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ABSTRACT

The rapidly increasing throughput of sequencing technologies allows us to sequence 

genomes, transcriptomes, and epigenomes at an unprecedented scale. Robust, efficient, and 

accurate computational methods to analyze sequence reads are crucial for successful large-scale 

studies. In this dissertation, I address specific computational and statistical challenges in quality 

assessment of sequence reads, ancestry-agnostic estimation of DNA sample contamination, and 

deconvolution of genetically multiplexed scRNA-seq sequence data by leveraging genetic 

variants. 

In Chapter 2, I describe rapid and accurate algorithms to produce comprehensive quality 

metrics directly from raw sequence reads without the requirement of full sequence alignment. To 

produce a comprehensive set of quality metrics such as GC bias metrics, insert size distribution, 

contamination rates, and genetic ancestry, existing quality assessment methods usually require 

full sequence alignment which is the most time-consuming step. My methods offer orders of 

magnitude faster turnaround time by eliminating this requirement when compared to the widely 

used 1000 Genomes QC pipeline. The results show that the quality metrics estimated from my 

methods are highly concordant to full-alignment based methods. 

In Chapter 3, I present a robust statistical method that accurately estimates DNA 

contamination agnostic to genetic ancestry of the intended or contaminating samples. Through 

experiments with in-silico contaminated and real sequence datasets, I demonstrate that existing 

methods may fail to screen highly contaminated samples at a stringent contamination threshold 
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due to the bias when the genetic ancestry is misspecified. Meanwhile, in the presence of 

contamination, genetic ancestry estimates can be substantially biased if contamination is ignored. 

My method integrates genetic ancestry and DNA contamination into a mixture model by 

leveraging individual-specific allele-frequencies projected from reference genotypes onto 

principal component coordinates. I show that my method robustly corrects for the bias in both 

estimates of contamination rate and genetic ancestry under various scenarios of contamination. 

In Chapter 4, I enable genetic multiplexing of single-cell RNA-seq (scRNA-seq) 

experiment without requiring external genotyping by developing genotyping-free scRNA-seq 

deconvolution method, freemuxlet. Genetic multiplexing of scRNA-seq (mux-seq) allows us to 

cost-effectively sequence single cell transcriptomes across multiple samples in a single library 

preparation by harnessing natural genetic variations while dramatically reducing the batch effect. 

However, the existing statistical method, demuxlet, which enables mux-seq, requires external 

genotypes to be collected a priori, limiting its applications when it is difficult to obtain high-

quality genotypes such as in model organisms or cancer cells. Furthermore, the additional steps 

to obtain, process, and impute the external genotypes become a substantial bottleneck to analyze 

the data within rapid turnaround time. Freemuxlet defines the distances between a pair of cell 

barcodes as Bayes Factors (BF) to determine statistical confidence between possible hypotheses 

of genetic identities of each cell barcodes. The iterative procedure of multi-class clustering 

guided by BF distances simultaneously estimates the consensus genotypes of each individual 

while detecting multiplets and deconvoluting the sample provenances of singlets. I apply 

freemuxlet to real datasets and demonstrate high concordance of estimated droplets identities 

with other methods (cell hashing, demuxlet). I further demonstrate that freemuxlet can enable 

mux-seq on cancer cell line mixtures, where demuxlet could not due to the difficulty of 
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accurately genotyping. My results suggest that freemuxlet can deconvolute mux-seq experiment 

as accurate as methods that utilize external information, facilitating a broader range of 

applications of population-scale single-cell sequencing.  
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Chapter I. 

Introduction

Overview 

Massively parallel sequencing, also known as Next Generation Sequencing, has been one 

of the most successful biological assay methods in the past ten years. Sequencing technologies 

provide us with digital snapshots of molecular profiles of cells, such as nuclear DNA sequences, 

mRNA sequences, or chromatin-accessible DNA sequences. These sequence reads help us 

estimate various quantities or qualitative states, such as genotypes, gene expression levels, or 

interaction status between DNA/RNA and other molecules. Various techniques that prepare 

sequence libraries have further helped enable successful applications of DNA-seq, RNA-seq, 

ChIP-seq, ATAC-seq, single-cell sequencing, non-invasive prenatal test (NIPT) and more1,2,3.  

More important than the versatility of massively parallel sequencing is the unprecedented 

high-throughput and ever-decreasing cost of these technologies. Large-scale genomic, 

transcriptomic, and epigenomic studies are becoming feasible, and have contributed many 

valuable databases and important findings to the scientific community4,5. It is very important to 

keep increasing the scale of omics studies so that we can not only gain more statistical power to 
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uncover specific findings but also inspire new questions and new methods to deepen our 

understanding of life science. 

However, unprecedented high-throughput of sequencing technologies also brings us 

computational and statistical challenges of omics studies at an unprecedented scale. Examples 

include the 1000 genome project (~2,500 genomes), TOPMed (~150,000 genomes), or UK 

biobank (~500,000 exomes). These petabyte-scale genomic data challenge us to develop 

computationally efficient methods to handle upstream data processing, such as quality 

assessment and alignment of raw sequence reads, as well as downstream analyses focused on 

answering specific scientific questions. 

In this dissertation, I will address various analytic challenges in large-scale omics studies 

with computationally efficient solutions. While each method is intended to tackle different 

challenges in analyzing high-throughput sequence reads, their common feature is that they all 

leverage genetic variants information to enable more rapid, robust, and scalable analysis in 

several different contexts, including data quality control (QC), contamination rate estimation 

under heterogeneous genetic ancestry background, as well as genotyping-free de-multiplexing of 

single-cell RNA-seq. 

 

Background 

High-Throughput Sequencing Technologies 

High-throughput sequencing (or Next Generation Sequencing) is a collective name used 

to describe several different technologies that all share the same general massively parallel 



3 
 

sequencing concept. Widely used technologies include Sequencing by Synthesis (Illumina)6, 

Sequencing by Ligation (SOLiD sequencing)7, Ion Semiconductor (Ion Torrent sequencing)8, 

and Nanopore Sequencing9.  Sequencing by Synthesis is by far the most popular mainly due to 

its cost-efficiency, accuracy, and throughput. Since the release of Illumina’s Genome Analyzer I 

in 2006, sequencing throughput has increased from 0.1 gigabases per run to 6,000 gigabases per 

run of NovaSeq in 2017, while the cost of sequencing a human genome has dropped faster than 

Moore’s Law. In the scope of this dissertation, I will focus on Sequencing by Synthesis (Illumina 

HiSeq technologies) in future contents, but most of the principles described in the dissertation 

should be able to extend to other sequencing technologies. 

 

Figure 1.1 Exponential growth in sequencing throughput. This figure reflects the exponential growth of sequencing 
throughput of sequencers released by Illumina. The X-axis shows typical sequencers released from 2006 to 2017, and Y-axis is 
sequencing throughput with gigabase per run, in 2006, GA has 0.1Gb/run, in 2017 NovaSeq has 6000Gb/run.  
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A typical Sequencing by Synthesis procedure starts from a specimen that undergoes 

sample preparation steps. The procedure continues to library preparation steps that target DNA, 

mRNA, epigenomic marks, or other molecular features using various molecular technologies 

(See https://liorpachter.wordpress.com/seq/ for a relatively comprehensive list of examples) to 

convert them into sequencing libraries. Next, these libraries are physically attached to a flow 

cell, generating millions of clusters of DNA fragments. The nucleotides of these individual 

clusters are determined in a massively parallel manner at each cycle, and billions of nucleotide 

sequence reads are generated simultaneously by typically repeating hundreds of cycles. 

Quality Control of Sequence Reads 

Ideally, sequence reads should represent unbiased and random samples of actual 

sequences of target molecules (e.g. DNA or mRNA). However, this assumption may not hold 

due to technical reasons in practice (e.g. sample degradation or sequencing errors). As a result, 

the readouts from a sequencing instrument may substantially differ from the actual distribution 

of sequences of the intended target molecules. Quality control (QC) of sequence reads is a series 

of steps to evaluate various summary statistics from sequence reads and to identify anomalies 

that may affect the downstream analysis. Carefully assessing the quality of sequencing data 

through accurate and comprehensive QCs is the crucial first step to ensure the success of 

sequencing studies.  

From preparing samples, sequencing libraries, running sequencing instruments, to 

analyzing the digital output from the instrument, there are multiple sophisticated procedures that 

could be jeopardized by small mistakes or technical errors if not detected by QC. For example, in 

the sample and library preparation steps, PCR misconfiguration can result in highly biased depth 
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distribution by GC contents (i.e. GC bias); degraded DNA samples can lead to some portion of 

the genome to be heavily underrepresented; sample contamination may introduce an excess of 

heterozygosity in the sequence data. During the sequencing steps, PCR (Polymerase Chain 

Reaction) enrichment step may result in excessive multi-clonal clusters of identical fragments; 

Phasing/pre-phasing errors (asynchronized nucleotide binding and cleaving within each cluster) 

in the sequencing apparatus may result in increased sequencing errors; Failure to ligate indexing 

tags in multiplexing a single sequence lane may result in apparent contamination due to 

inaccurate demultiplexing. Ultimately, these errors and biases may result in detection of false 

variant sites, increased genotyping errors, and false association signals affected by shared 

technical artifacts within cases and/or controls. 

To minimize potential problems in downstream analysis, many tools, such as FASTQC10, 

Picard11, QPLOT12, verifyBamID13,  have been developed to provide quality metrics of the 

sequence reads. Those metrics include the distribution of base qualities across cycles, depth 

distribution, GC bias, PCR duplication rate, insert size distribution, contamination rate, and 

genetic ancestry. These QC metrics aim to detect potential problems that may occur in different 

sequencing steps. For example, an early decay or sudden drop in base quality in a sequencing 

cycle may indicate a systematic phasing/pre-phasing error or unexpected event during the run; an 

unusual depth distribution may indicate coverage bias across the genomic region of interest; 

strong GC bias may indicate that the excessive technical artifacts may have been introduced 

during the PCR step; an abnormal insert size distribution may indicate problems in gel 

electrophoresis, and the sequenced fragments are not concentrated at the expected length.   

Quality assessment tools generally can be categorized into pre-alignment and post-

alignment tools based on whether all the sequencing reads are required to be fully aligned to the 



6 
 

reference genome, which is the key step that dictates almost the entire computational cost and 

time of the sequence data processing pipeline. QC metrics such as depth distribution, insert size 

distribution, and contamination rate requires full alignment while some other metrics, such as 

base quality distribution, nucleotide compositions do not. Post-alignment methods, such as 

QPLOT and verifyBamID, can generate comprehensive QC metrics at the expense of much 

slower turnaround time, for example, a typical full alignment based QC procedure of a 30x 

whole genome sequencing dataset takes more than 7 CPU days, whereas pre-alignment methods, 

such as FASTQC, run much faster at the expense of the limited amount of information contained 

in the QC metrics. 

Detection and Estimation of DNA Sample Contamination 

DNA sample contamination is one of the most frequently identified problems in the 

quality control of high-throughput sequencing data. Depending on the contamination source, 

contamination events can be categorized into cross-species or within-species. Within-species 

contamination, human to human contamination specifically, is much harder to detect and more 

common (e.g. due to sample swaps, spillage of the specimen, contamination from other human 

DNAs during the experimental procedure) because sequence alignment cannot effectively filter 

out contaminating reads. As a result, within-species contamination will substantially affect 

genotyping accuracy even for deeply sequenced genomes under modest levels of contamination. 

For example, genotype discordance increases by 14-fold (0.3% to 4.2%) if the 5-10% of 

sequence reads are contaminated by another individual compared to uncontaminated sequence 

reads in a whole exome sequencing study14.  
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Methods for detecting and estimating contamination, as well as methods for correcting 

genotype calls accounting for contamination have been developed previously13–18. For example, 

verifyBamID13 is one of the most popularly used software tools to detect and estimate DNA 

sample contamination and has been adopted as a part of standard analysis pipeline in most large-

scale sequencing centers in the US, and cleanCall14 can correct for DNA contamination in 

genotype calling.  

Estimation of Genetic Ancestry from Sequence Reads 

Genetic ancestry plays an important role in many statistical models of genetic analysis 

such as adjustment for population stratification in large scale genetic association studies. Failing 

to specify the correct genetic ancestry could result in false association signals or misleading 

population genetic inferences. Genetic ancestry also plays an important role in the quality control 

of sequence reads. For example, accurate estimation of DNA contamination requires genetic 

ancestry information to obtain the correct population allele frequencies13. Per-individual variant 

count or heterozygosity substantially varies by ancestries4, and quality control steps need to 

account for ancestries when using such metrics.   

In large-scale genetics studies consisting of individuals from a diverse genetic 

background, it is not uncommon that self-reported ancestry information is incorrect or even 

unavailable. Inferring genetic ancestry early on in the sequencing analysis can facilitate timely 

quality control to identify potential sample swaps and also allow QC pipelines to use correct 

parameters of genetic ancestry when needed. 

Many methods, such as EIGENSTRAT19 or TRACE20, have been proposed for estimation 

of genetic ancestry from array-based genotypes. However, only few methods are currently 
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available for estimating genetic ancestry from sequence reads. For example, LASER21 enables 

direct estimation of genetic ancestry of the sequenced sample from sequence reads. The method 

simulates sequence reads from genotyped reference samples and estimates the principal 

components of the reference panel and the target sample from the simulated and actual sequence 

reads. Finally, it projects the PC coordinates of the target sample onto those of the reference 

panel using Procrustes method22. 

Single-cell RNA Sequencing Technologies 

The advent of single-cell RNA sequencing(scRNA-seq) technologies allows us to study 

the impact of environmental and/or genetic perturbations on transcriptomic profiles at a single-

cell resolution. Compared to bulk sequencing of mRNAs, scRNA-seq allows us to examine 

transcriptomic profiles of each cell type, to unravel heterogeneity of cells within the same cell 

types, and to trace the lineage of cells under developmental or mutational trajectories. For 

example,  in a colorectal cancer single cell study23, heterogeneous subgroups of cells were 

identified from a known cell-type identified from bulk sequencing, expanding our understanding 

intra-tumoral heterogeneity in colorectal cancer and its impact on patient survival and identifying 

novel differentially expressed genes between tumor and normal cells. Many other examples 

suggest that scRNA-seq can help us to address various scientific questions that bulk RNA 

sequencing alone could not address. 

The scale of scRNA-seq in studies has been exponentially increasing over the past 

decade. For example, in 2009, the less than a hundred single cells can be examined in one study, 

but it has been up to millions2,24 in 2019. The exponential growth in the number of cells studied 

in scRNA-seq researches resulted from both sequencing capacity and innovative library 
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preparation strategies. Unlike early generation of scRNA-seq technologies required separate 

library preparation of each single cell, recent droplet-barcoding scRNA-seq emerged as a 

scalable solution to assay thousands of single-cell transcriptomes in a single library 

preparation24,25. This technique mainly relies on a stochastic procedure of placing a cell and a 

labeled bead within a droplet through a microfluidic device.  The droplets that contain both cells 

and beads will undergo lysis within the droplet then be further processed to extract cDNA 

sequence that can be demultiplexed based on the bead barcode.  

In droplet-barcoding scRNA-seq, controlling cell flow rate is a key factor to determine 

the tradeoff between throughput and the rates of multiplets. Increasing cell flow rates will 

increase the chance that a droplet contains more than one cell (i.e. multiplet), whereas reducing 

the flow rate may result in excessive empty droplets that do not contain cells. As a result, the 

throughput of droplet-barcoding scRNA-seq will initially increase as we increase cell flow rate 

but soon reach the ceiling, as further increment of cell flow rate can result in non-identifiable 

multiplets, which violates the “one-droplet-one-cell” assumption. 

Population-scale Single-cell RNA Sequencing with Genetic Multiplexing 

The scRNA-seq technologies provide us with promises to understand the regulatory 

mechanisms relevant to complex traits at a single cell resolution. To identify significant 

associations between genetic or environmental factors and expression levels of genes in a 

specific cell type with sufficient statistical power, it is important to scale single-cell sequencing 

experiments to as many samples as possible. However, due to the limited throughput of the 

scRNA-seq experiment, the per-sample cost of scRNA-seq experiment is orders of magnitude 
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more expensive than bulk RNA-seq, so it is currently prohibitive to scale scRNA-seq to a large 

number of individuals.  

Recently, a cost-effective scRNA-seq experiment strategy, mux-seq26, has emerged to 

address this challenge.  Instead of processing one sample per library preparation, mux-seq 

protocol pools many genetically diverse samples together in a single library preparation with 

much higher cell flow rate.  Due to the increased cell flow rate, the number of cells per run 

increases by orders of magnitude, at the expense of a high fraction of multiplets. Because most of 

these multiplets contain cells from different individuals, they can be identified statistically by 

leveraging “genetic barcodes” that are encoded in the scRNA-seq reads overlapping with genetic 

variants. The singlets can also be demultiplexed into the originating samples using the genetic 

variants. Similar strategies can be applied for samples with the same genetic background if each 

sample is uniquely barcoded with additional molecular assays (such as Cell Hashing27, or  

MULTI-seq28). These multiplexing-based scRNA-seq techniques are rapidly becoming popular 

due to the ability to substantially reduce the cost while dramatically eliminating batch effects by 

harnessing natural genetic variations or additional molecular tags unique to each sample. 

 

Challenges 

There are numerous computational and statistical challenges remaining for achieving 

accurate and efficient analysis high-throughput sequence data in various types of scientific 

studies. Compared to downstream analyses that take relatively a small snapshot of the massive 

amount of data to answer specific biological questions, relatively fewer methods for upstream 

analysis, which requires efficient processing of massive amount of sequence reads, have been 
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developed so far.  In this dissertation, I address the three specific challenges related to the rapid 

and robust analysis of the massive amount of sequence data in various contexts of population-

scale genomic and transcriptomic studies. 

Rapid, Comprehensive, and Accurate Quality Control of Ultra-High-Throughput 

Sequence Reads 

With the advent of ultra-high-throughput sequencing technologies, a rapid turnaround 

time of quality control is becoming increasingly important. Delay or failure in detecting potential 

problems in the sequencing or library preparation protocol can result in massive financial loss. 

For example, the NHLBI TOPMed project has sequenced 50,000 genomes a year, which costs 

$1M/week in sequencing at $1,000/genome. Delayed quality control more than a week may 

cause loss of multimillion dollars, not to mention the waste of time and, more importantly, the 

waste of valuable samples. 

The challenge with existing QC methods is the tradeoff between the turnaround time and 

the capabilities to generate comprehensive QC metrics. The pre-alignment methods are fast but 

unable to generate important QC metrics such as insert size distribution or contamination rates; 

on the other hand, the post-alignment methods can generate comprehensive metrics, but the 

turnaround time is orders of magnitude longer. To obtain QC metrics within rapid turnaround 

time, we need to avoid the full alignment of sequence reads to the reference genome. However, 

estimation of many QC metrics require aligned positions of reads or their genomic context, so at 

least certain informative reads need to be aligned to the genome to obtain comprehensive QC 

metrics. 
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In my dissertation, I address these challenges through a rapid algorithm that focuses only 

on selected regions of the genome that allows us to estimate comprehensive QC metrics, while 

filtering most of the reads outside the focused region to reduce the turnaround time by orders of 

magnitudes compared to the existing post-alignment QC methods.  

Robust Estimation of DNA Contamination and Genetic Ancestries 

One of the most widely used methods to estimate DNA contamination from sequence 

genome is verifyBamID13. In practice, it works well in various scenarios of DNA contamination, 

but it requires users to correctly specify population allele frequencies for each variant. When 

incorrect population allele frequencies are specified, it is known to give a biased estimation of 

contamination rates13. When a large number of samples from diverse genetic ancestries are 

sequenced, such as in major sequencing centers, accurately estimating DNA contamination 

regardless of genetic ancestry is not impossible, but practically challenging.   

First, while it is possible in principle to obtain the genetic ancestry information of each 

sequenced sample, prepare the population allele frequencies of each sequenced sample, and run 

verifyBamID with sample-specific parameters, it is very cumbersome or even infeasible to 

implement such a pipeline in practice for large-scale sequencing centers or studies. Second, self-

reported ancestry could be incorrect or not available a priori, and it is unclear how to best 

prepare the population allele frequencies for the sample in such cases. Third, due to the practical 

difficulties to implement the best practice (i.e. specifying correct population allele frequencies 

for each sample), many investigators run verifyBamID with the default setting, using pooled 

allele frequencies across diverse populations in 1000G. However, this common practice 
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introduces population-specific biases in the contamination estimates, making certain populations 

or ethnic groups more prone to an incomplete screening of DNA contamination. 

Moreover, estimating genetic ancestry from sequence reads can inform many important 

details about the sequenced samples in the quality control perspectives. The current methods to 

estimate genetic ancestry from sequence reads, such as LASER21, usually assume the sequenced 

genome is free of contamination. The genetic ancestry estimates can be biased if this assumption 

does not hold. To address these issues in estimating DNA contamination and genetic ancestry, I 

develop a more robust approach that jointly accounts for contamination and genetic ancestry 

together.    

Population-scale Single-cell Sequencing Experiments without External Genotyping 

While genetic multiplexing (mux-seq) workflow offers a population-scale solution for 

cost-effective scRNA-seq experiment with reduced batch effects, the existing statistical method, 

demuxlet26 requires external genotypes to be collected by array genotyping or DNA sequencing.  

