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ABSTRACT

Real options, inherited from financial options, are a useful tool to manage risks,

but also have the flexibility to adopt various risk averse attitudes. In the literature,

real options are mostly applied to capital budgeting problems. In some fields, like

healthcare, real options theory is not widely known, and not many empirical and

quantitative studies are based on this. In other fields, like renewable energy, real op-

tions theory have been used to generate traded instruments (like weather derivatives)

or those that are only exercised but not priced.

This dissertation includes three applications of real options arising in different

fields. Chapter 2 presents a quantitative strategy to allocate scarce primary care

physician work hours into teams in a Patient-Centered Medical Home. The dis-

ruptions caused by transferring primary care physicians between teams are priced

by real options. The flexibility to reflect various risk averse attitudes is achieved

by applying prospect theory. The numerical experiment shows that our allocation

strategy creates less disruption to teams that handle large numbers of sicker patients.

The model can enhance the quality of service when compared to existing method-

ologies. In Chapter 3, a model is developed to find a prediction which minimizes the

weighted cost of overestimation and underestimation. The costs of overestimation

and underestimation are expressed as real options which are priced. The proposed

viii



model makes predictions that are competitive with other methods when compared

on datasets drawn from three areas: manufacturing, finance, and environment. In

Chapter 4, we integrate the model of Chapter 3 with a wind-to-power conversion

process to predict the power output from wind speed. The integration process is

realized through Ito’s Lemma. The predicted power output is the optimal value that

minimizes the weighted cost of over and underestimation. Our numerical results

show that the proposed integrated model outperforms other benchmarks.

This dissertation extends the real options theory to problems where this theory

has not been traditionally applied. First, we are studying are day-to-day opera-

tional problems, not capital budgeting problems. Second, the real options models

(in healthcare, manufacturing, and renewable energy, etc.) are data-driven and em-

pirical. The real options’ ability to flexibly reflect various risk averse attitudes is

quantitatively demonstrated. Third, the real options in our models are not traded

nor exercised. The true advantage of using real options in risk management is realized

by its ability to adapt different pricing mechanisms. In conclusion, the exploration

in this dissertation reveals some useful insights from the applications of real options

to operational decisions.
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CHAPTER I

Introduction

1.1 Introduction To Financial and Real Options

Options are “a right to buy or to sell an asset at a given price within a specified

period of time”.[27, 14] A call option gives the holder the right to buy an asset at

a given price within a specified period of time. A put options gives the holder the

right to sell an asset at a given price within a specified period of time. The given

price is called the strike price and the specified period of time is called the exercise

time.

Mathematically speaking, at time t, a person can buy a call (or put) option at

a cost of c(t;K,T ) (or p(t;K,T )), where K is the strike price and T is the exercise

time. The option is targeted on an asset whose current price at time t is X(t). As

time goes on, the price of the asset changes and reaches X(T ) at the exercise time

T . Then, the person has the right to buy (or sell) the asset from (to) the option

issuer at the strike price K. If the person chooses to exercise his/her right, we say

the option is exercised. If the person chooses to give up the right, the option expires

and becomes worthless. Usually, if the asset price X(T ) is higher than the strike

price K, the call options are exercised and the put options expire worthless. On the

other hand, if the asset price X(T ) is lower than the strike price K, the put options
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are exercised and the call options expire worthless. At time T , the payoff of a call

option is max{0, X(T )−K}, and the payoff of a put option is max{0, K −X(T )}.

Options are widely traded in financial markets. Different investors use options

to achieve different purposes. Speculators use options to leverage their funds. They

may receive high returns but are taking high risks at the same time. Hedgers use

options to offset potential risk but their expected return is also limited. Overall,

options are a very useful tool to manage risks in the market.

However, when using options to manage risk, one cannot ignore the cost of an

option. The most well recognized pricing model, the Black-Scholes model, was de-

veloped in [14]. The Black-Scholes model valuates the options under the principal

of non-arbitrage. An arbitrage opportunity means that an investor can make up a

portfolio, and the value of the portfolio will increase in the future with probability

1. In an efficient financial market, those arbitrage opportunities are discovered and

acted on so that the arbitrage opportunity vanishes.

Intuitively, the value of an option should be the discounted expected value of

its future payoff, e.g. c(t;K,T ) = e−r(T−t)EP [max{0, X(T ) − K}], where r is the

risk-free rate (i.e. interest rate, discount factor), and P is the probability measure.

However, it is found that this valuation contradicts the principal of non-arbitrage.

In the Black-Scholes model, the asset price is assumed to follow a geometric Brow-

nian motion,

dX(s) = µX(s)dt+ σX(s)dW (s),(1.1)

X(t) = s0,(1.2)

where µ and σ are parameters and W (s) is a standard Brownian motion. µ reflects

the moving trend, or drift, of the asset price and σ is its volatility.

2



Under the principal of non-arbitrage, the model [27] valuates the price of an option

as

c(t;T,K) = e−r(T−t)EQ[max{0, XQ(T )−K}],(1.3)

p(t;T,K) = e−r(T−t)EQ[max{0, K −XQ(T )}],(1.4)

where Q is the risk-neutral measure. The dynamic of the asset price under the Q

measure is

dXQ(s) = (µ− λσ)XQ(s)dt+ σXQ(s)dW (s),(1.5)

XQ(t) = s0,(1.6)

where

(1.7) λ =
µ− r
σ

is the market price of risk.

The Black-Scholes model can uniquely determine the price of an option in a com-

plete market. A complete market requires that there are negligible transaction costs,

and the assets are priceable. In a complete market, the market price of risk is deter-

mined by (1.7) for every asset in the market, so options are uniquely priced in (1.3)

and (1.4).

However, in many cases, the market is incomplete. One reason for market in-

completeness is that the asset is not traded. Since the asset is no longer a financial

instrument, the options on the asset are named real options. In such a incomplete

market for real options, the price of an option is not unique, because the formula

(1.7) to obtain the market price of risk λ does not have unique solutions. That can

happen when σ is not a scalar, and the model is multi-factor, so (1.7) cannot be

inverted. The choice of λ depends on the aggregate risk aversion on the market, the
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liquidity and other factors.[12, Chap.10] Overall, real options, inherited from finan-

cial options, are a useful tool to manage risks, but also have the flexibility to adopt

various risk averse attitudes. The purpose of this dissertation is to take advantage of

this and apply real options to operational decision making problems in healthcare,

renewable energy, and other fields.

1.2 Real Options in Operational Decision Making Problems

Many researchers have tried to use real options as a novel tool to handle risk

and uncertainty in different fields. We notice that researchers with management,

accounting, finance, or economics backgrounds are applying real options in their

fields, but in operational practice, the application of real options is rare, especially

in healthcare.

[97] reviews different capital budgeting methods in healthcare investment, includ-

ing real options pricing. The work [97] points out that when uncertainty is high and

managers are able to affect the outcome, the value of flexibility provided by the real

options approach is adapted. However, the authors of [97] also mentioned that the

real options pricing is rarely used by healthcare practitioners. They failed to find any

healthcare journal articles primarily dealing with real options. The articles they re-

viewed are mostly from journals in management, accounting, finance, and economic

fields. And they only found two empirical healthcare articles related to real options.

We did a similar literature search in the most recent decade, and only found a few

articles using real options in healthcare journals, but not limited to capital budgeting

planning. [35] and [11] conclude, through a literature search and survey, that real

options are helpful in decision making in some healthcare applications. [38] describes

real options analysis as the total expected net gain or loss in the future. [32] evalu-

4



ates the cost effectiveness of different HPV immunization programs via real option

prices. However, none of these articles present any quantitative models.

Unlike healthcare, real options seem to be more acceptable in the electricity energy

field, since electricity power literature related to real options can be found in top

electrical engineering journals. This is likely due to an active and less regulated

electricity market. However, [21] reports that most of those studies use real options

to hedge the external and exogenous uncertainties, e.g. price and policy changes. A

few other studies consider uncertainties from internal sources. For example, wind

resource value and demand response value are assessed by real options to make

investment planning [58]. Besides capital budgeting problems, [64] discusses the

possibility to create an option market for electricity. There, the option buyers can

hedge their risk while the issuers are obliged to deliver the specified amount of power.

Similarly, [42] considers using call options to reduce the losses when a wind farm

produces less energy than the bid quantity, and their results show that purchasing

an option is more profitable than using a pumped storage hydro unit for wind farm

owners. Although these two studies extend the potential of real options beyond

capital budgeting problem, their real options are going to be traded or exercised

between participants.

This dissertation also includes numerical examples using manufacturing data. For

a long time, studies using real options in manufacturing are solving capital budgeting

problems with descriptive models [9]. However, in recent years, a few quantitative

studies using real options in manufacturing appear with assumptions on specific types

of product and production situation. [20] presents a model to assess the net benefit

of postponement when a supply chain is disrupted. The authors formulated the net

benefit as a real call option, and proposed a strategy that a manufacturer would

5



prefer the postponement when the option price is positive. [36] evaluates different

investment strategies using real options in a cellular manufacturing situation. Over-

all, there is more discussion on real options in manufacturing than that in healthcare,

but the application of real options is less common than renewable energy.

1.3 Summary and Contribution

The literature review shows that real options are mostly applied to solve capital

budgeting problems. In some fields, like healthcare, real options theory is not widely

known by researchers, and there aren’t many empirical and quantitative studies us-

ing real options. In other fields, like renewable energy, real options theory is more

acceptable, but the real options introduced in most studies are traded, or contrac-

tually exercised. This dissertation extends the application of real options model in

several aspects. First, the problems we study are day-to-day operational problems,

not capital budgeting problems. Second, the real options models in both healthcare

and renewable energy fields are data-driven and empirical. The real options’ abil-

ity to flexibly reflect various risk averse attitudes is quantitatively demonstrated in

the models. Thirdly, the real options in our models are not traded nor exercised.

The advantage of using real options on risk management is only brought by the real

options pricing mechanism. The use of real options in these models indicates that

real options could have many more applications outside current study topics. The

following three chapters in this dissertation present these three real options models

to solve operational decision making problems in healthcare and renewable energy

sectors.

In Chapter 2, we apply real options to allocate manpower resources, i.e., the

amount of working hours of healthcare professionals (like physicians, nurses, clerks,

6



social workers, nutritionists, pharmacists, etc.), to teams facing a stochastic demand

in a Patient-centered Medical Home. To handle this uncertainty, the allocation strat-

egy described in this work consists of two phases. In the first phase, a preliminary

assignment of resources is determined, and the demand process is generated dur-

ing the scheduling of patients. The total load on each team, generated during the

scheduling period (i.e., during phase one), is shown to be a stochastic differential

equation (SDE). Given an initial assignment, the mismatch between this assignment

and the stochastic demand observed before the start of service is an option (or a

contingent claim) on this SDE. In the second phase, when the teams initiate the

service of patients, based on each team’s demand, the initial allocation of resources

is made to meet the total PCMH demand. During phase two, this reallocation causes

disruption to the teams. Real options theory is used to quantify this disruption and

we propose here three fair and consistent mechanisms to price this option. After the

pricing function is determined, for fairness, phase-one assignments are made such

that each team incurs the same price of disruption caused during phase two. We

present four examples to illustrate the strategy and a mechanism that incorporates

the objective of decreasing disruption to teams handling sicker patients.

In Chapter 3, we presents a new prediction model for time series data by inte-

grating a time-varying Geometric Brownian Motion model with real options pricing.

The new prediction model can flexibly characterize a time-varying volatile process

without assuming linearity. We formulate the prediction problem as an optimiza-

tion problem with unequal overestimation and underestimation costs. Based on real

option theories, we solve the optimization problem and obtain a predicted value,

which can minimize the expected prediction cost. We evaluate the proposed ap-

proach using multiple datasets obtained from real-life applications including man-
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ufacturing, finance, and environment. The numerical results demonstrate that the

proposed model shows competitive prediction capability, compared with alternative

approaches.

Chapter 4 integrates the prediction model in Chapter 3 with a wind-to-power

conversion process to predict the wind power output. For probabilistic wind power

forecasts, all the sources of uncertainties arising from both wind speed prediction and

the wind-to-power conversion process should be collectively addressed. To this end,

we model the wind speed using the inhomogeneous geometric Brownian motion and

convert the wind speed’s prediction density into a closed-form wind power probability

density. The resulting wind power density allows us to quantify prediction uncer-

tainties (i.e. overestimation and underestimation) via real options. The wind power

forecast is made to minimize the total cost with unequal penalties on the option

prices on the overestimation and underestimation. We evaluate the predictive power

of the proposed approach using data from commercial wind farms located in different

sites. The results suggest that our approach outperforms alternative approaches in

terms of multiple performance measures.

Finally, in Chapter 5, we conclude the dissertation and discuss other possible

future applications of real options to operational decision making problems.

Chapter 2-4 include works in [94, 3, 93]. Note that a same symbol may be used

in different chapters, but their meanings and different and are explained in each

chapter.
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CHAPTER II

Allocating Scarce Resources with Stochastic Demand in a
Patient Centered Medical Home (PCMH)

2.1 Introduction

Patient-centered medical home (PCMH), while not a new concept, has evolved

as a model of primary care excellence that is patient-centered, comprehensive, co-

ordinated, accessible, and committed to quality and safety. A study [66] from the

Patient-Centered Primary Care Collaborative (PCPCC) describes the organization

of a PCMH: in a PCMH, patients in groups have ongoing relationships with their

primary care physician team who collectively take responsibility for their care. The

study further adds that the American Academy of Pediatrics, American Academy of

Family Physicians, American College of Physicians, and American Osteopathic Asso-

ciation, representing approximately 333,000 physicians, have developed the principles

of PCMH. The PCPCC followed up in 2016 with a study [67], which indicated that

more than 1,200 organizations had been committed to transforming the health care

system based on the principles of PCMH, including some 500 large employers, insur-

ers, consumer groups, and doctors. Several researchers have concluded that PCMH

offers better service quality [26, 72, 49] and lowers cost [69, 99, 76].

Other researchers, however, point out that PCMH may lead to higher patient

demand thus creating a higher scarcity of resources. [75] report an over 10% in-
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crease in primary care visits for veterans nationwide as a result of moving to the

PCMH system. [65] also demonstrate that implementing a PCMH practice model

may require 59% more full-time equivalents (FTEs) per physician FTE. Their studies

clearly point out that PCMH is facing the problem of high demand and relatively

low supply.

The problem of high demand and inadequate resources is faced by not only the

PCMH, but other healthcare systems as well, and has been widely studied by re-

searchers. Some researchers try to find better scheduling or grouping strategies of pa-

tient demand, while others propose allocating healthcare resources in a more efficient

way. Some typical examples of resources are nurses, operation rooms, medicines, etc.

However, health service providers still face difficulties of resource allocation, such as

uncertainty in the patient arrival and service times, patient and provider preferences,

and some risk factors such as no-shows and cancellations, as pointed by [39].

Despite these difficulties, several principles can be used to guide resource alloca-

tion in healthcare. [68] describe 4 types of scarce resource allocation principles: (1)

treating people fairly; (2) favoring the worst off; (3) maximizing the total benefit

(such as the total number of lives saved); (4) promoting and rewarding social useful-

ness. We find that most of the studies about scarce resource allocation in healthcare

and other areas present strategies that only follow the third principle, by solving

an optimization problem with utility functions, and maximizing profit and/or mini-

mizing the loss in terms of overall idleness, waiting time, service quality and so on.

However, this approach neglects the issue of fairness among patients. In contrast,

our resource allocation strategy emphasizes fairness and quality of service following

the principles of PCMH, rather than revenue or costs.

The primary goal of this chapter is to find a strategy to handle the resource
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scarcity in a PCMH system while upholding the core objectives of a patient-centered,

comprehensive, coordinated care which is committed to quality.

2.1.1 Introduction to PCMH Structure

This section includes a brief description of the PCMH structure. In a hospital

where PCMH is practiced, patients and healthcare professionals (e.g., physicians,

nurses, clerks, social workers, nutritionists, and pharmacists) are divided into several

teams. Patients are served by their own team’s professionals who share the same

record for patients assigned to their team.

A more detailed requirement list [61] has been provided by the National Com-

mittee for Quality Assurance (NCQA). Certification of a PCMH requires meeting

conditions in six standards: (1) enhance access and continuity; (2) team-based care;

(3) population health management; (4) plan and manage care; (5) track and coor-

dinate care; (6) measure and improve performance. The certification also requires a

must-pass element within each standard and a minimal score.

Based on the previous studies [78, 2], the NCQA materials [61], and our discussions

with managers in hospitals, we can describe the structure of a PCMH through the

following characteristics:

• In a PCMH, patients are divided into teams and are served only by their own

team’s professionals. Therefore, we only consider the total patient demand

in one team, and regard the demand for each team as a vector of random

variables whose coordinates indicate the demand requests to different types of

professionals in the team.

• Similarly, healthcare professionals are divided into teams and serve patients in

their own team. We consider the total available working hours for each type of
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professionals. As a result, the available resources are described in the form of a

vector of random variables.

• A PCMH must provide urgent same-day and after-hour appointments. So we

reserve part of the working time ahead of resource allocation planning.

• The patient demand is affected by several attributes, such as gender, age, med-

ical history, etc [78, 2]. This information is carefully recorded in a PCMH [61]

and thus can be used to predict patient demand. Therefore, we assign patients

to several types, from the healthiest type to the sickest type. A healthier-type

patient generates less demand, while a sicker-type patient requests a higher de-

mand. Therefore, in our model, a sicker-type patient requests more demand

than a healthier-type patient. We will discuss how to determine patient types

and predict their demand using healthcare data in Section 2.2.

• The manager can adjust the amount of resource in a PCMH team. One way is

assigning professionals at floating positions to teams facing scarceness. Another

way is having professionals working overtime to finish unmet demand.

• In a PCMH, all patient requests for appointment are accepted.

• A PCMH maintains patients’ records and medical history. During scheduling

and service, these records are accessible by the team.

• Clinical quality performance, resource use, and patient/family experience are

measured and improved over time.

