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Abstract 

 

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that affects up to .02% 

of the US population and nearly 90% of patients are women.  These SLE patients experience 

devastating organ damage mediated by autoantibody production, immune complex deposition, 

and elevated production of type I interferons (IFNs). SLE disease activity occurs in a series of 

flares that incrementally damage kidneys, skin, liver and other organs. Type I IFNs are purported 

to be important cytokines in the development of SLE, but their role in TLR7- mediated lupus 

development and UVB induced immune response has not been well understood. This thesis 

addresses two main questions:  

1) What role do type I IFNs play in TLR7 –mediated lupus development. 

To investigate the role of cutaneous TLR7 signaling and IFN production in lupus flare 

development, we used a lupus-prone murine model NZM 2328 (NZB/W derived congenic strain) 

and iNZM (knockout of the α-chain on the IFNα/β receptor). In order to induce lupus flare, mice 

were treated on the ear with R848 (TLR 7 agonist). Importantly, we show that both NZM and 

iNZM mice exhibit a decline in survival after 3 to 4 weeks with R848 but not vehicle treatment. 

This TLR 7 cutaneous stimulation resulted in development of splenomegaly and liver 

inflammation in a type I IFN-dependent manner. Interestingly, development of autoantibody 

production in the LN occurred in the absence of type I IFN signaling. Upregulation of IL-1β, 

ccl2 and renal infiltration of dendritic cells also occurred in a type I IFN-independent manner.  

Though upregulation of IL-1β occurred, knockout of IL-1β in NZM mice did not show to be 



 xi 

protective. These data suggest induction of both type I IFN dependent and independent lupus 

phenotypes downstream of TLR 7 cutaneous stimulation.  

2) What role do type I IFNs play in UVB-induced immune response in lupus-prone mice  

In order to examine UVB responses, eight-to-ten-week-old female wild-type (BALB/c), 

lupus-prone (NZM2328) and iNZM mice (lack a functional type I IFN receptor on NZM2328 

background) were treated on their dorsal skin with 100mJ/cm2 of UVB for 5 consecutive days. 

We demonstrated elevated expression of type I IFNs in lupus vs. healthy skin following UVB 

exposure. Further, we show that UVB treatment led to skewed T cell activation in the dLN of 

lupus-prone mice through type I IFNs suppression of T regulatory cells. In addition, type I IFNs 

increased inflammation in lupus compared to healthy skin through regulating the recruitment of 

differential DC populations and inducing macrophage activation. We also identified that 

CD103+CDllb- DCs migrate into the dLN of lupus-prone mice in a type I IFN dependent manner. 

These data suggest type I IFNs prime lupus skin for increased inflammatory response. Thus, we 

propose that type I IFNs are important for UVB-induced inflammation through regulation of the 

innate and adaptive immune response in lupus-prone mice and may be an effective target for 

prevention of UVB- induced cutaneous inflammation. 
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Chapter 1 Introduction 

 

The section labeled “The impact of UVB’ in SLE pathogenesis” in this chapter was 

published in Frontiers in Immunology at the time of defense1.  

1.1 Systemic Lupus Erythematosus  

1.1.1 Epidemiology and clinical manifestations 

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that is 

heterogeneous and multi-symptomatic, occurring in a series of flares in patients. Incidence 

worldwide ranges from 0.3 to 23.7 per 100,000 persons each year, and prevalence ranges from 

6.5 to 178.0 per 100,000 persons2. Geographically, higher incidence of SLE is found in Asia 

.0031%, Australia .093%, and the Americas .02%3, 4. Complex interactions including gender and 

ethnic background contribute to the difference in incidence rate among SLE patients2. Peak 

incidence of SLE development is higher in women than men (in a ratio of 9:1 and can be as high 

as 15:1). This is in part contributed by hormone differences, as before puberty the female-to-

male ratio is 3:15.  Ethnically, non-Caucasian groups tend to have a higher incidence than 

Caucasians, possibly due to differences in genetic and epigenetic factors2.  

SLE patients can present with general systemic manifestations including malaise, fever, 

myalgias, weight changes, and headache6. More specific features of patients involve arthritis, 

cutaneous inflammation, renal disease, central nervous system involvement, splenomegaly, liver 

inflammation, and increased risk for cardiovascular disease6. Development of musculoskeletal 

manifestations in SLE patients is common7;  they can exhibit joint pain and progress to 
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development of arthritis, which affects between 69% to 95% of patients8-10. Unlike rheumatoid 

arthritis, SLE patients develop intermittent swelling with less damage occurring in the bone and 

cartilage11
. 

 Cutaneous inflammation, termed cutaneous lupus erythematosus (CLE), is another 

manifestation that affects between 70- 80% of all lupus patients and up to 25% of SLE patients 

will develop CLE prior to SLE onset12. CLE  is heterogeneous and contains 3 subtypes: acute, 

subacute, and chronic, which is divided into 4 additional subsets 6, 12. Acute CLE (aCLE) patients 

display the classic malar rash on the checks and nasal bridge; these patients can frequently 

progress to systemic disease development12. Subacute CLE (sCLE) patients develop psoriasiform 

lesions around the neck that display increased keratinocyte apoptosis12. It has been reported that 

up to 48.7% of these patients exhibit systemic disease13, 14. Discoid or Chronic CLE is one of the 

most common clinical manifestations of CLE. These patients have scarring lesion development 

on the face, the neck and scalp that exhibit lymphocyte and macrophage infiltration12. While it is 

not understood what immunological factors drive the progression of the different subtypes of 

disease and how CLE progresses to SLE , the majority of these patients are photosensitive; this is 

displayed as development of skin lesions following sun exposure1.   

Lupus nephritis (LN) is also a devastating manifestation of SLE and is associated with 

poor prognosis. The incidence of LN in SLE patients varies ethnically: Asian (55%), African 

(51%), Hispanic (43%), and Caucasian (14%). 25% of LN patients go on to develop end-stage 

renal disease 10 years after renal compromise15-17. Glomerulonephritis is the most common form 

of renal disease in SLE patients18. While several factors contribute to GN development, immune 

complex deposition triggers damage to the glomerulus through binding of Fc receptors and 
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initiating complement activation17. This damage results in the leakage of protein into the urine, 

termed proteinuria, and scarring of the kidney leading to end-stage renal disease19.  

1.1.2 Treatment 

The complexity in progression and development of SLE has made it challenging to create 

new FDA approved therapies, though promising clinical trials are on the horizon20, 21. Currently, 

general corticosteroids and immune suppressants are being used to assist patients. Only one 

Biologic (belimumab) has been approved (in 2011) for treatment of active SLE patients; it works 

through blocking the biological activity of B-lymphocyte stimulator (BLyS) to reduce the 

production of autoantibodies and other B-cell related functions22, 23. A better understanding of 

the mechanism involved in the pathogenesis of lupus could lead to more specific therapies.  

1.1.3 Factors contributing to Lupus pathogenesis 

Genetic and epigenetic factors along with environmental exposure drive the immune 

system to promote lupus disease development.  

 

Genetics 

Genetics is one factor that contributes to disease susceptibility; this is demonstrated 

through the high incidence rate observed in identical twins (29%–57%) and in familial cases 

(10%–12%)24, 25.  Previous genome-wide association studies have identified more than 60 risk 

loci for SLE susceptibility; these loci are associated with antigen presentation, T and B cell 

signaling, phagocytosis and cytokine, particularly type I interferon, signaling.  

  In regard to antigen presentation, major histocompatibility complex (MHC), alleles for 

both class I and class II are associated with increased risk for SLE.  Particularly, class II alleles 

have been shown to be involved with lupus pathogenesis and contribute to ethnic disparities in 
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SLE26. Two alleles, HLA-DR2 and 3 positively correlate with lupus development27, 28.  Both 

HLA-DR and DQ alleles contribute to pathogenesis in part through anti-Ro/SSA antibody 

production, which is present in 25-50% of SLE patients. On the other hand, DQA1 alleles have 

demonstrated association with the production of anti-dsDNA antibodies, which is another 

pathogenic antibody expressed in lupus29. Though MHC I haplotypes may be relevant to lupus 

susceptibility, their role is not well understood. Other deficiencies in early complement 

components 2, 4, and C1q are also associated with SLE susceptibility30-33 through their effect on 

reduced clearance of apoptotic cells allowing for prolonged autoantigen exposure in lupus 

patients 

Gene variants regulating immune cell activation, phagocytosis, and cytokine signaling 

within SLE patients have also been identified. BLK variant rs922483 and CSK variant 

rs34933034 mediate activation of mature B cells that may be autoreactive 34, 35. T and B cells in 

lupus patients are also affected by a missense mutation of PTPN22, a tyrosine phosphatase 

protein that affects T and B cell signaling, resulting in increased autoantibody production and T 

cell activation36-38. Reduced phagocytosis by antigen presenting cells in lupus patients is 

associated with variation in ITGAM, which regulates phagocytosis of complement coated 

antigens39, 40. Gene variants associated with type I IFN signaling involving STAT4, IRF5, and 

IRF7 have also been implicated in increased risk41-43. Promotion of production of type I IFNs 

could possibly be due to polymorphisms in TLR 7 exhibited in lupus patients44, 45.  
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 Epigenetics 

Differential epigenetic modifications are another factor influencing lupus development. 

Such modifications impact methylation of DNA and acetylation of histones, but do not alter the 

DNA sequence.  Altered DNA methylation has been found most prominently in the T cell 

population of SLE patients. This is in part implicated by reduced expression of DNA 

methyltransferase enzymes (DNMTs), which add a methyl group to cytosine in GC 

dinucleotides, resulting in reduced gene expression or gene silencing46. T cells of SLE patients 

also exhibit altered transcription factor networks; in particular, increased cAMP responsive 

element (CREM) α promotes effector T cell generation47-50.  

Several cytokines including IL-4, IL-6, IL-10, IL-17 demonstrate reduced DNA 

methylation resulting in increased production of these cytokines51-56. Type I IFNs signaling are 

particularly affected in SLE patients by hypomethylation of interferon regulatory factor 7 (IRF7), 

a transcription regulator for type I IFN production57. This contributes to the increased interferon 

signature in SLE patients and displays effects on both innate and adaptive immune cells.  

Histone modifications are another level of epigenetics implicated in SLE development. 

Histones are comprised of H2A, H2B, H3 and H4, which in complex with DNA constitute a 

nucleosome. The terminal amino acid of a histone can be acetylated, citrullinated, 

phosphorylated, or methylated. In SLE, histone H3K9 methylation is decreased in CD4+ T cells, 

allowing for reduced silencing of genes affecting effector function58. T cells also exhibit 

modifications at the IL-17 gene cluster, contributing to increased expression of IL-17 by TH17 

and double negative cells56, 59. In lupus patients, expression of the IL-2 gene is reduced due to 

histone deacetylation and DNA methylation , resulting in promotion of effector T cells while 

possibly suppressing T regulatory (Treg) cells47, 60, 61. This importance of IL-2 is confirmed in vivo 
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as treatment of SLE patients with low-dose IL-2 for 5 days promotes increased TRegs 
62; this 

biology is currently being pursued as a treatment for SLE.   

 

Cell populations 

Increased presence of autoantigens in SLE patients promotes loss of tolerance and 

increased immune cell activation. Of the innate immune cells, neutrophils have been shown to 

also contribute to increased autoantigens63, 64. SLE patients’ neutrophils include low-density 

granulocytes that show increased formation of neutrophil extracellular traps (NETosis), the 

extrusion of nuclear, cytoplasmic, and granular material65.  NETs are not properly cleared in SLE 

patients due to low DNase activity as a result of anti-DNase antibody production and deficiencies 

in complement that lead to reduced opsonization 66-68. Self-nuclear material from NETS can form 

immune complexes and self-peptide complexes that in turn can lead to stimulation of endosomal 

TLRs followed by secretion of type I IFNs65, 69.  SLE neutrophils exhibit impaired phagocytosis 

and reduced production of reactive oxygen species (ROS), which correlates with disease 

activity70-72. 

The increased presence of autoantigens from apoptotic cells and NETs promotes DC 

activation. Particularly, plasmacytoid dendritic cells (pDCs) are shown to be activated in SLE 

patients through exposure to self -immune complexes and self-peptide complexes69, 73, 74. This 

stimulation is through endosomal TLRs 7 and 9, resulting in increased type I IFN production69, 

73. Their role in pathogenesis is demonstrated through depletion of pDCs in lupus-prone mice 

resulting in reduced disease progression75, 76; though they seem to be more important for the 

initiation stage of SLE pathogenesis,  since reconstitution of pDCs later in disease does not fully 

reverse the disease progression. The important role for pDCs in SLE is also supported by 
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observations in lupus patients treated with a monoclonal antibody targeting BDCA2, which 

reduces skin lesion development77. 

In SLE patients and mice, conventional and monocyte derived DCs exhibit more of an 

inflammatory profile, promoting autoreactivity through self-nucleic acid  sensing78, 79.   

Conventional DC’s (cDCs) from SLE patients and mice show increased expression of 

costimulatory molecules (ex. CD40), possibly allowing for increased T cell activation80-83. They 

also exhibit decreased expression of death-ligand 1 allowing for increased survival of 

autoreactive cells84.  There is also an increase in CDllb+ DCs with CCR7 expression infiltrating 

into tissues and secondary lymphoid organs and correlating with lupus disease progression85, 86.  

 Monocytes and macrophages also contribute to SLE pathogenesis. Reduced expression 

and function of Fc gamma receptors (FcγR) on monocytes from SLE patients may contribute to 

the induction of inflammatory cytokines and impaired phagocytosis87-92. Macrophages also 

exhibit impaired phagocytosis, which results in accumulation of apoptotic cells near the germinal 

center93, 94.  In addition, SLE patients show increased expression of costimulatory and adhesion 

molecules on monocytes and monocyte-derived APCs, assisting in infiltration and lymphocyte 

activation. Monocytes/macrophages in SLE patients exhibit increased inflammasome activity, 

which may contribute to SLE pathogenesis95, 96.  These unique features could be due to cytokines 

in SLE patient serum, as serum from lupus patients can impair phagocytosis of apoptotic cells by 

macrophages obtained from healthy individuals97. In particular, chronic type I IFN expression 

exhibited in SLE patients has been shown to influence the inflammatory profile of monocytes98.     

 Along with interacting with self-presenting APC, T cells also exhibit alterations in T cell 

signaling that contribute to a loss of tolerance. For example, the CD3 ζ chain is decreased in T 

cells and there is increased mTOR activity resulting in hyperactivation99-101. Though the T cells 
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are hyperactive, they have impaired IL-2 production which contributes to the reduction of TReg 

cells, a defect seen in both lupus mouse models and human studies47, 102.   In addition, there is 

skewing of polarization toward effector TH17 cells and double negative T cells producing IL-17, 

IL-1β, and IFNγ47, 56, 61.T cells are an important checkpoint for B cell activation, and in SLE, 

promote autoreactive B cells; this is demonstrated through somatic hypermutations seen in the 

genes encoding antibodies of SLE patients. The transient interactions between T and B cells in 

lupus patients compared to healthy individuals are believed to contribute to this pathogenic 

effect103, 104.  Specifically, T follicular helper cells are implicated in promoting autoreactive B 

cells, as they are expanded in lupus murine models and correlate with disease activity and 

severity in SLE patients105-108.   

SLE patients and lupus-prone mice exhibit increased autoreactive B cells109, 110. 

Generation of autoreactive B cells in SLE patients is due to defects in surface molecules, 

signaling transduction, and tolerance check points. SLE patients exhibit defects in FcγRIIIB 

surface expression on B cells111; this has been shown to contribute to glomerulonephritis and 

autoantibody production in mice112, 113. There is also altered BCR signaling such as increased 

PI3K and Akt activation in SLE patients, which regulates class switching and differentiation114, 

115. In particular, there is a shift in the B cell pool leading to increased pre-naïve cells and 

transitional cells116, 117.  In addition, BLyS and type I IFNs, both of which are increased in SLE, 

have been shown to enhance BCR signaling118-121.  SLE patients and mice also demonstrate 

increased T follicular helper (TFH) cells, which may regulate B cell activation in germinal 

centers105, 122; this may also contribute to enhanced somatic hypermutation displayed in B cells 

from SLE patients 117, 123-125. 
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B cells likely contribute to SLE both through autoantibody production and through antibody-

independent roles.  Autoantibodies in lupus patients are targeted against nuclear material 

including histones, chromatin, and DNA18. Most studies have demonstrated a correlation of anti-

double stranded DNA antibodies with disease activity126. They contribute to disease pathogenesis 

through the formation of immune complexes that can activate Fc receptors and the complement 

pathway in tissue127. Autoantibodies can also bind self-nucleic acids and be endocytosed  by 

antigen presenting cells to stimulate endosomal TLRs, resulting in the production of type I 

IFNs128. Intriguingly, autoantibodies are not required for SLE development, as mice that are 

incapable of secreting antibodies still develop lupus129. Functions independent of antibody 

production that may contribute to disease include antigen presentation, co-stimulation of T cells, 

production of cytokines and chemokines130-132. 

1.2 Type I Interferons and SLE Pathogenesis 

1.2.1 Type I IFNs 

Currently, there exist three classes of interferons (IFNs): type I, type II and type III.  

Type I IFNs include: IFN-α, IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-τ, and IFN-ω. IFN-α has 13 

different subtypes, while the others have one form133. The type II and III IFNs are composed of 

IFN γ and IFNλ (4 subtypes) respectively134.  Each class of IFNs binds to a different receptor on 

the target cell to induce signaling.  