If it is possible to implement a genotyping-free version of demuxlet, it will enable much broader 

applications of mux-seq workflow in cases like model organisms or cancer cells, where genotype 

information is not easy to obtain. Moreover, the genotyping-free mux-seq workflow will simplify 

mux-seq experiment and analysis workflow by removing the bottleneck of processing and 

imputing genotype data, which requires substantial time and effort in addition to the cost of 

external genotyping. 

To overcome this limitation, in my dissertation I propose a genotyping-free de-

multiplexing method based on the fact that a large fraction of RNA sequence read itself already 

contains allelic information of known variants. Unlike the scenario with external genotypes, 
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where demultiplexing is essentially a supervised classification problem; de-multiplexing without 

external genotypes becomes an unsupervised clustering problem, where sparsity of available 

reads overlapping with genetic variants makes it a much more difficult problem than its 

supervised version. 

 

Chapter Overview 

My dissertation topics focus on accurate, robust, and efficient methods for upstream 

analyses of massive amount of sequenced genomes and single-cell transcriptomes. The goals of 

these topics range from enabling rapid and accurate quality control of sequence data to enabling 

more cost-effective and seamless population-scale single-cell sequencing experiments. The 

relationships among these chapters can be summarized in Figure 1.2. 

In Chapter 2, I will introduce methods for ultra-fast quality control of ultra-high 

throughput sequence reads. By focusing on a subset of a reference genome around a specific set 

of common genetic variants, I integrate the advantages of rapidly filtering out negative hits from 

a spaced k-mer hash table and detailed information from a BWT based local alignment29. My 

methods first extract flanking sequences (250-1,000bp) around known genetic variant sites to 

construct a reduced reference genome and rapidly filters out >94% of unalignable reads using the 

spaced hashing technique. The filtered reads are aligned to the reduced reference genome using a 

computationally optimized version of BWA29. Compared to the conventionally used 1000 

Genomes alignment pipeline, my method can reduce the computational time to generate 

thorough quality metrics on a 38x genome from 160 hours to 1hr. The results show that the 

quality metrics estimated from my methods are highly concordant with the quality metrics 
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generated from the full-alignment pipeline-based methods. Because my method collects 

information about genetic variation between individuals, it also provides us with pileup 

information and performs model-based estimation using genotype likelihoods, including 

estimation of DNA contamination and genetic ancestry.  

In Chapter 3, I will show that the estimation of DNA contamination and genetic ancestry 

can intertwine and cause bias if not handled properly. Specifically, I propose a robust statistical 

method, verifybamID230, that jointly account for DNA contamination and genetic ancestry. 

Because verifybamID2 also estimate genetic ancestry, it can accurately estimate DNA 

contamination without requiring genetic ancestry of the intended or contaminating genomes. My 

method integrates the estimation of genetic ancestry and DNA contamination in a mixture model 

based likelihood framework by leveraging individual-specific allele frequencies31,32 projected 

from reference genotypes onto principal component coordinates. Based on the evaluation of my 

method on real datasets, I show that verifyBamID2 robustly corrects for the bias in both 

contamination rate estimates and genetic ancestry estimates under various scenarios of DNA 

contamination. 

In Chapter 4, I propose a novel method, freemuxlet, to multiplex/demultiplex large scale 

single cell sequencing samples, which increases multiplexing throughput without using external 

demultiplexing barcode other than genetic variants information within droplet itself. The key 

idea is to aggregate droplets that belong to the same sample into clusters, and to calculate the 

genotype likelihood of each cluster. With genotype information inferred from scRNA-seq reads, 

similar to demuxlet, it is possible to detect and remove doublets, to assign membership to each 

droplet. Freemuxlet initiates this clustering process by first assigning most likely singlets to 

clusters, then continue to iteratively update cluster genotype likelihood and droplet membership. 
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Freemuxlet cluster droplets based on the pairwise distance described by the Bayes Factor (BF) 

that is defined by the hypotheses whether droplets have the same sample origin or not. Clusters 

are further refined by detecting and removing doublets using mixture model assuming equal 

proportions. The results show that freemuxlet produces highly consistent results to the 

independent cell-hashing method27 based on additional molecular tags and to the demuxlet based 

on external genotypes. 

In Chapter 5, as a conclusion, I summarize the three main chapters, discuss the strength 

and weakness of these methods with possible future directions of these methods and the related 

fields.   
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Figure 1.2 Illustration of the relationship among chapters. Dissertation chapters address challenges that arise from different 
scenarios of sequence analyses but share common key factors. 1. Both FASTQuick and Mux-seq leverage genetic variants to 
collect allelic information on sequences to calculate QC metrics or genotype likelihood. 2. Both verifyBamID2 and freemuxlet 
applied mixture model based likelihood to deconvolute mixed components in sequencing dataset. (contamination for 
verifyBamID2 or multiplexed sequence for freemuxlet.) 
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Chapter II.  

FASTQuick: Rapid and Comprehensive Quality 

Assessment Tool from Raw Sequence Reads  

Introduction 

Efficient and thorough quality assessment from deeply sequenced genomes in ultra-high-

throughput scale is crucial for successful large-scale sequencing studies. Delay or failure in 

detecting contamination, sample swaps, quality degradation, or other unexpected problems in the 

sequencing or library preparation protocol can result in enormous loss of time, money, and 

invaluable specimens if, for example, hundreds or thousands of samples are found to be 

contaminated weeks or months later. Ensuring comprehensive quality control of sequence data at 

real-time speed will assure generation of high-quality sequence reads, and subsequently 

successful outcomes in the downstream analyses.   

Existing quality assessment tools mainly fall into two categories – pre-alignment and 

post-alignment methods – based on whether they require full alignment of the genome prior to 

the quality assessment. Pre-alignment methods, such as FASTQC10, PIQA33, and HTQC34, 

produce read-level summary statistics that can be obtained from sequence reads, such as base 



19 
 

compositions, k-mer distributions, base qualities, and GC bias levels. However, these pre-

alignment methods do not estimate many key quality metrics required for comprehensive quality 

assessment. These missing metrics include mapping rate, depth distribution, fraction of genome 

covered, sample contamination, or genetic ancestry information. Other post-alignment methods, 

such as QPLOT12, Picard35, GotCloud36, and verifyBamID13, provide a subset of these key 

quality metrics but require full alignment of sequence reads, which typically takes hundreds of 

CPU hours for deep (e.g. >30x) sequence genome. 

We describe FASTQuick, a rapid and accurate set of algorithms and software tools, to 

combine the merits of QC tools from both categories. By focusing on a variant-centric subset of 

reference genome(reduced reference genome), our methods offer up to >50-fold faster 

turnaround time than existing post-alignment methods for deeply sequenced genome, while 

providing a comprehensive set of quality metrics comparable with QPLOT and verifyBamID 

with the help of statistical adjustments to account for the reduced reference genome.  

Results 

FASTQuick Overview 

The key algorithms and procedures of FASTQuick are illustrated in Figure 2.1, and 

further details can be found in the Methods section. Briefly, FASTQuick constructs a reduced 

reference genome and indices from a set of flanking sequences surrounding known SNPs, and 

rapidly filters out unalignable reads and align filtered sequence reads. Three types of generic QC 

summary statistics – per-base, per-read, and per-variant summary statistics - are generated from 
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the aligned reads to be translated into an interpretable and user-friendly quality metrics described 

in Table 2.1. 

 

Table 2.1 Quality assessment metrics provided by different tools 

Metrics FASTQC PIQA HTQC QPLOT Picard verifyBamID2 FASTQuick 

Base Quality Per Cycle ✓ ✓ ✓ ✓ ✓  ✓ 

GC Bias    ✓ ✓  ✓ 

PCR Duplication Rate    ✓ ✓  ✓ 

Insert Size Distribution    ✓ ✓  ✓ 

Contamination Estimate     ✓ ✓ ✓ 

Genetic Ancestry      ✓ ✓ 

% Mapped Reads    ✓ ✓   

Depth Distribution    ✓ ✓  ✓ 

Total Number of Reads ✓   ✓ ✓  ✓ 

K-mer Distribution ✓       

Read Length Distribution ✓  ✓ ✓ ✓  ✓ 

Full-Alignment not Required ✓ ✓ ✓    ✓ 

 

Computational Efficiency 

The primary goal of FASTQuick is to achieve comprehensive QC with much less 

computational cost than full-alignment-based QC procedures. A large fraction of the 

computational gains come from the usage of the reduced reference genome and filtering of 

unalignable reads through mismatch-tolerant spaced k-mer hashing(Figure 2.1A). Compared to 

alignment to the full human reference genome, aligning a 3x genome on the reduced reference 

genome reduced the run time by 34.9-fold (94,020 vs. 2,697 seconds) using the same algorithm. 

Using mismatch-tolerant spaced k-mer filtered out >90% of unalignment reads with no loss of 

alignable reads when 3 or more hits are required (default parameter) to be considered as 

alignable reads, saving additional 65% of computational time (Figure 2.1B). Putting them 
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together, the alignment step of FASTQuick  (with default parameters) was 100-fold faster 

(94,020 vs. 939 seconds) than the full genome alignment. We observed that >99% of unalignable 

reads could be filtered out with a more stringent threshold at the expense of 0.01% loss of 

alignable reads. However, the additional computational gain was only 14% (939 vs. 811 

seconds). 

We also evaluated the overall computational efficiency between FASTQuick and the 

GotCloud-based QC pipeline on high-coverage genome (38x) and low-coverage (3x) genomes 

from the 1000 Genomes Project (Table 2.2). The results demonstrate that FASTQuick produces a 

comparable set of QC metrics to GotCloud with 30~100-fold faster turnaround time.  

 

Table 2.2 Running time comparison(in hours) 

# of Thread 
FASTQuick Time Gotcloud QC Time(BWA) 

HG00553(3X) NA12878(38X) HG00553(3X) NA12878(38X) 

1 1.03  5.48  30.95  369.56  

2 0.53  2.46  21.53  230.85  

4 0.33  1.76  15.83  154.91  

8 0.24  1.75  12.74  131.85  
Running time is evaluated as wall clock elapsed time on a machine with Intel(R) Xeon(R) CPU (X7560 
@ 2.27GHz) 
 

Accuracy of QC Metrics 

We compared the distribution of QC metrics generated from FASTQuick with those from 

GotCloud on multiple sequenced genomes. The QC metrics shared between FASTQuick and that 

GotCloud36  are listed in Table 2.S1. The visualization QC metrics such as base quality 

recalibration (Figure 2.1E), normalized mean depth by GC content (Figure 2.1F), and depth 

distribution, were very close between our methods and GotCloud. Quantitatively, the QC metrics 
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were very similar too. For example, the two-sample Kolmogorov-Smirnov (KS) test statistics, 

which quantifies the maximum differences between two empirical cumulative distribution 

functions were D = 0.040.   

Insert Size Correction with Kaplan-Meier Estimator 

One challenge arising from QC based on partial alignment of sequence reads to the 

reduced reference genome is the estimation of insert size distribution. The insert size distribution 

is typically estimated from distances between the aligned pairs of reads from the fully aligned 

reads. When using a reduced reference, a large proportion of paired reads may not be fully 

mapped, and the read pairs that have shorter insert size are more likely to be mapped in both 

ends. As a result, estimating insert size distribution based only on the reads where both ends are 

mapped will result in biased estimates of insert sizes, as empirically demonstrated using the 38x 

genome in Figure 2.2.  

We resolved this challenge first by extending 10% of the variant-centric contigs to be 

sufficiently long (2000bp), and by estimating insert size only from the reads mapped to longer 

contigs. This way, we prevent the reduced reference genome from becoming too large to achieve 

computational efficiency, while substantially reducing the bias of insert size estimation. The 

observed insert size distribution from the longer 2,000bp contig was closer to that from a full 

alignment (Figure 2.2). However, bias still exists at a smaller level.  

To systematically correct for biased estimation of insert sizes, we statistically integrated 

the observed insert sizes across all contigs inverse probability weighting based on Kaplan-Meier 

curve37 (See Materials and Methods for details). Applying our correction produces estimated 

insert size distribution much closer to that from the full alignment (Figure 2.1G). The KS-test 
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statistics were reduced from 0.60 (using 500bp contigs), to 0.18 (adding 2,000bp contigs), and to 

0.017 (with Kaplan-Meier adjustment) compared to the estimates from the full alignment.  

Estimation of Contamination Rate and Genetic Ancestry 

To evaluate the estimation accuracy of contamination rate and genetic ancestry, we 

prepared artificially in-silico mixed 1000g samples as described in the Materials and Methods 

section. Then we compare the estimated contamination rate and genetic ancestry from 

FASTQuick with the estimation from the full-alignment QC pipeline-based result (Figure 2.1H). 

Results show that FASTQuick can estimate contamination rate and genetic ancestry as accurate 

as the full-alignment pipeline-based methods. 

 

Figure 2.1 Illustration of FASTQuick. A) Spaced K-mer Hash filter design with the tolerance of mismatches. B) Hash filter 
efficiency and time saving conditional on different threshold of hash hits. C) Reduced reference genome indexing process. We 
randomly select a subset of variant markers in the HapMap database after filtering out variants in hard-to-align regions. Flanking 
region sequences of these variants are constructed to form the reduced reference genome. Spaced K-mer Hash and BWT indices 
are constructed based on the  reference genome. D) Spaced K-mer Hash filter based sequence alignment process. Spaced K-mer 
Hash rapidly filter out negative hits of reads while maintaining tolerance of mismatches. Only a small fraction of reads will be 
aligned using bwa algorithms. Alignments will be analyzed using our methods to recover and report the QC status. E) Empirical 
Phred Score versus Reported Phred score. F) Normalized Mean Depth versus GC content. G) Insert Size Distribution recovered 
with Kaplan-Meier estimator. H) Contamination Level Estimation Comparison. Each point represents an artificially mixed 1000g 
sample with mixing rate ranging from 0.01 to 0.2. 
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Figure 2.2 Biased insert size distribution in reduced genome under 250bp(short) or 1000bp(long) flanking length 
configuration. Each color represents one scenario of insert size estimation without correction. “LongOnlyObservedInsertSize” 
(red) is when insert size distribution estimated only using reads mapped to the long flanking region; 
“ShortOnlyObservedInsertSize”(green) is when only using reads mapped to the short flanking region; “TrueInsertSize” (blue) is 
insert size distribution estimated under full genome alignment. 
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production can help us detect problems early and avoid further loss. However, rapid QC of ultra-
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produced by FASTQuick are comprehensive and highly concordant to methods that require full 

sequence alignment. 

Compared to previous quality assessment methods that do not align sequence reads at all, 

FASTQuick provides more comprehensive QC metrics such as depth distribution, insert size 

distribution, contamination, and genetic ancestry. The key idea behind the rapid alignment 

includes customized data structures, which combine the speed of the spaced-kmer hash table and 

the detailed alignment of BWT-based methods. FASTQuick rapidly filters out negative hits while 

generating detailed local alignment for positive hits. Tailored statistical estimation correct biases 

of the metrics from the reduced reference genome to make the QC metrics more accurate, as 

demonstrated in the estimation of insert size distribution using the Kaplan-Meier estimator.  

The speed of FASTQuick is about 50-fold faster than conventional full-alignment-based 

methods. Interestingly, our computational time is much faster than the time required to convert 

Illumina’s BCL formatted files into FASTQ files (~5 hours). Therefore, our methods can work as 

a UNIX pipe between the conversion procedures, so that it does not increase the end-to-end wall-

clock time if additional CPU cores are available in the machine. This ultra-fast speed can inspire 

new applications that also require real-time feedback while providing detailed alignment 

information in target regions. 

We acknowledge that FASTQuick also has certain limitations. The current version is only 

suitable for short sequence data. To make it compatible with long sequences, we need to further 

improve alignment algorithms to absorb features of other methods like minimap38. Another issue 

is that it still relies on a linear reference genome. Compared to linear reference genome-based 

alignment methods, the variant graph-based method 39 has advantages such as more sensitivity to 

non-diallelic variants and more balanced reads depth around indel or structural variants, which 
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characterizes genome-wide diversity better. Extending FASTQuick to other types of sequence 

data, such as exome sequencing, RNA-seq, ChiP-seq, and ATAC-seq should also be possible, if 

the technology-specific target regions are properly considered and accounted for. 

 

Materials and Methods 

Overview of FASTQuick 

FASTQuick first constructs a reduced reference genome from a set of flanking sequences 

surrounding known SNPs and build a BWT index29 and mismatch tolerant k-mer hash 

table(Figure 2.1C). Once the indices are built, FASTQuick rapidly filters out unalignable reads 

whose first 96-bp have less than 3 hits (out of 18 potential hits, among which 6 hits per 32-mer) 

against the spaced k-mer hash indices, and align filtered sequence reads to the reduced reference 

genome using the BWT index (Figure 2.1D). The small fraction of filtered aligned reads will be 

stored in binary Sequence Alignment/Map format (BAM) 40. Next, three types of generic QC 

summary statistics – per-base, per-read, and per-variant summary statistics – are generated from 

the aligned reads. Per-base summary statistics informs about mapping rate, depth distribution, 

GC-bias assessment, and base quality assessment. Per-read summary statistics allows us to 

estimate insert size distribution, with adjustment using inverse probability weighting based on 

Kaplan Meier curve37 to account for pair-end alignment bias due to the reduced reference 

genome, and duplication rate. Per-variant summary statistics allows us to estimate DNA 

contamination rate and genetic ancestry. Finally, these summary statistics are combined, jointly 

analyzed, and translated into an interpretable and user-friendly quality report.  
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Construction of Reduced Reference Genome using Flanking Sequences of SNPs 

FASTQuick constructs reduced reference genome based on flanking sequences around 

known common SNPs to enrich the reads that are informative both for genotype likelihood based 

inference (e.g. contamination and ancestry) and other quality metrics that require reads 

alignment. Starting from an arbitrary set of known SNPs, FASTQuick randomly selects a 

designated number of SNPs from known common (MAF>5%) SNP set, such as HapMap341, 

while excluding SNPs near hard-to-align regions (e.g. 1000 genome project strict mask region). 

FASTQuick then constructs reduced reference genome using short flanking sequences of the 

majority of SNPs(e.g. 90%) and long flanking sequences of the remained SNPs.  

Filtering Unalignable Reads with Mismatch-tolerant Hash 

Because the reduced reference genome is a small subset of the whole genome sequence, 

we expect that only a small fraction of reads will be alignable. However, attempting to align all 

the reads is still computationally expensive. FASTQuick builds a hash-based index to rapidly 

filter out the reads that are unlikely to be aligned to the reduced reference genome. To make the 

hash robust against sequencing errors, FASTQuick builds six locally sensitive hash tables of 16-

mers for each 32-mer(Figure 2.1A), so that 32-mers with 2 or less mismatches can still be 

guaranteed to match to at least one of the hash tables.  

FASTQuick partitions each sequence read into multiple 32-mers and performs hash 

lookups for each possible 16-mers. For example, for a 100-bp read, eighteen 16-mers (6 per 32-

mer) across three 32-mer will be matched to the hash table. For reads longer than 96-bp reads, 

only the first 96-bp reads are used. FASTQuick will decide to filter out a read or not based on 

whether the number of matching 16-mers is less than a certain threshold k. For example, if k is 3, 
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reads with less than 7 mismatches are guaranteed to pass the filter, and many other reads with 

more mismatches will pass the filter. If k is 10, reads with less than 3 mismatches are guaranteed 

to pass the filter. We chose k=3 based on our experiment based on empirical observations 

described in the Results section. 

Generating Base-level and Read-level QC Metrics 

Using the reads aligned to the reduced reference genome, FASTQuick generates both 

base-level and read-level QC metrics. Base-level metrics, such as depth distribution and the 

number of mismatches, are recorded and summarized by GC content, reported base quality, and 

sequencing cycle. Because the reads spanning the end of flanking sequences may be poorly 

aligned, FASTQuick produces base-level metrics only on the fully alignable portion of flanking 

sequences. Let the length of flanking sequence be w and the read length be r. Then, only 2*(w-r) 

+1 bases spanning the variant site will be considered when collecting base-level summary 

statistics. Read-level QC metrics, such as the fraction of mapped reads, the fraction of duplicated 

reads and insert size distribution are estimated and reported based on reads alignment result.   

Bias-Corrected Estimation of Insert Size Distribution 

Due to the limited length of flanking sequences in the reduced reference, the observed 

distribution of insert sizes obtained from the reads that both ends are mapped will be biased 

towards smaller values. In order to recover the full distribution of insert sizes adjusting for the 

“censored” reads due to large insert sizes beyond the flanking sequences, we adopted the 

Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average37 as described 

below. We define a tuple (𝑡", 𝑡#, 𝑡$) for each mapped DNA segment (or read pair), where 𝑡" is 
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the observed insert size, 𝑡#	is the maximal insert size of read 1, and 𝑡$ is the maximal insert size 

of read 2. The maximal insert size is defined as the distance between the leftmost/rightmost base 

of read 1/read 2 and the rightmost/leftmost base of the flanking region sequence. This tuple is 

fully specified only when a read pair is properly aligned, otherwise, for single-end mapped read 

pair(including partially mapped pair) only one of the two maximal insert sizes (𝑡#	or 𝑡$) is 

available and unobserved value is set to missing, the rest of the read pairs, such as read pairs that 

are mapped to different chromosome, with low mapping quality, or in abnormal orientation, are 

discarded in insert size estimation. Empirically, among all 𝑁 properly aligned read pairs, we can 

estimate insert size by counting the frequency of different observed insert sizes, 𝑡", and the 

cumulative distribution of insert size hence becomes: 

𝐹(𝑡) =
1
𝑁,𝐼.𝑡",0 ≤ 𝑡2

3

045

 

However, this direct estimation will be severely biased because of reads mapped only in a single 

end is more likely to have larger insert sizes.  

