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ABSTRACT

The design of reliable combustors is a crucial aspect of propulsion and energy

production applications: a faulty engine could cost human lives and millions (if not

billions) of dollars. In practice, it is unreasonable to expect all devices to be exten-

sively tested for all operating conditions that they will experience. The set of possible

conditions is large, and the state of the device itself can evolve during its lifetime.

Yet, deviations from normal behavior, or extreme events, should be appropriately

accounted for during the design and the operation of the combustor.

In this work, a theoretical approach for the prediction of extreme events is pre-

sented. A classification of failures is proposed, and predictive questions that pertain

to the failures are identified. This framework guides the work done in this thesis and

is tailored to pave the way of future developments that are not addressed here. Two

different routes for the prediction of extreme events are explored: one which attempts

to characterize the dynamics of a system, and one which attempts to quantify the

statistics of a failure.

The target of the first route (dynamical system approach) is to provide an un-

derstanding of the process through which a failure occurs so that the design can be

adjusted to inhibit a failure. To this end, the Lyapunov analysis is examined in the

context of turbulent reacting and inert flows from different angles. The convergence

of the Lyapunov exponents with respect to the numerical discretization is examined.

Lyapunov exponents are used to quantify the complexity of the attractor and the

Lyapunov vectors are used to characterize the response of the flow to perturbations.

The objective of the second route (statistical approach) is to quantify the statistics

xxvi



of the failure. In particular, the main focus is on obtaining the probability of a rare

extreme event. This is achieved by estimating the trajectory leading to a rare event.

The uniqueness of this work lies in the comprehensive approach to extreme event

prediction that is developed. While the work is mostly illustrated with target prob-

lems relevant for turbulent combustion, it has applications in other complex and

high-dimensional problems.
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CHAPTER I

Approaching the problem of extreme events

In all industrial applications where some form of combustion is used, the combus-

tor is arguably one of the most critical components. Not only does it allow the device

to function since it provides the necessary source of energy, but it also operates in

fragile conditions. Consider an aircraft engine illustrated in Fig. 1.1. Here, the air in-

take enters the jet engine at conditions that are not favorable for combustion (around

0.4 atm and 265 K [17]). Before entering the combustion chamber, the air intake

needs to be pressurized in order to lead to stable combustion, which is the role of the

compressor. However, flight conditions may vary over time, while the compressor is

designed for some range of conditions only. Changes of the airflow at the inlet of the

engine can end up generating unstable conditions for the combustor. They can be due

to an external agent entering the combustor (for instance, a bird or ice), or simply

because the airplane flies into turbulent air [18]. In case an engine does not behave

as it should, damage can occur inside the engine (when equipment is exposed to high

temperatures) and outside the engine. The latter situation occurred, for example,

in the Southwest Airlines Flight 1380 in 2018, when debris from the engine cracked

open a cabin window [19].

One should bear in mind that no device is perfectly designed, and sooner or later,

failures do occur. In aerospace more than in many other fields, a single failure can
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have unacceptable human and financial consequences. It is, therefore, necessary to

design engines so that such extreme events can be efficiently handled.

Figure 1.1: Schematic of a jet-engine typically used in commercial aircraft [1].

1.1 Motivation: relevance of extreme events

Extreme events in engineering are marked by excursions of a device away from its

design point. The outcome of extreme events is the potential loss of the combustor

and of its load. Despite significant advances in the design of combustors, extreme

events can occur. The purpose of this section is to provide illustrative examples that

will be used throughout the dissertation. Consider the following cases:

• In cruise conditions, aircraft engines can experience flame blow-out. In that

case, the combustor temperature and pressure gradually decrease as the burnt

gas exits the combustor, and the compressor stops. Within a finite amount

of time, the combustor needs to be able to reignite: the longer the combustor

remains extinguished, the more difficult the reignition process. A flame blow-

out is rare but occurs often enough that it is required for aircraft to be equipped

with auto-relight systems [20]. Here, failure to reignite the engine is an extreme

event. The ignition is done by introducing a pocket of high energy (a spark) in

the engine while injecting liquid fuel [21, 5.11]. Depending on the flow properties
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next to the spark (the level of turbulence and the fuel-air mixing), the engine can

either reignite or remain extinguished. In Fig. 1.2, these two scenarios (ignition

success/failure) are illustrated. The time-sequence of the temperature field in

a lab-scale combustor during a relight process is generated using a numerical

simulation [3]. A pocket of high energy is introduced at the bottom left of the

combustor into two different initial turbulent flow fields. In one case, the spark

leads to an ignition (bottom row), while in the other it fails to ignite (top row).

Figure 1.2: Temperature contour in a lab-scale combustor that replicates the relight
process obtained through numerical simulations. Top: example of an
ignition failure. Bottom: example of an ignition success (see [2] and [3]
for additional information about the simulations).

• In stationary gas turbines used on the ground for energy production, fuel is

sometimes diluted with hydrogen. For example, syngas is a fuel used in in-

tegrated gasification combined cycle (IGCC) and is made of a blend carbon

monoxide and hydrogen. While it decreases pollutant emissions and facilitates

carbon capture and storage [22], this dilution has a negative impact on the sta-

bility properties of the flame [23]. In particular, the flame can be so reactive

that it may not remain in the combustion chamber but instead, propagate up-

stream. In swirl combustors, for example, the flame can take advantage of the

low near-wall velocity to creep upstream. This process is called boundary-layer
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flashback. An investigation of this phenomenon in the context of swirl combus-

tors was carried out experimentally in [24] and numerically in [4]. Figure 1.3

illustrates the flashback process using numerical simulation data. There, the

flame front illustrated as the red contour takes advantage of the presence of

a central rod in the mixing tube to propagate upstream. This process can be

triggered when the gas turbine needs to generate more energy, and the operator

increases the ratio of fuel to air, thereby increasing the reactivity of the mixture.

If this situation occurs, severe damages can incur in the gas turbine.

Figure 1.3: Illustration of the boundary-layer flashback process in a labscale swirl
combustor obtained with numerical simulations (see [4] for additional in-
formation about the simulations). Time advances from left to right. The
red iso-surface represents the flame front. The arrow denotes the swirling
motion of the flow.

To ensure safe operations, it is crucial to prevent such extreme events from hap-

pening. One should also note that these extreme events encourage the use of large

safety margins that can significantly affect the efficiency of the combustor. For exam-

ple, in the case of an aircraft engine, while premixed combustion is more efficient and

emits fewer pollutants, non-premixed combustion is preferred for ensuring the stabil-

ity of the combustion zone and avoid a blow-out. A better understanding of extreme

events not only helps designing more reliable combustors but also allows reducing

these safety margins, thereby enabling the design of more efficient combustors.
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1.2 Definition of extreme events

Extreme events or anomalies are not only relevant in aerospace engineering but

also in different contexts, such as oceanic engineering [25, 26], weather forecasting

[27, 28], finance [29–31], mechanical engineering [32] and geophysics [33]. Anomalies

that are studied in these fields originate from different causes and are governed by

different mechanisms, but are commonly referred to as extreme events. The goal of

this section is to provide a unifying mathematical definition.

1.2.1 Theoretical description of extreme events

Broadly speaking, extreme events are characterized by the unusual behavior of a

system. Since extreme events deviate from normal behavior, they are also referred

to as anomalous events. A system can be defined as a set of variables ξ ∈ E, where

E is the space of all states of the systems. In continuous mechanics, E is infinite

dimensional but will be approximated with an appropriate discretization throughout

this work. Typically E = Rn and n >> 1. The systems of interest here are unsteady

and their time evolution is described by a governing equation

dξ

dt
= F(ξ, ζ); ξ(t = 0) = ξ0, (1.1)

where ξ0 is the set of initial conditions for the state-vector, and F is the operator

that describes the time-evolution of the system. Typically, the operator F is obtained

from physics principles. In the present work, the focus is on fluid systems, and the

functional form of F may be derived from the conservation of momentum. Note that

the operator F can depend on variables ζ that are independent of ξ. For example, ζ

can refer to boundary conditions or an external body force. From a practical point

of view, ζ also contains the operating conditions noted I. In general, I is a set of

macroscopic input or such as pressure, mass flow rate, or fuel-split in multi-injection
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combustors. The set I is precisely known since it constitutes the theoretical set

of operating conditions (i.e., the set of conditions the operator wants to enforce).

Throughout this dissertation, systems with open or extended boundaries are of in-

terest. In practical applications, the only information available about the system is

a subset of ξ, which constitutes the observables.

Q : E → Rp (1.2)

ξ 7→ q = Q(ξ).

This equation defines p observables obtained for the system, where Q is an oper-

ator that could be non-linear. In particular, the observables can be local or non-local

in physical space, i.e., they can be constructed with values of ξ corresponding to

one or multiple physical space locations. Typical examples of spatially distributed

observables are spatial averages. The observables can also be local or non-local in

time, i.e., they can be constructed with instantaneous or past values of ξ. Typically,

running time-averages are observables non-local in time. In such a case, the inverse

of the operator F is involved in the functional form of Q. An essential subset of

the observables is the set of quantities of interest (QoI), used to quantify the perfor-

mances induced by a particular design. Consider the example of an aircraft engine

in Fig. 1.1. There, ξ is made of the field of flow velocity, the field of species mass

fractions and energy, and ζ are the inlet and outlet boundary conditions for all the

fields. In this case, one is primarily concerned with the thrust of the engine, which is

the QoI in this case. The outputs of the sensors available are the observables of the

system. In the case where a thrust sensor is available, the thrust is both a QoI and

an observable. The definition of an extreme event has to do with the values taken by

observables.
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When the system is not subject to extreme events, the values of the observables

are confined to D ∈ Rp, which defines acceptable values. These acceptable values are

arbitrarily defined by the system designer or user. The boundaries of D are essential

to the definition of an extreme event, and without it, extreme events are simply

nonexistent. A typical example are extreme dissipation events that were observed in

HIT [34]. In HIT flows, the turbulent dissipation rate ε normally oscillates over time.

However, it was found that the magnitude of oscillations could become intermittently

large, which was defined as an extreme event. Without a threshold for the magnitude

of the oscillation of ε, the extreme event would not exist. The definition of an extreme

event is therefore subjective as it requires to properly define the set of acceptable

observables.

1.2.2 Definition of rare events in relation to extreme events

It is noted that extreme events can be rare but do not need to be. If the focus is

an engineering application where the design of the product is final or close to final,

it can be expected that the frequency of an extreme event will be low. However, in

the early stages of design, it is not unreasonable to expect a non-rare extreme event.

The precise definition of a rare event is again subject to interpretation as it depends

on some probability range of a chosen observable.

The lower bound of this probability range depends on the severity of this extreme

event. Below this lower bound, the extreme event is considered a non-relevant as

part of the design. For example, if an extreme event causes cabin turbulence with a

probability lower than once every ten flights, it is irrelevant for the design. However,

if an extreme event leads to an engine explosion, it is relevant if it occurs more than

once every 109 flights. Labeling an extreme event as too rare is important to ensure

that only relevant problems are addressed by the design, but is not straightforward as

it requires to compute the probability of an event that is rarely observed. Techniques
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that accelerate the observations of rare events are crucial to this end, and will be the

object of Chap. VI.

The upper bound of this probability range does not depend on the severity of

the extreme event but on its observability. If using random observations to analyze

the extreme event is possible for a given extreme event, then the extreme event is

non-rare. In turn, if too little data for the analysis can be gathered about the extreme

event through random observations, the extreme event is a rare event, in the sense

that it needs specific treatment. The definition of the upper bound depends on the

type of analysis that is conducted (a different number of observations is needed to

estimate averages and higher order moments), and the cost of an observation (limits

the total number of observations allowed).

Figure 1.4 schematically illustrates the labels of rare and extreme events in relation

to the probability that an observable q exceeds specific threshold values a. The red

line is the lower bound of the probability range that defines a rare event, and the blue

line is the upper bound.

1.2.3 Causality of extreme events as a classifier of extreme events

The definition of extreme events provided in Sec. 1.2.1 is general enough to de-

scribe different scenarios. However, it does not simplify the approach to extreme

events. It is instead preferred here to classify extreme events based on their causality.

Further, the definition is theoretical, and a more illustrative approach is preferred in

this section. Three main types of extreme events are isolated based on their causality

and illustrated using turbulent combustion problems in order to better address the

goals of the dissertation.
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Figure 1.4: Illustration of the relation between rare and extreme events. The prob-
ability that an observable q exceeds a threshold a is plotted ( ) along
with thresholds for the probability upper bound ( ) and lower bound
( ) that define an extreme rare event. The limits between extreme and
non-extreme event (defined a), non-rare and rare events, and rare event
and too rare events (defined by the probability thresholds) are also indi-
cated ( ).

1.2.3.1 Type I: Extreme events associated with a controllable state

The Type I events represent reliable behavior of complex devices. Here, for any

given macroscopic operating condition I, the output is precisely known. In other

words, there is a direct connection between the input state and the output state.

When such behavior is observed, it is possible to develop a map that relates input

to output variables, either through experimental or computational procedures. Once

this map is known, the device can be operated within boundaries such that unwanted

output states are not observed. For instance, when thermoacoustic instabilities are

noted for particular operating conditions, the device can be operated away from these

conditions. For most combustion systems, such an operating map is devised in order

to understand the limits of stability.

In the sense of the above definition, Type I events are extreme but non-rare events.
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Here, operating conditions I themselves could lead to unwanted regimes, where po-

tentially catastrophic behavior is possible. Most studies of combustion instabilities

and transient phenomena in combustion devices have focused on Type I events due

to their easy reproducibility. In particular, Type I events can be readily studied using

experiments, since the outcomes are directly dictated by the operating or boundary

conditions at a macroscopic scale (such as pressure, inflow velocity, boundary layer

thickness, etc.), and can be precisely controlled and/or measured. Type I events are

also leveraged to collect data about a particular phenomenon with a limited num-

ber of observations. For example, the experimental work related to the problem of

boundary layer flashback that was mentioned in Sec. 1.1 falls in the category of the

Type I problems [24]. There, the flashback (the extreme event) is triggered with a

probability equal to 1 by increasing the global equivalence ratio (one of the macro-

scopic input of the system). Other experimental studies of scramjet unstart fall in

the same category [35]. There, an unstart (the extreme event) is triggered with a

probability 1 by a sudden change in the flow outlet condition.

The dimension of I is typically much smaller than that of the dynamical system.

The fact that these inputs are sufficient to guarantee the output state shows that

either a) there occurs a drastic reduction is the true dimensionality of the system, or

b) the output variables are insensitive to much of the state-space of the dynamical

system.

Although relevant for the validation of tools able to capture extreme events, Type

I events are not the object of the analysis conducted in this dissertation. Other types

of events (Type II and III) pose new problems that are related to the dynamics of

the system and that require a new approach.
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1.2.3.2 Type II: Extreme events associated with a non-controllable state

Type II events are related to the imprecise control of the state of the system using

the limited set of input parameters I available. In other terms, for a fixed set of input

parameters, the system can adopt many different states among which, some can lead

to extreme events.

First, an anomalous behavior can stem from imprecise knowledge of the initial

conditions of the system. Turbulence is a typical context in which this uncertainty

would arise. Only macroscopic features of the flow are precisely controlled, while

small scale turbulent fluctuations of the flow field are not. In initial conditions-driven

anomalous events, a finite time horizon is considered. In other words, the short time

evolution of the system matters. More formally, let Q be some threshold for the

observable, and T be some time threshold. During normal operations, q > Q for

t = T . During an anomaly, q ≤ Q for t = T . Such behavior is illustrated in Fig. 1.5.

Most initial conditions lead to normal operating conditions, but at times, an extreme

event can be encountered with a low-probability (highlighted in blue in the figure).

Figure 1.5: Illustration of the an anomaly driven by initial conditions. Most of the
initial conditions lead to a quantity of interest in the normal operating
range q > Q for t = T ( ). Some initial conditions with low-probability
can lead to an extreme event ( ).

11



A practical turbulent combustion example is the relight problem mentioned in

Sec. 1.1. Here, the flame blows out at some operating condition, typically at high-

altitude, and a relight procedure is initiated. Fuel is pumped into the combustor,

and an igniter is used to send in high-enthalpy gases that can ignite and stabilize a

flame. Both experimental [36] and simulation studies [2, 37] show that uncertainty

in igniter output, turbulence state, and fuel-air mixing can lead to failed ignition

events. Figure 1.6 shows the ignition outcome in a lab-scale experiment at fixed

operating conditions. Variations in initial conditions lead to ignition success (top) or

ignition failure (bottom). In other terms, the output cannot be solely controlled with

the input parameters. Here, an anomalous event occurs when too many successive

ignition failures occur, and the engine is too cold to relight.

Figure 1.6: Sequence of line of sight measurement of OH∗ during successful ignition
(top) and ignition failure (bottom). Time advances from left to right.
Reproduced from [5].

Second, an anomalous behavior can stem from imprecise knowledge of the bound-

ary conditions of the system. This aspect is particularly important for open systems

with turbulent boundary conditions. Typically, the mass flow rate of a burner would

be known, but the exact boundary conditions would not be. This imprecision could

leave room for extreme events to occur.

In swirl premixed burners, it was for example observed that at lean equivalence

ratios, a flame could oscillate between two states: one attached to the nozzle and

another detached from the nozzle. This process is illustrated in Fig. 1.7. At the
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moment, it is not entirely clear why the transition from attached to detached flame

occurs, but experimental investigations have hypothesized that it could be due to a

perturbation coming from the inflow [38]. In this scenario, the perturbation would

break the symmetry of the flow field, and subsequently cause the flame detachment.

This explanation suggests that imprecise boundary condition are the cause of this

anomalous behavior.

Figure 1.7: Illustration of the flame transition in a swirl premixed burner with OH
PLIF contours taken at the combustor mid-plane. The OH contour de-
notes the flame location. Left: flame attached to the combustor nozzle.
Right: flame detached from the combustor nozzle. Based on experiments
of [6] and visualization of [7].

1.2.3.3 Type III: Extreme events associated with the nature of the system

dynamics

Extreme events can also occur because the dynamical behavior of the system itself

allows for the existence of such extreme events. Different “pathologies” for the system

dynamics can be identified and are listed below.

Type III-A: Spontaneous bursts

Here, the QoI q exhibits intermittent bursts that constitute extreme events. These

events are periodically encountered, with a non-fixed period, and characterize the

long-term behavior of the system [39]. In other terms, these extreme events are
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naturally encountered by the system as they are part of the underlying dynamics.

Note the frequency of such events can be extremely low and can, therefore, qualify

as a rare event.

In the turbulent combustion parlance, such events are termed intermittent behav-

ior. For instance, soot formation in gas turbine combustors can be highly intermittent.

An illustration of this behavior is provided in Fig. 1.8. The instantaneous contour

of soot volume fraction in a swirl combustor at different times is shown and high-

lights this intermittent behavior, i.e., the spatial and temporal localization of soot

concentration. The production of soot can be considered an extreme event as the

system is required to locally encounter specific conditions over extended periods of

time [8, 40, 41]. Experiments of practical combustors showed that such behavior is

central to the production and transport of soot [42].

Figure 1.8: Instantaneous soot volume fraction snapshots at the center plane of a
swirl combustor every at different times. Reproduced from [8].

Similarly, premixed combustors can exhibit macroscopic transitions that can be

categorized as spontaneous bursts. At fuel-lean conditions, the flame front can, for

example, oscillate between “V”- and “M”-shapes [9, 43] (Fig. 1.9). Such transitions
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can be detrimental for the efficiency and the durability of the combustor [44]. For

example, the flame topology controls the spatial distribution of heat flux to the walls,

and these transitions may expose walls to large heat loads. Numerical simulations

conducted in non-swirling flames by Huang and Yang [45] suggested that this behavior

is a spontaneous process that occurs due to the interaction between the flame and

the outer walls of the combustor.

Figure 1.9: Variation of flame topology that can be encountered in a swirl combustor.
The flow goes from the bottom to top. The flame can alternatively sta-
bilize in a V-shape (left) or M-shape (right). Images are captured using
flame chemiluminescence. Reproduced from [9].

Outside the field of turbulent combustion, this type of events has received con-

siderable attention. In oceanic engineering, the formation of rogue waves has been

studied [26] and was shown to be a spontaneous event using an analogy with the non-

linear Schrödinger equation (NLSE). Other examples of such spontaneous transition

in turbulent flows are extensively discussed in Ref. [46].

Type III-B: Sensitivity to external shocks

In some cases, a system is allowed to adopt multiple irreversible stable states.

Once the system is in a stable macroscopic state, it cannot move to another macro-
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scopic stable state, unless it is subject to an external shock with the proper magnitude

and orientation. Here, a shock is defined as a perturbation of significant amplitude

and localized in time. In principle, an engineering device is designed to remain in

one macroscopic state only. If the device transitions to an undesired state, the con-

sequences can be disastrous. For Type III-B events, the transition may never be

reverted unless another external shock is applied. For aerospace applications, com-

bustor can be expected to operate in a hostile environment where external shocks may

occur. In a more general setting, external shocks can also refer to the modification of

input parameters I of the system, which can be interpreted as a variation of initial

conditions. Systems that lead to different macroscopic behavior depending on their

initial conditions have been reported in many fields (including turbulent combustion),

and are said to exhibit hysteresis.

In turbulent combustion, hysteresis has been reported in swirl combustors. De-

pending on the fuel-air volume ratio (equivalence ratio) at which a swirl combustor

is operated, thermoacoustic instabilities can be observed [47]. In short, thermoa-

coustic instabilities are large pressure oscillations, typically encountered in a closed

combustor, that can damage it in the long run [48]. As a flame front propagates, it

emits acoustic waves that can affect the flame front propagation. Under certain con-

ditions, the pressure oscillations can amplify or fail to damp, eventually destroying

the combustor [48, 49]. In swirl combustors, it was found that if the equivalence ratio

is increased or decreased towards the same end-value, the system can stabilize in a

state where the pressure wave resonate (thermoacoustic instabilities) or are damped.

Examples of such behavior are provided in Ref. [50] and references therein. One of

such hysteresis plots is shown in Fig. 1.10.

This hysteresis phenomenon can be explained by the fact that for specific equiva-

lence ratios, there exist two irreversible stable conditions: one where thermoacoustic

instabilities occur and one where they do not. Depending on the initial conditions
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Figure 1.10: Stability maps of a swirl combustor as a function of the equivalence ratio
for two different swirl angles. Arrows indicate the chronological order of
measurements. Reproduced from [10].

(the direction along which equivalence ratio is varied), the system stabilizes in either

one of these states. In combustion problems, hysteresis is not only limited to swirl

combustors and has also been observed numerically for droplet vaporization. Fig-

ure 1.11 illustrates this effect with the map of the evaporation rate of a droplet as a

function of the Reynolds number of a crossflow. It was found that two different vapor-

ization rates can be observed depending on the direction along which the Reynolds

number is varied [11]. Again, this suggests that for the same Reynolds number, two

stable states for the system are realizable, and each one can be attained depending

on the direction along which the Reynolds number is varied.

Type III-C: Sensitivity to continuous perturbations

On the same note as the previous category, other external perturbations can lead

to extreme events. This time, the case of continuous perturbations is considered, and

refers to perturbations applied to the system, that are typically small and distributed

over time. In this case, the dynamical behavior of the system is not only determined by
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Figure 1.11: Illustration of the multistability phenomenon for droplet vaporization.
In the transition regime, two different vaporization rates are possible at
fixed operating conditions. Reproduced from [11].

the governing equations, but also by the continuous perturbations. This case arises

due to a modeling problem that can never be overcome. The physics of external

perturbations cannot be reasonably incorporated in the model, but without external

perturbations, no extreme event occurs. More formally, Type III-C events occur due

to the imprecise definition of the functional form of the governing equations F .

For instance, Popov et al. [12] studied the onset of thermoacoustic instabilities

due to variability in the acceleration of a rocket. Stable and unstable behaviors of

this system are shown in Fig. 1.12, along with the spectrum of the rocket acceleration

leading to this behavior. The system used there was not deterministic as the pertur-

bations could be neither reasonably assumed to be known a priori, nor functions of

the solution.
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In other studies unrelated to combustion applications, the effect of external per-

turbation was also investigated for the stall of rotorcraft [51]. Similar to the ther-

moacoustic instability due to the acceleration of a rocket, the rotorcraft is exposed

to the wind, which contains some level of variation. These variations act as exter-

nal perturbations and can eventually lead to the stall of the rotorcraft (the extreme

event). Modeling the physics of the wind, on top of that of the rotorcraft would be

impractical. Instead, the system’s dynamics are assumed to be continuously affected

by external perturbations. These examples illustrate how perturbations in the dy-

namics of the system (the functional form of the governing equation F) can lead to

an extreme event.

Figure 1.12: Pressure history of stable (top) and unstable (bottom) configuration in a
model rocket engine exposed to different accelerations. The acceleration
acts as an external perturbation that can drive the system to an unstable
behavior (here, an acoustic instability). Reproduced from [12].

As a final remark, it is noted that the system dynamics can evolve over time
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depending on wear or damages incurred during operations. The changes induced on

the dynamics of the system can lead to an extreme event when the long-term behavior

of the device is different from the one for which it was initially designed. A system

that was not prone to extreme events at the beginning of operation can be exposed

to all Type III events after.

1.3 Definition of prediction

Extreme events pose unique modeling challenges and require to precisely define

the notion “prediction” in this context. In fact, the predictive questions that are

posed determine not only the algorithms used but the level of expert input needed.

These questions constitute the grand challenges of extreme events prediction. Below,

a nominal set of prediction targets are discussed. These predictions questions are

relevant for Type II and III events, which are the main focus.

1. Predict for real-time control:

In practical systems, actuation could be used to push the system away from

an anomalous event, if it could be predicted sufficiently ahead of time. Doing

so requires to identify precursors for such events using some of the observables,

and devise an actuation mechanism that could annihilate the extreme event.

2. Estimate the probability of an event:

For design purposes, it is useful to determine the probability of encountering a

pre-determined anomalous event. For instance, if for safety reasons the ignition

time for high-altitude relights Tig should not exceed T , then estimating the

probability P (Tig > T ) is a useful design metric. Here again, the models and

techniques used to compute these probabilities should reflect the underlying

reasons for the variability in the ignition.

3. Predict unencountered events:
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A remarkable use of computational tools will be the ability to predict unen-

countered anomalous events. In other words, if q is not adequately defined,

is there a way to determine events that fall outside the normal range of their

values? Such tools will be ultimately useful in prognosis of devices in the con-

text of maintenance, repair and overhaul (MRO), where decisions are informed

primarily through the use of device-generated data [52].

4. Bound quantities of interest:

Safeguarding against failure is one of the primary design constraints. In this

sense, being able to predict the worst outcomes possible, or more precisely,

provide bounds on quantities of interest would be a valuable tool.

5. Understand how an extreme event occurs:

In order to design devices for which some extreme events do not occur, it is

necessary to understand the root cause of a particular anomaly. Understanding

the process leading to the extreme event can also guide the modeling procedure,

the search of precursors, or help generate more observational data when the

extreme event is rare.

1.4 The importance of computations in the study of extreme

events

Each of the examples provided in Sec. 1.2.3 can result in a complete failure of the

propulsion system. The obvious solution in design is to consider choices that remove

such events. However, this is not a fail-proof solution for two main reasons. First,

turbulent systems are chaotic, which means that small perturbations can exponen-

tially amplify over time. Understanding the onset of bursting events in statistically

stationary systems requires to identify what infinitesimal perturbation could lead to

an extreme event, and be able to track its evolution. Such an approach is not feasible
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using experimental approaches as it requires small temporal and spatial resolution of

the flow field. Second, turbulent combustion systems exhibit a broad range of scales

(typically from molecular scales to meters) and are coupled with a multitude of other

devices. Therefore, a system can fail or reach a catastrophic state in a myriad of ways.

All such paths cannot be exhaustively accounted for during design. More critically,

it may not be possible to thoroughly search all such possibilities, since certain events

may be catalyzed by conditions that are present only during operation. For instance,

the effect of operational cycles on the combustor or particular changes to fuel com-

position may not have been anticipated during the design phase. As a result, even a

conservative design based on known failure modes cannot completely guarantee that

other paths to failure have been considered.

In the case where the existence of catastrophic failures is known based on prac-

tical observations, there exists minimal data that can be used to derive a reasonable

estimation of the underlying physics. Engineering systems are in general not designed

to fail, and if a failure occurs, it is usually a rare event. Unlike in statistically sta-

tionary processes, experiments that can produce a significant statistical ensemble for

practical systems are not a valuable option. As a result, very limited experiments

exist for the problems mentioned in Sec. 1.1 for instance ([24, 35] for the boundary

layer flashback, and [36] for the relight problem).

Computational tools are indispensable in a way that is fundamentally different

from other conventional uses. Without models, certain quantities of interest for ad-

dressing such failure events are just not accessible. However, models and their outputs

also have to be fundamentally different since the targets of simulations are now dif-

ferent.
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1.5 Summary

In this chapter, extreme events were mathematically defined and illustrated with

practical examples. An important contribution of the present work is the classification

of extreme events, which is meant to be a practical tool for the analysis of an extreme

event in engineering systems. It is advocated against trying to unify the definition of

extreme events, and it is instead encouraged to distinguish different types of extreme

events. A causality-based classification of extreme events is formulated for the first

time, and is illustrated using examples drawn from turbulent combustion applications.

It is also emphasized that the definition of prediction should be revisited as the

predictive questions that pertain to extreme events of Type II an III significantly

differ from the ones corresponding to more traditional design problems. The new

predictive questions require to develop and deploy new tools, which is the object of

the rest of the dissertation.

1.6 Scope of the dissertation

With this background, the dissertation is organized around two main approaches

to tackle the problem of extreme event prediction. First, the dynamical approach is

presented to gain knowledge about the process through which a bursting event might

occur in a statistically stationary flow. Second, a statistical approach is presented to

extract a probabilistic description of the extreme event. The dissertation is organized

as follows:

Chapter II: In the next chapter, the use of the dynamical systems approach

for studying extreme events is introduced. In particular, the subtle link between

numerical simulations of turbulent combustion systems and dynamical systems is

described. The classification of extreme events presented in Chapter I is revisited

from a dynamical system perspective. Existing methods to answer the predictive

23



question presented in Chapter I are briefly described. In particular, the concept

of Lyapunov analysis is introduced, and it is shown how it can provide a route for

answering most of the questions posed.

Chapter III: Given the potential of Lyapunov analysis for studying extreme

events, the computation of Lyapunov exponents is examined more closely. The con-

vergence properties of the Lyapunov exponents in the context of turbulent flows is

precisely assessed for the first time using a new convergence procedure. A suite of

numerical tests from 1D problems to 3D turbulent flows is conducted. The conver-

gence properties of Lyapunov exponents are obtained for the first time in this section.

Furthermore, a method to bypass numerical issues in the computation of Lyapunov

exponents is introduced in this chapter.

Chapter IV: The dynamical properties of turbulent flows are examined by ap-

plying the Lyapunov analysis on a triply periodic homogeneous isotropic turbulent

case that is artificially sustained by an external body force. For the first time, enough

Lyapunov exponents are computed so that complexity of the turbulent flow dynamics

(dimensionality) can be quantified. The scaling of the dimension with respect to the

level of turbulence is also estimated for the first time. The spatial distribution of the

chaotic response of the turbulent flow field is characterized and correlated to various

turbulent quantities. Different forcing schemes are used to sustain the turbulence in

the domain, and the Lyapunov analysis is conducted for each one of these cases. This

chapter illustrates how the Lyapunov analysis can be used to compare the dynamical

properties of different models, rather than only focusing on their statistical properties.