Type I IFNs bind to a heterodimeric transmembrane protein receptor composed of 

IFNAR1 and IFNAR2, resulting in phosphorylation of two associated cytoplasmic kinases, the 

tyrosine kinase 2(TyK2) and Janus kinase 1(Jak1)134, 135. These kinases then phosphorylate 

STAT1 and STAT2, which translocate to the nucleus along with interferon regulatory factor 
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9(IRF9) to bind to IFN regulatory elements; this is followed by transcription of interferon 

stimulated genes (ISGs)134. Binding of the type I IFNAR can also trigger signaling of the MAPK 

and PI3/AKT pathways134.  

Type I IFN production is triggered through sensing of nuclear material derived from 

viruses, bacteria, or self-nucleic acids by pattern recognition receptors (PRRs). Both TLRs and 

the cytoplasmic nucleic acid sensors, have been shown to induce type I IFN production 

following stimulation. Cytosolic sensors are expressed in most cells, while TLRs are expressed 

most highly in immune cells135.   

1.2.2 Type I IFNs and SLE 

Gene expression 

The majority of SLE patients display a type I IFN-regulated gene signature136, and this 

appears before pathology is evident137. GWAS studies have revealed several genetic loci 

associated with increased risk for SLE that are linked to type I IFN production. In both humans 

and mice, type I IFNs induce lupus-like symptoms. In patients with hepatitis C, clinical lupus can 

develop following type I IFN treatment138. This is also exhibited in mice treated with adenovirus 

containing IFN-α, leading to the acceleration of lupus development. Further supporting a role for 

type I IFNs, NZM lupus-prone mice lacking the type I IFNR demonstrate a reduction in disease 

pathogenesis139-141. A cross sectional study also shows IFNs correlate with lupus disease activity; 

however, in longitudinal studies expression of IFN gene signatures are stable over time142-145, 

indicating a role for type I IFNs in the induction of disease but maybe not disease flares. These 

data have led to the dogma of type I IFNs being a driving force in lupus development.  
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Activation 

Endocytosed ICs or antimicrobial peptides containing self-nucleic acids induce type I 

IFN production through TLR and cytosolic nucleic acid signaling146, 147. A relationship between 

RNA-containing IC and type I IFN signature in PBMCs from lupus patients has been 

demonstrated in previous work148.  

pDCs are implicated as a major source of type I IFN production; this is demonstrated 

through reduced IFN-α production when pDCs are depleted in lupus-prone mice and lupus 

patients leading to disease improvement75, 146, 147. The uptake of ICs and antimicrobial peptides, 

such as LL37, can trigger type I IFN production by pDCs through TLR7 and 9 stimulation73, 149, 

150. Neutrophil Extracellular Traps (NETosis) can also activate pDCs to produce type I IFNs 

through oxidized mitochondrial DNA74.  However, previous studies have also shown IFN-α can 

still be produced in the absence of pDCs in PBMCs from SLE patients151; indicating other cell 

types as an additional source for IFN-α production. Other cell populations that produce type I 

IFNs include neutrophils from SLE patients having increased IFN-α transcripts, Ly6Chigh 

proinflammatory monocytes, and keratinocytes producing IFN-κ 152-155. 

Environmental triggers that promote lupus disease development are associated with 

induction of type I IFN production.  Ultraviolet B-light (UVB) is one major environmental 

trigger that induces type I IFN expression in lupus patients and mice156, 157. UVB treatment of 

keratinocytes from SLE patients leads to increased IFN-κ production that is implemented in 

driving proinflammatory cytokine production such as IL-6154, but  the role of this pathway in 

UVB induced immune cell activation is not well understood. Other environmental triggers such 
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as procainamide and hydralazine can also induce type I IFN through the dysregulation of DNA 

methylation158.  

1.2.3 Cell populations and Type I IFNs  

Type I IFNs affect the inflammatory profile of several immune cell populations in SLE 

pathogenesis. Chronic expression leads to priming of monocytes for more activation and 

inflammatory response98, 159. Monocytes can differentiate into cDCs in the presence of SLE 

serum and this is dependent on type I IFNs151. Priming of monocyte derived DCs in the presence 

of apoptotic blebs leads to activation of T cells, possibly through overexpression of Ifi202 and 

Ifit4 leading to increased IL-12 production which promotes Th1 differentiation160-163.  Type I 

IFNs can also increase T cell survival and suppress T regulatory cell function164; this could in 

turn contribute to the autoreactive T cell population being activated in SLE patients. Along with 

T cell help, type I IFNs have been shown to promote B cell activation and isotype class 

switching165.    

1.3 Dissertation rationale  

My dissertation research focuses on the role of type I IFNs in triggers of SLE.  There are 

two areas of focus: TLR7-mediated lupus development and UVB-induced immune cell response.  

Type I IFNs have demonstrated effects on both the innate and adaptive immune cell populations 

and are elevated in SLE patients. Though they may be associated with several manifestations in 

SLE, the mechanisms involved in contributing to TLR7 mediated lupus characteristic 

development or UVB-induced immune response isn’t known. This project will focus on 

understanding which TLR-7-related lupus characteristics are regulated by type I IFNs and if type 

I IFNs are pro or anti-inflammatory in a UVB- induced immune cell response in lupus-prone 

mice.  
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1.4 Toll-like receptor 7 involvement in SLE pathogenesis 

1.4.1 Types of TLRs  

In humans, 10 TLR family members have been identified, and in mice, 13 are present; 

these TLRs are localized to the plasma membrane and endosome. TLRs can sense 

lipopolysaccharide (LPS), flagellin, lipoproteins, single-stranded RNA, or unmethylated DNA 

(CpG), and following sensing of their respective ligand, signal through either MyD88 or TRIF. 

This eventually results in the activation and translocation of IRF7, IRF3, NFkB, or JNK into the 

nucleus to induce gene transcription166.   Given the genetic risk associated with TLR7 

polymorphisms in SLE and numerous murine models that demonstrate a role for TLR7 in driving 

lupus phenotypes167-170, a focus on TLR7 is warranted. 

1.4.2 TLR 7  

TLR7 is localized to the endosome and recognizes double stranded RNA that is typically 

presented by viruses or self-nucleic acids in autoimmunity. Expression of TLR7 is seen in 

macrophages, monocytes, B cells, and dendritic cells; in particular, dendritic cell subsets that 

express high levels of TLR7 are pDCs and cDCs. Binding of dsRNA by TLR 7 results in signal 

transduction that is dependent on the adaptor protein MyD88, leading to the upregulation of 

NFκβ regulated cytokines and increased expression of IRF7 regulated cytokines171. 

1.4.3 TLR7 and SLE 

Polymorphisms in TLR7 are linked to SLE development in humans. The most prevalent 

SNP is rs3853839, which was identified in Eastern Asians167. The copy number of the TLR 7 

gene has also been shown to correlate with increased IFN-α expression172, which suggest a role 

for TLR7 in type I IFN production in SLE patients. 
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Initial observations of TLR7’s role in driving lupus development in mice were made in 

the BXSB mouse model. The male mice in this strain harbor a Y-linked autoimmune 

accelerating (yaa) locus on the Y chromosome that contains 16 genes including TLR7, and this 

results in the male mice developing lupus characteristics173. Lack of TLR7 signaling in MRLlpr 

and NZB/W lupus-prone mouse models resulted in diminished autoantibodies and attenuation of 

lupus nephritis169, 170. In addition, epicutaneous stimulation of wild-type mice with Imiquimod 

(TLR7 agonist) initiated increased autoantibody production, splenomegaly, and lupus 

nephritis174. The effect of TLR 7 is also exhibited in mice transgenic for an extra copy, as these 

mice develop glomerular nephritis, splenomegaly, liver inflammation and antinuclear 

antibodies168. Though type I IFNs are upregulated following TLR7 stimulation174 ,their role in 

TLR7 mediated lupus development is not well understood.  

1.5 The impact of UVB in SLE pathogenesis 

1.5.1 Human Healthy and Autoimmune Skin responses to UV 

UV light falls in the spectrum between visible light and gamma irradiation.  UVA, UVB, 

and UVC are divided based on wavelength (UVA=400-320nm; UVB=320-280nm; UVC=280-100 

nm), with shorter wavelengths associated with higher energy effects. In general the longer 

wavelengths, such as UVA, penetrate more deeply in the skin, reaching the dermis, whereas UVB 

is absorbed almost entirely by the keratinocytes of the epidermis175. UVC rarely reaches the skin 

as it is primarily absorbed by atmospheric ozone. Following UV exposure, the keratinocytes act as 

first responders, trigging inflammatory cytokine and chemokine production (fig. 1.1). If the UV 

exposure is substantial enough, keratinocytes also undergo apoptosis.   

 



 15 

1.5.2 Wild type and autoimmune murine models of UV exposure  

Although lupus patients experience sensitivity to UV exposure and display both local and 

systemic flares, understanding the mechanism is challenging due to variability between patients176. 

Thus, murine models are ideal for understanding the mechanisms regulating both the local and 

systemic UV response with the caveat that no one animal model will mimic every aspect of human 

disease. Like in humans, UVA has shown therapeutic effects for autoimmune conditions in mice 

177. However, most studies that examine the mechanism behind UV damage utilize UVB; thus, 

mechanisms involved in local and systemic response following UVB treatment will be reviewed 

below. 

1.5.3 UV-induced DNA damage and apoptosis 

Mice also exhibit increased apoptosis and DNA damage in the skin after UV 

exposure(fig.1.1). In murine skin, keratinocytes and fibroblasts are susceptible to UVB-induced 

apoptosis 178-181. Both TLR and TWEAK-Fn14 signaling pathways have been shown to regulate 

this process. TLR 4-MyD88 signaling pushes cells to undergo apoptotic vs. necrotic cell death 

pathways after UVB exposure via caspase 3 activation, as mice deficient for either TLR4 or 

MyD88 display increased necroptosis markers and TNFα production 182. The TWEAK-Fn14 

signaling pathway has also been investigated in mice for its role in apoptosis, since Fn14 is 

upregulated on keratinocytes following UVB exposure. Knockout (KO) of Fn14 led to protection 

from UVB induced skin inflammation183, while the addition of TWEAK led to increased apoptosis 

of keratinocytes from UV treated MRL/lpr mice184. UV exposure also led to increased DNA 

damage/ release in both wild-type mice and lupus-prone mice, though lupus-prone MRL/lpr mice 

demonstrate increased susceptibility to UV-mediated DNA release185. This UV induced DNA 

damage may play a role in lesion development, as TREX1 KO mice, which lack cytosolic DNase, 
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develop lupus-like lesions 186. Further, UV-modified DNA can induce CLE-like lesions when 

injected into the skin of MRL/lpr mice 187. Though DNA damage and apoptosis result from UV 

irradiation, the differences between wild-type mice and lupus-prone mice regarding mechanisms 

of immune activation remains understudied.   

1.5.4 UV- induced autoantigen exposure 

Exposure of autoantigens at the dermoepidermal junction also occurs in lupus-prone mice 

following UV treatment. One study identified immune complexes and antibodies to desmoglein 3 

at the dermoepidermal junction in NZB/NZW F1 mice exposed to 500 mJ/cm2 UVB every other 

day 188. While production of anti-Ro antibodies is rare in murine lupus models, UVB induces 

similar externalization of the Ro autoantigen in mice. Indeed, injection of Ro+ serum from patients 

with subacute cutaneous lupus into Balb/c mice exposed to UVB results in deposition of anti-Ro 

antibodies at the dermoepidermal junction 189. Further studies should address the role of 

autoantibodies in murine lupus models of UV-mediated skin inflammation. 

1.5.5 UV-induced inflammation 

1.5.5.1 Cytokines 

Murine cytokine production after UVB is similar to that seen in human skin: TNFα, IL-6, 

IL-1, IL-23, and type I IFNs are all increased(fig.1.1) 179, 182, 190. Most of the cytokine induction is 

fairly rapid: TNFα and IL-6 production occurs 8-24 hours after UVB exposure 191. However, data 

examining their role in UV-mediated changes remain limited. In lupus-prone mice, IFN-regulated 

gene Ifi202 has a pro-inflammatory effect on apoptosis following UV stimulation 192, but in wild-

type mice, IFNs demonstrate a protective effect in the skin as mice lacking the type I IFN receptor 

have greater inflammatory responses 156. UVB induces colony-stimulating factor-1 (CSF1) which 
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likely enhances macrophage recruitment to the skin 193. Following UVB, TNFα has a pro-

inflammatory effect by increasing apoptosis of keratinocytes 190, 194, 195. Though studies on the role 

of IL-1 family members following UV exposure are limited, mice transgenic for IL-1α demonstrate 

skin inflammation 196. IL-6 -/- mice demonstrate decreased epidermal proliferation after UVB and 

also decreased systemic IL-10, suggesting IL-6 may have both epidermal and immune regulatory 

functions 197. IL-23 in wild-type mice has a protective effect on UVB-mediated damage by 

reducing DNA damage 198; however the function of this cytokine has not been examined in lupus-

prone mice following UV stimulation. Intriguingly, neutralizing antibodies to IL-23 have a 

protective effect in lupus-prone mice, which suggests a pro-inflammatory function for this 

cytokine after UVB stimulation 199. Further exploration into the role of these cytokines following 

UV exposure in wild-type and lupus-prone mice may yield novel data for therapeutic development 

for photosensitivity.  

1.5.5.2 Immune Cell Recruitment 

Epidermal damage from UV exposure results in upregulation of chemokines and 

recruitment of neutrophils, monocytes, macrophages, dendritic cells and T cells (fig.1.1) 181, 183, 200.  

The dose of exposure regulates the inflammatory response.  Hairless mice exposed to low dose (20 

mJ/cm2) UVB demonstrate increased epidermal thickness but not inflammation.  The same mice 

exposed to a single high dose (400 mJ/cm2) demonstrate neutrophil and macrophage recruitment 

201. C57BL/6 mice exposed to two doses of 500 mJ/cm2 of UVB also demonstrate infiltration of 

pDCs within 24 hours and macrophages and neutrophils after 24-78 hours 157. In wild-type mice, 

CD4+ T cells and CD8+ T cells exhibit pro-inflammatory functions through production of IFNγ 

following UVB stimulation 200; this inflammation is downregulated via induction of T regulatory 

cells in the skin 202.  IFNα-producing monocytes are recruited to the skin in wild-type mice 
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following UVB exposure, and they also exhibit a negative regulatory effect on UVB-driven 

inflammation via type I IFN-mediated pathways 156. Resident Langerhans cells are essential to 

resolution of UVB induced skin inflammation through their phagocytosis of apoptotic 

keratinocytes 200; thus, they also exhibit an anti-inflammatory role.  

The effect of UVB in mice with a propensity for autoimmune conditions is less well-

studied. In lupus-prone MRL/lpr mice, markers of neutrophil and macrophage infiltration are 

present after UVB, but how this compares with wild-type mice was not evaluated 183. Other studies 

have compared effects in lupus-prone vs. wild type mice. Increased CD8+ and CD4+ cells were 

noted in MRL/lpr vs. Balb/c mice after 2 and 6 days of 500 mJ/cm2 UVB treatment 193. Production 

of chimerin and recruitment of pDCs to the skin after UVB exposure is increased in MRL/lpr vs. 

wild-type mice 157.  Ex vivo irradiation of lymph nodes from lupus-prone (both NZB/NZW F1 and 

MRL/lpr) vs. wild-type mice exhibited greater upregulation of ICAM-1 and LFA-1, which 

promotes migration of immune cells into the tissues 179. These studies have generated a preliminary 

understanding of the differential effects of UVB in lupus-prone vs. wild-type mice., but additional 

research is needed. 

1.5.6 UV-induced systemic disease flares 

 

Anecdotal and case report data support a link between cutaneous UVB exposure and 

induction of systemic disease flares in patients 203, 204. This connection between the cutaneous and 

systemic immune system has not been well characterized in human or murine models (reviewed 

in 205). To date, the main lupus-prone mouse model that has demonstrated systemic responses to 

UV is BXSB male mice, which carry an additional copy of TLR7 as part of the Yaa locus 206. In 

this strain, daily exposure to 400 mJ/cm2 full spectrum UV for one week resulted in 66% of mice 

succumbing to death after two weeks.  This level of irradiation did not impair survival in Balb/c, 
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MRL/lpr or (NZBxNZW)F1 mice. Chronic exposure to 120 mJ/cm2 thrice weekly also resulted in 

>85% lethality after 4 weeks of treatment in male BXSB mice. Death in the male BXSB mice was 

accompanied by changes consistent with lupus nephritis 207. Whether it is TLR7 driving this 

phenotype has not been elucidated, but stimulation of TLR7 in Balb/c mice with topical TLR7 

agonist for two weeks followed by UVB resulted in rising autoantibody titers compared to UVB 

only-treated mice 208, and TLR7 stimulation itself can promote systemic disease flares209. This 

suggests that TLR7 signaling may have a role in UVB-mediated systemic immune activation. 

However, epidermal damage itself may be sufficient to drive lupus flares in lupus-prone mice 210, 

so the effects of UVB on systemic immune activation may be multivariate. 

