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ABSTRACT 

 Obesity is a substantial problem in the U.S., with growing rates particularly at early 

developmental stages (e.g., childhood, adolescents). Several factors may contribute to the 

development of overeating and obesity, including elevated craving in response to food-related 

cues, individual susceptibility to food-related cues, and neural changes associated with 

behavioral phenotypes implicated in obesity. The current dissertation aims to shed light on these 

contributing factors, in an effort to better understand obesity risk and contribute to the 

development of effective interventions. 

 Study 1 aimed to test the incentive-sensitization theory of addiction by examining food 

motivation, hunger, and consumption in a cue-rich compared to neutral environment. Participants 

(n = 126) were randomized to either a naturalistic fast-food laboratory or a neutral laboratory, 

where they provided self-reported ratings of “wanting,” “liking,” and hunger, and engaged in a 

task assessing food motivation and food consumption. Study 1 found that “wanting,” hunger, and 

consumption were greater in the cue-rich compared to neutral laboratory, while “liking” did not 

differ between conditions. This study provides support for the incentive-sensitization theory as 

applied to eating behavior.  

Study 2 developed and tested a novel paradigm for identifying two phenotypes of cue-

responsivity, sign-tracking and goal-tracking. Children aged 5-7 (n = 64) engaged in a Pavlovian 

conditioning task designed to assess propensity to engage with a cue (sign-tracking) versus the 

location of a reward (goal-tracking). Children then engaged in tasks assessing food motivation 
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and inhibitory control. Contrary to hypotheses, Study 1 did not find a distinct goal-tracking 

phenotype, and did not find sign-tracking behavior to be associated with either food motivation 

or inhibitory control. Considerations for how to examine these phenotypes in future research are 

discussed.  

Study 3 examined how resting state functional connectivity (rsFC) relates to obesity, food 

consumption, food motivation, and inhibitory control in adolescents (n = 164) aged 13-16 who 

ranged from lean to obese. Participants completed tasks assessing food motivation and inhibitory 

control, then on a second visit underwent a resting-state scan and then completed a food 

consumption task in a cue-rich environment. Obesity and elevated food motivation were found to 

be marked by altered connectivity in areas in the salience network (e.g., caudate, NAcc, OFC) 

and the default mode network (e.g., PCC, hippocampus). However, obesity was not found to be 

associated with behavioral outcomes, thus these behaviors were not found to mediate 

associations between obesity and rsFC patterns. These findings provide suggestions as to 

effective prevention and intervention targets. 

 The current dissertation provides evidence for a strong role of elevated food motivation 

(especially in the context of food cues) in the overconsumption of palatable foods. Clinical 

implications and suggestions for intervention are discussed. 
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CHAPTER I 

Introduction to Three-paper Project 

 

 Obesity is a growing problem in the United States, where nearly 35% of adults and nearly 

17% of children and adolescents are obese (Ogden, Carroll, Kit, & Flegal, 2014). The high rate 

of obesity in children is especially concerning, as those who become obese early in life are likely 

to remain obese in adulthood (Dietz, 1998). With obesity also comes risk for developing physical 

health problems, such as heart disease and diabetes (Dixon, 2010; Must et al., 1999; Reilly et al., 

2003), and obesity and its ensuing issues contribute to higher healthcare costs (Allison, Zannolli, 

& Venkat Narayan, 1999). Despite the negative public health consequences of obesity, current 

treatment approaches show limited long-term effectiveness (Dombrowski, Knittle, Avenell, 

Araujo-Soares, & Sniehotta, 2014; Ho et al., 2012; Kelly et al., 2013), illustrating the need for 

improved intervention efforts.  

Research into the mechanisms underlying behaviors associated with obesity may assist in 

the development of targeted interventions, as it is possible that different behavioral phenotypes 

of obesity may be more responsive to different treatments. For example, one intervention may be 

most effective for those who have difficulty controlling the urge to eat when presented with 

palatable food, while another intervention may be most effective for those who are highly 

motivated to seek out food. Recent research has suggested that overeating and obesity may share 

biological and psychological underpinnings with addiction (Avena, Rada, & Hoebel, 2008; 
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Berridge, Ho, Richard, & DiFeliceantonio, 2010; Volkow, Wang, Fowler, & Telang, 2008), 

suggesting that intervention approaches effective in the treatment of addiction (e.g., targeting 

craving or ability to resist the impulse to use) may also assist in the treatment of obesity. In order 

to develop interventions targeted to specific behavioral phenotypes, it is first necessary to 

understand various developmental, behavioral and environmental influences on different profiles 

of risk for obesity. This will assist in the identification of those at particular risk for developing 

obesity, and the development and selection of appropriately targeted interventions. 

Incentive Salience: Enhanced “Wanting” for Food 

 Overconsumption of palatable foods can be influenced by excessive “wanting,” or 

enhanced motivation to obtain a reward (Berridge, 2009). Under the incentive-sensitization (IS) 

theory of addiction, “wanting,” mediated by neural dopamine circuitry, is a primary driver of 

compulsive behavior (Berridge & Robinson, 2016; T. E. Robinson & Berridge, 2000). 

“Wanting” is thought to be unconscious and is distinct from “liking” (i.e., hedonic pleasure 

derived from a reward) (Peciña, Caginard, Berridge, Aldridge, & Zhuang, 2003). “Wanting” is 

also thought to occur primarily in the context of relevant cues (Berridge & Robinson, 2016). For 

example, upon repeated intake of highly palatable foods, cues related to such foods become 

particularly attractive, and can develop the power to trigger craving and overeating (Berridge et 

al., 2010). Upon repeated exposure, these cues are imbued with increased incentive salience (i.e., 

are more likely to draw and hold attention). Thus, individuals who are attuned or responsive to 

cues may be at increased risk for compulsive consumption of a substance such as food. In 

obesity, this phenomenon is particularly important to consider, as cues (e.g., advertisements, fast 

food restaurants, vending machines, etc.) for highly palatable foods are omnipresent in the 

Western food environment. In an environment rich in food cues, it may be difficult to resist the 
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urge to overeat, even for individuals who are relatively healthy. These cues may also prompt 

overconsumption in individuals displaying high motivation to consume palatable foods. 

 “Wanting” may manifest as craving, or an increased motivational drive to obtain and 

consume a substance such as food (Epstein, Leddy, Temple, & Faith, 2007) (T. E. Robinson & 

Berridge, 2000). One potential index of motivational drive for food is the Relative Reinforcing 

Value (RRV) task (Epstein & Leddy, 2006; Saelens & Epstein, 1996). This task assesses how 

much effort participants are willing to expend, by making a progressively increasing number of 

button presses, for a reward such as food. The RRV task has been used with both child and adult 

samples, and appears to be related to elevated BMI and elevated consumption across age ranges 

(Gearhardt et al., 2017; Rollins, Loken, Savage, & Birch, 2014; Temple, 2014; Temple, 

Legierski, Giacomelli, Salvy, & Epstein, 2008). Further, the reinforcing value of food as 

measured by the RRV task has been shown to assess a separate construct from the hedonic value 

of food, just as wanting is theorized to be separable from liking (Epstein, Truesdale, Wojcik, 

Paluch, & Raynor, 2003).  Another potential measure of wanting may be feelings of hunger. 

Food-related cues have been shown to be associated with both self-report of hunger and an 

increase in hunger-related gut peptides (e.g., ghrelin, orexin), even when an individual is in a 

state of satiety (Cohen, 2008; Cornell, Rodin, & Weingarten, 1989; Volkow, Wang, & Baler, 

2011). It is possible that cue-triggered feelings of hunger may represent increased wanting, and 

thus may contribute to excess consumption. 

 To test IS in human eating behavior, Study 1 of this dissertation employed a cue-rich, 

naturalistic, fast-food restaurant laboratory to examine the impact of cues on enhanced 

motivation, or “wanting,” as measured by both self-report and RRV performance. The study also 

investigated the effect of cues on feelings of hunger, which may also represent wanting. We also 
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tested whether the cue-rich environment has an effect on liking, as according to IS theory liking 

should be separable from wanting. Finally, Study 1 measured caloric consumption, in order to 

determine the impact that cue-triggered wanting may have on food intake. 

Individual Differences in the Attribution of Incentive Salience to Cues 

 While environmental food cues may increase risk for developing obesity, not every 

individual exposed to cues will become obese. Behavioral and biological differences may help 

explain why some individuals are at risk compared to others. Animal models have identified 

different conditioned responses to food cues that may promote understanding of different 

pathways to obesity. When trained to associate a cue (e.g., a light or sound) with the delivery of 

food, animals such as rats can display a tendency to interact with the cue itself (sign-tracking) or 

with the area where the food is to be delivered (goal-tracking) (Boakes, 1977; Brown & Jenkins, 

1968). For sign-trackers (STs), the cue appears to take on incentive salience, while for goal-

trackers (GTs), it does not (Flagel, Akil, & Robinson, 2009). In animal models, STs appear to be 

most prone to displaying reward-seeking behavior in response to discrete, localizable cues, while 

GTs may be more responsive to cue-rich contexts associated with use (T. E. Robinson, Yager, 

Cogan, & Saunders, 2014; Saunders, O'Donnell, Aurbach, & Robinson, 2014). However, to our 

knowledge, very few studies have attempted to identify these phenotypes in humans (Garofalo & 

di Pellegrino, 2015; Versace, Kypriotakis, Basen-Engquist, & Schembre, 2016). Understanding 

whether and how these phenotypes manifest in human eating behavior may help in the 

development of more effective interventions to manage one’s response to food cues, for example 

by training one’s ability to inhibit response to distinct cues, or by teaching coping skills for use 

when one is in a cue-rich context. 
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 Individuals who have difficulty implementing executive function abilities in response to 

enhance cue-triggered wanting may also be more likely to develop obesity. Executive function 

(EF), or processes allowing for the cognitive control of behavior, can encompass several 

different facets, including working memory, cognitive flexibility, and inhibitory control 

(Diamond, 2013). Inhibitory control, or the ability to resist temptation or urges to act impulsively 

(Diamond, 2013), is particularly relevant with regard to food intake. When presented with a 

highly palatable food such as a cookie or pizza, or even with a cue pertaining to the food, 

inhibitory control is required to prevent excess consumption of the food. The Go-No-go task 

(Batterink, Yokum, & Stice, 2010; Grammer, Carrasco, Gehring, & Morrison, 2014; Kawashima 

et al., 1996), which requires one to inhibit a pre-potent response to certain stimuli, may be a 

useful measure to assess inhibitory control difficulties that might increase ones vulnerability to 

overeating in the presence of cues.  

For some individuals, additional factors might contribute to increasing the difficulty of 

controlling the impulse to consume food. For example, those who find palatable foods highly 

rewarding or “wanted” may have more difficulty inhibiting the desire to consume the food. In 

fact obesity appears to be associated with neural circuitry involved in both increased reward 

sensitivity and impaired inhibitory control (Volkow et al., 2011). In rats, a sign-tracking 

phenotype is also related to lower attentional and inhibitory control ability and a greater 

propensity for impulsive action, suggesting that STs may be at even further risk of excessive 

consumption in the presence of salient food cues (Lovic, Saunders, Yager, & Robinson, 2011; 

Paolone, Angelakos, Meyer, Robinson, & Sarter, 2013). Thus, factors such as motivational drive 

for food and an inability to inhibit a response could make some individuals especially vulnerable 

to overconsumption in response to cues. However, there is some evidence that training one to 
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inhibit a prepotent response may be an effective method to reduce the risk of overeating (Houben 

& Jansen, 2011; Lawrence et al., 2015). As these phenotypes may be indicative of future risk for 

developing obesity, identifying them early in development (i.e., childhood) would provide 

greater opportunity to implement obesity prevention efforts. 

 To investigate how individual differences in the attribution of incentive-salience to cues 

may impact eating behavior, Study 2 of this dissertation developed and tested the feasibility of a 

novel paradigm to identify sign-tracking and goal-tracking phenotypes in human children. This 

study also examined how food motivation and inhibitory control are associated with each 

phenotype by investigating the association between sign-tracking and goal-tracking behavior and 

performance on the RRV and Go-No-go tasks. 

Developmental and Biological Influences on Eating Behavior 

 Across development, individuals may be more vulnerable to overeating and obesity due 

to factors prominent at different points in development. For example, children in general appear 

to be highly motivated to access and consume food, and children experience higher craving than 

adults (Rollins et al., 2014; Silvers et al., 2014). Upon reaching adolescence, parental control 

over behavior is diminished and adolescents typically experience an increase in access to 

disposable income and personal decision-making (Sanders, 2013). These aspects of adolescence 

can lead to increased opportunity to access and consume unhealthy foods. However, at this stage 

individuals may still be more influenced by bottom-up control (e.g., rewarding and motivating 

properties of food) rather than by top-down inhibitory control (Casey, Jones, & Hare, 2008; 

Sanders, 2013). This increased independence continues in young adulthood, particularly in a 

college setting, when individuals are making even more independent decisions about food 

consumption (Cluskey & Grobe, 2009; Nelson, Kocos, Lytle, & Perry, 2009). 
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The relative differences in developmental rate of certain areas of the brain may also 

increase the likelihood of overeating at different ages. In children, the prefrontal cortex (PFC), 

which is responsible for successful executive function capabilities, is not yet fully developed 

(Casey, Giedd, & Thomas, 2000). Thus, children are not as adept at decision-making about foods 

or inhibiting the response to consume foods as adults may be. In adolescence, not only is the 

PFC still developing, but neural regions implicated in reward are relatively more developed 

(Casey et al., 2000; Casey et al., 2008). This leaves adolescents especially prone to engaging in 

risky behaviors, including excess consumption of highly palatable foods.  As children and 

adolescents are at high risk for developing obesity, it is important to understand developmental 

influences on food consumption. Seventeen percent of children in the United States are obese 

(Ogden et al., 2014), and research suggests that once an individual is obese, they are more likely 

to remain so than to return to a healthy weight (Dietz, 1998; Kelly et al., 2013; Reilly, 2005). 

Thus, identifying factors that influence overconsumption at different stages of development and 

targeting these factors in prevention efforts may help reduce the risk of obesity in children and 

adolescents. 

 Biological differences may also be present in individuals who are more prone to 

overeating and obesity. Neuroimaging studies have found that when presented with images of 

palatable foods, individuals who are obese compared to lean show increased activity in regions 

implicated in reward processing (Bruce et al., 2010; Rothemund et al., 2007). In addition to 

differing patterns of activation in response to food-related tasks, preliminary research suggests 

that obesity may be marked by underlying differences in patterns of resting state functional 

connectivity (rsFC) (Garcia-Garcia et al., 2013; Kullmann et al., 2012; Lips et al., 2014). rsFC 

patterns reflect areas of the brain that are more likely to become activated or deactivated 
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together, allowing for the identification of neural networks consisting of regions involved in 

related functions (Greicius, 2008; van den Heuvel & Hulshoff Pol, 2010). Research on healthy 

adults has identified intrinsic neural networks involved in functions such as salience processing, 

executive control, vision, and attention (Barrett & Sapute, 2013). Task-based neuroimaging 

research has found altered activation in regions implicated in reward processing and executive 

function to be associated with obesity (Carnell, Gibson, Benson, Ochner, & Geliebter, 2012). As 

regions of the brain function together to facilitate psychological and behavioral processes 

(Barrett & Sapute, 2013), rsFC analysis allows for better understanding of how neural networks 

contribute to behaviors of interest. Examining rsFC in individuals who are obese compared to 

lean will allow us to understand how intrinsic neural networks might be dysregulated in obesity.  

Previous research has found obesity to be associated with alterations in canonical 

intrinsic networks including the salience network (SN) and default mode network (DMN) 

(Garcia-Garcia et al., 2013; Kullmann et al., 2012). However, studies on rsFC and obesity to date 

have focused primarily on adults, have employed relatively small sample sizes, and have not 

examined the relationship between rsFC and behavioral phenotypes of obesity.  Study 3 of this 

dissertation aimed to address these gaps by testing for associations between rsFC patterns and 

weight status (i.e., lean, overweight, or obese) and performance on tasks assessing food 

motivation (RRV) and inhibitory control (Go/No-go task). Relating rsFC patterns to behavioral 

task performance will provide insight into how any dysregulation in rsFC networks might be 

associated with facets that may contribute to overeating behavior. A greater understanding of 

these relationships can assist in the development of improved targeted obesity interventions. 

Clinical Implications and Summary 
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 The factors contributing to obesity risk in varying situations and at varying stages of 

development could imply that specific treatment targets may be more effective for certain 

populations and in certain situations. In childhood, the primary focus may be on prevention. 

There is evidence that children’s brains are highly plastic in response to behavioral intervention 

(E. A. Hayes, Warrier, Nicol, Zecker, & Kraus, 2003), thus childhood may be a prime time 

period to train skills such as inhibitory control. Thus, identifying risky profiles such as sign-

tracking could provide the opportunity for early intervention focused on training children to 

inhibit their automatic response to cues signaling food delivery, such that the likelihood of 

excess consumption and development of obesity is reduced.  

As neural regions related to reward processing become more powerful in adolescence, it 

may be important to incorporate intervention strategies aimed at coping with elevated craving, or 

motivation to consume rewarding foods. One example of such a strategy may be to use 

mindfulness skills such as “urge surfing” (Bowen & Marlatt, 2009; K. T. Jenkins & Tapper, 

2014), to enhance one’s ability to wait out a craving without giving in to the urge to consume. 

Research suggests that behavioral interventions can actually lead to connectivity changes in the 

brain (Kuhn, Gleich, Lorenz, Lindenberger, & Gallinat, 2014; R. Li et al., 2014; Voss et al., 

2010), so a fuller understanding of resting state network dysregulation and related behavioral 

phenotypes of obesity will provide insight into appropriate behaviors and networks to target.  

In young adulthood, as individuals leave the parental home and begin living 

independently, interventions focusing on stimulus control may become increasingly important. 

Individuals entering a new environment such as college may be faced with increased access to 

unhealthy foods and increased exposure to related cues. As they begin to make an increasing 

number of independent decisions about the food they consume with less influence from their 
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parents, young adults may be particularly vulnerable to the effects of food cues. For example, 

while one may be able to inhibit the urge to consume unhealthy foods in a cue-rich environment 

(e.g., dining hall) one day, daily exposure to the same environment or exposure under times of 

stress could make it more difficult to resist that urge. Therefore, an effective intervention at this 

stage may involve learning to identify and anticipate risky environments or situations and limit 

one’s exposure. 

 In sum, the three studies comprising this dissertation aimed to provide insight into factors 

related to increased likelihood of obesity, thus aiding in the identification of effective 

intervention targets.  Study 1 examined how enhanced food motivation and elevated 

consumption are impacted by environmental cues for palatable foods. Study 2 attempted to 

identify conditioned responses to food cues and test their relationship to food motivation and 

inhibitory control to better understand how they may increase risk of overeating. Study 3 

investigated relationships between rsFC patterns and weight status, food motivation, inhibitory 

control, and consumption. Taken together, the results from these three studies should provide 

insight into how different environmental, behavioral, and psychological influences on overeating 

may manifest at different developmental stages. It is hoped that this dissertation will contribute 

to an improved understanding of factors influencing overeating and behavioral phenotypes of 

obesity, thus informing the development of targeted interventions and improving efforts at the 

prevention and treatment of obesity. 

  

  



	 11	

 

 

 

CHAPTER II 

The Impact of a Cue-Rich Context on Eating Behavior 

 

 Similar mechanisms may contribute to both overeating and addictive behaviors.  For 

example, consumption of both drugs of abuse and calorie-dense, nutrient-poor foods (e.g., 

cookies, cake) activates neuronal circuitry implicated in reward and motivation (Berridge, 2009; 

Volkow et al., 2008). While there are important differences between food and drugs of abuse, 

namely that food is necessary for survival, overeating and substance use are associated with 

similar behavioral consequences, such as craving, withdrawal, and binging (Avena et al., 2008; 

P. M. Johnson & Kenny, 2010). The incentive sensitization (IS) theory outlines potential shared 

mechanisms, proposing that compulsive consummatory behaviors are driven by “wanting” (i.e., 

a strong motivation to obtain and consume a substance; typically manifesting as craving or 

strong desire to use), rather than by “liking” (i.e., the hedonic pleasure derived from a substance) 

(T. E. Robinson & Berridge, 2000). Initially, the target substance is often both wanted and liked 

(M. J. Robinson, Fischer, Ahuja, Lesser, & Maniates, 2015), however with continued exposure, 

“wanting” can occur even after “liking” is diminished (Berridge, 2009). With repeated 

consumption, the user becomes sensitized to substance-related cues (T. E. Robinson & Berridge, 

2000), which begin to trigger dopaminergic release and increased “wanting” (Volkow et al., 

2011). In fact, T. E. Robinson and Berridge (2000) emphasize that evidence of IS is only 
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detectable in the context of associated cues. Thus, it is important to test the predictions outlined 

by the IS theory regarding eating behavior in a cue-rich context.  

Cues may also affect one’s motivational drive to consume food by increasing feelings of 

hunger. While hunger is usually interpreted as a homeostatic signal indicating caloric need, food 

is often consumed for other reasons, such as hedonic pleasure (Lowe & Butryn, 2007). 

