
Unsupervised Learning in Networks, Sequences

and Beyond

by

Yike Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2019

Doctoral Committee:

Associate Professor Jieping Ye, Chair
Professor Charles Doering
Assistant Professor Danai Koutra
Professor Mark Newman
Assistant Professor Kevin Wood

Yike Liu
yikeliu@umich.edu

ORCID iD: 0000-0003-0117-1656
c©Yike Liu 2019

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Prof. Jieping Ye, who has

shared unlimited resources and opportunities with me. It will be impossible for me

to have the chance of learning all the exciting topics, going to inspiring talks and

being acquainted with amazing friends without him. He has provided a platform for

me to explore, learn and practice that I would have not imagined. His perseverance

towards work, curiosity on research, and kindness to people are legacies I will cherish

for the rest of my life.

I would like to express my gratitude to Prof. Danai Koutra, who have taught me

how research is done from the very beginning. I have learned precious lesson from

working with her. Together I give thanks to all my committee members, who helped

me through the entire dissertation.

Many thanks to my mentors during all my internships: Dr. Linhong Zhu, who has

helped me ever since my first internship, is always there to encourage me and never

stingy on giving compliments about me; Dr. Li Deng and Dr. Pusheng Zhang, whom

I have spent a perfect summer in Seattle with, and learned a great deal from, you

ii

are the ones who opened the door of NLP for me; and Prof. Kevin Knight, who have

showed faith in me and boosted my knowledge in the NLP domain. There is more

gratitude than words can express and I will thank them my taking what I learned

from them into the work I will do in the future.

I would like to thank each and one of my friends, who have been a treasure at every

moment of my life. My dear friends Zhiheng Zuo and Qiaozhi Song, are the sweetest

girls who always have faith in me and there to help. Dr. Kunlei Zhang, Chang Zhou,

and Jianhua Zhang, who are not only friends to keep me company but also turn to

whenever and for whatever I need. Dr. Yuqing Kong, who plays the role of not just

the expert of mathematics but also a warm guide in the most frustrating time of my

life. And many others who have been on my way towards today.

Special thanks to my partner, Haojun Ma, who has provided the most solid support

ever in every single moment of our time together.

Last but not least, great thanks to my parents, Ling Tong and Bogao Liu, even across

oceans I am constantly reminded they have the warmest spot for me in the world.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER

I. Introduction . 1

II. Unsupervised Learning In A Nutshell . 4

2.1 Data Types . 4
2.2 Task Types . 5
2.3 Model Types . 9
2.4 Goals and Applications . 10

III. Networks: Summarization And Clustering . 13

3.1 CondeNSe: Graph Summarization . 13
3.1.1 CondeNSe: Proposed Model . 20
3.1.2 CondeNSe: Our Proposed Algorithm 29
3.1.3 Empirical Analysis . 37

3.2 Network Clustering . 47

IV. Sequences: Networks And Neural Models . 53

4.1 CCTN: Coupled Clustering of Time-Series and Networks 53
4.1.1 Proposed Problem . 57
4.1.2 CCTN-inc: Incremental Updates 63
4.1.3 Experiments . 66
4.1.4 Case Study on Real Data . 74

iv

4.2 Recurrent Deep Learning Games: Optimizing RNN Training 76
4.2.1 RDLP : Recurrent Deep Learning Problem 79
4.2.2 Analysis And Improvements . 88

4.3 Adversarial Learning . 89

V. Power of Unstructured Data . 91

5.1 Learning Generic Embeddings For Entities 93
5.1.1 Problem Formulation . 94
5.1.2 Experiment Setup . 94
5.1.3 Methods . 96
5.1.4 Evaluation . 97

VI. Conclusion . 102

APPENDIX . 104

BIBLIOGRAPHY . 117

v

LIST OF TABLES

Table

2.1 Qualitative comparison of related approaches. 6
3.1 Qualitative comparison of the graph clustering techniques included in CondeNSe.

Symbols: n = number of nodes, m = number of edges, k = number of clus-
ters/partitions, t = number of iterations, d = average degree, h(mh) = number of
nodes (edges) in hyperbolic structure. 18

3.2 Major symbols and definitions. 21
3.3 Summary of graphs used in our experiments. 37
3.4 CondeNSe: Compression rate with respect to the empty model. In parentheses,

number of structures in the corresponding summary. A “-” means that the cor-
responding method was terminated after 4 days. (∗ In the interest of time, the
summary size was limited to 15.) . 38

3.5 Overlapping supernode pairs and average similarity in parentheses. CondeNSe
reduces the overlap. A “-” means that the corresponding method was terminated
after 4 days. 39

3.6 CondeNSe: Number of structures per type in the summaries in the format [fc, st, bc],
for VoG we have [fc + nc, st, bc + nb], where nc is near-clique and nb is near-
bipartite core. The CondeNSe summaries are more balanced, without a specific
pattern type dominating in all the graphs. In the interest of time, we find the
top-50 and top-15 structures for Enron and EUmail, respectively. A “-” means that
the corresponding method was terminated after 4 days. 41

3.7 Agreement of Step and its variants. They approximate Step quite well. (∗ Agree-
ment based on the top-50 structures due to Step-P’s lack of scalability.) 43

3.8 CondeNSe as an evaluation metric: Compression rate of clustering methods with
respect to the empty model (i.e., percentage of bits for encoding the graph given
the chosen model vs. the empty model). 44

3.9 Ablation study for AS-Oregon. Louvain and SlashBurn contribute most to the
CondeNSe summaries. 46

4.1 Major symbols and definitions. 58
4.2 Synthetic data: Description of the six cases that we designed for evaluation. For

each cluster, we generate for its constituent nodes a specific type of time series per
case (e.g., identical, correlated, noisy). 66

4.3 Real data . 68

vi

LIST OF FIGURES

Figure

3.1 CondeNSe generates simpler and more compact supergraphs than baselines. Yel-
low, red, and green nodes for stars, cliques, and bipartite cores, respectively. 15

3.2 Illustration of MDL encoding. 23
3.3 Choc: CondeNSe-Step generates more compact supergraphs. (b)-(c): The full

supergraphs by VoG-GnF, and CondeNSe-Step, resp. Yellow for stars, red for
cliques, green for bipartite cores. The edge weights correspond to the number of
inter-supernode edges. 39

3.4 Node coverage vs. edge coverage—marker size corresponds to the graph size. Step
variants have better node coverage, and handle the summary coverage-conciseness
trade-off well. 40

3.5 Runtime vs. # of edges: k-Step is more efficient than the other methods, and
scales to larger graphs. 42

3.6 The agreement is robust to the number of partitions, while the runtime decreases. . 45
3.7 Number of structures found by the clustering methods for AS-Oregon. Transpar-

ent/solid rectangles for before/after the structure selection step. Notation: fc: full
clique, st: star, ch: chain, bc: bipartite core, hs: hyperbolic structure. 45

4.1 Human trafficking example: Nine phone numbers (nodes) form three clusters with
tight connections, and similar temporal behaviors. The matrix on the left illustrates
the representation of the network structure (A) and the ones on the right show the
different types of node-specific behaviors over time (Xk). 54

4.2 Accuracy of CCTN and CCTN-inc on synthetic and real data. 69
4.3 MITRE: CCTN-inc approximates CCTN well. They yield similar clusterings. . . 71
4.4 Runtime analysis. 72
4.5 Advertisements related to the phone numbers 1-3236****** and 1-3232******. . . 75
4.6 The computational graph to compute the training loss of a recurrent network that

maps an input sequence of x values to a corresponding sequence of output o values.
Figure from [GBC16] . 78

4.7 Block diagram of the LSTM recurrent network cells.Figure from [GBC16] 85
4.8 Training Loss vs. Iterations . 87
5.1 Workflow of experiment on user embedding extraction. 95
5.2 Word2vec: 2D embedding. Each profile feature is clearly distinguished by the

embedding. 99

vii

5.3 Language model: 2D embedding. Each profile feature is clearly distinguished by
the embedding. 100

A.1 Rand index-based accuracy of CCTN and CCTN-inc on synthetic and real data. 110
A.2 MITRE: CCTN-inc approximates CCTN well based on both the NMI and rand

index metrics. 111
A.3 CCTN is robust with respect to the parameters. The different lines in the plots

correspond to different synthetic cases, as described in the rightmost plot (d). . . . 111

viii

ABSTRACT

Unsupervised learning has gained tremendous interest in the past decade in various

research communities, by virtue of its capability of exploiting unlabeled data and

discovering patterns. The output of classical unsupervised models such as clustering

and summarization can serve for the purposes of interpreting as well as preprocessing

data for downstream tasks. Unsupervised models also present great potential in

representing unstructured data and generalizing to unobserved data. In this thesis,

I show the power of unsupervised learning in different data formats - networks and

sequences, where models are formed in various ways. For networks, I introduce

CondeNSe for summarizing large graphs in an unsupervised way, as well as its

relations to graph clustering. I extend the clustering problem to sequences and

propose to solve a coupled clustering problem on graphs and sequences. In the

sequence modeling domain, I discuss my study on predicting sequences in the context

of game theory, which falls in the domain of adversarial learning. Finally, I switch

gears to structured data and demonstrate the power of unsupervised models on

unstructured data in representing and extracting information.

ix

CHAPTER I

Introduction

Unsupervised learning, normally in comparison with supervised learning, refers to a

subset of machine learning tasks where training data is not labeled. Models must

learn relationships between elements in a data set, possibly in forms of hidden struc-

tures, patterns or features to represent the data [Dee18].

Common tasks/algorithms in unsupervised learning include but are not limited to:

clustering, anomaly detection, learning latent variable models, and neural-network-

based methods. I will briefly discuss these algorithms and present my contributions

to clustering and neural-network-based methods in detail.

Clustering, or finding groups of similar entities, is a fundamental task in data min-

ing and machine learning, with applications in human mobility analysis, sensor data

analytics in healthcare, intelligent urban systems, climate monitoring, and more.

Depending on the notion of a cluster, data format and domain, clustering algorithms

can take on different forms. For example, clustering methods have been studied

on both time series, networks etc. [BUWK15, JRSD15, DDT+16, Hes04, BGLL08].

There are also applications where different data forms co-occur and the clustering is

performed on them jointly. Many clustering algorithms stand out as popular tools

for preliminary data analysis or preprocessing steps, to name a few: hierarchical clus-

1

2

tering [Joh67], k-means, mixture models [MLR19], DBSCAN [EKS+96] etc. Many

surveys have been conducted on clustering extensively [XW05, Ber06, Lia05] while

posing many interesting future directions.

There are numerous unsupervised learning models research for anomaly detection

and learning latent variables in the literature: anomaly detection has been a prob-

lem widely studied in the data mining community [BKNS00, ZF18, CBK09, ATK15],

on both its definition and mining strategy; a lot of approaches have been proposed

for learning latent variable models, e.g. Expectation-maximization algorithm, prin-

ciple component analysis, and independent component analysis, which have alleviate

the problem of high dimensions or feature correlation in many machine learning

problems.

Neural Networks have emerged as the most popular type of models for machine learn-

ing tasks in the past a few years. By introducing simple and relational representations

of data, deep learning models allow computers to learn from experience and under-

stand the world in terms of a hierarchy of concepts, represented by layers of neurons

with the connections between them [GBC16]. Specifically, many unsupervised deep

learning models have been proposed for either learning the data representation, com-

pressing data or accommodating specific tasks. E.g., autoencoders are designed to

learn a representation/encoding for a set of data, where the input data is compressed

by an encoder network and reconstructed by a decoder network [Bal87, RHW85].

Apart from representation learning, unsupervised deep learning serves many other

tasks, e.g. Generative Adversarial Networks (GANs) [GPAM+14] takes advantage

of two neural networks in a zero-sum game where they contest each other, for the

purpose of generating real candidate data.

3

Without the data labels present, all the algorithms above converge to the idea of

mimicking human logic on data observation and analysis. Specifically, taking the

view of density estimation, supervised learning intends to infer a conditional prob-

ability distribution P (x|y) where y is the label, while unsupervised learning infers

a priori probability distribution P (x). For this reason, unsupervised models usu-

ally present to be much more powerful in generalization and performing tasks across

domains.

The thesis is organized as follows: Chapter II will introduce current state of the art

of unsupervised learning with popular models as well as applications. Unsupervised

learning in networks and sequences will be discussed in detail in Chapter III and IV

respectively. In Chapter V I will show the power of unstructured data in unsupervised

learning with specific models, and finally concluding in Chapter VI.

CHAPTER II

Unsupervised Learning In A Nutshell

Attention on unsupervised learning has boosted significantly over the past decade,

with related research publications more increasing more than 10 times since 2008 [Dee18].

There is rich literature on surveys of related topics [PY10, GCB04, Zhu05, CS14],

where we not only see unsupervised learning itself prosper, but also joining with other

interesting topics such as transfer learning, semi-supervised learning, clustering, etc.

Without stretching to cover every possible model, I’ll provide a few dimensions to

look at the state of the art unsupervised models, with focus on clustering and neural-

network-based models, which are the main contributions of my thesis.

2.1 Data Types

First, it is natural to look at unsupervised learning from different data types. Other

than being unlabeled, unsupervised learning has very limited constraint on the input

data. Therefore, we see the same task solved with different type of data and very often

many algorithms share similar ideas with adaptions. Take clustering for example.

Most commonly we see input as a data set {x1, . . . ,xN} consisting of N observations

ofD-dimensional variable x, as we see in the setting of k-means clustering, where data

is considered in a Euclidean space. Variations can be taken on the distance measure,

4

5

e.g. Chebyshev or Manhattan, for different applications. Graph mining community

has looked deep into clustering on networks (sometimes referred to as community

detection or graph partitioning) where the properties of networks come into play and

are considered for the clustering algorithm [Sch07, For10, Dhi01]. Extending to the

temporal space, clustering is heavily studied for time-series or sequential data [Lia05,

ASW15, Cor88]. Recently research communities have began to focus on clustering of

more complex data, normally formulated as a jointly clustering problem, e.g. spatio-

temporal clustering [KMNR09], network-temporal clustering [LZS+19].

2.2 Task Types

Task type is one of the most important measures for distinguishing different unsu-

pervised models. Major classical unsupervised tasks include: clustering, anomaly

detection, and for some Bayesian models-learning latent variables. When it comes

to neural models, they can perform many more and challenging tasks due to its

end-to-end learning ability and great representation power.

Among different tasks, researchers have devoted efforts on them from many per-

spectives, e.g. problem formulation, methodology, evaluation, etc. Take clustering

for example. For different type of data, researchers try to provide good measure

of internal homogeneity and external separation for an optimal clustering [XW05].

Considerable amount of work has been put into evaluation of clusters as well as

parameter selection (e.g. number of clusters) [AGAV09, Ran71, ZZX08]. Time-

series clustering [Lia05] aims to group coherent time-series sequences together based

on a certain similarity measure of either raw data or extracted features or repre-

sentations [BUWK15, CP08]. Targeting imputation and prediction for co-evolving

higher-order time series, [CTF+15] jointly models them in a ‘network’ of time series

6

and follows a tensor decomposition approach. This model is more restrictive than

ours that loosely couples the network with the time dimension. I present a set of

other representative works (not exhaustive) in Table 2.1. For an extensive review on

graph clustering, we refer the interested reader to two surveys [Sch07, LSDK18]. Re-

cent work [FZ16] converts the time-series clustering problem to graph clustering by

first creating a similarity graph where each node corresponds to a time sequence and

then applying modularity-based clustering [BGLL08]. Moreover, there has been in-

creasing interest in jointly clustering attribute and relational data. For instance, Cho

et. al. [CVSFG16] proposed a shared latent space model for describing both network

and behavioral data. However, their work focused on static behaviors/attributes

only. Also, [CBLH12] extracts subgraphs with similarly evolving structural patterns,

but do not take into account non-structural temporal behaviors. Our work, on the

other hand, explicitly addresses the temporal aspect of the problem by represent-

ing each node as a multivariate time series. In Chapter IV we will talk about my

contributions to joint clustering in detail.

Table 2.1: Qualitative comparison of related approaches.

Methods
Data Source Similarity

Raw Feature Representation Dist Model

[BUWK15, MLKCW03, KGP01, Dah96, PG15] X X
[CP08, XY04] X X

[KP98, SK92, DDT+16] X X
[GHLR01] X X
[OFC99] X X X

In the graph mining domain, clustering is constantly associated to the problem of

graph summarization [LSDK18]. Most research efforts in graph summarization fo-

cus on plain graphs and can be broadly classified as group-based [LT10, RGM03],

compression-based [CKL+09, NRS08, GKSL17, KKVF14], simplification-based, influence-

based, and pattern-based [CH94]. Dynamic graph summarization has been stud-

7

ied to a much smaller extent [SKZ+15, JK17b]. Beyond the classic definition of

graph summarization, there are also approaches that summarize networks in terms

of structural properties (e.g., degree, PageRank) by automatically leveraging do-

main knowledge [JK17a, JLS+17]. Most related to my work are the ideas of node

grouping and graph compression. Built on these ideas, two representative meth-

ods, MDL-summarization [NRS08] and VoG [KKVF14], are MDL-based summa-

rization methods that compress the graphs by findingnear-structures (e.g., (near-)

cliques, (near-) bipartite cores). MDL-summarization, which iteratively combines

neighbors into supernodes as long as it helps with minimizing the compression cost,

includes mostly cliques and cores in the summaries, and has high runtime complexity.

On the other hand, VoG finds structures by employing SlashBurn [KF11] (ex-

plained below) and hence is particularly biased towards selecting star structures.

Moreover, it creates summaries (i.e., lists of structures) using a greedy heuristic on

a pre-ordered set of structures. Unlike these methods, CondeNSe performs en-

semble pattern discovery and handles edge-overlapping structures. Furthermore, its

summary assembly is robust to the ordering of structures.

Anomaly detection is a major topic in both statistics community and data mining

community. We refer interested readers to some comprehensive surveys [CBK09,

ATK15, CB10] as it is not the major contribution of this thesis.

Models for learning learning latent variables is an important type of models of unsu-

pervised learning. The idea is to learn a statistical model that relates a set of observ-

ables to a set of latent variables. Many of the clustering methods can be perceived

as a latent variable model, and vice versa. E.g., k-means clustering is essentially an

Expectation-maximization algorithm, spectral clustering is built on top of matrix

8

factorization that projects nodes to a latent space. Actually, the idea of separating

signals - either by principle component analysis, or independent component analysis,

or non-negative matrix factorization, and singular value decomposition - is deeply

rooted in classical machine learning and in many algorithms data is projected to a

latent space for analysis. Our algorithm in Chapter IV, CCTN (Coupled Clustering

of Time-Series and Networks), also takes advantage of this idea.

Neural networks are powerful tools for unsupervised learning, for they are end-to-end

models that capture information in complex data easily; and they provide natural

representations of data for specific tasks (in supervised learning) and good generic

representations in unsupervised learning. Many classical unsupervised algorithms

can serve as a preprocessing step in many deep learning tasks. E.g., to alleviate the

computational cost training convolutional networks, instead of directly a comput-

ing convolutional layer in both forward pass and backpropagation, one can apply

k-means clustering to small image patches to obtain kernels [CN11]. However, deep

learning models play significant roles in representation learning [GBC16]. A typical

framework of training representations on unsupervised tasks before applying on su-

pervised tasks has shown huge success in recent years, especially in natural language

processing [PNI+18, DCLT18, RNSS18]. Numerous researchers have shown that

unsupervisedly learned representations present robust performance across different

modalities and domains, which is essential in transfer learning or even zero-shot

learning. Goodfellow et. al. explained in detail how unsupervised pretraining (or

greedy layer-wise unsupervised pretraining) works in detail [GBC16]. Relying on a

single layer representation learning algorithm such as an RBM (Restricted Boltz-

mann machine), a single-layer autoencoder, a sparse coding model or any latent

representation learning models, it trains greedily the output layers depending on the

9

previous layer, that are supposedly to be simpler than the previous one. NLP has

been one of the fields that best benefit from unsupvised learning recently - a series

of language models have been proposed that kept improving the performance of text

representations: ELMo [PNI+18], GPT [RNSS18], and BERT [DCLT18]. Erhan et.

al. [EBC+10] and Goodfellow et. al. [GBC16] provided insights on representation

learning powers of unsupervised learning. In short, unsupervised pretraining roots

on the idea unsupervised tasks essentially provides a way of learning about the in-

put distribution without specific labels involved, as we mentioned in Introduction,

hence leaving the representations with more information. And the pretraining re-

sults can be perceived as parameter initialization, which is equivalent to introducing

a significantly effective regularization on the model.

2.3 Model Types

There is not consensus on a taxonomy of unsupervised model types within the ma-

chine learning community. I would like to take a traditional view on the models,

which is far from comprehensive but not yet looked much into in this thesis - genera-

tive vs. discriminative models. Bishop gives a rather formal definition to distinguish

them [Bis06]: approaches that explicitly or implicitly model the distribution of inputs

as well as outputs are known as generative models, because by sampling from them

it is possible to generate synthetic data points in the input space; approaches that

model the posterior probabilities directly are called discriminative models. Cluster-

ing and anomaly detection algorithms normally falls into the discriminative category.

Latent variable models are rather complicated, having considerable models on both

sides. For example, most EM algorithms are generative as they maximize a posterior

likelihood while trying to discover the hidden variable; KNN (k-nearest-neighbors)

10

is discriminative as it models a conditional probability. Distinction becomes more

ambiguous for complex models like neural networks: language models are considered

generative; generative adversarial networks [GPAM+14] are both generative and dis-

criminative as there are two networks with corresponding objectives. It is important

for us to keep aware of the part of models that is generative or discriminative, which

helps us understand the intuition behind the model as well as how we can improve

it.

2.4 Goals and Applications

Being unsupervised is far from having no objective. Unlike supervised learning,

there is no target label for prediction, and the accuracy is difficult to evaluate. In

order to model the data distribution, what contributes to a good objective? Graves

and Ranzato provide some insights at the unsupervised deep learning tutorial at

NeurIPS 2018 [AG18]. The key idea still lies in density modeling: maximum like-

lihood on data (without labels). Many generative models take this approach by

assuming different prior distributions. The benefit of these generative models such

as GANs [GPAM+14], is that we are able to simulate the generation of data, hence

getting a view out of the sample space. Another important type are autoregres-

sive models, which assumes a chain rule for probabilities, e.g. in language model-

ing, one assumes the probability as P (w1, . . . , wT) =
∏T

t=1 P (wt|wt−1, . . . , w1), where

w1, . . . , wT is the input data sequence. Targeting sequential data, it splits high dimen-

sional data into small pieces and tries to predict each piece from those before. Au-

toregressive models have proven to work extremely well on sequential data as they are

simple to define and it is easy to generate samples [VDODZ+16, OKK16, KvdOS+17].

Finally, taking the view of representation learning, a representation can be seen as

11

a description of the data, if any luck, we might be able to interpret it [SFH17].

One way to make these representations accessible is to compress them/force them

through a bottleneck. Autoencoder is a model that implement this objective. Specif-

ically, Minimum Description Length is exploited by VAE [Doe16], as well as many

summarization method such as our CondeNSe [LSSK18] that we will discuss in

detail in Chapter III. Mutual information is another metric often used to evalu-

ate a data compression, contrastive predictive coding [OLV18] and noise-contrastive

estimation [GH12] are both realizations of it. There are many models that extend

these goals/objectives outside of unsupervised learning, either trying to combine with

supervised learning, inspiring plenty of semi-supervised methods; or embedding in

reinforcement learning tasks, which I am not elaborating here. Interested readers

can always refer to the tutorial for more details [AG18].

Unsupervised learning is widely applied both for its own benefit and serving as a pre-

processing step for supervised tasks. Clustering is commonly used as a tool for data

partitioning: community detection in social networks [For10], market segmentation

for targeting customers [PS83], and various applications in medical/biological data,

e.g. brain fMRI data [HBC+92] or MR data [KBK00], gene clustering [LS03] with hi-

erarchical clustering on different expression levels, and many other multidisciplinary

applications such as climate indices derivation on earth science data, document clus-

tering on content, etc. Anomaly detection methods are the core for fraud detec-

tion [KLSH04]. On the other hand, representation learning (both latent space and

deep learning models) are the main tools for preprocessing noisy data, for multiple

purposes such as dimension reduction, decorrelation, data interpretation, learning

generation process, and processing data into structured form for downstream tasks.

All of these are extremely important tasks in machine learning and data mining and

12

have been topics people study for decades. There is no doubt that unsupervised

learning will keep prospering considering the quantity and heterogeneity of data we

have as of today.