Sensing of UVB-modified nucleic acids may contribute to systemic flare development 

following UVB exposure. For example, injection of UVB-induced apoptotic DNA in wild-type 

and lupus-prone MRL/lpr mice led to development of lupus-like characteristics such as increased 

dsDNA antibodies and proteinuria 211, 212. Hypomethylation of DNA seems to be important for this 

process 212. It is tempting to speculate that these systemic effects may be secondary to STING 

activation as UVB-modified DNA is resistant to degradation by TREX1 and is able to induce IFN 

responses and cutaneous lupus-like lesions when injected into the ear of MRL/lpr mice187. Further 

exploration is needed to understand the role of UVB-mediated DNA changes in driving systemic 

immune responses in SLE.   

UVB induced epidermal injury in healthy and lupus skin results in apoptosis of 

keratinocytes, the upregulation of type I IFNs, and immune cell infiltration/activation. Though 

type I IFNs are expressed, their role in UVB-induced immune cell activation in lupus-prone mice 

remains unclear.   
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Figure 1.1 Summary of mechanisms of photosensitivity. 

In lupus, increased IFN kappa promotes UV-mediated apoptosis resulting in immune complex 

formation, autoantigen exposure and release of numerous inflammatory cytokines and 

chemokines. Infiltration of inflammatory cells follows and is perpetuated by inhibition of negative 

regulatory mechanisms.  Pathways with evidence in both human and murine systems are shown in 

purple.  Human only pathways are shown in blue, and murine-specific pathways are shown in 

orange.  
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These chapters will examine the role of type I IFN in lupus characteristic development. 

Chapter 2 will describe the methods and material used. Chapter 3 will describe the role of type I 

IFNs in TLR7 mediated lupus. Chapter 4 will explore how type I IFNs regulate UVB-induced 

adaptive immune cell response in the draining lymph nodes of lupus-prone vs. wild-type mice. 

Chapter 5 will examine the UVB-induced immune cell response in the skin of lupus-prone vs. 

wild-type mice and how type I IFNs regulate this differential response. Chapter 6 will discuss 

results from chapter 3 to 5 and propose future directions. 
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Chapter 2 Methods and Materials 

 

Portions of this chapter are published in the Journal of Immunology209  

2.1 Mice  

All mice were bred and housed at the University of Michigan in specific pathogen-free 

housing. All mice were treated according to our University of Michigan IACUC-approved 

protocol. 8-10-week-old female wild-type BALB/c mice obtained from Jackson Laboratory were 

utilized for this study. Wild-type mice were compared to NZM2328 mice and INZM (lack the α-

chain of the IFNα/β receptor) mice, which were a kind gift of Dr. Chaim Jacob, University of 

Southern California141. NZM2328 IL-1β -/- mice were generated through the University of 

Michigan Transgenic Animal Model Core via CRISPR-Cas9 technology using IL-1β 

CRISPR/Cas9 KO Plasmid sc-421097 from Santa Cruz Biotechnology (Santa Cruz, CA). An 8-

bp deletion resulting in a frame shift mutation was confirmed via Sanger sequencing through the 

University of Michigan DNA sequencing core (fig. 2.1).  NZM2328 IL-1β-/- mice were 

backcrossed onto the NZM2328 background for three generations to eliminate off-target effects 

of using the CRISPR system followed by heterozygote crossing to develop mice homozygous for 

the IL-1β deletion. Female 10-week old mice were utilized for all experiments. The NZM mouse 

model has minimal autoantibody production and no nephritis at this age141.  Males were not used 

as they do not achieve a lupus phenotype in this model, and lupus is predominantly a female 

disease213.    
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Figure 2.1Generation of IL-1β -/- mice. 

A. Diagram showing the Il1b gene guide RNA target (red line) and resulting 8bp deletion (blue 

box) of Il1b. B. Sanger sequencing demonstrating loss of homozygosity in il1b exon (marked by 

orange arrow in A and B) in il1b-/+ progeny. Confirmation of an 8-bp deletion (AGGTCAA) 

was made via bi-directional sequencing of cloned amplicons. (C and D) BMDMs from 10 week-

old NZM 2328 and NZM IL1β KO mice were stimulated with or without 1ug LPS for 4 hours 

followed by activation of the inflammasome with or without 5mM ATP for 1 hr. C. Western blot 

of cellular lysates showing pro-IL1β (31kDa) upregulation in NZM but not IL-1β-/- cells after 

LPS treatment.  Active IL-1β was secreted and detected in D. β-actin (42kDa) is shown on the 

bottom. D. [IL-1β] in the media of BMDMs from C. was analyzed via ELISA. No secreted IL-1β 

was detected from NZMIL-1β-/- mice. 
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2.2 Mouse model justification 

Lupus is a complex disease with varied manifestations that cannot be replicated by 

simple tissue culture or ex vivo experiments.  Because murine models provide the ability to 

manipulate specific protein expression, cellular levels and environmental exposures, they provide 

an unparalleled system by which to study disease mechanisms. We utilized the NZM2328 mouse 

model as these mice lack lupus characteristics until around 35 weeks of age, which allows us to 

study environmental factors driving lupus development. NZM2328 mice are more associated 

with the C57BL/6 genetic background, but these mice have shown sensitivity to hair depletion 

via Veet. Our UVB studies utilize BALB/c mice as the control, because this strain does not 

demonstrate sensitivity to Veet similar to NZM2823 mice. In addition, following UVB exposure 

BALB/c mice demonstrate similar erythema development and cytokine expression compared to 

C57BL/6 mice214.     

 

2.3 TLR 7 cutaneous stimulation 

Female 10-week old mice were treated via epicutaneous application of 100μg of the 

TLR7 agonist R848 (Enzo Life Science) dissolved in 8 μL DMSO, or DMSO alone as a control, 

to the right ear three times weekly until euthanasia. DMSO and R848 treated mice were housed 

in separate cages to avoid cross-contamination. For some studies, mice were treated for only 2 

weeks before euthanasia (for evaluation pre-proteinuria); others were treated until they 

developed proteinuria or became moribund (for survival studies) followed by euthanasia. Control 

mice were harvested with their paired R848-treated littermates. 
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2.4 Analysis of anti-dsDNA and IgG serum levels 

Serum was collected 2 weeks post UVB treatment. Anti-IgG and dsDNA IgG antibody 

levels were analyzed via ELISA kits (Alpha Diagnostic, San Antonio, TX, and Innovative 

Research, Novi, MI). 

2.5 Analysis of proteinuria 

Urine was collected weekly and protein was screened via dipstick followed by albumin 

measurements via Albuwell kits (Exocell, Philadelphia, PA) and total creatinine (Cr) via 

commercial kit (Bioassay Systems, Hayward, CA). Urinary protein excretion was represented by 

the albumin: Cr ratio. 

2.6 Renal histopathology and immune complex deposition scoring 

Glomerular inflammation (activity index) and scarring (chronicity index) of murine 

kidneys were quantified in a blinded fashion (by JBH) on perfused kidneys fixed in 10% 

formalin followed by 3μm sectioning and Periodic Acid Schiff (PAS) staining as previously 

described by us and others (19, 20). In brief, a semi-quantitative scoring system (0, no 

involvement; 0.5, minimal involvement of 10%; 1, mild involvement (10–30% section); 2, 

moderate involvement (31–60% of section); and 3, severe (60% of section)) was used to assess 

13 different parameters of activity and chronicity (mesangial hypercellularity, mesangial 

deposits, mesangial sclerosis, endocapillary cellular infiltrate, subepithelial and subendothelial 

deposits, capillary thrombi, capillary sclerosis, cellular or organized crescents, synechiae, tubular 

atrophy, and interstitial fibrosis). The chronicity and activity index was generated by compiling 

the scores from groups of related parameters (for activity: mesangial hypercellularity, mesangial 

deposits, and endocapillary cellular infiltrate; for chronicity: interstitial fibrosis, tubular atrophy, 

synechiae, organized crescents, and capillary sclerosis). Glomerular immune complexes were 
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quantified by immunofluorescence microscopy as previously described215. Briefly, 6μm frozen 

kidney sections were stained for 1hr at 4ᴼC with Texas-red-conjugated anti-mouse IgG (Sigma) 

and FITC-conjugated anti-C3 (ICL, Portland, OR) followed by Hoechst (Invitrogen, Eugene, 

OR) counterstain to stain DNA. Quantification of immune complex staining in 8 glomeruli per 

mouse was performed at the Center for Live Cell Imaging at the University of Michigan using 

Metamorph v7.0.6 to calculate the mean fluorescence in a defined area for each stain.  Glomeruli 

were identified based on Dapi staining and outlined to define the area for analysis. Both FITC 

and Texas Red staining were calculated and shown as staining per glomerulus. 

2.7 Liver scoring 

Inflammation of murine livers were quantified blindly by JBH on livers fixed in 10% 

formalin followed by 3μm sectioning and Periodic Acid Schiff (PAS) staining as described by 

others216. In brief, a scoring system (0: <0.5 inflammatory foci/field; 1, 0: 5-1.0 foci/field; 2: 1.0-

2.0 foci/field; 3: >2.0 foci/field) was used. 

2.8 Microscopy 

Images of H&E stained skin sections and PAS-stained kidney and liver sections were 

captured using an Olympus BX41 microscope with a 100x objective (total 

magnification=1000x).  Images of kidney immune complex staining were captured at the Center 

for Live Cell Imaging (CLCI) at the University of Michigan Medical School using an Olympus 

IX70 inverted microscope (Olympus; Center Valley PA) with a 40x objective. 

2.9 Flow cytometry 

Following euthanasia, the lymph nodes (draining lymph node (dLN) from the cervical 

chain on the treated side and non-draining lymph node from the inguinal chain) and spleen were 
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removed, teased apart and passed through a 70μm filter to generate single cell suspensions. One 

of the kidneys was also removed, minced and digested as previously described216 with 0.1 

mg/mL Liberase (Roche), 200 U/mL DNAse (Roche) and 2.4 mM CaCl2 in DMEM (Invitrogen) 

at 37 °C in a humidified incubator for 1 h.  Skin was minced with razors and transferred to 

RPMI10 (Gibco), which contained 1% Penicillin-Streptomycin (Gibco) and 10% fetal calf serum 

(Atlanta Biologicals). Each skin sample then received 2ml of skin digestion mix made of 5mg/ml 

Collagenase type IV (Sigma-Aldrich), 1mg/ml DNAse I (Sigma-Aldrich) and 1mg/ml 

Hyaluronidase type V (Sigma-Aldrich) added to Hanks’ Balanced Salt Solution (Gibco). 

Samples were placed on a GentleMacs machine and run for 1 minute on "Spleen 1" setting before 

and after incubation for 2 hours at 37°C to digest the skin. The tissue was then passed through a 

70 μm cell strainer (spleen, dLN and kidney) or a 40 μm cell strainer (skin) and RBCs in the 

spleen were lysed with multi-species RBC lysis buffer (eBioscience). Live cells were counted via 

trypan blue exclusion. The cells were incubated in flow block (1% horse serum and 1% bovine 

serum albumin in PBS) for 1hr, then stained for 1 hr on ice using the following antibodies: CD8 

clone: 53-6.7 (BD Bioscience, San Jose, CA), CD3 clone: 17A2, CD4 clone: GK15, CD69 clone: 

H12F3, CD25 clone: 3C7, B220 clone: RA3-6B2(Biolegend, San Diego, CA), SA-Qdot 605 

(Invitrogen), CDllc clone: N418, CDllb clone: M1/70, CD103 clone: 2E7, F480 clone: BM8, 

CD40 clone:3/23 for 45 minutes. Following the extracellular staining, cells were intracellularly 

stained for Foxp3 clone: FJK16s (Biolegend) and IgH+L A488 (Southern Biotech, Birmingham, 

AL) utilizing the Foxp3 / Transcription Factor Staining Buffer Set from eBiosciences, San 

Diego, California. The flow cytometry data was collected via a BD LSR II flow cytometer and 

analyzed using FlowJo VX.0.7 (Tree Star).  For analysis, the live cells were gated for: T cells: 

CD3+; CD4+ T cells: CD3+CD4+CD8-; CD8+ T cells: CD3+CD8+CD4-; T cell activation: 
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CD69+; B cells: CD4-CD8-IgH+L+B220+; TReg cells: CD4+CD3+CD25+ Foxp3+; Ab secreting 

cells: CD4−CD8−IgH+LhiB220int-low; DC cells: CDllc+F480-CDllb-; monocyte derived DC cells: 

CDllc+F480-CDllb-; CD103+ DC cells: CDllc+F480-CDllb-CD103+; Macrophages: 

CDllcintCDllb+F480+; Macrophage activation: CD40+. 

2.10 Bone marrow–derived macrophages 

Bone marrow derived macrophages (BMDM) were generated as previously described217. 

Bone Marrow was flushed from the tibiae and femurs of 10 weeks old NZM2328 mice and NZM 

IL1β -/- mice and plated in macrophage differentiation media (59% IMDM, 10% FBS, 30% L-

cell supernatant, and 1% penicillin/ streptomycin) for 7 days at 37°C in 5% CO2.  BMDM were 

then plated 2x106 cells per 6 well for detection of IL-1β activation. 

2.11 IL-1β quantification 

BMDM were incubated with or without 1ug LPS for 4 hours followed by 1-hour 

incubation with or without 5mM ATP to activate the inflammasome. Secreted IL-1β was 

measured via ELISA (DuoSet ELISA kit, R&D, Abingdon, UK). Cells were lysed with RIPA 

+PI for 10mins on ice. 10μg of each lysate was then run on a 10%SDS-polyacrylamide gel and 

blotted on nitrocellulose membranes (GE Healthcare). The membranes were blocked in 4% 

milk/TBST, followed by probing with anti-murine IL-1β Ab 1:500(Cell Signaling Technology) 

overnight. Then the membrane was incubated with anti-rabbit IgG-HRP 1:1,000 (Abcam). The 

pro-IL-1β band was detected using Western Bright Quantum (Advansta) and imaged using 

Omega Lum C system (Aplegen). 
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2.12 Real-time quantitative PCR analysis 

Biopsies from the backs of mice treated with/without 100mJ/cm2 UVB were taken 3 hrs 

after the 5th UVB treatment. Skin biopsies were snap frozen in liquid nitrogen and stored at -

80°C until further use. Skin was pulverized with the use of a mortar and pestle and placed in 

TRIzol (life technologies). Kidney tissue was homogenized in TriPur (Roche). RNA was isolated 

using the Direct-zol mini RNA prep kit (Zymo). 100ng of RNA was reverse-transcribed into 

cDNA, followed by quantitative real-time PCR analysis by the DNA sequencing core at 

University of Michigan on an ABI PRISM 7900HT (Applied Biosystems). Gene expression was 

calculated by fold change relative to no UV (control) group. The primers used were as follows 

(all listed 5′→3′):  Myxovirus (influenza virus) resistance 1 (mx1) 

GATCCGACTTCACTTCCAGATGG (forward), CATCTCAGTGGTAGTCAACCC (reverse); 

β-Actin TGGAATCCTGTGGCATCCTGAAAC (forward), 

TAAAACGCAGCTCAGTAACAGTCCG (reverse); Interferon alpha (ifna) 

ATGGCTAGRCTCTGTGCTTTCCT (forward), 

AGGGCTCTCCAGAYTTCTGCTCTG(reverse); Interferon beta (ifnb) 

AGCTCCAAGAAAGGACGAACAT (forward), ATTCTTGCTTCGGCAGTTAC(reverse); 

Interferon gamma (ifng) AGCGGCTGACTGAACTCAGATTGTA (forward), 

GTCACAGTTTTCAGCTGTATAGGG (reverse) ; Interferon kappa (ifnk) 

ACTCCAAAGTTTTTATGGCTGGT (forward), TACGATAGGAGACGGCGTTTA (reverse)  ; 

Interferon regulatory factor (irf7) TGCTGTTTGGAGACTGGCTAT(forward), 

TCCAAGCTCCCGGCTAAGT(reverse); Chemokine Ligand 2 (ccl2) 

AGGTCCCTGTCATGCTTCTG (forward), GGATCATCTTGCTGGTGAAT (reverse); C-X-C 

Motif Chemokine Ligand 10(cxcl10) ATCATCCCTGCGAGCCTAT (forward), 
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ATTCTTGCTTCGGCAGTTAC (reverse) chemokine (C–C motif) ligand 5 (ccl5) 

CAATCTTGCAGTCGTGTTTG (forward), GGAGTGGGAGTAGGGGATTA (reverse); 

chemokine (C–C motif) ligand 4 (ccl4) AGCAACACCATGAAGCTCTG (forward), 

CTGTCTGCCTCTTTTGGTCA (reverse);   C-X-C motif chemokine 13 (cxcl13) 

AGAGGTTTGCGAGATGGACT (forward), GAGCCTGGACCTTTAAGCTG (reverse); 

Tumor necrosis factor alpha (tnf) CCCACTCTGACCCCTTTACT (forward), 

TTTGAGTCCTTGATGGTGGT (reverse); il1b CCCTGCAGCTGGAGAGTGTGGA (forward), 

CTGAGCGACCTGT-CTTGGCCG (reverse); il6 TAGTCCTTCCTACCCCAATTTCC 

(forward), TTGGTCCTTAGCCACTCCTTC (reverse). Gene expression was calculated relative 

to B actin (2^βactin/2^gene). 

