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ABSTRACT

The nuclear spin system of semiconductor crystals displays a remarkable degree of

environmental isolation, and in many cases a nuclear spin polarization may persist

for human-perceptible durations at high temperatures. Properties like this, com-

bined with the close relationship of the nuclear and electron spin systems via the

hyperfine interaction, suggest that greater control of the polarization of nuclear

spins in semiconductor crystals could provide breakthroughs in both classical and

quantum information storage and processing. In this work, we examine the electron

and nuclear spin systems in gallium arsenide epilayers and demonstrate that they

undergo a rich and complex interaction over a timescale of seconds to minutes when

the electron spin system is periodically pumped via a pulsed laser.

We use optical pump-probe techniques to manipulate an electron spin polariza-

tion, whose coherence time exceeds the repetition period of the mode-locked laser.

After generating spin polarization with a circularly polarized pulse, we measure the

Kerr rotation angle of a reflected linearly polarized beam, as it is proportional to the

degree of electron spin polarization along the optical axis at an adjustable moment

in the pulse cycle. The Larmor precession of electrons in an external magnetic field

leads to interference between spins excited from successive pump pulses, resulting

in resonant spin amplification (RSA) of the electron spin polarization that we mea-

sure via Kerr rotation. In this work, we demonstrate our discovery of a dynamic

nuclear polarization (DNP) that actively responds to the magnitude of RSA. By
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sweeping the magnitude of the external magnetic field, we simultaneously produce

a continuously varying DNP and also detect its presence through the effect of the

Overhauser field produced by polarized nuclei on the observed Larmor precession

frequency of the electron spin system.

Notably, the polarity of the observed DNP depends on the sweep direction of

the external magnetic field. We discuss similar cases of DNP hysteresis in the exist-

ing literature, but show that these explanations do not apply to our system. This

presents a mystery in regards to how to explain our results, and we perform a se-

ries of tests that rule out other initially plausible explanations. We then deepen

the mystery by showing that the electron-nuclear spin system retains memory of

interruptions in magnetic field sweeps. We also demonstrate a new technique to

extract the Overhauser field at every timestep in the experiment and use this data

to test a phenomenological model that explains many key features of these results.

We conclude with a discussion of possible physical mechanisms for producing the

observed DNP and highlight promising avenues for future research.
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CHAPTER I

Introduction

We can describe a half century of world-changing developments in electronics

in great part as the story of unlocking the potential of semiconductor crystals,

especially silicon. With the proper concentration of the right impurities, one of

these crystals may behave like a vessel filled with a gas of free electrons, and, with

other impurities, we can get something that acts like a gas of holes where electrons

arent. Combine these two materials in the right manner, and you get the diodes and

transistors that form the backbone of modern electronics. By changing the types of

crystals used, the manner of their production, their composition and environment,

and so forth, one can produce one of a staggering number of useful semiconductor

devices. In light of this, we should not be surprised by the large amount of effort put

in by scientists and engineers to continually improve our understanding of known

materials and explore a myriad of new ones.

A specific locus of research that shows a great deal of promise for future tech-

nological breakthroughs is the field of “spintronics”, which aims to produce de-

vices that utilize electron spin transport in place of charge transport, which could

dramatically lower the energy expenditure required and potentially provide speed

improvements as well [1]. For example, one of the most common and important
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electrical components is the field effect transistor (FET), which uses the voltage

of a gate terminal to adjust current flow between two other terminals. A typical

FET achieves this outcome by using the gate voltage to adjust the charge deple-

tion zone in the semiconductor channel between the other terminals. The proposed

Datta-Das spin transistor would achieve the same results by using the gate voltage

to adjust the channels spin-orbit coupling and induce precession in spins traveling

through the channel [1, 2]. By placing ferromagnets on either end of the channel,

the choice of gate voltage would affect the likelihood that traveling spins are able

to pass through the device, achieving the same principle as the FET [1].

As the study of electron spin polarization in semiconductors has developed, the

range of potential devices has expanded, but existing devices focus primarily on

information storage. For example, one can already purchase MRAM, a non-volatile

alternative to typical charge-based random access memory for use in computation.

MRAM uses bistable magnetic structures to store bits of data in the direction of

magnetization, which can be read using typical magnetoresistance methods like

those used in standard hard drives [3]. Writing data - that is, flipping the direc-

tion of magnetism - has traditionally been a much more difficult task. However,

basic research into “spin transfer torque in semiconductor crystals over the last two

decades has now enabled the creation of devices that flip these magnets simply by

injecting them with a spin current, with no external magnetic fields required [3, 4].

Other proposed devices would use this same principle to also perform logic opera-

tions [5]. Even ignoring potential gains in computational speed, the mere fact that

these devices would require much less energy to use and maintain their state when

powered off provides a very large incentive to develop them further, purely from an

environmentalist standpoint.
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The crucial requirement of any device utilizing spin transport is that electron

spins maintain coherence for a sufficient length of time to perform the necessary

task. Unfortunately, there is a large variety of physical processes in semiconduc-

tor crystals, varying greatly between materials, that destroy this coherence. Some

spin-scrambling processes involve discrete spin flips due to stochastic events such as

scattering, but for many materials (including those we use in our own experiments)

spin coherence is mostly limited by dephasing, in which individual spins precess

slightly differently from one another until they completely lose synchronization [1].

This generally occurs because each electron sees a slightly different effective mag-

netic field, either due to spin-orbit coupling or hyperfine coupling to the nuclear

spin system [1].

In the case of spin-orbit coupling, every electron state in k-space experiences a

different spin-orbit magnetic field according to the specific properties of the semicon-

ductor crystal [6, 7]. This effective field can be considered as the pseudo-magnetic-

field in the rest-frame of the electron that reproduces how internal electric fields

affect electrons traveling at any given crystal momentum [6]. Since each electron

in an ensemble of electron spins thus precesses slightly differently, the result is a

loss of electron spin coherence over time that places a corresponding lifetime on

spin polarization and a maximum transport length of spins injected into a channel

[1]. This phenomenon, known as D’yakonov-Perel spin relaxation [8], also provides

a useful example of how basic research into an electron spin dephasing mechanism

provides insights that might be used to minimize their negative impacts or even

utilize them to our advantage. The spin-orbit coupling in indium gallium arsenide

(InGaAs) is strain-sensitive to such an extent that adjusting the indium doping den-

sity of an InGaAs epilayer on a GaAs substrate generates enough strain to change
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the spin-orbit coupling landscape [9]. Such techniques might allow enhancement

of spin transport in the future, but this research has also led to an entirely new

capability: devices that exploit spin-orbit coupling to generate spin polarization

from applied electric fields without the need for ferromagnets or optical injection

[10, 11].

In the case of hyperfine coupling, the hyperfine interaction causes electrons to

precess in the magnetic fields produced by local nuclei in the region over which

each electron is localized [12]. Spin echo techniques can reverse this dephasing, but

these local fields themselves vary over time as nuclei mutually interact, rendering

dephasing irreversible [1]. This is particularly relevant for quantum dots, where

spin-orbit-induced spin relaxation is suppressed and as a result the interaction be-

tween the nuclear and electron spin systems becomes the bottleneck with regards

to the electron spin coherence time [12, 13], and where the electron spin system has

been shown to impact the nuclear spin coherence time as well [14, 15]. Similar issues

complicate attempts to use nitrogen vacancy centers in diamond crystals as qubits

for quantum information processing [16], and in general many potential spintronic

devices stand to benefit from a greater understanding of the electron-nuclear spin

interaction and the nuclear spin system in general.

The present work represents an attempt to better understand the interactions

between the nuclear spin system and the electron spin system in Si-doped gallium

arsenide (GaAs). As we demonstrate, the interaction of these two systems can pro-

duce dramatic results. The difficulty we encountered explaining these results using

models in the current literature makes further study of particular interest, espe-

cially due to the anomalous “memory of external field history that we demonstrate

exists in electron-nuclear spin system.
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We begin with an overview of the relevant optical, electrical, and nuclear proper-

ties of GaAs (Chapter 2), followed by an introduction to the optical techniques that

we used for characterizing spin polarization in GaAs (Chapter 3). We then move

into our original research, showcasing several experiments (Chapter 4 and Chapter

5) in which we showed the production of a dynamic nuclear polarization whose

magnitude changes in proportion to the transverse optically-pumped electron spin

polarization and which retains memory of the external field history, including mag-

netic field sweep direction and interruptions. Some of these results have recently

been published in Ref. [17].

We argue that the best explanation for these findings is dynamic nuclear polar-

ization (DNP), in which the spin coupling of the crystal’s electrons and nuclei cause

nuclear spins to align (or “polarize”) in response to electron spin polarization. Over

the course of describing these experiments, we present a phenomenological model

that successfully explains the data qualitatively using heuristic rules for how we

expect the degree and direction of electron and nuclear polarizations to change in

response to both each other and to their environment. We also evaluate the via-

bility of several candidate physical mechanisms in terms of explaining our results,

and suggest experimental improvements for distinguishing the proper mechanism

further.

This work was supported by the National Science Foundation under Grant No.

DMR-1607779.
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CHAPTER II

Electrical, Optical, and Nuclear Properties of GaAs

2.1 Introduction

This chapter covers a large amount of ground, as it lays out a wide variety of

physical properties of GaAs that play an essential role in the physics underlying

not only the experiments laid out in this work, but also the potential explanations

for the phenomena we measure.

2.2 Optical properties of GaAs

Unlike many semiconductors, GaAs has a direct band gap, which means we can

optically access the conduction band electrons both to generate and measure elec-

tron spin polarization. This section briefly describes the physics of these processes

to the extent required to explain the experimental findings of the present work,

but we do not perform complex derivations like those of the GaAs band structure.

However, previous members of this research group have done so in detail, and ac-

cordingly both the figures of this section and much of the analysis can be traced to

Ref. [11] and in particular Ref. [18].
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2.2.1 Optical selection rules and optical spin injection

Figure 2.1 (a) shows the conduction and valence band of GaAs in the vicinity

of the direct band gap at the Γ point in k-space. When illuminating the sample,

we use a laser with a sufficiently narrow bandwidth that when tuned to (or just

below) the bandgap we do not also excite the splitoff (SO) valence band, which has

a gap energy of EG + ∆SO instead of EG [11, 18]. As a result, when determining

the interactions between the sample and our laser, we are able to focus only on the

transitions between the conduction band and the heavy/light hole bands, as shown

in Figure 2.1 (b).

Figure 2.1: GaAs band structure and optical transitions in vicinity of Γ valley
Figure adapted from Ref. [18]. (a) Conduction and valence band of GaAs in the vicinity of the the direct
band gap at the Γ point in k-space. (b) Optical selection rules in GaAs corresponding to the transitions
in panel (a). Split-off band is not displayed since it plays no role in experiments. Transitions for left- and
right- circularly polarized light are shown labelled by helicity and relative transfer rate, while forbidden
transitions are not shown.

Following the traditional textbook approach to optical excitation, we calculate

the transition rate between any given two states using Fermi’s golden rule where

the electric dipole operator connects initial and final states in the transition matrix.

From Ref. [18, 19], the transition rate is given by

(2.1) wvb→cb =
2π

~
|〈φcb| − er · E|φvb〉|2 δ(Eg − ~ω)

7



where for circularly polarized light

(2.2) Eright/left = E0
1√
2

(x̂± ŷ)

and thus r · E may be simplified to [18]

(2.3) r · Eright/left = ±rE0Y
±1

1

The conduction band states have no orbital angular momentum and can be ap-

proximated by a spatial wavefunction Y 0
0 times a spin state |up〉 or |down〉. The

valence band states have orbital angular momentum l = 1 and may similarly be

built up as Y m
1 times a spin state, but the existence of spin-orbit coupling L · S in

the Hamiltonian makes these inappropriate as basis states. We thus need to switch

to a basis of total angular momentum |j,mj〉. We get the following states in each

band [18]:

Conduction: l = 0, |1
2
,−1

2
〉, |1

2
, 1

2
〉

Heavy/light hole: l = 1, |3
2
,−3

2
〉, |3

2
,−1

2
〉, |3

2
, 1

2
〉, |3

2
, 3

2
〉

Split-off (unused): l = 1, |1
2
,−1

2
〉, |1

2
, 1

2
〉

We may now calculate the transition rates between these states according to

Eqn 2.1, using Clebsch-Gordon coefficients to relate back to spherical harmonics

and spin states so that we can perform the spatial integral of initial state, final

state, and r · E. We will not explicitly calculate these integrals here, and instead

we simply use the results from Ref. [18]. These are encapsulated in Figure 2.1

(b), where we have divided all transition rates by a common factor and not drawn

transitions with a rate of zero.

Based on these rates, we see that right-circularly polarized light produces more

spin-up conduction electrons than spin-down, at a rate of 3:1. The opposite is
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true for left-circularly polarized light. We can define a convenient measure of spin

polarization as

(2.4) P =
nup − ndown

nup + ndown

which varies between P = −1 when nup is zero and P = +1 when ndown is zero,

and where P = 0 refers to equal population of both species [18]. By this measure,

illumination with circularly polarized light excites a batch of new carriers with

Pexcited = ±1
2

depending on the choice of helicity. However, in our samples the

hole lifetime is only about a picosecond, which is orders of magnitude less than the

electron spin lifetime (more on that topic later).

When a hole recombines, it annihilates an electron spin at random, that is, in

proportion to its abundance. For example, if the electron population has P = 0,

equal numbers of spin-up and spin-down electrons are destroyed. We perform our

experiments on n-doped GaAs, which means there is a permanent population of

electrons in the conduction band that is left over after recombination. As long as

|Pexcited| > |Ptotal|, the net leftover spin population after recombination is slightly

more polarized than before. Given a sufficiently large pump intensity (∝ transition

rate) or spin lifetime, the system will eventually asymptotically approach Ptotal =

Pexcited. In practice, though, we do not operate anywhere near this saturating

regime.

Note that if we excite with an energy large enough to illuminate the split-off band

as well, the extra transitions lead to equal population of both conduction band spin

states and accordingly zero electron spin polarization [20]. The technique thus relies

on having a laser bandwidth small enough to avoid accidental excitation from the

split-off band.

9



2.2.2 Kerr rotation

The previous section discussed the effect on the electron spin system of illumina-

tion with circularly polarized light. Now we discuss the effect on linearly polarized

light of reflecting off a surface with electron spin polarization. We treat linearly

polarized light as a superposition of left- and right- circularly polarized light, as we

have just worked out how these relate to the spin species in the conduction band.

Due to the Pauli exclusion principle, adding more spins of one species necessarily

causes a rise in the Fermi energy of that species as lower energy states fill up, as

shown in Figure 2.2 (a). This parameter shift leads directly to several others, which

are laid out both here and in Figure 2.2 [18]. Since available states for optical

transition are at a higher energy, this causes the absorption edge to shift to a higher

energy in the manner seen in Figure 2.2 (b), but more so for light of the circular

polarization that selectively excites to this species. This shift of absorption versus

wavelength also shifts the index of refraction versus wavelength, as calculated using

the Kramers-Kronig relations [18]. This last shift, plus the circular birefringence

- the resulting difference in the index of refraction for each helicity - is plotted in

Figure 2.2 (c).

When linearly polarized light reflects off this surface, its left- and right-circular

components pick up different phase shifts, leading to an overall rotation of the

linear polarization perpendicular to the difference in indices of refraction plotted in

Figure 2.2 (c) - this is known as Kerr rotation. The greater the spin polarization,

the greater all the shifts down the line, and the greater the Kerr rotation. We

use Kerr rotation as a proxy for spin polarization along the optical axis in all the

experiments we present.
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Figure 2.2: Kerr rotation and the optical effects of spin polarization
Figure adapted from Ref. [18]. (a) Reprint of Figure 2.1 (b) but with the addition of diagrams showing
the change in spin populations and Fermi energies. (b) Shift of absorption edges due to the change in
species’ Fermi energies in (a). (c) Change in the indices of refraction for circularly polarized light due to
the shift in absorption edges in (b).

2.3 Electron spin dynamics in GaAs

Having discussed how to generate and measure electron spin polarization in

GaAs, we now take a brief look at several important dynamics regarding how elec-

tron spins evolve over time in GaAs. Given our sample carrier densities and at stan-

dard experimental temperatures, we are usually able to treat spins as semiclassical

entities that move, precess, and generally evolve over time independently. When

working on the scale of spin polarizations, we treat the spin system as an ensemble

of these independent spins, each with its own dynamics and with an independent

chance-per-unit-time of undergoing a discrete event like scattering. The properties

of the overall spin system thus emerge from the statistics of these ensembles.
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2.3.1 Spin precession and dephasing

Spin precession occurs on the level of the individual electron spin: every spin pre-

cesses about the magnetic field at the Larmor precession frequency ωL = gµBBtot/~,

where g is the effective electron g-factor, µB the Bohr magneton, and Btot the sum

of the external magnetic field Bext applied to the sample and any other internal

fields the electron experiences.