Chapter V: The Lyapunov analysis is applied to a lab-scale turbulent combus-

tion problem. The Lyapunov exponents are used to estimate the complexity of the

turbulent flame dynamics, which can provide a route for creating reduced order mod-

els able to capture extreme events. The origin of chaos in turbulent flames is also

identified and discussed.
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Chapter VI: The method for the computation of rare event probability is in-

vestigated. Through the concept of importance splitting, which will be presented

in the section, rare event probability in the context of turbulent combustion can be

estimated. A new method for efficiently applying importance splitting for oscillatory

quantities is proposed and tested on a canonical problem. A priori tests are also

conducted on a turbulent reacting flow.

Chapter VII: The main findings of the dissertation are summarized, and an

outlook on the problem of extreme event prediction is provided. Directions for future

work in this emerging field are also outlined.
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CHAPTER II

Dynamical system perspective of extreme events

The prediction of extreme events involves a range of questions that require a

corresponding range of tools that can be grouped into methods based on either the

dynamical or the statistical approach. In the dynamical approach, the goal is to char-

acterize the dynamical behavior of the system, such as its response to perturbations

or its stability properties. There, the goal is to understand the root cause of an ex-

treme event so that real-time prediction and actuation can be used. In the case of a

man-made system, this approach can help design new devices that are more resilient

to excursions away from normal behavior. In the statistical approach, the goal is to

obtain a statistical description of an extreme event. For example, one can ask what

the probability of a rare event is in order to design a system that is resilient enough

to this rare event during its lifetime. Another application could be to understand

the average behavior of the system close to a rare event, in which case, one could

also create indicators for real-time prediction. Chapter III-V are dedicated to the

dynamical approach and Chapter VI discusses a statistical approach.

In this chapter, the main purpose is to introduce tools that can be used for charac-

terizing the dynamics of a system. Section 2.1 describes more formally what is meant

by a dynamical system approach and why it is peculiar in the context of turbulent

combustion. In Sec. 2.2, the classification of extreme events is revisited from a dy-
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namical system perspective. Section 2.3 introduces the Lyapunov analysis as a tool

to characterize the dynamics of a system. Applications of the Lyapunov analysis in

the context of extreme events are reviewed in Sec. 2.4.

2.1 The dynamical system perspective in turbulence

Traditionally, numerical simulations of turbulent flows adopt a statistical perspec-

tive as opposed to the dynamical system perspective. This is justified by a number

of reasons related to the modeling and predictive needs of turbulent combustion that

are detailed here.

2.1.1 Definitions

A statistical approach describes a system using an ensemble of observations that

are, in some sense, equivalent. As opposed to this, a dynamical system approach

focuses on the description of individual observations of the system. In the context

of extreme events, adopting a statistical approach is useful to quantify how often it

occurs and to design systems resilient to them. With a dynamical approach, one can

obtain an understanding of the process through which an extreme event occurs, which

can help formulate a design that decreases the extreme event frequency or eliminate

it.

The evolution of a single realization of the system is called a trajectory. The

state of the system ξ evolves in a high-dimensional space E called phase space. The

long-time behavior of the system can be described by a closed subset of the phase

space [53, 54] that is called an attracting set. Starting from an initial condition

within the basin of attraction of this subset, the trajectory of the system ends up

being trapped indefinitely in the attracting set. The attracting set can be made of

disjoint subsets called attractors. The nature of an attractor A and its properties

depend on the governing equations (F in Eq. 1.1), the boundary conditions and the
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operating conditions represented by the variable ζ introduced in Eq. 1.1. Schematic

visualization of these three concepts is shown in Fig. 2.1.

Figure 2.1: Schematic of the phase space representation of a dynamical system. The
plane represents the phase space. The initial condition is represented by
the red dot. The trajectory is shown as a dashed black line. The red
subspace is the attractor A and its basin of attraction is represented in
green and called B.

2.1.2 The multi-scale problem

Before describing further the advantages of both the dynamical and statistical

approaches, the systems of interest are briefly presented. In this dissertation, the focus

in on turbulent combustion. The flow physics is described using the Navier-Stokes

equations that govern the evolution of a velocity field over time. These equations

take the following form

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · σ, (2.1)

where u denotes the velocity vector, ρ denotes the flow density, p the pressure, σ =

µ(∇u + t∇u) − 2
3
µ(∇ · u)I is the viscous stress tensor, µ is the dynamic viscosity

and I is the identity tensor. An additional constraint of mass conservation links the
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velocity and the density field and is expressed as

∂ρ

∂t
+∇ · (ρu) = 0, (2.2)

Energy conservation equation may also be of interest but is not important here

since the low Mach number approximation will be used. Additional justification will

be provided in Sec. 3.2.2. For systems where combustion occurs, it is also advanta-

geous to describe the mixing processes of fuel, oxidizer, and products of the chemical

reaction. The set of governing equations can then be augmented with transport

equations of species mass fraction or other equations (e.g., mixture fraction, progress

variables, etc.) that take the form

∂ρφ

∂t
+∇ · (ρφu) = ∇ · (Dφ∇φ) + ω̇φ, (2.3)

where φ denotes the transported scalar, Dφ denotes mass diffusivity and ω̇φ is a

volumetric source term. Note that the discrete form of these equations can be recast

in the form of Eq. 1.1.

These equations are in part challenging because they involve the interaction of

many different length scales. The multi-scale interaction can be understood by con-

sidering the incompressible version of the Navier-Stokes equation in a 2π × 2π × 2π

periodic domain:

∂u

∂t
+∇ · (uu) = −∇p

ρ
+ ν∇2u, (2.4)

where ν denotes the kinematic viscosity. Note that this equation will be the main

focus of Chap. IV. Using the Fourier decomposition, one can represent the velocity

field as u =
∑
κ û(κ, t)eiκ·x, where κ is the three-dimensional wavenumber, and

û(κ, t) is the velocity mode amplitude. Writing the Galerkin projection of Eq. 2.4,

one obtains

29



∂

∂t
û(κ, t) + ν|κ|2û(κ, t) = κ

NL · κ
|κ|2

−NL, (2.5)

where NL is a the non-linear convective term taking the form of a triadic interaction

as
∑
κ1+κ2=κ iκ · û(κ1, t)û(κ2, t). This equation is useful since it explicitly shows the

multi-scale coupling.

Besides turbulence, combustion processes also lead to multi-scale phenomena. For

example, the chemical reactions can occur at much shorter timescales than turbulence,

while the production of pollutants (e.g., soot) can occur over timescales much larger

than that of the flow field [40].

Numerically integrating the equations aforementioned would, therefore, require

resolving a broad range of timescales and spatial scales and would quickly become

intractable. Instead, it is often desired to integrate only specific scales (typically

the largest ones) that can be assumed to be weakly coupled with other ones, or for

which the dependence with other scales can be modeled. This is the idea of large

eddy simulation (LES) which has been particularly successful in the field of turbulent

combustion (see Ref. [52] and references therein).

2.1.3 Coarse-graining problem and the statistical approach

When only certain degrees of freedom of a system can be numerically integrated

(large scales, for example), one refers to this approach as coarse-graining. More

formally, using the notations of Chap. I, one would write the state of the system as

ξ = ξp + ξq, (2.6)

where ξp denotes the degrees of freedom that are resolved, and ξq denotes the degrees

of freedom that are not resolved. In the case of LES, ξp = ξ, where (.) denotes a

filtering operation.
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Whenever any coarse-graining of the system of equation is involved, the individ-

ual realizations of the unresolved scales are not accessible. Since the dynamics of

the resolved variables depend on the unresolved ones, it is not theoretically possi-

ble to follow the evolution of one individual realization. At best, one can only hope

to approximate the dynamics of the resolved scales averaged over all the possible

unresolved scales. More formally, this corresponds to estimating

F̃(ξp) , 〈
dξp
dt
|ξ = ξp〉. (2.7)

This facet of LES has been recognized by several authors [55–58] who showed that

coarse-graining was rooted in a statistical approach. In part, it justified using LES

for statistically stationary flows and designing models to capture statistical moments

of turbulent combustion fields [59, 60].

However, the statistical definition of LES need not constrain its use for statisti-

cally stationary flows. In fact, LES was originally introduced in the field of weather

forecasting [61, 62] where it was seen that the dynamics of the larges scales could

reasonably approximate the future state of atmospheric flows (over a finite time hori-

zon). Here, the evolution of the flow field needs to be approximated over a finite

amount of time (say several hours). Over this finite amount of time, it is considered

that LES reasonably approximates the dynamics of the original flow-field, for the pur-

poses that it serves [63, 64]. This is a typical example of a dynamical system approach

to numerical simulations. In turbulent combustion, similar approximations have been

introduced recently and proved to be informative of the physics at stake. For exam-

ple, for the problem of boundary layer flashback mentioned in Chap. I, simulation

using direct numerical simulation (DNS) [65] and LES [66] models showed surprising

agreement in terms of the flame shape and speed. For the problem of high-altitude

relight, using LES was sufficient to capture the ignition probability of a wide variety

of fuels [3, 37].
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To summarize, any coarse-graining theoretically prevents one from capturing the

dynamics of individual realizations of the system. In part, it explains why few studies

attempt to characterize the dynamics of turbulent flames. In this work, it is argued

that the ability of LES to reasonably approximate the dynamics of the large scales

suggest that it could be used to characterize the dynamics of turbulent combustion

systems and help understand the formation of extreme events.

2.1.4 Dynamical or statistical prediction

The prominent statistical approach in numerical simulations is not only justified

by the range applicability of existing numerical tools, but also by the needs of design

itself. Many design questions are concerned with the efficiency of the device over long

periods of time. In these cases, the QoI is often a time-average of flow quantities (e.g.,

mean thrust, mean temperature at a location, etc.). If the purpose of a simulation is

to inform about the variation of these QoI when the design is changed, then techniques

such as Reynolds Averaged Navier-Stokes (RANS), where the statistics of the flow

field are directly transported, are sufficient. However, if the goal is to understand

the behavior of the flow field in the presence of a transient process that needs to

be encouraged or mitigated, the statistical approach is not sufficient. Even though

coarse-grained models provide a statistical prediction of the system (Sec. 2.1.3), they

could also play a role in characterizing the dynamics.

Recently, it appeared that coarse-graining approaches could be useful to under-

stand the dynamical behavior of the system. For example, it has been found that

LES was able to capture the onset of thermoacoustic instabilities in combustors and

accurately predict what design could lead to pressure wave resonance [48]. In it-

self, this achievement is surprising, given the approximation error between the actual

realization and the coarse-grained model exponentially increases over time [62].

While the coarse-grained models do not allow to follow the dynamics of an indi-

32



vidual realization exactly, they still provide a useful approximation of the dynamics

of the system. This opens a path to using numerical simulations for purposes differ-

ent than design optimization, such as failure prediction and deviation from nominal

behavior. In the rest of the thesis, the dynamical system point of view will be central

when drawing conclusions about the true dynamics of the system using either DNS

or LES.

2.2 Classification of extreme events from a dynamical sys-

tems approach

In this section, the different classes of extreme events introduced in Chap. I are

revisited and described from a dynamical system perspective. In particular, an inter-

pretation of the behavior of the system in phase space is provided. Note that Type

I events (controllable extreme event) are not reexamined here since the trajectory of

the system is not relevant to the occurrence of an extreme event. No matter what

succession of states is taken by the system, the extreme event only occurs depending

on the input parameters I.

2.2.1 Type II: Extreme events associated with a non-controllable state

In the case where the input parameters I are not sufficient to guarantee that an

extreme event will occur or not, one can illustrate the configuration of phase space

using a ball of uncertainty. Within this ball of uncertainty, some trajectories can

lead to an extreme event. In other terms, a pathological solution in phase space

can be reached by some trajectories that exist within the uncertainty range. This is

illustrated in the case of initial conditions uncertainty in Fig. 2.2.
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Figure 2.2: Illustration of an extreme event driven by imprecise initial conditions.
The dashed area is the range of initial conditions. When a trajectory
intersects the red area, an extreme event occurs. Three trajectories are
illustrated, one leads to an extreme event.

2.2.2 Type III-A: Spontaneous bursts

Spontaneous bursts are experienced intermittently by the system, and occur un-

predictably. Here the extreme event happens during the long-time behavior of the

system and therefore is part of its attractor. In other terms, there exists a patholog-

ical part of the attractor that leads to these spontaneous bursts. The fact that these

bursts repeatedly occur is compatible with their presence on the attractor and is a

consequence of the Poincaré recurrence theorem [67, 68].

This theorem states that for dynamical systems that preserve the measure of the

phase space (see Sec. 2.3.3 for a discussion on this point), for almost all initial condi-

tions, the dynamical system eventually returns infinitely close to its initial conditions.

By shifting the time t = 0 to the time of the first observed burst, the theorem ensures

that the same burst will be observed at later times. A schematic illustration of the

phase-space configuration is provided in Fig. 2.3.
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Figure 2.3: Illustration of an attractor A of a dynamical system that exposes the
system to spontaneous bursts. When a trajectory encounters the blue
region Ap, an extreme burst occurs. Because this region is part of the
attractor, this burst occurs periodically during the life time of the system.

2.2.3 Type III-B: Sensitivity to external shocks

Extreme events driven by external shocks can also be described more intuitively

using a dynamical system approach. These events occur because of the existence

of two disjoint attractors within the attracting set. Depending on which basin of

attraction the initial conditions belong to, the system can be driven to one attractor

or another. This situation is illustrated in Fig. 2.4.

Alternatively, if the system is exposed to external perturbation localized in time,

these external perturbations can drive it towards one basin of attraction or another.

The configuration in phase space would look the same as in the case of variation of

initial conditions.

2.2.4 Type III-C: Sensitivity to continuous perturbations

The last class of event involves an uncertainty on the dynamics of the system

itself. In this case, there is an imprecision on the geometry of the attractor and on

the motion of the system on the attractor. In this case, an extreme event occurs
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Figure 2.4: Illustration of the phase space in which a dynamical system evolves. The
space is partitioned between two attractors A1 and A2 of basins of attrac-
tion B1 and B2. The arrows denote the time evolution of the dynamical
system. Initial conditions are denoted by red dots when they are attracted
by A1 and blue dots when attracted by A2.

Type I Type II Type III-A Type III-B Type III-C

Trigger I δξ0 or δζ none external
shock

δF

Attracting
set

non-
relevant

non-
relevant

existence of
pathology

disjoint at-
tractors

| δA
δF | � 1,

Output
sensitivity

Q(ξ, I) ≈
Q(I)

| δq
δξ0 | � 1

or | δq
δζ
| � 1

∃ξc ∈ A,
| δq
δξ
|ξc | � 1

| ∆q
∆Ai | � 1 | δq

δA | � 1

Table 2.1: Classification of extreme events.

because the outcome is sensitive to small variations in the geometry of the attractor

and in the governing equations.

All the different types of extreme events mentioned here are summarized in Tab. 2.1.

The events are classified based on their triggering mechanism and are enables by the

properties of the attracting set and the sensitivity of the output.

For all of these situations, if the goal is to predict or understand how the extreme

event occurs, it is necessary to use an objective approach to characterize the dynamics

of the system. For statistically stationary systems, this is equivalent to characterizing

its attractor. Characterizing the dynamics of a high-dimensional system is however
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not easy, as the system’s dynamical behavior changes over time as the system travels

through phase space. Therefore, the goal is to find a global metric that describes the

dynamics of the system over its entire trajectory. For this purpose, it is proposed in

this dissertation to use the Lyapunov analysis as a global quantifier of the dynamics

of the system.

2.3 Lyapunov analysis: a tool for characterizing the dynam-

ics of turbulent flows

2.3.1 Characterizing the dynamics with a global approach

Characterizing the dynamics of a system implies describing the way a system

evolves over time, from one point of phase space to another. The first approach is

to determine this behavior over short time scales: starting from one point in phase

space, the goal is to understand the way the system will evolve over a finite time. For

example, this is the main goal of the weather forecasting problem. In this context,

the description of the dynamics is local in the sense that the system starts from one

particular set of initial conditions. Besides its applicability for a finite time only, this

analysis typically requires to perform an ensemble of simulations starting from many

different possible initial conditions [3, 63, 64] as the true initial conditions of the sys-

tem are not exactly known (see Sec. 2.2.1). Another approach describes the dynamics

from a global point of view irrespective of the initial conditions. Global dynamics

can be characterized by identifying, for example, bifurcations [69]. In short, the sys-

tem of equation is parameterized, and one looks for the evolution of the long-time

behavior of the system (its attracting set) as the parameters change. Alternatively,

the global stability properties of equilibrium points can be sought. There, the goal is

to understand the dynamics of the system near equilibrium points by evaluating the

impact of any arbitrary perturbation on the system. These two global points of view
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are at the origin of the Lyapunov analysis.

2.3.2 History of Lyapunov exponents

Among many other contributions, Aleksandr Mikhailovich Lyapunov has had a

profound impact on ways to characterize the global dynamics of a dynamical system.

The field of dynamical systems theory was particularly fertile when Lyapunov worked

on his doctorate thesis. One of his contemporaries being Henri Poincaré who was at

the origin of the Poincaré recurrence theorem mentioned in Sec. 2.2.2. Lyapunov

was particularly interested in characterizing the stability properties of dynamical

systems near equilibrium points. In particular, he introduced different definitions of

stability, including the exponential stability that asserts that some equilibrium points

can attract perturbed solutions of the system at least as fast as some exponential rate.

This exponential rate has commonly been named the Lyapunov exponent (LE).

Lyapunov’s goal was to obtain the stability properties of the system without inte-

grating its governing equations. This motivation led him to introduce the concept of

Lyapunov function [70]. Several decades later, it was found by Oseledet [71] that the

LEs can, in fact, characterize the global dynamics of the system, and not only equi-

librium points. Interestingly, the practical computation of these exponents requires

integrating the governing equations of the dynamical system, contrary to the initial

motivation of Lyapunov. The numerical algorithms for the computations of the LEs

are extensively discussed in Chap. III.

2.3.3 Oseledet’s theorem

Formally, Oseledet’s theorem [71, 72] states the following

Theorem II.1 (Multiplicative Ergodic Theorem (MET)). Let E be a subset of the

phase space and F be a smooth measurable map or flow that preserves the measure

ρ. Let Tξ denote the tangent linear operator of the map F at the point ξ and note
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T nξ = TFn−1ξ · ... · TFξ · TF 0ξ,

then

lim
n→∞

(T n∗ξ T nξ )1/2n

exists, depends on ξ and is written Λξ.

In particular, the eigenvalues of Λξ exist, are noted exp(λ1
ξ) < ... < exp(λpξ) and

correspond to eigenspaces U1
ξ , ..., U

p
ξ .

Let V r
ξ = U1

ξ + ...+ U r
ξ ,

then ∀δξ ∈ V r
ξ \V r−1

ξ

lim
n→∞

1

n
log
∥∥T nξ δξ∥∥ = λrξ.

In the theorem, the measurable map in the theorem is the dynamical system, and

the tangent linear operator is its Jacobian. The notation (.)∗ denotes the adjoint

of an operator. A measure preserving map is such that the image of any subspace

of the phase space by the map does not change the measure of the subspace. This

property is valid for statistically stationary flows and is a consequence of the Liouville

theorem. The power of this theorem lies in the fact that very few assumptions about

the dynamical system are required.

The logarithm of the eigenvalues of Λξ can be interpreted as the exponential rate

(expressed in s−1) at which a perturbation would evolve. For a chaotic system, at

least one strictly positive exponential rate can be found. The largest exponential rate

provides a horizon time over which prediction can be made before an exponentially

growing uncertainty takes over.

2.3.4 The ergodic assumption

Proposition II.2. If the measure ρ is an ergodic measure with respect to the map,

the eigenvalues of Λξ do not depend on ξ.
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Under the hypothesis of ergodicity, any orbital average in phase space is equal to

its time average (see for example Ref. [68]). Therefore, each λrξ is constant along a

trajectory. This result can be shown by recognizing that the temporal average used to

construct the Lyapunov exponents is independent of the starting time. By invoking

the fact that λrξ are continuous functions in phase space and using the Poincaré

recurrence theorem, it can be obtained that the exponents are constant everywhere.

[73].

Note, however, that this property does not guarantee that the eigenvectors are in-

dependent on ξ. In fact, the evolution of the eigenvectors with ξ can help characterize

the dynamics of the system [73].

The question of the applicability of the ergodic assumption to turbulent flows

is examined next. Proving the ergodicity of the system requires to prove that the

orbital average of any function is equal to its temporal average. It is, therefore, easier

to disprove ergodicity than to prove it [68]. Up to now, it is still unclear whether

turbulent flows can be considered ergodic. Nevertheless, some encouraging findings

indicate that it is not unreasonable to assume ergodicity for the systems of interest

[74].

A system that is on its attractor is statistically stationary and will be assumed to

be ergodic. As a result, the eigenvalues of the matrix Λξ are global quantifiers of the

dynamics of the system. These eigenvalues quantify the growth rate of perturbations

in the long-time limit, and are used in this dissertation to characterize the attractor.

2.3.5 Lyapunov exponents

For a dynamical system given by

ξn+1 = F (ξ)ξn, (2.8)

where n denotes the timestep, the r − th Lyapunov exponent is given by

40



lim
n→∞

1

n
log
∥∥T nξ u∥∥

where u ∈ V r
ξ \V r−1

ξ . The LE is defined as a long time limit, and its finite time

counterpart is called a finite-time Lyapunov exponent (FTLE). As opposed to the LE,

which is a global quantity, the FTLE depends on ξ and measures the local expansion

rate of perturbations. Thus, the FTLE are time-varying, and the LE are not.

In this dissertation, the vector u is a field, and in that case, one typically refers

to the associated LEs as quantifiers of Eulerian chaos. There also exists a large

body of literature in fluid mechanics [75, 76], where LEs refer to Lagrangian chaos,

i.e., the deformation rate of fluid particles. From a numerical standpoint, these LEs

are constructed by seeding inert particles that move with the local flow velocity

and measuring their rate of separation in the three spatial directions. The latter

definition of LEs has been popularized by their ability to identify large coherent

structures (LCS), which has important applications in oceanic flows. For example,

it can help tracking the spread of oceanic pollutants and mitigate their impact on

the coast [77]. There exist different ways of computing the Lagrangian LEs, namely

the finite-size method [78, 79] and the finite-time method [80]. An illustration of the

capability of the finite-time method to identify the ridges of the LCS in a turbulent

flow is illustrated in Fig. 2.5. Here, fictional particles are seeded in a periodic box filled

with a turbulent flow with a Reλ = 22, where Reλ represents the Taylor microscale

of the flow. The rate at which particles move away from each other during one

eddy turnover time gives the field of the Lagrangian LE, and the large values of

the Lagrangian LE delineate the ridges of the LCS. Additional details about the

computational methods can be found in Ref. [81].

It is stressed here that while it is tempting to link Lagrangian and Eulerian LEs,

there exists no mathematical equivalence between them. In particular, a chaotic

Eulerian field may not lead to chaotic behavior of particles seeded in it [82]. In
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Figure 2.5: Example of the calculation of the Lagrangian LE for a turbulent flow in
a box with Reλ = 22.

this dissertation, only the Eulerian LEs are considered. Here and in the rest of the

chapters, the set of all the Eulerian LEs is called the Lyapunov spectrum (LS) or the

LE spectrum, unless specified otherwise.

2.3.6 Orthogonal Lyapunov vectors

It can be shown that by defining the matrix Λξ (also called the Oseledet matrix

[73]) using the inverse of the dynamical system, the same Lyapunov exponents can

be recovered. The Lyapunov vectors (the eigenvectors of the Oseledet matrix) can

then be defined in two ways: using the forward or the backward dynamics, respec-

tively leading to the forward Lyapunov vector (FLV) and the backward Lyapunov

vector (BLV). These two sets of vectors are orthogonal since the Oseledet matrices

are symmetric. However, they do not necessarily coincide [73]. An illustration of

this problem is provided in Ref. [83] for a simple system. Intuitively, the first few

positive FLVs describe the perturbations to which the dynamical system is the most

sensitive. The first few positive BLVs describe the chaotic response of the system to
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perturbations.

For reference, these LVs receive a variety of names in the literature. The nomen-

clature orthogonal Lyapunov vector (OLV) [84] is used typically for the backward

Lyapunov vector to distinguish them from other LVs that are not necessarily orthog-

onal. The name Gram-Schmidt vector (GSV) is used [73, 85] in reference to the

numerical method used to compute them (more details in Chap. III).

Overall, the construction of the forward and backward Oseledet matrix adds a

layer of complexity in the definition of the LVs. Since the forward and backward LVs

do not coincide, they cannot, separately from each other, uniquely characterize the

dynamics of the system. Further, the constraint of orthogonality introduces a depen-

dency of these vectors on the definition of the scalar-product used. A more robust

definition of Lyapunov vectors was provided with the introduction of the concept of

the covariant/characteristic Lyapunov vector (CLV) [72].

Proposition II.3. Let vn be a CLV defined at the point ξ in phase space, encountered

at the n-th step.

Then T nvn = Λvn+1,

where Λ is the local expansion rate of the perturbation. The CLVs are said to be

covariant with the dynamics of the system. By construction, the CLVs are defined as

a linear combination of the BLVs in the following way [73, 85]

Proposition II.4. Let vr(ξ) be the r-th CLV and gi(ξ) be the first r BLVs,

then

vr =
r∑
i=1

αigi,

where αi ∈ R.

The BLVs are therefore particularly interesting since they are closely related to

the covariant vectors of the system. This property will be used in Chap. IV to derive
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properties about the CLVs from the BLVs. Further, the BLVs are physically relevant

for the analysis of the system since they belong to the attractor of the system as

opposed to the FLVs [83]. It is, therefore, possible to interpret the BLVs to gain some

understanding of the dynamics of the system when it reaches its attractor. In the

rest of the dissertation, the BLVs will be the main focus of the analysis conducted.

Finally, it is emphasized that unlike LEs, the BLVs are instantaneous quantities and

are not global quantifiers of the system dynamics. Therefore, time averages of the

BLV are necessary to interpret them with a global point of view. This approach is

used in Chap. IV and Chap. V.

2.3.7 Variants of the Lyapunov analysis

Some variants of the Lyapunov analysis are routinely used, mainly to evaluate the

propagation of uncertainties. For example, in weather forecasting problems, most of

the uncertainty about future predictions stems from the imprecise definition of initial

conditions. With time, uncertainties accumulate and need to be quantified.

2.3.7.1 Singular vector method

Starting from the best guess of initial conditions, one can typically estimate the

range of magnitude of error without knowing the distribution of error. The goal is

to find the worst impact of an initial error ε0 on a certain metric for the system at a

later time (after n timesteps). The evolution of any perturbation ε can be described

by the following equation

εn = Lε0, (2.9)

where L is the product of the tangent linear model at the first n timesteps. It can be

shown that the initial perturbation ε0 that maximizes ‖ε
n‖
ε0

, is nothing else than the

first singular vector (SV) of the matrix LTL [86]. This SV is closely related to the
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first FLV but is defined over a finite time interval. In the infinite time limit, the SVs

can be shown to converge to the FLVs [87]. This approach is routinely used by the

European Center for Medium-Range Weather Forecasts (ECMWF) [63] to provide

uncertainty estimates on weather forecasts.

2.3.7.2 Bred vector method

The breeding method is another derivative of the Lyapunov analysis, also used in

the field of weather forecasting. The practical need is the same as mentioned above

(evaluate the uncertainty of future predictions), but the mathematical problem is

different. Instead of trying to find the initial perturbation that would lead to the

largest possible future error, the goal is to find an approximation of the difference

between the true initial conditions and the best initial guess [64]. This is achieved

by using a derivative of the BLV, called the bred Vector (BV). Using the best initial

guess and several possible approximated differences, the forward model is run to

approximate the distribution of the prediction at a later time.

In terms of dynamical system vocabulary, one wants to sample elements of the

attractor that correspond to the sparse measurements available for the initial con-

ditions. For this purpose, the first BLV is a natural choice, since, by definition, it

lies on the attractor. In fact, the calculation of the BVs follows closely that of the

BLVs. This approach is routinely used by the National Center for Environmental

Prediction (NCEP).

2.3.8 Physical interpretation of Lyapunov exponents and vectors

To be of any practical use, the relation between the outcome of the Lyapunov

analysis and physical quantities need to be precisely established. In this section, the

goal is to explain how and to what extent the LE and BLV can be used to illuminate

the dynamics of a physical process.
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The LE (time average of the FTLE) are properties of the system itself (as opposed

to being local properties of the phase-space). The LE can be understood as the

inverse of a timescale over which a perturbation amplifies. When considering the

largest LE, it provides an estimation of the time-horizon over which state predictions

can be done. However, the LE is only an estimate of this horizon time since it

characterizes the growth rate of a perturbation over a long period of time. In practice,

perturbations amplify at different rates depending on the underlying state of a system.

For example, perturbations might amplify faster when a macroscopic transition occurs

in the system [88]. In this work, the focus is solely on the LE since it can indicate

how to appropriately model the dynamics of the system (See Sec. 2.4.1).

The main advantage of BLV is that it allows extracting the unstable and stable

manifold of the system considered. Typically, turbulent flows rely on scale separation

to be representative of stability separation. However, there can be a more clear sep-

aration between unstable and stable modes that can lead to a more clear description

of the dynamics of the system. From a physics point of view, the Lyapunov vectors

can be related to the stability properties of a flow. They allow identifying the parts

of the flow (in physical space) that lead to instability. When the flow experiences a

macroscopic change, the BLV indicate the path that the system follows during the

transition. If the BLV can be related to physical quantities, the cause of the transi-

tion can be explained [88, 89]. The BLV associated with the positive exponents span

the unstable manifold while the ones associated with negative exponents span the

dissipative manifold. It is not a priori possible to assign a particular physical role to

each one of the BLV, just like it is not possible to assign a role to each one of Fourier

modes, or other types of modes.
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2.4 Benefit of Lyapunov analysis for extreme events

The Lyapunov analysis described in the previous section provides tools that can

help characterize the dynamical behavior of the system. These tools are useful for

different aspects of the prediction of extreme events. It is stressed that other tools

could also be useful (the reader is referred to Ref. [90] for an extensive review), but

that the Lyapunov analysis can already cover many different topics. This section de-

scribes how the Lyapunov analysis can be used to answer the five prediction questions

listed in Chap. I.

2.4.1 Predict for real-time control

First, as mentioned earlier, the first LE is related to the growth of initial pertur-

bation over time. It allows quantifying the horizon time over which any prediction

can be made without having initial errors contaminate the result. Therefore the first

LE indicates to what extent predictions can be made about the future state of the

system.

