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ABSTRACT 

 

Stochastic computing (SC) is an unconventional technique that has recently re-

emerged as an attractive design alternative to conventional binary computing (BC). SC 

represents data using probabilistic bit-streams, whose value is associated with their 

frequency of 1s and 0s. Such a highly unusual data format allows arithmetic operations, 

including multiplication and addition, to be implemented with extremely simple circuits, 

hinting at exceptionally low power and small size. These SC features show great promise 

in tasks like image processing and machine learning that can benefit from massive 

parallelism. However, SC’s inherently random nature also presents several design 

challenges, such as long computation time, unpredictable SC behavior, and errors induced 

by random fluctuation and correlation. These issues have limited the use of SC to 

applications that can tolerate errors or only require low precision. This dissertation begins 

by investigating SC’s major error sources. We observe that many SC designs use internal 

constant signals that we show to be a major contributor to random fluctuation errors. We 

then devise a new design method that eliminates these errors by transferring the role of 

constant signals to memory components within sequential stochastic circuits. We also 

examine methods to remove correlation errors in SC, focusing on a decorrelation method 

called isolation that works by inserting sequential delay elements. As isolation has been 

used in non-optimal ways previously, we propose a novel isolation-based method that 

introduces minimal hardware overhead. Noting that both of the foregoing error-elimination 

methods rely on sequential elements, we next study the overall role of sequential 

components in SC. We identify several new classes of sequential stochastic circuits, and 

analyze their properties in depth. This leads to a circuit optimization method that exploits 

stochastically equivalent state-transitions in sequential circuits. Many SC systems are 



xv 

 

actually a hybrid of BC and SC features. Connecting these two types of computation 

technologies usually introduces considerable hardware and latency overhead. We examine 

the BC-SC interface, and propose a new hybrid architecture that can replace some such 

interfaces without introducing more latency than necessary. Finally, we explore a new 

opportunity in SC by viewing SC-style randomness as a design resource instead of an error 

source. We further propose a sequential element that can inject a precise amount of 

randomness into SC computation, which benefits applications that need randomness, such 

as image dithering and neural-network hardening. The dissertation concludes with a 

discussion of some promising directions for future SC research.
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CHAPTER 1  

Introduction 

 

Stochastic computing (SC) is an unconventional computational approach whose 

origins date back to the 1960s [29][32]. It computes with pseudo-random bit-streams called 

stochastic numbers (SNs) that have numerical values defined by the probability of 1 

appearing anywhere in them. The trademark features of SC are extremely low power, low 

area cost, and high tolerance of soft errors, all of which are enabled by its uncommon 

probabilistic data representation. SC has received substantial attention recently, as many 

rapidly growing applications, including machine learning, wearable devices and 

biomedical implants, can benefit from SC’s distinct advantages. However, SC also presents 

many design challenges, most of which stem from its poorly understood theory. This 

chapter begins by introducing SC and its potential applications. It then provides an 

overview of the major research problems in SC that motivate our work. 

1.1 Motivation 

As factors like clock speed and voltage scaling approach their limits, recent trends 

in integrated circuit design have been to exploit parallelism, improve energy efficiency, 

and accommodate soft errors by means of heterogeneous architectures, dedicated 

accelerator units, fault-tolerant devices, among others. Stochastic computing (SC) is a 

highly unconventional design technique that stands out as very promising for those 

specialized tasks that have stringent power and area constraints, or require massively 

parallel operations but can tolerate low precision and accuracy. 
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In contrast to conventional binary computing (BC) that processes radix-2 numbers, 

SC computes with (clocked) probabilistic bit-streams called stochastic numbers (SNs), 

whose numerical value is determined by the fraction of 1s they contain. For example, X = 

1001, X = 0011, and X = 10101011 all represent a (unipolar) value of 0.5, as half of their 

bits are 1s. This highly unusual way of representing data enables several key arithmetic 

operations to be realized by extremely small circuits. For example, as we will see shortly, 

stochastic multiplication can be realized with just a single standard AND gate. 

Although it originated and underwent early development in the 1960s, SC has until 

recently received very little attention due to the dominance of conventional BC technology. 

A major revival of SC occurred around 1990 when SC was successfully applied to 

implement FGPA-accelerated neural networks (NNs) [14][76], which implement machine-

learning (ML) algorithms that require massive but parallelizable arithmetic operations. The 

application of SC to NNs has continued as new challenges arise, including the introduction 

of deep neural networks (DNNs), and the trend to providing on-device ML services to 

mobile devices like smartphones [35]. The past decade has witnessed the success of DNNs 

as they achieved performance better than humans in a variety of ML tasks. However, DNNs 

are also notorious for their hunger for resources. On-device ML services must operate at 

low power to avoid draining a device’s battery. Executing ML algorithms like DNNs on 

wearable devices is also challenging, even with the aid of dedicated neural units. SC has 

continued attracting the eye of the research community as it can perform several key tasks 

for DNNs without consuming excessive power or area [15][62]. Further, as we will explore 

in this dissertation, SC-based DNNs are automatically more resilient against adversarial 

attacks, a type of malicious data that can deceive ML algorithms. 

Biomedical implants are another area where SC looks very promising. For instance, 

implantable vision chips for the visually impaired should operate fast enough to provide a 

patient with real-time vision. This is best achieved with computationally massive but 

physically tiny per-pixel vision processors that can operate in parallel. On the  
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Figure 1.1 (a) Stochastic sensor array for edge detection [8]. (b) An edge image 

generated by the stochastic edge detector [8]. 

other hand, vision chips have very strict temperature limits that must be met to prevent 

human issues from being damaged by excessive heat. Building a BC chip that meets all the 

preceding requirements is very challenging. On the contrary, an SC-based implementation 

can easily do so. Figure 1.1a shows an SC-based vision chip for edge detection [8], which 

features per-pixel processors that enable real-time image processing. Each processor takes 

signals sensed by four adjacent light sensors, and implements the Roberts cross edge 

detection formula Z = |Xi, j – Xi+1, j+1| + |X i+1, j – Xi, j+1|. As shown in Figure 1.1, the SC-

based vision chip can perform high-quality edge detection with each SC processor 

containing fewer than ten gates, in contrast to a BC implementation which can easily 

require several hundreds of gates per pixel. This allows SC-based vision chips to operate 

with low heat output and low power consumption.  

Besides the foregoing examples, SC has also been successfully applied to other 

applications, including digital filters [11][19], error-correcting code decoding [26][77], 

control systems [56], etc. For instance, SC has been used for decoding state-of-the-art 
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error-correcting codes like low-density parity-check (LDPC) codes [33][68], and has been 

demonstrated to attain a higher throughput than a comparable BC implementation [49].  

Despite the significant progress that has been made in the past few decades, SC still 

faces several major challenges that limit its practical use. These include immature design 

methodologies, poorly understood randomness behavior, and complex trade-offs between 

accuracy, run time, and hardware cost. This dissertation aims to solve some of the 

preceding problems, with the goal of paving the way for future SC research and 

applications. 

1.2 Stochastic Computing 

As noted previously, SC computes with randomized bit-streams called SNs using 

standard versions of logic circuits, which we refer to as stochastic circuits. An SN X 

applied to a logic wire x is a (clocked) sequence of N bits X = X(1)X(2)X(3)… X(N), where 

X(t) is the t-th random bit. In unipolar SC, X’s value X is the probability of a 1 appearing 

in X, which we denote as X = p(X(t) = 1) = pX(1). This value is fixed for all t and is usually 

approximated by measuring the fraction of 1s in X, i.e., X̂ = N1 / N, where N1 is the number 

of 1s in X. The quality with which the measured value X̂ approximates the exact value X 

depends on the bit-stream length N. Roughly speaking, the larger N, the better X̂ 

approximates X. 

In SC, an individual numerical value does not have a unique SN representation. For 

example, X = 001, X = 010 and X = 101000 all represent a (unipolar) SN with a measured 

value 1/3, but their bit patterns and lengths are different. While probability values are in 

the range [0, 1], SC can process any real numbers by mapping them to the probability 

range. In particular, bipolar SC handles negative numbers through the mapping 

X = 2pX(1) – 1, so the SN X = 001 has a bipolar value 2 × 1/3 – 1 = –1/3. 

SC’s highly unusual data representation enables it to implement numerous key  
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Figure 1.2 Key SC arithmetic circuits: (a) unipolar stochastic multiplier, and (b) 

stochastic scaled adder. 

arithmetic functions, notably multiplication and addition, with very small circuits. For 

example, the AND gate shown in Figure 1.2a performs unipolar stochastic multiplication. 

This is because the output probability Z = pZ(1) is equal to the probability that both input 

bits are 1, which defines the arithmetic operation pX(1)pY(1) = XY. However, for a 

stochastic multiplier to perform accurately, its two inputs must be statistically independent 

or uncorrelated; this is an SC-specific design problem that will be examined in depth later. 

The standard implementation of a stochastic scaled adder is given in Figure 1.2b; it is built 

around a two-way multiplexer (MUX) that computes the Boolean operation z = xr’ + yr. It 

is noteworthy that the adder has an internal random source that generates an SN R with a 

constant value R = 0.5. In each clock cycle, this constant SN selects a bit from X and Y to 

send to the output line. Consequently, the probability value of Z is the average, or the 

scaled sum, of X and Y, i.e., Z = 0.5(X + Y). This special internal SN R effectively scales 

down the output value so that Z is in the valid probability range [0, 1]. 

One very appealing feature of SC is that, while it computes with analog 

probabilities, it is compatible with standard digital logic circuits. SC-formatted data can be 

readily ported to and from BC circuits via stochastic-to-binary converters (SBCs) and 

binary-to-stochastic converters (BSCs), respectively. Figure 1.3a shows a BSC built 

around a comparator that transforms a binary number BX to the corresponding SN. In each  

 



6 

 

(b)

Incremental
counter

(a)

BX = .0112

A

B
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Random 
source

X BX

 

Figure 1.3 Data-format converters: (a) binary-to-stochastic converter (BSC), and (b) 

stochastic-to-binary converter (SBC). 

clock cycle, the internal random number source (RNS) generates a uniformly distributed 

random number, against which BX is compared. The probability of a 1 appearing in the 

output line is therefore equal to BX. To convert an SN to a binary number, it suffices to 

count the number of 1s in that bit-stream. Hence an incremental counter can implement an 

SBC; see Figure 1.3b.  

SC is also highly tolerant of soft errors. An occasion bit flip in an SN does not have 

a catastrophic impact on that SN’s value. For instance, consider a 16-bit SN X = 

0110011100101100, which has the measured value 8/16 = 0.5. Suppose a bit-flip error 

occurs in X’s first bit, changing it to X’ = 1110011100101100. The measured value of X’ 

is 9/16 = 0.5625, which is still a good approximation to its original value 0.5. Further, 0-

to-1 bit flips and 1-to-0 bit flips tend to cancel out each other. SC’s fault tolerance makes 

it an appealing design candidate for devices that are error prone and applications that 

operate in extreme environments [21]. 

SC also has a property referred to as progressive precision, meaning any initial 

segment of an SN provides a rough approximation of that SN’s value. For example, 

consider again the 16-bit 0.5-valued SN X = 0110011100101100. The first 8-bit segment 

of X is 01100111 with a measured value of 5/8 = 0.625, which is a reasonably good 

approximation to the original value 0.5. Progressive precision allows an SC computation 

to dynamically trade accuracy for shorter latency. This is particularly helpful in 

applications like neural networks, which can stop computation as soon as a satisfactory 

result becomes available. 
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1.3 Research Challenges 

While SC has many appealing features as discussed earlier, it also presents many 

challenges, most of which stem from SC’s inherent randomness. It computes with 

probabilities, so randomness is required to drive the operation of most stochastic circuits. 

Insufficient randomness can easily lead to correlation between SNs, a major accuracy-

reducing factor in most stochastic circuits. On the other hand, too much randomness can 

result in random fluctuation errors (RFEs), which can render an SC computation noisy and 

hence less useful. Complex trade-offs between accuracy and compute time also make it 

hard to design efficient SC systems. Sequential elements are usually needed to tackle the 

preceding problems. However, their stochastic behavior is poorly understood; this adds 

extra design complexity and results in non-optimal ad-hoc circuits. Last but not least, 

applications that explicitly need randomness can take advantage of SC’s intrinsic random 

nature. However, SC randomness is hard to control, making it difficult to exploit as a 

practical design resource. 

Many stochastic circuits are designed to work with independent or uncorrelated 

input SNs. For example, the multiplier in Figure 1.2a requires its two inputs to be 

independent in order to function properly. In such a case, correlation can directly alter the 

function of a stochastic circuit, leading to undesirable correlation errors. Consider, for 

instance, implementing a stochastic squarer that computes Z = X2. It may be tempting to do 

so by feeding the stochastic multiplier with two identical, and therefore maximally 

correlated, SNs. This, however, leads to an output bit-stream that is also identical to the 

input bit-streams, so Z = X ≠ X2, as shown in Figure 1.4a. Correlation of this kind must 

usually be removed through a process termed decorrelation in this dissertation. An efficient 

but ad hoc decorrelation method proposed by Gaines, one of the inventors of SC, is to use 

delay elements he called isolators to intentionally introduce delays into SNs, so that the 

correlated bits in these SNs do not interact with each other [29]. Applying this decorrelation 

method to the squarer design results in the circuit in Figure 1.4b, which is a multiplier with  
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Figure 1.4 Stochastic squarer: (a) incorrect implementation due to input correlation, and 

(b) correct implementation enabled by an isolator D. 

an isolator (implemented by a D flip-flop) inserted in one of its input lines. The foregoing 

discussion suggests that correlation control is essential to the accuracy of stochastic 

circuits. However, correlation problems can be complex, and decorrelation methods of the 

above kind must be used correctly and efficiently to remove undesired correlations without 

introducing excessive hardware overhead, a problem that will be examined in depth in 

Chapter 3. 

Another major accuracy-reducing factor in SC is random fluctuation errors (RFEs) 

which occur due to SC’s randomized and probabilistic data representation. For example, 

an 8-bit SN X having a probability value X = 0.5 may very likely have exactly four 1s and 

four 0s in it, such as X = 01001101. However, SNs that only approximate the exact value, 

e.g., X = 01100010 or X = 10111100, may also occur due to random fluctuation. In 

applications like neural networks, RFEs can easily accumulate from layer to layer, 

rendering the final outputs unacceptably noisy. RFEs can be effectively reduced by 

lengthening SNs. However, this comes at the cost of long computation time. A recent trend 

to tackle random fluctuation is to reduce randomness or introduce some amount of 

determinism into SC. An example of this approach is the removal of SNs with constant 

probability values. Consider the scaled adder in Figure 1.2b, which uses an internal 

constant SN R to randomly select one of its input bits to send to the output. Figure 1.5a 

shows a recent ad-hoc design for scaled addition that removes the need for the extra internal 

SN. This scaled adder computes Z = 0.5(X + Y) by releasing exactly a single 1 to the output 

line whenever it receives two 1s, and therefore this adder fluctuates much less than the  
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Figure 1.5 (a) A constant-free stochastic scaled adder [48]. (b) A design for the update 

node used in the stochastic LDPC code decoder [33]. 

standard design of Figure 1.2b. This constant-free adder is also a major factor in the success 

of the NN implementation in [48]. Extending constant removal to other SC designs, 

however, is a non-trivial problem which we will study in Chapter 2. 

Sequential elements play an indispensable part in SC, as suggested by the fact that 

both decorrelation and constant removal call for sequential solutions. Sequential 

components are also needed to design special arithmetic functions. For example, Figure 

1.5b shows an SC implementation for the update node used in LDPC code decoders 

[33][68]. It is a sequential design built around a JK flip-flop, and computes the function 

F(X,Y) = 
XY

XY + (1 – X)(1 – Y)
 which cannot be realized exactly by combinational methods. 

Despite the prominence of sequential elements in SC, the theory underlying sequential SC 

designs is still poorly understood, restricting their use to relatively few circuit types, 

notably up/down counters [29][52]. Further, it is noteworthy that interfaces (e.g., SBCs and 

BSCs) connecting SC and BC components in a hybrid system are also sequential, and are 

often the most expensive part of a system [65]. However, their cost implications are 

frequently overlooked, leading to unoptimized interface designs with excessive latency or 

hardware overhead. These problems will be examined in Chapters 4 and 5. 

Finally, carefully controlled SC randomness can be very useful in applications that 

need randomness. However, most previous work has focused on reducing or removing SC-

style randomness for accuracy considerations. Consequently, methods for precisely 
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managing or controlling SC randomness in a way that benefits applications requiring 

randomness are greatly lacking. This problem is investigated in Chapter 6. 

1.4 Dissertation Outline 

SC has emerged as a very promising computing technology as demonstrated 

recently in several SC-based applications. However, many SC-specific design issues 

including random fluctuation and correlation errors, along with complex trade-off among 

area cost, latency and accuracy, make designing efficient SC circuits that meet practical 

constraints very difficult. This dissertation investigates and analyzes the preceding 

problems in depth, and proposes several practical solutions, with a focus on sequential 

design issues. It is divided into three main parts: (1) treatment of random fluctuation and 

correlation, (2) analysis of sequential stochastic circuits and SC-BC hybrid systems, and 

(3) exploiting SC randomness as a resource. Specifically, Chapter 2 and 3 propose 

sequential methods to alleviate random fluctuation and correlation errors. Chapters 4 and 

5 examine the role of sequential elements in SC and design considerations for complex SC-

BC hybrid systems. Chapter 6 explores a new design opportunity enabled by viewing SC’s 

randomness as a resource. 

Chapter 2 discusses the impact of random fluctuation errors (RFEs) on stochastic 

circuits, and identifies stochastic constants as a major cause for RFEs that has been 

completely overlooked in the previous literature. A constant-elimination method CEASE 

is proposed to remove all the constant-induced random fluctuation by transferring their role 

to memory elements in a way that results in maximal reduction of RFEs. Chapter 3 analyzes 

undesired correlation in SC designs, and reviews ways to quantify and manage correlation. 

It then proposes an isolation-based decorrelation method called VAIL that can eliminate 

undesired correlation in a stochastic circuit. It does so by systematically inserting 

sequential delay elements or isolators in a way that minimizes hardware overhead. 

In Chapter 4, we review the main approaches to sequential SC design , and identify 

several key classes of sequential designs. We analyze the properties of these classes and 
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provide a randomized algorithm MOUSE for optimizing sequential stochastic circuits. 

Because most so-called “SC-based” circuits are in fact a hybrid design that combine SC 

and BC components, we dedicate Chapter 5 to analyzing several key design aspects of 

hybrid systems, focusing on the area and latency penalty induced by SC-BC interfaces. 

This chapter also presents a hybrid design that can significantly reduce the latency penalty 

without compromising on other design metrics like accuracy and area cost. 

Chapter 6, in contrast to previous negative views on SC randomness as an accuracy-

reducing factor, shows that carefully controlled randomness can play a positive role in 

applications that need randomness. The chapter then proposes a method to precisely control 

the amount of such randomness to fit the needs of specific applications. It also demonstrates 

the usefulness of SC randomness in two applications, namely image dithering and neural-

network hardening. Finally, Chapter 7 concludes the dissertation and discusses some 

directions for future research.
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CHAPTER 2  

Random Fluctuation 

 

As discussed in Chapter 1, SC tends to have low accuracy due to factors like random 

fluctuation and correlation. This chapter focuses on random fluctuation errors (RFEs), a 

major accuracy-reducing factor introduced by SC’s inherent randomness. RFEs can be 

mitigated by increasing the length of SNs. This, however, often leads to excessive 

computation time and energy consumption. In this chapter, we first observe that many SC 

designs heavily rely on constant SNs, which contribute significantly to RFEs. We then 

investigate the role of constant inputs in SC, and propose a systematic algorithm CEASE 

to eliminate constant-induced RFEs by inserting memory elements into the target circuits. 

The resulting sequential designs are optimal in terms of the amount of RFE reduction. This 

chapter also presents case studies involving several representative stochastic circuits. The 

material in this chapter has been published in [72] (which received a Best Paper award) 

and [74]. 

2.1 Errors Induced by Randomness 

Randomness plays an essential role in SC, as it is used to generate the SNs that 

drive the operation of stochastic circuits. Random fluctuation thus occurs naturally when 

dealing with SNs. Consider the analogy of tossing a fair coin 8 times. While the outcome 

is most likely to be 4 heads and 4 tails, other outcomes like 5 heads and 3 tails are also 

likely. This is exactly what happens when we generate an 8-bit SN X with a desired value 

of X = 0.5. The measured value of X is most likely to be 4/8, but 3/8 or 5/8 are also quite 

likely. In fact, given a Bernoulli SN X whose bits are independently generated, N1, the 

number of 1s in X, follows a binomial distribution thus: 
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       p(N1 = k) = (
𝑁
𝑘

)Xk(1 – X)(N – k)  (2.1) 

Figure 2.1a depicts this distribution with N = 8 and X = 0.5. It plots p(N1 = k), the 

probability of an SN having k 1s, against k. As expected, the event N1 = 4 is the most 

probable. However, N1 = 3 and N1 = 5 are also likely. 

Random fluctuation errors (RFEs) in SC are caused by randomness of the foregoing 

type. An intuitive but effective way to reduce RFEs is to increase the SN length N. Figure 

2.1b shows the distribution of N1 in a 128-bit SN with value 0.5. The most likely value for 

N1 is 64, implying that a measured value 0.5 is the most probable. Further, compared to the 

distribution of an 8-bit SN in Figure 2.1a, Figure 2.1b is dispersed much less, meaning that 

with an 128-bit SN, it is far less likely for a measured value to deviate from the exact value 

by a large margin. This suggests that increasing SN length indeed reduces RFEs. However, 

long SNs lead to long run time and hence high energy consumption. To mitigate such 

problems, SC usually trades accuracy for computation time, thereby narrowing the range 

of applications to which it can be successfully applied. 

This chapter describes a novel method to reduce RFEs in SC while maintaining 

desirable SC features such as error tolerance. It is based on the observation that most SC 

designs, from the simple scaled adder in Figure 1.2b to complex stochastic circuits 

generated by major synthesis methods like STRAUSS [6] and ReSC [65], heavily rely on  

 
(a)                                                               (b) 

Figure 2.1 Distribution of the number of 1s in SNs with value 0.5 for (a) N = 8, and 

(b) N = 128, respectively. 
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Figure 2.2 Three stochastic implementations of scaled addition: (a) conventional MUX-

based design CMA with a constant input R = 0.5; (b) ad hoc sequential design CAA with no 

constant input [72]; (c) sequential design CCA produced by CEASE; (d) error comparison 

of the three designs. 

the use of constant SNs to achieve good function approximations. These constant SNs not 

only increase hardware overhead due to their need for random sources but, as will be clear 

shortly, also turn out to be a significant source of RFEs. 

In this chapter, we show for the first time that it is possible to remove all RFE-

inducing input constants by resorting to a new class of sequential SC designs. We devise a 

systematic method, which we call Constant Elimination Algorithm for Suppression of 

Errors (CEASE) [72][74] for constant removal. While a function may have various 

constant-free circuit implementations, CEASE-generated circuits provide a guarantee of 

optimality on RFE reduction. Figure 2.2a repeats the conventional scaled adder previously 

shown in Figure 1.2b. It uses a single constant R to scale the output back to the probability 

range. Figure 2.2b-c depict two sequential scaled adder designs CAA and CCA after 

eliminating R; the former was designed in ad hoc fashion [72], while the latter is based on 
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CEASE. Figure 2.2d plots the RFEs of all three scaled adders in Figure 2.2a-c against bit-

stream length N, where RFEs are measured by the (sampled) mean squared error (MSE), 

which will be defined shortly. It can be seen that the CEASE-based design CCA is the most 

accurate. Furthermore, as we will demonstrate, CCA meets the theoretical bound of the 

lowest RFE level indicated by the small circles. 

2.2 The Role of Constants 

This section begins by reviewing relevant concepts of stochastic circuits, focusing 

on the functions they implement. It then investigates the role of constants used in SC 

designs. As briefly discussed in Chapter 1, a combinational stochastic circuit C computes 

by transforming a set of input SNs based on the SNs’ probabilities and f, the Boolean 

function C implements. 

Example 2.1: Consider again the AND-gate multiplier given in Figure 1.2a. This 

AND gate implements the Boolean function z = fAND(x, y) = xy, meaning that fAND(x, y) 

always outputs a 0 bit except for the input xy = 11, in which case fAND(x, y) = 1. The 

probability that the AND gate receives the input pattern xy = 11 is obviously pXY(1, 1). 

Hence, the probability that a 1 appears in the output line z is Z = fAND(1, 1)pXY(1, 1) = 

pXY(1, 1). For independent bit-streams X and Y, Z = pXY(1, 1) = pX(1)pY(1) = XY, which is 

indeed the arithmetic or stochastic product of the two input values X and Y. □ 

In the preceding example, we can write the stochastic function computed by the 

AND gate as Z = fAND(0, 0)pXY(0, 0) + fAND(0, 1)pXY(0, 1) + fAND(1, 0)pXY(1, 0) + 

fAND(1, 1)pXY(1, 1) = ∑b f(b)pX(b), where b denotes the value of a 2-bit input vector. In 

general, for an n-input, single-output combinational circuit C that implements the Boolean 

function z = f(x1, x2, …, xn), the stochastic function F that C implements depends on both f 

and the joint probability distribution p
X1⋯Xn

 of input SNs X = {X1, X2, …, Xn}, where Xi 

is the SN applied to C’s input line xi. Specifically, F = F(f, pX) takes the following form: 

         pZ = F(f, pX) = ∑b f(b)pX(b)  (2.2) 



16 

 

where pX(b) is the joint probability distribution of the input SNs, and the summation is over 

all combinations of the n-bit input vector b. Equation (2.2) indicates that a stochastic 

function is a linear combination of the probability terms pX(b) with coefficients f(b) that 

take 0-1 values. 

Example 2.2: The two-way multiplexer in Figure 2.2a has three input SNs X = 

{X, Y, R} applied to its inputs x, y, r. It implements the Boolean function fMUX(x, y, r), 

which outputs a 0 bit except when fMUX(1, 0, 0) = fMUX(0, 1, 1) = fMUX(1, 1 ,0) = fMUX(1, 1, 1) 

= 1. The probability that the circuit’s output is 1 is the probability that one of the input 

patterns 100, 110, 011 or 111 occurs. Applying Equation (2.2), we obtain 

           Z = ∑b fMUX(b)pX(b) = pX(1, 0, 0) + pX(1, 1, 0) + pX(0, 1, 1) + pX(1, 1, 1)  (2.3) 

which is a sum of binary-weighted probability terms that defines the stochastic function of 

a multiplexer. □ 

Many stochastic circuits, including those synthesized by STRAUSS and ReSC, 

heavily use constant SNs to define both the target function’s value and its precision. 

Constants in a stochastic circuit refer to internal ancillary SNs that have a fixed value not 

controllable by the circuit’s user. For instance, the scaled adder in Example 2.2 uses an 

internal SN R with value 0.5 to scale the output down to the probability range [0, 1]. Here 

R is a constant generated by a random source not controllable by the user of the circuit; the 

user can only control the values of the variable SNs X and Y. In such cases, we can separate 

the input SNs X into two disjoint subsets X = {XV, XC}, where XV and XC denote variables 

and constants, respectively [23]. A stochastic function of 𝑝XV
 can then be derived from 

Equation (2.2) by replacing the XC with appropriate constant values, as the following 

example illustrates. 

Example 2.2 (contd.): Returning to the MUX-based adder CMA in Figure 2.2a, here 

we demonstrate how to describe the stochastic behavior of the adder as a function of user-

supplied variable SNs. Let X = {XV, XC}, where XV = {X, Y} is the set of variable SNs 
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and XC = {R} with R = 0.5 is a singleton constant SN. If R is independent of XV, then on 

substituting pR(1) = R = 0.5 into Equation (2.3), we get  

        Z = 0.5𝑝XV
(1, 0) + 0.5𝑝XV

(0, 1) + 0.5𝑝XV
(1, 1) + 0.5𝑝XV

(1, 1) 

         = 0.5[𝑝XV
(1, 0) + 𝑝XV

(0, 1) + 𝑝XV
(1, 1) + 𝑝XV

(1, 1)] 

          = 0.5[pX(1) + pY(1)] = 0.5(X + Y) 

 (2.4) 

which is indeed the expected scaled addition function of the variables X and Y. □ 

Looking more closely at Equation (2.4), we can see that it is a linear combination 

of probability terms with non-binary coefficients, in contrast to Equation (2.3) and the more 

general Equation (2.2) which allow only the binary coefficients 0 and 1 for their probability 

terms. This suggests that constant SNs enable a stochastic function to have coefficients that 

are any rational numbers in the range [0, 1]. The following theorem generalizes this 

observation. 

Theorem 2.1: The stochastic function realized by a combinational circuit with 

input SNs X = {XV, XC} is 

         Z = F(𝑝XV
) = ∑ [g(𝑏V)𝑝XV

(𝑏V)]𝑏V
  (2.5) 

where the g(bV)s are rational constants in the range [0, 1] that depend implicitly on f and 

𝑝XC
. □ 

A proof of this theorem can be found in Appendix A.1. Theorem 2.1 reveals some 

interesting facts about the impact of constant inputs on stochastic functions. It implies that, 

at the expense of extra constant inputs, the class of implementable functions can be greatly 

broadened. For example, a combinational circuit cannot implement the stochastic function 

Z = 0.5(X + Y) with just two variable inputs X and Y, since this function also requires the 

non-binary coefficient 0.5. This scaled add function is combinationally implementable,  
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Figure 2.3 MUX-based stochastic scaled adder CMA. On receiving 11 (blue) or 00 

(green), the output is 1 or 0, respectively. On receiving 01 or 10 (red), the output is 1 with 

probability 0.5. 

however, as demonstrated in Example 2.2, by supplying an extra constant input SN R of 

value 0.5. More generally, when a target function is not already in the form of Equation 

(2.5), it has to be converted to that form by introducing suitable constants. The accuracy 

with which the resulting function approximates the target function F highly depends on the 

number of constants used, as can be seen in SC synthesizers like STRAUSS [6] and ReSC 

[65]. A circuit with good approximation accuracy typically comes with many constant 

inputs. For instance, the STRAUSS implementation of Z = 
7

16
 – 

1

4
X – 

9

16
X2 derived in [6] 

employs four constant inputs R1, R2, R3 and R4, each of value 0.5. These constants require 

costly randomness sources to generate them, and are also a significant source of RFEs that 

has been long overlooked. 

Example 2.2 (contd.): We re-examine the MUX-based adder CMA of Figure 2.2a, 

shown again in Figure 2.3. To implement the scaled addition 

                    Z = 0.5(X + Y)  (2.6) 

accurately, the expected number of 1s in Z should be half the number of 1s in the input 

SNs X and Y. For a given cycle t, when both X(t) and Y(t) are 1, the corresponding output 

bit Z(t) will be 1; this is exact since a single 1 should be produced in Z whenever the circuit 

receives two 1s. Similarly, when both X(t) and Y(t) are 0, Z(t) will have the exact value 0. 

When only one of the two inputs is 1, i.e., X(t)Y(t) = 10 or 01, Equation (2.6) implies that 
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ideally Z(t) should be 0.5. However, Z(t) obviously cannot directly output “0.5” from a logic 

circuit that computes with 0-1 values. This representational dilemma is effectively resolved 

by the extra constant SN R whose stochastic value 0.5 ensures that, on average, a single 1 

is generated in Z whenever two copies of 10 or 01 are received. In other words, a 1 and a 

0 are expected to be produced in response to every two applications of 10 or 01. This single 

1 spread over two cycles thus contributes 1/2 to Z. □ 

The fact that constants produce extra RFEs can be seen from Figure 2.3, where the 

constant R is used to select inputs whenever X(t)Y(t) = 10 or 01 (marked in red). Notice here 

that in the red cycles, four 1s should appear in every eight output bits. However, since this 

is only true on average, there may be variations due to the probabilistic nature of R. In this 

example, there are only three 1s instead of four in the eight output bits selected by R, 

producing a 1/16 deviation in the output value, and implying that R indeed introduces 

considerable RFEs. The key to eliminating R (and the RFEs it introduces) is to enable the 

circuit to remember every two applications of 10 or 01, which implies changing it from 

combinational to sequential. This makes it possible for the circuit to output exactly one 1 

and one 0 for every two applications of input patterns 01 or 10. 