Environmental cues can lead people to feel hungry even if they are in a state of satiety (Cohen, 

2008; A. W. Johnson, 2013). For example, when exposed to pizza or ice cream, individuals who 

previously indicated they were full expressed increased desire to eat (Cornell et al., 1989). While 

these feelings of hunger may be interpreted as caloric need, they may actually be occurring in 

response to environmental cues and may reflect increased motivational drive to acquire food. 

Further, biological systems implicated in reward communicate with homeostatic systems 

involved in the experience of hunger (Volkow et al., 2011). When individuals are exposed to 

palatable food cues in a state of satiety, this can lead to increased levels of gut peptides that are 

implicated in the experience of hunger (i.e., orexin and ghrelin) (Malik, McGlone, Bedrossian, & 

Dagher, 2008; Volkow et al., 2011).  Thus, feelings of hunger (which are often interpreted as 

caloric need) can actually signal increased cue-induced “wanting” or motivation to consume 

food. Understanding how feelings of hunger are affected by the presence of cues may help 

people better interpret and respond to such feelings in cue-rich contexts. Further, hunger state 

may also moderate the effect of cues. Generally, being in a state of hunger amplifies a cue’s 

incentive salience (Berridge et al., 2010). In a state of satiety, these effects may be dampened, 

with cues holding less motivational value. Thus, examining the interaction between hunger and 

the presence of cues will provide a better understanding of how hunger relates to food wanting. 
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Studies examining the effect of cues on eating behavior typically involve the sight and/or 

smell of the cued food (Boswell & Kober, 2016). Cue exposure in these paradigms has been 

associated with greater craving, consumption, hunger, and desire to eat (Fedoroff, Polivy, & 

Herman, 2003; Ferriday & Brunstrom, 2011; Tetley, Brunstrom, & Griffiths, 2010). However, 

little research has examined the effect of cues on both food wanting and food liking in the same 

study, which is necessary to thoroughly test IS. In studies that have, evidence for the separability 

of wanting and liking in human eating behavior has been mixed (Finlayson & Dalton, 2012; 

Havermans, 2011, 2012).  One reason may be that the cue paradigms used in these studies are 

not sufficient to trigger the intense wanting postulated by the IS theory. In a recent review of 

liking and wanting measurement (Pool, Sennwald, Delplanque, Brosch, & Sander, 2016), 76% of 

the studies reviewed used a photo of the food as the cue. However, some studies employing the 

sight or smell of a cued food have been unable to find a main effect of cue exposure on eating 

behavior (Coelho, Jansen, Roefs, & Nederkoorn, 2009; Zoon, He, de Wijk, de Graaf, & 

Boesveldt, 2014). While an image of the target food may be a sufficient cue to trigger wanting 

for some individuals, cues that trigger food wanting in everyday life likely include a combination 

of many elements in the environment where one consumes food. In a restaurant, for example, 

cues might include ambient music, the experience of being served by wait staff, and the 

furnishings of the dining room in addition to images, smells, and presentation of the food itself.  

Presenting a photo or the smell of the food alone does not address these contextual factors that 

may serve as additional cues.  It is possible that a more naturalistic, cue-rich environment, which 

includes contextual factors in addition to food presentation, is necessary to observe the 

separability of liking and wanting in laboratory studies. 
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Research on alcohol use has set a precedent for the study of appetitive behaviors in a cue-

rich environment. Simulated bar laboratories examine drinking behavior in an environment 

mimicking the setting in which people are likely to consume alcohol in their day-to-day life 

(Wall, Hinson, McKee, & Goldstein, 2001). Participants in these naturalistic settings report 

greater pleasurable subjective effects (e.g., greater stimulation, pleasurable disinhibition, 

sociability) from drinking compared to those in neutral settings (Wall et al., 2001), suggesting 

that the bar lab environment captures a more thorough range of factors that may contribute to 

problematic use. While bar labs are an important setting in alcohol research, an equivalent in 

food research has not been employed to evaluate differences in liking and wanting, limiting our 

understanding of the ability of food-related environmental cues to trigger food-seeking behavior 

or a pleasurable hedonic experience. Further, there have been no tests in either alcohol or food 

research of how liking and wanting may be differentially related to patterns of consumption in a 

cue-rich relative to neutral environment. Given that cues are central to triggering wanting, and 

that current cue paradigms (i.e., images, smells) have had limited success in observing a 

distinction between liking and wanting, examining eating behavior in a cue-rich, naturalistic 

environment may be a more thorough way to test the tenets of IS theory. 

The current study employed a cue-rich, simulated fast-food restaurant laboratory to test 

an IS model of eating behavior, examining how environmental cues impact food wanting, food 

liking, hunger, and consumption. Understanding the influence of cues in the environment on 

eating behavior may inform intervention and policy efforts to reduce obesity. 

Specific Aims 

1. Investigate the separability of wanting and liking proposed by IS in the fast-food 

laboratory (cue-rich environment) relative to a neutral environment.  
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2. Investigate how self-reported hunger differs in the cue-rich environment relative to the 

neutral environment. Given that hunger state may affect the incentive salience of cues, 

we will also conduct exploratory analyses investigating whether hunger at baseline 

moderates the relationship between laboratory environment and food wanting, liking, and 

consumption.  

3. Investigate differences in caloric consumption between the two conditions, and test 

mechanisms contributing to overeating by testing variables that are found to significantly 

differ by environment as mediators in the relationship between laboratory environment 

and caloric consumption.  

Methods 

Participants 

Participants were undergraduate students who received course credit as compensation.  

Participants were ineligible if they had food allergies or dietary restrictions that prohibited them 

from consuming the foods used in the protocol. One-hundred twenty-six participants completed 

the study. Two participants were excluded because of dietary restrictions they had not reported 

before participating in the study. Seven participants were excluded due to failing a validity check 

regarding their understanding of protocol instructions by answering one or more of three brief 

questions about study instructions incorrectly. Five participants were excluded for having 

outlying data (> 2 SD above the mean) in variables of interest, leaving a final sample size of 112. 

Participants’ mean age was 18.98 (SD = 1.24), and mean body mass index (BMI) was 23.66 (SD 

= 4.03). Weight status distribution was as follows; 4 (3.6%) participants were underweight, 74 

(66.1%) were normal-weight, 22 (19.6%) were overweight, and 10 (8.9%) were obese. Sixty-

four (57.1%) participants were female, 47 (42.0%) were male, and one participant did not report 
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gender. The racial breakdown was as follows: 84 (75.0%) White, 22 (19.6%) Asian, 4 (3.6%) 

Hispanic, 2 (1.8%) Black, 1 (0.9%) American Indian, and 2 (1.8%) other or more than one race. 

Participant demographic variables are presented in Table II.1. 

 

Procedure 

The study was approved by the University of Michigan Health and Behavioral Sciences 

Institutional Review Board. Written informed consent was obtained from all participants. 

Participants were randomly assigned to either a naturalistic fast-food laboratory (cue-rich 

environment) or a neutral laboratory (neutral environment; see Table II.1 for demographic and 

Table II.1 
 

Demographic and Baseline Characteristics of the Sample 
 Total Cue-rich Neutral F or Χ2 P η2 or φ 

Male 47 (42.%) 26 (43.3%) 21 (40.4%)    
Female 64 (57.1%) 33 (55.0%) 31 (59.6%)    
Gender    0.15 .70 -.04 
White 84 (75.0%) 43 (71.7%) 41 (78.8%)    
Asian 22 (19.6%) 11 (18.3%) 11 (21.2%)    
Hispanic 4 (3.6%) 3 (5.0%) 1 (1.9%)    
Black 2 (1.8%) 2 (3.3%) 0    
American Indian 1 (0.9%) 1 (1.7%) 0    
Other/More than one 
race 

2 (1.8%) 1 (1.7%) 1 (1.9%)    

Race    3.88 .57 .19 
Age 18.98 (1.24) 19.02 (1.20) 18.94 (1.31) 0.10 .75 .00 
BMI 23.66 (4.03) 23.94 (4.23) 23.35 (3.81) 0.60 .44 .01 
Underweight 4 (3.6%) 1 (1.7%) 3 (5.8%)    
Normal-weight 74 (66.1%) 39 (65.0%) 35 (67.3%)    
Overweight 22 (19.6%) 12 (20.0%) 10 (19.2%)    
Obese 10 (8.9%) 6 (10.0%) 4 (7.7%)    
Weight status    1.48 .69 .12 
Baseline food wanting 2.92 (1.12) 3.02 (1.19) 2.81 (1.03) 0.98 .33 .01 
Baseline game 
wanting 

3.20 (1.38) 3.13 (1.43) 3.27 (1.33) 0.27 .61 .00 

Baseline hunger 36.21 
(19.44) 

39.13 
(19.16) 

32.83 (19.40) 2.98 .09 .03 

YFAS symptom count 1.72 (1.28) 1.80 (1.23) 1.61 (1.34) 0.59 .45 .01 
TFEQ Restraint 12.85 (3.33) 12.82 (3.03) 12.88 (3.68) 0.01 .93 .00 
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baseline characteristics of each group). To standardize hunger, participants were instructed to eat 

whatever constituted a typical lunch for them at least one hour prior to arriving for the study. 

Study sessions were all conducted between lunchtime and dinnertime. Upon participants’ arrival 

in the lab, baseline ratings for self-reported food wanting and hunger were collected. Next, 

participants were taken to the randomly assigned environment. There, they engaged in the 

Relative Reinforcing Value (RRV; see Methods below for full description) task in order to earn 

tokens to be redeemed for foods typically available at a fast-food restaurant (i.e., cheeseburger, 

French fries, milkshake, non-diet soda) and/or for time to participate in an alternate activity (i.e., 

playing video games on a tablet).  After completing the RRV task, participants again provided 

ratings for self-reported food wanting and hunger (post-RRV wanting and hunger). Next, 

participants redeemed their tokens for both fast food and time to play games (RRV food 

consumption period; calorie and weight information shown in Table II.2. There is evidence that 

visually stimulating tasks such as playing video games can reduce food cravings (Skorka-Brown, 

Andrade, & May, 2014). To reduce this effect, participants were not allowed to consume food 

and play games simultaneously. Instead, participants redeemed tokens and chose to either 

consume food or play games first, then began the second activity once they finish engaging in 

the first. Participants were given the choice of which activity to engage in first. 

Table II.2 
Serving Sizes and Calorie Counts of Foods Available during RRV Consumption Period 
Food Weight (small) Calories (small) Weight (large) Calories (large) 
Cheeseburger 152.54g 390.50 305.08g 781.00 
French Fries 84.27g 158.43 133.53g 251.04 
Non-diet 
soda 364.58g 138.54 516.16g 196.14 

Milkshake 296.48g 490.67 435.12g 720.12 
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Following the consumption periods, participants received ad libitum access to snack 

foods (i.e., Lay’s potato chips, Cheez-its, M&Ms, Skittles) and games for 10 minutes, in order to 

assess the amount eaten when consumption is not limited by RRV performance (ad libitum 

consumption period; calorie and weight information shown in Table II.3). Snack foods were 

provided instead of the fast food items used in the RRV consumption period to minimize any 

effect of sensory-specific satiety (i.e., declining satisfaction due to intake of the same type or 

flavor of food) on consumption (Rolls, 1986). Next, participants were taken to a separate room 

where they completed a survey including self-reported liking for the foods consumed during the 

study and demographics. Finally, height and weight measurements were collected in order to 

calculate body mass index (BMI; kg/m2). These measurements were taken at the conclusion of 

the study in order to prevent any influence they might have on eating behavior. A flowchart 

illustrating the entire study procedure is shown in Figure II.1. 

Table II.3 
Serving Sizes and Calorie Counts of Foods Available during Ad Libitum Consumption 
Period 
Food Weight Calories 
Lay’s potato chips 60g 342.6 
Cheez-its 100g 500 
Skittles 125g 500 
M&Ms 125g 500 
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Baseline self-
report measures: 
Baseline hunger 
Baseline wanting 

Entry into laboratory 
environment 

Cue-rich simulated 
fast food laboratory 

Neutral laboratory 
 

Relative Reinforcing Value (RRV) of food and games task 

Post-RRV measures: 
 

Post-RRV wanting 
Post-RRV hunger 

RRV consumption period 
Available foods: Cheeseburger, milkshake, French fries, Non-diet cola 

 

Ad libitum consumption period 
Available foods: Skittles, M&Ms, Lay’s potato chips, Cheez-its 

Leave laboratory 
environment 

Completion of post-study self-
report measures: 

Liking 
Food Addiction 

Restraint 

Height and weight measured 
in lab 

Figure II.1. Flowchart illustrating procedure timeline. 
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Laboratory environment. The cue-rich environment was designed to simulate the 

experience of being in a fast-food restaurant. This environment included condiment and napkin 

holders, tables and accompanying chairs and booths, and had low background music playing. 

Menu boards with images of each food or game were projected on large television screens (see 

Figures II.2 and II.3). Participants ordered from a kitchen window through which industrial 

restaurant-style food storage and preparation appliances were visible. Research assistants who 

took orders from and served participants wore aprons and hats similar to those worn by fast-food 

employees. French fries were cooked in the kitchen immediately before participants arrived in 

the lab in order to simulate olfactory aspects of the fast-food experience. In the cue-rich 

environment, participants were served food on red plastic trays, and serving implements (e.g., 

paper sleeves for burgers and French fries, cups for soda and milkshakes) were chosen to 

resemble those seen in fast-food restaurants.  

 
Figure II.2. Food menu board 
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The neutral environment was an office space in the research laboratory. In this 

environment, text-only menu boards were printed on laminated paper and hung on the wall. A 

research assistant dressed in street clothes came in to take participants’ orders, and participants 

did not have a view of food preparation. No music was playing, and an air filter was used to 

ensure a neutral scent. Participants in the neutral environment were served food on clear plastic 

trays, and serving implements (e.g., paper plates and cups) were chosen to resemble those that 

one might buy for use at home. 

Measures 

Relative reinforcing value of food and games (food RRV, game RRV). As a 

behavioral measure of wanting, we used the relative reinforcing value (RRV) task (Epstein et al., 

2007; Saelens & Epstein, 1996; Temple, 2014). In this task, participants respond with a number 

of button presses on a computer to earn points that can be used to obtain fast foods (i.e., 

cheeseburger, French fries, milkshake, and soda), and time playing video games on a tablet (i.e., 

Figure II.3. Game menu board 
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Angry Birds, Temple Run, Solitaire, and Bejeweled). Games served as an alternate reinforcer to 

ensure that food RRV reflected motivation to work for food, and that participants were not 

working for food out of boredom or lack of other options. Participants were allowed to move 

back and forth between stations as they wish, and could continue the task to earn as many points 

as they wished. The task ended when the participant chose to stop playing for points.  

The RRV computer task consisted of a screen showing three different shapes, and each 

time the participant pressed the mouse button the shapes would change. When all three shapes 

matched, participants earned one point. For every 5 points earned in the current study, 

participants received one token that could be used toward the relevant reinforcer once they were 

finished with the RRV task. Points were earned on a fixed ratio reinforcement schedule 

beginning at 50 button presses (FR50), and doubling every 5 points (i.e., FR100, FR200, FR400, 

FR800, FR1600, FR3200, FR6400, FR12800). Food and game RRV were determined by the 

highest fixed ratio schedule completed for each reinforcer. Upon completion of the RRV task, 

participants were given the opportunity to redeem their tokens for food and games. 

Self-reported food and game wanting. In order to assess wanting for food and games, 

participants responded to the questions “How much do you WANT to eat food right now?” and 

“How much do you WANT to play games right now?” on a 1-6 scale ranging from “Not at all” 

to “Very much.” This measurement was collected at three timepoints: at baseline, post-RRV, and 

post-study. 

Food and game liking. During the post-study measures, participants rated how much 

they liked the taste of each food they ate during the study on a 1-6 scale ranging from “Not at 

all” to “Very much.” This rating was averaged across all the foods eaten by the participant to 

obtain an overall liking rating. Participants also rated on the same scale how much they enjoyed 
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the food they ate during the study, to capture hedonic pleasure aspects non-specific to taste. 

Eleven participants chose not to order any food during the RRV consumption period, and thus 

are not included in liking analyses. Finally, participants rated on the same scale how much they 

enjoyed playing the games during the study. 

Hunger. To assess feelings of hunger, participants used a visual analog scale (VAS) to 

rate their hunger on a 0-100 scale ranging from “I am not hungry at all” to “I have never been 

more hungry.” 

Food consumption. During the RRV food consumption period, participants traded their 

tokens obtained during the task for small or large portions of the fast foods of their choice 

(serving sizes and calorie information shown in Table II.2). They also had access to packets of 

condiments commonly found in fast food restaurants (i.e., mustard, ketchup, mayonnaise, salt, 

pepper). After participants ordered food following the RRV task, researchers prepared the food 

and weighed the food in grams before serving. Once the participant was finished eating, 

researchers weighed any remaining food. The post-weight was subtracted from the pre-weight to 

calculate the weight consumed. The weight of any condiments consumed was estimated based on 

the number of condiment packets used by the participant and the standard weight of each 

condiment packet.  

During the ad libitum consumption period, all participants had access to bowls containing 

standardized amounts (see Table II.3) of four snack foods for ten minutes. After this period, the 

bowls were weighed and the post-weights were subtracted from the pre-weights to calculate the 

weight of each snack food consumed. For both consumption periods, calories consumed were 

calculated based on the weight consumed and the calories per gram of each food item, obtained 

using the labeled nutrition facts of each food item. Calorie consumption was calculated based on 
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the amount of food consumed following the RRV task and ad libitum consumption separately. 

Total calories consumed were calculated by adding together the RRV and ad libitum calories 

consumed by each participant. 

Data analytic plan 

 All analyses were conducted using IBM SPSS 22 (IBM, 2013). We first used frequencies 

to examine the distributions of all variables of interest and to check for missing data. Two 

outliers (>2 SD above the mean) were found in the total calorie consumption variable, two 

outliers were found in the ad libitum calorie consumption variable, and one outlier was found in 

the game RRV variable. These cases were removed to normalize the distribution of these 

variables. We also found some individuals to be missing data for specific variables due to 

reasons such as errors in the survey program preventing that data from being saved properly or 

not completing portions of the study protocol1. These participants were excluded only from 

analyses involving those variables for which they were missing data. To assess for potential 

covariates, we conducted correlational analyses and one-way analysis of variance (ANOVA) to 

examine relationships between demographic variables (i.e.. race, age, gender, BMI) and the 

dependent variables (e.g., food RRV, post-RRV food wanting, post-consumption food liking, 

post-RRV hunger, RRV food consumption, and ad libitum food consumption). No significant 

associations were found (all p’s >.05), thus these variables were not included as covariates. We 

conducted a one-way ANOVA and chi-square analyses to determine the success of random 

distribution of demographic variables into each condition. Demographic variables, baseline food 

																																																								
1 Five participants were missing data from the post-RRV survey measures (i.e., food and game 
wanting, hunger) due to errors saving the data. The ad libitum protocol described in this article 
was added to the study after 12 participants had already taken part, thus ad libitum and total 
consumption data is only included for those who took part after the ad libitum protocol was 
added to the study.	



	 25	

and game wanting, and baseline hunger did not differ significantly by condition (all p’s > .05; 

see Table II.1 for group means). 

To test Aim 1, we conducted a one-way ANOVA to examine whether food wanting and 

food liking differed between experimental conditions (i.e., cue-rich or neutral laboratory 

environment). In order to ensure that any differences in wanting and liking were specific to food, 

we also tested whether game wanting and game liking differed by condition.  

To test Aim 2, we conducted a one-way ANOVA to test whether self-reported hunger 

differed between experimental conditions. We also examined interaction terms in separate 

multiple regression analyses to test whether baseline hunger moderated the relationship between 

laboratory environment and wanting, liking, and consumption. 

To test Aim 3, we first conducted a one-way ANOVA to test whether food consumption 

(i.e., RRV, ad libitum, and total calories consumed) differed between conditions. Then we 

conducted mediation analyses using the PROCESS macro developed by A. F. Hayes (2012). 

Since participants’ consumption during the RRV period was directly tied to their RRV 

performance (food RRV), we focused our mediational analyses on post-RRV self-report 

measures (i.e., food wanting, hunger) and used total consumption as the outcome. Variables that 

did not significantly differ by condition were not included in mediation models. To test the 

hypothesized mediation models (e.g., laboratory environment à post-RRV self-reported food 

wanting à total food consumption), we employed the bootstrapping method with 10000 samples 

described by Preacher and Hayes (2008), which yields a 95% confidence interval. The 

completely standardized indirect effect (abcs) (Preacher & Kelley, 2011) was used to compare the 

effect sizes of statistically significant indirect effects. Effect sizes can be interpreted as small 

(.01), medium (.09), or large (.25) (Kenny, 2014). 
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Power analyses. Pilot food RRV data showed a mean difference between groups of 

265.98 and a standard deviation of 462.26. We applied power estimation procedures based on 

these values and assuming 2-tailed alpha of .05. This analysis yielded an estimate of 49 

participants per group required to attain a power of .80, and 65 participants needed per group to 

reach a attain of .90 to detect differences in RRV performance between our two groups. 

Hypotheses 

1. We predicted that participants in the cue-rich environment would display greater food 

wanting (as shown by self-report and food RRV) than those in the neutral environment. 

We predicted that game wanting and food liking would not differ by condition. 