Second, predicting an upcoming extreme event requires to execute a model that

captures the dynamics of the extreme event. As discussed in Sec. 2.1, the coarse-

graining approach is not suited for capturing the full dynamics of the system. Nev-

ertheless, it is necessary to coarse-grain the system in order to make any modeling

approach computationally tractable. A natural question ensues: what is the mini-

mum amount of coarse-graining necessary to capture reasonably well the dynamics of

the system? For a statistically stationary problem, the goal is to find the number of

degrees of freedom that compose the attractor, i.e., the geometric dimension of the

attractor. Incidentally, the Lyapunov exponents can also be used for this purpose,

using the Kaplan-Yorke (KY) conjecture [91].
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Formally, the KY conjecture defines

DKY = i+

∑i
1 λj
|λi+1|

, (2.10)

where DKY is the Kaplan-Yorke dimension, λj denotes the jth LE, and i is the last

index such that
∑i

1 λj ≥ 0. The conjecture states state DKY = DI , where DI is

the information dimension of the attractor. Precise definitions for the information

dimension can be found in Ref. [92]. Intuitively, the information dimension is the

amount of information necessary to locate a point on an ensemble. In the context of

attractors, it is therefore related to the number of degrees of freedom of the system

[93, 94]. This conjecture has proven to be wrong for some systems [95] which have later

been argued to be only pathological. The KY formula can thus provide guidelines

in the design of reduced-order models that still capture the dynamics of the system.

This property of the LE will be exploited in Chap. IV and V.

2.4.2 Predict unobserved events

Ideally, a numerical simulation tailored to capture extreme events should be able

to inform about the existence of an extreme event before it is encountered. While it

is not the focus of this work, it has been demonstrated that the FTLEs can be used

to explore the phase space, in search of extreme events. The technique relies on using

the FTLE as an indicator of the local (in phase space) degree of chaoticity that is

associated with the propensity of an extreme event. Many pairs of walker/crawler are

seeded in phase space and look for the most chaotic part of the attractor until they

isolate outliers. This method is commonly called Lyapunov weighted dynamics (LWD)

and is illustrated for a two-dimensional system in Fig. 2.6. Although this technique

could be used for systems with arbitrarily high dimensions, it has been used only with

smaller systems so far.
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Figure 2.6: Contours denote a potential surface used to construct a dynamical system.
The dots are walkers that explore the phase space in search of the most
chaotic trajectories. Such trajectories are obtained by searching for large
values of short-time Lyapunov exponents. Reproduced from [13].

2.4.3 Bound quantities of interest

If the goal of the extreme event analysis is to find the most extreme scenario at

the final time, the SV analysis (Sec. 2.3.7.1) can, for example, be used. A finite-time

version of the first FLV is computed to find the maximal propagation of uncertainty

for a certain metric. This method is suited for transient problems such as weather

prediction, or the high-altitude relight problem introduced in Chap. I.

2.4.4 Understand how the extreme event occurs

From the LVs, one can extract the response of the system to perturbations (BLVs)

and find the perturbations to which the system is the most sensitive (FLVs). The

CLVs can be extracted from the BLVs and are the directions that expand or contract

under the dynamics. They allow to probe the stability properties of the attractor at
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different points of the phase space and understand how perturbations grow during

the lifetime of the system.

The LVs are particularly powerful to describe the growth of instabilities in flow

fields. For example, using the first BLV, Vastano and Moser [88] found that the

chaotic behavior in a Taylor-Couette flow occurred due to a Kelvin-Helmholtz insta-

bility. Inubushi et al. [89] identified that streamwise vortices were at the origin of

streak regeneration in Couette turbulence. Xu et al. [96] pinpointed the crucial role of

walls in the generation of instabilities in Rayleigh-Bénard convection with side walls.

2.4.5 Estimate the probability of an extreme event

There is at the moment no existing application of the Lyapunov analysis for pre-

dicting the probability of an extreme event. The main issue for probability estimation

of rare events is to sample the phase space efficiently. Additional details and con-

text will be provided extensively in Chap. VI. It can be noted that the work on

BV explained in Sec. 2.3.7.2 can, in fact, serve as a basis for sampling realizations

of turbulent flows. This topic will not be covered in the thesis and is left for future

work, but illustrates other capabilities of the Lyapunov analysis.

2.5 Other approaches for the analysis of extreme events

As explained above, the Lyapunov analysis has applications that range over the

whole spectrum of predictive questions relevant for extreme events (See Chap. I,

Sec. 1.3). Other noteworthy approaches have been introduced in other fields, and

their relevance for turbulent combustion application is evaluated below.

2.5.1 Predict for real-time control

Prediction for real-time control is one of the target questions that has received

the most attention in the past. The main strategy consists in finding a precursor,
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that is, a variable that one can track and which variations inform about an imminent

extreme event. Different types of precursors have been derived.

The first type of precursor is obtained from the underlying mechanism of an

extreme event, when it is well-understood. As an example, Cousins and Sapsis [97]

derived precursors for the occurrence of rogue waves by separating each wave group

and performing the so-called “Gabor transform” which quantifies the rate of change

of the energy of waves. For turbulent combustion applications, similar precursors

have been defined, for example in the case of the swirling flame detachment already

mentioned in Chap. I. Several experimental investigations [6, 38] found that the flame

detachment event was correlated with the existence of a precessing vortex core (PVC).

To predict ahead of time the detachment, it was proposed to track the asymmetry of

the flow field. This kind of precursor could only be obtained because prior knowledge

about the flame detachment mechanism existed. Ad-hoc precursors can be valuable

for turbulent combustion, however only to tackle extreme events that are already

well-characterized.

For problems where little is known about the onset of the extreme events, the

ad-hoc strategy is not suitable and should be replaced by a more systematic proce-

dure. Using the so-called optimally time-dependent (OTD) modes [98], precursors

of extreme dissipation events could be predicted for Kolmogorov flows [99]. Inciden-

tally, OTD modes have also been shown to be intimately related to the BLV [100].

This opens the path to using the outcome of the Lyapunov analysis as a precursor

of extreme events. More recently, Farazmand and Sapsis [101] formulated an opti-

mization problem to find the optimal system state that grows the fastest over a short

period of time. In particular, this rate was constrained to trajectories that lie on the

attractor, which allows for the prediction of spontaneous bursts. This methodology

was applied by Blonigan et al. [102] to predict extreme dissipation in turbulent chan-

nel flows. There, a precursor based on the distance to the optimum was shown to
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be successful at predicting the occurrence of the spontaneous extreme event. These

high-dimensional examples are encouraging for applications to turbulent combustion.

It is, however, unclear whether the precursors provide an optimal horizon time and

are worth the computational investment required.

More practical precursors have been identified in realistic systems using measure-

ment data. In particular, the extreme and non-extreme trajectory of the system in

phase-space can be constructed using experimental measurement and classification

techniques such as clustering [7, 103] or symbolic dynamics [104]. These techniques

can then be useful to detect anomalies ahead of time in realistic systems. However,

the precursors inherently depend on the availability of data, which is not guaranteed

in the case where the extreme event is also rare.

2.5.2 Predict unobserved events

Engineering applications fundamentally differ from geophysics with regard to the

parameters of the system. Operating conditions can be changed depending on the

desired output of the device and can lead to the emergence of extreme events. Unlike

extreme events mentioned in Chap. I Sec. 1.2.3, the extreme behavior here is control-

lable and is only a function of the macroscopic parameters of the problem. In the case

where many parameters can be adjusted, it can be tedious to explore the space of

operating conditions in search of the limit between stable and unstable states. Some

approaches, including the identification of critical states based on growth rates on

the attractors, have been developed [105]. These methods are directly applicable to

combustion problems, as long as the model used is capable of capturing such extreme

events.
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2.5.3 Understand how the extreme event occurs

Anomaly detection techniques that extract the trajectory of the system in its nor-

mal and anomalous operation can also be used to understand how an extreme event

occurs, by simply analyzing its phase-space trajectory. For example, using clustering

techniques [7, 103], it is possible to extract the behavior of a system around the emer-

gence of an extreme event. The limitation is the same as for the precursors: enough

data needs to be collected. These techniques are therefore applicable for extreme

non-rare events. The applicability of data-driven tools is limited to lab experiments

that can reproduce an extreme event with a high frequency. The knowledge gained

about the process that leads to the extreme event can then be hopefully used in a

practical system, where the extreme event is likely rare.

2.6 Summary

In this chapter, the benefit of adopting a dynamical system point of view when

studying extreme events was described. It allows to gain an understanding of the

dynamical behavior of the system and describe the growth of instabilities. The set of

Lyapunov exponents obtained from the Lyapunov analysis can help characterize the

global dynamics of the system and has applications over all the predictive questions

for extreme events that were listed in Sec. 1.3. The Lyapunov vectors characterize

only the local dynamics, and their statistics will need to be extracted in order to derive

global dynamical properties. Unless the finite-time counterpart of LE and LV is used,

this analysis can only be conducted in the context of statistically stationary flows.

By using it on canonical configurations that are relevant for turbulent combustion,

it is hoped that the conclusions about the emergence of extreme events will hold in

non-statistically stationary flows. The rest of the thesis describes how the Lyapunov

analysis can be deployed for statistically stationary turbulent inert and reacting flows.

53



CHAPTER III

Numerical convergence of the Lyapunov spectrum

In Chap. II, the importance of the dynamical system analysis for the prediction

of extreme events was discussed. In particular, the Lyapunov analysis was shown

to be a powerful tool for characterizing the dynamics of a system. In this Chapter,

numerical methods for computing the Lyapunov exponents and Lyapunov vectors are

reviewed. The numerical convergence of the procedure for the problems of interest is

also examined. This chapter is partially based on the work [106].

3.1 Numerical methods for the Lyapunov analysis

The Lyapunov exponents and vectors are defined with respect to the Oseledet

matrix that was introduced in Sec. 2.3.6. Direct construction of this matrix is not

practically feasible since it contains exponentially diverging terms [73, 83]. Instead,

the Lyapunov exponents and vectors should be constructed by resorting to alternative

numerical strategies.

3.1.1 Computing the Lyapunov exponents

The computation of the LEs received most of the attention early on, mainly be-

cause there is less ambiguity in the definition of the LEs compared to the LVs. The

simultaneous seminal work of Benettin et al. [107, 108] and Shimada et al. [109] led to
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the development of a numerical method able to provide the LEs of chaotic dynamical

systems. This method is used throughout the dissertation and is therefore described

in detail below.

Instead of assembling the Oseledet matrix, this method consists of running multi-

ple realizations of the system, each one being a slightly perturbed copy of the reference

simulation. Since the system of interest here is chaotic, any perturbation, no matter

how small initially, will exponentially expand until reaching saturation (see Ref. [110]

for characterization of saturation in the context of Lyapunov analysis). When reach-

ing saturation, no matter its orientation, the perturbation cannot grow because of

the physical constraints of the system. Therefore, it is not possible to compute the

LEs of the system if perturbations reach the saturation state. To avoid saturation

of the perturbations, they are intermittently renormalized. Furthermore, irrespective

of their initial orientations, perturbations tend to align in the direction along which

the system responds the most to them. As a result, numerical problems arise when

distinguishing the growth rates of different initial perturbations. This problem can

be again circumvented by periodically orthonormalizing the perturbations, instead of

simply normalizing them. The orthonormalization procedure is carried out using a

Gram-Schmidt algorithm [111, 112], which led to the naming of Gram-Schmidt vec-

tors introduced in Sec. 2.3.6. Algorithm 3.1 summarizes and formalizes the procedure

explained above. To compute the first m LEs, m+ 1 simulations are evolved simulta-

neously, where m of them are perturbed by δξ about an unperturbed baseline solution

which is also evolved. All simulations are advanced for ks timesteps after which the

m finite-time estimates are computed. The perturbations are then orthonormalized.

After each orthonormalization, m FTLEs are obtained. The LEs are then obtained

by repeating this procedure Ns times and averaging the FTLEs over the Ns cycles.

In the following, Fk is the non-linear operator that advances a solution vector for k

timesteps of size ∆t:
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Algorithm 3.1: Benettin’s algorithm
1: Randomly initialize {δξj}1,m, orthogonal with norm

∥∥δξj∥∥ = ε
2: for i = 1, Ns do
3: for j = 1,m do
4: δξj = Fks(ξ + δξj)−Fks(ξ)
5: end for
6: Orthogonalize [δξ1, ..., δξm].
7: for j = 1,m do

8: Λj = 1
ks∆t

log(
‖δξj‖
ε

)

9: λj = λj + 1
Ns

Λj

10: end for
11: Normalize [δξ1, ..., δξm], with norm ε
12: ξ = Fks(ξ)
13: end for

Fk : ξ(t = t0) 7→ ξ(t = t0 + k∆t) ∀t0 (3.1)

As a side note, the algorithm described above relies on periodically applying ar-

tificial perturbations to copies of the system. Therefore, this algorithm can only be

used when numerical computations are conducted. An approximation of this method

can be formulated for long time-series that can be observed experimentally [113]. Ex-

perimental estimates of the LEs are useful if one wants to validate the LE calculation

or characterize the dynamics of a system without resorting to multiple expensive nu-

merical simulations. In short, the method considers that points on a trajectory that

are close to one another can be interpreted as perturbed states. The deviations of

these two points over time provides an estimate of the local FTLE.

3.1.2 Computing the Lyapunov vectors

Despite containing valuable information about the dynamics of the system (Sec. 2.3),

computations of LVs have received significantly less attention. In fact, the method

outlined in Sec. 3.1.1 was primarily designed to compute the LEs, but also provides

directions for perturbations that correspond to each LE. These directions are used
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to compute the next value of the local FTLE. It was shown decades later [114], that

these perturbations converge in the sense that they are independent of the initial

perturbation, and characterize the phase space at the location ξ. Furthermore, the

perturbations converge to nothing else than the BLVs for the scalar product chosen.

As explained in Sec. 2.3.6, the definition of BLVs is ambiguous as they are not

invariant under time-reversal of the dynamics and they are not uniquely defined:

they are dependent on the scalar product adopted. Recent advances have focused

on methods that could provide the CLVs, which are not as ambiguously defined.

These methods use the SVs [115] or the BLVs themselves, along with the by-products

of the periodic orthogonalization [85]. In this dissertation, the method of Benettin

and Shimada [107–109] will be used for all the cases investigated, and the BLVs are

computed for each one of the cases. When possible, conclusions about the CLVs are

also provided (see Chap. IV).

3.2 Applications of interest

In this section, the numerical procedure used to advance each one of the forward

simulations involved in the calculation of each LE is detailed. In particular, the low

Mach number assumption is used and justified with regard to the end application of

interest.

3.2.1 Low Mach number regime

Many gas turbine applications, especially related to the combustor section, operate

in the low Mach number regime, characterized by velocities smaller than 0.3 Ma,

where the Mach number is defined based on local fluid properties. Even in aircraft

engines, the flow speed close to the flame front is slowed down using recirculation

zones, so that the flame can be stabilized inside the combustor. There, the combustion

also occurs in a low Mach regime.
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In the low Mach regime, the acoustic component of the Navier-Stokes equations is

decoupled from the basic flow physics. Consequently, by reformulating the governing

equations for this low Mach regime, it is possible to go beyond the Courant-Friedrichs-

Lewy (CFL) restriction imposed by the acoustic wave speed (i.e., the local speed of

sound). In many applications, this can amount an order of magnitude increase in the

timestep used.

The method used here for obtaining the LEs requires multiple detailed simulations.

Therefore, it is advantageous to leverage the low Mach regime and decrease the cost of

each simulation. In this work, the Navier-Stokes equations are solved with a low Mach

number solver that suppresses the link between the pressure and other thermodynamic

variables (density, temperature, etc.). In the low Mach assumption, the pressure is

decomposed as p = pth+p′, where p is the pressure, pth is the thermodynamic pressure

(which has an influence on the thermodynamic variables and is held constant), p′ is

the non-constant hydrodynamic pressure and p′ << pth.

Note that if an extreme event involves the dynamics of pressure waves, then a low

Mach solver is not suited for the analysis. Typically, in the case of thermoacoustic

instabilities, the interaction between acoustic waves and the flame front should be

accurately captured. Here, the low Mach solver is only used for problems that do not

require to resolve the dynamics of pressure waves.

3.2.2 Low Mach number solver

Several versions of low Mach number solvers [116–120] have been formulated in

past. The main differences amongst these methods lie in the formulation of pressure

correction, in the arrangement of variables (staggered or collocated), the time ad-

vancement of variables (staggered or not), and discretizations that satisfy secondary

conservation properties (kinetic energy, enstrophy, etc.). Here, the general framework

is described. For variable density flows, the Navier-Stokes equations are written as
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Eq. 2.1 and Eq. 2.2. In many reacting flow applications, energy release from these

chemical reactions is assumed to affect only the internal energy, leading to a change

in density and temperature of the fluid. An important corollary is that in low Mach

number solvers, the density variations are assumed to be entirely decoupled from

pressure fluctuations. For such applications, some techniques parameterize density

changes based on a transported scalar, which describes the thermochemical state

(see, for instance, references within [52, 121]). Here, additional transport equations

of scalar quantities are solved (Eq. 2.3).

The right-hand side of the scalar transport equation is written as RHSφ. The

momentum transport equations are advanced such that continuity is enforced at each

timestep through a projection algorithm. In low Mach number solvers, this pro-

jection is done using the computed pressure field. One such projection algorithm

(semi-implicit fractional timestep [122]) is shown in Algo. 3.2 with Euler time dis-

cretization with a timestep ∆t. Continuous derivatives are used when the details of

the discretization are not relevant to the low Mach procedure. The momentum equa-

tion is advanced in two separate steps: first, an intermediate momentum (also called

fractional momentum) ρu∗, is advanced using the best guess of the right-hand-side

of the momentum equation RHSρu∗ :

ρu∗ = ρun + ∆t(RHSρu∗). (3.2)

The field ρu∗ is then corrected with pressure gradient to ensure that mass con-

servation is enforced. With Euler-type discretization, the correction step takes the

form

ρun+1 = ρu∗ −∆t∇p. (3.3)

The pressure field that is used to correct ρu∗ is constructed such that ρun+1
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Algorithm 3.2: Variable density low Mach number solver
1: At every grid point, initialize ρu, φ
2: for n = 1, end do
3: un+1 = un, φn+3/2 = φn+1/2

4: for k = 1, Nouter do
5: φn+3/2 = φn+1/2 + ∆tRHSφ
6: From φn+3/2 get ρn+3/2, Dn+3/2, ...
7: ρu∗ = ρun + ∆t(RHSρu∗)
8: Solve ∇2p = 1

∆t
(∂ρ
∂t

+∇ · (ρu∗))
9: ρun+1 = ρu∗ −∆t∇p
10: end for
11: end for

satisfies the mass conservation constraint. The following Poisson equation for the

pressure can be obtained by taking the divergence of the correction step (Eq. 3.3)

∇2p =
1

∆t
(
∂ρ

∂t
+∇ · (ρu∗)). (3.4)

Note that inverting Eq. 3.4 is not possible in general without an additional con-

straint as a pressure field shifted by any arbitrary constant satisfies the Poisson equa-

tion. Various strategies are used to ensure that Eq. 3.4 is well-posed. The spatial

average of the pressure can be required to be null [118] or the value of the pressure

at a particular point can be fixed [117].

The low Mach number solver algorithm used here follows a time-staggered proce-

dure: at each step, u is advanced from time n to time n+ 1 and φ is advanced from

n + 1/2 to time n + 3/2. Within each timestep, Nouter outer-iterations (typically 3)

are used to couple the momentum and scalar equations [117, 119].

Because the pressure fluctuations are computed using a Poisson equation, the

pressure adjusts everywhere within a single timestep to satisfy locally and globally the

constraint of mass conservation. The propagation of pressure waves is not considered

in the low Mach number solver. As a result, the CFL number does not depend on

the speed of sound. An illustration of the contribution of pressure waves on the
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flow field with and without the low Mach assumption is provided in Fig. 3.1. In the

compressible solver, density evolves following the continuity equation, then the scalar

fields (typically species mass fraction) evolve and affect the energy transport equation.

Through the equation of state, the pressure is updated and affects the velocity. The

effect of pressure on velocity is the result of a gradual transport of information at a

finite rate (the acoustic speed). In the low Mach number solver, this cycle is reversed,

and the energy transport equation is bypassed, thereby removing the acoustic waves.

Figure 3.1: Schematic illustration of the algorithmic sequence between a compressible
solver (top) and a low Mach number solver (bottom).

In the end, the timestep can be at least an order of magnitude larger than in a

compressible problem which decreases the computational cost of the simulation [123].

Note that the computational gain is not exactly proportional to the ratio of timesteps

between the compressible and the low Mach number solvers since the cost per timestep

of the low Mach number solver is typically larger than that of the compressible solver,

due to the Poisson equation solver.
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3.3 Lyapunov analysis with low Mach solver

Before using the Lyapunov analysis in the context of turbulent reacting flows

solved with low Mach number solvers, it is necessary to establish the convergence

properties of the Lyapunov exponents, so that reliable conclusions can be obtained.

In particular, the problem here is to determine how the LEs converge with the grid

size and the timestep size. Keefe et al. [124] showed that refining the computational

domain led to changes in the LE spectrum, even when highly accurate pseudo-spectral

simulations were performed. Further, the orthonormalization procedure used to ob-

tain the Gram-Schmidt vectors is also subject to errors [125]. Finally, the timestep-

ping procedure was found to introduce another error in the final LE spectrum, with

the conclusion that a finer temporal discretization is needed to obtain converged

solutions [124]. Recently, Fernandez et al. [126] conducted a systematic study to

determine the role of mesh size and order of numerical scheme on the Lyapunov ex-

ponents. While the study showed that LEs depend on the grid size and the numerical

order, a clear convergence could not be established, precisely because the underlying

forward solution was highly sensitive to the grid resolution.

The problem of numerical convergence of the Lyapunov spectrum is not straight-

forward to solve as there is no general way of obtaining a “true” LE, not affected by

numerical errors. Furthermore, since the LEs are dependent on the underlying flow

fields, the flow should not be affected by successive grid refinements. Finally, since the

LEs are obtained from long-time averages, statistical uncertainty should be carefully

be taken into account. In the next sections, a procedure to precisely evaluate the

convergence properties of the LEs is developed and tested using increasingly complex

test cases.

Section 3.3.1 explains how to use the Lyapunov analysis with low Mach number

solvers. In Sec. 3.4, the convergence properties of the LEs are examined for a steady

flow problem using a low Mach number solver. Next, the convergence properties found
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are tested on a one-dimensional transient chaotic flow in order to separate numerical

errors due to discretization and the approximations due to the low Mach assumption

(Sec. 3.5.1). Finally, the convergence of the LE is investigated for a three-dimensional

turbulent flow in Sec. 3.5.2.

3.3.1 Definition of the state vector

Establishing an analogy between a dynamical system and a low Mach solution

approach for Navier-Stokes equations requires precise knowledge of the numerical

procedure. In general, the state vector should be defined such that its elements at

the current timestep n, are necessary and sufficient to determine the state vector at

the next timestep n+1. To see the importance of the definition of the state vector on

the computed LEs, consider an N -dimensional dynamical system. In an ideal case,

perturbations of the state vector can be expressed as

δξ =


δξ0

1

...

δξ0
N

 ,

where the components of δξ are necessary and sufficient to express any perturbation.

The “true” growth rate of a perturbation between the timestep 0 and the timestep n

takes the form shown in Eq. 3.5.

τtrue =
||δξn||
||δξ0||

. (3.5)

Now suppose that the definition of the perturbation vector is altered, for example

by adding Nalt components in the perturbation vector δξ. The added components

are noted δζ which is a Nalt-dimensional vector. Using the L2-norm, the “altered”
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growth rate of the perturbation becomes:

τalt =

√
||δξn||2 + ||δζn||2

||δξ0||2 + ||δζ0||2
. (3.6)

A similar expression can be obtained if components are removed from the “ideal”

perturbation vector definition. Assuming that ||δζn|| << ||δξn|| and ||δζ0|| <<

||δξ0||, one can obtain that τalt ≈ τtrue. In many flow solvers, ghost cells are used to

impose boundary conditions. The above conditions are satisfied even when these cells

are not imposed in the state vector. In such cases, the condition Nalt << N , and the

ghost cells are not expected to exhibit sensitivity to perturbations larger than other

interior cells. However, these assumptions are in general not valid if an entire field is

removed ad-hoc from the state vector. For instance, the entire determination cannot

be based on only one component of velocity. In such cases, Nalt ≈ N . While this may

seem obvious, it is important to recognize that such choices are not self-evident in

timestepping algorithms that use outer-iterations within each time iteration to satisfy

physical constraints. Beside the computation of the growth rates, the convergence

properties of the algorithm described in Sec. 3.1.1 also depend on the orientation of the

initial perturbation in the state space. With omission of variables, the orientations of

the perturbation may be substantially modified, and may not guarantee convergence

of the procedure.

3.3.2 State vector for low Mach number solver

At the very least, the state vector should contain all the transported variables

that are independent of each other. Even if the variables are not defined at the same

time locations, they are used together to define the next numerical step. Hence,

the state vector should contain at least the fields {ρu,φ}. The remaining set of

discrete variables to be included in the state vector needed at each timestep depends
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on additional choices of the algorithm. In particular, the focus is here on the way the

variables are used to form the guessed fractional momentum equation (see Algo. 3.2).

In the original formulation of the fractional timestep method [127], the frac-

tional momentum equation contained a pressure gradient obtained from the previous

timestep. In other terms, while the pressure term is solely dependent on the {ρu∗,φ},

its contribution is accumulated over time. It is then necessary to include pn in the

state vector in order to be able to write the relation between ξn+1 and ξn. Alter-

natively, the pressure can be left out of the state vector by setting it to zero at the

beginning of each timestep. Instead of using an initial guessed pressure, one relies on

outer-iterations to recover it. Here, this alternative approach is chosen in order to

minimize the number of variables in the state vector. Note that in the case of variable

density low Mach number solvers such as the case studied in Chap. V, the definition

of the state vector needs to be slightly modified.

3.4 Convergence of LE for laminar planar Couette flow

The issue of numerical convergence of the LS was recently investigated by Fer-

nandez et al. [126]. While they were able to conjecture the convergence with spatial

discretization, conclusive results were not obtained. It was noted that as spatial

discretization was refined, the flow features were changed, thereby affecting the LEs.

Since LEs are obtained from a time average of expansion rates, statistical errors could

also contaminate LE computations. To overcome these issues, a laminar planar Cou-

ette flow is studied here. Because the flow is laminar, no uncertainty due to time

averaging is introduced, and since the attractor is a single point, the flow features

are unaffected by spatial refinement. Furthermore, as noted by Keefe et al. [124],

this particular test case offers the possibility to estimate analytically the true set of

LEs λ and its associated true set of LVs ψ. The rigorous link between the stability

analysis and the Lyapunov theory is detailed below, and the procedure to test the
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convergence of the LEs is then described.

Following Keefe et al. [124], the domain size in the streamwise (x direction), height

(y direction) and spanwise directions (z direction) is [0,8π] × [-1,1] × [0, 2π]. The

domain is periodic in the x and z direction. At the conditions described in Ref. [124],

the viscosity is ν = 1
Reτ

and the streamwise velocity profile can be expressed as

U(y) = Reτ
2

(y2 − 1), where Reτ = 34. The analytical value of the pressure gradient

can be obtained from the laminar channel flow equations. It is used for the forcing

the laminar flow, as opposed to a more classical forcing term using the wall integral

of the friction coefficient.

3.4.1 Orr-Sommerfeld (OS) equations

The OS equations have been formulated for several types of flows in the past

[128, 129]. The OS approach uses linearized governing equations to describe the

evolution of small perturbations around the base flow. The main purpose here is

to extract the stability properties of a given flow. Similar to the Lyapunov-related

quantities, the OS approach describes the asymptotic behavior of the system subject

to infinitesimal perturbation. The OS equations take the form of a reduced set of

ODEs that can be solved with a high degree of accuracy [130, 131]. Intuitively, the

results of the OS analysis should be tightly linked to the results of the Lyapunov

analysis. In Ref. [124], it is, in fact, argued that the LEs should match the OS

temporal eigenvalues up to a certain factor. In this section, this assertion is clarified

further and used to determine convergence of LEs with grid refinement.

For Couette flows, the OS equations have been formulated for two or three physical

dimensions [132, 133]. Here, the three dimensional version is used. The full derivation

of the three-dimensional OS equation can be found in Ref. [129, Chap 3.1]. The

perturbation to the flow field can be expressed in terms of wall normal velocity and
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vorticity perturbations as follows:

v̂(x, y, z, t) = ṽ(y)ei(αx+βz−ωt) + c.c.,

η̂(x, y, z, t) = η̃(y)ei(αx+βz−ωt) + c.c.,

(3.7)

where (̂.) is a real field that satisfies the OS equation, (̃.) is the complex amplitude

of (̂.), and α, β, c are complex coefficients, and c.c. denotes the complex conjugate.

The governing equations for the complex amplitudes ṽ and η̃ is then obtained as

{
(−iω + iαU)(D2 − (α2 + β2))− iαU ′′ − 1

Reτ
(D2 − (α2 + β2))2

}
ṽ = 0{

(−iω + iαU)− 1

Reτ
(D2 − (α2 + β2))2

}
η̃ = −iβU ′ṽ,

(3.8)

where D is the derivative operator with respect to y.

The OS solution vectors are noted θ ≡ {v̂, η̂} and are entirely defined by {ṽ(y), η̃(y), α, β, ω}.

It should be noted that α and β can hold only restricted values in order to satisfy

constraints regarding periodicity in the streamwise and spanwise directions. As an

illustration, let α = α1 + iα2, where α1 and α2 are real numbers. Since the config-

uration is periodic in the x direction, with spatial period Lx, and α is uniform and

constant,

∀ y, t, v̂(x = 0, y, z = 0, t) = v̂(x = Lx, y, z = 0, t).

Consider a y coordinate for which the amplitude ṽ(y) 6= 0, then using Eq. 3.7

∀ t, e−iωt = e−α2Lxei(α1Lx−ωt).

Therefore α2 is necessarily zero and the set of realizable values of α1 can be restricted

to α1 = α = n 2π
Lx

, where n is an integer. Reproducing the same analysis in the

spanwise direction, it can be shown that β = m 2π
Lz

where m is an integer, and Lz is

the domain size in the spanwise direction.
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3.4.2 Link between Lyapunov exponents and OS eigenvalues

Consider a single LV ψ. Since ψ and the real part of the OS eigen solutions

satisfy the same linear perturbation equation, the LV can be expressed as a linear

combination of OS eigen solutions. More formally, it can be written as

ψ =
∑
j

κjθj, (3.9)

where κj is a real coefficient. Note that the summation is over infinite set of solutions.

It is also known that the orientation of the LV ψ is constant over time since the

underlying flow field is steady. Eq. 3.9 can therefore be written in the limit of infinite

time. Under the assumption that all the OS eigenvalues ω are different, the RHS of

Eq. 3.9 align with the direction of the OS eigenfunction that decays the least, i.e. for

which Im(ω) is the largest. In the limit of infinite time,

ψ = Aθ1, (3.10)

where A is a normalization factor taking into account the decay of the vector norms,

and θ1 is the least decaying OS eigenfunction out of the set involved in the sum in

Eq. 3.9. Therefore, each Lyapunov vector ψ is oriented in the direction of one OS

eigenfunction. Additionally, the norm of the LV must decay at the rate at which the

OS eigenfunction decays, since these two vectors are aligned. The relation between

the LEs and the OS eigenvalues is

λ = Im(ω). (3.11)

This equivalence allows to cross-validate the computed value of the LE obtained with

the low Mach number solver and the OS equation. Keefe et al. [124] used this equiva-

lence between OS solutions and LVs but did not explicitly derive the relations shown
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in this section. The above derivation clarifies the equivalence invoked in Ref. [124].