2.3 Constant Elimination 

To eliminate constant inputs and their associated errors while keeping their 

functional benefits, we propose a systematic algorithm called Constant Elimination 

Algorithm for Suppression of Errors (CEASE) [72][74]. CEASE transforms a target 

combinational function into an equivalent stochastic finite-state machine (FSM) with no 

constant inputs and with reduced RFEs. CEASE also offers a guarantee of optimality on 

RFE reduction, thereby providing a maximum improvement in accuracy. The idea behind 

CEASE is to introduce memory elements to count and remember non-binary values; the 

resulting FSM accumulates such values to be output later. When an accumulated value 

exceeds one, a 1 is sent to the output. 
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Figure 2.4 STGs for the sequential scaled adders corresponding to (a) ad hoc design CAA 

of Figure 2.2b, and (b) CEASE-generated design CCA of Figure 2.2c. The differences 

between the two STGs are marked in red. 

Input: F*: Target stochastic function 

Output: COMC: A constant-free OMC circuit approximating F* 

Step 1 Approximate F* by F using Equation (2.5) with rational 

coefficients g = {g(b0), g(b1), …, g(bm – 1)} in [0, 1]. 

Step 2 Find the least common multiple q of the denominators of 

g. Let a = {a(b0), a(b1), …, a(bm – 1)} = q ∙ g. 

Step 3 Construct a modulo-q counter MC with states s0,s1,…,sq−1. 

Step 4 Modify MC so that on receiving the pattern bi, it jumps 

forward a(bi) states. At each clock cycle, it outputs 1 if MC 

overflows, otherwise it outputs 0. 

Step 5 Synthesize MC using any suitable conventional synthesis 

technique. Output the synthesized circuit COMC. 

Figure 2.5: Algorithm CEASE for constant elimination. 

Example 2.3: The state-transition graph (STG) of the CEASE-generated scaled 

adder CCA (Figure 2.2c) is shown in Figure 2.4b. Like the combinational adder in Figure 

2.3, CCA immediately outputs a 1 when 11 is received, and a 0 when 00 is received. The 

difference is that when a 10 or 01 is received, CCA remembers this information by going 

from state s0 to state s1, and outputting a 0. When another 10 or 01 is received, the circuit’s 

implicit counter will, in effect, overflow by returning to state s0 and outputting a 1. In this 
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way, it is guaranteed that exactly one 1 is generated whenever exactly two copies of 10 or 

01 are received. Hence, the RFEs introduced by constant SNs are completely removed. □ 

Figure 2.5 gives a pseudo-code summary of CEASE. In general, CEASE takes as 

its input a target arithmetic function F in the form of Equation (2.5), and generates an FSM 

MC realizing F without constant inputs. If F is not already in the form of Equation (2.5), it 

must be approximated by using an SC synthesizer such as ReSC. MC can be realized in 

various ways. We refer to any circuit that implements MC as an optimal modulo counting 

(OMC) circuit COMC. An OMC circuit implements MC by keeping a running sum of each 

non-binary input value of interest. Whenever the accumulated sum exceeds one, the circuit 

outputs a 1 and stores the overflow amount. 

Example 2.3 (contd.): Consider applying CEASE as given in Figure 2.5 to 

synthesize an OMC circuit for the scaled addition function Z = 0.5(X + Y). Equation (2.4) 

implies that Z = 0.5𝑝XV
(1, 0) + 0.5𝑝XV

(0, 1) + 𝑝XV
(1, 1). Therefore, the coefficient set g 

is {g(0,0), g(0,1), g(1,0), g(1,1)} = {0/2, 1/2, 1/2, 2/2}. The least common multiple q of the 

denominators in g is the number of count states needed. Since q = 2 here, we need a two-

state counter. Furthermore, a = q ∙ g = {0, 1, 1, 2}. Therefore, the counter is designed such 

that every time the pattern X(t)Y(t) = 10 or 01 is applied, the counter adds one to its state. 

The pattern X(t)Y(t) = 11 adds two to the counter’s state. When the counter overflows, a 1 

is sent to the output; otherwise the output is set to 0. This confirms that Figure 2.4b is 

indeed the STG for the FSM of an exact scaled adder, with the circuit CCA in Figure 2.2c 

being one of its many possible OMC implementations. □ 

Another viewpoint on the validity of the scaled adder in Figure 2.4b is its behavior 

under steady-state probability distribution. It is easy to see that the long-term probabilities 

of staying in state s0 and s1 are equal, i.e., pS(s0) = pS(s1) = 1/2, since the state-transition 

behavior of this circuit is symmetric. The probability of outputting a 1 when S = s0 is 

𝑝XV
(1, 1), and that probability is 𝑝XV

(1, 1) + 𝑝XV
(0, 1) + 𝑝XV

(1, 0) when S = s1. Hence, 

the overall probability of outputting a 1 is Z = pS(s0)𝑝XV
(1, 1)  + pS(s1)[𝑝XV

(1, 1)  + 
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𝑝XV
(0, 1) + 𝑝XV

(1, 0)] = 0.5[pX(1) + pY(1)] = 0.5(X + Y), which is indeed the scaled 

addition function.  

We now consider the optimality of CEASE in terms of the amount of RFEs it 

removes. A common way to quantify SC errors is mean squared error (MSE), which is the 

accuracy metric we will be using in this chapter. The MSE of an N-bit SN Z is defined as: 

                                   MSE(Z, N) = 𝔼[(Ẑ(N) − Z)2] (2.7)  

where 𝔼(·) denotes the expectation function, and Ẑ(N) denotes the measured value of the N-

bit SN Z generated by a stochastic circuit. Equation (2.7) computes the average squared 

deviation of an SN’s measured value from its exact or desired value. The next theorem says 

that among all possible FSMs implementing a stochastic function F, CEASE produces a 

result with the smallest MSE, i.e., the output SN produced by a CEASE-derived OMC 

circuit fluctuates the least. 

Theorem 2.2: Given a stochastic function F(𝑝XV
) in the form of Equation (2.5), 

suppose the members of XV are Bernoulli bit-streams with unknown correlations. Then for 

all positive integers N: 

            MSE(ZC, N) ≲ MSE(Z, N)  (2.8) 

where ZC is the SN produced by a CEASE-generated OMC circuit that implements F, while 

Z is the SN produced by any other design that implements F. □ 

The notation ≲ in Equation (2.8) indicates that inequality holds up to a rounding 

error. A proof of Theorem 2.2 is given in Appendix A.2. Theorem 2.2 can be understood 

intuitively from the fact that CEASE’s precise counting process guarantees exactness, and 

hence minimizes MSEs. For comparison, consider the ad hoc design CAA in Figure 2.2b, 

whose STG is given in Figure 2.4a. One can easily see that CAA also computes scaled 

addition like the OMC circuit CCA in Figure 2.2c whose STG is in Figure 2.4b. Suppose 

the following artificially constructed SNs are applied to both CAA and CCA: 
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Xart = 010101010101 (X = 6/12 = 0.5) 

Yart = 101010101010 (Y = 6/12 = 0.5) 

The expected output value should be 0.5(Xart + Yart) = 0.5, which is exactly what CCA will 

give. However, feeding these two input SNs to CAA initialized to state s0 will produce the 

output Z = 111111111111 (Z = 12/12 = 1) ⎯ a 100% error! The accuracy difference 

between the two designs is due to the fact that the OMC circuit guarantees to output a 1 

whenever two copies of 10 or 01 are received, whereas the ad hoc design does not. CEASE-

generated designs also retain the high tolerance of stochastic circuits to transient errors (bit-

flips) affecting the variable inputs. An occasional transient or soft error causes a relatively 

small miscount of the applied input patterns, which can then result in a similarly small 

output error. For instance, if Xart is changed to 010101010000 due to two 1-to-0 bit-flips, 

the output value produced by CCA will become 5/12, which is a good approximation of the 

exact output value 0.5 = 6/12. 

A scaled sequential adder constructed in ad hoc fashion around a T flip-flop is given 

in [48] and shown by simulation to be more accurate than the standard combinational 

design. The STG of that adder turns out to be exactly the same as the CEASE-generated 

one shown in Figure 2.4b, implying that this T-flip-flop-based design is also an OMC 

circuit. This confirms the high accuracy claimed for the T-flip-flop-based adder, a key 

factor in the success of the neural network implementation in [48]. 

2.4 Case Studies 

This section applies CEASE to some representative circuits and assesses the 

corresponding accuracy improvements. It also examines the accuracy of CEASE using 

randomly generated stochastic circuits. 

Typical Application: CEASE can be applied to any combinational circuits with 

constant inputs, including those that use SN formats other than unipolar, since it deals  
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Figure 2.6 Three implementations of Equation (2.9): (a) STRAUSS design CST, (b) ReSC 

design CRE, and (c) CEASE design COMC. 

 

Figure 2.7 MSE comparison for the circuits in Figure 2.6. 

directly with probabilities rather than their interpretation or format. Suppose, for example, 

that CEASE is applied to the circuit CST synthesized by STRAUSS [6] and outlined in 

Figure 2.6a. CST uses the inverted bipolar (IBP) SN format with the mapping X = 1 – 2pX(1) 

to handle negative values, and realizes the following stochastic function: 

                                            𝑍  =  
7

16
−

1

8
(𝑋̃1 + 𝑋̃2) −

9

16
𝑋̃1𝑋̃2  (2.9) 
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where X̃1 and X̃2 are independent IBP SNs with the same value. This STRAUSS design 

relies heavily on constant SNs, as it employs four constants R1−R 4, each of value 0.5. 

Another implementation CRE of the same function Z̃ synthesized by ReSC [65] is given in 

Figure 2.6b; it relies on three constants C1−C3 to provide the same level of accuracy. To 

implement Equation (2.9) using CEASE, we first derive the corresponding unipolar 

stochastic function from the relation X̃ = 1 – 2X, where X = pX(1) is the unipolar SN value 

corresponding to the IBP value X̃. On replacing Z̃, X̃1 and X̃2 by their unipolar counterparts 

in Equation (2.9) and re-arranging, we obtain 

             𝑍 =
11

16
−

11

16
𝑋1 −

11

16
𝑋2 +

18

16
𝑋1𝑋2 

 

(2.10) 

Since X1 and X2 are independent, the term X1X2 can be written as 𝑝𝐗1
(1) 𝑝𝐗2

(1) = 𝑝XV
(1,1), 

where XV = {X1, X2}. Furthermore, we can “de-marginalize” the marginal probabilities by 

using X1 = 𝑝XV
(1,0) + 𝑝XV

(1,1) and X2 = 𝑝XV
(0,1) + 𝑝XV

(1,1). Replacing X1, X2 and X1X2 in 

Equation (2.10) with these probabilities yields a unipolar stochastic function to which we 

can apply CEASE. 

                                       Z = F(f, 𝑝XV
) = 

11

16
𝑝XV

(0,0) + 
7

16
𝑝XV

(1,1)   (2.11) 

Equation (2.11) is the unipolar or probability interpretation of Equation (2.9) with 

coefficients in [0, 1]. This fact can also be directly seen from the ReSC design CRE in Figure 

2.6b, which outputs 11/16 and 7/16 when the input pattern is 00 and 11, respectively. 

A CEASE-generated OMC design COMC implementing Equation (2.9) in the IBP 

domain and Equation (2.11) in the unipolar domain is given in Figure 2.6c. This is a 

constant-free sequential circuit built around a modulo-16 counter, which adds 11 or 7 to its 

count state on receiving a 00 or 11, respectively; it remains in the same state on receiving 

a 01 or 10. Whenever the counter overflows, a 1 is produced at the output and the counter 

is reset to the amount of the overflow. COMC requires four flip-flops for its 16-state counter. 

CST shown in Figure 2.6a, requires four constant SNs that are generated by a 4-tap LFSR, 
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which also needs four flip-flops. However, CST has the limitation that each tap of the LFSR 

does not produce a constant with value exactly 0.5, because it does not loop through the 

all-0 state, resulting in the constant 8/15 instead of 0.5. To eliminate this small error, CST 

would require random sources that are more accurate and probably a little costlier than a 

4-bit LFSR. CRE, besides its expensive SN generators, also needs two high-quality 4-bit 

random sources (omitted in Figure 2.6b) for BR1 and BR3. 

An MSE comparison of the above three circuits appears in Figure 2.7. Here we use 

MATLAB’s rand function to generate high-quality random numbers for the ReSC design 

CRE. The STRAUSS design CST does not converge to the correct value due to the error 

introduced by the LFSR’s missing all-0 state; this error may be removed by replacing the 

LFSR with a better random number source. The OMC circuit COMC, on the other hand, 

consistently provides the best accuracy among all the designs, and its MSEs match the 

theoretical lower bound predicted by Theorem 2.2. This implies that COMC can compute in 

far less time, and hence with better energy efficiency, than the other designs. For example, 

COMC achieves an MSE of 0.002 with N = 32 bits, while the ReSC design CRE needs 

approximately 128 bits for the same accuracy. 

Complex Matrix Multiplication: Figure 2.8a shows a combinational stochastic 

circuit with 12 constant inputs implementing complex matrix multiplication [59]. It has 

four outputs, each of which depends on three constant inputs, all of which can be eliminated 

by CEASE. Here we examine the accuracy improvement after applying CEASE to the sub-

circuit spanned by Z1
i, one of the circuit’s four primary outputs. The resulting STG has 

four states which require two flip-flops to implement. The CEASE-generated OMC circuit 

is similar in structure to that in Figure 2.6c. An MSE comparison between the circuit in 

Figure 2.8a and the OMC circuit appears in Figure 2.8b, which again shows that CEASE 

improves accuracy and, at the same time, matches the lower bound on MSE. 

Random Circuits: In the absence of benchmark stochastic circuits, we use  
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Figure 2.8 (a) Stochastic circuit implementing complex matrix multiplication [59]. 

(b) MSE comparison with an OMC design. 

 

Figure 2.9 MSE comparison of random circuits with four constant- and two variable-

input SNs. The lower bounds treat the unremoved constants as variables. 
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randomly generated ones to further estimate the performance of CEASE. Specifically, we  

first generate 100,000 random stochastic functions in the form of Equation (2.5) that are 

implementable using four-constant, two-variable stochastic circuits, where the constants 

all have value 0.5 and the variable inputs are fed with arbitrary random values. We then 

apply CEASE and synthesize OMC circuits implementing these random functions. Figure 

2.9 plots the average MSEs of these circuits against bit-stream length. We also allow 

CEASE to remove some or all the constants. As can be seen in Figure 2.9, the MSEs depend 

on the number of constants removed, with the lowest MSEs achieved by removing all the 

constants. The results match the theoretical lower bounds, with slight deviations caused by 

rounding very short SNs. 

Sequential Stochastic Circuits: CEASE can be used to remove some RFEs in 

sequential stochastic circuits as well. We illustrate this via the circuit CSEQ in Figure 2.10a, 

which is a sequential realization of the stochastic function Z = (X – 2X2 + 1.5X3) / (1 – 2X 

+ 2X2) built around an up/down counter, and is one of the most common and best 

understood sequential SC design styles [52]. CSEQ is based on a 4-state FSM M that realizes 

a saturating up/down counter (Figure 2.10c), and a 4-way multiplexer Q that uses S, the 

state of M, to select one of its four input SNs to send to the output. Three of these SNs are 

0 or 1, whose bit-streams can be produced by static sources that do not induce RFEs. The 

remaining constant SN R has value 0.5 which is the usual RFE-inducing constant. R is fed 

to the combinational multiplexer Q but not to the sequential part M. Hence, we can 

incorporate CEASE into CSEQ to remove R and improve accuracy. This is done by directly 

applying the CEASE algorithm to Q to obtain the new FSM CSEQ-CEASE shown in Figure 

2.10b. CSEQ-CEASE transfers the role of all constant inputs R, 0 and 1 to its sequential OMC 

part, and eliminates RFEs due to R. Figure 2.10d compares the MSEs of CSEQ and CSEQ-

CEASE. It shows clearly that CSEQ-CEASE has less error than CSEQ for any given bit-stream 

length. Note, however, that CSEQ-CEASE does not guarantee the minimum possible error, 

since CEASE does not consider RFEs produced by the sequential component M whose 

behavior on random fluctuations is very different from that of a combinational circuit. 
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Figure 2.10 (a) Sequential circuit CSEQ implementing Z = (X – 2X2 + 1.5X3) / (1 – 2X + 

2X2) [52]. (b) Sequential circuit CSEQ-CEASE obtained by applying CEASE to the 

combinational part Q of CSEQ. (c) State-transition graph for the sequential part M of CSEQ. 

(d) MSE comparison between CSEQ and CSEQ-CEASE. 

As we have demonstrated, CEASE can achieve significantly higher accuracy than 

conventional SC designs with very little increase in hardware cost. In particular, a CEASE 

design never uses more memory elements than the STRAUSS and ReSC synthesizers. For 

example, all three designs in Figure 2.6 require just four D flip-flops (DFFs). Thus, CEASE 

provides an attractive design alternative with high accuracy that may enable a circuit to 

achieve a satisfactory level of performance with shorter bit-streams. For example, the DNN 

presented in [48] uses a set of highly accurate stochastic adders that are functionally 

identical to the OMC circuit in Figure 2.2c to strike a balance between low hardware cost 

and high accuracy requirements. 

2.5 Summary 

This section has analyzed random fluctuation errors, focusing on those induced by 

constant SNs. Specifically, we have clarified the role of constant inputs and shown that 

they are an unexpected source of significant amounts of RFEs despite the fact that such 
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constant inputs are essential in practical SC design. We further demonstrated that constant 

inputs can be completely eliminated by employing suitably designed sequential stochastic 

circuits. A systematic algorithm CEASE was devised for efficiently removing constants in 

this way. The resulting FSMs can be implemented as optimal modulo-counting (OMC) 

circuits. We further proved analytically that CEASE is optimal in terms of its ability to 

eliminate RFEs. Case studies were presented which confirm that with fixed computation 

time (and hence fixed energy consumption), constant-free sequential designs of the kind 

generated by CEASE can greatly improve the accuracy of SC. 
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CHAPTER 3  

Correlation 

 

Unlike random fluctuation discussed in Chapter 2, accuracy reduction caused by 

correlation cannot be mitigated by simply lengthening SNs. Special decorrelation circuitry 

must be used to remove undesired correlation. Regeneration, which is a common 

decorrelation method, entails huge area and delay overhead. An attractive alternative is 

isolation-based decorrelation, which is the focus of this chapter. Isolation works by 

inserting delays (isolators) to eliminate undesirable interactions among SNs. Although it 

has far lower cost than regeneration, isolation has only been used in an ad hoc fashion, 

which usually results in non-optimal designs. This chapter begins by examining the 

characteristics of SC isolation. We show that unless carefully used, it can result in 

excessive isolator numbers or unexpected functional corruption. We therefore derive the 

conditions for correct isolator deployment. We also describe the first isolator placement 

algorithm designed to minimize isolator numbers. Finally, some case studies on 

decorrelating representative circuits are presented. The material in this chapter has been 

published in [69] and [9]; the latter work was co-authored with Armin Alaghi and Vincent 

Lee. 

3.1 Correlation in Stochastic Circuits 

Correlation in SC refers to similarity between stochastic signals, and is usually 

caused by insufficient randomness. Correlation control has long been a vexing problem in 

SC designs, because accuracy-reducing correlation can occur frequently and unexpectedly.  
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Figure 3.1 SC multiplier with maximally correlated inputs (a) due to signal reuse, and (b) 

due to a common random source. 

This chapter focuses on correlation (or more specifically cross-correlation) among multiple 

SNs. Autocorrelation, a related topic that concerns the correlation between the bits of a 

single SN in different clock cycles, will be discussed in Chapter 4. 

Correlation can be introduced in many ways, such as signal reuse due to re-

convergent fanout, common-mode noise, and sharing random sources. Figure 3.1a 

illustrates correlation between the inputs of an AND-gate multiplier that, at first sight, 

seems configured to realize X2. A single bit-stream representing X is applied to both inputs 

of the AND gate. As briefly discussed in Chapter 1, this produces exactly the same bit-

stream at the output line z, implying that the gate computes X instead of X2. Such a major 

error is attributable to maximal (positive) correlation between the AND’s input signals. 

Correlation can be viewed as either an error source that corrupts a stochastic 

function, or as a resource that changes the function to a potentially more useful one. An 

example for the latter use is the stochastic edge detector [8] mentioned in Chapter 1, which 

requires maximally correlated input SNs to function. To leverage correlation as a resource, 

the amount of correlation injection must be carefully controlled. However, quantifying and 

managing correlation in SC is surprisingly challenging. Among the 76 correlation metrics 

summarized in the 2010 survey by Choi et al. [24], none can be directly applied to 

designing stochastic circuits! For this reason, only a few stochastic circuits have been 

designed to work with intentional correlation, despite SC tools that were recently 
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developed like stochastic cross correlation (SCC) [3] and correlation manipulation circuits 

[47]. Consequently, most stochastic circuits, including those produced by major 

synthesizers like STRAUSS [6] and ReSC [65], require uncorrelated inputs. Ensuring 

independence among inputs is hence a very important task in SC. 

Independence, or the complete absence of correlation, among SNs is relatively easy 

to define [38]. We say that two SNs X and Y are independent, if the following holds for 

all t: 

               p(X(t) = 1, Y(t) = 1) = p(X(t) = 1)p(Y(t) = 1)  (3.1) 

The definition can be easily generalized to multiple SNs. For input SNs that are mutually 

independent, their joint probability distribution can be written as the product of their 

individual probabilities. This allows us to write the stochastic function defined in Equation 

(2.2) as 

                                          pZ = ∑ [𝑓(𝑙1, ⋯ , 𝑙𝑛) ∏ 𝑝𝐗𝑗
(𝑙𝑗)𝑛

𝑗=1 ]𝟏
𝑙1⋯𝑙𝑛=𝟎   (3.2) 

Most SC designs assume independent input SNs, and hence implement a stochastic 

function in the form of Equation (3.2). 

Example 3.1: As described in Example 2.1, an AND gate implements the stochastic 

function Z = pXY(1, 1), which depends on the joint probability of X and Y. It is usually used 

with independent inputs, in which case it implements the function in the form of Equation 

(3.2), which is stochastic multiplication Z = pXY(1, 1) = pX(1)pY(1) = XY. It can be shown 

that this AND gate performs other functions with other types of correlation [3]. For 

instance, consider the scenario of Figure 3.1b where X and Y are generated from the same 

randomness source, and are thus maximally correlated, i.e., 1s in X maximally overlap with 

1s in Y. If X contains more 1s than Y, then, by conditioning on Y = 1, we have Z = pXY(1, 1) 

= pX|Y(1 | 1)pY(1) = pY(1) = Y. This is because whenever Y(t) = 1, X(t) = 1, and thus pX|Y(1 | 

1) = 1. Similarly, if Y contains more 1s than X, then Z = X. Summarizing, Z = min(X, Y) ≠ 

XY when X and Y are maximally correlated. □ 
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Figure 3.2 (a) MUX circuit, (b) an invalid isolator placement for the MUX, and  

(c) a valid isolator placement for the MUX. 

The foregoing discussion suggests that undesired correlation among input SNs can 

drastically change the functionality of a circuit in an unexpected way. Furthermore, if 

internal lines are required to be independent (e.g., the two input lines of the AND gate in 

Figure 3.1a), re-convergent fanout can quickly introduce correlation that also severely 

degrades accuracy or functionality even with independent primary inputs. Such behaviors 

call for correlation removal, a process termed decorrelation in this dissertation. However, 

decorrelation introduces sequential components that usually come with considerable 

latency and hardware overhead. Thus, eliminating the correlation while minimizing the 

usage of decorrelation circuitry is of crucial importance. 

This raises an interesting but difficult question: Which SNs in a circuit should be 

decorrelated? Generally, the correlated primary inputs of a circuit or its major components 

(i.e., some internal lines of a circuit) need decorrelation. However, in some cases, 

correlation among inputs does not affect the functionality of a stochastic circuit at all, e.g., 

if signals from these inputs cannot reach the output simultaneously. Intuitively speaking, 

this means that two correlated SNs do not need decorrelation, if they never interact with 

each other from the viewpoint of the output. This property is called correlation insensitivity 

(CI) [2] and eliminates the need for decorrelation. 

Example 3.2: Consider the multiplexer (MUX) circuit in Figure 3.2a which 

realizes z = f(x, r, y) = xr’ + yr. Recall that a MUX implements stochastic scaled addition 

when the constant R is independent with both X and Y. Here we will show that the lines x 

and y in a MUX form a CI pair, meaning that this stochastic scaled adder can function 
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correctly even if X and Y are correlated. Intuitively speaking, x and y are a CI pair because 

they cannot both affect the output line z at the same time. Specifically, if r = 0, then z = f(x, 

0, y) = x, and the output depends on x only. Also, if r = 1, then z = f(x, 1, y) = y, which 

depends only on y. This implies that under no circumstances will X and Y interact with 

each other. Their correlation thus has no effect on the circuit. Indeed, the stochastic 

function of the MUX is F = pXR(1, 0) + pYR(1, 1). This does not depend on the joint 

probability distribution of X and Y, regardless of the value of R. This shows that it is 

unnecessary (but unharmful from a functional viewpoint) to decorrelate SNs applied to CI 

inputs, even if the SNs are correlated. □ 

We refer interested readers to [2] for further discussion of CI. Here, we provide a 

way to verify if two inputs of a circuit form a CI pair. For a combinational circuit C 

implementing the Boolean function z = f, the inputs xi and xj form a CI pair, if and only if 

(dz/dxi)  (dz/dxj) = 0. Here dz/dxi is the Boolean difference of z with respect to xi, i.e. dz/dxi 

= f(x1, …, xi–1, 0,…, xn) ⊕ f(x1, …, xi–1, 1, …, xn) [2]. This verification method essentially 

identifies CI pairs by checking if there is any way for a pair of inputs to affect the primary 

output at the same time. Although correlation can take complicated forms, this chapter will 

assume that the pairs of SNs that need decorrelation are given. Such a pair of SNs contains 

correlated SNs that are fed to non-CI ports of a stochastic circuit. 

Next, we will describe methods to decorrelate input SNs, focusing on a special 

approach called isolation-based decorrelation (IBD). We will demonstrate in Section 3.5 

that the IBD method proposed here can be extended to handle cases where internal lines 

also call for decorrelation, i.e., an SC system or circuit composed of multiple 

interconnected SC components, each of which requires independent inputs. 

3.2 Mitigating Correlation Errors 

As discussed previously, undesired correlation can severely impact the accuracy of  

a stochastic circuit. Special decorrelation circuitry must be used to cope with undesired 
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correlation. This section describes and analyzes several commonly used decorrelation 

methods, focusing on isolation-based decorrelation (IBD). 

Regeneration decorrelates by reproducing correlated SNs using new and 

uncorrelated randomness sources. This is done by using SBCs to transform the SNs back 

to a binary form, and then using independent RNSs to produce a new set of SNs. An 

example that decorrelates the circuit of Figure 3.1a is shown in Figure 3.3a. Here, a counter 

serving as an SBC first transforms X to a binary number, which is then used to produce a 

new and uncorrelated SN by the BSC comprising a comparator and an independent 

randomness source. Regeneration is arguably the most powerful method of decorrelating 

SNs, since it can be applied to almost all scenarios. However, regeneration is extremely 

expensive in hardware overhead due to the need for RNSs, comparators, and counters, all 

of which have very high area cost [65]. The use of SBCs also implies long latency that is 

equal to the bit-stream length N, because new SNs cannot be reproduced until the 

stochastic-to-binary conversion has been completed. This latency problem can interfere 

with SN flow, and desirable properties such as progressive precision [8] may be lost. 

Regeneration can also introduce new errors during the format conversion process, as the 

accuracy of regenerated SNs highly depends on the precision of the intermediate binary 

numbers as well as the quality of the random numbers used by the BSC. 

Shuffling is another decorrelation method that also tackles correlation errors by 

randomizing an SN [28][47][68]. It differs from regeneration in that a shuffler does not 

completely regenerate an SN, but instead it remembers some bits it has received so far, and 

randomly permutes them for later release. Figure 3.3b shows how a shuffler with depth D 

= 1 bit is used to decorrelate the squarer in Figure 3.1a. The depth parameter D is the 

number of flip flops for storing input bits. Here in each clock cycle, the shuffler uses the 

extra random number R to determine whether to store the new bit in its flip flop, or directly 

release this bit to the output line. If it chooses to store the new bit, the bit previously held 

by the flip flop will be released to the output line. This way, the number of 1s in the newly 

 



37 

 

(a)

Z 0

1

R

X

1 =
en

Z

Shuffler

(b) (c)

X
Z

1

Counter

X

1
B

A
A<B

Random 
source

 

Figure 3.3 (a) Regeneration-based, (b) shuffle-based, and (c) isolation-based 

decorrelation. The box marked “1” denotes an isolator flip-flop. 

generated SN and that of the original SN can be made exactly the same. However, their 

location can be very different, since an early bit can potentially be released much later. The 

performance of a shuffler depends on its depth D, which determines the number of bits it 

can hold. With a larger D, the shuffler can randomize the bit locations in the SN more 

uniformly, but at the cost of higher hardware overhead and longer latency to initialize its 

flip flops. In other words, unless D = N – 1, shuffling does not completely eliminate 

correlation, but only reduces it. To see this, consider permuting the SN X = 000000111111 

with a shuffler having a small depth D = 1. It is not hard to see that an early 1 received by 

the shuffler is much more likely to be released earlier than later, resulting in a new SN that 

still has most of its 1s in its initial segment. Another major disadvantage of a shuffler is 

that it also requires extra (and expensive) random sources, whose quality has a direct 

impact on the shuffler’s performance. 

Isolation is a decorrelation method proposed (but not explored much) by Gaines 

[29] in the 1960s, which uses delay elements called isolators. An isolator is intended to 

produce a 1-cycle time delay in an SN X and is easily implemented by inserting a DFF into 

line x. We use a boxed number to represent the number of consecutive isolators inserted in 

a line. For instance, Figure 3.3c shows an AND gate with one isolator, i.e., a single DFF, 

inserted into its lower input line. Isolator insertion, which we will refer to as isolation-

based decorrelation (IBD), decorrelates a stochastic circuit by adjusting the delays of 

correlated SNs. If the bits of X are independently generated, as is normally the case, then 
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X and a k-cycle delayed version X(k) of X are independent at any given clock period. Thus, 

the IBD shown in Figure 3.3c for the squarer circuit of Figure 3.1a changes the circuit’s 

output in clock period t to Z = p(X(0)(t) = 1, X(1)(t) = 1) = pX(0)pX(1) = X2
 = 0.25, as desired. 

In general, IBD has much lower hardware cost than both regeneration and shuffling, and 

is therefore the preferred method among the three. However, IBD has received little 

research attention [22], despite the fact that it was proposed long ago [29]. In particular, no 

systematic study of IBD has been reported, and many SC designs employed IBD in an ad 

hoc fashion. As the next example shows, carelessly inserting many isolators into a circuit 

may not only lead to overuse of isolators, but also to incorrect decorrelation. In other words, 

isolator numbers and positions must be carefully chosen. 