2. We predicted that participants in the cue-rich environment would report greater hunger 

than those in the neutral environment. As baseline hunger did not differ significantly by 

condition, we predicted that it would not significantly moderate the relationship between 

laboratory environment and wanting, liking, and consumption. 

3. We predicted that participants in the cue-rich environment would consume a greater 

number of calories (RRV, ad libitum, and total) than those in the neutral environment. 

We also predicted that food wanting and hunger would mediate the relationship between 

laboratory environment and total food consumption. 

Results 

Aim 1 

Relative Reinforcing Value of food and games. Group means for all dependent 

variables are presented in Table II.4. Participants in the cue-rich environment demonstrated 

higher food RRV (F = 5.13, p = .03, η2 = .05) compared to those in the neutral environment. 
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Participants in each environment did not differ significantly in game RRV (F = .68, p = .41, η2 = 

.01). 

Self-reported food and game wanting. Participants in the cue-rich environment 

reported significantly higher post-RRV food wanting rating (F = 6.45, p = .01, η2 = .06) than 

those in the neutral environment. Participants in each environment did not differ significantly in 

their post-RRV ratings for game wanting (F = 0.14, p = .71, η2 = .00) 

Note. *p<.05, **p<.01 

Self-reported food and game liking. Participants in each environment did not differ 

significantly in their self-reported liking for the taste the foods consumed (F = 0.05, p = .82, η2 = 

Table II.4    
Means and Standard Deviations of Variables of Interest    
 Cue-rich 

M (SD) 
Neutral 
M (SD) 

F p η2 

RRV calories 
consumed 

740.26 (464.06) 533.80 (388.15) 6.70 .03* .06 

RRV weight 
consumed (g) 

454.19 (247.16) 350.92 (214.82) 5.45 .02* .05 

Ad libitum calories 
consumed 

69.35 (104.70) 77.48 (77.84) 0.11 .74 .00 

Ad libitum weight 
consumed (g) 

14.63 (21.79) 15.44 (15.72) 0.05 .83 .00 

Total calories 
consumed 

832.49 (467.82) 612.52 (402.28) 6.23 .01* .06 

Total weight 
consumed (g) 

477.89 (247.58) 369.49 (219.41) 5.27 .02* .05 

Food RRV 698.33 (722.40) 432.35 (462.26) 5.13 .03* .05 
Game RRV 946.55 (1047.84) 803.92 (697.13) 0.68 .41 .01 
Post-RRV food 
wanting 

3.72 (1.40) 3.10 (1.05) 6.45 .01* .06 

Post-RRV game 
wanting 

3.16 (1.24) 3.24 (1.23) 0.14 .71 .00 

Post-RRV hunger 52.47 (20.75) 41.84 (18.90) 7.51 .01** .07 
Food liking of taste 3.43 (0.97) 3.39 (1.18) 0.05 .82 .00 
Food enjoyment 2.98 (1.04) 2.91 (1.09) 0.11 .75 .00 
Game enjoyment 3.86 (1.24) 3.62 (1.19) 1.16 .28 .01 



	 28	

.00), enjoyment of eating the foods (F = 0.07, p = .79, η2 = .00), or enjoyment of playing the 

games (F = 1.16, p = .28, η2 = .01).  

Aim 2 

Main effect of laboratory environment on post-RRV hunger. Participants in the cue-

rich environment reported significantly higher post-RRV hunger ratings (F = 7.51, p = .01, η2 = 

.07) than those in the neutral environment. 

Baseline hunger interactions. Baseline hunger did not significantly interact with 

laboratory environment to predict food wanting, liking, or consumption (all p’s > .05). There was 

a non-significant trend-level interaction between baseline hunger and laboratory environment to 

predict food RRV (F(3, 107) = 3.34, β = .25, R2 = .11, p = .07). For participants in the cue-rich 

environment, there was a significant, positive correlation between baseline hunger and food RRV 

(r(60) = .30, p = .02), while for participants in the neutral environment there was no significant 

correlation (r(51) = .02, p = .89). All other interaction p-values were .27 or greater. 

Aim 3 

 Food consumption. Participants in the cue-rich environment compared to the neutral 

environment consumed significantly more calories during the RRV consumption period (F = 

6.70, p = .01, η2 = .06). Participants in each environment did not differ significantly in the 

number of calories consumed during the ad libitum consumption period (F = 0.11, p = .74, η2 = 

.00). This difference remained nonsignificant after controlling for RRV consumption. (F = 0.02, 

p = .88). Participants in the cue-rich compared to neutral environment consumed a greater 

number of total calories (F = 6.23, p = .01, η2 = .06). 

Mediation models. Neither liking the taste of the foods nor enjoyment of eating the 

foods significantly differed by environment, thus food liking failed to meet the requirements to 
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be tested as a mediator and neither variable was included in the mediation models.  Post-RRV 

food wanting (B = 91.25, SE = 48.31, 95% CI = 4.23 – 196.73, abcs = .10) and post-RRV hunger 

(B = 107.89, SE = 49.77, 95% CI = 20.39 – 219.38, abcs = .12) were significant mediators in the 

relationship between environment and total food consumption.  

Discussion 

 The current study tested IS theory by examining food wanting and liking in both a cue-

rich simulated fast-food laboratory and a neutral laboratory environment. Our first aim tested 

whether wanting and liking were separable in a cue-rich context, as posited by the IS theory (T. 

E. Robinson & Berridge, 1993). Our second aim investigated whether self-reported hunger 

differed in a cue-rich compared to neutral context, as hunger has been shown to be affected by 

environmental cues (Cohen, 2008; A. W. Johnson, 2013), as well as whether baseline hunger 

moderated the association between laboratory environment and food wanting, liking, and 

consumption. Our third aim tested whether food consumption differed in a cue-rich compared to 

neutral context, and investigated mechanisms by testing self-reported food wanting and hunger 

as mediators in the relationship between laboratory environment (i.e., cue-rich or neutral) and 

food consumption. 

 Under IS theory, food-related cues play a central role in triggering food wanting, but a 

less important role influencing food liking. The current study supported this theory. Both food 

RRV and self-reported food wanting were greater in the cue-rich compared to neutral 

environment, suggesting that food cues are an important influence on food wanting. However, 

neither liking for the taste of foods nor enjoyment of eating the foods differed between the two 

conditions, suggesting that cues are not as important an influence on food liking. Previous 

studies have had mixed results in illustrating the separability of wanting and liking (Finlayson & 
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Dalton, 2012; Havermans, 2011, 2012). Given that this dissociation is a central tenet of IS theory 

(T. E. Robinson & Berridge, 1993), the current study’s demonstration that wanting and liking are 

separable in a cue-rich context provides important evidence in support of IS in human eating 

behavior.  

 Feelings of hunger are shown to be elevated in the presence of food-related cues (Cohen, 

2008; A. W. Johnson, 2013), suggesting that the experience of hunger can be influenced by the 

environment as well as by homeostatic need. In the current study, baseline hunger ratings taken 

before entering either laboratory environment did not differ between conditions. However, after 

being exposed to their respective laboratory environments, participants in the cue-rich 

environment reported experiencing greater hunger than those in the neutral environment. The 

finding that hunger only increased in the presence of cues suggests that the feelings of hunger 

were not fully driven by homeostatic need. As this experience was still reported by participants 

as hunger, it is possible that individuals have difficulty distinguishing homeostatic and cue-

driven hunger. This difficulty could contribute to excess consumption in cue-rich environments, 

as people may begin to feel hungry even when satiated. Thus, feelings of hunger could be a 

mechanism by which a cue-rich environment contributes to increased food consumption. While 

baseline hunger did not significantly interact with condition to predict the dependent variables, 

there was a non-significant trend-level interaction between baseline hunger and environment to 

predict food RRV.  In the cue-rich environment, those who were hungrier at baseline found food 

even more reinforcing. This suggests that hunger may have marginally amplified participants’ 

response to cues; however this effect was only present with regard to food RRV. While research 

suggests that homeostatic hunger has the ability to moderate one’s wanting and liking in 

response to cues (Berridge et al., 2010), it is possible that non-homeostatic hunger does not 
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interact with cues in the same way. As our self-report measure of hunger did not distinguish 

between caloric need and non-homeostatic feelings of hunger, future research should do so to 

further examine how each may differ in response to cues. 

 Consistent with prior research that people are more prone to eat when cued (Boswell & 

Kober, 2016; Ferriday & Brunstrom, 2011), participants in the cue-rich compared to neutral 

environment consumed more calories both in total and during the RRV consumption period. 

Specifically, participants in the cue-rich environment consumed an average of 219.97 additional 

calories compared to those in the neutral environment. Consumption of only 148 additional 

calories per day can lead to a gain of 15 pounds per year (Wellman & Friedberg, 2002). Thus, 

exposure to the ubiquitous food cues in the American food environment could, over time, lead to 

weight gain through accumulation of small daily increases in consumption. Further, college 

students such as those in our sample are in a developmental stage during which they are making 

increasingly independent choices about food intake and their food preferences are still being set 

(Cluskey & Grobe, 2009; Nelson et al., 2009; Pliner, 1982). As they get older and their 

metabolism slows (Rowe & Kahn, 1987), the same intake may contribute to more weight gain 

and obesity. Based on the current results, this possibility may be amplified by exposure to food-

related cues. Therefore, although the current sample consisted of individuals currently displaying 

healthy BMI and few pathological eating symptoms, continued exposure to food cues could put 

them at risk for weight gain and obesity later in life.  

While the current study observed the ability of food cues to influence excess 

consumption, this effect did not apply to all foods. Participants in the cue-rich and neutral 

environments did not significantly differ in their consumption during the ad libitum portion of 

the protocol. This suggests that there may be some specificity to the impact of food cues on 
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consumption. The foods available during the ad libitum period (e.g., M&Ms, Cheez-its) are not 

foods typically consumed in a fast food restaurant, thus the fast-food cues may not have 

impacted consumption of these foods as strongly. We used these non-fast food related snack 

foods in order to minimize any effect of sensory-specific satiety for the fast food items served 

earlier in the study. However, it is possible that by using foods incongruent with the context we 

reduced our ability to induce greater consumption in response to cues. It may be that in order to 

trigger increased wanting and consumption, cues must be consistent with the available foods. If 

this is the case, this knowledge could be used to develop interventions employing the use of 

congruent or incongruent cues. For example, limiting cues to those for healthy foods (e.g., 

pictures of fruits and vegetables) in areas such as college dining halls could influence people to 

consume more healthy and fewer unhealthy foods in that setting. Further research is needed to 

better understand the effect of cues on wanting for and consumption of foods congruent with the 

environmental context versus foods incongruent with the environmental context. 

The association between cue-rich environment and greater total caloric consumption was 

mediated by both self-reported food wanting and feelings of hunger. Since food liking did not 

differ by condition, it does not appear to be a mechanism through which a cue-rich environment 

is related to greater consumption. Findings from these mediation analyses support IS theory, 

suggesting that wanting more than liking contributes to elevated consumption in the context of 

cues. These findings also support a role for feelings of hunger in addition to wanting in 

increasing food consumption. The current Western food environment is rich with cues for 

calorie-dense, nutrient-poor foods (e.g., advertisements, vending machines). Given these 

findings, food wanting and feelings of hunger may be effective targets for interventions aimed at 

helping people to successfully navigate their exposure to food cues.  
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 The current study has some limitations that should be addressed through future research. 

Our sample exhibited a restricted BMI range, thus we did not find any significant relationships 

between BMI and our variables of interest. A sample with a wider BMI range will be better able 

to demonstrate how cues influence eating behavior in individuals who are obese. Prior research 

has found an association between obesity and cue reactivity (Sobik, Hutchison, & Craighead, 

2005; Tetley, Brunstrom, & Griffiths, 2009), thus perhaps the effects of our cue-rich context 

would be even more pronounced in individuals with obesity. Our sample was also relatively 

healthy, limiting generalizability to more clinical samples. As IS theory was developed in 

relation to addictive disorders, we may expect cue-triggered wanting, hunger, and consumption 

to be amplified in individuals meeting criteria for food addiction. Future studies with a greater 

proportion of individuals with clinically significant food addiction would have greater power to 

thoroughly examine this effect.  

 Due to the structure of the RRV paradigm, food RRV was inherently linked with total 

consumption, preventing us from testing food RRV as a mediator in the relationship between 

laboratory environment and consumption. In order to test food RRV as a mechanism, future 

studies may be designed such that this variable is not linked to the outcome of interest, for 

example, by providing unlimited access to the RRV foods rather than restricting access based on 

points earned. Additionally, as self-reported wanting and hunger ratings in the laboratory 

environment were obtained after the RRV task, it is possible that these ratings were influenced 

by task performance (e.g., individuals reported being hungrier because they had just worked hard 

for food) due to cognitive dissonance in which attitudes are shifted to reflect prior behaviors 

(Brehm, Back, & Bogdonoff, 1964). We believe that our findings of increased self-reported 

wanting and hunger in the cue-rich environment, in combination with our finding of increased 
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food RRV in the cue-rich environment, provides strong evidence for the ability of cues to trigger 

increased food motivation. However, future studies would do well to measure self-reported 

wanting and hunger in the presence of cues before any behavioral task to ensure that any increase 

seen is due to cues. Food liking measurements were taken at the end of the study and outside of 

the laboratory environment. It is possible that liking ratings would have been higher if obtained 

in the laboratory environment, and that measuring liking outside the environment may have 

reduced the effect of cues. Future studies should assess liking while in cue-rich versus neutral 

environments to ensure all effects are fully captured. Finally, though we made efforts to 

standardize hunger, it is possible that results may have been weakened by participants achieving 

satiety, particularly with regard to ad libitum food consumption. Future studies may assess eating 

behavior when participants are in a fasted state to gain a fuller understanding of the impact of 

cues on eating behavior. 

 The current study builds upon prior research on the role of cues in consummatory 

behaviors, examining food wanting and liking in a simulated fast-food laboratory. Unlike prior 

studies, which used food images or smells alone as cues, we observed a strong distinction 

between food wanting and liking in our cue-rich environmental context. These results have 

important implications for efforts to reduce overeating and obesity. Unhealthy food cues are 

ubiquitous in the Western food environment, possibly leading to greater wanting and experiences 

of hunger, which may be difficult to resist and result in overeating, even for healthy individuals. 

In those with obesity or eating-related pathology, cue reactivity could be even more pronounced, 

although future research is needed. The current study’s findings on the impact of cues suggest 

that modifying one’s exposure and response to these cues could be an effective target for 

interventions targeting overeating. As food-related cues appear to be powerful influences on 
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overeating even in healthy individuals, it may be helpful for people to identify triggering settings 

where they may be exposed to unhealthy food cues (e.g., fast-food restaurant) and take steps to 

either limit their exposure to these settings or mitigate their response. For example, people may 

choose to take their meal to go, rather than dining in a fast food restaurant, so they are less 

affected by the presence of cues during their meal.  

Given the mediating role of wanting and hunger, treatments aimed at responding to 

feelings of wanting and hunger may also be effective. For example, mindfulness techniques such 

as “urge surfing,” or learning to ride out a craving without giving in to it, have shown 

effectiveness in treatment of substance use disorders (Bowen & Marlatt, 2009). Recognizing 

these feelings and learning strategies to respond to them more effectively help people feel better 

equipped to resist the strong, cue-triggered urge to consume unhealthy food. In addition to 

interventions at the individual level, strong evidence that excessive consumption of unhealthy 

foods is impacted by environmental cues supports the important of population-level 

interventions, for example policy approaches reducing the ubiquity of some types of cues (e.g., 

restrictions on food advertising). While additional research is needed to determine the effect of 

cues across populations and situations, the current study demonstrates that IS principles appear to 

be at play in eating behaviors and justifies further study. 
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CHAPTER III 

Developing a Paradigm for Identifying Pavlovian Conditioned Responses (Sign-Tracking 

and Goal-Tracking) To a Food Cue in Human Children 

 

 As discussed in Chapter II, food-related cues appear to contribute to enhanced wanting 

and elevated consumption. However, there may also be individual differences in susceptibility to 

these cues. Pavlovian conditioning provides one framework for understanding individual 

differences in the attribution of incentive-salience to cues. In a basic Pavlovian conditioning 

paradigm, an unconditioned stimulus (US), 

which provokes an unconditioned response 

(UR) is associated with a conditioned 

stimulus (CS), which eventually provokes a 

conditioned response (CR) (Rescorla, 1988). 

To put Pavlovian conditioning into the 

context of eating behavior, a palatable food 

may serve as the US, provoking the UR of 

reaching for and consuming the food (see 

Figure III.1). If an individual is conditioned 

to associate a cue with the delivery of the 

food, that cue becomes the CS, and 

Food	(US)	 Reach	for	
food	(UR)	

i.	

Reach	for	
food	(UR)	

Lever	(CS)	ii.	

Lever	(CS)	 Reach	for	
food	(CR)	

iii.	

Figure III.1. Pavlovian conditioning model. 
The US of food leads to the UR of reaching for 
the food (i). After the US of food is paired with 
the CS of a lever (ii), the CS of lever 
eventually begins to lead to the CR of reaching 
for the food (iii). 

Food	(US)	
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eventually may provoke the CR of reaching for the food when the cue is presented. For some, 

this cue may develop incentive salience on its own, attracting attentional bias and approach 

behavior, becoming a conditioned reinforcer (i.e., causing individuals to work for access to 

them), and eliciting enhanced motivation or wanting for the CS (Boakes, 1977; Flagel et al., 

2009; Hearst & Jenkins, 1974; T. E. Robinson et al., 2014). As discussed in Chapter II, food-

related cues may increase motivation to obtain and consumption of  palatable foods in young 

adult humans. Thus, it is important to understand individual differences in the attribution of 

incentive salience to these cues.  

 Studies using animal models have identified two profiles representing differing 

attribution of incentive salience to cues using a Pavlovian conditioning paradigm. Individuals 

who assign incentive-salience to the cue itself are identified as sign-trackers (STs).  When 

trained to associate a discrete, localizable cue (e.g., lever, light) with the delivery of a food 

reward, STs will interact with the cue itself, often even if it interferes with their ability to obtain 

the actual reward (Boakes, Poli, Lockwood, & Goodall, 1978; Hearst & Jenkins, 1974). Sign-

tracking is associated with elevated impulsivity and difficulty exerting inhibitory control 

(Beckmann, Marusich, Gipson, & Bardo, 2011; Flagel et al., 2011; Lovic et al., 2011; T. E. 

Robinson et al., 2014). In the context of addiction, STs appear to be susceptible to reinstatement 

of reward-seeking behavior through increased impulsivity and enhanced motivation in the 

presence of reward-related cues (T. E. Robinson et al., 2014). 

 Other individuals trained to associate a discrete, localizable cue with reward delivery do 

not assign incentive salience to the cue, but will instead approach the reward itself. These goal-

trackers (GTs), when presented with the cue, will approach or orient towards the location where 

they expect the reward to be delivered, interacting minimally or not at all with the cue itself 
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(Flagel et al., 2009; T. E. Robinson & Flagel, 2009; T. E. Robinson et al., 2014). Until recently, 

it was thought that STs were at greater risk for addiction than GTs, due to the association of sign-

tracking with impulsivity and novelty-seeking (Beckmann et al., 2011; Lovic et al., 2011). 

However, recent research suggests that goal-tracking may represent an alternate pathway to 

addictive behaviors. While STs are susceptible to displaying enhanced motivation and reward-

seeking behavior in response to a previously associated discrete cue, GTs appear to show 

enhanced motivation in response to a cue-rich context (Fraser & Holland, 2019; Pitchers, 

Phillips, Jones, Robinson, & Sarter, 2017; Saunders et al., 2014). The impact of contextual cues 

appears to be mediated by neural dopamine transmission in the accumbens, putting the GT 

individual in a motivated state (T. E. Robinson et al., 2014; Saunders et al., 2014). Generally, 

sign-tracking and goal-tracking responses are underscored by different patterns of dopamine 

release in the nucleus accumbens, with STs displaying CS-evoked release while GTs do not 

(Flagel et al., 2011; T. E. Robinson et al., 2014). 

Sign-tracking and goal-tracking responses illustrate the dissociation of predictive versus 

incentive properties of reward-related cues. While both STs and GTs learn that the cue signals 

reward delivery (predictive value), only STs attribute incentive salience to the cue itself. 

Examining these responses then allows the dissociation of associated underlying neurobiological 

and psychological processes. This provides a useful framework for modeling risk for engaging in 

compulsive consummatory behaviors, identifying individuals that may be susceptible to 

overconsumption in response to cues. 

While animal models have provided a great conceptual understanding of sign-tracking 

and goal-tracking, less research has examined these profiles in humans. A study examining cue-

induced craving in fifteen adult smokers found that a subset of individuals experienced stronger 



	 39	

craving in response to both food and smoking cues, suggesting a “cue-reactive” phenotype is 

present in humans (Mahler & de Wit, 2010). Focused specifically on sign-tracking and goal-

tracking, one study on adults with and without obesity measured individuals’ neural response to 

images of palatable foods and other rewards, classifying those with relatively greater response to 

food images as STs and those with relatively greater response to other images as GTs (Versace et 

al., 2016). However, the study by Versace and colleagues did not include a Pavlovian 

conditioning paradigm, and without evidence of a learned association between the cue and 

reward delivery, it is difficult to conclude that the design validly identifies ST and GT profiles.  

