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Abstract 

 

This study proposes a way of organizing mathematical knowledge for teaching 

that permits to reveal its multidimensionality. Scholars concerned with teachers’ 

mathematical knowledge have traditionally distinguished knowledge dimensions by 

knowledge types, such as mathematical content knowledge or pedagogical content 

knowledge (e.g., the MKT framework). This approach has been widely adopted in studies 

that measure teachers’ knowledge using assessment items. But it remains an open 

question whether these conceptualizations can lead to precise measures of the different 

domains, as it is highly likely teachers simultaneously use multiple knowledge types 

when teaching mathematics. This creates challenges in measuring only mathematical 

content knowledge not mixed with any pedagogical aspects but still used in the work of 

teaching. While this way of conceptualizing knowledge dimensions has allowed 

researchers to develop measures that reflect professional knowledge, it has been less 

adept to documenting whether and how the knowledge varies depending on the specific 

teaching assignments teachers have experience with.    

The challenge in developing distinct measures has motivated me to propose a new 

way to organize assessment items. I describe this new way in terms of an item blueprint 

that specifies the correspondence between the organization of the items and the 

dimensions of the knowledge purported to be measured by the items. The proposed item 

blueprint is then evaluated regarding its purposes: 1) to capture multiple aspects of 
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teachers’ mathematical knowledge used in teaching; 2) to develop precise multiple 

measures reflecting the identified dimensions of knowledge. Ultimately, the developed 

measures were designed to allow a fine-grained description of the knowledge used in the 

work of teaching secondary mathematics. 

The proposed item blueprint uses two organizers: task of teaching and 

instructional situation. Task of teaching alludes to each of the activities that comprise the 

practice of a mathematics teacher (e.g., understanding students’ work). Instructional 

situation alludes to each of the types of mathematical work students are assigned within a 

course of study (e.g., doing proofs in geometry). Following the blueprint, I assigned each 

set of items to measure one knowledge dimension associated with one task of teaching 

and one instructional situation. By organizing the knowledge using these two organizers, 

the item blueprint allows a description of teachers’ knowledge with respect to the 

characteristics of the components of the work of teaching. With this conceptual rationale, 

the methodological feasibility of the item blueprint was evaluated by fitting item-factor 

models to the item responses collected from a nationally distributed sample of 602 U.S. 

practicing mathematics teachers. The distinctions among the factors were examined using 

model-comparison tests conducted under three different measurement models: structural 

equation modeling, item response theory, and diagnostic classification models. 

The results consistently showed that the majority of the hypothesized dimensions 

are statistically distinguishable by either or both of the organizers within and across both 

geometry and algebra courses of study. This distinction was further supported by 

different relationships with teachers’ educational background and teaching experience 

across the identified knowledge dimensions. 



 xix 

By presenting an innovative item blueprint that is theoretically warranted and 

methodologically feasible, this study shows great promise for measuring multiple 

dimensions of teachers’ mathematical knowledge used in the work of teaching. It 

contributes to developing theory of mathematics teaching and to future item development 

for measuring knowledge used in professional tasks and instructional situations. 
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Objective of the Study 

1.1 Introduction 

This study explores the feasibility of measures of mathematical knowledge for 

teaching that attend to the knowledge management tasks the teacher needs to engage in 

and the specificity of the mathematical work they need to manage. In that context the 

study explores how assessment items can be used to identify distinguishable dimensions 

of teachers’ mathematical knowledge for teaching, which is defined as a profession-

specific mathematical knowledge used in the work that teachers do to help students learn 

mathematics (Ball, Thames, & Phelps, 2008; Thames, 2009). Teachers’ mathematical 

knowledge for teaching has been hypothesized to be a critical factor for students’ 

learning of mathematics and this hypothesis has been supported by empirical studies that 

closely examine teachers’ instructional practice and their mathematical knowledge. 

For example, compared to less knowledgeable teachers, knowledgeable teachers 

are more likely to present problems properly, considering students’ prior knowledge 

(Sherin, 2002), use appropriate mathematical representations (Lehrer & Frank, 1992; 

Heid, Blume, Zbiek, & Edwards, 1998), or competently implement mathematics 

curriculum materials (Manouchehri & Goodman, 2000). Given these important 

associations with teaching quality, attempts have been made to examine teachers’ 

mathematical knowledge using assessment instruments that allow for empirical 

investigations. 
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1.1.1 A descriptive and large scale1 study on teachers’ knowledge 

Compared to other studies that empirically examine teachers’ mathematical 

knowledge, the current study has two particular characteristics: it is a descriptive (rather 

prescriptive) and a large-scale (rather small scale) study. First, this study is descriptive in 

that its purpose is to obtain fine-grained description of teachers’ mathematical knowledge 

used in the work of teaching. To obtain this fine-grained description, this study aims to 

establish multiple measures that represent distinguishable dimensions of teachers’ 

knowledge. To establish the multiple measures, this study proposes a way to develop and 

structure assessment items by referring to different components of actual teaching 

practices (i.e., according to kinds of work teachers do and kinds of subject matter being 

transacted between students and a teacher). This approach is different from studies that 

aim to evaluate individual teachers’ knowledge against a prescribed knowledge or a list 

of elements of desirable knowledge. As this study aims to provide a way to describe 

multidimensional knowledge dimensions rather than to suggest desirable dimensions 

composing the whole knowledge construct, this study does not attempt to obtain an 

exhaustive list of dimensions of teachers’ knowledge required in the work of teaching.  

Second, this study is a large-scale study in that it aims to investigate the 

dimensionality of teachers’ knowledge through measures established by using item 

responses collected from a large number of participants, such as 602 nationally 

representative U.S high school teachers. The reason for using assessment items 

measuring teachers’ knowledge instead of observations or interviews, which are 

generally used in small-scale studies, is that this study aims to investigate the 

                                                 
1 The sample of this study can be considered large in mathematics education scholarship 
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dimensionality of teachers’ mathematical knowledge generalizable to the U.S. secondary 

mathematics teacher population. To empirically examine teachers’ knowledge, this 

knowledge needs to be operationalized through an instrument. This is because knowledge 

is a latent construct that cannot be directly observed. In particular, to measure multiple 

dimensions of knowledge, the items that purport to measure those dimensions need to be 

structured according to the hypothesized structure of the knowledge. How to structure 

items to establish multiple knowledge measures allowing for a fine-grained description of 

the knowledge is the focus of this study. 

1.1.2 The need of an alternative knowledge framework 

Through theoretical arguments and case studies, scholars have argued that 

mathematical knowledge for teaching consists of multiple dimensions. Many researchers 

have attempted to measure distinguishable dimensions of teachers’ knowledge for 

teaching, but they have not yet been successful in developing precise measures that 

reflect the different dimensions they hypothesized. This raises the question of whether 

and how the multidimensionality of teachers’ mathematical knowledge for teaching can 

be operationalized by using assessment items. The question includes whether we do 

indeed have a knowledge framework that is conceptually plausible and methodologically 

viable to create an item blueprint that operationalizes the descriptive investigation of 

teachers’ mathematical knowledge in which different dimensions can be examined. If the 

framework is plausible, can we design items measuring distinguishable aspects of 

teachers’ mathematical knowledge? If such items can be developed, which measurement 

model can be used to evaluate whether the items function as intended? Furthermore, 

which measurement model can be used to yield measures reflecting teachers’ 
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competencies in multiple dimensions? To address these important questions, this study 

therefore addresses both conceptual and methodological challenges the field has had 

understanding the multidimensionality of teachers’ mathematical knowledge. 

To explore these questions, first, this study proposes a framework for structuring 

assessment items that is hypothesized to allow for the measurement of multiple 

distinguishable dimensions of teachers’ mathematical knowledge for teaching secondary 

mathematics. Also, the established measures are intended to capture variations in 

teachers’ knowledge that can be explained by the variations in the components of the 

work of teaching. The framework is informed by the analyses of teachers’ performance 

on knowledge instruments and by an understanding of the work of teaching as well as by 

prior approaches to measuring teachers’ mathematical knowledge. Specifically, it is 

organized according to tasks of teaching (e.g., understanding students’ work; discussed in 

Chapters 3 & 4) and instructional situations (e.g., doing proofs; discussed in Chapters 3 

& 4).  

To develop distinguishable measures of teachers’ knowledge, which other 

research groups have not been able or attempted to do with a multidimensional item 

blueprint (Hill, Schilling, & Ball, 2004; Gitomer, Phelps, Weren, Howell, Croft, 2014; 

Etkina et al., 2018), this study distinguishes assessment items on the basis of tasks of 

teaching and instructional situations. The rationale for doing this is that if any 

distinguishable dimensions of teachers’ knowledge are identifiable in terms of differences 

in the tasks of teaching or instructional situations that call for that knowledge, it would be 

reasonable to hypothesize that the task of teaching and (or) instructional situations can be 

classifiers of the dimensions of teachers’ knowledge. This classification mechanism for 
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classifying the dimensions of the knowledge can also shed light on the specificity of the 

work of teaching by identifying the specific knowledge dimensions involved in the 

components of the work.  

With this conceptual rationale of the proposed framework, this study evaluates the 

methodological feasibility of the suggested knowledge framework using participants’ 

performance on assessment items on geometry and algebra 1 content. The participants are 

602 teachers who represent national in-service high school teachers in the U.S. Informed 

by psychometric theory, this study evaluates the extent to which item-score 

interrelationships support the hypothesis of the multidimensional item structure I 

propose. Not only does the evaluation using multiple measurement models aim to 

validate the proposed framework, it also provides guidance for future item development 

that can allow for the measurement of multiple dimensions of teachers’ mathematical 

knowledge. Again, ultimately, the results of this study contribute to fine-grained 

descriptions of teachers’ mathematical knowledge used in the work of teaching secondary 

geometry and algebra 1. 

1.1.3 Organization of the dissertation 

I begin with Chapter 1 that discusses the theoretical and practical benefits of a 

multidimensional understanding of teachers’ mathematical knowledge, with an emphasis 

on the advantages of a multidimensional measure over a unidimensional measure of 

knowledge. Next, I discuss how the need for re-conceptualization and operationalization 

of the dimensionality of teachers’ knowledge leads to the research questions guiding this 

dissertation study. In Chapter 2, I review how different research groups have defined 

teachers’ mathematical knowledge in ways that could benefit from multidimensional 
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analysis and how they have attempted to measure the constructs empirically. I also 

review the methodological approaches including structural equation modeling, item 

response theory, and diagnostic classification modeling in the use in the teacher 

knowledge literature. In Chapter 3, I suggest a new item blueprint hypothesized to allow 

the identification of multiple dimensions of teachers’ mathematical knowledge for 

teaching high school geometry and algebra 1. The discussion of the foundations of the 

proposed knowledge framework is followed by the definitions of the two organizers (i.e., 

task of teaching and instructional situation) that characterize teachers’ knowledge 

dimensions. In Chapter 4, I describe empirical procedures such as item type selection, 

defining hypothesized knowledge dimensions, scaling responses, and data analysis 

methods. I also describe the definitions of particular knowledge dimensions examined in 

this study and the rationale for using them. In Chapter 5, I describe the results. In Chapter 

6, I discuss findings and implications of the results. I conclude this dissertation with a 

discussion of the limitations and some directions for future study. 

1.2 Background 

There has been a long-standing interest in finding attributes of teachers’ 

mathematical knowledge that is specific to the work of teaching (Ball, Lubienski, & 

Mewborn, 2001). It is widely accepted that in addition to subject matter knowledge, 

teachers have mathematical knowledge that is pedagogical in nature and is used to help 

students learn mathematics. In an effort to understand the unique knowledge that teachers 

need and use, Shulman (1986) suggested three distinct types of content knowledge 

(subject matter content knowledge, pedagogical content knowledge, and curricular 

knowledge), which can be defined in the context of teaching. In particular, among these 
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three categories, the conceptualization of pedagogical content knowledge (PCK) has been 

instrumental in enabling the research community to think about a type of knowledge that 

blends subject matter and pedagogical knowledge. In relation to mathematics teaching, 

Shulman’s (1986) notion of PCK emphasizes the role of teachers’ mathematical 

knowledge in relation to representing and formulating mathematical content in a way that 

is comprehensible to students, rather than merely presenting the knowledge about the 

content itself (Shulman, 1986, p. 9). Shulman’s multiple categories of teacher knowledge 

has been extended to further develop a variety of multidimensional structures of teachers’ 

mathematical knowledge for teaching, all of which see mathematical knowledge for 

teaching as composed of at least two sub-constructs, e.g., subject matter knowledge and 

pedagogical knowledge (e.g., Ball et al., 2008; Herbst & Kosko, 2014; Krauss, Brunner, 

Kunter, Baumert, Blum, Neubrand, & Jordan, 2008; McCrory, Floden, Ferrini-Mundy, 

Reckase, & Senk, 2012; Mohr-Schroeder, Ronau, Peters, Lee, & Bush, 2017; Saderholm, 

Ronau, Brown, & Collins, 2010; Tatto, Schwille, Senk, Ingvarson, Peck, & Rowley, 

2008).  

Among the many research groups that have endeavored to conceptualize teachers’ 

mathematical knowledge in a multidimensional manner, the LMT group at the University 

of Michigan has defined mathematical knowledge for teaching (hereafter MKT) as a 

profession-specific mathematical knowledge used in the work of teaching (Ball, 

Lubienski, & Mewborn, 2001; Ball et al., 2008). In this framework, MKT is 

conceptualized as a construct composed of subject matter knowledge (hereafter SMK) 

and pedagogical content knowledge (hereafter PCK) (Figure 1.1) (Ball et al., 2008, 

p.403). SMK is described as the mathematical content knowledge used in the tasks of 
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teaching, while PCK is a blend of content knowledge and pedagogical knowledge 

(p.392). In the MKT framework, SMK and PCK are subsumed into one overarching 

construct of mathematical knowledge for teaching (MKT), but each of them is also 

divided into sub-domains. SMK is decomposed into three domains2 of content 

knowledge. The first is common content knowledge (CCK), “the mathematical 

knowledge known in common with others who know and use mathematics” (p. 403).  

The second is specialized content knowledge (SCK), which is conceptualized as “the 

mathematical knowledge and skill unique to teaching” (p. 400), and the third is horizon 

content knowledge (HCK), defined as “an awareness of how mathematical topics are 

related over the span of mathematics included in the curriculum” (p.403). PCK is 

decomposed into knowledge of content and student (KCS), defined as “knowledge that 

combines knowing about students and knowing about mathematics” (p. 401), knowledge 

of content and student (KCT), defined as knowledge that “combines knowing about 

teaching and knowing about mathematics” (p. 401), and knowledge of content and 

curriculum. Among these domains, horizon content knowledge and knowledge of content 

and curriculum have been reconceptualized by some researchers (Fernandez, Figueiras, 

Deulofeu, and Martinez, 2011; Zazkis and Mamolo, 2011; Koponen, Asikainen, 

Viholainen, & Hirvonen, 2016). However, to the best of my knowledge, these domains 

have not yet been operationalized by test items. 

 

                                                 
2 The term “domain” is used interchangeably with the term “dimension” for the MKT framework. 
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Figure 1.1. Domains of MKT (Ball et al., 2008, p.403) 

Other research groups have also conceptualized teachers’ mathematical 

knowledge as a multidimensional construct in different ways (Baumert, Kunter, Werner, 

Brunner, Voss, Jordan, …, & Tsai, 2010; Herbst & Kosko, 2014; McCrory et al., 2012; 

Saderholm et al., 2010; Tatto et al., 2008). Some scholars have focused on a specific 

subject: McCrory et al. (2012) and Phelps et al. (2014) worked in algebra, Herbst & 

Kosko (2014) and Mohr-Schroeder, Ronau, Peters, Lee, & Bush (2017) worked in 

geometry. Some scholars have focused on a level of schooling: Hill, Schilling, and Ball 

(2004), Ball et al., (2008), Hill (2010) worked with elementary school teachers, 

Saderholm et al., (2010) and Hill (2007) with middle school teachers, and Herbst & 

Kosko (2014), Mohr-Schroeder et al. (2017), and Wilson & Heid (2015) with high school 

teachers. These diverse ways that research programs have conceptualized the structure of 

teachers’ mathematical knowledge will be discussed in more detail in 2.1.2. 

The diverse ways of conceptualizing the structure of teachers’ mathematical 

knowledge have often been criticized for the failure to produce one single theoretical 

framework that the mathematics education community could agree on (Tirosh & Even, 

2007). This lack of a universal agreed upon framework has also been cited as a main 
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factor explaining the unorganized approach to designing teacher education courses 

(Petrou & Goulding, 2011, p. 9). Some frameworks are criticized for the lack of attention 

to factors that other frameworks consider. For example, the MKT framework is criticized 

for not acknowledging teachers’ beliefs (Rowland & Ruthven, 2011). 

Admittedly, the existence of divergent frameworks for the same construct – 

teachers’ mathematical knowledge – could be problematic if a framework is 

indiscriminately applied to different situations, contexts, or purposes without an 

understanding of the unique features of each framework. For example, applying the MKT 

knowledge framework, which emphasizes the distinction between CCK and SCK, may 

not be useful if the purpose of using the framework is to understand distinguishable 

aspects of mathematical knowledge among college mathematics professors, considering 

that the framework is based on the work of elementary teachers. On the other hand, the 

same framework may be appropriate for the purpose of capturing the unique aspects of 

mathematical knowledge that elementary teachers use in the work of teaching, as 

compared to the mathematical knowledge that mathematicians use in their work.  

The divergent conceptualizations of teachers’ multidimensional knowledge have 

contributed to challenges in understanding the nature of teachers’ knowledge, but, 

nonetheless, the existence of diverse frameworks can be a blessing in that they provide 

diverse means to measure dimensions of teachers’ knowledge in terms of purpose. Put in 

other words, if the purpose and the foundation of each framework are correctly 

understood, one does not need to default to a competitive perspective on the relationship 

among frameworks (i.e., which framework is better to explain the dimensionality of 

teachers’ knowledge than others). Instead, one can consider a complementary perspective 
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among frameworks. In such a perspective, one might, for example, consider the LMT 

group’s MKT framework as complementary to other frameworks that might be organized 

according to the level of cognitive demand (e.g., Tschoshanov, 2011) rather than 

knowledge type, in that the former provides a blueprint for capturing a unique dimension 

of teachers’ mathematical content knowledge (i.e., SCK) that the latter framework does 

not allow. Similarly, a framework organized by mathematical topics can complement the 

MKT framework by providing a way to examine a knowledge dimension specific to a 

certain mathematical topic that the MKT framework, where each dimension is composed 

of more than one mathematical topic, cannot provide. The importance of 

complementarity was also alluded to by Petrou and Gouldin (2011), who state that “the 

conceptualizations of teacher knowledge proposed are not inconsistent; rather, they build 

on each other. Even though the researchers have stressed different domains of teacher 

knowledge, all focus on the importance of seeing the content to be taught as an important 

part of teaching” (p.20). 

Given this perspective on complementarity, one framework is not necessarily 

better than another in explaining variance in teachers’ knowledge. However, one 

framework might be more suitable than another depending on the specific goals of the 

framework. If the framework is to be used as a blueprint of an assessment measuring 

teachers’ knowledge, the framework needs to be valid not only from a theoretical 

perspective but also from a measurement perspective. The validity of the assessment is 

then evaluated based on the purpose of the assessment, which is determined by the 

intended use and interpretation of the results (Kane, 2006). Therefore, it is crucial to 
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clarify the intended use and interpretation of the results of an assessment in order to 

suggest a framework that guides the development of the assessment instrument. 

In this study, the intended use and interpretation of the results from the focused 

assessment are to describe and interpret multidimensional teachers’ mathematical 

knowledge with respect to a particular task of teaching and a particular instructional 

situation. Therefore, the suggested knowledge framework is expected to attain following 

two goals. First, the framework allows measuring multiple distinguishable dimensions of 

teachers’ mathematical knowledge. Second, each of the identified dimensions reflects 

teachers’ knowledge in doing a specific work of teaching in a specific instructional 

situation. To investigate how the multiple dimensions of teachers’ knowledge are 

organized, this study examined the structure of a set of assessment items, which had been 

designed to measure teachers’ mathematical knowledge for teaching secondary geometry 

and algebra 1.  

1.2.1 Conceptualizing mathematical knowledge for teaching as a multidimensional 

construct 

To recognize the benefits of a multidimensional conceptualization of teachers’ 

mathematical knowledge, it is important to understand first the limitations of a 

unidimensional conceptualization on teachers’ knowledge, and then understand how a 

multidimensional conceptualization could overcome those limitations. Before discussing 

the advantages of a multidimensional conceptualization over a unidimensional 

conceptualization, it is necessary to make clear the difference in the meaning between 

unidimensional and multidimensional conceptualizations of teacher knowledge. Edwards 
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(2001) defined multidimensional construct and contrasted it from that of unidimensional 

construct and from what he called “multiple dimensions regarded as distinct” as follows. 

 

A construct is multidimensional when it refers to several distinct but related 

dimensions treated as a single theoretical concept. Multidimensional constructs 

may be distinguished from unidimensional constructs, which refer to a single 

theoretical concept, and from multiple dimensions regarded as distinct but related 

concepts rather than a single overall concept (Edwards, 2001, p.144).  

 

Following this definition, teacher knowledge could be said to be multidimensional 

if it is composed of several distinct but related dimensions subsumed within a larger 

theoretical concept of teachers’ mathematical knowledge for teaching. In contrast, 

teachers’ knowledge is unidimensional if it is conceptualized as a single theoretical 

concept without any distinct knowledge dimensions under it. Thus, the unidimensional 

perspective on teacher knowledge refers to the assumption that teachers’ knowledge can 

be represented by a single attribute.  Consequently, this assumption may lead to the use 

of a unidimensional measure (e.g., a single score) as a proxy for the amount of teachers’ 

knowledge. However, the use of a single score for the amount of a teacher’s knowledge 

can be valid only if the teacher’s responses (or actions) to the instrument (a written 

assessment or an observation tool) are evidence of only one type of knowledge. If indeed 

a single measure is used for a multidimensional construct – teachers’ mathematical 

knowledge – this may foreclose the opportunity for capturing differences in how 

individuals know different aspects of the mathematics they use in teaching. Furthermore, 
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this reduction of a multidimensional knowledge construct to a unidimensional measure 

might cause inconsistent results on the relationship between teachers’ mathematical 

knowledge, which is indicated by subject matter preparation, and student achievement. In 

other words, a unidimensional measure of teachers’ knowledge could cause threats to 

internal validity (Shadish, Cook, & Campbell, 2002, p.38) by distorting a causal 

relationship from teachers’ subject matter preparation to teachers’ mathematical 

knowledge. 

In some early studies, teachers’ mathematical knowledge has been conceptualized 

as equivalent to the amount of mathematics studied, so it was operationalized by the 

number of courses taken in college. These studies then reported that the effect of more 

than five mathematics courses was negatively correlated with 11th grade students’ 

performance (Monk, 1994). Similarly, Begle (1979) reported that the number of teachers’ 

course credits at the level of calculus or beyond was negatively associated with student 

(4th, 7th, and 10th grade) achievement in 43 percent of cases which had significant main 

effects from teacher credits on student achievement (Begle, 1979, p. 41). However, 

teachers’ mathematics content preparation, as measured by the number of mathematics 

courses taken, was positively related to 10th grade student performance in mathematics 

(Monk, 1994; Rowan et al., 1997). Hence, the evidence is inconsistent. I suggest this 

inconsistency may be due to the lack of means to capture the multidimensional nature of 

mathematical knowledge. I do not argue that teachers’ mathematics course credits or 

number of courses taken are inappropriate proxies for teachers’ mathematical knowledge. 

Rather, I admit that those proxies may account for a portion of teachers’ mathematical 

knowledge, which can be developed through mathematics courses. However, these 
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proxies may not reflect other dimensions of knowledge which could not be developed 

solely by taking courses or studying advanced mathematics, but which probably influence 

student achievement. In other words, the attempt to understand the overall effect of 

teachers’ knowledge on student achievement with a single measure might prevent us 

from observing a plausible relationship whose observation might be enabled if we had a 

better conceptualization of other dimensions of teacher knowledge, perhaps more 

centrally related to the work teachers do in classrooms.  

For example, mathematical content knowledge gained from pure mathematics 

courses can be important in one aspect of the work of teaching (e.g., evaluating the 

correctness of student mathematical work), but it may not be equally important in other 

aspects of the work (e.g., anticipating students’ misconception). While the depth of 

teachers’ mathematical knowledge may partially account for teachers’ overall 

mathematical knowledge, it is likely that other key components of the knowledge used in 

the work of teaching also need to be taken into account. Specifically, considering the 

finding of a negative effect of more than five mathematics courses on students’ 

performance, it is possible that what seems to be negative from a unidimensional 

perspective might not be negative from a multidimensional perspective.  

Consider the following thought experiment. Suppose that teachers’ mathematical 

content knowledge was validly measured by the number of mathematics courses taken, 

and pedagogical content knowledge was validly measured by the time spent in field 

experiences, but only the number of courses was used as a proxy in examining the 

relationship between teachers’ mathematical knowledge and student achievement. The 

proxy used to measure teacher knowledge might not capture the knowledge learned by 
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those who made good use of field experiences and would not account for the lack of this 

knowledge among the teachers who took many classes beyond requirements at the 

expense of their field experience. In this case, the relationship between teacher 

knowledge and student achievement could be shown as negative, even though the 

negative relationship depended on the lack of the knowledge that could have been learned 

from field experience. 

With this example, we can see the limitations of considering the teachers’ 

mathematical knowledge as a unidimensional construct. But what does a 

multidimensional perspective entail? We would expect that a multidimensional 

perspective would allow access to multiple measures reflecting distinct aspects of 

teachers’ knowledge. If we assume that teachers’ knowledge is a two-dimensional 

construct instead of a unidimensional one, then student achievement could be modeled by 

a function of two variables. For example, one variable might represent teachers’ 

mathematical content knowledge (presumably gained through content coursework) and 

the other variable might represent teachers’ pedagogical content knowledge (presumably 

gained through mathematics education courses and field experiences). In this example of 

two-dimensional teacher knowledge, a student taught by a teacher with moderate levels 

of knowledge in both content and pedagogical domains could show higher performance 

than a student taught by a teacher with a high level of content knowledge but a low level 

of pedagogical knowledge. The unidimensional perspective on teachers’ knowledge 

might not allow us to detect this phenomenon and could lead to an incorrect interpretation 

of the effect of coursework (e.g., that knowing more mathematics is somehow 

detrimental to teachers).  
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 Similarly, a multidimensional perspective on teacher knowledge might explain the 

source of variation in teacher effectiveness at different stages of their teaching career, 

particularly early in their career, as shown in previous studies (Harris & Sass, 2011; 

Clotfelter, Ladd, & Vigdor, 2006). For example, an inconsistent effect of teaching 

experience on teachers’ knowledge could be dependent on the types of knowledge that 

might be acquired through experience. Specifically, gains in teachers’ effectiveness might 

rise sharply in teachers’ initial years if the effectiveness is associated with teachers’ 

ability in understanding students’ work, whereas sharp gains can be shown in later years 

of teachers’ career if the measured effectiveness is associated with teachers’ ability in 

creating problems. This conjecture is supported by a previous empirical study showing 

different patterns of relationships between different dimensions of mathematical 

knowledge for teaching geometry (MKT-G) and years of teaching geometry (Ko & 

Herbst, under review). As such, a multidimensional perspective can provide a lens for 

explaining some inconsistent results reported in early studies. Furthermore, it allows 

identifying multiple key components of teachers’ knowledge required in multiple 

demands of the work of teaching. 

1.2.2 The role of multidimensional understanding in teacher education 

A better theoretical understanding of the nature of teachers’ mathematical 

knowledge through the lens of a multidimensional conceptualization may offer several 

benefits to teacher education; for example, in teacher knowledge diagnosis, teacher 

training, and teacher certification or badging. 

Identifying and understanding multiple dimensions composing teachers’ 

mathematical knowledge may enable the development of assessments measuring multiple 
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domains of knowledge, which are important in teaching. These assessments can be used 

to diagnose the status of individual teachers’ knowledge, and this diagnosis can therefore 

contribute to the development of tailored teacher training programs. For example, if an 

assessment finds that teachers have the most difficulty on items asking them to 

understand student work, the teacher education program could focus on providing 

learning opportunities to improve mathematical knowledge required for this task of 

teaching. On the other hand, if teachers are shown to be weak in basic mathematical 

content knowledge, the program could be organized to require teachers to take more 

content courses before taking a methods course, or field work. This highly specific 

information about teachers’ knowledge can provide teacher educators with more 

actionable guidance to customize their instruction for their students. 

Furthermore, teacher training programs could provide differentiated training for 

beginning teachers and experienced teachers by using the most common knowledge 

profiles that are driven by multidimensional assessments within each group. For example, 

some studies have shown that beginning teachers need the most help in areas of content-

specific pedagogies or in the task of planning lessons (Reynolds, 1995). A multi-

dimensional conceptualization of teacher knowledge might enable the identification of 

the related knowledge dimensions on which beginning teachers are less knowledgeable 

than experienced teachers. Accordingly, a teacher development program could be 

designed to focus on these areas for beginning teachers.  

Another potential benefit for teacher education is that a multidimensional 

conceptualization might support the exploration of multiple ways of organizing the field 

of mathematical knowledge for teaching, hence impact the curriculum for teacher 
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preparation. Based on a multidimensional conceptualization of the knowledge needed for 

teaching, different types of courses could be designed that do not reproduce the classical 

division between content courses and methods courses. Instead, these courses could be 

designed to attend to specific dimensions of teacher knowledge. In this study, I 

investigate two organizers as crucial for finding dimensions of teacher knowledge. These 

organizers could also provide alternative ways of designing courses; for example, by 

types of tasks of teaching or by types of instructional situations, instead of simply by 

mathematical topics. As such, a well-defined knowledge structure could be mapped to the 

teacher education curriculum. 

Lastly, a multidimensional understanding of teacher knowledge could help 

improve teacher certification or badging systems.  The need for tools providing a 

comprehensive view of teachers’ competence has been discussed and Reynolds (1995) 

suggested a portfolio model for teacher assessment which would “display badges of 

competency in important teaching tasks and knowledge domains” (Reynolds, 1995, p. 

218). Along with the idea of the portfolio model, a multidimensional understanding of 

teacher knowledge could offer a map laying out multiple knowledge dimensions with 

related teaching tasks. Teachers and teacher educators, then, can use the map to track 

their mastery of the important tasks of teaching along the path to be competent in all 

areas/dimensions. For example, a map based on the multidimensional structure of teacher 

knowledge would allow teachers to plan their professional development based on their 

mastery status or interests in a specific teaching skill. Furthermore, a map composed of 

multiple knowledge dimensions could help scaffold teachers’ learning during and after 

teacher education. 
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1.2.3 The need for re-conceptualizing the dimensionality of mathematical 

knowledge for teaching 

To empirically investigate a hypothesis about the dimensionality of teachers’ 

mathematical knowledge for teaching, researchers have developed instruments consisting 

of items measuring hypothesized sub-constructs (i.e., each construct corresponds to one 

dimension of teachers’ knowledge in this study). In general, the sub-constructs 

operationalized in those instruments included at least two knowledge domains, CK and 

PCK, which were originally introduced by Shulman (1986, 1987). This categorization 

that distinguishes CK and PCK, however, has run into challenges in operationalizing the 

knowledge domains. 

  To develop an instrument, the targeted knowledge domains need to be articulated 

(Furr, 2011, p. 12), and the articulation necessitates clarifying 1) the similarities and 

differences with other relevant domains as well as 2) the contexts that engage the 

construct (Furr, 2011, p.12). Wilson (2005) uses the expression “variable clarification” to 

refer to this process, where “the construct to be measured is distinguished from other 

closely related constructs” (Wilson, 2005, p. 38). In accordance with Furr’s (2011) and 

Wilson’s (2005) guidelines, there seems to be a lack of construct clarification in current 

frameworks that follow Shulman’s knowledge categorization. I argue that this is one of 

the main limitations that need to be improved to empirically measure teachers’ 

mathematical knowledge as a multidimensional construct. Specifically, regarding the 

relationship among domains, even though multiple subdomains of teacher knowledge 

have been conceptualized to be subsumed in an overarching domain of mathematical 

knowledge for teaching in most studies, the relationship among subdomains tends to be 
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conceptualized as disjoint or is not clearly defined. For example, items are assigned to 

either CK or PCK without consideration that items may contribute to more than one 

domain.  

 To allow interactions between the two or more domains may be important, given 

that the nature of teachers’ knowledge is complex and may not be so clearly divided into 

disjoint sub-dimensions defined by a domain of knowledge (CK, PCK, etc.) used in 

teaching. Teachers may simultaneously use more than one knowledge type when they 

teach. In other words, it would be more sensible to assume that domains are interrelated. 

For example, an item may require teachers to use multiple relevant skills and knowledge 

domains when responding to the item rather than require only one knowledge domain. 

Given this possibility of using more than one knowledge domain at the same time, it is 

worthwhile to re-conceptualize how knowledge is organized. Specifically, re-

conceptualization of how we organize knowledge that can accommodate the intersection 

of sub-domains is needed. To incorporate intersections between domains, this study 

proposes to consider more than one organizer for a knowledge structure. 

 Comparatively speaking, the MKT framework is conceptualized with one 

organizer such as knowledge domain, which distinguishes six knowledge dimensions 

(Figure 1.2.b), whereas the framework suggested in this study is conceptualized with two 

organizers: task of teaching and instructional situation, each of which might distinguish 

different numbers (e.g., M and N) of knowledge dimensions, respectively. Therefore, the 

proposed framework suggests a total of M*N distinguishable dimensions (Figure 1.2.c). 

Figure 1.2.c is described with an example of the SMK-G (subject matter knowledge for 

teaching geometry) instrument where two tasks of teaching (understanding students’ 
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work, hereafter USW and choosing appropriate givens for a problem, hereafter CGP) and 

two instructional situations (doing proofs, hereafter DP) and calculation in geometry 

(hereafter, CG) are hypothesized as distinguishable dimensions for each organizer (Ko & 

Herbst, 2017). 

 

 

Figure 1.2. Difference in a framework between MKT and SMK-G. 

a. Unidimensional (left)  b. MKT (middle)   c. SMK-G (right) 

 

Furthermore, as mentioned previously, the contexts that engage a construct 

(knowledge) also need to be clarified to enable a measured knowledge component to 

reflect how aspects of mathematical knowledge are involved in specific teaching 

contexts. Considering the difference in teacher knowledge between different grade levels, 

it also seems reasonable to conjecture that there are differences in teachers’ mathematical 

knowledge among different instructional situations even within the secondary school 

level. However, there are very few research groups that developed a teacher’ 

mathematical knowledge framework that accounts for this aspect of situational 

knowledge. The meaning of instructional situation and its hypothesized role in teacher 

knowledge structure is described more in detail in Chapter 3. 
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1.2.4 The need for re-operationalizing the dimensionality of mathematical 

knowledge for teaching 

After defining theoretical constructs (e.g., overall MKT and the various domains 

of MKT identified by Ball et al., 2008), researchers have developed instruments as 

operational tools to measure such constructs (viz., sets of items, each of which taps into 

each of the domains of teachers’ mathematical knowledge). Researchers, then, infer the 

characteristics of the underlying construct from participants’ responses on the instrument. 

Furthermore, the inferred nature of teachers’ knowledge can then be used to refine the 

initial conceptualization of teachers’ knowledge. This cyclic measurement process has 

been used in the studies of measuring teachers’ mathematical knowledge (Baumert et al., 

2010; Blömeke et al., 2014; Hill et al, 2004; Wilson, 2005). 

 In the process of making inferences on the knowledge domains in terms of 

teachers’ responses to items, the plausibility of the theory (conceptualization of 

dimensionality of teachers’ knowledge) needs to be evaluated empirically (Kane, 2013) 

to accurately relate teachers’ responses (observable attribute) to a theoretical construct 

(dimensions of teachers’ knowledge). However, many empirical studies have failed to 

provide empirical support to their hypothesized theory of teachers’ knowledge. 

Limitations in the theory itself or a limitation in the empirical study (including the 

affordances of the sample and the measurement model used) can be the reason for the 

discrepancy between what the theory posits and its empirical findings. One of the 

challenges in an empirical check is to choose an appropriate measurement model that 

establishes a relationship between the item score and the construct. Measurement models 

used in the teacher knowledge literature commonly relate one item response to a single 
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construct, one domain of teachers’ knowledge such as CCK or SCK, relying on 

unidimensional item response models. If, however, we consider that constructs such as 

SCK are highly complex, it is reasonable to consider a measurement model allowing 

multiple domains to intervene in an item’s response. This is because each item may 

activate multiple knowledge domains. For example, Figure 1.3 is one of the MKT items 

designed to measure teachers’ SCK (mathematical knowledge uniquely used by 

teachers). However, this item raises the question of whether SCK is the only type of 

knowledge that a teacher may use to evaluate the given story problems. Consider the item 

shown in Figure 1.3 where the respondent needs to determine, for each of three story-

problems, whether the problem represents 1 ¼ divided by ½. A participant may compare 

the numerical answer for each problem, which is ⅝ in a) and 5/2 in b) and c), with the 

result of calculating 1 ¼ divided by ½ (= 5/2). If a given problem leads to a different 

numerical answer as that for 1 ¼ divided by ½, as story problem (a) does, a 

mathematically knowledgeable participant would likely choose an answer “No” if he or 

she were using their common content knowledge. Yet, the correct answer for story 

problem (b) is also “No,” and to come to that answer a participant may need to assess the 

story problem on the basis of the mathematical conception of division being represented 

in the problem as well as in the calculation used to model the problem. Knowledge of 

different conceptions of division is knowledge special to teachers. While, mathematically 

speaking, the only correct problem is problem (c), even mathematically knowledgeable 

participants could choose “No” for problem (c), if they relied on knowledge of students’ 

difficulties with long sentences or some students’ (e.g., ELLs) difficulties with particular 

vocabulary (viz, taffy). In sum, a participant may need to activate various types of 
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knowledge unique to a teaching context, in addition to common mathematical knowledge 

that non-teachers may use in their job, in order to answer an item. 

 

Figure 1.3 Example of SCK problem (Ball et al., 2008, p.400) 

 

In regard to the item shown in Figure 1.3, the issue is whether the type of 

knowledge involved in answering the sub-items b) and c) relies on knowledge from a 

single domain such as SCK or whether it involves both CCK and SCK, or even KCS. The 

type of measurement model allowing the latter situation (“the situation in which some 

items on a multidimensional assessment measure more than one attribute”) is called 

within-item multidimensionality (Rupp, Templin, & Henson, 2010, p. 330), an 

assumption in measurement modeling that stands in contrast to between-item 

multidimensionality in which “each item on an assessment measures a distinct latent 

attribute” (Rupp, Templin, & Henson, 2010, p. 317). Measurement models can be 

differentiated in regard to what assumption they make. 

 Dimensionality analysis is important not only for conceptualizing a complex 

construct, but also for methodological reasons. Specifically, if any additional dimensions 

are measured by any of the items in the set (assumed to be unidimensional), this presence 
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of multiple dimensions can threaten the accuracy of item parameter estimates when using 

a unidimensional model (e.g., IRT) as a measurement model. Given the possibility that 

more than one knowledge domain is required to solve an item, this study relaxes the 

assumption that one item needs to measure one construct or that domains and constructs 

have one-to-one relationships. With this unconstrained assumption, this study explores an 

alternative measurement model that increases a feasibility of multidimensional evaluation 

with respect to the complexity of the construct – mathematical knowledge called for in 

the work of teaching (the concept will be further discussed in Chapter 3). 

1.3 Guiding research question 

As mathematical knowledge for teaching is an unobservable construct that is 

generally operationalized through assessment items, this study takes a fresh look at these 

items to understand how they can be used to operationalize the dimensionality of in-

service teachers’ mathematical knowledge for teaching used in the work of teaching. 

 

This study asks the following research question: 

 

What kind of item blueprint can guide the development and structuring of items that 1) 

capture the variations in teachers’ knowledge used in different components of the work of 

teaching and 2) allow for establishing multiple distinguishable measures of teacher’ 

mathematical knowledge for teaching high school geometry and algebra 1. 