CHAPTER III

Networks: Summarization And Clustering

3.1 CondeNSe: Graph Summarization

Summarizing a large graph with a much smaller graph is critical for applications like

speeding up intensive graph algorithms and interactive visualization. In this chapter,

I will discuss my work CondeNSe (CONditional Diversified Network Summariza-

tion), a Minimum Description Length-based method that summarizes a given graph

with approximate “supergraphs” conditioned on a set of diverse, predefined struc-

tural patterns. The majority of this section can be found in [LSSK18]. CondeNSe

features a unified pattern discovery module and a set of effective summary-assembly

methods, including a powerful parallel approach, k-Step, that creates high-quality

summaries not biased toward specific graph structures. By leveraging CondeNSe’s

ability to efficiently handle overlapping structures, we contribute a novel evalua-

tion of seven existing clustering techniques by going beyond classic cluster quality

measures. Extensive empirical evaluation on real networks in terms of compression,

runtime, and summary quality shows that CondeNSe finds 30-50% more compact

summaries than baselines, with up to 75-90% fewer structures and equally good node

coverage.

In an era of continuous generation of large amounts of data, summarization tech-

13

14

niques are becoming increasingly crucial to help abstract away noise, uncover pat-

terns, and inform human decision processes. Here we focus on the summarization

of graphs, which are powerful structures that capture a number of phenomena, from

communication between people [LKF05, BHKL06, KKPF13] to links between web-

pages [kle99], to interactions between neurons in our brains [OCP14, YZD+19]. In

general, graph summarization or coarsening approaches [LSDK18] seek to find a

concise representation of the input graph that reveals patterns in the original data,

while usually preserving specific network properties. Summarization is also stud-

ied as a way to speed up neural networks and increase robustness [YZD+19] as well

as represent nodes in a latent space [JHRK19, JRK+18]. As graph summaries are

application-dependent, they can be defined with respect to various aspects: they can

preserve specific structural patterns, focus on some entities in the network, preserve

the answers to a specific set of queries, or maintain the distributions of some graph

properties. Graph summarization leads to the reduction of data volume, speedup

of graph algorithms, improved storage and query time, and interactive visualiza-

tion. Its major challenges are in effectively handling the volume and complexity of

data, defining the interestingness of patterns, evaluating the proposed summarization

techniques, and capturing network structural changes over time. The graph mining

community has mainly studied summarization techniques for the structure of static,

plain graphs [CKL+09, NRS08] and to a smaller extent, methods for attributed or

dynamic networks [SKZ+15].

Our method, CondeNSe or CONditional Diversified Network Summarization, sum-

marizes the structure of a given large-scale network by selecting a small set of its

most informative structural patterns. Inspired by recent work [NRS08, KKVF14],

we formulate graph summarization as an information-theoretic optimization problem

15

(a) Prior work [KKVF14] (b) Our method: CondeNSe-Step

Figure 3.1: CondeNSe generates simpler and more compact supergraphs than baselines.
Yellow, red, and green nodes for stars, cliques, and bipartite cores, respectively.

in search of local structures that collectively minimize the description of the graph.

CondeNSe is a unified, edge-overlap-aware graph summarization method that sum-

marizes a given graph with approximate “supergraphs” conditioned on diverse, prede-

fined structural patterns. An example is shown in Figure 3.1, where the (super)nodes

in Figure 3.1b correspond to sets of nodes in the original graph. Specifically, the pre-

defined patterns include structures that have well-understood graph-theoretical prop-

erties and are found in many real-world graphs [kle99, AGMF14, FFF99, PSS+10]:

cliques, stars, bipartite cores, chains, and patterns with skewed degree distribution.

Our work effectively addresses three main limitations of prior summarization work

such as [KKVF14] and [KF17], namely: (i) its heavy dependence on the structural

pattern discovery method and intrinsic tendency, or bias, to select star-like structures

in the final summary; (ii) its inability to handle edge-overlapping patterns in the

summary; and (iii) its dependence on the order in which candidate structures are

considered for the final summary. Our proposed unified approach effectively handles

these issues and results in robust, compact summaries with 5− 10× fewer structural

patterns (or supernodes) and up to 50% better compression.

CondeNSe has three main modules that tackle the above-mentioned shortcomings:

(i) A unified structural pattern discovery module leverages the strengths of various

16

popular graph clustering methods (e.g., Louvain [BGLL08], METIS [KK99]) to

address the structural biases that each method introduce in the graph summary;

(ii) A Minimum Description Length-based (MDL) formulation with a penalty term

effectively minimizes redundancy in edge coverage by the structural patterns included

in the summary. This term is paramount when the candidate structural patterns have

significant edge overlap, such as in the case of our unified structure discovery module;

(iii) An iterative, multi-threaded, and divide-and-conquer-based summary assembly

module reduces even more the bias during the summary creation process by being

independent of the order in which the candidate structural patterns are considered.

This parallel module is up to 53× faster than its serial version (on a 6-core machine).

Our contributions in this method are as follows:

• Approach: We introduce CondeNSe, an effective unified, edge-overlap-aware

graph summarization approach with a powerful parallel summary assembly module

(k-Step) that creates compact and easy-to-understand graph summaries with high

node coverage and low redundancy.

• Novel Metric: We propose a way to leverage CondeNSe as a proxy to com-

pare graph clustering methods with respect to their summarization performance on

large, real-world graphs, complementing the usual evaluation metrics in the related

literature (e.g., modularity, conductance).

• Experiments: We present a thorough empirical analysis on real networks to eval-

uate the summary quality and runtime, and study the properties of seven clustering

methods.

For reproducibility, the code will be available online at https://github.com/yikeliu/

ConDeNSe. Next, we present the related work and necessary background.

17

Our work is related to graph summarization methods, MDL, and graph clustering.

We review each of these topics in turn.

Graph Summarization. Most research efforts focus on plain graphs and can

be broadly classified as group-based [LT10, RGM03], compression-based [CKL+09,

NRS08], simplification-based, influence-based, and pattern-based [CH94]. Dynamic

graph summarization has been studied to a much smaller extent [SKZ+15]. Most

related to our work are the ideas of node grouping and graph compression. Built

on these ideas, two representative methods, MDL-summarization [NRS08] and

VoG [KKVF14], are MDL-based summarization methods that compress the graphs

by finding near-structures (e.g., (near-) cliques, (near-) bipartite cores). MDL-

summarization, which iteratively combines neighbors into supernodes as long as

it helps with minimizing the compression cost, includes mostly cliques and cores

in the summaries, and has high runtime complexity. On the other hand, VoG

finds structures by employing SlashBurn [KF11] (explained below) and hence is

particularly biased towards stars. Moreover, it creates summaries (i.e., lists of struc-

tures) using a greedy heuristic on a pre-ordered set of structures (see below). Un-

like these methods, CondeNSe performs ensemble pattern discovery, handles edge-

overlapping structures, and its summary assembly is robust to the structure ordering.

Thus, it leads to more compact and less biased summaries, creates approximate and

easy-to-understand supergraphs, and can be used as a proxy to evaluate clustering

methods in a novel way.

MDL in Graph Mining. Many data mining problems are related to summa-

rization and pattern discovery, and, thus, to Kolmogorov complexity [FM07], which

can be practically implemented by the MDL principle [Ris83]. Applications include

18

clustering [CV05], community detection [CPMF04], pattern discovery in static and

dynamic networks [KKVF14, SKZ+15], and more.

Graph Clustering. Graph clustering and community detection are of great interest

to many domains, including social, biological, and web sciences [GN02, BKM+08,

For10]. Here, we leverage several graph clustering methods to obtain diversified graph

summaries, since each method is biased toward certain types of structures, such as

cliques and bipartite cores [BGLL08, KK99, YL13] or stars [KF11]. Unlike existing

literature [LLM10] where clustering methods are compared with respect to classic

quality measures, we also propose to use CondeNSe as a vessel to evaluate the

methods’ summarization power. We leverage seven decomposition methods, which

we compare quantitatively in Table 3.1:

• SlashBurn [KF11] is a node reordering algorithm initially developed for graph

compression. It performs two steps iteratively: (i) It removes high-centrality nodes

from the graph; (ii) It reorders nodes such that high-degree nodes are assigned the

lowest IDs and nodes from disconnected components get the highest IDs. The process

is repeated on the giant connected component. We leverage this process by identi-

fying structures from the egonet of each high-centrality node, and the disconnected

components, as subgraphs.

• Louvain [BGLL08] is a modularity-based partitioning method for detecting hi-

Table 3.1: Qualitative comparison of the graph clustering techniques included in CondeNSe.
Symbols: n = number of nodes, m = number of edges, k = number of clusters/partitions, t =
number of iterations, d = average degree, h(mh) = number of nodes (edges) in hyperbolic structure.

SlashBurn [KF11] Louvain [BGLL08] Spectral [Hes04] METIS [KK99] HyCoM [AGMF14] BigClam [YL13] KCBC [LSK15]

Overlapping
4 8 8 8 4 4 4

Clusters
Cliques Many Many Many Many Some Many Many
Stars Many Some Some Some Many Some Some
Bipartite Cores Some Few Many Some Some Few Few
Chains Few Few Few Few Few Few Few
Hyperbolic

Few Few Few Few Many Few Few
Structures

Complexity O(t(m+ n log n)) O(n log n) O(n3) O(m · k)
O(k(m+ h log h2

O(d · n · t) O(t(m+ n))
+hmh))

Summarization
Excellent Very Good Good Good Poor Good Poor

Power

19

erarchical community structure. The method is iterative: (i) Each node is placed

in its own community. Then, the neighbors j of each node i are considered, and

i is moved to j’s community if the move produces the maximum modularity gain.

The process is applied repeatedly until no further gain is possible. (ii) A new graph

is built whose supernodes represent communities, and superedges are weighted by

the sum of weights of links between the two communities. The algorithm typically

converges in a few passes.

• Spectral clustering refers to a class of algorithms that utilize eigendecomposi-

tion to identify community structure. We utilize one such spectral clustering algo-

rithm [Hes04], which partitions a graph by performing k-means clustering on the

top-k eigenvectors of the input graph. The idea behind this clustering is that nodes

with similar connectivity have similar eigen-scores in the top-k vectors and form

clusters.

• METIS [KK99] is a cut-based k-way multilevel graph partitioning scheme based

on multilevel recursive bisection (MLRB). Until the graph size is substantially re-

duced, it first coarsens the input graph by grouping nodes into supernodes iteratively

such that the edge-cut is preserved. Next, the coarsened graph is partitioned using

MLRB, and the partitioning is projected onto the original input graph G through

backtracking. The method produces k roughly equally-sized partitions.

• HyCoM [AGMF14] is a parameter-free algorithm that detects communities with

hyperbolic structure. It approximates the optimal solution by iteratively detecting

important communities. The key idea is to find in each step a single community

that minimizes an MDL-based objective function given the previously detected com-

munities. The iterative procedure consists of three steps: community candidates,

20

community construction, and matrix deflation.

• BigClam [YL13] is a scalable overlapping community detection method. It is built

on the observation that overlaps between communities are densely connected. By

explicitly modeling the affiliation strength of each node-community pair, the latter

is assigned a nonnegative latent factor which represents the degree of membership

to the community. Next, the probability of an edge is modeled as a function of the

shared community affiliations. The identification of network communities is done by

fitting BigClam to a given undirected network G.

• KCBC [LSK15] is inspired by the k-cores algorithm [GTV11] that unveils densely

connected structures. A k-core is a maximal subgraph for which each node is con-

nected to at least k other nodes. KCBC iteratively removes k-cores starting by

setting k equal to the maximum core number (max value k for which the node is

present in the resulting subgraph) across all nodes. Each connected component in

the induced subgraphs is identified as a cluster, and is removed from the original

graph. The process is repeated on the remaining graph.

Other clustering methods that we considered (e.g., Weighted Stochastic Block Model

or WSBM) are not included in CondeNSe due to scalability. For instance, WSBM

took more than a week to finish on our smallest dataset.

Now we give details of CondeNSe as below.

3.1.1 CondeNSe: Proposed Model

We formulate the graph summarization problem as a graph compression problem.

Let G(V , E) be a graph with n = |V| nodes and m = |E| edges, without self-loops.

The Minimum Description Length (MDL) problem, which is a practical version of

21

Table 3.2: Major symbols and definitions.

Notation Description

G(V, E), A graph, and its adjacency matrix
V, n = |V| node-set and number of nodes of G, resp.
E , m = |E| edge-set and number of edges of G, resp.

k # of clusters or communities or patterns
t # of iterations
h,mh size of hyperbolic community, and # of edges in it, resp.
d average degree of nodes in G
hslash # of hub nodes to slash per iteration in SlashBurn
fc, bc, st, ch, hs full clique, bipartite core, star, chain, hyperbolic structure, resp.
|fc|, |bc|, |st|, |ch|, |hs| number of nodes in the corresponding structure
Ω predefined set of structural pattern types
M a model or summary for G
s structure in M
|S|, |s| cardinality of set S and number of nodes in s, resp.
||s||, ||s||′ # existing and non-existing edges of A that s describes
E error matrix, E = M ⊕ A, where ⊕ is exclusive OR
O edge-overlap penalty matrix
L(G,M) # of bits to describe model M , and G using M
L(M), L(O), L(s) # of bits to describe M , the edge overlap O, and structure s

Kolmogorov Complexity [FM07], aims to find the best model M in a given family

of modelsM for some observed data D such that it minimizes L(M) + L(D|M). In

this formulation, L(M) is the description length of M in bits and L(D|M) is the

description length of D which is encoded by the chosen model M . Table 3.2 defines

the recurrent symbols used in this section.

We consider summaries in the model family M, which consists of all possible per-

mutations of subsets of structural patterns in Ω. One option is to populate Ω with

the frequent patterns that occur in the input graph (in a data-driven manner), but

frequent subgraph mining is NP-complete and does not scale well. Moreover, even

efficient approximate approaches are not applicable to unlabeled graphs and can

only handle small graphs with a few tens or hundreds of nodes. To circumvent this

problem, we populate Ω with five patterns that are common in real-world static

graphs [kle99, AGMF14], correspond to interesting real behaviors, and can (approx-

22

imately) describe a wide range of structural patterns: stars (st), full cliques (fc),

bipartite cores (bc), chains (ch), and hyperbolic structures with skewed degree dis-

tribution (hs). Under the MDL principle, any approximate structures (e.g., near-

cliques) can be easily encoded as their corresponding exact structures (e.g., fc) with

some errors. Since many communities have hyperbolic structure [AGMF14], which

cannot be expressed as a simple composition of the other structural patterns in Ω,

we consider this structure separately. Motivated by real-world discoveries, we focus

on structures that are commonly found in networks, but our framework is not re-

stricted to them; it can be readily extended to other, application-dependent types of

structures as well.

Formally, we address the following problem:

Problem 3.1. Given a graph G with adjacency matrix A and structural pattern

types Ω, we seek to find the model M that minimizes the encoding length of the

graph and the redundancy in edge coverage:

(3.2) L(G,M) = L(M) + L(E) + L(O)

where M is A’s approximation induced by M , E = M ⊕ A is the error matrix to

correct for edges that were erroneously described by M , ⊕ is exclusive OR, and O

is the edge-overlap matrix to penalize edges covered by many patterns.

Model M induces a supergraph with each s ∈M as an (approximate) supernode, and

weighted superedges between them. Before we further formalize the task of encoding

the model, the error matrix, and the edge-overlap penalty matrix, we provide a visual

illustration of our MDL objective.

An Illustrative Example. Figure 3.2 shows the original adjacency matrix A of

an input graph, which is encoded as (i) M, the matrix that is induced by the model

23

Figure 3.2: Illustration of MDL encoding.

M , and (ii) the error matrix E, which captures additional/missing edges that are

not properly described in M . In this example, there are 6 structures in the model

(from the top left corner to the bottom right corner: a star, a large clique, a small

clique, a bipartite core, a chain, and a hyperbolic structure), where the cliques and

the bipartite core have overlapping nodes and edges.

Encoding the Model

Following the literature [KKVF14], for an input graph G, to fully describe a model

M ∈ M that consists of a set of structural patterns s (e.g., stars, hyperbolic struc-

tures, and chains), we encode it as L(M), where we use optimal encoding for all its

components:

L(M) = LN(|M |+ 1) + log

(
|M |+ |Ω| − 1

|Ω| − 1

)
+
∑
s∈M

(
− log2 Pr(x(s) |M) + L(s)

)
.

(3.3)

In the first term we encode the number of structural patterns in M using Rissa-

nen’s optimal encoding for integers (≥ 1) [Ris83]. Then, we transmit the number of

patterns per type in Ω by optimally encoding it via an index over a weak number

composition. In the third term, for each structure s ∈ M , we encode its type x(s)

using optimal prefix codes [CT12], and its connectivity L(s). For the last term, to

capture the real connectivity patterns of each structure s, we introduce the MDL

encoding per type of structure in Ω next. As in Equation (3.3), we optimally encode

24

the various components of each structure (e.g., by using Rissanen’s optimal encoding

for integers).

• Stars: A star consists of a “hub” node connected to two or more “spoke” nodes.

We encode it as:

L(st) = LN(|st| − 1) + log2n+ log2

(
n− 1

|st| − 1

)
(3.4)

where we encode in order the number of spokes, the hub ID (we identify it

out of n nodes using an index over the combinatorial number system), and the

spoke IDs.

• Cliques: A clique is a densely connected set of nodes with:

L(fc) = LN(|fc|) + log2

(
n

|fc|

)
(3.5)

where we encode its number of nodes followed by their IDs.

• Bipartite Cores: A bipartite core consists of two non-empty sets of nodes, L

and R, which have edges only between them, and L∩R = ∅. Stars are a special

case of bipartite cores with |L| = 1. The encoding cost is given as:

L(bc) = LN(|L|) + LN(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
,(3.6)

where we encode the number of nodes in L and R followed by the node IDs per

set.

• Chains: A chain is a series of nodes that are linked consecutively–e.g. node-set

{a, b, c, d} in which a is connected to b, b is connected to c, and c is connected

to d. Its encoding cost, L(ch), is:

25

L(ch) = LN(|ch| − 1) +

|ch|∑
i=1

log2(n− i+ 1)(3.7)

where we encode its number of nodes, and then their node IDs in order of

connection.

• Hyperbolic Structures: A hyperbolic structure or community [AGMF14]

has skewed degree distribution which often follows a power law with exponent

between -0.6 and -1.5. The encoding length of a hyperbolic structure hs is given

as:

L(hs) = k + LN(|hs|) + log2

(
n

|hs|

)
+ log2(|A(hs)|) + ||hs||l1 + ||hs||′l0(3.8)

where we first encode the power-law exponent (using Rissanen’s encoding [Ris83]

for the integer part, the number of decimal values, and the decimal part),

followed by the number of nodes and their IDs. Then, we encode the num-

ber of edges in the structure (=|A(hs)|), and use optimal prefix codes, l0, l1,

for the missing (||hs||′) and present (||hs||) edges, respectively. Specifically,

l1 = − log((||hs||/(||hs||+ ||hs||′)), and l0 is defined similarly.

Encoding the Errors

Given that M is a summary, and M is only an approximation of A, we also need to

encode errors of the model. For instance, a near-clique is represented as a full clique

in the model, and, thus, contributes some edges to the error matrix (i.e., the missing

edges from the real data). We encode the error E = M ⊕A in two parts, E+ and

E−, since they likely follow different distributions [KKVF14]. The former encodes

26

the edges induced by M which were not in the original graph, and the latter the

original edges that are missing in M :

L(E+) = log2(|E+|) + ||E+||l1 + ||E+||′l0(3.9)

L(E−) = log2(|E−|) + ||E−||l1 + ||E−||′l0(3.10)

where we encode the number of 1s in E+ (or E−), followed by the actual 1s and 0s

using optimal prefix codes (as before).

Encoding the Edge-Overlap Penalty

Several of the graph decomposition methods that we consider (e.g., SlashBurn,

KCBC in Table 3.1) generate edge-overlapping patterns. The MDL model we have

presented so far naturally handles node overlaps—if two structures consist of the

same large set of nodes, only one of the them will be chosen during the encoding

cost minimization process, because their combination would lead to higher encoding

cost. However, up to this point, the model considers a binary state for each edge:

that is, an edge is described by the model M , or not described by it. This could

lead to summaries with high redundancy in edge coverage, as we show next with an

illustrative example.

To explicitly handle extensive edge overlaps in the graph summaries (which can

lead to low node/edge coverage), we add a penalty term, L(O), in the optimization

function in Equation (3.2). We introduce the matrix O, which maintains the number

of times each edge is described by M , i.e., the number of selected structures in which

the edge occurs. We encode the description length of O as:

L(O) = log2(|O|) + ||O||l1 + ||O||′l0 +
∑

o∈E(O)

LN(|o|)(3.11)

27

where we first encode the number of distinct overlaps, and then use the optimal prefix

code to encode the number of the present and missing entries in O. As before, l0

and l1 are the lengths of the optimal prefix codes for the present and missing entries,

respectively. Finally, we encode the weights in O using the optimal encoding for

integers LN [Ris83]. We denote with E(O) the set of non-negative entries in matrix

O.

An Illustrative Example. Let us assume that the output of an edge-overlapping

graph clustering method consists of three full cliques: (1) full clique 1 with nodes

1-20; (2) full clique 2 with nodes 11-30; and (3) full clique 3 with nodes 21-40. The

encoding that does not account for overlaps (which is based on the modeling described

above includes all three structures in the summary, which clearly yields both redundant

nodes and edges. Despite the overlap, the description length of the graph given the

model above is calculated as 441 bits, since edges that are covered multiple times are

not penalized. For reference, the graph needs 652 bits under the null (empty) model,

where all the original edges are captured in the error matrix E. Ideally, we want a

method that penalizes extensive overlaps and maximizes the node/edge coverage.

In the example that we described above, by leveraging the full optimization function in

Equation (3.2), which includes the edge-overlap penalty term, we obtain a summary

with only the first two cliques, as desired. The encoding of our proposed method

has a length of 518 bits, which is higher than the number of bits of the non edge-

overlap aware encoding (441 bits). The reason is that in the former (edge-overlap

aware) summary, some edges have remained unexplained (edges from nodes 11-20 to

nodes 21-40), and thus are encoded as error. On the other hand, the latter summary

encodes all the nodes and edges (without errors), but explains many edges twice (e.g.,

28

Algorithm 1 CondeNSe

1: Input: graph G, parameters of clustering methods in Module A
2: // Module A: Pattern discovery: Discovery of a diverse set of patterns P .
3: P = SlashBurn (G, hslash) ∪ Louvain (G, τ) ∪ Spectral (G, k) ∪ METIS (G, k)
4:

5: ∪ HyCoM (G) ∪ BigClam (G) ∪ KCBC (G) // discussion of parameters in text
6:

7: //Module B: MDL-based structural pattern identification as full cliques, bipartite cores,
stars,

8:

9: // chains and hyperbolic structures.
10: for g ∈ P
11: for ω ∈ Ω
12:

13: // e.g., hub identification in star structure ω=‘st’
14: r(g, ω) = ‘best’ representation of g as structure type ω
15: // s: type of structure for pattern g using its best representation r(g, ω)
16: s = arg minω∈Ω Lr(g,ω)(g, ω) = arg minω∈Ω{L(ω) + L(E+

ω) + L(E−ω)} // using
Eq. (3.4)-(3.8)

17: // Module C: Overlap-aware summary assembly by employing a Step variant.
18:

19: M = arg minL(G,M) = arg min{L(M) + L(E) + L(O)} // Eq. (3.2),(3.3),(3.9)-(3.11)
20: // Module D: Approximate supergraph GS(VS , ES) creation conditional on the discov-

ered patterns
21:

22: // (supernodes linked via weighted superedges).
23:

24: VS = {s ∈M} // supernodes = structures in M
25:

26: ES = {(si, sj , wij) | wij = |{u, v}|, node u ∈ si, node v ∈ sj , i 6= j} // superedges
27: return approximate supergraph GS(VS , ES) (summary M)

the nodes 11-20 and the edges between them, the edges between nodes 11-20 and 21-

30) without accounting for the redundancy-related bits twice.

Our proposed edge-overlap aware encoding can effectively handle a family modelM

that consists of subsets of node- and edge-overlapping structural patterns, and can

choose a model M that describes the input graph well, and also minimizes redundant

modeling of nodes and edges.

With the model, the errors and the overlapping edges encoded, the CondeNSe

algorithm is given as follows.

29

3.1.2 CondeNSe: Our Proposed Algorithm

Based on the model above, we propose CondeNSe, an ensemble, edge-overlap-aware

algorithm that summarizes a graph with a compact supergraph consisting of a diverse

set of structural patterns (e.g., fc, hs). CondeNSe consists of four modules, which

we give in Algorithm 1 and describe in detail next.

Module A: Unified Pattern Discovery Module

As we mentioned, earlier, in our formulation, we consider summaries in the model

family M, which consists of all possible permutations of subsets of structural pat-

terns in Ω (e.g., a summary with 10 full cliques, 3 bipartite cores, 5 stars and 9

hyperbolic structures). Towards this goal, the first step is to discover subgraphs in

the input graph. These can then be used to build its summary. To find the ‘perfect’

graph summary, we would need to generate all possible (2n) patterns for a given

graph G, and then, from all possible (22n) combinations of these patterns pick the

set that minimizes Equation (3.2). This is intractable even for small graphs. For ex-

ample, for n = 100 nodes, there are more than 2nonillion (1 nonillion = 1030) possible

summaries. We reduce the search space by considering patterns that are found via

graph clustering methods, and are likely to fit well the structural patterns in Ω.

