b = {(C − 0) ×

C}/C∗ with charge vector (a,−b). Let λ, µ be the generators of Repr((C∗)2) corre-

sponding to the first and second projections of (C∗)2 onto its factors. From Theorem

IV.17, the untwisted component of the orbifold I-function is given by

ISt, l
Xa,−b

(q)

=1 +
∑
n≥1

pnlq
n(n−1)l

2 (1− p−bµ−1)(1− p−bµ−1q−1) · · · (1− p−bµ−1q1−bn)

(1− paλ−1q)(1− paλ−1q2) · · · (1− paλ−1qan)
Qn

=1 +
∑
n≥1

(−1)bn
pnl−b

2nq
n(n−1)l−bn(bn−1)

2 µ−bn(1− pbµ)(1− pbµq1) · · · (1− pbµqbn−1)

(1− paλ−1q)(1− paλ−1q2) · · · (1− paλ−1qan)
Qn.

Proof of Proposition I.6. We consider the target O(−1)⊕rPs−1 = X1,−1 = {(Cs − 0) ×

Cr}/C∗ with the charge vector (1, 1, · · · , 1,−1,−1, · · · ,−1). It follows from Theorem



92

IV.17 that

ISt, l=1+s
X1,−1

(q)

=1 +
∑
n≥1

Qnpnlq
n(n−1)l

2
(p−1µ−1

1 , q)n · · · (p−1µ−1
r ; q)n

(pλ−1
1 q; q)n · · · (pλ−1

s q; q)n

=1 +
∑
n≥1

(−1)nr
r∏
i=1

(pµi)
−np(1+s)n (pµ1, q)n · · · (pµr; q)n

(pλ−1
1 q; q)n · · · (pλ−1

s q; q)n
Qn(q

n(n−1)
2 )1+s−r.



CHAPTER V

The GLSM of Grassmannians and wall-crossing

The Grassmannian can be expressed as a geometric invariant theory (GIT) quo-

tient Mn×N // GLn(C), where Mn×N denotes the vector space of n × N complex

matrices. For any GIT quotient, we can construct a gauged linear sigma model

(GLSM) which recovers the nonlinear sigma model (physical counterpart of GW-

theory) at one of its limit. In Witten’s physical argument, he obtained the gauged

WZW model (physical counterpart of Verlinde’s theory) at another limit. A math-

ematical theory of the GLSM has been constructed by Fan-Jarvis-Ruan [25] where

the parameter in the GLSM is interpreted as stability parameter ε. Recently, Choi-

Kiem [16] introduces several more stability parameters for abelian gauge group. To

simplify the notation, we postpone the introduction of parabolic structures to the

next chapter. Throughout the rest of the chapter, we fix a smooth curve C of genus

g ≥ 2 and a marked point x0 ∈ C.

93
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5.1 The GLSM of Grassmannians and its stability conditions

The GIT description of the Grassmannian gives rise to a moduli problem of the

GLSM data (
C ′, x′0, E, s ∈ H0(E ′ ⊗ONC′), ϕ

)
where C ′ is a genus g (possibly) nodal curve, E is a vector bundle of rank n and

degree d on C ′, and ϕ : C ′ → C is a morphism of degree one (i.e., ϕ([C ′]) = [C])

such that ϕ(x′0) = x0. A point x ∈ C ′ is called a base point if the N sections s do

not span the fiber of E at x.

To obtain proper Deligne-Mumford stacks, we need to impose certain stability

conditions on the GLSM data. There are several choices and we focus on two of

them: ε-stability and δ-stability. Roughly speaking, ε-stability condition is imposed

on the N sections s and δ-stability is imposed on the bundle E.

5.1.1 ε-stability

In general, one can impose the ε-stability condition on the GLSM data for any

ε ∈ Q+. In this paper we are only interested in two cases: ε =∞ and ε = 0+.

Definition V.1. (1) The data (C ′, x′0, E, s, ϕ) is called (ε =∞)-stable if s defines a

stable map into Gr(n,N) = Mn×N //GLn(C). Namely, s has no base point.

(2) The data (C ′, E, s, ϕ) is called (ε = 0+)-stable if s defines a stable quotient

into Gr(n,N) = Mn×N // GLn(C). Namely, (i) the base point of s is different from

nodes and the marked point x0; (ii) there is no rational tail (an irreducible component
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which is of genus zero and has exactly one node on them); (iii) the degrees of E on

rational bridges (irreducible components which are rational and carries exactly two

special points, markings or nodes) are positive.

For ε = 0+ or ∞, we denote by Mε

C(Gr(n,N), d) the moduli space of ε-stable

GLSM data (C ′, x′0, E, s, ϕ). According to [67], the moduli stackMε

C(Gr(n,N), d) is

a proper Deligne-Mumford stack with a canonical perfect obstruction theory. Hence,

it admits a virtual structure sheave Ovir
Mε

C(Gr(n,N),d)
∈ K0(Mε

C(Gr(n,N), d)).

In this thesis, we focus on δ-wall-crossings, which will be introduced in the next

subsection. The study of the relation between (δ = ∞)-invariants and (ε = 0+)-

invariants, and the relation between (ε = 0+)-invariants and (ε = ∞)-invariants is

work in progress [67].

5.1.2 δ-stability

It turns out that the GLSM with δ-stability has been studied much early under

the name of stable pairs. Its moduli space is constructed using geometric invariant

theory (GIT). In the following discussion, we only consider the fixed marked curve

(C, x0).

Suppose that F is a vector bundle on C. The rank and degree of F are denoted

by r(F ) and d(F ), respectively. We define the slope of F as µ(F ) := d(F )/r(F ).

Recall the definition of Bradlow N -pairs and its stability conditions.

Definition V.2. [11] A Bradlow N -pair (E, s) consists of a vector bundle E of rank
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n and degree d over C, together with N sections s 6= 0 ∈ H0(E ⊗ONC ). A sub-pair

(E ′, s′) ⊂ (E, s),

consists of a subbundle ι : E ′ ↪→ E and N sections s′ : ONC → E ′ such that

ι ◦ s′ = s s ∈ H0(E ′ ⊗ONC ), and

s′ = 0 s /∈ H0(E ′ ⊗ONC ).

A quotient pair (E ′′, s′′) consists of a quotient bundle q : E → E ′′ with s′′ = q ◦ s.

We will focus on the case N ≥ n. The slope of an N -pair (E, s) is defined by

µ(E, s) = µ(E) +
θ(s)δ

r(E)
,

where θ(s) = 1 if s 6= 0 and 0 otherwise.

Definition V.3. Let δ ∈ Q+. A Bradlow N -pair of degree d is δ-semistable if for

all nonzero sub-pairs (E ′, s′) ( (E, s), we have

µ(E ′, s′) ≤ µ(E, s).

An N -pair (E, s) is δ-stable if the above inequality is strict.

Lemma V.4. Suppose φ : (E1, s1)→ (E2, s2) is a nonzero morphism of δ-semistable

pairs. Then µ(E1, s1) ≤ µ(E2, s2). Furthermore, if (E1, s1) and (E2, s2) are δ-stable

pairs with the same slope, then φ is an isomorphism. In particular, for a δ-stable

pair (E, s) with s 6= 0, there are no endomorphisms of E preserving s except the

identity, and no endomorphisms of E annihilating s except 0.
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Proof. The proof is standard (cf. [54, Lemma 7]), and we omit the details.

Lemma V.5. Let (E, s) be a δ-semistable parabolic N-pair of rank n and degree d.

Assume that µ(E, s) > 2g−1 + δ. Then H1(E) = 0 and E is globally generated, i.e.,

the morphism

H0(E)⊗OC → E

is surjective.

Proof. It suffices to show that H1(E(−p)) = 0 for any point p ∈ E. Indeed, if

H1(E(−p)) = 0, the lemma follows from the long exact sequence of cohomology

groups for the short exact sequence:

0→ E(−p)→ E → Ep → 0.

Now suppose H1(E(−p)) 6= 0. By Serre duality, we have H1(E(−p)) = (H0(E∨ ⊗

ωC(p)))∨, where ωC is the cotangent sheaf of C. Therefore a nonzero element in

H1(E(−p)) induces a nonzero morphism φ : E → ωC(p). Let L be the image sheaf

of φ. Since L is a subsheaf of ωC(p), we have d(L) ≤ 2g − 1. Let s′′ be the induced

N sections of L. It follows that µ(E, s) > 2g − 1 + δ ≥ d(L) + θ(s′′)δ, contradicting

the δ-semistability of (E, s).

The stability parameter δ is called generic if there is no strictly δ-semistable N -

pair. Otherwise, δ is called critical. We also refer to the critical values of δ as walls.

An N -pair (E, s) is called non-degenerate if s 6= 0. For a generic δ, the moduli space
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of non-degenerate δ-stable N pairs Mδ

C(Gr(n,N), d) can be constructed using GIT

(see [74, §8] and [54]). Furthermore, there exists a universal N -pair

S : ON
Mδ

C(Gr(n,N),d)×C
→ E

over the universal curve Mδ

C(Gr(n,N), d)× C.

Example V.6. According to [11, Proposition 3.14]1, if δ > (n−1)d, all δ-semistable

pairs (E, s) are δ-stable and the stability condition is equivalent to having the N

sections s generically generating E. In other words, the moduli space of δ-stable

pairs is the Grothendieck’s Quot scheme when δ is sufficiently large. In this case, we

denote it by M∞
C (Gr(n,N), d). The Grothendieck’s Quot scheme M∞

C (Gr(n,N), d)

is a fine moduli space for the functor that assigns to each scheme T the set of

equivalent morphisms S : ONC×T → Ẽ such that Ẽ is locally free, for every closed

point x of T , the restriction Ẽ|C×{x} has rank n and degree d, and the restriction of

the morphism S|C×{x} is surjective at all but a finite number of points.

A standard argument in deformation theory (cf. [54, §5]) shows that the Zariski

tangent space of Mδ

C(Gr(n,N), d) is isomorphic to the hypercohomology

H1(End(E)→ E ⊗ONC ).

For simplicity, we denote the i-th hypercohomogy of the complex End(E)→ E⊗ONC
1The stability parameter τ in [11] is related to δ by d+ δ = nτ .
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by Hi−1, for i = 0, 1, 2. We have the following long exact sequence:

0→ H−1 → H0(End(E))→ (H0(E))N → H0

→ H1(End(E))→ (H1(E))N → H1 → 0.

If (E, s) is δ-stable, then by Lemma V.4, the map H0(End(E)) → (H0(E))N is

injective. Therefore H−1 = 0. In general, the hypercohomology group H1 is not zero,

and hence the moduli space is not smooth. Nevertheless, we can still show that it is

virtually smooth. The following proposition is a special case of Proposition VI.35.

Proposition V.7. For a generic value of δ ∈ Q+, the moduli space of non-degenerate

δ-stable N-pairs Mδ

C(Gr(n,N), d) has a perfect obstruction theory.

The following corollary follows from Proposition V.7 and the construction in [53,

§2.3].

Corollary V.8. There exists a virtual structure sheaf

Ovir

Mδ
C(Gr(n,N),d)

∈ K0(Mδ

C(Gr(n,N), d)).

for the moduli space of δ-stable N-pairs Mδ

C(Gr(n,N), d)

When there is no confusion, we will simply denote the virtual structure sheaf of

Mδ

C(Gr(n,N), d) by Ovir.

Let π :Mδ

C(Gr(n,N), d)×C →Mδ

C(Gr(n,N), d) be the projection map and let E

be the universal bundle overMδ

C(Gr(n,N), d)×C. Consider the derived pushforward

Rπ∗(E) = [R0π∗(E)→ R1π∗(E)]. A two-term locally free resolution of Rπ∗(E) can be
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easily obtained as follows. Let O(1) be an ample line bundle on C. Since the family

of δ-stable N -pairs is bounded, there exists a surjection

B → E(m)→ 0,

for m � 0. Here B is a trivial vector bundle. The kernel, denoted by A, is also a

vector bundle on Mδ

C(Gr(n,N), d)× C, and we have a short exact sequence

0→ A(−m)→ B(−m)→ E → 0.

Note that R0π∗(A(−m)) = R0π∗(B(−m)) = 0. Therefore, the following two-term

complex of vector bundles

R1π∗(A(−m))→ R1π∗(B(−m))

is a resolution of Rπ∗(E).

Denote the rank of R1π∗(A(−m)) and R1π∗(B(−m)) by rA and rB, respectively.

Recall from Section 2.1 that we define the inverse determinant line bundle of coho-

mology by

(
detRπ∗(E)

)−1
:=

rB∧
R1π∗(B(−m))⊗

( rA∧
R1π∗(A(−m))

)−1
.

This line bundle does not depend on the choice of the locally free resolutions of

Rπ∗(E). As before, we refer to it as the level structure.

Let E denote the dual of the tautological bundle on Gr(n,N). The following

definition is motivated by Corollary VI.46.
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Definition V.9. Let e = l(1 − g) + ld/n. If e is an integer, we define the level-l

K-theoretic δ-stable N -pair invariant by

〈det(E)e〉l,δ,Gr(n,N)
C,d = χ

(
Mδ

C(Gr(n,N), d),Ovir ⊗ det(Ex0)e ⊗
(
detRπ∗(E)

)−l)
,

where Ex0 = E|Mδ
C(Gr(n,N),d)×{x0}

denotes the restriction. If e is not an integer, we

define 〈det(E)e〉l,δ,Gr(n,N)
C,d to be zero.

5.2 Rank-two δ-wall-crossing in the absence of parabolic structures

In this section, we prove Theorem V.11, which is the special case of Theorem I.10

in the absence of parabolic structures. The stability parameter δ is a critical value

if (d− δ)/2 ∈ N+. We study how the moduli space Mδ

C(Gr(n,N), d) changes when

the stability parameter δ crosses a wall and prove a wall-crossing theorem.

Let i be a half-integer such that δ = 2i is a critical value. Note that i ∈ (0, d/2).

A δ-semistable vector bundle must split E = L ⊕M where L,M are line bundles

of degrees d/2 − i and d/2 + i, respectively, and s ∈ H0(L ⊗ ONC ). Let ν > 0 be

a small real number such that 2i is the only critical value in (2i − ν, 2i + ν). For

simplicity, we denote by M±
i,d the moduli spaces M2i±ν

C (Gr(2, N), d). Let W+
i,d be

the subscheme of M+
i,d parametrizing (2i + ν)-pairs which are not (2i − ν)-stable.

Similarly, we denote byW−i,d the subscheme ofM−
i,d which parametrizes (2i−ν)-pairs

which are not (2i+ ν)-stable. The subschemes W±i,d are called the flip loci.

Let (E, s) be an N -pair in W−i,d. It follows from the definition that there exists a
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short exact sequence

0→ L→ E →M → 0,

where L,M are line bundles of degree d/2 − i and d/2 + i, respectively, and s ∈

H0(L⊗ONC ) (cf. [74, §8]). Notice that L and M are unique since L is the saturated

subsheaf of E containing s. Similarly, for a pair (E, s) inW+
i,d. There exists a unique

subline bundle M of E of degree d/2 + i which fits into a short exact sequence:

0→M → E → L→ 0.

Let L̃ be a Poincaré bundle over Picd/2−iC × C and let p : Picd/2−iC × C →

Picd/2−iC be the projection. If d/2−i > 2g−1, then we have R1p∗L̃ = 0. Hence U :=

(R0p∗L̃)N is a vector bundle. We define Zi,d := PU×Picd/2+iC. LetM be a Poincaré

bundle over Picd/2+iC × C. Notice that H0(Picd/2−iC,EndU) = H0(Picd/2−iC ×

C,U∨⊗L̃⊗ON) = H0(PU×C,OPU(1)⊗L̃⊗ON). Therefore there exists a tautological

section of L ⊗ ONPU , where L := OPU(1) ⊗ L̃. This tautological section induces an

injection α : ML−1 → M⊗ ONPU . We denote by F the cokernel of α. By abuse

of notation, we use the same notations M and L to denote the pullbacks of the

corresponding universal line bundles to Zi,d × C. Let π : Zi,d × C → Zi,d be the

projection. The flip loci W±i,d are characterized by the following proposition.