 

To answer this question, I propose to structure teachers’ knowledge with two 

organizers – task of teaching and instructional situation. I expect that this proposal can 
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embody a potential framework for developing sets of measures reflecting teachers’ 

mathematical knowledge used in the work of teaching. At this point, only a general, 

research question guiding this study is posed. The specific research questions including 

both the conceptual and methodological questions are introduced after the literature 

review which discusses relevant prior empirical studies and the need for additional 

research. 

1.4 Chapter summary 

In this chapter, I introduce the purpose of this study, which is to obtain a fine-

grained description of teachers’ mathematical knowledge for teaching by proposing a 

knowledge framework that allows for the measurement of multiple distinguishable 

dimensions of teachers’ mathematical knowledge for teaching secondary mathematics. 

The purpose is supported by the theoretical and methodological rationale of this study. 

The rationale is discussed with consideration of benefits of a multidimensional 

understanding of teachers’ mathematical knowledge. The purpose and the rationale lead 

to the research questions guiding this dissertation study.  
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Review of Concepts and Methods Used in Literature 

2.1 Operationalization of teachers’ mathematical knowledge 

As researchers have acknowledged the benefits of a multidimensional view of 

teachers’ mathematical knowledge for teaching, considerable efforts have been made to 

operationalize the multiple dimensions of teachers’ mathematical knowledge in terms of 

observable or measurable variables. This has led to the development of research 

frameworks using empirical instruments (e.g., observational tools or assessment items) 

that allow for the operationalization of multiple dimensions of teachers’ knowledge. In 

this section, I review studies developing a multidimensional framework of teachers’ 

mathematical knowledge and attempting to empirically identify the distinctions among 

hypothesized knowledge dimensions. 

2.1.1 Frameworks distinguishing CK and PCK 

Most researchers, who empirically measured teachers’ mathematical knowledge, 

have refined Shulman’s conceptualization of teachers’ knowledge based on the idea that 

knowledge for teaching is distinguishable according to knowledge domains, such as CK 

and PCK. In other words, these researchers have attempted to measure teachers’ 

professional knowledge assuming conceptual distinctions among knowledge dimensions.  

Among them, the LMT group conceptualized teachers’ mathematical knowledge 

as a multidimensional construct composed of six sub-domains: common content 
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knowledge (CCK− “the mathematical knowledge used in settings other than teaching”, 

Ball et al., 2008, p.399), specialized content knowledge (SCK – “the mathematical 

knowledge that allows teachers to engage in particular teaching tasks”, Hill, Ball, & 

Schilling, 2008, p.377), horizon content knowledge (HCK), knowledge of content and 

student (KCS), knowledge of content and teaching (KCT), and knowledge of content and 

curriculum (KCC) (Ball et al., 2008). Similarly, the TEDS-M3 project conceptualized 

teachers’ knowledge as consisting of three knowledge domains (mathematics content 

knowledge: MCK; mathematics pedagogical content knowledge: MPCK; and general 

pedagogical knowledge: GPK) across three difficulty levels of curriculum (novice, 

intermediate, and advanced; Senk et al, 2012). They further classified the Mathematical 

Content Knowledge (MCK) into three cognitive knowledge dimensions such as knowing, 

applying, and reasoning, and also classified the domain of Mathematics Pedagogical 

Content Knowledge (MPCK) into three dimensions of teaching practices such as 

mathematical curricular knowledge, knowledge of planning for mathematics teaching and 

learning, and enacting mathematics for teaching and learning. Similar to the TEDS-M 

group, Bush and his colleagues at the University of Louisville developed the DTAMS 

(Diagnostic Teacher Assessment in Mathematics and Science) assessment. They 

categorized dimensions of teachers’ mathematical knowledge by the depth of cognitive 

knowledge: memorized knowledge, conceptual knowledge, higher-order thinking 

(problem solving/reasoning), and pedagogical content knowledge (Saderholm et al., 

2010). The Cognitively Activating Instruction, and the Development of Students’ 

Mathematical Literacy (COACTIV) group (Baumert et al., 2010; Krauss et al, 2008) also 
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conceptualized teachers’ knowledge as having two components: Content Knowledge 

(CK) – “a conceptual understanding of the mathematical knowledge taught”– and 

Pedagogical Knowledge (PCK) – “the area of knowledge relating specifically to the main 

activity of teachers.” Within the domain of PCK, they defined three aspects of teachers’ 

knowledge: “the ability to identify multiple solution paths” (tasks); the “ability to 

recognize students’ misconceptions, difficulties, and solution strategies” (student); and 

“knowledge of different representations and explanations of standard mathematics 

problems (instruction)” (Baumert et al., 2010, p. 1). 

2.1.2 Differences among the frameworks 

Even though researchers have generally agreed that teachers’ mathematical 

knowledge is multidimensional in that it is composed of at least two conceptually 

distinguishable dimensions such as CK and PCK, hypothesized construct maps 

representing the organization of subdimensions of knowledge vary considerably. There 

has been ongoing discussion about what characteristics of knowledge need to be used to 

identify sub-dimensions or how those subdimensions are internally organized. Diverse 

hypotheses on the principles used to distinguish subdimensions have generated many 

divergent frameworks. Accordingly, the issue of how to integrate different frameworks to 

have a better understanding of the dimensionality of teachers’ knowledge remains a focus 

of debate. Among the frameworks reviewed in the previous section, three main sources of 

differences, which may cause challenges for an integrated understanding, could be 

identified with respect to the 1) terminology; 2) level of specification; 3) principles in 

organizing knowledge dimensions. Each of these sources of differences is discussed in 

the following paragraphs. 
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First, one of the sources of challenges for integrated understanding is the 

terminology used to define the components of teachers’ mathematical knowledge. 

Consider that according to the LMT group, teachers’ mathematical content knowledge 

that is not pedagogical is subject matter knowledge (SMK); but, in the view of the 

German research group COACTIV (Cognitive Activation in the Mathematics Classroom 

and Professional Competence of Teachers; Krauss et al., 2008), a similar concept is 

named Content Knowledge (CK), and for the project TEDS-M project (Teacher 

Education and Development Study in Mathematics; Tatto et al., 2008) the same concept 

is referred to using the term Mathematical Content Knowledge (MCK). Moreover, 

researchers have different perspectives on the characteristics of sub-dimensions, even 

when sub-dimensions are defined similarly using similar terms. Consider different 

perspectives on subject matter knowledge or content knowledge. While subject matter 

knowledge is typically conceptualized without consideration of the practice of teaching, 

Ball’s group (Ball et al., 2008) introduced the concept of specialized content knowledge 

(SCK) within the domain of subject matter knowledge to emphasize this unique part of 

teachers’ subject matter knowledge that cannot exist independently from the work of 

teaching. In contrast to Ball’s group, other research groups (TEDS-M: Senk et al., 2012; 

COACTIV: Krauss et al., 2008) have merged this specialized content knowledge with 

subject matter knowledge or pedagogical knowledge rather than define it as a stand-alone 

domain.  

Second, there are differences among the frameworks in the level of specification 

used to organize teachers’ knowledge. Regarding the number of dimensions needed to 

represent teachers’ mathematical knowledge, different research groups hypothesize a 
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different number of dimensions even within a dimension of mathematical content 

knowledge. For example, the LMT group conceptualizes SMK as an aggregate of more 

than one knowledge subdomain (including CCK, SCK, and HCK), whereas the 

COACTIV group sees CK as unidimensional. Another example of this is the test used by 

Tchoshanov (2011), who divides knowledge into three kinds of content knowledge such 

as “knowledge of facts and procedures (Type 1 knowledge), knowledge of concepts and 

connections (Type 2 knowledge), and knowledge of models and generalizations (Type 3 

knowledge)” (Tchoshanov, 2011, p. 142). 

Third, different research groups have used different organizing principles, which 

in this study I call organizers (i.e., the principles structuring knowledge dimensions), in 

organizing their hypothesized knowledge dimensions. For example, the LMT group uses 

knowledge domain (e.g., CCK, SCK, etc.) as a main organizer for their framework. In 

doing so, Ball et al.’s (2008) distinctions contribute to unpack the diffuse category of 

general teacher knowledge into domain-specific teacher knowledge (de Jong & Ferguson-

Hessler, 1996). Each dimension (domain) is distinguished from other dimensions by the 

object of knowledge in each domain. A similar approach is taken by TEDS-M (Tatto et 

al., 2008) at their first level of differentiation between mathematics content knowledge 

(MCK) and mathematical pedagogical content knowledge (MPCK). Other groups use 

curriculum levels (e.g., KAT4 project uses school algebra vs. college-level mathematics; 

McCrory et al., 2012), mathematical domain distinctions (DTAMS uses whole numbers 

vs. rational numbers; Saderholm et al., 2010), the level or type of cognitive demand (e.g., 

Tchoshanov, 2011, uses knowledge of facts and procedures vs. knowledge of concepts 
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and connections vs. knowledge of models and generalizations). The classification effort 

continues at lower levels in some of those frameworks, often combining distinctions of 

domain and cognitive demand with what de Jong and Ferguson-Hessler (1996) called 

epistemological distinctions, or distinctions based on the tasks in which knowledge is 

used (e.g., KAT’s distinction among knowledge used in the practices of  trimming, 

bridging, and decompressing, or in TED-S’s distinction of MPCK among knowledge of 

planning for mathematics teaching and learning, and knowledge of enacting mathematics 

for teaching and learning). 

As described, there are several differences among the frameworks used for 

conceptualizing teachers’ mathematical knowledge as multidimensional. A common 

characteristic of the research groups reviewed thus far is that they assume that teachers’ 

mathematical knowledge is something teachers may or may not possess. In contrast to 

these groups, Thompson (2015) focused on “teachers’ mathematical meaning” to refer to 

the possibly tacit mathematical understandings that could be inferred in teachers’ 

handling of the mathematics they teach. He emphasized the advantage of a focus on 

“teachers’ mathematical meaning” over a focus on mathematical knowledge which he 

termed as “declarative knowledge” as he considers that teachers’ mathematical meaning 

is more productive for understanding sources of teachers’ instructional decisions and 

actions (Thompson, 2015, p. 438). Within these meanings, one can see developmental 

distinctions similar to those that have been observed in children’s knowledge. Similar to 

how children develop their mathematical knowledge by constructing different schemes 

on a learning trajectory (Steffe, 2004), teachers may develop their mathematical 
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knowledge for teaching by transforming their content knowledge into the mathematical 

knowledge that is pedagogical (Silverman & Thompson, 2008). 

As those examples demonstrate, different groups of researchers have used a 

variety of organizers to conceptualize their frameworks for mathematics teachers’ 

knowledge. Those organizers are generally chosen to express what each research group 

considers crucial in defining teachers’ knowledge a priori. This hypothesized structure is 

then further operationalized by test items, which are administered to teachers and 

possibly others (e.g., non-teachers for comparison’s sake; Reckase, McCrory, Floden, 

Ferrini-Mundy, & Senk, 2015; Krauss et al., 2008), and the data collected from responses 

to the test items is examined to determine whether the hypothesized structure fits well the 

data or not. If the data fit the hypothesized structure statistically well, this lends 

credibility to the hypothesis. However, that a certain multidimensional framework 

accounts for the structure of teachers’ item responses well with respect to a certain 

purpose (e.g., identifying a mathematical topic in which teachers have difficulty) does not 

necessary mean that the framework is good for another purpose (e.g., identifying what 

knowledge dimension is related to understanding student misconceptions). Again, I 

would like to argue that the existence of diverse frameworks is not problematic by itself, 

but it is problematic if those frameworks are not associated with the use to which they 

may and may not be put. Efforts to validate a dimensionalization of teachers’ knowledge 

need to be understood and applied to an appropriate context according to the purpose of 

the intended use of the framework (Kane, 2013).  
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2.1.3 Dimensionality of secondary school teachers’ mathematical knowledge 

Even though some research groups used curriculum distinctions to organize their 

framework (e.g., the KAT group distinguished the knowledge of college level algebra for 

secondary teachers from their knowledge of high school algebra; McCrory et al., 2012), 

they used the same dimensionality framework for teachers teaching different school 

levels. For example, the LMT group used the same MKT framework (Ball et al., 2008) to 

structure items for elementary and middle school teachers, though the items for two 

teacher groups were different regarding the curricular level of mathematics contents (Hill, 

2007). Likewise, the TEDS-M project used the same conceptual framework to develop 

items, which are different in mathematics contents, for future primary and lower 

secondary teachers (Tatto, 2014, p. 37).  

However, considering the differences among the groups of teachers who teach 

different grade-levels of students, the wisdom of using the same knowledge structures for 

the different teacher groups is not something that should be taken for granted. In 

particular, given that secondary mathematics teachers take more advanced courses in the 

discipline of mathematics than elementary mathematics teachers, teachers’ content 

knowledge may need to be conceptualized differently between two groups. For example, 

what the KAT group calls “college-level mathematics” in the category of high school 

teachers’ algebra content knowledge might be close to “horizon content knowledge”, 

which is distinguished from elementary teachers’ common content knowledge in the 

LMT group’s MKT framework. 

As such, the issue of whether the same structure or the same definitions of sub-

domains of MKT, which is grounded in the analysis of elementary teachers’ work, apply 
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to teacher populations in different grade levels such as secondary or post-secondary gives 

rise to the need for research. Speer, King, and Howell (2015) discussed this concern 

stating, in particular for CCK and SCK, that “…distinctions between CCK and SCK for 

elementary teachers have been recognized and accepted in the mathematics education 

community, but these distinctions may be less compelling and clear at higher levels, as 

few examples have been presented at the secondary and post-secondary levels” (Speer et 

al., 2015, p. 107). Other researchers also have emphasized the need for efforts to examine 

the similarities and differences in teachers’ mathematical knowledge between different 

grade level contexts in which teachers’ mathematical work is called for (Hill, 2007; 

Rowland & Ruthven, 2011).  

The need to take differences among teacher populations into account is also 

important given that the dimensionality of teachers’ mathematical knowledge has been 

generally investigated through the dimensionality of a test designed to measure multiple 

domains of knowledge. According to Reckase’s definition of test dimensionality - “a 

sample-specific characteristic of the data matrix” (Reckase, 2009, p. 194) - , the 

dimensionality of the test is dependent not only on “the dimensions of sensitivity for test 

items,” but also on “the amount of variation that is present in the sample of examinees on 

the constructs that are the target of the test” (Reckase, 2009, p. 201). In other words, even 

when the test items are sensitive enough to capture two distinguishable dimensions of 

CCK and SCK, the secondary teachers’ response data may not show distinction between 

CCK and SCK if the correlation between sample secondary teachers’ CCK and SCK 

knowledge is very high. Given that secondary teachers receive more content preparation 

in mathematics than elementary teachers (Speer et al., 2015), the variance among 
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secondary teachers’ amount of knowledge in mathematics’ content knowledge may be 

less than it is at the elementary level. This possibility of difference in the amount of 

variation between samples of elementary and secondary teachers on each construct 

implies a need for a unique dimensionality hypothesis for each population.  

In short, the dimensionality of mathematical knowledge for teaching for 

elementary school teachers can reasonably be expected to be different from that for high 

school teachers. For example, sets of items designed to measure CCK and SCK 

separately could detect those two dimensions in the sample of elementary population but 

not necessarily in the sample of secondary population, or vice versa. To handle this 

possibility, the present study proposes a framework for the study of dimensions of teacher 

knowledge that eschews knowledge domain distinctions (CCK, SCK, etc.) and instead is 

solely based on aspects of teachers’ work. 

2.1.4 Dimensionality of knowledge in other professions 

Given that a multidimensional view on a construct is useful in that it “provides 

holistic representations of complex phenomena” (Edwards, 2001, p.145), it is worth 

looking at whether and how scholars have attempted to conceptualize the dimensionality 

of knowledge and skills associated with professions other than teaching. Although this 

study focuses on teachers’ professional knowledge used in teaching, it is worth exploring 

how other professional fields conceptualize the dimensionality of knowledge or skills 

needed in doing their professional work. To know how dimensionality has been discussed 

in other professions may help this study enhance its applicability, in that we could draw 

inspiration from the ways in which professions other than teaching have conceptualized 

dimensions of knowledge. With regard to this purpose, I reviewed literature from two 
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professions – nursing and engineering – that have made efforts to establish frameworks 

for the dimensionality of knowledge, competence, and skills. 

In a number of professions, dimensionality of the professional knowledge is 

framed in terms of intrinsic tasks or activities carried out by each professional, or vice 

versa (i.e., dimensionality of the tasks is framed in terms of the dimensionality of the 

types of professional knowledge). For example, Lee (1986) identified dimensions of 

engineering tasks using an exploratory factor analysis on survey items that represent 

different types of requisite job knowledge. Specifically, the task factor reflecting “work 

with hands” was distinguished from the factor reflecting “work with other people”, 

according to the distinction in the required skill/knowledge for the two tasks. The former 

task requires “knowledge of machine shop and model building skills” or “skills to work 

with specific instrument or test machines,” whereas the latter requires “to interact with 

many people” or “to work with others in a team effort” (Lee, 1986, p.129-130). 

Similar to the use of correspondence between a task and required knowledge, the 

knowledge needed for a nursing career is characterized as being composed of four levels 

of knowledge and skills required for doing a specific nursing task. The knowledge and 

skills framework (KSF) for a UK clinical specialist is organized by “dimensions which 

describe different aspects of work” (Royal College of Nursing, 2005, p.2). Similarly, the 

framework for nurses involved in cancer care is defined by the focus of their practice 

(New Zealand Ministry of Health, 2014). For example, each competency dimension 

corresponds to a dimension of cancer care (e.g., competency for disease and treatment-

related care, ability in supportive care). In consonance with this convergence of attention 

to the characteristics of professional tasks as a major distinction in structuring 
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professional knowledge, the knowledge framework of the present study also considers 

professional tasks in looking for a way to understand the dimensionality of teachers’ 

mathematical knowledge. 

Another similarity in frameworks among professionals across professions is that 

the level of knowledge is conceptualized as a scale, whereby the characteristics of 

knowledge a professional has can be ranked according to their performance in 

professional practice. For example, Lee’s (1986) study, examining knowledge attributes 

of U.S. engineers, used multidimensional performance rating scales assessed by the 

engineers’ supervisors to identify distinguishable types of abilities demanded of young 

engineers (Lee, 1986). Similarly, in the UK, each dimension of the National Health 

Service (NHS) staff’s knowledge has four levels, where the higher number represents the 

higher level of knowledge (Figure 2.1). This multidimensional framework delineating 

types of knowledge dimensions and levels of each dimension is adjustable for different 

NHS related roles and at different career levels. For example, some dimensions could be 

dropped for senior level positions, if the dimensions are no longer required knowledge. 

Figure 2.1 is an example framework for clinical nurse specialists. 
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Figure 2.1. Knowledge/Skill framework for clinical nurse specialists  

(Royal College of Nursing, 2005, p.9) 

 

With regard to levels of knowledge or skill, the present study also considers each 

dimension of teachers’ knowledge as a scale where the level of knowledge can be 

assessed. The idea of establishing a framework consisting of core dimensions and 

specific dimensions (such as the NHS KSF framework above) would be worth 

considering when modifying subdimensions appropriately for the specificity of teachers’ 

work (by subject or by grade level). 

2.2 Dimensionality analysis in the studies of teachers’ mathematical knowledge 

In general, the dimensionality of teachers’ knowledge has been investigated 

through examining the dimensionality of item scores. Methods for doing so include 

“identifying the number of dimensions reflected by a test, the meaning of those 

dimensions, and the degree to which the dimensions are associated with each other” (Furr 
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& Bacharach, 2013, p. 72). This section describes the methods that researchers have used 

to identify distinguishable aspects or components of teachers’ mathematical knowledge 

for teaching. As mentioned above in 1.2, identifying the dimensionality of teachers’ 

mathematical knowledge has important implications both theoretically and practically. In 

what follows, various statistical methods such as item factor analysis and bi-factor model 

with scored teachers’ response data will be described with example studies. 

2.2.1 IFA within SEM and (unidimensional) IRT frameworks 

Item factor analysis (hereafter, IFA; factor analysis for categorical data) is the 

most common method used in examining the dimensionality of a test. To examine the 

dimensionality can be understood as identifying the interpretable factors that account for 

the correlations among the set of items (Furr & Bacharach, 2013). By using factor 

analysis (hereafter, FA), researchers “identify sets of items that are relatively strongly 

correlated with each other but weakly correlated with other items” (Furr & Bacharach, 

2013, p. 80). In general, research groups develop each item to reflect one of the 

theoretically hypothesized dimensions in advance and conduct confirmatory factor 

analysis to provide evidence confirming the conjectured structure of the item responses. 

In the teacher knowledge literature, factor analysis has been conducted within the 

structural equation modeling (SEM) or within the item response theory (IRT) 

frameworks. The main difference between IFA within the SEM and IRT frameworks is 

that IFA within SEM uses limited information such as correlation or covariance matrices 

to assess the structure of items, whereas IFA within IRT generally uses full information 

such as the pattern of raw response data (Wirth & Edwards, 2007, p. 66). 
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Regarding the use of factor analysis in the SEM framework, the COACTIV group 

used a confirmatory factor analysis (CFA) with continuous parcel scores, which is 

defined as “an aggregate-level indicator comprised of the sum (or average) of two or 

more items, responses, or behaviors” (Little, Cunningham, & Shahar, 2002, p. 152). In 

the study, the parcel scores were developed for CK and PCK separately, based on the 

hypothesis that CK and PCK are the two distinguishable domains of teachers’ 

mathematical knowledge. A confirmatory factor analysis (CFA) with these parcel scores 

showed good fit statistics (e.g., RMSEA values below 0.05 and CFI and TLI values 

above 0.95), and the researchers concluded that their conjectured two-factor structure of 

teacher knowledge (CK and PCK) fits the teachers’ responses well (Krauss et al, 2008). 

Similarly, the DTAMS group conducted item factor analysis (IFA), using polychoric 

correlations among items (SEM-based), to assess how well their items fit into the 

hypothesized factor model. As a result, the DTAMS group confirmed that all their 

structural models adequately described the sample data, except for the probability and 

statistics test (Saderholm, 2010, p. 185). In addition to the SEM-based IFA, the DTAMS 

group conducted unidimensional IRT (one-factor IFA within the IRT framework) for 

each hypothesized dimension to evaluate the unidimensionality of a set of items and 

assess item quality, such as item difficulty, discrimination, and item misfit (Saderholm et 

al., 2010, p.184). Similarly, the LMT group used unidimensional IRT to scale teacher 

knowledge as a single score and to evaluate the score reliability (Hill, 2007, 2010). 

As such, some research groups evaluated the unidimensionality of a set of items 

reflecting one dimension, and they used subscale scores, each of which was estimated 

from a unidimensional model, to represent the amount of knowledge for one knowledge 
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dimension (Krauss et al., 2008; Baumert et al., 2010). However, separately tested 

unidimensional models do not provide evidence that items across dimensions are 

separable. Again, to empirically confirm a hypothesized structure of a set of items, the 

number of final factors should be the same as the hypothesized number of domains, and 

each domain should consist of the intended items. However, this is very challenging to 

obtain, not only because large sample sizes are needed, but also because it is possible that 

factors (knowledge domains) are highly correlated. For example, it could be more 

difficult to distinguish CCK from SCK than to distinguish SMK from PCK, as CCK and 

SCK are likely to be highly correlated, being both included in SMK. Furthermore, as 

unidimensional IFA forces an item to load on only one dimension, it excludes the 

possibility that an item evokes more than one knowledge domain when solving the item. 

To accommodate the possibility that one item is associated with more than one domain, 

or those domains are correlated to each other, some research groups have applied more 

sophisticated methods, such as bi-factor model, item vector plot, or multidimensional IRT 

(MIRT). 

2.2.2 Bi-factor model 

An alternative to FA is the bi-factor model. If the factors identified among items 

are substantially correlated, allowing the possibility that an item response would 

contribute information about two factors would be a reasonable approach: a general 

factor taking into account the level of performance over all dimensions and a factor 

reflecting a specific domain. The bi-factor model assigns items onto two factors: a 

general factor explaining a common variance across items and a specific factor 

explaining only the variance in a specific category. The main difference between FA and 
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a bi-factor model is that the bi-factor model allows each item to load in two places: one 

for a general factor that explains an overall variance across all items, and the other for a 

specific factor that explains variance within a specific dimension other than a general 

factor. On the other hand, FA or unidimensional IRT allow each item to load only on one 

factor. 

The LMT group (Hill et al., 2004) used a bi-factor model to examine whether 

their MKT items represent one general domain of MKT or multiple distinct domains of 

MKT (Hill et al, 2004). The items used in the analysis were designed to reflect the 

domain of SMK (consisting of CCK and SCK) and KCS, across two mathematics topics 

(number concepts and operations). They found evidence of multidimensionality in 

measures using bi-factor analysis. Their bi-factor model supported the existence of SCK 

as distinguishable from CCK, and SCK items were better explained by a specific factor. 

This specific factor excludes the influence of the general factor, which reflects the 

influence of common factor across all items.  

2.2.3 Multidimensional IRT 

One variation of item response theory (IRT) that allows for multidimensionality 

within a construct is called multi-dimensional IRT (MIRT). The need for a model 

allowing more than one dimension in determining the level of a construct has led 

researchers to pay attention to a multidimensional IRT model (MIRT) (Ayala, 2009). 

MIRT allows an item to reflect more than one construct and domain to associate, so it can 

represent the level of the teacher’s knowledge as a vector, each of whose coordinates 

represent the location of the item in one knowledge dimension, in a multidimensional 



 45 

space. For example, an item could actually require both CCK and SCK. In this case, 

MIRT could be used to simultaneously measure both domains from the item. 

In MIRT, items that have item vectors pointing in a similar direction (i.e., these 

items are composed with similar kinds of knowledge) are clustered as one-dimensional 

(Reckase, 2009). In this way, MIRT can detect item clusters that cannot be detected by 

unidimensional IFA or IRT by using more comprehensive item characteristic 

information. Among the research groups studying teacher knowledge, the TEDS-M group 

estimated teachers’ knowledge using MIRT. They used both unidimensional IRT (Figure 

2.2.a) and two MIRT approaches (Figure 2.2.b & 2.2.c). Their unidimensional IRT model 

treated teachers’ knowledge as a single construct combining Mathematics Content 

Knowledge (MCK) and Mathematics Pedagogical Knowledge (MPCK). In contrast to 

this unidimensional IRT model, multidimensional models allow a correlation between 

MCK and MPCK. One of TEDS-M’s MIRT models treated MCK or MPCK as a 

separable unidimensional construct, but the model assumed the two domains are 

correlated (Figure 2.2b). The result of fitting this model supported their assumption that a 

correlation between the two domains exists (MCK and MPCK), but the domains are 

separable (Blömeke et al., 2014). In the second MIRT (Figure 2.2.c), the researchers 

relaxed the assumption that one item measures only one construct; instead, they allowed 

an item’s response to load not only on MCK but also on MPCK. The two-

multidimensional IRT models showed a significantly better fit than a unidimensional 

model, which supports a claim on the multidimensional nature of teachers’ mathematical 

knowledge.  
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Figure 2.2. Dimensional models (TEDS-M) 

a. IRT (left) b. Between-item MIRT (middle) c. Within-item MIRT (right)  

(Blömeke et al., 2014, p. 485-487) 

2.2.4 Item vector plot 

Another method for examining what constructs an item response reflects is the 

item vector plot. In Schilling’s (2007) study that validates the hypothesized structure of 

the MKT instrument, Schilling used item vector plots, a graphical technique used for 

examining the multiple features of MIRT. The plot was drawn in two-dimensional space, 

where each axis represents the scale of item difficulty with respect to one of two factors 

(Figure 2.3). An item vector plot can be considered as a scatterplot of two-dimensional 

item difficulties with respect to an orthogonal (independent) factor analysis solution with 

two factors (Reckase, 2009). As shown in Figure 2.3, the SCK items varied widely in 

their orientation, whereas all of the CCK items were tightly clustered in a narrow sector 

(Schilling, 2007, p. 104). This indicates that CCK items have similar direction with 

respect to two factors, whereas SCK items are not. This suggests that SCK items 

contributed much to the multidimensionality within content knowledge for teaching. This 

multidimensionality of SCK may warrant an inquiry into the potential factors that can 
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explain variation within a domain of SMK (subject matter knowledge), given that all the 

items involved number concepts and operations.  

 

 
Figure 2.3.  CCK/SCK item vectors in MIRT (Schilling, 2007, p. 103) 

 

2.2.5 Diagnostic Classification Models 

Diagnostic Classification Models (hereafter, DCMs) are also models that may be 

used to estimate multiple dimensions of a construct using multiple item responses. 

However, in contrast to the above models that consider the knowledge construct as 

continuous, DCMs consider the latent construct (here, teachers’ knowledge) being 

measured as binary: 0 when a respondent (here, teacher) has not achieved the mastery 

level of skill/knowledge; 1 when a respondent has achieved the mastery level of 

skill/knowledge. Accordingly, respondents are classified by a list of binary numbers 

specifying knowledge attributes that individual respondents have mastered or not. The 

term attribute refers to “a latent characteristic of respondents”, and a list of binary 

numbers is an attribute profile that refers to “the particular pattern of values on the latent 
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attribute variables that is assigned to a respondent” (Rupp, Templin, & Henson, 2010, p. 

316). In comparison with IRT and SEM framework, one knowledge attribute in DCM 

corresponds to one knowledge dimension in those other models and a list of 1s and 0s in 

DCM corresponds to a list of real-numbered scores representing the amounts of 

knowledge on multiple dimensions. 

As such, DCMs simplify the level of knowledge for each attribute/dimension into 

two categories (e.g., masters and non-masters) based on statistically estimated cut-scores. 

By setting those cut-scores to maximize the reliability of classifying respondents, DCMs 

provide a relatively higher reliability for their attribute estimates with fewer items than 

other models (e.g., MIRT or SEM) that locate respondents on continuous scales. 

Classifying respondents based on their continuous scores might also be possible in MIRT 

or SEM frameworks by setting cut-scores. However, the cut-scores may need to be 

determined by human judges, which might create multiple sources of error in estimates. 

This advantage of DCMs in classifying respondents is referred to as one of the most 

important characteristics of DCMs that distinguishes them from other multidimensional 

models, such as MIRT or SEM (Rupp et al., 2010).  

In the context of assessing teacher knowledge, the attribute profile would provide 

information about which knowledge domains individual teachers have mastered or have 

not mastered. However, in spite of the advantage of DCMs described above, the 

application of DCM models to study teachers’ knowledge is only emerging. I only found 

one study examining middle grade teachers’ understanding of fraction arithmetic 

(Bradshaw, Izsák, Templin, & Jacobson, 2014). The study developed an instrument 

measuring four attributes of teachers’ understanding of rational numbers and analyzed the 
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item responses using the log-linear cognitive diagnosis model (a general form of DCM 

models). The authors illustrated how this DCM model can be used to detect distinct 

patterns of attribute mastery and how the model can provide detailed feedback with 

respect to multiple facets of hypothesized knowledge subdomain.  

Motivated by the advantages of DCMs and the process of applying DCMs 

illustrated in Bradshaw et al.’s study (2014), I decided to apply the log-linear cognitive 

classification (LCDM) model (Henson, Templin, & Willse, 2009) in this dissertation 

study. Specifically, I applied the LCDM model, a general measurement model within 

DCMs, to examine groups of teachers classified by their knowledge levels on multiple 

knowledge attributes. Moreover, considering the small number of items (minimum three 

items) for some of the hypothesized knowledge dimensions, the LCDM model promises 

to be an effective way of estimating teachers’ knowledge attributes with acceptable 

reliabilities. The specific models used in this study will be described in more detail in 

Chapter 5. 

2.3 Chapter summary 

In this chapter, I introduce the literature about conceptualizations of teachers’ 

mathematical knowledge. In this introduction, I compared and contrasted how different 

research groups (in particular, those who have developed tests to measure teachers’ 

knowledge for large-scale studies) have conceptualized the dimensionality of teachers’ 

mathematical knowledge for teaching. I also introduce measurement models that have 

been used for investigating the dimensionality of teachers’ mathematical knowledge.  

As discussed in this chapter, there might not be one best dimensionality framework or 

one best methodology that can reveal the true structure of teachers’ knowledge. In other 



 50 

words, each framework has its own advantages with respect to its purpose. However, if 

the purpose is to distinguish multiple aspects of teachers’ mathematical knowledge, 

which are specific to their professional work, we may need to consider an alternative 

framework that allows us to do so. This alternative framework needs to be devised not 

only based on theoretical but also based on methodological considerations, in particular, 

if the conceptualized framework is to be operationalized by test items. 

2.4 Research Questions 

The knowledge framework that I suggest for examining teachers’ distinguishable 

aspects of mathematical knowledge is described by making use of two organizers: tasks 

of teaching and instructional situations. In terms of these two organizers, the guiding 

research questions posed in Section 1.3 can be articulated as follows. 

 

Given a nationally representative sample of in-service U.S. high school teachers, can we 

make valid inferences about the dimensionality of teachers’ mathematical knowledge 

based on the responses on the items measuring the knowledge? Here, the knowledge is 

specifically what is needed to teach geometry and algebra 1 in the context of U.S. 

secondary school. 

 

The research question in this dissertation consists of two kinds: conceptual plausibility 

and methodological feasibility 
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1. Conceptually, how well do the organizers – task of teaching and instructional 

situation – capture multiple aspects of teachers’ mathematical knowledge used in 

the work of teaching? 

2. Methodologically, are the knowledge scales estimated by items measuring 

teachers’ mathematical knowledge used in either or both different tasks of 

teaching and different instructional situations statistically distinguishable? 

 

In an effort to better understand the results from the methodological questions 

(identified differences and similarities among the hypothesized dimensions), the 

relationships between the dimensions and teachers’ background information was 

further investigated. Thus, the subsequent research question is that 

 

3. Are there differences among the hypothesized dimensions of teachers’ 

mathematical knowledge for teaching geometry and algebra 1 in terms of their 

relationships with teachers’ self-reported background (number of mathematics 

courses taken in college, number of geometry  (or algebra 1) teaching years, 

number of non-geometry (or non-algebra) teaching years)? 

 

 

The inquiry processes conducted to investigate these research questions and related 

concepts is described in the following chapters. 
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Proposed Item Blueprint 

To conceptualize and operationalize dimensions of teachers’ mathematical 

knowledge, this study suggests a framework organized by tasks teachers do and 

instructional situations where those tasks are employed. The purpose of the framework is 

to structure test items so that they can measure distinguishable (but related) dimensions 

of teachers’ mathematical knowledge. The developed measures are expected to allow 

obtaining a fine-grained description of teachers’ mathematical knowledge used in the 

work of teaching. 

Given that the focus of this dissertation is on the dimensionality of mathematical 

knowledge for teaching secondary mathematics, this study limits the population to U.S. 

high school in-service teachers and considers the teaching context of U.S. high school 

mathematics courses (geometry and algebra 1). The focus on this narrowed teacher 

population should highlight the specificity of knowledge used in particular courses of 

mathematical study. Moreover, as discussed in 2.1.3, this teacher population (high school 

teachers) differs from the one used to develop the MKT framework (elementary teachers) 

and this difference also warrants the consideration of an alternative knowledge 

framework.  

3.1 The foundations of the hypothesis on the framework 

The focal construct of the present study is teachers’ mathematical knowledge for 

teaching high school geometry and algebra 1. However, broad definitions of constructs 
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are generally not sufficient to operationalize multiple dimensions of those constructs. 

Given that ambiguous definitions of constructs of interest have sometimes resulted in 

divergent measures, which in turn have led to scattered and inconsistent understandings, 

it is essential to provide a clear theoretical conceptualization and operational definition of 

the construct this study intends to measure. 

The theoretical conceptualization of the knowledge organization suggested in this 

chapter builds on preliminary studies investigating teachers’ mathematical knowledge for 

teaching high school geometry (Herbst & Kosko, 2014; Ko & Herbst, 2017; Ko & 

Herbst, 2019). One of the studies (Ko & Herbst, 2019) operationalized the construct of 

SMK-G (subject matter knowledge for teaching geometry) and showed evidence 

supporting the argument that teachers’ SMK-G is distinguishable depending on the tasks 

of teaching where mathematical work is required. Here, the tasks of teaching refer to the 

“professionally recognizable components” of the work of teaching (Hoover et al., 2014, 

p. 8) that teachers routinely do in the course of their daily work (Gitomer, Phelps, Weren, 

Howell, & Croft, 2015, p. 501). 

Building on this evidence, a second preliminary study (Ko & Herbst, 2017) 

investigated the dimensionality of an MKT-G instrument consisting of items designed to 

measure not only SMK-G, but also pedagogical content knowledge for teaching geometry 

(PCK-G). The items of PCK-G were designed to attend to what Ball and colleagues 

(2008) had called KCS or KCT. The underlying assumption was that there would be 

more than one distinguishable item cluster, where each cluster could be characterized by 

item features reflecting the type of task of teaching and instructional situation. The 

consideration of instructional situation in the structure of teachers’ mathematical 
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knowledge is based on a study by Herbst & Kosko (2014).  In that study, teachers’ 

performance on the items (designed to measure teachers’ MKT-G) were observed to be 

dependent on whether the items were set in the context of a recurrent instructional 

situation. Specifically, there were differences in teachers’ performance between the items 

tapping into knowledge needed to manage a customary instructional situation and the 

items tapping into knowledge needed to manage students’ work on a task that was novel 

(not customary).  

Observations on these previous results provided the foundational hypothesis of 

the framework used in this study, namely that task of teaching and instructional situation 

are two main knowledge organizers that can be used to create an instrument that 

represents the knowledge needed by high school mathematics teachers to teach their 

courses. In this present study, I do not intend to cluster items in terms of MKT domains 

(e.g., CCK, SCK, KCS, KCT). Rather, I propose to define each dimension of the 

knowledge construct by using the product of simultaneous consideration of dimensions 

from two organizers (task of teaching and instructional situation) to identify 

distinguishable dimensions of teachers’ knowledge. By task of teaching I mean a 

mathematical but general (that is, not specific to particular mathematical content) 

description of what the teacher is doing: creating problems for students to solve, 

observing students’ work on problems, responding to students’ work on problems, 

explaining new ideas, etc. By instructional situation (Herbst, 2006) I refer to the types of 

mathematical work that students do in particular courses of study: In algebra 1, these 

include solving, graphing, simplifying, calculating; in geometry, these include 

constructing, doing proofs, calculating, exploring figures (see Herbst et al., 2010). The 
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two concepts, task of teaching and instructional situation, are described in greater detail 

in 3.3. 

3.2 Operational definition of the knowledge construct 

In addition to the conceptualizing the construct of interest, it is necessary to 

provide an operational definition, clarifying how the unobservable theoretical construct 

will be measured (Furr & Bacharach, 2013, p. 5). The main construct of this study is 

operationally defined as the pattern in teachers’ responses on multiple-choice items, 

which are represented as numbers (binary for multiple-choice items and ordinal for 

testlet5 items). The theoretical and operational definitions of constructs also necessitate an 

articulation of the context where those constructs are present (Furr, 2011, p.12). The 

context here is instruction in geometry and algebra 1, and the items used in this are 

presented in written-scenarios of instruction in those courses of studies. For example, a 

situation where students work on a task of making conjectures from a given geometric 

figure is hypothesized to be different from a situation where students work on doing a 

proof for a statement provided by the teacher. 

Regarding the need of a description of the similarities and differences among 

dimensions when clarifying a construct, this study hypothesizes high correlations among 

different items if those items belong to the same dimension with respect to one of the 

organizers considered. For example, a significant correlation might exist between an item 

focusing on the knowledge needed for evaluating student work in a situation of 

calculation in geometric calculation and an item targeting the knowledge needed for 

choosing the givens for a problem in the same situation of calculation in geometric 

                                                 
5A testlet (Wainer & Kiely, 1987) is defined as an aggregation of items that are based on a single stimulus 
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calculation, because both items are related to the same instructional situation. Yet, these 

dimensions are conjectured to be distinct inasmuch as the tasks of teaching that call for 

the knowledge differ. In other words, the dimensions representing different tasks of 

teaching or instructional situations are hypothesized to be less correlated with each other 

than the dimensions of the same task of teaching or instructional situation. 