The literature is rich in graph clustering methods [BGLL08, KK99, YL13, KF11].

However, each approach is biased towards specific types of structures, which are most

often cliques and bipartite cores. Choosing a decomposition method to generate pat-

terns for the summary depends on the domain, the expected patterns (e.g., mainly

clique- or star-like structures), and runtime constraints. To mitigate the biases intro-

duced to the summary by individual clustering methods, and consider a diverse set of

candidate patterns, we propose a unified approach that leverages seven existing clus-

30

tering methods: SlashBurn, Louvain, Spectral, METIS, HyCoM, BigClam,

and KCBC (which we described above). In Table 3.1, we present the qualitative ad-

vantages, disadvantages, and biases of the methods. Specifically, SlashBurn tends

to provide excellent graph coverage and biased summaries in which stars dominate.

Conversely, most other approaches produce primarily full cliques and stars, and some

bipartite cores. HyCoM finds mainly hyperbolic communities with skewed degree

distributions.

Our proposed unified approach (Algorithm 1, lines 2-4) is expected to lead to sum-

maries with a better balanced set of structures (i.e., a good mix of exact and ap-

proximate cliques, bipartite cores, stars, chains and hyperbolic structures), and lower

encoding cost than any standalone graph clustering method. At the same time, it is

expected to take longer to generate all the patterns (although the clustering methods

can trivially run in parallel), and the search space for the summary becomes larger—

equal to the union of all the subgraphs that the clustering methods generate.

In the experimental evaluation, we use CondeNSe to empirically compare the im-

pact of these methods on the summary quality and evaluate their summarization

power.

Module B: Structural Pattern Identification Module

This module (Algorithm 1, lines 5-12) identifies and assigns an identifier structural

pattern in Ω to all the subgraphs found in module A. In other words, this module

seeks to characterize each cluster with its best-suited pattern in Ω = {fc, st, bc, ch, hs}.

Let g be the induced graph of a pattern generated in Step 1, and ω be a pattern in

Ω. Following the reasoning above, we use MDL as a selection criterion. To model g

with ω, we first model g with its best representation as structure type ω (explained

31

in detail next), r(g, ω), and define its encoding cost as Lr(g,ω(g, ω) = L(ω)+L(g|ω) =

L(ω) +L(E+
ω) +L(E−ω), where E+

ω and E−ω encode the erroneously modeled and un-

modeled edges of g. The pattern type in ω that leads to the smallest MDL cost is

used as the identifier of the corresponding subgraph g (lines 11-12 in Alg. 1).

Finding the best representation r(g, ω). Per pattern type ω, each pattern g can be

represented by a family of structures—e.g., we can represent g with as many bipartite

cores as can be induced on all possible permutations of g’s nodes into two sets L (left

nodeset) and R (right nodeset) . The only exception is the full clique (fc) pattern,

which has a unique (unordered) set of nodes. To make the problem tractable, we

use the graph-theoretical properties of the pattern types in Ω in order to choose the

representation of g which minimizes the incorrectly modeled edges.

Specifically, we represent g as a star by identifying its highest-degree node as the hub

and all other nodes as spokes. Representing g as a bipartite core reduces to finding

the maximum bipartite pattern, which is NP-hard. To scale-up the computation,

we approximate it with semi-supervised classification with two classes L and R, and

the prior information that the highest-degree node belongs to L and its neighbors to

R. For the classification, we use Fast Belief Propagation [KKK+11] with heterophily

between neighbors. Similarly, representing g as a chain reduces to finding its longest

path, which is also NP-hard. By starting from a random node, we perform Breadth

First Search two times, and end on nodes v1 and v2, respectively. Then, we consider

the path v1 to v2 (based on BFS), and perform local search to further expand it.

For the hyperbolic structures, we used power-law fitting (http://tuvalu.santafe.

edu/\~aaronc/powerlaws/ by Clauset et al.). Lines 7-10 in Algorithm 1 succinctly

describe the search of the best representation r for every subgraph g and pattern

32

type ω.

Module C: Structural Pattern Selection Module

This module is key for creating compact summaries and is described in lines 13-14

of Alg. 1. Ideally, we would consider all possible combinations of the previously

identified structures and pick the subset that minimizes the encoding cost in Equa-

tion (3.2). If |S| structures have been found and identified in the previous steps,

finding the optimal summary from 2|S| possibilities is not tractable. For reference,

we have seen empirically that graphs with about 100,000 nodes, have over 50K struc-

tures. The optimization function is neither monotonic nor submodular, in which case

a greedy hill climbing approach would give a (1− 1
ε
)-approximation of the optimal.

Instead of considering all possible combinations of structures for the summary, prior

work has proposed GnF, a heuristic that considers the structures in decreasing order

of “local” encoding benefit and includes in the model the ones that help further

decrease the graph’s encoding cost L(G,M). The local encoding benefit [KKVF14]

is defined as L(g, ∅)−L(g, ω), where L(g, ∅) represents the encoding of g as noise (i.e.,

empty model). Although it is efficient, its output summary and performance heavily

depend on the structure order. To overcome these shortcomings and obtain more

compact summaries, we propose a new structural pattern selection method, Step,

as well as a faster serial version and three parallel variants: Step-P, Step-PA, and

k-Step.

• Step. This method iteratively sifts through all the structures in S and includes in

the summary the structure that decreases the cost in Equation (3.2) the most, until

no structure further decreases the cost. Formally, if Si is the set of structures that

have not been included in the summary at iteration i, Step chooses structure s∗i s.t.

33

s∗i = argmin
s∈Si

L(G,Mi−1 ∪ {s})

where Mi−1 is the model at iteration i − 1, and M0 = ∅ is the empty model. Con-

deNSe with Step finds up to 30% more compact summaries than baseline methods,

but its quadratic runtime O(|S|2) makes it less ideal for large datasets with many

structures S produced by module A. Therefore, we propose four methods that sig-

nificantly reduce Step’s runtime while maintaining its summary quality.

• Step-P. The goal of Step-P is to speed up the computation of Step by iteratively

solving smaller, “local” versions of Step in parallel. Step-P begins by dividing the

nodes of the graph into p partitions using METIS. Next, each candidate structural

pattern is assigned to the partition with the maximal node overlap. Step-P then

iterates until convergence, with each iteration consisting of two phases:

1. Parallelize. In parallel, a process is spawned for each partition and is tasked

with finding the structure that would lower the encoding cost in Eq. (3.2) the

most out of all the structures in its partition. For any given partition, there

may be no structure that lowers the global encoding cost.

2. Sync. From all structures returned in phase 1, the one that minimizes Equa-

tion (3.2) the most is added to the summary. If no structure reduces the encod-

ing cost, the algorithm has converged. If not, phase 1 is repeated.

• Step-PA. In addition to parallelizing Step, we introduce the idea of “inactive”

partitions, which is an optimization designed to reduce the number of processes

that are spawned by Step-P. Step-PA differs from Step-P by designating every

partition of the graph as active, then if a partition fails x times to find a structure

34

that lowers the cost in Equation (3.2), that partition is declared inactive and is not

visited in future iterations. Thus, the partitions with structures not likely to decrease

the overall encoding cost of the model get x chances (e.g. 3) before being eventually

ruled out, effectively reducing the number of processes spawned for each iteration of

Step-PA after the first x iterations.

• k-Step. The pseudocode of this variant is given in Algorithm 2. k-Step further

speeds up Step while maintaining high-quality summaries. This algorithm has two

phases: the first applies Step-P k times (lines 3-5) to guarantee that the initial

structural patterns included in the summary are of good quality. The second expands

the summary by building local solutions of Step-P per active partition (lines 8-9).

If a partition does not return any solution, it is flagged as inactive (lines 10-11). For

the partitions that returned non-empty solutions, the best structure per partition is

added into a temporary list (line 13), and a parallel “glocal” step applies Step-P

over that list and populates the summary (lines 14-16). We refer to this step as

“glocal” because it is a global step within the local stage. The local stage is repeated

until no active partitions are left.

Module D: Approximate Supergraph Creation Module

In the empirical analysis (see following), we show that Step results in graph sum-

maries with up to 80-90% fewer structures than the baselines, and thus can be lever-

aged for tractable graph visualization. The last and fourth module of CondeNSe

(Algorithm 1, lines 15-18), instead of merely outputting a list of structures, creates

an “approximate” supergraph which gives a high-level but informative view of large

graphs. An exact supergraph, GS(VS, ES), of a graph G(V , E) consists of a set of

supernodes VS = P (V) which is a power set (i.e., family of sets) over V and a set of

35

Algorithm 2 k-Step

1: Input: graph G(V, E); list of structures S; P partitions; k iterations
2: ActivePartitions = {1, . . . , P} // all partitions are active

3: // Stage 1: Global

4: for i = 1 : k
5:

6: run Step-P () // summary of k structures

7: // Stage 2: Local Stage

8: repeat:
9: for p ∈ ActivePartitions: // 2.1: Local sub-stage

10: s = run Step-P-Parallelize() // s = best structure in p
11: if s = ∅ // no structure returned
12: ActivePartitions.remove(p) // partition p is inactive
13: else
14: bestStructs.add(s) // s is candidate for M
15: // p remains active
16: repeat: // in parallel, add structures to M
17: run Step-P-Sync(bestStructs) // 2.2: Glocal sub-stage
18: until bestStructs = ∅ or Eq. (3.2) is minimized
19: until ActivePartitions = ∅ return M

superedges ES. The superweight is often defined as the sum of edge weights between

the supernodes’ constituent nodes.

Unlike most prior work, CondeNSe creates “approximate,” yet powerful super-

graphs: (i) the supernodes do not necessarily correspond to a set of nodes with the

same connectivity, but to rich structural patterns (including hyperbolic structures

and chains); (ii) the supernodes may have node overlap, which helps to pinpoint

bridge nodes (i.e., nodes that span multiple communities); (iii) the supernodes may

show deviations from the perfect corresponding structural patterns (i.e., they corre-

spond to near-structures).

Definition 3.12. A CondeNSe approximate supergraph of G is a supergraph

with supernodes that correspond to possibly-overlapping structural patterns in Ω.

These patterns are approximations of clusters in G.

In other words, the CondeNSe supergraphs consist of supernodes that are fc, st, ch,

bc, and hs. To obtain an approximate supergraph, we map the structural patterns

returned in module C to approximate supernodes. Then, for every pair of supernodes,

36

we add a superedge if there were edges between their constituent nodes in V and set

its superweight equal to the number of such (unweighted) edges, as shown in line 18

of Algorithm 1.

To evaluate the edge overlap in the summaries, and hence the effectiveness of our

overlap-aware encoding, we use the normalized overlap metric. The normalized over-

lap between two supernodes is their Jaccard similarity. It is 0 if the supernodes do

not share any nodes, and close to 1 if they share many nodes compared to their sizes.

Although it is not the focus of the current paper, the CondeNSe supergraphs can

be used for visualization and potentially for approximation of algorithms on large

networks (without specific theoretical guarantees, at least in the general form).

CondeNSe: Complexity Analysis

We discuss the complexity of CondeNSe by considering each module separately:

The first module has complexity O(n3), which corresponds to Spectral. However,

in practice, HyCoM is often slower than Spectral, likely due to implementation

differences (JAVA vs. MATLAB). The complexity of this module can be lowered

by selecting the fastest methods. Module B is linear on the number of edges of the

discovered patterns. Given that they are overlapping, the computation of L(G,M) is

done in T = O(|M |2+m), which is O(m) for real graphs with |M |2 << m. In module

C, Step has complexity O(|S|2×T), where S is the set of labeled structures. Step-P

and Step-PA areO(t× |S|
2

p
×T), where p is the number of METIS partitions (‘active’

partitions for Step-PA) and t is the number of iterations. k-Step is a combination

of Step-P and a local stage, so it runs in O(K× |S|
2

p
×T + tlcl×(|S|

2

pactive
+p2

active)×T),

where tlcl is the iterations of its local stage. Finally, the supergraph (module D) can

be generated in O(m).

37

Table 3.3: Summary of graphs used in our experiments.

Name Nodes Edges Description

EUmail [LK14] 265,214 420,045 EU uni. email comm.
Enron [LK14] 80,163 288,364 Enron email comm.
AS-Caida [LK14] 26,475 106,762 BGP routing table
AS-Oregon [LK14] 13,579 37,448 Router connections
Choc 2,899 5,467 Co-editor wiki graph

3.1.3 Empirical Analysis

We conduct thorough experimental analysis to answer three main questions:

• How effective is CondeNSe?

• Does it scale with the size of the input graph?

• How do the clustering methods compare in terms of summarization power?

Setup. We ran experiments on the real graphs given in Table 3.3. As far as the pa-

rameter setting for the clustering methods is concerned, for SlashBurn, we choose

the number of hub nodes to slash per iteration hslash = 2 in order to achieve better

granularity of clusters. For Louvain, we choose resolution τ = 0.0001 as it generates

comparable number of clusters with other clustering methods for all our datasets.

For Spectral and METIS, the number of clusters k are set to
√
n/2 according to

a rule of thumb [cyt], where n is the number of nodes in the graph. As for other clus-

tering methods, they are parameter-free hence no need to set up parameters. Unless

otherwise specified, we followed the same rule of thumb for setting the number of

input METIS partitions p for all the Step variants. In the following experiments,

we set the number of chances x = 3 for Step-PA.

Effectiveness of CondeNSe

Ideally, we want a summary to be: (i) concise, with a small number of struc-

38

tures/supernodes; (ii) minimally redundant, i.e., capturing dependencies such as

overlapping supernodes, but without overly encoding overlaps; and (iii) covering in

terms of nodes and edges. Our proposed method, CondeNSe, constitutes an (al-

most) unbiased way of analyzing the structure of a given graph. How does it fare in

terms of these properties? To answer the question, we perform experiments on the

real data in Table 3.3.

Baselines. The first baseline is VoG [KKVF14], which we describe above. For our

experiments, we used the code that is online at https://github.com/GemsLab/VoG_

Graph_Summarization. The second baseline is our proposed method, CondeNSe,

combined with the GnF heuristic (described above).

A1. Conciseness. In Table 3.4, we compare our proposed method (for differ-

ent selection methods) and the baselines with respect to their compression rates,

i.e., the percentage of bits needed to encode a graph with the composed summary

over the number of bits needed to encode the corresponding graph with an empty

model/summary (that is, all the edges are in the error matrix). In parentheses,

we also give the total number of structures in the summaries. We see that com-

pared to the baselines, CondeNSe with the Step variants gives significantly more

compact summaries, with 30%-50% lower compression rate and about 80-90% fewer

structures. The Step variants give comparable results in summarization power.

Table 3.4: CondeNSe: Compression rate with respect to the empty model. In parentheses, number
of structures in the corresponding summary. A “-” means that the corresponding method was
terminated after 4 days. (∗ In the interest of time, the summary size was limited to 15.)

Dataset VoG [KKVF14]
CondeNSe CondeNSe with Step Variants

GnF Step Step-P Step-PA k-Step

Choc 88%(101) 88%(101) 56%(24) 56%(24) 56%(21) 56%(22)
AS-Oregon 71%(400) 69%(379) 35%(41) 35%(41) 35%(35) 35%(36)
AS-Caida - 71%(572) 42%(51) 42%(51) 42%(46) 44%(60)
Enron 75%(2330) 74%(2044) - 26%(50) 25%(201) 25%(218)
EUmail - 65%(1440) - - - 59%(15∗)

39

Table 3.5: Overlapping supernode pairs and average similarity in parentheses. CondeNSe reduces
the overlap. A “-” means that the corresponding method was terminated after 4 days.

Dataset VoG [KKVF14] CondeNSe

Choc 900 (0.04) 74 (0.029)
AS-Oregon 15875 (0.047) 126 (0.026)
AS-Caida - 382 (0.018)
Enron 447052 (0.02) 509 (0.015)
EUmail - 0

(a) Original graph (b) VoG [KKVF14] (c) CondeNSe-Step

Figure 3.3: Choc: CondeNSe-Step generates more compact supergraphs. (b)-(c): The full su-
pergraphs by VoG-GnF, and CondeNSe-Step, resp. Yellow for stars, red for cliques, green for
bipartite cores. The edge weights correspond to the number of inter-supernode edges.

A2. Minimal Redundancy. In Figures 3.1 and 3.3, we visualize the supergraphs

for AS-Oregon and Choc, which are generated from the selected structures of VoG

and CondeNSe-Step. It is clear that the CondeNSe supergraphs are significantly

more compact. In Table 3.5, we also provide information about the number of over-

lapping supernode pairs and their average Jaccard similarity, as an overlap quantifier

(in parentheses). For brevity, we only give results for k-Step, since the results of

the rest Step-series are similar. We observe that CondeNSe has significantly fewer

supernode overlaps, and the overlaps are smaller in magnitude. We also note that the

overlap encoding module achieves 10-20% reduction in overlapping edges, showing

its effectiveness for minimizing redundancy.

A3. Coverage. We give the summary node/edge coverage (as a ratio of the original)

for different assembly methods in Figure 3.4. We observe that the baselines have

better edge coverage than the Step variants, which is expected as they include

40

Figure 3.4: Node coverage vs. edge coverage—marker size corresponds to the graph size. Step
variants have better node coverage, and handle the summary coverage-conciseness trade-off well.

significantly more structures in their summaries. However, in most cases, k-Step and

Step-PA achieve better node coverage than the baselines. Taking into account the

(contradicting) desired property for summary conciseness, CondeNSe with Step

variants has better performance, balancing coverage and summary size well.

What other properties do the various summaries have? What are the main structures

found in different types of networks (e.g., email vs. routing networks)? In Table 3.6,

we show the number of in-summary structures per type. We note that no chains

and hyperbolic structures were included in the summaries of the networks that we

show here (although some were found by the pattern discovery module, and there

are synthetic examples in which they are included in the final summaries). This is

possibly because stars are extreme cases of hyperbolic structures, and the encoding

of (approximate) hyperbolic structures is of the same order, yet often more expensive

than the encoding of stars with errors. As for chains, they are not ‘typical’ clusters

found by popular clustering methods, but rather by-products of the decomposition

methods that we consider. Moreover, given that the chain encoding considers the

sequence of node IDs, and errors in the real data increase the encoding cost, very of-

ten encoding them in the error matrix yields better compression. One observation is

that Step gives less biased summaries than the baselines. For email networks, we see

that stars are dominant (e.g., users emailing multiple employees that do not contact

41

Table 3.6: CondeNSe: Number of structures per type in the summaries in the format [fc, st, bc],
for VoG we have [fc + nc, st, bc + nb], where nc is near-clique and nb is near-bipartite core. The
CondeNSe summaries are more balanced, without a specific pattern type dominating in all the
graphs. In the interest of time, we find the top-50 and top-15 structures for Enron and EUmail,
respectively. A “-” means that the corresponding method was terminated after 4 days.

Dataset VoG [KKVF14] CondeNSe-GnF
CondeNSe with Step Variants

Step Step-P Step-PA k-Step

Choc [0,101,0] [1,100,0] [21,3,0] [21,3,0] [20,1,0] [21,1,0]
AS-Oregon [1,399,0,] [19,355,5] [27,13,1] [27,13,1] [26,9,0] [26,10,0]
AS-Caida - [2,557,13] [38,7,6] [38,7,6] [37,5,4] [43,12,5]
Enron [2,2323,5] [160,1676,208] - [45,2,3] [60,108,33] [61,124,33]
EUmail - [0,1261,179] - - - [15,0,0]

each other), with considerable number of cliques and bipartite cores too. For routing

networks (AS-Caida and AS-Oregon), we mostly see cliques (e.g., “hot-potato” rout-

ing), and a few stars and bipartite cores. In collaboration networks, cliques are the

most common structures, followed by stars (e.g., administrators). VoG and Con-

deNSe-GnF are biased towards stars, which exceed the other structures by an order

of magnitude. Overall, CondeNSe fares well with respect to the desired properties

for graph summaries.

Runtime Analysis of CondeNSe

We give the runtime of pattern discovery and the Step methods in Figure 3.5.

“Discovery” represents the maximum time of the clustering methods, and “Disc.-

Fast” corresponds to the slowest among the fastest methods (KCBC, Louvain,

METIS, BigClam). We ran the experiment on an Intel(R) Xeon(R) CPU E5-1650

at 3.50GHz, and 256GB memory.

We see that the fast unified discovery is up to 80× faster than the original one. As

expected, Step is the slowest method. The parallel variants Step-P, Step-PA,

and k-Step are more scalable, with k-Step being the most efficient. Taking into

account the similarity of the heuristics in both conciseness and coverage, Figure 3.5

further suggests that k-Step is the best-performing heuristic given that it exhibits

42

the shortest runtime.

Figure 3.5: Runtime vs. # of edges: k-Step is more efficient than the other methods, and scales
to larger graphs.

Sensitivity Analysis of CondeNSe: Agreement between Step and Step-

variants

Our analysis so far has shown that k-Step leads to the best combination of high

compression and low runtime compared to the other methods. But how well does it

approximate Step in terms of the generated summary? To answer this question, we

evaluate the “agreement” between the generated summaries, which in this section

we view as ordered lists of structures based on the iteration they were included in

the final summary (which defines the rank of each structure). Since popular rank

correlation measures, such as Spearman’s ρ, Kendall’s τ , only work on permuted

lists or lists of the same length, while the generated summaries can have different

constituent structures and lengths, we propose AG as a measure of agreement. This

measure effectively handles summaries of different lengths, and penalizes with dif-

ferent, adaptive weights ‘rank’ disagreement between structures included in both

summaries, and disagreement for missing structures from one summary. Let M1 and

M2 be the two summaries, and rank(s,Mi) be the ranking of structure s in sum-

mary Mi (i.e., the order in which it was included in the summary while minimizing

Eq. (3.2)). We define the agreement of the two summaries as:

43

Table 3.7: Agreement of Step and its variants. They approximate Step quite well. (∗ Agreement
based on the top-50 structures due to Step-P’s lack of scalability.)

Dataset Step-P Step-PA k-Step

Choc 1 0.9886 0.9667
AS-Oregon 1 0.9704 0.9285
AS-Caida 1 0.9865 0.8238
Enron 1 0.5012∗ 0.446∗

AG(M1,M2) = 1− 1/Z[αD + (1− α/2)D1 + (1− α/2)D2]

where D =
∑

s∈M1∩M2
|rank(s,M1)−rank(s,M2)| is the rank disagreement for struc-

tures that are in both summaries, D1 =
∑

s∈M1∩M ′2
|(|M2|+ 1)− rank(s,M1)| is the

disagreement for structures in M1 but not in M2, D2 is defined analogously to capture

structures in M2 but not in M1. Finally, Z is a normalization factor that guarantees

that AG is in [0, 1]: Z = (1− α
2
)
∑

s∈M1
|(|M2|+ 1)− rank(s,M1)|+

∑
s∈M2

|(|M1|+

1)− rank(s,M2)|. AG = 1 means identical summaries, while 0 completely different

summaries. In order to penalize more the structures that appear in one summary

but not in the other, we set α = 0.3 (the results are consistent for other values of α).

In Table 3.7, we give the agreement between Step and its faster variants. As a side

note, the agreement with VoG is almost 0 in all the cases. As expected, Step-P

produces the same summaries as Step, while Step-PA and k-Step preserve the

agreement well.

Sensitivity to the number of partitions All parallel variants of Step take p

METIS partitions as input. To analyze the effects of varying p on runtime and

agreement, we ran k-Step and increased p from 12 to 96 in increments of 12.

We only give the results on AS-Oregon, since other datasets lead to similar results.

We observe that while agreement is robust, runtime decreases as p increases and

especially so with the smaller values of p. This observation is consistent with our

44

motivation for parallelizing Step: by decreasing the number of structures in any

given partition, the “local” subproblems of Step become smaller and thus less time-

consuming. Figure 3.6a shows the effect of the number of partitions on runtime and

agreement, both averaged over three trials.

Sensitivity of Step-PA

We also experimented with varying the number of “chances” allowed for partitions

in the Step-PA variant. Step-PA speeds up Step-P by forcing partitions to drop

out after not returning structures for a certain number of attempts (x). However,

while giving partitions fewer chances can speed up the algorithm, smaller values of

x can compromise compression and agreement.

In Figure 3.6b, we give the agreement and runtime of Step-PA on Choc and

AS-Oregon setting x = {1, 2, 3, 4, 5}. We found that both runtime and agreement

increased with x, and plateaued after x = 3. This suggests that forcing partitions to

drop out early, while better for runtime, can lead to the loss of candidate structures

that may be useful for compression later.

CondeNSe as a Clustering Evaluation Metric

Given the independence of Step from the structure ordering, we use CondeNSe to

evaluate the different clustering methods and give their individual compression rates

in Table 3.8.