To correct this bias, analogous to estimation of survival function, which satisfy 𝑆(𝑡) =

1 − 𝐹(𝑡), we can view the leftmost/rightmost base on each flanking region as the start time 

point, the exact insert size 𝑡" as the time when data point is observed to fail, and the maximal 

insert size, 𝑡# and 𝑡$, as the time when data point is censored. Let the ordered observed time 

points 𝑡" and censored time points 𝑡# (or 𝑡$) be 𝜏. Denote 𝑜: as the number of observed failure 

cases, i.e. the number of read pairs have observed insert size less than or equal to 𝑡, and also 

denote 𝑐: as the number of censored cases at time t, i.e. the number of single-end mapped read 

pairs have maximal insert size less than or equal to 𝑡, then let 𝐼.𝜏< ≥ 𝑡2 be indicator function if j-

th time point larger than certain time 𝑡(j-th insert size larger or equal to 𝑡). Then the risk set is: 
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𝑌(𝑡) =,?𝑜< + 𝑐<A𝐼.𝜏< ≥ 𝑡2
B

<45

 

Then the Kaplan-Meier estimator 𝑆CDE  of 𝑆(𝑡): 

𝑆CDE (𝑡) = F G1 −
𝑛<

𝑌?𝜏<A
I

J<|LMN:O

	 

Satten et al.(2001)37 proposed a simplified algorithm to iteratively estimate survival function for 

failure times and survival functions for censoring times, by which we conveniently estimate 

𝐹(𝑡).  

 

Estimation of Contamination Rates and Genetic Ancestry 

We also implemented the likelihood model based methods to estimate genetic ancestry 

and contamination rate in FASTQuick. The details of these methods will be fully described in 

Chapter 3. In FASTQuick, to seamlessly integrated these methods into our ultra-fast QC 

procedure, we designed compatible variant-centric data structures and input/output interfaces 

that can directly deliver sequence information and estimated statistics from FASTQuick to 

modules that estimate contamination and genetic ancestry.  

 

Experimental Data 

We selected a deeply sequenced genome of a publicly available sample (NA12878) from 

the Trans-Omics Precision Medicine (TOPMed) project for most evaluations. To evaluate 

computational efficiency for low-pass sequence genome, we also evaluated another sample 
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(HG00553) from the 1000 Genomes Project (ERR013170, ERR015764, and ERR018525). To 

evaluate the accuracy of contamination estimates we constructed 10 genomes with in-silico 

contamination by randomly sampling aligned sequence reads from samples in 1000 Genomes 

phase 3 project and then mixing reads from different samples proportional to the intended 

contamination rates α ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, as described in Chapter 3.  
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Chapter III. 

Ancestry-agnostic Estimation of DNA Sample 

Contamination from Sequence Reads*

Introduction 

Sample contamination is a common problem in DNA sequencing studies. Contamination 

may occur during sample shipment (due to spillage across wells, pipetting errors or insufficient 

dry ice), library preparation (due to gel cut-through in fragment size selection or unexpected 

switch between barcoded adaptors in-vitro), in-silico demultiplexing from a sequenced lane into 

barcoded samples, or on many other unexpected occasions. Even modest levels of contamination 

(e.g. 2-5%) within a species substantially increase genotyping error, even for deeply sequenced 

genomes42. Accurate estimation of DNA contamination rates allow us to identify and exclude 

contaminated samples from downstream analysis, and genotypes of moderately contaminated 

samples (e.g. <10%) can be improved by accounting for contamination in genotype calling42.  

                                                
 

* This chapter has been accepted by Genome Research as Zhang, F., Flickinger, M., Abecasis, G., Boehnke, M. & Kang, H. M. Ancestry-
agnostic estimation of DNA sample contamination from sequence reads. 
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  Previously we developed methods and a software tool, verifyBamID43, to estimate DNA 

contamination from sequence reads given known population allele frequencies of common 

variants. Many investigators and most major sequencing centers use verifyBamID as a part of 

their standard sequence processing pipeline. However, we have shown that verifyBamID can 

underestimate DNA contamination rates if the assumed population allele frequencies are 

inaccurate43. Such an underestimation can be avoided if correct population allele frequencies are 

provided in ideal circumstances. However, in early stages of sequence analysis, performing a 

tailored customization of quality control (QC) steps for each sequenced genome based on their 

ancestry is not always feasible or is sometimes impossible. Such a tailored customization 

requires planned coordination between sequencing centers and study investigators prior to 

sequencing to share the self-reported ancestry (which is not always accurate) or estimated 

ancestry from external genotypes (which is not always available). Modifying the QC pipeline to 

accommodate study-specific or sample-specific parameters may not be an option for large 

sequencing centers. Even if such a tailored customization of QC pipeline is possible, preparing 

per-sample ancestry prior to QC may delay time-sensitive issues in the sequencing procedure. If 

contamination rates can be accurately estimated without having to know the ancestry or allele 

frequencies a priori this will simplify the sequence analysis pipeline and expedite the QC.   

Here we describe a novel method to robustly detect and estimate DNA contamination by 

modelling the probability of observed sequence reads as a function of “individual-specific allele 

frequencies” that account for genetic ancestry of a sample. Instead of assuming that the 

population allele frequencies are known, we represent individual-specific allele frequencies as a 

function of genetic ancestry using principal component coordinates and the reference genotypes 

from a diverse population, e.g. Human Genome Diversity Project (HGDP)44 or 1000 Genomes45.  
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We then jointly estimate genetic ancestry and contamination rates of a sequenced individual 

based on a mixture model, without requiring the assumption that population allele frequencies 

are known. As a result, our method enables robust estimation of DNA sample contamination 

without relying on externally provided genetic ancestry information. Instead, our method 

simultaneously estimates the genetic ancestry accurately from sequence reads through a unified 

likelihood framework. 

Results 

Our previous method (verifyBamID) can estimate sample contamination rate with 

external genotypes or with population allele frequencies only. Because both methods accurately 

estimate contamination rates, the latter approach, which only requires allele frequencies, has 

dominated its practical use (Figure 3.1A). However, if allele frequencies are misspecified or 

unknown, the estimated contamination rates can be severely biased.  

        Our new method (verifyBamID2) avoids such a bias due to misspecified allele 

frequencies by modelling individual-specific allele frequencies as a function of genetic ancestry, 

and by jointly estimating genetic ancestry and contamination rates to maximize the likelihood of 

sequence reads. The genetic ancestry can be represented as coordinates of principal components 

from cosmopolitan reference panel, such as 1000 Genomes or HGDP (Figure 3.1B). In addition, 

Our new method can also be used for genetic ancestry estimation, similar to TRACE/ 

LASER20,21, but accounting for potential sequence contamination together. We show that our 

method provides (1) comparable or more accurate estimates of genetic ancestry than existing 

methods such as TRACE/LASER even in the absence of contamination and (2) reduced bias in 

contamination rate estimates compared to our previous method requiring known population 
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allele frequencies using in silico contaminated datasets and sequenced genomes from the 

InPSYght psychiatric genetics sequencing study. 

       We assessed our new methods in the following steps. First, in the absence of 

contamination, we demonstrate that our estimation of genetic ancestry provides comparably 

accurate estimates of genetic ancestry as other state-of-art methods. Second, in the presence of 

contamination, we demonstrate that joint estimation of genetic ancestry and contamination 

substantially improves the estimation accuracy of both parameters. Third, using in-silico 

contaminated samples, we demonstrate that our methods robustly provide more accurate 

estimates than previous methods across various combinations of genetic ancestries and 

contamination rates. Fourth, from the analysis of deeply sequenced genomes in the InPSYght 

study, we demonstrate that our new methods deliver more accurate contamination estimates than 

the previous methods. 

 
Figure 3.1 Overview of verifyBamID and verifyBamID2 software tools. (A) verifyBamID takes aligned sequence reads (in 
BAM format) and known variant sites annotated with population allele frequencies (in VCF format) to estimate DNA 
contamination rates. When allele frequencies are correctly specified, the estimated DNA contamination rates are expected to be 
accurate (green boxes). However, when the allele frequencies are misspecified (e.g. due to incorrect self-reported ancestry), the 
estimates of DNA contamination rates may be biased (red boxes). (B) verifyBamID2 takes aligned sequence reads (in 
BAM/CRAM format) and top k singular value decomposition (i.e. PCs and SNP loadings) to estimate the genetic ancestries and 
contamination rates together. Because verifyBamID2 does not rely on self-reported ancestry, even if ancestry of sample is 
misspecified or unknown (red box), the estimated contamination rates will be unbiased (green box). In addition, genetic 
ancestries are also estimated in PC coordinates, adjusting for potential contamination  
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New Model-based Methods Accurately Estimate Genetic Ancestry 

In the absence of contamination, widely used methods such as LASER and TRACE are 

known to estimate genetic ancestry accurately. Because we propose using a new model-based 

approach to estimate the genetic ancestry (jointly with contamination rates), we first compared 

the accuracy of our new method, in the absence of contamination, with LASER and TRACE.  We 

randomly chose 500 ethnically diverse samples from the 1000 Genomes Project low-coverage 

(4×) genomes, and 500 African American samples from the deeply sequenced (32×) genomes 

from the InPSYght project. We estimated their genetic ancestries using 100,000 SNPs from the 

HGDP reference panel (see Methods for details) and compared their genetic ancestry estimates 

obtained by LASER (using the same sequence data), and TRACE (using the hard-call genotypes). 

As illustrated in Figure 3.2A, 3.2C, 3.2E, the estimated PC coordinates of the 1000 Genomes 

individuals are located close to their corresponding HGDP populations across all three methods. 

Compared to TRACE and LASER, we observed that the estimated genetic coordinates from 

verifyBamID2 were the closest to the centroid of corresponding HGDP population (Table 3.1) in 

4 of the 5 populations (all except TSI). These results suggest that our method provides estimates 

at least as precise compared to those for other state-of-the-art methods. 
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Figure 3.2 Evaluation of estimated genetic ancestry coordinates, in the absence of contamination, between TRACE, LASER, 
and verifyBamID2 on samples from the 1000 Genomes low coverage genome (n=500, diverse ancestry) sequence data (A,C,E) 
and from the InPSYght deep genome (n=500, African Americans) sequence data (B,D,F). Panel A and B show results from 
TRACE, C and D from LASER, and E and F from verifyBamID2 (assuming no contamination). Each point represents a sample, 
each color represents a population ancestry with the exception that grey point represents PCA coordinates of reference (HGDP) 
samples.  
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Table 3.1 Distance between estimated PCA coordinates of HGDP and 1000G populations*  

Population Label 
TRACE LASER verifyBamID2 

1000G HGDP 

CHB Han-NChina 1.89 3.01 0.82 

CHS Han 1.76 1.81 1.25 

TSI Tuscan 1.62 2.78 1.86 

YRI Yoruba 2.35 2.62 0.59 

JPT Japanese 1.66 1.99 1.29 

*Mean distances were measured between the PCA coordinates across the population in HGDP (estimated from the array 
data of Wang et al.46 and the PCA coordinates estimated from 1000 Genomes low coverage sequence data of the 
corresponding population, projected onto the same PCA coordinates using TRACE, LASER, or verifyBamID2 (assuming 
no contamination). Bold face represents the smallest distance among the three methods for each population.  

 
 

Genetic Ancestry Estimates may be Confounded by DNA Contamination 

Next, we constructed in-silico contaminated sequenced data from the 1000 Genomes 

Project and estimated contamination parameters and genetic ancestries jointly. We observed that 

when sequences are contaminated between different continental populations, the genetic ancestry 

estimates in PC coordinates drift towards the contaminating population when contamination is 

ignored (Figure 3.3A) or when assuming that intended and contaminating samples originated 

from the same population (Figure 3.3C). As the contamination rate increases, drift increases 

(Figure 3.3A, 3.3C, 3.3E).  

However, when we accounted for possible differences in genetic ancestries between the 

two intended and contaminating samples using our new methods, PC coordinates remained 

similar to those for uncontaminated samples (Figure 3.3E), and contaminated samples 

constructed from individuals that belong to the same population (Figure 3.3B, 3.3D, 3.3F). 
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Figure 3.3 Impact of DNA sample contamination on the estimation of genetic ancestry. Each point represents a sample. Grey 
point represents reference (HGDP) sample and its PCA coordinates, similar to Figure 3.2. Each colored point represents in-silico 
contaminated samples across various contamination rates and populations. In panel A, C, E, European (GBR) and East Asian 
(CHS) samples are contaminated with African (YRI) samples at different contamination rates (i.e. between-ancestry 
contamination). In panel B, D, F, European (GBR) and East Asian (CHS) samples are contamination with another sample in the 
same population (i.e. within-ancestry contamination). Different colors represent different contamination rate ranging from 1% to 
20%. Upper panels (A, B) show verifyBamID2 estimates without modelling contamination. Middle panels (C, D) show 
verifyBamID2 estimates under the assumption that intended and contaminating populations are identical (i.e. equal-ancestry 
model). Lower panels (E, F) show verifyBamID2 estimates under the assumption that intended and contaminating populations 
can be different (i.e. unequal-ancestry model). 
 

Robust, Accurate, Ancestry-agnostic Estimation of DNA Contamination 

Next, we evaluated the effect of genetic ancestry misspecification in estimating DNA 

contamination rates. We constructed contaminated samples between various combinations of 

A 
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populations and compared the accuracy of estimated contamination rates using both the original 

methods which assume known allele frequencies and the new methods which estimate 

contamination rate and genetic ancestry jointly. 

When contamination happens within the same population, running original methods with 

correct continental population allele frequencies specified provided accurate contamination 

estimates (Figure 3.4A, 3.4E, 3.4I). However, using pooled allele frequencies, which would be a 

default option when it is infeasible to specify population information a priori before sequencing, 

consistently underestimated contamination rates. Bias was particularly large when intended 

individuals were of African ancestry.  

Specifying incorrect population allele frequencies results in even larger contamination 

estimation bias. For example, using African allele frequencies on East Asian samples resulted in 

an average estimate of 2.9% contamination for samples with contamination 10% (Table 3.S1), 

implying that a large fraction of 10% contaminated samples within East Asian ancestry would 

not have been flagged for contamination-based exclusion at the contamination-exclusion 

threshold of 1-3% used by many studies e.g. the Trans-Omics Precision Medicine (TOPMed) 

study47. 

Our results consistently demonstrated that the ancestry-agnostic method provides as 

accurate estimates as the original methods specified with correct population labels (Figure 3.4A, 

3.4E, 3.4I, Table 3.S1), and the estimates are substantially better than those from pooled allele 

frequencies or incorrectly specified allele frequencies (Table 3.2).  
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When the intended and contaminating populations are different, we observed that 

contamination is sometimes overestimated due to increased fraction of heterozygous genotypes 

than expected by a given contamination rate under single population model. Our method based 

on unequal-ancestry model outperforms all the other methods in terms of overall bias and Mean 

Squared Error (MSE) (Figure 3.4, Table 3.S4), correcting for both upward and downward biases 

in various ancestry combinations. For example, the relative deviation of estimated to intended 

contamination rate (i.e. |𝛼Z/𝛼 − 1|) is reduced by 80% (73-88%) compared to the original 

verifyBamID with various population allele frequencies, suggesting reduced bias. MSE is also 

reduced by 92% (86-97%). This robustness reflects the ability to incorporate differences in 

population allele frequencies between intended and contaminating individuals (Figure 3.4B, 

3.4C, 3.4D, 3.4F, 3.4G, 3.4H, Table 3.S1).    

We also examined the accuracy of our methods for admixed populations by performing a 

similar experiment using the Mexican population (MXL) and obtained consistent results 

(Supplementary Table 3.S2).  
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Figure 3.4 Comparison of different models to estimate contamination rates. Horizontal (x) axis shows intended 
Contamination rate, vertical (y) axis shows the ratio of estimated to intended contamination rates. Each color represents different 
models to estimate contamination rates. EUR_AF, EAS_AF, AFR_AF represents old verifyBamID using European, East Asian, 
and African allele frequencies across the continental population using the 1000 Genomes data. Pooled_AF represents the old 
verifyBamID using aggregated allele frequencies across all 2,504 individuals in the 1000 Genomes Project. “Equal_Ancestry” 
represents the verifyBamID2 assuming that intended and contaminating samples belong to the same population. 
“Unequal_Ancestry” represents verifyBamID2 allowing different genetic ancestries between intended and contaminating samples 
(recommended setting). Each panel represents different combinations of intended (row) and contaminating (column) populations, 
in the order of GBR, CHS, and YRI. 
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Table 3.2. Average contamination estimates for 5% contaminated samples (size n=10). 

Sample Population Original Model (Fixed Allele Frequencies) Equal-Ancestry 
Model 

Unequal-Ancestry 
Model Intended Contaminating European East 

Asian African Pooled 

GBR GBR 4.73% 3.19% 2.67% 3.76% 4.63% 4.63% 
CHS CHS 1.90% 4.73% 1.25% 2.38% 4.73% 4.76% 
YRI YRI 1.78% 1.58% 4.44% 2.45% 4.40% 4.40% 

CHS YRI 3.33% 6.91% 2.27% 4.10% 6.71% 4.81% 
YRI CHS 2.79% 2.55% 6.29% 3.76% 5.99% 4.67% 
GBR YRI 6.13% 4.16% 3.60% 5.04% 5.90% 4.83% 
YRI GBR 2.81% 2.57% 6.38% 3.80% 6.01% 4.63% 
CHS GBR 2.87% 6.33% 1.98% 3.55% 6.13% 4.83% 
GBR CHS 5.32% 3.78% 3.05% 4.32% 5.16% 4.67% 

Average contamination estimates of in-silico contaminated samples when the true contamination rate is 5%.  Each mixing 
configuration (e.g. GBR+CHS) contains 10 samples that are constructed with 95% reads coming from the intended sample and 
5% reads from the contaminating sample. The estimated contamination rates are obtained using the original version verifyBamID 
by specifying prior allele frequencies as European, East Asian, African, and Pooled, respectively. Bold represents the closest 
estimate to the true value of 5%. 
 

Results with Deep Whole Genome Sequence Data from the InPSYght Study  

Next, we applied our methods to 500 African American samples from the InPSYght 

study (see Methods). Consistent with the results from our in-silico contamination studies, we 

observed that the average contamination rate was 1.1-fold higher with newer method (0.36% for 

unequal-ancestry, 0.37% for equal-ancestry) compared to the original method with pooled allele 

frequency (0.33%) (Figure 3.5). The number of samples with estimated contamination rate >1% 

increased from 16 (original method with pooled allele frequency) to 21 (unequal-ancestry 

method) or 23 (unequal-ancestry method), suggesting our new method more rigorously screens 

for contaminated samples.  
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All 500 deeply sequenced genomes in InPSYght study are reported to be African 

Americans, and indeed the estimated PC coordinates for all 500 individuals under all three 

methods lie between European and African samples. Compared to other methods to estimate 

genetic ancestry, our estimates resulted in tighter clustering along the European-African segment 

than LASER, and similarly tight clustering to TRACE (Figure 3.2B, 3.2D, 3.2F). For example, 

the correlation coefficient between the PC1 and PC2 coordinates were 0.927 for LASER, 0.981 

for TRACE, and 0.985 for verifyBamID2, corroborating that verifyBamID2 results in more 

precise estimate of African ancestry along the European-African segment in PC coordinates. 

 

 

Figure 3.5 Comparison of contamination estimation between using verifyBamID and verifyBamID2 on 500 InPSYght 
samples. All subjects are African Americans. Each dot represents the pair of contamination rate estimates using different 
methods. The left panel shows the estimated contamination rates of the original verifyBamID with pooled allele frequencies, 
which is the default setting of verifyBamID in x-axis. Y-axis shows verifyBamID2 with unequal-ancestry model (y-axis). Each 
point represents a sequenced subject. The right panel compares the estimated contamination rates between two models (unequal-
ancestry vs. equal-ancestry) of verifyBamID2 on the same dataset. 
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Impact of Number of Markers on Accuracy, Computational Cost, and Memory 

Requirements 

As we have shown previously43, there are trade-offs between computation cost and 

accuracy of contamination estimates. Using as many as 100,000 variants results in accurately 

estimated intended contamination rate. For example, MSE of relative deviation (i.e. |𝛼Z/𝛼 − 1|) 

was 0.02, 0.01, 0.01 when the intended contamination was 1%, 2%, and 5%, respectively. When 

we use 10,000 variants, the MSEs modestly increased to 0.11, 0.04, and 0.01, respectively. When 

we use only 1,000 variants, MSEs further increased to 0.69, 0.25, 0.11, suggesting that the 

estimates may not be precise for low contamination rate when using only 1,000 variants. 

(Supplementary Table 3.S3).  