3.3 The two organizers and the conceptual rationale of the blueprint 

Keeping in mind these theoretical and operational articulations of teachers’ 

mathematical knowledge and the contexts where the knowledge is used, this study 

suggests that teachers’ mathematical knowledge for teaching is organized around an 

integrated knowledge trait that can be defined in terms of the types of teaching tasks (e.g., 

understanding student mathematical work) and instructional situations (e.g., doing a 

proof in a geometry class). This perspective is different from that of the LMT group’s 

MKT instrument, which categorized items by pairing content areas (e.g., number 

concepts and operations, patterns, functions, and algebra) and knowledge domains (e.g., 

CCK, SCK, KCS) (Hill, Schilling, & Ball, 2004; Hill, 2007). The notion of task of 

teaching is also present in the LMT group’s item development. Several tasks of teaching 

may be used to create items classified within a single MKT domain (e.g., CCK, SCK, 

etc.) (Table 3.1). But the LMT group does not conceptualize tasks of teaching as an 

organizer of dimensionality in MKT.  

The present study, however, suggests a knowledge map where the type of task of 

teaching is one organizer that undergirds divisions of the construct ( 

Table 3.2). I expect that this suggested framework organized by two components (task of 

teaching and instructional situation) simultaneously would allow us to capture multiple 
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distinguishable aspects of knowledge specific to teaching secondary mathematics. This 

proposed way to organize teachers’ mathematical knowledge is also warranted by the 

descriptive purpose of this study. In other words, if the purpose is to describe the 

knowledge used in the work of teaching, it would be more reasonable to have a 

framework that distinguishes knowledge dimensions by the natural divisions in the work 

of teaching than by the object of the knowledge (i.e., knowledge about student 

misconception). 

The distinction between my proposed framework and a knowledge domain 

framework (e.g., MKT) can also be understood in the context of de Jong and Ferguson-

Hessler (1996)’s knowledge types that distinguishes situational knowledge and 

conceptual knowledge. Their “situational knowledge”, which refers to the knowledge of 

problem situations, may correspond to the knowledge dimensions generated by my 

suggested framework. On the other hand, their “conceptual knowledge”, which refers to 

the static knowledge about facts, concepts, and principles, may correspond to the 

knowledge domains classified by domain-based knowledge framework that specifies an 

object of the knowledge (e.g., knowledge about student misconception). 

In short, the proposed way that organizes the teachers’ mathematical knowledge 

by tasks of teaching and instructional situation is conceptually plausible regarding the 

purpose of the measures. Specifically, if the purpose of using measures is to describe the 

dimensionality of teachers’ knowledge used in the work of teaching, the knowledge 

framework should be embedded in the characteristics of the work of teaching 

mathematics rather than in the concepts hypothesized to be required for the work of 
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teaching mathematics. In the following sections, I further provide a justification for each 

of the suggested organizers in terms of empirical and theoretical background. 

Table 3.1 LMT group's MKT framework 

Knowledge Type 

CCK:  

Common 

Content 

Knowledge 

(in doing 

Task A, B, or 

C, etc.) 

SCK: 

Specialized 

Content 

Knowledge 

(in doing 

Task A, B, 

or C, etc.) 

KCS: 

Knowledge 

of content 

and student 

(in doing 

Task A, C, or 

D, etc.) 

KCT: 

Knowledge 

of content 

and teaching 

(in doing 

Task A, B, or 

C, etc.) 

KCC: 

Knowledge of 

content and 

curriculum 

(in doing 

Task A, B, or 

C, etc.) 

 

Table 3.2 Framework proposed in this study 

  Task of Teaching 

  Task A, e.g., 

Understanding 

students’ 

work (USW) 

Task B, e.g., 

Choosing the 

givens for a 

problem (CGP) 

 Task F, e.g., 

Explaining a 

mathematical 

concept 

 

In
st

ru
ct

io
n

a
l 

si
tu

a
ti

o
n

 

Instructional 

Situation A, 

e.g., 

Geometric 

calculation 

(CG) 

Knowledge 

for doing A 

(USW) in a 

situation A 

(CG) 

Knowledge for 

doing B in a 

situation A 

 Knowledge 

for doing F in 

a situation A 

 

Instructional 

Situation B, 

e.g., Doing 

proofs (DP) 

Knowledge 

for doing A in 

a situation B  

Knowledge for 

doing B in a 

situation B 

 Knowledge 

for doing F in 

a situation B 

 

      

Instructional 

Situation F, 

e.g., 

Exploring a 

figure (EF) 

Knowledge 

for doing A in 

a situation F 

Knowledge for 

doing C in a 

situation F 

 Knowledge 

for doing F in 

a situation F 

 

      

• • • • • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • • • • 

• • • 
• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 
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3.3.1 Organizer One: Task of Teaching  

By the definition of mathematical knowledge for teaching, a crucial feature that 

makes it professional is its specific use in the work of teaching. Thus, it is reasonable to 

propose that an analysis of this work could serve to unpack the knowledge. Accordingly, 

I conceptualize the dimensionality of teachers’ knowledge based on an operational 

decomposition of the work of teaching based on what specific work teachers do. These 

components of the work have been referred to as “tasks” and the descriptions of these 

tasks and the knowledge associated within them could be described via “task analysis” 

(Jonassen, Tessmer, & Hannum, 1999; Glaser & Bassok,1989). In the following, the 

concept of “task analysis” is described in general; then, its potential role in understanding 

teachers’ mathematical knowledge is discussed in more detail. 

3.3.1.1 General description of task analysis 

The field of task analysis has been developed within the area of instructional 

design, where tasks referred to the work the learner did. In this dissertation, I apply the 

concept to what the teacher does. Jonassen et al. (1999) defined “task analysis for 

instructional design” as the process of analyzing and articulating the kind of learning 

outcomes that the educator expects from the learners (i.e., persons who perform the 

tasks). Given that teachers are the persons who perform the tasks, analyzing tasks of 

teaching includes articulating expected teachers’ performance within each task. While 

this articulation could be used for preparing teachers, this is not a focus of the present 

work. Rather, the notion of task analysis is used to describe the work in which teachers 

might be making use of mathematical knowledge. Jonassen et al (1989) described 
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(cognitive) task analysis as including activity analysis, learning analysis, job/procedural 

analysis, and subject matter content analysis. Given that cognitive task analysis focuses 

more on the underlying knowledge associated with task performance and other domains 

of task analysis focus more on the behaviors of task performance, it seems reasonable for 

the purpose of this study to specify task analysis as “cognitive task analysis.” In addition, 

as my objective is to investigate the multiple dimensions of knowledge associated with 

multiple components of the work of teaching, I particularly focus on two of the functions 

of task analysis introduced by Jonassen et al. (1989). The two functions are determining 

1) “the operational components of jobs, skills, learning goals or objectives, that is, to 

describe what task performers do, how they perform a task or apply a skill and how they 

think before, during, and after learning” and 2) “how to construct performance 

assessments and evaluation.” 

In this study, the first function of describing the operational components can be 

considered as describing tasks of teaching, and the second function of constructing 

assessments can be considered as constructing assessments measuring teachers’ 

mathematical knowledge for teaching high school mathematics. How the function of task 

analysis has been used in the studies focusing on the work of teaching is discussed in the 

next section.  

3.3.1.2 Task analysis in the literature of mathematics teaching 

The work of teaching has been conceptualized as being represented by multiple 

tasks of teaching. For example, Hoover et al. (2014) describe a task of teaching as “a 

decomposition of the work of teaching into professionally recognizable components” (p. 

8). Similarly, Ball and Forzani (2009) define the work of teaching as “core tasks that 
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teachers must execute to help pupils learn” (p. 497), which can be identified through an 

analysis of teachers’ work happening both inside and outside the classroom. The process 

of identifying these tasks, (i.e., task analysis) has generally been undertaken to inform 

teacher education curricula (Grossman & McDonald, 2008; Ball & Forzani, 2009; 

Haertel, 1991; Ball, Sleep, Boerst, & Bass, 2009). For example, Ball and Forzani (2009) 

argued that teaching practice needs to be unpacked so that the core tasks can form the 

basis of the content of a professional curriculum. Similarly, Grossman and McDonald 

(2008) emphasized the need of a framework for parsing teaching practices so that a 

curriculum for professional education can focus on core practices. 

A variety of methods and criteria have been used to identify these core tasks or 

practices. Regarding methods, some studies used previous studies or experts’ views on 

the category of tasks (Reynolds, 1992), whereas some other studies mainly identified 

tasks through classroom observations (Ball & Bass, 2003b; Ball et al., 2008). Across 

different studies, some differences could be identified regarding the list of tasks of 

teaching. One of the differences is the range of tasks. For example, some studies 

identified tasks which are distinctively mathematical (e.g., “finding an example to make a 

specific mathematical point;” Ball et al., 2008, p. 400), whereas some other studies 

included not only mathematical tasks of teaching, but also some institution-centered acts 

(e.g., attending teachers’ meetings; Cooney, Davis, & Henderson, 1983, p. 10). Another 

difference is seen in the studies that conceptualized tasks of teaching by a time frame 

such as “preactive” tasks (i.e., tasks for planning a lesson; e.g., comprehend content and 

materials), “interactive” tasks (i.e., tasks done in the classroom; e.g., implement and 

adjust plans during instruction), and “postactive” tasks (i.e., tasks of reflecting a lesson; 
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e.g., seek professional development) (Reynolds, 1992). But other studies ignore such 

different time frames and instead focus on tasks within lessons (Ball & Bass, 2003b). 

Some others have described the work of teaching in terms of its purposes. For example, 

the Connecticut Competency Instrument (CCI), which was developed to assess beginning 

teachers’ lessons, was based on a framework that included ten tasks of teaching 

categorized into three categories according to their purposes, such as classroom 

management, instruction, and assessment (Haertel, 1991).  

Another main difference among frameworks is the degree of specification in task 

description. For example, Ball et al. (2008) described tasks that are specifically 

mathematical, such as adapting the mathematical content of textbooks. Similarly, Etkina 

et al. (2018), who conceptualized physics teachers’ content knowledge for teaching 

energy, used physics-specific tasks of teaching, e.g., “anticipating student thinking 

around science ideas” (Etkina et al., 2018, p.010127-3). In contrast, Haertel (1991) 

described tasks more generally, such as creating a structure for learning. The tasks related 

to managing the classroom environment, such as “engaging students in activities of the 

lesson” (Haertel, 1991, p.21), tend to be described more generally than the tasks teachers 

do with the subject content, such as “making and explaining connections among 

mathematical ideas” (Ferrini-Mundy & Findell, 2010, p. 34). 

While there is a lack of consensus on the core tasks, there is some agreement on 

the criteria that researchers have used to identify them. First, most tasks identified across 

studies are those that teachers routinely or frequently do to teach mathematics. For 

example, Ball et al. (2008) listed 16 mathematical tasks of teaching, each of which is 

“something teachers routinely do” (Ball et al., 2008, p. 400). Similarly, Ball et al. (2009) 
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employed the criterion “is done frequently when teaching mathematics” to identify 

practices essential for beginning mathematics teachers (Ball et al., 2009, p. 461). Kazemi, 

Lampert, and Ghousseini (2007) also used a set of routines of practice in mathematics 

teaching to decompose the work so that novice teachers can learn how to do it. 

Second, all the lists of core tasks include tasks associated with teachers’ 

interaction with students. Some examples are “engaging students in activities of the 

lesson” (Haertel, 199, p. 21) , “evaluate student learning” (Reynolds, 1992, p.4), “respond 

productively to students’ mathematical questions and curiosities” (Ball & Bass, 2003b, p. 

11), “finding the logic in someone else’s (students) argument or the meaning in someone 

else’s representation” (Ferrini-Mundy and Findell, 2010, p. 34), “student-centered acts” 

(Cooney, Davis, & Henderson, 1983, p. 11), and “stimulating and managing classroom 

discourse” (NCTM, 1991, p.5). In terms of the time frame, most tasks associated with the 

interactions with students are expected to be performed during a lesson. Considering that 

teachers need to do mathematical work not only during the class (interactive task), but 

also before the class (preactive task), this present study use both an interactive task 

(namely, understanding students’ work) and a preactive task (namely, choosing the 

givens for a problem for students) in operationalizing teachers’ knowledge in doing tasks 

of teaching. 

Among the various criteria that researchers have used to define tasks of teaching, 

I particularly focus on tasks that are distinctively mathematical. Also, I consider the 

frequency with which a task is done as possibly related to mathematical knowledge in 

that the frequency of use of mathematical knowledge for doing the task may matter in 

how well the mathematics is known. My hypothesis on the effects of those multiple 
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characteristics of tasks of teaching on the organization of teachers’ mathematical 

knowledge and the potential benefits of organizing teachers’ knowledge by tasks of 

teaching are discussed in the next section. 

3.3.1.3 The role of task of teaching in the knowledge structure 

In addition to the theoretical rationale, the organization scheme of teachers’ 

knowledge by task of teaching can be warranted on account of previous empirical results 

demonstrating a difference in teachers’ knowledge due to a difference among tasks. 

Regarding the previous studies, in a study investigating the structure of MKT items, 

Schilling (2007) suggested a factor other than subject matter that could explain the 

variation within a dimension of SCK, and he alluded to the task of teaching as a potential 

factor organizing items within a mathematics content area. In addition, the conjecture that 

teachers’ knowledge would differ depending on the tasks of teaching was supported by 

differentiated effects of experience teaching geometry on teachers’ level of knowledge 

between two different tasks of teaching geometry (Ko & Herbst, under review). 

Specifically, teachers’ experience teaching geometry showed greater effect on their 

knowledge for more frequently encountered tasks (namely, understanding students’ 

work) than for the tasks encountered less frequently (namely, creating givens of a 

problem). 

 The organization scheme of teachers’ knowledge by tasks of teaching also has 

potential methodological benefits. To organize teachers’ knowledge around types of 

teaching tasks will provide a basic structure applicable to other subject areas and grade 

levels (Phelps et al., 2014), given that many tasks of teaching are common across subject 

areas and grade levels. Meanwhile, this basic structure could provide a foundation in 
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which a specificity of tasks of teaching for a specific subject area to a grade level can be 

better elaborated and compared to other areas under the common understanding about the 

basic structure. Consequently, the blueprint for an instrument could be more conveniently 

adaptable for different grade levels where the characteristics of tasks of teaching are 

different or when a new teaching task is identified (Hill, 2016).  

 Lastly, as a task-focused knowledge structure directly relates teachers’ 

mathematical knowledge to teaching practice, more practical feedback that can be readily 

applicable to the actual teaching practice could be provided for teachers under task-

focused knowledge framework. For example, Hill (2016) emphasized the advantage of 

the task-oriented map in that it would enable the teacher knowledge measure to better 

approximate the actual practices that teachers are expected to master. (Hill, 2016, p. 5). 

 In sum, in accordance with these benefits, this study proposes organizing 

teachers’ mathematical knowledge in terms of tasks of teaching. Specifically, this study 

asks: if teachers are knowledgeable in one task of teaching for a situation, how likely is it 

that they would be knowledgeable in another task of teaching for the same situation? This 

question examines teachers’ competence in the knowledge used for different tasks of 

teaching in the same instructional situation. The specific categories of task of teaching 

operationalized in this study are defined in 4.3.2. In addition to the task of teaching, this 

study proposes one more criterion organizing dimensions and this additional organizer is 

instructional situation. In other words, this study examines the possibility of organizing 

teachers’ mathematical knowledge with two organizers, task of teaching and instructional 

situation, simultaneously. The concept of instructional situation is described in the next 

section.  
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3.3.2 Organizer Two: Instructional Situation 

In addition to task of teaching, this study introduces instructional situation as 

another organizer structuring the variation in teachers’ mathematical knowledge for 

teaching in addition to task of teaching. Herbst (2006) defines “instructional situation” as 

“any one of the customary ways in which classroom actions are framed into units of 

[mathematical] work so as to be traded in for (or accounted to) claims over the 

knowledge at stake (and, reciprocally, any one of the customary ways in which the 

teaching or learning of objects of knowledge is deployed as classroom [mathematical] 

work)” (Herbst, 2006, p. 316, square-bracketed text added for clarification). In line with 

this, different instances of mathematical work framed by the same instructional situation 

(e.g., different proof problems) are regulated by the same norms (i.e., the same 

expectations of who is to do what and when; e.g., problems are likely to include a labeled 

diagram). Instances of student work that are framed by the same instructional situation 

are likely to be similar to each other in terms of “what mathematical elements they 

contain, what actions they call forth from the teacher and students, and what their 

completion is evidence of” (Aaron & Herbst, 2015, p. 4). Also, instances of work framed 

under different instructional situations (e.g., a proof problem and a geometric calculation 

problem) respond to different norms regarding the actions students and teachers are 

expected to do (e.g., while the first case is likely to include a labeled diagram, the second 

is less likely to do so)   

 In terms of operationalization, this study conjectures that the degree of 

relationship among items measuring teachers’ knowledge can be explained by how likely 

the student work represented in those items are framed by the same instructional 
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situation. I speak of the likelihood that an instance of student work be framed by an 

instructional situation because the specific piece of work may abide by some but maybe 

not all of the norms of an instructional situation (for example, while a norm of doing 

proofs is that the teacher provides a labeled diagram, it is possible that a teacher might 

have their students work on a proof problem whose diagram was given without labels). 

The conjecture then says that, the likelihood is high that a strong correlation will exist 

among items measuring teacher knowledge about teacher’s management of student work 

in the same instructional situation. In contrast, a weak correlation will exist among items 

that call the teacher to manage novel student mathematical work which is less likely to be 

framed by any instructional situation. Moreover, those items will be less likely correlated 

with the items framed in customary instructional situations. These hypothesized 

relationships among items with respect to different instructional situations hold within 

and across Task of Teaching (hereafter, ToT). Therefore, the likelihood of being framed 

as one or another situation (or none) is independent of ToT.  

 Instructional situations group sets of similar instances of student work. Figure 3.1 

conceptualizes this relationship between instances of student work and instructional 

situations proposed in this study. In this figure, the black dots represent instances of 

student work; they may be situated (framed) in one of the instructional situations 

(represented by big circles) or otherwise be completely novel student work, outside of 

situations (e.g., Dot 1). The two dots inside Situation 1 would be instances of student 

work with the greatest likelihood of being framed by Situation 1, while dots that are 

outside Situation 1 would have a smaller likelihood. The dots outside any of the 
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Situations represent novel (student) tasks for which the probability is low that they are 

framed under any instructional situation.  

With this conception of instructional situation in mind, this study asks: if teachers 

are knowledgeable in a task of teaching for one situation, how likely is it that they would 

be knowledgeable in that same task of teaching for another situation? This question is 

central to my study aiming to assess teachers’ competence in the knowledge needed for 

the task of teaching in different instructional situations. 

 

Figure 3.1 The relationship between student task and instructional situation 

  

The hypothesis that teachers’ knowledge in a task of teaching for one situation is 

different from that in the same task of teaching for another situation was built from an 

earlier study of MKT-G (Herbst & Kosko, 2014). Importantly, that study found that more 

experienced geometry teachers did better than less experienced teachers in some SCK 

items contextualized in mathematical work framed by an instructional situation common 

in the geometry course (e.g., calculating a measure), whereas there was no difference 

between more experienced teachers and less-experienced teachers for items that involved 
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mathematical work that was novel for students and was not framed by an instructional 

situation (e.g., generating a construction method for a figure). From this finding, the 

authors conjectured that the mathematical work a teacher needs to do to support 

instructional situations that frame familiar work in the geometry course of studies is 

different from the mathematical work they might need to do to support students’ 

involvement in novel geometry tasks. 

 As different instructional situations frame the way students undertake 

mathematical work differently, teachers’ mathematical knowledge called for in the same 

task of teaching (e.g., evaluating students’ work) may differ depending on the 

instructional situation. For example, in an instance of the instructional situation of 

calculation in geometry, the teacher task of evaluating student work may include 

verifying whether students used the known properties of a figure, set up the equations 

matched to those properties, and found an unknown measure of a single geometric object 

(Herbst, 2010). In an instance of another instructional situation, such as the situation of 

doing proofs, evaluating student work may include verifying whether students associated 

each statement with a correct reason and showed all necessary steps for the proof.  

 Similarly, teachers’ mathematical knowledge used to choose appropriate givens 

(including diagrams) for a problem in a situation of calculation in geometry may differ 

from the knowledge used to choose appropriate givens (including diagrams) in a situation 

of exploring a figure. This is especially true in regard to what the teacher needs to 

anticipate how students would interact with those givens (particularly the given 

diagrams) in those two situations. Specifically, students may not measure the diagram in 

a situation of calculation in geometry, because diagrams are typically given with some 
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extra signs (numbers or hash marks) revealing the properties of a figure. In another 

situation, students may be expected to measure or mark in a diagram and state properties 

they found when exploring a figure (Herbst, 2010). Thus, teachers’ knowledge used to 

choose an appropriate diagram that can possibly engage students in intended 

mathematical work will be different between these two instructional situations. In this 

regard, this study proposes the need to structure teachers’ mathematical knowledge not 

only in terms of specific tasks of teaching but also in terms of the specific instructional 

situations where the knowledge might be required. This hypothesis is also supported in 

one preliminary study (Ko & Herbst, 2017) investigating the dimensionality of MKT-G. 

In that study, two distinguishable item clusters were identified within an entire set of 

MKT-G items. These two identified item clusters could be characterized by the type of 

task of teaching and instructional situation, which have been hypothesized as two 

dimensions explaining the variances among teachers’ performance on the items (Ko & 

Herbst, 2017). The specific categories of instructional situations operationalized in this 

study are described in more detail in a later 4.3.4. 

 

3.4 Chapter summary 

 In this chapter, I introduce a new item organization scheme that would allow the 

identification of the multiple sub-dimensions of teachers’ mathematical knowledge for 

teaching high school geometry and algebra 1. Following this suggested organization, the 

next chapter describes how the hypothesis on the dimensionality of teachers’ knowledge 

was investigated using the data collected from nationally representative sample of U.S. 

high school mathematics teachers.
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Method 

4.1 Instruments 

The data analyzed in this study includes 602 U.S. high school mathematics 

teachers’ responses on three knowledge assessments (MKT-A, MKT-G, SMK-G)6 and a 

background survey asking them about their educational background and teaching 

experiences. The data were collected from March 2015 to January 2016 as a part of a 

larger research project7. Among the three instruments, two geometry instruments (MKT-

G and SMK-G) were developed by the GRIP (Herbst’s research group) and these 

instruments were designed to measure teachers’ mathematical knowledge for teaching 

high school geometry. The other instrument MKT-A was developed as a part of the 

Measures of Effective Teaching (MET) study (Phelps et al., 2014) to measure teachers’ 

content knowledge used in teaching algebra 1. The initial item development framework 

of these instruments was not the same (MKT-G was framed by the domains of knowledge 

type proposed by the LMT group; SMK-G included only CCK and SCK items according 

to knowledge type, but also focused on two tasks of teaching and three instructional 

situations; MKT-A was framed by task of teaching). Still, most items from these 

                                                 
6 MKT-A (MKT-Algebra), MKT-G (MKT-Geometry), SMK-G (Subject Matter Knowledge-Geometry) 
7 NSF project DRL- 0918425, 2009-2017. (Herbst, PI; Chazan, coPI) 
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instruments could be described in terms of at least two common organizers – task of 

teaching (ToT) and instructional situation.  

The similarities and differences among the items with respect to a course of 

studies, task of teaching, and instructional situation have enabled me to evaluate the 

dimensionality of teachers’ mathematical knowledge in a multifaceted way. For example, 

items across different courses of mathematical study (algebra 1 or high school geometry) 

could be combined into the same group by task of teaching criterion (e.g., the 

mathematical knowledge used in the task of evaluating student work), so the hypothesis 

such as whether the relationship among items designed to measure teachers’ 

mathematical knowledge can be approximated by distinguishing task of teaching 

regardless of the course of studies (geometry or algebra 1) could be tested. Similarly, the 

influence of distinct instructional situation on the dimensionality of teachers’ 

mathematical knowledge for teaching geometry or algebra 1 could be assessed. Given 

that instructional situation is a finer distinction than course of studies, the dimensions 

organized by instructional situation was assessed within a course of study (geometry or 

algebra 1). 

In addition to the benefits of having items measuring multiple constructs 

subsumed within the same larger construct the data from the instruments developed by 

two different research groups (GRIP, MET) also has enabled me to evaluate convergent 

validity. In other words, a positive relationship among teachers’ performance on different 

instruments supports the validity argument that teachers’ mathematical content 

knowledge for teaching geometry and teachers’ mathematical content knowledge for 

teaching algebra 1, which theoretically should be related, are indeed related. Using 
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multiple measures for a broad theoretical construct – teachers’ mathematical knowledge – 

is also in accord with one of the preceding treatments of construct validity emphasized by 

Shadish, Cook, & Campbell (2002) that “to use multiple operations to index each 

construct when possible” (Shadish, Cook, & Campbell, 2002, p. 81).  

Regarding the data that will be used for this study, participants completed all three 

instruments by logging into the LessonSketch platform (http://www.lessonsketch.org). 

All the items were randomly ordered regardless of which instrument they were drawn 

from. The organization of items administered in this study is shown below (Table 4.1). 

More detailed information about each of the instrument will be introduced in the next 

section. 

Table 4.1. Organization of administered items 

Instrument Course of study 
The number of 

items: stem (total) 

MKT-G High School Geometry 28 (42) 

SMK-G High School Geometry 33 (60) 

MKT-A Algebra 1 23 (37) 

 

4.1.1 MKT-G items 

One set of items that used in this study is from the MKT-G instrument developed 

by Herbst’s research group (the GRIP; Herbst & Kosko, 2014). As the item development 

framework was built on Ball et al.’s (2008) MKT theory, the 28 stem items (some of the 

items include multiple true/false sub-items) were initially developed to measure teachers’ 

MKT-G (mathematical knowledge for teaching geometry) with items eliciting knowledge 

across four MKT domains − CCK, SCK, KCS, KCT − (Ball et al., 2008). The items 

represent a variety of tasks of teaching and they were situated in classroom contexts; each 
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item calling the respondent to make a choice on behalf of a teacher involved in a task of 

teaching. Herbst and Kosko (2014) argued that this instrument captures specific 

mathematical knowledge for teaching high school geometry on the basis that participants’ 

experience teaching high school geometry significantly correlates with their MKT-G 

scores, while experience teaching mathematics in general was not significantly correlated 

with MKT-G scores (Herbst & Kosko, 2014). 

In the present study, 28 MKT-G items, each of which was originally developed to 

be mapped to one of the knowledge domains (CCK, SCK, KCS, KCT), has been re-

analyzed and coded with respect to the task of teaching and instructional situation 

represented in the item.  

4.1.2 SMK-G items 

The second set of items used in this study was drawn from a second MKT-like 

instrument developed in the GRIP (SMK-G) which consists of 33 stem items developed 

to measure teachers’ subject matter knowledge for teaching geometry (CCK, SCK). 

Herbst and his colleagues designed the SMK-G instrument to empirically investigate the 

role of instructional situation in teachers’ MKT-G. Items were organized according to 

two tasks of teaching (understanding students’ work and choosing appropriate givens for 

a problem) nested in three instructional situations (doing proofs, exploring figures, and 

geometric calculation). In this present study, 33 SMK-G items have been coded in terms 

of type of task of teaching and instructional situation.  

4.1.3 MKT-A items 

The MKT-A items used in this study is a set of 23 items that had been developed, 

as part of MET project (Phelps et al., 2014), to measure teachers’ content knowledge for 
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teaching algebra 1. The items had been developed based on tasks of teaching, which is 

defined as “the recurrent practices that make up the work of teaching [mathematics]” 

(p.3). Thus, each item involved one task of teaching (e.g., “creating and adapting 

resources for instruction”). In this study, 23 MKT-A items have been coded in terms of 

not only a type of task of teaching but also instructional situation. 

4.2 Participants 

A total of 84 items drawn from the three instruments (MKT-G, SMK-G, MKT-A) 

were administered to a nationally distributed sample of U.S. high school mathematics 

teachers across 47 states. To recruit participants, more than 12,000 public secondary 

schools in the United States were selected using a stratified systematic probability 

proportional to size sampling of schools with respect to geographical region and urbanity. 

One secondary mathematics teacher was randomly selected from each school and then 

recruited via email.  

Table 4.2 includes descriptive statistics of the participating teachers’ educational 

background and their teaching experience. A total of 602 participants responded to at 

least one item and a total of 406 participants among them completed all 84 items. On 

average, participants had been teaching mathematics for 14.2 years (SD=8.7, min=1, 

max=40), and had taken 14 college-level mathematics courses (SD=7.3, min=2, 

max=40). In addition, teachers had been teaching geometry for an average of 5.6 years. 

The way of dealing with missing data is described in the section of data analysis. 
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Table 4.2. Descriptive statistics for teachers' background 

 M    SD      MIN MAX 

Gender        M: 40%, F: 60%  N/A N/A N/A 

College math coursework 13.9 7.3 2 408 

Geometry coursework 1.9 1.8 0 20 

Algebra 1 coursework 3.8 3.0 0 21 

Total years of teaching 14.2 8.7 1 40 

Years of teaching geometry 5.6 5.9 0 35 

Years of teaching algebra 1 6.3 5.9 0 32 

Currently teaching geometry 45% (Yes) N/A N/A N/A 

Currently teaching algebra 1 40% (Yes) N/A N/A N/A 

 

The majority of the participants self-identified as Caucasian (83%), while the rest 

included 8% identified African American, 2.6% as Asian, and 1.9% as Hispanic or 

Latinx; and they were mostly female (60%). The participants’ schools were diverse with 

respect to urbanicity (city: 23.9%; suburbs: 30%; towns: 16.8%; rural:29.3%). These 

figures are consistent with nationally representative data obtained from the National 

Center for Education Statistics (NCES) database. (Caucasian: 81.5%, female: 57.3%9, 

city: 27.0%, suburbs: 31.5%, towns: 13.7%, rural: 27.7%10). 

4.3 Data Analysis 

Teachers’ responses to the 84 multiple-choice or true/false questions were scored 

dichotomously as “1” for correct and “0” for incorrect. 21 items have multiple true/false 

                                                 
8 The participants were asked to choose one of the options ranged from 0 to 40. 
9 U.S. Department of Education, National Center for Education Statistics, Schools and Staffing Survey 

(SASS), "Public School Teacher Data File," 2011-12, Table 209.50. Percentage of public school teachers of 

grades 9 through 12, by field of main teaching assignment (here, mathematics) and selected demographic 

and educational characteristics: 2011-12 
10 U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), 

"Public Elementary/Secondary School Universe Survey," 2013–14 (version 1a), Table A.1.a.-2 Number of 

public elementary and secondary schools, by school urban-centric 12-category locale and state or 

jurisdiction: 2013–14. 
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questions and 63 items are single multiple-choice questions. For testlet questions with 3 

or 4 sub true/false items within one stem, the sum of the multiple true/false binary scores 

within one stem question were used as an item score. Therefore, the maximum score 

possible is the same as the number of sub-items. This scoring method was applied to 

control for testlet effects (Phelps & Schilling, 2004) and it provided a single ordinal score 

for each testlet. 

The ordinal scores for 84 items were then analyzed together under classical test 

theory (CTT) to examine item difficulties and biserial correlations (the correlation 

between a binary value and a continuous total score). This enabled me to eliminate items 

with extreme difficulty levels (too easy or too difficult) and items with a negative or 

negligible correlation with other items11. In addition, according to the focus of this study, 

we used only the items that required participants to do mathematics in the context of 

teaching work and excluded items that asked the same mathematical questions that 

students might be asked in class, e.g., an item just asking participants to select, from a set 

of four statements, the one statement that is not a property of parallelograms. Considering 

the reliability of a scale, several items were further excluded when they involved a unique 

task or instructional situation that cannot form a cluster of three items that have common 

trait of task of teaching or instructional situation.  

                                                 
11 I eliminated items yielding p-values (difficulty) greater than 0.95 or less than 0.05. In addition, items 

yielding a negative or lower than or equal to 0.1 item-rest correlation were eliminated. 
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4.3.1 Missing values 

All items from the three instruments (MKT-A, MKT-G, SMK-G) were randomly 

ordered and divided into eight forms, each of which includes 9~11 items. All participants 

were also randomly divided into 12 groups, consisting of 30 ~50 participants. Participants 

were required to complete all items and could not proceed if any item was unanswered. 

To avoid the possibility that items located at the end have a lower response rate than 

other items, the order of forms was changed across groups. For example, Group One 

participants took the forms in order 1, 2, 3, …, 8, whereas Group Two participants took 

the forms in order 2, 3, 4, …., 8, 1. This instrument design indeed resulted in similar 

response rate for each item.   

Before conducting the dimensionality analyses, missing data were further 

evaluated to understand patterns and determine the best method for handling missing 

values. The analysis showed that a total of 602 participants answered at least one item 

and a total of 406 participants completed all 84 items. In an initial analysis, any 

participant who had one or more missing items had been removed from the sample (list-

wise deletion). But this approach was, recognized as possibly problematic: It was 

possible that teachers with weak mathematical knowledge might complete fewer items 

due to difficulty in solving them. Thus, I anticipated that list-wise deletion could result in 

removing participants who have low mathematical knowledge, and that this could bias 

the results. To avoid this potential bias, I decided to conduct all the analyses for both 

cases: a case with the complete data (N = 406) set using listwise deletion and case with 

the full data set including missing values (N = 602). As the results from complete data 

and full data set with missing values yielded the same conclusions, I report only the 
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results from full data set. For the full data set with missing responses, dimensional 

analyses were conducted under full information maximum likelihood (FIML), which is 

known as superior to other conditions such as list-wise deletion, pairwise deletion, and 

imputation (Enders & Bandalos, 2001). The pairwise deletion approach was also 

conducted under the SEM framework using WLSMV estimator (discussed in the section 

2.2.1). The two results (under FIML and under pairwise deletion) were compared by 

using different estimators (FIML is used in the IRT framework and pairwise deletion is 

used in the SEM framework) to confirm the consistency in the evaluation of different 

factor models. 

4.3.2 Item content analysis 

As described in the previous section of data description, each item was coded 

prior to the instrument administration with respect to the task of teaching involved (e.g., 

formulating a problem, reviewing student work) and the instructional situation involved 

(e.g., geometric calculation, doing proofs) to capture the components of the items related 

to the task of teaching and instructional situation. A thorough analysis of the item content 

with respect to the hypothesized knowledge organizers yielded nine clusters of items 

(Table 4.3) The items selected for this study have at least two components, tasks of 

teaching and instructional situations.  

Each cluster12 corresponds to one of the sub-dimensions characterized by one task 

of teaching and one instructional situation. Among the nine clusters, five clusters include 

items measuring teachers’ mathematical knowledge for understanding students’ work and 

                                                 
12 A cluster was formed only if there are more than 3 items that have common trait of task of teaching or 

instructional situation. 
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four clusters include items measuring teachers’ mathematical knowledge for choosing 

appropriate givens for a problem (Table 4.3). Within the same task of teaching, clusters 

were categorized according to instructional situation. Specifically, each of the five item 

clusters within the task of understanding students’ work corresponds to one of the 

following instructional situations: calculation in geometry, doing proofs in geometry, 

exploring a figure in geometry, simplifying rational expressions in algebra, and solving 

equations in algebra. Similarly, each of the four item clusters within the task of choosing 

appropriate givens for a problem consists of items reflecting instructional situations of 

calculation in geometry, doing proofs in geometry, exploring a figure in geometry, and 

calculating with numbers. Sample items for each category are presented in Appendix. 

The organization of clusters by task of teaching and instructional situation is described in 

Table 4.3 and each cluster is described in the following section.  
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Table 4.3. Organization of items 

 

 Task of Teaching 

 
Understanding Students’ 

Work (USW) 

Choosing appropriate 

Givens for a Problem 

(CGP) 

In
st

ru
ct

io
n

a
l 

S
it

u
a
ti

o
n

 

Calculation in 

Geometry (CG) 

Items measuring 

mathematical knowledge for 

doing USW in CG 

(USW_CG): 6 items 

Items measuring 

mathematical knowledge 

for doing CGP in CG 

(CGP_CG): 5 items 

Doing Proofs in 

geometry (DP) 

 

Items measuring 

mathematical knowledge for 

doing USW in DP 

(USW_DP): 3 items 

Items measuring 

mathematical knowledge 

for doing CGP in DP 

(CGP_DP): 4 items 

Exploring a Figure 

in geometry (EF) 

Items measuring 

mathematical knowledge for 

doing USW in EF 

(USW_EF): 3 items 

Items measuring 

mathematical knowledge 

for doing CGP in EF 

(CGP_EF): 4 items 

Simplifying 

Rational 

expressions in 

algebra (SR) 

Items measuring 

mathematical knowledge for 

doing USW in SR 

(USW_SR): 3 items 

No item 

Solving Equations 

in algebra (SE) 

Items measuring 

mathematical knowledge for 

doing USW in SE 

(USW_SE): 5 items 

No item 

Calculating with 

Numbers in algebra 

(CN) 

No item 

Items measuring 

mathematical knowledge 

for doing CGP in CN 

(CGP_CN): 3 items 

 

4.3.3 Tasks of Teaching 

Of interest in this analysis are the responses to items that measured knowledge 

associated with two different tasks of teaching: the task of Understanding Students’ Work 

(hereafter USW, defined in the next section), and the task of Choosing appropriate 

Givens for a Problem (hereafter, CGP), which are defined as follows. 
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4.3.3.1 Understanding Students’ Work (USW) 

The task of understanding students’ work (USW) includes a teacher’s reading, 

making sense, representing a student’s thinking in the teacher’s mind, deciding whether 

the student’s answer or inferred process is mathematically correct, identifying specific 

errors, and generating mathematical commentary on that work through inscriptions or 

writing.  

4.3.3.2 Choosing appropriate Givens for a Problem (CGP) 

The task of choosing appropriate givens for a problem (CGP) includes writing 

text of various kinds of questions such as classroom tasks or test items, choosing 

particular information (numerical, algebraic, diagrammatic) to include with the text and 

deciding how to encode it, ascertaining that the text calls for the student to do what the 

author of the problem expects them to do, and verifying that the information given is 

consistent and sufficient for students to engage in the work envisioned. 

4.3.3.3 Rationale for using the two particular tasks of teaching chosen 

As described in 3.3.1.2, researchers have used diverse criteria in identifying core 

tasks of teaching mathematics. For example, some studies focused on tasks that are 

distinctively mathematical (Ball et al., 2008; Hoover et al., 2014), whereas some other 

studies have also dealt with tasks that are more general, such as managing the classroom 

environment (Haertel, 1991). This study focuses on the teachers’ knowledge which is 

needed to be used in doing the mathematical work of teaching; thus, the tasks of teaching 

focused in this study are distinctively mathematical. However, these tasks are described 

as generic insofar as they name work a teacher does across different subjects in 

mathematics, such as geometry or algebra; and the analysis explores whether 
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hypothesizing a common knowledge dimension for each task of teaching enables us to 

describe the knowledge needed to respond to items in which the teacher has to do each 

task across content areas. By focusing on the mathematical tasks, this study provides a 

way to better understand the organization of the mathematical knowledge needed to be 

used for teaching mathematics. 

The validation of methodological feasibility includes assessing whether the 

proposed item blueprint allows for developing multiple distinguishable measures 

representing the hypothesized dimensions of teachers’ mathematical knowledge. In this 

section, I describe a rationale for using two particular tasks of teaching among others for 

the evaluation of methodological feasibility. The rationale is based on their 

representativeness in teacher’s work managing instructional exchanges and their 

distinguishable characteristics in the work of teaching. 