Table 3.8: CondeNSe as an evaluation metric: Compression rate of clustering methods with
respect to the empty model (i.e., percentage of bits for encoding the graph given the chosen model
vs. the empty model).

Dataset
Clustering Methods

SlashBurn Louvain Spectral METIS HyCoM BigClam KCBC

Choc 88% 99% 99% 100% 100% 87% 78%
AS-Oregon 76% 94% 82% 85% 98% 83% 65%
AS-Caida 70% 100% 100% 98% 98% 91% 74%

45

(a) AS-Oregon: Runtime and agreement vs. number of partitions.

(b) Choc + AS-Oregon: Runtime and agreement vs. number of chances (x).

Figure 3.6: The agreement is robust to the number of partitions, while the runtime decreases.

For number and type of structures we give our observations based on AS-Oregon

(Figure 3.7), which is consistent with other datasets. As we see in the case of

AS-Oregon (which is consistent with the other networks), SlashBurn mainly finds

stars (136 out of 138 structures); Louvain, Spectral, KCBC, and BigClam

reveal mostly cliques (9/9, 15/17, 9/9, and 28/29, respectively); METIS has a less

biased distribution (18 cliques, 12 stars), and HyCoM, though looks for hyperbolic

structures, tends to find cliques in our experiments (45 out of 52 structures). Also,

SlashBurn and BigClam discover more structural patterns than other methods,

which partially explains their good compression rate in Table 3.8.

SlashBurnLouvain Spectral METIS HyCoM BigClam KCBC
100

101

102

103

#
st

ru
ct

u
re

s

fc

st

ch

hs

bc

Figure 3.7: Number of structures found by the clustering methods for AS-Oregon. Transparent/solid
rectangles for before/after the structure selection step. Notation: fc: full clique, st: star, ch: chain,
bc: bipartite core, hs: hyperbolic structure.

46

Table 3.9: Ablation study for AS-Oregon. Louvain and SlashBurn contribute most to the
CondeNSe summaries.

Clustering Compression Contribution per Method
Method Rate SlashBurn Louvain Spectral METIS HyCoM BigClam KCBC

SlashBurn 22% - 63% 10% 7% 7% 0 13%
Louvain 30% 30% - 16% 45% 0 3% 7%
Spectral 22% 32% 51% - 3% 0 0 14%
METIS 22% 34% 46% 5% - 2% 0 12%
HyCoM 22% 35% 48% 3% 3% - 0 13%
BigClam 22% 34% 46% 2% 2% 2% - 12%
KCBC 25% 50% 35% 6% 2% 2% 6% -

We perform an ablation study to evaluate the graph clustering methods in the context

of summarization. Specifically, we create a leave-one-out unified model for each

clustering method and evaluate the contribution of each clustering method to the

final summary. The results are shown in Table 3.9. We see that Louvain appears

to be the most important method: when included, it contributes the most; and

when dropped, the compression rate reduces (worse). When KCBC is dropped,

SlashBurn gets to the top, but Louvain also has considerable contribution. In the

missing-Louvain case, the contribution gets redistributed among other clustering

methods to make up for it, this effect differs by dataset, e.g., METIS gets boosted

for AS-Oregon, while it is Spectral for Choc.

In terms of runtime, for modules A and B (pattern discovery and identification),

Spectral and HyCoM take the longest time, while KCBC, Louvain, METIS,

and BigClam are the fastest ones, with SlashBurn falling in the middle. For

Module C (summary assembly), the trade-off between runtime and candidate struc-

tures is given in the complexity analysis (see above). In practice, HyCoM usually

takes the longest time, followed by Spectral and SlashBurn.

Conclusion

In this work we proposed CondeNSe, a method that summarizes large graphs

as small, approximate and high-quality supergraphs conditioned on diverse pattern

47

types. CondeNSe features a new selection method, Step, which generates sum-

maries with high compression and node coverage. However, this comes at the cost of

increased runtime, which we addressed by introducing faster parallel approximations

to Step. We provided a thorough empirical analysis of CondeNSe, and contributed

a novel evaluation of clustering methods in terms of summarization power, comple-

menting the literature that focuses on classic quality measures. We showed that each

clustering approach has its strengths and weaknesses and make different contribu-

tions to the final summary. Moreover, CondeNSe leverages their strengths, handles

edge-overlapping structures, and shows results superior to baselines, including signif-

icant improvement in the bias of summaries with respect to the considered pattern

types.

Ideally without the constraint of time, we naturally recommend the application of as

many clustering methods in Module A of CondeNSe. On the other hand, to deal

with the additional complexity of having more structures, we recommend choosing

faster clustering methods or a mixture of fast and ‘useful’ methods (depending on

the application at hand) that contribute good structures, as shown in our analysis.

3.2 Network Clustering

In CondeNSe, network clustering is heavily used, both serving as a module for

CondeNSe and also being evaluated by CondeNSe for its summarization power.

In fact, in graph mining, clustering and summarization are connected more tightly

than most readers presume. I will show some major works in network clustering

and how they are related to network summarization, more details can be found

in [LSDK18].

48

In [LSDK18], we propose a taxonomy for graph summarization. The most popular

type of algorithm fall into the category of grouping- or aggregation-based methods,

wehre Some node-grouping methods recursively aggregate nodes into “supernodes”

based on an application-dependent optimization function, which can be based on

structure and/or attributes. Others employ existing clustering techniques and map

each densely-connected cluster to a supernode. Edge-grouping methods aggregate

edges into compressor or virtual nodes. I only talk about node-grouping methods as

they essentially clustering methods.

Some summarization approaches employ existing clustering techniques to find clusters

that then map to supernodes. Others recursively aggregate nodes into supernodes,

connected via superedges, based on an application-dependent optimization function.

Node clustering-based methods. Although node grouping and clustering are related

in that they result in collections of nodes, they have different goals. In the context of

summarization, node grouping is performed so that the resultant graph summary

has specific properties, e.g., query-specific properties or maintenance of edge weights.

On the other hand, clustering or partitioning usually targets the minimization of

cross-cluster edges or a variant thereof, without the end goal of producing a graph

summary. Moreover, unlike role mining [HGL+11, HGER+12, GERD13] or structural

equivalence [PS89], which seek to identify “functions” of nodes (e.g., bridge or spoke

nodes) and find role memberships, summarization methods seek to group nodes that

have not only structural similarities, but are also connected or close to each other in

the network and thus can be replaced with a supernode.

Although the goal of clustering is not graph summarization, the outputs of cluster-

ing algorithms can be easily converted to non-application-specific summaries. In a

49

nutshell, a small representation of the input graph can be obtained by (i) mapping

all the nodes that belong to the same cluster / community to a supernode, and

(ii) linking them with superedges with weight equal to the sum of the cross-cluster

edges, or else the sum of the weights of the original edges [NG04, YL13, LBG+12].

Although the clustering output can be viewed as a summary graph, a fundamental

difference from tailored summarization techniques is that the latter groups nodes

that are linked to the rest of the graph in a similar way, while clustering methods

simply group densely-connected nodes. There exist comprehensive introductions to

clustering techniques [LRU14, Agg15] and work on clustering or community detec-

tion methods [AW10], so we do not cover them in this survey. Among the most

popular partitioning methods are Graclus [DGK05], spectral partitioning [AKY99],

and METIS [KK99]. Although METIS is a well-known partitioning approach that

finds “hard” node memberships, it constructs a series of graph “summaries” by iter-

atively finding the maximal graph matching and merging nodes that are incident to

an edge of the matching. The bisection result on the most coarsened graph is then

projected backwards to the original graph. Via this process, it is possible to obtain

a compact, hierarchical representation of the original graph, which resembles other

node-grouping summarization methods.

Node aggregation-based methods. One representative algorithm of hierarchical and

clustering-based node grouping is GraSS [LT10], which targets accurate query han-

dling. This summarization method supports queries on the adjacency between two

nodes, as well as the degree and the eigenvector centrality of a node. The graph

summaries are generated by greedily grouping nodes such that the normalized re-

constructed error, 1
|V|2
∑

i∈V
∑

j∈V |Ā(i, j)− A(i, j)|, is minimized—A is the original

adjacency matrix of the graph and Ā is the real-valued approximate adjacency ma-

50

trix, each entry of which intuitively represents the probability of the corresponding

edge existing in the original graph given the summary. The resulting summaries are

represented as a group of vertex sets with information about the number of edges

within and between clusters. These sets are used to generate a probabilistic approx-

imate adjacency matrix upon which incoming queries are computed. For example, if

many edges cross vertex sets A and B, then it is likely that a node in A is connected

to a node in B. In another variant, GraSS leverages Minimum Description Length

(MDL) to automatically find the optimal number of supernodes in the summary.

While GraSS does not guarantee output quality, [RGSB14] propose a method of gen-

erating supernodes and superedges with guarantees. Here, the objective is to find a

supergraph that minimizes the lp-reconstruction error, or the p-norm of A − Ā, as

opposed to the normalized reconstruction error in GraSS, given a number of supern-

odes k. The proposed approach, which uses sketching, sampling, and approximate

partitioning, is the first polynomial-time approximation algorithm of its kind with

runtime O(|E|+ |V| · k). This method targets efficiency for the same types of queries

as GraSS, as well as triangle and subgraph counting queries.

[TZHH11] focus on compressing graphs with edge weights, proposing to merge nodes

with similar relationships to other entities (structurally equivalent nodes) such that

approximation error is minimized and compression is maximized. In merging nodes to

obtain a compressed graph, the algorithm maintains either edge weights or strengths

of connections of up to a certain number of hops. Specifically, in the simplest version

of the solution, each superedge is assigned the mean weight of all edges it represents.

In the generalized version, the best path between any two nodes is “approximately

equally good” in the compressed graph and original graphs, but the paths do not

51

have to be the same. The definition of path “goodness” is data- and application-

dependent. For example, the path quality can be defined as the maximum flow

through the path for a flow graph, or the probability that the path exists for a

probabilistic or uncertain graph.

The methods described above all minimize some version of the approximation or re-

construction error. Other node-grouping approaches seek summaries that maintain

specific properties of the original graph, a goal that resembles the target of graph

sparsification methods [SS11, HKBG08]. One example is diffusive properties related

to the spectrum of the graph, and specifically its first eigenvalue λ1 [PPK+14], which

are crucial in diffusion and propagation processes like epidemiology and viral market-

ing. In this case, the summarization problem is formulated as a minimization of the

change in the first eigenvalue between the adjacency matrices of the summary and

the original graph. For efficiency, the method repeatedly merges pairs of adjacent

nodes, and uses a closed form to evaluate the change in λ1, derived using matrix

perturbation theory. Node pairs are merged in increasing order of change in λ1—the

light edges with small “edge scores” in step 1 are good candidates for merging—and

the merging process stops when the user-specified number of nodes is achieved. At

every step, edges are reweighted so that λ1 is maintained (see [LSDK18] for more

details). The temporal extension of this approach is also discussed in [LSDK18].

In the visualization domain, [DS13] introduce motif simplification to enhance network

visualization. Motif simplification replaces common links and common subgraphs,

like stars and cliques, with compact glyphs to help visualize and simplify the com-

plex relationships between entities and attributes. This approach uses exact pattern

discovery algorithms to identify patterns and subgraphs, replacing these with glyphs

52

to result in a less cluttered network display.

Beyond the end goal of summarization itself, node grouping can be applied to many

graph-based tasks. CoSum [ZGGS+16] involves summarization on k-partite heteroge-

neous graphs to improve record linkage between data sets, otherwise known as entity

resolution. CoSum transforms an input k-type graph into another k-type summary

graph composed of supernodes and superedges, using links between different types

to improve the accuracy of entity resolution. The algorithm jointly condenses ver-

tices into a supernode such that each supernode consists of nodes of the same type

with high similarity, and creates superedges that connect supernodes according to

the original links between their constituent nodes. The resultant summary achieves

better performance in entity resolution than generic approaches, especially in data

sets with missing values and one-to-many or many-to-many relations.

Network clustering methods have inspired CondeNSe in many ways, as these two

fields are this close to each other, there are plenty of opportunities for network

clustering to contribute to the summarization domain.

CHAPTER IV

Sequences: Networks And Neural Models

Sequences are an important type of structured data that is heavily studied by the

machine learning and data mining communities, as sequential data is almost every-

where: time series such as heights of ocean tides, counts of sunspots, daily price of

stocks and so on; temporal sequences such as customers’ shopping behaviour; and

ordered data such as DNA sequences and text data. I will discuss two types of tasks

in sequence modeling: sequence clustering and sequence prediction. Specifically, I

will introduce my contribution to time-series and network clustering, CCTN, and

a novel optimization methods for language modeling - RDLG . Readers can find the

majority of Section 4.1 in [LZS+19].

4.1 CCTN: Coupled Clustering of Time-Series and Networks

Motivated by the problem of human-trafficking, where it is often observed that crimi-

nal organizations are linked and behave similarly over time, we introduce the problem

of Coupled Clustering of Time-series and their underlying Network. The goal is to

find tightly connected subgroups of nodes that also have similar node-specific time

series (temporal—not necessarily structural—behavior). We formulate the problem

as a coupled matrix factorization for the time series, combined with regularization for

53

54

Figure 4.1: Human trafficking example: Nine phone numbers (nodes) form three clusters with tight
connections, and similar temporal behaviors. The matrix on the left illustrates the representation
of the network structure (A) and the ones on the right show the different types of node-specific
behaviors over time (Xk).

network smoothness. We propose CCTN, and an incrementally-updated counter-

part, CCTN-inc, which efficiently handles network updates. Extensive experiments

show that CCTN is up to 4× more accurate than baselines that consider graph

structure or time series alone, and CCTN-inc is up to 55× faster than CCTN. As

an application, we explore an exclusive database with millions of online ads on human

trafficking, and successfully deploy our technique to detect criminal organizations.

Clustering, or finding groups of similar entities, as we discussed above, is a funda-

mental task in data mining and machine learning. In many applications, time series

and networks co-occur and may need to be clustered jointly instead of individu-

ally [BUWK15, JRSD15, DDT+16, Hes04, BGLL08].

In this work we introduce the challenging problem of Coupled Clustering of

(entity-specific) Time-series and their underlying Network, where we aim to

group entities into ‘temporally ’ and ‘structurally ’ coherent clusters (Fig. 4.1). Our

rationale is that jointly considering network-centric and temporal (but not neces-

sarily structural) behavioral features should lead to better clustering results than

treating each data modality separately. We give two motivating examples.

Example 4.1 (Human trafficking). The Internet plays a key role in both enabling

and combating human-trafficking. For instance, classified ads that have contact

55

information for the interested parties have been shown to be useful for discovering

criminal networks. Based on our analysis of human-trafficking data, we assume that

(1) phone numbers belonging to the same criminal organization often co-appear in

ads; and (2) ads from the same orgs have similar content (e.g., sentences, expressions).

Thus, the problem of detecting criminal organizations can be framed as coupled

clustering of (1) the phone number co-occurrence network and (2) a set of phone

number-specific time series that capture ad content similarity (e.g., per-day average

content similarity between the posted ads that mention the same phone number,

shown as X1 in Fig. 4.1).

Example 4.2 (Social Networks). In many cases, the topology of interactions between

users is augmented with information about their temporal behaviors. For instance,

in location-based social networks, the users can be characterized by their mobility or

check-in patterns, whereas in scientific collaboration networks they can be described

by their temporal topical interests.

In these examples, there are two constituent problems: time-series clustering and

graph clustering. Both of them have been studied extensively but separately in

the literature [BUWK15, LSSK18, JRSD15, DDT+16, Hes04, BGLL08, AGP+16,

DPK+17, SSK18]. However, in these and other real scenarios, the time series cor-

respond to entities that do not occur in isolation, but are related via an underlying

network (e.g., the phone number co-occurrence network in Example 4.1). On one

hand, most existing time-series clustering methods simply ignore this underlying

structure or lack a principled way of incorporating it. On the other hand, most

graph clustering methods aim to find tightly connected subgraphs or communities

in static and dynamic networks [Sch07] by optimizing structural quantities, such

as modularity or conductance [Hes04, BGLL08]. Our proposed problem of coupled

56

time-series and network clustering differs from dynamic graph clustering [LAL+16]:

the former does not necessarily require snapshots of a graph over time; it can op-

erate on a single network with multiple node-specific temporal behaviors or time

series. It is also different from prior work that detects correlated changes in dynamic

networks [CBLH12] based on the graph structure alone.

In this work we aim to fill in this gap. Specifically, we introduce the coupled clustering

problem which aims to group nodes such that the similarity of their time-series

behaviors and their structural connectivity is maximized per cluster. We formulate

the problem as an intuitive latent time-series clustering problem joint with graph

regularization, and show that it admits a standard quadratic programming solution.

In more detail, our contributions are:

• Novel Formulation: Motivated by real applications, we propose the problem

of finding groups of nodes that are both densely connected (network structure) and

temporally coherent (time series of, potentially, non-structural behaviors).

• Principled Methods: To effectively solve the problem, we propose CCTN and

its counterpart CCTN-inc that efficiently handles updates (e.g., new nodes/edges

and observations in the time series).

• Extensive Experiments: We perform experiments on synthetic and real-world

networks with up to 6.9 million edges, and show the effectiveness and efficiency of

our proposed methods over the baseline methods.

•Application: We explore an exclusive database of millions of online ads on human-

trafficking, and show the potential of CCTN in detecting criminal organizations.

The code and the supplementary material is hosted at https://github.com/yikeliu/

CCTN.

57

Now we provide formal definition of our problem.

4.1.1 Proposed Problem

Let G = (V ,E) be a weighted graph with n = |V| nodes and m = |E| edges, and

A be its weighted adjacency matrix. We assume that each node i is associated with

K different types of time series (e.g., K different behavioral patterns). We denote

Xk ∈ Rn×T as the stacked matrix where row i corresponds to the kth type time-series

of node i in the network.

In Example 4.1 (Fig. 4.1), the network based on human trafficking activity consists

of phone numbers (nodes) that are linked if they appeared in the same online ad,

with link or edge weight equal to their number of co-appearances. The first temporal

behavior of each node is the per-day average content similarity between the posted

ads that mention the phone number. The second behavior is its per-day PageRank
degree

-

ratio, which can capture unusual structural connectivity patterns.

Problem Formulation

As we mentioned above, we focus on the problem of clustering nodes that also have

similar observed temporal behaviors. For consistency with the typical time-series or

graph clustering problems, we make the following explicit assumptions:

(A1) Node Temporal Behavior Similarity. Nodes from the same cluster have

similar patterns in the kth time-series type (for types k = 1, . . . , K).

(A2) Graph Smoothness. If two nodes are connected, their cluster assignments

are similar. Also, the stronger the connection between them, the more likely

they are to belong to the same cluster.

These assumptions align well with our motivating example. In human-trafficking, it

58

Table 4.1: Major symbols and definitions.

Notation Description

G(V,E) graph
V, n = |V| node-set and number of nodes of G, resp.
E, m = |E| edge-set and number of edges of G, resp.
A adjacency matrix of G, with entries a(i, j)
D diagonal degree matrix, d(i, i) =

∑
j a(i, j) & d(i, j) = 0 o/w

L Laplacian matrix, L = D−A
Xk n× T stacked matrix of the qth time series type per node
C n× d embedded-clustering matrix (with node embeddings)
W d× T stacked basis matrix of temporal patterns
c n× 1 vector with the cluster assignments per node
d dimensionality of embedding for time-series patterns
t, T timestamp and total number of timestamps, respectively

is believed that linked phone numbers that have similar neighbors (A2) and behave

similarly over time (A1)—e.g., with high average content similarity in their ads—may

belong to the same criminal organization.

With these assumptions, we establish our model for the coupled clustering of time-

series and network problem. We propose to embed the node-specific time-series

patterns in a latent d-dimensional space using two factors: (1) a basis consisting of

d time-series patterns which are stacked by row in matrix W ∈ Rd×T , and (2) a

matrix C ∈ Rn×d that describes the temporal behavior of each node as a weighted

combination of the basis. We call C the embedded-clustering matrix, since similar-

ities among its rows represent similar temporal behaviors among the corresponding

nodes. Based on this representation, we can summarize the time-series patterns of

all the nodes as follows:

(4.3) X̃k = C ·W,

59

where the same factors W and C are used to describe the various types of true

temporal behaviors, Xk. This model has several advantages: (1) it allows us to

couple the various temporal behaviors and express them in terms of the same basis

of temporal patterns, and (2) it constrains and guarantees a solution to our proposed

problem. As shown below, if the temporal behaviors were modeled independently

(i.e., via a different basis of temporal patterns Wk per type k), our formulation

would admit any arbitrary solution for the embedded-clustering matrix C, which is

not meaningful.

By combining this model together with graph regularization, we formulate the cou-

pled clustering of time-series and network problem.

Problem 4.4. Let G(V ,E) be a network where each node u is associated with K

different types of time-series denoted as Xk(u) ∈ R1×T . Then, the coupled clustering

problem aims to assign to each node u a latent feature vector C(u) ∈ R1×d, which

can then be projected to a cluster assignment c(u) ∈ N, such that:

(4.5) arg min
C,W

{
K∑
k=1

ak · ‖Xk − X̃k‖2
F + λ · Tr(CTLC)}

where ak controls the importance of the kth time-series behavior, X̃k = C ·W, W is

the basis time-series matrix, || · ||F is the Frobenius norm of the enclosed matrix, L

is the Laplacian matrix of G, Tr(·) is the trace of the corresponding matrix, and λ

is a regularization parameter.

The first term of Eq. (4.5) represents the coupled clustering of the nodes based

on their K types of temporal behavior. The clustering is given by our proposed

model in Eq. (4.3). Our goal is to find the matrices W and C that best represent

60

coherent time-series clusters across all behavior types. We note that a model with

different basis patterns Wk would lead to trivial clustering solutions: for any fixed

C, it would be possible to find a set of W1, . . . ,WK that satisfy Eq. (4.5). In

the human-trafficking example, the first term finds a joint latent representation for

the temporal content similarity of ads (X1 in Fig. 4.1) and the temporal structural

patterns (X2 or the PageRank
degree

-ratio per phone number and day). The second term of

Eq. (4.5) imposes a graph smoothness constraint over the cluster assignments of the

nodes (regularization). Intuitively, it forces the temporally coherent nodes to also

have strong connectivity, thus satisfying assumption (A2). The influence of each

term on the final clustering depends on the parameters ak, λ, which we discuss

in detail in the supplemental material. In Example 4.1, this constraint ‘refines’

the candidate criminal organizations that have temporally coherent behaviors by

attaching well-connected phone numbers to them (thus, leading to also structurally

coherent clusters).

With the problem defined, I will introduce the CCTN as a solution to our problem.

Proposed Algorithm: CCTN

Optimizing Problem 4.4 requires minimization with respect to two matrices, C and

W. To render the problem tractable, we devise an alternating process: (1) We fix C

and turn Problem 4.4 into a relatively easier quadratic problem; (2) We fix W and

turn Problem 4.4 into a mixed integer programming problem (Thm 4.6).

Next, we give the equations that need to be solved for the coupled clustering of

time-series and network problem. These will be the building blocks of our proposed

algorithm, CCTN.

Theorem 4.6. For a fixed clustering embedding C, the basis time-series matrix W

61

is the solution to:

(4.7) (
∑

k akC
TC)W = (

∑
k akC

TXk)

where CT denotes the transpose of matrix C.

For a fixed basis time-series matrix W, the clustering embedding C can be found by

solving the equation:

(4.8) C
∑

k akWWT + λLC =
∑

k akXkW
T ,

which corresponds to a Mixed-Integer Programming problem. Equation (4.8) is a

Sylvester equation.

Proof. See Appendix .1 in the supplemental material.

The linear system in Eq. (4.7) can be solved by randomized Kaczmarz algorithm [SV09].

This randomized iterative method can find W with expected exponential rate of con-

vergence.

To solve the Sylvester equation (4.8), we employ the scheme in [BS72] and rewrite it

as an equation with Kronecker product (denoted as ⊗):

(If ⊗ λL + (
∑
k

akWWT)T ⊗ In)⊗ vec(C) = vec(
∑
k

akXkW
T)

where vec() is the vectorization operator that takes a matrix and converts it to a

vector by stacking its columns. The solution of C can be computed numerically

by the Bartels-Stewart [BS72] algorithm. This algorithm first computes the Schur

decomposition of the two matrices λL and −
∑

k akXkW
T in Eq. (4.8) using a QR

algorithm, and then solves the resulting triangular system via back-substitution.

62

Lemma 4.9. The MIP problem of Eq. (4.8) has a unique solution iff the nf × nf

matrix If ⊗ λL + (
∑

k akWWT)T ⊗ In is invertible—i.e., if L and
∑

k akXkW
T do

not have common eigenvalues.

The computational cost of the original Bartels-Stewart [BS72] algorithm is O(n3).

However, faster parallel solvers of large-scale Sylvester equations have been proposed,

such as the Hessenberg-Schur method [GNVL79], and H-matrix based sign function

iteration [Bau08], where large matrices are represented by sparse hierarchical matri-

ces. The latter method is O(n log2 n).