2.1.2 Literature Review

Although the PCMH standards are well defined, the approaches to implementing

the six standards of PCMH vary widely, in both implementation and research studies

12



[46].

There are many studies that consider scheduling of patients in a variety of different

situations. Some of them consider the profit of health care providers and ignore the

quality of patient care [95, 56], while other studies include one or more of the PCMH

characteristics in their schedules. [55] and [101] both use queuing theory to model

patient arrivals and study the waiting time and appointment backlogs. This is an

important patient case parameter, and is not considered in our study. [37] and [59]

consider patient time preference in scheduling. However, these studies give fixed time

slots to all patients, regardless of the patient’s medical condition and need.

The PCMH standards [60] spell out some mandatory implementation procedures,

such as e-visits and home care. [6] and [5] summarize historical data and conclude

that e-visits can reduce health care providers’ costs and retain service quality. [1]

find that care coordination improves quality and leads to a more efficient use of

resources. Though these studies are patient-centered, they qualitatively describe

the environment. In contrast, our goal is to present a quantitative model which

will allocate resources based on patient type, and then reallocate resources to meet

each team’s demand. [4] finds that flexibility in moving patients between teams

benefits timely access to care and patient-physician continuity with an objective of

maximizing provider’s revenues. In contrast, our study attempts to control the loss

of quality when patient care is not provided by the patient’s designated professionals

by assigning patients within their own teams.

Several studies have considered the demand and supply problem in a PCMH. [78]

and [2] use a Bayesian framework to predict patient demand and to identify factors

that may affect it. [30] use an adaptive appointment scheduling algorithm to reduce

waiting times in a PCMH, but does not consider patient conditions in the scheduling
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process. In general, very few studies have considered scarce resources within the

framework of a PCMH. This chapter aims to fill this gap. The following paragraphs

relate our work to the literature.

Since PCMH has requirements on nearly every aspect of primary care, it is hard

to establish a model that covers all its aspects. In this work, we only consider

allocating primary care physician (PCP) hours or similar services within the PCMH

teams. Other accessible services, e.g. telephone and e-visit services, coordinated

care, specialty care, hospital care, and, home care are not included in this study.

Wait time of patients and appointment backlogs are also not considered. The model

developed here is a one period model, and is expected to be used to make a ‘myopic’

decision, without considering its impact on the future decisions. A dynamic model

based on continuous dynamic programming is under study.

Based on these characteristics of PCMH, this chapter develops a conceptual frame-

work to make a preliminary assignment of the resources to each team at the time

when the schedule opens for patient appointments. In this framework, after the

demand is observed, the preliminary assignment is adjusted to meet the demand ex-

actly. However, this adjustment can be harmful to teamwork[7] and cause disruption

to the teams. The new member and the existing ones need time to become effec-

tive coworkers. Moreover, during this reassignment, the difference in professionals’

specialty areas and training levels makes team collaboration even more difficult[43].

This chapter presents a methodology to determine this preliminary assignment so as

to equalize the disruption between teams, and this is done by developing a ‘fair’ and

‘consistent’ pricing and allocation mechanism.

Most scheduling systems allocate patients between teams during the scheduling

process, potentially reducing the quality of service provided to these patients. We
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believe our study is the first which schedules each patient within its team, but shifts

resources (PCP etc.) to meet the potential excess demand thus created, as it should

be in a patient-centered system.

The rest of the chapter is organized as follows: Section 2.2 shows how to determine

patient types and predict their demand using healthcare data. Section 2.3 develops

a stochastic differential equation (SDE) of the demand process generated during the

scheduling of patients to a team and also presents a fair and consistent mechanism

to price the resulting disruption. In Section 2.4 we present simulated numerical

examples to show how our model reflects the loss averse attitude of management;

and, finally in Section 2.5 we present our concluding remarks.

2.2 Patient Type and Demand of Service

In this section, our goal is to use healthcare data to test the hypothesis that

different patients require different PCP times. We use the 2012 Community Health

Center (CHC), 2013, and 2014 data from the National Ambulatory Medical Care

Survey (NAMCS) [60]. We extracted all valid visiting time to PCPs and then we

randomly selected around 65%-70% of them as the training set. The remaining data

set is used as the testing data. The size of the training and testing data sets are

given in Table 2.1.

Table 2.1: Size of Three Data Sets
Data Set 2012(CHC) 2013 2014

Training Size 3,000 4,800 4,000
Test Size 1,596 2,135 1,598

We used a Gaussian Mixture Model to cluster the visiting time in the training

set into five groups. The service time in each group should follow a Gaussian dis-

tribution. Figure 2.1 presents the clustering result when we divide the patients into
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5 groups in three training data sets. The horizontal axis presents the patient vis-

iting time. The blue bars are the histogram of visiting time from the training set,

that is, the empirical probability of visiting time. The five dashed curves are the

probability density functions of 5 normally distributed groups, whose means and

standard deviations are given in Table 2.2. The solid curve demonstrates the sum

of the five dashed curves, which is the theoretical probability density function of the

whole training set. We can observe that the theoretical probability density function

is a good approximation of the empirical probability of patient visiting time.

Figure 2.1: The Clustering Result. Left panel: 2012(CHC); Middle panel: 2013; Right panel:
2014

Table 2.2 presents the weight, mean, and standard deviation of the visiting time

for each type in three data sets.

Table 2.2: Clustering Results of Three Data Sets (time in minutes)

Data Set Group 1 2 3 4 5

2012(CHC)
Weight 0.35 0.30 0.24 0.10 0.01
Mean 13.29 18.44 24.96 36.54 62.56

Standard Deviation 3.85 6.00 7.47 10.82 21.02

2013
Weight 0.32 0.28 0.23 0.14 0.03
Mean 13.98 18.40 24.90 33.60 57.65

Standard Deviation 4.22 6.11 7.98 9.53 14.81

2014
Weight 0.32 0.28 0.23 0.14 0.03
Mean 13.64 18.60 24.08 32.38 51.45

Standard Deviation 3.94 5.84 7.25 9.38 15.14

To present the goodness of the fit, we compared the empirical cumulative dis-

tribution function of the test data sets and the theoretical cumulative distribution

function using the results from the training sets. Figure 2.2-2.4 (Left) compares the

empirical cumulative step histograms of the test data with the theoretical cumulative
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distribution function using the results from the training set. The horizontal axis is

the patient visiting time and the vertical axis is the cumulative probability. Given

any visiting time t, the height of step histograms at t is the proportion of visiting

time sample in the test set that is less than t. The cumulative distribution function

is the weighted sum of five Gaussian distributions using the training results in Table

2.2. It can be observed that the two curves are very close. Figure 2.2-2.4 (Right) is

a probability plot (P-P plot) comparing each data point’s percentile in the test data

set and its percentile using the theoretical cumulative distribution function. The P-P

plot shows that the test data points are located close to the diagonal line.

From this study of the data, we conclude that the amount of time a PCP spends

with a patient depends on the patient-type, that there are five such patient types

and that each type requires service time that can be represented by a Gaussian

distribution. In the remaining chapter, we will use the results of this section to

develop and analyze the proposed model.

Figure 2.2: 2012(CHC) Data Set. Left panel: Cumulative Probability Function; Right
panel: P-P Plot
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Figure 2.3: 2013 Data Set. Left panel: Cumulative Probability Function; Right panel: P-P
Plot

Figure 2.4: 2014 Data Set. Left panel: Cumulative Probability Function; Right panel: P-P
Plot

2.3 The Problem

2.3.1 Introduction to the Model

As the structure of a PCMH is well defined by the NCQA, our model only considers

allocating resources to teams to meet the demand and to maintain and improve

the service quality. The proposed resource allocation model includes two phases:

appointment and service.

The appointment phase begins before the service starts. This is a planning stage,

when the manager estimates the total number of working hours of each type of
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professionals during a service period based on the budget and the number of team

members. During this planning, a small number of the working hours are reserved for

same-day and/or after-hour appointments. The remaining hours are the total hours

available for assignment to the teams. We define these hours by the variable SrTOT

for the type r professional. In this chapter we develop a methodology to make this

assignment of working hours to each team in a ‘fair’ manner. The number assigned is

determined by the probability distribution of patient demand, determined by patient

conditions, etc., as well as a ‘fairness’ paradigm. Let Srj be the initial assignment of

type r professional in team j. The goal of this two-phase procedure is to determine

this initial allocation to meet some objectives.

During the phase 1, patients call for appointments, and the request must be ac-

cepted , by either placing the patient under existing appointment slots or by opening

new ones. The time allocated in the schedule for each patient request is determined

by its immediate condition and the clinical history. For example, the sickest type of

patients and/or patients in sicker condition at the time of the call are given more

visiting time. Thus, the schedule generated accommodates different medical condi-

tions of patients. At the end of this phase, the demand process can be observed to

make this initial assignment.

The second phase, the service phase, starts when the appointment schedule closes

and teams begin serving patients. At this point, the patients’ demand process for

each type of professional-hours within each team is observed (in probability) and the

manager, who is faced with the mismatch between demand and initially assigned

working hours. It is very likely that the total demand D is greater than the total

initially allocated hours (excluding the reserved hours) because no patient’s request

is rejected. And therefore, Srj , the initial allocation to type r professionals in team j
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made in the appointment phase should be reallocated to Ŝrj , whose value is stochastic

and is determined by the demand process generated by patient calls during the phase

1.

However, during reallocation, whenever a healthcare professional is transferred

into a team, there is a potential disruption to the team. This arises from the fact

that the professional may not be familiar with patients in the team and may not have

cooperated with other team members earlier. Controlling this disruption, defined by

the random variable max{0, Ŝrj − Srj }, is critical since it could lead to a decrease

in the quality of service. A mechanism to ‘price’ this disruption is presented in

this chapter, and the resulting price, grj (S
r
j ), represents the cost of disruption as a

function of Srj , the initially allocated hours of type r professionals in team j. The

goal of this chapter is to choose a ‘fair’ initial allocation so that the cost of disruption

to each team is as equal as possible, and is also minimized. We propose solving the

following optimization problem:

min gr1(Sr1)(2.1)

s.t. grj+1(Srj+1) = grj (S
r
j ) for all j = 1, · · · J − 1(2.2)

J∑
j=1

Srj = SrTOT(2.3)

Srj ≥ 0.(2.4)

to get a fair allocation. Fairness is achieved by making the price of disruptions the

same for each team (the first set of constraints).

In summary, the operation of a PCMH contains two phases:the appointment and

the service phase. We observe that the effect of allocation/reallocation of resources

(i.e., health care professional working hours) and its impact happens during the

phase two. We refer to this mechanism as a 2-phase allocation strategy: an initial
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allocation in the appointment phase (i.e. phase 1) and the disruption it causes in the

service phase (i.e. phase 2). The second phase determines the price of disruption.

2.3.2 The Model

In this section, we develop a mathematical model of the demand process and,

given the initial allocation made at phase 1, the resulting disruptions to teams. We

assume that professionals provide only the service in which they specialize. Thus,

each specialty creates service for its own demand, independent of the demand of

other specialties. Thus in the following discussion, we consider only one type of

health care manpower resource, the primary care physician (PCP).

As required, we assume that a PCMH consists of J teams providing primary care,

indexed by j = 1, . . . , J . Each team is assigned a group of patients, each labeled by a

patient type k = 0, 1, · · · , K according to his/her recorded information in the PCMH.

As we saw in section 2, this is supported by the health care data. Type 0 patients are

the healthiest with type K the sickest. The operation of the PCMH starts at time 0,

when the schedule for each team for patient appointments during service period T to

T ′ opens. From time 0 to T , patients call in and request appointments. Part of the

PCP working hours during time T to T ′ is reserved for same-day and/or after-hour

appointments. The remaining PCP working hours are equally divided into several

appointment slots, each of which consists of δ hours of time. When a patient in team

j calls, with probability pj,k, he or she is a type k patient who requires kδ hours of

PCP work. Referring to Table 2.2, we note that the for the five patient types, these

probabilities appear in the ‘Weight’ row, and are the weights of the representative

Gaussian distributions. For example, the number 0.35 in the row titled Weight and

column titled 1 in dataset 2012(CHC) is the probability that the patient seen by the

PCP is the first type, say k1.
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We assume that the patient calls arrive as a Poisson process with the arrival rate

in team j being λj and each such patient, depending on his or her type, is assigned

to slots on the schedule. Therefore, the arriving rate of type k patients calling in

team j is λj,k = pj,kλj. The value of λj can be easily obtained from historical data

[85]. We also assume that, on the scheduled date, the patient arrives on time and the

patient actually takes δ + ε units of time of service in each slot, where ε ∼ N(0, σ2
k).

The choice of k, δ, and σk can be determined by the clustering results in Table 2.2.

Ideally, kδ should be the mean visiting time of each group and
√
kσk be its standard

deviation. Using the same example in dataset 2012(CHC), type k1 patient’s mean

visiting time k1δ should be 13.29 minutes, and the standard deviation
√
k1σk1 should

be 3.85. δ can be chosen arbitrarily, but not too large or too small. In our experiment

of Section 2.4, we pick δ to be 5 minutes and the nearest integer k to fit the data.

Because 3 is the nearest integer to 13.29/5, we would say the first group in Table 2.2

represents type k1 = 3 patients in 2012 (CHC) data set. In addition, because this

group has the minimal mean visiting time among the 5 groups, type 3 patients are

the healthiest patient type in this data set. Note that there is no type 0, 1, and 2

patient in 2012 (CHC) data set, so we set λj,k = 0 for k = 0, 1, 2.

Let Dj,k(t) represent the total PCP demand hours generated by all patients who

have called for appointments and thus are on the schedule, by time t > 0. The

following theorem describes the dynamics of Dj,k(t) as t approaches the schedule

open date T . In the dynamics, Nj,k(t) represents the number of calls by the type

k patients in team j. The proof is given in the Appendix, and uses the continuity

theorem of Kolmogorov-Chentsov:

Theorem II.1. The process Dj,k(t) for 0 ≤ t ≤ T , is defined by

(2.5) dDj,k(t) = kδλj,kdt+
√
kλj,kσkdWj,k(t) + δkdMj,k(t)
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where Dj,k(0) = 0, Mj,k(t) = Nj,k(t)−λj,kt is a Martingale and Wj,k(t) is a standard

Brownian motion. Thus Dj,k(t) is a standard Jump process.

When service starts at time T , let Dj(T ) represent the total (stochastic) demand

in hours, for the PCP in team j and D(T ) be the total demand of PCP hours at the

PCMH (i.e. all teams). These are given by:

Dj(T ) =
K∑
k=1

Dj,k(T ),(2.6)

D(T ) =
J∑
j=1

Dj(T ).(2.7)

We recall that the total supply of PCP hours of time available at T (for allocation

to all teams, excluding hours reserved for same-day and/or after-hour appointments)

is known and is STOT .

2.3.3 Disruption to Teams

In this subsection, we develop the 2-phase strategy that makes a ‘fair’ allocation

of the available PCP time, STOT , to the J teams and derives the price of resulting

disruption to each team as a function of the demand at time T , which is a stochastic

variable.

In the first phase, at time 0, an initial allocation Sj PCP hours is made to team

j, j = 1, 2, · · · , J with
∑J

j=1 Sj = STOT . The patients call for appointments during

[0, T ], and the allocated physicians making up the team’s workforce familiarize them-

selves with the team dynamics. At time T , demand for services of team j, Dj(T ), is

observed. It is unlikely that this demand is met exactly by allocated PCP time Sj, so

there is mismatch Dj(T )− Sj in the allocation to team j. Here we assume that the

observed demand is the observation of the stochastic process, Dj(T ), which includes

not only the fixed visiting time allocated to the patients but also the random service
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of each patient.

In the second phase, since no patient’s request is rejected, we expect the total

demand to exceed the total supply of PCP time such that D(T )(=
∑J

j=1Dj(T ) >

STOT ). In case the demand exceeds the supply, we assume that the management

gives overtime to meet the demand exactly, and the needed overtime rate is 1−p(T ),

where 1− p(T ) = 1−min{1, STOT/D(T )}.

During phase 2, an adjustment is made to the initial allocation so the demand

in each team is met exactly. For fairness and equity, each team is given the same

overtime rate 1− p(T ). Hence, p(T )Dj(T ) of the demand at team j is met with the

available PCP hours, and the remaining demand (1 − p(T ))Dj(T ) is met through

overtime.

The reallocation of extra hours assigned to (i.e., into) team j is max{0, p(T )Dj(T )−

Sj} units. The reallocation of hours taken away from (i.e., out of ) team j is

max{0, Sj − p(T )Dj(T )} units. As mentioned earlier, we assume that the reallo-

cation of physician time into a team disrupts the team, because the new physicians

may not be familiar with patients in the team and may not have cooperated with

other team members before. We propose that this disruption is ‘priced’ by a function

gj(Sj), to be defined, where Sj is the PCP hours allocated to team j at time t = 0.

We assume that this price captures the costs of the unfamiliarity of the re-allocated

physicians with patients, team dynamics and other types of disruptions which result

when a new member is added to a team.

Two questions now arise. One: given the ‘price of disruption function’ g, how can

we find a ‘fair’ allocation during phase one? Two: what is this price function g? We

discuss both these questions in sequence in the next two subsections.
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2.3.4 The Fair Allocation

In this section, we define properties of a fair or almost fair allocation, and present

optimization problems to find the initial allocation satisfying these properties. We

begin by defining:

Definition II.2. An initial allocation (S1, S2, · · · , SJ) is said to be fair if the price

of disruption at time T is the same for each team j, and almost fair if the price of

each team does not exceed some fixed amount, but could be different between teams.