We also evaluated the computational cost and memory consumption of verifyBamID2 on 

whole genome sequence data with various coverages. For the BAM files from the 1000 Genomes 

whole genome sequence data (4.3-5.1× coverage), the average wall-clock running time was 5.5 

minutes with a single thread and peak memory consumption was 505 MB when using 10,000 

markers in a server with Xeon 2.27GHz processor. When using 100,000 markers, the average 

wall-clock running time was 20.5 minutes with a single thread and 8.0 minutes with four threads, 

and peak memory consumption was 528 MB.  

For deep genome data from the InPSYght study (31×	coverage) stored in CRAM format, 

the average wall-clock time was 17.3 minutes and peak memory consumption was 514 MB when 

using 10,000 markers. For 100,000 markers the average wall-clock time was 155.6 minutes 

(single thread) or 96 minutes (four threads) and peak memory consumption was 548 MB.  
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Discussion 

Contamination detection is an essential step in the sequence analysis process that has 

important effects on following downstream analyses. Early and accurate estimation of DNA 

contamination can prevent wasted effort, time, and money by identifying the problems early on 

before too many samples are sequenced using contamination-prone protocols. Our previous 

method enabled such a timely contamination detection from sequence data and population allele 

frequencies at known variant sites, without requiring independent SNP genotype data.  Our new 

method maintains these advantages, and in addition provide three more. First, because our joint 

analysis method is agnostic to genetic ancestry, it eliminates sample-to-sample variation in the 

parameter settings for the contamination checking procedure, simplifying the sequence analysis 

pipeline. Second, it provides more robust contamination estimates against potentially 

misspecified population allele frequency of the intended (or contaminating) samples when 

relying on the reported ancestry information. Third, it provides accurate estimates of genetic 

ancestries for both intended and contaminating samples. This enables additional sanity checking 

of the sequence data, such as determining whether a sequenced sample matches its expected 

(participant-reported) ancestry. It also facilitates incorporating ancestry information in the 

variant calling and downstream analysis and allows us to track the source of contamination more 

precisely when contamination occurs.    

Our method can be used not only to detect and estimate contamination, but also to 

estimate genetic ancestry from sequence data. Relatively few methods, such as LASER and 

bammds48, exist for estimating genetic ancestry from sequence data while several methods have 

been developed for array-based genotypes, such as EIGENSOFT49, FRAPPE50, ADMIXTURE51, 

and TRACE46. We have demonstrated that our method provides ancestry estimates as or more 
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accurate than LASER, particularly when the sequenced samples are contaminated between 

different ancestries.  

By jointly estimating genetic ancestry and contamination, we are able to accurately 

estimate contamination without requiring ancestry information a priori.  Since obtaining 

population allele frequency information may be infeasible or even impossible at the time of 

sequencing, it is important to highlight that our ancestry-agnostic approach provides more timely 

and accurate feedback to the sequencing facilities. Our ancestry-agnostic approach also 

simplifies the sequence analysis pipeline, because the same input arguments can be applied 

across all samples regardless of their genetic ancestry. In the case where self-reported ancestries 

are available, our method can identify errors in the self-reported ancestries while estimating 

contamination.  

The key idea of using individual-specific allele frequencies (ISAF) to account for 

population structure in genetic analysis has been suggested previously in the context of 

characterizing population structure or identifying highly differentiated variants across 

populations31,32. To the best our knowledge, our method describes the first likelihood-based 

model utilizing ISAF to represent high throughput sequence reads under population structure 

and/or contamination. While previous studies proposed logistic models as alternative to linear 

model31,32, we used linear models (bounded by minimum and maximum value) between allele 

frequencies and population structure represented by Singular Value Decomposition (SVD) on the 

genotype matrix. We made this choice because the logistic model is computationally more 

intensive, and the linear model is accurate for the common variants we use, as demonstrated by 

the previous studies32.  
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Even though our method substantially improves the accuracy of contamination estimates 

compared to the original verifyBamID, we do see slightly underestimation of contamination 

rates, especially when intended contamination rate is high.  Our method overestimates 

contamination if there are more heterozygous genotypes than expected by allele frequencies 

under HWE, and underestimate contamination if there are less heterozygous genotypes than 

expected. We believe that slightly inaccurate allele frequency estimate (even with ISAF) and 

violation of HWE (due to population structure or copy number variants) are contributing to the 

slight underestimation of contamination rates but have not validated the conjecture 

experimentally yet.  

Because we use Nelder-Mead optimization for maximum likelihood estimation, it is 

possible that the estimates do not converge to the global maximum, especially when many 

principal components are used. We observed that estimating the full unequal-ancestry model 

parameters sometimes does fail to converge especially when there is little or no contamination, 

due to the limited identifiability of the genetic ancestry of contaminating samples in this 

situation. Starting by estimating contamination rate and shared genetic ancestry parameters using 

the equal-ancestry model, and using those estimates as start values for the unequal-ancestry 

model to allow different ancestries between the intended and contaminating samples 

dramatically improved convergence; in fact, the method converged to consistent estimates across 

multiple starting points within 1,000 iterations in all our benchmark cases, in both real and  in-

silico contaminated data. When the contamination rate is extremely small (e.g. <0.1%), 

estimation of genetic ancestry of contaminating samples can still be challenging, but the its 

impact on genotyping accuracy is likely small as demonstrated previously 43. We allow unequal 

ancestries between intended and contaminating samples only when the likelihood substantially 
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improves beyond AIC threshold between equal ancestry and unequal ancestry models. This 

procedure effectively removed all outlier estimates of genetic ancestries of contaminating 

samples in our experiments.  

There are other possible useful extensions to our joint contamination and estimation 

method. We are extending these methods to detect and estimate contamination for RNA-seq and 

other epigenomic sequence data. The method can also be extended to handle contamination in 

cancer genomic data. The same model has potential utilities  in other areas, such as single cell 

transcriptomics52. As our method leverages excess heterozygosity to estimate contamination 

rates, it is important that the sequence reads have many variant sites with read depth 2 or greater 

to have sufficient power to estimate contamination in the extended models.    

We expect that our new verifyBamID2 software will facilitate more accurate, convenient, and 

timely quality control of sequence genomes. Our software tool is publicly available at 

http://github.com/Griffan/verifyBamID. Our GitHub repository provides reference files that can 

be used as test input for our methods. These files contain key input files required for 

verifyBamID2, including variant loadings, supporting various genome builds (GRCh37 and 

GRCh38), and various numbers of variants. 

Methods 

Overview 

We aim to jointly estimate sample contamination rates and genetic ancestry from 

sequence reads without specifying population allele frequencies. First, we describe our previous 

mixture model to estimate contamination rates assuming population allele frequencies are 
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known. Second, we introduce a model for sequence reads using population allele frequencies as a 

function of genetic ancestry represented in principal component coordinates. Third, we extend 

the model to enable joint estimation of contamination rates and genetic ancestry. Fourth, we 

evaluate our methods using in silico contaminated samples and whole genome sequence data 

from the InPSYght study. 

Likelihood-based Mixture Model for DNA Sequence Contamination 

In our previous contamination detection methods43, we assumed that the DNA sequence 

reads from an intended sample are contaminated by sequence reads from at most one 

contaminating sample from the same population, and that the population allele frequencies of all 

analyzed genetic variants are known. For each bi-allelic variant 𝑖	(1 ≤ 𝑖 ≤ 𝑚), let 𝑏0< ∈ {𝑅, 𝐴, 𝑂}  

(1 ≤ 𝑗 ≤ 𝐷0) be the observed base call representing the reference allele (R), alternate allele (A), 

or other allele (O) for the 𝑗-th read that overlaps the variant; 𝐷0 is the observed sequence depth at 

variant 𝑖. Let 𝑒0< ∈ {0,1}  be a random variable indicating whether a sequencing error did (1) or 

did not (0) occur for observed base 𝑏0<; we assume 𝑒0< follows a Bernoulli distribution with 

success probability 10e
fgM
hi  where 𝑄0< is a phred-scale base quality score of 𝑏0<. In the absence of 

contamination, if the true genotype 𝑔0l ∈ {0,1,2} represents the count of alternate alleles of the 

sequenced sample 𝑠 ∈ {1,2}, then Pr?𝑏0<p𝑔0l, 𝑒0<A can be easily represented as in Table 3.3, 

making the simplifying assumption of equally likely errors across four possible nucleotides.  

We assume that the observed sequence reads are a (1 − α) ∶ α mixture of intended and 

contaminating reads given a contamination rate 0 ≤ α ≤ 1 . Let 𝑔05and 𝑔0r represent the true 

genotypes of the intended and contaminating samples at variant 𝑖, respectively. Then the mixture 

model likelihood of each observed base becomes 



51 
 

Pr?𝑏0<p𝑔05, 𝑔0r, 𝑒0<; 𝛼A = (1 − 𝛼)Pr?𝑏0<p𝑔05, 𝑒0<A + 	𝛼Pr(𝑏0<|𝑔0r, 𝑒0<) (1) 

Assuming a homogenous population with known population allele frequency 𝑓0 and Hardy-

Weinberg Equilibrium (HWE), Pr	(𝑔0r; 𝑓0) follows a Binomial(2, 𝑓0) distribution.  Under the 

simplifying assumption of independent variants, the likelihood of the contamination rate 

becomes 

𝐿(𝛼) = ∏ ∑ ∑ �∏ ∑ Pr?𝑏0<p𝑔05, 𝑔0r, 𝑒0<; 𝛼APr?𝑒0<A�gM
�g
<45 � Pr(𝑔0r; 𝑓0)Pr(𝑔05; 𝑓0)�g

��g
hD

045  (2) 

The maximum likelihood estimate (MLE) of contamination rate 𝛼Z can be obtained using Brent’s 

algorithm53.  

As we previously reported43, this model assumes correctly specified population allele frequencies 

𝑓0.  

 

 

Table 3.3. Conditional probability P(bij| gi, eij) of read bij given true genotype gi and the 
variable representing the event of base calling error eij  

True Genotype gi Base Calling Error 
Event eij Pr(bij = R) Pr(bij = A) Pr(bij = 

O)b 

gi = RRa 
eij = 0 1 0 0 
eij  = 1 0 1/3 2/3 

gi = RAa 
eij  = 0 1/2 1/2 0 
eij  = 1 1/6 1/6 2/3 

gi = AAa 
eij = 0 0 1 0 
eij  = 1 1/3 0 2/3 

a RR, RA, AA: homozygous reference, heterozygous, and homozygous non-reference 
genotypes 
b O: alleles other than R or A; assumes four possible alleles (bases) 
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Likelihood-based Estimation of Genetic Ancestry (in the absence of 

contamination) 

We extend this model to incorporate genetic ancestry. The key idea of this extension is to 

use the individual-specific allele frequency (ISAF)31,32 to model the likelihood of the sequence 

reads. Several methods, including Spatial Ancestry Analysis (SPA)54 and logistic factor analysis 

(LFA)32, previously proposed modelling allele frequency as a function of genetic ancestry via 

principal component (PC) coordinates.  

Let 𝐺 be an 𝑚 × 𝑛 genotype matrix (where 𝐺0$ = 0, 1, or 2 is the number of non-

reference alleles at variant i in individual r) of a genetically diverse reference panel of size n, 

such as 1000 Genomes or HGDP. We define ISAF 𝑓0	(0 ≤ 𝑓0 ≤ 1)	for variant i as a weighted 

average of genotypes from the reference panel (𝑓0 = ∑ 𝑤$𝐺0$)�
$45 , where 0 ≤ 𝑤$ ≤ 1 and 𝐺0$ ∈

{0,1,2} for individual r. For a homogenous population, 𝑤$ =
5
r�

 results in a pooled allele 

frequency across all individuals in the reference panel. If each individual can be categorically 

represented as a one of k mutually exclusive subpopulations, the population-specific allele 

frequency for the subpopulation 𝑠 ∈ {1,2,⋯ , 𝑘} can be represented as 𝑤$ =
�(l�4l)
r��

, where and 

𝑠$ ∈ {1,2,⋯ , 𝑘} represents the subpopulation that individual r belongs to, and 𝑛l represents the 

size of subpopulation 𝑠 . More generally, if individual’s genetic ancestry is represented as 

continuous variables (such as PCs, SPAs, or LFAs), the individual-specific allele frequency 

(ISAF)  can be represented as a function of the continuously represented genetic ancestry32,55.  

The estimated ISAF can be viewed as one half times the genotype dosages approximated from a 

fixed number(=K) of factors, such as PCs, SPAs, or LFAs. In our method, we used a linear 

model to estimate ISAF from PCs, similar to previous studies31,32. Given the reference panel 
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genotype matrix 𝐺, let  5
r
𝐺� be the ISAF matrix as a function of top K factors. ISAF matrix 5

r
𝐺� 

should well approximate 5
r
𝐺. For example, under a linear model, typical principal component 

analysis takes the singular value decomposition (SVD) of the mean-centered genotype matrix 

	𝐺 = 𝐺 − 2𝝁𝟏𝒏𝑻 = 𝑈𝐷𝑉�, where 𝝁 = 5
r�
𝐺𝟏𝒏 is the pooled allele frequencies and 𝟏𝒏 is the 

column-vector of ones. Using the top K eigenvalues and corresponding eigenvectors 

𝑈(�), 𝐷(�), 𝑉(�) from the SVD, it is known that 𝐺� = 5
r
𝑈(�)𝐷(�).𝑉(�)2� + 𝝁𝟏𝒏𝑻  minimizes  

�𝐺 − 𝐺��
r
= ∑ (𝐺0$ − 𝐺�0$)r0,$  among all possible rank K matrices56, making it a good proxy for 

the ISAF matrix.  

For a new individual s with genetic ancestry represented as 𝒙𝒔 ∈ ℝ� in the PC 

(eigenvector) space of the reference panel, the ISAF for i-th variant can be modelled as 𝑓0(𝒙𝒔) =

5
r
𝒖𝒊
(�)𝐷(�)𝒙𝒔𝑻 + 𝜇0, where 𝒖𝒊

(�) is i-th row of 𝑈(�) and 𝜇0 is the i-th element of 𝝁. To avoid 

boundary condition, we constrain �
r�
≤ 𝑓0(𝒙𝒔) ≤ 1 − �

r�
 for a fixed 𝜀 (we used 𝜀 = 0.5 in our 

experiments). Then the overall likelihood of an individual’s genetic ancestry 𝒙 is 

𝐿(𝒙𝒔) = ∏ ∑ �∏ ∑ Pr?𝑏0<p𝑔0, 𝑒0<APr?𝑒0<A�gM
�g
<45 � Pr?𝑔0; 𝑓0(𝒙𝒔)A�g

D
045   (3) 

where 𝑔0 represents the unobserved genotype of the sequenced sample at variant i. The 

maximum-likelihood genetic ancestry coordinates can be estimated as 𝒙�𝒔 = argmax𝒙𝒔∈ℝ¢𝐿(𝒙𝒔) 

using the Nelder-Mead57 algorithm, starting with PC coordinates of a randomly selected 

individual from the reference panel. In all our experiments, we always obtained consistent 

estimates of 𝒙�𝒔 regardless of start values with K=4, which is the default parameter of our 

implementation. Using K=4 gave us noticeably more precise estimates of contamination rates 

and genetic ancestry than smaller K (data not shown). Using larger values of K (e.g. K=8) 
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substantially increased the computational time of Nelder-Mead algorithm and failed to converge 

occasionally.    

Joint Estimation of Genetic Ancestry and DNA Contamination  

Because our goal is to obtain unbiased estimates of the DNA contamination rate 𝛼 

agonistic to prior knowledge of the genetic ancestry, we propose to jointly estimate 𝛼 and 

ancestry by combining the models described in the previous sections. Let  𝒙𝟏, 𝒙𝟐 ∈ 𝑅� be the 

genetic ancestries of the intended and contaminating samples. Then the likelihood under the 

combined model is 

𝐿(𝛼, 𝒙𝟏, 𝒙𝟐)

=F,,¤F,Pr?𝑏0<p𝑔05, 𝑔0r, 𝑒0<; 𝛼APr?𝑒0<A
�gM

�g

<45

¥Pr ¦𝑔05; 𝑓0(𝒙𝟏)§ Pr ¦𝑔0r; 𝑓0(𝒙𝟐)§
�g
��g

h

D

045

 

When the contamination rate 𝛼»0, the parameters corresponding to 𝒙𝟐 do not contribute (much) 

to the likelihood and the estimates of  𝒙𝟐 may be unstable. To address this problem, we initially 

assume that the intended and contaminating samples are from the same population 𝒙𝟏 = 𝒙𝟐 

(‘equal-ancestry’ model) and then repeat the analysis allowing for 𝒙𝟏 ≠ 𝒙𝟐  (‘unequal-ancestry’ 

model). The dimension of parameter space for the unequal-ancestry model is 2𝑘 + 1.  We 

choose final parameter estimates between the two models based on Akaike Information Criterion 

(AIC)58.   
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Evaluation on in-silico Contaminated Data Based on 1000 Genomes Project 

Samples  

We constructed in-silico contaminated DNA sequence reads using aligned low-coverage 

whole genome sequence reads from the 1000 Genomes phase 3 project45. We filtered out 

unmapped and mark-duplicated reads and then randomly sampled aligned sequence reads 

proportional to the intended contamination rates α ∈ {0.01, 0.02, 0.05, 0.1, 0.2}. To match the 

mixing proportion of sequence reads originated from intended and contaminating to be 

(1 − 𝛼): 𝛼, each read was sampled with probability  (1 − 𝛼) and ªh
ª�
𝛼 from each sample, where 

𝐵5 and 𝐵r are number of aligned bases from unique reads from intended and contaminating 

samples. We selected four populations, CHS (Han Chinese South), GBR (British in England and 

Scotland), MXL (Mexican Ancestry from Los Angeles USA), YRI (Yoruba in Ibadan, Nigeria), 

and arbitrarily selected 10 pairs of individuals with similar sequencing depths within the same 

population and across populations. To estimate genetic ancestry and/or contamination rate for 

these in-silico contaminated sequence reads, we used a reference panel of 938 HGDP44 

individuals across 1,000, 10,000 and 100,000 randomly chosen SNPs (pooled MAF > 0.5%), 

avoiding variants masked by the 1000 Genomes Project45. When we compared estimated genetic 

ancestry with LASER, we used the same set of selected SNPs and sequence reads as input. For 

TRACE, we used genotypes from the phase 3 release (for 1000 Genomes) or an interim callset 

from the GotCloud software tool36 (for InPSYght, see next section for details) on the same SNP 

set.  
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Experiment with Real Sequence Data from the InPSYght Study  

Next, we applied our method to 500 deeply sequenced (mean depth 32x) genomes from 

the first two batches of the InPSYght study. For each sample, we evaluated the results from the 

six models: (1) the original verifyBamID using pooled allele frequencies; the original 

verifyBamID using (2) African, (3) East Asian, and (4) European allele frequencies; (5) the new 

verifyBamID2 under the equal-ancestry model; and (6) verifyBamID2 under the unequal-ancestry 

model. To calculate pooled, population-specific, and individual-specific allele frequencies, we 

used the 1000 Genomes phase 3 reference panel (n=2,504), randomly selecting 100,000 SNPs 

among the sites also polymorphic in Illumina Human Omni 2.5 array, with the same filtering 

criteria (MAF > 5% and 1000 Genomes mask) as above.   

Software Availability 

The software is published under the MIT license. The source code of verifyBamID2 is 

available in the Supplemental Material as well as at https://github.com/Griffan/VerifyBamID.  
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Chapter IV. 

Genotyping-free Deconvolution of Multiplexed Single 

Cell Experiment over Multiple Individuals

Introduction 

The advent of massively parallel single-cell RNA sequencing (scRNA-seq) technologies 

dramatically enhances the resolution to understand how genetic and/or environmental factors 

alter transcriptomic profiles of individual cells and affect interactions between them. First-

generation scRNA-seq technologies require preparation of sequencing libraries of individual 

cells separately, limiting the throughput to assay a large number of cells and creating cell-to-cell 

batch effects within individual samples. Barcoding-based scRNA-seq technologies have emerged 

to overcome these limitations by enabling massive digital barcoding of individual cells in 

parallel, allowing us to profile thousands of single-cell transcriptomes with a single library 

preparation.  

Digital barcoding of individual cells is performed in either of the two ways, using 

STAMP (single-cell transcriptome attached to microparticle) or combinatorial indexing. In 

STAMP-based methods, such as Drop-seq59, InDrops60, 10x Chromium61, or Seq-well62, a pair of 

single cell and barcoded microparticle are contained within a droplet or a microwell, often aided 
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by microfluidic devices, to perform cell lysis and RNA hybridization. These STAMPs undergo 

reverse-transcription into cDNAs and amplification together to be sequenced as a single library. 

In combinatorial indexing methods, such as sci-RNA-seq or SPLiT-seq63,64, cells are randomly 

divided into distinct subsets and barcoded iteratively for multiple rounds using split-pool 

barcoding. Similar technologies are applied to assay additional molecular profiles at single-cell 

resolution. Single nucleus RNA-seq technologies, such as DropNc-seq, enable massively parallel 

transcriptomic profiling not only from fresh tissue, but also from frozen or lightly fixed tissues, 

facilitating scRNA-seq studies for broader tissue types65. Other single cell epigenomic profiling 

technologies, such as scATAC-seq66 and sci-CAR67 are also being actively developed for 

broader use.   