2.13 UVB irradiation and skin thickness measurement  

The hair on the backs of the mice was removed via depilation with Veet and mice were 

placed in a restrainer with facial protection. The mice were treated with 100mJ/cm2 UVB using 

the UV-2 ultraviolet irradiation system (Tyler Research) for 5 consecutive days and harvested at 

the times indicated in the experiments. UVB light was provided by cascade-phosphor ultraviolet 

generators that emit 310nm of UVB radiation. Calipers (Fine Science Tools) were used to 

measure skin thickness. 

 

2.14 TReg suppression assay  

10-week old female BALB/c, NZM, and iNZM mice were treated with/without UVB for 

5 consecutive days. The dLNs were processed into a single cell suspension, as described in flow 

cytometry. CD4+CD25+ TReg cells and CD4+ T cells were isolated via CD4+ CD25+ Regulatory 

T Cell Isolation Kit and CD4+ T Cell Isolation Kit, respectively (Miltenyi Biotec, Bergish 
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Gladbach, Germany). TReg cells were labeled with CFSE (ThermoFisher, Eugene, Oregon) and 

CD4+ cells were labeled with cell proliferation dye 670 (ThermoFisher). Following labeling, the 

cells were co-incubated at a ratio of 0:1,1:1,1:2,1:4 (TReg: TEffector) with/without anti-

CD3/CD28 beads (ThermoFisher) for 72 hrs in a 96-well plate. Cells were then stained, as 

described in the flow cytometry section, for CD3 clone: 17A2 (BioLegend) for 45 minutes, 

followed by staining with live/dead cell dye (ThermoFisher) for 30 minutes. After staining, cells 

were resuspended in PBS and data collected on a BD LSR II flow cytometer and analyzed using 

FlowJo. For analysis, samples were gated on CFSE negative cells to exclude TRegs, followed by 

live cell gating, then CD3+ cells and lastly proliferation dye 670 to examine percent proliferation 

of CD4+ T cells (fig. 2.2). Percentage proliferation was calculated using the formula: (100 x 

1:1,1:2, or 1:4, samples) /0:1 sample.   
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Figure 2.1 Gating strategy for CD4+ T cell proliferation in TReg suppression assay. 

Samples were gated on CFSE negative cells to exclude TReg cells, followed by live cell gating, 

then CD3+ cells and lastly proliferation dye 670 to examine percent proliferation of CD4+ T 

cells. Percent proliferation was calculated using the formula: (100 x 1:1,1:2, or 1:4, samples) /0:1 

sample.   
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2.15 Skin histopathology  

Skin inflammation was quantified (by Lorie Lowe) on skin fixed in 10% formalin 

followed by 3-mm sectioning and H&E staining. A semiquanitative scoring system (0-3) was 

used to assess the different levels of epidermal and dermal skin inflammation. 4 different 

parameters: hyperkeratosis, neutrophil infiltration, and hyperplasia were used to generate the 

epidermal inflammation sore.  3 parameters: overall inflammation, lymphocyte infiltration, and 

neutrophil infiltration were used to generate the dermal inflammation score. 

2.16 Immunohistochemistry  

To detect monocytes and macrophage, immunohistostaining was performed as follows: 

sections were deparaffinized, rehydrated, and heated at 100°C for 20 min in pH 6 antigen 

retrieval buffer. Slides were washed, treated with 3% hydrogen peroxide in phosphate-buffered 

saline (PBS) for 5 min, blocked and incubated with anti-Ly6c antibody (ab15627) 1:400 

dilutions, anti-Ly6g antibody (ab25377) 1:100 dilutions, and Isotype controls IgG2a and IgG2bk 

overnight at 4°C, all antibodies were form abcam. All slides were then incubated with 

biotinylated secondary antibodies 1:200 dilution (Vector Laboratories, Burlingame, CA), 

followed by incubation with vectastain ABC reagent, and stained with peroxidase substrate, 

counterstained with hematoxylin, dehydrated and mounted.  

2.17 Statistical analysis 

All statistics were completed using GraphPad Prism 6.0. For figures where >2 

comparisons were made, ANOVA testing was used. Tukey’s multiple comparison test was used 

for normally distributed data and a Kruskal-Wallace/Dunn’s multiple comparison test was used 

for non-parametric data. For figures where comparisons between two groups was completed, a 

two-tailed student's t-test for normally distributed data was used.   Welch's correction was 
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applied when required for significant differences in variances. For non-normally distributed data, 

a Mann–Whitney was used.  Survival analysis following R848 application was completed via 

Log-rank test. Pearson correlation was used for comparison of renal activity scores and 

albumin/Cr values.  
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Chapter 3 TLR7-Mediated Lupus Nephritis Is Independent of Type I IFN Signaling 

 

This work was a collaboration with Jonathan Theros, Tammi J. Reed, Jianhua Liu, Irina 

L. Grigorova, Giovanny J. Martínez-Colón, Chaim O. Jacob, Jeffrey B. Hodgin, and Michelle 

Kahlenberg.  Jonathan Theros, Tammi J. Reed, Giovanny J. Martínez-Colón and Jianhua Liu 

assisted me in performing experiments. Irina L. Grigorova assisted with data analysis and Chiam 

O. Jacob donated the NZM2328 and iNZM mice. Jeffrey B. Hodgin scored the kidney and liver 

histology slides. Michelle Kahlenberg helped with data analysis and all collaborates assisted with 

editing the manuscript. The data from this chapter are published in the Journal of Immunology209  

3.1 Abstract 

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by 

increased type I interferons (IFNs), autoantibodies, and inflammatory-mediated multi-organ 

damage. TLR7 activation is an important contributor to SLE pathogenesis, but the mechanisms 

by which type I IFNs participate in TLR7-driven pathology remain uncertain. In this study, we 

examined the requirement for type I IFNs in TLR-7 stimulated lupus nephritis. Lupus-prone 

NZM2328, INZM (which lack a functional type I IFN receptor), and NZM2328 IL-1β-/- mice 

were treated at 10 weeks of age on the right ear with R848 (TLR7 agonist) or control (DMSO). 

Autoantibody production and proteinuria were assessed throughout treatment. Multi-organ 

inflammation was assessed at the time of decline in health. Renal infiltrates and mRNA 

expression were also examined after 14 days of treatment. Both NZM2328 and INZM mice 

exhibited a decline in survival after 3-4 weeks of R848 but not vehicle treatment. Development 
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of splenomegaly and liver inflammation were dependent on type I IFN. Interestingly, 

autoantibody production, early renal infiltration of dendritic cells, upregulation of IL-1β, and 

lupus nephritis occurred independent of type I IFN signaling. Development of TLR7-driven 

lupus nephritis was not abolished by the deletion of IL-1β. Thus, while IFNα is sufficient to 

induce nephritis acceleration, our data emphasize a critical role for IFN-independent signaling in 

TLR7-mediated lupus nephritis. Further, despite upregulation of IL-1β after TLR7 stimulation, 

deletion of IL-1β is not sufficient to reduce lupus nephritis development in this model.   

3.2 Introduction:  

Systemic lupus erythematosus (SLE) is a devastating autoimmune disease characterized 

by cycles of disease flare that led to permanent organ damage218. Lupus nephritis is a feared 

complication of SLE; 25% of lupus nephritis patients go on to develop end-stage renal disease 

within 10 years after renal compromise15 despite current treatment regimens219. Triggers that led 

to renal disease flares still remain unclear; thus, there is a critical need to identify factors which 

promote lupus nephritis in order to develop novel targets and therapies.  

Polymorphisms in toll-like receptor 7 (TLR7) are linked with the development of lupus44, 

220.  Murine models of lupus have also provided genetic and experimental evidence to support a 

role for TLR7 activation in the pathogenesis of lupus nephritis221, 222.  Male BXSB mice, which 

contain an additional copy of TLR7 on the Y chromosome, develop lupus nephritis, whereas 

female mice are protected223. Transgenic mice overexpressing TLR 7 also develop lupus 168. 

Inducible murine lupus models, such as the pristane model, are dependent on TLR7 signaling for 

lupus pathogenesis 224. Interestingly, even repeated TLR7 agonist epicutaneous application to 

wild-type mice leads to development of lupus-like characteristics including mild lupus 
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nephritis174. Despite these supportive data, the mechanisms by which TLR7 signaling leads to 

nephritis remain unknown. 

TLR7 activation can result in both type I IFN production and NFκB activation in various 

cell populations such as dendritic cells, monocytes, macrophages, and B cells.  Type I IFNs, 

including IFNα, can promote lupus development141, 225, 226 and are sufficient to induce 

acceleration of nephritis in lupus prone mice140. In addition, various genetic and inducible 

models of lupus are protected by deletion of type I IFN signaling141, 227. Given the importance of 

type I IFN in lupus, we hypothesized that TLR7-induction of type I IFNs was responsible for its 

effects. To test this, we examined an inducible model of lupus flare via epicutaneous stimulation 

of TLR7 in lupus-prone mice. The NZM2328 mouse strain was selected for this study because 

they have spontaneous development of lupus characteristics including autoantibody production 

around 14 weeks of age, splenomegaly, and lupus nephritis around 35 weeks of age228. 

Surprisingly, we found that TLR7 treatment of young mice accelerated lupus nephritis 

development, including renal infiltration of innate immune populations, immune complex 

deposition, and IL-1β upregulation, independently of type I IFNs. Other manifestations, such as 

liver inflammation and splenomegaly required type I IFNs to occur. Further, we demonstrated 

that a novel IL-1β-/- mouse on the NZM2328 background was also susceptible to TLR7-

accelerated nephritis. These data support IFN-independent immune activation in the presence of 

robust TLR7 stimulation as sufficient for acceleration of lupus nephritis.  

3.3 Results  

TLR7 Epicutaneous stimulation leads to an interferon-independent decline in survival. 

TLR7 stimulation in the skin may serve an important role in lupus flare induction 174, 206; 

thus, we first examined the effects of cutaneous TLR7 stimulation on young, pre-autoimmune 
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NZM2328 lupus-prone mice. These mice typically develop lupus nephritis around 35 weeks of 

age followed by a decline in survival 229. Intriguingly, R848 topical treatment of 10-week old 

NZM2328 mice led to a rapid decline in survival when compared to DMSO-treated controls 

(Figure 3.1). This decline was marked by a nephrotic appearance including ascites, edema, and 

lethargy. Given that TLR7 stimulation is associated with increased IFN signaling, we 

hypothesized that this accelerated death was driven by type- I IFNs. Thus, we next examined the 

effects of R848 on NZM2328 mice that are deficient in the type I IFN receptor (INZM). These 

mice are protected from naturally-occurring development of lupus for up to 2 years of life 141. To 

our surprise, treatment of these mice with R848 led to edema, ascites and a rapid decline in 

survival in a time frame similar to NZM2328 mice (Figure 3.1). No difference in the survival 

curves between NZM and INZM mice were noted via Log-rank test (p=0.723). Median survival 

was 30 days for both strains. These data suggest that despite absent type I IFN signaling, both 

INZM and NZM2328 mice exhibit a rapid decline in survival following epidermal TLR7 

activation. 
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Figure 3.1 Epicutaneous TLR 7 stimulation leads to type I IFN-independent accelerated decline 

in survival in lupus-prone mice.   

10-week-old NZM2328 and INZM mice were treated with 100μg of the TLR7 agonist R848 or 

control (DMSO) three times weekly. Survival curve for NZM2328 and INZM mice is shown. 

n=12 each for DMSO and R848 treated NZM mice. n=11 for DMSO and n=12 for R848 treated 

INZM mice. The p value in blue shows the difference in the survival curves between INZM 

DMSO vs. INZM R848 treated mice. The p value in red shows the difference in the survival 

curves between NZM DMSO vs. NZM R848 treated mice. The p value in black shows the 

difference in the survival curves between NZM R848 and INZM R848 treated mice. 
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TLR7 epicutaneous stimulation leads to accelerated development of murine lupus.  

We next examined the development of systemic lupus characteristics following R848 

stimulation.  Using our assay, dsDNA antibodies typically rise to about 100,000U/ml  during 

nephritis onset in NZM 2328 mice 215.   Importantly, while only NZM2328 treated with R848 

demonstrated significant acceleration of total IgG production, both NZM2328 and INZM mice 

demonstrated increased dsDNA antibodies in the serum (Figure 3.2A and B); however, the rise 

dsDNA antibodies in the serum was greater in NZM vs. INZM mice (p=.0167 NZM vs. INZM at 

2 weeks). This suggests that autoantibody production following TLR7 epicutaneous stimulation 

is enhanced by but not dependent on type I IFN signaling  Consistent with previous literature 141, 

230, splenomegaly was detected following R848 stimulation in NZM2328 but not INZM mice, 

supporting a role for IFNs in TLR7-driven splenomegaly (Figure 3.2C).   An increase in total 

splenic cells following R848 stimulation was detected in only NZM2328 mice; analysis of cell 

subsets identified no significant changes in T cells, dendritic cells, or macrophages (Figure 3.2D 

and E). Further, NZM2328 mice treated with R848 demonstrated accelerated development of 

liver inflammation as indicated by necrotic hepatocytes and focal portal inflammation. INZM 

mice treated with R848 did not develop liver inflammation, indicating that type I IFNs are 

required for this manifestation following TLR7 activation (Figure 3.2 F and G).   
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Figure 3.2 TLR 7 stimulation leads to IFN-independent elevated autoantibody production and 

IFN dependent splenomegaly and liver inflammation.   

10 week-old NZM2328 and INZM mice treated with R848 or DMSO control were analyzed. A. 

Total IgG in serum of NZM2328 and INZM mice after 2 weeks of treatment. Each dot represents 

an individual mouse. B. dsDNA IgG in serum at 0 weeks, 2 weeks, and 4 weeks of treatment. 

n=13 NZM R848; n=14 NZM DMSO; n= 9 INZM DMSO; n=11 INZM R848 C. Spleen weight 

of NZM2328 and INZM mice from survival studies. Spleens were harvested when mice were 

moribund (around 20-40 days of treatment). Littermate DMSO controls were harvested at the 

same times as the moribund mice. Each dot represents an individual mouse. Representative 

photographs of DMSO and R848 NZM2328 spleens shown in inset. D. Immune cell populations 

in the spleen were evaluated by flow cytometry after 2 weeks of R848 or DMSO treatment. n=13 

NZM R848; n=11 NZM control; n=8 INZM control; n=9 INZM R848. (E and F) 10 week- old 

NZM2328 and INZM mice treated with R848 or DMSO control were treated until moribund and 

analyzed for development of liver inflammation. E. Representative photo of the portal vein. F. 

Graph represents liver inflammation scoring of NZM2328 and INZM mice.  Each symbol 

represents one mouse.   
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We next examined changes in B cells and antibody (Ab)-secreting cells in the spleen and 

lymph nodes. As shown in Figure 3, both total B cells (B220+) and Ab-secreting cells 

(IgH+Lhigh) increased in the spleen of NZM2328 mice but only Ab-secreting cells increased in 

INZM mice post R848 stimulation (Figure 3A-C), suggesting that amplification of splenic 

antibody production is independent of type I IFNs. We then examined the lymph node 

populations to determine if IFN-independent B cell activation was also occurring there.  As 

shown in Figure 3D, stimulation with R848 resulted in increased total number of cells in the 

cervical (draining) lymph nodes in both NZM2328 and INZM mice.  Contrarily, increased cell 

numbers were noted in inguinal (non-draining) lymph nodes in only NZM mice after R848 

treatment.  The total number of B cells (B220+) in both NZM2328 and INZM were increased in 

draining but not the non-draining lymph nodes following R848 stimulation (Figure 3E). 

NZM2328 showed an increase in the secreting cell population in the draining and non-draining 

lymph node, but INZM only demonstrated an increase in the draining lymph node (Figure 3F). 

Of note, the overall numbers of B cells and Ab-secreting cells were significantly fewer in the 

INZM mice. These data indicate that TLR7 stimulation amplifies local B cell and Ab production 

responses in the absence of type I IFN signaling, but the responses may be diminished.  

However, systemic amplification of Ab-secreting cells in the non-draining lymph nodes required 

the presence of type I IFN signaling. Together, this suggests that the accelerated autoantibody 

production seen post TLR7 cutaneous stimulation is partially type I IFN-independent and that the 

Ab-secreting cells in the dLN and spleen may serve as a site for autoantibody production in this 

model.  
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Figure 3.3 TLR 7 stimulation leads to IFN-independent increases in secreting cells in the 

draining lymph nodes and the spleen. 

Immune cell populations in the spleen were evaluated by flow cytometry after 2 weeks of R848 

or DMSO treatment. n= 5 NZM DMSO; n= 5 NZM R848; n=5 INZM DMSO; n=5 INZM R848. 

A. Gating strategy for Ab-secreting cells. B, C. Graphs displaying changes in B cells: CD4-CD8-

IgH+IgL+B220+ (shown in B) and Ab-secreting cells: CD4-CD8- IgH+IgLhigh (shown in C). D. 