As defined, the allocation of Sj units of PCP time to team j at time 0 results in

the price of gj(Sj). Then a fair allocation can be obtained by solving the optimization

problem:

min g1(S1)(2.8)

s.t. gj+1(Sj+1) = gj(Sj) for all j = 1, · · · J − 1(2.9)

J∑
j=1

Sj = STOT(2.10)

Sj ≥ 0(2.11)

In this optimization problem, the constraints make the price of disruption to each

team the same, and the objective function finds an allocation in which this price is

minimized. In case this optimization problem has no solution, the following convex

programming problem (in case gj are convex) can be solved to obtain an almost fair
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allocation:

min s(2.12)

s.t. gj(Sj) ≤ s for all j = 1, · · · J(2.13)

J∑
j=1

Sj = STOT(2.14)

Sj ≥ 0(2.15)

It is almost fair in the sense that though the price of disruption for each team may

be different, the most pricey disruption is minimized, thus assuring that each team’s

cost of disruption is bounded above by the least amount, and so each team benefits

almost equally.

2.3.5 Pricing Disruptions

The second question relating to pricing disruptions will be discussed in this sub-

section. We note that the formula measuring the quantity of disruption is a ‘call’

option on the demand process, and thus we could rely on option pricing theories.

In financial markets, which are complete, the underlying pricing is based on a ‘non-

arbitrage’ principal. But our pricing is not in a financial market. Borrowing from

the concept of arbitrage, we define the property of ‘consistency’ that serves the same

purpose here. We now present some reasonable properties of consistency that the

pricing mechanism must satisfy, and then we will present three mechanisms that

satisfy these properties.

Definition II.3. A pricing mechanism is said to be consistent if it

1. is the same for each team j, i.e., it is not biased to favor any specific teams.

2. team j’s cost function gj is independent of the initial allocations Si, i 6= j.
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3. reflects the risk aversion and/or loss aversion attitudes of the management.

Since this price has no bearing on the profit-loss (or revenue) considerations of the

PCMH, we consider three mechanisms to give some latitude to the management to

choose one that fits their situation best. We now discuss in some detail three pricing

mechanisms which give consistent pricing mechanisms.

Marginal Utility Pricing Mechanism

In this pricing strategy, we assume that the management is risk averse and knows

its Utility Function, U(x), which is assumed to be concave increasing and differen-

tiable, and is based on the work of [29]:

(2.16) gj(Sj) =
E(U ′(p(T )Dj(T )) ·max{0, p(T )Dj(T )− Sj})

d
dx
E(U(p(T )Dj(T )))

This formula is reproduced from that work. The derivative in the denominator is

with respect to the initial condition x of the SDE defining Dj(t) in theorem II.1. E

in the formula is the expectation operator with respect to the distribution of p(T )

and DJ(T ). This formula is derived on the economic principal of ‘marginal utility

pricing’, and we refer the reader to the cited reference to see its proof.

This mechanism satisfies the requirement 3 of consistency because the formula

presents a ‘marginal utility price’, reflecting the risk aversion of the management

when the utility U is a concave function. In addition, since the formula involves

only Sj, the second requirement of consistency is satisfied. The first requirement is

satisfied if the same formula is used for each team.

Market based Pricing Mechanism

The disruption of team j is max{0, p(T )Dj(T )−Sj}, where p(t)Dj(t) is a stochas-

tic process and Sj is a given number. This disruption is in a similar form with the
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payoff of a call option at the exercise time T , i.e., max{0, s(T ) −K}, where s(t) is

a stochastic process of stock price and K is a given strike price. This pricing is not

in a complete financial market. As we will see this gives the management options

to exploit the non-uniqueness of the option price, thus a ‘desirable’ measure change

can be picked to meet the management’s objectives.

In this mechanism, we price the option as the expectation with respect to a special

probability measure Q(A) =
∫
A
Zj(T )dP with

(2.17) Zj(t) =
∏
k

Z
(1)
j,k (t)Z

(2)
j,k (t)

with

Z
(1)
j,k (t) = e(λj,k−λ̃j,k)t

(
λ̃j,k
λj,k

)Nj,k(t)

,(2.18)

Z
(2)
j,k (t) = exp

{
−βkW (t)− 1

2
β2
kt

}
.(2.19)

Under Q-measure, the stochastic processes pQ(t) and DQ
j (t) can be derived as

dDQ
j,k(t) = (kδλ̃j,k−βk

√
kλj,kσk)dt+

√
kλj,kσkdW

Q
j,k(t) + δkdMQ

j,k(t),(2.20)

pQ(t) = min{1, STOT
DQ(t)

},(2.21)

DQ(T ) =
J∑
j=1

DQ
j (T ) =

J∑
j=1

K∑
k=1

DQ
j,k(T ).(2.22)

whereDj,k(0) = 0, MQ
j,k(t) = NQ

j,k(t)−λ̃j,kt is a martingale, NQ
j,k(t) is a Poisson process

with arrival rate λ̃j,k and WQ
j,k(t) is a standard Brownian motion. βk is the market

price of risk, reflecting the risk aversion attitude of the management. Because WQ
j,k(t)

and MQ
j,k(t) are martingales, the expected value of DQ

j,k(T ) is (kδλ̃j,k−βk
√
kλj,kσk)T .

As a result, an increase in the value of λ̃j,k and/or decrease in the value of βk, assures

an increase in demand of patient type k to the team j, and this will tend to increase

the price of disruption to team j, which thus incorporates the risk averse attitude of
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the management. With the new measure Q, the price of disruption can be calculated

by Theorem II.4 below.

Theorem II.4. Regarding the disruption as an option in financial market, the price

of disruption to team j is

(2.23) gj(Sj) = EQ [max{0, p(T )Dj(T )− Sj}] = E
[
max{0, pQ(T )DQ

j (T )− Sj}
]
,

where Q-measure and stochastic processes pQ(T ), DQ
j (T ) are given as above. (Proof

is in Appendix)

The above theorem suggests the use of Monte-Carlo Simulation Method to cal-

culate the price of disruption, once λ̃j,k, and βk are known. A complete financial

market assures a unique λ̃j,k for every λj,k and a unique βk as well, but our market

is not complete. Thus the choice of λ̃j,k and the market ‘price of risk’ βk can be

arbitrarily set. The first and second properties for consistency can be verified as was

done in the previous mechanism, and the third by the fact that the market price of

risk controls the risk version of the management.

Loss-based Pricing

The third mechanism is based on the cumulative prospect theory of [89], which

gives a loss-averse choice version of λ̃j,k of the previous mechanism. We give here a

short overview of this methodology.

A prospect is a function f(xi, pi) where xi is an outcomes with probability pi,

i = 0, 1, · · · , N and xi < xj for all i < j. Expected utility theory evaluates this

prospect as E(f) =
∑N

i=0 piU(xi). However, experiments show that this does not

completely capture the value of the outcomes, see for example, [74].

In contrast to the expected utility theory, the cumulative prospect theory evaluates

a prospect by changing the probability measure pi to πi on the outcome xi, and the

29



evaluation. The evaluation of the value of the prospect f is computed as V (f) =∑N
i=0 πiU(xi), where

πN = w(pN);(2.24)

πi = w(pi + pi+1 + · · ·+ pN)− w(pi+1 + · · ·+ pN), i = 0, 1, · · · , N − 1,(2.25)

and w(·) is a strictly increasing function from the unit interval into itself satisfying

w(0) = 0 and w(1) = 1. An example of weight functions derived from experiments

is shown in Figure 2.5(Left). The x-axis is the original cumulative probability, while

the y-axis is the changed prospect cumulative probability.

For the application to the PCMH, we define a prospect xj,k as the number of calls

from type k patient in team j. When xj,k = 0, 1, · · · , N − 1, there are xj,k calls;

and when xj,k = N , the number of calls is greater than or equal to N . Under the

assumption that the number of calls follows a Poisson process with rate λj,kT , the

probability p̂j,k of outcome xj,k is given by

(2.26) p̂j,k =


e−λj,kT

(λj,kT )i

xj,k!
, when xj,k = 0, 1, · · · , N − 1;

1−
∑N−1

m=0 e
−λj,kT (λj,kT )m

m!
, when xj,k = N.

If ~x = (xj,k) is a vector representing all the outcomes of type k patients in team

j. The probability that ~x occurs is p̂~x =
∏J

j=1

∏K
k=0 p̂i,k. Under the outcome ~x, the

PCP hours transfered to team j can be represented as a Utility function

(2.27) Uj(~x) = max{0, p(T )Dj(T )− Sj}

Here the overtime rate, p(T ), and the total demand in team j, Dj(T ), are all deter-

mined by ~x, the number of calls from patients in each team, so we can state that

max{0, p(T )Dj(T )− Sj} is a function of ~x.
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The price of disruption can be obtained as the expected utility

(2.28) gj(Sj) =
∑
~x

U(~x)p̂~x

Note that when the number of calls is greater than N , we assume xj,k = N , so there

is some error introduced here. But when N is large, this error can be ignored.

The second mechanism shows that one way to change measure is to change the

patient arrival rate from λj,k to λ̃j,k. By doing this, we can obtain a new measure π

given by:

(2.29) πj,k =


e−λ̃j,kT

(λ̃j,kT )i

xj,k!
, when xj,k = 0, 1, · · · , N − 1;

1−
∑N−1

m=0 e
−λ̃j,kT (λ̃j,kT )m

m!
, when xj,k = N.

With the new measure, the probability that ~x occurs is π~x =
∏J

j=1

∏K
k=0 πi,k. The

price of disruption using prospect theory is

(2.30) gj(Sj) =
∑
~x

U(~x)π~x = E
[
max{0, pQ(T )DQ

j (T )− Sj}
]
.

Here pQ(T ) and DQ
j (T ) are the same processes in Theorem II.4 with βk = 0.

Figure 2.5(Right) shows the weight function as the dashed when the new mea-

sure is obtained by increasing the arrival rate of a Poisson process, i.e., choos-

ing λ̃j,k > λj,k. The points on the dashed lines are (
∑n

xj,k=0 p̂j,k,
∑n

xj,k=0 πj,k) for

n = 0, 1, · · · , N . We can conclude that an increase of arriving rate λj,k results in

a full loss aversion to the type k patient in team j. In practice, we will increase

arriving rates of the sicker types of patient, and our numerical examples show that

this strategy gives less disruption to teams that handle a greater proportion of sicker

patients.

All the above three pricing mechanisms satisfy the consistency requirements. In

the first mechanism, a utility function is needed. In the second mechanism, we shall
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Figure 2.5: Left panel: Weight Function; Right panel: Weight Function by increasing ar-
rival rate

increase the value of λ̃j,k and/or decrease the value of βk to be risk-averse, but the

meaning of βk in this mechanism is hard to be interpreted in a PCMH setting. In

the third mechanism, we showed that the increasing the arriving rates of the sicker

types of patient reflects risk aversion attitude of the PCMH management. Hence, we

are going to use the third mechanism in numerical experiments to test this model.

2.4 Numerical Results

In this section, we present several numerical examples to demonstrate the principle

of fair allocation and the ‘measure change’ from prospect theory to demonstrate the

loss aversion of the management towards teams handling more sick patients, by

effectively reducing their disruptions during the second phase.

In our model, we assume that a patient in team j is a type k patient with prob-

ability pj,k, where pj,k is the weight in the Gaussian Mixture Model. We divide the

schedule into several slots of δ time and we assign k slots to a type k patients when-

ever he or she calls for an appointment. Therefore, the type k patient is given kδ

time for the appointment. We choose δ and k so that kδ is close to the mean visiting

time from the Gaussian Mixture Model in Table 2.2. As k is an integer, the smaller

δ is, the better approximation kδ is. However, δ cannot be too large or too small, so
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we choose δ = 5 minutes, which we believe is a good choice for scheduling.

Using the 2012 (CHC) NAMCS data, we group the patients into five types and

generate the patient structure of Team A in Table 2.3. From there, we increase

(decrease) the probability of type 7 and 13 patients and generate the patient structure

of Team B (C) in Table 2.4 (2.5).

Table 2.3: Team A Patient Structure (time in minutes)
Type (k) 3 4 5 7 13

Probability (pj,k) 0.35 0.30 0.24 0.10 0.01
Load (kδ) 15 20 25 35 65

Standard Deviation (
√
kσk) 3.85 6.00 7.47 10.82 21.02

Table 2.4: Team B (Sickest) Patient Structure (time in minutes)
Type (k) 3 4 5 7 13

Probability (pj,k) 0.29 0.25 0.24 0.20 0.02
Load (kδ) 15 20 25 35 65

Standard Deviation (
√
kσk) 3.85 6.00 7.47 10.82 21.02

Table 2.5: Team C (Healthiest) Patient Structure (time in minutes)
Type (k) 3 4 5 7 13

Probability (pj,k) 0.38 0.325 0.24 0.05 0.005
Load (kδ) 15 20 25 35 65

Standard Deviation (
√
kσk) 3.85 6.00 7.47 10.82 21.02

We assume patients who require a greater workload per call are sicker patients.

This assumption makes sense. Only a call from a patient with a very critical history

will require the service time represented by patient type 13 in the data. Such patients

are more likely to be misdiagnosed by the clerk scheduling times on the schedule,

leading to the very high variance in the data. As can be observed, team B handles

the greatest number of sicker patients while team C handles the least number of

sicker patients. The patient condition in team A is between team B and C.

The arrival rate λj of team A, B, and C are set to be 13, 17, 17 calls per day,

respectively. Appointments are open to be scheduled T = 30 days before the service
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starts. The total number of PCP hours available, STOT , is chosen according to the

teams in the PCMH, because the scarcity of the PCP hours should be reasonable. If

there is only one team in the PCMH, we would like that the overtime rate is about

10%. So we give 125 hours to team A, 140 hours to team B, and 155 hours to team

C. Note that although team C has the most proportion of healthy patients, it has

more PCP hours because the patient arrival rate is higher. If the PCMH contain

multiple teams, then STOT is the sum of available PCP hours in each team. For

example, a PCMH with team A and team B would have 125+140=265 PCP hours

available.

The arrival rates of each patient type in teams, λj,k = λjpj,k are presented in Table

2.6. According to the loss based pricing mechanism, we will increase the arriving

rates of the sickest patient by 20% and that of the second sickest patient by 10%.

The changed arriving rates λ̃j,k are also given in Table 2.6.

Table 2.6: Arriving Rate of Patient Type
Arriving rate of Patient Type

(3) (4) (5) (7) (13)

λj,k under Real Measure (P)
Team A 4.55 3.90 3.12 1.30 0.13
Team B 4.93 4.25 4.08 3.40 0.34
Team C 4.93 4.25 4.08 3.40 0.34

λ̃j,k under Changed Measure (Q)
Team A 4.55 3.90 3.12 1.43 0.156
Team B 4.93 4.25 4.08 3.74 0.408
Team C 4.93 4.25 4.08 3.40 0.34

Arriving Rate Change +0% +0% +0% +10% +20%

Given the arriving rates in P and Q measure, we have the demand processes

in Theorem II.1. Then we simulate one million samples of patient demand and

calculate the cost of disruption via Theorem II.4 as the mean value. We then solve

the optimization problem in (2.8) and find the optimal initial allocation Sj to each

team.

After determining the initial allocation to each team, we simulate ten thousands
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more samples of patient demand as testing scenarios. Then we look at the disruption

to each team, which is quantified by the number of PCP hours transferred into the

team, i.e., max{0, p(T )Dj(T ) − Sj}, because these new PCPs may not be familiar

with patients in the team and may not have cooperated with other team members

before.

We also compare our allocation with a simple strategy, where the scheduled time

of each patient is the same. As a result, the initial allocation is proportional to the

expected load of the team, λjTδ0, where λjT is the expected number of calls from

patients in team j and δ0 is the standard scheduled time for each visit. Therefore,

the initial allocation Sj is obtained by setting Sj to be proportional to λj with∑J
j=1 Sj = STOT . In the service period, the PCP hours are reallocated so that the

overtime rates are equal among teams. The difference with our strategy is that the

simple strategy does not assign different service times to healthier or sicker patients.

2.4.1 Two-team Simulation Results

Team A and Team B

We first consider a PCMH with team A (intermediate) and team B (sickest). The

total number of available PCP hours is STOT = 265 hours.

The results are presented in Figures 2.6 and 2.7. The Figure 2.6 left panel is

the histogram of overtime rate, i.e., the distribution of 1− STOT/D(T ), and verifies

that the problem concerns scarce recourses. The right panel shows how the price of

disruption behaves as the initial allocation to team A changes. Prices of disruption

to team A under both measures are decreasing functions while those to team B are

increasing. The solid lines are results of the original probability measure and the

dashed lines are for the changed probability measure. The intersection point of two

teams’ lines is where we set the initial allocation. We observe that if under the
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changed probability measure, less (more) initial PCP hours are allocated to team

A (B). This meets our expectation as team A (B) has less (more) number of sicker

patients. Figure 2.7 are the histograms of positive disruption as stairs for team A

(Left) and team B (Right), respectively. Disruption to each team is quantified by

the number of PCP hours transferred into the team, i.e., max{0, p(T )Dj(T ) − Sj},

because these new PCPs may not be familiar with patients in the team and may

not have cooperated with other team members before. The probability that the

sicker team, team B, is not disrupted (i.e., no PCP hours transferred into the team)

increases from 0.4992 to 0.5855 under the changed probability measure. And the

probability that team B is disrupted by more than 8 PCP hours decreases from 0.0641

to 0.0410. Meanwhile, the simple strategy results in much more disruptions to team

B, because it neglects the fact that team B has a greater number of sicker patients

than team A. We can summarize that the change of measure results in a large increase

in the no-disruption probability and decrease in the tail probability for team B which

has a greater number of sicker patients. Thus, the PCHM successfully increases the

quality of service as measured by the potential (or probability) of patients seen by

their own PCP.

Figure 2.6: Left: Histogram of Overtime Rate; Right: Price of Disruption vs Initial Allo-
cation to Team A
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Figure 2.7: Histogram of Positive Disruption for Team A (Left) and Team B (Right)

Team A and Team C

We consider now a PCMH with team A (intermediate) and team C (healthiest).

The total number of available PCP hours is STOT = 280 hours.