Proposition V.10 ([11, 74]). Assume d/2 − i > 2g − 1. Let V+
i,d = R0π∗(F) and

V−i,d = R1π∗(M−1L). Then we have

W±i,d ∼= P
(
V±i,d
)
.
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Let q± :W±i,d → Zi,d be the projective bundle maps. Then the morphismsW±i,d →M
±
i,d

are regular embeddings with normal bundles q∗±V∓i,d ⊗OW±i,d(−1). Moreover, we have

the following two short exact sequences of universal bundles:

0→q̃∗−L → E−i |W−i,d×C → q̃∗−M⊗OW−i,d(−1)→ 0,(5.1)

0→q̃∗+M⊗OW+
i,d

(1)→ E+
i |W+

i,d×C
→ q̃∗+L → 0,(5.2)

where E±i are the universal bundles over M±
i,d and q̃± :W±i,d × C → Zi,d × C are the

projective bundle maps.

Theorem V.11. Suppose that N ≥ 2 + l, d > 2(g − 1) and δ is generic. Then

〈det(E)e〉l,δ,Gr(2,N)
C,d is independent of δ.

By abuse of notation, we denote by π the projection maps M±
i,d ×C →M

±
i,d. To

prove Theorem V.11, we need the following lemma.

Lemma V.12. Let Di,± = det(E±i,x0
)e⊗

(
detRπ∗(E±i )

)−l
, where E±i,x0

= E±i |M±i,d×{x0}.

Then

1. the restriction of Di,− to a fiber of P(V−i,d) is O(il), and

2. the restriction of Di,+ to a fiber of P(V+
i,d) is O(−il).

Proof. The lemma follows easily from the short exact sequences (5.1) and (5.2).

Proof of Theorem V.11. We prove the claim by showing that the invariant does not

change when δ crosses a critical value 2i. The proof is divided into two cases:
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Case 1. Assume that d/2 − i > 2g − 1. Then M±
i,d are smooth. According to

Theorem 3.44 of [11], we have the following diagram.

M̃i,d

M−
i,d M+

i,d

p− p+

where p± are blow-down maps onto the smooth subvarieties W±i,d ∼= P
(
V±i,d
)
, and the

exceptional divisor Ai,d ⊂ M̃i,d is isomorphic to the fiber product Ai,d ∼= P
(
V−i,d
)
×Zi,d

×P
(
V+
i,d

)
.

Since p± are blow-ups with smooth centers, we have (q±)∗
(
[OM̃i,d

]
)

= [OM±i,d ].

Let Di,± be the line bundles defined in Lemma V.12. It follows from the projection

formula that

(5.3) χ(M±
i,d,Di,±) = χ(M̃i,d, p

∗
±(Di,±)).

We only need to compare p∗±(Di,±) over M̃i,d. Notice that the restriction ofOAi,d(Ai,d)

to Ai,d is OP(V+
i,d)(−1)⊗OP(V−i,d)(−1). Therefore, by Lemma V.12, we have

p∗−(Di,−) = p∗+(Di,+)(−ilAi,d).

For 1 ≤ j ≤ il, we consider the following short exact sequence:

(5.4)

0→ p∗+(Di,+)(−jAi,d)→ p∗+(Di,+)(−(j−1)Ai,d)→ p∗+(Di,+)⊗OAi,d(−(j−1)Ai,d)→ 0.

Define Li,d := (Me
x0
⊗ (detRπ∗M)−l) ⊗ (Lex0

⊗ (detRπ∗L)−l), where Mx0 and Lx0

denote the restrictions ofM and L to Zi,d×{x0}, respectively. Then by Lemma V.12,
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the restriction of Di,+ to Ai,d is Li⊗OP(V+
i,d)(−li). By taking the Euler characteristic

of (5.4), we obtain

χ
(
M̃i,d, p

∗
+(Di,+)(−(j − 1)Ai,d))− χ(M̃i,d, p

∗
+(Di,+)(−jAi,d)

)
=χ

(
Ai,d,Li,d ⊗OP(V+

i,d)(−li+ j − 1)⊗OP(V−i,d)(j − 1)

)
for 1 ≤ j ≤ il.

Let n+ = N(d/2+i+1−g)−2i−1+g be the rank of V+
i,d. A simple calculation shows

that n+ > li when l ≤ N−2. Hence every term in the Leray spectral sequence of the

fibration Pn+−1 → Ai,d → P(V−i,d) vanishes, which implies that χ(M̃i,d, p
∗
−(Di,−)) =

χ(M̃i,d, p
∗
+(Di,+)) when d/2− i > 2g − 1. This concludes the proof of the first case.

Case 2. When d/2 − i ≤ 2g − 1, the moduli spaces M±
i,d are singular. We can

choose a divisor D = x1 + · · ·+xk where x1, . . . , xk are distinct points on C, disjoint

from I∪{x0}. Assume k is sufficiently large such that d/2−i+k > 2g−1. By Lemma

VI.39, there are embeddings ιD : M±
i,d ↪→M

±
i,d+2k. Let E± and E ′± be the universal

vector bundles onM±
i,d×C andM±

i,d+2k×C, respectively. According to Proposition

VI.40, we have ιD∗
(
Ovir
M±i,d

)
= λ−1(((E ′∨± )D)N), where (E ′∨± )D denote the restrictions

of the dual of E ′± to M±
i,d+2k ×D. Let D′i,± = det((E ′±)x0)e ⊗ det(Rπ∗(E ′±))−l be the

determinant line bundle on M±
i,d+2k. According to Corollary VI.49, to show that

χ
(
M−

i,d,Di,− ⊗Ovir
M−i,d

)
= χ

(
M+

i,d,Di,+ ⊗Ovir
M+

i,d

)
, it suffices to show that

χ
(
M−

i,d+2k,D
′
i,− ⊗ λ−1(((E ′∨− )D)N)

)
= χ

(
M+

i,d+2k,D
′
i,+ ⊗ λ−1(((E ′∨+ )D)N)

)
.

By abuse of notation, we denote by p± the blow-down maps from M̃i,d+2k to

M±
i,d+2k. Let p̃± : M̃i,d+2k × C → M±

i,d+2k × C be the base change of p±. By a
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straightforward modification of the proof of [73, Proposition 3.17], one can show

that p∗−(E ′−) is an elementary modification of p∗−(E+) along the divisor Ai,d+2k. More

precisely, we have the following short exact sequence

(5.5) 0→ p∗−(E ′−)→ p∗+(E ′+)⊗O(Ai,d+2k)→ ι∗
(
L ⊗ ι∗(O(Ai,d+2k))

)
→ 0,

over M̃i,d+2k × C. Here ι : Ai,d+2k ↪→ M̃i,d+2k is the embedding. Applying the

functor Hom(−,O) to (5.5), we obtain

(5.6) 0→ p∗+(E ′∨+ )⊗O(−Ai,d+2k)→ p∗−(E ′∨− )→ ι∗
(
L∨
)
→ 0.

Recall that (E ′∨± )D =
⊕k

i=1(E ′∨± )xi . Then it follows from (5.6) that

p∗−
(
λ−1((E ′∨− )xi)

)
= 1− p∗−

(
(E ′∨− )xi

)
+ p∗−

(
det (E ′∨− )xi

)
= 1− p∗+

(
(E ′∨+ )xi

)
⊗O(−Ai,d+2k)− ι∗

(
L∨xi
)

+ p∗+
(
det (E ′∨+ )xi

)
⊗O(−Ai,d+2k)

= 1−O(−Ai,d+2k)− ι∗
(
L∨xi
)

+ p∗+
(
λ−1((E ′∨+ )xi)

)
⊗O(−Ai,d+2k)

= ι∗
(
1− L∨xi

)
+ p∗+

(
λ−1((E ′∨+ )xi)

)
⊗O(−Ai,d+2k)

in K0(M̃i,d+2k). Notice that

(5.7) p∗+
(
λ−1((E ′∨+ )xi)

)
⊗O(−Ai,d+2k) = p∗+

(
λ−1((E ′∨+ )xi)

)
−ι∗
(
ι∗(p∗+(λ−1((E ′∨+ )xi)))

)
.

Using the short exact sequence (5.2), we obtain the following equality inK0(M̃i,d+2k):

(5.8)

ι∗
(
p∗+(λ−1((E ′∨+ )xi))

)
= 1−M∨

xi
⊗OP(V+

i,d+2k)(−1)− L∨xi +M∨
xi
L∨xi ⊗OP(V+

i,d+2k)(−1).
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By combining (5.6), (5.7) and (5.8), we obtain

(5.9) p∗−
(
λ−1((E ′∨− )xi)

)
= p∗+

(
λ−1((E ′∨+ )xi)

)
+ ι∗

(
M∨

xi
(1− L∨xi)⊗OP(V+

i,d+2k)(−1)
)
.

By taking the N -th power of both sides of (5.9) and then taking the product of all

1 ≤ i ≤ k, we get

(5.10) p∗−
(
λ−1((E ′∨− )D)N

)
= p∗+

(
λ−1((E ′∨+ )D)N

)
+ ι∗(α).

Here α is an explicit K-theory class of the form

α =
kN∑
m=1

αm ⊗OP(V+
i,d+2k)(−m),

where αm are explicit combinations of vector bundles whose restrictions to a fiber

of P(V+
i,d+2k) are trivial. To obtain (5.10), one needs to use the excess intersection

formula

ι∗ι∗ F = F ⊗
(
1−OAi,d+2k

(−Ai,d+2k)
)

for F ∈ K0(Ai,d+2k).

By Lemma V.12, we have p∗−(D′i,−) = p∗+((D′i,+)(−ilAi,d+2k). Then it follows from

the exact sequence (5.4) that

(5.11) p∗−
(
D′i,−

)
= p∗+

(
D′i,+

)
+

il∑
j=1

ι∗
(
βj ⊗OP(V+

i,d+2k)(−j)
)

in K0(M̃i,d+2k).

Here βj = Li,d+2k⊗OP(V−i,d)(il− j), whose restriction to a fiber of P(V+
i,d+2k) is trivial.

By combining (5.10) and (5.11), we get

p∗−
(
D′i,−⊗λ−1((E ′∨− )D)N

)
= p∗+

(
D′i,+⊗λ−1((E ′∨+ )D)N

)
+

kN+il∑
j=1

ι∗
(
γj ⊗OP(V+

i,d+2k)(−j)
)
,
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where the restrictions of γj ∈ K0(Ai,d+2k) to a fiber of P(V+
i,d+2k) are trivial.

The rest of the argument is similar to the one given in the proof of the first case.

Let n+ = N(d/2+k+i+1−g)−2i−1+g be the rank of V+
i,d+2k. A simple calculation

shows that n+ > il+ kN when l ≤ N − 2 and d > 2(g− 1). For 1 ≤ j ≤ kN + il, we

have χ
(
γj ⊗OP(V+

i,d+2k)(−j)
)

= 0 because every term in the Leray spectral sequence

of the fibration Pn+−1 → Ai,d+2k → P(V−i,d+2k) vanishes. This concludes the proof of

the second case.



CHAPTER VI

Parabolic structure and the general δ-wall-crossing

In this chapter, we introduce the parabolic structure to the GLSM. In this new

setting, the parabolic structure can be viewed as K-theoretic insertions. An interest-

ing aspect of this construction is that the parabolic structure intertwines with the

stability condition.

6.1 Irreducible representations of gln(C)

In this section, we recall some basic facts about the representations of gln(C).

Let gln(C) be the general linear Lie algebra of all n × n complex matrices, with

[X, Y ] = XY − Y X. We have the triangular decomposition

gln(C) = h⊕ n+ ⊕ n−,

where h is the Cartan subalgebra consisting of all diagonal matrices and n+ (resp.,

n−) is the subalgebra of upper triangular (resp., lower triangular) matrices. Let

h∗ = Hom(h,C) and let h∗0 be the real subspace of h∗ generated by the roots of

109
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gln(C). We fix an isomorphism h∗0
∼= Rn such that the simple roots αi can be

expressed as

αi = ei − ei+1, for 1 ≤ i ≤ n− 1.

Here {ei} is the standard basis of Rn. The fundamental weights ωi ∈ h∗0 are given by

ωi = e1 + · · ·+ ei, for 1 ≤ i ≤ n.

Consider the set

P+ =
{
λ =

n−1∑
i=1

miωi +mnωn | mi ∈ Z≥0 for 1 ≤ i ≤ n− 1 and mn ∈ Z
}
.

An element λ in P+ is called a dominant weight. A dominant weight λ can also be

expressed in term of the standard basis {ei} as follows:

λ = λ1e1 + · · ·+ λnen,

where λi ∈ Z and λ1 ≥ · · · ≥ λn. In the following discussion, we will denote a

dominant weight λ by the partition (λ1, . . . , λn). If a partition λ = (λ1, . . . , λn)

satisfies λn ≥ 0, one can identify it with its Young diagram, i.e., a left-justified shape

of n rows of boxes of length λ1, . . . , λn.

There is a bijection between the set P+ of dominant weights and the set of iso-

morphism classes of finite-dimensional irreducible gln(C)-modules. More precisely,

for each dominant weight λ, one can assign a unique finite-dimensional irreducible

gln(C)-modules Vλ. Here Vλ is generated by a unique vector vλ (up to a scalar) with

the properties n+.vλ = 0 and H.vλ = λ(H)vλ for all H ∈ h. The gln(C)-module Vλ
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is called the highest weight module with highest weight λ and the vector vλ is called

the highest weight vector. Given a gln(C)-module V , we denote its dual by V ∨.

Fix a non-negative integer l. We denote by Pl the set of dominant weights λ =

(λ1, . . . , λn) such that

l ≥ λ1 ≥ · · · ≥ λn ≥ 0.

To a partition λ ∈ Pl, we associate the complement partition λ∗ in Pl:

λ∗ : l ≥ l − λn ≥ · · · ≥ l − λ1 ≥ 0.

Given a partition λ, we define |λ| =
∑n

i=1 λi, which is the total number of boxes in

its Young diagram.

Now we recall a geometric construction of the highest weight glN(C)-modules.

Given a partition λ = (λ1, . . . , λn) in Pl. Let (r1, . . . , rk) be the sequence of jumping

indices of λ (i.e. l ≥ λ1 = · · · = λr1 > λr1+1 = · · · = λr2 > . . . ). We define a

sequence of non-negative integers a = (a1, . . . , ak), where aj = l − λrj for 1 ≤ j ≤ k.

For 1 ≤ j ≤ k, we introduce positive integers

dj = aj+1 − aj.

Here ak+1 is defined to be l. Define a sequence m = (m1, . . . ,mk), where mi =

ri − ri−1. We denote by Flm the flag variety which parametrizes all sequences

Cn = V1 ) V2 ) · · · ) Vk ) Vk+1 = 0,

where Vj are complex linear subspaces of Cn and mj = dimVj − dimVj+1, for all

1 ≤ j ≤ k. The k-tuple m is referred to as the type of the flag variety Flm. Let Qj be



112

the universal quotient bundle over Flm of rank rj =
∑j

i=1 mi, for 1 ≤ j ≤ k. Notice

that Qk is the trivial bundle of rank n over Flm. We define the Borel-Weil-Bott line

bundle Lλ of type λ by

Lλ =
k⊗
j=1

(detQj)
dj .

Lemma VI.1. If λ is a dominant weight, then the following holds:

1. H i(Flm, Lλ) = 0, if i > 0.

2. The gln(C)-module H0(Flm, Lλ) is isomorphic to V ∨λ .

Proof. The proof is similar to that of [62, Proposition 6.3] and we briefly recall it

here. We denote by Fl the complete flag variety parametrizing complete flags in Cn.

For i = 1, . . . , n, we define d̃mj = dj, and d̃i = 0 if i 6= m1, . . . ,mk. Let Q̃i be the

universal quotient bundle over Fl of rank i, for 1 ≤ i ≤ n. According to the Borel-

Weil-Bott theorem for gln(C) or GLn(C) (see, for example, [81, Chapter 4] ), we have

H i(Fl,⊗ni=1(det Q̃i)
d̃i) = 0, if i > 0, and the gln(C)-module H0(Fl,⊗ni=1(det Q̃i)

d̃i)

is the dual of the highest weight representation Vλ. Consider the surjective flat

morphism

h : Fl→ Flm.