Total number of cells isolated from indicated lymph nodes for DMSO or R848 treated mice. E, 

F. Graphs displaying changes in B cells: CD4-CD8-IgH+IgL+B220+ (shown in E) and Ab-

secreting cells: CD4-CD8- IgH+IgLhigh (shown in F) for draining (cervical) and non-draining 

(inguinal) LN. Data is displayed as mean ± SD. Each symbol represents one mouse. LN=lymph 

node. 
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TLR7 epicutaneous stimulation leads to accelerated development of lupus nephritis in a type I 

IFN-independent manner 

 Past work has shown type I IFNs are sufficient to induce renal flares in lupus-prone mice 

and are required for lupus nephritis development in several murine models 140, 141, 231, 232. We next 

examined whether TLR7 epicutaneous stimulation led to accelerated lupus nephritis 

development and whether it was dependent on type I IFNs. Surprisingly, both NZM2328 and 

INZM mice treated with R848 demonstrated a rise in urinary albumin:Cr ratio supportive of 

glomerular damage (Figure 3.4A and B). Histopathologic scoring demonstrated a significant 

increase in renal activity score when mice were treated with R848 until moribund (Figure 3.4C 

and D). A strong positive correlation was detected between renal activity score and urinary alb/cr 

ratio for both NZM2328 and INZM mice (Figure 3.4E), which supports renal inflammation in 

R848 treated mice. No significant increase in renal chronicity index score for prolonged 

exposure in NZM2328 and INZM mice was detected (Figure 3.4F).  As immune complex 

deposition is a hallmark of lupus nephritis, this was also assessed. R848 treatment of the 

NZM2328 and INZM mice led to a significant increase in both IgG and C3 deposition within the 

kidney (Figure 3.5 A-C). In order to examine whether TLR7-induced lupus created similar 

transcriptional changes to naturally occurring lupus nephritis found in older, untreated NZM 

2328 mice, we examined transcriptional signatures of the kidneys of both. As shown in Figure 

3.6, identical upregulation of various inflammatory and type-I IFN associated genes were noted 

in both R848-induced and naturally occurring nephritis.  Together, these parameters support 

development of accelerated lupus nephritis following cutaneous stimulation with a TLR7 agonist 

in a type I interferon independent manner. 
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Figure 3.4 TLR 7- mediated lupus nephritis occurs in an interferon-independent manner. 

10 week- old NZM2328 and INZM mice treated with R848 or DMSO control were analyzed for 

development of lupus nephritis. A. Urine alb/cr ratio was measured serially in NZM2328 treated 

mice n=12 NZM R848; n=15 NZM DMSO B. Urine alb/cr ratio was measured serially in INZM 

treated mice. n=5 INZM DMSO; n=6 INZM R848 C. Representative photo of the glomeruli in 

the kidney of NZM2328 and INZM mice following treatment until moribund. Littermate control 

mice were harvested at the time of illness in R848 treated mice. Scale bar equals 20um. D. Renal 

activity score for NZM2328 and INZM mice after 2 weeks of treatment or when moribund from 

R848 treatment (long-term treatment). E. The moribund renal activity score for NZM2328 and 

INZM mice treated with R848 and DMSO was plotted versus the alb/cr ratio at euthanasia and 

analyzed via Pearson correlation. F. Renal Chronicity index for NZM2328 and INZM mice after 

2 weeks of treatment and when moribund (long-term treatment).   
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Figure 3.5 Immune complex deposition in the kidney is interferon-independent. 

10 week- old NZM2328 and INZM mice treated with R848 or DMSO until moribund and were 

analyzed for immune complex deposition. A. Representative immunofluorescence microscopy of 

glomeruli (outlined by white dashed line). Texas Red- IgG, Green- C3, Blue- DAPI.  (B-C). 

Quantification of immune complex staining/area was completed. Littermate DMSO controls 

were harvested when littermates were ill. B. Quantification of IgG/area. C. Quantification of 

C3/area. Each dot represents the average fluorescence of 8 glomeruli from a single mouse.  
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Figure 3.6 Changes in inflammatory response genes in TLR7-induced nephritis vs. natural 

nephritis 

RNA was isolated from the kidney of 10 weeks-old NZM2328 mice stimulated with R848 until 

proteinuria(4+ by dipstick) development, from NZM2328 mice that naturally developed 

proteinuria (4+ by dipstick) at around 35 weeks of age, and NZM2328 mice that were pre-

proteinuric (trace by dipstick).  Real- time PCR was completed for analysis of the genes listed. 

Graphs display the mean+ SD for each gene as compared to the average of β-actin. n=4 for R848 

treated, n=5 for aged NZM mice and n=5 for NZM pre-proteinurc mice. p<0.05 is considered 

significant via unpaired T test. 
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TLR7 epicutaneous stimulation leads to upregulation of IL-1β, but nephritis is not dependent on 

IL-1β. 

As TLR7-mediated lupus nephritis developed in the absence of type I IFN signaling, we 

next assessed what other pathways may play a role in TLR7-mediated lupus nephritis. We chose 

to examine NFκB-regulated cytokines as this transcription factor is also activated downstream of 

TLR7 with the hypothesis that cytokines upregulated in the kidney in both NZM and INZM mice 

may be important in TLR7-mediated nephritis. We examined mRNA changes in the kidney of 

INZM and NZM mice treated for 2 weeks with R848 or DMSO control. Following stimulation, 

there were significant changes in the expression of NFκB-regulated cytokines tnf, and il1b, 

(Fig.3.7A-C) in the NZM mice treated with R848 vs. control, but there was only a significant 

upregulation of il1b in INZM mice treated with R848 vs. DMSO (Fig.3.7B).  These data support 

a potential common role for IL-1β in TLR7 mediated lupus nephritis flare in NZM and INZM 

mice.   

To examine the role of IL-1β in TLR7-mediated nephritis, we generated NZM2328 mice 

that lack IL-1β (Figure 2.1) and treated them epicutaneously with R848 or DMSO. These mice 

also exhibited a decline in survival (Figure 3.7D), increase in dsDNA IgG antibodies (Figure 

3.7E) and development of lupus nephritis (Figure 3.7F-H). These data indicate that like type I 

IFNs, IL-1β is not required for TLR7-mediated nephritis.  
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Figure 3.7 TLR 7- mediated upregulation of IL-1β is not required for lupus nephritis.   

A-C. RNA was isolated from the kidney of NZM or INZM mice treated for two weeks with 

DMSO control or R848. Real-time PCR was completed using primers for the genes listed. 

Graphs display the mean+ SD for each gene as compared to the average of b-actin. Each dot 

represents an individual mouse.  D.10 week- old NZM IL-1β KO mice were treated with R848 or 

DMSO control and survival was plotted. n=9 NZM IL-1β -/- DMSO; n= 8 NZM IL-1β -/- R848 

E. Anti-dsDNA IgG in serum at 2 weeks of treatment. n=8 NZM IL-1β -/- R848; n=8 NZM IL-

1β -/- DMSO. F. Representative photomicrograph of the glomeruli in the kidney of moribund 

NZM IL-1β -/- mice treated with R848 or DMSO. Littermate controls were harvested when 

R848 treated mice were moribund. Scale bar equals 20um. G. Renal activity score for NZM IL-

1β-/- mice when moribund. H. Renal chronicity index for mice in G.  
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TLR7 epicutaneous stimulation leads to early infiltration of dendritic cells and upregulation of 

ccl2 

Previous work has identified important roles for macrophage and dendritic cell 

infiltration into the kidney prior to nephritis onset215, 231.  We thus examined inflammatory cell 

recruitment into the kidney prior to lupus nephritis onset in order to determine the earliest 

cellular contributors to TLR7-induced nephritis. Two weeks after R848 or DMSO treatment, 

prior to proteinuria onset, kidneys were removed, digested and pre/early-nephritic renal immune 

cell populations were examined by flow cytometry. (T cell, macrophage, and dendritic cell 

population gating strategies are shown in Fig. 3.8A).  Consistent with previous data215, we did 

not see a change in the T cell (CD3+) and B cell (CD19+) population prior to proteinuria onset 

(Fig.3.8B and C). We also did not see changes in the macrophage (CDllb+CDllcint F4/80+) 

population at this time point (Fig.3.8D). However, we detected a significant infiltration of the 

dendritic cell population (CDllb+ CDllc+ F4/80-) in both the NZM and INZM mice treated with 

R848 but not DMSO (Fig.3.8E). The number of infiltrating cells was overall fewer in INZM 

mice, but this was not statistically different between NZM and INZM mice (p=0.2391 by 

unpaired student’s t-test). This suggests that TLR7 activation promotes early infiltration of 

dendritic cells into the kidney, similar to what has been observed in other genetic models of 

murine lupus 224, but in an interferon-independent fashion. 

To identify potential mechanisms of chemotaxis into the kidney, we examined chemokine 

expression in the kidney following DMSO or R848 treatment with the hypothesis that relevant 

chemokines should rise in both NZM and INZM mice with R848 treatment. As shown in Figure 

3.9, there were no changes in ccl4 (MIP-2) or cxcl13 expression in either strain following R848 

treatment (Figure 3.9A, B). ccl5 expression increased in NZM2328 but not INZM mice after 
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R848 exposure (Figure 3.9C). IP-10 (cxcl10) expression also increased only NZM2328 mice 

after R848 exposure (Figure 3.9D). Importantly, upregulation of ccl2 (MCP-1), a chemokine that 

rises during lupus nephritis233 and whose receptor (CCR2) is expressed on monocytes, 

macrophages, and dendritic cells85, 234, was demonstrated to increase in both NZM and INZM 

mice after R848 treatment (Figure 3.9E).  These data suggest TLR7-mediated upregulation of 

ccl2 may serve as a potential trigger for induction of inflammatory cell infiltration in an 

interferon-dependent manner.  



 56 

 



 57 

Figure 3.8 Early dendritic cell infiltration is a common feature of TLR7 driven nephritis in NZM 

and INZM mice. 

Immune cell population changes in the kidney of NZM and INZM mice following 2 weeks of 

R848 or DMSO treatment. A. Gating strategy for immune cell populations. B-E. Graphs 

displaying changes in T cells (B): CD3+, B cells (C): CD19+, Macrophages (D): 

CDllcintCDllb+F480+, and Dendritic Cells (E): CDllc+CDllb+F480-.  n=12 NZM DMSO; n=13 

NZM R848; n=8 INZM DMSO; n=8 INZM R848. Data is displayed as mean ± SD. 
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Figure 3.9 CCL2 is upregulated in NZM and INZM mice after TLR7 stimulation 

NZM and INZM mice were treated with R848 or DMSO for two weeks followed by harvest of 

RNA from the kidney. Real-time PCR was completed for the genes listed. Graphs display the 

mean + SD for each gene as compared to the average of β-actin. Each dot represents a single 

mouse.  
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3.4 Discussion  

In this paper, we examine a novel model of lupus flare in which lupus nephritis is 

induced in genetically-prone mice after three-four weeks of epicutaneous application of a TLR7 

agonist, R848. R848 treatment led to accelerated development of autoantibodies, splenomegaly, 

liver inflammation, and lupus nephritis. With the use of NZM mice lacking the type I IFN 

receptor, we demonstrated that TLR7-mediated splenomegaly and liver inflammation were 

dependent on type I IFN signaling. Surprisingly, however, renal injury was independent of type I 

IFNs.  Indeed, INZM mice demonstrated proteinuria, increased renal immune complex 

formation, upregulation of NFκB regulated cytokines, and infiltration of CDllb+CDllc+F4/80low 

DCs in the kidney similar to NZM mice.  

Human genetics support a role for TLR7 in lupus 44, 220, and murine data has further 

supported this9, 10,174.  BXSB male mice develop lupus secondary to the Yaa locus that contains a 

duplication of the TLR7 gene 206. The role of TLR 7 has also been demonstrated in transgenic 

mice overexpressing TLR 7168 and in lupus inducible models such as the pristine model 224. A 

recent paper also demonstrated that TLR7 epicutaneous stimulation of wild type mice led to 

development of mild lupus characteristics after long-term (13 to 15 weeks) treatment174.  Our 

model furthers these observations and demonstrates that TLR7 stimulation rapidly (in 3-4 weeks) 

accelerates lupus development in young, lupus-prone mice. Further, we show that mice that are 

otherwise protected from lupus development in the absence of functional IFN signaling 141 are 

similarly susceptible to the nephritis-inducing effects of TLR7. Others have shown that 

overexpression of IFNα is sufficient to stimulate lupus nephritis in a similar time frame to TLR7 

treatment 140. However, in the presence of TLR7 agonist, type I IFN signaling is not required. 
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This observation may reflect duplicative roles of other inflammatory cytokines induced by 

TLR7.   

Recently, the role of type I IFN has been explored in other murine models of lupus.  

Treatment of mice with HgCl2 is able to induce autoantibody production in a lysosomal TLR-

dependent but type I IFN independent fashion235, similar to the data we see in the R848 NZM 

model. Development of renal disease and direct contribution of TLR7 in this xenobiotic model 

were not assessed235. In a different model, exacerbation of autoimmunity via deletion of TLR9 in 

the MRL/lpr mouse was found to be type I IFN dependent236. In this model, IFNs are required 

for development of renal disease but not anti-nucleosome antibody production. HepG-2 positive 

ANA antibodies and anti-RNA antibodies were dependent on type I IFN signaling236. Combined 

with our findings, these data suggest that the role for IFNs in lupus development may vary 

depending on the stimuli.  Autoantibody production may be independent of IFNs when the 

trigger is strong environmental exposure (such as R848 or HgCl2). Conversely, lupus that 

develops based on genetic factors without the need for external triggers (such as TLR9-deficient 

MRL/lpr or NZM2328 mice) may require IFN signaling for autoantibody and nephritis 

development.  

NFκB activation occurs downstream of TLR7 stimulation and activation of this pathway 

is important for stimulation of lupus nephritis 237. Thus, TLR7 activation of NFκB pathways may 

be a critical step in driving lupus flares. Mutations in A20, which drive NFκB activation, in WT 

mice led to lupus nephritis 238, 239 possibly through decreased regulation of inflammasome 

activity 240. Though roles for TNF alpha and IL-6 in lupus development have been suggested 241, 

and IL-6 can exacerbate TLR7-driven lupus242, we do not see these cytokines significantly 

upregulated in the kidney in a, interferon-independent manner in our TLR 7 stimulation model. 
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Intriguingly, we see an upregulation of IL-1β in the kidney prior to the onset of lupus nephritis in 

both NZM2328 and INZM mice. This finding coincides with data that support a potential role for 

IL-1β and inflammasome activation in lupus development (reviewed in 243). However, deletion 

of IL-1β in NZM2328 mice did not reduce the development of lupus nephritis after TLR7 

exposure. Given that TLR7 activates pleotropic pathways, generation of double or triple 

knockouts may be required to hinder lupus nephritis development in the presence of such a 

strong inflammatory activator.  

Similar to others141, we found that splenomegaly following TLR7 stimulation was type I 

IFN dependent. Interestingly, the massive R848-induced splenomegaly was out of proportion to 

the small increases in B and T cell populations in the spleen that were identified by flow.  This 

supports a possible role for extra medullary hematopoiesis resulting in R848-mediated 

splenomegaly, consistent with findings by other groups 244, 245.  

TLR7 epicutaneous stimulation can lead to development of autoantibody production in 

the absence of type I IFN signaling. We were able to see an increase in dsDNA antibodies in 

NZM2328 and INZM mice following R848 stimulation, although the increase in anti-dsDNA 

levels was less robust in INZM mice.  Increases in B (B220+) cell numbers in the spleen were 

noted in only the NZM mice, which suggests that expansion of B cell populations in the spleen 

may require type I IFNs following TLR7 exposure.  This would be consistent with a recently 

described role for splenic follicular dendritic cell production of type I IFN in promotion of 

autoreactive B cell populations 246, 247. Type I IFNs also enhance the TLR7 signaling response, 

allowing for autoantibody production248, and they support survival of transitional stage B cells in 

the spleen249. Thus, the more extensive systemic immune activation seen in NZM mice may be 

secondary to these effects of type I IFN. Overexpression of TLR7 stimulation has also been 
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shown to led to expansion of transitional stage B cell populations in a type I IFN independent 

manner250. Given that we see a rise in Ab-secreting cells in the spleen and dLN but not in the 

non-draining LN of INZM mice, this may indicate that a certain threshold of TLR7 stimulation, 

and possibly other cytokines, is needed to generate secreting cell expansion in a type I IFN 

independent manner.    

 TLR7 stimulation results in the recruitment of CD11b+CD11c+F4/80- DCs in the kidney 

prior to proteinuria onset without significant changes in the T cell or B cell population. 

Interestingly, this recruitment occurs in a type I IFN-independent manner. The DC 

chemoattractant MCP-1/CCL2 was increased in the kidney in both NZM and INZM mice, which 

supports its potential role for instigating nephritis downstream of TLR7 activation. Intriguingly, 

CCL2 has been shown to  rise during human lupus nephritis development233 and is proposed as a 

urinary biomarker for disease251. Blockade of CCL2 demonstrates some efficacy in murine lupus 

models252. Macrophages, which also are recruited by CCL2, were not increased in the kidney 

after R848 treatment, which may reflect differential upregulation of CCL2’s receptor, CCR2, on 

DCs and macrophages in this model. Overall, consideration of the role of CCL2 downstream of 

TLR7-driven lupus should be made in future studies. 