The results are given in Figure 2.8 and 2.9. The Figure 2.8 left panel is the

histogram of overtime rate and the right panel shows how the price of disruption

behaves as the initial allocation to team A changes. Figure 2.9 are the histograms

of positive disruption for team A (Left) and team C (Right), respectively. The

probability that the sicker team, team A, is not disrupted increases from 0.5002

to 0.5551 if we apply the changed probability measure. And the probability that

team A is disrupted by more than 8 PCP hours decreases from 0.0584 to 0.0441.

The figures are similar to those in the first example, except that now team A has a

greater number of sicker patients when compared to the other team. The PCMH’s

goal of maintaining service quality and satisfying patients’ demand is still achieved.

Team B and Team C

We finally consider a PCMH with team B (sickest) and team C (healthiest). The

total number of available PCP hours is STOT = 295 hours.

The results are given in Figure 2.10 and 2.11. The Figure 2.10 left panel is the

histogram of overtime rate and the right panel shows how the price of disruption
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Figure 2.8: Left: Histogram of Overtime Rate; Right: Price of Disruption vs Initial Allo-
cation to Team A

Figure 2.9: Histogram of Positive Disruption for Team A (Left) and Team C (Right)

behaves as the initial allocation to team B changes. Figure 2.11 are the histograms

of positive disruption for team B (Left) and team C (Right), respectively. The

probability that the sicker team, team B, is not disrupted increases from 0.4987 to

0.6451 if we apply the changed probability measure. And the probability that team

B is disrupted by more than 8 PCP hours decreases from 0.0720 to 0.0328. The

figures are also similar to those in the first two examples. However, the strategy

under the changed probability measure gives more initial PCP hours to the sicker

team and the added hours are much higher than those in the first two examples. For

instance, the PCMH with team A and team C only moves about 0.7 PCP hours to

team A, but the PCMH with team B and team C moves more than 2 PCP hours to

team B. That is because team B handles a greater number of sicker patients than

team A. Also, for the same reason, the rise on the no-disruption probability and the
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drop in the high-disruption tail probability are more notable than those in the first

example.

Figure 2.10: Left: Histogram of Overtime Rate; Right: Price of Disruption vs Initial
Allocation to Team B

Figure 2.11: Histogram of Positive Disruption for Team B (Left) and Team C (Right)

Summarizing, all the three two-team examples, under both measures, result in

less disruption to the sicker team, when compared to the simple strategy. Moreover,

the change in measure results in allocating more PCP hours to the sicker team, which

then leads to decreased disruptions. These three examples show that our strategy

maintains service quality while satisfying patients’ demand.

2.4.2 Three-team Simulation Results

In this section, we present numerical results on a PCMH with all three teams, A,

B, and C. The total number of available PCP hours is STOT = 420 hours. The initial

allocation to each team under different strategies are presented in Table 2.7. Figure
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2.12 are the histograms of positive disruption for team A (Left), team B (Middle)

and team C (Right), respectively.

Table 2.7: Initial PCP Hours Allocation (in hours)

Team A Team B Team C
Real Measure 126.75 138.25 155

Change Measure 126.50 140.50 153
Simple 126.98 126.98 166.04

Figure 2.12: Histogram of Positive Disruption for Team A (Left), Team B (Middle) and
Team C (Right)

The changed measure strategy gives most PCP hours to the sickest team, team

B, which has the least disruption. This example demonstrates that the model has

the same effect of measure change in a multi-team PCMH situation as in the two

team situation.

2.4.3 Comparison to [4]

We compared our method with existing methods in scarce resource allocation in

the healthcare field, especially in [4]. [4] discusses three methods to manage resources

when the demand exceeds supply: dedicated resources, partial and fully flexible

resources. The dedicated resources method simply neglects any excess demand of

each team. The partial flexible resources method allows excess demand of patients

to be met by a pre-selected secondary team. The fully flexible resources method

allows excess demand to be freely met by other teams. However, in both partial and

fully flexible resources methods, if the total demand of all teams exceeds the total
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supply from all teams, then the excess demand is ignored. In this work, the method

suggests that PCPs be given work overtime to fully meet this demand.

The object of our method and [4]’s method are different as well. [4]’s method is

designed to maximize the revenue of the healthcare facility. Our method is revenue

neutral and focuses on the quality of service (as measured by the ability to be seen

by one’s own PCP) provided by a PCMH.

In the first phase, our method is the same as the dedicated resources method,

because we only assign patients to their own PCPs. During reallocation, our method

is the same as the fully flexible resources method, since our method doesn’t restrict

the movement of PCPs between teams, but with the additional goal of increasing

the quality of service, especially for teams handling sicker patients.

2.4.4 What new methods for the management of a PCP have we learned?

This chapter presents a patient-centered methodology which can enhance the man-

agement of a PCMH. Patients are always scheduled to their team, and thus are more

likely to be seen by their PCPs. Instead, the PCP hours are reallocated, adjusting

professionals between teams. The schedule, while it is being filled with patients, allo-

cates different visit times based on patient history and immediate medical condition.

This is desirable in any patient-centered system.

The choice of mechanisms allows management to bias the allocation of resources

to teams handling sicker patients. Each mechanism requires different information to

implement this bias. Because of the stochasticity of the demand and the dynamics of

patients in each team, the population of sicker patients will change over time. Once

a mechanism is selected, it will automatically adjust to these changes.

When the scarcity of resources is encountered, this chapter utilizes overtime to

meet the excess demand. Other methods like temporary hires, floaters, etc, can
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be easily incorporated into the model. In such cases, these added resources are

disruptive and must be included in the pricing of disruption.

2.5 Conclusion

We present a two-phase allocation strategy to assign the number of working hours

to medical teams under the structure of a PCMH. In the first phase, a preliminary

assignment is to be determined. Patients are scheduled so that no appointment

request is rejected and the schedule accommodates patients’ current and historical

clinical conditions. The patient demand generated during scheduling is modeled as

a jump process, an SDE. In the second phase, the stochastic demand is computed

from the demand process and the preliminary assignment computed to meet it ex-

actly. We use real options theory and cumulative prospect theory to achieve a fair

and consistent mechanism to price the disruption caused by assigning professionals

from other teams, as these new professionals may not be familiar with patients and

may not have cooperated with other team members earlier. The ‘readjuated’ initial

assignments are made such that the price of disruption to each team is the same.

We also present four numerical examples on allocating PCP working hours and il-

lustrate that our allocation strategy can be used for risk-averse management, for it

increases the no-disruption probability and decreases high-disruption tail probability

for teams that handle a greater number of sicker patients. As a result, our model

can accommodate patients’ flexible demand and help maintain the quality of service.
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CHAPTER III

An Alternative Data-Driven Prediction Approach Based on
Real Option Theories

3.1 Introduction

In many applications including manufacturing, energy, and finance, accurate pre-

diction is required to support strategic, tactical and/or operational decisions of or-

ganization [22]. When physical information about the underlying mechanism that

generates the time series data is limited, data-driven methods can be useful for pre-

dicting future observations [102]. In general, data-driven forecasting methods predict

future observations based on past observations [17]. Several data-driven methods

have been proposed in the literature for modeling time series data, among which

Auto-Regressive Integrated Moving Average (ARIMA) and its variants such as the

ARIMA-General Auto Regressive Conditional Heteroskedasticity (ARIMA-GARCH)

have been widely used in many applications due to their flexibility and statistical

properties [77, 40, 82, 57]. ARIMA which assumes a constant standard deviation

of stochastic noises, whereas ARIMA-GARCH extends it by allowing the standard

deviation to vary over time.

The typical ARIMA-based models estimate its model parameters using historical

data and uses the estimated time-invariant parameters throughout the prediction

period. Using such time-invariant parameters may not capture possible changes
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in the underlying data generation mechanism. Some studies modify the original

ARIMA model to update the parameters using new observations [88, 51]. The basic

idea of these ARIMA-based models is that the future observation can be predicted

by using a linear combination of past observations (and estimated noises). Therefore

they assume a linear correlation structure between consecutive observations [18].

However, when the underlying dynamics exhibits a highly volatile process, such a

simple linear structure may provide poor prediction performance [48].

This study aims to provide accurate predictions for a highly volatile and time-

varying stochastic process whose underlying dynamics is complicated and possibly

nonlinear. As an example, let us consider a prediction problem faced by a contract

manufacturer (CM) located in Michigan in the U.S, which motivates this study. The

CM is a manufacturing company that produces various automotive parts, such as

front and rear bumper beams, for several large automotive companies worldwide.

The CM deals with a large number of orders for bumper beams from several auto-

motive companies and the order sizes are time-varying. The CM should plan their

production capacity carefully so that it can deliver products promptly when it gets

orders. When an actual order size is greater than expected (i.e., when an order size

is underestimated), overtime wages must be paid to workers to meet demands. On

the other hand, when an order size is smaller than predicted (i.e., when an order size

is overestimated), workers and equipment become idle.

As such, CM wants to predict future order sizes accurately, so that it can reduce

its operating costs resulting from the discrepancy between its predicted value and

actual sizes. Currently, CM uses its own proprietary prediction model, but its pre-

diction performance is not satisfactory. The details of CM’s proprietary model are

confidential, so we cannot find reasons for its unsatisfactory performance. When we
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apply the ARIMA and ARIMA-GARCH models to CM’s datasets, we also do not

obtain significantly better prediction results (detailed results will be provided in Sec-

tion 3.3). We believe such poor performance of ARIMA-based approaches is because

they cannot fully characterize the underlying volatile dynamics. In addition to his-

torical data, the future order size may depend on other factors which possibly make

the order process behave nonlinearly. A new prediction approach that can adapt to

such time-varying, and possibly nonlinear, dynamics is needed for providing better

forecasts.

To this end we develop a new method for predicting future values in highly volatile

processes, based on real option pricing theories typically used in financial engineering.

One of the popularly used stochastic process models for pricing real options is the

Geometric Brownian Motion (GBM) model. Brownian motion is a continuous-time

stochastic process, describing random movements in time series variables. The GBM,

which is a stochastic differential equation, incorporates the idea of Brownian motion

and consists of two terms: a deterministic term to characterize the main trend over

time and a stochastic term to account for random variations. In GBM the random

variations are represented by Brownian Motion [13]. GBM is useful to model a

positive quantity whose changes over equal and non-overlapping time intervals are

identically distributed and independent.

The GBM has been applied to represent various real processes in finance, physics,

etc. [34]. In particular, it becomes a fundamental block for many asset pricing models

[13], and recently it has been applied to facilitate the use of a rich area of options

theory to solve various pricing problems (see, for example, [96, 87, 10, 62, 15, 23]).

However, most of the current GBM studies have been limited to solving pricing

problems and have not used real options theory for making forecasts.
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In this study, by utilizing the full power of real options theory, we present a new

approach for predicting future observations when the system’s underlying dynamics

follows the GBM process. Specifically, we allow the GBM parameters to adaptively

change over time in order to characterize time-varying dynamics. We formulate the

prediction problem as an optimization problem and provide a solution using real

option theories. To the best of our knowledge, our study is the first attempt to

incorporate options theory in the prediction problem.

Our approach provides extra flexibility by allowing overestimation to be handled

differently from underestimation. The overestimation and underestimation costs are

determined in real life applications, depending on a decision-maker’s (or organiza-

tion’s) preference. For example, in the aforementioned CM case, overestimation and

underestimation of order sizes could cause different costs. The CM may want to

put a larger penalty on the demand underestimation than on the overestimation, so

that it can avoid extra overtime wages. We incorporate unequal overestimation and

underestimation costs into the optimization problem and find the optimal forecast

that minimizes the expected prediction cost.

To evaluate the prediction performance, we use three datasets collected from dif-

ferent applications, including the demand for bumper beams in CM (manufacturing),

stock prices (finance), and wind speed (environment). We compare the performance

of our model with ARIMA and ARIMA-GARCH models (and the proprietary predic-

tion model in the CM case study) with different combinations of overestimation and

underestimation costs. In most cases, our model outperforms those alternative mod-

els. In particular, we find that when the process is highly time-varying such as stock

prices and wind speed, the proposed approach provides much stronger prediction

capability than ARMA and ARIMA-GARCH.
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The remainder of the chapter is organized as follows. The mathematical for-

mulation and solution procedure are discussed in Section 3.2. Section 3.3 provides

numerical results in three different applications. Section 3.4 concludes the chapter.

3.2 Methodology

3.2.1 Problem Formulation

Consider a real-valued variable S(t) which represents a system state at time t.

For example, the state variable can be a stock market index price, a manufacturer’s

order size, or wind speed. This state variable is assumed to follow an inhomogeneous

GBM with time-varying parameters.

Let us consider a filtered probability space (Ω,F , P,Ft), where the filtration Ft

is generated by the Brownian motion W , i.e. Ft = FWt so that Ft contains all infor-

mation generated by W (t), up to and including time t. With GBM, the stochastic

process S(t) is modeled by the following dynamics.

(3.1) dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t),

where σ(t) denotes the volatility of S(t) and µ(t) represents a drift process. The

stochastic process W (t) represents the Brownian motion where the increment W (t+

∆t) − W (t) during the time interval ∆t is normally distributed with mean 0 and

variance ∆t, denoted by N (0,∆t), and W (t) is assumed to be stationary.

Our objective is to predict S(T ) in the future time at T (> t) when the current

time is t. Solving (3.1) by using Itô’s lemma [80], we obtain

(3.2) S(T ) = S(t) exp
(∫ T

t

(
µ(s)− 1

2
σ2(s)

)
ds+

∫ T

t

σ(s)dW (s)
)
,

and

(3.3) E(S(T )|Ft) = S(t) exp
( ∫ T

t

µ(s)ds
)
.
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Let K be the predicted value of S(T ) at time T . When the overestimation and

underestimation is penalized equally, the quantity that represent the variable’s cen-

tral tendency, such as mean and median, is commonly used for prediction. But

we consider a more general case where overestimation needs to penalized differently

from underestimation, as discussed in Section 3.1. When the observed value is S(T ),

the overestimated quantity becomes max{K − S(T ), 0}, while the underestimated

quantity is max{S(T )−K, 0}.

Let po and pu denote the penalties for over/underestimation, respectively. We

formulate the optimization problem for estimating S(K) that can minimize the ex-

pected prediction cost,

min
K∈R+

E
[
Po max{K − S(T ), 0}+ Pu max{S(T )−K, 0}|Ft

]
.(3.4)

Note that

(3.5) max{K − S(T ), 0} = K − S(T ) + max{S(T )−K, 0}.

If we substitute (3.5) into (3.4), the optimal predicted value, denoted by K∗, can be

obtained by solving the following objective function.

K(T )∗ = argminK∈R+E
[
(Po + Pu) max{S(T )−K, 0}

+ Po(K − S(T ))|Ft
]
,

(3.6)

or equivalently,

K(T )∗ = argminK∈R+E
[
Po

(Po + Pu
Po

max{S(T )−K, 0}

+ (K − S(T ))
)
|Ft
]
.

(3.7)

In the next section we will present a solution procedure to obtain K∗(T ), based

on the option theory.
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3.2.2 Real Option Based Solution Procedure

The optimization problem in (7) can be reformulated by employing the financial

pricing theories. Suppose that we want to predict a state at the future time T . In

pricing theories, T can be viewed as the date to maturity, or the expiration date.

A real option, also called contingent claim, with the date to maturity T , can be

constructed on the state variable S(t). A real option is a stochastic variable X ∈ FWT

that can be expressed as

(3.8) X = Φ(S(T )),

where Φ(·) is a contract function.

The contract function Φ(·) is typically set to the payoff of the real option at time

T . When the predicted value is K, K can be viewed as the strike value in the option

theory, while max{S(T )−K, 0} is the payoff. Therefore, we get

(3.9) Φ(S(T )) = max{S(T )−K, 0}

It is required that X ∈ FWT ensures that the value of the payoff of the real option X

is determined at time T .

Let the price process Π(t;X ) for the real option at time t be given by a function

F (t, S(t)) ∈ [t, T ]×R+, i.e.,

(3.10) Π(t;X ) = F (t, S(t)).

Here F (·) is a function which is assumed to be once continuously differentiable in t,

and twice in S(t).

For a short-term prediction, the time interval ∆t between the current time t

and the future time T is small, so we can assume that µ(t) and σ(t) are constants
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during [t, T ]. Then F (t, S(t)) can be obtained by solving the Black-Scholes Partial

Differential Equation (PDE) [80],

∂F (t, S(t))

∂t
+ µ(t)S(t)

∂F (t, S(t))

∂S

+
1

2
S(t)2σ2(t))

∂F (t, S(t))

∂S2
− rF (t, S(t)) = 0

(3.11)

with

F (T, S(T )) = Φ(S(T )),(3.12)

where r represents a discounting factor.

The Black-Scholes PDE in (3.11)-(3.12) is usually solved numerically. But alter-

natively, we solve it using the Feyman-Kac̆ stochastic representation formula [80], to

obtain

F (t, S(t)) = e−r∆tES
[
Φ(S(T )) | Ft

]
.(3.13)

Next, we derive F (t, S(t)) in a closed form, given K. Letting y = ln
[
S(T )/S(t)

]
and using the fact that S(T ) = S(t)exp((µ(t) − 1

2
σ2(t))∆t + σ(t)∆W (t)), it follows

that y ∼ N
((
µ(t)− 1

2
σ2(t)

)
∆t, σ2(t)∆t

)
. Thus, the probability density function f(y)

of y is given by

f(y) =
1

σ(t)
√

2π∆t
e−
(

(y − (µ(t)− 1
2
σ2(t))∆t)2

2σ(t)2∆t

)
.(3.14)

Consequently, we obtain

ES
[
Φ(S(T )) | Ft

]
= ES

[
max{S(T )−K, 0}|Ft

]
(3.15)

= ES
[

max{S(t)ey −K, 0}
]

(3.16)

=

∫ ∞
ln K

S(t)

S(t)eyf(y)dy −
∫ ∞
ln K

S(t)

Kf(y)dy(3.17)
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To solve (3.17), let I1 and I2, respectively, denote the first and second terms in

(3.17). We also let z = y − (µ(t)− 0.5σ2(t))∆t/σ(t)
√

∆t. First, I2 becomes

I2 =

∫ ∞
ln K

S(t)

Kf(y)dy(3.18)

=K

∫ ∞
−d2

1√
2π
e

−z2

2 dz(3.19)

=K

∫ d2

−∞

1√
2π
e

−z2

2 dz = KN (d2)(3.20)

where d2 = ln(S(t)
K

) + (µ(t)− 1
2
σ2)∆t/σ(t)

√
∆t and N (·) denotes the cumulative

distribution function (CFD) for the standard normal distribution. Next, we obtain

I1 as

I1 =

∫ ∞
ln K

S(t)

S(t)eyf(y)dy(3.21)

=S(t)

∫ ∞
−d2

1√
2π
e

−z2

2
+zσ(t)

√
∆t+(µ(t)− 1

2
σ2(t))∆tdz(3.22)

=S(t)

∫ ∞
−d2

1√
2π
e

−1
2

(z−σ(t)
√

∆t)2e(µ(t)∆t)dz(3.23)

=S(t)eµ(t)∆t

∫ ∞
−d2−σ

√
∆t

1√
2π
e

−v2

2 dv(3.24)

=S(t)eµ(t)∆tN (d1)(3.25)

where we use v = z − σ(t)
√

∆t in (3.24) and d1 = d2 + σ(t)
√

∆t in (3.25).