For any point x ∈ Flm, the fiber h−1(x) is a product of flag varieties. In particular,

the fibers are smooth and connected. By [43, III 12.9], we have h∗(OFl) = OFlm .

Notice that the anticanonical line bundle of a product of flag varieties is ample. By

the Kodaira vanishing theorem, we have

H i(h−1(x),Oh−1(x)) = 0, for any x ∈ Flm, and i > 1.
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The Grauert’s theorem [43, III 12.9] implies that Rih∗(OFl) = 0 for i > 0. The

lemma follows from the projection formula and the following relation:

h∗
( n⊗

i=1

(det Q̃i)
d̃i

)
=

k⊗
i=1

(detQdi
i ).

6.2 Parabolic N-pairs and δ-stability

In this section, we generalize the notion of Bradlow N -pairs to parabolic Bradlow

N -pairs, which can be viewed as parabolic GLSM data to the Grassmannian. We

define the stability condition for parabolic N -pairs and it intertwines with parabolic

structures. We fix a fixed smooth curve C of genus g, with one distinguished marked

point x0 and k distinct ordinary marked points p1, . . . , pk. Let I = {p1, . . . , pk} be

the set of ordinary marked points. Throughout the discussion, we assume g > 1.

This assumption is not essential and the case g ≤ 1 will be discussed in Remark

VI.29.

We first give a brief review on parabolic vector bundles.

Definition VI.2. A parabolic vector bundle on C is a collection of data (E, {fp}p∈I , a)

where

• E is a vector bundle of rank n and degree d on C.

• For each marked point p ∈ I, fp denotes a filtration in the fiber Ep := E|p

Ep = E1,p ) E2,p ) · · · ) Elp,p ) Elp+1,p = 0.
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• The vector a = (ap)p∈I is a collection of integers such that

ap = (a1,p, . . . , alp,p), 0 ≤ a1,p < a2,p < · · · < alp,p < l.

For p ∈ I and 1 ≤ i ≤ lp, the integers ai,p are called the parabolic weights

and mi,p := dimEi,p − dimEi+1,p are called the multiplicities of ai,p. Let mp =

(m1,p, . . . ,mlp,p) and let m = (mp)p∈I . The pair (a,m) is referred to as the parabolic

type of the parabolic vector bundle E. The data fp can be viewed as an element

in the flag variety Flmp(Ep) of type mp. Define ri,p :=
∑i

j=1 mj,p = dimEp/Ei+1,p

for 1 ≤ i ≤ lp. Denote |ap| :=
∑lp

i=1mi,p ai,p and |a| :=
∑

p∈I |ap|. We define the

parabolic degree of E by

dpar(E) = d+
|a|
l
,

and the parabolic slope by

µpar(E) =
dpar(E)

r(E)
,

where r(E) = rankE.

Suppose F is a subbundle of E and Q is the corresponding quotient bundle. Then

F and Q inherit canonical parabolic structures from E. More precisely, given a

marked point p, there is an induced filtration {Fi,p}i of the fiber Fp, which consists of

distinct terms in the collection {F∩Ei,p}i. The parabolic weights a′i,p of F are defined

such that if j is the largest integer satisfying Fi,p ⊂ Ej,p, then define a′i,p = aj,p. If F is

a locally free subsheaf of E but not a subbundle, one can define the induced parabolic

structure on F in the same way. For the quotient bundle q : E → Q, we define a
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filtration {Qi,p}i of Qp by choosing distinct terms in the collection {q(Ei,p)}i. The

parabolic weights a′′i,p of Q are defined such that if j is the largest integer satisfying

q(Ej,p) = Qi,p, then define a′′i,p = aj,p. We call 0 → F → E → Q → 0 an exact

sequence of parabolic vector bundles if it is an exact sequence of vector bundles, and

F and G have the induced parabolic structures from E. One can check that the

parabolic degree is additive on exact sequences, i.e., dpar(E) = dpar(F ) + dpar(Q).

Definition VI.3. Let (E, {fp}p∈I , a) and (E ′, {f ′p}p∈I , a′) be two parabolic vector

bundles. A morphism φ : E → E ′ of vector bundles is said to be parabolic if the

restrictions φp satisfy φp(Ei,p) ⊂ E ′j+1,p whenever ai > a′j, and strongly parabolic if

φp(Ei,p) ⊂ E ′j+1,p whenever ai ≥ a′j

Suppose 0→ F
i−→ E

π−→ Q→ 0 is an exact sequence of parabolic bundles. Then

by definition i and π are parabolic homomorphisms. We denote by ParHom(E,E ′)

and SParHom(E,E ′) the subsheaves of Hom(E,E ′) consisting of parabolic and

strongly parabolic homomorphisms, respectively. The spaces of their global sec-

tions are denoted by ParHom(E,E ′) and SParHom(E,E ′), respectively. There are

two natural skyscraper sheaves KE,E′ and SKE,E′ supported on the set of marked

points I such that

0→ ParHom(E,E ′)→ Hom(E,E ′)→ KE,E′ → 0,

0→ SParHom(E,E ′)→ Hom(E,E ′)→ SKE,E′ → 0.

Let mi,p and m′i,p be the multiplicities of the weights ai,p and a′i,p, respectively. Ac-



116

cording to [12, Lemma 2.4], we have

(6.1) χ(KE,E′) =
∑
p∈I

(i,j)∈Tp

mi,pmj,p

where Tp = {(i, j)|ai,p > a′j,p}. Using a similar argument to that of [12, Lemma 2.4],

one can show that

χ(SKE,E′) =
∑
p∈I

(i,j)∈STp

mi,pmj,p

where STp = {(i, j)|ai,p ≥ a′j,p}. When E = E ′, we denote by ParEnd(E) the

subsheaf of parabolic endomorphisms.

In [83], Yokogawa introduced an abelian category of parabolic OC-modules which

has enough injective objects. It contains the category of parabolic vector bundles

as a full (not abelian) subcategory. Hence, one can define the right derived functor

Exti(E,−) of ParHom(E,−). The following lemmas show that the functors Exti

for parabolic bundles behave similarly to the ordinary Ext functors for locally free

sheaves.

Lemma VI.4. [83, Lemma 3.6, Proposition 3.7] If E and E ′ are parabolic vector

bundles, then there are canonical isomorphisms

1. Exti(E,E ′) ∼= Hi(ParHom(E,E ′)).

2. Serre duality: Exti(E,E ′⊗ωC(D)) ∼= H1−i(SParHom(E ′, E))∨, where ωC is the

cotangent sheaf of C and D =
∑

p∈I p.

Lemma VI.5. [83, Lemma 1.4] The group Ext1(E ′′, E ′) parametrizes isomorphism

classes of extensions of (E ′′, {f ′′p }p∈I , a′′) by (E ′, {f ′p}p∈I , a′).
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Now let us define parabolic Bradlow N-pairs.

Definition VI.6. A parabolic Bradlow N -pair (E, {Ei,p}, a, s) consists of a parabolic

vector bundle (E, {fp}p∈I , a) of rank n and degree d, together with N sections s ∈

H0(E ⊗ONC ). A parabolic sub-pair

(E ′, s′) ⊂ (E, s),

consists of a parabolic subbundle ι : E ′ ↪→ E and N sections s′ : ON → E ′ such that

ι ◦ s′ = s s ∈ H0(E ′ ⊗ON), and

s′ = 0 s /∈ H0(E ′ ⊗ON).

A quotient pair (E ′′, s′′) consists of a quotient parabolic bundle q : E → E ′′ with

s′′ = q ◦ s.

We shall abbreviate the parabolic N -pair (E, {Ei,p}, a, s) as (E, s) when there is

no confusion. We define the parabolic slope of a parabolic N -pair by

µpar(E, s) = µpar(E) +
δθ(s)

r(E)
,

where θ(s) = 1 if s 6= 0 and 0 otherwise.

Definition VI.7. Let δ ∈ Q+. A parabolic N -pair of degree d is δ-semistable if for

all sub-pairs (E ′, s′) ⊂ (E, s), we have

µpar(E
′, s′) ≤ µpar(E, s).

A parabolic N -pair (E, s) is δ-stable if the above inequality is strict.



118

Remark VI.8. Suppose that the rank n is 1. Then according to Definition VI.7, any

parabolic N -pair is stable with respect to all values of δ.

Remark VI.9. Note that a parabolic N -pair (E, 0) is (semi-)stable if E is a (semi-

)stable parabolic vector bundle. We will focus on non-degenerate parabolic pairs,

i.e., pairs (E, s) with s 6= 0.

In the following, we list some basic properties of δ-stable and semistable parabolic

N -pairs, parallel to the corresponding results for N -pairs without parabolic struc-

tures.

Lemma VI.10. Suppose φ : (E1, s1) → (E2, s2) is a nonzero parabolic morphism

of δ-semistable pairs. Then µpar(E1, s1) ≤ µpar(E2, s2). Furthermore, if (E1, s1)

and (E2, s2) are δ-stable parabolic pairs with the same parabolic slope, then φ is

an isomorphism. In particular, for a non-degenerate δ-stable parabolic pair N-pair

(E, s), there are no parabolic endomorphisms of E preserving s except the identity,

and no parabolic endomorphisms of E annihilating s except 0.

Lemma VI.11 (Harder-Narasimhan Filtration). Let (E, s) be a parabolic N-pair.

There exists a canonical filtration by sub-pairs

0 ( (F1, s1) ( (F2, s2) ( · · · ( (Fm, sm) = (E, s)

such that for all i we have

1. (gri, s̄i) := (Fi, si)/(Fi−1, si−1) are δ-semistable.

2. µpar(gri, s̄i) > µpar(gri+1, s̄i+1).
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Proof. Notice that the parabolic slope µpar is additive on short exact sequences of

parabolic N -pairs. The proof is the same as the proof of the existence and uniqueness

of Harder-Narasimhan filtration of a pure sheaf (see for example the proof of [45,

Theorem 1.3.4]).

Lemma VI.12 (Jordan-Hölder Filtration). Let (E, s) be a δ-semistable parabolic

N-pair. A Jordan-Hölder filtration of (E, s) is a filtration

0 ( (G1, s1) ( (G2, s2) ( · · · ( (Gm, sm) = (E, s)

such that the factors (gri, s̄i) := (Fi, si)/(Fi−1, si−1) are δ-stable with slope µpar(E, s).

Moreover, the graded object gr(E, s) := ⊕gri does not depend on the filtration.

Proof. The proof is standard. See for example the proof of [45, Proposition 1.5.] in

the case of semistable sheaves.

For δ-semistable parabolic N -pairs of rank n and degree d, we have the following

boundedness result.

Lemma VI.13. Let (E, s) be a δ-semistable parabolic N-pair. Suppose that

µpar(E, s) > 2g − 1 + |I|+ δ.

Then H1(E) = 0 and E is globally generated, i.e., the morphism

H0(E)⊗OC → E

is surjective.
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Proof. The proof is similar to that of Lemma V.5. It suffices to show thatH1(E(−p)) =

0 for any point p ∈ E. Suppose H1(E(−p)) 6= 0. By Serre duality, we have

H1(E(−p)) = (H0(E∨ ⊗ ωC(p))∨, where ωC is the dualizing sheaf of C. Therefore a

nonzero element in H1(E(−p)) induces a nonzero morphism φ : E → ωC(p). Let L

be the image sheaf of φ. Since L is a subsheaf of ωC(p), we have deg(L) ≤ 2g − 1.

Let s′′ be the induced N sections of L. It follows that µpar(E, s) > 2g− 1 + |I|+ δ ≥

dpar(L) + θ(s′′)δ, which contradicts the δ-semistability of (E, s).

Corollary VI.14. Fix the rank n, degree d and the parabolic type (a,m). The family

of vector bundles underlying δ-semistable parabolic N-pairs of rank n, degree d and

parabolic type (a,m) on a smooth curve C is bounded.

Proof. Let O(1) be a locally free sheaf of degree one on C. By Lemma VI.13, we

have H1(E(m)) = 0 if

m+ µpar(E, s) > 2g − 1 + |I|+ δ.

The boundedness of δ-semistable pairs follows from [45, Lemma 1].

The following lemma shows that for a bounded family of parabolic N -pairs, the

family of the factors of their Harder-Narasimhan filtrations is also bounded.

Lemma VI.15. Let T be a scheme of finite type. Suppose S : ONT×C → E is a flat

family of parabolic N-pairs over T × C. For any closed point t ∈ T , we denote by

{(grti, s
t
i)}i the Harder-Narasimhan factors of (Et, St), where Et = E|Spec k(t)×C and St
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is the restriction of the N sections to the fiber over t. Then the family {(grti, s
t
i)}i,t∈T

is bounded.

Proof. The proof is identical to that of Lemma 9 in [54] for N -pairs without parabolic

structures.

6.3 GIT construction of the moduli stack of δ-stable parabolic N-pairs

In this section, we show that the moduli stack Mpar
C (Gr(n,N), d, a) of parabolic

N -pairs is an Artin stack, locally of finite type. For a generic value of δ ∈ Q+ (see

Definition VI.19), we prove that the substack Mpar,δ

C (Gr(n,N), d, a) parametrizing

non-degenerate δ-stable parabolic N -pairs is a projective variety. In fact, we will

construct it using geometric invariant theory (GIT). Throughout the discussion, we

fix the degree d, rank n, parabolic weights a = (ai,p) and their multiplicities m =

(mp)p∈I , where mp = (mi,p).

Definition VI.16. Let T be a scheme. A family of parabolic N -pairs (E , {fp}, S)

over T is a locally free sheaf E , flat over T , together with a morphism of sheaves

ONT×C → E on T × C and a section fp of the relative flag variety Flmp(E|T×{p}) of

type mp for each p ∈ I.

An isomorphism (E , {fp}, S)→ (E ′, {f ′p}, S ′) of families of parabolic N -pairs over

T is given by a parabolic isomorphism Φ : E → E ′ such that Φ(S) = S ′.

Let Mpar
C (Gr(n,N), d, a) be the groupoid of parabolic N -pairs of rank n, degree

d and type (a,m). Let Bunpar
C (d, n, a) be the groupoid of parabolic vector bun-
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dles with the same numerical data. It is easy to see that Bunpar
C (d, n, a) is a fiber

product of flag bundles over the moduli stack of vector bundles BunC(d, n). The

moduli stack BunC(d, n) is a smooth Artin stack (see, for example, [44]). There-

fore, Bunpar
C (d, n, a) is also a smooth Artin stack. There is a representable forgetful

morphism q : Mpar
C (Gr(n,N), d, a) → Bunpar

C (d, n, a). Let E be the universal vector

bundle over Bunpar
C (d, n, a)×C and let π : Bunpar

C (d, n, a)×C → Bunpar
C (d, n, a) be

the projection. Let ω be the relative dualizing sheaf of π, which is just the pullback

of the cotangent sheaf ωC of C along the second projection to C.

Proposition VI.17. There is a natural isomorphism of Bunpar
C (d, n, a)-stacks

Mpar
C (Gr(n,N), d, a)→ Spec Sym

(
R1π∗

(
(E∨)N ⊗ ω

))
.

In particular, Mpar
C (Gr(n,N), d, a) is an abelian cone over Bunpar

C (d, n, a).

Proof. The same arguments given in the proof of [68, Proposition 1.8] apply here.

Corollary VI.18. The moduli stack of parabolic N-pairs Mpar
C (Gr(n,N), d, a) is an

Artin stack and the forgetful morphism q : Mpar
C (Gr(n,N), d, a)→ Bunpar

C (d, n, a) is

strongly representable.

Definition VI.19. A value of δ ∈ Q+ is called generic if there is no strictly δ-

semistable N -pairs. Otherwise, δ is called critical. A critical value of δ is also called

a wall.