3.4.3 Convergence of LEs

3.4.3.1 Convergence procedure

The equivalence between OS solutions and LVs was used by Keefe et al. [124]

to verify LS solutions. However, this approach requires that for each LV, the corre-

sponding streamwise (α) and spanwise wavenumbers (β) be manually identified from

the computed LVs. Here instead, one takes advantage of the knowledge of the full

solution of the OS eigenvalue problem. The main observation is that when the per-

turbation for the full system is introduced based on the eigensolution for a given

{α, β}, the evolution in time retains this vector direction. As a result, the decay rate

of the perturbation can be directly obtained and compared with the corresponding

OS eigenvalue.

The full procedure is as follows:

• Choose a set of wavenumbers {α, β}, and obtain the eigensolution to the OS

problem. This will provide an eigenvalue that characterizes the Lyapunov ex-

ponent as shown in Eq. 3.11.

• Using the definition of η and mass conservation equations, obtain ũ(y) and w̃(y).

Together with ṽ(y), a full vector of perturbations of dimension equal to that of

the system can obtained.

• Evolve the perturbed simulation in time and obtain the decay rate of the per-

turbations.

The LE convergence is evaluated in terms of the absolute error of the LEs defined as

λerr = |λcomputed − Im(ω)|, (3.12)
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where λerr is the absolute error for LE estimation, λcomputed is the computed LE.

Im(ω) is therefore considered to be the best knowledge we have of the LE because

it can be computed to a high degree of accuracy using the OS analysis. Using the

absolute error of the LE offers the advantage of evaluating the convergence of LE

close to zero.

Note that the conventional approach of using random initial perturbations has

some notable disadvantages compared to this approach. First, a long transient time

will be needed before the solution converges to a particular LV. Second, it is not

possible to isolate a single eigensolution but feasible to compute multiple LVs at

the same time, and match these with OS solutions in a post-processing step. Such

matching might itself be problematic if there are large numerical errors due to the

discretized set of equations used. As a result, the above procedure is equivalent to a

manufactured solutions approach for verifying an algorithm.

3.4.3.2 Temporal convergence

For the temporal convergence tests, three different sets of parameters α and β

are considered: ({0.75, 3}, {1.25, 2}, {1.5, 1}). For all the parameters, calculations are

conducted with a 16×32×16 grid. In order to evaluate the relative impact of spatial

and temporal discretization, a 32×64×32 grid and a 64×128×64 grid are additionally

used with (α, β) = (1.5, 1). Figure 3.2 shows the impact of the time discretization on

the numerical estimate of the LE. One can observe a first-order convergence of the LEs

with respect to the time discretization for large timesteps. However, this convergence

is quickly stopped and plateaus for a convective CFL number larger than 1. The

level of accuracy at which the convergence stops depends on the spatial discretization

and will be investigated in greater details in the next section. The minimal effect

of the timestep on the convergence of the error at small CFL numbers is consistent

with the analysis Fernandez et al. [126], who used a compressible flow solver for an
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Figure 3.2: Convergence of LE as a function of the timestep. The exponent error is the
difference between the observed LE and the Orr-Sommerfeld eigenvalue.

airfoil geometry and an acoustic CFL number ranging from 0.2 to 0.0125. Since the

LEs are precisely determined here, there are no statistical errors associated with this

evaluation.

3.4.3.3 Spatial convergence

The effect of grid spacing on the LE calculation can be determined similarly to

the temporal convergence tests. Here, spatial convergence for different discretization

truncation orders is studied. Starting from a grid of 8 × 16 × 8, the grid spacing

is progressively decreased by a factor of 2 each time to obtain the results shown in

Fig. 3.3. In order to clearly distinguish between the impact of temporal discretization

and spatial discretization, the timestep is held fixed. For the 2nd order case, the

timestep is set to 7.5ms; for the 4th order case it is set to 1.625ms. At these timesteps,

the temporal errors do not dominate the errors in the approximation of LE. It is seen

that the LE convergence rate is directly related to the order of numerical scheme

used, with the slope of the error nearly matching the order of the scheme. To the
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Figure 3.3: Convergence of LE with spatial discretization. The exponent error is the
difference between the observed LE and the Orr-Sommerfeld eigenvalue.

authors’ knowledge, this is the first such result for convergence for LEs.

3.4.3.4 LV-dependent error

Although the LEs converge with spatial discretization, the absolute errors for in-

dividual LEs span a wide range that follows an interesting pattern. Figure 3.4 shows

the exponent error for LEs (defined similar to Fig. 3.2 and Fig. 3.3) as a function

of the streamwise wavenumber for a single computational grid 16 × 32 × 16. It is

seen that there exists a strong dependence on the wavenumber, which is comparable

to dispersion errors arising from Taylor series expansion-based discretization schemes

[134]. This trend can also be observed in Fig. 3.3. This result was verified using two

independent procedures. First, similar to Keefe et al. [124], the LS was computed us-

ing Benettin’s algorithm. The streamwise and spanwise wavenumbers of the LV were

individually extracted, allowing for the comparison of the LEs with the eigenvalues

obtained from the OS analysis. Second, similar to the procedure used in Sec. 3.4.3.1,
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Figure 3.4: Absolute error between the LE and the Orr-Sommerfeld eigenvalue plot-
ted against the streamwise wavenumber of the Orr-Sommerfeld eigenvec-
tor. Darker colors indicate smaller spanwise wavenumber and lighter color
indicate larger spanwise wavenumber (ranging from 0 to 3).

initial conditions aligned with the eigenvectors obtained from the OS analysis were

imposed, and the decay rate of the perturbations was measured. Both procedures

showed a similar dependence with respect to the streamwise wavenumber.

3.5 Numerical convergence of Lyapunov spectrum for un-

steady problems

Although the laminar Couette flow problem is an interesting unsteady validation

case for the LS algorithms, Lyapunov theory is more useful in the context of turbu-

lent flow with strange and multidimensional attractors. In particular, an accurate

estimation of the dimension is a first step in obtaining a high fidelity envelope for the

attractor. In this section, a suite of test cases is used to determine the convergence

properties of the LS for such transient problems.
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3.5.1 Kuramoto-Sivashinsky equation (KSE)

In order to investigate whether the spatial and temporal convergence obtained

with the low Mach number solver for the Couette flow are just properties of the low

Mach number solver, a one-dimensional case is studied using spectral discretization

of the spatial derivatives. This case exhibits chaoticity and is, therefore, a natural

step towards evaluating the convergence of LEs in turbulent, chaotic flows. The

KSE represents a canonical configuration with turbulence-like chaotic behavior [135,

136]. Due to its one-dimensional formulation, it is a computationally efficient model

for studying chaotic behavior using the Lyapunov approach. With unity diffusion

coefficient, the KSE is written as

∂u

∂t
+∇4u+∇2u+∇u2 = 0, (3.13)

where u(x, t) is the solution of the KSE, defined on x = [0, 16π] and t = [0, 400], with

u(x, 0) = cos(x/16) ∗ (1 + sin(x/16)). For this study, a spectral approach is used. As

will be discussed below, this method is modified to reflect some of the properties of the

low Mach number solver. The PDE is using an exponential time differencing Runge-

Kutta method (ETDRK4) [137, 138] with timestep fixed at 0.05s. The non-linear

term is treated with a pseudo-spectral approach and 2/3 dealiasing. The simulations

were performed using MATLAB, and the code used is provided in [137]. Note that

due to the fully explicit nature of this problem (no inversion of Poisson equation is

required), the algorithm introduced in Sec. 6.2.2 does not affect the computation of

the LE.

Figure 3.5 shows the resulting space-time plots for a spatial discretization using

500 grid points. The first 75 exponents of the LS are computed in the statistically

stationary region after t = 40 s (shown in Fig. 3.5). The shape of the spectrum is

comparable to prior work [139] and thus provides confidence in the results shown here.
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Figure 3.5: Left: time evolution of the solution to the KSE considered here. Right:
first 75 LEs obtained using spectral method with 500 modes. Inset shows
the first 10 exponents .

The perturbation norms are averaged over three timesteps before being orthogonal-

ized. As can be seen in Fig. 3.5, the timestep size has a substantial impact on the last

exponents of the spectrum. Because of the particular time integration scheme used,

the temporal discretization dependence of the LS is not investigated here. Instead,

Fig. 3.5 indicates that a timestep 0.05 s is sufficient to study the dependence of the

first 45 exponents with the time discretization. The L2-norm of the perturbations

applied was set to 0.1, which ensures that the fastest decaying perturbation does not

locally go below machine precision. With a 0.05 s timestep, the perturbations are

propagated for 0.3 s before being orthonormalized. Since the λ45 ≈ −70, the pertur-

bation norm aligned with the 45th LV would decay to 0.1 exp (−70×0.3) = O(10−11).

The average component of the perturbation would, therefore, be O(10−13) which is

above machine precision. The KSE for this set of conditions exhibits a chaotic at-

tractor with five strictly positive Lyapunov exponents (shown in Fig. 3.5).

The impact of spatial discretization is assessed in this problem in two ways: a) by

changing the number of grid points from 76 to 500 progressively, and b) by altering the

truncation order of the spectral solver using a modified wavenumber approach [134].

Here, modified wavenumbers for second and fourth order central difference schemes

are used in addition to the spectral derivatives. In order to be consistent with the low

75



Mach number solver used in the rest of the study, the modified wave number is based

on a staggered spatial discretization [118]. Since the FTLEs are time-varying, the

statistically averaged global LEs are evaluated using multiple re-orthonormalization

steps. To assess the sampling uncertainty resulting from the use of a finite number

of such steps, the method outlined in Ref. [140, 141] is used. In all the plots, the LS

obtained with the spectral method using 500 points is considered to be the “true”

LS.

Figure 3.6 shows the convergence for the 35th, 40th and 45th LEs. Here the errors

reported are absolute errors. It is seen that the spatial convergence of this set of LEs

is directly related to the discretization order, with very high convergence rates (albeit

not exponential) for the LEs computed using spectral derivatives. These results are

consistent with the planar Couette flow findings (Sec. 3.4). It is therefore conjec-

tured that the convergence properties of the LEs obtained with the Couette flow are

properties of the LEs themselves and are not due to the low Mach number numer-

ical procedure used. This result supports the conclusions obtained by Fernandez et

al. [126]. However, it is possible to find other LEs that do not conform to this trend.

For instance, Fig. 3.7 shows spatial convergence plots for 1st, 10th and 20th LEs.

The space-time plot for two representative LVs (1st and 35th) are plotted in

Fig. 3.8. Interestingly, the 35th LV shows minimal variation with time and very

organized structure with nearly periodic wave patterns. The first LV, on the other

hand, shows a more chaotic structure that is similar to the solution of KSE itself.

We postulate that the difference in convergence properties is due to the associated

smoothness of these solutions. The 35th LV (and the other convergent vectors) ex-

hibits a regular spatial structure that is smooth with respect to the grid spacing. On

the other hand, the non-converging LVs exhibit a broadband spectrum of fluctuations

which may amplify the dispersion errors. It is also worth noting that even when the

LVs do not converge with grid spacing, the absolute errors are relatively low (Fig. 3.7).
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Figure 3.6: Convergence of the 35th, 40th, 45th LEs with discretization level. Left:
2nd order. Middle: 4th order. Right: spectral method.

Figure 3.7: Convergence of the 1st, 10th, 20th LEs with discretization level. Left: 2nd

order. Middle: 4th order. Right: spectral method.

This study indicates that the LS could have LE-dependent convergence rates,

which should be treated as a note of caution when obtaining the spectrum. In par-

ticular, the lack of spatial convergence for the first LE is noteworthy.

Figure 3.8: Time evolution of the 1st LV (left) and 35th LV (right) of the KS equation
computed with 500 modes.
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Resolution Reλ
ks∆t
τeddy

m Nsks∆t
τeddy

∆t

323 12.9 1.06 100 6707 0.02s
643 12.9 1.06 55 7028 0.02s
1283 12.9 1.06 55 1013 0.02s
2563 12.9 1.06 55 446 0.02s

Table 3.1: Mesh resolution and simulation parameters for the LS computation for
HIT, where τeddy denotes the eddy turnover time.

3.5.2 HIT

Another typical theoretical configuration for turbulence studies is the HIT flow

in a 2π3 periodic box. This case will be revisited in Chap. IV to obtain a physical

interpretation of the LVs. Here, the main concern is the numerical convergence of the

LE. Previously, the largest LE (i.e., the first LE) has been computed by Mohan et

al. [140], who found that time-scale associated with this LE decreases faster than the

Kolmogorov time scale. Here, a partial spectrum of LEs is computed. The HIT sim-

ulation is conducted with the low Mach number with 2nd order spatial and temporal

accuracy. Other relevant simulation details are summarized in Table. 3.1. The grid

resolution is chosen such that the coarsest grid resolves the smallest turbulence length

scale. The turbulence is sustained using a linear forcing method [142] with a forcing

coefficient of 0.1 and a viscosity of ν = 0.05 m2.s−1. The resulting Taylor microscale

Reynolds number is Reλ = 12.94 for all simulations as indicated in Tab. 3.1. For

all the spatial resolutions, the timestep was held constant at 0.02s, which is based

on the CFL condition for the finest mesh resolution. Here, the flow is fully resolved

and and the ratio η
∆x
≈ 1.7 on average, where η = (ν

3

ε
)1/4 is the Kolmogorov length

scale, and ε is the turbulence dissipation rate. The turbulence spectrum obtained is

plotted against the one obtained by Carroll et al. [14] at a higher Reynolds number.

Both spectra are appropriately scaled (see [143, chap 6.5]) in order to be meaningfully

compared. As seen in Fig. 3.9, the spectra compare reasonably well, even given the

differences in Reynolds numbers.
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Figure 3.9: Turbulent kinetic energy spectrum averaged over 60 τeddy for the 323 reso-
lution (solid line) plotted against the turbulent energy spectrum obtained
with Reλ = 110 from [14].

Figure 3.10 shows the spectrum obtained with all four resolutions along with the

standard deviation in the estimation of the average LEs. Since the Reynolds number

is low, the spectrum is converged for all resolutions considered. The dependence of

the LEs with the Reynolds number will be the object of Chap. IV. It is simply noted

for now that the structure of the LS is reminiscent of other work conducted in the

past [144, 145].

Using the results of the finest-mesh simulation as the “true” spectrum, the con-

vergence properties of various exponents can be examined (Fig. 3.11). It is seen that

there is large uncertainty in the estimated errors, primarily due to large fluctuations

in the FTLEs. Hence, it is difficult to draw conclusive evidence from these results.

Nevertheless, focusing on the mean LE, there are differences in the convergence rates

for different regions of the spectrum. In the chaotic regime, a first order convergence

is observed, while in the knee and dissipative regimes, second-order convergence is

obtained. These findings are consistent with results from the KS study, where LE-

dependent convergence rates were also obtained.

Based on the LS, the Kaplan-Yorke dimension of the attractor can be estimated
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Figure 3.10: Left: instantaneous contour of the first Lyapunov vector projected in
the x component of velocity for the 643 homogeneous isotropic turbulent
simulation. Right: Lyapunov spectrum obtained with different spatial
resolutions. Right inset: zoom on the LEs between the 12th and the 18th

index.

as [91] through Eq. 2.10. The dimension estimates obtained for all cases are shown in

Fig. 3.11. The variations in dimension are relatively small as the grid size is altered,

and is roughly 2% of the mean value. First, it appears that the dimension obtained for

each resolution vary from each other by as little as 2%. However, the convergence of

the dimension with respect to the grid resolution is not directly evident, even if only

the upper-bound of the dimension is considered. This result suggests that the flow

field has been slightly affected by the increased resolution even at DNS resolution.

3.6 Summary and conclusions

The computation of the Lyapunov spectrum using low Mach number solvers intro-

duces several challenges that are addressed in this work. The definition of state-space

depends on the numerical procedure adopted by the solver. Failure to include a vari-

able in the state-vector can lead to errors in the estimation of the Lyapunov exponents.

The issue of spatial and temporal convergence of the Lyapunov spectrum was studied

using several canonical flow problems. The Orr-Sommerfeld (OS) equations were used
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Figure 3.11: Left: dependence of the LEs of the HIT simulation with spatial dis-
cretization. Right: dependence of the Kaplan-Yorke dimension of the
HIT simulation with the spatial discretization

to derive an analytical relation between the OS eigenvalues and Lyapunov exponents,

which provides a highly accurate approach for verifying the numerical algorithms. A

sequence of canonical configurations allowed to derive the convergence properties of

the Lyapunov exponents. First, the spatial convergence is related to the discretization

order, while the temporal convergence weakly related to the timestepping accuracy.

The same properties were found without using a low Mach number solver. The con-

vergence of the Lyapunov exponents confirms that conducting the Lyapunov analysis

on a discretized problem allows drawing conclusions about the continuous configura-

tion. Second, within a particular configuration, different Lyapunov exponents might

exhibit different convergence rates. In the Kuramoto-Sivashinsky Equation (KSE)

as well as homogeneous isotropic turbulence (HIT) cases, it was found that select

exponents and their associated vectors converged at the rate of the underlying dis-

cretization order, while other exponents showed non-convergent behavior.

Finally, the Lyapunov exponents and vectors computed in this work for the differ-

ent canonical flow problems deserve additional studies. For instance, the LE spectrum

for HIT showed three distinctive regions, which to our knowledge, is the first such

observation for this problem. For the KSE, certain Lyapunov vectors are highly lo-

calized in spectral space, while other vectors show turbulence-like spectrum. These

results show an extraordinary richness in the chaotic behavior of these systems that
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has yet to be explored.

In light of these findings, the Lyapunov vectors of a canonical turbulent flow are

further examined and interpreted in Chap. IV. The origin of the chaotic behavior of

a turbulent jet flame using its Lyapunov vectors is discussed in Chap. V.
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CHAPTER IV

Lyapunov analysis of homogeneous isotropic

turbulence (HIT)

In Chap. III, the numerical tools for computing the LEs and LVs were examined.

The convergence properties of the tools with respect to spatial and temporal dis-

cretization were evaluated. In this Chapter, the Lyapunov analysis is conducted in

the context of a canonical turbulent flow. Using the LEs, the scaling of the attractor

dimension with increasing Reynolds number is directly computed for the first time.

The structure of the LVs is also analyzed and related to classical turbulent flow quan-

tities. Furthermore, the turbulent flow investigated here requires an external force

to sustain a certain level of turbulence. The precise functional form of this force is a

modeling choice that has impacts on the dynamics of the flow field. This impact is

quantified using the LEs. This chapter is partially based on [146].

4.1 Introduction

The focus here is on the set of Lyapunov exponents and vectors for HIT. While

there have been many studies on extracting the spectra for other canonical flows,

such as the Kuramoto-Sivashinsky equation (KSE) [147] and the turbulent channel

flow [124], the periodic turbulent flow in HIT has not been explored. Even so, the focus
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of many of these studies has been on the Lyapunov exponents. Since the computation

of each exponent requires one additional forward run of the dynamical system (DS),

obtaining a large number of such exponents can quickly become computationally

intractable, depending on the complexity of the DS equations. When the DS is not

high-dimensional, the entire spectrum can typically be computed [145, 148]. More

specifically, all the positive exponents of the system are directly computed, while

retaining some of the negative exponents. Since the positive exponents determine the

structure of the attractor and the negative exponents track the dissipative behavior,

such extensive Lyapunov computations provide detailed information about the chaotic

dynamics of the system.

The goal of this work is to compute and study the Lyapunov spectrum for HIT.

Section 4.2 treats the numerical approach used for the DS and the computation of the

LS. Section 4.3 covers the results obtained by analyzing both the LEs and the LVs.

In particular, the effect of different Reynolds numbers on the dimension of the chaotic

attractor (Sec. 4.3.2) and the effect of the forcing scheme on the LEs (Sec. 4.3.3) are

discussed. The response of the flow field to perturbation is analyzed in Sec. 4.3.4 by

examining the backward Lyapunov vectors, or Gram-Schmidt vectors (GSV). Their

structure, as well as their dependence on the Reynolds number, is investigated. The

findings are summarized and discussed in Sec. 4.4.

4.2 Configuration and computational approach

In this section, the simulation configuration and the numerical procedure are de-

scribed. While the algorithm used for the computation of the LS is the same as the

one described in Chap. III, the forward simulations are conducted differently.
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4.2.1 Flow configuration

Forced homogeneous isotropic turbulence in the low Mach number incompressible

flow regime is simulated in a 2π-triply periodic box. A constant density of ρ =

1 kg.m−3 and kinematic viscosity of ν = 0.05 m2.s−1 are used throughout the Chapter.

The governing equations of the DS are written as

∂ui
∂t

+
∂uiuk
∂xk

= −1

ρ

∂p

∂xi
+ ν

∂

∂xk

∂ui
∂xk

+ fi,

where ui is the velocity component, fi is a forcing term in the i-th direction that

maintains the turbulence level, and p is the fluid pressure. In the absence of forcing,

the turbulent kinetic energy in the domain tends to zero due to viscous dissipation.

Therefore, the forcing term ensures statistical stationarity, which is necessary for

evaluating the Lyapunov spectrum. The impact of the forcing term will be studied

in detail in Sec. 4.3.3. For this reason, the exact form of the forcing term will be

discussed later.

4.2.2 Numerical details

Consistently with the notations of Chap. I to III, the discretized governing equa-

tions are written as a set of ordinary differential equations that take the form

dξ

dt
= F(ξ); ξ(t = 0) = ξ0,

where ξ is a vector of all the variables, F are the discrete governing equations and ξ0

are the initial conditions.

The algorithm used for computations of the LEs and LVs is the same as in

Chap. III. Here, this procedure is used for all the simulations with an averaging

time of one eddy turnover time s (300 to 1300 timestep depending on the resolution).
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The set of LVs obtained are the GSV. Since the GSV converge to the backward Lya-

punov vectors [114] they describe the response of the system to perturbations that

expand or contract and thereby provide interesting information about the dynam-

ical system. Since the CLVs can also be expressed as a linear combination of the

GSVs, studying the GSV allows to draw conclusions about the tangent space to the

attractor. This aspect is further discussed in Appendix A.3.

As opposed to Chap. III where the governing equations were solved in physical

space, in the present work, the incompressible governing equations are solved using

a Fourier spectral transformation [149, 150], by decomposing the primitive variables

into Fourier modes:

ui =
∑
κ

ûi(κ, t)e
jκ·x

where κ is the wave vector and x is the vector of the location in physical space.

The Galerkin projection of the governing equations is obtained for all the Fourier

modes. A pseudo-spectral method with dealiasing is used for the non-linear term and

is integrated in time using a second-order Runge-Kutta scheme. The viscous term

is integrated analytically. The timestep is chosen to maintain a Courant number of

0.5 for all the simulations. The ratio of the Kolmogorov length scale to grid size

is maintained close to unity. Due to round-off numerical errors, it was found that

there was a growth of instability in the simulations that contaminated the Lyapunov

evaluations. For this reason, the continuity is explicitly forced using a correction

procedure at each time step (see Appendix A.1 for details).

As a validation of the implementation, the LS of the HIT case presented in

Chap. III which used a spatial discretization is computed this time with the spectral

code. A linear forcing [151] with a coefficient A = 0.1 is used and the governing

equations takes the form

∂ui
∂t

+
∂uiuk
∂xk

= −1

ρ

∂p

∂xi
+ ν

∂

∂xk

∂ui
∂xk

+ Aui.
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In order to verify the spectral code, four different simulations are run: a) 323

and 643 simulations with the low-Mach number solver (same as the one presented in

Chap. III, b) 323 and 643 Fourier mode simulations with the spectral solver. Figure 4.1

(left) shows a snapshot of the vorticity magnitude, demonstrating the presence of well-

defined vortical structures in the relatively low Reynolds number flow. For all 323

calculations, 100 LEs were computed, while 50 LEs were computed for the 643 spectral

simulation. The Lyapunov spectra from all of these calculations are shown in Fig. 4.1

(right). The good agreement between all four cases indicates that the dynamics of the

flow were sufficiently resolved to capture the spectrum. It also shows that both the

low-Mach spatial solver and the spectral solver capture similar dynamics of the flow

field. Note that there are significant numerical differences between the spectral and

the physical space code, which make this result non-trivial. In particular, the pressure

in the spectral code is constructed by assuming incompressibility of the velocity field,

while it is constructed to ensure incompressibility in the low-Mach number solver.

Figure 4.1: Left: contour of vorticity magnitude for the case solved with the spectral
code using 323 Fourier modes. Right: first 100 LEs obtained with: the
spectral code with 323 Fourier modes ( ) and 643 Fourier modes ( ); the
physical space code with 323 grid points ( ) and 643 grid points ( , first
50 exponents only).
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4.3 Results

In this section, the LEs are used to directly estimate the dimension of the attractor

of the flow field. Using different Reynolds numbers, an estimate of the scaling of the

attractor dimension is also obtained. The structure of the LVs is also described, and

their localization in physical space are characterized as well as their correlation with

classical turbulent flow quantities.

4.3.1 LE spectrum

As mentioned in Chap. II, one of the main uses of the Lyapunov study is the

determination of the dimension of the attractor. For this purpose, a set of Lyapunov

exponents needs to be computed. In order to obtain an accurate estimate, it is

necessary to determine at least all of the positive exponents and some of the negative

components. In prior studies [124], a partial set of positive exponents had been used

to extract a polynomial fit, from which the entire spectrum was determined. Here,

the negative components are directly evaluated in order to increase the accuracy of

the results. The main disadvantage of this procedure is that the range of Reynolds

numbers which could be studied is limited since the number of positive exponents

grows exponentially with the Reynolds number [152].

As a starting point, the structure of the exponent spectrum can be examined

from the validation case investigated in Sec. 4.2.2. Figure 4.1 shows the spectrum

of the first 100 exponents. The structure of this plot is similar to that for other

systems, such as turbulent channel flow [124] or Rayleigh Bénard flows [153]. It is not

clear at the moment why are the shapes of the LE spectrum similar across turbulent

flows. An important consequence of the exponential shape of the spectrum is that

only a few modes are responsible for most of the chaoticity. Overall, a finite set of

positive exponents is observed, followed by a long tail of negative exponents. The

magnitude is inversely related to the index, with near-linear scaling, as opposed to
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the K-S system, where negative exponents were found to scale as the fourth power

of the Lyapunov index [147]. This difference is likely due to the stronger dissipation

term (fourth derivative) in the K-S system as opposed to the second-order viscous

term in the Navier-Stokes equations. Further, the near-zero LEs show a knee-like

structure, where the values do not follow the linear trend observed for the lower and

higher LE indices. This structure has also been observed in Kolmogorov flows [154]

and with a Hamiltonian description of the motion of a collection of two-dimensional

discs [155].

4.3.2 Scaling of the dimension of the attractor

From a physical point of view, the dimension of the attractor is expected to

increase with the Reynolds number of the flow. As the Reynolds number increases,

the range of scales available for the turbulent flow extends. The number of states that

the system can occupy increases, i.e. the dimension of the attractor increases. The

LEs are also expected to depend on the level of turbulence through the Kolmogorov

quantities [156]. Consider the rate of change induced by an eddy of size l. The

time over which a perturbation amplifies is l2/3/ε1/3, where ε is the turbulent energy

dissipation rate. In terms of LE, the inverse of this expression should be considered.

This means that the largest LE depend on the smallest eddy, i.e., the Kolmogorov

length scale η.

The scaling of the dimension of the attractor of turbulent flows with the Reynolds

number has important implications, in particular, about the resolution required to

capture the dynamics of the flow field [157, 158]. To estimate this scaling relation,

a series of calculations with varying Reynolds numbers is conducted. Through the

Kaplan-Yorke (KY) conjecture [91], the geometric dimension of the system’s attractor
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Case 1 2 3 4
Reλ 15.55 21.26 25.57 37.67

ε [m2/s3] 0.07 0.26 0.68 8.8
lint [m] 0.47 0.53 0.55 0.52
k [m2/s2] 0.35 0.93 1.8 9.7

N 32 64 64 128
m 99 199 299 49
A 0.137 0.215 0.3 0.75

DKY 57.67 128.67 232.54 1430.7

Table 4.1: Turbulent statistics of the simulations conducted with various Reλ using
the linear forcing scheme. Reλ denotes the Reynolds number based on the
Taylor microscale; ε is the energy dissipation rate; lint is integral length
scale based on the turbulent kinetic energy and the energy dissipation
rate; k is the turbulent kinetic energy; N is the number of modes in one
direction. m is the number of LEs computed; A is the linear forcing
coefficient; DKY is the computed Kaplan-Yorke dimension.

can be related to its LEs. The KY dimension is expressed as

DKY = i+

∑i
1 λj
|λi+1|

,

where λj denotes the jth LE, and i is the last index such that
∑i

1 λj ≥ 0. The

dimension of the attractor of the system can inform about the complexity of the

dynamics considered as well as serve as an indicator that determines the minimal

number of degrees of freedom required to capture all the dynamics on the attractor

[158]. All calculations use the linear forcing techniques discussed in Sec. 4.2.2. The

statistics of these cases are provided in Tab. 4.1.

The LEs computed for each one of these cases are shown in Fig. 4.2. For cases

1-3, a sufficient number of exponents are obtained to estimate the dimension from

the above relation directly. In practice, the exponents are obtained from long-time

averages. Therefore, these values are subject to statistical errors, which may be es-

timated from the time-series of the exponents. The approach used here is based on

the technique proposed in [141] for turbulence statistics. For the average turbulence
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quantities (Reλ, Kolmogorov length scale η), uncertainty estimates are obtained fol-

lowing the same procedure. An uncertainty estimate for the attractor dimension of

Cases 1, 2 and 3 can then be derived by computing DKY using the mean LE shifted by

one standard deviation up or down. For Case 4, the number of computed exponents

is not sufficient to estimate the dimension of the attractor (the first 49 exponents

are all positive). Since it is computationally expensive to obtain more exponents,

DKY must be estimated using an extrapolation method for the LEs. For this pur-

pose, it is recognized that the shape of the Lyapunov spectrum is similar in all the

cases considered and can be approximated as an exponentially decaying function of

the Lyapunov index (similar to what is done in Chap. V). Since the extrapolation

procedure can now affect the DKY , it is necessary to estimate the uncertainty that it

generates for the estimation of the attractor dimension. Note that the functional form

of the spectrum can reasonably be assumed to be the same, but cannot be expected

to use the same exponential decay rate as can be seen in Fig. 4.2. The uncertainty

quantification procedure is explained in detail in Appendix A.2.

Figure 4.2: LEs rescaled by the first LE computed for Case 1 ( ), Case 2 ( ), Case
3 ( ), Case 4 ( ).

Prior estimates [159] show that the attractor dimension scales as (L
η
)3, where L de-
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notes the length of the domain in one direction, and η is the Kolmogorov length scale.

Other refinements of the estimate have been mathematically derived [152, 160], but

involve the scaling with the upper bound rather than average turbulent flow quanti-

ties. Here, the scaling of the dimension with the length scale ratio is shown in Fig. 4.3.

It is seen that DKY ≈ (L/η)2.8±0.095, which is close to the theoretical estimate. The

procedure to obtain the uncertainty estimate is described in Appendix A.2. The

fact that the theoretical scaling is based on fully developed high Reynolds number

turbulence, where the underlying assumptions regarding the separation of scales are

valid, indicates that the attractor properties are only weakly dependent on these

assumptions.

Figure 4.3: Kaplan Yorke dimension obtained from Case 1, 2, 3 and 4 (variable Reλ
and linear forcing scheme) plotted against the ratio L

η
, along with a (L

η
)2.8

slope ( ). The error bars denote uncertainty estimate for both the x and
y-axis due to statistical convergence and extrapolation uncertainty.