If all electrons precess at the exact same Larmor precession frequency and angle,

precession will not diminish electron spin polarization. However, if for some reason

there is a statistical distribution of precession frequencies, individual spins will get

“out of sync” with each other and the electron spin polarization will diminish.

Depending on the precise cause, the effect may be reversible. For example, in

a large ensemble of electrons, each will be found to have a slightly different g-

factor. Just like with electrons experiencing different spin-orbit or local nuclear

fields (discussed in Chapter 1), the discrepancy in Larmor precession frequency

between electrons causes the ensemble to dephase in a shared external field, even

though no information has actually been lost [18, 21]. In fact, one can induce spins

to reverse this type of dephasing and momentarily come back into perfect sync

again using the “spin echo” or “Hahn echo” technique [1, 11, 22]. However, many

processes that reduce electron spin polarization involve information loss and are

thus not reversible. They cause electron spin polarizations to diminish over time, a

process we call spin relaxation.

For example, in the D’yakonov-Perel spin relaxation mechanism, spins lose sync

with each other because each feels a slightly different spin-orbit magnetic field based

on its current k vector [1, 8]. This small extra magnetic field component is enough to

cause every electron to precess slightly differently, resulting in dephasing. Since one
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cannot cause every electron to perfectly reverse its trajectory, including scattering

events, this dephasing is permanent, and is in fact the main source of irreversible

decay for electron spin polarization in our samples [11].

2.3.2 Other relaxation mechanisms and spin lifetime

The other major relaxation mechanism for electron spin polarization is Elliot-

Yafet relaxation, which arises from electron spins flipping when the electron un-

dergoes a scattering event [23]. This plays less of a role in our samples than the

D’yakonov-Perel mechanism, but not an insubstantial one.

The result of these relaxation mechanisms is that the degree of electron spin

polarization always decreases with time. In fact, the degree of polarization, as

measured via Kerr rotation, can generally be found to undergo a smooth exponential

decay with a well-defined time constant called the spin lifetime. To be precise, there

are several spin lifetimes [1, 11, 18]:

• T1 - the longitudinal spin lifetime, over which spin polarization parallel to

the external field decays as up and down spins thermalize to their natural

preponderances.

• T2 - the transverse spin coherence time, over which spin polarization perpendic-

ular to the external field decays as individual spins lose their phase coherence

in an irreversible manner.

• T ∗2 - the inhomogeneous dephasing time, over which spin polarization per-

pendicular to the external field decays reversibly as individual spins lose sync

with each other due to having slightly different electron g-factors. Significantly

shorter than T2.
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In the experiments we present, the electron spin polarization is entirely perpen-

dicular to the external field and thus the spin lifetime is dominated by T ∗2 .

2.4 Nuclear spin dynamics in GaAs

Since the present work is primarily concerned with the electron-nuclear spin

system of GaAs and the complicated and interesting interactions that occur between

these species, we now turn our attention to the nuclear spin system. We discuss

how nuclear spins respond to external fields, other nuclei, electron spins, and the

lattice itself, and build up a picture of a unified and isolated nuclear spin system

defined by a nuclear spin temperature, and how it interacts with the electron spin

system.

2.4.1 Nuclear isotopes

We find three nuclear isotopes in GaAs of nontrivial abundance: 69Ga, 71Ga, and

75As, all of which have nuclear spin I = 3/2 [18, 24]. These species have magnetic

moments of 2.02µN , 2.56µN , and 1.43µN respectively, where µN is the nuclear

magneton µN = e~/2mp . Since the proton mass mp is three orders of magnitude

larger than the electron mass me we find that these nuclear magnetic moments are

three orders of magnitude weaker than the electron magnetic moment [18]. As such,

the Zeeman splitting of nuclear spins is much weaker than that of electron spins,

and nuclei precess much slower in an external field.

2.4.2 Nuclear spin interactions and spin temperature

The nuclear spin system in semiconductors such as GaAs is remarkably iso-

lated. Nuclear spins have a spin-lattice relaxation time T1 that is orders of mag-

nitude larger than the spin-spin relaxation time T2 [25], which effectively means
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that nuclear spins come to a group equilibrium rather than interacting with the

circumstances of their local lattice sites. The isolation is extreme enough that a

polarization of nuclear spins parallel to the external field (i.e. not prone to internal

dephasing) can last for hours without significant relaxation [18].

The lack of interaction with the lattice is itself not sufficient to allow such long-

lived nuclear polarizations. Each nucleus experiences the dipolar magnetic fields of

its neighbors with a strength on the order of a Gauss [25]. In the absence of an

external magnetic field, each nucleus will precess around the sum of these local fields

at a rate proportional to its own nuclear moment, leading to the complete erasure of

any nuclear polarization at a spin dephasing timescale of 10−3 to 10−4 seconds [18].

If the external field is significantly larger than these dipole-dipole coupling fields,

however, it will dominate nuclear precession and this dephasing mechanism will

disappear [18, 26]. As such, an external field is generally a prerequisite to obtain

dynamic nuclear polarization, though interesting exceptions exist. For example,

researchers recently achieved 10% nuclear polarization in a GaAs quantum dot

using only the effective magnetic field (Knight field) from a single optically injected

electron spin in to stabilize the nuclear spin system [27]

Even with the dipole-dipole interaction suppressed, the nuclear spin system con-

tinues to be dominated by a strong nuclear spin-spin interaction, only now the

remaining methods of spin relaxation conserve the total nuclear magnetism [25].

The presence of an external field creates a Zeeman splitting in the isolated nuclear

spin system such that nuclear spins can be considered to align either with or against

the external field. Within this paradigm, the strongly interacting nuclei freely ex-

change their spins in a manner that conserves total nuclear polarization and thus

the total energy of the system. In short, we have an isolated system in thermal
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equilibrium, and we can accordingly define a nuclear spin temperature and treat

the system using Maxwell-Boltzmann statistics [18, 28]1.

Because the Zeeman splitting is extremely small, however, the temperature scale

in Kelvins is somewhat unintuitive. Zero polarization corresponds to infinite tem-

perature, as is to be expected in a 2-state distribution. Less obvious is that a

polarization of less than 0.1% corresponds to a drop in spin temperature to under

10−4 K [18]. It may be illustrative to think of the nuclear spin temperature scale as

a reflection of how little thermal energy needs to be added to this system in order

to completely depolarize it. The ability of the nuclear spin system to last for hours

surrounded by electron and lattice systems with temperatures orders of magnitude

higher highlights the extraordinary degree of isolation of the nuclear spin system

and the weakness of the spin-lattice interaction.

2.4.3 The hyperfine interaction and electron-nuclear spin flux

The hyperfine interaction between nuclear and electron spins most directly pro-

vides a method for spins of each type to experience the magnetic field produced by

the other. Put simply, nuclear spins feel the magnetic field produced by an electron

spin polarization as a Knight field BK and electron spins feel the magnetic field

produced by a nuclear spin polarization as the Overhauser field BN ; no more detail

is needed in the context of the present work.

More interestingly, the hyperfine interaction also allows total-spin-conserving

spin-flip interactions to take place between the nuclear and electron spin systems

[25]. Due to the vastly different magnetic moments between electron and nuclear

spins, it is always energetically favorable on net for electron spins to utilize this

1Of course, the presence of multiple nuclear spin species with different magnetic moments complicates the picture
somewhat, but in practice we can, and the literature generally does, gloss over this fact [18].
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spin flip to relax spins from the state with a higher Fermi energy to the state with

a lower Fermi energy, as shown in both panels of Figure 2.3. This figure, and the

explanation surrounding it, is heavily derived from Ref. [18].

In the experiments we present in this work, we use circularly polarized light to

create an electron spin polarization perpendicular to the external magnetic field,

and, along the optical axis, the resulting split of the Fermi energies of spin-up and

spin-down electrons looks like panel (a) of Figure 2.3, with no Zeeman splitting

present. Of course, from the perspective of the external field axis, the electron

spins are in superpositions of spin-up and spin-down states, artificially equalizing

their spins. Since these states are themselves offset by a Zeeman energy splitting,

the result is a nonequilibrium depolarization of electron spins that looks somewhat

like panel (b) of Figure 2.3. We are not sure the extent of this depolarization in our

system given our electron spin polarization amplitude, but complete depolarization

has historically been achieved using electron spin resonance [18, 29]. In any case,

each model prescribes that the nuclear spin system should experience the spin flips

indicated in its figure, but in panel (a) this produces nuclear spins in the direction

of electron polarization (in our case, perpendicular to the external field), whereas

in panel (b) this produces nuclear spins that align with the external field.

In our system, the first type of nuclear spin flips (like in panel (a)) are perpen-

dicular to the external field. This means each induced nuclear spin immediately

undergoes precession and as such the incoming stream of flipped nuclear spins soon

cancels itself out by pointing at all angles. Even if we somehow created a single,

coherent packet of flipped nuclear spins along this direction, they would quickly

dephase; it is only the longitudinal relaxation time of nuclear spins that is extraor-

dinarily long. If the electron polarization in panel (a) were parallel to the external

17



Figure 2.3: DNP generation via electron-nuclear spin exchange
Figure reproduced from Ref. [18]. Schematics demonstrating two ways in which DNP develops when the
Fermi energy of spin-up and spin-down electrons is different. Specifically, when there is (a) an electron
spin polarization and/or (b) less electron spin polarization than is expected given the current Zeeman
splitting for spin-up and spin-down species.

field, however, this problem would vanish and a nuclear spin polarization would

begin to build up that could point either with or against the external field. In

terms of the nuclear spin temperature, this would represent nuclear spin cooling

if the induced polarization aligns with the external field, or nuclear spin heating

to negative temperatures (hotter than infinity) if the induced polarization aligns

against the external field [18].

The second type of nuclear spin flips we expect in our system, those parallel to

the external field and that result from electron spin depolarization along this axis

like in panel (b), fall into the former category and result in the cooling of the nuclear

spin system [18]. This depolarization was historically easy to perform because one

simply had to achieve electron spin resonance perpendicular to the external field.

Following Ref. [25], we can formalize the above logic into a a definition of the

energy flux qs that the electron spin system feeds into the nuclear spin system, at

a stroke handling nuclear spin heating, nuclear spin cooling, and cases where the
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electron spin system does not affect the nuclear spin system whatsoever:

(2.5) qs = −(2µspecies/T1s)(sr ·Btot)

where Btot is the sum magnetic field experienced by the electrons. Of course, since

the Knight field is a component of Btot, qs is never actually zero unless the electron

spin polarization itself becomes zero [25]. Even electron spin polarization perpen-

dicular to the external field causes a little bit of nuclear spin cooling, as sr · Btot

reduces to simply a constant times |sr|2, and as a result we can use Eqn 2.5 as

another way to explain the cooling of the nuclear spin system due to depolarization

of the electron spin system along the external field axis [25, 29]. For the common

situation where the electron spin polarization is not so large that it overwhelms

the nuclear spin system, but large enough that we are not actively depolarizing

electron spins ala Figure 2.4 (b), Eqn 2.5 applied to the nuclear spin system yields

the following steady-state nuclear polarization (following [18]):

(2.6) Iav =
4

3
I(I + 1)

(sr ·Bext)Bext

|Bext|2

The important takeaway here is that while the energy flux in Eqn 2.5 depends

directly on the external magnetic field, the actual net nuclear polarization is field-

independent because the Zeeman splitting also scales with field strength. All that

matters is whether the external magnetic field is appreciably nonzero to prevent the

scrambling of nuclear spins due to dipole-dipole interactions. Finally, we introduce

an important term for the bundle of processes we discussed in this section. When-

ever the electron spin polarization produces a nuclear spin polarization through one

of these mechanisms, we call it “dynamic nuclear polarization” (DNP). We will be

using this term frequently as a useful catch-all after this point.
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2.4.4 (Optical) Nuclear magnetic resonance

We have thus far focused squarely on the electron-nuclear relationship due to its

central role in this body of work. However, we would be remiss not to mention at

least in passing the one other way in which the nuclear spin system interacts with

its environment - through direct coupling to the external field. Nuclei precess with a

Larmor precession frequency that scales linearly with the external field in the same

fashion as we discussed for electrons earlier in this chapter, though each isotope

rotates at a different rate proportional to its own unique magnetic moment. Thus,

for a given external field, each nuclear species precesses at its own frequency ωL. If

we perturb the system with an extra external magnetic field which is perpendicular

to the first and oscillating at one of these frequencies, we cause the related species

of nuclear spins to undergo nuclear magnetic resonance (NMR).

The following explanation, as well as Figure 2.4, are heavily derived from Ref.

[30]’s discussion of optical NMR and adapted to describe normal NMR as well.

To explain NMR, we switch to a frame of reference that rotates around the axis

of the static external magnetic field Bext, as shown in Figure 2.4, which we will

define as the x-axis. We apply an external field Bosc, perpendicular to Bext, that

oscillates linearly at frequency fm. However, we can equivalently describe this field

by two counter-rotating magnetic fields that rotate with angular frequency 2πfm

in opposite directions around Bext. One of these rotates in the direction of Larmor

precession, and the other opposite - we can safely ignore the latter field.

We now examine the system from the rotating frame in which the remaining

rotating field is itself static, as depicted in Figure 2.4 (b). This frame is obviously

not inertial, but in the context of how Bext and Bosc affect a nuclear spin we are able
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to compensate by adding a pseudo-magnetic-field2 BNMR = 2πfm/γspecies, where

γspecies is the gyromagnetic ratio corresponding to the nuclear species’ particular

magnetic moment. This is, of course, by definition just the magnetic field at which

the target nuclear species has the Larmor precession frequency 2πfm. To clarify,

this is not necessarily the rest frame of any nuclear spins, but rather a rotating frame

that follows our modulated field and in which the dynamics of Larmor precession

are satisfied.

Figure 2.4: Nuclear magnetic resonance from the perspective of a rotating reference frame
Figure adapted from Ref. [30]. (a), (b) Given a system containing a static external field Bext and a field
Bosc that oscillates at frequency fm, diagrams representing the effective magnetic fields that would be
experienced by a nuclear spin in (a) the laboratory frame and (b) a frame rotating around the x-axis in
sync with an oscillating field Bosc and in the direction of Larmor precession. (c), (d) The same diagrams,
except now instead of applying an oscillating external field Bosc we generate an oscillating spin polarization
sr , again with oscillation frequency fm. In (d), both the spin sr and the corresponding Knight field BK

are indicated, as well as the effect of sr on the nuclear spin polarization IN and its projection onto the
external field axis IN, x.

In this frame, nuclear spins will only see a static magnetic field given by the

2This derivation is beyond the scope of this document, but is most easily performed by applying the rule for
time derivatives in a rotating frame to the precession of magnetic moments.
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vector sum of our newly static B′osc and (Bext − BNMR). Typically B′osc is much,

much smaller than Bext, so if the external field is not near the target field BNMR

that corresponds to our modulation frequency the vector sum will lie almost en-

tirely along the x-axis. This looks just like the system in the absence of modulation;

nuclear spin polarization only occurs along the x-axis since any component perpen-

dicular to that axis dephases as it precesses about the external field. As the system

approaches BNMR, however, the vector sum moves off the x-axis, indicating that

the axis of stable nuclear polarization has itself begun to tilt and precess in sync

with Bosc as the Larmor precession frequency approaches 2πfm. Once Bext reaches

BNMR, the only stable nuclear polarization is the one completely lined up along

with Bosc (rotating frame) or equivalently precessing about Bext = BNMR in sync

with the modulating field (laboratory frame). Any remaining nuclear polarization

along the x-axis is completely destroyed.

This last fact becomes even clearer when we convert the precession of nuclear

spins around Bosc in the rotating frame back to the laboratory frame. We can

describe this precession as a sum of two linear oscillations offset in phase by π/2, one

back and forth along the x-axis and the other out-of plane, and with a oscillation

frequency proportional to the amplitude of Bosc. In the laboratory frame, this

cyclically manifests as such: nuclei polarized along +x̂, nuclei precessing around the

x-axis at the Larmor frequency, nuclei polarized along −x̂, nuclei precessing around

the x-axis at the Larmor frequency, and repeat. In other words, Rabi oscillations.