LetMpar,δ

C (Gr(n,N), d, a) be the substack of Mpar
C (Gr(n,N), d, a) which parametrizes

non-degenerate δ-stable N -pairs (E, s). In the following, we will use GIT to give
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an alternate construction of Mpar,δ

C (Gr(n,N), d, a), modeled on the construction of

moduli spaces of (semi)stable pairs given in [54].

The semistability condition of parabolic N -pairs can be described in terms of

dimensions of global sections. We fix an ample line bundle O(1) on C of degree

one. For any locally free sheaf E on C, we define E(m) := E ⊗ O(1)⊗m. If E is

a parabolic vector bundle, there is a natural parabolic structure on E(m). Given a

non-degenerate parabolic N -pair (E, s) of degree d, rank n and parabolic type (a,m),

we define

µδpar(m) := µpar(E(m)) +
δ

r(E)
=
d+ nm

n
+
|a|
nl

+
δ

n

Before we describe the GIT construction, we recall the special cases for curves of

the Le Potier-Simpson estimate and a boundedness result due to Grothendieck. The

Le Potier-Simpson estimate allows us to give uniform bounds for the dimension of

global sections of a vector bundle in terms of its slope. We refer the reader to [45,

Theorem 3.3.1] and [69, Corollary 1.7] for the general theorem in higher dimensions.

Suppose the Harder-Narasimhan filtration of a vector bundle E with respect to the

ordinary slope µ is given by

0 ( E1 ( E2 ( · · · ( Ek = E.

Define µmax(E) = µ(E1) and µmin(E) = µ(Ek/Ek−1). Denote [t]+ := max{0, t} for

any real number t.

Lemma VI.20 (Le Potier-Simpson). Let C be a smooth curve. For any locally free
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sheaf F on C, we have

h0(F )

r(F )
≤
[
µmax(F ) + c

]
+
,

where r(F ) = rankF and the constant c := r(F )(r(F ) + 1)/2− 1.

The following lemma is on the boundedness of subsheaves. We refer the reader to

[45, Lemma 1.7.9] for the general results

Lemma VI.21 (Grothendieck). Let C be a smooth curve and let F be a locally free

sheaf on C. Then the family of subsheaves F ′ ⊂ F with slopes bounded below, such

that the quotient F/F ′ is locally free, is bounded.

Let (E, s) be a non-degenerate parabolic N -pair. In the following discussion, we

will always denote a sub-pair of (E, s) by (E ′, s′), with the induced parabolic type

a′. Similarly, we will always denote a quotient pair of (E, s) by (E ′′, s′′), with the

induced parabolic type a′′.

Lemma VI.22. There exists an integer m0 such that for any integer m ≥ m0, the

following assertions are equivalent.

(1) The parabolic N-pair (E, s) is stable.

(2) For any nontrivial proper sub-pair (E ′, s′),

h0(E ′(m)) + θ(s′)δ

r(E ′)
+
|a′|
r(E ′)l

< µδpar(m) + 1− g.

(3) For any proper quotient pair (E ′′, s′′) with r(E ′′) > 0,

h0(E ′′(m)) + θ(s′′)δ

r(E ′′)
+
|a′′|
r(E ′′)l

> µδpar(m) + 1− g.
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δ-semistability can be characterized similarly by replacing < by ≤ in (ii) and (iii).

Proof. (1)⇒ (2): By Lemma VI.14 and Lemma VI.15, there exists a constants µ such

that µmax(E) ≤ µ. Let (E ′, s′) be a proper nontrivial sub-pair and let ν = µmin(E ′).

It follows from Lemma VI.20 that there exists a constant c depending only on n such

that

(6.2)
h0(E ′(m))

r(E ′)
≤ (1− 1

n
)[µ+m+ c]+ +

1

n
[ν +m+ c]+.

Let A > 0 be a constant satisfying d + n(1− g) + nm ≥ n(m− A). Since there are

only finite many choices for θ(s′)δ/r(E ′) and |a′|/r(E ′)l, it is possible to choose an

integer ν0 such that

(6.3) (1− 1

n
)µ+

1

n
ν0 + c+

θ(s′)δ

r(E ′)
+
|a′|
r(E ′)l

< −A+
δ

n
+
|a|
nl
.

Enlarging m0 if necessary, we can assume that µ+m+ c and ν +m+ c are positive.

Therefore

(6.4) (1− 1

n
)[µ+m+ c]+ +

1

n
[ν +m+ c]+ = (1− 1

n
)µ+

1

n
ν +m+ c.

If ν ≤ ν0, then it follows from (6.2), (6.4) and (6.3) that

h0(E ′(m)) + θ(s′)δ

r(E ′)
+
|a′|
r(E ′)l

< m− A+
δ

n
+
|a|
nl

≤ d+ n(1− g) + nm

n
+
δ

n
+
|a|
nl

= µδpar(m) + 1− g.
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If ν > ν0, then by Grothendieck’s Lemma VI.21, the family of such E ′ is bounded.

Enlarging m0 if necessary, we have

h0(E ′(m)) = χ(E ′(m)) = d(E ′) + r(E ′)m+ r(E ′)(1− g)

for all m ≥ m0. By the δ-stability of (E, s), we have

h0(E ′(m)) + θ(s′)δ

r(E ′)
+
|a′|
r(E ′)l

= µpar(E
′, s′) +m+ 1− g < µδpar(m) + 1− g.

(2)⇒ (3): Consider the short exact sequence

0→ E ′ → E → E ′′ → 0.

There exists an m0 ∈ N such that for all m ≥ m0, we have H1(E(m)) = 0. It

follows that H1(E ′′(m)) = 0. Suppose (h0(E ′(m)) + θ(s′)δ)/r(E ′) + |a′|/(r(E ′)l) <

µδpar(m)+1−g. Since µ(E ′(m)) ≤ h0(E ′(m))/r(E ′), we have µpar(E
′, s′) < µpar(E, s).

It follows from the additivity of the parabolic δ-slope of pairs that

µδpar(m) + 1− g = µpar(E, s) +m+ 1− g

< µpar(E
′′, s′′) +m+ 1− g

=
h0(E ′′(m)) + θ(s′′)δ

r(E ′′)
+
|a′′|
r(E ′′)l

.

(3)⇒ (1): Suppose that (E, s) is not stable. Let (E ′′, {f ′′p }, s′′) be a quotient pair of

(E, s) such that

µpar(E
′′, s′′) ≤ µpar(E, s)
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There exists an m0 ∈ N satisfying for all m ≥ m0, H1(E(m)) = 0. Let E ′ be

the kernel of the quotient morphism E → E ′′. Then by the long exact sequence of

cohomology groups associated to 0→ E ′ → E → E ′′ → 0, we have H1(E ′′(m)) = 0

and hence h0(E ′′(m)) = d(E ′′) + r(E ′′)(1− g). It follows that

h0(E ′′(m)) + θ(s′′)δ

r(E ′′)
+
|a′′|
r(E ′′)l

= µpar(E
′′, s′′) +m+ 1− g

≤ µpar(E, s) +m+ 1− g

= µδpar(m) + 1− g,

which contradicts the hypothesis. Therefore, (E, s) is δ-stable.

The equivalence of three assertions for δ-semistability can be proved similarly.

By Lemma VI.14 and Lemma VI.15, there exists an m0 ∈ N such that for any m ≥

m0 and any δ-stable parabolic N -pair (E, s), the following conditions are satisfied.

1. E(m) is globally generated and has no higher cohomology. Similar results hold

for their Harder-Narasimhan factors.

2. The three assertions in Lemma VI.22 are equivalent.

We fix such an m. Let (E, s) be a δ-semistable N -pairs. Then the vector bundle E

can be realized as a quotient

q : H0(E(m))⊗OC(−m) � E

and the section s induces a linear map

φ : H0(OC(m))N → H0(E(m)).
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Let V be a fixed complex vector space of dimension dim(V ) = P (m) where P (m) :=

χ(E(m)) = d+mn+ n(1− g).

After fixing an isomorphism between H0(E(m)) and V , we have the following

diagram.

K H0(OC(m))N ⊗OC(−m) ONC

V ⊗OC(−m) E

ι ev

φ s

q

HereK denotes the kernel of the evaluation map ev : H0(OC(m))N⊗OC(−m)→ ONC .

Let

P = P(Hom(H0(OC(m))N , V ))

and let

Q = Quotn,dC (V ⊗OC(−m)).

be the Grothendieck’s Quot scheme which parametrizes coherent quotients of V ⊗

OC(−m) over C of rank n and degree d. Notice that the spaces P and Q are fine

moduli spaces with universal families

(6.5) H0(OC(m))N ⊗OP → V ⊗OP(1)

and

(6.6) V ⊗OC(−m) � Ẽ .

Here OP(1) denotes the anti-tautological line bundle on P. By abuse of notation, we

will still denote by OP(1) and Ẽ the pullbacks of the corresponding universal sheaves

to Q× P× C .
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We consider the locally closed subscheme

Z ⊂ Q× P

consisting of points ([q], [φ]) which satisfy the following properties:

• E is a locally free.

• q ◦ φ ◦ ι = 0.

• The quotient q induces an isomorphism V → H0(E(m)).

Let p ∈ I be a marked point. We denote by Flmp the relative flag varitey of locally-

free quotients of Ẽp := Ẽ |Z×{p} of typemp = (mi,p) (cf. [42, §2]). Let πp : Flmp → Z be

the projection. There exists a universal filtration of π∗p(Ẽp) by coherence subsheaves

π∗p(Ẽp) = F1,p ) · · · ) Flp,p ) Flp+1,p = 0

such that the universal quotient bundles Qi,p := π∗p(Ẽp)/Fi+1,p are locally free of rank

ri,p =
∑i

j=1 mj,p.

Let R be the fiber product

R := Flmp1 ×Z · · · ×Z Flmpk ,

where p1, . . . , pk are the ordinary marked points. By abuse of notation, we still

denote by Qi,p the pullback of Qi,p to R. A δ-semistable parabolic N -pair (E, s) can

be represented by a point ([q], {[f̃p]}, [φ]) in R. There is a natural right SL(V )-action

on Q× P given by

([q], [φ])g = ([q ◦ g], [g−1 ◦ φ])
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for g ∈ SL(V ) and ([q], [φ]) ∈ Q× P. It is easy to see that Z is invariant under this

SL(V )-action. Notice that the natural right SL(V )-action on V ⊗OC(−m) induces

a right SL(V )-action on Ẽ via the universal quotient morphism V ⊗OC(−m) � Ẽ .

Therefore, SL(V ) also acts on the relative flag variety Flmp for p ∈ I and the universal

quotient bundles Qi,p have natural SL(V )-linearizations.

Pick a sufficiently large integer t such that t > m and we have the following

embedding

Q = Quotn,dC (V ⊗OC(−m)) ↪→ Gr(V ⊗H0(OC(t−m)), χt),

[q : V ×OC(−m) � E]→ [H0(q(t)) : V ⊗H0(OC(t−m)) � H0(E(t))].

For such a t, there is a SL(V )-equivariant embedding

T : R ↪→Gr(V ⊗H0(OC(t−m)), χt)

×
∏
p∈I

{Gr(V, r1,p)× · · · ×Gr(V, rlp−1,p)} × P,

([q], {|f̃p]}, [φ]) 7→([H0(q(t))], {Ep/E2,p, . . . , Ep/Elp,p}, [φ]),

where χt = χ(E(t)) and ri,p =
∑i

j=1mj,p = dimEp/Ei+1,p. For simplicity, we denote

Gr(V ⊗H0(OC(t−m)), χt) by Gt and Gr(V, rj,p) by Gj,p for 1 ≤ j ≤ lp − 1.

Let R̄ be the closure of T (R) in Gt×
∏

p∈I{G1,p×· · ·×Glp−1,p}×P. Let OGt(1) and

OGi,p(1) be the canonical ample generators of the Grassmannians. Let OP(1) be the

anti-canonical line bundle on P. Notice that the ample line bundles OGt(1), OGi,p(1)

and OP(1) all have standard SL(V )-linearizations. For positive integers a1, a2 and
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bj,p for p ∈ I, 1 ≤ j ≤ lp − 1, we consider the SL(V )-linearized line bundle

L = OGt(a2) � { �
p∈I, j
OGj,p(bj,p)}�OP(a1).

We study the GIT stability condition of Gt ×
∏

p∈I{G1,p × · · · × Glp−1,p} × P with

respect to L. Let λ : C∗ → SL(V ) be a one parameter subgroup. For any closed

point z ∈ R̄, we denote by oz : SL(V ) × {z} → R̄ the orbit map. The morphism

oz ◦ λ extends to a morphism g : A1 → R̄. Notice that g(0) is a fixed point of the

C∗-action. Suppose any element x ∈ C∗ acts on the fiber L|g(0) by multiplying xw

for some w ∈ Z. Then we define the Hilbert-Mumford weight

µL(z, λ) = −w.

By the Hilbert-Mumford criterion, a closed point z ∈ R̄ is stable (semistable) with re-

spect to L if and only if µL(z, λ) > 0 (respectively µL(z, λ) ≥ 0) for all one parameter

subgroups of SL(V ). Now let us compute µL(z, λ) for a point z = ([q], {[f̃p]}, [φ]) ∈ R̄.

A one parameter subgroup λ induces a C∗-action on V . Let w1 < w2 < · · · < ws be

the weights of this C∗-action. Then there exists a filtration

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vs = V,

such that Vi/Vi−1 is the isotypic component of weight wi ∈ Z. We denote by i(φ)

the smallest i such that imφ ⊂ Vi. Define w(φ) = wi(φ). Consider the ascending

filtration of E by

Fi = q(Vi ⊗OC(−m)).
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Note that Fs = E. Let gri = Fi/Fi−1. Notice that the family of subsheaves E ′ ⊂ E

of the form q(V ′ ⊗ OC(−m)) for some subspace V ′ ⊂ V is bounded. We can pick

large enough t such that we also have

(6.7) H1(Fi(t)) = 0 and H1(gri(t)) = 0, for 1 ≤ i ≤ s.

Denote Qj,p := Ep/Ej+1,p for 1 ≤ j ≤ lp − 1. Let qj,p : V � Qj,p be the surjective

maps induced by V ⊗ OC(−m) � E. We consider the ascending filtrations of Qj,p

by

Qi
j,p = qj,p(Vi), for 1 ≤ i ≤ s.

Define Q0
j,p = 0. Let rij,p = dimQi

j,p. Note that rsj,p = rj,p.

Suppose F is a coherent sheaf on C. Then its Hilbert polynomial is defined as the

polynomial PF (t) := χ(F (t)) = r(F )t+ d(F ) + r(F )(1− g) in t. An explicit formula

for µL(z, λ) is given in the following lemma.

Lemma VI.23.

µL(z, λ) = a1w(φ)− a2

∑
1≤i≤s

wi
(
PFi(t)− PFi−1

(t)
)

−
∑
p∈I

∑
1≤i≤s

1≤j≤lp−1

bj,pwi
(
rij,p − ri−1

j,p

)
.

Proof. The Hilbert-Mumford weight satisfies that

µL1�L2 = µL1 + µL2 .

Hence we can compute µOGt (a1)(z, λ), µOGj,p (bj,p)(z, λ), and µOP(a2)(z, λ) separately.
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First, we calculate the contribution from OP(a1) to µL(z, λ). Let {eiν}ν be a basis

of Vi. Then we can write φ as

φ =
⊕
i,ν

φνi ⊗ eiν ∈ (H0(OC(m)N))∨ ⊗ V,

where φνi ∈ (H0(OC(m)N))∨. By definition, i(φ) is the largest i such that φνi 6= 0 for

some ν. Since an element in SL(V ) acts on V as its inverse, the contribution from

OP(a1) to µL(z, λ) is

a1w(φ).

Second, we consider OGt(a2). According to [45, Lemma 4.4.3], we have

lim
x→0

[q] · λ(x) =
s⊕
i=1

H0(gri(t)) ∈ Gt.

The fiber of OGt(1) at the limiting point is

χ(E(t))∧ s⊕
i=1

H0(gri(t)).

The weight of C∗-action is

s∑
i=1

wih
0(gri(t)) =

s∑
i=1

wi
(
PFi(t)− PFi−1

(t)
)
.