Both of the single cell barcoding methods - STAMP-based and combinatorial indexing - 

aim to associate a barcode of nucleotide sequences to a specific cell, so that the scRNA-seq reads 

matching a specific barcode sequence is assumed to be originated from the same cell. However, 

a barcoded sequence may represent multiple cells instead of a single cell if the ideal assumption 

does not hold. In STAMP-based methods, a droplet or a microwell may contain multiple cells 

(i.e. multiplets) by chance. The chance of having multiplets increases when loading a large 

number of cells to maximize the utility of the barcoded microparticles, so there is an inverse 

correlation between the multiplet rate, and the number of cells assayed per library. Similarly, in 

combinatorial indexing methods, a single combinatorial index of nucleotide sequences may 

represent multiple cells. The chance of such a barcode collision should be very low in an ideal 

situation where the split-pool barcoding procedure fully randomizes the possible barcodes across 

the cells. However, a higher collision rate may be observed when the barcodes are non-randomly 
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distributed or when the split-pool procedure does not completely randomize the cells. Barcode 

collision may also happen in STAMP-based methods, too. 

Recently, a new cost-effective experimental strategy, mux-seq, enabled scRNA-seq 

across tens of samples in a single library preparation68. Mux-seq harnesses natural genetic 

variation as “genetic barcodes” to deconvolute the sample origin of individually barcoded cells. 

More importantly, by leveraging scRNA-seq overlapping with genetically polymorphic variants, 

mux-seq allows us to detect multiplets (i.e. cell barcodes representing two or more cells) that 

originated from two or more individuals, reducing the undetected multiplet rate by ~N-fold when 

N samples are multiplexed. This increased sensitivity in multiplet detection in return allows us to 

load ~N-fold more cells per run than the standard workflow at a fixed multiplet rate, substantially 

saving per-sample and per-cell cost for library preparation and dramatically reducing sample-to-

sample batch effects. Due to several-fold lower per-sample cost, mux-seq workflow enables cost-

effective scRNA-seq studies across diverse samples at a population scale. 

The statistical method behind the mux-seq workflow, demuxlet, uses a mixture model to 

model the likelihood of scRNA-seq reads overlapping with genetic variants to evaluate the 

likelihood of possible singlets and doublets to determine which configuration of sample origin 

best explains the observed reads of a cell barcode based on a likelihood-based model selection 

criterion. To evaluate the likelihood, demuxlet requires that the genotypes of each multiplexed 

sample are available from an external source via array-based genotyping or DNA sequencing. 

However, requiring external genotyping can often become a bottleneck in the analysis of 

scRNA-seq data, due to the additional time and efforts required to prepare and perform external 

genotyping experiments and to process the genotype data, including quality control, strand 

matching, imputation, and sample identity matching between different types of data. As 
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investigators who design and perform multiplexed experiments do not necessarily have sufficient 

expertise in handling genetic data, the bottleneck in external genotyping steps often becomes 

more serious than it seems in practice.  

On the other hand, in principle, demuxlet does not have to require external genotypes to 

enable sample demultiplexing and doublet detection. Suppose an ideal case where we can 

perfectly assign each droplet into its originating sample except for one droplet. In such a case, 

scRNA-seq reads that belong to each individual can be merged to calculate genotype likelihood 

at each variant site, and demuxlet can be used to infer the source of one remaining target droplet. 

In practice, a similar procedure may be possible (1) by clustering each droplet into the most-

likely originating sample probabilistically, (2) by evaluating the genotype likelihood of each 

cluster using the assigned reads, and (3) by re-evaluating the likelihood that a droplet being 

originated from each cluster (and each pair of clusters to account for doublets) to re-assign each 

droplet to most likely cluster or a pair of clusters. Following on this idea, in this Chapter, we 

propose a new method, freemuxlet, to perform sample demultiplexing and doublet detection 

without requiring external genotyping. In freemuxlet, we utilize Bayes Factors to evaluate the 

likelihoods of a barcoded droplet being a doublet and estimate the pairwise genetic distance 

between a pair of droplets to determine whether they should belong to the same individual or not.  
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Results 

Overview of freemuxlet Algorithm 

Briefly, a mux-seq workflow68 pools thousands of cells from many unrelated individuals together 

to prepare a scRNA-seq sequencing library. Each barcoded droplet (or combinatorial index) may 

contain a cell from a single individual (singlet) or two or more cells from multiple individuals 

(multiplet). If a barcoded droplet contains multiple cells from the same individual, the current 

implementation of freemuxlet considers it as a singlet. Freemuxlet takes a list of variant sites 

with known population allele frequencies and examines scRNA-seq reads overlapping with the 

variant sites to cluster each barcoded droplet into their samples of origins if they are singlets 

while detecting multiplets (Figure 4.1).  

Figure 4.1. Overview of the mux-seq workflow based on freemuxlet. Different colors represent different samples of origin. 
Each circle represents an individual cell, and the letter represents the barcode of each cell. If the cell barcode is unique, it is 
considered as singlet will be clustered based on the origin of samples. When a barcode represents two or more cells from 
different individuals, freemuxlet detects them as conflicts    
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For each barcoded droplet, freemuxlet evaluates a metric called “singlet score”, a Bayes Factor 

quantifying whether scRNA-seq reads from the droplet are more likely originated from a single 

individual (i.e. diploid) or two individuals (i.e. tetraploid). For each pair of droplets, it evaluates 

another Bayes Factor metric called “genetic distance” to evaluate whether scRNA-seq reads from 

the pair of droplets were originated from the same individual or not (Figure 4.S1). Based on 

these two metrics, freemuxlet iteratively cluster putative singlets into the samples of origin using 

a greedy algorithm guided by the two metrics, while identifying doublets based on the likelihood 

model similar to demuxlet (See Methods for details). 

Evaluation on 7-way Mux-seq Data with Cell-Hashing 

We first applied our freemuxlet method on a scRNA-seq dataset that contains 23,111 

barcoded droplets sequenced and multiplexed using 7-way mux-seq workflow. Especially, this 

dataset was multiplexed using two independent methods, (1) “genetic multiplexing” (mux-seq) 

with external (array-based and imputed) genotyping data available and (2) “cell hashing”69 that 

leverages additional antibody tags on the cell surfaces to identify the source of samples. 

Therefore, by evaluating the concordance between three different approaches – demuxlet, cell 

hashing, and freemuxlet – we can better understand how each method behaves in comparison to 

other two methods, even though no single method can be considered as the “gold standard”.  

We first evaluated the marginal number of droplets classified as singlets and doublets by 

each method. Assuming the multiplet rate is 1% when loading 1,000 cells per run, the expected 

number of detectable doublets among 23,111 cells is  ¬

(1 − 0.99r¯.555) = 17.8% (4,106 cells), 

if 7 samples are uniformed multiplexed together. The estimated fractions of doublets using cell 

hashing, demuxlet, and freemuxlet were 28.9%, 19.3%, and 18.8%, respectively, excluding the 
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ambiguously assigned barcoded droplets. The estimated fraction of doublets from demuxlet and 

freemuxlet were much more concordant to the theoretical expectation (Figure 4.2A). 

Next, we evaluated the concordance between different methods in classifying each 

barcoded droplet into a singlet from one of the 7 individuals, a doublet, or ambiguous 

classification. Because there is no established “gold standard”, when evaluating a specific 

method, we only considered the barcoded droplets that were consistently classified by other two 

methods and evaluated how many droplets agreed with the consensus classification from the 

other two methods, excluding ambiguously classified droplets. We observed that while 94.9% of 

droplets consistently classified as multiplets by both freemuxlet and demuxlet were also classified 

as multiplets as cell hashing methods, only 89.1% of droplets classified as singlets by both 

freemuxlet and demuxlet were classified as singlets in cell hashing, suggesting that cell hashing is 

probably overcalling multiplets (Figure 4.2B). When we evaluated demuxlet using the consensus 

call between freemuxlet and cell hashing in a similar manner, the concordance for multiplets and 

singlets were 98.7% and 99.1%, respectively, suggesting that the inference from demuxlet is 

highly reliable. Finally, when we evaluated freemuxlet compared to other two methods, we 

observed that singlets have comparable accuracy with demuxlet (99.2%), but the accuracy of 

multiplets were 96.4%, suggesting that freemuxlet may misclassify a fraction of multiplets as 

singlets, even though the accuracy was better than cell hashing.   
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Figure 4.2. Comparison between Cell Hashing, freemuxlet, and demuxlet in 7-way mixture experiments. (A) The marginal 
number of barcoded droplets classified as singlets, multiplets or ambiguous droplets by cell hashing, freemuxlet, and demuxlet 
methods among 23,111 barcoded droplets. The number represents the number of barcoded droplets that belongs to the colored 
category. (B) Comparisons between each of the method vs. consensus classification between the other two methods. The x-axis 
represents different methods, and the consensus classification of droplets from the other two methods, and the y-axis represents 
the fraction of droplets that were classified concordantly with the consensus classification. Only the droplets that were 
consistently classified by the other two methods was used as the denominator, and the numerator is the number of droplets that 
were consistently classified all three methods. 

Pairwise Genetic Distance between Droplets Based on Bayes Factor 

One of the key metrics freemuxlet uses for clustering each barcoded droplet into their 

originating samples is the pairwise genetic distance between individuals defined as a Bayes 

Factor (See Methods). To evaluate how informative the Bayes Factors are, we used the pairwise 

genetic distance matrix between every pair of droplets as an input to generate 2-dimensional 

manifold using the UMAP70,71 and tSNE72 methods, and colored each droplet with the best-guess 

classification from each of the method (Figure 4.3).  

Overall, we observed that droplets that are classified as singletons clearly belong to 

individual clusters while doublets tend to be located at the boundary of clusters (Figure 4.S2 and 

Figure 4.S3). The ambiguous assignment of droplets in cell hashing methods appeared to be 

singlets in most cases. Even though freemuxlet does not use sophisticated clustering algorithm or 

manifold algorithms, these results clearly show that the clusters generated by freemuxlet is 

consistent to the manifold generated by more sophisticated algorithms, and also that Bayes 
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Factors are useful input metrics to recapitulate the cluster assignments when embedded onto a 

low-dimensional manifold such as UMAP or tSNE.    

 

 

 

 

 

Figure 4.3. 2-dimensional manifold plots of 23,111 droplets using (A) UMAP and (B) tSNE based on the pairwise genetic 
distance between droplet(defined as the Bayes Factor). Droplets assignment based on cell-hashing (ADT.GUESS), freemuxlet 
(FREEMUX.GUESS), and demuxlet(DEMUX.GUESS) are shown in each panel. The UMAP coordinates generated based on the 
Bayes Factor genetic distance. Each color represents an individual, pink dots represent doublets (DBL) or ambiguous droplet 
assignment (AMB). 

 

A 
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Accuracy of Genotypes Inferred from scRNA-seq Reads 

To further evaluate clustering performance of freemuxlet, we compared the genotype 

called from freemuxlet and that from chip-based genotyping of the same individuals. (Figure 4.4) 

We observe that most of the genotype calls fall into a high-confidence area and the empirical 

distribution of genotype accuracy is consistent with genotype probability, suggesting freemuxlet 

can accurately call genotypes of each individual and in return supports our claim that freemuxlet 

can generate high-quality droplets clustering result based on Bayes Factor distance. For example, 

when using posterior probability threshold 0.9, 0.95, 0.99, and 0.999, the empirical accuracies 

are 0.89, 0.93, 0.97, and 0.94. Because a fairly large number of confident genotypes demonstrate 

inaccuracies, we introduced additional parameter 𝜖 = 0.1 to account for genotype error. 

 

 

Fig. 4.4. Genotype accuracy of each cluster evaluated based on array-based genotyping of Cell Hashing dataset. The X-
axis is genotype posterior probability calculated from freemuxlet, and Y-axis is genotype concordance by comparing most likely 
genotype with array-based genotype. The size of each circle represents the number of variants that has the particular genotype 
probability. The black line is y=x diagonal.  
  

A 
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Application to Cancer Cell-line Mixtures 

We applied our preliminary implementation of freemuxlet algorithm to the 12,557 

droplets sequenced using 3-way mux-seq of colon cancer cell lines, generated using Drop-seq. 

Our original intention was to demultiplex these cell lines using demuxlet, using the publicly 

available genotypes available at COSMIC73 or CCLE74 database. However, we realized that the 

quality of genotypes of these cancer cell lines was not high due to multiploidy and the lack of 

accurate genotype calling algorithm designed for cancer cell line data. We therefore applied our 

preliminary freemuxlet implementation and identified 11,361 (90.5%) singlets and 1,1196 (9.5%) 

doublets with no ambiguous assignment. When we clustered cells, purely based on the 

expression levels (with Seurat software tool)75 of these 11,361 singlets showed 99.97% 

concordance with those identified from freemuxlet. (Figure 4.5) 

Figure 4.5. UMAP visualization (based on expression levels) of 11,361 cells sequenced with Drop-seq across 3 colon cancer 
cell lines, after removing 1,196 doublets inferred by freemuxlet. Different colors represent different individual estimated from 
freemuxlet, which is >99.9% concordant to the identity of cell lines inferred from expression level. 
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Discussion 

In this Chapter, we presented freemuxlet, a novel genotyping-free method to deconvolute 

genetically multiplexed single-cell RNA-seq reads while detecting and removing multiplets. The 

freemuxlet makes use of two different types of Bayes Factors, the single score for each barcoded 

droplet, and the genetic distance between a pair of droplets to determine how likely a barcoded 

droplet contains a single cell, or originated from the same sample, respectively. The accuracy of 

our greedy clustering algorithm guided by these Bayes Factors, combined with iterative refinement 

in the subsequent steps produces highly accurate multi-class clusters of barcoded droplets based 

on their sample identities.  

The main advantage of freemuxlet is that it does not require external genotyping of each 

multiplexed individual. This additional benefit will enable mux-seq to be further applied in 

research areas where genotype is difficult or infeasible to obtain, including model organisms, 

cancer cell lines. The examples of cancer cell line mixture clearly demonstrate such an 

advantage. It will also eliminate time-consuming steps to collect, process, impute, and match 

external genotypes, and make the overall mux-seq workflow much more seamless.  

Although freemuxlet demonstrates much higher estimated accuracy than the cell hashing 

method, its accuracy is slightly lower than demuxlet. This may be partly due to the unavailability 

of external genotypes, but the accuracy can still be improved by further improving the model. 

We observed that the estimated fraction of multiplets is sensitive to input parameter settings such 

as assumed genotype error rates in each cluster. Moreover, there are many potentially important 

factors not currently modeled in freemuxlet and demuxlet methods, such as allelic-specific 

expression, burst effect, or cell-type-specific expressions to further improve the accuracy of both 



69 
 

methods. The clustering algorithm currently implemented using a greedy method guided by 

Bayes Factors can also be improved. To the best of our knowledge, there is no robust clustering 

algorithm currently developed when each object has different priorities (e.g. singlet scores) or 

when multiplets exist, and this may open a new door to developing a more general method for 

the clustering problems that share these features.  

Even though the likelihood model of freemuxlet is not perfect, it provides us with 

successful results in deconvolution of genetically multiplexed scRNA-seq reads in practice. It 

should be possible to extend freemuxlet or demuxlet beyond scRNA-seq, such as single nucleus 

RNA-seq (snRNA-seq) or single cell ATAC-seq (scATAC-seq). The main challenges of these 

new types of data will be increased sparsity. It will particularly be more challenging to make 

freemuxlet as accurate as in scRNA-seq when relatively a small number of sequence reads share 

reads at the same variant sites between barcoded droplets. Further improvements of the method 

and evaluations on simulated and real dataset are needed to ensure that these methods can be 

extended to additional types of single cell sequence reads. 

 

Materials and Methods 

Summary of freemuxlet Algorithm 

We developed a new method, freemuxlet, to enable genetic demultiplexing and doublet 

detection of multiplexed scRNA-seq reads without requiring external genotypes. When external 

genotypes exist, by evaluating the conditional genotype likelihood of each droplet given external 

genotype of candidate sample/cluster, the deconvolution problem is an instance of a multiclass 

classification problem. However, without external genotypes, the true genotype of each candidate 
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cluster follows probability distribution governed by cluster constitution. The deconvolution 

problem becomes a more complicated unsupervised clustering problem. The key idea of freemuxlet 

is to cluster barcoded droplets based on the pairwise genetic distance between each pair of droplets, 

where each cluster represents a sample rather than an individual cell type. By aggregating droplets 

in the same cluster, we can in return evaluate the genotype likelihoods representing the clustered 

individual. Similar to demuxlet, we then assign each barcoded droplet to the closest cluster as a 

singlet or classify them as a multiplet. 

Detailed Algorithms 

Specifically, we first sort each droplet based on “Singlet Score” in descending order. 

Droplets with higher “Singlet Score” will be preferably assigned to a cluster (essentially used to 

define clusters). Each Droplet will be voted by previously assigned droplets to include or exclude 

from the defined clusters based on genetic distance between the current droplet and the previously 

assigned droplet (Algorithm 1). Next, freemuxlet randomly initialize droplet order, and vote each 

droplet by all the other droplets iteratively (Algorithm 2). Then, in cluster refinement steps, 

droplets belong to the same cluster will be merged. Genotype likelihood of each cluster will be 

recalculated to identity droplet membership and to detect multiplets. We iteratively repeat these 

cluster refinement steps to evaluate the genotype likelihoods and infer the sample identity of the 

droplets for a fixed number of iterations or the inferred identities of each barcoded droplet no 

longer changes over iteration (Algorithm 3). (Figure 4.S1) 
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Algorithm 1: InitCluster Initialize the cluster membership of each
droplet based on Singlet Score and Genetic Distance

Input: Number of Cluster n;
An array of droplet index, A = {a1, a2, . . . , am}, that is descending sorted
based on Singlet Score;
A 2-D Genetic Distance matrix Dm⇥m

Output: Cluster membership of each droplet
1 Clust = {0, 0, . . . , 0} where |Clust| = m

2 for i 1 to m do

3 V ote = {0, 0, . . . , 0} where |V ote| = n

4 for j  1 to i� 1 do

5 if D(ai, aj) < threshold then

6 V ote[Clust[aj ]] = V ote[Clust[aj ]] + 1

7 else

8 V ote[Clust[aj ]] = V ote[Clust[aj ]]� 1

9 maxV ote = 1
10 for i 1 to n do

11 if V ote[i] > maxV ote then

12 maxV ote i

13 Clust[ai] = maxV ote

14 return Clust

1

Algorithm 2: Clustering Refine initial clustering based on Genetic Dis-
tance
Input: Number of Cluster n;
A array Clust indicates initial clustering membership of each droplet;
A 2-D Genetic Distance matrix Dm⇥m

Output: Refined clustering membership of each droplet
1 for iter  1 to 10 do

2 for i 1 to m do

3 V ote = {0, 0, . . . , 0} where |V ote| = n

4 for j  1 to m do

5 if D(ai, aj) < threshold then

6 V ote[Clust[aj ]] = V ote[Clust[aj ]] + 1

7 else

8 V ote[Clust[aj ]] = V ote[Clust[aj ]]� 1

9 maxV ote = 1
10 for i 1 to n do

11 if V ote[i] > maxV ote then

12 maxV ote i

13 Clust[ai] = maxV ote

14 return Clust

2
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Algorithm 3: Classify Further refine cluster membership and detect
doublet
Input: Number of Cluster n;
A array Clust indicates initial clustering membership of each droplet;
A array C = {c1, c2, . . . , cm} contains sequence data of each droplet
Output: Refined clustering membership of each droplet;
Cluster-wise genotype probability

1 for iter  1 to 10 do

2 for s 1 to n do

3 MergeDropletsInCluster(s);
4 CalculateGenotypeProbabilityOfCuster(s);

5 for i 1 to m do

6 llk = 0n⇥n;
7 for j  1 to n do

8 for k  1 to j do

9 if j == k then

10 llk(j, k) = L(ci|j)
11 else

12 llk(j, k) = L(ci|j, k;↵ = 0.5)

13 (s1, s2) = argmaxj,k llk;
14 if s1 == s2 then

15 Clust[i] = s1;

16 else

17 RemoveDoublet(i);

18 return Clust

3
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Likelihoods of Singlets and Doublets 

Let 𝑠 ∈ {1,2,⋯ , 𝑆} be a sample index, 𝑐 ∈ {1,2,⋯ , 𝐶} be the index of barcoded droplets, 

and 𝑣 ∈ {1,2,⋯ , 𝑉} be the index of genetic variants considered. Let 𝑑·¸ ∈ {0,1,⋯ } be the depth 

of sequence reads from droplet 𝑐 overlapping with variant 𝑣, and let 𝑏·¸0 ∈ {0,1,2} be the allele of 

i-th sequence read (𝑖 ∈ {1,2,⋯ , 𝑑·¸})	consistent to the reference allele (0), the alternate allele (1), 

or other alleles (2), and 𝑞·¸0 ∈ {0,1,⋯ } be the phred-scale base quality score76.  If 𝑔l¸ ∈ {0,1,2} 

and 𝑒·¸0 ∈ {0,1}  are latent variables representing true underlying genotypes, the event of a 

sequencing error, Pr(𝑏·¸0|𝑔l¸, 𝑒·¸0) is assumed to follow the distribution widely used in other 

studies (Table 4.S1), and Pr(𝑒·¸0) follows Bernoulli ¦10e
¼½¾g
hi §.13,30 Then, the probability of allelic 

read given genotype is Pr(𝑏·¸0|𝑔l¸) = ∑ Pr(𝑏·¸0|𝑔l¸, 𝑒·¸0)5
�½¾g4¿ Pr(𝑒·¸0). 