For small ∆t, we can set r = 0. Then, F (t, S(t)) in (4.29) becomes:

(3.26) F (t, S(t)) = eµ(t)∆t N (d1)S(t)−N (d2)K.

Note that given µ(t) and S(t) at the current time t and K, we can obtain F (t, S(t)).

With the obtained expected payoff ES
[
Φ(S(T )) | Ft

]
where Φ(S(T )) = max{S(T )−

K, 0}, we can find the optimal K∗(T ) in (3.7). Let ω denote the ratio of overestima-

tion cost to underestimation cost, i.e.,

ω =
Pu
Po

(3.27)
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Given the price of the real option, defined in (4.29), we can reformulate the opti-

mization problem in (3.7) as

K∗(T ) = argminK∈R+ E [(1 + ω) max{S(T )−K, 0} | Ft] + E [(K − S(T )) | Ft]

(3.28)

=argminK∈R+

[
(1 + ω)F (t, S(t)) +K − S(t) eµ(t)∆t

]
(3.29)

=argminK∈R+

[
(1 + ω)

(
eµ(t)∆t N (d1)S(t)−N (d2)K

)
+K − S(t) eµ(t)∆t

]
(3.30)

with d2 = {ln(S(t)
K

) + (µ(t) − 1
2
σ2)∆t}/σ(t)

√
∆t and d1 = d2 + σ(t)

√
∆t. We use

(4.29) with r = 0 in the first term in the second equality and the last term in the

second equality is obtained using (3.3). By plugging F (t, S(t)) in (3.26), we get the

last equality.

The predictor K∗ prefers overestimation when ω > 1 or underestimation when

ω < 1. When overestimation and underestimation are equally penalized, the optimal

K∗ can be obtained with w = 1 in (3.28). The optimization function in (3.28) is

a convex optimization problem that can be solved efficiently by existing numerical

optimization softwares. In our implementation, we use Scipy’s (Scientific Python)

optimization library in Python.

3.2.3 Parameters Estimation

For a volatile stochastic process, the parameters µ(t) and σ(t) can be time-varying.

We estimate the nonstationary parameters using recent observations. Consider n re-

cent observations at the current time t, i.e., S(t−(n−1)∆t), S(t−(n−2)∆t), · · · , S(t).

Because S(t) follows geometric Brownian motion and µ(t) and σ(t) are assumed to

be constant during the short interval ∆t, the discretization scheme of (3.2) is given
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by

ln

(
S(t+ ∆t)

S(t)

)
=

(
µ(t)− 1

2
σ2(t)

)
∆t

+ σ(t)
(
W (t+ ∆t)−W (t)

)
.

(3.31)

Noting that under GBM ln
(
S(t+ ∆t)/S(t)

)
is normally distributed with mean[

µ(t) − 1
2
σ2(t)

]
∆t and variance σ2(t), we estimate µ(t) and σ(t) using maximum

likelihood method as

σ̂(t) =

(
1

n

n∑
i=2

(
ln
( S(t− (n− i)∆t)
S(t− (n− i+ 1)∆t)

)

− 1

n

n−1∑
i=1

[
ln
( S(t− (n− i)∆t)
S(t− (n− i+ 1)∆t)

)])2
) 1

2

,

(3.32)

µ̂(t) =
1

n

n∑
i=1

[
ln
( S(t− (n− i)∆t
S(t− (n− i+ 1)∆t)

)]
+

1

2
σ̂(t)2,

(3.33)

respectively.

The estimated parameters µ̂(t) and σ̂(t) are plugged into (3.26) and we obtain

the optimal predicted value K∗ for S(t+ ∆t) by solving (3.30).

3.2.4 Implementation Details

We refer our proposed model to as the option prediction model. Figure 3.1 sum-

marizes the overall procedure of the proposed approach. We also summarize the

procedure of the proposed approach in Algorithm 3.1 below. We set the time step

∆t = 1 to make the one-ahead step prediction. The data is divided into three sets:

training, validation, and testing. The training set starts at t = 1 and ends at t = N1,

consisting of about 50% of the entire data set, is used to determine the model pa-

rameters as shown in Figure 3.1. The validation set, consisting of about 20% of the

data set, is used for determining the window size n. Lastly the testing set consists

of the last 30% of the data set and it starts at t = N2.
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Set a window size n
,n = {20, 40, ..., 1000}

Update the model parameters
using n sample points
from equations (3.32)-(3.33)

Predict one-step ahead
in the validation set
by solving (3.29)

Compute the prediction
error WMAE from (3.34)
for the validation set

Choose a window
size that generates
the lowest WMAE

Update the model
parameters using
the selected n

Training set (50%) Validation set (20%) Testing set (30%)

Figure 3.1: Overall procedure of the proposed approach (the dotted lines imply that the model pa-
rameters are updated in a rolling-horizon manner using the most n recent observations)

Algorithm 3.1: Option prediction model

1: Initialization:
2: Choose a window size n by validation as shown in Figure 3.1.
3: Obtain initial estimates for the model parameters σ̂(N2) and µ̂(N2) in (3.32) and (3.33), re-

spectively.
4: Determine F (N2, S(N2)) in (4.29).
5: for k = N2 + 1 to ∞ do
6: Prediction:
7: Obtain K∗ by solving (3.30) to obtain the one-step ahead state prediction.
8: Update:
9: Observe S(k).

10: Obtain σ̂(k) and µ̂(k) in (3.32) and (3.33), respectively, by using n recent observations.
11: Determine F (k, S(k)) in (4.29).
12: end for

In Algorithm 3.1 we determine the window size n for obtaining the parameters

µ̂(t) and σ̂(t), we use the validation technique [33]. We fit the model with a different

window size n and evaluate the prediction performance using data in the validation

set and choose the best window size that generates the lowest prediction error in

the validation set. The performance of our approach is evaluated using data in the

testing set (See Figure 3.1). We report the prediction performance in the testing set

in Section 3.3.
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In evaluating the prediction performance, we consider that the overestimated and

underestimated prediction results need to be evaluated differently for ω 6= 1. As

such we employ the following two performance measures, namely, Weighted Mean

Absolute Error (WMAE) and Weighted Mean Absolute Percentage Error (WMAPE),

defined by

(3.34) WMAE =
1

N

N∑
t=1

(
1(S(t)>K∗(t))ω|S(t)−K∗(t)|+ 1(S(t)<K∗(t)|S(t)−K∗(t)|

)
and

(3.35)

WMAPE =
1

N

N∑
t=1

(1(S(t)>K∗(t))ω|S(t)−K∗(t)|
S(t)

+
1(S(t)<K∗(t))|S(t)−K∗(t)|

S(t)

)
,

respectively, where N denotes the number of data points in the testing set and K∗(t)

is the predicted value at time t.

3.3 Case Studies

This section implements the proposed prediction model using multiple datasets

obtained from real-life applications. Specifically we examine the performance of the

predictive model in predicting the size of a manufacturer’s order, a stock market

index price, and wind speed.

3.3.1 Alternative methods

We compare our model with two standard time series models, namely, the ARIMA

and the ARIMA-GARCH. We use the Akaika Information Criteria (AIC) to select the

model order in both models. For fair comparison, we update the model parameters

in a rolling horizon manner, similar to the procedure discussed in Section 3.2.4. That

is, we determine the window size n using the validation technique and update the
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model parameters using the most recent n observations whenever a new observation

is obtained.

With underestimation penalties, Pourhab et al. [73] suggest using quantile of the

predictive state density. With ω(= pu/po) denoting the ratio of underestimation cost

to overestimation cost, we use the (ω/1 + ω)-quantile, given by

(3.36) Quantile prediction = µ̂a(t) + σ̂a(t)Φ
−1
( ω

1 + ω

)
,

where µ̂a(t) denotes the estimated predicted mean, σ̂a is the estimated standard

deviation in ARIMA (or ARIMA-GARCH) model, and Φ−1(·) denotes the inverse of

the standard normal CDF. Note that large (small) w puts more penalty on pu (po) and

the quantile prediction provides a larger (smaller) predicted value, so underestimation

(overestimation) can be avoided.

3.3.2 Manufacturing Data

We first study the prediction problem faced by our industry partner, CM. The

historical data obtained from CM includes orders of 10 different types of bumper

beams. We use monthly data on those 10 types of bumper beams ordered over a

period of 29 consecutive months (the order size varies from 0 to over 36,000 items).

When applying the proposed model to this problem, the choice of weight ω affects

the final prediction. By changing the weight, we are able to show a preference for

over-capacity (overestimation) or under-capacity (underestimation). We consider

different cases for choosing the weight parameter ω.

Let us first look at the case when ω is set to be less than one (i.e, pu ≤ po).

According to CM, workers and equipment can be shifted from one type of bumper

beam to another, but doing so incurs 15% loss of production efficiency. In other

words, if one type of bumper beam is overestimated, causing over-capacity, available
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resources can be assigned to other bumper beam production, but with a reduced

efficiency. In this case, underestimation is favored and we set w = 1/1.15.

Next the weight parameter can be set to be greater than 1 (i.e, pu ≥ po) when

the prediction is preferred to be more than the actual order size. According to

the labor law in Michigan in the U.S., overtime rate is higher than the regular

salary. In this case we set w = 1.15 to emphasize the preference of overestimation to

underestimation. Finally we also consider w = 1, which reflects equal penalties.

The errors in terms of WMAE and WMAPE for all ten types of bumper beams are

presented in Tables 3.1-3.3 with three different weights. Overall our option prediction

model performs better than the CM’s own prediction, ARIMA and ARIMA-GARCH

in both criteria. With w = 1/1.15 the proposed approach provides lower WMAEs

(WMAPEs) for 9 (5) types of bumper beams out of 10 types. Similarly, with other

w values, our approach outperforms the alternative models in most cases.
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Table 3.1: CM Prediction Results for ten types of bumper beams with ω = 1/1.15 in the Testing
Set (The values in bold indicate the lowest prediction error for each product)

Weighted Mean Absolute Error (WMAE)
Product No. ARIMA Option Prediction ARIMA-GARCH CM Prediction

1 1196.58 411.97 2105.25 1161.56

2 332.36 127.90 168.72 151.24

3 119.35 105.49 107.43 194.69

4 1476.09 574.52 2185.30 936.94

5 1330.40 1299.00 1327.08 1797.74

6 542.33 64.38 63.24 42.90

7 357.38 24.14 497.54 92.17

8 1776.17 1339.11 3103.77 2520.75

9 1496.62 1305.49 2887.48 2475.71

10 1125.52 516.06 3278.77 1928.58

Weighted Mean Absolute Percent Error (WMAPE)
Product No. ARIMA Option Prediction ARIMA-GARCH CM Prediction

1 1.14 0.19 0.94 0.52

2 0.62 0.43 0.42 0.40

3 28.89 0.44 0.41 0.69

4 1.20 0.69 3.92 0.66

5 0.12 0.11 0.12 0.15

6 45.23 5.30 11.01 7.93

7 215.17 3.66 408.98 9.63

8 0.24 0.26 0.76 0.60

9 0.19 0.22 0.66 0.58

10 0.36 0.20 2.63 0.99
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Table 3.2: CM Prediction Results for ten types of bumper beams with ω = 1 in the Testing Set
(The values in bold indicate the lowest prediction error for each product)

Weighted Mean Absolute Error (WMAE)
Product No. ARIMA Option Prediction ARIMA-GARCH CM Prediction

1 1193.29 537.94 2103.43 1335.79

2 328.39 134.67 164.49 168.93

3 111.78 118.39 103.40 223.89

4 1307.50 609.06 1920.83 1073.16

5 1178.90 1403.17 1200.81 2060.95

6 472.86 74.52 57.08 45.12

7 315.42 34.61 434.33 93.51

8 1691.28 1465.94 2737.90 2590.93

9 1453.32 1397.14 2564.50 2527.94

10 1008.59 569.58 2865.30 1932.47

Weighted Mean Absolute Percent Error (WMAPE)
Product No. ARIMA Option Prediction ARIMA-GARCH CM Prediction

1 1.09 0.24 0.94 0.59

2 0.61 0.45 0.40 0.44

3 25.76 0.50 0.39 0.79

4 1.05 0.72 3.41 0.75

5 0.11 0.12 0.11 0.17

6 39.61 6.17 9.59 7.95

7 187.36 3.87 356.23 9.67

8 0.22 0.28 0.66 0.60

9 0.18 0.23 0.58 0.58

10 0.31 0.21 2.29 0.99
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Table 3.3: CM Prediction Results for ten types of bumper beams with ω = 1.15 in the Testing Set
(The values in bold indicate the lowest prediction error for each product)

Weighted Mean Absolute Error (WMAE)
Product No. ARIMA Option Prediction ARIMA-GARCH CM Prediction

1 1196.58 411.97 2105.25 1161.56

2 332.36 127.90 168.72 151.24

3 119.35 105.49 107.43 194.69

4 1476.09 574.52 2185.30 936.94

5 1330.40 1299.00 1327.08 1797.74

6 542.33 64.38 63.24 42.90

7 357.38 24.14 497.54 92.17

8 1776.17 1339.11 3103.77 2520.75

9 1496.62 1305.49 2887.48 2475.71

10 1125.52 516.06 3278.77 1928.58

Weighted Mean Absolute Percent Error (WMAPE)
Product No. ARIMA Option Prediction ARIMA-GARCH CM Prediction

1 1.14 0.19 0.94 0.52

2 0.62 0.43 0.42 0.40

3 28.89 0.44 0.41 0.69

4 1.20 0.69 3.92 0.66

5 0.12 0.11 0.12 0.15

6 45.23 5.30 11.01 7.93

7 215.17 3.66 408.98 9.63

8 0.24 0.26 0.76 0.60

9 0.19 0.22 0.66 0.58

10 0.36 0.20 2.63 0.99

Although ARIMA and ARIMA-GARCH provide the lowest errors for some prod-

ucts, their prediction performance is not consistent. For example, for 1st, 4th and

7th product, WMAEs from ARMA are much higher than the proposed approach,

whereas ARIMA-GARCH results in pretty poor performance for predicting order

sizes for 8th − 10th products. On the contrary, our approach provides more stable

results. Even when WMAEs and WMAPEs from our approach are higher than other

approaches, they are close to the lowest errors. Therefore, we can conclude that our
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approach is more accurate and reliable. The CMs proprietary model does not account

for unequal weights on overestimation and underestimation. If the company wants

to minimize the excess inventory due to overestimation, a small (less than 1) weight

parameter should be assigned. If the company goal is to meet customer satisfaction,

overestimation should be preferred with a large (larger than 1) weight parameter.

In this sense our approach can reflect the company’s management preference more

flexibly.

3.3.3 Stock Market Index Data

To evaluate the performance of our approach in a highly volatile process, we

consider stock market index price time series data. We analyze the daily closing

price of the Dow Jones index in three time periods between 2010 and 2015.

Risk averse and risk seeking investors have different preferences in terms of over-

estimation and underestimation. That being said, in a bull market, stock prices are

expected to increase. In such a case, risk seeking investors with aggressive investment

strategies would prefer biasing their prediction to overestimation. On the contrary,

risk averse investors tend to be less optimistic, making them conservative, preferring

underestimation. To reflect different investment preferences, we consider three val-

ues of the weight parameter ω, 1/1.15, 1, or 1.15, to represent the underestimation

preference, neutral/no preference, and overestimation preference, respectively.

Table 3.4 summarizes the results with three testing periods. Each testing period

includes 100 days. Clearly, our option prediction performs better than ARIMA-

GARCH and ARIMA in all cases, alerting for the possibility of a profitable trading

strategy. The ARMA and ARMA-GARCH models generate 2.5 to 10 times higher

WMAEs and 2 to 11 times higher WMAPEs.
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Table 3.4: Dow Jones Index Price Prediction Results in the Testing Set (The values in bold indicate
the lowest prediction error for each testing period and weight)

Testing Period Weight (ω) Method WMAE WMAPE

ARIMA-GARCH 595.54 0.04998
1/1.15 Option Prediction 50.40 0.0043

ARIMA 628.69 0.0615

ARIMA-GARCH 594.58 0.0499
Oct 2010- Mar 2011 1 Option Prediction 54.30 0.0046

ARIMA 553.05 0.0541

ARIMA-GARCH 682.72 0.0572
1.15 Option Prediction 58.78 0.0050

ARIMA 559.59 0.0548

ARIMA-GARCH 360.39 0.0237
1/1.15 Option Prediction 70.94 0.0046

ARIMA 455.35 0.0309

ARIMA-GARCH 317.34 0.0209
Aug 2013 - Dec 2013 1 Option Prediction 75.78 0.0049

ARIMA 406.97 0.0276

ARIMA-GARCH 321.71 0.0211
1.15 Option Prediction 81.09 0.0052

ARIMA 418.90 0.0284

ARIMA-GARCH 338.71 0.0195
1/1.15 Option Prediction 97.78 0.0056

ARIMA 182.60 0.0109

ARIMA-GARCH 319.72 0.0184
Oct 2014 - Mar 2015 1 Option Prediction 104.70 0.0060

ARIMA 166.65 0.0099

ARIMA-GARCH 348.25 0.0200
1.15 Option Prediction 113.11 0.0065

ARIMA 175.25 0.0104

3.3.4 Wind Speed Data

Finally, we additionally consider another highly volatile process, wind speed. Be-

cause of environmental considerations, wind power, as a renewable source of energy,

has been increasingly adopted worldwide [19]. Intermittent output of the farm is con-

sidered a challenging issue in terms of integrating the wind power into electric power

grids. For reliable supply of power, steady and uninterrupted energy generation is

desirable, which is not the case with wind energy. Wind speed is highly variable,

depending on weather conditions and geographical factors such as the terrain. Such
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variability imposes challenges in power grid operations. To overcome the challenges,

accurate forecasting of wind speed is required [83].