First, the two particular tasks were hypothesized to produce meaningful variation 

among the item responses in that they are representative of two key elements of the work 

that teachers do: creating mathematical work for students and evaluating what students do 

(Herbst, 2006). If we consider the term “instruction” in the context of the transaction of 

mathematical knowledge between teacher and students (or student work), the role of a 

teacher in instruction is to manage the instructional exchanges between students’ work on 

problems and mathematical ideas at stake. To manage the exchange from the 

mathematical ideas at stake to students’ work on problem, a teacher needs to engage in 

“deploying mathematical objects of study in the form of work for students to do” (Herbst 

& Chazan, 2012, p.606). This task includes choosing or creating problems for students in 

support of the knowledge at stake and providing students the problems to work on, which 



 84 

prominently includes choosing the givens for a problem (CGP), one of the tasks of 

teaching used in this study. Instructional exchanges also require the teacher to do work in 

the opposite direction, from students’ work to the mathematical ideas at stake: a teacher 

needs to engage in “interpreting work (being) done by students in light of a mathematical 

object of study” (Herbst & Chazan, 2012, p.606). This work includes, prominently, the 

task of understanding and interpreting what the students do and think in those problems 

(USW), which is the other task of teaching used in study. In this regard, the two tasks of 

teaching, USW and CGP, are reasonably assumed to be different and to represent 

important, key tasks the teacher needs to engage in when they manage instructional 

exchanges in mathematics.  

Second, not only were these two tasks of teaching (USW and CGP) hypothesized 

to be different in regard to their role in instructional exchanges, but they were also 

hypothesized to be different regarding the frequency in which each task might be found 

in the work of individual teachers. Related to findings from prior research, it was 

expected to be common for teachers to draw problems from textbooks or websites (Pepin 

& Haggarty, 2001; Robová, 2013; Schmidt et al., 1999) hence not engage very often in 

creating or choosing the givens for a problem (CGP). Yet, we surmised that most K-12 

teachers in the U.S. have to read and understand student work as they usually grade their 

students’ homework and tests. In this regard, it might be reasonable to conjecture that 

USW (understanding students’ work) is a much more common task of teaching than CGP 

(choosing appropriate givens for a problem).  

This conjecture was supported by a survey of 60 U.S. high school teachers who 

were selected from the 602 nationally represented sample in a subsequent wave of data 
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collection. This group of teachers included 30 more-experienced and 30 less-experienced 

(than 5 years of teaching experience) teachers and they were asked to respond to survey-

items asking how often in the academic year they had engaged in the tasks USW and 

CGP. The result derived from the teachers’ responses showed that the frequency of doing 

CGP is significantly lower than the frequency of USW (t (59) = -0.33, p = 0.0001), which 

supports my hypothesis on the difference in the frequency of doing the task between CGP 

and USW.  

Third, the two tasks of teaching (USW and CGP) were hypothesized to create 

meaningful variations among the items regarding the difference in a time frame in which 

the task is planned to take place. As mentioned in 3.3.1.2, some researchers 

conceptualized tasks of teaching by a time frame such as “preactive” work, “interactive” 

work, or “postactive” work, depending on whether the work is expected to happen before 

interacting with students (e.g., planning a lesson), expected to be done in the classroom, 

or for reflecting a lesson. According to this time frame criterion, the task CGP represents 

preactive work, whereas the task USW represents interactive or postactive work (e.g., 

responding to student work in class, grading student work after class).  

Fourth, the two tasks of teaching were hypothesized to be different regarding the 

type of interaction with student work. As a teacher needs to read a student’s work and 

makes sense of a student’s thinking in doing USW, the task USW demands a wider range 

of literacy skills than CGP. On the other hand, CGP does not require a teacher to interact 

with students’ work which is usually not written in a standard form accepted in a 

discipline.  
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The representativeness and differences between these two tasks of teaching 

warrant their use in testing the hypothesis that teachers’ mathematical knowledge used in 

doing different tasks of teaching (in an instructional situation) is distinguishable. This 

conjecture on the differences between USW and CGP also led me to further hypothesize 

differentiated effects of teachers’ experience in teaching geometry between two 

knowledge dimensions. The results are reported in Chapter 5. 

 

4.3.4 Instructional Situations 

As described earlier in Chapter 3, this study hypothesizes that the (strength of the) 

relationships among different items can be explained by how likely the student 

mathematical work represented in those items are regulated by the same instructional 

situation (that is, by the same division of labor between student, teacher, and the 

mathematical objects in the task). Instances of classroom mathematical work are 

considered to be framed by the same or by different instructional situations depending on 

the norms that regulate who has to do what and when. These norms specify mathematical 

elements of student tasks, actions called forth from the teacher and students, and the 

evidence of the completion of the task (Herbst & Chazan, 2012). In this regard, I describe 

the six instructional situations operationalized in this study in terms of “the roles and 

responsibilities of teachers and students in relationship to the mathematics at hand” 

(Chazan & Lueke, 2009, p.22), a focus of the concept of instructional situation (Herbst, 

2006). Situations can be described at various levels of detail; while one might eventually 

distinguish a situation of construction with straightedge and compass from a situation of 

construction with dynamic geometry software, one could also speak of a situation of 
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construction that includes the prior two and that could be characterized by norms that 

apply to both (Herbst, 2010). With this in mind I describe the following.  

4.3.4.1 Calculation in Geometry (CG) (GCN and GCA)  

In the situation of Calculation in Geometry, a task given to students (by a teacher 

or a textbook) involves calculating some unknown dimensions of a figure represented by 

a diagram and by some information (given numerically or algebraically) about other 

dimensions of the figure (Boileau & Herbst, 2015; Herbst, 2010, Herbst 2004, Hsu, 2010; 

Hsu and Silver, 2014). Students are required to use their knowledge of properties of 

figures and the given information included in the diagram to solve for the unknown 

dimensions and without using measurements of the diagram (Herbst, 2010). The category 

of Calculation in Geometry includes at least two subordinate situations represented in 

items used in the study: Geometric Calculation in Algebra (GCA; Boileau & Herbst, 

2015) and Geometric Calculation in Number (GCN; Hsu & Silver, 2014). The main 

difference between the two situations is whether algebraic skills are needed to find the 

unknown dimensions. GCA requires algebraic skills to find the value of a dimension, 

whereas GCN does not (Hsu, 2010). The roles of the teacher and students in each 

situation are described below. The CG category in this study includes 10 GCA items and 

1 GCN item, so I categorized both under CG in my analysis without distinction between 

them. 
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In GCN, a teacher is expected to  

• provide a diagram of a figure in which some of its dimensions are set numerically 

while others are unknown. The diagram includes sufficient information enabling 

the students to use the information with their knowledge of properties of the 

figure and known theorems to find other information required to find the 

unknown (Herbst, 2010, p.50). 

In GCN, students are expected to 

• find deductively the unknown dimensions of a figure, using their knowledge of 

geometric properties and application of related theorems to set up arithmetic 

calculations. 

In GCN, “What is stake is a claim on students’ capacity to use a property they already 

know” (Herbst, 2010, p.50). Figure 4.1. shows an example of a GCN task.  

 

Figure 4.1. Sample GCN task 

In this task, students are required to use their knowledge of a theorem (the inscribed angle 

theorem) and a given numeric value to find an unknown dimension (∠BAD). 
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Compared to GCN tasks, a GCA task involves algebraic calculation.  

In GCA, the teacher is expected to  

• provide a diagram of a figure in which some of its dimensions are represented 

using algebraic expressions while others are set numerically or unknown. The 

diagram includes sufficient information enabling the students to use the 

information and their knowledge of properties of the figure and known theorems 

to find other information required to find the unknown (Herbst, 2010, p.53). 

In GCA, students are expected to  

• Find deductively the numerical value of an unknown dimension of the figure by 

posing and solving algebraic equations representing relationships among the 

relevant dimensions of the figure. The algebraic equations are set up using their 

knowledge of geometric properties and applications of related theorems. 

In GCA, “What is stake is a claim on students’ capacity to use a property they already 

know as well as a claim on maintaining knowledge of algebra skills” (Herbst, 2010, 

p.53). For example, one of the items in GCA provides a parallelogram with some angle 

measures expressed algebraically. This item is presented in a context where students are 

asked to find the value of unknown angle x. The information given to students must yield 

a positive value of x and be consistent with the other information known about the figure. 

To find x, students are expected to use one of the properties of a parallelogram – that 

consecutive angles are supplementary – and set up an algebraic equation using the given 

algebraic expressions. Students solve the equation to find the value of x. When the 

teacher looks at students’ work, they examine whether and how students connect the 

known properties of a parallelogram to the algebraic expressions given so as to set up an 
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equation. The teacher also looks at the students’ algebraic solution and how they use that 

solution to answer the question about geometric quantities. 

4.3.4.2 Doing Proofs in geometry (DP)  

In DP, a teacher is expected to  

• provide students a specified ‘given’ and ‘prove’ statements when assigning a 

problem (given-prove norm) (Herbst, Aaron, Dimmel, & Erickson, 2013). 

• provide students with a diagram representing the geometric objects involved in 

the given and prove statements using the diagrammatic register, that is, using 

geometric notation that refers to the specific geometric objects (rather than the 

more general geometric concepts). All points to be used in the proof are labeled in 

the diagram. The diagram accurately represents the figure of a diagram 

(diagrammatic-register norm). 

In DP, students are expected to 

• understand some information implicitly given by the diagram (particularly 

regarding properties of incidence, collinearity, and separation) and avoid making 

assumptions about other information given by the diagram (particularly regarding 

properties of parallelism, perpendicularity, and congruence). 

• figure out chains of descriptive statements (about the geometric objects at hand) 

that connect the ‘givens’ to the ‘prove’. 

• justify those statements deductively by reasons drawn from their knowledge of 

theorems, definitions, and postulates that they learned in class. 

(Herbst, 2002b, Herbst 2004, Herbst & Brach, 2006; Herbst et al. 2009, Herbst et 

al., 2010). 
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In DP, what is stake is a claim on “students’ capacity to produce chains of 

statements and reasons that connect a given statement to a conclusion”, and “students’ 

capacity to recall and apply known theorems, definitions, and postulates to justify 

specific statements” (Herbst, 2010, p.54). For example, one of the items in this category 

provides a diagram of two triangles whose vertices are labeled. The proof problem is 

presented in the form of givens (the properties of the lines; e.g., 𝐴𝐸̅̅ ̅̅ ∥ 𝐵𝐷̅̅ ̅̅ ) and the 

statement to be proved by students (∠𝐸𝐹𝐴 ≅ ∠𝐷𝐶𝐵). The given information 

(diagrammatic) is expected to be sufficient for students to engage in the proof work 

envisioned. A student organizes a proof using a two-column form: one for statements and 

one for reasons. The teacher evaluates the student’s work by attending to whether each 

statement and reason are mathematically correct; whether the student’s proof contains all 

the required steps in a correct order; and whether the student’s statements are written 

using correct mathematical symbols and notations.  

4.3.4.3 Exploring a Figure (EF)  

In EF, a teacher is expected to  

• provide students with a geometric object and tools (e.g., protractors, rulers) to use 

when exploring. 

• ask students to explore figures given through diagrams or other concrete materials 

and to generate conjectures stating properties of the geometric figure represented 

by the objects at hand. 

• not constrain a specific object or property that the students make a conjecture 

• accept, revise, or reject the properties conjectured by students 

In EF, students are expected to  
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• look at, measure, mark, or draw in a given diagram.  

• state any property for the diagram using a combination of informal language and 

mathematical notation and as many properties as they wanted for each diagram. 

(Herbst, 2010, p.41) 

• freely choose among a range of material operations to apply on concrete (physical or 

pictorial) embodiments of the concept depending the tools available to them, their 

reading of the particular results of those operations, and the translation of those 

results into general statements made in the conceptual register. The reasoning that 

students could thus have the opportunity to engage in can be described as abductive, 

proceeding from particular to general (Herbst, 2010; Aaron & Herbst, 2015). 

In EF, what is stake is a claim on students’ “knowledge of the definition, names, and 

properties of geometric figures, knowledge of symbols to express the properties of a 

particular geometric object, skill manipulating instruments for measuring and other 

instruments to check on properties, practice identifying various objects after geometric 

terms, and experiential learning of geometry” (Herbst, 2010, p.37). Students’ capacity to 

reason inductively and abductively in inferring general properties from a particular 

models and capacity to reason deductively in verifying known properties of a given 

model are also at stake in EF. One of the items in this category provides students a circle 

that has a point in the center and has two particular arcs, formed by two intersecting 

chords, that are set to be the same. The teacher asks students to make conjectures based 

on the diagram. Each student makes their own conjecture on the diagram. The first 

student makes a conjecture regarding triangle congruence; the second student makes a 

conjecture regarding the length of chords; and the third student makes a conjecture 
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regarding an angle of a triangle. As such, the diagram properties/features the students 

focus on for their conjectures can be diverse.  

4.3.4.4 Simplifying Rational expression (SR) 

In SR, a teacher is expected to  

• provide a rational expression and ask students to simplify the given expression. 

In SR, students are expected to  

• find the greatest common factor of both numerator and denominator, if possible 

• factor completely both the numerator and denominator 

• use the Fundamental Principle of Rational Expressions13 to divide out the 

common factor from the numerator and denominator and simplify 

(ElHitti, Bonanome, Carley, Tradler, & Zhou, 2017, p. 132; Cunningham & 

Yacone, 2013, p.459)  

The mathematical work expected from students in SR is based on the methods that 

algebra textbooks and secondary school algebra teachers most commonly use when 

illustrating simplifying rational expressions (Cunningham & Yacone, 2013).  

One item in this category shows an example of student task simplifying 
10𝑎+4

2𝑎
 . 

4.3.4.5 Solving a linear or quadratic equation in algebra (SE) 

In SE, a teacher is expected to  

• provide students a linear or quadratic equation for which a solution exists. 

In SE, students are expected to  

• identify the type of equation  

                                                 
13 For polynomials 𝑃, 𝑄 and 𝑅 with 𝑄 ≠ 0 and 𝑅 ≠ 0, 

𝑃

𝑄
=

𝑃∙𝑅

𝑄∙𝑅
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• simplify or distribute the algebraic expressions involved, if necessary 

• put like terms with like terms (put all the terms containing the unknown on one 

side of the equals sign with the constants on the other side) 

• divide or to do something else in order to simplify 

• write a string of equivalent equations that terminates in an equation of the form 

𝑥 = 𝑎 number (without justification). 

(Chazan & Lueke, 2009, p.31-32; Buchbinder, Chazan, & Capozzoli, 2019) 

One item in this category presents an example of student work solving the equation 

3𝑥2 − 6𝑥 − 24 = 0, while all the others are linear equations. 

4.3.4.6 Calculating with Numbers (CN) 

In CN, a teacher is expected to  

• provide a problem of number calculation that can be simplified using the basic 

properties of real numbers (e.g., commutative, associative, distributive)  

In CN, students are expected to 

• apply the basic properties along with their knowledge of the decimal number 

system to computational settings. 

• choose an appropriate property and apply the property efficiently.  

One of the examples shows multiple expressions and asks the teacher to choose the 

best example to illustrate how using the distributive property can simplify computations.  

The answer is the one expressed by two terms that have the same factor and add up to 

100 when divided by the factor.  

According to the characteristics of categories described above, items were 

categorized into nine clusters and each of the cluster represents one of the hypothesized 
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knowledge dimensions. The next sections describe how the items scores were analyzed to 

examine distinctions among the hypothesized dimensions.  

4.3.5 Dimensionality of item scores 

To evaluate the dimensionality of teachers’ mathematical knowledge, several 

statistical models were fitted to item scores and the results from different models were 

compared. The models that I applied for the dimensional analysis are two prominent 

models under different assumptions: two models assumed teachers’ knowledge as a 

continuous quantity (IFA) (under SEM & IRT framework) and a model that assumed 

teachers’ knowledge as discrete quantity - mastery level or non-mastery level (diagnostic 

classification models) (discussed in Chapter 2). The comparison among results derived 

from different methods was done for the purpose of evaluating the consistency of the 

results as well as understanding the limitations and benefits of each model. 

4.3.5.1 IFA and DCM models 

Following the model taxonomy used in Wirth and Edwards (2007), this study 

classifies the SEM-based and IRT-based item factor analysis as “variants of a general 

item factor analytic framework” (Wirth & Edwards, p.59). The main difference between 

IFA within the SEM and IRT frameworks is that IFA within SEM uses limited 

information such as correlation or covariance matrices to assess the structure of items, 

whereas IFA within IRT generally uses full information such as raw data (Wirth & 

Edwards, 2007, p.66). In a comparison of the usage between the two frameworks, Wirth 

and Edwards (2007) suggested to use an IRT-based item factor analysis (IFA) if the 

research purpose is to understand individual item characteristics or obtain scores for 

individual participants. On the other hand, SEM-based IFA is appropriate if the purpose 
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is to explain the relationship between constructs (e.g., number of factors or cross-

loadings; Wirth and Edwards, 2007, p. 70). As this current study aims to not only 

understand the relationship between constructs, but also obtain scores for individual 

participants, both methods (SEM & IRT14 – based IFA) were conducted. A comparison 

of the parameter estimates from the two methods, confirming consistency between results 

also supported more confidence in the estimates. 

A multidimensional model that allows correlations among factors, where one item 

corresponds to one factor, was conducted for each IFA. In each IFA, the variation due to 

one of the organizers (e.g., task of teaching) was controlled when examining the 

dimensionality associated with the other organizer (instructional situation). For example, 

all the items measuring teachers’ mathematical knowledge for doing one task of teaching 

(e.g., understanding students’ work) were used in an IFA model to examine whether the 

dimensions of teachers’ mathematical knowledge could be distinguished by different 

instructional situations. Similarly, all the items measuring teachers’ mathematical 

knowledge in one instructional situation (e.g., doing proofs) were used in another IFA to 

examine whether the dimensions of teachers’ mathematical knowledge could be 

distinguished by different tasks of teaching. These IFAs conjectured by different tasks of 

teaching and instructional situations were conducted both within and across the courses 

of studies (within geometry or algebra items). 

The analysis using the DCM approach followed the same hypothesis on the 

relationships between item responses and knowledge dimensions, which were tested in 

IFA. In other words, the DCM model tested a simple structure where each item measures 

                                                 
14 Specifically, the model is the Graded Responses Model, an extension of the 2PL model for ordinal 

response data. 
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only one hypothesized attribute (Rupp et al., 2010, p.328). I used a predefined Q-matrix, 

that is, a table specifying which attributes are measured by which item in terms of 

numeric value (1s for an attribute measured by an item and 0s for an attribute not 

measured by an item; Rupp et al., 2010, p.54). In the analysis, in order to use a DCM 

model which models dichotomous responses, I dichotomized ordinal item responses by 

using the mean value of each item as a cut point, following the approach of Templin and 

Henson (2006). For example, if a mean of a testlet item is 2.5 (sum of 4 True/False 

items), scores greater than or equal to 2.5 were coded as 1 and scores lower than 2.5 were 

scored as 0. 

4.3.5.2 Relationship with teachers’ educational and teaching background 

Dimensionality analysis with only item scores is a variable-centered approach in 

that it attempts to find a dimensionality of knowledge based on the covariance among 

item scores. As this approach does not account for different person characteristics such as 

subject matter preparation or experience teaching, it does not capture different patterns in 

teachers’ item scores associated with teachers’ educational background or teaching 

experience. In this regard, I further investigated dimensionality of teachers’ mathematical 

knowledge by examining the differences in the relationships with their educational and 

teaching experience across identified dimensions. Among other studies on teacher 

knowledge, the COACTIV group had found differences between CK and PCK in terms 

of teachers’ effect on instruction and on student learning. (CK was not found to affect 

student learning, whereas PCK significantly affected student learning; Baumert et al., 

2010). This result supported their conjecture about PCK’s being empirically 

distinguishable from CK. Meaningful differences in teachers’ performance associated 
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with teachers’ background variables would inform claims about the structure of teachers’ 

mathematical knowledge. For example, the examination of the correlation between 

teachers’ background variables such as years of teaching experience and the number of 

coursework that had taken and their test scores was expected to reveal the difference in 

teachers’ performance depending on a set of items.  

4.4 Chapter summary 

In this chapter, I describe the characteristics of analyzed data, including the types 

of instruments (MKT-Algebra, MKT-Geometry, SMK-Geometry), item formats 

(multiple-choice and True-False items), demographic information of participants (602 

U.S. high school mathematics teachers). The item contents were described in terms of the 

characteristics of the item clusters created by the hypothesized item blueprint. The item 

blueprint was organized by associated tasks of teaching and instructional situations.  

The empirical procedures such as scaling responses and data analysis methods were also 

introduced in this chapter. By using the three different measurement models – structural 

equation modeling, item response theory, and diagnostic classification model, my study 

aims to support consistency of the results and provides insights into the functions of each 

model.
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Results: Validation of the Dimensions Proposed in the Framework 

This chapter presents the results of the seven dimensionality analyses conducted 

to validate the methodological feasibility of the proposed item blueprint. In other words, 

this chapter examines whether the proposed item blueprint allows establishing 

distinguishable measures that reflect the hypothesized distinguishable knowledge 

dimensions. First, I report the results comparing different item factor models in which 

each dimension is characterized by different instructional situations within the same task 

of teaching (5.1.1~5.1.2). Second, I report the results comparing different item factor 

models in which each dimension is characterized by different tasks of teaching within the 

same instructional situation (5.2.1~5.2.3). Third, I report the models in which each 

dimension is characterized by different tasks of teaching and different instructional 

situations within the same course of study (5.3.1~5.3.2). Fourth, I report the differences 

among hypothesized dimensions in terms of the proportions of knowledge profiles 

(5.4~5.5). Fifth, I report the results examining the effects of teachers’ educational and 

teaching experience on each of the hypothesized dimensions (5.6). Lastly, I summarize 

the results validating the suggested dimensions of the framework.  

For each dimensional analysis, three different modeling approaches were applied: 

1) Item Factor Analysis under SEM framework; 2) Item Factor Analysis under IRT 

framework; 3) Diagnostic Classification Modeling. 
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Table 5.1 present the organization of the analyses including a hypothesis of each analysis 

and the summary of it. The detailed analysis results comparing different factor models are 

described in the following sections.  

Table 5.1 Summary of findings 

Section Hypothesis Result 

5.1.1 Hypothesized knowledge factors 

associated with the five different 

instructional situations (CG, DP, EF, SR, 

SE) within the task USW are 

distinguishable each other 

The hypothesized factors are 

significantly distinguishable, 

except USW_CG and USW_DP. 

5.1.2 Hypothesized knowledge factors 

associated with the four different 

instructional situations (CG, DP, EF, CN) 

within the task CGP are    

distinguishable each other 

The hypothesized factors are 

significantly distinguishable, 

except CGP_DP and CGP_EF. 

5.2.1 Hypothesized knowledge factors 

associated with the two different tasks of 

teaching (USW, CGP) within the 

instructional situation CG are 

distinguishable each other 

The hypothesized factors 

USW_CG and CGP_CG are 

significantly distinguishable. 

5.2.2 Hypothesized knowledge factors 

associated with the two different tasks of 

teaching (USW, CGP) within the 

instructional situation DP are 

distinguishable each other 

The hypothesized factors 

USW_DP and CGP_DP are 

significantly distinguishable. 

5.2.3 Hypothesized knowledge factors 

associated with the two different tasks of 

teaching (USW, CGP) within the 

instructional situation EF are 

distinguishable each other 

The hypothesized factors 

USW_EF and CGP_EF are not 

significantly distinguishable. 

5.3.1 Hypothesized knowledge factors 

associated with the two different tasks of 

teaching (USW, CGP) across the two 

different instructional situations in 

geometry (CG, DP) are      

distinguishable each other 

The four hypothesized factors 

USW_CG, USW_DP, CGP_CG, 

and CGP_DP are significantly 

distinguishable. 

5.3.2 Hypothesized knowledge factors 

associated with the two different tasks of 

teaching (USW, CGP) across the three 

different instructional situations in 

algebra 1 (SR, SE, CN) are 

distinguishable each other 

The three hypothesized factors 

USW_SR, USW_SE, and 

CGP_CN are significantly 

distinguishable. 
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5.1 Dimensionality within the same task of teaching 

To examine whether multiple dimensions can be identified by the organizer 

instructional situation, the dimensionality of the item responses was investigated within 

the same task of teaching. The constraint on task of teaching was set to control any effect 

from different tasks of teaching on the dimensionality. 

The distinction among hypothesized dimensions was examined through Chi-

Square Difference Tests. Specifically, the fit of a higher dimensional model (where all 

the factors are distinguished as hypothesized) was compared to a lower dimensional 

model (where two factors are combined). The analyses were conducted within the task of 

understanding students’ work (USW) (4.3.3.1) and within the task of choosing the givens 

for a problem (CGP) (4.3.3.2), respectively. 

5.1.1 Organization of the items within the task USW 

The list of situations within the task of understanding students’ work (USW) was 

sorted into five separate situational categories, as shown in Table 5.2. As described in 

4.3.3.1, the task of USW includes a teacher’s reading, making sense, representing 

students’ thinking in the teacher’s mind, deciding whether the student’s answer or 

inferred process is mathematically correct, identifying specific errors, and generating 

mathematical interpretation of that work through inscriptions or writing. In this section, I 

report the results that can answer the question posed in 3.3.2: if teachers are 

knowledgeable in a task of teaching for one situation, how likely is it that they would be 

knowledgeable in that same task of teaching for another situation? In other words, the 

analyses examine whether the items measuring teachers’ knowledge in doing USW can 

be distinguished by different instructional situations.  
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The analyses were conducted under two different frameworks 1) a framework in 

which the knowledge being measured is considered to be continuous; 2) a framework in 

which the knowledge being measured is considered to be discrete: whether a teacher had 

achieved a mastery level of knowledge (1: master) or not (0: nonmaster). The framework 

of continuous latent construct (hereafter, IFA models) is further categorized into two 

different approaches: SEM-based modeling (use limited information) and IRT-based 

modeling (use full information) (discussed in Chapter 4).  

 

Table 5.2 Items in a task of USW 

Task of teaching 

Instructional situation 

Knowledge 

dimension/Attribute 

# items 

Understanding 

Students’ Work 

(USW) 

Calculation in Geometry 

(CG) 

USW_CG 6 

Doing Proofs in geometry 

(DP) 

USW_DP 3 

Exploring a Figure in 

geometry (EF) 

USW_EF 3 

Simplifying Rational 

expression in algebra (SR) 

USW_SR 3 

Solving a linear or 

quadratic Equation in 

algebra (SE) 

USW_SE 5 

 

5.1.1.1 Dimensionality analysis of the items within USW using IFA 

To examine whether the items commonly measuring teachers’ mathematical 

knowledge for the task of understanding students’ work (USW), can be distinguished in 

terms of the instructional situation, confirmatory item factor analyses were conducted 

under two different approaches (SEM-based and IRT-based framework) using Mplus 

version 7.4 (Muthén & Muthén, 1998 – 2015).  
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5.1.1.1.1 SEM-based modeling (using WLSMV15 estimator) 

The factor structure among the items was first evaluated by a confirmatory item 

factor analysis using a WLSMV estimator. In all item factor analyses conducted in this 

study, latent factor variances and means were set to 1 and 0, respectively, and all item 

factor loadings were freely estimated.  

The initial 5-factor model (Figure 5.1) hypothesized based on the five different 

situations yielded an acceptable fit (RMSEA16=0.000; CFI17=1.000; TLI18=1.000) by 

every criterion suggested by Hu & Bentler (1999; RMSEA <0.06, TLI > 0.95, CFI > 

0.95). However, the factors of Calculation in Geometry (hereafter, CG, 4.3.4.1) and 

Doing Proofs (hereafter, DP, 4.3.4.2) were highly correlated as 0.95, implying that they 

may not be distinguishable. Consequently, I compared the 5-factor model with the 4-

factor model where DP and CG items formed one common factor (Figure 5.2). To 

examine the significance of a difference in a model fit between two models, I conducted 

the differential test called DIFFTEST19, which adjusts the difference in chi-square values 

for the WLSMV estimator (Muthén & Muthén, 1998-2015). The DIFFTEST result 

suggested that the 4-factor model (Figure 5.2) was not significantly worse than the 5-

factor (χ2 = 3.296, df = 4, p = 0.5096) (Figure 5.1), implying that DP and CG may not be 

statistically distinguishable. I further compared the 4-factor model where DP and CG are 

combined with the 3-factor model (Figure 5.3) where all three geometry situation factors 

(EF, DP, and CG) are combined into one factor. The differential test revealed that the 3-

                                                 
15 Diagonally weighted least squares estimator 
16 Root Mean Square Error of Approximation 
17 Comparative Fit Index 
18 Tucker-Lewis Index  
19 As the chi-square value for WLMSV cannot be used for chi-square difference testing in the regular way, 

the DIFFTEST option of Mplus was used to compare two models (Muthén & Muthén, 1998-2015). 
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factor model is significantly worse than the 4-factor model (χ2 = 9.115, df = 3, p = 

0.0278). In other words, the 4-factor model (Figure 5.2) was significantly better than the 

3-factor model, but not significantly worse than the 5-factor model. 

Table 5.3 presents estimated factor loadings estimated by the 3-factor, 4-factor, 

and 5-factor models under SEM-based models (column 2 ~ 4) and IRT-based models 

(column 5 ~ 7). As shown in the first three columns of the table, geometry item loadings 

estimated from the 5-factor model tend to go up slightly relative to the loadings in the 3-

factor model or 4-factor model, where some of the geometry factors are combined.  

Algebra item loadings stayed the same between models, as their structure was not 

modified across models. This result implies that most geometry items can explain more 

variance when they are loaded on three different dimensions than when they combine 

together in a single factor. In other words, even though the hypothesized factors are 

highly correlated, they are better to be distinguished. For example, CG items yielded 

slightly higher loadings in the 5-factor model where CG items are distinguished from DP 

items, even though CG and DP are not significantly distinguishable. 
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Figure 5.1. Five-dimensional model within the task USW20  

 
Figure 5.2. Four-dimensional model within the task USW 

 

                                                 
20 Standardized factor loadings are presented in the diagrams. 
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Figure 5.3. Three-dimensional model within the task USW 
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Table 5.3. Estimated standardized factor loadings within USW 

  SEM-based IRT-based 

Item Dimension 

3 

CG+DP

+EF 

4 

CG+DP 

5 all 

separated 

3 

CG+DP+

EF 

4 

CG+DP 

5 all 

separated 

X12020 

USW_CG 

0.61 

(0.05) 

0.62 

(0.05) 

0.62 

(0.05) 

0.56 

(0.05) 

0.56 

(0.05) 

0.56 

(0.05) 

X12222 

0.75 

(0.05) 

0.76 

(0.05) 

0.77 

(0.05) 

0.73 

(0.05) 

0.74 

(0.05) 

0.75 

(0.05) 

X12223 

0.62 

(0.05) 

0.62 

(0.05) 

0.63 

(0.05) 

0.59 

(0.05) 

0.59 

(0.05) 

0.60 

(0.05) 

X12224 

0.63 

(0.04) 

0.64 

(0.04) 

0.65 

(0.04) 

0.61 

(0.04) 

0.62 

(0.04) 

0.63 

(0.04) 

X12228 

0.57 

(0.05) 

0.58 

(0.05) 

0.59 

(0.05) 

0.55 

(0.05) 

0.56 

(0.05) 

0.57 

(0.05) 

X12229 

0.51 

(0.06) 

0.51 

(0.06) 

0.52 

(0.06) 

0.47 

(0.06) 

0.47 

(0.06) 

0.47 

(0.06) 

X12121 

USW_DP 

0.55 

(0.05) 

0.55 

(0.05) 

0.55 

(0.06) 

0.48 

(0.06) 

0.49 

(0.06) 

0.50 

(0.06) 

X12126 

0.46 

(0.06) 

0.47 

(0.06) 

0.47 

(0.06) 

0.41 

(0.06) 

0.41 

(0.06) 

0.42 

(0.06) 

X12131 

0.74 

(0.05) 

0.75 

(0.05) 

0.75 

(0.06) 

0.69 

(0.05) 

0.69 

(0.05) 

0.70 

(0.07) 

X12322 

USW_EF 

0.49 

(0.06) 

0.54 

(0.06) 

0.54 

(0.06) 

0.44 

(0.06) 

0.48 

(0.06) 

0.48 

(0.06) 

X12324 

0.30 

(0.06) 

0.33 

(0.06) 

0.33 

(0.06) 

0.26 

(0.05) 

0.28 

(0.06) 

0.28 

(0.06) 

X12334 

0.54 

(0.05) 

0.61 

(0.06) 

0.61 

(0.06) 

0.51 

(0.05) 

0.59 

(0.06) 

0.59 

(0.06) 

M1007 

USW_SR 

0.49 

(0.12) 

0.50 

(0.12) 

0.50 

(0.12) 

0.44 

(0.11) 

0.49 

(0.12) 

0.49 

(0.12) 

M1013 

0.29 

(0.10) 

0.28 

(0.10) 

0.28 

(0.10) 

0.24 

(0.09) 

0.18 

(0.09) 

0.18 

(0.09) 

M1019 

0.33 

(0.10) 

0.34 

(0.10) 

0.33 

(0.09) 

0.32 

(0.10) 

0.33 

(0.09) 

0.32 

(0.09) 

M1001 

USW_SE 

0.52 

(0.08) 

0.52 

(0.08) 

0.52 

(0.08) 

0.47 

(0.07) 

0.47 

(0.07) 

0.47 

(0.07) 

M1003 

0.39 

(0.12) 

0.39 

(0.12) 

0.39 

(0.12) 

0.37 

(0.11) 

0.36 

(0.11) 

0.38 

(0.11) 

M1009 

0.42 

(0.07) 

0.42 

(0.07) 

0.42 

(0.07) 

0.41 

(0.07) 

0.41 

(0.07) 

0.41 

(0.07) 

M1011 

0.66 

(0.07) 

0.66 

(0.07) 

0.66 

(0.07) 

0.61 

(0.07) 

0.61 

(0.07) 

0.62 

(0.07) 

M1016 

0.63 

(0.07) 

0.63 

(0.07) 

0.63 

(0.07) 

0.60 

(0.07) 

0.60 

(0.07) 

0.59 

(0.07) 

All item loadings are significant at the p < 0.05 level 

Standardized loading (standard error) 
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5.1.1.1.2 MIRT-based modeling 

IRT-based dimensional analysis was also conducted to assess whether the items 

commonly measuring teachers’ mathematical knowledge for the task of understanding 

students’ work can be distinguished in terms of the instructional situation. The 

difference21 between this analysis and the previous analysis is that MIRT-based 

modeling, (specifically, Multidimensional Graded Responses Model, an extension of the 

2PL model for ordinal response data; Samejima, 1997) examines the structure of items 

using the MML estimator22 which uses patterns in responses (Schilling & Bock, 2005; 

Wirth & Edwards, 2007) instead of using WLSMV estimator which uses correlations 

among item responses.  

The estimated correlations among the five knowledge dimensions are presented in 

Table 5.4. Factors, except for a pair of Calculation in Geometry (CG) and Doing Proof 

(DP), have correlations significantly different from 1, suggesting that the factors 

reflecting teachers’ mathematical knowledge for teaching geometry or algebra 1 in doing 

the task of understanding students’ work (USW) are statistically distinguishable by 

different instructional situations. 

As shown in Table 5.4, geometry factors (Calculation in Geometry: CG, Doing 

Proofs: DP, and Exploring a Figure: EF) are more strongly correlated with each other 

than with algebra factors (Simplifying Rational expressions: SR and Solving Equations: 

                                                 
21 Two different approaches (IRT-based models and SEM-based models) are sometimes termed as IRT 

models or Factor analytic models (Kamata & Bauer, 2008) instead of using the terms IRT-based and SEM-

based frameworks under the broad category of Item factor analysis (IFA). This study classifies IRT-based 

and SEM-based framework under IFA, following the taxonomy used Wirth & Edwards (2007). 
22 Estimator MML (marginal maximum likelihood) was used with an adaptive integration (Gauss-Hermite 

integration with a five integration points). 
 
 



 109 

SE). For example, the correlation between USW_CG (understanding students’ work in 

calculation in geometry) and USW_DP (understanding students’ work in doing proofs) 

was as high as 0.94, whereas the correlation between USW_CG (understanding students’ 

work in calculation in geometry)  and USW_SR (understanding students’ work in 

simplifying rational expressions) was as low as 0.39. 

Table 5.4. Estimated correlations among dimensions within USW 

 Dimension  

Dimension USW_CG USW_DP USW_EF USW_SR USW_SE 

USW_CG      

USW_DP 0.94     

USW_EF 0.83 0.85    

USW_SR 0.39 0.53 0.72   

USW_SE 0.68 0.75 0.72 0.62  

 

Similar to the case of SEM-based modeling, the high correlation between 

USW_CG and USW_DP led me to examine any advantage of distinguishing two factors 

over combining them. To compare the nested IRT-based models, I calculated the 

difference in the log-likelihoods twice (deviance) with the difference in the number of 

free parameters.  

The result of likelihood ratio test was consistent with that found with the SEM-

based modeling described above (which used the WLSMV estimator) in that the 4-

dimensional MIRT model fit the data significantly better than the 3-dimensional IRT 

model, (χ2=10.56, df=3, p =0.014) (Table 5.5), but not significantly worse than the 5-

dimensional IRT model (χ2=2.97, df=4, p =0.564). Moreover, all the item loadings of the 

EF (Exploring a Figure) factor (i.e., standardized item discriminations in the MIRT 

framework) on the 4-factor model went up slightly relative to the loadings in the 3-factor 

model (x12322: 0.44 → 0.48; 12324: 0.26→0.28; x12334: 0.51→0.59) (Table 5.3), 
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indicating that these EF items can explain more variance when they are distinguished 

from the factor of USW_CG&DP. AIC information statistic also suggested that a 4-

dimensional model is better than a 3-dimensional model where all the geometry items are 

loaded on a unidimensional factor (note that lower information value indicates better fit) 

(Table 5.5). 

 

Table 5.5. Comparison of fit among MIRTs within USW 

Model Deviance  

(-2log 

likelihood) 

statistics 

Number of 

free 

parameters 

Change 

in 

Deviance 

Change 

in 

Degrees 

of 

Freedom 

p AIC 

5-Dimension 13096.14 60    13216.143 

4-Dimension 

(CG+DP) 

13099.11 56 2.97 4 0.56 13211.108 

3-Dimension 

(CG+DP+MC) 

13109.66 53 10.56 3 0.01 13215.660 

 

In summary, tested measurement models supported my hypothesis that the items 

within the same task of understanding students’ work (USW) could be distinguished by 

different instructional situations, though the distinction between calculation in geometry 

(CG) and doing proofs (DP) requires preferring a less parsimonious solution for the sake 

of higher loadings. Moreover, the results were consistent under both SEM and IRT based 

framework. In the next section, the same hypothesis on the structure of USW items is 

investigated under a DCM framework. 

5.1.1.2 Dimensionality analysis of the items of USW using DCM 

In addition to the IFA models in which the latent construct is considered to be 

continuous, a DCM model was applied to the same data set with the same hypothesis on 
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the structure of items. Specifically, a loglinear cognitive diagnosis model (LCDM), a 

general DCM model allowing item parameterization to vary at the item level, was 

retrofitted to the items designed to measure five distinguishable dimensions of teachers’ 

knowledge in doing the task of understanding students’ work (USW_CG, USW_DP, 

USW_EF, USW_SR, USW_SE). Following the correspondence between items and 

targeted constructs, the LCDM model was set to estimate the main effects of items on 

each of the five knowledge attributes distinguished by instructional situations within the 

task of USW. The Q-matrix specifying the item-to-knowledge attribute alignment is 

presented in Table 5.6. 

Table 5.6. Q-matrix for items within USW 

Item Attribute 

1: 

USW_CG 

Attribute 

2: 

USW_DP 

Attribute 

3: 

USW_EF 

Attribute 

4: 

USW_SR 

Attribute 

5:  

USW_SE 

x12020, x12222, 

x12223, x12224_b, 

x12228_b, x12229,  

1 0 0 0 0 

x12121, x12126, 

x12131 
0 1 0 0 0 

x12322, x12324_b, 

x12334_b 
0 0 1 0 0 

m1007, m1013, 

m1019 
0 0 0 1 0 

m1001, m1003_b, 

m1009, m1011_b, 

m1016 

0 0 0 0 1 

*items with _b are dichotomized (originally ordinal items) responses 

 

As shown in the Q-matrix, each item measures only one attribute. This type of Q-

matrix is referred to as a simple structure (Jurich & Bradshaw, 2013). The example 

formula below expresses the LCDM proposed for estimating teachers’ knowledge 
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attribute USW_CG measured by an item i, which is designed to measure only USW_CG 

within the task of USW.  