Example 3.3: The circuit in Figure 3.4a realizes the Boolean function z = f(x1, x2, 

x3) = (x1 + x2)x3. When it is designed to work with independent inputs, it implements the 

stochastic function Z = (X1 + X2 − X1X2)X3. It does so by first computing G = X1 + X2 − X1X2 

via the OR gate. It then uses an AND gate to produce the final result (X1 + X2 − X1X2)X3. 

This can also be seen by directly applying Equation (2.2) 

                   Z = 𝑝𝐗1𝐗2𝐗3
(1, 0, 1) + 𝑝𝐗1𝐗2𝐗3

(1, 1, 1) + 𝑝𝐗1𝐗2𝐗3
(0, 1, 1) 

                             = X1(1 – X2)X3 + X1X2X3 + (1 – X1)X2X3 

                             = (X1 + X2 – X1X2)X3 

 (3.3) 

This design does not work as expected, however, if X1, X2 and X3 are correlated. Suppose 

X1, X2 and X3 all have value 0.5. The correct output should be Z = (0.5 + 0.5 − 0.25)0.5 = 

0.375. However, if X1, X2 and X3 are identical (maximally correlated), the OR gate outputs 

exactly the same bit-stream as X1, and so does the AND gate. The value of Z is estimated 

as 0.5 instead of the desired 0.375. It is essential to eliminate such correlation among SNs 

for accurate computation. Figure 3.4b shows a typical isolator placement eliminating the 

correlation among the three primary inputs; it uses three isolators to create delays of 0, 1 

and 2 in the three primary input lines. This turns out to be non-optimal in terms of isolator 
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Figure 3.4 SC circuits intended to implement Z = (X1 + X2 – X1X2)X3 (a) with no 

decorrelation, (b) with decorrelation using 3 isolators, (c) with decorrelation using 2 

isolators, (d) with incomplete and hence invalid decorrelation. (e) Error comparison of 

the three circuits. 

count, however. An optimal placement with only two isolators appears in Figure 3.4c, 

where G = X1(1) + X2(2) − X1(1)X2(2) and X3 = X3(0) are independent, and therefore Z = 

(X1 + X2 − X1X2)X3. Isolators must also be carefully placed to ensure functional correctness. 

Figure 3.4d shows a placement that also uses two isolators. However, it is incorrect as X2 

and X3 are both delayed by one clock cycle, so they are still correlated as they interact with 

each other. The accuracy of the circuits in Figure 3.4 is compared via simulation in Figure 

3.4e, which plots the MSEs in Z against bit-stream length for 10,000 randomly generated 

input values. The original circuit in Figure 3.4a and the incorrectly decorrelated circuit in 

Figure 3.4d both output erroneous values, regardless of bit-stream length. The two 

isolation-based decorrelated circuits shown in Figure 3.4b-c show no correlation error, and 

their random-fluctuation errors go rapidly toward zero as the bit-streams lengthen. □ 

Though IBD has vastly lower area cost than regeneration and shuffling, it still can 

impose considerable area overhead. Hence, reducing isolator count while delaying the SNs 
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correctly is important. As we will see, correlation can take much subtler forms than those 

in the preceding examples, and finding a good isolator placement is a tricky problem. This 

is mainly due to our limited understanding of how to decorrelate stochastic circuits, a topic 

that has been largely ignored in the literature. The remainder of this chapter investigates 

the foundations of IBD, with a focus on optimizing isolator placement. 

3.3 Isolation-Based Decorrelation 

IBD works by inserting isolators (DFFs) into a circuit to delay selected SNs by 

selected numbers of clock cycles. It exploits the inherent temporal independence among 

successive bits generated by a Bernoulli RNS [38]. In particular, IBD assumes that a set of 

SNs become mutually independent, if the correlated SNs in this set are delayed by different 

clock cycles. The intuitive idea behind IBD is to insert isolators so that the target circuit 

only “sees” independent SNs. 

It is worth mentioning that linear-feedback shift registers (LFSRs) can be viewed 

as a special example of IBD use in SC. Jeavons et al. observe that the (2m – 1)-bit sequences 

obtained by tapping each stage of an m-bit LFSR with maximum period, which is the most 

common RNS used in SC, are mutually independent [38]. This special case of isolator 

usage delays a single SN with value 0.5 multiple times to generate a set of mutually 

independent SNs, all with value 0.5. 

To more generally analyze IBD, we need to first express its behavior 

mathematically. An IBD D transforms a target circuit C into a circuit CD containing 

isolators which is no longer combinational. This prohibits the use of Equation (2.2) to 

describe CD, because it is for combinational circuits only. However, CD can be described 

by a Boolean function fD of delayed primary inputs. This concept, sometimes called a 

clocked Boolean function (CBF), was developed for some distantly related problems such 

as sequential circuit verification [66]. For example, the decorrelated circuit of Figure 3.4b 

has the CBF: 
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               z = fD(x1(0), x2(1), x3(2)) = x1(0)x3(2) + x2(1)x3(2)  (3.4) 

Here, we explicitly express Equation (3.4) using delayed Boolean variables to emphasize 

the fact that the circuit, albeit sequential, implements a Boolean function fD that operates 

on delayed inputs. The stochastic behavior of CD therefore takes the form Z = F(fD, 𝑝XD), 

where XD = {X1(0), X2(1), X3(2)} is the set of SNs applied to x1, x2, x3, respectively. 

Observe that now the output value Z depends on the delayed versions of the input SNs. 

The CBF concept enables us to describe the stochastic behavior of any circuit in 

which isolators are placed. Again, careless isolator placement can lead to invalid 

decorrelation. In Example 3.3, the circuit CD shown in Figure 3.4d has an invalid isolator 

placement D for the circuit in Figure 3.4a. Its stochastic function Z = F(fD, 𝑝XD) has XD = 

{X1(0), X2(1), X3(1)}, with X2(1), X3(1) still being correlated. Another example of an 

invalid placement is given by the circuit in Figure 3.2b, which is an attempt to decorrelate 

the circuit in Figure 3.2a. In this case, XD = {X(1), Y(0), R(0), R(1)}, and the circuit 

depends on four SNs instead of three, which is obviously invalid. 

How do we determine the validity of an IBD? Suppose we are interested in using 

IBD to decorrelate a set of possibly correlated SNs X for a target circuit C. Let CD denote 

the circuit obtained from C by an isolator placement D. Further, let XD be an SN set 

containing possibly delayed versions of the SNs in X, and XIND be a set of SNs that are 

independent, but have the same values as the SNs in X. The placement D is called a valid 

isolator placement (VIP) if F(fD, 𝑝XD ) = F(f, 𝑝XIND
) for all values of the input SNs. 

Otherwise, D is an invalid placement. Intuitively, this means that D is a VIP, if CD performs 

that same function as C does with independent inputs. The following theorem, proven in 

Appendix A.3, gives sufficient conditions for an isolator placement to be a VIP. 

Theorem 3.1: D is a valid isolator placement (VIP) for C if the following two 

conditions are satisfied: 
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                                XD = {X1(t1), X2(t2), …, Xn(tn)} (3.5)  

               For every pair Xi, Xj that needs decorrelation, ti ≠ tj     (3.6) 

Condition (3.5) means that the output of CD “sees” only a single delayed version Xi(ti) of 

each SN Xi. Condition (3.6) implies that all the SNs that need decorrelation are delayed 

without conflicting time overlap. Together, the two conditions ensure that the SNs reaching 

the output are independent, delayed versions of the input SNs, and hence D is a VIP. 

Using Theorem 3.1, we can quickly verify if a circuit is correctly decorrelated. For 

instance, the circuit shown in Figure 3.2c is a VIP for the SC circuit of Figure 3.2a, since 

XD = {X(0), Y(0), R(1)}, and x, y form a CI pair. For the same reason, the circuit CD of 

Figure 3.4b is a VIP for that in Figure 3.4a, since XD = {X1(0), X2(1), X3(2)} and these 

SNs are delayed by different numbers of cycles. A stochastic circuit may have many VIPs. 

For instance, the circuit of Figure 3.4c is also valid but contains only two isolators. We are 

particularly interested in finding VIPs that contain as few isolators as possible. This 

problem can be difficult, even for circuits of moderate size, mainly because SNs derived 

from a source X delayed by the same amount are correlated, and their uncontrolled 

interaction can lead to circuit malfunction. 

Theorem 3.1 provides functional conditions (3.5) and (3.6) that guarantee a VIP. 

Next, we identify structural (path) properties of a circuit that meet these conditions, and 

suggest how VIPs can be constructed. The starting point is a stochastic circuit C without 

isolators. The goal is to place a set of isolators on the lines of C so that the resulting CD is 

validly decorrelated. 

Let X = {X1, X2, …, Xn} be a set of input SNs for C. To construct a VIP D for C 

using Theorem 3.1 requires XD = {X1(t1), X2(t2), …, Xn(tn)}, and ti ≠ tj if the pair Xi, Xj 

needs decorrelation. The next theorem places conditions on the input-output paths of CD 

which ensure the conditions of Theorem 3.1 are met. 
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Theorem 3.2: D is a VIP for C if the following two conditions are satisfied: 

All paths from a primary input xi to the primary output z of CD contain the 

same number of isolators. 
(3.7) 

For each primary input pair xi, xj with {Xi, Xj} needing decorrelation, at 

least one path from xi to z contains a different number of isolators than at 

least one path from xj to z. 

(3.8) 

Proof of Theorem 3.2: Assume all paths from xi to z contain the same number of 

isolators, say ti isolators. Then fD depends on xi only through xi(ti), the ti-cycle-delayed 

version of xi. Thus fD = fD(x1(t1), x2(t2), …, xn(tn)), implying XD = {X1(t1), X2(t2), …, Xn(tn)} 

and (3.5) holds. Similarly, (3.8) implies that whenever the pair Xi, Xj needs decorrelation, 

ti ≠ tj, and hence (3.6) holds. By Theorem 3.1, D must be a VIP for C. 

Again, we use the circuit in Figure 3.2c as an example to illustrate Theorem 3.2. 

Condition (3.7) needs to be fulfilled by all inputs. For instance, input r has two paths to z, 

and they all contain one isolator. Also, inputs needing decorrelation have to fulfill 

Condition (3.8). For example, input pair x, r is not CI, and X, R are correlated. Therefore 

the path from x to z and the path from r to z have to contain different numbers of isolators 

(in this case, zero and one isolator, respectively). The circuit shown in Figure 3.2c is thus 

correctly decorrelated. 

3.4 Optimizing Isolator Placement 

Meeting the conditions we have previously established guarantees a valid isolator 

placement (VIP). In practice, we are also interested in minimizing hardware overhead 

induced by decorrelation circuits. In other words, VIPs that use a minimum number of 

isolators are highly preferred. In this section, we show that such a VIP can be systematically 

constructed by solving an integer linear programming (ILP) problem that aims to optimize 

isolator usage under the set of constraints stated in Theorem 3.2. 
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Let CD be the circuit resulting from employing an IBD D in a target circuit C. Let 

E = {e1, e2,…, eq} be the set of lines in C, and let W = {w1, w2,…, wq}, where wi is the 

number of isolators placed on line ei. The ILP’s objective function is to minimize ∑ 𝑤𝑖
𝑞
𝑖=1  

while meeting the two conditions in Theorem 3.2. These conditions must be converted into 

a suitable set of ILP constraints. Condition (3.7) requires equal numbers of isolators on 

pairs of paths. For a path-pair P1, P2, this can be described by an equality constraint (EC): 

                ∑ 𝑤𝑖𝑖:𝑒𝑖∈𝑃1
= ∑ 𝑤𝑖𝑖:𝑒𝑖∈𝑃2

  (3.9) 

Condition (3.8) requires distinct numbers of isolators in path-pairs P1, P2, and can be 

described by an inequality constraint (IEC) set: 

              ∑ 𝑤𝑖𝑖:𝑒𝑖∈𝑃1
= ∑ 𝑗𝑗 𝑑1,𝑗,               ∑ 𝑤𝑖𝑖:𝑒𝑖∈𝑃2

= ∑ 𝑗𝑗 𝑑2,𝑗  

                     ∑ 𝑑1,𝑗𝑗 = 1,                                ∑ 𝑑2,𝑗𝑗 = 1  

                     𝑑1,𝑗 + 𝑑2,𝑗 ≤ 1 

 

(3.10) 

where 𝑑𝑘,𝑗  is a decision variable that will be 1 if j isolators are placed on Pk, and 0 

otherwise. The summation variable j ranges from 0 to the maximum number of isolators 

permitted in a line. The IECs ensure that a unique number of isolators is placed on each of 

P1 and P2, and that these numbers are different. 

In addition to ECs and IECs, we also need non-negativity and integer constraints 

(NICs) to ensure that 𝑤𝑖  and 𝑑𝑘,𝑗 are non-negative integers for all i, j and k. The resulting 

ILP algorithm for constructing a valid isolator placement while minimizing isolator usage 

is summarized in Figure 3.5; we refer to it as VAIL (VIP Algorithm based on ILP). 

Example 3.4: Consider the circuit in Figure 3.6 which realizes the Boolean 

function z = (xy)u + (xy)v, where u, v form a CI pair. Assume the input SNs U, V, X and 

Y are correlated. A straightforward ad hoc VIP is obtained by delaying the SNs at the  
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Input: C: target circuit implementing z = f(x1, x2,…, xn) 

I: list of SN pairs that need decorrelation 

Output: CD: decorrelated circuit 

Step 1 Solve integer program min ∑ 𝑤𝑖
𝑞
𝑖=1  with the constraints: 

    (1) ECs for all path-pairs from each xi to z 

    (2) IECs for a path-pair from each {xi, xj} to z if {Xi, Xj} ∈ I. 

    (3) NICs for all wi and all decision variables 

Step 2 Map {w1, w2,…, wq} to CD 

Figure 3.5 The VAIL algorithm for constructing a VIP with minimal isolator count. 
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Figure 3.6 Example SC circuit decorrelated using (a) a simple ad hoc IBD method, and 

(b) the proposed VAIL method. 

primary inputs. As shown in Figure 3.6a, 0, 1, 2 and 3 isolators are inserted in inputs y, x, 

v and u, respectively, for a total of 6 isolators. To decorrelate the circuit using VAIL, we 

formulate the ILP min ∑ 𝑤𝑖
9
𝑖=1  with the following constraints: 

I. w1 + w5 + w6 + w8 = w1 + w5 + w7 + w9 

II. w2 + w5 + w6 + w8 = w2 + w5 + w7 + w9 

III. w1 + w5 + w6 + w8 ≠ w2 + w5 + w6 + w8 

IV. w3 + w8 ≠ w1 + w5 + w6 + w8 

V. w3 + w8 ≠ w2 + w5 + w6 + w8 

VI. w4 + w9 ≠ w1 + w5 + w6 + w8 

VII. w4 + w9 ≠ w2 + w5 + w6 + w8 
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where wi is a non-negative integer for all i. Constraints I and II are ECs, and constraints 

III-VII can readily be converted to IECs. A solution to this ILP has just two isolators, whose 

placement is depicted in Figure 3.6b. □ 

3.5 Case Studies 

This section evaluates VAIL’s ability to remove correlation errors as well as its 

hardware overhead. It does so by comparing VAIL against a naïve isolator placement on 

random circuits and some other representative circuits. 

Random Circuits: First, we use randomly generated 4-input and 6-input circuits 

with gate counts ranging from 10 to 20, which is a typical size range for performance 

assessment of stochastic circuits. We generate the input SNs with three different levels of 

correlation: high, moderate and low, corresponding to generating 100%, 70% and 30% of 

the SN bits, respectively, from the same RNS. The resulting errors are averaged over 500 

randomly generated SNs for each circuit, and then averaged across 100 randomly generated 

circuits. Similar conclusions can be drawn when averaged over more SNs and more random 

circuits. Here, the output errors are measured by the absolute difference in value between 

the circuits’ outputs and the desired outputs, and are plotted against output bit-stream 

length in Figure 3.7. Recall that making the input SNs longer can only reduce errors caused 

by random fluctuation, while errors induced by correlation remain. Therefore, as clearly 

seen from Figure 3.7, the errors of circuits without decorrelation do not converge to zero 

as the input SNs lengthen, since they have correlation errors. The magnitude of these errors 

depends on the level of correlation. Circuits with highly correlated inputs have large 

correlation errors, as expected. The random fluctuation errors of circuits decorrelated by 

VAIL also decrease to zero as the input SNs lengthen, but the circuits exhibit no correlation 

errors whatsoever. The results in Figure 3.7 show that isolator placement by VAIL 

eliminates all correlation errors from the chosen SC circuits, regardless of the correlation 

level among their primary inputs. 
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Figure 3.7 Accuracy assessments of VAIL with various correlation levels for (a) 4-input 

and (b) 6-input random circuits. 

 

Figure 3.8 Isolator usage comparison between VAIL and IIBD for (a) 4-input and (b) 6-

input random circuits of various sizes. 

 We also compared the performance of VAIL against a basic isolator placement 

scheme in terms of the number of isolators required to correctly decorrelate a random 

circuit. We assume that all the input SNs of a target SC circuit are to be pairwise 

decorrelated. For comparison with VAIL, we use the intuitively clear IBD approach in 

Figure 3.6a, namely, delaying the primary input SNs by different amounts 0,1,2,3,…; we 

refer to this as input IBD or IIBD. The number of isolators needed for IIBD is n(n − 1)/2, 
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where n is the number of inputs, whereas the number of isolators used by VAIL varies with 

the structure and the size of the target circuit. Figure 3.8 compares the isolator usage of 

VAIL and IIBD by plotting isolator usage against some typical SC circuit sizes measured 

by gate count. For each size, we generate 100 randomly structured circuits and compute 

their average isolator count. 

As Figure 3.8 shows, VAIL uses on average 35.2% and 53.5% fewer isolators for 

5-gate 4-input, and 10-gate 6-input circuits, respectively. This implies that for SC circuits 

of moderate size, VAIL can greatly reduce the hardware overhead of isolators required for 

IBD. Also note an interesting phenomenon: the average isolator number gradually grows 

as circuit size increases. This is because in large randomly generated circuits, the 

interconnections among gates tend to be complex. The path constraints such as ECs and 

IECs required for placing isolators internally are rather stringent for large circuits. Hence, 

an optimal solution contains relatively few internal isolators, resulting in more isolators 

being placed in the primary input lines. Many real-world circuits, however, are highly 

structured, and thus require far fewer isolators for decorrelation using VAIL than random 

circuits of similar size, as will be shown shortly. The number of isolators used by IIBD 

gives a useful upper bound on the number used by VAIL, since the solution space of VAIL 

contains that of IIBD. Note too that IIBD and VAIL lead to circuits that are very similar in 

terms of accuracy, as both of them can completely remove correlation errors if employed 

correctly. 

Complex Matrix Multiplier: Figure 3.9 shows a relatively large stochastic circuit 

intended for simulating a quantum circuit [59], which we also used for evaluating CEASE 

in Chapter 2. It implements the following matrix multiplication: 

     [
𝑍1

𝑍2
] = 

1

4
[
𝐴 𝐵
𝐶 𝐷

] [
𝑋1

𝑋2
] 

 

(3.11) 

where each variable is a complex number with its real and imaginary parts denoted by  
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Figure 3.9 SC circuit implementing complex matrix multiplication [59]; an optimal 

placement of four isolators is shown. 

superscripts r and i, respectively, in the figure. The circuit has six variable input SN pairs 

A, B, C, D, X1, X2 and two output pairs Z1, Z2, all defined by Equation (3.11). It also has 

12 constant inputs R0-R11, all of which carry a fixed value 0.5. As suggested in [59], the 

accuracy of simulation is sensitive to signal correlation, and ensuring independence across 

the SNs, both variable and constant, is important. Here, we will assume that the constant 

sources R0-R11 are independent, which is usually the case when they are generated from 

multiple LFSRs with distinct initial states. However, the variable inputs are potentially 

correlated, which is the case when they originate from shared upstream SC circuits. The 

goal here is to construct a VIP with VAIL that, under the stated assumptions, guarantees 

the four output SNs are free of correlation errors. 

The four outputs of the circuit are driven by different, but overlapping, sub-circuits, 

each with eight primary inputs. To construct a VIP using VAIL, we first list the required 

constraints, including ECs, IECs and NICs, for each of the sub-circuits. Then we form an 

integer linear programing problem subject to all the listed constraints. For illustration 

purposes, we only show how to construct ECs and IECs for the sub-circuit with output Z1
i, 

which depends on the value of X1
i, X1

r, X2
i, X2

r, Ai, Ar, Bi, Br. These inputs all have only 
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one path to Z1
i, so no ECs are needed. IECs are required for SN pairs that need 

decorrelation. For example, Br and X2
i are non-CI and correlated, and therefore the path 

from Br to Z1
i and the path from X2

i to Z1
i, as marked in red in Figure 3.9, need to contain 

different numbers of isolators. For each sub-circuit, there are four input pairs requiring 

IECs. 

Combining all IECs and NICs for the four sub-circuits and solving the resulting 

ILP, we get a VIP that inserts a single isolator into each of the input lines X1
i, X1

r, X2
i, X2

r, 

as depicted in Figure 3.9. It may seem surprising that four isolators suffice to decorrelate 

what is a big circuit by SC standards. The reason for this is that the circuit has many CI 

pairs due to its many multiplexers (which have CI inputs, as discussed in Example 3.2); 

hence many correlated inputs do not need decorrelation. The optimality of this solution can 

be easily confirmed by noting that we need at least four isolators, one for each of the SN 

pairs {Ai, X1
i}, {Ar, X1

r}, {Bi, X2
i}, {Br, X2

r}, to decorrelate the circuit, and therefore four 

is a lower bound for isolator counts. It turns out that IIBD requires 34 isolators to validly 

decorrelate the entire circuit. Also, if we ignore the presence of CI, then VAIL requires 30 

isolators for decorrelation. 
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Figure 3.10 SC circuit composed of three modules (a) without decorrelation, and (b) after 

decorrelation by VAIL 
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SC Systems: So far, we have discussed the case where only primary input SNs 

need decorrelation. In practice, however, an SC system or circuit may be constructed from 

interconnected modules, each of which is a stochastic component requiring its own inputs 

to be independent. This occurs when designing using a library of SC modules. In such 

cases, simply decorrelating the primary inputs of the overall system cannot guarantee 

correct functioning, since additional independence constraints are imposed on the internal 

lines supplying the modules. A simple special case is seen in single-input circuits like the 

squarer of Figure 3.1a. Obviously, inserting an isolator in the primary input x does not 

provide decorrelation. The squarer is best viewed as a system comprising a fanout network 

and an internal AND module whose two inputs must be decorrelated. 

Here, we show how VAIL can be used to decorrelate a more complex system using 

the circuit in Figure 3.10a as an example. This circuit is intended to compute the 

multivariate polynomial Z = 0.5WV(X + Y – 2XY)3 + 0.5W2V. Assume the circuit is 

composed of three modules M1, M2 and M3. Module M1 consists of an XOR gate that 

computes 𝐹𝑀1
(A, B) = A + B – 2AB. Module M2 uses two AND gates to compute 𝐹𝑀2

(A, B, 

C) = ABC, and when its three inputs are independent copies of a single SN, module M2 

computes the cube of that SN. Module M3 contains a MUX and two AND gates, and 

computes 𝐹𝑀3
(A, B, C, D) = 0.5(A + B)CD. All these modules (except the MUX of module 

M3 which has CI inputs) need independent inputs to function correctly. We will only 

consider decorrelation of module M2 for illustration purposes. The decorrelation 

constraints for the other modules can be deduced similarly. 

Suppose the four input SNs of the system X, Y, V, W are correlated, and let S, T, 

U be the three SN inputs of M2. To ensure that M2 works as if its three inputs were 

independent, we need to impose ECs and IECs on the inputs of M2 with respect to the 

output of M2. While ECs can be imposed to M2 directly, IECs cannot, since M2 is not a 

standalone SC circuit and we do not have the correlation information about S, T, U. We 

cope with this problem by extending the path constraints from the inputs of M2 to the 

primary inputs of the system. The IECs for M2 can then be formulated as follows. Let Pi 
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denote a path from an input i of M2 to the output of M2, and let Ri denote a path from a 

primary input of the system to the input i of M2. For any paths Ri and Rj originating from 

the same or correlated primary inputs, paths Ri-Pi and Rj-Pj need to contain different 

numbers of isolators. For example, paths abcd and abe must contain different numbers of 

isolators, since they originate from the same primary input a. The IECs force correlated 

SNs to arrive at the output of module M2 without correlation.  

Solving the ILP with constraints for each of the modules results in the decorrelated 

system shown in Figure 3.10b. VAIL decorrelates the system with a total of eight isolators, 

which is the optimal isolator count in this case. 

3.6 Summary 

We have examined in depth the behavior of general stochastic circuits under the 

influence of correlation. We developed a basic theory for isolator placement and obtained 

conditions for a placement to be valid. The theoretical analysis reveals that isolator 

placement is a complex problem with subtle features, such as changing the function of the 

target circuit in unexpected ways. We introduced the problem of optimal isolator 

placement, and presented VAIL, an ILP-based algorithm to solve it. Our experiments show 

that VAIL can find valid, low-cost isolator placements for relatively large stochastic 

circuits. 
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CHAPTER 4  

Sequential Stochastic Circuits 

 

While combinational stochastic circuits are relatively easy to design, their 

limitations such as having few implementable functions and issues related to random 

fluctuation and correlation call for sequential methods. The theory underlying sequential 

stochastic circuits is not fully understood, however, limiting the use of sequential circuits 

to a few classes, notably the up/down-counter-based (UCB) circuits. This chapter identifies 

and investigates two new sequential circuit classes of particular interest to SC, namely 

shift-register-based (SRB) and optimal-modulo-counting (OMC) circuits. The properties 

of these two circuit classes are studied in depth, and their central role in SC is demonstrated. 

This leads to several important applications, such as an algorithm MOUSE for SRB design 

optimization, and a systematic method for controlling rounding policy in OMC designs. 

Finally, the chapter discusses the impact of autocorrelation on independently-designed 

sequential circuits, and describes a mitigation method for it. The material in this chapter 

has been published in [70] and [74]. 

4.1 Role of Sequential Elements in SC 

Much previous SC work has focused on combinational designs, partly because they 

are the easiest to deal with. However, it is increasingly clear that sequential elements play 

an indispensable role in many aspects of SC. For example, the RFE removal method 

described in Chapter 2 and the decorrelation method discussed in Chapter 3 both rely on 

sequential components. The random number sources (RNSs) driving the input bit 

sequences of stochastic circuits are also inherently sequential. Further, SC synthesizers like  
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Figure 4.1 Gate-level design of the STRAUSS circuit in Figure 2.6a. It requires two 

copies of variable SN X and four independent constant SNs generated by shift registers 

SR1 and SR2. 
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Figure 4.2 State transition graph (STG) for a 4-state Moore-type UCB circuit. 

STRAUSS and ReSC require internal constant SNs and independent copies of variable 

SNs, which also call for sequential components to generate. 

Example 4.1: Figure 4.1a shows a gate-level design of the STRAUSS circuit in 

Figure 2.6a that computes the (inverted) bipolar stochastic function F(X) = 0.4375 − 0.25X 

− 0.5625X 

2. Although F(X) is a single-input function, its combinational part requires two 

independent copies of X and four independent constant SNs R1, R2, R3, R4, each of value 

0.5. The constant SNs can be generated by a 4-bit LFSR, as is done in [6], or they can be 

produced by a chain of three isolators if a random source R is available, as in Figure 4.1a. 

Generation of all six independent inputs can thus be done by two shift registers as indicated 

in the figure. Taken together, they make the final circuit highly sequential. □ 

Besides their foregoing ancillary use, sequential components are also explicitly 

used to implement arithmetic functions that are hard to realize combinationally, such as the 

update node for LDPC code decoders [33][68], an ad hoc design that we briefly discussed 

in Chapter 1. Much of the literature on systematic sequential designs, on the other hand, 
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goes back to early ADDIE designs [29] that involve up/down-counter-based (UCB) 

circuits. As depicted in Figure 4.2, the STG of a single-input UCB circuit has a chain-like 

structure where each state can only be reached from two adjacent states. Prior work has led 

to several variants of this basic structure. ADDIE [29] developed by Gaines is a sequential 

design built around a UCB circuit, which can be used to approximate complex functions 

like square-rooting and division by carefully constructing a global feedback loop according 

to the function being implemented. Brown and Card use UCB circuits to implement 

activation functions for their early artificial neural network design [16]. They were able to 

approximate useful functions like exponentiation and hyperbolic tangent by manually 

setting the output values associated with each state. More recently, Li et al. developed a 

sequential SC synthesizer based on the UCB structure which they refer to as a “linear FSM” 

[52]. This method significantly extends the applicability of [16] to a wide range of 

functions by using an optimization algorithm to automatically determine the best output 

values associated with each state. 

It is noteworthy that none of the above UCB models applies to circuits decorrelated 

by isolation developed in Chapter 3, or circuits generated by CEASE discussed in Chapter 

2. Isolation works by using DFFs to intentionally delay signals. These DFFs create feed-

forward shift registers, so we refer to the resulting sequential stochastic circuits as shift-

register-based (SRB). On the other hand, CEASE removes constant-induced RFEs by 

maintaining an accurate running sum of the output values. It does so by using a modulo 

counter that keeps track of the unreleased output values in its states, so we call CEASE-

generated circuits optimal-modulo-counting (OMC) circuits. While these two new classes 

of sequential stochastic designs are very useful as we have seen in previous chapters, their 

sequential properties have not yet been thoroughly studied and consequently remain poorly 

understood. This chapter first reviews the basics of sequential stochastic circuits. It then 

points out some limitations of the UCB approach and explores the SRB and OMC classes. 

Analysis of these two new types of circuits reveals that they have some distinct advantages, 

which lead to new opportunities for improving SC designs. 
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4.2 Behavior of Sequential Stochastic Circuits 

This section reviews some analysis tools for sequential stochastic circuits, which 

will serve as the foundation for analyzing SRB and OMC circuits. 

To characterize the behavior of a sequential circuit, it is convenient to model the 

circuit using a state-transition graph (STG) that describes the finite-state machine (FSM) 

implemented by the circuit. The state-transition behavior is probabilistic due to the 

randomness of the input SNs. Sequential stochastic circuits implement complex functions 

by providing multiple states that are visited in different frequencies. Each state can realize 

a different combinational stochastic function. Consequently, the overall function depends 

on two factors: (1) the frequency or probability πi = p(S = si) for the circuit to visit a state 

si, and (2) the corresponding output function Fi, which is the combinational stochastic 

function implemented in state si. Specifically, suppose an n-input, single-output sequential 

circuit C realizes an FSM M with q states s0, s1, …, sq-1. The stochastic function C 

implements is: 

           pZ = FM (M, pX) = πFT = ∑i πiFi  (4.1) 

where π = [π0, π1, …, πq– 1] is the row vector of state probabilities which sum to 1, while F 

= [F0, F1, …, Fq– 1]. Here Fi = F(fi, pX) and fi is the Boolean function M implements when 

S = si. Intuitively, Equation (4.1) can be understood as a weighted sum of πi’s, with the 

corresponding weights being Fi’s. Depending on the structure of the STG, πi can take a 

very complex form, allowing sequential circuits to implement or approximate arithmetic 

functions that are otherwise hard to realize with combinational stochastic circuits. 

Example 4.2: Consider the circuit CUN in Figure 1.5b, which is repeated in Figure 

4.3a. It is the update node used in LDPC code decoders [33]. The STG of CUN is shown in 

Figure 4.3b. Clearly, CUN implements an FSM of the Moore type, as its output depends 

solely on the current state. When S = s0, the output is a constant 0, and thus f0(x, y) = 0 and  
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Figure 4.3 (a) Update node CUN used in stochastic LDPC decoders [33], and (b) its state-

transition graph. 