Therefore, the contribution from OGt(a2) to µL(z, λ) is

−a2

s∑
i=1

wi
(
PFi(t)− PFi−1

(t)
)
.

Finally, it follows easily from the computations of [59, Chapter 4, §4] that the

contribution to µL(z, λ) from OGj,p(bj,p) is

−
∑

1≤i≤s

bj,pwi
(
dimQi

j,p − dimQi−1
j,p

)
.
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Lemma VI.24. Let z = ([q], {[f̃p]}, [φ]) ∈ R̄ be a point with the associated parabolic

N-pair (E, s). For sufficiently large t such that (6.7) holds, then the following two

conditions are equivalent.

(1) z is GIT-stable with respect to L.

(2) For any nontrivial proper subspace W ⊂ V , let F = q(W ⊗O(−m)). Then

PF (t) >
a1

a2

(
θW (φ)− dimW

dimV

)
+ P (t)

dimW

dimV
(6.8)

+
∑
p∈I

∑
1≤j≤lp−1

bj,p
a2

(
rj,p

dimW

dimV
− rWj,p

)
,

where rWj,p = dim qj,p(W ) and θW (φ) = 1 if imφ ⊂ W and 0 otherwise.

GIT-semistablity can be also characterized by replacing > by ≥ in equation (6.8).

Proof. (1) ⇒ (2): Suppose z is GIT-stable with respect to L. Let h = dimW . We

consider the one parameter subgroup give by

λ(x) =

xh−P (m)idh

xhidP (m)−h

 ,

where λ(x) acts on W by multiplying xh−P (m) and its compliment by multiplying xh.

If imφ ⊂ W , then by the Hilbert-Mumford criterion and Lemma VI.23, we have

0 < µL(z, λ) = a1(h− P (m)) + a2P (m)PF (t)− a2hP (t)

+
∑
p∈I

∑
1≤j≤lp−1

bj,p
(
rWj,pP (m)− rj,ph

)
.
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Since dimV = P (m), the above inequality is equivalent to

PF (t) >
a1

a2

(
1− dimW

dimV

)
+ P (t)

dimW

dimV

+
∑
p∈I

∑
1≤j≤lp−1

bj,p
a2

(
rj,p

dimW

dimV
− rWj,p

)
.

If imφ 6⊂ W , then

0 < µL(z, λ) = a1h+ a2P (m)PF (t)− a2hP (t)

+
∑
p∈I

∑
1≤j≤lp−1

bj,p
(
rWj,pP (m)− rj,ph

)
,

which is equivalent to

PF (t) > −a1

a2

(
dimW

dimV

)
+ P (t)

dimW

dimV

+
∑
p∈I

∑
1≤j≤lp−1

bj,p
a2

(
rj,p

dimW

dimV
− rWj,p

)
.

(2)⇒ (1): It follows from inequality (6.8) that

µL(z, λ) > a1ws − a2wsP (t) +

(
a2P (t)

dimV
− a1

dimV

) s−1∑
i=1

(wi+1 − wi) dimVi

+
∑
p∈I

∑
1≤j≤lp−1

bj,prj,p
dimV

( s−1∑
i=1

(wi+1 − wi) dimVi

)

−
∑
p∈I

∑
1≤j≤lp−1

bj,p

( s−1∑
i=1

(wi+1 − wi) rij,p
)

−
∑
p∈I

∑
1≤i≤s

1≤j≤lp−1

bj,pwi
(
rij,p − ri−1

j,p

)

= 0.
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Here we use the fact that

s−1∑
i=1

(wi+1 − wi) dimVi = ws dimV

since λ is a one parameter subgroup of SL(V ). Therefore z is GIT-stable.

Let I denote the number of ordinary marked points. To relate GIT-(semi)stability

with δ-(semi)stability, we make the following choice:

a1 = nl(t−m)δ, a2 = P (m)l + |a|+ δl − n
∑
p∈I

alp,p,

and

bj,p = (aj+1,p − aj,p)n(t−m) for 1 ≤ j ≤ lp − 1.

Let

L = OGt(a2) � { �
p∈I, j
OGj,p(bj,p)}�OP(a1)

be the polarization.

We fix a sufficiently large t such that

1. (6.7) holds;

2. (6.8) holds if and only if it holds as an inequality of polynomials in t.

Corollary VI.25. If ([q], {[fp]}, [φ]) ∈ R̄ is GIT-semistable, then

H0(q(m)) : V → H0(E(m))

is injective and E is torsion free.
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Proof. It is straightforward to check that the coefficient of t on the RHS of the

inequality (6.8) equals

n ·
l dimW + θW (φ)δl −

∑
p∈I
∑

1≤j≤lp−1(aj+1,p − aj,p)rWj,p
l dimV + |a|+ lδ − n

∑
p∈I alp,p

.

Let W be the kernel of H0(q(m)) : V → H0(E(m)). Then G = q(W ⊗O(−m)) =

0. The LHS of the inequality (6.8) is zero, while the coefficient of t on the RHS of

the inequality is greater than or equal to

nl dimW

l dimV + |a|+ lδ − n
∑

p∈I alp,p
.

It follows that W = 0.

Let T be the torsion subsheaf of E. Since V → E(m) is surjective, it is easy to

show that H0(T (m)) ⊂ V as subspaces in H0(T (m)). Let W = H0(T (m)). Suppose

W 6= 0. Then the coefficient of t on the RHS of the inequality (6.8) is positive

because

∑
p∈I

∑
1≤j≤lp−1

(aj+1,p − aj,p)rWj,p ≤
∑
p∈I

(alp,p − a1,p)r
W
lp−1,p < l dimW.

Here we use the fact that alp,p− a1,p < l. We get a contradiction because the LHS of

(6.8) is a constant. Therefore we must have W = 0 and F = 0.

Proposition VI.26. Let ([q], {[f̃p]}, [φ]) be a point in R̄ and let (E, s) be the corre-

sponding parabolic N-pair. Then the following are equivalent.

(1) ([q], {[f̃p]}, [φ]) is GIT-(semi)stable with respect to L.

(2) (E, s) is δ-(semi)stable and q induces an isomorphism V
∼−→ H0(E(m)).



138

Proof. (1) ⇒ (2): Let z = ([q], {[f̃p]}, [φ]) be a GIT-semistable point in R̄, where

q : V ⊗ O(−m) → E is a quotient. According to Corollary VI.25, E is locally free

and q induces an injection V ↪→ H0(E(m)). Let π : E � E ′′ be a quotient bundle.

Denote by K the kernel of π. We have an exact sequence 0→ K → E
π◦α−−→ E ′′ → 0.

Let W = V ∩H0(K(m)). Then

(6.9) h0(E ′′(m)) ≥ h0(E(m))− h0(K(m)) ≥ dimV − dimW.

Let F = q(W ⊗ O(−m)). Since F is a subsheaf of K, we have r(F ) ≤ r(K) =

r(E) − r(E ′′). By comparing the coefficients of t on both sides of inequality (6.8),

we have

n− r(E ′′) ≥ r(F )

(6.10)

≥ n dimW

dimV
·

l dimV + |a| − n
∑

p∈I alp,p

l dimV + |a|+ lδ − n
∑

p∈I alp,p

+ θW (φ)
nlδ

l dimV + |a|+ lδ − n
∑

p∈I alp,p

+
∑
p∈I

∑
1≤j≤lp−1

n
aj+1,p − aj,p

l dimV + |a|+ lδ − n
∑

p∈I alp,p

(
rj,p

dimW

dimV
− rWj,p

)
.

Let a′′ = (a′′p)p∈I and a′ = (a′p)p∈I be the induced parabolic weights of E ′′ and the

kernel K, respectively. It is not difficult to show that the following hold:

∑
1≤j≤lp−1

(aj+1,p − aj,p)rj,p = nalp,p − |ap|, and

∑
1≤j≤lp−1

(aj+1,p − aj,p)rWj,p ≤ (n− r(E ′′))alp,p − |a′p|.
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Then it follows from inequality (6.10) that

n− r(E ′′) ≥ nl dimW

l dimV + |a|+ lδ − n
∑

p∈I alp,p
(6.11)

+ θW (φ)
nlδ

l dimV + |a|+ lδ − n
∑

p∈I alp,p

+
n|a′| − n(n− r(E ′′))

∑
p∈I alp,p

l dimV + |a|+ lδ − n
∑

p∈I alp,p
.

Notice that |a| = |a′|+ |a′′|. Then we can rewrite inequality (6.11) as

(6.12)
dimV − dimW + (1− θW (φ))δ

r(E ′′)
+
|a′′|
r(E ′′)l

≥ dimV + δ

n
+
|a|
nl
.

Note that if θ(s′′) = π ◦ s = 0, then imφ ⊂ W and hence 1− θW (φ) = 0. Therefore

θ(s′′) ≥ 1− θW (φ). Combining (6.12) and (6.9), we have

h0(E ′′(m)) + θ(s′′)δ

r(E ′′)
+
|a′′|
r(E ′′)l

≥ P (m) + δ

n
+
|a|
nl
.

According to Lemma VI.22, the pair (E, s) is semistable.

Let z = ([q], {[f̃p]}, [φ]) be a GIT-stable point. Suppose (E, s) is not stable.

Then by the previous discussion, (E, s) is strictly semistable. Then there exists a

destabilizing sub-pair (E ′, s′). Let W = H0(E ′(m)) ⊂ H0(E(m)) ∼= V . It is clear

that θ(s′) = θW (φ). We have

h0(E ′(m)) + θ(s′)δ

r(E ′)
+
|a′|
r(E ′)l

=
P (m) + δ

n
+
|a|
nl
.

By an elementary calculation, one can show that the RHS of the inequality (6.8) is

equal to PE′(t). It contradicts with the fact that z = ([q], {[f̃p]}, [φ]) is GIT-stable.

(2) ⇒ (1): If (E, s) is stable and q(m) induces an isomorphism between global
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sections. For any nontrivial subspace W ( V , let F = q(W ⊗O(−m)) and let (F, s′)

be the corresponding sub-pair. If (F, s′) = (E, s), then inequality (6.8) obviously

holds. Thus we assume that (F, s′) is a proper sub-pair. By Lemma VI.22, we have

h0(F (m)) + θ(s′)δ

r(F )
+
|a′|
r(F )l

<
h0(E(m)) + δ

n
+
|a|
nl
.

The above inequality is equivalent to

(6.13) r(F ) > n
|a′|+ l h0(F (m)) + θ(s′)δl − r(F )

∑
p∈I alp,p

l dimV + δl + |a| − n
∑

p∈I alp,p
.

Notice that dimW ≤ h0(F (m)), which follows from the following commutative dia-

gram.

W H0(F (m))

V H0(E(m))
∼=

By combining the inequality (6.13), dimW ≤ h0(F (m)) and

∑
p∈I

∑
1≤j≤lp−1

(aj+1,p − aj,p)rWj,p = −|a′|+ r(F )
∑
p∈I

alp,p,

we obtain

r(F ) > n
l dimW + θ(s′)δl −

∑
p∈I
∑

1≤j≤lp−1(aj+1,p − aj,p)rWj,p
l dimV + δl + |a| − n

∑
p∈I alp,p

.

It implies that the leading coefficient of PF (t) is great than the leading coefficient

of the polynomial on the right hand side of (6.8). Therefore, ([q], {[f̃p]}, [φ]) is GIT-

stable.

Assume (E, s) is strictly δ-semistable. We need to show that the corresponding

point ([q], {[f̃p]}, [φ]) is GIT-semistable. Choose any nontrivial subspace W ( V . Let
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F = q(W ⊗O(−m)) and let (F, s′) be the corresponding sub-pair. Since all these F

are in a bounded family, we can assume h0(F (m)) = χ(F (m)). As discussed in the

previous case, if (F, s′) = (E, s) or (F, s′) is not a destabilizing sub-pair, we are done.

Therefore, we assume (F, s′) is a destabilizing sub-pair such that dimW = h0(F (m))

and

r(F ) = n
|a′|+ l dimW + θ(s′)δl − r(F )

∑
p∈I alp,p

l dimV + δl + |a| − n
∑

p∈I alp,p
.

This shows that the coefficients of t on both sides of the inequality (6.8) are equal. A

tedious but elementary computation shows that the constant terms of the left hand

side of (6.8) is also equal to the constant term on the right hand side. This concludes

the proof. We leave the details to the reader.

Recall that a value of δ ∈ Q+ is called critical, or a wall if there are strictly

δ-semistable N -pairs.

Lemma VI.27. For fixed d, n and parabolic type (a,m), there are only finitely many

critical values of δ.

Proof. It suffices to show that the destabilizing sub-pairs form a bounded family.

The same arguments used in [54, Proposition 6] work here.

Theorem VI.28. If δ is generic, the moduli groupoidMpar,δ

C (Gr(n,N), d, a) of non-

degenerate δ-stable parabolic N-pairs is isomorphic to R̄ //L SL(V ). In particular, it

is a projective variety.
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Proof. The proof is standard. See for example the proof of [54, Theorem 1].

Remark VI.29. The GIT construction of the moduli space Mpar,δ

C (Gr(n,N), d, a)

also works in the case g ≤ 1. However, for some choices of the parabolic type (a,m),

the moduli space Mpar,δ

C (Gr(n,N), d, a) is empty when the stability parameter δ is

sufficiently close to zero. This is because by definition, when δ is sufficiently close to

zero, the underline parabolic vector bundle E of a δ-stable pair (E, s) is parabolic

semistable (see Section 6.5), and the moduli space U(n, d, a,m) of S-equivalence

classes of semistable parabolic vector bundles may be empty for some parabolic

types (a,m) (cf. [12, §5]). In this paper, we only consider parabolic types (a,m)

such that Mpar,δ

C (Gr(n,N), d, a) is nonempty for all generic δ.

Remark VI.30. In the definition of the parabolic data, we assume that the last

parabolic weight alp,p is less than l. In the case alp,p = l, the (coarse) moduli space of

S-equivalence classes of semistable parabolic sheaves is constructed in [72]. However,

there are some differences in this new case. According to [72, Remark 2.4], when

alp,p = l, a strictly semistable parabolic sheaf can have torsion supported on the

marked point {p}. In the GIT construction of the moduli space in the case alp,p = l,

a point corresponding to a stable parabolic sheaf is strictly GIT semistable (see [72,

Proposition 2.12]). In the setting of parabolic N -pairs, if alp,p = l, all values of δ are

critical values and the GIT construction discussed in this section does not produce

a fine moduli space. Therefore we only consider the case alp,p < l in this paper.

The universal parabolic N -pair S : ON → E over Mpar,δ

C (Gr(n,N), d, a) × C can
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be constructed using GIT. To be more precise, we have a morphism

H0(OC(m))N ⊗O ⊗OC(−m)→ Ẽ ⊗OP(1)

over R̄ × C, induced by the universal families (6.5) and (6.6). By the definition of

R̄, the morphism above induces N sections

S̃ : H0(OC)N ⊗O = ONR̄ → Ẽ ⊗OP(1).

Let z be a point in R̄. By Lemma VI.10 and Lemma 4.3.2 in [45], the only stabilizers

in SL(V ) of z are the χm-root of unity, where χm = dim(V ). They act oppositely on Ẽ

and OP(1). Therefore, by Kempf’s descent lemma (c.f. [24, Théorèm 2.3]), Ẽ ⊗OP(1)

descends to a bundle E on Mpar,δ

C (Gr(n,N), d, a)× C, with N sections S ∈ H0(E ⊗

ON) induced by S̃. Moreover, the tautological flags of Ẽ |Mpar,δ
C (Gr(n,N),d,a)×{p}⊗OP(1)

descend to the universal flags of E|Mpar,δ
C (Gr(n,N),d,a)×{p}, for p ∈ I. We denote by

(E , {fp}, S) the universal parabolic N -pair over Mpar,δ

C (Gr(n,N), d, a)× C.

Example VI.31. When δ is sufficiently large, the stability condition stabilizes. More

precisely, we have the following lemma.