Another study by Garofalo and di Pellegrino (2015) employed a Pavlovian conditioning 

task to identify sign-tracking and goal-tracking behavior in human adults. In this study, 

participants engaged in a computer task during which they were trained to associate a visual cue 

with a monetary reward, and were categorized as STs or GTs based on visual attention to the cue 

and the visual representation of the reward. Individuals identified as STs using this paradigm 

also scored higher on a self-report measure of impulsivity. This study provided preliminary 

evidence that sign-tracking and goal-tracking behavior may be identifiable in human adults, and 

illustrated a relationship between sign-tracking and impulsivity, similar to findings in animal 

models. We hope to expand on these findings by testing the association of sign-tracking and 

goal-tracking phenotypes with behavioral measures of traits implicated in overeating and obesity, 

namely low inhibitory control and high food motivation (Batterink et al., 2010; Temple et al., 

2008). This will help us further understand how these phenotypes manifest behaviorally, which 

will in turn provide insight into the types of behaviors that may be effective to target in 

treatments aimed at preventing overeating and obesity. 
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Additionally, there is not yet any research to our knowledge examining sign-tracking and 

goal-tracking in humans at earlier developmental stages. As children are at particular risk for 

developing obesity, and children who become obese are likely to remain so, identifying 

phenotypes in childhood that may contribute to excess consumption could facilitate early 

intervention, minimizing the risk for developing obesity. Additionally, no study on humans to 

our knowledge has used a paradigm pairing the CS with an immediate, consumable food or drug 

reward, as has been shown in the animal models. Given the usefulness of sign-tracking and goal-

tracking as potential phenotypes of addictive behavior, it is important to understand how these 

behaviors manifest in humans when presented with a consumable reward. Sign-tracking and 

goal-tracking may represent different pathways to compulsive consummatory behavior, thus 

identifying these profiles in humans and examining their relationships to known behavioral 

phenotypes of obesity could allow for improved prevention and intervention efforts.  

 The current study aims to develop and test a novel paradigm to identify sign-tracking and 

goal-tracking behavior in humans. This chapter will detail the choices made throughout the 

development and piloting of a novel paradigm, including the selection of a subject population, 

the design of a Pavlovian conditioning task and apparatus, and the determination of the most 

useful variables to identify sign-tracking and goal-tracking phenotypes. Developing an effective 

paradigm for identifying these phenotypes in humans will provide information on behavioral 

characteristics that can inform targeted interventions for overeating and obesity. 

Specific Aims 

1. Develop a Pavlovian conditioning task to reliably and validly identify sign-tracking and 

goal-tracking phenotypes in humans in the context of eating behavior and test the 

feasibility of this paradigm with a sample of at least 48 participants. 
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2. Investigate the association of each phenotype with food motivation and inhibitory 

control.  

Study Development 

 Our goal was to develop a Pavlovian conditioning paradigm similar enough to that used 

in animal models to allow valid identification of sign-tracking and goal-tracking phenotypes. 

Methods were pre-registered with AsPredicted.org on January 15, 2019; see Appendix A for pre-

registration text. We used the paradigm described by Flagel, Watson, Akil, and Robinson (2008) 

as a basis for the current study. Similar to the animal models, we decided to use a lever as the 

CS, and a bite-sized food item for the US. Participants would be trained to associate the CS 

presentation with the delivery of the US over the course of a number of trials. Upon learning this 

association, participants would be classified as STs or GTs based on their interaction with each 

stimulus. 

Selection of Participant Sample 

 We chose to recruit young children as the sample population for several reasons. First, 

the prefrontal cortex (PFC), responsible for decision-making and other higher-order executive 

functions, is not fully developed until late adolescence or young adulthood (Casey et al., 2000). 

For this reason, children may be less likely than adults to attempt to engage in deep cognitive 

processing of the task, and therefore may be more likely than adults to display the phenotypes 

(i.e., sign-tracking and goal-tracking) that have been observed in animal models. Second, 

children display greater food craving compared to adults, are highly prone to engage in behaviors 

influenced by enhanced motivational drive, such as excessive consumption of palatable foods 

(Rollins et al., 2014; Silvers et al., 2014). Thus, children are an important age group in which to 

understand individual differences in attribution of incentive salience to food-signaling stimuli. 
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Finally, given the high prevalence and numerous health consequences of childhood obesity 

(Dietz, 1998; Ogden et al., 2014), examining the presentation of risky phenotypes early in 

childhood can provide the opportunity for early intervention and prevention efforts. We 

ultimately decided to recruit an age range of 5-7, because these children are young enough that 

the PFC is still at an early developmental stage, and old enough that they are able to understand 

simple verbal instructions from research staff and to consume small food portions with low risk 

of choking. We chose to exclude participants who have been diagnosed with Attention-

Deficit/Hyperactivity Disorder (ADHD) or any pervasive developmental delay disorder (e.g., 

Autism Spectrum Disorder [ASD]), as these conditions may affect attentional control, potentially 

biasing measurement of attention to each stimulus. 

Development of Pavlovian Conditioning Apparatus and Paradigm. 

In order to replicate the animal model in our human sample, we first designed and built 

an apparatus capable of running the paradigm (see Figure III.2). Our apparatus consisted of two 

solid-colored boxes, designed to 

look appealing to children without 

being too attractive or rewarding 

on their own. The boxes were 

spaced approximately ten inches 

apart to reduce the ability to 

simultaneously visually attend to 

both boxes, and were located on 

two separate platforms so the side of the room on which each stimulus was presented could be 

counterbalanced to minimize bias. The CS box contained a lever, which illuminated and 

Figure III.2. Pavlovian conditioning apparatus 
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extended from the box. The US box contained a small metal tray into which a small food portion 

could be dispensed. The actions of the apparatus were powered using an Arduino board 

(Arduino, 2015). The Arduino was controlled by a researcher using a program in MATLAB 

(MathWorks, 2016). 

When determining the food item to use as the US, we took several factors into 

consideration. The food needed to be rewarding to the study population, so we chose to use some 

type of candy or sweet treat. The food needed to be a small enough portion to allow the number 

of trials necessary for learning to occur without causing satiety. The shape of each portion 

needed to be consistent in order to be dispensed properly from the machine. For the above 

reasons, we chose to use M&Ms as the US. Participants were thus excluded if they had dietary 

restrictions preventing them from consuming M&Ms. 

The basic structure of the Pavlovian conditioning paradigm described by Flagel and 

colleagues (2008) consists of a number of trials. On each trial, the lever (CS) is illuminated and 

extended for eight seconds, then retracted. Immediately following CS retraction, one food 

portion is delivered. Following each trial is an inter-trial interval (ITI), after which the next trial 

commences. In Flagel and colleagues’ (2008) animal paradigm, the conditioning sessions occur 

over a number of days, with each training session consisting of 25 trials and lasting 35-40 

minutes. For our population of young children, we wanted to condense this to a single session, to 

avoid participant burden of having to come in to the lab for multiple sessions. We also wanted 

the training session to be as short as possible, to minimize participant fatigue or inattention while 

still allowing enough trials to for learning of the association to occur. For initial pilot tests, we 

conducted three blocks of ten trials each. The ITI period was programmed to last for a randomly 

selected time ranging from 10-30s. Each block was followed by a “wiggle break” lasting up to 
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45 seconds, during which the child was given the opportunity to rest and shake out before the 

next trial. 

 In order to capture number of contacts to each stimulus and latency to touch each 

stimulus, the MATLAB program controlling the apparatus recorded number and timing of 

contacts to the CS lever and US candy tray. To obtain additional behavioral data, the task was 

also videotaped from an overhead angle and a head-on angle, to capture body and head 

orientation.  

Power Analysis and Participants 

We conducted a power analysis to estimate sample size based on the index of Pavlovian 

conditioned behavior found in an existing study of sign-tracking and goal-tracking in humans 

(Garofalo & di Pellegrino, 2015).  This study found this index to show mean difference of .10 

between STs and GTs, with a standard deviation of .12. We applied power estimation procedures 

based on these values and assuming 2-tailed alpha of .05. This analysis yielded an estimate of 24 

individuals per group needed to achieve a power of .80, or 32 individuals per group to achieve a 

power of .90. Thus, we planned to recruit at least 48 participants in effort to allow sufficient 

power to detect differences in conditioned response between STs and GTs. 

Sixty-four total children aged 5-7 (M=5.9, SD=0.8) took part in the study.  Thirty-three 

(51.6%) children were female and 31 (48.4%) were male. Children participated with one 

biological parent, of whom 62 (96.9%) were mothers and two (3.1%) were fathers. The racial 

breakdown of children was as follows: 36 (56.3%) white, two (3.1%) black, 1 (1.6%) 

Asian/Pacific Islander, one (1.6%) American Indian / Alaska Native, six (9.4%) Hispanic/Latino, 

two (3.1%) other, and 16 (25%) more than one race. Participants were recruited via flyers posted 

in the community and online advertisements, with the most successful recruitment method (31% 



	 45	

of participants) being Facebook advertisements. Participants were compensated $20 for their 

time. Initially, several interested individuals declined to participate due to high cost of travel to 

the study location, thus we added an additional $20 travel compensation for participants who 

were traveling from greater than 30 miles away from the laboratory. 

Modifications Based on Initial Pilot Testing 

 After the first nine participants completed the protocol, we examined initial data to 

determine what modifications might be needed. Data from these nine participants are considered 

initial pilot data. Initial pilot testing yielded information leading to several changes in the 

paradigm. Upon examination of the apparatus data output of number and timing of contacts, it 

was difficult to identify goal-tracking behavior. Most children were contacting the US exactly 

once per trial, to obtain the candy once it was dispensed. The data did show variation in number 

of contacts to the CS, indicating varying levels of sign-tracking. However, this highlighted the 

need to analyze additional data in order to be confident that we could identify goal-tracking, 

rather than just the absence of sign-tracking. We determined that video data would be crucial to 

assess approach and orientation behavior that did not include stimulus contact. To facilitate 

easier division into increments for video coding of behavior, we modified the timing of the 

paradigm, changing the ITI duration to be randomly selected from 8, 16, 24, or 32s. Finally, as 

an additional measure of non-contact behavior, we added behavioral observation by a researcher 

sitting behind the participant, recording proximity and head orientation toward each stimulus. 

During the initial stages of data collection, these behavioral observations were collected by a 

researcher familiar with the hypotheses, in order to allow that researcher to develop and test an 

optimal coding scheme. However, once the full research team was adequately trained in this 

behavioral coding, these observations were obtained by researchers blind to the hypotheses. 
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Observations made by researchers who were blind versus not blind to the hypotheses were 

compared to ensure that bias due to researcher knowledge of hypotheses is not present in the 

final results. These observations did differ significantly based on whether or not researchers were 

blind to hypotheses, with those who were familiar with hypotheses identifying more goal-

tracking behavior during block 4 of the CS period (F = 7.725, p = .01, η2 = .15). As described in 

the Results section below, results using behavioral observation data based on both blind and 

unblinded researchers did not differ from those calculated using other measurement methods. 

 Automated data from pilot testing also showed that learning, indicated by a change in 

response over blocks and trials resulting in a consistent response pattern in the final block, was 

not readily apparent. We chose to add a fourth block of ten more trials to increase the number of 

trials over which an observable learned response pattern might develop. Since participants during 

pilot testing did not express fatigue or appear inattentive after three blocks, we determined that 

the benefit of additional data merited adding a fourth block. 

As the primary aim of the current study was to test feasibility, initial pilot participants 

were also included in the final sample in order to maintain power to observe true effects. For 

these participants, block three served as the final block. As the only changes to the automated 

data collection method were the addition of a fourth block and small changes to the range of the 

ITI duration (from 10-30s to 8-32s), we do not expect that data from initial pilot participants 

differed meaningfully from that of participants who completed the final version of the protocol. 

Measures 

Aim 1 measures.  

Pavlovian Conditioned Approach (PCA) index. To determine conditioned response 

based on contacts to the Pavlovian conditioning apparatus, we calculated a Pavlovian 
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conditioned approach (PCA) index, based on that developed by Meyer and colleagues (2012). 

This index is calculated for each trial, and consists of the average of three measures: response 

bias (i.e., the probability of contacting the CS versus the US), probability difference score (i.e., 

probability of contacting the CS minus the probability of contacting the US), and latency 

difference score (i.e., latency to contact US minus latency to contact CS for each trial). The PCA 

index score ranges from -1.0 to 1.0, with -1.0 representing pure goal-tracking behavior and 1.0 

representing pure sign-tracking behavior. Based on initial pilot testing, the probability difference 

score yielded less useful information than in the animal models, as most participants contacted 

each stimulus at least once per trial. Thus, we also elected to calculate a modified version of the 

PCA index consisting of the average response bias (number of CS contacts – number of US 

contacts / total number of contacts) and latency difference scores (latency to contact US – 

latency to contact CS) only. The PCA index was calculated separately for the CS-period (i.e., 

while the lever is being presented) and the ITI-period in order to capture difference in behavior 

based on trial period. 

 Behavioral observation and video data. In order to assess phenotypic behavior that does 

not include contact to the apparatus, we coded proximity and orientation behavior using 

behavioral observation data. During the study, a researcher recorded whether the child was in 

closer proximity to the CS or the US on each trial. If the child was equidistant to both stimuli, 

proximity was recorded as neutral, indicating that they were not displaying engagement with 

either stimulus. If the child moved back and forth between stimuli equally, proximity was 

recorded as both, indicating that they were engaging with both stimuli without showing a 

preference for one over the other. The researcher also recorded whether the child’s head was 

oriented towards the CS (lever) or US (candy) for each trial. If the child was not facing towards 
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either stimulus, head orientation was recorded as neutral. If the child faced equally towards both 

stimuli, head orientation was recorded as both. While this dissertation initially proposed 

calculating scores ranging from 0.0 to 1.0 separately for CS and US, we elected to combine these 

into a single score ranging from -1.0 to 1.0 to be consistent with the PCA index. Thus, for both 

proximity and head orientation, trials in which behavior was oriented solely towards the CS were 

assigned a value of 1, while those in which behavior was oriented solely toward the US were 

assigned a value of -1. These values were used to calculate response bias scores for both the CS 

and ITI trial periods. A full PCA index was not calculated for behavioral observation data, as 

latency data was not obtained for this measurement method.  Scores were calculated both as a 

total across all trials and separately for each block. 

 Video data was coded by trained undergraduate research assistants who were blind to 

study hypotheses. Behavior was coded in 20-second blocks divided into 10 2-second increments. 

While this coding was initially proposed to be done in 8-second increments, children displayed 

enough variation in behavior in a short period of time that we elected to code in 2-second 

increments in order to capture finer detail. Five 20-second blocks were coded for each block of 

the study, with 45 seconds in between each block. During each 2-second increment, coders 

indicated whether the lever was out (CS period) or in (ITI period), as well as the direction of the 

participant’s proximity, head orientation, and any touching behavior. The video coding protocol 

(described below) was developed and detailed in a coding manual by the study PI, who then 

trained two lab managers as lead coders. Trained coders all coded the same two training videos, 

which were closely checked by either the PI or one of the lead coders. Coders were asked to re-

code training videos if they did not achieve acceptable reliability with lead coders. Once they had 

achieved acceptable reliability, coders were assigned participant videos to code. As video coding 
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was time-consuming, most videos were coded by a single coder to increase feasibility by 

reducing excessive workload. A selection of videos was coded by two different coders to assess 

interrater reliability, which was calculated using Cohen’s kappa. Kappa values were at least .75 

for all coders, with an average kappa of .86 across all coding pairs.  

Video data was captured from an overhead angle and included proximity and head 

orientation as described above. Video codes also included the additional measure of touching 

behaviors. If the child was touching any part of the CS apparatus (including, but not limited to 

the lever), touching was coded as CS, while if the child was touching any part of the US 

apparatus (including, but not limited to the candy tray), touching was coded as US. Again, while 

we initially proposed calculating scores ranging from 0.0 to 1.0 separately for CS and US, we 

elected to combine these into a single score ranging from -1.0 to 1.0 to be consistent with the 

PCA index. Thus, for each behavior (i.e., proximity, head orientation, and touching), trials in 

which behavior was oriented solely towards the CS were assigned a value of 1, while those in 

which behavior was oriented solely toward the US were assigned a value of -1. These values 

were used to calculate response bias scores for both the CS and ITI trial periods. A full PCA 

index was not calculated for video data, as latency data was not obtained for this measurement 

method. Scores were calculated both as a total across all 2-second increments and separately for 

each block.  

Aim 2 measures.  

Relative Reinforcing Value of food and toys (RRV) task. To assess how each phenotype 

is related to food motivation, we used an RRV task, similar to that described in Chapter II. In the 

current study, participants responded with a number of button presses on a computer to earn 

tickets that could be used to obtain fun-size servings of candy (e.g., Twix bars, Starbursts) and 
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small toys (similar to those dispensed from a gumball machine), with toys serving as the 

alternate reinforcer. Participants were allowed to move back and forth between stations as they 

wished, and continued the task to earn as many tickets as they wished. The task ended when the 

participant chose to stop playing.  

Participants received one ticket to be used toward the relevant reinforcer for every point 

earned, and redeemed their tickets for prizes after they indicated they were finished earning 

tickets. Points were earned on a variable ratio reinforcement schedule beginning at 10 button 

presses (VR10), and doubling each time they earned a point (i.e., VR20, VR40, VR80, VR160, 

VR320, VR640, VR1280, VR2560). The ratio randomly varied from 50% to 150% of the 

schedule for the current point (e.g., the first point could be earned by any number of button 

presses ranging from 5 to 15). Food and toy RRV were determined by the highest variable ratio 

schedule completed for each reinforcer.  

Children’s Eating Behaviour Questionnaire (CEBQ). To measure responsivity to food, 

we used the Food Responsiveness scale from the CEBQ (Wardle, Guthrie, Sanderson, & 

Rapoport, 2001). This 35-item parent-report measure yields eight subscales assessing different 

aspects of eating behavior in children. It has been found to have good internal validity and good 

test-retest reliability when assessing children ranging from early childhood to school-aged. In the 

current sample, the Food Responsiveness subscale showed good internal consistency (α = .80). 

Go/No-go Zoo Task. Inhibitory control was assessed using a child-friendly version of the 

Go/No-go task called the Zoo Game (Grammer et al., 2014). In this game, children are instructed 

that zoo animals have escaped from their cages, and that they are to assist in catching them by 

pressing the spacebar when they see an image of a zoo animal (Go trials). Additionally, the 

children are shown three images of orangutans, and told that the orangutan friends are helping, 



	 51	

and thus do not need to be caught (No-go trials). Following a 12-trial practice block consisting of 

nine Go trials and three No-go trials, participants completed eight 40-trial blocks, each consisting 

of 30 Go trials and 10 No-go trials. Reaction times, the number and percentage of commission 

errors (i.e., responses to No-go trials), and the number and percentage of omission errors (i.e., 

failing to respond to Go trials) were calculated to assess inhibitory control. 

Peg-tapping Task. To provide an additional behavioral index of inhibitory control, the 

Peg-tapping Task (Diamond & Taylor, 1996; Luria, 1966) was added approximately halfway 

through data collection (after 26 participants had engaged in the protocol). In this task, children 

were instructed to tap a wooden peg once when the experimenter taps twice, and to tap twice 

when the experimenter taps once, requiring them to remember multiple rules and inhibit the 

response to directly mimic the experimenter’s action. The task consists of 16 trials, with each 

correct trial receiving a score of 1 and each incorrect trial receiving a score of 0. The total score 

indicates the child’s level of inhibitory control, with higher scores indicating greater inhibitory 

control. 

Behavior Rating Inventory of Executive Functioning (BRIEF). We collected parent-

report data on inhibitory control using the BRIEF (Gioia, Isquith, Guy, & Kenworthy, 2000). 

This measure yields eight subscales, two composite scores, and a global summary score (Global 

Executive Composite; GEC). For assessing inhibitory control in the current study, we used the 

Behavioral Regulatory Index (BRI) composite, which is composed of the Inhibit, Shift, and 

Emotional control subscales, and the GEC. The BRIEF has been validated in children aged 5-18, 

showing good internal consistency and good test-retest reliability. In the current sample, The 

BRIEF scales used showed acceptable to excellent consistency (α = .73 - .94). 
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Inhibitory Control Composite. In order to obtain a global measure of inhibitory control, 

we created a composite using scores on the Go/No-go task (commission error percentage), peg-

tapping, and the BRIEF (BRI, GEC). We calculated z-scores for each of these measures, and 

computed a composite by taking the mean of each individual’s z-scores. 

Summary 

 The current study aimed to recruit children aged 5-7 to test the feasibility of the paradigm 

described above. Participants were recruited from the community through flyers posted in 

locations frequented by parents of children of the appropriate age, as well through online 

postings. Participants were screened via phone to determine eligibility. Eligible participants 

came in to the lab for one visit, during which they engaged in the Pavlovian conditioning task, 

consisting of four blocks of ten trials each, followed by the RRV task and the Go/No-go Zoo 

game. During the Pavlovian conditioning task, number of contacts to each stimulus was recorded 

by the apparatus, and video and behavioral observation data were used to capture non-contact 

approach and orientation behavior. Parents completed survey measures of their children’s food 

responsiveness and impulsivity. We indexed sign-tracking and goal-tracking behavior using the 

PCA index calculated using the automated data, and response bias scores calculated using the 

automated, video, and behavioral observation data. 