F0 = F(f0, pX) = 0. Similarly, f1(x, y) = 1 and F1 = F(f1, pX) = 1. Furthermore, as we will see 

later, the probabilities of CUN being in states s0 and s1 are 
(1 – X)(1 – Y)

XY + (1 – X)(1 – Y)
 and 

XY

XY + (1 – X)(1 – Y)
, 

respectively. Plugging these derived values into Equation (4.1) yields CUN’s stochastic 

function Z = 
XY

XY + (1 – X)(1 – Y)
. Note that this function cannot be implemented exactly by a 

combinational stochastic circuit. □ 

Next, we discuss how to compute state probabilities πi’s. State transitions of a 

sequential stochastic circuit C are probabilistic, and their behavior can be viewed as a 

Markov chain. This means that given the current state of C, the next state that C visits will 

be independent of all the previous state visits that C has made [30]. For example, if the 

current state of the circuit CUN in Figure 4.3 is s0, the probability of the next state being s1 

is equal to pX(1, 1), the probability that both the inputs are 1, regardless of what states C 

has visited previously. Viewing C as a Markov chain enables us to obtain C’s state 

probabilities as a steady-state distribution. Specifically, when C has finite states with each 

of them being reachable from all other states, then the state probabilities πi’s under steady-

state distribution are the solution to following equation 

πP = π  (4.2) 
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where and P is a q × q state-transition probability matrix, whose (i, j)-th element Pi, j denotes 

the probability of transitioning from state i to state j. This equation is called an equilibrium 

equation, as it describes the state probabilities when a circuit reaches its equilibrium. 

Example 4.2 (contd.): Returning to the LDPC update node example: to compute 

the state probabilities for CUN in Figure 4.3a, we first write CUN’s equilibrium equation 

using Equation (4.2): 

π[
1 − p

X
(1,1) p

X
(1,1)

p
X

(0,0) 1 − p
X

(0,0)
] = π  (4.3) 

Here the state-transition probability matrix can be obtained directly from the STG given in 

Figure 4.3b. For example, P0,1 = pX(1, 1), because the probability for the circuit to transition 

from state s0 to state s1 is equal to pX(1, 1), the probability that both inputs are 1. Solving 

Equation (4.3) for π with the constraint π0 + π1 = 1 leads to π = 

[
pX(0,0)

pX(0,0) + pX(1,1)
, 

pX(1,1)

pX(0,0) + pX(1,1)
]. When X1 and X2 are independent, the state probabilities 

become π = [
(1 – X)(1 – Y)

XY + (1 – X)(1 – Y)
, 

XY

XY + (1 – X)(1 – Y)
], as expected. □ 

Equation (4.3) provides a way to compute state probabilities and serves as an 

important tool in designing and analyzing sequential stochastic circuits. For instance, the 

sequential synthesizer proposed in [52] uses a UCB circuit to approximate a target function. 

It does so by first computing the state probabilities π, which has the form πi = 
𝑟(𝑋)𝑖−𝑟(𝑋)𝑖+1

1−𝑟(𝑋)𝑛  

for any single-input q-state UCB circuits. Here 𝑟(𝑋) =
1−𝑋

𝑋
 and X ≠ 0.5. The output values 

associated with each state are then determined in a way that results in the UCB circuit best 

approximating the target function. 

While prior work has focused mainly on UCB circuits, we recently discovered that 

other types of circuits, such as SRB and OMC, are also very useful in SC design. This is 

mainly due to their distinct STG structures, which lead to several highly desirable features. 
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Figure 4.4 Implementations of F(X) = X4: (a) canonical SRB design, and (b) non-

canonical SRB design. 
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Figure 4.5 STG for the SRB circuit of Figure 4.4a. State transitions occurring with the 

same probability are marked in the same color. 

4.3 Shift-Register-Based Circuits 

This section describes the functions and some useful properties of shift-register-

based (SRB) circuits. It also discusses an optimization method enabled by SRB circuits’ 

special state-transition features. 

SRB circuits are a class of sequential stochastic circuits formed by inserting feed-

forward DFFs into a combinational circuit. This type of circuit includes those decorrelated 

by isolation. An SRB circuit implements a classical form of FSM called a definite or finite-

input-memory machine [43]. The name reflects the fact that the current state of an SRB 

circuit is determined by the most recent N inputs for some fixed N. In other words, for an  
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Figure 4.6 A general canonical single-output SRB circuit taking X1, X2, …, Xn as 

variable inputs and R as a constant input. 

SRB circuit, every length-N input sequence is a synchronizing sequence that takes the 

circuit to a known state, regardless which state it originally was in. For example, the SRB 

circuit with three DFFs in Figure 4.4a has an input memory of N = 3, because its current 

state can be determined by three most recent inputs. The circuit’s STG is depicted in Figure 

4.5, which demonstrates its definiteness. For instance, applying a 3-bit sequence like 101 

leads it to s5, regardless of the initial state. 

While a definite FSM can have many implementations, it has a canonical form 

which is an SRB circuit with each shift register taking its input directly from a primary 

input [43]. Figure 4.6 shows a canonical SRB circuit for SC purposes, where the shift 

registers generate multiple independent copies of the variable and constant inputs. The 

circuits in Figure 4.4a and Figure 4.1a are in canonical form. The SRB circuit in Figure 

4.4b is a non-canonical definite circuit since the internal shift register SR2 has an internal 

signal as its input. We will focus on the canonical SRB forms of definite machines, as all 

non-canonical SRB circuits can be made canonical without modifying their stochastic 

functionality. 

We first examine the stochastic functions implemented by SRB circuits. Recall that 

in Chapter 3 we described the functionality of an arbitrary SRB circuit using a clocked 

Boolean function (CBF) [66], which allows us to model the circuit as if it were 

combinational. This section, on the other hand, focuses on analyzing canonical SRB 

circuits using Equation (4.1), which was developed specifically for sequential circuits. 
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While these two different analysis approaches are both valid, the latter one reveals some 

optimization opportunities for SRB circuits that are otherwise hard to see. 

We consider circuits containing a single shift register; the multiple shift-register 

case is similar. A shift register SR composed of N DFFs has 2N states. Let si denote the 

state when SR stores di, the radix-2 form of i. For example, when SR is composed of three 

DFFs and is in state s6, the DFFs are storing d6 = 110. SR’s STG structure is a binary, 

directed de Bruijn graph, where two nodes si and sj are connected if dj is a shifted value of 

di, with the empty position filled with 0 or 1. For example, the 8-node de Bruijn graph in 

Figure 4.5 has an outgoing edge from s7 to s3, because d3 = 011 is obtained by shifting a 0 

into d7 = 111. 

The first step towards analyzing SRB circuits is to compute the state probabilities. 

While Equation (4.2) can be used to obtain the steady-state distribution of an SRB circuit, 

here we use an intuitive approach based on the properties of SRB circuits. With a shift 

register composed of N DFFs, associate a set of state groups G0, G1, …, GN, where state si 

belongs to group Gj, if the number of 1s in di is j. For example, s3, s5 and s6 in the STG of 

Figure 4.5 belong to G2 because d3 = 011, d5 = 101, and d6 = 110 all contain two 1s. Since 

the FSM has an input memory of N = 3, the current state is determined by the most recent 

three inputs, which are stored in the DFFs. This implies that πi, the probability of visiting 

si, depends only on the most recent three inputs. Since the probability of seeing a 1 in the 

input SN X is X, the probability of receiving a 3-bit pattern with j 1s is X 
j(1 − X)3−j. For 

example, the probability of receiving the pattern 101 is X2(1 − X), which is π5, the 

probability of visiting s5. It follows that in a shift register with N DFFs, the steady-state 

probability distribution of si ∈ Gj is πi = Xj(1 − X)N−j. This leads immediately to the next 

result. 

Theorem 4.1. A single-input SRB circuit C having N DFFs implements the 

stochastic function 𝐹(𝑋) = ∑ ∑ 𝐹𝑖𝑖:𝑠𝑖∈𝐺𝑗

𝑁
𝑗=0 𝑋𝑗(1 − 𝑋)𝑁−𝑗. 
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Proof: From Equation (4.1), we know that F(X) = Σi Fiπi, which sums over all state 

probabilities weighted by the corresponding output functions. Also recall that an SRB 

circuit allows dividing its states into different state groups Gj’s. This enables us to reform 

the single summation in Equation (4.1) into a two-step summation: first summing over all 

state groups and then summing over all state probabilities in each state group. 

Consequently, Σi Fiπi = ∑ ∑ 𝐹𝑖𝑖:𝑠𝑖∈𝐺𝑗

𝑁
𝑗=0 𝜋𝑖. Finally, using the fact that πi = Xj(1 − X)N−j when 

si ∈ Gj, we obtain 𝐹(𝑋) = ∑ ∑ 𝐹𝑖𝑖:𝑠𝑖∈𝐺𝑗

𝑁
𝑗=0 𝑋𝑗(1 − 𝑋)𝑁−𝑗. □ 

Using Theorem 4.1, we can quickly compute or verify the stochastic function an 

SRB circuit implements. For example, the circuit in Figure 4.4a has F0 = F1 = … = F6 = 0, 

F7 = X and n = 3. Further, π7 = X3 since s7 ∈ G3. From Theorem 4.1, we know immediately 

that it computes F(X) = F7 ∙ π7 = F7 ∙ X3 = X4, as expected. 

Having discussed the functions of SRB circuits, we next focus on their definiteness 

property. Definiteness has a useful role in SC design. As discussed previously, a sequential 

stochastic circuit’s functionality depends on the state probabilities in the circuit’s steady 

state, which can be achieved after sufficient “warmup” time has elapsed. In other words, 

when its input SNs change value, a sequential circuit cannot respond completely until 

steady state is reached. Such warmup delays can be indefinite in length for general circuits. 

However, the warmup delay of an SRB circuit is bounded by its finite input memory⎯a 

definite advantage. 

Figure 4.7 shows two SC designs realizing a complex single-input function 

tanh(2X). One is a UCB design from [16]; the other is a new SRB design of similar 

accuracy. Figure 4.7c compares the errors of the two circuits as the input changes. Both are 

fed with a bipolar SN of value X = 0.9 for a warmup period, after which X is changed to 

0.3. The figure plots the average errors against the number of clock cycles after the value 

transition takes place. The SRB design reaches steady state 4 cycles after the input 

transition, while the UCB design takes about 12 cycles. In other words, this SRB design is  
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Figure 4.7 SC implementations of Z = tanh(2X) using (a) a UCB design [16], and (b) an 

SRB design. (c) Error comparison between the two designs when input X changes from 

0.9 to 0.3. 

guaranteed to completely adjust to its new input value after 4 clock cycles. The short 

response time of the SRB design is due to its definiteness property, which is important in 

delay-sensitive applications like real-time object detectors. The above observations lead 

directly to the following result. 

Theorem 4.2. The number of clock cycles required by an SRB circuit to reach a 

steady state is at most N, the input memory length. 

We will see later in this chapter that such finite warmup time of SRB circuits is also 

highly desirable when dealing with autocorrelation, an accuracy-reducing factor for 

sequential stochastic circuits. 

So far, the chapter has been analyzing SRB circuits using their state probabilities. 

However, as we will see shortly, it is sometimes helpful to examine sequential circuits from 

the viewpoint of their state-transition probabilities. To obtain state-transition probabilities, 

we expand Fi’s in Equation (4.1) using Fi = F(fi, pX) = ∑b fi(b)pX(b). This leads to Z = 

∑i ∑b fi(b)πipX(b). Notice here that the term πipX(b) is the probability that the machine is in 

state si and the current input is b. This is the probability of a state transition from si given 

input b, which we denote by p(Ti
(b)). For example, in the STG of Figure 4.5, p(T2

(0)) = 

π2pX(0) is the probability of being in s2 with input 0; this is also the probability of a 
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transition from s2 to s1. We can now describe the stochastic function of a (Mealy) sequential 

circuit using p(Ti
(b)) and the corresponding output value fi(b) as follows: 

Z = ∑i ∑b fi(b)p(Ti
(b))  (4.4) 

An interesting and useful fact is that many state transitions of an SRB circuit occur 

with the same probability, a phenomenon seldom seen in UCB and other types of circuits. 

For example, in Figure 4.5, p(T7
(0)) = p(T5

(1)), i.e., the transition from s7 to s3 occurs equally 

frequently as that from s5 to s6. We define state transitions as stochastically equivalent if 

they have the same probability. Equation (4.4) implies that the output values fi(a) and fj(b) 

of two stochastically equivalent transitions Ti
(a) and Tj

(b) can be switched without changing 

the overall stochastic function. This directly leads to the following result. 

Theorem 4.3. Suppose a sequential stochastic circuit has state transitions with 

output values fi(a) ≠ fj(b). These values can be switched without changing the underlying 

stochastic function if and only if p(Ti
(a)) = p(Tj

(b)). 

As Theorem 4.3 suggests, in sequential stochastic circuit design, especially in the 

SRB case, a set of distinct FSMs F can implement the same stochastic function, but with 

potentially different costs. This raises an interesting new design question: Find an FSM in 

F that, when standard optimization techniques are applied, results in the greatest hardware 

cost reduction. Next, we describe a Monte-Carlo-based algorithm MOUSE (Monte-Carlo 

Optimization Using Stochastic Equivalence) for optimizing SRB circuits. Given an SRB 

design, MOUSE randomly searches for a better design by switching state function values 

based on Theorem 4.3 using a user-defined cost metric. For illustration purposes, the cost 

metric used here is state count. In each iteration, MOUSE explores the space of 

stochastically equivalent transitions of a target circuit, and generates a new circuit 

implementing the same stochastic function by randomly switching equivalent state 

function values. A fast state reduction procedure STAMINA [67] assesses the new circuit’s 

cost. MOUSE keeps the best design it finds until a stop criterion is met. The algorithm is  
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Input: C: Target SRB circuit 

iter_lim: Iteration limit 

Output: COUT: Result SRB circuit with reduced cost 

Step 1 Set Best_Cost = state count of C 

Set iter_count = 0 

Set fi to be the Boolean function C implements when in state si 

Step 2 For each stochastically equivalent transition class S in C  

    Set w = sum over all fi(b)’s associated with S 

    Randomly pick w fi(b)’s and assign them output value 1 

    For the unpicked fi(b)’s, assign them output value 0 

Step 3 iter_count = iter_count + 1 

Set CCUR = circuit obtained by applying state reduction to C 

Set Cost = state count of CCUR 

Step 4 If Cost < Best_Cost, then Set Best_Cost = Cost, COUT = CCUR 

Step 5 If iter_count < iter_lim, then Go to Step 2 

Else output COUT 

Figure 4.8 Pseudo-code for optimization algorithm MOUSE. 

summarized in Figure 4.8. The final circuit, which may implement a very different FSM, 

preserves all the stochastic properties of the original SRB design, including its output 

function and the property of finite input memory. 

We assess MOUSE’s performance using random circuits. Figure 4.9a plots the 

percentage of residual states against iteration count for single-input SRB circuits produced 

by averaging over 500 random circuits. The state count is frequently reduced by more than 

50% within 1,000 iterations. For small FSMs such as SRB circuits with three DFFs, the 

state reduction process slows down and reaches its optimal value within 1,000 iterations. 

This is because with a small FSM, few possibilities exist for function value switches, so 

MOUSE can usually find a good solution after just a few iterations. Similar phenomena 

are observed for multi-input SRB circuits, as shown in Figure 4.9b. 
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Figure 4.9 Percentage of residual states vs. iteration count for (a) single-input SRB 

circuits, and (b) multi-input SRB circuits. 

MOUSE can also be applied to existing SRB designs for hardware cost reduction. 

For example, the multi-input SRB in Figure 4.1a has 16 states. Applying STAMINA 

directly to this circuit results in 13 states⎯a 19% decrease in state count. MOUSE, on the 

other hand, reduces the number of states from 16 to 7 after about 90 iterations. Hence, in 

this particular case, MOUSE enables one of the original circuit’s four DFFs to be 

eliminated. 

4.4 Optimal-Modulo-Counting Circuits 

Having discussed SRB circuits, we introduce another new class of circuits called 

optimal-modulo-counting (OMC) circuits. This section begins by examining the functions 

of OMC circuits. It then discusses some desirable properties of OMC circuits, including 

high accuracy and controllable rounding policies. 

An OMC circuit, as its name suggests, implements a special type of modulo 

counter. The FSM of an OMC circuit consists of mutually reachable states that keep a 

running sum of input values. All the states of an OMC circuit have the same state-transition 

behavior, which can be characterized by ai, the number of states the circuit advances on  
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Figure 4.10 State-transition graph for an OMC circuit implementing the scaling function 

F(X) = X/8. 

receiving the input pattern bi. However, the output values are state dependent. Specifically, 

for a q-state OMC circuit, each state si holds a residual accumulated value hi = i/q. Each 

state transition adds a value of ai/q to hi. Whenever hi becomes larger or equal to 1, it 

overflows by setting the output to 1. 

Example 4.3: Figure 4.10 shows a simple example of an 8-state OMC circuit C for 

illustration purposes. It implements the scaling function F(X) = X/8. Here, C is a single-

input single-output circuit, with all its states having exactly the same state-transition 

behavior: they stay in the same state when x = b0 = 0, but move one state forward and at 

the same time add 1/8 to hi when x = b1 = 1. In other words, the number of states C advances 

on receiving a 0 and 1 are a0 = 0 and a1 = 1, respectively. The output value does depend on 

the state and the residual value, which only overflows when S = s7 and x = 1, as highlighted 

in red in the figure. The function F(X) that C implements can be easily derived. It is not 

hard to see that whenever eight 1s are received, the residual value will definitely overflow 

with a 1 released to the output line. The probability that a 1 appears in C’s input line is X, 

and thus F(X) = X/8, which is the desired function. □ 

As discussed in Chapter 2, combinational stochastic circuits with constants, which 

can be converted to OMC circuits using CEASE, implement functions in the form of 
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Equation (2.5). Next, we will show that all OMC circuits, whether generated by CEASE 

or not, implement a function in the form of Equation (2.5) accurately up to an unavoidable 

rounding error. Depending on the rounding policy, rounding may produce a 1-bit error 

when the SN length is unable to represent certain values exactly. For example, an SN of 

odd length N cannot represent 1/2 exactly, but one of length N  1 can. 

Theorem 4.4. For an n-input, q-state OMC circuit C with N-bit SNs, the number 

of 1s in its output SN Z is 

                                                  N1,Z = ∑
𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0 + 𝜖̃  (4.5) 

where ki is the number of bit-patterns bi received by C, while ai is the number of states C 

advances when a bi pattern is received. The residual (non-outputted) error due to rounding 

is 𝜖̃ = 
𝑎−1

𝑞
 – ϵ, where a–1 is such that 𝑠𝑎–1

 is the initial state of C and ϵ ∈ [0, 1). Further, Z’s 

value is 

                                          Z = ∑
𝑎𝑖

𝑞
𝑝XV

(𝑏𝑖)𝑚−1
𝑖=0 +

1

𝑁
𝔼(𝜖̃)  (4.6) 

where 𝑝XV
(𝑏𝑖) is the probability of C receiving the input pattern bi. □ 

The proof appears in Appendix A.4. Here, we give an intuitive explanation of 

Equations (4.5) and (4.6). In Equation (4.5), the number of 1s in the output N1,Z reflects the 

number of times that the modulo counter goes beyond 1 and overflows. The modulo 

counter accumulates the value 
𝑎𝑖

𝑞
 for each pattern bi it receives, and there are ki occurrences 

of the pattern bi. Therefore, 
𝑎−1

𝑞
 + ∑

𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0  is the total value accumulated in the modulo 

counter at the end, where 
𝑎−1

𝑞
 accounts for the value initially stored in the counter and can 

be adjusted by configuring the counter’s initial state. Since the number of 1s in Z must be 

an integer, N1,Z must be ⌊∑
𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0 +

𝑎−1

𝑞
⌋ . In Equation (4.5), this floor operation is 

captured by the term 𝜖̃, which depends on the initial state of the counter and must be less 
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than one, because the residual (non-overflow) value stored in the counter must be less than 

one. To go from Equation (4.5) to Equation (4.6), first note that the value of Z is the 

expected number of 1s in Z divided by N. Consequently, Z = 𝔼 (∑
𝑎𝑖

𝑞

𝑘𝑖

𝑁

𝑚−1
𝑖=0 +

𝜖̃

𝑁
)  = 

∑
𝑎𝑖

𝑞
𝔼 (

𝑘𝑖

𝑁
)𝑚−1

𝑖=0 +
𝔼(𝜖̃)

𝑁
 = ∑

𝑎𝑖

𝑞

𝑚−1
𝑖=0 𝑝XV

(𝑏𝑖) +
1

𝑁
𝔼(𝜖̃), since 𝔼 (

𝑘𝑖

𝑁
), the expected fraction of 

the pattern bi in the input lines, is the probability that bi occurs.  

Recall that in Theorem 4.4, ai is the number of states C advances on receiving bi, 

and q is the total states in C. This clearly implies that ai ≤ q for all i, so in Equation (4.6) 

the coefficients 
𝑎𝑖

𝑞
 ∈ [0,1] are indeed rational numbers in the unit interval. Comparing 

Equation (4.6) with Equation (2.5), we see that C indeed implements a stochastic function 

in the form of Equation (2.5), the class of functions combinationally implementable with 

constant inputs. These functions are exact up to an unavoidable rounding error 
1

𝑁
𝔼(𝜖̃), 

which, in the worst case, can only cause a 1-bit difference in N1,Z. 

The foregoing discussion leads to the conclusion that OMC circuits can implement 

combinationally implementable functions accurately (up to only a rounding error), as long 

as the inputs applied to them are accurate. This property is due to the specially designed 

modulo-counting STG which allows OMC circuits to keep an accurate running sum of 

values for later release. 

Next, we discuss another special property of OMC circuits: controllable rounding 

policy. Like any other circuits that compute with finite precision, an OMC circuit can have 

a rounding error due to the representational limitation of finite-length SNs, as briefly 

described earlier. For example, a 4-bit SN can only contain 0, 1, 2, 3 or 4 logical 1s. It 

cannot contain, say, 2.5 logical 1s to represent the value 2.5/4 = 0.625 exactly. If the exact 

value is 0.625, the number of 1s in the SN must be rounded to an integer closest to 2.5, 

such as 2 or 3. In the case of OMC circuits, this rounding error is reflected by the term 𝜖̃ in 

Equation (4.5). While rounding policy is difficult to manage for general sequential  
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Figure 4.11 (a) OMC scaled adder CCA, and (b) its STG. 

stochastic circuits, it is easily controllable for OMC circuits by adjusting their initial states. 

In [48], the authors show that the final value their ad-hoc OMC adder rounds to depends 

on the adder’s initial state and the rounding direction: truncation (rounding down) or 

rounding up. Here, we generalize their observation to OMC circuits beyond stochastic 

adders, and demonstrate analytically that for an arbitrary OMC circuit, different and 

desirable rounding policies can be achieved by carefully adjusting the circuit’s initial state. 

Consider an OMC circuit C with q states. Initializing C to state s0, the first state of 

the associated modulo counter, is equivalent to truncating the fraction part of the expected 

number of 1s in the output bit-stream Z. This is because C only produces a 1 in the output 

line whenever its modulo counter overflows. Therefore, when C finishes a computation in 

a state s  s0, the residual value stored in the modulo counter is discarded. Consider again 

the OMC scaled adder CCA given in Figure 2.2c, which is repeated in Figure 4.11. Here we 

initialize CCA to its first state s0, and apply the following two inputs; X = 00011010 and Y 

= 01100110. Since X = 3/8, and Y = 4/8 = 1/2, the expected value for the output Z is 0.5(X 

+ Y) = 0.5 ∙ (7/8) = 3.5/8, implying that ideally the number of 1s in Z should be N1,Z = 3.5, 

which is obviously not achievable with digital logic circuits. If we work out the stochastic 

computation, it is not hard to see that in this case, Z = 00101010, which contains three 1s, 

and the machine terminates at state s1. The residual value 0.5 stored in the modulo counter 

state s1 is consequently discarded, and the actual output value is thus truncated to 3/8.  

Suppose we now change the adder CCA’s initial state to s1, and leave the other 

conditions unchanged. In this case, Z = 01010110, which contains four 1s, and CCA 
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terminates at state s0. Clearly, CCA now rounds the expected value 3.5/8 to 4/8. This is 

because initializing CCA to state s1 implicitly introduces an extra value of 0.5 into the circuit. 

This circuit will then produce a 1 whenever the residual value is 0.5. 

In general, initializing an OMC circuit C to the state S(0) = 𝑠𝑎−1
 implements the 

following rounding policy with respect to N1,Z: “Discard a residual value if it is less than 1 

− 
𝑎−1

𝑞
, and add a carry of 1 otherwise.” This follows from the fact that N1,Z = 

⌊∑
𝑎𝑖

𝑞
𝑘𝑖

𝑚
𝑖=1 +

𝑎−1

𝑞
⌋; see Equation (4.5). If the residual value of ∑

𝑎𝑖

𝑞
𝑘𝑖

𝑚
𝑖=1  is less than 1 − 

𝑎−1

𝑞
, 

then even after adding the contribution from the initial state 
𝑎−1

𝑞
, the overall residual value 

will still be discarded by the floor operation. 

Summarizing, due to the fact that the precision of a digital system is finite, rounding 

errors are unavoidable. The rounding policy of an OMC circuit can be adjusted by 

configuring its initial state. For an OMC circuit with q states, initializing it to state s0 is 

equivalent to the rounding policy of truncating the fraction part of N1,Z. On the other hand, 

initializing the circuit to a “middle state,” i.e., to 𝑠⌊𝑞/2⌋, is equivalent to rounding N1,Z to 

the closest integer. 

4.5 Autocorrelation 

So far, the chapter has focused on individual sequential designs. However, when 

cascading multiple independent sequential modules, one must exercise extra care to 

prevent accuracy loss caused by autocorrelation, an accuracy-reducing factor when bits of 

SNs are not independently generated. This section first briefly introduces autocorrelation 

in SC. It then discusses some desirable autocorrelation properties that SRB and OMC 

circuits have. Finally, the section describes a method to mitigate autocorrelation errors in 

SC designs containing multiple sequential circuits. 

Autocorrelation quantifies the correlation between two elements in a single data 

sequence. The autocorrelation coefficient AC(t, s) for an SN X describes the similarity 
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between X(t) and X(s). For example, applying the definition of Pearson correlation 

coefficient [34] to the autocorrelation coefficient in the SC context, we obtain AC(t, s) = 

𝔼[(𝐗(𝑡)−𝑋)(𝐗(𝑠)−𝑋)]

𝜎2 , where σ2 = 𝔼[(X(i) – X)2] is the variance of X(i). Thus AC(t, s) measures 

the similarity between the probabilities of the bits at two time steps t and s. If X is Bernoulli, 

i.e., if each bit of X is independently generated, then X’s autocorrelation coefficient is two-

valued with AC(t, t) = 1, while AC(t, s) = 0 for all t  s [31]. 

Most sequential stochastic circuits are designed to work with input SNs that satisfy 

certain temporal independence constraints such as Bernoulli properties. Undesired 

autocorrelations can sometimes degrade the accuracy of such circuits dramatically. On the 

other hand, sequential stochastic circuits themselves can introduce autocorrelations into 

their output SNs, making them non-Bernoulli [16]. The preceding facts imply that if two 

independently-designed sequential stochastic circuits are cascaded, the downstream 

circuit’s accuracy may drastically degrade due to autocorrelations introduced by the 

predecessor circuit. Since both SRB and OMC circuits are sequential designs, we are 

interested in the impact of autocorrelation on these two types of circuits. It turns out that, 

both SRB and OMC circuits have some desirable properties related to autocorrelation, 

which we examine in this section. 

First, we illustrate via an example how undesired autocorrelation affects the 

accuracy of a sequential stochastic circuit. Figure 4.12a shows the stochastic squarer CS 

we have seen in Chapter 3, which is the standard sequential circuit for computing ZS = XS
2. 

To compute the value of ZS at any cycle t, this squarer uses its DFF to hold XS
(t − 1), which 

is then multiplied with XS
(t) via the AND gate. The AND gate thus computes p(XS

(t − 1) = 1, 

XS
(t) = 1) = 𝑝

XS
(𝑡)(1)𝑝

XS
(𝑡−1)(1) = XS

2, which implicitly assumes independence between XS
(t) 

and XS
(t − 1). Since the output probability should be correct for all t, it is not hard to see that 

CS requires all the adjacent bits in its input XS to be independent. In other words, it requires 

XS
(i) and XS

(j) to be uncorrelated, for all i, j, where i = j + 1. Figure 4.12b plots mean squared  
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Figure 4.12 (a) Conventional sequential stochastic squarer. (b) MSE vs. bit-stream length 

for the squarer with inputs that have different autocorrelation levels. 

error (MSE) against bit-stream length for CS using 0.5-valued inputs with different 

autocorrelation levels. Specifically, the blue line shows the error rate for a Bernoulli input, 

which converges towards zero quickly as bit-stream length increases. The red line, on the 

other hand, shows the error rate when the input is produced by the sequential OMC adder 

CCA in Figure 4.11a. This input SN thus exhibits undesired autocorrelation, resulting in CS 

having obvious errors. The black line and the green line each indicates an error rate for an 

autocorrelated input that is de-autocorrelated using a shuffler [47][68], which we will 

discuss shortly. 

Many existing sequential stochastic circuits, including the preceding squarer 

example, can suffer from accuracy degradation if inputs are autocorrelated [16]. However, 

this is not true for an OMC circuit C, which can therefore be called autocorrelation-

insensitive. This means that C is immune to autocorrelation-induced accuracy degradation. 

To see this, recall from Theorem 4.4 that C implements a stochastic function of the form 

∑
𝑎𝑖

𝑞
𝑝XV

(𝑏𝑖)
𝑚
𝑖=1  + 

1

𝑁
𝔼(𝜖̃), which depends only on the joint probability of all the inputs at a 

given cycle, but not on the joint probability of any individual inputs across different cycles. 

Theorem 4.5 summarizes the above discussion: 

Theorem 4.5. For an OMC circuit C, autocorrelation in any of its input SNs does 

not reduce C’s accuracy. □ 
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Having discussed the behavior of OMC circuits with autocorrelation in their inputs, 

we next investigate the effect these circuits have on autocorrelation in their outputs. This 

issue is worth looking into, especially when an SN Z generated by an OMC circuit is to be 

processed by some downstream sequential stochastic circuits that are sensitive to 

autocorrelation. Indeed, directly feeding Z to any sequential circuit may degrade accuracy. 

The red line in Figure 4.12b shows the error rate plotted against bit-stream length for the 

squarer of Figure 4.12a using a bit-stream generated by the OMC adder CCA in Figure 

4.11a as the squarer’s input. Here the scaled adder CCA adds the two input SNs of value 

0.5, and produces its output SN, also of value 0.5. We see that the MSE does not converge 

to zero, regardless of the bit-stream length. This clearly shows that the autocorrelation 

injected by CCA degrades the accuracy of the downstream squarer. 

While it is hard to analyze the impact of undesired autocorrelations on an arbitrary 

sequential stochastic circuit, analyzing SRB circuits defined in Section 4.3 is relatively 

easy due to their definiteness property. Here, we analyze quantitatively how an 

autocorrelated SN produced by an upstream OMC circuit affects a downstream SRB 

circuit. Recall that an SRB circuit can be described by a CBF fS, from which its stochastic 

function FS can be constructed; see Chapter 3. The joint probability terms in FS can then 

be analyzed using the Law of Total Probability (LTP) [34], which allows a probability term 

to be decomposed into several sub-terms, each involving a distinct event. For example, 

suppose A and B1, B2, … Bk are events where the Bi’s are disjoint and their union is the 

entire sample space. Then LTP says 

                           p(A) = ∑ 𝑝(A, B𝑖)
𝑘
𝑖=1  = ∑ 𝑝(A |B𝑖)𝑝(B𝑖)

𝑘
𝑖=1   (4.7) 

By applying LTP and conditioning on the states of the preceding OMC circuit, FS can be 

analyzed. We illustrate this via the squarer example. 