From the perspective of a nuclear spin, there is no difference between an external

field and the Knight field corresponding to an electron spin polarization. We can

thus recreate the NMR effect just described, but optically, simply by illuminating

our sample with helicity-modulated light instead of an oscillating magnetic field.
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As the helicity repeatedly switches at frequency fm, the excited electron spin po-

larization sr repeatedly reverses, leading to a Knight field that oscillates at fm in

the same manner as Bosc, as seen in Figure 2.4 (c, d). We call the resultant NMR

“optical NMR” and it is a well-established effect in GaAs, known to depolarize DNP

at the exact condition of resonance [30, 31, 32]. The key difference between optical

NMR and normal NMR is that in addition to providing a Knight field akin to Bosc ,

the electron spin polarization also actively creates dynamic nuclear polarization by

providing a spin flux through the hyperfine interaction that cools the nuclear spin

system [32].

As shown in Eqn 2.5 and Eqn 2.6, achieving nuclear polarization through nu-

clear spin cooling requires an appreciable sr · Btot. In the context of optical NMR,

this occurs when the external field Bext becomes close enough to BNMR that the

projection of the electron spin polarization vector onto the nuclear spin polarization

vector is significant, as shown in Figure 2.4 (d). In the vicinity of resonance, Btot

is just the Knight field which is proportional to sr itself, so the nuclear cooling is

proportional to |sr|2, consistent with our earlier discussion of generic spin polariza-

tion perpendicular to the external field [30]. Keep in mind this nuclear cooling is

not to a stable polarization along the x-axis; like with the standard NMR case, the

only stable nuclear polarization that occurs in the vicinity of optical NMR is the

polarization that precesses about the external field in sync with BK (Bosc before).

Using the field labels from Figure 2.4 (d), we note that IN grows large as the

nuclear spin system cools along the rotating frame; this effect is stable and not

sensitive to the exact value of B. However, the projection of this nuclear field along

the x-axis, labelled as IN, x , is very sensitive to the exact value of Bext, and even

flips sign when Bext crosses BNMR, corresponding in the laboratory frame to a
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DNP/Overhauser field that is proportional to (Bext−BNMR) [30]. This Overhauser

field affects the Larmor precession frequency of the electron spin system, and the

interdependence between the two systems will be of special interest in Chapter 6

[30, 32].

The most important finding, however, is that unless the modulation frequency

is low enough that BNMR occurs well inside the first RSA peak (less than ∼2 mT),

this interdependence leads to the scrambling of DNP [30]. With our modulation fre-

quency, the BNMR field for each species varies from around 5 mT to 7 mT, meaning

we expect any built-up DNP to be destroyed when the external field sweeps past this

magnitude, just as it is destroyed around zero field by dipole-dipole interactions.
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CHAPTER III

Experimental Methods for Electron Spin Manipulation

3.1 Introduction

This chapter describes the GaAs samples used in the experiments detailed in

future chapters, as well as the experimental apparatus. We also describe the tech-

niques with which we characterize the electron spin polarization in Chapter 4 and

that form the basis for the methods used in Chapter 5. Finally, we discuss the

limitations and possible complications of our equipment and methods, and how we

address these issues.

3.2 Sample design and fabrication

All experiments discussed in this and upcoming chapters are performed on sam-

ples which are produced from the same wafer using the same techniques. The

wafer, which was purchased pre-fabricated from a vendor, consisted of an undoped

(001) GaAs substrate, on top of which was first deposited a 1-µm-thick undoped

AlGaAs epilayer, followed by a 2-µm-thick n-doped (Si) GaAs substrate with car-

rier concentration 3 · 1016/cm3. None of the experiments presented in the body of

this document utilize an external electric field applied to the sample surface, but

other planned experiments required channels and contacts. To accommodate this

requirement, we patterned the samples with the channel design shown in Figure

25



3.1, which was designed for the experiments described in Ref. [33].

To achieve this pattern, we used a wet etch process to dissolve the n-GaAs epi-

layer everywhere outside the 2.5-mm-wide pattern from Figure 3.1. Afterwards, we

deposited gold contacts onto the outside regions of the pattern, leaving the 500-µm-

wide center region as the only uncovered n-GaAs surface left on the sample. This

part of the sample remained covered in a protective photoresist coating throughout

the entire fabrication process, and we do not expect any of its optical or electric

properties to have been affected at any point.

Though physically irrelevant to the experiments described in this work, we note

that the sample pattern still provided consistency to experiments. The square-

with-missing-corners shape of the usable channel allows easy verification of sample

orientation and lets us accurately locate the laser spot relative to the center of the

channel. As a result, we can guarantee that, over the course of an experiment, the

lasers aim at exactly the same location on the sample with a precision smaller than

the 25 µm laser spot size. This proved incredibly useful, since the data displayed

in Chapter 4 and Chapter 5 originates from a single sample with a known speck

of indium roughly equidistant between the center of the channel and one of the

missing corners. In every experiment in those chapters, the laser is aimed at the

same location just off-center opposite the speck. This lets us be sure that our results

are not affected by an obstructed surface, clipping on the edge of the channel, or

slight inconsistencies in surface quality across the channel.

3.3 Experiment design

First, we would like to note that Figure 3.2 presents a diagram of the full exper-

imental system, and may be useful for following along as this section weaves from
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Figure 3.1: Diagram of sample design
Figure courtesy of M. Luengo-Kovac. Schematic of the device on which the experiments were performed.
The gallium arsenide epilayer is shown in blue, and the metal contacts are shown in gold.

one portion of the experimental apparatus to another.

3.3.1 Pulsed laser and sample environment

We generate and measure electron spin polarization using the techniques of opti-

cal spin pumping and Kerr rotation outlined in the last chapter. For the production

or “pump” step, we illuminate the surface of our sample with circularly polarized

laser pulses. For the measurement or “probe” step, we reflect linearly polarized

laser pulses off the sample surface and measure the angle by which the polarization

axis changes due to Kerr rotation. We generate both pulses using the same laser,

but use an optical beam splitter to separate our “pump” and “probe” beams near

the beginning of the optical path.

Our Coherent Mira 900 Ti:Sapph laser produces linearly polarized laser pulses of

approximately 3 ps temporal duration every 13.16 ns. The Mira is itself pumped by

a Coherent Verdi V10, a CW laser with a fixed 532 nm wavelength (hence the name),

and the resulting laser pulses from the Mira have a tunable center wavelength that
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Figure 3.2: Diagram of experimental apparatus
Figure reproduced from Ref. [11]. Schematic of the experimental apparatus, indicating the initial pulsed
laser and probe beam in red and the pump beam in blue. Explanation of each component can be found
in the text of this document.

stretches from the red edge of the visible spectrum (∼710 nm) to about 1 µm. Both

pump and probe beams share this wavelength, so we choose it to be in the vicinity

of the band edge of GaAs where we obtain a sufficient degree of both pump beam

optical absorption and probe beam Kerr rotation.

We mount the sample on the cold finger of a Janis ST-300 helium flow cryostat in

order to maintain a steady cryogenic temperature. Unless otherwise noted, we use

a temperature of 10 K, which is cold enough to achieve a transverse spin lifetime T ∗2

25 ns. Because the time between laser pulses is 13.16 ns, the system maintains a

spin polarization that does not significantly decay within the laser repetition period.

In fact, the existing spin polarization is large enough when each laser pulse hits that

constructive and destructive interference between new and existing electron spins
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plays a pivotal role in the dynamics of the electron spin system. We will discuss this

effect, called resonant spin amplification (RSA), later in this chapter. Furthermore,

it is possible that the laser pulse may actually rotate some of this sizeable existing

spin polarization onto the magnetic field axis via the optical Stark effect [34], a

possibility covered in further detail in Chapter 6.

We also apply a tunable external magnetic field to the sample by placing the

narrow portion of the cryostat containing the sample between the poles of an electro-

magnet. Along the axis defined by its poles, the electromagnet produces magnetic

fields of up to ±300 mT when using a closed-loop chilled water supply to achieve

high currents.

3.3.2 Pump laser, helicity modulation, and adjustment of optical path length

After the pulsed laser passes through the optical beam splitter, we designate the

outputs as the pump beam and the probe beam. The pump beam passes through a

Hinds I/FS50 photoelastic modulator (PEM) which modulates its helicity between

left- and right- circular polarization at a rate of 50 kHz, passing through a state of

linear polarization in between. Afterwards, the beam hits the sample almost normal

to its surface and the reflected beam is diffused by a beam block. This current

circular component of pump laser polarization at any given time thus produces

electron spin polarization on the sample surface.

Note that the PEM timescale is orders of magnitude slower than the pulse rate,

Larmor precession, spin polarization lifetime, etc. As a result, we can safely assume

that on any timescale long enough to see the PEM state change even slightly, the

electron spin system will appear to immediately adjust. Given that the linear

component of the pump beam does not induce any electron spin polarization, we
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expect the electron spin system to maintain a magnitude and orientation of spin

polarization directly proportional to the current magnitude and handedness of the

circular component of pump laser polarization. If this assumption holds, no matter

what the current state of the experimental apparatus, we expect Kerr rotation to

oscillate sinusoidally at the PEM frequency. This useful property comes in handy,

and we will discuss it further at the end of this section.

The other notable element of the pump laser’s optical path is the presence of

a delay line. A delay line is simply a moveable set of mirrors that can be moved

back and forth across the optical table in such a manner as to allow us to change

the optical path length without disturbing the system in any other way. Since the

optical path length of the probe laser is fixed, moving the delay line lets us set the

time that elapses between when the pump and probe pulses reach the sample, and

thus the amount of time which passes between the generation and measurement of

electron spin polarization each pulse cycle.

The delay line must be able to change the total optical path length by several feet

without even moving the laser spot on the sample by more than a few microns. Our

setup achieves this by sending the pump laser through a polarizing beam splitter

before entering the delay line. A mirror at the end of the delay line causes the

laser to double back along its previous path right back into this beam splitter,

eliminating any effect of the path length on the trajectory. Crucially, the pump

pulse passes through a quarter wave plate just before it hits this mirror, then again

after reflecting. Both passes together form an effective half wave plate that rotates

the polarization angle by π/2. Accordingly, the laser now bounces off the polarizing

beam splitter upon its return instead of transmitting through and doubling back

into the Mira.
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3.3.3 Probe laser and the extraction of Kerr rotation

The probe beam encounters no specialty optics before hitting the sample except

for a chopper used for lock in amplification, a topic further discussed at the end

of this section. After bouncing back and forth across the table a few times for the

sole purpose of extending the optical path, the beam reflects off the sample surface,

which causes its polarization axis to be rotated by the Kerr rotation angle θKerr.

This reflected beam passes through a half wave plate before a Wollaston prism splits

it in two. These new beams correspond to the horizontally- and vertically-polarized

components of the original, and they are separately piped via optical fiber into pho-

todiodes A and B, respectively, of a photodiode bridge. These photodiodes output

voltages VA and VB proportional to the intensity of each component beam, but most

importantly the circuitry also produces a third voltage VA−B, which confusingly is

actually equal to 2(VA−VB). The angle of the half wave plate is adjusted so that, in

the absence of Kerr rotation, the vertical and horizontal components emerge from

the prism perfectly balanced and VA−B is zero. In other words, the polarization

angle of the beam entering the Wollaston prism is, relative to the horizontal, given

by

(3.1) θ0 = π/4− θKerr

where positive Kerr rotation rotates the beam towards the horizontal [11]. If we

recall the relationship between the intensity I0 of a linearly polarized beam and the

intensity of its projection onto a new axis that differs by angle ∆θ, we get for new

axes A and B

(3.2) IA = I0 cos2(θ0)

(3.3) IB = I0 cos2(π/2− θ0)
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Plugging in Eqn 3.1 and a few trigonometric identities, we end up with

(3.4) IA = (I0/2) [1 + sin(2θKerr)]

(3.5) IB = (I0/2) [1− sin(2θKerr)]

Using the fact that IA + IB = I0 and solving for θKerr, we obtain the relationship

(3.6) θKerr = 1
2

arcsin((IA − IB)/(IA + IB))

Because the Kerr rotation angle is much, much less than a radian, the approximation

sin(θKerr) ≈ θKerr holds. Using the proportionality between photodiode bridge

voltages and beam intensities, we get the final relationship between the photodiode

bridge outputs and the actual Kerr rotation:

(3.7) θKerr = 1
4
VA−B / (VA + VB)

The key finding here is that Kerr rotation is directly proportional to VA−B. There

are many overall scaling factors that occur along the series of steps required to relate

the voltage measurement obtained from the final lock-in amplifier back to VA−B and

then back further still to the actual spin polarization in our sample along the optical

axis. As long as we are not changing lock-in parameters, laser powers, spot sizes,

etc, over the course of an experiment, we can simply represent Kerr rotation in

terms of some arbitrary unit (or “AU”) and perform all analyses in the context of

an unknown but fixed overall scaling constant. In most actual experiments, we can

get virtually all the information we wish to know about the electron spin system

this way, and with the sole exception of Figure 4.5 (c, d) we will always describe

Kerr rotation in terms of arbitrary units.

32



3.3.4 Lock-in amplification of the Kerr rotation signal

The last topic we need to cover is lock-in amplification, and why we do not

measure VA−B directly. We noted earlier that we expect Kerr rotation to vary

sinusoidally at 50 kHz, in sync with the equivalent modulation of pump laser helicity

by the PEM. The idea behind lock-in amplification is that we can actually use this as

a necessary condition for our data, providing a method to filter out certain sources

of noise. In fact, the PEM driver provides a reference signal, and we send both

VA−B and this reference signal into a Signal Recovery 7265 DSP Lock-in Amplifier,

which performs an operation akin to multiplying the two and integrating over an

adjustable number of modulation periods 1/(50 kHz) = 20 µs. The result is a signal

that changes on this integration timescale and roughly represents the amplitude of

the component of VA−B that varies in sync with the reference signal. The longer

the integration time, the more precise the filtering - we choose 160 µs.

The output from the first lock-in amplifier is fed into another lock-in amplifier.

This time, the reference is a square wave corresponding to the on-off-on-off chopping

of the probe beam at 1.37 kHz. It is crucial that this modulation rate be distinct

enough from the first that we can integrate over several time periods of the first

modulation cycle and still maintain a time resolution that is fine-grained compared

to the time period of the second modulation cycle. In this case, we choose an

integration time constant of 200 ms. By integrating over so many modulation

periods for both the pump and probe laser, we are able to measure even extremely

small degrees of Kerr rotation with a robust signal-to-noise ratio.
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3.4 Time Resolved Kerr Rotation (TRKR)

Having gone through the experimental apparatus in detail, we now summarize

what actually happens when every part is turned on and active. Every 13.16 ns,

a circularly polarized pump pulse hits the sample, exciting an electron spin polar-

ization on the surface of our n-GaAs sample. Based on the current position of the

mirror stage on the delay line, the linearly-polarized probe pulse will hit the sample

at some point in the following 13.16 ns window, striking the same spot as the pump

laser unless otherwise desired. We hereafter refer to the choice of mirror position

instead as a choice of tdelay, or “pump-probe delay,” referring to the time elapsed

between pump and probe illumination on the sample.

The axis of polarization of the reflected probe beam is now rotated by a Kerr

angle θKerr proportional to the direction and magnitude of the electron spin po-

larization at the illuminated location. The measurement apparatus collects this

reflected beam and, using lock-in amplification techniques, obtains a signal propor-

tional to θKerr. If we define the moment when the pump laser hits the sample as

t = 0, then our measured Kerr rotation represents the degree of spin polarization

along the optical axis at a time t = tdelay. If we change the pump-probe delay, then

after a few lock-in time constants our measured signal will now be proportional to

the degree of spin polarization along the optical axis at the new tdelay.

By slowly sweeping tdelay, we can resolve how the degree of spin polarization along

the optical axis (proportional to θKerr) changes over the course of the 13.16 ns pe-

riod between pump pulses. This measurement technique, called “time-resolved Kerr

rotation” (TRKR) in keeping with its older Faraday rotation equivalent TRFR [35],

has become a popular tool for observing electron spin dynamics, especially since it
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works even after optical recombination unlike photoluminescence-based techniques

[18]. Figure 3.3 shows an example of a TRKR curve obtained from our sample.

Figure 3.3: Time-resolved Kerr rotation
Example of a time-resolved Kerr rotation (TRKR) measurement conducted on the GaAs sample at T =
10 K, Bext = 200 mT, and laser wavelength 818.7 nm.