We use wind speed data collected from a meteorological tower near a wind farm

located in Europe. The whole dataset consists of about 3000 samples, which covers

a period of about a month. Due to the data confidentiality required by our indus-

try partner, we omit more detailed description of the dataset studied in this case

study. In wind farm operations some operators want to put a higher penalty on

overestimation to avoid unsatisfied demand (or unsatisfied commitment), whereas

underestimating wind speeds may be preferred when the salvage cost of excessively

generated power is high [73, 44]. To reflect different costs, we use three different

values for ω, 1/1.15, 1 and 1.15.

Table 3.5 summarizes the prediction results in the testing set from the three

models. The proposed option prediction significantly outperform the other methods.

The WMAEs and WMAPEs from ARMA and ARIMA-GARCH are higher by one

order of magnitude than our approach. It demonstrates the superior prediction

performance of our approach in a highly volatile process.

Table 3.5: Wind Speed Prediction Results in the Testing Set (The values in bold indicate the lowest
prediction error for each weight)

Weight (ω) Method WMAE WMAPE

ARIMA-GARCH 3.364 0.402
1/1.15 Option Prediction 0.318 0.040

ARIMA 8.73 0.957

ARIMA-GARCH 3.31 0.380
1 Option Prediction 0.342 0.043

ARIMA 8.73 0.96

ARIMA-GARCH 3.74 0.422
1.15 Option Prediction 0.365 0.046

ARIMA 10.03 1.100
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3.4 Conclusion

We present a new prediction methodology for the time series data, based on op-

tion theories in finance when the underlying dynamics is assumed to follow the GBM

process. To characterize time-varying patterns, we allow the GBM model parameters

to vary over time and update the parameter values using recent observations. We

formulate the prediction problem with unequal overestimation and underestimation

penalties as the stochastic optimization problem and provide its solution procedure.

We demonstrate the prediction capability of the proposed approach in various appli-

cations. Our approach appears to work well in the manufacturing application, when

the order size varies over time. For more highly volatile processes such as stock prices

and wind speeds, the proposed model exhibits much stronger prediction capability,

compared to alternative ARIMA-based models.

In the future, we plan to investigate other parameter updating schemes. In this

study, we update parameters in a rolling horizon manner using the maximum likeli-

hood estimations. Another possibility is to use the Kalman filtering or its variants.

Long-term predictions are beyond the scope of this study, but we plan to extend the

approach presented in this study for obtaining accurate long-term predictions. We

will also incorporate prediction results into managerial decision-making in several

applications such as power grid operation with renewable energy [16].
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CHAPTER IV

Integrative Probabilistic Prediction and Uncertainty
Quantification of Wind Power Generation

4.1 Introduction

The market share of renewable energy in the electricity power market has been

increasing significantly during the past few decades [90]. According to the report

issued by the U.S. Department of Energy’s National Renewable Energy Laboratory

[8], the annual electricity generation from renewable sources, excluding the hydro-

power, has more than doubled since 2004 in the U.S. Moreover, renewable energy

has been a key sector in newly-added electricity facilities. In 2014, more than half of

U.S. electricity capacity additions are from the investments on renewable energy [8].

Among the various sources of the renewable energy, wind energy has become one of

the major sources of the increasing renewable capacities [8].

Unlike traditional fossil-based energy sources, wind power generation is highly

affected by stochastic weather conditions [45], which poses significant challenges in

achieving secure power grid operations [16]. Consequently, accurate forecast of wind

power generation and its uncertainty quantification become critical components in

several decision-making processes including unit commitment, economic dispatch and

reserve determination [81].

Accordingly wind speed and wind power generation forecasts have been widely
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investigated in the literature (e.g., [81, 47, 86]). Many studies focus on generating

point forecasts of wind power. However, due to the highly volatile and intermittent

nature of wind power, probabilistic forecasts become more important for decision-

making in power system operations under large uncertainties [81].

In providing probabilistic forecasts, prediction uncertainties should be completely

recognized. In particular, two major uncertainty sources need to be considered.

The first is the uncertainties in predicting future wind speed, whereas the second

uncertainty arises when the wind speed is converted to the wind power. Such wind-

to-power relationship is called power curve in wind industry. Figure 4.1 illustrates

the impact of uncertainties in both wind speed forecast and conversion process on

the probabilistic wind power prediction. Due to the nonlinearity of power curves,

the predictive wind speed distribution is not linearly translated into the probabilis-

tic characteristics of wind power prediction. Such nonlinearity causes challenges in

quantifying uncertainties in wind power predictions.

Figure 4.1: Uncertainties in Wind Power Output Prediction

The main contribution of this study is to provide a new integrative methodol-

ogy where the whole predictive wind speed density is translated into the predictive
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power density forecast. Specifically, we formulate the wind speed as a continuous

stochastic process based on the inhomogeneous geometric Brownian motion (GBM).

The inhomogeneous GBM is flexible in capturing nonstationary and highly volatile

wind characteristics. We dynamically update the time-varying parameters in the

inhomogeneous GBM model with the dual Kalman filtering in order to characterize

the nonstationary nature of wind speed. Then, by applying the Ito’s lemma [12] to

the stochastic power curve, we translate the predictive wind speed density to the

predictive distribution of wind power. The resulting predictive wind power den-

sity takes a closed-form, so it provides comprehensive characterization of prediction

uncertainties, including predictive interval and quantiles.

The resulting closed-form density enables us to flexibly assign different weights on

overestimating and underestimating future generation. Some wind farm operators

want to avoid penalties due to unsatisfied demand (or unsatisfied commitment) and

thus, prefer underestimation to overestimation of future wind power outputs, while

others may prefer overestimation to prevent salvage of excessively generated power

[73, 44]. We formulate the optimization problem to obtain the point prediction that

can minimize the expected prediction cost caused by possible over/underestimation,

according to the operator’s preference.

We apply the proposed approach to three datasets collected from actual operat-

ing wind farms. Our implementation results indicate that the proposed approach

can successfully characterize the stochastic wind power process and provide better

prediction results in accordance with the wind farm operator’s preference, compared

to other alternative methods.

The remainder of this chapter is organized as follows. Section 4.2 reviews relevant

studies. Section 4.3 presents the proposed approach. Section 4.4 shows the compu-
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tational results on real datasets. Finally, we summarize the chapter in Section 4.5.

4.2 Literature Review

In general wind speed prediction models employ either physics-based numerical

approaches or data-driven approaches. Physics-based approaches use physical de-

scriptions of the mechanisms of wind flow. One of the most popular models in this

approach is the numerical weather prediction (NWP) model that simulates the at-

mospheric processes [81, 47, 86]. Such physics-based approach is known to be useful

for medium-range weather forecasting, ranging from hours to days. On the other

hand, thanks to the fast-increasing computational capabilities and data storage ca-

pacity, data-driven prediction models get much attention recently, and they have been

employed for shorter term predictions. Typical time-series models such as the auto-

regressive moving average (ARMA) method have been widely used to account for

temporal correlation patterns [31, 70]. Auto-Regressive Generalized Autoregressive

with Conditional Heteroscedasticity (AR-GARCH) model, which allows the variance

to vary over time, further characterizes the nonstationary nature of wind conditions

[103]. Persistent model, which is the simplest forecast model, uses the observation in

the previous speed for forecasting the next speed. Despite its simplicity, persistent

model appears to provide strong prediction accuracy in some wind sites [73].

To forecast future wind power generation, the predicted wind speed should be

converted to the wind power prediction through the power curve. Studies in the

literature estimate the power curve using various methods such as polynomial re-

gression, splines and nonparametric models, neural-networks and support vector

machines [81, 98, 53, 100]. Once the power curve is constructed, future wind power

outputs are typically predicted by plugging the wind speed forecast to the power
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curve function. These studies aim to provide point wind power forecast.

Some recent studies provide probabilistic forecasts. One approach is to simulate

wind speeds from the predictive density of wind speed and convert the sampled wind

speed to the power output using the power curve. For example, in [86] ensemble

forecasts that integrate predictions generated from multiple physics-based forecast

models with different scenarios are used for providing wind speed density forecast.

Although this approach considers the uncertainties in predicting the wind speed,

probabilistic characteristics and uncertainties in converting the wind speed to wind

power are not addressed. Furthermore, as discussed in Section 4.1, due to the non-

linearity in the wind-to-power conversion process, this approach does not provide the

predictive wind power distribution in a closed-form.

Another school of thought takes wind speed forecast and historical wind condition

as covariates (or inputs) to estimate the probabilistic characteristics of wind power.

Based on neural networks, Sideratos and Hatziargyriou [81] estimate quantiles of

future wind power, whereas prediction intervals of wind power generation are con-

structed in [91]. However, in these studies the whole predictive wind speed density

is not used as input. Rather, point wind speed forecast and/or past observations are

included as covariates in their models. Therefore, prediction uncertainties of wind

speeds are not fully considered in these studies.

This study fills the knowledge gaps in the literature by collectively accounting for

the uncertainties arising in both wind speed prediction and stochastic power conver-

sion process. The proposed method generates predictive density of wind power in a

closed form so that diverse information can be extracted for probabilistic prediction

of wind power generation.
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4.3 Methodology

We first formulate the dynamics of wind speed process and wind-to-power conver-

sion process. We then provide an optimization framework to forecast a future wind

power output based on wind farm operator’s preference on over- and underestimation

and present the implementation procedure.

4.3.1 Modeling Wind Speed Process

Wind speed can be viewed as stochastic processes in a time domain. The inho-

mogeneous GBM model has been employed to capture the highly volatile stochastic

processes [63]. Considering the highly volatile and time-varying wind characteristics,

we characterize the dynamics of wind speed using the inhomogeneous GBM model.

Let S(t) denote the true wind speed at time t. We model the stochastic process of

S(t) as

(4.1) dS(t) = µS(t)S(t)dt+ σS(t)S(t)dWS(t),

where µS(t) and σS(t) capture the drift and volatility in the stochastic process,

respectively, and both are time-dependent. WS(t) denotes a standard Brownian

process, where its increment, ∆WS(t) = WS(t + ∆t) − WS(t), is assumed to be

independently and normally distributed with mean 0 and variance ∆t.

Let X(t) denote lnS(t), i.e., X(t) = lnS(t). Given the underlying dynamics of

S(t) in (4.1), the dynamics of X(t) can be represented as

d[X(t)] =

[
µS(t)− 1

2
σ2
S(t)

]
dt+ σS(t)dW (t).(4.2)

The derivation of X(t) can be found in Appendix B.1.

In general, the stochastic differential equation (SDE) in (4.2) does not have an an-

alytic solution. However, advanced numerical methods use discretization to convert
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SDE to a stochastic difference equation. Specifically, by applying the Wagner-Platen

expansion and the Euler discretization scheme [71] to (4.2), we obtain

X(t+ ∆t) = X(t) +

[
µS(t)− 1

2
σ2
S(t)

]
∆t+ σS(t)∆W (t).(4.3)

Then it immediately follows that X(t+ ∆t) in (4.3) follows a normal distribution

as

(4.4) X(t+ ∆t) ∼ N

(
X(t) +

[
µS(t)− 1

2
σ2
S(t)

]
∆t, σ2

S(t)∆t

)
.

In other words, wind speed is log-normally distributed as

ln(S(t+ ∆t))

∼ N

(
ln(S(t)) +

[
µS(t)− 1

2
σ2
S(t)

]
∆t, σ2

S(t)∆t

)
.(4.5)

Note that the wind speed distribution in (4.5) characterizes the stochastic dynam-

ics of wind speed through the time-varying parameters, µS(t) and σS(t). To estimate

µS(t) and σS(t), one should use wind measurements collected from a meteorological

tower or turbine anemometers. However, the collected wind speed may have mea-

surement errors and/or can be perturbed by disturbances such as wake effects [100].

Therefore, the true wind speed S(t) is unobservable in practice. To incorporate such

errors and disturbances, we assume that the measured wind speed is a linear function

of the unobserved true wind speed. Let WS(t) denote the measured wind speed at

time t and let Y (t) = ln(WS(t)). We let X(t)(= ln(S(t)) a state variable, which

is assumed to be perturbed by a normally distributed error term z ∼ N(0, σ2
z) as

follows.

Y (t) = X(t) + z.(4.6)
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Note that the dynamics of X(t), governed by the linear SDE representation

in (4.3), can be rewritten as

(4.7) X(t+ ∆t) = X(t) + A θ(t) + w(t),

where A =
(
∆t,−1

2
∆t
)
, θ(t) =

(
µS(t), σ2

S(t)
)T

, and w(t) ∼ N(0, σ2
S(t)∆t) is the

process noise.

The equations in (4.6) and (4.7) together represent the linear state space model.

Among several ways to estimate the model parameters in the linear state space model,

we employ the Kalman filter due to its flexibility and strong performance in many

applications [41, 84]. The Kalman filter is a sequential algorithm for estimating and

refining parameters and updating the system state recursively, using the previous

estimate and new input data. In particular, we use the dual Kalman filtering to

estimate parameter vector θ(t) and state X(t) [92]. To model the time-varying pa-

rameter θ(t), we assume that it drifts according to a 2-dimensional Gaussian random

walk process with covariance Q, i.e.,

(4.8) θ(t+ ∆t) = θ(t) + ε,

where ε ∼ N(0, Q). We include the detailed procedure to update the parameters

θ(t) and state X(t) in Appendix B.2.

4.3.2 Modeling Wind-to-Power Conversion Process

This section discusses how to convert the wind speed dynamics obtained in the

previous section into the dynamics of wind power process. The relationship between

the wind speed and the wind power generation P (t) can be quantified by the power

curve function. Let F (t, S(t)) denote the power curve at time t given the wind speed

S(t). Here, F (t, S(t)) can represent the power curve from a whole wind farm or a

stand-alone wind turbine.
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Note that we model the power curve function, F (t, S(t)), as a function of t (as well

as S(t)) to incorporate the time-varying feature of power generation efficiency. This

is because, in addition to the wind speed, the wind power output depends on many

other environmental factors such as wind direction, humidity, and ambient tempera-

ture [53]. Moreover, turbines’ age and degradation states of their components (e.g.,

blade, gearbox) also affect the generation efficiency. Including all of these additional

factors, if not impossible, would make the power curve model overly complicated,

and more importantly, it also needs to characterize the dynamics of each factor, as

we did for wind speed in Section 4.3.1. Instead, we consider the power curve as a

function of wind speed only and let the power curve function itself time-varying.

However, our approach in modeling the power curve is flexible enough to employ a

time-invariant power curve that only depends on wind speed; in this case, the power

curve function can be simply reduced to F (t, S(t)) = F (S(t)).

In modeling F (t, S(t)), any type of functions, e.g., parametric, semi-parametric

such as splines [52], or nonparametric function [54, 19], can be employed as long as

F (t, S(t)) satisfies some weak conditions. Suppose that the power curve function

F (t, S(t)) is differentiable over t and S(t) and twice differentiable over S(t). The

power output P (t) at time t is given by

P (t) = F (t, S(t)) + e(t),(4.9)

where e(t) denotes a random noise in the wind-to-power conversion process. We

assume that ∆e(t) = e(t + ∆t) − e(t) follows the normal distribution with mean

0 and variance σ2
FFS(t, S(t))∆t, where FS(t, S(t)) represents the first derivative of

F (t, S(t)) over S(t). Here we include FS(t, S(t)) in modeling the noise variance,

because the power conversion variability tends to be high when the power curve

changes rapidly, which is mostly in the mid-speed range. For notational brevity, we
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will use FS as an abbreviation of FS(t, S(t)) in the subsequent discussion.

We first model the dynamics of the wind power process with any power curve

function F (t, S(t)). Later we will derive the dynamics with specific form for F (t, S(t))

to illustrate the approach.

Dynamics of Wind Power Process with General Power Curve Function

Given the wind speed process S(t) modelled in (4.1), the wind power process also

follows the inhomogeneous GBM and its dynamics is modeled by

dP (t) = µP (t)P (t)dt+ σP (t)P (t)dWP (t)(4.10)

with

µP (t) =
Ft + µSSFS + 1

2
σ2
SS

2FSS

P (t)
,(4.11)

σP (t) =

√
σ2
SS

2F 2
S + σ2

FFS
P (t)

,(4.12)

where WP (t) denotes a standard Brownian process, Ft represents the first derivative

of F over t, and FSS is the second derivative of F over S. Also, S, µS, and σS denote

S(t), µS(t), and σS(t) in (4.1), respectively. The derivation of (4.10)-(4.12) can be

found in Appendix B.3.

It should be noted that the parameters µP (t) and σP (t) in (4.11) and (4.12),

respectively, depend on the parameters in S(t) (i.e., µS, σS) and the power curve

related functions (i.e., Ft, FS, FSS). This result indicates that the stochastic dynamics

of wind speed S(t), together with the power curve function, is translated into the

dynamics of power generation P (t).