Data Analytic Plan 

 Statistical analyses were conducted using IBM SPSS 25 (IBM, 2017). We used 

frequencies to examine the distributions of all variables of interest and to check for missing data. 

Missing data is described in detail in the Results section below under Child Engagement. Food 

and Toy RRV were both skewed (skewness > 1.0), so we performed a log transformation on each 

of these variables for further analyses. There were two participants with outlier data (>2 SD 
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above the mean) in commission errors, so we excluded these cases only from analyses involving 

Go/No-Go performance. One participant had outlier data in peg-tapping, and was excluded only 

from analyses involving peg-tapping performance.  

In order to determine the study’s feasibility (Aim 1), we assessed whether children 

appeared to be tolerating and engaging with the task, whether they showed variability in their 

conditioned response, and whether they showed learning of a conditioned response to the CS. In 

initial pilot testing, child engagement with the Pavlovian conditioning task appeared to be good, 

as most children interacted freely with the task and did not express boredom or inattention. To 

assess whether participants showed variability in conditioned response, we examined the PCA 

index for the automated measures and response bias for the automated, video, and behavioral 

observation measures. Each score was calculated by block for each participant. As we still 

expected learning to be occurring during blocks 1 and 2, we used an average of performance 

during blocks 3 and 42 to create an index for each measure (i.e., automated PCA, automated 

response bias, video response bias, behavioral observation response bias). We elected to use this 

average rather than final block only in order to allow the index to be informed by a greater 

number of data points. We expected that for each measurement index, we would see a range 

encompassing both sign-tracking and goal-tracking behavior (i.e., ranging from -1.0 to 1.0) 

across participants. While all indices were calculated separately for both the CS and ITI periods, 

analyses focused on behavior during the CS-period, as the sign-tracking and goal-tracking model 

is concerned with behavior while the CS is being presented. 

																																																								
2	The decision to use an average of performance during blocks 3 and 4 rather than simply the 
final block was made after the study was pre-registered and after data analysis had begun, and 
thus differs from the analytic plan stated in the pre-registration. 	
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In addition to examining these measures continuously, as proposed initially, we also 

classified participants into phenotypic groups based on each measurement index to facilitate 

group comparisons. First, participants with scores >0.50 were classified as ST, those with scores 

<-0.50 were classified as GT, and those with scores ranging from -0.49 to 0.49 were classified as 

intermediate (IR), consistent with categorization used in animal models (Yager, Pitchers, Flagel, 

& Robinson, 2015). This categorization method resulted in very few individuals being identified 

as GTs (two based on behavioral observation, one based on automated response bias). Given that 

the sample appeared to be skewed toward sign-tracking, we divided individuals into two groups: 

sign-trackers (STs; >0.50) and non sign-trackers (nSTs; <0.50) for remaining analyses. Chi-

square analyses were conducted to compare classification of individuals as ST or nST across 

different measurement methods (i.e., automated, video, behavioral observation). To examine 

whether learning is occurring, we assessed whether the participant displayed a consistent CR 

(i.e., sign-tracking, or non-sign-tracking) during the final block of the protocol, defined as having 

an automated PCA index indicative of the same CR on ≥70% of trials during their final block. 

We then compared their response pattern during the first and final blocks, to determine whether 

their CR became more consistent over time. We expected an increase in consistency during the 

final block compared to the first to be indicative of learning a stable behavioral response. 

 To test Aim 2, we conducted one-way ANOVA to test whether performance on the 

Go/No-go and RRV tasks and scores on the CEBQ, BRIEF, and inhibitory control composite 

differed significantly by phenotype (i.e., ST, nST). We conducted these tests separately for each 

of the measurement indices (i.e., automated PCA index, automated, video, and behavioral 

observation response bias). We also conducted bivariate correlations to test the association 

between degree of sign-tracking or goal-tracking behavior according to each measurement index 
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and performance on the Go/No-go and RRV tasks and scores on the CEBQ, BRIEF, and 

inhibitory control composite. 

Hypotheses 

1. We expected that the above-described paradigm would allow us to observe distinct sign-

tracking and goal-tracking phenotypes. We expected that the automated PCA index 

across participants would show a range from -1.0 (goal-tracking) to 1.0 (sign-tracking). 

We also expected that automated, video and behavioral observation response bias scores 

would range from -1.0 to 1.0, showing a full range of behavior. We initially expected that 

two distinct phenotypes (ST, GT) and an intermediate group (IR) would be observed 

when grouping participants based on automated PCA index and automated, video, 

behavioral observation response bias scores from the final two blocks. When this did not 

occur, we expected that distinct ST and nST groups would be observed. 

2. We expected that the ST group would have lower inhibitory control (assessed by the 

Go/No-go task, peg-tapping, and BRIEF scores) and higher food motivation (assessed by 

the RRV task and CEBQ FR scores) compared to the nST group. Similarly, we expected 

that behavior consistent with sign-tracking (i.e., PCA index and response biases closer to 

1.0) would be associated with lower inhibitory control and higher food motivation. We 

expected that behavior consistent with goal-tracking (i.e., PCA index and response biases 

closer to -1.0) would be associated with greater inhibitory control and lower food 

motivation. 
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Results 

Aim 1 

Child Engagement. Children showed moderate to good engagement with the study 

tasks, with 34 (53%) children completing the entire protocol (i.e., Pavlovian conditioning task, 

RRV task, and Go/No-go task3). Of those who did not complete the entire protocol,  

 eight (12.5%) did not complete the Pavlovian conditioning task; four (6%) due to technical 

issues with the apparatus and four (6%) due to child request to end early, thought to reflect low 

engagement. Twenty-five (39%) did not complete the Go/No-go task, 14 (22%) due to technical 

issues with the task and 11 (17%) due to child request to end early. All participants completed 

the RRV task.  

  

																																																								
3 The peg-tapping task was added to the protocol after 26 participants had completed the study. 
All 38 children who participated after the addition of the peg-tapping task completed the peg-
tapping task, and 57.8% of participants after this point completed the entire protocol, including 
the peg-tapping task. 
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Table III.1 
 
Means and Standard Deviations of Block Scores by Index 
Index Type Time Period Block ST nST 
Automated PCA-index CS 1 0.70 (0.23) 0.36 (0.32) 
  2 0.78 (0.23) 0.30 (0.36) 
  3 0.81 (0.12) 0.11 (0.27) 
  4 0.78 (0.14) 0.16 (0.27) 
 ITI 1 -0.49 (0.38) -0.46 (0.46) 
  2 -0.46 (0.38) -0.48 (0.40) 
  3 -0.46 (0.35) -0.54 (0.26) 
  4 -0.56 (0.33) -0.52 (0.27) 
Automated Response Bias CS 1 0.80 (0.27) 0.42 (0.37) 
  2 0.86 (0.25) 0.35 (0.42) 
  3 0.91 (0.10) 0.12 (0.33) 
  4 0.89 (0.15) 0.18 (0.31) 
 ITI 1 -0.37 (0.52) -0.32 (0.62) 
  2 -0.35 (0.55) -0.43 (0.50) 
  3 -0.36 (0.53) -0.54 (0.44) 
  4 -0.58 (0.44) -0.58 (0.33) 
Video Response Bias CS 1 0.61 (0.32) 0.43 (0.40) 
  2 0.72 (0.30) 0.32 (0.40) 
  3 0.70 (0.34) 0.19 (0.45) 
  4 0.65 (0.39) 0.17 (0.38) 
 ITI 1 -0.09 (0.14) 0.03 (0.32) 
  2 -0.07 (0.25) -0.04 (0.30) 
  3 -0.07 (0.26) -0.18 (0.27) 
  4 -0.07 (0.20) -0.12 (0.34) 
Behavioral Observation 
Response Bias 

CS 1 0.77 (0.26) 0.46 (0.47) 

  2 0.76 (0.30) 0.38 (0.45) 
  3 0.83 (0.27) 0.26 (0.50) 
  4 0.76 (0.30) 0.19 (0.53) 
 ITI 1 -0.35 (0.32) -0.31 (0.36) 
  2 -0.24 (0.18) -0.34 (0.36) 
  3 -0.26 (0.27) -0.37 (0.35) 
  4 -0.32 (0.32) -0.37 (0.36) 
 Response Variability. Children displayed a full range of behavior according to each 

index calculated. Group mean scores for each index broken down by block are shown in Table 

III.1. Overall, automated PCA-scores during the CS-period ranged from -0.39 to 0.94, with an 

average of 0.48. Automated PCA-scores during the ITI-period ranged from -.94 to 0.75, with an 

average of -.50. Automated response bias during the CS-period ranged from -0.57 to 1.0, with an 

average of 0.54. Automated response bias during the ITI-period ranged from -1.0 to 0.95, with an 
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average of -0.44.  Video coding response bias during the CS period ranged from -0.78 to 1.0, 

with an average of 0.45. Video coding response bias scores during the ITI-period ranged from -

0.80 to 0.74, with an average of -0.03. Behavior coding response bias during the CS-period 

ranged from -0.70 to 1.0, with an average of 0.56. Behavior coding response bias during the ITI-

period ranged from -1.0 to 0.60, with an average of -0.30.  

Phenotypic Groups and Index Reliability. We classified participants into groups (i.e., 

ST or nST) based on each measurement index (i.e., automated PCA-index, automated response 

bias, video response bias, behavioral observation response bias). The number of individuals in 

each group based on each measurement method is presented in Table III.2. Chi-square analyses 

were conducted to compare groupings based on each measurement method (see Table III.3). 

There was significant agreement among all measures in group composition (all p’s <.003). 

Correlations among sign-tracking and goal-tracking indices are shown in Table III.4. Indices for 

all measurement methods (automated PCA-index, automated response bias, video response bias, 

and behavioral observation response bias) showed a significant positive correlation with each 

other (all p’s <.001). To further investigate reliability of the automated PCA index, we conducted 

a split-half analysis, testing the correlation between performance during odd and even numbered 

trials during the blocks used to calculate groupings. Odd and even trial performance was strongly 

correlated (r = .91, p < .001), suggesting that the automated PCA index showed excellent internal 

consistency. 
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Table III.2 
 

Phenotype Categorizations by Measurement Index 
 Automated PCA-

index 
Automated 
Response Bias 

Video 
Response Bias 

Behavioral 
Observation 
Response Bias 

ST 22 (45.8%) 19 (47.5%) 20 (48.8%) 27 (57.4%) 
nST 26 (54.2%) 21 (52.5%) 21 (51.2%) 20 (42.6%) 

 

Table III.3 
 
X2 Tests of Association between Measurement Indices 
 Automated PCA 

index 
Automated 
Response Bias 

Video 
Response Bias 

Behavioral 
Observation 
Response 
Bias 

Automated 
PCA index 

_ 32.00*** 12.22*** 8.53** 

Automated 
Response Bias 

32.00*** _ 12.22*** 8.53** 

Video 
Response Bias 

12.22*** 12.22*** _ 24.89*** 

Behavioral 
Observation 
Response Bias 

8.53** 8.53** 24.89*** _ 

  

Learning.  We examined both the originally hypothesized three CRs (i.e., ST, GT, or IR) 

and the two CRs (i.e., ST or nST) to determine whether learning had occurred. When examining 

three CRs, 33 (67.3%) participants with automated data displayed a consistent CR during their 

final block of the CS-period according to automated PCA index, 25 (61.0%)4 participants 

																																																								
4 We were unable to calculate ITI PCA-index for eight participants who engaged in the 
Pavlovian conditioning task due to latency data for the ITI-period not being printed, thus PCA 
data involving the ITI-period is from a sample of 41. 

Note: *p <.05 ** p <.01 *** p <.001 
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displayed a consistent CR during their final block of the ITI-period according to PCA index, and 

19 (46.3%) of participants displayed a consistent CR according to PCA index during both the 

CS-period and ITI-period. We followed this by comparing consistency during the final block to 

that seen during the first block. Eighteen (36.7%) participants had greater CS-period consistency 

in their final block than in their first block, and an additional six (12.2%) participants had a 

consistent CR across all trials in both blocks.  Seventeen participants (41.5%) had greater ITI-

period consistency in their final block than in their first block, and an additional two (4.9%) 

participants had a consistent CR across all trials in both blocks. When examining two CRs, 39 

(79.6%) participants with automated data displayed a consistent CR during their final block of 

the CS-period according to automated PCA index, 41 (100%) participants displayed a consistent 

CR during their final block of the ITI-period according to PCA index, and 33 (80.5%) 

participants displayed a consistent CR according to PCA index during both the CS-period and 

ITI-period. Sixteen (32.7%) participants had greater CS-period consistency in their final block 

than in their first block, and an additional five (10.2%) participants had a consistent CR across all 

trials in both blocks. Seventeen participants (41.5%) had greater ITI-period consistency in their 

final block than in their first block, and an additional two (4.9%) participants had a consistent CR 

across all trials in both blocks. 
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Aim 2 

Means and standard deviations of all variables of interest are presented in Table III.5. We 

conducted Aim 2 analyses using each of the four measurement indices. Given that the automated 

PCA index showed high agreement with the other measures, and is most similar to the measure 

used in animal models, results using that index will be reported. Overall, results using the other 

measurement indices were in agreement with those using the automated PCA index.5 Correlation 

coefficients of associations between automated PCA-index and all outcome variables are shown 

in Table III.6. 

  

																																																								
5 The only variable that differed in significance level between automated PCA index and other 
measures was GNG commission error reaction time, which differed significantly between STs 
and nSTs when categorized using video response bias (F = 4.60, p = 0.03, η2 = .35) and 
behavioral observation response bias (F = 4.98, p = 0.02, η2 = .32). 

Table III.4 
 
Correlation Coefficients between Measurement Indices 

 Automated 
PCA index 

Automated 
Response Bias 

Video Response 
Bias 

Behavioral 
Observation 
Response Bias 

Automated 
PCA index 

_ .99*** .63*** .69*** 

Automated 
Response 
Bias 

.99*** _ .63*** .69*** 

Video 
Response 
Bias 

.63*** .63*** _ .91*** 

Behavioral 
Observation 
Response 
Bias 

.69*** .69*** .91*** _ 

Note:	*p	<.05	**	p	<.01	***	p	<.001	
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Table III.5 
 
Means and Standard Deviations of Variables of Interest 
 ST 

M (SD) 
nST 

M (SD) 
F p η2

 

Total GNG omission errors 23.50 (21.67) 23.29 (20.72 0.00 .98 .00 
GNG omission error 
proportion 

.09 (.08) .09 (.08) 0.00 .98 .00 

GNG Go trial reaction time 
(ms) 

606.63 
(51.18) 

609.26 
(78.91) 

0.01 .91 .00 

Total GNG commission 
errors 

2.81 (4.94) 2.24 (3.33) 0.16 .70 .01 

GNG commission error 
proportion 

.09 (.24) .04 (.05) 0.67 .42 .02 

GNG No-go error reaction 
time (ms) 

563.27 
(214.38) 

403.97 
(208.38) 

3.25 .09 .13 

Peg-Tapping score 15.45 (0.69) 15.24 (1.09) 0.92 .35 .03 
RRV VRC Candy 2.40 (0.43) 2.29 (0.48) 0.62 .44 .02 
RRV VRC Toy 2.25 (0.32) 2.22 (0.47) 0.06 .82 .00 
CEBQ Food Responsiveness 3.00 (0.91) 2.62 (0.71) 2.70 .11 .06 
BRIEF Behavioral 
Regulation Index 

49.32 (7.31) 48.23 (9.61) 0.19 .66 .00 

BRIEF Global Executive 
Composite 

127.23 
(17.03) 

122.62 
(21.80) 

0.65 .43 .01 

Inhibitory Control Composite 0.06 (0.55) -0.00 (0.77) 0.10 .75 .00 

 

Food Motivation. STs and nSTs did not differ significantly on the highest ratio 

completed for either candy (F = 0.62, p = .44, η2 = .02) or toys (F = 0.06, p = .82, η2 = .00).  

Automated CS-period PCA index was not significantly correlated with highest ratio completed 

for either candy (r = .18, p = .28) or toys (r = .09, p = .58). 

 STs and nSTs did not differ significantly on CEBQ Food Responsiveness (F = 0.62, p = 

.44, η2 = .02). However, there was a significant positive correlation between automated PCA 

index and CEBQ Food Responsiveness (r = .34, p = .02). 

  

Note. RRV values represent log-transformations of raw scores. 
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Table III.6 

Correlation Coefficients of Automated PCA-index and Outcome Variables 
Outcome Variable Automated PCA-index 

GNG Go errors .035 
GNG Go error % .035 
GNG Go RT -.092 
GNG NG errors -.027 
GNG NG error % .023 
GNG NG error RT .431* 
Peg-Tapping .064 
VRC Candy .179 
VRC Toy .094 
CEBQ FR .340* 
BRIEF BRI .013 
BRIEF GEC -.088 
Inhibitory Control Composite -.04 

 

 

Inhibitory Control.  STs and nSTs did not significantly differ in number or percentage 

of Go/No-go commission errors, omission errors, or reaction time on Go trials (all p’s > .43). 

There was a non-significant trend-level difference in reaction time on No-go error trials, with 

STs having a marginally slower reaction time than nSTs (F = 3.25, p = .09, η2 = .13). STs and 

nSTs did not significantly differ on peg-tapping (F = 0.35, p = .56, η2 = .01), BRIEF BRI (F = 

0.19, p = .67, η2 = .00), BRIEF GEC (F = 0.65, p = .43, η2 = .01), or the inhibitory control 

composite (F = 0.10, p = .75, η2 = .00). 

Automated PCA-score was positively correlated with reaction time on No-go error trials 

(r=.43, p=.04), indicating that children displaying more sign-tracking behavior had slower 

reaction times when making commission errors. However, this result did not survive Bonferroni 

correction for multiple comparisons of measures of inhibitory control. Automated PCA-score 

Note: *p <.05 ** p <.01 *** p <.001 
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was not significantly correlated with number or percentage of Go/No-go commission errors, 

omission errors, reaction time during Go-trial correct responses, peg tapping, BRIEF BRI or 

GEC, or the inhibitory control composite (all p’s >.55). 

Discussion 

The current study aimed to develop and test the feasibility of a novel paradigm to identify 

sign-tracking and goal-tracking behavior in human children. We designed and built an apparatus 

capable of running a Pavlovian conditioning paradigm and recording response data. To 

supplement automated data reported by the apparatus, we also collected video and in vivo 

behavioral observation data. For each method of measurement, we calculated response bias 

scores, and for automated measures we calculated a modified PCA index similar to that used in 

animal models. Scores on all measurement indices were significantly associated with one 

another, as were categorizations as ST or nST based on each index. Automated PCA-index is 

most similar to the index used in animal models (Meyer et al., 2012), thus we chose to use this 

measure as the primary predictor variable for Aim 2 analyses.  

While video measures appeared to add some information not captured by the automated 

PCA index, the significant correlation between data obtained using these two measures suggests 

that the additional cost and analysis time needed to collect and code video data may exceed any 

added value of video data. While we focused on CS-period data for the current analyses, video 

response bias appeared to be slightly higher during the ITI-period, indicating greater sign-

tracking behavior during the ITI–period, than did other indices. However, video response bias 

during each of these blocks showed a significant positive correlation with each of the other index 

scores for corresponding blocks, with the exception of block 3 of automated PCA index and 



	 65	

automated response bias. If future studies are interested in behavior during the ITI specifically, it 

may be useful to include video assessment methods to ensure all relevant behavior is captured.  

While we observed a full range of sign-tracking and goal-tracking behavior across the 

sample, we were not able to fully observe distinct phenotypes, due to limited goal-tracking 

behavior in our sample. This was inconsistent with our hypothesis, and merits further 

examination in future research studies. During initial pilot testing, it was apparent that our ability 

to observe goal-tracking behavior using automated measures was limited, particularly during the 

CS-period. While video and behavioral observation data allowed us to observe slightly more 

goal-tracking behavior, this was still not enough to constitute a full phenotypic GT group. It is 

possible that limited goal-tracking behavior is due to the young age of our sample, as younger 

children tend to be lower in inhibitory control (Williams, Ponesse, Schachar, Logan, & Tannock, 

1999). As sign-tracking behavior is associated with greater impulsive action in animal models 

(Lovic et al., 2011), there may have been a developmental impact on our ability to observe the 

goal-tracking phenotype. Of note, neither age nor inhibitory control was significantly associated 

with sign-tracking behavior in the current sample. Still, given the small sample size and limited 

age range in the current study, further research is needed to elucidate any effect of age or 

developmental stage. 