In summary, we have demonstrated a novel role for TLR7 epicutaneous stimulation in 

mediating lupus flare in lupus-prone mice. Following stimulation, splenomegaly and liver 

inflammation occur in a type I IFN-dependent manner.  Importantly, autoantibody production 

and lupus nephritis occur independent of IFN signaling. We demonstrate that IL-1β is not 

required for development of TLR7-activated lupus nephritis. Future studies should address the 

role of CCL2 in TLR7-mediated lupus nephritis. In addition, our data lend a note of caution to 

ongoing trials utilizing type I IFN blockade in lupus nephritis: consideration of the upstream 
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drivers of nephritis (which may vary in individual patients) may be important for identifying 

effective treatment modalities.  In particular, our data would suggest that blockade of type I IFN 

signaling my not be effective if TLR7 is driving the phenotype
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Chapter 4 UVB induces prolonged T cell activation in lupus-prone mice via type I IFN 

inhibition of T regulatory cells 

 

This work was a collaboration with Shannon N. Estadt, Jonathan Theros, Tyson Moore, Jason 

Ellis, Jianhua Liu, Tamra J. Reed, Chaim O. Jacob, Johann E. Gudjonsson, J. Michelle 

Kahlenberg. Shannon N. Estadt, Jonathan Theros, Tyson Moore, Jason Ellis, Jianhua Liu, and 

Tamra J. Reed assisted with experiments. Chaim O. Jacob supplied the NZM2328 and iNZM 

mice. J. Michelle Kahlenberg assisted with data analysis and all collaborated helped with editing 

the manuscript. The data from this chapter was submitted to the Journal of Autoimmunity at the 

time of defense.  

4.1 Abstract 

Objective 

Ultraviolet (UV) light is a known trigger of skin and possibly systemic inflammation in 

systemic lupus erythematosus (SLE) patients. Although type I interferons (IFN) are upregulated 

in SLE skin after UV exposure, the mechanisms to explain increased UVB-induced 

inflammation remain unclear. This paper compares the role of type I IFNs in regulating immune 

cell activation between wild-type and lupus-prone mice following UVB exposure. 

Methods 

10-week old female lupus-prone (NZM2328), wild-type (BALB/c) and iNZM mice (lack 

a functional type I IFN receptor on NZM2328 background) were treated on their dorsal skin with 

100mJ/cm2 of UVB for 5 consecutive days. Following UVB treatment, draining lymph node cell 
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populations were characterized via flow cytometry and suppression assays; treated skin was 

examined for changes in expression of type I IFN genes. 

Results 

Only NZM2328 mice showed an increase in T cell numbers and activation 2 weeks post 

UVB exposure. This was preceded by a significant increase in UVB-induced type I IFN 

expression in NZM2328 mice compared to BALB/c mice. Following UVB exposure, both 

BALB/c and iNZM mice demonstrated an increase in functional T regulatory (TReg) cells; 

however, this was not seen in NZM2328 mice. 

Conclusions 

These data suggest a skewed UVB-mediated T cell response in lupus-prone mice where 

activation of T cells is enhanced secondary to a type I IFN-dependent suppression of TReg cells. 

Thus, we propose type I IFNs are important for UVB-induced inflammation in lupus-prone mice 

and may be an effective target for prevention of UVB-mediated flares.  

 

4.2 Introduction: 

Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients 

experience devastating organ damage mediated by immune cells and inflammatory cytokine 

production 218, 253. Minimal sun exposure, especially ultraviolet (UV) B wavelengths, is a 

prominent factor that drives cutaneous inflammation in lupus patients 254-258. However, the 

mechanisms through which SLE skin is predisposed to persistent inflammation following UVB 

exposure is unknown. 

Much of our knowledge regarding the effects of UVB have been uncovered through 

studies of healthy skin. Classically, following UVB-mediated damage, resolution of 
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inflammation is promoted via several mechanisms. Langerhans cells phagocytose apoptotic cells 

and promote dampening of inflammatory responses200. In addition, CD11b+Langerin- dendritic 

cells promote expansion of T regulatory (TReg) cells202, 259. In healthy skin, there is also activation 

of other suppressive populations such as: neutrophils secreting IL-10 and monocytes secreting 

interferon (IFN) alpha, resulting in an overall suppressive phenotype156, 260.  

UVB exposure may have differential effects in SLE patients compared to healthy controls. In 

SLE patients, reduced phagocytosis of apoptotic cells results in prolonged autoantigen 

exposure93, 97, 261. Reduction of Langerhans cells in SLE skin promotes UVB-mediated 

inflammation via suppression of epidermal growth factor receptor-mediated signaling262. In 

addition, UVB exposure in SLE patients and lupus-prone mice leads to infiltration of 

neutrophils, macrophages, dendritic cells, T cells, and mast cells into the skin65, 157, 200, 263-265. 

Intriguingly, despite its immunosuppressive role in healthy skin156, 200, 260, SLE patients and 

lupus-prone mice demonstrate a rise in type I IFN signaling following UVB exposure; thus 

suggesting a potential pro-inflammatory role for type I IFNs in lupus skin156, 157. For example, 

type I IFNs demonstrate a proinflammatory role in keratinocytes and promote cell death 

following UVB155. 

Because of the unclear role of type I IFNs in UVB-mediated inflammation, this paper 

seeks to understand the differences in immune cell activation following UVB exposure of lupus-

prone and wild-type mice and to elucidate the role of type I IFNs in this process. We found that 

lupus-prone mice demonstrate increased expansion and prolonged activation of T cells in the 

draining lymph nodes of UVB exposed skin that is mediated by type I IFN-dependent repression 

of TReg cells. Thus, in contrast to wild-type mice156, type I IFNs exhibit a proinflammatory role 

and are required for skewed immune activation in lupus-prone mice following UVB exposure.  
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4.3 Results 

UVB exposure increases the number of activated T cells in the dLN of lupus-prone mice  

Ten-week-old NZM2328 (lupus-prone) and BALB/c (wild-type) mice were treated with 

100mJ/cm2 UVB on their dorsum for 5 days, followed by harvest of the draining lymph nodes 

(dLN) 24 hrs or 2 weeks after the last UVB treatment. Intriguingly, the size of the draining 

lymph nodes (dLN) was increased 2 weeks following treatment in NZM2328 compared to 

BALB/c mice (fig.4.1A-C). This response was not systemic, indicated by a lack of increase in 

spleen size following UVB exposure in either strain (fig.1D and E). In order to determine the 

cellular contribution to the expanded LNs, we next examined changes in adaptive immune cell 

populations in the dLN and observed a significant increase in T cells 2 weeks post treatment in 

NZM2328 mice (fig.4.2 A). This UVB dosage did not significantly increase total B cells (Fig. 

4.2B) or antibody secreting cells (Figure 4.3A). In addition, no significant increase in total IgG 

or anti-dsDNA antibodies were detected in the serum 2 weeks after UVB exposure (Figure 

4.3B,C). Further exploration of changes in the subsets of T cells revealed increases in both CD4+ 

and CD8+ T cells (fig.4.2 C and E). In addition to expansion, we also observed increased 

activation of both CD4+ and CD8+ T cell subsets in NZM, but not WT mice, as indicated by 

increased CD69+ expression (fig.4.2D and F). These results suggest that UVB exposure induces 

expansion and activation of T cells in the dLN of lupus-prone but not wild-type mice. 
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Figure 4.1 UVB- induces an increase in dLN, but not splenic size, 2 weeks post treatment in 

lupus-prone compared to wild-type mice. 

Ten-week-old NZM2328 and BALB/c mice treated with 100mJ/cm2 on their dorsum for 5 days 

were analyzed 24hrs and 2 weeks post treatment. (A) Representative dLN 2 weeks post 

treatment. (B) dLN weight. (C) Total number of dLN cells. (D) Spleen weight. (E) Total number 

of splenocytes. (B-E) Each dot represents an individual mouse. ANOVA testing was used to 

determine significance. 
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Figure 4.2 Lupus-prone mice have increased T cell activation in dLN 2 weeks post UVB 

treatment compared to wild-type mice. 

Changes in immune cell populations in the dLN were evaluated by flow cytometry 24hrs and 2 

weeks post UVB treatment. (A) Total T cells per dLN: CD3+. (B) Total B cells: B220+. (C) 

CD4+ T cells: CD3+CD4+CD8-. (D) CD4+ T cell activation: CD69+. (E) CD8+ T cells: 

CD3+CD4-CD8+. (F) CD8+ T cell activation: CD69+. (A-F) Each dot represents an individual 

mouse. ANOVA testing was used to determine significance. 
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Figure 4.3 UVB fails to induce ab secreting cells and antibody production. 

(A) Ten-week-old iNZM mice treated with 100mJ/cm2 on their dorsum for 5 days and dLNs 

were analyzed via flow cytometry 2 weeks post treatment. Each dot represents an individual 

mouse. Changes in ab secreting cells: CD4−CD8−IgH+LhiB220int-low (B) IgG abs in the serum (C) 

dsDNA IgG abs in the serum. ANOVA testing was used to determine significance. 
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UVB exposure fails to induce functional TReg cells in the dLN of lupus-prone mice 

UV exposure is known to induce TReg activation 202, 266, which is critical for preventing 

aberrant T cell activation, so we next examined changes in TReg populations following UVB 

exposure. Interestingly, BALB/c but not NZM mice demonstrated a significant increase in TReg 

cell numbers 24hrs post UVB treatment (fig.4.4A, B). Strikingly, a significant increase in 

activated, CD69+ TReg cells was also noted in BALB/c mice following UVB exposure.  In 

contrast, no increase in CD69 expression was noted on Foxp3+ cells in NZM2328 mice, 

suggesting that TReg cells were activated only in wild-type mice after UVB (fig.4.4C). In order to 

confirm aberrant TReg suppressive function in NZM mice, we performed a TReg suppression assay 

(fig 4.4D,E) using TRegs isolated from UVB-exposed mice. While TRegs from BALB/c mice were 

able to suppress CD4+ T cell proliferation, TRegs from NZM mice did not significantly inhibit 

proliferation at any ratio. These data indicate that TReg cells from dLN of UVB-treated lupus-

prone mice have reduced functionality thus setting the stage for skewing of T cell activation 

following UVB exposure. 
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Figure 4.4 UVB exposure fails to induce T regulatory cell activation in lupus-prone mice. 

(A-D) T regulatory cell changes were examined via flow cytometry in the dLN 24hrs and 2 

weeks post UVB treatment. Each dot represents an individual mouse. (A) Changes in T 

regulatory cells: CD3+CD4+CD25+FoxP3+. (B) T regulatory cell activation: CD69+. (C) Diagram 

of protocol for T regulatory suppression assay. (D) Percent proliferation of CD4+ cells in TReg 

suppression assay. n=three independent experiments in duplicate. ANOVA testing was used to 

determine significance. 
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Type I IFN signaling is increased in NZM skin and is required for activation of T cells following 

UVB exposure. 

Anti-inflammatory effects of type I IFNs have been described in wild-type mice post 

UVB exposure156, yet SLE skin has elevated type I IFNs after UVB 156, 157. Thus, we next 

characterized induction of IFNs after UVB exposure in NZM2328 vs. BALB/c mice. 

Examination of transcriptional changes in the skin of mice 3 hrs after UVB exposure resulted in 

an upregulation of type I IFNs and their downstream signaling genes in the skin of both wild-

type and lupus-prone mice. Interestingly, NZM2328 mice had significantly higher expression of 

ifnb and ifnk as well as downstream IFN-regulated genes, indicating an elevated type I IFN 

response in lupus-prone mice vs. WT following UVB exposure (fig.4.5A).  

In order to understand the role of type I IFNs in UVB-induced T cell activation in lupus-

prone mice we studied iNZM mice, which lack a functional type I IFN receptor. Intriguingly, 

UVB treatment of 10-week old iNZM mice failed to induce an increase in T cell numbers 2 

weeks post UVB (fig.4.5B). No difference in T cell subset numbers or activation (via CD69+) 

were identified in iNZM mice (fig. 4.5C-F), similar to BALB/c mice (fig.2 C and E). These 

results suggest that in the absence of type I IFN signaling, activation of dLN T cells is prevented. 
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Figure 4.5 UVB induced T cell activation in lupus-prone mice is type I IFN dependent. 

(A) RNA isolated from the skin of NZM or BALB/c mice 3hrs post UVB treatment. Real-time 

PCR was performed using primers of the genes listed. Graph displays the fold change for each 

gene compared with the respective no UV group (n = 4 NZM no UV; n = 4 NZM UV; n= 4 

BALB/c no UV; n=4 BALB/c UV).  A two-tailed student’s t-test was used for normally 

distributed data and for comparisons with significant difference in variances, Welch’s correction 

was applied. (B-F) Ten-week-old iNZM mice treated with 100mJ/cm2 UVB on their dorsum for 

5 days were analyzed via flow cytometry 24hrs or 2 weeks post treatment. Each dot represents an 

individual mouse. (B) Total T cells: CD3+. (C) CD4+ T cells: CD3+CD4+CD8-. (D) CD8+ T cells: 

CD3+CD4-CD8+.  (E) CD4+ T cell activation: CD69+. (F) CD8+ T cell activation: CD69+. 

ANOVA testing was used to determine significance. 
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Type I IFNs regulate TReg functionality in lupus-prone mice following UVB exposure  

Past work in other disease models has shown that type I IFNs can manipulate TReg cells 

directly or indirectly267, 268, so we next examined the effect of type I IFN signaling on TReg cells 

following UVB treatment. Consistent with a role for type I IFNs in suppression of TRegs, we 

observed a significant increase in the number and activation of TReg cells in iNZM mice 24hrs 

post UVB exposure (figs.5A, B). Further characterization of TReg cells in iNZM mice showed 

strong suppressive function, and even suggest enhancement of suppressive function in the 

absence of type I IFN signaling (fig.5C). Taken together, these data indicate that lupus-prone 

mice display an enhanced type I IFN response to UVB that inhibits TReg function and promotes T 

cell activation and expansion.   
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Figure 4.6 Type I IFNs suppress TReg activation and functionality following UVB exposure. 

(A and B) Ten-week-old iNZM mice were treated with 100mJ/cm2 on their dorsum for 5 days 

and dLNs were analyzed via flow cytometry 24hrs or 2 weeks post treatment. Each dot 

represents an individual mouse. (A) Changes in T regulatory cells: CD3+CD4+CD25+FoxP3+. (B) 

T regulatory cell activation: CD69+. (C) Percent proliferation of CD4+ cells in TReg suppression 

assay. n=three independent experiments in duplicate.  ANOVA testing was used to determine 

significance. 
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4.4 Discussion 

SLE-associated skin inflammation is characterized by increased apoptosis, increased type 

I IFN expression, and the presence of inflammatory infiltrates, including T cells. However, the 

mechanisms to explain the propensity for UVB-induced inflammation remain unclear. In this 

paper, we examined the mechanisms involved in UVB-induced immune cell activation in wild-

type vs. lupus-prone mice. UVB exposure results in increased T cell activation and decreased 

TReg induction in a type I IFN-dependent manner in lupus-prone vs. WT mice. Intriguingly, we 

also noted enhanced cutaneous type I IFN responses to UVB in lupus-prone mice, consistent 

with previous observations in human SLE skin154, 269, 270.   

To our knowledge, we demonstrate for the first time a differential activation of Tregs in 

wild-type vs. lupus-prone mice following UVB treatment. UVB-induced Tregs can migrate into 

healthy skin to contribute, along with resident T cells, to skewing the immune cell response 

towards a suppressive phenotype and possibly limit DNA damage202, 271. Our data also support a 

role for Treg inhibition of T cell activation in the dLN itself. In SLE skin, activated T cells 

contribute to apoptosis induction through increased expression of FasL265, 272, 273. Whether 

activated Tcells in the dLN are able to migrate to the skin and contribute to inflammation 

following UVB exposure remains to be determined.   

Some types of photosensitive cutaneous lupus lesions (especially discoid lupus) are 

associated with T cell infiltrates274 and may present without significant autoantibody 

positivity275. Similarly, treatment of our lupus-prone mice with 100mJ/cm2 UVB was able to 

significantly activate T cells, but we did not identify an induction of B cell activation or antibody 

production. Thus, our model may reflect scenarios where T cells are the dominant contributors 

following UVB stimulation. Alternatively, our results may indicate a need for a higher doses of 
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UV to induce B cell activation, as UVB-driven autoantibody production in BXSB mice was 

induced at higher daily dosages of UVB (500 mJ/cm2)206. Another possibility is that because we 

studied UVB treatment in pre-autoimmune lupus-prone mice, the autoreactive B cell populations 

have not yet developed sufficiently to be rapidly induced following UVB stimulation. While 

production of auto-antibodies can be driven via B cells in the draining lymph nodes209, the type 

of stimulation (especially utilizing TLR7 activation) may be relevant as well.  

Similar to others, we found an upregulation of type I IFNs in the skin of wild-type and 

lupus-prone mice following UVB exposure156, 192. The expression of type I IFNs, especially ifnb 

and ifnk are enhanced in lupus-prone compared to wild-type mice following UVB treatment. 

Sources of the IFN production may include infiltrating inflammatory monocytes156; however, in 

lupus skin, both infiltrating plasmacytoid dendritic cells and keratinocytes exhibit upregulation 

of type I IFNs following UVB as well155, 263. Keratinocyte production of IFNκ has been shown to 

prime lupus skin for a more inflammatory response through promotion of other proinflammatory 

cytokines, such as IL-6154. It has also been demonstrated that chronic exposure to type I IFNs 

results in enhanced immune cell activation, suggesting an inflammatory role for type IFNs in the 

skin and for priming of monocytes and dendritic cells migrating to dLNs98, 155. 