𝑙𝑛(
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑈𝑆𝑊_𝐶𝐺)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑈𝑆𝑊_𝐶𝐺)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑈𝑆𝑊_𝐶𝐺)𝛼𝑟𝑈𝑆𝑊_𝐶𝐺 (1) 

In equation (1), (adapting notations from Rupp et al., 2010), 𝑋𝑖 indicates a dichotomous 

item response to item i by the respondent group (latent class) who have attained the 

mastery status 𝛼𝑟𝑈𝑆𝑊_𝐶𝐺, which is 1 if the knowledge USW_CG is mastered by the 

group, and 0 otherwise. Accordingly, the dependent variable of 𝑙𝑛(
𝑃(𝑋𝑖 =1|𝛼𝑟𝑈𝑆𝑊_𝐶𝐺)

𝑃(𝑋𝑖=0|𝛼𝑟𝑈𝑆𝑊_𝐶𝐺)
) is 

the logit of a correct answer to item i by the respondents. Regarding the use of notations, 

the second subscript (0 or 1) of 𝜆 indicates whether the item parameter corresponds to the 

intercept (0) or main effect (1) for item i, and the third subscript, which is within 

parentheses, indicates the attribute to which the main effect refers. Thus, the parameter 

𝜆𝑖,0 – the intercept – indicates a logit for non-masters of the attribute measured by item i 

and the parameter 𝜆𝑖,1,(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) – the main effect – indicates the increase in the logit for 

mastering the attribute measured by item i. For another example, the equation could be 

expressed as below for the item x12121 which measures USW_DP. 

𝑙𝑛(
𝑃(𝑋𝑋12121 =1|𝛼𝑟𝑈𝑆𝑊_𝐷𝑃)

𝑃(𝑋𝑋12121=0|𝛼𝑟𝑈𝑆𝑊_𝐷𝑃)
) = 𝜆𝑋12121,0 + 𝜆𝑋12121,1,(𝑈𝑆𝑊_𝐷𝑃)𝛼𝑟𝑈𝑆𝑊_𝐷𝑃  

  Each mastery indicator (𝛼𝑟𝑈𝑆𝑊_𝐶𝐺 or 𝛼𝑟𝑈𝑆𝑊_𝐷𝑃) is an element of a vector that 

represents a mastery profile 𝛼𝑟. In this example, where the LCDM model estimates 

teachers’ five knowledge attributes reflecting the five different instructional situations 

within the task of USW, the mastery profile of a respondent can be expressed as 

𝛼𝑟=[𝛼𝑟𝑈𝑆𝑊_𝐶𝐺, 𝛼𝑟𝑈𝑆𝑊_𝐷𝑃 , 𝛼𝑟𝑈𝑆𝑊_𝐸𝐹, 𝛼𝑟𝑈𝑆𝑊_𝑆𝑅, 𝛼𝑟𝑈𝑆𝑊_𝑆𝐸] . This indicates which attribute 

the respondent has mastered (𝛼𝑟𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒= 1 if the attribute is mastered, and 𝛼𝑟𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒= 
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0 otherwise). For example, the mastery profile of the respondent who has mastered 

USW_CG and USW_DP, but not for other attributes can be expressed as 𝛼𝑟= 

[𝛼𝑟𝑈𝑆𝑊_𝐶𝐺, 𝛼𝑟𝑈𝑆𝑊_𝐷𝑃 , 𝛼𝑟𝑈𝑆𝑊_𝐸𝐹=, 𝛼𝑟𝑈𝑆𝑊_𝑆𝑅, 𝛼𝑟𝑈𝑆𝑊_𝑆𝐸]= [1,1,0,0,0]. 

Given that one item measures only one knowledge attribute within the same task of 

teaching, the probability of a correct response for item i is estimated by two parameters –

an intercept 𝜆𝑖,0 and a main effect 𝜆𝑖,1,(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒). Using these estimated item parameters 

(the intercept and the main effect), the proportions of teachers for each of the mastery 

profiles could be calculated, which are reported in a later section. 

5.1.1.2.1 Model fit  

Even though the Q-matrix used in estimating the LCDM model was based on a 

measurement model that had shown good model fit statistics in IFA models, the LCDM 

model fit also needed to be evaluated before interpreting the estimated item parameters. 

In regard to model fit indices, there has been no specific reliable test that can evaluate the 

global model fit of DCMs (Rupp et al., 2010). Alternatively, limited-information methods 

using item-pair associations have been used in several studies to produce indices of 

model fit of a DCM. For example, one study using DCM in student assessment (Jurich & 

Bradshaw, 2013) used a bivariate goodness of fit statistic to evaluate a DCM model’s 

ability in reproducing the data. Following their approach, this present study calculated a 

bivariate goodness of fit statistic with a χ2(1) distribution for each pair of items to 

examine the pairs of items that demonstrate poor fit. These bivariate fit indices – an index 

for a pair of items – were calculated by Mplus.  

The result suggested that 95.8% (182 pairs) of the 190 (=
20∗19

2
) item pairs showed 

good model fit (i.e., chi-square value is insignificant) when chi-square values were 
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evaluated at a 0.05 significance value and only one item pair showed misfit at a 0.01 

significance level. Overall, my LCDM model estimating teachers’ knowledge in 

understanding students’ work across five knowledge attributes provided an acceptable 

model fit for the data used in this study. Therefore, the item parameters estimated from 

the model were further interpreted as follows. 

5.1.1.2.2 Item parameter estimates 

Again, as the model estimates a simple structure where one item measures only 

one knowledge attribute, only main effects (𝜆𝑖,1,(𝑎)) and intercept (𝜆𝑖,0) parameters were 

estimated. The estimated item parameters are listed in Table 5.7. 

As shown in the last row of the second column in the table, the average intercept 

across items is -0.72, indicating the average predicted logit of a correct response for 

teachers who had not mastered the targeted attributes. This means that approximately 

0.33% (= 
𝑒−0.72

(1+𝑒−0.72)
) of teachers, who had not mastered an attribute measured by an item 

of understanding students’ work (USW), answered the items correctly. Next, the average 

main effect ranged from 1.47 to 2.36. This means that the increase in the logit of a correct 

response by mastering an attribute ranged from 1.47 to 2.36. At an item level, for 

example, nonmasters of the understanding students’ work in solving equations 

(USW_SE) measured by item M1016 have a log-odds of correct response -2.29, and 

masters of the USW_SE measured by item M1016 have a log-odds 0.61, which is equal 

to the sum of the intercept value –2.29 and the main effect 2.90. 
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Table 5.7. Estimated item parameters (logit) within USW 

Item Intercept USW_CG USW_DP USW_EF USW_SR USW_SE 

 𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 𝜆𝑖,1,(3) 𝜆𝑖,1,(4) 𝜆𝑖,1,(5) 

x12020 -1.04 (0.29) 1.98 (0.31)     

x12222 -0.09 (0.22) 3.07 (0.50)     

x12223 -0.60 (0.21) 2.12 (0.29)     

x12229 -0.12 (0.19) 1.69 (0.28)     

x12224_b -0.71 (0.25) 2.66 (0.34)     

x12228_b -1.64 (0.33) 2.65 (0.34)     

x12121 -1.58 (0.47)  2.24 (0.48)    

x12126 -1.45 (0.26)  1.43 (0.33)    

x12131 -0.64 (0.38)  2.98 (0.45)    

x12322 -0.69 (0.31)   1.76 (0.3)   

x12324_b -1.06 (0.19)   1.15 (0.33)   

x12334_b -0.78 (0.45)   3.67 (1.16)   

M1007 -0.81 (0.46)    2.03 (0.50)  

M1013 -1.07 (0.28)    0.90 (0.37)  

M1019 -1.72 (0.46)    1.48 (0.48)  

M1001 0.29 (0.24)     1.83 (0.46) 

M1009 -0.39 (0.33)     1.64 (0.39) 

M1016 -2.29 (0.71)     2.90 (0.69) 

M1003_b 1.94 (0.34)     1.17 (0.50) 

M1011_b -0.01 (0.28)     2.26 (0.38) 

Average -0.72 (0.33) 2.36 (0.34) 2.22 (0.42) 2.19 (0.60) 1.47 (0.45) 1.96 (0.48) 

Standard errors in parentheses 

 

The main effect size of each item on each knowledge attribute was evaluated 

using the conventional metrics for an odds ratio suggested by Bradshaw et al. (2014, p.6) 

with small effect sizes for odd ratios between 1.44 and 2.47, medium effect sizes for odd 

ratios between 2.47 and 4.25, and large effect sizes for odd ratios larger than 4.25. 

According to this convention, one item had small effect sizes (M1013: 2.46 =e0.90), three 

items had medium effect sizes (x12126, x12324_b, M1003_b), and the remaining 16 

items had large effect sizes. This result suggests that all the items measured the intended 

attributes with significant effect sizes. 
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5.1.1.2.3 Probability of a correct response between nonmasters and masters 

Following the same approach of Bradshaw et al. (2014), the strength of 

associations between measured attributes and each item were examined by using item 

characteristics bar charts (ICBCs). Considering that the ICBCs present the probability of 

a correct response to an item for each of the latent classifications (masters and 

nonmasters), it can be considered as a DCM version of item characteristics curve in IRT 

framework.  

The ICBCs for each knowledge attributes are displayed in Figures 5.4 ~ 5.8. By 

examining the difference in the probability of a correct response between nonmasters and 

masters, the ability of each item in distinguishing masters from nonmasters was 

evaluated. For example, as shown in Figure 5.8, a difference in the probability of a 

correct response on the item M1003_b between nonmasters and masters is very small, in 

that masters of USW_SE answered the item M1003_b correctly with a 0.96 probability 

and even nonmasters of USW_SE answered the same item correctly with a probability of 

0.87. Based on this small increase in probability of a correct response from nonmasters to 

masters, the item M1003_b may provide little practical information in measuring 

teachers’ knowledge of USW_SE. This item might be too easy to distinguish teachers’ 

mastery level, given that 87% of teachers could get a correct answer even though they 

had not mastered the knowledge attribute. Consequently, whether to include this item for 

estimation was evaluated by using a model comparison test, which is described in the 

next section “Problematic items”.  

Even though some items were weak in discriminating mastery level, overall, 

significant differences could be identified in the probability of getting a correct response 
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between nonmasters and masters across items, with respect to the hypothesized 

constructs. The hypothesized constructs were categorized by instructional situations in 

the task of understanding students’ work.  

 

Figure 5.4. Item characteristic bar chart for USW_CG items 

 

Figure 5.5. Item characteristic bar chart for USW_DP items 
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Figure 5.6. Item characteristic bar chart for USW_EF items 

 

Figure 5.7. Item characteristic bar chart for USW_SR items 
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Figure 5.8. Item characteristic bar chart for USW_SE items 

5.1.1.2.4 Problematic items 
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6.89, p <0.009), indicating that the main effect was significant. Therefore, the main effect 

of M1003_b was not removed in the subsequent analysis.  

5.1.1.2.5 Model comparison 

Similar to the test conducted under the MIRT framework, the 5-attribute LCDM 

model was compared to the 4-attribute LCDM model where the factors CG and DP 

combine together. The result was consistent with that of IFA in that the 4-attribute model 

was not significantly worse than the 5-attribute model (χ2(16) = 7.70, p=0.96), but 

significantly better than the 3-attribute model ((χ2(8) = 27.69, p<0.001). The other fit 

statistics such as AIC also suggested better fit of the 4-attribute model (9377.053) than 

the 5-attribute model (9401.349) or 3-attribute model (9387.74). 

5.1.1.3 Reliability 

The degree of consistency in item scores (i.e., reliability) was evaluated for each 

hypothesized knowledge dimension under two different frameworks: IRT and DCM. 

Under the IRT framework, I examined a range of knowledge levels where the items can 

provide information with acceptable precision using test information functions (TIF) for 

the USW_CG, USW_DP, USW_EF, USW_SR, and USW_SE, respectively. In contrast 

to classical test theory in which reliability of the test scores are estimated by a single 

value, the reliability of the score estimated in IRT is evaluated by a function that varies 

across ability levels. This function is called test information function, which is the sum of 

the information functions from the individual items (Bandalos, 2018, p.429). 

The test information functions for estimated scores, each of which represents a 

IRT score for each hypothesized dimension in USW, are shown in Figure 5.9. There were 

differences in the level of test information among hypothesized USW dimensions. For 
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example, USW_CG items provided precise estimates for the teachers across a wide range 

of theta (-3.0 ~ 1.2) with information greater than 2, which is equivalent to Cronbach 

alpha coefficient of 0.67. On the other hand, USW_SR items provided a little precision 

(less than 1.5) for the entire range of theta. The lowest test information for USW_SR 

seems to be due to the item difficulty. In other word, considering the small number of 

participants who answered the USW_SR items correctly, USW_SR items were too 

difficult to reliably distinguish teachers’ knowledge level. For example, even 

knowledgeable teachers could not answer the items correctly, which is also shown in the 

DCM model (Figure 5.7) that even masters have a less than 50% probability of answering 

the USW_SR item correctly (46% for M1007, 44% for M1019). 

Overall, all the hypothesized knowledge dimensions of USW, except USW_SR, provided 

acceptable precisions for the scores ranged from -2.8 to 2.0, using a threshold 1.5(= 

Cronbach alpha coefficient of 0.6023) for an acceptable level of reliability. For improved 

reliability, more items may need to be added for each of the dimensions. The suggestions 

for item development are discussed in Chapter 6 in more detail. 

                                                 
23  If the scale is short, such as less than 10 items, a slightly lower criteria (of about 0.6) can be considered 

as the criteria of acceptability for reliability coefficients (Lewis & Loewenthal, 2015, p.60) 
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Figure 5.9. Test information function of USW 

 

The reliability of estimates (the reliability of mastery classification, in terms of 

DCMs) was also evaluated under a DCM framework. Using the DCM measure of 

reliability from Templin and Bradshaw (2013), reliability of each of the hypothesized 

knowledge attributes was calculated by using R code created by Templin and Bradshaw 

(2013). The estimated reliabilities were 0.97, 0.93, 0.91, 0.76, 0.91 for USW_CG, 

USW_DP, USW_EF, USW_SR, USW_SE, respectively. As expected, the DCM model 

provided higher reliabilities than the IRT model. The difference in reliability among 

dimensions was also consistent with the results shown in the IRT model. For example, 
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the dimensions (greater than 0.70), which was not attainable in IRT, suggests that a DCM 

could be an alternative measurement model for a small number of items. 

In summary, tested measurement models supported my hypothesis that 

multidimensional models fit the item responses better than a unidimensional model. The 

results supporting the hypothesis were also consistent across three different approaches: 

SEM, MIRT, and DCM. Furthermore, the items within the same task of USW could be 

distinguished by different instructional situations. Even though, two geometry factors 

could not be statistically distinguishable, items yielded higher factor loadings when 

loaded on the two separated factors than when loaded on the combined factor. The result 

may imply that two sets of items (USW_CG and USW_DP) are measuring two different 

dimensions of knowledge reflecting two instructional situations, but they are not 

statistically distinguishable because of a high similarity between two types of 

instructional situations.  

5.1.2 Organization of the items within the task CGP 

The task of choosing the givens for a problem (hereafter, CGP) was 

conceptualized as involving writing text of various kinds of questions such as classroom 

tasks or test items, choosing particular information (numerical, algebraic, diagrammatic) 

to include with the text and deciding how to encode it, ascertaining that the text calls for 

the student to do what the author of the problem expects them to do, and verifying that 

the information given is consistent and sufficient for students to engage in the work 

envisioned. Items that involved the respondent in this task of teaching were classified into 

four separate instructional situations, as shown in Table 5.8.  Compared to the previous 

section where I examined the dimensionality of USW items, this section examines 
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whether the items measuring teachers’ knowledge in doing CGP can be distinguished by 

different instructional situations. The analyses were also conducted under an IFA 

framework (assuming continuous constructs) and a DCM framework (assuming discrete 

attributes); the continuous construct (IFA) framework is further applied under SEM-

based modeling and IRT-based modeling. 

Table 5.8. Items in the task CGP 

Task of teaching 
Instructional situation 

Knowledge 

dimension/Attribute 

# items 

Choosing 

appropriate Givens 

for a Problem 

(CGP) 

Calculation in geometry 

(CG) 

CGP_CG 5 

Doing Proofs in geometry 

(DP) 

CGP_DP 4 

Exploring a Figure in 

geometry (EF) 

CGP_EF 4 

Calculation with Numbers 

(CN) in algebra 

CGP_CN 3 

5.1.2.1 Dimensionality analysis of the items within CGP using IFA 

As all the item factor analyses conducted in this study follow the same design as 

the models described in the previous section with respect to the estimators and settings 

used, I hereafter describe the results from SEM-based modeling and MIRT-based 

modeling together in one section. 

Confirmatory item factor analyses using WLSMV estimator and MML estimator 

were conducted to examine whether the items commonly measuring teachers’ 

mathematical knowledge for the task of choosing the givens for a problem can be 

distinguished in terms of the instructional situation. The result suggested that the factors 

of CGP_EF and CGP_DP were highly correlated as 0.92 (Table 5.9). This high 

correlation between two factors led me to compare this 4-factor model (Figure 5.10. 
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Four-dimensional model within the task CGP) and 3-factor model where CGP_DP and 

CGP_EF are combined (Figure 5.11).  

Confirmatory item factor analyses using WLSMV estimator and MML estimator 

were conducted to examine whether the items commonly measuring teachers’ 

mathematical knowledge for the task of choosing the givens for a problem can be 

distinguished in terms of the instructional situation. The result suggested that the factors 

of CGP_EF and CGP_DP were highly correlated as 0.92 (Table 5.9. Estimated 

correlations among dimensions within CGP). This high correlation between two factors 

led me to compare this 4-factor model (Figure 5.10) and 3-factor model where CGP_DP 

and CGP_EF are combined (Figure 5.11).  

Table 5.9. Estimated correlations among dimensions within CGP 

 Dimension 

Dimension CGP_CG CGP_DP CGP_EF CGP_CN 

CGP_CG     

CGP_DP 0.77    

CGP_EF 0.74 0.92   

CGP_CN 0.66 0.79 0.68  

 

The comparison was tested using DIFFTEST and likelihood ratio test for SEM-

based and MIRT-based modeling, respectively. The result suggested that the 3-factor 

model, where EF and DP are combined, was not significantly worse than the initial 4-

factor model (DIFFTEST: χ2 =1.305, df =3, p =0.7279; LR test:  χ2 =1.48, df =3, p 

=0.687). In contrast, another 3-factor model, where DP and CG are combined, was 

significantly worse than the initial 4-factor model (DIFFTEST: χ2 =12.200, df =3, p 

=0.007; LR test:  χ2 =15.656, df =3, p =0.001). The 3-factor model, where EF and DP are 

combined, was further compared to the 2-factor model, where CG, DP, and EF are 

combined. The comparison results suggested that the 2-factor model was significantly 
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worse than the 3-factor model (DIFFTEST: χ2 =12.762, df =2, p =0.0017; LR test:  χ2 

=18.54, df =2, p < 0.001). In sum, the results indicated that all the pairs of hypothesized 

dimensions are distinguishable except the pair of EF and DP. 

 

Figure 5.10. Four-dimensional model within the task CGP 
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Figure 5.11. Three-dimensional model within the task CGP 

 

Therefore, a 3-factor model, where the factors CGP_EF and CGP_DP are 

combined (Figure 5.11), was evaluated as the most appropriate model based on 

parsimony and fit statistics. The fit statistics of the 3-factor model also shows good global 

fit (RMSEA = 0.011; CFI = 0.994; TLI = 0.993). The fit indices for each model are 

provided in Table 5.10. 

Table 5.10. Comparison of fit among MIRTs within CGP 

Model Deviance  

(-2log 

likelihood) 

statistics 

Number of 

free 

parameters 

Change in 

Deviance 

Change in 

Degrees of 

Freedom 

p 

(significance) 

AIC 

4-Dimension 10986.49 46    11078.49 

3-Dimension 

(DP+EF)  

10987.97 43 1.48 3 0.68 11073.97 

3-Dimension 

(CG+DP) 

11002.14 43 15.66 3 0.001 11088.14 

2-Dimension 

(CG+DP+EF) 

11006.508 41 18.54 2 < 0.001 11088.51 

 



 128 

Table 5.11 below presents estimated factor loadings estimated by the 3-factor and 4-

factor models under SEM- and MIRT-based models.  

Table 5.11. Estimated standardized factor loading within CGP 

  SEM-based IRT-based 

Item Dimension 

2 

(CG+DP

+EF) 

3 

(EF+D

P) 

4 

 

2 

(CG+DP

+EF) 

3  

(EF+DP

) 

4 

 

X12003 

CGP_CG 

0.63 

(0.04) 

0.69 

(0.04) 

0.69 

(0.04) 

0.62 

(0.05) 

0.68 

(0.05) 

0.68 

(0.05) 

X12021 

0.48 

(0.06) 

0.50 

(0.06) 

0.50 

(0.06) 

0.45 

(0.06) 

0.45 

(0.06) 

0.45 

(0.06) 

X12202 

0.47 

(0.05) 

0.51 

(0.05) 

0.51 

(0.05) 

0.44 

(0.05) 

0.48 

(0.05) 

0.48 

(0.05) 

X12205 

0.59 

(0.05) 

0.63 

(0.06) 

0.63 

(0.06) 

0.57 

(0.06) 

0.61 

(0.06) 

0.61 

(0.06) 

X12208 

0.52 

(0.06) 

0.56 

(0.06) 

0.56 

(0.06) 

0.50 

(0.07) 

0.56 

(0.07) 

0.56 

(0.07) 

X12009 

CGP_DP 

0.44 

(0.05) 

0.45 

(0.05) 

0.45 

(0.05) 

0.43 

(0.05) 

0.45 

(0.05) 

0.46 

(0.06) 

X11005 

0.52 

(0.06) 

0.54 

(0.06) 

0.54 

(0.07) 

0.50 

(0.06) 

0.49 

(0.06) 

0.49 

(0.06) 

X12103 

0.42 

(0.06) 

0.44 

(0.06) 

0.44 

(0.06) 

0.37 

(0.06) 

0.42 

(0.06) 

0.42 

(0.07) 

X12107 

0.42 

(0.06) 

0.43 

(0.06) 

0.43 

(0.07) 

0.36 

(0.06) 

0.37 

(0.06) 

0.38 

(0.06) 

X12307 

CGP_EF 

0.38 

(0.06) 

0.39 

(0.07) 

0.41 

(0.07) 

0.33 

(0.06) 

0.37 

(0.07) 

0.38 

(0.07) 

X14007 

0.50 

(0.06) 

0.52 

(0.06) 

0.54 

(0.07) 

0.45 

(0.06) 

0.47 

(0.06) 

0.51 

(0.07) 

X14004 

0.32 

(0.06) 

0.34 

(0.07) 

0.36 

(0.07) 

0.27 

(0.06) 

0.31 

(0.07) 

0.32 

(0.07) 

X14027 

0.59 

(0.05) 

0.62 

(0.06) 

0.65 

(0.06) 

0.56 

(0.06) 

0.58 

(0.06) 

0.62 

(0.07) 

M1002 

CGP_CN 

0.58 

(0.07) 

0.58 

(0.07) 

0.58 

(0.07) 

0.53 

(0.07) 

0.54 

(0.07) 

0.53 

(0.07) 

M1014 

0.72 

(0.06) 

0.72 

(0.06) 

0.72 

(0.06) 

0.70 

(0.06) 

0.70 

(0.06) 

0.70 

(0.06) 

M1018 

0.74 

(0.06) 

0.74 

(0.06) 

0.74 

(0.06) 

0.73 

(0.06) 

0.73 

(0.06) 

0.73 

(0.06) 

All item loadings are significant at the p < 0.05 level 

Standardized loading (standard error) 

 

As shown in the table above, all the standardized item loadings of the EF factor 

on the 4-factor model tend to go up slightly relative to the loadings in the 3-factor model, 
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even though 4 factor model is not significantly better than the 3-factor model. This may 

indicate that these items can explain more variance when they are distinguished from DP 

factor. Similarly, all the items of the geometry related factors (CG, DP, EF) have higher 

item factor loadings in the 3-factor model than the 2-factor model in both SEM and IRT-

based models. 

In summary, tested measurement models supported my hypothesis that the items 

within the same task of CGP could be distinguished by different instructional situations, 

though the distinction between EF and DP requires preferring a less parsimonious 

solution for the sake of higher loadings. The results were consistent under both SEM and 

IRT based framework. In the next section, the same hypothesis on the structure of CGP 

items is investigated under a DCM modeling. 

5.1.2.2 Dimensionality analysis of the items within CGP using DCM 

A loglinear cognitive diagnosis model (LCDM) was retrofitted to the items 

measuring teachers’ knowledge in doing the task of choosing the givens for a problem 

(CGP_CG, CGP_DP, CGP_EF, CGP_CN). Following the same 4-factor structure tested 

in IFA, the LCDM model was set to estimate the main effects of items on each of the four 

knowledge attributes distinguished by instructional situations within the task CGP. The 

specified Q-matrix (Table 5.12) and the equation demonstrating the model parameters 

(Equation 2) are as follows. 
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Table 5.12. Q-matrix for items within CGP 

Item Attribute 

1: 

CGP _CG 

Attribute 

2: 

CGP_DP 

Attribute 

3: 

CGP_EF 

Attribute 

4: 

CGP_CN 

X12003, X12021, X12202_b, 

X12205, X12208  
1 0 0 0 

X12009_b, X11005, X12103_b, 

X12107 
0 1 0 0 

X12307, X14007, X14004, 

X14027 
0 0 1 0 

M1002, M1014, M1018 0 0 0 1 

Items with _b are dichotomized (originally ordinal items) responses 

Following the same notations used in the previous section, the equation estimating 

parameters of the CGP items can be represented as follows: 

ln (
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑎)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑎)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑎)𝛼𝑟𝑎, where a=CGP_CG, CGP_DP, CGP_EF, 

or CGP_CN, depending on the attribute item i measures 

(2) 

For each item, the equation (2) has one intercept and one main effect. Given that there are 

four hypothesized dimensions within CGP, a respondent’s profile vector is expressed as a 

vector with four elements 𝛼𝑟=[𝛼𝑟𝐶𝐺𝑃_𝐶𝐺, 𝛼𝑟𝐶𝐺𝑃_𝐷𝑃,𝛼𝑟𝐶𝐺𝑃_𝐸𝐹,𝛼𝑟𝐶𝐺𝑃_𝐶𝑁 ], each of which has 

1, when a respondent has mastered the knowledge attribute. Thus, the main effect 

parameter of an attribute can be included in the calculation of the logit, only if a 

respondent’s mastery profile has “1” for that attribute.  

For example, item x12003 measures knowledge attribute CGP_CG and the 

equation estimating item parameters of the item can be represented as 

ln (
𝑃(𝑋𝑥12003 = 1|𝛼𝑟𝐶𝐺𝑃_𝐶𝐺)

𝑃(𝑋𝑥12003 = 0|𝛼𝑟𝐶𝐺𝑃_𝐶𝐺)
) = 𝜆𝑥12003,0 + 𝜆𝑥12003,1,(𝐶𝐺𝑃_𝐶𝐺)𝛼𝑟𝐶𝐺𝑃_𝐶𝐺  

The parameter 𝜆𝑥12003,0 is the intercept, indicating the logit of a correct answer to item 

x12003 by nonmasters of CGP_CG (𝛼𝑟𝐶𝐺𝑃_𝐶𝐺 = 0). The parameter 𝜆𝑖,1,(𝐶𝐺𝑃_𝐶𝐺) is the 
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main effect (indicated by the second subscript) for CGP_CG. It represents the increase in 

the logit of a correct answer to item x12003 for mastering CGP_CG for a respondent (a 

teacher in this study) who has not mastered the attribute. 

5.1.2.2.1 Model fit 

Following the same approach used in evaluating the LCDM model with USW 

items (5.1.1.2), the fit of the LCDM model with CGP items was evaluated by calculating 

a bivariate goodness of fit statistic with a χ2(1) distribution for each pair of CGP items 

(Rupp et al., 2010). 

The result suggested that 95% (115 pairs) of the 120 (=
16∗15

2
) item pairs showed 

good model fit (i.e., chi-square value is insignificant) when chi-square values were 

evaluated at a 0.05 significance value and no item pair showed misfit at a 0.01 

significance level. Overall, my LCDM model estimating teachers’ knowledge in choosing 

the givens for a problem across four knowledge attributes provided an acceptable model 

fit for the data used in this study. Therefore, the item parameters estimated from the 

model were further interpreted as follows. 

5.1.2.2.2 Item parameter estimates 

The item parameters estimated from the LCDM are listed in Table 5.13. As 

shown in the table, the average intercept across items is -0.73, indicating the average 

predicted logit of a correct response for teachers who had not mastered any of the 

attributes. This means that approximately 0.33% (= 
𝑒−0.73

(1+𝑒−0.73)
) of teachers who had not 

mastered any of the three CGP knowledge attributes answered the items correctly. The 

average main effect ranged from 1.65 to 2.58. This means that the increase in the logit of 
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a correct response by mastering one of the attributes ranged from 1.65 to 2.58, which 

correspond to odds ratios between 5.21 and 13.20. The main effect size of each item on 

each knowledge attribute was evaluated using the criterion for odds ratio suggested by 

Bradshaw et al. (2014, p.6), with small effect sizes for odd ratios between 1.44 and 2.47, 

medium effect sizes for odd ratios between 2.47 and 4.25, and large effect sizes for odd 

ratios larger than 4.25). According to these suggested thresholds, three items had medium 

effect sizes (x12107, x12307, x14004) and the remaining 13 items had large effect sizes. 

This result suggests that all the items measured the intended attributes with significant 

effect sizes. 

Table 5.13. Estimated item parameters (logit) within CGP 

Item Intercept CGP_CG CGP_DP CGP_EF CGP_CN 

 
𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 𝜆𝑖,1,(3) 𝜆𝑖,1,(4) 

X12003_b -2.38 (0.37) 2.70 (0.39)    

X12021 -0.27 (0.17) 1.65 (0.31)    

X12202_b -1.20 (0.25) 1.92 (0.32)    

X12205 -0.12 (0.21) 2.63 (0.48)    

X12208 0.61 (0.20) 2.32 (0.51)    

X12009_b -1.02 (0.18)  1.65 (0.31)   

X11005 -1.57 (0.26)  1.92 (0.34)   

X12103 -0.66 (0.19)  1.70 (0.32)   

X12107 -0.82 (0.23)  1.33 (0.31)   

X12307 0.31 (0.17)   1.25 (0.33)  

X14004 -1.39 (0.27)   1.21 (0.35)  

X14007 -0.75 (0.24)   2.09 (0.35)  

X14027 -0.90 (0.24)   2.27 (0.37)  

M1002 -0.19 (0.22)    1.92 (0.32) 

M1014 -1.14 (0.34)    2.92 (0.40) 

M1018 -0.23 (0.23)    2.89 (0.50) 

Average -0.73 (0.24) 2.24 (0.40) 1.65 (0.32) 1.70 (0.35) 2.58 (0.40) 

Standard errors in parentheses 
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5.1.2.2.3 Probability of a correct response between nonmasters and masters 

Following the same approach of Bradshaw et al. (2014), the strength of 

associations between measured attributes and each item were examined by using item 

characteristics bar charts (ICBCs). The ICBCs for each knowledge attributes are 

displayed in Figure 5.12~5.15. By examining the difference in the probability of a correct 

response between nonmasters and masters, the ability of each item in distinguishing 

masters from nonmasters was evaluated. Overall, significant differences could be 

identified in the probability of getting a correct response between nonmasters and masters 

across items, with respect to the four CGP knowledge attributes. The ICBCs also provide 

information about item difficulties. For example, x14004 seems to be a difficult item 

given that even masters choose a correct answer with less than 0.5 probability (Figure 

5.14).  

 

Figure 5.12. Item characteristic bar charts (ICBCs) for CGP_CG items 
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Figure 5.13. Item characteristic bar charts (ICBCs) for CGP_DP 

 

Figure 5.14. Item characteristic bar charts (ICBCs) for CGP_EF 
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Figure 5.15. Item characteristic bar charts (ICBCs) for CGP_CN 

 

Overall, ICBCs showed noticeable differences in the probability of a correct 

response between nonmasters and masters for all the CGP items. 

 

5.1.2.2.4 Model comparison 

Similar to the test conducted under the MIRT framework, the 4-attribute LCDM 

model was compared to the 3-attribute LCDM model (where the attributes DP and EF 

combine together) and the 2-attribute LCDM model (where the attributes CG, DP, and 

EF combine together). The result was consistent with that of IFA in that the 3-attributes 

model (DP+EF) was not significantly worse than the 4-attributes model (χ2(8) = 8.89, 

p=0.35), but significantly better than the 2-attribute model ((χ2(4) = 22.31, p<0.001). 

Other fit statistics, such as AIC, also suggested better fit of the 3-attribute model 
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5.1.2.3 Reliability 

The degree of consistency in item scores (i.e., reliability) was evaluated for each 

hypothesized knowledge dimension under two different modeling: IFAs and DCM. 

Under the IFA modeling I examined a range of knowledge levels where the items can 

provide information with acceptable precisions using test information functions (TIF) for 

the CGP_CG, CGP_DP, CGP_EF, CGP_CN, respectively. In contrast to classical test 

theory in which reliability of the test scores are estimated by a single value, the reliability 

of the score estimated in IRT is evaluated by a function that varies across ability levels.  

The test information functions for estimated scores are presented in Figure 5.16 

and Figure 5.17. As shown in the figure, CGP_CG items provided precise estimates for 

teachers across a wide range of theta (-3.0 ~ 1.4) with information greater than 2, which 

is equivalent to Cronbach alpha coefficient of 0.67. The combined factor of CGP_DPEF 

provided acceptable information (greater than 1.5) for the entire range of theta (Figure 

5.17), while CGP_DP and CGP_EF provided less than 2.0 information when they are 

scaled separately (Figure 5.16).  In particular, the combined factor of CGP_DPEF 

provided the highest information at the higher values of the knowledge scale (Figure 

5.17). This suggests that CGP_DP&EF items better discriminate high-scoring teachers 

than other items (Figure 5.17). CGP_CN items provided the most precise estimates for 

the teachers whose knowledge scales is between -1.6 and 0.4. 
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Figure 5.16. Test information function of CGP under 4-dimensional MIRT 

 

 

Figure 5.17. Test information function of CGP under 3-dimensional MIRT 

The reliability of estimates (the reliability of mastery classification, in terms of 

DCMs) was also evaluated under a DCM modeling. Using the DCM measure of 

reliability from Templin and Bradshaw (2013), reliabilities of the identified knowledge 

attributes were calculated by using an R code created by Templin and Bradshaw (2013). 
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The estimated reliabilities were 0.87, 0.89, 0.85, and 0.88 for CGP_CG, CGP_DP, 

CGP_EF, and CGP_CN, respectively. As expected, the DCM model provided much 

higher reliabilities than the IRT model.  

In summary, tested measurement models supported my hypothesis that 

multidimensional models fit the item responses better than a unidimensional model 

within the task of CGP. The results supporting the hypothesis were also consistent across 

three different approaches: SEM, MIRT, and DCM. The items within the same task of 

CGP could be distinguished by different instructional situations. However, two geometry 

factors reflecting CGP_DP (knowledge for choosing appropriate givens for a problem in 

a situation of doing proofs) and CGP_EF (knowledge for choosing appropriate givens for 

a problem in a situation of exploring figures) could not be statistically distinguishable. 

This may imply that there are high similarities between two types of instructional 

situations – doing proofs and exploring figures, which will be discussed in Chapter 6 in 

more detail. 

5.2 Dimensionality within the same instructional situation 

To examine whether multiple dimensions can be identified by the organizer task of 

teaching, the dimensionality of the item responses was investigated within each 

instructional situation. Given that three item clusters of instructional situations – Doing 

Proofs (DP), Calculation in Geometry (CG), and Exploring a Figure (EF) – were 

identified across two different Tasks of Teaching, the distinction was examined through 

three separate Chi-Square Difference Tests within the situation of DP, CG, and EF 

respectively. Specifically, the fit of two-dimensional model (where USW is distinguished 
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from CGP) was compared to the unidimensional model (where two tasks are combined) 

for each of the instructional situations – DP, CG, and EF. 

5.2.1 Organization of the items within the instructional situation CG 

The items commonly measuring teacher’ mathematical knowledge in the 

instructional situation of Calculation in Geometry (CG) were divided into two categories 

according to the task of teaching involved: one is the set of items measuring teachers’ 

mathematical knowledge in doing the task of understanding students’ work (USW_CG) 

and another is the set of items measuring teachers’ mathematical knowledge in doing the 

task of choosing appropriate givens for a problem (CGP_CG) (Table 5.14).  

 

Table 5.14. Items in the instruction situation CG 

Task of teaching 
Instructional situation 

Knowledge 

dimension/Attribute 

# 

items 

 

Calculation in 

Geometry (CG)  

Understanding Students’ 

work (USW) 
USW_CG 6 

Choosing appropriate 

Givens for a Problem 

(CGP) 

CGP_CG 

 

5 

 

With these two sets of items, this section examines whether the items measuring teachers’ 

knowledge used in CG can be distinguished by different tasks of teaching. The analyses 

were conducted using IFA and DCM models, and the IFA models were implemented 

under SEM-based and IRT-based framework. 
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5.2.1.1 Dimensionality analysis of the items within CG using IFAs 

Using the same approach applied in the previous sections, confirmatory item 

factor analyses were conducted under SEM and IRT based framework. In other words, 

the comparison between the 2-factor model distinguishing CGP_CG and USW_CG 

(Figure 5.18) and the unidimensional model where all the CG items are loaded on one 

factor (Figure 5.19) was tested using DIFFTEST (under SEM) and likelihood ratio test 

(under MIRT). The results suggested that the two factors representing two different tasks 

of teaching within the same instructional situation of CG are statistically distinguishable 

(DIFFTEST: χ2 =8.167, df =1, p =0.004; LR test:  χ2 =9.894, df =1, p =0.002). 

 

 

Figure 5.18. Two-dimensional model within the instructional situation CG 
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Figure 5.19. Unidimensional model within the instructional situation CG 

 

Both unidimensional and 2-factor model yielded good global fit statistics. The fit indices 

for each model are provided in Table 5.15. The factor loadings estimated by the 2-factor 

and 1-factor model under SEM- and MIRT-based models are presented in Table 5.15. 

 

Table 5.15. Comparison of fit among the IFA models within CG 

 SEM-based MIRT-based 

Model RMSEA CFI TLI 

Deviance 

(-2log 

likelihood) 

statistics 

Number of 

free 

parameters 

Deviance 

change 

df 

change 
p AIC 

2-

Dimension 
0.000 1.000 1.000 7582.51 32    7646.50 

1-

Dimension 
0.018 0.994 0.993 7592.40 31 9.89 1 0.002 7654.40 
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Table 5.16. Estimated standardized factor loadings within CG 

  SEM-based IRT-based 

Item Dimension 1 2 1 2 

X12020 

USW_CG 

0.54 (0.06) 0.55 (0.06) 0.49 (0.06) 0.50 (0.06) 

X12222 0.74 (0.05) 0.75 (0.05) 0.74 (0.05) 0.76 (0.05) 

X12223 0.64 (0.05) 0.65 (0.05) 0.60 (0.05) 0.62 (0.05) 

X12224 0.65 (0.04) 0.67 (0.04) 0.63 (0.04) 0.65 (0.04) 

X12228 0.60 (0.05) 0.61 (0.05) 0.58 (0.05) 0.59 (0.05) 

X12229 0.50 (0.06) 0.51 (0.06) 0.47 (0.06) 0.47 (0.06) 

X12003 

CGP_CG 

0.62 (0.04) 0.65 (0.04) 0.59 (0.05) 0.64 (0.05) 

X12021 0.43 (0.06) 0.45 (0.06) 0.37 (0.06) 0.40 (0.06) 

X12202 0.55 (0.05) 0.58 (0.05) 0.53 (0.05) 0.55 (0.05) 

X12205 0.56 (0.06) 0.59 (0.06) 0.52 (0.06) 0.56 (0.06) 

X12208 0.60 (0.06) 0.63 (0.06) 0.58 (0.06) 0.61 (0.06) 

All item loadings are significant at the p < 0.05 level 

Standardized loading (standard error) 

 

As expected from the result of model comparison, all the items showed higher 

factor loadings when they were loaded onto separated factors than when they were loaded 

on the same factor of CG (Table 5.16). This indicates that CG items can explain more 

variance when they are distinguished by two different tasks of teaching. In summary, 

tested measurement models supported my hypothesis that the items within the same 

instructional situation CG could be distinguished by different tasks of teaching. 