Under the assumption that all the reads in barcoded droplet  𝑐 were originated from sample 

𝑠 (i.e. 𝑐 is a singlet from 𝑠), the probability of sequence reads can be modeled as 

𝐿5(𝑐) = ∏ .∑ JPr	(𝑔¸)∏ Pr(𝑏·¸0|𝑔¸)
À½¾
045 Or

�¾4¿ 2Á
¸45   

where Pr	(𝑔¸) is the probability of the unobserved genotype 𝑔¸. In demuxlet, we assumed that 

Pr	(𝑔¸) is given based on the external genotypes (based on the posterior probability of imputed 

genotypes or best-guess genotypes with predefined error rates). In the initial steps of freemuxlet, 

we model Pr	(𝑔¸) assuming 𝑔¸~Binomial(2, 𝑓 ) where 𝑓  is allele frequency of variant 𝑣. Under 

the assumption that the reads in 𝐵· were originated from two samples with mixing proportion 

(1 − 𝛼): 𝛼 is 

𝐿r(𝑐, 𝛼) = ∏ ∑ JPr(𝑔¸5) Pr(𝑔¸r)∏ Pr	(𝑏·¸0|𝑔¸5, 𝑔¸5; 𝛼)
À½¾
045 O�¾h,�¾�

Á
¸45   

where Pr(𝑏·¸0|𝑔¸5, 𝑔¸5; 𝛼) = (1 − 𝛼)Pr(𝑏·¸0|𝑔¸5) + 𝛼Pr(𝑏·¸0|𝑔¸r). 
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Singlet Score of Each Barcoded Droplet 

We define “singlet score” (SS) of each barcoded droplet as a log Bayes Factor between the 

singlet and doublet likelihood as follows. 

𝑆𝑆(𝑐) = log	 Ã
𝐿5(𝑐)

𝐿r(𝑐, 𝛼 = 0.5)Ä 

The singlet score informs whether the scRNA-seq reads from a barcoded droplet is likely 

singlets or doublets without requiring external genotypes. The likelihood models used to obtain 

single score is identical to the models used for detecting sample contamination from DNA 

sequence reads13, except that 𝛼 is fixed to 0.5.  

For droplets with relatively few reads, 𝑆𝑆· may not be much informative and the value will 

be close to zero. For droplets with larger read counts, 𝑆𝑆· will becomes more informative. When 

performing clustering, we sort barcoded droplets based on decreasing orders of 𝑆𝑆· so that putative 

singlets are clustered first, so that doublets will have less chance to confound the clustering results.     

Genetic Distance between Droplets 

For each pair of the droplets (𝑐5, 𝑐r) , we evaluate the probability that both barcoded 

droplets are originated from the same individual in the following model.  

𝐿5(𝑐5, 𝑐r) = ∏ Å∑ �Pr	(𝑔¸)∏ Pr?𝑏·h¸0|𝑔¸A
À½h¾
045 ∏ Pr?𝑏·�¸0|𝑔¸A

À½�¾
045 �r

�¾4¿ ÆÁ
¸45   

Similarly, the probability that the pair of droplets are originated from different individuals 

can be modeled as follows. 

𝐿r(𝑐5, 𝑐r) = ∏ ∑ �Pr(𝑔¸5) Pr(𝑔¸r)∏ Pr?𝑏·h¸0|𝑔¸5A
À½h¾
045 ∏ Pr?𝑏·�¸0|𝑔¸rA

À½�¾
045 ��¾h,�¾�

Á
¸45   
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Note that neither of these models accounts for doublets. These models assume that both 

droplets consist of singlets and aim to determine whether they share the sample identity samples 

or not. We define genetic distance between pair of cells using the following log Bayes Factor.  

𝐷(𝑐5, 𝑐r) = log	 Ã
𝐿r(𝑐5, 𝑐r)
𝐿5(𝑐5, 𝑐r)

Ä 

Positive 𝐷(𝑐5, 𝑐r) values suggest that the two droplets are likely originated from different 

individuals and negative 𝐷(𝑐5, 𝑐r) values suggest that the two droplets are likely originated from 

the same individual, under the assumption that both of them are singletons.  

Initial Clustering 

A good initial clustering assignment will provide accurate genotype probability of 

clusters, reducing the time to converge to the optimal solution within a limited number of 

iterations. While several clustering algorithms such as Smart Local Moving(SLM) algorithm 

based on Louvain’s method77 is one of the widely used methods, there are important limitations 

that these algorithms may not robustly cluster barcoded droplets by their sample identities. First, 

we expect that a large proportion of barcoded droplets are doublets, but existing algorithms do 

not assume that there will be objects that belong to multiple samples. Second, the single scores 

𝑆𝑆(𝑐) should be helpful to inform whether 𝑐 should belong to a cluster or considered as doublets, 

but existing algorithms do not have room to incorporate such information.  

We found that applying a greedy clustering algorithm, ordering each droplet from the 

highest 𝑆𝑆(𝑐) to the lowest highest, and sequentially assigning clusters based on majority vote 

based on 𝐷?𝑐·Ç$$��:, 𝑐È$�¸A where 𝑐È$�¸ is the droplets whose clusters have already been 

assigned. We used a specific threshold, corresponding Bayes Factor p-value of 10-3 in either 

direction, to account for the majority vote procedure. If all of the possible clusters result in 
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negative total votes, the droplet may be assigned to a new cluster, as long as the total number of 

clusters did not reach to the number of multiplexed samples in the scRNA-seq data. 

Iterative Refinement of Clusters 

The initial clustering procedure does not classify a droplet as doublets, and some of the 

singlet assignments may be incorrect. We refine initial clustering results with an iterative 

procedure of estimating the consensus genotype probability of each cluster and updating the 

best-guess of the cluster assignment of each barcoded droplet based on the consensus genotypes.  

At each iteration, we aggregate all reads from droplets that are assigned to a particular 

cluster and calculate genotype probability. The genotype probability is calculated from allele 

frequencies and the genotype likelihoods from sequence reads. Suppose that, at a certain 

iteration, cluster 𝑘 consists of a set of droplets represented as 𝐶C. The genotype likelihood, given 

genotype 𝑔¸, is calculated using the standard form ∏ ∏ Pr(𝑏·¸0|𝑔¸)
À½¾
045·∈É¢  assuming 

independence between reads. The posterior probability can be calculated using Bayes rule, using 

Pr	(𝑔¸) as the prior.  

With updated genotype probability, we have PrE	(𝑔l¸) for each sample (cluster) 𝑠, and the 

same likelihood model used for demuxlet can be applied to determine whether a specific droplet is 

a singlet or a doublet. Specifically, we use the following model for singlets (𝐿5) and doublets (𝐿r).    

𝐿5(𝑐|𝑠) = ∏ .∑ JPrE	(𝑔l¸)∏ Pr(𝑏·¸0|𝑔l¸)
À½¾
045 Or

��¾4¿ 2Á
¸45   

𝐿r(𝑐|𝑠5, 𝑠r; 𝛼) = ∏ ∑ JPrE?𝑔lh¸A PrE?𝑔l�¸A∏ Pr	(𝑏·¸0|𝑔lh¸, 𝑔l�¸; 𝛼)
À½¾
045 O��h¾,���¾

Á
¸45   

Maximum likelihood estimates adjusting for Akaike Information Criterion across all 

possible 𝐿5 and 𝐿r is used to determine whether 𝑐 is a doublet or not, and it is removed from the 

cluster if determined as doublet.  
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At the final step to determine the assignment of a barcoded droplet to an individual 

cluster or a doublet, we allow genotyping errors in calculating Pr	(𝑔l¸). Specifically, given 

assumed genotyping error rate 𝜖, we use  PrÊ(𝑔l¸) = (1 − 𝜖) PrE(𝑔l¸) + 𝜖Pr	(𝑔¸) where Pr	(𝑔¸) is 

calculated by allele frequency only.  

Recovering Sample Identities from Individual Clusters 

Even though freemuxlet can robustly cluster cell barcodes into distinct clusters while 

detecting and filtering out multiplets, it does not automatically assign each cluster to sample 

identity. To connect a cluster of freemuxlet to individual identity, we need additional steps. 

Freemuxlet can be used in two different circumstances; (1) external genotype data (e.g. SNP 

array, exome sequencing, or bulk RNA-seq) are available, but freemuxlet was used either due to 

limited quality of external genotype data to apply demuxlet or to reduce turnaround time of the 

analysis; (2) no external source of genotype is available. In each circumstance, we offer solutions 

to resolve sample identities. 

First, when external genotypes are available, our recommended approach to produce 

genotype calls from external genotype data and compare them with the genotype likelihood of 

each cluster estimated by freemuxlet. Freemuxlet produces a VCF file that contains genotype 

likelihood for each cluster representing a sample. This VCF file can be compared to the VCF file 

generated from the external genotype data. For example, in the cancer cell line experiment, even 

though the genotypes of cancer cell line obtained from COSMIC73 database was not accurate 

enough to apply demuxlet, we were able to successfully match the sample identity between the 

freemuxlet cluster and COSMIC-genotyped samples to clearly distinguish which individual was 

by calculating Bayes Factor distance between each possible pair of matched samples.  
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Second, when we do not expect to have external genotypes, we can resolve sample 

identities by including each sample twice in a mux-seq experiment. For example, in the example 

shown in Figure 4.S4, each of 6 samples is included twice in 4 batches of 3-way mixtures. 

Because freemuxlet reliably identifies a pair of clusters that have the same genetic identity 

between batches, the identity of the individual can be resolved by pairs of batches that share an 

individual. In Figure 4, for example, the samples shared between batch 1 and 2 represent sample 

ID1, and those shared between batch 2 and 4 represent sample ID4. In general, when there are b 

possible batches of experiments, the number of samples to be included in the design should is 

b(b-1)/2, and each batch should have b-1 samples to multiplex together. In this way, 45 samples 

can be multiplexed across 10 batches, with 9 samples per batch. Up to 120 samples can be 

multiplexed across 16 batches, with 15 samples per batch. In addition to avoiding the need for 

collecting external genotype data, this Sudoku-like pairwise design has the benefit to have 

replicates for each individual sample. These replicates can be used for correcting for technical 

batch effects, or each replicate can contain a different environmental condition to test for 

differential expression. 

Genetically Multiplexed Cell Hashing Data 

To evaluate the accuracy of freemuxlet compared to alternative approaches such as cell 

hashing or demuxlet, we generated scRNA-seq reads using 10x Chromium (v2 chemistry) across 

23,111 barcoded droplets from peripheral blood mononuclear cells genetically multiplexed 

across 7 different samples, with additional molecular tagging of sample identity using antibody-

based cell hashing69 method.  Their genotypes are imputed from Haplotype Reference 

Consortium (HRC) panel, and 217,411 exonic SNPs with minor allele frequency (MAF) >1% 
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were used as the source of external genotypes when running demuxlet. The sample identities 

inference from cell hashing data were inferred using the recommended settings75. For freemuxlet, 

we used 241,322 exonic SNPs from the 1000 Genomes Phase 3 genotypes, filtering by European 

MAF > 1%. We used European MAFs as the source of allele frequencies. The UMAP and tSNE 

manifolds were created using the default settings. Posterior probabilities (GP field) were used to 

run demuxlet, and the assumed genotype error probability was 𝜖 = 0.1 for both demuxlet and 

freemuxlet.   

Mixture of Cancer Cell Lines 

 We also generated a mixture of three colon cancer cell lines – RKO, HCT116, and 

SW480 –  under various environmental conditions across 10 batches using the Drop-seq59 

technique. We obtained a total of 12,557 droplets with 800 or more unique reads, and 

demultiplexed sample identities using freemuxlet while filtering out 1,196 droplets predicted to 

be doublets or ambiguous droplet. We used the remaining singlets to cluster the cells based on 

the gene expressions with UMAP71 based on top 100 principal components with Seurat75. The 

UMAP clearly identified three clusters of cell types and the identity was unequivocally inferred 

from the UMAP manifold. The genetic identities of freemuxlet samples were determined by 

comparing the likelihood of COSMIC genotypes with respect to the sequence reads for each 

cluster. The genetically inferred sample identities were compared with the identities inferred by 

gene expressions to evaluate the concordance. 
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Chapter V.  

Discussion

Summary of the Chapters 

The importance of genetic variants in association studies, population genetic studies, or 

expression quantitative loci (eQTL) studies cannot be stressed more. However, in the context of 

upstream analysis of ultra-high-throughput sequencing studies, such as large-scale genome 

sequencing or single cell genome sequencing, the importance of genetic variants is currently 

underappreciated, and it deserves further exploration. In my dissertation, I described novel 

methods that can robustly and rapidly generate QC metrics to aid high-quality data production, 

methods that can jointly estimate sample contamination and genetic ancestry, as well as a method 

that enables genotyping-free deconvolution of genetically multiplexed scRNA-seq reads. I will 

summarize each of these methods and discuss their limitations and remaining opportunities. 

Rapidly generating comprehensive quality control (QC) metrics for high-throughput 

sequencing experiments in the early stage of data production is crucial for all the omics studies 

because timely feedback of potential problems can help avoid further loss. In Chapter 2, I 

developed FASTQuick to substantially reduce the turnaround time of comprehensive QC of raw 

sequence reads by focusing on sequence data alignable in genomic regions around known genetic 
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variants while maintaining highly concordant estimation of QC metrics with methods that require 

sequence data to align against the full reference genome (post-alignment method).  

FASTQuick combined advantages of 1) spaced k-mer hash tables78, which can rapidly filter 

out negative hits at O(1) time complexity, 2) BWT-based alignment methods29, which efficiently 

align the positive hits, and 3) tailored statistical methods to robustly estimate comprehensive QC 

metrics from partially aligned reads by extrapolating the metrics to genome-wide. FASTQuick not 

only provide “genomic” QC metrics comparable to widely used post-alignment methods such as 

QPLOT or Picard but also produces “genetic” QC metrics that require genetic variant information 

such as DNA contamination of genetic ancestries. Compared to other post-alignment methods, 

FASTQuick not only delivers more comprehensive QC metrics (Table 2.1) but also reduce the QC 

turnaround time by >50-fold. Experiments on 38x coverage genomes show that FASTQuick can 

reduce the QC turnaround time from ~160 hrs. to ~1 hr.  

In Chapter 3, I addressed the known problem that incorrectly specifying allele frequency 

can introduce substantial bias in the estimation of contamination rate13. I developed verifyBamID2 

that can accurately estimate the contamination rate regardless of genetic ancestry. The key idea is 

to introduce individual-specific allele frequency (ISAF) as a function of genetic ancestry in the PC 

space and model the likelihood of sequence reads with ISAF and a mixture-model-based genotype 

likelihood function to jointly estimate the genetic ancestry and contamination together. The ability 

of verifyBamID2 to estimate contamination rate in an ancestry-agnostic way allows us 1) to 

simplify the genome analysis pipeline by eliminating the complication of having to specify sample-

specific parameter settings in large-scale studies, 2) to estimate contamination rates robustly 

against potentially misspecified population allele frequencies of the intended samples, 3) to infer 

genetic ancestries for both intended and contamination samples to track down potential source of 
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the contamination, and 4) to more accurately infer genetic ancestries in the presence of 

contamination. Through experiments with in-silico contaminated samples, I confirm that the 

estimation of contamination rate will be biased if genetic ancestry is incorrectly specified (Figure 

3.4), and the estimation of genetic ancestry will be biased if contamination is ignored (Figure 3.3). 

The availability of genetic ancestry and contamination estimates in QC procedure enables 

many tailored analyses in variant calling steps. For example, in the TOPMed variant calling 

pipeline that recently called >140,000 genomes jointly, the genetic ancestry and contamination 

estimates are used to perform more accurate genotyping and produce more informative population-

level summary statistics such as Hardy-Weinberg equilibrium test statistics account for genetic 

ancestries. The verifyBamID2 software tool can also be used solely as the tool to estimate genetic 

ancestry in lieu of alternative methods such as LASER21, regardless of the presence of potential 

contamination due to its higher accuracy (Figure 3.3).  

Individual-specific allele frequency (ISAF) is the bridge that connects genetic ancestry 

parameters to verifyBamID2’s unified genotype likelihood model31,32. The idea behind ISAF is 

that allele frequencies can be represented as a function of PC coordinates. Other methods in 

studying population structure used a similar idea31,32, but for the first time, we introduce ISAF into 

a unified likelihood-based model to model the sequence data under population structure and/or 

contamination. My results show that verifyBamID2 robustly estimates the contamination rate more 

accurately than the previous method verifyBamID113 across different configuration of 

contamination scenarios (Figure 3.4). 

Contrary to unexpected contamination (or a mixture) occurring in sequence data, a mixture 

between different samples in sequence data can also be intentionally introduced to facilitate cost-

effective single-cell RNA-seq studies via genetic multiplexing (mux-seq). Mux-seq significantly 
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reduces per-sample and per-cell library preparation cost by increasing single cell loading 

throughput while maintaining acceptable doublet rate by detecting and removing doublet with the 

help of demuxlet using external sample genotype. In Chapter 4, I developed genotyping-free 

single-cell RNA-seq deconvolution method, freemuxlet, to enable mux-seq experiment without 

requiring external genotyping. The freemuxlet iteratively applies multi-class clustering of 

sequenced droplets guided by Bayes Factor distances, and simultaneously estimate the consensus 

genotypes of each cluster representing a genetically distinct individual. Meanwhile, freemuxlet 

also detect and remove multiplets using a similar strategy to demuxlet.  

In addition to inheriting advantages of the demuxlet that enables cost-effective scRNA-seq 

experiment with reduced batch effects, freemuxlet also removes the requirement of external 

genotyping of each individual. This additional benefit will enable mux-seq to be further applied in 

research areas where genotype is difficult or infeasible to obtain, including model organisms, 

cancer cell lines. It will also facilitate seamless analysis of scRNA-seq experiment generated by 

mux-seq flow, by eliminating the time-consuming steps to collect external genotypes and to 

process and impute the genotype data. The evaluation shows that freemuxlet generates highly 

concordant estimates of droplet identities inferred by other methods such as cell hashing and 

demuxlet26. I further demonstrated that freemuxlet could successfully deconvolute multiplexed 

scRNA-seq of cancer cell lines, where demuxlet could not deconvolute the droplet identities due 

to the difficulty of accurately genotyping cancer cell lines.  

Remaining Challenges and Future Directions 

In this dissertation, each of the methods presented in Chapter 2, 3, and 4 demonstrated 

results that are comparable or better than existing tools in the evaluation of simulated and real 
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data, with clear advantages in at least one of the evaluation criteria such as computational 

efficiency, robustness, or accuracy. At the same time, these methods still have plenty of rooms 

for further improvements or extension to additional data types to make the methods even more 

useful to the scientific community. 

In Chapter 2, I demonstrated that the ultra-fast speed of FASTQuick could dramatically 

reduce the turnaround time of quality assessment on raw sequence data stored in the standard 

FASTQ format. FASTQuick can be even more useful if it interfaces with Illumina’s software 

tools process their own proprietary BCL format. For example, the computational time to run 

FASTQuick on a 38x genome is much faster than the time spent to convert BCL files into 

FASTQ files using the bcl2fastq software tool (~5 hours). Therefore, in principle, FASTQuick 

can work as a UNIX pipe during the conversion procedures between file formats required for 

most sequence analysis pipeline, without increasing the turnaround time at all. The 

implementation of such a procedure, however, requires additional parameters that allow 

FASTQuick to seamlessly interface with bcl2fastq in various parameters settings such as 

demultiplexing sample indices and parallelization.  

I observed that the computational turnaround time of FASTQuick does not linearly 

decrease by the number of threads. In further evaluations, we identified the input/output (I/O) 

overhead, which includes disk I/O and the computational cost to compress and decompress the 

data was the major bottleneck that affects the overall turnaround time. For these reasons, using 

FASTQuick as a part of a UNIX pipeline is even more attractive in implementing large-scale 

sequence analysis pipeline. For even further speedup, it should be possible to run FASTQuick on 

the BCL or FASTQ files that are split into multiple pieces, to collect the sufficient statistics of 

QC metrics (such as pileups and summary statistics) in parallel, and to merge them to produce 
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combined QC metrics. The last step to combine QC metrics for a deeply sequenced genome 

should take only a few minutes. 

Currently, FASTQuick is focused on processing ultra-high-throughput whole genome 

sequence data, although the metrics can also be useful in other types of sequencing. The QC 

metrics will be even more useful if FASTQuick is tailored for various types of sequencing. For 

example, for exome or targeted sequencing, it would be useful to estimate the fraction of reads 

alignable to the targeted regions and compute QC metrics focusing on the reads located in the 

target regions.  Similarly, for transcriptomic and epigenomic sequence reads, having QC metrics 

focused on expressed genes or specified regulatory elements will be useful to understand the 

quality of the sequence reads with respect to the expectation according to the type of sequence 

data.  