4.3.3 Effect of forcing scheme

In the case of forced HIT, despite the ability to run detailed simulations (resolve

the smallest length scales), the turbulence needs to be sustained using an external
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volumetric force that compensates for the dissipation. The functional form of this

forcing term is a modeling choice that can have an impact on the turbulent flow

field. Many forcing schemes have been proposed over the past decades with various

objectives [14, 161–164]; more recent techniques have focused on minimizing the time

to statistical stationarity [14]. As a result, the forcing functions might, on purpose,

alter the dynamics of the flow. The Lyapunov analysis can be a valuable tool to

quantify how the dynamics of the flow are affected by different forcing schemes.

Four different forcing schemes are considered. All of the cases are run using the

spectral method described in Sec. 4.2 and with 323 modes. The following forcing

methods are used :

• Case 1 uses a linear forcing technique for all the wavenumbers, similar to [142]

and [151] with a linear forcing coefficient of A = 0.137.

• Case 5 uses a linear forcing technique for only the lowest wavenumbers, similar

to [165]. The linear forcing coefficient applied is A = 0.14 for all wavenumbers

with |κ| ≤ 3.

• Case 6 uses a stochastic forcing technique [162]. The forcing functional form is

based on an Ornstein-Uhlenbeck process. The parameters used are TL = 0.92,

Kf = 2
√

2 and ε∗ = 0.0015. Since the forcing term is not solely dependent

on the position of the system in phase space, the Lyapunov calculation is con-

ducted by communicating, at every timestep, the same forcing term to all the

forward realizations. The LEs are computed by using the “same noise realiza-

tion” technique in the sense of “noise on the particle” (see [166] for a detailed

discussion).

• Case 7 is not a realistic forcing method but rather a numerical experiment used

to compare Case 1, 5 and 6 in a fair manner. It consists of using a classical linear

forcing technique with linear forcing coefficient A = 0.137 for the unperturbed
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Case 1 5 6 7
Reλ 15.55 16.09 15.79 15.55

ε [m2/s3] 0.07 0.069 0.1802 0.07
lint [m] 0.47 0.488 0.37 0.47
k [m2/s2] 0.35 0.37 0.58 0.35

Table 4.2: Turbulent statistics of the simulations conducted with various forcing
schemes.

simulation (similar to Case 1) and communicating the same forcing to all the

other perturbed simulations. This procedure is similar to the one used for Case

6.

The Reynolds number and statistics of all the cases are provided in Tab. 4.2, where

Reλ is the averaged Reynolds number based on the Taylor microscales, ε is averaged

the turbulent dissipation rate, k is the averaged turbulent kinetic energy (k) and lint

is the integral length scale. As can be seen, the statistics of the cases are similar for

all forcing techniques except Case 6, which shows higher kinetic energy.

The first 100 Lyapunov exponents of all the forcing schemes for HIT are shown

in Fig. 4.4. Case 1 and 5 share similar values of the LEs implying similar chaotic

behavior of the flow field. However, Case 6 shows significantly lower LEs despite

turbulent statistics that suggest a higher turbulence intensity. This feature can be

understood by considering the last case. Cases 1 and 7 lead to the same statistics as

they use the same forcing for the unperturbed simulation, but again the LEs of Case

7 are significantly lower than Case 1. The level of chaoticity is therefore significantly

reduced when all the realizations are forced in the same manner, which explains the

results found in Case 6. This example shows that the Reynolds number alone is

not enough to characterize the dynamics of a turbulent flow field and that the level

of chaoticity is strongly dependent on the functional form of the forcing, and the

dependence of the forcing on the perturbation. In the present case, it appears that a

forcing insensitive to perturbations annihilates chaos in the flow field. More broadly,

this study illustrates the potential of the Lyapunov analysis in comparing different
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models by assessing their effect on the dynamics of the flow field.

Figure 4.4: First 100 LEs for the linear forcing technique (Case 1, ), the linear
forcing applied to the large scales only (Case 5, ), the stochastic forcing
technique (Case 6, ), the linear forcing techniques with the same force
across simulations (Case 7, ).

4.3.4 The response of the flow to perturbations

So far, the discussion has centered on the Lyapunov exponents. In order to assess

the correlation between the flow field and the Lyapunov perturbations, the Lyapunov

vectors have to be studied. Each LV is a three-dimensional flow field made of three

variables (one for each velocity component) at every grid point. To identify where

perturbations grow the most, the energy of the LV δξ2 can be computed as the sum

of squares of the velocity components that compose the normalized LV and rescaled

by a factor 1/N3, where N3 is the total number of grid points. In Fig. 4.5, the

first, 27th and the 100th LVs obtained for Case 1 are plotted alongside the turbulent

kinetic energy of the flow field k, its helicity H and its enstrophy ζ. Noting x the

physical space location, u the velocity field, the turbulent kinetic energy is defined as

k(x) = 1
2
u · u, enstrophy is defined as ζ(x) = (∇× u) · (∇× u), and the helicity is

defined as H(x) = (∇×u)·u. From these plots, it is seen that the LV itself is a highly
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chaotic field, containing structures similar to the original velocity field. A detailed

statistical analysis of the correlation between the LVs and the flow field quantities

considered is performed and discussed below. To understand the correlation between

the flow and the LVs, statistical analysis is performed and is discussed below.

Figure 4.5: Contours of Case 1 taken at the same instant. Left: instantaneous contour
of turbulent kinetic energy k (left), enstrophy ζ (middle) and helicity H
(right). Right: contour of δξ2 for the most chaotic first LV (left), the 27th
LV corresponding to near-zero LE (middle), and the 100th LV (right).

4.3.4.1 Localization of chaotic response

It has been reported [153, 167] in different chaotic systems that only a small part

of the physical space was responsible for most of the perturbation growth in chaotic

systems. This property is called the localization. In the case of hard-disc systems, it
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has been found that the number of particles that contribute to perturbation growth

decreased as the total number of particles in the system was increased [167]. This

finding led to speculations about the convergence of the LS in the thermodynamic

limit (with a large number of particles). In fluid systems, it has also been found that

the most chaotic LV could be highly localized in physical space and that the least

chaotic LV could be more spatially distributed [168]. As a side note, the localization

has been mostly investigated with GSVs but has also been recently examined using

CLVs [169], where it was observed that while the spatial distribution of the least

chaotic LV was less pronounced for the CLVs than the GSVs, these were still more

distributed than the most chaotic CLV. In this section, the localization of the LVs is

the main focus. Here, the variation of the localization with respect to the turbulence

level, the Lyapunov index, and other macroscopic properties such as local kinetic

energy are investigated.

The first mathematical definition of the LV localization is inspired by Ref. [167].

Here, the parameter Cθ is defined by counting the number of vector entries of δξ2

that contribute to a certain fraction θ of its total L2−norm. More formally, let δΓ2 be

defined as δξ2 with entries sorted in descending order. Then Cθ = j, where j is such

that
∑j

i=1 δΓ
2
i ≥ θ ‖δξ‖2 and

∑j−1
i=1 δΓ

2
i < θ ‖δξ‖2. In Fig. 4.6 (left), the localization

of the most chaotic LV is shown as a function of Reλ for different thresholds θ. It

appears that the fraction of the domain that contributes to the perturbation growth

gets smaller and smaller as the Reλ increases. This result suggests that tracking the

evolution of perturbations over time using measurement techniques to anticipate their

chaotic build-up would get more and more difficult as the Reynolds number increases.

In turn, if one wants to exploit the chaoticity of the flow field for flow control purposes,

the localized response of the flow field could facilitate targeted control for high-Re

flows. At the moment, it is unclear whether this trend would continue for higher

levels of turbulence.
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Figure 4.6: Physical space localization of the LV. Left: time average localization Cθ
obtained from Cases 1, 2, 3 and 4 with different threshold θ = 0.98
( ), θ = 0.88 ( ), θ = 0.78 ( ), θ = 0.68 ( ). The vertical error bars
denote the RMS fluctuations around the mean (as opposed to statistical
uncertainty). The horizontal error bars denote statistical uncertainty in
the average value of Reλ. Right: localization width plotted against the
LE index obtained from Case 1, 2, 3 and 4.

The variation of the localization as a function of the LE index is now examined.

To do so, the entropy-like metric of localization introduced in Ref. [170] is used. This

metric W
N3 , called the localization width, where N3 is the number of entries in δξ2 and

is defined as W = exp(S), where S = −〈
∑N3

j=1 δξ
2
j log δξ2

j 〉, and δξ2
j is the j-th entry

of δξ2 normalized by the L2-norm of δξ2. This metric is advantageous since it can be

easily computed as it does not require sorting the entries of δξ2, and it does not depend

on the value of a particular threshold. However, this metric is bounded between 1
N3

and 1, and its value depends on the total number of vector entries (number of grid

points): the same value of W
N3 for cases discretized with different number of modes can

mean that a field is localized in one case and distributed in the other. As opposed to

Cθ, this metric is not suited for comparing fields discretized with a different number

of grid points which explains why it was not used to compare different Reλ simulated

with different numbers of Fourier modes. Figure 4.6 (right) shows the localization

width obtained for Cases 1, 2, 3 and 4. Here, the statistical uncertainty of the quantity

is not indicated for clarity. Similar to previous results mentioned at the beginning of

this section, the LVs are increasingly distributed in physical space as the LE index
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increases, although the range of variation is narrower than in other systems [170].

The metrics used above characterize the level of localization of the perturbations

but do not indicate the location where perturbations grow the most. To answer this

question, the conditional averages of δξ2 with turbulent flow quantities are examined.

Below, only the results from the linear forcing technique-based simulations are used,

since the results were found to be consistent across different forcing schemes (see

Appendix A.4).

First the conditional average of δξ2 conditioned on the helicity H is examined

(Fig. 4.7) for Case 1. It is seen that large values of δξ2 are correlated with large abso-

lute values of helicity for the most chaotic LV only. This suggests that perturbations

grow where helicity is the largest. In turn, large values of δξ2 for the dissipative LVs

appear uncorrelated with helicity. Figure 4.7 also shows the conditional root mean

square (RMS) of δξ2. This data shows that at high helicity values, the variation in

the LV energy is also high. This suggests that although high helicity regions are asso-

ciated with increased perturbation growth, this feature is not persistent and there are

times when the growth is small. In fact, the range of variation exceeds the conditional

average.

Figure 4.7: (Left) conditional average of δξ2 conditioned on helicity values H, for
each LV. (Right) conditional RMS of δξ2 conditioned on helicity values
H, for each LV, rescaled by the conditional average of δξ2.

The local helicity can be intuitively understood as containing a contribution stem-
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ming from the local kinetic energy and the local enstrophy. It is then natural to

investigate the conditional averages with both fields to identify the importance of

each component on the localization of the LV. Figure 4.8 (left) shows the conditional

averages of δξ2 with k. As opposed to the findings obtained with helicity, the first

GSV (which is the first CLV) suggests that perturbations grow where the local kinetic

energy is low. In turn, the conditional averages with enstrophy (right) are similar

to the ones observed with helicity with slightly higher conditional averages. In this

sense, enstrophy is a better marker for isolating the most chaotic locations in the

domain.

Figure 4.8: Left: conditional average of δξ2 conditioned on turbulent kinetic energy
values k, for each LV. Right: conditional average of δξ2 conditioned on
enstrophy values ζ, for each LV.

The average values of δξ2 for the first LE index, conditioned on enstrophy can

also be compared across different Reynolds numbers to investigate its effect on the

findings listed above, by considering a normalized enstrophy ζn = ζ/τ 2
η , where τη is

the Kolmogorov time scale. Note that microscale scaling is adopted given than ζ is

a gradient-based quantity. Figure 4.9 shows the obtained conditional average results,

along with the statistical uncertainties. The trends noted in Fig. 4.8 hold across the

Reynolds number considered. Overall, the large values of ζn are a better marker for

the chaotic response of the flow to perturbations as the Reynolds number increases.

Furthermore, an asymptotic limit for the conditional average seems to exist in the
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limit of large Reynolds number.

Figure 4.9: Conditional average of δξ2 at different rescaled enstrophy ζn for Case 1
( ), Case 2 ( ), Case 3 ( ), Case 4 ( ). Error bars show the statistical
uncertainty.

To further characterize the spatial structure of the perturbation growth, statistical

correlations between different variables are used. The correlation of two fields φ and

ψ is defined as

ρφ,ψ =
(φ− 〈φ〉) · (ψ − 〈ψ〉)
‖φ− 〈φ〉‖ ‖ψ − 〈ψ〉‖

, (4.1)

where the norm considered is the L2-norm and 〈·〉 denotes a spatial average. Fig-

ure 4.10 shows the field correlation of δξ2 with enstrophy, helicity, and turbulent

kinetic energy. In line with the findings of Sec. 4.3.4.1, the LV appears slightly an-

ticorrelated with the turbulent kinetic energy, where low values of kinetic energy

provide high localized energy. Since helicity is symmetric about the zero value, the

correlation with δξ2 is close to zero. Enstrophy is positive valued, which picks the

direct correlation with δξ2.

The two-point correlation for the flow field and the LVs are shown in Fig. 4.11.
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Figure 4.10: Field correlation of δξ2 and ζ ( ), δξ2 and H ( ), δξ2 and k ( ). The
curves are plotted alongside the index where the LS crosses zero ( ).

Here, the spatial correlation of ξ in the x direction is given by

ρij(r) =
〈ξi(x)ξj(x+ (r, 0, 0))〉

‖ξ‖2 , (4.2)

and is defined similarly for the underlying flow field. As expected, the integral length

scale of the LV is smaller than that of the underlying flow field. However, there is

slight reduction of integral length scale as a function of LE index, seen from the more

rapid decorrelation at higher LE indices.

The two-point correlation may be expressed in the spectral domain as the energy

spectrum, which is shown in Fig. 4.12. It is seen that there is a significant difference in

the structure of the LVs and the flow field spectra, with more energy at small scales

observed for the Lyapunov fields. Further, the peak of the spectrum is located at

larger wavenumbers, which is consistent with the two-point correlation (Fig 4.11). It

is noted that this result differs from previous findings for the Kuramoto-Sivashinsky

Equation (KSE) in several aspects (see [147] and Chap. III). For the KSE, the spectra

of the chaotic and dissipative LVs were found to differ significantly. Further, the
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Figure 4.11: Left: spatial correlation ρ33(r) of the LV ( ) and of the underlying flow-
field ( ). Right: spatial correlation ρ33(r) of the LV plotted against the
LE index and the distance. Both plots are generated with the data of
Case 1. L denotes the box length (2π).

spectra of dissipative LVs were found to be localized in Fourier space. Other work

with the Rayleigh-Bénard convection showed that the energy spectra of the CLVs

were not independent of the Lyapunov indices [153]. Given the present result, it can

be expected that the first few CLVs also have a non-localized energy spectrum. This

analysis is presented in Appendix A.3.

Figure 4.12: Time-averaged energy spectrum of the computed LVs for Case 1 ( ) and
time-averaged energy spectrum of the underlying flow field ( ).
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4.4 Summary and conclusions

For the first time, all the positive LEs and LVs of forced HIT flows were computed

for several Reynolds numbers Reλ. The analysis of the LVs revealed that the fraction

of the spatial volume where the perturbations grow decreases as Reλ increases. It was

found that there exists a strong correlation between the chaotic parts of the domain

and the field of enstrophy. This relation was found be even stronger at higher Reynolds

number and seemed to tend to a universal law in the limit of large Reynolds numbers.

From this observation, it can be concluded that an extreme event that emerges in a

turbulent flow will strive where enstrophy is large. A model that aims at capturing

extreme events should therefore capture the time-history of intense vortical structures.

The precise reason behind the location of perturbation is regions of high enstrophy

remains unclear. We postulate that since regions of high enstrophy are regions where

fluid particles change direction the most, the continuous change of direction could be

at the origin of the amplification of perturbations. This interpretation would require

further investigations.

It was also found that the dimension of the attractor scales as (L
η
)2.8 where L is the

domain size and η is the Kolmogorov length scale, which is close to other estimates

predicted by prior theoretical work. However, the actual dimension is much smaller

than the full dimension of the phase space, indicating that reduced order models

that capture the dynamics of the flow field with fewer modes than what is usually

considered, could be developed.

The results indicate that the evolution of perturbations in a turbulent flow is

considerably different than in other canonical systems, such as those studied using

the Kuramoto Sivashinsky Equation (KSE). In particular, the Lyapunov vectors do

not show significant localization in Fourier space with an increase in the index. This

difference is likely due to the very strong diffusion term in the KSE (fourth order

derivative) as opposed to the second order viscous dissipation in fluid flow. Addi-
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tionally, the forcing scheme used to sustain the turbulent was found to only mildly

affect the results obtained about the LVs (see Appendix A.4). However, the values

of LEs were found to differ depending on the forcing scheme adopted suggesting that

the Lyapunov analysis could be a powerful method for discriminating between mod-

els, especially in the context of capturing the flow dynamics rather than spatial or

temporal statistics. Ultimately, the Lyapunov analysis could be used to better guide

the design of models able to capture extreme and rare events.

In the next Chapter, the Lyapunov analysis is applied to a flow closer to the

problems of interest: a turbulent jet flame. Similar questions to the ones posed

and answered in this Chapter will be examined. In particular, the dimension of

the attractor will be estimated, and the LVs will be interpreted by examining their

conditional average with respect to other flow quantities.
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CHAPTER V

Lyapunov spectrum of a partially premixed jet

flame

In Chap. IV, the Lyapunov analysis of a canonical turbulent flow case was con-

ducted. It was found that the distribution of the most chaotic BLVs was different

from the distribution of less chaotic BLVs. In particular, the chaotic response of the

turbulent flow field is aligned with the field of enstrophy. In this section, a similar

question is asked about the canonical turbulent flame configuration. Moreover, the

Lyapunov analysis conducted is used to estimate dynamical characteristics of the sys-

tem’s attractor such as its geometric dimension. This chapter is partially based on

[171].

5.1 Description of the configuration

Turbulent jet flames are omnipresent in the combustion applications. They are

particularly important for non-premixed and partially premixed configurations that

are used in reciprocal internal combustion engines, aircraft engines or even scramjet

applications. For this reason, turbulent jet flames have been the object of intense

modeling activities within the combustion community. The ultimate goal of these

models is typically to replicate the first or second-order statistics of temperature or
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species mass fractions different distances away from the injection nozzle. In this

Chapter, the Lyapunov analysis is applied to two well-known turbulent jet flames in

order to reveal details about their dynamics that are not usually part of the modeling

target.

5.1.1 Sandia flame series

The Sandia flames series [15, 172, 173] uses a partially-premixed CH4/Air mix-

ture as fuel, and air as oxidizer. Figure 5.1 shows a schematic of the piloted flow

configuration. The different flames in the series contain different inflow velocities for

the central jet and the pilot, which change the local strain rates and the level of ex-

tinction. In this study, the D and E configurations with central jet bulk velocities of

49.6 m/s and 74.4 m/s and pilot bulk velocity of 11.4 m/s and 17.1 m/s, respectively,

are considered. The D flame exhibits very limited extinction, while flame E exhibits

significant local extinction phenomena especially for x/d < 20, where d is the fuel jet

diameter. It will be shown that the level of extinction and reignition play a crucial

role in the structure of the LVs computed. Unless specified otherwise the LVs refer

to the BLVs, just like in Chap. III and Chap. IV.

5.1.2 LES/Flamelet approach

The Sandia D and E flames have been simulated with a wide range of combustion

models over the past decade [174–178]. The LES approach has been widely used to

simulate turbulent jet flames [174, 175] and will be utilized here. As for the com-

bustion model, the flamelet/progress variable approach (FPVA) [179] will be used.

Therem the thermodynamic state is parameterized with the mixture fraction Zmix,

the progress variable C and the mixture fraction variance Z ′2. The mixture frac-

tion describes the level of mixing between the central jet and the other streams, the

progress variable describes the advancement of the reaction and the mixture fraction
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variance describes the subgrid scale mixing. The progress variable is defined as the

sum of the mass fraction of water and carbon dioxide, YH2O+YCO2 . The flamelet solu-

tions are obtained using 1D-counterflow diffusion flames computed with FlameMaster

[180] and the GRI-2.11 chemical mechanism [181], and are stored in a look-up table.

The set of transport equations can be found in [179]. The filtered density (ρ) and

transport properties are obtained from the look-up table. The LES computations use

a low Mach number structured code with a staggered arrangement of variables [118]

that was already used in Chap. III. Transport equations for velocity, mixture fraction

and progress variable are solved, and the mixture fraction variance is obtained using

an algebraic closure model with dynamic coefficient [182]. Similar to Ref. [174], the

cylindrical computational grid spans 80d in the axial direction, and 20d in the radial

direction. For the Lyapunov analysis, two different grids will be used to evaluate the

impact of the spatial resolution on the results. A fine grid 256×128×32 and a coarse

grid 172× 90× 32 will be used.

Figure 5.1 also demonstrates the solver’s capability at capturing local extinction.

The conditional scatter plots highlight the presence of low-temperature zones near

stoichiometric conditions for the E flame, indicating local extinction events. The

contour plot shows that even when such local extinction is present, there are re-

ignition events downstream due to mixing with hot fluid pockets that prevent global

extinction.

Similar to the other LES/FPVA results, these simulations also capture uncondi-

tional statistics accurately. Additional cases with different grid spacing are used. The

different grid sizes used are 128×64×16, 172×86×24, 256×128×32, 384×192×48

and 512× 256× 64. For all the cases, the timestep is kept constant equal to 1.5 µs,

which is based on the finest resolution case. The flow field simulated is compared to

experimental measurements [15] in Fig. 5.2 for the Sandia E flame. Similar results

can be obtained with the Sandia D flame. It can be seen that the mixture fraction
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Figure 5.1: Left: schematic of the simulated configuration. The contour does not
show the entire domain. Right: scatter data of progress variable condi-
tioned on the mixture fraction for the 256 × 128 × 32 simulation (blue
dots) and the experiments (black dots), for the D flame (top) and the
E flame (bottom) at x/d = 7.5. The plots are overlayed with a burning
flamelet obtained at a strain rate a = 87s−1.
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Figure 5.2: Comparison of simulated and experimental measurements [15] of the
radial distribution at different axial sections of mean mixture frac-
tion (top left), root mean square mixture fraction (top right), mean
temperature (bottom left), and root mean square temperature (bot-
tom right). The blue squares denote the experimental measurements.
The darker the line, the finer the grid resolution. The resolutions are
128×64×16, 172×86×24, 256×128×32, 384×192×48, 512×256×64.

and temperature fields reasonably approximate the experimental measurements. The

fluctuation quantities are also fairly accurate even though they are overall slightly

underestimated compared to experimental data. Note that this difference could be

due to modeling or experimental errors [52, 121]. It can also be seen that no grid

convergence can be obtained at the resolutions considered. This is due to the fact

that DNS resolution is not achieved here and means that as the grid is refined, the

underlying flow field keeps changing. While the LVs obtained are not converged, the

structure of the LVs will be shown to be only mildly affected by the grid resolution.

A more involved discussion about the convergence of the LEs will be provided in

Sec. 5.3.1.
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5.2 Lyapunov analysis with variable density low Ma solvers

In this section, the application of the Lyapunov analysis is revisited for the turbu-

lent flame case. First, the definition of the state vectors is adapted to variable density

cases. Second, the numerical procedure for the computation of the LE is modified

since instabilities can occur in the limit of small perturbations. These instabilities

were in particular observed for variable density cases and are therefore presented in

this section.

5.2.1 Definition of state-vector

The same solver as the one used throughout Chap. III is used here. The time-

staggered representation creates variables at time stations n + 1/2 and n + 3/2 for

the scalars, while momentum-related variables are advanced from n to n+ 1. Hence,

within each timestep, a set of variables that are necessary for advancing the state

vector is {ρun,φn+1/2}. However, writing the momentum equation requires obtaining

u at timestep n. In the current implementation, this is achieved by approximating

ρn as ρn+1/2+ρn−1/2

2
. Hence, for complete determination of the state vector, it needs to

be augmented to include information about ρn−1/2. Here, this variable is introduced

as ∆ρn = ρn+1/2 − ρn−1/2, although other choices could have just easily been made.

With the present formulation, the set of variables necessary and sufficient is ξn =

{ρun,φn+1/2,∆ρn}.

5.2.2 A modified algorithm for the computation of the LEs

The Lyapunov analysis of variable density flows does not only require to change

the definition of the state vector but also to be careful with issues related to ma-

chine precision. In this section, it is shown that numerical difficulties can arise when

Algo. 3.1 is used for the computation of the LEs with arbitrarily small perturbation.

Consider the coarsest resolution case for which the first LE is computed. For this pur-
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pose, a baseline simulation and another simulation perturbed from this baseline at the

initial time are run. Since only the leading Lyapunov exponent is sought, no orthog-

onalization is necessary, but the perturbations are normalized at fixed timesteps to

maintain boundedness. For the algorithm to probe the tangent space of the attractor

at the state of the unperturbed simulation, the perturbation magnitude needs to be

infinitesimally small. Therefore, it is expected that the LEs will converge as the mag-

nitude of the initial perturbation is reduced. Here, the averaging time used to record

the perturbation growth is set to 2 × 10−4 s which is on the order of 130 timesteps.

Figure 5.3 (left) shows the evolution of the perturbation norm over time for different

initial norms. The plot shows the time history of the perturbation norm averaged over

440 normalization cycles (88 ms). It is seen that when the initial magnitude is small,

the time history of perturbation norm experiences a rapid jump before stabilizing at

an exponential rate with a constant exponent. As a result, the LE does not converge

monotonically with the reduction in perturbation magnitude. This observation can

be explained by analyzing the precision accuracy of the computational platform used.

Define p as the proportion of entries of the perturbation vector falling below a specific

threshold value. In Fig. 5.3, p is averaged over time and normalized by the values

obtained with the smallest initial perturbation norm. For reference, the initial jump

disappeared for initial perturbation norm ∼ 5× 10−4 which is indicated as a dashed

line. As expected, as the perturbation magnitude increases, the proportion of entries

below each threshold decreases. However, the proportion of entries close to machine

precision plateaus when the initial perturbation norm is close to 5× 10−4. The jump

in the perturbation norm is therefore attributed to machine precision errors. In the

low Mach solver, a Poisson equation is inverted at every step but is only inverted

up to a certain numerical accuracy. If the difference between the two simulations is

too small, the errors introduced by the Poisson solver might dominate leading to the

observed trends.
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Figure 5.3: (Left) Time evolution of the perturbation norm normalized by initial
perturbation norm for ||δξ0|| = 0.125 (solid line); ||δξ0|| = 1.25 × 10−4

(dashed line); ||δξ0|| = 1.25× 10−6 (dot-dashed line). (Right) Proportion
of state vector entries that are below stipulated thresholds plotted against
initial perturbation norm. The different lines correspond to threshold lev-
els shown in legend. The dashed line shows the smallest initial perturba-
tion norm for which the perturbation jump is not observed.

From Fig. 5.3, it can be seen that after the transient jump in perturbation norm,

the norm follows an exponential growth similar to the cases where no jumps were

observed. A method that can be used to bypass the machine precision issue is to

wait for a few timesteps before recording the growth of the perturbation norm. The

perturbations are evolved for kw timesteps, to provide a buffer time for the system

to stabilize. An orthogonalization process takes place only to record the initial norm

of orthogonal perturbation vectors, but the simulations are continued without any

change in the state vector at this step. The simulations evolve, and the perturbation

norms are then recorded a second and last time to compute the expansion rates of

each perturbation. Currently, it is not feasible to determine a priori the buffer time

needed to reach stability. Instead, a sensitivity analysis is used to determine the

optimal buffer time. This modified procedure is detailed in Algo. 5.1.

Figure 5.4 shows the impact of the algorithm on the value of the first LE for the

Sandia E calculation with the 128 × 32 × 16 grid and the 172 × 86 × 24 grid. The

value obtained for the LE is plotted against different initial perturbation norms. The

error bars indicate the statistical uncertainty obtained using the method outlined
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Algorithm 5.1: Modified algorithm
1: Randomly initialize {δξj}1,m, orthogonal with norm

∥∥δξj∥∥ = ε
2: for i = 1, Ns do
3: for j = 1,m do
4: δξj = Fkw(ξ + δξj)−Fkw(ξ)
5: end for
6: Orthogonalize [δξ1, ..., δξm] and store the result as [δζ1, ..., δζm].
7: for j = 1,m do
8: δξj = Fks−kw(Fkw(ξ) + δξj)−Fks−kw(Fkw(ξ))
9: end for
10: Orthogonalize [δξ1, ..., δξm].
11: for j = 1,m do

12: Λj = 1
(ks−kw)∆t

log(
‖δξj‖
‖δζj‖)

13: λj = λj + 1
Ns

Λj

14: end for
15: Normalize [δξ1, ..., δξm], with norm ε
16: ξ = Fks(ξ)
17: end for

in Ref. [141]. For both resolutions, it can be seen that for a low initial norm, the

LE computed with the original algorithm grows as the initial perturbation norm

decreases. This growth is purely due to numerical effects as explained above. It can

be seen that the modified algorithm helps damp this effect and stabilizes the value of

the first LE. For larger perturbations, the modified algorithm recovers the same LE

as the original algorithm.

The algorithm used here is schematically shown in Fig. 5.5, and involves the si-

multaneous evolution of several LES computations, which interact at regular intervals

to alter individual fields.

Throughout the dissertation, the modified algorithm was used in all computations

of the LE since it only has an impact on cases where an initial jump in the magnitude

of the perturbations is observed. For instance, in the case of the HIT run in Chap. III,

the modified algorithm does not affect the value of the LE. As can be seen in Fig. 5.6,

the initial jump in the perturbation magnitude is not observed here. Therefore, the

modified algorithm has no particular effect on the computation of the LEs in the HIT
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Figure 5.4: First LE plotted against the initial perturbation norm. The results of the
original algorithm are denoted by squares and the results of the modified
algorithm are denoted by the triangles. Black symbols show results from
a resolution of 128× 32× 16 while blue symbols are from a resolution of
172× 86× 24.

case.

5.3 Results of the Lyapunov analysis

5.3.1 Dimension of attractor

As the Reynolds number is increased, the range of scales associated with a turbu-

lent flow increases. Hence, the number of states that can be occupied by the system

increase which means that its dimensionality increases. However, it is not guaranteed

that the dimension of the attractor will exactly follow the trend found in Chap. IV,

since thermodynamics could impose strict relations that might constrain the chaotic-

ity of the flow. At the same time, the dimension of the attractor may be affected

by other factors than turbulence only. Intuitively, the Sandia E flame can occupy

more states in phase space due to the presence of extinction events. For instance,

consider the conditional plots shown in Fig. 5.1, which are projections of the entire

phase space into a two-dimensional sub-space. The presence of local extinction events
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Figure 5.5: Flow chart of the modified algorithm used to compute the Lyapunov
spectrum of the D and E flames.

leads to scattering near the stoichiometric mixture fraction with suppressed values for

progress variable in the flame E simulations. Hence, the dimension of the attractor,

which is the effective number of dimensions that dictate the evolution of the turbulent

flame, is a crucial metric. Here, the Lyapunov spectrum of exponents is computed

using the algorithm described in the previous section. The LEs are obtained over a

total simulation time of 0.2s for the D flame and 0.12s for the E flame. The coarse

grid results are averaged over twice this amount of time. In the end, 300 exponents

were computed for both the D and the E flame.