Following the similar procedure in (4.1)-(4.5), we can derive a distribution of wind

power in a closed-form. Specifically, the power output P (t + ∆t) at time t + ∆t is
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log-normally distributed as

ln(P (t+ ∆t))

∼ N

(
ln(P (t)) +

[
µP (t)− 1

2
σ2
P (t)

]
∆t, σ2

P (t)∆t

)
.(4.13)

Dynamics of Wind Power Process with Nonparametric Power Curve Function

As discussed earlier, the power curve F (t, S(t)) can be flexibly modeled using

various functional forms. To illustrate, we employ the nonparametric adaptive learn-

ing [19] in our analysis. We explain only an outline of the nonparametric adaptive

learning method here. For more detailed procedure, the reader is referred to [19].

In the nonparametric approach the input S(t) is mapped into a feature space

through a nonlinear mapping S(t)→ φ(S(t)). Then P (t) can be modeled by

(4.14) P (t) = F (t, S(t)) + e(t) = ωTt φ(S(t)) + e(t),

where ωt is a nonparametric regression coefficient vector at period t.

The coefficient vector ωt is time-varying, so that the power curve F (t, S(t)) can

be updated whenever a new sample is observed. Suppose that ωt−∆t was estimated

by ω̂t−∆t at time t − ∆t and we obtain newly observed data at time t. Then we

estimate ωt by solving the following optimization problem.

minL =
1

2
‖ωt − ω̂t−∆t‖2 +

1

2
γe(t)2(4.15)

s.t. P (t) = ωTt φ(S(t)) + e(t).(4.16)

Here the first term in the objective function represents the change of the coefficient

from t − ∆t to t. The second term regularizes the amount of update with the

regularization parameter γ, balancing the coefficient change and quality of model

fitting. For more details, please refer to [19].
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Let k(S(ti), S(tj)) denote the inner product of φ(S(ti)) and φ(S(tj)), i.e., k(S(ti), S(tj)) =

φ(S(ti)), φ(S(tj))) called a kernel function. Suppose there are n observations up to

time t. Then F (t, S(t)) is updated by

(4.17) F̂ (t, S(t)) =
n∑
i=1

λik(S(t), S(t− (n− i)∆t)),

where λi is Lagrange multiplier corresponding to the equality constraint in (4.16).

Among many choices of the kernel function, we employ the following Gaussian kernel

due to its flexibility,

(4.18) k(S(ti), S(tj)) = exp

(
−(S(ti)− S(tj))

2

2δ

)
with positive constant δ.

Then the estimated power curve, F̂ (t, S(t)) in (4.17), can be plugged into the

predictive distribution for P (t + ∆t) in (4.13). Specifically, to estimate µP (t) and

σP (t) in (4.11) and (4.12), respectively, we need to estimate Ft, FS, FSS and σF .

First, Ft can be estimated by taking the finite difference as

(4.19) F̂t =
∂F

∂t
=
F̂ (t, S(t))− F̂ (t−∆t, S(t))

∆t
=
λtk(S(t), S(t))

∆t
.

Next, FS and FSS, which are partial derivatives of F over S(t), are estimated by

F̂S =
∂F

∂S
=

n∑
i=1

λi
∂k(S(t), S(t− (n− i)∆t))

∂S(t)

=
n∑
i=1

λik(S(t), S(i∆t))

(
−S(t)− S(t− (n− i)∆t)

δ

)
,(4.20)

F̂SS =
∂2F

∂S2
=

n∑
i=1

λi
∂2k(S(t), S(t− (n− i)∆t))

∂S2(t)

=
n∑
i=1

λik(S(t), S(t− (n− i)∆t))·(4.21) (
(S(t)− S(t− (n− i)∆t))2

δ2
− 1

δ

)
.(4.22)
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Finally, we need to estimate σF in ∆et ∼ N(0, σ2
FFS(t, S(t))∆t). We use the

sample standard deviation to get its estimate, by using the first N0 data points

(4.23) σ̂F =

√√√√√ 1

N0 − 2

N0∑
i=2

∆P (i∆t)−∆F̂ (i∆t, S(i∆t))√
F̂S(i∆t, S(i∆t))∆t

2

,

where

∆P (i∆t) = P (i∆t)− P ((i− 1)∆t)(4.24)

∆F̂ (i∆t, S(i∆t))

= F̂ (i∆t, S(i∆t))− F̂ ((i− 1)∆t, S((i− 1)∆t))(4.25)

By plugging the estimated parameters, F̂ , F̂t F̂S, F̂SS and σ̂F into (4.17)-(4.23) to

µP (t) and σP (t) in (4.11) and (4.12), we obtain the predictive distribution of power at

t+ ∆t in (4.13). Recall that other parameters associated with wind speed dynamics,

i.e., µS and σS, are estimated from the dual Kalman filtering process discussed in

Section 4.3.1.

We present the estimation procedure when F (t, S(t)) is formulated by the non-

parametric function in this section. However, similar analysis can be performed

when other functional forms, such as parametric regression and splines, is used for

modeling F (t, S(t)).

4.3.3 Uncertainty Quantification and Wind Power Prediction

The closed-form predictive distribution of wind power output in (4.13) provides

comprehensive information to characterize prediction uncertainties such as the pre-

diction interval and quantiles. First, following the procedure presented in [28], we

obtain the (1 − α)100% prediction interval for the power generation at time t + ∆t

by

(4.26) [exp(µ′ + σ′A), exp(µ′ + σ′B)]
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where µ′ = ln(P (t) +
[
µP (t)− 1

2
σ2
P (t)

]
∆t and σ′ = σP (t)

√
∆t, and A and B are the

solution of

(4.27)


Φ(B)− Φ(A) = 1− α,

A+B = −2σ′.

Here Φ(·) denotes the cumulative distribution function of a standard normal distri-

bution.

Second, we can obtain the β-quantile Qβ such that Pr(P (t+ ∆t) ≤ Qβ) = β as

(4.28) Qβ = exp(µ′ + σ′Φ−1(β)).

In particular the median of P (t+ ∆t) is given by exp(µ′) for β = 0.5.

4.3.4 Wind Power Prediction with Unequal Weights

Such quantile information can be used for predicting. In the time series modeling

and analysis, quantities that represent a central tendency, e.g., mean or median, are

typically used as a point prediction. However, the costs for underestimation and

overestimation could be different in wind power operations [73]. To accommodate

this cost difference, we express the underestimation and overestimation by using real

options.

To understand call and put real option clearly, we present Figure 4.2 where two

sample paths of a stochastic process are included. The initial value of the process

at t0 is P (t0) = p0. A call option and a put option are issued at time t0 with strike

price K and expiration time t0 + ∆t. The top sample path, sample path 1, results

in a value of P (t0 + ∆t) larger than the strike price K. Therefore, the call option

payoff of this sample path is max{0, P (t0 + ∆t) −K} and the put option payoff is

0. On the other hand, the bottom sample path, sample path 2, results in a value of
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Figure 4.2: Explanation to Call and Put Real Options

P (t0 + ∆t) smaller than the strike price K. As a result, the call option payoff of this

sample path is 0 and the put option payoff is max{0, K − P (t0 + ∆t)}.

If we observe Figure 4.2 in another way, we find that the payoffs are estimate errors

if we declare K as the prediction and P (t0+∆t) as the observed power output. As for

sample path 1, the observed output is larger than the prediction, so the call option

payoff max{0, P (t0 + ∆t)−K} is the error of underestimation. Similarly, in sample

path 2, the observed output is smaller than the prediction, so the put option payoff

max{0, K − P (t0 + ∆t)} is the error of overestimation.

Since the amount of underestimation and overestimation is exactly the payoff to

call and put options, we derive the following proposition to quantify the underesti-

mation and overestimation.

Proposition IV.1. When the latest observation on the power output is p0 at time t0,

if the predicted power output at time t+∆t is K, then the quantity of underestimation

is calculated by the following formula, assuming µP and σP keep constant for given
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t0, p0.

(4.29) u(K; t0, p0) = exp{µP∆t}p0N(d1)−KN(d2),

where N(·) is the cumulative distribution function for a standard normal distribution

and

d1 =
1

σP (t0)
√

∆t

[
ln
(p0

K

)
+

(
µP (t0) +

1

2
σ2
P (t0)

)
∆t

]
,(4.30)

d2 = d1 − σP (t0)
√

∆t.(4.31)

And the quantity of overestimation o(K; t0, p0) can be derived from the put-call parity

in financial engineering as follows:

(4.32) o(K; t0, p0) = K + u(K; t0, p0)− exp{µP∆t}p0.

The predicted power output is the one that minimizes the expected cost due

to possible under/overestimations. Therefore, the optimal predicted power output,

denoted by K∗, can be obtained by solving the following unconstrained optimization

problem.

(4.33) K∗ = arg min
K

(αu(K; t0, p0) + (1− α)o(K; t0, p0))

where α ∈ [0, 1] represents the penalty of underestimation. When the underestima-

tion (overestimation) is more costly, α greater (less than) than 0.5 can be used. It is

straightforward to show that the optimal solution of (4.33) is the 100α% percentile

of the density of P (t + ∆t) in (4.13) [73]. In other words, the solution of (4.33) is

given by Qα in (4.28).

4.3.5 Implementation Details

Figure 4.3 depicts the outline of the proposed methodology. Algorithm 4.1below

also summarizes the implementation procedure to make the one-step prediction of

wind farm power output. Note that we set ∆t = 1 for the one-step ahead prediction.
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(4.6)-(4.8)
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Predicting wind power density
(4.13)
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(4.10)-(4.12)
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cost for over/under estimations

(4.29)-(4.33)

Modeling wind-to-power process

Wind speed process modeled
by inhomogeneous GBM

(4.1)-(4.4)

Figure 4.3: Overview of the proposed approach

Algorithm 4.1: Proposed Algorithm

1: Initialization
2: Initialize Q and σ2

z .
3: for k = 2 to N0 do
4: r(k)← ln

(
WS(k)

)
/ ln

(
WS(k − 1)

)
.

5: end for
6: Obtain initial estimates of the σS and µS from (4.5) as follows:
7: σS(N0)← std(r).
8: µS(N0)← mean(r) + σ2

S(N0)/2.
9: Initialize the power curve function, F (N0,WS(N0)), as discussed in [19].

10: for t = N0 to ∞ do
11: Prediction step
12: Calculate µS(t+ 1 | t), σS(t+ 1 | t), and S(t+ 1 | t) from (B.5)-(B.8)
13: Use (4.11)-(4.12) to get µP (t, P ) and σP (t, P ).
14: Solve (4.33) to predict the one-step ahead power output
15: Filtering step
16: Observe WS(t+ 1) and P (t+ 1).
17: Compute µS(t+ 1 | t+ 1), σS(t+ 1 | t+ 1), and S(t+ 1 | t+ 1) from (B.10)-(B.15).
18: Update the power curve function F (t+ 1, S(t+ 1 | t+ 1)).
19: end for

In our implementation we divide each wind farm dataset into training and testing

sets. The training set includes N0 observations in the first 70% samples of the whole
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dataset obtained from each wind farm. The parameters σS(t) and µS(t) in the wind

speed process, the error parameters in the dual Kalman filtering, and the power

curve are initialized using the N0 observations in the training set. In particular, to

set the error parameters in the kalman filtering, we apply the validation technique

to the N0 data points and choose the values that minimize the prediction error [33].

Moreover, considering that ln(S(t + ∆t)) is normally distributed as shown in (4.9),

we use the sample mean and sample standard deviation of the measured wind speeds

to initialize µS(N0) and σS(N0) (see the lines #6-#8 in the algorithm).

The testing set contains the remaining 30% samples and is used for evaluating

the prediction performance in each wind farm. In this prediction step we update

(or filter) the model parameters whenever a new observation is obtained. In Algo-

rithm 4.1, µS(t + 1 | t), σS(t + 1 | t), and S(t + 1 | t) in line #11 denote the prior

estimates of µS(t+1), σS(t+1), and S(t+1), respectively, from the Kalman filtering,

whereas µS(t + 1 | t + 1), σS(t + 1 | t + 1) and S(t + 1 | t + 1) in the filtering step

(lines #15-#18), correspond to their posterior estimates after observing wind speed

WS(t+ 1) and power P (t+ 1) at time t+ 1; more detailed procedures are included

in Appendix B.2.

4.4 Case Studies

We apply the proposed approach to real datasets collected from three operating

wind farms, WF1, WF2, and WF3, summarized in Table 4.1. Due to the data

confidentiality required from data providers, detailed information regarding each

wind farm is omitted. Each dataset includes wind measurements and power outputs

from the whole wind farm. In all wind farms, the power outputs are scaled to [0, 100].
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Table 4.1: Wind Farms Information
Dataset WF1 WF2 WF3

Terrain offshore land-based onshore
Number of turbines about 35 240+ about 10

Total data size 1000 1000 650
Temporal resolution 10 minute 10 minute 10minute

4.4.1 Implementation Results

Figure 4.4 depicts the 50% and 90% prediction intervals in WF 1 testing set. The

majority of the observations fall inside the prediction intervals, indicating that our

approach can successfully capture the uncertainties. We can also observe that in

general the more volatile the power output (i.e., when the power output changes

rapidly), the wider the prediction intervals. For example, when t is about 950, the

power output changes rapidly and the prediction intervals are wider, which represents

larger prediction uncertainties. On the other hand, when the output is less volatile,

e.g., when t is between 860 and 870, we obtain narrower intervals. We observe similar

patterns in other wind farms but omit the results to save space.

Figure 4.4: Power Output Prediction Intervals on WF1 Dataset

Our approach is also computationally efficient, despite the fact that all the model
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parameters are updated with each new observation. For example, it takes about 1.83

ms for each update and prediction in WF 1 dataset, using a desktop computer with

Intel(R) Xeon(R) CPU E5-2695 V3 @ 2.3GHz.

4.4.2 Comparison with Alternative Methods

We compare our approach with alternative methods. Specifically, we consider

four different methods, including the persistent model, the ARMA model, the Auto-

Regressive GARCH (AR-GARCH) model, neural networks (NN) with long short-

term memory (LSTM) layers. A typical approach for predicting wind power is to

predict the future wind speed and apply the power curve with the predicted wind

speed. Therefore, in these alternative methods, we first predict the wind speed at

time t+∆t as Ŝ(t+∆t) and plug the predicted wind speed into the power curve to get

P̂ (t+ ∆t) = F (t, Ŝ(t+ ∆t)). In all four methods we apply the same non-parametric

power curve discussed in Section 4.3.2.

In the persistent model, the current wind speed is used to predict the speed

at the next time step, i.e. Ŝ(t + ∆t) = S(t). In both ARMA and AR-GARCH

methods, the wind speed S(t + ∆t) is assumed to follow a normal distribution. We

use built-in functions in Matlab to implement ARMA and AR-GARCH model and

decide the model orders that minimizes the Bayesian information criterion (BIC).

We update the model order and parameters in ARMA and AR-GARCH whenever a

new observation is obtained in the testing set. For implementing the LSTM NN, we

use the built-in functions in Matlab. To determine the network structure including

the number of layers and the number of neurons, we apply the validation technique

to the validation set consisting of about 20% of the whole data set in each wind farm.

We re-train the NN when a new observation is obtained in the testing set.

We evaluate the prediction performance with unequal penalties on the overesti-
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mation and underestimation. In the proposed approach we use the α-quantile of the

predictive power output density as discussed in Section 4.3. For fair comparison, in

ARMA and AR-GARCH, we also use the α-quantile of their predictive wind speed

densities and plug the resulting α-quantile estimates to the power curve [73]. Note

that the forecast values do not change with different α values in the persistent and

LSTM neural network method.

To measure the prediction quality with unequal penalties, Hering and Genton [44]

proposed the power curve error (PCE), defined as

PCE(P (t), P̂ (t)) =


α(P (t)− P̂ (t)), if P̂ (t) < P (t)

(1− α)(P̂ (t)− P (t)), otherwise.

(4.34)

where P (t) is the observed power at time t and P̂ (t) is its predicted power from each

method.

Table 4.2 summarizes the average PCE from each method for three α values.

Figure 4.5 further shows the average PCE over α ∈ [0, 1]. The AR-GARCH gener-

ates lower PCEs than ARMA, because it takes time-varying variance of wind speed

into consideration. But PCEs from AR-GARCH are still higher than the proposed

approach in all datasets. The LSTM NN also generates higher PCEs than the pro-

posed approach. Our approach consistently produces the lowest PCEs in all cases,

indicating that our approach is superior in reflecting wind farm operators’ prediction

preference on overestimation and underestimation.
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Figure 4.5: Average power curve errors in the testing set

Table 4.2: Average Power Curve Error in the testing set. Boldfaced values indicate the best per-
formance.

α Approach WF1 WF2 WF3

0.27

Proposed Approach 1.52 1.22 1.26
Persistent 1.74 1.59 2.16

ARMA 2.80 2.37 2.09
AR-GARCH 2.55 1.85 1.82
LSTM NN 3.15 2.14 2.25

0.5

Proposed Approach 1.63 1.27 1.59
Persistent 1.69 1.72 2.10

ARMA 2.67 2.60 2.38
AR-GARCH 2.40 2.00 2.09
LSTM NN 2.45 2.02 2.11

0.73

Proposed Approach 1.41 1.12 1.47
Persistent 1.64 1.85 2.04

ARMA 2.03 2.43 2.21
AR-GARCH 1.79 1.85 1.93
LSTM NN 1.76 1.90 1.98
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4.5 Conclusion

We present a new integrative methodology for predicting wind power under the

assumption that the underlying dynamics of wind speed can be represented by the

inhomogeneous GBM. The nonstationary characteristics in wind power generation

are fully captured through time-varying parameters in the wind speed model and

power curve function. The proposed approach captures uncertainties in wind speed

process and wind-to-power conversion process and provides rich information for the

probabilistic forecast through its closed-form prediction density. The closed-form

density allows us to extract diverse information, e.g, prediction interval and quantile,

and to determine forecast, depending on the wind farm operator’s preference on the

overestimation and underestimation of future wind power outputs. This framework

can minimize the overall costs associated with prediction errors. The implementation

results demonstrate that our method provides strong prediction capability.