Intriguingly, we also demonstrate that type I IFNs have a proinflammatory role in T cell 

expansion in lupus-prone mice through the repression of TReg activation in the dLN. This is 

contrary to their protective role demonstrated in wild-type mice156. This differential effect could 

be due to T cells in lupus patients having decreased DNA methylation allowing for sensitization 

to type I IFN effects276. Alternatively, in lupus-prone mice or SLE patients, migratory dendritic 

cell populations may bring enhanced IFN production into the dLN and provide focal inhibition of 

TRegs through type I IFNs.  This is the focus of ongoing studies.  
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In conclusion, we demonstrate UVB-induced differential immune cell activation in lupus-

prone vs. wild-type mice. Lupus-prone mice exhibit prolonged T activation following UVB 

exposure compared to wild-type mice. To our surprise, upregulation of Type I IFNs in lupus-

prone mice drives a skewed T cell response through repression of TReg cells following UVB 

exposure. Future studies should address the source of type I IFNs through characterization of 

inflammatory profile changes in dendritic cells in the skin and dLN. Overall, our paper suggests 

type I IFNs may be a target to prevent UVB-induced T cell activation in the skin of SLE patients.
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Chapter 5 Type I IFNs regulate the skewed innate immune response in lupus-prone mice 

following UVB exposure 

 

This work was a collaboration with Shannon N. Estadt, Jonathan Theros, Tyson Moore, Lorie 

Lowe, Chaim O. Jacob, Johann E. Gudjonsson, J. Michelle Kahlenberg. Shannon N. Estadt, 

Jonathan Theros and Tyson Moore helped with experiments. Lorie Lowe scored the skin 

histology slides and Chaim O. Jacob donated the NZM2328 and iNZM mice. J. Michelle 

Kahlenberg assisted with data analysis.  The data from this chapter is preliminary.   

 

5.1 Abstract 

Objective 

Ultraviolet (UV) light is a known trigger of persistent cutaneous inflammation in 

systemic and cutaneous lupus erythematosus patients. Although UVB exposure induces elevated 

type I interferon (IFN) expression in lupus compared to healthy skin and skews T cell activation, 

how it primes the innate immune cell response remains unclear. This chapter compares the 

regulation of the innate immune response by type I IFNs between wild-type and lupus-prone 

mice following UVB exposure. 

Methods 

Eight to ten-week- old female wild-type (BALB/c), lupus-prone (NZM2328) and iNZM 

mice (lack a functional type I IFN receptor on NZM2328 background) were treated on their 

dorsal skin with 100mJ/cm2 of UVB for 5 consecutive days. Skin thickness and erythema 
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development were tracked throughout treatment. Following UVB exposure, the skin was 

examined for inflammation through scoring of H&E stained slides; the skin and dLN innate 

immune cell population changes were characterized via flow cytometry and 

immunohistochemistry. 

 

 

Results 

NZM2328 and BALB/c mice exhibited similar skin injury follow UVB exposure. 

However, NZM2328 mice displayed increased skin inflammation compared to BALB/c mice 

that was abrogated in the absence of type I IFN signaling. UVB induced recruitment of different 

DC populations and triggered differential macrophage activation in the skin and dLN of 

NZM2328 vs. BALB/c mice. In addition, migration of CD103+CDllb- DCs to the dLN was 

detected in only NZM2328 mice after UVB exposure.  

Conclusions 

These data suggest type I IFNs prime lupus skin for increased inflammation through 

regulating recruitment of DCs and macrophage activation. In addition, type I IFNs also regulate 

the migration of the CD103+CDllb- DC population into the dLN. Thus, we propose type I IFNs 

are important for UVB-induced inflammation through regulation of the innate immune response 

in lupus-prone mice and may be an effective target for prevention of UVB- induced cutaneous 

inflammation. 

5.2 Introduction  

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that exhibits various 

characteristics, including persistent skin inflammation. Up to 70% of patients can develop 
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Cutaneous Lupus Erythematosus (CLE), a heterogeneous manifestation displayed as rash and 

lesion development in the skin6, yet the mechanism involved in the etiology of the disease is 

unknown. 

Ultraviolet light (UV) from the sun is one major factor that leads to skin injury in healthy 

and lupus individuals254-258. Specifically, UVB exposure results in the infiltration of neutrophils, 

dendritic cells (DC), monocytes and macrophages.  Most studies examining innate immune cell 

changes following UVB utilize healthy individuals and wild-type mice. In healthy skin, UVB 

induces recruitment of inflammatory monocytes producing IFNα, which reduce other immune 

cell recruitment and IL-6 production156. Infiltration of IL-10 producing neutrophils and migration 

of CD11b+langerin- dendritic cells that promote expansion of T regulatory (TReg) cells also help 

to dampen inflammation202, 259. Overall, this results in the resolution of UVB-induced skin 

inflammation.   

On the other hand, the recruitment and inflammatory role of innate immune cell subsets 

may differ in lupus patients due to effects from type I IFNs. Chronic type I IFN expression, 

exhibited in lupus patients, has demonstrated the ability to prime lupus monocytes, DCs and 

keratinocytes towards an inflammatory profile154, 269, 270; suggesting a role for IFNs in skewing 

the innate immune cell response in lupus skin following UVB exposure.  We also showed in 

chapter 4 that UVB exposure in lupus-prone mice resulted in T cell activation in the draining 

lymph node (dLN) through type I IFN-mediated suppression of T regulatory cells; which DC 

subset is the source of type I IFNs driving this response remains to be understood.  

In this chapter we examine how type I IFNs regulate UVB-induced innate immune cell 

responses in healthy and lupus-prone mice. In order to examine this, we treated BALB/c (wild-

type), New Zealand Mixed 2328 (lupus-prone) mice, and iNZM mice (lack a functional type I 
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IFN receptor on NZM2328 background) on dorsal skin with 100mJ/cm2 UVB for 5 consecutive 

days. Interestingly, we identified differential DC infiltration and macrophage activation in lupus-

prone compared to healthy skin that is regulated by type I IFNs following UVB exposure. Lupus-

prone mice also exhibit type I IFN dependent CD103+CDllb- DC migration into the dLN, 

suggesting these cells participate in skewing UVB- induced T cell activation. 

 

5.3 Results  

UVB induces increased skin inflammation in lupus-prone mice that is type I IFN dependent  

Eight to ten-week-old BALB/c (wild-type) and NZM2328 (lupus-prone) mice, were 

treated on dorsal skin with 100mJ/cm2 UVB for 5 consecutive days. Both strains of mice 

developed erythema (redness in skin) and increased skin thickness by the 5th day of treatment 

(Fig. 5.1). Interestingly, when inflammatory infiltrates were quantified by a dermatopathologist, 

NZM2328 mice exhibited increased epidermal and dermal inflammation compared to BALB/c 

mice; this indicates UVB exposure results in increased inflammation in lupus-prone mice (Fig. 

5.2A and B). Since type I IFNs are elevated following UVB exposure in lupus compared to 

healthy skin, we next examined if they were playing a role in skewing the inflammatory response 

by comparing UVB responses with those in iNZM mice (lack a functional type I IFNR). UVB 

treatment of iNZM mice resulted in reduced skin inflammation compared to NZM2328 mice 

(Fig. 5.2A and B), showing that type I IFNs drive UVB induced lupus cutaneous inflammation.  

In addition, NZM2328 mice treated with UVB exhibited increased infiltration of neutrophils in 

the skin compared to BALB/c mice and iNZM mice (Fig. 5.2C), demonstrating the enhanced 

infiltration of neutrophils in lupus skin is type I IFN dependent. These data indicate UVB 
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exposure leads to similar injury in lupus and healthy skin, but lupus- prone mice display 

enhanced skin inflammation that is type I IFN-dependent.   

 

Figure 5.1 UVB exposure leads to skin injury in lupus-prone and wild-type mice. 

Eight- to- ten-week-old BALB/c and NZM2328 mice were treated with 100mJ/cm2 on their 

dorsum for 5 days. (A) Representative picture of erythema development 24hrs after 3days and 

5days UVB. BALB/c n=5 and NZM2328 n= 6 (B) skin thickness 24hrs post 5 days UVB. Each 

dot represents one mouse and ANOVA testing was used to determine significance. BALB/c no 

UV n= 6 , BALB/c UV n=6, NZM no UV n=12, NZM UV n= 15. 
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Figure 5.2 Increased skin inflammation in lupus-prone vs. wild-type mice is type I IFN 

dependent.  

NZM 2328, BALB/c and iNZM mice were harvested 24hrs post 5 days UVB treatment. (A) 

representative H&E stained slides of skin sections n=3 in each group (B) epidermal and dermal 

inflammation score. Each dot represents one mouse and ANOVA testing was used to determine 

significance. BALB/c no UV n= 6 BALB/c UV n=6; NZM no UV n=6; NZM UV n=6; iNZM no 

UV n=6; iNZM UV n=5. (C) Representative of immunohistochemistry stained slides for Ly6G 

(neutrophils). BALB/c UV n=2; NZM UV n=2; iNZM UV n=2.  
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Type I IFN signaling partially suppresses macrophage activation in lupus skin following UVB 

exposure 

Previous literature demonstrates type I IFNs can influence the activity of the monocyte 

and macrophage populations98, 156, 277, so we examined their differential changes following UVB 

exposure. BALB/c mice displayed an enhanced monocyte (Ly6C+) infiltration into the skin 

compared to NZM2328 and iNZM mice (Fig. 5.3A), indicating this population is preferentially 

enhanced in healthy skin following UVB treatment. On the other hand, NZM2328 mice 

demonstrate a significant increase in macrophages in the skin (Fig 5.3B). However, our 

preliminary data shows macrophages in the BALB/c mice display increased CD40 expression 

(Fig 5.3C); which suggest impaired macrophage activation in lupus skin. Further, lack of the 

type I IFN signaling in lupus-prone mice partially restored CD40 expression, suggesting type I 

IFNs can suppress macrophage activation in lupus-prone mice following UVB exposure 

(Fig.5.3C). All of these data suggest that type I IFNs regulate the balance of macrophage 

infiltration and activation while not directly impacting monocyte infiltration.   
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Figure 5.3 UVB induces differential macrophage activation and monocyte infiltration into the 

skin of lupus vs. healthy skin. 

 (A) Representative immunohistochemistry of Ly6C (for monocytes) stained skin slides. BALB/c 

UV n=3; NZM UV n=3; iNZM UV n=2.  (B) Macrophages: CDllb+F480+CDllc+ in the skin. 

Each dot represents one mouse and ANOVA testing was used to determine significance. BALB/c 

no UV n= 3 BALB/c UV n=7; NZM no UV n=9; NZM UV n=13; iNZM no UV n=3; iNZM UV 

n=4. (C) CD40 mfi expression on macrophages BALB/c no UV n=2; BALB/c UV n= 2; 

NZM2328 no UV n=2; NZM UV n= 2; iNZM no UV n=2; iNZM UV n=2.  
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UVB induces a differential DC response in the skin and dLN of lupus-prone mice that is type I 

IFN dependent.  

Past literature has demonstrated UVB exposure results in increased infiltration of 

dendritic cell populations156, 259, so we next examined which DC subsets were being recruited 

utilizing the gating strategy in figure 5.4A. NZM2328 mice displayed a significant increase in 

monocyte derived DCs (CDllb+) 24hrs after the 5th  UVB treatment that was not exhibited in 

BALB/c or iNZM mice (Fig. 5.4B), indicating that UVB induces increased infiltration of 

monocyte derived DCs in lupus-prone mice that is type I IFN dependent. In addition, following 

the 2nd UVB treatment, NZM2328 mice also displayed a significant decrease in conventional 

DCs (CDllb-) compared to BALB/c mice (Fig. 5.4C), suggesting that conventional DCs leave 

lupus skin following UVB exposure. This decrease is type I IFN dependent, as this is not 

displayed in iNZM mice (Fig 5.4C).  

Since lupus-prone mice display a decrease in the CDllb- DC population following UVB 

exposure, we further explored if this dendritic cell population was infiltrating into the dLN. 

Intriguingly, we show a trending increase of CDllb- DCs into the dLN of NZM2328 mice 

compared to BALB/c and iNZM mice (Fig 5.4D). In particular, the CD103+CDllb- DC subset 

infiltrates into the dLN of NZM2328 mice and this infiltration is regulated by type I IFN 

signaling, as this is not demonstrated in iNZM mice (Fig 5.4E). These data indicate that UVB 

exposure in lupus-prone mice leads to increased infiltration of monocyte derived DCs and 

migration of CD103+CDllb- DCs into the dLN in a type I IFN dependent manner, contributing to 

skin inflammation and possibly skewing T cell activation in the dLN. 
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Figure 5.4 Differential DC response in the skin and dLN of lupus-prone mice that is dependent 

on type I IFN signaling following UVB exposure. 

 (A- E) Mice were harvest 24hrs after 2 days or 5 days of UVB treatment. (A) Gating strategy for 

CDllb- DCs and CDllb+ DCs in the skin. (B) CDllb+ DCs in the skin. (C) CDllb- DCs in the skin. 

(D) CDllb- DCs in the dLN. (E) CD103+CDllb- DCs in the dLN. Each dot represents one mouse 

and ANOVA testing was used to determine significance. 
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5.4 Discussion 

UVB exposure leads to persistent skin inflammation in lupus patients that manifest as 

lesion development in the skin. While we show in chapter 4 that type I IFN expression is 

elevated in lupus skin and regulates T cell activation in the dLN, how it primes the innate 

immune response following UVB exposure is not understood. In this chapter we examine UVB-

induced innate immune cell response in lupus compared to wild-type mice, and how type I IFNs 

contribute to this response. For the first time, we show that UVB exposure induces increased 

inflammation in lupus compared to healthy skin that results from recruitment of differential DC 

populations and macrophage activation. We also demonstrate that CD103+CDllb- DCs migrate 

into the dLN of lupus-prone mice. Intriguingly, this differential DC and macrophage response is 

regulated by type I IFNs, as NZM2328 mice lacking type I IFN signaling exhibit similar changes 

as wild-type mice.  

In this chapter we demonstrate UVB exposure leads to similar injury in lupus and healthy 

skin; however, lupus-prone mice exhibit enhanced skin inflammation. Multiple factors are 

suggested to contribute to persistent lupus skin inflammation including apoptosis, upregulation 

of proinflammatory cytokines, and infiltration of immune cells. In particular, we show for the 

first time type I IFNs play a proinflammatory role in UVB-induced skin inflammation; this could 

be through type I IFNs ability to prime both innate and adaptive immune cell responses164, 165122, 

123.   

Interestingly, we demonstrate neutrophils are increased in lupus compared to healthy skin 

following UVB exposure. These neutrophils have been shown to release neutrophil 

extraceullular traps (NETs) in CLE lesions 65; this can contribute to an increase in autoantigen 

presence and proinflammatory cytokine production74. Further we demonstrate that the 
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recruitment of neutrophils following UVB exposure is dependent on type I IFN signaling, 

possibly perpetuating a positive feedforward loop as NETs induce type I IFN production278.  

Neutrophils in lupus patients are also shown to correlates with disease activity71; thus continued 

exploration into the inflammatory profile of these cells following UVB exposure is warranted.        

 Similar to others, we show that monocytes are recruited into healthy skin following UVB 

exposure156; these monocytes in healthy mice have been shown to produce IFN-α that can reduce 

other immune cell infiltration and IL-6 production156, contributing to resolution of UVB-induced 

skin inflammation.  

While we demonstrate lupus-prone mice display a significant increase in macrophages 

infiltrating into lupus skin following UVB exposure, they may exhibit impaired activation 

compared to wild-type mice. This altered macrophage activation is demonstrated in inactive and 

active SLE patients directing them toward a M1 inflammatory phenotype279. In addition, we 

show type I IFN signaling partially suppresses this activation and past studies have shown type I 

IFNs skew macrophages to a M1 inflammatory phenotype280, so examination of whether these 

macrophages are M1 or M2 should be further evaluated.  

We also show infiltration of monocyte derived DCs (CDllb+) into lupus compared to 

healthy skin following UVB exposure; this could be due to increased expression of CCR7 

allowing for increased infiltration into tissues and secondary lymphoid organs correlating with 

disease activity 85, 86.  In addition, we see decreased conventional DCs (CDllb-) in the skin 

following UVB exposure, possibly migrating to the dLN contributing to T cell activation through 

increased expression of costimulatory molecules80-83. Further, we show changes in these DC 

subsets is dependent on type I IFN signaling; this could occur through type I IFN-mediated 
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priming of the skin for increased chemokine production to recruit DCs281, though further 

examination into this mechanism should take place.  

To our knowledge we show for the first time that there is migration of CD103+CDllb- 

DCs into the dLN of lupus-prone vs wild-type mice following UVB exposure; these cells can 

display increased phagocytosis and presentation of apoptotic cells possibly driving a loss in 

tolerance282. We also see this infiltration is type I IFN dependent, which has been demonstrated 

in tumor models. These cells could be contributing to the skewed T cell activation in the dLN 2 

weeks post treatment, thus further exploration into the inflammatory profile of this cells are 

warranted. 

In conclusion, we demonstrate UVB-induces differential skin inflammation in lupus-

prone vs. wild-type mice. Lupus-prone mice exhibit differential dendritic cell and macrophage 

recruitment into the skin compared to wild-type mice. DC recruitment to the skin and dLN along 

with macrophage activation is regulated by type I IFN signaling. In particular, lupus-prone mice 

also show migration of CD103+CDllb- DCs into the dLN following UVB exposure, possibly 

providing the source of type I IFNs skewing T cell activation. Future studies should characterize 

the inflammatory profile of macrophages and dendritic cells in the skin and dLN to understand 

how they are contributing to differential skin inflammation. Overall, our paper suggests type I 

IFNs may be a target to prevent UVB-induced skin inflammation in SLE patients.