Figure 5.7 shows the LE spectrum for both flames. For each exponent, an error

estimate is defined by considering the time series of LEs and applying the central

limit theorem while compensating for the lack of independence of the samples [141].

The spectra exhibit interesting trends. First, there is a clear decay in the values of
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Figure 5.6: Time evolution of the perturbation norm used to compute the first LE
scaled by the initial perturbation norm for the HIT solved with 1283

points. The perturbation norm is plotted over 15 cycles. Each line is a
particular cycle.

the LEs with an increase in the LE index, that follow a power-law-like shape, in line

with the findings of Chap. IV. The first negative LE can be expected to be obtained

at much higher LE indices. Using an extrapolation procedure for the value of the LEs

for both flames, based on a power fit (similar to Chap. IV), the attractor dimension

can be obtained using the Kaplan-Yorke definition as:

D = i+

∑i
1 λj
|λi+1|

, (5.1)

where λj denote the jth LE, and i is the last index such that
∑i

1 λj ≥ 0. The

estimation yields an attractor dimension of roughly 5000 for flame D and roughly

10500 for flame E. This estimate is obtained using the filtered solution and is expected

to be lower than the dimension that would be obtained with fully resolved simulations.

As an illustration, the spectrum obtained with the coarser resolution is shown in

Fig. 5.7 would lead to lower estimates of the attractor dimension. It shows that the

dimension obtained here can be considered as a lower bound of the dimension of the

fully resolved attractor. Despite the large level of uncertainty, the dimension of the
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attractor can be approximated to be of order O(104) and should be compared to the

number of degrees of freedom that is necessary to perform a DNS of the D flame

O(1010) [183].

Figure 5.7: Lyapunov exponents of the D flame (black symbols) and the E flame (blue
symbols). Filled symbols are obtained with resolution 256 × 128 × 32,
empty symbols are obtained with resolution 172 × 90 × 32. The shaded
region denotes the uncertainty associated with the sampling errors for
the exponents of the D flame (black shade) and the E flame (blue shade).
The dashed lines (black for D flame and blue for E flame) are the inverse
power law fit used to determine the attractor dimension.

Second, the LEs for the flame E are larger than the corresponding LEs for the

flame D. The inverse of LE can be understood as a time-scale over which perturbations

grow. Here, this indicates that perturbations expand faster in the flame E than the

flame D. Given the same perturbation, the growth in these perturbations will be

larger for the flame E compared to the flame D. The largest strain rates for flames D

and E are roughly 2×105 s−1 and 2.5×105 s−1, respectively. The LEs are much lower

than the peak strain values, indicating that perturbation dynamics are controlled by

length and time scales that lie in the inertial range of the turbulence cascade.

Finally, it is important to note that the larger LEs tend to have higher scatter in
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values, indicating that the local expansion rates in phase space change significantly.

However, the scatter reduces at lower values of LEs (especially for the flame D), which

is an indication that there are stable sub-spaces where the perturbation expansion is

dictated by flow properties that are location independent.

5.3.2 Characterization of the response of the system to perturbations

The second component of the Lyapunov computations is the set of Lyapunov

vectors, which are Nl fields of the corresponding primary variables Ns. Each vector is

orthogonal to every other vector by definition. Figure 5.8 shows the progress variable

component of the first and 300th LVs of the D flame (in the following, this quantity is

called LVP). Note that the magnitude range (±1×10−10) is a function of the number

of variables in the LVs since the vector is normalized. While both fields have similar

magnitudes, there is a clear difference in their spatial distribution. The first LVP is

clustered at particular locations of the jet. Further, this LV is highly unsteady (not

shown here) and changes locations with time. The 300th LVP is spread along the

shear layer that separates the fuel jet and the pilot. This suggests that the first LVP

is controlled by an intermittent phenomenon. The LVPs have a structure similar to

the strain/dissipation rate, with alternating negative and positive values. Further,

the length scale of the structures decreases from the first to the 300th vector.

Since the LVs are mutually orthogonal, it is expected that they identify different

instability modes of the system. For the Sandia flame series, the main sources of

chaoticity are extinction/re-ignition and turbulence. To determine the relative roles

of these physical mechanisms, the extinction process is first defined in terms of a

burning index, a quantity that has been modified from the original definition [184] to

represent a field:

BI(x) =
C(x)

Cb(x)|Zmix(x)

, (5.2)

where BI(x) is the burning index field, C(x) is the progress variable field and Cb|Zmix
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Figure 5.8: Contours of the progress variable component of the first (left) and 300th

LV (right) of the D flame.

is the progress variable at the local mixture fraction for a fully burning flamelet. A

burning index close to 0 indicates extinction, while 1 denotes a fully burning solution.

The maximum progress variable is obtained from the flamelets generated with the

smallest strain rates. Figure 5.9 shows the probability of finding the absolute values

of LVP components above a particular threshold conditioned on the burning index.

For both flames, two different peaks exist: a peak at BI = 0.85 (flame D) or 0.8 (flame

E), and a peak at BI = 1. The first peak is related to partially burning regions of the

flame and denotes a direction in phase space along which any additional perturbation

can cause the flame to transition to an extinguished or re-ignited state. The second

peak is related to turbulence induced jet motion in the fully burning part of the flame.

The relative height of the peaks indicates which mode dominates each LV. It appears

that the progress variable instabilities captured by the first LV are more related to

extinction/reignition effects, while the instabilities captured by the last LV are more

related to jet oscillation, i.e., turbulence induced instabilities. Note that the value
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of the threshold has little influence on the results, as long as infinitesimal values of

LVP are filtered. Similar results were found with the coarser grid simulation (Fig. 5.9

right). This suggests that although the underlying flow field is not grid-converged

(see Sec. 5.1.2), the structures of the LVs at different grid resolution are distributed

the same way.

Figure 5.9: Probability of encountering |LVP| > 3×10−11 conditioned on the burning
index. Solid lines denote the first LV, dashed lines denote the 300th LV.
Black lines denote the Sandia D (obtained over 250 realizations) and blue
lines denote the Sandia E (obtained over 160 realizations). Top: fine
resolution 256× 128× 32. Bottom: coarse resolution 172× 90× 32.
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Figure 5.10 shows the distribution of the mean of the absolute value of LVP in

the (Zmix, C) space. The plot shows results consistent with the BI analysis (Fig. 5.9)

as a peak in the LVP is visible for 0.8 of the fully burning flamelet (highlighted in

the figure). This implies that the flame is the most responsive to perturbations in the

region of phase space between fully burning and extinguished. Physically, the regions

of extinction and reignition generate large time derivative of density which strongly

affect the flow field. Therefore, it is unsurprising that the response of the flow field

is marked the most in these regions. The phase space plot also reveals that most

of the perturbations are effective at a mixture fraction of around Zmix = 0.6, which

corresponds to the shear layer between the inner jet and the pilot jet for x/d < 25.

It is also seen that the perturbations do not increase as much where the reaction is

the most active. For this flame, the reaction acts as a constraint on the chaoticity.

5.4 Summary and conclusions

In this chapter, the Lyapunov analysis was applied to a canonical turbulent flame

to understand perturbation dynamics of turbulent flames. It is first highlighted that

in variable density problems, the initial perturbation norm cannot be made arbi-

trarily small; otherwise, machine precision errors may influence the direction of the

perturbation. The consequence of this modified perturbation direction is that the

flow can be set in a non-mass-conservative state leading to large initial variations

in the initial steps of the calculation of the Lyapunov exponents. For this reason, it

might be beneficial to increase the initial size of the perturbation to avoid such issues.

Alternatively, a numerical procedure has been introduced to bypass this effect and is

shown to damp the initial growth of the perturbation vector norm, and recovers the

LEs when the initial growth is not observed.

The Lyapunov analysis allows full characterization of the chaotic dynamics asso-

ciated with turbulent flows, which have broad ramifications for both modeling and
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Figure 5.10: Average conditioned on the mixture fraction and progress variables for
|LVP| for the 300th LV of the E flame. Average is taken over 160 real-
izations. Overlaid with 80% of the fully burning flamelet of strain rate
a = 87s−1 (solid line). Overlaid with 2 iso-contours of progress variable
source term (dashed lines).

control of such complex flows. The algorithms can be directly applied to any practi-

cal flow, by replacing the computational solver used in the ensemble procedure. The

ensemble-LES approach is used to estimate the dimension of the chaotic attractor for

Sandia flames D and E. The results indicate that the dimension is at least 5000 (flame

D) and 10500 (flame E) which are smaller than the full dimension of the state-space

N = 7.34× 106. This is a significant result, which demonstrates that the strong ther-

modynamic relations imposed by the combustion process combined with the larger

viscosity related to the heat-release severely constrain the dynamics of the flow. As

a comparison, a recent DNS run for the Sandia D flame required about 1010 degrees

of freedom [183].
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In addition to the Lyapunov exponents, the LVs describe the response of the flow

to perturbations. These modes are dictated by the interplay between extinction/re-

ignition and the turbulence-induced jet motion. In particular, the strongest growth is

related to the jet breakdown process, while other LVs are aligned with the extinction/re-

ignition regions in the shear layer. Further, the perturbation growth modes exhibit

location-dependent behavior in (Zmix, C) space. The response of the flow to pertur-

bation is dominant in regions of extinction/re-ignition, in the rich side of the shear

layer and away from the location of maximum heat release.

In conclusion of Chap. II-V, the Lyapunov theory is a valuable tool to characterize

the dynamics of turbulent flow and combustion problem. It allows evaluating how

the flow responds to perturbations. This characterization of the dynamics can help

understand how deviations from nominal behavior occur which can lead to a better

understanding of the process through which extreme events are triggered.

This chapter closes the discussion about applying the Lyapunov analysis to turbu-

lent reacting flows. In Chap. VI, a method that characterizes, in turn, the statistics

of extreme events will be described.
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CHAPTER VI

Statistical analysis of extreme events

In Chap. II-V, the focus was on providing a global characterization of the dynamics

of turbulent inert and reacting flows. This approach was justified by the need to

understand how extreme events occur in complex systems. Among the five challenges

of extreme events listed in Chap. I, not all the questions were concerned with the

dynamics of the system. In particular, the quantification of the probability of an

extreme event requires a statistical approach.

Predicting the probability of rare events is particularly important if one wants

to design devices resilient to intermittent and spontaneous events. For example, the

probability of an extreme event can be used to quantify how many times a device will

be exposed to extreme conditions it during its lifetime. The probability may also be

used to simply assess the relevance of the extreme event. Typically, extreme events

that are too rare may actually be irrelevant (see Sec. 1.2.2).

The prediction of the probability of a rare event using random observations is

problematic in general as the uncertainty of a probability estimator scales with the

number of observations of the rare event. Computing the probability of a rare event

using a Monte-Carlo estimator requires observing many realizations of the system. A

remedy to this problem is to observe rare events more often than non-rare events. In

this Chapter, a method to accelerate the observation of rare events is proposed. It
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relies on the following principle: a phase space trajectory leading to a rare events is

close to one leading to less rare events. This chapter is partially based on [185].

6.1 Introduction

Rare excursions of a complex system from its nominal behavior are difficult to

predict, since very few observations, if at all any, would exist to reliably characterize

the source of this behavior. Although rare events are sparsely encountered, when

they are associated with extreme events, their impact can be of tremendous impor-

tance. For instance, in propulsion applications, gas turbines and other such energy

conversion devices are designed to minimize failure probability, but any failure can

have catastrophic consequences [90, 186]. The problem of rare event prediction is also

relevant to other fields such as market crashes in financial systems [187], prediction

of reaction rates in molecular dynamics [188], the occurrence of rogue waves next to

offshore platforms [26], rare and extreme atmospheric heat waves [28], heavy rains

[33, 189] or energy grid blackouts [190]. Even though each such event is rare, the

presence of this possibility requires an endeavor to develop prediction tools.

Defining prediction in this context is itself a multifaceted issue [90], but much of

the prior work in this area can be grouped as following a dynamical systems approach

or a statistical approach. In the dynamical approach, the goal is to characterize

the dynamical behavior of the system, such as its response to perturbations or its

stability properties (See Chap. III-V). One application could be that understanding

these aspects could enable real-time control, where some precursor is identified for the

purpose of an actuation mechanism. In the statistical approach, the goal is to obtain

statistics of a rare event. Estimating the probability of a rare event may enable a more

resilient system that is less susceptible to such extreme excursions. Such statistical

approaches can also reveal the average behavior close to a rare event, which may also

be used to identify precursors. However, developing such a statistically significant
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ensemble of rare events is in itself a formidable challenge. This is especially the case

in high-dimensional systems, where several paths to such rare events may exist. The

focus of this work is to develop a statistical framework for such high-dimensional

systems, where features of a rare event trajectory are inferred from less rare (more

probable) trajectories.

Rare events occur when there is some uncertainty imposed on the system. For

instance, this could be due to uncertainty associated with the initial or boundary

conditions. The objective of the numerical approach is to sample realizations that

lead to extreme events, as defined by specific regions of phase-space. For this purpose,

consider the quantities used to define the rare events as ξ ∈ E, where E is the phase

space. The rare event probability is defined as p = P (ξ ∈ A), where A ⊂ E. In

a Monte-Carlo sense, this probability can be estimated by sampling n independent

events, with the estimator of p given by

p =
1

n

n∑
i=1

1A(ξi),

where 1A(x) = 1 if x ∈ A and 0 otherwise. While the estimator is unbiased, the

variance of this estimator can be obtained as (p − p2)/n. The relative uncertainty

of the estimator scales as
√

1
np

for p << 1. Therefore, the lower the probability to

be estimated, the higher relative uncertainty of the estimator. In order to improve

this estimation process, a reliable approach to sampling more of the trajectories that

lie in A is necessary. The main challenge that makes such an estimator difficult to

obtain is that the set of initial/boundary conditions that lead to the rare event is not

known a priori.

There are many techniques that exist to improve this estimation procedure. For

example, in importance sampling methods [191], a biased distribution is used to draw

more samples from certain regions of initial and boundary condition space. However,
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the optimal bias needed to obtain extreme events is unknown, which reduces the

effectiveness of this method [192]. Typically, a functional form of the biased distribu-

tion is assumed, and its parameters are adjusted to approximate the optimal biased

distribution [193]. The biased distribution could also be obtained from the direct

observation of a rare event with a cheaper low-fidelity model [194]. An alternative

technique is the importance splitting (ISP) method, where the rare event region is

progressively reached. Suppose that one defines a rare event as A = {ξ, Q(ξ) > a},

where ξ is the state of the system, Q(ξ) is the quantity of interest (QoI) and a is some

threshold. Instead of directly finding A, one can sample Ai = {ξ, Q(ξ) > ai}1≤i≤N

such that a1 < ... < aN , and use the fact that A1 ⊃ ... ⊃ AN . Until recently, these

methods were limited due to their sensitivity to the definition of the intermediate

levels a1, ..., aN . New adaptive methods that do not require to define these levels

explicitly [195] have allowed importance splitting to be used in a variety of fields

[196, 197]. Recently, ISP has been shown to be particularly successful at capturing

rare events in turbulent flows. For example, it has been used to observe transitions in

planetary atmosphere [196, 198]. It has also been successful for computing the time

separating two extreme events (return times) in turbulent flows that can be obtained

from the probability of the rare event itself [28, 199]

For the specific problem of interest, Wouters et al. [16] introduced a genealogical

particle algorithm based on Ref. [200]. The algorithm relies on the simulataneous

evolution of several copies of the dynamical system. The copies that are the closest

to the rare event of interest are cloned or pruned periodically. At the end of the

procedure, the observation of the system are clustered next to rare event of interest

and can be used to estimate the desired probability. With this background, the

goal here is to use properties of the physical system to improve the convergence of

estimators, especially when used with the ISP method. In particular, the approach is

inspired by techniques used in computational chemistry. For instance, if the goal is to
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capture the probability of transition of a molecular system from one state to another,

it can be beneficial to focus calculations around the most likely transition path in order

to observe many such transitions [201]. In other areas, including fluid mechanics, the

importance of the most likely path leading to a rare event (the instanton) has also

been recognized and used to sample rare-events [51, 198, 202]. It was also noted

by Wouters et al. [16] that the knowledge of the path to a rare event can help for

the convergence of the importance splitting algorithm they introduce. Here, this

notion of estimating the most likely path to a rare event is quantified in the case of

high-dimensional deterministic dynamics.

The rest of the paper is organized as follows: Section 6.2 briefly describes the al-

gorithm of Wouters et al. and illustrates the benefit of using the average time-history

of the observable that correspond to rare events for the statistics of the probability

estimator. Section 6.3 introduces a method to estimate the path to a rare event from

a simple rationale. The method is tested with an a priori and a posteriori analysis.

In Sec. 6.4, the applicability of the method to more complex systems is investigated

and discussed. Concluding remarks are provided in Sec. 6.5.

6.2 Path-to-event based estimation of probability

6.2.1 Definition of the dynamical system and rare event notation

The rare events of interest occur over a finite-time interval, and the quantity of

interest (QoI) is defined at the final time. More formally, the dynamical system is

defined as

∀t ∈ [0, Tf ],
dξ

dt
= F(ξ), ξ(t = 0) ∼ P , (6.1)

where F represents the governing equations. In the case of turbulent flow or other

systems governed by partial differential equations, F is some finite-dimensional ap-

proximation of these equations obtained by, for instance, numerical discretization.
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P is the nominal distribution of initial conditions. The QoI is defined as QoI =

Q(ξ(Tf )) = Q(Tf ) and the observable is chosen to be Q(t).

6.2.2 Genealogical particle algorithm

The genealogical particle algorithm introduced in Ref. [16] is briefly presented as it

will be used as the basis for the proposed method. Since the problem is deterministic,

only the uncertainty in initial conditions can lead to a distribution of QoI. The goal is

to find the probability with which the QoI exceeds a certain threshold a, P (Q(Tf ) >

a). The algorithm starts by sampling M initial conditions (also called particles) at

t = 0 that are evolved over time. The name genealogical is due to the fact that at

intermediate times (or selection steps) between t = 0 and t = Tf , realizations that are

deemed likely to lead to the rare event are cloned, while others are pruned. Cloning

of particles implies that at time t = T , another copy of this particle is initiated. For

deterministic dynamics, this copy should be perturbed by a small amount before being

evolved. In this work, the selection steps are fixed a priori and occur at fixed time

stations. For the numerical tests that are conducted, the number of selection steps is

expressed in terms of the timesteps that separate two selections. After every selection

step, a special procedure is used to maintain the total number of trajectories to be

constant (see [16, Sec. 2.3.3] for the details of this procedure). In order to select

the particles that need to be cloned or pruned at every selection step, a weight is

attributed to each particle based on the chosen observable. This particle weighting

is the focus in this work.

The weight chosen in Ref. [16] is of the form W = exp(C∆Q), where C is a

constant called the weighting factor and ∆Q is the variation of the observable between

two selection steps. The value of C determines the aggressiveness of the cloning

process expressed as the pruning ratio Nprune
M

, where Nprune is the number of particles

that are pruned. A large value of C would lead to a large pruning ratio, meaning
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that at every selection step, only a few particles are saved. In turn, a large pruning

ratio would also prioritize particles that lead to the rarest events. In Ref. [16], it

was proposed to choose C such that C =
∆µQ
σ2
Q

, where ∆µQ is the deviation between

the expected values of the QoI at the end of the ISP compared to a expected value

of QoI without using the ISP, and σ2
Q is the variance of the QoI at t = Tf without

using the ISP. In practice, the statistics of the QoI can be estimated by running M

non-biased simulations prior to using the ISP. If a large deviation from the average

behavior is sought, then ∆µQ will be larger and the value of C will increase as well.

Since C controls the pruning process, it is necessary to understand the implications

of the choice of this variable.

The influence of the weighting factor C on the ISP is illustrated in Fig. 6.1 for the

Lorenz 96 system [203], using parameters based on Ref. [16]. This system will be used

throughout the paper as a benchmark for the performances of the modified algorithm.

This system is non-linear, can have an arbitrarily high number of dimension and

exhibits chaotic dynamics that makes it a good surrogate for turbulent flow problems.

The governing equations are written as

∀t ∈ [0, Tf ], ∀i ∈ [1, d],
dξi
dt

= ξi−1(ξi+1 − ξi−2) + f − ξi, (6.2)

where f = 256, ξd+1 = ξ1, ξ0 = ξd, ξ−1 = ξd−1 and d is the number of degrees of

freedom chosen (here, 32). The observable considered here is related to the turbulent

energy of the system and is defined by

Q =
1

2d

d∑
i=1

ξ2
i . (6.3)

A second-order Runge Kutta scheme is used for the time-integration, and the

time step is set to 10−3. In Fig. 6.1 (left), 1000 instantaneous realizations of Q

are shown along with the ensemble average. The initial conditions are distributed
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following a normal distribution N (0, 1) and quickly diverge from each other due to

the chaotic dynamics. In the middle and right plots, the trajectories simulated at

the end of the splitting algorithm using M = 100 particles are shown for weight-

ing factors C = 0.0104 (middle) and C = 0.0208 (right). Note that the weighting

factor C = 0.0104 was used in Ref. [16] to demonstrate the capabilities of the algo-

rithm. At every selection step, the clones are perturbed using a normal distribution

N (0, 0.871). The selection steps are separated by 19 timesteps. Note that the im-

portance splitting algorithm is stochastic due to perturbation introduced during the

cloning process. Hence, the algorithm needs to be executed multiple times to ob-

tain statistics about the probability estimator. As can be seen, the largest weighting

factor leads to the largest value of QoI at the final time. However, it also quickly

discards most of the particles. This effect was also observed in [204]. As a result, the

solution space ensemble containing the trajectories that lead to a rare events are not

appropriately sampled, which can lead to large variance for the probability estimator,

thereby increasing its associated uncertainty.

Figure 6.1: Left: instantaneous values of the observable Q(t) plotted over time ( ).
Ensemble average of Q ( ). Middle: time-history of Q(t) obtained with
the importance splitting algorithm using a constant weight factor C =
0.0104. Right: time-history of Q obtained with the importance splitting
algorithm using a constant weight factor C = 0.0208. Plots correspond
to the Lorenz 96 case with 32 degrees of freedom.
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6.2.3 The rare mean path approach

In order to improve the trajectory sampling for estimating probabilities of events

significantly removed from the mean behavior, the weighting factor will have to be

modified. In fact, the weighting factor could be made time-dependent [16]:

C(t) =
µrare(t)− µQ(t)

σQ(t)2
, (6.4)

where µrare(t) is the time-dependent value of the average observable leading to a

rare-event, µQ(t) is the time-dependent value of the ensemble average observable and

σQ(t)2 is the time-dependent variance of the observable. In Ref. [16], this method was

illustrated for a noise-driven problem for which C(t) could be analytically computed,

and it was shown to decrease the pruning ratio while leading to the expected final

QoI. Here, the objective is to evaluate this procedure for the Lorenz 96 problem and

quantify the impact of the procedure on the statistics of the probability estimator. In

all the following discussions, target level refers to the threshold that QoI is designed

to exceed at the final time when using the ISP. For the fixed-weight algorithm, target

level refers to ∆µQ+µQ(Tf ), and for the time-dependent algorithm, target level refers

directly to the threshold a.

The system of interest is defined by Eq. 6.2. While, σQ(t) and µQ(t) can be

approximated using a few observations of the system, estimating µrare(t) requires

observation of the rare event. The target levels investigated are Q(Tf ) = 1356 and

Q(Tf ) = 1737, and are located two and four standard deviations away from the

mean. In order to get a reasonable approximation of the mean path leading to these

values, 106 trajectories are simulated. The value of the observables for the trajectories

exceeding these levels are stored and averaged at every timestep. More formally, the

mean path R(t) that exceeds a threshold a is defined as:

133



∀t ∈ [0, Tf ], Ra(t) = 〈 Q(t) | Q(Tf ) > a 〉. (6.5)

The mean trajectories of the observable leading to both levels are shown in Fig. 6.2.

Figure 6.2: Ensemble average time history of the observable ( ). Rare mean path of
the observable R1356 ( ); R1737 ( ). Plots correspond to the Lorenz 96
case with 32 degrees of freedom.

Using the computed rare mean path, the probability P (Q(Tf ) > 1356) and

P (Q(Tf ) > 1737) are computed using the genealogical particle algorithm presented

in Sec. 6.2.2 with the fixed and the time-dependent weighting factor. Here, the num-

ber of particles is M = 2500 and algorithm is run 100,000 times in order to ensure

that the statistics of the estimator are converged. In Fig. 6.3, the probability obtained

with the fluctuating path approach is compared to a brute force calculation computed

with 8×108 calculations. Note that although a single level is targeted, it is only used

to compute C. The ISP method used does not preclude from estimating probabil-

ities at higher levels. Therefore, the results present probabilities corresponding to

different value of the QoI. As can be seen, the estimators obtained are unbiased, and

the variance is significantly reduced compared to that of the Monte-Carlo simulation.

Furthermore, by targeting larger levels, lower probabilities can be estimated by the
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algorithm. For reference, the probability obtained in Ref. [16] through Monte-Carlo

run are also indicated to show consistency between the cases run.

Figure 6.3: Complementary of the cumulative density function (CDF) of the QoI.
Probabilities are obtained with brute force calculation ( ), the ISP
method with time-dependent weight based on R1356 ( ), and R1737 ( )
and M = 2500 particles. Uncertainty of the estimator computed with
the ISP algorithm using R1356 for the time-dependent weight is shown
( ) along with the theoretical Monte-Carlo uncertainty that would be
obtained with M = 2500 realizations ( ). The computed probabilities
provided in Ref. [16] are also provided for reference ( ). Plots correspond
to the Lorenz 96 case with 32 degrees of freedom.

The performances of the importance splitting algorithms with fixed and time-

dependent weights are further investigated in Fig. 6.4, where the variance of the

probability estimator is plotted in terms of the computational gain compared to a

naive Monte-Carlo simulation. More precisely, the computational gain G is defined

as the number of brute force simulations required to achieve the same variance as the

ISP, divided by the number of particles M used for the ISP:

G =
p− p2

Mσ2
ISP

, (6.6)

where p is the probability of the rare event, and σ2
ISP is the variance of the
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importance sampling estimator.

For both the fixed weight and time-dependent weighting factor, significant com-

putational savings can be obtained, especially for low-probability events. The target

probability corresponding to Q(Tf ) = 1356 and Q(Tf ) = 1737 are indicated as the

vertical black lines. Interestingly, the importance splitting algorithm does not provide

computational gains at these levels, which means that the final distribution of Q is

not centered around the target levels. Therefore, the choice of the weights according

to the rationale of Eq. 6.4 does not guarantee computational efficiency at the level

targeted. As expected, when the cloning is more aggressive, the computational gain

increases more steeply as the probability decreases. This is observed for both the fixed

and time-dependent weights. The main difference between fixed and time-dependent

weighting is apparent when targeting higher values of the QoI. The fixed weight only

provides computational gain for probabilities lower than 10−6 and is consistently out-

performed by the time-dependent weight algorithm. This result can be explained by

the fact that the fixed weight method discards many trajectories too quickly. The

average pruning ratio taken across the 105 realizations of the ISP for the fixed and

time-dependent weighting factors are shown in Fig. 6.4 for both target levels, and

indicate a consistently larger pruning ratio for the fixed weight method. At lower

target levels, while the pruning ratio is larger, the computational gains between the

fixed and time-dependent weighting factors are almost the same. It is likely that

even a small number of additional trajectories that are not pruned can have a dispro-

portionate effect on the performance of the estimator. This further emphasizes the

importance of the weighting method for this algorithm. Additional cases are run with

64 and 1024 degrees of freedom instead of 32 to evaluate the effect the dimensionality

of the problem of the findings. The results (shown in Appendix C.1) suggest that the

above findings hold for higher number of dimensions as well.
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Figure 6.4: Left: computational gain expressed in terms of Eq. 6.6 when targeting the
level 1356 with fixed weight ( ) and time-dependent weight ( ); when
targeting the level 1737 with fixed weight ( ) and time-dependent weight
( ). The vertical line with denotes the probability corresponding to
the level 1356, and with denotes the probability corresponding to the
level 1737. Right: pruning ratio when targeting the level 1356 with fixed
weight ( ) and time-dependent weight ( ); when targeting the level 1737
with fixed weight ( ) and time-dependent weight ( ). Plots correspond
to the Lorenz 96 case with 32 degrees of freedom.

6.3 Self-similarity approach for estimating the path to a rare

event

In the previous section, it was found that knowing the mean path to a rare event

can significantly improve the statistics of the probability estimators, especially to

estimate low probabilities. However, to obtain the rare mean path, the approach

used in Sec. 6.2.3 required to observe many rare events in the first place, which

defeats the purpose of the procedure. Instead, it is preferable to estimate the path to

a rare event using a different method. In this section, a brief review of the available

methods is provided in order to convey the point that simpler procedures are needed.

For this purpose, the self-similarity based approach is introduced here. The method

is tested using both a priori calculations and a posteriori analysis.

As mentioned in Sec. 6.2, it has been widely recognized that the knowledge of the

average or most likely path leading to a rare event is advantageous in computing the

probability of this event. In computational chemistry, transition paths are typically
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obtained through an optimal sequence of trials and errors, also referred to as the

shooting method [201]. Another approach well-suited for noise-driven rare events

consists of finding the optimal time history of external forcing that can drive the

system to a rare event. This optimum can be obtained by solving a minimization

problem [51, 198] or by directly solving a partial differential equation (PDE) [202] for

this instanton. However, such methods can create numerical issues for deterministic

chaotic systems that evolve over long periods of time [205]. In this work, a simpler

approach is developed, motivated by the observation that there exists self-similarity

in the paths that lead to rare events for the system investigated.

6.3.1 A priori analysis

Using the brute force Monte-Carlo simulation for the Lorenz 96 case with 32

degrees of freedom (discussed in Sec. 6.2.3 with 8 × 108 trajectories), the rare mean

path to many target levels can be accurately estimated. Several thresholds levels are

selected between 1500 and 2000 and are separated by a constant step of size 25. The

rare mean paths obtained are plotted in Fig. 6.5.

Figure 6.5: Left: rare mean path exceeding thresholds ranging from 1500 to 2000 and
separated by a stepsize of 25. Right: self-similarity factor α computed
from successive rare mean path (see Eq. 6.7). Plots correspond to the
Lorenz 96 case with 32 degrees of freedom.

It can first be observed that the path leading to each one of the thresholds are

surprisingly similar to one another. In other words, the paths that leads to rare
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events share characteristics. This feature is termed self-similarity, which provides an

approach to estimating the path leading to a rare event without necessarily observing

it. The simplest model that can be formulated would consist in assuming that the

path leading to a higher threshold for the QoI is simply shifted up by a certain ratio.

More formally, given a1 < ... < am such that ai+1 − ai is constant and defining

Ri(t) = 〈Q(t) | Q(Tf ) > ai〉,

∀i ∈ [1,m],
Ri+1(t)

Ri(t)
= α(t), (6.7)

where α is independent of i. Here, α can be understood as a self-similarity factor that

relates the rare mean paths separated by a step size of ai+1− ai for the final value of

the observable. In Fig. 6.5, this model is a priori tested by plotting the value of α.

Indeed, the ratio α appears almost independent of the threshold considered which is

in itself surprising given the simplicity of the model. It should be noted that many

other models could be formulated and could involve the value of the QoI rescaled by

its mean, or a more elaborate factor that depends on the response of the system to

perturbation (Lyapunov exponents). Note that the same features are found with the

Lorenz 96 system using 64 and 1024 degrees of freedom (Appendix C.1).