Example 4.4: Here we use the OMC adder CCA in Figure 4.11a as the upstream 

circuit, followed by the squarer CS of Figure 4.12a to illustrate the impact of 

autocorrelation. Specifically, we feed XV = {X, Y}, the two inputs of CCA, with 
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independent Bernoulli SNs, each of value 0.5. Thus Z, the output of CCA, should have a 

value of 0.5. Since Z is produced by the sequential circuit CCA, extra autocorrelation is 

injected into it. We then use Z as the input SN XS to the squarer CS. Obviously, the exact 

value for CS’s output ZS should then be 0.52 = 0.25. To compute the actual value for ZS 

with XS as the input, we first construct the stochastic function for CS using its CBF zS
(t) = 

xS
(t)xS

(t − 1), which is: 

                         ZS = p(ZS
(t) = 1) = ∑ [𝑓S(𝑏)𝑝

XS
(𝑡)

XS
(𝑡 − 1)(𝑏)]𝑏  

         = 𝑝
XS

(𝑡)
XS

(𝑡−1)(1, 1) = p(XS
(t) = 1, XS

(t − 1) = 1).  
 (4.8) 

We then apply LTP by conditioning on the adder CCA’s state at time t – 1: 

      ZS = p(XS
(t) = 1, XS

(t − 1) = 1| S(t − 1) = s0)p(S(t − 1) = s0) 

      + p(XS
(t) = 1, XS

(t − 1) = 1 | S(t − 1) = s1)p(S(t − 1) = s1) 
 (4.9) 

We then use the fact that with Bernoulli inputs, the steady-state distribution of CCA’s states 

is uniform. This implies that p(S(t − 1) = s0) = p(S(t − 1) = s1) = 0.5. Furthermore, 

p(XS
(t) = 1, XS

(t − 1) = 1| S(t – 1) = s0) = p(XV
(t) = 11, XV

(t – 1) = 11). This is because in state s0, 

CCA can only output two consecutive 1s when it receives inputs 11, 11. On the other hand, 

there are five cases where CCA can add two consecutive 1s in state s1; see Figure 4.13. Each 

of these cases occurs with probability 1/16, so p(XS
(t) = 1, XS

(t − 1) = 1 | S(t − 1) = s1) = 5/16. 

Summarizing, ZS = 0.5 ∙ 
1

16
 + 0.5 ∙ 

5

16
 = 

3

16
 ≠ 0.25, which is a 25% error! In terms of MSE, 

this error is (3/16 – 0.25)2 = 0.004, which is the value to which the red line in Figure 4.12b 

converges. □ 

 XV
(t) XV

(t – 1) p(XV
(t), XV

(t – 1)) 

Case 1 11 10 1/16 

Case 2 11 01 1/16 

Case 3 10 11 1/16 

Case 4 01 11 1/16 

Case 5 11 11 1/16 

Figure 4.13 Five input cases in which the OMC adder CCA in Figure 4.11a outputs two 

consecutive 1s when in state s1. 
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Input: COMC: An OMC circuit 

CD: A single-input SRB circuit downstream from COMC 

X: Bernoulli input SNs of COMC 

Output: ZD: CD’s output value when used with COMC 

Step 1 Express CD’s logic function through a CBF 

𝑧D
(𝑡𝑘)

 = fD(b) = fD(𝑥D
(𝑡𝑘)

, 𝑥D
(𝑡𝑘−1)

, …, 𝑥D
(𝑡1)

) 

where tk > tk-1 > … > t1. 

Step 2 Construct CD’s stochastic function as 

ZD = ∑ [𝑓D(𝑏)𝑝
𝐗D

(𝑡𝑘)
𝐗D

(𝑡𝑘−1)
… 𝐗D

(𝑡1)(𝑏)]𝑏  

Step 3 For all b’s such that fD(b) = 1, compute the joint probability 

𝑝
𝐗D

(𝑡𝑘)
𝐗D

(𝑡𝑘−1)
… 𝐗D

(𝑡1)(𝑏) using LTP by conditioning on the state variable 

𝑆(𝑡1) of COMC. Specifically, 

𝑝
𝐗D

(𝑡𝑘)
𝐗D

(𝑡𝑘−1)
… 𝐗D

(𝑡1)(𝑏) = 
1

𝑞
∑ [𝑝

𝐗D

(𝑡𝑘)
𝐗D

(𝑡𝑘−1)
… 𝐗D

(𝑡1)
 | 𝑆(𝑡1)(𝑏 | 𝑠)]𝑠  

where q is the number of states in COMC. 

 

Step 4 Use X’s values to compute 
1

𝑞
∑ [𝑝

𝐗D

(𝑡𝑘)
𝐗D

(𝑡𝑘−1)
… 𝐗D

(𝑡1)
 | 𝑆(𝑡1)(𝑏 | 𝑠)]𝑠  for 

all s’s and all b’s such that fD(b) = 1. Output the resulting ZD. 

Figure 4.14 Algorithm to compute the output value of an SRB circuit used with OMC-

supplied (and therefore autocorrelated) inputs. 
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Figure 4.15 (a) Shuffler to mitigate autocorrelation in a downstream sequential circuit. 

(b) Shuffler of depth D = 1. 
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Example 4.4 shows how to analyze the autocorrelation error introduced by an OMC 

circuit for given input values. One can also go one step further to compute the expected 

error by averaging all possible input values. Figure 4.14 provides a pseudo-code algorithm 

summarizing the preceding analysis. 

Finally, we consider how to mitigate autocorrelation induced by an upstream circuit 

so that it can be coupled efficiently with other sequential stochastic circuits. For this, we 

adopt a de-autocorrelation method based on shuffling, which has been used for correlation 

management in prior work [47][68]. In Chapter 3, we showed how shufflers mitigate errors 

introduced by cross-correlation between SNs. It turns out that shufflers can also mitigate 

autocorrelation errors. Figure 4.15a shows how a shuffler is inserted between an upstream 

sequential circuit CU and a downstream circuit CD, while Figure 4.15b depicts the 

implementation of a shuffler of depth D = 1, i.e., it contains a single DFF. At each clock 

cycle, the shuffler randomly decides either to output the received bit, or store that bit in a 

DFF. If the shuffler chooses to store the received bit in a DFF, then the previous bit value 

stored in the DFF will be released to the output line. As we have seen in Chapter 2, since 

a shuffler only outputs what it has received, the values of its input and output SNs are the 

same. However, the location of the 1s can be very different, hence achieving the goal of 

de-autocorrelation.  

A shuffler of depth D can be built with D DFFs. To illustrate the de-autocorrelation 

capability of shufflers, we use the ongoing example where an OMC adder generates a 0.5-

value SN that is consumed by a downstream squarer in Figure 4.12a. The black and green 

lines in Figure 4.12b show the accuracy of the squarer with its OMC-circuit-supplied inputs 

de-autocorrelated by shufflers of depth D = 1 and D = 7, respectively. Obviously, with a 

depth-7 shuffler, the accuracy of the squarer can be improved to a level similar to a squarer 

having a Bernoulli input. As a final note, with more DFFs, a shuffler can regenerate a more 

Bernoulli-like SN, but this comes with the drawbacks of higher hardware cost and longer 

warmup time to initialize the shuffler. 
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4.6 Summary  

This chapter examined the role of sequential components in SC, and identified two 

key classes of sequential stochastic circuits, namely SRB and OMC circuits. The chapter 

also investigated some key properties of SRB and OMC circuits, such as SRB circuits’ 

definiteness and stochastic-equivalent state-transition behavior, and OMC circuits’ 

insensitivity to autocorrelation. These properties lead to several useful applications, 

including an optimization method MOUSE for SRB circuits, and a systematic way to 

configure an OMC circuit for a desired rounding policy. Finally, autocorrelation’s impact 

on sequential circuits and its mitigation were demonstrated. 
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CHAPTER 5  

Stochastic-Binary Hybrid Systems 

 

Our discussions of SC designs has so far focused their stochastic aspects. However, 

many so-called “SC-based” systems like neural networks or vision systems are, in fact, a 

hybrid of SC and BC features, where BC is used, either explicitly or implicitly, for tasks 

requiring higher accuracy, such as data storage, control functions, or complex arithmetic 

operations. The resulting hybrid SC-BC designs often incorporate unsatisfactory tradeoffs 

between system latency and accuracy. For example, they may require many costly SBCs 

and BSCs that interrupt bit-stream flow and cause significant delay overhead. While 

improving accuracy has been a major research goal in SC, less attention has been paid to 

reducing latency. In particular, latency induced by SC-BC interfaces has been largely 

overlooked in the prior SC literature. This chapter presents a novel design methodology 

called Maxflow that minimizes the latency of hybrid SC-BC operations without reducing 

accuracy and without interrupting data flow more than necessary. Further, Maxflow 

supports efficient latency-accuracy tradeoffs with little hardware modification. Its 

effectiveness is demonstrated for an artificial neural network (NN) trained for an image 

classification task. The material in this chapter has been published in [73]. 

5.1 Integration of SC and Binary Components 

As discussed in previous chapters, SC computes with probabilistic data using 

digital logic circuits. This means that SC is technologically compatible with circuits  

employing conventional binary computing (BC). In other words, while their data formats 

are very different, SC and BC can readily be combined into a single hybrid system. In fact,  
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Figure 5.1 Hybrid neuron circuitry employing SC and/or BC components that are 

integrated via data format converters. 

most so-called “SC-based” systems in the literature are actually a hybrid combination of 

SC and BC features, with SC parts that are only employed for specialized tasks. In 

particular, SC is well suited to low-precision arithmetic tasks that can benefit from SC’s 

low cost and error tolerance. It is less well suited to data storage, control functions, and 

some complex arithmetic operations that are often better implemented with BC [54]. For 

instance, many NN designs use BC for implementing activation functions [15][48][62] and 

for weight storage [17][37]; see Figure 5.1. Hybrid SC-BC systems usually need many 

costly SBCs and BSCs to integrate their SC and BC parts. The data format converters 

themselves can be seen as hybrid sequential circuits [70]. Data converters are also used 

extensively to restore accuracy by regenerating correlation-corrupted SNs [22]. This is 

done by stochastic-to-binary conversion followed by binary-to-stochastic conversion with 

a new RNS; see Chapter 3. 

Figure 5.1 shows the block structure of a generic neuron of the kind found in most 

NNs [17]. The figure emphasizes the hybrid nature of such systems. Each block processes 

SC- and/or BC-formatted data, so data converters (shaded) must be placed at the SC-BC 

interfaces. For example, the NN architecture proposed by Braendler et al. [15] is mainly 

based on SC, but its activation functions are implemented with BC via lookup tables 

(LUTs) for accuracy reasons. Data converters are thus placed before and after each 
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activation function block to allow communication with other SC units. Lee et al. propose 

a hybrid NN [48] that only utilizes SC in the input layer; the remaining layers use BC. Sim 

and Lee describe an SC-based multiplication accelerator for deep NNs, which require data 

converters at its inputs and outputs [62]. 

The impact of data converters on system latency is substantial, as Figure 5.1 

suggests. For example, a typical SBC produces its BC output BX by counting the 1s in the 

N-bit input SN X. This requires observing and accumulating all bits of X, a task that 

imposes a delay overhead of about N clock cycles. In a system with many processing 

stages, this kind of overhead contributes significantly to the system latency. Sometimes the 

BC parts of a hybrid design are implicit, so their impact on latency may be overlooked, as 

the following example illustrates. 

Example 5.1: The usual stochastic circuit to compute 𝑍(𝑋) = √X  was first 

described in the 1960s [29] based on the ADDIE structure discussed in Chapter 4. It is a 

multicycle sequential design built around an up/down counter with a global feedback loop. 

Figure 5.2a shows a recent incarnation found in a power-supply monitoring system [10]. 

The output SN Z is fed back in such a way that the counter’s state S converges toward √X. 

This is an implicit hybrid structure, since S is a binary number BZ, and the BSC with an 

LFSR as its random number source is required to convert BZ to Z. The overall latency and 

accuracy of this circuit are hard to predict as they depend on complex circuit dynamics like 

warmup time, convergence rate, LFSR quality, etc., but could be several times N. A 

significant factor contributing to this design’s low accuracy and long latency is that, while 

it explicitly uses BC format for internal data representation, the main processing circuitry 

(a squarer comprising an isolator and an AND gate) uses SC. While this hybrid 

implementation is low-cost in hardware and power usage, its SC-based feedback loop leads 

to a low-accuracy signal, resulting in excessive random fluctuation that makes the up/down 

counter converge slowly to its steady state.  
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Figure 5.2 (a) Conventional square-rooter design [10] and (b) Maxflow design where X 

and Z are SNs. (c) Comparison of errors against delay overhead for N = 256 bits. 

This chapter introduces a new design methodology, which we refer to as Maxflow, 

that can overcome many of the accuracy and latency limitations of previous hybrid designs. 

Maxflow takes SC-formatted inputs, and produces SC-formatted outputs. However, it also 

uses BC for internal data representation, and thus Maxflow itself is also a hybrid method. 

Maxflow’s defining feature is that it computes accurately and at the same time minimizes 

the processing latency. It does so with a special preprocessing step we call Algorithm for 

Minimizing Delay in Maxflow (MIND) that can determine the delay constraint required for 

implementing a specific function. It then uses a special mechanism to generate output SNs 

in a way that guarantees accurate computation while meeting the delay constraint. 

Example 5.1 (contd.): Applying Maxflow to implement a square-rooter yields a 

design with very low latency⎯just 2 clock cycles for N = 8⎯combined with high accuracy. 

Figure 5.2c compares the error rates of the ADDIE square-rooter (Figure 5.2a) and a 
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Maxflow square-rooter for N = 256 bits. The ground truth is the best possible SC 

approximation of √X with N = 256. The delay overhead shown in Figure 5.2c is the number 

of cycles that must elapse before the full output SN value is measured. The conventional 

ADDIE square-rooter requires a long warmup time to produce a reasonably accurate 

output, while the Maxflow design attains an accurate result after just 64 cycles. Further, 

with a delay less than 64 cycles, Maxflow still does not present significant errors. This 

shows another advantage of Maxflow: it can trade accuracy for shorter latency.  

The rest of the chapter describes the mechanism and hardware implementation of 

Maxflow in detail and applies it to the design of an NN. 

5.2 Latency Minimization for Complex Functions 

This section provides a high-level description of Maxflow and describes in detail 

MIND, the preprocessing stage of Maxflow that minimizes latency overhead. Hardware 

implementation of Maxflow will be discussed in Section 5.3. 

In a nutshell, Maxflow exploits the fact that each bit of an input bit-stream X 

provides partial information about a result Z, making it possible to start generating Z using 

early bits of X. Maxflow does this in a way that minimizes the latency of computing Z(X) 

without compromising accuracy. This in turn tends to maximize data flow in complex all-

SC or hybrid structures. Maxflow replaces a design like that of Figure 5.2a along with any 

associated data converters by the generic MU structure of Figure 5.2b. MU has two parts: 

a LUT storing a table T(ΔX,ΔZ) that indirectly defines Z, and a small controller called the 

latency manager LM. Here ΔX denotes a parameter combining the current bit of X and the 

number of 1s and 0s from X received so far. From ΔX, LM incrementally computes a lower 

bound on the number of 1s in Z, and ΔZ symbolizes a change in this lower bound. Using 

ΔZ, LM identifies and buffers bits of Z which it outputs at the earliest cycle possible. 

Roughly speaking, as LM receives sufficient bits from X, it accumulates a precise number 

of 1s (0s) for later release into Z. Note that, as mentioned earlier, Maxflow can be seen as  

 



84 

 

MUX

Z

X
Up/down
counter

(a)

7

Y7 = 0.99

Y7

6

Y6 = 0.96

Y6

5

Y5 = 0.58

Y5

4

Y4 = 0.54

Y4

3

Y3 = 1.00

Y3

2

Y2 = 0.86

Y2

1

Y1 = 0.56

Y1

0

Y0 = 0.51

Y0

 

 

Figure 5.3 (a) Stochastic circuit CSIG for Z = sigmoid(4X) generated using the sequential 

SC synthesizer in [52] (b) Histogram of Z for 1,000 bipolar input SNs of value X = 0.0.  

a type of hybrid design. It only stores the function definition in binary form, but it does not 

explicitly process X and Z in binary format. The hardware needed by Maxflow depends on 

Z(X) and N. In Figure 5.2, the ADDIE square-rooter design contains about 2⌈log2𝑁⌉ flip-

flops. The Maxflow design has a similar number of flip-flops in LM, while its LUT is of 

size ⌈log2𝑁⌉𝑘, where k  N. As N increases, k grows at a rate of about log2√N. For example, 

with N = 8, k = 2, while with N = 4,096, k = 6. 

Maxflow is especially suited to complex functions that are hard to implement 

accurately and efficiently by conventional SC approaches. Improving accuracy without 

using long SNs or incurring significant latency overhead has long been at the center of SC 

research. Prior work in this direction has focused on combinational stochastic circuits using 

such techniques as deterministic bit-streams [15][39][62][75], low-discrepancy codes [4], 

non-standard SC designs [48][72], etc. However, little is known about how to design 

complex stochastic circuits with guaranteed levels of accuracy, especially when they 
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employ sequential components which have complex behavior and high inherent latency 

[16][70]. 

Figure 5.3a shows a UCB circuit CSIG produced by the sequential synthesizer 

proposed by Li et al. [52] to implement the sigmoid function sigmoid(4X) = 1/(1 + e–4X). 

The input X updates the state of the counter which indirectly determines Z at each clock 

cycle. CSIG’s accuracy is affected by several factors like the bit-pattern of X and the 

warmup time required for the counter to reach steady state [70]. These factors cause Z to 

fluctuate a lot, as Figure 5.3b shows. This is a histogram of the output values Z(X) obtained 

by feeding CSIG 1,000 independently generated bipolar SNs, each 256 bits long and 

containing exactly 128 1s, hence encoding the bipolar number X = 0.0 exactly. The bit-

patterns of the SNs, i.e., the locations of their 1s, vary widely. As Figure 5.3b indicates, 

while the output values concentrate around the expected value sigmoid(0) = 0.5, they are 

widely dispersed. This highlights the design’s lack of accuracy control.  

Previous SC systems with stringent accuracy constraints alleviate the preceding 

problem by resorting to hybrid SC-BC designs that convert SC signals to BC signals, and 

process them with highly accurate BC components [15][48]. We will henceforth refer to 

these designs collectively as “Hybrid.” The major drawback of Hybrid is the large delay 

overhead for data conversion. The Maxflow approach, on the other hand, uses X’s initial 

bits to provide fast estimates of Z’s value, thereby allowing early but accurate generation 

of the output bit-stream. It does this in a manner reminiscent of interval arithmetic [40] by 

placing N1,Z, the number of 1s in Z, in an integer interval I(i) = [L1,Z
(i), U1,Z

(i)], where L1,Z
(i) 

and U1,Z
(i)

 are lower and upper bounds, respectively, on N1,Z. The interval I(i) represents the 

uncertainty about Z’s value, and reflects the number of 1s and 0s that are known or 

identified in Z at cycle i. Specifically, the least number of 1s and 0s that Z must contain at 

cycle i are L1,Z
(i) and N – U1,Z

(i), respectively. A sequence of gradually shrinking intervals 

I(0), I(1), …, I(N) is generated as X streams into MU until eventually L1,Z
(i) and U1,Z

(i)
 coincide. 

Maxflow’s accuracy can be attributed to the fact that it only includes identified bits in the 

output. 
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Figure 5.4 Computation of Z(X) = √𝑋. (a) Plot of Z(X) = √𝑋 for N = 8; red dots mark 

N1,Z. (b) Tabulated Z(X) values. (c) N-table mapping N1,X to N1,Z. 

Example 5.1 (contd.): For illustration purposes, consider implementing Z = √X 

with N = 8 using Maxflow. (In practice, N = 28 is more likely.) Here X can only have nine 

values of the form N1,X/N, where N1,X  {0, 1, …, 8}. The blue curve in Figure 5.4a shows 

Z(X), and the red dots mark the values of N1,Z for the nine possible values of N1,X. For 

example, when N1,X = 6, we get Z(X) = 0.87 and N1,Z = 7. Figure 5.4b tabulates Z(X), while 

Figure 5.4c shows an “N-table” T(N1,X,N1,Z) that maps N1,X to N1,Z. The values of N1,X and 

N1,Z in Figure 5.4c are exact in that they represent the best possible approximations to √X 

given the unavoidable rounding errors of 8-bit SNs. Maxflow accurately predicts N1,Z, the 

number of 1s in Z, by inspecting X bit by bit. Before computation starts, nothing is known 

about X and Z, and we can only say that N1,Z lies in the interval I(0) = [0, 8]. Suppose the 

first bit of X is X(1) = 1. Figure 5.4c indicates that with N1,X  1, N1,Z must be larger or 

equal to 3, i.e., Z must contain at least three 1s, so now we can place N1,Z in the interval I(1) 

= [3, 8]. If X(2) is also 1, the interval containing N1,Z shrinks to I(2) = [4, 8]. On the other 

hand, if X(2) = 0, then I(2) = [3, 7], meaning that Z must have at least one 0. Continuing in  
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Clock cycle t 1 2 3 4 5 6 7 8 9 10 

X(t) 0 0 0 0 1 0 0 1   

Q = Number of  

identified 1s/0s 
0/1 0/1 0/2 0/2 3/2 3/3 3/4 4/4 4/4 4/4 

S = Number of  

outputted 1s/0s 
0/0 0/0 0/1 0/2 1/2 2/2 2/3 3/3 3/4 4/4 

Q − S 0/1 0/1 0/1 0/0 2/0 1/1 1/1 1/1 1/0 0/0 

Z(t) dMIN→ 0 0 1 1 0 1 0 1 

Figure 5.5 Computation of Z(X) = √𝑋 by a Maxflow square-rooter when X = 00001001. 

this fashion, the interval shrinks monotonically until it reaches I(N) = [N1,Z, N1,Z] and the 

exact value Z is known. 

Suppose now X = 00001001 with time flowing from left to right. The latency 

manager LM computes the sequence of 9 intervals I(0), I(1), … I(8): 

          [0,8], [0,7], [0,7], [0,6], [0,6], [3,6], [3,5], [3,4], [4,4]  (5.1) 

where I(i) = [L1,Z
(i), U1,Z

(i)], and the numbers of identified 1s and 0s are L1,Z
(i) and N – U1,Z

(i), 

respectively. LM uses the interval sequence to gradually identify bits in Z. Figure 5.5 

tabulates the numbers of identified bits for this particular X. It shows that if we insert a 

delay of dMIN = 2 cycles and start generating Z at cycle 3, enough identified output bits are 

always available and LM can output one of them. The SN Z in Figure 5.5 contains the 

expected four 1s and four 0s, and its bit-pattern reflects the randomness of X’s bit-pattern. 

Thus, the Maxflow design computes accurately with a minimal delay dMIN = 2 for the given 

X. In general, dMIN must be set to cover all possible 8-bit input SNs. An algorithm MIND 

to determine dMIN is given below. It turns out that dMIN = 2 works for all possible X’s in 

this example. Therefore, Maxflow reduces the latency to 2 cycles; in contrast, the minimum  

delay overhead of a hybrid design is at least 7 (and probably much more.) As we show 

later, dMIN scales linearly with N for a target function. Hence, Maxflow can reduce the 

latency to a fixed fraction of N.   
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Figure 5.6 Computation of Z(X) = tanh(2X). (a) Plot of Z(X) with red dots marking N1,Z. 

(b) SN values for Z(X), and (c) the corresponding N-table T(N1,X, N1,Z). 

 X(1:3) N1,X
(1:3) I(3) q(3, N1,X

(1:3)) 

Case I 000 0 [0,6] 2 

Case II 001, 010, 100 1 [0,7] 1 

Case III 011, 101, 110 2 [1,8] 1 

Case IV 111 3 [2,8] 2 

Figure 5.7 Initial 3-bit segments of X considered by MIND. 

Now, we present the algorithm MIND that computes dMIN for a given Maxflow 

design. The hardware implementation of Maxflow is discussed in Section 5.3. To illustrate 

how MIND works, consider finding dMIN for a hyperbolic tangent function, a common 

activation function in NNs. Figure 5.6 plots Z = tanh(2X) with N = 8, where X and Z are 

in bipolar format. The value of dMIN must be determined such that the Maxflow unit always 

has enough identified bits to output, regardless of X’s pattern. Suppose the initial 3-bit 

segment X(1:3) of X has been received. There are four possible cases defined by N1,X
(1:3), the 

number of 1s in X(1:3); see Figure 5.7. For example, in Case III, X(1:3) has two 1s and the 

corresponding output interval is I(3) = [1,8], meaning that Z contains at least one 1. Let  
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Input: T(N1,X, N1,Z): N-table defining the target function Z(X) 

N: Bit-stream length 

Output: dMIN: Minimal delay overhead 

Step 1 For i = 1, 2, …, N 

        For N1,X
(1:i) = 1, 2, …, i:  

                Compute I(i) = [L1,Z
(i), U1,Z

(i)] associated with N1,X
(1:i)

 via T(N1,X, N1,Z) 

                Set q(i, N1,X
(1:i)) = L1,Z(i) + N – U1,Z(i). 

        Set u(i) = min q(i , N1,X
(1:i)). 

Step 2 For d = 0, 1, …, N – 1: 

        If u(i) ≥ i – d,  for i = 1 + d, 2 + d, …, N, then 

                set dMIN = d, and output dMIN 

Figure 5.8 Pseudo-code of MIND to calculate the minimum latency overhead dMIN for a 

Maxflow design. 

q(i, N1,X
(1:3)) = L1,Z

(i) + (N – U1,Z
(i)) denote the number of identified output bits on receiving 

an X(1:3) that has N1,X
(1:3) 1s. For instance, q(3, 2) = 1 + (8 – 8) = 1, since I(3) = [1,8] when 

N1,X
(1:3) = 2. From Figure 5.7, it is clear that regardless of X(1:3)’s bit-pattern, there is always 

at least u(3) = 1 identified bit at clock cycle 3, where  

u(i) = min q(i , N1,X
(1:3))                                 (5.2) 

and the min operation is over all possible N1,X
(1:3)’s for each cycle i. Note that u(i) increases 

monotonically with i, because we can identify additional bits in Z as we receive more bits 

of X. Recall that Maxflow guarantees accuracy by not outputting more bits than it has 

identified at each cycle. That implies that u(i) must be greater than or equal to the number 

of outputted bits for all i’s under consideration. This translates to the set of inequalities: 

       u(i) ≥ i – d,  for i = 1 + d, 2 + d, …, N     (5.3) 
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Figure 5.9 The black line plots the number of bits identified against time for Z(X) = 

tanh(2X). The red dashed lines plot the number of outputted bits against time for various 

delay values d. 

To gain further insight into the constraint set (5.3), we define two functions H(i) = 

u(i) and G(i, d) = i – d. H(i) is the least number of bits that must have been identified at 

cycle i, while G(i, d) is the number of bits that have been outputted at cycle i, which can 

be adjusted by controlling the delay overhead d. When satisfied, the constraint set (5.3) 

guarantees that never will fewer bits be identified than are outputted at any clock cycle. 

MIND finds dMIN by scanning for the smallest feasible d that satisfies the constraint set 

(5.3). Figure 5.8 summarizes MIND. 

Example 5.2: To find dMIN for tanh(2X) with N = 8, MIND first computes I(i) for 

X(1:i) and N1,X
(1:i) for i = 1, 2, …, 8. For instance, with X(1:5) = 01001, N1,X

(1:5) = 2, and the 

corresponding I(5) = [1, 6], as can be inferred from Figure 5.6c; q(i, N1,X
(1:i)) can then be 

computed from the corresponding I(i). For instance, with I(5) = [L1,Z
(5), U1,Z

(5)] = [1, 6], q(5, 

2) = L1,Z
(5) + (N – U1,Z

(5)) = 3. Next, MIND calculates u(i) for i = 1, 2, …, 8 via Equation 

(5.2), resulting in: 

u = [u(1) u(2) … u(8)] = [0 0 1 2 3 4 6 8] 

To visualize this, the black line in Figure 5.9 plots H(i) = u(i) against time i = 1, 2, …, 8. 

The red (dashed) lines plot G(i, d) = i – d against time for various d’s. Satisfying the 
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constraint set (5.3) requires that the red lines not be above the black line. Finding dMIN can 

thus be seen as finding the red line that touches, but does not lie above, the black line. This 

process is reflected in Step 2 of MIND (Figure 5.8). In the present example, dMIN is 2, 

implying that a delay of 2 cycles is needed to ensure accurate computation for Z(X) = 

tanh(2X).  

5.3 Implementation of Maxflow 

Rather than storing the N-table for the target function, it is more efficient to store a 

Δ-table which provides the incremental change of N1,Z, and can be easily pre-computed 

from the corresponding N-table. In general, a Δ-table has an address consisting of  

N0,X
(1:i – 1), N1,X

(1:i – 1) and X(i). However, for monotonically increasing functions, including 

square-root, tanh and sigmoid, N1,X
(1:i – 1) and X(i) suffice as the address of the Δ-table, as 

we illustrate in this section. 

N1,X 0 1 2 3 4 5 6 7 8 

N1,Z 0 0 1 2 4 6 7 8 8 

(a) 

N1,X
(1:i – 1) 0 1 2 3 4 5 6 7 

ΔZ 0 1 1 2 2 1 1 0 

(b) 

Figure 5.10 (a) N-table for Z(X) = tanh(2X). (b) The corresponding Δ-table with X(i) = 1. 
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Figure 5.11 Block diagram of a Maxflow design 
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Figure 5.10 shows both the N-table and the Δ-table (for the part with X(i) = 1 only) 

for tanh(2X) with N = 8. Recall that an N-table maps the number of 1s in X to the number 

of 1s in Z. A Δ-table, on the other hand, stores the change in the number of 1s of Z on 

receiving a new bit from X. For example, in Figure 5.10a, when N1,X = 3, N1,Z = 2. Also, 

when N1,X = 4, N1,Z = 4. This implies that if N1,X changes from 3 to 4, N1,Z will increase by 

2, since it changes from 2 to 4. This is exactly the information stored in the Δ-table. Figure 

5.10b shows the Δ-table when the current bit X(i) = 1. We omit the part for X(i) = 0, since 

for a monotonically increasing function, X(i) = 0 implies no change in N1,Z . Observe that 

when N1,X
(1:i – 1) = 3, ΔZ = 2. This is because given that X(i) = 1, and that we previously 

received three 1s from X, i.e., N1,X = 3, the increment of N1,Z is 2, as discussed previously. 

Figure 5.11 shows a Maxflow unit (Figure 5.2b) in more detail. The Δ-table maps 

X(i) and N1,X
(1:i – 1) to ΔZ, the increment of newly identified 1s, which is then buffered by 

the up/down counter. The output is set to 1, if the buffer is larger than 0 or if there are 

newly identified 1s (ΔZ > 0). Further, if the current output is 1, the buffer will decrease by 

1. Note that the buffer is initialized to the minimum value of N1,Z for the target function, 

which is the least number of 1s Z must contain. The ready bit r is set to 1 after dMIN cycles, 

where dMIN has been computed in advance using MIND. 

Comparing the Maxflow and Hybrid designs, we see that they are similar in terms 

of memory size. Maxflow has two counters requiring approximately ⌈log
2
(𝑁)⌉ flip flops 

each. Hybrid uses ⌈log
2
(𝑁)⌉ flip flops for its SBC, and another ⌈log

2
(𝑁)⌉ flip flops for an 

LFSR random source. Both Maxflow and Hybrid may use LUTs of a comparable size to 

store the target function’s definition. However, the Maxflow design guarantees minimum 

delay, while Hybrid imposes the worst-case delay of approximately N cycles. 