Moreover, the results were consistent under both SEM and IRT based framework. In the 

next section, the same hypothesis on the structure of CG items is investigated using a 

DCM model. 

 

 



 143 

5.2.1.2 Dimensionality analysis of the items within CG using DCM 

A loglinear cognitive diagnosis model (LCDM) was retrofitted to the items 

designed to measure two distinguishable dimensions of teachers’ knowledge in the 

situation of calculation in geometry (USW_CG and CGP_CG). Following the same 2-

factor structure tested in IFA, the LCDM model was set to estimate the main effects of 

items on each of the two knowledge attributes distinguished by tasks of teaching within 

the instructional situation CG. The specified Q-matrix (Table 5.17) and the equation 

demonstrating the model parameters (Equation 3) are as follows. 

 

Table 5.17. Q-matrix for the items within CG 

Item Attribute 1: 

USW_CG 

Attribute 2: 

CGP_CG 

X12020 

X12222 

X12223 

X12224_b 

X12228_b 

X12229 

1 0 

X12003_b 

X12021 

X12202_b 

X12205 

X12208 

0 1 

Items with _b are dichotomized (originally ordinal item) responses 

 

 

Following the same notations used in the previous section, the equation estimating 

parameters of the CG items can be represented as follows: 

ln (
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑎)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑎)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑎)𝛼𝑟𝑎, where a = USW_CG or CGP_CG, 

depending on the attribute item i measures 

(3) 
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For each item, the equation (3) has one intercept and one main effect. Given that 

there are two hypothesized dimensions within CG, a respondent’s profile is expressed as 

a vector with two elements 𝛼𝑟=[𝛼𝑟𝑈𝑆𝑊−𝐶𝐺, 𝛼𝑟𝐶𝐺𝑃−𝐶𝐺], each of which has 1 when a 

respondent has mastered the knowledge attribute. Thus, the main effect parameter of an 

attribute is included in the calculation of the logit, only if a respondent’s mastery profile 

has “1” for that attribute (𝜆𝑖,1,(𝑎)𝛼𝑟𝑎= 𝜆𝑖,1,(𝑎)*0 = 0). 

For example, item x12003 measures knowledge attribute CGP_CG and the 

equation estimating item parameters of the item can be represented as 

ln (
𝑃(𝑋𝑥12020 = 1|𝛼𝑟𝑈𝑆𝑊_𝐶𝐺)

𝑃(𝑋𝑥12020 = 0|𝛼𝑟𝑈𝑆𝑊_𝐶𝐺)
) = 𝜆𝑥12020,0 + 𝜆𝑥12020,1,(𝑈𝑆𝑊_𝐶𝐺)𝛼𝑟𝑈𝑆𝑊_𝐶𝐺 

The parameter 𝜆𝑥12020,0 is the intercept, indicating the logit of a correct answer to item 

x12020 by non-masters of USW_CG (𝛼𝑟𝑈𝑆𝑊−𝐶𝐺 = 0). The parameter 𝜆𝑖,1,(𝑈𝑆𝑊_𝐶𝐺) is the 

main effect (indicated by the second subscript) for USW_CG. It represents the increase in 

the logit of a correct answer to item x12020 for mastering USW_CG for a respondent (a 

teacher in this study) who had not mastered the attribute. 

5.2.1.2.1 Model fit 

The fit of the LCDM model with CG items was evaluated by calculating a 

bivariate goodness of fit statistic with a χ2(1) distribution for each pair of 11 CG items 

(Rupp et al., 2010). The result suggested that all the item pairs except one (between 

x12208 and x12223) showed a good model fit (i.e., chi-square value is insignificant) 

when chi-square values are evaluated at a 0.05 significance value. Overall, my LCDM 

model estimating teachers’ knowledge in the situation of CG across two knowledge 
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attributes provided an acceptable model fit for the data used in this study. Therefore, the 

item parameters estimated from the model were further interpreted as follows. 

5.2.1.2.2 Item parameters 

The item parameters estimated from the LCDM are listed in Table 5.18. As 

shown in the table, the average intercept across items is -0.76, indicating the average 

predicted logit of a correct response for teachers who had not mastered any of the 

attributes. This means that approximately 0.32% (= 
𝑒−0.76

(1+𝑒−0.76)
) of teachers who had not 

mastered any of the two CG knowledge attributes answered the items correctly. The 

average main effect is 2.57 and 2.17 for USW_CG and CGP_CG, respectively. This 

means that the increase in the logit of a correct response by mastering USW_CG is 2.57, 

which correspond to odds ratio of 13.07, and the increase in the logit of a correct 

response by mastering CGP_CG is 2.17, which corresponds to odds ratio of 8.76. The 

main effect size of each item on each knowledge attribute was evaluated using the 

criterion for odds ratio suggested by Bradshaw et al. (2014, p. 6), with small effect sizes 

for odd ratios between 1.44 and 2.47, medium effect sizes for odd ratios between 2.47 

and 4.25, and large effect sizes for odd ratios larger than 4.25. According to these 

suggested thresholds, all 11 CG items had large effect sizes. This result suggests that all 

the items measured the intended attributes with significant effect sizes. 
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Table 5.18. Estimated item parameters (logit) within CG 

Item Intercept USW_CG CGP_CG 

 

𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 

USW_CG    

X12020 -0.89 (0.22) 1.86 (0.26)  

X12222 -0.05 (0.19) 3.56 (0.87)  

X12223 -0.60 (0.21) 2.28 (0.29)  

X12224_b -0.58 (0.23) 2.67 (0.32)  

X12228_b -1.44 (0.30) 2.48 (0.31)  

X12229 -0.03 (0.18) 1.61 (0.26)  

CGP_CG    

X12003_b -2.77 (0.51)  2.76 (0.51) 

X12021 -0.47 (0.19)  1.55 (0.26) 

X12202_b -1.44 (0.25)  1.89 (0.30) 

X12205 -0.36 (0.20)  2.25 (0.31) 

X12208 0.29 (0.20)  2.37 (0.37) 

Average -0.76 (0.24) 2.57 (0.41) 2.17 (0.35) 

Standard errors in parentheses 

5.2.1.2.3 Probability of a correct response between nonmasters and masters 

Following the same approach of Bradshaw et al. (2014), the strength of 

associations between measured attributes and each item were examined by using item 

characteristics bar charts (ICBCs). The ICBCs for each CG knowledge attributes are 

displayed in Figure 5.20 and Figure 5.21. As shown in both figures, significant 

differences in the probability of getting a correct response between nonmasters and 

masters could be found in all 11 CG items. The probability of getting a correct response 

for masters was more than 0.5 across all the items, whereas the probability of getting a 

correct response for nonmasters was less than 0.5 across all the items except one item 

(57% for the item x12208). 
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Figure 5.20. Item characteristics bar chart for USW_CG items 

 

 

Figure 5.21. Item characteristics bar charts for CGP_CG items 
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5.2.1.2.4 Model comparison 

Similar to the test conducted under the MIRT framework, the 2-attribute LCDM 

model was compared to the 1-attribute LCDM model (where all the items are assumed to 

measure the mastery of a single attribute CG). The result was consistent with that of IFA 

in that the 2- attribute model was significantly better than the 1- attribute model ((χ2(2) = 

8.984, p=0.01). Other fit statistics, such as AIC, also suggested better fit of the 2-attribute 

model (5312.895) than the 1-attribute model (5317.878). 

In summary, tested measurement models supported my hypothesis assuming that 

the two- factor (or two- attribute) model fit the item responses better than the 

unidimensional model within the instructional situation of calculation in geometry (CG). 

The results supporting the hypothesis were also consistent across three different 

approaches: SEM, MIRT, and DCM. The items within the same situation of CG could be 

distinguished by different tasks of teaching – understanding students’ work (USW) and 

choosing the givens for a problem (CGP). 

5.2.2 Organization of the items within the instructional situation DP 

The items that involved the respondents in the instructional situation Doing 

Proofs in geometry (DP) were classified into two separate tasks of teaching, as shown in 

Table 5.19. One category is the set of items measuring teachers’ mathematical knowledge 

in doing the task of understanding students’ work (USW_DP) and another is the set of 

items measuring teachers’ mathematical knowledge in doing the task of choosing 

appropriate givens for a problem (CGP_DP).  
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Table 5.19. Items within DP 

Task of 

teaching 
Instructional situation 

Knowledge 

dimension/attribute 
# items 

Doing Proofs 

in Geometry 

(DP) 

Understanding Students’ 

Work (USW) 
USW_DP 3 

Choosing appropriate 

Givens for a Problem 

(CGP) 

CGP_DP 4 

 

With these two sets of items, this section examines whether the items measuring 

teachers’ knowledge used in the situation of DP can be distinguished by two different 

tasks of teaching. The analyses were conducted using IFA (assuming continuous 

constructs) and DCM models (assuming discrete attributes); the continuous construct 

(IFA) model was implemented under SEM-based and IRT-based framework. 

5.2.2.1.1 Dimensionality analysis of the items within DP using IFAs 

To examine whether the two hypothesized dimensions characterized by different 

tasks of teaching can be distinguished within the same instructional situation of doing 

proofs (DP), confirmatory item factor analyses were conducted under SEM and IRT 

based framework. The result suggested that the factors CGP_DP and USW_DP were 

correlated as 0.634, which is significantly less than 1 (Figure 5.22). The comparison 

between the 2-factor model (Figure 5.22) and the unidimensional model (Figure 5.23) 

was further tested using DIFFTEST and likelihood ratio test to confirm that the two 

factors are statistically distinguishable. The results suggested that the two factors 

representing two different tasks of teaching within the same instructional situation of DP 

are statistically distinguishable (DIFFTEST: χ2 =8.355, df =1, p =0.004; LR test:  χ2 

=10.83, df =1, p =0.001). 
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Figure 5.22. Two-dimensional model within the instructional situation DP 

 

Figure 5.23. Unidimensional model within the instructional situation DP 

 

Table 5.20 presents model fit statistics for each factor model as well as the result 

of comparison test (2-factor vs. 1-factor). As shown in the table, the 2-dimensional model 
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shows acceptable fit statistics, whereas 1-dimensional model does not (CFI=0.904, 

TLI=0.857). The information statistics (AIC) also suggested that a 2-dimensional model 

better fits the data than a unidimensional model (note that lower information value 

indicates better fit). 

Table 5.20. Comparison of fit among IFAs within DP 

 SEM-based MIRT-based 

Model 
RMSE

A 
CFI TLI 

Deviance 

(-2log 

likelihood

) statistics 

Number of free 

parameters 

Devia

nce 

chang

e 

df 

chan

ge 

p AIC 

2-

Dimension 
0.039 0.946 0.912 

5175.41 
18    5211.41 

1-

Dimension 
0.050 0.904 0.857 

5186.24 
17 10.83 1 0.001 5220.24 

 

To examine the advantage of 2-factor model over 1-factor model at an item level, the 

factor loadings estimated from the 2-factor and 1-factor model under SEM- and MIRT-

based models are presented, respectively in Table 5.21. 

Table 5.21. Estimated standardized factor loadings within DP 

  SEM-based IRT-based 

Item Dimension 1 2 1 2 

X12121 USW_DP 0.50 (0.07) 0.55 (0.08) 0.44 (0.08) 0.53 (0.08) 

X12126 0.46 (0.08) 0.47 (0.08) 0.42 (0.08) 0.40 (0.08) 

X12131 0.65 (0.07) 0.74 (0.09) 0.59 (0.09) 0.73 (0.09) 

X12009_b CGP_DP 0.49 (0.06) 0.56 (0.07) 0.47 (0.07) 0.53 (0.08) 

X11005 0.38 (0.08) 0.41 (0.08) 0.35 (0.08) 0.37 (0.08) 

X12103 0.42 (0.07) 0.48 (0.08) 0.39 (0.07) 0.46 (0.08) 

X12107 0.38 (0.08) 0.41 (0.08) 0.36 (0.07) 0.38 (0.08) 

All item loadings are significant at the p < 0.05 level 

Standardized loading (standard error) 

The item loadings for each model suggested that the DP items explain more 

variance when they are distinguished by the task of teaching than when they are loaded 
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on one factor of DP, given higher item loadings on 2-dimensional model than 1-

dimensional model under both SEM and IRT based modeling.  

 In summary, tested measurement models supported my hypothesis that the items 

within the same instructional situation of doing proofs (DP) could be distinguished by 

different tasks of teaching – USW and CGP. Moreover, the results were consistent under 

both SEM and IRT framework. In the next section, the same hypothesis on the structure 

of USW items was investigated under an assumption that teachers’ knowledge level is 

discrete (DCM model). 

5.2.2.2 Dimensionality analysis of the items within DP using DCM 

The two-dimensional structure of the DP items categorized by two tasks of 

teaching (USW and CGP) was estimated by a LCDM model where teachers’ knowledge 

is assumed to be a discrete construct. Compared to the previous analysis which examined 

the distinction between the items of USW and CGP within the situation of calculation in 

geometry (CG), this section reports the LCDM analysis examining the distinction 

between the USW and CGP items within the situation of doing proofs (DP). Using the 

same 2-dimensional model, which showed a good fit under the IFA, the LCDM model 

was set to estimate the main effects of items on each of the two knowledge attributes of 

DP distinguished by tasks of teaching. The Q-matrix and the equation demonstrating the 

model parameters are presented in Table 5.22 and Equation (4), respectively. 
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Table 5.22. Q-matrix for items within DP 

Item Attribute 1:  

USW_DP 

Attribute 2: 

CGP_DP 

X12121, X12126, X12131 1 0 

X12009_b, X11005, X12103, 

X12107 
0 1 

Items with _b are dichotomized (originally ordinal items) responses 

The equation estimating parameters of the DP items is represented as follows: 

ln (
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑎)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑎)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑎)𝛼𝑟𝑎 , where a = USW_DP or CGP_DP 

depending on the attribute item i measures 

(4) 

For each item, the equation (4) has one intercept and one main effect. Given that 

there are two hypothesized dimensions within DP, a respondent’s profile is expressed as a 

vector with two elements 𝛼𝑟=[𝛼𝑟𝑈𝑆𝑊−𝐷𝑃 , 𝛼𝑟𝐶𝐺𝑃−𝐷𝑃], each of which has 1 when a 

respondent has mastered the knowledge attribute. Thus, the main effect parameter of an 

attribute can be included in the calculation of the logit, only if a respondent’s mastery 

profile has “1” for that attribute.  

The parameter 𝜆𝑖,0 indicates the logit of a correct response (to item i) for nonmasters of 

the attribute (𝛼𝑟𝑈𝑆𝑊−𝐷𝑃 = 0 𝑜𝑟 𝛼𝑟𝐶𝐺𝑃−𝐷𝑃 = 0). The parameter 𝜆𝑖,1,(𝑎) is the main effect 

(indicated by the second subscript) for USW_DP (or CGP_DP). It represents the increase 

in the logit of a correct response (to item i) for mastering USW_DP (or CGP_DP) for a 

respondent (a teacher in this study) who has not mastered the attribute.  

5.2.2.2.1 Model fit 

The fit of the LCDM model with DP items was evaluated by calculating a 

bivariate goodness of fit statistic with a χ2(1) distribution for each pair of 7 DP items 

(Rupp et al., 2010). The result suggested that all the item pairs except one (between 
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x11005 and x12126) showed a good model fit (i.e., chi-square value is insignificant) 

when chi-square values are evaluated at a 0.05 significance value. Thus, the LCDM 

model estimating teachers’ knowledge in the situation of DP across two knowledge 

attributes was considered as acceptable and the item parameters estimated from the model 

were further interpreted. 

5.2.2.2.2 Item parameter estimates (2-attribute model) 

The item parameters estimated from the LCDM for DP items are listed in Table 

5.23. As shown in the table, the average intercept across items is -1.03, indicating the 

average predicted logit of a correct response for teachers who had not mastered any of the 

attributes. This means that approximately 0.26% (= 
𝑒−1.03

(1+𝑒−1.03)
) of teachers who had not 

mastered any of the two DP knowledge attributes answered items correctly. The average 

main effects are 2.29 and 1.67 for USW_DP and CGP_DP, respectively. This means that 

the increase in the logit of a correct response by mastering USW_DP is 2.20, which 

correspond to odds ratio of 9.02, and the increase in the logit of a correct response by 

mastering CGP_DP is 1.67, which correspond to odds ratio of 5.31. The main effect size 

of each item on each knowledge attribute was evaluated using the criterion for odds ratio 

suggested by Bradshaw et al. (2014, p. 6), with small effect sizes for odd ratios between 

1.44 and 2.47, medium effect sizes for odd ratios between 2.47 and 4.25, and large effect 

sizes for odd ratios larger than 4.25. According to these suggested thresholds, 2 items had 

medium effects and the remaining 5 items had large effect sizes. This result suggests that 

all the items measured the intended attributes with significant effect sizes. 
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Table 5.23. Estimated item parameters (logit) within DP 

Item Intercept USW_DP CGP_DP 

 

𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 

USW_DP    

X12121 -1.51 (0.59) 2.39 (0.49)  

X12126 -1.33 (0.24) 1.41 (0.34)  

X12131 -0.36 (0.38) 3.06 (0.84)  

CGP_DP    

X12009_b -1.13 (0.31)  1.96 (0.46) 

X11005 -1.34 (0.31)  1.48 (0.36) 

X12103 -0.65 (0.32)  1.84 (0.43) 

X12107 -0.86 (0.19)  1.40 (0.49) 

Average -1.03 (0.33) 2.29 (0.56) 1.67 (0.43) 

Standard errors in parentheses 

5.2.2.2.3 Probability of a correct response between nonmasters and masters 

The strength of associations between measured attributes and each item were 

examined by using item characteristics bar charts (ICBCs). The ICBCs for each DP 

knowledge attributes are displayed in Figure 5.24 and Figure 5.25. As shown in these 

figures, there were significant differences in the probability of getting a correct response 

between nonmasters and masters for all 7 DP items.  
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Figure 5.24. Item characteristic bar chart for USW_DP items 

 

Figure 5.25. Item characteristic bar chart for CGP_DP items 
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5.2.2.2.4 Model comparison 

Similar to the test conducted under MIRT framework, the 2-attribute LCDM 

model was compared to the 1-attribute LCDM model (where the attributes USW_DP and 

CGP_DP combine together). The result was consistent with that of IFA in that the 2-

attribute model was significantly better than the 1-attribute model ((χ2(2) = 11.734, 

p=0.003). Other fit statistics, such as AIC, also suggested better fit of the 2-attribute 

model (3818.606) than the 1-attribute model (3826.341). 

In summary, tested measurement models supported my hypothesis that 

multidimensional models fit the item responses better than a unidimensional model 

within the instructional situation of geometric calculation (DP). The results supporting 

the hypothesis were also consistent across three different approaches: SEM, MIRT, and 

DCM. The items within the same situation of DP could be distinguished by different 

tasks of teaching – understanding students’ work (USW) and choosing the givens for a 

problem (CGP). However, there may be a need for more items to more reliably measure 

two knowledge dimensions in a wider range of thetas (discussed in Chapter 6). 

5.2.3 Organization of the items within the instructional situation EF 

The items that involved the respondents in the instructional situation exploring a 

Figure in geometry (EF) were classified into two separate tasks of teaching, as shown in 

Table 5.24. One category is the set of items measuring teachers’ mathematical knowledge 

in doing the task of understanding students’ work (USW_EF) and another is the set of 

items measuring teachers’ mathematical knowledge in doing the task of choosing 

appropriate givens for a problem (CGP_EF).  
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Table 5.24. Items in the task EF 

Task of 

teaching 
Instructional situation 

Knowledge 

dimension/attribute 
# items 

Exploring a 

Figure in 

geometry 

(EF) 

Understanding Students’ 

Work (USW) 
USW_EF 3 

Choosing appropriate 

Givens for a Problem 

(CGP) 

CGP_EF 4 

 

With these two sets of items, this section examines whether the items measuring teachers’ 

knowledge used in the situation of EF can be distinguished by two different tasks of 

teaching. The analyses were conducted using IFA and DCM models, and the IFA was 

implemented under SEM-based and IRT-based framework. 

5.2.3.1 Dimensionality of the items within EF using IFAs 

Confirmatory item factor analyses were conducted under SEM and IRT based 

framework to examine whether the items commonly measuring teachers’ mathematical 

knowledge used in the instructional situation EF can be distinguished in terms of the task 

of teaching. The result suggested that the factors USW_EF and CGP_EF were highly 

correlated as 0.928 (Figure 5.26). This high correlation between USW_EF and CGP_EF 

led me to compare the 2-factor model and 1-factor model where USW_EF and CGP_EF 

are combined (Figure 5.27). 

The comparison between the 2-factor model (Figure 5.26) and the unidimensional 

model (Figure 5.27) using DIFFTEST and likelihood ratio test revealed that the two-

factor model is not significantly better than the one-factor model. (DIFFTEST: χ2 =0.635, 

df =1, p =0.4254; LR test:  χ2 =0.44, df =1, p =0.5071). 
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Figure 5.26. Two-dimensional model within EF 

 

Figure 5.27. Unidimensional model within EF 

Table 5.25 presents model fit statistics for each factor model as well as the result of 

comparison test (2-factor vs. 1-factor). 

Table 5.25. Comparison of fit among IFAs within EF 

 SEM-based MIRT-based 

Model RMSEA CFI TLI 

Deviance 

(-2log 

likelihood) 

statistics 

Number of 

free 

paramet-ers 

Deviance-

change 

df 

change 
p AIC 

2-

Dimension 
0.035 0.961 0.936 

5433.87 
18    5469.87 

1-

Dimension 
0.033 0.963 0.944 

5434.31 
17 0.44 1 0.507 5468.31 
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Table 5.26 presents model fit statistics for each factor model as well as the result of 

comparison test (2-factor vs. 1-factor).  

Table 5.26. Estimated standardized factor loadings within EF 

  SEM-based IRT-based 

Item Dimension 1 2 1 2 

X12322 USW_EF 0.56 (0.07) 0.58 (0.07) 0.53 (0.07) 0.54 (0.08) 

X12324 0.31 (0.07) 0.31 (0.07) 0.28 (0.06) 0.29 (0.07) 

X12334 0.56 (0.06) 0.58 (0.06) 0.53 (0.06) 0.55 (0.07) 

X12307 CGP_EF 0.44 (0.07) 0.44 (0.08) 0.41 (0.08) 0.41 (0.08) 

X14007 0.48 (0.07) 0.49 (0.07) 0.43 (0.07) 0.45 (0.08) 

X14004 0.43 (0.07) 0.44 (0.08) 0.39 (0.07) 0.40 (0.08) 

X14027 0.59 (0.07) 0.61 (0.07) 0.57 (0.07) 0.58 (0.08) 

All item loadings are significant at the p < 0.05 level 

Standardized loading (standard error) 

 

In summary, the result was different from my initial hypothesis that the items 

within the same instructional situation of Exploring a Figure (DP) could be distinguished 

by different tasks of teaching – USW and CGP. My conjecture about this result is 

described in Appendix. In the next section, the same hypothesis on the structure of EF 

items was investigated under an assumption that teachers’ knowledge level is discrete 

(DCM modeling). 

5.2.3.2 Dimensionality of the items within EF using DCM 

A LCDM was retrofitted to the items measuring teachers’ knowledge used in the 

instructional situation EF (USW_EF, CGP_EF). Following the same 2-factor structure 

tested in IFA, the LCDM model was set to estimate the main effects of items on each of 

the two knowledge attributes distinguished by tasks of teaching within the instructional 

situation EF. The specified Q-matrix (Table 5.27) and the equation demonstrating the 

model parameters (Equation 5) are as follows. 

 



 161 

Table 5.27. Q-matric for the items within EF 

Item Attribute 1:  

USW_EF 

Attribute 2: 

CGP_EF 

X12322, X12324_b X12334_b 1 0 

X12307, X14004, X14007, X14027 0 1 

Items with _b are dichotomized (originally ordinal items) responses 

 The equation estimating parameters of the EF items can be represented as follows: 

ln (
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑎)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑎)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑎)𝛼𝑟𝑎 , where a=USW_EF or CGP_EF 

depending on the attribute item i measures 

(5) 

For each item, the equation (5) has one intercept and one main effect. Given that there are 

two hypothesized dimensions within EF, a respondent’s profile is expressed as a vector 

with two elements 𝛼𝑟=[𝛼𝑟𝑈𝑆𝑊−𝐸𝐹, 𝛼𝑟𝐶𝐺𝑃−𝐸𝐹], each of which has 1 when a respondent has 

mastered the knowledge attribute. Thus, the main effect parameter of an attribute can be 

included in the calculation of the logit, only if a respondent’s mastery profile has “1” for 

that attribute.  

The parameter 𝜆𝑖,0 indicates the logit for non-masters of the attribute  

(𝛼𝑟𝑈𝑆𝑊−𝐸𝐹 = 0 𝑜𝑟 𝛼𝑟𝐶𝐺𝑃−𝐸𝐹 = 0). The parameter 𝜆𝑖,1,(𝑎) is the main effect (indicated by 

the second subscript) for USW_EF (or CGP_EF). It represents the increase in the logit of 

a correct response for mastering USW_EF (or CGP_EF) for a respondent (a teacher in 

this study) who has not mastered the attribute.  

5.2.3.2.1 Model fit 

The fit of the LCDM model with EF items was evaluated by calculating a 

bivariate goodness of fit statistic with a χ2(1) distribution for each pair of seven EF items 

(Rupp et al., 2010). The result suggested that all the item pairs except one (between 

x12322 and x14027) showed a good model fit (i.e., chi-square value is insignificant) 
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when chi-square values are evaluated at a 0.05 significance value. Thus, the LCDM 

model estimating teachers’ knowledge in the situation of EF across two knowledge 

attributes was considered as acceptable and the item parameters estimated from the model 

were further interpreted. 

5.2.3.2.2 Item parameter estimates 

The item parameters estimated from the LCDM for EF items are listed in Table 

5.28. As shown in the table, the average intercept across items is -0.73, indicating the 

average predicted logit of a correct response for teachers who had not mastered any of the 

attributes. This means that approximately 0.32% (= 
𝑒−0.73

(1+𝑒−0.73)
) of teachers who had not 

mastered any of the two EF knowledge attributes answered items correctly. The average 

main effect is 2.06 and 1.76 for USW_EF and CGP_EF, respectively. This means that the 

increase in the logit of a correct response by mastering USW_EF is 2.96, which 

corresponds to odds ratio of 7.84, and the increase in the logit of a correct response by 

mastering CGP_EF is 1.76, which corresponds to odds ratio of 5.81. The main effect size 

of each item on each knowledge attribute was evaluated using the criterion for odds ratio 

suggested by Bradshaw et al. (2014, p. 6), with small effect sizes for odd ratios between 

1.44 and 2.47, medium effect sizes for odd ratios between 2.47 and 4.25, and large effect 

sizes for odd ratios larger than 4.25). According to these suggested thresholds, 2 items 

had medium effects and the remaining 5 items had large effect sizes. This result suggests 

that all the items measured the intended attributes with significant effect sizes. 
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Table 5.28. Estimated item parameters (logit) within EF 

Item Intercept USW_EF CGP_EF 

 

𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 

USW_EF    

X12322 -0.69 (0.25) 1.79 (0.37)  

X12324_b -1.12 (0.25) 1.26 (0.32)  

X12334_b -0.62 (0.41) 3.13 (0.72)  

CGP_EF    

X12307 0.21 (0.18)  1.60 (0.39) 

X14004 -1.41 (0.27)  1.27 (0.34) 

X14007 -0.59 (0.21)  1.77 (0.35) 

X14027 -0.91 (0.24)  2.40 (0.44) 

Average -0.73 (0.26) 2.06 (0.47) 1.76 (0.38) 

Standard errors in parentheses 

 

5.2.3.2.3 Probability of a correct response between nonmasters and masters 

The strength of associations between measured attributes and each item were 

examined by using item characteristics bar charts (ICBCs). The ICBCs for each EF 

knowledge attributes are displayed in Figure 5.28 and Figure 5.29. As shown in these 

figures, there were significant differences in the probability of getting a correct response 

between nonmasters and masters for all seven EF items.  

5.2.3.2.4 Model comparison 

Similar to the test conducted under MIRT framework, the 2-attribute LCDM 

model was compared to the 1-attribute LCDM model (where the attributes USW_EF and 

CGP_EF combine together). The result was consistent with that of IFA in that the 2-

attribute model was not significantly better than the 1- attribute model ((χ2(2) = 2.842, 

p=0.24). The other fit statistics such as AIC also suggested better fit of the 1- attribute 

model (3629.922) than the 2- attribute model (3631.08). 
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Figure 5.28. Item characteristic bar chart for USW_EF items 

 

Figure 5.29. Item characteristic bar chart for CGP_EF items 

In summary, for the instructional situation of exploring a figure (EF), tested 

measurement models did not support my hypothesis that the items representing the 

situation EF can be distinguished by task of teaching – USW_EF and CGP_EF. The 

results were also consistent across three different approaches: SEM, MIRT, and DCM. 

The conjectured reason for the non-distinction between USW and CGP items within EF 

is discussed in Chapter 6. 
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5.3 Dimensionality within the same course of studies 

In the following sections, I report the results of the two dimensionality analyses, 

each of which was conducted within the same course of study. One is the model in which 

each dimension is characterized by one task of teaching and one instructional situation 

within the U.S. high school geometry course. Another is the model in which each 

dimension is characterized by one task of teaching and one instructional situation within 

the U.S. algebra 1 course.  

5.3.1 Organization of the items within geometry 

The items commonly measuring teacher’ mathematical knowledge used in 

teaching U.S. high school geometry were sorted into two separate instructional situations, 

either CG or DP, and each set was further divided into two tasks of teaching, USW or 

CGP, as shown in Table 5.29. In particular, this section focuses on 1) whether the 

dimensions which were not distinguishable by one of the organizers (e.g., USW_CG and 

USW_DP) are distinguishable if they have different traits in both organizers (e.g., 

USW_CG and CGP_DP) and 2) whether the dimensions different in both organizers are 

less correlated each other than the dimensions different in one of the organizers. Note, 

considering the result shown in the previous section, the set of items characterized by the 

situation EF was not included in this analysis because its item set was not statistically 

distinguishable by different tasks of teaching (5.2.3). This may indicate that the items of 

EF used in this study do not capture a difference in teachers’ knowledge between the task 

of USW and CGP in the situation EF. 

In sum, this section examined the dimensionality among the items reflecting 

instructional situations (CG and DP), where problems are taught within customary ways 



 166 

of doing academic work in U. S. high school geometry24 across two different tasks of 

teaching, USW and CGP. 

Table 5.29. Items within the course of high school geometry 

Instructional 

situation 
Task of teaching 

Knowledge 

dimension/attributes 
# items 

 

Calculation 

in Geometry 

(CG) 

 

Understanding Students’ 

work (USW) 
USW_CG 6 

Choosing appropriate 

Givens for a Problem 

(CGP) 

CGP_CG 
 

5 

Doing Proofs 

in geometry 

(DP) 

Understanding Students’ 

work (USW) 
USW_DP 3 

Choosing appropriate 

Givens for a Problem 

(CGP) 

CGP_DP 4 

 

All of the four item sets were analyzed in one of the previous analyses conducted 

within one task of teaching or instructional situation, but they were not analyzed both 

across tasks of teaching and instructional situations simultaneously. This section reports 

the results analyzing the dimensionality across two different tasks of teaching (USW and 

CGP) and two instructional situations (CG and DP) using IFA and DCM models, and the 

IFAs were implemented under SEM-based and IRT-based modeling. 

5.3.1.1 Dimensionality of the items within geometry using IFAs 

To examine whether the two hypothesized dimensions characterized by different 

tasks of teaching and instructional situations can be distinguished within the same course 

of study (U.S. high school geometry), the 4-factor confirmatory item factor analyses were 

conducted under SEM and IRT based framework (Figure 5.30). 

                                                 
24 American high school students often take a year-long course in geometry in their first or second year of 

high school. The topics covered, mostly within plane synthetic, transformational, and coordinate geometry 

and some solid geometry, can be found in commercial textbooks (Ko & Herbst, under review). 
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Figure 5.30. Four-dimensional model within U.S. high school geometry 

 

Table 5.30 presents all the estimated pairwise correlations among the 

hypothesized knowledge dimensions in geometry. As shown in Table 5.30, the 

correlations between two factors which have different tasks of teaching and different 

instructional situations were significantly less than 1. For example, the factor of CGP_DP 

and USW_CG had a correlation 0.80 and the factor of USW_DP and CGP_CG had a 

correlation 0.79. This may indicate that items are distinguishable if they are measuring 

different tasks of teaching and different instructional situations, even though they are not 

distinguishable when having the same category regarding one of the organizers. 

Table 5.30. Estimated correlations among dimensions within geometry 

 Dimension 

Dimension CGP_DP USW_DP CGP_CG USW_CG 

CGP_DP     

USW_DP 0.65    

CGP_CG 0.77 0.79   

USW_CG 0.80 0.94 0.86  
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The factor loadings estimated by the 4-factor model under SEM- and MIRT-based 

models are presented in Table 5.31. All the factor loadings were significant at 0.01 level 

in both SEM and MIRT modeling. SEM-based model also yielded good fit statistics 

(RMSEA=0.017; CFI=0.990; TLI=0.988). 

 

Table 5.31. Estimated standardized factor loadings within geometry 

 

SEM-based 

4-factor 

IRT-based 

4-factor 

USW_CG   

X12020 0.58 (0.05) 0.53 (0.05) 

X12222 0.74 (0.04) 0.74 (0.05) 

X12223 0.64 (0.05) 0.59 (0.05) 

X12224 0.66 (0.04) 0.64 (0.04) 

X12228 0.62 (0.05) 0.60 (0.05) 

X12229 0.52 (0.06) 0.48 (0.06) 

CGP_CG   

X12003 0.65 (0.04) 0.65 (0.05) 

X12021 0.48 (0.06) 0.42 (0.06) 

X12202 0.57 (0.05) 0.55 (0.05) 

X12205 0.61 (0.06) 0.58 (0.06) 

X12208 0.59 (0.06) 0.56 (0.06) 

USW_DP   

X12121 0.59 (0.05) 0.55 (0.06) 

X12126 0.46 (0.06) 0.40 (0.06) 

X12131 0.72 (0.06) 0.69 (0.07) 

CGP_DP   

X12009 0.48 (0.05) 0.48 (0.06) 

X11005 0.55 (0.07) 0.47 (0.07) 

X12103 0.37 (0.07) 0.37 (0.07) 

X12107 0.44 (0.07) 0.39 (0.07) 

All item loadings are significant at the p < 0.01 level 

                              Standardized loading (standard error) 
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Model comparison tests were further conducted to examine whether the 

distinction is statistically significant for each pair of dimensions different in both task of 

teaching and instructional situation. Table 5.32 presents model fit statistics for each factor 

model as well as the result of comparison test (4-factor vs. 3-factor). As shown in the 

table, the 4-dimensional model better fits the data than the 3-dimensional models, where 

CGP_DP and USW_CG or USW_DP and CGP_CG are combined.  

Table 5.32. Comparison of tit among multidimensional models within geometry 

 SEM-based MIRT-based 

Model 
RMS

EA 
CFI TLI 

Deviance 

(-2log 

likelihood

) statistics 

Numbe

r of 

free 

parame

ters 

Devian

ce 

change 

df 

cha

nge 

p AIC 

4-Dimension 

(All separate) 
0.017 0.990 0.988 12525.26 54    12633.26 

3-Dimension 

(CGP_DP+USW_CG) 
0.019 0.987 0.985 12535.22 51 9.96 3 0.019 12637.22 

3-Dimension 

(USW_DP+CGP_CG) 
0.020 0.985 0.982 12538.14 51 12.88 3 0.005 12640.14 

 

In summary, tested measurement models supported my hypothesis that the items 

within the same course of study (geometry) could be distinguished if they are different in 

both instructional situations and tasks of teaching. The results were consistent under both 

SEM and IRT based framework. 

However, different from what I hypothesized, the pairs of dimensions were not 

necessarily less correlated when they have different tasks of teaching and different 

instructional situations simultaneously than when they have either the same task of 

teaching or the same instructional situation. This implies that the degree of distinction is 

dependent on the characteristics of each task of teaching or instructional situation (e.g., 

how similar the different tasks or situations are to each other). This point is discussed in 
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more detail in Chapter 6. In the next section, the same hypothesis on the structure of 

geometry items was investigated under a DCM modeling 

5.3.1.2 Dimensionality of the items within geometry using DCM 

Following the same procedure, a LCDM model was applied to the items 

measuring teachers’ mathematical knowledge for teaching high school geometry. The 

model was set to estimate the main effect of items on each of the four knowledge 

attributes characterized by one tasks of teaching and one instructional situation 

(USW_CG, CGP_CG, USW_DP, CGP_DP). The specified Q-matrix (Table 5.33) and 

the equation demonstrating the model parameters (Equation 6) are as follows. 

Table 5.33. Q-matrix for the items within geometry 

Items 
Attribute 1: 

USW_CG 

Attribute 2: 

CGP_CG 

Attribute 3: 

USW_DP 

Attribute 4: 

CGP_DP 

X12020 

X12222 

X12223 

X12224_b 

X12228_b 

X12229 

1 0 0 0 

X12003_b 

X12021 

X12202_b 

X12205 

X12208 

0 1 0 0 

X12121 

X12126 

X12131 

0 0 1 0 

X12009_b 

X11005 

X12103 

X12107 

0 0 0 1 

Items with _b are dichotomized (originally ordinal items) responses 

 

Following the convention of notations, the equation estimating parameters of the 

geometry items can be represented as follows: 
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ln (
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑎)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑎)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑎)𝛼𝑟𝑎  , where a=USW_CG, CGP_CG, 

USW_DP, or CGP_DP, depending on the attribute item i measures 

(6) 

For each item, the equation (6) has one intercept and one main effect. Given that 

there are four hypothesized dimensions within geometry, a respondent’s profile is 

expressed as a vector with four elements 𝛼𝑟=[𝛼𝑟𝑈𝑆𝑊−𝐺𝐶 , 𝛼𝑟𝐶𝐺𝑃−𝐷𝑃,𝛼𝑟𝑈𝑆𝑊−𝐷𝑃,𝛼𝑟𝐶𝐺𝑃−𝐷𝑃 ], 

each of which has 1 when a respondent has mastered the knowledge attribute. Thus, the 

main effect parameter of an attribute can be included in the calculation of the logit, only 

if a respondent’s mastery profile has “1” for that attribute. The parameter 𝜆𝑖,0 is the 

intercept, indicating the logit for non-masters of the attribute (USW_CG, CGP_CG, 

USW_DP, or CGP_DP) (𝛼𝑟𝑈𝑆𝑊−𝐺𝐶 = 0, 𝛼𝑟𝐶𝐺𝑃−𝐺𝐶 = 0, 𝛼𝑟𝑈𝑆𝑊−𝐷𝑃 = 0, 𝑜𝑟 𝛼𝑟𝐶𝐺𝑃−𝐷𝑃 =

0). The parameter 𝜆𝑖,1,(𝑎) is the main effect (indicated by the second subscript), indicating 

the increase in the logit for mastering the attribute for a respondent (a teacher in this 

study) who has not mastered the attribute.  

5.3.1.2.1 Model fit 

The fit of the LCDM model with CG items was evaluated by calculating a 

bivariate goodness of fit statistic with a χ2(1) distribution for each pair of 18 geometry 

items (Rupp et al., 2010). The result suggested that 93% (142 pairs) of the 153 (=
18∗17

2
) 

item pairs showed good model fit (i.e., chi-square value is insignificant) when chi-square 

values are evaluated at a 0.05 significance value and 2 item pairs (between x12107 and 

x12223, and between x12208 and x12223) showed misfit at a 0.01 significance level. 