Negative pump-probe delay times are relative to 13.16 ns; e.g. a pump-probe delay

of -160 ps is equivalent to one of 13.0 ns. To understand these curves, we bring in

several aspects of electron spin dynamics discussed in Chapter 2. The magnitude

of electron spin polarization sr exponentially decays with time constant T ∗2 . Fur-

thermore, if the electromagnet is turned on, Larmor precession causes the electron

spins to precess around the magnetic field axis at frequency ωL = gµBBtot/~. If we

define the optical axis as ẑ and the magnetic field axis as x̂, we find that electron

spins precess in the yz-plane. Kerr rotation is proportional to the spin polarization

component along the optical axis sz only, so taking the z-component of the spin

polarization as it precesses and decays leaves us with a TRKR curve in the shape

of a decaying cosine:

(3.8) θKerr(tdelay) ∝ sz(tdelay) = s0 cos(ωLtdelay) exp(−tdelay/T ∗2 )

If the spin lifetime is less than the range of pump-probe delays measured, one
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can generally fit this decaying cosine to extract the spin lifetime. Similarly, if

the precession period is sufficiently small, one can extract the Larmor precession

frequency and thus, assuming the magnetic field is known, the effective g-factor of

the spin-polarized electrons.

At the range of wavelengths used in this paper, however, we find that TRKR

often does not quite fit the usual shape of a decaying cosine, as a careful exami-

nation of Figure 3.3 reveals. This discrepancy arises due to an unusual and often

inconsistent extra signal that appears in the first ∼3 ns. This extra signal itself

appears to be a very rapidly decaying cosine of equal precession frequency that can

vary wildly in size and may be positive or negative in sign. In Figure 3.3, it causes

the spin lifetime to look artificially low at first glance, though looking at the Kerr

amplitude at either end of the displayed range makes it clear that the spin lifetime

is actually much larger than 13.16 ns. In fact, the field scan technique in the next

section confirms the spin lifetime is around 25 ns.

The presence of this anomalous extra signal at the desired range of wavelengths

makes analysis of TRKR difficult. However, since the spin lifetime is long enough

that its measurement is not feasible using TRKR anyway, we have little reason

to use the small pump-probe delays that show the anomalous signal. Instead, we

typically perform TRKR at the end of the delay range (>10 ns), which is sufficient

to extract the Larmor precession frequency.

As a final note, we must point out that in our experiments we assume that the

choice of pump-probe delay does not significantly affect the electron spin system.

We use ND filters to select the power of the pump and probe beams independently,

and we aim for 100 µW probe power, significantly less than the usual pump power

of about 600 µW, so as minimally disturb the electron spin system by photoexciting
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fewer carriers. Recombination of photoexcited carriers occurs in about 80 ps at the

typical sample temperature of 10 K and pulls from each spin species in proportion to

their abundance [18]. The former fact means the change in carrier density caused

by the probe laser dissipates almost instantly on the timescale of the observed

electron spin dynamics, and the latter fact means that this recombination does not

significantly change the degree of electron spin polarization present, as discussed in

Chapter 2.

Because the probe beam is linearly polarized, selection rules do not favor the

photoexcitation of one spin species versus the other. Instead, any imbalance arises

purely due to difference in each species’ absorption edge as laid out in Chapter 2.

This admittedly might slightly decrease the amount of spin polarization present by

selectively exciting carriers to the minority species, but the absorption edges shown

in Figure 2.2 do not separate enough relative to their width for us to expect this

imbalance to have a significant effect. Still, even adding a flat number of carriers

to each spin species waters down the existing spin polarization. Worse, because the

magnitude of spin polarization itself depends on the pump-probe delay, this effect

might vary in strength with pump-probe delay. In this case, we would expect to

see a difference in the observed TRKR signal with changes in probe laser power.

Thankfully, this does not occur at the relative pump and probe laser powers listed

above, so we feel confident that, at least in the data we present, the choice of

pump-probe delay does not significantly affect the electron spin system.

3.5 Resonant Spin Amplification (RSA) and external field sweeps

When the electron spin lifetime is much less than the 13.16 ns repetition pe-

riod between pump pulses, little spin polarization remains when the next pump
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pulse hits the sample. The decaying-cosine spin dynamics outlined in the previous

section are all that is needed to model the system, since each each pulse is unaf-

fected by previous pulses. This assumption breaks down when the electron spin

lifetime is comparable to the repetition period or longer. In this regime, we must

consider whether the polarized spins remaining from previous pump pulses inter-

fere constructively or destructively with those from the latest pulse. If the Larmor

precession frequency causes spins to oscillate an integer number of times in the

repetition period, the spins excited from each pulse will line up with the spins from

all previous pulses, creating a resonance condition. Accordingly, the phenomenon

has been dubbed “resonant spin amplification” (RSA) [36].

Figure 3.4: Demonstration of resonant spin amplification in a swept external magnetic field
Example of a field sweep measurement on the GaAs sample demonstrating resonant spin amplification
(RSA) peaks. Data taken at a fixed pump-probe time delay of -160 ps (corresponding to 13 ns after the
previous pump pulse), T = 10 K, and laser wavelength 819.0 nm.

The presence of this effect enables a new measurement technique called a field

sweep or RSA sweep. We fix the pump-probe delay to a small negative value

and vary the external field, measuring Kerr rotation as the system cycles between

resonant and off-resonant behavior. The results of one such experiment can be found

in Figure 3.4. We see that resonant peaks are evenly spaced, each corresponding to

when Θ(Bext), the precession phase accumulated over the time between pulses, is a
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multiple of 2π:

(3.9) Θ(Bext) = ωLTrep = (gµBBext/~) Trep

where ωL = gµBBtot/~ is the Larmor precession frequency and Trep is the pulse

repetition period 13.16 ns [37]. Measuring the spacing between these RSA peaks

thus allows us to extract the g-factor. We can also extract the spin lifetime from the

width of each peak. Intuitively, this is because a longer spin lifetime results in more

pulses interfering. Since each pulse has precessed for a different length of time, they

tend to point in different directions and cause more destructive interference unless

the precession rate is exactly what is required to make them line up perfectly.

Following reference [37], we mathematically express this intuition of “how many

pulses remain to interfere” through the ratio between the laser repetition period

and spin lifetime x:

(3.10) x = Trep/T
∗
2

Instead of working through the summation of an infinite series of pump pulses here,

we skip to the analytic solution from Ref. [37]. It turns out that we can describe

the impact of all previous pulses simply by adding an overall scaling factor r and

a phase shift φ to our one-pulse decaying cosine. Furthermore, r and φ themselves

can be derived entirely from the total precession phase Θ(Bext) and the sensitivity

to resonance x we just defined:

(3.11) r(Bext) = [1− 2e−x cos(Θ(Bext)) + e−2x]−1/2

(3.12) φ(Bext) = arctan

(
e−x sin(Θ(Bext))

1− e−x cos(Θ(Bext))

)

39



We now update Eqn 3.8 to take into account the impact of previous pump pulses:

(3.13)

θKerr(Bext, tdelay) ∝ sz(Bext, tdelay) = r(Bext) s0 cos(ωL tdelay + φ(Bext))e
−tdelay/T ∗

2

This formula can be used to fit the results of both TRKR and field sweeps.

3.6 Magnetic hysteresis and gaussmeter verification

Knowledge of the external magnetic field plays a crucial role in the data analysis

in this work. When using our electromagnet, we set an electric current correspond-

ing to the desired external field (“set field”) at the sample location. Because our

electromagnet contains a ferromagnetic core, however, magnetic hysteresis intro-

duces a discrepancy between the set field and actual magnetic field at the sample

location. To account for this, we always perform an electromagnet setup proce-

dure immediately before any experiment. We first note the direction of the desired

external field at the start of the experiment, which is always nonzero. We then

quickly change the applied current, sweeping the magnetic field from a strength of

300 mT opposite this direction to 300 mT along this direction, stopping briefly at

zero applied current in the middle. Then, we lower the current to the desired value

for the first experimental data point.

This ritual serves two main purposes. First, the magnetic core is completely

repolarized, which is important because its previous polarization represents a mem-

ory of recent field history that needs to be erased to ensure the consistency and

independence of each experiment. Second, the magnetic field in the sample loca-

tion is swept past zero. This resets the sample’s nuclear polarization for the reasons

outlined in Chapter 2.

Of course, this process does not eliminate magnetic hysteresis; it simply ensures
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consistency between experiments. To know the precise magnetic field actually pro-

duced, we must measure it directly with a gaussmeter. For this purpose, we remove

the cryostat that contains the sample and carefully place a gaussmeter in the va-

cated sample location. The majority of experiments we perform consist of setting

the external field, waiting briefly, setting a slightly different field, waiting briefly,

and so forth in this manner hundreds of times. If this progression of set fields

monotonically decreased in magnitude, optionally crossing zero field to increase

monotonically the other direction, it would be plausible to expect that the actual

measured field would simply proceed along the same magnet hysteresis curve re-

gardless of the specifics of the set fields1. This would allow the creation of a simple

1:1 list of set fields to measured fields.

Unfortunately, actual progressions of set field values vary greatly between ex-

periments, and no simple hysteresis curve can be produced that can map each set

field to a corresponding measured field. Instead, we must run each series of set field

values used in an experiment a second time, but with the gaussmeter in place to

measure the actual magnetic field at any given time in the experiment. In general,

every experiment where the external field is swept requires a corresponding gauss-

meter test to measure the actual magnetic fields. However, experiments generally

change the set field in 0.25 mT increments, and gaussmeter tests show that the

electromagnet can change and stabilize the produced field in under 100 ms. As a

result, as a practical matter the mapping of set fields to produced fields depends

only on the specific list of field steps, not the timing between them. Fortunately,

many experiments use the same set and order of external field steps but differ in

1Plausible, but incorrect. In one test, the set fields decreased at a set rate from some initial value to zero. When
zero set field was reached, the measured field was 0.11 mT / 0.57 mT / 1.02 mT for a corresponding initial set field
of 40 mT / 80 mT/ 160 mT.
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other experimental parameters (including timing), greatly diminishing the number

of these gaussmeter tests required.

As a final note, we acknowledge that we may only know the external magnetic

field times a scaling factor not quite equal to one. For example, the gaussmeter

angle may be not quite optimal, and perhaps the cryostat slightly shields the exter-

nal magnetic field. However, the external field enters into our calculations almost

entirely in the context of the Larmor precession frequency ωL = gµBBtot/~. As

a result, any uncertainty about this scaling factor is effectively absorbed into the

uncertainty about the g-factor experienced by electron spins, an issue discussed

further in the next chapter.
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CHAPTER IV

Interplay of Dynamic Nuclear Polarization and Resonant
Spin Amplification in Bulk n-doped GaAs

4.1 Introduction

The remaining chapters of this work focus on our attempt to understand the

unexpected behavior we observe in our 3 · 1016/cm3 n-doped bulk GaAs sample

at low temperatures and within a small band of wavelengths. The phenomenon

first manifested as inconsistencies between TRKR scans taken in sequence. When

we instead held the pump-probe delay constant and swept the external field, we

should have seen a series of evenly spaced, symmetrical RSA peaks as in Figure

3.4, but instead we got results like those in Figure 4.1. We saw peaks, but the

shapes were asymmetric and dependent on the direction we swept the external field.

Measurements of the external magnetic field via gaussmeter conclusively ruled out

electromagnet hysteresis, drift or settling as a cause. As demonstrated in Figure

4.1, we found that the phenomenon strongly depended on the laser wavelength,

explaining why earlier experiments lacked these features.

Perhaps the most important single result, however, was a discontinuity in the

pattern of shifts and warping of the RSA peaks when the external field swept

past zero and changed polarity. This provided the strongest piece of evidence yet

that these effects are caused by dynamic nuclear polarization (DNP). This chapter
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details the further experiments that together suggest how DNP evolves over time

in response to the electron spin polarization.

Many figures in this chapter are the same as or similar to those used in Ref. [17],

the article we produced for Physical Review B to present the findings discussed in

Chapters 4, 5, and 6.

Figure 4.1: Hysteresis in external field sweeps due to dynamic nuclear polarization
Kerr rotation measured as a function of external magnetic field for a fixed pump-probe delay of 13 ns, T
= 10 K, and various laser wavelengths. Figure 3.4 shows the same data as the first sweep here. All plots
are scaled to the same height for easy comparison of the location and shape of peaks.

4.2 Detecting DNP with RSA

After discovering the DNP phenomenon detailed in the introduction of this chap-

ter, we encountered difficulties with our staple measurement technique, TRKR. We

tried to measure changes in precession frequency using TRKR scans, but found the

results inconsistent. After all, later experiments made it clear that the nuclear polar-

ization builds up over the course of tens to hundreds of seconds, the same timescale
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Figure 4.2: Comparison of DNP-induced peak warping in external field up- and down- sweeps
Kerr rotation measured as a function of external magnetic field for a fixed pump-probe delay of 13 ns,
T = 10 K, and laser wavelength 819.6 nm. The field is swept from (a) -80 mT to +80 mT and (b) +80
mT to -80 mT, but for clarity only part of this interval is shown. The peaks are labeled with respect to
the peak at zero applied field. By plotting the two peaks encountered before Bext = 0 and four peaks
encountered after for both a (a) upsweep and (b) downsweep, we observe that the field sweep direction,
and not sign, determines the shapes of the peaks. Note that the field axis in (b) is reversed. The dotted
vertical lines indicate the expected positions of the RSA peaks in the absence of DNP.

as a TRKR experiment. This means the electron spin system changes enough over

the course of a delay scan that the resulting product does not represent a snapshot

of an electron spin system, but rather some amalgam of slightly different electron

spin systems. This obstacle is particularly unfortunate since time-resolved mea-

surements would, if performed successfully, allow us to measure the subtle change

in electron precession frequency induced by DNP, a fact which will be revisited at

length in the next chapter.

Due in part to these troubles, we switched to observing DNP via field scans.

Unless otherwise noted, we set the pump-probe delay to 13 ns, just shy of the laser

repetition period of 13.16 ns. The resulting curve follows the phase and amplitude

of the precessing electron spins as the Larmor precession frequency changes and

the system moves in and out of resonance. A note on the choice of pump-probe
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delay: the precession phase at which the next laser pulse hits directly determines

the resulting degree of RSA, so knowing the Kerr rotation at a delay time 160 ps

before the impact of the next pump pulse may provide a marginal advantage over

other delay times, especially if we decide we want to follow up with another field

scan at ∼12.9 ns in order to measure the slope of Kerr rotation vs pump-probe

delay.

Figure 4.1 shows RSA sweeps at several wavelengths in the range of 819 nm

to 820 nm. In these sweeps, the external field “crosses zero”, that is, decreases

in magnitude to zero and then begins growing but in the opposite polarity. Kerr

rotation reverses sign at ∼819.4 nm, corresponding to the change in sign of the

circular birefringence when crossing the absorption edge in Figure 2.2. As this

wavelength is approached from below, RSA peaks to the left and right of the center

peak (0 mT) begin to shift towards and away from the center peak, respectively. The

displacement of these peaks saturates at about 819.4 nm and is roughly constant in

magnitude at higher wavelengths, though the magnitude of Kerr rotation sharply

decreases and is difficult to measure past 820 nm, obscuring whether this trend

continues. Both Kerr rotation and the asymmetry in peak locations are maximized

at about 819.5 nm, so this wavelength is used for most of our experiments.

Note that the asymmetry between peaks to the left and right of the center peak

does not directly depend on which direction the field is swept, as shown in Figure

4.2. Rather, when the magnitude of the external magnetic field increases, peaks

shift to larger external magnetic fields, and vice versa. Crucially, the central peak

is not displaced at all. The next section will now demonstrate why this constitutes

strong evidence for the hypothesis that the cause of the peak shifts is a sweep-

direction-dependent buildup of DNP.
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4.3 Modeling the Overhauser field

To see why these results suggest DNP, we shall examine the expected effects

of the Overhauser field, the magnetic field generated by polarized nuclei that is

experienced by electrons. We simply replace Bext in Eqn 3.9 - Eqn 3.12 from the

last chapter with the more inclusive Btot which is given by

(4.1) Btot = Bext +BN

where BN is the Overhauser field. As we will demonstrate later in this chapter,

this Overhauser field varies as a function of time on the scale of seconds to minutes

even if the external field is kept static, and it is strongly dependent on the history

of the system. As such, BN has no easy functional form; it cannot be calculated

as a simple function of Bext or any other physical attribute of the system. We will

examine a few candidate models in the next section, but for now we will simply

examine the consequence of its presence.