Figure 5.12 compares the delay overhead of Hybrid and Maxflow designs for some 

representative functions. Hybrid always imposes the worst-case delay overhead, since it 

requires about N clock cycles for data conversion, regardless of the function being  
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Figure 5.12 Delay overhead dMIN for various Hybrid and Maxflow designs for some 

representative functions. 

implemented. Maxflow usually has much smaller delay than the worst case. The delay 

overhead dMIN for all cases increases linearly with respect to the bit-stream length N. Note 

that for functions like tanh(X) and sigmoid(X), Maxflow can always compute accurately 

with no added delay. This is because these functions have sufficiently steep slopes when 

the input value is near −1 and 1, implying that a few initial bits from the input can quickly 

identify many bits for the output SN. Also, the minimum value of sigmoid(X) is 0, implying 

that there must be at least half bits in the output SN are 1. This further allows Maxflow to 

identify some output bits even before the computation starts. 

Maxflow can easily trade accuracy for shorter delay by setting the ready bit to 1 

earlier. Ignoring the dMIN constraint may result in insufficient identified bits of Z, in which 

case Maxflow must randomly output a 1 or a 0. In this experiment, we let Maxflow always 

output a 0 when there are not enough identified bits. Surprisingly, many stochastic 

functions seem very tolerant of aggressive delay-trading when they are implemented with 

Maxflow. Figure 5.13 plots the absolute errors against delay overhead for a Maxflow 

implementation of sigmoid(10X), where the results are averaged over 10,000 random inputs  
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Figure 5.13 Error comparison under different delay conditions for Z = sigmoid(10X) 

implemented by Maxflow. 

of 1,024 bits. The required dMIN in this case is 186 bits. However, even aggressively halving 

dMIN does not produce significant errors. This favorable accuracy-delay tradeoff can be 

explained as follows. The delay constraint guarantees that the output will always be 

accurate, regardless of the input bit-patterns. However, our experiments show that for many 

functions, only a small fraction of the input patterns are “difficult” in the sense that they 

result in slow identification of the output bits. The probability of encountering difficult 

patterns is low, so even aggressively shortening the delay should not introduce significant 

errors. 

5.4 Case Study: Artificial Neural Network 

We demonstrate Maxflow’s effectiveness for an artificial NN that achieves a very 

low misclassification rate for the well-known MNIST [46] dataset of handwritten digits. 

The topology of the NN is shown in Figure 5.14, and is architecturally similar to the LeNet-

5 family [46][48]. It has two convolution layers, two average-pooling layers, a densely 

connected layer, a soft-max layer for training (omitted in Figure 5.14), and achieves a 

software-based test accuracy of around 99%. For hardware-based NNs, Maxflow can be 

extended and applied to several SC variants like those using accumulative parallel counters 

(APCs) [71] to improve multiply-and-add accuracy [12][50]. For clarity, we demonstrate 

Maxflow here for an NN employing conventional single-line SC with bipolar SNs to  
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Figure 5.14 NN trained with the MNIST dataset [46]. 

account for negative numerical weights. Multiplication of two SNs is thus implemented by 

a single XNOR gate. Scaled addition is realized by a highly accurate CEASE design that 

was first used in the NN design reported in [48]. Recall that the CEASE adder has been 

demonstrated to have optimal accuracy [72]. This CEASE adder replaces the standard 

MUX-based adder by a sequential circuit that accurately averages all input patterns; see 

Chapter 2 for more details. 

The synaptic weights in our NN are represented by evenly distributed low-

discrepancy SNs, as used in [15][62]. We tested the NN with various choices of activation 

functions, including sigmoid and ReLU. We define ReLU(X) = min(max(0, X), 1), with the 

value capped at 1 due to SN range limitations. All the NN designs presented in this section 

were trained offline on images with pixels in the range [−1 1], and simulated at the gate 

level to test their inference performance using C++ with GPU acceleration based on 

Nvidia’s CUDA framework [58]. 

We compared the performance of three NN types with activation functions 

implemented by (1) Maxflow, (2) a Hybrid design with an accurate binary LUT like that 

in [15], and (3) a sequential SC design built around a UCB circuit [52]. Increasing the 

number of states for the UCB design generally improves its ability to approximate a 

function, but at the cost of a long warmup period during which the accuracy can be very 

low [70]. We chose 128-state UCB circuits to strike a balance between the number of states  
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Figure 5.15 Overall latency of the neural network in Figure 5.14 with several versions of 

(a) sigmoid, and (b) ReLU as the activation function. 

and accuracy. Further, to provide the randomness required by the UCB circuits, we place 

a shuffler before each of them for de-autocorrelation. The shuffler used has depth D ≈ N/8, 

where N is the SN length. We also configured Maxflow to trade accuracy for speed by 

reducing dMIN by 30%. Figure 5.15 plots the resulting misclassification rate against latency 

for the foregoing designs, where latency is defined as the cycle count from the beginning 

of the computation until the classification result appears. Figure 5.15a shows the results 

for sigmoid functions., The aggressive Maxflow design reduces the latency to about half 

of that of Hybrid with the same accuracy. Specifically, for a misclassification rate of about 

2%, Hybrid has a latency of about 1,530 cycles, while the aggressive Maxflow design 

requires about 780 cycles, which is around 49% reduction in latency. The UCB NN, on the 

other hand, requires about 213 cycles to achieve an error rate of about 5% due to its lack of 

accuracy guarantees. As shown in Figure 5.15b, ReLU functions yield similar results to 

those for sigmoid. 

5.5 Summary 

This chapter investigated the problem of excessively long delay in complex SC 

systems, noting that much of this delay is attributable to hybrid SC-BC features. The 
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chapter then introduced Maxflow, a design methodology to minimize latency overhead in 

a hybrid system without compromising accuracy. Several complex functions can be 

implemented using Maxflow with hardware cost comparable to that of their hybrid SC-BC 

implementations. Experimental results for an NN trained for image classification 

demonstrate that Maxflow can significantly reduce the NN’s overall latency without 

reducing its classification accuracy. 
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CHAPTER 6  

Exploiting Randomness in SC 

 

Like most previous research on SC, the dissertation has so far focused on solving 

well-defined challenges such as long run times and insufficient accuracy attributable to 

SC’s inherently random behavior. This chapter, on the other hand, shows that taking 

advantage of, or even adding to, a stochastic circuit’s randomness can provide big benefits 

in applications like image processing and machine learning. The amount of such 

randomness, must however, be carefully controlled to achieve a beneficial effect without 

corrupting an application’s functionality. The chapter describes a low-cost element to 

control the randomness levels of stochastic signals. It also discusses two applications where 

SC can provide performance-enhancing randomness at very low cost, while retaining all 

the other benefits of SC. Specifically, we show how to improve the visual quality of black-

and-white images via stochastic dithering, a technique that leverages randomness to 

enhance image details. Further, we demonstrate how the randomness of an SC-based layer 

makes a neural network (NN) more resilient against attacks aimed at making the NN 

misbehave, than an NN realized entirely by conventional, non-stochastic designs. 

6.1 Randomness in Stochastic Numbers 

Low accuracy and randomness-induced errors have long been viewed as the main 

shortcomings of SC [54]. In contrast to this pessimistic view, we show next that SC’s 

inherent randomness is actually a useful resource in some image-processing and machine-

learning applications. Furthermore, we also describe a novel way to increase SC’s  
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(d)(c)(b)(a)
 

Figure 6.1 Images of peppers: (a) original grayscale image, (b) binarized image, (c) 

binarized image with suitable dithering, (d) binarized image with excessive dithering. 

randomness levels precisely and cheaply to meet the needs of such applications, and so 

enhance their performance. In image processing, for instance, artificially injected 

randomness can preserve visual details in black-and-white images. Figure 6.1b shows a 

“binarized” image obtained by hard-thresholding the pixel intensities of the grayscale 

image in Figure 6.1a, i.e., by limiting the intensity values to black and white (0 and 1) . 

Figure 6.1c shows the same binarized image, but with randomness injected before 

thresholding via the well-known method of stochastic dithering [78]. Such randomness 

smooths the otherwise sharp boundaries between black and white regions, and effectively 

restores visual details.  

The central idea here is that SC can be efficiently applied not only in areas that 

tolerate random fluctuating signals, but also in those that need randomness, as Figure 6.1 

suggests. Such applications recognize a basic advantage of SC: it provides beneficial 

randomness for a very low cost, in contrast to conventional binary computing where 

injecting randomness requires considerable extra circuitry [42]. However, the randomness 

in stochastic signals is hard to control. Insufficient randomness may not satisfy a specific 

application’s needs, while too much added randomness may produce excessive noise that 

corrupts SC computation unacceptably. Figure 6.1d shows a binarized image with too 

much dithering, rendering the final image excessively noisy. This implies that judicious 

selection of the amount of randomness used in SC designs is essential. 
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Next, we examine and quantify the randomness in SNs. As discussed in Chapter 1, 

an N-bit SN X’s probability value is usually estimated as X̂ (N) = N1 / N, the fraction of 1s 

in X. Here, N1 = X(1) + X(2) + … + X(N) is the sum of all bit values X(t)’s in X, i.e., the 

number of 1s in X. A common way to quantify the randomness level of an SN is MSE 

(mean squared error), which is defined by Equation (2.7). MSE measures the average error 

in the estimated value X̂ (N), and can also be viewed as measuring the average squared 

deviation of X̂ (N) from the exact value X. Since this chapter treats such deviation as a 

randomness parameter rather than an error, we use the term mean squared deviation (MSD) 

instead of MSE to emphasize this fact. In other words, the MSD will serve as the metric 

for randomness levels in this chapter. It takes the same form as MSE, that is, 

MSD(X, N) = 𝔼[(X̂ (N) − X)2]  (6.1) 

In the context of SC, MSD is the variance Var(X̂(N)) of X̂(N). Broadly speaking, an 

SN’s MSD decreases with its length N. In other words, one can expect a more accurate 

computation at the cost of longer compute time. How fast MSD decreases with N depends 

on the SN’s randomness properties which, in turn, depend on factors like the quality of the 

random source used to generate that SN. Consequently, providing a generic MSD 

convergence rate that fits all types of SNs is difficult. 

While it is hard to draw firm conclusions about the MSD-N relationship for a 

general SN, this relation can be quantified analytically and succinctly for a Bernoulli SN, 

in which each bit is independently generated. Most SC designs implicitly assume that their 

input SNs are Bernoulli. Further, for any combinational circuit that has Bernoulli input 

SNs, its output will also be Bernoulli. The MSD of an N-bit Bernoulli SN X then takes the 

form [15]. 

MSD(X, N) = X(1 – X) / N   (6.2) 
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Figure 6.2 MSD comparison for 0.5-valued 64-bit SNs produced by various 

representative sequential stochastic circuits. 

which shows that the MSD or the variance of a Bernoulli SN X decreases with bit-stream 

length at the rate of 1/N. Further, X’s MSD also depends on X’s value X. Specifically, the 

MSD is a maximum when X = 0.5, while it is zero when X is 0.0 or 1.0. 

In contrast to Bernoulli SNs, the bits of a non-Bernoulli SN are not fully 

independent and so are correlated with each other in some way; this is referred to as 

autocorrelation. As discussed in Chapter 4, autocorrelation is unavoidable in sequential SC 

designs [16][70], which introduce dependency among bits via their built-in memory. 

Quantifying the MSD-N relationship for autocorrelated SNs is considerably more 

challenging than the Bernoulli case, since autocorrelation can take many different and often 

subtle forms [70]. Further, the correlation or the covariance among bits can contribute to 

the MSD level of an autocorrelated SN, leading to an MSD that can be greater than, equal 

to, or less than, that of a Bernoulli SN with the same length and the same probability value. 

Example 6.1: Randomness Levels. Figure 6.2 compares the MSDs of some 

representative single-output sequential circuits. These MSDs are obtained by averaging the 

squared deviations of each circuit’s output over 10,000 simulated trials. For a fair 

comparison, all the circuits use 64-bit SNs, and are made to produce an output SN of value 

0.5. The squarer is that of Figure 1.4b with input value X = 1/√2, so the expected output 

value is Z = X2 = 0.5. Tanh(4X) computes a hyperbolic tangent function used in the neural 

network of [16]. The LDPC code decoder is a two-input sequential design for the update 
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node [33]. Its two inputs are fed with SNs of value 0.5, so the output is also 0.5. Finally, 

the adder is an OMC design developed for the NN implementation in [48]. Here, the adder 

averages two 0.5-valued SNs, so the output value is also 0.5. Figure 6.2 shows the (sample) 

output MSDs for all four designs. While these SNs all have a value of 0.5, their MSD levels 

are quite different. This reflects the fact that these designs have widely varying structures, 

leading to output bit-streams with very different autocorrelation patterns. □ 

Example 6.1 reveals some interesting facts about randomness in sequential 

stochastic circuits. All the designs except the adder produce an output SN with a larger 

MSD than the Bernoulli SN. Autocorrelation injected by sequential elements tends to 

reduce the amount of information carried by the output SN, as each bit in the SN provides 

overlapping, and hence dependent, information about that SN’s value. This usually leads 

to a relatively high MSD. The exception here is the (scaled) adder, which takes two 

independent SNs with the same value 0.5 and produces a single output SN which also has 

a value of 0.5. The adder’s low MSD can be attributed to the fact that it is designed to 

utilize information from both inputs. The output SN thus achieves a lower MSD than the 

Bernoulli SN. Note, however, that more inputs do not always lead to less randomness. The 

LDPC code decoder is also a two-input circuit, but its output has a much higher MSD than 

the Bernoulli case. 

Example 6.1 also suggests that sequential elements can change an SN’s MSD level, 

but that the amount of randomness inserted or removed by sequential elements is hard to 

predict. Next, we will describe a novel method to solve the preceding problem. 

6.2 Controlling Randomness in SC 

Prior research has considered SC’s inherent randomness and randomness-induced 

errors as a price paid to achieve very low area and power. Consequently, much effort has 

been put into reducing SC-style randomness. This typically involves either eliminating 

some stochasticity or else injecting more determinism into SC designs. For instance,  
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Figure 6.3 (a) STG and (b) logic design of the proposed randomness injection circuit 

(RIC). The SN K controls the randomness level of Y, while the reset line allows the first 

bit of X to initialize the RIC’s state. 

CEASE (see Chapter 2) can reduce random fluctuation errors by eliminating unnecessary 

constant SNs. Also, conventional unipolar or bipolar SN formats can be replaced by various 

deterministic formats, such as low-discrepancy sequences [4][39].These formats have been 

shown to significantly improve accuracy and energy efficiency in applications like deep 

neural networks (DNNs) [27][48]. Besides resorting to deterministic formats, most 

previous work tries to control SC randomness indirectly by adjusting SN length N. Its goal, 

is either to improve accuracy and reduce MSD by increasing N, or else to reduce run-time 

by reducing N, usually at the cost of higher MSD. To halve the MDS level, N has to be 

doubled, as implied by Equation (6.2). For those applications that need dynamic accuracy 

or MSD levels, considerable design effort or hardware overhead is required. Moreover, this 

length-adjustment method excludes fine-tuning of MSD levels, as most SC designs only 

work well with bit-streams of length N = 2i, where i is a positive integer. In other words, 

the set of available MSD levels is limited to those attainable by an SN length of N = 2i for 

some i. On the other hand, this chapter’s main goal is to increase MDS levels precisely for 

applications that can exploit extra randomness.  

We now present a novel way to precisely increase MSD levels for SC. It employs 

a randomness injection circuit (RIC), which is a small circuit built around an SR flip-flop 

that adds randomness to an SN X without the need to modify X’s length; see Figure 6.3. A  
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       K 

Figure 6.4 Plot of the randomness increment G(K, N) against K for various SN lengths. 

RIC works by transforming X to another SN Y with a higher MSD, which is determined 

by a user-supplied SN K. Intuitively, the RIC uses K’s value K to specify a portion of X to 

be duplicated in Y. If Y copies a large portion of X, then Y will have a similar MSD level 

to X. On the other hand, if Y preserves very little information from X, then Y will have a 

much higher MSD than X. Loosely speaking, the larger K becomes, the more randomness 

is added to Y. The following theorem formally quantifies the above discussion. 

Theorem 6.1. Let Var(X̂ (N)) = X(1 – X) / N be the variance or MSD for an N-bit 

Bernoulli SN X. A RIC converts X to another N-bit SN Y with Y = X and MSD level 

   Var(Ŷ(N)) = [1 + 
2𝐾[(1−𝐾)𝑁+𝐾𝑁−1]

(1−𝐾)2𝑁
]Var(X̂ (N))  (6.3) 

where K ∈ [0,1] is the value of a user-supplied SN K that controls Y’s MSD levels.  

Theorem 6.1 is proven in Appendix A.5. Here, we give an intuitive explanation of 

Equation (6.3). Let G(K, N) = 1 + 
2𝐾[(1−𝐾)𝑁+𝐾𝑁−1]

(1−𝐾)2𝑁
 denote the randomness increment 

produced by the RIC, which is always positive for K ∈ [0, 1]. Obviously, G(K, N) depends 

on both K and N. Figure 6.4 plots G(K, N) against K for different values of N. We see that 

if K → 0, then G(K, N) → 1, and Y’s MSD Var(Ŷ(N)) → Var(X̂ (N)). In other words, Y’s 

MSD approaches the Bernoulli input X’s MSD. Also, as K → 1, G(K, N) → N, and Var(Ŷ(N)) 

→ N ∙ Var(X̂(N)) = X(1 – X) = Var(X̂ (1)), which is the largest possible MSD level attained 

by truncating X to a single bit. For K ∈ (0, 1), Var(Ŷ(N)) will take a value in the range 
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[Var(X̂(N)), Var(X̂(1))]. In other words, by simply adjusting K, the MSD level of Y can be 

set to any value in [Var(X̂(N)), Var(X̂(1))]. This range covers all possible MSD levels 

achievable by adjusting or truncating X’s length to fewer than N bits. Further, as the next 

example illustrates, a RIC can also achieve precise MSD levels that are not attainable 

simply by adjusting X’s length. 

Example 6.2: Consider a Bernoulli SN X whose length is N = 32 bits. Let Var(X̂(32)) 

denote X’s current MSD level. Suppose we want to increase X’s MSD level by a factor of 

5 to 5Var(X̂(32)). Using the conventional method of length adjustment, X must be truncated 

to 32/5 = 6.4 bits, which is obviously not possible, as SN length must be a positive integer. 

However, according to Theorem 6.1, RIC can easily achieve this MSD level by setting 

G(K, 32) to 5. The equation G(K, 32) = 5 can be easily solved by scanning through K’s 

values in the range [0, 1]. This leads to K = 0.69. In other words, a RIC design with K = 

0.69 increases a 32-bit Bernoulli SN’s MSD by a factor of 5. Furthermore, RIC can work 

simultaneously with SN length adjustment. Consider reducing X’s bit-stream length to 8 

bits, and at the same time using a RIC to achieve the same MSD level of 5Var(X̂(32)). First 

note that 5Var(X̂(32)) = 1.25Var(X̂(8)); see Equation (6.2). Then solving G(K, 8)= 1.25, gives 

K = 0.1273. In other words, a RIC with K = 0.1273 and with output length truncated to 8 

bits also achieves the MSD level 5Var(X̂(32)). □ 

Example 6.2 shows that a RIC can add randomness at a granularity finer than SN 

length adjustment. Further, the RIC is quite flexible in that, with no hardware modification, 

it can work simultaneously with SN length adjustment, or with SC systems that have 

dynamically changing SN lengths. This is because the RIC’s STG does not depend on N. 

Next, we will investigate two applications, namely image dithering and neural-network 

hardening, whose performance can be enhanced by RIC-controlled SC randomness. 

6.3 Case Study: Image Dithering 

Binarization in image processing converts a (grayscale) image to a black-and-white  
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Figure 6.5 Images with gradient intensities: (a) original grayscale image, (b) binarized 

image, and (c) binarized image with stochastic dithering. 

one [64]. It is intended to reduce the image’s representational cost at the price of 

information loss, since pixel intensities in a binarized image are reduced to a single bit. 

Thresholding is a common way to binarize images: pixels above and below an intensity 

threshold thr are set to 1 and 0, respectively. However, thresholding does not distinguish 

intensities that are very close to thr from those that are far away from thr. Figure 6.5a 

depicts a grayscale image in which the pixel intensities gradually change in the horizontal 

direction. Figure 6.5b shows the same image binarized by hard-thresholding. This image 

draws a sharp vertical boundary between black and white regions; within each region the 

pixel intensities are indistinguishable, and visual details are lost. 

Stochastic dithering restores some of an image’s visual details by injecting random 

perturbations, which convert grayscale to densities of white and black pixels that can in 

turn convey intensity information. Figure 6.5c is obtained by binarizing Figure 6.5a with 

stochastic dithering. Compared to Figure 6.5b, Figure 6.5c obviously provides more visual 

detail, including a sense of gradient. The key to this intensity-density conversion is to add 

randomness that allows some near-threshold intensity values to cross the threshold. The 

probability of a successful crossing depends on the original pixel intensity. For example, 

assume that thr = 0.5. Let I1 and I2 denote the regions whose intensities are 0.49 and 0.05, 

respectively. Without dithering, pixels in I1 or I2 will all be thresholded to 0. On the other 

hand, with random perturbations, pixels in I1 are very likely to exceed thr, while those in 

I2 are not. This is because pixels in I1 have an intensity that is very close to thr, so a small  
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Figure 6.6 Images of a depth map [61] and Lena with stochastic dithering at different 

randomness levels enabled by a RIC. 

perturbation can easily cause them to cross the threshold. After binarization, pixels in I1 

are more likely to be set to 1 than pixels in I2, leading to I1’s higher white-pixel density. 

SC has been applied to image-processing tasks that require low power and low 

precision, such as a retinal implant chip [8]. It is especially useful for near-sensor 

preprocessing like edge detection, where analog images are continuously sensed by light 

sensors, since analog data can be easily converted to SNs. As noted already, SC provides 

automatic stochastic dithering for SC-based image-processing tasks. Here, we focus on 

using a RIC to precisely control the level of dither perturbations. We compare the visual 

quality of binarized images processed by conventional binary computing (BC) and by SC 

with N = 128 bits. Figure 6.6 shows images of a depth map and Lena in grayscale and 

binarized forms. The depth map, which encodes objects’ physical distance as intensities, is 

from the NYU depth dataset [61] obtained using depth sensors in Microsoft Kinect. For 

those images processed by SC, RICs are used to control randomness levels for stochastic 

dithering before binarization. As the figure shows, the images with dithering present more 

visual details than hard-thresholded images. Further, as expected, for RICs using a larger 

K, the added randomness increases. When K = 1.0, SNs carry the largest possible MSD, 

which is equivalent to that of an SN truncated to a single bit. 
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Figure 6.7 (a) Image of a stop sign; (b) the same image modified by an attack that causes 

it to be misclassified as a yield sign by a DNN [60] 

The major advantage of RICs is that they allow a user to control MSD levels. This 

is important because different images may require different MSD levels for the best 

dithering results, as the depth map and Lena images in Figure 6.6 suggest. Also, image 

quality is a somewhat subjective concept, so different users may have different preferences 

for MSD levels, which is also enabled by RICs. 

6.4 Case Study: Neural-Network Hardening 

A major emerging application that can also benefit from SC’s randomness is 

hardening deep neural networks (DNNs) against malicious attacks. DNNs have achieved 

unprecedented success with human-level or better performance in applications such as 

image classification. Despite their dominance in the field of artificial intelligence (AI), 

research has shown recently that DNNs are highly vulnerable to adversarial attacks (AAs) 

[18][20], raising severe security concerns in areas like autonomous vehicle control and face 

recognition systems. In image classification, an AA employs artificial images that are real 

images disguised in a way that is imperceptible to humans, but causes a DNN to misclassify 

them. Figure 6.7a shows an image of a stop sign, while Figure 6.7b shows the same image 

after being deliberately altered to make a DNN classify it as a yield sign [60]; this is 

obviously dangerous for a DNN-controlled autonomous vehicle. Such deception also 

exposes applications using cloud-based ML services like Google Cloud Vision and 

Amazon Rekognition to security threats. To defend against AAs, implementation details 

of DNNs employed in safety-critical applications are usually deliberately concealed, as it 
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is considered significantly harder to attack such DNNs. However, recent work [20] 

suggests that even in a “black-box” setting, where the target DNN’s details (e.g., the 

number of layers, the weight values, whether hardware-based or not, etc.) are unknown, 

AAs can still be easily generated by sending test inputs (queries) to the DNN that leverage 

the corresponding output responses. To date, there appears to be no general way to make a 

DNN completely immune to AAs [13]. 

We now show that adding certain SC features to black-box DNNs makes them 

much less vulnerable to attack, in addition to providing other SC benefits such as low power 

and small area. The goal of (untargeted) AAs is to generate an artificial image x that looks 

like a normal image x0, but is wrongly classified by the target classifier Net(x). Thus, AA 

generation may be formulated as the optimization problem [18] 

Minimizex∈[0,1]𝑑 f(x) = Dist(x, x0) + λ ∙ Loss(x, Net(x), t)  (6.4) 

where f is the objective function, which depends on x, x0, Net and t. When clear from the 

context, we omit such dependencies, and simply write f(x, x0, Net, t) as f(x). Dist(x, x0) is 

a distance metric that measures the visual dissimilarity between the attack image x and the 

original image x0. The attacker aims to make x appear like a normal image x0. Here, we 

use squared Euclidean distance, so Dist(x, x0) = |x – x0|2. The term Loss(x, Net(x), t) in 

Equation (6.4) forces the attack image x to be wrongly classified, and is defined as 

Loss(x, Net(x), t) = max[Net(x)t – maxi≠t[Net(x)i] + κ, 0]       (6.5) 

where Net(x)t is x’s score for class t, while maxi≠t[Net(x)i] is x’s largest score for all classes 

other than t. κ is a non-negative parameter defining a required confidence level for attack 

success. When κ = 0, the loss function in Equation (6.5) will incur a non-zero penalty, 

unless the attack image x’s largest score is not the correct class t, i.e., it incurs a penalty 

unless Net(x)t ≤ maxi≠t[Net(x)i]. When κ > 0, Equation (6.5) will introduce a penalty, unless 

x’s largest score is larger than that of t by at least κ. In other words, the attack confidence 

κ controls the amount of score value by which the mispredicted label should be higher than 
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the correct label. Finally, the parameter λ in Equation (6.4) balances the attack’s success 

and its visual similarity to the normal image. Summarizing, Equation (6.4) can be 

understood as aiming to generate an attack image x that is visually similar to a normal 

image x0, but is classified by the targeted DNN differently from x0. 

In a black-box setting, Equation (6.4) cannot be solved by simply using the standard 

gradient-descent-based method, as the analytical form of the term Net(x) is concealed. This 

renders the true gradients of f(x) unobtainable, which gives a false sense of security that 

black-box DNNs are safe against AAs. It is known [20], however, that black-box NNs can 

still be attacked by approximating f(x)’s true gradients as 

               gi ∶=
𝜕𝑓(𝐱)

𝜕𝐱𝑖
≈

𝑓(𝐱+𝜖𝐞𝑖)−𝑓(𝐱−𝜖𝐞𝑖)

2𝜖
     (6.6) 

where xi is the i-th pixel of x, ei is a one-hot coded vector with the only 1 appearing in its 

i-th element, and ϵ is a small constant. The significance of Equation (6.6) is that it 

approximates f(x)’s true gradient with respect to xi without knowing the target DNN’s 

details. It simply sends test images with pixel xi slightly perturbed, observes the objective’s 

responses f(x ± ϵei), and then approximates f(x)’s gradients, which can be subsequently 

used to optimize Equation (6.4) for AA generation. This is called a zeroth-order method, 

which generates AAs by optimizing Equation (6.4) with approximate gradients obtained 

by querying the target DNN [20]. 

Equation (6.6) relies on accurate input-output responses for reasonably good 

gradient approximation. Randomization can thus harden a DNN by blurring the DNN’s 

input-output responses [53]. This leads to corrupted gradient approximation, making 

zeroth-order attacks costlier as more DNN queries are needed to average out the blurring 

effect. Next, we show that DNNs with an SC layer automatically have such a defensive 

randomization effect. 

To assess the preceding idea, we applied a black-box AA generation method called 

zeroth-order optimization attack (ZOO) [20] to a DNN whose last fully-connected layer is 
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replaced with an SC implementation. Specifically, we used a VGG-19 DNN [63] trained 

on the CIFAR10 dataset [44], which we simulated using the Tensorflow machine learning 

framework [1] with a customized SC fully-connected layer, which we denote as VGG-19-

SC. Note that adding SC randomness can degrade classification accuracy. The key to 

minimizing this degradation is to inject suitable randomness when training the DNN, so it 

learns how to operate under a rather noisy environment, as suggested in [53]. We did so by 

adding a suitable amount of Gaussian perturbations to the fully-connected layer’s inputs 

during training. We also constrained all numerical values of the last layer to the range 

[−1, 1] to simulate bipolar SC operations. The resulting testing accuracy for the trained 

VGG-19 network is around 86%. Finally, we note that while SC can be used to implement 

other layers of a DNN as well, we found experimentally that using SC for the last layer 

affects classification accuracy the least. Intuitively, perturbations introduced in early layers 

tend to be magnified undesirably when they propagate through the DNN. 

For the VGG-19-SC DNNs, we built RICs into the SC layer to control the amount 

of injected randomness. Specifically, the SN length used in the SC layer was 32 bits, and 

RICs were inserted on the output lines of the SC layer for precise MSD-level incrementing. 

We assessed the performance of the VGG-19-SC DNNs by measuring the attack success 

rate given a query count budget. We did so by constraining the maximum number of 

gradient steps to be 5,000, and each step was processed in a batch of 32 gradient estimates. 

The balance parameter λ in Equation (6.4) was initialized to 1, and was dynamically 

adjusted at run-time, as in [20]. We defined an attack to be successful if, within the query 

count budget, it is wrongly classified with confidence κ = 0.2, and if its squared Euclidean 

distortion is less than 10. For each DNN setting, 100 attacks were attempted. 

Figure 6.8 shows both the classification accuracy and the attack success rates for 

the various DNNs. Despite the added SC randomness, the classification accuracy does not 

suffer from noticeable degradation, as these DNNs were trained to operate with 

randomness present. The attack success rates for VGG-19-SCs decrease with K, a RIC  
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Figure 6.8 (a) Classification accuracy and attack success rates for VGG-19 and VGG-19-

SC with various randomness levels. 

parameter that enables balancing between classification accuracy and attack success rates. 

In this case, K = 1 appears to be a good choice, because it reduces VGG-19-SC’s 

classification accuracy only by about 1%, compared to that of VGG-19. However, the 

success rate of attacks on VGG-19-SC decreases from 76% down to 59%. For those DNNs 

trained without noise present, K must be carefully chosen so that the classification accuracy 

is not compromised. Note that while SC has been successfully applied to NNs to reduce 

power and area costs previously, here we have shown for the first time that NNs with SC 

features automatically gain an extra benefit⎯they are costlier to attack.  

Finally, it is noteworthy that, even an attack has been successfully generated by 

ZOO, applying this same attack to a VGG-19-SC DNN’s may not always make the DNN 

misbehave. This is because the DNN’s SC layer automatically perturbs the attack images 

randomly. We observed that such perturbations can often corrupt, and consequently void, 

low-confidence attack attempts⎯another side benefit enabled by SC’s randomness. 
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6.5 Summary 

This chapter has demonstrated that SC’s randomness is a potential design resource 

that can greatly enhance the performance of certain tasks in image processing and machine 

learning. We first observed that autocorrelation introduced by sequential elements can 

change the randomness levels in stochastic numbers. We then devised a novel sequential 

circuit called a RIC that can introduce precise levels of randomness into stochastic circuits. 