6.3.2 A posteriori analysis

To test the effectiveness of the self-similarity approach, an a posteriori analysis

is conducted for the Lorenz 96 case with 32 degrees of freedom. A Monte-Carlo

calculation with M = 2500 samples is conducted, where M is also the number of

particles used in the importance splitting algorithm. Note that it is not unreasonable

to expect a Monte-Carlo calculation to be run withM particles even for other purposes

than of estimating the rare mean path. For example, a user of the ISP would typically

run randomly sampled simulations in order to cross validate the output of the ISP,

at least for the highest probability obtained with the ISP. Furthermore, the value of

139



the weighting factor requires estimating the first and second moments of the QoI, for

which randomly sampled simulations would have to be run. Additionally, given that

the probability estimate from the ISP is subject to some variance, it is preferable to

run the ISP multiple times. The computational cost of the rare event path estimation

is therefore of the same order of magnitude as other sanity checks that the user needs

to run in general.

From the 2500 brute force calculations, the mean trajectory to threshold ranging

from 1225 to 1325 are directly computed (based on definition in Eq. 6.5), in steps of

∆a = 25, leading to at least 70 trajectories per threshold. The path R1737(t) to the

threshold Q(Tf ) = 1737 is then simply estimated as

∀t ∈ [0, Tf ], Ra(t) = αave(t)
a−b
∆a Rb(t), (6.8)

where Ra is the path to the target level (here, a = 1737), b is the largest level

directly sampled from the M random samples (here, b = 1325), αave(t) = 〈Ri+1(t)
Ri(t)

〉.

From here, the time-dependent weight C(t) can be constructed according to Eq. 6.4.

However, the extrapolation procedure incurs numerical errors that can be amplified

in regions where σ2
Q(t) is close to 0. In practice, the absolute value of the weighting

factor can be extremely large in these regions and lead to unreasonable pruning

ratio. Instead, the weighting factor can be regularized by recognizing that the particle

selection should be more and more aggressive close to Tf . In other terms, |C(t)| should

be an increasing function of time. Since the variance of the observable is expected to

be large at Tf (the perturbations have had sufficient time to amplify), the numerical

error at the latest time is least pronounced. Therefore, C(t) can be enforced to

be an increasing function of time in the following manner: starting from the value

of C at the final time, step backwards from t to the previous timestep t − ∆t. If

C(t−∆t) > C(t) then C(t−∆t) = C(t); otherwise, do nothing. Then keep stepping

backwards (compare C(t−∆t) and C(t− 2∆t)). This procedure can then lead to a
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step-like function for C(t) which will be reflected in the pruning ratio (Fig. 6.6).

Figure 6.6 shows the extrapolated path towards the desired threshold is compared

with path obtain from brute-force Monte Carlo computation. The extrapolation

procedure does incur inaccuracies, but overall follows the correct trend. The ISP

algorithm is then run with M = 2500 particles, with the weights C(t) obtained from

the extrapolated mean path. The ISP is executed 105 times in order to obtain good

statistical convergence of the estimator. As can be seen in Fig. 6.6, the computational

gain obtained with the a posteriori test is slightly lower than by using a brute force

calculation to compute the rare mean path. This is because the rare mean path

estimated using the self-similarity model is subject to inaccuracies, which lead pruning

more observations than needed (See Fig. 6.6 right). However, the a posteriori test

still outperforms the method with the fixed weighting factor, across all probabilities.

By examining the pruning ratio, it appears that fewer samples are pruned when using

the self-similarity approach as compared to the fixed weight method. The pruning

ratio exhibits a series of steps that are due to the correction of numerical errors in

the extrapolation. The same procedure appears to hold for a 64-dimensional and

1024-dimensional system (Appendix C.1).

6.4 Applicability to other systems

In Sec. 6.2 it was shown that the knowledge of the rare mean path could improve

the convergence properties of the ISP algorithm. In Sec. 6.3, it was found that a

simple approach could be used to estimate the rare mean path from less rare mean

paths, and was demonstrated in the case of the Lorenz 96 case. In this section, it

is examined whether the observations made in Sec. 6.3 are applicable for problems

more representative of turbulent flows, which is the motivation behind this work. An

a priori analysis similar to the one conducted in Sec. 6.3 is conducted for two different

dynamical systems.
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Figure 6.6: Left: rare mean path R1737 obtained from brute force computation ( ),
from the self-similarity approximation ( ) and ensemble average time
history of the observable ( ). Middle: computational gain computed
as Eq. 6.6 when targeting the level 1737 with the fixed weight ( ), the
time-dependent weight obtained from the brute force calculation ( ), the
time-dependent weight obtained from the self-similarity approximation

. Right: pruning ratio obtained when targeting the level 1737 with
fixed weight ( ) and time-dependent weight obtained from brute force
calculation ( ) and the time-dependent weight obtained from the self-
similarity approximation ( ). Plots correspond to the Lorenz 96 case
with 32 degrees of freedom.

6.4.1 Kuramoto-Sivashinsky Equation (KSE)

The 1D Kuramoto-Sivashinsky [135, 136] equation is often used as a surrogate for

the spatiotemporal chaos seen in turbulent flows. In this work, the formulation with

with unit viscosity coefficient is used:

∀t ∈ [0, Tf ],
∂u

∂t
+∇4u+∇2u+∇u2 = 0, (6.9)

where u is defined on the domain [0, 32π] and u(t = 0) = cos(x/16) · (1 + sin(x/16)),

and Tf = 150 time units. The equations are integrated in time using the ETDRK4

scheme [137] with a fixed timestep of 0.25 time units. The equations are solved in

Fourier space using N = 128 modes. Here, ξ is defined as the discrete version of u in

physical space, i.e., ξ ∈ R128 and the function q that defines the QoI is defined as

Q(t) =
1

N

N∑
i=1

ξ2
i . (6.10)
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Figure 6.7 shows the evolution of the QoI for different initial conditions, and exhibits

variations representative of a chaotic system. The event probability is then defined

as P (Q(Tf ) > a). The probabilities corresponding to different thresholds are shown

in Fig. 6.7 (right) and were obtained by running 8× 108 trajectories.

Figure 6.7: Left: instantaneous values of the observable Q(t) plotted over time ( ).
Ensemble average of Q ( ). Right: complementary of the cumulative
density function (CDF) of the QoI. Probabilities are obtained with brute
force calculation ( ) plotted along with the theoretical Monte-Carlo un-
certainty ( ). Plots correspond to the KSE case.

The rare mean path for thresholds ranging from 2.2 to 2.7 (thresholds for which at

least 1000 trajectories can be obtained) and separated by a constant step of 0.05 are

shown in Fig. 6.8 (left). It can be observed that the rare mean path follow the same

functional at first (red lines), which suggest that the self-similarity approach holds

initially. However, the rarest mean paths gradually deviate from the initial functional

and would not be reasonably estimated using the self-similarity approach. In Fig. 6.8

(right), the self-similarity factor α(t) is plotted. The self-similarity approximation

is reasonably accurate at early to intermediate times, but shows more variability

at later times. Overall, these observations suggest that the self-similarity approach

could be useful for short term predictions. Nevertheless, the rare mean paths do not

significantly differ from one another, and it is still reasonable to expect the less rare

mean paths to be informative of the rarer mean path.
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Figure 6.8: Left: rare mean path exceeding thresholds ranging from 2.2 to 2.7 and
separated by a stepsize of 0.05. Right: self-similarity factor α computed
from successive rare mean path (see Eq. 6.7). Plots correspond to the
KSE case.

6.4.2 High-altitude relight in aircraft engines

In aircraft engines operating at high altitude, there is a finite possibility of the

flame blowing out, which will lead to loss of propulsion. For this reason, the ability to

relight the combustor within short times is crucial for safety (and necessary to obtain

certification). During the relight procedure, a spark source is repeatedly used to

inject high enthalpy gases into a combustor that is fueled but is at low temperature.

While some of these sparks can lead to ignition, propagation of the flame kernel,

and eventual stabilization of the gas turbine, the chaotic flow inside the combustor

introduces a source of uncertainty. The goal then is to estimate the probability of

ignition given a set of operating conditions.

A canonical flow configuration that replicates this ignition process was experimen-

tally studied by [206] and the a corresponding simulation is shown in Fig. 6.9, based

on the modeling study of [3]. Here, the spark is injected from the base of the flow

(marked igniter in the figure). The kernel then traverses into the region that contains

the fuel-air mixture and convecting in a turbulent flow. Subsequent mixing and chem-

ical reactions lead to either a successful or failed ignition event. The forward model

is deterministic in nature, similar to other examples studied in the current work. The
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main sources of uncertainty are the discharge efficiency of the spark igniter and the

initial turbulence state in the system. It was determined that the turbulence effect is

dominant over igniter efficiency for the range of conditions considered. To quantify

ignition, the volume of the kernel at a particular time is used to mark the outcome of

the spark injection. More precisely, the observable Q is the volume of burnt products,

and the rare event is defined in terms of the final volume of the ignition kernel, such

that P (Q(Tf ) < a) needs to be estimated.

Figure 6.9: Schematic of the ignition configuration simulated. The contour of an
initial mixture fraction field at the spanwise mid-plane of the configuration
is shown. At the initial time, a hot kernel is ejected from the bottom and
mixes with surrounding fuel after it emerges. The trajectory of a spark
kernel is sketched by the dashed white line.

Details of the simulation procedure and operating conditions are provided in [207].

Briefly, each simulation of a sparking event is conducted using the large eddy simula-

tion (LES) procedure, with an initial flow field that is sampled from a well-developed

homogeneous flow. A total of 541 calculations are conducted among which 235 led to

ignition success. Note that the number of simulations conducted is much lower than

for the other cases since the system contains approximately 107 degrees of freedom.

The results of the calculations are shown in Fig. 6.10. The volume of the kernel
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appears to grow exponentially, driven by the Arrhenius-type reaction chemistry that

leads to ignition. As can be seen, all the calculations follow an exponential-like path.

However, some ignition events result in weaker flames than others and are therefore

more susceptible to be extinguished at later times. The CDF of the volume of the

ignition kernel is shown in Fig. 6.10 (right) and can only be reasonably estimated for

probabilities larger than 10−2, due to the small sample set used.

Figure 6.10: Left: instantaneous values of the observable Q(t) plotted over time ( ).
Ensemble average of Q ( ). Right: cumulative density function (CDF)
of the QoI. Probabilities are obtained with brute force calculations ( )
plotted along with the theoretical Monte-Carlo uncertainty ( ). Plots
correspond to the high-altitude relight case.

In Fig. 6.11, the self-similarity approach is tested using a sequence of thresholds

ranging from a = 1.4 cm3 to a = 1.2 cm3 with steps of 0.05 cm3. Note that the

plots are only shown after 0.5 ms as the kernel volumes are too small before that

time and produce numerical errors when ratios are computed. The rare mean path

follows a self-similar structure, which indicates that extreme events can be estimated

from the less-rare mean paths. Figure 6.11 tests the self-similarity approach outlined

in Sec. 6.3. At early times, the similarity factor shows large variations, but quickly

reaches a nearly constant value in the range of 0.94− 0.96. The initial variability can

be safely removed from the pruning process if the weighting factor is enforced to be

a monotonically increasing function of time. At later times, the values of α are close

for the different threshold values, indicating that the self-similarity assumption holds
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for this system as well.

Figure 6.11: Left: rare mean path exceeding thresholds ranging from 1.4 cm3 to
1.2 cm3 and separated by a stepsize of 0.05 cm3. Right: self-similarity
factor α computed from successive rare mean path (see Eq. 6.7). Plots
correspond to the high-altitude relight case.

6.5 Summary and conclusions

Based on prior work of Wouters et al. [16], the computational advantage obtained

by estimating the mean path to a rare event was demonstrated. It was shown that

such a path estimation consistently reduces the variance of the probability estimator,

especially when the goal is to compute very low probabilities.

Analysis of paths for events at increasingly rare QoIs shows that there exists a

self-similarity in these paths that could be exploited to reduce computational cost.

In particular, the path followed by a less rare event was found to have a form that is

similar to that of a more rare event. An algorithm that exploits this characteristic was

constructed and tested a priori and a posteriori for the Lorenz 96 case. It was shown

to successfully outperform the importance splitting algorithm that uses a constant

weighting factor.

The existence of this self-similarity structure was studied in more complex cases.

Two cases, namely the KSE and a high-altitude relight problem, were considered.

In the KSE-based system, it was shown that self-similarity holds for a range of rare
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event probabilities, but can lead to errors when used for events with very low proba-

bility. The high-altitude relight problem showed that the self-similarity factor varies

initially, but converges to a nearly constant value with time. Both these results

demonstrate that the self-similarity approach is valid for deterministic problems, and

can be extended to more complex systems.

For future work, the self-similarity validity needs to be tested a posteriori for

practical problems, such as the high-altitude relight configuration. This step is not

necessarily straightforward as cloning a deterministic simulation requires that the

individual trajectory is perturbed without affecting the rare event probability. In the

case of a Lorenz 96 problem, a simple random cloning strategy could be used. For

turbulent flows, where the spatial coherence of perturbations matter, a more detailed

perturbation method is required. Another path for improvement would be to revisit

the self-similarity model formulated in Sec. 6.3. At the moment, a rudimentary model

that exploits the self-similarity property for the rare mean path was formulated. More

elaborate models could be formulated to be more suited for different systems and to

be more resilient to numerical errors. While it was shown that the present approach

could be implemented with low computational overhead, it could be advantageous

to leverage multi-fidelity approaches to learn the rare mean path, in the same vein

as Ref. [194]. Finally, throughout this work, no distinction is made between the

observable and the QoI. It could be advantageous to derive a method allowing to pick

an observable for which self-similarity properties are more pronounced.
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CHAPTER VII

Conclusions and Future Directions

7.1 Summary

The objective of the dissertation was to lay out the foundations of extreme events

predictions in the context of turbulent combustion. This goal is fundamentally dif-

ferent from other aspects of turbulent combustion research and required to adopt

a comprehensive approach. The core research questions at stake were defined, and

technical routes to tackle them were explored. Some of the questions are left open for

future research, and this thesis attempted to provide as many guidelines as possible to

approach these. The rest of the section summarizes chapter by chapter the advances

presented in this work.

Chapter I:

In this chapter, the goal was to develop a framework for approaching the problem

of extreme event prediction in turbulent combustion.

1. The mathematical definition of extreme events and rare events was provided

and resembled that given in other scientific fields, such as geophysics. To guide

future research efforts, a causality-based classification of extreme events is for-

mulated for the first time and is illustrated using examples drawn from turbulent

combustion applications. Type I events are fully controllable by input param-

eters. Type II events are driven by uncertainty. Type III events are related to
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the long-term dynamics of the system (its attractor). For each type of event,

examples related to turbulent combustion are provided.

2. While Type I events (controllable extreme events) have been the focus of most

studies, Type II and III are still poorly understood. In particular, the predictive

questions that pertain to Type II and III events are different from traditional

challenges tackled by the combustion community. The following five predictive

questions are explicitly listed for the first time and can form the basis of future

research for extreme event prediction: 1) predict when the next extreme event

occurs; 2) estimate the statistical properties of the extreme event; 3) predict

extreme events before having observed them; 4) provide bounds on QoI; 5) ex-

plain the mechanism through which an extreme event occurs. The contribution

of the thesis are limited to questions 1), 2), and 5). Further developments are

required to tackle questions 3) and 4).

Chapter II:

Extreme events are defined by a peculiar dynamical process: an excursion away

from the normal behavior. To capture or even understand this process, it is necessary

to characterize the dynamical behavior of the system. This chapter introduces the

concept of Lyapunov analysis as a tool that can characterize the dynamics of turbulent

combustion problems. This chapter motivates the use of the Lyapunov analysis but

does not introduce new mathematical concepts.

1. The classification of extreme events is interpreted from a dynamical system

point of view. In particular, the phase-space behavior of each type of events is

described.

2. The mathematical definition of the Lyapunov analysis is reviewed. It can pro-

vide a global description of the dynamics (independent of the location in phase
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space) through the Lyapunov exponents (LE). It can also provide a local de-

scription of the dynamics (dependent on the location in phase space) through

the Lyapunov vectors. Here, the importance of the backward Lyapunov vectors

is highlighted as it can describe how a perturbation is gradually amplified.

3. It is shown that the Lyapunov analysis and its derivatives have potential appli-

cations for all five predictive questions listed earlier. In this thesis, the Lyapunov

analysis is only used for reduced-order modeling and understanding the process

through which an extreme event might occur.

Chapter III:

In this chapter, the numerical properties of the Lyapunov analysis are investigated.

Only a few applications of the Lyapunov analysis to fluid dynamics problems can be

found in the literature, and basic convergence questions still needed to be answered.

1. It is explained how the state vector can be constructed when the Lyapunov

analysis is conducted with low Mach solvers. This is the first time that this

description is provided.

2. The convergence of the LEs with spatial and temporal discretization is difficult

to show in general because LEs are affected by both discretization and statistical

errors. It is recognized that the statistical errors can be eliminated for laminar

flows. A convergence procedure is proposed and derived from the link between

the LEs and the temporal eigenvalues of the Orr-Sommerfeld analysis.

3. Using a series of numerical tests, the convergence properties of the LEs with

spatial and temporal discretization are clearly obtained for the first time. It

appears that the LEs converge at the same rate as the spatial discretization

order, while the temporal discretization only has an effect for large timesteps.

The reason behind this convergence property is undefined at the moment.
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4. The convergence properties found for the laminar flow appeared to hold for

turbulent one dimensional and three-dimensional flows. This observation allows

using the Lyapunov analysis on a discretized domain in order to characterize

the dynamics of the “true” continuous problem.

Chapter IV:

The Lyapunov analysis is conducted for a statistically stationary homogeneous

isotropic turbulent flow (HIT). The goal of the section is to gain fundamental insight

on the complexity of dynamics of turbulent flows and on the process through which

perturbations amplify.

1. For the first time, enough number of LEs are computed in a HIT flow to directly

estimate the attractor dimension of the flow field. It appeared that the attractor

dimension is several orders of magnitude lower than the number of degrees of

freedom required to resolve the flow field. This result suggests that severely

coarse-grained models that capture the dynamics of the flow can be derived.

The scaling properties of the attractor dimension are also obtained as a function

of the Kolmogorov length scale η. It is found that the Kaplan-Yorke dimension

scales as (L
η
)2.8, where L is the domain size, which is close to other theoretical

estimates.

2. By analyzing the structure of the backward Lyapunov vectors, it is found that

perturbations amplify where enstrophy is large, but not where kinetic energy

is large. Physically, this result can be interpreted by recognizing that the flow

direction constantly changes in regions of large enstrophy, which could allow

small perturbations to accumulate over time.

3. The structure of the response of the flow field to perturbations is also correlated

with the enstrophy field. It is unclear at the moment why would the evolution of

perturbation be correlated with enstrophy of the underlying flow field. However,
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it provides guidelines for reduced order models that would aim at capturing the

emergence of extreme events.

Chapter V:

The Lyapunov analysis is then used with two turbulent partially premixed flames

that have been extensively studied in the past. Both flames are subject to large

amounts of strain that can lead to intermittent extinctions. This is the first applica-

tion of the Lyapunov analysis to a turbulent combustion problem.

1. It was found that using the classical algorithm to compute the Lyapunov expo-

nents could lead to numerical problems with the turbulent flames investigated.

If the initial perturbation is too small, the perturbation size could experience

large amplitude changes which would pollute the value of the LE. It was found

that by either increasing the perturbation size or waiting for a few timesteps

before recording the perturbation magnitude, this problem could be bypassed.

2. By computing the first 300 LEs, a lower bound of the Kaplan Yorke dimension

was obtained and is several orders of magnitude lower than the number of

degrees of freedom required to run a direct numerical simulation.

3. The perturbations appeared to amplify in regions of extinction and reignition.

This is observation can be explained by the fact that the flow field experiences

significant changes at these locations, since the time derivative of the density is

large. It is also found that perturbations do not grow where the reaction rate

is large. This observation remains unexplained at the moment.

4. For such a complex problem, direct numerical simulation is not affordable.

Therefore, large eddy simulations (LES) had to be conducted. It is shown

that in this case, no convergence can be obtained for the LEs. Nevertheless, the

Lyapunov vectors showed similar features between a coarse and fine large eddy
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simulations. This observation suggests that the description of the Lyapunov

vectors obtained with LES could hold at finer resolutions.

Chapter VI:

This chapter treats the problem of estimating the statistics of extreme and rare

events. The challenge lies in accelerating the observation of rare events. This is done

here using an importance splitting genealogical algorithm that creates copies of the

system that are deemed likely to reach a rare state. Selecting the copies that are

likely to lead to a rare event can be accelerated if the path to the rare event can be

inferred.

1. It is shown with an a priori analysis on the Lorenz 96 problem that trajectories of

observable that lead to a rare event can be similar to trajectories that lead to less

rare events. This observation is not mathematically guaranteed but appeared

to be satisfied with the observable and systems chosen. At the moment, it is

unclear what are the mathematical requirements for the governing equation and

the observable that ensure the self-similarity property.

2. Using this observation, it is possible to formulate a self-similarity-based model

that approximates the path to rare events using the path to less rare events. The

method is tested a posteriori and leads to increased efficiency of the probability

estimator of the genealogical algorithm.

3. The model is tested a priori on other problems relevant for turbulent com-

bustion. It appears that the self-similarity property holds but that the model

should be refined to be valid in general.

7.2 Future challenges and recommendations

Given that studying extreme events provides a new approach for gaining insight

into complex systems, there is a need for a research strategy moving forward. Below,

154



some essential pathways are identified to start a discussion on this important topic.

7.2.1 Develop low-fidelity tools that capture extreme events

In the present work, detailed simulations were used to gain an understanding of

the dynamical behavior of the system. However, predicting that an extreme event will

occur in a real system should not require to resolve all the dynamics of the system.

Therefore, there exists a crucial need to develop low-fidelity models of turbulent

combustion that still allow capturing extreme events and the correct response of

the system to perturbations. Note that these models do not need to represent all

the dynamics of the system, but the most important ones that eventually lead to an

extreme event. Thus, the development of low-fidelity models that can capture extreme

events goes hand in hand with a better understanding of the process through which

these events occur. For thermoacoustic instabilities, the advent of flame describing

functions (FDF) and flame transfer functions (FTF) [208] is a valuable effort in this

direction. For other types of extreme events, it is not clear how to accurately design

low-fidelity models. The most straightforward techniques, such as decreasing the

mesh cell count, were found to affect to some extent the dynamics of the system even

when the statistics are correctly captured (see Chap. V).

In particular, developing methods that can follow individual realizations rather

than statistical measures is essential. In this context, approaches based on manifolds

may be useful [158, 209, 210]. Other approaches, such as reduced-order modeling

(ROM), could be used to construct representations that specifically target extreme

events. When developing such models, quantifying the uncertainty introduced by

model reduction becomes important [211]. Further, current approaches to model

validation may not be viable when dealing with such extreme event statistics. For

instance, Chap. IV showed that well-established methods for simulating homogeneous

isotropic turbulence, which is the most canonical of turbulent flows, do not capture
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the dynamics consistently. In the context of pre-classifying anomalous events, fast

algorithms that can operate in the phase-space of the observables is necessary. Re-

cently, there has been a focus on techniques such as convolution neural networks with

application to turbulent combustion [212], which can classify trajectories in real-time.

7.2.2 Develop rare events tools for turbulent combustion

While there exists a large number of tools to probe different aspects of rare and

extreme events (Ref. [90]), their direct utilization in the field of turbulent combustion

is not straightforward. Many of these tools have been developed for low-dimensional

or non-physical problems, and cannot be extended to practical systems at all. Chap-

ter VI provides an illustration of this problem. Cloning particles in the Lorenz 96

system could be simply done by introducing random perturbations. However, random

perturbations would have little to no effect in a turbulent flow problem. Appropriate

cloning methods with spatial and temporal coherence are required for importance

splitting tools to be used in the context of turbulent combustion. Other techniques

assume constraints non-suited for the problems of interest, such as incompressibility

[213, 214]. Hence, there exists a wide range of opportunities to develop tools for

combustion applications.

Note that in this context, turbulent combustion can also serve as a prototype

for high-dimensional complex systems where rare and extreme events are central to

design choices. Techniques developed for turbulent combustion could well be useful

in a wide variety of fields.

Part of developing such computational frameworks also involves identifying vali-

dation experiments and configurations. A significant source of interest in combustion

physics is due to the presence of a diverse set of experimental tools that can probe

different aspects of physics. However, such tools are often limited to capturing statis-

tical measures such as averages and variances. Establishing experimental techniques
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for rare events is essential. Given that a direct approach to recreating such events is

practically intractable, innovative approaches to reproducing the causal mechanisms

or measurements that expose the phase space characteristics of the flow would be

indispensable.

7.2.3 Model the triggers of extreme events

Among the triggers of extreme events provided in Chap. I, it was shown that ex-

ternal perturbations could make the system strongly deviate from normal conditions.

In order to model the response of the system to such perturbations, it is necessary

first to model these external variations. While there have been attempts to provide

more detailed boundary conditions to high-fidelity combustion tools [215, 216], mod-

eling triggering events requires more information on the nature of such processes. For

instance, in the high-altitude relight problem (see Chap. I), the ignitor that provides

the necessary high enthalpy ignition source may itself exhibit considerable variability.

The level of detail and quantification of related uncertainties is a significant modeling

challenge.

However, there is a more subtle notion involved here. Currently, combustion

models are developed based on the flow physics present inside the combustor. When

external variations can introduce large changes to this flow structure, it becomes

necessary for models to be sensitive to such perturbations. In this context, models

that are regime agnostic [174, 217, 218] or those that can adapt to different operating

conditions [219–222] are more suitable. In some cases, the flow regime itself can be

changed. For instance, in the deflagration-to-detonation transition, the flow field is

initially subsonic but can become supersonic after the transition. Hence, not only

is the modeling of external perturbations important but also is the ability of the

combustion models to respond to these changes.
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7.2.4 Research focus on phase space structure

The approach to modeling in turbulent combustion has followed the statistical

path not only because it is useful but also because it provides an intuitive description

of the extreme complexity in flow physics. In particular, the concept of filtering or

statistical averaging delineates the terms in the governing equation that require mod-

eling. However, data-driven tools have embraced dynamical systems or phase-space

driven approach, whereby the treatment of the modeling problem as a description of

the structure of the phase space is most straightforward. As machine learning and

data-driven approaches are integrated into modeling, there is a need to rethink the

notion of statistical modeling.

In particular, many tools for probing extreme events could be significantly im-

proved through a priori knowledge about the structure of phase space. For instance,

being able to infer the local phase-space structure (dimension, volume, and orienta-

tion of the stable manifolds, for instance) can vastly accelerate the search for extreme

events. It would also be useful in creating biased sampling approaches (see Chap. VI).

Even information on the dimension of the attractor derived in Chap. IV and Chap. V,

has not been explored for many canonical closed flows.

7.3 Outlook

Extreme events analysis can be a powerful approach to improve design techniques.

By understanding the failure of a combustor from a computational standpoint, it

would be possible to develop less conservative designs and improve the efficiency of

industrial devices. With further development, it could even be possible to anticipate

failure before observing it, thereby decreasing the cost of design. Furthermore, ex-

treme event analysis can help to derive reduced order models that could be used to

anticipate a failure not only during the design phase but also in real-time operations.
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With the emergence of the internet of things, reduced-order models obtained from

the extreme event analysis could be used to make decisions regarding the mainte-

nance of the device, for example. These perspectives are exciting opportunities for

detailed computations, which could have a practical impact on industrial problems.

As illustrated in this work, these perspectives require an evolution of the numerical

tools used in the field of turbulent combustion.

Other fields of engineering and science, most notably weather forecasting, have

embraced extreme events modeling as a prime analysis approach. This effort has dra-

matically helped modeling activities and has provided valuable insights that are not

obtainable from just analyzing the average behavior of systems. More importantly,

there appear to be many commonalities in how such extreme events arise, through

what can be broadly classified as emergent behavior due to the synchronization of

different elements of the system. Fields that have established a rich history of extreme

event analysis can serve as a starting point for the mutation of numerical tools.

Perhaps a greater challenge will be changing the design mindset in the propulsion

industry. What can be learned from the extreme event analysis should be valuable

enough to justify an investment in new computational tools. Therefore, the benefit

of these tools needs to be illustrated in practical problems. Not only this requires

numerical tools that can handle high-dimensional and multi-physics problems, but

it would require an appropriate configuration to examine. For this purpose, exper-

iments geared towards extreme event analysis and datasets of failures in industrial

combustors are essential.

159



List of publications:

• Ensemble-LES Analysis of Perturbation Response of Turbulent Partially-

Premixed Flames, Malik Hassanaly, V. Raman, Proceedings of the Combus-

tion Institute, Vol. 37, Issue 2, pp.2249-2257, 2019.

• Numerical convergence of the Lyapunov spectrum computed using

low Mach number solvers, Malik Hassanaly, V. Raman, Journal of Compu-

tational Physics, Vol. 386, pp.467-485, 2019.

• Lyapunov spectrum of forced homogeneous isotropic turbulent flows,

Malik Hassanaly, V. Raman, Submitted, 2019.

• A self-similarity principle for the computation of rare event proba-

bility, Malik Hassanaly, V. Raman, In preparation, 2019.

• Computational Tools for Data-Poor Problems in Turbulent Combus-

tion, Malik Hassanaly, V. Raman, In preparation, 2019.

• A minimally-dissipative low-Mach number solver for complex react-

ing flows in OpenFOAM, Malik Hassanaly, H. Koo, C. F. Lietz, S. T. Chong,

V. Raman, Computers and Fluids, Vol. 162, pp.11-25, 2018.

• Emerging Trends in Numerical Simulations of Combustion Systems,

V. Raman, Malik Hassanaly, Proceedings of the Combustion Institute, Vol. 37,

Issue 2, pp.2073-2089, 2019.

• Large Eddy Simulation of Pressure and Dilution Jet Effects on Soot

Formation in a Model Aircraft Swirl Combustor, S. T. Chong, Malik

Hassanaly, H. Koo, M. E. Mueller, V. Raman, K. P. Geigle, Combustion and

Flame, Vol. 192, pp.452-472, 2018.

160



• Large Eddy Simulation of Soot Formation in a Model Gas Turbine

Combustor, H. Koo, Malik Hassanaly, V. Raman, M. E. Mueller, K. P. Gei-

gle, Journal of Engineering for Gas Turbines and Power, Vol. 139, Issue 3,

pp.031503, 2017.

• Experimental data-based reduced-order model for analysis and pre-

diction of flame transition in gas turbine combustors, S. Barwey, Malik

Hassanaly, V. Raman, Combustion Theory and Modelling, 2019.

• A Comprehensive Modeling Procedure for Estimating Statistical Prop-

erties of Forced Ignition, Y. Tang, Malik Hassanaly, V. Raman, B. Sforzo,

J. Seitzman, Combustion and Flame, Vol 206, pp.158-176, 2019.

• Numerical Simulation of Lean Premixed High Swirl Flame Flashback

Y. Tang, Malik Hassanaly, V. Raman, In preparation.

• Data-Driven Analysis of Transition for Multimodal Cavitation, S. Bar-

wey, H. Ganesh, Malik Hassanaly, D. Knister, V. Raman, S. Ceccio, E. Johnsen,

In preparation.