Algorithm. Based on Theorem 4.6 and the transformations of its main equations

described above, we propose the CCTN method, whose pseudocode is given in Al-

gorithm 3.

Lines 5-9 describe the main part of our method, which seeks the solution in an

iterative process, until convergence (line 9). In the absence of other information,

the initialization of the matrices C and W is random (lines 3-4). After finding the

embedded-clustering matrix C, CCTN treats each row as an observation (which cor-

responds to a node) and applies a clustering technique in order to find similar nodes

based on their latent representations in Eq. 4.5. In practice, any choice for clustering

works for this step (e.g., k-means). We discuss our choices in the experiments.

Complexity Analysis

In each iteration of Algorithm 3, the computation is composed of two steps: update

W (Step 1) and update C (Step 2). W is updated by randomized Kaczmarz algo-

rithm [SV09]. The computational complexity of solving a linear system Mx = b is

O(nKtK), where M ∈ RmK×nK and tK is the number of iterations of random Kacz-

marz update. For mK 6= nK , we have tK = 2nK
(1−√y)2

log 1
εK

, where y := nK
mK

, and

63

Algorithm 3 CCTN: Coupled Clust. of Time-series & Network

Input: Graph G(V,E); stacked matrices of k-type time-series {Xk} with T timesteps, param-
eters ak and λ, dimensionality d
Output: Vector with cluster assignments c

1: ε = 10−6, τmax = 100 // Constants for convergence
2: τ = 0 // Iteration # initialization
3: C(τ) = rand(n, d) // n = |V|
4: W(τ) = rand(d, T)
5: repeat
6: τ = τ + 1

// Step 1: Update W using Eq. (4.7)
7: W(τ) = (

∑
k akC(τ−1)

TC(τ−1))
−1(
∑
k akC

T
(τ−1)Xk)

// Step 2: Update C by solving Eq. (4.8) following [Bau08]
8: C(τ)

∑
k akW(τ−1)W

T
(τ−1) + λLC(τ) =

∑
k akXkW

T
(τ−1)

9: until (||C(τ) −C(τ−1)||1 < ε & ||W(τ) −W(τ−1)||1 < ε) or τ > τmax
// Step 3: Assign the nodes to clusters based on the inferred embeddings in C (each row is an
‘observation’).

10: c = cluster rows(C(τ))
11: return c

εK is the accuracy of the randomized Kaczmarz algorithm. In CCTN, we have a

square matrix (M =
∑

k akC
TC), but since it has exponential convergence [SV09],

tK will be very small (tK ∼ 5 in practice). Updating C with the H-matrix based

sign function iteration [Bau08] has complexity O(n log2 n). Hence, the complexity of

CCTN is O((dtK + (n log2 n)).

We also developed an incremental version of CCTN that handles network updates

more efficiently.

4.1.2 CCTN-inc: Incremental Updates

In many applications, including our motivating application of human-trafficking,

the data are changing over time: new nodes (i.e., phone numbers) and edges (new

co-occurrences) are added to the network, and new timestamps are added to the

behavioral time series for the existing nodes (e.g., content similarity on the new days).

In our experiments, we observed that for synthetic data (Kronecker graphs) with

more than 6.6k nodes, the runtime of CCTN exceeds a week. Moreover, clustering

64

millions of nodes is quite expensive. Thus, we propose the problem of incremental

coupled clustering.

Problem Formulation

The problem of Incremental Coupled Clustering seeks to efficiently handle incre-

mental updates in the network structure and the time series, so that the computation

that needs to be performed per timestamp is minimized.

Problem 4.10. Let A′ ∈ Rn′×n′ and X′k ∈ Rn′×T ′ be the augmented adjacency

matrix with n′ nodes and the stacked matrix of the kth type time series data with T ′

timestamps, respectively. Let also C and W be the solutions of Problem 4.4. The

Incremental Coupled Clustering problem aims to find the perturbations ∆W and

∆C in the matrices of basis temporal behaviors and cluster embeddings s.t. the new

solutions are expressed as W′ = W + ∆W and C′ = C + ∆C, respectively:

arg minC′,W′{
∑K

k=1 ak · ‖X′k − X̃′k‖2
F + λ · Tr(C′TL′C′)}

where ak and λ remain the same as in CCTN, L′ is the updated Laplacian matrix of

A′, and X̃′k = C′ ·W′.

Thus, this problem seeks to incrementally update the cluster assignment vector c′,

obtained by projecting the new embedded-clustering matrix C′.

Incremental Algorithm: CCTN-inc

To derive the solution of the incremental problem, we leverage small perturbations

∆Z for each matrix Z that is involved in the derivations. Specifically, we rewrite

the incremental adjacency matrix as (1) the original matrix and (2) the difference-

65

matrix with the difference in weights between existing nodes and the connections to

new nodes: A′ = A(n′×n′) + ∆A. In the human-trafficking example, ∆A contains

new phone numbers that appeared in ads published after time T , and new edges

between numbers that co-appeared in ads after T .

Similarly the stacked matrix of kth-type time series and the Laplacian of the new

graph can be written as: X′k = Xk,(n′×T ′) + ∆Xk and L′ = D′ − A′ = L + ∆L.

In our example, X′k has additional rows for the new nodes (past the original n) and

more columns for the new timestamps (past T).

Based on the above definitions, we can compute the incremental matrix W′ by simply

computing ∆W and adding it to the solution of the non-incremental version. As in

the solution of Problem 4.4, in the second step, we fix W′ and find the new solution

for C′.

Theorem 4.11. For a fixed clustering embedding C′, the difference ∆W in the

stacked matrix of the d base time series patterns is given by:

(4.12) ∆W =
(∑

k akC
′TC′

)−1∑
k akC

′T∆Xk

For a fixed basis time-series matrix W′ (defined in Eq. (4.12)), the difference in the

embedded-clustering matrix ∆C is approximated by solving the following Sylvester

equation:

∆C
∑
k

akWWT + λL∆C =
∑
k

ak(Xk(∆W)T

+ (∆Xk)W
T −C(∆W)WT −CW(∆W)T + λ(∆L)C).

(4.13)

66

Table 4.2: Synthetic data: Description of the six cases that we designed for evaluation. For each
cluster, we generate for its constituent nodes a specific type of time series per case (e.g., identical,
correlated, noisy).

Case No. Time series per cluster Description of the clusters in terms of their nodes’ time series

1 Random identical Ci = {xi(t), . . . , xi(t)}, i ∈ {1, 2, 3}, xi randomly generated
2 Informed identical Ci = {xi(t), . . . , xi(t)}, i ∈ {1, 2, 3}, xi extracted from real data
3 Correlated Ci = {a1(xi(t) + b1), . . . , a|Ci|xi(t+ b|Ci|)}, i ∈ {1, 2, 3}, xi extracted from real data (|Ci|: size of ith cluster)
4 Noisy Ci = {xi(t) + ei(t), . . . , xi(t) + ei(t)}, i ∈ {1, 2, 3}, xi extracted from real data, ei(t) ∼ N (1, 0)
5 Anti-correlated Ci = {xi(t), . . . ,−xi(t)}, i ∈ {1, 2, 3}, xi extracted from real data, Ci split at half
6 Informed split C1,2 = {x1,2(t), . . . , x1,2(t)}, C3 = {x1(t), . . . , x2(t)}, x1,2,3 extracted from real data, C3 split at half

Proof. See Appendix .1 in the Appendix.

Algorithm. Based on Theorem 4.11, we propose CCTN-inc, an effective and fast

approximation of CondeNSe, which handles incremental updates in the network

structure, the introduction of new nodes, and changes in the behavioral patterns of

existing nodes. We give the high-level pseudocode of CCTN-inc in Algorithm 7 in

the supplemental material (Appendix .2).

Complexity Analysis

Although Eq. (4.12) involves inverting a matrix, the computation is not prohibitive

due to its very small size. Matrix C′ has size n × d, and thus C′TC′ (which is the

matrix that needs to be inverted) is a d× d matrix. In practice, the dimensionality

d of the embedding is significantly smaller than the number of nodes n, and most

likely is in the order of 10-20 features. Equation (4.13) in Theorem 4.11 is still a

Sylvester equation that can be solved with the Bartels-Stewart algorithm [BS72], as

in CCTN. Due to the significant sparsity of ∆C, the computation of the incremental

matrix is sub-quadratic, O(n log2 n) [Bau08].

4.1.3 Experiments

Our experiments are geared toward answering the following questions: (1) How

effective is CondeNSe in terms of identifying temporally and structurally coherent

67

clusters? (2) How well does CCTN-inc approximate CCTN? (3) Do CCTN and

CCTN-inc scale well to large datasets?

(4) Does CCTN generate intuitive clusters in real applications? (5) How robust is

CCTN to different parameter settings? Before we present our results, we discuss our

datasets, baselines and experimental setup. We answer question (5) in Appendix .5.

Data

We use both synthetic and real datasets.

Synthetic Data. We generate three cliques of different sizes (50, 100, and 200

nodes), with random, sparse connections between them. For simplicity we treat the

graph as unweighted, and keep the graph structure constant over time (i.e., we use

one static network). For the node-specific temporal behavior, we either randomly

generate time series, or extract time series of content similarity from the real human-

trafficking HT-1 data (described below), and add six types of noise (Table 4.2).

Real Data. We also use 3 exclusive real datasets: two in human-trafficking domain

(HT-1/HT-1M, HT-2), and one in the military domain (MITRE).

• Human-trafficking data 1 (HT-1, HT-1M): This is a labeled dataset of

advertisements assigned to clusters. For each advertisement, we have all or part of

the following information: {region, phone number, text, title, post time, age, user

location, city, cluster id}. The phone numbers are assigned cluster ids by domain

experts (ground truth).

We create the co-occurrence graph (temporal and aggregated) on phone numbers

by adding edges between phone numbers that appear in the same ad, and weighing

them by the frequency of their co-occurrence. HT-1M denotes the manipulated

68

Table 4.3: Real data

Dataset Nodes Edges Timestamps Description

HT-1 60 437 1 241 773 13 labeled, human-trafficking
HT-2 61 155 129 196 60 unlabeled, human-trafficking

MITRE 3 813 6 892 425 335 labeled, Twitter data

graph of HT-1 where attackers randomly connect their phone numbers to public

phone numbers such as AT&T service number.

The node-specific temporal behaviors consist of: (1) Structural time series of PageRank
degree

-

ratio, which can capture anomalous patterns and is obtained from the temporal

graphs—i.e., X1 = Xstruc; (2) Content time series for the average pairwise Jaccard

index across the ads with the same phone number (during the same time interval)—

i.e., X2 = Xcont. Although we use k = 2 temporal behaviors, CCTN can scale with

greater k.

• Human-trafficking data 2 (HT-2): This is an unlabeled dataset of ads, for

which we have all or part of the following information: {description, uri, date of

creation, contact information, name, location}. Graphs and time series are generated

the same way as for HT-1.

• MITRE data: This labeled Twitter dataset [ZSY+15] is annotated with both

GEO-location and social event forecasting results. Each location is assigned to a

cluster by domain experts, based on event types and users. We generate a graph

that consists of locations (nodes) connected by edges that are weighted by their

geographic distance (based on longitude and latitude). Edges with distances above

d = 1000 miles are pruned.

The temporal behaviors include: (1) the structural time-series of the PageRank
degree

-ratio—

i.e., X1 = Xstruc; and (2) the activity-specific behavior consisting of the count of

69

(a) Synthetic data: CCTN performs better than the baselines on difficult cases or equally well on easy cases.

(b) Real data: Overall, CCTN performs consistently better than or equally well as the baseline methods.

Figure 4.2: Accuracy of CCTN and CCTN-inc on synthetic and real data.

events at each location over time—i.e., X2 = Xevent.

Baselines

We choose methods that fall into the two subproblems that we solve: (1) time-series

clustering, from which we pick two recent, best-performing works, k-Shape [PG15]

and TADPole [BUWK15]; and (2) graph clustering on the aggregated graph, from

which we choose spectral clustering [Hes04] and Louvain [BGLL08]. We describe the

baselines in Appendix .3.

Experimental Setup

For CCTN and CCTN-inc, practitioners can choose any clustering method that

takes in feature vectors of the CCTN node embeddings in C (line 10 of Alg. 3). For

simplicity, we exploit the widely-used k-means clustering [Llo82] for labeled data,

70

and x-means [Jai10] for unlabeled data with unknown number of clusters. To show

the effect of parameters on the performance of CCTN, we report the results on two

variants: (1) the ‘default ’ case, where we set a1 = a2 = 1, λ = 0.01, d = 3; and (2)

the ‘best ’ case, where the parameters are chosen via grid search on a small random

subset of the data. The sample we used in our experiments consists of 1/10th of the

data for MITRE, and 1/100th of the HT-1 and HT-1M data. We performed grid

search for the following ranges: a1 ∈ (0, 10], a2 ∈ (0, 10], λ ∈ (0, 10], d ∈ (0, 10] with

an interval of two, hence the ‘best’ is not the globally best result. Results on CCTN’s

robustness to parameter settings are in Appendix .5. We ran the CondeNSe until

convergence (line 9 in Alg. 3) for all the datasets except for HT-1, for which we set

τmax = 10 iterations.

For the baselines we used the default values of their parameters: resolution τL = 10−4

for Louvain, band size 0.08 for DTW, and cut off distance 1.4619 for TADPole.

All the experiments were run on Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz with

264GB RAM.

Evaluation Since our objective is to find coherent groups of nodes, we focus on

the evaluation of the embedded-clustering matrix C and the clustering results. We

omit a detailed analysis of the auxiliary variable W due to space limitations. For the

performance of cluster recovery, we use (1) normalized mutual information (NMI) and

(2) rand index, which measure the agreement between the found and ground-truth

clusters, but capture different information. The results are generally consistent across

the two metrics; for brevity we give the results based on rand index in Appendix .4.

Accuracy

(1) CCTN. First, we investigate how CCTN compares to the baselines in terms of

71

Figure 4.3: MITRE: CCTN-inc approximates CCTN well. They yield similar clusterings.

effectiveness in identifying temporally and structurally coherent clusters. We present

the NMI of the clusterings that all methods produce on the synthetic datasets in

Fig. 4.2a and on the real datasets in Fig. 4.2b. We report the results based on

the rand index measure in Fig. A.1 (Appendix .4). For the synthetic data, where

the structural time series are constant (due to the static network), TADPole is less

effective when leveraging Xstruc in addition to Xcont. For that reason, we only report

its results using Xcont.

Observation 1. CCTN outperforms the baselines on the real data, and is some-

times tied with Louvain on the synthetic data. The baselines have more variable

performance across datasets.

Louvain, which usually outperforms spectral clustering, gives equally good results

for HT-1, but has significantly inferior performance on HT-1M and MITRE. Since

it only relies on the graph structure, it is heavily impacted by graph noise, as shown

by its performance on the manipulated HT-1M dataset (Fig. 4.2b). K-Shape and

TADPole, which ignore the graph structure, tend to perform worse than CCTN,

especially on the real datasets (NMI < 0.1). By combining the temporal and

structural aspects, CCTN is more robust: it achieves up to NMI = 0.6 for real

data, and often perfect performance in the synthetic cases.

72

(a) Runtime vs. number of nodes / number of time stamps

(b) MITRE: Runtime of CCTN-inc vs. CCTN.

Figure 4.4: Runtime analysis.

(2) CCTN-inc. Second, we explore how well CCTN-inc approximates the clus-

terings that our exact approach, CCTN, generates. To that end, we split the real

labeled data into two parts: (1) the first x timestamps (or the ‘base size’), which

are used to create the input graph and time series, as described above; and (2) the

future timestamps. Then, we compute the agreement between the clustering that

CCTN-inc outputs after incremental updates for y timestamps, and the clustering

of CCTN when applied to the (x+ y) timestamps all together.

For brevity, in Fig. 4.3, we show the agreement (NMI) of the two methods on MITRE

by varying the base size x, and for y ∈ {1, 10} steps of incremental updates. The

results based on rand index are given in Fig. A.2 (Appendix .4). The results are

73

consistent for other values of y and the other datasets.

Observation 2. CCTN-inc is a good approximation of CCTN (wrt both NMI and

rand index), independent of the incremental interval y. The accuracy varies for

different base size x, but remains relatively stable. As expected, performing more

incremental updates (e.g., y = 10) leads to lower, but still high, agreement.

We note that in this experiment we do not compare the CCTN-inc clustering with

the ground-truth labels, because its performance is measured by how well it approx-

imates CCTN and how efficient it is (see above).

Runtime

(1) CCTN. Third, we evaluate how well CCTN scales with the size of the data,

and specifically with (i) the number of nodes in the aggregated graph, and (ii) the

number of timestamps.

For experiment (i), we fix the number of timestamps to 10, and generate the aggre-

gated graph by combining 10 Kronecker graphs [LCK+10] of different sizes (given

random seed matrices). Assuming
√
n/2 clusters (which is the rule of thumb for

choosing number of clusters [cyt]), we generate that many random time series, and

randomly assign them to the n nodes.

For experiment (ii), we generate synthetic data in the same way, but fix the number of

nodes to 1 024 and vary the number of timestamps of the time series. We demonstrate

the results in Fig. 4.4a.

Observation 3. The runtime of CCTN increases subquadratically with the number

of nodes, and smooths out to near-linear when the number of nodes becomes large.

Its efficiency is independent of the number of timestamps T (right plot in Fig. 4.4a).

(2) CCTN-inc. Finally, we compare CCTN-inc to CCTN to show its efficiency

74

benefits. Figure 4.4b shows the runtime of the two methods on MITRE for different

combinations of x and y (explained above).

Observation 4. CCTN-inc is up to 30−55× faster than CCTN, due to the sparser

matrix computations that it performs per update, and its faster convergence.

CCTN-inc usually converges in 1/50 ∼ 1/30 of the iterations that CCTN needs

for real data. This contributes to the significant reduction in runtime.

4.1.4 Case Study on Real Data

To evaluate whether CCTN finds intuitive clusters in real applications, we apply it

to the human-trafficking HT-2 dataset. Among the 61 155 nodes in HT-2, CCTN

identified 15 clusters, with size ranging from 129 to 31 060 nodes. All the clusters

have numerous phone number pairs that have appeared in similar ads.

In Fig. 4.5, we show a randomly-picked example consisting of phone numbers 1-

3236****** and 1-3232******. Across the 60 timestamps, these phone numbers have

co-occurred 2 656 times in different ads (high edge weight in the graph). Besides the

high similarity between the ads they co-occurred in, we also observe that many of the

ads in which each phone number appeared alone have largely similar content (both

in text and images). In the bottom ad, which was posted on Sep 1, ‘GRAND OPEN’

suggests that the service was just opened. The top ad was posted several months

later, on Dec 27, yet it has very similar text and pictures to the bottom ad (similar

text is marked with the same color). Though the original data extraction process

did not identify the ads to be at the same location (Long Beach vs. the general Los

Angeles area), CCTN has identified two phone numbers pointing to exactly the same

address in the ads, which is clear evidence that they belong to the same organization.

Similar observations for many other pairs of phone numbers hold.

75

Figure 4.5: Advertisements related to the phone numbers 1-3236****** and 1-3232******.

In a nutshell, our proposed approach has three main advantages compared to the

state-of-the-art approaches: (1) it combines the strengths of both model-based sim-

ilarity measurement and low-dimension representation learning (i.e., cluster embed-

ding); (2) it is built upon a unified framework that performs representation learning,

coherence evaluation, and clustering simultaneously; and (3) it utilizes rich meta-

data information (e.g., co-occurrence graphs) to improve the quality of clustering.

To conclude CCTN: motivated by the need to identify criminal organizations in-

volved in human-trafficking (which are often related to each other, and behave sim-

76

ilarly over time), we introduced the problem of coupled clustering of time-series and

their underlying network. We formulated it as an optimization over the time-series

embeddings, coupled with graph regularization. To solve it, we proposed CCTN, an

efficient method that combines matrix factorization and network embeddings, as well

as an incrementally-updated counterpart that efficiently adjusts the discovered clus-

ters to the graph and temporal changes over time. Our experiments on synthetic and

large real data showed that our methods are up to 4× more accurate than the base-

lines that ignore either the graph structure or the time-series component. We also

demonstrated that CCTN produces sensible results on real human-trafficking data

and identifies temporally and structurally coherent clusters, which likely represent

criminal organizations.

4.2 Recurrent Deep Learning Games: Optimizing RNN Training

Apart from sequence clustering we discussed in the previous section, there are nu-

merous other tasks in modeling sequences. In this section, we focus on another major

task in sequence modeling - sequence prediction, it is: given a sequence and predict

the next element; or given an observation sequence and predict a hidden sequence.

In this section I focus on the former task. Sequence prediction is widely applied in

industry: in traffic domain it can be used to estimate travel time [WFY18]; in nat-

ural language processing (NLP) domain this task is usually referred to as language

modeling and it can be applied on different levels [DMBM15].

Recurrent Neural Networks, or RNNs have dominated the field of sequence modeling

for years, due to their flexibility to accommodate changing sequence lengths, and

the ability of automatically learning the temporal correlations [MKB+10, GMH13,

SP97, PNI+18]. Only recently there has appeared more work on attention mech-

77

anism and multiple NLP models have shown out-performance of transformers over

RNNs [DCLT18, RNSS18]. In this thesis I still focus on RNNs with its training

strategies and demonstrate my study on its optimization. In this section, networks

refer to neural networks, which is different from Chapter III, where networks refer

to data structures composed of nodes and edges. We also note that notations in this

section is independent from the rest of the thesis. My contributions are as follows:

• Design a one-shot simultaneous move game RDLG with infinite action sets

for a corresponding optimization problem RDLP on recurrent neural network

architecture.

• For RDLG and RDLP , we give theoretical proof of equivalence between a Nash

equilibrium and a global minimum in convex setting. We also provide algorithm

for solving a Nash equilibrium.

• We show convergence of regret matching with experiments on language model-

ing, as well as comparison with baseline algorithms for solving for RDLP , and

provide our analysis.

Recurrent Neural Network

Taking the definition from [GBC16], RNNs are a family of neural network for pro-

cessing sequential data, i.e. a sequence of values x(1), . . . ,x(τ). They can scale to

much longer sequences than would be practical for networks without sequence-based

specialization. Most recurrent networks can also process sequences of variable length.

RNNs are often dealt with unrolling with the key idea of parameter sharing. A wide

variety of recurrent neural networks are designed for different tasks. Some examples

of important design patterns for recurrent neural networks, in this thesis we focus

on the following one:

78

• Recurrent networks that produce an output at each time step and have recurrent

connections between hidden units, illustrated in Figure 4.6.

Figure 4.6: The computational graph to compute the training loss of a recurrent network that maps
an input sequence of x values to a corresponding sequence of output o values. Figure from [GBC16]

Training RNNs is notoriously expensive, as it basically applies the back-propagation [GBC16]

on the rolled out network (right of Fig. 4.6), depending on the length of entire se-

quence τ , this is called back-propagation through time (BPTT). Once rolled out, any

gradient-based algorithms can be used to train an RNN. However, when the sequence

length τ is very long, the computation to take the backward pass and update the

parameters with gradients increases exponentially.

It is also well known that gradients propagated over very deep networks tend to

vanish (mostly) or explode. This is caused by the multiplication of many Jacobians

that are either very small or large in terms of value. ResNet [HZRS16] achieved huge

success on the solution of gradient vanishing by introducing residual layers. Same

problems exist for the rollout network of RNNs where τ is very large, where the

long-term dependencies is very hard to learn.

Game Theory

Game theory is the study of mathematical models of strategic interaction between

79

rational decision-makers, which is widely researched by the societies of mathemat-

ics, computer science, and economics. In the classical non-cooperative setting, the

Nash equilibrium (NE) refers to a proposed solution of a game involving two or more

players in which each player is assumed to know the equilibrium strategies of the

other players, and no player has anything to gain by changing only their own strat-

egy [DRS09]. Compared to other fields, researchers in machine learning focus more

on numerical methods for solving for NE [B+14, JQV07, BS17]. Resolutions are usu-

ally graphical-based and computed via linear/linear complementarity programming.

For large-scaled games, recent contributions are made on the refinement on NE find-

ing, such as game abstraction and pruning strategies, all following the principle of

regret minimization [ZJBP08, BM07].

With the proposed problem and algorithm, I intend to resolve the difficulties of RNN

training on long sequences with a game-theory-based approach. In the following I

state the formal definition of the RDLP problem as well as its solution - regret

matching.