As described in Chapter 3, the degree of resonant spin amplification depends

directly on the Larmor precession frequency ωL = gµBBtot/~, and RSA peaks occur

when integer number of precessions occur during the pulse repetition period Trep.

Mathematically, this occurs when Θ, the precession phase at 13.16 ns, is is a multiple

of 2π. Substituting Eqn 4.1 into Eqn 3.9, we get that peaks occur at

(4.2) Bext = (2π~/gµBTrep)n−BN n = integer

When examining Kerr rotation as a function of external magnetic field (e.g. Figure

4.1 and Figure 4.2), BN directly shifts the location of all peaks: a positive BN moves

all peaks leftward, whereas a negative BN moves all peaks rightward, assuming Bext

increases left to right along the axis as is standard (Figure 4.2 (b) is a notable
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exception). Thus, the existence of a negative BN elegantly explains the peak shifts

for Figure 4.2 (a) and the higher wavelengths in Figure 4.1, and Figure 4.2 (b) is

explained by a positive BN . Furthermore, Eqn 4.2 shows that the peak shift gives a

direct measurement of BN at the new peak position, as long as we know the g-factor

well enough to calculate the original peak position.

The central peak does not shift in any of these cases, so this model indicates

that BN is zero at the central peak. In fact, this is exactly what we would predict

will happen in the vicinity of Bext = 0 since, as Chapter 2 describes, the dipole-

dipole interaction wipes out dynamic nuclear polarization at very low magnetic

fields. Furthermore, as the external field magnitude approaches about ∼5-7 mT,

the nuclear polarization is wiped out by the optical NMR effect also described in

Chapter 2. For BN = 0, Eqn. 5.2 places this range of fields right at the midpoint

between RSA peaks - in other words, a RSA trough. Thus, if a large enough BN

shifts a RSA peak into this range of fields, we should see the peak abruptly cut off.

In fact, we see this exact phenomenon, as is most clearly shown in peak +1 of the

downsweep in Figure 4.3 below.

It is important to note at this point that we do not precisely know the g-factor

experienced by the electron spins in our system. In the absence of DNP, Eqn 4.2

allows us to derive the g-factor from the spacing of RSA peaks. Alternatively, we

can fit TRKR to directly obtain the precession frequency of the electron spin system

and extract the g-factor from that. When DNP is present, though, both of these

techniques become somewhat unreliable due to how the system changes over the

course of the measurement. Furthermore, various experimental parameters, partic-

ularly laser wavelength, correlate to small (less than 1%) changes in the apparent

g-factor. The resulting uncertainty is particularly unfortunate because this param-
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eter plays an important role in our analysis. In this chapter, it provides a scaling

factor to the “no-DNP” peak positions that are displayed in figures and used to

calculate peak shifts.

The techniques in the next chapter alleviate the problem of determining the g-

factor somewhat, and the g-factor suggested by those results has been backfitted

into the analysis performed in this chapter. In general, though, different choices of

g-factor within the range of our uncertainty have only one noticeable effect on our

analysis: for sweeps of decreasing external field magnitude, the choice determines

whether BN starts slightly negative, slightly positive, or at zero.

4.4 Phenomenological modeling of peak shifts and “peak warping”

The DNP hypothesis shows promise for explaining the shift in RSA peaks, but

the most interesting finding is not the observed shift itself, but rather the extreme

deformation of these peaks, a phenomenon we call “peak warping”. This behavior

can also be explained by the inclusion of BN in Eqn 4.1, but now the specific

dynamics of BN over the course of the external field sweep play a crucial role in the

process.

It should be noted that RSA peaks are expected to change in shape as the

magnitude of the external magnetic field increases for large pump-probe delay times,

eventually dominating the shape as is apparent in Figure 4.3 (a). This produces a

small shift in observed peak location of about 0.05 mT per peak over the range of

external fields used in these experiments. However, this effect is sweep-direction-

independent and the peak shifts it causes are more than an order of magnitude

smaller than those observed due to DNP. The peak warping we describe below is

not intended to explain this effect, but rather the DNP-induced change in shape
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clearly demonstrated at long wavelengths in Figure 4.1.

To understand why DNP-induced peak warping occurs, it is useful to propose

two potential models for how nuclear polarization, and thus BN , develops over time.

Both models are purely phenomenological and agnostic to the actual mechanism for

nuclear polarization. The sign of BN is determined entirely by the sweep direction:

BN points in the same direction as Bext when Bext is decreasing, and points opposite

when Bext is increasing, always resisting the change in total field in a similar manner

as Lenz’s law. This is required to achieve the observed behavior, in which RSA peaks

are always shifted so as to occur later in a field sweep than they would have in the

absence of DNP.

4.4.1 The slow-rise DNP model

Figure 4.4 shows simulations of Kerr rotation and BN over a field sweep, calcu-

lated for both DNP models and for no DNP at all. The first model is called the

“slow-rise” model, and it posits that after a field-resetting event occurs (e.g. sweep-

ing past zero external field), DNP rises slowly over the dynamic nuclear polarization

timescale TN , asymptotically approaching a maximal value BN,max :

(4.3) |BN | = BN,max(1− exp(−telapsed/TN))

where telapsed is the amount of time elapsed since the last field reset. No details

about the external field or electron spin polarization affect the buildup of nuclear

polarization, aside from the sign change due to sweep direction and the destruction

of DNP near zero external field. The model successfully generates peak shifts pro-

portional to BN and looks not entirely dissimilar to the progression of peak shifts

observed in Figure 4.3 (d), but no peak warping whatsoever occurs.
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4.4.2 The “setpoint” DNP model

The second model is called the “setpoint” model, and it posits that at any given

moment in time the nuclear spin system wants to achieve a target or “setpoint”

polarization directly proportional to the magnitude of electron spin polarization.

That is,

(4.4) |Bsetpoint| ∝ |sr|

where sr is the magnitude of the electron spin polarization perpendicular to the

external field. Again, the sign of Bsetpoint is given by the external field sweep

direction. However, like with the slow-rise model, nuclear polarization can only

change at the dynamic nuclear polarization timescale TN . At any given point in

time, the rate of change of BN is given by

(4.5) dBN/dt = (Bsetpoint −BN)/TN

Since Bsetpoint rises and falls with the electron spin magnitude, BN rises and falls

over the course of a field sweep as the system sweeps past RSA peaks.

4.4.3 Model requirements and motivations

Note that for a static Bsetpoint and an initial BN of zero, Eqn 4.5 can be analyti-

cally solved to produce Eqn 4.3. In other words, the slow-rise model can simply be

considered a special case of the setpoint model with a constant setpoint. This is not

a coincidence. Mathematically, Eqn 4.5 conveniently produces the desired asymp-

totic approach to a maximum value with a specific time constant, and conceptually

it represents reaching an equilibrium between nuclear and electronic spin species.

Thus, one might consider the slow-rise model to describe a nuclear polarization re-

sponding to a target electron spin population that is constant in time, such as one
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parallel to the magnetic field and thus unaffected by resonant spin amplification.

In contrast, the setpoint model’s targeted electron spin polarization is continually

changing as the current electron spin polarization changes.

The reader might wonder why it is desirable to choose a model that places a

limit on nuclear polarization. With the slow-rise model this limit is explicitly set,

whereas in the setpoint model the limit scales with the maximum degree of spin

polarization. This choice is deliberate, as when the external field is swept over

many RSA peaks, the peak shift saturates after several peaks, as shown in Figure

4.3, implying a limit on the magnitude of DNP. This occurs regardless of whether

the external field magnitude is increasing (panel (b)) or decreasing (panel (c)).

This pattern appears to be independent of the field magnitude itself, as well. If

the external field is swept over a single peak repeatedly, resetting to its original

value each time the peak is resolved, the peak shifts grow and saturate just the

same. These findings also explain why both DNP models do not contain any direct

dependence on the scale of the external magnetic field.

4.4.4 Model effectiveness

Now that we have explained both phenomenological models of DNP and their

motivations, we can discuss the implications of Figures 4.2 and 4.3. We must note

up front that neither model explains the slow degradation of RSA peak magnitude

over the course of many RSA peaks shown clearly in Figure 4.3 (b, c). The cause

of this effect falls outside the scope of any models we have considered at this time.

Instead, as described earlier in this section, we explain the effects of DNP purely

through the way in which a changing BN affects the shape of Θ(Bext +BN) as Bext

changes throughout the experiment.
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Figure 4.3: Progression of peak warping in extended external field up- and down- sweeps
(a) Kerr rotation measured as a function of external magnetic field for a fixed pump-probe delay of 13 ns,
T = 10 K, and laser wavelength 819.5 nm. The field is swept from -160 to +160 mT for the upsweep and
from +160 to -160 mT for the downsweep, but only the field range 0 to +160 mT is shown. The peaks are
numbered with respect to the peak at zero applied field. The dotted vertical lines indicate the expected
positions of the RSA peaks in the absence of DNP. (b), (c) Peaks +1 through +12 plotted together as a
function of external magnetic field modulo the expected peak spacing of 12.2 mT for field (b) upsweep and
(c) downsweep. The dotted vertical lines indicate the expected position of the RSA peaks in the absence
of DNP. As both field sweeps progress, each successive RSA peak becomes more warped and shifts farther
away from the expected position (d) Corrected RSA peak shift as a function of peak index for 630 µW
incident pump power. These shifts serve as a measurement of the Overhauser field at each peak location
and demonstrate a symmetry between increasing and decreasing external magnetic field.

The slow-rise model produces a BN that across most peaks changes much slower

than the 0.23 mT/s rate at which the external field Bext is swept in these experi-

ments. As a result, the slow-rise model can capture long-timescale saturating peak

shifts like those in Figure 4.3 (d) but it cannot reproduce the obvious peak-warping

that occurs over small ranges of external magnetic field. In order for this to occur

purely through the mediation of Θ(Bext +BN), BN must vary at a comparable rate

to Bext so that Θ is no longer a linear function of Bext - that is, dBN/dt must be

comparable to dBext/dt.

This is impossible in the slow-rise model because the buildup is monotonic
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Figure 4.4: Simulated models of dynamic nuclear polarization
Simulations of Kerr rotation and the Overhauser field BN as they develop during a field sweep from -60
mT to 60 mT. Each row represents a different model of dynamic nuclear polarization as labelled, except
for the first row which assumes no DNP. Refer to the text for detailed descriptions of these models.

and approaches a low fixed maximum. Because dBN/dt decreases exponentially,

a dBN/dt large enough to provide significant peak warping on the first peak would

fail to produce warping on the second peak, let alone all peaks. This can be fixed by

removing the asymptotic limit and using something like a linear model, but, given

the monotonic buildup, the result would be a large increase in spacing between

peaks that we do not observe. In order to bypass this, it is clear BN must rise

and fall over the course of each RSA peak, and it is only the values of BN at each

RSA peak that trend upward in the manner shown in Figure 4.3 (d). This is the

reason why the setpoint model, where BN rises and falls in sync with each RSA

peak, manages to qualitatively reproduce peak warping behavior.

4.4.5 Peak warping, as explained by the setpoint model

In the previous section, we showed how peak warping can only occur when BN

both rises and falls between RSA peaks. Previously to that, we described how the

setpoint model predicts BN will rise and fall over the course of each RSA peak
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because the magnitude of electron spin polarization also rises and falls. However,

the key feature of the setpoint model is the dynamic mutual interaction between

the electron and nuclear spin polarizations that causes each to continually change

in response to the other, even when the external magnetic field is held constant.

Furthermore, it is this interdependence that elegantly explains how and why the

peak warping phenomenon occurs. To this end, we will now describe what hap-

pens to both BN and the electron spin polarization each time the external field is

adjusted, as predicted by our setpoint model. We divide the RSA cycle into three

sections with qualitatively different behavior - the rising edge, the falling edge, and

the trough - and explain each individually.

The “rising edge” portion of the RSA cycle refers to when Btot is currently

approaching a RSA peak and Kerr rotation is rising accordingly. Each time the

field increments, the peak grows closer, and the electron spin system immediately

increases in magnitude because each pulse now adds slightly more constructively

than before. This causes a corresponding rise in |Bsetpoint|. Since |dBN/dt| is pro-

portional to (Bsetpoint − BN), BN instantly begins growing with time constant TN

in order to approach the new Bsetpoint.

That was the effect of the change in electron spin polarization on the nuclear

spin polarization, but we must now consider the instant and simultaneous counter-

reaction. Because BN always orients so as to oppose the change in Bext during

the field sweep, the growth of BN causes Btot to change in opposition to the last

field step. The way this plays out is as follows. First, the field step instantaneously

increments Bext and thus Btot, and the electron spin system jumps closer to the RSA

peak. Second, during the subsequent interval between field steps, BN grows and

this causes Btot to regress with time constant TN backwards towards its previous
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value, moving the system back away from the RSA peak.

Now for the counter-counter-reaction. The growth of BN causes the system to

regress away from the RSA peak, and we expect Bsetpoint to fall accordingly. Since

the electron spin polarization responds to changes in BN on a timescale of tens

of nanoseconds, many orders of magnitude shorter than TN , Bsetpoint effectively

changes instantaneously in response to BN . In the current case of a DNP rising

edge, Bsetpoint falls as BN rises, so BN and Bsetpoint continually approach each other.

In fact, for a small field step size ∆Bext we can safely take a linear approximation of

the slope of RSA amplitude vs Btot. Because the setpoint model assumes Bsetpoint

is directly proportional to the RSA amplitude, this lets us define the change in

Bsetpoint in response to any given change in BN as

(4.6) ∆Bsetpoint = −c∆BN

Or, in differential terms,

(4.7) d(Bsetpoint −BN)/dt = −(1 + c) dBN/dt

for some positive constant c related to the slope of the RSA amplitude curve. Every

incremental change in BN and Bsetpoint then causes |dBN/dt| to update correspond-

ing to their new difference, causing another incremental change in both values, and

so forth. To calculate how this system evolves relative to an initial time t = 0, we

first adapt Eqn 4.5 to solve for the convergence of Bsetpoint and BN :

(4.8) d(Bsetpoint −BN)/dt = −(1 + c) (Bsetpoint −BN)/TN

(4.9) (Bsetpoint −BN)(t) = (Bsetpoint −BN)(0) exp(−(1 + c) t / TN)

Note that because Bsetpoint also changes so as to aid convergence, the time constant

of this decay is decreased by a factor (1 + c). Finally, we plug Eqn 4.9 into Eqn
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4.5 and integrate to obtain the equation governing the time evolution of BN when

the external field is stopped on the rising edge of a RSA peak:

(4.10) BN(t) = BN(0) +
Bsetpoint(0)−BN(0)

(1 + c)
(1− exp(−(1 + c) t / TN))

Note that the final field which BN settles into is in between the initial (t = 0) values

of BN and Bsetpoint :

(4.11) BN(t→∞) =
Bsetpoint(0) + c BN(0)

(1 + c)

Now, the above analysis should not be misunderstood; the setpoint model falls far

short of successfully describing real data at anywhere near the level of specificity

implied above. That said, the qualitative features of the model are still extremely

useful for predicting and explaining experimental results. The takeaway from this

analysis is that given the basic features of the setpoint model, we should expect

RSA peaks to warp away from their initial position simply because BN rises in

opposition to changes in Bext in such a way that ascending the rising edge of a

RSA peak in Btot may take a very large change in Bext. It also makes predictions

about how this process changes based on the amount of time elapsed between field

steps which will be confirmed later in this chapter. In the next chapter we present

a technique that allows us to verify that, given enough time, BN indeed evolves in

a manner similar to that predicted in Eqn. 4.10.

This analysis may be extended to the ”falling edge” of a RSA peak simply by

reversing the sign in Eqn 4.6 to reflect the fact that now Bsetpoint increases when

BN rises, meaning that instead of BN and Bsetpoint quickly converging to a point

in between their initial values, we expect Bsetpoint to move away from BN . This

means |dBN/dt| ∝ (Bsetpoint−BN) is no longer guaranteed to decrease quickly, and

as a result BN may change significantly before settling, enough to make the linear
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approximation of RSA amplitude vs Btot a suspect proposition. This apparent

limitation is actually our first key insight into the difference between rising edge vs

falling edge behavior. Rising edge DNP self-regulates with a negative feedback loop

- when BN changes, Bsetpoint moves to discourage further change, and the system is

stable. As we will now show, falling edge DNP shares none of these traits.