In Chapter 2, we focused on the scenario where sequence reads are relatively short, 

usually ~100bp to ~250bp. As the sequencing technologies develop, reads length will become 

longer and longer79,80. The algorithm used in FASTQuick can be extended to incorporate features 

from long sequence alignment algorithms, such as minimap238, to broaden the range of 

applications. The initial filtering of negative hits can be more robust against potentially high 

sequencing errors in certain technologies such as PacBio sequencing, by allowing more 

mismatches per k-mer or by accounting for the local distribution of hits and misses in spaced k-

mer hashes across long reads, rather than filtering based only on the overall number of hits or 

misses.  Another limitation is that the reads alignment procedure in FASTQuick is still assuming 

that the reference genome has a linear structure. As more and more polymorphisms in human 

genomes across different populations are characterized, graph-based alignment algorithm81 may 

become the de facto standard for alignment algorithms, and FASTQuick can still be used in such 
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context by incorporating the new alignment algorithm in lieu of the current BWT-based 

algorithm. 

In Chapter 3, I demonstrated that verifyBamID2 substantially reduces the potential bias of 

contamination estimates compared to the original verifyBamID due to its ability to jointly 

estimate genetic ancestry and robustly account for the ancestry in estimating contamination rates. 

The presented results only show scenarios where intended contamination rate >1%. This is 

because the 1000 Genomes sequence reads used <3% as the threshold to exclude contaminated 

samples, so the sequenced reads of certain samples are possibly contaminated at a low level. In 

addition, when the contamination rate is extremely small, its impact on genotyping accuracy is 

likely small as demonstrated previously14. Nevertheless, in further exploratory experiments, I 

observed that verifyBamID2 could accurately estimate the contamination rate as low as 0.1%. At 

such a very low level of contamination, the convergence properties may not be as robust. By 

modifying the numerical optimization algorithm to incorporate the gradient of the likelihood 

function, I believe that the accuracy of verifyBamID2 can be improved to be more sensitive to 

the extremely small level of contamination or in the case where much more parameters (e.g. 

using 10 PCs) need to be estimated. 

Although the performance is evaluated based on DNA contamination scenario, 

verifyBamID2 is not limited to DNA sequence data. For example, in our experience, 

verifyBamID2 is able to detect and estimate contamination for RNA-seq and epigenomic 

sequence data, even though the model can be further improved to increase the accuracy of 

estimation. The same model was also used in single cell transcriptomics26 as shown in Chapter 4. 

Another context of great interest is whether verifyBamID2 can also be extended to handle 

contamination in cancer genomic data. Even though contamination between tumor-normal 
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samples will not be detected using verifyBamID2, contamination from another individual should 

be able to be detected. However, the current model does not explicitly model ploidy changes or 

imbalance between the allelic reads in cancer samples, so modeling these factors may improve 

the accuracy of the method for cancer genome sequence reads. 

Sample swap is also an important topic related to sample contamination. Sample swaps 

cannot be detected with additional information such as reported genetic ancestry, sex, or external 

genotypes. While verifyBamID2 produces the genetic ancestry information to aid sample swap 

checking, it currently does not check the biological sex of the sequenced genome, and it should 

be possible to extend to estimate the biological sex. Also, the original verifyBamID has an option 

to check sample swaps against external genotypes. However, the feature is not currently 

implemented in verifyBamID2, but it should be straightforward to incorporate such a feature. 

Moreover, it should be possible to not only check the sample swaps to unrelated samples but also 

identify sample swaps to close relatives by incorporating a Hidden Markov Model or by 

estimating the probability of IBS0 (zero identity-by-state), IBS1, and IBS2 genome-wide82. 

Furthermore, the unified likelihood model used in verifyBamID2 actually can be further extended 

to estimate metrics like blood type, HLA type, paternal/maternal haplogroup, polygenic risk 

scores, or other of highly heritable phenotypes. 

In Chapter 4, although freemuxlet can accurately assign singlets and detect doublets, its 

accuracy to correctly distinguish singlets from multiplets can be further improved. Currently, in 

the 7-sample mixture cell-hashing data, we observed that the inferred identities between 

freemuxlet and demuxlet agree 97.8% of droplets. In 18,451 droplets where both methods 

predicted the droplet as singlets, 18,450 (>99.99%) of them were assigned to the identical 

sample. However, in the remaining 4,660 droplets where either method classified the droplet as a 
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multiplet, only 4,146 (89%) of them were consistently assigned as multiplets by both methods. 

These observations suggest that distinguishing multiplets from singlets is a much more 

challenging problem than assigning the correct identity of singlets. Moreover, we observed that 

the estimated fraction of multiplets is sensitive to input parameter settings such as genotype error 

rates. 

There are many potentially important factors not currently modeled in the freemuxlet 

method. For example, allelic-specific expression or burst effect is currently not accounted for in 

the likelihood model of freemuxlet, and it is possible that the likelihood of homozygous genotype 

is inflated due to the unmodeled factors. In addition, freemuxlet currently does not attempt to 

infer genetic ancestry of each individual or make use of individual-specific allele frequencies as 

verifyBamID2 does. Instead, it relies on externally provided allele frequency information as 

original verifyBamID did. Therefore, unmodeled bias may be affecting the distinction between 

singlets and multiplets due to systematic increase or decrease of observed heterozygosity than 

expected by the externally provided allele frequencies.  

Currently, the likelihood model of freemuxlet (and also that of demuxlet) ignores the fact 

that different cells may have different distributions of expression levels due to the difference in 

cell types, cell cycles, or other conditions. For example, even if the total number of reads in a 

doublet is equally contributed by each contributing cell (i.e. exact 1:1 mixture), the number of 

reads per each gene may be substantially imbalanced if the two contributing cells are of different 

cell types. A more systematic way to incorporate cell-type specific expression levels should 

incorporate both the total number of unique reads and the allelic read information at each gene 

together83. Even though this requires an additional implementation to collect scRNA-seq 

information beyond genetic variants, this will be an important extension to enable more 
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comprehensive inference of multiplexed scRNA-seq reads with respect to both sample identities 

and cell types.  

In summary, this dissertation contributes new methods to large-scale, ultra-high-

throughput sequencing studies focusing on DNA sequencing and single-cell RNA-seq. The 

methods described in this dissertation enables rapid, robust, and scalable upstream analyses of 

massive sequence data. In particular, I show that genetic variants can play an important role in 

making useful inferences from upstream analysis of sequence reads or even enable new 

experimental designs of single-cell studies. I believe that the combination of well-designed 

statistical models and efficient algorithms is fundamental to enable best practices of large-scale 

sequencing studies and enhance our understanding of human genetics and genomics.  
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Appendix A

 

Summary Statistics Report by FASTQuick 

 

  

Table 2.S1. Summary statistics report by FASTQuick 

Output File Names Description 
output_prefix.AdjustedInsertSizeDist Adjusted Insert Size Distribution 
output_prefix.DepthDist Depth distribution 
output_prefix.EmpCycleDist Empirical Base Quality V.S. Sequencing Cycle 
output_prefix.EmpRepDist Empirical Base Quality V.S. Reported Base Quality 
output_prefix.GCDist GC Content Distribution 
output_prefix.InsertSizeTable Insert Size for Each Reads Pair 
output_prefix.Likelihood Genotype Likelihood 
output_prefix.Pileup Pileup format information 
output_prefix.RawInsertSizeDist Not Adjusted Insert Size Distribution 
output_prefix.Summary General Summary Report 
output_prefix.bam Reads Alignment 
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Appendix B 

Detailed Contamination Estimation of in-silico Contaminated Samples 

Supplementary Table 3.S1: Mean estimated contamination rates of in-silico contaminated 
population across different intended contamination rate, populations of intended and 
contaminating samples, and the estimation methods.  

Population Intended  
% Contam. 

Equal- 
Ancestry 

(VB2) 

Unequal- 
Ancestry 

(VB2) 

Pooled 
AF 

(VB1) 

EUR 
AF 

(VB1) 

EAS 
AF 

(VB1) 

AFR 
AF 

(VB1) Intended Contam. 

GBR GBR 

1% 1.0% 1.0% 0.8% 1.0% 0.6% 0.5% 
2% 1.9% 1.9% 1.5% 2.0% 1.3% 1.1% 
5% 4.6% 4.6% 3.8% 4.7% 3.2% 2.7% 
10% 9.2% 9.2% 7.4% 9.4% 6.2% 5.2% 
20% 18.3% 18.3% 14.7% 18.5% 11.6% 9.5% 

GBR CHS 

1% 1.1% 1.0% 0.9% 1.2% 0.7% 0.6% 
2% 2.1% 1.9% 1.7% 2.2% 1.5% 1.2% 
5% 5.2% 4.7% 4.3% 5.3% 3.8% 3.1% 
10% 10.1% 9.4% 8.6% 10.4% 7.6% 5.9% 
20% 19.8% 18.7% 17.3% 19.9% 15.1% 10.9% 

GBR YRI 

1% 1.3% 1.1% 1.1% 1.4% 0.8% 0.7% 
2% 2.5% 2.0% 2.1% 2.6% 1.7% 1.4% 
5% 5.9% 4.8% 5.0% 6.1% 4.2% 3.6% 
10% 11.3% 9.5% 10.0% 11.7% 8.0% 7.3% 
20% 21.6% 19.1% 19.7% 22.0% 14.8% 14.6% 

CHS GBR 

1% 1.2% 0.9% 0.4% 0.2% 1.2% 0.1% 
2% 2.5% 1.8% 1.1% 0.8% 2.5% 0.5% 
5% 6.1% 4.8% 3.6% 2.9% 6.3% 2.0% 
10% 12.0% 9.9% 7.9% 6.6% 12.5% 4.6% 
20% 23.0% 19.8% 16.6% 14.2% 23.6% 9.4% 

CHS CHS 
1% 0.9% 0.9% 0.2% 0.1% 0.9% 0.0% 
2% 1.8% 1.8% 0.7% 0.5% 1.8% 0.2% 
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5% 4.7% 4.8% 2.4% 1.9% 4.7% 1.3% 
10% 9.5% 9.5% 5.2% 4.2% 9.5% 2.9% 
20% 19.1% 19.1% 10.6% 8.4% 18.9% 5.9% 

CHS YRI 

1% 1.4% 0.9% 0.5% 0.3% 1.4% 0.1% 
2% 2.8% 1.9% 1.3% 1.0% 2.8% 0.5% 
5% 6.7% 4.8% 4.1% 3.3% 6.9% 2.3% 
10% 12.9% 9.8% 8.9% 7.2% 13.5% 5.4% 
20% 24.3% 19.6% 18.6% 14.2% 24.9% 12.2% 

YRI GBR 

1% 1.3% 1.0% 0.6% 0.4% 0.4% 1.4% 
2% 2.5% 1.9% 1.3% 0.9% 0.8% 2.6% 
5% 6.0% 4.6% 3.8% 2.8% 2.6% 6.4% 
10% 11.5% 9.3% 8.1% 6.2% 5.6% 12.5% 
20% 21.9% 18.8% 16.7% 13.0% 11.1% 23.5% 

YRI CHS 

1% 1.3% 0.9% 0.5% 0.4% 0.3% 1.3% 
2% 2.5% 1.9% 1.3% 0.9% 0.8% 2.6% 
5% 6.0% 4.7% 3.8% 2.8% 2.5% 6.3% 
10% 11.5% 9.3% 7.9% 5.9% 5.6% 12.2% 
20% 22.0% 18.8% 16.6% 12.0% 12.1% 22.9% 

YRI YRI 

1% 0.9% 0.9% 0.4% 0.2% 0.2% 0.9% 
2% 1.8% 1.8% 0.9% 0.6% 0.5% 1.8% 
5% 4.4% 4.4% 2.4% 1.8% 1.6% 4.4% 
10% 8.8% 8.8% 5.1% 3.8% 3.4% 8.9% 
20% 17.6% 17.6% 10.1% 7.3% 6.6% 17.9% 

Equal-Ancestry Model: Estimate from verifyBamID2 assuming intended and 
contaminating samples have the same genetic ancestry (in PC 
coordinates) 

Unequal-Ancestry Model:  Estimate from verifyBamID2 allowing intended and 
contaminating samples to have different genetic ancestry 

Pooled AF: Estimate from original verifyBamID using allele frequency across 
all 1000 Genomes phase 3 samples 

EUR AF: Estimate from original verifyBamID using allele frequency across 
European subset of 1000 Genomes phase 3 samples 

EAS AF: Estimate from original verifyBamID using allele frequency across 
East Asian subset of 1000 Genomes phase 3 samples 

AFR AF: Estimate from original verifyBamID using allele frequency across 
African subset of 1000 Genomes phase 3 samples 
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Performance on Admixed Population 

Supplementary Table 3.S2: Average of estimated contamination rates across 10 in-silico 
contaminated samples from Mexican population under different models. Results are similar as 
Europeans, except that unequal-ancestry model slightly reduces estimated contamination rate 
from equal-ancestry model, unlike GBR. 

Intended % 
Contaminatio

n 

Equal- 
Ancestry 

(VB2) 

Unequal- 
Ancestry 

(VB2) 

Pooled 
AF 

(VB1) 

EUR 
AF 

(VB1) 

EAS 
AF 

(VB1) 

AFR 
AF 

(VB1) 

1% 1.1% 1.0% 0.8% 1.0% 0.6% 0.3% 

2% 2.1% 2.1% 1.6% 2.0% 1.4% 0.9% 

5% 4.8% 4.8% 3.9% 4.6% 3.5% 2.5% 

10% 9.3% 9.2% 7.8% 8.8% 6.8% 4.9% 

20% 18.5% 18.3% 15.4% 17.0% 13.0% 9.4% 
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Effect from Different Size of Marker Set 

Supplementary Table 3.S3:  Comparison of mean contamination rate ratio (Estimated/Intended) using different 
size of marker set (under Unequal-Ancestry Model). The Numbers in parenthesis represent standard deviation. 

Sample Population Marker 
Set 

Intended Contamination Rate 
Intended Contam. 0.01 0.02 0.05 0.1 0.2 

GBR GBR 
1K 0.57(0.15) 0.88(0.38) 0.87(0.28) 0.92(0.18) 0.95(0.12) 
10K 0.98(0.13) 0.95(0.11) 0.93(0.09) 0.91(0.08) 0.91(0.07) 
100K 1.00(0.10) 0.96(0.09) 0.93(0.08) 0.92(0.06) 0.91(0.05) 

CHS CHS 
1K 1.38(1.26) 1.09(0.63) 1.00(0.44) 0.95(0.41) 0.95(0.21) 
10K 1.08(0.48) 1.03(0.26) 1.00(0.12) 1.01(0.08) 0.96(0.06) 
100K 0.89(0.12) 0.92(0.08) 0.95(0.07) 0.95(0.05) 0.96(0.04) 

YRI YRI 
1K 1.23(0.86) 0.92(0.46) 0.98(0.30) 0.95(0.16) 0.97(0.10) 
10K 0.91(0.20) 0.87(0.17) 0.89(0.05) 0.88(0.04) 0.90(0.03) 
100K 0.94(0.08) 0.92(0.07) 0.88(0.04) 0.88(0.04) 0.88(0.03) 

CHS YRI 
1K 1.07(0.90) 1.03(0.61) 0.95(0.37) 0.97(0.22) 0.91(0.12) 
10K 1.00(0.46) 0.99(0.22) 1.02(0.12) 1.02(0.08) 0.99(0.06) 
100K 0.88(0.14) 0.93(0.10) 0.96(0.06) 0.98(0.05) 0.98(0.04) 

YRI CHS 
1K 1.00(0.49) 1.00(0.35) 0.91(0.24) 1.00(0.17) 1.01(0.10) 
10K 1.02(0.10) 1.00(0.07) 0.95(0.03) 0.94(0.03) 0.94(0.02) 
100K 0.94(0.15) 0.95(0.09) 0.93(0.05) 0.93(0.03) 0.94(0.03) 

GBR YRI 
1K 1.10(0.49) 1.10(0.28) 1.06(0.30) 0.98(0.18) 0.97(0.09) 
10K 0.94(0.23) 0.98(0.10) 0.94(0.06) 0.93(0.04) 0.94(0.03) 
100K 1.07(0.09) 1.02(0.08) 0.97(0.06) 0.95(0.05) 0.95(0.04) 

YRI GBR 
1K 1.13(0.56) 0.78(0.36) 0.84(0.19) 0.93(0.11) 0.98(0.06) 
10K 0.92(0.24) 0.89(0.15) 0.91(0.06) 0.93(0.05) 0.94(0.05) 
100K 0.95(0.15) 0.93(0.08) 0.93(0.08) 0.93(0.06) 0.94(0.06) 

CHS GBR 
1K 1.28(1.24) 1.12(0.70) 1.00(0.40) 0.95(0.21) 0.97(0.13) 
10K 1.06(0.54) 1.01(0.33) 1.00(0.14) 1.00(0.07) 0.98(0.05) 
100K 0.91(0.06) 0.92(0.07) 0.97(0.07) 0.99(0.06) 0.99(0.05) 

GBR CHS 
1K 0.89(0.47) 0.83(0.42) 0.84(0.17) 0.91(0.14) 0.92(0.13) 
10K 0.97(0.17) 0.93(0.11) 0.94(0.08) 0.94(0.06) 0.92(0.06) 
100K 1.01(0.12) 0.97(0.10) 0.93(0.08) 0.94(0.07) 0.94(0.06) 
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Contamination Estimation under Different Parameter Settings 

Supplementary Table 3.S4.  A full table summarizing the contamination rate ratio (Estimated/Intended) 
across various simulation parameters, populations, and estimation methods shown in Figure 4. (100K marker 
sets were used.) 

Sample Population Method Allele Frequencies Intended 
% Contam. Mean SD MSE 

Intended Contam. 