Aspects of the protocol design may also have contributed to the lack of a distinct GT 

group in the current study. When designing our Pavlovian conditioning apparatus, we elected to 

make the stimuli child-friendly, in order to encourage child engagement with the task. However, 

it is possible that our stimuli were too attractive to participants, resulting in increased interaction 

with the lever used as the CS. As interaction with the CS was considered sign-tracking, this may 

have artificially inflated the number of children identified as STs and reduced our ability to 
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observe true GTs. Future studies examining children should be cautious that stimuli are not so 

attractive as to promote interaction above and beyond that which would be expected from true 

STs. Additionally, a previous study with a sample of adult humans was able to identify 

individuals as both STs and GTs by using eye-tracking software while participants engaged in a 

monetary Pavlovian conditioning task involving stimuli presented on a computer screen 

(Garofalo & di Pellegrino, 2015). This methodology may have improved ability to capture goal-

tracking by limiting the method of interaction with the stimuli to visual attention. The current 

study included multiple ways that participants could interact with the stimuli (e.g., touching, 

head orientation, moving towards or away from each stimulus), which may have added excessive 

noise, thus limiting the ability to observe distinct phenotypes. It is possible that simplifying the 

paradigm and limiting the methods by which participants are able to interact with the stimuli 

may improve ability to observe goal-tracking behavior. 

Recent research using animal models has shown that ITI duration may also impact the 

likelihood of displaying each CR. Sign-tracking behavior appears to be more likely during a 

longer ITI and goal-tracking behavior more likely during a shorter ITI (B. Lee et al., 2018). Lee 

and colleagues suggest this is due to a weakened association between contacting the location of 

the US and receiving a reward. Participants in the current study appeared to display more goal-

tracking behavior during the ITI, and more sign-tracking behavior during the CS-period, and 

unlike animals continued to interact with the CS to some extent during the ITI-period (i.e., when 

the lever was retracted). While our ITI durations were shorter than those typically used in animal 

models, it may have felt long to our child participants due to limited attention span appropriate to 

this developmental stage (Betts, McKay, Maruff, & Anderson, 2006; Levy, 1980). This may 

have inhibited participants’ learning of a strong association between contacting the location of 
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the US and receiving a reward, whereas the CS in this protocol may have been more instantly 

rewarding. 

Contrary to our hypothesis, STs and nSTs did not differ significantly on Go/No-go 

commission or omission errors, Peg-tapping, BRIEF BRI or GEC, or the composite combining 

these measures. In animal models, sign-tracking has been robustly associated with greater 

impulsivity and lower attentional control (Lovic et al., 2011; Paolone et al., 2013), which could 

be indicative of a possible pathway to problematic consumption in STs (T. E. Robinson et al., 

2014). If our paradigm had the ability to validly identify individuals as STs or GTs, we would 

expect these phenotypic groups to differ in constructs shown to be strongly associated with sign-

tracking and goal-tracking, such as impulsivity. Thus, the lack of a significant association 

between sign-tracking behavior and inhibitory control in the current study is a source of 

considerable concern about the validity of the current paradigm. It is important to note that the 

current study was not able to observe both ST and GT phenotypes, and it is possible that the ST 

and nST groups did not vary enough to show significant differences in inhibitory control. It is 

possible that with a paradigm able to reliably identify both ST and GT phenotypes, significant 

group differences in inhibitory control might be observable. 

Inconsistent with our hypothesis, food motivation as measured by the RRV task was not 

significantly associated with sign-tracking or goal-tracking behavior, suggesting that sign-

tracking does not appear to be contributing to overeating through increased food motivation. As 

animal models have shown STs to be more likely to show cue-induced food-seeking behavior 

(Yager & Robinson, 2010), we hypothesized that STs would also show increased motivation to 

obtain and consume palatable foods. However, additional research has shown that sign-tracking 

and goal-tracking may each contribute to excessive consumption through different pathways, 
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with STs being at increased risk in the presence of discrete, localizable cues and GTs being at 

increased risk in cue-rich contexts (Saunders et al., 2014). The current study did not employ a 

food consumption task in a cue-rich context, and it is possible that in such a context, goal-

tracking rather than sign-tracking would be correlated with overeating-related constructs (e.g., 

palatable food motivation, craving, consumption). Examining conditioned response to food cues 

employing both a cue-rich context (e.g., similar to that used in Study 1) and discrete, localizable 

cues (as used in the current study) would help clarify the type of risk that may be relevant for 

each phenotype. Additionally, in the current protocol, the RRV task took place after the 

Pavlovian conditioning paradigm, which involved consumption of M&Ms. It is possible that 

children achieved satiety during the Pavlovian conditioning task, and thus were less motivated to 

obtain additional food during the RRV task. Future studies should account for satiety, for 

example by counterbalancing task order, to fully understand any association between sign-

tracking and goal-tracking behavior and food motivation. 

While the current paradigm appeared to be moderately well-tolerated by children, several 

limitations suggest modifications would be needed before using this paradigm to validly identify 

individuals as STs or GTs. A primary concern is the lack of individuals identified as GTs. In 

order to better capture goal-tracking behavior, future designs may employ less attractive stimuli 

to reduce interaction with the CS in individuals who may not otherwise be considered STs. Other 

methodological changes may include employing measurement methods such as eye-tracking that 

have been successful in capturing goal-tracking in adult humans. An additional concern is that 

contrary to our hypotheses, sign-tracking behavior was not significantly associated with any of 

our inhibitory control measures (GNG, Peg-tapping, BRIEF). Sign-tracking is thought to 

contribute to compulsive behavior through impulsive action (Lovic et al., 2011), thus association 
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with inhibitory control would be a strong indicator that true sign-tracking behavior is being 

captured. As discussed above, the attractiveness of the CS may have added excessive noise to 

our observations of behavior consistent with sign-tracking. A modified apparatus allowing for 

cleaner measurement of sign-tracking behavior may result in more valid identification of STs 

and GTs and thus show expected relationships with measures such as inhibitory control. We also 

did not observe strong evidence of learning a particular CR during the protocol, suggesting that 

additional blocks may be needed to allow learning to occur. Alternatively, compared to rats, 

human children may learn more rapidly and develop a particular CR following only a few trials, 

which may lead to a less detectable learning response curve over multiple blocks. Finally, 

aspects of the current sample included some limitations that should be addressed in future 

studies. The sample size was relatively small, which may have inhibited our ability to observe 

effects due to being underpowered. Additionally, the current sample was somewhat homogenous, 

being recruited from a fairly affluent, highly educated area. It is possible that a more diverse 

sample may have also produced more variable responses to our task. 

The current study developed and tested a novel Pavlovian conditioning apparatus and 

paradigm in efforts to identify sign-tracking and goal-tracking behavior in human children. 

While this study was unsuccessful at validly identifying STs and GTs, it provided useful lessons 

on design considerations when attempting to identify these phenotypes in humans. Given the 

robust association shown in animal models between sign-tracking and compulsive 

consummatory behaviors (Flagel et al., 2008; H. M. Jenkins & Moore, 1973; Tomie & Sharma, 

2013), understanding how these phenotypes may manifest in humans would provide valuable 

information on the identification of individuals who may be at risk. Though the current study did 

not fully elucidate how sign-tracking and goal-tracking may present in humans, it did appear that 



	 70	

we were able to observe behavior consistent with sign-tracking, indicating that this risky profile 

may be relevant at an early developmental stage. It is hoped that the lessons learned from the 

development of the current study will help inform future research into the assessment of sign-

tracking and goal-tracking behavior in humans, leading to the development of improved 

prevention and intervention efforts for those at risk for compulsive consummatory behaviors. 
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CHAPTER IV 

Neurobiological Correlates of Overeating and Obesity in Adolescents 

 

Behavioral studies of overeating and obesity illustrate the important role of individual 

differences in cue responsivity, impulsivity, and food reinforcement or motivation to eat. Food-

related cues in the environment can trigger increased craving and feelings of hunger, contributing 

to overeating (Joyner, Kim, & Gearhardt, 2017). Animal models also suggest that some 

individuals may be both more attuned to these cues and more likely to act impulsively in their 

presence (Flagel et al., 2009; T. E. Robinson et al., 2014). Functional neuroimaging research has 

underscored the importance of sensitivity to food reward and ability to inhibit response to food 

cues, finding overeating and obesity to be related to patterns of activation in areas related to 

reward processing and executive function (for review, see Carnell et al., (2012) and Reinert, 

Po'e, and Barkin (2013)). For example, obese compared to lean adults show greater activation in 

areas related to reward, (e.g., nucleus accumbens [NAcc], caudate, putamen, orbitofrontal cortex 

[OFC]), and areas related to EF, (e.g., medial prefrontal cortex [mPFC], and anterior cingulate 

cortex [ACC]), when presented with visual cues for high-calorie foods (Carnell et al., 2012). 

Research in children has also shown that those who are obese compared to lean not only show 

increased PFC activation in response to food images before a meal, but also show smaller 

reductions in PFC and NAcc activation following the meal (Bruce et al., 2010). Studies on 

adolescents show similar findings, finding activation in the putamen and OFC in response to 
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pictures of appetizing food to be positively correlated with BMI (Reinert et al., 2013; Stice, 

Yokum, Bohon, Marti, & Smolen, 2010).  

While task-based neuroimaging research illustrates alterations in reward processing and 

EF in obese compared to non-obese individuals, research examining whether these variations 

reflect an intrinsic underlying difference in their neural systems is nascent. Resting state 

functional connectivity (rsFC) analysis, which examines connections between neural regions 

during a period of rest, provides a tool with which to understand neural differences that are 

inherent as opposed to occurring only in response to a task (Damoiseaux et al., 2006; M. H. Lee, 

Smyser, & Shimony, 2013). rsFC can elucidate neural networks, or areas of the brain that tend to 

be activated together, developing stronger connections even when not engaged in a task (Guerra-

Carrillo, Mackey, & Bunge, 2014; Taubert, Lohmann, Margulies, Villringer, & Ragert, 2011). 

Examination of these networks can provide information above and beyond analysis of activation 

in single regions, as many neural regions are involved in a variety of functions, and many 

processes involve simultaneous activation of functionally connected regions (Anderson, 

Kinnison, & Pessoa, 2013). Thus, rsFC analysis allows one to investigate abnormalities at the 

network-level that may contribute to impaired function. Common rsFC analytic approaches 

include independent component analysis (ICA), which uses algorithms to extract spatially and 

temporally independent components which may reflect intrinsic neural networks, and seed-based 

analysis, which examines connectivity between pre-determined regions-of-interest (ROIs; 

Smitha et al. (2017)).  

rsFC research has consistently identified a number of intrinsic networks representing 

functionally-related neural regions (van den Heuvel & Hulshoff Pol, 2010). For example, the 

default mode network (DMN) consists of areas such as the posterior cingulate cortex (PCC), 
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precuneus, medial frontal regions, and inferior parietal regions which show increased activity 

when at rest compared to when engaged in a task, and is thought to be involved in processes such 

as self-monitoring (Greicius, 2008; van den Heuvel & Hulshoff Pol, 2010). The DMN has been 

found to show increased connectivity in individuals with depression, which could reflect the 

neural correlates of symptoms such as rumination (Berman et al., 2011; Greicius, 2008). Another 

network, consisting of limbic and paralimbic regions (e.g., dACC, OFC, insula), has been termed 

the salience network (SN), and is thought to be involved in processing of information related to 

emotion, reward, and homeostatic regulation (Barrett & Satpute, 2013; Seeley et al., 2007). 

Alterations in this network could be informative in psychopathologies involving maladaptive 

attribution of salience to stimuli, such as addiction (Sutherland, McHugh, Pariyadath, & Stein, 

2012). rsFC studies have also identified an executive function network (EFN), which consists of 

prefrontal regions (bilateral dorsolateral PFC [dlPFC], ventrolateral PFC [vlPFC], dorsomedial 

PFC [dmPFC]) and appears to be involved in executive functions such as working memory and 

attentional control (Seeley et al., 2007). Deficits in the EFN have been found in children with 

attention-deficit/hyperactivity disorder (ADHD), suggesting that impairment in intrinsic 

networks may be underlying some of the attentional and inhibitory control difficulties associated 

with the disorder (de Celis Alonso et al., 2014). As discussed in Chapters II and III, overeating 

and obesity may also be marked by impairments in salience attribution and inhibitory control. 

Thus, comparing intrinsic networks related to these functions in individuals who are obese 

compared to lean may increase understanding of any deficits in these networks associated with 

obesity, thereby providing insight into functions that may be potential targets for intervention.  

The literature examining rsFC in obesity is in its early stages, but the extant research 

appears to support the existence of weight-related differences in rsFC, particularly between 



	 74	

networks involved in determining the salience of stimuli and the interpretation of homeostatic 

signals. For example, Garcia-Garcia and colleagues (2013) found that adults who were obese 

compared to lean displayed stronger connectivity in the salience network (SN), most prominently 

between the left putamen nucleus, involved in motor function and motivation, and other SN 

regions. This may suggest that stronger connectivity between SN and the putamen nucleus could 

be underlying increased sensitivity to and motivation to approach rewarding food cues in obese 

individuals, in turn contributing to overeating (Garcia-Garcia et al., 2013). This connectivity 

pattern was also found to be related to slower performance on cognitive tasks assessing 

processing speed (i.e., Grooved Pegboard and Symbol-Digit Modalities Test), specifically 

components involving motor execution and selective attention (Garcia-Garcia et al., 2013). This 

may suggest that that extra recruitment of the left putamen nucleus into salience processing tasks 

may hinder its ability to efficiently control motor functions. 

Individuals who are obese compared to lean also appear to have altered rsFC in regions 

related to the interpretation of homeostatic signals. Research has found obesity to be related to 

reduced connectivity between SN areas including the insula and hypothalamus (Contreras-

Rodriguez et al., 2018; Kullmann et al., 2012; Wijngaarden et al., 2015),, which may contribute 

to deficits in the ability to interpret and respond to interoceptive signals of hunger. Alterations in 

rsFC between homeostatic regions also appear to be impacted by whether one is in a fasted or 

satiated state. In a fasted state, obese compared to lean adults displayed stronger rsFC between 

the hypothalamus and regions of the EFN (e.g., frontal pole) and  SN (e.g., dACC, bilateral 

caudate nucleus, putamen, insula).  (Lips et al., 2014). This may indicate that when hungry, these 

individuals are more attuned to rewards, and may have to exert greater cognitive control, for 

example in the presence of food rewards.  
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Fewer studies have examined rsFC at earlier developmental stages, however early 

research suggests that in adolescence, the imbalance between neural regions related to EF and 

reward processing may be particularly important. Adolescence as a developmental stage is 

characterized by risk for impulsive and risky behavior (Steinberg, 2007). While neural reward 

regions (e.g., striatum) are fully developed by adolescence, EF regions (e.g., PFC) continue to 

develop until adulthood (Casey et al., 2008). Thus, adolescents have a structural imbalance 

between EF and reward, resulting in less capacity for inhibitory control and a greater influence of 

reward on decision-making (Luna et al., 2001; Somerville, Hare, & Casey, 2011; Steinberg, 

2007). Further, adolescents compared to adults have more difficulty inhibiting a response to food 

cues (Guerrieri, Nederkoorn, & Jansen, 2008; Teslovich et al., 2014). This imbalance between 

EF and reward processing could thus leave adolescents more susceptible to overeating and 

obesity. Obese compared to normal-weight adolescents appear to show an even more 

pronounced imbalance between EF and reward regions in task-based functional magnetic 

resonance imaging (fMRI) paradigms (Batterink et al., 2010; Black et al., 2014; Bruce et al., 

2013; Yokum, Ng, & Stice, 2011). For example, an fMRI study utilizing a food-specific Go/No-

go task, in which participants are instructed to respond to certain stimuli while inhibiting 

responses to other stimuli, found that teens who were obese compared to those who were lean 

showed reduced activation in EF regions, (e.g., frontal gyrus) and increased activation in reward 

regions (e.g. mid-insula) during the task (Batterink et al., 2010). This elevated reward response 

combined with lower EF likely contributes to excess food consumption and obesity by making it 

difficult to inhibit the desire to eat foods one finds rewarding. 

Studies examining rsFC in lean-to-obese children and adolescents do suggest that obesity 

is related to altered connectivity between EFN and reward-related SN regions. Some studies have 
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found obesity to be related to greater rsFC between the EFN and areas in the SN (Black et al., 

2014; Moreno-Lopez, Contreras-Rodriguez, Soriano-Mas, Stamatakis, & Verdejo-Garcia, 2016). 

This may suggest that children who are obese may be more heavily influenced by rewarding 

stimuli, and that reward motivation may hold more influence over decision-making and attempts 

to execute self-control(Black et al., 2014). Other research on rsFC in adolescents has found 

obesity to be related to greater connectivity between SN regions and weaker connectivity 

between the SN and EFN (Martín-Pérez, Contreras-Rodríguez, Vilar-López, & Verdejo-García, 

2018). This may indicate that these individuals are prone to find rewarding stimuli particularly 

salient, and less prone to exert executive control in the context of rewards. Further, in those with 

excess weight, greater connectivity between regions in the SN was associated with greater stress 

response as measured by the Trier Social Stress Task (TSST), which may suggest that those who 

are obese may show greater sensitivity to reward when in a state of stress. Overall, in adolescents 

with excess weight, regions related to salience determination and reward processing appear to be 

particularly influential and regions related to inhibitory control appear to have relatively lower 

influence. 

In sum, a few patterns emerge from the extant literature on rsFC and obesity. From 

childhood through adulthood, obesity appears to be related to alterations in the connectivity both 

among regions implicated in EF and between EF regions and other regions (Black et al., 2014; 

Kullmann et al., 2012; X. Li et al., 2016; Lips et al., 2014; Martín-Pérez et al., 2018; Moreno-

Lopez et al., 2016). Further, in both adolescents and adults, excess weight is related to an 

imbalance in connectivity between regions implicated in salience and reward processing and 

those implicated in executive function (Black et al., 2014; Kullmann et al., 2012; Martín-Pérez et 

al., 2018; Moreno-Lopez et al., 2016; Sharkey et al., 2019). However, the directionality of 
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connectivity strength varies across studies, with some finding obesity to be related to stronger 

rsFC between EF and salience/reward regions (Black et al., 2014; Garcia-Garcia et al., 2013), 

and others finding obesity to be related to weaker rsFC between these areas (Martín-Pérez et al., 

2018; Moreno-Lopez et al., 2016; Wijngaarden et al., 2015). Given that adolescents have 

reduced EF capacity compared to adults, (Casey et al., 2008; Luna et al., 2001; Spear, 2000) 

rsFC between EF and reward-related regions is likely most important to focus on in this 

developmental stage. Further, in the adult literature, regions implicated in the processing of 

hunger and satiety appear to play an important role (Garcia-Garcia et al., 2013; Lips et al., 2014; 

Wijngaarden et al., 2015). The few rsFC studies on adolescents have not controlled for 

participant hunger (Black et al., 2014; Moreno-Lopez et al., 2016), which may be an important 

consideration given the varying rsFC patterns between fasted and satiated states found in the 

adult literature (Lips et al., 2014; Wijngaarden et al., 2015). 

In order to fully understand how rsFC patterns relate to obesity, it is also important to 

investigate associations with traits and behaviors related to obesity. In adults, Garcia-Garcia and 

colleagues (2013) found rsFC patterns associated with obesity to be related to deficits in EF, 

showing that greater rsFC between the putamen nucleus and the rest of the SN was related to 

poorer performance on processing speed tasks. In adolescents, Moreno-Lopez et al. (2016) 

examined the relationship between rsFC patterns and personality traits, finding that in 

adolescents with excess weight, reward sensitivity was negatively correlated with rsFC between 

the insula and right superior frontal gyrus, and with rsFC between the middle temporal cortex 

and left frontal operculum. In contrast, these correlations were positive in lean adolescents. 

These results may indicate sensitization of reward-related regions as opposed to cognitive 

regions in obesity. Altered rsFC between regions implicated in reward processing was also found 
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to be associated with greater impulsivity and stress response (Martín-Pérez et al., 2018; Sharkey 

et al., 2019). While these studies provide initial support for the theory that rsFC patterns are 

associated with behavioral phenotypes of obesity, the extant research is limited and further 

studies are needed.  

Investigating the association between connectivity patterns and behavioral outcomes is 

necessary to fully understand the role these neural regions play in obesity. Often, neural regions 

are implicated in multiple different functions (Anderson et al., 2013). While testing associations 

to obesity alone allows us to theorize what function is at play, examining associations to both 

obesity and behavioral outcomes will allow us to refine this interpretation. Further, if alterations 

in rsFC in obese individuals are related to behavioral differences, it is possible that by targeting 

the relevant behavioral outcomes, we can induce changes in rsFC, strengthening adaptive 

connections. There is evidence that behavioral intervention can have a significant effect on 

functional networks in the brain. For example, one study of overweight children showed that an 

aerobic exercise intervention strengthened neural networks related to cognitive control (Krafft et 

al., 2014).  Thus, identifying the neural connectivity patterns associated with obesity and related 

behaviors may be the first step toward the development of novel interventions.  

Relating rsFC patterns to behavioral phenotypes can provide information about effective 

targets for intervention. For example, alterations in rsFC between reward and executive function 

regions may be indicative of problems with top-down control, such as finding food to be 

excessively motivating or reinforcing. Alternatively, these alterations could indicate deficits in 

bottom-up processing of stimuli, such as inhibiting response to food and its cues. For each of 

these potential phenotypes, different intervention approaches may be most effective. 

Interventions such as changing temporal focus, or training people to think about the future, has 
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been found to decrease cravings for cigarettes and food (Kober et al., 2010). Training individuals 

to inhibit their response to a type of stimuli, for example by using a Go/No-go task, has shown 

some effectiveness in reducing alcohol use and overeating behavior (Houben, Nederkoorn, 

Wiers, & Jansen, 2011; Lawrence et al., 2015). Depending on the mechanisms underlying 

overeating, each type of intervention may be more or less effective for certain people or in 

certain situations. Now that prior research has elucidated neural networks that are likely involved 

in overeating and obesity, relating connectivity patterns to behavioral outcomes is the next step 

towards identifying behavioral phenotypes of obesity in a way that can inform tailored 

interventions. 