When the external field crosses a RSA peak, we know from the rising edge

behavior discussed above that by the time the system reaches the peak, BN will have

built up to a significant level. This is what causes the peak shifts discussed earlier

in this chapter. What has not been mentioned until this point is the instability of

this situation. When the system is on the rising edge near the peak, if BN were to

suddenly drop slightly, the result would be that Btot would immediately skip right

past the peak. This would cause a large drop in electron spin magnitude, thus a

further loss in BN , pushing the system further away from the RSA peak, and so

forth in a positive feedback loop. While Btot changes only slightly over the course

of sweeping up a RSA rising edge despite a large change in Bext, once this falling

edge positive feedback loop is triggered BN will plummet and Btot will snap back

to the vicinity of Bext, at least if enough time elapses between field steps.

Finally, the “trough” portion of the RSA cycle refers to when Btot = Bext +BN

is not in the vicinity of a RSA peak. Because the spins from different laser pulses

interfere destructively, the electron spin polarization is relatively low, and may show

up in Kerr rotation as regions of minimal Kerr signal. Since the spin lifetime of

our electron spin system is longer than the time between laser pulses, the shape of

RSA amplitude vs Btot in this region is wide and flat, meaning that changes in BN

have little effect on electron spin polarization and thus Bsetpoint. When the electron

spin system is in this region, BN simply approaches with timescale TN the roughly
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constant low Bsetpoint corresponding to the trough spin polarization:

(4.12) BN(t) = BN(0) + (Bsetpoint −BN(0)) (1− exp(−t/TN))

As we can see, the setpoint model gives specific qualitative predictions for how

DNP should change with time based on whether the system currently is on a rising

edge, falling edge, or trough of a RSA peak. These predictions are in fact extremely

successful, and we will test them in detail in the next chapter. Furthermore, this

model provides insight into the interdependence between the electron and nuclear

spin systems in the presence of RSA. We now see that our intuitive model of dynamic

nuclear polarization should not be that BN continually approaches a fixed Bsetpoint

which is set by the degree of RSA at the current external field. Instead, we should

picture that at each field step in the experiment Bsetpoint instantaneously changes,

and that this instigates BN and Bsetpoint continually changing in response to each

other as BN tries to approach Bsetpoint and Bsetpoint moves according to the system’s

current location on the RSA cycle.

4.4.6 Conclusions

While a useful toy model, the setpoint model does not describe the data well

enough to actually be used as a fitting function. For example, no choice of TN in

Eqn 4.5 produces the slow buildup of peak shifts seen in Figure 4.3 and but also the

quickly-changing BN needed to produce an adequate degree of peak warping. Of

course, one can modify the model to add more variance, for example by introducing

multiple time constants or even expanding dBN/dt as a power series with indepen-

dent coefficients. We declined to pursue this possibility in favor of attempting direct

experimental measurement of BN .

We must also note that one aspect of the data we do not attempt to model is that
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successive peaks during a field sweep show a steady decline in RSA peak amplitude.

This is most clearly demonstrated in Figure 4.3 (b, c), but the effect is visible in all

data. Figure 4.5, which is covered in the next section, demonstrates that this effect

intensifies under the same conditions that exaggerate peak warping. As such, we

think it is likely that this drop in amplitude is proportional in some degree to the

degree of nuclear polarization, but our models do not attempt to cover this.

Despite these drawbacks, the core principle of the model - that the nuclear po-

larization magnitude follows the electron spin polarization magnitude constrained

by the time constant TN , producing peak warping - provides an intuitive and ex-

tremely useful heuristic that provides successful qualitative predictions not only for

the preceding experiments that inspired it, but also for the subsequent experiments

discussed in the next chapter.

4.5 Effects of external field sweep rate and pump power on DNP

Earlier in this chapter, we showed how the electron-nuclear spin system settles

after each external field step in a sweep based on the timescale TN . While it is

difficult to pin down an exact TN for the buildup of DNP for the reasons described

in the last section, we expect BN to change on a timescale of at least tens of

seconds (which effectively describes peak warping in the setpoint model) up to over

a hundred seconds (the timescale of DNP peak shift saturation). Since the time

between field steps is much less than either of these timescales, it is likely that the

change in BN that occurs between field steps changes strongly with the choice of

time interval, and thus is likely to significantly affect the degree of peak warping

seen.

To examine this time dependence further, we will briefly revisit the case of DNP
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Figure 4.5: Effects on DNP of external field sweep rate and pump laser power
(a), (b) Peak +3 from Fig. 2 resolved at various sweep rates at 530 µW pump power, T = 10 K, and
laser wavelength 819.4 nm. Sweep rates are listed as multiples of the default sweep speed of 0.23 mT/s.
“1x” corresponds to the field step timing and spacing used elsewhere in this paper, and the rate was
adjusted by varying the duration of field steps. The exception was “2x”, which used the same timing as
“1x” but skipped every other field step. Both (a) upsweep and (b) downsweep are shown. (c), (d) The
same peak resolved at several pump powers. The Kerr rotation values are normalized by pump power for
comparison. As pump power increases, the peak deforms from the standard RSA shape.

on the rising edge of a RSA peak. In the time interval between each increment

∆Bext of the external field, we know from our earlier discussion that BN will rise in

magnitude by an amount |∆BN | that increases with the length of the time interval.

Of course, BN can only rise if the electron spin polarization rises, meaning |∆BN |

must be less than |∆Bext| so that we achieve a nonzero ∆Btot to move the system

towards the RSA peak:

(4.13) ∆Btot = ∆Bext + ∆BN

Since BN is guaranteed to be opposite in sign to ∆Bext, we can be sure that ∆Btot

shrinks as the time between field steps increases. Since the rising edge of the RSA
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peak spans a fixed field range in terms of Btot, this decrease in ∆Btot per field

step means it will take more field steps of Bext to cover this distance. In terms of a

measurement of Kerr rotation versus external field, this manifests as an exaggeration

of peak warping and peak shift. Since the shift of the RSA peak relative to the

no-DNP case Btot = Bext is a direct measurement of BN (see Eqn 4.2), this increase

in peak shift also designates a proportionally greater BN at the new peak location.

Thus, we conclude that as the time between field steps is increased, both the degree

of peak warping and the magnitude of BN at the peak location will increase as well.

Figure 4.5 (a, b) show how a single RSA peak resolves for different amounts

of time elapsed between fixed 0.25 mT field steps, and the results fall exactly in

line with the predictions above. Note that the first curve labeled in the legend

uses the same time interval between field steps as the second, but alone among

the curves it uses 0.5 mT field steps. However, the result still appears to roughly

follow the same progression as the rest of the curves, raising the possibility that the

sweep rate itself is the key variable, not time between field steps. Indeed, informal

testing of field and time intervals between steps provided tentative agreement with

this new hypothesis. This conflicts somewhat with the setpoint model, as the time

interval and field interval of each step affect BN differently. For example, the

impact on ∆Btot of increasing the field step size ∆Bext would be compensated in

part by a corresponding increase in |dBN/dt| and thus ∆BN . In any case, as of

this writing, the exact dependence of DNP on sweep rate and field/time step sizes

remains ambiguous. The standard experimental parameters of 0.25 mT and 1.1 s for

field and time intervals were chosen to provide sufficient resolution in external field

and to strike a balance between a sufficiently long lock-in amplifier time constant

and a reasonably short experiment duration.
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The setpoint model assumes that the scale of BN rises proportionally with the

magnitude of electron spin polarization perpendicular to the external field. So far,

we have discussed how the latter changes during an experiment due to RSA, but

the scale of electron spin polarization is set by the intensity of the pump laser. As

such, we expect BN to scale with the pump laser magnitude as well, producing a

corresponding degree of peak warping. Figure 4.5 (c, d) show the results of the same

experiment shown in Figure 4.5 (a, b), but with pump laser power varying instead

of field sweep rate. Since Kerr rotation also scales with the magnitude of electron

spin polarization, we divide it by the pump laser power on the dependent axis to

allow comparison between curves. In general, the same pattern holds for pump

power as for sweep speed - peak warping increases with laser power, presumably

due to the corresponding increase in BN .
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CHAPTER V

Further Experimental Methods for Measuring
Sweep-Direction Dependent Dynamic Nuclear Polarization

5.1 Introduction

The previous chapter introduced a dynamic nuclear polarization that arises in 3 ·

1016/cm3 n-doped bulk GaAs when excited by a pulsed laser in a narrow wavelength

range. This polarization manifests most clearly when examining the resonant peaks

that appear when measuring Kerr rotation during a sweep of the external field, as

this DNP dramatically deforms these peaks depending on the direction the field is

swept. We introduced two candidate models in which DNP aligns with or against

the external field so as to resist the change (similar to Lenz’s law). In the more

promising of these DNP models, the setpoint model, the magnitude of DNP changes

in proportion to the magnitude of the electron spin polarization perpendicular to

the external field, albeit limited by the nuclear polarization timescale TN. This

model explains much of the data, but only in a qualitative manner. Furthermore,

the only quantitative measurement of the Overhauser field BN resulting from DNP

occurs at each RSA peak, despite the fact the interesting changes in BN predicted

by the model mostly occur between peaks.

This chapter describes experimental techniques developed to move past the lim-

itations of the simple external field sweeps outlined in the last chapter. One tech-
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nique, which we refer to as snapshot TRKR, allows the direct measurement of

BN and we present the results of several such experiments. These results gener-

ally agree with the predictions of the setpoint model. A second set of experiments,

dubbed “steep sweeps”, examines how BN changes when the external field is paused

(“steeped”) midway through a sweep. Combined with the snapshot TRKR tech-

nique, this allows direct measurement of how BN builds up, and also generally

supports the setpoint model. However, this type of experiment produced an un-

expected side effect called a “steep echo” in which the system appears to recall

a previous “steep” periodically during the remainder of the sweep. This chapter

concludes with a discussion of this strange finding.

Many figures in this chapter are the same as or similar to those used in Ref. [17],

the article we produced for Physical Review B to present the findings discussed in

Chapters 4, 5, and 6.

5.2 Impacts of DNP on standard measurement techniques

The long nuclear polarization timescale TN observed in the last chapter intro-

duces difficulties for many experimental techniques, as it violates certain assump-

tions these techniques rely upon. To speak in extremely general terms, experiments

often follow a basic pattern when investigating a condensed matter system like

GaAs. Over the course of the experiment, the experimenter steadily changes one or

more external parameters affecting the target system (or, alternatively, the measure-

ment apparatus). During these changes, the experimenter simultaneously records

various observable characteristics of the system. Together, these parameters (or

transformations thereof) become the independent and dependent variables of the

figures that convey the results of these experiments. Various factors may limit the
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speed at which this process occurs, such as the rate of motion for mechanical adjust-

ments, the degree and character of statistical noise, the time constant of a lock-in

amplifier, or the time required for the target system to settle after each experi-

mental adjustment. This rate, combined with the size of parameter space covered,

determines the amount of time an experiment takes to perform. Realistically, this

time is limited and often expensive.

To this point, we have described two main types of experiments that both fit this

pattern. The first and simplest consists of “field scans” or “RSA scans” in which

we sweep the external magnetic field applied to the GaAs sample over a range of

values and measure the change in polarization angle in the reflected probe beam.

The measurement apparatus is untouched, left at a fixed pump-probe delay. Absent

DNP, the electron spin system will have completely acclimatized to the change of

external field after at most a couple dozen pump pulses, so the system is settled

in under a microsecond. Experimental speed is thus mostly limited by the need to

wait several times the 200 ms time constant of the final lock-in amplifier each time

the magnetic field is adjusted, and including other delays the final time per step

is about 1.1 seconds. Given the narrow width of RSA peaks, sub-mT precision is

needed for adequate resolution, so our experiments usually use 0.25 mT per field

step. As a result, the size of the experimental parameter space is 4 times the total

field range in mT swept through during the experiment. For example, a range of 80

mT will cover 5 to 6 RSA peaks; this corresponds to 321 individual measurements

and takes about six minutes.

The second general experiment we have discussed is TRKR, in which a single

“delay scan” or “TRKR scan” consists of measuring Kerr rotation as the measuring

apparatus is adjusted. For the reasons outlined in Chapter 3, we do not expect
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probe laser pulses to significantly affect the electron spin system. Furthermore, the

mechanical adjustment of the optical path length of the pump laser should have

negligible impact on the electron spin system, if for no other reason than because

the latter may adjust to each miniscule fractional change in optical path length

over the course of millions of laser pulses. Regardless of whether DNP is present,

then, the target system is unaffected by the change in experimental parameters.

If the change in delay time between each step is small (around 200 ps or less),

the total time between measurements is dominated by the lock-in amplifier as with

field scans. If the external field is below 10 mT, larger delay steps may be sufficient

to resolve the decay and precession of the electron spin system, at which point

delay line travel speed begins to dominate the measurement time. At least a dozen

measurements are needed to resolve the precession frequency of the decaying cosine

that is characteristic of TRKR, and to capture the decay rate as well one often needs

several times this amount. Based on the specific requirements of the experiment, a

delay scan may take anywhere from 15 to 90 seconds.

The long nuclear polarization timescale TN provides different challenges to each

of these techniques. As discussed last chapter, the choice of time between external

field steps strongly affects the outcome of the experiment, and hundreds of field steps

may be required. This makes the choice of time between field steps simultaneously

philosophical and practical. The first question the experimenter must ask when

designing the experiment is “what am I trying to measure?” If the goal is to let

the system being measured settle completely between each experimental step, as is

often the case in condensed matter physics, the measurement becomes impractical,

requiring hours to days over which the experimental apparatus may be insufficiently

stable anyway. Outside this limiting case, the choice of time interval between field
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steps is to some degree arbitrary, as the question is now “how much settling time do

we provide between field steps,” and the experimenter might even wish to include

the time interval itself as a parameter of the experiment, as in Figure 4.5 (a, b).

However, since TN is at least an order of magnitude larger than the interval between

field steps absent DNP, the final choice is likely to be - and was for us - limited by

sheer pragmatic concerns.

The nuclear polarization timescale affects delay scans in a completely different

manner, as the external field is held constant and the electron-nuclear spin system

is expected to be completely unaffected by the position of the delay line. Instead,

the difficulty lies in the amount of time it takes to complete the scan. As discussed

above, even a minimal TRKR scan is likely to take at least 15 seconds, which

is on the order of the nuclear polarization timescale TN . If the laser has just

been unblocked or if the external field has recently been changed, BN will change

considerably over the course of the TRKR measurement.

To see why this is a problem, consider that during any given millisecond window

of time the electron spin system repeats tens of thousands of times the same 13.16-

nanosecond-long trajectory of precession and decay between pump pulses. Ideally,

we would like to measure this entire trajectory at once, but in reality our TRKR

apparatus must be tuned to a single moment in the cycle. If the electron spin system

repeats this same cycle reliably over the course of minutes, we can repeatedly re-

tune our apparatus and measure the spin system at as many moments as we would

like, resolving the full precession behavior. However, if due to DNP the electron spin

system changes appreciably in the time it takes to re-tune our apparatus after each

measurement, we are not in fact measuring the trajectory of the system after each

pulse. Instead, we are obtaining single measurements from many slightly different
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electron spin systems. The resulting curve does not have an obvious interpretation.

Thus, TRKR scans like the one just described can only give meaningful results if

the scan does not start until after the electron-nuclear spin system has had a chance

to settle sufficiently over the course of a few time constants TN .

This limitation in the use of TRKR severely limits our ability to understand the

buildup of DNP. TRKR allows the extraction the Larmor precession frequency ωL =

gµBBtot/~, which is directly proportional to the total magnetic field experienced

by the electron spin system Btot. Since the external field is known, the Larmor

precession frequency precession frequency provides a direct measurement of BN =

Btot − Bext at any point in time. This represents a huge improvement over simple

field scans, which only provide a direct measurement of BN at each RSA peak. We

in fact attempted this measurement, performing a field scan in which at each field

value we stopped and measured TRKR in the hopes of obtaining BN at every field

step. For the reasons outlined above, the resulting data did not prove useful.

5.3 Snapshot TRKR

The solution to this problem appears trivial in retrospect: perform the same

external field scan at a variety of pump-probe delays. Our standard operating pro-

cedure for field scans, outlined in Chapter 3, ensures that both magnetic hysteresis

and the nuclear spin polarization are destroyed before each field scan. This erasure

of system history, combined with the fact that the choice of pump-probe delay does

not affect the electron system, ensures that each field scan measures the exact same

evolving electron spin system as the others even though a different measurement is

performed. We may then choose any time step of the experiment and assemble the

corresponding measurements from each field scan. The result is a stitched-together
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TRKR curve that truly represents a snapshot of the electron spin system at a pre-

cise moment in the experiment, hence the name “snapshot TRKR”. That is, the

assembled TRKR curve is the one we would expect to measure if we were able to

measure Kerr rotation at every pump-probe delay simultaneously at each step in

the field scan.