4.2.1 RDLP : Recurrent Deep Learning Problem

Definition 4.14 (RDLP : Recurrent Deep Learning Problem). Consider the ex-

ample in Fig. 4.6, for each time step from t = 1 to t = τ , apply the following

update equations, we ignore the biases for now. Consider sequential input vectors

{x(1), . . . ,x(τ)}, the network performs computations on them with matrix parameters

U,V,W:

(4.15) a(t) = Wh(t−1) + Ux(t)

80

(4.16) h(t) = fv(a
(t))

(4.17) o(t) = Vh(t)

(4.18) ŷ(t) = gv(o
(t))

The total loss for a given sequence of x values paired with a sequence of y values

would then be just the sum of the losses over all the time steps. Given a loss function

l(z,y) that is convex in the first argument satisfying 0 < l(z,y) < inf for all z ∈ Rn,

define l(t)(z) = l(z,y(t)) and L(t)(U,V,W) = l(t)(ŷ(t)). The training problem is to

find a set of {U,V,W} that minimizes L(U,V,W) = τ−1
∑τ

t=1 L
(t). l is allowed

to take various forms, e.g. negative log-likelihood of y(t) given x(1), . . . ,x(τ) that is

convex. fv and gv are activation functions, for the example in Figure 4.6 we can

choose fv = tanh and gv = softmax.

Similarly to the feedforward networks [SZ16], given a training input x(t) ∈ Rm, the

computation of the recurrent network is expressed by a circuit value function c(t)

that assigns values to each vertex based on the partial order over vertices:

for v ∈ x, c(t)(v,U,V,W) = xv;

for v ∈ h,

c(t)(v,U,V,W) = fv(
∑

u:(u,v)∈E

c(t−1)(u,U,V,W)W (u, v)

+
∑

u′:(u′,v)∈E

c(t)(u′,U,V,W)U(u′, v))

81

,

for v ∈ o, c(t)(v,U,V,W) = gv(
∑

u:(u,v)∈E c
(t)(u,U,V,W)V (u, v)).

Let c(t)(o,U,V,W) denote the vector of the values at the output vertices, i.e.

(c(t)(o,U,V,W))k = c(t)(ok,U,V,W).

For RDLP , we define a corresponding game RDLG .

Definition 4.19 (RDLG : Recurrent Deep Learning Game). We define a one-shot

simultaneous move game with infinite action sets; we specify the players, action sets,

and utility functions as follows.

Players : The players consist of a protagonist p for each v ∈ h ∪ o, an antagonist a,

and a set of self-interested zannis sv, one for each vertex v ∈ x ∪ h ∪ o.

Actions : The protagonist for vertex v chooses a parameter function Uv,Wv, Vv. The

antagonist chooses a set of τ vectors and scalars {a(t), b(t)}τt=1, a(t) ∈ Rn, b(t) ∈ R,

such that a(t)ᵀz+ b(t) ≤ l(t)(z) for all z ∈ Rn; that is, the antagonist chooses an affine

minorant of the local loss for each example in the training sequence. Each zannni sv

chooses a set of 2τ scalars {qvt, dvt}, qvt ∈ R, dvt ∈ R, such that qvtz + dvt ≤ fv(z)

for all v ∈ x∪ h, z ∈ R and qvtz + dvt ≤ gv(z) for all v ∈ o, z ∈ R. That is, the zanni

chooses an affine minorant of its local activation function fv or gv for each example

in the training sequence. All players make their action choice without knowledge of

the other player’s choice.

Utilities : For a joint action σ = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }), the zannis’ utilities

are defined recursively following the partial order on vertices. First, for each i ∈ x the

utility for zanni si on training example t is U
s(t)
i (σ) = d

(t)
i +q

(t)
i x

(t)
i ; for each v ∈ h the

utility for zanni sv on example t is U
s(t)
v (σ) = d

(t)
v +q

(t)
v (
∑

u:(u,v)∈E U
s(t−1)
u (σ)W (u, v)+∑

u′:(u′,v)∈E U
s(t)
u′ (σ)U(u′, v)); and for each v′ ∈ o the utility for zanni sv on example t

82

is U
s(t)
v′ (σ) = d

(t)
v′ + q

(t)
v′
∑

u:(u,v′)∈E U
s(t)
u (σ)V (u, v′). The total utility for each zanni sv

is given by U s
v (σ) =

∑τ
t=1 U

s(t)
v (σ) for v ∈ x ∪ h ∪ o. The utility for the antagonist a

is then given by Ua(σ) = τ−1
∑τ

t=1 U
a(t)(σ) where Ua(t)(σ) = bt +

∑n
k=1 a

(t)
k U

s(t)
ok (σ).

They utility for all protagonists are the same, Up(σ) = −Ua(σ).

For the unconstrained problem defined above, we give the following lemma and the-

orem. Readers may refer to Appendix .6 for proofs.

Lemma 4.20. Given a fixed protagonist action {U,V,W}, there exists a unique

joint action for all agents σ = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where the zannis and

the antagonist are playing best response to p. Moreover, Up(σ) = −L(U,V,W),

∇MU
p(σ) = −∇ML(U,V,W), where M ∈ U,V,W. Given some protagonist at

v ∈ h ∪ o, if we hold all other agents’ strategies fixed, Up(σ) is an affine function of

the strategy of the protagonist at v. We define σ as the joint action expansion for

{U,V,W}.

Theorem 4.21. The joint action σ = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) is a Nash

equilibrium (NE) of the RDLG iff it is the joint action expansion for {U,V,W} and

{U,V,W} is a global minimum of the RDLP .

In practice we always bound parameters (U,V,W) within some constant range

for the convenience of computation. In fact, Theorem 4.21 is still valid (and most

statements in Lemma 4.20) in bounded case, and the correspondence between an NE

and a global minimum would be sufficient for us to apply the algorithm below.

Learning Algorithms

Similarly to [SZ16], we find the global minimum by training independent protagonist

agents at each vertex against a best response antagonist and best response zannis.

Algorithm Outline. On round t, the tth training example is chosen. For each

83

v ∈ h ∪ o, each protagonist v selects her actions (Uv, Vv,Wv) deterministically.

The antagonist and zannis then select their actions, which are best responses to

(Uv, Vv,Wv) and to each other. The protagonist utilities Up
v are then calculated.

Given the zanni and antagonist choices, Up
v is affine in the protagonist’s action, and

also by Lemma 4.20 for all e ∈ Ev, we have ∂Lt

∂ωe
= −∂Upv (Uv ,Vv ,Wv)

∂ωe
. Each protagonist

v ∈ h ∪ o then observes their utility and uses this to update their strategy. See

Algorithm 4 for specific updates of regret matching. H is the convex hull basis of

constraints on matrices U,V,W. For convenience, we consider the bounded case as

we can always scale up to proper magnitude, including the unconstrained case, i.e.

the entire vector space. In this case the parameters are constrained to a cube, and

the convex hull matrices are constant matrices:

H =



1 −1 . . . −1

1 1 . . . −1

...
...

. . .
...

1 1 . . . −1


Like backpropagation for feedforward networks, we compare regret matching with

gradient-based methods for RNNs, i.e. backpropagation through time (BPTT) on

vanilla recurrent neural networks as in Algorithm 5. It was observed that the back-

propagation dynamics caused the gradients in an RNN to either vanish or explode.

Long Short-Term Memory (LSTM) models, as another baseline, were designed to

mitigate the vanishing gradient problem, the architecture is described in Figure 4.7.

In [SZ16] Exponential Weighted Average (EWA) was also used for finding the NE as

well, but it did not outperform plain back-propagation.

For RM, the parameters are updated with the updated ρ
(k+1)
v as follows:

(4.22) U(k+1) = Hρ
(k+1)
U

84

Algorithm 4 Regret Matching (RM)

1: Unfold the network to contain τ instances of (U,V,W)
2: k = 0,h(0) = 0
3: repeat
4: k ← k + 1
5: Observe h(0) and x(1), . . . ,x(τ)

6: Antagonist and zannis choose best responses which ensures ∇Upv (U,V,W) =
−∇L(U(k),V(k),W(k))

7: g
(k)
v ← ∇Upv (U,V,W)

8: For all v ∈ x ∪ h ∪ o apply update r
(k+1)
v ← r

(k)
v + H>g

(k)
v − ρ

(k)>
v H>g

(k)
v ρ

(k+1)
v ←

(r
(k+1)
v)+/(1

>(r
(k+1)
v)+)

9: Update all the weights in (U,V,W)
10: until stopping criteria is met

Algorithm 5 BackPropagation Through Time (BPTT)

1: Unfold the network to contain τ instances of (U,V,W)
2: h(0) = 0
3: Set the network inputs to h(0),x(1), . . . ,x(τ)

4: repeat
5: ŷ(1), . . . , ŷ(τ) = forward-propagate the inputs over the unfolded network
6: Back-propagate the losses l(1)(ŷ(1)), . . . , l(τ)(ŷ(τ)) back across the unfolded network
7: Sum the weight changes in the τ instances of (U,V,W) together
8: Update all the weights in (U,V,W)
9: until stopping criteria is met

(4.23) V(K+1) = Hρ
(k+1)
V

(4.24) W(k+1) = Hρ
(k+1)
W

We give the detailed weight updates of BPTT as follows:

(4.25) U(k+1) = U(k) − η∇UL = U(t−1) − η
τ∑
t=1

diag(1− (h(t))2)(∇h(t)L)x(t)>

(4.26) V(K+1) = V(k) − η∇VL = V(t−1) − η
τ∑
t=1

(∇o(t)L)h(t)>

85

(4.27) W(k+1) = W(k) − η∇WL = W(t−1) − η
τ∑
t=1

diag(1− (h(t))2)(∇h(t)L)h(t−1)>

Figure 4.7: Block diagram of the LSTM recurrent network cells.Figure from [GBC16]

In LSTMs, cells are connected recurrently to each other, replacing the usual hidden

units of ordinary RNNs. An input feature is computed with a regular artificial neuron

unit. Its value can be accumulated into the state if the sigmoid input gate allows it.

The state unit has a linear self-loop whose weight is controlled by the forget gate.

The output of the cell can be shut off by the output gate. All the gating units have

a sigmoid nonlinearity, while the input unit can have any squashing nonlinearity.

The state unit can be used as an extra input to the gating units. The black square

indicates a delay of a single time step. The self-loop weight is controlled by a forget

gate unit f
(t)
i , that sets this weight to a value between 0 and 1 via a sigmoid unit:

(4.28) f
(t)
i = σ(

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j)

The LSTM cell internal state is thus updated as follows, but with a conditional

86

self-loop weight f
(t)
i :

(4.29) s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ(

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j)

The external input gate unit g
(t)
i is computed similarly to the forget gate but with

its own parameters:

(4.30) g
(t)
i = σ(

∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j)

The output h
(t)
i of the LSTM cell can also be shut off, via the output gate q

(t)
i , which

also uses a sigmoid unit for gating:

(4.31) h
(t)
i = fv(s

(t)
i)q

(t)
i

(4.32) q
(t)
i = σ(

∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j)

Output of each sample is given by:

(4.33) ŷ
(t)
i = gv(o

(t)
i) = gv(

∑
j

V o
i,jh

(t)
j)

Training of LSTMs still follows the rule of BPTT, only that the components of

. . . ,h(t−1),h(t), . . . and . . . ,x(t−1),x(t), . . . are replaced by the LSTM block and the

back propagation follows the update rules of it, where we learn the parameters

{U,V,W} and three sets of {U,W} for each gate. Gated recurrent units (GRUs,

see [CVMG+14]) is a similar gate scheme for RNN architectures, we limit the base-

lines to LSTM as its more popular and usually has better performance on language

modeling tasks.

87

Figure 4.8: Training Loss vs. Iterations

I present the results on experiments with its analysis. Experiment is conducted on

the Penn Tree Bank (PTB) dataset with evaluation on a word-level language model.

I have compared RM with two baselines - vanilla RNN and RNN with LSTM units.

Fig. 4.8 shows the training loss vs. iterations. The RNN network has 2 hidden layers

with a embedding layer, and rolled out to 20 time steps. Each layer consists of 200

units. Training of all algorithms are using a batch size of 20 and vocabulary size of

10000. Training loss in the figure is represented by the perplexity on training data.

For BPTT on vanilla RNN and LSTM RNN, they are trained with a learning rate

of 1 with decay rate of 0.5.

88

4.2.2 Analysis And Improvements

We see that LSTM RNN has outperformed Vanilla RNN in terms of both convergence

rate and converged loss, which is expected. RM, on the other hand, shows clear

convergence but does not converge as fast as the baselines. Meanwhile, its converged

loss is also higher than the baselines.

The convergence of RM shows that the algorithm is effective in RNN training, beyond

the level of theory. However, further thought should be put into the design of the

RDLG as it is not reaching the performance of vanilla RNN. In fact, the intrinsic

problem of gradient vanishing might be hurting RM more than vanilla RNNs as it has

reached better performance than back-propagation on feedforward networks [SZ16],

meaning faster convergence rate.

I propose future work of revisiting the design of RDLG , taking into account the

parameter sharing of RNN itself in the definition of utilities. A straightforward

way is to introduce an equivalent game for LSTM RNN itself, instead of a plain

RNN framework. Considering the recent rising trend of attention mechanism and

transformers [VSP+17], it would be interesting to think of designing a game that is

equivalent to the transformer architecture, instead of LSTMs. Also, modifications

can be applied on RM to resolve the problem. Meanwhile, we could consider a

constrained problem which is common in practice. Specifically, when establishing

an RNN model, regularizations are usually enforced to boost the performance, to

name a few popular ones: dropout [SHK+14], weight decay [KH92], and gradient

clipping [PMB13]. For example, there is relation between dropout and pruning in

games, as they both aim to reduce the parameter/action space.

89

4.3 Adversarial Learning

RDLG tries to boost convergence of optimization problems via an adversarial setting.

RDLG takes a rather direct approach of designing a game from scratch, creating

players, actions and utilities that are equivalent to their counterparts in the neural

network architecture. Actually, the idea of combining game theory with machine

learning has been expanding in recent research and there are more subtle ways of

employing it.

Generative Adversarial Networks (or GANs) [GPAM+14] stand out as an example

of injecting game theory in deep learning. Rather than learning patterns of sample

data, the GAN framework aims to jump out of the sample space and learn the

actual distribution. In a zero-sum game, two networks are set up as the players

against each other: a generative network generates fake samples from a latent space

(usually random noise) while a discriminative network tries to distinguish it from

real samples, which is essentially distinguishing between two distributions. Hence

the objective/utility of the generative network is to increase the error rate of the

discriminative network, while that of the dicriminative network is to minimize it.

GANs are first applied to generate photorealistic images, and later on reconstructing

3D models from images and modling videos [VPT16]. It has been widely used in

industry for all kinds of modifications on images [SEB+18, ABD17]. The power of a

zero-sum game and the nature of two opponent networks has enabled deep learning

to achieve tasks that are impossible for other frameworks.

It is also worthwhile to point out the relation to unsupervised learning. GAN is

a perfect example of combining both generative and discriminative models. In the

design of a discriminative network, it remains a question of what constitutes a good

90

metric to evaluate difference between distributions [ZLPS17]. This falls into the

category of questions on designing a comprehensive objective in an unsupervised

task, which deserves a lot of thinking.

Game theory has provided a natural adversarial setting, which is helpful for a lot

of problems in unsupervised learning. It has shown power of improving convergence

and learning distributions, and there is undoubtedly plenty to explore [FCAL16].

CHAPTER V

Power of Unstructured Data

In previous chapters I have discussed multiple unsupervised models on various type

of structured data. In this chapter I switch gears to unstructured data, specifically,

text data, and show its power in unsupervised learning.

Approaching unstructured data is a significant part in machine learning, for struc-

tured data only takes a small proportion in the real world, and there is significant

need in extracting information in unstructured data. Taking the view of data collec-

tion, structured data are compressed into a predefined form from unstructured data,

which inevitably leads to information loss. On the other hand, unstructured data

is not as difficult to learn for humans. For example, current models for syntactic

annotation or parsing is way slower and less accurate than human, many natural

language generation (or NLG) tasks such as machine translation and dialogue gen-

eration is far below human level. Therefore, there is no doubt that unexplored space

of learning from unstructured data is still large.

I will discuss my study on unstructured data, specifically text data, in the context

of representation learning. Learning word/sentence representations is the key to

the success of NLP models, as they are the input to all the supervised classifica-

tion/regression models. In fact, researchers have spent decades on finding the best

91

92

way to represent words in text data.

For text data, there exists a standard way for learning its representations. Usually,

for a specific corpus, raw text data is preprocessed with a tokenizer that can operate

on different levels. For smaller corpora we usually apply word-level tokenization, and

a character-level tokenization can help restrict mapping to a limited but complete

space. Byte Pair Encoding (or BPE) [SHB15] is a encoding method that has gained

popularity recently. It creates a tokenizer adaptively to a corpus, with the key idea

of encoding word level inputs for frequent symbols and character level inputs for

less frequent ones. With a vocabulary predefined, text will be mapped to more

structured tokens, and words/characters outside the vocabulary will all be replaced

as the < UNK > token. At this stage the “raw” one-hot embedding is created,

where each token is represented by a unit vector of size size(vocabulary), and the 1

entry lies in the mapped token.

The one-hot embeddings are then taken as the input to all unsupervised models

and mapped to a much denser distributed representation of much smaller dimen-

sion. To learn a generic word embedding that ideally fits to multiple downstream

tasks, there are two major types of models. One intuitive approach is to explore the

task space. By training a embedding that simultaneously fits on multiple supervised

tasks, it is more likely to obtain a representation with better generalization abil-

ity. This also alleviate the problem of small size of labeled data for most tasks and

leverage multiple datasets. The other approach is within the unsupervised domain,

creating tasks that are general enough to extract a representation that performs

well on multiple tasks intrinsically. Autodencoders [Doe16], and language mod-

els [PNI+18, DCLT18, RNSS18] both fall into the latter. Recent works show that

93

there is signigicant improvement by combining these two types of models [LHCG19].

In this chapter, I focus on the unsupervised models.

5.1 Learning Generic Embeddings For Entities

In this study, I propose to extract generic embeddings for certain entities using un-

supervised generic embedding learning methods. Embeddings refers to the represen-

tation of entities in a latent space using real-valued vectors. They are essential in the

production of all kinds of tasks. For example, in the ride-sharing service, weather em-

beddings help forecast demand, road-segment embeddings are used to predict time of

arrival [WFY18], and the customer-service chatbot’s question answering(QA) engine

takes words in a user’s utterance as input features.

In this study, we consider user embeddings. That is, to extract generic representa-

tions of users from user history and profiles. Both drivers and passengers play impor-

tant roles in all kinds of tasks - prediction of drunk drivers/passengers, prediction

of passengers with children so appropriate service can be provided, and possibility

of conflict between certain pairs. A pre-computed, published, low-dimensional user

embedding would be beneficial to the entire service. This is a challenging task due to

the sparsity of user data. In the ride-sharing scenario, it includes specific information

such as trip information and words used in the user’s calls to customer service, as

well as meta data such as number of trips users take between certain hours.

Our contributions in this study are:

• We propose a framework to evaluate unsupervised entity embeddings in the

ride-share service domain.

• We provide analysis on the user embeddings in an interpretable way.

94

• We propose an approach to leverage a heterogeneous dataset for user embedding

extraction that is applicable to real data in the ride-share service domain.

5.1.1 Problem Formulation

The motivations of our study are:

• Extract generic user embeddings that best explain the full range of heteroge-

neous data involving those users.

• Extraction is done unsupervisedly, without presupposing any particular task for

those embeddings.

• In order to evaluate the performance of different NLP embedding models, we

start with synthetic data to gain understanding.

We define the problem as follows.

Problem 5.1. We assign “known” prior information to 5 passengers and 5 drivers.

Each user will have a binary label assigned for his/her aggressiveness, workday pat-

tern, propensity to complain, etc. We build a simulator that generates daily events

of users, activities include and not limited to: pick-ups, drop-offs, customer service

calls, etc. The logic of the simulator are detailed in Algorithm 6. Given a large event

log generated by the simulator, we use generic embedding learning model to extract

the embeddings of users, and then evaluate the embeddings.

5.1.2 Experiment Setup

The workflow of our experiment is shown in Fig. 5.1.

In our experiment, we predefine the profiles of 5 drivers and 5 passengers:

Passenger0 = {MILD,RELIABLE,WORKDAY }

95

Figure 5.1: Workflow of experiment on user embedding extraction.

Passenger1 = {AGGRO,RELIABLE,MISCDAY }

Passenger2 = {AGGRO,RELIABLE,WORKDAY }

Passenger3 = {MILD,UNRELIABLE,MISCDAY }

Passenger4 = {AGGRO,UNRELIABLE,MISCDAY }

Driver0 = {MILD,RELIABLE,COMPLAINER}

Driver1 = {AGGRO,RELIABLE,COMPLAINER}

Driver2 = {MILD,UNRELIABLE, STOIC}

Driver3 = {AGGRO,RELIABLE, STOIC}

Driver4 = {MILD,UNRELIABLE, STOIC}

We have generated logs spanning range of D = {100, 200, 400, 800, 1600, 3200,

6400, 12800} as input of embedding models. A sample log is given as below:

96

Passenger2 called Driver3 at hour 1

Driver3 picked up Passenger2 at hour 1

Driver3 argued with Passenger2 at hour 1

Passenger0 called Driver2 at hour 2

Driver2 and Passenger0 never met at hour 2

Passenger1 called Driver4 at hour 2

Driver4 picked up Passenger1 at hour 2

Driver4 argued with Passenger1 at hour 2

Passenger2 called Driver0 at hour 2

Driver0 picked up Passenger2 at hour 2

. . .

5.1.3 Methods

We apply 4 training methods to the event logs: word2vec [MCCD13], LSTM-based

language model [ZSV14], autoencoder [Doe16], and node2vec [GL16]. The former 3

methods are applied directly on the text data, while node2vec is applied on a graph

generated from samples on text data, as we describe in detail below. Although there

are many other updated and sophisticated methods for extracting embeddings, we

choose these 4 methods as they are either the foundations of word embeddings or

represent a classical type of unsupervised tasks for text data. We give the details

of our implementations as follows. The hyper-parameters are chosen either by the

default setting or in experiments where the original training sets are comparable to

ours.

• For word2vec, we choose a window size of 5, and number of negative samples

for NCE (noise contrastive estimation) as 25, a learning rate of 0.025, and a

97

data size D = 1600.

• For node2vec, we create a directed, weighted co-occurrence graph from the log

corpus, where each node represents a unique word, the direction represents one

word following another immediately in the text, and the edge weights represent

the frequency of the word-pair co-occurrences.

• The language model consists of 2 hidden layers, and trained with an initial

learning rate of 1 and a decay rate of 0.5 for epochs ≥ 13. Each layer is a stack

of LSTM units of dimension size/hidden size specified beforehand.

• In a bidirectional RNN-based autoencoder, the number of LSTM units is chosen

to be 500, and learning rate of 0.001. As it is a rather complex model, number

of maximum epochs is set to 4.

For simplicity both on the data itself and for evaluation, we learn embeddings of

size 1, 2, and 4. For embeddings of size 4, we project the embedding to 2D for

visualization using t-SNE [MH08], which is entirely independent on our extraction

methods.

5.1.4 Evaluation

The purpose of learning 1D embeddings is to see the power of models under extreme

cases. If there is only 1 unit to use to represent a word, what can it possibly represent

for? What can it be used to distinguish? For all 4 different models we have given

5 runs and looked at the 1D embeddings for both regular words and user words

(i.e. “Passenger0”, “Driver1”, etc.). Observations have shown no agreement on the

capability of the 1D embeddings, in terms of either distinguishing the users/regular

words or passengers/drivers. This result shows that the power of 1D embeddings is

98

still quite weak, providing no interpret ability on the data. We can also categorize

the observation as a classical result of underfitting - 1D is simply not enough to

adapt to the information in the data. 1D embeddings serve as a good unit test for

evaluations on the capacity as well as the interpretability of these embedding models.

Moving on to 2D embedding learned, we see all 4 models demonstrating the power

to distinguish different type of users. Visuallization of the embeddings shows that

the embeddings are capable of revealing the user profiles in an interpretable way.

Specifically, for each feature of passengers/drivers, there is a hard boundary we can

find to separate it, demonstrating the power of generic embeddings in distincting

different user from different perspectives. We show the embeddings of these models

of word2vec and language model in Fig. 5.2 and Fig. 5.3. The orange lines show

the clear separation of features. For example, MILD/AGGRO drivers are clearly

separated, and RELIABLE/UNRELIABLE passengers are separated in every trial.

Node2vec and autoencoders demonstrate the same level of power of distinguishing

different type of users.

We have also experimented on 4D embeddings. And then project them to 2D using

t-SNE. Even though the objective of t-SNE is independent from our models, we

are still able to obtain similar results for some trials. However, also because t-SNE

does not follow the objective of the models, meaning it does not guarantee to find the

optimal separation plane, it is inevitably difficult to find hard boundaries to separate

the users.

It is worthwhile to point out that we learned the embeddings without any prior in-

formation of either distinction of users from other words in the vocabulary, nor any

context information of words from pretrained embeddings. With the intepretable em-

99

Figure 5.2: Word2vec: 2D embedding. Each profile feature is clearly distinguished by the embed-
ding.

beddings, there is strong evidence to believe the generic user embeddings have great

potential in performing well in a set of downstream tasks. In fact, this has been

demonstrated in recent works. In the latest GPT2 model, OpenAI has demonstrated

the ability of embeddings learned from language models in performing multiple down-

stream tasks in a zero-shot setting, taking advantage of a giant heterogeneous corpus

WebText crawled from the web.