Overall, my LCDM model estimating teachers’ knowledge for teaching high school 

geometry across four knowledge attributes provided an acceptable model fit for the data 
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used in this study. Therefore, the item parameters estimated from the model were further 

interpreted as follows. 

5.3.1.2.2 Item parameter estimates 

The item parameters estimated from the LCDM are listed in Table 5.34. As 

shown in the table, the average intercept across items is -0.85, indicating the average 

predicted logit of a correct response for teachers who had not mastered any of the 

attributes. This means that approximately 0.30% (= 
𝑒−0.85

(1+𝑒−0.85)
) of teachers who had not 

mastered any of the four geometry knowledge attributes answered the items correctly. 

The average main effect ranged from 1.60 to 2.40. This means that the increase in the 

logit of a correct response by mastering one of the attributes ranged from 1.60 to 2.40, 

which correspond to 4.95 to 11.02 in terms of odds ratio. The main effect size of each 

item on each knowledge attribute was evaluated using the criterion for odds ratio 

suggested by Bradshaw et al. (2014, p. 6), with small effect sizes for odd ratios between 

1.44 and 2.47, medium effect sizes for odd ratios between 2.47 and 4.25, and large effect 

sizes for odd ratios larger than 4.25). According to this suggested thresholds, three items 

had medium effect sizes (x12126, x12103, and x12107) and the remaining 15 items had 

large effect sizes. This result suggests that all the items measured the intended attributes 

with significant effect sizes. 
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Table 5.34. Estimated item parameters within geometry 

Item Intercept USW_CG CGP_CG USW_DP CGP_DP 

 𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 𝜆𝑖,1,(3) 𝜆𝑖,1,(4) 

x12020 -0.91 (0.23) 1.94 (0.28)    

x12222 0.00 (0.20) 3.52 (0.72)    

x12223 -0.50 (0.20) 2.17 (0.30)    

x12229 -0.02 (0.18) 1.66 (0.28)    

x12224_b -0.51 (0.22) 2.56 (0.33)    

x12228_b -1.40 (0.29) 2.51 (0.32)    

x12021 -0.39 (0.20)  1.63 (0.27)   

x12205 -0.24 (0.21)  2.24 (0.36)   

x12208 0.44 (0.23)  2.34 (0.42)   

x12003_b -2.86 (0.61)  3.01 (0.57)   

x12202_b -1.38 (0.25)  1.95 (0.31)   

x12121 -1.64 (0.53)   2.37 (0.46)  

x12126 -1.38 (0.28)   1.36 (0.31)  

x12131 -0.53 (0.38)   2.86 (0.46)  

x11005 -1.59 (0.27)    1.91 (0.34) 

x12103 -0.57 (0.18)    1.44 (0.35) 

x12107 -0.87 (0.21)    1.41 (0.30) 

x12009_b -1.03 (0.17)    1.65 (0.41) 

Average -0.85 (0.27) 2.40 (0.37) 2.23 (0.39) 2.20 (0.41) 1.60 (0.35) 

Standard errors in parentheses 

5.3.1.2.3 Probability of a correct response between non masters and masters 

Following the same approach as Bradshaw et al. (2014), the strength of 

associations between measured attributes and each item were examined by using item 

characteristics bar charts (ICBCs). The ICBCs for each knowledge attributes are 

displayed in Figure 5.31~Figure 5.34. By examining the difference in the probability of a 

correct response between nonmasters and masters, the ability of each item in 

distinguishing masters from nonmasters was evaluated. Overall, significant differences 

could be identified in the probability of getting a correct response between nonmasters 

and masters across items, with respect to the four geometry knowledge attributes, Again, 
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each knowledge attribute was characterized by one task of teaching and one instructional 

situation. 

 

Figure 5.31. Item characteristic bar chart for USW_CG items 

 

 

Figure 5.32. Item characteristic bar chart for CGP_CG items 
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Figure 5.33. Item characteristic bar chart for USW_DP items 

 

 

Figure 5.34. Item characteristic bar chart for CGP_DP items 

 

Overall, ICBCs showed noticeable differences in the probability of a correct response 

between nonmasters and masters for all the CGP items. 
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5.3.1.2.4 Model comparison 

Similar to the test conducted under MIRT framework, the 4-attribute LCDM 

model was compared to the 3-attribute LCDM models, where CGP_DP and USW_CG or 

USW_DP and CGP_CG are combined. The result of the distinction between USW_DP 

and CGP_CG was consistent with that of IFA in that the 4-attribute model was 

significantly better than the 3-attribute models (USW_DP and CGP_CG combined, χ2(8) 

= 18.598, p=0.017). However, the 3-factor LCDM model, where CGP_DP and USW_CG 

were combined, was not significantly worse than the 4-factor model (χ2(8) = 14.566, 

p=0.068). Nonetheless, considering the distinction is marginally significant and IFA 

models suggest separating CGP_DP and USW_CG, the distinction between CGP_DP and 

USW_CG may require further investigation with more items. 

5.3.2 Organization of the items within algebra 

The 11 items  measuring teacher’ mathematical knowledge commonly used in 

teaching algebra 1 were classified into three separate categories: items measuring 1) 

teachers’ knowledge needed for understanding students’ work in the situation of 

simplifying rational expressions (USW_SR); 2) teachers’ knowledge needed for 

understanding students’ work in the situation of solving a linear or quadratic equation 

(USW_SE); 3) teachers’ knowledge needed for choosing the givens for a problem in a 

situation of calculating with numbers (CGP_CN) (Table 5.35).  
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Table 5.35. Items within algebra 

Task of teaching 

Instructional situation 

Knowledge 

dimension/

attribute 

# items 

Understanding Students’ 

Work (USW) 

Simplifying Rational 

expressions in algebra 

(SR) 

USW_SR 3 

Understanding Students’ 

Work (USW) 

Solving a linear or 

quadratic Equation in 

algebra (SE) 

USW_SE 5 

Choosing appropriate Givens 

for a Problem (CGP) 

Calculation with 

Numbers in algebra 

(CN) 

CGP_CN 3 

 

5.3.2.1 Dimensionality of the items within algebra using IFAs 

To examine whether the hypothesized dimensions characterized by different tasks 

of teaching and different instructional situations can be distinguished within the same 

course of study (U.S. algebra 1), three-factor confirmatory item factor analyses were 

conducted under SEM and IRT based framework (Figure 5.35).  

 

Figure 5.35. Three-dimensional model within algebra 
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As shown in Table 5.36, the correlations among three factors, which have 

different tasks of teaching and different instructional situations were significantly less 

than 1. For example, the factor of CGP_CN and USW_SE had a correlation 0.73 and the 

factor of CGP_CN and USW_SR had a correlation 0.49, indicating that these factors are 

statistically distinguishable from each other. 

Table 5.36. Estimated correlations among dimensions within algebra 

  Dimension  

Dimension CGP_CN USW_SE USW_SR 

CGP_CN    

USW_SE 0.73   

USW_SR 0.49 0.64  

The factor loadings estimated by the 3-factor model under SEM- and MIRT-based 

models are presented in Table 5.37. All the factor loadings were significant at 0.05 level 

in both SEM and MIRT modeling, and the SEM-based model yielded acceptable global 

fit statistics (RMSEA=0.024, CFI=0.968, TLI=0.957). 

Table 5.37. Estimated standardized factor loadings within algebra 

 

SEM-based 

3-factor 

IRT-based 

3-factor 

USW_SR   

M1007 0.55 (0.14) 0.49 (0.12) 

M1013 0.19 (0.10) 0.18 (0.09) 

M1019 0.36 (0.10) 0.34 (0.10) 

USW_SE   

M1001 0.51 (0.08) 0.49 (0.08) 

M1003 0.46 (0.10) 0.42 (0.11) 

M1009 0.45 (0.07) 0.42 (0.07) 

M1011 0.55 (0.07) 0.53 (0.08) 

M1016 0.69 (0.07) 0.67 (0.07) 

CGP_CN   

M1002 0.70 (0.07) 0.63 (0.07) 

M1014 0.68 (0.07) 0.68 (0.07) 

M1018 0.67 (0.07) 0.66 (0.07) 

All item loadings are significant at the p < 0.01 level 

Standardized loading (standard error) 
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Model comparison tests were further conducted to examine whether the 

distinction is statistically significant for each pair of dimensions different in categories of 

task of teaching and instructional situation. Table 5.38 presents model fit statistics for 

each factor model as well as the result of comparison test (3-factor vs. 2-factor). As 

shown in the table, the 3-dimensional model better fits the data than the 2-dimensional 

models where USW_SE and CGP_CN or USW_SR and CGP_CN are combined.  

Table 5.38. Comparison of tit among multidimensional models within algebra 

 SEM-based MIRT-based 

Model 
RMSE

A 
CFI TLI 

Deviance 

(-2log 

likelihoo

d) 

statistics 

Number 

of free 

paramet

ers 

Devia

ncecha

nge 

df 

change 
p AIC 

3-Dimension 

(All separate) 
0.024 0.968 0.957 6224.768 28     

2-Dimension 

(USW_SE+CGP_C

N) 

0.030 0.946 0.930 6237.214 26 12.446 2 0.002 6284.21 

2-Dimension 

(USW_SR+CGP_

CN) 

0.027 0.956 0.944 6232.528 26 7.76 2 0.021 6284.53 

 

In summary, tested measurement models supported my hypothesis that the items 

within the same course of study (algebra 1) could be distinguished if they are different in 

both the categories of instructional situation and task of teaching. However, the pairs of 

dimensions, which involve not only having different tasks of teaching but also different 

instructional situations, were not necessarily less correlated than them, which involve 

having the same task of teaching or instructional situation. For example, the factors 

CGP_CN and USW_SE showed a higher correlation (0.73) than the factors USW_SE and 

USW_SR (0.64) (Figure 5.35).  In addition, one of the USW_SR item M1013 yielded a 

low factor loading, indicating that the response pattern of the item is not highly correlated 

with that of other two items. Moreover, all the three USW_SR items showed relatively 
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lower factor loadings (0.11 ~ 0.31) than other items when all the algebra items were 

loaded on one common factor of knowledge for teaching algebra 1.  

This may imply that the items are not coherently measuring the knowledge of 

understanding students’ work in simplifying rational expressions. This point is discussed 

in Chapter 6 in more detail. 

5.3.2.2 Dimensionality of the items within algebra using DCM 

Following the same procedure conducted for geometry items, a LCDM model was 

applied to the items measuring teachers’ mathematical knowledge for teaching algebra 1. 

The model was set to estimate the main effect of items on each of the three knowledge 

attributes characterized by one tasks of teaching and one instructional situation 

(USW_SR, USW_SE, CGP_CN). The specified Q-matrix (Table 5.39) and the equation 

demonstrating the model parameters (Equation 7) are as follows. 

Table 5.39. Q-matrix for the items within algebra 

Items 
Attribute 1: 

USW_SR 

Attribute 2: 

USW_SE 

Attribute 3: 

CGP_CN 

M1007 

M1013 

M1019 

1 0 0 

M1001 

M1003_b 

M1009 

M1011_b 

M1016 

0 1 0 

M1002 

M1014 

M1018 

0 0 1 

 

Following the same notations used in the previous section, the equation estimating 

parameters of the algebra items can be represented as follows: 
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ln (
𝑃(𝑋𝑖 = 1|𝛼𝑟𝑎)

𝑃(𝑋𝑖 = 0|𝛼𝑟𝑎)
) = 𝜆𝑖,0 + 𝜆𝑖,1,(𝑎)𝛼𝑟𝑎  , where a= USW_SR, USW_SE, or 

CGP_CN, depending on the attribute item i measures 

(7) 

For each item, the equation (7) has one intercept and one main effect. Given that 

there are three hypothesized dimensions within algebra items, a respondent’s profile is 

expressed as a vector with three elements 𝛼𝑟=[𝛼𝑟𝑈𝑆𝑊_𝑆𝐹, 𝛼𝑟𝑈𝑆𝑊−𝑆𝐸,𝛼𝑟𝐶𝐺𝑃−𝑆𝐶 ], each of 

which has 1 when a respondent has mastered the knowledge attribute. Thus, the main 

effect parameter of an attribute can be included in the calculation of the logit, only if a 

respondent’s mastery profile has “1” for that attribute. For example, the parameter 𝜆𝑖,0 is 

the intercept, indicating the logit for non-masters of the targeted attribute (𝛼𝑟𝑈𝑆𝑊_𝑆𝐹, =

0, 𝛼𝑟𝑈𝑆𝑊−𝑆𝐸 = 0, 𝑜𝑟 𝛼𝑟𝐶𝐺𝑃−𝑆𝐶 = 0). The parameter 𝜆𝑖,1,(𝑎)  is the main effect (indicated 

by the second subscript) of the attribute, indicating the logit for mastering the attribute for 

a respondent (a teacher in this study) who has not mastered the attribute.  

5.3.2.2.1 Model fit 

The fit of the LCDM model within algebra 1 items was evaluated by calculating a 

bivariate goodness of fit statistic with a χ2(1) distribution for each pair of 11 algebra 1 

items (Rupp et al., 2010). 

The result suggested that 95% (52 pairs) of the 55 (=
11∗10

2
) item pairs showed 

good model fit (i.e., chi-square value is insignificant) when chi-square values are 

evaluated at a 0.05 significance value and 1 item pairs (between M1001 and M1011) 

showed misfit at a 0.01 significance level. Overall, my LCDM model estimating 

teachers’ knowledge for teaching algebra 1 across three knowledge attributes provided an 
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acceptable model fit for the data used in this study. Therefore, the item parameters 

estimated from the model were further interpreted as follows. 

5.3.2.2.2 Item parameter estimates 

The item parameters estimated from the LCDM are listed in Table 5.40. As 

shown in the table, the average intercept across items is -0.51, indicating the average 

predicted logit of a correct response for teachers who had not mastered any of the 

attributes. This means that approximately 0.38% (= 
𝑒−0.51

(1+𝑒−0.51)
) of teachers who had not 

mastered an attribute measured by an item answered the items correctly. The average 

main effect ranged from 1.84 to 2.68. This means that the increase in the logit of a correct 

response by mastering one of the attributes ranged from 1.84 to 2.68, which correspond 

to 6.28 to 14.53 in terms of odds ratio. The main effect size of each item on each 

knowledge attribute was evaluated using the criterion for odds ratio suggested by 

Bradshaw et al. (2014, p. 6), with small effect sizes for odd ratios between 1.44 and 2.47, 

medium effect sizes for odd ratios between 2.47 and 4.25, and large effect sizes for odd 

ratios larger than 4.25). According to this suggested thresholds, one item had small effect 

size (M1013) and the remaining 10 items had large effect sizes. This result suggests that 

all the items measured the intended attributes with significant effect sizes. 
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Table 5.40. Estimated item parameters (logit) within algebra 

Item Intercept USW_SR USW_SE CGP_CN 

 
𝜆𝑖,0 𝜆𝑖,1,(1) 𝜆𝑖,1,(2) 𝜆𝑖,1,(3) 

M1007 -1.27 (0.67) 2.21 (0.69)   

M1013 -1.19 (0.38) 0.90 (0.44)   

M1019 -2.73 (1.21) 2.41 (1.23)   

M1001 0.56 (0.21)  1.56 (0.34)  

M1009 -0.25 (0.23)  1.65 (0.32)  

M1016 -2.01 (0.41)  2.88 (0.45)  

M1003_b 1.75 (0.25)  2.29 (0.82)  

M1011_b 0.47 (0.22)  1.59 (0.34)  

M1002 -0.25 (0.21)   2.81 (0.63) 

M1014 -0.69 (0.25)   2.53 (0.42) 

M1018 0.06 (0.21)   2.69 (0.57) 

Average -0.51 (0.38) 1.84 (0.79) 1.99 (0.45) 2.68 (0.54) 

Standard errors in parentheses 

 

5.3.2.2.3 Probability of a correct response between non masters and masters 

Following the same approach of Bradshaw et al. (2014), the strength of 

associations between measured attributes and each item were examined by using item 

characteristics bar charts (ICBCs). The ICBCs for each knowledge attributes are 

displayed in Figure 5.36~ Figure 5.38. By examining the difference in the probability of a 

correct response between nonmasters and masters, the ability of each item in 

distinguishing masters from nonmasters was evaluated. Overall, significant differences 

could be identified in the probability of getting a correct response between nonmasters 

and masters for most items, with respect to the three algebra 1 knowledge attributes, 

Again, each knowledge attribute was characterized by one task of teaching and one 

instructional situation. 
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Figure 5.36. Item characteristic bar chart for USW_SR items 

 

 

Figure 5.37. Item characteristic bar chart for USW_SE items 
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Figure 5.38. Item characteristic bar chart for CGP_CN items 

 

One thing to note is that teachers could answer three of the five USW_SE items 

correctly with more than 0.5 probability, even though they did not have mastered level of 

knowledge. This may indicate that USW_SE items were too easy to distinguish teachers’ 

mastery level. On the other hand, teachers could not correctly answer two of the three 

USW_SR items with more than 0.5 probability correctly, even though they are classified 

as masters of USW_SR. This may indicate these USW_SR items were too difficult to 

distinguish teachers. CGP_CN items were relatively good at distinguishing teachers 

compared to other algebra 1 items. 

5.3.2.2.4 Model comparison 

Similar to the test conducted under MIRT framework, the 3-attribute LCDM model 

was compared to the 2-attribute LCDM models (where the attributes USW_SE and 
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that of IFA in that the 3-attribute model was significantly better than the 2-attribute 

0.44

0.33

0.51

0.93
0.86

0.94

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

M1002 M1014 M1018

P
ro

b
ab

ili
ty

 o
f 

a 
co

rr
e

ct
 r

es
p

o
n

se

CGP_CN

nonmaster master



 186 

model (χ2(4) =14.55, p=0.006 for USW_SE and CGP_CN combined model; χ2(4) =12.72, 

p=0.013 for USW_SR and CGP_CN combined model). The other fit statistics such as 

AIC also suggested better fit of the 3-attribute model (5182.703) than the 2- attribute 

models for USW_SE and CGP_CN combined model (5189.248) for USW_SR and 

CGP_CN combined model (5187.541). 

5.4 Differences in geometry knowledge profile proportions 

As shown in the previous sections, except for three pairs (USW_CG and 

USW_DP; CGP_EF and CGP_DP; USW_EF and CGP_EF), all hypothesized dimensions 

were distinguishable by the different tasks of teaching and instructional situations within 

and across the courses of study, geometry and algebra 1. This encouraging result answers 

the first research question – Can multiple dimensions be identified by either or both of 

the organizers within or across the course of studies? While the previous sections answer 

this question by using model fit statistics, this section examines differences among 

hypothesized dimensions in terms of the proportions of knowledge profiles. This section 

applies a DCM model to compare the proportions of knowledge profiles across the 

hypothesized dimensions.  

5.4.1 Knowledge profile proportions within the same task of teaching 

Considering that the EF items involve mathematical work that was more novel 

than the CG or DP items for students to do in the geometry course, I hypothesized that 

the proportion of teachers who mastered the knowledge attribute EF would be smaller 

than the proportion of teachers who mastered the knowledge attribute CG or DP. This 

hypothesis on the difference between EF and CG or DP with respect to the difficulty in 

managing the task USW was examined using teachers’ knowledge profiles estimated 
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from the DCM model described in 5.1.1.2. The proportion of teachers who are classified 

in each of the mastery profiles is presented in Figure 5.39. As the number of attributes 

compared is three, each attribute profile for a teacher is indicated by a vector with three 

elements [𝛼𝑟𝑈𝑆𝑊_𝐶𝐺, 𝛼𝑟𝑈𝑆𝑊_𝐷𝑃 , 𝛼𝑟𝑈𝑆𝑊_𝐸𝐹]. For example, [0,0,0] indicates a profile where 

none of the three attributes are mastered, and [0,0,1] indicates a profile where only 

USW_EF attribute is mastered.  

 

Figure 5.39. Profile proportions within the task USW 

 

As shown in Figure 5.3925, the most likely attribute profile is [1,1,1] (47% of 

teachers), where all three attributes were mastered, and the second most likely attribute 

profile is [0,0,0], where none of the three attributes were mastered (18% of teachers). As 

expected from the high correlation between USW_CG and USW_DP, very low 

proportions of teachers (1% ~ 3%) had profiles where USW_CG and USW_DP have 

                                                 
25 As only the estimates for the geometry-related attributes are plotted, the sum of percentage is not 100% 

(attribute of USW_SR and USW_SE in algebra 1 are not included) 
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different values ([0,1,0], [0,1,1], [1,0,0], [1,0,1]). Regarding the proportions for 

USW_EF, only 2% of teachers had mastered USW_EF without mastering USW_CG and 

USW_DP (profile [0,0,1]), whereas 12% of teachers had mastered USW_CG and 

USW_DP, but not USW_EF (profile [1,1,0]). This difference in the proportion indicates 

that mastering the knowledge attribute for the instructional situations CG and DP seems 

to be relatively easy compared to mastering the knowledge attribute for the instructional 

situation EF. This result seems to support my hypothesis that USW_EF is more difficult 

to achieve a level of mastery than USW_CG or USW_DP. 

A similar analysis was conducted to compare mastery proportions within the CGP 

task. In contrast to USW where the most likely attribute profile is [1,1,1], in CGP, the 

profile [0,0,0] (43% of teachers), where none of the three attributes were mastered, was 

the most likely attribute profile (Figure 5.40)26. As expected from the high correlations 

among the dimensions, each of the profiles other than [1,1,1] or [0,0,0] showed low 

proportions (1% ~ 7%). However, the sum of the proportions of teachers who mastered or 

did not master one of the knowledge attributes was a significant as 21%, which might not 

be identified under the 1-factor DCM model. This result is consistent with the result 

suggesting the 3-attribute DCM model better fit the data than the model less than the 3-

attribute model (5.1.2.2.4, Model Comparison). 

 

 

 

                                                 
26 As only the estimates for the geometry-related attributes are plotted, the sum of percentages is not 100% 

(attribute of CGP_CN in algebra 1 is not included). 
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Figure 5.40. Profile proportions within the task CGP 
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DP, or EF. The results showed that in the instructional situations common in the 

geometry course, such as CG and DP, the dimensions reflecting the tasks USW and CGP 

were statistically distinguishable, meaning that the models distinguishing the items 

reflecting USW and CGP fit the data significantly better than the models combining the 

USW and CGP items together. On the other hand, in classroom encounters where 

students engage in mathematical tasks that are novel or not customary, such as EF, the 

dimensions reflecting the tasks USW and CGP were not statistically distinguishable. 

 Having demonstrated in the previous section that most dimensions are 

distinguishable by different tasks of teaching in terms of model fit, I turn to a discussion 

of dimensionality in terms of the proportions of knowledge profiles. In other words, I 
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CGP within a situation. The existence of those teachers would support the need of having 

more than one dimension.  

The proportions of teachers for each of the mastery profiles were derived from the 

DCM models and the proportions of profiles within each of the instructional situations 

are plotted in Figure 5.41~ Figure 5.43. In those figures, each attribute profile is indicated 

by a vector with two elements [𝛼𝑟𝑈𝑆𝑊_𝐺𝐶 , 𝛼𝑟𝐶𝐺𝑃_𝐺𝐶], [𝛼𝑟𝑈𝑆𝑊_𝐷𝑃 , 𝛼𝑟𝐶𝐺𝑃_𝐷𝑃], and 

[𝛼𝑟𝑈𝑆𝑊_𝐸𝐹, 𝛼𝑟𝐶𝐺𝑃_𝐸𝐹]  within CG, DP, and EF, respectively. For example, [0,1] in CG 

indicates a profile where only CGP_CG attribute is mastered and [1,0] indicates a profile 

where only USW_CG is mastered. Similarly, within DP, [0,1] indicates a profile where 

only CGP_DP attribute is mastered and [1,0] indicates a profile where only USW_DP is 

mastered.  

 

 

Figure 5.41. Profile proportions within CG within geometry 
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Figure 5.42. Profile proportions within DP within geometry 

 

         

Figure 5.43. Profile proportions within EF within geometry 
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regarding knowledge profiles than a unidimensional model. In contrast, a notable number 

of teachers had mastered only either USW or CGP within DP (22% of teachers) (Figure 

5.42). In particular, 20% of teachers mastered only USW_DP, whereas only 2% of 

teachers mastered only CGP_DP, implying that teachers are more highly knowledgeable 

in USW_DP than CGP_DP.  

There is also a difference across different instructional situations in the proportion 

of mastery, called a base rate. The base rate is calculated by taking the sum of the 

probability distribution for the profiles that include mastery of each attribute in teachers’ 

knowledge. For example, the base rate of USW_DP is 56% (=20%+36%), whereas that 

of CGP_DP is 38% (2%+36%) (Figure 5.42). This implies that CGP_DP is more difficult 

to master than USW_DP.  

 In sum, in spite of the small proportion of teachers whose profiles are mix of 0 

and 1, i.e., masters or non-masters only in some of the dimensions, the existence of those 

teachers (7% ~ 22%) supports the previous results suggesting that multidimensional 

models organized by task of teaching and instructional situation provide valuable 

information that is not available in the unidimensional model. In addition, the pattern of 

proportions for some dimensions suggests some hierarchical relationships among the 

dimensions (e.g., USW_CG, USW_DP, and USW_EF) (discussed in Chapter 6). 
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5.5 Differences in algebra knowledge profile proportions 

 

The differences among knowledge dimensions within a course of study were 

further examined in terms of the difficulty level of mastering each knowledge attribute. 

To compare the difficulty among the dimensions, the proportions of marginal attribute 

mastery (under a DCM) were plotted for algebra 1 (Figure 5.44). 

 

Figure 5.44. Marginal attribute mastery within algebra 

As shown in Figure 5.44, within algebra, the proportion of mastery ranges from 

50% for the CGP_CN attribute to 77% for the USW_SR attribute. This proportion is 

called the base rate, which can be calculated by taking the sum of the probability 

distribution for the profiles that include mastery of each attribute in teachers’ knowledge. 

This plot indicates that USW_SE is more difficult to master than USW_SR, and 

CGP_CN is more difficult to master than USW_SE.  
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5.6 Differences in a relationship with educational and teaching experience 

The relationships between each of the hypothesized knowledge dimensions and 

teachers’ educational and teaching experience were examined to see whether the 

distinctions identified in the dimensionality analyses are also noticeable in terms of the 

different relationships with background information. The identification of different 

relationships among dimensions would provide additional evidence supporting the 

distinctions among the hypothesized dimensions. In the analysis, both measurement and 

structural relations were tested simultaneously in a single model so that the relational 

parameters could be more accurately estimated by taking into account measurement error 

and relations among latent constructs (Kline, 2010). The results are presented in Table 

5.41 ~ 5.43. 

 

 

Table 5.41. Effects of teachers’ background on knowledge in doing USW 

Dimensions of HS geometry Standardized estimate SE 

Predictors for USW-CG   

Years of teaching Geometry 0.381**** 0.056 

CollegeMathCourses 0.109 0.057 

Years of teaching non-geometry -0.040 0.058 

Current Teaching 0.114 0.062 

   

Predictors for USW-DP   

Years of teaching Geometry 0.487*** 0.070 

CollegeMathCourses 0.100 0.064 

Years of teaching non-geometry 0.020 0.067 

Current Teaching 0.063 0.072 

   

Predictors for USW-EF   

Years of teaching Geometry 0.269*** 0.075 

CollegeMathCourses 0.072 0.077 

Years of teaching non-geometry -0.100 0.077 

Current Teaching -0.044 0.082 

(*p < 0.05, **p < 0.01, ***p < 0.001) 
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Table 5.42. Effects of teachers’ background on knowledge in doing CGP 

Dimensions of HS geometry Standardized estimate SE 

Predictors for CGP-CG   

Years of teaching Geometry 0.355*** 0.057 

CollegeMathCourses -0.015 0.058 

Years of teaching non-geometry 0.165** 0.058 

Current Teaching 0.077 0.064 

   

Predictors for CGP-DP   

Years of teaching Geometry 0.189** 0.073 

CollegeMathCourses 0.258*** 0.070 

Years of teaching non-geometry -0.005 0.079 

Current Teaching -0.048 0.077 

   

Predictors for CGP_EF   

Years of teaching Geometry 0.290*** 0.074 

CollegeMathCourses 0.091 0.068 

Years of teaching non-geometry -0.055 0.067 

Current Teaching -0.065 0.080 

(*p < 0.05, **p < 0.01, ***p < 0.001) 

Table 5.43. Effects of teachers’ background on knowledge in algebra 1 

Dimensions of algebra 1 Standardized estimate SE 

Predictors for USW-SR   

Years of teaching Alg1 -0.032 0.095 

CollegeMathCourses -0.002 0.095 

Years of teaching non-alg1 -0.112 0.093 

Current Teaching alg1 -0.092 0.099 

   

Predictors for USW-SE   

Years of teaching Alg1 0.168* 0.068 

CollegeMathCourses 0.055 0.068 

Years of teaching non-alg1 0.215** 0.070 

Current Teaching alg1 0.009 0.074 

   

Predictors for CGP-CN   

Years of teaching Alg1 0.136* 0.065 

CollegeMathCourses 0.151* 0.062 

Years of teaching non-alg1 0.168* 0.072 

Current Teaching alg1 0.066 0.068 

(*p < 0.05, **p < 0.01, ***p < 0.001) 
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As shown in Table 5.41 ~ 5.43, teaching experience specific to the course of 

study (years of teaching geometry or years of teaching algebra 1) consistently showed 

significant effects on all hypothesized geometry dimensions or algebra 1 dimensions, 

except for USW_SR, when controlling for other predictors. The size of the effect is, 

however, different across dimensions. For example, the effect of experience teaching 

geometry on teachers’ knowledge for understanding students’ work in the doing proofs 

situation (USW_DP) was significantly greater than the effect on teachers’ knowledge for 

choosing the givens for a problem in the doing proofs situation (CGP_DP). For example, 

the effect size for USW_DP is as large as 0.49, whereas that for CGP_DP is as small as 

0.19 (Figure 5.45).  

 

Figure 5.45. Effect sizes of years of teaching geometry within geometry attributes 

On average, the effect size of experience teaching geometry on USW dimensions 

is 0.38, whereas that on CGP dimensions is 0.29 (the difference is mostly from DP). The 

difference between USW and CGP is consistent with my hypothesis that the dimensions 

reflecting the USW task would be more strongly associated with years of teaching 
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experience than with the CGP task given that teachers tend to engage in USW more 

frequently than in CGP in their work of teaching (Ko & Herbst, under review).  

Another difference in the relationship between USW and CGP is that, for CGP, 

not only years of teaching experience in geometry, but also years of teaching experience 

in non-geometry and the number of college math courses taken showed significant effects 

on teachers’ knowledge (0.165 for CGP_CG and 0.258 for CGP_DP). Specifically, the 

significant effect of non-geometry teaching experience on CGP_CG implies that some 

aspects of mathematical knowledge required for teachers to design problems for CG 

could improve with more experience in teaching a mathematics course besides geometry. 

This result is understandable in that teachers need to consider not only geometric 

properties, but also the algebraic components of the problem (e.g., whether the equation 

is solvable) when they create problems that involve geometric calculation (Boileau & 

Herbst, 2015; Hsu & Silver, 2014).  

The difference between geometry dimensions and algebra 1 dimensions regarding 

the effects of teachers’ background is that the effects on the geometry dimensions were 

significant and moderate, but the effects on the algebra 1 dimensions were not all 

significant and the effect sizes were small. This might imply that teachers’ mathematical 

knowledge used for teaching geometry is more specific to the course than the knowledge 

used for teaching algebra 1. This result is also consistent with Herbst and Kosko (2014)’s 

study showing that teachers’ MKT-G was significantly related with teachers’ teaching 

experience specific to geometry courses, but not with experience teaching mathematics 

courses in general. 
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In summary, the results provided additional findings to the previous study: 

course-specific teaching experience has also significant effects on subdimensions of 

knowledge when controlling for the experience in teaching other courses; the effect size 

is different depending on the involved task of teaching and instructional situations where 

the tasks are enacted; and the course-specific effect is more salient for the knowledge in 

geometry than algebra 1. 

5.7 Chapter summary 

This chapter presented analysis results showing that items could be distinguished 

by hypothesized organizers: tasks of teaching and instructional situations. In other words, 

most multidimensional models, which distinguish items according to their hypothesized 

categories (by tasks or situations), better fit the item responses than the models which 

combine dimensions together.  

Within the same tasks of teaching, 14 among 16 (
5∗4

2
 = 10 pairs for USW and 

4∗3

2
=6 pairs for CGP) hypothesized pairs of dimensions were statistically distinguishable. 

The pairs that were not distinguishable were between USW_CG and USW_DP and 

between CGP_DP and CGP_EP. Within the same instructional situation, two among three 

hypothesized pairs of dimensions were statistically distinguishable. The pair that was not 

distinguishable were USW_EF and CGP_EF. The results imply that the dimensions 

reflecting the different tasks USW and CGP in classroom encounters where students 

engage in mathematical tasks that are novel were not statistically distinguishable each other, 

whereas they were distinguishable in the instructional situations common in high school 

geometry such as CG and DP. My conjectures on the results on the pairs of non-

distinguishable dimensions are discussed in Chapter 6. 
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The distinctions among the hypothesized dimensions were also examined using 

proportions of mastery profiles estimated from DCM models. As expected from high 

correlations among dimensions, most teachers were assigned to the profiles representing 

masters or non-masters on all (or none) of the dimensions (within the same instructional 

situations or within the same tasks of teaching). In other words, if a teacher was a master 

or a non-master in one of the hypothesized knowledge dimensions, the teacher was very 

likely to be a master or non-master in other hypothesized knowledge dimensions.  

As such, the proportions of teachers who are masters or non-masters only in some 

of the knowledge dimensions were small. However, it is important to note that there are 

noticeable proportions of teachers who are masters or non-masters for only some of the 

knowledge attributes. For example, 20% of teachers attained a mastery level of 

knowledge for USW_DP, but not for CGP_DP. The existence of teachers whose mastery 

level is different across dimensions supports the rationale for the need to measure 

teachers’ knowledge under the multidimensional conceptualization of the knowledge. 

The differences among the hypothesized knowledge dimensions were also 

examined in terms of the relationship with teachers’ educational background and teaching 

experience. The SEM results showed that years of geometry teaching experience had 

significant effects on all of the geometry knowledge dimensions, but years of non-

geometry teaching experience was not. Moreover, the differentiated effects of teachers’ 

educational and teaching background on MKT-G and MKT-A depending on the involved 

task of teaching and instructional situations provided additional evidence to support the 

rationale for designing a teacher knowledge assessment using the categories of task of 

teaching and instructional situation.
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Discussion and Conclusion 

This dissertation centered on examining the theoretical and methodological 

plausibility of a hypothesized knowledge framework to organize the dimensionality of 

teachers’ mathematical knowledge for teaching high school geometry and algebra 1. This 

framework is based on two organizers of dimensions: tasks of teaching and instructional 

situations. The question of the plausibility of the framework considers whether 

assessment items categorized according to the framework can be used to 1) provide a 

fine-grained description of teachers’ mathematical knowledge used in the work of 

teaching and 2) develop multiple distinguishable measures of teachers’ mathematical 

knowledge for teaching. The first question asks about the conceptual plausibility and the 

second question asks about the methodological feasibility of the proposed framework. 

To evaluate the methodological feasibility of the framework, I applied three 

different multidimensional measurement models (SEM, IRT, and DCM) to a sample of 

602 U.S in-service high school teachers and their responses on items measuring teachers’ 

mathematical knowledge for teaching high school geometry and algebra 1. I used the 

measurement models to evaluate the quality of the items and to yield scales or profiles 

reflecting the teachers’ competencies in hypothesized multiple dimensions. Ultimately, 

the results of this study stand to contribute to our understanding of the organization of 

mathematical knowledge used in the work of teaching as well as ways to operationalize 

it.  
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In this chapter, I summarize and interpret the main findings. This interpretation is 

followed by theoretical and methodological implications and limitations of the study. I 

conclude this dissertation with recommendations for future study. 

6.1 Conclusion and summary of findings 

Overall, the tested measurement models support my hypothesis that items 

organized around an integrated knowledge trait, which can be characterized in terms of 

the types of teaching tasks (e.g., understanding student mathematical work) and 

instructional situations (e.g., doing a proof in a geometry class), can measure 

distinguishable dimensions of teachers’ mathematical knowledge for teaching high 

school geometry and algebra 1. The results supporting the hypothesis are also consistent 

across three different measurement models: SEM, IRT (MIRT), and DCM. The main 

findings of this study are discussed as answers to my initially posed research questions as 

follows. 

6.1.1 The role of the two organizers in measuring dimensions of the knowledge 

Question 1 asked: Conceptually, how well do the organizers – task of teaching and 

instructional situation – capture multiple aspects of teachers’ mathematical knowledge 

used in the work of teaching? 

In regards to the descriptive purpose of this study (1.1.1), the evaluation of the 

conceptual plausibility of the item blueprint examined whether the two organizers allow 

for describing different aspects of teachers’ mathematical knowledge for teaching. By 

using tasks of teaching and instructional situations as the organizers for the item 

blueprint, the blueprint provides a way to deconstruct teachers’ mathematical knowledge 

situated in the work of teaching.  
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Furthermore, the item blueprint provides a way to capture both generic aspects of 

teachers’ knowledge across mathematics courses of study (e.g., algebra and geometry) 

and the knowledge aspects specific to a subject matter (e.g., algebra or geometry). 

Specifically, in the framework, “task of teaching” measures generic aspects of teachers’ 

mathematical knowledge, whereas “instructional situation” captures the subject-matter 

specific knowledge. Also, the hypothesized role of these organizers in capturing 

differences in mathematical knowledge among the teachers (3.3) is consistent with 

previous empirical studies. For example, Herbst and Kosko (2014) showed that whether 

the items are contextualized in an instructional situation or not is related to the difference 

in the knowledge between novice teachers and experienced teachers.  

 As mentioned in 1.2, this study does not claim that my suggested item blueprint is 

necessarily better than others (e.g., the MKT framework by Ball et al., 2008). Instead, I 

argue the appropriateness of the item blueprint with respect to the intended use and 

interpretation of the results (Kane, 2006). The intended use is to develop multiple 

distinguishable measures that allow us to examine multiple dimensions of teachers’ 

knowledge used in the work of teaching. The distinguishable measures could be 

established by multiple sets of items that capture distinguishable traits of the work of 

teaching. Within this purpose, I argue that the proposed item blueprint might be more 

suitable than others that characterize the items by knowledge type, because it allows to 

define the boundaries and relationships among the dimensions with more clarity and 

defines the knowledge dimension in terms of the characteristics of the components of the 

work. 
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 As described in 1.2.3, the nature of teachers’ knowledge is complex, so it is 

challenging to determine whether a certain characteristic of the knowledge is solely 

mathematical or combined with pedagogical content knowledge. Due to this challenge, I 

could not clearly determine the knowledge type (e.g., CCK, SCK) associated with the 

items that I used in this study. Similar to the item described in 1.2.4, some items seemed 

to be associated with more than one knowledge type that the item was initially designed 

to measure. Thus, I decided not to categorize the existing items according to the 

knowledge type. In contrast to the criterion of knowledge type, I could determine the type 

of task of teaching and instructional situation for most of the items that had been 

developed according to a knowledge type item blueprint. This feasibility of the proposed 

item blueprint supports my argument that the proposed item blueprint is conceptually 

plausible and compatible with the purpose of this study. 

 

Question 2 asked: Methodologically, are the knowledge scales estimated by items 

measuring either or both different tasks of teaching and different instructional situations 

statistically distinguishable?  

The majority of the hypothesized dimensions could be identified by either or both 

of the organizers (tasks of teaching and instructional situations) within and across both 

geometry and algebra 1 courses of study. In other words, multidimensional models, 

which distinguish items according to the categories of task of teaching and instructional 

situation, better explained the variance among the items than the models that combined 

the hypothesized dimensions together. Some pairs of dimensions were not distinguishable 

by either task of teaching or instructional situation. However, those results are 
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understandable considering the similarities in a teacher’s mathematical work between two 

tasks of teaching or between two instructional situations. The need for more than one 

organizer to describe one dimension of teachers’ mathematical knowledge was also 

supported by the results showing associations between task of teaching and instructional 

situation. For example, the dimensions reflecting different instructional situations (e.g., 

DP and CG) were distinguishable in one task of teaching (CGP), but they were not 

distinguishable in another task (USW).  