 95 

Chapter 6 Discussion and Future Directions 

 

These chapters have explored the role of type I IFNs in TLR7 mediated lupus and UVB 

induced immune response. We showed that TLR7 cutaneous stimulation led to accelerated 

development of autoantibodies, splenomegaly, liver inflammation and lupus nephritis (fig 6.1). 

While splenomegaly and liver inflammation development are type I IFN dependent, lupus 

nephritis and autoantibody production could occur in the absence of type I IFNs. Further, we 

demonstrated elevated expression of type I IFNs in lupus vs. healthy skin following UVB 

exposure and that they exhibit a proinflammatory role.  We further showed that UVB treatment 

led to skewed T cell activation in the dLN of lupus-prone mice through type I IFNs suppression 

of T regulatory cells (fig 6.2). In addition, type I IFNs increased inflammation in lupus compared 

to healthy skin through regulating the recruitment of neutrophils, differential DC populations and 

macrophage activation. We also identified that CD103+CDllb- DCs migrate into the dLN of 

lupus-prone mice in a type I IFN dependent manner. Although we have uncovered a lot about 

how type I IFNs regulate TLR7 mediated lupus and UVB induced immune response there are 

still unanswered questions left to explore including further clarification of the role of CD103+ 

DCs in UVB-induced immune cell response, how UVB-induced type I IFNs manipulate 

polarization of T cells, and the role of TLR7 in UVB-induced immune responses.  
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Figure 6.1 TLR7 cutaneous stimulation leads to accelerated lupus characteristic development 

that is type I IFN dependent and independent. 

TLR7 cutaneous stimulation in NZM2328 lupus-prone mice accelerated lupus flare 

development. Type I IFNs regulated the development of splenomegaly and liver inflammation, 

but autoantibody production and lupus nephritis were able occur in its absence.   
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UVB exposure drives increased skin inflammation in lupus-prone mice compared wild-type mice 

through recruitment of neutrophils, differential DC populations, and macrophage activation that 

is regulated type I IFN signaling. In addition, CD103+ DCs infiltrate into the dLN of lupus-prone 

mice in a type I IFN dependent manner. Lupus-prone mice vs. wild-type mice also exhibit 

skewed T cell activation in the dLN driven by type I IFNs suppression of T regulatory cells.  

 

 

Figure 6.2 UVB induces a differential immune response that is regulated by type I IFNs. 
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6.1 Are CD103+ DCs the source of type I IFNs needed for UVB- induced T cell activation?  

We demonstrated that CD103+ DCs infiltrate into the dLN following UVB exposure in 

lupus-prone mice prior to induction of a skewed to T cell response in the dLN. Interestingly, we 

identified that the skewed T cell activation is type I IFN-dependent, but whether CD103+ DCs 

are the source of type I IFNs that drive skewing of T cell activation should be studied. 

  

Currently the number of DC subsets is ever growing and now requires the use of several 

phenotypic and morphological markers to separate out the various types. More recently, the 

integrin Eα (CD103) marker has been used to subset a class of DCs that are located in lymphoid 

and non-lymphoid compartments such as skin, spleen, dLN, and lung among other organs283-287. 

CD103+ DCs have demonstrated importance in regulating mucosa, lung and skin immunity288, 

289.  They are known for their ability to cross-present foreign and self-antigens287, 290-294. 

Specifically, CD103+ DCs are involved in the uptake of apoptotic bodies and promotion of 

tolerance 295-297; however, in autoimmune disorders this subset of DCs may promote loss of 

tolerance. This is demonstrated by a murine asthma model in which depletion of CD103+ DCs 

led to a reduced inflammatory response298 . Thus, depleting this cell population in lupus-prone 

mice and examining changes in T cell activation following UVB exposure could reveal if this 

population is playing a role in skewing T cell activation. This could also be examined through 

the transfer of CD103+ DCs from UVB exposed lupus skin into non-UVB treated lupus-prone 

mice and examining changes in T cell activation. We could also consider isolating out CD103+ 

DCs from the DL of UVB treated lupus prone mice and co-culturing them with T cells to 

measure T cell activation and IFN production.   
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  CD103+ DCs can migrate into the dLN, induce effector T cells and regulate the induction 

of TReg cells287, 299, 300. This DC subset has been shown to present viral antigens to naïve CD4+ or 

CD8+ T cells and they can cross present antigen to CD8+ T cells 301, 302. Further, they 

demonstrate the ability to induce differentiation of CD4+ T cells in other disease models. 

Following MOG subcutaneous immunization, CD103+ DCs accumulate in the skin and induce 

effector T cell differentiation into Th1/Th17 cells303. In an allergic asthma model, CD103+DC in 

females exhibit greater antigen uptake and when cultured with CD4+ T cells induce Th2 

cytokines304. Mouse lung CD103+ DCs have been shown to prime T cells toward a Th1 and Th17 

response305. CD103+ DCs in a herpes simplex virus skin infection model induce polarization 

toward a Th17 phenotype306. Since we see skewed T cell activation in lupus-prone mice 

following UVB exposure, examination of whether CD103+ DCs are polarizing T cells toward a 

Th1 or Th7 phenotype should be pursued. This can be examined through understanding the 

cytokine profile of T cells in the dLN of lupus-prone and CD103+ DC depleted mice following 

UVB exposure. 

While we demonstrated that the skewing of T cell activation in the dLN of lupus-prone 

mice following UVB exposure is dependent on type I IFN-mediated suppression of TREGs, which 

cytokines are produced by CD103+ DC and how they might play a role in skewing T cell 

activation still has yet to be understood. CD103+ DCs exhibit production of several cytokines in 

other disease models. In a mouse model of invasive pulmonary aspergillosis, IL-2 producing 

CD103+ cells drive a protective response through TReg induction; however, defects in IL-2 

production promote IL-23 production by CD103+ DCs thus polarizing T cells toward a Th17 

phenotype creating a hyper-inflammatory response307. In lupus patients, IL-2 expression is 

reduced, suggesting T cells are skewed toward a Th17 phenotype. Immune complex stimulation 
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through Fc receptor (FcR) can convert CD103+ DCs from a tolerogenic response to an 

inflammatory response48, 61, 62. These DCs, upon FCR stimulation, secrete TNFα, IL-1β, and IL-

23 and promote Th17 polarization308. Interestingly, CD103+ DCs also demonstrate the ability to 

produce type I IFNs; this has been exhibited in Histoplasma lung infections where CD103+ DCs 

are the main type I IFN producing cells to induce T cell activation309. Since type I IFNs are 

elevated in lupus-prone mice, exploration into whether CD103+ DCs are a source of type I IFNs 

and how this influences T cell activation should be characterized. This can be tested by first 

examining mRNA expression in flow sorted CD103+ DCs through qPCR or single cell 

sequencing, then co-culturing CD103+ DCs from UVB treated lupus-prone mice and CD4+ T 

cells with/without a functional type I IFN receptor and examining T cell activation.  

Since we see that the migration of CD103+ DCs into the dLN is type I IFN dependent, an 

alternative thought is that CD103+ DCs are not producing type I IFNs, but are being primed by 

type I IFNs towards an inflammatory phenotype to induce T cell activation. Given the increase in 

type I IFNs we identified in the skin of NZM2328 mice shortly after UVB exposure, this is a 

feasible scenario. Previous studies have shown type I IFNs produced by DCs are important for 

intrinsic signaling affecting DC activation, migration, and localization with T cells310-318. In 

addition, IFNs have been shown to affect DC cross presentation of viral and tumor antigen314, 319, 

320; this IFN effect on DC inflammatory phenotypes could be context dependent. Previous 

literature has shown that timing of IFN production can affect DC activity. For example, if IFNβ 

exposure takes place during DC maturation it primes the DC to promote a Th1 response, but if it 

takes place during DC stimulation of naïve T cells it primes the DC to inhibit the Th1 response;  

this response is through regulation of IL-12 family cytokines in DCs (IL-12, IL-23, IL-27 and 

IL-18) by IFNβ321. Further, type I IFNs have demonstrated an ability to regulate CCR7 
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expression on DCs311. Thus, examination into how type I IFNs might be affecting CD103+ DC 

inflammatory profile should also be considered.  

6.2 Are UVB-induced type I IFNs skewing T cells to a Th1 or Th17 phenotype through 

manipulation of transcription factors in lupus- prone mice? 

 

Our data demonstrate a skewing of T cell activation away from the induction of TReg cells 

in a type I IFN dependent manner, but which inflammatory T cell subsets are being induced and 

how type I IFNs are regulating their development should be further examined.  

Type I IFNs have been shown to directly affect TReg function and survival. Type I IFNs 

demonstrate an anti-proliferative effect on T cells in vitro322, 323. In particular, IFN alpha 

treatment in chronic hepatitis C patients leads to anti-proliferative and pro-apoptotic effects on 

TRegs
324. Further, in autoimmune diseases and cancers, type I IFNs have been shown to inhibit 

TReg function directly and indirectly325; this results in the inhibition of TReg suppression of antigen 

specific CD4+ T cells326, 327. 

 While type I IFNs seem to play a role in Treg suppression, they also demonstrate 

intrinsic signaling to promote T cell survival and differentiation; this effect is exhibited in other 

disease models. In LCMV infections, intrinsic signaling by type I IFNs has been shown to be 

important for CD4+ T cell survival328, 329. Type I IFNs are also important for differentiation of 

CD4+ T cells into T follicular helper (TFh) cells in vivo following immunization330-332. In an 

EAE mouse model, Type I and II IFN signaling play a role in modulating Th17 responses333. In 

humans, Type I IFNs polarized CD4+ T cells to a Th1 phenotype334. The role of type I IFNs in T 

cell polarization could be through regulation of master transcription factors. Type I IFNs have 

been shown to be needed for initial T cell differentiation through manipulation of Bcl6 

expression in TFh cells and T-bet in Th1 cells335. Alternatively, IFNs have also been shown to 
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drive Th1 polarization through the manipulation of the β2-chain of the IL-12 receptor336-338. For 

example, in Listeria monocytogenes infections type I IFNs have been shown to drive Th1 

differentiation through synergistic effects with IL-12339. Examining how type I IFNs are 

regulating T cell polarization following UVB exposure in lupus-prone mice can be characterized 

through examining changes in T-bet, Bl6, RORyt and the IL-12 receptor in T cells with/without 

functional type I IFN receptor following UVB exposure.  

6.3 Is TLR 7 important for CDllb- DC migration in lupus-prone mice? 

Our preliminary data from chapter 5 demonstrates UVB exposure in lupus-prone mice 

leads to CDllb- DC migration from the skin to the dLN. This migration may be increased with 

epicutatious application of 100µg R848, a TLR7 agonist prior to UVB treatment (fig. 6.1).   

TLR7 has demonstrated a role in driving lupus phenotypes in patients and lupus-prone 

mice167-170, 173, 174. It has also been suggested to contribute to the UVB-induced systemic response 

in lupus. This is seen in BXSB male mice, which carry an additional copy of TLR7 on the Yaa 

locus, are treated with 400mJ/cm2 UV leading to accelerated lupus characteristic development 

and death 207. In addition, wild-type mice treated epicutaneously with TLR7 for 2 weeks prior to 

UVB treatment developed increased skin inflammation 208. Yet, the mechanism behind how 

TLR7 may contribute to the UVB response in lupus isn’t clear.  

Expression of TLR7 is seen in macrophages, monocytes, B cells, and dendritic cells; in 

particular, dendritic cell subsets that express high levels of TLR7 are pDCs and cDCs. Previous 

literature in other disease models show TLR7 stimulation is important for DC migration and 

increased function. In vivo, DC stimulation through TLR7 leads to migration of DCs to the T cell  
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Figure 6.3Enhanced migration of CDllb- DCs into dLN with R848 stimulation prior to UVB 

treatment.  

Eight-week-old NZM 2328 mice were treated for 2weeks with 100µg R848 followed by 5 days 

100mJ/cm2 UVB exposure. CDllc+CDllb- DC population evaluated by flow cytometry 24hrs 

after the 5th UVB treatment. NZM no UV n=9; NZM days UV n=12; NZM 2 days UV + DMSO 

n=2; NZM 2 days UV + R848 n=2. (B)dLN 24hrs following 5 days UVB treatment. NZM no 

UV n=9; NZM R848 n=2; NZM 5 days UV n=12; NZM 5 days UV + R848 n=2.  
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zone in the lymph node340. Further, different DC subsets have been shown to migrate following 

TLR7 stimulation. Oral administration of 10µg R848 led to increased migration of conventional 

DC subsets such as CD8+ DCs in wild-type mice341. Monocyte derived DCs migrated out of 

endocervical tissue blocks exposed to R848 for 24hrs342. It has also been shown that following 

topical R848 stimulation Langerhans cells migrate out of the skin343. Interestingly, R848 

stimulation has also been shown to result in increased CD103+ DCs migration in Peyer’s 

patches342. Since we see identified enhanced CDllb- DC migration into the dLN with R848 and 

UVB treatment, examining which CDllb- DC subsets migrate in a TLR7 dependent manner in 

lupus-prone mice should be examined with the use of flow cytometry or CyTOF. 

In addition to affecting DC migration, TLR7 stimulation also increases DC function. Oral 

administration of R848 led to increased DC activation that was dependent on type I IFNs342; this 

was also demonstrated in murine splenic DCs, which produced increased cytokines following 

R848 treatment340, 344. TLR7 stimulation also resulted in increased conventional DCs and pDC 

activation that was type I IFN-dependent in wild-type mice345. In addition, R848 stimulation in 

vitro leads to increased IL-12p70 production by DCs, which is involved in polarizing T cells to a 

Th1 response346. Further, DC TLR7 stimulation can lead to increased cross-presentation347. 

Following UVB exposure, examining if DCs have increased inflammatory cytokine production 

and antigen presentation in a TLR7 dependent manner in lupus-prone mice should be explored. 

This can be tested through examining IL-23, IL-12p70, type I IFNs production in DCs following 

UVB treatment and through the use of co-culture experiments with T cells to measure T cell 

activation and polarization.     
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6.4 Is Keratinocyte IFNκ production regulating CDllb- DC migration in lupus-prone mice 

in a TLR7 dependent manner? 

We demonstrate in chapter 5 that UVB induces type I IFN expression in the skin and we 

show that R848 cutaneous stimulation also induces type I IFN expression in the skin, particularly 

IFN  (fig. 2). While CDllb- DC migration into the dLN is type I IFN-dependent and can be 

enhanced with TLR7 stimulation, whether keratinocytes are the source of type I IFNs driving 

this migration should be further characterized.   

Keratinocytes are self-regenerating cells that create the epidermis through a coordinated 

program of duplication and differentiation, they also demonstrate an immune regulatory role. 

Keratinocytes produce antimicrobial peptides such as LL37, which has demonstrated a 

pathogenic role in lupus through the induction of pDC activation348. They also have been shown 

to express some surface and endosomal TLRs. The expression of TLR7 in keratinocytes is 

controversial; however, a paper has demonstrated its expression and activation349. Upon 

exposure to environment triggers, keratinocytes are capable of producing type I IFNs, IL-1, IL-

18, and TNF alpha350. Interestingly, in SLE patients’ keratinocytes display increased IFNκ 

expression at baseline that is further increased following UVB treatment155. Since treatment of 

lupus-prone mice with R848 also leads to increased IFNκ expression in the skin, examining if 

TLR7 plays a role in keratinocyte production of IFNκ following UVB treatment should be 

explored. This can be examined through UVB treating keratinocytes isolated from lupus-prone 

mice with/ without R848 and characterizing the mRNA changes through RNA sequencing.  

UVB-induced IFN production by keratinocytes has also been shown to stimulate DC 

activation 155. Further, type I IFNs have demonstrated an ability to increase TLR7-mediated IFN 

α production by pDC and regulate CCR7 expression on monocyte derived DCs311, 351, but 
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whether UVB induced keratinocyte production of IFNκ is regulating CDllb-DCs activation and 

migration needs to be further studied. One option would be to use lupus-prone mice with an 

epidermal-specific knockout of IFNκ. Following UVB exposure, changes in CDllb- DCs in the 

dLN can be examined with the use of flow cytometry. 
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Figure 6.4 R848 treatment leads to increased IFN kappa and Mx-1 in the skin of lupus-prone 

mice 2 weeks post treatment.  

Eight-week-old NZM 2328 mice were treated for 2weeks with 100µg R848 followed by harvest 

of skin for RNA. Real-time PCR was completed for ifnk and mx1. A. ifnk. B. mx1. Each dot 

represents one mouse and ANOVA testing was used to determine significance.  
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6.5 Conclusion 

This thesis examines the role of type I IFNs in TLR7 mediated lupus characteristic 

development and UVB induced immune response. We showed type I IFNs regulate TLR7 

mediated splenomegaly development and liver inflammation. Further, we demonstrated type I 

IFNs exhibit a proinflammatory role in UVB induced immune response. The additional ideas 

proposed in this chapter will allow for novel understanding of the role of type I IFNs in lupus 

characteristic development in order to develop novel treatment for SLE patients.  Given that type 

I IFN inhibition drugs are available (baricitinib) or in development (anifrolumab) this work 

would also inform us on how we can use these medications smartly and in a more efficacious 

manner. 
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