Lemma VI.32. Let dpar = d + |a|/l. Suppose δ > (n − 1)dpar. Then there is

no strictly δ-semistable parabolic N-pair. Furthermore, a parabolic N-pair (E, s) is

δ-stable if and only if the N sections generically generate the fiber of E on C.

Proof. The proof is a direct generalization of the proof of Proposition 3.14 in [11] for

N -pairs without parabolic structures. We first show that if (E, s) is δ-semistable,
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then s : ONC → E generically generate the fiber of E on C. Suppose s does not

generically generates the fiber of E, then it spans a proper subbundle E ′ ( E.

Denote the induced quotient pair by (E ′′, {f ′′p }, s′′), where E ′′ = E/E ′ and s′′ = 0.

Then

µpar(E
′′, s′′) = µpar(E

′′) ≤ dpar(E
′′) ≤ dpar(E) <

dpar(E) + δ

n
= µpar(E, s)

which contradicts with the δ-semistability of (E, s).

We conclude the proof by showing that if s : ONC → E generically generates the

fiber of E, then (E, s) is δ-stable. Let E ′ be a proper subbundle (equivalently, a

saturated subsheaf) of E. Then s /∈ H0(E ′ ⊗ ONC ) because s generically generates

the fiber of E. Hence, µpar(E
′, s′) = µpar(E

′). We only need to show that dpar(E
′) ≤

dpar(E). If this holds, we have

µpar(E
′, s′) = µpar(E

′) ≤ dpar(E
′) ≤ dpar(E) <

dpar(E) + δ

n
= µpar(E, s),

and it implies that (E, s) is δ-stable. To prove dpar(E
′) ≤ dpar(E), we consider the

underlying parabolic bundle (E, {fp}) of the parabolic N -pair. Suppose the Harder-

Narasimhan filtration of (E, {fp}) with respect to the parabolic slope of parabolic

bundles is given by

0 ( (E1, {f 1
p}) ( (E2, {f 2

p}) ( · · · ( (Ek, {fkp }) = (E, {fp}).

Here (E1, {f 1
p}) is the maximal destabilizing parabolic subbundle of (E, {fp}). For

all subbundle E ′ ⊂ E, one has µpar(E
′) ≤ µpar(E1). Hence we only need to show
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that dpar(E1) ≤ dpar(E). Consider the exact sequence

0→ Ek−1 → E → E/Ek−1 → 0.

Since N sections generically generate the fiber of E, the bundle E/Ek−1 has non-

trivial sections. Thus dpar(E/Ek−1) ≥ 0. By the properties of the Harder-Narasimhan

filtration, we obtain µpar(Ei/Ei−1) > µpar(E/Ek−1) ≥ 0 for i < k. By induction, we

assume that dpar(E/Ei) ≥ 0 for i < m. Then from the exact sequence

0→ Em/Em−1 → E/Em → E/Em−1 → 0,

it follows that dpar(E/Em) = dpar(Em/Em−1) + dpar(E/Em−1) ≥ 0. In particular, it

shows that dpar(E/E1) ≥ 0 and hence dpar(E1) = dpar(E)−dpar(E/E1) ≤ dpar(E).

Let MQ(d, n,N) be the Grothendieck’s Quot scheme which parametrizes quo-

tients ONC → Q→ 0, where Q is a coherent sheaf on C of rank n and degree d. Let

0 → F → ON → Q → 0 be the tautological exact sequence of universal bundles

over MQ(d, n,N) × C. We denote by E = F∨. Let I = {p1, . . . , pk} be the set

of marked points and let Flmp(Epi) be the relative flag variety of type mpi , where

Epi = E|MQ(d,n,N)×{pi}. We define

FlQuot = Flm1(Ep1)×MQ(d,n,k) · · · ×MQ(d,n,k) ×Flmk(Epk).

By Lemma VI.32, the moduli space of δ-stable parabolic N -pairs is isomorphic to

FlQuot when δ > (n− 1)dpar.



146

6.4 Perfect obstruction theory

In this section, we show that for a generic value of δ, the moduli space of δ-

stable parabolic N -pairs Mpar,δ

C (Gr(n,N), d, a) has a canonical perfect obstruction.

We construct a virtual structure sheaf on the moduli space and discuss its basic

properties.

The following proposition follows from Proposition VI.17 and the same argument

as in [68, Proposition 1.12].

Proposition VI.33. The morphism q locally factorizes as the composition of a closed

embedding followed by a smooth morphism.

Let Mpar
C (Gr(n,N), d, a)

ι−→ M
p−→ Bunpar

C (d, n, a) be a local factorization of the

forgetful morphism q : Mpar
C (Gr(n,N), d, a) → Bunpar

C (d, n, a). Denote by I the

ideal sheaf of Mpar
C (Gr(n,N), d, a) → M . Let Ω be the relative cotangent sheaf

of M → Bunpar
C (d, n, a) and let Lq be the cotangent complex of the morphism q.

Then the truncated cotangent complex τ≥−1Lq is isomorphic to [I|Mpar
C (Gr(n,N),d,a) →

Ω||Mpar
C (Gr(n,N),d,a)].

Let Ē be the universal bundle over Mpar
C (Gr(n,N), d, a)× C. Let

π̄ : Mpar
C (Gr(n,N), d, a)× C →Mpar

C (Gr(n,N), d, a)

be the projection and let ω̄ be the relative dualizing sheaf of π̄.

Proposition VI.34. There is a canonical morphism

E• := Rπ̄∗((Ē∨)N ⊗ ω̄[1])→ Lq
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which induces a relative perfect obstruction theory for q : Mpar,δ
C (Gr(n,N), d, a) →

Bunpar
C (d, n, a).

Proof. The same arguments used in [68, Proposition 2.4, Proposition 2.6] work here.

Proposition VI.35. The relative perfect obstruction theory E• → τ≥1Lq induces an

absolute perfect obstruction theory on Mpar,δ

C (Gr(n,N), d, a).

Proof. For simplicity, we denote the smooth stack Bunpar
C (d, n, a) by B. Consider

Mpar,δ

C (Gr(n,N), d, a)
q−→ B→ SpecC.

We have a distinguished triangle of cotangent complexes

Lq∗LB → LMpar,δ
C (Gr(n,N),d,a)

→ Lq → Lq∗LB[1].

By Proposition VI.34, we have a canonical morphism g : E• → Lq which induces the

relative perfect obstruction theory for q. We define F • to be the shifted mapping

cone C(f)[−1] of the composite morphism:

f : E• → Lq → Lq∗LB[1].

By the axioms of triangulated categories, we have a morphism F • → LMpar,δ
C (Gr(n,N),d,a)

.

The moduli stack B = Bunpar
C (d, n, a) is a fiber product of flag bundles over

the moduli stack of vector bundles Bunpar
C (d, n, a). Therefore, Bunpar

C (d, n, a) is

smooth and the cotangent complex LB is isomorphic to a two-term complex con-

centrated at [0,1]. Also note that H1(LMpar,δ
C (Gr(n,N),d,a)

) = 0 because the moduli
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space Mpar,δ

C (Gr(n,N), d, a) is a scheme. Then it is straightforward to check that

this induces a perfect obstruction theory on Mpar,δ

C (Gr(n,N), d, a).

Remark VI.36. Let TB be the tangent complex of B, dual to LB. By the definition

of F •, we have a distinguished triangle

F • → E• → L∗qLB[1]→ F •[1].

By taking its dual, we have

L∗qTB[−1]→ (E•)∨ → (F •)∨ → L∗qTB.

It induces a long exact sequence of cohomology sheaves

0→ H0(L∗qTB[−1])→ H0
(
(E•
)∨

)→ H0
(
(F •)∨

)
→

→ H1(L∗qTB[−1])→ H1
(
(E•)∨

)
→ H1

(
(F •)∨

)
→ 0.(6.14)

Let z = (E, s) ∈ Mpar,δ

C (Gr(n,N), d, a) be a closed point and let t = [E] ∈ B.

The fiber of the locally free sheaf H1(L∗qTB[−1]) at z is isomorphic to Ext1(E,E)

and the fiber H0(L∗qTB[−1])|z is isomorphic to the infinitesimal automorphism group

Ext0(E,E). The fiber H i
(
(E•)∨

)
|z can be identified with

(
Hi(E)

)N
for i = 0, 1. Let

Hi = Hi+1(ParEnd(E)→ E⊗ONC ) be the hypercohomology groups, for i = 0, 1. We

have the following long exact sequence of hypercohomology groups

(6.15)

0→ H0(ParEnd(E))→ (H0(E))N → H0 → H1(ParEnd(E))→ (H1(E))N → H1 → 0.
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Comparing with (6.14), we can identify the stalks H i
(
(F •)∨

)
|z with the hypercoho-

mology groups Hi, for i = 0, 1.

Corollary VI.37. If the degree d is sufficiently large such that µpar(E, s) > 2g−1+

|I|+ δ. Then the moduli space Mpar,δ

C (Gr(n,N), d, a) is smooth.

Proof. If µpar(E, s) > 2g− 1 + |I|+ δ, then by Lemma VI.13, we have H1(E) = 0. It

follows from the long exact sequence (6.15) that the obstruction space H1 vanishes.

Therefore, the moduli space is smooth.

Corollary VI.38. For generic δ, the moduli space of δ-stable parabolic N-pairs

Mpar,δ

C (Gr(n,N), d, a) has a virtual structure sheaf

Ovir

Mpar,δ
C (Gr(n,N),d,a)

∈ K0(Mpar,δ

C (Gr(n,N), d, a)).

Proof. The corollary follows from Proposition VI.35 and the construction in [53, §2.3].

We describe an equivalent construction here. By Proposition VI.35 and Definition

2.2 in [64], one can define a virtual pullback:

q! : K0(B)→ K0(Mδ

C(Gr(n,N), d)).

The virtual structure sheaf is defined as

Ovir

Mpar,δ
C (Gr(n,N),d,a)

= q!(OB),

where OB is the structure sheaf of B.

The following lemma shows that there are natural embeddings between moduli

spaces of stable parabolic N -pairs of different degrees.
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Lemma VI.39. Let D be an effective divisor whose support is disjoint from the

set I of ordinary markings. If (E, s) is a δ-(semi)stable parabolic N-pair, then

so is (E(D), s(D)). Here s(D) is defined as the composition ONC ↪→ ONC (D)
s−→

E(D). Conversely, if φ vanishes on D and (E, s) is δ-(semi)stable, then so is

(E(−D), s(−D)).

Proof. The lemma follows easily from the the fact that for any vector bundle F , we

have

µpar(F (D)) = degD + µpar(F ).

Let dD be the degree of D. Lemma VI.39 shows that there is an embedding

(6.16) ιD :Mpar,δ

C (Gr(n,N), d, a) ↪→Mpar,δ

C (Gr(n,N), d+ ndD, a).

In fact, we can choose D such thatMpar,δ

C (Gr(n,N), d, a) is the zero locus of a section

of a vector bundle on Mpar,δ

C (Gr(n,N), d + ndD, a). Suppose that D is the sum of

dD distinct points x1, . . . , xdD on C. Let E ′ and E be the universal bundles over

Mpar,δ

C (Gr(n,N), d, a) × C and Mpar,δ

C (Gr(n,N), d + ndD, a) × C, respectively. We

define a vector bundle ED on Mpar,δ

C (Gr(n,N), d+ ndD, a) by

ED =

dD⊕
i=1

Exi ,

where Exi := E|Mpar,δ
C (Gr(n,N),d+ndD,a)×{xi}

denotes the restriction of the universal bun-

dle E to the point xi.
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Proposition VI.40. There is a canonical section SD ∈ H0(E⊕ND ), induced by the

universal N-pair S : ON → E, and the image of ιD is the scheme-theoretic zero

locus of SD. Moreover, we have the following relation between the virtual structure

sheaves:

ιD∗Ovir

Mpar,δ
C (Gr(n,N),d,a)

= λ−1((E∨D)⊕N)⊗Ovir

Mpar,δ
C (Gr(n,N),d+ndD,a)

in K0(Mpar,δ

C (Gr(n,N), d+ ndD, a)).

Proof. The canonical section SD is defined by the restrictions of the universal N -pair

to {xi}, i.e.,

SD =
(
S|Mpar,δ

C (Gr(n,N),d+ndD,a)×{xi}

)
i∈I .

Suppose Z is the zero-scheme of SD. Then the restriction of the universal N -pair to

Z × C factors:

ONZ×C
S′−→ E|Z×C(−D) ↪→ E|Z×C .

By Lemma VI.39, the section S ′ defines a family of stable parabolic N -pairs over

Z×C. Hence S ′ induces a morphism Z →Mpar,δ

C (Gr(n,N), d, a) which is inverse to

ιD. This proves the first part of the proposition.

For simplicity, we denote byMd andMd+ndD the moduli spacesMpar,δ

C (Gr(n,N), d, a)

and Mpar,δ

C (Gr(n,N), d+ ndD, a), respectively. Consider the following commutative

diagram.

Md Md+ndD

Bunpar
C (d, n, a) Bunpar

C (d+ ndD, n, a)

ιD

q′ q

t
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The morphism t is defined by mapping a parabolic bundle E to E(D). Notice

that it induces an isomorphism between Bunpar
C (d, n, a) and Bunpar

C (d + ndD, n, a).

Therefore, we can identify these two moduli stacks of parabolic vector bundles by t

and use B to denote both of them. Consider the morphisms

Md
ιD−→Md+ndD

q−→ B.

Let q′ = q ◦ ιD. Let π : C ×Md+ndD → Md+ndD and π′ : C ×Md → Md be the

projection maps. By abuse of notation, we denote by ιD the embedding of C ×Md

into C ×Md+ndD . By Proposition VI.34, we have two relative perfect obstruction

theories

E• := Rπ∗((E∨)N ⊗ ω[1])→ Lq

and

E ′• := Rπ′∗((E ′
∨
)N ⊗ ω[1])→ Lq′ .

Here ω is the pullback of the dualizing sheaf of C to the universal curve via the

projection map. Consider the following short exact sequence

0→ E ′ → ι∗DE → ED → 0,

where ED =
⊕dD

i=1 Exi . It induces a distinguished triangle

(
Rπ′∗(ι

∗
DEN)

)∨ → (
Rπ′∗((E ′)N)

)∨ → (END )∨[1]→
(
Rπ′∗(ι

∗EN)
)∨

[1].

By Grothendieck duality and cohomology and base change, we have
(
Rπ′∗(ι

∗
DEN)

)∨
=

Lι∗DE• and
(
Rπ′∗((E ′)N)

)∨
= E ′•. By the axioms of triangulated categories, we obtain
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a morphism

(END )∨[1]→ LιD ,

and the following morphism of distinguished triangles.

Lι∗DE• E ′• (END )∨[1] Lι∗DE•[1]

Lι∗DLq Lq′ LιD Lι∗DLq[1]

over Md. It follows from the long exact sequences in cohomology that (END )∨[1] →

LιD is a perfect obstruction theory for ιD. Recall that Ovir
Md+ndD

= q!OB and Ovir
Md

=

(q′)!OB. By the functoriality property of virtual pullbacks proved in [64, Proposition

2.11], we have

ι!DOvir
Md+ndD

= Ovir
Md
.

Let 0ED : Md+ndD → E⊕ND be the zero section embedding. Consider the following

Cartesian diagram.

Md Md+ndD

Md+ndD E⊕ND

ιD

ιD 0ED

SD

Using the fact that virtual pullbacks commute with push-forward, we obtain

ιD∗Ovir
Md

= 0!
EDSD∗O

vir
Md+ndD

.

Note that SD∗ = 0ED∗, since the two sections are homotopic. The proposition follows

from the excess intersection formula in K-theory (c.f. [26, Chapter VI]).
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6.5 (δ = 0+)-chamber and Verlinde type invariants

When δ is sufficiently close to 0, the stability condition stabilizes. We refer to it

as the (δ = 0+)-chamber. The theory of the GLSM at (δ = 0+)-chamber is related

to the theory of semistable bundles in an explicit way. We describe this connection

in this section.