The value of this technique was shown for two applications. Specifically, SC randomness 

automatically enables stochastic dithering that preserves visual details in binarized images 

by converting pixel intensities to densities of bright pixels. It also increases the resilience 

of black-box DNNs against adversarial attacks, a type of malicious data that are used to 

deceive a machine-learning model. 
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CHAPTER 7  

Conclusions 

 

This dissertation addressed several central problems encountered in SC, focusing 

on randomness management, error elimination, and design methodology for sequential 

circuits. This chapter first summarizes the major contributions of our research. It then 

provides pointers to promising future research areas in SC. 

7.1 Summary of Contributions 

Our early research on implementing SC-based matrix operations [71] revealed 

several SC’s major challenges, including complex accuracy-latency trade-offs, lack of 

general design methodologies and poorly understood randomness behavior. We therefore 

decided to concentrate our doctoral research on some of these problems. 

Chapter 2 began with an in-depth investigation of random fluctuation errors (RFEs) 

in SC. RFEs can be solved by increasing bit-stream length. This, however, entails 

significant latency overhead. We observed that many SC designs use constant SNs as 

ancillary signals and discovered that they are, in fact, a major contributor to RFEs. We then 

devised an algorithm CEASE (Constant Elimination Algorithm for Suppression of Errors) 

that can transfer the role of constants to memory elements, and at the same time eliminate 

the RFEs induced by these constants. A CEASE-designed circuit uses its memory elements 

to maintain an accurate count of input values, which are later converted to bit-streams for 

release to the output. Further, we were able to show that CEASE designs achieve the lowest 

RFE level among all other designs that implement the same function. The effectiveness of 
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CEASE was demonstrated for several representative stochastic circuits, which displayed 

considerable accuracy improvement without incurring any latency overhead. 

Chapter 3 addressed correlation, another major error source in SC. Correlation 

errors occur when SNs with insufficient randomness interact with each other undesirably. 

They must usually be eliminated by a process called decorrelation. Our research focused 

on a specific decorrelation method called isolation, which works by inserting delay 

elements termed isolators to misalign the interacting correlated SNs. While isolation has 

far less hardware overhead than other decorrelation methods, it has only been used in the 

past in an ad hoc fashion, resulting in non-optimal isolator numbers or unexpected 

functional corruption. We thus developed the first systematic isolation-decorrelation 

algorithm VAIL (Valid Isolator Placement Algorithm Based on Integer Linear 

Programming), which guarantees a correct decorrelation using a minimum isolator number. 

VAIL does so by first forming a set of constraints that must be met for correct 

decorrelation. It then minimizes the use of isolators while meeting these constraints. Our 

experimental results on representative circuits showed that VAIL can correctly remove 

correlation using much fewer isolators than a naïve or ad hoc isolation method. 

Noting that both CEASE and VAIL produce sequential designs, we went on to 

investigate the behavior of sequential elements in SC. Although sequential components 

have long been known to play an important role in SC, their theory has been poorly 

understood. This has limited sequential SC designs to a very few types, most of which are 

built around up/down counters. Chapter 4 identified two new classes of sequential 

stochastic circuits, namely optimal-modulo-counting (OMC) circuits and shift-register-

based (SRB) circuits, both having some special and desirable properties. OMC circuits 

include those generated by our CEASE algorithm. They are insensitive to input 

autocorrelation, meaning that autocorrelation in the input SNs does not affect the accuracy 

of OMC circuits. We showed that an OMC circuit’s rounding policy can be easily managed 

by adjusting its initial states. SRB circuits are built around feed-forward structures 

resembling shift registers and can reach a steady state within a fixed amount of time. For 
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SRB circuits, we also defined stochastically equivalent state transitions, whose associated 

output values can be switched without changing the circuits’ stochastic behavior. This led 

to a sequential optimization algorithm MOUSE (Monte-Carlo Optimization Using 

Stochastic Equivalence), which reduces a circuit’s hardware cost by switching 

stochastically equivalent output values using a Monte-Carlo method. 

Chapter 5 is concerned with design aspects of SC-BC hybrid systems. We observed 

that many so-called “SC-based” designs in the literature resort to BC components for 

arithmetic operations that require high accuracy. Connecting SC and BC parts, usually 

however, poses significant latency overhead. To address this problem, we devised a new 

hybrid architecture called Maxflow. It has SC-based input-output interfaces, but its internal 

structure uses BC. Nevertheless, Maxflow computes accurately without introducing more 

delay than necessary, and hence tends to maximize signal flow. Maxflow’s high accuracy 

can be attributed to the fact that it only includes in its output SN bits that can be correctly 

inferred from the input bits received so far. The effectiveness of Maxflow was 

demonstrated for a neural network trained to classify handwritten digits. Experimental 

results showed that, using Maxflow to implement the NN’s activation functions can 

significantly reduce the NN’s latency without sacrificing its classification accuracy. 

Finally, Chapter 6 discussed the potential of using SC’s intrinsic randomness as a 

resource instead of treating it as an undesirable error source. It first noted that a significant 

amount of previous research effort has been devoted to reducing randomness with the goal 

of improving SC accuracy, usually at the cost of considerable hardware overhead. In 

contrast, we showed that SC can provide beneficial randomness to certain applications at 

very low cost. However, the amount of randomness must be carefully controlled so that it 

does not corrupt the functionality of the applications. To address this problem, we proposed 

a tiny new element called a RIC (Randomness Injection Circuit) that can increase a 

stochastic circuit’s randomness level in a precise manner. RIC does so by using an extra 

SN whose value controls the amount of variance added to a stochastic number. Our idea of 

exploiting SC randomness was demonstrated for two applications. First, we showed that 
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SC’s intrinsic randomness provides automatic image dithering, a technique that preserves 

visual details in a binarized image by random perturbations. Second, we demonstrated that 

a black-box NN with an SC layer is more resilient against adversarial attacks. This is 

because SC randomness blurs the NN’s output responses to malicious test inputs, making 

attack generation much costlier. 

7.2 Directions for Future Work 

Finally, we discuss some potential directions of future SC research, as well as some 

possible extensions of the work described in this dissertation. 

Although significant progress has been made on eliminating randomness-induced 

errors in SC, the theory for controlling SC randomness is still not fully understood. Most 

prior work in this direction aimed at reducing or completely removing randomness to 

improve SC accuracy by introducing deterministic elements. In contrast, this dissertation 

introduced the RIC (Randomness Injection Circuit) which can add precise amounts of 

randomness to SC in a way that is beneficial to several applications. A possible extension 

of RIC is a randomness reduction circuit that can decrease SC randomness levels precisely. 

As Example 6.1 shows, an OMC scaled adder can combine two or more Bernoulli SNs of 

the same value, and produce another SN with less MSD (mean squared deviation). In fact, 

the MSD level can be halved (up to a rounding effect) by combining two independent SNs 

of the same value. Further, as we show next, RICs can be used with OMC adders to reduce 

randomness levels quantitatively and precisely. 

Consider, for example, using two independently generated Bernoulli SNs X1 and 

X2 with X1 = X2 to produce another SN Z of the same value, but with the MSD level reduced 

by 25%. In other words, the goal here is to generate Z such that Var(Ẑ(N)) = 0.75Var(X̂1
(N)), 

and Z = X1. One way to do so, is first using RICs to produce two SNs Y1 and Y2 from X1 

and X2, respectively, each increasing the MSD level by 50%, so Var(Ŷ1
(N)) = 1.5Var(X̂1

(N)) 

and Var(Ŷ2
(N)) = 1.5Var(X̂2

(N)). Then, combine Y1 and Y2 using an OMC adder to get Z, 

which halves the MSD level of Y1 (and Y2), i.e., Var(Ẑ(N)) = 0.5Var(Ŷ1
(N)) = 0.75Var(X̂1

(N)).  



118 

 

reset

RIC 1

D

MAJ Z

X1

K1 R

S
Q

X2

K2 R

S
Q

RIC 2

OMC scaled adderY1

Y2

CR

 

Figure 7.1 SC design for MSD reduction using two RICs and an OMC scaled adder. 

 

Figure 7.2 Relative (sampled) MSD of Z, the output of the circuit CR in Figure 7.1, 

compared to the MSD of X1, one of CR’s inputs. 

Figure 7.1 depicts a circuit CR that contains the needed RICs and the OMC adder. 

We experimentally verified the preceding idea by setting X1 = X2 = 0.5 and N = 32 for CR, 

and measuring the output MSD relative to the input MSD by averaging over 100,000 trials. 

The result is shown in Figure 7.2, which confirms that the MSD of Z is indeed about 25% 

less than the MSD of X1 (and X2). 

Another topic worth further investigation is characterizing SC’s intrinsic 

randomness. In this dissertation, we quantified an SN’s randomness using MSD, which is 

the second central moment or variance of the SN. It is clear, however, that an SN’s 

randomness level can depend on other factors like the SN’s value, as suggested by 
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Figure 7.3 Images from the ImageNet dataset [25]: (a) Original grayscale image, (b) 

binarized image by hard-thresholding, (c) binarized image with SC-based stochastic 

dithering, and (d) binarized image with SC-based stochastic dithering and an affine 

transformation 

Equation (6.2). Specifically, an SN attains a maximum randomness level when its value is 

0.5, and has no randomness when its value is 1 or 0. This is very different from noise 

models like additive white Gaussian noise (AWGN) commonly used in information theory 

and communication systems, where the amount of randomness is assumed to be 

uncorrelated with the signal’s value. The fact that there is almost no randomness when the 

SN’s value is close to 1 or 0 can sometimes degrade the performance of applications like 

image dithering. Figure 7.3 shows images from the ImageNet dataset [25]. In particular, 

Figure 7.3c shows a binarized image with SC-based stochastic dithering. As can be seen, 

while this image preserves more visual details than the image in Figure 7.3b, it still suffers 

from considerable loss of details in the dark and bright regions. This is because in those 

regions, the SNs’ value is either close to 1 or close to 0, and hence carries almost no 

randomness, thereby voiding the advantage of stochastic dithering. 

One possible way to solve the preceding problem is to shrink the value of the input 

SNs by applying an affine transform. Figure 7.4a shows a stochastic circuit that takes X as 

input, and produces Y as output according to the affine transformation Y = A(X – B) + B. 

This transformation can be intuitively understood as shrinking X by a factor A around the 

center B. In other words, X’s value region will decrease from [0, 1] to [B(1 – A), 

A + B(1 – A)]. For instance, when A = B = 0.5, Y’s value region will be [0.25, 0.75]; see  
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Figure 7.4 (a) Stochastic circuit that performs the affine transformation Y = A(X – B) + B. 

(b) Values of X and the corresponding values of Y when A = B = 0.5. 

Figure 7.4b. The significance of this affine transform is that it can avoid an SN from taking 

values close to 0 or 1, and hence forces the SN to always have sufficient randomness. For 

example, applying the affine transformation with A = B = 0.5 before stochastic dithering 

and binarization leads to the image of Figure 7.3d. Obviously, this image preserves details 

for the dark and bright regions that are lost in the image of Figure 7.3c. 

Redesigning SC-based NNs to take into account SC’s intrinsic randomness appears 

to be a promising research direction as well, as it improves the NNs’ performance by 

allowing them to learn how to work in an SC environment. Many existing SC-based NNs 

are designed for inference tasks only, and their numerical weights are learned offline by 

training on software-based or BC NNs. Consequently, the learned weights are not tolerant 

of SC-style randomness, which in turn significantly degrades the performance of the NNs. 

To cope with this problem, previous work has focused on reducing SC’s randomness and 

introducing deterministic elements to restore NNs’ performance, usually at the cost of 

considerable design efforts and hardware overhead. It is clear, as we have demonstrated in 

this dissertation, that training an NN with intentionally injected randomness makes the NN 

more robust of SC-style randomness in the inference phase. To take full advantage of this 

idea, however, requires more research efforts. Specifically, design aspects like the amount 

and the type of the injected randomness, as well as the location to inject such randomness, 

all call for in-depth investigation. 
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In summary, SC is a rapidly growing, promising but relatively immature computing 

methodology that still offers many interesting research opportunities to explore. We hope 

the material presented in this dissertation will contribute to the future research and 

development of SC and its applications. 
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APPENDIX 

 

A.1 Proof of Theorem 2.1 

By classifying SN inputs into variable and constant parts as in X = {XV, XC}, we 

can re-write pZ = F(f, pX) = ∑b f(b)pX(b) (Equation (2.2)) as: 

            pZ = F(f, 𝑝XV, XC
) = ∑ [𝑓(𝑏V, 𝑏C)𝑝XV, XC

(𝑏V, 𝑏C)]𝑏V, 𝑏C
 (A.1) 

Further, using the properties of conditional probability, we can re-write 𝑝XV, XC
(𝑏V, 𝑏C) as 

𝑝XC|XV
(𝑏C|𝑏V) ∙ 𝑝XV

(𝑏V) , where the term 𝑝XC|XV
(𝑏C|𝑏V)  is a function of bC and bV. 

Equation (A.1) then becomes 

                     pZ = ∑ [𝑓(𝑏V, 𝑏C)𝑝XC|XV
(𝑏C|𝑏V) ∙ 𝑝XV

(𝑏V)]𝑏V, 𝑏C
 

              = ∑ [𝑝XV
(𝑏V) ∙ ∑ [𝑓(𝑏V, 𝑏C) ∙ 𝑝XC|XV

(𝑏C|𝑏V)]𝑏C
]𝑏V
    

(A.2) 

The summation 𝑔(𝑏V)  =  ∑ [𝑓(𝑏V, 𝑏C) ∙ 𝑝XC|XV
(𝑏C|𝑏V)]𝑏C

 is over all combinations of bC, 

and hence does not depend on bC, so we can re-write Equation (A.2) as pZ = F(𝑝XV
) = 

∑ [𝑔(𝑏V) ∙ 𝑝XV
(𝑏V)]𝑏V

 which is linear in 𝑝XV
(𝑏V) with all coefficients g(bV) in the range 

[0,1]. The dependency of F(𝑝XV
) on f and 𝑝XC

 is implicit via 𝑔(𝑏V) only. 

A.2 Proof of Theorem 2.2 

Here, the target function is assumed to be in the form of Z = F( 𝑝XV
) = 

∑ [𝑔(𝑏V) ∙ 𝑝XV
(𝑏V)]𝑏V

 (Equation (2.5)). For brevity, we use gi and pi to denote g(bi) and 

𝑝XV
(𝑏i), respectively. The goal is to show that an OMC circuit implements this type of 
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function with minimum MSE, up to a rounding error. The approach taken here is to first 

construct a circuit CI that can be shown to achieve a minimum MSE. Then, we show that 

an OMC circuit achieves the same MSE level as CI, up to a rounding error. 

Consider a circuit CI with a set of n variable inputs. The number of possible bit 

patterns that CI can receive is thus m = 2n; denote these bit patterns by b0, b1, …, bm – 1. Let 

B(t) be the random variable denoting the bit pattern that CI receives at clock cycle t, so 

p(B(t) = bi) = pi. Suppose CI is run for k clock cycles. Let ki be the number of patterns bi that 

CI receives during these k clock cycles. Next, we define the function that CI implements. 

Specifically, CI does the following: after receiving the input patterns B = B(1), B(2), …, B(k) 

in the k clock cycles, the output value it produces is Ẑ = ∑ 𝑔𝑖 𝑝̂𝑖
𝑚−1
𝑖=0 , where p̂i = ki / k, the 

proportion of pattern bi received in these k clock cycles. Notice that both p = [p0, p1, …, 

pm – 1] and p̂ = [p̂0, p̂1,…, p̂m – 1] are a probability vector, so their elements sum to 1, i.e. , 

∑ 𝑝𝑖
𝑚−1
𝑖=0  = 1, ∑ 𝑝̂𝑖

𝑚−1
𝑖=0  = 1. Next, we show that this CI approximates the exact value Z = 

∑ 𝑔𝑖𝑝𝑖
𝑚
𝑖=1  with the minimum possible MSE. 

Recall that the output of CI is Ẑ = ∑ 𝑔𝑖 𝑝̂𝑖
𝑚−1
𝑖=0 , which can be viewed as an estimator 

for the true value Z = ∑ 𝑔𝑖𝑝𝑖
𝑚
𝑖=1 . In SC, we are particularly interested in unbiased estimators 

whose expected value is the same as the true value. Obviously, CI produces an unbiased 

estimator, because 𝔼(Ẑ) = 𝔼(∑ 𝑔𝑖
𝑘𝑖

𝑘

𝑚−1
𝑖=0 ) = [∑ 𝑔𝑖𝔼(

𝑘𝑖

𝑘
)𝑚−1

𝑖=0 ] = ∑ 𝑔𝑖𝑝𝑖
𝑚−1
𝑖=0  = Z. We then apply 

the Cramér–Rao bound (CRB) [41], a well-known bound for the MSE of estimators in the 

field of statistics, and show that Ẑ actually achieves this bound. 

The estimator Ẑ = ∑ 𝑔𝑖𝑝̂𝑖
𝑚
𝑖=1  is a function of p̂i, implying that CI first estimates pi as 

p̂i, and then uses these estimates to compute Ẑ, an estimator for Z. Next, we apply the CRB 

to Ẑ. The CRB’s form for unbiased estimators is: 

Varp(Ẑ) ≥ ∇F(p)TI(p)–1∇F(p) (A.3) 
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where Varp(Ẑ) = 𝔼(Ẑ − Z)2 is the MSE for Ẑ. ∇ is the gradient operator, and, the superscripts 

T and −1 denotes transpose and inversion. I(p) is the Fisher information matrix of B [41], 

whose (i, j)-th entry is 𝔼[
𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑖

𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑗
]. In other words, if the MSE of Ẑ attains 

∇F(p)TI(p)–1∇F(p), then it is optimal in terms of MSE. In the following, we will compute 

both Varp(Ẑ) and ∇F(p)TI(p)–1∇F(p), and show that they are equal. 

Case I: k = 1 

First, consider the case when k = 1, i.e., CI is run for only one cycle. We will extend 

the result for k = 1 to the cases for k ≥ 2. 

Since we only consider a single clock cycle, B = B(1). To ease the derivation, we 

define a set of ancillary Bernoulli (binary 0-1) random variables α = α0, α1, …, αm – 1 where 

p(αi = 1) = pi and ∑ 𝛼𝑖
𝑚−1
𝑖=0  = 1. Recall that p(B = bi) = pi, so αi and B are linked through 

B = bi ⇔ αi = 1                                                                    (A.4) 

The way α is defined implies that only a single member of α is 1 at any time, and all other 

members are 0. To begin, we write 

Varp(Ẑ) = 𝔼(Ẑ − Z)2 = 𝔼(Ẑ2) − Z2 (A.5) 

where 

                       𝔼(Ẑ2) = 𝔼[(∑ 𝑔𝑖
𝑘𝑖

𝑘

𝑚−1
𝑖=0 )2] = 𝔼[(∑ 𝑔𝑖𝑘𝑖

𝑚−1
𝑖=0 )2] (A.6) 

                               = 𝔼[(∑ 𝑔𝑖𝑘𝑖
𝑚−1
𝑖=0 )(∑ 𝑔𝑖𝑘𝑖

𝑚−1
𝑖=0 )] (A.7) 

                               = 𝔼[(∑ 𝑔𝑖
2𝑘𝑖

2𝑚−1
𝑖=0 )] + 𝔼[(∑ 𝑔𝑖𝑔𝑗𝑘𝑖𝑘𝑗𝑖≠𝑗 )] (A.8) 

                               = ∑ 𝑔𝑖
2𝔼(𝑘𝑖

2)𝑚−1
𝑖=0  + ∑ 𝑔𝑖𝑔𝑗𝔼(𝑘𝑖𝑘𝑗)𝑖≠𝑗  (A.9) 

                               = ∑ 𝑔𝑖
2𝔼(𝑘𝑖)

𝑚−1
𝑖=0  + ∑ 𝑔𝑖𝑔𝑗𝔼(𝑘𝑖𝑘𝑗)𝑖≠𝑗  (A.10) 

                               = ∑ 𝑔𝑖
2𝑝𝑖

𝑚−1
𝑖=0                                                                                     (A.11) 
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Here, Equation (A.10) is due to the fact that ki
2 = ki when k = 1; Equation (A.11) is 

because 𝔼(kikj) = 0. Therefore, 

Varp(Ẑ) = ∑ 𝑔𝑖
2𝑝𝑖

𝑚−1
𝑖=0  − Z2 (A.12) 

Next, we compute ∇F(p)TI(p)–1∇F(p). Recall that ∑ 𝑝𝑖
𝑚−1
𝑖=0  = 1, so the degree of 

freedom (DoF) of p is m – 1 . We let pm – 1 = 1 − ∑ 𝑝𝑖
𝑚−2
𝑖=0  to implicitly enforce this 

constraint. Further, ∇F(p) ∈ ℝ(m – 1) × 1 and I(p) ∈ ℝ(m – 1) × (m – 1). We can write 

∇F(p) = [
𝜕 ∑ 𝑔𝑖𝑝𝑖

𝑚−1
𝑖=0

𝜕𝑝1
,

𝜕 ∑ 𝑔𝑖𝑝𝑖
𝑚−1
𝑖=0

𝜕𝑝2
, … ,

𝜕 ∑ 𝑔𝑖𝑝𝑖
𝑚−1
𝑖=0

𝜕𝑝𝑚−1
]

T

 

         = [g0 – gm – 1, g1 – g m – 1,.., gm – 2 – gm – 1]T 

(A.13) 

To compute I(p), consider the (i, j)-th element of I(p) 

I(i, j)(p) = 𝔼[
𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑖

𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑗
] (A.14) 

Where p(B; p) = ∏ 𝑝𝑖
𝛼𝑖𝑚−1

𝑖=0 ; recall that B is linked to α through Equation (A.4). Thus, 

log(p(B; p)) = log(∏ 𝑝𝑖
𝛼𝑖𝑚−1

𝑖=0 ) = ∑ 𝛼𝑖log(𝑝𝑖)
𝑚−1
𝑖=0 . Hence, 

𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑖
=

𝜕 ∑ 𝛼𝑖log(𝑝𝑖)𝑚−1
𝑖=0

𝜕𝑝𝑖
=

𝛼𝑖

𝑝𝑖
−

𝛼𝑚−1

𝑝𝑚−1
. We have 

I(i, j)(p) = 𝔼[
𝜕log (𝑝(𝐵; 𝒑))

𝜕𝑝𝑖

𝜕log (𝑝(𝐵; 𝒑))

𝜕𝑝𝑗
] = 𝔼[(

𝛼𝑖

𝑝𝑖
−

𝛼𝑚−1

𝑝𝑚−1
) (

𝛼𝑗

𝑝𝑗
−

𝛼𝑚−1

𝑝𝑚−1
)] 

                      = 𝔼[
𝛼𝑖𝛼𝑗

𝑝𝑖𝑝𝑗
] − 𝔼[

𝛼𝑖𝛼𝑚−1

𝑝𝑖𝑝𝑚−1
]− 𝔼[

𝛼𝑗𝛼𝑚−1

𝑝𝑗𝑝𝑚−1
] + 𝔼[

𝛼𝑚−1
2

𝑝𝑚−1
2 ] 

(A.15) 

Note that since αi is binary, when i = j, 𝔼[
𝛼𝑖𝛼𝑗

𝑝𝑖𝑝𝑗
] = 𝔼 [

𝛼𝑖
2

𝑝𝑖
2] = 

𝔼[𝛼𝑖
2]

𝑝𝑖
2  = 

𝔼[𝛼𝑖]

𝑝𝑖
2  = 

𝑝𝑖

𝑝𝑖
2 = 

1

𝑝𝑖
. When i ≠ 

j, 𝔼[
𝛼𝑖𝛼𝑗

𝑝𝑖𝑝𝑗
] = 0, because either αi = 0 or αj = 0. We conclude that 
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I(i, j)(p) ={
    

1

𝑝𝑖
+

1

𝑝𝑚−1
            if 𝑖 = 𝑗

          
1

𝑝𝑚−1
               if 𝑖 ≠ 𝑗

 (A.16) 

and 

I(p) = 

 
1

𝑝0
+

1

𝑝𝑚−1
 

1

𝑝𝑚−1
 … 

1

𝑝𝑚−1
  

 
1

𝑝𝑚−1
 

1

𝑝1
+

1

𝑝𝑚−1
 ⋱ ⋮  

 ⋮ ⋱ ⋱ ⋮  

 
1

𝑝𝑚−1
 … … 

1

𝑝𝑚−2
+

1

𝑝𝑚−1
  

 

(A.17) 

To compute the inverse of I(p), observe that I(p) can be decomposed as follows: 

I(p) = 
1

𝑝𝑚−1
𝟏𝟏T + 𝑄 

where 1 ∈ ℝ(m – 1) × 1 is an all-1 column vector. Q ∈ ℝ(m – 1) × (m – 1) is a diagonal matrix 

Q = 

 
1

𝑝0
 0 … 0  

 0 
1

𝑝1
 ⋱ ⋮  

 ⋮ ⋱ ⋱ ⋮  

 0 … … 
1

𝑝𝑚−2
  

whose inverse is easy to compute 

Q–1 = 

 𝑝0 0 … 0  

 0 𝑝1 ⋱ ⋮  

 ⋮ ⋱ ⋱ ⋮  

 0 … … 𝑝𝑚−2  
 

Applying the Sherman–Morrison formula [45] to I(p) = 
1

𝑝𝑚−1
𝟏𝟏T + 𝑄 yields 
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I(p)–1 = Q–1 − 

1

𝑝𝑚−1
𝑄−1𝟏𝟏T𝑄−1

1+
1

𝑝𝑚−1
𝟏T𝑄−1𝟏

 = Q–1 − 
𝑄−1𝟏𝟏T𝑄−1

𝑝𝑚−1+𝟏T𝑄−1𝟏
 

where 

Q–111TQ–1= 

 𝑝0
2 𝑝0𝑝1 … 𝑝0𝑝𝑚−2  

 𝑝0𝑝1 𝑝1
2 ⋱ ⋮  

 ⋮ ⋱ ⋱ ⋮  

 𝑝0𝑝𝑚−2 … … 𝑝𝑚−2
2   

 

and 

pm – 1 + 1TQ–11= pm – 1 + ∑ 𝑝𝑖
𝑚−2
𝑖=0  = 1 

Hence 

I(p)–1 = Q–1 − Q–111TQ–1 = 

 𝑝0 − 𝑝0
2  −𝑝0𝑝1 … −𝑝0𝑝𝑚−2  

 −𝑝0𝑝1 𝑝1 − 𝑝1
2 ⋱ ⋮  

 ⋮ ⋱ ⋱ ⋮  

 −𝑝0𝑝𝑚−2 … … 𝑝𝑚−2 − 𝑝𝑚−2
2   

 

(A.18) 

Therefore, after simplification, we get 

∇F(p)TI(p)–1∇F(p) = [p0(g0 − Z), p1(g1 − Z), …, pm – 2(gm – 2 − Z)]∇F(p) 

= Σ𝑖=0
𝑚−2pigi

2 − gm – 1Σ𝑖=0
𝑚−2pigi – ZΣ𝑖=0

𝑚−2pigi + Zgm – 1Σ𝑖=0
𝑚−2pi 

= Σ𝑖=0
𝑚−2pigi

2 + pm – 1gm – 1
2 – Z2 = Σ𝑖=0

𝑚−1gi
2pi – Z2 

(A.19) 

Comparing Equations (A.12) and (A.19), we see that in this case Varp(Ẑ) = 

∇F(p)TI(p)–1∇F(p). Since Ẑ, the estimator of Z constructed by CI, achieves the CRB, Ẑ must 

has the minimum MSE among all unbiased estimators. 
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Case 2: k ≥ 2 

The result for k = 1 developed above can be extended to the case for k ≥ 2. Denote 

the k independent input bit patterns CI receives as B(1), B(2), …, B(k), each of which gives a 

single-sample estimate of Z, which we write as Ẑ(1), Ẑ(2), …, Ẑ(k). Noting the fact that Ẑ = 

1

𝑘
(Ẑ(1) + Ẑ(2) +…+ Ẑ(k)), we have 

Varp(Ẑ) = Varp[
1

𝑘
(Ẑ(1) + Ẑ(2) +…+ Ẑ(k))] = 

1

𝑘
Varp(Ẑ(1)) (A.20) 

which is 
1

𝑘
 times the variance of the case for k = 1. ∇F(p) remains unchanged for k ≥ 2, as 

it does not depend on k. Consider the (i-j)-th entry for the Fisher information matrix [41] 

I(i, j)(p) = 𝔼[
𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑖

𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑗
]. With k ≥ 2, we have p(B; p)= Π𝑟=1

𝑘 p(B(r)|p) and, 

 log(p(B; p)) = log(∏ ∏ 𝑝𝑖
𝛼𝑖

(𝑟)𝑚−1
𝑖=0

𝑘
𝑟=1 ) = ∑ ∑ 𝛼𝑖

(𝑟)log(𝑝𝑖)𝑚−1
𝑖=0

𝑘
𝑟=1  (A.21) 

Hence, 

𝜕log (𝑝(𝐵; 𝑝))

𝜕𝑝𝑖
=

𝜕 ∑ ∑ 𝛼𝑖
(𝑟)log(𝑝𝑖)𝑚−1

𝑖=0
𝑘
𝑟=1

𝜕𝑝𝑖
=

∑ 𝛼𝑖
(𝑟)𝑘

𝑟=1

𝑝𝑖
−

∑ 𝛼𝑚−1
(𝑟)𝑘

𝑟=1

𝑝𝑚−1
  (A.22) 

We then get 

I(i, j)(p) = 𝔼[(
∑ 𝛼𝑖

(𝑟)𝑘
𝑟=1

𝑝𝑖
−

∑ 𝛼𝑚−1
(𝑟)𝑘

𝑟=1

𝑝𝑚−1
) (

∑ 𝛼𝑗
(𝑠)𝑘

𝑠=1

𝑝𝑗
−

∑ 𝛼𝑚−1
(𝑠)𝑘

𝑠=1

𝑝𝑚−1
)] 

                      = 𝔼[
∑ 𝛼𝑖

(𝑟)𝑘
𝑟=1 ∑ 𝛼𝑗

(𝑠)𝑘
𝑠=1

𝑝𝑖𝑝𝑗
] − 𝔼 [

∑ 𝛼𝑖
(𝑟)𝑘

𝑟=1 ∑ 𝛼𝑚−1
(𝑠)𝑘

𝑠=1

𝑝𝑖𝑝𝑚−1
] 

−𝔼[
∑ 𝛼𝑚−1

(𝑟)𝑘
𝑟=1 ∑ 𝛼𝑗

(𝑠)𝑘
𝑠=1

𝑝𝑗𝑝𝑚−1
] + 𝔼 [

∑ 𝛼𝑚−1
(𝑟)𝑘

𝑟=1 ∑ 𝛼𝑚−1
(𝑠)𝑘

𝑠=1

𝑝𝑚−1
2 ] 

(A.23) 

Note that when i = j, 
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𝔼[
∑ 𝛼𝑖

(𝑟)𝑘
𝑟=1 ∑ 𝛼𝑗

(𝑠)𝑘
𝑠=1

𝑝𝑖𝑝𝑗
] = 𝔼 [

∑ 𝛼𝑖
(𝑟)𝑘

𝑟=1 ∑ 𝛼𝑖
(𝑟)𝑘

𝑠=1

𝑝𝑖
2 ] (A.24) 

                                      = 
1

𝑝𝑖
2 𝔼 [∑ 𝛼𝑖

(𝑟)2
𝑘
𝑟=1 + ∑ 𝛼𝑖

(𝑟)
𝛼𝑖

(𝑠)
𝑟,𝑠:𝑟≠𝑠 ] (A.25) 

                                      = 
1

𝑝𝑖
2 ∑ 𝔼[𝛼𝑖

(𝑟)2
]𝑘

𝑟=1 +
1

𝑝𝑖
2 ∑ 𝔼[𝛼𝑖

(𝑟)
]𝔼[𝛼𝑖

(𝑠)
]𝑟,𝑠:𝑟≠𝑠  (A.26) 

                                      = 
𝑘

𝑝𝑖
+ ∑ 1𝑟,𝑠:𝑟≠𝑠  (A.27) 

because αi
(r)⊥αi

(s) if r ≠ s. If i ≠ j, 

𝔼[
∑ 𝛼𝑖

(𝑟)𝑘
𝑟=1 ∑ 𝛼𝑗

(𝑟)𝑘
𝑠=1

𝑝𝑖𝑝𝑗
] = 

1

𝑝𝑖𝑝𝑗
𝔼[∑ 𝛼𝑖

(𝑟)
𝛼𝑗

(𝑟)𝑘
𝑟=1 + ∑ 𝛼𝑖

(𝑟)
𝛼𝑗

(𝑠)
𝑟,𝑠:𝑟≠𝑠 ] (A.28) 

                                      = 
1

𝑝𝑖𝑝𝑗
∑ 𝔼[𝛼𝑖

(𝑟)
]𝔼[𝛼𝑗

(𝑠)
]𝑟,𝑠:𝑟≠𝑠   (A.29) 

                                      = ∑ 1𝑟,𝑠:𝑟≠𝑠  (A.30) 

This leads to 

        I(i, j)(p) ={
    

𝑘

𝑝𝑖
+

𝑘

𝑝𝑚−1
            if 𝑖 = 𝑗

          
𝑘

𝑝𝑚−1
               if 𝑖 ≠ 𝑗

 (A.31) 

and 

I(p) = k 

 
1

𝑝0
+

1

𝑝𝑚−1
 

1

𝑝𝑚−1
 … 

1

𝑝𝑚−1
  

 
1

𝑝𝑚−1
 

1

𝑝1
+

1

𝑝𝑚−1
 ⋱ ⋮  

 ⋮ ⋱ ⋱ ⋮  

 
1

𝑝𝑚−1
 … … 

1

𝑝𝑚−2
+

1

𝑝𝑚−1
  

 

(A.32) 

Comparing Equations (A.17) and (A.32), we see that I(p) becomes k times larger, 

compared to I(p) when k = 1. Therefore ∇F(p)TI(p)–1∇F(p) becomes K times smaller, 

compared to the case of k = 1. Since both Varp(Ẑ) and ∇F(p)TI(p)–1∇F(p) are shrunk k times 
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compared to the case of k = 1, we conclude that Varp(Ẑ) = ∇F(p)TI(p)–1∇F(p) also holds for 

all k ≥ 2. This implies that for all input lengths, CI achieves the lowest possible MSE. 