Our workflow in Fig III will find huge potential in industry as data is affluent. In

a ride-sharing company, there are sets of heterogeneous data involving all kinds of

user activities: user profiles, trip information, users’ dialogs etc. A model that

can take all data sources as input and generate user embeddings will be extremely

helpful for all kinds of downstream tasks. Considering the different formats of

data, we propose to convert all structured data into unstructured, and feed it to the

embedding models. This is not only easy to implement, and also will serve as a good

100

Figure 5.3: Language model: 2D embedding. Each profile feature is clearly distinguished by the
embedding.

evaluation of power of unstructured data. Thinking beyond the users, our workflow

is capable of extracting embeddings of any type of entities. For instance, given a

text log on trip information, POI (point of interest) emebddings can be extracted for

many prediction tasks depending on traffic conditions. Considering the scale of real

data and the lack of labels, we generate embeddings of dimension 200 to 300, and we

do not perform the evaluations that we did on synthetic data. Instead, embeddings

are directly used by downstream tasks for evaluation. Due to data confidentiality,

we do not show the experimental results on real data.

101

Algorithm 6 User Activity Simulator

Set number of days D, number of drivers n, number of passengers m, profiles of
{driver0, . . . , drivern} and {passenger0, . . . , passengerm}

1: function Call car(passengerId)
2: Choose an unoccupied driver driverId at random// driver who has not picked up a passenger

in current loop
3: Output to log: “passengerId called driverId at hour h
4: if driver and passenger both RELIABLE then
5: Successful pick-up with p = 0.95
6: else if driver is RELIABLE or passenger is RELIABLE then
7: Successful pick-up with p = 0.8
8: else// neither is RELIABLE
9: Successful pick-up with p = 0.6

10: end if
11: if pick-up successful then
12: Output to log: “driverId picked up passengerId at hour h”
13: if driver and passenger both AGGRO then
14: Argue with p = 0.95
15: else if driver or passenger AGGRO then
16: Argue with p = 0.5
17: else
18: Argue with p = 0.1
19: if Argue then
20: Output to log: “driverId argued with passengerId at hour h”
21: if driver is COMPLAINER then
22: Output to log with p = 0.8: “driverId complains to customer service”
23: end if
24: end if
25: end if
26: else// pick-up unsuccessful
27: Output to log: “driverId and passengerId never met at hour h”
28: if driver is COMPLAINER then
29: Output to log with p = 0.3: “driverId complains to customer service”
30: else// driver is STOIC
31: Output to log with p = 0.1: “driverId complains to customer service”
32: end if
33: end if
34: end function

35: for d = 1, . . . , D do
36: for h = 00, . . . , 23 do
37: for passengerId = 0, . . . ,m do
38: if passenger is WORKDAY then
39: if h = 08 or h = 18 then
40: Call car(passengerId) with p = 0.9
41: else
42: Call car(passengerId) with p = 0.05
43: end if
44: else// passenger is MISCDAY
45: Call car(passengerId) with p = 0.1 // regardless of h
46: end if
47: end for
48: end for
49: end for

CHAPTER VI

Conclusion

Attention on unsupervised learning has boosted significantly for the last decade, and

is very like to keep climbing due to its considerable potential in the big data era. In

this thesis, I give an overview of unsupervised learning from different perspectives.

Following the taxonomy on data types, I discuss my contributions to unsupervised

learning on graphs/networks and sequences individually in detail. Specifically, I

introduce CondeNSe, an algorithm that summarizes a large graph into a succinct

supergraph in scale, and the correlation between graph summarization and graph

clustering. As for sequences I have reviewed popular research problems and proposed

a problem CCTN that cluster time-series and graphs jointly, with its solutions and

applications. I also revisit the classical problem of sequence prediction and introduce

a novel game-theoretic algorithm RDLG to solve it. Extending the game design I

briefly talk about its relation to adversarial learning. Beyond structured data such

as networks and sequences, I additionally demonstrate the power of unsupervised

learning applied on unstructured data, showing by experimentation that present

unsupervised representation learning models have tremendous potential in solving

for multiple tasks and helping interpret text data. Besides the contribution of novel

algorithms on rich data types, we have been able to see the flexibility of unsupervised

102

103

methods on learning patterns in complex data sets, as well as its power to preprocess

data and serve for all kinds of downstream tasks. For different and more types of

data, objectives need to be carefully designed to extract the desired patterns. And for

well-established objectives, optimization methods can be further improved by taking

advantage of an adversarial setting. The generalization ability and interpretability

of many unsupervised models, especially on unstructured data remain unclear, but

there are ways to can evaluate them in specific application scenarios.

There is vast space to explore from various perspectives. Embeddings for net-

works is an important topic in representation learning and has been studied for

years [TQW+15, PARS14, RSF17, CLX16, DZHL18, HSSK18, JRK+18, JHRK19].

It has been shown that effective representations can be learned in unsupervised ways

which deserves further exploration and understanding. Evaluations of unsupervised

learning need a thorough look, is it interpretability or downstream task performance

that we care about? It is worthwhile to think about, both theoretically and empir-

ically, what constitutes a good objective for unsupervised learning tasks, and what

makes an objective “better” than another? Representation learning is one of the

most critical fields we focus on. As data volume grows and deep learning models

gains popularity, what can we learn from a giant source of heterogeneous data, or

unstructured data? These are the questions we need to dig deeper and find better

understandings on. Nevertheless, throughout this thesis, I have demonstrated the

efficacy of unsupervised learning in learning from data regardless of its type.

APPENDIX

104

105

.1 CCTN: Derivations and Proofs

In this section we provide the proofs for the two main results behind our proposed

methods, CCTN and CCTN-inc.

Theorem 4.6. When fixing variable C, we only need to focus on the parts of the

objective (4.5) that depend on W, so the objective becomes:

(.1) J(W) =
∑K

k=1 ak‖Xk −CW‖2
F

which corresponds to a quadratic optimization function. To optimize Eq. (.1), we

apply the first order optimality condition as follows:

∂J(W)
∂W

= 2(
∑

k akC
TC)W)W − 2

∑
k akC

TXk = 0

Hence, W is the solution of linear equation (4.7).

When we fix W, we need to take into account the parts of the objective function

that depend on C:

(.2) Q(C) =
∑K

k=1 ak‖Xk −CW‖2
F + λTr(CTLC).

To minimize Q(C) with respect to C, we take the partial derivative and set it to 0:

∂Q(C)

∂C
= 0⇒ 2

∑
k

ak(CW −Xk)W
T + 2λLC = 0.

By rearranging this equation, we obtain Eq. (4.8).

Thoerem 4.11. The embedded clustering matrix C′ is fixed and initialized to the

solution of the non-incremental version, i.e., C′ = C. According to Theorem 4.6,

106

and using the notation that we introduced for perturbations, we have:

W′ =

(∑
k

akC
′TC′

)−1∑
k

akC
′TX′k ⇒

W + ∆W =

(∑
k

akC
TC

)−1∑
k

akC
T (Xk + ∆Xk)

By using the formula for W from Theorem 4.6 and substituting it above, we obtain

the expression in Eq. (4.12). Then, we apply Theorem 4.6 to find the ‘ground truth’

solution of C′ (based on CondeNSe), when W′ is fixed:

C′
∑

k akW
′W′T + λL′C′ =

∑
k akX

′
kW

′T

By rewriting the last equation using the ∆-notation for all the matrices that are

involved, we obtain

(C + ∆C)
∑
k

ak(W + ∆W)(W + ∆W)T

+ λ(L + ∆L)(C + ∆C) =
∑
k

ak(Xk + ∆Xk)(W + ∆W)T

Based on the assumption that the perturbations are all significantly sparser than the

original matrices, we can approximate the above equation by ignoring their 2nd-order

terms. That is, we drop the terms of the form (∆M)2, where M ∈ {C,W,L,Xk}.

By expanding the last equation and applying this matrix approximation, we obtain

Eq. (4.13).

.2 CCTN-inc: Incremental Algorithm

In Sec. 4.1, we leveraged Theorem 4.11 to propose CCTN-inc, an effective and

fast approximation of CCTN, which handles incremental updates in the network

107

structure, the introduction of new nodes, and changes in the behavioral patterns of

existing nodes. In Algorithm 7, we give the high-level pseudocode of CCTN-inc.

Algorithm 7 CCTN-inc: Incremental version of CondeNSe

Input: Graph G′(V ′,E′); stacked matrices of k-type time-series {X′k} with T ′ timesteps, basis
matrix of temporal patterns W and embedded-clustering matrix C found by Alg. 3; parameters
ak and λ, dimensionality d (same as Alg. 3)
Output: Vector with cluster assignments c′

1: ε = 10−6, τmax = 100 // Constants for convergence
2: τ = 0 // Initialization of iteration #

// Initialization based on the solutions of Alg. 3
3: C′(τ) = C // Random init of rows of new nodes

4: W′
(τ) = W // Random init of cols of new timestamps

5: repeat
6: τ = τ + 1

// Step 1: Compute W′ via Eq. (4.12)
7: W′

(τ) = (
∑
k akC

′T
(τ−1)C

′)−1(
∑
k akC

′T
(τ−1)X

′
k)

// Step 2: Compute C′ via Eq. (4.13)
8:

∆C(τ)

∑
k

akW(τ)W
T
(τ) + λL∆C =

∑
k

ak(Xk(∆W(τ))
T

+ (∆Xk)WT
(τ) −C(∆W(τ))W

T
(τ)

−C(τ)W(τ)(∆W(τ))
T + λ(∆L)C(τ))

9: until (||C′(τ) −C′(τ−1)||1 < ε & ||W′
(τ) −W′

(τ−1)||1 < ε) or τ > τmax

// Step 3: Assign the nodes to clusters based on the inferred embeddings in C’ (each row is
an ‘observation’).

10: c′ = cluster rows(C′(τ))

11: return c′

.3 CCTN: Baselines

Here we present some details about the clustering methods that we considered as

baselines in our experiments.

• Spectral clustering refers to a class of algorithms that utilize eigendecomposi-

tion to identify community structure. We utilize one such algorithm [Hes04], which

partitions a graph by performing k-means clustering on the top-k eigenvectors of the

input graph. The idea behind this clustering is that nodes with similar connectivity

have similar eigen-scores in the top-k vectors, and thus form clusters.

108

• Louvain is a modularity-based partitioning method for detecting hierarchical com-

munity structure. The method is iterative: (i) Each node is placed in its own com-

munity. Then, the neighbors j of each node i are considered, and i is moved to

j’s community if the move produces the maximum modularity gain. The process is

applied repeatedly until no further gain is possible. (ii) A new graph is built whose

supernodes represent communities, and superedges are weighted by the weighted sum

of links between the two communities. The algorithm typically converges after a few

passes.

• k-Shape relies on a scalable iterative refinement procedure, which creates homo-

geneous and well-separated clusters. As for the distance measure, k-Shape uses a

normalized version of the cross-correlation in order to consider the shapes of time

series while comparing them. Based on the properties of this distance measure, a

method is developed to compute cluster centroids, which is used in every iteration

to update the assignment of time series to clusters.

• Based on DTW, TADPole uses a pruning strategy that exploits both upper and

lower bounds to remove a large fraction of the expensive distance calculations. This

pruning strategy gives provably identical results to the brute force algorithm, but is

at least an order of magnitude faster. It also uses a simple heuristic to order the

calculations, thus casting the clustering as an anytime algorithm.

We discuss the parameter settings for the baselines in Sec. 4.1, and the setup for this

experiment in Sec. 4.1.

109

.4 CCTN: Accuracy of Cluster Recovery

In Sec. 4.1, we presented the results from comparing our method, CCTN, with the

baselines in terms of accuracy (i.e., agreement with the ground-truth clusters in the

labeled data). In the main paper, we included the plots that compare the methods

in terms of NMI. Here we supplement our analysis with results on the rand index

in Fig. A.1. The trends are similar to the ones we see for NMI, though the scores

are consistently higher. Overall, CCTN has consistently strong performance across

a wide variety of synthetic and real datasets, unlike the baselines which exhibit wide

variability in their performance—for example, k-Shape works well on MITRE in

terms of the rand index, but performs poorly or worse than CCTN in the other real

datasets and many of the synthetic cases.

In Fig. A.2, we also present rand-index based results about the approximation of

CCTN by its incremental counterpart, CCTN-inc. The setup for this experiment

is given in Sec. 4.1(2). We observe that, based on both metrics, CCTN-inc approxi-

mates CCTN very well in that it finds similar clusterings. The trends between NMI

and rand index are similar, with rand index being consistently higher.

.5 CCTN: Sensitivity of Clustering

The last question that we raised in Experiments of Sec. 4.1 is about the robustness

of CCTN to different parameter settings. To answer this question, we experiment

with different combinations of parameters and evaluate the corresponding effect on

clustering. In this experiment we call a1 = a2 = λ = 1, d = 4 ‘default setting’. Note

that these values are different from the default case that we discuss in Sec. 4.1. Then,

we run CCTN on all the synthetic cases of Table 4.2 by fixing all the parameters to

110

(a) Synthetic data: CCTN performs better than the baselines on difficult cases or equally well on easy cases.

(b) Real data: Overall, CCTN performs consistently better than or equally well as the baseline methods.

Figure A.1: Rand index-based accuracy of CCTN and CCTN-inc on synthetic and real data.

their default setting, with the exception of one parameter that we vary. The results

are shown in Figure A.3.

Observation 5. CondeNSe is generally robust to different parameter settings. Based

on the rand index, it is more sensitive to λ than the other parameters. Practitioners

may choose to tune λ primarily to achieve better performance.

111

Figure A.2: MITRE: CCTN-inc approximates CCTN well based on both the NMI and rand index
metrics.

(a) Sensitivity to a1. (b) Sensitivity to a2.

(c) Sensitivity to λ. (d) Sensitivity to d.

Figure A.3: CCTN is robust with respect to the parameters. The different lines in the plots
correspond to different synthetic cases, as described in the rightmost plot (d).

112

.6 RDLG : Proofs

.6.1 Group of Nodes

For the RDLP , bounded constraints are enforced on groups of nodes, so we can

exploit the partition trick as in [SZ16] for nodes with same constraints when we

design the game.

.6.2 Reasonable Actions & Nash Equilibria

We define reasonable actions for recurrent deep learning games. Proof of Nash equi-

libria is similar to that of feedforward networks [SZ16].

Definition 0.3. Given a joint action for the recurrent deep learning game a =

(U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) and some v ∈ x ∪ h ∪ o, if fv for v ∈ x ∪ h or gv for

v ∈ o, is convex and differentiable, define the zanni at v to be reasonable for a if for

all t ∈ {1, . . . , τ}:

for v ∈ x, q
(t)
v = 1, and c(t)(v,U,V,W = d

(t)
v + q

(t)
v c(t)(v,U,V,W);

for v ∈ h,

q(t)
v

= f ′v(
∑

u:(u,v)∈E

c(t−1)(u,U,V,W)W (u, v) +
∑

u′:(u′,v)∈E

c(t)(u′,U,V,W)U(u′, v)),

and

fv(
∑

u:(u,v)∈E

c(t−1)(u,U,V,W)W (u, v) +
∑

u′:(u′,v)∈E

c(t)(u′,U,V,W)U(u′, v))

= d(t)
v + q(t)

v (
∑

u:(u,v)∈E

c(t−1)(u,U,V,W)W (u, v)

+
∑

u′:(u′,v)∈E

c(t)(u′,U,V,W)U(u′, v));

113

for v ∈ o,

q(t)
v = g′v(

∑
u:(u,v)∈E

c(t)(u,U,V,W)V (u, v));

and

gv(
∑

u:(u,v)∈E

c(t)(u,U,V,W)V (u, v))

= d(t)
v + q(t)

v (
∑

u:(u,v)∈E

c(t)(u,U,V,W)V (u, v)).

Definition 0.4. If the loss l is convex and differentiable, then the antagonist is

reasonable if for all t ∈ {1, . . . , τ}, a(t)ᵀc(t)(o,U,V,W) + b(t) = l(t)(c(t)(o,U,V,W))

and a(t) = ∇l(t)(z)|z=c(t)(o,U,V,W).

Proof of Lemma 4.20 is then analogous to Lemma 3 in [SZ16], with the definitions in

Section .6 and above. Note that when generating the partial order, we consider the

deep network without the recurrent edges, i.e. the edge from h to h removed from

the example, which is a acyclic graph. We define partial order in this way for two

reasons: only acyclic graphs can generate partial order; the recurrent edges connect

values from time step t to t + 1, which is an order already in place because of the

way we feed the data into the network and evaluate the network: input is a sequence

x(1), . . . ,x(τ) and we always finish evaluating one sample before the next, as shown

in the rollout network in Figure 4.6. This partial order is the foundation of the proof

that is built on top of strong induction.

Note that even though we have dependence among utilities of different t, the total

utilities are still linear combinations of that of each t, hence the proof which break

apart Up into Up(t) remain valid.

The proof of Theorem 4.21 is also analogous to that of Theorem 4 in [SZ16].

We give the lemmas as follows.

114

Fact 0.5. Given a finite set S, a partial ordering ≤ over S, and a set X ⊆ S, then

if for all s′ ∈ S, {s′ ∈ S : s′ < s} ⊆ X ⇒ s ∈ X, then X = S.

Lemma 0.6. Assume that for all v ∈ x ∪ h and v′ ∈ o, fv and gv′ are convex and

differentiable. Assume ⊆ is the partial order generated by the directed acyclic graph

in the recurrent deep network with the recurrent edges removed. For any v ∈ x∪h∪o,

given a joint action a = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where for all u ≤ v, the

zanni at u is reasonable for a, then U
s(t)
v = c(t)(v,U,V,W).

Proof. Define U ⊆ x ∪ h ∪ o to be the set of all vertices u ∈ x ∪ h ∪ o where u ≤ v.

Define R ⊆ U to be the set of nodes v where U
s(t)
v (a) = c(t)(v,U,V,W). We can

use the partial order of the graph as a partial order over U to prove recursively

that R = U . Then we can prove by strong strong recursion on this total order that

U
s(t)
u (a) = c(t)(u,U,V,W) if for all u′ < u, U

s(t)
u (a) = c(t)(u′,U,V,W).

Lemma 0.7. Assume that for all v ∈ x ∪ h and v′ ∈ o, fv and gv′ are convex

and differentiable, the loss l is convex and partially differentiable. Given a joint

action a = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where all zannis and the antagonist are

reasonable, then for any example t in the sequence, Ua(t)(a) = l(t)(c(t)(v,U,V,W)).

Proof. The proof is analogous to the proof of Lemma 0.6

Lemma 0.8. Assume that for all v ∈ x ∪ h and v′ ∈ o, fv and gv′ are convex and

differentiable, the loss l is convex and partially differentiable. Given a joint action

a = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where all zannis are reasonable, then the unique

best response for the antagonist is to be reasonable.

115

Proof. Since the zanni knows the example, fix a specific example t. Define z = x
(t)
v ,

if v ∈ x, or

Lemma 0.9. Assume that for all v ∈ x ∪ h and v′ ∈ o, fv and gv′ are convex

and differentiable, the loss l is convex and partially differentiable. Given a joint

action a = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where all zannis are reasonable, and the

antagonist is reasonable, the protagonists play (U,V,W), then if Up is the utility of

the protagonists, then: ∇MU
p(a) = −∇ML(U,V,W), where M ∈ {U,V,W}.

For RNN we define paths between nodes on the network with the recurrent edges

removed, i.e. if N ′ is the network with recurrent edges removed from network N ,

define P (u, v) to be the set of all paths from u to v. For any path ρ, define |ρ| to be

the number of nodes in the path. For all ρ ∈ P (u, v), ρ1 = u and ρ|ρ| = v. As long

as we don’t refer to specific t, there is no ambiguity in this definition in RNNs.

Lemma 0.10. for v ∈ h,

∂Up(a)

∂W (u, v)
= −1

τ

τ∑
t=2

n∑
k=1

a
(t)
k U

s(t−1)
u (a)q(t)

ρ|ρ|
a

(t)
k Π

|ρ|−1
j=1 M(ρj, ρ(j+1))q

(t)
ρ(j+1)

,

∂Up(a)

∂U(u, v)
= −1

τ

τ∑
t=1

n∑
k=1

a
(t)
k U

s(t)
u (a)q(t)

ρ|ρ|
a

(t)
k Π

|ρ|−1
j=1 M(ρj, ρ(j+1))q

(t)
ρ(j+1)

;

for v ∈ o,

∂Up(a)

∂V (u, v)
= −1

τ

τ∑
t=1

n∑
k=1

a
(t)
k U

s(t)
u (a)q(t)

ρ|ρ|
a

(t)
k Π

|ρ|−1
j=1 M(ρj, ρ(j+1))q

(t)
ρ(j+1)

;

where M ∈ {U, V,W}, depending on the position of v and which weight matrix the

path involves. At the encountering of h, the recurrent edge is considered as extra

input and included in the computation as the unfolded network suggests.

116

For each ρ ∈ P , define Up
ρ,a : REρ ⇒ R such that Up

ρ,a(Uρ,Vρ,Wρ) is the utility of

the protagonist at ρ if she unilaterally deviates from a to play (Uρ,Vρ,Wρ).

The following is true for unconstrained RNNs. Proof not valid on constrained RNNs

corresponding to KKT point.

Lemma 0.11. Given a fixed protagonist action (U,V,W), there exists a unique

joint action for all agents σ = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where the zannis and

the antagonist are playing best response to σ. Moreover, Up(σ) = −L(U,V,W),

∇ML(σ), where M ∈ {U,V,W}, and given some protagonist at ρ ∈ P , if we hold

all other agents’ strategies fixed, Up(σ) is an affine function of the strategy of the

protagonist at ρ.

Lemma 0.12. Assume that for all v ∈ x ∪ h and v′ ∈ o, fv and gv′ are convex

and differentiable, the loss l is convex and partially differentiable. Given a joint

action a = (U,V,W, {a(t), b(t)}, {q(t)
v , d

(t)
v }) where all zannis are reasonable, and the

antagonist is reasonable, then if the joint action (U,V,W) for the protagonists is a

global minimum , then the protagonists actions are a best response to a, and a is a

Nash equilibrium.

Theorem 0.13. Assume that for all v ∈ x ∪ h and v′ ∈ o, fv and gv′ are convex

and differentiable, the loss l is convex and partially differentiable. For every global

minimum (U,V,W), there is a Nash equilibrium where the joint action of the pro-

tagonists is (U,V,W), and for every Nash equilibrium where the joint action of the

protagonists is (U,V,W), (U,V,W) is a global minimum.

BIBLIOGRAPHY

117

118

BIBLIOGRAPHY

[ABD17] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay, Face aging with condi-
tional generative adversarial networks, 2017 IEEE International Conference on Image
Processing (ICIP), IEEE, 2017, pp. 2089–2093.

[AG18] Marc’Aurelio Ranzato Alex Graves, Unsupervised Deep Learning Tutorial, https:
//nips.cc/Conferences/2018/Schedule?showEvent=10985/, 2018, [Online; ac-
cessed Decembers-3-2018].

[AGAV09] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo, A comparison
of extrinsic clustering evaluation metrics based on formal constraints, Information
retrieval 12 (2009), no. 4, 461–486.

[Agg15] Charu C Aggarwal, Data mining: The textbook, Springer, 2015.

[AGMF14] Miguel Araujo, Stephan Günnemann, Gonzalo Mateos, and Christos Faloutsos, Be-
yond blocks: Hyperbolic community detection, 2014.

[AGP+16] Miguel Araujo, Stephan Günnemann, Spiros Papadimitriou, Christos Faloutsos,
Prithwish Basu, Ananthram Swami, Evangelos E. Papalexakis, and Danai Koutra,
Discovery of “comet” communities in temporal and labeled graphs com2, KAIS 46
(2016), no. 3, 657–677.

[AKY99] Charles J Alpert, Andrew B Kahng, and So-Zen Yao, Spectral partitioning with
multiple eigenvectors, Discrete Applied Mathematics 90 (1999), no. 1, 3–26.

[ASW15] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah, Time-series
clustering–a decade review, Information Systems 53 (2015), 16–38.

[ATK15] Leman Akoglu, Hanghang Tong, and Danai Koutra, Graph based anomaly detection
and description: a survey, Data mining and knowledge discovery 29 (2015), no. 3,
626–688.

[AW10] Charu C Aggarwal and Haixun Wang, A survey of clustering algorithms for graph
data, Managing and mining graph data, Springer, 2010, pp. 275–301.

[B+14] Dario Bauso et al., Game theory: Models, numerical methods and applications, Foun-
dations and Trends R© in Systems and Control 1 (2014), no. 4, 379–522.