The current study aimed to address some of these gaps in the literature by examining 

rsFC in a large sample of 164 adolescents aged 13-16 ranging from normal-weight to obese, and 

evaluating the association of rsFC with impulsivity and food reinforcement, controlling for 

variability in hunger. We employed seed-based analyses, to test hypothesized connections 

between specific ROIs included in the DMN, SN, and EFN, as well as an exploratory ICA 

analysis, to identify neural networks that may be associated with differences in weight status and 

the outcome variables of interest in our sample. Further, while the literature examining rsFC in 

obesity is in its early states, studies examining task-based neural activation are more numerous. 

The current study involves secondary analysis of data from a project employing both resting-

state and task-based fMRI scans. This provides a unique opportunity to examine the added utility 

of rsFC analysis. This paper will also discuss the rsFC findings of the current analyses in the 

context of the task-based results of the parent study. This research will provide insight into 

behavioral outcomes associated with obesity-related connectivity patterns, in turn elucidating 

potential effective targets for interventions aimed at addressing overeating and obesity.  
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Specific Aims 

1. Test whether obese compared to normal-weight adolescents exhibit differences in rsFC 

between regions in the DMN, EFN, and SN. 

2. Test whether rsFC between the DMN, EFN, and SN is associated with food consumption, 

food motivation, and inhibitory control. 

3. Test whether elevated food consumption, food motivation and reduced inhibitory control 

mediate an association between obesity and rsFC strength between the DMN, EFN, and 

SN. 

Methods 

Participants 

 Participants were recruited through flyers posted in the community and online 

advertisements to participate in a study on how advertisements impact the brain (which was the 

aim of the parent study). A total of 193 participants ranging from lean to obese took part in the 

study. Of those, 177 completed the full resting state scan protocol and were thus included in the 

current analyses.  Nine participants were found to have excessive motion during the resting state 

scan (i.e., more than three total minutes with motion >0.2mm) and were excluded. Quality 

assurance (QA) checks found that four additional participants had problems in their imaging data 

following preprocessing (e.g., unsuccessful coregistration) and were excluded. Thus, the final 

sample size for the current analyses is 164. The final sample included 77 (47.0%) males and 87 

(53.0%) females. Participants ranged in age from 13 to 16 (mean = 14.30, SD = 1.03). BMI 

ranged from 16.20 to 44.50 (mean = 24.11, SD = 5.35).  zBMI (which z-scores participants’ BMI 

based on gender-specific developmental trajectories) ranged from -1.24 to 2.87 (mean = 0.86, SD 

= 0.94). Eighty-eight (53.7%) participants were categorized as normal-weight, 40 (24.4%) as 
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overweight, and 36 (22.0%) as obese. Exclusion criteria included contraindications to fMRI (e.g., 

metal implants, braces), major psychiatric or neurological disorders (e.g., major depressive 

disorder, autism spectrum disorder), dietary restrictions preventing them from consuming the 

foods served in the study, serious medical problems (e.g., diabetes), habitual or recent illicit drug 

use, and current pregnancy. 

Procedure 

The University of Michigan Institutional Review Board approved this study. Parents 

provided written informed consent, and adolescent participants provided written assent. 

Participants were compensated $150 for their time. Participants who were traveling from greater 

than 30 miles from the study site were compensated an addition $20 for travel. Participants 

completed two laboratory visits. During the baseline assessment (Visit 1), participants completed 

an RRV task assessing food motivation, a food Go/No-go task assessing inhibitory control, and 

BMI/body composition measures. During the second visit (Visit 2), participants were taken to 

the fMRI laboratory, where they completed a rsFC paradigm and a functional task investigating 

neural response to food advertising (functional task pertains to the aims of the parent study). 

Immediately following the scan session, they were taken to a simulated fast-food restaurant 

laboratory (see Chapter II) to complete a food consumption task. 

Measures 

 Aim 1 measures.  

Body mass index (BMI). Age- and sex-adjusted zBMI scores were used to assess 

participants’ adiposity. BMI (kg/m2) was calculated using height and weight measured in the lab, 

then converted to z-scores using age- and sex-adjusted BMI growth curves. Participants were 

classified as overweight with a zBMI cutoff of >+1SD, and obese with a zBMI cutoff of >+2SD.  



	 82	

 Resting state paradigm. Upon arrival at the fMRI laboratory, participants completed an 

8-minute rsFC scan and a high-resolution anatomical scan. During the rsFC scan, participants 

were instructed to focus on a fixation cross and to think about nothing in particular. During the 

scan, participants’ eyes were visible to research staff, enabling visual confirmation that their eyes 

were open and they had not fallen asleep. 

 Aim 2 and 3 measures.  

Hunger. Hunger was assessed during Visit 2, before the fMRI scan. Participants rated 

their hunger using a visual analog scale (VAS) ranging from 0 (“Not hungry at all”) to 100 (“It’s 

all I can think about”). Hunger was included as a covariate in all rsFC analyses. 

Post-scan food consumption. Food consumption was assessed in the simulated fast-food 

laboratory immediately following the fMRI scan during Visit 2. Menu options available to 

participants resembled foods available in fast-food restaurants, and included both unhealthy 

(cheeseburger, French fries, non-diet soda, milkshake) and healthy (chicken sandwich, salad, 

iced tea, fruit smoothie) options. Participants were instructed that they had unlimited time to eat 

any foods they wanted to order, and that they could not take any food home with them. All food 

was weighed pre- and post-participant access to measure the amount of food consumed. Calories 

consumed by participants were calculated using the weight of the food in grams and the calorie 

content of each food served. 

 Relative Reinforcing Value (RRV) task. The RRV task, performed in Visit 1 of the 

current study, measures the reinforcing value of food by allowing participants to make an 

increasing number of button presses to gain access to food. In the current study protocol, 

participants earned points on a fixed-ratio scale beginning at FR4 and doubling each time a point 

was earned (i.e., FR4, FR8, FR16, etc.). For each point earned, participants immediately received 
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a 50-calorie portion of snack food (e.g., M&Ms, Lay’s potato chips). Participants were instructed 

that they were able to perform the task and earn access to snack food as long as they desired. 

Food motivation was operationalized as the highest fixed ratio schedule completed. 

 Food Go/No-go task. An adapted version of the food Go/No-go task (Batterink et al., 

2010) was employed during Visit 1 to assess food-related inhibitory control deficits. This task 

requires participants to respond to “go” signals (75% occurrence) and occasionally inhibit 

responses to “no-go” signals (25% occurrence), measuring the ability to inhibit a pre-potent 

tendency to respond. Participants were presented with images of healthy and unhealthy foods. 

The pictures were arranged in 2-picture blocks, and rapidly presented one-by-one with a 

presentation time of 300 milliseconds and an inter-stimulus interval of 900 milliseconds. The 

number of commission errors (i.e., responses to distractors), the number of omission errors (i.e., 

failing to respond to target pictures), and reaction time (RT) for both Go-trials and commission 

errors were calculated separately for the healthy and unhealthy food pictures. 

Analysis 

fMRI scanner and data acquisition. MRI images were acquired using a GE Discovery 

MR750 3T scanner with an 8 channel head coil located at the UM Functional MRI Laboratory 

(http://www.umich.edu/~fmri/). Foam padding, a vacuum pillow, and tape (sticky side away 

from head) were used to limit head movement. Participants completed all scanning in one 60-

minute session. Spiral imaging was used to measure BOLD signal as an indication of cerebral 

brain activation. To improve BOLD signal detection and minimize susceptibility-based distortion 

effects for regions subject to signal distortions (e.g., OFC, amygdala), we used a protocol that 

utilizes a high readout bandwidth and a shorter echo time. Functional data were acquired using a 

spiral sequence with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 
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30 ms, TI = 500 ms, flip angle = 900, field of view (FOV) = 22 x 22 cm2, acquisition matrix = 64 

x 64, 3-mm slice thickness with no gap, 43 axial slices. Anatomical scans were acquired using a 

high-resolution T1-weighted spoiled-gradient-recalled acquisition (SPGR; TR = 12.3 ms, TE = 

5.2 ms, TI = 500 ms, flip angle = 150, FOV = 22 x 22 cm2, slice thickness = 1.0mm). Slices were 

prescribed parallel to the AC-PC line (same locations as structural scans). Images were 

reconstructed into a 64x64 matrix. Slices were acquired contiguously, which optimizes the 

effectiveness of the movement post-processing algorithms. Images were reconstructed off-line 

using processing steps to remove distortions caused by magnetic field inhomogeneity and other 

sources of misalignment to the structural data, which yields excellent coverage of subcortical 

areas of interest.  

Preprocessing of neuroimaging data. fMRI data was analyzed using SPM12 

(Wellcome Department of Imaging Neuroscience; Institute of Neurology, University College of 

London, London UK) and the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). 

Functional images were realigned to the scan immediately preceding the anatomical T1 image. 

Anatomical and rsFC images were normalized to the Montreal Neurological Institute (MNI) T1 

template brain. Functional images were smoothed with a 6mm FWHM isotropic Gaussian kernel. 

We used Artifact detection toolbox (ART; https://www.nitrc.org/projects/artifact_detect/), a 

composite movement measure derived from the linear (X, Y, Z) rotational (roll, pitch, yaw) 

motion parameters, to detect motion artifacts greater than 0.2mm. Participants were excluded if 

ART motion detection showed that they had more than three total minutes of scan time during 

which movement was greater than 0.2mm. In the analyzed participants, motion was included as a 

first-level covariate in order to control for any frames with excess motion. Upon completion of 
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the above spatial preprocessing steps, quality assurance (QA) plots were examined to check for 

successful normalization to the template and co-registration of structural and functional images.  

During denoising, potentially confounding BOLD effects due to white matter, CSF, 

motion, and main effects of rest were regressed out. A high-pass filter (128s) and band-pass filter 

(.01 Hz - .1 Hz) were applied to remove low frequency noise and signal drifts. Following the 

above temporal preprocessing steps, QA plots showing voxel-to-voxel functional connectivity 

values and BOLD timeseries both before and after denoising were visually examined to 

determine successful reduction of effects due to noise. 

Statistical analyses 

First- and second-level analyses were conducted using the CONN toolbox (Whitfield-

Gabrieli & Nieto-Castanon, 2012). In first-level analyses, motion parameters detected by ART 

for each subject were included as nuisance covariates.  In second-level analyses, we conducted 

ROI-to-ROI analyses using a general linear model (GLM) to examine how rsFC strength 

between neural regions implicated in reward and EF (e.g., OFC, NAcc, DLPFC) differed by 

weight status and was associated with behavioral outcomes of interest. ROIs previously 

established as comprising the networks of interest (i.e., DMN, SN, EFN) were included in the 

current ROI-to-ROI analyses (see Table IV.1 for a list of all ROIs tested). ROIs were defined 

using masks derived from the Montreal Neurological Institute AAL template (Tzourio-Mazoyer 

et al., 2002).  
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Table IV.1 
 
Networks and Source ROIs 
Network Source ROIs 
DMN  
 Hippocampus 
 Inferior parietal lobe (IPL) 
 Middle frontal gyrus (MFG) 
 Parahippocampus 
 Posterior cingulate cortex (PCC) 
 Precuneus 
 Ventrolateral prefrontal cortex (vlPFC) 
 Ventromedial prefrontal cortex (vmPFC) 
SN  
 Amygdala 
 Anterior cingulate cortex (ACC) 
 Caudate 
 Insula 
 Nucleus accumbens (NAcc) 
 Olfactory tubercle 
 Orbitofrontal cortex (OFC) 
 Pallidum 
 Putamen 
 Thalamus 
EFN  
 Dorsolateral prefrontal cortex (dlPFC) 
 Ventrolateral prefrontal cortex (vlPFC) 

 

We also conducted group-level ICA to examine differences between obese and lean 

subjects in rsFC within and between networks.  Data were reduced to 11 dimensions, and 11 

independent components were estimated for ICA analysis, similar to a study with similar aims, 

comparing rsFC in obese and lean adults (Garcia-Garcia et al., 2013).  We examined the 

correlation coefficient between each of the components from the ICA and established masks 

(Fox et al., 2005) of networks of interest (DMN, SN, EFN). We controlled for sex, age, hunger, 

and handedness by including these as second-level covariates. Effects were considered 
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significant at p<0.05, family-wise error corrected (FWE) for ICA analyses, or analysis-level false 

discovery rate (FDR) corrected for ROI-to-ROI analyses (Genovese, Lazar, & Nichols, 2002). 

We also applied a Bonferroni correction for multiple comparisons in analyses involving multiple 

measures of the same construct (i.e., food consumption, inhibitory control). Significant 

connectivity coefficients were extracted for each subject. Then, rsFC correlation maps were 

converted to z-scores using Fisher’s r-to-z transformation. Each participant’s rsFC z-score was 

exported to SPSS 25.0 (IBM, 2017) to conduct Aim 3 mediation analyses.  

The distributions for all outcome variables for Aim 2 and 3 analyses were examined for 

skewness and outliers (>3 SD from the mean). Variables for food and game RRV were highly 

skewed (skewness > 3.0), so we performed a log transformation of these variables. Six 

participants were found to have outliers in the Go/No-go task data, and thus were excluded from 

Go/No-go analyses. Twelve participants were found to have outliers in food consumption data, 

and thus were excluded from food consumption analyses. 

For Aim 1, we conducted second-level group analyses in CONN comparing rsFC 

strength between ROIs and within the extracted independent components to test the hypothesis 

that rsFC patterns would differ in individuals who were obese and overweight compared to lean. 

For Aim 2, we tested the hypothesis that greater connectivity between EF- and reward-related 

regions would be associated with greater food consumption, food motivation, and lower 

inhibitory control. To do so, we used CONN to conduct second-level regression analyses  

between rsFC strength and number of both healthy and unhealthy calories consumed during the 

food consumption task (food consumption), individual performance on the RRV task (food 

motivation), and performance on the food Go/No-go task (inhibitory control). For Aim 3, we 

tested the hypothesis that food motivation and inhibitory control mediate the relationship 
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between obesity and rsFC. To do so, we planned to use the PROCESS macro (A. F. Hayes, 

2012) to conduct mediation analyses. To test the hypothesized mediation models (e.g., weight 

status à food motivation à rsFC z-scores), we planned to employ the bootstrapping method 

with 10000 samples described by Preacher and Hayes (2008), which yields a 95% confidence 

interval. To compare the effect sizes of statistically significant indirect effects, we planned to use 

the completely standardized indirect effect (abcs) (Preacher & Kelley, 2011). Effect sizes can be 

interpreted as small (.01), medium (.09), or large (.25) (Kenny, 2014). 

Power analysis. Previous research has found a large effect size (d = 1.538) when 

comparing rsFC between adult obese and normal weight groups. We used this effect size as a 

starting estimate to conduct a power analyses. We applied standard power estimation procedures 

based on N = 180 and assuming 2-tailed alpha of .05. While effect sizes may differ in our 

adolescent sample, based on the estimate we will have a power of > 99% to detect the effect size 

of 1.538 achieved in an adult sample. 

Hypotheses 

1. We expected that individuals who were obese compared to lean would show significant 

differences in rsFC between regions in the SN (e.g., OFC, striatum) and those in the 

DMN and EFN (e.g., PCC, DLPFC). We also expected that independent components 

analysis would show differences in the rsFC network strength between obese and lean 

participants, particularly with regard to the executive function network (EFN) and 

salience network (SN). 

2. We expected that greater connectivity between reward and EF regions and greater rsFC 

network strength in the EFN and SN would be associated with greater food consumption, 

greater food motivation, and lower inhibitory control. 
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3. We expected that food consumption, food motivation, and inhibitory control would 

mediate the association between weight status and rsFC strength in the DMN, EFN, and 

SN. 

Results 

Aim 1 

Table IV.2 
 
Between-group ROI-to-ROI rsFC Differences 
Contrast Seed/Source T pFDR 

 
Obese > Normal weight     
 Caudate   
  Precuneus 3.16 .027  
  Hippocampus -4.11 .0001 
 Hippocampus   
  Caudate -4.11 .002  
 OFC   
  Olfactory Tubercle 3.18 .050 
 Olfactory Tubercle   
  OFC 3.18 .050 
 Parahippocampus   
  L NAcc -2.87 .047  
  Olfactory Tubercle -2.74 .047 
  ACC -3.09 .047  
  Amygdala -2.85 .047 

 Table IV.2 shows between-ROI connectivity values that significantly differed by weight 

status, and Figure IV.1 displays significant connectivity patterns. Individuals who were obese 

compared to normal-weight showed stronger connectivity from the caudate to the precuneus and 

between the OFC and the olfactory tubercle. They showed stronger negative connectivity from 

the parahippocampus to regions in the SN, including the ACC, amygdala, OFC, and left NAcc, 

and between the caudate and hippocampus. Individuals who were overweight did not show any 

significant differences in rsFC compared to those who were either normal-weight or obese.  
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Figure IV.1. ROI-to-ROI connectivity patterns that significantly differed between the obese 
and normal weight groups. 
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Aim 2  

 Table IV.3 shows all significant associations between rsFC and outcome variables. After 

correcting for multiple comparisons, neither healthy nor unhealthy food consumption was 

significantly associated with rsFC between any of the regions tested. 

 

Food motivation. Higher food RRV was associated with stronger positive connectivity from the 

right NAcc to the putamen and the posterior VLPFC.  Higher food RRV was associated with 

stronger negative connectivity between the PCC and the VMPFC (see Figure IV.2). Game RRV 

was not significantly associated with rsFC strength between any of the tested ROIs. 

 

  

 

 

Table IV.3 
 
Associations between ROI-to-ROI Connectivity and Outcome Variables 
Outcome Variable Seed/Source T pFDR 

 
Food RRV    
 R NAcc   
  Putamen 3.04 .042 
  Posterior VLPFC 3.02 .042 
 PCC   
  VMPFC -3.32 .032 
 VMPFC   
  PCC -3.32 .032 
Healthy commission error RT    
 L NAcc   
  Precuneus 3.95 .003 
 Precuneus   
  L NAcc 3.95 .003 
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Inhibitory control. Slower reaction time during healthy commission errors was significantly 

associated with stronger positive connectivity between the left NAcc and the precuneus, and with 

stronger negative connectivity between the right NAcc and the pallidum (see Figure IV.3). 

Number of healthy omission and commission errors made was not significantly associated with 

connectivity strength between any of the tested ROIs. Number of unhealthy omission errors, 

commission errors, and RT during unhealthy commission errors were not significantly associated 

with connectivity strength between any of the tested ROIs.  

 

Figure IV.2. ROI-to-ROI connectivity patterns significantly associated with food RRV.	
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Aim 3  

For mediation analyses, we focused on connections and potential mediators that 

significantly differed by weight status (for group means, see Table IV.4). Number of healthy 

calories ordered and number of healthy calories consumed were found to differ significantly by 

weight status. Post-hoc analyses showed that only the normal-weight and overweight groups 

significantly differed from one another, with the overweight group ordering and consuming a 

greater number of healthy calories than the normal-weight group. Since there were no rsFC 

differences between the normal-weight and overweight groups, the requirements for mediation 

were not met. Thus, we did not conduct mediation analyses. 