Of course, this analysis assumes that each iteration of the experiment indeed

recreates the same evolving electron spin system as all the other iterations. Drifts in

laser power, temperature, and so forth between each field scan have the potential to

cause the system to fall afoul of this condition. In our system, the most likely issues

would be drifting laser power and loss of laser mode lock. However, we monitor

these and other system variables and have no reason to believe the experimental

setup experienced any significant deviation during the taking of any data presented

in this chapter.

Figure 5.1 graphically demonstrates the snapshot TRKR methodology using a

2D array of Kerr rotation values. In Figure 5.1 (a), identical field scans performed

with different pump-probe delays are fed into the array as columns. Each row

represents a snapshot of the experimental system at a given point in time, and

Figure 5.1 (b) plots several examples of the data in each row assembled into a

TRKR curve. While the range of pump-probe delays used is insufficient to resolve

electron spin lifetime, the external field is large enough that this range suffices to

extract the Larmor precession frequency ωL = gµBBtot/~. Knowing this value, we

can finally extract a quantitative measurement of the Overhauser field BN at any

point in the field sweep simply by using the formula

(5.1) BN = (~/gµB) ωL −Bext

70



In theory, we could obtain ωL for each TRKR curve by fitting the data with a simple

decaying cosine model, and extract BN from Eqn 5.1. In practice, this is unworkable

when |Bext| >> |BN |, as is the case in the range of fields used for snapshot TRKR.

In this regime, BN represents only a tiny fraction of Btot, so to first approximation,

(5.2) ωL ≈ (gµB/~) Bext

This means that even if the relative uncertainty σωL
/|ωL| is low, the corresponding

relative uncertainty in BN may still be very large. For example, if ωL has a relative

uncertainty of 0.05, we can calculate the relative uncertainty of BN :

(5.3) σBN
/|BN | = (~/gµB)

√
σ2
ωL
/ |BN |2 + σ2

Bext
/ |BN |2

(5.4) σBN
/|BN | ≈ 0.05 (~/gµB) |ωL| / |BN |

where in the second step we have assumed the uncertainty of Bext is negligible (if

not, the uncertainty of BN is even larger!). Substituting in Eqn 5.2, we obtain

(5.5) σBN
/|BN | ≈ 0.05 (|Bext| / |BN |)

In the snapshot TRKR experiments we present, BN rarely rises above a few mil-

litesla and Bext is always well over 100 millitesla - clearly, the relative uncertainty

in Eqn 5.5 is less than ideal.

To overcome this issue, we must leverage our knowledge of the experimental sys-

tem. Rather than focus on the precession frequency directly visible in the measured

2 nanosecond delay range, we attempt to extract the total precession phase Θ(Btot)

(from Eqn 3.9) that has elapsed over the entire 13.16 ns repetition period. Because

the pump-probe delay range extends up to the next laser pulse, these TRKR fits

have direct access to the phase when the next pulse hits. This means we can di-

rectly extract Θ(Btot) with extremely high confidence, though only to the nearest
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2π. Then, using the known Bext as well as the recent history and typical range

of BN , we can generally plug in by hand the correct 2πn (for integer n) missing

from this extracted Θ(Btot). Now we can solve Eqn 3.9 for Btot and subtract Bext

to obtain an estimate for BN with sub-mT precision, a vast improvement over the

previously outlined method. Unfortunately, this new method contains a mathemat-

ical error - it neglects the phase shift due to RSA! Fortunately, we can calculate

both the expected phase shift and amplification factor from RSA based on the spin

lifetime (extracted from the width of RSA peaks, about 25 ns) and the phase when

the next pulse hits, but implementing this information into the above analysis is

non-trivial.

In practice, we simply fit the TRKR data to a full-featured model that takes into

account RSA [18], in most cases based on Eqn 3.13, using a custom Python-based

package that leverages scipy, numpy, pandas, and lmfit. It uses the LevenbergMar-

quardt algorithm to fit various parameters of the analytical model to TRKR data

in order to solve for ωL and thus BN . This model takes into account all the data

referenced above: the observed oscillation frequency, the laser repetition rate, the

phase when the next pulse hits, and the expected phase shift due to RSA. We even

implement our knowledge of the number of oscillations prior to the observed de-

lay range by constraining the range of values the parameter ωL may take in the

algorithm. This method appears to provide robust results in every experiment we

have performed except for one discussed later in this chapter: the snapshot TRKR

analysis of the “spin echo” effect.

With a method in hand for modeling TRKR and extracting BN , we may now

measure the Overhauser field over the course of a field scan and test how well the

setpoint model actually describes the changes in DNP throughout the experiment.

72



Figure 5.2 shows the results of two snapshot TRKR field sweeps, an upsweep and

a downsweep. The upsweep (panel a) is the same experiment shown in Figure

5.1, and the downsweep (panel b) covers the same range of fields but swept in the

opposite direction. The range of fields was chosen to be large enough that the

roughly 2 nanosecond range of measured pump-probe delays would cover at least

one full oscillation period.

Figure 5.2 (c) first shows the Kerr rotation seen at the usual pump-probe delay

of 13 ns, just as might be measured in one of the field scan experiments shown in the

previous chapter. Next, it plots the spin polarization precessing about the external

field as extracted from the TRKR fits, first the component along the optical axis

at 13 ns and then the overall amplitude. The former serves as a sanity check for

the TRKR fits and lines up with the observed Kerr rotation, as expected. The

latter represents the total electron spin magnitude produced by RSA, and is the

target value that DNP follows in the setpoint model. Finally, and most importantly,

Figure 5.2 (c) plots the BN extracted from the TRKR fits for each point along the

field scan, and Figure 5.2 (d) shows BN for upsweep and downsweep on a new,

shared plot.

In short, these results confirm the basic concepts behind the setpoint model. For

example, BN indeed appears to rise and fall roughly in line with the magnitude of

electron spin polarization. Furthermore, this observed rise and fall is consistent with

the detailed discussion last chapter of how peak warping occurs. In neither case,

however, can we prove causation. For example, we cannot rule out the possibility

that BN changes with some other experimental variable that also rises and falls

roughly in sync with the electron spin polarization magnitude. In the case of peak

warping, while we can be confident that the BN observed in this data produces peak

73



warping, we cannot verify the model’s predictions for how and why BN changes at

each part of the peak. This is where the second major experimental technique of

this chapter comes into play.

Figure 5.1: The “snapshot TRKR” technique
Schematic demonstrating how (a) field scans at different pump-probe delays become the columns of a
two-dimensional data array and (b) the rows of this array constitute snapshot TRKR.

5.4 Steep sweeps

Last chapter, we discussed at length the manner in which we expect BN to

change after each field step. For field steps on a RSA rising edge, we even produced

a formula (Eqn 4.10) intended to describe how BN changes over an arbitrarily long

period of time post-field-step. To this point, however, we have only examined how

BN builds over the course of a steady field sweep. To remedy this, we introduce a

new method that allows us to see how BN builds up when uninterrupted by constant
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Figure 5.2: Snapshot TRKR analysis of external field up- and down- sweeps
(a) Kerr rotation measured as a function of external field and pump-probe delay for increasing (left) and
decreasing (right) external magnetic field. The data is compiled by scanning the external field while each
pump-probe delay is held constant. Sweeps are performed at T = 10 K, laser wavelength 819.5 nm, and
incident pump power 510 µW (upsweep) and 540 µW (downsweep). (b) Kerr rotation θKerr measured
as a function of external field for a fixed pump-probe delay of 13 ns, taken from (a). Corresponding
parameters sz, sr, and BN are extracted from fits of the snapshot TRKR in (a) and are shown below.
The spin polarization sr is observed to match the measured θKerr. The Overhauser field BN required to
match the observed phase (modulo 12.2 mT) is determined from the measured external field and can be
seen to follow the spin polarization magnitude sr. Horizontal lines provide an indication of scale for BN .
(c) Overhauser field BN extracted from the fits for increasing and decreasing external magnetic field.

changes in the external field.

The procedure is extremely basic: perform a field sweep, but when the external

field reaches a predetermined value, pause the sweep for a long time (typically two

minutes) before continuing. While the field sweep is paused, we expect BN and

Bsetpoint to continually change over the timescale TN as the electron and nuclear

systems attempt to settle into a steady state. If the field sweep stops on a rising

edge, for example, we expect BN to change in the manner of Eqn 4.10. We refer to
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this process as “steeping”, since we give the electron and nuclear spin species a fixed

period of time to interact and arrive at pseudo-equilibrium in a way not entirely

dissimilar to how we give water and tea leaves a fixed period of time to interact and

come to equilibrium. After this time period has passed, we resume the field scan.

In total, we call this modified external field scan procedure a “steep sweep”.

This method is not intended to replace the standard field sweep experiment

discussed at length in the previous chapter. Rather, we always perform a steep

sweep in conjunction with a standard, uninterrupted field sweep that lacks the

“steep”, which serves as a control case. We can then compare the RSA peaks after

the steep to their control counterparts. Furthermore, we can repeat the steep sweep

at different external fields (“steep fields”) or for different steep durations, comparing

all of the results against each other.

Figure 5.3 shows the results of two steep sweeps, viewed both versus laboratory

time and versus external field. These sweeps share the same overall sweep range,

but have different steep fields. These steep sweeps, plus four others taken at still

more steep fields, are also presented in Figure 5.4. However, we first focus on

Figure 5.3, where panels (a) and (b) show the results of a steep performed right at

the boundary between the RSA trough and the RSA rising edge. The net result

is equivalent to the control case (not shown) in that BN barely changes during

the steep. This agrees with our model of how BN changes with time when the

last field step occurred in a RSA trough, assuming that the corresponding Bsetpoint

is approximately the same as the BN at the start of the field step. This useful

coincidence shows that DNP does not have to change over time given the right

conditions, as one might expect from alternative models like the slow-rise model.

Of course, for any other choice of steep field, BN indeed changes over the course
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of the steep. Panels (c) and (d) of Figure 5.3 show a steep that occurs near the top

of the rising edge, and the resulting change in Kerr rotation over time looks roughly

like (but isn’t quite) the one-minus-decaying-exponential trend Eqn 4.10 predicts

for BN . Of course, we don’t expect a perfect lineup anyway since Kerr rotation

isn’t quite linear with BN . Similar graphs (not shown) of steep sweeps at different

steep fields yield rises or falls in Kerr rotation during the steep period depending

on where the steep occurs in the RSA cycle. This growth or decay generally also

follows this one-minus-decaying-exponential trend, which is encouraging since these

trends are characteristic of the setpoint model (e.g. Eqn 4.12).

Unfortunately, because of the complex relationship between Kerr rotation and

BN and also the anomalous changes in peak height that occur as BN changes,

we found it impossible to use these time resolved steeps to quantitatively test the

setpoint model. As a result, we do not pursue investigating the laboratory-time-

resolved trajectory of Kerr rotation during steeps any further. Fortunately, steep

sweeps provide other insights as well. Figure 5.4 (a - d) demonstrate how steeping

higher up on the rising edge of a RSA peak leads to a correspondingly further peak

shift after the peak is resolved. The setpoint model predicts exactly this, as Bsetpoint

grows with proximity to the RSA peak, and by Eqn 4.12 and Eqn 4.2 this leads to

a correspondingly large BN and eventual peak shift.

Of course, when viewing Figure 5.4 the reader will surely notice that the most

interesting feature is not the shift in where the second peak is resolved, but the

incredible changes that occur in the third peak a full RSA cycle later! Somehow,

the system appears to remember where the initial steep occurred in the RSA cycle,

and in all subsequent peaks the measured Kerr rotation changes wildly each time

the system reaches that part of the RSA cycle, as if “echoing” the original steep.
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We still have absolutely no explanation for why this “steep echo” effect occurs, and

we will return to the subject at the end of this chapter.

Figure 5.3: “Steep sweep” technique versus external field and lab time
Kerr rotation (solid line) measured as a function of time elapsed during a field sweep, for a fixed pump-
probe delay of 13 ns, T = 10K, and laser wavelength 819.3 nm. The external magnetic field (dotted line)
is swept up from -80 mT, incremented at a rate of about 0.23 mT/s, to the desired “steep” field and held
constant for two minutes. The field is then swept up to +25 mT, though only a portion of each field sweep
is shown here for clarity. Data is shown for steep fields (a) in the trough between RSA peaks and (b) on
the rising edge of a RSA peak. The peak location changes as a result of steeping, as shown by the labeled
peaks.

5.5 Steep sweeps using snapshot TRKR

While the steep sweep technique clearly affects the electron-nuclear spin system

in interesting ways, the methodology as described above suffers from the same

inability to disambiguate BN and Kerr rotation as the field sweeps of the previous

chapter. Thankfully, we can apply the same solution, and perform steep sweep

snapshot TRKR. Following the same methodology as before, we perform the steep

sweep at many choices of pump-probe delay, and build up a two dimensional array
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Figure 5.4: “Steep sweeps” at various steep fields
Kerr rotation measured as a function of external magnetic field, for T = 10 K, a fixed pump-probe delay of
13 ns and laser wavelength 819.3 nm. The external magnetic field is swept up from -80 mT, incremented
at a rate of about 0.23 mT/s, to the desired steep field and held constant for two minutes. The field is
then swept up to +25 mT, though only peaks -3, -2, and -1 are shown. The chosen steep field influences
the locations of peak -2, as shown by the labels, with steep fields close to the maximum of peak -2 yielding
the greatest shift. Steep field (a) -24.8 mT is far enough from the center of peak -2 to not cause that
peak to shift, as is evident by comparison to (f) -18.9 mT. Furthermore, peak -1 is heavily deformed in
accordance with the chosen steep field, so as to “echo” the shape of peak -2.

of data like the ones in Figure 5.1 and Figure 5.2. Each row corresponds to a time

step in the experiment, but not necessarily a field step. The only real difference

now is that we cannot put a linear magnetic field scale on the vertical axis anymore,

since the field no longer uniformly increases. Crucially, we can still extract BN at

every time step, which now includes each time step of the steep.

Figure 5.5 displays fits of sz, sr, and BN over the course of the full sweep when

steeping at four different parts of the RSA cycle. Figure 5.6 displays sr and BN from

the same steep sweeps, but resolves how these change in real time over the course
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Figure 5.5: Snapshot TRKR analysis of “steep sweeps”
Kerr rotation measured as a function of external field for a pump-probe delay of 13 ns, T = 10 K, and
wavelength 819.5 nm. Incident pump powers were (a) 660 µW, (b) 700 µW, (c) 620 µW, and (d) 640 µW.
The external field and delay ranges are identical to those covered in Figure 5.1 and Figure 5.2, and again
parameters sz, sr, and BN are extracted from fits of snapshot TRKR and plotted. However, a two minute
pause (“steep”) has been implemented at (a) 134.8 mT, (b) 137.7 mT, (c) 138.7 mT, and (d) 142.5 mT,
as in Figure 5.5. Horizontal lines provide an indication of scale for BN .

of the steep. Panels (a) and (d) are the most clear and consistent when compared

to previous results, showing rising edge and trough steeping, respectively. Panel

(a) confirms that steeping on a rising edge causes BN to approach a slightly higher

value and Kerr rotation / sr a slightly lower value, since the system moves away

from the peak. Furthermore, panel (d) shows that steeping in a RSA trough causes

DNP to decay to a slightly lower baseline, just as expected.

Panel (c), however, demonstrates falling edge behavior despite the steep occur-

ring near the top of a rising edge. BN falls instead of rising, but not as an exponential
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Figure 5.6: Real-time analysis of snapshot TRKR “steep sweeps”
Alternate view of the steep sweeps of Figure 5.5, focusing on the region around the steep and resolving it
in real time.

decay. Instead, it appears that the system takes a moment to cross the top of the

RSA peak, after which the expected falling edge behavior occurs. Our model does

not predict this, since it does not make sense that somehow the setpoint has moved

lower than the current value despite sr only rising. This perhaps suggests that sr is

not the right target for the setpoint, or alternatively the system might have some

“momentum” that carries it past the peak.

The most interesting case, however, is panel (b). If we use sr as a guide, the

steep appears to occur right in the middle of a DNP rising edge, so we expect the

dynamics to play out the same way as the analogous cases in Figure 5.3 and Figure

5.4. Only one experimental parameter that differs between normal steep sweeps
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and snapshot TRKR steep sweeps seems to be relevant to the electron-nuclear spin

system: we work with magnetic fields over 100 mT larger in the new data set,

as snapshot TRKR requires higher fields to extract Larmor precession frequency

within the limited 2 ns pump-probe delay range.