Some other studies have suggested a knowledge framework structured by more 

than one organizer. Among them, Etkina et al. (2018) conceptualized physics teachers’ 

content knowledge for teaching energy (CKT-E) as a multidimensional construct that is 

organized by the intersection of tasks of teaching (ToT) and student energy targets. 

Compared to my study, their first organizer – task of teaching (ToT) – is similar to one of 

the organizers used in my study (task of teaching), and their second organizer – student 

energy targets – is somewhat related to the other organizer used in my study 

(instructional situation) given that both consider the subject matter work of students. The 

concept of instructional situation, however, includes more than their “student energy 

targets” in that it also includes teachers’ knowledge of how labor is divided in the 

mathematical tasks that are used to claim those targets. Also, their first dividing principle 

that undergirds divisions of the construct is still knowledge domains. In other words, their 

framework organized by ToT and student energy targets is applicable to CKT-E, but may 

not include PCK-E. In this study, however, knowledge-domain is not the primary 

dividing principle of the construct. Rather, the combination of ToT and instructional 
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situation is the primary principle that distinguishing the dimensions, which could be a 

mix of different knowledge domains. 

 Apart from the difference in primary organizers (ToT and instructional situation 

instead of knowledge domain such as CK or PCK), the result of this study is unique in 

that teachers’ mathematical knowledge was operationalized in terms of multiple scales 

instead of an overall unidimensional scale. Also, the multiple scales were developed 

using different assumptions on the characteristics of the construct being modeled by each 

measure representing the amount of the knowledge (continuous or discrete). In other 

words, even though several other studies have suggested a multidimensional knowledge 

framework and this framework has been used in the phase of item development, only 

single scales have been developed to represent an overall knowledge construct. For 

example, Etkina et al. (2018) conceptualized teachers’ CKT-E as multidimensional, but 

they assigned a single score reflecting a level of CKT-E to individual teachers rather than 

assigning multiple scales to follow their framework. Similarly, Phelps et al. (2014) 

developed a unidimensional scale as a measure of teachers’ mathematical knowledge for 

teaching algebra 1, even though they conceptualized the knowledge construct as 

multidimensional. Regarding assumptions on the knowledge being modeled, researchers 

have developed knowledge scales assuming either a continuous construct (Hill et al., 

2012) or discrete (Bradshaw et al, 2014) attributes. This study, on the other hand, 

developed knowledge measures under both continuous and discrete assumptions and 

showed that how the different assumptions can provide complementary information on 

the characteristics of dimensions of the knowledge. 
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 Overall, as described in Chapter 2, I do not argue that my proposed knowledge 

framework should be construed as a framework that accurately represents the true 

structure of teachers’ mathematical knowledge or as a framework necessarily better than 

other previous frameworks. Rather, I argue that my proposed knowledge framework 

provides a basis for developing a test blueprint that allows for multiple scales reflecting 

distinguishable dimensions of teachers’ mathematical knowledge for teaching. Also, my 

proposed framework accounts for the instructional specificity of the knowledge needed to 

do the work of teaching mathematics. By instructional specificity, here, I allude to how 

the transactions of content between teacher and student make those knowledge demands 

specific (along the lines argued by Herbst & Kosko, 2014). In doing so, it provides a way 

to describe teachers’ mathematical knowledge. In the same vein, I did not compare my 

proposed factor model with other models (e.g., the MKT framework from Ball et al., 

2008). The comparison between the item blueprint in terms of model fits was not even 

possible as I could not clearly determine the knowledge type (e.g., whether an item is 

measuring CCK or SCK) associated with the existing items (discussed in 1.2.4). 

Following the definition of validity described in Kane (2013), according to which 

validity depends on arguments and uses, I evaluated my proposed framework based on an 

argument about the use of the test – measuring distinguishable dimensions and describing 

the knowledge reflected in the work of teaching. Given this use of the item blueprint, I 

was not interested in creating a map representing the full range of teachers’ mathematical 

knowledge organized by all possible components of the work of teaching. Rather, I was 

interested in providing a way to explore the multiple dimensions of teachers’ 

mathematical knowledge that could be anticipated by the use of the two organizers. And, 
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I wanted to determine whether the measures entailed by using a combination of the two 

organizers led to feasible measures. The use of particular examples of different tasks of 

teaching and particular instructional situations can also be justified in that they enabled 

the development of distinguishable measures, thus illustrating that feasibility. 

 While the proposed item blueprint was validated as being methodologically 

feasible with particular cases, the feasibility cannot be generalized to an argument that all 

possible different kinds of tasks of teaching or instructional situations generate 

distinguishable dimensions of teachers’ mathematical knowledge or that all possible 

similar kinds of tasks of teaching or instructional situations are unable to generate 

distinguishable dimensions of teachers’ mathematical knowledge. Indeed, the results 

showed that some pairs of dimensions could not be differentiated by the two organizers, 

even though they were hypothesized to be different.  

In spite of this methodological limitation in validating all possible tasks of 

teaching and instructional situations, it is reasonable to conclude that this study supports 

the validity of my suggested framework for organizing teachers’ mathematical 

knowledge for teaching by task of teaching and instructional situation. The main reason 

for this conclusion is that the distinctions between the knowledge dimensions could be 

operationalized by multiple measures. The knowledge dimensions that were 

distinguishable were not merely convenient samples of possible knowledge dimensions, 

but they were knowledge dimensions hypothesized to be different by meaningful 

variation in different components of the work of teaching. 

To further support my conclusion, next, I present my conjecture on the results that 

were different from my initial hypothesis. Those results refer to the lack of distinction in 
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three pairs of dimensions: USW_CG (Understanding Students’ Work in Geometric 

Calculation) and USW_DP (Understanding Students’ Work in Doing Proof),  CGP_EF 

(Choosing the Givens for a Problem in Exploring a Figure) and CGP_DP (Choosing 

Givens the for a Problem in Doing Proof), and USW_EF (Understanding Students’ work 

in Exploring a Figure) and CGP_EF (Choosing the Givens for a Problem in Exploring a 

Figure). 

 

6.1.2 Interpretations on the indistinguishable dimensions 

This section describes my conjectures on the pairs of dimensions that were not 

shown to be distinguishable from each other. Even though some of this lack of distinction 

was interpretable in consideration of similarities in teachers’ knowledge used in two tasks 

of teaching or two instructional situations, it is important to note that the interpretations 

described in this section are still conjectures. This means that the interpretations are 

plausible only as alternatives to the initial hypothesis on the distinctions. The lack of 

distinction might also suggest an issue with the instrumentation, such as construct 

underrepresentation or an issue arising from retrofitting the existing items. More 

discussion about this issue is discussed in the section of limitations.  

 

6.1.2.1 Lack of distinction between USW_CG and USW_DP 

The dimensionality analysis within the task of USW (Understanding Students’ 

Work) showed that USW_EF (Understanding Students’ Work in Exploring a Figure) was 

distinguishable from both USW_CG (Understanding Students’ Work in Geometry 

Calculation) and USW_DP (Understanding Students’ Work in Doing Proof), but 

USW_CG and USW_DP were not distinguishable from each other. To understand these 



 209 

results, I referred to the work expected from a teacher and students in each of the 

situations. As described in 4.3.4, the task of teaching USW includes a teacher’s reading 

and making sense of a student’s work and deciding whether the student’s answer, inferred 

processes, and reasoning are mathematically correct. Thus, to understand the 

relationships among USW_EF, USW_CG, and USW_DP, we first need to compare the 

characteristics of the students’ work expected in each situation. 

In both CG and DP, student work is presented by sequential steps that connect the 

givens (information given in the diagram or by statements) to a solution (‘prove’ 

statement in DP and unknown ‘x’ in CG). The sequential steps in both situations are 

derived by the student’s knowledge about particular properties of the figure or related 

theorems. This similarity between DP and GCN (one type of CG) regarding the students’ 

problem-solving process and students’ performance is also described in Hsu’s (2010) 

dissertation study. Specifically, the processes of using geometric properties and the 

sequence of them required to obtain solutions were the same for student tasks in both 

GCN and DP, when the given diagram and geometric properties required to find solutions 

were controlled (Hsu, 2010, p.149). Also, there was no significant difference in 9 th grade 

students’ performance when solving either GCN or DP problems.  As Hsu described in 

both situations, “students need to visualize the geometric diagrams and identify the 

needed geometric properties in order to set up calculating sentences [GCN] or form 

logical proving statements [DP]” (2010, p. 5). 

Based on Hsu’s (2010) findings and the characteristics of students’ work, my finding that 

USW_CG and USW_DP cannot be distinguished seems understandable. The task of USW in 

both situations requires a teacher to determine whether students correctly visualize the geometric 
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diagrams, recall and apply known theorems, definition, and properties in problem solving. The 

teacher also would need to know whether students correctly translate the properties into 

symbolic notations (an equation for CG, a statement for DP). In short, both situations require a 

teacher to evaluate students’ ability for deductive reasoning. The similarities between CG and 

DP in the work and the involved knowledge expected from a teacher when doing USW may pose 

a challenge for distinguishing USW_DP and USW_CG. However, it does not necessarily mean 

that the knowledge USW_DP and USW_CG are indeed not distinguishable. In spite of the 

similarities between CG and DP, there are differences, such as the use of symbols or the need of 

students’ justification statements. For example, the algebraic symbols used in CG are more 

standard and readable than the symbolic statements used in DP. Also, DP expects students to 

write a justification for each statement when doing a proof problem, but CG does not (Boileau & 

Herbst, 2015). Whether the knowledge dimensions USW_DP and USW_CG are indeed 

distinguishable or not may need further investigation with more items that better operationalize 

these differences between the two situations. 

 In contrast to CG or DP where students work to find a logical path from the given 

information to the given conclusion, in EF, students are responsible for generating a 

statement of a conclusion or conjecture by freely choosing information implicitly given in 

a diagram. In other words, students in EF need to find conclusions that are worth making 

rather than validating the conclusions given by teachers (Aaron & Herbst, 2015, p.2). 

Given the nature of this effort, the correctness of student work in EF is likely to depend 

on what conjecture students generate and the resources students use. Because of this 

possible variability in the mathematical work, doing the task of USW in EF might require 
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teachers to use a kind of mathematical knowledge that differs from the knowledge the 

teachers normally use in DP or CG. 

Apart from the need to work with unpredictable conjectures and students’ 

resource use, EF might be more challenging for teachers to manage than the situation of 

CG or DP, as the product of students’ work cannot necessarily be anticipated due to its 

potential variability. For example, students could generate very divergent conjectures 

depending on the information individual students decide to use in making their own 

conjectures. In this context, a teacher needs to understand and evaluate students’ different 

conjectures and reasoning. My conjecture on a difference in difficulty of mastering 

USW_EF and USW_DP or USW_CG was supported by the result of the DCM analysis, 

which showed a higher proportion of teachers mastering only USW_CG or USW_DP 

(12%) than the proportion of teachers mastering only USW_EF (2%). 

6.1.2.2 Lack distinction between CGP_EF and CGP_DP 

The dimensionality analysis within the task of CGP showed that CGP_DP was 

distinguishable from CGP_CG, but it was not distinguishable from CGP_EF. On the 

other hand, the items reflecting the situation CG and DP were distinguishable for CGP. 

Similar to the previous section, I interpret these results based on the work called forth 

from a teacher in doing CGP in each of the situations EF, CG, and DP. 

The CGP_EF items reflect a teachers’ knowledge in creating classroom tasks and 

test items or choosing information to be given for the tasks that enable students to explore 

a figure. The task – exploring a figure – is expected to provide students an opportunity to 

examine (look at, measure, mark, or draw) a diagram, conjecture common or general 

properties of the geometric objects, and state the properties in conceptual language 
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(Herbst, 2010). In other words, the task chosen/created by a teacher needs to give 

students the best opportunity to show their capacity to infer general properties from a 

particular diagram using their knowledge of the definitions and properties of geometric 

figures, skills manipulating instruments, and their ability for inductive or abductive 

reasoning. Given this role of student tasks in EF, the CGP_EF items ask teachers to 

choose the best diagrams or written tasks that can best accomplish the goal of EF.  

In this study, CGP_EF was initially hypothesized to be distinguishable from 

CGP_DP given differences in the cognitive process students are expected to take in the 

two situations. Specifically, I hypothesized that there would be a difference in teachers’ 

work between two situations in that a teacher needs to provide a context for students to 

demonstrate inductive reasoning in EF, whereas a teacher needs to provide a context for 

students to demonstrate deductive reasoning in DP. However, the dimensionality analysis 

showed that the knowledge dimensions CGP_EF and CGP_DP were not statistically 

distinguishable. This result may imply that the mathematical work teachers do (i.e., 

choosing the givens for a problem) or the kind of knowledge used in EF is not different 

enough to be distinguishable from the mathematical work done and the knowledge used 

in DP, even though the work students normally do in the two situations is different.  

From a teacher’s perspective, when doing CGP in both EF and DP, teachers may 

start from a general property of a theorem that their students are expected to learn, and 

then, consider a specific example problem that can help their students understand the 

property or the theorem. Teachers also need to make sure that the targeted conjecture (in 

EF) or the prove statement (in DP) are true. This means that the cognitive process 

required for teachers to take in choosing appropriate resources for a task in EF is still 
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deductive reasoning, even though the logical process their students are expected to take in 

the situation is inductive or abductive reasoning. Thus, when a teacher solves a CGP_EF 

item, the teacher needs to choose an option representing a diagram or a written activity 

related to the targeted geometric property or theorem. In short, the knowledge required to 

answer a CGP_EF item would require teachers to use deductive reasoning instead of 

inductive reasoning that their students are expected to use in EF. CGP_EF, thus, might 

not be distinguishable from CGP_DP. 

6.1.2.3 Distinction between CGP_CG and CGP_DP 

In contrast to the result that the instructional situations of CG and DP were not 

distinguishable within the task of USW (5.1.1), CG and DP were distinguishable within 

the task of CGP (5.1.2). The distinction between CGP_CG and CGP_DP is 

understandable in light of work by Herbst and Kosko (2014), which states that “tasks of 

teaching could call for different kinds of mathematical work depending on specifics of 

the work of teaching geometry” (Herbst & Kosko, 2014, p. 7). In their study, conjectures 

on the specifics were described within the context of designing a problem, which is 

similar to the category of CGP in my study. Specifically, they explained that  

the task designing a problem would involve a teacher in different mathematical 

work if the designed problem was a proof problem versus a geometric 

calculation. While the former might involve the teacher in figuring out what 

the givens should be to make sure the desired proof could be done, the latter 

might involve the teacher in posing and solving equations and checking that 

the solutions of those equations represented well the figures at hand (p. 7) 
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Considering that the definition of CGP in my study includes the task of designing a 

problem, my result showing distinction between CGP_CG and CGP_DP is in line with 

Herbst and Kosko’s (2014) conjecture on the distinction between the mathematical work 

teachers do in designing a problem for proof (DP) and for geometric calculation (CG).  

6.1.2.4 Lack of distinction between USW_EF and CGP_EF 

In contrast to my initial hypothesis, USW_EF and CGP_EF were not statistically 

distinguishable from each other (5.2.3). As mentioned, EF can be considered as an 

instructional situation where students engage in mathematical tasks that are not 

customary in that they are expected to generate conclusions which are customarily given 

by a teacher in most geometry classrooms. As EF is an instructional situation that is 

uncommon in high school classrooms, teachers would rarely have an opportunity to do 

the work of EF, regardless of whether the involved task is USW or CGP.  

The lack of distinction between USW_EF and CGP_EF in the results was 

interpreted in consideration of the characteristics of the work teachers are expected to do 

for USW and CGP in EF. USW_EF requires a teacher to determine whether students’ 

conjectures on a given figure are correct and whether students correctly chose and used 

the given information to make their conjectures. CGP_EF requires a teacher to determine 

whether the information given in a problem (e.g., a geometric object or a tool) enables 

students to generate conjectures stating correct properties of the geometric objects at 

hand. In EF, the work of evaluating the correctness of a conjecture or the appropriateness 

of a conclusion of the problem should be done not only for CGP but also for USW. This 

is because for EF a teacher in EF does not constrain a specific object or property so that 

students can make diverse conjectures and conclusions, such as a conjecture about a 
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perimeter of a triangle or a conjecture about a triangle congruence. In other words, 

students have the freedom to choose information among the givens as well as the content 

of their conjectures. Therefore, a teacher’s work – evaluating a conclusion – may need to 

be done in both USW and CGP. These similarities in teachers’ work when doing 

USW_EF and CGP_EF may lead to the lack of distinction between the two dimensions in 

my results. Yet, this is a conjecture and whether USW_EF and CGP_EF are indeed 

distinguishable or not needs further investigation with more diverse items. 

6.1.3 Different relationships with teachers’ background among dimensions 

Question 3 asked: Are there differences among the hypothesized dimensions of teachers’ 

mathematical knowledge for teaching geometry and algebra in terms of their 

relationships with teachers’ self-reported background (number of mathematics courses 

taken in college, number of geometry teaching years, number of non-geometry teaching 

years)? 

Overall, most knowledge dimensions were significantly associated with subject 

specific teaching experience. Specifically, a 10-year increase in teaching geometry 

experience was significantly associated with approximately 0.31 ~ 0.97 increase in IRT 

scores for geometry dimensions. This result of effect size is somewhat consistent with 

Hill’s study (2007) showing that additional 10 years of teaching experience was 

associated with approximately 0.5 increase in the middle school teachers’ overall MKT 

IRT score. Furthermore, the result that only years of teaching geometry had significant 

relationships with three USW dimensions is consistent with Herbst and Kosko’s (2014) 

study which showed a significant relationship between teachers’ MKT-G scores and their 
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teaching experience specific to geometry courses, but not with teaching experience in 

general.  

 Compared to these previous studies that examined the effect of teachers’ teaching 

experience on the overall MKT (or MKT-G) scores derived from a unidimensional 

model, my study examined the effect of teachers’ teaching experience on each of the 

subdimensions derived from multidimensional models. The application of the 

multidimensional models provided several new findings.  

First, the magnitude of the effect from the subject specific teaching experience 

was different across knowledge dimensions. In particular, the effect was stronger for the 

dimensions involving a frequent task (e.g., USW) or a customary instructional situation 

(e.g., CG or DP) than for the dimensions involving a task that teachers less frequently 

engage in (e.g., CGP) or a less-customary instructional situation (e.g., EF). This result 

implies that the familiarity with doing a task of teaching or managing an instructional 

situation gained from teaching experience enables teachers to develop their mathematical 

knowledge required in doing the task or managing the situation. This positive effect of 

teaching experience on teachers’ knowledge was also reported in a study that measured 

early career teachers’ general pedagogical knowledge (König, Blömeke, & Kaiser, 2015). 

In particular, König et al. (2015) found that the effect was especially crucial when the 

experience is related to “teachers’ deliberate efforts to reflect on and improve their 

teaching” (what they called “deliberate practice”) (p.335). 

Thus, experience in teaching a course of studies may increase teachers’ 

mathematical knowledge if that experience provides teachers opportunities to engage in 

the task or the situation that is called forth by the work of teaching the course. For 
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example, if teachers are less knowledgeable in the task CGP than the task USW because 

they did not have enough experience in engaging CGP, providing teachers with 

professional learning experience involving task design (Zaslavsky & Sullivan, 2011) 

could significantly increase CGP related MKT-G scores.  

Second, the answer to the question – whether subject matter preparation or 

experience in teaching mathematics courses in general influence teachers’ mathematical 

knowledge or not – depends on which dimension the teachers’ mathematical knowledge 

refers to. The finding of a previous study, which shows no significant effect of non-

geometry teaching experience on teachers’ knowledge (Herbst & Kosko, 2014), was 

consistent with the result for the USW-related dimensions, but not for the CGP-related 

dimensions. In other words, not only years of teaching geometry but also the predictors 

representing years of teaching courses other-than-geometry or the number of college 

mathematics courses taken yielded significant effects on teachers’ mathematical 

knowledge if the measured knowledge is used in the task CGP. The effect of years of 

teaching mathematics courses in general or the number of college mathematics courses 

taken on teachers’ MKT-G in doing CGP would not have been recognized if the MKT-G 

is operationalized only by a single score. In other research, König et al (2015), which 

examined early career mathematics teachers’ general pedagogical knowledge, also 

showed differences in the association with teachers’ educational and teaching background 

between different knowledge domains. Specifically, in their study, teachers’ declarative 

knowledge was predictable by teacher education grades, whereas teachers’ skill to 

interpret classroom situations was predictable by the amount of time spent on teaching 

(König et al., 2015, p. 335). These findings, from prior studies and the present study, 
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demonstrate how multidimensional measures of teachers’ knowledge allow detecting 

differences different knowledge dimensions, in terms of the relationship with 

characteristics of teachers’ subject matter preparation and teaching experience.  

6.2 Implications 

The findings of this study and the methods used have implications for at least four 

areas: 1) theory of mathematics teaching, 2) the practice of teacher education, 3) theory 

of measurement, and 4) item development. In the following sections, I describe 

implications of this study along with the relevant findings. 

6.2.1 Implications for the development of theory of mathematics teaching 

First, this study provides a way of allowing for the fine-grained description of 

teachers’ mathematical knowledge by suggesting two organizers that distinguish multiple 

aspects of teachers’ mathematical knowledge. By using two organizers, the suggested 

framework allows measuring not only generic aspects of teachers’ knowledge across 

mathematics (by tasks of teaching) but also the knowledge aspects specific to the 

mathematics at stake in a course of studies (by instructional situations). Moreover, by 

examining teachers’ knowledge in combinations of the mathematical work that teachers 

do and the mathematical work that students do in a particular course of study, the 

description of the teachers’ knowledge takes into account the association between the 

task of teaching and the work students do.  

Another contribution of this study is that the identified similarities and differences 

among knowledge dimensions could provide a reference back to the similarities and 

differences among different tasks of teaching or different instructional situations. The 

suggested knowledge framework provides a way to understand and describe the 
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complexity of teaching practice in terms of what teachers do and what mathematical tasks 

students are expected to do. For example, by not being able to confirm a distinction 

between teachers’ knowledge in USW_CG and USW_DP and look for an alternative 

explanation that would recognize similarities between the instructional situations CG and 

DP when teachers do the task USW, I have been able to contribute a conjecture that 

might support further examination of how tasks of teaching and instructional situations 

interact. As such, this study could contribute to the integration of a theory of tasks of 

teaching and a theory of instructional situations in light of the similarities and differences 

in mathematical work called forth from teachers and students.  

 This study also addresses the issue of elusive boundaries among traditionally 

defined knowledge domains (e.g., CK and PCK) by employing the alternative organizers, 

task of teaching and instructional situation. These organizers enabled developing multiple 

scales (continuous or discrete) representing multiple distinguishable dimensions of 

knowledge, while staying connected to the knowledge used in teaching practice.  

6.2.2 Implications for the practice of teacher education 

The benefits to teacher education of a multidimensional understanding of 

teachers’ mathematical knowledge were described in 1.2.2. These potential benefits 

include tools for the diagnosis of teacher knowledge and resources for the design of 

teacher training and teacher certification or badging. In this section, the implications are 

described around these benefits that can be expected from the results of this study. 

The results derived from multidimensional assessments of teachers’ mathematical 

knowledge could inform the status of individual teachers’ knowledge and this diagnosis 

could, if this is desired, contribute to the development of personalized teacher training 
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programs. As the measures provide diagnostic information of the knowledge teachers 

have across different tasks of teaching and instructional situations, teachers (or teacher 

educators) can recognize their (viz., their students) specific weaknesses or strengths. The 

weaknesses and strengths assessed would be closely related to the actual work of 

teaching, so the diagnostic information could provide teachers and teacher educators with 

practical support in teaching through targeted professional development.  

 Specifically, this study’s findings showed that the application of 

multidimensional models can provide detailed information about teachers’ mathematical 

knowledge, such as knowledge profiles, which indicate which knowledge attributes 

teachers have mastered or have not mastered. For example, the result of applying DCM 

models allowed identifying teachers who are in need of gaining knowledge for doing a 

certain task in a given instructional situation. For example, the result showed that there is 

a considerable number of teachers (20%) who have attained a mastery level for the task 

understanding students’ work, but not for the task choosing the givens for a problem in 

doing proofs. This result may suggest the need of a curriculum designed to spend more 

time on improving the knowledge required to design appropriate proof problems for 

teachers who lack this knowledge.  

To have a curriculum map specified according to diverse tasks of teaching and 

instructional situations may not be necessary in general, given that the majority of the 

teachers had attained mastery level for all the dimensions or none of the dimensions. 

However, I would argue that there is benefit in having a specified curriculum for a 

particular group of teachers who need specialized training. For example, some teachers 

who had taught middle school mathematics but are going to teach high school geometry 
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may need to attain knowledge required for doing tasks specific to the instructional 

situations in high school geometry. Beginning teachers may also need a specialized 

professional development for gaining mathematical knowledge that can only be attainable 

through years of teaching experience. In this regard, my proposed item blueprint could 

provide diagnostic information on this need and the way to design a curriculum with 

respect to the task of teaching and instructional situation specific to a particular need. 

The specified knowledge dimensions also could be applied to a badging system. If 

mastery of a specific knowledge is recognized, a teacher could earn a badge. This system 

would enable teachers and teacher educators to identify new competency areas and signal 

to them a professional life of active learning and ongoing development. 

The identified knowledge structure could offer a curriculum map laying out a 

sequence of multiple knowledge dimensions that may need to be taught in teacher 

education or professional development programs. As shown in the results of the DCM 

model, there is an implied hierarchical structure among knowledge attributes (e.g., very 

few teachers mastered USW_EF without mastering USW_CG or USW_DP). This finding 

could inform how to sequence a curriculum or training for teachers. For example, 

curriculum could be designed to follow the hierarchical sequence of knowledge attributes 

that would most quickly lead teachers to mastery level. 

6.2.3 Implications for the theory of measurement 

Methodologically, this study showed how different measurement models  

(SEM-based, IRT-based, and DCM-based models) could be used to provide complementary 

information on the dimensionality of a construct (i.e., knowledge). Most importantly, three 

different models yielded the same results regarding the factor-model comparisons.  
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How to model measures with categorical variables has been challenging for researchers 

as there is no single best method that can resolve a number of issues (e.g., data type, sample 

sizes, model parameterizations; see Wirth & Edwards, 2007). To offer a review on the methods, 

some studies compared the performance of SEM-based (WLSMV estimation) versus IRT-based 

models (FIML estimation). For example, Wang, Su, and Weiss (2018) compared SEM-based and 

IRT-based models (MIRT) when the normality assumption of the latent responses is violated, 

and they found that “FIML (MIRT models) consistently outperformed WLS (SEM models) when 

there were one or multiple skewed latent trait distributions” (p.403). Similarly, Wirth and 

Edwards (2007) compared several IFA models and estimation methods within SEM and IRT 

frameworks and presented the potential advantages and disadvantages of the methods (Wirth & 

Edwards, 2007).  

Even though these studies suggested some recommendations to consider when applying 

measurement models with categorical data, the results and suggestions were based on simulated 

data rather than on real data collected from human participants. In addition, to determine which 

specific assumptions and conditions that the data used in a study satisfy or violate would be 

challenging for researchers. In this regard, I decided to apply all different measurement models 

that I considered for the data rather than gauging the appropriateness of each method.  

The different models yielded consistent results. This consistency assured the reliability of 

the item parameters and of the results of the dimensionality estimated in this study. 

Inconsistencies in the results would have suggested that at least some of the results were not 

accurate. The consistency between IFA models (SEM and MIRT) and DCM models with real 

data further solidify the results of the dimensionality analysis. One of the issues in using IFA 

models with categorical variables is the violation of the multivariate normality assumption of the 
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latent response variables (Wirth & Edwards, 2007; Wang et al., 2018). Considering that DCM 

models do not make a normality assumption for latent variables, the consistency of the results 

among the models implies that the violation of the normality assumption is not a concern in this 

study.  

Moreover, the models provided different supplemental results supporting the claim of 

multidimensionality. The continuous scales of knowledge estimated from MIRT models 

provided results informing the effects teachers’ educational and teaching experience had on their 

knowledge, whereas the binary scales of knowledge estimated from DCM models allowed 

criterion-referenced interpretations of teachers’ knowledge across multiple knowledge attributes 

(e.g., how many more teachers have mastered USW_DP than other dimensions).  

Lastly, this study showed the benefit of DCM models with respect to the reliability of the 

measures. In other words, diagnostic classification measurement models (DCM) yielded higher 

reliabilities for the estimates of the teachers’ mastery status than the estimates of the amounts of 

teachers’ mathematical knowledge derived from IRT-based models. This result informs 

researchers that a DCM model could be used as an alternative to an IRT model, as suggested by 

Bradshaw et al. (2014), if a construct can be presented on a binary scale and the construct is 

measured with a small number of items.  

6.2.4 Implications for item development 

The results of this study provide some insights into the development of items 

measuring distinguishable dimensions of teachers’ mathematical knowledge for teaching. 

First, by showing that the suggested item blueprint allows for multiple distinguishable 

scales, this study provides guidance for future item development around this new 
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organizational scheme, that is, creating items to focus on tasks of teaching and 

instructional situations. 

Second, the results provide guidance for determining the grain size of each 

knowledge dimension. As discussed in Chapter 3, different researchers conceptualize 

tasks of teaching at different levels of specification. For example, Haertel (1991) 

described tasks using general categories, such as creating a structure for learning, which 

is not specific to the subject content. On the contrary, Ball et al. (2008) used finer 

distinctions in describing tasks of teaching by focusing on a mathematical difference 

among different tasks of teaching rather than a general purpose of tasks such as 

classroom management. Similarly, instructional situations could be described at various 

levels of detail (Chapter 4). For example, one could conceptualize a situation of 

exploration with two sub-situations according to different tools available to students in 

the situation (protractor and ruler vs. dynamic geometry software). In this regard, the 

results of distinction (e.g., USW_EF and USW_CG) or non-distinction (USW_CG and 

USW_DP) could help determine whether to operationalize a knowledge dimension as one 

scale or multiple scales. If two sets of items are valid and reliably measure two 

hypothesized constructs, but these constructs are not distinguishable from each other, 

researchers need to examine whether the lack of distinction is due to some common 

characteristics between two constructs or due to an unanticipated factor (e.g., item 

format, wording). If an unanticipated factor is identified, researchers may need to revise 

the items or develop new items and examine whether the hypothesized dimensions can be 

distinguishable with those items. On the other hand, if two sets of items are 
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distinguishable from each other, researchers could examine if further distinctions in the 

form of attributes are feasible to make. 

The benefits of this organizing scheme (combination of tasks of teaching and 

instructional situations) could extend beyond the field of mathematics education. The 

scheme could be considered for the items intended to measure distinguishable aspects of 

any professionals’ knowledge. For example, assessment items measuring surgeons’ 

medical knowledge could be structured in a way that combines surgeon’s tasks and types 

of surgery. The example of types of surgery could be cardiothoracic surgery, plastic 

surgery, etc. The tasks could be categorized according to different time frames, such as 

preoperative care (e.g., diagnosis of the patient, surgical plan), intraoperative care 

(performing operation, treatment of unanticipated findings), and postoperative care 

(treatment of complications) (Griffen et al., 2007).  

6.3 Limitations and future research 

While the results of this study support the item-blueprint organized by tasks of 

teaching and instructional situations, there are several limitations pointing to the need for 

further research. First, the small number of items, ranging from three to six for one 

dimension, is a clear limitation, which threatens content validity, in particular, “construct 

underrepresentation” (Furr & Bacharach, 2014). In other words, three items may not 

cover the full range of content that is relevant to a targeted knowledge construct.  

The limitation of small number of items in this study was also revealed in the low 

reliabilities in the IRT scales. For example, the dimensions formed by three items (e.g., 

USW_SR) yielded low reliabilities for the entire range of the construct. The results also 

showed that most IRT scales provided relatively precise measurements for teachers with 
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weak knowledge, but they were less precise for teachers with strong knowledge. While 

identifying teachers who are in need of supports to gain knowledge for teaching geometry 

or algebra could have more practical importance than identifying teachers who are strong 

in knowledge for teaching geometry, additional items are necessary to measure all levels 

of knowledge with high reliability. 

  To mitigate the issue of low reliability, this study applied DCM models as a way 

to improve reliability of knowledge estimates. The DCM models indeed provided better 

reliability for knowledge estimates (mastery or lack of mastery) even with three items. 

However, again, to develop reliable scales representing teachers’ knowledge on a 

continuous scale, items for each hypothesized dimension need to be developed. 

Otherwise, the definition of a hypothesized dimension or conclusions of this study may 

need to be narrowed.  

In this study, the small number of items for each dimension was, however, 

inevitable in that some of the items were not initially developed by the suggested item 

blueprint. To evaluate the suggested framework, the items were retrofitted to the models, 

which classified items by tasks of teaching and instructional situations. In the process of 

retrofitting, several items were excluded when they involved a unique task or 

instructional situation and did not fit into a cluster with other items. The exclusion of 

those items might have limited the possibility of a holistic understanding of the 

characteristics of teachers’ mathematical knowledge. In the same line of thought, two 

tasks of teaching and five instructional situations do not fully represent all the variation 

that could be found among the universe of tasks of teaching or instructional situations. To 

generalize my argument on the role of tasks of teaching and instructional situations as 
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related to the dimensionality of teachers’ mathematical knowledge for teaching geometry, 

more diverse items that represent various tasks of teaching and instructional situations 

need to be developed.  

Apart from the issue of the small number of items, not all the items used in this 

study were initially developed by the suggested framework and this leads to the 

possibility that factors other than the organizers could have influenced the degree to 

which the item clusters were associated with each other. For example, the reason for the 

lack of distinction between USW_CG and USW_DP items could be due to construct 

underrepresentation. Even though lack of distinction was interpretable in consideration of 

students’ problem-solving process in two instructional situations, the interpretations are 

still conjectural. This means that the interpretations cannot fully support the argument 

that the two knowledge constructs are not distinguishable because of the similarities in 

teachers’ mathematical knowledge. To address this issue, further investigation is needed 

to determine whether the two dimensions are indeed distinguishable or not with more 

items that are different only in the involved instructional situations, but the same 

regarding other factors, such as mathematical topic, item format, or wording style. 

Systematically developed test items would allow for the generalization of my argument 

on the feasibility of the suggested framework to measure distinguishable dimensions of 

teachers’ mathematical knowledge for teaching. To do this, a study which incorporates 

various tasks of teaching and various instructional situations, supported by a theory of 

tasks of teaching and a theory of instructional situations, may need to be further 

investigated.  
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Another limitation could be a possibility of biased measurement model 

parameters due to the existence of “person heterogeneity”, which “occurs when a trait 

structure is qualitatively different for distinct examinee samples” (Reise & Gomel, 1995, 

p.342). Given the significant relationship between years of teaching geometry and 

teachers’ MKT-G (Chapter 5 in this study), there could be a possibility that the same 

measurement model does not fit the data from novice teachers and experienced teachers 

equally. The hypothesis regarding the difference in the dimensionality of novice teachers 

and experienced teachers is also reasonable given the dependency of depth and structure 

of knowledge (Jong & Ferguson-Hessler, 1996) and the differences among novice 

teachers and expert teachers (Berliner, 2001). In other words, there is a high probability 

that experienced (or expert) teachers’ knowledge dimensions are more organically linked 

to each other than are those of novice teachers. Krauss et al. (2008) also showed that 

content knowledge and pedagogical content knowledge were not distinguishable for 

teachers with strong content knowledge, whereas the two knowledge domains were 

distinguishable for less knowledgeable teachers. Thus, more dimensions may be needed 

to measure novice teachers’ mathematical knowledge, while fewer may be needed to 

measure expert teachers’ mathematical knowledge. If there is a strong evidence that the 

population of teachers is not homogeneous, a mixed-measurement model that accounts 

for heterogeneity in measurement may need to be applied (Cohen & Bolt, 2005) to the 

data. Specifically, in a future study, a DIF (differential item functioning) method can be 

applied to the data with a variable indicating a novice or experienced teacher to identify 

DIF items. If DIF is identified, a two-group mixture IRT model could be applied to allow 
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different item parameter values to different groups of teachers. Any difference in the 

dimensionality of knowledge can then be investigated between groups.  

Further study can also examine which kinds of experience teachers have in the 

total years of experience so that the extent to which different kinds of experience teaching 

geometry (or algebra 1) can increase teachers’ mathematical knowledge for teaching 

geometry (or algebra 1) can be examined. If a future study identifies experience-specific 

relationships across different knowledge dimensions, then professional development 

could be designed around the experiences that can accelerate improvement of teachers’ 

mathematical knowledge for teaching geometry (or algebra 1).  

 Lastly, the current study is limited in its ability to capture the specific aspect of 

teachers’ mathematical knowledge required in the actual practice of teaching. Even 

though all the items are situated in a specific context of teaching, the context was 

presented by verbal-vignettes instead of visual-vignettes (e.g., animation, video) or in real 

settings. The context described in writing requires teachers to hypothesize the situation 

rather than experience the situation while solving the items. Thus, teachers’ knowledge 

required to appropriately interpret and recognize a context could not be captured. This 

limitation may have caused some hypothesized dimensions to be indistinguishable.  

 The use of an instrument that requires respondents’ interpretations of events has 

relevance for construct measurement, which is context-specific (Ambrose, Clement, 

Philipp, & Chauvot, 2004). This study hypothesized differences between knowledge 

dimensions, which reflect different instructional situations that imply different 

expectations for the teachers’ and students’ work. What is therefore needed is an 

instrument that can provide teachers with scenarios in which they are called on to 
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recognize the situation. With this consideration, future work can use animations or 

storyboards that depict classroom interaction to present the different contexts of teaching 

in measuring teachers’ mathematical knowledge. The viability of scenario-based 

instruments has been reported in other studies (Herbst & Chazan, 2015; Herbst, Chazan, 

Kosko, Dimmel, & Erickson, 2016). For example, animations of cartoon characters were 

used to investigate the norms that govern classroom interactions, which are expected in 

the instructional situations “installing a theorem in geometry” and “doing word problems 

in school algebra” (Herbst, Nachlieli, & Chazan, 2011; Chazan, Sela, & Herbst, 2012). In 

particular, among the studies measuring teachers’ mathematical knowledge, the TEDS-M 

group developed and used a video-vignette assessment to measure teachers’ general 

pedagogical knowledge, which is context-dependent, in their follow-up study TEDS-FU 

(Blömeke, Kaiser, & König, 2009; Klein, Suhl, Busse, & Kaiser König, Blömeke, Klein, 

Suhl, Busse, & Kaiser, 2014). 

 Similar to these studies, future research could develop items that present an 

intended instructional situation using animation or storyboard to measure teachers’ 

mathematical knowledge used in the situations. Such approaches would remove the 

reliance on written word and better capture the aspect of situational teacher knowledge. 

6.4 Concluding remarks 

“Methodological sophistication cannot substitute for theoretical cogency” (Garvin 

& Kirkland, 1977, p.24), whereas theoretical cogency cannot guarantee sound operation. 

The challenge of attaining both methodologically and theoretically sound knowledge 

framework has motivated this study. Despite some limitations that need further research, 

this study has shown the possibility of measuring multiple dimensions of teachers’ 
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mathematical knowledge in terms of multiple scales, which has not yet been documented 

in the mathematics education literature. Having described the suggested framework and 

the results supporting it, my work shows a promise of an item blueprint that is not only 

theoretically warranted but also methodologically feasible.
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Appendix 

Sample Items 

USW_CG (Understanding Students’ Work in Calculation in Geometry)  
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USW_DP (Understanding Students’ Work in Doing Proof) 
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USW_EF (Understanding Students’ Work in Exploring a Figure) 
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USW_SR (Understanding Students’ Work in Simplifying Rational expressions)  
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USW_SE (Understanding Students’ Work in Solving Equations) 
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CGP_CG (Choosing appropriate Givens for a Problem in Calculation in Geometry) 
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CGP_DP (Choosing appropriate Givens for a Problem in Doing Proofs) 
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CGP_EF (Choosing appropriate Givens for a Problem in Exploring a Figure) 
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CGP_CN (Choosing appropriate Givens for a Problem in Calculating with Numbers) 
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