List of conference proceedings:

• Reduced Description of Dynamical Systems by Approximate Inertial

Manifolds, M. Akram, Malik Hassanaly, V. Raman, 57th AIAA Aerospace

Sciences Meeting, 2019.

• Perturbation Dynamics in Turbulent Flames, Malik Hassanaly, V. Ra-

man, 55th AIAA Aerospace Sciences Meeting, 2017.

• Classification and Simulation of Anomalous Events in Turbulent Com-

bustion, Malik Hassanaly, S. Voelkel, V. Raman, 10th Mediterranean Combus-

tion Symposium, 2017.

161



• Numerical simulation of forced ignition of Jet-fuel/air using large

eddy simulation (LES) and a tabulation-based ignition model, Y. Tang,

Malik Hassanaly, V. Raman, B. Sforzo, J. Seitzman, 57th AIAA Aerospace

Sciences Meeting, 2019.

• Detailed Kinetics Based Modeling of Jet Fuel Ignition in Turbulent

Stratified Flows, Y. Tang, Malik Hassanaly, V. Raman, B. Sforzo, J. Seitz-

man, ASME Turbo Expo, 2018.

• Turbulent Mixing and Combustion of Supercritical Jets, S. T. Chong,

Y. Tang, Malik Hassanaly, V. Raman 55th AIAA Aerospace Sciences Meeting,

2017.

• Large eddy simulation of flame stabilization in a multi-jet burner

using a non-adiabatic flamelet approach, Y. Tang, Malik Hassanaly, H.

Koo, V. Raman, Large eddy simulation of flame stabilization in a multi-jet

burner using a non-adiabatic flamelet approach 54th AIAA Aerospace Sciences

Meeting, 2016.

• Influence of Fuel Stratification on Turbulent Flame Propagation, Malik

Hassanaly, V. Raman, H. Koo, M. B. Colket, 53rd AIAA Aerospace Sciences

Meeting, 2015.

• Large Eddy Simulation of Flame Flashback in Swirling Premixed

CH4/H2-Air Flames , C. F. Lietz, Malik Hassanaly, V. Raman, 53rd AIAA

Aerospace Sciences Meeting, 2015.

• Large Eddy Simulation of premixed flame flashback in a turbulent

channel, C. F. Lietz, Malik Hassanaly, V. Raman, H. Kolla, J. Chen, A. Gru-

ber, 52nd AIAA Aerospace Sciences Meeting, 2014.

162



APPENDICES

163



APPENDIX A

Lyapunov analysis of homogeneous isotropic

turbulence (HIT)

A.1 Enforcement of mass conservation in linearly forced tur-

bulence

While implementing the LE algorithm, it was discovered that the numerical al-

gorithm for the advancement of the governing equations has to strictly enforce the

incompressibility constraint. In methods that use vorticity-based equations [223], this

property is implicitly ensured. In the explicit time-marching scheme used here, it was

found that an enforcement procedure needs to be incorporated. These details are

provided here for the sake of completeness.

In spectral space, Eq. 4.2.2 takes the following form

∀κ, ∂

∂t
ûi(κ, t) + νκ2ûi(κ, t) = −jκip̂(κ, t) −

̂
(
∂uiuk
∂xk

)
κ

+ Aûi(κ, t). (A.1)

The incompressibility condition (jκ·û(κ, t) = 0) is used to determine the pressure

as a function of the non-linear term. Let NLi ≡ −(̂∂uiuk
∂xk

)
κ
, then the full momentum
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equation becomes

∂

∂t
ûi(κ, t) + νκ2ûi(κ, t)− Aûi(κ, t) = −κi

NL · κ
κ2

+NLi. (A.2)

In prior works [149, 150], constraining the pressure to be a function of the non-

linear convective term is deemed sufficient to enforce incompressibility. In fact, in

their seminal paper on spectral methods for turbulent flows, [149] mention that the

flow field remains incompressible if its initial divergence is exactly equal to zero.

However, machine precision errors always prevent the incompressibility condition to

be exactly satisfied. If no other treatment is applied, it is shown in this section that

this can lead to instabilities for simulations run over long times.

These machine precision errors manifest in two different ways: a) some of the

modes grow exponentially; b) the error in the validity of incompressibility constraint

increases with time.

A.1.1 Exponentially growing modes: the linear modes

Consider the wavenumber κ = (κx, κy, κz) = (a, 0, 0), where a 6= 0. In an exactly

incompressible field, κ · û = 0. Here, this means that ûx = 0. However, incom-

pressibility is only numerically enforced through the value of the pressure and the

momentum equation is still solved for this mode.

In this particular case, the right hand side of Eq. A.2 in the direction x is equal

to −NLx +NLx = 0

Therefore, the Galerkin projection of the Navier Stokes equation becomes

∂

∂t
ûx(κ, t) = (A− νa2).ûx(κ, t) (A.3)

Likewise, for the wavenumbers (0, a, 0) and (0, 0, a), the non-linear term and the

pressure term exactly cancel respectively in the direction y and z. These modes are
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called linear modes, due to the linear evolution equations, in the rest of this appendix.

For the linear modes, if A > νa2, and if the wavenumber coefficient ûi(κ, t) is

initially not exactly equal to 0, then the wavenumber coefficients diverge.

Note that in order to sustain turbulence in the domain, it is desired that A > νa2,

at least for a = 1

• If A = ν, then the modes with wavenumber |κ| = 1 are only subject to con-

vection and pressure term, while the other ones are subject to a reduced but

positive viscosity. The velocity fluctuations monotonically decrease except for

the linear modes which remain constant. In the end, all the wavenumber coef-

ficients are equal to zero except for the ones corresponding to |κ| = 1 for which

the coefficients are equal to their initial values.

• If A < ν, all the modes in the domain decay since they are subject to a reduced

but positive viscosity and no forcing at all. Therefore, the turbulence decays

for all the modes.

A.1.2 Exponentially growing divergence

One solution to the issue with the linear modes is to not apply forcing selectively to

these modes so that they decay to zero with time and do not influence the simulation

results. It is demonstrated here that this approach leads to inconsistencies in enforcing

a divergence-free flow field.

The divergence constraint in spectral space can be written as

κ · û(κ) = 0. (A.4)

Here, the goal is to evaluate the stability properties of the divergence of each

spectral mode. To do so, one can write the transport equation of the divergence by

taking the divergence of the momentum equation but without canceling the terms of

166



the form κ · û.

Let B = jκ · û, then

dB

dt
+ νκ2B = |κ|2p+ jNL · κ+ AB. (A.5)

In the numerical procedure, the first and second terms of the right-hand side are

constructed such that they cancel each other, leading to

dB

dt
= (A− νκ2)B. (A.6)

Again, if A−νκ2 > 0 then any initial numerical error in divergence can exponentially

amplify. It is, in practice, impossible to avoid such errors. Note that Eq. A.6 is true

for all the wavenumbers.

A.1.3 Additional correction

The numerical issues are addressed using a two-step correction procedure. First,

the set of Fourier coefficients are projected on to a divergence-free space after each

time-step. Let û be the mode obtained at the end of the timestep, with κ · û(κ) = B.

Let ûp(κ) be the projection of this mode onto the divergence-free space, and is defined

as

ûp(κ) = û(κ) + j
κ

|κ|2
B (A.7)

Note that this correction does not affect the flow field if it is already incom-

pressible. In spectral space, this correction is straightforward to impose and has a

negligible impact on the computing time.

Second, the turbulent forcing field is also projected onto a divergence-free space.

Eq. A.6 becomes

∂B

∂t
= −νκ2B, (A.8)
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and the divergence of all the modes tends to zero. The projection of the forcing

term can be achieved similar to that of the turbulent flow field. Note that forcing

schemes that are not based on the velocity field (for example, [162]) also use this

extra-correction step.

A.2 Uncertainty estimates of attractor dimension and scal-

ing

Since the negative LEs are not available for the highest Reynolds number case

(Case 4), the dimension needs to be estimated based on certain assumptions. From

Fig. 4.2, it can be reasonably inferred that the shape of the spectrum is similar across

different Reynolds number. Further, it is approximated using a power law form as

a(i − 1)α + λ1, where i is the LE index. The value of a is chosen such that the fit

passes through a certain λi. For the finest resolution, i is chosen to be 49, which is the

largest index available. For the other cases, i is chosen such that λi/λ1 is the same as

for the highest Reλ. As a result, the fit is parameterized using only one variable: α.

In Fig. A.1, the parameter α is plotted for the three lowest Reλ cases. Based on

this result, α is extrapolated linearly with respect to the Reλ. For this purpose, the

slope is estimated using any two combinations of the three available points, and the

extrapolation is done starting from any of the three available points. Nine possible

values for α are obtained. All of these values are used to fit the first 49 LE of largest

Reλ case. Finally, the average of all these possible dimensions is taken to be the best

dimension estimate. The uncertainty estimate is obtained from the maximal and the

minimal dimensions obtained using all the possible α.

At this stage, an estimate of the attractor dimension for Cases 1, 2, 3 and 4

along with an uncertainty estimate has been obtained. In addition, an uncertainty

estimate for the mean turbulent quantities (here, the Kolmogorov length scale η) can
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Figure A.1: Value of α obtained from the fit applied to the LE computed with Case
1, 2 and 3.

be obtained using the method outlined in Ref. [141]. Given these dimension estimates

for the four Reynolds numbers, the goal is to determine the scaling of the dimension

as a function of L
η
, where L = 2π. In other terms, one wants to fit a curve of the form

axb through the data points, get an estimate as well as an uncertainty estimate for

b. To do so, an approach similar to the one used in Appendix A.2 is used. Different

possible scalings are generated and are used to obtain an uncertainty estimate.

Schematically, the points that are used to compute the scaling are arranged in a

manner illustrated by Fig. A.2. The x-axis represents the L
η

and the y-axis represent

the estimated dimension. For each Cases 1-4, an uncertainty estimate for both axes is

available. In Fig. A.2, the data of only two cases (for simplification) through which a

fit goes are schematically shown. Given the estimates, many different fits are possible.

For each Case, one can consider that one fit intersect any of the five points indicated

in Fig. A.2 (represented by the dashed lines), which implies that there are then 54

possible fits for the data.

All of these fits are generated here, resulting in 54 possible values for b. At each

data point, if a fit uses any point different than the point 5 shown in Fig. A.2, it is
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Figure A.2: Schematic of the uncertainty estimation method for the attractor dimen-
sion scaling. For each case, 5 points are considered using the uncertainty
estimate of the dimension. The horizontal error bar represents the sta-
tistical error for the value of the average L

η
, the vertical error bar con-

tains the statistical uncertainty and the extrapolation uncertainty used
to compute the dimension. The dashed lines represent examples of the
fits considered.

attributed a lower weight equal to the ratio e−1/2

e0
. The lowest possible weight for a fit

is then e−2

e0
≈ 0.135. The estimate for b and for its uncertainty estimate are obtained

as a weighted average of the b and b2 values generated by each fit. In the end, this

procedure leads to the scaling b = 2.8± 0.095.

A.3 Consequences of the energy spectrum of the GSV on the

energy spectrum of the CLV

From Fig. 4.12, the energy spectra of the GSVs do not change much based on

the index. This feature is used to relate the energy spectra of the GSVs to that of

the CLVs. In particular, it is shown that the first few CLVs cannot be localized in

Fourier space. Let φi be the i-th CLV and gi be the i-th GSV, then the CLV can be

expressed as [73]:

∀x, φj(x) =

j∑
i=1

ai,jgi(x), (A.9)
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where x denotes the physical space location and ai,j ∈ R. For ease of notation, the

physical space location x is dropped from the notation. Since φj are normalized,

j∑
i=1

a2
i,j = 1. (A.10)

Equation. A.9 can be rewritten using the Galerkin projection onto the Fourier

modes as

∀κ, φ̂j(κ) =

j∑
i=1

aiĝi(κ), (A.11)

where κ is a three dimensional wavenumber, φ̂j(κ) and ĝi(κ) ∈ C3 are the Fourier

amplitudes of the mode κ.

Let K0 ∈ R. The goal is to find a relation between the energy at the wavenumber

K0 for the j-th CLV, which is defined as

Eφj(K0) =
∑
κ

|κ|=K0

φ̂j(κ)∗ · φ̂j(κ), (A.12)

where ·∗ denotes the complex conjugate. Using Eq. A.11,

Eφj(K0) =

j∑
i=1

a2
i,jEgi(K0)+

∑
κ

|κ|=K0

∑
k,l≤j
k 6=l

ak,jal,j(ĝk(κ)∗ · ĝl(κ) + ĝl(κ)∗ · ĝk(κ)). (A.13)

Due the fact that the energy spectra of the GSV are relatively independent of the

index, Eq. A.10 can be used to write

Eφj(K0) ≈ EGSV (K0) + 2
∑

k,l, k 6=l

ak,jal,jEcorr,kl(K0), (A.14)

where EGSV (K0) is the energy of the GSV for Fourier modes of amplitude K0, and
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Ecorr,kl(K0) = 1
2

∑
κ|κ|=K0

(ĝk(κ)∗ · ĝl(κ) + ĝl(κ)∗ · ĝk(κ))

The second term of the right-hand side of Eq. A.14 is what distinguishes the

energy spectrum of the GSVs from the spectrum of the CLVs. Note that this term

is real but not necessarily positive. This term can be estimated from the database

generated in the present study. In Fig. A.3, the ratio
|Ecorr,kl(κ)|
EGSV (κ)

is plotted against κ for

all combinations of GSVs from 1 through 19 indices. For all of these combinations,

the ratio can be reasonably estimated to be equal to 0.5 for all the wavenumber

amplitudes.

Figure A.3: Ratio
|Ecorr,kl(κ)|
EGSV (κ)

plotted for Case 1 and the first 19 pairs of LVs, plotted
against the wavenumber amplitude.

Further, to bound the CLV spectrum, bounds on the product of coefficients ak,jal,j

are needed. To do so, it can be recognized that the possible ap,j are the points located

on the j-sphere (hypersphere of dimension j) of radius 1 which leads to

∀p, q, |ap,jaq,j| = |cosγpcosγq
p−1∏
k=1

sinγk

q−1∏
l=1

sinγl|, (A.15)

where γi ∈ [0, π] if i ≤ j − 2 and γj−1 ∈ [0, 2π]. By recognizing that |ap,jaq,j| either
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contains a product of the form |cosγpsinγp| or |cosγqsinγq|,

∀p, q, |ap,jaq,j| ≤ 0.5 (A.16)

Using the triangle inequality, one can then obtain bounds for the energy spectrum

of φj:

max(EGSV (K0)− 1

2

(
j

2

)
EGSV (K0), 0) .

Eφj(K0) .

EGSV (K0) +
1

2

(
j

2

)
EGSV (K0). (A.17)

Note that the bounds increase in range as the index of the CLV increases. As a

result, these bounds are useful only for the first few CLVs. For example, the bounds

for the second CLV can be obtained as 0.5EGSV (K0) . Eφ2
(K0) . 1.5EGSV (K0).

These bounds are shown in Fig. A.4, and follow the shape of the GSV spectrum. As

a result, it can be guaranteed that the first few CLVs are not localized in Fourier

space.

Figure A.4: Estimated bounds for the energy spectrum of the second CLV.
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A.4 Influence of the forcing scheme on the structure of the

Lyapunov vectors

In this appendix, the correlations and conditional averages of δξ2 with different

turbulent quantities that were obtained for the Case 5, 6, 7 which (different forcing

schemes) are shown.

A.4.1 Case 5

Figure A.5: Left: conditional average of δξ2 at different helicity values H, for each
LV. Right: conditional RMS of δξ2 at different helicity values H, for each
LV, rescaled by the conditional average of δξ2. Plots are generated with
the data from Case 5.

Figure A.6: Left: conditional average of δξ2 at different turbulent kinetic energy
values k, for each LV. Right: conditional average of δξ2 at different en-
strophy values ζ, for each LV. Plots are generated with the data from
Case 5.
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Figure A.7: Left: spatial correlation ρ33(r) of the LVs ( ) and of the underlying flow-
field ( ). Right: spatial correlation ρ33(r) of the LVs plotted against the
LE index and the distance. Plots are generated with the data of Case 5.

Figure A.8: Left: time-averaged energy spectrum of the computed LVs ( ). Time-
averaged energy spectrum of the underlying flow field ( ). Right: ra-

tio
|Ecorr,kl(κ)|
EGSV (κ)

plotted for the first 19 pairs of LVs, plotted against the
wavenumber amplitude. Plots are generated with the data of Case 5.

Figure A.9: Field correlation of δξ2 and ζ ( ), δξ2 and H ( ), δξ2 and k ( ). The
curves are plotted alongside the index where the LS crosses zero ( ).
Plot generated with the data of Case 5.
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A.4.2 Case 6

Figure A.10: Left: conditional average of δξ2 at different helicity values H, for each
LV. Right: conditional RMS of δξ2 at different helicity values H, for
each LV, rescaled by the conditional average of δξ2. Plots are generated
with the data from Case 6.

Figure A.11: Left: conditional average of δξ2 at different turbulent kinetic energy
values k, for each LV. Right: conditional average of δξ2 at different
enstrophy values ζ, for each LV. Plots are generated with the data from
Case 6.

Figure A.12: Left: spatial correlation ρ33(r) of the LVs ( ) and of the underlying flow-
field ( ). Right: spatial correlation ρ33(r) of the LVs plotted against
the LE index and the distance. Plots are generated with the data of
Case 6.
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Figure A.13: Left: time-averaged energy spectrum of the computed LVs ( ). Time-
averaged energy spectrum of the underlying flow field ( ). Right: ra-

tio
|Ecorr,kl(κ)|
EGSV (κ)

plotted for the first 19 pairs of LVs, plotted against the
wavenumber amplitude. Plots are generated with the data of Case 6.

Figure A.14: Field correlation of δξ2 and ζ ( ), δξ2 and H ( ), δξ2 and k ( ). The
curves are plotted alongside the index where the LS crosses zero ( ).
Plot generated with the data of Case 6.
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A.4.3 Case 7

Figure A.15: Left: conditional average of δξ2 at different helicity values H, for each
LV. Right: conditional RMS of δξ2 at different helicity values H, for
each LV, rescaled by the conditional average of δξ2. Plots are generated
with the data from Case 7.

Figure A.16: Left: conditional average of δξ2 at different turbulent kinetic energy
values k, for each LV. Right: conditional average of δξ2 at different
enstrophy values ζ, for each LV. Plots are generated with the data from
Case 7.

Figure A.17: Left: spatial correlation ρ33(r) of the LVs ( ) and of the underlying flow-
field ( ). Right: spatial correlation ρ33(r) of the LVs plotted against
the LE index and the distance. Plots are generated with the data of
Case 7.

178



Figure A.18: Left: time-averaged energy spectrum of the computed LVs ( ). Time-
averaged energy spectrum of the underlying flow field ( ). Right: ra-

tio
|Ecorr,kl(κ)|
EGSV (κ)

plotted for the first 19 pairs of LVs, plotted against the
wavenumber amplitude. Plots are generated with the data of Case 7.

Figure A.19: Field correlation of δξ2 and ζ ( ), δξ2 and H ( ), δξ2 and k ( ). The
curves are plotted alongside the index where the LS crosses zero ( ).
Plot generated with the data of Case 7.
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APPENDIX B

Lyapunov spectrum of a partially premixed jet

flame

B.1 Convective and absolute instabilities

When perturbations are applied on a fluid systems, they can amplify and be

convected with the local flow velocity. The amplification is referred to as absolute

instability and the convection as convective instability. In general both phenomenon

occur, and there is no practical fluid systems purely convectively unstable or abso-

lutely unstable. When computing the expansion rate of a perturbation, one does

not examine the magnitude of a perturbation at a local point in space, but instead

considers a spatial integration of the perturbation magnitude, thereby not discarding

perturbations that have been convected. If one considers closed or periodic systems,

no matter how the perturbation is convected, it will always be in the domain. How-

ever, in the case of open domains, the perturbation can exit the domain which would

prevent one from recording it as part of the LE calculation procedure. The Lyapunov

analysis of an open system through Algo. 3.1, including the present turbulent jet

flame, is in general not possible.
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Several studies in the past have indicated that jets with large density ratio are more

subject to absolute instabilities than convective instabilities [224, 225]. To ensure

that the jet studied here is more absolutely unstable than convectively unstable, the

computed LVs were averaged over time, and their average is shown in Fig. B.1. Since

this average is mostly localized upstream, it suggest that only a negligible part of

the perturbation are convected out of the domain, and the perturbation are mostly

amplified in the shear layer of the jet.

Figure B.1: Contour of the time averaged components of the first LV for progress
variable (left) and axial momentum (right).
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APPENDIX C

Statistical analysis of extreme events

C.1 Validation of algorithm for higher-dimensional problems

In this section, the Lorenz 96 system is investigated in 64 dimensions and 1024

dimensions to determine whether the features found at 32 dimensions hold with in-

crease in dimensionality. The QoI is defined in the same manner as the levels chosen

for the 32-dimensional case (Eq. 6.3). The numerical integration and the timestep

size are the same as for the 32-dimensional case. Figure C.1 shows the instantaneous

evolution of the QoI for 1000 realizations, along with the ensemble average QoI, for

the 64 and 1024-dimensional case.

The target levels chosen for the 64 and 1024-dimensional cases are located two and

four standard deviations away from the mean (similar to the choices made for the 32

dimensional case). The target levels chosen are 1244 and 1512 for the 64-dimensional

case; 1042 and 1109 for the 1024-dimensional case. The number of particles is M =

2500. All the ISP simulations are run 105 times in order to ensure convergence of the

statistics of the probability estimator. In Fig. C.2 (for the 64-dimensional case) and

Fig. C.3 (for the 1024-dimensional case), it can be seen that the estimators obtained
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Figure C.1: Instantaneous values of the observable Q(t) plotted over time ( ). En-
semble average of Q ( ). Left: Lorenz 96 case with 64 degrees of freedom.
Right: Lorenz 96 case with 1024 degrees of freedom.

are still unbiased (left plots) and provide a consistent improvement compared to the

fixed weight methods (middle plots). This improvement can again be linked to the

smaller pruning ratio induced by the time-dependent weighting factor.

The self-similarity approach is tested a priori for the 64-dimensional case by sam-

pling 8 × 108 realizations and computing the rare mean path exceeding levels rang-

ing from 1400 to 1650 and separated by a constant step size of 25. For the 1024-

dimensional case, 2 × 108 realizations are run and rare mean paths exceeding levels

ranging from 1060 to 1110 and separated by a constant step size of 5 are shown. The

results of the a priori analysis are shown in Fig. C.4 (for the 64-dimensional case) and

Fig. C.5 (for the 1024-dimensional case). Similar to the results obtained in Sec. 6.3.1,

there is a self-similar structure to these paths. The self-similarity model proposed in

Sec. 6.3.1 is tested, and shows an equally valid level of agreement.

Finally, the self-similar model is tested a posteriori. Using a brute force calcula-

tion run with 2500 realizations, the paths leading to QoI ranging from 1100 to 1225

separated by a step size of 25 are obtained for the 64-dimensional case. Paths leading

to QoI ranging from 990 to 1050 separated by a step size of 10 are obtained for the

1024-dimensional case. The rare mean path exceeding the thresholds 1512 (for the

64-dimensional case) and 1109 (for the 1024-dimensional case) are then estimated,
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Figure C.2: Left: complementary of the cumulative density function (CDF) of the
QoI. Probabilities are obtained with brute force calculation ( ), the ISP
method with time-dependent weight based onR1244 ( ), andR1512 ( ) and
M = 2500 particles. Uncertainty of the estimator computed with the ISP
algorithm using R1244 for the time-dependent weight is shown ( ) along
with the theoretical Monte-Carlo uncertainty that would be obtained
with M = 2500 realizations ( ). Middle: computational gain computed
as Eq. 6.6 when targeting the level 1512 with the fixed weight ( ), the
time-dependent weight obtained from the brute force calculation ( ), the
time-dependent weight obtained from the self-similarity approximation

. Right: pruning ratio obtained when targeting the level 1512 with
fixed weight ( ) and time-dependent weight obtained from brute force
calculation ( ) and the time-dependent weight obtained from the self-
similarity approximation ( ). Plots correspond to the Lorenz 96 problem
with 64 degrees of freedom.

similar to the procedure outlined in Sec. 6.3.2. Figure C.6 (64-dimensional case) and

Fig.C.7 (1024-dimensional case) show that the self-similarity approach provides a rea-

sonable approximation of the rare mean path. The self-similarity procedure is able

to provide almost the same computational efficiency as the a priori procedure, while

consistently outperforming the fixed weight method.

Finally, the performance of the ISP algorithm is compared between the 32, 64

and 1024-dimensional cases. For each case, the computational gain of the a posteriori

analysis, obtained by targeting a level located four standard deviations away from the

mean is plotted in Fig. C.8. It can be seen that the performance does not degrade as

the number of dimension increases. This observation suggests that the ISP method

used here could be useful for very large-dimensional problems such as turbulent flows.
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Figure C.3: Left: complementary of the cumulative density function (CDF) of the
QoI. Probabilities are obtained with brute force calculation ( ), the ISP
method with time-dependent weight based onR1042 ( ), andR1109 ( ) and
M = 2500 particles. Uncertainty of the estimator computed with the ISP
algorithm using R1042 for the time-dependent weight is shown ( ) along
with the theoretical Monte-Carlo uncertainty that would be obtained
with M = 2500 realizations ( ). Middle: computational gain computed
as Eq. 6.6 when targeting the level 1109 with the fixed weight ( ), the
time-dependent weight obtained from the brute force calculation ( ), the
time-dependent weight obtained from the self-similarity approximation

. Right: pruning ratio obtained when targeting the level 1109 with
fixed weight ( ) and time-dependent weight obtained from brute force
calculation ( ) and the time-dependent weight obtained from the self-
similarity approximation ( ). Plots correspond to the Lorenz 96 problem
with 1024 degrees of freedom.

Figure C.4: Left: rare mean path exceeding thresholds ranging from 1400 to 1650 and
separated by a stepsize of 25. Right: self-similarity factor α computed
from successive rare mean path (see Eq. 6.7). Plots correspond to the
Lorenz 96 case with 64 degrees of freedom.
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Figure C.5: Left: rare mean path exceeding thresholds ranging from 1060 to 1110
and separated by a stepsize of 5. Right: self-similarity factor α computed
from successive rare mean path (see Eq. 6.7). Plots correspond to the
Lorenz 96 case with 1024 degrees of freedom.

Figure C.6: Left: rare mean path R1512 obtained from brute force computation ( ),
from the self-similarity approximation ( ) and ensemble average time
history of the observable ( ). Middle: computational gain computed
as Eq. 6.6 when targeting the level 1512 with the fixed weight ( ), the
time-dependent weight obtained from the brute force calculation ( ), the
time-dependent weight obtained from the self-similarity approximation

. Right: pruning ratio obtained when targeting the level 1512 with
fixed weight ( ) and time-dependent weight obtained from brute force
calculation ( ) and the time-dependent weight obtained from the self-
similarity approximation ( ). Plots correspond to the Lorenz 96 case
with 64 degrees of freedom.
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Figure C.7: Left: rare mean path R1109 obtained from brute force computation ( ),
from the self-similarity approximation ( ) and ensemble average time
history of the observable ( ). Middle: computational gain computed
as Eq. 6.6 when targeting the level 1109 with the fixed weight ( ), the
time-dependent weight obtained from the brute force calculation ( ), the
time-dependent weight obtained from the self-similarity approximation

. Right: pruning ratio obtained when targeting the level 1109 with
fixed weight ( ) and time-dependent weight obtained from brute force
calculation ( ) and the time-dependent weight obtained from the self-
similarity approximation ( ). Plots correspond to the Lorenz 96 case
with 1024 degrees of freedom.

Figure C.8: Computational gain computed as Eq. 6.6 when targeting the level located
four standard deviations away from the mean for the 32-dimensional case
( ), the 64-dimensional case ( ) and the 1024-dimensional case ( ).
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[123] De Charentenay, J., Thévenin, D., and Zamuner, B., “Comparison of direct nu-
merical simulations of turbulent flames using compressible or low-Mach number
formulations,” International journal for numerical methods in fluids , Vol. 39,
No. 6, 2002, pp. 497–515.

[124] Keefe, L., Moin, P., and Kim, J., “The dimension of attractors underlying
periodic turbulent Poiseuille flow,” Journal of Fluid Mechanics , Vol. 242, 1992,
pp. 1–29.

[125] Giraud, L., Langou, J., and Rozloznik, M., “The loss of orthogonality in the
Gram-Schmidt orthogonalization process,” Computers & Mathematics with Ap-
plications , Vol. 50, No. 7, 2005, pp. 1069–1075.

[126] Fernandez, P. and Wang, Q., “Lyapunov spectrum of the separated flow around
the NACA 0012 airfoil and its dependence on numerical discretization,” Journal
of Computational Physics , Vol. 350, 2017, pp. 453–469.

[127] Kim, D. and Choi, H., “A Second-Order Time-Accurate Finite Volume Method
for Unsteady Incompressible Flow on Hybrid Unstructured Grids,” Journal of
Computational Physics , Vol. 162, 2000, pp. 411–428.

[128] Grosch, C. E. and Salwen, H., “The continuous spectrum of the Orr-Sommerfeld
equation. Part 1. The spectrum and the eigenfunctions,” Journal of Fluid Me-
chanics , Vol. 87, No. 1, 1978, pp. 33–54.

198



[129] Schmid, P. J. and Henningson, D. S., Stability and Transition in Shear Flows ,
Springer, 2001.

[130] Orszag, S. A., “Accurate solution of the OrrSommerfeld stability equation,”
Journal of Fluid Mechanics , Vol. 50, 1971, pp. 689–703.

[131] Dongarra, J., Straughan, B., and Walker, D., “Chebyshev tau-QZ algorithm
methods for calculating spectra of hydrodynamic stability problems,” Applied
Numerical Mathematics , Vol. 22, No. 4, 1996, pp. 399–434.

[132] Orr, W. M., “The stability or instability of the steady motions of a perfect
liquid and of a viscous liquid. Part II: A viscous liquid,” Proceedings of the
Royal Irish Academy. Section A: Mathematical and Physical Sciences , Vol. 27,
JSTOR, 1907, pp. 69–138.

[133] Sommerfeld, A., “Ein beitrag zur hydrodynamischen erklaerung der turbulenten
fluessigkeitsbewegungen,” Atti del , Vol. 4, 1908, pp. 116–124.

[134] Kravchenko, A. G. and Moin, P., “On the Effect of Numerical Errors in Large
Eddy Simulations of Turbulent Flows,” Journal of Computational Physics ,
Vol. 131, 1997, pp. 310–322.

[135] Kuramoto, Y. and Tsuzuki, T., “Persistent propagation of concentration waves
in dissipative media far from thermal equilibrium,” Progress of theoretical
physics , Vol. 55, No. 2, 1976, pp. 356–369.

[136] Sivashinsky, G. I., “Nonlinear analysis of hydrodynamic instability in laminar
flamesI. Derivation of basic equations,” Acta astronautica, Vol. 4, No. 11-12,
1977, pp. 1177–1206.

[137] Kassam, A.-K. and Trefethen, L. N., “Fourth-order time-stepping for stiff
PDEs,” SIAM Journal of Scientific Computing , Vol. 26, 2005, pp. 1214–1233.

[138] Cox, S. M. and Matthews, P. C., “Exponential time differencing for stiff sys-
tems,” Journal of Computational Physics , Vol. 176, No. 2, 2002, pp. 430–455.
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