[Bal87] Dana H Ballard, Modular learning in neural networks., AAAI, 1987, pp. 279–284.

[Bau08] Ulrike Baur, Low rank solution of data-sparse sylvester equations, Numer Linear
Algebr 15 (2008), no. 9, 837–851.

[Ber06] Pavel Berkhin, A survey of clustering data mining techniques, Grouping multidimen-
sional data, Springer, 2006, pp. 25–71.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre,
Fast unfolding of communities in large networks, JSTAT (2008), no. 10.

119

[BHKL06] Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and Xiangyang Lan,
Group formation in large social networks: membership, growth, and evolution, 2006.

[Bis06] Christopher M Bishop, Pattern recognition and machine learning, springer, 2006.

[BKM+08] Lars Backstrom, Ravi Kumar, Cameron Marlow, Jasmine Novak, and Andrew
Tomkins, Preferential behavior in online groups, 2008.

[BKNS00] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander, Lof:
identifying density-based local outliers, ACM sigmod record, vol. 29, ACM, 2000,
pp. 93–104.

[BM07] Avrim Blum and Yishay Monsour, Learning, regret minimization, and equilibria.

[BS72] Richard H. Bartels and GW Stewart, Solution of the matrix equation ax+ xb= c [f4],
CACM 15 (1972), no. 9.

[BS17] Noam Brown and Tuomas Sandholm, Safe and nested subgame solving for imperfect-
information games, Advances in Neural Information Processing Systems, 2017,
pp. 689–699.

[BUWK15] Nurjahan Begum, Liudmila Ulanova, Jun Wang, and Eamonn Keogh, Accelerating
dynamic time warping clustering with a novel admissible pruning strategy, KDD,
ACM, 2015.

[CB10] Varun Chandola and Arindam Banerjee, Anomaly detection for discrete sequences:
A survey, IEEE transactions on knowledge and data engineering 24 (2010), no. 5,
823–839.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar, Anomaly detection: A sur-
vey, ACM computing surveys (CSUR) 41 (2009), no. 3, 15.

[CBLH12] Jeffrey Chan, James Bailey, Christopher Leckie, and Michael Houle, ciforager: In-
crementally discovering regions of correlated change in evolving graphs, ACM TKDD
6 (2012), no. 3, 11.

[CH94] Diane J. Cook and Lawrence B. Holder, Substructure Discovery Using Minimum
Description Length and Background Knowledge.

[CKL+09] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro
Panconesi, and Prabhakar Raghavan, On Compressing Social Networks, 2009.

[CLX16] Shaosheng Cao, Wei Lu, and Qiongkai Xu, Deep neural networks for learning graph
representations, Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[CN11] Adam Coates and Andrew Y Ng, The importance of encoding versus training with
sparse coding and vector quantization, Proceedings of the 28th international confer-
ence on machine learning (ICML-11), 2011, pp. 921–928.

[Cor88] Florence Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic
acids research 16 (1988), no. 22, 10881–10890.

[CP08] Marcella Corduas and Domenico Piccolo, Time series clustering and classification
by the autoregressive metric, CSDA 52 (2008), no. 4, 1860–1872.

[CPMF04] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, and Christos
Faloutsos, Fully automatic cross-associations, 2004.

[CS14] Girish Chandrashekar and Ferat Sahin, A survey on feature selection methods, Com-
puters & Electrical Engineering 40 (2014), no. 1, 16–28.

[CT12] Thomas M Cover and Joy A Thomas, Elements of information theory, John Wiley
& Sons, 2012.

120

[CTF+15] Yongjie Cai, Hanghang Tong, Wei Fan, Ping Ji, and Qing He, Facets: Fast compre-
hensive mining of coevolving high-order time series, KDD, ACM, 2015, pp. 79–88.

[CV05] Rudi Cilibrasi and Paul Vitányi, Clustering by Compression, no. 4.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio, Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation, arXiv preprint
arXiv:1406.1078 (2014).

[CVSFG16] Yoon-Sik Cho, Greg Ver Steeg, Emilio Ferrara, and Aram Galstyan, Latent space
model for multi-modal social data, WWW, 2016.

[cyt] clusterMaker: Creating and Visualizing Cytoscape Clusters, http://www.cgl.ucsf.
edu/cytoscape/cluster/clusterMaker.shtml.

[Dah96] Rainer Dahlhaus, On the kullback-leibler information divergence of locally stationary
processes, Stochastic processes and their applications 62 (1996), no. 1.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, Bert: Pre-
training of deep bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[DDT+16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez,
and Le Song, Recurrent marked temporal point processes: Embedding event history
to vector, KDD, ACM, 2016.

[Dee18] DeepAI, Build with AI — DeepAI, https://deepai.org/

machine-learning-glossary-and-terms/unsupervised-learning/, 2018,
[Online; accessed September-30-2018].

[DGK05] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis, A Fast Kernel-based Multilevel
Algorithm for Graph Clustering, ACM, 2005, pp. 629–634.

[Dhi01] Inderjit S Dhillon, Co-clustering documents and words using bipartite spectral graph
partitioning, Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2001, pp. 269–274.

[DMBM15] Wim De Mulder, Steven Bethard, and Marie-Francine Moens, A survey on the ap-
plication of recurrent neural networks to statistical language modeling, Computer
Speech & Language 30 (2015), no. 1, 61–98.

[Doe16] Carl Doersch, Tutorial on variational autoencoders, arXiv preprint arXiv:1606.05908
(2016).

[DPK+17] Pravallika Devineni, Evangelos E. Papalexakis, Danai Koutra, A. Seza Doğruöz, and
Michalis Faloutsos, One size does not fit all: Profiling personalized time-evolving user
behaviors, IEEE/ACM ASONAM, ACM, 2017, pp. 331–340.

[DRS09] Avinash Dixit, David Reiley, and Susan Skeath, Games of strategies, 2009.

[DS13] Cody Dunne and Ben Shneiderman, Motif Simplification: Improving Network Vi-
sualization Readability with Fan, Connector, and Clique Glyphs, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI), ACM, 2013,
pp. 3247–3256.

[DZHL18] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec, Learning structural
node embeddings via diffusion wavelets, Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, ACM, 2018, pp. 1320–
1329.

121

[EBC+10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal
Vincent, and Samy Bengio, Why does unsupervised pre-training help deep learning?,
Journal of Machine Learning Research 11 (2010), no. Feb, 625–660.

[EKS+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al., A density-based
algorithm for discovering clusters in large spatial databases with noise., Kdd, vol. 96,
1996, pp. 226–231.

[FCAL16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine, A connection
between generative adversarial networks, inverse reinforcement learning, and energy-
based models, arXiv preprint arXiv:1611.03852 (2016).

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos, On Power-law Rela-
tionships of the Internet Topology.

[FM07] Christos Faloutsos and Vasilis Megalooikonomou, On Data Mining, Compression and
Kolmogorov Complexity., vol. 15, Springer-Verlag, 2007.

[For10] Santo Fortunato, Community detection in graphs, Physics reports 486 (2010), no. 3-
5, 75–174.

[FZ16] Leonardo N Ferreira and Liang Zhao, Time series clustering via community detection
in networks, Information Sciences 326 (2016), 227–242.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT press,
2016.

[GCB04] Nizar Grira, Michel Crucianu, and Nozha Boujemaa, Unsupervised and semi-
supervised clustering: a brief survey, A review of machine learning techniques for
processing multimedia content 1 (2004), 9–16.

[GERD13] Sean Gilpin, Tina Eliassi-Rad, and Ian Davidson, Guided learning for role discov-
ery (glrd): Framework, algorithms, and applications, Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (New
York, NY, USA), KDD ’13, ACM, 2013, pp. 113–121.

[GH12] Michael U Gutmann and Aapo Hyvärinen, Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics, Journal of
Machine Learning Research 13 (2012), no. Feb, 307–361.

[GHLR01] Cyril Goutte, Lars Kai Hansen, Matthew G Liptrot, and Egill Rostrup, Feature-space
clustering for fmri meta-analysis, Hum Brain Mapp 13 (2001), no. 3, 165–183.

[GKSL17] Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao, Edge labeling
schemes for graph data, ACM, 2017, pp. 12:1–12:12.

[GL16] Aditya Grover and Jure Leskovec, node2vec: Scalable feature learning for networks,
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining, ACM, 2016, pp. 855–864.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton, Speech recognition with
deep recurrent neural networks, 2013 IEEE international conference on acoustics,
speech and signal processing, IEEE, 2013, pp. 6645–6649.

[GN02] Michelle Girvan and M. E. J. Newman, Community structure in social and biological
networks, PNAS 99 (2002).

[GNVL79] Gene Golub, Stephen Nash, and Charles Van Loan, A hessenberg-schur method for
the problem ax+ xb= c, IEEE Trans Automat Contr. 24 (1979), no. 6.

122

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio, Generative adversarial nets,
Advances in neural information processing systems, 2014, pp. 2672–2680.

[GTV11] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis, Evaluating co-
operation in communities with the k-core structure, IEEE/ACM, 2011.

[HBC+92] Lawrence O Hall, Amine M Bensaid, Laurence P Clarke, Robert P Velthuizen, Mar-
tin S Silbiger, and James C Bezdek, A comparison of neural network and fuzzy
clustering techniques in segmenting magnetic resonance images of the brain, IEEE
transactions on neural networks 3 (1992), no. 5, 672–682.

[Hes04] Joao P Hespanha, An efficient matlab algorithm for graph partitioning, UCSB, CA,
USA (2004).

[HGER+12] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu,
Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li, RolX: Structural Role
Extraction & Mining in Large Graphs, ACM, 2012.

[HGL+11] Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hang-
hang Tong, and Christos Faloutsos, It’s who you know: graph mining using recursive
structural features., KDD, ACM, 2011.

[HKBG08] Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani,
Metropolis Algorithms for Representative Subgraph Sampling, Proceedings of the 2008
Eighth IEEE International Conference on Data Mining (Washington, DC, USA),
ICDM ’08, IEEE Computer Society, 2008, pp. 283–292.

[HSSK18] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra, Regal: Represen-
tation learning-based graph alignment, Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, ACM, 2018, pp. 117–126.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual learning
for image recognition, Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[Jai10] Anil K Jain, Data clustering: 50 years beyond k-means, Pattern Recognit Lett 31
(2010), no. 8, 651–666.

[JHRK19] Di Jin, Mark Heimann, Ryan Rossi, and Danai Koutra, node2bits: Compact
time-and attribute-aware node representations for user stitching, arXiv preprint
arXiv:1904.08572 (2019).

[JK17a] Di Jin and Danai Koutra, Exploratory analysis of graph data by leveraging domain
knowledge, ICDM17, 2017, pp. 187–196.

[JK17b] Lisa Jin and Danai Koutra, Ecoviz: Comparative vizualization of time-evolving net-
work summaries, ACM Knowledge Discovery and Data Mining (KDD) 2017 Work-
shop on Interactive Data Exploration and Analytics, 2017.

[JLS+17] Di Jin, Aristotelis Leventidis, Haoming Shen, Ruowang Zhang, Junyue Wu, and
Danai Koutra, PERSEUS-HUB: Interactive and Collective Exploration of Large-scale
Graphs, Informatics (Special Issue “Scalable Interactive Visualization”) 4 (2017),
no. 3.

[Joh67] Stephen C Johnson, Hierarchical clustering schemes, Psychometrika 32 (1967), no. 3,
241–254.

[JQV07] Steffen Jorgensen, Marc Quincampoix, and Thomas L Vincent, Advances in dynamic
game theory: Numerical methods, algorithms, and applications to ecology and eco-
nomics, vol. 9, Springer Science & Business Media, 2007.

123

[JRK+18] Di Jin, Ryan Rossi, Danai Koutra, Eunyee Koh, Sungchul Kim, and Anup
Rao, Bridging network embedding and graph summarization, arXiv preprint
arXiv:1811.04461 (2018).

[JRSD15] Abhay Jha, Shubhankar Ray, Brian Seaman, and Inderjit S Dhillon, Clustering to
forecast sparse time-series data, ICDE, IEEE, 2015.

[KBK00] Stefan Kins, Heinrich Betz, and Joachim Kirsch, Collybistin, a newly identified
brain-specific gef, induces submembrane clustering of gephyrin, Nature neuroscience
3 (2000), no. 1, 22.

[KF11] U. Kang and Christos Faloutsos, Beyond ‘Caveman Communities’: Hubs and Spokes
for Graph Compression and Mining, 2011.

[KF17] Danai Koutra and Christos Faloutsos, Individual and collective graph mining: Princi-
ples, algorithms, and applications, Synthesis Lectures on Data Mining and Knowledge
Discovery 9 (2017), no. 2, 1–206.

[KGP01] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta, Distance mea-
sures for effective clustering of arima time-series, ICDM, IEEE, 2001.

[KH92] Anders Krogh and John A Hertz, A simple weight decay can improve generalization,
Advances in neural information processing systems, 1992, pp. 950–957.

[KK99] George Karypis and Vipin Kumar, Multilevel k-way Hypergraph Partitioning, 1999.

[KKK+11] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao,
and Christos Faloutsos, Unifying Guilt-by-Association Approaches: Theorems and
Fast Algorithms, 2011.

[KKPF13] Danai Koutra, Vasileios Koutras, B. Aditya Prakash, and Christos Faloutsos, Pat-
terns amongst Competing Task Frequencies: Super-Linearities, and the Almond-DG
Model, 2013.

[KKVF14] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos, VoG: Summarizing
and Understanding Large Graphs, 2014.

[kle99] The Web as a Graph: Measurements, Models and Methods, 1999.

[KLSH04] Yufeng Kou, Chang-Tien Lu, Sirirat Sirwongwattana, and Yo-Ping Huang, Survey of
fraud detection techniques, IEEE International Conference on Networking, Sensing
and Control, 2004, vol. 2, IEEE, 2004, pp. 749–754.

[KMNR09] Slava Kisilevich, Florian Mansmann, Mirco Nanni, and Salvatore Rinzivillo, Spatio-
temporal clustering, Data mining and knowledge discovery handbook, Springer, 2009,
pp. 855–874.

[KP98] Eamonn J Keogh and Michael J Pazzani, An enhanced representation of time se-
ries which allows fast and accurate classification, clustering and relevance feedback.,
KDD, vol. 98, 1998.

[KvdOS+17] Nal Kalchbrenner, Aäron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol
Vinyals, Alex Graves, and Koray Kavukcuoglu, Video pixel networks, Proceedings
of the 34th International Conference on Machine Learning-Volume 70, JMLR. org,
2017, pp. 1771–1779.

[LAL+16] Stefano Leonardi, Aris Anagnostopoulos, Jakub Lacki, Silvio Lattanzi, and Moham-
mad Mahdian, Community detection on evolving graphs, NIPS, 2016.

[LBG+12] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein, Distributed graphlab: A framework for machine learning and

124

data mining in the cloud, Proceedings of the VLDB Endowment 5 (2012), no. 8,
716–727.

[LCK+10] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani, Kronecker graphs: An approach to modeling networks, JMLR
11 (2010), no. Feb, 985–1042.

[LHCG19] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao, Multi-task deep neu-
ral networks for natural language understanding, arXiv preprint arXiv:1901.11504
(2019).

[Lia05] T Warren Liao, Clustering of time series dataa survey, Pattern recognition 38 (2005),
no. 11, 1857–1874.

[LK14] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford large network dataset
collection, http://snap.stanford.edu/data, June 2014.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos, Graphs over time: densifica-
tion laws, shrinking diameters and possible explanations, ACM, 2005.

[LLM10] Jure Leskovec, Kevin J Lang, and Michael Mahoney, Empirical comparison of algo-
rithms for network community detection, ACM, 2010.

[Llo82] Stuart Lloyd, Least squares quantization in pcm, ITIT 28 (1982), no. 2.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman, Mining of massive
datasets, Cambridge University Press, 2014.

[LS03] Jennifer M Lee and Erik LL Sonnhammer, Genomic gene clustering analysis of path-
ways in eukaryotes, Genome research 13 (2003), no. 5, 875–882.

[LSDK18] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra, Graph summarization
methods and applications: A survey, ACM CSUR 51 (2018), no. 3, 62.

[LSK15] Yike Liu, Neil Shah, and Danai Koutra, An empirical comparison of the summa-
rization power of graph clustering methods, Neural Information Processing Systems
(NIPS) Networks Workshop, Montreal, Canada (2015).

[LSSK18] Yike Liu, Tara Safavi, Neil Shah, and Danai Koutra, Reducing large graphs to small
supergraphs: a unified approach, Social Network Analysis and Mining 8 (2018), no. 1,
17.

[LT10] Kristen LeFevre and Evimaria Terzi, Grass: Graph structure summarization., SIAM,
2010.

[LZS+19] Yike Liu, Linhong Zhu, Pedro Szekely, Aram Galstyan, and Danai Koutra, Coupled
clustering of time-series and networks.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, Efficient estimation of
word representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[MH08] Laurens van der Maaten and Geoffrey Hinton, Visualizing data using t-sne, Journal
of machine learning research 9 (2008), no. Nov, 2579–2605.

[MKB+10] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur, Recurrent neural network based language model, Eleventh annual conference
of the international speech communication association, 2010.

[MLKCW03] Carla S Möller-Levet, Frank Klawonn, Kwang-Hyun Cho, and Olaf Wolkenhauer,
Fuzzy clustering of short time-series and unevenly distributed sampling points, IDA,
Springer, 2003.

125

[MLR19] Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake, Finite mixture mod-
els, Annual review of statistics and its application 6 (2019), 355–378.

[NG04] Mark E. J. Newman and Michelle Girvan, Finding and Evaluating Community Struc-
ture in Networks, Physical Review E 69 (2004), no. 2, 026113+.

[NRS08] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava, Graph Summarization
with Bounded Error, 2008.

[OCP14] OCP, Open Connectome Project, http://www.openconnectomeproject.org, 2014.

[OFC99] Tim Oates, Laura Firoiu, and Paul R Cohen, Clustering time series with hidden
markov models and dynamic time warping, IJCAI Workshop, 1999.

[OKK16] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu, Pixel recurrent
neural networks, arXiv preprint arXiv:1601.06759 (2016).

[OLV18] Aaron van den Oord, Yazhe Li, and Oriol Vinyals, Representation learning with
contrastive predictive coding, arXiv preprint arXiv:1807.03748 (2018).

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, Deepwalk: Online learning of social
representations, Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2014, pp. 701–710.

[PG15] John Paparrizos and Luis Gravano, k-shape: Efficient and accurate clustering of time
series, SIGMOD, 2015.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, On the difficulty of train-
ing recurrent neural networks, International conference on machine learning, 2013,
pp. 1310–1318.

[PNI+18] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer, Deep contextualized word representations, arXiv
preprint arXiv:1802.05365 (2018).

[PPK+14] Manish Purohit, B Aditya Prakash, Chanhyun Kang, Yao Zhang, and VS Subrahma-
nian, Fast influence-based coarsening for large networks, ACM, 2014, pp. 1296–1305.

[PS83] Girish Punj and David W Stewart, Cluster analysis in marketing research: Review
and suggestions for application, Journal of marketing research 20 (1983), no. 2, 134–
148.

[PS89] David Peleg and Alejandro A. Schäffer, Graph spanners, Journal of Graph Theory
13 (1989), no. 1, 99–116.

[PSS+10] B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, and
Christos Faloutsos, EigenSpokes: Surprising Patterns and Scalable Community Chip-
ping in Large Graphs.

[PY10] Sinno Jialin Pan and Qiang Yang, A survey on transfer learning, IEEE Transactions
on knowledge and data engineering 22 (2010), no. 10, 1345–1359.

[Ran71] William M Rand, Objective criteria for the evaluation of clustering methods, Journal
of the American Statistical association 66 (1971), no. 336, 846–850.

[RGM03] Sriram Raghavan and Hector Garcia-Molina, Representing web graphs, IEEE, 2003.

[RGSB14] Matteo Riondato, David Garćıa-Soriano, and Francesco Bonchi, Graph summariza-
tion with quality guarantees, IEEE, 2014, pp. 947–952.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, Learning internal
representations by error propagation, Tech. report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

126

[Ris83] Jorma Rissanen, A Universal Prior for Integers and Estimation by Minimum De-
scription Length, no. 2.

[RNSS18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever, Improv-
ing language understanding by generative pre-training, URL https://s3-us-west-2.
amazonaws. com/openai-assets/research-covers/languageunsupervised/language un-
derstanding paper. pdf (2018).

[RSF17] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo, struc2vec:
Learning node representations from structural identity, Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,
2017, pp. 385–394.

[Sch07] Satu Elisa Schaeffer, Graph clustering, Computer science review 1 (2007), no. 1,
27–64.

[SEB+18] Othman Sbai, Mohamed Elhoseiny, Antoine Bordes, Yann LeCun, and Camille Cou-
prie, Design: Design inspiration from generative networks, Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[SFH17] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton, Dynamic routing between cap-
sules, Advances in neural information processing systems, 2017, pp. 3856–3866.

[SHB15] Rico Sennrich, Barry Haddow, and Alexandra Birch, Neural machine translation of
rare words with subword units, arXiv preprint arXiv:1508.07909 (2015).

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting,
The Journal of Machine Learning Research 15 (2014), no. 1, 1929–1958.

[SK92] CT Shaw and GP King, Using cluster analysis to classify time series, Physica D:
Nonlinear Phenomena 58 (1992), no. 1-4, 288–298.

[SKZ+15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos,
Timecrunch: Interpretable dynamic graph summarization, ACM, 2015.

[SP97] Mike Schuster and Kuldip K Paliwal, Bidirectional recurrent neural networks, IEEE
Transactions on Signal Processing 45 (1997), no. 11, 2673–2681.

[SS11] Daniel A. Spielman and Nikhil Srivastava, Graph sparsification by effective resis-
tances, SIAM J. Comput. 40 (2011), no. 6, 1913–1926.

[SSK18] Tara Safavi, Chandra Sripada, and Danai Koutra, Fast network discovery on sequence
data via time-aware hashing, Knowledge and Information Systems (2018), 1–31.

[SV09] Thomas Strohmer and Roman Vershynin, A randomized kaczmarz algorithm with
exponential convergence, JFAA 15 (2009), no. 2.

[SZ16] Dale Schuurmans and Martin A Zinkevich, Deep learning games, Advances in Neural
Information Processing Systems, 2016, pp. 1678–1686.

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei, Line:
Large-scale information network embedding, Proceedings of the 24th international
conference on world wide web, International World Wide Web Conferences Steering
Committee, 2015, pp. 1067–1077.

[TZHH11] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka, Compression of
Weighted Graphs, 2011, pp. 965–973.

[VDODZ+16] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu,
Wavenet: A generative model for raw audio., SSW 125 (2016).

127

[VPT16] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba, Generating videos with
scene dynamics, Advances In Neural Information Processing Systems, 2016, pp. 613–
621.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin, Attention is all you need, Advances in
neural information processing systems, 2017, pp. 5998–6008.

[WFY18] Zheng Wang, Kun Fu, and Jieping Ye, Learning to estimate the travel time, Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, ACM, 2018, pp. 858–866.

[XW05] Rui Xu and Donald C Wunsch, Survey of clustering algorithms.

[XY04] Yimin Xiong and Dit-Yan Yeung, Time series clustering with arma mixtures, Pattern
Recognition 37 (2004), no. 8, 1675–1689.

[YL13] Jaewon Yang and Jure Leskovec, Overlapping community detection at scale: a non-
negative matrix factorization approach, ACM, 2013.

[YZD+19] Yujun Yan, Jiong Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, and Danai
Koutra, Groupinn: Grouping-based interpretable neural network for classification of
limited, noisy brain data.

[ZF18] Arthur Zimek and Peter Filzmoser, There and back again: Outlier detection between
statistical reasoning and data mining algorithms, Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 8 (2018), no. 6, e1280.

[ZGGS+16] Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig A
Knoblock, Unsupervised entity resolution on multi-type graphs, International Seman-
tic Web Conference, Springer, 2016, pp. 649–667.

[Zhu05] Xiaojin Jerry Zhu, Semi-supervised learning literature survey, Tech. report, Univer-
sity of Wisconsin-Madison Department of Computer Sciences, 2005.

[ZJBP08] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione, Regret
minimization in games with incomplete information, Advances in neural information
processing systems, 2008, pp. 1729–1736.

[ZLPS17] Manzil Zaheer, Chun-Liang Li, Barnabás Póczos, and Ruslan Salakhutdinov, Gan
connoisseur: Can gans learn simple 1d parametric distributions?

[ZSV14] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, Recurrent neural network reg-
ularization, arXiv preprint arXiv:1409.2329 (2014).

[ZSY+15] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakr-
ishnan, Multi-task learning for spatio-temporal event forecasting, KDD, ACM, 2015.

[ZZX08] Zhe Zhang, Junxi Zhang, and Huifeng Xue, Improved k-means clustering algorithm,
2008 Congress on Image and Signal Processing, vol. 5, IEEE, 2008, pp. 169–172.