GBR GBR VB1 AFR 1% 0.52 0.11 0.242 
GBR GBR VB1 AFR 2% 0.53 0.09 0.223 
GBR GBR VB1 AFR 5% 0.53 0.06 0.221 
GBR GBR VB1 AFR 10% 0.52 0.05 0.237 
GBR GBR VB1 AFR 20% 0.48 0.04 0.276 
GBR GBR VB1 EUR 1% 1.04 0.10 0.012 
GBR GBR VB1 EUR 2% 0.98 0.09 0.007 
GBR GBR VB1 EUR 5% 0.95 0.07 0.008 
GBR GBR VB1 EUR 10% 0.94 0.06 0.008 
GBR GBR VB1 EUR 20% 0.92 0.05 0.008 
GBR GBR VB1 EAS 1% 0.65 0.11 0.136 
GBR GBR VB1 EAS 2% 0.65 0.09 0.132 
GBR GBR VB1 EAS 5% 0.64 0.06 0.135 
GBR GBR VB1 EAS 10% 0.62 0.05 0.148 
GBR GBR VB1 EAS 20% 0.58 0.05 0.179 
GBR GBR VB1 Pooled 1% 0.79 0.11 0.055 
GBR GBR VB1 Pooled 2% 0.77 0.08 0.060 
GBR GBR VB1 Pooled 5% 0.75 0.07 0.066 
GBR GBR VB1 Pooled 10% 0.74 0.06 0.069 
GBR GBR VB1 Pooled 20% 0.73 0.05 0.073 
GBR GBR VB2 ISAF (Equal-Ancestry) 1% 1.02 0.11 0.010 
GBR GBR VB2 ISAF (Equal-Ancestry) 2% 0.96 0.09 0.009 
GBR GBR VB2 ISAF (Equal -Ancestry) 5% 0.93 0.07 0.010 
GBR GBR VB2 ISAF (Equal -Ancestry) 10% 0.92 0.06 0.010 
GBR GBR VB2 ISAF (Equal -Ancestry) 20% 0.91 0.05 0.010 
GBR GBR VB2 ISAF (Unequal-Ancestry) 1% 1.00 0.10 0.009 
GBR GBR VB2 ISAF (Unequal-Ancestry) 2% 0.96 0.09 0.009 
GBR GBR VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.08 0.011 
GBR GBR VB2 ISAF (Unequal-Ancestry) 10% 0.92 0.06 0.010 
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GBR GBR VB2 ISAF (Unequal-Ancestry) 20% 0.91 0.05 0.010 
GBR CHS VB1 AFR 1% 0.59 0.08 0.172 
GBR CHS VB1 AFR 2% 0.60 0.06 0.162 
GBR CHS VB1 AFR 5% 0.61 0.05 0.154 
GBR CHS VB1 AFR 10% 0.59 0.04 0.169 
GBR CHS VB1 AFR 20% 0.55 0.03 0.206 
GBR CHS VB1 EUR 1% 1.17 0.11 0.039 
GBR CHS VB1 EUR 2% 1.09 0.10 0.016 
GBR CHS VB1 EUR 5% 1.06 0.08 0.010 
GBR CHS VB1 EUR 10% 1.04 0.07 0.006 
GBR CHS VB1 EUR 20% 0.99 0.06 0.003 
GBR CHS VB1 EAS 1% 0.74 0.09 0.074 
GBR CHS VB1 EAS 2% 0.74 0.07 0.072 
GBR CHS VB1 EAS 5% 0.76 0.06 0.063 
GBR CHS VB1 EAS 10% 0.76 0.05 0.061 
GBR CHS VB1 EAS 20% 0.75 0.04 0.062 
GBR CHS VB1 Pooled 1% 0.89 0.09 0.019 
GBR CHS VB1 Pooled 2% 0.86 0.07 0.025 
GBR CHS VB1 Pooled 5% 0.86 0.06 0.022 
GBR CHS VB1 Pooled 10% 0.86 0.06 0.022 
GBR CHS VB1 Pooled 20% 0.86 0.05 0.021 
GBR CHS VB2 ISAF (Equal-Ancestry) 1% 1.13 0.11 0.028 
GBR CHS VB2 ISAF (Equal-Ancestry) 2% 1.06 0.09 0.011 
GBR CHS VB2 ISAF (Equal -Ancestry) 5% 1.03 0.08 0.007 
GBR CHS VB2 ISAF (Equal -Ancestry) 10% 1.01 0.07 0.004 
GBR CHS VB2 ISAF (Equal -Ancestry) 20% 0.99 0.06 0.004 
GBR CHS VB2 ISAF (Unequal-Ancestry) 1% 1.01 0.12 0.012 
GBR CHS VB2 ISAF (Unequal-Ancestry) 2% 0.97 0.10 0.010 
GBR CHS VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.08 0.010 
GBR CHS VB2 ISAF (Unequal-Ancestry) 10% 0.94 0.07 0.008 
GBR CHS VB2 ISAF (Unequal-Ancestry) 20% 0.94 0.06 0.007 
GBR YRI VB1 AFR 1% 0.67 0.11 0.119 
GBR YRI VB1 AFR 2% 0.70 0.09 0.096 
GBR YRI VB1 AFR 5% 0.72 0.06 0.082 
GBR YRI VB1 AFR 10% 0.73 0.05 0.077 
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GBR YRI VB1 AFR 20% 0.73 0.04 0.074 
GBR YRI VB1 EUR 1% 1.38 0.10 0.150 
GBR YRI VB1 EUR 2% 1.30 0.09 0.097 
GBR YRI VB1 EUR 5% 1.23 0.07 0.055 
GBR YRI VB1 EUR 10% 1.17 0.05 0.032 
GBR YRI VB1 EUR 20% 1.10 0.04 0.011 
GBR YRI VB1 EAS 1% 0.85 0.10 0.032 
GBR YRI VB1 EAS 2% 0.85 0.08 0.028 
GBR YRI VB1 EAS 5% 0.83 0.06 0.031 
GBR YRI VB1 EAS 10% 0.80 0.04 0.042 
GBR YRI VB1 EAS 20% 0.74 0.03 0.069 
GBR YRI VB1 Pooled 1% 1.05 0.09 0.010 
GBR YRI VB1 Pooled 2% 1.03 0.08 0.007 
GBR YRI VB1 Pooled 5% 1.01 0.06 0.003 
GBR YRI VB1 Pooled 10% 1.00 0.05 0.002 
GBR YRI VB1 Pooled 20% 0.99 0.04 0.002 
GBR YRI VB2 ISAF (Equal-Ancestry) 1% 1.33 0.09 0.118 
GBR YRI VB2 ISAF (Equal-Ancestry) 2% 1.26 0.09 0.074 
GBR YRI VB2 ISAF (Equal -Ancestry) 5% 1.18 0.06 0.036 
GBR YRI VB2 ISAF (Equal -Ancestry) 10% 1.13 0.05 0.018 
GBR YRI VB2 ISAF (Equal -Ancestry) 20% 1.08 0.04 0.008 
GBR YRI VB2 ISAF (Unequal-Ancestry) 1% 1.07 0.09 0.014 
GBR YRI VB2 ISAF (Unequal-Ancestry) 2% 1.02 0.08 0.006 
GBR YRI VB2 ISAF (Unequal-Ancestry) 5% 0.97 0.06 0.004 
GBR YRI VB2 ISAF (Unequal-Ancestry) 10% 0.95 0.05 0.004 
GBR YRI VB2 ISAF (Unequal-Ancestry) 20% 0.95 0.04 0.004 
CHS GBR VB1 AFR 1% 0.07 0.04 0.868 
CHS GBR VB1 AFR 2% 0.23 0.05 0.597 
CHS GBR VB1 AFR 5% 0.40 0.04 0.366 
CHS GBR VB1 AFR 10% 0.46 0.03 0.290 
CHS GBR VB1 AFR 20% 0.47 0.02 0.282 
CHS GBR VB1 EUR 1% 0.21 0.05 0.625 
CHS GBR VB1 EUR 2% 0.40 0.05 0.364 
CHS GBR VB1 EUR 5% 0.57 0.05 0.184 
CHS GBR VB1 EUR 10% 0.66 0.04 0.119 
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CHS GBR VB1 EUR 20% 0.71 0.04 0.087 
CHS GBR VB1 EAS 1% 1.24 0.11 0.069 
CHS GBR VB1 EAS 2% 1.26 0.10 0.075 
CHS GBR VB1 EAS 5% 1.27 0.08 0.077 
CHS GBR VB1 EAS 10% 1.25 0.06 0.066 
CHS GBR VB1 EAS 20% 1.18 0.05 0.035 
CHS GBR VB1 Pooled 1% 0.36 0.06 0.409 
CHS GBR VB1 Pooled 2% 0.55 0.06 0.207 
CHS GBR VB1 Pooled 5% 0.71 0.05 0.086 
CHS GBR VB1 Pooled 10% 0.79 0.05 0.047 
CHS GBR VB1 Pooled 20% 0.83 0.04 0.031 
CHS GBR VB2 ISAF (Equal-Ancestry) 1% 1.22 0.11 0.060 
CHS GBR VB2 ISAF (Equal-Ancestry) 2% 1.23 0.10 0.060 
CHS GBR VB2 ISAF (Equal -Ancestry) 5% 1.23 0.08 0.057 
CHS GBR VB2 ISAF (Equal -Ancestry) 10% 1.20 0.06 0.044 
CHS GBR VB2 ISAF (Equal -Ancestry) 20% 1.15 0.05 0.025 
CHS GBR VB2 ISAF (Unequal-Ancestry) 1% 0.91 0.06 0.011 
CHS GBR VB2 ISAF (Unequal-Ancestry) 2% 0.92 0.07 0.010 
CHS GBR VB2 ISAF (Unequal-Ancestry) 5% 0.97 0.07 0.005 
CHS GBR VB2 ISAF (Unequal-Ancestry) 10% 0.99 0.06 0.004 
CHS GBR VB2 ISAF (Unequal-Ancestry) 20% 0.99 0.05 0.003 
CHS CHS VB1 AFR 1% 0.02 0.03 0.956 
CHS CHS VB1 AFR 2% 0.12 0.05 0.782 
CHS CHS VB1 AFR 5% 0.25 0.03 0.562 
CHS CHS VB1 AFR 10% 0.29 0.02 0.500 
CHS CHS VB1 AFR 20% 0.29 0.01 0.500 
CHS CHS VB1 EUR 1% 0.10 0.07 0.815 
CHS CHS VB1 EUR 2% 0.24 0.05 0.573 
CHS CHS VB1 EUR 5% 0.38 0.03 0.385 
CHS CHS VB1 EUR 10% 0.42 0.02 0.338 
CHS CHS VB1 EUR 20% 0.42 0.02 0.337 
CHS CHS VB1 EAS 1% 0.90 0.10 0.020 
CHS CHS VB1 EAS 2% 0.92 0.07 0.011 
CHS CHS VB1 EAS 5% 0.95 0.06 0.006 
CHS CHS VB1 EAS 10% 0.95 0.04 0.004 
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CHS CHS VB1 EAS 20% 0.94 0.03 0.004 
CHS CHS VB1 Pooled 1% 0.19 0.08 0.659 
CHS CHS VB1 Pooled 2% 0.34 0.05 0.435 
CHS CHS VB1 Pooled 5% 0.48 0.04 0.275 
CHS CHS VB1 Pooled 10% 0.52 0.03 0.233 
CHS CHS VB1 Pooled 20% 0.53 0.02 0.222 
CHS CHS VB2 ISAF (Equal-Ancestry) 1% 0.90 0.11 0.021 
CHS CHS VB2 ISAF (Equal-Ancestry) 2% 0.91 0.07 0.012 
CHS CHS VB2 ISAF (Equal -Ancestry) 5% 0.95 0.06 0.006 
CHS CHS VB2 ISAF (Equal -Ancestry) 10% 0.95 0.04 0.004 
CHS CHS VB2 ISAF (Equal -Ancestry) 20% 0.95 0.03 0.003 
CHS CHS VB2 ISAF (Unequal-Ancestry) 1% 0.89 0.12 0.024 
CHS CHS VB2 ISAF (Unequal-Ancestry) 2% 0.92 0.08 0.012 
CHS CHS VB2 ISAF (Unequal-Ancestry) 5% 0.95 0.07 0.006 
CHS CHS VB2 ISAF (Unequal-Ancestry) 10% 0.95 0.05 0.004 
CHS CHS VB2 ISAF (Unequal-Ancestry) 20% 0.96 0.04 0.003 
CHS YRI VB1 AFR 1% 0.09 0.09 0.828 
CHS YRI VB1 AFR 2% 0.27 0.08 0.543 
CHS YRI VB1 AFR 5% 0.45 0.05 0.302 
CHS YRI VB1 AFR 10% 0.54 0.04 0.210 
CHS YRI VB1 AFR 20% 0.61 0.03 0.155 
CHS YRI VB1 EUR 1% 0.31 0.11 0.492 
CHS YRI VB1 EUR 2% 0.51 0.08 0.250 
CHS YRI VB1 EUR 5% 0.67 0.05 0.114 
CHS YRI VB1 EUR 10% 0.72 0.04 0.083 
CHS YRI VB1 EUR 20% 0.71 0.03 0.084 
CHS YRI VB1 EAS 1% 1.38 0.14 0.161 
CHS YRI VB1 EAS 2% 1.39 0.10 0.163 
CHS YRI VB1 EAS 5% 1.38 0.07 0.151 
CHS YRI VB1 EAS 10% 1.35 0.06 0.123 
CHS YRI VB1 EAS 20% 1.24 0.04 0.061 
CHS YRI VB1 Pooled 1% 0.47 0.13 0.298 
CHS YRI VB1 Pooled 2% 0.66 0.09 0.123 
CHS YRI VB1 Pooled 5% 0.82 0.06 0.036 
CHS YRI VB1 Pooled 10% 0.89 0.05 0.015 
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CHS YRI VB1 Pooled 20% 0.93 0.04 0.007 
CHS YRI VB2 ISAF (Equal-Ancestry) 1% 1.37 0.14 0.157 
CHS YRI VB2 ISAF (Equal-Ancestry) 2% 1.38 0.11 0.154 
CHS YRI VB2 ISAF (Equal -Ancestry) 5% 1.34 0.07 0.122 
CHS YRI VB2 ISAF (Equal -Ancestry) 10% 1.29 0.06 0.085 
CHS YRI VB2 ISAF (Equal -Ancestry) 20% 1.22 0.05 0.048 
CHS YRI VB2 ISAF (Unequal-Ancestry) 1% 0.88 0.14 0.033 
CHS YRI VB2 ISAF (Unequal-Ancestry) 2% 0.93 0.10 0.014 
CHS YRI VB2 ISAF (Unequal-Ancestry) 5% 0.96 0.06 0.005 
CHS YRI VB2 ISAF (Unequal-Ancestry) 10% 0.98 0.05 0.002 
CHS YRI VB2 ISAF (Unequal-Ancestry) 20% 0.98 0.04 0.002 
YRI GBR VB1 AFR 1% 1.43 0.23 0.236 
YRI GBR VB1 AFR 2% 1.31 0.14 0.113 
YRI GBR VB1 AFR 5% 1.28 0.08 0.081 
YRI GBR VB1 AFR 10% 1.25 0.07 0.065 
YRI GBR VB1 AFR 20% 1.17 0.06 0.034 
YRI GBR VB1 EUR 1% 0.36 0.22 0.453 
YRI GBR VB1 EUR 2% 0.46 0.19 0.329 
YRI GBR VB1 EUR 5% 0.56 0.11 0.201 
YRI GBR VB1 EUR 10% 0.62 0.07 0.153 
YRI GBR VB1 EUR 20% 0.65 0.05 0.124 
YRI GBR VB1 EAS 1% 0.32 0.20 0.504 
YRI GBR VB1 EAS 2% 0.41 0.18 0.380 
YRI GBR VB1 EAS 5% 0.52 0.11 0.245 
YRI GBR VB1 EAS 10% 0.55 0.07 0.204 
YRI GBR VB1 EAS 20% 0.56 0.04 0.198 
YRI GBR VB1 Pooled 1% 0.57 0.26 0.248 
YRI GBR VB1 Pooled 2% 0.67 0.17 0.138 
YRI GBR VB1 Pooled 5% 0.76 0.10 0.066 
YRI GBR VB1 Pooled 10% 0.80 0.07 0.043 
YRI GBR VB1 Pooled 20% 0.83 0.05 0.030 
YRI GBR VB2 ISAF (Equal-Ancestry) 1% 1.30 0.15 0.107 
YRI GBR VB2 ISAF (Equal-Ancestry) 2% 1.25 0.11 0.072 
YRI GBR VB2 ISAF (Equal -Ancestry) 5% 1.20 0.09 0.048 
YRI GBR VB2 ISAF (Equal -Ancestry) 10% 1.15 0.07 0.028 
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YRI GBR VB2 ISAF (Equal -Ancestry) 20% 1.10 0.07 0.013 
YRI GBR VB2 ISAF (Unequal-Ancestry) 1% 0.95 0.15 0.021 
YRI GBR VB2 ISAF (Unequal-Ancestry) 2% 0.93 0.08 0.012 
YRI GBR VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.08 0.011 
YRI GBR VB2 ISAF (Unequal-Ancestry) 10% 0.93 0.06 0.008 
YRI GBR VB2 ISAF (Unequal-Ancestry) 20% 0.94 0.06 0.006 
YRI CHS VB1 AFR 1% 1.32 0.13 0.120 
YRI CHS VB1 AFR 2% 1.30 0.11 0.098 
YRI CHS VB1 AFR 5% 1.26 0.07 0.071 
YRI CHS VB1 AFR 10% 1.22 0.05 0.049 
YRI CHS VB1 AFR 20% 1.14 0.04 0.022 
YRI CHS VB1 EUR 1% 0.35 0.20 0.455 
YRI CHS VB1 EUR 2% 0.46 0.18 0.319 
YRI CHS VB1 EUR 5% 0.56 0.10 0.204 
YRI CHS VB1 EUR 10% 0.59 0.06 0.168 
YRI CHS VB1 EUR 20% 0.60 0.03 0.159 
YRI CHS VB1 EAS 1% 0.29 0.17 0.528 
YRI CHS VB1 EAS 2% 0.40 0.18 0.395 
YRI CHS VB1 EAS 5% 0.51 0.11 0.252 
YRI CHS VB1 EAS 10% 0.56 0.06 0.194 
YRI CHS VB1 EAS 20% 0.61 0.03 0.157 
YRI CHS VB1 Pooled 1% 0.55 0.24 0.259 
YRI CHS VB1 Pooled 2% 0.66 0.16 0.136 
YRI CHS VB1 Pooled 5% 0.75 0.09 0.068 
YRI CHS VB1 Pooled 10% 0.79 0.04 0.044 
YRI CHS VB1 Pooled 20% 0.83 0.02 0.030 
YRI CHS VB2 ISAF (Equal-Ancestry) 1% 1.29 0.13 0.098 
YRI CHS VB2 ISAF (Equal-Ancestry) 2% 1.25 0.11 0.074 
YRI CHS VB2 ISAF (Equal -Ancestry) 5% 1.20 0.07 0.043 
YRI CHS VB2 ISAF (Equal -Ancestry) 10% 1.15 0.04 0.023 
YRI CHS VB2 ISAF (Equal -Ancestry) 20% 1.10 0.04 0.011 
YRI CHS VB2 ISAF (Unequal-Ancestry) 1% 0.94 0.15 0.023 
YRI CHS VB2 ISAF (Unequal-Ancestry) 2% 0.95 0.09 0.010 
YRI CHS VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.05 0.007 
YRI CHS VB2 ISAF (Unequal-Ancestry) 10% 0.93 0.03 0.005 
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YRI CHS VB2 ISAF (Unequal-Ancestry) 20% 0.94 0.03 0.004 
YRI YRI VB1 AFR 1% 0.95 0.09 0.010 
YRI YRI VB1 AFR 2% 0.92 0.06 0.009 
YRI YRI VB1 AFR 5% 0.89 0.05 0.014 
YRI YRI VB1 AFR 10% 0.89 0.04 0.013 
YRI YRI VB1 AFR 20% 0.89 0.03 0.012 
YRI YRI VB1 EUR 1% 0.22 0.13 0.619 
YRI YRI VB1 EUR 2% 0.29 0.14 0.518 
YRI YRI VB1 EUR 5% 0.36 0.09 0.423 
YRI YRI VB1 EUR 10% 0.38 0.06 0.391 
YRI YRI VB1 EUR 20% 0.36 0.03 0.405 
YRI YRI VB1 EAS 1% 0.18 0.11 0.680 
YRI YRI VB1 EAS 2% 0.25 0.13 0.575 
YRI YRI VB1 EAS 5% 0.32 0.09 0.474 
YRI YRI VB1 EAS 10% 0.34 0.06 0.438 
YRI YRI VB1 EAS 20% 0.33 0.03 0.452 
YRI YRI VB1 Pooled 1% 0.36 0.18 0.433 
YRI YRI VB1 Pooled 2% 0.44 0.14 0.333 
YRI YRI VB1 Pooled 5% 0.49 0.08 0.267 
YRI YRI VB1 Pooled 10% 0.51 0.05 0.242 
YRI YRI VB1 Pooled 20% 0.51 0.03 0.245 
YRI YRI VB2 ISAF (Equal-Ancestry) 1% 0.94 0.10 0.012 
YRI YRI VB2 ISAF (Equal-Ancestry) 2% 0.92 0.06 0.011 
YRI YRI VB2 ISAF (Equal -Ancestry) 5% 0.88 0.04 0.016 
YRI YRI VB2 ISAF (Equal -Ancestry) 10% 0.88 0.04 0.015 
YRI YRI VB2 ISAF (Equal -Ancestry) 20% 0.88 0.03 0.015 
YRI YRI VB2 ISAF (Unequal-Ancestry) 1% 0.94 0.08 0.010 
YRI YRI VB2 ISAF (Unequal-Ancestry) 2% 0.92 0.07 0.011 
YRI YRI VB2 ISAF (Unequal-Ancestry) 5% 0.88 0.04 0.016 
YRI YRI VB2 ISAF (Unequal-Ancestry) 10% 0.88 0.04 0.015 
YRI YRI VB2 ISAF (Unequal-Ancestry) 20% 0.88 0.03 0.015 
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Appendix C 

Illustration of  freemuxlet workflow 

 

 

Figure 4.S1.Workflow of freemuxlet. The freemuxlet takes a BAM file of multiplexed sample sequences 
as input, and outputs pileup information of reads overlapping with known genetic variants. freemuxlet 
then calculate singlet score and pairwise Bayes Factor distance. Based on sorted singlet score, clusters are 
initialized by preferably choosing droplets being more likely to be a singlet. Droplets are then clustered 
based on BF distance and later merged based on membership to aggregately call genotypes of each 
cluster. Genotypes of each cluster are used to detect and remove non-singlets. 

 

Clustering based on droplet pairwise 
distance

Inferring doublets and refining per-
cluster genotype likelihood

Merge droplets within cluster

Output cluster genotype and droplet 
assignment

BAM

Calculate 
Singlet Score

Calculate Pairwise Bayes 
Factor Distance

Initialization of clusters by 
sorted Singlet Score
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UMAP Clustering Result Based on Bayes Distance 

Figure 4.S2. Comparison of droplets assignment from 3 methods visualized based on UMAP 
clustering result. Droplets are clustered using UMAP based on BF distance. Each color represents one 
individual assignment (Ambiguous as purple and Doublet as pink). Assignments are estimated from 
CellHashing (upper panel), freemuxlet (middle panel), and demuxlet (lower panel). 
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t-SNE Clustering Result Based on Bayes Distance 

Figure 4.S3. Comparison of droplets assignment from 3 methods visualized based on tSNE 
clustering result. Droplets are clustered using t-SNE based on BF distance. Each color represents one 
individual assignment (Ambiguous as purple and Doublet as pink). Assignments are estimated from 
CellHashing (upper panel), freemuxlet (middle panel), and demuxlet (lower panel). 

 

Experiment Design for Sample Identity Recovering 

 

 

 

Batch1 ID1 ID3 ID5

Batch2 ID1 ID4 ID6

Batch3 ID2 ID3 ID6

Batch4 ID2 ID4 ID5

Figure 4.S4 Example configuration of pair-identifiable mux-seq experiment with 6 samples and 4 batches. 
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Sequence Error Model Used in Genotype Likelihood 

 

  

Table 4.S1.  Sequence error model. Conditional probability P(bij| gi, eij) of read bij given true 
genotype gi and the variable representing the event of base calling error eij  

True Genotype gi Base Calling Error 
Event eij Pr(bij = R) Pr(bij = A) Pr(bij = O)b 

gi = RRa 
eij = 0 1 0 0 

eij  = 1 0 1/3 2/3 

gi = RAa 
eij  = 0 1/2 1/2 0 

eij  = 1 1/6 1/6 2/3 

gi = AAa 
eij = 0 0 1 0 

eij  = 1 1/3 0 2/3 
a RR, RA, AA: homozygous reference, heterozygous, and homozygous non-reference 
genotypes 
b O: alleles other than R or A; assumes four possible alleles (bases) 
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