We first consider the case without parabolic structures. We assume the genus of

C is greater than 1, i.e., g > 1. Let δ+ be the smallest critical value. For δ ∈ (0, δ+),

we denote the moduli space of δ-stable parabolic N -pairs by M0+

C (Gr(n,N), d). It

is not difficult to check for 0 < δ < δ+,

• If (E, s) is a δ-stable pair then E is a semistable bundle.

• Conversely, if E is stable, then (E, s) is δ-stable for any choice of nonzero

s ∈ H0(E ⊗ONC ).

Let UC(n, d) be the moduli space of S-equivalence classes of semistable vector bundles

of rank n and degree d (cf. [52]). From the analysis above, we have a forgetful

morphism

q :M0+

C (Gr(n,N), d)→ UC(n, d),

which forgets N sections. Let [E] ∈ UC(n, d) be a closed point where E is a stable

bundle. Then (E, s) is δ-stable for any nonzero N sections s. Hence the fibre of q over

[E] is PH0(E). If d > n(g − 1), then any bundle E must have non-zero sections by

Riemann-Roch. Therefore the image of the forgetful morphism q contains the non-

empty open subset U s
C(n, d) ⊂ UC(n, d) parametrizing isomorphism classes of stable
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vector bundles. Note that M0+

C (Gr(n,N), d) is proper and UC(n, d) is irreducible.

Hence we have shown that q is surjective if d > n(g − 1).

In the case (n, d) = 1, there are no strictly semistable vector bundles and the

moduli space U(n, d) is smooth. Moreover, there exists a universal vector bundle

Ẽ → U(n, d)×C such that for any closed point [E] ∈ U(n, d), the restriction Ẽ |C×[E]

is a stable bundle of degree d, isomorphic to E. Note that the universal Ẽ is not

unique since we can obtain other universal vector bundles by tensoring Ẽ with the

pullback of any line bundle on U(n, d). Let ρ : U(n, d) × C → U(n, d) be the

projection map. Using the same arguments as in the proof of Lemma V.5, one can

show that R1ρ∗ Ẽ = 0 if d > 2n(g − 1). In this case, ρ∗Ẽ is a vector bundle over

U(n, d). Let P((ρ∗Ẽ)⊕N) be the projectivization of (ρ∗Ẽ)⊕N .

Proposition VI.41. [11, Theorem 3.26] Suppose (n, d) = 1 and d > 2n(g − 1).

Then we have an isomorphism

M0+

C (Gr(n,N), d) ∼= P((ρ∗Ẽ)⊕N).

Moreover, the above identification gives an isomorphism between the universal N-

pair (E , S) and (q∗(Ẽ)⊗O(1), S ′), where S ′ is induced by the tautological section of

the anti-tautological line bundle O(1) on the projective bundle P((ρ∗Ẽ)⊕N).

Similar results hold for moduli spaces of δ-stable parabolic N -pairs, when δ is

sufficiently small. Let δ+ be the smallest critical value. When 0 < δ < δ+, we have

• If (E, {fp}, s) is a δ-stable parabolicN -pair then (E, {fp}) is a parabolic semistable

bundle.
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• Conversely, if (E, {fp}) is stable, then (E, {fp}, s) is δ-stable for any non-zero

choice of s ∈ H0(E ⊗ONC ).

Let U(n, d, a,m) be the moduli space of S-equivalence classes of semistable parabolic

bundles of rank n, degree d and parabolic type (a,m). For δ ∈ (0, δ+), we denote

the moduli space of δ-stable parabolic N -pairs by Mpar,0+

C (Gr(n,N), d, a).

Theorem VI.42. Suppose µpar(E) > 2g− 1 + |I| and there is no strictly semistable

parabolic vector bundle in U(n, d, a,m). Then for 0 < δ < δ+, we have an isomor-

phism

Mpar,0+

C (Gr(n,N), d, a) ∼= P((ρ∗E)⊕N),

where ρ : C×U(n, d, a,m)→ U(n, d, a,m) is the projection map. Moreover, the above

identification gives an isomorphism between the N-pairs (E , S) and (q∗(Ẽ)⊗O(1), S ′),

where S ′ is induced by the tautological section.

Proof. The proof is identical to the proof of Theorem VI.41.

6.5.1 Verlinde invariants and parabolic GLSM invariants

We first recall the definition of theta line bundles over moduli spaces of S-equivalence

classes of semistable parabolic bundles. Then we generalize it to the moduli space

of δ-stable parabolic N -pairs.

Recall that I = {p1, . . . , pk} is the set of ordinary marked points. Let P′l ⊂ Pl be

the subset of partitions λ = (λ1, . . . , λn) satisfying λ1 < l. Let λ = (λp1 , . . . , λpk),

where λpi = (λ1,pi , . . . , λn,pi) is a partition in P′l, for 1 ≤ i ≤ k. For each partition
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λp, p ∈ I, let rp = (r1,p, . . . , rlp,p) be the sequence of jumping indices of λp (i.e.

l > λ1,p = · · · = λr1,p,p > λr1,p+1,p = · · · = λr2,p,p > . . . ). For 1 ≤ i ≤ lp, let mi,p =

ri,p−ri−1,p. We define the parabolic weights ap = (a1,p, . . . , alp,p) by aj,p = l−1−λrj,p,p

for 1 ≤ j ≤ lp. The assumption λpi ∈ P′l ensures that alpi ,pi < l. Let a = (ap)p∈I and

m = (mp)p∈I be the parabolic type determined by λ. In the following discussion, we

will denote the parabolic type by λ.

Let U(n, d, λ) denote the moduli space of S-equivalence classes of semistable

parabolic vector bundles of rank n, degree d and parabolic type λ. We recall the

construction of U(n, d, λ) and we will use the same notations as in Section 6.3. The

family of semistable parabolic vector bundles is bounded. Therefore there exists a

sufficiently large m ∈ N such that for any semistable parabolic bundle (E, {fp}), it

can be realized as a quotient q : H0(E(m))⊗OC(−m) � E. Let V be a vector space

of dimension χm := χ(E(m)). Define an open subset Z ′ ⊂ Quotn,dC (V ⊗ OC(−m))

which consists of points [q] such that the quotient sheaf E is locally free and q in-

duces an isomorphism V
∼−→ H0(E(m)). For each marked point p ∈ I, we consider

the restriction of the universal quotient sheaf Ẽp := Ẽ |Z×{p}. Let Flmp denote the flag

bundle of Ẽp of type mp = (mi,p). Define T to be the fiber product

T := Flmp1 ×Z · · · ×Z Flmpk .

Given a parabolic type λ, one can choose a SL(V )-linearized ample line bundle L′

such that the moduli space of semistable parabolic vector bundles of type λ is the
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GIT quotient

U(n, d, λ) = T ss //L′ SL(V )

where T ss denotes the open semistable locus in T .

We assume that

ld− |λ| ≡ 0 modn.

Recall that di,p = ai+1,p − ai,p for 1 ≤ i ≤ lp, where alp+1,p := l − 1. Let Q̃i,p be the

universal quotient bundle of rank ri,p =
∑i

j=1 mj,p over Flmi . Set

e =
ld−

∑
p∈I
∑lp

i=1 di,pri,p

n
+ l(1− g).

Notice that
∑lp

i=1 di,pri,p = n(l−1)−|ap| = |λp|. Let π : T ×C → T be the projection

to the first factor. Let x0 ∈ C be the distinguished marked point which is away from

I. Following [62], we consider the following line bundle over T :

ΘẼ =
(
detRπ∗(Ẽ)

)−l ⊗⊗
p∈I

L̃mp ⊗ (det Ẽx0)e

where L̃mp are the Borel-Weil-Bott line bundles defined by

L̃mp =

lp⊗
i=1

det Q̃di,pi,p .

The calculation in the proof of [62, Théorème 3.3] shows that ΘẼ descends to a line

bundle Θλ → U(n, d, λ). Global sections of Θλ are called generalized theta functions

and the space of global sections H0(Θλ) is isomorphic to the dual of the space of

conformal blocks (cf. [8] and [62]). The GL Verlinde numbers are defined to be Euler

characteristics of the type χ(U(n, d, λ),Θλ) (see [58]).
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The following lemma shows that we can define similar theta line bundles on the

moduli spaces of parabolic N -pairs.

Lemma VI.43. Let E be the universal bundle over Mpar,0+

C (Gr(n,N), d, λ)×C and

let q :Mpar,0+

C (Gr(n,N), d, λ)→ U(n, d, λ) be the forgetful morphism. Then we have

the following identification

q∗Θλ =
(
detRπ∗(E)

)−l ⊗⊗
p∈I

Lmp ⊗ (det Ex0)e,

where Lλp are the Borel-Weil-Bott line bundles defined by

Lmp =

lp⊗
i=1

detQdi,pi,p .

Proof. By definition, Θλ is the descent of ΘẼ =
(
detRπ∗(Ẽ)

)−l ⊗ ⊗p∈I L̃mp ⊗

(det Ẽx0)e. Let q̃ : R → T be the flag bundle map, which is in particular flat.

Then we have

q̃∗(ΘE) =
(
detRπ∗(Ẽ)

)−l ⊗⊗
p∈I

L̃mp ⊗ (det Ẽx0)e

=
(
detRπ∗(Ẽ ⊗ OP(1))

)−l ⊗ {⊗
p∈I

L̃mp ⊗OP(1)
}
⊗ (det Ẽx0 ⊗OP(|λp|))e,

which descends to
(
detRπ∗(E)

)−l ⊗⊗p∈I Lmp ⊗ (det Ex0)e,

Parabolic N -pairs can be viewed as parabolic GLSM data. We give the following

definition of parabolic GLSM invariants.
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Definition VI.44. For a generic value of δ and partitions λp1 , . . . λpk ∈ P′l, we define

the δ-stable parabolic GLSM invariant with insertions Vλp1 , . . . , Vλpk by

〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,δ,Gr(n,N)
C,d

= χ(Mpar,δ

C (Gr(n,N), d, λ),
(
detRπ∗(E)

)−l ⊗⊗
p∈I

Lλp ⊗ (det Ex0)e).

In the (δ = 0+)-chamber, to relate the parabolic GLSM invariants with GL

Verlinde numbers, we recall the following result from [13].

Lemma VI.45. [13, Theorem 3.1] Let f : X → Y be a surjective morphism of

projective varieties with rational singularities. Assume that the general fiber of f is

rational, i.e., f−1(y) is an irreducible rational variety for all closed points in a dense

open subset of Y . Then f∗[OX ] = [OY ] ∈ K0(Y ).

Let U s
C(n, d, λ) ⊂ UC(n, d, λ) denote the (possibly empty) open subset which

parametrizes isomorphism classes of stable vector bundles.

Corollary VI.46. Suppose d > n(g−1) and U s
C(n, d, λ) is non-empty. Then the (δ =

0+)-stable parabolic GLSM invariants are equal to the corresponding GL Verlinde

numbers, i.e.,

〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,δ,Gr(n,N)
C,d = χ(U(n, d, λ),Θλ).

Proof. According to [71, Theorem 1.1], the moduli space U(n, d, λ) is a normal pro-

jective variety with only rational singularities. Let [E] be a closed point in U(n, d, λ),

where E is a stable parabolic bundle. Then the fibre of q over [E] is PH0(E). When
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d > n(g − 1), any bundle E must have non-zero sections by Riemann-Roch. There-

fore the image of the forgetful morphism q contains the non-empty open subset

U s
C(n, d, λ) ⊂ UC(n, d, λ). Since M0+

C (Gr(n,N), d) is proper and UC(n, d, λ) is irre-

ducible, the morphism q is surjective. Then the corollary follows from Lemma VI.43,

Lemma VI.45 and the projection formula.

Remark VI.47. It follows from [72, Proposition 4.1] that U s
C(n, d, λ) is non-empty if

(6.17) (n− 1)(g − 1) +
|I|
l
> 0,

where |I| is the number of marked points. This condition is automatically satisfied

when g ≥ 2. When g = 1, we require |I| to be non-empty. Therefore, inequality

(6.17) is a primarily a condition for the genus 0 case.

We end this section by studying the relation of parabolic GLSM invariants with

respect to the embedding (6.16).

Lemma VI.48. Let E and E ′ be the universal bundle over Mpar,δ

C (Gr(n,N), d +

ndD, λ)× C and Mpar,δ

C (Gr(n,N), d, λ)× C, respectively. Denote the corresponding

Borel-Weil-Bott line bundles by Lλp and L′λp, respectively. Let Dd =
(
detRπ∗(E ′)

)−l⊗⊗
p∈I L

′
λp
⊗ (det E ′x0

)e
′

and Dd+nk =
(
detRπ∗(E)

)−l ⊗⊗p∈I Lλp ⊗ (det Ex0)e be the

corresponding determinant line bundles. Then

ι∗DDd+nk = Dd ⊗
(
(det Ex0)kl ⊗ (det ED)−l

)
.

Proof. Consider the short exact sequence

0→ E ′ → ι∗DE → ED → 0.
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Then we have

ι∗DdetRπ∗(E) = detRπ∗(E ′)⊗ det ED

and

ι∗DLλp = L′λp , ι∗DEx0 = E ′x0
.

This concludes the proof.

Corollary VI.49. We have

χ(Md,Dd ⊗Ovir
Md

) = χ(Md+ndD ,Dd+ndD ⊗ λ−1(E∨D)N ⊗Ovir
Md+ndD

).

Proof. Using the same argument as in the proof of [72, Theorem 3.1], one can show

that (det Ex0)kl⊗ (det ED)−l and the trivial sheaf O are algebraically equivalent. The

corollary follows from Proposition VI.40 and Lemma VI.48.

6.6 Parabolic δ-wall-crossing in rank two case

In this section, we prove Theorem I.10 in the rank two case. According to Remark

VI.8, when n = 1, the moduli space of δ-stable parabolic N -pairs is independent of

δ. In fact, by Theorem VI.42, the moduli space of δ-stable parabolic N -pairs of rank

1 is isomorphic to a projective bundle over U(1, d, a,m) for all δ. Therefore, the

δ-wall-crossing is trivial in the rank one case.

Let us restate Theorem I.10 in the rank 2 case.
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Theorem VI.50. Assume n = 2. Suppose that N ≥ 2 + l, d > 2g − 2 + k, and δ is

generic. Then,

〈det(E)e|Vλp1 , . . . , Vλpk 〉
l,δ,Gr(2,N)
C,d

is independent of δ.

The proof of the above theorem is very similar to the one given in Section 5.2. We

fix the degree d and the parabolic type a. For a critical value δc, the underlying vector

bundle of a strictly δc-semistable parabolic N -pair (E, s) must split: E = L ⊕M

where L,M are line bundles of degrees d′ and d′′, respectively, and s ∈ H0(L⊗ONC ).

Let a′ and a′′ be the induced parabolic structures on L and M , respectively. Then

the following equalities hold:

d′ + δc +
|a′|
l

=
d+ δc

2
+
|a|
2l
, and(6.18)

d′′ +
|a′′|
l

=
d+ δc

2
+
|a|
2l
.(6.19)

Since L has non-zero sections, we have d′ > 0. The equality (6.18) implies that

δc < d+
|a| − 2|a′|

l
≤ d+ k,

where k = |I| is the number of ordinary marked points.

Let ν > 0 be a small real number such that δc is the only critical value in

[δc − ν, δc + ν]. For simplicity, we denote by M+
δc

(resp., M−
δc

) the moduli space

Mpar,δc+ν

C (Gr(n,N), d, a) (resp., Mpar,δc−ν
C (Gr(n,N), d, a)). Let W+

δc
be the sub-

scheme ofM+
δc

parametrizing (δc + ν)-pairs which are not (δc − ν)-stable. Similarly,
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we denote byW−δc the subscheme ofM−
δc

which parametrizes (δc−ν)-pairs which are

not (δc + ν)-stable.

Let (E, s) be an N -pair in W−δc . It follows from the definition that there exists a

short exact sequence

0→ L→ E →M → 0,

satisfying the following properties:

1. L,M are line bundles of degree d′ and d′′, respectively, such that d′ + d′′ = d.

2. s ∈ H0(L⊗ONC ).