Independent Components Analysis (ICA) 

Figure IV.3. ROI-to-ROI connectivity patterns significantly associated with 
reaction time on healthy Go/No-go commission error trials. 
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 We extracted 11 components using ICA. We then examined correlation coefficients 

showing overlap with masks of established networks, and visually inspected the components to 

determine whether they appeared to be reasonably matched to existing networks. One component 

appeared to be a match to the DMN (r = .32), containing regions including the precuneus and 

medial frontal cortex. None of the extracted components appeared to show strong overlap with 

the EFN or SN. Thus, we only included the component identified as the DMN in subsequent 

analyses. The extracted DMN component did not significantly differ by weight status, and was 

not significantly associated with any of the tested outcome variables. 
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Table IV.4    
Means and Standard Deviations of Outcome Variables    
 Normal-weight 

M (SD) 
Overweight 
M (SD) 
 

Obese 
M (SD) 
 

F p η2 

Healthy calories 
ordered 

207.75 
(202.08) 

338.23 
(269.84) 

222.03 
(245.87) 

4.43 .01** .06 

Healthy calories 
consumed 

156.56 
(178.92) 

269.22 
(244.24) 

176.81 
(242.72) 

3.84 .02* .05 

Healthy calories 
consumed to 
ordered 

0.70 (0.27) 0.77 (0.25) 0.65 (0.33) 1.20 .31 .02 

Unhealthy calories 
ordered 

714.10 
(470.68) 

524.52 
(471.94) 

689.51 
(555.38) 

2.05 .13 .02 

Unhealthy calories 
consumed 

605.69 
(388.95) 

455.12 
(414.05) 

597.03 
(496.09) 

1.82 .17 .02 

Unhealthy calories 
consumed to 
ordered 

0.87 (0.14) 0.87 (0.16) 0.87 (0.15) 0.01 .99 .00 

Total calories 
ordered 

954.50 
(429.05) 

903.12 
(393.03) 

953.04 
(516.95) 

0.20 .82 .00 

Total calories 
consumed 

794.23 
(358.57) 

762.83 
(351.17) 

812.77 
(465.89) 

0.16 .85 .00 

Total calories 
consumed to 
ordered 

0.84 (0.15) 0.85 (0.13) 0.84 (0.17) 0.09 .91 .00 

Food RRV (log 2) 5.78 (2.57) 4.93 (1.82) 5.17 (2.51) 1.92 .15 .02 

Game RRV (log 2) 6.24 (2.66) 6.62 (1.96) 6.40 (2.26) 0.33 .72 .00 
Healthy omission 
errors 

1.22 (1.87) 1.35 (1.67) 1.97 (2.56) 1.74 .18 .02 

Healthy Go-trial 
RT (ms) 

484.28 (51.04) 485.04 
(42.95) 

506.48 
(53.03) 

2.62 .08 .03 

Healthy 
commission errors 

6.44 (3.89) 6.17 (3.76) 5.32 (3.81) 1.02 .36 .01 

Healthy 
commission error 
RT (ms) 

444.85 (88.30) 435.88 
(63.18) 

445.10 
(72.05) 

0.19 .82 .00 

Unhealthy omission 
errors 

1.73 (1.92) 1.93 (2.14) 2.71 (2.96) 2.35 .10 .03 

Unhealthy Go-trial 
RT (ms) 

523.38 (48.27) 528.83 
(44.80) 

535.25 
(47.60) 

0.79 .45 .01 

Unhealthy 
commission errors 

9.62 (5.80) 9.40 (5.30) 9.94 (6.01) 0.08 .92 .00 

Unhealthy 
commission error 
RT (ms) 

480.79 (66.92) 484.64 
(77.99) 

494.96 
(88.82) 

0.43 .65 01 
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Discussion 

 The current study sought to examine the relationship between weight status, eating-

related outcomes, and resting state functional connectivity. Individuals who were obese 

compared to normal-weight were found to have differences in rsFC strength between regions in 

the SN and DMN. While rsFC strength was associated with food motivation, participants who 

were obese compared to normal-weight did not exhibit differences in any of the behavioral 

outcomes, thus we did not conduct mediation analyses as the requirements for mediation were 

not met. 

Weight-related Differences in rsFC 

Individuals who were obese compared to normal weight were found to have stronger 

positive connectivity between the caudate and precuneus. The caudate, part of the SN, has been 

suggested to play a role in goal-directed action and the evaluation of reward-related outcomes 

(Grahn, Parkinson, & Owen, 2008), and the precuneus, often identified as a part of the DMN, has 

been implicated in functions such as mental imagery (Cavanna & Trimble, 2006). The incentive-

sensitization theory of addiction suggests that increased motivation to obtain and consume food 

is heavily influenced by increased sensitivity to rewarding cues, and the assignment of excessive 

reward value to food-related stimuli (Berridge, 2012; T. E. Robinson & Berridge, 2000). 

Stronger connectivity between neural networks implicated in determining the salience of rewards 

and mental imagery at rest may suggest that rewarding stimuli are likely to become salient and 

engage cognitive resources during a period of rest, which could contribute to increased 

motivation and goal-directed action toward food consumption. Future research may do well to 

examine the relationship between rsFC and cue responsivity in individuals who are obese.  
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Participants who were obese compared to normal-weight also showed stronger rsFC 

between the OFC and the olfactory tubercle, both areas in the SN. The OFC is thought to play a 

role in emotional decision-making and the learning of cue-outcome associations, particularly 

assessing the value of a reward (Kerr & Zelazo, 2004; McDannald, Jones, Takahashi, & 

Schoenbaum, 2014). OFC dysfunction is also theorized to be involved in addiction, particularly 

compulsive drug-taking (Volkow & Fowler, 2000).  Meanwhile, the olfactory tubercle is thought 

to be involved in mediating the effects of rewarding stimuli (e.g., cocaine) (Ikemoto, 2003, 

2007). This rsFC pattern may suggest that the rewarding properties of stimuli are particularly 

salient in individuals who are obese, which may influence learning of paired cues and decision-

making about consumption of food, possibly contributing to excessive consumption. 

 The obese compared to normal-weight group also showed stronger negative connectivity 

between areas in the DMN (hippocampus, parahippocampus) and the SN (caudate, amygdala, 

ACC). This connectivity pattern is in contrast to the stronger rsFC between the caudate and 

precuneus found in individuals who are obese compared to normal-weight. This may be due to 

differing functions between the specific DMN regions. The precuneus has been shown to be 

activated in response to cues (Burger & Stice, 2014; Carnell, Benson, Pantazatos, Hirsch, & 

Geliebter, 2014), while the hippocampus and parahippocampus have been shown to be involved 

in memory encoding (Eichenbaum, Otto, & Cohen, 1994). Greater negative connectivity 

between the SN and these DMN regions could suggest reduced salience of memories at rest in 

general. However, we cannot definitively conclude that this is the case, as the current study did 

not include analysis of memory-related task-based activation. 

The overweight group did not show any significant connectivity differences from either 

the obese or normal-weight group. In the current study, we calculated weight status using zBMI, 
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to limit variability stemming from rapid developmental changes in this age range (Adair, 2008). 

Still, pubertal and muscle development in adolescents results in wide variability even in zBMI 

scores that may particularly impact the overweight category (Loomba-Albrecht & Styne, 2009). 

For example, individuals who are particularly muscular for their age may be categorized as 

overweight, along with those who have excess body fat. This combination of body composition 

within the same category may limit our ability to observe differences between the overweight 

group and either the obese or normal-weight group.  

Behavioral Outcomes and rsFC 

 We found that higher food motivation was related to greater connectivity between 

reward-related SN regions (e.g., NAcc, putamen). This may suggest that individuals highly 

motivated by food may have a more integrated reward system, leading them to be more attentive 

to and highly influenced by reward. Higher food motivation was also associated with negative 

connectivity between DMN regions (e.g., PCC, VMPFC). Reduced integration of the DMN 

might suggest that these individuals experience intrusion of other functions while at rest, likely 

reward functions, given the strong rsFC between reward-related regions of the SN.  

Slower reaction time during healthy trial No-go errors was associated with negative rsFC 

between reward-related SN regions (e.g., NAcc, pallidum) and stronger positive rsFC between 

the areas in the SN (NAcc) and DMN (precuneus). Faster RT during commission error trials 

could indicate lower inhibitory control, thus the current results appear to suggest that greater 

salience of reward overall and reduced intrusion of reward at rest may contribute to lower ability 

to inhibit prepotent response. However, this relationship was only present during healthy food 

trials, so further research is needed to fully understand the implications for palatable food 

consumption.  
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The observed associations between rsFC and behavioral outcomes provide insight into 

the practical implications of differences in neural architecture. Stronger connectivity within 

salience and reward circuitry and weaker connectivity within DMN areas may contribute to 

excessive motivation to obtain and consume palatable food. Additionally, stronger connectivity 

between these regions may be related to more successful inhibitory control, which could be 

viewed as protective when it comes to the overconsumption of palatable foods. These findings 

suggest that excessive food motivation may be marked by excessive influence of salience and 

reward processing intruding on DMN functions at rest.  

While the current study found associations between rsFC and both weight status and the 

behavioral outcomes of consumption, food motivation, and inhibitory control, the obese and 

normal-weight groups did not differ on any of the behavioral outcomes, thus not meeting the 

requirements for mediation. Participants who were obese or overweight may have displayed 

reactivity to engaging in a study examining eating behaviors, being less likely to overconsume 

unhealthy food (and in the case of the overweight group, possibly consuming more healthy food) 

due to sensitivity to how consumption of different types of food may be perceived based on their 

weight status. Individuals who are overweight and obese often experience stigma due to their 

weight, and this stigma may have especially negative impacts during adolescence (DeJong, 1980; 

Falkner et al., 2001; Goldfield et al., 2010). In the current study, methodological efforts were 

made to reduce demand characteristics (e.g., participants were left alone during food 

consumption in order to minimize observation-related alterations in eating behavior). However, 

participants who were overweight or obese may have shown some reactivity due to engaging in a 

study about eating behaviors and obesity, thus inhibiting their consumption of foods recognized 

as unhealthy or consciously consuming more healthy food options. In future research, it would 
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be important to understand how the experience of stigma may impact eating behavior 

(particularly food consumption) in the study setting for individuals who are overweight or obese. 

It is also possible that in this age group, some individuals are beginning to display 

problem eating behaviors that place them at risk for obesity as they age, but have not yet 

experienced excessive weight gain. As the rsFC differences associated with problem eating 

behaviors were not specific to obese participants, this underscores the importance of early 

intervention and prevention efforts. Future studies may employ longitudinal design to fully 

understand the timing and development of rsFC changes, problem eating behaviors, and 

excessive weight gain.  

Comparison with Task-based Results  

 The current rsFC findings appear to complement and build upon task-based findings from 

the parent study, which examined BOLD activation in response to commercials for healthy 

foods, unhealthy foods, and phones, as well as associations between BOLD activation and 

behavioral outcomes (food consumption, RRV, Go/No-go). In the parent study, greater BOLD 

activation in the right thalamus and right NAcc during unhealthy compared to phone 

commercials was found to be associated with greater unhealthy intake. Stronger rsFC between 

the right NAcc and the putamen, involved in learning and reward, was associated with greater 

food motivation as measured by the RRV task. This may suggest that a greater propensity to 

become attuned to rewarding stimuli and learn rewarding associations could be involved in 

higher motivation to obtain palatable foods, which could in turn result in greater unhealthy food 

consumption. 

 While the parent study did not find any significant relationships between task-based 

BOLD activation and performance on the RRV task, the current study did find associations 
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between rsFC and performance on this task. Understanding how behavioral tasks associated with 

constructs important in overeating and obesity relate to neural activity can bridge the gap 

between neuroimaging findings and clinical intervention. The relationship of RRV performance 

to resting-state, but not task-based connectivity in the current study suggests that food motivation 

may be driven by differences in basic functional architecture of the brain, rather than differences 

in how the brain responds to a particular task. This indicates that study of rsFC is a worthwhile 

addition to research on the neural correlates of overeating and obesity, as it can provide 

information beyond that yielded by task-based neuroimaging research. 

Limitations and Future Directions 

 The current study had some substantial strengths making it a useful contribution to the 

literature on neural correlates of overeating and obesity. The relatively large sample size 

provided sufficient power to observe effects that may not be visible in a smaller sample. The 

current study also had participants across a wide BMI range, which allowed for the observation 

of differences across weight status groups.  Additionally, the inclusion of behavioral tasks 

provided the opportunity to examine how rsFC differences may impact specific behaviors related 

to overeating and obesity. Still, some limitations of the current study provide ideas for future 

research directions. The current analyses employed a cross-sectional design, preventing us from 

making conclusions about how the observed effects may change over time. Examining changes 

in rsFC over time, particularly as related to task performance, will further elucidate the impact 

behavior may have on functional neural architecture and could inform the development of 

potential interventions. Though we controlled for individual differences (e.g., hunger), we did 

not specifically manipulate hunger and satiety in the current study. Given that a state of hunger 

versus satiety has been shown to impact the association between rsFC and obesity in adult 
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samples (Lips et al., 2014; Wijngaarden et al., 2015), manipulating this in adolescent samples 

would be an important future direction. With the exception of the DMN, independent 

components corresponding to established neural networks were not observable in the current 

study. While we were able to make inferences based on ROI-to-ROI connectivity, further 

research is needed to fully understand the influence of network-level rsFC differences on 

overeating and obesity in adolescents. 

Conclusions 

 The current study provides support for the hypothesis that obesity and related behaviors 

are associated with alterations in rsFC in areas related to SN and DMN function. Specifically, 

stronger connectivity within the SN and negative connectivity within the DMN appears to be 

associated with greater motivation to consume food, and negative connectivity between the SN 

and DMN appears to be associated with obesity. These findings are consistent with existing 

adolescence research illustrating greater influence of reward and salience determination over 

other functions at rest (Black et al., 2014; Moreno-Lopez et al., 2016; Sharkey et al., 2019). 

Further, the current study’s rsFC findings complement and extend findings from the parent 

study’s task-based analyses, furthering our understanding of how neural architecture at rest is 

associated with obesity-related behaviors. Given that reward processing is highly influential in 

individuals who are obese and in those highly motivated by food, training adaptive response to 

rewarding stimuli is likely an important aspect of interventions aimed at reducing intake of 

unhealthy foods. It is hoped that the current study provides support for continued understanding 

of the impact of rsFC on overeating and obesity, and for the development of interventions aimed 

at strengthening the role of functions other than reward in adolescent eating behavior. 
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CHAPTER V 

Integration and Conclusions 

 

 This dissertation aimed to provide a fuller understanding of environmental, 

psychological, and neurobiological influences on overeating and obesity. Study 1 examined the 

impact of a cue-rich context on food motivation and consumption, finding that an environment 

rich in food cues led to elevated food motivation, craving, feelings of hunger, and consumption 

of palatable foods. Study 2 sought to test a novel paradigm identifying sign-tracking and goal-

tracking phenotypes of cue responsivity in children. While this paradigm did not reliably capture 

multiple phenotypes or find a relationship between sign-tracking and inhibitory control or food 

motivation, the development of this protocol provided valuable information for future study of 

these phenotypes in humans. Study 3 examined the association of rsFC with obesity and related 

constructs (inhibitory control, food motivation, and food consumption), finding that alterations in 

the connectivity within and between areas in the SN and DMN were related to differences in 

weight status, food motivation, and inhibitory control. 

 The above findings provide support for the targeting of elevated motivation to consume 

food, particularly in the presence of food-related cues, in interventions aimed at reducing 

problematic consumption. Studies 1 and 3 illustrated two potential pathways by which one might 

experience elevated food motivation: through cues in the environment, and through greater rsFC 

in the SN. Interventions aimed at teaching people to cope with craving have been shown to be 
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effective in reducing food and alcohol consumption (Bowen & Marlatt, 2009; K. T. Jenkins & 

Tapper, 2014; Katterman, Kleinman, Hood, Nackers, & Corsica, 2014; Levoy, Lazaridou, 

Brewer, & Fulwiler, 2017). Beyond the scope of this dissertation is the question of how such 

training may impact neural connectivity, however there is evidence that behavioral intervention 

targeted at craving in internet gaming disorder can change the structure and functional 

architecture of the brain (Zhang et al., 2016). Future research might investigate whether such 

changes might also occur in response to interventions targeted at food craving (e.g., mindfulness 

training, urge surfing), thus reducing both behavioral and biological risk for overconsumption. 

 Study 3 also illustrated how individuals who are obese and those who are highly 

motivated by food show greater rsFC within the neural salience network. Additionally, a highly 

integrated SN was often accompanied by reduced connectivity between the SN and DMN, 

suggesting that salience and reward processing is intruding at rest. This pattern could be 

indicating that these individuals are engaging in cognitive processing of rewards such as food 

even at rest, which may result in greater susceptibility when presented with rewarding stimuli. 

While Study 2 was unable to observe distinct phenotypes of conditioned responses to cues, it is 

possible that stronger SN rsFC is a marker of increased cue responsivity. Examining the 

relationship between rsFC within the SN and cue responsivity phenotypes could be a promising 

direction for future research aimed at understanding mechanisms underlying overconsumption of 

palatable foods. 

 Study 1 of this dissertation also underscored the power of environmental cues in driving 

eating behavior. We found cues to increase consumption even in a relatively healthy sample. For 

participants at higher risk, for example due to increased cue responsivity or neurobiological 

vulnerabilities, inhibiting a cue-driven urge to consume could be even more difficult. In addition 
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to training individuals to respond effectively to cravings, changing the food environment to 

reduce the omnipresence of cues would be a powerful intervention. The parent study to Study 3 

found elevated activation in reward regions during commercials for unhealthy foods to be related 

to increased consumption of unhealthy foods, illustrating the impact of cues such as advertising 

on overconsumption for vulnerable individuals. Policies restricting the presence of unhealthy 

food cues (e.g., advertisements, fast food restaurants) may be effective in reducing excessive 

consumption and rates of obesity. 

 The current dissertation illustrates the impact of food motivation across development, 

from childhood into young adulthood. While a relationship between food motivation and cue 

responsivity phenotypes was not observed in childhood in Study 2, the illustration of how 

environmental cues impact craving and subsequent consumption in Study 1 highlights the 

necessity of understanding how food motivation develops. rsFC differences associated with 

elevated food motivation were observable in adolescence in Study 3, and if not addressed, 

elevated “wanting” may lead to more problematic consumption as individuals develop into 

adulthood and make increasingly independent food choices. It is possible that a connection 

between food motivation and problem consumption is not yet apparent early in development, 

however the impact as children age into adolescence and adulthood suggests that early 

intervention efforts are worthwhile. 

In sum, the findings of the current dissertation have provided insight into factors 

contributing to overeating and obesity, as well as potential treatment targets. Increased food 

motivation and craving may arise due to both biological predisposition and environmental cues. 

Interventions aimed at coping with cravings and responding adaptively to rewarding stimuli can 

address both behavioral and biological risk factors, reducing vulnerability to overeating and 
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becoming obese. Additionally, environmental interventions aimed at reducing exposure to food-

related cues could result in lower risk of engaging in cue-driven problem eating behaviors. It is 

hoped that the current dissertation provides rationale for continued research on such intervention 

and prevention efforts, thus contributing to the reduction of obesity rates and associated health 

problems.  
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APPENDIX 

Text of Study 2 Pre-registration 

As Predicted: "Sign-tracking and associated traits in human children" (#18607) 

 

Created:        01/15/2019 05:21 PM (PT) 

Author(s) 

Michelle Joyner (University of Michigan) - majoyn@umich.edu 

Ashley Gearhardt (University of Michigan) - agearhar@umich.edu 

Shelly Flagel (University of Michigan) - sflagel@med.umich.edu 

 

1) Have any data been collected for this study already? 

It's complicated. We have already collected some data but explain in Question 8 why readers 

may consider this a valid pre-registration nevertheless. 

 

2) What's the main question being asked or hypothesis being tested in this study? 

We expect that children aged 5-7 classified as sign-trackers (ST) will be higher in impulsivity 

and reward-driven eating compared to those classified as non-sign-trackers (nST). 

 

3) Describe the key dependent variable(s) specifying how they will be measured. 

Impulsivity will be measured using the Go/No-go (GNG) task, requiring individuals to inhibit 
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prepotent response to stimuli. Task outcomes are percentage of Go errors (i.e., misses) and No-

go errors (i.e., false positives), and reaction time for both Go trials and No-go errors. Impulsivity 

will also be assessed using parent-report measures, including the subscales making up the 

Behavioral Regulation index (BRI; includes Inhibit, Shift, and Emotion Control) of the Behavior 

Rating Inventory of Executive Functioning (BRIEF), as well as the Attentional Focusing, 

Impulsivity, and Inhibitory Control subscales of the Children's Behavior Questionnaire-Revised 

(CBQ-R). Reward-driven eating will be assessed behaviorally using the Relative Reinforcing 

Value of Food (RRV) task, requiring subjects to make a progressively higher number of 

responses to gain access to a food reward. A higher number of responses made indicates higher 

food motivation. We will also use the Food Responsiveness subscale of the Children's Eating 

Behaviour Questionnaire (CEBQ), a parent-report measure. 

 

4) How many and which conditions will participants be assigned to? 

Due to the observational design, there are no experimental conditions. Participants were 

classified as ST or nST based on responses to the final block of a Pavlovian conditioning task, 

measured by automated data, video observation, and in vivo behavioral observation. Behaviors 

during this task are coded numerically, to calculate Pavlovian Conditioned Approach Index 

(PCA-index; for automated data only) and response bias (for automated, video, and response 

bias) scores, which range from -1.0 to 1.0. Individuals with scores ranging from 0.5 to 1.0 will be 

considered ST, while those with scores below 0.5 will be considered nST. Groups will be 

calculated separately for each measurement method. 

 

5) Specify exactly which analyses you will conduct to examine the main 



	 109	

question/hypothesis. 

2-sample t-tests will be conducted to test whether scores on each of the dependent variables 

differ significantly between the ST and nST groups. These analyses will be conducted separately 

for each measurement method. 

 

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for 

excluding observations. 

Participants who complete at least 2 but fewer than the full 4 blocks of the Pavlovian 

conditioning task will be classified as ST or nST based on performance during their final block. 

Those who do not complete at least 2 blocks will be excluded. Participants will be excluded if 

technical malfunction prevents collection of valid data from the Pavlovian conditioning task. 

Finally, participants who are missing data for any of the dependent variables will be excluded 

from analyses involving that variable only. 

 

7) How many observations will be collected or what will determine sample size? 

No need to justify decision, but be precise about exactly how the number will be 

determined. 

We planned to end data collection at the end of June 2018 or upon reaching 70 child participants, 

whichever came first. Data collection ended on 6/24/18 with a total sample of 64 child 

participants. 

 

8) Anything else you would like to pre-register?  

(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses 



	 110	

planned?) 

Due to the novelty of the current study design, with no clear analogue in this type of sample, the 

investigators conducted preliminary descriptive analyses to determine how best to categorize 

individuals as ST or nST. Group comparisons with the dependent variables have not yet been 

conducted. 
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