Generalization to OMC Circuits 

We have shown that the circuit CI that computes Ẑ = ∑ 𝑔𝑖 𝑝̂𝑖
𝑚−1
𝑖=0  achieves an optimal 

result in terms of MSE reduction. Further, from Theorem 4.4, we also know that the 

measured output value of an OMC circuit COMC is ẐC = ∑
𝑎𝑖

𝑞

𝑘𝑖

𝑁

𝑚−1
𝑖=0 +

𝜖̃

𝑁
 = ∑ 𝑔𝑖 𝑝̂𝑖

𝑚−1
𝑖=0 +

𝜖̃

𝑁
. 

Comparing Ẑ and ẐC, we see that COMC produces the same output value as CI, except for 

the term 
𝜖̃

𝑁
 induced by the rounding error. Therefore, we conclude that an OMC circuit 

achieves minimum possible MSE up to a rounding error. 

A.3 Proof of Theorem 3.1 

Let CD denote a stochastic circuit C realizing the Boolean function f(x1, x2, …, xn) 

with an isolator placement D. Let FD(fD, 𝑝XD) be the stochastic function CD implements, 

and let X = {X1, X2, …, Xn} be a set of input SNs for C. 

Lemma A.1: If XD = {X1(t1), X2(t2), …, Xn(tn)}, then fD = f. 

Proof of Lemma A.1: Since XD = {X1(t1), X2(t2), …, Xn(tn)}, fD = fD(x1(t1), x2(t2),…, 

xn(tn)) for some t1, t2,…, tn. To prove that fD = f, it is sufficient to show that fD(l1, l2, …, ln) 

= f(l1, l2, …, ln) for all possible n-bit vectors b = {l1, l2, …, ln}. Let t0 = max(t1, t2,…, tn). 

Consider a set of bit-streams of values l1, l2, …, ln that are fed into the input lines of C and 

CD for t clock cycles, where t > t0. Obviously, t > ti for i = 1, 2,.., n. Then, at clock period 

t, xi(ti) = li for all i. Thus, CD must output the same value as C, since CD is simply a circuit 

with isolators. In other words, at clock period t, we must have xi(ti) = xi = li for all i, and 

fD(l1, l2, …, ln) = f(l1, l2, …, ln). Since the above argument holds for any n-bit vector b = 

{l1, l2, …, ln}, we conclude that fD = f. 
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We now use Lemma A.1 to prove Theorem 3.1. Since XD = {X1(t1), X2(t2), …, 

Xn(tn)}, Lemma A.1 implies that fD = f. The stochastic function realized by CD is thus FD(fD, 

𝑝XD) = FD(f, 𝑝XD) taking the following form: 

FD(f, 𝑝XD) = ∑ [𝑝𝐗1(𝑡1)⋯𝐗𝑛(𝑡n)(𝑙1, ⋯ , 𝑙𝑛)𝑓(𝑙1, ⋯ , 𝑙𝑛)]𝑙1,⋯, 𝑙𝑛
 (A.33) 

Furthermore, since ti ≠ tj for every Xi, Xj pair that needs decorrelation, we know that  

𝑝𝐗1(𝑡1)⋯𝐗𝑛(𝑡n) = 𝑝𝐗1(𝑡1) ∙ 𝑝𝐗2(𝑡2) ⋯ 𝑝𝐗𝑛(𝑡𝑛). This is because we assume that a set of SNs 

become mutually independent, if the correlated SNs in this set are delayed by different 

clock cycles. Also notice that 𝑝𝐗𝑗(𝑡𝑗)(𝑏𝑗) = 𝑝𝐗𝑗
(𝑏𝑗) for all j. We then have 

FD(fD, 𝑝XD) = ∑ [∏ 𝑝𝐗𝑗
(𝑙𝑗)𝑛

𝑗=1 𝑓(𝑙1, ⋯ , 𝑙𝑛)]𝑙1,⋯, 𝑙𝑛
 = F(f, 𝑝XIND

) (A.34) 

which completes the proof.  

A.4 Proof of Theorem 4.4 

To get the number of 1s in the output Z, we first compute the total number of states 

that C will advance after receiving the N-bit SNs, which is ∑ 𝑎𝑖𝑘𝑖
𝑚−1
𝑖=0 + 𝑎−1. The number 

of 1s in Z is therefore ⌊
1

𝑞
(∑ 𝑎𝑖𝑘𝑖

𝑚−1
𝑖=0 + 𝑎−1)⌋ = ⌊∑

𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0 +

𝑎−1

𝑞
⌋ = ∑

𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0 +

𝑎−1

𝑞
 − ϵ, 

where ϵ ∈ [0, 1] is an offset term that takes into account the floor operation. Setting 𝜖̃ =

𝑎−1

𝑞
 – ϵ, we obtain the number of 1s in Z as N1,Z = ∑

𝑎𝑖

𝑞
𝑁𝑖

𝑚−1
𝑖=0 + 𝜖,̃ which completes the first 

part of the proof. The value of Z is thus the expectation of 
1

𝑁
∑

𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0 +

𝜖̃

𝑁
, which is Z 

=  𝔼 (
1

𝑁
∑

𝑎𝑖

𝑞
𝑘𝑖

𝑚−1
𝑖=0 +

𝜖̃

𝑁
)  = ∑

𝑎𝑖

𝑞
𝔼 (

𝑘𝑖

𝑁
)𝑚−1

𝑖=0 +
𝔼(𝜖̃)

𝑁
 = ∑

𝑎𝑖

𝑞

𝑚−1
𝑖=0 𝑝XV

(𝑏𝑖)  +
1

𝑁
𝔼(𝜖̃) . This 

completes the second part of the proof. 
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A.5 Proof of Theorem 6.1 

Let CRIC be a RIC as depicted in Figure 6.3. The STG of CRIC is a two-state Markov 

chain, whose t-step state-transition probability matrix is Pt = [
1 − 𝑋 𝑋
1 − 𝑋 𝑋

]  + 

Kt[
𝑋 −𝑋

𝑋 − 1 1 − 𝑋
] [57]. In other words, the (i, j)-th element of Pt denotes the probability 

of CRIC being in state sj after t clock cycles, given that CRIC is currently in state si. To show 

that the output value Y of CRIC is the same as CRIC’s input value X, suppose that CRIC is 

initialized to state s1 with probability X, and hence to state s0 with probability 1 – X, i.e., 

the initial state probability vector is π = [1 – X, X]. Then, for all t, 

πPt = [1 − 𝑋 𝑋] ([
1 − 𝑋 𝑋
1 − 𝑋 𝑋

]  + 𝐾𝑡 [
𝑋 −𝑋

𝑋 − 1 1 − 𝑋
]) 

= [1 − 𝑋 𝑋] = π 
(A.35) 

which implies that the probability of CRIC being in state s1 in any clock cycle is X. Since 

the output value associated with state s1 is 1, the probability of a 1 appearing on the output 

line in any clock cycle is therefore X, i.e. Y = X. This completes the first part of the proof. 

Next, we show that Var(Ŷ(N)) = Var(X̂(N)) ∙ G(K, N). 

Lemma A.2: Let Y be the output SN of a RIC. The covariance between its i-th bit 

and its j-th bit is Cov(Y(i), Y(j)) = Kt(1 – X)X, where t = |i – j|. 

Proof of Lemma A.2: 

   Cov(Y(i), Y(i + t)) = 𝔼[(Y(i) – Y)(Y(i + t) – Y)]  (A.36) 

                              = 𝔼(Y(i)Y(i + t)) – Y2  (A.37) 
                                            = p(Y(i) = 1, Y(i + t) = 1) – X2 (A.38) 
                                            = p(Y(i + t) = 1 | Y(i) = 1)X – X2 

(A.39) 
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where Equation (A.38) is due to the fact that Y(i) ∙ Y(i + t) = 1 if and only if both Y(i) and Y(i 

+ t) are 1, and the fact that Y = X. Equation (A.39) is obtained by conditioning on the event 

Y(i) = 1. Note that the conditional probability p(Y(i + t) = 1 | Y(i) = 1) is equal to the 

probability that the state S = s1 at clock cycle i + t, given that the state S = s1 at clock cycle 

i. This conditional probability can thus be computed by using the t-step state-transition 

probability defined previously. Specifically, let the state probability vector be π = [0, 1] at 

clock cycle i. Then πPt = [0, 1]Pt = [(1 – X)(1 – Kt), X + Kt(1 – X)], meaning that the 

probability of S = s1 at clock cycle i + t is X + Kt(1 – X). This further implies that p(Y(i + t) 

= 1 | Y(i) = 1) = X + Kt(1 – X). Plugging this probability back to Equation (A.39), we have 

   Cov(Y(i), Y(i + t)) = [X + Kt(1 – X)]X – X2 (A.40) 

                                         = Kt(1 – X)X (A.41) 

which completes the proof of Lemma A.2. 

Lemma A.3: Σ𝑗=1 
𝑁−1Σ𝑖=𝑗+1

𝑁 Cov(Y(i), Y(j)) = N2 ∙ Var(X̂(N)) ∙ [G(K, N) – 1] / 2 

Proof of Lemma A.3: From Lemma A.2, we have 

   Σ𝑗=1 
𝑁−1Σ𝑖=𝑗+1

𝑁 Cov(Y(i), Y(j)) = Σ𝑗=1 
𝑁−1Σ𝑖=𝑗+1

𝑁 Ki-j(1 – X)X (A.42) 

                                            = (1 – X)X ∙ Σ𝑗=1 
𝑁−1Σ𝑡=1

𝑁−𝑗
Kt (A.43) 

                                            = (1 – X)X ∙ T (A.44) 

where Equation (A.43) is obtained via change of variable t = i – j. Also, we set T = 

Σ𝑗=1 
𝑁−1Σ𝑡=1

𝑁−𝑗
Kt here for brevity. On expanding the summation of T, we obtain 

T = (N – 1)K + (N – 2)K2 + … + 2KN – 2 + KN – 1 (A.45) 

This leads to KT – T = –NK + Σ𝑡=1 
𝑁 Kt = –NK + 

𝐾(1−𝐾𝑁)

1−𝐾
 = 

𝐾(1−𝐾𝑁)−𝑁𝐾(1−𝐾)

1−𝐾
. Solving for T 

yields 
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                        T = 
𝐾[(1−𝐾)𝑁+𝐾𝑁−1]

(1−𝐾)2  = N[G(K, N) – 1] / 2 (A.46) 

On plugging Equation (A.46) back to Equation (A.44), we get 

Σ𝑗=1 
𝑁−1Σ𝑖=𝑗+1

𝑁 Cov(Y(i), Y(j)) = (1 – X)X ∙ T= N ∙ Var(X̂(N)) ∙ T 

                                            = N2 ∙ Var(X̂(N)) ∙ [G(K, N) – 1] / 2 
(A.47) 

which completes the proof of Lemma A.3. 

Finally, we use Lemma A.3 to prove Var(Ŷ(N)) = Var(X̂(N)) ∙ G(K, N). We write 

                 Var(Ŷ(N)) = Var(
1

𝑁
Σ𝑖=1

𝑁 Y(i))  (A.48) 

                                = 
1

𝑁2 Σ𝑖=1
𝑁 Var(Y(i)) + 

2

𝑁2 Σ𝑗=1 
𝑁−1Σ𝑖=𝑗+1

𝑁 Cov(Y(i), Y(j))  (A.49) 

                = Var(X̂(N)) + Var(X̂(N)) ∙ [G(K, N) – 1] (A.50) 

                = Var(X̂(N)) ∙ G(K, N) (A.51) 

where Equation (A.50) is obtained by plugging Equation (A.47) into Equation (A.49). This 

completes the second part of the proof.



135 

 

BIBLIOGRAPHY 

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, 

S., Irving, G., Isard, M. and Kudlur, M., “Tensorflow: A system for large-scale machine 

learning,” Proc. Symp. on Operating Sys. Design and Implementation, 16, pp. 265-283, 

2016. 

[2] Alaghi, A. and Hayes, J. P., “Dimension reduction in statistical simulation of digital 

circuits,” Proc. on Theory of Modeling and Simulation, pp. 1-8, 2015. 

[3] Alaghi, A. and Hayes, J. P., “Exploiting correlation in stochastic circuit design,” Proc. 

Int. Conf. Computer Design, pp. 39-46, 2013. 

[4] Alaghi, A. and Hayes, J. P., “Fast and accurate computation using stochastic circuits,” 

Proc. Conf. on Design, Automation & Test in Europe, pp. 76:1-76:4, 2014.  

[5] Alaghi, A. and Hayes, J. P., “On the functions realized by stochastic computing 

circuits,” Proc. Great Lakes Symp. on VLSI, pp. 331-336, 2015. 

[6] Alaghi, A. and Hayes, J. P., “STRAUSS: spectral transform use in stochastic circuit 

synthesis,” IEEE Trans. CAD, 34, 1770-1783, 2015. 

[7] Alaghi, A. and Hayes, J. P., “Survey of stochastic computing,” ACM Trans. Embedded 

Computing Systems, 12, 2s, pp. 92:11-92:19, 2013. 

[8] Alaghi, A., Li, C. and Hayes, J. P., “Stochastic circuits for real-time image-processing 

applications,” Proc. Design Automation Conf., pp. 1-6, 2013. 

[9] Alaghi, A., Ting, P., Lee, V.T. and Hayes, J. P., “Accuracy and correlation in stochastic 

computing.” In Gross, W.J. and V.C. Gaudet (eds.). Stochastic Computing: Techniques 

and Applications, Springer Nature, pp 77-102, 2019. 

[10] Ananth, R. S., “Programmable supervisory circuit and applications thereof,” US Patent 

no. 6,618,711, 2003. 

[11] Ardakani, A., Leduc-Primeau, F. and Gross, W.J., “Hardware implementation of 

FIR/IIR digital filters using integral stochastic computation,” Proc. Int. Conf. on 

Acoustics, Speech and Signal Processing, pp. 6540-6544, 2016. 

[12] Ardakani, A., Leduc-Primeau, F., Onizawa, N., Hanyu, T. and Gross, W.J., “VLSI 

implementation of deep neural networks using integral stochastic computing,” Proc. 

Int. Symp. on Turbo Codes and Iterative Information Processing, pp. 216-220, 2016. 



136 

 

[13] Athalye, A., Carlini, N., and Wagner, D., “Obfuscated gradients give a false sense of 

security: Circumventing defenses to adversarial examples,” Proc. Int. Conf. on 

Machine Learning, pp. 274-283, 2018. 

[14] Bade, S.L. and Hutchings, B.L., “FPGA-based stochastic neural networks-

implementation,” Proc. Workshop on FPGAs for Custom Computing Machines, pp. 

189-198, 1994. 

[15] Braendler, D., Hendtlass, T. and O'Donoghue, P., “Deterministic bit-stream digital 

neurons,” IEEE Trans. Neural Nets., 13, pp. 1514-1525, 2002. 

[16] Brown, B.D. and Card, H.C., “Stochastic neural computation I: computational 

elements,” IEEE Trans. Computers, 50, pp. 891-905, 2001. 

[17] Canals, V., Morro, A., Oliver, A., Alomar, M.L. and Rosselló, J.L., “A new stochastic 

computing methodology for efficient neural network implementation,” IEEE Trans. 

Neural Nets. & Learning Sys, 27(3), pp. 551-564, 2016. 

[18] Carlini, N. and Wagner, D. “Towards evaluating the robustness of neural networks,” 

Proc. Symp. on Security and Privacy, pp. 39-57, 2017. 

[19] Chang, Y.N. and Parhi, K.K., “Architectures for digital filters using stochastic 

computing,” Proc. Int. Conf. on Acoustics, Speech and Signal Processing pp. 2697-

2701, 2013. 

[20] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J., “ZOO: Zeroth order 

optimization based black-box attacks to deep neural networks without training 

substitute models,” Proc. Workshop on Artificial Intelligence and Security , pp.15-26, 

2017. 

[21] Chen, T.H., Alaghi, A. and Hayes, J.P., “Behavior of stochastic circuits under severe 

error conditions,” Info. Tech., 56, 4, pp. 182-191, 2014. 

[22] Chen, T.-H. and Hayes, J. P., “Analyzing and controlling accuracy in stochastic 

circuits,” Proc. Int. Conf. on Computer Design, 367-373, 2014. 

[23] Chen, T.-H. and Hayes, J. P., “Equivalence among stochastic logic circuits and its 

application,” Proc. Design Automation Conf., pp. 131:1-131:6, 2015. 

[24] Choi, S. S., Chia, S. H. and Tappert, C., “A survey of binary similarity and distance 

measures,” Journ. Systemics, Cybernetics and Informatics, 8, pp. 43-48, 2010. 

[25] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., “ImageNet: A large-

scale hierarchical image database,” Proc. Conf. on Comp. Vision and Pattern 

Recognition, pp. 248-255, 2009. 

[26] Dong, Q.T., Arzel, M., Jego, C. and Gross, W.J., “Stochastic decoding of turbo codes,” 

IEEE Trans. Signal Processing, 58(12), pp.6421-6425, 2010. 

[27] Faraji, S.R., Najafi, M.H., Li, B., Bazargan, K. and Lilja, D.J., “Energy-efficient 

convolutional neural networks with deterministic bit-stream processing,” Proc. Conf. 

on Design, Automation & Test in Europe, pp. 1736-1741, 2019. 



137 

 

[28] Friedman, J.S., Droulez, J., Bessière, P., Lobo, J. and Querlioz, D., “Approximation 

enhancement for stochastic Bayesian inference,” Int. Journal of Approximate 

Reasoning, 85, pp.139-158, 2017 

[29] Gaines, B. R., “Stochastic computing systems,” Advances in Inform. Systems Science, 

2, pp. 37-172, 1969. 

[30] Gallager, R.G. Discrete Stochastic Processes. Springer, 1996. 

[31] Golomb, S. W. and Gong, G. Signal Design for Good Correlation. Cambridge 

University Press, 2005. 

[32] Gross, W.J. and V.C. Gaudet (eds.). Stochastic Computing: Techniques and 

Applications. Springer Nature, 2019. 

[33] Gross, W.J., Gaudet, V.C. and Milner, A., “Stochastic implementation of LDPC 

decoders,” Proc. Asilomar Conf. on Signals, Systems & Comp., pp. 713-717, 2005. 

[34] Gubner, J. A. Probability and Random Processes for Electrical and Computer 

Engineers. Cambridge University Press, 2006. 

[35] Guo, T., “Cloud-based or on-device: An empirical study of mobile deep inference,” 

Proc. Int. Conf. on Cloud Engineering, pp. 184-190, 2018. 

[36] He, K., Zhang, X., Ren, S. and Sun, J., “Deep residual learning for image recognition,” 

Proc. Conf. on Comp. Vision and Pattern Recognition, pp. 770-778, 2016. 

[37] Hikawa, H., “A digital hardware pulse-mode neuron with piecewise linear activation 

function,” IEEE Trans. Neural Nets., 14, pp. 1028-1037, 2003. 

[38] Jeavons, P., Cohen, D. A. and Shawe-Taylor, J., “Generating binary sequences for 

stochastic computing,” IEEE Trans. Information Theory, 40, pp. 716-720, 1994. 

[39] Jenson, D. and Riedel, M., “A deterministic approach to stochastic computation,” Proc. 

Proc. Int. Conf. on Computer-Aided Design, pp. 1-8, 2016. 

[40] Kearfott, R.B., “Interval computations: Introduction, uses, and resources,” Euromath 

Bulletin, 2(1), pp. 95-112, 1996. 

[41] Keener, R.W. Theoretical Statistics: Topics for a Core Course. Springer, 2010. 

[42] Knag, P., Lu, W. and Zhang, Z., “A native stochastic computing architecture enabled 

by memristors,” IEEE Trans. Nanotech., 13(2), pp. 283-293, 2014. 

[43] Kohavi, Z. and Jha, N.K. Switching and Finite Automata Theory, 3rd ed. Cambridge 

Univ. Press, 2010. 

[44] Krizhevsky, A. and Hinton, G. “Learning multiple layers of features from tiny images,” 

University of Toronto Tech. Report. 1(4), 2009. 

[45] Laub, A.J. Matrix Analysis for Scientists and Engineers. SIAM, 2005. 

[46] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., “Gradient-based learning applied to 

document recognition,” Proc. IEEE, 86(11), pp. 2278-2324, 1998. 



138 

 

[47] Lee, V.T., Alaghi, A. and Ceze, L., “Correlation manipulating circuits for stochastic 

computing,” Proc. Conf. on Design, Automation & Test in Europe, pp. 1417-1422, 

2018. 

[48] Lee, V.T., Alaghi, A., Hayes, J.P., Sathe, V. and Ceze, L., “Energy-efficient hybrid 

stochastic-binary neural networks for near-sensor computing.” Proc. Conf. on Design, 

Automation & Test in Europe, pp. 13-18, 2017. 

[49] Lee, X.R., Chen, C.L., Chang, H.C. and Lee, C.Y., “A 7.92 Gb/s 437.2 mW stochastic 

LDPC decoder chip for IEEE 802.15. 3c applications,” IEEE Trans. Circuits and 

Systems I, 62(2), pp.507-516, 2015. 

[50] Li, J., Yuan, Z., Li, Z., Ding, C., Ren, A., Qiu, Q., Draper, J. and Wang, Y., “Hardware-

driven nonlinear activation for stochastic computing based deep convolutional neural 

networks,” Proc. Int. Joint Conf. on Neural Nets., pp. 1230-1236, 2017. 

[51] Li, P. and Lilja, D.J., “Using stochastic computing to implement digital image 

processing algorithms,” Proc. Int. Conf. Computer Design, pp. 154-161, 2011. 

[52] Li, P., Lilja, D. J., Qian, W., Bazargan, K. and Riedel, M. D., “The synthesis of complex 

arithmetic computation on stochastic bit streams using sequential logic,” Proc. Int. 

Conf. on Computer-Aided Design, pp. 480-487, 2012. 

[53] Liu, X., Cheng, M., Zhang, H. and Hsieh, C.J., “Towards robust neural networks via 

random self-ensemble,” Proc. European Conf. on Comp. Vision, pp. 369-385, 2018. 

[54] Manohar, R., “Comparing stochastic and deterministic computing,” IEEE Comp. Arch. 

Letters, 14(2), pp. 119-122, 2015. 

[55] Marconi, T. and Sorin C., “Dynamic bitstream length scaling energy effective 

stochastic LDPC decoding,” Proc. Great Lakes Symp. on VLSI, pp. 245-248, 2015. 

[56] Marin, S.T., Reboul, J.Q. and Franquelo, L.G., “Digital stochastic realization of 

complex analog controllers,” IEEE Trans. Industrial Electronics, 49(5), pp.1101-1109, 

2002. 

[57] Mizera, A., Pang, J. and Yuan, Q., “Reviving the two-state Markov chain approach,” 

IEEE/ACM Trans. Computational Biology and Bioinformatics, 15(5) pp. 1525-1537, 

2018. 

[58] Nickolls, J., Buck, I. and Garland, M., “Scalable parallel programming,” Proc. Hot 

Chips 20 Symp., pp. 40-53, 2008. 

[59] Paler, A., Kinseher, J., Polian, I. and Hayes, J.P., “Approximate simulation of circuits 

with probabilistic behavior.” Proc. Int. Symp. Defect and Fault Tolerance in VLSI and 

Nanotechnology Sys., pp. 95-100, 2013. 

[60] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B. and Swami, A., 

“Practical black-box attacks against machine learning,” Proc. Asia Conf. on Comp. and 

Communications Security, pp. 506-519, 2017. 



139 

 

[61] Silberman, N., Hoiem, D., Kohli, P. and Fergus, R., “Indoor segmentation and 

support inference from rgbd images,” Proc. European Conf. on Comp. Vision, pp. 

746-760, 2012. 

[62] Sim, H. and Lee, J., “A new stochastic computing multiplier with application to deep 

convolutional neural networks,” Proc. Design Automation Conf., pp. 1-6, 2017. 

[63] Simonyan, K. and Zisserman, A. “Very deep convolutional networks for large-scale 

image recognition,” Proc. Int. Conf. on Learning Representations, 2015. 

[64] Stathis, P. et al. “An evaluation survey of binarization algorithms on historical 

documents,” Proc. Int. Conf. on Learning Representations, pp. 1-4, 2008. 

[65] Qian, W., Li, X., Riedel, M. D., Bazargan, K. and Lilja, D. J., “An architecture for 

fault-tolerant computation with stochastic logic,” IEEE Trans. Computers, 60, pp. 93-

105, 2011. 

[66] Ranjan, R. K., Singhal, V., Somenzi, F., Brayton, R.K., “Using combinational 

verification for sequential circuits.” Proc. Conf. on Design, Automation & Test in 

Europe, pp.138-144, 1999. 

[67] Rho, J.K., Hachtel, G.D., Somenzi, F. and Jacoby, R.M., “Exact and heuristic 

algorithms for the minimization of incompletely specified state machines,” IEEE 

Trans. CAD, 13, pp. 167-177, 1994. 

[68] Tehrani, S.S., Gross, W.J. and Mannor, S. “Stochastic decoding of LDPC codes.” IEEE 

Communications Letters, 10(10), pp. 716-718, 2006. 

[69] Ting, P.-S. and Hayes, J. P., “Isolation-based decorrelation of stochastic circuits,” Proc. 

Int. Conf. Computer Design, pp. 88-95, 2016. 

[70] Ting, P.-S. and Hayes, J. P., “On the role of sequential circuits in stochastic 

computing,” Proc. Great Lakes Symp. on VLSI, pp. 475-478, 2017. 

[71] Ting, P.-S. and Hayes, J. P., “Stochastic logic realization of matrix operations,” Proc. 

Euromicro Conf. on Digital Sys. Design, pp. 356-364, 2014. 

[72] Ting, P. and Hayes, J. P., “Eliminating a hidden error source in stochastic circuits,” 

Proc. Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 1-6, 2017. 

Received the conference’s Best Paper award. 

[73] Ting, P. and Hayes, J. P., “Maxflow: minimizing latency in hybrid stochastic-binary 

systems,” Proc. Great Lakes Symp. on VLSI, pp. 21-26, 2018. 

[74] Ting, P. and Hayes, J. P., “Removing constant-induced errors in stochastic circuits,” 

To appear in IET Comp. & Digital Techniques, 2018. 

[75] Vahapoglu, E. and Altun, M., “Accurate synthesis of arithmetic operations with 

stochastic logic,” Proc. ISVLSI, pp.415-420, 2016. 



140 

 

[76] Van Daalen, M., Jeavons, P. and Shawe-Taylor, J., “A stochastic neural architecture 

that exploits dynamically reconfigurable FPGAs,” Proc. Workshop on FPGAs for 

Custom Computing Machines, pp. 202-211, 1993. 

[77] Yuan, B. and Parhi, K.K., “Belief propagation decoding of polar codes using stochastic 

computing,” Proc. Int. Symp. on Circuits and Systems, pp. 157-160, 2016. 

[78] Yue, L., Ganesan, P., Sathish, B.S., Manikandan, C., Niranjan, A., Elamaran, V. and 

Hussein, A.F., “The importance of dithering technique revisited with biomedical 

images—a survey,” IEEE Access, 7, pp. 3627-3634, 2019. 


	Design of Sequential Stochastic Computing Systems
	© Paishun Ting 2019
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ABSTRACT
	CHAPTER 1  Introduction
	1.1 Motivation
	1.2 Stochastic Computing
	1.3 Research Challenges
	1.4 Dissertation Outline

	CHAPTER 2  Random Fluctuation
	2.1 Errors Induced by Randomness
	2.2 The Role of Constants
	2.3 Constant Elimination
	2.4 Case Studies
	2.5 Summary

	CHAPTER 3  Correlation
	3.1 Correlation in Stochastic Circuits
	3.2 Mitigating Correlation Errors
	3.3 Isolation-Based Decorrelation
	3.4 Optimizing Isolator Placement
	3.5 Case Studies
	3.6 Summary

	CHAPTER 4  Sequential Stochastic Circuits
	4.1 Role of Sequential Elements in SC
	4.2 Behavior of Sequential Stochastic Circuits
	4.3 Shift-Register-Based Circuits
	4.4 Optimal-Modulo-Counting Circuits
	4.5 Autocorrelation
	4.6 Summary

	CHAPTER 5  Stochastic-Binary Hybrid Systems
	5.1 Integration of SC and Binary Components
	5.2 Latency Minimization for Complex Functions
	5.3 Implementation of Maxflow
	5.4 Case Study: Artificial Neural Network
	5.5 Summary

	CHAPTER 6  Exploiting Randomness in SC
	6.1 Randomness in Stochastic Numbers
	6.2 Controlling Randomness in SC
	6.3 Case Study: Image Dithering
	6.4 Case Study: Neural-Network Hardening
	6.5 Summary

	CHAPTER 7  Conclusions
	7.1 Summary of Contributions
	7.2 Directions for Future Work

	APPENDIX
	A.1 Proof of Theorem ‎2.1
	A.2 Proof of Theorem ‎2.2
	A.3 Proof of Theorem ‎3.1
	A.4 Proof of Theorem ‎4.4
	A.5 Proof of Theorem ‎6.1

	BIBLIOGRAPHY