We believe our approach could potentially benefit power grid operations. In the

future we plan to incorporate our prediction results into the optimization framework

for solving decision-making problems such as economic dispatch. We also plan to

apply the approach to predict the mechanical and structural load responses in the

wind turbine system for the reliability analysis and maintenance optimization [50, 25].

The proposed methodology is also applicable to other engineering systems subject

to nonstationary operating conditions, such as solar power systems [24].
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CHAPTER V

Conclusion

Real options are a novel tool for managing risks in many fields. Most applications

of real options solve capital budgeting problems. In some heavily regulated fields,

like healthcare, the applications of real options in practice is rare, and there is a lack

of quantitative models in the literature. In other fields where a market exists, like

renewable energy, real options are more acceptable, but the purpose of establishing

a real options model is limited to trading.

This dissertation extends the possible application of real options to fields like

healthcare and renewable energy. The three models we propose are quantitative,

with an objective to solve problems beyond capital budgeting. Moreover, the real

options in these models are not traded, or contractually exercised. In Chapter 2,

we allocate scarce PCP work hours into teams in a PCMH. The disruptions caused

by moving PCPs between teams are priced by real options. The flexibility to reflect

various risk averse attitudes is achieved by applying prospect theory. The numer-

ical experiment shows that our allocation strategy creates less disruption to teams

that contain larger numbers of sicker patients. Overall, our model can accommodate

patients’ flexible demand and help maintain quality of service compared to exist-

ing methodologies. In Chapter 3, a prediction model is presented by minimizing
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the weighted cost of overestimation and underestimation. The costs of overestima-

tion and underestimation are priced as real options. The proposed prediction model

shows competitive prediction capability when tested on datasets from manufactur-

ing, finance, and environment. In Chapter 4, we integrate the prediction model in

Chapter 3 with a wind-to-power conversion process to predict the wind power out-

put. The conversion process is realized by Ito’s Lemma. The predicted wind power

output is the optimal value that minimizes the weighted cost of overestimation and

underestimation. Our numerical result shows that the proposed prediction model

outperforms other benchmarks.

Besides the proposed models in previous chapters, real options can be applied in

many other ways. For example, the change of measure in Chapter 2 can be used to

accommodate different risk preferences. The idea of pricing overestimation and un-

derestimation in Chapter 3 can be applied in other fields, apart from manufacturing,

finance, and environment. Chapter 4 extends the potential of the prediction model.

If one process is well studied and the relationship between this process and another

is known, our proposed prediction model can now be applied to the second process.

Overall, the exploration in this dissertation reveals some insights in applications of

real options to operational decision making problems.

89



APPENDICES

90



APPENDIX A

A.1 Proof of Theorem II.1

Proof. Let Nj(t) calls arrive during [0, t] for appointment with team j. Each such

call is allocated slots on the schedule. We assume that the patients’ calls arrive at a

rate of λj per unit time, the number of calls in [0, t], Nj(t), follows a Poisson process,

and the loads required by each patient’s call are random variables Y1, Y2, · · · , YNj(t).

With probability pj,k, the ith call is by patient type k, and Yi, the load generated by

patient, is k(δ + ε) where ε ∼ N(0, σ2
k).

We define the cumulative demand up to time t of PCP hours generated by the type

k patients in team j as Dj,k(t), and the number of type k patient calls during [0, t]

as Nj,k(t). Therefore, Nj,k(t) follows a Poisson process with rate pj,kλj = λj,k, and

Nj,1(t), Nj,2(t), · · · are independent. Also, we denote the indexes of loads generated

by type k patient as ir,k, r = 1, 2, · · · , Nj,k(t). Then the cumulative demand is

(A.1) Dj,k(t) =

Nj,k(t)∑
r=1

Yir,k

where Yir,k = kδ + εr,k and εr,k
i.i.d.∼ N(0, kσ2

k) for all r = 1, 2, · · · , Nj,k(t).

Therefore,

(A.2) Dj,k(t) = kδNj,k(t) +

Nj,k(t)∑
r=1

εr,k.
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Let Bj,k(t) =
∑Nj,k(t)

r=1 εr,k. Then Bj,k(t) is Normal random variable with mean 0

and variance

V ar(Bj,k(t)) = V ar(ε1,k + ε2,k + · · ·+ εNj,k(t),k)(A.3)

=
∞∑
m=0

V ar(ε1,k + ε2,k + · · ·+ εm,k)P (Nj,k(t) = m)(A.4)

=
∞∑
m=0

mkσ2
kP (Nj,k(t) = m)(A.5)

= kσ2
kE[Nj,k(t)] = kλj,kσ

2
kt.(A.6)

Let Wj,k(t) = 1√
kλj,kσk

Bj,k(t). We now prove that Wj,k(t) is a Brownian motion.

First, it is obvious that Wj,k(0) = 0. Second, εr,k are i.i.d. over r, and Wj,k(t)

is a scale of sum of εr,k from time 0 to t, so it can be shown that Wj,k(t) −Wj,k(s)

and Wj,k(v) − Wj,k(u) are independent when the intervals [s, t] and [u, v] do not

intersect. Hence Wj,k(t) has independent increments. Third, assuming s < t,

Wj,k(t)−Wj,k(s) = 1√
kλj,kσk

(Bj,k(t)−Bj,k(s)) follows a normal distribution and

(A.7) E [Wj,k(t)−Wj,k(s)] =
1√

kλj,kσk
(E[Bj,k(t)]− E[Bj,k(s)]) = 0,

and because εr,k are i.i.d. over r,

E [Wj,k(t)Wj,k(s)] =
1

kλj,kσ2
k

(E[Bj,k(t)Bj,k(s)])(A.8)

=
1

kλj,kσ2
k

(E[(ε1,k + · · ·+ εNj,k(t),k)(ε1,k + · · ·+ εNj,k(s),k)])(A.9)

=
1

kλj,kσ2
k

E[ε21,k + ε22,k + · · ·+ ε2Nj,k(s),k](A.10)

=
1

kλj,kσ2
k

∞∑
m=0

E[ε21,k + ε22,k + · · ·+ ε2m,k]P (Nj,k(s) = m)(A.11)

=
1

kλj,kσ2
k

∞∑
m=0

mkσ2
kP (Nj,k(s) = m)(A.12)

=
1

λj,k
E[Nj,k(s)] = s,(A.13)
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so

V ar [Wj,k(t)−Wj,k(s)] = E2 [Wj,k(t)−Wj,k(s)](A.14)

= E2 [Wj,k(t)] + E2 [Wj,k(s)]− 2E [Wj,k(t)Wj,k(s)](A.15)

=
1

kλj,kσ2
k

E2 [Bj,k(t)] +
1

kλj,kσ2
k

E2 [Bj,k(s)]− 2s(A.16)

=
1

kλj,kσ2
k

V ar [Bj,k(t)] +
1

kλj,kσ2
k

V ar [Bj,k(s)]− 2s(A.17)

= t+ s− 2s = t− s.(A.18)

Therefore, Wj,k(t) has Gaussian increments. The continuity of the paths of Wj,k(t)

can be shown by using the Kolmogorov-Chentsov Theorem.

As Wj,k(t) is a Brownian motion, the Dj,k(t) dynamics is

(A.19) dDj,k(t) = kδdNj,k(t) +
√
kλj,kσkdWj,k(t)

and thus defining the Martingale Mj,k(t) = Nj,k(t)− λj,kt we get

(A.20) dDj,k = δkλj,kdt+
√
kλj,kσkdWj,k(t) + δkdMj,k(t)

a standard Jump process.

A.2 Proof of Theorem II.4

Proof. Consider two jump processes:

dXk(s) = µk(s,Xk(s))ds+
n∑
i=1

σk,i(s,Xk(s))dWi(s)

+
m∑
j=1

γk,j(s,Xk(s))dNj(s), k = 1, 2,(A.21)

where Wi(t), i = 1, 2, · · · , n are independent Brownian motions and Nj(t), are Pois-

son processes with rates λj, j = 1, 2, · · · ,m.
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A straight forward extension of the equation (11.7.9) of [79], the price process of

a contingent claim Φ(X1(T ), X2(T )) satisfies the following PDE,

Ft + (µ1 −
n∑
i=1

β′iσ1,i)Fx1 + (µ2 −
n∑
i=1

β′iσ2,i)Fx2

+
1

2

n∑
i=1

σ2
1,iFx1,x1 +

n∑
i=1

σ1,iσ2,iFx1,x2 +
1

2

n∑
i=1

σ2
2,iFx2,x2

+
m∑
j=1

λ′j(F (t, x1 + γ1,j, x2 + γ2,j)− F (t, x1, x2))−RF = 0,(A.22)

and

(A.23) F (T, x1, x2) = Φ(x1, x2),

where R is the ‘interest rate’ or discount factor and β′i are the ‘market prices of risk’

in a financial market.

Using the Feynman-Kač Theorem (see for example [12]), the solution of the above

PDE with the corresponding boundary condition has the following representation,

(A.24) F (t,X ′1(t), X ′2(t)) = e−R(T−t)E[Φ(X ′1(T ), X ′2(T ))|X ′1(t) = x1, X
′
2(t) = x2],

where the two jump processes X ′k are:

dX ′k(s) = (µk −
n∑
i=1

β′iσk,i)ds+
n∑
i=1

σk,idW
′
i (s)

+
m∑
j=1

γk,jdN
′
j(s), k = 1, 2,(A.25)

and dW ′
i (t), i = 1, 2, · · · , n are independent Brownian motions and dN ′j(t), j =

1, 2, · · · ,m are Poisson processes with rate λ′j.

Here R is the ‘interest rate’ and β′i are the ‘market prices of risk’ in case Φ is

a financial instrument. Because interest rate is irrelevant to our problem, we can

simply set R = 0. The market prices of risk, β′i, reflect the risk aversion attitude of

the management. Then Xk and X ′k differ only in the ds term and the rates of the

94



Poisson processes. As a result, the dynamic of X ′k is the dynamics of Xk under a

new measure Q. Thus, the price of the contingent claim is

(A.26) F (t,XQ
1 (t), XQ

2 (t)) = E[Φ(XQ
1 (T ), XQ

2 (T ))|XQ
1 (t) = x1, X

Q
2 (t) = x2],

For the application to the PCMH problem, we set X1 = Dj, X2 =
∑

k 6=j Dk, and

the contingent claim

Φ(X1(T ), X2(T )) = max

{
min

{
STOT

X1(T ) +X2(T )
, 1

}
X1(T )− Sj, 0

}
(A.27)

= max (0, p(T )Dj(T )− Sj} .(A.28)

Regarding the disruption as an option in a financial market with zero interest,

the price of disruption to team j is

gj(Sj) = E[Φ(XQ
1 (T ), XQ

2 (T ))|XQ
1 (t) = x1, X

Q
2 (t) = x2](A.29)

= E
[
max{0, pQ(T )DQ

j (T )− Sj}
]

(A.30)

= EQ [max{0, p(T )Dj(T )− Sj}] .(A.31)
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APPENDIX B

B.1 Derivation of dX(t) in (4.2)

This appendix provides detailed derivations. For brevity, we omit “(t)” in several

notations (for example, we will use µ for µ(t)), unless it is unclear.

Let X(t) = f(t, S(t)) with f(t, S(t)) = lnS(t). We use Ito’s Lemma [12, chap. 4]

to derive dX(t) in (4.2) as follows.

dX(t) = df(t, S(t)) =
∂f

∂t
dt+

∂f

∂S
dS(t) +

1

2

∂2f

∂S2
dS(t)2(B.1)

=

{
∂f

∂t
+ µ(t)

∂f

∂S(t)
+

1

2
σ(t)2 ∂2f

∂S(t)2

}
dt

+ σ(t)
∂f

∂S(t)
dW (t),(B.2)

where in (B.2) the dynamics of S(t), i.e., dS(t) = µ(t)dt + σ(t)dW (t) with µ(t) =

µS(t)S(t) and σ(t) = σS(t)S(t), is used. Also we set dt2 and dtdW (t) = 0 to zero

because they approach zero faster than dW (t)2 and substitute dt for dW (t)2. where

dt2 = 0, dtdW (t) = 0, and dW (t)2 = dt are used in the second last equation.

By plugging derivatives of f over t and S(t), µ(t) = µS(t)S(t) and σ(t) = σS(t)S(t)

96



to (B.2), we get

dX(t) =

{
0 + µS(t)S(t) · 1

S(t)
− 1

2
(σS(t)S(t))2 1

S(t)2

}
dt

+ σS(t)S(t)
1

S(t)
dW (t)(B.3)

=

[
µS(t)− 1

2
σ2
S(t)

]
dt+ σS(t)dW (t).(B.4)

B.2 Dual Kalman Filtering Procedure

Recall that the parameter vector is θ(t) = [µS(t), σ2
S(t)]T and state is X(t). We use

θ2(t) for σ2
S(t). Let X̂(t | t) and X̂(t+∆t | t) denote the posterior and prior estimates

of state variable X(t) with their associated estimation error variances PX(t | t) and

PX(t+ ∆t | t), respectively. Similarly, θ̂(t | t) and θ̂(t+ ∆t | t), respectively, denote

the posterior and prior estimates of the parameter vector θ(t) and Pθ(t | t) and

Pθ(t+ ∆t | t) represent the corresponding estimation error covariance matrices. We

let KX(t) and Kθ(t) denote the Kalman gain associated with state and parameters

filters at time t, respectively. Then the dual Kalman filtering proceeds as follows:

• Parameters prediction:

θ̂(t+ ∆t | t) = θ̂(t | t),(B.5)

Pθ(t+ ∆t | t) = Pθ(t | t) +Q.(B.6)

• State prediction:

X̂(t+ ∆t | t) = X̂(t | t) + A θ̂(t+ ∆t | t),(B.7)

PX(t+ ∆t | t) = PX(t | t) + ∆t θ̂2(t+ ∆t | t).(B.8)
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• State filtering:

KX(t+ ∆t) = PX(t+ ∆t | t)
[
PX(t+ ∆t | t) + σ2

z ]
−1,(B.9)

X̂(t+ ∆t |t+ ∆t) = X̂(t+ ∆t | t)

+KX(t+ ∆t)
[
Y (t+ ∆t)− X̂(t+ ∆t | t)

]
,(B.10)

PX(t+ ∆t |t+ ∆t) =
[
I −KX(t+ ∆t)

]
PX(t+ ∆t | t).(B.11)

• Parameters filtering:

Kθ(t+ ∆t) =

Pθ(t+ ∆t | t) AT
[
A Pθ(t+ ∆t | t) AT + σ2

z ]
−1,(B.12)

θ̂(t+ ∆t |t+ ∆t) = θ̂(t+ ∆t | t)(B.13)

+Kθ(t+ ∆t)
[
Y (t+ ∆t)− X̂(t+ ∆t | t)

]
,(B.14)

Pθ(t+ ∆t |t+ ∆t) =
[
I −Kθ(t+ ∆t) A

]
Pθ(t+ ∆t | t).(B.15)

Then X̂(t + ∆t | t), which is the posterior estimate of X(t), is used to estimate

X(t) and similarly, θ̂(t+ ∆t | t) for estimating µS(t) and σ2
S(t) in (4.5).

B.3 Derivation of dP (t) in (4.10):

We use the procedure similar to (B.1)-(B.4) and the dynamic of S(t), dS(t) =

µ(t)dt + σ(t)dW (t) with µ(t) = µS(t)S(t) and σ(t) = σS(t)S(t). Based on Ito’s
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Lemma [12, chap. 4], we obtain

dF (t, S(t)) =

{
∂F

∂t
+ µ(t)

∂F

∂S(t)
+

1

2
σ(t)2 ∂2F

∂S(t)2

}
dt

+ σ(t)
∂F

∂S(t)
dW (t)

=

{
Ft + µS(t)S(t)FS +

1

2
(σS(t)S(t))2FSS

}
dt

+ σS(t)S(t)FSdW (t)

=
Ft + µS(t)S(t)FS + 1

2
σS(t)2S(t)2FSS

P (t)
P (t)dt

+
σS(t)S(t)FS

P (t)
P (t)dW (t)

= µP (t, P )P (t)dt+ σP (t, P )P (t)dW (t),

We note that during time t to t+ ∆t, the jump value is

∆P (t) = P (t+ ∆t)− P (t)

= F (t+ ∆t, S(t+ ∆t))− F (t, S(t))

+ e(t+ ∆t)− e(t)

= ∆F (t, S(t)) + ∆et,

where ∆et is assumed to follow the normal distribution with mean 0 and variance

σ2
FFS(t, S(t))∆t, i.e., ∆et ∼ N(0, σ2

FFS(t, S(t))∆t). Or equivalently,

de(t) = σF
√
FS(t, S(t))dWe(t),

where dWe(t) denotes a standard Brownian process.

Taking the errors in the power curve into account, we have ∆P (t) = ∆F (t, S(t))+
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∆et with ∆et ∼ N(0, σ2
FF

2
S(t)∆t). Therefore, the dynamic of P (t) becomes

dP (t) = dF (t, S(t)) + de(t)

=
Ft + µS(t)S(t)FS + 1

2
σ2
S(t)S(t)2FSS

P (t)
P (t)dt

+
σS(t)S(t)FS

P (t)
P (t)dW (t) + σF

√
FS(t, S(t))dWe(t),

where W (t) and We(t) are two independent Brownian motions, which leads to

dP (t) =
Ft + µS(t)S(t)FS + 1

2
σS(t)2S(t)2FSS

P (t)
P (t)dt

+

√√√√(σS(t)S(t)FS
P (t)

)2

+

(
σF
√
FS(t, S(t))

P (t)

)2

P (t)dWP (t)

= µP (t, P )P (t)dt+ σP (t, P )P (t)dWP (t),

where

µP (t, P ) =
Ft + µS(t)S(t)FS + 1

2
σ2
S(t)S(t)2FSS

P (t)
,

σP (t, P ) =

√
σ2
S(t)S2(t)F 2

S(t, S(t)) + σ2
FFS(t, S(t))

P (t)
,
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