3. d′+δc+ |a′|/l = (d+δc)/2+ |a|/(2l), where a′ is the induced parabolic structure

on L. Equivalently, we have d′′ + |a′′|/l = (d+ δc)/2 + |a|/(2l), where a′′ is the

induced parabolic structure on M .

Notice that L and M are unique since L is the saturated subsheaf of E containing

s. Similarly, for a parabolic pair (E, s) inW+
δc

. There exists a unique sub line bundle

M of E of degree d′′ which fits into a short exact sequence

0→M → E → L→ 0.

Here s /∈ H0(M ⊗ONC ) and the degree d′′ satisfies d′′+ |a′′|/l = (d+ δc)/2 + |a|/(2l).

Let L̃d′ be a Poincaré bundle over Picd
′
C × C and let p : Picd

′
C × C → Picd

′
C

be the projection. If d′ > 2g − 1, the higher derived image R1p∗L̃d′ = 0. Let

U = (R0p∗L̃d′)N . We define Zd′ := PU × Picd
′′
C. Let Md′′ be a Poincaré bundle

over Picd
′′
C ×C. Note that H0(Picd

′
C,EndU) = H0(Picd

′
C ×C,U∨⊗ L̃d′ ⊗ON) =
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H0(PU × C,OPU(1) ⊗ L̃d′ ⊗ ON). The identity automoprhism of U gives rise to

a tautological section of Ld′ ⊗ ON , where Ld′ := OPU(1) ⊗ L̃d′ . This tautological

section induces an injective morphism g : Md′′L−1
d′ → Md′′ ⊗ ON . Let a′ and a′′

be parabolic weights such that (6.18) and (6.19) hold. Let Ld′,a′ and Md′′,a′′ be the

unique parabolic line bundles corresponding to Ld′ andMd′′ , respectively. Note that

we have an injection

i : ParHom(Ld′,a′ ,Md′′,a′′) ↪→ Hom(Ld,,a,,Md′′,a′′).

Let f be the composition g◦i. Denote by Fd′,a′ the cokernel of f . Let π : Zd′×C → Zd′

be the projection. By abuse of notation, we use the same notationsMd′′,a′′ and Ld′,a′

to denote the pullback of the corresponding universal line bundles to Zd′ × C.

The flip loci W±δc are characterized by the following proposition.

Proposition VI.51. Assume (d − δ)/2 − k > 2g − 1 for δ ∈ [δc − ν, δc + ν]. Let

V+
d′,a′ = R0π∗(Fd′,a′) and V−d′,a′ = R1π∗(ParHom(Md′′,a′′ ,Ld′,a′)). Then the flip loci

W−δc is a disjoint union tW−d′,a′, where (d′, a′) satisfies (6.18) andW−d′,a′ is isomorphic

to

W−d′,a′ ∼= P
(
V−d′,a′

)
.

Similarly, the flip loci W+
δc

is a disjoint union tW+
d′,a′, where W+

d′,a′ is isomorphic to

W+
d′,a′
∼= P

(
V+
d′,a′

)
.

Let q± : W±d′,a′ → Zd′ be the projective bundle maps. Then the maps W±d′,a′ → M
±
δc

are regular embeddings with normal bundles q∗±V∓d′,a′(−1). Moreover we have the
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following two short exact sequences of universal bundles

0→q̃∗−Ld′,a′ → E−δc |W−d′,a′×C → q̃∗−Md′′,a′′ ⊗OW−
d′,a′

(−1)→ 0,(6.20)

0→q̃∗+Md′′,a′′ ⊗OW+
d′,a′

(1)→ E+
δc
|W+

d′,a′×C
→ q̃∗+Ld′,a′ → 0,(6.21)

where E±δc are the universal bundles over M±
δc

and q̃± :W±d′,a′ ×C → Zd′ ×C are the

projective bundle maps.

Proof. The proposition is a straightforward generalization of [73, (3.7)-(3.12)]. We

sketch the proof here. By definition, we have tautological extensions of parabolic

vector bundles

0→q̃∗−Ld′,a′ → E−d′,a′ → q̃∗−Md′′,a′′ ⊗OW−
d′,a′

(−1)→ 0

0→q̃∗+Md′′,a′′ ⊗OW+
d′,a′

(1)→ E+
d′,a′ → q̃∗+Ld′,a′ → 0

over P
(
V−d′,a′

)
and P

(
V+
d′,a′

)
, respectively. By the universal properties of W±d′,a′ , the

tautological extensions induce injections W±d′,a′ → M
±
δc

. Next, we show that these

injections induce the following exact sequences:

0→ TP
(
V−d′,a′

)
→ TM−

δc
|P(V−

d′,a′ )
→ V+

d′,a′(−1)→ 0,(6.22)

0→ TP
(
V+
d′,a′

)
→ TM+

δc
|P(V+

d′,a′ )
→ V−d′,a′(−1)→ 0.(6.23)

Let (E, s) be a point in the image of W−d′,a′ . Let (L, s′) be the destabilizing sub-pair

and let M be the corresponding quotient line bundle. By Corollary VI.37, the moduli

spacesM±
δc

are smooth. The tangent space ofM−
δc

at (E, s) can be described by the
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hypercohomology

H1
(
ParEnd(E)→ E ⊗ONC

)
.

By using the standard deformation argument, one can show that the tangent space

T(E,s)P
(
V−d′,a′

)
is given by the hypercohomology

H1 = H1
(
ParHom(M,E)⊕OC → L⊗ONC

)
.

Here the first component of the morphism is the composition ParHom(M,E) ↪→

Hom(M,E)→ OC
s′−→ L⊗ONC and the second component of the morphism is given

by s′. The vanishing of the hypercohomology groups H0 and H2 of the complex

ParHom(M,E)→ L⊗ONC can be obtained by studying the long exact sequence of

hypercohomology groups

0→ H0 → H0(ParHom(M,E))⊕ C→ (H0(L))N →

→ H1 → H1(ParHom(M,E)⊕OC)→ (H1(L))N → H2 → 0.

Here H0(ParHom(M,E)) = 0 because E is a nonsplit extension of M by L and

H0(ParHom(M,L)) = 0. The morphism from C to (H0(L))N is injective since it is

multiplication by φ. Therefore H0 = 0. It follows from the assumption (d−δ)/2−k >

2g − 1 that d′ > 2g − 1 and hence H1(L) = 0. Therefore H2 = 0.

The short exact sequence (6.22) follows from the hypercohomology long exact

sequence of the following short exact sequence of two-term complexes.

0 ParHom(Md′′,a′′ , E−d′,a′(−1))⊕O ParEnd(E−d′,a′ , E
−
d′,a′) ParHom(Ld′,a′ ,Md′′,a′′(−1)) 0

0 Ld′,a′ ⊗ON E−d′,a′ ⊗ON Md′′,a′′(−1)⊗ON 0
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One can prove the short exact sequence (6.23) similarly. By using the standard

deformation argument, one can show that the tangent space T(E,s)P
(
V+
d′,a′

)
is given

by the hypercohomology

H1 = H1
(
ParHom(L,E)⊕OC → E ⊗ONC

)
.

Here the first component of the morphism is defined by sending the n sections of L

to n sections of E and the second component of the morphism is defined by s. Then

(6.23) follows from the hypercohomology long exact sequence of the following short

exact sequence of complexes.

0 ParHom(Ld′,a′ , E+
d′,a′)⊕O ParEnd(E+

d′,a′ , E
+
d′,a′) ParHom(Md′′,a′′(1),Ld′,a′) 0

0 E+
d′,a′ ⊗ON E+

d′,a′ ⊗ON 0 0

To prove Theorem VI.50, we need the following lemma.

Lemma VI.52. Let Dδc,± =
(
detRπ∗(E±δc)

)−l ⊗⊗p∈I Lλp ⊗ (det (E±δc)x0)e. Then

1. the restriction of Dδc,− to a fiber of P(V−d′,a′) is O(lδc/2), and

2. the restriction of Dδc,+ to a fiber of P(V+
d′,a′) is O(−lδc/2).

Proof. By (6.20), the restriction of (E−δc)x0 to a fiber of P(V−d′,a′) is O(−1) and the

restriction of detRπ∗(E−δc) is O(χ(M)), where χ(M) = d′′+ 1− g is the Euler charac-

teristic of M . The restriction of Lλp =
⊗lp

i=1 detQdi,pi,p is O(−(l− 1) + |a′′p|). So D−d′,a′
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restricts

O(−e+ lχ(M)−
∑
p∈I

(l − 1− |a′′p|))

=O
(
− dl − 2(l − 1)k + |a|

2
+ ld′′ − k(l − 1) + |a′′|

)
=O

(
lδc
2

)
.

Assertion (2) can be proved similarly.

Proof of Theorem VI.50. The proof is similar to the proof of Theorem V.11. We

only sketch it here.

Case 1. We assume that (d− δ)/2− k > 2g − 1 when δ is sufficiently close to δc.

Then M±
δc

are smooth. By using similar arguments as in the proof of [73, (3.18)],

one can show that there exists the following diagram.

M̃δc

M−
δc

M+
δc

p− p+

Here p± are blow-down maps onto the smooth subvarieties W±d′,a′ ∼= P
(
V±d′,a′

)
, and

the exceptional divisors Ad′,a′ ⊂ M̃d′,a′ are isomorphic to the fiber product Ad′,a′ ∼=

P
(
V−d′,a′

)
×Zd′ ×P

(
V+
d′,a′

)
.

Since p± are blow-ups in smooth centers, we have (p±)∗([OM̃δc
]) = [OM±δc ]. By the

projection formula, we have

(6.24) χ(M±
δc
,Dδc,±) = χ(M̃δc , p

∗
±(Dδc,±)).
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We only need to compare p∗±(Dδc,±) over M̃δc . Note that the restriction ofOAd′,a′ (Ad′,a′)

to Ad′,a′ is OP(V+
d′,a′ )

(−1)⊗OP(V−
d′,a′ )

(−1). Therefore by Lemma VI.52, we have

p∗−(Dδc,−) = p∗+(Dδc,+)

(
− lδc

2
Aδc

)
,

where Aδc =
∑

(d′,a′) Ad′,a′ . For 1 ≤ j ≤ lδc/2, we have the short exact sequence

0→ p∗+(Dδc,+)(−jAd′,a′)→ p∗+(Dδc,+)(−(j − 1)Ad′,a′)(6.25)

→ p∗+(Dδc,+)⊗OAd′,a′ (−(j − 1)Ad′,a′)→ 0.

Define

D̃d′,a′

=
(
detRπ∗(Ld′,a′)⊗ detRπ∗(Md′,a′)

)−l ⊗⊗
p∈I

L̃λp ⊗ (det (Ld′,a′)x0 ⊗ det (Md′,a′)x0)e.

Then by Lemma VI.52, the restriction of Di,+ to Ad′,a′ is D̃d′,a′ ⊗ OP(V+
d′,a′ )

(−lδc/2).

By taking the Euler characteristic of (5.4), we obtain

χ(M̃δc , p
∗
+(Dδc,+)(−(j − 1)Ad′,a′))− χ(M̃δc , p

∗
+(Dδc,+)(−jAd′,a′))

=χ

(
Ad′,a′ , D̃d′,a′ ⊗OP(V+

d′,a′ )

(
− lδc

2
+ j − 1

)
⊗OP(V−

d′,a′ )
(j − 1)

)
for 1 ≤ j ≤ lδc

2
.

Let n+
d′,a′ be the rank of V+

d′,a′ . By using the Riemann-Roch formula and (6.1), one

can easily show that

n+
d′,a′ = N(d′′ + 1− g)− (d′′ − d′ + 1− g) +ma′,a′′ ,

where ma′,a′′ is the number of marked points p such that a′p > a′′p. A simple cal-

culations shows that n+ > lδc/2 when l ≤ N − 2. Hence every term in the Leray
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spectral sequence of the fibration Pn
+
d′,a′−1 → Ad′,a′ → P(V−d′,a′) vanishes. It implies

that χ(M±
δc
,Dδc,±) = χ(M̃δc , p

∗
±(Dδc,±)) when (d− δ)/2− k > 2g − 1.

Case 2. When (d − δc)/2 − k ≤ 2g − 1, the moduli spaces M±
δc

are singular. As

before, we choose a sufficiently large integer t such that (d−δ)/2−k+t > 2g−1 when δ

is sufficiently close to δc. Let D = x1+· · ·+xt be a divisor, where xi are distinct points

on C away from I ∪ {x0}. We denote the moduli spaces Mpar,δc±ν
C (Gr(n,N), d, a)

and Mpar,δc±ν
C (Gr(n,N), d + 2t, a) by M±

δc,d
and M±

δc,d+2t, respectively. Let E± and

E ′± be the universal vector bundles onM±
δc,d
×C andM±

δc,d+2t×C, respectively. By

Lemma VI.39, there are embeddings ιD :M±
δc,d

↪→M±
δc,d+2t such that ι∗(Ovir

M±δc,d
) =

λ−1((E ′∨± )D)⊗OM±δc,d+2t
. By Corollary VI.49, it suffices to show that

χ
(
M−

δc,d+2k,D
′
δc,− ⊗ λ−1(((E ′∨− )D)N)

)
= χ

(
M+

δc,d+2k,D
′
δc,+ ⊗ λ−1(((E ′∨+ )D)N)

)
.

The above equality can be proved using the same argument as in the proof of Case

2 in Theorem V.11. We omit the details.



BIBLIOGRAPHY

172



BIBLIOGRAPHY

[1] Dan Abramovich, Alessio Corti, and Angelo Vistoli. Twisted bundles and admissible covers.
Comm. Algebra, 31(8):3547–3618, 2003. Special issue in honor of Steven L. Kleiman.

[2] Dan Abramovich, Tom Graber, Martin Olsson, and Hsian-Hua Tseng. On the global quotient
structure of the space of twisted stable maps to a quotient stack. J. Algebraic Geom., 16(4):731–
751, 2007.

[3] Dan Abramovich, Tom Graber, and Angelo Vistoli. Algebraic orbifold quantum products. In
Orbifolds in mathematics and physics (Madison, WI, 2001), volume 310 of Contemp. Math.,
pages 1–24. Amer. Math. Soc., Providence, RI, 2002.

[4] Dan Abramovich, Tom Graber, and Angelo Vistoli. Gromov-Witten theory of Deligne-
Mumford stacks. Amer. J. Math., 130(5):1337–1398, 2008.

[5] Mina Aganagic, Edward Frenkel, and Andrei Okounkov. Quantum q-Langlands correspon-
dence. Trans. Moscow Math. Soc., 79:1–83, 2018.

[6] Mina Aganagic and Andrei Okounkov. Quasimap counts and Bethe eigenfunctions. Mosc.
Math. J., 17(4):565–600, 2017.

[7] Sharad Agnihotri. Quantum cohomology and the Verlinde algebra. Ph.D. Thesis, University
of Oxford, 1995.

[8] Arnaud Beauville and Yves Laszlo. Conformal blocks and generalized theta functions. Comm.
Math. Phys., 164(2):385–419, 1994.

[9] Kai Behrend and Yuri I. Manin. Stacks of stable maps and Gromov-Witten invariants. Duke
Math. J., 85(1):1–60, 1996.

[10] Prakash Belkale. Quantum generalization of the Horn conjecture. J. Amer. Math. Soc.,
21(2):365–408, 2008.

[11] Aaron Bertram, Georgios Daskalopoulos, and Richard Wentworth. Gromov invariants for
holomorphic maps from Riemann surfaces to Grassmannians. J. Amer. Math. Soc., 9(2):529–
571, 1996.

[12] Hans U. Boden and Yi Hu. Variations of moduli of parabolic bundles. Math. Ann., 301(3):539–
559, 1995.

[13] Anders S. Buch and Leonardo C. Mihalcea. Quantum K-theory of Grassmannians. Duke Math.
J., 156(3):501–538, 2011.

173



174

[14] Weimin Chen and Yongbin Ruan. Orbifold Gromov-Witten theory. In Orbifolds in mathematics
and physics (Madison, WI, 2001), volume 310 of Contemp. Math., pages 25–85. Amer. Math.
Soc., Providence, RI, 2002.
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