In a sense, this rising edge DNP behavior is consistent with the results, as BN

grows during the steep and the system moves away from the RSA peak. However,

if we look to Figure 5.4 as a guide, we see that gradually moving from steeping in

the trough to steeping just before the peak causes a proportional peak shift that

maxes out at about 2.5 mT, providing a rough estimate for the rise in BN during

the steep in each case. In Figure 5.6 (b), however, BN rises by 5.4 mT over the

course of the steep, enough to push the system back into the RSA trough.

This finding constitutes at least a soft conflict for the setpoint model, as in order

to maintain such a large BN the system must also maintain a Bsetpoint at least as

large, and in the RSA trough we expect Bsetpoint to be small in proportion to the

electron spin polarization. Taken alone, this conflict is only ‘soft’ because we can

resolve it by postulating that Bsetpoint is in fact always large, so any steep will cause

BN to rise this much except on the falling edge (due to the reverse slope of sr vs

Btot). Panels (a) and (d) directly contradict this narrative, however, as BN rises

much more modestly during the steep in (a) and outright falls in (d).

After the steep, the TRKR curves used to extract the data in panel (b) shrink sig-

nificantly in amplitude, consistent with the hypothesis that spin amplitude and/or

Kerr rotation is suppressed by a large BN . Unfortunately, this shrinkage also wors-

ens the usually robust signal-to-noise ratio. Furthermore, the phase of the TRKR

curve changes very quickly in the vicinity of each echo, leading to the fit result

that BN jumps sharply at each echo and never loses this buildup, growing larger
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and larger each RSA peak...or else some other factor is causing an apparent shift

in TRKR phase, a problem perhaps exacerbated by the low signal strength.

In the language of our earlier discussion of fitting TRKR data, we have hit a

limit on the usefulness of our naive measurement of Θ(Btot), the observed phase

shift when the next pump pulse hits. First, the apparent rapid rise of BN makes it

difficult to be certain of the correct factor of 2πn to add to the extracted Θ(Btot)

since we cannot be sure which RSA peak the system is on. Second, the behavior

of Θ(Btot) as it changes continuously over time is suspicious enough that we need

further verification.

Thankfully, both problems can be solved simply by widening the pump-probe

delay range over which we measure TRKR. This vastly improves our ability to

directly fit the Larmor precession frequency ωL, and in the context of fitting to Eqn

3.13 we greatly reduce the covariance between phase and frequency in our fitting

parameters. Furthermore, the correct value of 2πn becomes much, much easier to

ascertain. One gets a notion of these advantages in Figure 5.7, where we see two

data curves that are nearly indistinguishable within the final 2 ns of pump-probe

delay despite their correct values of Θ(Btot) differing by 2π. In a nutshell, this is

the problem we face in this chapter’s snapshot TRKR. However, when we increase

the size of the pump-probe delay region the curves become easily distinguishable.

The delay line has already been adjusted to allow more than 4 ns of pump-probe

delay range, so future work may be able to determine whether this data actually

presents a rapidly rising Larmor precession frequency or something else entirely.
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Figure 5.7: Demonstration of the difficulty of distinguishing precession frequencies
Mockup of how snapshot TRKR might look if the pump-probe delay line was tripled in length to 6 ns. The
bottom plot has a slightly higher precession frequency consistent with an extra 12.2 mT of field strength.
The two plots would be difficult to distinguish accurately with a 2 ns window, but are easily distinguished
with a 6 ns window.
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CHAPTER VI

Conclusion: Review of Experimental Findings and
Potential DNP Mechanisms

6.1 Introduction

In the preceding two chapters we have described a series of experiments that

demonstrate the existence of a dynamic nuclear polarization in GaAs with several

unusual properties. Until now, we have also avoided discussion of the physical

mechanisms that generate these properties. In this final chapter, we will review

the properties of the electron-nuclear spin system observed in these experiments as

well as the various mechanisms for DNP production discussed in Chapter 2. We

then discuss what physical mechanisms may or may not play a role in producing

the observed DNP and conclude with advice for future research.

6.2 Properties of observed DNP

In no particular order, we have observed the following properties of the DNP

measured in our Si-doped n-GaAs (3·1016/cm3) epitaxial layer at 10 K and at wave-

lengths between 819 nm and 820 nm:

1. The nuclear Overhauser field BN always orients to oppose any change in Bext.

Examples: Figure 4.3, Figure 5.2
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2. The behavior of BN depends on the current location in the RSA cycle (and last

sweep direction) rather than the overall external field magnitude or polarity.

Examples: Figure 4.2, Figure 4.3, Figure 5.2

3. BN changes slowly over time in response to the current state of the system,

taking at least 100 s to saturate.

Examples: Figure 4.5, Figure 5.3, Figure 5.6

4. In an external field sweep, RSA peaks warp such that the peak moves away

from the direction of approach.

Examples: Figure 4.2

5. This RSA peak warping is caused by BN rising and falling in the vicinity of

each RSA peak, since the degree of RSA is determined by Btot rather than

Bext.

Examples: Figure 4.4, Figure 5.2

6. A secondary aspect of RSA peak warping, the increasing suppression of Kerr

rotation at RSA peaks, requires a different explanation, possibly a suppression

of Kerr rotation / peak height with BN .

Examples: Figure 4.3, Figure 4.4

7. In general, BN appears to rise over time when the spin polarization magnitude

sr is large and fall when it is small, whether due to RSA or pump laser power.

Examples: Figure 4.5, Figure 5.4, Figure 5.6

8. When an external field sweep is paused, DNP evolves in conjunction with the

electron-nuclear in a manner mostly consistent with the setpoint model’s peak-
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warping explanation. The sign of BN depends on sweep direction to this point,

even though dBext/dt is zero.

Examples: Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6.

9. Exception: At large external field magnitudes, where RSA peaks experience

natural DNP-unrelated warping, steeps slightly before the RSA peak demon-

strate falling-edge behavior and mid-rising-edge steeps produce an anomalously

large BN with a large steep echo effect.

Examples: Figure 5.5, Figure 5.6

10. Normal external field sweeps act as if steeping on every field step, and slower

sweeps accordingly enhance peak warping by giving BN more time to compen-

sate changes in the external field.

Examples: Figure 4.5, Figure 5.3, Figure 5.5

6.3 Sources of hysteresis

Before trying to uncover the processes driving the observed DNP, we must ad-

dress the possibility that what we see is explicable without reference to DNP at

all. One primary mechanism through which the nuclear polarization reveals itself

is through hysteresis, specifically the mirrored effects that occur in upsweeps versus

downsweeps of the external magnetic field. We will now discuss a few alternative

sources of hysteresis and why they don’t apply to our findings.

One basic form of hysteresis occurs during an experiment when we cause a “tran-

sient” disturbance in the measured system, after which the system takes an amount

of time to recover comparable to the experimental timescale [38, 39]. The slow-

rise model shown in Figure 4.4 has this property, as crossing zero causes a sudden
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change in BN that lasts long enough for the system to cross several RSA peaks.

If for our slow rise we swap BN for something else untethered to the x-axis like

peak height (not unreasonable), we eliminate all traces of explicit sweep-direction-

dependence in the model...but because of the transient nature of crossing zero, there

will still be sweep-direction-dependence! After all, upsweeps and downsweeps differ

based on whether the transient period occurs “to the right” or “to the left” of the

zero-crossing.

Because crossing zero external field and optical NMR resonances in GaAs erases

nuclear polarization, these transient effects do play a role. However, this transient

is minor and actually works against the overall trend of hysteresis by lowering the

magnitude of the peak shifts just after the zero crossing towards their no-DNP,

non-hysteretic values. Also, hysteresis arising from transient effects gets weaker

when the experiment is performed slower, and waiting for the system to come to

equilibrium right after the disturbance gets rid of the hysteresis altogether. Of

course, Figure 4.5 (a, b) demonstrate that sweeping slower makes the peak shifts

and thus the degree of hysteresis even more pronounced, and Figure 5.6 shows that

waiting after a disturbance (in this case, a field step) does exactly the same.

On a separate note, a very explicit form of DNP hysteresis occurs in GaAs/AlGaAs

quantum wells, in which the system follows bistable trajectories for increasing ver-

sus decreasing external fields [40, 41]. However, this phenomenon arises only with

the proper angle of incident light, works only for one magnetic field polarity, and

relies on an anisotropic g-factor not found in our bulk n-GaAs samples [40, 41]. In

short, we do not think there is any actual connection between that form of DNP

hysteresis and what we observe.
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6.4 Potential mechanisms for observed DNP

In Chapter 2, we discussed several pathways by which the presence of an electron

spin polarization may lead to dynamic nuclear polarization. All trace back to a

single fundamental mechanism: total-spin-conserving spin flips between electrons

and nuclei, mediated by the hyperfine interaction that links the electron and nuclear

spin systems. Because of the weak Zeeman splitting of nuclear spins, these spin flips

occur entirely based on whether they are energetically advantageous to the electron

spins in question. Electrons continually relax from the high-Fermi-energy spin-

species (i.e. up, down) to the other using the nuclear spin-flip interaction. The

result is a steady spin flux aligned in the direction of these high-Fermi-energy spins.

This also produces an energy flux from the electron spin system to the nuclear spin

system that heats or cools the latter based on the sign of (S · Btot) and generates

dynamic nuclear polarization. To recap, the key cases we have discussed thus far

are as follows:

1. Electron spin polarization parallel to the external field: The presence

of an optically-pumped electron spin polarization causes the majority species’

Fermi energy to exceed that of the minority, even after taking account the

relative Zeeman shift between the species in the external field. The nuclear

spin system is heated or cooled depending on the polarity of the electron spin

polarization, but regardless the result is DNP along the external field axis that

points in the direction of the electron spin polarization.

2. Electron spin polarization perpendicular to the external field: Be-

cause the induced nuclear spins are primarily aligned perpendicular to the

external field, as a group they precess and/or dephase themselves into oblivion
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and do not generate DNP. However, the Knight field produced by the electron

spin polarization bends the nuclear polarization just enough to allow a small

amount of energy flux proportional to |sr|2 that cools the nuclear spin system

slightly, generating a small amount of DNP aligned with the external field.

3. [Intermediate cases between 1 and 2]: As with case 1, except we only

utilize the projection of the electron spin polarization onto the external field

axis. We can include the effect of BK on Btot, but it is now unlikely to play a

significant role.

4. Electron spin depolarization parallel to the external field: We find

that the two electron spin species are closer in population than is thermally

expected for the given Zeeman splitting and electron spin temperature. The

electron-nuclear spin system undertakes spin flips that try to remedy this,

resulting in nuclear spin cooling and DNP aligned with the external field.

5. Optically-pumped nuclear spin cooling: A helicity-modulated laser pumps

the electron spin system perpendicular to the external magnetic field. When

the external field hits the Larmor precession frequency of a given nuclear spin

species, that species undergoes rapid nuclear spin cooling and a DNP / Over-

hauser field develops that is proportional to (Bext − BNMR). Following this,

the electron and nuclear spin systems begin a complicated and rich interac-

tion...but in our system, this results in an immediate erasure of DNP.

Cases 2 and 4 immediately seem unlikely as potential explanations for the DNP

we observe in Chapters 4 and 5 because they can only produce nuclear polarization

aligned with the external magnetic field, whereas we very specifically see a DNP

that can orient with or against the external field based on sweep direction. We
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ignore them with hesitation, however, as each introduces a dependence between the

magnitude of DNP along the external field axis and sr, the electron spin polarization

magnitude perpendicular to the external field. Considering that the setpoint model

that has been the focus of much of the current work specifies this exact type of

relationship, we should at least consider the possibility that something about the

physics of these cases may be of relevance in the future.

For the reasons laid out in Chapter 2, case 5 produces a DNP and Overhauser

field that can point with or against from the external field, that can vary con-

siderably with small changes in Bext, that carries a direct dependence of its own

magnitude on the magnitude of sr, and that in general mutually evolves with the

electron spin polarization. All of these features resonate strongly with the properties

of our observed DNP at the beginning of this chapter, and we do in fact modulate

the helicity of our laser! However, the similarities end here. The degree of nuclear

cooling observed is explicitly dependent on the proximity of the current external

field to the optical NMR fields for the given helicity modulation frequency, falling

off as 1/(Bext−BNMR) [32] . In contrast, we do not see any dependence between the

magnitude of observed DNP and the overall external field strength. Furthermore,

DNP responds instantly on the laboratory timescale to changes in the external field,

so this explanation lacks the characteristic slow buildup timescale we observe. Most

importantly, there is no mechanism here to change the sign of DNP based on the

sweep direction, as the sign of the Overhauser field is affected by only three factors:

the sign of the electron g-factor, the sign of the nuclear magnetic moment, and

whether Bext is larger or smaller than BNMR [32]. In the end, this model does not

appear particularly promising, after all.

Of these DNP mechanisms, case 1 (and by extension, case 3) looks the least

91



promising at first glance, as it doesn’t even suggest a mechanism by which DNP

could scale with sr, the electron spin polarization perpendicular to the external

field. If this is the correct explanatory model for the DNP observed in Chapter 4

and Chapter 5, then as we perform a field sweep, we see BN grow and shrink as

the system crosses RSA peaks for a counterintuitive reason: parallel to the external

field, a hidden electron spin polarization - not picked up by Kerr rotation, that

doesn’t itself experience RSA, and that we have no obvious reason to suspect is

linked at all to sr - also grows and shrinks with the RSA peaks.

The most obvious reason we might expect to see some electron spin polarization

parallel to the external field in the first place is simply because the pump laser is not

perfectly perpendicular to the external field. However, we have no reason to think

this polarization would do anything over time other than decay slightly between

pump pulses according to its the longitudinal spin relaxation time T1 and change

in direction/magnitude in sync with the PEM. Furthermore, each time the pump

helicity switches, the resulting spin flux into the nuclear spin system would reverse

as well, such that over time this electron spin polarization produces no DNP at all.

Based on the properties of DNP we have observed, for it to arise using the

mechanism laid out in case 1 we need some method by which the electron spin

polarization parallel to the external field continually updates to reflect changes in

sr. Ideally, we would find some reason to believe the spin polarization parallel to

the external field is somehow continually set to be proportional to |sr| and that its

sign is always opposite dBext/dt, as this would produce something like the DNP we

see.

The most promising explanation we have found is the optical Stark effect, in

which each pump pulse has the additional effect of acting like a magnetic field
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along the optical axis, such that for the few picoseconds the pump pulse illuminates

the sample we can an extra precession of electron spins [34]. Specifically, if we

define the external field axis as x̂ and the optical axis as ẑ, this field causes a slight

rotation of spins around ẑ such that after the pump pulse we gain a small amount of

polarization ∆sx proportional to the sign and magnitude of sy just before the pump

pulse [34]. Crucially, the effective field direction reverses with the pump helicity,

just like the electron spin polarization induced by the pump laser. This means that

if at right circular helicity we rotate an induced sy to produce ∆sx, at left circular

helicity we will counter-rotate an inverted sy to produce the same ∆sx! This is

vital, since if sx reversed with pump helicity no net nuclear polarization would be

able to develop over the course of a PEM cycle. Finally, Figure 6.1 is identical to

Figure 5.2 (c) but adds the extracted sy just before the pump pulse, and we see

that it is not terribly dissimilar to sr, explaining how, if this new model is correct,

we have so far been misled into thinking sr was the crucial value. However, this

model still does not clearly explain the sweep direction dependence. As such, the

physical mechanism remains a mystery.

6.5 Conclusion

In the present work, we have presented a set of experiments that demonstrate

an unexpected nuclear polarization, produced a phenomenological model to explain

them, and considered a variety of candidate physical mechanisms. The consider-

ation of one candidate, the optical Stark effect, and investigation into the corre-

sponding importance of sy just before the laser pulse is an ongoing topic of inquiry

for members of the research group other than the author of this work.

One finding we have not attempted to model at all in this document is the steep

93



Figure 6.1: Comparison of sy to other values extracted from snapshot TRKR
Modified version of Figure 5.2 (c), adding a fit of sy at a pump-probe delay time of 13 ns in addition to
sz, sr, and BN .

echo effect demonstrated in Chapter 5. One reason is that more data is needed

with a longer pump-probe delay range to disentangle Larmor precession from other

sources of phase shifts. However, the apparent memory of field history in the

electron-nuclear spin system that manifests during the echo hints at interesting

underlying physics and warrants further research.
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